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Abstract

We present new on-shell techniques for the calculation of colour ordered helicity ampli-
tudes in QCD. We review the methods of on-shell recursion and the MHV rules before
applying them to tree-level processes within the Standard Model. The MHV rules are
applied to QCD corrections to Higgs amplitudes in the heavy top quark limit at tree-
level, generating simple n-point expressions for specific helicity configurations as well as
developing more generally applicable recursion relations. We then generalise the on-shell
recursion relations for massless QCD to include massive propagating particles and ap-
ply them to amplitudes with massive scalar particles, vector bosons and fermions. We
then apply on-shell methods to compute the cut-constructible parts of 1-loop Higgs plus
multi-gluon amplitudes fixing the remaining rational terms through Feynman diagrams.
In all cases we find that the on-shell methods generate simpler analytic expressions than

the traditional off-shell methods.
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1. Introduction

Quantum Mechanics and Relativity have been the most influential ideas in our under-
standing of the physical world over the last 100 years. Modern particle physics applies
in a regime where we need to use both of these theories together and formulate so called
Quantum Field Theories to describe the observations we see in nature. Currently the
best model describing the dynamics of the fundamental particles of nature is the Stan-
dard Model: an interacting quantum field theory invariant under local transformations

of the gauge group SU(3) x SU(2) x Uy (1).

The strong interaction of nuclear particles is described by the SU(3) sector and is
known as QCD. The electro-weak sector of the standard model (SU(2) x Uy (1)) describes
the electro-magnetic and weak forces. This sector of the Lagrangian is predicted to
be broken spontaneously by the Higgs potential. The scalar field associated with this

potential is the Higgs boson - the only particle yet to be observed in the standard model.

The standard model has been extremely successful and has resulted in the most ac-
curate predictions ever made by a physical model. Processes in high energy physics are
generally studied through collider experiments which have either been in the form of lin-
ear colliders or circular, synchrotron colliders. At the present time the most important
colliders for probing the Higgs sector and searching for new physics are the Tevatron at
Fermilab and the LHC (Large Hadron Collider) at CERN (from around summer 2007).
Both of these machines are synchrotron hadron-hadron colliders, with a centre of mo-
mentum energies of 2 Tev (Tevatron) and 14 Tev (LHC). The advantage of colliding

massive nuclear particles is that these high energies can be achieved, however the pro-




ton is not an elementary particle and therefore signals from such machines are usually

extremely complicated.

Observations at hadron colliders involve collisions of composite particles. In order to
link these collisions with the matrix elements of the elementary fields, one introduces a
factorisation scale which splits the interaction into long range effects concerned with the
hadron structure and short range effects which can be calculated perturbatively since
QCD is asymptotically free. The total cross section is therefore written as:

1 1
0‘(h1h2—>X): Z Z AdglA d§2

plz{gau7d1"'} pzz{g,ﬂqd»---}

2 2
£ (60, 0) 57 (62 1id) 30ie — Xi B5 QD) (L)

where hy and hg are the two initial state hadrons and X is some generic (infra-red safe)

final state.

A schematic picture of this factorisation is shown in figure 1.1. f,Ep ) (&, 42) are the
parton distribution functions (PDFs) which give the probability of finding the parton
p within the hadron, h, at a given momentum fraction £ and factorisation scale /,L%.
The partons p; and ps then enter the hard scattering cross section with a momentum
p1 = &P and po = & P> respectively. The PDFs are non-perturbative objects which
must be determined experimentally. The factorisation scale i is such that the evolution
of the parton densities can be calculated perturbatively. Much of the work to determine
the precise structure of the PDFs has been done at the eP collider HERA using deep
inelastic scattering, global analyses of all data are available to NNLO accuracy from
MRST (1, 2] and the CTEQ [3] collaborations. The dependence of the PDFs on pu%
however is understood perturbatively and is governed by the Altarelli-Parisi splitting
kernels [4]. Recently these kernels have been computed to 3-loop accuracy by Moch,
Vogt and Vemaseren [5, 6] which is vital when evolving the PDFs from the relatively
low energies at HERA to the high energies at the LHC.

The confinement property of the strong interaction ensures observed final states will

always be in the form of colourless hadrons which form through a complicated non-






(called the underlying event) and account for initial state radiation and subsequent par-
ton showering where the parton from the incoming hadron loses some energy by radiating
collinear partons before the hard scattering. The underlying event is generally made of
low energy soft hadrons and so, as with the parton distribution functions, is modelled
using experimental data. The factorisation (1.1) is actually only the leading order con-
tribution to the expansion in Q2. One can imagine events where two partons from each
hadron would separately interact and we could have a double scattering process. Such
terms are called higher twist contributions and are suppressed by a factor of @15 or more

with respect to the leading twist term, although they can be extremely important at low

values of £ and Q2.

The parton level cross section is related to the square of the matrix element:

~ d®q;
o(p1p2 — a3 Gn) = 23 H2(27r3E

n
(2m)* W (py +p2 — Y _ @) M (p1p2 — 3. )%, (1.2)
=3
where p; and ps are the two incoming partons and gs, . . ., ¢, are the n— 2 particles in the

final state. 5 is the centre of mass energy of the hard interaction and S is a symmetry
factor associated with identical particle in the final state. Both the matrix element and

the phase space are invariant under Lorentz transformations.

In this thesis we will be concerned with calculating the matrix elements M rather
than its integration over the phase space. The need for accurate predictions for QCD
scattering cannot be over stated. If we hope to disentangle any new physics from LHC
experiments one must predict the large backgrounds to the relevant processes. However
the problem of calculating QCD accurately is an extremely difficult one. Calculations
in perturbation theory beyond leading order are plagued with ultraviolet and infrared
divergent loop integrals. Calculating these matrix elements with a high number of ex-
ternal particles has been very difficult as the traditional methods are cumbersome and
produce extremely large intermediate expressions which must be dealt with analytically

in order to handle the divergent terms consistently. The purpose of studying on-shell



methods in QCD is therefore to try and find a workable algorithm for automating the
calculations of NLO matrix elements which could then be interfaced with some MC par-
ton shower/hadronisation program to produce accurate predictions of the large QCD

backgrounds.

In the first chapter we will briefly introduce the central concepts of QCD as a non-
abelian gauge theory and quantum field theory, describing the divergences that occur
and how one can get around them. We will also review some of the on-shell techniques,

namely the on-shell recursion relations and MHV rules.

The second and third chapters are devoted to two specific applications of the on-shell
methods to SM tree level amplitudes with large numbers of external legs. Chapter 3
shows how to accommodate Higgs bosons into the MHV formalism and calculate LO
predictions important for decay of Higgs bosons to many jets. Chapter 4 makes an
important generalisation of the on-shell recursion relations to accommodate massive
particles. This is done for particles with either spin 0,1 or 1/2. Clearly amplitudes
involving massive fermions and vector bosons are extremely important in SM processes
where the top quark and electro-weak bosons W¥, Z have very large masses. Since the
coupling of the Higgs boson to SM particles is proportional the mass of the particular
particle these processes will be very important in channels for Higgs discovery at the
LHC. Chapter 5 is concerned with applying the on-shell methods at 1-loop to calculate
all multiplicity results for the “cut-constructible” components of amplitudes with a single
Higgs boson coupling to gluons. The full amplitudes for up to 4 partons are given by

computing the remaining rational terms using a Feynman diagram approach.



2. Background

2.1. Basics of Perturbative QCD

QCD is an SU(N¢) gauge theory of quarks and gluons with quarks transforming in the
fundamental representation and the gluons transforming in the adjoint representation.

The most general renormalisable Lagrangian is written as,

ny
1 v Nz Ng0 -
L= —ZGZVGa,u + E YD — Im)ys + Lgauge — 521;_28(;;11”(;%“” (2.1)
f=1

where 15 are the quark fields and the N2 — 1 gluon fields, A, appear in the covariant

derivative,

D, =10, —igT*4j,

—igT*G%, ¢ = [Dy, Dy 9. (2.2)

The final term in the Lagrangian is permitted since it is both gauge invariant and
renormalisable, however it violates CP symmetry and is the origin of the so-called strong
CP problem as experimentally 6 is observed to be extremely close to zero. This term
plays no role in perturbative studies since the Feynman expansion of the vertex vanishes,

and hence will not contribute to the calculations presented in this thesis.

The gauge dependent part of the Lagrangian is quite complicated for non-abelian
gauge theories. The problem is that in quantising the theory one assumes that the
gauge fields have four degrees of freedom whereas gauge invariance actually constrains

two of these degrees of freedom. The result is that the over counting in the degrees of



freedom must be compensated by the addition of a gauge fixing term and, particular to
non-Abelian theories, terms involving a ghost field c,
1 2 b b

Egauge = —E(B“AZ) - c“B“Dz c. (23)
For the calculations in chapters 3 and 4 we will choose to work in a gauge where such
terms are irrelevant and we do not need to worry about the ghost fields. This gauge is
defined by the choice of spinor representation of the polarisation vectors as discussed in
section 2.2. To be precise one needs to consider these terms carefully when renormalising
QCD and computing the running coupling. However, for the sake of simplicity, these

terms will be dropped in all subsequent discussions.

In this thesis we will be concerned with calculating matrix elements perturbatively
as an expansion in a; = g?/4w. Traditionally this means decomposing each scattering
amplitude into Feynman diagrams and applying the associated computation rules. This
is a diagrammatic application of Wick’s theorem which helps to reduce the correlation
functions to a sum of all possible connection of propagators and vertices. This approach
is termed off-shell as the correlation functions are related to the cross-section via the LSZ
reduction formula which strips off the external wave-functions. Momentum conservation
is therefore applied after the evaluation of the individual diagrams and large cancellations
often occur between diagrams. The Feynman rules for QCD in momentum space can be

found in many places, for instance see p.801-803 of reference [7].

2.1.1. Renormalisation of UV divergences and the running coupling

When calculating scattering amplitudes perturbatively in an interacting quantum field
theory past leading order we often encounter UV divergences due to loop integrals of

the form:

A d4l
/o E =B R —m) ~ 108 o (2.4)

Although this feature appears to be a serious failure, as long as physical observables are

finite this is not really a problem at all. In fact it turns out that in interacting field



theories the parameters in the Lagrangian are not the physical ones and by rescaling
these parameters we can remove all such UV singularities. This procedure is known as
Renormalisation and is only possible when a finite number of sub-processes diverge, even
though divergences may occur at every order in the perturbative series. In particular
there cannot be more divergent processes than there are parameters in the Lagrangian

in which to absorb them.

To understand this problem in QCD it is necessary to study quantum corrections to
both the fermion and gluon propagators as well as the interaction vertices. For a free
field theory we know that the 2-point correlation function can be directly interpreted as
the amplitude for a particle to travel from a point x to a point y. So a free theory of
fermions would have the following relation:

i(p + mo)

= e (2.5)

/ d*ze®* (0| T{(2)%(0)}/0)

where myg is the mass parameter in the Lagrangian. If we introduce interactions into
the theory this interpretation no longer applies as the propagator receives radiative
corrections from interactions with virtual gluons. In this situation we find that the
2-point correlation function is now modified to have the form [7],

iZa(p + m)

= e + (branch cuts and bound states). (2.6)

/ d*ze (0| T{)(z)%(0) }|0)

The effect of such corrections is to shift the pole of the propagator, i.e. the mass, to that
of its physical value, m. The residue of this pole, Zs, is the wave function renormalisation

and it is this quantity we will need to compute if we hope to cancel UV divergences.

Let us now consider the perturbative contributions to the fermion propagator in mo-
mentum space. We can write this in terms of 1-particle irreducible diagrams, which are
diagrams which cannot be split into two distinct diagrams by cutting a single propaga-

tor. Examples of diagrams in this class are shown in figure 2.1. Denoting the sum of



Figure 2.1: Examples of 1-particle irreducible diagrams contributing to the full fermion

propagator.

such diagrams as —¢¥(p), then the fermion propagator becomes:

pP+mo _H_]Z’ero

4 - ipxr _ . E
[ dta@ier= =i 5 BT Cimi T +
i i ( =(p) )
e g \p-mo

- 2.7
= T 27

so we define the physical mass by the pole of the full propagator,
[;» ~mg — 2(7))] =0 (2.8)

p=m
and by computing the residue* of the propagator we can identify the wave function
Yy b

renormalisation as defined in equation (2.6),

1

g = ———.
27 1-%(m)

(2.9)

This rescaling of the propagator manifests itself in all amplitude calculations so that

in order to find the physical scattering amplitude we must re-scale all the correlation

*Given a function f(z) = h(z)/g(z) where g(z) and h(z) are analytic functions with h(zo) # 0,9(z0) = 0
and g'(20) # 0 then Res(z = zo; f(2) = h(z0)/g’(20)) [8]



functions by this factor. Z will absorb UV divergences like the ones seen in eq. (2.4)

and must be computed at each order in the perturbation series.

Other divergences are absorbed in the re-scaling of the gluon propagator, Zs, and
vertex contribution Z; (for the qgg vertex) and Zsg, Z44 for the self interaction vertices.
In order to be completely general we would also need to re-scale the ghost fields and
associated couplings as well as the gauge fixing parameter. As we have seen in the
analysis of the fermion propagator the physical values of the parameters m and g can

be determined from these re-scalings and the bare quantities themselves.

To see how the coupling is shifted with the re-scaling one must consider the gluon
propagator in a similar fashion to the analysis of the fermion propagator given above.
Defining the 1-particle irreducible contributions as’ —ilI#(p) = —i(p?gh’ — p#p*)I1(p?)

we can write (omitting colour factors),

. —ighv gk o
/d%e”’ £{0|A*(z) A (0)|0) = pgz + p92 [—z(p2gpg - p,,pa)} I1(p?) p92 +...
—ighv 1
_ 2.1
b 1-T() (210

The renormalisation of the gluon field strength is then defined by the residue of the
propagator at p® = 0,
1

Importantly (2.10) shows that the gluon remains massless at all orders in perturbation
theory. Since the gluon propagator will always be present in association with two inter-
action vertices we can consider that Zs can be interpreted as a rescaling of the coupling

go at low energies:
3 g 7375 g*
Z2OPA T o 27 PP

so we can write the renormalised coupling as agr(p? = 0) = Z322/Z%ap. At finite

(2.12)

energies we can identify a very important property of interacting quantum field theory

tThe allowed tensor structures are restricted by the Ward identity
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namely the running of the coupling constant:

z O(a) (0)
o) = O ~ 1500 —mO)

(2.13)

where Il is the leading order contribution to II. This implies that the coupling constant
changes with energy which will have a serious effect on the validity of perturbative

expansions.
The renormalised Lagrangian

Re-defining the parameters and fields in the Lagrangian to account for the effect
radiative corrections results in a modified set of Feynman rules, which will result in UV

finite scattering amplitudes. We take the bare QCD Lagrangian as,
1 - .
Lo = _Etr(GgVGO;IW) + 'l/)()('LlDO — mo)'t/J() (2.14)

where Dy, = 0y — igoT?Af,,, and Gow = —é[Do;“, Dg,]. We now re-define the fields

and parameters according to,

Yo =2y = (1+6)"%

Al = \/Z3 A% = (1 + 83)1/2 4#

ZoN/ Z3go = Z1g = (1 + d1)g
Zamg = m + 6y (2.15)
where the re-scaling of the coupling is defined through the exact gluon-fermion ver-
tex . Substituting these relations into the bare Lagrangian results in a renormalised

Lagrangian which includes extra counter-terms which compensate the UV divergences

found in the higher order corrections,

L=~ %tr(G‘“’G,W) + (D — m)
(6020 — b)) — 703(0, AT — B, A7)

+ go1 T A% — g6 200, AZAPH A — g679 fobe fode Ao AD ADHASH  (2.16)
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Each of these counter-terms, J;, must be evaluated at each order in the perturbation
series. They are evaluated using renormalisation conditions which fix the residues of the

propagators, the fermion mass and the colour charge at their physical values.

It is here that we need to be a little more careful. Throughout the course of this
thesis we will consider QCD with massless fermions, in this case the residues of the
fermion propagator are not well defined on shell, at p? = 0, so we are forced to choose
an arbitrary scale, say u2, at which to evaluate the residues. This appears to be a rather
strange definition of the masses and couplings but as long as the correlation functions
are independent of this renormalisation scale then this as good a choice as was made in

equations (2.8) and (2.11). The renormalisation conditions are now written as:
(p*) =0
) =0
(u?) =0
—igT*((p — p)* = u?) = —igy* (2.17)
where the 1-particle irreducible diagrams include contributions from the counter-terms.

The condition that this renormalised perturbation theory is independent of the renor-
malisation scale is encompassed in the Callan-Symanzik equation which looks at the
infinitesimal changes of the Green’s functions with the choice of scale. This can be

written as:

(ﬂ»% + 5(9)8_‘99 +17(9) + mvg(g)) G ({2}, 1,9) = 0 (2.18)

where G{™™) are the renormalised Green’s functions of n fermion fields and m gluon
fields. The functions 3(g) and v;(g) are extremely important and govern the running
coupling and anomalous dimensions respectively. Solving the Callan-Symanzik equation
for the two point function leads to the following interpretation of the 8 function,

o dg
B(g) = QW (2.19)
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dimensional regularisation where one notices that, although the integral (2.4) diverges in
4 dimensions, if we compute it in d dimensions the integral is finite. After all divergent
integrals have been computed and the counter terms subtracted the expression will be
finite as d — 4. This is normally achieved by setting d = 4 — 2¢ and looking at the poles
in e. Details of dimensional regularisation can be found in Appendix A. Such techniques

result in,
1IN, —2Np

By -

(2.21)

In the standard model where Ngp = 6 and N, = 3 we see that Fy is negative in stark
contrast to a similar analysis of QED. This results in the coupling in QCD becoming
weaker as the energy is increased, a phenomenon known as asymptotic freedom, shown in
figure 2.2. Clearly this is an extremely important result for perturbative studies of QCD.
Although at low energies the coupling constant is large and the perturbation series is not
defined, we can use perturbative techniques to compute the hard scattering processes

relevant for high energy interactions.

2.1.2. Cancellation of Infra-Red divergences

Loop integrals also suffer from infra-red divergences. This occurs when massless propa-
gators appear in the integral:

Auyv 4
/ LILIRY (2.22)

AR k2 Ar—0

The origin of such singularities lies in the incorrect definition of asymptotic states in the
S-matrix which are considered to be free states. Infra-red singularities also occur in tree
matrix elements at extreme points in the phase space where one of the invariant masses
in the propagators vanishes. For example consider a process where a massless quark
couples to a gluon as shown in figure 2.3. The invariant mass of the off-shell quark can

be written as,

Sqg = (Pg + Pg)> = 2p4 - Py (2.23)

14



Dg

Dq

Figure 2.3: Sub-diagram contributing in the IR limit sgg — 0.

Parameterising p, and py as,
Pq = Eq(1,Pq), pg=Eg(1,Bg) = qg = 2EgE,(1 — cosfqg) (2.24)

Therefore the matrix element will diverge either when,

e 0y — 0, i.e. emitted partons are collinear

e E, — 0, i.e. the gluon is emitted soft (soft emission cannot occur for quarks).
9 g

These IR divergences are classified as virtual (from loop integrals) and real emission
(from soft and collinear divergences). In any observed cross section these divergences
must cancel and give a finite result. The physical interpretation of this is the fact that a
detector will always have some minimum resolution below which the two processes are
indistinguishable hence the observed n-particle cross section is:

Otbs = Olipuar + _lim  (o™H7) (2.25)

m soft or
collinear

Theorems due to Bloch and Nordsieck [10] and Kinoshita [11], Lee and Nauenberg [12]
prove that the IR divergences present in each component must cancel to all orders in
perturbation theory. Clearly we still need to regulate the divergent integrals but luckily

the dimensional regularisation scheme works equally well for IR divergences.

We must include unresolved contributions up to the order in perturbation theory

which we wish to calculate. For instance, at one loop, one must include all real emission

15



diagrams which are single unresolved. This includes single soft emission and double
collinear emission which is at equivalent order in oy to the loop corrections. The real

emission diagrams must be integrated over the unresolved phase space:

oNLO = (1) / dLIPS(1)e®. . (2.26)

n,virtual + n+1,real

At two loops the situation is more complicated as we must include single unresolved

contributions at 1-loop and double unresolved contributions at tree level,

oNNLO — 5(2) / dLIPS(1)o\); o + / dLIPS(2)0% ) cear (2.27)

n,virtual + n+2,real

The behaviour at the amplitude level in the various soft/collinear limits can be cate-
gorised by splitting functions. These functions contain all the divergent quantities in the
given limit and we see the extremely important factorisation of scattering amplitudes.

For example, collinear limits at tree level are described by,

AD (. p p L p2)

- A
J”]HZSphtO)(P o AL (o, P pa)  (228)

where p; + p;11 — P in the collinear limit. This is the indication of quite an important
result, because real emission divergences are proportional to the tree level amplitude,
the IR divergences from the virtual contributions must also be proportional to the tree

level amplitude in order for the cancellation to proceed as expected [13, 14],
AL = A0 (D) L 0() (2.29)

where ¢ is the dimensional regularisation parameter. IY) contains all of the poles in ¢
and can be written down in many cases for generic processes. This feature has been
generalised to two and three loops by appealing to exponentiation of the soft factors of

the scattering amplitude [15].

2.1.3. Unitarity techniques for loop amplitudes

Exploiting the unitarity of scattering amplitude has been an extremely useful tool in

many areas of quantum field theory. The Cutkosky rules [16] provide a way to calculate

16



discontinuities in amplitudes by performing simple phase space integrals of the products
of two tree amplitudes. The fact that the tree amplitudes are on-shell rather than off-
shell Feynman diagrams means that we can exploit the large cancellations that occur

between tree level Feynman diagrams and derive more compact loop amplitudes.

Using the Cutkosky rules we can write the discontinuity of an amplitude Ag) across

the s;; = (pi + ... + p;)? branch cut as:

: [ dPl
DISCA‘SLI) = (27‘-)27’/ W‘SHJ (l%)é(_’_) (l%)A(_ll»pl’ Y 4T l2)A("l2,])j+1, ceey Pi—1, ll))

(2.30)

where §(*) represents the positive energy branch of the delta function and momenta
are labelled cyclically. Iy is given by lo = I; + p;;. Figure 2.4 gives a diagrammatic
representation of this cut. This discontinuity will only reproduce the imaginary part
of any terms in the amplitude that have branch cuts such as logarithms, i.e. In(z) =
In(|z]) —éw. In order to reproduce the full logarithm we replace the cut propagators with

the full 1/1% propagator [17):

dPl 1 1
A’E‘Ll)|pi,j Cut:/WﬁA(_ll,piv'ij’lQ) A(_l2apj+la""pi—17l1)a (231)
1

3
Unitarity based methods for computing helicity amplitudes have been extremely suc-
cessful, particularly in supersymmetric theories where entire amplitudes can be re-
constructed from the cuts (in 4 dimensions) [18, 19]. Surprisingly simple expressions
for amplitudes in A" = 4 (17, 20, 21] and N = 1 [18] have been derived. Indeed it is
possible to show that in the case of ' =4 SYM amplitudes 1-loop amplitudes must be

of the form:

AN =N "1y, (2.32)
i

where I are scalar box integrals. For N' = 1 supersymmetric amplitudes we also find

terms proportional scalar triangle and bubble integrals.

For non-supersymmetric amplitudes the situation is more difficult as the cuts must

be evaluated to higher order in the dimensional regularisation parameter ¢ in order that

17



Dj+1i-1.,

Figure 2.4: Computing the discontinuity in the s;; channel of an n point, 1-loop
amplitude. Momenta are labelled cyclically.

certain rational functions are not missed [22, 23]. In some cases it has been possible to
fix these rational functions by using the universal collinear factorisation as an additional
constraint. Using these improvements many 1-loop amplitudes in QCD have been derived

[24] and it has also been possible to derive some results at 2-loops [25-30].
Cut-constructibility of gauge theory amplitudes.

A proof of the cut-constructibility of 1-loop supersymmetric amplitudes was presented
by Bern, Dixon, Dunbar and Kosower in references [17, 18]. The proof requires that
we look at colour ordered amplitudes where the kinematic invariants appear only as
consecutive sums of the external momentum. The basic object which we need to consider

when evaluating 1-loop amplitudes are the tensor integrals,

[ dn P(i#)
WP, K = [ s ka2

where K; are the momenta, massless or otherwise, entering at each vertex. The function
P(I*) is a polynomial in the loop momenta. The proof of cut-constructibility stems from
the fact that any m-point tensor integral? which contains at most m—2 powers of the loop

momentum can be reduced to a set of integral functions which are uniquely determined

tFor 2-point, bubble integrals the numerator may have one power of the loop momentum
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from their cuts. We are then left to show that all loop integrals in super-symmetric

theories obey this simple power counting criterion.

In order to evaluate the tensor integrals we can apply conventional reduction tech-
niques, e.g. Passarino-Veltman reduction, to reduce all tensor integrals with m > 4 to
scalar box integrals. In turn the tensor box integrals are reduced to triangle and bub-
ble integrals with at most one power of the loop momentum. The linear triangles and
bubbles can be written as linear combinations of scalar triangles and bubbles leaving a
final basis of integral functions for any 1-loop amplitude which obey the power-counting

criterion,

F = {Isam, I1,3m; La,2mh 14,2me, 1a,1m, I3, 3m, I3,2m, I3,1m, 12}, (2.34)

where I; ), is a scalar integral with ¢ propagators and j massive legs (the 2-mass boxes
appear in two configurations which are labelled ‘easy’ and ‘hard’ reflecting the difficulty
of evaluating each integral). It turns out that for A/ = 4 amplitudes the power counting
criterion is even stronger and m-point integrals appear with a maximum m — 4 powers
of the loop momentum in the numerator. In this case we have at most scalar box
integrals as no triangle, bubble or tensor box fit the criterion. As a result we have a

much simplified basis for N’ = 4 amplitudes,

F' = {Is.am, 1s,3m, Ia,2mh 14,2me» La,1m }- (2.35)

In order to show that an amplitude made from the basis of functions, F, is cut-
constructible in 4-dimensions we need to show that there is no possibility of missing any
rational functions. Such a situation would arise if the cuts were not unique and we could
find two representations of the cuts of the amplitudes in terms of the integral basis. i.e.
a linear combination with (4-dimensional) coefficients ¢; and another with coefficients ¢

such that,

Z Cililcuts = Z CIiIilcuts- (2'36)

LeF L,eF

When reconstructing the full amplitude this could result in the two representations
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differing by some rational function, R,

Y (- =R (2.37)

LeF
So if one can show that for the basis F that no linear combination of the integrals is equal
to a rational function then the amplitude will be cut-constructible. This can be shown
to be true by looking at the finite parts for each of the integral functions and showing
that the logarithms that appear in each case are unique and hence no cancellation in

the form of (2.37) is possible. The details of this can be found in reference [18].

If we break the power counting criterion then the basis of integrals changes and we
can find combinations of the integral functions which fit the form of (2.37). For instance

the appearance of 2-rank tensor bubbles allows the following combination:

v v 2 ] . )
(Kuzf{ - ) LK) — LK) = —F(llgm)lrflze) E (kukv — g ic?)

(2.38)
Very recently it has been suggested that one could exploit the power counting theorem
to find any missing rational pieces in non-supersymmetric theories by noticing that the
set of integrals contributing to the rational part is fixed by the power counting theorem
and performing a simplified calculation [31]. This method has been applied to all helicity
configurations for 5 and 6 point gluon amplitudes [32, 33].

The final ingredient necessary to prove the cut-constructibility of super-symmetric
amplitudes is to prove that all loop integrals will obey the power counting criterion.
In any gauge theory the maximum power of the loop polynomial is m for an m-point
integral, the extra cancellations required to meet the condition of a maximum of m—2 can
be shown by computing the 1-loop effective action and showing that the most dangerous

terms cancel. Again I refer the reader to reference [18] for details of the computation.
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2.2. The spinor helicity formalism

Helicity amplitudes have been used successfully as an efficient way to organise cross
section calculations as well as being essential for detailed spin analyses [34-38]. By
fixing the spin alignment of all particles in a particular process we can reduce the cost
of computing the squared matrix elements as all cross terms will vanish. The fermion

wave functions have helicity states defined by,

(1 £)|4(p)) = W(p)E) = Ipt) (2.39)

(p+ |p+) = 0. (2.40)

N =

The projectors, %(1 + 75), pick out 2-component spinors from the 4-component Dirac
spinors |¢). Thus the positive and negative helicity wave-functions can be written as

2-component spinors:

lp+) = =2 lp—) = ’ (2.41)
0 |p> = A

Massless momenta can be decomposed into 2-component spinors as follows,
20" = ol p) [P (2.42)

Using these conventions it is useful to write helicity amplitudes in terms of spinor prod-

ucts,§

X @)Aa(@) = (pg)  Aa(P)A%(q) = [pg]. (2.43)

The indices on the spinors A and X are raised and lowered using €4 hence the spinor
products are anti-symmetric. We can use these spinor products to write the usual

momentum invariants using,

(pg)lap] = (p+ q)® = spq (2.44)

SThese conventions differ from the conventions in some of the literature by the sign of the anti-

holomorphic spinor product.
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It is also possible to write the polarisation vectors of the gluons in terms of the 2-
component spinors. The polarisation vectors used to describe spin 1 particles are usu-
ally written in terms of the momentum, say p, and a gauge vector. We can use the

decomposition of momenta into spinors (2.42) to write the polarisation vectors as:

+ _ o {pE yulnE)
€ (p,m) = i\/§<n ;|pi> (2.45)

where 7 is an arbitrary, light-like, vector orthogonal to p. It is then easy to see that
+
& e, =0 (2.46)

where e £

o = €5 (p). This choice of representation for the polarisation vectors corresponds

to working in a light like axial gauge:

« p’q” + g'p¥
> )i, g) = —g + ————— (2.47)
A=+ p-q

Useful Spinor Identities

The spinor products defined above satisfy a number of identities which are extremely
useful when calculating scattering amplitudes. One of the most important of these is

the Schouten identity

(ab){cd) = {(ac)(bd) + {(ad)(cb) (2.48)
We can also contract gamma matrices through:

(a|yu|bl{c|v*|d] = —2(ac)[bd]. (2.49)

When looking at spinor strings it is useful to note that:

(alpy - pam+1(b] = [blp2m+1 -+ p1la) (2.50)
(alp1 - - am|b) = —(blp2m - - - p1la) (2.51)

1
{alp1 -+ Poam+1la) = §tr((1 — V5)PaP1 "+ P2mt1) = tT_(PaPi1 - - P2m+t1) (2.52)
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2.3. Colour ordering in gauge theories

A useful technique to organise calculations in non-Abelian gauge theories is colour or-
dering. This involves stripping the colour factors associated with the gauge group from
the amplitude leaving partial amplitudes which are only functions of the kinematic in-
variants. These partial amplitudes are subject to the group symmetries and therefore
we can reduce the amount of computation that needs to be performed. The technique
has been used widely in perturbative calculations for many years (39, 40] and a good

review can be found in reference [41].

For the SU(n) gauge group there are 8 traceless generators T, which are 3 x 3

matrices obeying the following commutation and normalisation conditions,
[T%, T = if T (2.53)
tr(TT) = 6%, (2.54)

By applying the commutation relation (2.53) to all structure constants, a tree level

amplitude of n gluons may be written as:

AD ({ps, by ai}) =ig"2 D tr(T% L T%) AD ({p;, hi}), (2.55)
UGSn/Zn

where a; are the colour indices for the adjoint representation with p; and h; the momenta
and helicities respectively. The amplitude A, is colour ordered and obeys the following
relations,

1. cyclic symmetry: A,(p1,p2,..-,Pn) = An(D2,03,...,01) = - ..

2. reflection symmetry: An(p1,p2,...,0n) = (—1)"An(Pn, Prn—1,---,01)

3. dual ward identity:

An(p1,02,P3 .-, 0n) + An(P2, 01,03 -, Pn) + ... + An(P2, 03, .. ., P1,Pn) =0
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Most importantly however the sub-amplitudes are all separately gauge invariant. This
allows us to choose a gauge which simplifies the calculation for each colour ordered

amplitude independently.

For amplitudes involving fundamental fermions the decomposition is a little more
complicated. In general, a particular colour factor for an amplitude with m quark pairs

and n gluons would be,

(T .. T% )5, (T4 T %2 )5, X .o x (T2t T, (2.56)

tmJm

where a, are the gluon colour indices and i,j, are the quark and anti-quark indices
respectively. The full amplitude would be the sum over all permutations and partitions

of the gluons between the quark strings. For a single quark pair this reduces to:

An({pia )\ia ai}v {pj’ /\ja Z]})
=ig"? Y (T%@ ... T%e-0); A (1%,0(2%,..., (n— 1)*1),n72).  (2.57)

O'ESn—-2

The explicit decomposition for two quark pairs is considered in the context of Higgs

amplitudes in section 3.8.

As will be relevant in chapter 3 it is useful to point out that particles that are not
coloured under the gauge group play no part in the colour factors. For amplitudes
with Higgs bosons equations (2.55) and (2.57) are easily modified by multiplying by the
effective Hgg coupling, C, and adding the extra particle into the kinematic amplitude.
For example amplitudes with a Higgs and n gluons the decomposition reads,

AQ(H; {pi, hiyai}) =iCg" 2 Y tr(T%w ... T%e)AD (H; {pi, hi}).  (2.58)
0€ESL/Zn

Details of the coupling C and the effective interaction are given in chapter 3.
Colour Structures at higher orders

The colour decompositions given above apply only at tree level. To find decompositions

for higher loop amplitudes many more colour structures appear. In general these new
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structures will be colour suppressed, i.e. proportional to 1/N, in comparison to the
leading term. For instance one may consider one loop amplitudes of gluons which may
now contain delta functions as well as traces of generators. The decomposition then

reads [17]:

n/2)+1

[n/2] .
ADEpi hiyai}) =ig™ > D Guel0) AN ({pi, hi}) (2.59)

=1 0€Sn/Snic

where,

Ntr(T%w .. To%m), c=1
Grie = (2.60)
tr(T% @ .. T%=D)tr(T%@ ... T%m), ¢> 1.

Clearly as the generators of SU(n) are traceless Gp.o = 0. We see that due to the extra
delta function occurring in the loop, the leading order contribution is just N times
the tree level factor, (2.55). It has been shown that by performing various summations
over the leading order contribution .As)l one can obtain the sub-leading contributions

%l)c (¢ > 2) [17] hence it is usually sufficient to drop the colour ordering subscript and

compute the cyclic leading order contribution Asll’)l = 511).

2.4. Twistor Inspired Methods

Following the remarkable paper by Witten [42], which pointed out a duality between N =
4 Supersymmetric Yang-Mills theory and a topological string theory on Twistor space,
there have been huge advances in new techniques for calculating scattering amplitudes
in both supersymmetric and non-supersymmetric gauge theories. These methods have
been termed “twistor inspired methods” although in hindsight on-shell methods would
seem a more appropriate description. At the present time these methods have been
mostly applied at tree level where all gauge theories are essentially super-symmetric,

though much progress has also been made at the one loop level.

In this section we will outline the three main methods: The MHV rules, on-shell

recursion relations and generalised unitarity.
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only emerges after large cancellations occur between diagrams. Indeed the number of
Feynman diagrams for a 10 gluon process comes to over 10 million whereas the final

result is just one term.

A reason for this simplicity was noticed by Witten [42] who showed that the MHV
amplitudes where conformally invariant, as indeed they must be since at tree level QCD
is equivalent to A’ = 4 SYM. In showing this property explicitly, he uncovered the fact
that these amplitudes had a very simple structure in Twistor space, since the amplitudes

are completely holomorphic (i.e. made entirely of (pg) type spinor products).

Twistor space was proposed by Penrose [44] in 1967 as a way to study conformal
invariance within Minkowski space. The theory is by now extremely well developed and
a full review of the subject is beyond the scope of this thesis, instead it will be sufficient to
outline a few facts about the theory which will allow us to see some geometric structure

within the QCD helicity amplitudes.

Twistor space is a complex projective space whose co-ordinates are constructed of the

two-component spinors discussed in section 2.2,
Z4 = (Aa, pa), (2.63)

where pg = These points are related to points in Minkowski space, z, via the

9
are’
Penrose-Ward transform

Ao + ZTaap® = 0. (2.64)

Interesting consequences of this transform are that points in Minkowski space are mapped

n 45| 6 | 7 8 9 10
0 — ng 4| 25| 120 | 2485 | 34300 | 559405 | 10525900
q@— (n—2)g | 3|16 | 123 | 1240 | 15495 | 231280 | 4016775

Table 2.1: A Table showing the numbers of Feynman diagrams contributing to various

tree level processes.

27












of QCD amplitudes [57, 58]. The application of MHV rules to Higgs processes is the
subject of chapter 3.

Note on off-shell continuation

The reference to off-shell continuation of the MHV amplitudes is slightly misleading.
In hindsight it is better to interpret the off-shell continuation as in fact evaluation of
the amplitude for a complex momentum P which is just the propagator momentum P

shifted by a complex variable z which puts P on-shell,

P=P—z¢ (2.67)

2

where z = %_5. From here it is obvious that |P) = |P|¢]/[P¢]. When computing the
MHYV diagrams it is easy to see that all the anti-holomorphic spinor products involving

P will cancel. This interpretation is discussed in reference [59].

2.4.2. On-shell recursion relations

Recursion relations based on Feynman diagrams [60] have been utilised extensively in
tree level matrix element calculations for many years. The main principle is to re-use
calculations for lower multiplicity amplitudes to make up higher multiplicity amplitudes.
In the past this has been done by building off-shell currents which could be linked

together using the standard Feynman interaction vertices [61, 62].

Through studying IR properties of 1-loop amplitudes in /' = 4 a new type of recur-
sion relation was discovered where all the propagating particles were on-shell [63, 64].
More remarkably it turned that there was a very simple proof for these relations which
only relied on Cauchy’s Theorem for complex analysis and multi-particle factorisation

properties [65].

The on-shell recursion formula for tree amplitudes of gluons was originally presented
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in the following form,

1 = ~
A(O) (pl’ i ,pn - Z Z -A(O pla <o Diy P{fi)—.A(O)(_P{ti,pH—la s ,pn) (268)
i=2 h=% )

where,

ﬁl =p1+ 2147, ﬁn = DPn — 21,47 (269)

Notably two of the momenta, p; and p, in this case, are chosen to be shifted by a complex
parameter, z, which is chosen for each term such that ﬁfﬂ = 0. The shift momentum # is
chosen to ensure that p; and p, also remain on-shell after the shift has been performed.

This results in two possible solutions for #:

n=[1jn) or n = [1)In] (2.70)

Using this relation it has been possible to derive extremely compact analytic formulae

for QCD amplitudes at tree level [64, 66, 67|

A remarkably simple proof of the relation was presented by Britto, Cachazo, Feng and
Witten [65]. The proof proceeds as follows: Consider a colour ordered (cyclic) scattering
amplitude A(py,...,pn). We then choose two momenta to be singled out and shifted
into the region of complex momenta, because A is cyclically ordered we may choose
these to be p; and p; without loss of generality. The shift is parameterised by a complex

variable z,

p1 — p1+ 21, Pj — Dj — 21, (2.71)

where 7 is chosen to keep pj,p; on-shell as described above. Let us choose n = |1)|7]
for simplicity. We will see later how this choice can affect the validity of the recursion
relation depending on the helicity of the particles 1 and j, for all gluon amplitudes at

least this choice is valid for (h1, h;) = (4, +), (=, =), (—, +)-

We now have a complex amplitude A(z) which is rational in z and has only simple

poles, hence by Cauchy’s theorem we can write:

1 A(z Az
Oz%/7 z i)z.A(O)—i- Z Res( i),z:

poles,a

za) . (2.72)
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A(0) is simply the amplitude we wish to calculate and we have managed to write it as
a sum of residues of simple poles. We now recall that tree level amplitudes have the

following multi-particle factorisation:
A(O)(ply"'apn) Pz_)O ZAL(phapja 1_7)P2 AR( i, ’p]-i-l) 'api—l)' (273)

Poles in A(z) occur whenever a propagator goes on-shell, P?(z) = P2 —2P-n *5* 0. So
the residue at z = z, can be computed using the tree level factorisation formula (2.73).
Given this choice of shift a propagator can only be a function of z if the momentum
flowing across it contains at most one of {1,j}, therefore the sum of residues is given
by the total number of partitions of the remaining particles while keeping 1 and j on
separate sides of the factorisation (2.73). Using this fact and equation (2.72) we arrive

at the recursion relation (2.68) in a slightly more general form,

A(O)(pl,...,pn ZZZA pk-}—la aﬁlw"’pl)_ﬁk’f—l—l,l)

k=j =2 h=%

1 ~ ~
X A (=Bl prits By p). (274)
k41,1

The recursion relations have been shown to apply to a wide range of gauge theory
amplitudes at tree level including massless QCD [64, 66, 67], N’ = 8 supergravity [68, 69]
and have been generalised for amplitudes with massive particles [70-74], which will be

the subject of chapter 4.

There is one important assumption made in the proof of the recursion relation which
is central in finding phenomenological applications of this method. We assumed that as
z — 0o the amplitude A(z) vanished, hence the integral of (2.72) vanished also. We
must study the act of the shift (2.71) on the amplitude more carefully in order to check

that the recursion relation will indeed reproduce the full amplitude.
Behaviour of A(z) at large 2

To be more precise the action of Cauchy’s theorem on the function A(z)/z results in
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Figure 2.9: The Feynman diagram contributing to the worst z dependence in the large
z limit.

j+1

the following,

A)=— > Res (Aiz),z = za> — As. (2.75)

poles,

By studying general properties of Feynman graphs contributing to a particular amplitude
it is possible to deduce some information about the behaviour of A(z) at large z and
hence choose a momentum shift that avoids boundary conditions. We could also consider

an MHV construction as a way to look at large z behaviour [65].

First consider the helicities of the two marked particles to be (hi,h;) = (—,+) and
choose 1 = |1)|j]. The only polarisation vectors to depend on z are €; and ¢; and from
(2.45) we find that €; ~ 1/z and ¢; ~ 1/z as z — oo. The amplitude A(z) is made from
a sum of colour ordered Feynman diagrams hence the momentum flow in each diagram
must be cyclic. The most dangerous (most z dependent) diagram will occur when the
2-dependence flow from 1 to j has the maximum number of propagators, i.e. when all
vertices are three vertices as shown in figure 2.9. As z — oo each vertex contributes a
factor of z while each propagator contributes 1/z. Hence the total z dependence will
be zY"P~2 where v is the number of vertices and p is the number of propagators. This
contribution will always have v —p = 1 and so worst diagram goes as 1/z and there will
be no boundary term. We can see that if we changed to n = |1]|j) then the polarisation
vectors would contribute 22 in the and so the diagram would go like 23 in the limit and
there would be a boundary term. In this way we see that the choice of solution for 7 is

extremely important when applying the recursion relations.
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For other choices of helicities (h1, h;) = (&, %) it is also possible to show that there
will be no boundary term, as shown in [69, 70} from a Feynman diagram argument, or

using the MHV construction in [65].

In general, the only part of the proof that is dependent on the type of particle is the
vanishing of any boundary term. Amplitudes including one and two pairs of quarks have
been considered in references [66, 67] and rules for avoiding boundary conditions have
been found. In particular it turns out that one may not choose two adjacent fermions to

be shifted. To see this it is useful to compare the MHV vertices for gluons and quarks,

m 4
An(m,m3) = % (2.76)
3
An(lt;, m—,ng) = %, (277)

where we have chosen to drop the positive helicity gluons in the right hand expression.
It is also useful to define 77, = |a]|b) and n— = |a)|b] to be the two solutions for n when

the two shifted particles are (a,b).

The reason that our Feynman argument breaks down is that the counting of 2z depen-
dence did not include the fact that given two shifted particles (a, ), the spinor products

of these two particles will be unshifted:

(@by = (ab),  [ab] = [ab)]. (2.78)
The denominator is the same for both amplitudes and cyclically symmetric hence we

have the following cases:

(a) The shifted particles are non-adjacent - here the shifted holomorphic spinor appears

2

twice so the denominator goes as z* as z becomes large.

(b) The shifted particles are adjacent - again the shifted holomorphic spinor appears
twice but in one instance it appears in combination with the spinor whose anti-
holomorphic component is shifted hence, by (2.78), the denominator goes as z as

z becomes large.
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(4,Q) /N /N S /R IV

Table 2.2: Table showing the correct choice of n when shifting particles (a,b) in QCD
scattering amplitudes. 74 = |a]|b) and n_ = |a)|b] are the two possible solutions for 7.

For the gluon amplitude we see that there will only be any z dependence in the numerator
if we mark either, or both, of the negative helicity gluons. If both are shifted then the
numerator will be z independent by (2.78). When shifting a single negative helicity
gluon the numerator will be z independent as long as its anti-holomorphic component
is shifted. Hence we have shown explicitly that the boundary contribution vanishes for

the cases discussed in general above.

Now we examine the quark amplitude. The numerator in this case has dependence on
the positive helicity quark, hence if we mark the two quarks, (g, ), then the numerator
goes as z using 7— and goes like z® using 7. As the amplitude is colour ordered the
momentum of the quark and anti-quark will always be adjacent so the denominator
is proportional to z and it is not possible to avoid boundary conditions in this case.
However, it is possible to avoid boundary conditions when marking a quark/gluon pair

as long as we choose the right solution for 7.

By using the MHYV rule construction we can upgrade these arguments to apply to all
quark amplitudes with any number of negative helicity gluons. Table 2.2 summarises
the rules to avoid boundary contributions when calculating QCD amplitudes with up to

two quark pairs.
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2.4.3. Generalised Unitarity

Generalised unitarity is not really a twistor inspired method since it has been considered
long before Witten’s twistor string duality in early studies of the analytic properties of
the S-matrix [75]. However, following studies of twistor space interpretations of 1-loop
amplitudes, it became apparent that one could use complex spinors to solve for the on-
shell conditions required in the generalised unitarity cuts and thereby solve for the box

coefficients of N =4 SYM amplitudes purely algebraically [76].

As mentioned briefly in section 2.1.3, 1-loop amplitudes in A/ = 4 SYM can be written
as a linear combination of scalar box integrals. These box integrals come in 5 different
types, depending on the number of massive legs at the vertices as shown in figure 2.10.
The full decomposition reads,

Aﬁfﬂl’(l) = Z cimpim 4 2mepime y 2mhp2mh | Smpdm . odmpim (2.79)

i
where the index i is symbolic of a particular distribution of the n legs around the box
integral in question. The 2-mass boxes come in two types, the so-called easy and hard
boxes. This is a reference to the difficulty of evaluating each integral. Each of these

integrals has the form:

dP1 1
Iy = —i _ . 2.80
‘ 2/ (2m)D (1 — K1)2( — K, — K2)2(1— K1 — Ky — K3)?’ (280)
where K; are the momenta flowing into each of the four vertices, which may be either

massless or massive. D = 4 — 2¢ where ¢ is the dimensional regularisation parameter.

The principle of generalised unitarity is to extend the idea of unitarity cuts where
two propagators are cut to the case where more propagators are cut. If one evaluated
an amplitude using two particle cuts we would find that more than one integral would
appear in each channel. However when generalising to quadruple cuts we find that each
box integral has a unique singularity. This is illustrated by applying unitarity cuts,
(2.30), to both the full amplitude and the expansion in terms of box integrals (2.79).

Let each integral have a discontinuity Ay in a given channel then the two particle cut
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Fim F2me F2mh

Fim F4m

Figure 2.10: The five types of scalar box integrals which form a basis for 1-loop
amplitudes in N =4 SYM.
is given by:
/ dPLIPS(ly, —ly) A9 (11, Py, —Ip) AQ (Ig, Py, —1y) =
Z c,;lmAflm+Cl~2meAI2me + ci2mhA12mh + cgmAIi}m + C;lmAIMn, (2.81)
where
dPLIPS(Iy, —12) = dP1,dP1a6(1y + Py — 15)6W) (136D (13). (2.82)

Hence in order to determine each of the coefficients we must disentangle the information

given by all the possible branch cuts.

We now consider replacing more of the propagators in the integral (2.80) with their
imaginary parts, 6t). For the 4-mass box it is possible to put all of the propagators on
shell and it turns out that the leading singularity is unique to this integral and hence

completely determines the coeflicient of this integral:
ApsIim = / dP15H (126 (1 — K126 (1 — Ky — K2)?)6™ (1 — Ky — Ky — K3)?)

(2.83)
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and on the amplitude side we find that the quadruple cut is now made from a product

of four tree amplitudes integrated over the four delta functions given above:

AW = / dP15) (12)6 (1 — K1) (1 — K1 — K2)?)0P (1 — Ky — Ky — K3)?)

% Ago)AgO)AgO)AElO)

=cimALsIi™. (2.84)

The next step is to notice that these integrals are in fact finite so we can set ¢ to zero

and the 4 delta functions fix both integrals and we find:

am _ 1

i = E Z ’np.A(ll,Kl, —lZ).A(lg, Kg, —l3)A(l3,K3, —l4)_A(l4, K4’ “ll), (2.85)

p=4q.9,8

c

where the sum runs over all particles in the A/ = 4 multiplet and all possible helicity
assignments around the loops. n, is the number of of each species, i.e. n, = 1,4,6
for gluons, quarks and scalars respectively. |S| is the number of solutions to the on-
shell conditions specified by the four delta functions. So we can determine all 4-mass
box coefficients from quadruple cuts which reduce integrals to an algebraic problem of

solving the constraints.

The next obvious step is to attempt to find the coefficients of the other box integrals.
However the situation here is more difficult as if we have one or more massless leg then
one of the delta functions is trivially satisfied and the quadruple cut results in a delta
function singularity. This delta function forces the coefficient to be evaluated at a point
where it vanishes. This is consistent with the contribution from the product of four
tree amplitudes as one of these must be an on-shell 3-vertex which must vanish for real

momenta.

It is at this point in which the twistor inspired methods come to our aid. In both the
MHYV rules and the on-shell recursion relations we used on-shell 3-point amplitudes as the
primitive building blocks. These on-shell amplitudes were non-zero because the momenta
were taken to be complex. This allowed us to relax the condition that A = —\* which

is satisfied for real momenta so that the holomorphic and anti-holomorphic spinors are

39



independent. The condition that ensures the 3-point amplitude, A(p],p5,p3 ) vanishes

is that of momentum conservation:
p5 = s12 = —(12)[12] = 0. (2.86)

For real momenta both angle and square bracket spinor products will vanish but if we
allow the spinors to be independent then we can choose one of these spinor products to

vanish and the other to be non-zero. If we choose [12] = 0 then the 3-point amplitude,

e 12)3
AO (- 2 3ty = B 2.87
is non-zero. This fact is also true for real momenta in a (— — ++) signature [42, 76].

Therefore we can use complex momenta to make sure that the quadruple cut of any
box with more than one massless leg does not vanish. Each coefficient can now be

computed using the same formula as for the four mass box:

1

e E Z 'np-A(ll, K17 _ZQ)A(ZZ) K27 —l3)A(l3, K3’ —14)_,4([4, K4’ _l1)7 (2'88)

p=4,9,8

c;
with the on shell conditions given by,
S={=0,(li—K1)?=0,(hi — K1 — K2)*=0,(l - K1 — Ko — K3)? =0} . (2.89)

In order to keep all 3-point vertices from vanishing when solving these constraints we
choose the spinors of the loop momenta to be proportional to the massless spinor in the
following way:

A (l,p,—la) 1 Ao hp o Ay oA,

AYEV (@ p —la): Ap o dp 0 Ay o A (2.90)

Using these methods it has been possible to calculate 1-loop amplitudes in A = 4 SYM
with up to 8 legs [20, 21, 63, 76]. The methods can also apply well to calculations in
N =1 SYM although here some integrals are left as the bubble and triangle integrals
are not completely saturated by delta functions [77-80]. Indeed the cut-constructible
(4d) parts of the N' = 0 amplitudes with a scalar propagating in the loop have also been
computed [81] and generalised unitarity in d = 4 — 2¢ has been applied to find the full

QCD amplitudes for simple processes involving gluons [82].
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2.5. On-shell methods at one loop

We have already discussed unitarity (section 2.1.3) and generalised unitarity (section
2.4.3 as on-shell methods to compute loop integrals but we have not addressed the

applications of MHV rules and on-shell recursion as methods for higher order corrections.

Firstly let us consider the MHV rules discussed in section 2.4.1. The twistor-string/N =
4 SYM duality breaks down at 1-loop due to conformal supergravity states propagating
in the string theory side [83, 84] but this doesn’t mean that the MHV rules at 1-loop
are definitely out of the question. Witten has considered the twistor space structure of
MHYV 1-loop amplitudes [85-88] and has shown that they fit the conjectured formula
(2.65), d = m — 1 + 1. This means that the MHV amplitudes lie on degree 2 curves in
twistor space, though not necessarily intersecting straight lines as for NMHYV tree level
amplitudes [89]. More explicit calculations [90] showed that applying MHV rules to 1-
loop MHV amplitudes of gluons reproduced the known results [17] and followed a proof
similar to that of previous unitarity based calculations. Indeed these methods applied
well to the cut-constructible parts of MHV amplitudes in N = 1,0 SYM [91, 92]. It
remains to be seen whether MHV methods can be successfully applied to non-MHV am-
plitudes although by looking at generalised unitarity cuts information about the twistor

space structure of integral coefficients has been found [93-95].

The main problem with extending MHV methods to loop calculations seems to be the
fact that they will only ever be able to find the cut-constructable parts of the amplitude.
Therefore we are still left with the problem of finding the remaining rational functions
in QCD amplitudes. It is in this area that it much work has been done using the on-
shell recursion relations. Bern, Dixon and Kosower have devised a bootstrap method
[96-98] for using recursion relations to find the rational functions in non-supersymmetric
theories. This program has been very successful and it has been possible to derive new
results for “finite” one loop amplitudes (helicity configurations that vanish at tree level)

and for the MHV amplitudes [99], both valid for any number of external particles. More
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P N

Figure 2.11: Schematic representation of terms contributing to the recursion relation
for rational functions in QCD amplitudes.

recently the remaining helicities for QCD amplitudes with 6 and 7 external gluons have

been computed [31-33, 100, 101].

The methods at 1-loop are much more complicated as amplitudes contain branch cuts
as well as poles after continuation to complex momenta. The multi-particle factorisation
for complex momenta for 1-loop amplitudes is not the same as that for real momenta as
it was in the tree-level case. Specifically it isn’t fully understood how to treat the three
point 1-loop amplitudes which occur. However it seems that, for pure QCD amplitudes
at least, these problems can be avoided and by using a recursion relation based on the

1-loop multi-particle factorisation [102], this is shown schematically in figure 2.11.

To be more specific let us again consider the integral in (2.72),

0= %A A(2) = A(0) + %:Respza (A(z)) + /ﬁoo %Discﬁ (A(2)) + Aso. (2.91)

z z 0

The amplitude is now a sum over poles and discontinuities across branch cuts plus some
possible boundary contribution, figure 2.12 shows how these elements can occur in the
complex plane. By splitting the amplitude into cut-constructible and rational pieces it
is possible to write the rational piece as a recursion relation. There are however further
subtleties associated with unphysical poles occurring in the cut-constructed integral

functions, in removing these one introduces extra rational functions whose residues must
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found recursively, so it appears that a complete program for 1-loop amplitudes is almost
complete, allowing simple Feynman calculations for low multiplicity final states to be
dressed with QCD corrections to form more complex amplitudes. With on-shell recursion
also finding uses in computing integral coefficients [103] it appears that on-shell methods
will provide a valuable tool for future amplitude and cross-section calculations required

by new collider experiments.
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3. MHV rules for Higgs plus multi-parton

amplitudes

In this chapter we derive MHV rules for scattering amplitudes of a Higgs boson with
many external gluons and quarks. This is achieved by splitting an effective Higgs-gluon
coupling into self-dual and anti-self-dual pieces and then applying the MHV rules to both
pieces. We begin by discussing the effective vertex before discussing the MHV model

and applying it to various amplitudes with consistency checks.

3.1. Higgs-gluon coupling in the large m; limit

The production of a Higgs boson at a hadron collider will be dominated by gluon ra-
diation so it is useful to define an effective Higgs-gluon interaction. This coupling will
be dominated by interaction via a heavy top quark loop, we therefore approximate the
interaction in the region where m; > mpy. This approximation has been used with
great success to calculate a wide variety of processes. We can study the validity of this
approximation by examining the decay of the Higgs boson into two gluons. The full

decay width can be written [104],

042 2,..3
T(H — gg) = =32 3™ jr (14 (1= 1) f (7). (3.1)
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where

larcsin \/1/7,)2  if 7, > 1, a9
f(7g) —%[ln(i—i%P . (3.2)

2
Tq = %. (3.3)
We notice that as m; becomes much larger than the Higgs mass then the decay width
goes to a constant. This is best seen in figure 3.1. Here we plot the ratio of the full
decay, (3.1), to the constant value in the m; — oo limit against the Higgs mass. Initially
we assume that there is one heavy quark i.e. the top quark and we see that the ratio
goes to one as the Higgs mass tends to zero. A second curve shows the effect of including
bottom quarks in the full decay. Here the approximation is less reliable as the quantity
7p becomes nearer 1, however for a Higgs mass greater than 100 Gev the effect of the
bottom quark is negligible. The third curve in figure 3.1 shows the effect of including
a first order correction to the m; — oo limit, i.e. a term O(T—n%) This significantly
reduces the error in the approximation. The error in the H — gg effective vertex is
around 5 — 6% for a Higgs mass around 120 GeV. Precision fits to electro-weak data
indicate that a standard model Higgs has a mass considerably less than 2m; ~ 340GeV,
currently my < 160GeV at 95% confidence level [105]. The effective operator has shown

to be an excellent approximation by many comparisons to the full NLLO QCD calculations

[106-109).

The effective Lagrangian can be derived by integrating out the top quark field from
the QCD Lagrangian. We can construct an effective Lagrangian by considering gauge

invariant operators of the gluon field strength and the Higgs field:
1
Legp = 05 tr(G* G )H + C’ tr(GLG,GO)H + ... (3.4)

Here the mass dimension of C’ will be two lower than that of C, i.e. it will be suppressed
by Elg Hence we can compute C to O(a;) by matching to the matrix elements of the
t

1-loop H — gg via a top quark loop in the m; — oo limit.
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Figure 3.2: Higgs decay to two gluons via a quark loop. This is the only diagram that
contributes in the m; — oo limit.

with the strength of the interaction is given by C = a,/(67v) and v = 246 GeV. By
considering higher order corrections to the H — gg matrix element it is also possible to
compute the coupling, C, to higher order in a;. This has been performed to O(a?) in

references [106, 110] and more recently to O(a3) in [111].

For the rest of this chapter we will concentrate on calculating multi-parton amplitudes
for Higgs bosons and up to two quark pairs. Amplitudes of this form have been calculated
using the effective Hgg interaction for Hgggg [112], Hqggg [113] and for all 5 parton
processes in reference [114]. Amplitudes for higher multiplicities have been available only

through numerical programs such as ALPHA[115, 116] and MADGRAPH [117, 118).

3.2. The Higgs MHV Model

The MHV or twistor-space structure of the Higgs-plus-gluons amplitudes is best eluci-
dated by dividing the Higgs coupling to gluons, (3.8), into two terms, containing purely
self-dual (SD) and purely anti-self-dual (ASD) gluon field strengths,

Gy = (GM +7G™), Gliso=L(GM —*G"), *G" = i G, . (3.9)

This division can be accomplished by considering H to be the real part of a complex

field ¢ = 1(H + i4), so that

E?}fA = g [H tr G, G* +iAtr Gy, *G’“’] (3.10)

= c[qs 67 Gsp G + ¢ tr Gasp MUG‘;‘;D] . (3.11)
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The key idea is that, due to self duality, the amplitudes for ¢ plus n gluons, and those
for ¢! plus n gluons, separately have a simpler structure than the amplitudes for H plus
n gluons. But because H = ¢ + ¢!, the Higgs amplitudes can be recovered as the sum

of the ¢ and ¢! amplitudes.

As another motivation for the split (3.11), note that this interaction can be embedded

into an A = 1 supersymmetric effective Lagrangian,
L¥sy = —C / d*0 ®tr WoW, — C / 26 ot e W W (3.12)

Here G%} is the bosonic component of the chiral superfield W,, and ¢ is the lowest

component of the chiral superfield . We can identify the following helicity assignments:

Wo = {9_7A_} ) ¢ = {¢, 1/)_} ) (313)
W ={g", A%}, ol ={¢l,y*}, (3.14)

where gT correspond to gluons with h = %1 helicities, A* are gluinos with A = +1 /2, ¢
and ¢! are complex scalar fields, and * are their fermionic superpartners. In Appen-
dix B we give the full supersymmetric effective Lagrangian. (This Lagrangian can be
generated from a renormalisable, supersymmetric microscopic theory containing a mas-
sive top quark/squark chiral multiplet T', coupled to ® by a Yukawa coupling [ d?0®TT.
Integrating out T produces the interaction (3.12) with a coefficient proportional to the

chiral multiplet’s contribution to the SYM beta function.)

As in the case of QCD, the fermionic superpartners of the boson ¢ and of the gluons
will never enter tree-level processes for ¢ plus n gluons. Thus these bosonic amplitudes
must obey supersymmetry Ward identities (SWI) [43, 119, 120] which help to control

their structure.
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3.3. MHV amplitudes including Higgs bosons and the “two

towers”

We start with the (anti)-MHV amplitudes for the Higgs and gluons [563, 54]. First,
the decomposition of the HGG vertex into the self-dual and the anti-self-dual terms
(3.11), guarantees that the whole class of helicity amplitudes with less than two negative

helicities vanish,

An(¢a9f:,9;,93+,,g:)=0» An(qsf’gli’g2_793_?)gr;)=07 (315)

for all n. This can be shown using Berends-Giele off shell currents, see appendix B.2.

The amplitudes, with precisely two negative helicities, ¢ g~ g ...g g g"...g", are
the first non-vanishing ¢ amplitudes. These amplitudes will be referred to as the ¢-MHV
amplitudes. General factorisation properties now imply that they have to be extremely
simple [53], they read

(pg)*
3B m-Lawmny O

Here only legs p and g have negative helicity. This expression is valid for all n. Besides

An(qb’gi*_’g;a?g;)agq_a)g:): <12><

the correct collinear and multi-particle factorisation behaviour, these amplitudes also
correctly reduce to pure QCD MHV amplitudes as the ¢ momentum approaches zero.
In fact, the expressions (3.16) for -MHV n-gluon amplitudes are exactly the same as
the MHV n-gluon amplitudes in pure QCD. The only difference of (3.16) with pure
QCD is that the total momentum carried by gluons, p; +p2 + ... + p, = —py is the
momentum carried by the ¢-field and is non-zero. This momentum makes the Higgs
case well-defined on-shell for fewer legs than in the pure QCD case. The first few ¢

amplitudes have the form,
(12)*

A2(d,97,92) = a5 e - —(12)?, (3.17)
- a2t a2
-A3(¢391 y 92 19;) - (1 2> (23> (3 1> = <23> <3 1> s (318)
4
As(b,91,97,95,95) = P <2<31>2<>34> A (3.19)
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Since the MHV amplitudes (3.16) have an identical form to the corresponding am-
plitudes of pure Yang-Mills theory, their off-shell continuation should also be identical
to that proposed in the pure-glue context in [45]. Everywhere the off-shell leg ¢ carry-
ing momentum P; appears in (3.16), we let the corresponding holomorphic spinor be
Aia = (P;)aa€?®. Here €9 is an arbitrary reference spinor, chosen to be the same for all

MHYV diagrams contributing to the amplitude.

We can now study the helicity structure of the (anti)-self-dual Higgs plus gluon am-
plitudes. The left (red) tower in figure 3.3 lays out the MHV structure of the ¢ plus
multi-gluon amplitudes. All non-vanishing amplitudes are labelled with circles. The
fundamental ¢-MHV vertices, which coincide with the ¢g=¢g g% ...g" amplitudes, are
the basic building blocks and are labelled by red dots. The result of combining ¢-MHV
vertices with pure-gauge-theory MHV vertices is to produce amplitudes with more than
two negative helicities. These amplitudes are represented as red open circles. Each MHV
diagram contains exactly one ¢-MHYV vertex; the rest are pure-gauge-theory MHV ver-
tices. The vertices are combined with scalar propagators. The MHV-drift is always to
the left and upwards. Collectively, these amplitudes form the holomorphic (or MHV)

tower of accessible amplitudes.

The corresponding amplitudes for ¢! are shown in the right (green) tower in figure 3.3.
They can be obtained by applying parity to the ¢ amplitudes. For practical purposes
this means that we compute with ¢, and reverse the helicities of every gluon. Then we
let (ij) < [ji] to get the desired ¢’ amplitude. The set of building-block amplitudes
are therefore anti-MHV. Furthermore, the amplitudes with additional positive-helicity
gluons are obtained by combining with anti-MHV gauge theory vertices. The anti-
MHV-drift is always to the right and upwards. Collectively, these amplitudes form the

anti-holomorphic (or anti-MHV) tower of accessible amplitudes.

The allowed helicity states for H are shown in figure 3.3 and are composed of both
holomorphic and anti-holomorphic structures. Where the two towers do not overlap, the

amplitudes for the real Higgs boson with gluons coincide with the ¢ (¢f) amplitudes.
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know kinematic amplitudes with quarks,

AdH, g ) G, .97, ...,07) = A(H, AT, AT, gt 07) (3.20)

Here ¢%, g*, g*, AT denote quarks, antiquarks, gluons and gluinos of + helicity, and
H represents the colourless scalar H, ¢, ¢! or simply nothing. By this we mean that
(3.20) is valid with or without the scalar field, this is because the colourless scalar does
not modify the colour decomposition. We conclude from (3.20) that knowing kinematic
amplitudes in a supersymmetric theory with gluinos allows us to deduce immediately

non-supersymmetric amplitudes with quarks and antiquarks.

In the following section we will show that the MHV rules for Higgs and gluon am-
plitudes uniquely determine the MHV rules for the Higgs plus all partons (i.e. gluons
and quarks). More precisely, the MHV amplitudes with the Higgs and gluons deter-
mine the MHV amplitudes with the Higgs, gluinos and gluons via supersymmetric Ward

identities. Then (3.20) turns gluinos into quarks in a non-supersymmetric theory.

3.4.1. Amplitudes with quarks from SUSY Ward identities

We are now ready to discuss MHV amplitudes with gluons and fermions. To this end we
first consider a pure /' = 1 supersymmetric Yang-Mills (without the Higgs or quarks).
An MHV amplitude A, = Ao, with [ gluons, g, and 2m gluinos, A, in the A/ = 1 pure
gauge theory exists only for m = 0,1,2. This is because it must have precisely n — 2
particles with positive helicity and 2 with negative helicity, and gluinos always come in
pairs with helicities :i:% Hence, there are three types of MHV tree amplitudes in the

N =1 pure gauge theory:
An(95:97) 5 Anlgr AT AT) s An(A7 AT ADLAG) (3:21)
The MHV purely gluonic amplitude is [60, 121]:
An(9p,97) = e (3.22)

T(ti+1)
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where A,11 = A;. For notational simplicity in this and the following expressions for
MHYV amplitudes we do not show explicitly the positive helicity gluons g*. The MHV
amplitude with two external fermions and n — 2 gluons is
o t )3 (t s) _ _ (tr)° (ts)
AA+=<—— AT A = — =L 3.23
An(gtv T s) H?:1<’LZ+1> 3 An(gt1 $ 1‘) I_Hl:l(?,’l-l—].) ( )
where the first expression corresponds to 7 < s and the second to s < r (and ¢t is

arbitrary). The MHV amplitudes with four fermions and n — 4 gluons on external lines

are
b e (ErP (s q) C A At A o P (s
An(At,As,Ar,Aq)— —:;1(21-}—1)’ An(AtaAraAs)Aq)_ H:l 1<Z’l+1>
(3.24)

The first expression in (3.24) corresponds to t < s < 7 < g, the second to t < r < 5 < ¢,
and there are other similar expressions, obtained by further permutations of fermions,

with the overall sign determined by the ordering.

We now recall that expressions (3.23), (3.24) are not independent inputs into the MHV
programme, they follow from the amplitudes (3.22) via supersymmetric Ward identities

[41, 43, 119, 120, 122].

Supersymmetric Ward identities [43, 119, 120] follow from the fact that, supercharges

@ annihilate the vacuum, and hence we have an equation,

(Q, Af ...gr gy ]) = 0, (3.25)

where dots indicate positive helicity gluons. In order to make anticommuting spinor @
to be a singlet entering a commutative (rather than anticommutative) algebra with all
the fields we contract it with a commuting spinor # and multiply it by a Grassmann
number #. This defines a commuting singlet operator Q(n). Following [122] we can write

down the following susy algebra relations,

[Qm), AT (k)] = =0 k)g*(k), [Qm), A~(k)] = +6[n kg™ (%),
@), g (k)] = +0(nk)A=(k), [Q(m), g7 (k)] = —6[n kAT (k) .

(3.26)

o4



In what follows, the anticommuting parameter 8 will cancel from the relevant expressions
for the amplitudes. The arbitrary spinors 7n,, 75, will be fixed below. It then follows
from (3.26) that

The minus signs on the right hand side arise from anticommuting 6 with gluino fields.
After cancelling 6 and choosing 7 to be one of the two r; we find from (3.27) that the

purely gluonic amplitude is proportional to the amplitude with two gluinos,

roT _ _ rr _ B
((:2 k1>> An(Af AL 97) = — <<r11 k2>> An(AF g7 ALY . (3.28)

This gives the MHV amplitudes (3.23). Equations (3.24) follow from a similar construc-

An(9r7,95,) = —

tion.

We can now add the Higgs scalars ¢ and ¢! to the construction of MHV amplitudes
above. To achieve this we can use the SUSY Lagrangian with the effective bosonic
interaction (3.11) embedded given in (3.12),

Lot = _¢ / d?0 ¢ tr WeW,, — C / 420 ¢t te W W™ . (3.29)

Here G%}, is the bosonic component of the A/ = 1 chiral superfield Wy(z, ), but ¢ is not
a superfield, it is still a (single component) scalar field ¢(x) which has no superpartners.
So, the theory described by (8.12) is not a supersymmetric theory. However, there is a
continuous symmetry group which leaves this action invariant. It is generated by the
‘supercharges’ @) which act non-trivially on gluons and gluinos — precisely as in (3.26) —

and at the same time annihilate the scalar field,

@), ()] =0, [Qm),4'(»)] = 0. (3.30)

Applying the commutation relations, (3.12), (3.30) to equation

(Q, ¢AL ...9r - .9r, .- ) = 0, (3.31)

we find the same relation as in (3.28), but now for the MHV amplitudes with the Higgs
field ¢.
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We conclude that from the fact that the purely gluonic MHV amplitudes, (3.16) and
(3.22) take the same form, the pseudo-supersymmetry Ward identities guarantee that the
tree-level ¢-MHV amplitudes with fermions and gluons have exactly the same algebraic
form as the corresponding MHV amplitudes in pure /' = 1 gauge theory, (3.23) and
(3.24). Hence we now can insert the ¢ field on the left hand sides of (3.23) and (3.24),

and, furthermore, replace gluinos with quarks as in (3.20).

We need to be slightly more careful in order to deduce the ¢-MHV amplitudes with
two quark-antiquark pairs of different flavours, i.e. An(¢,q",7~,Q%, Q™) where ¢ and
Q denote the two different quarks. Such amplitudes are obtained from the NV = 2
supersymmetric amplitudes A, (¢, AZLI)’A(_l)’AE)’A(B)) where A(;) and A(g) are gluinos
from two different A" = 1 supermultiplets. All such amplitudes can be read off from the
general expression for the MHV N = 4 supervertex of Nair [123] using the algorithm
described in [47, 124]. The supervertex and the corresponding component vertices com-
ply with the supersymmetric Ward identities in pure N' = 4 theory. The Higgs field
¢ can always be added to these amplitudes in precisely the same way as above, with-
out changing the expression for the vertex. This follows from promoting the A = 4 or
N = 2 supersymmetry to a ‘pseudo’ supersymmetry by augmenting the algebra with

the condition (3.30).

3.5. MHV rules

We have argued that the complete set of MHV amplitudes in QCD coupled to the Higgs
field consists of n-parton amplitudes made out of one or less scalar field ¢, an arbitrary
number of gluons and m = 0,1,2 quark-antiquark pairs. All these amplitudes have

precisely two negative helicities. Schematically, they are

An($,95,97) 5 Anldai™ g7, @), An(d, @™, Q2,Q.02,4) (3.32)

An(9y,97) s Anlart o7, @), An(el™,Q2%,Q.0%,3) (3.33)

56



Here we have not shown the positive helicity gluons and did not exhibit all different
orderings for amplitudes with two quark-antiquark pairs. As before, @~*? and Q*?

denote the second flavour of (anti)quarks with helicities +A,.

The first line, (3.32), gives the -MHV amplitudes, and the second line, (3.33) cor-
responds to standard QCD MHV amplitudes. The MHV amplitudes are obtained from
((3.32)) and ((3.33)) by parity. They are

An(¢17 g;-ag;) b] An((pT; Q{‘)g:_)(jn—)\) bl An(¢17qi‘l7Qs_)‘ZaQiilvqn—/\l) 3 (334)

An(gy 93) s Anlad ol 37, Anadh, Q570 @008, (3.35)
where we have not shown the negative helicity gluons.

Figure 3.3 showed how the picture of two overlapping towers of amplitudes emerged
from the self-dual and anti-self-dual Higgs fields interacting with gluons. We observe
similar properties for amplitudes with one quark-antiquark pair. Helicity must be con-
served along the quark line so the all plus configuration is trivially zero. The case where
antiquark has opposite helicity to the quark and all gluons have positive helicity is also
zero, see Appendix B.3 for a proof which does not appeal to supersymmetry. So the first
non-vanishing amplitude is again with two negative helicities and one of them lying on
a gluon: A,(¢, q{‘, cos g sy @ )‘). This is precisely the second ¢-MHV amplitude in
(3.34).

The structure of the two MHV towers for amplitudes with the Higgs and one quark-
antiquark pair is set out in figure 3.4. Here the ¢-MHV amplitudes are represented
by filled red dots and the ¢-MHV by filled green dots. The open red(green) dots are
amplitudes which can be found by combining two or more MHV(MHV) vertices. The
MHYV amplitudes can be obtained directly from the MHV amplitudes via parity trans-
formation. Once again, Higgs amplitudes are given directly by ¢ or ¢! amplitudes, or

by adding them when the towers overlap.

The case of two quark-antiquark pairs proceeds in an almost identical way. Helicity

conservation along both quark lines immediately leads us to the fact that the first non-
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whereas the second and third terms both contain singularities.

@37 |, @3@AP2 | (23023

berm 2 oy nopy T gy O©
o (28)% (23)(13)
term 3 : — 2] +2 2] + O(e). (3.38)

Summing all three terms leaves us with an expression free of 1/e poles which can be
re-written in the form:

4
My

A(H;17,27,37) = T 3B’

(3.39)

which matches previous results.

362. H - ++ ——

This amplitude is the simplest case to receive contributions from both the ¢-MHV and
the ¢!-MHV towers. It is simply a sum of the MHV and MHV amplitudes from each

tower:

A(H;17,2%,37,47) = A(¢;17,2%,37,47) + A(6;17,27,37,47)

__ (34° [12]®
~ @ (2)(23) | 3Bl (3.40)

which agrees with previous Feynman calculations [114].

3.7. Amplitudes with one quark-antiquark pair

When there is a single quark-antiquark pair, the tree-level amplitude can be decomposed

into colour-ordered amplitudes as follows,

An(b, {pis Mi, ai}, {pj, Ajy35}) (3.41)
=iCg™? Y (T%® ... T%w-0),; An(¢,1,0(2%,..., (n - 1)*1),n 7).
g€Sn_2

where S,,_o is the set of permutations of (n — 2) gluons. Gluons are characterised with

adjoint colour label a;, momentum p; and helicity A; for ¢ = 1,...,n — 1, while the
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and (3.43) can be proved recursively, along the lines of the proof in the QCD case [60],

or using the light-cone recursive currents of ref. [125].

37.2. H—q g g*tqt

This amplitude corresponds to n4 +n_ =4, ny —n_ = 0. As we see from figure 3.4,

the amplitude receives contributions from both the MHV and MHV towers, so that

An(H,q7,95,07,35) = Anl(da7,97,97,3) + An(d', a7, 95,97, 37)

[34]2[13] (12)? (24)
THABIA]  23) (34) @1y’ (345)

This expression agrees with the known analytic formulae of Ref. [113].

3.7.3. NMHV Amplitudes

We continue by deriving the Next-to-MHV (NMHV) amplitude

An(dy @y ymy, e ymy, @), (3.46)

with three negative helicity particles — one negative helicity quark(antiquark) and two
negative helicity gluons labelled as m; and m3. From now on we will suppress the dots
for positive helicity gluons in the MHV tower of amplitudes. When labelling the partons
in each NMHYV diagram we systematically choose to put the »MHV vertex on the left.
Figure 3.7 shows a skeleton diagram of a generic NMHV amplitude and shows how the
partons are labelled cyclically. The dotted semicircles denote the emission of positive
helicity gluons from the vertex. We use this convention in all of the NMHV diagrams
with one or two quark pairs. All possible diagrams contributing to (3.46) are shown
in figure 3.8. Each of these diagrams is drawn for the fixed arrangement of negative
helicity gluons, such that q{‘ is followed by m; , followed by ms followed by g, A, The
full NMHV amplitude is given by,

8

o 1 )

An( 1 mmy n ) = ey 3 AP mams) (347
= i=1
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where the common standard denominator of cyclic products of (Il + 1) is factored out
for convenience. We label the parton momenta as p; (where ¢ is defined modulo n) and

introduce the composite (off-shell) momentum,

Gi+1,j = DPi+1+ ... + ...+ pj;. (348)

Note that the momentum of ¢, ps, does not enter the sum. In particular, g;y1; = —pg.

As usual, the off-shell continuation of the helicity spinor is defined as [45],

Xitlj @ = Git1,joa £, (3.49)

where £% is a reference spinor that can be arbitrarily chosen. Following the organisational

structure of [48, 53], the contributions of the individual diagrams in figure 3.8 are given
by

m3z—1 n (1),A

ADA my ms) = n (95410 M2, M3)
o ) ZZ D(j,1,¢j+1,)

n—1 m3—1 A(B) A

gj+1,i, M2, M3)
A(3),/\(m2,m3) — n ( ] -,
" ig:i 1:27;2 ‘D(Ja 2, Qj+l,i)

n—1 ma2—1 ,(5),A
n

qj+1,is M2, M3)
A(5)”\(m2,m3) _ (?. ,
" i:z',;a ; D(‘%?’) Qj+l,i)

m3—1ma—1 ,(7),A

ADA (g ms) = n' (@16 M2, M3)
(2, ) Z Z D(j,%,qj+1,)

i=mg j=n

3

bl

)

i=ma j=1
(2k—1),A
by (Qit1,5, M2, m3)

D(%,5, Gi+1,5)

Agz2k)’)\(Qj+l,i’ ma, M3)

and where

2

Dlirja) = (¢ MIET) G + 1 WIEN G+ 1 WIENG T ey e (85D
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The amplitudes where the quark carries negative helicity are given by:

AP (qmeymy) = (ma 1) (ma™| ¢1€7) (ma™| ¢167)° (man),
(mq1)3 (man) (ms~ M|§ >
<1_|¢’§_> (n~|¢]€”) (mams) ",

,ma,mz) = (mg1)®(man) (ma~|¢|é" ) (3.52)

1

q, m27m3)

)

(q

AP~ (g, ma, m3)
~(
~(q

while the amplitudes where the quark carries positive helicity are given by,

AP (g,ma,ma) = (ma1) (m2”| 41€7)° (ma™| 4167) (mam)®

AD* (g ma,ms) = (ma1) (man)® (ms™|¢[€7)",
AD* (g ma,ms) = (17| d]e7) (0| d]e7)° (mams)?,
AD* (g ma,ms) = (ma1) (mgn)® (ma”|¢ |€7)" (3.53)

As in Ref. [53] we leave the reference spinor £ arbitrary and specifically do not set it
to be equal to one of the momenta in the problem. This has two advantages. First, we
do not introduce unphysical singularities in diagrams containing a three gluon vertex.
Second, it allows a powerful numerical check of gauge invariance i.e. all colour ordered

amplitudes must be independent of the specific choice of &.

Equation 3.47 describes all amplitudes coupling ¢ to a quark-antiquark pair, 2 negative
helicity gluons and any number of positive helicity gluons. In particular, it describes
¢ — q~¢g g~ @". This final state only receives contributions from the MHV tower of
amplitudes and the amplitude for  — g~¢g~ g~ ¢ " is therefore equivalent to the amplitude
for H—q g g~ q".

From the amplitudes (3.52) and (3.53) we can observe that in the limit p, — 0
each even numbered diagram collapses on to the corresponding odd numbered diagram.
The momentum conservation law q; , = py — O implies that g;11,; = —gj4+1,; i.e. the
transformation ¢ < j leaves the amplitude unchanged as there are even numbers of ¢’s in

the expressions. This means that we recover the 4 NMHV quark-gluon diagrams twice.
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3.74. H — q"g"g_(j‘*’

In this case, we can take A = —, mgo = 2 and m3 = 3. The third and seventh classes
of diagrams in figure 3.8 collapse since there are not enough gluons to prevent the right

hand vertex vanishing.

We have checked, with a help of a symbolic manipulator, that our results are &-
independent (gauge invariant) and numerically agree with the known analytic formu-

lae [113],

— e o _ 3 lm|a)2(12) (1 1 (27 [pul4™)? (13)
AdHi14,27,3747) = [42] 5124 (5 * Q)  [43] 5134514
(1~ [pr}d")?

T4 [A2][43] 23] (3.54)

where pg = py.

3.75. H—-q¢'g g gtq?

As discussed in Ref. [114], there are three independent amplitudes, corresponding to
having any of the three gluons with positive helicity. Each amplitude receives contribu-
tions from both the MHV and anti-MHYV towers so that setting (mo,m3) to be (2,3),
for example,

As(H,13,27,37,4%,57%) = As(¢,15,27,37,47,5;)

+ As(¢!,15,27,37,4%,5.7). (3.55)

We can obtain the negative helicities in other positions by taking (mq, m3) to be either
(2,4) or (3,4). We have checked numerically that eq. (3.55) is gauge invariant and gives
the same result as an independent Feynman diagram calculation. The same holds for

the other assignments of negative helicity gluons.
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3.8. Amplitudes with two quark-antiquark pairs

When there are two quark-antiquark pairs the tree-level amplitude can be decomposed

into colour ordered amplitudes as,

n—4
An(¢7 {pia )‘i’ ai}? {pj’ >‘j>i.7}) = iC/gn_z Z Z Z {

k O0€Sy p€eS;
(Tao(l) .. Tao(k))ili4 (Tap(l) v Tap(l))i:;iz

(¢>Q1 70( ,...,O'(k)) Qs AzaQs-{-l’ ( )7 . p(l) q_n—)\l)
— N(Taa(l) ce jl‘aa(k:))i”.2 (Tap(l) ce Tap(l))i3i4

x-"in(¢a ‘H\laa(l) ( ))q—s_)\l ;\-Z}-pp(l))”' ,p(l),Q;)‘l)} (3'56)

where S; and S; are permutation groups such that £ + ! = n — 4 and represent the
possible ways of distributing the gluons in a colour ordered way between the quarks. For
i=73=0, (T%...T%) reduces to &;. The first quark-antiquark pair has fundamental
colour indices 7, and %o respectively with helicities A1,—A; whereas the second quark-
antiquark pair has fundamental colour indices i3 and i4 with helicities As,—As. We see
that the two amplitudes A, and A, correspond to different ways of connecting the
fundamental colour charges. For the .4 amplitudes, there is a colour line connecting ¢
and @Q and a second line connecting Q and g, while for the QED-like A amplitudes the
colour lines connect ¢ to § and @ to Q. Any number of gluons may be radiated from

each colour line.

3.8.1. MHV Amplitudes

For each colour structure there are four MHV amplitudes where two of the fermions
have negative helicity and two have positive helicity as shown in figure 3.9. Any number
of positive helicity gluons can be radiated from each of the quark colour lines. Fig-

ure 3.9 explicitly shows the two ways of connecting up the colours. For each helicity
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are related by parity and can be obtained by conjugating the MHV expressions,

An(@h, 0 Q7% QLG = (CU” (Anle ™, @ Q%E) . (3.65)
and similarly for the A, amplitudes.

Equations (3.57)—(3.64) have an identical form to the pure QCD amplitudes. As such,
they have the correct collinear and multi-particle factorisation behaviour and a correct

limit as the ¢ momentum approaches zero.

3.8.2. H—q¢QTQ g+

When n = 4, there is only one possibility, ny = n_ = 2. As can be seen from figure 3.5,

this lies in the intersection of the MHV and MHYV towers so that, setting s = 2,

Aa(H,07,Q5,Q5,8) = Auld,07,Q, Q35,0 + (@' a7, @5, Q5,2
_ (137 [24)2
T (23)(a1)  [23][41] (3.66)

which agrees with the known analytic formulae of ref. [113].

3.8.3. NMHV Amplitudes

There are four different helicity configurations for amplitudes with two quark pairs and
a single negative helicity gluon. We choose the first quark pair to have helicities £A; and
the second pair to carry helicities +)\y. Again suppressing the positive helicity gluons,

we can write the NMHV amplitude as,

__ 1 1A

(¢: Q1 agmngmg, ) Qm3+17qn )‘l) = m ZA(l 1A (m2,m3)) (367)
~— 1 i),A

(¢’ Q1 7gm2» Qm;‘l ’ m3+1a Q /\2) m Z .A( ) A2 (m2, mg). (3.68)

There are two other amplitudes where the negative hehc1ty gluon appears on the other

quark line, for example,

~—A
(¢7q m3 ; m3+1’gm27qn 1)1
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however these amplitudes can be obtained by using the property that the amplitudes

are cyclic in the quark lines, we can move the gluon from one quark colour line to the

other by exchanging the two lines and relabelling, q; « Qm3 1 -‘)‘2 o g

relabelling applies to A,

The 10 diagrams describing the

resulting amplitudes are given by,

A%l),)\lAz (m2) m3)
ABA12 (my )

.A%S)’)\l A2 (m2 , m3)

. A similar

A, colour ordering are shown in figure 3.10. The

mo—1 m3

> 2

i=1 j=mg

)A )\2
An ! qJ+l lam27m3)
.7’ aQJ+1 z)

m3—1 n

>

i=my j=n

(3),A122 .
An (¢j+1,; M2, m3)

D(j,%, qj41,i)

5),A1A2 .
AGMM (gj+1,5; M2, M3)

D(5,%,qj41,4)

b

ms—1ma—1

2

)

i=ma j=1
n-1 ma—1 (7),A1)x .
Ag) /\1/\2(m2 m3) = Z An IDZ(.Q‘?'+1,i,m2ym3)’
i=madt1 j—1 (.7)7'? Qj-i-l,i)
m3z—1 n-—1 >\1)\2
A 1 Jm
APNa(y ) = Y Y AT ) )
B D(j,4, gj+1,:)
and
(2k—1)«\1f\2( o ms)
AGRIA2 (g, ) mg,mg - iy T, T for k=1,...,5.
n I+l ) D(3, j, qiy1,5) ,
(3.70)

The quantity D(i, ,q) is defined as in equation (3.51). The amplitudes for each helicity
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configuration are given by:

AP (g3ma, ms)
AP (g;mag, ma)
ABTF (g;mg, ms)
Aﬁ?”**(q; ma, m3)
A *+ (g;ma, ma)

)

A+ (g;mg, m3

(ma| 41€7)" (mama) (nma + 1) (ma + 11)> (17| ¢ €7),
(ma1)® (ma™| ¢€7) (ma + 1n) (ma + 17| ¢ |67) (ms~| g ]€7),
(m3 1) (Lmg + 1) (ma + 1n) (mo™| ¢ [€7)",

(17| ¢ |5—>3 (n| ¢|€7) (mams + 1)° (myma),
(ma+17]41€7)" (3| 4]€7) (ma 1)® (man), (3.71)
(ma~| ¢]€7) (mama)® (nma + 1) (17| ¢[€7)°,

(ma1)* (ma™ | ¢[€7) (ms™|d[67)° (ms + 1m)

(ms1)% (m3 + 1n) (ma~| 4 |67)*,

(17| ¢[e7)> (n| 4 |€7) (mams + 1) (mama)®,

(m3 + 17| d]€7) (ma™| 4]€7)" (ma 1)° (manm), (3.72)
(ma~| ¢1€7)° (mama) (nma +1)° (17| ¢]¢7),

(ma 1) (ma™| ¢ |67)° (ma™| d|€7) (ma +1m)°,

(m3 1) (ma + 1n)* (ma~ | g]€7)",

(17| ¢|e™) (n™| ¢ |€7)° (mams + 1)® (mams),
(m3+17|¢1€7)" (ma™ | ¢[¢7) (m2 1) (mam)?, (3.73)
(ma™| 4|67 ) (mams)® (nmg +1) (n~| g]€7)* (17| d]€7),
(m21) (ma~| d[€7)° (ma™| ¢ |€7) (man)® (mg + 1),

(1mg) (man)® (nms + 1) (ma~ | 4]67)",

(17| ¢le7) (n™| 4 |€7)° (mams + 1) (mama)?,

(ma+17| ¢ |67) (ma™| 4]€7)" (ma 1) (mam)®. (3.74)

For the A colour ordering there are only 8 diagrams shown in figure 3.11. The corre-
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sponding amplitudes are given by,

m2—1 m3 (1 )\1/\2

ADMN(mg,mg) = Y Y

i=1 j=ms3
m3—1 n %(3) /\1)\2

.A~7(rl3),)\1)\2 (mQ, m3) — Z Z n

‘1]+1 i M2, m3)
.7’ Z q_7+1 z)

(@j+1,: M2, M3)

¥
S D(35,% gj+1,0)
m3—1lma—1 7(5), 12 .
7(5), A 122 _ An (@145 M2, Mm3)
An (m2am3) - D(i.i.a: )
i=mg j=1 (J,% gj+1,6)

n  m3 (7) A1)\2

AN (1, mg) = ZZ

i=n j=mg

QJ+1 z;m2;m3)
.7a7’ qj+1, 1)

, (3.75)

with
7(2k—1),A1 )
Zh=thMda (. 5imag, ma)

@M i
" ( D(i, 7, qiv1,5)

gj+1,43M2,M3) = for k=1,...,4

The amplitudes for each helicity combination are,

AV (gyma,mg) = {mams) (ma™| ¢ |€7)° (n1) (Lmg + 1) (ms + 17| ¢ [¢7),

A (gymayms) = (ma7[¢[€7) (ma1)® (n”|¢]€7) (ma + 17| 4]€7)" (ma + 1ma),
AP (gyma,ms) = (n1) (Img+ 1) (ms + Lms) (ma~| ¢ |67,

AP (gma,my) = (ma 1) (mama) (ma+17[d[67)° (n™| 4]¢7), (3.77)
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A(l) +(q mg, M3
AR+ (g;mg, m3

AB) = (g;mg, m3

A?(zl),-i-—- (Q7 mo, M3

A(S)’Jr (g;mo, m3

(mamg) (ma~ | d]€7)° (n1)® (ms + 17| ¢|€7),

(ma™[d67) (ma 1)* (™| 41€7) (ms + 1ma),

1) (ma”| ¢]e7)",

(ma 1)® (mama) (ms +17|¢]67) (™| d|€7)°, (3.78)
(mams)® (my™|¢|€7) (n1) (mg + 17| ¢|n")°,

(ma~| ¢]67)° (ma 1) (n=| ¢ €7) (mg + 1m3)®,

(1 n>3 (mgmg +

(5) +=

)
)
m3)
A= (g;ma, ma)
ms)
)
)

g;ma,ms) = (1n){mams+1)° <m2_[{é|§—>4,

(

M (gyma,ms) = (mal) (mamg)® (ma+17[4|e7) (n|dl€7), (3.79)
An1>++<q,m2,m3) = (mama)® (my~|d[67) (n1) (n7| g |67)" (ma+ 17| d[€7),
ADHH (gima,ma) = (mal) (o™ | ¢[67)° (n7| ¢]€7) (nma)® (my + 1ma),

AP+ (gyma,mz) = (Ln) (nms)? (mams + 1) (ma™| ¢ |€7)?,
(

ADH (gymg,mz) = (mal) (mams)® (ma+ 17| ¢€7) (n|g]€7)°. (3.80)

Egs. (3.67) and (3.68) are sufficient to describe all amplitudes involving ¢, two pairs
of quarks and a single negative helicity gluon. Amplitudes involving ¢! are obtained by

parity. Note that all NMHV amplitudes lie in the overlap of the MHV and MHV towers.

The only NMHV amplitudes previously available were those involving for four quarks

and a single gluon [114].

3.8.4. H - ghg=Q M2QM g™

In this case quarks of opposite flavour are colour connected corresponding to the leading
colour A)*2 NMHV with mg = 2 and m3 = 3. To recover the amplitude for Higgs we
add the MHV amplitude with the same colour and helicity configuration,

As(H,13,27,35™,43,5.) = As(é, 13",

—A —A
101, 357,48, 57™)

+ A5(¢,131,2 35 2,43 57M). (3.81)
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i+ 1 )

Figure 3.12: The recursion relation for amplitudes involving a negative helicity par-
ticles. The dots indicate the emission of particles of any helicity. a, b and ¢ count
the number of negative helicity external particles connected to each vertex, such that
a = b+ c¢. The summation runs over all possible distributions of external particles. P
denotes the off-shell momentum linking the two vertices.

By substituting in specific phase space points with various choices of the gauge vector &,
we find numerically that the amplitude is gauge invariant. We also find agreement with

the results of an independent calculation of the twelve Feynman diagrams.

3.8.5. H— g ghQ=Q >

In this case, each quark is colour connected to the antiquark of the same flavour. We
therefore take the subleading colour Af‘tl)‘z NMHYV with me = 2 and m3z = 3 and add

the MHV with the same configuration

~ o Ao p— e - o ~
A5(Ha1¢/]\1)2 73¢j/\174Q275Q/\2) = A5(¢,121a2 :3[1')\1743275Q)\2)

+ As(¢f,151,27,37M, 47, 557, (382)

Once again, we find that the amplitude is gauge invariant and reproduces the numerical

result found using an independent Feynman diagram calculation.

3.9. Recursive formulation of non-MHV amplitudes

The NMHYV amplitudes of the previous sections were obtained by connecting two MHV

vertices by a scalar propagator in all possible ways. Typically there are of order 10 such
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diagrams. NNMHYV amplitudes can be constructed either by connecting three MHV
vertices, or by connecting an MHV vertex to an on-shell NMHV amplitude. The first
approach involves around 50 scalar graphs, while the second method recursively makes
use of previously computed results. Recursion relations were first used in the context of
QCD amplitudes by Berends and Giele [60] and subsequently by Kosower [125]. More
recently, they have been employed to obtain helicity amplitudes for gluon scattering

using MHV rules [52].

Following [52], an n-gluon amplitude with a negative helicities, .A%.,, can be written

in terms of amplitudes involving fewer external particles with b and ¢ negative helicities

as,
1 n -2
ALL(L,...,n) = >
(a-2) i=1 j=i+2
. . 1 ) .
A§—1+1;b+1(2 +1,..0,0, =85 4) E Af_j+1;c(j +1,...,4, —qjﬂ’i), (3.83)

where a = b 4+ ¢. This relation is schematically shown in figure 3.12. The helicities of
individual particles have been suppressed, however, it is understood that out of the n
particles, a have negative helicity. Furthermore, b (¢) particles in the range i + 1,...,j
( +1,...,7) have negative helicities. All momenta are outgoing, and the off-shell line
linking the two amplitudes carries momentum g;41; = —¢j4+1,;, such that s;4;; = qi2+1,j,
and we choose to connect it to the left-(right-) hand amplitude with negative (positive)
helicity. Note that the range [¢ + 1, j] must contain at least 1 negative helicity and the
range [j+1,7— 1] must contain at least 2 negative helicities. Vertices generated which do
not satisfy these properties will be zero. It is also understood that all sums and ranges
are defined modulo n. The factor Gi—z) makes sure that there is no over counting of

diagrams.

For our present purposes, we wish to use eq. (3.83) algebraically to reduce the am-
plitude to a combination of MHV vertices A7 , with some number of off-shell legs. The
off-shell continuation is then performed in the usual manner [45], (i P) — (i|P|¢). In

this case, it is convenient to treat all external particles as on-shell and treat the off-
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shell legs analytically. For purely numerical evaluation, it may be simpler to deal with
vertices with all legs off-shell at the beginning and take them on-shell afterwards [52].
The off-shell continuation of Kosower [59] is particularly well suited to the numerical

approach.

We must now extend the recursive formula of ref. [52] to include both fermions and
scalars. The relevant building blocks for amplitudes with up to one quark pair and/or
one ¢ are thus the four MHV vertices, A7 ,, A7, AZ‘; and Aﬁ‘;g. We do not indicate
whether the quark or antiquark has negative helicity, and so the quark MHV vertices

are represented by a single A.

We first write down the recursion relation for amplitudes involving ¢ and gluons,

Ag*;gau,...,n):ﬁ{

n
o 1 . .
Z Z EPTRPYETC ok RERRY el W) P A G+ 1 b g )
i+1,5

i=1 j=i+2
n 1—
+ Z Z A.?gi-i-l;b-i-l(i +1,... ' Js qj+1 1,) - 'Ag —j+1; c(-7 +1,...,3 _Q;:H,i), }
i=1 j=i+1 Sj+1
(3.84)

Note that for amplitudes involving ¢, the outgoing gluon momenta no longer sum to zero.
We therefore choose to use the momentum constructed solely from gluon momenta,
¢i+1,j (gj+1,i) in the ¢—gluon vertex appearing on first (second) terms on the rhs of
eq. (3.84). This expression is sufficient to rederive the NMHV and Next-to-NMHV
(NNMHV) amplitudes given explicitly in Ref. [53]. We have checked that it correctly
gives NMHV and NNMHYV amplitudes with up to six gluons.
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The recursion relation involving only quarks and gluons is given by,

1
AL 1y, .,mgt) = m(

1 j=i+2
. . 1 A .4 Y
Ag—i+1;b+1(7’ + 1a Dy _qi+1,j) E A‘z']—j+n+1;c(1q’27 eyl _qj+1,1j7] + 1, v ,n(j )
1
g - L+ g A L ~X
+A]—‘l+1,b(z + 1, e 7‘7, —q1+1,]) E Az—]+n+1,c+1(1q’2’ “ .. ,Z, _q]+1,l7‘7 + 1, “e ,nq )}
n—2 1
A S A A —X
T ZA3+1;b'+1(1q’2’ b Ty );AZ—i+l;c’+l(ql,i’ itl...,ng )>’ (3.85)
i=2 :
where b’ (¢') is the number of negative helicities in the range 2,...,7 (¢ +1,...,n—1)

and a = b + ¢ — 1. Eq. (3.85) is sufficient to describe amplitudes involving any number

of gluons and a single quark pair.
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Finally, the recursion relation for quarks, gluons and a ¢ is,

1
AL i) = s (

1 j=i+1

: - 1 A . . Y
A?gz+1,b+l(l + ]., e ,], q]+1’1) _ A:]_J+n+1’c(1q,2, “ e ,7/, _q;—+1,1,’] + 1, P ,nq )

Sj+1,1
1
¢9 ; ot A ; - : =2
+'Aj—i+1;b(7’ +1,...,7, qj+1,i) Py Ag—j+n+1;c+1(1q’2’ co = Qiy 5 J T L...,ng )}
n—3 n—1
DI
=1 j=it2

1
g : - ¢ Y o+
Aj—i+1;b+1(z+1""7]’_qi+1,j)m‘Ai—jﬁ-n—i—l;c(lq’Z“"Z’q‘H-l,j’J+1""’”’17 )

1
- .y ¢ A S .Y
+A§—’L+1,b(7’+17"’]’—q1+1,])—Algj+n+1,0+l(]’q’2’"Z’ql-f-l,]’]_]_l""nq )}

Si+1,5
n—2
+> {
=2

1
A - =X A . Y
A?jl,b,'{"l(lq 3 2, e ,Z, q1+1,n) E A?L—z+l;c'+l(—ql+l,n’ 2 + 1, Py ,nq )
1
A . —A A A
+Ag+1;b,+1(1q, 2,058, —q1 ; ) o Aiq_iﬂ;clﬂ(ql,i, it+1,...,n; )}) . (3.86)
K

We have checked that eq. (3.86) correctly reproduces the NMHV amplitudes given in
section 3 for up to 6 gluons. Note that in order for the recursion relation to be effective,
and unlike the case for the explicit formulae for NMHV amplitudes in eq. (3.47) that is
valid for all n, the number of particles must be specified. The recursion relation and the

explicit all n results are therefore complementary.

Equations (3.83)-(3.86) provide a way to generate expressions for all non-MHV am-
plitudes with fermions, gluons and a single massive scalar, ¢. As usual, amplitudes

involving ¢! are obtained by parity.

80



39.1. H—-q g g g q"

The only NNMHV amplitude previously available in the literature is for H — ¢~¢g~¢g ¢~ q" [114].
This corresponds to the point with n, +n_ =5 and ny —n_ = —3 in figure 3.4. There

is no MHV contribution with this helicity configuration. The full amplitude is thus,

As(H,q7,95,95,92,38) = As(b,97,95,95,91,T )- (3.87)

We have checked numerically that the amplitude obtained using the recursion relation
(3.86) is gauge invariant and that it agrees with the results obtained by computing the

74 Feynman diagrams directly.

3.10. Conclusions

In this chapter we have shown how to use MHV rules to calculate scattering amplitudes
for a single scalar Higgs boson and many gluons and quarks. This was done using an
effective Higgs/gluon coupling valid in the large top mass limit. The essential part
of the MHV construction for such amplitudes was the ability to split the Higgs field
into self-dual and anti-self-dual fields, the Higgs amplitudes can then be computed by
using both the MHV and MHV rules for each tower and subsequently adding up the two
pieces. This was done for amplitudes with gluons and up to two pairs of quarks. Explicit
expressions were given for MHV and NMHYV amplitudes with one and two quarks pairs
while recursion relations were formed to calculate amplitudes with arbitrary helicity

amplitudes.

All explicit results have been numerically checked against Feynman diagram calcula-
tions. Although the MHV technique is guaranteed to provide correct results at tree level
using on-shell recursion relations to prove gluonic MHV rules [46] and supersymmetric

ward identities to relate these to amplitudes with fermions.

We have also shown that the approximation of an infinitely massive top quark is a

reasonable approximation for a Higgs boson mass around 100-150 GeV, with an approx-
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imate error of 5-10%. However, it should also be possible to model the # corrections
t
to this approximation with higher dimensional operators such as,

mig tr(G4GEGY). (3.88)
Indeed operators of this kind have already been shown to fit into the MHV construction
[53]. Finding these corrections would require computing the effective couplings for all
the effective operators to O(m—lgt) including all triple and quartic gluon self couplings.

Hopefully these corrections would reduce the errors in the amplitudes significantly.
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4. Recursion relations for gauge theory
scattering amplitudes with massive

particles

Amplitudes with massive particles are obviously extremely important phenomenologi-
cally. Within the Standard Model the masses of the electro-weak vector bosons W*, Z,
and the top quark mass are the most significant. The Higgs mass also plays a large role
in scattering processes as has been discussed in the previous chapter, 3. The on-shell
techniques described in chapter 2 were only concerned with massless particles. The aim
of this chapter is to extend the on-shell recursion relations of section 2.4.2 to include
massive particles and then apply the new relations to amplitudes with massive scalars
[70, 72], vector bosons and fermions [71, 73, 74, 126, 127]. Throughout we use the spinor
helicity formalism outlined in section 2.2 and all amplitudes will be colour ordered as

described in section 2.3.

As well as motivation from the Standard Model there is another strong motivation
for considering amplitudes involving a pair of massive scalars. One loop amplitudes in
supersymmetric theories have been successfully calculated using both MHV rules and
generalised unitarity. However, as discussed in section 2.1.3, on-shell methods which rely
on the particles being in 4-dimensions will not be able to fully re-construct amplitudes
in non-supersymmetric theories. The missing pieces are rational functions and have
been the subject of much research into recursion relations for QCD amplitudes at 1-loop

[31-33, 96-101).
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Alternatively one can avoid the problem of missing rational functions by applying
the unitarity methods in D-dimensions in which case the full amplitude would be re-
constructed from the start. A further simplification comes from decomposing 1-loop
QCD amplitudes of n gluons in terms of supersymmetric multiplets circulating inside
the loop:

AS)CD = Aﬁxlf):zi - 4‘A§\1/')=1,chiral + 4 (4.1)

scalar”

As supersymmetric amplitudes are cut constructible in 4 dimensions the only contri-
bution that needs to be computed with D-dimensional cuts is the scalar contribution,
Agizllar. The next important observation is that one can view a D-dimensional scalar

particle as a massive 4-dimensional scalar [22, 23] where the extra degrees of freedom

act like a mass p,

ph = ps — 1. (4.2)
Therefore the vital ingredients needed to calculate higher point amplitudes at 1-loop
in QCD using D-dimensional unitarity are tree amplitudes involving two adjacent mas-
sive scalar particles. This method has been successfully applied to gluon amplitudes
with all positive helicities, which are finite at 1-loop [23] and to some specific helicity

configurations with up to 5 gluons using generalised unitarity [82].

4.1. On-shell recursion with massive particles

Consider a colour ordered tree level scattering amplitude of n incoming particles, some

of which might be massive

-A(pl,p%”-,pn) ] p? =m12 . (43)

Single out two particles, i, 7, for special treatment. These particles can be either massive
or massless. For given p;, p; pick a null vector = /\,,5\,7 that is orthogonal to both p;
and Y2

npi=n-p=n=0. (4.4)
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For generic p; and p;, there are exactly two such 7 up to scaling. To see this, consider the
plane spanned by p; and p;. Geometrically, the first two conditions in (4.4) mean that n
lies in the plane orthogonal to the plane spanned by p;,pj. The last condition sets 7 to
be in the intersection of this plane with the light cone. A generic plane going through
the origin intersects the complex light cone at two complex rays. These rays define the
two solutions for # up to a scaling by a complex number. We now will construct these

solutions.

Solution for the shift momentum

Let us find now explicit solutions of eqs. (4.4) for complex momenta. We will discuss
in turn the case when both i, ;7 are massless, when one of 7, j is massive and at last the

case when both ¢, j are massive.

If the marked momenta are null, p; = AjA;, pj = /\j:\j, then the condition that 7 is
orthogonal to p; gives 27 - p; = —(n,4)[n, ¢] = 0, so either A, = A; or ;\,, = X;,. Similarly,
vanishing of the Lorentz invariant product of n and p; implies A; = A; or :\n = S\j.

Combining these two conditions, we find two solutions

n=XMA, 17 =X\ (4.5)

Now consider the case where the particle ¢ is massless and the particle j is massive.
The condition that momentum 7 is orthogonal to p; gives A\, = A; or ;\,, =N If Ap = A,

the orthogonality to p; reads
277 'pj = )\?pjaa 5\; =0 ; (4.6)

hence ;\% = Aig p?d = (/\ipj)"’. So the two possible null vectors orthogonal to both p; and
pj are

1% = M0, 7% = (g A (4.7)

The case when ¢ is massive and j is massless is treated analogously.
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The last case to consider is when both particles ¢ and j are massive. Here, neither p;
nor p; is a product of two spinors so the expression for 7 is not as simple. We use the
condition 27 - p; = A7 :\% Piaa = 0 t0 express Apy = Piga ;\‘,17 Putting this into the second
orthogonality condition gives a quadratic equation for A,

g A Pia Py € = (nlpi - pjln) = 0. (4.8)

+

This equation has two solutions, A7,

which we can find, for example, by setting Ay =
(1,z) and solving the quadratic equation for z. The analogous condition for the positive
helicity spinor 5\‘,‘,

X8 X% praa pyp € = ~[nlps - pyln] = 0 (4.9)
has also two solutions. Altogether, up to scaling, there are two null vectors n = /\,,:\,,
that are orthogonal to p;, p;. We do not know of a convenient Lorentz invariant solution
to (4.8) and (4.9). This makes the case where both marked particles are massive less

tractable than the two simpler cases where at least one of the marked particles is light-

like.

4.1.1. Derivation of the recursion relations

To construct massive recursion relation for a tree-level n-particle amplitude A(p1, p2, ..., Pn),
we first mark particles ¢ and j for special treatment and pick one of the two null vectors
n satisfying the conditions in egs. (4.4). Following [65], consider the auxiliary function

of one complex variable
A(z) = A(p1(2), ..., pi(2), ..., pj(2), ..., Pn(2)) , (4.10)
where pg(z) = px for k # 4,7, and
pi(z) =pit+zn, pj(z)=pj—=m. (4.11)

Since 7 is null and orthogonal to p;, p;, the shifted momenta are on-shell

piz)=p?, pi2)=0p}. (4.12)
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Equations (4.11) imply that p;(z) 4+ p;(2) = pi + p;, so A(z) obeys momentum conser-
vation. Hence, it is an on-shell scattering amplitude of particles with complex momenta

and can be computed from the usual Feynman rules.

Clearly, the momenta of the external particles are linear functions of z. Notice that
the spinors of massless external particles are linear functions of z as well. In the case
where both marked particles are massless, there are two possible 7’s given by eq. (4.5).

For nn = Ajf\,-, the shift (4.11) is accomplished by

)\i(z) =\ + Z/\j , /\j(z) = S\j - ZS\i . (4.13)

The second solution for the shift vector, ' = /\iS\j, gives

)\i(z) = :\i + Zj\j )\j (z) = )\j — 2. (4.14)

Consider now the case when one of the particles, say particle ¢, is massless and the other
particle j is massive. Then (4.7) gives 7% = A\%(\;p;)%. The shift of marked momenta
(4.11) is accomplished by

M(z) = Né + 2(Nipj)? p¥(2) = p2% — 22 (Nipj)® - (4.15)

For n* = (pj 5\,-)“:\? there are analogous expressions

A (2) = A + 2(pjhi)? p2(2) = P — 2(p; )AL (4.16)

It follows that A(z) is a rational function of z because at tree level, the scattering
amplitude is a rational function of the spinors of massless external particles and of the

momenta of massive external particles.

At tree-level the rational function .A(z) can only have simple poles in z coming from
internal propagators 1/P(z)2. Each propagator divides the external particles into two
groups, the particles to the ‘left’ and to the ‘right’ of the propagator as illustrated in
figure 4.1. Hence, the momentum P(z) of a propagator is the sum of the momenta of

the external particles to the left of the propagator

P=pr+...+pi+--.+ps- (4.].7)
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s+1

SR ;

r—1

Figure 4.1: Diagrammatic representation of the recursion relation. Arrows label the
momentum flow.

The momentum P(z) depends on z only if the particles ¢ and j are on opposite sides
of the propagator. We choose the particle ¢ to be on the left of the propagator and the
particle j to be on the right, as in figure 4.1. Then

P(z)=P+2n, (4.18)

and the propagator is,

1 1
_ = — 4.19
P(z)2—m2?2 P?2—m2+42zP-n’ (4.19)

where m is the mass of the internal particle. The propagator (4.19) has a simple pole at

P2 _ m2

For generic external momenta, all internal momenta are different, hence, the locations
of all poles are different. It follows that the tree-level amplitude .4(z) has only simple

poles as a function of z.

To find the recursion relations, we use the familiar theorem from complex analysis
that the sum of residues of a rational function on a Riemann sphere is zero. Applying

this to A(z)/z we express A(0) as a sum over residues

A(0) = Res (@)zzo = —;Res (@)zzza — Res (@)Fm , (4.21)

where the sum is over all finite poles z, of the amplitude A(z). These come from the
propagators 1/P?(z) that separate the particles i and j. The residues at finite z are de-

termined by the factorisation of the scattering amplitude when the Feynman propagator
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(4.19) goes on-shell
Res (M> _ _ Alza)Arlza) (4.22)

z P2 _m?
Here, A; and Apg are the tree-level amplitudes of the particles to the left and to the

right of the propagator and z, is given by (4.20).

Hence, any tree-level scattering scattering amplitude 4 = A(0) can be written in the

form

A=+ Z AL;;)_A:;;“) — Res (@)m , (4.23)
where the sum is over all channels a such that the particles ¢ and j are on different sides
of the channel, and z, is given by (4.20). The relation (4.23) is useful for computing
scattering amplitudes only if there is an efficient way to determine the boundary contri-

bution Res (A(z)/2)c. The most favourable scenario is when this contribution vanishes.

This happens if and only if .A(2) vanishes at infinity,

Res (A(z)) =0 & A(z)—0, for z— oo, (4.24)

z

in which case, there is a simple recursion relation:
A= ZAL %) 5 m2 —— Agr(za) (4.25)

that expresses A in terms of lower-point on-shell scattering amplitudes A (2,) and
ARr(za). The summation in (4.25) runs over all partitions of particles between Ar(2q)
and ARp(za), such that p; is on the left, and p; is on the right of P, and also over all

helicities h of the intermediate state P,.

The above considerations apply to the case with massive or massless marked particles.
However, for calculations carried out in this paper it will be sufficient to take both marked
particles to be massless. In this case, the necessary conditions for the vanishing of the
boundary contribution (4.24) put constraints on the possible helicities of the marked

particles ¢ and j. These conditions have been discussed in section 2.4.2.
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4.1.2. Recursion relations: summary

We will use the recursion relations to calculate tree-level scattering amplitudes in Yang-
Mills theory coupled to matter fields. The matter fields may be massive or massless
and transform in a generic representation of the gauge group. We consider the colour-
ordered partial amplitudes A = A(p1,...,prn), in which the coloured particles come in
a definite cyclic order 1,2,...,n. These amplitudes are obtained by stripping away the
colour factors from the full amplitude. hence, they depend on the kinematic variables,

momenta and helicities, pp and hy only.

In the remainder of the paper we will take both marked particles to be massless.
We shift two massless momenta p; = |i)[i] and p; = |5)|j] of the marked particles by

n = |9)[¢], so the shifted momenta are

B o= pitzl, (4.26)
pj = pj— =z, (4.27)
P = P+z5], (4.28)

where P = p, + ...+ p; + ... + ps is the momentum of the intermediate particle. For

the particles , j this is equivalent to shifting the spinors

&) =i, [2) = 16) + 2l3) (4.29)
D=1,  F=1-=. (4.30)

The recursion relation (4.25) written more explicitly is (c.f. figure 4.1)

} : Z ~ ~ 1

-A(pl’"'apn): AL(pT;--',pi""7p3)_P1{?3)P2 2

s —m
partitions h=+ ™8

x ArR(P7 M psi1-- B - Pr—1) (4.31)

where summation is over all partitions of n external particles between A; and Ag,

such that p; is on the left, and p; is on the right, and also over the helicities, h, of the

intermediate state. z can be found from the on-shell condition P? = mf,,
P2 —m? P2 —m2
z= — PP (4.32)
2P - vitgd
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When the intermediate state P is a massless particle (e.g. a gluon), we can simplify

the spinor products involving |P) and |P] as in Ref. [64]:

(k Py = (IPY] _ (kIPI (4.33)
[P 4] w
(7 P) w
where w and @ enter the amplitude always in the combination ww = = (j|P|1].

For practical computations it is essential that A(z) vanishes for large z, so that the
recursion relations do not have a boundary contribution at infinity. As discussed in
section 2.4.2, this puts a constraint on the helicities of the particles ¢ and j. For our
choice of the shift momentum, = |j}|7], the helicities of the marked particles can take

the values,
n=I0:  (hishy) = (=), (++), (=) (4.35)

but not (h;, h;) = (—,+). Conditions (4.35) are the same for massive and for massless

amplitudes.

4.2. Amplitudes with gluons and massive scalars

In this section we consider scattering amplitudes of gluons with massive complex scalars.
These amplitudes are related to amplitudes with massless scalars that have D-dimensional
momenta. The scalars with D-dimensional momenta Pp can be thought of as massive
scalars in 4 dimensions. The D-dimensional on-shell condition, Pp? = 0, gives the 4-
dimensional mass-shell equation, P4> = u?, where the mass term, u?, arises from the

extra D — 4 dimensions of momenta.

We will derive amplitudes with 2 scalars and up to 4 gluons with arbitrary helic-
ity configurations. The amplitudes with the same-helicity gluons have been previously

derived in [23].
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4.2.1. Primitive vertices

The recursion relations construct n-point amplitudes from on-shell m~point amplitudes
with m < n. The m-point amplitudes are connected to each other with scalar propa-
gators. Using the recursion relation n — 3 times gives a representation of the n-point
amplitude entirely in terms of the 3-point vertices. Hence, 3-point vertices are the build-
ing blocks of the amplitudes in the recursive approach*, they will be called the primitive

vertices.

The recursion relation reduce the task of computing general amplitudes to the com-
putation of all 3-point primitive vertices. In this paper we consider amplitudes with
massless gluons ¢ and massive scalars ¢. These can be built from the ggg and ¢g¢!

vertices.

The three-gluon primitive amplitudes can have — —+ or + + — helicity configurations.

These are the standard MHV and MHV 3-point on-shell amplitudes

_ 1213
As(gh of97) =~ (4.36)

3
A3(97,95,93) = { 1) [23][31]

23)(31) ’
The gluon momenta k; are assumed to be complex which ensures that these amplitudes

do not vanish on-shell [42, 64].

In order to compute scattering amplitudes of gluons and massive scalars, we need to
determine the ¢g¢! vertices. To obtain these, we start with the off-shell Feynman vertex

of two scalars of mass p and momenta [;,l2, and a single gluon with momentum &,

_ 1

The v/2 comes from the normalisation conventions used in colour-ordered Feynman rules
[122], and the + and — indices are labels for a scalar and an anti-scalar. To derive the

desired on-shell amplitudes, A3(lf’,ki,lz_ ), we contract V3(If,k*,l;) with the gluon

*In particular, this implies that the 4-point vertices in the microscopic Lagrangian are not used in the

recursive construction of gauge-invariant amplitudes [64].
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polarisation vector, ef(k, q)

‘;  er(kyg) = \/51[“]‘;—‘1(1‘]’ (4.38)

where ¢ = |g)|q] is an arbitrary reference vector that is not proportional to k. The two

k
+(k L= 2qa
€ (k,q)aa \/_(qk‘

independent on-shell vertices immediately follow

AR ) = el i) = BB (439)
At e lg) = Aty ki) = S (4.40)

We have already noted that the primitive vertices vanish for on-shell real momenta
in Minkowski space, but are nonzero for on-shell complex momenta. Indeed, the on-
shell conditions, 2 = 2 = u? and k2 = 0, together with the momentum conservation
imply that the momentum of the gluon is orthogonal to the momenta of the scalars
k-ly = k-l = 0. For real massless momentum % in Minkowski space, the spinors k%, 15,-1
are complex conjugates k) = +ko. Similarly a real massive momentum forms a Hermitian
matrix (I ab)T = lp;. Hence for real momenta, the conditions lf"’kal}d =0,7 = 1,2 imply
190k, = l;‘dléa =0 for ¢ = 1,2. It follows that the 3-point vertices (4.40-4.39) vanish. For

example we have A(lf, k,15) o gul%%k; = 0.

For complex momenta the spinors k%, k% become independent variables. This addi-
tional freedom allows us to take the momenta of the scalars on-shell while keeping the

three-valent amplitudes nonzero.

Finally, we note that the primitive amplitudes are gauge-invariant, even though egs. (4.39)-

(4.40) contain explicit g-dependence. Different choice of the reference vector ¢ amounts
to a gauge transformation, hence the on-shell amplitudes should not depend on the choice
of g by virtue of gauge symmetry. It is easy to see this explicitly e.g. for the (¢TgT¢™)
amplitude. The reference spinor g%,a = 1,2 lives in a two dimensional complex vector
space. The spinors ¢% and k% are independent due to the condition (gk) # 0, so we
take them as a basis of the vector space. Hence a change in the reference spinor can be
parameterised as

q* = ag” + Bk* . (4.41)
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Changing g, the amplitude becomes

qll1|k] + B{k|l1|K]
a{gk) '

Here, (k|l;|k] = 2k-1; = p?—12 = 0 is zero by momentum conservation. The remaining o

AUF k15 = _

(4.42)

dependence gets cancelled between the numerator and the denominator leaving us with

the original amplitude.

It follows that the choice of the reference momenta g; of the gluons does not affect
the amplitude so in principle we could set them to arbitrary values. In the following
sections, when using recursion relations to calculate amplitudes with scalars, we will find
it convenient to set the reference momentum of a marked gluon in a primitive vertex

(4.39) or (4.40) to be the momentum of the other marked gluon.

In the following sections we will calculate tree-level amplitudes of the form

A(qs}:,gl’g%"'agm)gblz) . (443)

These are the colour-ordered subamplitudes with two massive scalars and m gluons

(2 < m < 4) of arbitrary helicities.

When scalars transform in the fundamental representation of the gauge group, the
‘string’ of fields in the amplitudes must always start and end with the scalar, precisely
as in (4.43). Using cyclic symmetry of colour-ordered amplitudes, the scalars in (4.43)
can be thought of as adjacent. Scalars in the adjoint representation can appear anywhere
in the string, i.e. they do not have to be adjacent. Such amplitudes can also be calculated

straightforwardly with our methods.

We will determine all the independent helicity configurations in (4.43), all the remain-

ing configurations can be obtained from those via the following identities:

h m A — m
Am+2(¢i§,91l;ggz7-~ agzln 7¢12) = Am+2(¢llag}1ll,ggz,"'ag:ln ,¢?;) (444)
= (D)™ Amia(dy,, gnrs - 957,91 $77)(4.45)

* — —h —h —hm
= m+2(¢ll,gl 1,92 2,-~-’gmh )¢l_;) (446)
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where ... indicate gluon fields and h; is the helicity of the i*" gluon. Equations (4.45)
and (4.46) follow from reflection and parity symmetry of the colour-ordered amplitudes,

and (4.44) follows from egs. (4.39)-(4.40).

4.2.2. 4-point amplitudes

There are two independent helicity amplitudes in this case, the recursion relation (4.31)

gives only one term for each of the amplitudes, as illustrated in figure 4.2.
i 1+ I 1+

Iy 2+ Iy 2%

Figure 4.2: Representation of the 4-point amplitude using the recursion relation with
1 and 2 as the shifted momenta.

In the case of two positive helicity gluons, we have:

1
P2—,u2

Ag(lF,1F,2%,15) = As(iF,1F,—P) As(PH. 24,15, (4.47)

where we took the marked particles to be the gluons with momenta &; and k. We set
the reference vectors ¢; and ¢ of the two gluons equal to the marked momenta gluon

on the opposite side of the diagram
2=k = |k)k], @ = ko= |ka)|ko] . (4.48)

We shift the momenta along the vector n = [2)[1], so that [1] = [1] , [2) = [2). The

amplitude then becomes A
QLR
(12)%((l1 + k1)* — p?)

Using I; +lo + 751 + 752 = 0= l{ + s + k1 + k9, this can be written as

_ sr(RrlfRalh) (22000 - 1) — 20k - 1) (ke - 1)
2(12)2((l + k1)? — p?) (12)2((l + K1)? = p?) '
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To get the second expression we used a Fierz identity. The second term in the numerator

vanishes, 751 -I; = 0. The easiest way to see this is to use momentum conservation in
~ ~ ~ ~2

the 3-point vertex, I; + k; = P, and the on-shell conditions I? = P2 = p? k;” = 0.

Alternatively this can be shown with the use of the definition (4.27) of k

(ll —+ ]{71)2 —

R R TR @1 =0.

This leaves us with the final answer

p#2[12]
(12)((l + k1)2 = p?)

This agrees with the previously known result computed by Bern, Dixon and Kosower

[23].

-A4(li'_, 1+a 2+7l2—) = -

(4.49)

For the amplitude with one positive helicity gluon and one negative helicity gluon the

recursion relation in figure 4.2 yields,

B =~ - 1 A -
Aglf,17,27,15) = As(iF, 17, -P )132 S As(PT,27,15) (4.50)

Using the same choice for the marked gluons and the reference vectors (4.48) as before
gives the result

(2l1 12

A28 = TG+ P =)

(4.51)

which we checked against a Feynman diagram calculation.

4.2.3. 5-point amplitudes

The amplitudes with three gluons and a pair of scalars have three independent helicity
configurations. As before, we mark the gluons with momenta k; and ko, and pick their
reference momenta to be q; = 1%2, g2 = I%l. The recursion relation is depicted in figure
4.3. For the amplitude with all gluons of positive helicities, the recursion relations have

single non-zero diagram. The diagram with gluon exchange vanishes as the choice of
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I+ 1+ I 1+

Figure 4.3: The decomposition of the 5-point amplitude using the recursion relation
with 1 and 2 as the shifted momenta.
shift vector n implies vanishing of the A(?*‘, 3t,p*) MHV amplitude. The amplitude

follows immediately:

2B+
(G + B = )12 @) (2 + B = 4

This is in agreement with the result in [23].

As(lf,11,24,3%,1;) = (4.52)

For the case where one of the gluons has negative helicity we have two independent
helicity configurations, each of which has two non-zero contributions:

(3lla(1 + 2)i1|1)2
(1 + K1)% — 12)(12)(23) ((l2 + k3)2 — p2)[3|(1 + 2)11 /1]
3123[23][3|(1 + 2)[1'1} ’ )

A5(lf—)1+a2+)3—,l2_) = -

(211 [1]%(2]12[3]?

((h + k1)? = p2)(12)(23)((l2 + k3)% — 2)[3](1 + 2)lu|1]
p2[13]*

s123(12][23][3](1 + 2)l1[1]

As(if,1m,27.3%,1,) = -

(4.54)

These results are new. Our results (4.52)-(4.54) numerically agree with the much length-

ier expressions which we obtained by a direct calculation of the 25 Feynman diagrams.

4.2.4. 6-point amplitudes

We mark gluon momenta 1 and 2, and write down the recursion relation for the 6-point

amplitudes with 4 gluons in figure 4.4.
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i 1+ i I+ Iy i
2 ./ 4~lgi— Tt
N g +
= : + +
’ +
/, 3 - u
,f 15 2 ~
Iy 4 4 3 3 2

Figure 4.4: The decomposition of the 6 point amplitude using the recursion relation
with 1 and 2 as the shifted momenta.

In the case of all gluons of the same helicity, only the first diagram contributes. We

find,

#[4lla(3 + 4)(1 4 2)l[1]
@1Q2Q3(12)(23)(34) ’

where Q1 = ((l1 + k1)® = 1), Q2 = (i + k1 + k2)* — p?) and Q3 = ((l2 + ka)® — 1?).

Eq.4.55 is a slightly shorter form of the result given in [23].

Ag(lf, 1,2+, 83% 47 15) =

Now we compute the remaining independent 6-point amplitudes. There are two am-

plitudes with one negative helicity gluon:

Ag(lF,1,2%,3% 47,15 =

(@221 + 2+ 3)h 1] — p2((411232]1]))
Q1Q2Q3(12)(23)(34) [4]l2 (3 + 4)(1 + 2)11[1]
#*[81(1 + 2)li 1]
Q1(12)[34)(2|(3 + 4) (11 + I2)11|1][4]l2(3 + 4)(1 + 2)[1]1]
+ P42 + 31J°
812348234<23> (34) <2|(3 + 4) (ll + l2)l1|1]

+

(4.55)
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Aﬁ(l-]*-; 1+)2+)3_y4+’l2—) =

(Qa2(30a]1] — p(32)[21])%(3]12/4]?

Q1Q2Q3(12)(23)(34) [4l2(3 + 4)(1 + 2)l1[1]
. R + 2 1

Q1(12)[34][3](1 + 2)11]1]¢2|(3 + 4) (11 + 12)11]|1][4]12(3 + 4) (1 + 2){1]1]
e ey

312348234<4|2 + 3|1]<23> (34) <21(3 + 4) (l1 + lz)llll]
R 2+

s123(4]2 + 3|1]Q3[23][3|(1 + 2){1 /1]

(4.56)

These amplitudes agree with the massless MHV-type amplitudes as u? — 0. There are

three independent helicity amplitudes with two negative helicity gluons:

Ag(lf,17,2%,37,47,1;) =

(Qa(4lia(3 + 9 1] — p2(4)1x(3 + 4)211))”
Q1Q2Q3(12)[34](4[l2(3 + 4)|2)[3(1 + 2)l1 1]
#2200 [1]7(34)°
Q1(12)(23)(2|(3 + 4)(I1 + I2)l1|1](4[l2(3 + 4)|2)
_ [1]i2h |1]%(34)°
512348234<4l2 + 3|1]<23> <2|(3 + 4)(11 =+ l2)l1|1]
N (A)l2(1+ 2 + 3)ia|1]2[12)®
Q35123(4(2 + 3|1][4](1 + 2 + 3){1{1][23][3](1 + 2)4|1]
212
51234 (23} [34][4|(1 + 2 + 3)l1 1]

(4.57)
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Ag(lf,1%,27,3%,47,15) =
_ (2[0 112 (2[11 + 1[3]%(4]La[3]?
010235 (12) AL G + HPBIC T DT
R0 Q1P
0101223 B30 213 + D)1 + L)L 1]A6 +4)2)
[1[2201]1]%(24)*
812348234 (4]2 + 3]1](23) (34) (2|(3 + 4)(l1 + lg)llll]
(4)lo(1 + 2 + 3)15|1]2[13]4

+

Qss123[12][23][4](1 + 2+ )11 [LIBI(T -+ 2)lx [1](4]2 + 3[1]
B  pPse
s1234(12][23][34][4|(1 + 2 + 3){1 1]

As(if,11,27,37,47,0;) =
212 (Qs[4lh + 112) — 4?[43](32))?
Q1Q2Q3(12)[34][3](1 + 2)I1[1](4[l2 (3 + 4)[2)
#7(23)3 (2|11 1)
Q1(12)(34) (4]12(3 + 4)[2)(2((3 + 4)(I1 + 2)la [1]
_ [1]l21]1]%(23)?
512343234<34> <2|(3 + 4)(l1 -+ l2)l1|1]<4|2 + 3|1]
[1(2 + 3)01 [1]2[1](2 + 3)12]4]?
$123Q3[12](23][3|(1 + 2)111][4](1 + 2 + 3)11[1](4]2 + 3[1]
p[14]*
* 51234[12][23][34][4](1 + 2 + 3)!1]1]

pendent calculation of the 220 Feynman diagrams.

4.3. Massive Vector Bosons
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(4.58)

(4.59)

All of the above six-point amplitudes have been checked numerically against an inde-

In the next two sections we will apply the on-shell recursion relations to tree-level ampli-
tudes involving massive or off-shell particles with spin coupled to massless particles. To

begin with we will consider massive vector bosons coupled to massless gauge fields and



fermions. Essentially we consider a generic theory with a non-Abelian gauge group being
a product G X Gg, where G is unbroken, and G» is broken by the Higgs mechanism.
Gauge fields of the G group are massless and the gauge fields of broken group G2 are
massive or off-shell vector bosons V. Two gauge groups are coupled to each other via
fermions which are charged under both groups. We will use the ‘colour decomposition’
representation for scattering amplitudes with respect to both groups, and hence the
colour-stripped amplitudes will be purely kinematic quantities which will not depend on

the choice of G; and G5 nor on the representations for the matter fermions.

This set-up is rather general, and in particular it incorporates the elements of the
Standard Model. In this case G; is SU(3) and the corresponding gauge fields are gluons
g; the gauge fields of the (partially) broken group, G = SU(2) x U(1), are massive or
off-shell vector bosons W*, Z° and v*. The fermions can be taken to be (anti)-quarks,
g, g, transforming in the (anti)-fundamental representations of both groups. Even in the
general case, we will continue denoting massless gauge fields as gluons, and fermions as

quarks. Massive vector bosons will be denoted as V'’s.

The quantities we want to consider are the G- and Ga-colour-stripped purely kine-

matic tree-level amplitudes
Spioum(1,2,3,...,n — 1,ng). (4.60)

These are the (m + n)-point amplitudes with m massive vector bosons V,,,, ...V, cou-
pled to n massless partons. More specifically, we consider the case of a single quark-

antiquark pair! denoted in (4.60) as 14,ng and n — 2 gluons labelled 2,3,...,n — 2.

The group-theoretical dependence in the amplitudes can be easily restored in the usual
way, see for example [128]. For the case of fundamental fermions the amplitude (4.60)
is multiplied by (7% ...T%-1);,; and by (T% ... T®" )k ks~ Then it is summed over all

permutations of ag,...,a,_; and over all permutations of by, ...,by. Here 7% and T°

tOne cannot have less than one ¢@-pair in amplitudes coupling V's to ¢’s at tree level. Amplitudes with
more than one gg-pair will not be considered in this paper, but they can be calculated in a similar

way.
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are the generators of the G; and the Gy groups respectively.

The physical states corresponding to all massless particles in amplitudes (4.60) will
always be represented in the helicity basis, e.g. 1,,2%,37...,(n— 1)*,ng-. At the same
time, for the massive (off-shell) vectors V,,,, ...V, . we will always choose to not multiply
them by external wave functions, and instead of helicities or polarisations they will be
characterised by their Lorentz indices 1, ..., im. Thus, the amplitudes S, .. ,,, are the

multi-vector boson currents.

Working with multi-currents (4.60) will first of all facilitate our calculation: single
vector currents will be used in calculations of double currents and so on, as will be seen
in section 4.5. Furthermore, multi-currents can be easily used to calculate full physical
amplitudes which include the decay of the massive (off-shell) vector bosons into light
stable states. This is achieved by contracting each Lorentz index p in (4.60) with the

current L# describing the relevant decay mode of each vector boson V.

In the Standard Model, for example, one can consider decays of unstable vector bosons
into a fermion-antifermion (lepton or quark) pair, so that for virtual photon ~* or for
V = W=, Z boson decay we have:

u(Ps)vuu(py)

LE, = —€2Q4Q, 57
,Y$

’Uf'f ,qu ,a( _
2YV;H"V;H pf)fyﬂu(pf)

(PZ — MZ +iTyMy)

L, = —e (4.61)

Here the couplings vy, for V' either W or Z bosons with either left (L) or right (R)

handed polarisations are given by

5 -
sinfy, fFo_ —sin® 6y vily 1 »
UZR - chosou, ’ Vz.L = _Qf sinfy cos By ° Ywir = V2 sin 6y 52.7 )
(4.62)
lw] _ uid; _ 1 gt ity _ 1 .
\/_sm0 5 WL - \/—smow UJ’ ’ UW;L T V2sinby, Uﬂ '

and all others zero. Uj; is the CKM mixing matrix and the rest of notation is standard.
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4.4. Single Vector Boson Currents

The single vector boson currents were previously calculated by Berends, Giele and Kuijf
[61] using the recursive technique based on iterations of classical equations of motion [60].
More recently these single vector currents were also discussed and derived in [55] using
a combination of Berends-Giele recursion relations and the MHV rules of [45]. Here
we will employ the BCFW on-shell recursion relations of section 4.1 to derive slightly
more compact expressions as well as new results for n-parton single currents for some
specific helicity arrangements of partons. As mentioned earlier, single off-shell currents
S,, are not only interesting on their own right, more significantly, they play an important
part in a recursive construction of currents with two and more vector bosons as will be
explained in the next section. We note that a similar observation has also been made in

[55].
We now proceed to construct the single vector boson currents,

Su(1,2"2, .. (n — 1)1 nz ). (4.63)

The on-shell recursion relations construct amplitudes from on-shell amplitudes with fewer
particles. Assuming that one can always avoid contributions at z — oo and using the
recursion relation n — 3 times gives a representation of the n-point amplitude entirely
in terms of the 3-point vertices. Hence, 3-point vertices are the building blocks of all
larger amplitudes and hence the on-shell recursion relations reduce the task of computing
general amplitudes to the computation of all 3-point vertices. This is indeed the case
in theories with massless vectors coupled to fermions and also to massless and massive

scalarst [64, 65, 71].

The three-gluon and the quark-gluon-antiquark primitive amplitudes are given by the

#This is however not always the case in theories involving scalar self-interactions. The 4-point vertex
corresponding to a ¢* interaction clearly cannot be reduced to 3-point vertices. Recursion relation
cannot be applied to this vertex since it is a constant. Hence the corresponding amplitude A4(z) does
not depend on z, and this necessarily leads to a non-vanishing contribution at z — oco. We thank

George Georgiou for pointing this out to us.
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standard MHV and MHV expressions:

o 3 _ 123
-AS(]' ;2 :3+) = (T%%T), A3(1+)2+’3 ) = _[2[3][}31] ) (464)
2 23)2
A28 =820, A(;,20,8) =—[[1—3}], (4.65)
o 2 _ 12]?
A =8 ety - - (4.66)

Here as always, all momenta k; are assumed to be complex which ensures that these

3-point amplitudes do not vanish on-shell [64, 65].

In addition we need to introduce two new primitive vertices for an off-shell vector

boson coupled to a ¢g pair. They are derived directly from the Feynman rules:

Sullg,25) = (lo,l2] = 2la,)
S.(13,2%) = [Uo,l2) = 2ol . (4.67)

Here, 0,04 and 52“1 are the standard four Pauli matrices. Our conventions for spinor

contractions are summarised in the Appendix.

Action of parity symmetry reduces the number of independent currents. Parity trans-

formation is simply the complex conjugation in terms of S af = Sﬂag P

Sop(10,2%, ..., (n — 1)1 ) = (sﬂaa;'\,z—hz, (- 1)—hn-1,ng)) . (4.68)

This formula is generalised to multi-vector boson currents in an obvious way:

Salﬁl.‘.amﬁm = (Sﬂldl---ﬂmdm)*' (469)

4.4.1. Single Currents with n = 4,5,6 partons

In the four-parton case the recursion relation for S, reduces to,

_ ~ sl 5.5
Su(1;,2%,3F) = S,(1; ,—P;)QA(P,] ,2%,37). (4.70)
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Figure 4.5: Decomposition of the five-point current after applying the recursion rela-
tion.

We now have to choose which of the marked particles, T, 5, is 7 and which is j. In order
to avoid boundary contributions according to (4.35) we must choose i = 2 for the 27

helicity and j = 2 for 27 helicity. This results in,

S,(17,25,38) = — %, (4.71)
Su(1;,27,3F) = ng—‘]%:ﬂ, (4.72)

where Py is the momentum of the vector boson. Momentum conservation implies Py =
—p1 — p2 — ps. The two remaining helicity configurations can be obtained by parity

transformations.

Figure 4.5 shows the decomposition of the five-parton current. Just as in the four-

parton case here we mark the quark 1 and adjacent gluon 2,

_ (l{ouPyv (1)
(12)(23)(34) ’

[13][3[(1 + 2) Py 5,(1 + 2)[3]
s123[12][23](4/2 + 3[1]
(24)(2|(3 + 4)5,Pv(3+4)|2)

s234(23)(34) (4|2 + 3[]1]  ’
[24]3<1|‘7ﬂPV|1>
5234 [23][34](1]2 + 3[4]
(13)°[4]Pv o]
5123(12)(23)(1[2 + 3|4]

Sﬂ(1;32+)3+74;) (473)

SM(IJ)Q_,3+,43_) =

(4.74)

Su(17,2%,37,45) =

(4.75)

The S, (+;++;—) configuration can be obtained from eq. (4.73) by using the “line

reversal” symmetry,

Su(13,272, .. n— 1=t n )y = (—1)MIS(ng A n — 10t 2R 1) L (4.76)
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The other 4 helicity amplitudes can then by obtained via parity transformations. Notice

that if we use both (4.68) and (4.76) we can also relate (4.72) and (4.71).

The 6-point amplitudes can be computed in much the same way. We choose to mark
massless particles in such a way as to generate the most compact analytic expression.
The following amplitude was computed using ¢ = 2 and j = 1:

(llo. Py |1)
(12)(23)(34)(45)

S.(17,2%,37,47,55) = — (4.77)

The following expressions was derived using i = 3 and j = 4:

(25)(2/(3 + 4+ 5)Pyou(3 + 4+ 5)[2)
52345(23)(34)(45) (5| P [1]
[13]{8](1 + 2)o, Py (1 + 2)|3]
5123(45)[12][23](4(2 + 3[1]
(213 +4/1)2I3 +4) (1 +2+3+4)0,Pr(1+ 2+ 3+ 4)(3+4)]2)

Sﬂ(lq_12_)3+’4+75(_j‘-) = -

+ 512345232(23) (34) (5| Py |1 (412 + 3(1]
(4.78)
For the choice i =2 and j = 1 we find:
_ _ _ (13)%(35)(3|(4 + 5) Pyo,(4 + 5)|3)
Sulle 237458 = = 1757753 (34) (a5) (5| Py (L + 2)13) G108 + 5By 1)
(35)(3]4 + 5[2]*(1]o, Py |1)
823458345(34) (45) <3l(4 + 5)Pvl1>(5|3 + 4|2]
 (13)°(3]1 + 2{4][41(1 + 2+ 3)0, Py (1 + 2+ 3)[4]
512345123(12)(23) (5| Py (1 + 2)[3)(1|2 + 3[4]
[24]*(1]o, Py |1)
™ S2e B8 + 4RI(112 + SR (a75)
Finally using ¢ = 3 and j = 2 we find,
_ _ _ (14)%[5| Py o,|5]
Sully, 27,8547, 50) = o 23 3 (1] By [
B 35°(1|o, Py (1)
5345(12)(2(3 + 4/5][34][45]
(412 + 315 (1o, Py 1) 450

523452345 (23) (34) (2|3 + 4/5)(1| Py [5]
Using the parity and line reversal symmetries of egs. (4.68) and (4.76) we can easily

obtain expressions for the other 12 helicity configurations.
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3+

Figure 4.6: Decomposition of the n-point vector boson current with n — 2 positive
helicity gluons.

All the amplitudes presented in this section have been numerically checked against

Feynman-diagram based calculations.

4.4.2. n-point Currents

It is also possible to construct single vector boson currents with n partons in the helicity
configurations with maximal helicity violation, next-to-maximal helicity violation and
beyond. The current for vector boson decaying to a quark pair and any number of
positive helicity gluons has been known for some time [61],

(1ouPv(1)
[Mocifaa+1)

As usual Py is the momentum of the vector boson and Py = —p; — ... — p,. This can

S,(17,2%,...,(n - ¥ nf) = (-1)" (4.81)

be easily proved by induction using on-shell recursion relations. The fact that any pure
QCD amplitude with less than two negative helicities is zero guarantees that the only
contribution to the n-point current involves an (n — 1)-point current and an on-shell
(complex) 3-gluon vertex, as shown in figure 4.6. This is the first non-vanishing helicity

amplitude and hence it is the MHV current. For completeness, the other MHV-type
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j+ 1t

Figure 4.7: Decomposition of the n-point vector boson current with n — 3 positive
helicity gluons and two adjacent negative helicities.

currents are given by,

= Py|n)
S 1+,2+,...,’n,——]_+,n_ — __1n_<M’
ﬂ'( q ( ) q) ( ) HZ;{(aa_i_l)
- - = 1|Pva |1]
S,(1F,27,...,(n—=1)",n7) = _[—,t’
(1 (n—1)7,nz) Z;Haa_*_l]
-2 - Pya,|n]
Su(1g,27,...,(n—1)",n7) = M. 4.82
. R T o+ 1] (4.82)

It is interesting to note that eq. (4.81) allows us to immediately write down compact
expressions for the NMHV currents with both adjacent and non-adjacent minuses. If we
mark the two negative helicity particles then each sub-amplitude in the recursion relation
will contain at most 2 negative helicities. Figure 4.7 shows the decomposition into a sum
of sub-diagrams. We draw a pure QCD amplitude on the right of each diagram which
must contain at least two negative helicity particles, this fixes the helicity on the right
of each propagator to be negative. Helicity conservation then ensures that the vector
currents have only one negative helicity, the marked quark, and so are MHV currents.

We can therefore use (4.81) to write down the NMHYV current, marking ¢ = 1 and j = 2:

—(—1)" ((2|K3,npva,,x3,n|2)<2n>

Su(17,27,3%, ..., (n = 1)",nf) =
u(1g ( )" ing) "Llaa+1) son(n|Kan-1|1]

LN (2K K Py ok K |2) (21K 1G5 + 1>)
=3

. . 4.83
82,581,5 (7| K2,j-111]{j + 1| Ka,5|1] (4.83)

J

This expression is the n-parton generalisation of equations (4.74) and (4.78).

We can also consider the case where the helicity along the quark line is flipped. This

is a special case as we can still eliminate all contributions from NMHYV vertices. The
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result is,

_ _ ()" (n=1)ia.Pyin]
Su(lq,2+,...,(n—2)+ (n=1)7mg) = ":2<aa+1)< 51,n—1(1|PC|n]

+Z n_llK +1,n— 2|n] <1|UMPV|1)< .7+1>
1 Sj+1,nSj+1,n— 1(]+1IK]+ln 1|n]<]|K]+1n 1]?’7,]

(4.84)

matching equations (4.75) and (4.80) when n = 4 and 5 respectively.

For NMHV currents with non-adjacent negative helicities we can re-use the above
result to find the amplitude where the negative helicities are separated by one positive
helicity. The corresponding diagrams are shown in Fig. 4.8 where we mark ¢ = 2 and

J=1

1|Pyao,ll Kq,|213
Su(17,2%,37,4%,...,n—1%,nf) = LBy 2l 31 Kan 2] ()
$2n83,n({1|KonKun|3)(n|Kspn-1/2] [0z 3(aa+1)

5 (Uow Py [1) (3 Kas24 4 + 1)
it 52,553,5 (11K2,; K4 513) (5| K3,5-112](F + 11 K3,512] [To= saa+1)
o 1
+8,(1;,P 4%, ,n—1%n (D (4.85)

77 (12)(23)w?

Substituting eq. (4.83) and simplifying the shifts results in the following expression:

- - 1 (11Py5,|1) (3| K4, ]2]*(3n)
S.(17,2%,3 ,4+,...,n—1+,an = s :
e 7) n—1 “a{aa+ 1)\ 520830 (1| Kon Kan|3)(n|Ks,n—12]

n—1

(LouPy|1)(3|Kq,5]2]* (jj +1)
82 133,J<1|K2,]K4,J|3><.7'K3_7 1l2] + 1|K3 ]|2]
(13)%(n3) (3| Ka,n Py 0, K4,n|3)
<11K2,nK4,nl3> <n|K1,n—1K12|3><12><23)
nz_:l (13)° (3| K4, K1 ; Py 0, K 1 Ka,j13) (3 K10 Kal3) (5 +1) .
= 51 (UK 2, K 513) (51K -1 Kr2[3) (7 + 1|1 K5 K12]3)(12)(23)

=4

+

(4.86)

Remaining NMHYV currents can be constructed in a similar way. We can keep adding
an extra positive helicity separating the negative helicities. We have checked that the
n-parton result in eq. (4.86) agrees with egs. (4.75) and (4.79) for n =4 and n = 5

respectively.
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Figure 4.8: Decomposition of the n-point vector boson current with n — 3 positive
helicity gluons and two negative helicities, separated by a single gluon with positive
helicity. The second contribution involves the NMHV current with adjacent negative
helicities given in (4.83)

2- 3” 17 3"
-/ ng_l B
- 1= + - n 1%t
= e +
V4 N 4 .
4 + ..

Figure 4.9: Decomposition of the single vector boson current with three consecutive
negative helicities. The recursion re-uses the current with two consecutive negative
helicities.

As a final example we consider the NNMHV current with three adjacent negative

helicities.

By marking particles 2 = 2 and j = 3 we ensure that only the NMHV current (4.83)
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Figure 4.10: The two Feynman diagrams contributing to the amplitude with two
massive vector bosons and a quark pair.

is needed. Explicit calculation yields,

~ 9= g- -1)" (3n) (3| K4 nPvouKynl3)
S,(1=.27,3- 4%, n— 1+ nt) = — nProuKs,
a o) ni{ea+ 1)\ s3a[12)(n|Ksn-1(2]

n—1

> (31K4,5|1])(3| K4, K1, PvouKi,j K 313) (5 + 1)
53,581,5[12]( + 1| K2,;|1] (4| K3,-1/2]

B N (3|Ku Ko Ko 1)(3| K Ko j Koy Ky Py K Ko Ko jKaj|3) (G + 1)L+ 1)

o) 51,152,152,753,5 (U Ko, | 11( + 1| K2, (15 + 11 K3,5|2)(j] K3,5-112]
1

N (81K, Ko,j(n) (3|1 K1, Ko, Kon ProuKon Ko, Ka,13)(j j + 1)
53,52,n52,5(N|Kon—1]11{j + 1|K3,;|2](j| K3,;-1|2]

(4.87)
=4

.

We have explicitly checked eq. (4.87) for up to six partons.

By repeated use of the recursion formulae, further n-point currents may be obtained.

4.5. Double Vector Boson Currents

We now turn to double vector boson currents S,,,. We start by considering the smallest
amplitude of this type, the one with only two partons, S,.(g,§). One might expect
that on-shell recursion relations can be used to derive S,.(q,q) from two single vector
boson amplitudes S,,(g, ). However there is a difficulty in writing down such a recursion
relation. We cannot mark the two massless particles in S,,(q,q) since it is known
that marking adjacent massless quarks results in a non-vanishing boundary contribution

[66] to the amplitude. Choosing to mark massive particles also leads to (unnecessary)
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technical complications. It is actually much simpler to derive the four-point amplitude
Suv(q,q) from Feynman diagrams and use this four-point amplitude as a new primitive

vertex in further recursive calculations of S, (14,...,ng).

In fact, we will use a more elegant approach. In general, there are two Feynman
diagrams contributing to S,.(g,§), as shown in figure 4.10. We could evaluate both
diagrams and use the whole amplitude as a building block for larger amplitudes, however,
it is much more efficient to split the calculation into two parts, as considered in [128], in

order to re-use the single vector boson currents computed in section 4.4.

The first part corresponds to the second diagram in figure 4.10, it contains the non-
Abelian three-vertex of massive vector bosons. We can compute such contributions to a
generic Sy, (1, . . ., ng) by contracting a single vector boson current Sy (1, . ..,ng) of the
previous section with the colour ordered Feynman three-point vertex. This approach was
used to calculate the non-Abelian contribution to S, (g, g, ) in reference [55]. Note that
if one is dealing with uncharged gauge bosons which have no self-coupling, for example

Z bosons, this term is trivially zero.

The second part does not contain a non-Abelian three-vertex of vector bosons, it
corresponds to the first diagram in figure 4.10. This second Abelian contribution to a

generic Sy, (14, ...,ng) can then be evaluated using on-shell recursion relations.

Thus, guided by figure 4.10 we represent the colour ordered double current with n

partons in the form [128]:

Suw(lg,-..,ng) = T (P, Py, —P) SP(1g,.-.,ng)

(P71}
+ Spekan (1, L ng). (4.88)
Here

Tl(t?ibzuz (P1,P2,P3) = Guipz(P1 — P2) s + Guaus (P2 — P3)us + Gy (P3 — P1)p,  (4.89)

is the colour-ordered three-vertex of massive vector bosons, with all momenta defined to

be in-going.
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Figure 4.11: Recursive decomposition of the five-point Abelian amplitude for two
vector bosons, a quark pair and a gluon using the recursion relation.

The primitive vertez for the Abelian contribution is given by the first Feynman diagram

in figure 4.10 which evaluates to:

a4 — 1
S (1g,27) = 5——(Uow (1 + Pr)ou|2). (4.90)
V2

The remaining non-Abelian part of this four-point amplitude is determined by the first

line of (4.88)

1

— Abeli _ 3
Szgn eza’n(lq,2q) = T( )(PVUPVz?_P) (PTJ\J%)

iy Sp(lq’ZQ) (4'91)

where S§°(14,25) is given in (4.67).

In general one needs to determine only the Abelian components of the n-parton double
currents Sy, (14, ...,ng), the non-Abelian components are fully determined by the first

line of (4.88) in terms of the known single currents.

Abelian components are characterised by having massive vector bosons only on exter-
nal lines, and they can always be calculated recursively. In general, in order to calculate
the Abelian part of any double current, S;j‘,f’e”“"(lq,& .. ,n;]f), one needs to draw all
recursive decompositions of this current such that the internal line is a quark or a gluon

and not a massive vector boson.

First we calculate the two five-point amplitudes by marking the quark and adjacent
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gluon. The recursion relation for Slf,fe“‘m(lq, 2,35) is depicted in figure 4.11. It yields,

(13](3(6,.(1 + Py,)5,(1 + 2)|3]
[12][23][3| Py, Py, 1]
(2]o,13][1]7., (1 + 2)3]
[12][3|PVl PV2|1]
2l + Pw)av Py (1 + Py,)(2)[3[Pyoy|3] (4.92)
S1Py, S3Py, [3|PV1 PVzll] ’ .
Abelian 11— <13><1|(2 + 3)5u(1 + P‘/2)5V|1>
St 00 28 = T 5 1| P B 9
(o |2)(1](2 + 3)5,|1)
(12){1| Py, Py, |3)
(1|1 Py, .| 1) [2(1 + Pyy,) Py, 5,(1 + Pyy)|2]

_ L . 4.93
81Py, S3Py, <1|PV5PV1 |3> ( )

Abeli - 99—
S;we zan(lq .2 ,3;) =+

These formulae agree with the results of [128] after appropriate permutations of the
labels and correcting for propagator conventions. The S, (+;+;—) configurations can

be obtained from eqs. (4.73) by using either parity (4.69) or the “line reversal” symmetry,

Sw(13,272,..,n =1t 2y = (—1)M1S,, (ng A n — 101 202 1) 0 (4.94)

Finally we give results for the six point amplitudes S;flf’e“a"(lq, 2,3,45). Taking the
generalised parity relation (4.69) and the line-reversal identity (4.94), there are three
independent helicity configurations. Again we use on-shell recursion relations and mark

the quark and adjacent gluon. Choosing i = 2 and j = 1 we find,

(14)(Llow |2](1](2 + 3 + 4)5,[1)
(12)(13)(34) (1| Pys, Py, |4)
(14)(1|(2 + 3+ 4)5,.(1 + Pyy)a, (1)
<12> (23> <34><1|PV2 PV1 I4> 7
<1|(2 + 3)5V|1><1|(PV1 + PV2)5NI1>
(12)(13)(23)(1| Py, Pr4 |4)
4 (P DI + 3)(4 + Pri )P o4 + ) (2 + 3)11)
sapy, (12)(23)(1| Py, Py; |4)(1| Py, (4 + Py;)[3)
4+ {UPw DRI + Pra) Pri (1 + Pry)|2]
S1Py, S12Py, (34) (1| Py, (4 + Pi5)[3)

Abelian (1~ o+ o+ 4+) _
Sidbelian (1 o+ 3+ 4F) = —

(4.95)
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and

(13)3(3|1 + 2/4][4]6,(1 + Py,)5,(1 + 2 + 3) 4]
5123(12)(23)(1]2 + 3|4](3|(1 + 2) Pr, Py, [4]
(13)°(3](4 + Py )3 Pv (4 + Prs)13)[4| P ou4]
sapy, (12)(23)(1| Py, (4 + Pv,)[3)(3[(1 + 2) Pip Py |4]
_ {13)%(1]o,[4](3[1 + 2[4][2[5w (1 + 2 + 3)|4]
s123(12)(1[2 + 3[4)(3[(1 + 2) Py, Py, |4]
(13)*(3lo|4)(3](1 + 2)5, (1 + 2 + 3)|4]
s123(12)(23) (3|(1 + 2) Py, P; |4]
[24]3(1]3 + 4[2](1|(2 + 3 + 4)5,(1 + Py,)a,|1)
8234<1|PV2PV1 (3 + 4)|2](1|2 + 3|4] [23] [34]
_ [24P(fou|21(1(2 + 3 + 4)5,[1)
(1| Py, Py, (3 + 4)|2](1]2 + 3|4][23][34]
[24]3<1|PV25V|1>[2|(1 + PVz)Pvlau(l + PV2)12]
S1Py, <1|PV2PV1 (3+4)[2] [23][34] [2|(1 + Py,) Py, |4]
_ (31 + Py 21 (1] Pry 5 | 1) (4| Py, 04 [4]
S4Py, S1Py, S12Py, (11 Py, (4 + Py)[3) (2|(1 + Pyy) Py 4]

S;;li)elian(ll;’ 2+’ 3—, 43-) -

(4.96)

For the last amplitude we choose ¢ = 1 and j = 2 which yields the following expression,

20)[1)5, (P + Piy)(3 +4)12) (218 + 4)5,12)
(23)(34)(21(3 + 4) Py, Py |1](4]2 + 3[1]
(24)(2[3 + 4[1](2|(3 + 4)5,(1 + P )0, (Pv, + Py, )(3 +4)[2)

$234(23)(34)(2|(3 + 4) Pv; Py, |1]{4/2 + 3|1]
(24)(2|(1 + Pyy )00 Pry (1 + Py )[2)(2I(3 + 4) Pry 0 (3 + 4)[2)
81Py, (23)(34)(2|(1 + Py, ) Py [4)(2](3 + 4) Py Pis|1]

_ [13)[8I1 + 214)[B](X + 2)(Pvy + Piy)au(1 + Py )5u (1 + 2)13]

s123(4|2 + 3|1][12][23][3|(1 + 2) Py, Py, |4)

_ [13][3](1 + 2) Py, 50 (1 + 2)[3](3[(4 + Pvi) Pry 5, (4 + Py )|3]

sapy, [12](23](3((4 + Pvs ) Py3 [1][3(1 + 2) Py, Py, [4)
(21 + Pg[3](2[(1 + Py )50 Py, (1 + Py, )[2) [3](4 + Por ) Pri 5 (4 + Pin)|3]
S4Py, S1Py, S12Py, (2|(1 + Pyy) Pv; [4)[1 Py, (4 + Py ) (3]
BI(1 +2)(Pvi + Py, )5,(2)(3[1 + 2[4)[1|5, (1 + 2)[3)
s123(412 + 3[1][12][3|(1 + 2) Py;, Py [4)
815, (1 + 2)[3][3](1 + 2)(Py; + P)3u(1 +2)|3]
5123[12][23][3|(1 + 2) Py, Py; |4) '

jan (1~ o (
Sﬁgelmn(lq ,2 ,3+,43-) — _

(4.97)

The procedure described here can straightforwardly be generalised to processes in-

volving three or more vector bosons. In each case, there will be a mixture of terms that
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either involve a triple or quartic gauge boson vertex (non-Abelian) or a new multi-gauge
boson current (Abelian). The non-Abelian contribution is straightforward and involves
currents with coupling that couples currents involving fewer gauge bosons. These are
in principle known. For each additional vector boson, the Abelian contribution must be
recomputed. There will be a new primitive vertex which can be obtained directly from

the single (colour-ordered) Feynman diagram.

This is illustrated in Fig. 4.12 for three vector bosons. The first diagram yields a
new primitive vertex Sy, 4,5 (1q,25) which forms the seed for recursively calculating the
Abelian contribution to the amplitude. The other three (Non-Abelian) graphs can be
straightforwardly obtained by reusing the single and double vector boson currents. The

colour ordered triple current with n partons is thus,

beli
Su1u2u3(1qa cee )né) = Sﬁlﬁ;ﬂl(lqa Ty nq)
1
+ T3, (P, Pry, —Pi2) %~ ML) SPH3 (1g,...,1g)
12
1

+ TISgLsp(PVwPVa’ _P23) Smp(lq, e ,nq)

(P3 — MB,,)
1

TW (Py,, Py, Py, —Plog) ———————— 5°(1q,...,n5).
+ #1#2#3/)( Virn Ve, 4V, 123) (P1223 _ M123123) ( q nq)
(4.98)
The colour ordered quartic gauge boson vertex is given by,
Tlsli)ltwam (P1, P2, P3:P4) = 291 13 Gpona — GupaGpaua — GupaJusps- (4.99)

4.6. Recursion Relations for Massive Particles with Spin on

Internal Lines
So far we have been considering application of recursion relations where massive particles

with spin were absent from the internal lines. In other words, we have been able to set

up the recursive calculations of double vector boson currents in such a way that the
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Figure 4.12: Contributions to the amplitude with three massive vector bosons and a
quark anti-quark pair.

massive vector bosons were playing the role of ‘external sources’ in the left and in the
right hand vertices, but were not propagating through the recursive diagram. We now
would like to show how to use recursion relations also for propagating massive particles.
In our earlier work [71] we have accomplished this for massive scalars, and now we want

to generalise this approach to massive particles with spin.

The main difference between internal massive scalars of Ref. [71] and internal massive
fermions or vector bosons is that the latter have more than one polarisation or spin state.
In the standard recursion relation (4.31) all particles are assumed to be in a state with
fixed helicity, and there is a summation over all these states. We want to avoid using
helicity states for internal massive particles and instead to use a more natural basis of

states

In this section we will describe a new way to implement the recursion relation in this
case and will illustrate its use by calculating a simple amplitude of two heavy quarks

scattering into two gluons.

The main point here is that the sum over helicities & of the internal particle in the
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standard recursion relation,

1

.An(pl,.‘.,pn)z Z ZAL(pTa"',ﬁiy"‘7psa_}3h) P2_m2P

partitions h

X AR(ﬁ_haPﬁ—l, cee 71/)\]" s 7p7‘—1) ’ (4100)

can be replaced by the sum over all of the spin states, rather than helicity quantum
numbers which are not well suited for massive particles. So, we first replace the sum
over helicities by the sum over appropriately defined spin states. For massive fermions

this is the conventional spin sum:

> us(p)tis(p) = p+my (4.101)
§=1,2

> vs(p)vs(p) =p—my (4.102)
s=1,2

The remaining spinors and polarisation vectors of the external massive particles can
be left unfixed and simplified after squaring the amplitude with the spin sums in the

conventional way.

Using this in the recursion relation in which a massive quark propagates between the

two diagrams we have

ZAL(pr;q, ce ,ﬁi, <oy Psy —P;)_—WAR(PES,])S_{_l, e aﬁja . 7pr—1;q)
s P

P+mp

P2 _ 2 AR(ﬁ*)pS—Fh s aﬁj) cee apr—l;q) (4103)
i

=AL(pr;q, (] ’ﬁia -+ 3 Ps _P*)

where P* indicates the external spinor wave-function has been stripped off this ampli-
tude. In this way we can use the benefits of using the recursion relations to provide

reasonably compact formulae for amplitudes with massive particles.

4.6.1. Example: Calculation of .4,(1;,2, 3, 4;)

We now compute the four point amplitude of a top quark pair scattering to two gluons as

an example of the method described above. We use on-shell recursion relations and mark
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1¢ 2

Figure 4.13: The two Feynman diagrams contributing to the amplitude A4(1¢, 2, 3, 47).

two massless gluons. This leads to a single recursive diagram with a massive fermion
propagator. We will show that the contribution of this single diagram precisely matches
the two Feynman diagrams for this process shown in figure 4.13. With all particles

outgoing the recursion relation result is,

A(14,2,3,4f) = ﬁ (p1)¢(p2, &2) (Zus )#(ps,ﬁs)’v(m)' (4.104)

Here P = p; + p2 is the momentum on the internal line and &9, &3 are reference spinors
necessary to specify gluon polarisation vectors e*. We will use the Weyl representation

of the Dirac v-matrices and polarisation vectors,

_ [0 o . 0 &l _ _ 1 0 Il
Y 5 0 y (€)= <£p> ol o ) ¢ (p,§) Z] ol o
(4.105)

First we consider the case where the gluons have opposite helicity, A(1;,27,3%,4;). It

is convenient to choose €3 = ps and &3 = ps so that,

1 a(p) o @2pl\ [m P 0 [2)3 o(p)
(P2—m)sas 13]2] 0 P m) \Bli2l o0 v

(4.106)

A(lt) 2—7 3+7 4f) =

We choose the marking prescription ¢ = 3 and 7 = 2 and this ensures that the shifts on
the polarisation vectors disappear. It can also be seen that the shift in P is also killed
by either of the two polarisation vectors and hence we can erase all the hats in equation
(4.106). This is then exactly equivalent to the first diagram of figure 4.13. It can be

easily shown using €7(2,3) - €7(3,2) = 0 that, with this particular choice of reference
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momenta, that the remaining second Feynman diagram gives a vanishing contribution

and so our recursion relation result is in agreement with the Feynman diagrams answer.

The amplitude with both gluons of negative helicity A(1;,2%, 3%, 4;) is of a non-MHV
type and it provides another interesting test of the recursion relation, which this time

requires a little algebra. The recursion relation reads:

1 . o 132\ [me P 0 (23
'A ’ +a +a t) — WELTE v :
(1¢, 2,37, 47) (P2_m%)<23>2u(p1) aa o P om) \Bal o (pa)
(4.107)

Again, choosing ¢ = 3 and j = 2 removes the shifts on the propagator and the polarisation
vector of gluon p3. However in this case all the shifts do not vanish as [2] = |2] — 2|3]
hence we are left with the exact expression for the first Feynman diagram plus an extra

term coming from the surviving shifts:

2 ) 0 BB\ (m PY[ 0 |20
_ 2 & v(ps), (4.108
R 33 o )\ P m) \I3jel o ol (4109
which simplifies to,
1 0 13) (2[4 )3][3]
-7 4.109
Al 13)(3lpal3)(2]  m4I3](32)[3] R

If the result from the recursion relation is to match the result of the Feynman calculation
this expression should be equivalent to the second diagram in figure 4.13. Making use
of the Dirac equation one can simplify the Feynman calculation to

1 0 p3

_W"j(pl) - v(Pa). (4.110)

It may not be immediately obvious that the expressions (4.109) and (4.110) are equiv-
alent, but they are. Firstly we note that the four component spinor can be written in

terms of two component spinors,

u(p) = ) . (4.111)

|up)

120



This allows us to expand out (4.109) and immediately identify that the top row is in
the correct form. The bottom row can be simplified by using mq|vs] = p,[vs) and by
decomposing |vs) = @|3) + 3|2) we can re-form the bottom row into the correct form

and reconstruct (4.110).

This shows that recursion relations can be used to successfully calculate amplitudes

with massive particles with spin on internal lines, as expected.

4.7. Conclusions

In this chapter we have generalised the on-shell recursion relations introduced in section
2.4.2 to accommodate massive particles which are allowed to propagate through the on-
shell diagrams. We have shown how to apply these relations to amplitudes involving
massive scalars and vector bosons as well as a brief demonstration of how to apply the

relations to massive fermions.

In all cases it was possible to calculate the amplitudes by selecting massless particles
to be shifted. Although it is in theory possible to choose a maximum of one massive
particle to be shifted it turns out that this often results in non-zero terms at large z
which invalidate the recursion relation. The method has also been applied to calculate
D-dimensional amplitudes with fermions and scalars considered as D-dimensional ob-
jects [73]. Techniques combining off-shell and on-shell methods for dealing with massive
fermions and scalars have also been developed and provide extremely compact forms of

the amplitudes in both cases [126, 127].

Using the formulae presented in section 4.2 it has been possible to find full 1-loop
amplitudes with up to 5 gluons by using D-dimensional generalised unitarity techniques

[82].
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5. Higgs plus multi-gluon amplitudes at
1-lcop

In this chapter we will use a combination of the MHV rules and the standard unitarity
method to derive the cut-constructible part of Higgs plus multi-gluon amplitudes [129].
We will use the same split into self-dual and anti-self-dual components as described in
chapter 3 and we will make use of the compact expressions for n-point amplitudes derived
in reference [53]. The rational parts of the amplitudes must be fixed by other methods
and it has recently been shown that on-shell recursive methods apply well to the finite
one-loop amplitudes which vanish at tree level [130]. There have also been developments
in computing one-loop amplitudes using semi-numerical methods [131-134] which have

been applied to amplitudes for Higgs with up to 4 partons [135].

5.1. Colour ordering

The colour orderings for one-loop amplitudes with a Higgs boson and many gluons are
the same as for pure gluonic amplitudes discussed in section 2.3, specifically equation
(2.59). In this chapter we will compute the leading colour contribution which is defined

by [129, 130],

[n/2]+1

AV (@, (ki dyai}) =iCg™ Y Y Grie(@) AP (g, 0(1M, ... ,n ) (5.1)

c=1 Uesn/sn c
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Figure 5.1: A generic one loop MHV diagram or unitarity cut.

where

Gra(1) = N tr(T® .. T9") (5.2)

Gric(1) = tr(T® -+ - T% 1) tr(T% .- T%) , ¢ > 2. (5.3)

The sub-leading terms can be computed by summing over various permutations of the
leading colour amplitudes [17]. We will split the calculation into two parts, evaluating

the cut-constructible and non-cut-constructible components separately:
A1(11) — Agl),CC + .A%l),NCC’ (5'4)

where we have dropped the leading colour subscript, A511)1 = %1).

5.2. MHV diagrams and unitarity cuts

In a landmark paper, Brandhuber, Spence and Travaglini [90] showed that it is possible
to calculate one-loop MHV amplitudes in N’ = 4 using MHV rules. The calculation has
many similarities to the unitarity based approach of Refs. [17, 18], the main difference
being that the MHYV rules reproduce the cut-constructible parts of the amplitude directly,
without having to worry about double counting. This is the method that we wish to

employ here.

The four-dimensional cut-constructible part of one-loop amplitudes can be constructed

by joining two on-shell vertices by two scalar propagators, both of which need to be
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continued off-shell. A generic diagram is shown in figure 5.1 and the full amplitude will
be a sum over all possible permutations and helicity configurations. One must integrate
over the loop momenta in much the same way as one would evaluate a unitarity cut,
however in this case the loop momenta are continued off-shell as for the tree level MHV

rules and can be written [90],

Ly =1+ zmn. (5.5)
A generic diagram can be written:
1 [diLyd*Lo
D= (2m)A / L2 L2 5(4)( — Ly — P)Ap(l1,—P,—13)Agr(l2, P, —1;) (5.6)

where Ay gy are the amplitudes for the left(right) vertices and P is the sum of momenta
incoming to the right hand amplitude. The important step is the evaluation of this
expression is to re-write the integration measure as an integral over the on-shell degrees

of freedom and a separate integral over the complex variable z [90]:
d*L, d*L dz1 d
21 22 = (42)2 o
2dzd2
= (44)?
e

where 2 = 2; — 23 and 2/ = z; + 2. The integrand can only depend on z, 2’ through the

d4l 1d4 16 (136D (12)

A d* 1,8 (126D (13), (5.7)

momentum conserving delta function,
Sy —Ly—P)=8W(y —ly— P+ 2n) =69 (I, — I, — P), (5.8)

where P = P — zn. This means that the integral over 2’ can be performed so that,

D= (i"‘;r% / dz / A4 d4 6 (12)6H (12)6@ (1 — 1y — P)AL(ly, =P, —lo) Ar(la, P, —11)
— (4i)22ri / ‘i—z / dLIPS® (1, 15, B) AL (i1, — P, —lp) Ar(la, P, 1), (5.9)
where,
dLIPS® (—iy, 1y, P) = (2;) 1 L d*a8 D (1)) (12)6@ (1, — 1 — P) (5.10)

The phase space integral is regulated using dimensional regularisation. It is then neces-
sary to reduce the tensor integral arising from the product of tree amplitudes down to
scalar integrals either by using spinor algebra or standard Passarino-Veltman reduction.

The remaining scalar integrals have been evaluated previously by Van-Neerven [136].
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5.3. Higgs to multi-gluon amplitudes

In order to calculate the cut-constructible parts of the Higgs amplitudes we are able to
use the all multiplicity tree level results calculated using the MHV rules as presented in
chapter 3. The decomposition of the HGG vertex into the self-dual and the anti-self-dual
terms eq. (3.11), guarantees that the whole class of (colour ordered) tree-level helicity

amplitudes must vanish [53];

Aszo)(qﬁ’git,g;_,g;_,)g;t)zo, (511)
A (', 97,957,955+, 95) =0, (5.12)

for all n.

The tree amplitudes, with precisely two negative helicities are the first non-vanishing
¢ amplitudes. These amplitudes are the ¢-MHV amplitudes. General factorisation
properties now imply that they have to be extremely simple [53], and when legs q and p

have negative helicity, are given by

AD(B,97,95 195197197

_ (pg)*
C{12)(23)---(n—1,n)(nl)’ (5:13)

In fact, the expressions eq. (5.13) for ¢-MHV n-gluon amplitudes have the same form
as the MHV n-gluon amplitudes in pure QCD. The only difference is that the total
momentum carried by gluons, p; +p2 + ...+ pn = —py is the momentum carried by the
¢-field and is non-zero. The MHV amplitudes are also present in the calculations so are

listed here for completeness:

A;O)(gl—’g;w“vg;,-'-’g;_)-”)g';)

o lpgl*

(5.14)

The tree amplitude with all negative helicity gluons, the ¢-all-minus amplitude, also
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Figure 5.2: The MHV loop diagrams contributing to the ¢ — g7 g, ...g, amplitude.

has a simple structure,
A%O)(st 1_7 cee ,'I"L_)

= (-1

my
1223 [n—1,nlnl]

(5.15)

Amplitudes with fewer (but more than two) negative helicities have been computed
with Feynman diagrams (up to 4 partons) in Ref. [114] and using MHV rules and recur-

sion relations in Refs. [53, 54].

53.1. ¢ > 9795 ...9,

The amplitude for Higgs to any number of negative helicity gluons is the simplest since
it only receives a cut constructible contribution from the ¢ component of the Higgs field.
There are three types of diagram contributing to the cut-constructible part as shown in
figure 5.2. For each diagram we find that the allowed helicity assignments around the
loop only permits gluons to circulate so the cut constructible part will have no fermionic

component.

Let us consider diagram 5.2(a) to begin with. We can take the momenta to be labelled
from 1 to n around the right hand amplitude so that we consider a s;, cut. Other

diagrams which take the same form are accessible by permuting the arguments of the
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s1,» channel. The product of the two vertices can be written:

_ m4 (_1)n+2[l1l2]3
ArAr = [zlzﬁz [21][12] - - [n — 1n][nly]
40— n- [l102][n]]
= A9 (417, ., )—[121][n11]' (5.16)

By applying a Schouten identity to the numerator and using momentum conservation in

the form I; = Iy + Pp, we find,

N(ﬁl,n) 1,71.) ﬁl,n ‘n ﬁl,n -1 (5 17)
(h—=n)20le+1)2 (Lhi-n)?2 (+12)"

ALAR = A(O)((b;l_)"',n—) <_ -
where N(P,p1,p2) = P?(p1-p2) —2(P-p1)(P-p2). This is now written in terms of scalar
integrals so we can directly use the results of van-Neerven[136] to perform the phase
space integration:

N(P,pl,p2)
(I1 + p1)%(I2 + p2)?

/dDLIPS(—ll,lz,P)

(4;%22' sin(me) €| P2| =€ o F; (1, —1l—¢ %) (5.18)
/ dDLIPS(—ll,lg,P)S—f%;)—)Z =
M:ﬁ% sin(me) 2| P2| ¢ (5.19)
/ dPLIPS(=1, 1y, P) = —mm sin(me)p2¢|P?| . (5.20)
where the factor cr is given by,
e = (dm)-2 T(1+e)T%(1 —¢) (5.21)

(1 — 2¢)
The final integration is over the z variable. The only dependence on z appears through

the quantity ﬁl,n so it is convenient to make a change of variables,

dz _ d(P)?

2 m. (5-22)

The final integration is therefore just a dispersion integral that will re-construct the

parts of the cut-constructible amplitude proportional to (s1,,)”¢,

. A
[ S pisin(re) P2 < = 2mi(-P2-. (5:23)
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The final result for this diagram then reads:

2 €
_ T 40 _# ) . P1-PnS1n
D,(1,n) = L Al (——) ( F (1,—6,1—6,—)—!—1). 5.24
a( ) €2 —S1,n 201 N(Pl,'n,plapn) ( )

Diagrams 5.2(b) and 5.2(c) are calculated in exactly the same way. By applying
Schouten identities and momentum conservation we can reduce both of these to scalar

box and triangle integrals. The results are:

9 €
cr 7! P2 PnS2n
Dp(2.n) = L A0 [ H# Fi{l,—6l-—=5—"—
b( ’n) EQA (_32‘,”) (2 1( 6 & N(PZ,mPQ,pn))

D1 PnS2n
+ oF (1,—6;1—6;—’)
N(PZ,n,plaPn)

P1-P282n
—oFi |, —gl—g—+——"—_|+1 5.25
21 ( N(PZ,napl,p2)> ) ( )

2 €
' cr I Di - PnSin
C(Zan) 62A (—Si,n) (2 1 ( T o N(Pi,n,piapn))

Pi+1 " P1Sin
+2F1<1,—e;1—e; ’ )
N(})i,napi+17p1)

Di - P1Sin
—oF{[1,—¢1—¢ ————)
( N(Pi,n,p'i)pl)

Di+1 * PnSin
— oF1 (1, -1 — ¢ —2 W0 . 5.26
201 < N(-Pi,napi-i-lapn))) ( )

These results do not hold for the two particle channels, i.e. s12, where we must be careful

to eliminate terms proportional to N (ﬁlg, 1,2) etc. before integration since such terms
will vanish for the particular choices of n = 1,2. These two particle channels will make

up contributions from the single mass boxes.

To complete the calculation of this part of the amplitude we must sum over the

permutations of the various diagrams and identify the full integrals from the individual

128



cuts. The scalar integrals are given by:

2cr 7 € U
Om _ o ~ el — e ——
F4 (S,t) = 62 |:<—8) 2F1 (1, € 1 €5 t)
2\ € u
+ (%) o F) (1, —eil—e —g)] (5.27)
2c 2\¢ U
1 2. iy U
F4m(P ,S,t) = —6—2—[<_—8> 2F1 (1,—6,1 E,-'?)
#2\° u
+ (_ 2F1 (1’ —€ 1 € _—)
—t s
2 € P2
- (_—“’P—z> oF1 (1,—6, 1- e,—E—t—)] (5.28)
F2me(P?, Q% 5,1) = - BN R (11— =Y
4 ) I3} 62 s 241 ) ) ) P2Q2 — st
2 €
I ut
+ (—t 2 F'y (l, el—e¢ P2Q2—st)
2 \€ 2
7 uP
- == Fi{1 -¢1
(—P?) ? 1(’ G P2Q2—st>
2 \¢€ uO?
_ (—M_Q2> 9 F; (1, —e;1—¢ P2Q§2— st)] (5.29)
9\ €
Flm(s) = i_g (f—s) (5.30)
Bub(s) = ——+ AN (5.31)
€(l—2¢) \ —s

and the unrenormalised, cut-constructible contribution for the all-minus configuration

can be written:

(F3lm(5i,n+i—2) — F3™(sim+i-1))
1

2

ADCC( 1= n7) = Ag))(qs,r,...,n—)[

n

1 n n+i—2 1 n
2me . 1m .
~3 > > FI™(sigs Sit1,-15 Sij+1, Sidls) — 3 ) " F{™ (84,1425 81,41 Si1,i42)
=1 j=it2 i=1

(5.32)

Since the cut-constructible part of the corresponding ¢! amplitude is trivially zero,
ADCC (gt 1= 2= nT) =0, (5.33)

the full cut-constructible part of the full Higgs amplitude is also given by equation (5.32).
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For the specific cases of n = 3,4 the amplitudes simplify considerably;

APCC(417,27,37) = A9 (4, 17,27,37) [F;%m(slz) + F™(s93) + Fy™(s31)

1 1 1
— 3F3™(s123) — §F41m(8123; 812,523) — §F41m(5123; 513,823) — §F41m(8123; 812, 513)
(5.34)

and

ADCC(p,17,27,37,47) = AD(¢,17,27,37,47) | Fi™(s103) + Fi™(5034) + FA™ (5341)

+ F3™(s412) — 4F3™(51234)

1 1 1
1 . 1m . 1 .
— 5 Fu" (51253 812, 828) — S F4 " (52345 823, 834) — S F4 ™ (83415 834, 841)
_ lFlm . _ 1F2me . . 1F2me .
5L (84125 541, 512) 514 (81234, 512; 5412, S123) 5T (51234, 523; 5123, $234)
1 2me . 1F2me .
- §F4 (51234, S34; S234, S341) — 5t (51234, 8415 5341, 5412) | - (5.35)

53.2. ¢ > 979507 ---9F

For this amplitude the contributing MHV diagrams are slightly more complicated since
there are helicity configurations which allow fermions to circulate around the loop. There
are 7 independent diagrams required for the full cut-constructible component as shown
in figure 5.3. The last four diagrams have both fermionic and gluonic contributions.
Note also that all fermion loops always appear in association with a factor of Ng, the

number of fermion species, and a factor of —1 as associated with all fermion loops.

For these more complicated configurations it is more suitable to apply a more general
reduction technique for each diagram. One can use a 4-dimensional Passarino-Veltman
reduction since the cut is always in 4-dimensions. Schouten identities reduce all of the
gluon-only channels, diagrams 5.3(a),(b) and (c), to scalar integrals as before. However
when considering the channels with alternating helicity configurations around the loop

we find that even after the Schouten identities have been applied, we are still left with
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Figure 5.3: The MHYV loop diagrams contributing to the ¢ — g; g5 g; ... gy amplitude.

tensor integrals which must be further reduced to scalar integrals by expanding in terms
of all possible tensor structures. This feature has also been seen in the context of finding
the cut-constructible part of pure QCD amplitudes and was also addressed applying

Passarino-Veltman reduction [92].

Diagrams 5.3(a),(b) and (c) reduce in the same way to the corresponding diagrams for
the all-minus configuration, indeed with the exception of the tree factor the calculation

is exactly the same. For diagram 5.3(d), the sg , channel, the presence of tensor integrals
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and fermion loops results in new structures of order 1/e. The result for this diagram is:

2 €
Dg(2,m) = 5 A (“—)

D2 PnS2n )
—82.n

1+ 9F (1,—6;1—6;
271 N(P2,nap2apn)

D1 Pnd2n
+2F1<1,—e;1—e;——— : )
N(Pyn,p1,Pn)

P1-P282n
—oF ], —l—¢ —+—"""—
2l ( N(PQ,mpl,Pz))

_(1— Nr 2tr_(2P3 p—1n1)®  tr_(Psp_1nl)? €
3s3,(2P - n)3 s%,(2P - n)2 ] 1—2¢

4 (1 _ g%) (trl;l(;(’;;_}:)l)) : _626} (5.36)

This is better illustrated in figure 5.4 which shows the cuts of each integral function that

appear. Figure 5.5 shows the decomposition of the sy ; channels (figure 5.3(e)) which
follows exactly the same steps as the previous case. Diagrams 5.3(f) and 5.3(g) are
analogous to diagrams 5.3(d) and 5.3(e) and can be found be permuting the arguments:

,2,...,.n—2,1,n,...,3.

Np\ [2tr_(2Pn1)®  tr_(2Pn1)? Np\ tr_(2Pnl) .
+ (1 - TF) (3s§2(2P.Zn)3 o 3%2(2P.;n)2) + 4( o Es') 512(2P.p,) /<‘><

Figure 5.4: Decomposition of the MHV diagram of fig. 5.3(d) contributing to the Pp

channel

When summing over all the possible diagrams we find that the bubble integrals always

appear in the combination,
Bub(s) — Bub(t) = O(e%), (5.37)

and hence the pole structure is formed by exactly the same combination of box and

triangle integrals as in the all-minus case but now is proportional to a different tree
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1 _ Ne 2tr_(2P(4+11)*  tr_(2P(i+1)1)? +4( . &) tr_ (2P(i+1)1)
- ( T ) 35?2(2P.pi+1)3 832(2P.pi+1)2 4N 812(2P.pi+1)

¢
N 2tr_(2Pi1)®  tr_(2Pil)? tr_(2Pi1) | ;- s
B (1 o _NE) (33‘;'2(2P.pi)3 o 8%2(2P.p,-)2) + 4( 4N) 512(2P.p;) ] H

Figure 5.5: Decomposition of the MHV diagram of fig. 5.3(e) contributing to the Py;

channel

amplitude. The combination of bubble integrals can be written in terms of a basis of

pure logarithms,

Li(s,2) = l(c;gfst/ ;,3 . (5.38)

These logarithm functions are not proportional to the tree amplitude, but are multiplied

by new spinor structures written in terms of traces (defined in section 2.2). The full,

unrenormalised result for this helicity configuration is thus:

n
APCC(9,17,27,37 . nt) = AD(¢,17,27,3%,...,nt) [Z (F3™ (simtiv2) — F3™(sm4i-1))
=1

n n+i—2

5 Z Z F4 (81,51 Si-+1,5—15 8i,j+15 Si1,5) ) ZF (82,0 + 25 8ii41, Si1,i+2)
1—1 j=i+2
n .
tr_ (1P, 2—1 N, 1P, (i — 1)2)?
+Z ( (1 - —> ( “;3( ) r L3(8i-1,1,8i,1) — (1 - WF) = 1:2( )2) La(si-1,1,54,1)
= 12 12
Ng\ tr— (1P, n(i — 1)2) 2 Ng\ tr_(2Ps;_1il)®
+4 (1 - m) o Li(si-1,1,81) + s\ w TLa(Sz,i, 52,i-1)
Np\ tr_ (2P3,1;_17;1)2 Np\ tr_ (2P3,i_17;1)
(1 - W) TL2(32,i;32,i—1) +4| - ——812—L1(S2,i, s2,i-1) | |-
(5.39)

The functions Lg(s, t) contain unphysical singularities as s — ¢ so it is useful to redefine
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the cut-containing contribution in terms of a new basis which have good behaviour in

the various limits. This is done at the cost of adding some rational terms,

o~

Ll(S,t) = Ll(S,t) (540)

Lo(s,t) = LQ(:’t) + t(sl_ o) (5.41)
Ls(s,t 1 1

Ls(s,t) = 352 ) 4 PRk et (5.42)

The new Ek functions are now free from spurious singularities. Replacing the L func-
tions in (5.39) with the corresponding L functions we are left with the following “com-

pleted cut term”:

MCR(g 1= 2= 3+, ... n*) = 2 A0 (4 17,273+ ... nt
A (¢a PR A L ) 967F2An (¢, , 27,37, , );
2tr_(1P,~,n(z' -1)2)3 1 1
51 si1(8i-1,0 — 85,1)% 287 (sim1,1 — s4,1)
3 3tr_(1P,~,n(i -1)2)2 1
51 8;,1(85-1,1 — 8i,1)

2tr_(2P3,i_1z'1)3 1 1

8%2 S2,i—1(52,i - 52,;'_1)2 28%’1'_1(82’1' — 52,1'__1)

tr_(2Ps,;-1i1)? 1
— 3t Bl) (5.43)
812 52,i-1(82,s — 82,i~1)

where N, = 2(1 — Nr/N).

In order to find the full Higgs amplitudes this helicity configuration is actually only
sufficient for 3 and 4 partons. The 3 parton ¢-amplitude simplifies to:

ADCC(p,17,27,37) = 4O (,17,27,31) [F:slm(sm) + FI™(s53) + FI™(s31)

1 1 1
— 3F3™(s103) — = F{™(s123; 812, 823) — = Fi ™ (5123 813, 523) — = F4 ™ (5123 812, 513)
2 2 2
(5.44)

while ALCC (o1, 17,27, 3%) is zero so that ASCC(H,17,2-,3%) = AP 99 (g, 17 2-,37).
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The case of 4 partons has the following contribution from the ¢-amplitude,
ADCO(g,17,27,8%,4%) = AD(9,17,27,3%,47) | F3™(s128) + F3™ (s234) + F3™ (s31)

+ FJ™(s419) — 4F3™(51934)
_ 1 21
2 2

1 1 1
1m . 2me . 2me .
- 5F4 (S412; 841, 812) — §F4 (s1234, 5125 S412, 5123) — §F4 (51234, 523; 5123, 5234)

1
E]™(s123; 812, 523) F ™ (s034; S23, 534) — §F41m(5341; 534, 841)

1 1
2me . 2 .
— = F{™(s1234, $34; S234, S341) — = F;*°(S1234, 541; 8341, $412)
2 2

2 Ng)\ tr_(1432)3 Np)\ tr_(1432)?
= <1 - —F> fr(1432)° 3 ) L3(s341, 841) — (1 - _F) i ) ) La(ssa1, 541)

3 N Y9 N 579
Np\ tr_(1432) 2 Np\ tr_(2341)3
AL i G Y SR Rl )
+4 ( 4N) - 1(8341, 841) + 3 (1 N ) 3(s234, 523)
Np\ tr_(2341)2 N\ tr_(2341)
(1= 2E) Bt a1-2E) ety .
(1 N ) 2 2(s234, S23) + N ora 1(5234, 523)

(5.45)

The corresponding ¢! amplitude can be found by complex conjugation and re-labelling

the ¢ amplitude,
.1.
ADCO(gh, 17,27, 3%, 47) = (ADC(9,37,47,1%,27)) (5.46)
with the Higgs amplitude being the sum of both contributions:

A'g}l)’cc(H) ]-_7 2—) 3+, 4+) = Agll),cc(qs? 1_’ 2_73+’ 4+) + A'Stl)’cc(qb.t’ 1_’ 2—’ 3+’ 4+)'
(5.47)

5.3.3. The non cut-constructible contributions

The rational part of the amplitudes cannot be reconstructed from unitarity cuts however
it is often possible to fix these terms using the collinear limits [17, 18]. We also note in
passing that there has been recent progress in using recursion relations to determine these
contributions [31-33, 96-98, 100, 101, 130]. Here, we use Feynman diagrams and observe

that the quark loop contribution fixes the rational part. Note that in the supersymmetric
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case, where the number of bosons and fermions are equal, the entire amplitude is cut-
constructible and the rational parts are therefore proportional to N — Ng. For the
amplitudes considered here, this reduces the number of external legs in the relevant

Feynman diagrams by one.

The amplitude for three negative gluons is given in [137],

Np $12593 + S23831 + 8128
(1).NCC(p. 1~ o— a—y _ VP 812823 1 523531 + 512631
AT ) = e T a2a)B (5.48)

For four negative helicity gluons, we find that the unrenormalised amplitude is [129],

ADNCC (1= 9m 37 47)

Ny | sis(41 431212 | (34)° | (34) (41) | s12834 + S1235034 — S

= 06n% | s 127230 T 2f T P23 T 2(o 23 B4 Ay | O el perms

(5.49)
where N, = 2(1 — Np/N).

The result for the two negative helicity gluon and one positive helicity gluons has also

been derived in reference [137],

_ Ny, (12)[23)[31]

(WNCC (. 1= o= 3+) —
A (Hi17,27,87) = g5~ a2

(5.50)

For two negative helicity gluons and two positive helicity gluons the tree-level ampli-

tude is given by

AO(H;17,27,3%,4%) = AO(¢;17,27,3%,47) + AO (117, 27,3, 47)

3 (12)4 [34)*
= e el T 2RIBEE (5-51)
Note that both A©@ (¢;17,27,3%,4%) and AQ(gt;17,27,3T,4") are symmetric under

the interchange (1 < 2,3 « 4), while the ¢! amplitude can be obtained from the ¢

amplitude by the interchange (1 < 3,2 < 4,( ) < [ |). We can therefore make use of
this symmetry to write the non-cut constructible contribution to the one-loop amplitude

in a compact way,
ADNCC(g 1= 9= 3% 4t) = F(1,2,3,4,( ),[ D+ F3,4,1,2,[ 1,{ )

+(1 2,3 - 4), (5.52)
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where

F(1,2,3,4( ) [ D=

N (o2t o)L+ 314P  s2sa(12)[41] (/L +314][34)
9672 5123<23>2’[12]2 (23)(34)[12]2 (23)[12]2

(12) [34]

5.4. Cross Checks and Limits

5.4.1. Infra-red pole structure

As discussed in chapter 2 the infra-red poles are constrained to have a certain form

proportional to the tree level amplitude [13, 15],

AD = o>z(

Expanding the hypergeometric functions as a series in € quickly leads to a proof of this

)6 + O(%). (5.54)

—Sii+1

fact, and it can be seen that all logarithms vanish at order 1/e. Clearly this works in
the same way for both helicity configurations, eq. (5.32) and eq. (5.39), since the pole

structures are identical.

5.4.2. Collinear Limits

Collinear factorisation at one-loop is a little more complicated than the tree-level case
considered in section 2.1.2. In general the collinear behaviour of one-loop amplitudes

can be written[17, 138):

AD (N g ey A

ZAS_’l(. coyi— 1N PRy oy Split(0) (— PRyt g 4 1A

+AO (L i— 1M PRy odee Y SplitW (—Phyid 4 1) (5.55)
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where the collinear limit is defined through p; — zP and p;y; — (1— 2)P. The universal

splitting functions for QCD have been calculated in reference [17, 18, 139]. The functions

relevant for our amplitudes are:

2
Split©@ (— P17 24) = —2
plt™( )= o0y

N2

Split(o)(—P+, 17,27) = (-2
z(1 — z)(12)

1
Split® (=P~ 1%, 2+) = ——2
plE( )= Taom)

Split®(—P~,17,27) = 0.

(5.56)
(5.57)
(5.58)

(5.59)

For the one-loop splitting functions it is useful to quote them in terms of cut-constructible

and non-cut-constructible components since this is consistent with the formulae given

for the Higgs amplitudes,

Splitt) (= P~k 121 232y = Gplit(D-CC(—p=h 121 222) 4 §plit(NCC(_p=h 1M 9r2)

where
Split 0 (— P, 17, 2+) = Split® (- P*,17,24) T x
€

2 \€ _
(# ) (1—2F1<1,—e;1—e;i)—2F1(1,—e;1—e;1 z)),
—812 1—-=2 Z

SplitMCC(—p+ 17, 27) = Split @ (—p*, 17,27 ) L x

€2
2 €
( H ) (1—2F1 (1,—6;1—6;
—38192 1

z ) — oF (1,—e;1—e;1_z)),
— Z z
SplitM-CC(—p~ 17,27) =0,

Split)NCC(—pE 17, 2+) = 0,
Split(l)’NCC(—P+, 1—,2—) — NP V Z(]_ - Z)

©96m2 [12]
Split(l)’NCC(—P_, 1-, 2_) _ 92:1;2 V 2(1[1_2]‘:)<12> )
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(5.63)
(5.64)

(5.65)
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Figure 5.6: Collinear factorisation of the one-loop Higgs to “all-minus” amplitude. The

4% diagram vanishes as the tree splitting — — — function vanishes, see eq. (5.59)

Collinear factorisation of the all-minus configuration

For the all-minus configuration the factorisation is shown in figure 5.6, we can take
p1 and po to be collinear without loss of generality since the amplitude is cyclic. The
contribution from the cut-constructible part is extremely simple since we can quickly
apply the method of Brandhuber, Spence and Travaglini [140] to show that the only
diagram contributing in the 1||2 limit is the s;2 channel which factorises onto the cut-
constructible part of the one-loop splitting function Split(Y) (—P*,1~,27) plus the cut-

constructible part of the (n — 1)-point one-loop amplitude times the tree splitting:

ADCC (g1, n) WAO (¢ P~ 37, n7) Split DO (P, 17, 27)
+AMDCC (g P7,37, ..., n7) Split @D (—PT,17,27).  (5.67)

The non-cut-constructible part for the 4-point all-minus configuration factorises onto the
remaining terms:

A(l),NCC(H; 17,27,37,47) “—I?A(l),NCC(H; P~,37,47) x Split(O)(_P+, 17,27)

+AO(H; P*,37,47) x SplitMNCC(_p~ 1~ 27)
+AO(H; P7,37,47) x Split™VOC(—P*,17,27).
(5.68)
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Combining this with eq. (5.67) shows that the all-minus amplitude does indeed factorise

as expected.

Collinear factorisation of the “two minus” configuration

There are three collinear limits to consider for the “two-minus” amplitude. Let us first
consider the case where we take a negative and a positive helicity collinear, e.g. the 2||3
limit shown in figure 5.7. The third diagram always vanishes since there is no tree ¢

vertex with only one negative helicity gluon.

Here we see that the fourth diagram vanishes as the one-loop ¢-amplitudes are finite
[130] and so have no cut-constructible part. The boxes and triangles contributing in eq.
(5.39) are the same as those for the all-minus case and hence will factorise in the same
way onto the cut-constructible one-loop splitting function and the boxes and triangles
of the (n — 1)-point amplitude. The finite logarithms also factorise in the expected way

when we notice:

tr_ (1P n(¢ — 1)2) 213 tr_ (1P, (i — 1) P)

= ;1> 4, (5.69)
S19 S1p
tr_(2P3,i_121) 2_|1)3 tl‘_(PP4,i_1Zl) P> 4, (570)
S12 S1P

and

tr_(1P1,032)) 21

0 (5.71)
512
tr—(2341)) 2113 0 (5.72)
S12

the terms with divergent logarithms, i.e. L(s23, s234), will always be proportional to

a trace which vanishes in the limit and hence do not appear in the one-loop splitting
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Figure 5.7: Collinear factorisation of A(l)(qb; 17,27,3%,...,n") taking pe and p3 par-

allel. Here the 3™ diagram vanishes since the tree amplitude with a single negative
helicity vanishes whereas the 4% diagram vanishes only for the cut-constructible part

since the loop amplitude is finite.

function.

AMCC (g 9= 9= 3+ p+) A}

AO(g17 P~ 4 nt)SplitW)CC(—pt 27 3T)
+AWCC(g17, P47, ) Split® (- PF,27,3%).
(5.73)

The 1||2 limit is rather trivial as all cut-constructible parts of the splitting functions
or amplitudes vanish in the limit as shown in figure 5.8. The tree amplitude in this case
vanishes,

AO (1= 2= 3+ ) Mg (5.74)

therefore it is obvious that all the box and triangle terms of eq. (5.39) will vanish. The
remaining finite logs appear to have a singularity in s;2, the worst coming from the

traces raised to the 3rd power,

tr_(1XY2)3  (1XY|2)3 tr_(2XY1)3  (2|XY|1)3

3?2 - (12)3 ’ 5:1‘2 T (12)3

(5.75)
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Figure 5.8: Collinear factorisation of A1) (¢;17,27,3F,...,n*) taking p; and py paral-

lel. All diagrams vanish for the cut-constructible part since the tree amplitude vanishes,

for the rational part only the 4*" diagram vanishes.

However the tree amplitude is proportional to (12)3 so A,(ll)’cc(l_,Q_, 3*,...,n") van-

ishes in the limit as expected.

The final limit which eq. (5.39) must satisfy is that when we take any adjacent pair of
positive helicities collinear. The factorisation in this case is shown in figure 5.9. We can
drop the top row of contributions here since we are looking at the cut-constructible part
of the amplitude and SplitM:CC(— P+, pt ¢*) = 0 as well as the finite ¢ amplitude. Just
as in the 2(|3 limit here we have the same pole structure as the all minus amplitude and
hence we know that we arrive at the correct loop splitting function, boxes and triangles.
We must also be able to show that there are no divergent terms coming from the finite
logs and that these terms correctly factorise onto the lower point amplitude. This turns
out to be slightly more involved than in the 2||3 case. First let us choose to take two

adjacent particles a and b collinear where p, lies to the left of p, in the clockwise ordering.

Using,
b
Sb,i X (1—2)spi + zSb11,:; (5.76)
b
Sisa X zsi,p + (1 — 2)8i,0-1, (5.77)
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it is then possible to show:

tr_(2P3 4_1al)® tr_(2P; ob1)*

p Li(52,0:820-1) + — = Li(s2,6, 52,0)
S12 812
b tr_(2Ps 1 P1)*
allp fr—( ZZ 1P1) Li(s2,0-1,P; 82,0-1), (5.78)
12

and,

tr_ (1Ppy1,:02)% tr_(1Py;a2)k

K Lie(8b,6, Sb+1,i) + ————Li(Sa,i, Sb,1)
512 5%,
allb tr— 1P, 1,'P2 k
- ( s: L2 Lic(8Pp+1,6> Sb+1,1)- (5.79)
12

b
Using these identities and recognising that tr_(1ab2) ali 0 it is possible to show that eq.

(5.39) has the correct factorisation properties,

ADCE(g17 97 3%, 0t bt ) D
AWCO(g:17,97,3%, . Ja— 17, P+ b+ 1%, .., nT) Split® (— P~ at, b")

+AO(g;17,27,3 e — 1T, PT b+ 17T, .. 0 SplitWCC(— P~ 0T bT). (5.80)

Note that the precise way in which the above identities apply relies on the number of

gluons and the choice of limit.

Collinear factorisation of A(-NCC(H; 1~ 2= 3+ 4%)

The non-cut-constructible part of the 4 gluon amplitude with two negative and two
positive helicities has 3 independent collinear limits, 1|2, 2||3 and 3||4. Let us first

consider the case where p; and po are parallel.

From figure 5.8 we see that the first three diagrams now have contributions. The
final diagram still vanishes since Split(®(—P~,17,27) is always zero. The factorised
amplitudes do not vanish since we are now considering full Higgs amplitudes rather
than just the ¢ contribution. We must be careful in taking the limit to extract any

singularities which are hidden under double poles e.g. so3514/[12]3. This is achieved by

143



Figure 5.9: Collinear factorisation of AM)CC(¢:1~,27,3%,... nt) taking any two

positive helicities parallel. Diagram 2 vanishes by eq. (5.59) and diagram 1 vanishes for

the cut-constructible contribution as the one-loop ¢ amplitude is finite.
applying the following identities:

512534 — 513524 + S14 * S23 = t1(1234)

= tr_(1234) + tr(1234)

— (12)[23](34)[41] + [12](23)[34](41) (5.81)
and
S24 _ S24 _ 523514 — 524513 + 512(823 — 524) (5.82)
5123 S412 51235412

It is then fairly straightforward to show that eq. (5.52) has the expected factorisation,

ADNCE (Fi1= 9= g+ 4y U2

ADNCC (g1, p= 3+ 4+ Split @ (—P*,17,27)
+AO(H; P~,3%,47) Split VOO (- PT,17,27)
+AO(H; P+ 3+ 47)SplitMNCC(_p~ 1- 27). (5.83)

The 2|3 limit, shown in figure 5.7, has two contributing diagrams for the non-cut-

constructible piece. Diagrams 1 and 3 vanish since the one-loop splitting function,
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Split(l)’N CC(—Pi, 2~,3") vanishes. Here we must also include the limit of the “com-
pleted cut” terms from eq. (5.43), which vanishes in both the 1{|2 and 3||4 limits. By
using the appropriate forms of the identities (5.81) and (5.82) the amplitude (5.52) can
then be shown to satisfy,

ADNCC (g1 97 3+ 4ty 4 ADCR(F;1-, 97, 3%, 4%) T

+AMNCC (g 1= Pt at) Split® (—P~,27,3%)

+ADNCC (g 1= p~ at) Split@ (— Pt 27, 31). (5.84)
The final limit, 3|4, has three contributions in a similar way to the 1||2 limit. These can
be seen in figure 5.9 where the ¢ field is replaced with the Higgs field. Since this limit is
essentially complex conjugation of the 1||2 limit by using the same method we quickly

find the expected behaviour,

A(l),NC’C(H; 1,27, 3+’ 4+) 3'_':1

ADNCC(H; 17,27, PH) Split® (- P, 3%, 47)
+AO(H; 17,27, PF) SplitNIC(— P, 3% 47)

+AO(H;17,27, P7) Split) VO (-, 3T, 41), (5.85)

5.4.3. Soft Higgs Limit

For the case of a massless Higgs boson, we can consider the kinematic limit py — 0. In
this limit, because of the form of the HG, G*¥ interaction, the Higgs field behaves like
a constant, so the Higgs-plus-n-gluon amplitudes should be related to pure gauge theory
amplitudes. Low energy theorems relate the amplitudes with zero Higgs momentum to

pure gauge theory amplitudes [104]:
—0 3
AOH, {g;, N} 75 Cga—gAﬁf)({gi, A}, (5.86)

«Q

where C' = £2 is the effective coupling of Higgs field to the gluon fields. The n-gluon

tree amplitude is proportional to g" 2 (see equation (2.55)) therefore,

AO(H, {g;, M}) P25 (const.) x (n — 2)AQ ({gi, \i}). (5.87)
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The one-loop amplitudes are proportional to g” hence similarly one can deduce the

following behaviour in the soft Higgs limit,
AD(H, {gi,\}) P57 (const.) x nAD ({gs, A })- (5.88)

The 4-gluon MHV amplitude at one-loop in QCD has been derived in [141] and is given,

unrenormalised, as:

APCC(1- 97 gt 4ty = - 2T [

Bo [ 12\
B ( -314) (5.89)

Agl),NCC(l—’ 2—’ 3+, 4+) =0 (590)

The finite one-loop gluon amplitudes have also been computed recently using on-shell

recursion relations [96, 97],

APCC 1278747y =0 (5.91)
N, (12)(34)

(1),NCC (1— 6— q— 4=\ _ _
Ad (17,27,37,47) = 9672 [12][34]

(5.92)

Soft limit of A" (H,1-,2-,3",47)

The soft limit of the cut-constructible part of this amplitude is trivial since the tree
amplitude is proportional to m‘}{ and hence this part of the amplitude vanishes. We
must find the correct behaviour for the non-cut-constructible part, eq. (5.49). The first
and fourth terms in (5.49) both vanish once we take p; + p2 + p3s + p4 = 0. We can then
use the momentum conservation to write:

(34)% pe—0 (12)(34)

122 — T12[34]

(34)(41) py0  (12)(34)
[12][23] = - [12][34] (5.94)

(5.93)

Since both of these terms are cyclically symmetric it is clear that each of the 4 permuta-

tions will produce the same contribution and the amplitude factorises on to the 4 gluon
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amplitude (5.92),
AP @ 1,27,37,47) P50 4P (a7 27,37, 4) (5.95)

and we find the factor of n = 4 as predicted from the low-energy theorem.

Soft limit of A" (H,1-,2-,3+,4+%)

Firstly let us consider the soft limit of the cut constructible components, eq.(5.45) and
eq.(5.46). The 1-mass and 2-mass easy box functions and triangle functions have smooth

soft limits where we take:

2 \°¢ o
( ad 2) P70 (5.96)
2 €
( M ) P30, (5.97)
—Séip

We must apply the same relations to the finite logs coming from the tensor triangle

integrals, for instance we find:

Bub(823)—Bub(5234) p¢_—;0 1 ( M2 )6

, 5.98
(523 — s234)% skie \ —523 (5.98)

Li(s23,8234) =

Applying these relations together with momentum conservation to the cut-constructible
part of the 4 gluon amplitude, eq. (5.45) and eq. (5.46), we find that the boxes and
triangle functions collapse onto the correct 1/e? poles while the tensor triangles simplify

considerably using:

tr_(1432)\ * p,—0
(%) 5 (—1)ksE,, (5.99)

so that the logarithms reduce to,

2( 2 \( 1 Np Ne\\ _ [ 4%\ 26
(_—) (—5(1-7)+4(1‘m>)—(?14) Ne (5.100)

Combining this with the 1/¢2 poles we find,

AP (,17,27,3%,4+) P50 240 (17, 27, 3+, 4%) (5.101)
t 50
APt 17,2737, 4) "5 24 (17,27, 3%, 47, (5.102)
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The soft limit of the non-cut-constructible part, eq. (5.52) is fairly simple and can easily

be shown to vanish as expected,
ADNCE (1= 97 3+ 4ty PO, (5.103)
Therefore, we find that the Higgs amplitude has the expected soft limit,

AP (H,17,27,3%,47) PO 440 (17 27 3t 4. (5.104)

5.5. Conclusions

In this chapter we have used the MHV rules to evaluate the cut-constructible parts of
one-loop amplitudes of gluons coupling to a single Higgs boson, expanding on the re-
sults of [129]. We used the MHV construction to organise the unitarity cuts as used in
N =4,1,0 SYM in references [90-92]. The results presented are for n-point amplitudes
firstly when all the gluons have negative helicity and secondly when two adjacent gluons
have negative helicity and the rest have positive helicity (the analogue of the MHV ampli-
tudes in QCD). The remaining rational functions were fixed through a reduced Feynman
programme where only fermion loops were evaluated. These amplitudes are sufficient to
find compact analytical solutions for the 4-point amplitudes AN (H,17,27,3,47) and
AW(H,17,27,3%,4%). Using the techniques of on-shell recursion [96-100] it should be
possible to find rational functions for higher point amplitudes and Berger et al. have
recently computed the finite one-loop amplitudes for ¢ to many gluons where the helicity

configurations vanish at tree level [130].

We have made extensive checks of the collinear and soft Higgs factorisation properties
and in each case we have found the expected behaviour. In particular we find that in
the soft Higgs limit the amplitudes do satisfy the “naive” criterion predicted by the
low energy theorem. This is in disagreement with the analysis in reference [130] which
suggests that the cut-constructible part of the amplitude may have a soft limit which is

inconsistent with the low energy theorem because the order of the py — 0 and ¢ — 0
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limits does not commute. It may be that for more complicated helicity configurations
the appearance of 2-mass hard boxes would produce a non-uniform soft limit since it is
known that these functions do not exhibit the same smooth behaviour as the 1-mass and
2-mass easy boxes. Unfortunately our method does not allow us to test the behaviour
of the rational parts of the ¢ and ¢! amplitude separately since we evaluate the rational

part of the full Higgs amplitude only.

Our method should have no problem in extending to other helicity configurations
although the tensor reduction procedure would be more complicated. Clearly introducing
external fermions would cause no problems in principle and the necessary tree amplitudes

for one-loop amplitudes with an external fermion pair are given in reference [54].
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6. Conclusions

In this thesis we have discussed the application of new on-shell methods for calculating
scattering amplitudes in QCD. The inspiration for these developments came from the
remarkable paper by Witten [42] which found a duality between ' = 4 SYM and a topo-
logical string theory on twistor space. This had an implication for QCD phenomenology
as it pointed out the remarkable fact that tree level helicity amplitudes, at which order
the two theories are equivalent, had a simple geometric structure in twistor space. In
particular, the simplest helicity amplitudes or MHV amplitudes were seen as straight

lines in twistor space.

It was then proposed that one could use the simplest helicity amplitudes, the MHV
amplitudes, as vertices in a new scalar perturbation series. This procedure became known
as the MHV rules [45] and was quickly shown to be an extremely quick and easy way to
re-derive tree-level amplitudes even though no proof existed*. The main reasons for these
simplifications seem to come firstly from the fact that twistor space is a complex space
and hence allows one to exploit the analytic properties of the amplitudes and secondly
from the fact that the method uses gauge invariant helicity amplitudes as building blocks
where cancellations between Feynman diagrams have already taken place. The method
explicitly differentiates between helicity states allowing some extremely compact results

for amplitudes with arbitrary multiplicity.

The MHYV rules have been shown to apply to a wide variety of tree-level processes

*A proof of the method by Risager [46] followed later based on a variation of the argument used to

prove the BCT recursion relations
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within the standard model. In Chapter 3 we discussed such application to Higgs bosons
coupling to QCD via an effective gluon interaction in the limit m; — oo. In all cases it
has been observed that the MHV rules re-produce the results of the standard off-shell

techniques but the analytic form of each amplitude is much more compact.

Another on-shell technique that has been discussed is a recursion relation between
on-shell amplitudes known as BCF recursion relations [64]. Here we saw that analytical
continuation of any scattering amplitude to the complex plane allowed the exploitation
of its simple analytic properties and lead to the derivation of extremely compact forms
for the amplitudes. Again this method was especially suited for helicity amplitudes
as for complex momenta, the 2-component spinors representing the helicity states are
independent allowing the simplicity in the helicity structure to be apparent throughout

the calculations.

Throughout this thesis we have been primarily interested in showing that the new
on-shell techniques can indeed be applied to a wide variety of SM processes. The most
striking feature is that the results of such calculations are extremely compact. One
would therefore expect that amplitudes obtained with both the MHV rules and the BCF
recursion relations wotld be quicker to evaluate than those using the off-shell recursive
methods of Berends and Giele which currently provide the basis for many MC event
generators. However numerical studies (72, 142, 143] have shown that because of the
extra cost of evaluating the shift into complex momenta the BCF recursion relations
actually perform worse than the Berends and Giele relations for high multiplicity final
states. Recursive implementations of the MHV rules have also been shown to perform
worse than the off-shell methods but this seems to be mainly because the method of

Bena, Bern and Kosower [52] includes an explicit over-counting in the formulae.

However the on-shell methods have lead to a great deal of new understanding of
gauge theory, in particular it has provided some new insights into A/ = 8 supergravity
[144-146]. One rapidly developing application for on-shell methods is to NLO processes

in the SM. Although the tree-level applications were an interesting playground for the
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new techniques there were already extremely efficient tools for the computation of tree-
amplitudes as has been shown in the numerical studies. At one-loop no such tools exist
and currently the on-shell techniques, combining unitarity and on-shell recursion, are a

very promising direction for the automation of NLO processes.

We have considered the various approaches to one-loop calculations and have shown
that the MHV rules at one-loop [90] can quickly generate all cut-containing pieces of
Higgs to gluon amplitudes using the SD/ASD split of the Higgs field which was so suc-
cessful at tree level [53]. The method is similar to applying standard unitarity cuts
although the sum over MHV diagrams results in a complete re-construction of the in-
tegral functions without having to worry about double counting. The computation of
the remaining rational functions should also be possible through on-shell recursion as it
has been shown for QCD [96-101] although a complete understanding of the collinear
factorisation with complex momenta would be necessary. For limited multiplicity one
can use Feynman techniques to complete the remaining terms, which is much simpler

than calculating the full amplitude [31-33].

As we lay out in the introduction, calculations of scattering amplitudes are just one of
the ingredients required to make accurate predictions of the SM. In order to successfully
remove background QCD signals from observations at hadron colliders and distinguish
new physics we will need to perform the phase space integrals together with the IR
subtractions. These calculations must then be interfaced with the parton shower and jet

algorithms and convoluted with the PDF’s.

On the formal side, calculations of all-multiplicity amplitudes at higher and higher
orders can provide important information about the nature of the perturbative series. Of
particular interest is the ADS/CFT correspondence which conjectures a duality between
N = 4 SYM theory and type IIb heterotic string theory on anti-de-sitter space in the
limit of the number of colours becoming infinite. Iterative structures within A/ = 4 SYM
have already been conjectured and tested up to 3-loops [147]. Witten’s conjecture of a

weak-weak duality between N/ = 4 SYM and a topological string theory on twistor space
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is also yet to see any progress beyond one-loop. The main problem here has been on the
string theory side where it has not been possible to decouple conformal super-gravity

states which clearly do not have any meaning in N’ =4 SYM (83, 84].
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A. Dimensional Regularisation

As mentioned in chapter 2 in order to make explicit cancellation of the UV and IR diver-
gences present in the various components of the scattering amplitudes we must introduce
some kind of regularisation to our integrals. In dimensional regularisation [148-151] the
number of dimensions of the Lagrangian is changed for 4 to D (the action is still dimen-
sionless). The loop integrals are then evaluated in D = 4 — 2¢ dimensions where, for
sufficiently small number of dimensions, they will converge. An important consequence
of such a regularisation is that in changing the dimension of the Lagrangian we also
change the dimensions of the coupling constant. It is useful to make the appearance of

a new scale in the theory explicit by redefining the coupling as,
g— gut. (A1)

Using Feynman parameterisation and reducing to a basis of scalar integrals it is pos-

sible to express any loop integral as*:

dP1 1
b= | = (42

We take the signature of the D dimensional space to have a single time direction and

D — 1 space directions hence to make the integral easier to evaluate we the integral in

Euclidean space by Wick rotating the time-like direction, I°© — il% and I! — liE. Thus

*In this expression we have omitted the small imaginary part coming from the definition of the Feynman
propagator, technically this is necessary to make the integral in Euclidean space well defined for

space-like regions where M? < 0
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the integral (A.2) now becomes,

dPig 1
(2m)P (1% + M2’

I, = (_l)n (A'3)

Switching to polar co-ordinates leaves us with,

d(l2 (l2 )D/2—1
/ o / Dl + M2 .

This can now be evaluated using the following tricks:

(w)P/2 — ( / dme‘“’z)D - / dP g exp(— gac?)

/QD/ dy yP/2-1 _y——I‘(D/2)/QD

= / F(D/2) (A.5)

and!

= i) e
/0 2(2m)P 1, + M2
:(Ag;;:)/;—n Al d.’L'.’L‘n_D/2_1(1 _ m)D/Q—l
_(M*)P12 " T(n — D/2)T(D/2)
~ 2(2m)D I'(n)

(A.6)

Therefore the final result is written just in terms of Gamma functions, M? and the

dimension D,
I = (_l)n (MQ)D/2_n F(TL — D/2)
" 2DxD/2 I'(n)

(A7)

This formula can be applied to integrals in non-integer dimensions by analytically con-
tinuing the T" function to all complex numbers. Details on the validity of integration in

a continuous number of dimensions can be found in reference [152].

Once the loop integrals have been computed using the techniques shown above we can
expand them around D = 4, i.e. ¢ = 0. For this we use the expansion of the gamma

function,

[(e) = % +ve + Ofe), (A.8)

R 2
tMaking use of the substitution z = p%
E
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where g is the Euler-Mascheroni constant, yg &~ 0.5772. When calculating the counter-
terms for renormalisation in this way it becomes useful to define a scheme in which
the counter-terms are only made to remove the poles in e. This is an alternative to
the renormalisation conditions given in (2.17) and is known as the minimal subtraction
scheme, M S. The only difference in this scheme is exactly where the finite terms in the
expansion about ¢ = 0 are included. Indeed since the divergent integrals contain the
factor,

(4m)T(e) = % — e + log(47) + O(e) (A.9)

so it makes sense to include the extra finite terms in the subtraction as well. This defines

the modified minimal subtraction scheme denoted M S.

When using dimensional regularisation we must also worry about the dimensions of
the Dirac gamma matrices, vy, which can appear in the numerator of the loop integrals.
One can argue that the 4 — 2e dimensional space is in fact an infinite dimensional vector
space and therefore the gamma matrices are in fact an infinite dimensional representation

of the Clifford algebra [152],
{7;1»'71/} = 20u0. (A.10)

We can proceed in evaluating traces exactly as before only we must remember the
tr(g"’) = D. The problem with the gamma matrices comes when we try to define
helicity states through the +5 matrix. It is not possible to find a Lorentz invariant defi-
nition of v5 in D dimensions so the notion of helicity is lost when D # 4. A way around
this is to use a 4-dimensional helicity scheme in which the external particles are treated

in 4-dimensions and the internal loop momenta are treated in D-dimensions.

When performing unitarity cuts it is necessary to consider the helicity states circu-
lating within the loop. This is again is consistent as the cuts are always made in four
dimensions. Performing unitarity cuts in D dimensions is however also possible and is

discussed in reference [22].

Another technical point when using dimensional regularisation to regulate both IR and

UV divergences that occur in the same integral is that integrals that are IR divergent in
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4 dimensions are well defined in D > 4 dimensions where as UV divergent integrals are
well defined in D < 4 dimensions. This appears to be a problem for loop integrals which
contain both types of divergences but in practise the integrals are analytic in € hence
it’s sign is not important. As long as one calculates the counter-terms from off-shell
objects, ¥, IT*¥ etc., where there are no IR divergences, the UV singularities can still be
subtracted from the any loop integral leaving the IR singularities as an analytic function

of e.
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B. Details for (anti-)self-dual Higgs

amplitudes

B.1. Full N =1 SUSY model with embedded effective

interaction

L = /d40 <1>T<1>+/d29 [%@Miu—w@)trwawa]

+ / i28 [%qﬂz Fia- 4C<I>T)trWde] (B.1)
= F'F-08,0'0%¢ — i@y + %tr D? - %tr GuwG* — iADA

+ {mH <F¢ - %zﬁ?) —C [—F tr AN — 2v2it)® tr (AaD — (o) Ag G4 )

+¢tr(—27;]\17)A—GSDWG’S‘;)] + h. c.}. (B.2)

Because the term linear in the auxiliary field D is also linear in the coefficient C, the
D-term ‘potential’ from integrating out D is quadratic in C and may be neglected. On

the other hand, the F-term interaction has a linear term,

Lr=—|mye— CAA? = —m%0Td + Cmy(dTAA + AR) + O(C?). (B.3)
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B.2. Vanishing of A,(¢,1%,27, 3%, ... . n")

We can also show that A,(¢, 1%,27,3%, ... nt) vanishes using the Berends-Giele recur-

sion relations and off-shell currents [60]. (For a review, see ref. [122].)

The two-point vertex coupling ¢ to two (off-shell) gluons with outgoing momenta k;

and ko and Lorentz indices p1 and po is
Viﬁuz (k1, ko) = Nuuak1 - k2 — K1y Koy, + 'L.Elumwwﬂq1 kgz . (B4)

For ¢! the sign of the Levi-Civita term would be reversed.

First let us compute the simplest amplitudes A(¢,1%,2%) using this vertex. (The
opposite-helicity cases vanish using angular-momentum conservation, As(¢, 1¥,2%) = 0.)
For gluon polarisation vectors we use (2.45). From identities (2.46) it follows that only
the second and third terms in the vertex (B.4) contribute to As(¢, 1%, 2%). Consider the

ratio of their contributions in the positive-helicity case,

e 66 gy o€ TP ET R 2 _ _ltrlys g1 g3 k1Ko (B.5)
—ef ko el Ky 4 ef kel -k )

{60 [ 300 = 5 v vakrka] = o[ 3L+ 51 o] PE 9 T ) Iv¥e i )
LERY €112 |

(B.6)
Using the identities:
, 1
Y popzpa = Ztr('YS’Ym’YM'Y”B'YM)a (B.7)
sl Ew)ulax yHpt) = 2bx)ax], (B.8)
one can show,
pr - €8 [21(12)[21] - [12]{€1) [12] (2¢)
(€2)[21] (€1)[12]
= -1 (B.9)
Repeating the analysis for two negative-helicity gluons yields the opposite sign,
R = € painve€ e TR Y
o —e] ko ey -k
= +1. (B.10)
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Thus the second and third terms cancel in the positive-helicity case, so Az(¢,11,2%) = 0;

whereas they add in the negative-helicity case, for which one finds eq. (3.17).

To compute Ap(¢,1%,2%,3%,... ,n") using the Berends-Giele off-shell currents, we
merely join each gluon produced by the vertices from ¢ tr(G* — GHv )2 to an off-shell

current. The two currents we need are [60, 122]

o _ 1" Pral€™)
JE = grat 2t 0t = VA ED 2 L g (B.11)

where all reference momenta are taken to be equal to £, and

- - ' 1y }Dln|1+ - (1~ I‘é Pim|1F)
JoE=JR1,2h, . nT) = ( § , (B.12)
Lin \/_< =3 1P12
where the reference momentum choice is & = ko, & = --- = &, = k;. In these formulae,

Ppg=kp+kpi1+ ...+ kg1 + kg

Actually, the current (B.12) is not quite sufficient for the proof in the one-minus case.
We really need the current where the negative-helicity gluon appears at an arbitrary
position in the chain of positive-helicity gluons (all with the same reference momentum),
JE(2%,3%,...,17,...,n"). This current has been constructed by Mahlon [153]. The
expression is rather complicated, so we do not present it here. It is sufficient for our

purposes to note that it is also proportional to (17|v* P1,|17).

For A,(¢,1%,27,3%,...,n7"), we take all reference momenta equal to &, a generic
vector. For A,(¢,17,2%,3%,...,nT), we take &1 = ko, Ea=--- =&, = k1 =&. Then in
both cases all the currents attaching to the Higgs vertex are proportional to (§7|v*....
In terms of spinor notation, all currents are proportional to &,. This property is all we

need to demonstrate (again via Fierz identities) that

Jt.Jt=Jt.J- = 0 (B.13)

Ep1 papizpea Jh#ghhz gohs =, (B.14)

These relations in turn suffice to show that the Feynman vertices coupling ¢ to 3 or 4

gluons, ¢ggg and ¢gggg, do not contribute to A, (¢, 17,2%,3%,...,n"). Terms in these
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vertices without a Levi-Civita tensor always attach a Minkowski metric 7,,,, to two
currents; their contribution vanishes according to eq. (B.13). (The same is true of the
first term in the ¢gg vertex (B.4).) Terms containing the Levi-Civita tensor €, uyu5u4
attach it directly to at least three currents; their contribution vanishes according to
eq. (B.14). This leaves just the contributions of the second and third terms in the ¢gg
vertex (B.4). They cancel against each other, just as in the case of As(¢,17,2%) above.
Suppose that gluons p+1 through m (cyclically) attach to one leg of the ¢gg vertex, and
gluons m + 1 through p (cyclically) attach to the other leg. Then the ratio analogous to
eq. (B.5) is

Ry i€z (6 1V Pp1ml€ NE (V"2 Prmrrplé )by K52

— (€| Pms1p Ppriml€ ) E| Porrm Pmi1pl€™)
— | (B.16)

(B.15)

using the same Fierz identities as before. This completes the recursive proof that

An(p, 1%, 2,37 .. nT) =0. (B.17)

. 0= Y
B.3. Vanishing of A,(¢,1;,2%,3%,...,n —1%,n7")
In an analogous way to the recursive proof given in the previous we will prove the
vanishing of Ap(¢, 1"},2+, 3t,...,n—1%,n; *) combining Feynman diagrams and off-

shell recursive currents.

We form the amplitude by contracting the three vertex (B.4) with two off shell currents
as shown in figure B.1. The first of these is the all-plus gluon current, Ji, used in the
previous section (B.11). The second consists of an off-shell gluon attached to a quark
pair and any number of positive helicity gluons which we denote S*/+ It is important
to notice that the scalar ¢ can only couple to gluons in our effective model and hence
there is no ¢ — qg vertex. For simplicity we will set the quark helicity to be negative,

A = —1. The case where A = +1 follows by an identical calculation.

We can compute the case of Az(¢,q; ,gét,qj ) very simply by contracting the ver-
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1

2
_(_ﬁ___b___.. m_l

m

n—1

Figure B.1: The contribution to A,(#,q47,94,-..,9. 1,3}) coming from a quark “all

plus” current and a gluon “all plus” current joined by a ¢gg vertex.

tex (B.4) with a polarisation vector e/ (pz) and a quark-antiquark current e} (k) =
(1—|v"|3—)/s13 where k = p; + p3. Just as in the proof for gluon only amplitudes
we compute the ratio of the 3rd to 2nd term in equation (B.4) (the 1st term gives zero):

ieﬂluzul v et (pz)Eff (k)pgl k"2

R =
—e+(p2) - preg(k) - p2

(B.18)

Using the identities (B.7) and (B.8) it is easy to show Rf = —1 and therefore A3(¢,q;, 95,33 ) =
0. Similarly, we can show that R; = +1 and that the sum of the two terms does indeed

match the proposed form of equation (3.43).

In order to extend this method to prove that the n-particle amplitude vanishes we

make use of the two currents mentioned before:

J¢(1+, el n+) —- <€—|"Y# Pl,n|€+> (Blg)

V2(£1)(12)...(n¢&)’

_ _ &I Pinal€h)
Si(lq,2+,...,n—1+,n,}f) = €223 . m-18 (B.20)

We immediately notice that the currents have a very similar form. Indeed since the

denominators play no role in making sure the amplitude vanishes, it is obvious that the
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proof will proceed in the same way as the gluon case. So all that remains is to note:

Jy-Sy = 0, (B.21)
upe JBILST = 0, (B.22)
upe JETLTL = 0. (B.23)

These relations in turn suffice to show that the Feynman vertices coupling ¢ to 3 or 4
gluons, ¢ggg and ¢gggg, do not contribute to A, (¢, 1¥,2%,3%, ..., nT). Terms in these
vertices without a Levi-Civita tensor always attach a Minkowski metric 7,,,, to two
currents; their contribution vanishes according to eq. (B.21). (The same is true of the first
term in the ¢gg vertex (B.4).) Terms containing the Levi-Civita tensor €,, y,u,., attach
it directly to at least three currents; their contribution vanishes according to egs. (B.22)
and (B.23). This leaves just the contributions of the second and third terms in the ¢gg
vertex B.4. They cancel against each other, just as in the case of A3(¢,q7,94,33)
above. Suppose that the quark current involving gluons 2 to m — 1 is attached to one
leg of the ¢gg vertex, and that the current involving gluons m to n — 1 is attached to

the other leg. Then the ratio analogous to eq. (B.18) is,

1€y parnvn (€ IV Prm—1[€1) (€ |2 }Dm,n—l|€+>p11/,lm—1p;in_1

Rt = B.24
" =7 Pmn—1 Prm-1EN) 7] Prm—1 Pmn—1/€T) (B.24)
= -1 (B.25)
This completes the recursive proof that,
An(b,q7,95 s+ 9m-1,Gn ) = 0. (B.26)

A similar result holds when the quark has positive helicity.
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