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Abstract 

Simulated present-day ranges of 281 African mammal species were produced using 

climate-envelope models. This modeling approach was robust and was therefore used to 

simulate potential future ranges of 281 African mammals in response to nine future 

climate change scenarios (three general circulation models for 2020, 2050 and 2080). The 

size of species' ranges were projected to decrease only slightly (-4.411%) on average by 

2080. Species' future ranges were projected to overlap current ranges by only 75.7% on 

average by 2080. 

The effectiveness of the African protected area (PA) network under projected future 

climate change was then assessed by intersecting simulated ranges with PA outlines at the 

quarter degree scale. By 2080, the mean decrease in species richness was projected to be 

7.18% under a best-case scenario of range shift, which is greater that that projected for 

areas of Africa beyond PAs (-4.41%). By 2080, mean species persistence and turnover 

within PAs were projected to be, on average, 79% and 26% respectively. Species turnover 

will be unevenly spread across the PA network; PAs in South Africa and Namibia wiH be 

affected most by climate change. 

Simulations indicated the loss of keystone and charismatic species from a number of PAs, 

including Kruger National Park (KNP). The value of two keystone species in KNP was 

assessed using the contingent valuation method. Significant factors influencing 

willingness-to-pay included respondents' age, employment status and experience of 

visiting the PA. Aggregated willingness-to-pay values were R87.3million (± 

R17.4million) per year for ensemble species conservation, R4Llmillion (± Rl7.8million) 

for giraffe (Giraffa camelopardalis) and R42.4million (± Rl4.3million) for elephant 

(Loxodonta africana) conservation. 

Until greenhouse gas emissions are stabilised (or reduced), it is inevitable that further 

climate change, and therefore further alterations of species distributions will occur. Efforts 

such as increasing the extent and connectedness of the P A network may help to protect 

species threatened by projected climate change by allowing them the opportunity of 

tracking climate change. 
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PART ONE: MODELLING CURRENT AND FUTURE DISTRIBUTIONS 
OF AFRICAN MAMMALS 

CHAPTER ONE: INTRODUCTION 
1.1.1. Climate Change 
1.1.1.1. Past and Current Changes 

The Earth' s climate is highly variable, both temporally and spatially (Mann et al. , 1995). 

However, there is strong evidence that during the past century climate change is occurring 

at an unprecedented rate and magnitude (IPCC, 2007a). For example, eleven of the twelve 

past years (1995 - 2006) were the warmest on record, 1998 being the warmest yet with a 

record of0.52°C above the 1961-1990 average temperature of 14°C (IPCC, 2001; 2007a; 

Figure 1.1). However, temperatures are still rising; the UK's Met Office recorded 

temperatures of a record-beating 0.54°C above average in 2006, and has predicted that 

average surface temperatures in 2007 will exceed this record yet again (Met Office, 2007). 
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41 0.2 -
~~ ;eo-
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Figure 1.1. Variations in the Earth's surface temperature (Met Office, 2007). Temperature difference (0 C} 
from the average global mean temperature (1961 - 1900) from 1850. Red bars represent the global 
temperature value for each year. The blue line is the I 0-year running average and the green bar is the 
provisional 2006 value. 

Global temperatures over the past 50 years have risen at a rate (0.13°C [O.l0°C to 0.16°C] 

per decade) nearly double that of the last hundred years (IPCC, 2007a). Furthermore, the 
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IPCC (Intergovernmental Panel on Climate Change) Fourth Assessment Report recorded 

an average global temperature rise of 0.74°C (0.56 - 0.92°C) between 1906 and 2005; 

larger than the trend described in the IPCC Third Assessment Report which reported a rise 

of 0.6°C (0.4- 0.8°C) between 1901 and 2000 (IPCC, 200,1; 2007a). During the same 

period, the extent of rainfall has decreased in the tropics while increasing in the mid

latitudes, plus there have also been an increase in the number of extreme weather events, 

such as hmmicanes (Landsea & Gray, 1'992) and droughts (Dai et al., 1998). Sea levels 

have risen 3.1 (2.4- 3.8) mm per year between 1993 and 2003. This is considerably more 

than the average 1.8 (1.3- 2.3) mm per year rise observed between 1961 and 2003. There 

is now 'high confidence' that observed sea level rise has increased in the twentieth century 

at a rate higher than observed in the nineteenth century (IPCC, 2007a). Many of these 

changes have been attributed to human activities (IPCC, 2007a) specifically via an 

increase in greenhouse gas emissions. The level of gases (such as cwbon dioxide, methane 

and nitrous oxide) in the atmosphere has been increasing year-on-year since the 1950's: 

from 315ppm carbon dioxide in 1950 to 379ppm in 2005 (Solomon et al., 2007). The 

IPCC have projected the levels of carbon dioxide in the atmosphere to increase to between 

650 and 970ppm by 2100 (IPCC, 2001). This is especially worrying as such 

accumulations of gases, as well as an increasing concentration of aerosol particles, have 

detectable effects on the global climate system (Lovett et al., 2000; Houghton et al., 

2001). 

As with the rest ·Of the world, the climate of the African continent is naturally variable, and 

recent trends on this continent have been similar to those recorded globally. For example 

the most rapid periods of warming on record are similar, with the 1910's to 1930's and the 

post 1970's being the warmest on record (Hulme et al., 2001). In addition, during the last 

century the· African continent has experienced warming of an average of 0.5°C (close to 

the mean global temperature rise) (Hulme et al., 2001) and a general decrease in rainfall 

(Viner & Agnew, 1999) as well as a series of serious droughts. The IPCC Fowth 

Assessment Report has recorded decadal rates of warming for South Afr;ica ofbetween 0.1 

and 0.3°C as well as decadal warming of 0.29°C in the tropics. Conversely, in Eastern 

Africa decreases in air temperatures in locations close to the ocean and inland lakes have 

been noted (Boko et al., 2007). There has also been an increase in the number of warm 
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spells and a decrease in extremely cold days in Western and Southern Africa between 

1961 and 2000 (New et al., 2006). Recent precipitation trends are more complicated to 

observe due to spatial and temporal (e.g. interannual, decadal, multi-decadal) variability. 

Even so, recent reports have suggested that since the 1960's precipitation has decreased in 

Westem Africa by between 20 and 40% whereas the Guinean coast has experienced a 

10% increase in precipitation in the past 30 years. In South Africa, no precipitation trend 

has been noted (Boko et al., 2007), yet in adjacent regions of southern Africa (e.g. 

Namibia, Mozamique and Zambia) large increases in heavy precipitation events have been 

recorded (Usman & Reason, 2004). 

1.1.1.2. Potential Future Changes 

General circulation model (GCM) simulations have been used to simulate potential future 

patterns of precipitation and temperature change globally (e.g. IPCC, 2001; 2007a~. 

Examples of GCMs include ECHAM4/0PYC3 (Roeckner et al., 1996; ECHAM4), 

GFDL_R30_c (Knutson et al., 1999; GFDL) and HadCM3 (Gordon et al., 2000), which 

are to be used in this study, each projecting different temperature and precipitation 

changes by the year 2'1 00. GCMs such as these are used alongside the IPCC emissions 

scenarios {Nakicenovic et al., 2000) in order to predict future changes in climate. The four 

emission scenarios approved by the IPCC are given in Table 1.1; these storylines 

encompass forty different future emission scenarios with diffeFing resource, technology, 

social development and demographic assumptions (Nakicenovic et al., 2000~ thereby 

covering many different potential futures. 

Table 1.1. IPCC Emission Scenarios (SRES; Nakicenovic et al., 2000). 

Emission Scenario 
Rapid economic growth and population growth that peaks mid-century then falls, 

AI plus the development of new technologies. This family incorporates three groups 
with differing technological emphases; fossil intensive (AIFI), non-fossil energy 
sources (A 1 T), or a balance across all sources (A lB). 

A2 Continuously growing global population with regionally oriented economic and 
technological growth which is slower and more fragmented than other scenarios. 

Bl 
As with the Al family, global population will peak mid-century with a fall 
thereafter, but technological advances will be resource-efficient and clean while 
material technologies decline. 
Focuses on regional emphasis on economic, environmental and social 

B2 sustainability. Population growth continues (but less than the A2 scenario) with 
less rapid technological change. 
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The Fourth Assessment Report of the IPCC projected decadal warming of 0.2°C for the 

next two decades and a best estimate of warming of between 1 J °C (lowest scenario) and 

6.4°C (highest scenario) by the end .of the century (IPCC, 2007a). These estimates are 

fairly consistent with those reported in the Third Assessment Report which projected an 

increase in global temperatures of between 1.4 and 5.8°C by the end of this century 

(IPCC, 200:1 ). In addition to temperature rise, the IPCC has also predicted an increase in 

precipitation in equatorial areas and a decrease in the subtropics (Gitay et al., 2002; IPCC, 

2007a), plus a best estimate of sea level rise of between 0.2 and 0.43m at 2090 - 2099 

compared to 1980 - 11999 under an intermediate emission scenario (IPCC, 2007a). 

Tadross et al. (2005) have shown that projected changes in average temperatures (or 

rainfall) do not always mirror seasonal changes. Across the African continent, a general 

increase in the intensity of high-rainfall events is projected. In areas where models have 

predicted a mean drying effect, they have also predicted a larger decrease in the number of 

rain days (in proportion to the rest of the continent). All seasons are projected to be 

extremely warm by the end of the century; there will also be an increase in the number of 

extremely wet seasons (Christensen et al. 2007). Results published by the IPCC 

(Christensen et al., 2007) project that by 2100, one-in~five seasons will be extremely wet, 

as compared to one-in-twenty in the late twentieth century. In southern Africa, the 

frequency of extremely wet (austral) summers is projected to double while the number of 

extremely dry winterS and springs will increase to one-in-five. 

Future climate change scenarios generated by the IPCC suggest that the African continent 

is one of the most vulnerable to climate variability as weH as climate change (Boko et al., 

2007). The IPCC have reported a predicted increase in temperature for the period 2080 -

2099 of approximately 3 - 4°C in comparison to the 1980 - 1999 period; this is 

approximately 1.5 times the global mean response (Boko et al., 2007). In addition to this, 

coastal regions of the continent are projected to warm more slowly than interior areas of 

Africa due to the rise of sea surface temperatures (SST) of oceans surrounding Africa at 

levels less than the global mean (Christensen et al., 2007). Ruosteenoja et al., (2003), have 

predicted even larger increases in temperature in certain geographic areas; for example an 
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increase of up to 7°C in southern Africa between September and November and an 

increase of up to 9°C in North Africa between June and August (Figure 1.2). Bounoua et 

al., (2000) have suggested an increase in vegetation density in response to climate 

warming may in fact have a cooling effect of up to 0.8°C per year which may compensate 

for some of the warming suggested by Ruosteenoja et al., (2003). However, a 

simultaneous increase in habitat conversion is also expected to occur (DeFries et al., 

2002) which will in turn temper the increase in vegetation density in some areas (Boko et 

al., 2007). Temperature increases are expected to lead to an increase in water evaporation 

(be it open water or from plants/soil) of between 5 and 10% by 2050 (IPCC, 1997). This is 

expected to have knock-on effects on mammals as the availability of plant matter for food 

and for habitats will undoubtedly change. 

-----I - 1 - 0.5 0 0.5 1.5 2 2.5 3 3.5 4 5 7 1 o·c 

Figure 1.2. Mean potential annual surface air temperature change in Africa (averaged across 21 model 
projections). Temperature change eq is from the years 1980 - 1999 to 2080 - 99 under the A I B SRES 
scenario (Christensen et al., 2007). 

The most prominent change will be that of the precipitation regime, however reports of 

precipitation changes are often less consistent than those of temperature change due to 

large differences between models (Boko et al., 2007); average precipitation changes 

across 21 model projections are given in Figure 1.3. In general, Africa is expected to 

experience an increase in precipitation (Hulme et al. , 2001 ). The IPCC Third Assessment 

Report expected Northern, Southern and parts of West Africa to experience decreases in 

annual precipitation of up to 10% by 2050 (IPCC, 2001) while equatorial areas are 
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expected te experience increases in annual precipitation (up to 15% by 2050). The latter 

overall increase masks more extreme seasonal decreases (June to August) and increases 

(December to February) (Desanker et al., 2001). The more recent Fourth Assessment 

Report is fairly similar; for example, equatorial areas are expected to experience increases 

in summer (December to February) precipitation as well as East Africa which is predicted 

to experience 7% increase in precipitation. However, areas of southern Africa and 

seuthern equatorial regions are expected to experience decreases in precipitation. This 

decrease will be especially intense along the Mediterranean coast and in (Western) South 

Africa during the austral winter (June and August), with predicted decreases in rainfall of 

20% and 30% respectively (Boko et al., 2007). Therefore, even though the amount of 

precipitation is expected to increase, seasenal extremes in the austral summer and winter 

will be more pronounced. This will have dramatic effects upon mammals, both indirectly 

via changes in e.g. plants grewing seasons and ranges, and directly via e.g. physiological 

tolerances of species to drought and/or heat stress. Decreases in annual precipitation (as 

well as increases in temperature) are likely to have knock-on impacts on plant growth via 

the reductien in available sail moisture during the growing seasons (IPCC, 2001b). 

Changes in land-cover patterns (both human- and climate-induced) will also have 

significant effects on regional climates within Africa. Changes are expected to cause the 

decreases in precipitation and soil moisture as wel'l as increases in air temperature (Xue, 

1997). The possible consequences of such changes in Africa may cause serious problems 

for the conservation ofbiodiversity (Skov & Svenning, 2004), especially if these changes 

render current protected areas unsuitable for maintaining biological diver~ity. Potential 

changes in climate are expected to induce species-level changes such as changes in the 

geographical arrangement (Root et al., 2003), phenology, physielogy, and growth of 

species (Cannel, li998). In order to understand the possible consequences of climate 

changes upon mammals further, one must observe how species respond to climatic 

changes. 
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Figure 1.3. Mean potential annual precipitation response in Africa (averaged across 21 model 
projections). Percentage precipitation change is from the years 1980- 1999 to 2080- 99 under the AlB 
SRES scenario (Christensen et al., 2007). 

1.1 .2. Species' Responses to Climate Change 

Species' distributions and abundances are strongly influenced by climate (Walther et al., 

2002). Climate can affect species either directly, by affecting the physiology of organisms 

(Stenseth et al., 2002) which in turn may e.g. influence the development and fecundity of 

the species (Post et al., 1997) or indirectly by affecting aspects of the ecosystem which the 

species inhabits, e.g. by affecting the availability of food resources on which the species 

depend (Stenseth et al., 2002; Thomas et al., 2004). 

Extreme climate events (such as drought and periods of cold weather) also have an effect 

on species (Stenseth et al., 2002). Studies on red deer (Cervus elaphus) in Norway have 

found that sexual dimorphism has become more pronounced over the past 40 years due to 

climate variation influenced by the Northern Atlantic Oscillation (NAO) (Easterling et al., 

2000; Post et al. , 1997). Extreme weather events can also have effects on juvenile survival 

(Forchhammer et al., 2001) and breeding systems in mammals (Sirnmonds & Isaac, 2007). 

Gradual changes in climate as well as increases in extreme events can therefore impose 

direct and indirect effects on species. Gradual changes may affect species' morphology, 

behaviour, abundances and distributions as well as the timing of key events such as 
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breeding and migration (Easterling et al., 2000). Changes in climate that affect life history 

responses (such as developmental rates, adult survival and parental care behaviours) could 

have community-wide effects years later when species reach sexual maturity 

(Forchhammer et al., 20o.l). For example, map turtles (Graptemys spp) exposed to 

temperatures above 30°C during incubation produce only females whereas those ex:posed 

to temperatures below 28°C produce only males (Bull & Vogt, 1:979). As climate changes 

it is likely that the sex ratio of these turtles (and many other reptiles) will become highly 

skewed (Parmesan et al., 2000) potentially causing problems when these cohorts reach 

maturity. 

Species are able to respond to changes in climate in three major ways; adapting to the 

change, exhibiting a spatial response or, if both of these responses fail, the species will be 

committed to extinction (Huntley et al., 2006). Extinction may occur if the species 

becomes isolated (either temporally or spatially) from the climatic conditions it is adapted 

to (Huntley et al:, 2006~. This situation is thought to have occurred with the Woolly 

Mammoth (Mammuthus primigenius) at the end of the ice age when conditions became 

drier and seasonal weather became more extreme (Oard, 2000). It is thought that climate 

change has already been held responsible for the extinction of one species, the golden toad 

(Bufo periglenes) (Pounds et al., 1999) and may cause the extinction of a number of 

species in the near future. 

Species may exhibit a spatial response i.e. they may alter their distribution so they 

continue to occupy areas of habitat with climate to which they are adapted. However, 

migration will not be instantaneous or unlimited (Midgley et al., 2006); rapid changes in 

local conditions may outpace some species' dispersal ability, which may ultimately reduce 

species' persistence. If climate changes at a rate faster than a species is able to disperse out 

of a climatically unsuitable area (and into climatically suitable one), then it may be driven 

to (local!) extinction. Measures such as ensuring the presence of habitat corridors will help 

to promote survival while species disperse. However, where species are at their altitudinal, 

elevational or poleward extent, then a change in climate may render dispersal impossible. 

Today, spatial discontinuity can be rectified by translocating animals from climatically 
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unsuitable areas to climatically suitable ones. However, it is harder to rectify temporal 

discontinuity, whereby there is a period of time when the habitats they occupy are 

climatically unsuitable for the survival of the species. In this case, captive breeding is the 

only option to save these species until a time in the future when climatic conditions have 

altered once again to ones the species are adapted to (Huntley et al., 2006). 

The final possible response, adaptation, states that instead of a spatial response species 

stay in the same geographic location and instead adapt to the changes by altering either 

their phenology (e.g. timing of egg layinglbreedinglhibemation~ or genetics (e.g. 

increasing the number of individuals tolerant to temperature extremes) (IPCC, 2001). 

These mechanisms of species responses to climate change have been documented in 

recent scientific literature (see e.g. Walther et al., 2002 for an overview). However, as 

Huntley et al., (2006) discuss, the vast majority of species responses to climate change, 

from palaeoecological and recent evidence, have been spatial i.e. shifting distributions in 

order to inhabit habitat conditions to which the species is adapted. 

Changes in species' phenology, physiology, morphology and behaviour in response to 

recent climate change have already been recorded (Walther et al., 2002; Parmesan & 

Yohe, 2003). S.uch documentations in the scientific literature span major groups of plants 

(e.g. Pauli et al., 2007) and animals (e.g. mammals (Reale et al., 2003), birds (Hitch & 

Leberg, 2007) and amphibians (Beebee, 1995)), and across many different habitats, from 

the deserts of Africa to the aquatic habitats at the Earth's poles (Walther et al., 2002). 

Several studies provide evidence of species altering their distributions, mainly poleward 

and towards higher elevations (but see Hiclding et al., 2006), as well as changes in timing 

of phenological events (Burns et al., 2003; Jiguet, 2007; Suttle et al., 2007) in response to 

recent climate change; many of these changes were predicted by climate models over a 

decade ago (Easterling et al., 2000). 
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Species' responses to recent climate change have been grouped into two categories; (i) 

changes in the phenology of organisms, (ii) changes in the ranges, distributions and 

abundances of organisms (Walther et al., 2002). 

i. Changes in the Phenology of Organisms 

There is a large body of literature providing evidence of advances in phenology (the 

timing of seasonal activities such as breeding or migration) in response to recent climate 

change (van Asch et al., 2007). Much of this literature focuses on the responses of insects, 

birds and plants partly due to the fact that there is a multitude of long-term datasets for 

these species (Walther et al., 2002). Examples of phenological' changes of birds include 

earlier breeding (e.g. Dunn & Winkler, 1999), laying dates (Crick et al., 1997) and the 

earlier arrival at breeding grounds (e.g. Tryjanowski et al., 2002; Jonzen et al., 2006). 

Examples of phenological changes of other taxon include the advanced flowering date of 

plants(Fritter & Fritter, 2002), earlier appearance of butterflies (Roy & Sparks, 2000) and 

the earlier migration of marine mammals (Robinson et al., 2005; Walther et al., 2002). 

Such responses have been shown to be associated with temperatures the species are 

exposed to in preceding months (Walther et al., 2002), with warmer temperatures in late 

winter initiating earlier spring events. There is much less evidence of phenological 

changes of species resident in the Southern hemisphere. One example is reported by 

Barbraud & Weimerskirch (2006) who found an inverse trend to that found in the 

Northern hemisphere; their results indicating that Antarctic seabirds are arriving and 

laying eggs later (c. 9.1 and c. 2.1 days respectively) than they were in the 1950's. There 

are also a small number of papers providing evidence for the later onset of autumnal 

events (such as hibemation; Walther et al., 2002), although these changes are less 

prominent than the advancement of spring events. 

Phenological changes of one organism may have consequences for other species in the 

food chain for example the distribution and migration patterns of the Bluefin tuna 

(Thunnus thynnus) are affected by changes in the abundance of prey as a result of climate 

change (Walther et al., 2002). Some species may not be able to track changes in prey 

distribution, for example, van Asch et al., (2007) found that over the past two decades 
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winter moth (Operophtera brumata) egg hatch date has become asynchronous with 

pedunculate oak (Quercus robur) bud burst which has subsequently lead to disrupted 

synchrony between these species. 

ii. Changes in the Ranges. Distributions and Abundances of Organisms 

There is copious evidence that species ranges and distributions have changed in response 

to changes in climate; it is the most reported response of species to climate change 

(Parmesan, 2001). The vast proportion of these studies report shifts in ranges mainly 

poleward and towards higher elevations (Beaumont et al., 2007; Parmesan & Yohe, 2003; 

Root et al., 2003). Examples of pole:Ward shifts include the northward range expansion of 

the green skink bug (Nezara vtridula) ~Musolin, 2007), Edith's Checkerspot butterfly 

(Euphydryas editha) (Parmesan et al., 2000), breeding birds in North America (Hitch & 

Leberg, 2007) as well as many species resident in Britain including birds, butterflies, 

spiders, dragonflies and fishes (see Hickling et al., 2006). Additionally, Wilson et al., 

(2005) have provided evidence for the retreat of butterflies from their southern margins in 

Spain towards cooler locations as a result of climate warming, thereby reducing their 

range sizes and increasing extinction risk. Examples of altitudinal shifts include those by 

butterflies in the Czech Republic (Konvicka et al., 2003), alpine plants (Grabherr et al., 

1994) and amphibians in Cost Rica (Pounds et al., 1999). However, Archaux (2004) found 

alpine birds were showing no altitudinal response to temperature increases in spring of 

2.3 °C. For species exhibiting altitudinal or poleward shifts, there will come a point when 

they will not be able to move either further polewards (e.g. species endemic to the South 

African Cape) or upslope (due to limits of altitude). Species in these situations, especial'ly 

those endemic to such areas, will be at risk of extinction as climate changes. Changes in 

species abundances in response to climate change have also been documented, for 

example the abundance of Emperor penguins (Aptenodytes forsteri) was halved as a result 

of the reduction of sea ice in response to abnormally warm weather in the 1970's 

(Barbraud & Weimerskirch, 2001). 
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1.2.1.1. Changes in Cormri.unity and Ecosystem Composition. 
- . : 

Species are :predict~d to respond to changes in climate individualistically (Hannah & 

Salm-,.2@(!)3)~ Consequently, .cainmunity-and ecosy~tem campasition ls·e:x:pected to change 

when. species ·move out ef (or lnw) specific areas {Walther et. al;, 2(!)(!)2) in respanse ta 

climate 'change. This may affect certain :species more dramatically rthat others, especially 
- . 

where one species. depends on ·another for ·a specific resource (e.g~ the winter moth -

:pedunc'rtlate oak system as described pteviausly (s~tiafi, i') ). 

. - - . 

Changes .in cottm:mnity compasition may oecur if a species 'invlld~s·· a new ~area of habitat · 

_as. it becames climatically: sqitable. For example~ as the density of the,collared flycatcher 

_· (Ficedula albicollis) in the Czech Republic -decreased ,due. to adverse effects af.tbe NAO, 

_,the abundance af rthe ;pied flycatcher {F. hypoleuca), Whichis .a weak ·campetitor and 

,unaffected by ;the NAO, increased ~~Stenseth ,et al., 2002). 

Extreme weather events also. have .the capacity to .alter collliilunity composition, for 
. ·.. - . . 

~xample •the 1982-li983 ELNifio caused widespread disruption of coral communities 

i((Joffroth et az,; 1990}-due to an incn!ase in sea,tempera~s.· S~nce'tllen,-the intensity and 

fregpency of mass caral bleaching has increased, with a peak in 1998 when c.l6% of .the 
. , .· . - --

. world's cerals dh~d (W:ilkillson, 2(!)(!)@). Aitather :example. is the se_v:ere tdroughts of the late . 

1i980's in the iUnitedi States ofAinerica which caused! population; crashes··Of llJ.anY, insects' 
. . 

---~~ __ which. had impacts throughout ~the Jaodt'ch_~I!:_Q!awkins &.Hol-yoak, 1998)_._ As ~O_I!!fll!!ID!Y-
. . 

compositia11• is e~pected to .change as ;species' respond to climate change, so is ecosystem 

comp~sitian·. Pot example, ·• using the e~ample of coral . hle~ching~ the effect of mas~ 
disruption of' caral communities is. likely to substantially alter specieS richnesS thrau~out 

•this delicate ecosystem .~Walther et al., 2002). 

L L2.2. Responses of TeJJFestrial Mammals to Climate Change 

Ecoth"imic: ?i"ganisms such as .. insects, reptiles ariq amphi.bi~s can to a large ·extent 

·maintain :their ·bady temperature by enviroru:nental' means ~e~g: the sun, ait or water. During 

extreme weather conditians they can move to more equitable microclimates, but they are 

Still .. largely dependent cm ambient canditions. This llleans that these ·species are 
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pa.Fticularly sensitive to environmental temperature change. However, changes ih 

envirorunentalr temperatures also have the potential to affect endothermic org~nisms (~uch 

as mammals) by affecting their physiological: processes such as :homeostasis, reproduction 

an:d <growth, and can in extreme kill individuals due to heat and water' stress. PQrter et~q[. 

{2@00) found that increases in environmental temperature affect the foraging ,behaviour 'Of 

mammals, ~hich ih turn means a reduction iri their food Jntake and ultimately th.eir mass. 

Post~ .. et.ai. (L997} show~d .that warmer air temperatures have .. been associated: With lower 

'body size and condition ,ef ungulate species in Europe .On Dunn ·& .Winklei:, 1999). 

SiniiTarly;, Huynh et~?l. (20@5~ ,showe~ that for ,pigs ,ambient temperature strongly affects 

physiological changes- such as food· intake, 'heat . loss, and . respiration rate. , _Rising 

temperatures-may~ also affect ·embryonic development ·of mammals; Thwaites_ (1985) lhas 

:shown that tmaccli:tiiatised ~wes· experienced 'high ~lev:els (up to. tOO%); of embryo 

· mort~ity due to increases in the female's core temperatUre. This, may subsequently have 

affects tiponthe fittu~ss·ofwhole:populations ofmammats. Endotherms most vulnerable to 

changes in environmental temperatures are thdse with low rates of reproduction, as they 

,are less able to increase their' rates of repr~duction in response to temperawre-re~ated 

morudity ~McNab,· 2006). Most of these species are characterised by a low basal rate· of 

metabolism and large body mass. 

Changes in precipitation may also -affect freshwater species (e.g. tile hippopotamus, 

Hippppotamus amphib.ius} which r~ly on freshwater .rivers and' lakes to remain cool, as 

-------~eir;; for btrthi~g and reptoductiort (Thuille;- et~ al., -2oo6~changes in fire ~e~m~---
mediated by 'Climate change may al~o have effects on maminal speCies, by altering 

·. dominant vegetation species ofi which the maminals depend (Fhuilleret al., 2006). 

Climate change ma}' also have indirect ,effects en mammal · species, by altering the 
_. 1 < • • 

aburi~~mce of competit~rs apd predators: For example, :flumphries .et al:,. (2oM) have. 

predicted that ~the :abundance and distribution of seasonally' inactive lar.ger mammal 

'speCies (e.g. ibadgers;·,racoons ~d,skunks}~IIHncreaseinthe Canadian arctic as summers 

lengthen and. winters shorten in response to climate change. This is because seasonal 

speeies such- as. these ate expeeted toexpan~,their ranges northwards into areas where they 
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are cuuently absent. This is likely to have negative impacts on mammal species such as 

wolves, foxes and weasels which are found continuously (i.e. not seasonally) in the 

Canadian arctic at present. 

i. Responses ofMammals to Recent Climatic Changes 

Studies reporting phenological changes of mammals in response to recent climate change 

include those by Inouye et al. (2000) who have found that yeHow-bellied marmots are 

emerging significantly earlier (23 days) than they were in 1976 in apparent response to 

warmer spring air temperatures, and Reale et al., (2003) who observed an 18 day average 

advancement of breeding of the red squiFTel (Sciurus. vulgaris) in Canada. Changes in 

species' abundances and ranges have also been documented; for example, studies of the 

red fox (Vulpes vulpes) and the Arctic fox (Alopex lagopus) have reported the expansion 

the red fox range northwards which in turn is limiting the southern extent of the arctic fox 

range (Hersteinsson & MacDonald, 1992) in Canada. Extreme climate events have also 

been associated with changes in the physical and reproductive development of red deer 

(Cervus elaphus) and Soay sheep (Ovis aries) in Norway and the UK respectively (Post et 

al., 1997; Coulson et al., 2001). Twiss et al., (2007) have also found that local climatic 

variation affects the proportion of male grey seals (Halichoerus grypus) contributing to 

the effective population size. 

ii. Responses of Mammals to Climatic Changes in the Past 

The Pleistocene Epoch is an important and widely documented period in prehistory with 

reference to large mammal populations. By the end of this era, a vast proportion (nearly 

two thirds) of the world's large mammal genera (megafauna; animals >44 kg) had become 

extinct (Owen-Smith, 1989; Bamosky et al., 2004), including species of horses, cats, 

wolves, camels, sloths and lions (Bamosky et al., 2004). A large proportion of these 

extinctions occurred in Australia, Northern Eurasia, South America and North America 

(Owen-Smith, 1989; Wroe et al, 2006); these areas lost 88%, 36%, 83% and 72% of their 

megafauna respectively. Although less substantial when compared to extinctions on these 

continents, Africa still experienced extinction of 18% of its megafaunal species (Bamosky 

et al, 2004 ). A large number of these animals were herbivores, which lead indirectly to the 
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disappearance of many mammalian carnivores which were dependent on those herbivores 

as prey. 

Three hypotheses have been put forward to try and explain the reasons for the megafaunal 

extinctions at the end of the Pleistocene Epoch; these are 

1) human settlement and consequent predation on the megafaunal species, 

2) severe and sudden climate change, and 

3) the spread of human-associated disease. 

The first of these hypotheses is widely cited as a reason for megafaunal extinctions and 

has much support specifically in the cases of extinctions in Australia and the Americas; it 

is hypothesised that a large proportion of the extinctions in Australia and the Americas 

were primarily caused by the effect of the 'invasive' human population on species not 

adapted to such interference (Owen-Smith, 1989; Wroe et al, 2006). However, the 'human 

settlement' theory cannot fully explain the Pleistocene extinctions. For example, in some 

places (e.g. North America) megafaunal species started to decline before humans settled 

there and there is also a lack of evidence in the archaeological record. Barnosky et al, 

(2004) conclude that the effect of human settlement on mammal extinctions in Africa was 

minimal. This is because humans were not an immigrant species as in Australia and the 

Americas; therefore humans and mammals had coevolved on the African continent. 

The most recent explanation, that the spread of human-associated diseases (MacPhee & 

Marx, 1997) caused the extinction of the megafauna has yet to gain enough evidence for 

credibility. Consequently, the second theory, that climate change (specifically increases in 

temperature) drove many species to extinction, holds the most credibility. Support for this 

theory comes from the finding that extinctions of large mammals in mainland Alaska 

occurred as a result of climate change and not the input of significant human intervention 

(Guthrie, 2003; Barnosky et al., 2004). Changes in climate are thought to have caused 

extinctions by a number of mechanisms such as changing the composition of plant and 

animal communities as well as altering predator-prey dynamics. However, as no single 

theory successfully and conclusively explains the late Pleistocene extinctions one must 
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conclude that interplay 'between, climate and human- CJ.Ssociated b_ehavieur &eve · these 

·extincti9ns (Bames~y et al., 2004). So while humans ate theught to have initiated the 

extiilctioiis,. climate change was expected te ,play a central role, in determining the extent, 

timing andi ,distri]?ution ,of ,these extinctions. (Mtlttay .. Clay, 2006). Unfortunately,, these 
,·. 

dri·vets are still occuirlng today· but with one new facet, puge human, population :growth is 

forcing the transfermation ef large mammal: habitats into human settlements; 'This means 

that ..in some areas it will become increasingly difficult f()r the already impo:verished large 

mammal populations ,to alter their distributions in ~espotise to tec~nt rapid ~limate change. 

One must also ,consider the effect ef changes ~in the abundance .and ,distribution of the large 

mammal fauna :on smaller :m"ammals -as .Well! as the wider co:niiiltinity'.and ecosystems they 

inhabit. As Themas et al., (2004} discuss, ''the responsiveness of species to recent and ,past 

climate· ch~nge raises ,the passibility that. anthropogenic climate ,change could act as a 

major_ cause of extinctions in: ,the near futtA"e." It is therefore cmci'al to evaluate how 

species will' respond to potential future climate changes so that we can work" towards 

conserving these Species in the future (Musolin, 2007), espeCially .as; warming of0.2° C 

·per year for ifhe past three decades, means :the Eartb ,is now .the lhettesf it :has 'been 'since the 

. end of the· Pleistocene era approximately 1:2,000 years ago CH~sen et al: 2006). A:s the 

. vast majority ofre~ponses of. species to climate-change tlr~- expected' to be spatial (Huntley 

et al., 2.006); plus the: fact that. species- are expected to respon4 .to ,changes :in climate 
. ' . . . -- . . . 

individualis~cally ~&nnah & Satin; 2003), predictive models anticipating speeies spatial . 

resp·onses .ate cettain to play ani_ important role @Je~aux et al., 2006) in blodi:Versity -· _. __ , ______ .-......-----:- --;------~- . . --~----------------------

-conserv~tiQn, e~pecially in the .short: 'term. 
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1.1.3. Species Distribution Modelling 

The importance of the relationship between climate and species' distributions was realised 

and recorded in the scientific literature over two centuries ago (e.g. Humpbold & 

Bonpland, 1807). Consequently, the modelling of this species-environment relationship is 

widely used in ecology and is based on the assumption that environmental variables 

(including climate) significantly influence the distribution of many species (Lischke et al., 

1998); Today, such modelling appreaches are used for a variety of applications, for 

example the setting of conservation priorities (Margules & Austin, 1994) and for assessing 

the selection of (e.g. Hannah et al., 2007) and efficiency of (e.g. Abellan et al., 2007) 

protected areas for maintaining biodiversity. 

In order to be able to model species' potential future distributions well, we need to be able 

to produce accurate models relating current species' distributions to climate, and to have 

good simulation of future climate to which the resultant models can be applied. Reliable 

current climate (Chapter 1.1.1.2) and current species-distribution data need to be used, as 

well as making the assumption that species distributions are at equilibrium with the 

environment (Lischke et al., 1998). Species' distribution data can be obtained from a 

number of sources including museum collections, expert opinion, atlases and/or via cfuect 

observations in the field. With the exception of direct observations which provide 

presence/absence data, these methods provide details of species' presences only. A major 

drawback of using presence/absence data is the difficulty in conclusively recording true 

absences of a species in any given area, as false negatives can decrease the reliability of 

models (Loiselle et al., 2003). This is made more difficult when little is known about a 

given species, or for terrestrial species which are nocturnal, highly mobile, secretive or 

rare. Even so, if the presence/absence data is reliable, it is preferable (over presence-only 

data) when predicting species' future distributions (Brotons et al., 2004). Another problem 

in predictive modelling is the amount of species data available. Data is often patchy 

(temporally and spatially) and sometimes biased, it is therefore necessary to choose the 

most appropriate modelling technique for the species data available. 

There are a number of modelling techniques available to explore relationships between 

species distributions and climate (Guisan & Zimmermann, 2000); however there is still 
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·little .gnidance- as . to whiCh technique is best (but see Elith et al:, 2006). Examples of 

modelling techniques include•locali·Y· weighted approaches such as generalised' linear .and . 

generalised additive models, ·~GLM and "GAM respec;tively), 6ower-similarity models, 

ecological niche factOJ; analysis (ENFA), artificial neural networks (ANN}, classification 

and regression trees (Brotons et al., 2004; Segurado & Arau)o; 2004) and maximum 

entropy models e.g. inaxent (Phillips.et aL, 2006). A criticism-of all' o£ these methods is 

that they do n_ot incorporate the possibility ~~hat as species distributions cllange, species 
. -

interactions may' change too (Fokumine, 2002). However as long as this is considered 
- - ~ 

when.· usi:ng these methods, _ they still ;provide useful sim~lations .· of how species 

distrlbutians may change .as climate changes. Which techilique is best ·to .use depend's on 

;the ,type of species; distribution: data available !plus the aims _and scale of the study in 

question. 

Methods such ·as ENFA and Gower;..similiulty models. were deVeloped for cases where 

presence/absence data were not available and• therefore use presence-only data whereas 

methods such as .G.LM, GAM and ANN use presence/absence species data (Brotons et al., 

20@4). It is widely :believed that th~ lattett~hniques(those using presence/absence data) 

ate rtu)re· robust than those using ptesence-,only data. 'For example,_ Brotons et at, (2904) 

found' that 6IM p:redictioJ.\s were ·more accurate_ than when using ENFA, pamcularly in 
- . 

cases where absence data was reliable (i.e. true negatives). However, thrise. species. with 

restricted ranges we£e modelled better than those wiiliJess testricted1 rang~s independent 
. ·. - . - . . . .. 

~- ' ·. . - - . . 

· better.:using .presence/absence.methodsthan presence-o~y methods as these. species'_ were 

increasingly responsive to absence data (Brotons et al., 2004). Therefore in most cases it 

is bes_t.to use ;presence/absence data where available. 

Niche-based meddling 'has 'been .ad~pted in this study. The cli_Inate respons~ ;stufaces 

(CRS) for :each . species are fitte4; using 'locally' weighted regression, to a selection :of 

envitomnerttali variable~ (or raw c~afe' .data) by produCing a set of probabHitles of 

occurrence defining the distributiop and abundance of a "species (Bartlein et al. 1986). 

Niche theory assturtes syminetric Gausslan:..shaped unimodal species response curves, 

which represent the probability of species' presence along an ecological gradient (Austin 
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2007), such as temperature or precipitation. The modelling approach adopted here has 

previously been used by e.g. Huntley et al. (1995 and 2004). It uses a narrow smoothing 

window, meaning that the value of the grid point depends primarily on observations near 

(i.e. 'local') to it, resulting in a 'spikey' species response curve. A larger smoothing 

window would result in additional smoothing of data rendering the response surfaces less 

able to simulate species' distributions (Huntley et al. 1995). The CRS can then be used to 

simulate species' potential future distributions using potential future climate scenarios 

(Huntley, 1995). As with other methods, this method has its limitations; many of these 

centre upon the fact that climate does not solely determine species distributions. However, 

as long as this is considered, CRS (and other climate envelope approaches~ are still a very 

useful 'first approximation' in determining how species distributions may change in the 

future (Pearson & Dawson, 2003). In addition, this technique is preferential to other 

methods as it makes no assumption about how species distributions are linked to climate. 

CRS have already successfully been used to simulate a number of species' distributions 

for example butterflies (Hill et al., 1995; 1999), plants (Beerling et al., 1995; Huntley et 

al., 1995; Watrin et al., 2007) and birds (Huntley et al., 2006; 2008; Willis et al., in 

press). 

Models can be placed into three categories; mathematical models (which focus on the 

generality and precision of the model), mechanistic models (focusing on the generality and 

reality of the model) and statistical models (which focus on the precision and reality of the 

model) (Levins, 1966). In recent years Levins' (1966) classifications have been shown to 

be inadequate as models occasionally fall into more than one of these original groups. 

Even so, Guisan & Zimmermann (2000) still promote the use of these classifications when 

creating the conceptual theory of the model. Once the concept of the model has been 

reviewed, the model can then be designed .. At this stage, the scale of the study as well as 

which environmental variables to use in the model is decided ~Guisan & Zimmermann, 

2000). One of the most difficult tasks is to decide which subset of variables are of 

importance when creating species-distribution models (Segurado & Araujo, 2004) 

especially as there are potentially huge numbers of environmental factors which affect 

species' distributions. 
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Austin & Smith (1989) define three types of environmental variables used in ecological 

modelling. The first of these are 'resource gradients' which refer to matter consumed or 

used by the species in order to survive (such as water, light and nutrients): secondly, 

'direct gradients' which have physiological importance (such as the temperature and pH of 

the species' surroundings) and finally, 'indirect gradients' which refer to variables with no 

direct physiological or resource importance to the species (e.g. slope, elevation and 

geology) (Guisan & Zimmermann, 2000). 

In the case of a large scale study such as this, (assessing multiple species responses to 

climate change on a continental scale), modelling using direct and resource variables are 

preferable over the use of indirect variables. In the case of CRS (which is to be used in 

this study), species distributions can be fitted using bioclimatic variables which are 

considered to limit species distributions in some way. Examples include measures of 

extreme temperatures such as mean temperature of the warmest and coldest month which 

may limit species distributions directly via species' tolerances to these temperatures, plus 

measures of seasonality (e.g. ranges of precipitation and temperature) which may limit 

distributions indirectly e.g. via altering vegetation growth. These variables are derived 

from monthly values of temperature and precipitation, and represent different trends 

which may be of importance in limiting species distributions (WORLDCLIM, 2005). 

Although the use of direct and resource variables means the model is more general than 

when using indirect variables, this means that the model can be used over larger areas 

(such as the African continent; Guisan & Zimmermann, 2000). Indirect variables cause 

significant errors when used over larger areas as the other variables (direct and resource) 

often alter significantly between different geographic locations which have the same 

topography (Guisan & Zimmermann, 2000). 

Another requirement for large-scale modelling is the assumption that species distributions 

and environmental variables are at equilibri.um (Lischke et al., 1998). The alternative 

(dynamic distribution modelling) requires detailed knowledge of each species being 

modelled, which is beyond the capacity of this study. Indeed, onl~y a few studies on at the 

scale of this one have used dynamic modelling (e.g. He et al., 1999 and Roberts, 1996). In 
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addition, species-distribution models are preferentially used over community-distribution 

models, especial1ly in light of recent evidenced stating that species are expected to respond 

to changes in climate individualistically (Hannah & Sa.lm, 2003~ and therefore it is highly 

unlikely that communities will alter their distributions 'as one' (Huntley & Webb, 1988). 

1.1.3.1. Evaluating the Accuracy of Species-Distribution M0dels 

Species-distribution models are only useful at predicting species' potential future 

distributions if they are shown to accurately simulate species' cunent (or past) 

distributions using accurate climate data for that time period. Model performance can be 

evaluated by observing how well the model predicts species' cunent distributions. 

However, one cannot be sure that the simulations of species' potential future distributions 

are accurate (Hijmans & Graham, 2006) as one cannot be certain in the projections of how 

the climate will change. 

Model performance can be evaluated in a number of ways, either quantitatively or 

qualitatively, however, in the vast majority of cases qualitative assessments are the only 

option (Segurado & Araujo, 2004). There are numerous qualitative methods used for 

evaluating (sometimes referred to as validating) the accuracy of predictive models. The 

choice of which method is used depends on a number of factors such as the study 

objectives (Fielding & Bell, 1997) and the choice of response variables used (Guisan & 

Zimmermann, 2000). 

The first category (re-sampling techniques) uses the same set of input data to both 

calibrate and evaluate the model. This approach is used if the data available is too small to 

be split into two datasets, or where it is preferential that all data is used to calibrate the 

model (Guisan & Zimmermann, 2000). Examples of re-sampling techniques include 

bootstrapping (sampling without replacement; Efron & Tibshirani, 1993), jack-knifing 

(leave-one-out) and cross-validation (Manel et al., 1999). 

The second category differs from re-sampling techniques as these methods use two sets of 

data from different sources to evaluate model performance; one set is used to calibrate the 

model and one to evaluate it (Guisan & Zimmermann, 2000). Examples of these methods 
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include split-sample approaches e.g. 70/30 split (which uses 70% of the original data to 

calibrate the model and 30% of it to evaluate it). Data-splitting is a commonly used 

alternative to the more complex re-sampling techniques such as cross-validation and 

bootstrapping, particularly when the dataset is large. However, this method becomes 

unsuitable when only small datasets are available as the statistical accuracy of evaluation 

is decreased (Guisan & Zimmermann, 2000). 

The evaluation of species-distribution models is complicated by the occm:rence of spatial 

autocorrelation (Dormann, 2007), which exists if "the presence of a factor [e.g. a species] 

in a place makes its presence in a neighbouring place more or less I.ikely" (Cliff & Ord, 

1973). This may cause an increase in the number of false positives predicted by the model 

and therefore reduce the perlormance of that model (Dormann et al., 2007). These 

methods should therefore be used with caution, at least until further investigative study 

has been undertaken. 

If the model produces probabilistic predictions, these need to be converted into the 

original scale (i.e. presence/absence format) in order to evaluate its perlormance (Guisan 

& Zimmetmann, 2000). This is achieved by applying a threshold value to non

dichotomous scores (Allouche et al., 2006). Numerous studies have used an m:bitrary 

value of 0.5 as the cut-off but in many cases this is inadequate as different species will 

have different threshold values due to differences in their prevalence (Segurado & Araujo, 

2004). Therefm:e, some studies use the maximum value of Cohen's kappa (K) produced for 

each species as the threshold value; Cohen's kappa (K) "assesses the extent to which 

models predict occurrence at a rate higher than expected by chance" (Segurado & Araujo, 

2004). Cohen's kappa can also be used to evaluate the fit of a model simulation in relation 

to observed presence-absence data. However, this statistic has been shown to be affected 

by species' prevalence, so instead, techniques such as the True SkiU Statistic (TSS; 

Allouche et al., 2006) the area under the curve (.AUC) of a receiver operating 

characteristic (ROC) plot (Fielding & Bell, 1997) are now commonly advocated. 
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The True Skill Statistic. Sensitivity and Specificity 

After transformation of the data into a dichotomous (presence/absence) format, the 

generation of a confusion matrix (Table 1.2) is required in order to compare simulated 

presences and absences against actual presences and absences (Allouche et al., 2006~. In 

the case of models using presence/absence data, the table is 2 x 2 in size (Guisan & 

Zimmermann, 2000). 

Table 1.2. A confusion matrix used to evaluate the accuracy of presence/absence models in ecology. Where 
a = number of true positives, b = number of false positives, c = number of false negatives and d = number 
of true negatives. 

Validation Data Set 

Presence Absence 

Model Presence a b 

Absence c d 

This confusion matrix can subsequently be used to measure the kappa statistic (K) and the 

TSS as well as overall accuracy, sensitivity and specificity by using the formulae shown in 

Table 1.3. 

Table 1.3. Equations used to evaluate the accuracy of presence/absence models in ecology. a, b, c, and d 
refer to values given in Table 2.2. 

Measure Formula 

a+d 
Overall Accuracy n 

Sensitivity a 
a+c 

Specificity d 
b+d 

(a+ d)_ (a+ b)~a +c) +
2 
(c+ d)(d+ b) 

Kappa Statistic . n n 

1-
(a+ b)(a +c)+ (c + d)(d +b) 

n2 

True Skill Sensitivity + specificity - 1 
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Specificity is described as the proportion of species correctly simulated as absent and 

sensitivity is described as the proportion of species correctly simulated as present; these 

measures quantify commission (number of false positives) and omission (number of false 

negatives) errors respectively (Allouche et al., 2006). In conservation terms, poor 

specificity is more detrimental than poor sensitivity as failure to predict species' observed 

presences (Guisan & Zimmermann, 2000) could mean measures to protect those species 

may be targeted towards the wrong location. The true skill statistic (also known as the 

Hanssen-Kuipers' performance index) is a measure of discrimination and is used 

preferentially over the kappa statistic as it is not affected by either the size of the dataset 

used for model evaluation or the prevalence of the species (Allouche .et al., 2006). TSS 

values range from +1 to -1, with values the + 1 being a perfect agreement and values of 

less than zero showing an agreement no better than random (Allouche et al., 2006). 

An alternative method of evaluating the accm:acy of models is to use the area under the 

curve (AUC) of a receiver operating characteristic (ROC) plot (Fielding & Bell, 1997) 

which has been used extensively in medicinal studies (Zweig & CampbeH, 1993). As with 

the TSS, the original non-dichotomous data needs to be transformed into presence-absence 

data by the selection of a threshold (Allouche et al., 2006). AUC values generated from 

the ROC plot can range between 0 and 1. The conservative guide suggested by Thuiller et 

al., (2006) suggests that AUC values of <0.8 are defined as a null model; 0.8<AUC<0.9, a 

fair model; 0.90<AUC<0.95, a good model and 0.95<AUC<l.OO, a very good model. The 

use of AUC values to evaluate model performance is considered highly effective 

(Fielding, 2002; Allouche et al., 2006). 
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1.2. Aims 

The aims of this study are: 

• To map the ranges of African mammalian fauna using species-climate modelling; 

• to examine the potential consequences of changing climate upon mammalian 

ranges in Africa, identifying those at most risk; 

• to project potential changes in the occurrence of keystone or charismatic species in 

protected areas as a result of future predictions of climatic change; 

• to examine the ability of the current protected area network across African to 

continue to protect large mammals under future climate change scenarios; and 

• to assess, by means of willingness-to-pay questionnaires, the potential loss of 

income to protected areas that could result from the loss of charismatic species as a 

consequence of future climate change. 

1.3. Thesis Plan 
Part one of the remainder of this study will assess the effects of projected future climate 

change on African mammals. This section has been split into four chapters; the first 

chapter introduces aspects of climate change and climate modelling; the second chapter 

(page 26) will report on modelling the current range of African mammals; the third (page 

46) will report on modelling the future distributions of African mammals in response to 

projected climate change; and the fourth (page 88) will assess the impacts of projected 

climate change in African protected areas. 

In chapter five (page 115) I will assess economic consequences of species range shifts 

using the contingent valuation method. The two parts of this thesis are then brought 

together and discussed in a final conclusions chapter (chapter six; page 162). 
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CHAPTER TWO: Simulating the Current Range of African Mammals 

2.l.INTRODUCTION 

Models which simulate species' potential future distributions in relation to projected 

climate change are only useful in doing so if their results are as accurate as possible i.e. 

they can accurately simulate species cuuent distributions. Therefore a simple test of these 

models is to use observed climate and species distribution data to simulate species current 

distributions (Huntley et al., 1995). This simple step is used as one cannot be sure that the 

simulations of species' potential future distributions are accurate (Hijmans & Graham, 

2006). The performance of these models can then be evaluated using methods such as the 

area under the curve (AUC) of a receiver operating characteristic (ROC) plot (Fielding & 

Bell 1997) or the true skill statistic (Chapter 1.1.3.2). These evaluation methods have 

been used in a number of studies based on modeling the distribution of species in Africa. 

For example the TSS has been used by Hole et al., (unpub) to evaluate the accuracy of 

predicted avian species inventories in Important Bird Areas (ffiAs). Additionally, Erasmus 

et al., (2002), Huntley et al., (2006) and Thuiller et al., (2()06) have used AUC values to 

evaluate the predictive power of their models in simulating the distributions of African 

mammals and birds. 

Climate response surfaces will be used in this study to simulate species' cu:r:Fent and future 

distributions. CRS have already successfully been used to simulate a number of species' 

distributions for example butterflies (Hill et al., 1995; 1999), plants (Beerling et al., 1995; 

Huntley et al., 1995; Watrin et al., 2007) and birds (Huntley et al., 20()6; 2008; Willis et 

al., unpub). This method relates species distributions to a limited set of environmental 

variables which are chosen as they are thought to limit the species distributions in some 

way. For example bioclimatic variables such as mean temperature of the coldest month 

(MTCO), mean temperature of the warmest month (MTWA) and the ratio of actual to 

potential evapotranspiration (A/PET) are thought to affect species distributions both 

directly (e.g. by affecting species' physiological tolerances~ and indirectly (e.g. by 

affecting plant growth and therefore food availability). Rather than simulating species' 

current and potential future distributions directly, these models simulate areas of 
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climatically suitable habitat for each species. Consequently this does not necessarily 

indicate where the species will be found because an area of land may be classed as 

climatically suitable by the models but, in reality, may be unsuitable for a specific species 

to live. For example, the models may predict a species to be present in an area of human 

habitation which may limit species distributions to outside of that area. It is therefore 

assumed that predictions of species distributions using this method will not be defined 

perfectly. However they are expected to provide a good estimation of how species ranges 

may alter in relation to projected climate change, especially as we can evaluate these 

results using methods such as the AUC. This means we can be more confident with the 

findings of this study if their accuracy at simulating species' current distributions is shown 

to be good. 

Even if the models do well in predicting species distributions overall, it is expected that 

species with smaller distributions will be modelled better than species with larger 

distributions (Segurado & Araujo, 2004). This is because generalists tend to inhabit a 

wider range of habitats than specialists (i.e. species with smaller prevalence and/or biome 

endemics) and therefore an increasing number of environmental variables may affect their 

distribution (Osbome & Suarez-Seoane,. 2002). As the very nature of CRS means that 

species distributions are fitted to a smal'l number of environmental variables this is very 

likely to be the case. This phenomena has been observed in a number of studies; for 

example Segurado & Araujo (2004) recorded smaller errors in simulations for amphibian 

and reptilian species with restricted distributions; Brotons et al., (2004) found that birds 

with more widespread distributions were modelled 'less accurately than more marginal 

selective species' and finally, Hepinstall et al., (2002) recorded that simulations of 

generalist avian species' distributions were inferior to simulations of specialists' 

distributions. Despite the fact that 'specialists' are expected to be modelled better than 

'generalists', the overall performance of the models in simulating the current distributions 

of African mammals is expected to be good; especially as other studies have successfully 

used these modelling techniques when simulating the distribution of species in relation to 

climate in Africa ~e.g. Hole et al., unpub; Huntley et al., 2006). 
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2.2. METHODOLOGY 
2.2.1. Species Datasets 

Extent of occurrence (EO) data for 280 African mammals belonging to 12 orders and 28 

families covering the whole African continent (excluding Madagascar) were downloaded 

from the African Mammals Databank (AMD) website (www.gisbau.uniromal.it/amd, 

accessed November 2006). This is a GIS-based databank which holds information on the 

distribution (c. 1998) and conservation of medium and large mammals on the African 

continent (lEA, J.i998). 

The species included in the databank belong to a number of different orders; these are 

Artiodactyla, Camivora, Hydracoidea, Insectivora, Lagomorpha, Macroscelidea, 

Perissodactyla, Pholidota, Primates, Rodentia, Sirenia and Tubulidentata. Data on the 

location of the two species of rhinoceros (Die eras bicornis and Ceratotherium simum~ are 

not included in the databank in order to keep the location of these species private (lEA, 

1998). Data for the African elephant (Loxodonta africana) were also excluded from this 

databank and were obtained separately from the Elephant Specialist Group (AfESG) of the 

Species Survival Commission SSCIIUCN - World Conservation Union (Blanc et al., 

2003). 

EO data from the AMD were downloaded and viewed as polygon coverages in ArcGIS 

(ESRI At:cGIS Version 9.0~. The EO coverage files were then transformed into presence

absence data by overlapping the EO polygon with 0.25° (15') longitude x 0.25° latitude 

points for the whole of Africa. Points overlaying a polygon were defined as 'presence 

points', those not overlaying a polygon were defined as 'absence points'. 

Data on the species' Red List Category & Criteria were obtained from the 'IUCN Red List 

of Threatened Species' (IUCN, 2006). Species names, reference numbers and red list 

categories are given in the appendices (Table A1). Species lists for protected areas were 

obtained from a number of sources (the Central African Republic species list was from 

UNEP (2002); Cote d'lvoire lists from 1Gartshore et al., (11995) and 2UNEP (2003); Kenya 

and Tanzania lists from Williams et al., (1994); South African lists from SanParks (2007; 

www.sanparks.org) and Ugandan lists from the Uganda Wildlife Authority (2007)). 
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2.2.2. Climatic Datasets 

Climatic data representing the present day (1961-90) were downloaded from 

WORLDCLIM (www.worldclim.org; Version 1.4 Release 3) at a resolution of 2.5 arc

minutes. In order to match the resolution of the species distribution data, the climatic data 

was scaled up to a resolution of 0.25° (15'). 

2.2.3. Climate Response Surfaces 

Climate response surfaces were not fitted to the raw climatic data; instead, a series of 

bioclimatic variables were computed from the climate data. Initially, climate response 

surfaces were fitted using species presence-absence points and three bioclimatic variables; 

mean temperature of the coldest month (MTCO), mean temperature of the warmest month 

(MTW A) and the ratio of actual to potential evapotranspiration (A/PET). These variables 

represent measures of extreme annual temperatures (winter cold and summer warmth) and 

extent of moisture availability respectively and were derived using monthly climatic 

values of insolation, precipitation and temperature (Huntley et al., 2006). Measures of 

mean annual precipitation tend to mask wider seasonal extremes of climate change at the 

height of the wet and dry seasons (Erasmus et al., 2000). Therefore for each species, the 

climate response surfaces were fitted using the three variables above as well as an 

additional four variables which describe seasonality across the African continent. These 

four seasonality variables were calculated to measure both the length and intensity ·Of dry 

and wet seasons (total wet intensity, total dry intensity, total wet duration and total dry 

duration). The length and intensity of the dry and wet seasons were estimated using daily 

values of the ratio of precipitation to potential evapotranspiration (PIPE) as in Huntley et 

al., (2006). The start and end of these seasons were defined by applying a threshold to 

daily moisture availability values; above a certain value was defined as the start of the wet 

season, and conveFsely below a certain value was defined as ~he start of the dry season 

(Willis et al., unpub ). Only one of these seasonality variables were used, selecting the one 

which optimised the performance of the model ~in combination with MTWO, MTCO and 

A/PET) for modelling species future distributions. 
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Climate response surfaces were fitted using locally weighted regression (L WR) 

(Cleveland & Devlin, 1988). LWR was chosen as it makes no assumptions about the 

relationship between the bioclimatic variables and each species' probability of occurrence 

(Huntley et al., 2006). A disadvantage of using LWR is the requirement to make an "a 

priori'' choice of bioclimatic variables (Burns et al., 2003; Huntley et al., 2004). However, 

all of the bioclimatic variables chosen in this study have been shown to have mechanisms 

which limit species distributions and have been used to successfully model distributions of 

species including mammals (e.g. Erasmus et al., 2002; Thuiller et al., 2004; Huntley et al., 

2006). For example, duration and intensity of the dry and wet seasons may affect 

mammals by limiting the availability of food and/or water; temperature extremes may 

have direct effects upon individual species' physiological tolerances; ratio of A/PET may 

affect mammals indirectly by affecting plant growth and therefore food availability. 

The species-climate response surface models were applied to current climate data to 

simulate probabilities for the occurrence of each species across the African continent; as 

Huntley et al., (1995) discuss, this is a simple test of the ability of response surface. 

However, due to a degree of smoothing when fitting the response surface, it is expected 

there will be some simulated presences which are false positives. Therefore the kappa (K) 

statistic was calculated for each simulation for each species in order to produce the 

optimal cut-off threshold for converting the continuous simulated suitability into presence

absence data (Collingham et al., 2000); this maximises sensitivity and specificity of the 

'Simulations. Above this threshold value the simulated values represent presences and 

below this threshold value the simulated values represent absences in that cell. This is 

better than using an arbitrary value for all species (Allouche et al., 2006). 

Model fit was assessed using the values obtained from the area under the curve (AUC) of 

a receiver operating characteristic (ROC) plot (Fielding & Bell 1997; Thuiller et al., 

2006). This is used rather than kappa, askappa is affected by species' prevalence (Chapter 

1) much more than AUC (Manel et al., 2001), although Huntley et al., (2004) found a 

small but significant positive correlation between prevalence and AUC (F(1,294) = 2.83, 

p < 0.001). 
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Simulations of species' current distributions were also assessed by comparing simulated 

inventories of mammal species in protected areas to observed mammal inventories for 

each site. Observed inventories were obtained for 28 protected areas in six countries 

(Table 2.2). Sensitivity and specificity of species' current- versus simulated current 

distributions as well as the true skill statistic were calculated using the equations in Table 

1.3 (page 23). Comparisons were also made between species' observed extent of 

occurrence (EO) and the occurrence predicted by the models; a good agreement between 

these two indicating a good simulation of observed species EO. 

A one-way ANOV A was used to establish if geographic location of species had an effect 

on model performance, and a Spearman's rank order correlation was used to correlate 

model performance and species' extent of occurrence. 

2.3.RESULTS 
2.3.1. Model Validation 
2.3.1.1. The Receiver Operating Characteristic {ROC) Curve 

AUC values from this study ranged from 0.915 to 1.000 (n = 281, X= 0.989) (Figure 2.1). 
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Figure 2.1. Frequency histogram of species AUC values. Each AUC value is representative of the 
optimal performance of the model using four variables (MTCO, MTWO, A/PET plus one of 
totwetint. totwetdur. totdrvint and totdrvdur. 
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Following the definitions of Thuiller et al., (2006) (page 24), for four species, models 

were classed as 'good' and for the other two hundred and seventy seven species models 

were 'very good' in predicting species' ranges (see Table A1 in the appendices). The 

minimum accuracy value was 0.915 recorded for the common hippopotamus 

(Hippopotamus amphibious) whilst an accuracy of 1.000 (co:vrect to 3 d.p.) was recorded 

for seven species (Table 2.1). Some examples of simulations of species' present-day 

distributions are shown in Figure 2.2 (see appendices, page 182, for instructions on how to 

view present-day distributions of all species in ArcMap). Table A1 in the appendices 

shows individual species AUC values. 

Table 2.1. Species with the highest AUC values, all of which rounded to 1.000. 

Species Ref. Scientific Name Common Name 

8 ' Capra walie Walialbex 
9 Cephalophus adersi Aders' Duiker 
20 Cephalophus rubidus RedDuiker 
101 Canis simensis Ethiopian Wolf 
18•1 Bunolagus monticularis Bushman Hare 
190 Pronolagus randensis Jameson's Red Rockhare 
238 Cercopithecus solatus Sun~tailed Monkey 
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Figure 2.2. Observed (left hand maps) and simulated (right hand maps) current distributions of a sample of 
4 species (names on the left of each map) along with their corresponding AUC value. Blue indicates the 
observed/simulated distribution of each species. 
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2.3.1.2. Using CRS Models to Simulate Species Occurrences m Protected 

Areas 

Twenty-eight protected areas from six different countries (Figure 2.3) were used to test the 

ability o the models to simulate species occurrences in protected areas. The simulated 

species inventories in these protected areas were shown to have high specificity and 

sensitivity as well as a correspondingly high true skill statistic (see Table 2.2). As TSS 

values range from + 1 to -1, the mean TSS value of 0. 7 4 supports the view that this 

modelling approach is robust. 

COte cfivoire 

Figure 2.3. Location of the 28 protected areas whose species lists were used to calculate the TSS. Black 
lines indicate country borders, red areas indicate the protected areas used in this analysis. 
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'Fable 2.2. Perfonnance of climate response surface models in producing mammal species inventories 
for 28 protected areas. Summary of values used to calculate the TSS are also given. Species lists from a 
variety of sources were used: see page 26. 

Proportion of 
"Frue 

Protected Area Location 
species 

Sensitivity Specificity Skill 
correctly 

classified(%) 
Statistic 

Manovo-Gounda-Saint Floris Central African 
86.48 

National Park Republic 
0.81 0,87 0.68 

Comoe National Park Cote d'Ivoire2 81.85 0.62 0.84 0.45 

Tai National Park Cote d'Ivoire1 83.63 0.82 0.84 0.66 

Aberdare National Park Kenya 77.22 1.00 0;73 0.73 

Amboseli National Park Kenya 91.8'1 0.95 0:91 0.86 

Lake Nakuru National Park Kenya 88.26 0:88 0.88 0.76 

Marsabit National Reserve Kenya 90.39 0.91 0:90 0.81 

Masai Mara National Reserve Kenya 85.05 0.85 0.85 0.70 

Mount Elgon National Park Kenya 85.05 0.67 0:87 0.53 

Mount Kenya National Park Kenya 80.78 0.97 0.79 0.76 

Nairobi National Park Kenya 88.61 0.80 0;90 0.71 

Samburu - Shaba Reserves Kenya 81,49 0.88 0.80 0.67 

Tsavo National Park Kenya 90.04 0.96 0:88 0.84 

Addo Elephant National Park South Africa 91.46 0.88 0,92 0.80 

Karoo National Park South Africa 88.61 0.85 0.89 0.74 

Kgalagadi Transfrontier Park South Africa 94.66 0.86 0:96 0.82 

Kruger National Park South Africa 93.59 0.93 0;94 0.87 

Marakele National Park South Africa 82.56 0.79 0.83 0.62 

Richtersveld Transfrontier 
South Africa 95.37 0.89 

National Park 
0:96 0.85 

Tankwa Karoo National Park South Africa 91.46 0.81 0:92 0.79 

Tsitsikama National Park South Africa 91.10 1.00 0:91 0.9:1 

Lake Manyara National Park Tanzania 85.05 0.88 0;84 0.73 

Mikumi National Park fan~a 80.43 0.76 0.81 0.57 

Ruaha National Park Tanzania 84.34 0.90 0,83 : 0.73 

Serengeti National Park Tanzania 78.29 0.87 0.75 0.62 

Tarangire National Park Tanzania 85.41 0.98 0.83 0;811 

Kidepo Valley National Park Uganda 88.97 0.98 0.87 0.85 

Rwenzori Mountains Uganda 83.27 0.96 0.80 0.77 

MEAN 86.62 0.88 0.86 0.74 
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2.3.2. Model Performance 

The maximum AUC values for each species were arcsine transformed (Sokal & Rohlf, 

1995) after which they approximated to a normal distribution (One-Sample Kolmogorov

Smirnov Test: KS = 1.011 , n = 281 , P = 0.259). Consequently, parametric tests were 

chosen when analysing the data further. Interestingly, for some groups of species such as 

the African antelopes (Damaliscus spp.), gazelles (Gazella spp.), foxes (Vu/pes spp.), 

colobus monkeys (Colobus spp.) and the zebras (Equus spp.) the fourth variable which 

maximised AUC was constant within each genus. In the first four genera listed above, 

'total dry intensity' maximised AUC whereas for the zebras 'total wet intensity' 

maximised AUC values. 

There was a strong positive correlation between species' present-day extent of occurrence 

and the occurrence predicted by the models (correlation = .964, P < 0.001 , Figure 2.4) i.e. 

models did well in predicting species' current distributions and there was no consistent 

over- or under-prediction of range extent by the models. 

40000r-------------------------------------. 

30000 
0 

00 

0 
0 

c: 
~ 0 

~ 
~s :::1 

.0 20000 0 0 ·;::: 

c! u; 
i5 o/ c 
~ 0 .... 
:::1 

10000 (.) 

"0 
Q) -!!:! 
:::1 
E 

U5 0 
0 10000 20000 30000 40000 

Actual Current Distribution 

-36 -



Figure 2.4. Correlation between species' present-day extent of occurrence and the occurrence predicted 
by the models. Species distribution is defined by number of quarter-degree cells in which the species is 
observed or simulated to occur. 

Although overall the models did well in predicting species present-day distribution, there 

were a few anomalies such as the Walia Ibex (Capra walie) and the Golden-rumped 

elephant shrew (Rhynchocyon chrysopygus) which were simulated to occupy 42% and 

50% less than observed, and the Lechwe (Kobus leche) which was simulated to occupy 

289% more than their actual distributions (Figure 2.5). The overestimate of the 

distribution of the Lechwe is due to the model's inability to account for its inhabitance of 

swamps in low rainfall areas, with the conventional climatic variables used in this 

assessment. 
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Figure 2.5. Present-day and simulated present-day distributions of the Lechwe (K. lee he) . . Present-day 
distributions are taken from the African Mammals Databank (lEA, 1998). Blue dots represent present
day distribution, yellow dots represent simulated present-day distribution and green dots represent 
overlap between observed and simulated distributions for each species. 

For each species, only the combination of four variables (MTCO, MTWA, APET plus one 

of total wet intensity (totwetint), total dry intensity (totdryint), total wet duration 

(totwetint) and total dry duration (totwetdur)) which maximised AUC were used for 

modeling the future distributions of each species. This was decided as there were 
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. differences between the· performances of the simUlations' usmg each of ,the fourth 

variables. For that reason, the decision of choosing one of the fourth variables to· remain. 
~ . . . . -

constant for all 28.1 species would have been counterproductive, as it would have reduced 

the robustness of the future predictions of species.' ranges. 

Figure 2.6 and Table 2.3 show a summary of AUC values frem models of current ,species' 

distributions. Each AUC value is the maximum recorded for each species from ·the four 
- - . - . 

different combinations; MTCO, MTWA and A/PET :were kept constant and ·the fourth 

:variable· changed between total wet intensity (totwetint), total dry ·intensity (totdFyint), 

total wet duration ~totwetirit) and total dry duration (totwetdur). 

Table 2.3. Suinmar.y of the area under the curve (AUC) values for four variable models simulating 
ci.lrreilt distributions, 'Total .number ·of species • is the• sum of species for which that specific bioclima:tic· 
·variable combination maximised AUC; i.e. M'ICO, !MTWA, 1\PET and that.p8Jticular fourth variable, 
(See.maintext for descriptions oftotwetint, totdryint, totwetinHmd totwetdur). 

A!UC Value ' 
I· 

Fourth Variable TotDryDur TotDryint :1 ~ TotWetDur TotWetlnt :r 
MaximumAUC t:.ooo UlOO 1;000 1:.000 ;I: 

i. 

Minimum AUC. o~910 0;911 0:90 0~915 
Mean,AUC fll984 0:987 0:98.5 . 0;987 
MedianAUC· 0.98.8 0:990 0:989 0.990 ' 

Total.N\lmber of Species 5 t:38 23 lr15 .. . ' i 

·-

111~ combinatio~ of MTCQ, MTW A· and A.PET and· the· foul'th variables rep~senting 

_ ~--• -~ ~otal ~tensity '?f th~ wet :and dry seasons -~~imised d1~ AUC values in the Jll_JljQricy_of ___ _ 

cases; however, the range of AV£ values were ·~Jso larger for these variables (Table 2.3; 

Figure 2,6). 
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0.900 

totdrydur totdryint totwetdur totwetint 

Variable Name 

Figure 2.6. Summary of the area under the curve (AUC) values from climate response surface models 
simulating current range extent. Totdrydur, totdryint, totwetdur and totwetint represent the AUC values 
of those species for which that specific bioclimatic variable combination maximised AUC; i.e. MTCO, 
MTW A, APET and that particular fourth variable. Numbers adjacent to the outliers correspond to 
species' reference numbers as defined in Table A I of the appendix. Median values are indicated by the 
bold black horizontal line; upper and lower quartiles are denoted as the ends of the boxes; maximum and 
minimum values are represented by whiskers; outliners (values ~ 1.5 :5 three box lengths from the ends 
of the box) are given as circles; and extreme values(> 3 box lengths away) are given as asterisks .. 
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2.3.3. The E:fifect of Species' Extent of Occurrence on Model Performance 

Analyses were carried out using all species; ranging from the extremely restricted @ess 

than ten quarter degree cells), Up to the most widespread species (up to 30,000 quarter 

degree cells). Results of a Speannan's Rank-Order Correlation suggested there was a 

significant negative correlation between extent of occurrence and model performance (r :::;: 

-.388, d.f. = 280, P < 0.001) such that as extent of occurrence increases, model 

performance decreases (Figure 2.7), After the removal of restricted species (those whose 

extent of occurrence is less than 100 quarter-degree cells) this association remained 

significant (r = -0.328, d.f. = 262, P < 0.001). 
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Figure 2.7. Correlation between species' extent of occurrence and model performance. Extent of 
occurrence is defmed as the number of presence points in which the species is observed to occur. Arcsine 
AUC values are.a measure of model performance (higher values indicate better performance). 
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2.3.4. The Effect ofSpecies' Geographic Location OB Model Performance 

The whole of Africa was divided into five geographic areas as shown on Figure 2.8. 

Using the presence-absence maps of the 281 species, each species was categorised into the 

most relevant geographic area(s). 

} 

1 

2 

/ 

1--·-·-· 

Key ' 

1. Mediterranean North Africa & Sahara 
2. Sahel, Sudan-Guinea savannah & Guinea-

Congo forests 
3. Somali-Masaii 
4. Zambezia & East African Coast 
5. Kalahari-highveld, Namib karoo & Fynbos 

Figure 2.8. Biomes in Africa, adapted fromFishpool& Evans (2001). 

A one-way ANOV A was carried out to determine if there was a significant difference 

between AUC values of species endemic (defined by the species' occupying only one of 

the five areas depicted in figure 2.8) to the five different m:eas; 181 species were endemic 

to one of the five zones in Figure 2.8, the other 100 occupied two or more areas. The 

results of the one-way ANOV A provided evidence that geographic origin of species 

ranges affected model performance (F (4,tso) = 7.323, P < 0.001); equal variances were not 

assumed as a Levene's test was significant (Levene Statistic= 4.852, df.= 4, P < 0.001). 
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Post hoc tests (assuming unequal variances i.e. Games-Howell) indicated model 

performance of species endemic to zone two (Sahel, Sudan-Guinea savannah & Guinea

Congo forests) differed significantly from species endemic to zones four (Zambezia & 

East African Coast) and five (the Kalahari-highveld, Namib karoo & Fynbos) (P < 0.05). 

Species endemic to zone four differed significantly from species endemic to zone three 

(Somali-Masai) and five (Table 2.4). 

Table 2.4. Posthoc tests of the effect of geographical occurrence of species on model performance. 
Geographic locations are numbered as follows: 1 = Mediterranean North Africa and Sahara; 2 = Sahel, 
Sudan-Guinea Savannah and Guinea-Congo forests; 3 = Somali-Masai; 4 = Zambezia and East African 
coast and 5 = Kalahari-highveld, Namib karoo, Fynbos. * denotes the mean difference is significant at 
the .05 level. 

Geographic Locatio11 (A) . Geographic Location ~) Mean Difference (A-B) Sig. 

1 2 -~007660 .959 

3 -.024152 .286 
4 .020682 .517 

5 -.032274 .066 

2 1 .007660 .959 

3 -.e16492 .082 

4 .028342(*) .019 

5 -.024614(*) .000 

3 1 .024•152 .286 

2 .016492 .082 

4 .044833(*) .000 

5 -.008123 .770 

4 1 -.020682 .517 

2 -.028342(*) .019 

3 -.044833(*) .000 

5 -.052956(*) .000 

5 1 .032274 .066 

2 .024614(*) .000 

3 .008123 .770 

4 .052956(*) .000 

An Independent Samples T -test was carried out to compare AUC values of biome 

endemic species with widespread species (widespread being defined as occupying two or 

more of the five core areas shown in Figure 2.8). There was a significant di£ference 

between AUC values of endemics and widespread species (T = 8.64, d.f. = 162, P < 

0.@01), with biome endemics modelled better ~han more widespread species. 
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2.4. DISCUSSION 

Model fit was assessed using two methods; the AUC of a ROC plot and the TSS. These 

methods have been used in other studies (e.g. Huntley et al., 2006; Thuiller et al., 2006) 

and are considered highly effective in evaluating model performance ~Fielding, 2002; 

AHouche et al., 2006). Both of these methods produced results indicating the modelling 

approach chosen in this study is robust and therefore better than a random model. The 

mean AUC value of 0.99 (to 2 d.p.) recorded in this study (similar to o~98 recorded by 

Thuiller et al., 2006) indicates that the present-day distribution of African mammals can 

be simulated very successfully using this modelling approach. Thuiller et al., (2006) 

recorded an AUC of 1.0 for only one species, the Silver dik-dik (Madoqua piacentini) 

while this study recorded the maximum AUC of 1,0 for seven species (Table 2.1), 

indicating a perfect simulation of those species' pt:esent-day distribution using the chosen 

set of environmental variables. In addition to these findings, the minimum AUC value 

recorded in Thuiller et al.,' s (2006) study was 0.85 for the common hippopotamus 

(Hippopotamus amphibious); which was also the case in this study, albeit with a higher 

maximum AUC value of 0.92. Models may have poor predictive ability for the 

hippopotamus (H. amphibious) in particular as this species relies on freshwater to remain 

cool, as well as for birthing and reproduction. As in Thuiller et al., 's (2006) paper, this 

parameter was not used as one of the variables in the modelling procedure as only a 

limited set of environmental variables could be used as model parameters. 

Reliable and accut:ate species lists within protected areas wet:e difficult to obtain, leading 

to the possibility that the high mean TSS values for South African and Ugandan protected 

areas were a result of better quality lists than those for other areas. Even so, the overall 

mean TSS value (mean TSS = 0.74) indicated that the modeling approach adopted was 

robust and could be reliably used to model species' potential future distributions. 

Specificity (mean specificity = 0.86) and sensiti,vity Cmean sensitivity = 0.88) of the 

models were also high, indicating that the number of commission (number of false 

positives) and omission (number of false negatives) errors was low. The high sensitivity 

and specificity is encouraging as one would expect a larger number of false positives in 

particular, if factors other than climate (such as topographical barriers, human 
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encroachment, habitat modification or competition between species) were preventing 

species realising their climatically suitable niches. However, it seems climate is the 

primary determinant of mammal species distributions with other possible variables 

playing a secondary role. The high specificity value is particulady encouraging, as poor 

specificity could mean measures to protect species could be positioned in the wrong place. 

These results are similar to those reported by Hole et al., (unpub.) (median TSS = 0.718; 

median sensitivity = 88%) who simulated the current distribution of avifauna within 

African Important Bird areas (ffiAs) in order to project the impacts of climate change on a 

continent-wide protected area network using analogous modelling approaches. The 

success rates of predicting occurrences here are also similar to those found by Willis et al., 

(2008) using a similar approach to simulate birds of concern in South African important 

bird areas (TSS = 0.74). Willis et al., (2008) also added a habitat layer to filter out false 

presences and found TSS increased to 0.78. Such an approach could also improve the 

mammal models, especially for those species such as the hippopotamus which are known 

to be habitat restricted in many areas. 

The fourth bioclimatic variables which maximized AUC were, overwhelmingly, the total 

intensity of the wet (n = 115 species) and dry (n = 138 species) seasons rather than the 

duration of the wet or dry seasons (n = 23 and n = 5 species respectively). It is therefore 

likely that the intensity of the wet and dry seasons play a more important role in limiting 

mammal species distributions than the duration of the wet or dry seasons. 

Fot some groups of species such as the African antelopes (Damaliscus spp.), gazelles 

(Gazella spp.), foxes (Vulpes spp.), colobus monkeys (Colobus spp.) and the zebras 

(Equus spp.) the fourth variable which maximised AUC was constant within that genus. In 

the first four genera listed above, total dry intensity maximised AUC whereas for the 

zebras total wet intensity maximised their AUC values. This could be due to the fact that 

all species within that genus inhabit similar climatic niches and are therefore e~posed to 

similar climatic conditions, or it could be because their geographic locations are similar. 

Results suggest that species with smaller extents of occurrence were modelled better than 

those species with larger distributions. For example, the seven species whose present-day 
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distributions were simulated perfectly (i.e. AUC = 1.0) all had extremely restricted ranges 

(mean simulated range size= 52 quarter degree cells) compared to the overall mean range 

size (mean= 5151 cells). In addition, species endemic to one area (of the five biomes in 

Figure 2.8) were modelled better than those species whose distributions were more 

widespread. Although Huntley et al., (2004) found a significant positive relationship 

between model performance and species' prevalence; other studies have the found 

opposite. For example Segurado & Araujo (2004), Brotons et al., (2004) and Hepinstall et 

al., (2002) found that species with widespread distributions were modeled less well than 

those with restricted distributions (Chapter 1.1.3). As we are only using a limited set of 

environmental variables (four for each species) to fit the CRS, it is likely that 'specialists' 

were modelled significantly better than 'generalists' because they inhabit a smaller variety 

of habitats (Osbome & Suarez-Seoane, 2002). 

Although there were a few anomalous results (e.g. the simulated distributions of the Walia 

Ibex (C. walie), Golden-rumped elephant shrew (R. chrysopygus) and the Lechwe (Kobus 

leche)), on average this modeling approach appears useful in investigating the role of 

climate in determining African mammal ranges, and demonstrates climate to be an 

important factor in the distributions of mammals. As we have confidence in this modelling 

approach, climate response surfaces can now be used to model the projected impacts of 

potential future climate change on the African mammals. 
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CHAPTER THREE: Simulating Range Smfts of African Mammals under 
Projected Climate Change 

3.1. INTRODUCTION 

Improved estimates of the rate and magnitude of projected climate change have recently 

been reported in the lPCC Fourth Assessment Report (IPCC, 2007a). These estimates 

indicate that the African continent is one of the most vulnerable continents to climate 

change; with rates of warming 1.5 times the projected global response, and while 

precipitation is expected to increase, seasonal extremes in the austral summer and winter 

are expected to be more pronounced (Boko et al., 2007; Chapter 1). It is expected that 

these changes will have dramatic effects upon the distribution of African mammals; 

mainly via the impacts of climate change upon vegetation growth (IPCC, 2001b). Indeed, 

there is a large amount of literature detailing how species ranges and distributions have 

already changed in response recent anthropogenic climate change; most reporting ranges 

shifts primarily polewards and towards higher elevations (Beaumont et al., 2007; 

Parmesan & Yohe, 2003; Root et al., 2003 but see Hickling et al., 2006). 

Species-distribution models are now widely used as first approximations in determining 

the potential impacts of future climate change upon species (Levinsky et al., 2007). 

However these are only useful if they can predict species' ranges accurately (see Chapter 

1.1.3.1). Such models have been used to simulate potential changes in the distributions of 

a wide variety of species in response to potential future climate change; from aquatic and 

terrestrial plants (Hill, 1991; Huntley et al., 1995) and trees (Iverson et al., 2004) to birds 

(Huntley et al., 2006; Manel et al., 1999) and fishes (Lek et al., 1996). In many cases, 

such modelling approaches remain the only option for assessing the effects of changes in 

climate on species distributions. This is because only a small number of species' responses 

to environmental change have been studied in detail (Woodward & Cramer, 1996). 

Species-distribution models have also been used to detennine the impacts of climate 

change upon the distribution of mammals. Examples of these studies include Burns et al., 

(2003) who modelled shifts of 213 mammal species resident in the United States of 

America in response to a doubling of atmospheric carbon dioxide. They found that 

vegetation changes influenced the extent of species diversity loss/gain in national parks; 
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however a general shift of community composition is expected to occur at a magnitude 

"unprecedented in recent geological time" (Burns et al., 2003). Another example is the 

recent study by Levinsky et al., (2007) who used bioclimatic envelope models to 

investigate the potential impact of climate change on 120 native terrestrial European 

mammals. Assuming unlimited dispersal, they found that 1% of mammals modelled faced 

risk of extinction, and 32 - 46% may be severely threatened as a result of projected 

climate change. 

As Africa is expected to be one of the most vulnerable contients to climate change (Boko 

et al., 2007), and the fact that it holds nearly a quarter (n = 8; 24%) of the world's 

biodiversity hotspots (Cl, 2007}, one would expect studies on this continent to be the most 

numerous. Yet there are few studies focusing on the effects of climate changes on the 

distribution of species (especially mammals) resident in Africa (but see Erasmus et al., 

(2002) and Thullier et al., (2006)). Thullier et al., (2006) used generalised additive models 

(GAM) to assess the sensitivity of 277 African mammals to climate change and 

anthropogenic land transformation under two climate change scenarios for 2050 and 2080 

(HadCM3 A2 and B2 scenarios), as well as to estimate species richness gain and loss 

across the continent plus within the African protected area network. Thuiller et al., 

predicted substantial decreases in species richness in central Africa (60- 75% by 2080), 

and southern Africa (Kalahari region, northern South Africa and Namibia; 80- 100% by 

2080) in response to potential climate change and land transformation. They also predicted 

that a substantial number of African mammals will become "severely threatened by future 

climate change and land transformation." Assuming unlimited dispersal of species, 30% 

of species would become listed as critically endangered under the HadCM3 A2 scenario 

for 2080. Thuiller et al., (2006) concluded that the effects of climate change on mammal 

species may be seen as a change in community composition as well as loss of species from 

their current ranges. They predicted median range contraction to be -49% (mean= -18%), 

which is a cause for concern as range size is negatively correlated to extinction risk 

(Gatson, 1994). So, as range size decreases, the risk of local extinctions is predicted to 

increase (Thomas et al., 2004). This is particularly so when decreases in range cause the 

overall population to become fragmented into smaller sub-populations as these smaller 
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populations tend to be less stable and' are therefore mo~ likely to become.'·extinct dwiing 
' . . . . 

extreme events such as disease outbre.aks and drought (Erasmus et al., 2002). 

While ThuiHer et al~, 's (2006) study had' a -continent;.wide focus, Erasmus et aL, (2e02) 

conc.entrated on the vulnerabiUty of only South African taxa-to cli~nate change. In: this 

·study, a multi:variate climate ~nvelope appFoa,ch was used to rpredict range chan:ges of 179 
. . -

animal species (includin·g ._ :biJids, mammals, reptiles, butterflies, beetles, 'antlions and 

termites) in respons~ to a -global temperature rise· of 2°C via a doubling of C02 -in the 

atmosphere. Changesin species richn.ess, as well as shifts ~IDd' contractions of species'· 

ranges were predicted. 1Erasmus et- al.~ (2002) prediCt that the majority (78%~ of species 

will· experience range :contraction, whereas· f7% species will .experience range 'expansion. 

25% -of species were projectedi,to experience range shifts of over 90%,. especially reptil~s 

and ·inVertebrate species, Mariy of the rnammals, birds and butterflies showed' an .oVer.lap 
' -

between C!-Jffeilt and potential future ranges of over 50% .. The majority (41%~ of expected• 

range shi·fts _wm be in·- :the. eastetl·y -direction~ triggering ~tn~. highest. -species Tosses in 

western South -Africa~ Species listed -as vtilneFable or red:.listed W.tte mote likely to 

experience- changes" in rang!! (a composite measure reflecting range contraction and· 
- . . 

. displacement; 58% and43% respectively). :Erasmus _.et al:, {2002) concluded that the 

majotity of species. wHI :experience a: reduction _as well: as a ~slgniQcan~ clisplacement of 

their -ranges in -response· to projected future c:limate change. These stu<i,ies both· state -that 

thebr results niay be conservative estimates of ,predicted -distribution ·chang~~!_if ~.:.ecies are 
--~ -~~------------~~- -------- -

unable -to track ,projected. climate chan..ges or adapt :@Jehaviourally or physiolegica:Ily) the ... 

impacts could·be mere pronounced :than those estimatedi {Erasinus ei a[;; 2002; 'Thuillet:·et 

al:, 2006) .. ;Despite this,· studies: such·-~ these provide initial estimates of how .climate may 

affec~ ·species across the African. continent These are useful ID!id~s .ofthe scale and type 
. . - . . 

of conservation actiori which is neces~ary to save 'these species, until a time in" the future 
. -: - . - --

. . when more de~ailed data on species interactions and! climate change is coll~ctedi {Th.uiller· 
' ' -

et at, 2006). 
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3.1.1. Objectives 
The modeHing approach used to simulate species' present day distributions using 

bioclimatic variables chosen was previously shown to be robust (Chapter 2.3) In this 

chapter I use these models but apply them to future climate scenarios to investigate how 

species richness, prevalence and overlap between species' current and potential future 

ranges may change by considering to what extent mammalian species win alter their 

distributions in response to projected climate change. This can be used to guide 

conservation action required to limit detrimental effects of climate change on mammal 

species. 

3.2. METHODOLOGY 

3.2.1. Climatic Datasets 

Future climate projections were produced for three different time periods (2020, 2050 and 

2080~ and for three different General Circulation Models (GCMs). The time slice 2020 

refers to the years 2010- 2039; similarly, 2050 refers to the period 2040-2069 and 2080 

refers to 2070 ~ 2099 (liPCC, 2007b). The GCMs used were ECHAM4/0PYC3 (Roeckner 

et al., 1996; ECHAM4), GFDL_R30_c (Knutson et al., 1999; GFDL) and HadCM3 

(Gordon et al., 2000), all utilising the B2 IPCC SRES future emissions scenarios 

(Nakieenovic et al., 2000). The GCM data was obtained from the IPCC Third Assessment 

Repmt (TAR, 2001). The B2 emissions scenario was chosen as it takes an optimistic view 

of change in the future; economic development is at an intermediate level and while 

population is set to increase it will increase at a decreasing rate. Consequently, change 

under the B2 scenario would result in relatively moderate climate change when compared 

to more drastic states closer to the 'business as usual' scenarios ~untley et al., 2006). The 

hottest scenario is A1F1 and the coolest is B1; the B2 scenario lies as an intermediate of 

these scenarios (A2, A1B, B2, A1 T). The IPCC B2 storyline and scenario describes: 

"a world in which the emphasis is on local solutions to economic, social, 

and environmental sustainability. It is a world with continuously 

increasing global population at a rate lower than A2, intermediate levels 

of economic development, and less rapid and more diverse technological 
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change than in the Bl and AI storylines. While the scenario is also 

oriented toward environmental protection and social equity, it focuses on 

local and regional levels" (Kagramanian et al., 2000). 

The three GCMs were chosen because their projections of future global warming are 

approximately 2.5 °C by 2100; this is the modal value of projections from the nine GCMs 

(CGCM1, CCSRINIES, CSIRO Mk2, ECHAM3/LSG, GFDL_R15_a, HadCM2, 

HadCM3, ECHAM4/0PYC and DOE PCM) included by Cubasch et al., (2001). 

Additionally, their predictions of global precipitation change by the year 2100 represent 

'medium' (HadCM3), 'dry' (ECHAM4) and 'wet' (GFDL) scenarios (Huntley et al., 

2006), which will provide scope for investigating the range of potential future 

precipitation changes on the potential distribution of mammals. As with birds (Huntley et 

al., 2006), seasonal changes in precipitation patterns have been shown to be important in 

modelling mammalian species' distributions successfully; length and intensity of dry and 

wet seasons affecting mammals for example, by directly limiting the availability of food 

and/or water (Chapter 2.2). 

For each GCM, precipitation and temperature anomalies between present and future time 

periods were interpolated to 2.5' resolution and applied to the values of the 

WORLDCLIM present-day climate. Data were then re-sampled to a resolution of 0.25° to 

match the resolution of the species datasets. These values were then used to calculate the 

values of the bioclimatic variables used for modelling the potential distribution of each 

species; these variables were 'mean temperature of the coldest month' (MTCO), 'mean 

temperature of the warmest month' (MTW A), 'ratio of actual to potential 

evapotranspiration' (APET) plus the variable which maximised AUC for the current 

climate simulations (totdrydur, totdryint, totwetdur or totwetint) (Chapter 2). APET was 

calculated using data relating to soil water capacity and the calculated daily potential 

insolation (as in Huntley et al. 1995). Bioclimatic variables representing length and 

intensity of the dry and wet seasons were derived using daily values of the ratio of 

precipitation to potential evapotranspiration (PIPE) (Willis et al. 2008). 
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Climate response surfaces were fitted using the species' simulated present day presence

absence points plus and recent climate (Chapter 2) and were used to simulate the potential 

future ranges of each species for each of the nine future climate scenarios. Presence

absence values for species' future distributions were produced by transforming species' 

probabilities of occurrence using the same threshold values (K) obtained when simulating 

the present day species' distributions. 

3 .2.2. Assessing the potential future distributi0ns of African mammals 

3.2.2.1. Species richness 

The sum of species in each 0.25° cell across Africa was calculated for the present-day and 

all nine future scenarios using species' presence-absence data. Mean species richness 

across the continent for all scenarios was calculated as well as the change in species 

richness between the current and nine future scenarios. 

3.2.2.2. Species Prevalence 

Species prevalence describes a species' extent of occurrence. It was obtained by 

calculating the number of 0.25° cells in which a species was simulated to be at present and 

in the nine future scenarios. Changes in species' prevalence were calculated (Le. potential 

future prevalence as a percentage of simulated current prevalence) for the three GCMs for 

each time slice (2020, 2050 and 2080). Individual species- and collective species 

responses were analysed. 

3.2.2.3. Species Range Shifts- in Space and Time 

Size and overlap between current and future ranges were investigated by overlaying 

simulated occurrence under different scenarios and at different time periods. By 

examining range changes at intermediate time points (e.g. 2020 and 2050) rather than just 

at the start and end of the century, it was also possible to look for temporal changes in 

range sizes. In this case, the species might have to be maintained ex situ until a time in the 

future when theclimate becomes suitable again. 
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In order to examine disparity between species current and potential future ranges, every 

0.25° cell where an individual species' current and potential future range overlapped was 

noted. Then for each species individually, the percentage overlap between current and 

future range was recorded; some examples of these were visualised in ArcMap. Collective 

species' responses were also recorded so as to gain an idea of spatial and temporal 

disparity of mammalian species' distributions as a whole as climate changes. 

3.3. RESULTS: Species Responses to Potential Future Climate Change 

3.3 .1. Species Richness 

Average species richness across the African continent decreased from the present day to 

the 2020's (-1.09%), 2050's (-2.78%) and 2080's, with the scenarios for the 2080's 

projecting the highest decrease species richness of 4.41% (HadCM3 = -6.86%, ECHAM4 

= -5.51% and GFDL = -0.87%). These are optimistic estimates as we have made the 

assumption that all species will be able to fulfil their potential future distributions 

(Huntley et al., 2006), so the potential decreases could be greater. For all time periods, the 

GFDL scenarios predict smaller decreases in overall species richness than either the 

HadCM3 or ECHAM4 GCMs (Table 3.1). 

Table 3.1. Simulated species richness across Africa under nine potential future climate change scenarios. 
Species richness is defined as the average number of species per 0.25° cell in Africa. 

Scenario 

Simulated HadCM3B~ ECHAM4B2 GFDLB2 
Current 2020 2050 2080 2020 2050 2080 2020 2050 2080 

Species 
36.24 35.75 35.13 33.75 35.74 34.84 34.24 36.04 35.74 35.93 Richness 

Percentage 
-1.34 -3.06 -6.86 -1.37 -3.87 -5.5!1 -0.55 -1.40 -0.87 Change(%) 

Areas of Africa with highest species richness at present are in Eastern Africa; in countries 

such as Kenya, Tanzania and Uganda. This remains the case in all three future scenarios 

for the 2080s (i.e. highest species richness remains in Uganda). However, species richness 

is projected to decrease in Zambia, Malawi and northern Mozambique when compared to 

the present-day pattern; this is most pronounced under the HadCM3 B2 scenario for 2080 
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(Figure 3.1). Western Africa (e.g. Liberia, Sierra Leone and Guinea) is projected to 

expetience potential decreases in species richness as is much of Northern Sub-Saharan 

Africa (e.g. Cameroon, Central African Republic, southern Sudan and the Democratic 

Republic ofthe Congo). 

Areas of relatively moderate species richness at the northern tip of A:fr.ica (Morocco, 

Algeria and Tunisia) remain fairly similar in the future, as do the relatively low species 

richness areas across North Africa (e.g. Egypt, Mauritania and the northerly parts of 

Malawi, Niger, Chad and Sudan). Conversely, in South-Western Africa (i.e. South Africa 

and Southern Namibia) species richness decreases under all future scenarios for 2080, 

being most pronounced under the ECHAM4 and HadCM3 B2 scenarios. However, 

species richness at the tip of the South African Cape increases slightly (Figure 3.1), 

presumably due to the poleward movement of species in order to track climate conditions 

to which they are adapted. 
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(a) (b) 

• 0-20 
• 21-40 
• 41-60 
• 61-80 
• 81-100 
• 100 + 

Figure 3.1. Simulated current and potential future diversity of African mammals. 

Each 0.25° grid cell shows the diversity of species simulated to be present in each cell . The maps depict 
simulated current (a) and potential future species diversity for the year 2080 (years 2070-99) and under 
the (b) ECHAM4 B2, (c) GFDL B2 and (d) HadCM3 B2 scenarios. The key represents number of 
species in each grid cell . Increasingly darker areas on these maps depict areas of increasing species 
richness. 
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3.3.2. Species Prevalence 
3.3.2.l.lndividual Species Responses 

Simulated-present and potential-future distributions of several species in response to 

predicted climate change are shown in Figure 3.2i to 3.2ix. These figures illustrate the 

potential extent and nature of individual species spatial responses to climate change (see 

appendices for instructions on how to view distributions of all 281 species). For example 

the Lesser Egyptian Jerboa (Jaculus jaculus) is projected to experience large decreases in 

climatically suitable habitat in the Western parts of its range (i.e. Namibia, Angola and 

Zambia) by the 2080s, especially under the ECHAM4 and HadCM3 B2 scenarios (Figure 

3.2i). Whereas the Greater Egyptian Jerboa (Jaculus orientalis) is projected to lose habitat 

currently suitable in Egypt and Libya while sirtmltaneousl,y experiencing increases in parts 

of South Africa (Figure 3.2viii). 

The Common Jackal (Canis aureus) is predicted to have a fairly stable northerly range, 

including the Horn of Africa, while experiencing an increase in climatically suitable 

habitat in Namibia, Botswana and South Africa (Figure 3.2iii). The location of suitable 

habitat for the Bush Pig (Potamochoerus larvatus) remains fairly static, however the 

extent of climatically suitable area is reduced and becomes increasingly fragmented by the 

2080s (Figure 3.2iv). This is similar to the Elephant (Loxodonta africana) which is 

predicted to experience contraction of climatically suitable area southwards from its 

northern range in the Central African Republic and Southern Sudan while the general 

pattern and location of the rest of suitable habitat remains fairly static. 

Some species are predicted to experience massive increases in range, especially by 2080. 

For example, the Red-Bellied Monkey's (Cercopithecus erythrogaster) relative extent is 

predicted to increase by 966% by 2Q80 as it's potential range increases in the easterly 

direction (Figure 3.3). Collectively, over half (n = 144) of the 281 species are predicted to 

potentially experience an increase in extent for at least one future scenario (i.e. over 100% 

of current distribution), whereas sixty-eight species are predicted to potentially experience 

an increase in extent for all nine future scenarios. See Table A2 (appendices) for species' 

projected prevalence at present and under the nine projected future climate change 

scenarios. 
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Figure 3.2i. Simulated current and potential future distribution of the Lesser Egyptian Jerboa (Jaculus 
jaculus). The maps depict simulated current (A) and potential future distribution of J. jaculus for the year 
2080 under the (B) ECHAM4 B2, (C) HadCM3 B2 and (D) GFDL B2 scenarios. Blue/red areas depict 
where the species is simulated to occur, black lines represent country borders. AUC = 0.998. 
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Figure 3.2ii. Simulated current and potential future distribution of the Harvey's Duiker ( Cephalophus 
harvey). The maps depict simulated current (A) and potential future distribution of C. harvey for the year 
2080 under the (B) ECHAM4 B2, (C) HadCM3 B2 and (D) GFDL B2 scenarios. Blue/red areas depict 
where the species is simulated to occur, black lines represent country borders. AUC = 0.986. 
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Figure 3.2iii. Simulated current and potential future distribution of the Common Jackal (Canis aureus). 
The maps depict simulated current (A) and potential future distribution of C. aureus for the year 2080 
under the (B) ECHAM4 B2, (C) HadCM3 B2 and (D) GFDL B2 scenarios. Blue/red areas depict where 
the species is simulated to occur, black lines represent country borders. AUC = 0.982 
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Figure 3.2iv. Simulated current and potential future distribution of the Bush Pig (Potamochoerus 
larvatus) . The maps depict simulated current (A) and potential future distribution of P. larvatus for the 
year 2080 under the (B) ECHAM4 B2, (C) HadCM3 B2 and (D) GFDL B2 scenarios. Blue/red areas 
depict where the species is simulated to occur, black lines represent country borders. AUC = 0.972 
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Figure 3.2v. Simulated current and potential future distribution of the Elephant (Loxodonta africana). 
The maps depict simulated current (A) and potential future distribution of L. africana for the year 2080 
under the (B) ECHAM4 B2, (C) HadCM3 B2 and (D) GFDL B2 scenarios. Blue/red areas depict where 
the species is simulated to occur, black lines represent country borders. AUC = 0.988. 
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Figure 3.2vi. Simulated current and potential future distribution of the Scrub Hare (Lepus saxatilis). The 
maps depict simulated current (A) and potential future distribution of L. saxatilis for the year 2080 under 
the (B) ECHAM4 B2, (C) HadCM3 B2 and (D) GFDL B2 scenarios. Blue/red areas depict where the 
species is simulated to occur, black lines represent country borders. AUC = 0.998. 
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Figure 3.2vii. Simulated current and potential future distribution of the Giraffe ( Giraffa 
camelopardalis). The maps depict simulated current (A) and potential future distribution of G. 
camelopardalis for the year 2080 under the (B) ECHAM4 B2, (C) HadCM3 B2 and (D) GFDL B2 
scenarios. Blue/red areas depict where the species is simulated to occur, black lines represent country 
borders. AUC = 0.942. 
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Figure 3.2viii. Simulated current and potential future distribution of the Greater Egyptian Jerboa 
(Jacu/us orientalis) . The maps depict simulated current (A) and potential future distribution of J. 
orientalis for the year 2080 under the (B) ECHAM4 82, (C) HadCM3 82 and (D) GFDL 82 scenarios. 
Blue/red areas depict where the species is simulated to occur, black lines represent country borders. 
AUC = 0.991 . 
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Figure 3.2ix. Simulated current and potential future distribution of the Marsh buck (Trage/aphus spekii) . 
The maps depict simulated current (A) and potential future distribution of T. speldi for the year 2080 
under the (B) ECHAM4 B2, (C) HadCM3 B2 and (D) GFDL B2 scenarios. Blue/red areas depict where 
the species is simulated to occur, black lines represent country borders. AUC = 0.979. 
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Figure 3.3. Simulated current and potential future distribution of the Red-Bellied Monkey 
(Cercopithecus erythrogaster). The maps depict simulated current (a) and potential future species 
distribution of C. erythrogaster for the year 2080 under the (b) ECHAM4 B2, (c) HadCM3 B2 and (d) 
GFDL B2 scenarios. Blue/red areas depict where the species is simulated to occur, black lines represent 
countrv borders. AUC = 0.997. 
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Conversely, a handful of species are predicted to experience massive range decreases. The 

potential future distributions of five species are predicted to be reduced to zero for at least 

one future scenario {Table 3.2); five others ru:e predicted to occupy less than 10% of their 

simulated present distribution for at least one future scenario. Distribution maps for these 

species are given in Figure 3.4i to 3.4x. These ten species include species already listed as 

vulnerable, endangered or critically endangered in the IUCN red list (IUCN, 2006) such as 

the critically endangered Bushman hare (Bunolagus monticularis) and Walia Ibex (Capra 

walie) (Table 3.2). 

Table 3.2. Species whose potential future distributions are predicted to occupy less than 10% of their 
simulated present distribution (for at least one future scenario (GFDL, ECHAM4, HadCM3 for 2020, 
2050 or 2080)). Extent of occurrence (EO) is expressed as future distribution as a percentage of 
simulated cUJTent distribution either as 0% (0) or less than 10% (<10). Also shown is the current IUCN 
red list categories for each species. 

·Ref. 
Scientific Name Common Name Red List Category EO 

Number 
181 Buno/agus monticularis Bushman Hare Critically Endangered 0 

8 Capra walie Walia Ibex Critically Endangered 0 

7 Capra nubiana Nubian Ibex Endangered 0 

238 Cercopithecus so/atus Sun-tailed Monkey Vulnerable 0 

159 Vu/pescana Steppe Fox Vulnerable 0 

177 Hemiechinus auritus Lon_g_-eared Hedgehog Lower Risk <10 

62 0/capia johnstoni Okapi Lower Risk <lO 

111 Felis chaus Jung1eCat Least Concern <10 

272 Allactaga tetradacty/a Four~toed Jerboa Data Deficient <10 

225 Cercopithecus dryas Dryad Monkey Data Deficient <10 
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Figure 3.4i. Simulated current and 
potential future distribution of the 
Bushman Hare (Buno/agus 
monticu/aris). The maps depict 
simulated current (A and B) and 
potential future distribution of B. 
monticu/aris for the year 2080 under the 
(C) ECHAM4 B2 and (D) HadCM3 B2 
scenarios. (GFDL B2 2080 scenario not 
included as B. monticu/aris is simulated 
to be absent). Blue/red areas depict 
where the soecies is simulated to occur. 

AUC= 1.000 

0 

P=3 

0 

P=6 



Figure 3.4ii. Simulated current and potential future distribution of the Walia Ibex (Capra walie). The 
map depicts only the simulated current distribution of C. walie as this species was simulated to be absent 
for the potential future scenarios for the year 2080. Blue areas depict where the species is simulated to 
occur, black lines represent country borders. 'P' is species prevalence i.e. the number of 0.25° cells the 
species is simulated to be present. AUC = 1.000. 
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P = 49 

Figure 3.4iii. Simulated current and potential future distribution of the Nubian Ibex (Capra nubiana). 
The maps depict simulated current (A and B) and potential future distribution of C.nubiana for the year 
2080 under the (C) ECHAM4 B2 scenario. (HadCM3 B2 and GFDL B2 scenarios not included as 
C.nubiana is simulated to be absent). Blue/red areas depict where the species is simulated to occur, black 
lines represent country borders. 'P' is species prevalence i.e. the number of 0.25° cells the species is 
simulated to be present. AUC = 0.992. 
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Figure 3.4iv. Simulated current and potential future distribution of the Sun-tailed Monkey 
(Cercopithecus solatus). The maps depict simulated current (A and B) and potential future distribution of 
C.so/atus for the year 2080 under the (C) GFDL B2 scenario. (ECHAM4 B2 and HadCM3 B2 2080 
scenarios not included as C.so/atus is simulated to be absent). Blue/red areas depict where the species is 
simulated to occur, black lines represent country borders. 'P' is species prevalence i.e. the number of 
0.25° cells the species is simulated to be present. AUC = 1.000. 
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Figure 3.4v. Simulated current and potential future distribution of the Steppe Fox (Vu/pes cana). The 
maps depict simulated current (A and B) and potential future distribution of V. cana for the year 2080 
under the (C) GFDL B2 scenario. (ECHAM4 B2 and HadCM3 B2 2080 scenarios not included as 
V.cana is simulated to be absent). Blue/red areas depict where the species is simulated to occur, black 
lines represent country borders. 'P' is species prevalence i.e. the number of 0.25° cells the species is 
simulated to be present. AUC = 0.994. 
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Figure 3.4vi. Simulated current and potential future distribution of the Long-eared Hedgehog 
(Hemiechinus auritus). The maps depict simulated current (A) and potential future distribution of H. 
auritus for the year 2080 under the (B) ECHAM4 B2, (C) HadCM3 B2 and (D) GFDL B2 scenarios. 
(ECHAM4 B2 2080 scenario not included as H. auritus is simulated to be absent). Blue/red areas depict 
where the species is simulated to occur, black lines represent country borders. 'P' is species prevalence 
i.e. the number of0.25° cells the species is simulated to be present. AUC = 0.994. 
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Figure 3.4vii. Simulated current and potential 
future distribution of the Okapi ( Okapia johnstoni). 

The maps depict simulated current (A and B) and 
potential future distribution of 0 . johnstoni for the 
year 2080 under the (C) ECHAM4 B2, (D) 
HadCM3 B2 and (E) GFDL B2 scenarios. Blue/red 
areas depict where the species is simulated to occur, 
black lines represent country borders. ' P' is species 
prevalence i.e. the number of 0.25° cells the species 
is simulated to be present. AUC = 0.967 . 
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Figure 3.4viii. Simulated current and potential future distribution of the Jungle Cat (Fe/is chaus). The 
maps depict simulated current (A) and potential future distribution of F. chaus for the year 2080 under 
the (B) ECHAM4 B2, (C) HadCM3 B2 and (D) GFDL B2 scenarios. Blue/red areas depict where the 
species is simulated to occur, black lines represent country borders. 'P' is species prevalence i.e. the 
number of0.25° cells the species is simulated to be present. AUC = 0.980. 
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Figure 3.4ix. Simulated current and potential future distribution of the Four-toed Jeroba (A/lactaga 
tetradactyla). The maps depict simulated current (A) and potential future distribution of A. tetradacty/a 
for the year 2080 under the (B) ECHAM4 B2, (C) HadCM3 B2 and (D) GFDL B2 scenarios. Blue/red 
areas depict where the species is simulated to occur, black lines represent country borders. 'P' is species 
prevalence i.e. the number of0.25° cells the species is simulated to be present. AUC = 0.992. 
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Figure 3.4x. Simulated current and 
potential future distribution of the Dryad 
Monkey (Cercopithecus dryas) . 

The maps depict simulated current (A and 
B) and potential future distribution of C. 
dryas for the year 2080 under the (C) 
ECHAM4 B2, (D) HadCM3 B2 and (E) 
GFDL B2 scenarios. Blue/red areas depict 
where the species is simulated to occur, 
black lines represent country borders. 'P' 
is species prevalence i.e. the number of 
0.25° cells the species is simulated to be 
present. AUC = 0.994. 



3.3.2.2. Collective Species Responses 

The extents of the potential future distributions of the 281 African mammal species 

modelled were slightly reduced when compared to their current distributions; the 

HadCM3 B2 scenario modelled simulated ranges to be on average 6.86% smaller than 

present-day ranges. Those simulated under ECHAM4 B2 simulated ranges showed a 

reduction of 5.51% and those simulated under GFDL B2 showed a reduction of 0.87% 

(Table 3.3). 

Table 3.3. Simulated current and future prevalence, averaged across the 281 species for each potential 
future scenario. 

Scenario 

Simulated HadCM3B2 GFDLB2 ECHAM4B2 
Current 2020 2050 2080 2020 2050 2080 2020 2050 2080 

Prevalence 51151 5082 4994 4798 5,123 5080 5107 5081 4952 4868 
Percentage 

-1.34 -3.06 -6.86 -0.55 -1.40 -0.87 -1.37 -3.87 -5.51 Change(%) 

By 2080, 41% species (n = 114) are expected to have a range size greater than their 

current range. Conversely, 59% species (n = 167) are expected to experience range 

contraction (Table 3.4). 

Table 3.4. Changes in species ranges in response to three ,potential future climate change scenarios. 

Number of Species 

GCM HadCM3B2 GFDLB2 ECHAM4B2 

Year 2020 2050 2080 2020 2050 2080 2020 2050 2080 

Expanded Range Size 118 116 too 124 127 129 111 109 113 

Decreased Range Size 161 165 180 156 154 152 169 171 168 

Constant Range Size 2 0 1 1 0 0 1 1 0 

An examination of the ratio of future projected to current projected range sizes (using 

future· projections for the period 2080-2099 using the HadCM3 GCM~ among species of 

different biogeographic regions (as defined in Figure 2.8) indicated that there were 

systematic differences in the projected relative range size dependent upon the region in 

which a species occurs (ANOV A of relative range size [projected future/projected current 
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range] df = 4,175, F = 4.83, P<0.001, usmg species than only occur in a single 

biogeographic region). An examination of mean relative range size for each biogeographic 

area suggests, on average, range loss for species of southern Africa (biomes 4 & 5 in 

Figure 2.8: mean ratio =0.58 and 0.36 respectively). Those species of central Africa show 

an average increase in potential range extent (biomes 2 & 3 in Figure 2.8: mean ratio = 
1.47 and 1.29 respectively). Species occurring in North Africa show an intermediate 

change in potential range extent (Biome 1: mean ratio = 0.85). Thus it appears that species 

of more xeric biomes (e.g. biomes 1 & 5) are more likely to have reduced range extent in 

the future. However, these results are confounded by the fact that many North African 

desert species have been hunted such that their range extents are now much reduced and 

hence current range limits may not reflect actual climatic limitations. Similarly, because 

there are systematic differences in model performance (as measured by AUC, Figure 2.4) 

between species of differing biogeographic affinities this confounds any attempts to 

generalize as which species will fare best under future climate projections. 
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Figure 3.5. Frequency plot of the relative extent of the potential future distributions of African mammals in 
the year 2080. 
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3.3.3. Spatial Disparity between Species Current and Potential Future 
Distributions 

3.3.3.1. Individual Species Responses 

Over a third of species (n =111) are predicted to have over 90% overlap between their 

current ranges in at least one future scenario; thirty species have over 90% overlap for all 

nine future scenarios. Conversely, forty-three species have less than 10% overlap between 

their current range and future ranges under at least one future scenario; two species have 

less than 10% overlap for all nine scenarios (the Dryad Monkey (Cercopithecus dryas; 

Figure 3.6), and Nubian Ibex (Capra nubiana)). Eighteen species have no overlap 

between current distribution and at least one future scenario. As Figure 3.6 shows, the 

potential future extent of occurrence of the Dryad Monkey is decreased, its range is shifted 

eastwards, and there is no overlap between current and potential future (2080) ranges. See 

Table A3 (appendices) for details of projected overlap between individual species' current 

and projected future ranges. 

B 

c 

D 

Figure 3.6. Current and potential future distribution of the Dryad Monkey (Cercopithecus dryas). Blue 
dots indicate simulated current distribution (A; AUC = 0.994); red dots indicate potential distribution 
under 82 emissions scenarios for the year 2080 (8 is ECHAM4, C is HadCM3 and D is GFDL). The 
right hand side maps (8, C and D) are magnified. 
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3.3.3.2. Collective Species Responses 

On average, the overlap between species' current ranges and their potential future ranges 

decreases from 89.3% in 2020, to 81.7% in 2050 to 75.7% by 2080 (Table 3.5). However, 

by 2080, seventy-three species still have overlap > 90% between their current and 

potential future distributions (Figure 3.7). 

Table 3.5. Summary of overlap between species' current and potential future distributions. Values are 
given for overall change and percentage change for nine potential future scenarios. Overall change is 
defined as the number of 0.25° cells which overlap between current and future scenarios. 

Number of0.25° Cells 

GCM HadCM3 B2 GFDLB2 ECHAM4B2 

Time Period Current 2020 2050 2080 2020 2050 2080 2020 2050 2080 

Overall 5151 4632 4246 3806 4645 4312 4110 4535 4071 3789 

Overlap(%) 89.92 82.42 73 .88 90.16 83.71 79.79 88.02 79.02 73.55 
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Figure 3. 7. Frequency plot of intersection of species simulated current and potential future distributions 
in the year 2080. Intersection is the number of 0.25° cells in which each species' current and potential 
future distribution overlaps, given as a percentage of current distribution. 
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3.3.4. Temporal Disparity between Species Current and Potential Future 

Distributions 

On average, overlap between species' simulated current and potential future distribution 

decreased as time progressed, from 2020 to 2050 and 2080 (Section 3.3.3.2). In all cases, 

species where overlap drops to zero in 2020 or 2050, the overlap remains at zero in 2080, 

suggesting there will be no examples of temporal bottlenecks where there is no suitable 

climate but only for a short period. However, a nurtlber of species saw substantial 

decreases in overlap ~although not to zero) between the present day and the year 2020 (or 

2050) and then subsequent increases in overlap between 2020 and the future scenarios. 

The best example of this is the endangered Sclater's monkey (Cercopithecus sclateri) 

whose overlap between simulated current distribution and future distribution decreased to 

43% in 2020, decreased again to 17% in 2050 but then increased to 73% by 2080 (Figure 

3.8) under the GFDL B2 scenarios. 
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(A) 

(B) 

(C) 

Figure 3.8. Overlap between current and potential future 
distributions of the endangered Sclater's monkey (C. 
sc/ateri). 

Blue squares denote simulated current distribution; yellow 
squares denote potential future distribution (GFDL B2 
scenario for 2020 (A), 2050 (B) and 2080 (C)); green 
squares denote overlap between current and future 
distribution. AUC = 0.999. 
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3.4. DISCUSSION 

Levels of species richness in northern Africa (e.g. Morocco, Algeria, Tunisia and Egypt) 

are predicted to remain fairly constant; although this is may be an artefact of low species 

richness there at present. Similarly, eastern parts of Africa (such as Kenya, Tanzania and 

Uganda) are predicted to remain the most speciose in all future climate change scenarios. 

However, species richness is predicted to decrease in western areas of Africa (such as 

Liberia, Sierra Leone, Guinea, South Africa and Namibia) which may indicate a general 

eastward shift of species' ranges along an aridity gradient towards moister areas in the east 

in response to predicted climate change. In this sense, these results mirror projections by 

Thuiller et al., (2006) and Erasmus et al., (2002) who reported a west-east shift of species 

in response to potential climate change. The shifts predicted in this study were most 

pronounced under the HadCM3 and ECHAM4 scenarios; it is likely that the GFDL 

scenario predicts less distinct movements as it is the 'wettest' future scenario used in this 

study and therefore the aridity gradient is projected to be less pronounced. 

Collectively, overlap between species' current and potential future ranges is predicted to 

decrease as time progresses; by 2020, species' ranges are predicted to overlap current 

ranges by 89.3%, 81.7% by 2050 and only 75.7% by 2080. Species with little (or no) 

overlap between their current and future ranges are at a greater risk of e:x:tinction than 

those with large overlap between ranges. This means the forty-three large mammals whose 

overlap between their current and future ranges is less than 10% (Chapter 3.3.3) may 

become critically endangered in the future. If their current range becomes climatically 

unsuitable, and they are not able to adapt to the potential future changes in climate and/or 

consequently alter their ranges, these species may only be able to occupy those areas 

where current and future ranges overlap (Huntley et al., 2006). This may have serious 

consequences for the survival (both genetic and absolute) of the species. 

A number of species saw substantial decreases in overlap between the present day and the 

year 2020 (or 2050~ and then subsequent increases in overlap between 2020 and the 

2050's and 2080's. The best example of this is the endangered Sclater's monkey (C. 

sclateri) whose overlap between simulated current distribution and future distribution 
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decreased to 43% of its current range in 2020, decreased again to 17% in 2050 but then 

increased to 73% by 2080 (Figure 3.8) under the GFDL B2 scenarios. This could cause 

problems if such species are only expected to maintain viable populations in places where 

areas of suitable climate space overlap. Consequently, if they are unable to maintain viable 

populations until the time in the future when simulated overlap is predicted to be much 

greater, the species may be at risk of local extinction. 

However, it is Fange contraction rather than range overlap which is of most concern with 

regards to the possible future of African mammals (Erasmus et al., 2002; Thuiller et al., 

2006). This is because of the association between range size and extinction risk 

(Jablonski, 1'991; Gaston, 1994). As population size and range size are positively 

correlated, it is expected that as range size decreases population size will decrease too 

(Thuiller et al., 2006). Therefore a reduction in range ·Size could mean species are at a 

higher risk of local extinction (Thomas et al., 2004). This could occur for a number of 

reasons, for example, smaller catastrophic events such as drought or disease outbreaks 

may negatively affect a larger proportion of the population (&asmus et al., 2002). Land 

transformation may additionally increase this risk of extinction (Lawton & May, 1998) 

because the absolute population may be fragmented into smaller sub-populations. Also, 

land transformation may bring humans and wild animals into inCFeasingly close contact 

and possible conflict (ThuiHer et al., 2006). However, for some species human 

intervention is the only opportunity for their survival in the future. For example if a 

species' current and potential future ranges do not overlap, only artificial translocation or 

ex situ conservation will help these species to persist into the future (Huntley et al., 2006). 

Of the 281 species examined in this study, the majority (n ::: 167, 59%) of species are 

predicted to experience range contraction whereas 41'% (n = 111) species are predicted to 

experience range expansion and only a very small number of species (<1%) experienced 

no change. These results are similar but slightly more conservative than those predicted by 

Erasmus et al., (2002) who found 78% species' ranges declined and 17% expanded. It is 

likely that the more conservative results of this study are more robust, as the whole 

climate envelope for each species (rather than just the South African portion), have been 
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taken into account when modelling species' potential future ranges. This probably reflects 

the fact that Erasmus et al. 's area of study was in South Africa - a region whose climate 

is projected to change markedly compared to the average changes across Africa. In 

addition, Erasmus et al., (2002) modelled the distributions of a number of taxon other than 

mammals (birds, butterflies, reptiles and invertebrates) which may show more pronounced 

range contractions than mammals in response to climate change. 

While the majority of species' are predicted to experience reductions of climatically 

suitable habitat, the magnitude of this reduction is relatively small (-4.411% by 2080). This 

is especially so when compared to a similar study by ThuiUer et al., (2006) which 

predicted the mean range contraction of African mammals to be more than four times this 

amount (18%) by 2080. However, this is likely to have arisen because Thuiller et al., 

(2006) used a more severe scenario of potential future climate change (HadCM3 A2 as 

opposed to B2). It is therefore possible that under this more extreme emissions scenario 

we would report similar results; which is the most robust prediction depends on the scale 

of potential future climate change. In addition these estimates are relatively low compared 

to a similar study focussing on birds, which simulated a potential decrease in range of 

approximately 19% for the three GCM scenarios for 2080 (Huntley et al., 2006), although 

this could reflect the more extreme changes in climate forecast at higher latitudes. 

As the extent of occurrence of the 281 species is, on average, predicted to decrease only 

slightly {Chapter 3.3.2) many of these species, especialiy for those with large ranges, are 

likel,y to be able to cope with such a decrease (assuming they can get to the new range, and 

that suitable habitat occurs there). However, the situation may be different for those 

species which depend on slow growing and restricted habitats such as tropical forest, 

which may not be present in the future and is unlikely to rapidly spread to newly suitable 

areas. Additionally, those species whose current ranges are already quite small (e.g. the 

sun-taHed monkey (C. solatus) or the red duiker (C. ru.bidus)), as well as those species 

who are already listed as threatened (vulnerable, endangered or critically endangered> in 

~he IUCN red list (IUCN, 2006) will also be at a greater risk of extinction; any decrease in 

their already small ranges could prove disastrous due to the negative correlation between 
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range size and extinction risk (Gaston, 1994). However, those species with large decreases 

in extent of occuuence that also simultaneously experience small overlaps between 

current and future distributions are at the greatest risk of extinction. For example, the ten 

species who were predicted to have prevalence of <10% of their cuuent distribution 

('Fable 3.2) all occupy relatively small current ranges and half of them are already listed as 

threatened in the IUCN red list (IUCN, 2006). In addition, these ten species all have less 

than 10% overlap between their current and future (2080) ranges. 

Three GCMs (which contrasted in their precipitation projections) were chosen in this 

study because other studies found moisture availability to be important when modelling 

potential distribution of species in Africa (e.g. Huntley et al., 2006). Indeed, the scale of 

potential impacts of climate change on African mammals was found to change depending 

on which future climate change scenario was used. For example, when comparing the 

results of this study to Thuiller et al. 's (2006), one concludes that the A2 SRES emissions 

scenario will have a more dramatic effect upon mammal species in Africa than change 

under the B2 SRES emissions scenario. Additionally, differences between GCMs were 

also shown to result in differing projections of impacts of climate change on mammal 

species. As these GCMs differ in their projections of precipitation in the future, it is likely 

that moisture availability is a key factor in determining species distributions. More 

specifically, the wettest scenarios (GFDL) consistently projected smaller potential 

decreases in species' prevalence and overlap than the HadCM3 and ECHAM4 models. 

This indicates that 'drying' in particular, will be detrimental to mammalian species; most 

probably via negative impacts of decreased precipitation on vegetation growth. These 

findings therefore defend the decision of choosing these models (as well as precipitation 

variables) in this study. 

The impacts of climate change on African mammals vary between species, with some 

(such as the red-bellied monkey, C. erythrogaster) potentially benefiting from climate 

change while others (such as the bushman hare, B. monticularis) will be potentially quite 

severely affected. However, the majority of species are predicted to experience decreases 

in their absolute range size as well as simultaneous decreases in overlap between their 
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current and potential future ranges. These estimates are likely to be conservative, because 

the likelihood is that some species may not be able to realise their potential future ranges. 

We have assumed 'unlimited dispersal' i.e. species will be unobstructed from tracking 

changes in climate. This is highly unlikel,y as human pressures are expected to increase in 

the future, with the likelihood that land transformation will increase as well as the 

interactions between humans and wild animals. Many of the large mammals in this study 

can pose threats to humans, be it directly or indirectly for example the use of resources 

saved for domestic livestock such as water and pasture (Thuiller et al., 2006). It is 

therefore likely that as species move to track climate changes they will come under 

increased persecution by humans, thereby increasing the risks of local extinctions. In 

addition, this study has only looked at the effect of climate change on the distribution of 

African mammals, and while climate has been shown to be important in predicting 

species' potential future distributions it is likely that other factors may play an important 

role too. For example, changes in land-use may cause additional species loss, particularly 

those species resident in tropical countries (Jetz et al., 2007). In order to reduce these 

possible impacts one must work hard to protect these species through efforts such as 

increasing the extent of the protected area network, educating the public about the 

predicted plight of these animals, but also primarily to reduce climate change in the future 

(Jetz et al., 2007). 
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CHAPTER FOUR: Projected Impacts of Climate Change m African 
Protected Areas 

4.1. INTRODUCTION: Protected Areas 

The World Conservation Union (IUCN) defmes a protected area (PA) as: 

"an area of land and/or sea especially dedicated to the protection and 

maintenance of biological diversity, and of natural and associated 

cultural resources, and managed through legal or other effective 

means,, (IUCN, 1994). 

PAs are consequently regarded as the most important and effective means of in situ 

conservation of biodiversity (Bruner et al., 2001; Burns et al., 2003; Rodrigues et al., 

2004; Thuiller et al., 2006). However, in addition to maintaining biodiversity, PAs are 

managed for other roles concurrently for example education, research, tourism, recreation, 

and to maintain cultural integrity. As a consequence, huge amounts of resources are 

ploughed into the establishment and maintenance of PAs (Green & Pain, 1997). 

The IUCN have grouped PAs into seven broad categories based on how each area is 

managed ranging from category la (strict nature reserves) which are managed first and 

foremost for scientific research and environmental monitoring, to category VI (managed 

resource PAs) which are mostly unmodified natural habitats managed with both the 

protection of biodiversity and the provision of resources to local communities in mind. In 

this study, PAs will be defmed as those which fall into management categories la to VI 

(Table 4.1 ). 

Table 4.1. Protected Area Management Categories, taken from IUCN .(1994). 

Category Defmition 
la Strict Nature Reserve 
lb Wilderness Area 
11 National Park 
Ill Natural~onunnent 

IV Habitat/Species ~anagement Area 
V Protected Landscape/Seascape 
VI ~anaged Resource Protected Area 
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Y ellowstone National Park, USA, (established in 1872) was the first P A of the modem 

era. Since then, the number, size and extent of PAs worldwide has grown rapidly, 

especially in the past few decades (Figure 4.1). In 1993 the meeting of the IUCN Fifth 

World Parks Congress in Durban, South Africa set a target that 10% of each nation should 

be protected (IUCN, 1993). By 2003, this was surpassed in nine of fourteen terrestrial 

biomes, with a total of 11.5% of the world's surface designated as protected (Chape et al. , 

2003). 
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Figure 4.1. Growth in the Number and Extent of Protected Areas from 1900 to 1990. Taken from Eagles et 
al., (2002). 

Table 4.2. Number, area and extent of Protected Areas within Africa (Green & Pain, 1997). 

Total 

Region AreaofRegion(Kinl) Number Extent(%) 

North Africa/Middle East 12,866,541 542 8.06 

Africa (Western/Central) 12,352,849 343 5.66 

Africa (Eastern/Southern) 10,773,580 927 12.24 
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Matching the global trend of an increase in the number and size of PAs, PAs within Africa 

have also grown immensely over the past century; from being virtually absent llO years 

ago to covering over two million km2 today (Table 4.2; Burgess et al., 2007). The large 

increase in area protected in Northern Africa was due a small number of extensive PAs 

being created (Green & Pain, 1997). New governmental policies have also helped with the 

creation and expansion of reserves. For example, the Government of South Africa created 

a new property rates bill which exempts PAs from land taxes thereby allowing this money 

to remain within the PA's control for other purposes such as biodiversity conservation. 

Since this bill, five new national parks in South Africa have been established covering a 

total of 130,000 hectares. This has pushed the total of land protected in South Africa from 

6.6% to over the IUCN target of 10% (IUCN, 2003). However, while the IUCN target is 

met in South Africa (and Eastern Africa) it is not reached in Nonh Africa and 'Western & 

Central' Africa, where only 8.06% and 5.66% land is protected respectively (Green & 

Pain, 1997). 

There is much debate as to the feasibHity and effectiveness of the IDCN's (1'993) target; 

it has been criticised for being too uniform as it does not take into account each country's 

ability (or indeed aspiration) to meet such targets (Rodrigues et al., 2004). Others believe 

this target is insufficient (e.g. Soule & Sanjayan, 1998) but in spite of this there has still 

been little debate as to what would constitute a more appropriate target (Rodrigues et al., 

2004). One thing is for certain, PAs will only remain effective at maintaining biodiversity 

if they are able to encapsulate species' potential future t:anges as climate changes 

(Hannah et al., 2007). Therefore in order for PAs to preserve biodiversity as climate 

changes, P A networks need to represent those species for which they were designed to 

protect at present, as well as protecting newly colonising species for which PAs become 

climatically suitable. PAs must therefore be sufficiently large and connected to guarantee 

species persistence in the PA network in the future (Rodrigues & Gaston, 2001 ). 

While the establishment of new PAs and the expansion of existing ones have been driven 

by the desire of protecting and increasing wildlife abundances, there is some debate as to 

how successful these PAs have been in protecting biodiversity (Johannesen, 2007) with 

some studies suggesting that many PAs already do not fully or efficiently achieve this 
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(Hannah et al., 2007). As the majority of PAs have been established according only to 

political feasibility and space availability (Hannah et al., 2002) the dynamic nature of 

either the climate or the distribution of species they were built to protect has not been kept 

in mind (Araujo et al., 2004; Hannah et al., 2002; McClean et al., 2006). 

Species are predicted to respond to changes in climate individualistically and in one of 

several ways: by adaptation to the new climate, by movement of their ranges to track 

climatic conditions to which they are suited or, if neither of these is possible, the species is 

likely to be driven to extinction. Species richness and composition within PAs is therefore 

expected to be altered as climate changes (Midgely et al., 2002; Bums et al., 2003; 

Hannah & Salm, 2003). 

As the majority of species' responses to climate change are expected to be spatial 

(Huntley et al., 2006), the effectiveness ofPA networks in safeguarding the future of these 

species comes into question (Bums et al., 2003), especially as a large number of PAs have 

not been designed with the dynamic nature of the climate, or species ranges, in mind. As 

climate changes, species may shift their ranges out of PAs if these areas become 

climatically unsuitable (Hannah et al., 2007). Equally, new species may enter a PA if the 

previously unsuitable climate within the PA becomes suitable in the future (Peters & 

Darling, 1985), Another response, which relies heavily on the connectedness of PAs, is for 

a species to exchange a PA in its current range for one that becomes climatically suitable 

in the future (Hannah et al., 2005). In every case, the community composition of PAs in 

the future will almost certainly be altered (Hannah et al., 2005). In addition, due to the 

fixed nature of PAs many of these are becoming increasingly isolated due to human

associated activities (e.g. habitat destruction, encroachment) which are set to increase in 

the future as the human population grows (Cl, 2006). This could have serious negative 

impacts on both the species within- and the economic revenue of the PAs, especially if 

climate within the PA becomes unsuitable in the future for charismatic or keystone species 

which hold either ecosystem or economic roles within the P A. 

In recent years, there have been a number of multispecies modelling efforts looking into 

the impacts of climate change on the selection and efficiency of PAs for maintaining 

biodiversity (e.g. Lemieux & Scott, 2005; Williams et al., 2005; Abellan et al., 2007). 
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Studies such as Hannah et al. (2005) used bioclimatic modelling to calculate the effect of 

climate change on species composition within PAs. This is possible because as climate 

changes, species' range boundaries are expected (and have been shown) to move; one can 

therefore determine if this movement will result in species moving out of (or into) a P A. 

A number of studies report that PAs across the world, from Europe and America to 

Africa and Australia, are not expected to fully protect the species for which they were 

designed (e.g. Burns et al., 2003; Araujo et al., 2004). Burns et al. (2003) found that the 

eight United States PAs they studied stood to lose up to 20% of their current mammalian 

species diversity, and that the average loss for these parks was projected to be 8.3% under 

a scenario of a doubling of carbon dioxide levels. Araujo et al. (2004) found that the 

European reserve system, which is geared towards protecting species' current ranges, is 

predicted to lose between 6 and 11% of species within its boundaries within fifty years as 

climate (and therefore species distribution) changes, Furthermore McDonald & Brown 

(1992) predicted that 9- 62% of mammal species living in inontane regions ofthe Great 

Basin of the USA will be lost with a warming of 3 oc, 

Studies focussing on African PAs have also predicted a progressive loss of species 

representation in PAs ( e.g, Hannah et al. (2005) in the Southern African Cape). On a finer 

scale, Erasmus et al. (2002) reported that the flagship Kruger National Park, South Africa, 

could lose up to 66% of the 179 animal species included in their analysis under a doubling 

of C02 (and therefore a mean temperature increase of 2°C). A more recent study by 

Hannah et al. (2007) using predictive species' distribution modelling found that under the 

HadCM3 Al emissions scenario for the year 2050, the majority of species' future ranges 

were represented within PAs in the three regions studied (Mexico, ·the South African Cape 

and Western Europe). However this included the assumption that supplementary areas to 

compensate for species' range changes would be added to the existing PA network. Even 

under the moderate HadCM3 A 1 future climate scenario, 11% of species studied in the 

South African Cape were not fully represented within the P A network in 2050 (Hannah et 

al., 2007). Furthermore, Rutherford et al. (1999) reported that the Succulent Karoo and 

Cape Floristic Regions of South Africa will experience major vegetation shifts; a doubling 

of carbon dioxide resulting in a loss of up to 80% of the succulent karoo range. In a mm:e 
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recent study by Rutherford et al. (2000), five parks in South Africa were projected to lose 

more than 40% of their plant species. 

As the area needed to maintain and protect current species diversity within PAs in the 

future is la.Fger than area of PAs now, studies suggest the expansion/creation of PAs will 

be needed to maximise the conservation of species diversity in the face of climate change 

(Hannah & Salm, 2003; Hannah et al., 2007). The view widely held is that premeditative 

action based on climate model predictions and direct observations will be both better for 

species (i.e. by avoiding species extinctions (Hannah et al., 2002)) and less costly in the 

long run when compared to restorative action (Hannah et al., 2007). 

4.1.1. Objectives 

As the modelling approach to be used in this study has been shown to be robust (Chapter 

2.3) we can have some confidence in applying it to assess the ability of the cw:rent 

network of African PAs to protect mammalian species diversity under a number of future 

climate scenarios. It is recognised that other modelling approaches may produce different 

results (Araujo & New, 2006; Pearson et al., 2006), and therefore ideally multiple models 

and scenarios should be used (i.e. ensemble forecasting). However due to the limited time 

available to complete this study, I use one modelling technique with multiple climate 

change scenarios. In this chapter I investigate how mammalian species richness, 

persistence and turnover may change in African PAs (IUCN categories I to VI) by 

considering to what extent mammalian species will alter their distributions in response to 

predicted climate change. 
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4.2. METHODOLOGY 

4.2.1. Protected Areas Data 

Data relating to the location, sizes and World Conservation Union (IUCN) classifications 

of PAs worldwide were downloaded from the World Database on PAs (http://sea.unep

wcmc.org/wdbpal, WDP A, 2006) as shapefiles in order to be viewed in ArcMAP (ESRI, 

2003). Only those shapefiles for PAs which fell within the African continent were 

included. This amounted to 900 PAs in total; the majority of these being national parks (n 

= 216), nature reserves ~n = 191), state forests (n = 81) and game reserves (n =59). These 

PAs fell into IUCN PA management categories, I to VI (Table 4.1). 

Longitude-latitude coordinates for the PAs were obtained by firstly buffering the African 

PA polygons by 0.125° in all directions in ArcMap (ESRI, 2003) and then spatially 

joining (i.e. appending the fields of the buffered PA polygons to those of the 

corresponding quarter-degree cells; Breslin et al., 1999) these polygons to longitude

latitude (0.25°) points for the whole of Africa. PAs were buffered in order to maximise the 

number ofsmaHer PAs (e.g. GroenkloofNational Park, South Africa) included in the later 

analyses, and allowing the calculation of species loss/gain in the core area of each park 

(Burns et al., 2003). Subsequently, the number of quarter-degree cells which fell within 

the buffered protected areas totalled 4877. Seven-hundred and seventeen PAs were 

subsequently included in this analysis (see appendices Table A4); the other 183 PAs in 

Africa were overlapping another PA already included (e.g. the Kafue Flats Game 

Management Area, Zambia, which holds the Blue Lagoon National Park within its 

boundaries). 

4.2.2. Species Richness in African Protected Areas 

The total number of species in each 0.25° cell across Africa has already been simulatedfor 

the current- and nine future scenarios (Section 3.3.2.1). Subsequently, the total number of 

species in each 0.25° cell within protected areas was calculated. Mean species richness for 

all scenarios for each PA was then calculated by summing predicted presence for all 

species in each PA. Changes in species richness between current and the nine future 

scenarios were then calculated. 
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4.2.3. Species Turnover in African Protected Areas 

Species turnover is a measure of community disruption (Thuiller, 2004). Areas with high 

turnover indicate where community composition differs markedly between the present 

time and the projected future (i.e. 2080) climate change scenario. It is presumed that 

where simulated turnover is high, future climate change will have its greatest effect. 

The number ofcolonisers and emigrants in each P A was calculated, as well as the number 

of species present in each PA both at present and in the future (the time period 2080) (in 

order to calculate the total number of species which the P A is simulated to be climatically 

suitable for, in the present and future). Species turnover in PAs was then calculated using 

the equation given below: 

Turnover~ ((I,C+I,E )/(I,P+I,F))*lOO 

Where C = the potential colonisers of that area (i.e. species for which the climate becomes 

suitable in the future) 

E :::; the simulated emigrants of that area (i.e. species for which the climate 

becomes unsuitable in the future) 

P = the total number of species for which the PA is simulate climatically suitable 

in the present 

F = the total number of species for which the PA is simulated climatically suitable 

in the future. 

Jaccard similarity coefficients (Jaccard, 190;1) were calculated to compare similarity and 

diversity between outputs of the three GCM scenarios (in 2080) using the equation below: 

Jaccard similarity coefficient = a 

(a+ b +c) 

Where a = the number of taxa simulated in a P A in both periods (e.g. currently and in 

2080) 

b = the number of taxa simulated in a P A in the present only 
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c = the number of taxa simulated in the future only. 

Possible values range from 0 to 1, where 0 represents communities with totally different 

spectes lists, and 1 represents communities with identical species lists (Amott et al., 

1999). 

4.2.4. Species Persistence in African Protected Areas 

Species persistence (i.e. the survival of the species in each PA between now and the 

potential future scenario) can be defined using the equation below: 

Persistence = (I,B I I,P)*lOO 

Where B is the number of species for which the climate is suitable in the present as well as 

the future and P is the number of species in the P A at present. If species persistence is 

high, the complement of species within the P A at present is predicted to be similar to 

community composition in the future. Persistence was calculated using the equation given 

above. 

Values of average persistence and turnover for each P A across the three GCMs for the 

year 2080 were placed into one of five classes (0 - 20%, 20 - 40%, 40 - 60%, 60 - 80% 

or 80- 100%) and visualised in ArcMAP (ESRI, 2003). Instructions on how to visualise 

individual species' present day and projected future distributions in ArcMap can be found 

in the appendices (page 182). 

As there is some variability between outputs of the three GCMs used in this study, values 

of species turnover and species -persistence were averaged across these three GCMs for the 

year 2080 and were expressed as mean, median and range of the three scenarios. 
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4.3. RESULTS 

4.3.1. Species Richness in African Protected Areas 

Current species richness in PAs is simulated to be higher than areas of Africa which are 

currently not protected (on average (mean) 47 species per quarter degree cell in PAs 

compared to 36 species per cell across the whole of Africa) (t = -40.09, df ::::: 6522, p = < 

0.001; equal variances not assumed). By 2080, the reduction in species richness within 

quarter-degree cells enclosed by PAs is projected to be greater (-7 .18%) than the reduction 

in species richness within all quarter-degree cells across the African continent (-4.41 %; 

Table 4.3). 

Table 4.3. Changes in species richness across the whole of Africa and in African PAs under nine potential 
future climate scenarios. 

SCENARIO 

Simulated HadCM3 B2 ECHAM4B2 GFDLB2 
Current 2020 2050 2080 2020 2050 2080 2020 2050 2080 

Overall Species 
Diversity Across 

36.24 35.75 35.13 33.75 35.74 34.84 34.24 36.04 35.74 35.93 
Africa 

Percentage -1.34 -3.06 -6.86 -1.37 -3.87 -5.51 -0.55 -1.40 -0.87 
Change(%) 

Species Diversity 46.66 45.53 44.21 42.13 45.41 43.46 42.41 46.11 44.96 45.38 
within PAs 

Percentage -2.42 -5.25 -9.70 -2.68 -6.86 -9.10 -1.19 -3.65 -2.75 
Change(%) 
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4.3.2. Species Turnover in African Protected Areas 

Mean projected turnover of species in the 717 PAs included in this analysis increases from 

10% by 2020, to 18% by 2050, up to 26% by the year 2080 (see appendices Table A2; 

Figure 4.2). Median projected turnover in PAs by 2080 is 21 % (18 - 21%; Figure 4.3). 

There were significant differences in species turnover calculated using the three GCMs 

(Huynh-Feldt repeated measures ANOVA; F = 44.62, dj = 2, p < 0.001); the ECHAM4 

B2 scenario projected a slightly higher mean species turnover (25%) than the other 

scenarios (HadCM3 B2 = 23%, GFDL B2 = 20%; Figure 4.3). However, Jaccard 

similarity coefficients comparing similarity between outputs of these three GCM scenarios 

(in 2080) indicate a high level of agreement among the GCM scenarios (Table 4.4). 

Therefore, despite differences in turnover, community composition within individual PAs 

is predicted to be fairly similar between GCM scenarios for the year 2080. 
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Figure 4.2. Frequency distribution of turnover in PAs averaged across three future climate scenarios 
(ECHAM4 B2, HadCM3 B2 and GFDL B2) for the year 2080. 
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Figure 4.3. Predicted species turnover (%) within African PAs for three future climate scenarios 
(HadCM3, ECHAM4 and GFDL) B2 for the year 2080. Median values are indicated by the bold black 
horizontal line; upper and lower quartiles are denoted as the ends of the boxes; maximum and minimum 
values are represented by whiskers; outliners (values ~ 1.5 $ three box lengths from the ends of the box) 
are given as circles; and extreme values{> 3 box lengths away) are given as asterisks. 

Table 4.4. Jaccard similarity coefficients between ' expected ' species inventories across all PAs used in 
this study for three future climate scenarios for 2080. Possible values range from 0 to 1, where 0 
represents communities with totally different species lists, and 1 represents communities with identical 
species lists (Arnott et al., 1999). 

GCM Jaccard Similarity Coefficient 
HadCM3 0.63 
ECHAM4 0.62 
GFDL 0.67 
Mean 0.64 
Median 0.63 
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By the 2020's, the majority of PAs have relatively low species turnover (Figure 4.6); only 

a few PAs have turnover of over 20%. However, by the 2050's turnover in PAs has 

increased in a large number of PAs, especially in southern Africa (Figure 4.5). This 

situation seems to remain fairly stable by the 2080's (Figure 4.4). 

By 2080, the PAs with highest median turnover are Augrabies Falls National Park (78%; 

X= 93%), Hardap Dam (69%; X= 83), Witsand (65%; X= 75%), Molopo Green Belt 

~65%; X= 75%) and the Kalahari Gemsbok Park (64%; X= 75%). With the exception of 

Hardap Dam (Namibia), these PAs are located within South Africa. Conversely, areas 

with the lowest simulated turnover were Boukornine (1 %; X = 1%), W du Niger ( 1 %; X = 

1%) Cape Mount (2%; X = 2%) and Tamou (2%; X = 2% ). These PAs are in Tunisia, 

Niger, Liberia and Niger respectively (Table 4.5; Table A2). These results indicate that 

species turnover is not distributed evenly within PAs across the African continent. This is 

demonstrated visually in Figure 4.4. For example, PAs in Botswana, Namibia and 

Northern South Africa are projected to have the highest species turnover, especially areas 

such as the Kgalagadi Transfrontier Park and the Augrabies Falls National Park (dark blue 

areas in Figure 4.4). Whereas PAs in North Africa, North Western Africa, Ethipopia, 

Kenya, Tanzania and Milawe are predicted to have low species turnover in 2080 (Figure 

4.4). 

Areas with highest turnover have relatively high numbers of species gain (colonisers) and 

loss (emigrants) (Table 4.5) therefore turnover is not a function of low species richness. 

Conversely, areas with lowest turnover in 2080 have low number of species gain and loss 

but higher species richness at the present time. 
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Table 4.5. Summary of number of colonisers, emigrants, number of species and turnover in selected 
PAs. PAs were selected to demonstrate those with either high or low predicted turnover for possible 
future climate scenarios in the year 2080. 

Protected Area 
Number of 

GCM Number of Number of Median 
Species Colonisers Emigrants Turnover(%) 

Currently 

Augrabies Falls 32 HadCM3 11 28 83 

ECHAM4 10 27 79 

GFDL 13 25 73 

HardapDam 32 HadCM3 10 27 79 

ECHAM4 12 26 76 

GFDL 16 17 52 

Kalahari Gemsbok 38 HadCM3 14 32 79 

ECHAM4 14 31 76 

GFDL 14 14 37 

Witsand 33 HadCM3 10 27 76 

ECHAM4 13 25 70 

GFDL 7 19 48 

Molopo Green Belt 36 HadCM3 13 27 69 

ECHAM4 13 27 69 

GFDL 10 23 56 

Boukomine 22 HadCM3 0 0 0 

ECHAM4 0 0 0 

GFDL 1 0 2 

W du Niger 44 HadCM3 0 0 0 

ECHAM4 0 1 1 

GFDL 1 1 2 

Cape Mount 46 HadCM3 0 0 0 

ECHAM4 5 0 5 

GFDL 0 0 0 

Tamou 45 HadCM3 0 1 1 

ECHAM4 0 2 2 

GFDL 1 1 2 
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Figure 4.4. Predicted species turnover(%) in African protected areas by 2080. Turnover in each PAis 
calculated as the mean turnover of species under the three GCM scenarios for the year 2080 (see 
appendices Table A4). These values were placed into one of five distinct classes (see key), with darker 
colours representing higher predicted turnover. NB in this case there were no PAs with turnover in the 
class 81- I 00%. 
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Figure 4.5. Predicted species turnover (%) in 
African protected areas by 2050. Turnover in 
each P A is calculated as the mean turnover of 
species under the three GCM scenarios for 
the year 2050 (see appendices Table A4). 
These values were placed into one of five 
distinct classes (see key), with darker colours 
representing higher predicted turnover. NB in 
this case there were no PAs with turnover in 
the class 81 - 100%. 
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Figure 4.6. Predicted species turnover (%) in 
African protected areas by 2020. Turnover in 
each P A is calculated as the mean turnover of 
species under the three GCM scenarios for 
the year 2020 (see appendices Table A4). 
These values were placed into one of five 
distinct classes (see key), with darker colours 
representing higher predicted turnover. NB in 
this case there were no PAs with turnover in 
the class 61-80 or 81-100%. 
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A Spearman's Rank Correlation indicates a significant negative association between size 

(area in Hectares) of P A and species turnover; suggesting larger protected areas have 

slightly lower levels of species turnover than smaller ones ~r = -0.2110, df = 716, P < 

o.om, Figure 4.7). 
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Figure 4.7. Scatter diagram of the relationship between species turnover and log area (measured in 
Hectares) of protected areas in Africa. 
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4.3.3. Species Persistence in African Protected Areas 

Mean projected persistence of species in the 717 PAs included in this analysis is 81% by 

2080. Persistence in PAs then decreases to 74% by the 2050s before increasing to 79% by 

2080 (see appendices Table A4; Figure 4.8). Median persistence by 2080 is 84% (82-

86% ). There were significant differences in species persistence calculated using the three 

separate GCMs (Huynh-Feldt repeated measures ANOVA; F = 53.82, df = 2, p < 0.001); 

the GFDL B2 scenario projected higher median persistence (86%) than the other scenarios 

(ECHAM4 B2 = 83%, GFDL B2 = 82%) (Figure 4.9). 
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Figure 4.8. Frequency distribution of turnover in PAs averaged across three future climate scenarios 
(ECHAM4 B2, HadCM3 B2 and GFDL B2) for the year 2080. 

Results indicate that persistence follows an inverse geographic pattern to species turnover, 
i.e. areas with highest turnover have low persistence (Table 4.6) and vice versa (Figure 
4.10, compare to Figure 4.4). 

Table 4.6. PAs where species turnover is high and persistence is low. Values for species turnover and 
persistence are averaged across three GCMs (HadCM3, ECHAM4 and GFDL) for the time period 2080. 

Protected Area Persistence (%) Turnover(%) 

Augrabies Falls 16.67 78.26 

Hardap Dam 27.08 69.03 

Kalahari Gemsbok 32.46 64.14 

Molopo Green Belt 28.70 64.62 

Witsand 28.28 64.68 
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Figure 4.9. Predicted species persistence (%) in African PAs for three future climate scenarios 
(HadCM3, ECHAM4 and GFDL) B2 for the year 2080. Median values are indicated by the bold black 
horizontal line; upper and lower quartiles are denoted as the ends of the boxes; maximum and minimum 
values are represented by whiskers; outliners (values~ 1.5 $ three box lengths from the ends of the box) 
are given as circles; and extreme values (> 3 box lengths away) are given as asterisks. 

Figures 4.10, 4.11 and 4.12 depict the location and extent of species persistence in PAs in 

2080, 2050 and 2020 respectively. By the 2080's a large number of PAs have high levels 

of species persistence (i.e. over 60% persistence; Figure 4.1 0). There are five PAs which 

are projected to retain suitable climate for all species resident at present (i.e. 100% 

persistence); these are Boukornine Mountain Nature Park, Cape Mount Nature Reserve, 

Chambi National Park, El Kala National Park and Gadabedji Faunal Reserve (Table 4.7). 

These PAs are located in northern and western Africa (Table 4.7). However, in Southern 

Africa there are a number of PAs with relatively low species persistence (i.e. <40% 

persistence; Figure 4.1 0); examples include Augrabies Falls ( 17%; X = 17% ), Hardap 
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Dam (27%; X= 27%), Witsand (28%; X= 28%), Molopo Green Belt (28%; X= 29%) and 

the Kalahari Gemsbok Park (32%; X= 32%). 

Table 4. 7. Protected areas chosen with predicted persistence of 100% by the year 2080. (B) is the sum of 
species for which the climate is suitable in the present as well as the future and (P) is the sum of species in 
the protected area at present. 

Protected Area Location Number of Species Currently (P) Present and Future (B) 

Boukomine Tunisia 22 22 

Cape Mount Liberia 46 46 

Chambi Tunisia 20 20 

El Kala Algeria 21 21 

Gadabedji Niger 23 23 

0 - 20 
• 21-40 
• 41-60 
• 61 - 80 
• 81-100 

Figure 4.10. Predicted species persistence(%) in African protected areas by 2080. Persistence in each PA 
is calculated as the mean persistence of species under the three GCM scenarios for the year 2080 (see 
appendices Table A4). These values were placed into one of five distinct classes (see key), with darker 
colours representing higher predicted persistence. 
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Figure 4.11 . Predicted species persistence(%) in 
African protected areas by 2050. Persistence in 
each P A is calculated as the mean persistence of 
species under the three GCM scenarios for the 
year 2050 (see appendices Table A4). These 
values were placed into one of five distinct 
classes (see key), with darker colours representing 
higher predicted persistence. 
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Figure 4.12. Predicted species persistence(%) in 
African protected areas by 2020. Persistence in 
each P A is calculated as the mean persistence of 
species under the three GCM scenarios for the 
year 2020 (see appendices Table A4). These 
values were placed into one of five distinct 
classes (see key), with darker colours representing 
higher predicted persistence. 
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A Speannan•s Rank Correlation indicated there was a slight significant positive 

associatien between P A size and species persistence; a larger protected area having a 

slightly higher species persistence (r = 0.048, df = 716, p < 0.05) ('Figure 4.13). 
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Figure 4.13. Scatter diagram of the relationship between species persistence and log area (measured in 
Hectares) of protected areas in Africa. 
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4.4. DISCUSSION 

Species' range boundaries have already been observed to be shifting in response to 

contemporary climate change (see Chapter 1.1.2.1). Consequently there is the potential for 

species ranges to move out of (or into) protected areas which would mean that as climate 

changes, species richness and composition within PAs will change (Hannah et al., 2007). 

Mean projected turnover of species within African PAs is projected to increase from 10% 

by 2020, to 18% by 2050, to 26% by 2080. At the same time, mean species persistence 

within PAs is predicted to be fairly high in all future scenarios; 81% in 2020, 74% in 

2050, and 79% by 2080. These results are similar to work on avian species richness in 

African Important Bird Areas (IBAs) by Hole et al., (unpublished) which predicted 

species turnover within IBAs of 10- 12% by 2025, and 20- 25% by 2085. They also 

predicted that avian species persistence within IBAs will remain high (75- 81%), even 

under late 21st Century predictions of climate change. Subsequently, on the whole the 

African P A network seems to be robust in the face of predicted climate change. However, 

species turnover (and persistence) will be unevenly spread across the P A network; by 

2080, PAs in South Africa and Namibia are projected to experience the high turnover (64 

~ 78%) while PAs in Tunisia, Niger, Liberia and Niger experience the low turnover (1 -

2%). As high turnover indicates that community composition will differ markedly 

between the present and the projected future scenario, this would suggest that PAs in 

South Africa and Namibia will be affected most by climate change. Similarly, Thuiller et 

al., (2006) predicted that national pmks in South-Western African will be the most 

sensitive to climate change; with parks such as the Kalahari Gemsbok Park and Tassili 

N' Aijer experiencing high numbers of mammalian species losses (approximately 50%) 

and little immigration (approximately 10%). Like this study, Thuiller et al., (2006) 

simulated that the Kalahari Gemsbok Pmk will experience high turnover of mammal 

species by 2080; although we predict this park will have more colonizers and less 

emigrants than ThuiHer et al. did. This could be due to the fact that Thuiller et al. used 

only one GCM (HadCM3) while our study calculated turnover as the mean of three 

different GCM outputs (HadCM3, GFDL and ECHAM4), as well as a different emissions 

scenarios (A2 and B2 rather than just B2). Consequently, average turnover in this study 

may be a better estimate than Thuiller et al. 's. 
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The results of this study suggest that species richness within protected areas will change as 

climate changes. By -2080, mean species richness at the quarter degree scale is greater in 

protected areas ( 4 7 species) than mean species richness across the whole of Africa (36 

species). Similar results have been recorded by Midgley et al., (2002); who predicted that 

by -205G, mean species richness in PAs (also at the quarter degree scale) is significantly 

greater than species richness in areas lost to the Fynbos biome. We also predict that by 

2080, decreases in species richness within PAs will be larger than the decrease in species 

richness in areas beyond PA boundaries. If the current PA network remains the same (i.e. 

in size, location and extent) until at least 2080, the mean decrease in species richness at 

the quarter degree scale within PAs will be 7 .18%, which is greater than that experienced 

overall across areas of Africa beyond PA boundaries (-4.41%). Similarly, Burns et al., 

(2003) recorded the average loss of mammalian species richness in selected PAs in 

America to be 8.3%. Therefore the PA network is predicted to fare worse than Africa as a 

whole as climate changes. 

The fmdings of this study are based on an 'unlimited dispersal' scenario which, in reality 

is unlikely to be possible for all species; some may not be able to track such changes fast 

enough, especially relatively slow dispersing organisms such as plants. For example many 

of the Cape Proteacaeae in South Africa are ant dispersed which therefore limits their 

dispersal rates (Midgley et al., 2002). However, for maninials, the idea of relatively rapid 

( -20 - 50 years) range shifts are not out of the question (Thuiller et al., 2006). Despite 

this, other factors such as habitat fragmentation and human-wildlife conflict are likely to 

be key factors determining mammals' opportunity to track climate changes (WWF, 2007). 

For example, agricultural activities such as the growth of crops are expected to track 

climate change by moving polewards and upslope thereby coming into direct competition 

with wild animals as they also track changes in this way (Hannah et al., 2005). For 

example, it is projected that between 2000 and 2050, 10 - 20% of grassland and forestland 

in Africa will be converted, primarily for agricultural activities. Furthermore, as climate 

changes human-wildlife conflict is almost certain to increase as increasing human 

populations exert increased pressure upon natural resources (Millennium Ecosystem 

Assessment, 2005). It is expected that conversion of land to agriculture will cause a 

decrease in the extent of natural ecosystems, as well as causing increased contamination of 
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groundwater which would impact negatively upon aquatic ecosystems (Millennium 

Ecosystem Assessment, 2005). Some species may be able to adapt to potential future 

climates within PAs (Thomas et al., 20011 ). Despite this, one would expect changes of 

species richness, turnover and persistence in PAs in the future if factors such as barriers to 

dispersal, continued habitat loss and ecosystem lags are into account (Root & Schneider, 

1995; Hannah et al., 2005). In a worst case scenario, species diversity in PAs would 

simply be the sum of the species persisting in an area, i.e. no immigration of colonist 

species but loss of those for which the climate becomes unsuitable. 

PAs within areas which are projected to incur high species turnover and decreasing 

species richness will require significant attention from P A managers and policy makers in 

the future. Especially as PAs with high turnover were projected to simultaneously incur 

low species persistence when compared to the average (79%) for the African P A network 

(Table 4. 7). Consequently, PAs which are predicted to experience high turnover and low 

persistence (e.g. Augrabies Falls, Hardap Dam, Kalahari Gemsbok, Molopo Green Belt 

and Witsand) will be most severely affected by climate change as they will no longer 

retain suitable climate for the species they were designed and built to protect (Hole et al., 

unpub). So, while on average the African P A network seems to be robust in the face of 

predicted climate change (i.e. high persistence (.i = 79%) and low tumover (.i = 26%)), it 

is expected that a few areas will need intensive management (e.g, expansion, connection 

to other PAs and/or artificial habitat modification) in order for 'Species to persist there in 

the future. 

Changes in community composition within PAs will have far-reaching effects within 

ecosystems by for example altering interspecific interactions such as predator - prey 

dynamics, or by affecting species which rely on mammals for ecosystem roles such as 

seed dispersal and habitat modification (Burns et al., 2003; Thuiller et al., 2006). Some 

mammal species have a more significant role in ecosystem processes than others; these 

species are termed 'keystone species' because they exert an influence on the environment 

disproportionate to their size or abundance (Paine, 1995). For example, the loss of zebras 

and giraffes, as well as other large herbivorous mammals in African savannas may cause 

substantial population shifts of other species (Pringle et al., 2007). African elephants 
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(Loxodonta a.fricana) are termed 'super keystone species' (Shoshani, 1993); without them, 

African grasslands become overgrown with woody plants and shrubs (Chaplin et al., 

1997). This negatively impacts upon species such as grazing antelopes and carnivorous 

predators of those antelopes. Therefore if the distribution of keystone species such as 

elephants were to change as a result of climate change, this could have potential effects 

upon many other species within (and outside ot) PAs. Additionally, as elephants are large 

charismatic species the public visit PAs to see, the loss (or gain) of these from PAs may 

impact upon visitor numbers and associated revenues to those PAs (Walpole & Leader

WiHiams, 2002). 

As PAs are regarded the mainstay for in situ conservation efforts managers and policy 

makers must take the dynamic nature of the climate into account when selecting new 

reserves and managing existing ones in order to .remain an integral conservation tool in the 

future (Hannah et al., 2005). It seems that increasing the size of existing PAs will increase 

the stability of community composition within PAs by decreasing turnover (page 104) 

(and increasing persistence; page 1 09) within them, especially as many species require 

relatively large areas of habitat to maintain viable populations (Shaffer, 1981 ). However, 

increasing the connections between PAs by creating wildlife corridors will also be of 

benefit by allowing species the option of tracking climate change (Hannah et al., 2002). 

For example, wildlife corridors between Ghana and Burkina Faso, as well as Mali and 

Burkina Faso, are currently being planned in order to aid the survival of West African 

elephants (IUCN, 2005). Corridors allowing mammals to track climate change would 

simultaneously have positive impacts on other species such as birds, plants, reptiles and 

amphibians whose survival is partly dependant on mammals e.g. for ecosystem services 

such as seed dispersal or habitat modification. In addition to extending and connecting 

existing PAs, the creation of new PAs, especially in areas which are expected to be altered 

substantially with climate change, will be a key tool in protecting species well into the 

future. While these proposals require huge resources (both economic and personnel) in 

order to become viable, it will be of great benefit for mammalian species in African PAs 

in the future. Additionally, the creation of transfrontier parks between protected areas in 

multiple countries will aid species conservation in the face of projected climate change. 

Examples of transfrontier parks established in Africa are the Greater Limpopo 
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Transfrontier Park (www.greatlimpopopark.com) which encompasses area in South 

Africa, Mozambique and Zimbabwe; and the Kavango-Zambesi Transfrontier Park 

(www.kazapark.com) which connects Angola, Zambia, Botswana, Namibia and 

Zimbabwe. These parks allow the re-formation of larger ecosystems, which aid species 

migration and genetic mixing, as well as addressing threats facing biodiversity including 

habitat loss, fragmentation, over hunting and the impacts of climate change (ReyerS, 

2003). However, in addition to addressing the potential impacts of climate change, we 

also need to stabilise greenhouse gas emissions now in order to halt this change CIPCC, 

2001). 
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CHAPI'ER FIVE: Willffigness-to-pay towards the conservation of threatened 
mammals in South Africa; a case study in Kruger National Park 

5.1. INTRODUCTION 

Africa is extremely rich in biological diversity; nearly a quarter of the world's biodiversity 

hotspots are located within this continent (Cl, 2007). Conservation strategies within these 

areas are often prioritised according to traditional criteria such as species richness and 

diversity (Spellerberg, 1992), or ranking overal'l threat and decline of species (White et al., 

1997). However, these methods of prioritisation may not necessarily reflect human 

preferences and values (White et al., 2001). Compounding this problem is the fact that 

relatively little is known about the social value of biodiversity within these areas (Turpie, 

2003). As a result, understanding human preferences towards conservation and placing an 

economic value on biodiversity has gained increasing emphasis in recent years, which is 

crucial if the conservation of biodiversity is to compete for funding against other issues 

~Edwards & Abivardi, 1998). 

Biodiversity worldwide is threatened by a number of processes including land 

transformation, the invasion of non-native species, and human population pressures 

(White et al., 2001). However, it is climate change which is the most significant threat to 

biodiversity today, not only because of the unprecedented rate and magnitude of the 

change but also the relatively more complex and costly action required to prevent it 

(White et al., 2001). Previous chapters have demonstrated the possible consequences of 

climate change upon the potential distribution of large mammal species in the future; 

species' ranges are predicted to (on average) decrease and mean overlap between current 

and future ranges is also predicted to decline (Chapter 3). The impact of climate change on 

the effectiveness of African protected areas has also been investigated (Chapter 4), and 

while on the whole PAs are predicted to be fairly robust to climate change in relation to 

large mammal distributions, some protected areas are predicted fare worse than others in 

terms of large mammal species' turnover and persistence within them. 

The vast majority of research into the economic effects of climate change has focused on 

market impacts of climate change e.g. the effects of climate change upon the productivity 
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of crops, or the costs associated with rises in sea levels (e.g. Frankhauser et al., 1998; 

Mendelsohn & Neumann, 2004). However, much less focus has been placed upon 

estimating the non .. market impacts of climate change (e.g. social impacts of biodiversity 

loss), presumably because non-market impacts are more controversial and harder to 

measure (Turpie, 2003). The non-mm:ket value of a good may have economic values in 

terms of both use and non-use values (Hanley et al., 2Ge4). Use values compromise direct 

use, indirect use and option values; non-use values compromise bequest values and 

existence values (White et al., 1997; Figure 5.1). Although deriving economic values of 

non-market goods can be controversial, environmental valuation remains a useful tool in 

providing estimates of the social benefits of these resources (White et al., 2001) 

l 'Fotal Economic Value J 
/_ ~ 

Use values Non-use values 

~ ~ ~ ~ ~ 
Direct use value I Indirect use value Option values Bequest values I Existence values 

I I I I 1 
Outputs directly Functional Future direct Useandnon- Value from 

consumable benefits and indirect use value of knowledge of 

I I values environmental continued 

I legacy existence 
Food, biomass, Flood control, 

Biodiversity, recreation e.g. storm I I 

wildlife protection, conserved 
Habitats, Habitats, 

tourism, health nutrient cycling 
habitats 

prevention of species, 
irreversible genetic, 

change ecosystem. 

Figure S.l. Categories of economic values attributed to environmental assets (adapted from Jepma & 
Munasinghe{l998). 

Economic values of non-market environmental goods and/or services are often elicited in 

terms of people's willingness-to-pay for conservation, using a ty,pe of stated preference 

method called contingent valuation (CV) (Turpie, 2003). Other stated preference (SP) 

methods include choice experiments and contingent ranking however by CV is by far the 

most widely used (Hanley et al., 2004). CV surveys (Mitchell & Carson 1989; Bateman & 

Willis 1999) question participants directly about the amount they are willing-to-pay to 
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prevent (WTP) or willing-to-accept compensation for (WT AC) hypothetical changes in 

environmental· quality (Hanley et al., 2004). One can extrapolate the estimates of WTP (or 

WT AC) from the sample population up to the local, regional or national population in 

order to gain estimates of the losses that would be accrued if the stated environmental 

change transpires e.g. loss of a particular species or degradation of a natural feature. 

Subsequently, the results of such studies provide useful estimates of the value of species 

conservation and can easily be compared to the 'actual~' amount set aside for conservation 

(see e.g. White et al., 1i997). However, care must be taken when interpreting these results 

as such estimates may be affected by the presence of similar or complementary species 

(Hoehn & Loomis, 1993). A consequence of this is the possibility that aggregated values 

for a group of species may differ if the total is calculated directly or indirectly (i.e. if 

individual species values are summed) (Nunes & van den Bergh, 20<H). 

As part of the CV study design, one must decide who the target population are, and how 

many people in this population should be questioned. Bateman et al., (2002) suggest that 

the minimum sample size for CV studies is about 250. However, they also stipulate that 

smaller sample sizes can be used when multiple valuations are elicited from each 

respondent. Additionall:Y, they suggest the target population should be those people who 

will be affected by the change, and are thought to have some knowledge of the change. In 

the case of this study, the target population will be the 'user population' i.e. those people 

who are visiting Kruger National Park (KNP). However, it is possible that the loss of 

species from KNP as a result of climate change may affect a wider population that this e.g. 

non-visitm:s to KNP. These people may hold existencelbeq~est values of the good (i.e. 

species). Therefore, if time pennitted, an extension of this study could be to assess WTP 

of people who are not visitors to KNP. 

Methods of sampling the target population in CV studies can be by in-person interviews, 

telephone or mail surveys. All three have their advantages and disadvantages for example 

postal surveys are much more economical than the others, and also reduce possible 

interviewer biases but they suffer from low response rates; phone surveys reduce non

response bias (Loomis & King, 1994) and consequent!¥ have slightly higher response 
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rates than postal surveys but there are still problems such as the bias assoicated with 

different levels of telephone ownership. Consequently, in-person interviews are the 

preferable sampling method in CV studies (Arrow et al., 1993). Although this method 

secures much higher response rates than postal or telepone surveys, it is the most costly 

sampling strategy. In a recent metaanalysis by White et al., (2005), mean (±SE) response 

rate from in person interviews was 97.5 ± 1.4%; postal and telephone interviews presented 

much lower response rates of 51.9 ± 2.7% and 58,1 ± 5.4% respectively. Babbie (1'990) 

has suggested that the minimum response rate adequate for analysis is 50%. However, 

more recently Hanley et al. (2004) have suggested the minimum response rate from the 

target population should be over 70%, which in-person interviews clearly obtain. This 

facet of in person interviews is a definite advantage of this method of data collection; low 

response rates indicate that the issue in question is not particularly important to the 

respondents, in which case either the WTP/WTAC question or the choice of target 

population is almost certainly unsuitable (White et al., 2005). 

As part of a CV study, the respondents are asked about the level of sacrifice they would be 

prepared to make (or compensation they would be willing to accept) in order to prevent 

the hypothetical change in environmental quality (Arrow et al., 1993). These WTP (or 

WTAC) questions can either be in an open-ended (e.g. what is the most you are WTP to 

conserve species Z?) or closed format. Examples of closed format questions include 

dichotomous choice (are you you WTP 'X' amount to conserve species Z?) or using 

payment cards to indiciate the respondents maximum WTP from a set number of given 

amounts. The latter two methods are generally preferred as they result in less uncertainty 

(White et al., 2005) and reduce the occurence of very high (or low) WTP values (Arrow et 

al., 1993). Additionally, respondents often find open-ended questions more difficult to 

answer compared to closed-ended questions. Despite this, open-ended questions are 

generally easier to constuct and analyse statistically CBarnes et al., 1<999). Moreover, 

Loomis & White (1996) found the format of WTP questions to be "relatively 

unimportant" in determining WTP for the conservation of endangered species. 
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Results of CV studies were often previously considered as controversial, for example 

some critics believed that respondents often did not understand the good they were being 

asked to value, and that CV questions were often taken lightly as they were seen as being 

non-binding (AI:row et al., l993). Additionally, CV is prone to a number of other biases 

such as scenario misspecification (whereby the respondent does not understand the 

scenario and therefore values the wrong good) and non-response bias (whereby a 

respondent does not answer key questions such as their income or WTP). Additionally, the 

respondent may give a WTP amount that di·ffers from their true WTP amount in order to 

influence the level of payment for the good (strategic bias) or in order to please the 

interviewer (interviewer bias) (Hanley et al., 2004). However, the most noteworthy bias in 

CV studies is the problem of embedding (Turpie, 2003~, whereby 'WTP for a good is 

approximately the same for a more inclusive good' (Fisher, 1996). However, amendments 

and improvements to CV methods plus the introduction of guidelines set out by e.g. 

AI:row et al., (1993) have reduced these biases and therefore improved the reliability of 

CV studies. Examples of recommendations set out by the Arrow et al., (1993) panel on 

contingent valuation include that interviews should, be in-person rather than by mail or 

telephone, a WTP rather than a WT AC format should be used, there should be yes/no 

follow up questions after the WTP question, the questionnaire should be extensively pre

tested, it should hold adequate information about the hypothetical change in the 

environmental good and finally that respondents must be reminded of their budget 

constraints and undamaged substitutes of the environmental good in question before the 

valuation question. Consequently, with careful design of the CV questionnaire to prevent 

(or reduce) potential biases and problems, CV is deemed an acceptable method to 

determine non-market values of environmental goods and/or services (Arrow et al., 1993). 

So much so that many governments have now commissioned the use of CV studies to seek 

the views of stakeholders and the general public before deciding on environmental 

policies (White et al., 2005). For example, the United States Department of Agriculture 

commissioned studies using CV to estimate the economic value to the public of protecting 

ecosystems from fire (Loomis et al., 1996); the Department for Environment, Food and 

Rural Affairs in the U.K. has used CV to gage public views about hunting with dogs 

(Burns et al., 2000), to inform the design of agri-environmental schemes (Hanley et al., 
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1999; DEFRA, 2002) and in setting waste management options and eco-taxes (Turner et 

al., 2004; also see www.defra.gov.uk!Environment/economics). CV studies have also 

been used to assess water quality improvement schemes in the U.K. (Hope & Palmer, 

2004). 

CV methods have been used in numerous other studies over the past thirty years; however 

there has been a dramatic increase in the amount of scientific papers particularly in the 

past twenty years (Arrow et al., 1993~. A major reason for this increase comes from the 

increased availability of reference texts (e.g. Mitchell & Carson, 1989) and guidelines 

(e.g. Arrow et al., 1993), as well as a huge increase of the interest of the general public 

towards environmental problems and biodiversity conservation (Edwards & Abivardi, 

11998). The majority of CV studies tend to value a single environmental resource such as a 

habitat, a species or an ecosystem service (Christie et al., 2006). For example the majority 

of studies valuing species conservation focus on a single species rather than multiple 

species ensembles (Nunes & van den Bergh, 2001). Studies focusing on single species 

conservation often ask respondents their WTP to avoid the loss of that particular species. 

For example, White et al., (1997, 2001) estimated the value of otter, water vole, red 

squirrel and brown hare conservation in the U.K.; Loomis & Larson (1994) estimated the 

mean household WTP for the conservation of the endangered grey whale; Brookshire et 

al., (1983) valued WTP for the conservation of the grizzly bear and bighorn sheep in 

Wyoming; and Boman & Bostedt ( 1995) estimated the mean WTP per household for the 

conservation of the wolf in Sweden. The majority of studies valuing species have been 

undertaken in America (Christie et al., 2006); only a small number of studies in Africa 

have assessed the public's willingness-to-pay towards biodiversity conservation. One such 

study is by Bames et al., (1999), who assessed 'tourists' willingness-to-pay for wildlife 

viewing and wildlife conservation in Namibia'. Overall, the majority (72%) of 

respondents were WTP towards wildlife conservation. The aggregated mean amount these 

people were WTP was N$28.7 million (275 912 touti.sts at N$104 each) per year. 

A relatively small number of studies have assessed the impacts of climate change upon 

African biodiversity in economic terms. An example of such a study is Verlarde et al., 

- 120-



(2005), who valued the predicted ecosystem shifts resulting from climate change in 

protected areas in Africa; their results indicated a negative economic impact of climate 

change upon African protected areas by the year 2100. Other examples include Turpie et 

al., (2002) and Turpie (2003) who estimated the economic impacts of climate change in 

South Africa; more specifically, the loss of existence value attached to biodiversity. 

Turpie's (2003) study focused on the fynbos biome in the Western cape, which Kiker 

(2000) predicted to lose over a third of its present range due to climate change; such 

changes were expected to have impacts upon biodiversity in this region. Results indicated 

that the majority (76%) of respondents were WTP towards biodiversity conservation in 

South Africa. Additionally, the amount respondents were WTP for biodiversity 

conservation increased dramatically when the possible impacts of climate change were 

explained ($3.3 million up to $,15 million per year for fynbos and $58 million up to $263 

million per year for South African biodiversity). 

5.1.1. Aims 

The aim of this chapter is to use contingent valuation to estimate people's willingness-to

pay towards the conservation <>f mammals threatened by climate change in Kruger 

National Park. This study will also investigate significant factors affecting people's 

wiHingness-to-pay towards these schemes. It is hoped these results will contribute towards 

biodhrersity conservation in Kruger; data on the response of the public towards the 

conservation of mammal species as well as attitudes and preferences towards certain 

mammalian species will be useful as a reference for management decisions. 

5.2 METHODOLOGY 

5.2.1. Choice of protected area and focal species 

It is predicted that as climate changes, protected areas in Southern Africa will be worst 

affected in terms of species persistence and turnover within them (Chapter 4), therefore 

this case study had a focus on protected areas within this geographic region. The majority 

of national parks in South Am.ca are controlled by South African National Parks 

(SANParks). In total nineteen national parks, one national lake area and one Transfrontier 

Park are under the control of SANParks (SANParks, 2007a- www.sanparks.org/parks). In 
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order to choose a suitable venue for this study, a number of requirements needed to be 

met. Firstly, the protected area(s) chosen had to currently hold the large mammal species 

studied in this project. Secondly, large numbers and high turnover of visitors were 

required in order to gain sufficient data on people's willingness-to-pay towards large 

mammal conservation. Finally, permission from the specific park authorities to carry out 

this research needed to be granted. Consequently, Kruger National Park in South Africa 

was chosen as it met all of these requirements. 

Simulated future turnover and persistence of species in Kruger was close to the average 

values for the whole PA network studied (Chapter 4). By 2080 the level of species 

turnover in Kruger was simulated to be 25% and persistence 80%, when compared to the 

current species composition. These values are similar to the median turnover of 21% and 

median persistence of 84% across the PA network studied. While these results give a 

positive outlook for the majority of large mammal species in Kruger at present, the future 

of others in Kruger may be increasingly uncertain as climate changes. After investigation 

into how the current large mammal diversity of Kruger is projected to change in the 

future, a few charismatic large mammal species predicted to experience large (or total) 

decreases in climatically suitable habitat in Kruger in the future (i.e. the 2080s) were 

identified. Consequently, the species chosen in this study were the giraffe (G. 

camelopardalis) and elephant (L. africana); the distribution of both of these species in 

Kruger are projected to decrease substantially under all three scenarios for 2080 (Figure 

5.5 and 5.7). 

A large number of protected areas which are climatically unsuitable for the giraffe (n = 

144) and elephant (n = 165) at present are projected to become climatically suitable by 

2080 (Table 5.1). Conversely, ]9% (n = 56) of the protected areas where giraffes are 

currently found (n = 290) are projected to become climatically unsuitable for this species 

by 2080. Similarly, 20% (n = 54) of the protected areas where elephants are currently 

found (n = 290) are projected to become climatically unsuitable for this species by 2080 

(Figures 5.2 and 5.3; Table 5.1). Kruger National Park is an example of a protected area 

which is projected to become largely climatically unsuitable for the giraffe and elephant 
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by 2080. The potential future distribution of giraffes in southern Africa is projected to 

contract in eastern areas of Africa (southern Mozambique and eastern South Africa) under 

all three GCM scenarios for 2080 (Figure 5.4). The distribution of giraffes in Kruger is 

projected to decrease substantially under all three scenarios for 2080 (Figure 5.5). This is 

most pronounced under the HadCM3 B2 scenario whereby giraffes are projected to be 

absent from Kruger completely by 2080 (Figure 5.5c); the ECHAM4 and GFDL scenarios 

predict retention of climatically suitable range in the middle portion of the Park ~Figure 

5.5b & 5.5d). The distribution of elephants in southern Africa is projected to also decrease 

in south-eastern areas of Africa (southern Mozambique and into eastern South Africa); 

decreases in these areas are most pronounced under the HadCM3 B2 scenario for 2080 

(Figure 5.6). As with the giraffe, the potential future distribution of the elephant in Kruger 

is projected to be reduced in all three future scenarios for 2080, but in this case 

particularly from the northern areas of Kruger (Figure 5.7). This reduction is most 

pronounced under the HadCM3 B2 scenario (Figure 5.7c), although under this scenario 

the elephant is not predicted to be total!ly absent in Kruger as was the giraffe. 

Table 5.1. Persistence of the giraffe (Gira.ffa camelopardalis) and elephant (Loxodonta ajricana) within 
protected areas across the.African continent. A species is noted as being present in a protected area if it is 
simulated to have at least one 0.25° presence point within the boundary of the protected area at the given 
time. 

Number of Protected Areas The Species is 
Simulated to Occur 

Species Year 
Current And Current not Future Not Persistence in 

Future Future Current Protected Areas.(%) 

Giraffe 2020 277 13 79 95.52 
2050 255 35 129 87.93 
2080 234 56 144 80.69 

Elephant 2020 254 14 99 94.78 
2050 230 38 142 85.82 
2080 214 54 165 79;85 

By 2080, the mean prevalence of the giraffe across the whole of Africa is projected to 

increase by 12% whereas the mean prevalence of the elephant is projected to decrease by 

14%. The overlaps between the current and potential future (2080~ range of the giraffe and 

elephant are predicted to decrease to only 40% and 47% of the respective species current 

distribution (see Hgure 3.2v (elephant) and Figure 3.2vii (giraffe)). These estimates are 

- 123-



substantially lower than the mean overlap between current and potential future distribution 

of 76% calculated for all 281 species (Chapter 3). 

Figure 5.2. The simulated suitability of protected areas for the giraffe (Giraffa cameloparda/is) in 2080. 
Red areas: indicate where giraffes are simulated to be present within protected areas in 2080 only. Blue 
areas indicate where giraffes are simulated to be present within protected areas at present only. Yellow 
areas indicate where giraffes are simulated to remain within protected areas between the present and 
2080. Black lines represent country borders. 
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Figure 5.3. The simulated suitability of protected areas for the elephant (Loxondonta africana) in 2080. 
Red areas: indicate where elephants are simulated to be present within protected areas in 2080 only. Blue 
areas indicate where elephants are simulated to be present within protected areas at present only. Yellow 
areas indicate where elephants are simulated to remain within protected areas between the present and 
2080. Black lines represent country borders. 
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Figure 5.4. Simulated current and future distribution of the giraffe ( Giraffa camelopardalis) in relation 
to protected areas in southern Africa. The maps depict simulated current (A) and potential future 
distribution of G. camelopardalis for the year 2080 under the (B) ECHAM4 B2, (C) HadCM3 B2 and 
(D) GFDL B2 scenarios. Red/blue squares indicate the simulated presence of elephants in that area at 
that time; protected areas are shown in yellow; black lines indicate country borders/coasts; an overlap 
between protected areas and G. came/opardalis distribution is shown in green (Figure Ta) or orange 
(Figure Tb - Td). 

Figure 5.5. Simulated current and future distribution of the giraffe ( Giraffa cameloparda/is) in Kruger 
National Park, South Africa. The maps depict simulated current (A) and potential future distribution of 
G. camelopardalis for the year 2080 under the (B) ECHAM4 B2, (C) HadCM3 B2 and (D) GFDL B2 
scenarios. Red/blue squares indicate the simulated presence of giraffes in that area at that time; bold 
black lines indicate the border of Kruger National Park; other black lines indicate country borders. 
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Figure 5.6. Simulated current and future distribution of the elephant (Loxodonta africana) in relation to 
protected areas in southern Africa. The maps depict simulated current (A) and potential future 
distribution of L. a.fricana for the year 2080 under the (B) ECHAM4 B2, (C) HadCM3 B2 and (D) 
GFDL B2 scenarios. Red/blue squares indicate the simulated presence of elephants in that area at that 
time; protected areas are shown in yellow; black lines indicate country borders/coasts; an overlap 
between protected areas and L. a.fricana distribution is shown in green (Figure Ta) or orange (Figure Tb 
-Td). 

Figure 5. 7. Simulated current and future distribution of the elephant (Loxodonta a.fricana) in Kruger 
National Park, South Africa. The maps depict simulated current (A) and potential future distribution of 
L. africana for the year 2080 under the (B) ECHAM4 B2, (C) HadCM3 B2 and (D) GFDL B2 scenarios. 
Red/blue squares indicate the simulated presence of elephants in that area at that time; bold black lines 
indicate the border of Kruger National Park; other black lines indicate country borders. 
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5 .2.2. Overview of Kruger National Park, South Africa 

Kruger National Park (KNP) is described as "one of the premier game-watching 

destinations in the world" and is consequently one of the most popular game parks 

worldwide as reflected by the large number of visitors to KNP each year (SANParks, 

2007). Of the 21 parks controlled by South African National Parks, KNP is the most 

visited of these by far (SANParks, 2007). In the year ending 31st March 2007, a total of 

1,313,185 people visited KNP. This total compromised 76% of the total number of visitors 

(n = 1,725,451) to the fifteen major parks controlled by SANParks, indicating that KNP is 

a very important revenue generator for SANParks. 

A major factor in the popularity of the park is that it holds a large variety of species, 

including 507 bird species, 147 mammalian species, 336 tree species, 114 reptile species, 

49 fish species and 34 amphibian species (SANParks, 2007b 

www .sanparks.orglparkslkruger/tourism/ general). Examples of the mammalian species 

which can be seen include all of the typical African big game such as elephant, buffalo, 

leopard, lion, cheetah, giraffe, zebra, hippopotamus and the two species of African 

rhinoceros as well as a number of smaller species. A full checklist of mammalian species 

found in KNP can be found at: 

www.sanparks.org./parkslkruger/conservationlffllists/marnmals (SANParks, 2007). 

KNP is situated in north-eastern South Africa, and is characterised by savanna, woodland 

and thornveld eco-zones (SANParks, 2007). The park is 350km long, on average 65km 

wide and compromises an area of20,000km2 (see Figure 5.8). It borders Mozambique and 

Zimbabwe; both of which have agreed to remove fences between KNP and parks within 

their borders in order to create connected wilderness areas (SANParks, 2007). Within 

KNP there are 12 main rest camps, 2 bush lodges and 4 satellite camps open to the general 

public, as well as some private lodges within and at the borders of the park. 

Entrance fees to KNP are given in Table 5.2. Instead of paying a daily fee, all visitors also 

had the option of purchasing a WILD Card; this is a one-off yearly payment which allows 

the holder free entrance into all national parks controlled by SANParks, as well as Cape 

Nature Conservation Reserves (CNC) and Msinsi Resorts. International visitors can only 
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buy the 'all clusters' WILD Card, whereas South African residents can buy a card that 

covers 'all clusters' or just one cluster (Bushveld, Dry, River, Cape or Swazi). The WILD 

Card can be bought for individual use, for a couple to use or a family to use. For more 

details on WILD Cards see www.wildinafrica.com. 

Table 5.2. Entrance Fees to Ktuger National Park. Entrance fee information from www.sanparks.org. 
WILD Card information taken from http://www.sanparks.()rg/tourisrnlwild/wild_brochure_sept06.pdf, 
(only types of WILD Cards suitable for entry into KNP included in table). All Prices VAT inclusive.and 
all tariffs in South Am can Rand. Entrance fees Valid from 1 November 2006 to 31 October 2007. 

Type of Payment 

Daily Conservation Fee (entrance fee) Individual 

South African Citizens and Residents R30 

South Afiican Development Community (SADC) Nationals R60 

Standard Conservation Fee (international visitors) Rl20 

WILD Card Individual Couple Family 

All Clusters (international visitors) R795 Rl395 Rl795 

All Clusters (national visitors) Rl95 R335 R440 

Bushveld Cluster (nationals only) RI70 R295 R395 

5.2.3. Study Design 

This study used stated-preference techniques to determine the existence value of two large 

mammal species currently in KNP, the giraffe and elephant, which are projected to lose a 

significant amount of climatically suitable habitat in KNP by 2080 (see Chapter 5.1.). 

Data were collected in-person using questionnaires; two questionnaires were developed, 

one for each of the chosen species. The first environmental change (in both versions of the 

questionnaire) to be valued was the possible loss of the current number and variety of 

large mammal species in KNP as a result of climate change. Questionnaire version one 

(V 1) then asked respondents' to value the possible loss of elephants in KNP as a result of 

climate change, and version two (V2) valued the possible loss of giraffe in KNP as a result 

of climate change. The remainder of the two questionnaires were identical. 

Ethical considerations were discussed and the questionnaire approved by Dr. B. Banks 

(Feb 2007), a member of the Durham University Ethics Advisory Committee. The 

questionnaire was also ethically approved by SANPARK.s. 
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Once developed, the questionnaires were pre-tested by colleagues, friends and family with 

experience of visiting national parks in Africa. Replies and suggestions were noted and 

ambiguities clarified and re-checked. Once finalised, each questionnaire held 25 questions, 

split into three main sections. The first section (the tourism intetest questions) of the 

questionnaire was intended as a warm-up section, with questions intended to get the 

respondents thinking about their trip and the animal species they had seen. The second 

section asked payment questions and included the open-ended WTP question. The bid 

vehicle chosen was an addition to the entrance fee to KNP as the respondents were 

familiar with the amount they had paid to enter the park. The final section of the 

questionnaire was used to collect socioeconomic data (Demographic Information). A copy 

ofthe whole questionnaire is given in Figure Al of the appendices. 

5.2.4. Sampling Strategy 

International and domestic visitors to the restaurant/picnic area of Skukuza Rest Camp in 

.KNP (Figure 5.8) were randomly selected to complete the questionnaire. The research was 

conducted between approximately 9am and 3pm daily from the 28th June to the 14th July 

2007. The interviews were conducted either by myself er a student volunteer assistant 

from Durham University. Jn;..person interviews were conducted with the interviewer 

leading the respondent through a pre-designed questionnaire. The version of the 

questionnaire to be completed was also chosen randomly. Interviews lasted approximately 

ten minutes each. Only adults were questioned as they have a defined source of income 

and were expected to be familiar with both the animals questioned and the amount of 

money they had already paid to enter the park. However, children (<18years) also place a 

value on wildlife conservation therefore results of this study are expected to be 

conservative estimates (Navrud & Mungatana, 1994). 

Respendents were asked if they would answer the questionnaire, if yes they were then 

given a general intt:oduction about the research. Respondents were then guided through the 

rest of the questionnaire. Directly preceding questions 14, 20 and 23 the respondents were 

shown the relevant supporting materials (current and potential distribution of 

giraffe/elephants in KNP (Figure 5.10i and 5.10ii), ethnic origin options (Appendix, 

Figure A2) and income bracket options (Appendix, Figure A3) respecthrely). At the end of 
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the questionnaire respondents were thanked for their time and given an opportunity to 

leave their name and email address in order to obtain a summary of results. Time, date and 

interviewer name were noted by the interviewer at the end of the questionnaire. 
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km 

Figure 5.8. Kruger National Park in relation to Africa. The red 

circle indicates Skukuza Rest Camp. Pictures courtesy ofwww.sanparks.org and Fomara (2005). 
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5.2.5. Structure efthe Questionnaire 

The questionnaire started with a general intreduction detailing for whom the research was 

being carried out and describing the aims of the research. Potential participants were also 

told that their responses would be anonymous and confidential. The introduction is shown 

below: 

'This survey is being undertaken by Durham University, UK, as a piece of 

independent research to find.outyour views and values towards animals in National 

Parks in Mrica. We would also like to find out your attitudes about the possible 

future changes in the variety of these animals. Finally, we would like to find out 

about your visit to the National Park today. 

Your help in answering this questionnaire would be greatly appreciated; your 

responses are anonymous and will be kept confidential. 

The respondents were then guided through section one of the questionnaire; the tourism 

interest questions. Respondents were asked how many times, if any, they had visited KNP 

in the last two years; if they were visiting as a day or overnight visitor; their main reason 

for visiting .KNP as well as the highlights of their trip to KNP so far. As this study focused 

on KNP, and did not mention other national parks, there may have been potential 

embedding effects. To reduce this effect, respondents were also asked if they were 

intending to visit (or had visited) any other national parks on their trip, and if so, to name 

them. This section concluded by asking respondents how many people they were 

travelling with, accommodation they were staying in and their type of holiday e.g. 

independent travel, part of an organised tour, backpaclcing or overland. 

The second section (Payment Questions) started by asking respondents if they had used a 

WILD Card during their trip, if yes they were then asked which clusters it was for and 

whom it was valid for. They were then asked how much money they were spending on 

entrance fees per day (see Figure 5.9) and finally if they thought that this fee was too high, 

just right or two low. For both of the previous two questions they were given the option of 

stating they were unsure of the price they paid to enter the park. Entrance fees and prices 

for WILD Cards at the time of the study are shown in Table 5.2. 
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11. How much money are you spending on entrance fees. to Kruger National Park per day? Please 
tick one only. 

SA Citizens and Residents R30perday D 

SADC Nationals R60perday 0 
Standard, Conservation Fee (foreign visitors) R120perday D 

WILD card (one off payment) D 

Don't know/ Part oflnclusive Holiday Price D 

Figure s.9. Question 11 ofthe.questionnaire. 

The final questions in the Payment Section asked about respondents' wiHingness-to-pay 

an increased entrance fee· in order to maintain the current number and variety of animals in 

KNP and then, more specifically, willingness-to-pay to help conseFVe only elephants (Vl) 

or giraffes (V2) in KNP. These statements were designed to elicit a value response from 

the participants, and are not intended to imply that additional fees would solve climatic 

change problems such as these. 

The first of these two questions was preceded by the text below: 

'Effective conservation requires immense financial and human resources. South 

African National Parks (SANParks) needs to receive sufficient revenue to be able to 

successfully manage the 23 parks under its control. These parks, including Kruger, 

currently hold a wide variety and number of species; the following questions aim to 

try to find out how much you value these species. 

Imagine that in the next few years the variety and number of species may change as a 

result of climate change affecting habitat quality. If this were the case, SANParks 

would need extra money to manage the park to protect such species e.g. by 

identifying and averting threats to these species, the provision of artificial habitats 

etc. As there are only limited governmental resources available, a possible extra 

source of revenue to SANParks is to increase entrance fees. This increased fee would 

be in place for the foreseeable future.' 

The second payment question was preceded by the text below (as well as a separate 

laminated sheet as shown in Figure 5.l!Qi and 5.llil): 
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Certain species are at a greaterrisk from the effects of changes in climate, for 

example the number of elephants [giraffe] in this park is expected to decrease in the 

next few years (see attached sheet). SANParks would be able to stabilise or even 

reverse this change using the extra revenues from an increase in entrance fees . 

The laminate showed maps of the current and potential future distribution of elephants 

(Vl) or giraffes (V2) in KNP, as well as a photograph of the respective species. No date 

was given for the potential future scenario as it was predicted that respondents would 

struggle to 'visualise' a scenario set too far in the future (in this case, 2080) (Parson et al., 

2003). 

(A) (B) 

Current Distribution of Elephants Potential Future Distribution of Elephan 

The blue outline in the middle of each figure 
represents Kruger National Park and black lines 
represent country borders. 

Yellow areas represent where elephants are: 

(a) found now (left hand side) and 

(b) potentially in the future (right hand side). 

Figure 5.10i. Handout given to respondents before answering Q14 (VI). 
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(A) 

Current Distribution of Giraffes 

., 

The blue outline in the middle of each figure 
represents Kruger National Park and black lines 
represent country borders. 

Yellow areas represent where giraffes are: 

(a) found now (left hand side) and 

(b) potentially in the future (right hand side). 

(B) 

Potential Future Distribution of Giraffes 

Figure S.llii. Handout given to respondents before answering Q14 (V2). 

If the respondents answered no to either/both of the WTP questions they were asked to 

give an explanation why they were not willing to pay; if the respondents answered yes to 

either/both of these questions they were then asked to state how much they were willing

to-pay on top of the fees they had already paid to enter KNP. This WTP question took an 

open-ended format rather than the widely used dichotomous choice method (Navrud & 

Mungatana, 1994). This format was chosen as it allows the researcher to elicit direct 

measures of respondent's WTP without the need for sophisticated statistical techniques 

(Barnes et al., 1999). The currency used in these questions was South African Rand 

(ZAR) because respondents were familiar with this currency as it was used in previous 

questions (e.g. the amount the respondent's paid to enter the park; Qll). 
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Socioeconomic data were collected in the final section if the questionnaire (Demographic 

Information). Respondents' were first asked their sex (Q16) and their age (Q17); ages 

were split into six categories (1<8 - 24, 25 - 34, 35 - 44, 44 - 54, 55 - 64 and 65 + ). They 

were then asked their nationality, country and province/state of residence, ethnic origin, 

level of education and employment status. The respondents' were given a choice of 

different levels/options for the latter two questions (Table 5.3). The respondents' 

household income was then ascertained, by asking the respondents which one of eight 

income brackets they fell into (Table 5.3). The respondents were also given the option of 

answering in one of four currencies (South African Rand, Euros, US Dollars or Pounds 

Sterling) as it was presumed people would be able to give a more accurate answer if they 

were able to answer in the currency in which they received their income. In the year 

ending 31st March 2007, 76.6% ofvisitor:s to KNP were SA residents and therefore used 

to working in ZAR. The top five origins of international visitors were Germany, United 

Kingdom, Holland, France and the United States of America. For this reason ZAR, EuFOs, 

GBP and USD were chosen as most appropriate currency options. Respondents were then 

asked how many adults and children lived in their household, and finally if they were a 

member of a conservation organisation. 

The questionnaire ended by thanking the respondents for their time and giving them the 

opportunity to leave their name and email address in order to receive a summary of the 

results. 

5.2.6. Data collation and analysis 

Data from the questionnaires were input into Microsoft Office Excel. Representativeness 

of the sample was checked against statistics relating to visitor statistics obtained by 

SANParks. The average exchange rate for the year to 30th March 2007 was R14.22 per £1, 

$1.96 per £1 and €1.47 per £1 (HM Revenue & Customs, 2007). 

The data included in the questionnaires of respondents giving protest bids to the WTP 

question were excluded. These respondents were protesting to the concept of WTP and 

were therefore refusing to pa.Ftake in the hypothetical exercise (Shackley & Donaldson, 

2002). A total of eight protest bids were identified (4 were in version one and 4 were in 

version two). The main Feasons for Fespolidents' claimed unwillingness-to-pay included 
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the belief that the extra fee would not go to the stated cause; that the government should 

allocate more money towards this cause instead; and that an increased entrance fee may 

impact negatively on their business as a tour guide. A further three people who answered 

version one (elephant) were unsure if they were WTP or not; these questionnaires were 

also removed. This left a total of 170 questionnaires which were used in further statistical 

analysis (giraffe n = 85, elephant n = 85). Seven respondents who answered questionnaire 

V2 (giraffe) and six who answered questionnaire V1 (elephant) were WTP but unsure of 

the amount. These questionnaires were therefore not used when calculating descriptive 

statistics (mean, median, etc ). However these thirteen questionnaires were suitable for use 

in the binary logistic regression models as the amount they were WTP was not needed. 

Differences between respondents' answering the two versions of the questionnaire, in 

terms of the respondents' age, gender, employment status, income, level of education, 

nationality and country of residence were assessed using Chi2 tests. 

Logistic regression was used to determine the significant factors affecting peoples' 

willingness-to-pay towards conserving the current level of species diversity in KNP 

(model 1) as well as towards the conservation of solely giraffes/elephants in KNP (model 

2). Willingness-to-pay (WTP) was a dichotomous dependent variable with two possible 

states: yes (1) and no (0~ (Hanemann, 1984). Independent variables included in the 

analysis are given in Table 5.2. 

Mean and median WTP for each species was estimated for each of the different scenarios 

(al11 species, giraffe and elephant). The median WTP for each species was then aggregated 

over the total number of visitors to KNP by multiplication, giving the total WTP for the 

conservation of large mammal species in KNP. 
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Table 5.3. Independent variables used in the logistic regression models to determine significant factors 
affecting peoples' willingness-to-pay. Numbers in brackets indicate numerical code for each possible 
answer. *For equivalent amount in different currenCies see Appendix Figure A3. "Entrance Fees are 
given in South African Rand (R). 

Variable Name Description 
Gender Gender of the Respendent: Female (0~, Male (1) 

Nationality 
Nationality of the Respondent. Dummy variables were used for 
British, American, Australian, German, and Other. Reference group 
was 'South African'. 

Employment 
Employment Status of the Respondent: Dummy variables were used 
for Part-Time, Retired, Unemployed and In Full-Time Education. 
'Full Time' was used as the reference .group. 

FirstTripSA Whether itwas the respondent's first trip to South Africa: Yes (1), 
No(O) 

FirstTripKruger Whether it was the respondent's first trip te Kruger: Yes (1), No ~0) 

Length Whether respondent was visiting Kruger as a Day (0) or Overnight 
(1) visitor 

Reason The main reason for the respondent's visit te Kruger: To see wildlife 
(1) Other (0) 

Interviewer Person who interviewed that respondent: Georgina (0) George (1) 

Species Which version of the questionnaire the respondent answered; 
Giraffe (V2) (0) or Elephant (V1) (1) 

Age Respondent's age group in years, the midpoint for each was used in 
the model: 18 ~ 24, 25 - 34, 35 - 44, 45 - 54, 55 - 64, 65+ 

The respondent's level of education. Dummy variables were used 
Educatien for University Higher Degree, Secondary School Completien, 

College Completion and No formal Qualifications. The reference 
group was 'University First Degree.' 
The respondent's household income bracket: the reference number 

Income* for each was used in the model: <£5000 (1), £5001 - £9999 (2), 
£10000 - £1'9999 (3), £20000 - £29999 (4), £30000 - £39999 (5), 
£40000-£49999 (6), £50000-£59999 (7), £60000 + (8) 

Type Trip 
Type of trip the respondent was on. Dummy variables were used for 
Ovedand, Backpacking and Organised Tour. Independent Travel 
was the reference group. (0), 
The amount the respondent paid to enter Kruger. Dummy variables 

EntranceFeeA were used for Standard Conservation Fee R120, WildCard and 
Don't Know. The reference group was 'SA Citizen R30.' 

AttitudeFee 
The respondent's attitude towards the cost of the entrance fee. 
Dummy variables were used for 'Too Low', 'Too High' and 
'Unsure.' 'Just Right' was used as the reference group. 
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5.3.RESULTS 

5.3 .1. Socioeconomic Characteristics 

A total of 181 questionnaires were completed (elephant n = 92, giraffe n = 89) from 203 

attempts giving a response rate of 89%. As 1,313,185 people visited KNP in the fmancial 

year ending 31/03/2007 (SA:NParks), this sample of respondents represents 0.014% ofthe 

yearly visitors to KNP. Of the 181 respondents, 45% (n = 8il) were female and 55% (n = 
1100) were male. The majority of respondents were in the age class 25 - 34 (24%, n = 43); 

59% of respondents were younger than 45 years old and 59% had annual household 

income of less than £30,000 (or equivalent). A breakdown of gender, age, income, 

nationality, country of residence and employment status of respondents to the 

questionnaires is shown in Table 5.4. 

The visitor data obtained from KNP did not contain a breakdown about variables such as 

sex, ages, income and level of education so it is impossible to check if the sample was 

representative in these respects. However, it was possible to assess if the respondents were 

representative of the overall visitors to KNP in terms of nationality. Of those who gave 

their nationality, 58% (n = 1 02) were South African citizens 42% (n = 74) were 

international visitors. Official data from the gate access system shows that 77% of visitors 

for the year ending 31st March 2007 were South African residents, and 23% were 

intemational (excluding SADC nationals) (Table 5.4). There was no significant difference 

between the survey sample and the overall KNP visitors in terms of nationality (t = -0.40, 

df. = 5, p = 0.970) therefore indicating our sample was representative in this respect. 

Table 5.5. Comparison of nationalities of the respondents to the breakdown of nationalities of visitors to 
Kruger National Park. 

Nationality Respondents•(%) KNP Visitors(%) 

South African 58 76.6 

British 16 2.2 

American 10 1.0 

Australian 6 0.5 

German 6 10.6 

Other 4 8.3 
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Table 5.4. Comparison of gender, age, income, .nationality, country of residence and employment status 
of respondents to the questionnaires. Income is given as £ sterling, However respondents were able io 
answer in four different currencies: for equivalents in Rand (R), US Dollars ($) or Euros (€) see 
Appendix Figure A3. 

Variable Category Overall (%) Version of the Questionnaire 

Elephant (%) 'I Giraffe(%) 'I 
I ,, 

Gender Male 100 (55!) I 48.(52) 1: 52(58) 
! I 

tFemale :81 (45) 
I 44.(48) 1: 37 (42) 

Age,(years) 18~24 . 23.(13)· 10(1li) 
I 

13 (15) I I 

25-34 43(24) li 22 ~24) 21 (24) 
35-44 39 (22} ii 20{22) I 19•(21) 
45~54 28'(16) •I 16 ~18) ' 12{13) !! 
55-64 35 (19} il 

17~19) I 18.(20) I: ! 
65+ }12 (7.) I' 16(7)_ !i 6·{7') 11 

Income(£) <5,000 20 (11) '' 8(9) 12~(14) I 
I 

' 5,001-9,999 18 (10) 
I 

12(14) 6;(7~ I ,, 
10;000- 19;999 

I 
27 (15} ! ' 13(15) 14;(16) 

I 

20;000- 29;999 41 (23) I 24(28) 1:71(19) 
30j000- 39;999 22 (13) 6{7) 161(18) 

40;000- 49;999 112(7) ,,. 1 (8) 5 (6) 
50;000- 59,999 

I! 

:2 (~) : 61(7> 8~(5> 
I 

60;000+ 27 (15) i 15 (17) 12(14) :r I 
N~ttionality South African 102 (58> 

! i 

! 
50:(54) 52~(58) 

' British 28;(16) I 15(16) 13(15) 

American 17 (10} i i 8 (9) I 9 (10) jl 
Australian tH (6) ' 7(8) 4{4) 

. . i : ~ I 

- ·----------· -German---· - --+I-(6)-:---·; r--~1 <8>-· -, ;--4:<4r-· · 
. 7•(4) ! I . , .. · . 

, Other I 5 (5) 7{8) 
Countr.y ofResidence · South Africa }t}l1 (61) i 

I 
57(62) ' 54~(61) 

United Kingdom. 19 (10} I 10 ~11) ii 9 (>1'0) 
I li - I 

United States of America 18 (10)' I 9 (10). .; 9 (10) 
i t: 

Australia 9(5> I .5 (~) I I 4{4) 
! I, 

Germany 9(5) I 6 (7) i 3'(3) 

1}15 (8) 
I 

.5.f~ 
i1 

Other ! 101111' 
Employment Status Part-Time ': 

5(6) ;}.3 (7) i: ·8 (9) 
Full-Time . 

I I 

·1,113 (62) 11 58 (63) I 55 (62) 
Retireli 24 (l3) 

r: 
11: (12) 13 (115) 

Unemployed 112(7) ' 

1' 

7 (8) i 5{6) 
'In Full Time Education 18:00)· 8 (9) 10•(11) 
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There were no significant differences between the respondents answering the two versions 

of the questionnaires in terms of gender (_x? = 0.398, dj = 1, n.s.), income (_x? = 11.24, 

df = 7, n.s.; Figure 5.12), age (X2 = 1.02, df = 5, n.s.; Figure 5.13), nationality (X2 = 
2.16, df = 5, n.s.), country of residence (X2 = 2.86, df = 5, n.s.) or employment status (_x? 

= 1.41, df = 4, n.s.) (Table 5.4). 
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Figure 5.12. Percentage of respondents to each of the questionnaires (Elephant = Version I, Giraffe = 
Version 2) in terms of income. Numbers 1-8 correspond to income brackets given in Table 5.3. 
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Figure 5.13. Percentage of respondents to each of the questionnaires (Elephant = Version 1, Giraffe= 
Version 2) in terms of their age. 
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5.3.2. General Awareness 

62% (n = 112) of respondents had visited KNP previously, 33% (n = 60) were visiting 

KNP for the first time, and 5% (n :::::: 9) did not answer that question. 41% (n = 74) of 

respondents were intending to visit other national parks during their trip, the rest of 

respondents (5~/o, n = 107) either left no response or said they were visiting only KNP on 

their trip. The main reason for visiting for the majority of people was to view and 

photograph the wildlife (42%, n = 76), followed by rest and relaxation (18%, n = 33), 

study or research (6%, n = 10), business (3%, n = 5) or other reasons (4%, n = 8) such as 

'visiting family'. The rest of respondents (24%, n = 44) chose multiple reasons for visiting 

KNP. Of the 76 people who chose to visit KN:P primarily to see and photograph the 

wildlife, 42 (55%) people stated 'seeing a large number of different wildlife species' as 

the best description of the reason for their visit, 15 (20%) people stated 'seeing the big 5', 

11 (14%) people stated 'seeing a particular species' and 8 (11%) people chose both 

'seeing a large number of different wildlife species' plus 'seeing the big 5'. 

There was a general enthusiasm towards the topics included in the questionnaire; over half 

(54%, n = 97) of the respondents left their email address to gain a summary of the results. 

5.3.3. Payment Questions 

27% (n = 48) of respondents paid the standard fee for South African citizens and residents 

(R30) to enter KNP; 21% (n = 37) paid the standard conservation fee ofR120 (for foreign 

visitors); 17% (n = 30) peeple didn't know how much they paid to enter the park and 35% 

(n = 64) respondents used a WILD Card. Of those who used a WILD Card, 22% (n = 14) 

were exclusively for the bushveld cluster, 53% (n = 34) for South African citizens visiting 

all clusters, and 25% (n = 16) were for international individuals visiting all clusters. In 

total 15 were solely for individual use, 28. were part of a couple and 21 were part of a 

family. The majority of respondents (62%) thought the entrance fee they paid was 'just 

right'; 10% thought it was 'too low', 11% 'too high' and '17% were 'unsure'. 
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5.3.4. Respondents' Willingness-to-Pay 

There was an overall positive attitude towards conserving the current complement of large 

mammal species in KNP; 70% (n o:: 119) respondents were WTP towards this scheme. 

The numbers of people WTP towards giraffe and elephant conservation were both less; of 

the 119 respondents WTP for the conservation of the current large mammal biodiversity in 

KNP, 31 of these were subsequently not WTP for the conservation of just the elephant, 

and 29 were subsequently not WTP for the conservation of just the giraffe. Consequently, 

44% of the people answering V2 were WTP for giraffe conservation (n = 34) and 44% 

answering VI were WTP for elephant conservation (n = 35). A summary of descriptive 

statistics are given in Table 5.6. 

Table 5.6. Willingness-to-pay values (given in South African Rand, R) for conservation scenarios in Kruger 
National Park, South Africa. 

Scenario NWTP % Median RangeofWTP Mean Std. 95%confidence 
WTP (R) values (R) (R) Error interval 

All Species 119 70% 60 5-600 94.92 9.57 75.97- 113.87 

Giraffe 34 44% 50 3-450 72.12 15.116 4'1.28 - 102.96 

Elephant 35 44% 50 4-300 73.40 12.1'8 48.64- 98.16 

19% respondents (n = 33) were not WTP for the conservation of the current complement 

oflarge mammals in KNP. In this case, the most common reason for not WTP was that 

the 'South African residents are paying too much already.' 56% (n = 44) people were not 

WTP for the conservation of giraffes and 56% (n = 44) people were not WTP for the 

conservation of elephants; the main reasons for not paying included that 'conservation 

must adopt a broad multi-species approach ' and therefore they 'prefer to see a balanced 

distribution of funds amongst all species' rather than 'just one species. ' 

Mean WTP for the conservation of all species was highest, at R94.94 (equivalent to 

-£6.68) in increased entrance fees. Mean WTP for giraffe conservation was R72.12 

(- £5.07) and mean WTP for elephant conservation was only slightly higher, at R73.40 

( -£5.lr6). However, differences between the amounts people were WTP for different 

scenarios was not significant; an independent t-test showed that there was no significant 

difference between the amount people were willing-to-pay for elephant or giraffe 

- 144-



conservation (t = 0.066, df = 67,p = 0.947). Additionally, a one-way ANOVA indicated 

there was no significant difference between the average amount people were willing-to

pay for the conservation of all species, giraffes or elephants in KNP (F = 1.153, df = 2, p 

= 0.318). Figures 5.14, 5.15, and 5.16 show the amount people were WTP (in South 

African Rand, R) for each scenario. In all cases, median WTP was less than mean WTP by 

approximately a third of the mean amount (Table 5.6). The finding that median WTP is 

'considerably' less than mean WTP is a common occurrence in CV studies (Christie et al., 

2006), and is due to the fact that people giving high values ofWTP distort the mean value. 
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Figure 5.14. Frequency histograms showing the amount of money (South African Rand, R) respondents 

were WTP in increased entrance fees in order to conserve the number and variety of large mammals 
currently in Kruger. 
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Figure 5.15. Frequency 
histograms showing the amount of 
money (South African Rand, R) 
respondents were WTP in 
increased entrance fees in order to 
conserve elephants in Kruger. 

Figure 5.16. Frequency 
histograms showing the amount of 
money (South African Rand, R) 
respondents were WTP m 
increased entrance fees in order to 
conserve giraffes in Kruger. 



5.3.5. Aggregation 

In the year ending 31st March 2007, a total of 1,313,185 people visited KNP (SANParks, 

2007). 70% of respondents were WTP towards the conservation of all lwge mammals in 

KNP; the mean WTP was R94.92. Therefore by multiplication, the aggregate value of 

WTP over the total number of KNP visitors is R87.3million (± R17.4miliion) per year 

which is equivalent to approximately £6.1million (± £1.2million) per year. 

Only 44% of people interviewed were WTP for giraffe conservation, the mean amount 

was R71.12. Consequently, the aggregate value of WTP for giraffe conservation over the 

total number of KNP visitors is R41.1million (± R17.8million) per year which is 

equivalent to £2.9million (± £1.3million) per year. Similarly, 44% of people were WTP 

for elephant conservation, with a mean amount of R73.40. Therefore, the aggregated WTP 

values for elephant conservation is R42.4million (± R14.3million), which is equivalent to 

£3.0million (± £1.0million) per year. 

5.3.6. Significant Factors Affecting Respondents' Willingness-to-Pay for the 
Conservation of Large Mammals 

Logistic regression analysis was used to predict the probability that a participant would be 

willing-to-:pay for the conservation of the current complement of large mammals in KNP. 

The predictor variables were age, gender, income, length of visit, reason for visit, 

interviewer and whether it was their first visits to South Africa and KNP. Dummy 

variables were also used to encode possible responses with regards to the respondents' 

nationality, employment status, level of education, type of .travel, entrance fee paid and 

their attitude towards the entrance fee (Table 5.3). Reference groups for each of these 

dummy variables were 'South African', 'Full Time', 'University Standard Degree', 

'Independent Travel', payment using a 'WildCard' and 'just right' as their attitude 

towards the cost of the entrance fee respectively. These groups were chosen as there were 

no natural numeric values for these variables, therefore the most common response was 

chosen as the reference group. 

A test of the full 'all species' model versus a model with the intercept only was 

statistically significant at the 0.05 level, which implies there is a causal relationship 
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between the predictor variables and respondents' WTP (model X2 = 57 .66, d.f. = 28, p < 

0.01) (Table 5.7). The full model was able to correctly classify 46.7% of people who were 

not willing-to-pay and 94.1% of people who were willing,..to-pay; giving an overall 

success rate of 85.5%. 

Table 5.7. Summary statistics calculated from the logistic regression models of respondents' 
willingness-to-pay towards conserving the current level of species diversity in Kruger ('all species') plus 
towards conserving only one species (giraffe/elephant) in Kruger National Park. Results are given for a 
full model - with all predictor variables (table 5.2), as well as a reduced model which used only 

significant variables from the full models. Model r is the difference between the -2log likelihood for the 
model with.a constant only, and -2log likelihood for the current model. 

Full Model Reduced Model 

Giraffe/Elephant All Species Giraffe/Elephant All Species 

ModelX1 55.01 57.66 44.24 28.67 

%·Correct Classification 72.4 85.5 70.4 81.2 

Significance (p) <0.01 <0;01 <0~01 <0.01 

Pseudo R'- (Cox & Snell) 0.286 0.295 0.230 0.155 

Table 5.8 below shows the logistic regression coefficient, Wald test and odds ratio for 

each of the predictor variables. Employing a 0.05 criterion of statistical significance, the 

respondent's age, if it was their first visit to KNP, if it was their first visit to South Africa, 

the interviewer and if they were travelling 'overland' all had significant effects (i.e. those 

withp < 0.05) on respondents' willingness-to-,pay. The rest of the predictor variables such 

as income, gender and nationality had non-significant effects (Table 5.8). The odds ratios 

indicate that when holding all other variables constant, respondents who were interviewed 

by George (the student volunteer) were more likely to be WTP than those interviewed by 

Georgina (X2 = 9.17, B = 2.55, p < 0.01); and those who were travelling 'overland' were 

significantly less likely to be WTP than those who were travelling independently (X2 = 
5.01, B = -4.36, p < 0.03; Table 5.8), An increase in age was associated with the odds of 

being WTP decreasing (X2 = 4.54, B = -0.63, p < O.G4); this is consistent with findings in 

recreation economics literature (Walsh, 1986). Additionally, respondents who were 

visiting South Africa for the first time were 17 times more likely to be WTP than those 

who had visited previously (including those who live in SA) (X2 = 4.65, B = 2.84, p < 

- 148-



0.04); however, those who were visiting KNP for the first time were less likely to be 

willing-to-pay than those who had visited KNP previously ()f = 3.89, B = -2.64, p < 0.05). 

Table 5.8. Parameter estimates for logistic regression models of willingness-to-pay for the conservation 
of the current level of species diversity in Kru~er. Independent variables are.described in Table 5.2. 

Independent Variable Coefficient Wald Significance.p Odds Ratio ExpB (95% 

B x2 confidence interval) 
Gender -.41:8 .472 .492 .659 (.20-2.17) 

Age -.063 4.542 .033 .939 (.89 -1.00) 

Nationality British .4'19 .129 1.521 (.15- 1.521 (.01 - .98) 

American .145 .009 1.156 (.06- 1.156 (.35- 3.78) 

Australian 20:064 .000 517326900.573 517326900573 (.38- 4.44)* 

German -.868 .485 .420 (.36- 4.83) .420 (2.46 - 66~90) 

Other -1.663 1.748 .190(.16- 2.23) .190 (.89 -1.00) 
Employment Part-time 1.932 2.167 6.904 (.53- 6.904 (.15- 15.07) 

Status Retired -1.108 1.260 .330 (.48- 2.29) .330 (.06- 22.32) 

Unemployed 22.821 .000 8151650978.673 8151650978.673 (.0- )* 
In Full Time 1.126 .498 3.084 (.14- 3.084 (.36- 4.83) 

Level of University Higher 1.202 2.503 3.327 (.75- 3.327 (.16 - 2.23) 

Education College 1.089 1.493 2.971 (.52- 2.971 (.75- 14.75) 

Secondary School 1.646 2.416 5.184 (.65 ~ 5.184 (.52 -17:04) 

Household Income(£) .029 .031 ;861 1.029 (.75 - 1.42) 
Entrance R30 -.114 .023 .892 (.20- 3:90) .892 (.53- 90.4'1) 

Fee R120 -.851 .793 .427 (.07- 2.78) .427 (.48- 2.29) 

Unsure of Amount .561 .149 1.753 (.10- 1.753 (.0-) 

Attitude Too Low 1.070 .774 2.917 (.27 ~ 2.917 (.14 -70.50) 

Too High -.936 1.663 .392 (1.0- 1.63) .392 (0.0 - .58) 

Unsure -2.009 2.557 .134 (.011- .134 (.18- 4.00) 
Type Travel Overland -4.360 5.008 .013 (0.0- .58) .013 (.20- 3.90) 

Organised Tour -.170 .046 .844 (.18- 4.00) .844 (.07- 2.78) 

Interviewer 2.551 9.165 .002 12.825 (2.46- 66.90) 

Reason .257 .166 .684 1.293(.38 - 4.44) 
Length .142 .055 ;815 1.153 (.35 - 3.78) 

FirstTripSA 2.840 4.649 .031 17.123 (1.30- 226.42) 

FirstTripKruger -2.641 3.891 .049 .071 (.01 - .98) 

*The large odds ratios for the variables 'Australian' and 'unemployed' occur due to the presence 
of zero values i.e. everyone in these categories was willing-to-pay to conserve the current level of 
species diversity in Kruger. 
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5.3.7. Significant Factors Affecting Respondents' Willingness-to-Pay for 
Giraffe/Elephant Conservation 

Logistic regression analysis was then used to predict the probability that a participant 

would be willing-to-pay for the conservation of a single species of large mammal 

(elephant or giraffe) in KNP. The predictor variables were the same as in the 'all species' 

model, with the exception of an additional variable encoding if the respondents answered 

version one or two of the questionnaire was added ('species' in Table 5.3). A test of the 

full model versus a model with the intercept only was statistically significant at the 0.05 

level, which implies there is a causal relationship between the predictor variables and 

respondents' WTP ~model X2 = 55.01, d.J. = 28, p < 0.01) (Table 5.7). This 'single 

species' model was able to correctly classify 70% of people who were not willing-to-pay 

and 75% of people who were willing-to-pay, gi·ving an overall success rate of 72%. 

Although this 'single species' model was able to correctly classify more people who were 

not WTP, overall the 'al,l species' model is better than the 'single species' model in 

predicting if respondents' would be WTP. 

The table below shows the logistic regression coefficient, Wald test and odds ratio for 

each of the predictor variables (Table 5.9). Employing a (i).05 criterion of statistical 

significance, the respondent's age, if they were German, if they were in full time 

education, if they paid the daily conservation fee of R120 to enter KNP and if they 

believed the entrance fee was 'too low' all had significant effects (i.e. those with p < 0.(i)5) 

on their willingness-to-pay. The odds ratios indicate that when holding all other variables 

constant, respondents in full time education were significantly less likely to be WTP for 

giraffe/elephant conservation than those in full..,time employment (X2 =4.88, B = -1.66, p 

< 0.03). Similarly, respondents who paid R120 were significantly less likely to be WTP 

than those who used a WildCard (X2 = 4.56, B = -1.54, p < 0;04). Those respondents who 

stated that the entrance fee was 'too low' were more than seven times as likely to be WTP 

than those who believed the entrance fee was 'just right' (X2 = 5.21, B = 2.03, p < 0:03). 

Additionally, German respondents were more than ten times as likely to be WTP towards 

single species conservation than South African respondents (X2 = 4.15, B = 2.32, p < 

0.05). Finally, as with the 'all species' model, an increase in age was associated with the 

odds of being WTP decreasing (X2 = 8.6(i), B = -0.60, p < 0.01). The version of the 

- 150-



questionnaire (giraffe/elephant) the respondents answered did not have a significant 

impact on their WTP towards conservation; the rest of the predictor variables such as 

gender, level of education and income also had non-significant effects (Table 5.9). 

Table 5•9. Parameter estimates for logistic regression models of willingness-to-pay for the~conservation 
of a single species of large mammal (giraffe or elephant) in Kruger. Independent variables are described 
in Table 5.2. 

Independent Variable Coefficient WaldXL. Significance Odds Ratio ExpB (95% 

B p confidence interval) 
Gender -.697 2.385 .123 .498 (.21 - 1.21) 
Age -.060 8.596 ;()()3 .942(.91 - .98) 
Nationality British .842 1.195 .274 2.320(.51 - 1 0.50) 

American .969 1.093 .296 2.635(A3- 16.20) 
Australian .761 .606 .436 2.140(.32 -14.52) 
German 2.321 4.147 .042 10.187(1.01 -95.12) 
Other -1.829 2.196 .138 .161(.01 -1.80) 

Emplo)rment Part-time -.322 .158 .691 .725(.15- 3.55) 

Status Retired -1.078 1.706 .192 .340(.07 -1.71) 
Unemployed -.891 .853 .356 .410(.06- 2.72) 
In Full Time -1.658 4.884 .027 .191(.04- .83) 

Level of University Higher -.004 .000 .995 .996(.36- 2.75) 

Education College .324 .257 .612 1.382(.40 - 5.83) 
Secondary School -.080 .013 .909 .923(.24 - 3.63) 

Household Income (£) .005 .002 .963 1.005 (.81 -1.24) 
Entrance Fee R30 -.455 .725 .394 .634(.22 -1.81) 

R120 -1.539 4.555 .033 .215(.05 - .88) 
l:Jnsure of Amount .417 .t54 .695 1.517(.19-12.17) 

Attitude Too Low 2.026 5.212 .022 7 .585(1.33 - 43.19) 
Too High -.066 mo .918 .936(.27- 3.30) 
l:Jnsure -1.049 1.067 .302 .350(.05- 2.57) 

Type Travel Organised Tour -.318 .218 .641 .728(.10- 24.02) 
Overland .438 .098 .754 1.549(.19- 2.77) 

Interviewer -.781 2.971 .085 .458 (.19 -1.11) 
Reason .358 .613 .434 1.431(.58'-3.51) 
Length -.128 .084 .772 .880(.37 - 2.1 0) 
FirstTripSA 1.075 1.546 .214 2.931 (.54 -15.96) 
FirstTripKruger -.872 1.156 .282 .418(.09 ~ 2.05) 
Species -.497 1.448 .229 :609(.27 -1.37) 
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5.3.8. Reduced Models Assessing Significant Factors Affecting Respondents' 
Willingness-to-Pay for Conservation 

Reduced models for 'all species' and 'single species' were then tested. These models 

included only those predictor variables which significantly aifected respondents' WTP in 

the respective full models (Table 5.8 and Table 5.9). A test of the 'all species' reduced 

model versus a model with the intercept only was statistically significant at the 0.05 level, 

which implies there is a causal relationship between the predictor variables and 

respondents' WTP (model X2 
::::: 28.67, d.f. = 6, p < 0.01) (Table 5.7). The same can be said 

for the 'single species' reduced model versus a model with the intercept only (model X2 = 

44.24, d.f. = 16, p < 0;01) (Table 5.7). The 'single species' reduced model was able to 

correctly classify 72% of respondents who were not WTP and 68% of respondents who 

were WTP, giving an overall success rate of 70%. These results are slightly lower than 

those for the corresponding full model (Chapter 5.3.7). Similarly, the reduced model for 

'all species' was able to correctly classify a smaller percentage of respondents than the full 

model (Chapter 5.3.6); only 10% of respondents who were not WTP were correctly 

classified. However, 97% of those WTP for 'all species' conservation were correctly 

classified, giving an overall success rate of 81%. 

The logistic regression coefficient, Wald test and odds ratio for each of the predictor 

variables for the reduced models are given in Tables 5.10 ('all species') and 5.11 ('single 

species'). Employing a 0.05 criterion of statistical significance, the reduced model for 'all 

species' had two significant variables; the interviewer and the respondents' age. Holding 

all other variables constant, respondents interviewed by George were more likely to be 

WTP than those interviewed by Georgina (X2 = 7.89, B = 1.551, p < 0.01); and an increase 

in age was associated with the odds of respondents being WTP decreasing (X2 = 12.49, B 

= -0.065,p < 0.001). 

The reduced model for 'single species' had four significant variables which were the 

respondents' age, employment status, entrance fee paid and attitude towards the entrance 

fee paid. Holding all other variables constant, respondents in full time education were 

significantly less likely to be WTP for giraffe/elephant conservation than those in full-time 

employment (X2 = 7.22, B = -1.784, p < 0.@1); respondents who paid R120 to enter KNP 
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were significantly less likely to be WTP than those who used a WildCard (X2 = 4.83, B = -

1.366, p < 0.03); respondents who believed the entrance fee they paid was 'too low' were 

significantly more likely to be WTP than those who believed the fee was 'just right' (X2 = 
7.08, B = 2.196, p < 0.01); and an increase in age was associated with the odds of 

respondents being WTP decreasing (X2 = 6.72, B = -0.044, p < 0.02). 

Table 5.10. Parameter estimates for reduced logistic regression models of willingness-to-pay for the 
conservation of the current level of species diversity in Kruger. This lQgistic regression model uses only 
significant variables from the corresponding full model (Table 5;8). Independent variables are described 
in Table 5.2. 

Independent Variable Coefficient WaldX"" Significance Odds Ratio 

B p (ExpB) 

Age -.065 12.490 .000 .937 

Type Travel I Overland -1.741 1.575 .210 .175 

I Organised Tour -.707 1.515 .218 .493 

Interviewer 1.551 7.890 .005 4.714 

FirstTripSA 1.222 1.563 .211 3.395 
FirstTripKruger -1.219 2.049 . .J52 .295 

Table 5.11. Parameter estimates for reduced logistic regression models of willingness-to-pay for the 
conservation of a single species of large mammal (giraffe or elephant) in Kruger. This logistic regression 

model uses only significant variables from the corresponding full model (Table 5.9). Independent 
variables are described in Table 5.2. 

Independent Variable Coefficient WaldX"" Significance Odds Ratio 

B p (ExpB) 

Age -.044 6.718 .010 .957 
Nationality British .575 .905 .341 1.777 

American .610 .675 .411 1.841 

Australian .040 .003 .959 1.041 

German 1.675 3.381 .066 5.339 

Other ~1.924 2.842 .092 .146 
Employment Part-time .085 .013 .909 1.089 

Status Retired -.521 .656 .418 .594 

Unemployed -.174 .058 .8tr0 .840 

In Full Time Education -1.784 7.2·19 .007 .168 
Entrance Fee R30 -.252 .289 .591 .777 

R120 -1.366 4;829 .028 .255 
Unsure of Amount .876 .881 .348 2.401 

Attitude Too Low 2.196 7.081 .008 8.986 
Too High -.159 .073 .787 .853 
Unsure -1.161 1.675 .196 .313 
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5.4 Discussion 

Results of this study suggest that the vast majority of visitors to KNP were in favour of 

protecting the current number and variety of large mammals found there; 70% of the 

respondent's who completed the questionnaire were WTP towards the conservation of 

mammals in KNP. A number of studies have recorded similar support for 

biodiversity/species conservation programs; Barnes et al., (1999) found that 72% 

respondents were WTP for wildlife conservation in Namibia; White et al., (1997) recorded 

that 58% of respondents were WTP (the amount specified in the questionnaire) for 

mammal conservation in Britain; and 75% of respondents in Turpie's (2003) study were 

WTP towards the conservation of biodiversity in South Africa. Of those respondents who 

were WTP, the mean amount was R92.92 (± R18.95) per person per visit. Although we 

cannot directly compare this mean value to the average cost respondents paid to enter the 

park (due to the majority (35%) of respondents using a one-off yearly fee, i.e. WILD Card, 

which allows unlimited visits), it is obvious the mean value people were WTP was large; 

over triple the fee South Africans pay to enter KNP, and just over three-quarters of the fee 

international visitors pay for each visit. Other studies such as Bames et al., (1999), Schultz 

et al., (1998) and Navrud & Mungatana (1994) have also recorded undervaluation of 

tourists' WTP which suggests entrance fee policies have room for improvement (Naidoo 

& Adamowicz, 2005). Consequently, the information from this and other WTP studies 

may be useful in informing park managers about how to set differential charges for 

different types of users in order to maximise park revenues (Naidoo & Adamowicz, 2005). 

However, the differential setting of fees must be done carefully. Increased entrance fees 

deliver greater revenue for PA management, while reducing the number of tourists visiting 

parks. This may have positive effects, such as alleviating negative impacts of tourism 

upon ecosystems (Chown & Gaston, 2000; Mulligan, 1999; Naidoo & Adamowicz, 2005), 

but may also reduce the general public's experience and interest in protecting their native 

fauna in the face of projected future climate change. 

The percentage of respondents WTP for girat:fe/elephant conservation was less than those 

WTP for ensemble species conservation; only 44% of respondents were WTP for giraffe" 

and 44% for elephant conservation. White et al., (2001) found similar results to these; 

62% of their respondents were WTP for ensemble species conservation, but only 31% and 
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45% were WTP for brown hare (Lepus europaeus) or red squirrel (Scuirus vulgaris) 

conservation respectively. The fact that more people were WTP for multi-species 

conservation than for single species conservation is reflected in the reasons people gave 

for not being WTP; many people felt that conservation should adopt a broad multi-species 

approach and therefore not concentrate on a single species. The fact that respondents were 

more enthusiastic and more generous towards multi-species conservation may indicate 

that in recent years the public have become more in tune with the science of nature 

conservation, which is moving towards biodiversity conservation rather than single 

species conservation. However, it is reasonable to presume that visitors to KNP are more 

interested in nature conservation than people who do not visit national parks, due to the 

very fact they are visiting KNP. Therefore the general public, most of whom do not visit 

national parks, may still find it easier to perceive conservation in single-species terms 

(White et al., 2001). 

The mean amount respondents were WTP for giraffe and elephant conservation were 

similar to each other (R71.12 and R73.40 respectively). It was expected that WTP would 

be similar for these species. This is because elephants and giraffes are both well known 

and charismatic mammal species, and are also thought to be a very important part of the 

wildlife viewing experience (Navrud & Mungatana, 1994; Kaltenbom et al., 2006). 

Furthermore, even though some locals often associate elephants with crop damage, to 

many others both giraffes and elephants are national symbols and represent the African 

environment (Kuriyan, 2002; Kaltenbom et al., 2006). However, similar results could 

possibly be found when investigating visitors' WTP towards conservation of other 

flagship species (e.g. white and black rhinoceros' or lions). Consequently, it may not be 

that giraffes and elephants are perfect substitutes for each other in visitors' eyes, but that 

visitors want to help conserve flagship species but don't care which specific species it is. 

Even so, the preference for conservation of charismatic species is significantly greater 

than for less notable species (Loomis and White, 1996). P A managers and conserv;ation 

organizations can exploit this fact and 'use' flagship species to gain funding which can 

then help conserve less high profile species and their associated ecosystems (Kontoleon & 

Swanson, 2002). 
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The aggregation of mean WTP values was restricted to the target population only, i.e. the 

visitors to KNP, rather than a wider population such as the visitors to all parks under 

SANParks' control or all parks in South Africa. This was due to the potential differences 

between respondents' WTP towards conservation programs in different protected areas in 

Southern Africa/ Africa. The aggregated WTP values for the conservation of the cun:ent 

number and variety of large mammals over the KNP visitor population was R87 .3million 

(± R17 .4million). A possible reason for the high aggregated values respondents were 

potentially WTP towards the conservation of large mammals in KNP is that respondents 

were passionate about seeing a variety of animals such as these in situ. The majority 

( 43%) of l'espondents were visiting KNP to 'see and photograph the wildlife' (Question 

5)~ of these, 55% were visiting to 'see a large number of different wildlife species.' It is 

therefore assumed that the existence of large mammals in KNP would be important to 

them. As the number of people visiting 'to see a particular species' was less (14%) than 

those who were visiting to 'see a large number of different wildlife species' (55%) it was 

therefore expected that the number of people WTP for single species' conservation would 

be less than ensemble species conservation. This was the case in this study; a greater 

proportion (70%) of respondents was WTP towards ensemble species conservation than 

giraffe (44%) or elephant (44%) conservation. Consequently, the aggregated WTP values 

for the conservation of all species were more than double those for either giraffe or 

elephant conservation~ the aggregated WTP values for the conservation of giraffe or 

elephants in KNP were R4Llmillion (± R17.8million) and R42.4million (± R14.3mi1lion) 

respectively. 

Factors Affecting WTP towards Mammal Conservation in KNP 

The pseudo K statistics indicated that the logistic regression models with all possible 

predictor variables had greater explanatory power of l'espondents' WTP than the reduced 

models (Table 5.7~ Bateman et al., 2002). The full models were able to correctly classify a 

larger proportion of respondents' responses than the corresponding reduced models, for 

both the 'all species' and giraffe/elephant scenarios (Table 5.7). Consequently, the 

variables significantly associated with WTP in the logistic regression 'full' model for the 

ensemble species scenario were the participants' age, whether it was their fn:st trip to 

KNP, their first trip to South Africa, the interviewer and if they were travelling 'overland.' 
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The variables significantly associated with WTP in the logistic regression 'full' model for 

the single species scenario were if they were in full time education, if they paid the daily 

conservation fee of R120, if they believed the entrance fee they paid was 'too low', as 

well as their nationality. 

Under both scenarios (i.e. ensemble species- and single species conservation), 

respondents' age was negatively associated with WI'P. Other studies which have assessed 

WTP for conservation, have also recorded negative relationships between WTP and 

respondents' age (e.g. Martfn-L6pez et al., 2007; Kaltenborn et al., 2006; White et al., 

2001). The negative association between WI'P and age could be because younger people 

generally have less financial responsibilities than older people, and therefore more 

disposable income (White et al., 2001). Additionally, younger people are generally 

thought of as being more aware of environmental issues, such as the potential negative 

effects of climate change upon species (Martin-L6pez et al. 2007). 

WTP for Ensemble Species Conservation 

The majority (62%) of respondents had been to KNP previously and a large proportion 

was intending to visit other national parks on their trip (41 %). As visitation to national 

parks was high amongst respondents, it was assumed that they were familiar with- and 

interested in- the good (i.e. mammal ~pecies) about which they were questioned and were 

consequently able to make informed decisions about their WTP. Indeed, people who had 

visited KNP previously were more likely to be WTP towards ensemble species 

conservation than those who were visiting KNP for the first time, indicating that previous 

experience of national parks enhance peoples' interest and WTP towards mammal species 

conservation (a result also found by Turpie, 2003). Turpie's (2003) study indicated that 

knowledge and interest were positively correlated to WTP for nature conservation. 

However, respondents who were visiting South Africa for the first time ~i.e. international 

residents) were significantly more likely to be WTP than those people who had either 

previously visited South Africa or those who were resident in South Africa. A possible 

reason for this is that respondents visiting South Africa for the first time have different 

preferences and reasons for visiting KNP - indeed the primary purpose of international 
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tourists visiting South Africa was 'leisure reasons' i.e. holidays incorporating visiting PAs 

(South African Tourism, 2007). 

Although suitable training of interviewers, as well as the inclusion of follow-up questions 

to the WTP question, (which Bateman et al., (2002) suggest should reduce the likelihood 

of interviewer effects), interviewer bias was still present in this study. Respondents 

interviewed by George were twice as likely to be WTP towards ensemble species 

conservation as those interviewed by Georgina. Therefore the respondents may have been 

giving a WTP amount that differs from their true WTP amount in order to please either 

interviewer (Bateman et al., 2002; Hanley et al., 2004). This could be due to effects such 

as the interviewer's age, gender or education level. Although it was decided there were 

enough questionnaires for statistical analysis (and steps were taken to reduce possible 

interviewer effects), it would have been preferential to collect more surveys to assess such 

effects·. This could have been achieved either by increasing the time spent in KNP or by 

increasing the number of interviewers. However time and money prevented both of these 

options in this study. 

WTP for Single Species Conservation 

Variables significantly associated with· WTP in the logistic regression 'full' model for the 

single species scenario differed from those in the ensemble species scenario. Firstly, 

respondents who believed the entrance fee they paid was 'too low' were more than seven 

times as likely to be WTP as those who believed it was 'just right.' It can be assumed that 

those who believed the entrance fee was 'too low' consequently believed the fee should be 

raised. However, it is possible that respondents would be equally as willing for their 

increased fee to go towards other things such as education within the park, maintenance of 

buildings and roads etc, and therefore not necessarily solely towards biodiversity 

conservation. 

The logistic regression models also indicated those in fuU-time employment were 

significantly more likely to be WTP than those in full-time education, possibly because of 

the expectation that people in employment have higher incomes (Bateman et al., 2006). 

Additionally, Germans were more likely to be WTP than South African residents; South 
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Africans may be less WTP than Germans because of views towards paying to protect their 

native species. For example, some SA respondents were not WTP because they felt that 

"South Africans should not pay excessive amounts to view their own country." 

Another variable significantly associated with WTP was the payment given by the 

respondents to enter the park; those who paid R120 were less likely to be WTP than those 

who used a WildCard. As the WildCard allows unlimited access to all parks under 

SanParks' control, it is assumed that international visitors (the only people who pay the 

R1'2G entrance fee), pay a lot more per visit to KNP than those holding a WildCard. 

WildCard holders may be more likely to be WTP because as the WildCard al1lows 

unlimited access to parks, it is possible that WildCard holders visit KNP more regularly, 

and therefore have a greater interest in conservation within KNP than those who visit the 

park for a single trip. 

It is possible that the estimates of WTP differed to respondents actual WTP. Firstly, 

respondents may have given positive WTP responses regardless of their own views in 

order to ,please the interviewer (Mitchell & Carson, 1989; Holmes & Kramer, 1995). This 

effect is difficult to eradicate in studies such as this ('Furpie, 2003). As discussed on page 

158, interviewer effects influenced respondents' WTP towards ensemble species 

conservation, but not single species conservation. An additional problem is that the WTP 

questions incorporated uncertainty; it was put to all respondents that "SANParks would be 

able to stabilise or even reverse this change [decrease in species] using the extra revenues 

from an increase in entrance fees." It is possible that respondents interpreted this last 

sentence differently, however we cannot tell how. A further problem associated with CV 

studies is the problem of embedding (Turpie, 2003). It was assumed that the embedding 

effect was reduced by asking respondents about other national parks they had 

visited/intended to visit, other mammal species they have seen, as well as explaining about 

the other parks controlled by SANParks in South Africa. However, it is evident that 

embedding effect (Kahneman & Knetsch, 1992) was still present in this study; mean WTP 

for 'all species' (R94.92) was considerably less than for the mean WTP for the giraffe and 

elephant combined (R145.52). Other studies, such as White et al., (1997; 2001) have 
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reported the presence of the embedding effect, and have attributed this to the fact that 

respondents were expressing a more symbolic rather than additive WTP. White et al., 

(1997) suggested that the value respondents give for the highest valued species in a group 

will be approximately the same as the value given for that whole group of species; this is 

known as the 'flagship' hypothesis. Consequently, the public profile of a given species 

may be as significant as the public's perception of the rarity or degree of threat in 

determining the economic value of that species (White et al., 1997). Other studies, e.g. by 

Loomis & White (1996) have supported the idea that high pt:ofile species gain more public 

support for conservation than lower profile species. It is therefore likely that less well

known large mammal species, such as the Aders' Duiker (Cephalophus adersi) or the 

African Wild Ass (Equus africanus), which are both critically endangered species (IUCN, 

2006), would gain less public support for their conservation than higher pmfile species 

such as the elephant or giraffe. Flagship species such as the giraffe and elephant therefore 

play an important role in gaining public support for conservation projects (White et al., 

1'997). Additionally, it is likely that the estimates of the aggregated WTP towards 

conservation in KNP are approximations; our study only asked adults (> 18yeat:s) their 

views towards conservation within KNP, however children (<18years) also place a value 

on wildlife conservation (Navrud & Mungatana, 1994). Fmthermore, it is likely that 

visitors to protected areas place higher values upon species conservation than those who 

do not visit protected areas (as in White et al., 2001). This could be tested by comparing 

WTP of visitors versus non-visitors to KNP, with the assumption that WTP of visitors 

would be greater than non-visitors. 

While this study cannot tell us what would happen to visitation rates if climate change 

were to cause the number of mammal species (including giraffes and/or elephants) to 

decline in KNP in the future, or how WTP may change if this did occur, it does provide 

some insight into visitors' views and willingness to pay towards mammal conservation in 

KNP today. The contingent valuation method proved a reliable method for assessing and 

quantifying respondents WTP towards species conservation. A large proportion of visitors 

to KNP were WTP towards such conservation programmes; aggregated WTP values 

across the KNP population revealed immense support (approximately R87.3 million per 

- 160-



year). However, as there is no information on the actual amount of money spent on large 

mammal (and/or giraffe/elephant) conservation in KNP, one cannot compare the findings 

of this study directly. We found that factors such as the respondents' age and experience 

of visiting KNP, as well as the costs they are paying to enter the park and their attitudes 

towards this fee, all had impacts upon their WTP towards the conservation scenarios. The 

majority of respondents who were not WTP towards ensemble species conservation gave 

the reason 'South Africans are paying too much already.' There is a greater need for 

funding towards such conservation issues as discussed in this chapter. WTP studies may 

therefore be useful in informing park managers about how to set differential char.ges for 

different types of users in order to maximise park revenues (Naidoo & Adamowicz, 2005). 
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6.0 Conclusion 

Bioclimatic modelling using climate response surfaces provides a useful 'first 

approximation' in determining how species distributions might change as climate changes 

(Pearson & Dawson, 2003). In this thesis I have used climate response surfaces to assess 

the potential impacts of climate change upon the majority of large African mammals. This 

method produced simulated current distributions. that were comparable to observed 

distributions for the majority of species ~Chapter Two) and indicated that distributions of 

many African mammals are ultimately determined by climate. Further investigation 

suggested that 'drying' in particular will be detrimental to mammalian species diversity, 

most probably acting via negative impacts of decreased precipitation on vegetation growth 

(Chapter Three, page 86). If greenhouse gas emissions are not stabilised, we would expect 

further changes in the precipitation regime to occur (IPCC 2007). In fact, even if 

emissions are stabilised are the levels of the end of the 20th century, we are still committed 

to climatic change of approximately 0.1°C per decade for the next two decades (IPCC 

2007). One would expect this to impact upon vegetation and, therefore, mammal species 

abundances and distributions. In this study mean overlap between species' current and 

potential future ranges is projected to decrease to 89% by 2020, 81.7% by 2050, and only 

75.7% by 2080. Similar results have been reported by Huntley et al., (2008) who found 

that potential future (2070-99) range extent of 43,1 European breeding bird species 

averaged 72 - 89% of their present ranges. However, for some mammal species (- 43), 

future ranges are projected to overlap current ranges by less than 10%. Similarly, Huntley 

et al., (2008) reported that even under moderate climate change scenarios, 14% (c. 60) 

avian species suffer zero overlap, and a larger number of species had overlap <10% of 

their present range. 

If a species current range becomes climatically unsuitable in the future, and that species is 

unable to adapt to the potential future changes in climate and/or consequently alter their 

ranges, that species may only to occupy those areas where current and future ranges 

overlap (Huntley et al., 2006). This may have serious consequences for the survival (both 

genetic and absolute) of the species. Additionally, due to the association between species' 
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range size and extinction risk (Jablonski, 1991; Gaston, 1994), range contraction as a 

result of climate change may compound the problems associated with decreasing overlap. 

On the whole, species ranges were projected to decrease slightly by 2080, under a best

case scenario of range alteration (Chapter Three). However, as with range overlap, the 

effects of climate change are expected to impact upon individual species differently. Some 

species are projected to face no change in range size, some will suffer range contraction 

and others will potentially 'profit' from climate change due to an increase in their range 

sizes. This is not to say that species' newly climatically suitable areas will be necessarily 

suitable for them to populate - potential future climatically suitable area may include areas 

of human settlement which could lead to human-wildlife conflict, or may contain no 

suitable habitat or prey sepecies. Other species may experience little or no overlap 

between current and future ranges, in which case only wildlife-corridors or artificial 

translocation will aid their survival. Consequently, it is necessary that conservation 

strategies aim to protect species wherever they move in response to climate change 

(Huntley et al., 2006~, be it inside or outside of protected area boundaries. Consequently, 

the reliance solely on the PA network to maintain biodiversity is insufficient (Huntley et 

al., 2006). Further research into how climate change is projected to affect species 

distributions both within and outside of PAs is urgently required. 

The current network of protected areas across Africa has been shown to be fairly robust to 

climate change (Chapter Four); however one cannot rely solely upon these areas to 

maintain biodiversity in the future. One also needs to ensure that species are given every 

opportunity to track projected climate changes too. This can be attained by creating 

corridors or 'stepping stones' ~untley et al., 2006) of suitable habitat between PAs so 

that species are able to adjust their distributions in response to climate changes. In 

addition, the design and creation of additional PAs with the dynamic nature of the climate 

in mind will also be of benefit. 

Protected areas play an important role in maintaining biodiversity as well as acting as 

natural and cultural resources (IUCN, 1994). However, it is likely that as climate changes, 
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PAs will be unable to meet their remit of protecting the biodiversity for which they were 

designed (Burns et al., 2003). This research has estimated that PAs will experience 

decreases in species richness at a greater rate than non-protected areas. Additionally, as 

the majority of species are projected to respond to climate change individualistically, 

mammalian community composition within (and outside) of PAs is expected to change as 

a result of changing vegetation (Burns et al., 2003). This may have implications upon 

species which depend on another species for a specific ecosystem service or resource e.g. 

the winter moth- pedunculate oak system described in Chapter One. Additionally, many 

PAs rely heavily upon revenues gained from tourism in order to conserve resident species. 

If a charismatic keystone species, such as the elephant, is unable to persist in a PA in the 

future due to the absence of climatically suitable habitat, this may have knock-on effects 

upon the presence/absence of other species; as well as potentially impacting upon visitor 

numbers and therefore park revenues (Palmer et al., 2008). 

Chapter Five assessed the public's willingness-to-pay for the conservation of mammal 

species in Kruger National Park (KNP), which is one of the world's most popular game 

parks. A major factor in the popularity of the park is the variety of species resident there. 

Consequently, if community composition were to change as a result of climate change, 

one could assume that this would impact upon the number of people visiting KNP, 

particularly if the distribution of large charismatic mammals such as the elephant or 

giraffe were to decrease substantially. Results of the contingent valuation survey of 

visitors to KNP suggested that the vast majority were in favour of p:r:otecting the current 

number and variety of large mammals found there. Other studies such as Bames et al., 

(1999), White et al., (1997) and Turpie (2003) have reported strong support for 

biodiversity conservation, indicating that this topic is important to the general public. 

Although the number of people WTP for single species c.onservation was less than for 

ensemble species conservation, this study also indicates the support for the conservation 

of two flagship species - the giraffe and elephant - in the face of climate change. Indeed, 

flagship species such as these play an important role in gaining public support for 

conservation projects (White et al., 1997). 
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The contingent valuation method proved a rel,iable method for assessing and quantifying 

respondents WTP towards species conservation (Chapter 5.4). The aggregated WTP 

values for mammal conservation in KNP were high; R87.3million ~± R17.4million) per 

year for ensemble species conservation, R41.1million (± R17 .8million) for giraffe- and 

R42.4million (± R14.3million) for elephant conservation. It would be inappropriate to use 

the results of this study as a direct measure of public support for conservation in all PAs in 

Africa, therefore a potential extension of this work would be to gauge if levels of public 

support for conservation in KNP are comparable to other PAs in Africa. However, this 

study does show that the presence of a large number and variety of animals in their natural 

environment is an important factor in the public's decision to visit PAs, particularly KNP. 

As there is a great need for increased funding for species conservation, WTP studies may 

be useful in informing park managers about how to set differential charges for different 

types of users in order to maximise park revenues (Naidoo & Adamowicz, 2005). A 

number of park authorities now set differential fees for resident and non-resident visitors -

examples include South African National Pwks and the Kenyan WHdlife Service. 1'he 

current research found that the mean value people were WTP per visit for conservation 

was large when compared to the price of their entrance fee, especially the fee paid by 

South Africans (Chapter Five, page 154). Many other studies (e.g. Barnes et al., (1'999); 

Naidoo & Adamowicz (2005); Navrud & Mungatana (1994); Schultz et al., (1998)) have 

also demonstrated that entrance fee policies have room for improvement. 

Variables which significantly affected visitors' WTP included their age, experience of 

visiting the national park and employment status (Chapter 5.4). As previous experience of 

national parks enhances people's interest and WTP towards mammal species conservation 

(a result also found by Turpie, 2003), park authorities need to adjust entrance fees 

carefully, so that people are not discouraged from visiting. If this were the case, the 

general public's experience and interest in protecting African fauna in the face of 

projected future climate change may decrease. 
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If climate change were to proceed as predicted by the General Circulation Models (GCM), 

the bioclimatic models suggest that mammalian species composition within PAs will be 

altered significantly as climate changes; particularly those in South Africa and Namibia 

which were projected to experience high species turnover (64 -78%) by the 2080's. This 

is expected to have knock-on effects upon other species. Consequently, until greenhouse 

gas, emissions are stabilised (or reduced), it is inevitable that funher climate change, 

(Huntley et al., 2006) and therefore further alterations of species distributions will occur 

too. Until (and it) emissions are reduced, there are a number of ways to lessen the possible 

impacts of climate change upon mammals; educating the public about the predicted plight 

of these animals, as well as increasing the extent of the protected area network will be of 

key importance. Increasing public education and experience of nature will increase 

awareness of conservation issues and was shown in Chapter Five to increase the public's 

WTP towards conservation. Efforts such as increasing the extent and connectedness of the 

PA network wiH allow species the opportunity of tracking climate change, but these 

strategies will onl,y be effective if the dynamic nature of climate is taken into account 

during PA design. 
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Appendices 

Figures A1, A2 and A3 start from page 185. Due to the large size of the rest of the files in 

the appendices, Table A1, A2, A3 and A4 can be found on the attached DVD. Also on the 

DVD are files needed to visualise simulated distribution maps of the 281 species for the 

present day and each of the nine potential future climate change scenarios used in this 

study. 

Files on the DVD were created and written to DVD using a Dell Dimension DXC051 

Intel(R) Pentium(R) 4CPU computer. The operating system used was Microsoft Windows 

XP Professional. The software used to access each file is given below, as are instructions 

on how to access selected files in ArcMap (page 184). 
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File Name Description Format Software 

africa_outline DBFFile 

africa~outline.sbn SBNFile 

africa_outline.sbx Files needed to be able to view the outline SBXFile 

africa_outline.shp 
of African country borders in ArcMap (see SHPFile 

Arc Map 
page 180). 

)G..tL 

africa_outline.shp.xml Document 

africa_outline:shx SHXFile 

echam_2020_sp1-140 DBFFile Arc Map 

These files can be imported into ArcMap 
echam_2020_sp141-28'1 

(see page 180) in order to view simulated 
DBFFile Arc Map 

echam_2050_sp1-140 distribution maps of each of the 281 species DBFFile Arc Map 
using three different GCMs (ECHAM4, 

echam_2050_sp141-28l GFDL, and HadCM3) for the present day DBFFile Arc Map 
('simulatedcurrent') and for 2020, 2050 and 

echam_2080_sp1-140 Z080. Species reference numbers are given DBFFile Arc Map 

echam_2080_sp141-281 
in Appendices Table Al. 

DBFFile Arc Map 

gfdl_2020_spl-140 
For example, 'echam_2020_sp1-140' can 
be used to visualise distribution maps of DBFFile Arc Map 

gfdl_2020_sp141-281 
species number 1 to 140, under the 

DBFFile Arc Map 
ECHAM4 2020 scenario. 

gfdl_2050_spl-140 DBFFile Arc Map 

gfdl_2050_sp141-281 These files can be imported into ArcMap DBFFile Arc Map 
(see page 180) in order to view simulated 

gfdl_2080_spl-140 distribution maps of each of the 281 species DBFFile Arc Map 

gfdl_2080_sp 141-281 
using three different GCMs (ECHAM4, 

DBFFile Arc Map GFDL, and HadCM3) for the present day 

hadcnl3_2020_spl-140 ('simulatedcurrent') and for 2020, 2050 and DBFFile Arc Map 
2080. Species reference numbers are given 

hadcnl3_2020_sp141-281 in Appendices Table Al. DBFFile Arc Map 

hadcnl3_2050_spl-140 For example, 'gfdl_2080_sp141-28'l' can DBFFile Arc Map 
be used to visualise distribution maps of 

hadcnl3_2050_ sp141-281 species number 141 to 281, under the DBFFile Arc Map 
GFDL 2080,scenario. 

hadcnl3_2080_spl-140 DBFFile Arc Map 

hadcnl3_2080_ sp141-281 DBFFile Arc Map 

simulatedcurrent_sp 1-140 DBFFile Arc Map 
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s imulatedcurrent_sp 141-281 DBFFile Arc Map 

Details of each of the 281 species, including Microsoft Word Microsoft 
names, red list categories, AUC values and 97-2003 Word 

Table A1 geographic regions they occupy Document 

Extent of species' simulated-present and Microsoft Word Microsoft 
potential-future distributions. 97-2003 Word 

Table A2 Document 

Extent of overlap between species' current Microsoft Word Microsoft 
and potential future distributions. 97-2003 Word 

Table A3 Document 

Projected Persistence and Turnover in Microsoft Word Microsoft 
Mrican Protected Areas by 2020, 2050 and 97-2003 Word 

Table A4 2080. Document 

Instructions to View Files in ArcMap 

Simulated presence-absence maps for each of the 281 species can be viewed as follows: 

1. Load ArcMap. 
2. Tools > Add XY Data > 
3. and locate the chosen file (e.g. gfdl_2080_spl-14l.dbt) on 

theDVD. 

4. Click Add. 
5. Select "LONG" as the X Field. 
6. Select "LA T" as the Y Field. 
7. Click OK. 
8. Double click on the layer just added. 
9. Select the 'symbology' tab. 
10. On the left-hand menu select Categories> Unique Values. 
11. Under 'value field' select the chosen species you wish to view (e.g. SPECIES!). 
12. Click 'add all values' * > OK. 

*(N.B. presences are denoted by "1" and absences by "0") 

To view African country borders: 

1. Load ArcMap. 
2. Click the 'Add data' button: :.1.: -w 

~ 

3. Select the file "africa_outline.shp" on the DVD. 
4. Click Add. 
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Durhatn 
University 

Figure Al. National Park Survey 

This survey is being undertaken by Durham University, UK, as a piece of independent research to 

find out your views and values towards animals in National Parks in Africa. We would also like to find 

out your attitudes about the possible future changes in the variety of these animals. Finally, we would 

like to find out about your visit to the National Park today. 

Your help in answering this questionnaire would be greatly appreciated; your responses are anonymous 

and will be kept confidential. 

1. Is this your first trip to South Africa? Yes D No D 

2. Is this your first visit to Kruger National Park? Yes D No D 

i) if no, how many times have you visited Kruger in the last two years (including today)? Please tick one only. 

D 2 D 3 D 4+ D 

3. Are you visiting Kruger as a: day visitor D overnight visitor D 

4. Which other National Parks have you visited/ do you intend to visit on this trip? Please list. 

5. What is the main reason for your visit to Kruger National Park? Please tick one only. 

To experience South African culture D 
To see and photograph the wildlife D 
Business (commercial/workshop/conference) D 

Rest and relaxation 

Honeymoon 

Study/Research 

D 
D 
D 

Other, please specify ..................... ...... . .. . . . ... . .. ..... . .... .... . . .. ......... .. . . . ... ............ .. . . . .. . ........ . 

i) If the main reason for your visit is 'to see and photograph wildlife' (Question 5), which of these best describes 

the aim of your visit? Please choose the one option most important to you. 

Seeing a large number of different wildlife species D 
Seeing a particular species (please state which species) D .. ..... .. .... ... .. ... ... ..... ... ..... ...... .. .. .. . 
Seeing the 'Big Five' (Lion, Leopard, Buffalo, Rhinoceros, Elephant) D 

Other, please specify D 
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6. What have been the highlights of your visit to Kruger so far? 

7. How many people are you travelling with? Please tick one only. 

On my own 

5-9 others 

D 
D 

8. How would you describe your trip? Please tick one only. 

Independent travel 

Overland 

D 
D 

1 -4 others 

10 +others 

Backpacking 

Organised Tour 

D 
D 

D 
D 

If organised tour/overland, please state which company .......... . ................................. . . . ..... . .... . . . 

9. What type of accommodation have you stayed in/ are you staying in on your trip? Please tick all those that apply. 

Camping (own equipment) D Safari tent I Permanent tent D 
Bungalow D Mobile home/caravan D 
Chalet D Cottage D 
Hut D GuestHouse D 
Houseboat D Log cabin D 
Hotel D Lodge room D 
Youth Hostel D Other, please specify . 00 00 00 • •••• 00 . 00 00 00 . 00. 00 • •• • 00 . 00. 00 •• 00 . .. 

10. Have you used a WILD Card on this trip? Please tick one only. 

Yes - International all clusters D Yes - WILD pass D 
Yes - Bush veld cluster D Yes- River cluster D 
Yes - Dry cluster D Yes - Cape cluster D 
Yes - Swazi cluster D No D 

i) if yes, is it: Individual D Couple D 
Family D 

11. How much money are you spending on entrance fees to Kruger National Park per day? Please tick one only. 

SA Citizens and Residents 

SA DC Nationals 

Standard Conservation Fee (foreign visitors) 

WILD card (one off payment) 

Don't know/ Part of Inclusive Holiday Price 

R30 per day 

R60 per day 

R120 per day 

D 
D 
D 
D 
D 

12. Do you believe the entrance fee you paid to enter the park was: (Please select one only) 

Too low Just right Too high Not sure of the amount paid 
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Effective conservation requires illl1)1ense financial and human resources. South African National Parks 

(SANParks) needs to receive sufficient revenue to be able to successfully manage the 23 parks under its 

control. These parks, including Ktuger, currently hold a wide variety and number of species; the following 

questions aim to try and find out how much you value these species. 

Imagine that in the next few years the variety and number of species may change as a result of climate change 

affecting habitat quality. If this were the case, SANParks would need extra money to manage the park to 

protect such species e.g. by identifying and averting threats to these species, the provision of artificial habitats 

etc. As there are only limited governmental resources available, a possible extra source of revenue to 

SANParks is to increase entrance fees. This increased fee would be in place for the foreseeable future. 

13~ In order to maintain the current number and variety of animals in the face of these threats, would you be 

prepared to pay more to enter l{ruger National Park in the future? 

Yes 0 No 0 

i~ If yes, what is the most you would be willing to pay to enter Kruger on top of the entrance fee you have already 

paid today (as stated in Question 11)? Please keep in mind that you would not be able to spend this extra money on 

other things such as entry fees to other national parks/ donations to animal welfare organisations etc . 

. . . . . . . . . . . . . . . . . . . . . South African Rand 

Certain species are at a greater risk from the effects of changes in climate, for example the number of 

elephants/giraffes in this park is expected to decrease in the next few years (see attached sheet). SANParks 

would be able to stabilise or even reverse this change using the extra revenues from an increase in entrance 

fees. 

14. In the scenario described above, would you be prepared to pay more money to enter Kruger in the future if all.of 

the extra money you would be willing to pay was used to helo conserve ONLY elephantslgiralfes but another 

aspects of your trip remained the same? 

Yes 0 No 0 

i) If yes, how much would you be willing to pay in increased entrance fees•(on top of the entrance fee you have 

already stated in question 11) to help conserve elephants/giraffes? ..................... South African Rand 

15. If you stated' in Question 13 and/or 14 that you are !!!!l willing to pay any extra fees,.please indicate below why 

you would not contribute to these programs ..................................................................................................... . 
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Finally, to help us understand visitors to Kruger we would like to ask a few questions about 

you. Please remember your answers will remain confidential and anonymous. 

16. Are you: Male 0 Female 0 
17. Age group. Please tick one. 0 18-24 

0 45-54 

0 25-34 

0 55-64 

0 35-44 

0 65+ 

18. Nationality .. ....... .... ... . ...... .... ... . ... ... .. ... .......... .. ..... . . ..... ......... ..... ...... . .. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 

19. Country of residence .... ... .. ........... . . .. . ...... .. ... .. .... .. ........ . ... ............ .. ............................. . .. ········ .... ··· 

i) Province/State (if applicable) .. .. ... .............. .. .............. ....... ............... . 

ii) Please state how long you have been resident there ........ . ... ... years 

20. Ethnic Origin: ....... ... ... . .... ...... .................. ............ ........ ... .. .. (see attached sheet). 

21. How would you describe your level of education? Please tick one only. 

University Higher Degree (Master or Doctorate) 0 Secondary School Completion 0 

_ -· ~~la}:i;~::~~:~ee (Bachelor) ~··· fJ ::;::~ ~::~~lc~t~::letion ~ 
Other, please specify 0 ....... ....... .... .. ......................... ....................................... ... ..... . 

22. How would you describe your current employment status? Please tick one only. 

Part time (less than 30 hours/week) 0 Full time (more than 30 hours/week) 0 
Retired D Unemployed D 
In full time education D Other, please specify . .............. . .... .... . ..... ..... . 

23. Using the payme~t card attached, please indicate which g~~~p:~ur estimated yearly household income (before 

tax) lies in. I D 2 D 3 0 4 0 5 0 6 D 7 0 8 D 
i) Please tick which currency you are working in: 

South African Rand D Pounds Sterling D US Dollars D Euros D 

24. How many people live in your household? ................ Adults . .. ........... Children (under 16) 

25. Are you a member of a conservation organisation (e.g. WWF, A WF)? Yes D No D 
i) if yes, please specify which ... ... . ........................... .. .... ..... ... .. . ....... ... .. .. .. .. .... . .... · · · · · · · · · · · · · · · · · · · · ·· ·· ·· · · ·· ·· 

I would like to take this opportunity to thank you for taking the time in filling out this questionnaire. 

If you would like a summary of our results, please enter your name and email address below. These details will 

not be passed on, and will only be used for the purpose stated. 

Name 

Em ail 

Time: -·- Dattl:S.§.j_/07 Location: 

fill ... 
~'Durhatn 

University 

Interviewer: 



Figure A2. Ethnic origin options shown to the respondents preceding question 20 of the questionnaire (Figure 
AI). 

(Question 20) Ethnic Origin 

( 1) White British 
(2) White Irish 
(3) White Other 
(4) Mixed: White and Black Caribbean 
(5) Mixed: White and Black African 
(6) Mixed: White and Asian 
(7) Mixed Other 
(8) Black Caribbean 
(9) Black African 

(10) Black Other 
(11) Asian Pakistani 
(12) Asian Indian 
(13) Asian Bangladeshi 
(14) Asian Other 
(15) Chinese 
(16) Other 
( 17) Unknown 

Figure A3. Household Income bracket options shown to the respondents preceding question 23 of the 
questionnaire (Figure Al). Respondents were able to choose which currency they answered in. 

(Question 23) Household Income 

South African Rand 

€Euros 

£Sterling 

$US 

(1) Less than 70,000ZAR 

(2) 70,000- 139,999 ZAR 

(3) 140,000 - 279,999ZAR 

(4) 280,000- 424,999 ZAR 

(1) Less than € 7,500 

(2) € 7,500- € 14,999 

(3) € 15,000- € 29,999 

(4) € 30,000- € 44,999 

(1) Less than £5,000 

(2) £5,001 - £9,999 

(3) £10,000- £19,999 

(4) £20,000-£29,999 

(1) Less than $10,000 

(2) $10,000- $19,999 

(3) $20,000- $39,999 

(4) $40,000- $59,999 
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(5) 425;000- 564,999 ZAR 

(6) 565,000-704,999 ZAR 

(7) 705,000 - 844,999 ZAR 

(8) 845,000 + ZAR 

(5) € 45;000- € 58,999 

(6) € 59,000- € 74,999 

(7) € 75,000 - € 88,999 

(8) € 89,000 + 

(5) £30,000- £39,999 

(6) £40,000- £49,999 

(7) £50,000- £59,999 

(8~ £60,000 + 

(5) $60,000 - $79,999 

(6) $80,000- $99,999 

(7) $100,000- $119,999 

(8) $120,000 + 


