
Durham E-Theses

Commentary on the Portfolio of Compositions

submitted for the degree of PhD in Composition:

Heart of Light, Light of Heart, Spanish Ladies, Down

Among the Dead Men, Pavanne, Christ ist

Erstanden, Rezoplucker, Cliqbuz, Circle Theory.

SWAIN, KELCEY,ROBERT

How to cite:

SWAIN, KELCEY,ROBERT (2010) Commentary on the Portfolio of Compositions submitted for the

degree of PhD in Composition: Heart of Light, Light of Heart, Spanish Ladies, Down Among the Dead

Men, Pavanne, Christ ist Erstanden, Rezoplucker, Cliqbuz, Circle Theory. , Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/233/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/233/
 http://etheses.dur.ac.uk/233/
http://etheses.dur.ac.uk/policies/

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://etheses.dur.ac.uk

D  M

C   P  C 
    PD  C

Candidate:

Kelcey Swain,

St. Chad’s College

Supervisors:

Prof. Peter Manning

Dr. Martyn Harry

th April 

ii

Abstract

Portfolio Contents:

• Heart of Light - Industrial Electroacoustics. First performed in Durham in November .

• Light of Heart - Physical Modeling Electrominimalism. First Performed in November .

• Spanish Ladies - Vocal Electroacoustics using folk song. Commissioned by the Durham New

Music Marathon and first performed in Durham in June .

• Down Among the Dead Men - Vocal Electroacoustics using folk song. First Performed in

November .

• Pavanne - Vocal Electroacoustics using Loré Lixenberg’s voice. Commissioned by Loré Lix-

enberg and first performed at the CoMA Summer School, July .

• Christ ist Erstanden - Vocal Electroacoutics using Jason Walsh’s voice. Commissioned by Loré

Lixenberg and first performed in Durham in January .

• Rezoplucker - Live performance using the accelerometers from the Nintendo Wii. Commis-

sioned by Culture Lab and first performed in Newcastle in January .

• Cliqbuz - Live performance using I’s Ethersense. Commissioned by Culture Lab and

first performed in Newcastle in January .

• Circle eory - Live performance using circle packing algorithms and ChucK. Commissioned

by Maebh Long and first performed in Durham April .

Audio CD Track List:

. Heart of Light - ’”

. Light of Heart - ’”

iii

. Spanish Ladies - ’”

. Down Among the Dead Men - ’”

. Pavanne - ’”

. Christ ist Erstanden - ’”

. Rezoplucker - ’”

. Cliqbuz - ’”

DVD Video Contents:

. Cliqbuz  - ’”

. Cliqbuz  - ’”

. Rezoplucker  - ’”

. Rezoplucker  - ’”

. Circle eory - ’”

iv

Abstract:

e portfolio contains various works which explore the interplay between live performance of

electroacoustic music and performance of pre-written work. Control of real-time parameters in

computer generated music is now so prevalent that it can be used in the compositional process.

is shift in possibilities is the focus of this commentary. It is not the intention of this commentary

to either tell the reader how to interpret the music or to discuss æsthetic issues. is commentary

should be used more like a construction manual to aid the listener where they might not be familiar

with the concepts and techniques employed in the music. e introduction sets out the music aims,

the conclusion explains how these aims are achieved in various ways and each chapter in between

focuses on a different piece in the portfolio.

v

Acknowledgements†

ere are many people who deserve thanks for all their help and support but I would like to

single out a few for their crimes in allowing me to create such noises. anks go to Ron Berry and

Martin Allison, the most helpful technicians an electroacoustic composer could have hoped for,

not only was their technical expertise invaluable but they have always been there to juggle ideas and

hair-brained schemes with me; My family for believing that what I do is of value and not merely

frivolous noise making, even when it might be; Dr. Martyn Harry and Prof. Peter Manning for

prodding me in the right directions when my imagination might have got the better of me; all

my fellow postgraduates and friends with whom I have enjoyed many performances and concerts

over the years; to Culture Lab, Newcastle University for letting me use their workshops to create

instruments; and finally Eric Egan for being easy competition.

e completion of this PhD was made possible by the generous support of the Arts & Hu-

manities Research Council (), who have funded the composer’s study at Durham University

–.

†e copyright of this folio and commentary rest with the author. No quotation from it should be published

without his prior consent and information derived from it should be acknowledged.

vi

Contents

Abstract iii

Acknowledgements vi

List of Figures and Listings ix

 Introduction 

 Heart of Light 

 Light of Heart 

 Spanish Ladies 

 Down Among the Dead Men 

 Pavanne 

 Christ ist Erstanden 

 Rezoplucker 

 Cliqbuz 

 Circle eory 

vii

 Conclusions 

Bibliography 

viii

List of Figures

. Signal flow of Audiobulb’s SophiaABV . 

. Signal flow of the ‘Erratic Triangles’ in RezoPluckerSynth 

. Signal flow of RezoPluckerSynth . 

. e source material for Spanish Ladies . 

. Simplified signal flow of the Reaktor patch for Spanish Ladies 

. Channel layout for the eight channel version of Spanish Ladies 

. Illustration of Christ ist Erstanden from Codex Admont  

. e Nintendo Wii controller (right) and Nunchuk (left) 

. e on-screen display of RezoPluckerSynth . 

. Infrared LED and receiver attached to a prototype board 

. A prototype of the hardware of the Cliqbuz instrument 

. e composer working on Cliqbuz at Culture Lab 

. e on-screen display of the Cliqbuz synthesis engine 

ix

List of Listings

. SuperCollider code for spectral sine waves . 

. SuperCollider code for pedal notes . 

. SuperCollider code for the “asynchronous” pattern 

. Python programme for generating the GlovePIE file 

. An example GlovePIE file generated by the Python file . 

. JavaScript code for creating SVG circles and send the OSC signal out via Lily . . . 

. ChucK code for receiving the OSC signal and processing the sine waves 

x

Chapter 

Introduction

I dream of instruments obedient to my
thought and which with their contribution
of a whole new world of unsuspected
sounds, will lend themselves to the
exigencies of my inner rhythm.

Edgard Varèse, 

My research interests lie predominantly in electroacoustic improvisation and performance tech-

niques specifically focusing on the challenges inherent in the interaction between human and ma-

chine. ere are two main areas of focus involved with this, firstly in the creation of performable

electroacoustic instruments and secondly in their performance practice. It is the aim of my com-

positional research to go beyond the simplistic and restrictive mouse and keyboard combination by

building non-logical and non-intuitive systems for the creation of electronic music. ese systems or

instruments should be performable by musicians and non-musicians alike with very little rehearsal

time as they combine control and creation coherently. It is my intention that these “instruments”

are viewed as either sonic artefacts or, even better, pieces of music in their own right in as much

as a musical score is often seen as a piece of music. As such they would hold a comparable rela-

tionship with graphical scores, as they would both require a certain amount of improvisation to be

realised musically whilst imposing limitations and restrictions on the possible outcomes. Parallels

in instrumental music can be drawn with La Monte Young’s e Well Tuned Piano where there are



different potential performances but the nature of the instrument shapes the possible outcomes

As Elvin Jones said ‘ere’s no such thing as freedom without some kind of control, at least self-

control or self-discipline’, however the imposed discipline in many of my works occurs at the

instrument level. Seeing as the performer could not possibly be experienced with the instrument

the usual self-discipline does not apply readily so the physical and structural aspects of instrument

constrain and restrict the performer. Comparisons can also be drawn with the ideas of Boulez and

Lachenmann who have created “instruments” from extended techniques and systems by which the

music is shaped but they approach this idea from the opposite side.

Physical performance restrictions can be harnessed such that the performer is guided though

the possibilities of the instrument by the constrained methods of interaction, this means that one

should not be able to take the instrument in a direction that will produce “bad” results. To aid

this playability I am also interested in transgressing the boundaries between the macro level and

the micro level, the structural level and the sonic level of music. My instruments, pieces and per-

formances are aimed at a coherence of audio creation where numerical elements controlling the

spectral qualities of timbre are just as capable of controlling the global music structure of the piece

and vice versa. is can be realised by employing elements such as fractals, chaotic algorithms,

neural networks and other non-linear functions in the synthesis of the sound. As Di Scipio writes,

‘of primary interest was the merging of them, i.e. the blurring of the clear-cut distinction between

the macro-level articulation of musical structure and the micro-level, timbral properties of sounds’,

and he goes on to say that, ‘algorithmic composing was to result not so much in a music of notes

(the “lattice” structure of quantised pitch, duration and intensity values) as in sound textures and

complex sonic gestures defined compositionally by their timbre and internal development’. It is

this ‘blurring’ that I have attempted to encourage in my own work.

e real-time performance and audience interaction aspects of this music are also convenient
Taylor, 
Di Scipio, 



ways of avoiding the problems of acousmatic listening in electroacoustic music, a problem I face with

my secondary research interest, that of creating electroacoustic composition in a non-real-time and

non-improvised environment. e challenges in sustaining interest in electroacoustic music over a

large scale work where there is no performer to enhance the legibility of sonic results are difficult to

overcome especially with abstract sounds that cannot be traced to any real world events or actions.

In this commentary I hope to show how I have addressed these challenges in my music.

My research into creating electronic musical instruments is influenced by the ongoing work in

collaboration at STEIM (Studio for Electro-Instrumental Music) which has produced some remark-

able examples of organo-technological synergies specifically the work done by Sensorband which

is comprised of Edwin van der Heide, Zbigniew Karkowski, and Atau Tanaka. In Sensorband the

three performers play their own electronic instrument; van der Heide plays the MIDI-conductor,

Karkowski plays a cage of sensors and Tanaka plays Biomuse. Of these three instruments the first

is most similar to my own Rezoplucker in its technology if not its sound and the second is most

like my Cliqbuz. Biomuse is possibly the most interesting from a construction perspective as it can

read its data from electromyograms (EMGs), electroencephalograms (EEGs), electrooculograms

(EOGs) and electrocardiograms (EKGs). All this means that the instrument is being controlled

simultaneously by the conscious and unconscious movements of the body and its organs.

e chapters of this commentary are divided into detailed examinations and explanations of

each piece in the portfolio. In each case the piece is taken as a discrete unit unrelated to the others

and explored for its own æsthetics and techniques. e sum total of the portfolio will be brought

together in the concluding chapter. It is also worth noting that whilst it might not normally be a

good idea to refer to so many online sources in an academic commentary, the nature of this folio of

compositions is such that the technical issues in computer-aided and generated composition take

precedence over the theory and practice of electroacoustics. In the case of technical information on
Bongers, 
Knapp, 



electroacoustic systems the relevant information is best taken from the internet, especially the web

sites of software developers. is information would often be out of date by the time it is published,

if that ever even happens.



Chapter 

Heart of Light

Ancient life was all silence. In the th

century, with the invention of machines,
Noise was born. Today, Noise is
triumphant and reigns sovereign over the
sensibilities of men.

Luigi Russolo, e Art of Noises

Heart of Light is a study of modulated synthesis in its extreme. e piece explores the levels of

interaction between the micro scale and the macro scale by transcending the arbitrary boundaries

between note and form. In the discipline of electroacoustic composition it is possible for a single

note to transform into a full melody of sounds in an organic manner just as it is possible for a

whole phrase to be reduced into a single utterance. As humans we perceive this boundary due to

our brain interpreting anything with a rate of repetition of over around Hz as a single sound

with a perceived frequency of around Hz. Reduce this rate and the sounds become repetitions

of the same thing. If the sound can be slowed down without losing its core make up then we

can start to hear inside the sound on a different level. In the real-world the sounds that would

be capable of this interplay and exploration would be sounds that consist of discrete repetitions,

not for example the sinusoidal periodicity of most orchestral instruments. In the electroacoustic

domain this effect can be readily achievable using amplitude modulation, gating and modulating

low-frequency oscillators. If we were to start with a single click or pulse and control the trigger rate



with a variable control then we could speed the rate of clicks to above Hz to create a pulse wave

which would sound as a single note. It would be similar if a gated sine wave were used. Now we

control the amplitude of that pulse wave by another low frequency oscillator and we get a double

level of modulation in our sound. With a large network of similar modulators we can very easily

produce some very complicated sounds. An example of a large complicated system of modulators

is Audiobulb’s synthesiser, SophiaABV; fig. . shows its signal flow diagram.

Sophia is undoubtedly a very complicated design of synthesiser, so much so that the designer

decided that the atmosphere invoked by its sounds should take precedence over its legibility and

usability, asking instead that the user plays with it and learns how it reacts to the controls. x|k, the

creator of the synthesiser, writes in its manual, ‘Sophia may be confusing to grasp at first, because

the GUI (Graphical User Interface) is based on “setting the vibe” as opposed to usability. is

was purely an artistic decision, rather than a practical one’, and goes on to say that the best way

to understand it is by studying the signal flow diagram shown in fig. ., but the diagram is very

unclear.

Heart of Light was composed entirely using sounds generated by Sophia in four  minute

real-time recordings. is was only possible after extensive experimentation and practice on the

instrument in order to produce even the slightest levels of predictability. e resultant sound world

is mechanistic and industrial due to the comparability of discrete periodicity in Sophia and in real-

world machines. As with Spanish Ladies (Chapter ) the source material was sequenced and com-

posed into the piece using Cakewalk’s Sonar.

e form of the piece is relatively free due to the experimentation of the interplay between the

micro sound-world and the macro sound-world. erefore the composition of the piece had to be

approached holistically. Having said this the piece starts and ends in a similar sound-world so as to

lend a sense of coherence to a piece that would otherwise sound alien to most listeners. e middle

section of the piece which starts at around ’”, is again comparable to the middle of its analogue
http://www.audiobulb.com/create/sophia/Sophia1_1.zip



Figure .: Signal flow of Audiobulb’s SophiaABV



Spanish Ladies by featuring a large scale stasis which acts as a mirror through with the piece reflects

itself.

e overall structure of the piece after the introduction is that of a journey though levels of

modulation and back round to itself. In this way it can be considered like the harmonic cycle of

fifths which lead inexorably back to the starting point but take in all possibilities en route or like

a rotating tesseract which appears in three dimensions to turn itself inside out only to end up as it

started.



Chapter 

Light of Heart

How soft the music of those village bells
Falling at intervals upon the ear
In cadence sweet, now dying all away,
Now pealing loud again, and louder still,
Clear and sonorous as the gale comes on.

William Cowper, e Task

Light of Heart, as the name suggests, was written as a piece to contrast with Heart of Light whilst

also being entirely synthetically produced. On one level the piece is minimalist in its harmonies to

the point of being one single extended cadence which gets close to resolving itself but is ultimately

thwarted on the micro-level. However, the sound material is taken from a highly chaotic synthesis

engine.

e source material for this piece is divided into two distinct sound worlds. One is the drone

that produces the C and B along with their full array of overtones. e other is the physical mod-

elling engine which produces the plucked sounds. e drones are produced by a built-in Reaktor

patch called SpaceDrone by Martijn Zwartjes. SpaceDrone works by assigning an array of tones or

pitches, in this case built up from the harmonic series, to independent but stochastically controlled

amplitude envelopes, panning and resonance feedback loops and then giving the user global controls

for the density of notes at anyone time, and the global parameters for the independent envelopes,

plannings and feedback loops. As such, each “note” has autonomy but follows a global trend. e



outcome of this method of synthesis is the ability to produce very realistic real-world sounds, in

this case a metallic and resonant “wind” sound.

e plucked sounds are made from a synthesiser which I built specially for Light of Heart called

RezoPluckerSynth. Each channel of this synthesiser is constructed from a triangle LFO (Low Fre-

quency Oscillator) with a small random amount of deviation which controls the frequency of a

second triangle LFO which in turn controls the pitch of a triangle wave oscillator, as shows in

fig. .. is erratic waveform is low-pass filtered and then fed through a feedback resonator which

resonates the pitches played on a MIDI Keyboard. e signal flow for the resonators is shown in

fig. .. e final sound is produced as the oscillators pass the resonant frequencies on their random

walk coupled with a very short triangle wave played at the resonant pitch in order to guarantee a

sound as soon as the key is depressed.



Figure .: Signal flow of the ‘Erratic Triangles’ in RezoPluckerSynth



Figure .: Signal flow of RezoPluckerSynth



Chapter 

Spanish Ladies

We will rant and we’ll roar
like true British sailors,
We’ll rant and we’ll roar
all on the salt sea.

Chorus of Spanish Ladies

e traditional song Spanish Ladies is generally considered to be a working song as opposed to

a recreational song despite the claims of some earlier scholars of folk music. e former is known

as a sea shanty and the latter is a usually referred to as a sea song. e arguments for and against are

beyond the scope of this commentary but I decided for the purposes of my composition to assume

that it is a sea shanty. Purists claim that a sea shanty, being a work song used for its rhythmic devices,

should neither be accompanied nor arranged but merely sung unaccompanied and in unison by

a “choir” of men. To this end I chose to create an electroacoustic work using a single recording of

the first verse of the shanty as my only source material. By definition sea songs and shanties are

strophic and given that the lyrics of the song play an ancillary rôle in my piece it was not necessary

to record any more verses.

Seeing as the melody of the song has many variants I wrote out a version that incorporated

aspects of the song I wished to include in my final work. My main concern was that the method
Bullen, –
Saunders, –



of treatment would require a specific and unchanging mode that would allow any one part of the

melody to harmonise with any other part. Fig. . shows the song with the lyrics of the first verse

as it was recorded, albeit not at pitch. e range at which it was recorded was decided by the timbre

of the voice at its various registers.

Voice 
Fare


well


- and


a


dieu


- to you,

  
Span


ish


- La dies,

  
- Fare


well


- and


a


dieu


- to you la

  
dies


- of


Spain;


For



9


we've


re


ceived


- or


ders


- to


sa il- for

  
old


En gland,

  
- But we hope

  
in


a


sho rt- time

  
to


see


you


a


gain.


-

Figure .: e source material for Spanish Ladies

e structure of this new version of Spanish Ladies is loosely based on a Sonata form but it is

modified to accommodate the source material in its untransposed iterations. e first theme is the

rhythm-less wash of drawn-out ethereal sounds produced from the original song lasting for about a

minute and a half. With no traditional transition this leads into the second theme, which contrasts

with the first by being unnaturally and stutteringly rhythmic to the point of being uncomfortable.

e long development section is introduced not by a codetta but by a “reveal” of the untreated

source material which invites listeners to draw a point of musical reference for the piece. In the

development section we first hear a  part variation of the second theme which decays into a stasis

of long notes reminiscent of the first theme but with no connection to the melody of the original

song. is stasis is punctuated by a single note, again with the rhythmic stutterings which introduces

a chattering of voices. is chattering can be compared to the previous stasis point; the chattering

is to the stasis as the second theme is to the first. Furthermore the chattering is an agent to bring

about the recapitulation at about nine minutes through the piece. e recapitulation cannot be

treated as a normal recapitulation mostly because at no point have we modulated to a different key



as it was not my intention to treat the source material in this harmonic manner. To create a sense

of resolution between the two themes they are allowed to coexist and play off each other. While

the first theme finds its way slowly towards the tonic the second theme reaches its conclusion in a

short coda of forceful repetition on a single note with no ambiance to hide its unnatural inhuman

sound.

Spanish Ladies is believed to have been a shanty for use whilst turning the capstan of the ship,

therefore its rhythm and more importantly its pulse was arguably the only relevant aspect of the

song, all else being secondary. Fortunately during the performance of my version of this shanty

no one is expected to undertake hard labour so the pulse no longer hold any value beyond its

æsthetic qualities. However, the primacy of the rhythm and pulse of the shanty has not been lost

in this piece. With the obvious exception of the “reveal” section, the rhythm of the original shanty

is utterly fragmented to the point of it no longer being an audible consideration. On top of the

original song a secondary pulsing layer has been added which is of perfect regularity but too fast to

accompany any ship work.

e effect of the piece is a dialogue between natural organic and unnatural mechanical sounds;

between song and pulse. e pulse is repetitive and all too perfect electronically performed micro-

sounds whilst the song is ethereal and expansive. e piece also plays with the origins of granular

processing but by separating out the grains and removing all stochastic variance it ultimately fails

to produce the organic sounds of granular techniques. Even the organic sounds heard in the first

theme are not created using granular processing as will be described.

e piece was created using a patch which I made in Native Instrument’s Reaktor graphical

programming environment. e patch is built from four sample buffers each containing identical

versions of the original source material in its untreated form, the buffers are designed so that they

do not simply play the sample through but repeat a minute section of the sample defined by the

position of the control faders as shown in fig. .. e first two buffers are sent straight to the

mixer with no effects or treatment but the second pair of buffers are sent through a reverb unit



Figure .: Simplified signal flow of the Reaktor patch for Spanish Ladies

which is set with a very long diffusion time. e mix of the reverb unit is also determined by the

controller which means that if the mix is set to dry then this pair of buffers acts the same as the

first pair. However if the mix is set to wet then these buffers no longer sound like the stuttering

first pair, instead they take on a faux granular appearance. Importantly, they do not actually receive

any actual granular treatment but the reverb blends the gaps between the fast stuttering repetitions.

By changing the mix on the reverb unit the sound can blend seamlessly between the sounds heard

in the first theme and the sounds heard in the second theme, this is most prevalent at the very

end of the piece where the reverb is slowly removed exposing the repetitions without any ambient

reverberations.

e patch was used to create short sections of the final composition which were then sequenced

and arranged in the DAW Sonar. Both a two channel and an eight channel mix were written for

CD and for concert performance respectively. e eight channel mix should be performed in the

speaker configuration shown in fig. .. For the most part buffers  &  are sent to the left channel

and buffers  &  are sent to the right channel despite the fact that the source recording is in stereo.

is allows the samples to move abruptly in and out of synchronisation with the samples of their



1 2

3 4

5 6

7 8

Audience

Figure .: Channel layout for the eight channel version of Spanish Ladies

stereo partner buffer. is is mostly only used in the stutterings of the first two buffers but it does

produce a rather unsettling panning experience for the listener as the sounds become very difficult

if not impossible to place across a stereo field. is effect is only usefully audible in the two channel

mix of the piece but the eight channel version has the compensation of being spacialised around

the audience which allows “voices” to appear from many direction.



Chapter 

Down Among the Dead Men

Here’s a health to the King and a lasting
peace:
to faction an end, to wealth increase!
Come, let us drink it while we have breath,
for there’s no drinking after death;

Down Among the Dead Men

Down Among the Dead Men was written as a companion to Spanish Ladies (Chapter ) but

was designed both as a contrasting piece and an exercise in learning to write SuperCollider pro-

grammes. SuperCollider is an environment and language for programming real-time audio synthe-

sis and processing which is comprised of both an interpreted language and a synthesis server using

OpenSoundControl or OSC to communicate. It is a robust tool which harnesses the power of

object-oriented structures combined with built in unit generators.

e traditional English song Down Among the Dead Men is generally attributed to Robert Dyer

although there is an earlier version of the song with lyrics in memory of Queen Anne. e song

was chosen as both a point of comparison and contrast with Spanish Ladies. ey are similar in

that the subject matter of both songs is worldly pleasure, in Spanish Ladies the object of interest is

the eponymous ladies and in Down Among the Dead Men the main interest is having a drink while
SuperCollider can be downloaded freely from http://supercollider.sourceforge.net/
For more information on OSC see http://opensoundcontrol.org/
Chappell, –



you are still able to. e contrast between the two songs is the outlook taken by each, one holds

optimism for seeing the ladies again whilst the other is more concerned with being able to ‘...drink

it while we have breath, for there’s no drinking after death’.

e first verse and chorus of the song were sung recorded and processed to create a whispering

and distorted version of the song which can be heard at ’” and ’”. e rest of the piece is built

up from synthesis alone using SuperCollider and processing such as auto-panning and granulation.

e spectral clusters were reproduced unprocessed and recorded directly from SuperCollider using

the code in listing .. e code creates a continuously cyclical cluster of  sine waves, each one at

a random pitch between Hz and Hz and then applies an envelope to each of the individual

sine waves. e resultant sound is decidedly eerie and continues through two-thirds of the piece.

Listing .: SuperCollider code for spectral sine waves

1 s . boot ;
2 (
3 {
4 loop ({
5 {
6 var n =  ;
7 Mix . arFill (
8 n ,
9 // 32 oscillators with random pitch and
10 // random amplitude envelopes
11 {
12 SinOsc . ar (
13 [  .  . rrand (   ) ,   .  . rrand (   )] ,
14  ,
15 n . reciprocal
16)
17 *
18 EnvGen . kr (
19 Env . sine ( .  . rrand ( )) ,
20 doneAction : 
21)
22 }
23)
24 *
25 EnvGen . kr (
26 Env . perc (  , ) ,
27 doneAction :  ,
28 levelScale :  . 
29)

ibid, 



30 } . play ;
31  . wait ;
32 })
33 } . fork ;
34)

Also through most of the piece are various pedal notes. ese were created using the code in

listing . but were enhanced with an auto-panning filter to create a sense of continuous movement

within the sound.

Listing .: SuperCollider code for pedal notes

1 s . boot ;
2 (
3 SynthDef (\ dynklank2 , { arg out = , freq ;
4 // A synth definition using the built in DynKlank algorithm
5 var klank , n , harm , amp , ring ;
6 n =  ;
7 harm = Control . names (\ harm) . kr (Array . series ( ,  , )) ;
8 amp = Control . names (\ amp) . kr (Array . fill ( ,  .  )) ;
9 ring = Control . names (\ ring) . kr (Array . fill ( , )) ;
10 klank = DynKlank . ar (‘ [harm , amp , ring] ,
11 { ClipNoise . ar ( .   ) } . dup , freq) ;
12 Out . ar (out , klank) ;
13 }) . send (s) ;
14)
15
16 // Evaluate these lines to play a note
17 a = Synth ("dynklank2" , [\ freq , rrand (  ,   )]) ;
18 b = Synth ("dynklank2" , [\ freq , rrand (  ,   )]) ;

e final pattern created in SuperCollider were the unusual metallic sounds towards the end of

the piece, from around ’” onwards. is was a polyrhythmic asynchronous pattern, coded in

listing ., and then granulated to an uncomfortably slow speed without changing the pitch. e

code uses the instrument defined in the SynthDef (lines –), which is, in simplistic terms, a

resonated formant and plays them according to the patterns a (lines –) and b (lines –).

Both patterns are polyrhythmic, in that they have non-equal length lists for durations and pitches,

but also the length of the two patterns are not equal. is means that the resulting pattern has a

very long repeat length which is only made longer by granular stretching.



Listing .: SuperCollider code for the “asynchronous” pattern

1 s . boot ;
2 (
3 SynthDef (\ dynklank , { arg out = , freq , dur = ;
4 // A synth definition using the DynKlank algorithm
5 var klank , n , harm , amp , ring , env ;
6 n =  ;
7 harm = Control . names (\ harm) . kr ([ .  ,  .  ,  .  ,  . ]) ;
8 amp = Control . names (\ amp) . kr (Array . fill ( ,  .  )) ;
9 env = EnvGen . kr (Env . perc ( .    , dur) , doneAction : ) ;
10 ring = Control . names (\ ring) . kr (Array . fill ( , )) ;
11 klank = DynKlank . ar (‘ [harm , amp , ring] ,
12 { Formant . ar (XLine . kr (  ,  , ) ,
13 XLine . kr ( ,  , ) ,  ,  .   ) } . dup , freq) ;
14 klank = klank * env ;
15 Out . ar (out , klank) ;
16 }) . send (s) ;
17)
18
19 (
20 (// Two polyrhythmic patterns of different lengths
21 a = Pdef . new (\ example1 , Pbind (\ instrument , \ dynklank ,
22 \ freq , Pseq ([  ,  ,  ,  ,  ] , inf) ,
23 \ dur , Pseq ([ .   ,  .  ,  .   ,  .  ] , inf) ;
24)
25) ;
26 b = Pdef . new (\ example2 , Pbind (\ instrument , \ dynklank ,
27 \ freq , Pseq ([   ,  , ] , inf) , // freq arg
28 \ dur , Pseq ([ .   ,  .  ,  .   ,  .  ] , inf) ;
29)
30) ;
31
32) ;
33 (
34 a . play ;
35 b . play ;
36)
37)
38
39 (
40 a . stop ;
41 b . stop ;
42)

e piece finished with a transposed version of the chorus which is not otherwise processed, the

final words “let him lie” are heard on their own. Because the words are slowed down so much you

can hear the movements of every part of the mouth as the final words trails off.



Chapter 

Pavanne

Order is repetition of units. Chaos is
multiplicity without rhythm.

M. C. Escher

Pavanne was commissioned by Loré Lixenberg as a piece to lead into Trevor Wishart’s Anticredos

from a performance of a polyphonic mass setting. e piece was first played in a dark concert hall

on four channels surrounding the audience.

Anticredos, composed in , ‘gradually deconstructs the word ‘Credos’ by gradual transforma-

tions of its sonic constituents’, the word chosen specifically for its wide range of sonic constituents.

Pavanne does not deconstruct anything but instead destroys a song sung by Loré Lixenberg, replac-

ing it gradually with dirty noise created using a telephone wired into a resonator built in Reaktor

and a VST plugin called Glitch. e vocals are distorted as the glitchy sounds take over until

finally the single voice is heard reverberating at the ending.

e two vocal recordings used for the base of this piece were provided by Loré Lixenberg but

the source music is unknown to the composer. e two recordings were blended together using

the Reaktor patch Grainstates to create an ambient wash over which the development takes place.

As the piece starts the vocal lines are presented and then removed behind a layer of processing in
Wishart, taken from personal correspondence with the composer.
http://illformed.org/plugins/glitch/



order to create a calm and hospitable aural environment for the audience. e intention is to take

the audience into a simple and safe sound-world. Once this has been achieved the piece slowly

introduces the unusual electronic sounds that would not normally be associated with the kind of

sound-world that has been explored using the vocal recordings. In the original performance of

Pavanne the electronic sounds came from behind the audience in an attempt to further disturb and

alienate the listeners. As the glitchy sounds start to take over the piece the vocal sounds also begin

to break down, not in a structural way but by being compressed and distorted. As the whole piece

reaches its climax the sounds start to become unbearably loud and overpowering, very much in

contrast to the serene mood created at the opening. e crescendo continues with no obvious sign

of ending until it abruptly stops leaving only an almost unmodified playing of the ending of one

of the two original recordings. is last ten seconds or so are there to remind the audience that

although they have been taken through a dark and hostile experience there was always a strand of

beauty and simplicity to lend a sense of safety.

ere were problems to overcome when faced with planning this piece, firstly I had only read

about Anticredos and had not heard it before the performance and secondly I was asked to use

specific source material. It was made clear to me that the intention of the piece was to allow the

performers time to make it from the rear of the performance space, where they had been singing,

to the front of the room for their performance of Anticredos. At this stage it seemed obvious to play

with the two opposing ends of the performance space given that the concert itself was to take place

at both ends. e fact that Pavanne reverses the chronological and stylistic orientation of the space

is not accidental, Pavanne swaps the room around to better prepare the audience for the change in

genre that they are about to encounter and created a cultural rotational symmetry for the concert.

e theme of Pavanne, as with much of my music, is the exploration of the interplay between

order and chaos as if it were possible to have a fader and change the level of entropy in a given

system. In this piece it is not that the vocal lines themselves are ripped apart but that something

unpredictable and disturbing creeps in to obscure the designed beauty of the human voice singing



highly structured melodies. It is as if the purity of its design is infected with something it cannot

control or incorporate.

e reasons for returning to the simplicity of the voice at the very end of the piece are purely

musical and not conceptual. In ending Pavanne at the climax of the crescendo the piece would have

left listeners confused but by allowing order to exist at the closing, even if very quietly, it draws the

listener back to what might be called a comfort-zone.



Chapter 

Christ ist Erstanden

Christ ist Erstanden
Von der Marter alle;
Des solln wir alle froh sein,
Christ will unser Trost sein.
Kyrieleis.

Medieval Easter Hymn - Christ ist
erstanden

Christ ist Erstanden was written during and after recording sessions with Jason Walsh and Loré

Lixenberg. e recordings were, originally, for an Easter Passion Play with electronic interplay to

be performed in a concert called Osterspielfragmente in the monastery at Klosterneuburg, Vienna.

During these recording sessions the medieval hymn Christ ist Erstanden was also recorded in multi-

track with the aim that a piece could be constructed from it. e original setting was taken from

manuscripts found in Klosterneuburg Stiftsbibliothek and was transcribed by the British-Austrian

composer Robert Crow.

Christ ist Erstanden is one of the oldest Easter hymns if not in fact the oldest. Many variations

exist in manuscript form across Southern Germany and Austria, but this version is taken from the

Library of the monastery at Klosterneuburg. Crow then transcribed the chant into a six part setting.

e setting was divided between three mezzo-soprano and three baritone parts. During recording

Loré Lixenberg sang the three mezzo-soprano parts and Jason Walsh sang the three baritone parts.
Schweitzer



Figure .: Illustration of Christ ist Erstanden from Codex Admont 



e recordings were multi-track recorded and the result was used as source material for this piece.

e facsimile manuscript shown in fig. . was originally from the Benediktinerstift Admont, about

 miles west of Klosterneuburg. On the second line of this illustration there is a passage beginning

with an large red ‘C’ which is the start of the passage used in the piece Christ ist Erstanden.

e first verse, sung by Jason Walsh, forms the majority of the source material. e words of

the first verse are:

German:
Christ ist Erstanden
Von den Marter alle;
Des solln wir alle froh sein,
Christ will unser Trost sein,
Kyrie eleison.

English:
Christ is risen
From all tortures;
erefore let us rejoice,
Christ shall be our solace,
Kyrie eleison.

Christ ist Erstanden opens with an unmodified presentation of the verse. On the ‘-son’ of ‘eleison’

a stretched granulated version of the verse plays which is further processed by very rapid repetition

of samples, on top of this is an ethereal extraction of part of the verse in reverse. At this point, not

only are samples of Jason Walsh’s voice made to sound an open fifth throughout, but there is also a

layer of incomprehensible speech. e text of the speech is taken from a letter often attributed to

Chief Seattle (–) concerning the ownership of land and the impact of modernity dated

. e letter was actually written by the screenwriter Ted Perry for Home, a film about ecology.

e text was recorded in a half-whispered voice and then chopped into three equal sections, these

sections were layered on top of each other to further hide the actual words. e only words that

were intended to be comprehensible were the last sentence of the letter, ‘e end of living and

the beginning of survival’. It was common in Medieval music for sacred and secular texts to be
For the full text of the letter see: http://www.essentia.com/book/history/chiefseattle.htm



combined as different musical lines, a practice that persisted into the early Renaissance and into

sub-genres such as the L’homme Armé Mass.

e text of the letter and the text of the song are in contrast with each other in mood, the song

celebrates Jesus’ resurrection on Easter Sunday and the letter laments the destruction of natural

environment by irresponsible attitudes towards the earth. is opposition is expanded by the omi-

nous and disturbing sound-world that is created by the electronic processing. If there were to be

a moral to Christ ist Erstanden it would be that the world is not saved, and neither should we take

‘solace’ in anyone nor rejoice. is meaning might not be apparent from listening to the piece but

it could be considered esoteric.

e multi-track recordings are then placed out of time in juxtaposition with each other in an

attempt to disjoin the harmony of the original song. e samples are further broken by glitchy

artifacts. ese disjointed lines end with a warning ‘beep’, indicating a break in the sound-world,

and a second ‘beep’ which announces the end of the break. At this point the song is played as

originally written over the continuing background growls. e final ending of the piece is the same

as the opening, it is as if the piece has gone nowhere and learnt nothing. It pieces together the song

from its constituent parts, but ultimately only remembers the first verse.



Chapter 

Rezoplucker

e gesture and the tone, e entrance
and the exit.

Sathya Sai Baba

Despite the short amount of time that the Nintendo Wii has existed, there is nothing new

about using its remote controller (fig. .) as an interface for artistic expression. e fact that it

can connect to an average computer via the Bluetooth protocol allows for its use by almost anyone

for any purpose that the user can imagine. However, unless one uses the Max/MSP externals to

gather the raw data one must script the data using a versatile programme called GlovePIE which

was originally written for manipulation of the P glove.

GlovePIE can take any number of inputs and map them to various outputs, for example, one

can map a joystick to the controls of a mouse. When used in conjunction with MIDI Yoke one can

take the raw data from the Wii remote and apply it to various MIDI control or note values.

To generate the script for GlovePIE I wrote a small Python programme (see listing .) which

would randomly assign note values to each of the three axes such that depending on which button

is held down the accelerometers would change the velocity values of the relevant note.

is MIDI data was routed through the virtual patch bay, MIDI Yoke, and the data then
http://carl.kenner.googlepages.com/glovepie
http://www.midiox.com/myoke.htm



appears as a MIDI input in Reaktor.

I built a synthesiser within the Reaktor environment based upon the principles of physical

modelling synthesis. In effect the synthesiser was a modified Karplus-Strong algorithm. However,

instead of filtering a noise burst, an LFO controlling the frequency of a second LFO which in turn

controlled the frequency of a triangle oscillator was used as the base tone. So, instead of noise

an unpredictable collection of sweeping tones would be picked up as they passed the resonated

frequencies. However, because this method could not guarantee an initial sound, a pitch sweeping

triangle oscillator, from high to low, is struck as the sound is played. For more information on the

RezoPluckerSynth see Chapter .

Figure .: e Nintendo Wii controller (right) and Nunchuk (left)

e whole effect is that of a plucked sound somewhere between a harp and a guitar. To complete

the instrument, the joystick of the Nunchuk (the second part of the Wii controller shown on the

left of fig. .) controls the brightness of the resonance on the Y-axis and pitch bend on the X-axis.

Before performance the player must run the Python file (listing .) until a set of pitches is

generated that is pleasing and appropriate for the specific performance. e Python file may be



Figure .: e on-screen display of RezoPluckerSynth

edited if a subset of pitches is required, for example, if one wants to restrict the possibilities to

the octatonic scale. When a GlovePIE script (listing .) has been generated the performer must

practise the precise set of movements required to create an interesting piece.

Due to the nature of the instrument, it is preferable that one attempts to create an introspective

and meditative piece with enough silence between gestures so the audience can fully appreciate each

set of sounds. e option of adding reverberation to the synthesiser is to be left to the particular

performance and its context. If reverberation is added then the performance should allow time for

the sound to dissipate between gestural combinations.

e instrument itself was designed to be a piece of music in its own right is as much as a score

of a piece can be considered to be music. It exists as a set of possible sounds that can be created

from its use. It is possible to think of it as such due to the inherent restrictions in its construction.

Both gesturally and formally it is confined to a bounded space of possibility. Obviously, one cannot

perform physically impossible gestures, nor can one produce sounds that the synthesiser is not



designed to produce. As such the instrument can only create a certain global musical sound despite

possible variation in the form or structure of the piece. However, for the purposes of this portfolio,

it can be considered an instrument with a text score, and as such it is seen as an improvisation piece.

Listing .: Python programme for generating the GlovePIE file

1 #!/usr/bin/env python
2
3 ##
4 ## GlovePIE generator ##
5 ## by Kelcey Swain, 2008 ##
6 ## Creates a randomised GlovePIE script ##
7 ##
8
9 import random , time
10
11 # Create/open the GlovePIE file to work with.
12 f = open ("wii.pie" , "w")
13
14 # Names of the buttons on the Nintendo Wii controller as
15 # understood by GlovePIE.
16 buttons = ['A' , 'B' , 'Up' , 'Right' , 'Down' , 'Left' , 'One' , 'Two' , \
17 'Minus' , 'Plus' , 'Nunchuk.CButton' , 'Nunchuk.ZButton']
18 # Octaves we wish to confine our notes to.
19 octave = ['3' , '4' , '5']
20 # Note names as understood by GlovePIE.
21 note = ['c' , 'csharp' , 'd' , 'dsharp' , 'e' , 'f' , 'fsharp' , 'g' , 'gsharp' , \
22 'a' , 'asharp' , 'b']
23
24 def button (b , n1 , n2 , n3) :
25 '''Creates a block of code for GlovePIE that links button b
26 to notes n1 on the x-axis, n2 on the y-axis and n3 on
27 the z-axis. And makes the MIDI velocity of those notes
28 proportional to the acceleration of the controler on
29 that axis.'''
30 a = """if KeepDown(Wiimote.""" + b + """, 10 ms) then {
31 midi2.""" + n1 + """Velocity = MapRange(Wiimote.RelAccX, \
32 0 m per s per s,20 m per s per s, -2,1);
33 midi2.""" + n2 + """Velocity = MapRange(Wiimote.RelAccY, \
34 0 m per s per s,20 m per s per s, -2,1);
35 midi2.""" + n3 + """Velocity = MapRange(Wiimote.RelAccZ, \
36 0 m per s per s,20 m per s per s, -2,1);
37 else
38 midi2.""" + n1 + """Velocity = 0;
39 midi2.""" + n2 + """Velocity = 0;
40 midi2.""" + n3 + """Velocity = 0;
41 };"""
42 return a
43
44 def buttonN (b , n1 , n2 , n3) :
45 '''Does the same as the button() function but for the nunchuk.'''
46 a = """if KeepDown(Wiimote.""" + b + """, 10 ms) then {



47 midi2.""" + n1 + """Velocity = MapRange(Wiimote.Nunchuk.RawAccX, \
48 0 m per s per s,20 m per s per s, -2,1);
49 midi2.""" + n2 + """Velocity = MapRange(Wiimote.Nunchuk.RawAccY, \
50 0 m per s per s,20 m per s per s, -2,1);
51 midi2.""" + n3 + """Velocity = MapRange(Wiimote.Nunchuk.RawAccZ, \
52 0 m per s per s,20 m per s per s, -2,1);
53 else
54 midi2.""" + n1 + """Velocity = 0;
55 midi2.""" + n2 + """Velocity = 0;
56 midi2.""" + n3 + """Velocity = 0;
57 };"""
58 return a
59
60 def concatNote () :
61 '''Returns a note/octave string.'''
62 return note [(random . randint ( , len (note) � ))] + \
63 octave [(random . randint ( , len (octave) � ))]
64
65 # Perform the above functions for all buttons.
66 for i in range (len (buttons)) :
67 if buttons [i] == 'Nunchuk.CButton' :
68 f . write (buttonN ((buttons [i]) , str (concatNote ()) , \
69 str (concatNote ()) , str (concatNote ())))
70 f . write ('\n\n')
71 elif buttons [i] == 'Nunchuk.ZButton' :
72 f . write (buttonN ((buttons [i]) , str (concatNote ()) , \
73 str (concatNote ()) , str (concatNote ())))
74 f . write ('\n\n')
75 else :
76 f . write (button ((buttons [i]) , str (concatNote ()) , \
77 str (concatNote ()) , str (concatNote ())))
78 f . write ('\n\n')
79
80 # Write the string to the GlovePIE file.
81 f . write ("""midi2.Control31 = MapRange(Wiimote.Nunchuk.JoyX, -1,1, 0,1)
82 + 0.01 \n midi2.Control32 = MapRange(Wiimote.Nunchuk.JoyY, -1,1, 0,1)""")
83
84 # Write an author comment at the bottom of the file to keep
85 # track of changes and when they were made.
86 f . write ("\n\n//Generated by a python script by Kelcey Swain on ")
87 f . write (str (time . ctime ()))
88
89 # Close the file.
90 f . close ()

Listing .: An example GlovePIE file generated by the Python file .

1 if KeepDown (Wiimote . A ,  ms) then {
2 midi2 . gsharp4Velocity = MapRange (Wiimote . RelAccX ,
3  m per s per s ,   m per s per s , �  ,) ;
4 midi2 . c3Velocity = MapRange (Wiimote . RelAccY ,
5  m per s per s ,   m per s per s , �  ,) ;
6 midi2 . f5Velocity = MapRange (Wiimote . RelAccZ ,
7  m per s per s ,   m per s per s , �  ,) ;



8 else
9 midi2 . gsharp4Velocity =  ;
10 midi2 . c3Velocity =  ;
11 midi2 . f5Velocity =  ;
12 } ;
13
14 if KeepDown (Wiimote . B ,  ms) then {
15 midi2 . b3Velocity = MapRange (Wiimote . RelAccX ,
16  m per s per s ,   m per s per s , �  ,) ;
17 midi2 . b3Velocity = MapRange (Wiimote . RelAccY ,
18  m per s per s ,   m per s per s , �  ,) ;
19 midi2 . d5Velocity = MapRange (Wiimote . RelAccZ ,
20  m per s per s ,   m per s per s , �  ,) ;
21 else
22 midi2 . b3Velocity =  ;
23 midi2 . b3Velocity =  ;
24 midi2 . d5Velocity =  ;
25 } ;
26
27 if KeepDown (Wiimote . Up ,  ms) then {
28 midi2 . b4Velocity = MapRange (Wiimote . RelAccX ,
29  m per s per s ,   m per s per s , �  ,) ;
30 midi2 . fsharp4Velocity = MapRange (Wiimote . RelAccY ,
31  m per s per s ,   m per s per s , �  ,) ;
32 midi2 . csharp5Velocity = MapRange (Wiimote . RelAccZ ,
33  m per s per s ,   m per s per s , �  ,) ;
34 else
35 midi2 . b4Velocity =  ;
36 midi2 . fsharp4Velocity =  ;
37 midi2 . csharp5Velocity =  ;
38 } ;
39
40 if KeepDown (Wiimote . Right ,  ms) then {
41 midi2 . gsharp3Velocity = MapRange (Wiimote . RelAccX ,
42  m per s per s ,   m per s per s , �  ,) ;
43 midi2 . fsharp3Velocity = MapRange (Wiimote . RelAccY ,
44  m per s per s ,   m per s per s , �  ,) ;
45 midi2 . a5Velocity = MapRange (Wiimote . RelAccZ ,
46  m per s per s ,   m per s per s , �  ,) ;
47 else
48 midi2 . gsharp3Velocity =  ;
49 midi2 . fsharp3Velocity =  ;
50 midi2 . a5Velocity =  ;
51 } ;
52
53 if KeepDown (Wiimote . Down ,  ms) then {
54 midi2 . c5Velocity = MapRange (Wiimote . RelAccX ,
55  m per s per s ,   m per s per s , �  ,) ;
56 midi2 . a4Velocity = MapRange (Wiimote . RelAccY ,
57  m per s per s ,   m per s per s , �  ,) ;
58 midi2 . gsharp3Velocity = MapRange (Wiimote . RelAccZ ,
59  m per s per s ,   m per s per s , �  ,) ;
60 else
61 midi2 . c5Velocity =  ;
62 midi2 . a4Velocity =  ;



63 midi2 . gsharp3Velocity =  ;
64 } ;
65
66 if KeepDown (Wiimote . Left ,  ms) then {
67 midi2 . fsharp3Velocity = MapRange (Wiimote . RelAccX ,
68  m per s per s ,   m per s per s , �  ,) ;
69 midi2 . f4Velocity = MapRange (Wiimote . RelAccY ,
70  m per s per s ,   m per s per s , �  ,) ;
71 midi2 . b5Velocity = MapRange (Wiimote . RelAccZ ,
72  m per s per s ,   m per s per s , �  ,) ;
73 else
74 midi2 . fsharp3Velocity =  ;
75 midi2 . f4Velocity =  ;
76 midi2 . b5Velocity =  ;
77 } ;
78
79 if KeepDown (Wiimote . One ,  ms) then {
80 midi2 . d4Velocity = MapRange (Wiimote . RelAccX ,
81  m per s per s ,   m per s per s , �  ,) ;
82 midi2 . fsharp3Velocity = MapRange (Wiimote . RelAccY ,
83  m per s per s ,   m per s per s , �  ,) ;
84 midi2 . a4Velocity = MapRange (Wiimote . RelAccZ ,
85  m per s per s ,   m per s per s , �  ,) ;
86 else
87 midi2 . d4Velocity =  ;
88 midi2 . fsharp3Velocity =  ;
89 midi2 . a4Velocity =  ;
90 } ;
91
92 if KeepDown (Wiimote . Two ,  ms) then {
93 midi2 . dsharp5Velocity = MapRange (Wiimote . RelAccX ,
94  m per s per s ,   m per s per s , �  ,) ;
95 midi2 . gsharp4Velocity = MapRange (Wiimote . RelAccY ,
96  m per s per s ,   m per s per s , �  ,) ;
97 midi2 . e5Velocity = MapRange (Wiimote . RelAccZ ,
98  m per s per s ,   m per s per s , �  ,) ;
99 else
100 midi2 . dsharp5Velocity =  ;
101 midi2 . gsharp4Velocity =  ;
102 midi2 . e5Velocity =  ;
103 } ;
104
105 if KeepDown (Wiimote . Minus ,  ms) then {
106 midi2 . gsharp5Velocity = MapRange (Wiimote . RelAccX ,
107  m per s per s ,   m per s per s , �  ,) ;
108 midi2 . csharp3Velocity = MapRange (Wiimote . RelAccY ,
109  m per s per s ,   m per s per s , �  ,) ;
110 midi2 . a5Velocity = MapRange (Wiimote . RelAccZ ,
111  m per s per s ,   m per s per s , �  ,) ;
112 else
113 midi2 . gsharp5Velocity =  ;
114 midi2 . csharp3Velocity =  ;
115 midi2 . a5Velocity =  ;
116 } ;
117



118 if KeepDown (Wiimote . Plus ,  ms) then {
119 midi2 . fsharp5Velocity = MapRange (Wiimote . RelAccX ,
120  m per s per s ,   m per s per s , �  ,) ;
121 midi2 . a5Velocity = MapRange (Wiimote . RelAccY ,
122  m per s per s ,   m per s per s , �  ,) ;
123 midi2 . d4Velocity = MapRange (Wiimote . RelAccZ ,
124  m per s per s ,   m per s per s , �  ,) ;
125 else
126 midi2 . fsharp5Velocity =  ;
127 midi2 . a5Velocity =  ;
128 midi2 . d4Velocity =  ;
129 } ;
130
131 if KeepDown (Wiimote . Nunchuk . CButton ,  ms) then {
132 midi2 . fsharp4Velocity = MapRange (Wiimote . Nunchuk . RawAccX ,
133  m per s per s ,   m per s per s , �  ,) ;
134 midi2 . a3Velocity = MapRange (Wiimote . Nunchuk . RawAccY ,
135  m per s per s ,   m per s per s , �  ,) ;
136 midi2 . a4Velocity = MapRange (Wiimote . Nunchuk . RawAccZ ,
137  m per s per s ,   m per s per s , �  ,) ;
138 else
139 midi2 . fsharp4Velocity =  ;
140 midi2 . a3Velocity =  ;
141 midi2 . a4Velocity =  ;
142 } ;
143
144 if KeepDown (Wiimote . Nunchuk . ZButton ,  ms) then {
145 midi2 . c4Velocity = MapRange (Wiimote . Nunchuk . RawAccX ,
146  m per s per s ,   m per s per s , �  ,) ;
147 midi2 . b4Velocity = MapRange (Wiimote . Nunchuk . RawAccY ,
148  m per s per s ,   m per s per s , �  ,) ;
149 midi2 . dsharp4Velocity = MapRange (Wiimote . Nunchuk . RawAccZ ,
150  m per s per s ,   m per s per s , �  ,) ;
151 else
152 midi2 . c4Velocity =  ;
153 midi2 . b4Velocity =  ;
154 midi2 . dsharp4Velocity =  ;
155 } ;
156
157 midi2 . Control31 = MapRange (Wiimote . Nunchuk . JoyX , �  , ,  , ) +  . 
158 midi2 . Control32 = MapRange (Wiimote . Nunchuk . JoyY , �  , ,  , )
159
160 //Generated by a python script by Kelcey Swain on Thu Feb 28 14:16:38 2008



Chapter 

Cliqbuz

A gesture cannot be regarded as the
expression of an individual, as his creation,
nor can it even be regarded as that person’s
instrument; on the contrary, it is gestures
that use us as their instruments, as their
bearers and incarnations.

Milan Kundera

Cliqbuz, like Rezoplucker (Chapter ), is an instrument designed to be a piece in its own right.

Also, like Rezoplucker it can be viewed as an improvisation piece for the purposes of this portfolio.

is piece was originally inspired by the pioneering early th century instrument the theremin,

created by the Russian inventor Léon eremin. e theremin has two antennæ that sense the

distance to the left and right hands of the performer using two capacitor based detectors. Usually

the right hand controls the frequency (pitch) and the left hand controls the amplitude (volume) of

the resulting wave form. Whilst the principle of the instrument is very simple, the performance

and practice of it is not so straightforward.

Cliqbuz grew from experimentation in creating a virtual theremin using Interface-Z’s MIDI

capture devices and I’s Ethersense and a Reaktor back-end synthesis engine. Instead of using
Manning, 
http://www.interface-z.com/
http://recherche.ircam.fr/equipes/temps-reel/movement/hardware/index.htm



Figure .: Infrared LED and receiver attached to a prototype board

electrical interference to sense the distance of the hands I used two infrared LEDs that could detect

distances of up to around cm, as shown in fig. .. e LEDs were connected into the input of

the Ethersense interface which was in turn connected to the ethernet input of a computer running

the OSC compatible Reaktor modular environment. e right IR LED controlled the frequency

and the left controlled the amplitude, as with the theremin.

At this point my continually adapting design of Cliqbuz departs from Léon eremin’s model

and becomes an instrument in its own right. Two more IR LEDs were attached to the instrument

in such a way that each hand could control two of the sensors, one at the fingertips and one at the

wrist. Doubling the controls allows a doubling of waveforms, so the left-hand fingertips control the

frequency of the first waveform and the right-hand fingertips control the frequency of the second

waveform; the further away from the sensor the higher the pitch. To make the instrument more

interesting without the need for too many controls the left-hand fingertips also control the rate of
For more information on OSC see http://opensoundcontrol.org/



Figure .: A prototype of the hardware of the Cliqbuz instrument

Figure .: e composer working on Cliqbuz at Culture Lab



a triangle LFO on the amplitude of the second waveform, and the right-hand fingertips control

the LFO on the amplitude of the first waveform; the further away from the sensors the quicker

the LFOs. Instead of controlling the global amplitude of either waveforms, Cliqbuz uses the wrist

controls to vary the width or envelope of the LFOs, making it possible to remove the effect of the

LFOs completely by overlapping the attack and decay of the triangle LFO. For concert performance

in a multi-channel environment a foot pedal was added to allow the performer to spin the stereo

output of the instrument around the performance space.

e appeal of this instrument to an audience is in the real-time performance aspect, which is why

no score is written for performance. Instead the piece should react to the context and environment.

Firstly, audiences are not always accustomed to experiencing real-time electroacoustics when so

much electronic music is based on prerecorded sound material. Secondly, the performer bypasses the

problems associated with acousmatic music as the distinction between acoustic and electroacoustic is

blurred by the visual correlation or legibility of gesture and consequence. Conversely, the instrument

itself is often not visible during performance or at least not obvious to the audience, instead only

the performers gestures are visible. is means that the audience enjoys both the sonic results of the

performance and the clear movements or gestures that produce the music, which is amplified by

the fact that the instrument is a non-contact instrument, leaving only the movements of the hands

clear to the audience. In the words of one of the people who attended a performance of Cliqbuz,

‘at instrument is a little bit like magic’. e video that accompanies this commentary shows the

composer staring at the computer screen during the performances, this was due to technical issues

and in a concert environment none of the technology that is used is visible to the audience.



Figure .: e on-screen display of the Cliqbuz synthesis engine



Chapter 

Circle eory

ere is geometry in the humming of the
strings, there is music in the spacing of the
spheres.

Pythagoras of Samos

Circle eory is more a musical toy than a piece of music. It is designed so that it can con-

tinuously create music with or without human interaction. e basis for the Circle eory was

taken from a concept demonstration by Bill Orcutt, the creator of the graphical programming

environment, Lily. Lily itself is based on the design of Max/MSP and PureData but exists as

a plugin for the popular web browser Firefox. Orcutt made a modification of a circle packing

algorithm, originally from a blog called Crickets Chirping. In Orcutt’s example he sent the data

for the location and size of each circle via OSC to ChucK, the audio processing language developed

at Princeton University, where the size of a circle controlled the amplitude of a sine wave and the

proximity to the centre controlled the pitch of that sine wave, mapped upon a C major scale. Each

of the circles is movable using mouse control and the algorithm is such that in most cases moving

one circle causes the rest to move in response.

To make Circle eory a stand-alone piece of music much was needed to be changed from this
http://blog.lilyapp.org/
http://www.mozilla.com/firefox/
http://www.cricketschirping.com/weblog/2007/06/18/processing-sketch-circle-packing/



basic concept. Firstly, there is no need for the circles to be mapped onto a tonal scale so the code was

adapted to produce continuous sine wave pitches instead of discrete, tonal step, changes. Secondly,

if the circles constantly varied in sizes according to a random walk then the all the circles are going

to be affected by this constant movement which makes it possible to leave the circles moving on

their own without human interference. Lastly, the position of the circle controls the panning of its

sine wave. e original design was to place the sine across a two dimensional field in  channels,

however most performances required simply a stereo feed for practical reasons.e JavaScript code

for creating the circles, packing them and sending the OSC signal can be seen in listing . and

the ChucK code for receiving the OSC signal and creating the sine waves can be seen in listing ..

e piece is performed in a dark room with an LCD projector projecting the image on the

computer screen above or behind the performance space. e piece can then be left to run its own

course or be controlled by a performer according to choice. e piece is ended by pressing the Enter

key, whereupon all the circles slowly start to decrease in size until they are too small to make any

sound.

Listing .: JavaScript code for creating SVG circles and send the OSC signal out via Lily

1 var circles = null ;
2 var iterationCounter =  ;
3 var dragCircle = null ;
4 var numCircles =  ;
5 var offset = � . ;
6 var toggle =  ;
7 var ampradius =  ;
8
9 function Circle (_x , _y , _radius , _id) {
10 // Draws a circle at (_x,_y) with radius _radius and an id number.
11 this . id = _id | |  ;
12 this . x = _x | |  ;
13 this . y = _y | |  ;
14 this . radius = _radius | |  ;
15 this . myColor = makeColor (  ,   ,   ,  ) ;
16 this . draw=function () {
17 fill (map (int (this . distanceToCenter ()) ,  ,    ,    ,  ) ,
18 map (int (this . distanceToCenter ()) ,  ,    ,    ,  ) ,    , ) ;
19 stroke (  ,   ,   ,  ) ;
20 strokeWeight () ;
21 ellipse (int (this . x) , int (this . y) ,
22 int (this . radius * ) , int (this . radius * )) ;



23 var distMod = int (map (int (this . distanceToCenter ()) ,
24  ,    ,  ,  )) ;
25 if (this . radius > ) {
26 sendMess (int (this . id)++" "+int (map (
27 this . distanceToCenter () ,  ,    ,   ,    )) +
28 " "+map (int (this . radius) ,  , (  * numCircles) ,
29  ,  . ) + " "+float (map (float (this . x) ,
30  ,  , � , ))) ;
31 }
32 else {
33 sendMess (int (this . id)++" 0 0 0") ;
34 }
35 }
36 this . contains=function (_x , _y) {
37 var dx = this . x � _x ;
38 var dy = this . y � _y ;
39 return sqrt (dx * dx + dy * dy) <= this . radius ;
40 }
41 this . distanceToCenter=function () {
42 var dx = this . x � width /  ;
43 var dy = this . y � height /  ;
44 return (sqrt (dx * dx + dy * dy)) ;
45 }
46 this . intersects=function (c) {
47 var dx = c . x � this . x ;
48 var dy = c . y � this . y ;
49 var d = sqrt (dx * dx + dy * dy) ;
50 return d < this . radius | | d < c . radius ;
51 }
52 }
53
54 function setup () {
55 // Initial parameters for the display.
56 size ( , ) ;
57 smooth () ;
58 fill () ;
59 frameRate () ;
60 // Create numCircle number of circles.
61 circles = createRandomCircles (numCircles) ;
62 background () ;
63 }
64
65 function draw () {
66 background () ;
67 for (var i = ; i<circles . size () ; i ++) {
68 getCircle (i) . draw () ;
69 }
70 for (var i = ; i<numCircles ; i ++) {
71 iterateLayout (i) ;
72 }
73 }
74
75 function comp (p1 , p2) {
76 var a = p1 ;
77 var b = p2 ;



78 if (a . distanceToCenter () < b . distanceToCenter ())
79 return  ;
80 else if (a . distanceToCenter () > b . distanceToCenter ())
81 return � ;
82 else
83 return  ;
84 }
85
86 function Vector3D (_x , _y , _z) {
87 this . x = _x | |  ;
88 this . y = _y | |  ;
89 this . z = _z | |  ;
90 this . mult=function (f)
91 {
92 this . x *= f ;
93 this . y *= f ;
94 this . z *= f ;
95 }
96 this . normalize=function ()
97 {
98 var f = Math . sqrt (this . x * this . x + this . y *
99 this . y + this . z * this . z) ;
100 this . x = this . x / f ;
101 this . y = this . y / f ;
102 this . z = this . z / f ;
103 }
104 }
105
106 function iterateLayout (iterationCounter) {
107 // Control the interaction of the circles frame by frame.
108 var circs = circles . toArray () ;
109 circs . sort (comp) ;
110 var ci = null ;
111 var cj = null ;
112 var v = new Vector3D () ;
113 for (var i = ; i<circs . length ; i ++) {
114 ci = circs [i] ;
115 for (var j=i + ; j<circs . length ; j ++) {
116 if (i ! = j) {
117 // Change the size of the circles slightly.
118 ci . radius = ci . radius + (abs (random ())
119 +offset) *  .    ;
120 if (ci . radius >  && toggle == ) {
121 offset = � ;
122 toggle =  ;
123 }
124 cj = circs [j] ;
125 var dx = cj . x � ci . x ;
126 var dy = cj . y � ci . y ;
127 var r = ci . radius + cj . radius ;
128 var d = (dx * dx) + (dy * dy) ;
129 if (d < (r * r) �  . ) {
130 v . x = dx ;
131 v . y = dy ;
132 v . normalize () ;



133 v . mult ((r� sqrt (d)) *  . ) ;
134 if (cj ! = dragCircle) {
135 cj . x += v . x ;
136 cj . y += v . y ;
137 }
138 if (ci ! = dragCircle) {
139 ci . x � = v . x ;
140 ci . y � = v . y ;
141 }
142 }
143 }
144 }
145 }
146 var damping =  .  / float ((iterationCounter)) ;
147 for (var i = ; i<circs . length ; i ++) {
148 var c = circs [i] ;
149 if (c ! = dragCircle) {
150 v . x = c . x� width /  ;
151 v . y = c . y� height /  ;
152 v . mult (damping) ;
153 c . x � = v . x ;
154 c . y � = v . y ;
155 }
156 }
157 }
158
159 function createRandomCircles (n) {
160 var circlesList = new ArrayList () ;
161 while (n�� > ) {
162 var c = new Circle (random (width) , random (height) ,
163 (random (n) *  .  ) + random () , n) ;
164 c . myColor = makeColor ( , . ) ;
165 circlesList . add (c) ;
166 }
167 return circlesList ;
168 }
169
170 function getCircle (i) {
171 return circles . get (i) ;
172 }
173
174 function keyPressed (e)
175 {
176 // If the spacebar is pressed make new random circles.
177 var intKey = (window . Event) ? e . which : e . keyCode ;
178 if (intKey == ) { //spacebar
179 offset = � . ;
180 toggle =  ;
181 circles = createRandomCircles (numCircles) ;
182 }
183 // If the return key is pressed make the circles get smaller.
184 if (intKey ==  ) { //return
185 offset = � . ;
186 }
187 }



188
189 function mousePressed () {
190 // Allow mouse interaction with the circles.
191 dragCircle = null ;
192 for (var i = ; i<circles . size () ; i ++) {
193 var c = getCircle (i) ;
194 if (c . contains (mouseX , mouseY)) {
195 dragCircle = c ;
196 }
197 }
198 }
199
200 function mouseDragged () {
201 // Make the circle move when the mouse drags it.
202 if (dragCircle ! = null) {
203 dragCircle . x = mouseX ;
204 dragCircle . y = mouseY ;
205 }
206 }
207
208 function mouseReleased () {
209 dragCircle = null ;
210 }

Listing .: ChucK code for receiving the OSC signal and processing the sine waves

1 // Make 10 sine waves with reverb and panning.
2 SinOsc s1 => JCRev r1 => Pan2 p1 => dac ;
3 SinOsc s2 => JCRev r2 => Pan2 p2 => dac ;
4 SinOsc s3 => JCRev r3 => Pan2 p3 => dac ;
5 SinOsc s4 => JCRev r4 => Pan2 p4 => dac ;
6 SinOsc s5 => JCRev r5 => Pan2 p5 => dac ;
7 SinOsc s6 => JCRev r6 => Pan2 p6 => dac ;
8 SinOsc s7 => JCRev r7 => Pan2 p7 => dac ;
9 SinOsc s8 => JCRev r8 => Pan2 p8 => dac ;
10 SinOsc s9 => JCRev r9 => Pan2 p9 => dac ;
11 SinOsc s10 => JCRev r10 => Pan2 p10 => dac ;
12
13 .  => s1 . gain ;
14 .  => r1 . mix ;
15 .  => s2 . gain ;
16 .  => r2 . mix ;
17 .  => s3 . gain ;
18 .  => r3 . mix ;
19 .  => s4 . gain ;
20 .  => r4 . mix ;
21 .  => s5 . gain ;
22 .  => r5 . mix ;
23 .  => s5 . gain ;
24 .  => r6 . mix ;
25 .  => s5 . gain ;
26 .  => r7 . mix ;
27 .  => s5 . gain ;
28 .  => r8 . mix ;



29 .  => s5 . gain ;
30 .  => r9 . mix ;
31 .  => s5 . gain ;
32 .  => r10 . mix ;
33
34 // Receive OSC information to control the sine waves.
35 OscRecv recv ;
36  => recv . port ;
37 recv . listen () ;
38 recv . event ("/circle/notes, i i f f") @=> OscEvent @ oe ;
39
40 while (true)
41 {
42 // Apply the OSC data to the sine waves constantly.
43 oe => now ;
44 while (oe . nextMsg ())
45 {
46 int i ;
47 int j ;
48 float f ;
49 float pa ;
50 oe . getInt () => i ;
51 if (i == ) {
52 oe . getInt () => j => s1 . freq ;
53 oe . getFloat () => f => s1 . gain ;
54 oe . getFloat () => pa =>p1 . pan ;
55 }
56 if (i == ) {
57 oe . getInt () => j => s2 . freq ;
58 oe . getFloat () => f => s2 . gain ;
59 oe . getFloat () => pa =>p2 . pan ;
60 }
61 if (i == ) {
62 oe . getInt () => j => s3 . freq ;
63 oe . getFloat () => f => s3 . gain ;
64 oe . getFloat () => pa =>p3 . pan ;
65 }
66 if (i == ) {
67 oe . getInt () => j => s4 . freq ;
68 oe . getFloat () => f => s4 . gain ;
69 oe . getFloat () => pa =>p4 . pan ;
70 }
71 if (i == ) {
72 oe . getInt () => j => s5 . freq ;
73 oe . getFloat () => f => s5 . gain ;
74 oe . getFloat () => pa =>p5 . pan ;
75 }
76 if (i == ) {
77 oe . getInt () => j => s6 . freq ;
78 oe . getFloat () => f => s6 . gain ;
79 oe . getFloat () => pa =>p6 . pan ;
80 }
81 if (i == ) {
82 oe . getInt () => j => s7 . freq ;
83 oe . getFloat () => f => s7 . gain ;



84 oe . getFloat () => pa =>p7 . pan ;
85 }
86 if (i == ) {
87 oe . getInt () => j => s8 . freq ;
88 oe . getFloat () => f => s8 . gain ;
89 oe . getFloat () => pa =>p8 . pan ;
90 }
91 if (i == ) {
92 oe . getInt () => j => s9 . freq ;
93 oe . getFloat () => f => s9 . gain ;
94 oe . getFloat () => pa =>p9 . pan ;
95 }
96 if (i ==  ) {
97 oe . getInt () => j => s10 . freq ;
98 oe . getFloat () => f => s10 . gain ;
99 oe . getFloat () => pa =>p10 . pan ;
100 }
101 <<<"got (via OSC):" , i , j , f , pa > > >;
102 }
103 }



Chapter 

Conclusions

I certainly had no feeling for harmony, and
Schoenberg thought that that would make
it impossible for me to write music. He
said, ‘You’ll come to a wall you won’t be
able to get through.’ So I said, ‘I’ll beat my
head against that wall.’

John Cage

As was stated in the introduction, the interests in this portfolio are the interaction between

human and machine. Further to this is an interest in the interplay between order and chaos. In two

cases the mouse and keyboard approach to electroacoustics have been abandoned firstly in favour of

a custom built interface using Z-interface and Ethersense and secondly by using a control device that

was designed for use with the Nintendo Wii. e synthesis engines for these two instruments were

built specifically for use with their associated interfaces. e third instrument, Circle eory, sticks

to the standard computer controls but uses them in a way that allows for greater manipulability than

normally possible, by moving one thing in this instrument you effect the totality of its constituent

parts. All three instruments approach the gestural aspects of control in unconventional ways and

should therefore leave no-one more or less capable of using them for performance. Each instrument

requires a unique method of performance practice that can be learnt by almost anyone, regardless of

musical training, due to the fact that preconceptions of how instruments should work were not taken



into consideration in their creation. e possible exception to this is Cliqbuz, on the grounds that

its inspiration was grounded in the eremin, but that pioneering instrument itself was innovative

in its control mechanisms. Rezoplucker requires the performer to control it with flicks of the wrists

and a few buttons, but due to the fact that these gestures are the end in themselves and do not

make contact with an external device the movements can be more fluid than with conventional

instruments.

e physical performance restrictions of these instruments are such that the performer is guided

through the possibilities and not left with much room to stray from the intended sound-world.

Rezoplucker uses the Wii controller to limit gestural movement, not physically, but by limiting the

acceleration that can be detected, and the performer themselves limits the tonal environment that

they can perform within before the piece is performed. In terms of physical restrictions, human

hands are more comfortable making certain movements than others and this will further shape the

musical output of the piece. For example, rotating the wrist of your hand whilst making gestural

flicks is easier in some combinations than others and this can vary from person to person. Cliqbuz

will only detect the hands at certain distances and even then it is not possible to make certain shapes

with your hands in order to perform certain musical consequences. On top of this the synthesis

engine crosses the controls for the right and left hands so that they rely on each other to perform

any music at all. Circle eory doesn’t place any physical restriction on the performance that isn’t

already inherent in the control of most computers due to its reliance on the mouse and, to a lesser

degree, keyboard. e instrument does, however, follow a strict set of circle packing rules that force

the musical output to conform to its rules and structure. For example, small circles will almost

always be forced into the centre whilst larger ones sit at the edges. e sonic result of this could

be described as a form of subharmonic synthesis where the lower frequencies are quieter than the

higher ones.

In this portfolio we have seen these three instruments as self-contained computer based music

devices but there is no reason why the ideas and principles of these pieces could not be transformed



in hardware or software to be adaptable to other media or environments. e principles of this type

of composition could be adapted and extended easily to incorporate non-linear mathematical func-

tions in the form fractals, chaotic algorithms and neural networks. Currently the instruments are

capable of being used in a solo or ensemble environment but the nature of the physical instrument

could also be taken out of the context of the concert hall and into sound installations or wearable

sound design equipment. e fundamentals of the instrument’s design could be seen as a template

on which to carry the work into new media such as hand-held devices like the iPhone and PDAs

or alternatively bespoke equipment.

e real-time performance and audience interaction aspects of this music are also convenient

ways of avoiding the problems of acousmatic listening in electroacoustic music, a problem I face

with the other part of the portfolio, that of creating electroacoustic composition in a non-realtime

and non-improvised environment. e challenges in sustaining interest of electroacoustic music

over a large scale work where there is no performer to allow legibility of sonic results are difficult to

overcome especially with abstract sounds that cannot be traced to any real world events or actions.

ere is no once solution to this problem as this is a fundamental issue in the art of composition

especially in a time when the most listened to music is either short popular music or secondary in

function such as soundtracks to films. It is my hope that the music in this portfolio finds its solution

by presenting itself less as traditional music and more as ambient soundscapes. By soundscapes I

do not mean real-world sounds presented as an immersive audio environment as found in e

World Soundscape Project, but as a synthetic analogue to this. For example, Heart of Light presents

believable industrial sounds that are all completely synthesised, Light of Heart focuses mostly on

physical modelling to create a sound-world that is based in reality. e other pieces, such as Pavanne

and Christ ist Erstanden, explore and expand upon the vocal sounds to make a total wash of sound.

Spanish Ladies andDown Among the DeadMen use principals of electroacoustic synthesis in unusual

ways, Spanish Ladies subverts the simplest ideas of granulation in its attempt to layer repetitive

rhythmic ambience at the forefront of the piece whilst Down Among the Dead Men is an exploration



of complex synthesis with hidden vocals. Each one of these pieces explores the boundaries between

order and chaos; between beauty and noise. It is my opinion that this boundary is where one can

find the cutting edge of contemporary electroacoustic composition.

e running theme in this portfolio is the exploration of innovative techniques to create music

made from sounds that have a richness of sonic textures and that show musical intention. e two

contrasting methods of creation are unified in most cases by the fact that the statically composed

pieces are made from similar systems, but are solidified at the point of composition instead of at

the point of performance.



Bibliography

• Amato, Ivan. ‘Muscle Melodies and Brain Refrains’. Science News , no.  ():

–.

• Bongers, Bert. ‘An Interview with Sensorband’. Computer Music Journal , no.  ():

–.

• Bullen, Frank. Songs of Sea Labour. London: Orpheus, .

• Chappell, William. Popular Music of the Olden Time a Collection of Ancient Songs, Ballads

and Dance Tunes Illustrative of the National Music of England Part Two’. London: Cramer,

Seals & Chappell, 

• Di Scipio, Agostino. ‘Iterated Nonlinear Functions as a Sound-Generating Engine’. Leonardo

, no.  (): –.

• Jeffrey, Peter. ‘Music Manuscripts on Microfilm in the Hill Monastic Manuscript Library at

St. John’s Abbey and University’. Notes , no.  (): –.

• Knapp, Benjamin & Lusted, Hugh. ‘A Bioelectric Controller for Computer Music Applica-

tions’. Computer Music Journal , no.  (): -.

• Manning, Peter. Electronic and Computer Music. New York: Oxford University Press, .

• Riedel, Johannes. Leise settings of the Renaissance and Reformation era. Madison: A-R Edi-

tions, .



• Saunders, William. ‘Sailors Songs & Songs of the Sea’. e Musical Quarterly , no. 

(): –.

• Schweitzer, Albert. ‘e Origin of the Texts of the Chorals’. Bach Chorales Website ().

See the website: http://www.bach-cantatas.com/Articles/CT-Schweitzer.htm

• Taylor, Arthur. Notes and Tones: Musician-to-Musician Interviews. New York: DaCapo, .

• Varèse, Edgard. ‘e Liberation of Sound’. Perspectives of NewMusic , no.  (): –.



