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Abstract. 

Recent studies carried out in semi-arid Mediterranean regtons have shown gully 

erosion to have an increasingly significant contribution to soil loss in hillslopes. There 

is therefore a great need for further monitoring, experimental and modelling studies of 

gully erosion as a basis for predicting the effects of environmental, climatic and land 

use changes on erosion rates. 

Fieldwork was carried out at two sites in the Rambla de Nogalte catchment, south east 

Spain in order to identify factors which influenced gully morphology at different 

spatial scales. 

Laser scanning techniques were also applied in order to obtain topographic data that 

could be related to gully morphology and provide a new level of precision in 

monitoring gully erosion. The field results showed that there were many components 

to the erosional response of the hillslopes and gully morphological development, 

some of which proved to be more significant for gully morphological development 

than others. At the hillslope scale, the role of topography and land use characteristics 

were highlighted, and at the smaller scale, the soil surface roughness was the main 

factor affecting runoff generation and erosional processes. 
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1. Introduction. 

1.1. Introduction: The Importance of Soil Erosion and Gullying. 

The changing form of the landscape with time has long been a principal concern in 

geomorphology and its importance has been further highlighted in recent years, in part 

due to the current phenomenon of environmental change. More specifically, the 

observed trends of environmental change combined with extensive soil degradation 

and erosion in semi-arid areas has prompted much research into this topic (e.g. Bryan 

and Campbell, 1986; Cerda, 1997; Kirkby et al., 1998; Lasanta, 2000; Coppus and 

Imeson, 2002; Martinez-Casasnovas et al., 2003), all of which has highlighted the 

need for further work to be carried out on this subject. In particular, Poesen et al., 

(2003) note that there is a great need for further monitoring, experimental and 

modelling studies of gully erosion as a basis for predicting the effects of 

environmental, climatic and land use changes on erosion rates. 

An understanding of slope processes at a range of scales is also of great importance 

when studying erosional processes. Indeed, it has been noted by Cammeraat (2002) 

that scale issues are one of the major challenges in the fields of contemporary physical 

geography and hydrology: in particular, the establishment of which processes are 

important at what spatio-temporal scale is problematic. It is tempting to think that 

there exists an underlying thread or feature at the catchment scale which connects the 

responses of individual hillslopes and parts of each hillslope to the whole, and that 

this thread will begin to express itself strongly as the catchment scale is approached 

(Sivapa1an, 2003). However, all research which has been carried out has shown that 



this is not the case, due to the great heterogeneity of properties across a catchment -

and indeed across a hillslope - which cannot be captured and investigated by a study 

at a single scale, and whose role therefore cannot be generalised. These properties 

include rainfall variability, topography, soils, vegetation and land use; the non-linear, 

scale-dependent interactions of each must be taken into account. In particular, there is 

currently a need for more work to be carried out in order to understand the response of 

semi-arid hillslopes to specific individual rainfall events: this is due to the fact that if 

examined systematically or on either a spatial or temporal basis, a lack of systematic 

patterns becomes apparent (Hooke and Mant, 2002: 200). Consequently, this spatial 

heterogeneity and need for event-based data presents a major challenge when studying 

soil erosion on hillslopes. 

Soil erosion by gullying has been identified by many authors as a major source of 

sediment production in semi-arid environments and has been increasingly studied 

over the past decade, both by field experimentation (e.g. Martinez-Mena et al., 2002; 

Canton et al., 2004) and by empirical and process-based modelling (e.g. Desmet et al., 

1999; Kirkby and Bull, 2000; Jetten et al., 2003.) In addition, the increasing use of 

modem spatial information techniques, such as geographical information systems 

(GIS), digital elevation modelling (DEM) and terrestrial laser scanning (TLS) have 

created new possibilities for research into this field (Martinez-Casasnovas, 2003). In 

particular, these techniques allow the amount of eroded materials, the sediment 

production by gully erosion, the rate of concentrated-flow erosion in agricultural land, 

as well as topographic effects on the initiation and location of gullies to be determined 

with increasing accuracy. 
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Terrestrial laser scanning (TLS) is a relatively new emerging technology, which offers 

great potential and versatility for rapid collection of detailed data at a range of spatial 

scales. Despite some studies already carried out using laser scanning technology (e.g. 

Flanaghan et al., 1995; Darboux and Huang, 2003; Vosselman et al., 2004; Nagihara 

et al., 2004; Lichti, 2005), it is still in its relative infancy, and all possible avenues for 

its use have not yet been fully explored. In particular, TLS has not yet been 

implemented in a large field-based study of gully morphology and hillslope erosion, 

but its advantageous non-contact method of rapidly collecting accurate soil surface 

data means that this is an ideal technique for such research. 

Gully erosion is defined as the erosion process whereby runoff water accumulates and 

often recurs in narrow channels and, over short periods, removes soil from this narrow 

area to considerable depths (Poesen et al., 2003). This phenomenon is particularly 

prevalent in many areas of south-east Spain due to the intense nature of rainfall events 

in this region. It is being further exacerbated by the expansion of agricultural practices 

onto land previously covered by natural mattoral vegetation, which is mostly 

composed of shrubs and perennial grasses (L6pez-Bermudez et al., 1998). In addition, 

soils can exhibit many forms of degradation other than physical loss, including 

salinisation, acidification, structural decline, water repellence and declining fertility 

(Conacher and Sala, 1998). 

Expansion of agriculture and erosion by gullying are therefore major factors causing 

land degradation problems across much of the Mediterranean basin, due to the 

interactions of climate, lithology, soils, relief, and land use characteristics (Martinez­

Casasnovas, 2003). It is necessary to develop our understanding of gully erosion in 
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semi-arid regions in order to be able to control and potentially mitigate this increasing 

problem. Therefore, this is an important area in which more research is required, and 

the additional use of laser scanning techniques will help to provide much-needed data 

on gully morphology at the hillslope-scale and smaller. 

1.2. Research Aim and Objectives. 

Considering the current challenges and research needs discussed above, the main aim 

of this study was to understand and account for the formation of small gullies on 

semi-arid hillslopes in south-east Spain, in relation to the topographic settings, soil 

properties and rainfall characteristics. 

In light of this aim, there were four main objectives to this study: 

1. Explore the geomorphology of gullies at two sites formed under a rainfall event of 

known characteristics. 

2. Determine a relationship between gully catchment area and gully cross-sectional 

development along each channel, using data obtained from the laser scanner. 

3. Demonstrate the effects of physical soil properties on overland flow pathways and 

gully morphological development. 

4. Evaluate the potential of the laser scanner as a tool for studying gully morphology. 

1.3. Scale-Dependent Process Interactions and Gully Morphology. 

Gully erosion represents an important sediment source in semi-arid environments 

such as south east Spain, and the evolution of gullies and channel forms within an 

individual catchment system is highly reliant upon scale-dependent interactions and 

feedback-dominated processes (Cammeraat, 2002). Properties affecting erosion 
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processes and gully development on a hillslope include topography, the variability of 

soil properties, vegetation parameters and land use characteristics. The nature of each 

can be very heterogeneous across a range of spatial and temporal scales, and this must 

be taken into account when carrying out research. In south east Spain, where research 

for this study was carried out, the role of each of these factors was therefore 

investigated at both the large and small scales. The significance of each will now be 

briefly considered in turn, in relation to both this study and other research that has 

been carried out. 

1.3.1. The Role of Processes Active at the Large Scale. 

Due to the nature of rainfall events in south east Spain - namely that they are both 

infrequent and intense- the majority of gully erosion is inherently difficult to measure 

properly due to problems of establishing monitoring networks over large areas where 

rainfall and runoff are highly variable (Bull and Kirkby, 2002: 11). Consequently, 

there are numerous studies of generalised hydrological response at the catchment 

scale and at the experimental plot scale, but relatively few detailed studies at the 

hillslope scale (Martinez-Mena et al., 1998). Research into processes active at this 

scale in semi-arid areas is therefore lacking, and the study results to be presented and 

discussed in this thesis will add to the limited literature on this subject. A deeper 

knowledge and understanding of the hydrological and erosional response of hills lopes 

is also very useful for future mitigation against flood events and large-scale erosion. 

Further development of detailed hillslope models, validated using observations 

collected in hillslope-scale field experiments can therefore be extremely useful in this 

context (Sivapalan, 2003). 
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At the hillslope scale, topography plays an important role in determining gully 

development. For example, it has been demonstrated in previous research that for 

given conditions, gullying can preferentially occur or be facilitated on hillslopes 

where a certain topographic gradient is exceeded (e.g. Poesen, 1984; Martinez-Mena 

et al., 1998; ). This is due to the fact that in semi-arid zones, runoff occurs in the form 

of Hortonian overland flow because rainfall intensities often exceed the infiltration 

capacity of the soil surface (Esteves and Lapetite, 2003). This means that the erosive 

potential of runoff will be mainly governed by hills lope gradient, and runoff direction 

will be determined by the degree of hillslope concavity. Topography is therefore 

considered a critical catchment characteristic which will have a major control over 

pathways for surface and near-surface flow processes (Quinn et al., 1991). This is 

because the topography affects the distribution of water on and within the soil, the rate 

at which water moves during and after rainfall, and the processes and rates of 

sediment movement down the slope (Gabbard et al., 1998). 

In addition, slope curvature is a fundamental surface property whose application in 

geomorphology and hydrology has long been recognised, despite receiving less 

attention than slope gradient (Schmidt et al., 2003). Plan curvature is defined as the 

rate of change of a contour line, and it has been widely assumed that this large scale 

topographic attribute particularly affects hillslope processes and runoff in semi-arid 

environments. For example, a typical hillslope in this region of south-east Spain is 

shown in Figure 1.1, and it can be clearly seen that gullies have indeed developed in 

topographic concavities on steep areas of the slope. This is because overland flow 

direction is influenced by the relationship between slope gradient and slope curvature 

during rainfall events. Development of a better understanding of the influence of 

6 



Figure 1.1. A typical semi-arid hillslope in south-east Spain. 

large-scale slope topography on overland flow is therefore important m eroswn 

studies. In addition, comparative previous research has only been carried out on a 

limited range of slope angles and plot sizes (e.g. Poesen, 1984; Bryan and Camp bell, 

1986; Casali et al. , 1999; Stomph et al., 2001; Canton et al. , 2004b) using relatively 

limited approaches. The research undertaken in this study at a variety of scales 

(> 100 m, ~ 50 m, < 5 m) using new laser scanning techniques to compliment more 

traditional methods will therefore provide much-needed data on erosion by gullying in 

semi-arid regions. 

An additional effect of large-scale overland flow concentration m topographic 

concavities is increased vegetative growth due to localised increase in soil water 

content. This can also be seen in Figure 1.1 . There is an important feedback between 

infiltration, vegetation and land use parameters at the hillslope scale in semi-arid 

areas, where water stress is an key control on vegetation growth and competition 

(Beven, 2002: 67). Vegetation is heavily dependent upon water supply from 

hillslopes, and in semi-arid areas, this is in very limited supply. In semi-arid areas, 
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vegetation therefore develops in locations where the soil water content is highest 

(G6mez-Plaza et al., 2001). Hillslopes in semi-arid climates generally show poor 

hydrological connectivity; spatial patterns of soil water are unpredictable, soil water 

does not always increase towards the base of the slope, and pockets of moist soil may 

remain isolated in uphill positions (Puigdefabregas et al., 1998). A study carried out 

on a large area of 12.65 ha by Canton et al., (2004b) investigated topographic controls 

on the spatial distribution of natural vegetation in south-east Spain. Results 

demonstrated that the distribution of ground-cover was related to nearly every terrain 

attribute (including elevation, slope gradient, plan curvature, profile curvature, 

contributing area, and slope length factor) due to their influence on soil water, and the 

majority of relationships were indeed statistically significant. 

Many parts of south-east Spain have experienced a recent expansion in agriculture, 

involving removal of native vegetation in order to flatten sites for intensive farming. 

This has resulted in relatively widespread soil degradation in both this area and many 

parts of the Mediterranean region. In particular, the critical factor in this degradation 

process is ploughing, since it removes the protective cover of vegetation beneath tree 

crops, leaving the soil bare and open to the influence of erosion by wind and overland 

flow (Bull and Kirkby, 2002: 10). Extensive Mediterranean areas cultivated with rain 

fed crops such as cereals, olives, and almonds are therefore very sensitive to erosion 

due to the hilly topography and bare, shallow soils on which they are situated 

(Kosmas et al., 1997). The practice of ploughing between tree crops in order to reduce 

competition for soil water further exacerbates this degradation process. 
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In addition to the problems caused by land being used for agricultural purposes, 

subsequent abandonment of such land also affects runoff and sediment yield. In 

Spain, many large areas once used for agriculture have been recently set-aside in line 

with European Union agrarian policies, or simply abandoned. The surface affected by 

this is very large, and little information exists about the environmental consequences 

of extensive farmland abandonment in semi-arid areas, especially from a 

geomorphological and hydrological point of view (Lasanta et al., 2000). However, it 

is inevitable that a land-use change of such a scale must have implications on runoff, 

infiltration, erosion, and gully development. For example, a study carried out by 

Cerda ( 1997) on the nature of soil erosion after land abandonment in south-east Spain 

showed that it led to the degradation of the ecosystem at least during the first 3 years 

of abandonment. In addition, a rise in the spatial variability of erosional processes was 

observed, as well as an increase of runoff and erosion. 

It is a well-known fact that variables affecting vegetation cover will also impact 

infiltration rates and consequently erosion processes (e.g. L6pez-Bermudez et al., 

1998; Beven, 2002: 67; Kirkby et al., 2002). Therefore a study of changes to natural 

vegetation caused by agricultural practices is an important factor to include in any 

research into erosion by gullying. Indeed, it has been noted by several authors (e.g. 

Cerda 1997; Kosmas et al., 1997; Slattery et al., 2002; Dunj6 et al., 2003) that there is 

a need to develop our current understanding of landscape sensitivity to erosion caused 

by agricultural expansion and land degradation. In particular, there is a need for this 

research to be carried out at the hillslope to catchment scale. 
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While individual factors that influence erosion can be identified, it is clear that actual 

geomorphological and hydrological processes observed at the hillslope scale are rich 

complexity and heterogeneity (Sivapalan, 2003). This is because the hydrology of 

dryland hillslopes can be unpredictable due to the relative lack of rainfall and soil 

moisture in semi-arid areas, in addition to complex interactions between hillslope 

topography, vegetation and land use factors. Resulting hydrological isolation of areas 

on hillslopes can lead to spatial patterning of erosion and gully morphological 

development when observed at the hillslope scale. For that reason, studies that do not 

also account for these small-scale heterogeneities will be clearly inadequate for 

predictive purposes (Sivapalan, 2003). It was with this in mind that the research 

presented in this thesis was not only carried out at the hillslope-scale. The role of 

small-scale properties and process interactions was also studied in order to more 

accurately account for the formation of the small gullies at the two field sites in south­

east Spain. 

1.3.2. The Role of Small Scale Properties and Interactions. 

Originally, erodibility was thought to be a constant characteristic (Nachtergaele and 

Poesen, 2002) but much research carried out over the past few years has demonstrated 

that this is by no means the case. Soil erodibility in fact varies over very short 

distances due to localised differences in microtopography, soil properties, infiltration 

rates, and vegetation. Consequently, on actual hillslopes, erosional conditions exhibit 

highly complex response patterns, reflecting the complex interplay of factors (Bryan, 

2000). Information on the spatial distribution of soil properties is therefore crucial 

when predicting volumes and patterns of gully erosion (Nachtergaele and Poesen, 

2002). Gully channels can only develop if concentrated (overland) flow occurs during 
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a rain event (Poesen et al., 2003) and even then, the extent of erosion will depend 

upon the response of the soil surface to overland flow. Therefore another aspect 

related to the study of gully erosion is the incorporation of spatial variations in soil 

properties at the small-scale (Nachtergaele and Poesen, 2002). This need to include 

data on soil properties in any study of gully morphology has also been noted by Bryan 

(2000) and was used as the basis for his investigation into soil erodibility and 

processes of water erosion on hillslopes. It was demonstrated that geomorphic and 

hydrologic processes involved in hillslope sediment transport are indeed strongly 

influenced by soil properties. However, he also notes that the dynamic complexity of 

soil surface properties and their effect on hillslope sediment delivery processes has 

been largely ignored by geomorphologists, and there is still a need for more research 

into the role of soil properties in order to improve our understanding of this important 

factor. 

Due to the nature of rainfall events in south-east Spain, the emphasis of erosion 

studies is mainly on overland flow and surface processes. Therefore, soil properties 

which can have a primary or secondary influence on erosion and gully morphological 

development include microtopography, particle size, soil organic matter content, 

infiltration rate, pH and electrical conductivity. Each of these will be briefly 

discussed. 

During a rainfall event, runoff may be reduced by the provision of water storage in 

depressions at the soil surface (Cremers et al., 1996). Knowledge of the soil surface 

roughness, or microtopography, is therefore important when studying soil erosion: it 

is a main factor which both mitigates overland flow by producing discontinuous 
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ponding and determines the initial runoff direction once overland flow begins. 

Microtopography is itself independent of hillslope gradient, although it is recognised 

that the presence of a slope may affect the role of this factor during rainfall 

(Kamphorst et al., 2000). However, the lack of a suitable measurement technique to 

accurately record soil microtopography at small grid spacings has confined potential 

description of roughness effects (Huang and Bradford, 1992). The development of 

GIS and TLS approaches offer the possibility to overcome parts of these problems, 

combining both process response modelling, spatial heterogeneity and landscape 

characteristics. 

Once overland flow has been initiated, the resistance of the individual soil particles to 

the runoff will determine the extent of erosion taking place. Particle-size distribution 

plays the key role in soil susceptibility for material disintegration and erosion: the 

larger the range of particle sizes, the higher the degree of packing, and hence the 

greater resistance to breakdown processes (Gallart et al., 2002: 303). Therefore, the 

higher the concentration of a single particle size in a given small-scale area, the more 

likely it is that erosion will occur. In particular, silt is the soil particle most easily 

transported by overland flow (Farenhorst and Bryan, 1995) and areas with a high soil 

silt content will be predominantly vulnerable. The positive effects of vegetation on 

soil aggregate stability have also been noted by several authors, both in the form of 

surface vegetation and soil organic matter content (e.g. So1t~-Benet et al., 1997; 

Lavee et al., 1998; Kirkby, 2001; Beven, 2002: 67). This is due to the important 

relationship between infiltration and vegetation in semi-arid areas: the density of 

vegetation increases with available water, and this will tend to offset the possibility of 

increased runoff generation with increased rainfall (Beven, 2002: 67). Low vegetation 
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Figure 1.2. Abandoned site in south-east Spain: limited vegetation and ground cover make 

this site prone to erosion and result in degraded soil which is inhibits further re-growth. 

cover means that the ground surface is unprotected against rainsplash and overland 

flow, and low soil organic matter content means that the intrinsic stability of the soil 

itself will be reduced, and will become gradually degraded (as can also be seen in 

Figure 1.2). Therefore, patterns in vegetation and soil can be important indicators of 

ecosystem health and hillslope hydrology (Imeson and Prinsen, 2004). This is because 

vegetated patches have higher rates of infiltration, and the organic matter content of 

the upper-most soil horizons - the top 6 cm - is largely dependent upon vegetation 
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type and cover (Nicolau et al., 1996). Stable soil aggregates resist entrainment by flow 

or splash more effectively, which ultimately provides greater strength and resistance 

against the shear stresses generated in channel flow (Bryan, 2000). A further 

consequence of this is that areas on a hillslope with a high soil omc therefore have a 

higher water retention capacity which encourages infiltration: the colonisation and 

growth of additional vegetation is thereby encouraged in a small-scale positive 

feedback relationship. For example, in a study carried out by Kosmas et al., (2000), 

the effects of vegetation on the degree of erosion in semi-arid Mediterranean 

environment were investigated. Results demonstrated that soils on the landscape 

studied would improve in time under good vegetation cover conditions by 

accumulating organic material, enhancing soil aggregate stability, increasing 

infiltration capacity and decreasing erosion potential. The role of vegetation in 

creating spatial heterogeneity, and its implications for water and sediment 

redistribution in semi-arid regions is therefore a significant factor to consider in any 

study of erosion in the field. 

Secondary variables which can impact vegetation growth, infiltration rate and 

ultimately gully morphological development at the small-scale include soil pH and 

electrical conductivity ( ec ). These soil properties are particularly significant in semi­

arid environments where high evaporation rates and frequent lack of soil water can 

cause local accumulation of salts in the upper soil layers in this climate. A very 

alkaline soil or high ec can actively prevent re-growth of plant cover due to its 

inability to support vegetation, resulting in further land degradation. In addition, the 

abandonment of agriculture and cessation of ploughing can exacerbate this problem. 
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An investigation carried out by Dunj6 et al., (2003) into soil erosion after land 

abandonment in north-east Spain demonstrated that continued land abandonment 

reduced soil infiltration and increased runoff and erosion during following years. This, 

in turn, slowed the establishment and growth of new vegetation, reducing the recovery 

rate of the land. Indeed, many sites in south-east Spain are currently experiencing this 

difficulty caused by agricultural abandonment. In addition, it is obvious that land-use 

change of such magnitude must have large effects on infiltration, runoff and sediment 

yield in the region. Although the area which could be affected by these processes is 

very large, little information actually exists about the environmental consequences of 

extensive farmland abandonment m semi-arid areas, especially from a 

geomorphological and hydrological point of view (Lasanta et al., 2000). Therefore, 

further research comparing naturally-vegetated hillslopes with both abandoned sites 

and sites used for agricultural purposes is necessary. 

Considering all the above-mentioned factors, their spatial arrangement is critical in 

determining the extent of overland flow and its effectiveness as an eroding agent. 

Their connectivity and interaction is responsible for the evolution of a gully network 

structure on a hillslope. In addition, reconciliation between the simplicity observed at 

the hillslope scale and the complexity inferred by small-scale interactions must be 

reached. One way to achieve this is to focus on common concepts or patterns that 

have physical meanings, then determine linkages or connections between areas on a 

hillslope with similar hydrological response. This connectivity of runoff-generating 

and runoff-absorbing areas is important on all scale levels (Cammeraat, 2002), and 

will be considered further in the following section. 

15 



1.4. Hillslope Connectivity and Gully Development. 

In south east Spain, water limitation is very much a driving factor in geo-ecosystem 

pattern development: the hydrologic connectivity of hill slopes is often poor due to the 

relative lack of water in this environment. Therefore, overland flow resulting from 

low-frequency, high-magnitude (or 'intense') rainfall events exceeding the infiltration 

capacity of the soil is an important runoff-generating mechanism. The region of south 

east Spain is no exception to this, and a frequent result of these intense rainfall events 

is the development of gullies, whose morphology is dependent upon the interactions 

oflarge- and small-scale factors discussed in sections 1.3.1 and 1.3.2 respectively. 

Gully erosion results from a hydrological connection between a runoff contributing 

area and a runoff collecting network (Souchere et al., 2003). Once formed, however, 

gullies may further increase connectivity on a hillslope, facilitating the movement of 

both water and sediment across parts of the landscape. As scale increases, the 

connectivity between smaller areas becomes more important for the movement of 

water and sediment. Therefore, the role of gullies in connecting parts of a hillslope is 

very important and further research on this subject is needed. The development ofGIS 

approaches offers the possibility to overcome parts of these problems, allowing 

integrated studying of small-scale spatial heterogeneity and large-scale hillslope 

characteristics. On actual hillslopes, however, conditions vary greatly over short 

distances reflecting the complex interplay of factors (Bryan, 2000). Therefore it is still 

necessary to include a translation of these finer-scale properties of landscape parts 

into a broader-scale framework (Cammeraat, 2002) in order to fully understand gully 

geomorphological development. 
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One method of accomplishing this is the procedure of identifying small-scale hillslope 

areas - or 'response units' - which have comparable internal characteristics and a 

similar response to rainfall, then considering their interaction at a larger scale. The 

spatial variation of these small-scale 'source' and 'sink' response units is caused by 

differences in hydrological behaviour between soil patches. This process also 

acknowledges that soil erodibility is not a single, simply identified property, but is the 

summation of a highly complex response pattern, strongly influenced by intrinsic soil 

characteristics and extrinsic, macroenvironmental variables (Bryan, 2000). 

For example, this approach was used in a study by Kirkby et al., (2002) in which the 

generation of runoff at a field site in south-east Spain was determined independently 

for each potential source point, and the role of the landscape was in determining 

connectivity between these sources and the chosen outlet was investigated. 

Subcatchment areas were divided into 'hydrologically similar surfaces' (HYSS), as 

distinguished by using a combination of geology, land use, and topography. These 

were then employed in a model to show spatial patterns of runoff-response, and 

connectivity of areas to the larger channel network. Following the same line of 

research, other studies have been carried out in which 'source' and 'sink' areas called 

hydrological response units (HRUs) and hydrologically similar units (HSUs) have 

also been determined and identified over a variety of plot scales ranging from 

10 m x 2 m (Bergkamp et al., 1996) to hillslopes (e.g. Cerda, 1995; Fitzjohn et al., 

1998; Becker and Braun, 1999) and catchments (e.g. Karnoven et al., 1999; Kirkby 

et al., 2002). 
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Figure 1.3. Conceptual model of the relationships between soil variation, the spatial 

arrangement of hydrological response units and the occurrence of widespread runoff and 

erosion (after Fitzjohn et al., 1998: 66). 

At the small-scale, the spatial configuration of these units and their connection to the 

gully channel system determines the geomorphic and hydrologic response of the 

hillslope, as shown in the conceptual model in Figure 1.3. Surface runoff from source 

areas which are spatially isolated and upslope of the channel will be re-absorbed by 

the surrounding drier areas which act as sinks for overland flow, and will not 

contribute to hillslope outflow (Fitzjohn et al., 1998). In a semi-arid environment in 

particular, the connectivity of these runoff-generating and runoff-absorbing areas is 

important on all scale levels (Camrneraat, 2002). This is because rainfall and soil 
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water are more limited in this environment, and runoff production is therefore more 

patchy. In addition, there is also a great need for better understanding of how different 

areas in a hillslope or catchment fit together and how these mosaics and the factors 

causing runoff and erosion change both spatially and temporally (Kirkby et al., 2002). 

1.5. Summary. 

Gully erosion is a significant sediment source in Mediterranean areas, and gullies act 

as effective links on a hillslope, transferring both overland flow and sediment 

relatively rapidly (Poesen et al., 2003). Runoff generation and gully erosion at the 

hillslope scale are shown to be an end result of spatially and temporally complex 

processes. As discussed in the sections above, these processes operate at different 

scales, but it is impossible to describe the end result at the hillslope scale by a simple 

aggregation of small-scale processes (Beven, 2002: 75). Therefore in order to properly 

understand the nature of gully morphological development on a hillslope in a semi­

arid environment, a study must be undertaken at both scales. 

There is a need for much more research to be undertaken in order to elucidate how 

various factors including precipitation, topography, land use, vegetation, and soil 

properties affect gully erosion (Poesen et al., 2002: 256). Previous work has also 

highlighted the need for a better understanding of how different areas within a 

hillslope system fit together, and how these mosaics and the factors causing runoff 

vary (Kirkby et al., 2002). In particular, at the small-scale, gully erosion on hillslopes 

has not received as much attention as erosion processes active at the large-scale 

(Valcarcel et al., 2003), which provides another challenge for future research. 
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The field research presented in this thesis has been conducted at two field sites with 

differing land uses, at both large and small scales in the context of a single, known 

rainfall event. It is hoped that by taking into account several variables including 

topography, land use, vegetation, and soil properties, that the work undertaken will 

provide much-needed data on gully erosion in semi-arid environments. In addition, 

the use of laser scanning technology will provide unprecedented data and allow gully 

morphology and process interactions to be more readily accounted for at both scales. 

In the next chapter, details of the study methodology will be given, followed by 

presentation and discussion of the research results. 
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2. Fieldwork Sites and Methodology. 

2.1. Introduction. 

The fieldwork for this study was carried out in south-east Spain in the Guadalentin 

basin. The climate in this area is semi-arid with long, hot and dry summers. Average 

annual rainfall in this region is between 235 mm y- 1 and 350 mm i 1 (Castillo et al., 

2003; Canton et al., 2004) and the average annual temperature ranges from 14.7 octo 

17.8 °C (Kosmas et al., 1997; Vandekerckhove et al., 2003). This chapter will firstly 

describe the characteristics of the wider catchment and channel area, then discuss the 

individual field sites where the fieldwork was conducted. Secondly, the field methods 

used to carry out the research, including an outline of the laboratory work will be 

explained, followed by a description of the laser scanning techniques used. 

2.2. Catchment and Channel Characteristics. 

The fieldwork was conducted in the Rambla de Nogalte catchment, which is located 

within the Guadalentin basin in south-east Spain on the border between the Spanish 

provinces of Murcia and Almeria. (Figure 2.1 ). The Rambla de Nogalte catchment is 

171 km2 and has a channel length of approximately 33 km, as measured from its upper 

reaches to the town of Puerto Lumbreras. The Nogalte is typical of many semi-arid 

basins in the Mediterranean: it is a dynamic catchment and the main channel is a 

broad gravel-bed river, varying greatly in width from just a few metres to over 300 m 

in places, surrounded by gently sloping convex hillslopes (Shannon et al., 2002). The 

main channel is dissected by a series of braided channels that carry the lower flow 

events that rework the channel bed in between larger flood events. The geology of the 
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Figure 2.1. Map indicating the location of the Rambla de Nogalte. Dotted line indicates 

boundary between provinces ofMurcia (to the east) and Almeria (to the west). 

Figure 2.2. The upper section of the Rambla de Nogalte catchment. The varying colours in 

the foreground reflect the underlying red and blue varieties of mica schist. 
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Rambla de Nogalte consists mainly of metamorphic rocks and conglomerates, 

dominated by red mica schist with localised outcrops of blue mica schist (Bull et al., 

1999) (Figure 2.2). The red mica schist has a greater iron content than the blue, which 

causes this apparent difference in colour. The soils on the red mica schist are thick, 

whereas those developed on the blue mica schist are comparatively shallow with thin 

vegetation cover. 

Land use in the Nogalte consists of a combination of almond and olive cultivation on 

suitable slopes, whereas shrubs and natural mattoral are prevalent elsewhere. Mattoral 

is a natural scrub mainly composed of grasses, rosemary, thyme, and anthyllis; it 

provides a more continuous ground cover compared to tree crops (Canton et al., 

2004). The zonation of vegetation along ephemeral ramblas is highly variable, both in 

terms of coverage and species, and this can be caused both by localised changes in the 

underlying bedrock and environmental factors (Cerda, 1998; L6pez-Bermudez et al., 

1998). The vegetation and land use of the Nogalte must be considered as key 

components of the channel system due to their influence on the processes and impacts 

of a flood event. 

The Guadalentin basin, in which the Rambla de Nogalte is situated, was one of the 

most energetic water courses in the western Mediterranean during the nineteenth 

century, and has also suffered many large floods in the twentieth century in terms of 

morphological and socio-economic effects (L6pez-Berrnudez et al., 2002). 

Consequently, the Rambla de Nogalte itself has also experienced catastrophic flood 

events in the past, the most recent of which occurred in October 1973. Due to the 

unanticipated nature of this flood, a market was being held within the Nogalte 
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channel, which resulted in the death of many people from the town of Puerto 

Lumbreras. This event was the result of a severe storm related to an intense cold low-

pressure cell, in which flood water discharges of over 2100 m3s-1 were recorded and 

major re-working of the main channel occurred (L6pez-Bermudez et al., 2002). 

2.3. Rainfall Characteristics. 

The occurrence of flash flooding in semi-arid environments is related to the spatial 

and temporal patterns of rain storms in the catchment. Monthly rainfall totals ranging 

from 0 mm to over 200 mm have been recorded in the Rambla de Nogalte area, and 

yearly totals are in the region of300 - 350 mm (Canton et al., 2001). The wettest 

months tend to be in the latter part of the year, in particular September, October and 

1•1999 02001 02002 2003 1 

Figure 2.3. Monthly rainfall amounts (mm) 1999- 2003. 0 

Data taken from rain gauge 'South 1' situated within the Ramble de Nogalte catchment at 

41° 58' N, 59° 01' W. 
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November. There is little or no rainfall in June, July and August. The nearest 

meteorological station to the Rambla de Nogalte is located 16 km from the catchment 

in the town of Lorca. Tipping bucket rain gauges have also previously been installed 

at several locations across the Nogalte catchment, providing a more local rainfall 

record, as shown in Figure 2.3. The specific location of these rain gauges is shown in 

Figure 2.4. 

2.4. Field Site Characteristics. 

A reconnaissance of the Rambla de Nogalte channel and catchment area was carried 

out before selecting individual sites in which to carry out the field research. The sites 

were chosen on the basis of several attributes, the first of which being how 

comparable they were to one another: this meant taking into consideration the sites' 

topography, land use, geology, and the presence of ephemeral gullies on the land. The 

number and location of the field sites was also taken into consideration in order to 

reduce the travelling time, thereby maximising the efficiency of the research period. 

The topography and agricultural land use at both sites were comparable factors: both 

Site 1 and Site 2 had gently sloping convex hillslopes and were planted with almond 

trees. However, the geology at each site was different: the former consisted of a red 

mica schist, whereas the latter was predominantly a blue mica schist. By basing the 

site selection on certain similar characteristics, the number of variables that required 

investigation was reduced. Taking too many variables into consideration would not 

have been feasible given the timescale in which the research was conducted. The 

location of Site 1 and Site 2 within the Rambla de Nogalte is indicated in Figure 2.4. 
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The first site, located at 1 °58'43" W, 37°35' 15" N, is a maintained almond plantation 

which is also used for the grazing of sheep and goats. In between the crop of almond 

trees there is relatively little vegetation: this is because the field is ploughed in order 

to leave the soil bare to prevent the almond trees having to compete for water with 

grasses that establish in between plough events. However, The almond trees 

themselves provide little ground cover, and grasses and small shrubs eventually 

establish in some areas, providing some soil surface protection until the field is next 

ploughed. This field was last ploughed in June 2003 and will be next ploughed again 

at the end of March 2004. This site was selected primarily because of the presence of 

three relatively large ephemeral gullies on the hillslope (Figure 2.5). It can be seen 

that the gullies are situated within topographic hollows, and the fans at the base of 

each indicate how much sediment has been eroded and mobilised as a result of their 
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Figure 2.5 . Photograph of Site 1. 

formation. The gully features are removed when the field is ploughed between large 

storms, but the sediment eroded will have increased the prominence of the 

topographic hollow in each case, thereby adding to the likelihood that ephemeral 

gullies will preferentially form in the same locations in future. The current size of 

each sediment fan suggests that this is indeed the case, since it would have taken more 

than one rainfall event for such volumes of sediment to be mobilised. According to 

the farmer, the three gullies currently present at Site 1 were formed in October 2003 

during a single intense rainfall event. This event was recorded by several tipping 

bucket raingauges in the Rambla de Nogalte catchment, and will allow the 

morphology of each gully to be associated with a given rainfall amount and intensity. 

2.4.2. Site 2. 

The second site is located at 1 °57'50" W, 37°35 '37" Nand is an abandoned almond 

plantation, which now forms part of privately-owned land. It is hoped by the land­

owners that natural mattoral vegetation will regenerate if the area beneath the almond 
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trees is no longer ploughed and maintained. However, it is taking a considerable 

amount of time for natural vegetation to re-establish, and much of the soil surface 

remains relatively bare (Figure 2.6). This site was selected because the existence of 

ephemeral gullies on the land, as well as the presence of almond trees, made it 

comparable to Site 1. However, the geology at Site 2 was different because blue mica 

schist is predominant in this area of the Nogalte: the topsoil is much more slaty than at 

the first site and is of a more grey-blue appearance. 

Figure 2.6. Photograph of site 2 

2.5. Field and Laboratory Methodology. 

As previously discussed in Chapter 1.2.1, the aim of this study was to understand the 

formation of small gullies on semi-arid hillslopes in south-east Spain in relation to the 

topographic settings, soil properties and rainfall characteristics (Chapter 1.2). In order 

to carry out this aim and complete the research objectives, a number of techniques 

have been used to obtain data for this study. The methodologies employed can be 

broadly divided into the following three sections: the more traditional field methods 
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used, the laboratory work carried out, and the use of laser scanning techniques. Each 

of these which will be discussed individually in the following sections. 

2.5.1. Field Methods. 

The field methods were employed in order to obtain data which could explain the 

presence of the gullies in terms of topography, rainfall, and soil surface 

characteristics. The interaction of these factors will affect the behaviour of overland 

flow and therefore erosion and gully morphological development. 

At each site, the gully morphology was first measured by hand. Gully cross profiles 

were taken by measuring widths and depths across each channel at five metre 

intervals from the base to the top of the slope (Figure 2. 7). This permitted gully 

morphology to be recorded, and also allowed the total gully volume - and therefore 

sediment loss - to be calculated. These gully cross profiles measured by hand will 

also be compared with similar data obtained from the laser scanner in order to 

evaluate its potential as a tool for studying gully morphology. 

Rainfall data was obtained from several tipping bucket rain gauges that have been 

installed across the Rambla de Nogalte catchment. The data stored by the rain gauges 

was downloaded onto a laptop computer in the field, and was saved for later analysis. 

This system of rainfall observations will provide an insight into processes operating 

within an ephemeral channel catchment, and it will be possible to link erosion and 

flood events to specific rain storms. However, rainfall intensity alone will not account 
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Figure 2. 7. Method of gully cross profile measurement. 

for areas of the catchment that produce higher runoff discharges; in order to 

adequately explain the catchment's response to a rainfall event, it is necessary to take 

topographic settings, soil properties and land use factors into consideration. 

Agricultural practices and soil structural development both exert a major influence on 

infiltration parameters in the field. Therefore it is advantageous to make in situ 

measurements of infiltration with minimum disturbance of the soil surface. Point 

infiltration measurements were conducted in the field using a double-ring 

infiltrometer, and each measurement was taken no further than 5 metres from the 

sides of the gullies at each site. This was in order to obtain data which would give a 

general overview of surface infiltration trends across each hillslope in areas 

immediately associated with the gullies. Had these measurements been made within 
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the gully channels themselves, the results would have been influenced by the fact that 

they were conducted on a previously-eroded surface. 

Fifteen measurements of infiltration were made at Site 1, and three were made at 

Site 2; the locations of these point infiltration measurements on each hillslope are 

indicated in Figures 2.8 and 2.9. The infiltrometer inner ring used measured 6 cm in 

diameter, and the outer ring was 11 cm in diameter (Figure 2.1 0). Each ring was 

15 cm tall, and the inner ring had a 100 mm scale measured on the inside with a tape 

measure. At each location the rings were inserted into the soil to a depth of 5 cm, 

taking care to disturb the surface as little as possible. For each experiment, a 500 ml 

measuring cylinder was used - approximately 400 ml water was poured first into the 

inner ring until full, and then the remaining 100 ml was poured into the outer ring. 

This use of an outer buffer ring ensured that flow was one-dimensional for the most 

part ofthe infiltration experiment. A stopwatch was then used to measure the time 

Figure 2.8. Site 1: location of infiltration measurements. 
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Figure 2.9. Site 2: location of infiltration measurements. 

Figure 2.1 0. The double ring infiltrometer used to conduct point infiltration measurements in 

the field. 
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taken for each 10 mm drop in water level in the inner ring until all the water had 

infiltrated. This procedure was repeated twice at each location without moving either 

of the infiltrometer rings. This was primarily to observe and measure how the 

response of the soil to the second run of the experiment was affected by its behaviour 

in the previous run, providing further insight into the properties having an influence 

on the infiltration at each location. 

Soil samples were taken from both Site 1 and Site 2 at the same location as each 

infiltration measurement site. The samples were taken from the top 6 cm of the soil 

profiles using a metal spatula. In semi-arid environments, the upper-most soil horizon 

(the top 6 cm) contains the soil organic matter and particle size fractions which 

directly determine the response of the soil surface to rainfall and runoff 

(Nicolau et al., 1996) These were then used for further analysis in the laboratory. By 

taking these soil samples at locations corresponding exactly to the infiltration 

experiments, it will be possible to account for observed differences in the infiltration 

results in terms of soil characteristics. Soil samples were only taken in areas which 

corresponded with infiltration experiments because the objective of this fieldwork was 

to obtain a general overview of surface trends across each hillslope, rather than 

conduct a detailed analysis of soil surface properties. 

2.5.2. Laboratory Work. 

The aim of this work was to obtain information on soil properties which could be 

related to parameters such as the hillslope topography, vegetation, land use, and the 

infiltration data, in order to account for the gully morphology observed in the field. 

The soil samples taken at each site were analysed in the laboratory and the soil pH, 

33 



electrical conductivity, organic matter content, and the particle size distribution were 

determined. The methodologies will now be discussed, along with the significance of 

measuring each soil factor. 

Soil Particle Size Distribution 

Grain size is a fundamental soil property, affecting the entrainment, transport and 

deposition of sediment (Blott and Pye, 2001), and selective erosion by a range of 

processes can strongly influence hillslope evolution and gully erosion. Selective 

erosion may also have important chemical implications, including the selective 

movement of nutrients and pesticides attached to particles and microaggregates 

(Farenhorst and Bryan, 1995). Consequently, determining the particle size distribution 

of a range of soil samples taken from across a hillslope is necessary when considering 

the erosion processes taking place. 

Particle size distribution was determined for each soil sample using a Coulter® LS 230 

Particle Size Analyser. Small stones and pebbles measuring over 5 mm were removed 

beforehand, and a representative sample of between 1 and 2 g from each soil sample 

was weighed out for further preparation. Each sample was then treated with hydrogen 

peroxide and heated overnight in order to bum off any organic matter that was 

present. The samples were then cooled and centrifuged, allowing excess liquid to be 

drained away, leaving the soil samples for use in the particle size analyser. Each 

sample was then added to the Coulter® LS 230 Particle Size Analyser in order to 

determine the grain size distribution. This involves the division of the sediment 

sample into a number of size fractions, enabling a grain size distribution to be 

constructed from the weight or percentage volume of sediment in each size fraction. 
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The Coulter® LS 230 uses laser-based technology to provide accurate results for 

particle sizes from 0.04 J.tm to 2000 11m in a single scan (Coulter Corporation, 1998). 

The particle size data obtained for each sample was then imported into the GRADISTAT 

computer program for statistical analysis. 

Soil Organic Matter 

The soil organic matter content ts a very important soil property, affecting the 

physical, chemical and biological characteristics of the soil. Organic matter promotes 

infiltration by increasing the water-holding capacity of soils, a factor which is of 

particular importance in semi-arid environments where soil water is by definition in 

limited supply. Additionally, it promotes the development of stable soil structures by 

increasing granulation. Furthermore, organic matter is a source of plant nutrients, 

which will affect soil fertility and therefore agricultural productivity. 

In this study, the organic matter content of each soil sample was determined by the 

loss on ignition method. All the soil samples were passed through a 2 mm sieve, and a 

representative sample of between 5 g and 7 g soil from each was weighed out into a 

crucible. These were first dried at 105 °C, re-weighed, and then placed in a furnace at 

550 °C for four hours. Following removal from the furnace, the samples were cooled 

in dessicators before being weighed one final time. Any weight loss constituted the 

organic matter burnt off, and could be used to calculate the percentage organic matter 

content of the soil sample. 
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Soil pH and Electrical Conductivity 

Many soil properties and processes are affected by the soil pH, including microbial 

activity, clay mineral formation, and the ability of a soil to adequately support the 

growth of crops or vegetation. pH is therefore considered an important soil chemical 

property. The degree of a soil's acidity or alkalinity is determined by the hydrogen ion 

(H+) concentration in the soil solution: the lower the H+ ion concentrations, the higher 

the pH value. Crops yield best in soils with pH levels between 6.0 and 7 .0, but many 

soils from semi arid environments tend to have more alkaline pH values due to 

precipitation of salts in the upper soil horizons. 

The pH of each soil sample was measured by taking a representative sample weighing 

20 g and initially adding 8 ml distilled water in order to make a thin paste, in which 

the soil : water ratio was accordingly less than 1: 1. This paste was then left to stand 

for one hour before measuring the pH using a glass electrode. The quantity of distilled 

water in each sample was then increased to 50 ml, and again to 100 ml and the pH 

was measured each time. When more water is used, the concentration of H+ ions 

becomes diluted and the measurements may yield higher pH values (Tan, 1996: 1 06). 

As a result it is advantageous to take soil pH measurements at different soil : water 

ratios. 

The electrical conductivity (ec) was also determined in turn for each soil sample 

collected in the Rambla de Nogalte. Samples were prepared as for the pH 

measurements, then this procedure was carried out using a solution consisting of 20 g 

air-dried soil mixed with 50 ml distilled water. Each sample solution was then 

transferred to a measuring cell, and the ec reading was taken. Soil ec is a component 
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that integrates many soil properties affecting crop productivity: these include soil 

texture, soil organic matter content, salinity, cation exchange capacity, and 

exchangeable calcium (Ca) and magnesium (Mg). In particular, the level of soluble 

salts in a soil solution can be classified by determining the ec. As the level of soluble 

salts increases, the usual effect is decreased plant growth, therefore this soil chemical 

property has considerable significance (Benton-Jones, 2001: 150). The relationship 

between a soil's ec and its degree of a salinity is shown in Table 2.1. Salinity 

currently affects approximately 25% of the croplands in the world and is becoming 

an increasing problem, particularly in semi arid environments due to agricultural 

irrigation practices combined with high evaporation rates. 

Degree of salinity 

Non saline 

Slightly saline 

Moderately saline 

Strongly saline 

Very strongly saline 

Electrical Conductivity (!!S cm-1
) 

0-200 

210-4000 

4100-8000 

8100-16.000 

> 16.100 

Table 2.1. The relationship between a soil's salinity and its electrical conductivity. Adapted 

from Benton-Jones (2001). 

2.6. Use of the Laser Scanner. 

As discussed in Chapter 1, terrestrial laser scanning offers an advantageous method of 

collecting accurate soil surface data, which creates new possibilities for research into 

erosion by gullying. Therefore, a laser scanner (as shown in Figure 2.11) was used in 

order to produce large-scale detailed digital elevation models of the hillslopes at Site 1 

and Site 2. In addition to this, small-scale high-resolution plot scans were made at 

various locations across each hillslope. The practical use of this tool will now be 
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explained, including a description of the machine itself, the methods of its usage in 

the field, followed by an explanation of the software used to analyse the data 

collected. 

2.6.1. Laser Scanner Specifications and Field Usage. 

The terrestrial laser scanner used in this study, the MDL LaserAce® scanner 

(Figure 2.11), is one of a new, emerging generation of portable laser scanners 

currently available, offering great potential for rapid collection of three-dimensional 

(3D) spatial datasets of entire surfaces (Lichti et al., 2002). The MDL LaserAce® 

operates following being mounted on a tripod, as depicted in Figure 2.12. According 

to the manufacturer's product specification (Measurement Devices Limited), this 

instrument is capable of measuring at a range of up to 700 m, with scanning accuracy 

of 5 cm. Its maximum spatial resolution is 1 cm, and it can scan up to 250 points per 

second (MDL, 2003). This scanner operates using a pulse method in which a brief 

pulse of laser light is emitted, and after reflection by the object being measured, is 

sensed by a photodetector (Lichti et al., 2002). Once the scan area has been 

designated, the scanner then sweeps with it the laser; reflected points are stored with 

individual xyz coordinates and recorded on the scanner's memory card, which can 

hold up to 32 Mb of data, which constitutes 3 million points (MDL, 2001 ). 

The MDL LaserAce® scanner is an extremely robust piece of equipment, weighing 

just 8.1 kg and requiring relatively simple transportation and field set-up. This makes 

its on-site use and field potential greatly versatile. In particular, it is comparatively 

easy to use when compared to the likes of earlier scanners: many required the 

construction of two-dimensional frames with a track to allow the scanner to alter 
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Figure 2.11. The MDL Laser Ace® scanner (front view). 

position. Furthermore, this meant that the area which could be scanned was very 

limited and use in the field was often impossible (e.g. Huang and Bradford, 1990; 

Huang and Bradford, 1992; Darboux and Huang, 2003). Currently, a new generation 

of terrestrial laser scanners (TLS) is becoming increasingly available, offering rapid 

collection of detailed 3-dimensional data which can be used in a very wide variety of 

contexts, or as a complementary procedure to more traditional field methods. The 

ability to monitor the temporal evolution of three-dimensional forms at high 

resolutions has led to successful applications that have improved the understanding of 

a variety of fluvial and terrestrial environments (e.g. Latulippe et al., 2001; Genovois 

et al., 2001; Lim et al., 2005). Other geographically-focused applications of this 

technique include 3D mapping and change detection in urban environments: TLS 

techniques have been used in this context to add 3 dimensional data to existing 2 

dimensional datasets of towns and cities (Vosselman et al., 2005). Laser scanning has 

also been used in a sedimentological context for the evaluation of gravel sphericity 

and roundness (Hayakawa and Oguchi, 2005), for the monitoring and classification of 
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battery pack 

scanning 
Location marker 

Figure 2.12. The MDL Laser Ace® scanner and equipment used in the field. 

landslide bodies (Bitelli et al., 2005), for the study of sand dune topography in high 

spatial resolution (Nagihara et al., 2003), and also in the identification of tree canopy 

characteristics and foliage density measurement for ecological purposes (Wei and 

Salyani, 2005). Terrestrial laser scanning has also been used for monitoring the 

process of hard rock coastal cliff erosion (Rosser et al., 2005), in which the rate and 

mechanisms governing the retreat of these cliffs are directly measured and monitored 

in detail. A review of systems and applications of ground-based laser scanners similar 

to the MOL LaserAce® used in this study was carried out by Lichti et al., (2002). 

They describe some of the fundamentals of laser scanner operation, followed by a 

detailed review of five commercially-available scanners (RIEGL LMS-z21 0; RIEGL 1-

SITE, Cyrax 2500, Callidus, and Optech ILRIS-30). However, even in the few years 

since Lichti et al., (2002) carried out their system comparisons, significant 

improvements in TLS have been made: for example, these are highlighted by Bitelli 
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et al., (2005) in their study of landslide bodies over several years in Bologna, Italy. 

Two studies were carried out: one in May 2002, using a RIEGL LMS-Z21 0 laser 

scanner, and one in April2004 using a RIEGL LMS-Z420i laser scanner. They note that 

the latter had a much better field performance: in particular, the measurement range, 

scanning speed, and point cloud intensity of the instrument showed improvement. The 

RIEGL LMs-z21 0 had a data acquisition distance of 2 to 350 m, with a nominal 

accuracy of about 2.5 cm in the distance, at a rate of 6000 points per second; whereas 

the RIEGL LMs-z420i had a data acquisition distance of 2 to 800 m, with a nominal 

accuracy of about 1 cm in the distance, at a rate of 12.000 points per second (Bitelli 

et al., 2005). The authors also state that should these technological improvements 

continue, TLS could represent an effective and rapid solution to produce economical 

and accurate terrain models in the field. 

In addition, a terrestrial laser scanner system comparable to the MDL LaserAce® used 

in this study was employed by Nagihara et al., (2004) for the study of sand dune 

topography. They used a Cyrax 2500 laser scanner, manufactured by Cyra 

Technologies, a subsidiary of Leica Geosystems. The Cyrax 2500 was capable of 

capturing distances of over 100 m and measuring positions within 6 mm accuracy 

(Nagihara et al., 2004). It was found that the 3-dimensional surface model of the sand 

dune created using the point data, could describe its morphology in unprecedented 

detail, with a level of accuracy far superior to traditional surveying techniques. It is 

hoped that the use of a comparable laser scanner for the study of gully morphology 

and erosion in the field will provide unique results, and some much-needed detailed 

data at scales larger than laboratory or plot scale. 
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The scans made in the field using the MDL LaserAce® scanner were of two types, and 

each will now be explained in turn. Firstly, large-scale scans were made of each 

hillslope at both Site 1 and Site 2 in order to capture hillslope surface topographic 

detail which included the gullies. These initial scans were made at 20 cm resolution. 

However, one problem encountered in the field was caused by the almond trees. Their 

presence meant that it was not possible to scan the whole hillslope from one tripod 

position. This was due to a 'shadow effect' which was created by the trees: the area 

immediately behind the almond trees would not be scanned, but rather, the trees 

themselves would (as shown in Figure 2.16). This problem associated with TLS was 

also noted by Bitelli et al., (2005): they state that zones characterised by vegetation 

cover, shadows or other obstacles are not always feasible areas in which to carry out 

laser scanning. In these cases, only manual work on the datasets carried out by an 

operator after scanning can produce high quality data. 

Figure 2.13. The MDL LaserAce® scanner in use at Site 2. The orange marker indicates the 

location of the initial scanning position (base point). 
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In order to overcome the problem posed by the almond trees at Site 1 and Site 2, 

locations were selected on each hillslope to which the scanner and tripod could be 

moved in order to scan around and behind the trees, obtaining the best possible 3-

dimensional representation of the area. The scanning locations were identified by 

orange markers (Figure 2.13) and their xyz coordinates were taken relative to all other 

orange markers on the hillslope before each movement of the laser scanner. This 

permitted the scans to be linked together and overlapped during subsequent data 

processing, generating a more detailed 3-dimensional coverage of the hillslope. The 

location of these orange scanning location markers at both sites is shown in 

Figures 2.14 and 2.15. At each field site, small-scale plot scans of the individual 

gullies were also carried out. These were made at several locations along each gully, 

either where topography experienced a significant change which appeared to 

influence the channel, or where it was decided the morphology of the gully justified a 

0 scanning location 
markers D plot scans 

Figure 2.14. Site 1: plots scans and scanning location markers. 
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0 scanning location 
markers 

D plotscans 

Figure 2.15. Site 2: plots scans and scanning location markers. 

more detailed investigation than the large scale scans would provide. The plot scans 

measured a few m2 and were scanned at 1 cm resolution in order to obtain very 

detailed soil surface data which could be used for further investigation and analysis. 

The location of each is shown in Figures 2.14 and 2.15. 

2.6.2. Laser Scanner Data Analysis 

The laser scanner generates 3-dimensional data consisting of many thousands of 

points, each with xyz coordinate attributes. These are displayed in the form of a 'point 

cloud' (Figure 2.16) which can then be triangulated into a continuous surface for more 

useful analysis. The analysis takes place in several stages, and each will be explained 

in turn. The initial work is carried out in Archaeoptics Demon software, in which the 

point clouds are first identified and then prepared for triangulation. The point clouds 
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Figure 2.16. Point cloud of the hills lope at Site 1 including almond trees & shadows. 

from both sites included almond trees whose presence hindered the generation of a 

flat surface when 2-dimensional triangulation was carried out: the software would not 

distinguish between points constituting trees and those representing the soil surface. 

Therefore it was necessary to first remove the points constituting almond trees: this 

was done by manually selecting all the relevant points and individually removing 

them from the point cloud in order to produce a smooth surface. However, this 

process was very time-consuming and labour intensive, as shown by the step-by-step 

breakdown in Figure 2.17. Once this process was completed and all the trees were 

removed from an entire hillslope scan (Figure 2.18), relatively large areas were left 

'bare' in which surface detail was not available due to the shadow effect caused by the 

presence of almond trees. 
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Figure 2.18. Point cloud of the hills! ope at Site 1 with almond trees removed. 

This problem of 'bare' areas was mainly dealt with by combining and overlapping 

multiple scans, as demonstrated in Figure 2.19. The integration of these multiple scans 

gives more surface detail as well as reducing the shadow effect caused by the trees. 

The overlapped point clouds could then be triangulated into a smooth surface to allow 

for further analysis in ArcGIS (as shown in Figure 2.20). 

The small-scale plot scans did not include any almond trees, which meant that their 

triangulation into surfaces was much more straightforward. However, due to the 

density of the point cloud generated by the 1 cm scanning resolution used, and 

therefore the sheer volume of data involved, the plot scans could not be exported 

directly to ArcGIS software for further topographical analysis without overloading the 

software. In order to overcome this problem, multiple cross sections of each plot scan 

at 2 % intervals were made in the Demon software, and the cross sections themselves 
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Figure 2.19. The integration of 3 individual scans of the hillslope at Site 2. 

Figure 2.20. Triangulated surface of the hillslope at Site 1. 
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were exported instead. An example of this process is shown in Figure 2.21 . While this 

process was fairly time consuming and resulted in slight detail from the plot scans 

being lost, it was still the most feasible and most effective alternative to using the 

point clouds themselves. Once the cross sections had been made and exported into 

ArcGIS, contours were created (Figure 2.22), the cross sections were convered to 

raster format. Topographic attributes including elevation and slope gradient 

(Figure 2.23) were determined using SpatialAnalyst and 3D Analyst extensions. In 

addition, the ArcGIS Spatial Analyst Hydrology Tools extension was used to identify 

sinks, determine flow direction, flow accumulation, and ultimately to produce detailed 

small-scale flow network data (Figure 2.24). The importance of this data presented in 

the images below will be discussed in Chapters 3 and 4. 

Figure 2.21 . Plot scan (left), and the same scan with cross sections taken at 2 % intervals. 

This small-scale plot scan data obtained usmg the laser scanner will allow gully 

erosion and morphology to be better understood in the context of the larger hills lope. 

Furthermore, the examples of plot scan data shown in Figures 2.22 - 2.24 demonstrate 

that despite being based on cross-sections taken from the original plot scans, the 
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Figure 2.22. (above left). Contour image 

generated from cross-sections imported into 

ArcGIS. 

Figure 2.23. (above) . Slope gradient image 

created from contour data and xyz topographic 

attributes. 

Figure 2.24. (left). Flow network data generated 

using small-scale topographic attributes and 

large-scale slope gradient. 

results are still highly detailed. In particular, this data will aid in understanding the 

relationship between physical soil properties and overland flow generation. Gully 

morphological dimensions derived from the plot scans could also be used to calculate 

local channel volume, thereby giving the amount of sediment eroded from the 

hillslope during a specific rainfall event. 

2.7. Summary. 

Gully erosion is an important sediment source in semi-arid environments, and the 

evolution of gullies within hillslope systems is highly dependent upon the interaction 

of several variables at both the large- and small-scale. The research methods presented 
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in this chapter have demonstrated how fieldwork has been carried out in order to fulfil 

the research aim of understanding the formation of small gullies on semi-arid 

hillslopes in south east Spain. In particular, this research will provide some much­

needed data on hillslope erosion and gully morphological development at different 

scales in a semi-arid context. Furthermore, the use of a combination of methods at 

different scales, including traditional field techniques, laboratory analysis, and 

terrestrial laser scanning, will provide a more comprehensive research project which 

will further the current understanding of erosion by gullying. The field results will be 

presented and discussed in Chapter 3 from a hillslope scale perspective, and in 

Chapter 4 in the context of small-scale process interactions. The data from these two 

scales will be reconciled and discussed further in Chapter 5. 
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3. Hillslope Morphology. 

3 .1. Introduction. 

Recent studies in semi-arid Mediterranean areas have shown gully erosion to have an 

increasingly significant contribution to soil loss on hillslopes (Martinez-Casasnovas 

et al., 2003). However, much research has been carried out at the plot scale and only a 

few investigations have been executed at larger scales. The interaction between 

erosional processes on slopes and channel morphology is consequently one area 

where current understanding needs to be developed (Bull and Kirkby 2002 pl2). 

There is therefore a clear need for more detailed monitoring and investigation of 

erosion processes active in this environment in order to better understand gully 

geomorphology at the hillslope scale. 

Field research for this study was carried out at two sites in the Rambla de Nogalte, 

south-east Spain. Both a laser scanner and traditional fieldwork methods were used 

and the relationship between rainfall, runoff and sediment transport was investigated. 

The laser scanner was used to obtain detailed topographic data which could give 

information on related attributes such as hillslope gradient, slope length, catchment 

area and slope curvature. These are properties which have been shown to have a clear 

effect on drainage networks and gully channel development at the hillslope scale 

(Poesen et al., 2003). Fieldwork data includes gully cross-profile measurements, 

infiltration rates measured at points across each hillslope, and laboratory analysis 

carried out on soil samples taken from both Site 1 and Site 2. Rainfall data was also 

obtained from several tipping bucket raingauges across the catchment, and will be 
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used to relate the amount of soil eroded to a specific rain event in which the gullies 

were formed. 

The field results will be analysed at two different scales: the hillslope to individual 

gully scale (> 100 m - - 50 m) and the individual gully to small scale (- 50 m -

< 5 m). While it is useful to divide the discussion of results in this way, the data at 

different scales nevertheless remain non-linearly linked. However, in order to 

understand the effects of processes active at the small and intermediate scales, 

patterns and processes must first be taken into account at the broader scale 

(Bergkamp, 1998). In this chapter, results and relevant discussion will therefore focus 

on the hillslope scale. The gullies at Site 1 will be referred to as A, B and C as shown 

in Figure 3.1. The single gully at Site 2 will be referred to as gully D. A table of 

definitions explaining terms and abbreviations used throughout the chapter is given in 

Table 3.1 

Figure 3.1. Gullies A, Band Cat Site 1. 
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Term Used 

Gradient 

Upslope 

omc 

ec 

Catchment Area 

Gully Point Volume 
("Pt vol") 

Cumulative Volume 

Infiltration Rate 

Overall Infiltration 

Definition 

Hillslope gradient, as measured at a specific point in the field (0
) 

Position on hillslope as measured from base of slope (m) 

Soil organic matter content (%) 

Soil electrical conductivity, measured in 

Size of the surface area on hillslope which contributes to the supply of 
overland flow for a particular gully (m2

) 

Volume of a 5 metre section of gully channel (e.g. from Om to 5m upslope, 
or 5m to 1 Om upslope ), calculated from measurements made in the field 
(ml) 

Cumulative volume of several consecutive 5 metre sections of gully 
channel (m3

) 

For a given, single location, the rate at which 800 ml water infiltrated into 
the soil (mm min-1

) 

Average of infiltration rates along the length of a gully or for a particular 
area 

Table 3 .1. List of definitions of terms used to describe gully morphology and site 

characteristics. 

3.2. Hillslope Morphology and Large Scale Topography. 

In order to study the effects of large scale topography on the observed geomorphology 

of a nested system of gullies at Site 1 and a single gully at Site 2, large scale scans 

were taken in both locations at 20 cm resolution. The topographic data obtained from 

the laser scanner was initially imported into Archaeoptics Demon software, where 

points constituting almond trees were removed and the hillslope scans were linked 

together and overlapped. This process, described in full in Chapter 2, was carried out 

in order to maximise detail in the scans and to account for any areas where data had 

been lost due to shadow effects from the almond trees. When using digital surface 

representations, care must be taken due to the potential sources of error- in particular, 

disparities between the digital and 'real' surface may exist. This would result in the 

digital surface not being representative, reducing the accuracy of results. Therefore, 

care was taken in this study to ensure that as much detail as possible from the laser 
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scans was retained. After initial analysis in Demon, the data was exported to ArcGIS 

and topographic attributes including hillslope gradient, slope length and catchment 

area were derived for Site 1 and Site 2. 

At each field site, gully morphology was also measured by hand: cross-sectional 

width and depth measurements were made for each gully at 5 m intervals from the 

base of the slope to the top of the gully. This process was also described fully in 

Chapter 2. The data collected allowed variables including channel width and depth 

relationships, gully volume, and soil loss to be calculated. It is clear from other studies 

carried out that factors such as these affect the density of a drainage network and 

hence the probability of gully channel development (Poesen et al., 2003). The 

inclusion of topographic data, whether obtained by traditional methods or by a laser 

scanner, is therefore important when studying the dynamics of gully morphology and 

runoff-producing areas, and when accounting for sediment mobilised on a hillslope. 

3.2.1. Channel Morphological Development and Slope Form. 

Slope profiles reflect the operation of processes over long time spans, and 

observations made in the Nogalte area in south east Spain show a presence of mainly 

convex rolling hills (Kirkby et al., 2003). Topographic data obtained from the laser 

scanner shows the hillslope at Site 1 to also exhibit this broad convex quality 

(Figure 3.2). However, the presence of several concavities on the hillslope interrupts 

the convexity, and also suggests that the equilibrium of processes that has been active 

in maintaining the convexity is gradually changing. This is consequently causing the 

hillslope form to change. In particular, the presence of a system of three gullies 

appears to play a large role in this hillslope's evolution. 
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Figure 3.2. Contour data of Site 1 obtained 

from the laser scanner data. The location of gullies A, B and C is indicated. Contour interval 

of 1 metre. 

From both observation and field data, the morphology of these gullies at the large 

scale appears to be governed to a certain extent by the plan curvature of the hillslope. 

The presence of the gullies within obvious topographic concavities at this site 

certainly points to this. Plan curvature is defined as the rate of change of direction of a 

contour line, and curvature is a fundamental surface property. Its application in 

geomorphology and hydrology has long been recognised, despite receiving less 

attention than slope gradient (Schmidt et al., 2003). It has been widely assumed that 

plan curvature particularly affects hillslope processes in semi-arid environments 

where overland flow often occurs (eg. Carson and Kirkby 1972, p390-397; 

Parsons 1988, p 101-1 06). In this case it appears that the plan curvature of the convex 

slopes influences the overland flow direction during rainfall events, more so than the 

independent variable slope gradient. This topographic attribute therefore plays a role 
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in determining the location and morphology of hillslope features such as gullies, but 

its interaction with the slope gradient renders its influence more important. As 

previously mentioned, this is most clearly seen in the fact that the three gullies at 

Site 1 - referred to as A, B and C - lie within topographic hollows where the slope 

gradient is steeper than elsewhere on the hillslope. 

Gully 
Catchment Average Average Average Gully 
area (m2

) width (m) depth (m) slope (0
) length 

A 57.3 1.54 0.24 22.64 55.59 

B 225.2 2.06 0.29 21.96 140.64 

c 381 2.2 0.28 23.25 145.3 

D 92.3 2.36 0.22 23.64 62.1 

Table 3.2. Topographic and morphological data for gullies A- D. 

The slope gradient data for Site 1, presented in Table 3.2 and Figure 3.3, shows that 

while the mean hillslope gradient is 12.6 °, the mean gradients for the topography 

surrounding each individual gully are much higher. This highlights the fact that the 

gullies are preferentially situated in areas on the hillslope with a high gradient. 

Gully A has an average gradient of 22.64 °, gully B 21.96 °, and gully C 23.25 °. 

Every time the gullies are ploughed back into the soil, they preferentially form in the 

same locations following each rainfall event. This means that during rainfall events 

more sediment is lost from the same areas on the hillslope, which increases both the 

prominence of the hollows and the local slope gradient in a positive feedback system. 

For gullies B and C in particular, it appears that this feedback process has been in 

operation for some time, due to the relative size of the concavities and the presence of 

large sediment fans at the base of each gully. This factor of recurring gully formation, 

combined with the steeper topography in these locations suggests that the slope 

gradient does have a control over the morphology of the gullies at this site. 
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50 m 

Figure 3.3. Slope data for Site 1 obtained from the laser scanner data. 
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When the slope gradient data obtained from both measurements taken in the field and 

laser scanner data is considered in more detail, a relationship can be observed between 

the variables hillslope gradient and gully width. If these two variables are correlated, 

an R2 value of 0.51 is obtained (r = 0.72; Table 3.3). While this is not indicative of an 

especially strong relationship, it nevertheless indicates that an important relationship 

is present: the higher the slope gradient, the wider the gullies at Site 1 tend to be. This 

can be accounted for by the fact that the gully width is determined by the amount of 

runoff carried by the channel, which is, in turn, determined by slope steepness. The 

strong continuity of gullies A, B and C down the hillslope is also indicative of a 

constant runoff contribution from sideslopes during rainfall events. If the overland 

flow direction was not governed by the slope gradient which directs it towards the 

gullies, they would either remain a uniform width and depth along their length 

downs lope, or they would be discontinuous due to the occurrence of infiltration within 

the gully channel. Therefore the higher the amount of runoff, the wider the gully 
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channel will become in order to accommodate the flow of water and evacuate it from 

the hillslope. This also points to the spatial differentiation of areas on the hillslope at 

Site 1: some areas preferentially produce overland flow, while others act as 

connective links for runoff and eroded sediment between areas on the hillslope. This 

concept of hillslope connectivity will be discussed in the context of this study in 

section 3.3 and in the following chapter. 

width depth volume cumulative gradient catchment up slope volume area 
width 1.0 

depth 0.27 1.0 

volume 0.63 0.76 1.0 

cumul vol -0.26 0.25 -0.04 1.0 

gradient 0.72 0.41 0.66 -0.58 1.0 

catchmt area -0.05 -0.08 0.01 0.41 -0.24 1.0 

up slope -0.26 0.20 -0.04 0.96 -0.58 0.63 1.0 

Table 3.3. Correlation (r values) of gully morphological and hillslope variables for gullies A, 

B and C. (For definitions of these variables, see Table 3.1 ). 

The relationship between width and hillslope gradient is R2 = 0.51, but this value is 

affected by the presence of several outliers in the dataset, as can be seen in Figure 3.4. 

These outliers correspond to areas of reduced slope gradient where the channel 

remains nevertheless relatively large. These were either locations where deposition 

had occurred within the channel, or towards the base of each gully just upslope of 

where large sediment fans were present. This was particularly the case for gully C: 

despite having the largest catchment area (381 m2
) and the highest average width and 

depth (2.2 m and 0.29 m respectively), the large sediment fan at the base of the 

hillslope reduces the slope gradient and the apparent effect of topography on the 

erosion process. While the gully remains wide, the local slope gradient is much 

reduced. Following a field study, this phenomenon was also noted by Gabbard et al., 
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Figure 3.4. Relationship between slope gradient & gully width at Site 1. R2 = 0.51 . 

Figure 3.5. Site 1: gully B situated within a topographic concavity. The wide channel is 

visible, and the sediment fan is present in the foreground. 
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(1998): sediment deposition was shown to be a significant process at this slope 

position, reducing the local influence of gradient and affecting morphology at both the 

local and large scales. A relatively large sediment fan was also present at the base of 

gully B (Figure 3.5) and the data corresponding with this location also exhibits a 

similar reduction in slope gradient. Slope values are between just 7 ° and 14 °, 

compared to an average of 21.96 ° for the whole of gully B. 

The gully at Site I which shows the strongest correlation between channel width and 

slope gradient is gully A. The R2 value for this single gully is 0.52, which is slightly 

higher than R2 = 0.51 for all three gullies (Table 3 .3). This indicates that for this gully, 

slightly more so than for the others, the steepness of the slope influences its width. 

The fact that gully A has a stronger correlation with its topographic surroundings can 

be attributed to two main factors. First, gully A is much smaller than gullies Band C: 

it measures only 55.59 m in length compared to 140.64 m and 145.3 m for the other 

two respectively. There is therefore less potential for localised areas of shallow 

gradient where deposition can occur, and no branches or tributaries joining a main 

channel. Secondly, gully A appears to be relatively less mature than gullies B and C. 

For example, it has the smallest sediment fan of the three gullies on the hillslope, 

measuring approximately 7.5 m3
• This suggests that its formation is more recent than 

gullies B and C, whose sediment fans measured 10.75 m3 and 22.1 m3
• respectively. 

Its catchment area is also significantly smaller at 57.3 m2
• The topographic concavity 

in which gully A is situated is also much less pronounced, which indicates less 

positive-feedback compared with gullies B and C. These properties all point to the 

likelihood that topography will exert a more direct influence on gully A's morphology 

due to the interplay of comparatively fewer factors, as is reflected in the results. 
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Whereas the relationship between gradient and gully width at Site 1 has an R2 value of 

0.51, the relationship between the gully depth and hillslope gradient is much less 

strong, having an R2 value of just 0.17. This indicates that the role of hillslope 

gradient in determining gully depth is relatively less important than determining width 

at this site. The gully depth is therefore more likely to be governed both by the 

amount of runoff carried by the gully and the physical environment in which it is 

situated: for example, the erosivity of the soil surface, and the infiltration rate of the 

soil. These factors will be discussed subsequently in section 3.2.2. 
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Figure 3.6. Local gully volume compared with slope gradient. R2 = 0.43. 

The fact that hillslope gradient influences gully width, and to a lesser extent gully 

depth, inevitably implies that other morphological characteristics including gully 

volume and soil loss will also be affected by slope gradient. As can be seen from the 

results, the relationship between local gully volume (defined as the volume of a 5 m 

length of the gully) and hillslope gradient is has an R2 value of 0.43 (Figure 3.6), 

indicating that the slope gradient does indeed affect the gully morphology at Site 1. 

While this is a significant relationship, it is affected by the presence of several 
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outlying points, upon whose removal the relationship does improve. The fact that the 

gully volume is increasing downslope shows that the amount of gully flow is also 

increasing, and therefore runoff contribution from the sideslopes to the gully channels 

is significant. This is also manifested in the strong relationship between upslope 

location and gully cumulative volume (R2 = 0.91). The relationships between 

cumulative volume and gully width and depth at Site 1 are also relatively strong, 

having R2 values of 0.50 and 0.58 respectively (Figure 3.7, top two graphs). This 

relationship is to be expected, since the width and depth determine the gully volume, 

and therefore the amount of soil eroded at a given point. The relationships between 

width, depth and upslope position are slightly less significant (Figure 3.7, bottom two 

graphs), indicating that it is the the local slope gradient rather than the specific 

hillslope location which determines gully morphology. 

Multiple regression analysis was carried out using the data obtained from Site 1 in 

order to give further insight into the relationships between several large scale 

topographic attributes and gully morphology. In particular, the regression of the three 

variables local gully volume, local gradient and distance upslope (Equation 1) gives 

an R2 value of0.62, indicating that this relationship is highly significant. 

Local gully volume = -0.98 + (0.062 x Local gradient)+ (0.0060 x Distance upslope) 

p = 0.01, R2 = 0.62 

Equation 1 

As shown in Figure 3.6, when just the two variables of local gully volume and local 

gradient are regressed, the R2 value is weaker at 0.43, which shows that the inclusion 

of upslope position is very important. This data therefore demonstrates that gully 

width is strongly influenced by a combination of both the local gradient and the 
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upslope position, with larger sections of the gullies being preferentially located on 

steeper topography and towards the base of the slope. If the variable of infiltration rate 

is included in the regression along with local gully volume, local gradient and position 

upslope, the R2 value is again significant at 0.62. This demonstrates that the gully 

morphology is also dependent on infiltration rate, therefore this factor does have an 

influence on erosion processes and channel form. 
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Figure 3.7. Width and depth compared to gully volume (top two graphs). Width and depth 

compared to ups! ope location (bottom two graphs). For defmition of variables, see Table 3.1 . 

In contrast with Site 1, just a single channel was present at Site 2: gully D 

(Figure 3.8). Large scale scans were taken at this site and channel width and depth 

were also measured by hand as for Site 1. As previously discussed in Chapter 2, Site 2 

is also located within the Nogalte catchment but differs from Site 1 because it is no 

longer maintained as an almond plantation - it has been abandoned to let natural 
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vegetation re-establish. Topographic data for Site 2 was obtained both in the field and 

from laser scanner results; from this data, gully D is shown to have the lowest volume 

(0.57 m3
) and the lowest soil loss of all four gullies (5.3 m3 ha-1

); gully D is also the 

second shortest in length, measuring only 62.1 m. This is due to the fact that the 

hillslope is much smaller than Site 1 ( 435 m2 compared to 1735 m2
), and has a 

hill slope length of just 93 m. 

Figure 3.8. Picture of gully D at Site 2. 

The effects of slope length on gully morphology have also been demonstrated in other 

studies, including that of Kuhn and Yair (2004) carried out on badlands in Israel. 

Their results highlighted the critical role of the interaction between rainfall-runoff 

conditions, slope angle, and soil surface characteristics for geomorphology in an arid 

environment. In particular, it was found that the form and morphology of rill systems 

were crucial for the transmission of runoff on hillslopes, and integrated rill networks 

were more likely to produce continuous flow than single parallel channels due to the 

downslope increase in runoff volume. Parallels can be drawn between the work 
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carried out by Kuhn and Yair (2004) and the research presented in this thesis. The 

morphology of the gullies at sites 1 and 2 - in particular gully volume - has been 

shown to be specifically determined by interactions between the slope gradient, 

position on the hillslope, and infiltration rates. Their combined influence on overland 

flow and runoff direction at the large scale causes a downslope increase in runoff 

volume, and improves connectivity between areas of the hillslope. 

Gully D also differs from gullies A - C at Site 1 because it is not seasonally ploughed 

back into the soil due to the abandonment of the site, providing a permanent 

connection down the hillslope. Its morphology will be more static between rainfall 

events when relatively little erosion or sediment mobility occurs, because in semi-arid 

areas, the redistribution of sediment is largely driven by overland flow and surface 

wash processes (Puigdefabregas et al., 1999). Therefore, in order to fully appreciate 

gully morphological development at the large scale, the role of other variables 

including land use, rainfall characteristics, and hillslope connectivity must be taken 

into consideration. The influences of these factors on large-scale gully morphology 

will now be discussed in the following sections. 

3.2.2. Slope Gradient and Hills/ope Variability in Infiltration. 

With respect to a particular erosion process acting on a hillslope, the erodibility of a 

soil surface varies greatly both in space and time (Parsons, 1988: 108). This spatial 

variation across a hillslope can be caused by a combination of factors including 

differences in infiltration rates, the diversity of soil properties including soil type and 

surface roughness at different scales, vegetation and soil organic matter content, and 
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large scale topography, as previously discussed. While these variables operate at the 

local scale, they will inevitabley have an impact upon large scale gully morphological 

development and hillslope hydrologic response. In addition, the dynamic interaction 

of these factors can cause positive feedbacks between water and sediment 

redistribution and spatial patteming, which strongly influences the heterogeneity of 

hillslope characteristics (Cammeraat, 2002). However, it is also important to note that 

any model at the hillslope or catchment scale will be very much an approximation of 

the full physical controls on the infiltration and runoffprocess (Beven, 2002: 57-107) 

and only general trends will be captured by a study of these processes. 

As described in Chapter 2, infiltration rates were measured at several locations across 

the hillslope at Site 1 and Site 2. This data provides an insight into the general trends 

of infiltration across each hillslope in areas immediately associated with the gullies. 

Infiltration is an important factor to consider with respect to the nature of rainfall 

events in semi-arid areas: the fact that they are both infrequent and intense means that 

the large-scale infiltration response of the hillslope will determine the extent of gully 

morphological development. This is due to the fact that in such environments, erosion 

is transport limited, and mainly occurs as a result of infiltration-excess overland flow 

during rainfall events. All studies of infiltration rates in semi-arid environments have 

revealed great spatial heterogeneity and temporal variability in results (Beven, 2002). 

Therefore it is important to note that any large-scale study involving infiltration rates 

in semi-arid environments can only give a very partial picture of the nature of 

overland flow at the hillslope scale. The original infiltration data from Site 1 and 

Site 2 are given in Appendix 1, and are presented in Figures 3.9 and 3.10. 
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From this data it is clear that infiltration rates in this area exhibit considerable spatial 

variation both within and between sites, which will affect large-scale gully 

morphological development. The results exhibit an initially high infiltration rate at 

each location, which then drops to a more steady and sustainable figure as the local 

soil profile gradually wets up. At Site 1, infiltration rates are shown to increase with 
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Figure 3.9. Infiltration times and rates from gully A (top) and gully B (above) at Site 1. 

Numbers 1-5 and 6-10 correspond to infiltration experiment locations, as shown in Figure 2.8. 

68 

~ 
::> c .E 
E .s 
~ 
e! 
c 
0 
~ 
.E 
c;: 
.£: 

~ 
Q) 
> 
0 
<( 

2!:-
:; 
Ol 



30.----------------------------------------------------------------.70 

GullyC 

ol-~~~~~~~=:====~--~~~~~~~~~-lo 
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 

60.-----------------------------------------------------------------.9 
GullyD 

8 

- 1 

0 0 
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 

water infiltrated into soil (mm) 

Figure 3.10. Infiltration times and rates from gully C at Site 1 (top), and gully D at Site 2 
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shown in Figures 2.8 and 2.9. 

increasing gully stze: gully A has an overall infiltration rate of 1.13 mm min-1
; 

gully B, 1.75 mm min-1
, and gully C, 3.25 mm min-1

• The gully at Site 2 (gully D) 

shows much slower overall infiltration rates than those at Site 1, having an average 

infiltration rate of just 0.61 mm min-1
• Observed differences between the two sites can 

be attributed mainly to variations in soil type and land use. These factors will be 
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discussed in more detail in the context of small-scale variations in the following 

chapter. 

Due to the fact that the infiltration rate of the soil determines a hillslope's response 

during a rainfall event, the different infiltration rates measured across the hillslope at 

Site 1 can give an insight into how the gullies A, B and C were formed. When the 

infiltration results are correlated with the large scale gully morphological data 

obtained from both the laser scanner data and measurements made in the field, 

relationships can be observed. In particular, the relationship between infiltration rate 

and upslope position is of importance (Figure 3.11). When these two variables are 

correlated, they give an r value of 0.51, indicating that there is a trend for higher 

infiltration rates to occur towards the top of the hills lope at Site 1. 

This spatial differentiation of infiltration at the large scale can be partially attributed 

to the influence ofhillslope topography: in particular, it has been noted by 
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Figure 3.11. Infiltration rates correlated with upslope position at Site 1. n = 15. 
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Truman et al., (2001) that soil detachment and sediment transport processes associated 

with rainfall and runoff vary spatially, especially as slope length increases. This was 

highlighted by the results presented in the previous section: the interactions between 

infiltration, the local gradient and upslope location had an imprortant influence on 

gully volume: the regression of these variables had a highly significant (p = 0.01) R2 

value of0.62. 

Slope gradient is also an important topographic control on infiltration: at the top of the 

hillslope at Site 1, the gradient is less steep, which means that rather than promoting 

runoff, the soil surface will be able to provide more storage for water during a rainfall 

event. The increased storage capacity means there will be a higher potential for 

infiltration to occur, thereby reducing runoff. From observations made in the field, it 

could be seen that as a result of this process, gullying was initiated in areas at Site 1 

where the hillslope topography began to increase in steepness. 

This same process was noted by Poesen (1984) during an experiment investigating the 

relationship between specific slope angles and infiltration rates during simulated 

rainfall events. Runoff volume was found to increase on the steeper slopes because of 

the corresponding decrease in surface storage capacity and reduced infiltration rates. 

In a field study carried out by Esteves and Lapetite (2003), the high spatial variability 

in infiltration rates and surface storage capacities was also shown to play an important 

role in determining gully morphology at several scales. Runoff generation and gully 

initiation in their study was highly localised, and the entire soil surface by no means 

contributed to overland flow; rather, some areas with higher infiltration rates acted as 

'runoff sinks' and others with lower infiltration rates acted as 'runoff sources' for the 
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hillslope. Therefore, in order to fully interpret the infiltration results in the context of 

individual gully morphology at each site, land use must also be taken into account. 

Indeed, Bull et al., (2000) found that a combination of variables including slope 

gradient, land use and soil type all had an effect on runoff generation in the Nogalte 

basin. 

Kirkby and Bull (2000) noted that gully channel growth is primarily governed by 

hillslope form and processes that occur upslope of the channel head. If Figure 3.12 is 

considered, it can be seen that for gullies B and C, the infiltration rate is lowest just 

upslope of the gully heads. In the case of Gully B, the infiltration rate near the gully 

head was just 0.99 mrnlmin, compared to 2.43 mrnlmin at the base of the slope. 

Similar results highlighting the roles played by slope gradient and vegetation were 

demonstrated by Sole-Ben et et al., ( 1997) following research carried out in south-east 

Spain. In their study, runoff was positively correlated with slope gradient and 

negatively correlated with the presence of vegetation and organic matter. Following a 

study carried out in dryland environments, spatial variation in vegetation and soil 

organic matter on the hillslope was shown to give rise to differences in hydrological 

behaviour between areas during a rainfall event: those areas with more vegetation 

experienced higher infiltration rates, whereas bare patches were runoff-producing 

areas. The organic matter content of the soil samples from Site 1 also indicates spatial 

organisation at the local rather than hillslope scale. Samples with the highest organic 

matter content were found at the base of gullies A, B and C. 

This comparatively higher organic matter content in these specific locations can 

potentially be attributed to two main factors. First, the catchment area obviously 

72 



135 m 
Gully B 0.99 mm min-1 

31-50 

26-30 

21-25 

16-20 1.7 mm min-1 
• 

11-15 

0-10 

slope 2.43 mm min-1 
• 

gradient (D) 

distance from infiltration 
base of slope rate 

140m 

110 m 

85m 

50 m 

30m 

7.07 
mmmin-1 

2.7mmmin-1 • 

3.96% 

5.9% 

soil organic 
matter content 

5.52 ° 

4.85 ° 

Figure 3.12_ Map contrasting soil type, slope gradient, and infiltration rates for gullies B & c_ 

Variables shown in each diagram: slope gradient C), distance from base of slope (m), 

infiltration rate (mm min- 1
) and soil organic matter content(%). 

73 



increases towards the base of the gullies, which means that the amount of runoff 

carried by the gully at this location will be higher than elsewhere on the hillslope. 

Following a rainfall event, levels of soil moisture at the base of the gullies will 

therefore be expected to be higher, which- particularly in a semi-arid environment­

will encourage the localised presence of organic matter and the growth of vegetation. 

This is shown both by the data and from observations made in the field: what little 

vegetation was present on the hillslopes had preferentially grown within or in close 

proximity to the gully channels, increasing the amount of organic matter present in the 

soil at the base of the hillslope. Secondly, the transportation of sediment and organic 

matter through the gully channel occurs by overland flow processes. Towards the base 

of the hills lope at Site 1, the slope gradient decreases, which will slow any runoff and 

promote localised deposition. This was observed in the form of the sediment fans 

located at the base of each gully. Therefore any organic matter that has been 

transported along with sediment during a rainfall event may be preferentially 

relocated to the base of the gully, increasing the amount of organic matter present at 

this location. 

From these results, it is clear that factors affecting vegetation have an impact on 

infiltration rates at Site 1 and Site 2. This is because the presence and growth of 

vegetation will tend to protect the soil surface from rainsplash and crust formation, as 

well as improving the soil structure (Beven, 2002). Closely related to vegetation at a 

particular site is the factor of land use. The management and cultivation practices 

being used on a semi-arid hillslope will affect soil texture, structure, and grain size 

distribution- factors whose influence on gully morphology has been demonstrated in 

the previous sections. Therefore it is necessary to take land use into account. 
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3.2.3. Gully Morphology and Land Use Change. 

In Chapter 1, the influence of land use change on soil degradation both across the 

Mediterranean region, and more specifically in the Rambla de Nogalte, was discussed. 

Differences in gully morphology between Site 1 and Site 2 can be mainly attributed to 

the contrasting land use practices in each case. While the soil surface at both sites is 

disturbed by intense rainfall events, Site 1 is additionally disturbed by seasonal 

ploughing. As previously mentioned, Site 1 is currently being used for agricultural 

purposes, whereas agriculture at Site 2 has been abandoned in order to let natural 

vegetation re-establish. As a result of this, the gullies at Site 1 (A, B and C) are 

ephemeral, whereas gully D at Site 2 is permanent. At Site 2 there is therefore a 

permanent established connection between the top and base of the hillslope, 

facilitating the movement of both water and sediment during rainfall events. This was 

also noted by Poesen et al., (2002: 237) who stated that "land use has a particularly 

strong control on the life span of a gully: ephemeral gullies typically develop in 

cultivated areas, whereas permanent gullies develop on abandoned fields or 

range lands." 

In contrast to gully D's stability, it has long been recognised that ephemeral gullies 

tend to be in a non-equilibrium state and are therefore inherently unstable (Hook and 

Mant, 2002: 173). This instability is clearly visible at Site 1 where the feedback 

processes between gullies A - C and the hillslope are exacerbating the topographic 

hollows in which they are situated. The morphological data for this site (presented in 

the previous section) showed how, during a single intense rainfall event in which 

40mm water fell, three gullies were eroded on the hillslope at Site I, whereas just a 

single gully was eroded from Site 2. The amount of soil lost from Site 1 is therefore 
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higher compared with that from Site 2, when one considers that both hillslopes were 

affected by the same rainfall event. 

Land use alters erosion rates by directly affecting the soil surface response to rainfall 

in several ways. At Site 1, the soil surface in between the almond trees is kept as bare 

as possible by regular ploughing in order to minimise the trees' competition for 

moisture. There is therefore a large area of unprotected soil at Site 1 which is freely 

exposed to any rain which may fall. As previously mentioned, the soil at this site has a 

high silt content (44.2 %) and the abundance of fines actively encourages the 

formation of crusts, thereby preventing infiltration and promoting runoff. Therefore 

the high amount of exposed soil will encourage crusting and runoff. Silt particles are 

also very easily mobilised by overland flow, which will further facilitate erosion and 

gullying at this site. Cultivation practices also alter the natural soil surface roughness, 

which will have an impact on both infiltration and runoff direction during rainfall 

events. This same effect was noted by Kirkby et al., (2002) following fieldwork 

carried out in south-east Spain; the land use was shown to define surface depression 

storage and influence runoff thresholds. Microtopography and small-scale soil 

physical properties will be discussed in Chapter 4 in the context of gully morphology 

and small-scale variables. 

Although Site 2 has been abandoned, the regrowth of natural vegetation is still 

relatively slow due to both the presence of these surface crusts and the inherent lack 

of water available in a semi-arid environment. Previous research has shown similar 

results: while the disruption of cultivation will eventually increase the infiltration 

capacity of a soil as vegetative cover progressively spreads (Greenland et al., 1977), 
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immediately following abandonment, before vegetation has had a chance to re­

establish, infiltration rates have been shown to temporarily decrease due to the 

formation of surface crusts ( eg. Nicolau et al., 1996; Lopez-Bermudez et al., 1998). 

Differences between Site 1 and Site 2 can be further appreciated by comparing gully 

A and gully D. These two gullies have similar morphology: both measure 

approximately 50 metres in length, and comprise a single channel with a small 

sediment fan towards the base of the hillslope, with no large tributaries joining the 

channel at any point. The catchment area of gully D the larger of the two at 92.3 m2
, 

compared with 57m2 for gully A. Despite having the smaller catchment area, gully A 

has a higher volume than gully D (6.01 m3 compared with 5.3 m3
) and consequently a 

higher total soil loss (0.95 m3 ha-1 compared with 0.57 m3 ha-'). While the catchment 

area and potential runoff contribution to gully D may be higher, the presence of 

relatively more vegetation and therefore an improved soil structure encourages 

infiltration, whereas at Site 1 the bare soil and lack of surface vegetation promotes 

runoff and gully erosion. In a similar study carried out by Lopez-Bermudez et al., 

( 1998) in south-east Spain, the progressive recovery of natural vegetation after land 

abandonment was recorded. This recovery was characterized by a improved 

relationship between the vegetation and soil moisture factors; this gradually increased 

infiltration rates and reduced runoff. 

3.3. Hillslope Connectivity: Rainfall and Gully Morphology. 

As demonstrated by results from this study, soils cannot be analysed in isolation from 

the geomorphological systems on hillslopes of which they are an integral part 

(Gerrard, 1992: 50). However, within the large-scale settings at Sites 1 and 2, spatial 
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patterns can develop on hillslopes as a result of localised differences in topography 

and soil properties. This patteming can cause a mosaic of areas with contrasting 

hydrological response to develop, which will affect the hillslope response to surface 

runoff and infiltration during a rainfall event. The infiltration and soil property data in 

this study can therefore be used to delineate such patches on the hillslope as 'source' 

and 'sink' areas: those which will contribute to runoff generation during a rainfall 

event, and those areas which will preferentially infiltrate more water. 

At the large scale, the relationship or connectivity between these patches plays an 

important role in determining a hillslope's response during a rainfall event. This is 

due to the fact that the potential for overland flow on hillslopes in semi-arid areas is 

highly dependent upon the location and arrangement of runoff producing areas. 

Consequently the spatial arrangement of these patches will affect gully morphological 

development at the hillslope scale. As previously discussed, in semi-arid 

environments the redistribution of sediment is largely driven by overland flow and 

surface wash processes (Puigdefabregas et al., 1999) which are themselves affected by 

both the hillslope gradient and rainfall variables. As a consequence, the development 

of 'source' and 'sink' areas in semi-arid regions, in addition to most of the 

geomorphic work transferring sediment and water between hillslope elements, occurs 

during extreme rainfall events. 

3.3.1. Rainfall Variability in a Semi-Arid Environment. 

Rainfall data for Site 1 and Site 2 was obtained from several tipping bucket 

raingauges located across the Rambla de Nogalte catchment. The location of each 

raingauge was shown in Figure 2.4 (Chapter 2). These raingauges have been present 
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for several years and from their rainfall records, it can be observed that the wettest 

months in this region tend to be in the latter part of the year, particularly September, 

October and November, as was discussed in full in Chapter 2. It is known that the 

ephemeral gullies A, B and C at Site 1 formed specifically during an intense rainfall 

event which occurred in early October 2003. The two rain gauges situated nearest this 

hillslope- 'South 1' and 'South 2' -captured this rainfall event, and it can be seen 

from their records that the rainfall endured several hours overnight from the 6th to the 

7th October 2003. The data from these raingauges is shown in Figures 3.14 and 3.15, 

and many similarities between the datasets can be observed. This indicates that this 

rainfall event affected a large part of the catchment, and was not merely a small or 

localised phenomenon. 

The cumulative amount of rain which fell during this event reached almost 40 mm, 

the majority of which fell in 4 hours (6th October, 4.57 pm- 9.08 pm), as indicated 

by the red line in Figures 3.14 and 3.15. The intensity of this rainfall event can be 

further appreciated when one considers that the total annual rainfall in this region of 

Spain is only between 235 mm and 350 mm (Castillo et al., 2003; Canton et al., 

2004a). The fact that gullies A, B and C at Site 1 were formed solely in this rainfall 

event also means that the amount of rain which fell can be directly related to the 

morphology of the gullies present in the field. 

One of the most distinct morphological features caused by the intense rainfall at Site 1 

is the presence of multiple channels towards the top of gully C. If the rainfall is unable 

to infiltrate and a single channel gully is not sufficient to facilitate the evacuation of 

overland flow, the drainage network on a hillslope will effectively be enlarged. 
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Figure 3.14. Rainfall data from raingauge South 1. The red line indicates the period of more 

intense rainfall (duration of approximately 4 hours. 4.57pm - 9.08pm). 
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Figure 3.15. Rainfall data from raingauge South 2. The red line indicates the period of more 
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This was the case for gully C, where multiple channels were been eroded towards the 

top of the slope during the rainfall event. These channels eventually merged together 

before joining with the main gully channel further down slope (Figure 3.16). The fact 

that these multiple channels are continuous and tend to increase in volume downslope 

indicates that, for gully C, runoff contribution from the sideslopes during the rainfall 

event was significant. The location of these tributaries also corresponds to areas of 

slope gradient steeper than the surrounding area, which shows the importance of 

gradient in determining runoff direction and gully initiation during a rainfall event at 

Site 1. 

In a similar study carried out by Kuhn and Yair (2004), the formation of parallel rills 

on steep badland hillslopes during an intense rainfall event was examined. Results 

showed that the form and morphology of rill networks, in particular the degree of 

integration along slopes, was critical for the catchment hydrologic response. As for 

Site 1, the different infiltration capacities on slopes in their study were determined by 

changing soil properties. The spatial arrangement of runoff source and sink areas also 

had a major effect on channel morphology. 

Figure 3.16. Multiple channels towards the top ofthe hillslope at gully C. 
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The results presented by Kuhn and Yair (2004) are comparable to those obtained in 

this study, particularly observations made concerning the influence of infiltration 

rates. At Site 1, infiltration rates exhibit spatial variability across the hillslope, (as 

discussed in section 3.2.2) and have a significant effect on hillslope connectivity and 

gully morphological development. Results show that there is a general trend for lower 

infiltration rates to be located on steeper areas of the hillslope at Site 1, whereas the 

flatter topography towards the top of the hillslope exhibits higher infiltration rates. 

Therefore, as the whole hillslope is affected by the intense rainfall, areas with steeper 

gradient will be those preferentially producing more runoff, and can therefore be 

distinguished as 'source' areas. 

Evidence of this was seen at Site 1, where the volume of gullies A, B and C was 

higher in areas of increased gradient ("local volume" or "point volume" defined as the 

volume in m3 of a 5 metre section of gully channel: see Table 3.1 for full definitions). 

When regressed, these two variables had an R2 value of 0.43. When plotted together 

on the same set of axes, this relationship between local slope gradient and cross 

sectional gully volume can be clearly seen (Figure 3.17). At most points along each 

gully, the volume increases or decreases virtually in line with the local gradient. 

However, there are a few points where the gully volume experiences a sudden 

increase which cannot be attributed to the gradient (for example, gully Bat 20 m and 

65 m, gully Cat 40 m and 90 m). Instead, these correspond to locations where 

tributaries joined the main channel and therefore experienced a higher localised 

volume of runoff, which enlarged the gully. Smaller discrepancies are attributed to 

localised variations in infiltration rates and soil properties. 
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The field data shows infiltration rates at Site 1 are relatively high, yet the presence of 

gullies A, B and C on this hillslope indicate that there must still have been high 

amounts of overland flow during the rainfall event. It is therefore necessary to ask the 

question, why have these gullies still formed when the potential for infiltration is 

apparently so high? There are, however, several reasons for the presence of the gullies 

at this site. Firstly, the infiltration data is composed of information from specific 

points which can be directly related to the gullies. This data only gives a partial 

picture of the hillslope infiltration rates, so even if high rates are measured in these 

locations, it is not to say that the entire hillslope will have a similar hydrological 

response. Many other studies have also revealed great spatial heterogeneity and 

hydrological discontinuity across semi-arid hills lopes ( eg. Fitzjohn et al., 1998; 

Lopez-Bermudez et al., 1998; Parsons et al., 1999), highlighting the fact that this is a 

widespread and natural occurrence in such environments. 

Secondly, the gullies were formed as a response to the topographical convergence of 

runoff pathways, which means that these areas experience not only direct rainfall, but 

additional run-on from areas upslope. This increased amount of overland flow means 

that the infiltration rate of the soil will quickly reduce as the soil profile wets up. 

Thirdly, the spatial arrangement and interaction between other factors including local 

slope gradient, soil particle size, vegetation, and soil organic matter content, will 

affect the infiltration rates at any given location on the hillslope. 

The different variables for each study point at Site 1 are presented in Table 3.5, and in 

order to further understand their interaction and relative influences on one another, 

multiple regression analysis was carried out. The results from this show the effects of 
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Figure 3.17. Gully volume plotted with local slope gradient for Site 1: gully A (top graph), 

gully B (middle) and gully C (bottom). 
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the interaction of several variables on the erosion process and gully morphology. In 

particular, the regression of local gully volume with local slope gradient and distance 

upslope gave a highly significant R2 value of 0.62 (p = 0.001; see Equation 1). The 

regression of local gully volume with local infiltration rate and local slope gradient 

gave a slightly lower R2 value of 0.48, but was nevertheless significant (p = 0.006; 

Equation 2). 

Local gully volume = -0.39 + (0.044 x Local gradient)+ (0.067 x Distance upslope) 

p = 0.006; R2 = 0.48 

Equation 2 

These results indicate that when considering gully morphology, it is useful to take 

both the local slope gradient and the position on the hillslope into account. A similar 

conclusion was reached by Gabbard et al., (1998) following a study of simulated 

hillslope processes, in which it was found that processes active at different positions 

on a hillslope had distinct effects on the dominant erosion processes at a given 

location. This was due to variations of key controlling factors, including soil 

hydrological conditions and the connectivity between areas on the hillslope. 

3.3.2. Hills/ope Connectivity in a Semi-Arid Environment. 

The potential overland flow contribution from areas on a hillslope to the catchment 

outflow is dependent upon their spatial arrangement, or connectivity. However, 

connectivity on hillslopes in semi-arid regions is a subject area where relatively little 

is known (Bull and Kirkby, 2002: 11). It is therefore important for further research on 

this subject to be carried out. As mentioned in the previous section, the research 

presented in this chapter allows distinction to be made between areas on the hillslopes 
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at Site 1 and Site 2, identifying some as 'runoff source' and others as 'runoff sink' 

areas. These are areas which will have specifically different responses during a 

rainfall event, and therefore influence gully morphological development at each site. 

The distinction between these areas is based on the spatial arrangement of large-scale 

factors which have been shown to have a major influence on gully morphology at 

each site. In particular, these include hillslope topographic variables (including slope 

gradient, slope length), variations in infiltration rates and soil properties, and rainfall 

characteristics. The use of detailed hillslope models, validated using data collected in 

large-scale field studies, is therefore extremely useful in this context (Sivapalan, 

2003). 

Due to the lack of available water in semi-arid environments, hillslopes often show 

poor hydrologic connectivity (Puigdefabragas et al., 1998). It is therefore during 

major rainfall events when the majority of sediment mobilisation occurs on hillslopes. 

Where there is connectivity between particular source areas, a constant stream of 

overland flow will be facilitated during a rainfall event, maximising hillslope runoff 

and erosion. However, if any of these patches are spatially isolated, runoff from 

'source' areas will be absorbed by the surrounding drier areas which act as 'sinks' for 

overland flow (Fitzjohn et al., 1998). As demonstrated in the previous sections, 

particular areas on the hillslopes with steeper topography will promote runoff, as will 

areas with lower infiltration rates. The interaction between these areas - particularly 

locations in which they coincide - will further encourage runoff, and if a connection is 

established between such source areas, outflow at the base of the hillslope will be 

facilitated. If gully A is considered, there are several areas on this section of the 

hillslope in which these variables coincide. These are indicated in Figure 3.18. 
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The section of the gully channel at 25 m upslope in Figure 3.18 is worth drawing 

particular attention to: here, the gully is both at its widest (2.3 m) and deepest 

(0.28 m). This coincides with the lowest measured infiltration rate for the entire gully 

(0.65 mm min-1
) and a relatively steep slope gradient of 26 °. It can therefore be 

inferred that the low infiltration rate at this location combined with a 26 ° slope 

gradient improves connectivity, which increases the amount of runoff, and in turn 

enlarges the gully channel at this location. The influence of several variables on gully 

morphological development was also demonstrated by Bryan (2000). He stated that 

soil erodibility is not a single, simply-identified property, but is more appropriately 

regarded as the summation of a highly complex pattern, strongly influenced by 

intrinsic soil characteristics and extrinsic macroenvironmental variables. 

If data obtained from gully D at Site 2 is considered (Figure 3.18), it can be seen that 

there are areas on the hillslope at which the relatively steep topography interacts with 

the infiltration rates and soil organic matter content. However, although relationships 

promoting connectivity are active on this hillslope, the relationships do not appear to 

be as obvious as for gully A. In particular, at 20 m upslope, the channel of gully D is 

at its deepest, which corresponds to the area of steepest gradient, but the slowest 

measured infiltration rate is located towards the base of the hills lope. The same is true 

for the gully width results - while the gully channel is nevertheless relatively wide in 

areas of steep gradient and slow infiltration rate, the widest parts do not appear to be 

directly related to the interaction between these factors. Rather, results suggest they 

come from independent variability. At a length of 25 m upslope, the catchment area of 

gully A measures 35.7 m2, and the cumulative gully volume is 5.68 m3
• This indicates 

that for both these gullies, the slight majority of erosion preferentially occurs in the 

87 



Gully A 

31-50 

26-30 

21-25 

16-20 

11-15 

0-10 

slope 
gradient (D) 

Gully D 

31-50 

26-30 

21-25 

16-20 

11-15 

0-10 

slope 
gradient (0

) 

50 m 

45 m 

40m 

35 m 

30m 

25 m 

20m 

15 m 

10 m 

5m 

Om 
distance from 
base of slope 

50 m 

45 m 

40m 

35 m 

30m 

25 m 

20m 

15 m 

10m 

5m 

Om 

.62 mm min-t 

.03 mm min-t • 

infiltration 
rate 

4.8% 

4.7% 

• 4.9% 

5.4% 

soil organic 
matter content 

0.47 mm min-t • 2.26 % 

Figure 3.18. Sketch map of gully A (top) and of gully D (bottom). Variables shown in each 

figure : slope gradient CO), distance from base of slope (m), infiltration rate (mm min-1
, defined 

as the overall rate for that point) and soil organic matter content(%). 

88 



upper half of the gully. These areas further upslope are also where the gradient is 

relatively steeper, therefore any runoff is both promoted and will have more erosive 

potential. 

3.4. Summary. 

The large scale data obtained from the hillslopes at Site 1 and Site 2 demonstrates the 

importance of relationships between specific factors, which specifically influence the 

morphological development of the gullies present. From these results, it can therefore 

be concluded that - at the large scale - the potential overland flow contribution and 

the extent and severity of runoff and erosion on these particular hillslopes is 

dependent on the distribution and interaction of runoff-producing areas. These are 

determined by the following: slope gradient, infiltration rates, and physical soil 

properties. More specifically, the results indicate that slope gradient has relatively the 

most independent influence on gully morphological development at these sites, but its 

interaction with the other factors- particularly infiltration rate- is also important. 

The data have demonstrated the spatial heterogeneity of factors which influence 

gullying and erosion on a hillslope. It is therefore necessary to consider these small­

scale variations in more detail in order to fully account for the morphology of gullies 

A- D. The factors active at the small-scale will be discussed in the next chapter. 
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4. Small Scale Gully Morphology. 

4.1. Introduction. 

Processes affecting runoff generation and gully morphological development are 

important at all scale levels. In the previous chapter, results highlighting the roles of 

large-scale processes were presented, and factors including hillslope topography, land 

use and the distribution of infiltration rates were shown to have a specific influence on 

gully morphology. However, while it is important to consider such large-scale 

processes, conditions on hillslopes also vary greatly over very short distances, 

reflecting a complex interplay of factors (Bryan, 2000). The inclusion of small-scale 

data is therefore necessary in any study of soil erosion. In fact, models which do not 

account for these small-scale heterogeneities will be clearly inadequate in accounting 

for gully morphology (Sivapalan, 2003). 

A change in the scale at which processes are being observed does not merely involve 

changes in the spatial and temporal dimensions and in the number of components of a 

system, but instead results in new variables, new relationships, and as a rule leads to 

the identification of new problems (Haggett et al., 1965). Therefore, due to the 

importance of small-scale processes, fieldwork was carried out at Site 1 and Site 2 to 

gather data on gully morphology at the < 5 m scale. In order to obtain very detailed 

morphological and topographic data for further analysis, the laser scanner was used to 

take several high resolution scans of areas on the hills lope measuring a few m2
• These 

"plot scans" corresponded to several locations along each gully, either where the local 

topography experienced a significant change which appeared to influence the channel, 
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or where the gully's morphology justified a more detailed investigation than the 

hillslope scans could provide. Plot scans were taken at Site 1 and Site 2 in the 

locations indicated in Figure 2.14 and Figure 2.15 (Chapter 2). Nine scans from Site 1 

and three from Site 2 will be considered in this chapter. As described in detail in 

Chapter 2, the plot scans were first analysed using Archaeoptics Demon software and 

were then imported into ArcGIS software where attributes including local slope 

gradient, runoff direction, elevation and flow networking were derived. Unlike the 

hillslope scans, these smaller-scale plot scans did not contain any almond trees, 

therefore their triangulation into surfaces was relatively more straightforward. 

In addition to the small-scale plot scans made at each site, fieldwork was carried out 

by hand in order to obtain further data. This included local infiltration measurements, 

soil sample analysis, and small-scale measurements of gully morphology made by 

hand. This data was employed in the previous chapter in the context of large scale 

morphology, but will also be used in this chapter to demonstrate the significance of 

local relationships and to account for small-scale variations in gully form. Flanaghan 

et al., (1995) noted that the detailed measurement of variables such as these on the 

small scale is essential when attempting to characterise gully morphology and soil 

erosion by gullying. 

4.2. Gully Morphology and the Role of Microtopography. 

At the small scale, gully morphology and erosion on hillslopes have received little 

attention (Valcarcel et al., 2003) and it has also been noted by Canton et al., (2001) 

that the spatial distribution of soil properties at the small scale have an important role 

that should be evaluated in further work. Therefore, due to the presence of this 
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research gap, the work carried out for this study will provide some much-needed data 

on soil properties and erosional processes active at the small scale. The presentation 

of this data has been divided into local runoff processes causing gully initiation, and 

local surface properties affecting gully morphological development at the small scale. 

Each of these will be discussed in turn in the following sections. 

4.2.1. Local Runoff Processes and Gullying. 

Gully initiation occurs as a result of localised runoff, caused by the interactions 

between rainfall characteristics and properties of the soil surface. While this is an 

accurate generalisation, it is well known that the nature of these interactions is in fact 

very complex and must be studied in detail. The soil surface is the first point of 

contact for rainfall, and therefore it is of great importance in determining gully 

initiation. In particular, the soil surface roughness, or microtopography, affects runoff 

by altering the overland flow direction at the local scale. According to Cremers et al., 

(1996), surface roughness can be divided into four main categories: these are micro­

relief variations due to individual grains and micro-aggregates (0- 2 mm); random 

surface variations due to soil clodiness ( ~ 100 mm); systematic differences in 

elevation caused by farm implements, such as furrows (1 00 - 200 mm); and higher 

orders of soil surface roughness (> 200 mm), representing variations at field or small 

catchment level. 

The soil surface roughness is subject to spatial and temporal changes at all scales. For 

example, in an agricultural environment, tillage operations often produce abrupt 

changes in roughness, whereas rainfall impacts upon the soil microtopography by 

decreasing surface roughness (Kamphorst et al., 2000). In addition, the soil surface 
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roughness affects the amount of depressional storage, the fraction of the soil which 

can be covered by ponded water, the amount of rainfall excess needed to start runoff 

and the overland flow rate (Cremers et al., 1996; Bryan, 2000). The provision ofwater 

storage in surface depressions can significantly alter the nature of overland flow: for 

example, a smooth inclined surface will generate runoff initially much quicker than a 

randomly rough inclined surface (assuming the nature of rainfall & infiltration is the 

same for each). Therefore knowledge of soil surface roughness is important for all 

runoff and soil erosion modelling. 

The plot scans taken at Site 1 and Site 2 were used to obtain surface roughness data 

for each location. These images from gullies A, B and C are presented in 

Figures 4.1 (a-c) alongside corresponding contour data (aerial view). From these 

representations of the surface, the variations in soil roughness can be seen. Despite 

several attempts, it was not possible to accurately calculate the surface depressional 

storage from the plot scans due to the nature of the scans and the fact that they were 

taken on a large scale inclined plane. This limitation and potential ways of improving 

future data collection with a laser scanner will be discussed further in Chapter 5. 

Therefore, small scale changes in slope gradient are presented in Figures 4.1 (a-c) in 

order to demonstrate the variability of the local soil surface. The plot scan data from 

Site 1 and Site 2 demonstrate, however, that localised zones of high surface roughness 

do correspond with areas coinciding with gully channel initiation. In addition, isolated 

areas of high slope steepness correspond to the gully sidewalls and steps in surface 

gradient within the gully channels formed by the runoff. During the intense event in 

which gullies A, B and C were formed at Site 1, almost 40 mm rain fell, and the 

implications of this rainfall event were discussed in the previous chapter in the context 
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of the whole hillslope (Chapter 3.3.1). How a particular hillslope or watershed 

responds to rainfall depends upon on the nature of the surface heterogeneities 

(Sivapalan, 2003), and it is clear from the plot scan data that the influences of the 

rainfall appear much more varied than at the large scale, and interact to a great extent 

with the local soil surface roughness. 

The point infiltration data from Site 1 and Site 2 shows variation between the plot 

scans, which can be related to location along the gullies. More specifically, gully C at 

Site 1 exhibits a very high infiltration rate at the base of the hillslope, being 

7.07 mm min-1 (plot scan 7). At this location, the soil has the highest organic matter 

content of the whole gully, at 5.52 %. These factors suggest that at this point along the 

gully, the nature of the soil surface properties are such that this location acts as a sink 

area for runoff. This is supported by the gully with and depth measurements made in 

the field at this point. The depth of the gully at this location is only 0.27 m compared 

to 0.35 m for plot scan 8 (taken 35 m further upslope). This reduction in gully size 

suggests that more overland flow is being infiltrated here, which is reducing the 

amount of runoff actively available to widen the gully. The surface roughness data in 

Figure 4.1 also showed that plot scan 7 covers a relatively complex section of the 

gully C channel. There is a reduction in slope gradient to 23 o at this point and three 

tributaries are joining together. The overland flow contribution from all three will 

provide more turbulent flow, which will slightly increase the soil surface roughness 

and therefore provide more depressional storage for the runoff. This combined with 

the reduced slope gradient and high soil organic matter content will further encourage 

infiltration at this point on the gully, reducing its overall local size. 
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During a rainfall event, a rough surface will initially reduce the energy available for 

erosion from the runoff (Martinez-Mena et al., 1999). However, small-scale surface 

roughness will inevitably become modified during rainfall events, and the initial 

randomness of the surface roughness will gradually develop into a certain amount of 

organisation. For instance, this can mean that the runoff direction will be altered and 

overland flow in the immediately-surrounding area may be preferentially directed 

towards the main gully channel instead. Evidence of this was seen at Site 1 and Site 2 

in both the scale and complexity of the gully channel networks, both in the field and 

as represented in the laser scanner data. Rainfall and the hydraulic conditions of 

overland flow provide the major erosive potential to alter the surface morphology in a 

positive feedback system, mainly through their influence on the soil surface 

roughness. This causes the initiation and development of gullies, and in the early 

stages, the surface is subject to the runoff. 

Once the gully has developed sufficiently and a flow network has been established, 

the runoff becomes subject to the gullies and will be actively directed towards the 

channels. For example, gully B at Site 1 exhibits a relatively complex gully network 

at the top of the hillslope, which gradually develops into a large single channel 

towards the base. Such links between areas on the hillslope and the gully channels at 

the small scale are essential for the eventual establishment ofhillslope connectivity at 

all scales. 

This positive feedback process which causes alteration of the soil surface 

microtopography during rainfall events has also been noted by many authors (e.g. de 

Boer, 1992; Cremers et al., 1996; Diskin and Nasimov, 1996; Kamphorst et al., 2000; 
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Coppus and Imeson, 2002), and has been shown to be a natural part of the erosion 

process. While the role of microtopography is important for gully initiation, once this 

has taken place, further morphological development will rely to a great extent on the 

connectivity between different areas of the hillslope and the spatial arrangement of 

source and sink areas. 

4.2.2. Local Surface Properties and Gully Morphological Development. 

The soil surface response to rainfall plays a very important role in gully initiation, and 

the spatial variation of surface properties across a hillslope will further determine the 

morphological response of the soil following gully initiation. Small-scale changes in 

soil properties and infiltration rates across a hillslope, and the localised effects of land 

use all contribute to the morphological development of gullies and hillslope 

connectivity. Therefore, in order to investigate the role of physical soil properties in 

shaping gully morphology, soil samples were taken at both Site 1 and Site 2 from 

locations that corresponded to the infiltration measurements. Using these soil samples, 

the pH, electrical conductivity, soil organic matter content and particle size 

distributions were determined. The methods used to carry out these analyses were 

described in detail in Chapter 2. Physical properties such as these will give an insight 

into local variations in soil surface properties, and will aid the relation of a gully's 

morphological features to its physical settings at the local scale. 

Grain size is one of the most fundamental properties of sediment particles, affecting 

their entrainment, transport and deposition. This data therefore provides information 

concerning sediment provenance, potential for transportation and depositional 

conditions (Blott and Pye, 2001). The program Gradistat was used to classify the grain 
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size data, as described in Chapter 2. The results for each sample are categorised 

according to the British Standards Institution classification system (Table 4.1) and the 

full dataset is given in Appendix 2. Overall results are presented in ternary plots in 

Figure 4.2. This data shows that there is relatively little differentiation in soil type 

across the hillslopes: the majority of samples are classified as Sandy Silt, with a few 

Sand 

Sllt:Ciav Ratio 

Sand 

Sit 

Clay <--------,.L..
2
--------'"'-' -------->sm 

Sllt:Ciav Ratltt 

Figure 4.2. Ternary plots showing the soil particle size fractions of samples from Site 1 (top) 

and Site 2 (bottom). 
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Description Grain Size 

Gravel 64mm-4mm 

Sand <4mm-64 J.lm 

Silt <64 J.lll-4J.lm 

Clay <4J.lm 

Table 4.1. Grain size classifications and descriptive terminology. 

tending towards Sandy Mud. The fact that the soil types across the hillslopes are 

relatively homogeneous demonstrates that gully morphology will not be significantly 

affected by strong variation in soil properties. Rather, the fact that the soil at both sites 

has a consistently high silt content will play a greater role in erosion processes: this is 

due to the fact that silt is the most easily erodible particle size. 

If the grain size results for the gullies are considered more specifically alongside data 

from the same locations at Site 1 (Table 4.2, and later in Figure 4.4), it can be seen 

that areas which have a higher silt content correspond to locations just upslope of the 

gully heads. In the case of gullies B and C in particular, samples originating from 

alongside plot scans 6 and 9, taken towards the top of the hillslope, have high silt 

contents - 60.3% and 54% respectively - and these locations correspond to the 

slowest infiltration rates at gullies B and C. The high silt content of the soil in these 

locations means that during a rainfall event, the formation of a surface crust will be 

facilitated by the high proportion of fines. The presence of a surface crust will then 

reduce infiltration rate - as shown in the results - thus encouraging surface ponding 

and overland flow, eventually causing gully initiation. Silt is also the most easily 

eroded soil particle, and any such sediment which does not form a crust will therefore 

be easily mobilised during overland flow, potentially causing gully initiation. 
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A B c 
plot scan 1 2 3 4 5 6 7 8 9 

dist from base of slope (m) 5 30 50 35 85 140 50 85 110 
upslope catchment area (m2) 57 35.7 7.4 138.5 51.2 15.7 349.5 295.2 248.8 

cross sectional area ( m2
) 0.22 0.8 0.36 1.09 0.6 0.45 0.87 1.42 0.44 

local slope gradient (0
) 22 23 16 24 16 25 23 30 24 

gully width (m) 0.51 2.3 1.05 1.9 1.75 3.95 2.48 2.9 1.45 
gully depth (m) 0.32 0.25 0.15 0.62 0.25 0.14 0.27 0.35 0.18 

infiltration rate (mm rnin- 1
) 1.03 0.65 1.29 2.43 1.53 0.99 7.07 2.86 2.71 

soil 
sand(%) 32.8 38.5 28.2 35.3 39.3 21.4 26.2 35.2 29 

properties 
silt(%) 46.1 44.8 42.6 46.3 43.3 60.3 49.6 44 51.5 

clay(%) 21.1 16.6 19.2 18.3 17.4 3.95 2.48 2.9 1.45 

Table 4.2. Small scale data for gullies A-C at Site 1. 

From these results it can therefore be inferred that particle size at this site does affect 

gully morphological development at the local scale. This was also the case for gully 

A: while the sample with the highest silt content did not correspond to the slowest 

infiltration rate, it was, however, located at the top of the gully. The correlation of all 

the soil property data is presented in Table 4.3 and from this, several important 

relationships can be seen. In particular, the infiltration rates at Site 1 have a relatively 

strong correlation with the clay particle size fractions in the soil (R2 == 0.59). To a 

certain extent, this relationship is surprising, since the presence of clay causes 

swelling in the soil once it becomes wet, which prevents further infiltration from 

occurring. In order to properly interpret this result, the relationship of these two 

variables with the organic matter content of the soil must again be taken into 

consideration. 

The correlation between soil organic matter and percentage clay content is relatively 

high, with an R2 value of 0.47 (Figure 4.3). This relationship can be explained by the 

fact that clay particles are more effective at holding onto moisture than other soil 

fractions, therefore in a semi-arid environment where the presence of vegetation is 

mainly limited by water availability, its growth will tend to be concentrated in 
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locations with a higher soil moisture content. Consequently, a local increase in 

vegetation and orgamc matter in these clay-rich areas may actively encourage 

infiltration during a rainfall event. The fact that the presence of clay across the 

hillslope at this site is not uniform will also encourage the spatial differentiation of 

runoff-producing areas. The role of vegetation as a source of spatial heterogeneity was 

also noted by Puigdefabregas et al., (1999) in a study of hillslope and channel 

responses to rainfall in a semi-arid environment. 

As discussed in section 4.1, gully width and depth data was also collected by hand in 

locations which corresponded with the plot scans. Therefore this data can be related to 

the more detailed morphological features captured by these scans. Gully width and 

depth measurements made in the field were taken at 5 metre intervals in an upslope 

direction starting from the base of the gully. Although this data gives good detail at 
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Figure 4.3. Relationship between soil organic matter and percentage clay fraction. R2 = 0.48 
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sand silt clay infiltratn pH ec omc width depth ptvol cumulvol slope up slope 

sand 1.00 

silt -0.89 1.00 

clay -0.34 -0.12 1.00 

infiltratn -0.25 -0.08 0.59 1.00 

pH 0.25 -0.47 0.44 -0.02 1.00 

ec 0.26 -0.27 -0.01 -0.34 0.49 1.00 

omc -0.29 -0.02 0.69 0.36 0.27 -0.12 1.00 

width -0.22 0.31 -0.14 0.09 -0.39 -0.53 -0.02 1.00 

depth 0.39 -0.44 0.04 0.02 0.13 -0.26 0.18 -0.26 1.00 

ptvol 0.22 -0.25 0.04 0.14 -0.08 -0.30 0.23 0.63 0.76 1.00 

cumulvol 0.07 -0.29 0.43 0.37 0.09 -0.06 0.24 -0.25 0.24 -0.03 1.00 

slope -0.05 0.10 -0.19 -0.11 0.01 -0.14 0.02 0.72 0.41 0.66 -0.57 1.00 

up slope 0.59 -0.29 0.47 0.50 0.02 -0.14 0.34 -0.26 0.20 -0.03 0.96 -0.58 1.00 

Table 4.3. Correlation table for all variables. n = 15. infiltratn =infiltration rate (mm/min); ec =electrical conductivity ()lS cm-1); omc =%organic matter 

content; ptvol = gully volume at a point (m3); cumulvol =cumulative gully volume (m3); slope= gradient CO); upslope =position on hillslope as measured 

from base (m) 
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the large scale, it is too far apart to realistically capture the very small-scale intricacies 

of the gully morphology. Therefore, very detailed width measurements were derived 

from the plot scan data instead. These are much more accurate than any measurements 

that could have been collected by hand in the same amount of time. 

If this data for Site 1 is considered, the presence of several trends in gully morphology 

across the hillslope are demonstrated (as shown in Table 4.2). One of the initially 

most obvious morphological differences between gullies A, B and C is the number of 

tributary channels which join each main gully channel at several locations downslope. 

At the large scale, gully A has a relatively simple morphology, and this is reflected in 

its physical properties at the small scale. Since there are no areas along gully A where 

tributary channels join, there are no areas where the gully experiences localised 

widening due to channel convergence and increased runoff volume. 

The form and morphology of rill and gully networks is critical for catchment 

hydrologic response (Kuhn and Yair, 2004). While the morphology of the three 

gullies at this site appear very different, several important similarities do exist 

between A, B and C (Figure 4.4). The three gullies all have the highest soil silt 

content at the top of the gully; all have the highest soil organic matter content ( omc) at 

the base of the gully; all are widest at their middle point; and all but one (gully C) are 

deepest towards the base of the gully channel. The morphological implications of each 

of these variables will be discussed in turn. 

Flow concentration alone does not necessarily cause rill incision (Bryan, 2000). 

Instead, as previously discussed, rill and gully development is linked to the interaction 
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of overland flow with small-scale surface properties; in particular, to the susceptibility 

of soil particles to entrainment and transportation. Over the range of grain sizes, the 

sediment travel distance increases as size decreases, so that erosion is effectively 

transport-limited for coarse debris, and supply-limited for fine material (Kirkby and 

Bull, 2000). This is particularly important in a semi-arid environment, where erosion 

is often transport-limited due to infrequent rainfall events: this is the case in the 

Rambla Nogalte, where there are also large amounts of gravel throughout the 

catchment. 

top ofhillslope 

Q) 

silt 52. 

A 

® 
silt 60.3% 

8 

® 
omc 5.9% 
depth 0.62 m 

(j) 
omc 5.52% 

base of hills lope 

c 
Figure 4.4. Sketch diagram of gullies A, B and C at Site 1. Location of plot scans <D - ® are 

shown by squares. Highest data values for each gully are given alongside the corresponding 

plot scan: width (m), depth (m), soil omc (%)and soil silt content(%). 
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As demonstrated by the data, at Site 1 high localised silt concentrations are present 

where the gullies are least well-developed. This combined with the fact that silt is one 

of the most easily transportable soil fractions, implies that the majority of the silt has 

already been eroded from other, more mature parts of the gullies which experience 

higher runoff amounts. In addition, areas still having a high silt content - namely, the 

gully heads towards the top of the hillslope - may also potentially experience the 

majority of morphological development during future rainfall events. Indeed, channel 

growth is governed by the processes that occur upslope of the channel head (Kirkby 

and Bull., 2000) and it is the instability of gully heads which is responsible for 

channel expansion and erosion, eventually leading to the degradation of agricultural 

land which is an increasing concern in semi-arid areas. Gully heads are therefore 

important links between upper hillslope areas and gully channels; they can function as 

sediment sources depending on environmental conditions and vegetation elements 

(Poesen et al., 2002: 241). 

The presence of organic matter in the soil has a positive effect on soil aggregate 

stability, thus reducing erosion during rainfall and runoff events (e.g. Martinez-Mena 

et al., 1999; Albaladejo et al., 1998; Lavee et al., 1998) and preventing gully 

extension at channel heads. The highest soil organic matter content for gullies A - C 

were found towards the base of the slope in each case (Figure 4.2). Compared to other 

studies carried out in semi-arid regions, the soil taken from Site 1 and Site 2 is 

relatively rich in organic matter. For example, in soil samples taken from former 

farmland in north-east Spain Lasanta et al., (2000) only measured between 0. 7 % and 

1.3 % organic litter and a low nutrient content. This low omc was shown to inhibit 
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plant colonisation, lower infiltration, and eventually reduce the water content of the 

soil. 

At Site 1 the reverse is true: the presence of high soil omc towards the base of the 

gully channels indicates that these will be areas where the infiltration rate - and 

therefore soil moisture - will be expected to be higher. Although the field data does 

not show the infiltration rates here for gully A to be particularly high (plot scan 1 -

1.03 mm min-1
), at these locations the infiltration rates for gullies B and C are indeed 

the quickest times measured along the whole of each gully. These are 2.43 mm min-1 

(plot scan 4) and 7.07 mm min- 1 (plot scan 7) respectively. The high infiltration rate at 

these locations allows them to be distinguished as 'sinks' where runoff is 

preferentially infiltrated. At the small scale, the interaction of the soil omc and 

infiltration rates with the soil surface during rainfall - runoff events inevitably has an 

impact on local gully form and morphology, which are critical for catchment 

hydrological response. 

The agricultural practices employed at Site 1 - seasonal ploughing in between almond 

trees and the grazing of sheep and goats - have an effect on the small scale soil omc 

and the particle size distribution. The presence of organic matter increases the 

structural stability of a soil, and the removal of natural vegetation by ploughing the 

soil in semi-arid environments has been shown in many studies to significantly reduce 

the omc of the soil, consequently increasing erosion and rates of gullying (e.g. Cerda, 

1997; Kosmas et al., 1997; Valcarcel et al., 2003). 
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Agricultural practices also have a strong influence on overland flow. For example, 

during a rainfall event, tillage lines on the soil surface which are left as a result of 

ploughing can change the natural overland flow direction, causing flow concentration 

and gullying in what would otherwise be stable areas. Following a field study in 

northwestern Spain, similar effects of agricultural operations were noted by Valcarcel 

et al., (2003), who stated that lineal features left on the landscape often acted as initial 

"axes of erosion." These lineal features were observed on the soil surface at both 

Site 1 and Site 2, and have been captured in the plot scans. In Figure 4.3 (Site 2), the 

soil surface exhibits relict surface roughness effects as a direct result of ploughing. 

Small, flat terracettes are visible on the hillslope, which act as areas of surface 

pending. At Site 1 (Figure 4.5), ridges crossing gully channels at a right angle are 

visible in the scan, as indicated by the arrows. Results indicate that these local patches 

of raised topography will affect the morphological development of the gully at this 

site by initially preventing runoff, and eventually altering overland flow direction. The 

spatial variability of gully erosion in these locations is therefore notably affected by 

agricultural operations. 

Figure 4.5. Plot scans from Site 1 with arrows indicating surface roughness elements 

(terracettes and relict plough lines). 
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In addition to showing distributions of soil particle stze and soil omc and 

demonstrating the influence of land use practices, the data also shows the nature of the 

physical gully channel development. As mentioned before, gullies A - C are widest 

midway along their length where slope gradient is also steepest, and gullies A and B 

are both deepest towards the base. If this data is used in conjunction with the up slope 

catchment area for each plot scan, the nature of the relationship between cross­

sectional area, erosion volume and catchment area can be determined. These can then 

be used to further account for the gully morphology. 

Although the connection between gully width and upslope catchment area does not 

appear to be particularly straightforward at Site 1, the gully depth does demonstrate a 

slightly stronger relationship, as was discussed in a larger-scale context in 

Section 3.2.1 and shown in Figure 3.7. If just gullies A and B are considered, there is 

a downslope increase in gully depth as catchment area increases. As a result, these 

two gullies both appear to become progressively deeper towards the base of the 

hillslope. This phenomenon of increasing gully depth towards the base ofthe hillslope 

was also noted in a field study carried out by Bryan (2000). He also observed that 

once overland flow concentrates into rill channels, many surface roughness elements 

are submerged and depth increases downchannel, producing hydraulically smooth 

flow. Gully or channel depth at any location therefore reflects the balance between 

rainfall rate, flow delivery from upslope and infiltration rate (Bryan, 2000). The gully 

depth therefore reflects the dynamic interaction and feedback of several variables and 

is closely linked to the soil properties at the small The interaction between factors 

including catchment area, gully volume, local slope gradient and erosion is also 

complex, but essential to consider when accounting for gully form and morphology. 
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width depth 
x-section cumul-ve 

local slope 
length 

area volume u slo e 

width 1.00 

depth 0.27 1.00 

x-section area 0.63 0.76 1.00 

cumulative vol -0.26 0.25 -0.04 1.00 

local slope 0.72 0.41 0.66 -0.58 1.00 

length upslope -0.26 0.20 -0.04 0.96 -0.58 1.00 

Table 4.4. (n = 15) Site I: correlation between variables gully width (m), gully depth (m), 

cross-sectional area (m2
), cumulative gully volume (m3

), local slope gradient (0
), and length 

up from the base of slope (m). 

The correlation between these and other variables from Site 1 is presented m 

Table 4.4. Several important relationships are highlighted by this dataset: m 

particular, that between the gully width and the local slope has a highly significant R2 

value of 0.52, demonstrating that the gully channels tend to be wider on steeper 

slopes. 

The relationship between the three variables of local slope gradient, local gully 

volume and distance upslope is also relatively strong, having an R2 value of 0.62 and 

a high significance when these are regressed together (p = 0.001; see Equation 1). 

This indicates that the interaction of these variables is key to the morphology of the 

gullies, and zones in the landscape where the gullies start will be more controlled by 

gradient, while the presence of concavities controls the trajectory of the gullies until 

the slope gradient is too low and sediment deposition dominates (Poesen et al., 2003). 

The data presented in Figure 4.6 also demonstrates that the catchment area influences 

the gully morphology. 
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The relationship between the cumulative volumes and the catchment areas for gullies 

A, B and C is very strong: the R2 values are all close to 0.9 (gully A: R2 = 0.98, 

gully B: R2 = 0.88, gully C: R2 = 0.92). Naturally, the cumulative volume will be an 

increasing value, but it can be argued that gully A has the strongest relationship 

because it has the simplest morphology, therefore its channel growth and development 

is not interrupted or affected by the presence of large tributaries joining the main 

channel, or abrupt topographic changes, as in the cases of gullies Band C. In a study 

carried out by Esteves and Lapetite (2003) into runoff generation in a dryland gully 

catchment, similar results were obtained. Field observations demonstrated that the 

entire catchment area of a morphologically-complex gully did not contribute to 

runoff. This strengthens the relevance of mapping the soil surface features in the 

evaluation of the runoff capability of the catchments. 
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Figure 4.6. Gullies A- C cumulative gully channel growth (m3
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Despite the strength of the relationships between factors discussed above, the 

presence of some scatter and outlying points in the results shows that there are small­

scale areas which behave differently and cannot be accounted for in a generalised 

statement about the hillslope. These areas, where the effects of rainfall and runoff 

differ, lead to the selective establishment of flow networks and gullying. This will be 

discussed further in the next section. 

4.3. Small Scale Erosion Processes and Establishment of Connectivity. 

4.3.1. Flow Network Establishment. 

The large scale data presented and discussed in Chapter 3 demonstrated that the 

morphology of the gullies at both Site 1 and Site 2 is the result of the complex 

interplay of several variables. This is also true for the small scale morphology of the 

gullies. The data presented in this chapter has also shown that local factors including 

rainfall, slope gradient, soil properties and infiltration rates vary greatly over short 

distances. Their variation and interaction across the hillslopes causes the 

establishment of small-scale areas with differing hydrological response. This has also 

been observed by many authors, including Fitzjohn et al., (1998). Following the study 

of a gully catchment in central Spain, they stated that the extent and severity of runoff 

and erosion across the catchment was dependent upon soil variation, which could 

create a spatial mosaic pattern of hydrological response. Such areas may be 

manifested as local 'source' and 'sink' patches, which causes the hillslopes in semi­

arid areas to operate in isolated cells rather than in catenal sequences (Van Wesemael 

et al., 2000). Therefore the behaviour of the runoff in these patches will determine the 

initial flow networks and eventual gully morphology and hillslope connectivity. 
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The hydrological connection between a runoff contributing area and a runoff 

collecting network results in gully erosion (Souchere et al., 2003) and the presence of 

the three gullies at Site 1 and gully D at Site 2 demonstrates that connection on both 

hillslopes was established at some point during the rainfall event on the 6th October. 

Therefore, using the plot scan data from Site 1 and Site 2, the small scale flow 

networks were derived. Surface properties including local slope gradient and the 

presence of surface depressions were used to account for the runoff patterns at each 

plot scan location. ArcGIS software was first used to derive the network flow routing 

for each scan. The flow network parameter is determined by applying the slope 

gradient and runoff direction data derived from each plot scan. This data is presented 

in Figure 4.7 (a- d) and demonstrates the complexity of the runoff network at the 

small scale for each of the plot scans in unprecedented detail. 

The flow networks at each plot scan location are dendritic, but even at this small 

scale, they show a general trend in which the flow converges towards one or several 

main gully channels or tributaries. A particularly good example of this can be clearly 

seen in plot scan 8 (Figure 4.7c): the data at this point indicate the convergence of two 

major tributaries, located mid-slope on gully C. The runoff data for this plot scan 

shows how the overland flow network is organised in such a way that almost all the 

runoff is directed towards these two main tributaries. It is at this point that the slope 

gradient is steepest along the length of gully C, and the gully channel is at its widest 

(2.9 m) and deepest (0.35 m). The strong definition of the gully channel at this 

location suggests that this is a runoff-producing "source" area and connectivity with 

neighbouring parts of the hills lope will be high. 
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In contrast, the flow network data for plot scan 2 (Figure 4.7a; taken at the middle of 

gully A) shows that in detail there is no continuous flow network. Instead, there are 

several discontinuous directions of overland flow, some of which lead into the main 

gully channel before stopping, and others which run parallel with it. The relatively 

high number of discontinuous channels present around the main gully in this plot scan 

shows that the connectivity of this point on the hillslope with other areas is low. The 

high number of channels demonstrates that - given sufficient rainfall - this location is 

also a potential source area. 

In a comparable study of the relationship between soil surface roughness and 

connectivity carried out by (Darboux et al., 2001), it was suggested that flow network 

structures evolve into "self-organised" configurations, where the overall sinuosity and 

gradient of the flow paths undergo a decrease, as observed in more-developed river 

networks. The nature of the flow network data obtained from the laser scanner in this 

study does appear to support this theory: it demonstrates morphological differences 

between upslope areas and those closer to the base of the hillslope. In particular, as 

the channels approach the base of the slope they become less dendritic and 

significantly more defined, as flow concentration is highest and slope gradient begins 

to decrease, as shown by the field data and laser scanner results. Therefore, this 

suggests that while the overall morphology of the gullies at the large scale can be 

more "self-organised", there is inevitable high spatial variability in gully channel 

development at the small scale. 

The fact that in each plot scan, the nature of each overland flow pattern is very 

different demonstrates the complex nature of runoff at this small scale. It also 
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highlights the fact that while generalisations about local-scale runoff patterns are often 

made, they can never be completely accurate. As demonstrated in the plot scan flow 

network data, the establishment of hillslope connectivity begins with the linking of 

small-scale areas, and the strong relationship between gully morphology and landform 

at both sites demonstrates that there is an important topographic control on soil 

properties. In particular, the flow network data and its relationship with the soil 

properties highlights the need for further understanding of the continuity and 

hydrological connectivity between different areas of the hillslope. 

4.3.2. Small-Scale to Hills/ope-Scale Connectivity. 

The data presented in the previous section has demonstrated that the form and 

morphology of rill and gully flow networks are critical for hillslope hydrologic 

response. The connectivity between runoff-generating and runoff-absorbing areas on a 

hillslope is important at all scale levels (Cammeraat, 2002), especially in dryland 

environments such as the Rambla de Nogalte. This is because connections in semi­

arid regions are only established during rainfall events due to the lack of soil moisture 

during most of the year, and areas quite close to one another can exhibit a contrasting 

response. Runoff at the hillslope scale is therefore determined by the response of 

partial areas to rainfall events, and it is during such events that the linkages within and 

between hillslopes and channels are very important (Coppus and Imeson, 2002). 

As demonstrated by the results presented in this and the previous chapter, one 

difficulty in accounting for hillslope connectivity and gully morphology is achieving a 

proper reconciliation between the complexity inferred by processes active at the 

small-scale and the relative simplicity inferred by those at the hillslope-scale 
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Figure 4.7a. Gully A. Contour data (left) alongside flow network 

data (right). Location of plot scans indicated on sketch map of gully. 
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Plot scan 6 
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Figure 4.7b. Gully B. Contour data (left) alongside flow network 

data (right). Location of plot scans indicated on sketch map of gully. 
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(Sivapalan, 2003). This difficulty is best overcome by the study of common concepts 

which are able to transcend the range of scales in question. In particular, the 

combination of the flow network data with the local slope gradient, soil properties and 

infiltration results allows connectivity between source and sink areas to be effectively 

identified for each gully. 

This data for gullies A-D can be seen in Figures 4.7 (a-d). This data demonstrates 

that the more mature gullies - B and C - have more distinct, well-established flow 

networks. While plot scans 1, 2 and 3 from gully A demonstrate connectivity is 

indeed occurring (Figure 4.7a), no obvious tributary network is visible, as in the other 

plot scans (Figures 4.7b-c). This relative youth of gully A also results in its highest 

width and depth values (2.3 m and 0.32 m respectively) being smaller than the same 

values for gullies B and C (3.95 m, 0.62 m; and 2.9 m, 0.35 m respectively). These 

results suggest that the connectivity of a gully increases as the gully becomes more 

mature. Hillslopes with well-established gullies will therefore experience greater 

runoff and erosion during a rainfall event. Areas such as these, which respond quickly 

to rainfall will produce high runoff discharges, allowing for flow continuity along the 

drainage network (Yair and Kossovsky, 2002). 

For two of the gullies at Site 1, the widest sections of the channels are in the mid­

slope area: gully A, plot scan 2; and gully C, plot scan 8. This demonstrates that the 

erosivity of the runoff at the mid-point of these gullies has reached its maximum 

potential; upslope from here, the channels are still growing and being eroded, whereas 

downslope from here, the channels are experiencing slower incision and deposition as 

the reduced slope gradients ( < 22 ° and < 24 ° respectively) are causing runoff to slow 
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Figure 4.7c. Gully C. Contour data (left) alongside flow network 

data (right). Location of plot scans indicated on sketch map of gully. 
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Figure 4.7d. Gully D. Contour data (left) alongside flow network 

data (right). Location of plot scans indicated on sketch map of gully. 
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down. For gully B, however, whilst the widest section of gully is towards the upper 

part of the hillslope ( 140 m ups lope), at its mid-point the flow network is most well­

developed (Figure 4. 7b, plot scan 5). This data demonstrates that the steeper parts of 

the hillslope at Site 1 are areas where the topography will therefore have a greater 

influence on overland flow and gully morphological development during a rainfall 

event when the hillslope is in the wet state. Topographical data from the laser scanner 

allowed such areas of steeper gradient to be distinguished. The data presented in 

Table 4.1 shows that the gullies in Figures 4. 7a-c which have more distinct flow 

networks also tend to have steeper slope gradients. 

Although connectivity of the flow networks at Site 1 appears to be governed largely 

by the hillslope topography, accurately describing runoff generation is complicated by 

differences in soil surface conditions and by the numerous processes active across the 

hillslope. One method of anticipating the connectivity of an area on the hillslope is by 

identifying local 'source' and 'sink' areas which will have different local hydrological 

behaviour during a rainfall event. It has been shown that areas with a lack of 

vegetation, low soil omc and low infiltration rate are prone to runoff generation, 

therefore where these are found in combination with a steep gradient, they become 

'source' patches. Steep slopes at Site 1 have higher runoff rates and lower runoff 

thresholds, as shown by the high density of tributary channels for gullies Band C. 

The distribution of these 'source' areas (as determined by the data collected in the 

field) is shown in more detail in Figure 4.8 and Figure 4.9. The spatial configuration 

of these small-scale units and their connection to the gully channels determines the 

hillslope geomorphologic and hydrologic response, as they are linked though parts of 
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the channel systems (Cammeraat, 2002). Similar results were found by Canton et al. , 

(2001) following a study carried out in south east Spain. Erosional processes were 

monitored in a badlands environment and it was found that most of the runoff-

generating surfaces were spatially distributed in such a way that they were almost 

always connected, allowing the transfer of sediments from hillslopes to channels. 
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Figure 4.8. Sketch diagrams showing source & sink areas for gullies A and B: Red arrows & 

corresponding data indicate source areas. Green arrows & corresponding data indicate sink 

areas. Delineation based on soil properties (omc, soil particle size, infiltration rate) and 

topographic attributes for 5 study areas along each gully (labelled 1 - 5 for gully A and 6 - 10 

for gully B). 
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In contrast to the 'source' areas of runoff generation, there exist several areas on the 

hillslope where connectivity is low and rainfall is preferentially infiltrated. These 

'sink' locations tend to be areas with a reduced slope gradient, a relatively high soil 

omc, and a higher proportion of large particle size fractions in the soil. A higher soil 

surface roughness and comparatively faster infiltration rate are also characteristic of 

these locations. The distribution of the 'sink' areas at Site 1 is shown in Figures 4.8 

and 4.9. There also exist some areas on the hillslope at Site 1 where the hydrological 

behaviour cannot be determined (e.g. locations 2, 8, 11 and 13), showing that the 

response of semi-arid hillslopes to rainfall is often unpredictable (Puigdefabregas et 

al., 1998). However, small-scale data obtained from the laser scanner and fieldwork 

results indicate that the three gullies at Site 1 do exhibit the potential for very 

localised 'source' areas at the top of the hillslope and 'sink' areas towards the base. 

The presence of source areas at the top of each gully will promote runoff near the 

gully heads, furthering the morphological development of these areas during rainfall 

events. As discussed in section 4.2.2, the instability of gully heads is responsible for 

channel expansion and erosion, eventually leading to land degradation. 

The presence of 'sink' areas at the base of the gullies was initially implied by the 

presence of large sediment fans, and has been further demonstrated by the data. As the 

gullies mature, the sediment fans will increase in size as overland flow ceases in these 

areas, and sediment is deposited. Despite the presence of some well-defined 'source' 

and 'sink' areas, the hydrological behaviour of much of the hillslope remains difficult 

to determine. The overland flow yield at these sites is significantly non-uniform due 

to the high spatial variability of infiltration rates and soil properties across the 

hillslopes. Perhaps if observations were carried out in the field during or just after a 
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rainfall event, the hydrological behaviour of the hillslopes would become clearer. The 

spatial arrangement of these 'source' and 'sink' areas across the hillslopes at Site 1 

and Site 2 shows the importance of considering the interaction of small-scale 

processes in a larger context in order to fully appreciate the morphology of the gullies 

observed. 

If the distribution of the distinct source and sink areas are considered alongside the 

morphology of each gully, links between the two can be established. For gully A- the 

youngest gully - the presence of source areas at the gully head and mid-way 

downslope coincide with more developed sections of the gully channel: at these 

locations, the gully is at its widest due to the higher amounts of overland flow. In 

contrast, the shallow slope gradient and low soil omc at the base of the slope 

correspond with the 'sink' area. At this location, the gully is narrowest and the 

volume for this 5 m section of the gully is the lowest at 0.22 m3
• To summarise, in line 

with its simple morphology, gully A exhibits a relatively clear-cut tendency for 

'source' areas to be on the upper parts of the slope, whereas 'sink' areas are located 

towards the base (Figure 4.8). 

As previously discussed, gully B has a more complex morphology than gully A, and 

this is reflected in the distribution of 'source' and 'sink' attributes in the data 

(Figure 4.8). There is a clear 'source' area at the gully head, where the infiltration rate 

is lowest at 0.99 mm min-1
, soil silt content is highest (60.3 %) and slope gradient is 

steepest (30 °). There is also a clear sink area at the base of the slope, where the 

infiltration rate is highest (2.43 mm min-1
), soil omc is highest (5.9 %) and slope 

gradient is shallowest (7 °), but the mid-slope section in between is more complex. 
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The large topographic concavity at 70 m downslope acts as a large 'sink' area where 

sediment has been locally deposited and vegetation is present. 30 m further 

downslope, the area exhibits properties suggesting it is a 'source' area: it has the 

lowest soil omc, and a high slope gradient (25 °). This spatial pattemation of the 

'source ' and ' sink ' areas for gully B suggest that in order for it to become 

hydrologically connected, a high rainfall amount is necessary. Comparable 

conclusions were reached in a similar study on landscape position and erosion 

Top ofhillslope 
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Base ofhillslope 

Gully C Gully D 

omc 
3.06% 

0.76 omc 
mm min·• 3.28° 

0.47 omc 
mm mln·• 2.26° 

Figure 4.9 . Sketch diagrams showing source & sink areas for gullies C and D: Red arrows & 

corresponding data indicate source areas. Green arrows & corresponding data indicate sink 

areas. (Black text indicates area source/sink cannot be adequately distinguished) Delineation 

based on soil properties ( omc, soil particle size, infiltration rate) and topographic attributes for 

5 study areas along each gully (labelled 11 - 15 for gully C and top, middle, base for gully D). 
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processes carried out by Gabbard et al., (1998). It was shown that different positions 

on the hillslopes would have different hydrological conditions, and that these would 

affect erosion processes (as shown in Figure 4.1 0). More specifically, runoff 

conditions were present near the hillslope summit and shoulder areas, the middle 

slope experienced a concentration in erosion processes, and the toe of the slope was 

characterised by sediment deposition and excessive soil moisture. Therefore, the 

surface runoff which was reabsorbed by surrounding drier areas acting as sinks did 

not contribute to catchment outflow. 

Gully C has the most complex morphology of all the gullies at Site 1. However, 

despite its complex form, it is the most mature gully and therefore has a clearer and 

more well-defined 'source' are and 'sink' area than A and B. The upper part of the 

gully has more properties demonstrating the presence of a 'source' area, whereas the 

Top of hillslope 

Initiation of 
! ! ! ~ace flow 

~ I ~ 
~ 

Infiltration & 
surface 
pending 

Runoff 
concentration 
& gully erosion 

Figure 4.1 0. Schematic diagram of hills lope position, 

hydrologic condition and erosion processes (redrawn from 

Gabbard et al., 1998, p84). This diagram can also be applied to 

runoff processes at Site 1 and Site 2. 
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lower part has more physical characteristics associated with a 'sink' area (Figure 4.9). 

This hydrological behaviour is reflected in the gully's morphology: it is extremely 

dendritic in its upper parts, due to the source area causing gully initiation. However, 

these multiple channels eventually join together towards the lower half of the 

hillslope, forming a more defined gully. This corresponds to the increase in sink areas. 

At Site 2, gully D has a simple form, which is comparable to the morphology of 

gully A. However, it is comparatively larger than gullies A- C relative to the size of 

the hillslope. 

The form of gully D has been caused by the abandonment of agriculture at this site: 

the slow regrowth of natural vegetation has meant that much of the soil at this site is 

permanently exposed, and therefore more vulnerable to rainfall events. The gully is 

therefore larger because it is never ploughed back into the soil, and increases in size 

with each rainfall event. The high soil pH (8. 7) measured at Site 2 is characteristic of 

abandoned land in semi-arid environments, and is caused by the formation of salts at 

the soil surface. This alkalinity in itself will inhibit plant re growth and development, 

affecting the regulation of major trace nutrient elements in the soil to vegetation. 

Kirkby et al., (2002) found similar results following a study in south east Spain: land 

use was shown to have a significant effect on gully morphology, defining both the 

surface depression storage, and the proportion of the soil surface that was bare of 

vegetation. Due to the contrasting nature of results obtained from the data collected at 

Site 2, no clear source or sink areas can be distinguished, which suggests connectivity 

between areas on the hillslope is highly complex (Figure 4.9). 
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These results have demonstrated the extent to which gully development on the 

hillslopes at both Site 1 and Site 2 is very reliant upon small-scale variation in soil 

properties and the nature of large-scale hills lope topography. 

4.4. Summary and Conclusion. 

Following the presentation of the results, it was demonstrated that the interaction of 

many factors- at both large and small scales- caused the formation of gullies A- D. 

More specifically, however, the large scale topography and the local variation in soil 

properties (particularly the particle size distribution and infiltration rate) have been 

shown to be the main morphological agents during a rainfall event. Results have 

indeed shown that runoff generation is a spatially distributed process where surface 

morphology, in both macro and micro scales, controls the surface flow routing 

(Darboux et al., 2001 ). Results also indicated that the application of data obtained 

from investigation carried out at one scale cannot be 'scaled-up' and applied to 

another. In order to generate useful data, appropriate fieldwork must therefore be 

carried out at more than one scale. Comparable results have also been presented by 

other authors following field investigations in semi-arid environments (e.g. Valcarcel 

et al., 2001; Esteves and Lapetite, 2003). 

Connectivity between areas on hillslopes is essential for gully morphological 

development: it is only by the transfer of runoff from one area to another that erosion 

occurs. The small-scale results have demonstrated the particular presence of localised 

'source' and 'sink' areas along the length of each gully govern the connectivity of the 

hillslopes at Site 1 and Site 2. While the results from this study have shown the 

hydrological behaviour of specific sections on the hillslope, it was not possible, 
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however, to distinguish the hydrologic response of some small-scale areas studied, 

and further investigation at both sites is necessary in order to establish a more highly 

detailed picture of hydrological connectivity and to anticipate the nature of future 

gully form. 

In summary, therefore, areas where it is anticipated that the most runoff will occur are 

found on the steepest slopes with low vegetation cover and a low infiltration rate 

(which is itself determined by the soil particle size and soil omc ). It is the connectivity 

of these areas with their surroundings that will govern hills lope hydrological response 

and gully morphological development. Results from fieldwork carried out at both 

large and small scales will be considered in the next chapter in the context of the field 

sites, and the the success of the research aims and objectives will be evaluated. 
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5. Research Synthesis and Conclusions. 

5 .1. Introduction. 

Fieldwork was carried out at two field sites in the Rambla de Nogalte catchment in 

south-east Spain in order to understand the formation of small gullies on semi-arid 

hillslopes in relation to their topographic settings, soil properties and rainfall 

characteristics. Results demonstrated that several processes have an influence on the 

gully morphology at the hillslope scale, and their relative influences determine the 

nature of gully morphological development at each site. The results from the study of 

four gullies, A-D, have been discussed in chapters 3 and 4 in the context of large­

and small-scale data respectively. The reconciliation of the data obtained at both 

scales allows the gully morphology to be analysed in a wider context than other 

studies that have been carried out, and the use of the laser scanner has also provided 

topographical data in unprecedented detail. 

In this final chapter, the conclusions of all the research will be presented and the 

success of the study will be evaluated in the context of the research aims and 

objectives that were laid out in Chapter 1. 

5.2. Gully Morphology: Cause and Effect Development Processes. 

In order to account for the morphology of the gullies at Site 1 and Site 2 several 

components of hillslope response were studied, some of which transpired to be more 

significant than others. The combined use of small-scale and large-scale data allowed 

the gully morphology and hillslope connectivity to be better accounted for, which is 
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particularly important considering that there is a need for an improved understanding 

of how different areas within a catchment fit together and how these affect runoff and 

erosion (Kirkby et al., 2002). This study has shown that the inter-scalar relationships 

between gully form, hillslope topography and local soil properties (including 

infiltration) were of particular importance in altering erosion processes. This 

demonstrated that understanding and interpreting relationships at both scales is 

essential to the explanation of gully morphology. 

5.2.1. Gully Form: Large Scale Topographical Determination? 

At Site 1, a maintained almond plantation, three gullies of increasing size (A, B 

and C) were present on the hillslope. Gully A had the simplest morphology, 

comprising a single channel with few morphological changes down its 50 m length 

and no large tributaries. It also had the smallest sediment fan, which measured 7.5 m3
, 

and the catchment area for gully A measured 57m2
, which was also the smallest of 

the three (Figure 5.1 ). Despite being the smallest gully, results presented in Chapter 3 

demonstrated that the hillslope topography had the strongest influence on this gully: 

the correlation between channel width and slope gradient was R2 = 0.52, compared to 

just 0.43 for gullies B and C. This relationship was attributed to its comparative 

immaturity and smaller size. There are fewer areas of localised shallow gradient 

where deposition can occur, unlike B and C, whose more varied form presents several 

locations for topographic independence of the gullies. There are also no branches or 

tributary channels joining gully A, and its relatively recent formation also means that 

its sediment fan has not begun to encroach onto the base of the gully channel, 

reducing the local slope gradient. Therefore, the topography at this location does play 

the main role in determining the nature of gully A's morphology. 
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Gully B was the second-largest gully and had a more complex form than gully A. Its 

upper half consisted of two main channels with tributaries, which converged mid-

slope to form a single channel that continued to the base of the hillslope. The 

catchment area for this gully was larger at 220.5 m2 (Figure 5.1), which affected the 

gully widths and depths measured: the larger catchment area means that during the 

rainfall event in which this gully formed, there was more runoff captured by this gully 

and more erosion took place. This is also the reason that it has a larger sediment fan 

(10.75 m3
, as measured in the field) whose presence reduces the local slope gradient. 

The largest gully at Site 1, gully C, had the most complex morphological form: it had 

a large network of tributary channels, all of which eventually joined together very 

close to the base of the hillslope to form a single, main gully. It had the largest 

catchment area (381 m2
) and correspondingly, the highest average width and depth of 

-50 m 

Figure 5 .1. Diagram of hills lope at Site 1, 

showing sketch of gullies A, B and C and their catchment areas. 
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all three gullies at this site (2.2 m and 0.29 m respectively). From initial observations, 

the relative sizes and morphology of gullies B and C appeared to be more dependent 

on the large scale topography than gully A: the gullies were located within 

topographic hollows (Figure 5.1) where the local slope gradient was steeper than 

elsewhere on the hillslope. The average slope gradient at Site 1 was 12.6 o but in areas 

surrounding gullies Band C, the slope measured 21.96 ° and 23.25 ° respectively (as 

measured over their respective lengths of 140 m and 145 m). This data was used in 

multiple regression analysis together with the position upslope parameter (measured 

in metres from the hillslope base), as discussed in Chapter 3. The resulting R2 value 

was a highly significant 0.62, compared with R2 == 0.41 when upslope position was not 

included. Results therefore show that the gullies are indeed preferentially forming in 

areas with a steeper slope gradient, and that the larger sections of the channel are 

located on steeper topography and on the lower part of the slope. 

The fact that these large-scale topographical variables play such an important role in 

the morphological development of the gullies inevitably means that they not only 

have an influence over the gully channel volumes, but over the amount of sediment 

eroded. Results presented in chapter 3 showed that the larger the catchment area was, 

the more complex the morphology of the gully became. Therefore, determination of 

the sediment eroded also became more difficult. Calculated from the field data and 

laser scanner results, the weight of the soil lost at Site 1 measured 89.3 kg in total: 

11.3 kg, 48.5 kg and 29.5 kg for gully A, B and C respectively. These results reflected 

the complexity of the gullies' form and the inherent non-linear relationships between 

variables. While gully C has the largest catchment area (381 m2
), highest average 

slope gradient (23.25 °), and is the longest gully at this site (145.3 m), its volume of 
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sediment eroded is not the highest. This can be accounted for when the following are 

considered: the complex form of gully C, comprising a wide network of tributaries 

and a large sediment fan which is increasingly retreating up the gully channel, means 

that because it is the largest gully the erosion amount is difficult to exactly calculate. 

In addition, many localised areas of deposition within the gully further complicate the 

matter: their presence shows that while much sediment is being eroded to form this 

gully, a large amount never makes it to the hillslope base, but remains on the hillslope 

until a further rainfall event can again mobilise it. 

Gully 
Sediment Gully Mean slope 

eroded (kg) length (m) gradient n 
A 11.3 55.59 22.64 

B 48.5 140.64 21.96 

c 29.5 145.3 23.25 

D 12.7 62.1 23.64 

Table 5.1. Morphological attributes ofthe gullies at Site 1 (A-C) and Site 2 (D). 

At Site 1, the topography is also being further exaggerated by repetitive gullying in 

the same locations: despite being ploughed back into the soil by agricultural practices, 

during the next rainfall event, the gullies merely re-form in the same places. However, 

results demonstrated that gullies B and C experienced more positive-feedback with 

the topography in which they were situated than did gully A. The gullies formed as a 

result of runoff flow concentration in topographic concavities, taking advantage of the 

high soil silt in these areas. This was also noted by Nachtergaele and Poesen (2002) 

following a study carried out in Belgium: they showed that with water erosion, 

concavities concentrate runoff, often resulting in intense gully erosion. In addition, a 

study of runoff generation in a small, semi-arid gully catchment was carried out by 

Esteves and Lapetite (2003): they also demonstrated that bare, sloping zones in the 
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vicinity of the gullies were the main contributing areas, and this was intensified in 

particularly concave areas. However, it is also important to note that flow 

concentration alone does not necessarily cause gully incision, but that small-scale 

properties of the soil surface are essential components of hills lope response. 

5.2.2. Gully Form: The Role of Small-Scale Soil Physical Properties. 

At the small scale, results from analysis of the soil surface data demonstrated the great 

spatial heterogeneity of surface properties and the variability of the hillslope response 

to rainfall. Results showed that the interaction of small-scale areas with their 

neighbouring counterparts therefore played a major role in gully morphological 

development. Such areas at Site 1 and Site 2 were identified by the plot scan data, 

which was presented and discussed in Chapter 4. Of particular importance were the 

infiltration results, which gave an insight into the hillslope's surface response during a 

rainfall event. In Chapter 3, a positive relationship between infiltration rate and 

upslope position was determined (R2 = 0.5), indicating that infiltration was higher 

towards the top of the hillslope. This can be attributed to the local gradient, which was 

relatively shallow at the top of the slope and encouraged infiltration and ponding, 

rather than runoff. Indeed, the recurring formation of the gullies and tributary 

channels in areas of steep slope positively showed that these locations have less 

potential for surface water storage and are therefore more prone to runoff. This has 

also been identified by other authors including Poesen et al., (2003): following a study 

of gully erosion in several regions, their results showed that clear that zones in the 

landscape where gullies start were more controlled by slope gradient. In particular, 

topographic attributes such as slope gradient and drainage area affected the density of 

the drainage network and hence the probability of gully channel development. Kirkby 
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et al., (2000) also carried out a study of gully growth in south-east Spain and they 

noted that gully channel growth was non-linearly dependent upon the contributing 

area, runoff rate, and local hill slope gradient. 

The nature of the infiltration at the small-scale was further demonstrated by the plot 

scan results (Chapter 4). At the small-scale, infiltration rates displayed a significant 

relationship with the organic matter content ( omc) of the soil, as shown in Figure 5 .2. 

For gullies B and C at Site 1, and gully D at Site 2, the highest infiltration rates 

measured (2.43 mm min- 1
; 7.07 mm min-1

; and 0.76 mm min-1 respectively) coincided 

with the highest soil omc values (5.9 %; 5.52 %; and 3.28 % respectively). This can 

be explained by the fact that areas with a larger amount of organic matter have a 

higher soil aggregate stability, which reduces erosion and promotes infiltration. A 

higher soil omc also encourages the further colonisation and growth of vegetation in 

the same areas, which will promote more infiltration and vegetative growth in a small-

scale positive feedback relationship. Therefore, as discussed in Chapter 4, these areas 

where organic matter is prevalent can be distinguished as 'sink' areas. 

·~ 

·~ 
• 

·~·. 
• • 

0 

3.5 4 4.5 5 5.5 

omc% 

Figure 5.2. Site 1: infiltration rate (mm min-1
) vs soil organic matter content(%). 
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Data showed that in areas towards the top of the hillslope at Site 1 where the gullies 

initiated, the soil had a high silt content, which actively encouraged erosion and 

headwall retreat. The formation and development of rills and gullies is linked to the 

susceptibility of soil particles to entrainment and transportation. Silt is the most easily 

erodible soil fraction, and the high proportion of silt at the top of the hillslope 

(gully A: 52.6 %, gully B: 60.3 %, gully C: 54%) means that this is where the 

majority of future morphological development and gully extension will take place. 

Further downs lope towards the mid-sections of the hills lopes at Site 1, data showed 

that the gullies began to increase in size, reaching their maximum widths (A: 2.3 m, 

B: 3.05 m, C: 2.9 m) and in the case of gully C, its maximum depth as well (0.35 m) 

(as shown in Figure 4.4, Chapter 4). The results demonstrated that in these locations 

the erosive power of the runoff was greatest, due to a combination of steep slope 

gradient with high intensity rainfall and highly erodible soil particles. Related to this 

subject area - and of particular significance - were the results presented in Chapter 3 

which demonstrated the relationship between local hillslope gradient and the local 

gully volume (for a 5 metre length of gully). The morphologically larger parts of the 

gullies were located towards the middle of the slope, where gradient was steeper 

(A: 26 °, B: 26 °, C: 30 °). As demonstrated in Chapter 3, the apparent influence of 

the slope gradient on local gully volume at the small scale was very strong: when 

these two variables were plotted against one another in Figure 3.17, they virtually 

followed the same pattern with the exception of some small discrepancies which were 

attributed to small-scale variation in infiltration rates and soil properties, in addition to 

the localised presence of tributaries joining the main gully channel. 
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Comparable results to these were also noted by Gabbard et al., (1998) following a 

study of hillslope position and its influence on erosion processes. They successfully 

demonstrated from their data that different positions on a hillslope experience 

different erosion processes in accordance with local slope gradient and soil surface 

properties (as shown by Figure 4.10 in Chapter 4). In particular, they noted that 

differences in the hydrological conditions of particular areas of the hillslope actively 

caused preferential rill and gully erosion, and the movement of water was the 

dominant mechanism in shaping the landform. 

The movement of water across the hillslopes at Site 1 and Site 2 was also shown by 

the results to be greatly affected by the land use and agricultural practices active at 

each site. Vegetation and land use are clearly important factors which control the 

intensity and frequency of overland flow and erosion (Kosmas et al., 1997), and these 

results will be discussed in the next section. 

5.2.3. Gully Form: The Site Specific Influences of Land Use. 

As discussed in chapter 1, one of the main differences between Site 1 and Site 2 was 

land use: Site 1 is a maintained almond plantation which is also used for the grazing 

of sheep and goats, whereas agriculture at Site 2 has been completely abandoned in 

order to let natural vegetation re-establish. This fundamental difference can account 

for several variations observed between the two field sites. The soil samples taken 

from Site 1 and Site 2 were also used to obtain pH and electrical conductivity ( ec) 

data, which supported the measured geomorphological trends of the gullies at each 

site. The results demonstrated that pH was over ten times higher at Site 2 where 

agriculture had been abandoned: values measured 8.7 (top ofhillslope), 8.3 (middle of 
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hillslope) and 8.5 (base of hillslope). The electrical conductivity measurements were 

shown to be significant, also being an order of magnitude higher at Site 2 than at 

Site 1 (140 JlS cm-1
, 112 J.!S cm-1

, 135 J.!S cm-1 respectively). The higher pH and ec 

values are a logical result of agricultural abandonment in a semi-arid area: the 

accumulation of salts at the soil surface is directly due to cessation of ploughing, and 

higher pH and ec levels. Comparable results were obtained in a study carried out by 

Boix-Fayos et al., (1998) into variations in runoff and soil properties in south-east 

Spain. Chemical and physical analyses were performed on soil samples taken from 

forty-two points on six hillslopes in order to characterise the distribution of soil 

surface properties. It was found that higher pH and ec values were higher for the most 

humid and most arid sites, which was attributed to soil water evaporation and 

precipitation of salts in the upper soil layers. 

Another impact of soil salinity is a reduced ability of the site to support recolonisation 

of vegetation, having an important effect on gully morphology. At Sites 1 and 2 in 

particular, without the presence of vegetation runoff will be further promoted and 

therefore gully erosion will be facilitated. Whilst collecting data in the field, it was 

noted that the vegetation at Site 2 was indeed more sparse than at Site 1, and the soil 

omc measured at this site was also lower, with values of only 3.06 %, 3.28% and 

2.26 % measured at each plot scan location compared to values nearer 5 % at Site 1. 

This relationship is shown more clearly in Figure 5.3. This indicates that at Site 2, not 

only is the soil omc reduced by agricultural abandonment, but that regrowth of the 

natural mattoral vegetation is being further inhibited by high pH and salinity at the 

soil surface, which are a direct result of abandonment. These results demonstrate that 

some of the most important soil properties vary according to the current land use. 
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Figure 5.3. Soil organic matter content compared with soil pH levels for Site 1 (1-15) and 

Site 2 (top-mid-base). 

Despite the field data and geomorphological evidence supporting the low amount of 

organic matter in the soil at Site 2, these results are initially a bit surprising. This is 

because the omc at Site 2 is lower than for Site 1 where ploughing is still taking place: 

this usually incorporates omc into the soil, reducing the amount of organic matter 

present at the surface. However, this comparatively higher omc at Site 1 can be 

explained by the fact that ploughing only takes place at least twice a year, which does 

in fact give vegetation a chance to grow to a certain extent in between plough-events. 

At the time this study was carried out, the site was due for ploughing in 2 months: 

therefore, this factor will have affected the soil organic matter data and results. 

This study demonstrated that both erosion processes and gully morphological 

development are affected by agricultural practices and land use: in short, the strong 

relationship demonstrated between hillslope form and soil properties is further 
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affected by cultivation. The agricultural use of a hillslope therefore alters the innate 

balance between rainfall, vegetation, and soil properties, causing gully erosion where 

otherwise it might not have occurred. Results from Site 1 and Site 2 showed that 

agricultural operations apparently increased the topographic control on soil properties, 

causing runoff to have more erosive power. The same was noted in a study carried out 

by Van Wesemael et al., (2000): they investigated spatial patteming of soil physical 

properties on semi-arid hillslopes. It was found that spatial variation in soil properties 

could be attributed to agricultural practices and cultivation of hillslopes. In particular 

-just as for Site 1 and Site 2 - they found that frequent ploughing of the hillslopes 

resulted in erosion and denudation of the soil which would otherwise not have taken 

place. The effects of the agricultural practices employed at each site therefore actively 

demonstrates the great importance of land use for runoff generation and sediment loss 

in this semi-arid environment. 

The individual consideration of all these factors which have been discussed above is 

useful when accounting for gully morphology, but only if they are then taken to form 

part of a larger overall picture in which they are connected together, having 

interactive relationships. Their association and connectivity creates distinct rainfall­

runoff relationships between areas on the hillslopes, and causes the erosion of 

morphological forms such as the gullies observed at each site. 

5.3. Flow Network Development and Hydrological Connectivity. 

It has been suggested by several authors that the flow network structure of a hillslope 

evolves into a "self-organised" configuration (Darboux et al., 2001), where 

connectivity between flow paths is determined by the hydrological response of 
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individual 'patches', and gully erosion and morphological development is a direct 

result of this. As further research is carried out, the role of connectivity is being 

increasingly recognised as significant in accounting for gully erosion in semi-arid 

areas. The large-scale data, discussed in Chapter 3, successfully demonstrated the 

presence of distinct areas on the hillslopes at Site 1 and Site 2 where hydrological 

response to rainfall appeared to vary. The main factors involved in causing this varied 

response included hillslope gradient and soil physical properties. In particular, the 

relationship between gully channel volume and slope gradient was shown to have a 

highly significant R2 value of 0.43, indicating that larger sections of the gully were 

present on areas of the hills lope where runoff was more energised by the gradient. 

When this relationship was further investigated and the position on the hillslope was 

also taken into consideration along with the two factors of gully channel volume and 

slope gradient, the R2 value rose to 0.62. This demonstrated that not only were areas 

of steep gradient involved in controlling gully morphology, but that they appeared to 

be occurring at the same position on the hillslopes. This indicates that as the flow 

network of the gullies themselves began to develop and hillslope connectivity was 

strengthened, the topography in which the gullies are situated was also affected in a 

positive-feedback relationship, and large-scale hillslope evolution began to take place. 

When this factor was considered, the flow network development of the gullies could 

be better accounted for. As mentioned previously, field results showed that towards 

the top of the hillslopes, the gullies were much more dendritic and less-well 

developed. This can be explained by the fact that the slope gradient at this location 

was not yet steep enough to cause immediate runoff and erosion, but rather localised 

infiltration and surface ponding were promoted until infiltration-excess runoff 
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occured. However, as discussed in Chapter 4.2.2, this is also where the majority of 

future gully extension and development is most likely to take place: results show that 

the gully heads are situated in silt-rich soils (gully A: 52.6 % silt, gully B: 60.3 %, 

gully C: 54%), which are easily erodible soil fractions. The instability of gully heads 

is responsible for much channel expansion and erosion in semi-arid areas, which is 

becoming an increasing concern due to the degradation of much agricultural land. 

This phenomenon has also been noted by Bull and Kirkby (2002: 263): they state that 

gully erosion caused by the instability of gully heads is a serious problem in dryland 

environments and is responsible for the destruction of agricultural land, as well as 

structures such as roads, bridges and pipelines. Any environmental changes that have 

an impact on the gully head therefore have a large potential impact upon the 

landscape. Bull and Kirkby (2002: 292) also note that further research into 

understanding the problem of gully head development is therefore important m 

predicting future landscape evolution, morphology and response to climate change. 

Having been initiated in the upper part of the slope, the gullies at Site 1 and Site 2 

experienced improvement of connectivity and the majority of morphological 

development in their middle sections. Results showed that at this position on the 

hillslope the gullies were at their widest (Figure 4.4) due to concentration of run-on 

from upslope and the large size of the catchment areas at this point. In addition, the 

intensity of overland flow into the topographic hollows had further exacerbated this. 

Results also clarified the role played by the size of the catchment areas: their 

independent impact on the gully morphology was not shown to be particularly strong, 

although the relationship between gully depth and catchment area did have some 

slight correlation (Figure 3.7). This relatively surprising conclusion that catchment 
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area did not directly affect gully form can be accounted for by taking two factors into 

consideration. Firstly, it is not the independent factor of catchment area which has the 

most powerful morphological impact, but the interaction of the catchment area with 

the hillslope gradient. For example, if the catchment area was very large but on flat 

terrain, little erosion would occur. In the case of Site I, this is demonstrated when the 

slope gradient factor is included in the regression analysis: the relationship does 

improve (albeit only slightly, rising to R2 = 0.31). As mentioned before, perhaps most 

indicative of this relationship is the fact that gullies A - D are all widest mid-way 

down the slope (A: 2.3 m, B: 3.05 m, C: 2.9 m) where gradient is also steepest: the 

catchment area is dependent upon this to provide runoff with erosive potential 

(Figure 5.4). Secondly, the interaction between catchment area and gully form is 

further complicated by the interaction of other variables including soil properties, 

vegetation and land use- all of which have been discussed above and shown to play 
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Figure 5.4. Progressional change of gully cross-sectional area (m2
) and slope gradient down 

the hillslope at Site 1: the two reach their maximum values mid-slope. 
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an important role at Site 1 and Site 2. Results from this study therefore demonstrate 

that while the size of the catchment area does determine the amount of water captured 

and carried by the gullies, it is not the main driving force behind their morphology. 

Downslope from their mid-point, the flow network of the gullies developed into a 

single incised channel, until slope gradient and the erosivity of the runoff became 

reduced and deposition and infiltration took place. As discussed in section 5.2, results 

also indicated that at the base of the hillslope, soil omc was at its highest for each 

gully at Site 1 (gully A: 5.4 %, gully B: 5.9 %, gully C: 5.5 %) due to the increased 

water content of the local soil profile. The fact that gullies A - D increase in size 

downslope demonstrates that connectivity was successfully established across the 

whole hillslope during the rainfall event on October 6th, and runoff contribution from 

sideslopes was significant. The eventual concentration of runoff in the gully channels 

from the middle section of the slope had a positive effect on flow continuity and 

runoff contribution. Indeed, this successfully demonstrates that the form and 

morphology of the gullies is critical for the hydrological response and hillslope 

connectivity at these sites. In a similar study carried out by Fitzjohn et al., (1998) into 

gully erosion in a semi-arid catchment, it was shown that the spatial arrangement and 

hence the spatial connectivity of runoff producing areas were critical in determining 

the extent of overland flow and its effectiveness as an eroding agent. The form of 

gully channels at this site determined the connectivity of runoff-generating and 

runoff-absorbing areas, and ultimately the evolution of the catchment. 

In Chapter 4, small-scale topographical data (microtopography) obtained from the 

laser scans was considered in order to further explain the nature of these complex 
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relationships observed at the larger scale. Canton et al., (200 1) made the point that the 

spatial distribution of soil surfaces in microcatchments have an important role in 

erosion processes that should be evaluated in further work. Results from this study 

supported this, as the gully morphology and connectivity at Site 1 and Site 2 could be 

better accounted for when considered as a result of the interaction of smaller 'source' 

and 'sink' areas on the hillslope. The data collected at this small scale allowed the 

identification of such areas and demonstrated their importance. In addition, 

establishment of connectivity is more important for semi-arid areas where runoff 

production is more patchy than for humid areas with continued rainfall onto 

expanding saturated areas (Kirkby et al., 2002). In semi-arid climates, most rainfall is 

lost to evapotranspiration and little is available for subsurface flow, therefore 

independent determination of runoff for each small-scale area is of great importance. 

The hydrological nature of each plot scan was presented and discussed in 

Chapter 4.3.2, where distinctions between 'source' and 'sink' areas were made. At 

Site 1, source areas were located at the top of for each gully for A, Band C, as well as 

towards the lower part of the hillslope for gullies A and B (Figure 5.5). In contrast, 

distinct sink areas were located towards the base of the slope for each gully before 

their respective sediment fans began (which occurred further up the channel for 

gully C, due to the presence of a larger sediment fan). The same data for Site 2 

(gully D) was presented in Figure 4.9 (Chapter 4), but no distinct source or sink areas 

could be determined due to the complex connectivity at this site. It is suggested that 

the abandonment of agriculture at this site has had an effect on the hydrological 

balance of the hillslope: while the site tends to re-adjust to its natural state following 

abandonment, interactions between soil physical properties and the distribution of 
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Figure 5.5. Sketch diagram of Site l showing source and sink areas for gullies A, B and C. 

Squares indicate small-scale study areas (origin of soil samples and location of infiltration 

experiments). Circled numbers indicate plot scan locations. Red colour indicates source areas, 

green colour indicates sink areas. Grey indicates source/sink could not be adequately 

determined. Delineation based on soil properties (omc, particle size, infiltration rate) and 

topographic attributes for each study area. 

vegetation are extremely complex. This small-scale data demonstrates the effect that 

soil physical properties have on overland flow pathways and hydrological 

connectivity: for example, as shown by the annotations in Figure 5.5, a high soil silt 

content is favourable to the development of source areas, whereas a high soil omc 

promotes infiltration and therefore sink areas. In addition, the inclusion of the small-
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scale data with the larger-scale results from Site 1 and Site 2 has shown that the 

collection and analysis of data from both scales is indispensable. 

The results from this study demonstrate that the flow network development and 

hydrological connectivity at Site 1 are the result of interaction between the large-scale 

topography, soil properties and land use. The most potent variable in this relationship 

was shown to be the hillslope gradient, which gives overland flow its erosive potential 

during intense rainfall events. Soil properties including particle size and organic 

matter content and vegetation then determine the extent to which erosion may take 

place: in the case of Site 1, for a rainfall event measuring just over 40 mm, this figure 

reached approximately 89.3 kg in total. Results successfully demonstrated that the 

relationship between gully morphology and catchment area was complex, and that this 

was not the main variable influencing gully form. Instead, the combination of slope 

gradient and position on the hillslope proved to be the most significant interaction of 

factors when accounting for local gully volume (the regression of these variables gave 

a highly significant R2 value of0.62). 

In conclusion, the reconciliation of the data obtained at both scales, combined with 

data obtained from the laser scanner, gave a unique insight into the formation of small 

gullies on a semi-arid hillslope. Gully morphology has been accounted for and shown 

to be mainly a result of the interactions between large-scale topography and small­

scale soil properties. The relationship is nevertheless complex, and this study has also 

highlighted the need for further research into this subject area to be carried out. 

Finally, in order to fully evaluate the overall success of this study, attention must be 

given to the research aim and objectives first set out in Chapter 1. 
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5.4. Research Evaluation, Limitations and Future Research Potential. 

5.4.1. Research Summary and Evaluation. 

The aim of this research was to understand the formation of small gullies on semi-arid 

hillslopes in south-east Spain, in relation to their topographic settings, soil properties 

and rainfall characteristics. Research was successfully carried out on two field sites, 

and the data obtained has been presented and discussed in the latter chapters of this 

thesis. Results demonstrated that the nature of the gully morphological development 

at each field site was caused by the response of scale-dependent interactions between 

specific variables to an intense rainfall event: these were hillslope topography, small­

scale soil properties, vegetation and land use. These interactions were then 

investigated further following the four research objectives set out in Chapter 1.2. 

The first of the four research objectives was to explore the geomorphology of gullies 

at two sites formed under a rainfall event of known characteristics. This was 

accomplished by obtaining detailed rainfall data and carrying out field studies at 

Site 1 and Site 2. Gully form was first measured by hand, infiltration experiments 

were then carried out, and soil samples were taken for later laboratory analysis. In 

addition, a terrestrial laser scanner was used to obtain representations of the large­

scale hillslope topography and the small-scale variations in soil surface in 

unprecedented detail. 

The data obtained in the field was successfully analysed, and the second objective was 

carried out: this was to determine a relationship between gully catchment area and 

gully cross-sectional development along each channel, using data obtained from the 
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laser scanner. The nature of the role played by catchment area was shown to be 

complex and greatly reliant upon interaction with other variables. In particular it was 

shown that while the size of the up slope catchment area will affect the overall amount 

of water captured and carried by the gullies, their morphology was not determined 

solely by this variable. Instead, the morphologically largest section of each gully was 

located mid-way down its length where slope gradient was also to be steepest. This 

relationship was investigated further using multiple regression: the three variables of 

local gully volume, local slope gradient, and length upslope (for definitions, see 

Table 3.1) gave the most significant results: the R2 value was 0.62, demonstrating that 

it is these two factors which have the most influence on gully morphology (with local 

gully volume as the dependent variable). This also showed that it was important to 

allow for position on the hillslope, as well as slope gradient when accounting for gully 

form. 

The data obtained was also used to demonstrate the effects of physical soil properties 

on overland flow pathways and gully morphological development, which constituted 

the third research objective. The inclusion of the laser scanner data proved essential at 

this point when exploring the geomorphology of gullies A - D: this was due to its 

unique ability to capture detail at both the large and small scales. These results, 

therefore, were particularly important considering that scale issues are one of the 

current major challenges in the field of physical geography (Cammeraat, 2002). 

The main physical soil properties identified in the research as having an important 

influence on erosion and gully morphology were particle size, soil organic matter 

content, and infiltration rate. Results demonstrated that gully initiation could be 
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attributed to the specific reaction of small-scale areas to intense rainfall: at this scale, 

infiltration rate and the susceptibility of the soil particles to erosion were the most 

potent variables. Significant patterns detected in the data from Site 1 included silt 

being the most abundant soil fraction at each of the gully heads (gully A: 52.6 %, 

gully B: 60.3 %, gully C: 54%), and soil organic matter having the highest 

concentration at the base of each gully channel (gully A: 5.4 %, gully B: 5.9 %, 

gully C: 5.5 %). Once gullying had initiated, the form and morphology of the gullies 

themselves could be attributed to a complex feedback mechanism with local slope 

gradient and with vegetation. Data also demonstrated that the hillslope must be 

considered as a summary of interactions between 'source' and 'sink' areas: the spatial 

configuration of these surface units and their connectivity with their surroundings at 

both scales determines the hydrological response of the hillslope. 

The final research objective was to evaluate the potential of the laser scanner as a tool 

for studying gully morphology. The results from the study demonstrated that the laser 

scans were essential to evaluation and interpretation of much of the gully morphology. 

The use of a laser scanner in this study also provided this piece of work with a unique 

quality: this is the first time laser scanning techniques have been successfully 

implemented in the study of gully geomorphology on such a large scale in the field, 

and results have shown that the data generated provided a new level of precision in 

terms of understanding and monitoring erosion processes. As an emerging 

technology, terrestrial laser scanning (TLS) is still in its infancy, which is evident in 

the limited amount of published work (Lichti et al., 2002), therefore the research 

carried out in this study provides important data into the use of laser scanning in a 

geomorphological context. The data obtained using the laser scanner also 
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demonstrated the potential this piece of equipment has for carrying out investigations 

into erosion by gullying. Its ability to collect both large and highly detailed 

representations of the soil surface in relatively little time is remarkable, and can be 

applied to any medium both within and beyond physical geography. Despite some 

drawbacks including initial difficulties in processing the point cloud scans, and the 

somewhat tedious time-consuming process of extracting useful information from the 

scan data, the overall evaluation of its use in this context is very positive. 

5.4.2. Limitations and Future Research Potential. 

While this study was successful in that the research aim and objectives were 

completed, there were nevertheless limitations which inhibited both collection of 

information in the field and analysis of resulting data. Firstly, although the laser 

scanner proved to be an extremely useful piece of equipment for gathering data in the 

field, it also had some limitations which must be considered. One limitation was the 

size of the datasets generated by the laser scanner: their sheer size (in some cases, 

larger than 5Gb) meant that the computers could not cope with the analyses to be 

carried out. As a consequence, the point clouds had to be simplified then rendered as 

surfaces; in order to import into ArcGIS software, additional cross-sections of the 

surface had to be taken every 2 % across each scan. This was a long, tedious process 

in which some of the surface details were inevitably lost. However, it is hoped that 

with the advancement of technology, future processing and analysis of such large 

datasets will become easier. A further practical consideration is the high cost of the 

laser scanner itself, which means that its use in other studies may not be financially 

viable until cheaper products are provided on the market. 
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The potential for future research into gully morphological development itself is vast, 

and this is also an area where more research is required, as has also been recognised 

and discussed by several authors (e.g. Canton et al., 2001; Bull and Kirkby, 2002: 12; 

Cammeraat, 2002; Poesen et al., 2003; and Valcarcel et al., 2003). Whilst intelligent 

interpolation of the laser scan data was carried out in this study, it is an area where 

future research into this subject could most definitely be carried out: for example, one 

future option for research may be to carry out a similar field study in which many 

more plot scans were taken and linked together, creating a more detailed dataset in 

which gully erosion could be effectively monitored over a given timescale. Indeed, 

the expansion of agriculture in semi-arid areas and increases in soil degradation -

particularly in this region of Spain - means that the continued monitoring and 

assessment of gully erosion in this area is of great importance. 

5.5. Final Research Conclusions. 

In this thesis, the survey of two sites in south-east Spain was carried out in order to 

characterise the formation of gullies on semi-arid hillslopes in relation to topographic 

settings, soil properties and rainfall characteristics. The use of a laser scanner 

complemented data obtained by more traditional methods, providing a unique 

opportunity to take detailed measurements of gully form and hillslope erosion and 

then relate them to ancilliary measurements of rainfall, soil texture, soil omc, and 

infiltration in order to give new insights into the nature of gully form and 

development on semi-arid hillslopes. These results were then presented and 

interpreted in Chapters 3 - 5. 
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Hillslope topography at the large-scale and soil properties at the small-scale were both 

of particular significance in determining the morphology of gullies A-D. The land use 

practices at each site also played a major role in gully morphological development. In 

conclusion, rather than a single dominant process, it was the positive feedbacks and 

interactions between processes which affected gully morphological development at 

the field sites studied, and led to the formation of the small gullies on the hillslopes 

studied in south-east Spain. This study has demonstrated that there is a need to 

develop our current understanding of interactions on semi-arid hillslopes, and more 

research must be carried out into the spatial configuration and connectivity of 

hydrologically different areas. Understanding and mitigating erosion in semi-arid 

environments is therefore both an exciting challenge for the future as well as an 

important subject area in geomorphology itself. 
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Appendix 1. 

A.l. Infiltration Data: Site 1 and Site 2. 

(All infiltration rates in mm min-1
) 

gully A 
infiltration point 

mm 
1 2 3 4 5 

infiltrated 
10 0.55 0.35 1.04 0.35 0.39 
20 1.37 1.24 2.24 1 1.26 
30 2.29 2.2 3.39 1.3 2.37 
40 3.25 3 5.18 2.12 3.33 
50 4.25 4.06 6.45 2.47 4.19 
60 5.25 5.1 8.34 3.36 5.08 
70 6.3 6.15 10.24 4.47 5.565 
80 7.35 7.21 12.38 5.22 7.1 
90 9 9.06 14.46 6.13 8.14 
100 11.37 11.55 17.21 7.21 9.35 
110 12.45 13.53 19.08 8.07 10.1 
120 13.24 15.01 20.46 8.54 10.35 
130 15.22 16.41 23.2 9.23 10.54 
140 16.22 17.57 25.26 10.12 11.33 
150 18.2 19.56 27.2 10.56 12.12 
160 20.01 21.4 29.52 11.4 12.58 
170 20.53 22.19 32.14 12.4 13.54 
180 21.52 24.5 34.01 13.4 14.39 
190 22.47 25.13 36.4 14.44 15.38 
200 25.15 27.43 39.28 16 16.49 
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gully 8 
infiltration point 

mm 
6 7 8 9 10 

infiltrated 
10 0.12 0.12 0.19 0.43 0.47 
20 0.29 0.43 0.4 1.21 1.33 
30 0.56 1.34 1.06 1.56 3.09 
40 1.26 2.45 1.5 2.3 4.36 
50 2.01 3.51 2.3 3 6.19 
60 2.48 4.51 3.06 3.46 7.44 
70 3.24 6.15 3.57 4.18 9.35 
80 4.26 7.22 4.44 5.03 11.33 
90 5.26 9.01 5.42 6.08 13.56 
100 6.34 10.48 6.49 7.31 16.49 
110 7.33 11.35 7.21 8.12 
120 8.52 12.15 7.56 8.49 
130 9.48 13 8.24 9.31 
140 10.58 13.55 9.11 10.19 
150 12.07 14.49 9.54 11.02 
160 13.35 15.39 10.54 11.45 
170 14.46 16.48 11.44 12.39 
180 16.11 17.56 12.37 13.52 
190 17 19.05 13.21 14.58 
200 18.2 20.3 14.46 16.12 

gully C 
infiltration point 

mm 
11 12 13 14 15 

infiltrated 
10 0.17 0.09 0.16 0.16 0.58 
20 0.38 0.16 0.34 0.35 2.05 
30 0.55 0.22 0.58 0.56 3.41 
40 1.2 0.32 1.16 1.25 4.5 
50 1.48 0.4 1.4 1.42 6.1 
60 2.11 0.5 2.01 2.11 7.13 
70 2.5 1.06 2.32 2.38 8.35 
80 3.31 1.15 3.08 3.13 10.23 
90 3.59 1.29 3.46 4 11.46 
100 4.44 1.44 4.58 5.17 13.24 
110 5.32 2.13 5.3 6 13.56 
120 6.09 2.36 5.55 6.3 14.35 
130 6.55 3.01 6.25 7.15 15.32 
140 7.43 3.25 7.1 7.51 16.34 
150 8.25 3.5 7.51 8.26 17.4 
160 9.06 4.32 8.21 9.13 18.45 
170 10.02 4.53 9.08 9.55 19.56 
180 11.05 5.43 9.45 10.55 21.21 
190 12.16 6.44 10.41 11.58 23.13 
200 13.22 7.1 12.14 13.25 25.18 
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gully D 
infiltration point 

mm 
top middle base 

infiltrated 
10 1.42 1.13 1.44 
20 2.45 2.21 3.08 
30 4.05 3.37 4.54 
40 5.43 5.04 7 
50 7.19 6.27 9.18 
60 9 7.45 11.37 
70 10.52 9.13 14.03 
80 12.31 11.01 16.5 
90 14.31 12.19 19.55 
100 17.07 14.08 23.34 
110 19.22 16.09 27.14 
120 21.37 17.32 30.06 
130 23.28 19.17 33.15 
140 25.4 21.01 35.44 
150 28.03 22.48 39.03 
160 30.3 24.55 41.56 
170 32.55 17.11 44.29 
180 35.03 19.31 47.12 
190 37.1 32.2 50.04 
200 39.35 34.28 53.52 
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Appendix 2. 

A.2. Particle Size Distribution: Site 1 and Site 2. 

gully A 
sample number 1 2 3 4 5 

Polymodal, 
Polymodal, Very Polymodal, Very Bimodal, Very Polymodal, Very 

SAMPLE TYPE: Very Poorly 
Sorted 

Poorly Sorted Poorly Sorted Poorly Sorted Poorly Sorted 

TEXTURAL GROUP: Sandy Mud Sandy Mud Sandy Mud Sandy Mud Sandy Mud 

SEDIMENT NAME: 
Very Fine Very Fine Sandy Very Fine Sandy Very Fine Sandy Very Fine Sandy 

Sandy Fine Silt Mud Medium Silt Coarse Silt Medium Silt 

%GRAVEL: 0.0% 0.0% 0.0% 0.0% 0.0% 
%SAND: 32.9% 33.1% 38.5% 21.5% 29.3% 
%MUD: 67.1% 66.9% 61.5% 78.5% 70.7% 
%V COARSE GRAVEL 0.0% 0.0% 0.0% 0.0% 0.0% 
%COARSE GRAVEL: 0.0% 0.0% 0.0% 0.0% 0.0% 
%MEDIUM GRAVEL: 0.0% 0.0% 0.0% 0.0% 0.0% 
% FINE GRAVEL: 0.0% 0.0% 0.0% 0.0% 0.0% 
%V FINE GRAVEL: 0.0% 0.0% 0.0% 0.0% 0.0% 
%V COARSE SAND: 0.0% 0.0% 0.0% 0.0% 0.0% 
% COARSE SAND: 0.0% 0.0% 0.0% 0.0% 0.0% 
% MEDIUM SAND: 0.0% 0.0% 0.0% 0.0% 0.0% 
%FINE SAND: 13.1% 15.6% 19.1% 7.0% 11.8% 
% V FINE SAND: 19.7% 17.6% 19.4% 14.4% 17.5% 
% V COARSE SILT: 9.1% 8.6% 9.0% 11.4% 10.1% 
% COARSE SILT: 8.7% 8.6% 9.1% 15.2% 10.6% 
% MEDIUM SILT: 9.3% 8.9% 9.7% 14.0% 10.9% 
%FINE SILT: 9.7% 9.1% 9.2% 11.0% 10.5% 
% V FINE SILT: 9.3% 8.8% 7.9% 8.7% 9.2% 
%CLAY: 21.1% 22.9% 16.6% 18.3% 19.5% 

gully B 
sample number 6 7 8 9 10 

SAMPLE TYPE: 
Polymodal, Very Trimodal, Very Polymodal, Very Polymodal, Very Polymodal, Very 

Poorly Sorted Poorly Sorted Poorly Sorted Poorly Sorted Poorly Sorted 

TEXTURAL GROUP: Sandy Mud Sandy Mud Sandy Mud Sandy Mud Sandy Mud 

SEDIMENT NAME: 
Very Fine Sandy Very Fine Sandy Very Fine Sandy Very Fine Sandy Very Fine Sandy 

Medium Silt Medium Silt Fine Silt Medium Silt Medium Silt 

%GRAVEL: 0.0% 0.0% 0.0% 0.0% 0.0% 
%SAND: 28.5% 28.2% 26.8% 35.3% 29.9% 
%MUD: 71.5% 71.8% 73.2% 64.7% 70.1% 
%V COARSE GRAVEL: 0.0% 0.0% 0.0% 0.0% 0.0% 
%COARSE GRAVEL: 0.0% 0.0% 0.0% 0.0% 0.0% 
% MEDIUM GRAVEL: 0.0% 0.0% 0.0% 0.0% 0.0% 
% FINE GRAVEL: 0.0% 0.0% 0.0% 0.0% 0.0% 
%V FINE GRAVEL: 0.0% 0.0% 0.0% 0.0% 0.0% 
% V COARSE SAND: 0.0% 0.0% 0.0% 0.0% 0.0% 
% COARSE SAND: 0.0% 0.0% 0.0% 0.0% 0.0% 
% MEDIUM SAND: 0.0% 0.0% 0.0% 0.0% 0.0% 
%FINE SAND: 11.2% 12.0% 11.1% 17.3% 13.8% 
% V FINE SAND: 17.3% 16.2% 15.7% 18.0% 16.1% 
% V COARSE SILT: 10.5% 10.3% 9.0% 9.5% 8.4% 
% COARSE SILT: 11.0% 11.8% 9.5% 9.3% 9.4% 
% MEDIUM SILT: 11.5% 12.0% 10.7% 9.8% 10.1% 
%FINE SILT: 10.4% 10.3% 10.8% 9.7% 10.1% 
% V FINE SILT: 8.5% 8.2% 9.8% 8.0% 9.8% 
%CLAY: 19.5% 19.2% 23.4% 18.3% 22.5% 

170 



gully C 
sample number 11 12 13 14 15 

SAMPLE TYPE: 
Polymodal, Very Polymodal, Very Polymodal, Very Polymodal, Very Polymodal, Very 

Poorly Sorted Poorly Sorted Poorly Sorted Poorly Sorted Poorly Sorted 

TEXTURAL GROUP: Sandy Mud Sandy Mud Sandy Mud Sandy Mud Sandy Mud 

SEDIMENT NAME: 
Very Fine Sandy Very Fine Sandy Very Fine Sandy Very Fine Sandy Very Fine Sandy 

Medium Silt Coarse Silt Very Coarse Silt Very Fine Silt Very Coarse Silt 

0/o.GRAVEL: 0.0% 0:0% 0.0% 0.0% 0.0% 
%SAND: 27.3% 29.0% 35.3% 26.1% 39.3% 
%MUD: 72.7% 71.0% 64.7% 73.9% 60.7% 
%V COARSE GRAVEL: 0.0% 0.0% 0.0% 0.0% 0.0% 
%COARSE GRAVEL: 0.0% 0.0% 0.0% 0.0% 0.0% 
% MEDIUM GRAVEL: 0.0% 0.0% 0.0% 0.0% 0.0% 
% FINE GRAVEL: 0.0% 0.0% 0.0% 0.0% 0.0% 
%V FINE GRAVEL: 0.0% 0.0% 0.0% 0.0% 0.0% 
%V COARSE SAND: 0.0% 0.0% 0.0% 0.0% 0.0% 
% COARSE SAND: 0.0% 0.0% 0.0% 0.0% 0.0% 
% MEDIUM SAND: 0.0% 0.0% 0.0% 0.0% 0.0% 
%FINE SAND: 11.5% 11.9% 14.1% 10.6% 16.7% 
%V FINE SAND: 15.6% 17.1% 21.1% 15.6% 20.6% 
% V COARSE SILT: 9.7% 10.6% 11.1% 9.9% 10.1% 
% COARSE SILT: 11.9% 11.3% 9.0% 9.6% 6.5% 
% MEDIUM SILT: 12.4% 10.9% 7.7% 9.6% 7.9% 
%FINE SILT: 10.9% 9.9% 7.6% 10.1% 6.4% 
%V FINE SILT: 9.1% 6.9% 6.4% 10.2% 6.5% 
%CLAY: 16.7% 19.5% 20.6% 24.3% 17.4% 

gully D 

sample base middle top 

Polymodal, Very 
Polymodal, Polymodal, 

SAMPLE TYPE: Very Poorly Very Poorly 
Poorly Sorted 

Sorted Sorted 

TEXTURAL GROUP: Sandy Mud Sandy Mud Sandy Mud 

Fine Sandy Very 
Very Fine 

Fine Sandy 
SEDIMENT NAME: 

Coarse Silt 
Sandy Very 

Mud 
Coarse Silt 

%GRAVEL: 0.0% 0.0% 0.0% 
%SAND: 39.4% 37.4% 34.1% 
%MUD: 60.6% 62.6% 65.9% 
%V COARSE GRAVEL 0.0% 0.0% 0.0% 
%COARSE GRAVEL: 0.0% 0.0% 0.0% 
% MEDIUM GRAVEL: 0.0% 0.0% 0.0% 
% FINE GRAVEL: 0.0% 0.0% 0.0% 
%V FINE GRAVEL: 0.0% 0.0% 0.0% 
%V COARSE SAND: 0.0% 0.0% 0.0% 
% COARSE SAND: 0.0% 0.0% 0.0% 
% MEDIUM SAND: 0.0% 0.0% 0.0% 
%FINE SAND: 20.2% 18.0% 18.5% 
%V FINE SAND: 19.2% 19.4% 15.5% 
% V COARSE SILT: 10.6% 10.0% 7.9% 
% COARSE SILT: 10.2% 9.0% 8.2% 
% MEDIUM SILT: 8.3% 8.4% 8.5% 
%FINE SILT: 7.9% 8.9% 9.5% 
%V FINE SILT: 7.5% 8.4% 9.8% 
%CLAY: 16.2% 17.9% 22.1% 
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