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Abstract 

Let X be a complex projective smooth irreducible curve of genus g. We begin by 

giving background material on symplectic vector bundles and principal bundles over 

X and introduce the moduli spaces we will be studying. In Chapter 2 we describe 

the stable singular locus and semistable boundary of the moduli space Mx(Sp2 C) of 

semistable principal Sp2 C-bundles over X. In Chapter 3 we give results on symplec­

tic extensions and Lagrangian subbundles. In Chapter 4, we assemble some results 

on vector bundles of rank 2 and degree 1 over a curve of genus 2, which are needed 

in what follows. Chapter 5 describes a generically finite cover of Mx(Sp2 C) for a 

curve of genus 2. In the last chapter, we give some results on theta-divisors of rank 

4 symplectic vector bundles over curves: we prove that the general such bundle over 

a curve of genus 2 possesses a theta-divisor, and characterise those stable bundles 

with singular theta-divisors. 

Many results on symplectic bundles admit analogues in the orthogonal case, 

which we have outlined where possible. 
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Chapter 1 

Introduction 

In this chapter, we introduce the objects we will be studying. Throughout this 

thesis, X will denote a complex projective smooth irreducible curve of genus g ~ 2. 

Later we will focus on the genus 2 case. 

The first three sections are expository, and the result in § 1.4 is proven essen­

tially by comparing the definitions of S-equivalence for vector bundles and principal 

bundles. 

Convention: Let Y be a smooth variety and W --t Y a vector bundle which has 

local trivialisations 

over some open cover {Ui : i E J} of Y. Then we denote the transition function 

<pj 0 <pi1
1<p;(Wiu;nuj) by Wi.j · 

Note: All our vector bundles are algebraic. 

1.1 Symplectic and orthogonal vector bundles 

References for vector bundles include Le Potier [29], Vishwanath [53], Seshadri [47) 

and Griffiths-Harris [15, Chapters 0, § 5 and 3, § 4) and for curves include Arbarello­

Cornalba-Griffiths-Harris [1) and Griffiths-Harris [15, Chapter 2). 
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Let K be a field and V and M vector spaces over K of dimensions n and 1 

respectively. Let a: Hom(V, M) -t V be a linear map. Then the transpose of a is 

the unique linear map ta: Hom(V, M) -t V such that 

for all linear maps </>I, <jJ2 : V -t M. If A is the matrix of a with respect to some 

basis then the matrix of ta with respect to this basis is just t A. If M = K then ta 

is naturally identified with the dual map of a. 

We show that this notion also makes sense for vector bundles. Let Y be a smooth 

complex variety, F -t Y a vector bundle of rank n and L -t Y a line bundle. Let 

a: Hom(F, L) -t F be a homomorphism of vector bundles over an open set U ~ Y. 

Suppose that F and L have transition functions {!i,j} and { li,j} respectively relative 

to an open cover { Ui : i E J} of Y. Then the map a is given by a co chain { ai} of 

n x n matrices which satisfy 

ai (t fi~/ )li,j = !i,jaj 

over U n Ui n Ui. Again, to get the local expression for ta we should take the 

transposes of the ai. By the above relation, we have 

equivalently 

taieJi""j)ti,j = A1eaj) 

since the li,j commute with the other transition functions. This shows that the 

cochain eai} defines a map Hom(F, L) -t F over U. 

Thus in particular it makes sense to speak of symmetric and antisymmetric 

homomorphisms Hom(F, L) --+F. We denote these respectively by 

Sym(Hom(F, L), F) and f\ (Hom(F, L), F)). 

Remark: Similar statements hold for maps F--+ Hom(F, L). 

A symplectic (resp., orthogonal) vector bundle over X is a pair (W, w) where 

W --+X is a vector bundle and w is a bilinear nondegenerate antisymmetric (resp., 
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symmetric) form on W x W with values in a line bundle L ----t X. Two immediate 

consequences of the nondegeneracy of w are: 

• There is an antisymmetric (resp., symmetric) isomorphism W ~ Hom(W, L). 

In particular, (det W) 2 = ykw. 

• W is symplectic only if it has even rank, since skew-symmetric matrices have 

even rank. 

We will consider most often bundles of rank 2n, even if W is orthogonal. If there is 

no ambiguity we may write just W for (W, w). For example, if W is stable then w 

is unique up to nonzero multiplicative scalar. 

A subbundle of W is isotropic if w restricts to zero on it. For any subbundle 

E ~ W, we have the short exact vector bundle sequence 

0 ----t E.l ----t W ----t Hom( E, L) ----t 0 

where the surjection is the map w H w ( w, ·)IE and 

E.l = { w E W : w( w, E) = 0} 

is the orthogonal complement of E. Clearly E is isotropic if and only if E ~ E.l; 

this shows that the rank of an isotropic subbundle is at most ~ rk W. An isotropic 

subbundle of maximal rank is called a Lagrangian subbundle. 

1.2 Moduli of vector bundles over curves 

General references for the theory of moduli spaces include Newstead [36] and Se­

shadri [48]. We will just state the results we need. We begin by recalling the 

definition of a coarse moduli scheme (see for example Ramanathan [43, p. 307]). 

Denote by Sch and Set the categories of schemes over C and sets respectively and 

let F: Sch ----t Set be a functor. Then a coarse moduli scheme for F is a scheme M 

and a natural transformation W: F ----t Mor( -, M) satisfying the following proper­

ties: 
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1. There is a bijection between closed points of M and the set F(Spec C). 

2. For any natural transformation '11': F ----7 Mor( -, Y) where Y is a scheme over 

C, there is a unique morphism f : M ----7 Y such that the following diagram is 

commutative: 

F------ :, Mor(-,M) 

~ /! 
Mor(-, Y) 

Recall that the slope of a vector bundle W ----7 X is the ratio 

degW 
tt(W) := rk W · 

Then W is stable ( resp., semistable) if 

tt(V) < tt(W) (resp., tt(V) :S tt(W)) 

for all proper subbundles V C W. Stable bundles have a number of useful properties: 

Lemma 1.1 Let V and W be semistable vector bundles over X with tt(V) > tt(W). 

Then h0 (X, Hom(V, W)) = 0. Moreover, ifV and Ware stable and tt(V) ~ tt(W) 

then 

{ 

OifV7l-W 
h0 (X, Hom(V, W)) = 

1 ifV!:::,! W 

In particular, the only endomorphisms of a stable bundle are homotheties. 

Proof 

Narasimhan-Ramanan, [35, Lemma 2.1]. 0 

A vector bundle W ----7 X with H 0 (X, End W) 

not every simple bundle is stable. 

C is called simple. Note that 

In order to obtain a nice moduli space, we will need to consider semistable 

bundles up to so-called S -equivalence, which is slightly weaker than isomorphism. 

It is defined as follows. Let W ----7 X be a semistable vector bundle of slope It· Then 

it can be shown (see for example Le Potier [29, p. 76]) that W has a filtration 

o = Wo c W1 c · · · c wk-1 c wk = w 
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where the Wi are (semistable) of slope J-t and each quotient ;:'~ 1 is a stable vector 

bundle. Then the bundle 
k 

EB~ 
i=l wi-1 

is called the associated graded bundle of W and denoted grv W. Two semistable 

vector bundles are said to be S-equivalent if their associated graded bundles are 

isomorphic. A vector bundle W is polystable if grv W ~ W. 

Theorem 1.2 (Moduli of vector bundles) Fix integers r and d with r 2: 0, and a 

line bundle L --+ X of degree d. 

(i) There exist coarse moduli spaces Ux(r,d) and SUx(r,L) for S-equivalence 

classes of semistable rank r vector bundles over X of degree d and determinant 

L respectively. 

(ii) Ux(r,d) and SUx(r,L) are irreducible of dimensions, respectively, 

r2 (g- 1) + 1 and (r2
- 1)(g- 1). 

(iii) The stable loci are dense in Ux(r,d) and SUx(r,L). The singular locus of 

Ux(r,d) consists of exactly the nonstable points except when r = 2, g = 2 and 

d is even; in this case it is smooth. 

(iv) Ux(r,d) and SUx(r,L) are fine moduli spaces (that is, carry universal families) 

if and only ifgcd(r,d) = 1, equivalently, if every bundle in Ux(r,d) is actually 

stable. 

Proof 

We refer to Le Potier [29, Chaps. 4-8] and Seshadri [47, Chap. 1). The statements 

about SUx(r,L) can be found in Chap. 1, section VI of the latter. 0 

Jacobian varieties 

We discuss the rank 1 case briefly. U x ( 1, d) is the Jacobian variety Jf parametrising 

isomorphism classes of line bundles of degree d over X. References for this subject 

include Birkenhake-Lange [11, Chap. 11] and Griffiths-Harris [15, Chap. 2). 
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J~ is a principally polarised Abelian variety, and each Jf is a torsor over J~ 

by the action defined by tensor product. Jf is a fine moduli space since there exist 

Poincare bundles over Jf x X. 

We will often work with JJ( 1
. This variety has a distinguished divisor 8 whose 

support consists of those line bundles of degree g - 1 which have sections. The line 

bundle 0 1g-t (8) is ample, and h0(JJ( 1
, n8) = nY. 

X 

For any variety Y, we write K y for the canonical bundle of Y when this exists. 

The Serre involution t,: lJc-1 ---+ JJc- 1 is the map L H Kx L - 1 . This induces an 

involution on the cohomology of n8, and the projectivisations of the + 1- and -1-

eigenspaces of this involution are the linear systems of even and odd n8-divisors 

respectively, denoted Jn8l+ and Jn8J_. Clearly the associated maps JJ( 1 ---+ Jn8J± 

factor through the Kummer variety Kumx = JJc- 1 /(t,). 

Moduli of symplectic bundles 

The moduli space in which we are interested is that of symplectic vector bundles 

of rank 2n over X, denoted Mn· Recall that the group Spn C is the automor­

phism group of a bilinear nondegenerate antisymmetric form C2
n X C2

n ---+ c. By 

definition, the transition functions of a symplectic vector bundle belong to some 

representation of Spn C at each point of X. Since such matrices have determinant 

1, a symplectic vector bundle has trivial determinant, so Mn ~ SUx(2n, Ox). To 

find out more about Mn, we use the connection with principal bundles. 

1.3 Principal bundles and their moduli 

References for principal bundles include Oxbury [37], Balaji [3], Bradlow [10] and 

Ramanathan [43], [44], [45]. For the theory of algebraic groups, we refer to Springer 

[52] and Fulton-Harris [13]. 

Let G be a complex reductive algebraic group. A principal G-bundle E---+ X is 

a variety on which G acts freely on the right with quotient X, and which is locally 

trivial in the etale topology. Here, local triviality means that there is an open cover 
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{Ui ---*X : i E J} of X by etale maps hi: Ui ---*X and a G-equivariant isomorphism 

for each i E J. Just as for vector bundles, over all intersections of open sets Ui n Uj 

we get transition functions 

given by 4>i o ¢J-:- 1
I¢;(Eiu nu )> which are G-equivariant, and are identified on each fibre 

' } 

with left multiplication by an element of G. 

Associated bundles: Let E be a principal G-bundle and Y a quasi-projective 

variety with an (algebraic) left action of G. Then we define the associated G-bundle 

E(Y) as the quotient of E x Y by the G-action 

(g, (e, y)) H (e · g, g-1 
· y). 

We mention three important cases of this construction. 

• Associated vector bundles: If G acts on cr by a representation then E(Cr) 

is a vector bundle of rank r. 

• Extensions of structure group: If a: G ---* H is a homomorphism of al­

gebraic groups then G acts on H by g · h = a(g)h and we get an H-bundle 

E(H). 

• Coset space bundles: Let H ~ G be a subgroup such that G I H is a variety 

(for example, a parabolic subgroup). Then the left coset space GIH is a G­

space. We get a bundle E( G I H) ---* X with fibre G I H, which we denote 

EIH. 

Remark: Following Bradlow [10, Lecture 5), we can construct these objects in a 

slightly more explicit way. Let {Ui : i E J} be an open cover of X over which E 

is trivial, and { ei,j} a corresponding set of transition functions. Then the bundle 

associated to a G-variety Y can be given by 
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In particular, the transition functions of E(Y) are just the images of those of E by 

the action G -+ Aut Y. It follows that the vector bundle associated to a principal 

Spn C-bundle via the standard representation Spn C Y SL2n C is a symplectic vector 

bundle. Later, we shall see an inverse construction. 

Sections: Making X into a G-variety via the trivial action, we define a section 

of a principal G-bundle E over an open set U ~ X to be a G-equivariant map 

s: U-+ Elu. It is not hard to see that E admits a section over U if and only if Elu 

is trivial. 

Now let Y beaG-variety. A section of E(Y) can be given by morphisms t': E-+ 

Y such that t'(e ·g)= g-1 · t'(e) and t: X-+ Ex Y of the form x H (e, t'(e)) for 

some e E Elx· (The first condition implies that another choice (eg, t'(eg)) gives the 

same point in E(Y).) 

Reduction of structure group: Let H C G be a subgroup. A reduction of 

structure group to H is a section of the coset space bundle E ( G I H). A reduction 

of structure group to H exists if and only if there is an H -bundle E' -+ X with an 

isomorphism E'(G) _:; E (see Ramanathan [43, § 2.5]). We give three important 

cases of this. 

• Let G = GLr C and suppose P ~ G is a parabolic subgroup. Then the fibre 

E( G I P) lx is naturally identified with a Grassmannian of subspaces of E(Cr) lx 
and so a section of E( G I P) is an algebraically varying choice of subspace of 

constant dimension in each fibre, so we get a vector subbundle. 

• If G = Spn C then a maximal parabolic subgroup P is the stabiliser of an 

isotropic subspace of C2
n of dimension k E {1, ... n }. The quotient Spn c I p 

is the so-called Lagrangian Grassmannian of isotropic subspaces of dimension 

k (see for example Fulton-Harris [13, Lecture 23.3]). Therefore, a reduction of 

structure group to P in this case corresponds to an isotropic subbundle. 

• This is a slightly more intrinsic way to see that a principal Spn C-bundle yields 

a symplectic vector bundle. Given an Spn C-bundle E, we extend the structure 
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group to GL2n C by an inclusion Spn C Y GL2n C. Then we have a GL2n C­

bundle E(GL2n C) which admits a reduction of structure group to Spn C, so 

there is a global section of 

E(GL2n C) (GL2n C I Spn C)· 

But the quotient GL2n C I Spn C is naturally identified with the set of nonde­

generate symplectic forms on C2
n' so we get a global nondegenerate symplectic 

form on the associated vector bundle. 

Semistability: In order to build a moduli space of principal bundles, again we 

need to impose a semistability condition. Let E -t X be a principal G-bundle. Let 

P be a maximal parabolic subgroup of G and write 1r for the projection El P -t X. 

We have a short exact sequence 

where T'f,;jr~ is the tangent bundle of E I P along fibres of 1r. Then E is stable ( resp., 

semistable) if for every reduction of structure group to a maximal parabolic P we 

have deg(a*T'f,;j~) > 0 (resp., ~ 0). 

Remark: Later we will examine the relationship of the (semi)stability of a principal 

GLrC- or Spn C-bundle to that of the associated vector bundle. Note that unless 

otherwise stated, the "associated vector bundle" will always be that corresponding 

to the standard representation. 

We now describe briefly the notion of S-equivalence for principal G-bundles; 

we refer to Ramanathan [43, § 3] for details. Let E be a semistable principal G­

bundle. A reduction of structure group to a parabolic subgroup P ~ G is said to be 

admissible if for every character x: P -t C* which is trivial on Z(P), the line bundle 

associated toE via xis of degree 0. Let M be a maximal reductive subgroup of P. 

(This is also called a Levi component of P, and is isomorphic to the quotient of P 

by its unipotent radical.) Then Ramanathan [43, Prop. 3.12] proves that E has an 

admissible reduction of structure group to a parabolic P ~ G, which we call Ep, such 
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that the associated bundle Ep(M) is in fact a stable M-bundle. By the inclusion 

M Y G, we form a G-bundle (Ep(M)) (G) which is called the associated graded 

bundle of E and is uniquely determined up to isomorphism by this condition. Then 

two G-bundles are said to be S -equivalent if their graded bundles are isomorphic. 

Theorem 1.3 There exists a coarse moduli space Mx( G) for S-equivalence classes 

of semistable principal G-bundles over X, with the following properties: 

(i) M x( G) is normal and of dimension (g - 1) dim G + dim Z (G). 

(ii) The connected components of Mx( G) are irreducible and indexed by the fun­

damental group of G. 

(iii) Let E E Mx( G) be a stable G-bundle. Then there exists a holomorphic 

neighbourhood of E which is holomorphically isomorphic to a neighbourhood 

ofO in 
H 1(X,AdE) 
AutE/Z(G) 

where Ad E is the vector bundle E(g) associated to the adjoint representation 

of G on its Lie algebra g. 

Proof 

Ramanathan [43] and [44, Thm. 5.9] for (i) and (ii), and [45, § 4] for (iii). See also 

Balaji [3] and Balaji-Seshadri [4]. D 

Note: See Gomez and Sols [14] for recent results on moduli of principal bundles 

over varieties of dimension 2: 2. 

Now we can describe the moduli space of symplectic vector bundles: 

Theorem 1.4 Mx(Spn C) is naturally a moduli space for S-equivalence classes of 

semistable symplectic vector bundles of rank 2n over X. Moreover, the natural map 

Mx(Spn C) ---+ SUx(2n, Ox) is an injective morphism. 

Before proving this theorem, we use it and Thm. 1.3 to say a few things about 

Mx(Sp2 C) and Mn· 
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1. Mx(Spn C) and Mn are of dimension n(2n + 1 )(g - 1), since dim Spn C = 

n(2n+ 1) and the centre ofSpnC is {±Id}. 

2. Spn C is simply connected, so Mx(Spn C) and Mn are irreducible. 

3. If E is a stable Spn C-bundle then it is a singular point of Mx(Spn C) if and 

only if it has extra automorphisms1. We will study this in more detail in 

Chapter 3. 

1.4 Proof of Theorem 1.4 

The proof of this theorem is rather long, so we relegate some of the more technical 

parts to Appendix A. 

Notation: Let W be a semistable vector bundle. We denote the associated graded 

vector bundle of W by grv W. On the other hand, let G be a reductive algebraic 

group and E a semistable principal G-bundle. We denote the associated graded 

principal G-bundle by grp E. We consider the following functors Sch -t Set: 

Famp: S M { 

Fam.: SM { 

isomorphism classes of families of semistable } 

principal Spn C-bundles parametrised by S 

isomorphism classes of families of semistable } 

symplectic vector bundles of rank 2n parametrised by S . 

Our first step is to show that the functor Famv is isomorphic to Famp. Let Y be a 

smooth variety of any dimension. Denote Bunv(G) the category whose objects are 

principal G-bundles over Y and whose morphisms are G-bundle isomorphisms. We 

write VectVmp(2n) for the category of symplectic vector bundles over Y, that is, 

pairs (W, w) where W -t Y is a vector bundle of rank 2n and w a symplectic form 

on W, and whose morphisms are isomorphisms H: W -t W' such that H*w' = w. 

Theorem 1.5 The categories Buny(Spn C) and VectVmp(2n) are equivalent. 

1 In the terminology of Laszlo-Sorger [30, p. 27], these are the stable bundles which are not 

regularly stable. 
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Proof 

This is well known; see Appendix A. D 

Now we adapt a result of Ramanan [42] to the symplectic case. 

Lemma 1.6 Let E --t X be a principal Spn C-bundle and E(C2n) its associated 

(symplectic) vector bundle. Then E is a stable (resp., semistable) principal bundle 

if and only if 

Jl(V) < 0 (resp., Jl(V) :::; 0) 

for all isotropic vector subbundles V c E(C2n). 

Proof 

See Ramanathan [45, Remark 3.1]. D 

Lemma 1. 7 Let E --t X be a principal Spn C-bundle. Then E is semistable if and 

only ifW := E(C2n) is a semistable vector bundle. 

Proof (adapted from Ramanan [42, § 4]) 

One implication follows immediately from Lemma 1.6. For the converse, suppose 

that E is semistable and let F be a subbundle of W. Let N C W be the subbundle 

generated by F n Fj_. We have a short exact sequence 

0 --t N --t F EB Fj_ --t M --t 0 (1.1) 

where the quotient M is the sub bundle of W generated by F + Fj_. We claim that 

M = N j_. Since the two bundles have the same rank, it is enough to show that one 

is contained in the other. Clearly w ( F + Fj_, F n Fj_) = 0, so M ~ N j_. Thus we 

can form the short exact sequence 

0 --t M --t W --t N* --t 0, (1.2) 

whence deg M =- deg N* = deg N. Thus, by (1.1) we have 

deg(FEBFj_) = degN +degM = 2degN. (1.3) 

From the short exact sequence 

0 --t Fj_ --t W --t F* --t 0 (1.4) 
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we see deg F_L = - deg F* = deg F. Thus deg F = deg N by (1.3). Clearly N is 

isotropic, so by hypothesis and Lemma 1.6 we have deg F ~ 0. 0 

By definition, FamP and Famv are isomorphic functors if for any scheme S over 

C, there is a bijection between Famp(S) and Famv(S) such that for any map of 

schemes g: T-+ S, the following diagram commutes: 

g• 
Famp(S)--- Famp(T) . 

!I !I 
Famv(S) ____!t_ Famv(T) 

Let E be a principal Spn C-bundle over S x X such that El{s}xX is a semistable 

principal Spn C-bundle over X for all s E S. Then by Lemma 1.7, the associated 

symplectic vector bundle E(C2n) defines a class in Famv(S). By Theorem 1.5 and 

Lemma 1.7, this gives a bijection Famp(S) __:; Famv(S). Now let g: T -+ S be a 

morphism. To see that the above square commutes, we need to show that 

for any family E -+ S x X. This follows from looking at the fibre squares defining 

g* (E(C2n)) and g*E, since fibre products are unique up to unique isomorphism (see 

for example Hartshorne [17, Thm. II.3.3]). 

Thus the functors Famp and Famv are isomorphic. This shows that Mx(Sp2 C) is 

naturally a coarse moduli space for semistable symplectic vector bundles of rank 2n 

over X. To see that we get a well-defined injective map Mx(Spn C) -+ SUx(2n, Ox), 

we use the following lemma. 

Lemma 1.8 Two semistable principal Spn C-bundles areS-equivalent as principal 

bundles if and only if their associated (symplectic) vector bundles are S-equivalent 

vector bundles. 

Proof 

Let E-+ X be a semistable principal bundle. We will show that 
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We need a technical lemma: 

Lemma 1.9 Let W ---+ X be a semistable symplectic vector bundle. Then there 

exists a filtration 

0 = Wo c W1 C · · · c Wk ~ Wl- c Wl-_ 1 c · · · c W/- c Wl = W (1.5) 

where each Wi is an isotropic subbundle of degree 0 and ~~~ is a stable vector 

bundle for each i = 1, ... k. Then the associated graded bundle of this filtration is 

isomorphic to 

4 (_!!i_ EEl (_!!i_) *) EEl Wf 
i=l wi-l wi-l wk 

and is the usual Jordan-Holder grading ofW. Moreover, the symplectic form on W 

naturally induces a symplectic form on grv W. 

Proof 

See Appendix A. 0 

Write W := E(C2n) and consider a filtration of type (1.5). Since the transition 

functions of E can be taken to be the same as those of W, we see that E has a 

reduction of structure group to a group P of symplectic matrices of the form 

0 

0 

0 

0 

* 

0 

* 
* 
* 
* 

* * 
* 

where Ai E GLm; C fori= 1, ... , k and the Ak+1 E Spmk+J C for some nonnegative 

integers m 1, ... , mk+l· Now P is parabolic since it preserves a flag of isotropic 

subspaces. (Note that the symplectic form preserved by these matrices is not in 

general the standard one.) 
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Write Ep for the P-bundle so obtained. We claim that the unipotent radical 

of P is the intersection U of P with (our chosen representation of) Spn C and the 

group of matrices of the form 

where the identities along the diagonal are of sizes 

To see this2
, note that there a homomorphism P ---+ M where 

given by 

0 

0 

0 

0 

* 

0 

* 
* 
* 
* 

* * 
* 

Clearly this is surjective with kernel U. Since the quotient is reductive, the unipotent 

radical of P must be contained in U. Since U is a unipotent normal subgroup of P, 

we get the reverse inclusion also. 

Now we show that Ep is an admissible reduction of structure group. 

Proposition 1.10 Let P be a subgroup of the group of invertible matrices of the 

21 am grateful to A. Beauville for this argument. 
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form 

0 

0 

16 

* 
* 

where the Ai E GLm; C for some m 1 , ... , mk. (For example, P might preserve a 

bilinear form.) Then the group of characters of P is generated by the characters of 

the blocks along the diagonal. 

Proof 

See Appendix A. D 

By Prop. 1.10, the character group of Pis generated by the characters of the groups 

GLm1 C, ... , GLmk C, Spmk+
1 

C. It is well known that these are generated by the de­

terminants. Thus, to check that Ep is an admissible reduction of structure group, it 

suffices to check that WdWi-l is of degree 0 for each i = 1, ... , k and that Wkl. /Wk 

is of degree 0. But this is clear from the definition of the filtration. 

We now check that Ep(P/U) is a stable P/U-bundle. P/U is none other than 

M, and Ep(M) is the principal bundle whose transition functions are the images in 

M of the transition functions of Ep. 

By for example Ramanathan [43, § 2.9, p. 305], parabolic subgroups of M are 

in bijection with parabolic subgroups of Spn C contained in P, and the bijection 

is given by Q' H Q' n M. (The inverse construction is Q H Q · U.) By Fulton­

Harris [13, Lecture 23.3], a parabolic subgroup of G contained in P is the stabiliser 

of a partial flag of isotropic subspaces in C2
n which includes the flag stabilised by 

P. Hence a parabolic of M is isomorphic to a subgroup of the form 

where Qi is a parabolic subgroup of GLm; C for each i = 1, ... , k and Qk+l is a 

parabolic subgroup of Spmk+
1 

C. Clearly Q is maximal if and only if either 

(1) Qk+l = Spmk+
1 
C; for one j E {1, ... , k} the group Qj is a maximal parabolic 
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subgroup of GLmi C, and Qi = GLm; C for all i f=. j. 

(2) Qi = GLm; C for all i E {1, ... , k} and Qk+l is a maximal parabolic subgroup 

of Spmk+J C. 

Now let a: X --+ Ep(M)IQ be a reduction of structure group to Q. Suppose Q 

is of type (1). Write 1r for the projection Ep(M)IQ --+ X. There is a short exact 

sequence 

(1.6) 

and we must show that deg(a*T~e;CM)/Q) > 0. 

Now recall that E p ( M) I Q is the bundle associated to the M -space M I Q. We 

notice that the action of M on MIQ factorises via the projection M--+ GLmj C. 

Proposition 1.11 Let E--+ X be a principal G-bundle andY a G-variety. Suppose 

that there exists a homomorphism of algebraic groups v: G --+ H such that the 

action of G on Y factorises as follows: 

G P AutY 

~y 
H 

Then there is an isomorphism E(Y) ~ (E(H)) (Y), where Y is an H-space via p'. 

Proof 

Suppose that { ei,j} is a set of transition functions for E. The transition functions of 

E(H) are {v(ei,j)} and those of (E(H)) (Y) are {p'(v(ei,j))} = {p(ei,j)}. But these 

are just the transition functions of E(Y). D 

Now MIQ ,..._, GLmj C IQi. Hence by Prop. 1.11, we have an isomorphism 

that is, Ep(M)IQ ~ EiiQi, where we write Ej for the GLmi C-bundle 
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obtained by extension of structure group by the projection v: M --+ GLmi C. There­

fore we can replace the exact sequence (1.6) with 

and show that deg(a*T~;;tQ) > 0, equivalently, that Ej is a stable GLmi ((>bundle. 

Proposition 1.12 Let E --+ X be a principal GLr C.-bundle. Then E is (semi)stable 

if and only if the vector bundle E(C.r) associated to the standard representation of 

G Lr C. is a (semi )stable vector bundle. 

Proof 

This is well known; see Appendix A. 0 

But by inspecting the transition functions of Ep(M), we see that Ej(C.mJ) is just 

~~1 • By construction, this is a stable vector bundle. By Prop. 1.12, then, Ej is a 

stable principal GLmj C.-bundle and we are done. 

Now suppose that Q is of type (2). By a similar argument, we reduce to showing 

that the Spmk+
1 

C.-bundle 

is a stable principal Spmk+
1 

C.-bundle. Again by inspecting the transition functions 

of Ep(M), we see that this is the symplectic frame bundle of ~~. By construction 

(and see the proof of Lemma 1.9), this vector bundle has no isotropic subbundles of 

degree 0, so is associated to a stable Spmk+
1 

C.-bundle. 

In summary, Ep(M) is a stable M-bundle. We extend the structure group of Ep(M) 

to Spn C. by the inclusion M Y Spn C.; the extended bundle (Ep(M)) (Spn C) is 

grp E, by definition. Comparing transition functions, we have 

(grp E)(<C
2
") S< ~ ( :-

1 
Ell ( ;"J ') Ell ~~ C:: gr. W = gr. ( E(<C

2
")) . (1. 7) 

We need one more technical result to finish. 
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Lemma 1.13 Let W -t X be a polystable symplectic vector bundle. Then any 

two symplectic forms on W are related by an automorphism of W. 

Proof 

See Appendix A. 0 

Now let E and E' be principal Spn C-bundles. Then 

E is S-equivalent to E' {=::::} grp E ~ grp E' by definition 

{=:::}(grP E)(C2n) ~ (grP E')(C2n) 

as symplectic vector bundles by Thm. 1.5 

{=:::::} grv (E(C2n)) rv grv (E'(C2n)) as symplectic vector 

bundles, by (1.7). 

This implies that the vector bundles E(C2n) and E'(C2n) are S-equivalent. Con­

versely, if gr v ( E ( C2n)) and gr v ( E' ( C2n)) are isomorphic as vector bundles then by 

Lemma 1.13 they are in fact isomorphic as symplectic vector bundles. Reversing 

the above chain of equivalences, we see that the principal bundles E and E' are 

S-equivalent. 

This establishes Lemma 1.8. 0 

In summary, we have shown that Mx(Sp2 C) is naturally a moduli space for S­

equivalence classes of semistable vector bundles of rank 2n over X which have 

a symplectic structure. To finish the proof of Thm. 1.4, we consider the map 

Mx(Spn C) -t SUx(2n, Ox) taking a principal Spn C-bundle to its associated vector 

bundle, equivalently, the forgetful map (W, w) H W. By Lemma 1.8, it is a well­

defined and injective morphism. By Theorem 1.5 and Lemma 1.7, it is surjective to 

Mn ~ SUx(2n, Ox). 

This completes the proof of Thm. 1.4. 0 
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I am interested in studying the map Mx(Spn C) ----+ SUx(2n, Ox) further. In 

particular, I would like to know whether it is an embedding, and to study its differ­

ential. 

Overview 

The goal of this thesis will be to study the geometry of Mx(Sp2 C). In the next 

chapter, we study the singular and strictly semistable loci of Mx(Sp2 C) for a curve 

of genus g. We then digress slightly to develop some properties of symplectic exten­

sions and isotropic subbundles. Following this, we look at the genus 2 case: after 

giving some technical results on vector bundles of rank 2 and degree 1 over a curve 

of genus 2, we show how Mx(Sp2 C) can in this instance be covered by projec­

tivised extension spaces, in the spirit of Narasimhan-Ramanan [34]. We conclude 

by giving some results on theta-divisors of symplectic vector bundles: we use the 

aforementioned covering to prove that a general rank 4 symplectic vector bundle over 

a curve of genus 2 possesses a theta-divisor, and characterise those with singularities. 

Note: Since Spn C is a special group in the sense of Serre, all principal Spn C­

bundles are in fact locally trivial in the Zariski topology; see for example Sorger [50, 

Remark 2.1.2]. This is important as we will often use local coordinates. 



Chapter 2 

Singular and semistable loci of 

In this chapter we describe the stable singular locus and semistable boundary of 

Mx(Sp2 C) for a curve of genus g. We begin by adapting more results on orthogonal 

bundles in Ramanan [42] to the symplectic case. The description of the stable 

singular locus of Mx(Sp2 C) then follows easily. For the semistable boundary, we 

examine all the possibilities for a filtration of type (1.5) for a symplectic vector 

bundle of rank 4, and show how the corresponding loci in Mx(Sp2 C) fit together. 

2.1 Stable singular points of Mx(Sp2 C) 

We prove a lemma which gives useful information on the structure of the vector 

bundle associated to a principal Spn C-bundle. 

Lemma 2.1 Let E ~X be a principal Spn C-bundle. Then E is stable if and only 

if E(C2n) is an orthogonal direct sum of mutually nonisomorphic stable symplectic 

vector bundles. 

Proof (adapted from Ramanan [42, § 4]) 

As before, we write E(C2n) =: W. Suppose W is an orthogonal direct sum of stable 

symplectic vector bundles Wi and let F C W be a subbundle of degree 0. Now F 

is a semistable vector bundle since W is semistable and of degree 0. Since a map 

21 
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between semistable vector bundles of the same rank and degree is of constant rank, 

the image of the projection map F---+ Wi is a degree 0 subbundle of Wi. Since each 

Wi is stable, each of these projections is zero or surjective. Hence F is a direct sum 

of some of the Wi, so is not isotropic in W. Therefore E is a stable principal bundle 

by Lemma 1.6. 

Conversely, suppose E is a stable principal bundle. Then W is a semistable 

vector bundle by Lemma 1.6. Suppose F C W is a nonzero subbundle of degree 0. 

By Lemma 1.6 and our hypothesis, F is not isotropic. We have the exact sequence 

0 ---+ N ---+ F EB Fj_ ---+ M ---+ 0 (2.1) 

where N and M are again the sub bundles generated by F n Fj_ and F + Fj_. 

We show N = 0. Now deg Fj_ = - deg F* = deg F = 0 by the exact sequence 

0---+ Fj_ ---+ W---+ F* ---+ 0. Hence, by (2.1) we have 

deg N + deg M = deg F + deg Fj_ = 0 

Now if N =I= 0 then deg N < 0 by Lemma 1.6 and by hypothesis, since N is isotropic. 

But then deg M > 0 strictly; this would contradict the semistability of E. Therefore 

N=O. 

This implies that M = FEB Fj_. Counting ranks, we see W = M, an orthogonal 

direct sum. 

To see that F and Fj_ are mutually nonisomorphic, note that ifF were isomorphic 

to Fj_ then the inclusion f H (!,..;=If) would give an isotropic subbundle of W 

of degree 0, contradicting stability of the principal bundle E. Moreover, F and Fj_ 

are symplectic vector bundles: since F n Fj_ = 0 and (Fj_ )j_ = F, the form on W is 

nondegenerate on both F and Fj_. 

If F and Fj_ are stable vector bundles, we're done. If, say, G C F is a destabil­

ising subbundle of degree 0 then G is nonisotropic because E is a stable principal 

Spn C-bundle. So we can repeat the above procedure to write F = G EB Gj_. By 

induction, we see W has the desired form. D 

Let E ---+ X be a stable principal Sp2 C-bundle. By Theorem 1.3 (iii), there is 
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a neighbourhood of E in Mx(Sp2 C) which is isomorphic to a neighbourhood of 0 

in 
H 1(X, Ad E) 
Aut(E)/ Z2 

since Z(Spn C) ~ Z2 • A stable bundle is therefore singular only if it has automor­

phism group strictly bigger than { ± Id}. 

Corollary 2.2 Let E --t X be a stable Spn C-bundle and Aut E the automorphism 

group of E. Then Aut E = {± Id} if and only if W := E(C2n) is a stable vector 

bundle. 

Proof (adapted from Ramanan [42, §4]) 

By Lemma 2.1, the bundle W is an orthogonal direct sum EB;=I Wi for mutually 

nonisomorphic stable symplectic vector bundles W1 , ... , Wr. Thus Aut(E), which 

is identified with the group of symplectic automorphisms of W by Theorem 1.5, is 

isomorphic to z;. Thus Aut(E) = {± Id} if and only if r = 1, that is, W is a stable 

vector bundle. 0 

Theorem 2.3 Let E --t X be a stable Spn C-bundle. Then the following are equiv­

alent: 

(1) W := E(C2n) is a strictly semistable vector bundle. 

(2) W = EB;=l Wi for mutually nonisomorphic stable symplectic vector bundles 

W1, ... , Wr, with r > 1. 

(3) E belongs to the singular locus of the stable part of Mx(Spn C). 

Proof 

(1) =} (2): By Lemma 2.1, we have W = EB;=I Wi, an orthogonal direct sum of mu­

tually nonisomorphic stable vector bundles. Since semistability is strict, r > 1. 

(2) =} (3): In this case Aut(E) ~ z; with r > 1. By Thm. 1.3 (iii), there 

is a neighbourhood of E in Mx(Spn C) which is (holomorphically) isomorphic to 

H 1(X, Ad E)/f where r ~ z;- 1
. This means that there is a finite-sheeted branched 

covering of a neighbourhood of E by a domain in some CN whose branch locus is 
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contained in the set of bundles with extra automorphisms. It is not hard to show 

that this set has codimension at least 2. Therefore, by Prill [41, Thm. 1], the bundle 

E is a singular point of Mx(Spn C). 

(3) ==} (1): By Theorem 1.3 (iii), we see that Aut(E) is bigger than {±Id}. Hence 

W is strictly semistable by Corollary 2.2. D 

Corollary 2.4 Let E -+ X be a stable Sp2 C-bundle. Then E is a singular point 

of Mx(Sp2 C) if and only if E(C2n) = W1 EB W 2 for stable, mutually nonisomorphic 

WI, w2 E SUx(2, Ox). 

Proof 

By Theorem 2.3, the bundle E is singular if and only if E(C2n) is a direct sum of 

at least two mutually nonisomorphic stable symplectic vector bundles. Since all line 

subbundles of Ware isotropic, the summands must have rank at least 2. The result 

follows because E(C2n) is of rank 4. D 

Conclusion: The stable singular locus of Mx(Sp2 C) is the image of the com­

plement of the diagonal in the second symmetric product of the stable part of 

SUx(2, Ox) by the map (W1, W 2 ) H W1 EB W 2 . Thus it has dimension 6g - 6 

by Theorem 1.2 (ii). 

2.2 The semistable boundary of Mx(Sp2 C) 

In this section we characterise the S-equivalence classes in Mx(Sp2 C) corresponding 

to vector bundles containing an isotropic subbundle of degree 0, that is, vector 

bundles associated to strictly semistable principal Sp2 C-bundles. 

By Lemma 1.9, we can find the graded vector bundles associated to points in the 

semistable boundary by considering just the possible filtrations of a rank 4 symplec­

tic bundle by isotropic subbundles of degree 0 and their orthogonal complements. 

There are three possibilities: 

1. 0 C L c L..L c W where Lis a line subbundle of degree 0 
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2. 0 C F = Fj_ C W where F is Lagrangian of degree 0 

3. 0 C L C F = Fj_ C Lj_ C W where L and F are isotropic of degree 0 and 

ranks 1 and 2 respectively 

The corresponding graded bundles are 

1. L EB L - 1 EB V where V = L: is a stable symplectic vector bundle of rank 2 

2. FEB F*: since F is Lagrangian, ~ "'F* 

3. L EB L - 1 EB M EB M-1 where M = f 

Conversely, it is easy to see that every such direct sum carries a symplectic form. 

We list the components of the semistable boundary of Mx(Sp2 C). In the following 

table, L1 and L2 are distinct points of 1~ and F is a stable point of Ux(2, 0). We 

denote by V a stable point of SUx(2, Ox). Lastly, M 1 and M 2 are distinct points of 

1~[2], the 2-torsion subgroup of 1~. If U is a moduli space of vector bundles over 

X, we denote its stable locus by U8
• 

Polystable rep. Description Dimension 

A L1 EB L11 EB V Kumx xSUx(2, Ox)8 4g- 3 

B FEB F* Ul(2, 0)/duality 4g- 3 

c L1 EB L11 EB L2 EB L21 Sym2Kumx 2g 

D (L1 EB L11 )EB2 Kumx g 

A' MCf2 EB V 1~[2] X SUx(2, Ox) 8 3g- 3 

B' VEBV SUx(2, Ox)8 3g- 3 

C' MCf2 EB L1 EB L11 1~[2] x Kumx g 

C" MEB2 EB MEB2 
1 2 Sym2 1~[2] 0 

C"' MEB4 1 1~[2] 0 

The diagram overleaf shows how the biggest components intersect. 
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I 
I 
D 

26 

A 

.. ~c 
' / _ _;..---

All components except for B are contained in the closure Sym2 SUx(2, Ox) of 

the (6g- 6)-dimensional stable singular locus described in the last section. 

Caution: Not every vector bundleS-equivalent to a polystable bundle in the table 

above carries a symplectic form. For example, let F -+ X be a stable bundle of 

degree 0, rank 2 and nontrivial determinant. Let l¥ be an extension 

0 -+ F -+ vV -+ F* -t 0 

whose class 6(W) E H 1(X, Hom(F*, F)) is not symmetric; such W exist since 

h 1(X, (\2 F) = g- 1 > 0. Clearly vV isS-equivalent to a symplectic bundle of 

type B in the table. By hypothesis, /\2 F* = (det F)- 1 has no global sections, so 

F would be isotropic with respect to any symplectic form on vV. Therefore, by 

Criterion 3.4 from the next chapter, there does not exist any symplectic form on vV. 



Chapter 3 

Symplectic and orthogonal 

extensions 

We begin this chapter by reviewing some results on extensions of vector bundles, and 

describe the sheaves of sections of such extensions. We then prove some technical 

results which will be used later. The most important is Criterion 3.4, which gives in 

particular a method of constructing a rank 2n symplectic or orthogonal extension 

from a given vector bundle of rank n. We then generalise a result of Mukai to 

describe almost all rank n subbundles of such an extension, with a criterion for 

isotropy. We conclude by adapting this criterion to a particular case which will be 

studied in a later chapter. 

§ 3.1 contains generalisations of results in Kempf [19, Chapter 6] on extensions 

of invertible sheaves to the case of arbitrary rank. Criterion 3.4 was suggested by S. 

Ramanan (the proof is my own). For the rest of the chapter, we apply these results 

to the generalisation of Mukai [32, Example 1. 7] to the case where the extension 

may not split. Some of this work can be found in Hitching [18]. 

3.1 Extensions of vector bundles 

References for this subject include Seshadri [47, Appendix II], Narasimhan-Ramanan 

[35] and Atiyah [2]. The approach we shall follow, however, is that of Kempf [19, 

Chapter 6]. 

27 



3.1 Extensions of vector bundles 28 

Notation: Let X be a complex projective smooth irreducible curve of genus g. 

We denote the sheaf of sections of a vector bundle (E, F, W etc.) over X by the 

corresponding script letter(£, F, W etc.) For a vector bundle V--+ X, we have an 

exact sequence of Ox-modules 

0 --+ V --+ Rat(V) --+ Prin(V) --+ 0 

where Rat(V) is the sheaf of rational sections of V and Prin(V) the sheaf of principal 

parts with values in V. We denote their groups of global sections by Rat(V) and 

Prin(V) respectively. The sheaves Rat(V) and Prin(V) are flasque, so we have the 

cohomology sequence 

0 ---t H 0 (X, V) ---t Rat(V) ---t Prin(V)--+ H 1(X, V) ---t 0. (3.1) 

We denote 8 the principal part of s E Rat(V), and we write [p] for the class in 

H 1 (X, V) of p E Prin(V). 

Now let E and F be vector bundles over X. We shall consider short exact 

sequences of the form 

0 --+ E ---t W --+ F --+ 0. (3.2) 

Two such extensions W and W' of F by E are said to be isomorphic if there is a 

vector bundle isomorphism W ~ W' which induces the identity on E and F. We 

want to classify extensions of F by E up to isomorphism. The basic tool is the 

notion of the cohomology class of an extension. Applying Hom(F,-) to (3.2), we 

form the cohomology sequence 

· · · ---t H0 (X, End F) ---t H 1(X, Hom(F, E))--+··· 

The class of the extension W is defined to be the image t5(W) of the identity map on 

Fin H 1(X, Hom(F, E)). This has been much studied. Following Kempf [19, Chap. 

6], we will formulate the notion in terms of the sheaves of sections of E and F, as 

this will be useful later. 

We begin by characterising those locally free 0 x-su bmod ules of Rat (E) EB Rat (F) 

that are the sheaves of sections of extensions ofF by E. It is not hard to see that 
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this is equivalent to W having the following two properties (here 1r is the projection 

of Rat(E) EB Rat(F) onto the second summand): 

(1) W n (Rat( E) EB {0}) = E EB {0} 

(2) 1r(W) = :F 

Such W can be built using principal parts as follows. Let p be a global section of 

Prin(Hom(F, E)) and consider the Ox-module Wp defined, by analogy with Kempf 

[19, p. 46], as 

U H {(e, f) E Rat(E)(U) EB :F(U) : e = p(f)}. 

One easily checks that this satisfies the required properties. The next lemma shows 

that in fact this is the whole story. 

Lemma 3.1 Let W be an extension ofF by E. Then W is of the form Wp for 

some uniquely defined p E Prin(Hom(F, E)), and the correspondence p +-+ Wp is a 

bijection between Prin(Hom(F, E)) and the set of extensions ofF by E. 

Proof 1 

By (2), we have W ~ Rat(E) EB :F. Let q be the canonical map 

Rat(E) EB :F -4 Prin(E) EB :F 

given by (e, f) H (e, !). We denote by ir the projection of Prin(E) EB :F onto the 

second summand. 

We show that (1) and (2) imply that irlq(W) is an isomorphism q(W) _:; :F. 

Since ir o q = 1r, property (2) shows that irlq(W) is surjective. As for injectivity: let 

(e, !), (e', f) E q(W). Because q(W) is an Ox-module, the difference (e, f)- (e', f) 

also belongs to q(W), and then 

(e- e', 0) E q(W) n (Prin(E) EB {0}). 

But property (1) implies that q(W) n (Prin(E) EB {0}) = {0}, so e- e' = 0 and 

e = e'. Hence irlq(W) is injective. 

1 This proof is my own. 
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Proposition 3.2 LetS and T be Ox-modules and ran Ox-submodule of SED T. 

Then the projection of r to T is an isomorphism if and only if r is the graph of a 

(necessarily unique) homomorphism of Ox-modules T ~ S. 

Proof 

If r is the graph of an Ox-module homomorphism then clearly the projection to T 

is an isomorphism. Conversely, if we have a diagram 

where Prlr is an isomorphism then r is the graph of Ps o (Prlr)- 1
: T ~ S. D 

We return to the proof of Lemma 3.1. By Prop. 3.2, we see that q(W) is the 

graph of a unique Ox-module homomorphism :F ~ Prin(E). By the canonical 

isomorphism 

Homox(:F, Prin(E)) _::; Prin(Hom(F, E)), 

there exists a unique p E Prin(Hom(F, E)) whose graph { (p(f), f) : f E :F} is q(W). 

Now we claim that q-1(q(W)) = W. It suffices to show that q- 1(q(W)) satisfies 

properties (1) and (2). By the definition of q and the remarks just made, we have 

q-1(q(W)) = {(e, f) E Rat(E) ED :F: (e, f)= (p(f), f)} 

which is none other than Wp, and we have already noticed that this satisfies (1) and 

(2). Hence W = Wp· Since pis unique, the association p t-t Wp is a bijection. 

This completes the proof of Lemma 3.2. D 

Lemma 3.3 (i) The boundary map H 0 (X, F) ~ H 1 (X, E) is given by cup prod­

uct by the cohomology class [p]. 

(ii) The cohomology class o(W) is equal to [p]. 

(iii) Two extensions Wp and Wp' are isomorphic if and only if [p] = [p']. 
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Proof 

This is proven in Kempf [19, pp. 48-51]) for the case where £ and :F are invertible, 

and the arguments are readily adapted to the case of arbitrary rank. We will, 

however, give explicitly the isomorphism Wp _::; Wp' when [p] = [p'] as this will be 

needed later. 

By (3.1), the cohomology classes [p] and [p'] are equal if and only if p' = p + 7J 

for some global rational section (3 of Hom(F, E). Then the map Wp ---t Wp' given by 

(e, f) t-t (e + (3(!), f) is an isomorphism of Ox-modules which induces the identity 

on£ and :F. 

Lemma 3.3 (iii) shows that isomorphism classes of extensions of F by E are 

parametrised by H 1 (X, Hom(F, E)). However, isomorphism of extensions is stronger 

than isomorphism of vector bundles. For example, the group Aut(E) x Aut(F) 

acts on H 1 (X, Hom(F, E)) (see for example Le Potier [29, § 7.3]) preserving the 

isomorphism class of the underlying vector bundle. In particular, for any A E C* 

the extension with class A· o(W) is isomorphic to W as a vector bundle. We will 

often work with the projectivised extension space lP H 1 (X, Hom(F, E)). 

Notation: Let V be a vector space of finite dimension over C and let v be a 

nonzero element of V. Then we write (v) for the class determined by v in lP V. 

3.2 Symplectic and orthogonal extensions 

Let L ---t X be a line bundle and W ---t X a vector bundle of rank 2n with an £­

valued symplectic or orthogonal form. Suppose F C W is a Lagrangian subbundle. 

Then there is an exact sequence 

0 ---t F ---t W ---t Hom(F, L) ---t 0 

since F = Fl_. Conversely, it is natural to ask for which extension classes 

o(W) E H 1 (X, Hom (Hom(F, L), F)) 

such a sequence is induced by a bilinear antisymmetric or symmetric form. We have 

the following criterion. 
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Criterion 3.4 An extension 0 --t F --t W --t Hom(F, L) --t 0 carries a symplectic 

(resp., orthogonal) structure with respect to which F is isotropic if and only if W 

is isomorphic as a vector bundle to an extension whose cohomology class belongs to 

H 1(X, Sym(Hom(F, L), F)) (resp., H 1(X, 1\(Hom(F, L), F))). 

Proof 

We prove the criterion for the symplectic case; the orthogonal case is practically 

identical. Firstly, suppose b'(W) is actually symmetric. By Lemma 3.1, there exists 

p E Prin(Hom(Hom(F, L), F)) such that the sheaf W is of the form 

{(e, 4>) E Rat(F) EB Homox(F, .C)): e = p(¢)} =: Wp· (3.3) 

To say that b'(W) --:- (p] is symmetric is to say that 

for some a E Rat(Hom(Hom(F, L), F)). Replacing p by p + ~ if necessary, which 

by Lemma 3.3 (iii) does not change the isomorphism class of the extension, we can 

assume that tp = p. 

Now we define a Rat(L)-valued bilinear nondegenerate antisymmetric form 

w: (Rat( F) EB Rat(Hom(F, L)))x 2 --t Rat(£) 

by w((fi,¢1), (/2,¢2)) = </>1(!2)- 4>2(fi). By (3.3), for any (!I,¢1), (/2,4>2) E Wp, 

the principal part 

W ((/1, </>I), (/2, </>2)) = ¢1(P(¢2))- </>2(p(¢I)) 

= <1>2(ep- p)(¢1)) 

which is zero since p is symmetric. Thus w is regular on Wp x Wp· It is clearly 

0 x-bilinear and nondegenerate, and F is isotropic. Thus w induces a global regular 

bilinear antisymmetric form W x W --t L with the required properties. 

For the general case, we note that w pulls back to give the required symplectic 

structure to any vector bundle isomorphic to W, which need not be isomorphic as 

an extension. 
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Conversely, suppose that W carries a symplectic form w with respect to which 

F is isotropic. Choose transition functions {li,1} and { li,j} for F and L respectively 

over an open cover { Ui : i E J} of X. Then the transition functions of Hom( F, L) are 

{t fi~]li,j} and there exist trivialisations for W over {Ui} whose transition functions 

are of the form 

(f.. 8·. ) .. - l,J l,J 
wlJ-

' t -1 0 fi,j li,j 

where 8(W) is defined by the 1-cocycle {8i,j}· 

Now w is given with respect to {Ui} by a cochain {ni} of antisymmetric matrices 

which satisfy 

(3.4) 

on the intersection Ui n Uj for all i, j E J, since w induces a homomorphism 

W---+ Hom(W, L). 

We write 

where {Ai}, {Bi} and {Ci} are Mn,n(C)-valued cochains and all the Ai and Ci are 

antisymmetric. Firstly, we have Ai 0 for all i because F C W is isotropic. 

Expanding condition (3.4), we see that 

Bi(t r-1) = (t r-.l)BJ· l,J l,J , 

so {Bi} defines an endomorphism ofF* and also of Hom(F, L). Since all the Ai are 

zero but the form is nondegenerate, this must have rank n, so is an automorphism. 

Also by (3.4), we have 

(Although a priori t Bi8i,j and toi,jBi map between different spaces, the transpose 

of t Bi8i,j is in fact defined by toi,jBi by the discussion in Chapter 1, § 1.) This 

shows that the difference between the cocycle {l Bi8i,j} and its transpose is coho­

mologically trivial. Hence the cohomology class defined by {l Bi8i,j} belongs to 
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H 1 (X, Sym(Hom(F, L), F)), and this class belongs to the same orbit as the class of 

o(W) under the action of Aut(F) on H 1(X, Hom(Hom(F, L), F)), so the extensions 

are isomorphic as vector bundles. 0 

Remarks 

1. For any {3 E Rat(Hom(Hom(F, L), F)), the isomorphism Wp ~ WP+:B de­

scribed after Lemma 3.3 carries the form w into the form w' on Wp+,B given 

by 

This shows that the symplectic form constructed in the first part of this proof 

does not depend on the choice of p representing o(W). 

2. We notice that if p, E H0 (X, t\(Hom(F, L), F)) is nonzero then the symplectic 

form is not unique, as we obtain another regular one by adding ¢2 (p,( ¢1)) to 

the expression for w ((JI, c/J1), (!2, ¢2)). However, this situation will rarely arise 

for us. 

3. If W is orthogonal of rank 2 and F C W is an isotropic line subbundle then 

we have W"' FEB F-1 L because t\2 F = 0. 

3.3 Vector subbundles and graphs 

Firstly, we recall some linear algebra. Let K be a field and M, V and V' vector 

spaces over K of dimensions 1, n and n' respectively. If V' = Hom(V, M) then we 

can define a bilinear nondegenerate antisymmetric form 

w: (V EB Hom(V, M)) x2 --+ M 

by 

The following is a slight generalisation of Mukai [32, Example 1.5]. 
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Lemma 3.5 (i) There is a bijection between HomK(V', V) and the set of n'­

dimensional K-vector subs paces of V EB V' which intersect V in zero, given by 

associating to a map (3 its graph r tl. 

( ii) The kernel of such (3 is canonically isomorphic to r tl n ( { 0} EB V'). 

(iii) If V' = Hom(V, M) then r tl is isotropic with respect to w if and only (3 is 

symmetric. 

Proof 

This is straightforward to check. D 

Now let E and F be vector bundles of rank n and m respectively over X. Con­

sider an extension 0 --t E --t W --t F --t 0 with sheaf of sections Wp and class 

b(W) = [p] E H 1(X, Hom(F, E)). We want to study vector subbundles G C W of 

rank m whose projection to F is generically surjective. 

Now Rat(E) and Rat(F) are vector spaces of dimensions n and m respectively 

over K(X), the field of rational functions on X. The following theorem, globalising 

Lemma 3.5, is a generalisation of Mukai [32, Example 1.7] to the case where W may 

be a nontrivial extension. 

Theorem 3.6 (i) There is a bijection 

rank m vector subbundles 

HomK(X)(Rat(F), Rat(E)) ++ G c W with Glx n Eix = 0 

for generic x EX 

The bijection is given by (3 ++ r tJ n Wp; the inclusion of this subsheaf in Wp 

in fact corresponds to an injection of vector bundles. Moreover, r tl n Wp ~ 

Ker(p- j3). 

(ii) Ker(f31g) ~ (rtJ n Wp) n ({0} EB :F) (although we will not use this result). 

(iii) Suppose F = Hom(E, L) and W is a symplectic extension with sheaf of sec­

tions Wp defined by a symmetric principal part p and symplectic form w as 

defined in the proof of Criterion 3.4. Then G is isotropic with respect to w if 

and only ift(3 = (3. 
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Proof 

(i) Let G c W be a vector subbundle of rank m intersecting E in zero except at 

a finite number of points. Then Rat( G) is a K(X)-vector subspace of 

Rat(W) == Rat(E) EB Rat(F) 

of dimension m which intersects Rat(E) in zero. By Lemma 3.5 and the remarks 

just before this theorem, Rat( G) is the graph r fJ of some uniquely determined 

(3 E HomK(X) (Rat(F), Rat(E)). 

Furthermore, g = r fJ n Wp since a regular section of G is the same thing as a rational 

section of G which is a regular section of W. 

Conversely, we claim that the the association 

defines a subsheaf of Wp which in fact corresponds to a vector subbundle GfJ c W 

with the required properties. By the definitions of r 13 and Wp, we have 

QfJ = { ((3(!), f) E Rat(E) EB :F: p(f) = (3(!)}. 

This is clearly isomorphic to the kernel of the map 

(p- 73): :F ~ Prin(E) 

via the projection of Q13 onto its image in £. (The inverse map is f H ((3(!), !).) 

But since any principal part is supported at a finite number of points, (QfJ)x ~ :Fx 

for all but finitely many x E X. Hence gfJ has rank n and projects surjectively to 

:F at all but a finite number of points of X. 

We now check that g13 actually corresponds to a vector subbundle of W. The 

inclusion gfJ Y Wp induces a short exact sequence of Ox-modules 

where Q is coherent. Let Q' denote the inverse image in Wp of the torsion subsheaf 

of Q. Clearly Q' contains Q13 • Now Q' corresponds to an injection of vector bundles 
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G' <--+ W by Atiyah [2, Prop. 1] since by construction Wp/9' is locally free. But in 

fact Rat(G') = r,a; this is because Q' is contained in Q,a(D) for some divisor Don 

X, so they have the same sheaf of rational sections. Hence Q' ~ r .B n Wp = Q,a, so 

in fact Q,a = Q' corresponds to a vector subbundle Gf3 C W. 

We need to see that the associations 

(A) 

and 

G f-+ (Rat( G) = rfj B) f3 (B) 

are mutually inverse. B o A is the identity because Rat( G .B) is clearly contained in 

r ,a, hence is equal to it because they are both K(X)-vector spaces of dimension m. 

Conversely, A o B is the identity because Rat( G) n Wp = Q for any subbundle G of 

W. Thus we have a bijection. 

(ii) Suppose (f3(g), g) E rf3 n Wp· Then f3(g) = 0 if and only if 

(f3(g), g) E (r.a n Wp) n ( {o} EIJ F). 

(iii) The symplectic form on W is induced by the restriction of 

w: Rat(EEBHom(E,L))x 2 
--t Rat(L) 

to Wp x Wp, so the criterion for isotropy follows from Lemma 3.5 (iii). 0 

Remarks 

1. Suppose that h0(X, Hom(F, E)) = 0. Then principal parts defining the coho­

mology class 8(W) = [p] are in bijection with rank n subbundles G C W lifting 

fromFviaq B Ker(q: F --t Prin(E)). Indeed, by the proofofThm. 3 (i), the 

sheaf of sections of G is isomorphic to Ker(p-/3) for some f3 E Rat(Hom(F, E)); 

by (3.1) we have [p-/3] = [p] = 8(W). Conversely, if 8(W) = (q] then q = p-/3 

for some f3 E Rat(Hom(F, E)), which is uniquely determined by hypothesis. 

Then the su bsheaf Ker( q) ~ F lifts to the rank n su bsheaf r .a n Wp of Wp by 

the map f f-+ (/3(!), f); by the proof of Thm. 3 (i) this corresponds to a vector 

subbundle. It is easy to see that these constructions are mutually inverse. 
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2. If W is symplectic of rank 2, then Theorem 3 gives another proof of the 

(obvious) fact that every line sub bundle of W is isotropic. 

We make an observation: 

Lemma 3.7 The K(X)-linear map /3 of Theorem 3 (i) is everywhere regular on 

Ker(p- /3). 

Proof 

If the supports of p and 7J are disjoint, then this is clear. Suppose the supports 

coincide at a point x E X. Then the maps 

are given locally by matrices of rational functions on a neighbourhood of x. Since 

X is of dimension 1, we can assume that the numerators and denominators of each 

of these functions are relatively prime, and then in fact the denominators determine 

the maps. 

The key point is that by the identity 

a b ah- bf 
---
f h fh 

the denominators of the entries of the matrix (p- /3)x are at worst the products of 

the corresponding entries of Px and lix· Since Y/3 ~ Ker(p-/3), the value (p-7J)x(9) 

is regular for any g E (Q13 )x. But for regular functions a, f and h, if th is regular 

then so is ~· Hence /3 itself is regular on (Qf3)x· D 

3.4 A criterion for isotropy 

In this section we specialise to a case we will be studying later. Let F ----+ X 

be a vector bundle of rank n such that Hom(F*, F) has no global sections. Let 

0 ----+ F ----+ W ----+ F* ----+ 0 be a symplectic extension with sheaf of sections Wp for a 

symmetric principal part p and G C W a subbundle of rank n which intersects F 

generically in rank 0. By the first remark after Thm. 3, the sheaf g is isomorphic 

to Ker(q) for some q E Prin(Hom(F*, F)) such that o(W) = [q]. 
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Criterion 3.8 The subbundle G is isotropic if and only if q is a symmetric principal 

part2 . 

Proof 

By Theorem 3 (i) we have Q 

Q ""Ker(q) where q = p- (3. 

fp n Wp for some (3 E Rat(Hom(F*, F)), and 

We claim that (3 is symmetric if and only if 7J is. One direction is clear. Con­

versely, suppose 7J = t(3. By (3.1), the difference tf3- (3 is a global regular section of 

Hom(F*, F), which is zero by hypothesis. Hence (3 is symmetric. 

Thus by Theorem 3 (iii), the subbundle G is isotropic if and only if t(3- (3 = 0. 

Now tp- p = 0, so 

Hence G is isotropic if and only if q is a symmetric principal part. 0 

Remark: This result holds with no change of statement if we only assume that 

tp - p == a for some a E Rat(/\ 2 F*) and work with the symplectic form w' on Wp 

defined by 

The orthogonal case 

There are natural analogues to Lemma 3.5 (iii) and Theorem 3 (ii) for the orthog­

onal case which are proven identically. For Lemma 3.5 (iii), we define a bilinear 

nondegenerate symmetric form () on V E9 Hom(V, M) x2 by 

and require (3 to be antisymmetric instead of symmetric, and similarly in the or­

thogonal version of Theorem 3. Criterion 3.8 holds if W is an orthogonal extension 

defined by an antisymmetric principal part p and we ask that q be antisymmetric. 

2 This is a stronger condition than that the cohomology class defined by q be symmetric. 



Chapter 4 

Vecto:r bundles of :rank 2 and 

degree 1 over curves of genus 2 

Let X be a complex projective smooth irreducible curve of genus 2. In this chapter 

we give some results on vector bundles of rank 2 and degree 1 over X which will be 

used in the following chapters. 

4.1 The moduli space Ux(2, 2k + 1) 

The moduli space Ux(2, 2k + 1) of vector bundles of rank 2 and degree 2k + 1 over 

X is a smooth irreducible variety of dimension 5; see Narasimhan-Ramanan [35), Le 

Potier [29] and Seshadri [47) for further details. 

Firstly, we give another description of Ux(2, 2k + 1). Let pk+l ---* J~+l x X and 

pk ---* J'X x X be Poincare bundles for line bundles over X of degree k + 1 and k 

respectively. There is a diagram 

pk+l ~ j~+l X X J'X x x-pk 

Let r: J~+I x J'X x X---* J~+l x J'X be the projection. Since h1(X, M-1 L) = 2 for 

40 
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all (M, L) E J~+I x J~, the sheaf 

is locally free of rank 2 on J~+l x J~ by for example Hartshorne [17, Corollary 

III.12.9). We consider the associated projective bundle 

lP R---+ J~+l x J~. 

By Seshadri [47, App. II), there exists a family of extensions over lP R x X whose 

restriction to { ( (E), M, L)} x X is isomorphic as a vector bundle to the extension 

0---+L---+E-+M---+0 

defined byE E H 1 (X, Hom(M, L)). By the moduli property of Ux(2, 2k + 1), there 

exists a rational classifying map <PIP R: lP R ---t Ux (2, 2k + 1). To analyse this map, 

we will need the following lemma: 

Lemma 4.1 Consider a diagram of vector bundles over X 

o--E--w--F--o 

lf 
v 

where the top row is exact. Then f factorises via a map V ---+ W if and only if the 

class o(W) of the extension belongs to the kernel of the induced map 

f*: H 1(X, Hom(F, E))---+ H 1(X, Hom(V, E)). 

Proof 

Narasimhan-Ramanan [35, Lemma 3.1). D 

Lemma 4.2 The map <I>IP R is a surjective morphism of degree 4. 

Proof 

Suppose we have a short exact sequence 

0-+L---+E---+M---+0 (o(E)) 
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and that L' c E is another line subbundle of degree k. If L' =I= L then L' must 

be of the form M( -x) for some point x E X. Conversely, by Lemma 4.1 a map 

M( -x) ---+ M lifts to E if and only if o(E) belongs to the kernel of the linear map 

H 1 (X, Hom(M, L)) ---+ H 1 (X, Hom(M( -x), L)) 

induced by the map M( -x) ---+ M. By Serre duality, this is identified with the 

restriction map 

H 0 (X,KxL- 1M)*---+ H 0 (X,KxL- 1M(-x))* 

induced by M(-x)---+ M. Now lP H 0 (X,KxL- 1M)* = IKxL- 1MI* = lP1
, so (o(E)) 

can be thought of as the divisor of a section vanishing at three points (counted with 

multiplicity) x1,x2,x3 EX. So the only degree k subbundles of E are L, M(-xi), 

M( -x2) and M( -x3), which are not necessarily distinct. 

Now we show that distinct extension classes in lP H 1 (X, M-1 L)) give nonisomor­

phic vector bundles. Another extension E' of M by L, corresponding to a different 

divisor x~ + x~ + x~ E IKx L -l Ml, admits the line sub bundles L, M( -x~), M( -x~) 

and M( -x~). One sees easily that 

#({xi,x2,x3 }n{x~,x;,x;})::::; 1 

with equality if and only if IKxL -l Ml has a base point. But M( -x) '1- M( -x') if 

x =/= x', so the extensions E and E' cannot be isomorphic as there is at least one 

degree k line bundle which belongs to one but not to the other. 

In summary, no E is represented in more than 4 fibres of lP R or more than once 

in any fibre. Therefore, <l>IPR is finite. Since Ux(2,2k + 1) is irreducible, <I>IPR is 

dominant since both lP Rand Ux(2, 2k + 1) are of dimension 5. Finally, since every 

nontrivial extension we have constructed is stable, <PIP R is defined everywhere. Thus 

in fact it is surjective. This completes the proof of the lemma. D 

Note: Lange and Narasimhan [23, Prop. 4.2] prove that a bundle in Ux(2, 2k + 1) 

has at most 4 subbundles of degree k. 

A more practical statement of Lemma 4. 2 is the following: 
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Lemma 4.3 Every E E Ux(2, 2k + 1) fits into 1, 2, 3 or (generically) 4 short exact 

sequences of the form 

0--+L--+E--+M--+0 (b(E)) 

where L and M are line bundles of degree k and k + 1 respectively. D 

We quote a useful result of Narasimhan and Ramanan. 

Lemma 4.4 Let V and L be vector bundles of ranks n and 1 respectively, and let 

f: L--+ V be a homomorphism. Then f factorises via a map f': L(x) --+ V if and 

only iff is zero at x. 

Proof 

Narasimhan-Ramanan [35, Lemma 5.3). D 

Proposition 4.5 Let E E Ux(2, 2k+ 1). Then for any line bundle L--+ X of degree 

k, there is at most one linearly independent map L--+ E. 

Proof 

Suppose h0 (X, Hom(L, E)) > 0. Then in fact Lis a subbundle of E by Lemma 4.4 

and because E is stable, and we have a short exact sequence 

where degM = k+l. If h0 (X,Hom(L,E)) ~ 2 then Lis an elementary transforma­

tion of M which lifts to E. Since h0 (X, Hom(M, L)) = 0, by the first remark after 

Theorem 3 the sheaf .Cis isomorphic to Ker(q) for some q E Prin(Hom(M, L)) such 

that b(E) = [q). Comparing degrees, we see that L = M( -x) for some x E X, so q 

is supported at x where it has a simple pole. 

But Hom(M, L) ""' Ox( -x), so a section of Hom(M, L) which is regular apart 

from a simple pole at x is just a regular section of Ox. Since Ox has sections not 

vanishing at x, we see that q does occur as the principal part of a global rational 

section of Hom(M, L). Therefore [q) is zero by (3.1), so E is a trivial extension. 

This shows that if E is stable then h0 (X, Hom(L, E)) :::; 1. D 
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4.2 Genericity of bundles in Ux(2, 1) 

In this section, we show that h0(X, E Q9 E) = 0 for generic E E Ux(2, 1), and deduce 

some facts about such bundles. Firstly, we quote two results from the literature. 

Lemma 4.6 Let F --+ X be a semistable vector bundle. Then SymP F and 1\P F 

are semistable of slope p · f.-l(F). 

Proof 

Le Potier [29, p. 161]. D 

Lemma 4. 7 Every semistable vector bundle F of rank at most 3 and slope 1 over 

a curve of genus 2 satisfies h0 (X, M Q9 F) = 0 for generic M E J~. 

Proof 

This is a special case of Raynaud [46, Cor. 1.7.4]. D 

Proposition 4.8 For generic E E Ux(2, 1), the bundle Hom(E*, E) has no global 

sections. 

Proof 

We have h0 (X, Hom(E*, E) = h0 (X, det(E)) + h0 (X, Sym2 E), so it suffices to show 

that the subsets of Ux(2, 1) where h0 (X, det(E) > 0 and where h0 (X, Sym2 E) > 0 

are of codimension 1. 

Firstly, h0 (X, det(E)) > 0 if and only if det(E) is effective. The set of such E is 

the inverse image of Supp(E>) under the map det: Ux(2, 1) --+ J}. Clearly this map 

is surjective, so the inverse image of a divisor is a divisor. 

As for Sym2 E: this is of slope 1 = g- 1, so we expect that if the set 

{E E Ux(2,1): h0 (X,Hom(E*,E) > 0} 

is not equal to Ux(2, 1) then it is the support of a divisor. Since Ux(2, 1) is ir­

reducible, it suffices to exhibit one E such that h0 (X, Sym2 E) = 0. Choose any 

E E Ux(2, 1). If h0 (X, Sym2 E)= 0 then we are done. If not, we note that by Lemma 
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4.6, the bundle Sym2 E is semistable for all E E Ux(2, 1). Then since X is of genus 

2, by Lemma 4.7 there exists at least one ME J~ such that h0 (X, M®Sym2 E)= 0. 

Let N be any square root of M. Since 

by construction the bundle E' := N ® E, which is stable of degree 1 and rank 2, 

satisfies h0 (X, Sym2 E') = 0. This completes the proof of the lemma. 0 

Proposition 4.9 Let E -+ X be a vector bundle of rank 2 and degree 1. Then there 

exists a E H 0 (X, Sym2 E) of generic rank 1 if and only if E has a line subbundle of 

order 2 in Pic0 (X). 

Proof 

Suppose there exists a: E* -+ E of generic rank 1. Then the image of £* in £ is 

an invertible sheaf M. Since E and E* are stable, in fact this corresponds to a line 

subbundle M C E of degree 0 by Lemma 4.4. Now a factorises as 

E*~M~E 

where ~ is the inclusion map. Hence ta factorises as 

t t I 

E* 4 M- 1 ~E. 

Also, Ima ~ Ima' = M since~ is injective, and Im ta = Im ta'"' M- 1 since t~ is 

surjective. But since ta = a, we have M "' M-1 , that is, M is of order 2. 

Conversely, suppose M = M-1 is a line subbundle of E. Then we have a short 

exact sequence 

0-+M-+E-+L-+0 

where L is a line bundle of degree 1. The dual sequence is 

0-+ L - 1 -+ E* -+ M-+ 0. 

Composing the maps E* -+ M and M -+ E, we get a map a: E* -+ E of rank 

everywhere 1. To see that a is symmetric, note that ta is another map E* -+ E 
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which factorises E* --t M --t E. By Prop. 4.5 and since M = M-1 , we have 

h0 (X,Hom(M,E)) = h0 (X,Hom(E*,M)) = 1 

so the maps a and ta are proportional. Since a I-t ta is an involution, we have 

ta = ±a. Since a has odd rank, it cannot be antisymmetric, so it must be a sym­

metric map. 0 

Corollary 4.10 The generic vector bundle E --t X of rank 2 and degree 1 has no 

line subbundles of order 2. 

Proof 

This is clear from Props. 4.8 and 4.9. 0 

4.3 A ruled surface in JP>5 

In this section, we fix E E Ux(2, 1) and describe a map of the ruled surface JP> E* 

into JP>5
. We then give a sufficient condition for this map to be an embedding. This 

will be used in the following chapter. 

We follow an approach outlined in Kempf-Schreyer [20, § 1]. For any x EX, we 

can form the exact sheaf sequence 

Sym2 e*(x) 
0 --t Sym2 £* --t Sym2 E*(x) --t --t 0 

Sym2 e* 

whose cohomology sequence begins 

The second term can be identified with the set of principal parts with values in 

Sym2 E* and at most a simple pole at x. Moreover, there is a canonical isomorphism 

For each x E X, we define a map '1/Jx: JP> E* ix --t JP> H 1 (X, Sym2 E*) by the composi­

tion 

lP E*ix Segre) JP>Sym2 E*ix-':; lP (Sym2 E*(x)) ix ~ lP H 1(X, Sym2 E*). 

We define '1/J: lP' E* --t lP' H 1 (X, Sym2 E*) to be the product of '1/Jx over all x E X. 
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Notation: We denote lP H 1(X, Sym2 E*) by JP1:. Let Y be a variety andY -t Y a 

line bundle with a nonempty linear series 111 = lP H 0 (Y, Y). Then we write ¢>1'rl for 

the rational map Y --+ 111* given by sending y E Y to the hyperplane of !-divisors 

containing y. 

Remark: It is not hard to see that the image of ¢>IYI is nondegenerate in IT I*. 

Proposition 4.11 Write 1r for the projection lP E* -+X and let Y -t lP E* be the 

line bundle 7r*Kx. OIP'E·(2). Then there is a natural identification Fe rv ITI* under 

which '1/J coincides with ¢>1YI· In particular, '1/J is algebraic. Moreover, '1/J is defined 

everywhere. 

Proof 

We identify H 1 (X, Sym2 E*) with H 0 (X, Kx ®Sym2 E)* by Serre duality as follows. 

Recall from Chapter 3 ( 3.1) that every class in the first space is of the form [p] for 

some p E Prin(Sym2 E*). Let s be a global section of Kx ® Sym2 E. Then the 

contraction (p, s) belongs to Prin K x, so defines a cohomology class in H 1 (X, K x) = 

C, so we get a linear form on H0 (X, Kx ® Sym2 E). It is easy to check that this 

does not depend on the choice of p representing [p]. 

Now we describe the identification ITI* _::; JP1:. Let t be a global section ofT. 

Since Kx and E are locally trivial, t is locally of the form dz 0 t' where z is a local 

coordinate on X and t' is a choice of homogeneous quadratic t~ on each fibre lP E* lx· 

Such a quadratic defines naturally a linear form on Sym2 E* lx, so t defines a section 

of Kx ®Sym2 E. Moreover, this association is clearly linear and injective, so defines 

an isomorphism H 0 (IP E*, T) .::; H0 (X, Kx ® Sym2 E). 

We proceed to the identification of '1/J and ¢>1YI· Choose x E X and let z be a 

local coordinate centred at x. Let f be a nonzero vector in E*lx· We show that 

any section t of Y vanishing at (!) E lP E* belongs to the kernel of the linear form 

defined by the cohomology class of the principal part 

!®! 
p:=--, 

z 

which lies over '1/J(f). We have seen that t is of the form dz ® t' near x. Now since 

t(f) = 0, the linear form t~ vanishes on the element f ® f E Sym2 E*lx· Since pis 
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supported only at x and has only a simple pole, the contraction (p, t) E Prin Kx is 

in fact regular. In particular, the cohomology class [(p, t)] is zero. 

Lastly, we show that 1/J is a morphism, that is, that the cohomology class [p] 

defines a nonzero linear form on H 0 (X, Kx ® Sym2 E). Since Kx ® Sym2 E has no 

higher cohomology, it is generated by global sections. In particular, we can find a 

section s such that the principal part 

is not regular. But no global rational section of Kx has only a simple pole, so 

[p](s)=/=OEH1(X,Kx). 0 

Lemma 4.12 Suppose that E bas no line subbundles of order 2 and that Sym2 E 

bas no global sections. Then 1/J : lP E* --+ IP~ is an embedding. 

Proof: 

Suppose that 1/J is not an embedding. We distinguish three ways that this can 

happen: 

(i) 1/J(u) = 1/J(v) for some u,v E lP E* lying over distinct x,y EX. 

(ii) 1/J(u) = 1/J(v) for distinct u and v in a fibre lP E*lx· 

(iii) The differential of 1/J is not injective at some point u E lP E*. 

Recall that we have the cohomology sequence 

0--+ Rat(Sym2 E*)--+ Prin(Sym2 E*) ~ H 1(X, Sym2 E*)--+ 0 (4.1) 

which is exact since h0 (X, Sym2 E*) = 0 by semistability. 

Suppose that (i) occurs. By (4.1) and the definition of 1/J, there is a global 

section a of (Sym2 E*)(x + y) such that a(x) and a(y) are decomposable. Since E 

has no line subbundles of order 2, by Prop. 4.9 the determinant of a is generically 

nonzero. Hence it has deg E - deg E*(x + y) = 2 zeroes. It follows that det a E 

H0 (X, Ox(x + y)). But we also have 

det a E H 0 (X, Hom(det E, (det E*)(2x + 2y))), 
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so (det E)2 = Ox(x + y). 

Now since E is of rank 2, there is an isomorphism E* ..::; E 0 det(E)-1, so 

Sym2 E* ~ Sym2 E 0 (det E)-2 . Thus 

(Sym2 E*) (x + y) ~ Sym2 E* 0 (det E) 2 ~ Sym2 E, 

so a defines a nonzero section of Sym2 E. 

Suppose (ii) happens. Again, by (4.1) and the definition of 'ljJ there exists a 

global rational section a of Sym2 E* whose principal part is supported at x and 

corresponds under the canonical (up to scalar) isomorphism 

Sym2 E*ix"' Sym2 E*(x)ix 

to u 0 u + v 0 v for some lifts u and v of u and v. Thus a E H0 (X, (Sym2 E*)(x)). 

Again by hypothesis and Prop. 4.9, the determinant of a is generically nonzero. Since 

E and E*(x) are semistable of the same slope, a gives an isomorphism E---+ E*(x), 

and Sym2 E ~ (Sym2 E*)(2x). Since (Sym2 £*)(x) is a subsheaf of (Sym2 £*)(2x), 

the map a defines a global section of Sym2 E. 

Lastly, suppose (iii) happens. Then the conditions on the sections in 

of vanishing to order 1 and 2 at u are dependent. Suppose 1r(u) = x and let u 

be a lift of u. We consider principal parts PI, p2 E Prin(Sym2 E*) with simple and 

double poles respectively along the line spanned by u 0 u. Then we can suppose 

that the linear forms defined on H 0 (1P E*, Y) by [pi] (which lies over '1/J(u)) and -[p2] 

are the same. By (4.1), there exists a global rational section a of Sym2 E* which 

has principal part PI + p2 . Since a is nonzero, by Prop. 4.9 the determinant of a is 

generically nonzero. Thus it vanishes at two points because 

deg(E) - deg(E*(2x)) = 2. 

Now we notice that the image of a is contained in the subsheaf of sections of E* 

with poles along the line spanned by u and of order at most 2. So the cokernel of a 

is isomorphic to c2Xl and det(a) E H0 (X, Ox(2x)). But det(a) also belongs to 

H0 (X, Hom(det(E), det(E*(2x)))) = H0 (X, det(E)-2 (4x)), 
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hence det(E) 2 = Ox(2x). Now a gives a nonzero regular section of 

(Sym2 E*)(2x) ~ (Sym2 E*) 0 (det E) 2 ""'Sym2 E. 

This completes the proof of the lemma. 0 

Remark: By Proposition 4.8 and Lemma 4.12, the map 'ljJ is an embedding for 

a general bundle E E Ux(2, 1). 

In the following chapter, we shall apply these results to give a description of Mx(Sp2 C) 

in the case where X has genus 2. 



Chapter 5 

A cover of M x(Sp2 C) in genus 2 

In [34], Narasimhan and Ramanan construct a generically finite cover of the moduli 

space SUx(2, Ox) for a curve X of genus 3 by a union of projectivised extension 

spaces of the form lP H 1(X, L-2
) as L ranges over Jl. In this chapter we give a 

similar description of Mx(Sp2 C) for a curve of genus 2. The main tool in the 

construction is Criterion 3.4. We will consider a union of projective spaces of the 

form lP H 1(X, Sym2 E*) as E ranges over a family of vector bundles over X. 

To see how this kind of construction is useful, we refer for example to Pauly [40], 

where Narasimhan and Ramanan's construction is used to prove that the Coble 

quartic associated to a curve X of genus 3, which is isomorphic to SUx(2, Ox), is 

self-dual. And in the last chapter of this thesis, we will apply the construction in 

this chapter to the study of theta-divisors of symplectic vector bundles over a curve 

of genus 2. 

5.1 Statement of the main theorem 

In the last chapter we studied Ux(2, 1), the 5-dimensional moduli space of semistable 

vector bundles of rank 2 and degree 1 over X. Since gcd ( 2, 1) = 1, there exists a 

51 
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Poincare bundle E over Ux(2, 1) xX by Theorem 1.2 (iv). We consider the diagram 

E 

! 
Ux(2, 1) xX 

/. ~ 
Ux(2, 1) X 

where p and q are the projections. Now by stability, 

for all E E Ux(2, 1), so h1(X, Sym2 E*) = -x(X, Sym2 E*) = 6. As before, by 

Hartshorne [17, Corollary III.12.9] the sheaf R 1p*(Sym2 E*) is locally free of rank 6 

on Ux(2, 1). Thus it defines a vector bundleR-+ Ux(2, 1) whose fibre atE E Ux(2, 1) 

is H 1 (X, Sym2 E*). 

By Seshadri [47, App. II], there exists a vector bundle over lP R x X whose 

restriction to { ( ( £5), E)} x X is isomorphic as a vector bundle to the extension 1 

0 -+ E* -+ W -+ E -+ 0 

defined by £5. By Criterion 3.4 and the moduli property of Mx(Sp2 C), there exists 

a classifying map <l>p R: lP R --~ Mx(Sp2 C), which we will henceforth call <I>. A 

priori, <I> is only a rational map. The main result of this chapter is 

Theorem 5.1 <I> is a surjective morphism which is generically finite of degree 24. 

The strategy for our proof of this is as follows. We begin by showing that <I> is 

defined everywhere, so it is in fact a morphism. Then we consider a generic (in a 

sense to be made precise) symplectic extension 0 -+ E* -+ W -+ E -+ 0 and show 

that it admits finitely many isotropic subbundles of rank 2 and degree -1. It is 

then easy to show that <I> is generically finite onto its image. By dimension count 

and irreducibility, it is surjective. We conclude by using some results of Lange­

Newstead [24] to calculate the degree of <I>. 

1 My apologies to the reader for exchanging the positions of E and E* since Chapter 2. 
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Notation: As in Chapter 4, we denote the fibre 1P' RIE ~ 1P' H 1 (X, Sym2 E*) by 

~-

5.2 Nonstable loci of IP~ 

Proposition 5.2 Let W --+ X be any self-dual vector bundle. Then W is stable 

(resp., semistable) if and only ifit contains no destabilising (resp., desemistabilising) 

sub bundles of rank at most ~ rk W. 

Proof 

One implication is clear. For the converse, we only have to check that deg(V) < 0 

(resp., deg(V) :::; 0) for any V C W of rank greater than ~ rk W. Let V be such a 

subbundle, so we have a short exact sequence 

0--+V--+W--+Q--+0 

of vector bundles over X. Then deg Q = - deg V. Since W is self-dual, Q* is a 

subbundle of W which has rank less than ~ rk W. Now 

degV =- degQ = degQ* < 0 (resp., :::; 0) 

by hypothesis, hence the proposition. Note that this argument applies whether W 

has even or odd rank. 0 

Lemma 5.3 For any E E Ux(2, 1), every nontrivial extension W of E by E* 1s 

semistable. 

Proof 

By Atiyah [2, Prop. 3], the class 6(W*) of the extension 0 --+ E* --+ W* --+ E--+ 0 is 

equal to -6(W). Therefore W* ~ W as vector bundles. By Proposition 5.2, then, 

it is enough to show that W contains no desemistabilising subbundles of rank at 

most 2. 

Suppose firstly that L c W is a line subbundle of degree at least 1. Since E* is 

stable, h0 (X, Hom(L, E)) > 0. But since LandE are stable and 

1 
J-t(L) ~ 1 > J-t(E) = 2, 
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this is impossible. 

Next, suppose F C W is a subbundle of rank 2 and degree at least 1. Since we 

have just seen that W contains no line subbundles of positive degree, F must be 

stable. Firstly, if the composed map F -t W -t E were zero then we would have a 

nonzero map F -t E*, contradicting stability of F and E*. Therefore the composed 

map is nonzero. Since F and E are stable, it must be an isomorphism, so W is a 

trivial extension. 0 

This lemma shows in particular that <I> is defined everywhere on lP R, so it is a 

morphism. 

Strictly semistable loci of JP>~ 

The goal of this section is to prove the following lemma: 

Lemma 5.4 Let E E Ux(2, 1) be such that h0 (X, Hom(E*, E)) = 0. Then the 

generic symplectic extension 0 -t E* -t W -4 E -t 0 is a stable vector bundle. 

Proof 

We shall prove this by determining the the classes in a general Fe representing 

vector bundles which contain a subbundle of degree 0; this will also be used later. 

Again, by Prop. 5.2 it suffices to check for degree 0 subbundles of ranks 1 or 2. 

Firstly, suppose that M C W is a line subbundle of degree 0. Since E* is stable, 

h0 (X, Hom(M, E)) > 0; then in fact M is a subbundle of E by Lemma 4.4 since E 

is stable. By Lemma 4.3, there are at most 4 possibilities for M E Jl. 
Conversely, by Lemma 4.1, an injection j: MY E lifts toW if and only if c5(W) 

belongs to the kernel of the induced map 

We check that this map is surjective. By Serre duality, it is equivalent to check that 

the transposed map H 0 (X, KxM ®E) -t H 0 (X, Kx ® Sym2 E), which by abuse of 



5.2 Nonstable loci of JP1 55 

notation we also denote j, is injective. Now the induced map 

is injective, because the global section functor and the functor Kx ® - ®£ are left 

exact (the latter because these sheaves are locally free). Since 

2 

H 0 (X, Kx ® E ®E)= H 0 (X, Kx ® Sym2 E) EB H 0 (X, Kx ® f\ E), 

we have to show that Im(j) n H0 (X, Kx ® /\2 E) = 0. Now rk E = 2, so the latter 

space is just H0(X, Kx ·det E), and any nonzero section therein has exactly 3 zeroes 

(counted with multiplicity). But if a map K)/ M- 1 ---+ E vanished at 3 points, E 

would contain a line subbundle of degree 1 by Lemma 4.4; this would contradict the 

stability of E. 

Thus the restriction of j* to H 1 (X, Sym2 E*) is surjective. Since Sym2 E* and 

Hom(M, E*) have no global sections, Ker j* is of dimension 

-x(X, Sym2 E*) + x(Hom(M, E*)) = 6- 3 = 3. 

Hence there is a union of between 1 and 4 projective planes in JP1 representing ex­

tensions which are destabilised by a line subbundle of degree 0. 

Now we consider a destabilising subbundle G C W of rank 2. We shall use the 

map '1/J : lP E* ---+ ~ defined in the last chapter. 

Proposition 5.5 Let W be a semistable symplectic extension of E by E*, so that 

8(W) E H 1 (X, Sym2 E*). Then W is destabilised by a subbundle of rank 2 and 

degree 0 if and only if ( 8 (W)) belongs to '1/J (IP E*). 

Proof 

Let G c W be a subbundle of rank 2 and degree 0. Then the rank of Q n £* is 2, 1 

or 0. It cannot be 0 because then the image of Q in £ would be a torsion subsheaf 

of length 1, of which there are none. If Q n £* were an invertible subsheaf C then 

we would have a diagram 

0------+£* ------+W-£-0 

o~J_J_l-o 
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where M is an invertible subsheaf of£. Since E* and E are stable, deg .C:::; -1 and 

degM:::; 0. But then clegG:::; -1, a contradiction. 

Hence G is an elementary transformation 

for some point x E X. Since h0 (X, Hom(E, E*)) = 0, by the first remark after 

Theorem 3, the subsheaf Q is isomorphic to Ker(q) for some q E Prin(Hom(E, E*)) 

such that 6(W) = (q]. Clearly q is supported at x with a simple pole along f 0 f' 

for some nonzero J, f' E E*lx· 

Now since W is symplectic, tq - q = a for some global rational section o: of 

Hom(E, E*). Clearly a is antisymmetric, so 01
--;

101 is a global rational section of det E* 

with principal part a. If this is nonzero then it has a single simple pole at x, so is 

a global regular section of (det E*)(x). But this is nonzero only if det(E) = Ox(x), 

which contradicts our genericity assumption. Therefore f' is proportional to f and 

(&(W)) = '1/J(!). 

Conversely, suppose 6(W) lies over '!j;(f) for some nonzero f E E* lx· By the defi­

nition of '1/J, the class 6(W) can be represented by a principal part q E Prin(Sym2 E*) 

supported at one point x E X and with a simple pole along f 0 f. By the first 

remark after Thm. 3, the kernel of q, which is a locally free sheaf of degree 0, lifts 

to a vector subbundle of W. 0 

In summary, we have shown that the locus of extensions in a general JI1: containing 

a subbundle of degree 0 is of dimension 2. The complement of this locus consists of 

classes defining stable vector bundles. This completes the proof of Lemma 5.4. 0 

5.3 Maximal Lagrangian subbundles 

Let E E Ux(2, 1) be such that h0 (X,Hom(E*,E)) = 0 and consider a stable sym­

plectic extension 0 --+ E* --+ W --+ E --+ 0 of class 6(W) E H 1 (X, Sym2 E*). We 

shall show that W has finitely many Lagrangian subbundles of degree -1. Suppose 
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F C W is such a subbundle. There are three possibilities for the rank of the sheaf 

:F n £*: these are 2, 1 and 0. If it is 2 then it is not hard to see that F = E*. 

Proposition 5.6 Suppose that E has no line subbundles of order 2 and let W be 

any nontrivial extension of E byE*. Then there are at most 16 subbundles F C W 

of rank 2 and degree -1 such that :F n £* is of rank 1. 

Proof 

Let F c W be such a sub bundle and write £, for the subsheaf :F n £*. We see that 

[, is invertible because, say, £* is locally free. By stability, deg [, :::; -1. The image 

M of :Fin£ is coherent, hence invertible because£ is locally free. Since E is stable, 

deg M :::; 0. But we also have 

deg M = -1 - deg £, 2: 0. 

Thus deg M = 0 and deg [, = -1. By stability, these subsheaves must in fact 

correspond to line subbundles by Lemma 4.4. Then, by Lemma 4.3, there are at 

most four possibilities £ 1 , ... , L4 and M 1, ... , M 4 for each of the corresponding line 

subbundles of E* and E respectively. In what follows, we take M;; 1 = f~. 
Conversely, let Lo: C E* and Mf3 C E be line subbundles of degrees -1 and 0 

respectively and suppose we have an extension 

0 --t Lo: --t F --t Mf3 --t 0 

of class o(F) E H 1(X, Mj; 1 L0 ). We need to show that the map Lo: -7 W factorises 

via F for at most a finite number of nonisomorphic F. By the dual version of Lemma 

4.1 (see Narasimhan-Ramanan [35, Lemma 3.2]), this happens if and only if o(F) 

belongs to the kernel of the induced map 

which identifies with 

by Serre duality. By Riemann-Roch, h1(X, Hom(Mf3, Lo:)) = 2 because Mj; 1 Lo: is of 

degree -1. Thus it suffices to show that h is nonzero or, equivalently, that its dual 



5.3 Maximal Lagrangian subbundles 58 

IS nonzero. 

Let Q denote the quotient of W by the subbundle La. We can form a short exact 

sequence 

Now h1 (X, Kx M 13 ® W) = h0 (X, Mj 1 ® W) by Serre duality; it is therefore zero 

because W is stable of degree 0. Similarly, h1 (X, Kx .NJ13 L-;; 1
) = h0 (X, M't La) = 0. 

We get the cohomology sequence 

0 0 h· 
0--+ H (X, KxM13 ® Q*)--+ H (X, KxM13 ® W) ---t 

H0 (X, KxMtJL";/)--+ H1(X, KxMtJ ® Q*)--+ 0. 

We show that h1(X, KxM13 ® Q*)) ~ 1. For then, by exactness, the coboundary 

map has a kernel and h* is nonzero. By Serre duality, it is equivalent to show that 

h0 (X, Hom(MtJ, Q) ~ 1. 

Now Q is an extension 0 -+ M;; 1 --+ Q --+ E --+ 0. We see this by inspecting a 

set of transition functions for W. Let {Ui : i E J} be an open cover of X over which 

La and M13 are trivial, and let { li,j} and { mi,j} be the corresponding transition 

functions. Since E* is an extension of M;; 1 by La, we can write the transition 

functions of W in the form 

6(W)· · t,J 

z .. -o(E)·. t,J t,J 

0 

0 
0 

The lower 3x3 block is a transition function for the quotient Q ofW by Lover UinUi. 

From this we see that the only possibilities for degree 0 line bundles with nonzero 

maps to Q are M;;1 , M 1, ... , M4 . By Prop. 4.3 we have h0 (X, Hom(M13, Q)) 2: 2 only 

if M;; 1 = M 13 for some (3 E {1, ... , 4}. But this implies that E has a subbundle of 

order 2. By the proof of Prop. 4.9 we see that h0 (X, Hom(E*, E)) f=. 0, contradicting 

our genericity hypothesis. 

Thus there at most finitely many F c W of degree -1 and rank 2 which intersect 

E* in rank 1. D 
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Remark: Later we shall see that in fact the general symplectic extension W con­

tains no such F. 

The last possibility is that dim( Fix n E* ix) = 0 for all but finitely many x E X. 

In this case, F is an elementary transformation 

0---t:F---tE---tT---tO 

for some torsion sheaf T of length 2. We now give a result in the spirit of Lange­

Narasimhan [23, Prop. 1.1]. 

Lemma 5.7 Let W be a stable symplectic extension of E byE* of class c5(W) E 

H 1(X, Sym2 E*). Then the number of degree -1 elementary transformations of E 

which lift to isotropic subbundles of W is bounded by the number of 2-secants to 

the surface 7/;(JP> E*) C JP>1 which pass through (c5(W)). 

Proof 

Consider an elementary transformation 0 ---+ :F ---+ E ---+ T ---+ 0 such that F lifts to 

an isotropic subbundle of W. Since E and E* are stable, there are no nonzero maps 

E ---+ E*. Therefore, by Criterion 3.8 and the discussion before it the sheaf :F is the 

kernel of a symmetric q E Prin(Sym2 E*) such that c5(W) = [q]. There are three 

possibilities for T: 

(i) Cx EB Cy for distinct x, y E X. 

(ii) C~2 for some X E X. 

(iii) C2x for some x E X. 

We treat each case in turn. 

(i) Clearly q is supported at x and y, where it has poles of order 1. It is decom­

posable at these points because it is not surjective to 

E*(x) E*(y) 
--z;- or E* . 

Since it is symmetric, then, (c5(W)) lies on the secant spanned by the points 7/;(f) 

and 7/J(g) for some f E E*ix and g E E*ly· 
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(ii) Here q is symmetric and supported at one point x E X. The image of the 

map q: £ ----+ Prin(E*) is isomorphic toT, so is of length 2 and has only simple poles. 

But E* is of rank 2, so q is surjective to the subsheaf 

£*(x) p . (E*) --z;- C rm . 

Therefore q has a simple pole along some indecomposable vector in Sym2 E* and is 

otherwise regular. Such a vector must be of the form either f®f +g®g or f®g+g®f 

for some linearly independent J, g E E* lx· In the first case, (6(W)) = ([q]) lies on 

the secant to '1/J(J) and '1/J(g) and in the second, it lies on that to '1/J(J + g) and 

'1/JU- g). 

(iii) Again, q is symmetric and supported at one point x E X, where this time 

it has a double pole. Since q is not surjective as a map £ ----+ E* (2x) lx, the double 

pole must be along a decomposable vector f ® f E Sym2 E* lx· Since the image of q 

is a torsion sheaf of length 2, it must be equal to 

and q has poles in no direction other than f ® f. 

Recall that T ----+ IP E* is the line bundle 7f* K X. alP' E* ( 2). We claim that the linear 

form determined by [q) on H 0 (IP E*, T) restricts to zero on the space of sections of 

T vanishing to order 2 at (!). Let z be a local coordinate on X centred at x. Recall 

that by the discussion in the proof of Prop. 4.11, near (!), such a section t is locally 

of the form dz ® t' where t' is a choice of quadratic polynomial t~ on each IP E* lx· In 

other words, t' is a power series in z with coefficients in Sym2 E. Now t vanishes to 

order 2 at (f) if and only if t~ does. Thus, the contraction of t against a principal 

part of the form 
!®! >.j®f --+ . 

z2 z 

for any ).. E <C, is regular. Thus [q) belongs to the embedded tangent space 

to '1/J(IP E*) at '1/J(J). In particular, [q) lies on a 2-secant. 
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This completes the proof of Lemma 5.7. D 

Remark: It is intriguing that in case (iii), in fact (b(W)) belongs to a particular 

line in the embedded tangent space to ,P(lP' E*), namely that spanned by classes of 

principal parts with single and double poles along f ® f. A calculation in local 

coordinates shows that the kernel of a principal part yielding a general element of 

this tangent space is a subsheaf of degree strictly less than -1. The exact relation­

ship between secants to ,P(lP' E*) and subsheaves lifting to W is a subject I hope to 

pursue further. 

We return to the proof of Theorem 5.1. By our genericity assumption and Lemma 

4.12, the map '1/1 is an embedding. In particular, ,P(lP' E*) is a smooth surface in lP'~ 

which is not a Veronese surface. By a well-known theorem of Severi [49], its secant 

variety is all of lP'~. So, by dimension count, through a general point of Fe there 

pass a finite number of 2-secant lines to the image of 'ljl. By Lemma 5.7, then, there 

are only finitely many subbundles of W of rank 2 and degree -1 which project 

surjectively to E at almost all points of the curve. 

By Prop. 5.6 and Lemma 5.7, there are at most finitely many mutually noni­

somorphic subbundles of W of rank 2 and degree -1. Hence W is represented in 

finitely many fibres of lP' R. 

Proposition 5.8 Suppose that E E Ux(2, 1) satisfies h0 (X, Hom(E*, E) = 0. Let 

W and W' be two extensions of E by E*. Then W "' W' if and only if b(W') = 

Ab(W) for some A E C*. 

Proof 

By hypothesis, there are no nonzero homomorphisms E* --+ E by Prop. 4.8. Then 

the proposition is just a special case of the following: 

Lemma 5.9 Let Wand W' be two extensions ofF by E. If every nonzero homo­

morphism E --+ F is an isomorphism and E and F are simple, then W and W' are 

isomorphic as vector bundles if and only if b (W') = A · b (E) for some A E C*. 
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Proof 

Narasimhan-Ramanan [35, Lemma 3.3]. 0 

Prop. 5.8 shows in particular that the restriction of <I> to JP1: is injective for a generic 

bundle E E Ux(2, 1). 

We conclude that the fibre of <I> over a general point of the image is finite. Since 

dim lP R = 10 = dim Mx(Sp2 C) and the latter space is irreducible, <I> is dominant. 

By Lemma 5.3, it is defined everywhere. Since it a morphism of projective varieties, 

its image is closed, so it is surjective. 

5.4 The degree of <P 

We use some results of Lange and Newstead to calculate the degree of <I>. 

Theorem 5.10 Let W be a general vector bundle of rank nand degree dover X. 

Suppose that n 2: 4 is even and 2d + 4 ~ 0 mod n with 2d;t
4 odd. Then the number 

of subbundles of rank 2 and maximal degree, counted with multiplicity, is equal to 

Proof 

Lange-Newstead [24, pp. 7-10]. 0 

We check the relevant generality conditions on W, which are listed on p. 6 of [24]. 

We follow the notation of this paper: for a sub bundle F ~ W, 

s(W, F) = - rk(W) deg(F) + rk(F) deg(W) 

and 

sn'(W) := min{s(W, F): F ~ W of rank n'}. 

The generality conditions are 

(i) Sn'(W) = n'(n- n')(g -1). 

(ii) Sn 1 (W) 2: n1(n- ni)(g- 1) for all n1 E {1, ... n'- 1}. 
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(iii) W has only finitely many maximal subbundles of rank n'. 

For us, n' = 2, g = 2 and n = 4. 

(i) Here s2 (W) == min{ -4 deg(F) : F ~ W of rank 2} = 4 since W is stable but 

contains Lagrangian subbundles of degree -1. On the other hand, 

n'(n- n')(g- 1) = 2(4- 2)(2- 1) = 4. 

(ii) The only value of n 1 that we need to check is 1. 

s 1(W) = min{s(W, L): La line subb. of W} 

= min{ -4 deg(L) : L a line subb. of W} 

=4 

since W is stable by Lemma 5.4. On the other hand, n1(n- n1)(g- 1) = 3. 

(iii) This is the thrust of the earlier part of this chapter. 

In our case, the number ~; (n2 + 2) is 24. To verify that deg <P = 24, we need to 

check that all the subbundles of a general W are isotropic and distinct. Suppose 

again that h0 (X,Hom(E*,E)) = 0 and consider a stable extension WE~· 

For isotropy: let F C W be a subbundle of degree -1 and rank 2. The symplectic 

form on W restricts to a global section of A 2 F*, that is, ( det F) - 1 . To compute 

this line bundle, we note that by Lange-Newstead [24, Prop. 2.4], such an F has 

a generically injective map to E, so is an elementary transformation of the type 

considered in Lemma 5.7: 

where Tis a torsion sheaf of length 2. Thus detF = (detE)(-x- y) for some 

x, y E X (not necessarily distinct). This has a nonzero section only if (det Et 1 (x+y) 

is effective. By hypothesis, det E is not effective, so there exist unique points p, q, r E 

X such that det E = Ox(p+q-r), with Ox(p+q) -1- Kx. Then (det F)-1 is effective 

only if 

x+yE {p+q,p+t,r,q+t,r} 



5.4 The degree of <I> 64 

where ,_, is the hyperelliptic involution on X. Thus F is isotropic if (o(W)) does 

not lie on a line joining points in two of the fibres of lP E* over p, q and ,_,r (or 

on a tangent to a point of a fibre if some of these points coincide). The set of 

such (o(W)) is of dimension ::; 3, so the general (o(W)) E Fe does not satisfy this 

condition. Therefore, for a general extension W represented in~' all subbundles of 

rank 2 and degree -1 are isotropic. By Criterion 3.4, the bundle W is represented 

in the fibre of lP R corresponding to each such subbundle. 

For distinctness: let E* C W be a maximal subbundle of rank 2 and suppose 

that h0 (X, Hom(E*, W)) 2:: 2. By the last paragraph, we can suppose that every 

copy of E* in W is isotropic, so W / E* ~ E and we get a diagram 

0 ------+ E* --W -- E ------+ 0 

1/ 
E* 

where the composed map is nonzero. But this yields a nonzero map E* -+ E, con­

tradicting genericity. 

Thus the maximal subbundles in a general W are Lagrangian and distinct. In 

summary, <I>: lP R -+ Mx(Sp2 C) is surjective and generically finite of degree 24. 

This completes the proof of Theorem 5.1. 0 

Remark: Some fibres of <I> may be of positive dimension2 . If, for example, 7/J: lP E* -+ 

~ failed to be an embedding over a locus of positive dimension lP E* then there 

would be points of~ lying on infinitely many 2-secants to 7/J(!P E*). Then Lemma 

5. 7 might lead us to expect that that infinitely many degree -1 elementary trans­

formations of E would lift to the corresponding extensions of E by E*. This is a 

question I intend to continue studying. 

2This is analogous, for example, to the fact that there exist vector bundles of rank 2 and degree 

0 over a curve of genus 3 which admit infinitely many maximal line subbundles. 
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5.5 Future work 

Theorem 5.1 gives a fairly explicit description of Mx(Sp2 C) at a general point. In 

the following chapter, we shall give an application of this description. 

It is natural to ask whether such a description of Mx(Spn C) exists in higher 

genus. One calculates that for the dimensions to work out as in the genus 2 case, 

we should consider symplectic extensions 

0 ---+ E* ---+ W ---+ E ---+ 0 (5.1) 

where E ---+ X is a vector bundle of rank 2 and degree g - 1. The JP1 are replaced 

by projective spaces of dimension 6g -7. However, there is no Poincare bundle over 

Ux (2, g - 1) x X if g - 1 is not relatively prime to 2, so we are forced to restrict to 

the case of even genus. 

If symplectic bundles in higher even genus are still general enough in the sense of 

Lange and Newstead then by [24, Prop. 2.4] the problem is essentially to study the 

connection between secants to an image oflP E* in lP H 1 (X, Sym2 E*) and elementary 

transformations 

0 ---+ :F ---+ £ ---+ T ---+ 0, 

where Tis a torsion sheaf of length 2g- 2, which lift to an extension such as (5.1). 

But one expects the (2g- 2)nd secant variety to a smooth surface to be of dimension 

6g - 7, so we might indeed expect a general extension 0 --4 E* ---+ W ---+ E ---+ 0 in 

this setting to have only finitely many Lagrangian subbundles of degree g- 1. This 

is a question I would be interested in studying further. 



Chapter 6 

Theta-divisors of symplectic 

vector bundles 

We begin this chapter by reviewing some well-known results on theta-divisors of 

vector bundles of degree 0. In § 6.2, we prove that any strictly semistable symplectic 

vector bundle of rank 4 over a curve of genus g admits a theta-divisor. We then 

consider the genus 2 case. In § 6.3, we use the covering of Mx(Sp2 C) constructed 

in the last chapter to show that the generic bundle in Mx(Sp2 C) admits a theta­

divisor, and to deduce some necessary conditions on those which do not. We end by 

characterising those stable bundles in Mx(Sp2 C) whose theta-divisors are singular, 

when they exist. 

References for this subject include Beauville [5], [6] and Laszlo [26] and Raynaud 

[46]. Theta-divisors ofrank 2 vector bundles are discussed in Narasimhan-Ramanan 

[34] and [35]. 

6.1 Preliminaries 

For a vector bundle W ---+ X of rank r and degree 0, we consider the set 

S(W) := {L E 15( 1
: h0 (X, L ® W) > 0}. 

Proposition 6.1 Let W be a semistable vector bundle of degree 0. Then the set 

S(W) depends only on the S-equivalence class ofW. 
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Proof (well-known) 

Choose a Jordan-Holder filtration of W 

o = Wo c W1 c · · · wk-1 c wk = w 

by proper subbundles of degree 0, with associated graded bundle 

k wi 
grvW= E9-w;-

i=1 t-1 

We must show that h0 (X, L 0 W) > 0 if and only if h0 (X, (grv W) 0 L) > 0. 
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Suppose there exists a nonzero homomorphism L-1 -t W. Let j E {1, ... k} be 

the smallest index such that h0(X,Hom(L- 1
, W1)) > 0. Then clearly 

Since h0 (X, (grv W) 0 L) = L::~= 1 h0 (X, Hom(L-1, WdWi_t)), we have a nonzero 

map L-1 -t W. 

Conversely, suppose that h0 (X, (grv W) 0 L) > 0. Let j E {1, ... k} be the 

smallest number for which h0(X, Hom(L- 1, W1jW1_1)) > 0. There is a diagram 

w 0 ---------+- w . -1 ---------+- w . ---------+- _:_:._.J_ ---------+- 0 
J J Wj-1 

t 
£-1 

and by Lemma 4.1, the map L - 1 -t ;;'~, lifts to w1 if and only the class 

of the extension wj belongs to the kernel of the induced map 

But since h0 (X, Hom(L - 1 , W1_1)) = 0 by minimality of j and Hom(£ -1, W1_1) 

has Euler characteristic 0, we have h1 (X, Hom(L-t, W1_I)) = 0. Hence the map 

L - 1 -t W1/Wi_ 1 lifts to Wi. Composing with the inclusion Wi c.......t W, we have a 

nonzero map L - 1 -t W. D 
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If S(W) =/= JF1 then it is the support of a divisor D(W) on JF1 linearly 

equivalent to r8, called the theta-divisor of W. By Prop. 6.1, the association 

D t-+ D(W) is well-defined on S-equivalence classes; it can be shown to define a 

rational map Ux(r, 0) --~ lr81. 

A vector bundle of degree 0 such that S(W) = JF\ that is, a point where D 

is not defined, is called a Raynaud bundle. For a general treatment of this subject, 

we refer to Raynaud (46]. 

Henceforth we suppose that r = 2n and consider the map 

We can be more precise about the image of D. Recall that the Serre duality in­

volution i: JJ,;- 1 --+ JJ,;- 1 is given by L t-+ Kx L - 1 . It induces an involution i* on 

H0 (JF 1
, 2n8). The projectivisations of the +1- and -1-eigenspaces of this involu­

tion correspond to the spaces of invariant divisors of i* and are denoted l2n81+ and 

l2n81- respectively. Using the Lefschetz fixed-point formula, one finds 1
: 

(6.1) 

Lemma 6.2 The image of D: Mx(Spn C) --~ l2n81 is contained in l2n81+· 

Proof (shown to me by W. Oxbury) 

Firstly, we note that D is defined on a nonempty open subset. Since Mx(Spn C) is 

irreducible, it is enough to show that it is defined at one point, so we notice that 

D(X X C2n) is just 2n8. 

Choose a divisor D(W) in the image of D. We check that the support of D(W) 

is invariant under i*. By definition, 

1 I am grateful to M. Bolognesi for showing me this calculation. 
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But since x(X, L 0 W) = 0 for all L E JF1
, we have 

h0 (X, KxL- 1 0 W) = h1 (X, KxL- 1 0 W) 

= h1 (X, KxL- 1 0 W*) because W rv W*, 

= h0 (X, L 0 W) by Serre duality. 
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Thus the supports of D(W) and ~,* D(W) coincide, so L* D(W) = k · D(W) for some 

integer k. Since L* is also an involution by functoriality, k2 = 1 and " induces an 

isomorphism on the cohomology of 2n8. This shows that k = 1, and D(W) E 

l2n81+ U l2n81-· 

We now check that the image of D belongs to the even part. Firstly, since 

Mx(Spn C) is connected and D is continuous, its image will lie in either l2n81+ 

or l2n81- because these are disjoint connected sets. Thus it suffices to check that 

D(W) E l2n81+ for one WE Mx(Spn C). Choose n mutually nonisomorphic stable 

vector bundles W1 , ... , Wn of rank 2 and trivial determinant. Then the bundle 

E9~=1 wi belongs to Mx(Spn C). 

For any direct sum E9 Wi of bundles of degree 0, it is clear that D(E9 Wi) exists 

if and only if D(Wi) is defined for all i, in which case it is equal to 2.:: D(Wi). We 

show that D(Wi) is defined for all i. Choose any L' E Yr1
; then Wi 0 L' is of slope 

g - 1. We quote a result of Raynaud: 

Proposition 6.3 Let F ---+ X be a semistable bundle of rank at most 2 and slope 

g- 1. Then h0 (X, M 0 F)= 0 for generic ME J~. 

Proof 

This is a special case of Raynaud [46, Prop. 1.6.2). D 

By Prop. 6.3, we have h0 (X, M 0 (L' 0 Wi)) = 0 for generic M E J~. But this is 

equivalent to h0 (X, L 0 Wi) = 0 for generic L E J'i- 1 because J'l- 1 is a torsor over 

J~. Hence Wi admits a theta-divisor D(Wi) E 1281. But every 28-divisor is even 

since h0 (J'i-\28)_ = 0 by (6.1), so each D(Wi) is the divisor of an L*-invariant 

section si of(') JFI (28). Then D(E9~= 1 Wi) is the divisor of 
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which is also t*-invariant. Hence D(E9~=l Wi) E l2n81+· This completes the proof 

of Lemma 6.2. D 

By Lemma 6.2, since l2n81+ is a projective space, there exists a line bundle 3 

over Mx(Spn C) such that l2n81+ = 131* and D = </>1::::1· Now we claim that the base 

locus of 131 is exactly the set of Raynaud bundles. For any L E Jf{- 1
, we write HL 

for the hyperplane of divisors containing L, that is, the point ¢12nel+ (L). Then 

W is Raynaud ¢::::::} WE n Supp(D* HL) by definition 
LEJF) 

¢::::::::>WE n Supp(D*H) since <i>12nei+(Jr
1

) is nondegenerate 
HEI2n91+ 

¢::::::::> W belongs to every 3-divisor, since l2n81+ = 131* 

{:::::::::::> W is a base point of 121. 

Determinant bundles 

Here we recall very briefly some facts about line bundles over the moduli space 

Mx(Sp2 C). For a general treatment of this kind of question, we refer to Beauville­

Laszlo-Sorger [8], Laszlo-Sorger [27] and Sorger [51]. 

To a representation of Sp2 C, we can associate a line bundle over Mx(Sp2 C), 

called the determinant bundle of the representation. 3 is the determinant bundle of 

the standard representation of Sp2 C, and the Picard group of Mx(Sp2 C) is Z ·3. 

To a representation p of Sp2 C we associate a number dp called the Dynkin index of 

p, and the determinant bundle of p is 3dp. The canonical bundle of Mx(Sp2 C) is 

the dual of the determinant bundle of the adjoint representation, and is therefore 

3-6 by [51, Tableau B], since Sp2 C is of type C2 . 

6.2 Theta-divisors of strictly semistable bundles 

The first result, which holds in any genus, follows from Raynaud [46] and the de­

scription of the singular and strictly semistable loci of Mx(Sp2 C) in Chapter 2. 
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Lemma 6.4 Any symplectic Raynaud bundles of rank 4 are stable vector bundles. 

Proof 

We show that every strictly semistable symplectic vector bundle W ---+ X of rank 4 

admits a theta-divisor. By the description of the semistable boundary of Mx(Sp2 C) 

in Chapter 2, such a W is S-equivalent to a direct sum of stable bundles of rank 1 

and/or 2 and degree 0. By Prop. 6.1, then, it suffices to prove that every such direct 

sum admits a theta-divisor. Since D(ffi Wi) exists if and only if D(Wi) is defined 

for all i, we only have to show that every vector bundle V ---+ X of degree 0 and 

rank at most 2 admits a theta-divisor. This follows by a similar argument to that 

in the last lemma when we proved that a direct sum of rank 2 vector bundles has a 

theta-divisor. 0 

6.3 The genus 2 case 

For the rest of this chapter, we suppose that X is of genus 2. Firstly, we would like 

to know how many Raynaud bundles to expect in this case. 

Proposition 6.5 If the base locus of 121 is of dimension 0 then it consists of at 

most 6 points. In particular, it is nonempty. 

Proof 

Here, dim Mx(Sp2 C) = 10, so if the number of base points is finite then it is given 

by c1 (3) 10 . To calculate this number, we follow an approach of Laszlo [25, § V, 

Lemma 5]. Consider the Hilbert function of 3. This is defined as 

For large enough n, this coincides with a polynomial p(n). We claim that the 

~ leading term of p(n) is c1 

1~, . To see this, suppose a is the Chern root of 3. Then, 

by Hirzebruch-Riemann-Roch, 

x(Mx(Sp2 C), 3n) = { exp(na)td(Mx(Sp2 C)). 
}Mx(Sp21C) 
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Since ci = 0 for all i > 11, the only term which contains n 10 here is c1 \~VO as 

required. 

Now we have seen that KMx(sp2 q = :=:-6
• Hence, by Serre duality, 

p(n) = ( -1) 10X(Mx(Sp2 C), KMx(Sp2 q2-n) 

= x(Mx(Sp2 C), 2-6-n) 

= p(-6- n), 

equivalently, p(n) is symmetric about n = -3. 

By a result stated on p. 4 of Oxbury [37], we have hi(Mx(Sp2 C), =:n) = 0 for 

all i > 0 and n > 0. 

Now for all n < 0, we have h0 (Mx(Sp2 C), =:n) = 0 by stability. Thus 

p(-5) = p(-4) = p(-3) = p(-2) = p(-1) = 0. 

Hence 

p(n) = -y(n + 5)(n + 4)(n + 3)2 (n + 2)(n + 1)(n- a)(n + 6 + a)(n- f3)(n + 6 + /3) 

for some a, /3, 'Y E Ilt We wish to find 'Y· To do this, we find the values of p at 0, 

1 and 2. By the Verlinde formula (Oxbury-Wilson [39, § 2]), we have p(O) = 1 and 

p(1) = 10 and 

where 

S( ) 24 • (1r(s + t)) . (1rt) . (1rs) . (1r(t + 2s)) s, t = sm 
5 

sm S sm 
10 

sm 
10 

and the sum is taken over all pairs s, t with s, t ~ 1 and s + t :S 4. We calculate 

p(2) = 58 with Maple. 

These values yield the equations 

'Y · 5! x 3( -a)(6 +a)( -/3)(6 + /3) = 1, 

'Y · 6! x 3(1- a)(7 + a)(1- /3)(7 + /3) = 10, 

7' 
'Y · 

2
' x 3(2- a)(8 + a)(2- (3)(8 + (3) =58. 
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Solving with Maple, we obtain 'Y = 6 x 10!-1 so 121 has 6 base points. D 

Remark: This number coincides with the number of Weierstrass points on a curve 

of genus 2. These are the ramification points of the hyperelliptic map X--+ IKxl*, 

and are in canonical bijection with the odd theta-characteristics of X. 

Theta-divisors exist for generic E 

By Theorem 5.1 from the last chapter, Mx(Sp2 C) can be covered by projectivised 

extension spaces of the form 

where E -t X is a stable vector bundle of rank 2 and degree 1. In this section, we 

prove that the generic Fe contains no extensions without theta-divisors. The proof 

also allows us to deduce some necessary conditions on E in order for Fe to contain 

such an extension. 

Firstly, we will need a technical result. Let F and G be vector bundles over X. 

We describe two maps between associated cohomology spaces. The first one, 

given as follows. Let p E Prin(Hom(G, F)) and (p] E H 1(X, Hom(G, F)) its co­

homology class; since H 1 (X, Rat(Hom( G, F))) is trivial, every cohomology class in 

H 1(X, Hom(G, F)) is of this form. Then 

is the map t--+ t U (p] = [p(t)]; this is as before easily checked to be independent of 

the choice of p representing [p]. 

The second map, 

is the natural multiplication map of sections. 
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Proposition 6.6 The maps U and m are canonically dual by Serre duality. 

Proof (well-known) 

Let V ---+ X be any vector bundle. We make explicit the identification H 1 (X, V) ~ 

H 0 (X, Kx ® V*)* by Serre duality. Let [q] E H 1(X, V). Then [q] defines a linear 

form on H0 (X, V* ® Kx) by 

t H [(q, t)] 

for any global section t of Kx ® V*. The class [ (q, t)] belongs to H 1 (X, Kx) = C, 

so we get the required linear form. 

Let [p] E H 1(X, Hom(G, F)). A priori, m*[p] is a linear form on H0 (X, G)® 

H0 (X, Kx ®F*); we interpret it as a map H0 (X, G) ---+ H0 (X, Kx ®F*)* by sending 

a global section t of G to 

s H m*[p](s ® t) = [(p(t), s)]. 

The principal part p(t)®s belongs to Prin(F®Kx®F*). The contraction (p(t), s) is 

then an element of Prin(Kx ), with cohomology class in H 1(X, Kx) = C, so m*[p](t) 

is a linear form on H0 (X, Kx ® F*). 

Now lett E H0(X, G) and consider the element t U [p] E H 1(X, F). This defines 

a linear form on H0 (X, Kx ® F*) by 

s H [ (p( t), s)] 

which is clearly the same linear form as m* [p]( t). Thus · U [p] and m* [p] are identified 

as maps 

This shows that U and m* are identified as maps 

The proposition now follows by Serre duality. 0 

Remark: One useful case of this result is the following. If G = F then we can 

compose the contraction 



6.3 The genus 2 case 75 

with m. Then (com)* = m* o c*, and one can show in a similar way that cis dual 

to the map 

given by [p] H [p · IdF]. 

We now describe a rational map J} --+ (IP~;)*. We claim that 

for generic L E J}. To see this, note that by Riemann-Roch, h0 (X, L0E) 2: 2 if and 

only if h1(X, L0E) is nonzero. By Serre duality, h1(X, L0E) = h0 (X, KxL- 10E*). 

But by Lemma 4.3, this is nonzero for at most four L. Similarly h0 (X, Kx L - 1 0 E) 

is greater than 1 for at most four L. Thus h0 (X, L 0 E) · h0 (X, KxL - 1 0 E) is 

different from 1 for at most eight L. We write U for the (open) complement of these 

points in J}. 

For each L E U, we can consider the composed map m 

H 0 (X, L 0 E) 0 H 0 (X, KxL- 1 0 E)~ H 0 (X, Kx 0 E 0 E) 

! 
H0 (X, Kx 0 Sym2 E) 

We claim that the image of m is of dimension 1; this follows from the last paragraph 

and the fact that no nonzero decomposable vector is antisymmetric. Thus we can 

define a rational map j: J} --+ (IP~)* by 

L H (image of m). 

We write U for the open set of J} where j is defined. 

Now by Serre duality, a nontrivial symplectic extension 

0 --+ E* --+ W --+ E --+ 0 (6(W)) 

of class 6(W) E H 1 (X, Sym2 E*) defines a linear form on H 0 (X, Kx 0 Sym2 E), also 

denoted 6(W), whose kernel defines a hyperplane Hw in lP H 0 (X, Kx 0 Sym2 E). 

The main tool of this section is 
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Lemma 6.7 Let W E ~ be a symplectic extension and L ---+X a line bundle of 

degree 1 belonging to U c Jl. Then h0 (X, L ® W) > 0 if and only if j(L) E Hw. 

Proof 

Tensoring the sequence (c5(W)) by L, we get the cohomology sequence 

whence h0 (X, L ® W) > 0 if and only if the boundary map has a has a kernel. But 

by Lemma 3.3 (i), this is none other than · U c5(W). By hypothesis, 

so h0 (X, L ®E) = 1 by Riemann-Roch. Similarly, h0 (X, Kx L -I ®E) = 1. Thus 

h0 (X, L ® W) > 0 if and only if· U c5(W) = 0. By Prop. 6.6 (with F = L ® E* and 

G = L ® E), this is equivalent to 

being the zero map; that is, m*c5(W) = c5(W) o m = 0, equivalently Im(m) C 

Ker(c5(W)). Since c5(W) is symmetric, Im m c Ker(c5(W)) if and only if Im(m) c 

Ker(c5(W)). Projectivising, this becomes j(L) E Hw (our hypothesis of generality 

on L implies that j ( L) is defined). 0 

By Lemma 6.7, we see that JI1. contains an extension without a theta-divisor if 

and only if the image of j is contained in a hyperplane H C (JI1,)*. The extension 

will then be that W such that Hw =H. 

Lemma 6.8 For general E E Ux(2, 1), the image of j is nondegenerate. 

Proof 

We recall that E has at least one line subbundle of degree 0, by Lemma 4.3. We 

state precisely our hypotheses of generality on E: 

• At least one degree 0 line subbundle M C E is not a point of order 2. 

• For each such M, there is a unique pair of points q1, q2 E X such that 
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On the other hand, we saw in the proof of Lemma 4.2 that the class (o(E)) E 

lP' H 1(X, Hom(L, M)) can be identified with a divisor p1 +p2 +p3 E IKxLM- 1 1. 

We require that for at least one such M C E, 

We have a short exact sequence 

b 
0 ---+ M ---+ E ---+ N ---+ 0 (6.2) 

where N---+ X is a line bundle of degree 1. We claim that this induces a short exact 

sequence 

where cis induced by the map E ® E---+ N ® E given by 

e ® f r-+ b(e) ® f + b(J) ®e. 

We work with the map induced by con the associated locally free Ox-modules. Let 

e, f E Ex be such that e E Mx but f is not. Then the image of e ® f + f ® e 

belongs to N ® M but that off® f does not. Thus the image contains two linearly 

independent elements of N ® £, so the map on sheaves is surjective. The kernel of 

c clearly contains M 2
, so is equal to it since they are of the same rank and degree. 

This establishes the claim. 

The associated cohomology sequence is 

since M 2 is nontrivial. 

We now show that lP' H0 (X, K x M 2
) is spanned by points of j ( U). We see that 

j ( L) belongs to this space if and only if L E U and 

L- 1 = M(-x) and K)/L = M(-y) 

for some points x, y of the curve. This condition can be interpreted geometrically 

as L E tM-1 e n tMe (notice that in genus 2 there is a canonical isomorphism 

X -=; Supp 8). If M 2 is nontrivial then this consists generically of 8 2 = g = 2 
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points, which are exchanged by L We deduce that KxM2 = Ox(x + y); therefore 

we take L = M(t-qi) = M-1 (q2 ) where q1 and q2 are as defined above. We check 

that j is defined at these points. It is necessary that neither M(t-q1 ) = M-1 (q2 ) nor 

its image M(t-q2 ) = M-1 (q1) under the Serre involution be a quotient of E or the 

Serre image of a quotient of E, that is, 

Since the set where j is not defined is 1--invariant, it suffices to check that neither 

M(t-q1) is equal to Nor M(pi). 

If M(iq1) = N then lP H 1 (X, Hom(N, M)) ~ iKx(t-qj)i and 

P1 + P2 + P3 = 1-qj + r + tr 

for some rEX. Thus q1 ='-Pi for some i,j. On the other hand, if M(tq1) = M(pi) 

then q1 = '-Pi· By our second assumption of generality, then, j is defined at both 

M(t-q1), and lP H 0 (X, Kx M 2 ) belongs to j(U). 

Now Kx tensored with (6.2) yields the cohomology sequence 

and we have the diagram 

By abuse of notation, we also write c and d for lP c and lP d. It is enough to show that 

co j(U) is nondegenerate in lP H 0 (X, KxN 0 E). In turn, it suffices to show that 

lP H 0 (X, KxNM) is spanned and that doj(U) is nondegenerate in lP H 0 (X, KxN2 ). 
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By the definition ofc, we have coj(L) E IPH0 (X,KxLM) if L- 1 = M(-x) for 

some x E X but K)/ L f. M( -y) for any y E X, or vice versa. This is equivalent 

to L belonging to the symmetric difference of tM-18 and tM8. Since M f. M- 1 , 

we can find infinitely many such L. We need to find two which define different 

divisors in IKxNMI. We observe that if xis not a base point of IKxNMI then 

co j(M- 1(x)) is the divisor in IKxNMI containing x. Thus if neither x nor y is 

a base point and they belong to different divisors of IKx N Ml then the images of 

j(M-1(x)) and j(M-1(y)) generate IP H 0 (X, KxNM). 

Finally, we have do j(L) E IP H 0 (X, Kx N 2
) if and only if neither L - 1 nor K)/ L 

is of the form M(-x), equivalently, L does not belong to the union tM-18 U tM8. 

In fact doj is dominant. Let XI +x2 +x3 +x4 be any divisor in IKxN2 1. For generic 

xi and x2 , we know that N-I(xi + x2 ) will not belong to tM-18 U tM8, so we can 

put L = N-I(x 1 + x2 ) and then 

Thus do j is dominant (and generically of degree 6). In particular, the image spans 

IKx£2
1 = IP2

. D 

Remark: The proof of Lemma 6.8 shows that in order for Fe to contain an ex­

tension without a theta-divisor, the following condition must hold: for each pair 

(M, N) of line bundles of degree 0 and 1 respectively such that E fits into a short 

exact sequence 

0 -+ M -+ E -+ N -+ 0, 

we have either 

• M is a point of order 2 in JfJc. 

• The class (b(E)) E IKx N M- 1
1 contains q1 or Q2, where Kx M2 = Ox(QI + q2). 

Line of enquiry: These conditions suggest that one should perhaps look for the 

base points of 121 in those Fe such that all degree 0 line subbundles of E are of 

order 2. We show how to construct E with four distinct subbundles of order 2. Let 
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WI, w2 and w3 be distinct Weierstrass points on X and consider extensions 

with classes in lw1 + w2 + w3 1. Then the extension corresponding to the divisor 

WI+ w2 + w3 has the degree 0 line subbundles 

which are all of order 2. 

One can also construct E with only one subbundle of degree 0, which may be a 

point of order 2. Let L ---+ X be a line bundle of degree 0 and consider extensions 

0 ---+ L ---t E ---t L( w) ---+ 0 

where w E X is a Weierstrass point. Then lP H 1(X, Hom(L(w), L) ~ IKx(w)l. 

One checks easily using Lemma 4.1 and Serre duality that the extension with class 

corresponding to 3w has only the line subbundle L, which may be of order 2. 

This is a problem I hope to continue studying. It is related to the Brill-Noether 

problem for vector bundles, that is, to determine the loci in the moduli space Ux ( r, d) 

of stable bundles with at least a prescribed number of independent global sections. 

See Mercat [31] for an overview. 

Symplectic bundles with singular theta-divisors 

In this section, we characterise those stable symplectic vector bundles W of rank 4 

over a curve X of genus 2 such that D(W) is singular, when it exists. 

Criterion 6.9 Let W ---+ X be a stable symplectic vector bundle of rank 4 such 

that D(W) is defined. Suppose L E S(W). Then the subsheaf 

.c-1 EB Kx -ICc W 

is isotropic if and only if D(W) is singular at L. 

Proof 

We begin by quoting a result of Laszlo. 



6.3 The genus 2 case 81 

Proposition 6.10 For each stable bundle W of rank 2 and degree 0, we have 

multLD(W) ~ h0 (X,L®W) withequalityifandonlyifthereexistsv E H 1(X,Ox) 

such that · U v: H 0 (X, L ® W) -t H 1 (X, L Q9 W) is injective. 

Proof 

Adapted from Laszlo [26, Prop. V.2); the statement in this paper is for W of slope 

g- 1 and D(W) is taken to be a divisor on lJc. D 

Now the only obstacle to Prop. 6.10 holding in rank r is that not every bundle 

of higher rank possesses a theta-divisor. Thus we may assume it for those stable 

vector bundles W E Mx(Sp2 C) which do. By Lemma 6.8 and the discussion in the 

last section, this is the case for generic W. Explicitly, multL D(W) ~ h0(X, L® W), 

with strict inequality if and only if the cup-product map 

has a kernel for every v E H1(X, Ox). 

We treat the cases h0 (X, L Q9 W) ~ 2 and h0 (X, L ® W) = 1 separately. 

h0 (X, L ® W) ~ 2: Then D(W) is always singular at L, by Prop. 6.10. We show 

that there are always nonzero maps s: L - 1 -t W and t: K)/ L ---+ W such that 

w(s(L-1),t(KX:1L)) =0. 

We have seen that h0 (X, KxL- 1 Q9 W) = h0 (X, L® W), and for the moment we 

suppose that both are equal to 2. Consider the map 

where we identify W with W* via w. Note that this depends on the form w, but 

since W is stable, w is unique up to nonzero multiplicative scalar and the kernel 

of m is independent of the choice. This kernel is of dimension at least 2, because 

h0 (X, Kx) = g = 2. We need a technical result: 

Proposition 6.11 Let Vi and V2 be vector spaces of dimension k. Then the de­

composable locus s of v1 ® v2 is of dimension 2k - 1. 
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Proof 

The association v 0 v' H (v) gives a well-defined map 1r: S -t lP V2 , which is clearly 

surjective. The fibre 

is isomorphic to V2 because v 0 v~ = v 0 v~ if and only if v~ = v~. Hence 

dim s = dim VI + dim v2 - 1 = 2k - 1 

as required. 0 

Now there exists at least one decomposable element s 0 t E Ker(mL) since by 

Prop. 6.11 the decomposable locus is of dimension 3. Then the image 

(s, t) (.c-I EB ICx -I .C) 

is isotropic in W. 

If h0 (X, L0W) 2: 3 then we choose any 2-dimensional subspaces of H 0 (X, L0W) 

and H 0 (X, KxL-I 0 W) and apply the above argument. This proves the criterion 

if h0 (X, L 0 W) 2: 2. 

Lastly, we suppose that h0 (X, L 0 W) = 1. Then the image of L -I EB K)/ L in 

W is isotropic if and only if 

is zero. By Prop. 6.6 and the remark following it, this is equivalent to 

being the zero map. Because h0 (X, L 0 W) = h0 (X, KxL-I 0 W) = 1, we see that 

U = 0 if and only if the cup-product map · U v has a kernel for all v E HI(X, Ox). 

By Prop. 6.10, this last condition is equivalent to multL D(W) being strictly bigger 

than h0 (X, L 0 W) = 1, that is D(W) being singular at L. 0 

Caution: Criterion 6.9 is false if W is strictly semistable. For example, let 

V E SUx(2, Ox) be a stable symplectic bundle of rank 2 and M E J~[2] be a 
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line bundle of order 2. The direct sum W := V EB M EB M is a strictly semistable 

symplectic bundle of rank 4 over X. Its (nonreduced) theta-divisor D(W) is equal 

to D(V) + 2(tM8). 

Now let L be a point of tMe which does not belong to Supp D(V) n Supp tMe. 

We have multL D(W) = 2 = h0 (X, L® W) and W contains a subsheaf .c-1 EBKx -l .C, 

which is contained in M EB M. Since the symplectic form on W is the sum of those 

on V and on M EB M, the subsheaf .c-1 EB Kx - 1 .C is isotropic if and only if it is 

isotropic with respect to the symplectic form on M EB M. But this is impossible 

since rk (.C-1 EB Kx - 1 .C) > ~ rk(M EB M). 



Appendix A 

Results needed in the proof of 

Theorem 1.4 

In this appendix we prove some of the more technical results needed in the proof of 

Thm. 1.4. 

Let Y be a smooth variety of any dimension. Recall that Buny(G) is the cat­

egory whose objects are principal G-bundles over Y and whose morphisms are G­

bundle isomorphisms, and Vect~mp(2n) is the category whose objects are pairs 

(W,w) where W---+ Y is a vector bundle of rank 2n and wE H 0 (Y, /\2 W*) a sym­

plectic form on W and whose morphisms are isomorphisms H: W ---+ W' such that 

H*w' = w. 

Proposition A.l Let W be a symplectic vector bundle of rank 2n over Y. Then 

there exist trivialisations of W with respect to which the symplectic form is given 

by the matrix 

equivalently, whose transition functions belong to the standard representation of 

SpnC on C2n. 

Proof (well-known) 

This can be done by choosing an open cover over which W is trivial and then making 

a coordinate change over each open set in the covering. D 

84 



Appendix. Results needed in the proof of Theorem 1.4 

Theorem 1.5 The categories Buny(Spn C) and Vect~mp(2n) are equivalent. 

Proof (well known) 

85 

Recall that a frame for a complex vector space V of dimension 2n is an identification 

f: C2
n ~ v. We consider the symplectic form Wo on C2

n given with respect to the 

standard basis by the matrix 

When V carries a symplectic form w, we may consider frames that carry w0 into w, 

that is, f*w = wo. 

To a symplectic vector bundle W -t Y we associate a principal Spn C-bundle, 

the symplectic frame bundle of W (see for example Bradlow [10, Lecture 5]). Let 

{Ui : i E J} be an open cover of Y over which W is trivial. For each y E Ui, we 

have, by Prop. A.l, a frame <f>i 1 ly for the fibre Wly such that (<f>ily)*wo = wly· Then, 

by definition, all such frames for Wly are given by 

We define the symplectic frame bundle F(W) of W to be the collection of all such 

frames over each y E Y. It has local trivialisations ii: F(W)lu; ~ ui X Spn c 
induced by those of W; precisely, 

Clearly <f>i is equivariant for the right actions of Spn C. The transition functions 

that is, 

are given by 

(notice that wi,jly is an element of Spn C). Clearly these are also Spn C-right­

equivariant. 
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To make this association into a functor, we need to specify what it does to 

morphisms. Let (V, 0) --'-t X be another rank 2n symplectic vector bundle and 

H: (W, w) -t (V, 0) an isomorphism of symplectic vector bundles. Given a frame 

f: {y} X C2
n -t Wly 

for any y E Y, the association 

F(H): f H Hly of 

is an Spn C-equivariant map F(W) IY -t F(V) IY which is clearly functorial. 

We check that F is fully faithful. Let 'll: F(W) -t F(V) be an Spn C-equivariant 

isomorphism. Define a map H: W -t V as follows. For each f E F(W) ly, we have 

a diagram 

c2n 

~) 
Vly 

We define Hly = 'll(f) o f-1
. We check that it is independent of f. By definition, 

any other symplectic frame for Wly is of the form fog for some g E Spn C. Now 

'll(f 0 g) 0 (! 0 g)- 1 = w(f) . g 0 g-l 0 f-l by equivariance 

= w(f) o f-1 

=Hiy· 

By construction, His uniquely determined, and F(H) = 'l!. Thus we have a bijec­

tion between Homsymp(W, V) and HomsPndF(W), F(V)). 

We show that the functor W H F(W) is essentially surjective. Given a prin­

cipal Spn C-bundle E -t Y with transition functions { ei,j}, we can construct the 

associated vector bundle 
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By construction, the transition functions of the principal Spn C-bundle F(E(C2n)) 

are just those of E, so this is an inverse construction for F. Hence the theorem. 0 

The orthogonal analogue of the following lemma is stated in Oxbury-Ramanan 

[38, § 2]. For results on Jordan-Holder gradings, we refer to Le Potier [29, p. 76]. 

Lemma 1.9 Let W ---+ X be a semistable vector bundle with a symplectic form 

w. Then there exists a filtration 

where each Wi is an isotropic subbundle of degree 0 and ~~~ is a stable vector 

bundle for each i = 1, ... k. Then the associated graded bundle of this filtration is 

isomorphic to 

4 ( __!!j_ E9 ( __!!j_) *) E9 Wl-
i=1 wi-1 wi-1 wk 

and is the usual Jordan-Holder grading of W. Moreover, w induces a symplectic 

form on grv W. 

Proof 

We check that such a filtration always exists. If W has no nonzero isotropic sub­

bundles of degree 0 then 0 = W0 c Wl = W trivially satisfies the requirements. 

Otherwise, from among the nonzero isotropic degree 0 subbundles of W we choose 

one W1 (not necessarily unique) which has minimal rank. This is stable since any 

degree 0 subbundles of w1 would also be isotropic, contradicting minimality. If w1 

is not contained in any degree 0 isotropic subbundle of higher rank then 

is the required filtration. Otherwise, we can choose some W2 which has minimal 

rank among those isotropic degree 0 sub bundles strictly containing W1 , and so on. 

This process must stop because an isotropic subbundle has rank at most n. 

Given such a filtration, we note that there are no degree 0 subbundles between 

any Wi- 1 and Wi. For such a subbundle would be isotropic and its image in ~~ 
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would destabilise this bundle, contrary to hypothesis. This then implies that there 

are no degree 0 sub bundles W' C W satisfying W/ C W' C wi-:1, for then (W')j_ 

would be a degree 0 subbundle strictly contained between wi-1 and wi. 
Therefore, we can complete the given filtration to a Jordan-Holder one by adding 

some (nonisotropic) bundles of degree 0 between Wk and Wkj_ if necessary. 

We now notice that w induces a symplectic form on 

W· w.j_ 1 _t_EB~ 

wi-1 W/ 
w.L 

and also descends to ~, so we have a symplectic structure on the graded bundle 

of this filtration. In particular, we get the required isomorphism 

for each i = 1, ... , k. 

If there are no degree 0 subbundles of w contained between wk and wkj_ then 

we are done. Otherwise, suppose we have completed the filtration to 

o c W1 c ... c wk c wk+1 c · · · c wk+l c W/ c wkj_-l c · · · c w(- c w 

where all the quotients wwi fori= k+ 1, ... k+l and :;t are stable vector bundles. 
i-1 k+l 

Now gr v W is isomorphic to 

k ( W· ( W· ) *) ( k+l W ) W j_ E9 _t EB _t EB E9 _t EB-k. 
i=1 wi-1 wi-1 i=k+1 wi-1 wk+l 

Therefore, we have to show that 

Now we have seen that ~.( carries a nondegenerate symplectic form. It has no 

nonzero isotropic subbundles of degree 0 since such a subbundle would come from 

a degree 0 isotropic subbundle of W strictly containing Wkl contrary to hypothesis. 

By Lemma 1.6, it corresponds to a stable principal Spm C-bundle for some m 2: 0. 
w.L 

We have a filtration of~: 

w. w w. wj_ 
0-+ ~ c ~ c ... c ~ c _k_. 

wk wk wk wk 
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Since the subbundle ~;' is not isotropic, by the proof of Lemma 2.1 it splits off 

~~ as a direct summand, and the complementary summand is 

W//Wk rv W/. 
Wk+t/Wk = Wk+t' 

moreover, both summands are symplectic vector bundles. Repeating this procedure 

with wk+t-! c Wktt and so on we see that 
wk wk ' 

_k_ = _t_ EB __ k_ w..L ( k+l w;. ) w..L 
wk .EB wi-1 wk+t. 

t==k+l 

This completes the proof of the proposition. 0 

Proposition 1.10 Let P be a subgroup of the group of invertible matrices of the 

form 

0 

0 

* 
* 

where the A E GLm; C for some m1 , ... , mk. (For example, P might preserve a 

bilinear form.) Then the group of characters of P is generated by the characters of 

the blocks along the diagonal. 

Proof (shown to me by C. Pauly) 

Consider the short exact sequence {I} --+ U --+ P --+ M --+ {I} where U s;;; P is the 

subgroup with identities in the diagonal blocks and M is isomorphic to a subgroup 

of 

This induces an exact sequence 

{1} --t Hom(M, C*) --+ Hom(P, C*) --t Hom(U, C*) --t · · · 

so we just have to show that Hom(U, C*) = {1 }. 
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We note that U is a unipotent group, so the Lie algebra u of U satisfies Dku = 0 

for some k 2 0. Therefore, if u is nonzero then we can choose a one-dimensional 

Abelian Lie subalgebra of u from Dk_ 1u. The exponential of this is a subgroup of U 

which is isomorphic either to C or C*; since C* is reductive, it must be C. So there 

is a short exact sequence of algebraic groups 

0 --t (C, +)--tU--tU' --t 0 

This induces a short exact sequence 

1----t Hom(U',C*) --t Hom(U,C*) --t Hom((C,+),C*) --t · ·· 

Now U' is also unipotent so, by induction, we have only to show that a unipotent 

group of dimension 1, that is, ( C, +), has only the trivial character. Now any mor­

phism (not necessarily a group homomorphism) C -=-+ C* is given by a polynomial. 

Since any nonconstant polynomial has a zero, the only morphisms C --t C* are the 

constants. Hence the only character of C is the constant function 1. 

This completes the proof of the proposition. D 

The last technical lemma classifies the possibilities for the symplectic forms in­

troduced in Prop. 1.9. 

Lemma 1.13 Let W --t X be a polystable symplectic vector bundle. Then any 

two symplectic forms on Ware related by an automorphism ofW. 

Proof 

A polystable symplectic vector bundle is of the form 

( ~(1~ ffi mm··) ffi ( ~ c~'') ffi ( ~ H~") 
where 

• the Fi are stable of degree 0, mutually nonisomorphic and Fi ';fl. Ft; 

• the G j are stable of degree 0, mutually nonisomorphic and self-dual but not 

symplectic; 
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• the Hk are stable, mutually nonisomorphic symplectic vector bundles. 

(This can be seen by constructing a grading as in Prop. 1.9.) Now let w be a 

symplectic form on W. We claim that 

w ((Fi E!7 Ft), A)= 0 

for any copy of Fi E!7 Ft and any other stable direct summand A in W. For, otherwise 

we would have a nonzero map Fi --+ A*, which would be an isomorphism since the 

bundles are stable, contrary to hypothesis. A similar statement applies to the G 1 

and Hk. Hence w is a sum 

fh + ' ' ' (}l + V1 + · ' ' + Vm + 6 + ' ' ' + ~n 

where (}i, v1 and ~k are symplectic forms on (FiEBFtY~a;, G~bi and H~ck respectively. 

Thus it is enough to prove the lemma in the following cases: 

1. W = (F E!7 F*)'~a where F is stable of degree 0 and not self-dual. 

2. W = Qffib where G is stable and self-dual but not symplectic. 

3. W = Hffic where H is stable and symplectic. 

Now the symplectic form determines an isomorphism W 2+ W*. In the first two 

cases, this maps each stable direct summand of W to a copy of its double dual. 

Since the only endomorphisms of stable vector bundles are homotheties, the cocycle 

of matrices giving the symplectic form is constant on X. 

1. Write r = rk F. Since F is not self-dual, the subbundles Fffia and (F*)ffia are 

Lagrangian in W by stability. Hence w is given globally by a matrix of the form 

O := ( 0 A) 
_tA 0 

where A is an invertible matrix of the form 

A1,1Ir At 2Ir • 0 0 At air , , 

>..2,1Ir A2 2Ir • 0. A2 air , , 

Aa 1Ir Aa,2Ir 0 •• Aa air , , 
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for some >.i,j E C. By a slight abuse of notation, we write A = A' ® Ir where 

A'= (>.i,j)· Then Aut W = GLa C xGLa C acts on the set of symplectic forms by 

The result now £(ollo;s fr:~)the fact that any two symplectic forms defined(~ m~t)ri-

ces of the form are related by a transformation of the form . 
_t A' 0 0 g2 

2. Firstly, we note that each copy of G in W is isotropic. For, the symplectic 

form induces a nonzero antisymmetric map G --+ G*, which is either zero or an 

isomorphism since G is stable. If it were an isomorphism then G would be a sym­

plectic bundle, contrary to hypothesis, so it must be zero1
, but if we consider two 

linearly independent injections i and i' of G into W then the restriction of w to the 

sub bundle i( G) Ef) i'( G) is either zero or a pairing, by stability. Therefore, w is given 

by a matrix of the form B' ® Ir where B' is an antisymmetric invertible b x b matrix. 

(In particular, b is even.) Then Aut W = GLb C acts on the set of symplectic forms 

on W by 

The result now follows as in case 1. 

3. In this case we no longer know that each direct summand is isotropic with 

respect to w. However, since H is stable, we know that the restriction of w to a 

summand H is either nondegenerate or zero, and that there is only one choice of 

symplectic form on H up to multiplicative scalar. We choose trivialisations of H 

with respect to which this form is given everywhere by an antisymmetric invertible 

r x r matrix J (of course r is even). 

1 We remark that G is in fact an orthogonal bundle. More generally, a self-dual stable vector 

bundle G is always either symplectic or orthogonal. Indeed, Jet j: G .2:t G* be an isomorphism; 

then t j: G .2:t G* is another isomorphism. Since G is in particular simple, t j is proportional to j. 

Therefore t j = ±j because j H t j is an involution. 
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Now since H is stable, there is only one linearly independent map H ---t H*, 

which must be given in our coordinates by a multiple of J. Thus the form w is given 

everywhere by a matrix of the form 

)q,l] >..12J ... A1,cJ 
' 

C:= 
>..21J )..2 2J ... A2 CJ 

' ' ' 

Ac 1J Ac2J ... Ac cJ 
' ' ' 

which we write again as C'@ Ir where C' = (>..i,1). Now using the facts that w 

is antisymmetric and J is an antisymmetric matrix, it is easy to check that C' is 

symmetric. Then Aut W = GLc C acts on the set of symplectic forms on W by 

(g, C) H (tgC'g)@ J. 

The result now follows from the fact that any two symmetric forms on cc are related 

by a transformation of the form C' H tgC'g. D 

Proposition 1.12 Let E ---t X be a principal GLr C-bundle. Then E is (semi)stable 

if and only if the vector bundle E(Cr) associated to the standard representation of 

GLrC is a (semi)stable vector bundle. 

Proof (well-known; see for example Oxbury [37, § 1.3]) 

Let P C GLr C be a maximal parabolic subgroup and a: X ---t E I P a reduction of 

structure group to P. We saw in § 1.3 that E I P is identified with the bundle of 

Grassmannians of subspaces of fixed dimension k in the fibres of E(Cr). Thus the 

section a is an algebraically varying choice of subspace of fixed dimension in each 

fibre, that is, a vector subbundle F C E(Cn). Write 1r for the projection E I P ---t X 

and let V = 7r* E(Cn). Let U ---t Grass(k, r) be the universal bundle. Now by for 

example Arbarello et al [1, p. 68], the tangent bundle of Grass(k, r) is isomorphic to 

Hom(U, VIU). Hence the tangent bundle T'I;irfo along the fibres of 1r is isomorphic 

to Hom(U, V IU), whence 

a*T'I;irfo = Hom(a*U, a*VIa*U) 

= Hom(F, E(Cn)l F). 



Appendix. Results needed in the proof of Theorem 1.4 

Now 

deg(a*Tf'E/1>) = c1 (Hom(F, E(Cn)/ F) 

= c1 (F* ® E(Cn)/ F) 

= kc1 (E(Cn)/ F)+ (n- k)c1 (F*) 

= kc1(E(Cn))- kc1(F) + (k- n)c1(F) 

= kn ( c1(E~Cn)) _ C1~F) . 
The proposition follows from the definitions of stability and semistability. 0 
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