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Abstract 

The subject of thermal convection in fluid and porous media is investigated, 

coupled with the development of efficient spectral finite element methods to improve 

on the more commonly used techniques for these types of problems. 

Convection induced by the selective absorption of radiation in a porous medium is 

investigated in the first four chapters. For the Darcy and Brinkman models for fluid 

flow the thresholds of the linear and nonlinear theories are shown to be extremely 

close, demonstrating that the linear theory is accurate enough to predict the onset of 

convective motion. The exploration of a quadratically modelled internal heat source 

is discussed next. It is shown that the linear and nonlinear thresholds are close unless 

the quadratic term becomes dominant over the linear term. Developing a double­

diffusive model yields a critical parameter for which no oscillatory convection occurs 

when it is exceeded. This is an unobservea phenomenon in the present literature. 

Thermal convection in a linearly viscous fluid in a finite box is also explored. 

It is demonstrated that the linear and nonlinear thresholds do not coincide, which 

contradicts results by Georgescu & Mansutti [25]. 

Legendre and Chebyshev polynomial based spectral methods are also developed 

for the evaluation of eigenvalues and eigenfunctions inherent in stability analysis 

in porous media, drawing on the experience of the implementation of the well es­

tablished techniques in the previous work. These generate sparse matrices, where 

the standard homogeneous boundary conditions for both porous and fluid media 

problems are contained within the method. 
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Chapter 1 

Introduction 

The objective of this thesis is to investigate thermal convection in porous media and 

develop efficient spectral finite element methods to improve on the more commonly 

used techniques for these types of problems. The aim of this chapter is to present 

some key definitions, discuss the underlying theory of the stability and instability 

analyses inherent in studying flows in fluid and porous media, and to provide some 

motivation behind the development of each chapter. 

Porous media are materials consisting of a solid matrix with an interconnected 

void. In our context the void is saturated by a fluid, where the interconnectedness 

of the void (which we refer to as the pores) allows the flow of such fluid throughout 

the material. 

Convection in porous media is a highly active subject of research due to the im­

mense variety of applications such as bio-remediation, geothermal reservoir systems, 

contaminant movement in soil, solid matrix heat exchangers, solar power converters 

and oil extraction. These and many other examples are described in Nield & Be­

jan [77], and specific references may be found on pages 238, 239 of Straughan [90]. 

An example of the novel use of porous media, drawn from these references, is in 

heat transfer mechanisms through the use of porous foams and heat pipes, see e.g. 

Amili & Yortsos [5]. 

Modeling as realistically as possible these physical phenomena is the main im­

petus behind the extensive research into fluid mechanics. The mathematical ide­

alisation of the stability of these real world problems is achieved through the use 

1 



Chapter 1. Introduction 2 

of partial differential equations to model the physical problem. The study of the 

stability of such systems of partial differential equations is a key aspect in their 

physical interpretation (see e.g. Nield & Bejan [77]; Straughan [90]), and continues 

to be one of the most pursued topics in fluid mechanics. 

To clarify the concept of stability in the context of a system of partial differen­

tial equations, we begin with a simple illustrative example. Let u(x, t) satisfy the 

equation 
au au 82u 
at + u ax = 8x2 + au, (1.1) 

where x E (0, 1), and u = 0 at x = 0, 1. Here t and x are time and spatial point 

respectively, and a is some real, positive constant. 

Clearly u _ 0 is a solution to equation (1.1), which is referred to as a station­

ary solution as none of the variables have time (t in the context of the example) 

dependence. It is the stability of this solution which we investigate by introducing 

a perturbation (i.e. disturbance) to it. If all the perturbations decay to zero as 

time progresses then the solution is said to be stable. Conversely if just a single 

disturbance grows in amplitude with time, then the solution is unstable. Let w be 

a perturbation to the solution u- 0, i.e. u = u + w, such that 

aw aw 82w 
at + wax = 8x2 + aw. (1.2) 

To discuss linearised instability we retain only the terms in (1.2) which are linear 

in w. As this is now a linear equation we may introduce exponential time dependence 

in w such that w(x, t) = euty(x), for some, potentially complex, growth rate a. This 

yields the equation 

(1.3) 

By imposing the boundary conditions, (y = 0, x :..._ 0, 1), it is possible to define 

y(x) = C sin (mrx), n = ±1, ±2, ... 

for some constant C. Substituting this into (1.3) yields 

n = ±1, ±2, .... (1.4) 

The growth rate a can now be used to assess whether the zero solution is unstable. 

If Re(a) > 0 then the perturbation will grow exponentially in time, clearly leading 
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to what will be referred to as linear instability. From (1.4) it is clear that ~ E R 

Therefore for linear instability a> n2n2 2: n 2. 

It is important to note, however, that this linear analysis approach assumes that 

the perturbation is small and so neglects terms of quadratic and higher order. Hence, 

if a system of partial differential equations contains nonlinear elements, these terms 

must be discarded to proceed. It has been proved that linear analysis often provides 

little information on the behaviour of the nonlinear system (see Straughan [90]), 

so in such cases only instability can be deduced from the linear thresholds, as any 

potential growth in the nonlinear terms is not considered. 

In order to establish stability results we turn our attention to the highly adapt­

able energy method, cf. Straughan [90). Nonlinear energy analysis, which is con­

ducted throughout the thesis, is of particular importance as energy methods are 

creating much interest, see e.g. Kaiser & Mulone [49), Delgado et al. [19), and also 

because they delimit the parameter region of possible subcritical instability (the 

region between the linear instability and nonlinear stability thresholds), see e.g. 

Bhandar et al. [7), Lu & Shao [60), Herron & Ali [35). 

Multiplying (1.1) by u and integrating over (0, 1) yields 

1 d 11 11 ou 11 02u 11 
2 dt o u2 dx + o u2 ox dx = o ox2 u dx +a o u2 dx. 

It is possible to use the boundary conditions to derive that 

and 

11 02u [ ou] 
1 11 (ou) 

2 

- 2 u dx = u- - - dx = -lluxll 2 

0 ox ox 0 0 ox 

1
1 ou 1 
u2

- dx = -[u3
)

1 = 0 
0 ox 3 ° , 

where 11 · 11 denotes the norm on the space of square integrable functions on (0, 1) 

and Ux = Oujox. 

Defining an energy E(t) by 
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we have the inequality 

dE 

dt 

4 

where 1/ RE = max'H (llull 2 /lluxll 2
), and 7-t is the space of admissible functions over 

which we seek a maximum, such that 

7-t = {u E C2 (0, 1) n C([O, 1]), I u = 0, x = 0, 1}. 

Using the Poincare inequality (i.e. lluxll 2 ~ 7r2 llull 2
, see Appendix B.2 for further 

details), and assuming c = 1/a- 1/ RE> 0 it can be deduced that 

or, equivalently 

which leads to 

dE 2 - < -27r acE 
dt -

Hence, by the definition of E(t), !lull ~ 0 at least exponentially, so the zero solution 

to ( 1.1) is stable under the maximisation problem RE ~ a. 

One of the aims of the thesis is to study the behaviour of the linear and non­

linear thresholds and compare them to assess any potential regions of subcritical 

instabilities. Thus, quantifying the discrepancy between these two thresholds makes 

it possible to provide an assessment of the suitability of linear theory to predict the 

onset of convection. 

Conventionally, stability calculations involve determining eigenvalues and eigen­

functions, with few of the associated eigenvalue problems solvable analytically. Two 

powerful existing techniques for finding eigenvalues and eigenfunctions numerically 

are the compound matrix (see e.g. Brown & Marletta [9]; Davies [18]; Drazin & 

Reid [21]; Gardner et al. [24]; Greenberg & Marletta [30], [31], [32]; Ivansson [46]; 

Straughan & Walker [91]) and the Chebyshev tau method (see e.g. Dongarra et 
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al. [20]; Gheorghiu & Pop [26]; Pop [80]; Pop [81]). The compound matrix method, 

which belongs to the family of shooting techniques, performs competently for stiff 

differential equations, with the specific purpose of reducing rounding error, as ex­

plored in Greenberg & Marletta [32], Straughan & Walker [91], see also the references 

therein. The Chebyshev tau technique is a spectral method. This method calcu­

lates as many eigenvalues as required as opposed to just one at a time as is done 

in the compound matrix method. We also refer to similar numerical techniques in 

Greenberg & Marletta [32], Bourne [8], Brown & Marletta [9] and Theofilis [92]. 

These established methods, although useful, produce a variety of computational 

and storage problems, as highlighted in each instance of their utilisation in the 

thesis. Chapters 2 to 5 have typical characteristics of the stability analysis of fluid 

motion in porous media with standard homogeneous boundary conditions, so the 

natural progression was to develop more efficient techniques based on the experience 

of employing the well established routines. 

It was concluded through the experience of the numerical analysis of Chapters 2 

to 6 that the polynomial based structure adopted by the Chebyshev tau technique 

was the optimal approach, if the dual problems of matrix fullness and spurious eigen­

values linked to boundary conditions inherent in this method could be addressed. A 

full discussion of the limitations of both the compound matrix method and Cheby­

shev tau technique and the resulting numerical methods designed to improve on 

them is given in Chapters 7 and 8. 

A brief outline of each chapter now follows. 

In Chapter 2 convection induced by the selective absorption of radiation in a 

porous medium is explored. This is a modification to a porous medium of the sys­

tem modelled by Krishnamurti [55], which showed that penetrative convection could 

occur in a stably stratified fluid layer by internal heating through the absorption 

of radiation. Employing this adapted model we show the growth rate for the lin­

earised system is real. A linear instability analysis is performed and global stability 

thresholds are also found using nonlinear energy theory. An excellent agreement 

is found between the linear instability and nonlinear stability Rayleigh numbers, so 

that the region of potential su bcritical instabilities is very small, demonstrating that 
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the linear theory accurately emulates the physics of the onset of convection. 

In Chapter 3 convection induced by the selective absorption of radiation in a 

porous medium is studied analytically and numerically using the Brinkman model. 

The motivation behind this adaptation is based on the observation that as the in­

ternal heating is provided by the introduction of radiation, a highly packed porous 

medium (such as glass beads) could potentially cause refraction of the radiation, 

resulting in an uneven internal heating throughout the layer. Both linear and non­

linear stability analyses are employed. The thresholds show excellent agreement 

so that the region of potential subcritical instabilities is very small, demonstrating 

that linear theory is accurate enough to predict the onset of convective motion. 

A surprising result shows that the critical Rayleigh number increases linearly as ,\ 

(Darcy number x Brinkman coefficient / dynamic viscosity of the fluid) increases. 

Employing the compound matrix method in both the linear and nonlinear numer­

ical analysis became problematic due to the high order of the equations, with the 

Chebyshev tau technique also being restrictive due to the heavy computational cost 

in solving full matrix eigenvalue problems required over several parameter ranges. 

This leads to the development of the numerical methods in Chapters 7 and 8 to 

overcome these difficulties. 

It is stated in Krishnamurti [55) in reference to the internal heat source that 

'This linear relationship is a first order approximation and may need modification 

for high concentrations of [thymol) blue'. Chapter 4 is motivated by the exploration 

of the validity of an alternative quadratic model. A linear instability analysis is 

performed. To establish conditional and unconditional nonlinear stability results, 

both the Darcy and Forchheimer models are employed to describe fluid flow. Due 

to the presence of significant regions of potential subcritical instabilities, the results 

indicate that linear theory may only be accurate enough to predict the onset of 

convective motion when the model for the internal heat source is predominantly 

linear. 

An interesting and significant aspect of the Krishnamurti model, unexamined in 

Chapters 2 to 4, is the effect of the concentration of the thymol blue on the density 

of the model. Each of these bodies of work define the state equation to be linear in 
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temperature, with the effect of concentration on density assumed negligible. Chapter 

5 explores the use of a double-diffusive convection model in a porous medium, with 

fixed boundary conditions employed throughout. Both the numerical and analytical 

analysis for the linear theory strongly suggest the presence of a critical value /e, 

where 1 is essentially a measure of the internal heat source, for which no oscillatory 

convection occurs when 'Ye ~ 'Y· This, in the present literature, appears to be an 

unobserved phenomenon. A nonlinear energy stability analysis demonstrates more 

comparable linear and nonlinear thresholds when the linear theory predicts the onset 

of fully stationary convection. However, irrespective of the 1 value, the agreement of 

the thresholds does deteriorate as the solute Rayleigh number Re increases. Similarly 

to Chapter 3, the Chebyshev tau technique was found to be restrictive due to the 

heavy computational cost in solving full matrix eigenvalue problems required over 

several parameter ranges. 

In Chapter 6 the linear instability and nonlinear stability bounds for thermal 

convection in a linearly viscous fluid in a finite box are analysed. The linear in­

stability threshold is found to be well above the global stability boundary, which 

contradicts previous work on this model by Georgescu and Mansutti [25]. This 

problem is an interesting example for which the methods developed in Chapters 7 

and 8 would not be directly applicable due to complicated boundary conditions. 

In response to the limitations of the well established numerical methods used in 

Chapters 2 to 6, Chapter 7 presents a Legendre polynomial based spectral technique 

to be applicable to solving eigenvalue problems which arise in linear and nonlinear 

stability questions in porous media, (although there is potential for application to 

other areas of Continuum Mechanics). The matrices produced in the corresponding 

generalised eigenvalue problem are sparse, reducing the computational and storage 

costs, where the superimposition of the standard homogeneous boundary conditions 

which arise in porous media is not needed due to the structure of the method. 

This improves on the computational and storage difficulties encountered with the 

Chebyshev tau method in Chapters 2 to 6. Several eigenvalue problems are solved 

using both the Legendre polynomial based and Chebyshev tau techniques. In each 

example the Legendre polynomial based spectral technique converges to the required 
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accuracy utilising fewer polynomials than the Chebyshev tau method, and with much 

greater computational efficiency. 

Although the Legendre polynomial based spectral method developed in Chap­

ter 7 was shown to overcome the dual problems of matrix fullness and boundary 

conditions, providing a viable, more efficient, alternative to the Chebyshev tau 

technique, drawbacks appeared which resulted in the development of Chapter 8. 

Namely, the introduction of large order polynomials into the system of partial dif­

ferential equations under evaluation yields a problematic assessment of the inner 

product of the Legendre bases with the polynomial, and bandwidth growth within 

the Legendre method (see the introduction of Chapter 8 for specific details). This 

is mainly overcome with the use of Chebyshev polynomials. Thus, in Chapter 8 a 

Chebyshev polynomial based spectral technique is presented which is applicable to 

solving eigenvalue problems which arise in linear and nonlinear stability analysis. 

Although, in the present literature, the basis functions explored are stated to lead 

to full matrices in the associated generalised eigenvalue problem, it is shown that by 

utilising a weighted Chebyshev space, sparse matrices are produced. The structure 

of the method also negates the need for the superimposition of the standard ho­

mogeneous boundary conditions. A selection of eigenvalue problems are presented, 

which are solved using both the Chebyshev polynomial based and Chebyshev tau 

techniques. The results clearly demonstrate the computational advantages of util­

ising the Chebyshev spectral method. This chapter is concluded with comparisons 

between the Legendre and Chebyshev polynomial based methods from Chapters 7 

and 8. 

Chapter 9 contains some concluding remarks on the results and implications of 

the thesis, with suggestions on the development of future work. 

Standard indicial notation is utilised throughout the thesis, with the Einstein 

summation convention for repeated indices. For example, 

au 
Ut- 8t ::= U,t, 
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The standard Laplacian is represented by 6, with the Lebesgue space L2 (S1) being 

defined as 



Chapter 2 

Convection induced by the 

selective absorption of radiation in 

a porous medium 

The object of this chapter is to explore convection induced by the selective absorp­

tion of radiation in a porous medium. This is a modification of the system modelled 

by Krishnamurti [55], which showed that penetrative convection could occur in a 

stably stratified fluid layer by internal heating through the absorption of radiation. 

This model has not been particularly well explored in the current literature even 

though it provides a closer model of cumulus convection as it occurs in the atmo­

sphere. 

Krishnamurti's experiment involves the use of a layer of water containing thymol 

blue, a substance commonly used to visualise fluid motion. The thymol blue has 

the characteristic of colouring the water orange when the pH is low, and blue when 

the pH is high. With a positive electrode along the bottom layer hydroxyl ions 

are produced forcing the pH to increase, which in turn makes this area of the fluid 

blue. When a sodium lamp is introduced the predominantly orange light acts as 

an internal heat source as the radiation travels through the orange part of the fluid 

layer with negligible absorption, but is strongly absorbed by the conjugated blue 

fluid near the positive electrode at the bottom of the layer. Buoyancy driven flows 

can be propagated from the resultant heating. 

10 
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The convection mechanism is a penetrative one effectively modelled via an in­

ternal heat source. Penetrative convection occurs when vertical buoyancy driven 

motion, originally in an unstably stratified layer of fluid, penetrates into surround­

ing stably stratified layers. There is extensive literature on penetrative convection 

with relevant material including Carr & de Putter [13] who provide linear and non­

linear analysis for penetrative convection in a horizontally isotropic porous layer, 

Chasnov & Tse [15] who explore turbulent penetrative convection with an internal 

heat source in a fluid layer, and McKay [67] who studies the onset of buoyancy­

driven convection in superposed reacting fluid and porous layers. FUrther novel 

recent contributions are those of Straughan [88], Tse & Chasnov [96] and Zhang & 

Schubert [99], [100]. 

The system we consider is essentially the same as that given in Krishnamurti [55], 

but with the crucial exception of exploring the model for penetrative convection in 

a porous medium (see e.g. McKay [68], Carr & de Putter [13]), with boundary 

surfaces as there would be in the experiment. 

The development of both linear instability and nonlinear stability theories in this 

chapter allows for the study of any potential regions of subcritical instabilities, so 

that an assessment of the suitability of linear theory to predict the physics of the 

onset of convection can be made. 

The numerical solutions of the linear and nonlinear theories constitute gener­

alised eigenvalue problems, which are evaluated using the Chebyshev tau technique 

and the compound matrix numerical techniques (see Appendices A.2 and A.1). 

It is interesting to note that the porosity E is found to have no effect on the 

linear and nonlinear analysis, so that E can take any value, (within acceptable range 

0 < E < 1), with the results remaining the same. 

The results in this chapter have been published in the article Hill [36]. 

2.1 Governing Equations 

Let us consider a fluid saturated porous layer occupying the three dimensional layer 

{ (x, y) E JR2 } x {z E (0, dz)}, where Oxyz is a cartesian frame of reference with unit 
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vectors i, j, k respectively. 

The porosity c of a porous medium is defined as the fraction of the total volume 

of the medium that is occupied by the fluid volume, assuming that all the fluid space 

is connected. With this in mind, if we define v to be the velocity averaged over all 

the pores of the porous medium, and V to be the actual fluid velocity in a pore, 

then we have the Dupuit-Forcheimer relationship v = cV (see Nield & Bejan (77]). 

From Nield & Bejan (77] we see that relationships between aspects of the porous 

medium can be split into their fluid and solid components respectively. Those pre­

sented in Nield & Bejan (77] which are relevant to this body of work consist of 

where p0 denotes density, hp is the specific heat of the fluid at constant pressure, 

and h is the specific heat of the solid. The subscripts s, f and m denote the solid, 

fluid, and porous medium respectively. Similarly 

where li is the thermal diffusivity (i.e. thermal conductivity) of the component, with 

subscripts as above. 

Darcy's law for convection in a porous medium (see Nield and Bejan (77]) is taken 

to govern the flow. Defining vi to be the pore averaged velocity in the direction i, 

J-l -v· = -p · - b·gp(T) k 1. 't t . 
(2.1) 

Here g is acceleration due to gravity in the negative z direction, b = (0,0,1), P,i is the 

pressure gradient, J-t is the dynamic viscosity of the fluid, and k is the permeability 

of the porous medium. We make the simplifying assumption that the density p is a 

linear function in the temperature T, so that 

p(T) = Po(1- a(T- To)) 

for initial pressure p0 and initial temperature T0 . The effect of the concentration 

of the conjugated form of the thymol blue on the density function p(T) is assumed 

negligible in this chapter, although this is addressed in Chapter 5. 
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The incompressibility condition for this system is derived from an equation that 

expresses the fact that the rate of change of mass contained in a fixed volume (F) of 

fluid is given by the rate at which the fluid flows out of it across the boundary 8F. 

Namely, letting n be a normal vector of F and utilising the divergence theorem, 

As F can be taken arbitrarily, 

The Boussinesq approximation (see Chandrasekhar [14]) is taken, where p (as 

defined previously) is treated as a constant in all terms in the equations of motion 

except in the external force term. This leads to the incompressibility condition 

Vi,i = Q. (2.2) 

We now turn our attention to the heat equation. From Joseph [48] the heat 

equation is defined as 

(2.3) 

where "'m' (pohp)f, and (p0h)m are as before, and the term Q is introduced as the 

internal heat source created by the absorbed radiation. Dividing (2.3) by (pohp)J, 

and recalling vi = c:Vi, we have 

where"'= "'m/(pohp)J and M= (pohp)tf(poh)m. 

Assuming a linear relationship between the concentration of the conjugated form 

c and the internal heat source produced by the radiation, we define Q = f3c where 

f3 is some constant of proportionality. Hence we have 

1 
-T t + v·T · = "'l:J.T + f3c. M , t ,t (2.4) 



2 .1. Governing Equations 14 

The concentration c is taken to obey the diffusion equation, with the porosity mul­

tiplied throughout (see Nield & Bejan [77]), resulting in 

EC,t +cV · Vc = cV(DcVc) 

where De is the diffusivity of the conjugated form. Thus, defining /'i,c = DcE, we 

have 

(2.5) 

The model now consists of the six partial differential equations (2.1), (2.2), (2.4), 

and (2.5), with the boundary conditions 

C = C£ z = 0, 

T=Tu 

c=O 

The experimental realisation of the concentration related boundary conditions can 

be achieved by applying fixed voltages to the conducting upper and lower boundaries, 

as is shown by Krishnamurti [55]. 

Let us now consider the basic steady state solution (vi, p, T, c) of the system, 

where, as there is no fluid flow, vi = 0. Utilising the boundary conditions and 

assuming that the basic steady state solutions are functions of z only 

c(z) (2.6) 

T(z) (2.7) 

where TL- Tu= HbT with H = sign(TL- Tu) and bT = ITL- Tui· 

The steady pressure p may then be found from (2.1) which reduces to 

-pi- bi9Po(1- a(T- To))= 0. 
' 

(2.8) 

To study the stability of (2.1), (2.2), (2.4) and (2.5) we introduce a perturbation 

( ui, (), 1r, c/J) to the steady state solution (vi, T, p, c), where 

p=p+7r c = c + c/J. 



2.2. Linear Instability Analysis 

Using (2.6), (2.7) and (2.8) and letting u3 = w the perturbed system is 

!!:.u. = -1r · + b·gp0a(} k l 'l l ' 

1 [HOT f3cLdz f3cL z2 
] 

-{} t + u·O · = w ----- + -(d z- -) + 1'1,6(} + (JA.. 
M ' 1 

'
1 dz 3/'1, /'l,dz z 2 <p, 

CL 
cc/J, t + UicP, i = dz W + /'l,c6c/J, 

where ui is solenoidal, i.e. ui, i = 0. 

We now introduce non-dimensionalised variables with scalings of 

15 

where dz is the porous layer depth, and Ra = R2 is the Rayleigh number. After 

dropping the stars the perturbation equations become 

U· = -7r . + b·RO 
l 1 f, t ' 

O,t + uiO,i = wRF(z) + 6(} + "(Rc/J, 

c/Jc/J, t + UicP, i = W + 7]6c/J, 

(2.9) 

where u is solenoidal, 'Y = f3cLd;//'1,(6T), J = ci\1 and F(z) = H -"(/3+"f(z-z2/2). 

The spatial domain of the porous layer is now {(x,y) E JR.2 } x {z E (0, 1)}. The 

perturbed boundary conditions are given by 

w=O 0--=-0 .r~.=o 
' ' lf/ ' 

z = 0, 1. 

We will denote V to be the period cell for the perturbations. 

2.2 Linear Instability Analysis 

To proceed with the linear analysis the nonlinear terms from (2.9) are discarded. 

Since the resulting system is linear we may seek solutions of the form ui = eatui(x), 

(} = eato(x), cjJ = eatcjJ(x), and 1r = eat1r(x), where u is the growth rate and a complex 

constant. Equations (2.9) 2 and (2.9) 3 become 

(6- u)O = -RwF- 1Rc/J 

(ry6- Ju)c/J = -w. 

(2.10) 

(2.11) 
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Taking the double curl of the linearised version of (2.9) 1 , using the third component, 

(and the fact that u is solenoidal) we have 

6w 7r,333- 7r,333 + R(60- 0,33) 

R6*0 (2.12) 

where 6 * = 821 8x2 + 821 8y2
. 

We shall now show that the growth rate (]" is real. If we assume (]" = (Jr + i(Ji, 

(Jr, ai E JR., then we expect to have complex solutions ui, () and 4J with associated 

complex conjugates u;, {)* and 4J* respectively. Operating on (2.10) by R6* and 

substituting in (2.12) yields 

Multiplying by the complex conjugate w*, integrating over V, and recalling ui is 

solenoidal (i.e. ui,i = 0) leads to 

where \7* = i8l8x + j 8l8y, and 11·11 and (·)denote the norm and inner product 

on L 2(V). 

Applying 1 R24J* 6 * to (2.11) with similar arguments yields 

Combining the last two identities we have 

ll6wll 2 + IR277IIVV*4JII 2 + a(IIVwll 2 + IR2JIIV*4JII 2
) 

= R2 fv Fl\7*wl 2 dV + 1R2
( (V*w*, \7*4J) + (\7*4J*, V*w) ). 

Since R2 fv FIV*wl 2 dV E JR. as F(z) E JR., and 

(V*w*, \7*4J) + (\7*4J*, V*w) = (V*(wr- iwi), \7*(4Jr + i4Ji)) 

+(\7*(4Jr- i1Ji), \l*(wr + iwi)) 

2(\l*(wr, 4Jr) + V*(wi, 1Ji)) E JR., 

taking the imaginary parts of (2.13) we deduce 

(2.13) 
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Clearly, as all norms are ~ 0, ai - 0. Our system of equations now satisfy the 

Principle of exchange of stabilities (see Straughan [90]). This is said to hold if the 

system in question has a growth rate a such that a E lR or ai =/:. 0 implies ar < 0. 

Recalling the time dependent solutions defined at the beginning of the section, it 

is clear that the solutions grow exponentially in time when a > 0, and are thus 

unstable. So to find the instability boundary, we solve the linearised system for the 

smallest R2 value (R'i) with a= 0. It is important to recall, however, that this gives 

a boundary for which all R2 > Rl result in instability, but no claim can be made 

about stability when R2 < Ri, until further nonlinear analysis is made. 

We now introduce normal modes of the form w = W(z)f(x, y), () = S(z)f(x, y), 

and cp = if>(z)f(x, y) where f(x, y) is a plan-form which tiles the plane (x, y) with 

(2.14) 

The plan-forms represent the horizontal shape of the convection cells formed at the 

onset of instability. These cells from a regular horizontal pattern tiling the (x, y) 

plane, where the wavenumber a (see Christopherson [16]) is a measure of the width 

of the convection cell. 

Letting D = d/dz, using (2.14), and applying the normal mode representations 

to (2.10), (2.11), and (2.12) we find 

(D2
- a2)W + a2RS = 0 

(D2
- a2 )S + RW F + 1Rif> =aS 

(D2- a2)if> + W = cpa if> 

"' "' where the boundary conditions become 

w = 0, s = 0, if> = 0, z = 0, 1. 

(2.15) 

(2.16) 

It is interesting to note that with the introduction of a = 0 into the system, the 

term cp, which includes the porosity c and the value M, has no affect on the critical 

boundary. 

The system (2.15) constitutes a generalised eigenvalue problem which has been 

solved using the two entirely different numerical methods referenced in Chapter 
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1, namely the compound matrix method, and the Chebyshev tau-QZ algorithm. 

Both methods are explained in detail in Appendices A.1 and A.2, although brief 

descriptions are given in this chapter to clarify the use of the methods in the context 

of the system of the second order coupled equations being explored. The limitations 

of these methods are discussed in Chapters 7 and 8, where alternative approachs are 

presented. 

To solve (2.15) with a = 0 by the compound matrix method we let U = 

(W, W', S, S', et>, et>'), and then suppose Ut, U 2 and U 3 are independent solutions 

to (2.15), with values at z = 0 of (0,1,0,0,0,0), (0,0,0,1,0,0), and (0,0,0,0,0,1) re­

spectively. The three initial value problems can be integrated numerically between 

0 and 1, and the solution found by writing it as a linear combination of the three 

solutions obtained i.e. W = <pW1 + xW2 + wW3, S = <pS1 + xS2 + wS3, and 

et> = <p<P1 + xW2 + w<P3 for some constants <p, x, w. Then, the correct boundary 

conditions W = S = et> = 0 at z = 1 are imposed which require 

W1 W2 w3 

det 51 52 S3 

cpl cp2 cp3 

= 0. 

The variables y1, ... , y20 are introduced to be the 3 x 3 minors of the 6 x 3 solution 

matrix whose columns are Ut, U 2 , and U 3 . Thus, 

Y1 = wl(w;s3- s2wn- W2(W{S3- s1wn + w3(W{S2- s1wn 

Y2 = W1(w;s~- S~W{)- W2(W{S~- S{W{) + W3(W{S~- S{W;) 

Y3 = W1(W;<t>3- <P2W{)- W2(W{<P3- <P1W{) + W3(W{<P2- <P1W;) 

etc. 

Differentiating the y's and using (2.15) (and noting that D 2W = W") the differential 
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equations for the compound matrix variables are 

I 
Y1 = Y2, y; = Y4 + Ay6, 

Y~ = Ay7 + a2y3, Y~ = Y12 + Ys + Y7, 

y; = Yl3 + yg + a2y6, Y~ = Yl4 + yg + a2y6, 

y~ = Y1s + a2Y7 + By10 + a2ys, Y{o = Y16, 

y{1 = a2Ys- RFy1 + By12, Y{2 = a2Y6 + Yl4 + Y13, 

y{3 = a2y7 + Y1s + a2Y12 + Cy1, 

y{4 = a2ys + Ay17 + a2Y12 + RFy3 + Y1s, 

y{5 = a2yg + Ay1s + a2 yl3 + RFy4 + By15 + a2Yl4 + Cy2, 

y{6 = a2 y10 + Ay1g + Cy3, y{7 = RFy6 + Y1s, 

y{8 _:_ RFy7 + By1g + a2Y11 + Cys, y{9 = Y2o + Cy6, 

Y~o = a2y1g- RFy10 + Cys, 

where A= -a2R, B = -"(R, and C = -1/TJ. This system was numerically inte­

grated subject to the initial condition y15 (0) = 1, and the final condition y6 (1) = 0, 

and the eigenvalue R was varied until these conditions were met to some pre-defined 

degree of accuracy. Keeping a2 > 0 fixed, a golden section search was employed to 

numerically find 

(2.17) 

The numerical results are presented for values of rt = 10-3 to 10-2 with a step of 

10-3 and"( -:- 1 to 10 in Figures 2.1 - 2.2. The values of rt and 'Y are those suggested 

by Krishnamurti [55], and are also used by Straughan [89]. 

Although the Rayleigh numbers are different, as would be expected from a dif­

ferent medium, we can see that the results from Figures 2.1 and 2.2 follow a similar 

pattern to that of Straughan [89], although the quantitative effect is different. It is 

observed that the effect of increasing the radiation parameter 'Y is to greatly reduce 

the critical Rayleigh number and, therefore, to allow convection to commence more 

easily. 

To confirm these results numerically we tllrn our attention to the Chebyshev 

tau-QZ algorithm, which adopts an entirely different strategy. As highlighted in 
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7 8 9 10 
y 

Figure 2.1: Critical Rayleigh number Ra against/, for various rJ. The graph corre­

sponds to heating from below ( H = + 1). 

8.---.---~---.----.---.---~---.----.---. 

7 8 9 10 
y 

Figure 2.2: Critical Rayleigh number Ra against /, for various 'T/· The graph corre­

sponds to heating from above ( H = -1). 
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Chapter 1, the compound matrix technique belongs to the family of shooting meth­

ods, whereas the Chebyshev tau method is a spectral technique coupled with the 

QZ algorithm. By reintroducing the a term back into the system we can use the 

Rayleigh numbers given by the compound matrix method to assess whether the a 

term is effectively zero, as required. To employ the Chebyshev tau technique system 

(2.15) is converted to the Chebyshev domain (-1, 1), and then W, S and <I> are 

written as a finite series of Chebyshev polynomials 

N+2 N+2 N+2 
W = L WkTk(z) S = L SkTk(z) <I>= L <I>kTk(z). 

k=O k=O k=O 

The weighted inner product of each equation is taken with some Tk and the orthog­

onality of the Chebyshev polynomials is utilised to form the generalised eigenvalue 

problem 

4D2 - a2 a2R 0 w 0 0 0 w 
RF* 4D2 ~ a2 IR s =a 0 1 0 s 

1 
4D2 - a2 <P - 0 <P 0 0 <P 

'r/ 'r/ 

where W = (W0 , ... , WN f, S = (So, ... , SN f, <P = (<I>o, ... , <I>N f, D2 is the Cheby­

shev representation of 82 I 8z2' and F* = H +I 124 + Zl I 4 - Z 212 18, where z and 

Z 2 are the matrix representations of z and z2 respectively. The F* term does not 

correspond with the original F(z) term as we have transformed z to 2z- 1 for the 

Chebyshev domain, and thus changed F(z) accordingly. 

Using the boundary conditions (2.16) and the fact that Tn(±1) = (±1)n we 

replaced the last two rows of each (N + 2) x (N + 2) segment, (see Appendix A.2 

for further clarification). The QZ algorithm (see Moler & Stewart [73]) was then 

employed to solve this system. Results were taken at 1 = 1, 10 for all ry values. All a 

values were of a magnitude less than 10-6 , an acceptable value within the constraint 

of the accuracy of the Rayleigh number. 

Although the linear analysis has been completed numerically, it is possible to 

use analytic methods to provide an approximation of the results. The problem that 

arises when dealing with (2.15) analytically is the F(z) term, as it clearly varies over 
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the z E [0, 1] range. However, by taking the average of F(z) over this range we can 

proceed analytically, although accuracy is clearly lost. 

11 'Y z2 
H-- + 'Y(z--) dz 

0 3 2 

[(H-i )z + ~z2 - ~z3]6 
'Y 'Y 'Y H--+---
3 2 6 

H. 

Hence, letting L = D2 -a2
, taking a= 0, re-applying L to (2.15)1, and using (2.15)2, 

(2.15)3 we have 

LW 

for constants A and B. Using the boundary conditions (2.16) we can see that L(4)W 

= 0 on z = 0, 1 (as LW and L(2)W can be written in terms of W, S, and ti>). By 

repeated application of L and relevant substitution of lower powers we can intuitively 

see that L(n)w = 0 for n > 4, z = 0, 1. Hence we may write W = W0 sin (mrz) for 

some constant W0 . Substituting this into the L(3); equation (as it contains an R2 

term which is what we want), after some canceling we find 

(2.18) 

Now we need to minimise with respect to n2 . Letting r2 = n2n2 + a2 , and differen­

tiating (2.18) with respect to n 2 we have 

3f221r2 -n2f23 H 

a2 [0H + ~] + a2 [0H + ~]2 
3f22n2[0H + :r] _ n2f23 H 

. T} 

a2[f2H + ~F 
3f22n2:r + 2n2f23 H 

T} 

> 0 
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where we have taken H = + 1 to ensure the positivity of the differential. As the 

differential is > 0 we can taken= 1. We must similarly minimise (2.18) with respect 

to a2. Thus letting n = 1 (with n = 1r2 + a2) leads to 

Thus, setting 8R2 j8a2 = 0, 

3a21 7r21 (1r2 + a2?[3a21r2 + 3(a2)2 + ___ 7r4 _ a21r2 ___ a21r2 _ (a2)2 
~ ~ 

-a2} _ a21r2 _ (a2)2] = O. 
~ 

Since a2 2: 0 we have 

2 I a = --+ 
~ 

(2.19) 

Substituting this a2 value into (2.18) we can calculate R2 for given~ and I· Using 

(2.19) and the compound method results we display solutions for the six cases 1 = 

1, 10, ~ = 0.001, 0.005, 0.01 for the approximate analytical and exact numerical R2 

values. 

I ~ RA RN 

1 0.001 0.64790 0.64767 

10 0.001 0.06565 0.06563 

1 0.005 3.05972 3.05432 

10 0.005 0.32639 0.32573 

1 0.01 5.71883 5.69974 

10 0.01 0.64791 0.64550 

Table 2.1: Comparison of the approximate analytical and exact numerical critical 

Rayleigh numbers RA and RN· 

From Table 2.1 we see that the approximate analytical results are a very useful 

guide to their numerical counterparts. Hence, we have produced the linear critical 
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Rayleigh numbers for which any R2 greater than these critical values will result in 

instability. 

2.3 Nonlinear Stability Analysis 

To obtain sufficient conditions on the stability of the solution we need to consider 

the nonlinear equations. Our aim is to show that the thresholds of the nonlinear 

theory are close enough to those of the linear theory, so that we can conclude that 

linear instability theory is accurate enough to predict the onset of convective motion. 

In order to establish the stability of the solution we must show that the solutions 

tend to 0 as t ----+ oo, in some suitable mathematical measure. We will achieve this 

by using the energy method (see Straughan [90] and Drazin & Reid [21]), utilising 

the coupling method of Joseph explained in Straughan [90] 

Let us recall the original system (2.9) 

B,t + uie,i = wRF(z) + f:::.(} + 1Rc/J 

Jc/J, t + Uic/J, i = W + ryf:::.c/J. 

Firstly we multiply (2.9) 1 by ui and integrate over V to find 

llull 2 
= R(O, w) (2.20) 

where 11·11 and ( · ) denote the norm and inner product on L2(V). Multiplying (2.9)2 

by (} and using similar arguments, noting ui, i = 0, 

(2.21) 

Using the same processes again for (2.9)3, this time multiplying through by c/J, we 

have 

(2.22) 

Letting ,\ 1 and ,\2 be positive coupling parameters to be selected at our discretion, 

we multiply (2.22) by ,\1 and (2.20) by -\2 . Adding these two equations to (2.21) 
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yields 

Define 

R(wF, e) - 11Vell2 + rR(c/>, e) 

+..\1 (w, 4>) - 7J..\1IIV 4>11 2 

-..\2llull2 + ..\2R(e, w). 

E(t) ..\
14> 114>11 2 + ~ 11e112 
2 2 

V - 11Vell2 + 7JAIIIV4>II2 + ..\2llull2 

I R(wF, e)+ rR(c/>, e)+ AI (w, 4>) + ..\2R(e, w). 

Adopting these definitions for (2.23) we find 

dE 

dt 
dE 

dt 

I-V 

< 

25 

(2.23) 

where 1/ RE = max7t (I /V) and H is the space of admissible functions, namely 

If RE > 1 then by the Poincare inequality (see Appendix B.2) and using the fact 

that llull2 2: 0, it follows that V 2: cE for some constant c > 0. Hence 

dE< -cE (RE-1). 
dt - RE 

Thus, letting a= c(RE- 1)/ RE > 0 and integrating we have 

E(t) :::; E(O)e-at. 

As t ---t oo, E(t) tends to zero, so we have shown the decay of e and qy. We now 

need to determine the decay of u to show global nonlinear stability. Defining some 

constant a > 0, from (2.20) we have 

llull2 
= R(w, e) 
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llull2 < R2IIBII2 + )qR2~II<PII 2 

< R22E 

< 2R2 E(O)e-at ~ 0 

The decay of u then clearly follows. 
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as t ~ oo. 

Now that global stability has been established we must study the maximisation 

problem 1/ RE = maxrt ('I/V) together with the condition RE > 1. To solve the 

maximisation problem we study the Euler Lagrange equations which are derived as 

follows. 

Let r11(x1), 772(x1), and 773 (x1) be arbitrary, fixed C 2 (0, 1) functions which satisfy 

the boundary conditions 

i = 1, 2, 3. (2.24) 

We now consider neighbouring functions ui = ui + 0:771 (x1 ), 7J = e + a772(x1) and 

(i) = <P + 0:773 ( x 1) and then define 

'I(a)= j RwF7J+,R<PB+>-.lw(i)+>-.2R7JwdV= j 'Il(ui,7J,<i},ui,j,7J, 1,(i),1)dV 

V( a)= J 7J, 17J, 1 + 77A1(i), 1(i), 1 + A2uiui dV = J V1(ui, 7J, <i}, ui,j, 7J, 1, <iJ, 1) dV. 

If o'I is aT I aa evaluated at Q: = 0 then 

J a-r1 a-r1 a-r1 a-r1 I a-r1 I a-r1 I 

o'I = ( au- 771 + ae 772 + a"' 773 + au- . 771 + ae . 772 + a"' . 773) dV 
t 'f' t,] ,] 'f',] 

Integrating by parts and using (2.24) yields 

o'I = J [a'I1 d ( aT1 ) l dV J [a'I1 d ( aT1 ) l dV 771 aui - dxj aui,j + 772 ae - dxj ae,j 

+ J 773 [:- d~1 (~:,~)] dV. (2.25) 

For the stationary value, fJT = 'I 1(0) = 0, and so (2.25) = 0. As 771, 772 and 773 can 

be chosen arbitrarily it follows that 

~~: - d~j (:~lj) = 0 

aT1 d ( a'I1 ) 
ae - dx

1 
ae,

1 
= 

0 (2.26) 

aT1 _ __!!__ ( a'I1 ) _ O 
a<P dx1 a<P, 1 
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Similar results hold for 8'D. The original maximisation problem was 1/ RE = 

maxH (Tf'D), hence we study 

8 - = - - -8'D = -(8T- -8'D) = 0 ('I) 8T 'I 1 'I 
'D 'D V2 'D 'D 

This yields 

RE8T- 8'D = 0. (2.27) 

For ui using (2.26)1 

Similarly for () using (2.26)2 we have 

8T = RwF + 1R4Y + )..2Rw. 

d ( a ) d 8'D = -- --(() .() ·) = --- (2() ·) = -26(). 
dx · 8() · · t • t dx · 1 

J • J J 

Using (2.26)3 for q; we have 

Hence using (2.27) and the previous 8T and 8'D values we have the Euler Lagrange 

equations 

RF() + >-.1 4; + >-.2R() + 2)..2ui = w, i 

RwF + 1R4J + )..2Rw + 26() = 0 

!R() + A1w- 2TJA164J = 0 

(2.28) 

where we are looking at the sharpest boundary condition, RE = 1. As we need to 

include the constraint ui,i = 0 we have introduced the Lagrange multiplier w, where 

fv WUi,i dV = 0, so that 

d
d (

8
8 

(wui,i)) = w,i· 
X· U· · t t, t 

Taking the third component of the double curl of (2.28) 1 (to remove the Lagrange 
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multiplier), and introducing the normal mode representations and notation as pre­

sented in Section 2.2, system (2.28) then becomes 

R a2A 
(D2- a2)W + 2A2 (F + A2)a2S + 2A21 <I>= 0 

( 2 2 ) R( ) 1R D - a S + "2 F + A2 W + T<I> = 0 (2.29) 

1R 1 
(D2

- a 2 )<I> + -S + -W = 0. 
2ryA1 2ry 

We can now determine the critical Rayleigh number given by 

where for all R2 < RaE we have stability. To solve the eigenvalue problem presented 

by the system (2.29) the compound matrix method was utilised (see Section 2.2 and 

Appendix A.1) where the compound matrix equations are now 

y{ = -By6 + Y2, y~ = Ay5- By8 + a2y1 + Dy3, 

y~ = Ay1 + Byw + a 2y3 + Ey1, y~ = Yn + Dy6, 

Y~ = Y12 + Ys + Y7, Y~ = Yl3 + yg + a2y6, Y~ = Y14 + a2y6 + yg, 

y~ = Yl5 + Dyw + a2y1 + a2Ys- Ey5, Y{o = Y16- Ey6, 

y{1 = a2y5 + By11 + Cy1 + Dy12, y{2 = a2y6 + Y14 + Y13, 

y{3 = a2y7- By19 + Yl5 + a2Y12 + Fy1, 

y{4 = a2ys + Ay11 + a2Y12 - Cy3 + Y15, 

y{5 = a2yg + AY1s - By2o + a2y13 - Cy4 + Dy16 + a2y14 - Eyn + Fy2, 

y{6 = a2yw + Ay19- Ey12 + Fy3, 

y{8 = a2Y11- Cy7 + Dy19 + Fy5, 

Y~o = a2y19 + Cyw + Ey11 + Fys, 

Y{7 = -Cy6 + Y1s, 

Y{g = Y2o + Fy6, 

with A= -R(F + A2)a2/2A2, B = -a2AI/2A2, C = -R(F + A2)/2, D = -'YR/2, 

E = -"(R/2ryA1 and F = -1/2ry. As in Section 2.2, this system was numerically 

integrated subject to y15 (0) = 1, and y6 (1) = 0. 

In Table 2.2 we display the numerical results for both the nonlinear and the linear 

(see Section 2.2) critical Rayleigh numbers with 'Y = 1, 5, 10, ry = 0.001, 0.005, 0.01, 

H = + 1 and -1. The critical parameters of linear and nonlinear theory are denoted 

L and E respectively, with the critical wavenumbers denoted by al and a'k. Clearly 

we see an excellent agreement between the nonlinear and linear results. 
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I TJ H RaE RaL a2 E a2 L 

1 0.001 +1 0.6476675739 0.6476676880 4.9720 4.9720 

5 0.001 +1 0.1310648838 0.1310649075 4.9430 4.9430 

10 0.001 +1 0.065629321 0.0656293327 4.9393 4.9393 

1 0.005 +1 3.054308651 3.054321113 5.1174 5.1174 

5 0.005 +1 0.6467036386 0.646706499 4.9758 4.9758 

10 0.005 +1 0.3257283587 0.325729815 4.9576 4.9577 

1 0.01 +1 5.699650645 5.699734754 5.2908 5.2908 

5 0.01 +1 1.272411967 1.272433956 5.0163 5.0164 

10 0.01 +1 0.645491451 0.645502832 4.9805 4.9805 

1 0.001 -1 0.667125663 0.6671257863 4.8990 4.8990 

5 0.001 -1 0.131843079 0.1318431026 4.9284 4.9284 

10 0.001 -1 0.065823869 0.065823880 4.931 4.9321 

1 0.005 -1 3.541425057 3.541442825 4.7526 4.7525 

5 0.005 -1 0.666107901 0.666110972 4.9028 4.9028 

10 0.005 -1 0.330578799 0.330580307 4.9212 4.9212 

1 0.01 -1 7.666604583 7.666775544 4.5618 4.5617 

5 0.01 -1 1.349797705 1.349823027 4.8707 4.8706 

10 0.01 -1 0.664827927 0. 664840142 4.9077 4.9076 

Table 2.2: Comparison of the nonlinear and linear critical Rayleigh numbers RaE 

and Ra£. 

2.4 Conclusions 

In Sections 2.2 and 2.3 we have provided a full linear and nonlinear analysis of 

the adaption of the Krishnamurti [55] model for convection induced by selective 

absorption of radiation in a fluid, to a porous medium. A graphical representation 

of the linear instability results is given in Figures 2.1 and 2.2, with a comparison 

to approximate analytic results in Table 2.1. The results of the nonlinear energy 

analysis are presented in Table 2.2, with the corresponding linear results adjacent. 

The thresholds of the nonlinear theory, which guarantee stability when the Rayleigh 
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number is below them, are shown to be extremely close to the thresholds of the linear 

energy theory which guarantee instability. As the region of potential subcritical 

instabilities is extremely small we can conclude that linear theory is accurate enough 

to predict the onset of convective motion. 

It is interesting to note that the porosity E has no effect on the linear and 

nonlinear analysis, so that E can take any value, (within acceptable range 0 < E < 1), 

with the results remaining the same. 



Chapter 3 

Convection induced by the 

selective absorption of radiation 

for the Brinkman model 

The object of this chapter is to explore convection induced by the selective ab­

sorption of radiation in a porous medium, as presented in Chapter 2, with the 

introduction of the Brinkman model. 

In Chapter 1, the Darcy model for fluid flow in porous media was adopted. How­

ever, Amahmid et al. [4] propose that for sparsely packed porous media (more ap­

propriate to the physical problem as potential refraction is decreased) the Brinkman 

model, which accounts for friction due to macroscopic shear, is more appropriate 

to describe fluid flows in a porous matrix, which forms the motivation behind the 

development of this chapter. 

The Brinkman model has been employed by Mamou et al. [64] and Amahmid et 

al. [3] to investigate the stability of a porous layer when the buoyancy thermal and 

solutal forces have opposing effects and equal intensity. Poulikakos [82] also relies 

on the Brinkman model to investigate the onset of thermohaline convection in a 

horizontal porous layer. 

In this chapter we present a detailed linear and nonlinear analysis for this sys­

tem with the Brinkman model describing fluid flow in the porous matrix, with the 

bounding surfaces being fixed. The linear and nonlinear results are derived using 

31 
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the Chebyshev tau and compound matrix numerical techniques (see Appendices A.2 

and A.l), and compared to assess the region of potential subcritical instabilities as 

a direct indicator of the suitability of linear instability theory in the prediction of 

the onset of penetrative convection. Employing the compound matrix method in 

both the linear and nonlinear numerical analysis was found to be problematic due 

to the high order of the equations, with the Chebyshev tau technique being restric­

tive due to the heavy computational cost in solving full matrix eigenvalue problems 

required over two parameter ranges. This leads to the development of the methods 

in Chapters 7 and 8 to overcome these difficulties. 

The results in this chapter were published in the article Hill [37]. 

3.1 Governing Equations 

Let us consider a fluid saturated porous layer occupying the three dimensional layer 

{(x, y) E JR?} x { z E (0, dz)}, where Oxyz is a Cartesian frame ofreference with unit 

vectors i, j, k respectively. Adopting the same boundaries as in Chapter 2, the upper 

and lower planes are held fixed at temperatures Tu and TL, and concentrations 0 

and C£ respectively. 

The Brinkman model for convection in a porous medium is taken to govern flow, 

(see Straughan [90]), where vi is the pore averaged velocity in the direction i, leading 

to the equations 

J1, -
-v· = -p · + >..6v· - b·gp(T) k t ,t t t ' 

Vi,i = 0, 

with the second equation being the incompressibility condition. Here P, i is the pres­

sure gradient, J1, is the dynamic viscosity of the fluid, :X is the Brinkman coefficient 

(or effective viscosity), k is the permeability, g is the acceleration due to gravity, 

and b = (0,0,1). The density pis taken to be a linear function in the temperature 

T, where the effect of the conjugated blue form of the thymol blue on the density 

function is assumed negligible. Hence 

p(T) = Po(l- a(T- T0 )), 
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where p0 and T0 are reference density and temperature values and a is the coefficient 

of thermal expansion. 

In addition to the Brinkman model, the governing equations consist of the equa­

tions of conservation of energy and mass. Similarly to Chapter 2, the internal heat 

source is modelled linearly with respect to concentration, which is represented by 

the introduction of the {3c term in the heat equation, where c represents the con­

centration of the conjugated form of the thymol blue and {3 is some constant of 

proportionality. Combining these equations with Brinkman's model the governing 

system of equations is as follows: 

Vi,i = 0, 
1 
-Tt + v·T · = r;,6T + {3c M , t ,t , 

(3.1) 

where r;,c and "'m are the solute and thermal diffusivities respectively, E is the porosity, 

with 

where hp is the specific heat of the fluid, and h is the specific heat of the solid, 

with the subscripts J, s, and m referring to the fluid, solid and porous components 

of the medium respectively. The remaining terms of system (5.1) are defined as 

r;, = r;,mf(pohp)J and M= (pohv)JI(poh)m· 

Let us now consider the basic steady state solution (vi, p, T, c) of the system, 

where, as there is no fluid flow, vi = 0. Utilising the boundary conditions, the 

equations contained in (3.1) show that 

- f3cL z
2 

z
3 

[ H bT f3cLdz] T(z)=--(dz---)+z --+-.- +TL, 
r;,dz 2 6 dz 3r;, (3.2) 

_ CL 
c = (dz- z) dz' 

where H = sign(TL- Tu) and bT = ITL- Tu I· 
To study the stability of (3.1) we introduce a perturbation (ui, 0, 1r, 4>) to the 

steady state solution as follows 

c = c + c/>, 
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and introduce non-dimensionalised variables with scalings of 

d; * r;,c R t= -t '11=- = 
M ,., ' 

"' "' 
where dz is the porous layer depth, and Ra = R2 is the Rayleigh number. After 

dropping the stars, the perturbed equations are 

u·- A.6.u· = -n · + b·RB t t 1 t 1 ) 

Ui,i = 0, 

B,t + uiB,i = wRF(z) + 6.(} +"(Rep, 

c/Jc/J, t + uic/J, i = w + T/6.<P, 

(3.3) 

where A.= Xk/ ~-td;, 'Y = f3cLd;/ r;,(bT), ~=cM and F(z) = H- 'Y/3 + 'Y(z- z2 /2). 

The spatial domain of the porous layer is now {(x,y) E ~2 } x {z E (0, 1)}. The 

perturbed boundary conditions are given by 

Ui = (} = <P = 0, z = 0, 1, 

where (ui, 0, n, <P) have a periodic plan-form tiling the (x, y) plane. Two additional 

fixed boundary conditions are also required, so from (3.3)2 it can be deduced that 

Wz = 0, z = 0, 1. 

We will denote V to be the period cell for the perturbations. 

3.2 Linear Instability Analysis 

The linearised equations are derived from (3.3) by discarding the nonlinear terms. 

Since the resulting system is linear we may seek solutions of the form ui = eatui(x), 

(} = eate(x), <P = eat<P(x), and 1r = eatn(x), where a is a complex constant. Taking 

the double curl of (3.3)1, an eighth order system of equations in w, (}and <P can be 

derived, such that 

6.w- A.6.2w = R6.*(}, 

(6.- a)(}= -RwF- 'YR<P, 

(T/6.- ~a)cp = -w, 

(3.4) 
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where 6 * = 821 8x2 + 821 8y2
. 

We assume a normal mode representation for w, () and cjJ of the form w = 

W(z)f(x, y), () = S(z)f(x, y), and cjJ = ii>(z)f(x, y) where f(x, y) is a horizontal 

plan-form satisfying 6 * f = -a2 f (see Christopherson [16]). The system (3.4) then 

becomes four second order equations, namely 

(D2
- a2 )W- A= 0, 

(D 2 - a2)A - 2_ A - a
2 
R S = 0 

). ). ' (3.5) 

(D2
- a2 )S + RWF + 1Rii> =aS, 

2 2 1 c/Ja (D -a )ii> + -W =-ell, 
T/ T/ 

where D 2 = 82l8z2 , and A is introduced by (3.5)1. The boundary conditions are 

now 

W = DW = S -: ii> = 0 z = 0, 1. (3.6) 

This eighth order system for R has been solved using the Chebyshev tau D 2 algo­

rithm. A brief description of the application of this method to (3.5) is presented, 

although there are more explicit details in the references in Chapter 1 and Appendix 

A.2. 

The system (3.5) is transformed onto the Chebyshev domain ( -1, 1) and the 

solutions W, A, S, and ii> are expanded as Chebyshev polynomials so that 

k=O 
N+2 N+2 

s = I:: skn(z), ii> = 2:: ii>kTk ( z). 
k=O k=O 

Taking the weighted inner product with 7i, and defining D 2 to be the Chebyshev 

representation of 82 I 8z2 , the eigenvalue problem (3.5) now becomes 

4D2 - a2 -1 0 0 0 0 0 0 

2 2 1 a2 R 0 0 0 0 0 4D -a -- 0 
). ). B=a B. 

RF* 0 4D2 - a 2 !R 0 0 1 0 

1 
0 0 4D2 - a2 0 0 0 

q; 
T/ T/ 
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Here B = (W, A, S, <I>)T, with W = (W0 , ... , WN), A= (A0 , ... , AN), S = 

(80 , ... , SN), <I>= (<I>0, ... , <I>N), and F* == H +!/24+"YZ/4-"'(Z2/8, where Z and Z2 

are the matrix representations of z and z2 respectively. The last two rows of each 

( N + 2) x ( N + 2) block are removed and replaced by the discrete form of the boundary 

conditions (3.6). The QZ algorithm is then used to solve this matrix system. This 

technique, however, is restrictive due to the heavy computational cost in solving 

full matrix eigenvalue problems required over two parameter ranges (namely 'Y and 

A). The natural progression was to develop the techniques in Chapters 7 and 8 to 

overcome these difficulties. 

The range of values for TJ and 'Y suggested by Krishnamurti [55] and Straughan 

[89] are 10-3 to 10-2 and 1 to 10, respectively. The value A = ("5./J.L) x (k/d2
), 

however, need to be quantified. 

The value k/d;, where k is the permeability and dz is the depth of the porous 

layer, is often referred to as the Darcy number. Numerous papers involve the use of 

Darcy numbers including Tien & Chiang [93] and Merrikh & Mohamad [71]. We will 

take similar values as Amahmid et al. [4] with the Darcy number ranging from 0 to 1. 

A Darcy number with a magnitude close to 1 is relatively large compared with those 

used in Carr & de Putter [13], Tien & Chiang [93] and Merrikh & Mohamad [71], 

but since we are considering a sparsely packed porous medium we would expect a 

high permeability, and thus a corresponding high Darcy number. 

Martys [65] states that although the Brinkman model is capable of describing 

the case when>...; f.L # 1, it is usually assumed to be 1 in the absence of any definitive 

knowledge about this ratio. However, theoretical studies (see Kim & Russel [53]) 

and numerical studies (see Martys et al. [66]) have shown that this case is only true 

as E --t 1, and that >...; f.L increases in relation to the solid fraction. Martys et al. [66] 

shows that when E = 0.5, >...; f.L was approximately 4 for an overlapping sphere model 

of porous media. 

Taking 0 ::; A ::; 1 incorporates the characteristics of both the Darcy number 

and >...; f.L, as since the porosity is high >...; f.L should not deviate too much from 1, and 

any increase would only require a smaller Darcy number, which as we are taking 

relatively large values seems an acceptable variation. 
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Numerical results generated via the Chebyshev tau routine are displayed for A 

fixed at 0.01 and 0.1 (corresponding to Figures 3.1 and 3.2), rt = 10-3 to 10-2 in 

steps of 10-3 , and 1 = 1 to 10. 

.. 
a: 

9.-~--~--~----~--. 

8 

Figure 3.1: Critical Rayleigh number Ra plotted against 1 with A = 0.01. The left 

and right graphs correspond to heating from below ( H = + 1) and heating from 

above ( H = -1) respectively 

45.---~--~--~--~----. 

40 
30 

35 

y 

Figure 3.2: Critical Rayleigh number Ra plotted against 1 with A = 0.1. The left 

and right graphs correspond to heating from below ( H = + 1) and heating from 

above ( H = -1) respectively 
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The results in Figures 3.1 and 3.2 for fixed A follow a similar pattern to those 

of Chapter 1 and Straughan [89]. The results show that for the range specified 

increasing the radiation parameter 'Y greatly reduces the Rayleigh number, allowing 

convection to commence more easily. 

We will now explore the effect of the A term on the results by keeping T/ and 'Y 

fixed and varying A. Figure 3.3 shows results forT/= 0.001, 0.005, 0.01, and 'Y = 1, 

to 10, with A varying from 0 to 1. 

From Figure 3.3 it would appear there exists a linear relationship between the 

Rayleigh number and A. This relationship is a somewhat unexpected result implying 

that increasing the A term increases the Rayleigh number linearly, which makes the 

commencement of convection more difficult. 

The spectrum of a is found numerically to be always real, which is predicted 

by analysis on free boundaries, but is an interesting result considering the lack of 

symmetry of the linearised system. 

3.3 Nonlinear Stability Analysis 

As stated in Chapters 1 and 2, linear instability analysis provides a boundary for 

which all R2 greater than the critical Rayleigh number will result in instability, 

where no assumptions can be made about stability when R2 is below this boundary, 

as the solution may become unstable before the threshold predicted by the linear 

theory is reached. A nonlinear energy analysis produces stability boundaries with 

our aim being to show that these thresholds are close enough to those of linear 

theory, so that we can conclude that linear instability theory effectively captures 

the physics of the onset of convection. 

As in Chapter 2 the nonlinear results are achieved by using the energy method 

(see Straughan [90] and Drazin & Reid [21]). 

Let 11 · 11 and ( · ) denote the norm and inner product on L 2 (V). Then by 

multiplying (3.3) 1 by ui, (3.3) 3 by 0, and (3.3)4 by r/J and integrating over V we 
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Figure 3.3: Critical Rayleigh number Ra plotted against >. for rt = 0.001, 0.005, 

0.01, and 1 = 1, 5, 10. The three left hand side graphs correspond to heating from 

below ( H = + 1) with the remaining graphs corresponding to heating from above 

(H = -1) 
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derive the following nonlinear equations 

llull2 + .AIIVull2 
= R(O, w), 

1 d 
2 dt 110112 = R(wF, 0) - IIVOII2 + "(R(c/J, 0), 

~! llc/JII2 
= (w, c/J)- 77IIVc/JII2· 

We introduce coupling parameters .\1 , .\2 , and define 

E(t) A~c/JIIc/JII 2 + ~11011 2 , 
V IIVBII2 + 7JA1IIVc/JII2 + .\2llull2 + .\.\2IIVull2, 
I R(wF, 0) + 'YR(cjJ, 0) + .\1 (w, c/J) + .\2R(O, w). 

From (3. 7) we derive 

dE 
dt 

I-V 

< -V (1- ~E) 

40 

(3.7) 

where 1/ RE = max'H (I/V) and 1t is the space of admissible functions to (3.3). 

If RE > 1 then by the Poincare inequality, V ~ cE for some positive constant c. 

Hence it follows that 

-<-c dE E (RE -1) 
dt - RE . 

Thus letting a = c(RE - 1)/ RE > 0 we have E(t) :::; E(O)e-at which tends to 0 

as t ---+ oo, showing the decay of 0 and c/J. To show the decay of u we define some 

positive constant a > 0, and use (3. 7) 1 and the Poincare inequality so that 

We let b equal 1/(1 + .\n2
) E [0, 1] (as .\ ~ 0), which leads to 

llull2:::; ~!llull 2 + R;biiOII2 + .\ 1 ~
2

b ~llc/JII 2 

as .\ 1 a2b~ ~ 0. Hence defining f = b/(1- b/2) E [0, 2] and letting a= R 

as t---+ oo. 

The decay of u clearly follows. 
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We now turn our attention to the maximisation problem 1/ RE = max?t (I/V) 

with RE > 1. We do this for the threshold case RE = 1 which yields the sharpest 

stability boundary. 

The arising Euler Lagrange equations (see Section 2.3 for an explicit example of 

the derivation of Euler Lagrange equations) are 

RwF + 1Rc/Y + >..2 Rw + 2~JJ = 0, 

1R() + >..1w + 2f/AI6cP = 0, 

(3.8) 

where we have introduced the Lagrange multiplier w, where fv wui,i dV -:- 0, such 

that 

d
d (a 8 

(wui,i)) = w,i· 
X· U· · 't t, l 

Taking the double curl of the third component of (3.8)1 and introducing the 

normal mode representations as presented in Section 3.1, (3.8) is converted to a 

system of four second order equations, namely 

(D2
- a2 )W- A= 0, 

(D2- a2)A- _!A- R(F + >..2)a2 S- a2 >..1 <I>= 0 (3.9) 
>.. 2>..>..2 2>..>..2 ' 

(D2- 2)S R(F + >..2)W IR<I> = 0 
a + 2 + 2 ' 

2 2 IR 1 
(D -a )<I>+ -S + -W = 0, 

2f/>..I 2f/ 

where the boundary conditions are 

W = DW = S = <I> = 0, z = 0, 1. (3.10) 

System (3.9) was solved using the compound matrix method, as discussed in Chap­

ter 1, with further details in Appendix A.l. A brief description of the method is 

provided, with any further required explicit details in the aforementioned references. 

Define a vector W = (W,W',A,A',S,S',<I>,<I>'), and suppose W 1 , W 2 , W 3 , 

and W 4 are independent solutions obtained by replacing the boundary conditions 

(3.10) at z = 1 by the initial conditions 

W1(0) = (0, 0, 1, 0, 0, 0, 0, Of, 

W3(0) = (0,0,0,0,0, 1,0,0)r, 

W2(0) = (0,0,0, 1,0,0,0,0)r, 

W 4 (0) = (0, 0, 0, 0, 0, 0, 0, 1f. 
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By defining the variables y1, ... , y70 to be the 4 x 4 minors of the 8 x 4 matrix where 

the columns are W 1. W 2 , W 3 , and W 4 respectively, this system was numerically 

integrated subject to the initial condition 

Y6o(O) = A1(0)A~(O)S~(O)<I>~(O) + ... = 1, 

and the final condition 

and the eigenvalue R was varied until these conditions were met to some pre-defined 

degree of accuracy. The critical Rayleigh number was then located by a golden 

section search to minimise with respect to a2
, and was maximised over the coupling 

parameters A1, A2 , so that 

The compound matrix equations (i.e. the differentials of each of the minors 

of the solution matrix) which had to be calculated before any numerical analysis 

was attempted, were found to be highly time consuming. An automated program 

had to be written to evaluate all 256 of them, which was deemed to be excessive 

as this must be completed before numerical analysis is attempted, resulting in the 

alternative approach in Chapters 7 and 8. 

Table 3.1 displays the critical values (RL, RE, a~), where the subscripts L and 

E refer to linear and non-linear results, respectively. (a2 refers to the critical wave­

length number). The results are given for 'Y = 1, ry = 0.001, 0.005, 0.01, and A = 

0.001, 0.1. 

We can conclude from Table 3.1 that for this parameter range the critical values 

obtained from the linear analysis are very close to those obtained via the nonlinear 

energy analysis (i.e. the linear instability and nonlinear stability thresholds are very 

close). 

3.4 Conclusions 

The Brinkman model is used to analytically and numerically study convection in­

duced by the selective absorption of radiation in a porous medium, a modification 
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A 
"' 

H RaE RaL a2 E 

0.01 0.001 +1 1.021673795 1.022415867 5.3628 

0.1 0.001 +1 3.631695736 3.636379071 5.4820 

0.01 0.005 +1 4.810092189 4.813258929 5.5264 

0.1 0.005 +1 17.08957809 17.10973686 5.6413 

0.01 0.01 +1 8.958983607 8.964409432 5.7304 

0.1 0.01 +1 31.81324678 31.84701031 5.8336 

0.01 0.001 -1 1.053194836 1.053990687 5.2804 

0.1 0.001 -1 3.744680628 3.749746613 5.4004 

0.01 0.005 -1 5.599061666 5. 603666549 5.1146 

0.1 0.005 -1 19.91750142 19.94685489 5.2406 

0.01 0.01 -1 12.14503142 12.15634931 4.9008 

0.1 0.01 -1 43.23434653 43.30622631 5.0192 

Table 3.1: Comparison of the nonlinear and linear critical Rayleigh numbers RaE 

and RaL, with 1 = 1. 

of the Darcy model used in Chapter 1 for fixed bounding surfaces. 

Figures 3.1 and 3.2 provide a graphical representation of the results of the linear 

instability analysis with A fixed and varying "1 and I· By contrast Figure 3.3 shows 

the results when A varies between 0 and 1. A linear relationship between the critical 

Rayleigh number Ra and A is predicted. This implies a dependence on the specific 

porous medium due to the permeability k and the term "X/ J.1 (see Martys [65]). 

Table 3.1 presents the nonlinear stability and corresponding linear instability 

results for various "1 and A. The thresholds of the linear and nonlinear theory are 

extremely close, so that the potential region of subcritical instabilities is extremely 

small, showing that for the range with respect to the parameters given, the linear 

theory effectively captures the physics of the onset of convection. 



Chapter 4 

Conditional and unconditional 

stability for convection in a porous 

medium with a concentration 

based internal heat source 

In Chapters 2 and 3 the assumption is made that the internal heat source is linear 

with respect to concentration in the model for convection induction by the selective 

absorption of radiation in a porous medium. However, it is stated in Krishna­

murti [55] that 'This linear relationship is a first order approximation and may need 

modification for high concentrations of [thymol] blue'. This chapter is motivated by 

the exploration of the validity of an alternative quadratic model. 

The Darcy equation (see Straughan [90]) is first employed as the standard ap­

proach to describe fluid flow in the porous medium. The nonlinear stability results 

that are achieved are conditional, so that they are undesirably bounded by the ini­

tial data thresholds. McKay & Straughan [69] also derive conditional results for a 

porous medium in a similar fashion to those presented in this paper. 

In the case when fluid flow is not small it is possible to modify the Darcy equa­

tions by introducing Forchheimer drag coefficients (see Forchheimer [22] and Nield & 

Bejan [77]), with the idea being that the pressure gradient is no longer proportional 

to the velocity itself. Extensive literature exists on Forchheimer theory including 

44 
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significant recent contributions from Giorgi [27], Whitaker [97], Payne et al. [78], 

and Andrade et al. [6). 

To establish unconditional nonlinear results we found it necessary to introduce 

Forchheimer drag coefficients. Payne & Straughan [79) and Carr [12) use Forch­

heimer theory to establish unconditional nonlinear results for flow in a porous 

medium, where density is assumed to vary constantly and cubically with temper­

ature respectively. In this paper a similar approach to Payne & Straughan [79) is 

adopted, where the density is assumed linear in temperature. 

In this chapter we present a detailed linear and nonlinear analysis for this sys­

tem with a quadratically modelled internal heat source, with the bounding surfaces 

being fixed. The linear and nonlinear results are derived using using Chebyshev­

tau and compound matrix numerical techniques (see Appendices A.2 and A.l), and 

compared to assess the region of potential subcritical instabilities as a direct indi­

cator of the suitability of linear instability theory in the prediction of the onset of 

penetrative convection. Although details are not given in this chapter, the meth­

ods developed in Chapters 7 and 8 are ideal candidates to evaluate the linear and 

nonlinear results. 

The results in this chapter were published in the article Hill [38). A further paper, 

Hill [39], has also been published where a fluid, as opposed to a porous, medium is 

taken with a quadratically modelled heat source. This lent much credence to the 

use of a linearly modelled internal heat source as used by Krishnamurti [55], within 

the constraints of the parameter range. 

4.1 Governing Equations 

Let us consider a fluid saturated porous layer occupying the three dimensional layer 

{(x,y) E JR2
} x {z E (O,dz)}, where Oxyz is a Cartesian frame of reference with 

unit vectors i, j, k respectively. Adopting the same boundaries as in Chapters 2 

and 3 the upper and lower planes are held fixed at temperatures Tu and TL, and 

concentrations 0 and C£ respectively. Gravity acts in the negative z direction and 
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we assume that the density has a linear temperature dependence of the form 

p(T) = Po(l- o:(T- To)), 

where p0 and T0 are reference density and temperature values and o: is the coefficient 

of thermal expansion. 

Denote vi, p, f.-l, and k to be the pore averaged velocity, pressure gradient, dy­

namic viscosity of the fluid and permeability respectively. We are studying two 

separate models to govern the flow in the porous medium, with the first satisfying 

Darcy's law (see Straughan [90]) of the form 

f.-l -v· = -p · - bgp(T) k t 't t ' 

Vi,i = 0. 

( 4.1) 

(4.2) 

The second is that of Forchheimer (see Nield & Bejan [77]) with non-linear drag 

terms lvlvi and lvl 2vi such that 

f.-l A A 2 
kvi = -P,i- bigp(T)- blvlvi - clvl vi, (4.3) 

Vi,i = 0, ( 4.4) 

where b and C. are some positive constants. 

Using Joseph (48] to derive the heat equation governing the temperature of the 

porous medium, and introducing internal heat source Q, we have 

(4.5) 

where "'m is the thermal diffusivity of the porous medium, hP is the specific heat 

of the fluid, and h is the specific heat of the solid, with "' = "'m/ (pohp) f and M = 

(p0hp)Jf(p0h)m. Denoting c to be the concentration of the conjugated blue form of 

the thymol blue, we define the internal heat source Q quadratically in terms of c 

such that 

Q = fJ1c + fJ2c2, (4.6) 

where {31 and {32 are some constants of proportionality. 

The concentration c is taken to obey the diffusion equation (see Lombardo et. 

al. (59]) of the form 

(4.7) 
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where E is the porosity and De is the diffusivity of the conjugated form with "'c = EDc. 

The two models under consideration now consist of the partial differential equa-

tions (4.1), (4.2), (4.5), (4.7) and (4.3), (4.4), (4.5), (4.7) respectively, with (4.6) 

defining the form of the internal heat source Q. 

For each model the basic steady state solution, in whose stability we are inter-

ested in, is 

c(z) 

T(z) 

C£ 
(dz- z) dz, 

( 
H6T dz ) z

2 

TL + z -~ + 12(471 + 372) - 2(71 + 72) 

z3 z472 
+ 6d (71 + 272)- 12d2' 

z z 

where H = sign(TL -Tu), 6T = ITL -Tu I, 71 = f3IcL/ "'' and 72 = (32c'i/ "'· 

(4.8) 

(4.9) 

The 

hydrostatic pressure p for each model may be found from ( 4.1) and ( 4.3) respectively, 

but since we eliminate p from our analysis later, we do not include a derivation here. 

To study the stability of each system we introduce a perturbation (ui, fJ, rr, c/Y) 

to the steady state solution as follows 

T = T + fJ, p=p+rr, c = c + qy. 

and introduce non-dimensionalised variables with scalings of 

where dz is the porous layer depth, and Ra == R2 is the Rayleigh number. Substi­

tuting the perturbations and non-dimensionalised variables into (4.1), (4.3), (4.2), 

(4.5), and (4.7), letting u3 = w, imposing (4.8) and (4.9), and dropping the stars we 

obtain 

Uj = -7r, i + biR(J' 

u· = -rr · + b RfJ- blulu·- clul 2u· 1. 't t t. t' 

Ui,i = 0, 

e,t + uifJ,i = RFI(z)w + 6(} + RF2(z)cjy + 'Y2Rc/Y2, 

Jc/Y, t + UicP, i = W + 'f/6c/Y, 

( 4.10) 
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F1 (z) H- 11/3-12/4 + z(11 + 12)- z2(11/2 + 12) + z312/3, 

F2(z) 11 + 212(1- z). 

The Darcy and Forchheimer flow governing equations are (4.10)1 and (4.10)2 respec­

tively. 

The spatial domain of the porous layer is now {(x, y) E IR2
} x {z E (0, 1)}. The 

perturbed boundary conditions for both models are given by 

w = () = <P = 0, z = 0, 1, 

where (ui, (), <P) have a periodic plan-form tiling the (x, y) plane. We will denote V 

to be the period cell for the perturbations. 

4.2 Linear Instability Analysis 

The linearised equations are derived from ( 4.10) by discarding the nonlinear terms. 

Both models produce the same linearised equations as the non linear drag coefficients 

from (4.10)2 are removed, such that the equation reduces to (4.10)1. Assuming a 

temporal growth rate like eat, where a is a complex constant, taking the double curl 

of ( 4.10)1 and looking at the third component, we obtain the linearised system 

6.w = R6. *(), 

a()= RF1(z)w + 6.() + RF2(z)</J, 

~a</J = w + TJ6.</J, 

where 6. * = 82 j8x2 + 82 j8y2. 

(4.11) 

Assuming a normal mode representation for w, (), and </J of the form w = 

W(z)f(x, y), () = S(z)f(x, y), and <P == <P(z)j(x, y) where f(x, y) is a horizontal 

plan-form satisfying 6.*! = -a2f (see Christopherson [16]), (4.11) becomes 

(D2
- a2)W + a2RS = 0, 

(D2
- a2)S + RF1(z)W + RF2(z)<P =aS, 

(D2- a2)<P + ~ W = </Ja <I?, 
TJ TJ 

( 4.12) 
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where D2 = 82 I 8z2
' with boundary conditions 

w -:- s = <I> = 0, z = 0, 1. ( 4.13) 

We have solved this eighth order system for R using the the Chebyshev tau 

technique, as described in Dongarra et al. [20] and Appendix A.2. A brief description 

is not included in this chapter as it follows a very similar implementation to that of 

Chapters 2 and 3. 

As 11 and 12 are not explicitly defined experimentally, we present a numerical 

assessment of their affects on the Rayleigh number in comparison to each other. 

Two specific ranges of 0.1 to 1 and 1 to 10 are studied for both 11 and 12 with the 

opposing 1 term set at 1, 10 and 100. The value rt remains fixed at 0.01. 

Although the Rayleigh numbers are different, as would be expected from a dif­

ferent model, we can see that the results from Figures 4.1 and 4.2, for 11 and 12 

varying from 1 to 10, with the opposing 1 term fixed at 1, follow a similar pattern 

to that of Chapters 2 and 3 and Straughan [89], although the quantitative effect 

is different. It is observed that an increase in either 11 or 12 causes the Rayleigh 

number to decrease. More interestingly though is the observation that 11 and 12 

have an almost identical effect on the Rayleigh number in relation to each other. 

This demonstrates that a variation change in 12 will be as equally significant to a 

change in the Rayleigh number as a variational change to 11. 

To attempt to further explore the effects of the parameters 11 and 12 we turn 

our attention to analytical methods. The main problem when dealing with ( 4.11) 

analytically are the F1 (z) and F2(z) terms, as they vary over the z E [0, 1] range. 

However, by taking the average of both polynomials over this range we can proceed 

analytically so that F1(av) = J0
1 
H- 'Yt/3- 12/4 + z(/1 + /2) - z2('Y1/2 + /2) + 

z3! 2/3 dz = H, and F2(av) = 11 + /2· Furthermore, the spectrum of a was found 

numerically to be always real, so this is assumed for the analysis. It must be stressed 

that the analysis is only heuristic as a has not been proved to be real (it is only 

suggested by the numerical analysis). 

Letting L = D2 - a2, taking a= 0, re-applying L to (4.12)1, and using (4.12)2, 



4.2. Linear Instability Analysis 

Cl! a: 

6 

2 

y2 = 10 

0 
y2 = 100 

0.2 0.4 0.6 0.8 
y1 

3.5 

3 

2.5 

2 
y2 = 1 

1.5 

0.5 
y = 100 

oC=~==z===~==~==~ 
2 4 6 

y1 
8 10 

50 

6 

5 

4 

rl 3 

2 

y1 = 10 

y1 = 100 
0 

0.2 0.4 0.6 0.8 
y2 

3.5 

3 

2 
y1 = 1 Cl! a: 

1.5 

Figure 4.1: Critical Rayleigh number Ra plotted against 11 for left hand graphs and 

12 for right hand graphs. These graphs correspond to heating from below ( H = + 1) 

with 17 fixed at 0.01. 
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Figure 4.2: Critical Rayleigh number Ra plotted against /I for left hand graphs and 

12 for right hand graphs. These graphs correspond to heating from above ( H = -1) 

with 'f} fixed at 0.01. 
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(4.12)3 we have 

LW 

-a2 R( -RW H- ·nR<I>), 

a2 R2 H LW - (/I + l2)a2 R2 W , 
rJ 

a2 R2 H L2W- (11 + /2)a2 R2 LW. 
rJ 

Using the boundary conditions W = 0, S = 0, <I> = 0, at z = 0, 1 we can see that 

L(4)W = 0 on z = 0,1 (as LW and L2W can be written in terms of W, S, and <I>). 

By repeated application of L and relevant substitution of lower powers we can see 

that L(n)W = 0 for n ~ 1, z = 0, 1. Hence we may write W = W0 sin(mrz) for some 

constant W0 . Substituting this into the L(3 ) equation, after some cancelling we find 

R2 __ (n21r2 + a2)3 
(4.14) 

a2[H(n27r2 + a2) + ·n;12] · 

Letting n = n21r2 + a2, and differentiating (4.14) with respect to n2 we have 

8R2 2f237r2 H + 3f227r2(tl + 12)/rJ 

8n2 a2[Hn + :r.t.±n)2 
11 

> 0, 

where we have taken H = + 1 to ensure the positivity of the differential. As the 

differential is > 0 we can take n = 1. Hence 

R2 = (7r2 + a2)3 
a2[7r2 + a2 + Jl;'Y2) · 

(4.15) 

Thus setting 8R2 
/ 8a2 = 0 we derive a quadratic for a 2 and since a2 ~ 0 we find the 

a2 value which minimises R 2 is given by 

a2 = _ 11 + 12 + 
rJ 

Substituting this a2 value into ( 4.15) we can calculate R2 for given rJ and I· The 

main impetus behind this analytic work is to highlight that 11 and 12 have equal 

importance in the resulting analytical equation, as reflected in the numerical re­

sults. Using ( 4.15) and the compound method results we display solutions for the 

seven distinct cases of varying proportial magnitudes between 11 and 12 , for the 

approximate analytical and exact numerical R2 values. 

From Table 4.1 we see that the approximate analytical results are a very useful 

guide to their numerical counterparts. 
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/1 /2 RA RN 

1 1 3.0597 3.0463 

0.1 1 5.2618 5.2284 

1 0.1 5.2618 5.2442 

0.1 10 0.6416 0.6364 

10 0.1 0.6416 0.6392 

0.1 100 0.0656 0.0650 

100 0.1 0.0656 0.0653 

Table 4.1: Comparison of the approximate analytical and exact numerical critical 

Rayleigh numbers RA and RN 

4.3 Conditional Nonlinear Stability Analysis 

In this section we employ the Darcy model. Due to this we are only able to derive 

conditional nonlinear stability results. To obtain a global nonlinear stability bound 

in the stability measure L 2 (V) we proceed as follows for the Darcy model consisting 

of (4.10)p (4.10)4 , and (4.10)5 . First we multiply (4.10) 1 , (4.10) 4 , and (4.10) 5 by ui, 

0, and </J respectively and integrate over V to obtain 

llull 2 = R(O, w), 

~ :t IIOII2 
= R(F1w, 0)- IIV'OII2 + R(F2</J, 0) + 12R(<jJ2, 0), (4.16) 

~ :t II<PII 2 
= (w, <P) - 11IIV' <PII 2

. 

Adding equations (4.16) 1, (4.16) 2 , and (4.16)3 leads to 

! (~ IIOII2 + ~ II<PII 2) = -llull2 - IIV'OII 2 
- 11IIV' <PII 2 + R(o, w) 

+R(F1w, 0) + R(F2</J, 0) + 12R(<jJ2, 0) + (w, </J), 

where 11 · 11 and ( · ) denote the norm and inner product on L 2 (V). 

( 4.17) 

However, due to the higher order terms in the right hand side of ( 4.17) a standard 

energy technique in £ 2 (V) fails to provide a meaningful unconditional nonlinear 

stability bound. To quantify this we follow a similar argument as that presented in 
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Payne and Straughan [79]. We define 

I= R(B, w) + R(F1w, B)+ R(F24;, B)+ 12R(cjJ2, B)+ (w, 4;), 

V= llull2 + IIV'BII2 + 7JIIV'4JII2· 

Then we deduce from ( 4.17) 

:t ( ~ IIBII' + ~ II<PII') :<: - v ( 1 - m,'f' ~) , 

54 

( 4.18) 

where 1-l is the space of admissible functions. The usual energy argument then states 

that if max?-l (I/V) < 1 then we may conclude nonlinear stability (see Straughan 

[90]). However, I /V in this system is not bounded by 1. To see this we note that 

since the space 1-{ is linear we can write Ui, B, and c/J as aui, (3B, and Oc/J respectively 

for arbitrary real numbers a, (3, o. Then 

I Aiaf3 + A2(3o + A3o2(3 + A4ao 

V A5a2 + A6(32 + A1o2 

where AI, ... , A7 are the appropriate integrals from the definitions of I and V. If 

we fix ui, B, and 4; we may treat AI, ... , A7 as constants. Letting (3 = o = al+w for 

some positive number w leads to 

I A1aw+2 + A2a2w+2 + A3a3w+J + A4aw+2 
-

V A5a2 + A6a2w+2 + A7a2w+2 

Setting w = 1/2 we see that 

I __ r.,_
2
3 [A1a-2 + A2a-~ + A3 + A4a-2] 

L< ----+ oo as a ----+ oo. 
V A5a-1 + A6 + A1 

Hence the maximum of I /V in 1-l can not be achieved, so any standard approach 

to derive global nonlinear stability using L 2(V) will not succeed. 

To overcome this problem we derive conditional nonlinear bounds (see McKay 

& Straughan [69]). We take the system (4.16) and include another equation whose 

derivation occurs when (4.10)5 is multiplied by 4;3 and integrated over V. Letting 

a = 4;2 we now have the system 

llull2 = R(B, w), 

! dd IIBII2 = R(F1 w, B) - IIV'BII2 + R(F21J, B) + 12R(a, B), 
2 t 

~ :t II4JII2 = (w, c/J) -7JIIV'c/JII 2, 

~ :t llall
2 = (w, c/J

3
)-

3
4
77 

IIV'all
2
· 

(4.19) 
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By repeated use of the Cauchy-Schwarz and Sobolev inequalities (see Appendix B.3) 

we find 

(w,q}) < (iw2 dV)~(icidV)~ 

< (i w 2 dV)~(i a 2 dV)~(i a 4 dV)~ 

< (i w2 dV)~(i a2 dV)~(i 1Val2 dV)~. (4.20) 

After introducing coupling parameters ,\1 , -\2 , -\3 > 0 we define 

A A 

E(t) - ~11011 2 + -\~r/>llr/>11 2 + -\~r/>llall 2 , 

V IIVOII2 + 7JA1IIV</>II2 + 
3

4
17 -\2IIVall2 + A311ull2, 

I R(F1 w, 0) + R(F2 r/>, 0) + 12R(a, 0) + -\1 (w, </>) + -\3R(B, w). 

From ( 4.19) and ( 4.20), using the Poincare inequality we derive that 

dE 1 1 1 < I- V+ mV2E4V2 
dt 

1 

< -V(a- mE4), 

where m is some positive constant and a= 1- 1/ RE where 1/ RE = maxH (I/V). 

If RE > 1 then by the Poincare inequality, V.;::: cE for some positive constant c. 

Hence it follows that 

dE< -cE(a- mE~). 
dt -

We will show that (4.21) ensures nonlinear stability as long as 

(a) RE> 1, 
1 a 

(b) E4 (0) < -. 
m 

For (4.22)(b) to hold there are two possibilities which are that 

1 a 
E4(t) < -, t 2: 0, 

m 

( 4.21) 

( 4.22) 

( 4.23) 

1 1 
or there exists an ( > 0 such that E4(() = ajm, and E4(t) < ajm, for any 

t E (0, (). Therefore, from (4.21) it follows that dEjdt ~ 0 for t E (0, (), hence, 

E~(t) ~ E~(O) < ajm for any t E (0, (). As E(t) is a continuous function oft 

on (0, (]then it is impossible that E~(() = ajm. This contradiction implies (4.23) 
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and consequently dE/dt ::; 0 for t ;::: 0 such that Ei(t) < Ei(o). Letting k = 

a- mEi(o) > 0 with (4.22)(a) and (4.22)(b) holding 

~~::; -cE(a- mEi(t))::; -kcE. 

Integrating we have 

E(t) ::; E(O)ekct ---+ 0 as t ---+ oo, 

which shows the decay of () and c/J. To show the decay of u we define some positive 

constant o: and use ( 4.16)1 and the Poincare inequality such that 

Hence letting o: = R 

as t ---+ oo, 

where the decay of u clearly follows. 

The Euler Lagrange equations (see Section 2.3 for an explicit example of the 

derivation of Euler Lagrange equations) for the maximisation problem 1/ RE = 

max?t (I/D) (with the threshold case when RE = 1) are found to be 

RF1B + )'1</J + >.3R()- 2>.3ui = w,i, 

RF1 w + RF2</J + 12Ro: + >.3Rw + 26(} = 0, 

RF2(} + AIW + 2ry>.l6</J = 0, 
3ry>.2 

12R() + -
2
-6o: = 0. 

( 4.24) 

As we need to include the constraint ui i 
' 

0 we have introduced the Lagrange 

multiplier w, where fv wui,i dV = 0, so that 

d
d (aa (wui,i)) = w,i· 
X· U· · t. t, t 

As >.2 only appears in the D term in the maximisation problem, we set it equal to 

1 so that we can assess solutions over the maximisation of >. 1 and >.3 only. 

We now take the third component of the double curl of (4.24)1 (to remove the 

Lagrange multiplier), and introduce the normal mode representations and notation 
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as presented in Section 4.2, with a= a(z)f(x, y). The system (4.24) then becomes 

(D2- a2)W R(F1 + .\3)a2 S a2 ,\1 q> = 
+ 2.\3 + 2)q o, 

(D2 2)S R(F1 + .\3) W RF2 m. 12R -a + +---¥+-a= 0 2 2 2 , (4.25) 

(D2- a2)q> + RF2 S + 2_W = 0, 
2ry)q 2ry 

(D
2

- a
2
)a + ~~~~ S = 0, 

where the boundary conditions are 

W=S=q>=a=O z = 0, 1. (4.26) 

System (4.25) was solved using the compound matrix method (see Appendix A.1) 

in an analogous manner to previous chapters, where there is maximisation over the 

coupling parameters .\1 , .\3 to find 

where for all R2 < RaE we have stability. 

The compound matrix equations (i.e. the differentials of each of the minors of 

the solution matrix) which had to be calculated before any numerical analysis was 

attempted, were found to be highly time consuming. An automated program had to 

be written to evaluate all 256 of them, which was deemed to be excessive, resulting 

in the alternative approach in Chapters 7 and 8. 

Table 4.2 displays the critical values (RL, RE, a~) where the linear and nonlinear 

results correspond to the subscripts L and E respectively. The results are given for 

f1 fixed at 0.01, 11 = 1, 5, 10 and 12 = 0.1, 1. 

From Table 4.2 we can see acceptable agreement when 1 1 is the dominant term. 

There is, however, the development of a large region of potential subcritical insta­

bilities when 1 1 and 1 2 are equal. 

4.4 Unconditional N onlinear Stability Analysis 

Conditional nonlinear stability analysis is inherently restricted due to the bounding 

of initial data, where in this body of work E~ (0) <a/m (see (4.22) in Section 4.3), 
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1'1 1'2 H RaE RaL a2 E 

1 0.1 +1 4.8512 5.2442 4.8359 

5 0.1 +1 1.2244 1.2482 4.9196 

10 0.1 +1 0.6329 0.6392 4.9317 

1 1 +1 0.4106 3.0463 7.2806 

1 0.1 -1 6.1515 6.8650 4.1592 

5 0.1 -1 1.2954 1.3226 4.7758 

10 0.1 -1 0.6514 0.6582 4.8594 

1 1 -1 0.4191 3.5305 7.7454 

Table 4.2: Comparison of the nonlinear and linear critical Rayleigh numbers RaE 

and RaL 

where a= 1- 1/ RE· Clearly as RE---+ 1, a---+ 0 which restricts all initial data by 0. 

The motivation in introducing a second model for fluid flow in Section 4.1 was to 

provide the opportunity of a full unconditional analysis, leading to a less restricted 

and more mathematically pleasing assessment of the suitability of linear theory to 

predict the onset of convective motion. 

When the fluid velocity becomes larger, a Forchheimer system is thought to be 

appropriate for porous flow. Hence, its use in an energy analysis, which does deal 

with nonlinear terms, is justified. 

The system we now consider is (4.10)2 , (4.10)4 , and (4.10) 5 . To show that a stan­

dard energy technique in L 2 (V) can not be used we follow an analogous argument 

to Section 4.3, choosing 

I= R(e, w) + R(F1w, e)+ R(F2</J, e)+ ')'2R(</;2
, e)+ (w, </;), 

V= llull 2 + 11Vell 2 + 77IIV<PII 2 + b fv lul 3 dV + c fv lul4 dV, 

for the maximisation problem max11 (I/V), where 'H is the space of admissible 

functions. As 'H is linear we can write ui, e, and <Pas o:ui, (3e, and o<jJ respectively 

for arbitrary real numbers a:, (3, 0. We fix ui, e, and <P and let (3 = o = a:~, which 

yields 
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as A 1 , ... , A9 are treated as constants. Hence the maximum of I /V in 1t can not be 

achieved, so any standard approach to derive global nonlinear stability using L 2 (V) 

will not succeed. 

In order to establish unconditional results we introduce norms of higher order. 

Let 11 · liP denote the norm on LP(V) where p > 2. Using (4.10)5, the fact that the 

derivative of sign cjJ is a Dirac delta function, and using the properties of the delta 

function we derive that 

Using both the Poincare and Young inequalities we find 

for some positive constant /3. 

Again using (4.10)5 we derive an identity for £ 4 such that 

for some positive constant (. 

We now define an energy E(t) by 

A A A 

E(t) = ~1 11011 2 + A~c/J llc/JII 2 + A;c/J llc/JII~ + A~c/J lie/Jilt ( 4.29) 

for coupling parameters A1, A2 , A3 , A4 > 0. 

Then using our system ( 4.10) 2 , ( 4.10)4 , ( 4.10)5 and ( 4.27) and ( 4.28) we derive 
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that 

dE 
< 

dt 
>11R(F1w, B)- )qll\i'BII2 + >'~R(F2c/J, B)+ /2>11R(cjJ2, B) 

+.\2(w, c/J)- 7JA2IIV'c/JII 2 

+.\3 (~ - 8n27J) f lc/JI3 dV + .\3{32 f lul3 dV 
3{3 9 lv 3 lv 

+ 3~4 ((- n27J) i lc/JI4 dV + 4~43fv1ul4 dV 

-llull 2 + R(B, w)- b fv1ul 3 
dV- c i lul4 

dV. 

To bound the (cjJ2, B) term we use Young's inequality to deduce 

Let 

12.\1R 2 I= .\1R(F1 w, B)+ .\1R(F2c/J, B)+ 
2 

IlB II + .\2(w, c/J) + R(B, w), 

V= .\1IIV'BII 2 + 7JA2IIV'c/JII 2 + llull2, 

and define 1/ RE = max7t (I/V). Then 

~ ~- ( R~: 1) V + i lul
3 

( .\
3
:

2

- b) dV 

+ i lc/JI3 ( .\3 (3~- 8~277)) dV 

+ i lul
4 ( 4~~- c) dV 

+ i lc/JI4 ( .\:3 (( _ n27J) + 12~1R) dV. 
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We choose .\3 = k3E3 and .\4 = ,\~ + k4E4, where E3, E4 are arbitrarily small and ,\~ is 

free to select. We set 

3.\~ (~' 2 ) /2A1R _ O 
4"'-7[" 77 + 2 -' 

so that,\~= (2!2R.\I)/3(n27J- (). Minimising .\U4(3 with respect to (leads to 

We now choose k3 = 9{3/(7J8n2{3- 6), k4 = 16/3n27J and minimise {32.\3 /3 with 

respect to {3. This yields the selection 

9 
{3=-82' 7r7J 
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Hence we have 

dE < _ (RE- 1) V 
dt - RE 

where 

b [ lul3 dV- E3 [ 14>1 3 dV 

c [ lul4 
dV - E4 i 14>14 dV. . 
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(4.30) 

Since E3 and E4 can be taken to be arbitrarily small, we can ensure the positivity of 

b and c by setting 
12812R.\1 

b > 0, c > 8l7!·8174 . (4.31) 

Thus, letting a= (RE- 1)/ RE and supposing (4.31) is satisfied, then for RE> 1 

~~ < -av- E3 [ 14>1 3 dV- E4 [ 14>14 
dV, 

< -kE, 

where 

• { A 2 A 2 3E3 4E4 } 
k =mm 2a?T , 2a1]7T , .\

3
J, .\

4
J . 

After integrating we have E(t) ::; E(O)e-kt -t 0 as t -t oo where the decay of() and 

4> is shown. 

However, to have global nonlinear energy stability we need to show the conver­

gence of llull2, llull~, and llullj. Using (4.10)2 we have 

llull2 + bllullg + cllull! R(B, w) 

< Ra IIBII2 + .!!._ llull2· 
2 2a 

Letting a = R 

1 R2 

2llull2 + bllullg + cllull! ::; >:; E -t 0 as t -t oo, 

where the decay of u clearly follows. 

The Euler Lagrange equations (see Section 2.3 for an explicit example of the 

derivation of Euler Lagrange equations) for the maximisation problem 1/ RE = 

maxH (I/V) (with the threshold case when RE = 1) are found to be 

.\1RF1() + .\2</> + RB- 2ui = w,i, 

AlRFl w + AIRF2() + /2AIR() + RW + 2-\1,6.() = 0, 

AIRF2() + A2W + 21].\26.4> = 0, 

( 4.32) 
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where w is the Lagrange multiplier. Taking the third component of the double 

curl of ( 4.32) 1 , and introducing the normal mode representations and notation as 

presented in Section 4.2, system ( 4.32) then becomes 

( 4.33) 

where the boundary conditions are 

z = 0, 1. 

System (4.33) was solved in an entirely analogous fashion to (4.12) in Section 4.2 

using the compound matrix method, with identical initial and final conditions, but 

also maximising over the coupling parameters .-\1 , .-\2 . 

Table 4.3 displays the critical values (RL, RE, a~;) where the linear and nonlinear 

results correspond to the subscripts Land E respectively. The results are for TJ fixed 

at 0.01, ')'1 = 1, 5, 10, and ')'2 = 0.1, 5, 10. 

Table 4.3 shows a similar pattern of results to the conditional analysis in Section 

4.3, such that there is excellent agreement between the linear and nonlinear thresh­

olds when ')'1 is the dominant term, but the closeness of the agreement collapses the 

magnitude of ')'2 becomes similar or greater to "Yl· 

Clearly from Table 4.3 we can see that the linear results fail to emulate the 

nonlinear ones when 12 > ')'1 , so we turn our attention to the case when the value of 

')'2 approaches and then exceeds that of /I, to assess the behaviour of both the linear 

and nonlinear Rayleigh numbers. Figure 4.3 provides a visual representation of the 

formation of these potential subcritical regions, (i.e. when the agreement between 

the linear and nonlinear theory is not with an acceptable range), where '"Yl is fixed 

at 0.1 and 10 and ')'2 varies between 1 and 10. 

Figure 4.3 shows that when 11 = 10 the linear and nonlinear thresholds show 

excellent agreement for ')'2 = 1 to 10, although the region of potential subcritical 

instabilities does increase as 12 approaches the same magnitude as '"Yl· In contrast 
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/'1 '"'/2 H RaE RaL a2 E 

1 0.1 +1 5.2040 5.2442 5.2380 

5 0.1 +1 1.2435 1.2482 5.006 

10 0.1 +1 0.6375 0.6392 4.9732 

1 1 +1 2.8601 3.0463 4.9755 

0.1 1 +1 4.7797 5.2283 5.0753 

0.1 5 +1 1.0118 1.2430 4.5673 

0.1 10 +1 0.4767 0.6364 4.3198 

1 0.1 -1 6.8019 6.8650 4.5783 

5 0.1 -1 1.3174 1.3226 4.8633 

10 0.1 -1 0.6564 0.6582 4.9018 

1 1 -1 3.2916 3.5305 4.6247 

0.1 1 -1 6.1218 6.8332 4.4609 

0.1 5 -1 1.0627 1.3165 4.4400 

0.1 10 -1 0.4879 0.6552 4.2591 

Table 4.3: Comparison of the nonlinear and linear critical Rayleigh numbers RaE 

and RaL 
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Figure 4.3: Linear and nonlinear critical Rayleigh numbers Ra plotted against 12 

for 11 fixed at 0.1 and 10. The regions of potential subcritical instabilities are the 

shaded areas on the graph 

when II = 0.1 and 12 again ranges from 1 to 10, the region of potential subcritical 

instabilities is significant. 

4.5 Conclusions 

Both the Darcy and Forchheimer equations are used to analytically and numerically 

study convection induced by the selective absorption of radiation, where the internal 

heat source is modelled quadratically with respect to concentration, which is an 

adaption from the models used in Chapters 2 and 3. 

The linear results are identical for both models, and are based around the un­

known parameters 11 and 12 , as presented in Figures 4.1 and 4.2. It is observed that 

an increase in either II or 12 causes the Rayleigh number to decrease. More inter­

estingly though is the observation that 11 and 12 have an almost identical effect on 

the Rayleigh number in relation to each other. This demonstrates that a variation 

change in 12 will be as equally significant to a change in the Rayleigh number as a 

variational change to 11 . 

Tables 4. 2 and 4. 3 present the conditional and unconditional nonlinear stability 
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and corresponding linear instability results for various 11 and 12 . Both the con­

ditional and unconditional nonlinear analyses show that when 11 is the dominant 

term over 12 the thresholds of the linear and nonlinear theory are close, so that 

potential region of subcritical instabilities is small, implying that the linear theory 

approximately captures the onset of convective motion. 

In contrast, as the magnitude of 12 exceeds that of 11 and beyond, the potential 

region of subcritical instabilities increases greatly, for a given accuracy. These results 

indicate that linear theory may fail to accurately capture the physics of the onset of 

convection. 



Chapter 5 

Double-diffusive convection in a 

porous medium with a 

concentration based internal heat 

source 

An interesting and significant aspect of the Krishnamurti model, unexamined in 

Chapters 2 to 4, is the effect of the concentration of the thymol blue on the density 

of the model. Each of these bodies of work define the state equation to be linear in 

temperature, with the effect of concentration on density assumed negligible. This 

chapter explores the use of a double-diffusive convection model in a porous medium, 

with fixed boundary conditions employed throughout. 

Research exploring double-diffusive convection in a fluid-saturated porous layer 

has been an active area for many years, making this particular chapter considerably 

relevant to the wider literature. These phenomena of combined heat and mass 

transfer appear in numerous physical problems such as contaminant transport in 

saturated soil, food processing, underground disposal of nuclear wastes, and the 

spreading of pollutants. Comprehensive reviews of the literature concerning double­

diffusive natural convection in a fluid-saturated porous medium can be found in the 

review article by Trevisan & Bejan [95], in the book by Nield & Bejan [77], and 

in Chapter 14 of the book by Straughan [90]. Recent novel contributions include 

66 
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Mamou et al. [61] for a vertical porous enclosure, Mahidjiba et al. [62] for mixed 

boundary conditions, and Guo & Kaloni [33] with the introduction of the Brinkman 

effect. 

In addition to establishing a linear theory for the double-diffusive convection 

model, we develop a complementary energy theory. The energy method has been 

employed with much success in double-diffusive flows, with examples including Carr 

[11], Guo & Kaloni [33] and Mulone & Rionero [75]. 

The linear and nonlinear results are derived using Chebyshev tau and compound 

matrix numerical techniques (see Appendices A.2 and A.1). Similarly to Chapter 3, 

the Chebyshev tau technique was found to be restrictive due to the heavy computa­

tional cost in solving full matrix eigenvalue problems required over several parameter 

ranges. 

The results in this chapter were published in the article Hill [40]. 

5.1 Governing Equations 

Let us consider a fluid saturated porous layer occupying the three dimensional layer 

{(x,y) E JR2
} x {z E (O,dz)}, where Oxyz is a cartesian frame ofreference with unit 

vectors i, j, k respectively. Adopting the same boundaries as in Chapter 2 the upper 

and lower planes are held fixed at temperatures Tu and TL, and concentrations 0 

and C£ respectively. 

We assume the Oberbeck-Boussinesq approximation is valid and that Darcy's 

law governs the fluid motion in the porous layer. If the layer is parallel to the plane 

z = 0 we have the governing equation 

f-1, 
-v· = -p · - b·gp(T c) k t 1 t t ' ' 

where vi, p, are velocity, and pressure, b = (0,0,1), g is the acceleration due to 

gravity, f-1, is the dynamic viscosity of the fluid, and k is the permeability of the porous 

medium. Denoting T to be the temperature and c to be the concentration of the 

dissolved species (e.g. the conjugated form of the thymol blue in Krishnamurti [55]), 

the density p(T, c) is given by 

p(T, c)= Po(1- n(T- To)+ nc(c- eo)), 
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where p0 , T0 , and eo are reference values of density, temperature and concentration 

respectively, and a and ac are the coefficients for thermal and solutal expansion. 

In addition to Darcy's law, the governing equations consist of the equations of 

conservation of energy and mass. The internal heat source is modelled linearly with 

respect to concentration, which is represented by the introduction of the f3c term 

in the heat equation, where f3 is some constant of proportionality. Combining these 

equations with Darcy's law the governing system of equations is as follows: 

Vi,i = 0, (5.1) 
1 

MT.t + viT,i = "'6.T + /3c, 

cc, t + vie, i = "'c6.c, 

where "'c and "'m are the solute and thermal diffusivities respectively, c is the porosity, 

with 

where hp is the specific heat of the fluid, and h is the specific heat of the solid, 

with the subscripts J, s, and m referring to the fluid, solid and porous components 

of the medium respectively. The remaining terms of system ( 5.1) are defined as 

"'= "'m/(pohp)J and M= (pohp)Jf(poh)m. 

Let us now consider the basic steady state solution (vi, p, T, c) of (5.1), where, 

as there is no fluid flow, vi= 0. Utilising the boundary conditions, equations (5.1)3 

and (5.1) 4 show that 

where H = sign(TL- Tu), oT = ITL- Tul, and T = f3c£/l'\,. A derivation of 

the hydrostatic pressure p may be found from ( 5.1) 1' but is not included as it is 

eliminated in subsequent analyses. A crucial aspect in the interpretation of the 

physical system is the value H, which refers to heating from below ( H = + 1) and 

above ( H = -1) respectively. The more interesting case is when we heat from below 
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as this leads to two competing factors, namely the stabilising effect of the species 

and the destabilising effect of the heating, which is a highly researched phenomena 

(e.g. see Mulone [74]; Lombardo et al. [59]). 

To assess the stability of the steady solution a perturbation ( ui, (), 1r, 4;) is 

introduced to this steady state, such that 

p=p+7r, 

with a non-dimensionalisation with scalings of 

R= 

f-lK(bT) ()* 

gadzkPo ' 

c = c + 4;, 

Re = gaecLdzkPo 

!-""' 

where Ra = R2 and Re are the thermal and solute Rayleigh numbers respectively. 

Dropping all the stars, the governing equations from system ( 5.1) for the non­

dimensionalised quantities now take the following form: 

U· = -7f . + b·RB- b·R A. t , t t t clfJ, 

Ui,i = 0, 

B,t + uiB,i = wRF(z) + 6.() + "(R4;, 

4;4;, t + ui4;, i = w + ry6.4;. 

(5.2) 

In these equations, w = u3 , (/> = cM, and 'Y = d;r / bT. An important feature in 

subsequent analyses is the non-dimensionalised temperature gradient F which is 

given by 

F(z) = H- "f/3 + "f(Z- z2 /2). 

The boundary conditions for the perturbed quantities are 

w = 0, () = 0, q; = 0, z = 0, 1, 

where (ui, B, 4;) have a periodic plan-form tiling the (x, y) plane. 
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5.2 Linear :Instability Analysis 

To proceed with a linear analysis the nonlinear terms from (5.2) are discarded, and 

a temporal growth rate like eat is assumed where ui = eatui(x), () = eat()(x), and c/J 

= eatc/J(x). The double curl of (5.2)1 is taken to remove the pressure term, where 

the third component is chosen, and the preceding substitutions to system (5.2) are 

made. The resulting linearised governing set of equations are 

6w = R6*()- Re6*cjJ, 

a()= RF(z)w + 6() + 1Rc/J, 

c/Jac/J = w + ry6cjJ, 

where 6* = 82 j8x2 + 8 2 j8y2
. 

(5.3) 

By using normal mode representations of the form w = W ( z) f ( x, y), () = 

S(z)f(x, y), and c/J = if>(z)f(x, y) where f(x, y) is a horizontal plan-form tiling 

the plane (x, y) periodically which satisfies 6 * f = -a2 f with wavenumber a2 (see 

Christopherson [16]), letting D2 = 82/8z2
, (5.3) becomes 

(D2 - a2 )W + a2 RS- a2 Reif> = 0, 

(D2
- a2 )S + RW F(z) + 1Rif> =aS, 

(D2- a2)if> + ~ W = c/Ja if>. 

"' "' 

(5.4) 

The eighth order system (5.4) was solved using the Chebyshev-tau method (see 

Appendix A.2 and Chapter 1 for references). This technique, however, was found to 

be restrictive due to the heavy computational cost in solving full matrix eigenvalue 

problems required over three parameter ranges (namely 1, Re and a2 ). The natural 

progression was to develop the techniques in Chapters 7 and 8 to overcome these 

difficulties. 

Numerical results are presented for a range of 1 values, with Re varying between 

0 and 30. Variations in the T/ and J values produce only slight universal shifts in 

the critical thermal Rayleigh number, so we fix T/ and J at 0.01 and 0.2 respectively. 

Figure 5.1 shows the results for heating from above (H = -1) with 1 increasing in 

increments of 1 from 1 to 10, where we expect a to be real at criticality. 
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Figure 5.1: Critical thermal Rayleigh number Ra plotted against Re, with 1 increas­

ing in increments of 1 from 1 to 10. These graphs correspond to heating from above 

(H = -1) with f1 fixed at 0.01. 

A linear relationship between Re and Ra is apparent from Figure 5.1, where, as 

expected, the spectrum of a is always found to be real. Positive increments in 1 

cause a reduction in the critical thermal Rayleigh number, which intuitively makes 

sense as 1 is in essence a measure of the internal heat source, so an increase in 1 

would cause more instability in the system, allowing the onset of convection to occur 

early. 

When the system is heated from below ( H = + 1) and there is no internal 

heat source (i.e. 1 = 0) the system can be solved after extensive analysis (see e.g. 

Straughan [90) pgs 238-247). Figures 5.2 to 5.4 show the results for heating from 

below ( H = + 1), with the inclusion in each figure of the analytical 1 = 0 criticality 

values to place these numerical results in context. Figure 5.2 presents results when 

1 is increased in increments of 10-1 from 0.1 to 0.5, with Figure 5.3 showing the 

results when 1 is increased in increments of 10-1 from 0.6 to 1. 
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Figure 5.2: Critical thermal Rayleigh number Ra plotted against Re, with 1 varying 

between 0 and 0.5 in steps of 10-1 . These graphs correspond to heating from below 

(H = +1) with TJ fixed at 0.01. 

ra a: 
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Figure 5.3: Critical thermal Rayleigh number Ra plotted against Re, with 1 including 

the value 0 and varying between 0.6 and 1 in steps of 10-1 . These graphs correspond 

to heating from below (H = +1) with TJ fixed at 0.01. 
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In Figures 5.2 and 5.3 the kinks in the graphs represent the point at which con­

vection switches from steady convection ( O" = 0) to oscillatory convection (Re ( O") = 

0, Im(O") ::J. 0). The onset of both types of convection appear to follow a linear rela­

tionship between Re and Ra· As 1 increases the onset of convection is more likely to 

be via steady convection. It is important to note that small increments in 1 appears 

to cause the magnitude of the steady convection linear relationship to decrease more 

rapidly than that of oscillatory convection. 

To explore this phenomenon further Figure 5.4 shows the extended 1 range 

between 1 and 10. It is possible to extract oscillatory results numerically, so in 

Figure 5.4 along with the critical thermal Rayleigh number graphs corresponding 

to H = + 1, dotted lines are introduced which represent the onset of oscillatory 

convection for 1 = 2 and 3. The 1 terms on the left refer to the critical thermal 

Rayleigh curves, whilst those on the right refer to the relevant onsets of oscillatory 

convection. 

When 1 = 3 the oscillatory neutral line has a larger gradient than that of the 

corresponding steady convection line, which implies they do not intersect, i.e. only 

stationary convection occurs. Using results obtained via the Chebyshev tau method 

to calculate both steady and oscillatory neutral lines, it is possible to extract a crit­

ical value le, above which the lines do not intersect based on their gradients within 

the calculated Re range, so that no oscillatory convection should occur. The range 

in which this critical value was found is le E [2.2091625, 2.209175]. The existence of 

a critical parameter value determining the presence of oscillatory convection is, in 

the present literature, a new phenomenon. 

To further analyse the existence of this critical le term, an analytical truncated 

series approach is developed. 

Corollary 5.2.1 The functions W(z), S(z) and <I>(z) satisfying system (5.4) belong 

to the space {G(z) E C[O, 1]: G(2n)(O) = G(2n)(1) = 0, nE N} 

Proof: Extending the function F(z) to be even over the interval [-1, 1]leads 

to the Fourier series expansion 

F(z) = 1 _ 2; ~cos (~1rz), 
7r L.....t n 

n=l 
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Figure 5.4: Critical thermal Rayleigh number Ra plotted against Re, with 1 including 

the value 0 and varying between 0 and 10. The graph corresponds to heating from 

below (H = +1) with TJ fixed at 0.01. The dotted lines represent the extrapolated 

onset of oscillatory convection for 1 = 2 and 3 

such that F(2n+l) (z) = 0 for nE N, z = 0, 1. 

The proof is by induction. Let the operator d2k / dz2k - a2 be denoted by £(k), for 

some k E N, with £(o) being the identity. By definition 
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using system (5.4) and the non-dimensionalised boundary conditions. Assume 

£CP)w = £(P) S = £(P)~ = 0 for z = 0, 1 where p = 0, 1, 2, ... , n. To show that it 

is true for n + 1 we apply L again and use system (5.4) to give 

L(n+l)W = -a2 RL(n) S + a 2 RcL(n)~ = 0 z = 0, 1, 

L(n+l)~ = _!L(n)w + cj;a L(n)~ = 0 z = 0, 1, 
T/ T/ 

L(n+l)S = -1RL(n)~ + aL(n)s- RL(n)(F(z)W) 

By assumption £(n)~ = £(n)S = 0 on z = 0, 1, and if we let n = 2m, using a 

binomial expansion yields 

L(n)(FW) = (2~)p(2m)w + (2~)p(2m-l)W(l) + ... + (~:)Fw(2m). 

By assumption each W term differentiated to an even power from 0 to 2m ( =n) is 0 

for z = 0, 1. The only remaining terms contain F(z) differentiated to an odd power 

which, by the definition of the Fourier series, is zero for z = 0, 1. 0 

The functions sin (p7rz), p E N, span the space {G(z) E C[O, 1] G(2n)(O) 

G(2n)(1) = 0, nE N} so we may define 

00 00 

W(z) = L Wn sin (n7rz), S(z) = L Sn sin (n7rz), 
n=l n=l 
00 

~(z) = L ~n sin (n7rz), 
n=l 

for constants Wp, Bp, ~P• p E N. Since sin (p7rz), p E N, form a basis, they can not 

be written as a linear combination of each other, so after substituting the definitions 

into (5.4)1 and (5.4)3 we evaluate at sin (p7rz), for some p E N, to find 

where Ap = (p7r )2 + a2
. 

ApWp = a2RSp- a2Rc~p. 

(TJAp + ~a)~p = WP, 
(5.5) 

Applying the substitutions to (5.4)2 with the Fourier expansion of F(z), and 

making use of some trigonometry identities yields 
00 00 00 

L Sn(An +a) sin (n7rz) = 1R L ~n sin (n7rz) + R L Wn sin (n7rz) 
n=l n=l n=l 

(5.6) 
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An evaluation at sin (p1rz) of (5.6) can now be made. In the double sum term 

sin (p1rz) is produced when m+ n = p, m- n = p, and m- n == -p. This yields an 

infinite sum which must be truncated to extract a usable equation. Thuncating the 

first p -1 terms with respect ton in the double sum term, removes the possibility of 

m + n = p. (It is important to note that in subsequent analysis, however, we must 

take p = 1). The subsequent infinite sum must again be truncated to extract the <Pp 

term to give the following expression: 

(5.7) 

Using (5.5) and (5.7) to eliminate Wp and Sp, and noting that <Pp =/= 0 for an 

arbitrarily chosen p, the following identity can be derived: 

a2 (Ap~) + a ( ryA; + a2 Re+ ~A;- a2 R2~(1 + 
4
7r;p2 )) (5.8) 

+ ryA; + a2 ReAp- a 2 R2ryAp(1 + +,)- rR2a2 = 0. 
47r p 

We define a = Re( a) + if m( a), and study the threshold case Re( a) = 0. To study 

the onset of oscillatory convection we allow I m( a) =/= 0 and take the imaginary 

part of (5.8), which can be re-written with respect to R2 . It is simple to show that 

8R2 I 8p2 > 0, so that p = 1 can be taken. Differentiating with respect to a2 a global 

minimum can be found at a2 = 1r
2

. Hence the analytical form for the oscillatory 

neutral line yielded by (5.8) is: 

(5.9) 

This is a relatively good approximation to the exact numerical results for smaller 1 

values and underlines the actual linear behaviour numerically observed between Re 

and Ra· 

To study the onset of stationary convection we let I m( a) = 0 and take the real 

part of (5.8), which can be re-written with respect to R2 . In a similar fashion to the 

previous derivation it can be shown that 8R2 I 8p2 > 0, so that p = 1 can be taken. 

Thus, letting A= A1 , the analytical form for the steady neutral curve is: 

R2 = ryA
3 + ARc 

a2 (ryA(1 + ~) + 1) ryA(1 + ~) + ,· 
(5.10) 
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Viewing this result geometrically, an a2 (wavelength number) dependence of the 

gradient with respect to Re is observed. Studying 8R2 
/ 8a2 it is possible to show 

that, for fixed /, a2 ----+ 0 as Re ----+ oo. The actual numerical results also show an 

inversely proportional relationship between Re and a2 . Due to the changing gradient 

of the steady neutral curve, the critical! value for which the steady neutral curve's 

gradient falls below that of the oscillatory neutral curve must be established as 

Re----+ oo, (which coincides with a2 ----+ 0). Hence, using the gradients of the oscillatory 

and steady neutral curves, namely (5.9) and (5.10) 

4n2 4n2 

ry(4n2 +I)+ 41 < ~(4n2 + 1) 
(5.11) 

is the condition for the existence of only stationary convection. Rearranging ( 5.11) 

yields a critical value of le = 1.968739985. Although all1 values above the numerical 

le would result in steady convection, the heuristic analysis does therefore imply that 

this value is not optimal, due to the non-linearity of the stationary neutral curve. 

CO 
a: 

(i) 

t "/ 

(ii) 

Re 

Figure 5.5: Visual representation of a finite oscillatory convection interval, with 

critical thermal Rayleigh number Ra plotted against Re· (i) marks the shift from 

stationary to oscillatory convection; (ii) marks the shift from oscillatory to stationary 

convection. 

If the constantly changing gradient of stationary neutral curve presented by the 

analysis is actually present in the physical system, this also allows for the possibility 
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of a range of 'Y values which have only a finite interval of oscillatory convection. 

Figure 5.5 is a visual representation of this potential phenomenon, where the steady 

and oscillatory neutral curves are represented by solid and dashed lines respectively. 

To explore the impact of these potential features on the actual physical system 

a more extensive range of Re values could be explored numerically, but it must 

be underlined that in this chapter the actual numerical data and the approximate 

analysis do strongly indicate the existence of a critical 'Ye value, with no oscillatory 

convection occurring for 'Y 2': 'Ye· 

5.3 Nonlinear Stability Analysis 

Due to the potential regions of subcritical instabilities, where the onset of convec­

tion occurs prior to the thresholds predicted by the linear theory being reached, a 

nonlinear energy analysis is developed to provide thresholds for global stability. 

To obtain global nonlinear stability bounds in the stability measure £ 2 (V), where 

V is the period cell for the perturbations, we multiply equations (5.2)1' (5.2)3 and 

(5.2)4 by ui, () and rjJ respectively and integrate over V to obtain 

llull2 
= R((), w)- Re(r/J, w), 

~! 11()11
2 

= R(wF, ())- IIV()II2 + 'YR(rjJ, ()), (5.12) 

~ :tllr/JII2 
= (w, r/J) -ryiiVr/JII2· 

where 11 · 11 and ( · ) denote the norm and inner product on L 2(V). 

Letting )11 and >.2 be positive coupling parameters to be selected at our discretion, 

and defining an energy 

we have the following identity: 

where 

dE =T-V 
dt , 

I= R(wF, ()) + 1R(rf;, ()) + .A 1 (w, r/J) + .A2R(e, w)- .A2Re(rjJ, w), 

V= IIV()II2 + 7JAIIIVr/JII2 + .A2IIull2· 

(5.13) 
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Let 1/ RE = max?-l (I/V), where 1-l is the space of admissible functions. Using 

the Poincare inequality to deduce that V ~ cE for some constant c, if RE > 1 then 

using ( 5.13) yields 

dE<_ (RE- 1) cE. 
dt - RE 

Integrating we have E(t) ::::; E(O)e-at ~ 0 as t ~ oo, where a = c(RE - 1)/ RE. 

By the definition of E(t) the decay of() and c/J clearly follows. However, for global 

nonlinear stability the decay of u must be shown. 

Let a, {3 > 0 be some constants, then using the arithmetic-geometric mean in­

equality in (5.12) 1 yields 

Letting a = Rand {3 = 2Rc, as(), c/J ~ 0 in the stability measure L 2(V) as t ~ oo, 

the decay of u clearly follows. 

Assuming the sharpest boundary condition RE = 1, the Euler-Lagrange equa­

tions (see Section 2.3 for an explicit example of the derivation of Euler Lagrange 

equations) for the maximisation problem 1/ RE = max?-l (I(D) are 

R(F + )..2)() + ()..1- Rc)..2)cP- 2)..2ui = w,i, 

R(F + )..2)w + "(Rc/J + 26.() = 0, 

"(RB + ()..1 - Rc)..2)w + 2ry)..16.c/J = 0, 

(5.14) 

where w is the Lagrange multiplier. To eliminate w from (5.14) 1 the double curl can 

be taken to find 

(5.15) 

The critical nonlinear Rayleigh number RaE, which is given by 

(5.16) 

can now be derived from the sixth-order eigenvalue problem consisting of equations 

(5.14b (5.14)3 , and (5.15). 

This system was solved using the compound matrix method and the Chebyshev­

tau technique. Both methods are explained in detail in Appendices A.1 and A.2, 
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although brief descriptions are given in this chapter to clarify the use of the methods 

in the context of the system of the second order coupled equations being explored. 

Similarly to Section 7.2, the Chebyshev-tau technique was found to be restrictive 

due to the heavy computational cost in solving full matrix eigenvalue problems. This 

problem was more acute as five parameter ranges were required (namely"(, Re, a2
, 

)11 and >.2 ). The natural progression was to develop the techniques in Chapters 7 

and 8 to overcome these difficulties. 

Due to a significantly large number of local maxima, the optimisation problem 

(5.16) is very difficult to solve due to the high sensitivity of the solution. To overcome 

this problem (5.14) can solved analytically, by averaging F(z) over the z E [0, 1] 

range, to provide an estimate of the coupling parameters near the global maximum. 

After deriving that Fav = 1, and following a similar argument to the analysis derived 

in Section 5.2, one can show that 

R2 = 41J>.1>.2A3
- a2A(>.1- Re>.2) 2 

a21(>.2 + 1)(>.1- Re>.2) + >.2A'Y2 + Aa2(>.2 + 1)217>.1 · 

With this guide it is possible to assess the optimisation problem, although one must 

always be careful to minimise over a2 as the local minima can be difficult to recognise. 

Figure 5.6 presents the linear and nonlinear results in graphical form to visually 

demonstrate the potential regions of subcritical instabilities, with the solid and 

dashed lines representing the linear and nonlinear results respectively. The top and 

bottom graphs correspond to heating from below ( H = + 1) and above ( H = -1) 

respectively. The parameter 17 remains fixed at 0.01 and Re ranges from 0 to 10. 

5.4 Conclusions 

The onset of convection in a fluid saturated porous layer with a temperature and 

concentration based density has been examined. 

Figures 5.1 to 5.4 present the critical thermal Rayleigh numbers relating to the 

corresponding linear theory for a fixed range of solute Rayleigh numbers and 'Y val­

ues. The 'Y term is, in essence, a measure of the internal heat source. Both the 

actual numerical and approximate analytical results strongly suggest the existence 

of a critical 'Ye value, where no oscillatory convection occurs for 'Ye :::; 'Y· With the 
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Figure 5.6: Visual representation of linear (solid line) and nonlinear (dashed line) 

results, with critical thermal Rayleigh number Ra plotted against Re· The top and 

bottom graphs correspond to heating from below ( H = + 1) and above ( H = -1) 

respectively. 
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extrapolation of oscillatory results from the numerical analysis, a fixed range for 

le can be derived by direct comparison between the stationary and oscillatory neu­

tral lines. However, the analysis does suggest a nonlinear relationship between the 

critical thermal and solute Rayleigh numbers such that this range is not optimal. 

The suggested nonlinear behaviour also potentially yields finite intervals of oscil­

latory convection, as demonstrated by Figure 5.5. This behaviour, in the present 

literature, is an apparently unobserved phenomenon. 

The thresholds of both the numerical linear instability and nonlinear stability 

results are presented in Figure 5.6. More comparable linear and nonlinear thresholds 

are apparent as the onset of convection predicted by the linear theory becomes fully 

stationary. However, irrespective of/, their agreement does deteriorate as the solute 

Rayleigh number becomes large, indicating that the linear theory may fail to suitably 

emulate the physics of the onset of convection. The continual degradation of the 

agreement between the two thresholds is a phenomenon common to many systems 

with similar graphical examples as demonstrated by Joseph [47] and Mulone [74]. 



Chapter 6 

Linear and nonlinear stability 

thresholds for thermal convection 

in a box 

In this chapter we derive linear instability and nonlinear energy stability thresholds 

for thermal convection in a linearly viscous fluid contained in a finite box. A vertical 

gravity field acts and the vertical walls are maintained at different temperatures. The 

analysis contained herein is timely because convection problems driven by periodic 

temperature gradients, gravity gradients, and inclined temperature gradients have 

been the topic of much recent attention, see Capone & Rionero [10], Sarawanan & 

Kandaswamy [84], Alex & Patil [1) [2), Kaloni & Lon [50) - [52). The work here 

is for convection in a three-dimensional box. This is another area, namely three­

dimensional hydrodynamic stability calculations, which has formed the subject of 

much recent attention, Crisciani [17), Holzbecher [45), Theofilis [92), Mercier et 

al. [70], Mahidjiba et al. [63). 

In fact, the precise problem we investigate was previously studied by Georgescu 

& Mansutti [25). They claim that the linear instability thresholds are the same 

as the nonlinear stability ones found by using an energy method. VIle refute this 

assertion as our results are completely different, due to the employment of the correct 

governing equations. 

The results in this chapter are also presented in the article Hill & Straughan [43). 

83 
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A further manuscript, Hill [42], studies a porous (as opposed to a fluid) medium. 

This lends much credence to the results of the original paper (Hill & Straughan [43]) 

over those of Georgescu & Mansutti [25], as the linear and nonlinear boundaries do 

not coincide. 

6.1 Formation of the problem 

Let Oxyz be a cartesian frame of reference with unit vectors i, j, k respectively, 

and consider a fluid filled rectangular box 0 where the Oy-axis is in the vertical 

direction and the bottom face of the box is on the ( x, z)- plane, with the origin 

located at the corner of this face. The bounded dimensions of the box are denoted 

by Bx, By and Bz in the x, y and z directions respectively. 

The governing equations for the fluid can be expressed by the Navier-Stokes 

equations, with a Boussinesq approximation, yielding 

1 big 
v· t + v·v· · = --p · + vf':J.v·- -p t, J t, J , t t ' 

Po Po 
Vi,i = 0 

(6.1) 

(6.2) 

(6.3) 

where (6.2) and (6.3) are the incompressibility condition and balance of energy 

respectively. In these equations vi, t, xi, p, and T are velocity, time, displacement, 

pressure and temperature, and v, g and "' are the kinematic viscosity, acceleration 

due to gravity and thermal diffusivity, with b = (0, 1, Of. The density is assumed 

to have a linear temperature dependence of the form p = p0 ( 1 - a(T- Tr)) where p 

and a are density and the thermal expansion coefficient and p0 and Tr are constant 

reference values. 

The boundary conditions for the problem on the boundary 80 of 0 are taken 

from Georgescu & Mansutti [25], namely ui = 0, T = T0 , T1 at x = 0, Bx and 

T =To+ (T1 - To)x/ Bx at y = 0, By. 

A basic steady state, in whose stability we are interested in, is taken following 

the same proposition of no fluid flow as adopted in Georgescu & Mansutti [25]. This 
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yields the steady state temperature field 

T 
,., (T1 - To) 

= .LO + X. 
Bx 

To assess the stability of the steady solution we introduce a perturbation (ui, e, 1r) 

to the steady state solution, such that vi = vi+ ui, T = T + e, p = p + ?T, and 

non-dimensionalise with scalings of 

R= 

where oT = Tl - To, Pr = V I 1'\, is the Prandtl number and Ra = R2 is the Rayleigh 

number. 

Substituting the perturbations and non-dimensionalised variables into equations 

(6.1) - (6.3), and dropping the stars we derive the system 

u· t + u·u· · = -?T · + b·RO + 6.u· t, J t, J 't t t' 

Ui,i=O, 

(6.4) 

(6.5) 

(6.6) 

where f = (1, 0, 0). The perturbed boundary conditions are now ui = e = 0 on 

on. Equation (6.4) - (6.6) now model the same physical problem as proposed in 

Georgescu & Mansutti [25], although our equations are different. 

6.2 Linear Instability Analysis 

The linearised equations are derived from equations (6.4) - (6.6) by discarding the 

nonlinear terms, and then the double curl of (6.4) is taken to remove the pressure 

term. Assuming a temporal growth rate like e(ut), we may then write ui = e(ut)ui(x) 

and e = e(ut)e(x). Normal mode representations are also assumed for Ui, and e. This 

is the assumption that any unknown function g(x, y, z) is of the form 

g(x, y, z) = [J(y) exp (i ( 2?Tm' ~ + 2?Tk' :z)) 
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where i = .j=I and dz is Bz/ By, (such that dx and dz are the aspect ratios along 

the x and z directions). The m 1 and k 1 are integers as they refer to the number of 

cells in the x and z direction respectively. Letting m= 27rm 1/dx, k = 27rk 1/dz, and 

a2 = m 2 + k2 , equations (6.4))- (6.6)) yield 

a(D2
- a2 )u = -RimDO + (D2 - a 2 ) 2ft 

a(D2
- a2 )v = -a2 RO + (D2 - a2

) 2v 
a(D2

- a2 )w = - RikDO + (D2 - a2
)

2ft 
A A Ru 

a PrO= (D2 - a2)0--
_ dx 

where D = djdy, u = (u, v, w), and the boundary conditions are 

u = o, v = Dv = o, w = o, e = o, y = 0, 1. 

(6.7) 

(6.8) 

We take curl (6.4) and the first and third components of the resulting equations 

yield 

(D 3 - a2D)w- ikD2v = aDw 

(D 3 - a 2 D)u- imD2v =a Du } y = 0, 1. (6.9) 

These boundary conditions exclude the use of the methods in Chapters 7 and 8 as, 

in their current form, they are designed for homogeneous boundary conditions. 

System (6. 7) and boundary conditions (6.8) and (6.9) constitute a fourteenth 

order eigenvalue system. To solve this we employ the Chebyshev tau method. 

Although comprehensive details are given in Dongarra et al. [20] and Appendix 

A.2, a brief overview of the implementation of the Chebyshev tau technique to 

system ( 6. 7) is given in this section, with particular reference to the implementation 

of the boundary conditions. 

Defining~' i EN, be the ith Chebyshev polynomial, system (6.7) is transformed 

to the domain (-1, 1) and then ft, v, wand 0 are written as a finite series of Chebyshev 

polynomials such that 

N+2 N+2 N+2 N+2 

u= LUnTn v= LVnTn w= LWnTn 0= LSnTn. 
n=O n=O n=O n=O 

The inner product with Tk, k = 0, ... , N + 2, is taken on the weighted Chebyshev 

space to form a generalised eigenvalue problem. 
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It is important to note that under the transformation to (-1, 1) the boundary 

conditions defined in (6.9) become 

(4D3 - a2 D)w- 2ikD2v = aDw 

( 4D3 - a 2 D)u - 2imD2v = u Du 

which can be evaluated using the idenities 

} 

T~(±1) 

T~'(±1) 

(±1t-ln2 
(±1)n 
3 n(n- 1)(n2 + n + 12) 

y = -1, 1, 

T~"(±1) 
(±1) n-1 

l5 n(n- 1)(n4
- 9n3 + 101n2

- 39n + 210) 

Table 6.1 presents the linear results for the aspect ratios 0.5, 0.8, 1, 2, 3 and 4 for dx 

and dz, where the values of m' and k' which minimise the critical Rayleigh number 

are both 1 unless stated otherwise, such that *a, *b and *c refer to m' = 2, 3, 4 

respectively with k' = 1 in each case. 

Table 6.1: Linear results for the critical Rayleigh number, where dx and dz are the 

aspect ratios in the x and z directions respectively. 

dx dz=0.5 dz=0.8 dz=1 dz=2 dz=3 dz=4 

0.5 553.010 358.792 316.470 261.745 251.845 248.964 

0.8 574.067 294.158 235.374 161.489 148.464 143.960 

1 632.939 294.217 224.275 137.823 122.870 117.729 

2 895.111a 403.720 275.646 125.001 100.740 92.6019 

3 1096.28b 477.540a 338.068a 151.111 117.020 105.684 

4 1265.88c 553.1b 389.822b 176.778a 140.912a 126.234a 

The spectrum of u is found numerically to be real to a given accuracy for the 

parameter ranges explored, which is an interesting result considering the lack of sym­

metry of the linearised system. The critical Rayleigh numbers numerically derived 

are not in accordance with those presented in Georgescu & Mansutti [25]. 



6.3. Nonlinear Stability Analysis 88 

6.3 N onlinear Stability Analysis 

To obtain global nonlinear stability bounds in the stability measure £ 2 (0) we mul­

tiply equations (6.4) and (6.6) by ui and e, respectively, and integrate over 0 to 

obtain 

(6.10) 

(6.11) 

where again u = (u, v, w), and 11·11 and ( ·) denote the norm and inner product on 

£2(0). 

Multiplying (6.11) by a coupling parameter A> 0 we can define 

Thus 

E(t) = ~ llull 2 + A~r 11e11 2
, 

A 
'I= (e, v) - dx (u, e), 

V= 11Vull2 + AIIVell 2
· 

dE 
dt 

where 1/ RE= max'H ('I/V) and 1t is the space of admissible functions for solutions 

to equations (6.4) - (6.6). 

Utilising the Poincare inequality it follows that V 2: cE for some constant c. 

Hence, letting a= c(RE- R)/ RE > 0, E(t) ::; E(O)e-at which tends to 0 as t ~ oo, 

showing the decay of u and e. 
The Euler Lagrange equations (see Section 2.3 for an explicit example of the 

derivation of Euler Lagrange equations) which arise for RE are 

(6.12) 

(6.13) 
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where w is a Lagrange multiplier. We stress that equations (6.12) and (6.13) are 

not the same as equations (24) and (25) of Georgescu & Mansutti [25] who claim 

the equations arising from a nonlinear stability analysis are the same as those of 

the linear instability theory. To eliminate w from equation (6.12) the double curl is 

taken, and the same normal mode representations are adopted as in Section 6.2 to 

yield the system 

where D = djdy. The boundary conditions are 

u = 0, v = Dv = 0, w = 0, y = 0, 1. 

To derive the remaining boundary conditions the curl of (6.12) with respect to u 

and w is taken to yield 

2(D3
- a2 D)u- 2imD2v = ~:DB } 

(D3 - a2D)w- ikD2v = 0 
y = 0, 1. 

This is a fourteenth-order eigenvalue problem for the critical nonlinear Rayleigh 

number RaN, which is given by 

As in Section 6.2 this eigenvalue problem is solved utilising the Chebyshev tau 

method. 

Table 6.2 presents the nonlinear results for the aspect ratios 0.5, 0.8, 1, 2, 3 and 4 

for dx and dz. The values of m' and k' which minimise the critical Rayleigh number 

are all 1. 



6.3. Nonlinear Stability Analysis 90 

Table 6.2: Nonlinear results for the critical Rayleigh number, where dx and dz are 

the aspect ratios in the x and z directions respectively. 

dx dz=0.5 dz=0.8 dz=1 dz=2 dz=3 dz=4 

0.5 373.009 285.633 267.447 245.855 242.320 241.124 

0.8 314.160 196.710 171.138 140.888 136.404 134.977 

1 311.717 178.790 149.343 113.810 108.618 107.034 

2 367.659 177.650 134.820 81.4641 73.4232 71.0530 

3 433.934 201.040 148.515 83.4573 74.3344 72.0738 

4 494.477 225.514 164.866 90.1527 80.4592 78.7357 

Figure 6.1 gives a visual representation of the linear instability and nonlinear 

stability boundaries. 

It is clearly demonstrated in Figure 6.1 that the linear and non-linear results do 

no coincide. This leaves open a large region of potential subcritical instabilities. 
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Figure 6.1: Visual representation of linear (solid line) and nonlinear (dashed line) 

results, with critical thermal Rayleigh number Ra plotted against dz. 



Chapter 7 

A Legendre polynomial based 

spectral method for eigenvalue 

problems in hydrodynamic 

stability 

7.1 Introduction 

In each of the previous chapters the established methods used, although powerful, 

produced a variety of computational and storage problems, as highlighted in each 

instance of their utilisation. Chapters 2 to 4 have typical characteristics of the sta­

bility analysis of fluid motion in porous media with homogeneous standard boundary 

conditions, so it is a natural progression to develop more efficient techniques based 

on the experience of employing the well established routines. 

An illustrative example in the text of the drawbacks of the Chebyshev tau tech­

nique is in Chapter 5. The Chebyshev tau-QZ approach reduces the differential 

equations into a generalised eigenvalue problem, which contains full matrices. Of 

course this is highly computational taxing considering that the matrices are over 

100 x 100 to guarantee accuracy. Couple this with the spurious eigenvalues which 

have been linked to superimposing boundary conditions (see Dongarra et al. [20]) 

and the problems when varying over the several parameter ranges ('y, Re, a2 , .\1 , .\2 

92 
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for example) required in this chapter become apparent. 

Utilising the compound matrix approach yields a different set of complications. 

The chief difficulty of the compound matrix method is in the calculation of the 

compound matrix equations (i.e. the differentials of each of the minors of the solution 

matrix) which expand in size dramatically as the number of differential equations 

increase. Since these equations must be calculated before any numerical analysis is 

attempted, differential equations of sixth order and above (which are the basis of 

most the numerical analysis in this body of work) become far too problematic, as 

mentioned specifically in Section 3.3. 

It was concluded through the experience of the numerical analysis of Chapters 2 

to 5 that the polynomial based structure adopted by the Chebyshev tau technique 

was the optimal approach, if the dual problems of matrix fullness and boundary 

conditions could be addressed. 

In this chapter a Legendre polynomial based spectral method is developed. This 

generates sparse matrices, where the standard homogeneous boundary conditions 

for porous media problems are contained within the method, negating the need for 

their superimposition onto the matrices as is necessary with the Chebyshev tau 

method. Several different examples of its application to porous media are presented 

to demonstrate its adaptability, accuracy and relevant ease in implementation (these 

examples are different to the systems presented in Chapters 2 to 6 to highlight the 

wide reaching potential of the method). In each example this method is compared 

to the Chebyshev tau technique to assess accuracy and speed of convergence. The 

results clearly demonstrate that the Legendre method coupled with the Arnoldi tech­

nique of finding matrix eigenvalues leads to substantial computational advantages. 

This lends the technique to a considerable number of extremely useful applications. 

The determining of a neutral curve in hydrodynamic stability often involves hun­

dreds of eigenvalue calculations to accommodate different parameter values within 

the model (as highlighted in Chapters 3 and 5), making the sparsity of the Legendre 

polynomial based spectral method a crucial advantage. While the exponentially fast 

convergence of a spectral method usually means that traditional techniques which 

yield full matrices do not present an issue because very few polynomials are required, 
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some practical eigenvalue problems do need many polynomials. Such cases are par­

allel flow situations, see e.g. Dongarra et al. [20], where one may need upward of 

200 polynomials and high precision arithmetic. Another motivation for the spectral 

technique employed here is its ability to extend in a natural way to two and three 

dimensional stability problems for which the matrices are large and then their sparse 

structure is a major advantage. If one tries to use a technique such as the Cheby­

shev tau method in higher dimensions it is not so clear how one incorporates the 

boundary conditions, in addition to the matrices being full. The spectral technique 

advocated here extends naturally to two and three space dimensions by using tensor 

products of the basis elements in x, y and z. 

The Legendre idea employed here was introduced for the solution of differential 

equations by Shen [85]. No eigenvalue calculations were considered. Kirchner [54] 

developed a method for solving eigenvalues for the Orr- Sommerfeld equation which 

essentially uses the technique of Shen [85]. The Orr - Sommerfeld equation is fourth 

order and not characteristic of the Darcy flow governing model in porous media. 

The main contribution here is to show how to adapt the Shen method naturally to 

eigenvalue problems for porous convection. Since the Orr - Sommerfeld equation is 

fourth order, the version of the Shen method adopted by Krichner [54] is different 

from that given here where we concentrate on writing the equations as a system of 

coupled second order equations. For completeness, we show how other problems in 

fluid mechanics which involve coupled second and fourth order equations may be 

solved by a combination of the ideas described in Kirchner [54] and those given here. 

The layout of the chapter now follows. In Section 7.2 we illustrate the technique 

by application to a simple problem, the simple harmonic motion equation. Then in 

Sections 7.3 and 7.4 we illustrate the method by application to two different convec­

tion problems in porous media. Section 7.3 treats the problem of Hadley flow where 

convection is driven by vertical and horizontal temperature gradients. Section 7.4 

deals with multi-component convection in a porous medium where oscillatory insta­

bilities may arise due to competition between a temperature field and two different 

salt fields. From the mathematical viewpoint Section 7.3 effectively treats a fourth 

order equation with complex coefficients, written as two second order equations, 
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whereas Section 7.4 analyses an eighth order system, expressed as 4 interconnected 

second order equations. To illustrate the versatility of the Legendre polynomial -

Galerkin method we show how Benard convection in a fluid may be treated in Sec­

tion 7.5. This is different from convection in a porous medium because it involves 

a fourth order equation coupled with a second order one. In this way one sees how 

the Legendre polynomial method may be applied to a variety of problems in hydro­

dynamic stability. The chapter is completed in Section 7.6 by analysing the benefits 

of the technique described here as compared with competing methods. It must be 

stressed that this method is highly applicable to Chapters 2 to 6, although these 

examples are used to highlight the wide reaching potential of the method. 

The results in this chapter are also presented in the article Hill & Straughan [41]. 

7.2 Structure of the technique for second order 

equations 

Consider the domain n = ( -1, 1), with the Hilbert space 

HJ(n) = { v : v, v' E £ 2 (0), v( -1) = v(1) = 0}, 

where 

£ 2 (0) = {v : v(n)-+ <C, L lvl 2dx < oo}. 

Let ( · ) be the inner product on £ 2 (0), e.g. (!,g) = fn fgdx, g being complex 

conjugate, and 11·11 the associated norm. If the setting is real the space £ 2 employed 

will involve real functions rather than complex ones. To motivate the Legendre 

polynomial based spectral technique we begin with the equation 

u" + >.u = 0, (7.1) 

where u E HJ(n), and u = 0 at z = ±1. 

Equation (7.1) can be solve numerically by replacing the infinite dimensional 

space HJ(O) by a finite dimensional space SN c HJ(O) of dimension N E N. 

Assuming that a basis </J 1, ... , <PN of SN can be constructed, the solution u to (7.1) 
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may be approximated by u = 'L::~=l UkcPk and then (7.1) replaced by 

N N 

L UkcP~1 + ,\ L UkcPk = 0, (7.2) 
k=l k=l 

where the uk are the Fourier coefficients. 

Let Li, i EN, be the ith Legendre polynomial on (-1, 1) with SN = pN+1(0) 

n HJ(n), where PP(fl) denotes the polynomials of degree p on n. Using the identity 

(2i + 1)Li(z) == L!+1 (z) - L!_ 1 (z), (7.3) 

cf. Sneddon [87], p. 69, for p 2:: 2, we define the basis function 

cPi(z) = 1: Li(s) ds = Li+~i ~ ~i-l, i = 1, ... , p- 1, (7.4) 

cf. Shen [85], p. 1492. By the definition of Legendre polynomials the basis functions 

cPi are linearly independent, such that SN == span{ cPi} i = 1, ... , N with N = 

dim ( S N). A crucial aspect of these basis functions is their inclusion in the space 

HJ(O) or, more specifically in this context, that cPi( -1) = cPi(1) = 0. This follows 

when utilising the relation Li(±1) = (±1)i. This inherent structure clearly avoids 

the need for the superimposition of the standard homogeneous boundary conditions 

in the resulting matrix - a fact frequently needed with e.g. the Chebyshev tau 

analysis. This inherent structure is highly significant in the method's applicability 

to two and three dimensional porous problems as discussed in Section 7.1. 

To solve (7.2) we multiply by cPi and integrate over n to find 

i = 1, .. . ,N. (7.5) 

By making use of the divergence theorem and utilising (7.4) we can observe that 

System (7.5), with the rearrangement of (7.6), may be solved by utilising the 

inherent orthogonality of Legendre polynomials within the specified inner product, 

where 

(L;, L;) =In L,(z)L;(z) dz = { 

2 

2i + 1' 

0, 

i=j 
(7. 7) 

i=Jj 
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This procedure leads to a generalised eigenvalue problem of the form 

Au = >.Bu (7.8) 

where u = (u1, ... , uNf· By using the orthogonal behaviour shown in (7.7) the 

matrix A can derived from (7.6) yielding diagonal elements A,i = 2/(2i + 1), where 

i = 1, ... , N. This desirable feature that the matrix A is diagonal is due to the fact 

that 1Ji is selected so that cp~ = Li. 

Similarly 

(~ "' "'·) = (~ u. (Lk+l - Lk-1) Li+1 - Li-1) 
L......,; Uk'f'k' 'f'z L......,; k 2k + 1 ' 2i + 1 ' 
k=1 k=1 

which, utilising (7.7), yields the symmetric banded matrix B with elements 

Bi,j = { (2j- 1)(2j-~ 1)(2j + 3) 

(2j - 3)(2j - 1)(2j + 1) 

J = z, 

j = i + 2, 

i = 1, ... , N 

i = 1, ... , N- 2 

which is of bandwidth 4. The equivalent procedure with the Chebyshev tau approach 

yields (full) matrices A and B which are not of banded structure as they are here. 

System (7.8) is a sparse eigenvalue problem making it ideal for specific sparse it­

erative solvers such as the implicitly restarted Arnoldi method (IRAM) as presented 

in the ARPACK package (see Lehoucq et al. [58]). This reduces computational and 

storage requirements needed by the QZ algorithm (see e.g. Golub & Van Loan, [28]), 

which is necessary for a technique like the Chebyshev tau method, since A and B are 

full with B frequently singular. The speed up achieved with the Arnoldi technique 

is a notable feature presented here. 

We now begin with application to porous convection and convection in a fluid. 

While we study three distinct but representative problems we stress that the tech­

niques are easily adaptable to many other hydrodynamic stability problems (with 

special reference to Chapters 2 to 6, as they provided the motivation behind de­

veloping this method), and even stability problems in other areas of Continuum 

Mechanics. For example, we have investigated stability problems in some viscoelas­

tic flows and also a stability problem for a thermoelastic plate. 
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7.3 Hadley Flow 

Hadley flow refers to convection in a layer of porous medium where the basic tem­

perature field varies in the vertical (i.e. z-direction) as well as along one of the 

horizontal directions, which we will define as the x-direction. This system is pre­

sented in more detail by Nield [76] and is also used as a test case for the Chebyshev 

tau technique in Straughan & Walker [91]. It is a useful example as the equations 

have complex coefficients dependent on the z variable, and can be very sensitive to 

small variations in the parameters, making it beneficial as a test of the method's 

accuracy. 

Defining the porous medium to be contained in the layer z E (-H /2, H /2) we 

adopt the temperature field boundary conditions 

1 
z=±-H 

2 ' 

where 6T is the temperature differential in the z direction and f3r is some constant 

of proportionality. Employing a non-dimensionalised form of the temperature field 

boundary conditions, the steady state solution has the form: 

U = RHz, 

-- 1 2 3) T = -Rvz + 24 RH(z- 4z - RHx, 
(7.9) 

where z E ( -1/2, 1/2), RH and Rv are the vertical and horizontal Rayleigh num-

bers, respectively, and U(z) is the x-component of velocity. Defining a2 = k2 + m 2 

with k and m being the x and y wavenumber, the non-dimensionalised perturbation 

equations from (7.9) are 

(D2
- a2 )W + a2S = 0, 

(D2 - a2 - ia- ikU(z))S + ika- 2 RHDW- (DT)W = 0, 

where D = d/ dz. System (7.10) is subject to the boundary conditions 

1 w = s = 0 z = ±-
2' 

(7.10) 

In (7.10), W(z) and S(z) are the third component of velocity and temperature field 

perturbation, respectively. Adopting the Legendre-based spectral technique, (7.10) 

reduces to the generalised matrix eigenvalue problem, 

Ax = aBx 
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where here x = ( w1, ... , w N, s 1 , ... , s N), and the matrices are given by 

A = 

B == 

recalling that in deriving A and B we switch (-1/2, 1/2) to the domain (-1, 1) of 

the Legendre polynomials. Here zm Dn = (2:~= 1 zmc/>kn) , cPi), where ct>C:) = dncl>k/ dzn. 

The matrix representations D2 and D0 were derived in Section 7.2 when demonstrat­

ing the simplest case, whereas the remaining matrices are given in Appendices C.1 

to C.3. All the matrix representations are banded in structure. 

An important aspect of this method is its behaviour when the coefficients of 

the porous equations are functions of z. Using the recurrence formula, (see e.g. 

Sneddon [87], pg. 68) 

n+1 n 
zLn = 2n + 1 Ln+1 + 2n + 1 Ln-1 (7.11) 

each znc/>k, nE N term can be expressed as a combination of Legendre polynomials. 

This in turn allows the relevant inner product to be evaluated using the orthogonality 

conditions (7.7), as shown in Appendices C.2 and C.3 for z and z2
, although this 

becomes computationally taxing for large n, which is addressed in Chapter 8. Due 

to the inherent nature of the recurrence formula, as the powers of z become larger 

the bandwidth of the corresponding matrix also grows. 

Proposition 7.3.1 If U(z) E pk(f2) for some k E N then (U(z)D0, cPi), z 

1, ... , N has bandwidth 2k + 2. 

Proof: Assuming that m ;:::: k + 1, by repeated application of recurrence relation 

(7.11) it clearly follows that 

for some constants ai, bi, i = 1, ... , 2k. The function U(z)c/>m can now be represented 

as 
) ( ) 

2k+2 
U ( z Lm+1 - U z Lm-1 ~ L 

2m + 1 = L-t Ci m+k+1-s 
s=O 

(7.12) 



7.3. Hadley Flow 100 

for some constants ci. Consider row i in the matrix representation of the inner 

product (U D0 , cPi). The only terms that are non-zero in the inner product of U(z)Do 

and cPi are the (i + 1)th or (i- 1)th Legendre polynomials. If we consider this using 

(7.12) we have indices i + 1 and i - 1 when m = i - k + s and m = i - k - 2 + s 

respectively for s = 0, ... , 2k + 2, for those m which are greater than or equal to 

1. At its maximum this yields 2k + 3 distinct values of m, each of which represents 

an entry into the ith row of the matrix. Hence, as the diagonal term is included in 

every row, the matrix has bandwidth 2k + 2. 0 

Table 7.1 presents the leading eigenvalue in the spectrum as obtained using both 

the Legendre based spectral technique and the Chebyshev tau method with the x 

- wavenumber k = 0, and the y - wavenumber m = 10, RH = 114.2 and Rv = 100 

fixed such that the method determines the value of a. While we only present one 

eigenvalue, similar behaviour is observed for other eigenvalues. 

N aL ac 

14 -0.2934315592 -0.2912641416 

16 -0.2934328110 -0 0 2934658698 

18 -0.2934327663 -0 0 29344 79056 

20 -0.2934327661 -0.2934319875 

22 -0.2934327661 -0.2934327166 

24 -0.2934327661 -0.2934327711 

26 -0.2934327661 -0.2934327661 

Table 7.1: Comparison of the Legendre and Chebyshev tau techniques with the 

results denoted by aL and ac respectively, with N being the number of polynomials. 

Convergence of both methods is evident from Table 7.1, where the Legendre 

method clearly requires fewer polynomials to converge to the required accuracy. In 

fact, the better convergence rate of the Legendre polynomial method is striking 

since the Chebyshev tau method requires approximately 30% more polynomials to 

achieve the same accuracy. The results are also in accordance with those published 

by Straughan & Walker [91]. 
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Figure 7.1: Number of polynomials used against computational time 

Figure 7.1 provides a visual representation of the computational time required 

to converge to the first eigenvalue of the spectrum as the number of polynomials 

is increased. The Legendre-Arpack line refers to the solutions obtained via the 

Legendre polynomial based spectral method utilising the Arnoldi method obtained 

from the ARPACK system (see Lehoucq et al. [58]), whilst the Chebyshev-QZ line 

refers to the Chebyshev tau method coupled with the QZ algorithm (see e.g. Golub 

& Van Loan [28]). 

It is clear from Figure 7.1 that as the matrices associated with the generalised 

eigenvalue problem grow in size the Legendre-Arnoldi method is substantially more 

computationally efficient than the Chebyshev tau-QZ technique. 

7.4 Multi-component convection-diffusion 

Here we study another representative porous convection eigenvalue problem. In 

this case we solve an eighth order system which models multi-component diffusion 

in a porous medium as presented in Tracey [94]. The size of the system is the 
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same as that of Chapter 3, which rendered the use of the compound matrix method 

unuseable. 

Consider a porous medium contained in the layer z E (0, d) with constant bound­

ary temperatures T = ooc (z = 0) and T = Tu ~ 4°C (z = d), respectively. The 

fluid saturating the porous medium is water and so if Tu > 4oC the physical picture 

models a layer of gravitationally unstable water lying beneath a layer which is grav­

itationally stable (since water has a density maximum at approximately 4°C). This 

results in convection in the lower layer which may penetrate into the upper layer. 

The fluid is assumed to have 2 different species dissolved in it, where we will 

denote Cf3, {3 = 1, 2, to be the the concentration of component {3. The density is 

assumed quadratic in the temperature field and linear with respect to these concen­

trations such that 

p = Po (1- a(T- 4) 2 + t af3(Cf3- cg)) , 
{3=1 

where p0 and cg are density and salt references respectively and a and a13 are the 

thermal and solute coefficients. 

Employing Darcy's law to model fluid flow along with the incompressibility con­

dition and the equations of conservation of temperature and solute yields the system 

P,i = -~vi- gpo (1- a(T- 4) 2 + t af3(C13 - cg)) bi, 
{3=1 

T t + Vi T i = r;,6 T, 
' ' 

(7.13) 

where the variables p, J.L, k, vi and g represent pressure, dynamic viscosity, perme­

ability, velocity and gravitational acceleration respectively and b = (0,0,1). The 

variables K and Kf3 ({3 = 1, 2) represent thermal and solute diffusivities respectively. 

Defining a2 to be the wavenumber, the non-dimensionalised linear perturbation 

equations arising from (7.13) are 

(D2 - a2 )W- 2((- z)a2S- a 2 \IT 1 - a 2 \IT 2 = 0, 

(D2
- a2 )S- RW =aS 

(D2 - a2 )\IT 1 - R1 W = P1aW 1 

(D2 - a 2 )\IT2 - R2W = P2aW2 

(7.14) 
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where D = d/dz, ( = 4/Tu, Rand Rf3 are the thermal and solute Rayleigh num­

bers respectively and the Pf3 are salt Prandtl numbers. Here W, S, 'l! 1 , 'l12 are the 

z-dependent parts of the perturbations of velocity, temperature, solute 1, and solute 

2. The appropriate boundary conditions are 

w = s = w1 = w2 = o, z = 0, 1. 

The Legendre polynomial scheme advocated here applied to (7.14) reduces to solving 

the generalised matrix eigenvalue problem 

Ax = aBx, 

where x = (w1, ... , WN, s1, ... , sN, 7/Ji, ... , 7/J1, 7/Jr, ... , 7/J'fv), with 7/Jf being the co­

efficients in the expansion of wa, a = 1, 2, in terms of the basis (/Ji_ The matrices A 

and B given by 

D2- a2D0 a2 zD0 - a2bD0 -a2Do -a2Do 

A 
-RD-0 D2- a2D0 0 0 

-R1Do 0 D2- a2Do 0 

-R2Do 0 0 D2- a2D0 

0 0 0 0 

B 
0 Do 0 0 

0 0 P1Do 0 

0 0 0 P2Do 

where b = 2(- 1 with the matrix representations zm Dn as presented in Section 7.3. 

The leading eigenvalue of the spectrum are shown in Table 7.2 for fixed variables 

a2 = 21.344, ( = 0.14286, R = 228.009, R 1 = -291.066, R2 = 261, P1 = 4.5454 and 

p2 = 4.7619. 

Again, the convergence rate of the Legendre polynomial method is striking and 

requires fewer polynomials to converge to the required accuracy than the Chebyshev 

tau method. We observe that the Chebyshev tau method requires approximately 

75% more polynomials to achieve the same accuracy. Figure 7.2 provides a vi­

sual representation of the computational time required to converge to the required 
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N 0"£ ac 

6 -5.60913318 -5.61227689 

8 -5.60913183 -5.60921498 

10 -5.60913183 -5.60913147 

12 -5.60913183 -5.60913180 

14 -5.60913183 -5.60913183 

Table 7.2: Comparison of the Legendre and Chebyshev tau techniques with the 

results denoted by aL and ac respectively, with N being the number of polynomials. 
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eigenvalue as the number of polynomials is increased. Similarly to Figure 7.1 the 

Legendre-Arpack line refers to the solutions obtained via the Legendre polynomial 

based spectral method coupled with the Arnoldi algorithm, whilst the Chebyshev­

QZ line refers to the Chebyshev tau method. 

Figure 7.2 again demonstrates a high level computational efficiency of the 

Legendre-Arnoldi method when compared with the Chebyshev tau-QZ technique. 

7. 5 Structure of the technique for fourth order 

equations 

As shown in Chapter 6, the Navier-Stokes equation is naturally 4th order as opposed 

to 2nd order from Darcy's law in porous media. When one deals with convection 

problems in fluid mechanics one is, therefore, usually faced with solving a system 

comprised of a 4th order equation combined with one or more second order equations. 

The basis c/Ji defined in (7.4) is inadequate to cope with the 4th order equation (unless 

the fluid layer is subject to artificial stress free boundary conditions). Therefore, we 

now combine the Kirchner [54] technique (which is also used by Shen [85], but not 

for eigenvalue problems) with the basis in (7.4). To illustrate the idea we restrict 

attention to the classical Benard problem, cf. Straughan [90], p. 49. 

If a fluid layer is heated from below, once the gravitational effect has been over­

come the fluid rises creating convective motion, which is known to as Benard con­

vection. If we suppose the fluid is contained in the infinite layer JR2 x { z E ( 0, 1)}, 

with fixed upper and lower boundary temperatures, the perturbation equations to 

the steady state solution are found to be, cf. Straughan [90], p. 50, 

u· t + u·u· · = -p · + 6u + b R() t, J t, J ' t t t ' 

Ui,i = 0, (7.15) 

where ui, p and () are the non-dimensionalised velocity, pressure and temperature 

respectively, Pr and R are the Prandtl and Rayleigh numbers respectively and 

w = u 3 . The boundary conditions are that ui = () = 0 on z = 0, 1 and ui, () satisfy 
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a plane tiling planform. Note that () represents a perturbation to the steady state 

temperature field so the zero boundary conditions on z = 0, 1 are consistent. The 

plan-forms represent the horizontal shape of the convection cells formed at the onset 

of instablity. These cells form a regular horizontal pattern tiling the ( x, y) plane, 

e.g. hexagons, where the wavenumber a (cf. Straughan (90], p. 51) is a measure of 

the width (to depth) of the convection cell. Defining a2 = k2 + m2 with k and m 

being the x and y wavenumber, the linearised equations governing instability from 

(7.15) are 

(D2 - a2
) 2W- a2 RS = a(D2 - a2 )W, 

(D2
- a2 )S + RW = aPrS, 

with boundary conditions 

W=DW=S=O, z = 0, 1. 

(7.16) 

Here W(z) and S(z) are the vertical component of velocity and temperature field 

as functions of z. 

For theW part we follow the method of Kirchner (54]. Thus, consider the Hilbert 

space 

HJ(O) = { v : v, v', v" E £ 2 (0), v(±l) = v'(±l) = 0}. 

Here W E H6(0) and S E HJ(O). The basis functions for the finite dimensional 

space SN c HJ(O) are chosen as in (7.4) and we turn our attention to building a 

basis for some finite dimensional space TN C H6(0) of dimension N E N. Defining 

TN = pN+3 n H6(0) we introduce the set of basis functions fori = 1, ... , N as in 

Kirchner (54], (see also Shen (85], p. 1496), and so define {3i by 

!3i(z) = 1: [~ Li+1 (t) dt ds 

t+
2 . t dt ds jz js L' (t) - L'(t) 

-1 -1 2'l + 3 

1 jz 
(2i + 3) _

1 
[Li+2(s)- Li(s)] ds 

Li+3- Li+1 

(2i + 3)(2i + 5) 
Li+1- Li-1 

(2i + 1)(2i + 3). 
(7.17) 

By the definition of Legendre polynomials the basis functions !3i are linearly 

independent, such that TN = span{{3i} i = 1, ... , N with N =dim (TN ), cf. Kirch­

ner (54]. 
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The system (7.16) may now be written in terms of the basis functions, such that 

N N N 

L wk(D4 - 2a2 D2 + a4)/A- a2 R L skciJk =a L(D2
- a2)wkf3kl (7.18) 

k=l k=l k=l 
N N N 

L sk(D2 - a2)4Jk + R L wkf3k = aPr L skc/Jk· (7.19) 
k=l k=l k=l 

The method is now to take the inner product of (7.18) with /3i and the inner 

product of (7.19) with c/Ji and derive a finite dimensional generalised eigenvalue 

problem for a. 

The key to the method is that !3:' = Li+ 1 which leads to a diagonal matrix 

associated with D4 . Since !3: = ( Li+2 - Li) / ( 2i + 3) the D2 operator also leads to a 

banded matrix. To see this note that 

(D4W, /3i) = -(D3W, !3:) + /3iD3WI~ 1 

= (D2W, !3:') - f3:D2WI~~ 
N 

= L wk (!3~, /3:'} 
k=l 

~ 2w· 
= ~wk(Lk+l,Li+l) = 

2
i+l

3
, 

k=l 

where we have used the forms for /3i, !3: and the fact that Li ( ± 1) = ( ± 1) i. 

A similar calculation shows that 

(D2W /3·) = _ (~ w Lk+2 - Lk Li+2 - Li) 
) l ~ k 2k + 3 ) 2i + 3 ) 

k=l 

which is the ( i + 1 )th row of the matrix representation - D0 as presented Section 7.3. 

After some calculations we can show equations (7.18), (7.19) reduce to the gen­

eralised eigenvalue problem 

Ax = aBx 

where x=(w1 , ... , WN, s 1, ... , SN ), and the matrices A and Bare now given by 

A 

B 

( 

D~ ({3) - 2a 2 D~ (/3) + a4 ng (/3) 

RDt(/3) 

( 
D~(/3)- a

2 Dg(/3) 0 ) . 

0 PrDt(c~J) 
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The notation D~(b) is the matrix representation of (L~=l dnbk/(dy)n, ai), where a 

and b are the relevant basis functions. Those matrix representations not defined in 

both Section 7.3 and this section are presented in Appendices C.4 to C.6. 

Table 7.3 presents results for the leading eigenvalue of the spectrum for both 

the Legendre and D2 Chebyshev tau techniques, with variables fixed at a2 = 5, 

R = 111.3 and Pr = 6. The D 2 Chebyshev technique is used as it is desirable 

to reduce the order of the differential equations whenever possible when using this 

spectral technique Dongarra et al. [20). 

N 0"£ Cic 

6 9.978751578 9. 770168425 

8 9.978787315 9.982167291 

10 9.978787485 9.978681120 

12 9.978787486 9.97878353 

14 9.978787486 9.978787384 

16 9.978787486 9.978787484 

18 9.978787486 9.978787486 

Table 7.3: Comparison of the Legendre and Chebyshev tau techniques with the 

results denoted by O"£ and O"c respectively, with N being the number of polynomials. 

Again both methods converge to the required accuracy, with the Legendre spec­

tral method requiring less polynomials. In fact, the Chebyshev tau method requires 

approximately 50% more polynomials to achieve the same accuracy. Figure 7.3 pro­

vides a visual representation of the computational time required to locate the full 

spectrum of eigenvalues as the number of polynomials is increased. Similarly to 

Figure 7.1 the Legendre-Arpack line refers to the solutions obtained via the Legen­

dre polynomial based spectral method coupled with the Arnoldi algorithm, whilst 

the Chebyshev-QZ line refers to the Chebyshev tau method coupled with the QZ 

algorithm. 

Figure 7.3 again demonstrates a high level computational efficiency even when 

the full eigenvalue spectrum is calculated. 
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Figure 7.3: Number of polynomials used against computational time 

It is worth noting that the generalised eigenvalue problem for the Legendre 

method employs matrices of order 2N compared to matrices of order 3N for the 

D 2 Chebyshev tau technique. There is, therefore, an advantage in using the Legen­

dre method in that smaller matrices are employed. This is a major consideration 

when employing the basis functions (Ji. In a similar manner to the basis functions 

c/Yi, zn f3i can be expressed as Legendre polynomials using identity (7.11), which in­

herently increases the bandwidth of the matrix to as the powers of z increase. In 

fact, we may now show 

Proposition 7.5.1 If U(z) E pk(D) for some k E N then (U D0 , (Ji), i = 1, ... , N 

has bandwidth 2k + 8. 

Proof: The proof of Proposition 7.5.1 is analogous to the proof of Proposition 

7.3.1. D 
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7.6 Conclusions 

A Legendre polynomial based spectral method is presented for solving stability 

problems associated with the analysis of porous media, building on the experience 

gained from employing the well established methods in previous chapters. The 

specific choice of basis functions leads to sparse matrices, with banded sub-matrices 

of size N x N, where N is the number of Legendre polynomials used. To capitalise 

on this inherent structure we make use of a parallel sparse matrix iterative solver. 

In this chapter we use the implicitly restarted Arnoldi method (IRAM) as presented 

in the ARPACK package (see Lehoucq et al., [58]). This is seen to substantially 

reduce the computational and storage requirements as opposed to those needed by 

the QZ algorithm (see e.g. Golub & Van Loan [28]). Thus, the sparsity of the 

matrices in the Legendre technique described here is a significant advantage. In 

Figures 7.1 and 7.3 the Chebyshev tau-QZ technique is seen to be approximately as 

fast as the Legendre-Arnoldi technique when the number of polynomials is less than 

30 or so. In Figure 7.2 when the number of equations is greater, and consequently, 

the matrices are larger, the Legendre-Arnoldi technique is faster even for a small 

number of polynomials. Thus, for 2 or 3-D stability problems when a large number 

of polynomials are required we expect the Legendre-Arnoldi method to be worthy 

of employment. 

The current method is particularly advantageous in that it extends naturally to 

two and three dimensional eigenvalue problems. This is easily achieved by using 

tensor products of basis elements in x, y and z. 

Sections 7.3 to 7.4 analyse different examples of hydrodynamic systems, which are 

convection in a porous medium with an inclined temperature gradient (Hadley flow), 

multi-component convection-diffusion in a porous medium, and Benard convection 

in a fluid. The resulting eigenvalue problems are solved using both the Legendre 

polynomial based and Chebyshev tau spectral techniques. In each of these cases the 

Legendre polynomial based spectral technique converges to the required eigenvalue 

utilising less polynomials than the Chebyshev tau method, and with substantially 

greater computational efficiency, especially since the Legendre technique allows us 

to employ the Arnoldi algorithm. 



Chapter 8 

A Chebyshev polynomial based 

spectral method for eigenvalue 

problems in hydrodynamic 

stability 

8.1 Introduction 

The Legendre polynomial based spectral method developed in Chapter 7 was shown 

to overcome the dual problems of matrix fullness and boundary conditions, providing 

a viable, more efficient, alternative to the Chebyshev tau technique. However, (as 

discussed in Section 7.3) the recurrence formula, (see e.g. Sneddon [87], pg. 68) 

n+1 n 
zLn = 

2 1 
Ln+l + 

2 
Ln-1 n+ n+1 

must be utilised to express each znzk, n E N term as a combination of Legendre 

polynomials, (where lk a basis function built from Legendre polynomials). The 

complications this formula generates are twofold. Firstly, the actual evaluation of 

znlk for any n E Nand calculation of the inner product (znzk? li) is a difficult process 

using this formula, which becomes highly problematic (and therefore prone to human 

error unless automated) due to its inherent recurrent nature. Couple this with the 

expanding bandwidth of the corresponding matrix as the powers of z become larger 
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and the advantages gained by using Legendre based methods become diluted. 

The Chebyshev tau technique partially overcomes the problems presented by 

powers of z due to the formula 

Vn,m EN. 

When evaluating znTk the polynomial in z can be re-written in terms of Chebyshev 

polynomials, which, when using this formula, leads to a relatively straightforward 

evaluation. Thus, the motivation behind developing another polynomial based spec­

tral method based on Chebyshev polynomials is apparent. 

Although other research has been conducted on developing Chebyshev spectral 

methods (see e.g. Shen [86]; Gottlieb & Orszag [29]), the method developed in 

this chapter is the first technique which combines both sparsity of the matrices in 

the generalised eigenvalue problem and the inclusion of the standard homogeneous 

boundary conditions within the method utilising Chebyshev polynomials. The same 

examples utilised in Chapter 7 are employed due to their use at demonstrating the 

adaptability, accuracy and relevant ease in implementation of the method. In each 

example this method is compared to the Chebyshev tau technique to assess accu­

racy and speed of convergence. In each case the results clearly demonstrate that the 

Chebyshev spectral method coupled with the Arnoldi technique of finding matrix 

eigenvalues (see e.g. Lehoucq et al. [58]) leads to substantial computational advan­

tages. In a direct comparison between the Chebyshev-Arnoldi and Legendre-Arnoldi 

methods, the difference in computationally efficiency was found to be proportion­

ally small, although the Legendre method did perform marginally better due to the 

slightly smaller bandwidth for specific problems. This chapter is constructed in a 

similar fashion to Chapter 7. 

The results in this chapter are also presented in the manuscript Hill [42]. 
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8.2 Structure of the technique for second order 

equations 

Consider the domain 0 = ( -1, 1), with the Hilbert space 

To motivate the Chebyshev polynomial based spectral technique we begin by demon­

strating its application to the equation 

u" + >..u = 0, (8.1) 

where u E £ 2 (0), and ulan = 0. 

Denote Ti, i E N to be the ith Chebyshev polynomial on ( -1, 1) with 

SN = {u E span{To(z), ... , TN+l(z)}: ulan = 0}. 

The numerical approach to the solution of (8.1) is to find uN E SN such that 

(8.2) 

where w(z) = (1- z2)-! and (u, v)w- fn uvw dz is the inner product in the weighted 

space L~(O), with 11 · llw being the associated norm. 

The key aspect in the development of the numerical method is in the choice of 

basis functions for SN. In the present literature (see e.g. Shen [86]) the use of a 

basis function of the form 

</>i(z) = 2(z2
- 1)Ti_1 , i = 1, ... , N, (8.3) 

is assumed to lead to full matrices in the relevant linear system, making its use 

virtually prohibited in practice. Alternate bases are used, such as in Shen [86], 

although these lead to non-sparse upper triangular matrices. In this paper it is 

shown that by utilising the properties of the commonly used Chebyshev weight in 

the inner product, the basis function (8.3) yields a sparse linear system. 

The inherent structure of these bases also clearly avoids the need for the su­

perimposition of the standard homogeneous boundary conditions in the resulting 

matrix, which causes complications in Chebyshev tau analysis. 
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The following proposition demonstrates the key aspects of the technical imple­

mentation of the Chebyshev spectral element method, where we have introduced 

the notation </>ij = (</Ji, </>j)w and <P~J) = (</>;', <Pi)w· 

Proposition 8.2.1 Let <Pk(z) = 2(z2- 1)Tk-l where SN = span{ </>1, ... , <PN }, then 

-~(i2 - 2i + 3) 
2 

j = k, k > 1 
7r 
2i(i- 1) j = k ~ 2, k > 2 

~(i- 1)(i- 2) 
2 

j = k + 2, k > 1 

37r 
j = k, k > 3 

4 
(</Jk. </>j)w = 

7r 
j = k- 2, k > 4, j = k + 2, k > 2 

2 
7r 

j = k- 4, k > 5, j = k + 4, k > 1 
8 

where <Pu = 4n 12, </>22 = 1r I 4, </>33 = 7n 18, </>31 = </>13 = -n, </>42 = </>24 = -3n 18, 

and </>15 = </>51 = 7r I 4. 

Proof: As the basis functions <!>k are linearly independent, their spanning of the 

space S N is clear. 

The key aspect of this method is in the interpretation of the differential terms. 

By making use of the divergence theorem, utilising the z2 - 1 term in the basis </Ji, 

and employing the identity (z2 - 1)TL1 = (i- 1)(Ti- Ti_ 2 )12, 

(</J~,</Ji)w =- {</>~ · (<~>:+ z</Ji 2) dz ln vl1- z2 1- z 
- { <P~ (<P;- 2zTi_1 ) dz 

ln v1- z2 

14zTk-l + 2(z2
- 1)TL1 ( 2 , ) 

- . . 4z'Ii-I + 2(z - 1)Ti-l - 2z'Ii-I dz 
n v1- z2 

-((k + 1)Tk- (k- 3)'1lk-21• i'Ti- (i- 2)'1li-2l)w· 

Similarly 

(~ ~·) = ( Tk+l _ 'n _ + 'llk-31 Ti+l _ 1'.·_ + 'lli-31) . 
'l'k' 'l't w 2 k 1 2 ' 2 t 1 2 

w 

Employing the inherent orthogonality of Chebyshev polynomials where 

(8.4) 
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with c0 = 2 and ci = 1 for i ;::: 1, the results clearly follow. D 

Defining the space SN in terms of the basis functions (8.3), equation (8.2) may 

be written 

i = 1, ... ,N. (8.5) 

Applying the results in Proposition 8.2.1, (8.5) yields a generalised eigenvalue 

problem of the form 

Au= >.Bu (8.6) 

where u = (u1 , ... , uN?· 

The sparsity of system (8.6) makes it ideal for specific sparse iterative solvers such 

as the implicitly restarted Arnoldi method (IRAM) as presented in the ARPACK 

package (see Lehoucq et al. [58]), also used in Chapter 7. As increasing the efficiency 

of numerical solvers is a key aspect in their development, the notable features of 

reduced computational and storage requirements compared with the more widely 

used QZ algorithm (see e.g. Golub & Van Loan [28]) are presented throughout the 

chapter. 

Although the focus of the examples of applying the Chebyshev spectral element 

method in the paper are based in hydrodynamics, the method easily leads itself to 

other other areas of Continuum Mechanics such as thermoelastic and viscoelastic 

flows. 

8.3 Hadley Flow 

As discussed in Section 7.3, Hadley flow is a useful example as the equations have 

complex coefficients dependent on the z variable, and can be very sensitive to small 

variations in the parameters, making it beneficial as a test of the method's accuracy. 

Following the same derivation and notations as in Section 7.3 we derive the system 

(D2
- a 2 )W + a2S = 0, 

(D2 - a 2 - iO'- ikU(z))S + ika-2 RHDW- (DT)W = 0, 
(8.7) 
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where D = d/dz, subject to the boundary conditions 

W=S=O 
1 

z= ±-
2' 

116 

The Chebyshev polynomial scheme advocated here applied to (8.7) reduces to 

solving the generalised matrix eigenvalue problem, 

Ax = aBx 

where x = (w1 , ... , WN, s1 , ... , SN ), and the matrices are given by 

A a
2

D0 
) 

2 ikRH 
D 2 - a Do - -

2
-zDo 

B 

Here zmDn = (2::::~= 1 zm<Pkn) ,<Pi)w, where <Pkn) = dn<Pk/dzn. Those not defined in 

Proposition 8.2.1, are defined in the subsequent proposition, where we have intro­

duced the notation <Pg) = (<Pf, <PJ)w and zk<PiJ = (zk</Ji, <PJ)w· 

Proposition 8.3.1 The non-zero elements of D 1 , and zi D 0 for j 

given by 

-~(3i- 4) 
4 

~(3i- 2) 
4 
~(i- 2) 
4 
-~(i) 

4 

j = k + 1, k > 2 

j = k -1, k > 2 

j = k + 3, k > 1 

j = k- 3, k > 4 

1, ... , 2 are 

h A,(1) - /2 "'(1) - /2 A,(1) - A,(1) - A,(l) - /2 d A,(l) -w ere '+'21 - 7r , '+'41 - -rr , '+'12 - '+'23 - -rr, '+'41 - -1r , an '+'14 - 7r, 

7r 
j = k + 1, k > 3, j = k- 1, k > 4 

8 
3rr 

(z<fJk, <PJ)w = j = k + 3, k > 2, j = k- 3, k > 5 --
16 

7r 
j = k + 5, k > 1, j = k- 5, k > 6 

16 

where z<P12 = z<P21 = 1r /4, z<P23 = z<P32 = -rr /16, z4J34 = z4J43 = 3rr /16, z<P14 = 
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z</J4l = -37r /8, z</J2s = z</Js2 = 1r /8, and z</Jl6 = z</J6l = 7r /8, 

7r 
j = k, k > 4, 

8 
7r 

j = k + 2, k > 3, j = k- 2, k > 5 
(z2</Jk. </Jj)w = 32 

7r 
j = k + 4, k > 2, 

16 
j = k- 4, k > 6 

7r 
j = k + 6, k > 1, j = k- 6, k > 7 

32 

where z2</Ju = ?r/4, z2</J22 = 3?r/32, z2<jJ33 = ?r/16, z2 <jJ44 = 5?r/32, z2</J13 = z2</J31 = 

7r /16, z2</J24 = z2</J42 = -3?r /32, z2</J1s = z2</Js1 = -?r /8, z2</J26 -:- z2</J62 = -?r /32, 

and z2</J17 = z2 cjJ71 = 1r /16. 

Proof: The term (</J~, </Ji) is derived by differentiating the basis function yielding 

Evaluating the inner product using (8.4) yields the desired result. 

The other two inner products can be easily derived using the identity 

T, T, _ Tn+m + 7ln-ml 
n m-

2 
Vn,m EN. (8.8) 

0 

The motivation behind developing this Chebyshev spectral technique was to ad­

dress the problems generated with the introduction of high order polynomials when 

employing the Legendre polynomial based spectral method developed in Chapter 7. 

As discussed in Section 7.3, the recurrence formula (see e.g. Sneddon [87], pg. 68) 

n+1 n 
zLn = 2n + 1 Ln+l + 2n + 1 Ln-l 

must be utilised to express each znlk, nE N term as a combination of Legendre poly­

nomials, (where lk a basis function built from Legendre polynomials). The highly 

problematic (and therefore prone to human error unless automated) evaluation of 

znzk for any n E N, calculation of the inner product (znzk> li) and the expanding 

bandwidth of the corresponding matrix as the powers of z become larger, make the 

advantages gained by using Legendre based methods become diluted. 

The Chebyshev technique in this chapter partially overcomes the problems pre­

sented by powers of z due to the formula (8.8). When evaluating znTk the polynomial 
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in z can be re-written in terms of Chebyshev polynomials, which, when using this 

formula, leads to a relatively straightforward evaluation. It is important to note 

though, that if a function such as ez is introduced, the bandwidth growth can not 

be reduced by employing this method over the Legendre variant . 
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Figure 8.1: Number of polynomials used against computational time 

To place the efficiency of the Chebyshev spectral method in context Figure 8.1 

provides a visual representation of the computational time required to converge to 

the first eigenvalue of the spectrum as the number of polynomials is increased. The 

solutions obtained via the Chebyshev polynomial based spectral method utilising 

the Arnoldi method obtained from the ARPACK system (see Lehoucq et al. [58]) 

are represented by the Chebyshev-Arpack line, whilst the Chebyshev-QZ line refers 

to the Chebyshev tau method coupled with the QZ algorithm (see e.g. Golub & 

Van Loan [28]). 

Each method determines the value of a. where the x - wavenumber k = 0, the y 

- wavenumber m = 10, RH = 114.2 and Rv = 100 are fixed. The results obtained 

are also in agreement with those published by Straughan & Walker [91]. 

Figure 8.1 clearly demonstrates that as the matrices associated with the gener-
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alised eigenvalue problem grow in size the Chebyshev-Arnoldi method is substan­

tially more computationally efficient than the Chebyshev tau-QZ technique. In 

a direct comparison between both the Chebyshev-Arnoldi and Legendre-Arnoldi 

methods, the Legendre variant was found to be marginally more computationally 

efficient. The difference is to be expected, as the bandwidth for this specific problem 

is slightly larger for the Chebyshev variant, although the results are sufficiently close 

to make any visual representation unnecessary. 

8.4 Multi-component convection-diffusion 

Here we study another representative porous convection eigenvalue problem. In this 

case we solve an eighth order system which models multi-component diffusion in a 

porous medium as presented in Tracey [94] which has been explored in Section 7.4. 

Adopting the notation of Section 7.4 the non-dimensionalised linear perturbation 

equations of the system are 

(D2 - a2 )W- 2((- z)a2S- a 2W1 - a2w2 = 0, 

( D2 - a 2 ) S - RW = aS 

(D2 - a2)w 1 - R1 W = P1a'll 1 

(D2 - a2)w2 - R2W = P2a'll 2 

(8.9) 

where D = d/dz, ( = 4/Tu, R and R 13 are the thermal and solute Rayleigh num-

bers respectively and the ? 13 are salt Prandtl numbers. Here W, S, w1, w2 are the 

z-dependent parts of the perturbations of velocity, temperature, solute 1, and solute 

2. The appropriate boundary conditions are 

z = 0, 1. 

The Chebyshev polynomial scheme advocated here applied to (8.9) reduces to solving 

the generalised matrix eigenvalue problem 

Ax = aBx, 

where x = (w1 , ... , WN, s1 , ... , sN, '1/Ji, ... , '1/J"fv, '1/Ji, ... , '1/J'fiv), with '1/Ji being the co­

efficients in the expansion of wa, a = 1, 2, in terms of the basis <h The matrices A 
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and Bare given by 

D2- a2D0 a2zD0 - a2bDo -a2D0 -a2Do 

A 
-RDo D2- a2Do 0 0 

-R1Do 0 D2- a2Do 0 

-R2Do 0 0 D2 - a2D0 

0 0 0 0 

B 
0 Do 0 0 

0 0 P1Do 0 

0 0 0 P2Do 

where b = 2(- 1. The matrix representations D2 , D0 , and zD0 are given in Propo­

sitions 8.2.1 and 8.3.1. 

To place the efficiency of the Chebyshev spectral method in context Figure 8.2 

provides a visual representation of the computational time required to converge 

to the first eigenvalue of the spectrum as the number of polynomials is increased. 

The solutions obtained via the Chebyshev polynomial based spectral method util­

ising the Arnoldi method are represented by the Chebyshev-Arpack line, whilst the 

Chebyshev-QZ line refers to the Chebyshev tau method coupled with the QZ algo­

rithm. 

Each method determines the value of rJ. where a2 = 21.344, ( = 0.14286, R = 

228.009, R1 = -291.066, R2 = 261, P1 = 4.5454 and P2 = 4.7619 are fixed. 

Figure 8.2 demonstrates the high level of computational efficiency of the Cheby­

shev -Arnoldi method when compared with the Chebyshev tau-QZ technique, where 

no significant difference was found between the Chebyshev-Arnoldi and Legendre­

Arnoldi methods. 

8.5 Structure of the technique for fourth order 

equations 

To demonstrate the Chebyshev spectral method's further adaptability to coupled 

second and fourth order equations we turn our attention to the classical Benard 
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Figure 8.2: Number of polynomials used against computational time 

problem in a similar vein to Section 7.5 for the Legendre polynomial based spectral 

method. 

Defining the infinite layer JR2 x {z E (0, 1)}, with fixed upper and lower boundary 

temperatures, the perturbation equations to the steady state solution are found to 

be, cf. Straughan [90], p. 50, 

(8.10) 

where ui, p and e are the non-dimensionalised velocity, pressure and temperature 

respectively, Pr and R are the Prandtl and Rayleigh numbers respectively and 

w = u 3 . The boundary conditions are that ui = e = 0 on z = 0, 1 and ui, e satisfy 

a plane tiling planform. Defining a2 = k2 + m 2 with k and m being the x and y 

wavenumber, the linearised equations governing instability from (8.10) are 

(D2 - a 2 ) 2W- a 2 RS = a(D2 - a2 )W, 

(D2
- a2 )S + RW =a PrS, 

(8.11) 
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with boundary conditions 

W=DW= S=O, z = 0, 1. 

Here W(z) and S(z) are the vertical component of velocity and temperature field 

as functions of z. 

The basis c/Yi defined in (8.3) is inadequate to cope with the 4th order equation, so 

a new basis function must be defined that produces sparse matrices and maintains 

the boundary conditions. 

As stated in Section 8.2 the key aspect in the development of the numerical 

method is in the choice of basis functions for SN. In the present literature (see e.g. 

Shen [86]) bases are constructed which lead to non-sparse upper triangular matrices. 

By observing the behaviour of the basis when differentiated, with special reference 

to the (z2 -1)2 term which is explained more fully in the proof of Proposition 8.5.1, 

a basis function of the form 

(8.12) 

yields a sparse linear system. 

Due to the (z2 -1)2 term in (8.12) the superimposition of the boundary conditions 

in the resulting matrix is clearly not needed, as both the basis and its first differential 

satisfy the relevant requirements. 

The following proposition demonstrates the key aspects of the technical imple­

mentation of the Chebyshev spectral element method to fourth order equations, 

where we have introduced the notation f3ij) = (/3f111 ,/31)w and j3i~) = (j3f',f31)w· 

Proposition 8.5.1 Let f3k(z) = (z2 -1)2
Tk-l where SN = span{/31, ... ,f3N-2 }, then 

~~ (i4
- 4i3 + 21i2

- 34i + 40) j = k, k > 2 
7r 

-8(i- 1)(i- 2)(i2
- 4i + 15) j = k + 2, k > 1 

7r 
--i(i- 1)(i2 + 11) 

8 
j = k- 2, k > 2 

7r 
32 (i- 4)(i- 3)(i- 2)(i- 1) j = k + 4, k > 1 

;2 (i- 1)i(i + 1)(i + 2) j = k- 4, k > 4 
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where ,8~1) = 9rr, ,B~~) = 15rr /2, ,eg) = -6rr, ,8(4)15 = 3rr /2, and 

7f 
--(5i2

- lOi + 17) 
32 

j = k, k > 3 

1;8 (15i2 
- 55i + 82) j = k + 2, k > 3 

1;8 (15i
2 

- 5i + 32) j = k- 2, k > 4 
7f 

-64 (3i2
- 16i + 25) j = k + 4, k > 2 

- ~ (3i2 + 4i + 5) j = k- 4, k > 6 

~(i- 4)(i- 3) 
128 

j = k + 6, k > 1 

1;8 (i + 1)(i + 2) j = k- 6, k > 7 

where ,eg) = -3rr/4, ,e~;) = -9rr/32, ,eg) = -17rr/16, ,eg> = 21rr/32, ,B~~) = 9rr/16, 

,B~i) = 13rr /16, ,B~~) = 21rr /32, ,e~;) = 23rr /16, ,e~;) = ~5rr /8, ,B~~) = -17rr /32, 

,eii) = -3rr /8, ,eg) = -3rr /8, ,eg) = 3rr /16 and ,B~i)) = 3rr /32. 

Proof: As the basis functions ,Bk are linearly independent their span of the space 

SN is clear. 

The key aspect of this method is in the interpretation of the differential terms. 

Let ,Bi(z) = (z2 
- 1)8i and ,8/(z) = (z2 

- 1hi· By making use of the divergence 

theorem, and utilising the z2 
- 1 term in the basis c/>i 

(,Bk"'', ,B")w k ,B' ,B d l ,B
ill ( z ) 

, - n v'1 - z2 - i - 1 - z2 i z 

k ( -,8/ + z8i) dz l ,B"' 
n v'1- z2 

l ,Bt (f3!' - Z"'~· - 8· - z8' + z2'F,·-1) dz _ /
1 

2 t It t t t nv -z 
1 

16 
((k + 3)(k + 2)Tk+1 - 2(k- 3)(k + 1)Tk_1 

-(k- 5)(k- 4)7Jk-31, 

(i + 2)(i + 1)Ti+1- 2(i- 1) 2Ti-1 + (i- 4)(i- 3)7Ji-3l)w· 

Similarly 

1 

64 
((k + 3)(k + 2)Tk+l- 2(k- 3)(k + 1)n-1 

-(k- 5)(k- 4)7Jk-3l, 
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Employing the inherent orthogonality of Chebyshev polynomials defined in (8.4) 

the results clearly follow. 0 

After some calculations we can show equations (8.11) reduce to the generalised 

eigenvalue problem 

Ax = O"Bx 

where x=(w1 , ... , WN, s1 , ... , sN ), and the matrices A and Bare now given by 

A 

B 

-Ra2 Dt(f3) 

D2- a2Do 

Here D2 and D0 are the matrix representations defined for the basis function cPi in 

Propositions 8.2.1 and 8.3.1, whereas D4 ((3) and D2 ((3) are the matrix versions of 

the inner products ((3~"', (3j)w and ((3~', (3j)w, as presented in Proposition 8.5.1. The 

matrices D0 ((3), ng and Dt(f3), corresponding to (f3k, f3i)w, (f3b cPi)w, and (c/Jb f3i)w 

respectively, can be trivially derived by utilising (8.8). 

Figure 8.3 provides a visual representation of the computational time required 

to locate the full spectrum of eigenvalues as the number of polynomials is increased. 

Similarly to previous figures the Chebyshev-Arpack line refers to the solutions ob­

tained via the Chebyshev spectral method coupled with the Arnoldi algorithm, 

whilst the Chebyshev-QZ line refers to the Chebyshev tau method coupled with 

the QZ algorithm. 

The results in Figure 8.3 again clearly demonstrate a high level computational 

efficiency even when the full eigenvalue spectrum is calculated. In a direct com­

parison between both the Chebyshev-Arnoldi and Legendre-Arnoldi methods, the 

Legendre variant was found to be marginally more computationally efficient. The 

minute difference is to be expected, as the bandwidth for this specific problem is 

slightly larger for the Chebyshev variant, although the results are sufficiently close 

to make any visual representation unnecessary. There is another advantage in using 

the Chebyshev spectral method in that matrices of order 2N compared to matri-
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Figure 8.3: Number of polynomials used against computational time 

ces of order 3N for the D 2 Chebyshev tau technique are utilised, again reduces 

computational costs. 

8.6 Comparison of the Chebyshev and Legendre-

Arnoldi techniques 

The conclusions of this chapter with regards to the comparison between the Cheby­

shev polynomial based spectral method and the Chebyshev tau technique are analo­

gous to those of Chapter 7. In essence the method is more computationally efficient 

than the Chebyshev tau technique for standard homogeneous boundary condition 

problems, and it is demonstrated that it is a viable technique to employ. 

Both the Legendre polynomial based method of Chapter 7 and the Chebyshev 

variant of this chapter have the advantages of sparsity and inclusion of the standard 

homogeneous boundary conditions. However, understanding the differences between 

the methods is key to deciding which is best to employ for a specific problem. 

As highlighted in Sections 8.1 and 8.3 the primary difference between the meth-
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ods is their ability to absorb high order polynomials into the basis functions the 

methods are based on. Due to the Legendre recurrence formula, high order poly­

nomials are difficult to evaluate when combined with Legendre basis functions, and 

lead to bandwidth growth of the corresponding matrix. In the Chebyshev case, these 

high order polynomials can be easily written in terms of Chebyshev polynomials and 

evaluated. 

However, if polynomials of low order (the evaluation of those below z4 required 

acceptable time consumption to evaluate) are employed, the Legendre method does 

perform marginally better as the corresponding matrices have lower bandwidths. It 

is also important to note that if a function such as ez is introduced, the bandwidth 

growth can not be reduced by employing the Chebyshev over the Legendre variant . 

Although these methods have been shown to perform competently in comparison 

with the Chebyshev tau technique, it must be pointed out that they are, in their 

current form, only applicable to homogeneous boundary conditions. The Chebyshev 

tau technique can be adapted to any boundary conditions, see e.g. Chapter 6. 

However, it is possible to use different combinations of the polynomials to tailor 

to the boundary conditions of the particular problem. For example, a Chebyshev 

polynomial based method was developed for a problem which was homogeneous for 

the function, first and third derivatives, which was certainly not a trivial extension 

of the method presented in this chapter. 

Although we have concentrated on hydrodynamic problems, the methods pre­

sented in Chapters 7 and 8 can be adapted to many other classes of stability problem 

in Continuum Mechanics. For example, stability in porous media with different gov­

erning laws such as that of Brinkman, viscoelastic flows, and stability problems in 

elasticity or thermoelasticity. 



Chapter 9 

Conclusions 

The main aims of the thesis have been to investigate thermal convection in fluid and 

porous media, and to develop efficient spectral finite element methods to improve on 

the more commonly used techniques for these types of problems. Linear instability 

and nonlinear stability analyses have been employed to assess critical thresholds for 

the onset and type of convection involved, where a variety of numerical methods 

have been utilised including those developed in the thesis. 

Chapters 2 to 5 thoroughly explored convection induced by the selective absorp­

tion of radiation in a porous medium, which is a modification of the system modelled 

by Krishnamurti [55]. This model has not been particularly explored in the current 

literature even though it provides a closer model of cumulus convection as it occurs 

in the atmosphere. 

In Chapter 2 a standard Darcy model for fluid flow in porous media was adopted, 

with a linear temperature dependent density. The thresholds of the nonlinear theory, 

which guarantee stability when the Rayleigh number is below them, were shown to 

be extremely close to the thresholds of the linear energy theory which guarantee 

instability. As the region of potential subcritical instabilities were extremely small 

it can be concluded that linear theory is accurate enough to predict the onset of 

convective motion for this model within the restrictions of the parameter ranges. 

However, Amahmid et al. [4] proposed that for sparsely packed porous media 

(more appropriate to this model as potential refraction is decreased) the Brinkman 

model, which accounts for friction due to macroscopic shear, is more appropriate 
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to describe fluid flows in a porous matrix. This model was employed in Chapter 

3. Again it was demonstrated that linear and nonlinear thresholds were extremely 

close. Employing the compound matrix method in both the linear and nonlinear nu­

merical analysis became problematic due to the high order of the equations, with the 

Chebyshev tau technique also being restrictive due to the heavy computational cost 

in solving full matrix eigenvalue problems required over several parameter ranges. 

This lead to the development of the methods in Chapters 7 and 8 to overcome these 

difficulties. 

In Chapters 2 and 3 the assumption was made that the internal heat source was 

linear with respect to concentration. However, it is stated in Krishnamurti [55] that 

'This linear relationship is a first order approximation and may need modification 

for high concentrations of [thymol] blue'. Thus Chapter 4 was motivated by the 

exploration of the validity of an alternative quadratic model. Both the Darcy and 

Forchheimer equations were used. It is observed that an increase in either 'YI or 

12 causes the Rayleigh number to decrease, where 11 and 12 contain the constants 

of proportionality relating the linear and quadratic elements of the internal heat 

source respectively. More interestingly though is the observation that 11 and 12 

have an almost identical effect on the Rayleigh number in relation to each other. 

This demonstrates that a variation change in 12 will be as equally significant to a 

change in the Rayleigh number as a variational change to 1 1• 

Both the conditional and unconditional nonlinear analyses showed that when 11 

was the dominant term over 12 the thresholds of the linear and nonlinear theory 

are extremely close, so that potential region of subcritical instabilities is small, 

implying that the linear theory effectively captures the onset of convective motion. 

In contrast, as the magnitude of 12 approached that of 1 1 and beyond, the potential 

region of subcritical instabilities increased greatly, for a given accuracy. These results 

indicate that linear theory may fail to accurately capture the physics of the onset of 

convection. 

The final avenue of interesting exploration was in the density term. Although it 

had been assumed neglible previously, a natural progression was to due to introduce 

the concentration of the species into the density, as presented in Chapter 5. The 
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1 term, in essence, was defined to be a measure of the internal heat source, such 

that both the actual numerical and approximate analytical results strongly sug­

gested the existence of a critical le value, where no oscillatory convection occured 

for le :::; I· With the extrapolation of oscillatory results from the numerical analysis, 

a fixed range for le was derived by direct comparison between the stationary and 

oscillatory neutral lines. However, the analysis did suggest a nonlinear relationship 

between the critical thermal and solute Rayleigh numbers such that this range is not 

optimal. The suggested nonlinear behaviour also potentially yielded finite intervals 

of oscillatory convection, as demonstrated by Figure 5.5. This behaviour, in the 

present literature, is an apparently unobserved phenomenon. Further work could 

extend the regions of parameters to assess more accuarately some of the features 

of the le term. Similarly to Chapter 3, the Chebyshev tau technique was found to 

be restrictive due to the heavy computational cost in solving full matrix eigenvalue 

problems required over several parameter ranges. 

Chapter 6 presented the problem of thermal convection in a linearly viscous fluid 

in a finite box. The linear instability threshold was found to be well above the global 

stability boundary found through the energy method, as visually demonstrated by 

Figure 6.1. This contradicts previous work by Georgescu and Mansutti [25] who 

claim that the thresholds coincide. 

Chapters 7 and 8 presented Legendre and Chebyshev polynomial based spec­

tral methods, respectively, for the evaluation of generalised eigenvalue problems, 

developed on the experience of the numerical analysis of Chapters 2 to 6. A poly­

nomial based structure adopted by the Chebyshev tau technique was decided to 

be the best approach, if the dual problems of matrix fullness and spurious eigen­

values linked to boundary conditions inherent in this method could be addressed. 

The methods developed generate sparse matrices, where the standard homogeneous 

boundary conditions for porous media problems are contained within the method, 

negating the need for their superimposition onto the matrices as is necessary with 

the Chebyshev tau method. Examples in comparison to the widely used Chebyshev 

tau method clearly demonstrate that both Legendre/Chebyshev methods coupled 

with the Arnoldi technique of finding matrix eigenvalues leads to substantial corn-
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putational advantages. 

The Legendre idea employed was introduced for the solution of differential equa­

tions by Shen [85], where no eigenvalue calculations were considered. Kirchner [54] 

developed a method for solving eigenvalues for the Orr - Sommerfeld equation which 

essentially uses the technique of Shen [85]. By contrast a Chebyshev variation with 

the sparsity and inclusion of boundary conditions is not present in the literature. 

Although the Legendre technique shares the sparsity and boundary condition 

advantages of the Chebyshev spectral method, due to Legendre polynomials' re­

currence formula (see Sneddon [87]) the inclusion of high order polynomials in the 

targeted problem results in complicated evaluation and growth in the bandwidth 

of the corresponding generalised matrix eigenvalue problem (see Chapter 8). These 

disadvantages can be eased by utilising Chebyshev polynomials. 

Further work could assess the practicality of developing techniques for non­

homogeneous boundary conditions utilising Chebyshev and Legendre techniques. 

Although the thesis has concentrated on convection problems, the new methods 

presented can be adapted to many other classes of stability problem in Continuum 

Mechanics. For example, stability in porous media with a different governing law 

such as that of Brinkman, viscoelastic flows, and stability problems in elasticity or 

thermoelasticity. 



Appendix A 

Numerical Methods 

A.l The Compound Matrix Method 

To demonstrate the implementation of the compound matrix method we consider a 

general linear system 

'1/J" = a1'1/J' + a2'1/J + a3p' + a4p, 

p" = blp' + b2p + b3'1/J 1 + b4'1/J, 
(A.l.1) 

where a prime denotes differentiation with respect to x, a 1 , ... , a4 and b1, ... , b4 

are real and/ or complex coefficients which contain the generalised eigenvalue of the 

system O", and x E (0, 1). The boundary conditions 

'1/J=p=O z = 0,1 (A.l.2) 

are assumed . 

. To solve (A.l.1) subject to (A.l.2) the compound matrix method is applied as 

follows. 

Let 1/J = ('1/J, '1/J', p, p'f and suppose 'l/;1 and 'l/;2 are independent solutions to 

(A.l.1) with values at z = 0 of (0,1,0,0) and (0,0,0,1) respectively. The two initial 

value problems can be integrated numerically between 0 and 1, and the solution 

found by writing it as a linear combination of the two solutions obtained i.e. 
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for some constants c1 and c2 . Then, the correct boundary conditions 7/J = p = 0 at 

z = 1 are imposed which require 

Due to the potentially large values involved, the calculation of the determinant can 

lead to large round off errors which can significantly alter the results. To overcome 

this problem we define the variables y1 , ... , y6 to be the 2 x 2 minors of the 4 x 2 

solution matrix whose columns are 1jJ1 and 1/J2 . Thus, 

Y1 = 7/JI7/J~ - 7/J27/J{, 

Y3 = 7/JIP~ - 7/J2P{, 

Ys = 7/J{p~ - 7/J~p{, 

Y2 = 7/JIP2 - 7/J2Pl, 

Y4 = 7/J{ P2 - 7/J~Pl, 

Differentiating the y's and using the governing system (A.1.1), the initial value 

problem for the compound matrix variables are found to be 

y{ = a1Y1 + a4y2 + a3y3, 

Y~ = Y3 + Y4, 

Y~ = b1Y1 + b4y2 + b3y3, 

Yl = a2Y2 + a4y1 + Ys - a3y6, 

Y~ = -b2Y1 + a2y3 + b4y4 + (al + b3)Ys + a4y6, 

Y~ = -b2Y2- b1y4 + b3Y6· 

This system can now be numerically integrated subject to the initial condition 

Ys(O) = 1 

and the final condition 

to derive a to some pre-defined degree of accuracy. 

More details and a through discussion of the compound matrix method can be 

found in Brown & Marletta [9), Davies [18), Drazin & Reid [21), Gardner et al. [24], 

Greenberg & Marletta [30) [31] [32), Ivansson [46) and Straughan & Walker [91). 
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A.2 The Chebyshev Tau Method 

To demonstrate the implementation of the Chebyshev tau algorithm we consider a 

similar system as introduced in Dongarra et al. [20] where 

u"+.Au=O, xE(-1,1), 

u( -1)- u(1) = 0. 
(A.2.3) 

The notation (u, v)w = J~ 1 uvw dz refers to the inner product in the weighted space 

L~( -1, 1), where w(z) = (1- z2)-~ with 11 · llw being the associated norm. 

The underlying principle is to write u as a finite series of Chebyshev polynomials 

such that 
N+2 

u(x) = L ukTk(x). (A.2.4) 
k=O 

Due to the truncation of the infinite series the problem may be re-written 

(A.2.5) 

where T1 and T2 are parameters which may be used to quantify the error associated 

with the truncation in (A.2.4). The use of these tau coefficients as error bounds can 

be found in Fox [23], although the approach is for ordinary differential equations as 

opposed the eigenvalue problems. 

In the weighted space L~ ( -1, 1) the Chebyshev polynomials are orthogonal, so 

taking the weighted inner product of (A.2.5) with~ yields 

(u" + >.u, ~)w = 0, i = 0, 1, ... , N, (A.2.6) 

The two remaining conditions are derived from the boundary conditions where, as 

N+2 

L(±1)kuk = 0, (A.2.7) 
k=O 

The (N + 3) unknowns ui, i = 0, ... , N + 2 can now be derived from the (N + 3) 

equations comprising of (A.2.6) and (A.2.7). 
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The derivative of a Chebyshev polynomial can be expressed as a linear combi­

nation of lower order Chebyshev polynomials where 

1 { 2n(Tl + T2 + · · · + Tn_I), 
T = 

n nTo + 2n(T2 + T3 + · · · + Tn-1), 

n even, 
(A.2.8) 

n odd. 

To evaluate the differential terms in the Chebyshev tau technique we begin by 

differentiating (A.2.4) to yield 

N+2 N+2N+2 

u' = L ukT~(x) = L L ukDrkTr. (A.2.9) 
k=O k=O r=O 

Comparing the coefficients in (A.2.8) and (A.2.9) it can be deduced that the non-zero 

terms are 

Do, 21-1 = 2j - 1, j 2:: 1, 

Di,i+2j-l = 2(i + 2j- 1), i 2:: 1, j 2:: 1. 
(A.2.10) 

When solving a generalised eigenvalue probelm this is utilised in its matrix form, 

namely 

0103 0 50 7 

0 0 4 0 8 0 12 0 

D = 0 0 0 6 0 10 0 14 

0 

Differentiating (A. 2. 9) yields 

N+2 N+2 N+2 N+2 N+2 

u" = L L ukDrkT: = L L L DprDrkUkTp. 
k=O r=O k=O r=O p=O 

(A.2.11) 

By utilising (A.2.10) and the identity (A.2.8) it can be deduced from (A.2.11) that 

2 1 ( ')3 
Do,2j = 2 2J , j ;::: 1, 

D~i+21 = (i + 2j)4j(i + j), i 2:: 1, j ;:::, 1, 

or in matrix form as 

0 0 4 0 32 0 108 

0 0 0 24 0 120 0 

D 2 
= 0 0 0 0 48 0 192 

0 
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With these definitions the Chebyshev tau approximation to the orginal problem 

(A.2.3) would be written as 

where I is the (N+2) x (N+2) identity matrix and u = (u0, ... , uN+2). To incoporate 

the boundary conditions the last two rows of D2 are replaced with 

( 

1 0 1 .. . 

0 1 0 .. . 
1 0)' 
0 1 

and the last two rows of I are replaced with zeros. 

More details and a through discussion of the Chebyshev tau method can be found 

in Straughan & Walker [91] and Dongarra et al. [20]. 
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Inequalities 

B.l Young's Inequality 

Let a, b be arbitrary functions and p, q ~ 1 such that 1/p + 1/q = 1, then Young's 

inequality is 
aP bq 

ab<-+-. 
- p q 

Further discussion of Young's inequality can be found in Young [98] and Mitrinovic 

[72]. 

B.2 Poincare's Inequality 

Let V be a three dimensional cell, where, for simplicity, the cell has dimensions 

0 ~ x < 2a1 , 0 ~ y < 2a2 , and 0 < z < 1. Suppose u is a function periodic in x 

and y of period 2a1 and 2a2 repectively, and u = 0 on z = 0, 1. Then the Poincare 

inequality may be written 

Further discussion of the Poincare inequality can be found in Saloff-Coste [83]. 
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B.3 Sobolev Inequality 

If n is a bounded domain in JR3 with boundary an, then for functions with u = 0 

on an, 
I 

(in u6 
dV) 

3 

::; C1 in 1Vul2 
dV, 

where the constant cl is independent of the domain. Furthermore, combining this 

with Holder's inequality for u4 , 

we derive the inequality 

1 u4 
dV :0: C, (1J\7ul2

) 

2 

dV. 

Further explanation of this Sobolev inequality can be found on pages 388-391 of 

Straughan [90]. 



Appendix C 

Legendre Spectral Method 

Identities 

Throughout Appendix C the notation D~(b) is defined as the matrix representation 

of ('2:~= 1 dnbk/(dy)n, ai), where a and bare the relevant basis functions. 

C .1 Calculation of Df ( 1;) 

Utilising the identity (7.3) Df(<P) may be written 

( ~A..' A...)=(~ L Li+1- Li-1). 
~ '+'k> '+'~ ~ k> 2i + 1 
k=l k=1 

By applying the orthogonality relationship in (7.7), the skew-symmetric matrix rep-

resentation Df(<P) can be derived, where, letting M= Df(<P), 

2 
Mi,i+l = (2i + 1)(2i + 3)' i = 1, ... ' N- 1, 

where M is of bandwidth 2. 

C.2 Calculation of zDt(q;) 

Using the basis functions ( 7.4) and the recurrence relation ( 7.11) we have 

(~ ( (k + 2)Lk+2 

{=: (2k + 3)(2k + 1) 

Lk (k- 1)Lk-2 ) Li+1 - Li-1) 
(2k-1)(2k+3) (2k-1)(2k+1) ' 2i+1 . 
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By applying the orthogonality relationship in (7. 7), the symmetric matrix represen­

tation zDt(c/J) can be derived, where, letting M= zDt(q;), 

2(i + 1) 
(2i- 1)(2i + 1)(2i + 3)(2i + 5) 

-2(i + 2) 
(2i + 1)(2i + 3)(2i + 5)(2i + 7) 

where M is of bandwidth 6. 

C.3 Calculation of z2 Dt( cjJ) 

j=i+1 

j = i+3 

Using the basis functions (7.4) and repeatedly applying the recurrence relation (7.11) 

we have 

I~ ( (k + 2)(k + 3)Lk+3 
\8 (2k + 3)(2k + 5)(2k + 1) 

(k2 + k- 3)Lk+1 (k2 + k- 3)Lk-1 
+ (2k- 1)(2k + 5)(2k + 1) - (2k- 3)(2k + 3)(2k + 1) 

_ ((k- 1)(k- 2))Lk-3 ) Li+1 ~ Li-1) 
(2k- 1)(2k- 3)(2k + 1) ) 2i + 1 . 

By applying the orthogonality relationship in (7. 7)), the symmetric matrix repre­

sentation z2 Dt(q;) can be derived, where, letting M= z2 Dt(c/J), 

(2i- 3)(2i- 1)(2i + 1)(2i + 3)(2i + 5) 
6 

(2i- 1)(2i + 1)(2i + 3)(2i + 5)(2i + 7) 

-2(i + 3)(i + 2) 
(2i + 1)(2i + 3)(2i + 5)(2i + 7)(2i + 9) 

where M is of bandwidth 8. 

C .4 Calculation of ng ({3) 

Using the basis functions (7.17)) we have 

J = 'l 

j=i+2) 

j = i+4 

\ 

N 
(Lk+3- Lk+1) (Lk+1 - Lk-1) 

{; (2k + 3)(2k + 5) - (2k + 1)(2k + 3)) 

Li+3- Li+1 Li+1 - Li-1 ) 
(2i + 3)(2i + 5) (2i + 1)(2i + 3) . 
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By applying the orthogonality relationship in (7.7), the symmetric matrix represen­

tation ng (/3) can be derived, where, letting M = ng (!3), 
12 

( 2i - 1) ( 2i + 1) ( 2i + 3) ( 2i + 5) ( 2i + 7) 
-8 

Mi,J = (2i + 1)(2i + 3)(2i + 5)(2i + 7)(2i + 9) 

2 

(2i + 3)(2i + 5)(2i + 7)(2i + 9)(2i + 11) 

where M is of bandwidth 8. 

C.5 Calculation of ng ( cj;) 

Using the basis functions (7.4) and (7.17) we have 

I~ ) I~ Lk+1 - Lk-1 
\f={<Pk, /3i = \{={ (2k+1) , 

J = '/, 

j=i+2, 

j = i +4 

Li+3- Li+1 Li+1 - Li-1 ) 
(2i + 3)(2i + 5) (2i + 1)(2i + 3) . 

By applying the orthogonality relationship in (7. 7), the matrix representation ng ( <P) 

can be derived, where, letting M= Dg(</J), 

-6 

Mi,J = 

(2i- 1)(2i + 1)(2i + 3)(2i + 5) 
6 

(2i + 1)(2i + 3)(2i + 5)(2i + 7) 
-2 

(2i + 3)(2i + 5)(2i + 7)(2i + 9) 
2 

(2i- 3)(2i- 1)(2i + 1)(2i + 3) 

where M is of bandwidth 8. 

C.6 Calculation of Dt(f3) 

Using the basis functions (7.4) and (7.17) we have 

(~ ) (~ 9k(Lk+3- Lk+I) 
L.._; 9kf3k, <Pi = L.._; ( 
k=1 k=1 2k + 3)(2k + 5) 

j=i 

j = i + 2 

j=i+4 

j = i- 2 

9k(Lk+1 - Lk_I) Li+1 - Li-1) 
(2k + 1)(2k + 3), (2i + 1) . 
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By applying the orthogonality relationship in ( 7. 7), the matrix representation 

Dt(/3 can be derived, where, letting M= Dt(/3), 

-6 
(2i- 1)(2i + 1)(2i + 3)(2i + 5) 

2 

(2i + 1)(2i + 3)(2i + 5)(2i + 7) 
6 

(2i- 3)(2i- 1)(2i + 1)(2i + 3) 

-2 
(2i- 5)(2i- 3)(2i- 1)(2i + 1) 

where M is of bandwidth 8. 

j = i 

j=i+4 

j = i- 2 

j = i- 4 
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