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Abstract 

Around Great Britain at the end of the Last Glacial Maximum (LGM) there is evidence for 

a number of glacial J::eadvances, specifically in the Irish Sea Basin and Eastern Scotland. 

These readvances have been correlated with Heinrich Event 1 (H1) (16.1- 17.6 cal. years 

BP; Bond et al. 1992). However, the presence of a synchronous H1 readvance on the 

Yorkshire coast has not been investigated, although it is known from previous work that a 

number of readvances occurred during the end of the LGM. 

Therefore, this'study aims to establish, firstly, if a readvance signal exists in Yorkshire and, 

secondly, if this signal can be correlated with H1. In order to achieve this, the coastal 

section of Up gang in North Yorkshire is examined using a multi-proxy approach. This 

involves the study of the sediments, clast form, clast fabric and clast lithological analysis 

along with geochemistry and geomo1::phological mapping. The sequence at Upgang shows 

a distinct advance - retreat - readvance signal. Two lower sub glacial tills, D 1 and D2 

represent an initial ice advance and are a glaciotectonite or overrun proglacial thrust feature 

and a subglacial traction till respectively. Deposited above these is an extensive sand and 

gravels lithofacies association, indicative of an infilled lake after the ice had retreated. This 

lithofacies also represents the increasingly ice proximal nature of the site with the Upper 

facies representing proglacial subaerial sandur sedimentation. The section is capped by the 

readvance till, 03, another subglacial traction till. 

Using local vegetation and varve records from Kildale and the Tees Estuary a proxy climate 

record is produced. This along with the correlation of the Up gang tills with those at 

Dimlington allows the production of a chronostratigraphic framework. This shows that the 

initial ice advance occurred shortly after 21 000 cal. years BP. The readvance then 

occurred around 16 000 cal. years BP in conjunction with a deterioration in climate. 

Therefore, this readvance is tentatively correlated with Heinrich Event 1, which is also seen 

as the mechanism for other Last Glacial Maximum ~eadvances around Great Bfitain, 

although without absolute dating control no great certainty can be placed upon this. 
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1. Introduction 

1.1 Rationale 

The Last Glacial Maximum (LGM) occurred in Britain between l9 000 and 23 000 cal. 

years B'P (Bowen et al. 2002). During this glacial episode the British-Irish Ice Sheet (BHS) 

extended as far south as the Isles of Scilly in the Irish Sea Basin (ISB) (Scourse and Furze 

2001, O'Cofaigh and Evans 2007) and North Norfolk on the east coast(Balson and Jeffrey 

1991). In Britain the LGM is also referred to as the Dimlington Stadial (Lowe and Walker 

1997). Throughout this thesis the term LGM will refer to the British Last Glacial 

Maximum and not the global LGM. Deglaciation of the BIS from the LGM occurred 

between 20 000 cal. years BP (Penny et al. 1969) and 13 000 cal. years BP (Beckett et al. 

1981 ). These dates represent the termination of the LGM taken from the oldest date 

indicating glaciation in Yorkshire from Dimlington and the youngest date indicating an ice 

free area from Roos Bog. 
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Figure I: Map of Heinrich l readvance limits in Great Britain and Ireland. (McCabe et al. 1998). 

During de glaciation from this episode large parts of Britain appear to show evidence for 

glacial readvances (E.g. Trotter 1929, Huddart 1971, Hall and Jarvis 1989, McCabe 1996). 

In 1998 McCabe et al. correlated one of these readvance in the ISB to Heinrich Event 1 

(H1), 16.1- 17.6 cal. years BP (Bond et al. 1992), sparking renewed interest in these LGM 

readvance signals. Hl represents a sub-millennia! cooling phase caused by a high 

discharge of Laurentide Ice Sheet icebergs into the North Atlantic resulting in the shut 

down or weakening of the Thermohaline Circulation System (Lowe and Walker, 1997). 

McCabe et al. (1998) published sedimentological evidence from Killard Point that showed 

the existence of an ice sheet advance radiocarbon dated to c. 16 500 cal. years BP. 
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Following this further sedimentological evidence emerged suggesting a synchronous 

readvance of ice across the Irish Sea Basin correlating with H1 (Merritt and Auten 2000, 

Thomas et al. 2004, McCabe et al. 2004, Roberts et al. 2006, McCabe et al. 2007b ). 

Evidence of an LGM readvance prior to the Loch Lomond Stadial (11 000 -'10 000 cal. 

years BP (Lowe and Walker 1997)) has also been suggested on the east coast of Scotland 

(Merritt et al. 1995, Peacock 1997, McCabe et al. 2007a). However, many readvance 

signals across the country appear to be time transgressive due to the variance found in 

various dates, and this is a fundamental flaw in correlating these advances around Great 

Britain and Ireland and also with Hl. 

On the east coast of Britain any correlation between deglacial readvances and H1 has yet to 

be investigated(Teasdale and Hughes 1999). The timing of the glaciation of Yorkshire 

remains poorly researched. Radiocarbon dates taken from Dimlington of 20 931 ~ 22 281 

cal. years BP and 20 559 - 19 258 cal. years BP (Penny et al. 1969) are of great 

importance. Taken from the Dimlington silts underlying the two tills of the Yorkshire coast 

they remain two of the few dates from the east coast constraining the timing of glaciatien in 

the area. In addition, these dates were used by Rose (1985) to establish the 

climatostratigraphic horizon named the Dimlington Stadia! which was seen to represent the 

main glacial episode of the Late Devensian in Britain. De glacial dates fer Yorkshire are 

taken from Kildale (19 144- 20 537 cal. years BP (Jones 11977)) and Roos Bog (14 360- 12 

628 cal. years BP (Beckett et al. 1981)). 

The east coast of Britain, including Yorkshire, is believed to have been glaciated by a 

dynamic ice lobe (Boulton and Hagdom 2006) extending into the North Sea and along the 

coast. This lobe is thought to have been sourced from the major ice dispersal zones of 

Southern Scotland and the Lak;e District. Due to the dynamic and complex nature of the 

Nerth Sea Ice Lobe a considerable amount of research has focused on the expesed glacial 

sediments of the Yorkshire coast, leading to numerous debates concerning the glacial 

history of the area. These have centred on the multiple tiH sequences relating to the LGM 

and pre LGM glaciations, along with the nature of the depositional processes are associated 

with these tills. 
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Since Madgett and Catt (1978), the glacial sequence of Basement-Skipsea-Withemsea till 

has been accepted as the established glacial stratigraphy for the Yorkshire coast. The 

Basement tiH was thought to have been deposited by a pre LGM glaciation while the 

deposition of the Skipsea and W:ithemsea tills have been dated to post 20 931 cal. years BP 

(Penny et al. 1969) as they overlie the dated Dimlington silts. 

While the presence of three tills along the Holdemess coast has largely been accepted, the 

means of deposition and ages of these sediments has been contested. Madgett and Catt 

( 1978) suggested that the Skipsea and Withemsea tills had been deposited by a 

multilayered glacier. A multilayered glacier was classified'by Catt (1991b p188) as 'a 

composite ice sheet comprising superimposed tributary glaciers'. However, Foster (1987) 

proposed that the Skipsea till had been deposited by ice from the Pennines and Lake 

District, before it was replaced by ice from Scotland which deposited the Withernsea till. 

Eyles et al. ( 1994) alternatively proposed that all the tills found along the Yorkshire coast 

were deposited by a surging glacier firom the North Sea. This chronology was determined 

by the discovery ofshell fragments with MIS 2 amino acid dates in the upper part of the 

Basement Till. Following on from this proposal, Evans et al. (1995) suggested that the tills 

had been deposited by vertical accretion with associated channel and cavity fills beneath an 

active ice sheet. 

These debates concerning the glacial and process history of Yorkshire along with McCabe 

et al.(1998) questioning the validity of the Dimlington date, provide a framework with 

which to test the LGM and de glacial history of the North Yorkshire coast. By focussing on 

the relatively unstudied field site of Up gang, knowledge of the last glaciation of Yorkshire 

will be expanded upon. The establishment of any readvance signal along this coast, and 

any correlation to H1, will add to the growing number of sites within Great Britain where 

LGM readvances are found. This information can be used to improve glaciological models 

focusing on the last deglaciation ~E.g. Lambeck 1995, 1996, Pettier et al. 2002, Boulton 

and Hagdom 2006) which will in turn benefit the modelling of sea level and future climate 

change (Shennan and Horton 2002, Milne et al. 2006, IPCC 2001). 

Therefore, this research seeks to establish the glacial history and mode of deposition of the 

sediments at Upgang, while attempting to establish if multiple ice flow phases and a 
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potential LGM readvance signal is present. In addition, it aims to establish if these 

sediments can be linked to climatic forcing and a regional response by the BIIS to Hl. 

1.2Aim 

To establish whether there is a Last Glacial Maiimum advance and readvance signal along 

the north east coast of England by reconstructing the glacial history of Up gang, North 

Yorkshire, and to test if this can be correlated to Heinrich Event 1. 

1.3 Objectives 

• To establish the sedimentological and structural properties of glaciogenic deposits at 

Up gang in order to reconstruct the depositionat history of the site and local ice flow 

directions. 

• To establish the provenance of the glaciogenic sediment in order to elaborate upon 

glacial transport pathways in the LGM BIIS. 

• l'o establish a chronostratigraphical framework using regional vegetation records 

and other glacial stratigraphies (e.g. Dimlington and Kildale). 

• To establish the glacial history of Up gang within the context of the LGM in Britain. 

1.4 Hypotheses 

1. The lower tiH is LGM in age and relates to an ice sheet advance. 

2. The middle sands and gravels are associated with proglacial, subaerial sandur 

sedimentation processes. 

3. The uppertill is LGM in age relating to a readvance during deglaciation. 

4. Both glacial units at Up gang correspond to post 20 000 cal. years BP advances. 

5. The upper glacial advance correlates with the climatic cooling associated with Hl 
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2. Background and Literature Review 

2.1 Conceptual and theoretical frameworks. 

Ice-ocean-climate science provides the framewor-k for the study of ice sheet behaviour in 

relation to changing climate. Recent work looking at ice sheet readvance events around 

Great Britain and Ireland has focussed on the correlation between ice sheet behaviour and 

Heinrich Events (Heinrich, 1988), with Heinrich Event 1 (Hl) in particular, having been 

linked to BUS re-.growth during deglaciation (McCabe et al. 1998, 2005, 2007; Merritt and 

Auton, 2000; Thomas et al. 2004) 

Such studies have applied both a glaciallandsystems and an event stratigraphy approach in 

an attempt to understand ice sheet- ocean- climate coupling. McCabe et al. (1996, 1998; 

2005) were the first to combine glacial sedimentologica.l analysis with the AMS 

radiocarbon dating of in situ forams to provide an event stratigraphy for ice sheet re­

advance in the ISB during H1, and further inferred that a distinct glacialland&ystem 

(drumlin and end moraine formation) was a product of this regional event. Knight (2003) 

and Clark et al. (2004) developed this approach further and matched evidence from Ireland 

with the climate signal from the North Atlantic Ocean and Greenland ice cores, and 

suggested global forcing mechanisms were behind BUS fluctuations in the ISB. Other 

work has highlighted the complexity of the glaciallandsystem response to BUS re-advance 

during de glaciation, with complex ice marginallandsystems developing along the 

Cumbrian and Manx coastlines (Merritt and Auton, 2000, Thomas et al. 2004; Roberts et 

al. 2007). 

2.2 Heinrich I literature 

Bowen et al. (2002) suggested that the major advances of the BUS were synchronous with 

the ocean-climate Heinrich events. Within this paper the LGM was dated to correspond 

with H2, with margin readvance signals correlating with H1. 

H1, the most recent H event, was dated to approximately 14 000 14C years BP (16 400 cal. 

years BP) (McCabe and Clark 1998). This event forced the area of North A~lantic Deep 

Water (NADW) formation southwards, as far south as the Iberian Peninsula, decreasing sea 

surface temperatures CPrange et al. 2004). The posi~ion of the polar front was also altered, 
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resulting in a drop in temperatures around the ocean margins (Clark et al. 2004b). Cruxiflx 

and Berger (2002) modelled these changes associated with H1. The model indicated a 

drastic reduction in the Thermohaline conveyor at the start of H 1 resulting in a cooling of 

the Northem Hemisphere. They showed that H1 caused the Thermohaline Conveyor to 

slow to the point of collapse between 18 000 and 14 000 years BP. This was linked with a 

limited cooling in Greenland and a more significant reduction in temperatures in the North 

Atlantic. Circulation then restarted abruptly at the end of Heinrich 1. Lehman and 

Keigwin (1992) developed this by showing that a change in sea surface temperatures 

controlled surface air temperatures. Their model showed changes in temperature spreading 

a far as central Europe. 

An ice sheet response to Heinrich Events is shown across the North Atlantic, with literature 

focused largely on Fennoscandinavia and the Irish Sea Basin. An advance of the 

Fennoscandinavian Ice Sheet, the Tampen Readvance, is widely believed to correspond 

with the Dimlington Stadial (Serjup et al. 2000). This readvance has been correlated to the 

Greenland ice record, showing that H1 is lagging 500-:H)OO years behind major ice 

recession suggesting that the Fennoscandinavian Ice did contribute to the Heinrich events. 

Nygard et al. (2004) suggested evidence from the M8lf1Sy Plateau indicated an ice sheet 

read:vance shortly after 18 085 - 18 556 cal. Years BP, in the form of the Bremanger 

Moraine. Climatic forcing was suggested as the cause of this event due to the large scale of 

the readvance and was, hence, correlated with Hl. Evidence was also presented indicating 

that H1 related conditions can be seen in the Faroe-Shetland channel and on the V fiSring 

Plateau, as forams show very light o180 values between 13 079- 15 975 cal. years HP. The 

Sharpres Event has also been correlated with H1 (Bakke et al. 2005) as occurring between 

15 975- 14 293 cal. years BP. This study also suggested that there was a decrease in 

winter precipitation during H1 shown by the record in Strupskardet indicating that the 

atmospheric circulation responded to the lower sea surface temperatures during H1 (Bakke 

at al2005). Nygard et al. (2004) suggested that a synchronous response of the 

Fennoscandinavian and British Ice Sheets may not occur due to the size and potential 

response time of the ice sheets. However, the dates presented in this paper broadly 

correspond with those available for the British Isles as will be discussed below. 
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Lehman and Keigwin (1992) suggested that the oceanic signal should be particulavly 

pronounced in Great Britain dl!le to its location on the leading edge of the North Atlantic. 

Therefore, Great Britain was considered to be in .a good location to detect changes in 

temperature resulting from Heinrich Events. Lowe et al. (I994) suggested that the British 

climate records could be explained by external changes in the Gulf Stream. The reduction 

in NADW directly affected the strength of this ocean current. Hence, as Heinrich events 

caused changes in the NADW, the Gulf Stream was also weakened. As a result British 

climate was cooled implying precipitation would fall as snow and ice sheets could 

potentially readvance. The changes in atmospheric and sea surface temperatures along with 

location indicated that a British Ice Sheet response was highly likely, and has been 

investigated with renewed interest in the past ten years. 

McCabe and Clark (1998) constrained the age of an ice sheet readvance at approximately 

I5 I 50- I4 293 cal. years BP, dates which have been supported by cosmogenic dates 

(Bowen et al. 2002). McCabe et al. ( I998) then demonstrated a readvance of the Irish Sea 

Ice Stream (ISIS} as a result of HI using a number of lines of evidence. Sedimentological 

evidence, along with radiocarbon dates, were published from the east coast of Northern 

Ireland that correlated an ice sheet advance, the KHlard Stadia!, to HI. A 

geom01;phologicallink for this event between Northern Ireland, the Isle of Man and 

Cumbria was suggested in the form of an end moraine, between Killard Point, the Bride 

moraine and the St Bees moraine. Along with the primary evidence taken from Killard 

Point, McCabe et al. (1998) also reviewed previous literature from around Great Britain, 

mainly Scotland. This was used to draw up a map of ice readvance limits correlated to HI 

(Figure I). This paper marked the beginning of the increasing amount of work within the 

British Isles to correlate ice readvances from the late Devensian to HI, especially within the 

ISB. Merritt and .A:uton (2000) looked at sediments from boreholes in Cumbria suggesting 

iliat while there was evidence for a readvance around the time of HI it was a previous 

advance, the Gosforth Oscillation, which had formed the large moraines in the area. 

Thomas et al. (2004), and then Roberts et al. (2006), also Sl!lpported the HI model with 

sedimentary evidence and radiocarbon dates from Jurby Head on the Isle of Man 

correlating with the event. Work has also continued in Northern Ireland strengthening the 

argument for an Irish Sea Basin readvance in response to HI with dates from Ballycrampsy 
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(McCabe and Clark 2003), Cranfield Point (McCabe and Clark 2003) and Dundalk Bay 

(McCabe et al. 2007b). 

While the focus of recent studies has been on the ISB there is also research that suggests an 

ice readvance on the West coast of Scotland that was also synchronous with Hl. 

Radiocarbon evidence from the morainal bank at St Kilda, Outer Hebrides, indicated that 

ice beganto retreat from the area between 18 545- 18 772 cal. years BP and 14 566- 13 

673 cal. years BP following a minor readvance (Peacock et al. 1992). This is broadly 

correlative with a H1 signal as the only ice advance onto the continental shelf after 1'6 000 

cal. years BP was-the Killard Point Stadia! (McCabe et al. 1998). The relation of the 

Wester Ross Readvance to H1 was discussed in Everest et al. (2006). It was suggested that 

if the oldest cosmogenic 1<>ae date of 17 900 ± 2400 years (Everest et al. 2006) was taken 

into account then the Wester Ross Readvance could be correlated with the H1 advance, 

although this worked on the assumption that the greatest plausible age of a boulder was a 

better representation of the age of a moraine rather than the average boulder age. However, 

if the average age of 1:6 300 ± 11600 years (Everest et al. 200.6) was taken then the Wester 

Ross Re advance may be related to non climatic controls and not H 1. 

While the H1 signal is mainly depicted in the ISB it has also been developed in the west of 

Scotland, as seen above. In addition, a signal is also seen along the east coast of Scotland. 

Peacock (1997) collated dates from various places in Scotland showing a potential H1 

readvance, most notably at St Fergus. Peacock(2003) then presented further deglaciation 

dates from the Tay Estuary. Most recently McCabe et al. (2007) published deglacial dates 

from Lunan Bay and Gallowflat, on the east coast of Scotland, that they correlated to Hl. 

These readvances have been discussed further in Section 2.4, which looks at a range of 

de glaciation dates from the east coast of Britain. Although this research indicates a BUS 

response to H1 it must be noted that it is difficult to chronologically defme an H event and 

thus any ice advances associated with it. Dates taken from the sediment cores in the North 

Atlantic do not state whether they refer to the beginning, middle or end of an event. As a 

result it can be difficult to convincingly correlate an ice advance with an H event. 
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Despite the numerous dated readvances in the ISB and Scotland no clear readvance signal 

has been depicted on the Yorkshire coast. Thus, the sedirnents and existing stratigraphies 

of the Yorkshire coast need to be re-evaluated. 

2.3 Glacial History of Yorkshire 

The glacial history of Yorkshire has been studied extensively over the past century and a 

half. Work has tended to focus on the LGM as evidence for earlier glaciations is 

fragmentary. However, the Basement Till is often considered to belong to a pre-LGM 

glaciation. Locations mentioned within this section are marked on Figure 2a, while Figure 

2b shows the Quaternary stratigraphic logs from several sites mentioned. The line 

delimiting the extent of the LGM in Yorkshire on Figure 2a is based on the extent of the 

Skipsea Till and its equivalents (Clark et al. 2004) while the proposed limit of a Hl 

readvance is taken from McCabe et al (1998). However, this line is arbitrary and has not 

been based on any geomorphological or sedirnentological data. Evidence for the timing of 

the LGM and other glacier margins in Yorkshire is based on a few poorly constrained dates 

(Evans et al. 2005), as is the case throughout Britain. 

t 

Figure 2a: Location of Up gang and other sites of importance along the Yorkshire Coast. 
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Figure 2b: Map of Yorkshire including published stratigraphic logs from sites of importance. Stratigraphic 
logs explained in more depth in Sections 2.3 and 2.4. 

The limit of glaciation along the east coast of Britain is believed to have extended as far 

south flS the north Norfolk coast with an ice lobe entering the Wash (Suggate and West 

1959). This limit has been questioned with others stating it occurred further north, for 

example at Flamborough Head (Farrington and Mitchell 1951 ). Ice margin limits in East 

Yorkshire have since been reviewed and based upon a combination of sedimentology and 

geomorphology in East Yorkshire. Evans et al (200 1) suggested that the limit extends onto 

the North Sea shelf, with ice also invading the lowlands of the East Yorkshire coast and the 

V ale of York. Evans et al (2005) discussed the evidence that was used to construct the 
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BRITICE database (Clark et al 2004a). BRJTICE was a review of academic literature and 

maps of recorded glacial geomorphological and sedimentological features complied as a 

GIS database. The glacial history of three features thought to mark former ice margins, the 

York Moraine, Escrick Moraine and the Linton-Stutton Gravels were highlighted. The 

existence of several readvances was also discussed by Evans et al (2005), who concluded 

that the dating control was very weak and that several moraine systems which potentially 

correlated with H1 remained largely undated. 

A major factor in deciphering the glacial history of Yorkshire is the extent of the 

Scandinavian and Scottish ice sheets interacted. Nesje and Serjup (1988) suggested that 

there was an ice free embayment between the two ice sheets which meant an alternative · 

proposal would be needed to account for the deflection of the North Sea Ice Lobe south. It 

was also stated that while the extent of the Scottish Ice Sheet can be fairly well determined 

the limits of the Scandinavian Ice Sheet cannot be firmly established. Ehlers (1990) 

supported this model and further suggested that there was a considerable difference 

between the various models of ice sheet behaviour (Boulton et al1985; Long et a/1988) 

and the available field data. However, Ehlers and Wingfield (1991) stated that the North 

Sea Basin held evidence for a more extensive glaciation suggesting that the sedimentary 

record does not expose the full extent of the glaciation. As a result the British and 

Fennoscandinavian Ice Sheets could have met, thereby explaining the deflection of Scottish 

Ice southwards to form the North Sea Lobe (Ehlers and Wingfield 1'99,1). 

Serjup et al. (1994) report a radiocarbon date suggesting the coastal areas of east Scotland 

were ice free by 1~6 682 ~ 16 057 cal. years BP and question the possibility of a readvance 

in the Western sector of the North Sea correlated to the Dimlington advance. Although no 

evidence for such an event was found in the North Sea cores used in this paper. Carr 

( 1999) compared the Bolders Bank Formation of the North Sea with tills in eastern England 

and showed that the ice which covered the southern North Sea was British in origin. He 

suggested that the Bolders Bank Formation is an extension of the Skipsea Till found on 

Holderness. Carr et al (2006) re-examined the extent, timing and dynamics of the 

glaciation of the North Sea Basin and proposed that there were three major glacial events in 

the region with the British and Scandinavian ice masses coalescing on at least two 

occasions. It is during the first two glacial events that the two ice sheets were thought to 
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have coalesced. The final episode, the Holders Bank episode, represented a reduced 

expansion of Scandinavian ice and the advance of the North Sea Lobe into the southern 

sector ofthe North Sea. Glaciological models (Boulton and Hagdom 2007) have been 

created that support the existence of a fast flowing ice lobe along the east coast of Britain 

without the influence of Scandinavian ice, although it is glaciologically more plausible to 

have the North Sea Lobe buttressed by the Fennoscandinavian Ice Sheet. 

The dynamics of the North Sea Lobe has been discussed with specific reference to locations 

on the north east coast of England. Smith ( l981) considered the onshore flow of the North 

Sea lobe in the Sunderland District. He suggested that the thickening of ice in the Irish Sea 

Basin forced ice eastwards across the country and into the North Sea, where it was forced 

southwards due to the presence of the Scandinavian ice. Catt ( 1991 b) looked at the 

movements of the lobe further south in the Tees Estuary. In this area the ice moved 

southwards, although a tendency for ice to move south-west in low lying coastal areas was 

attributed to the influence of Scandinavian Ice in the North Sea. It was however, 

recognised by Catt ( 1991 a) that there is not sufficient evidence to prove that Scandinavian 

ice reached the southern sector of the North Sea Basin. Catt also rejects the proposal that 

ice from the west of Britain was deflected south by Scandinavian ice and instead suggests 

that the ice originated from north east Scotland and the Firth of Forth. 

Work has been carried out on the Holdemess coast for over a century. Lamplugh (1882) 

first described the tills found on this coast specifically at Bridlington. He reported a lower 

Basement Till at the base of the section with an overlying purple "boulder clay" and a 

gravel layer between the two that showed evidence of glaciotectonism. The stratigraphy of 

the cliff has been debated numerous times since. 

The nomenclature was reconsidered and simplified by Madgett and Catt (1978) and this has 

become the accepted stratigraphy of the Holdemess Coast. The Basement Tm was 

considered to represent a pre .. LGM glaciation due to the amino-acid ratio dates from 

Speeton Shell Bed in Filey Bay. The position of the shell bed under the Basement till 

suggested the till was deposited during Oxygen Isotope Stage (OIS) 6, the Wolstonian, as 

the shell bed dates to OIS 7 (Wilson 1991). The presence of the Hessle Till was dismissed 

as a postglacial weathering profile, while the upper till was renamed. the Withemsea Till 
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and the lower till the Skipsea Till. Both tills were dated to have been deposited after 21 

000 cal. years BP in Holdemess. Due to the absence of a weathering profile the two til'ls 

were considered to have been deposited by a multilayer ice sheet (Catt and Penny 1966). 

This is a composite ice sheet made up of ice flows superimposed upon one another tlowing 

from different sources (Catt 1991b). The Skipsea Till is described as occupying the whole 

area of Holdemess, while the Withemsea Till is less widespread (Figure 1 b). However, a 

conflict appears to exist regarding the provenance of the Skipsea and Withemsea Tills. 

Catt and Penny (1966), Madgett and Catt (1'978) and Catt (2007) stated that the Skipsea Till 

was deposited by ice from the Cheviots and Scotland with the Withemsea Till deposited by 

ice from the Lake District and Pennines. Conversely, Bisat (1939), Radge {11939) and 

Foster (11987) suggested that the lower, Skipsea Till was deposited by ice arriving in the 

area through the Stainmore Gap from the Lake District and Pennines. The Withemsea Till 

was believed to have been sourced from the Cheviots and southern Scotland. These ice 

flow directions are shown in Figure 3. 

Page 14 



Northumberland 

ooocaster 

1 1 Dimlington Stadial ice limit 

-----. Main ice movement directions 

C, l Main glacial lakes 
Limit of Witherns~a Till 
in Holderness 
York and Escrick moraines 

Lake H.nn~·B~al~y =: :< · 
•sheffleld :l:c 

eChesterfield ·::.:. 
0 25 ' 
I I f I I I 

kilometres 

Figure 3: Map of ice flow directions and the extent ofLGM ice in Yorkshire (Catt l99lb). 

Foster ( 1987) re-examined the glacial sequence of the Dimlington Stadial in Holdemess, 

and indicated that the previous model of a complexly stratified ice mass was inadequate. 

Instead it was suggested that the Skipsea till was deposited by ice moving through the 

Stainmore and Tees Gap from the Pennines and the Lake District. This ice was then 

thought to have been displaced along the coast by ice depositing the Withemsea till from 

southern Scotland and the Cheviots. 

The chronology of the tills at Dimlington was reviewed by Eyles et al. ( 1994) who 

suggested the Basement Till was Late Devensian in age based on amino-acid dates, and not 

Wolstonian (OIS 6). The three tills at Holdemess were thus classed as deformation tills 
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deposited by ice surging onshore from the North Sea during the LGM (Eyles et al. 1994 ), 

with ice advances on shore marked by a series of moraine ridges. 

Evans et al. ( 1995) examined two depositional models for the tills of the Holdemess coast. 

The first one suggested that lodgement or deformation till was deposited followed by a 

meltout till which was then overridden. The second model, which was adopted due to the 

field evidence, suggested that the till was deposited by vertical accretion with associated 

cavity or channel fills beneath active ice. In adopting this model, Evans et al. (1995) 

questioned the validity of the previously published stratigraphies. The sands, gravels and 

laminated muds topping the sequence at Skipsea and Barmston were thought represent 

proglacial fluvial or lacustrine sediments.deposited on a sandur plain during deglaciation. 

While the type site of Dimlington has been studied on numerous occasions, some authors 

have looked at other bays on the East Yorkshire Coast to the north of Holdemess. 

Lamplugh (1879) compared the tills north of Aamborough Head with those to t?e south at 

Holdemess. The Basement and Purple Tills were seen to dominate at Holdemess, while the 

Purple and Brown dominate in the north. Both areas wet:e said to be capped by the Hessle 

till. 

Catt ( 1991 b) gave descriptions of the sediment sections along the Yorkshire coast, at Filey 

Bay and Robin Hoods Bay. The Basement Hll there shows evidence that it was pushed 

into its current form by later ovemding ice. He also reaffirmed the idea that the Skipsea 

and Withernsea Tills had been deposited by a composite ice sheet with several tributaries 

(Catt 1991b). 

Work on the Whitby area showed a triple division of the drift that made up the cliff section 

between Whitby and Sandsend (Harrison 1895). These three layers were described in detail 

by Harrison (1:895) and were shown to continue both nerth and south ofWhitby. They 

were classified as Lower Boulder Clay, Middle Sands and Gravels (although this layer was 

not considered to be continuous) and Upper Boulder Clay, which was lighter in colour and 
' 

softer than the lower tilt Hanison (1895) also considered the provenance of the till 

proposing that none of the ice was sourced locally due to a 'snow shadow' created by the 

Welsh Mountains and the Pennines. A 98 metre raft of Liassic shale was found at the base 
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of the sedimentary sequence at Upgang Beach (Nemingway and Riddler 1980). The 

contact of this raft with the red-brown diamict above it is described as sharp and 

remarkably horizontal, while the lower boundary is also sharply defmed. It was 

h):pothesised that the ice lobe became restricted as it flowed south, favouring the shearing 

of blocks from north face escarpments, the likely source for the shale raft (Hemmingway 

and Riddler 1,980~. It was proposed that this raft consists of shale from the Cleveland 

IFonstone Formation from the north, which has been driven on land and pushed upwards to 

its position within the Upgang sequence. Other work looking at Upgang Beach, and other 

sites north of Holdemess, was carried out by Bisat as reviewed in Catt and Madgett (1981 ). 

Two tills were recognised at these sites often separated by sands and gravels. These north 

Yorkshire tills were compared to those in Holdemess, with the same erratic suite appearing 

to be present. At Upgang an intermediate bed around eight metres thick was found between 

the Drab and Purple clays. This bed was considered to be a mixed till consisting of both 

the Drab and Purple clays. Bisat did not comment on its origin, but Catt and Madgett 

( 1981) concluded that it could be the result of mixing during deposition from the composite 

ice sheet. Slightly further north along the cliffs at Sandsend another clay layer was 

discovered above the Purple till containing small British clasts (Catt and Madgett 1981) 

although the origin of this layer was not discussed further. 

The glacial history of North Cleveland was later examined in Radge (1939). In this paper it 

was argued that the ice that invaded this area was the Cheviot Ice Stream from the 

northeast. Radge ( 1939) also discussed the de glacial history of the area with, large 

quantities of sands and gravel, along with a few paleoeontological fmds, suggesting that 

large amounts of water were present upon de glaciation, with the inland ice retreating before 

that in coastal areas (Radge 1939). 

The glacial history of Middlesbrough and the Tees Estuary was examined by Agar (11954). 

The whole area was described as being covered by glacial deposits. A typical section 

between Middlesbrough and Billingham consisted of gravel, sand, Drab boulder clay, sand 

and gravels, dark boulder clay, topped by Red boulder clay. Agar (1954) suggested that 

there was not sufficient evidence to correlate these clays with those further south. 

Although it was thought that the Red and Drab boulder clays could be associated with the 

Purple and Drab clays at Holdemess and Upgang as described by Bisat (1939). This 
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correlation along the cliffs was again proposed by Catt and Penny ( 1966) in which it was 

suggested that the Drab-Pw:ple-Hessle series could be traced northwards toward the edge of 

the North Yorkshire Moors. 

Also of importance in the Tees estuary is the presence of a proglaciallake during the LGM 

(Plater et al. 2000). The existence of Lake Tees implies that Lake District ice that flowed 

through the St~ore Gap did not always (or indeed may never have) extend to the east 

coast and/or have been coalescent with North Sea Lobe ice. For an extended period during 

deglaciation, ice flowing along the coast from the north blocked drainage from the Lake 

District ice impounding a lake in the Tees estuary (Plater et al. 2000). 

2.4 Deglacial Chronology of the East Coast of Britain 

Attempts to reconstruct the deglacial chronology of Great Britain, and specifically the east 

coast, have used many techniques. These include radiocarbon and thermoluminescence 

dating, as well as correlating vegetation records with the Greenland Ice cores. Many of 

these de glacial dates support the idea that a glacial readvance occurred at the end of the 

LGM (Table 1 ). 



Table 1: Published dates marking the deglacial chronology of the•east coast of Britain. 

Site Radiocarbon Calibrated Date Site details Literature Source 
Date 

Heinrich Event 1 13 490- 14 500 16 117 ~ 17617* Not specified Bond.et al. (1992) 
Dimlington, Yorkshire 18 240±250 20 931 - 22 281 * Moss within the Penny et al. (1969) 

Dimlington silts. 
Dimlington, Yorkshire NIA 17 500 ±f.6 X lOj The loess component of a Wintle and Catt 
(TL date) (TL) solifluction deposit (1985) 

overlaiD by till. 
Kildale, Yorkshire 16 713 ± 340 19 144- 20 537 * Moss within a thick shell Jones (1977) 

marl. (date area was ice 
free) 

The Bog, Roos, 13 045 :±: 270 14 360-12 628* From a kettle hole within Beckett et al. (1981) 
Yorkshire W:ithernsea till. 

St Fergus, east Scotland 14 915 ± 2f0 17 386-18 727 * St Fetgus Silts, towards Hall and J arvis 
top of deposit. (1989) 

Troup Head; Scotland 14000 15 1150- 14 293* Merritt et al. ('1'995) 

Lunan Bay, east 17 065 ±50 20 250 ±40 From raised marine mud McCabe et al. (2007) 
Scotland 17 720 ±50 21130,±90 overlaiD by ice contact 

gravel. 
Gallowflat, east 13 655 ±45 16 355 ± 130 From laminated muds 1m McCabe et al. (2007) 
Scotland 13 675 ±40 16 385 ± 125 above glacial diamict 

*Calibrated from published 14C date usmg Cahb Rev 5.0.1 (two stgma ranges) 

A key site in the de glacial chronology of the east coast is Dimlington on the Holdemess 

coast of Yorkshire. Two radiocarbon dates of 18 500 ± 250 14C years BP (20 559- 19 258 

cal. years BP) and 18 240 ± 250 14C years BP (20 931 - 22 281 cal. years BP) were derived 

from moss within the Dimlington silts which undedie tills at this site (Penny et al. 1969). 

Originally interpreted as an interglacial deposit these silts consist of laminated silts and 

sands at the base of the cliff. However, the analysis of coleoptera from this lithofacies 

suggested that the silts were deposited during the early Upper Pleniglacial (c. 29 000-15 

000 14C years BP), the period of maximum glaciation on continental Europe, and not an 

interstadial (Penny et al. 1969). The moss was thought to have grown in a cold, potentially 

meltwater environment during this time. While Penny et al. ( 1969) did not discuss the date 

in relation to the .glacial chronology of the area, it led Rose {1985) to propose the 

Dimlington Stadial as a dimatostratigraphic name for the LGM in Britain. Thought to 

represent the main glacial episode of the Devensian between 19 000 and 23 000 cal. years 

BP, this stadia! was considered to represent a deterioration in climatic conditions and the 

advance of the ice sheet. Dimlington was named as the type site as the Slcipsea and 

Withemsea tills directly overlie the dated Dimlington silts. The date indicated that the tills 

overlying the silts at Dimlington wefe both deposited post 21 000 cal. years BP as a result 

Page 19 



of a deterioration and then amelioration of climate with the Skipsea till representing the 

LGM till in Yorkshire. Potentially, this was accompanied by minor oscillations in the ice 

front. These dates for the LGM on the east coast broadly corr:espond to recent radiocarbon 

dates from the ISB which suggest that the LGM can be dated to c.24 000 cal. years BP 

(O'Cofaigh and Evans 2007), but could suggest a slight diachroneity between west and east 

coast sectors of the BIIS. O'Cofaigh and Evans (2007) suggested that the Dimlington 

Stadial represents a readvance of an unstable North Sea Lobe reinforcing the view that the 

British and Irish Ice Sheet was highly sensitive during the LGM to climate, sea level and 

internal dynamics. 

Dating of the tills along the Holderness coast has also been carried out using 

thermoluminescence dating (TL) on loess within a solifluction deposit below the Skipsea 

till at Eppleworth (W:intle and Catt 1985). The TL date obtained from the silt fraction of 

this deposit was 17 500 ± 1 600 years BP. However, the high chalk content present would 

have diluted the radioactivity. Therefore, the sample was also dated after treatment with 

HCLresulting in an age of 16 600 ± 1 700 years BP{Wintle and Catt 1985). 

McCabe et al. (1998) examined these published dates and proposed that they could be 

correlated with H1. It was suggested that the original dates on the Dimlington mosses had 

been called into question by tliermoluminescence dates on the solifluction deposit 

underlying till. As the dates were taken from below the Skipsea Till at Eppleworth, non 

glacial canditions were thought to have existed around 17 500 cal. years BP, and thus, the 

Dimlington dates were too old (McCabe et al. 1998). Therefore, the Skipsea and 

Withernsea tills of Hol<lerness were considered ta have been deposited during the Killard 

Point Stadial of North Ireland. Peacock (1997) also agreed with this view as the calendar 

thermoluminescence dates correspond very approximately 15 to 14 14Cka. However, if 

both the Skipsea and Withernsea Tills were seen to be Hl readvance tills then there does 

not appear to be an 'LGM' till in Yorkshire. While a large proportion of the literature 

refers to the Skipsea and Withemsea Tills as the two LGM tills in Yorkshire, Eyles et al. 

(1994) offered an alternative proposition. It is claimed that amino-acid dates taken from 

the Basement Till at Dimlington date the till to be LGM in age. Therefm:e, if the Skipsea 

and Withemsea Tills are taken to be H1 tills then the Basement Till would be the sole LGM 

till. 
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Another radiocarbon date from the LGM is from a bone fragment found in the "older 

littoral sand and gravels" near Brantingham, East Yorkshire (Gaunt 197 4 ). This date of 21 

834 14C years BP represented the date for the initiation of glacial Lake Humber or the date 

of the lakes high stand depending on whether it comes from the base of the sands and 

gravels or from within them. Work was carried out in the Vale ofYork by Gaunt (1976) 

which was used to correlate the evidence found here with H1 by McCabe et al. (1998). 

Evidence from the area was used to conclude that ice advanced into the south eastern part 

of the Vale of York during the same time as the high stand of Lake Humber. However, the 

dates taken from Dimlington of 21 000 to 22 000 cal. years BP suggested that Lake 

Humber had not been initiated by this time as the North Sea Ice Lobe had not extended far 

enough south. This. contradicted the work of Gaunt (1974). 

Jones (l977) presented a radiocarbon date of 16 713 ± 340 14C years BP (19 144 ~ 20 537 

cal. Years BP) from Kildale, north east Yorkshire. This was obtained from the lowest 

deposit of moss fragments above LGM till, sugg~sting the main de glaciation in the area 

occurred post 19 000 cal. years BP. The lower sections of this site had very few 

macrofossils or pollen data. From this it was inferred that climatic conditions were severe 

after the ice had retreated, with the lake that formed post deglaciation being permanently 

frozen. Organic layers found above this were considered to have been deposited rapidly 

although no dates were available. Keen et al. (1984) suggested that the date of c. 21 000 

cal. years had been affected by hard water error making it erroneously old. A vegetational 

history of the area was proposed showing the progression from Late Devensian vegetation 

to the Holocene. The succession at the lower end of the section is discussed in more detail 

in Innes (2002). A clay, shell marl, clay, shell marl, sedge peat succession is described. It 

is from the lowest shell marl that the date of 19 144-20 537 cal. Year BP was obtained. It 

is therefore possible that ice readvanced toward this area after 19 144-20 537 cal. yeru:s BP 

depositing the second clay unit, before an improvement in climatic conditions resulting in 

the second unit of shell marl. However, it was again suggested within lnnes (2002) that the 

date was too old owing to hard water error. Despite the suggestion that this date was 

erroneously old, the dates are not inconsistent with other radiocarbon dates from similar 

stratigraphic positions in other parts 0f Britain ~Rose 1985). 
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Another de glacial date from Yorkshire comes from Roos Bog near Dimlington. This 

showed the area to be ice free by 14 360 ~ 12 628 cal. Years BP (Beckett 1981). In 

conjunction with the Dimlington dates this gives a maximum of approximately 5000 years 

for the deposition of both the Skipsea and Withemsea tills. 

An alternative method used to date the glaciations of Yorkshire and the east coast has been 

'wiggle matching' local climate reconstructions with the dated Greenland ice cores. Mayle 

et al. (1999) presented data from different areas in Britain in comparison with the GRIP ice 

core record between 15 000-11 500 cal. years BP. These records from South Wales, 

Yorkshire, Southern Scotland and Northern Scotland showed a degree of compatibility With 

the GRIP ice core record. Climate was shown to have warmed after 15 000 years BP, 

before cooling commencing at 14 500 years BP. The climate was then unstable before 

climatic cooling at the LLS. These records showed a good correlation with the Greenland 

ice core record, implying that British climate can be inferred from them in the absence of 

dated climatic records from sites in Britain. Alternatively this correlation can be used to 

'date' British climate records by the process of 'wiggle matching' them to the Greenland 

records. A time lag could be present between the climate and vegetation records as 

suggested by Walker et al. (1993) in Gransmoor, East Yorkshire. This vegetation-climate 

lag at the beginning of an interstadial was thought to be several hundred years as plants 

colonised a previously barren area (Walker et al. 1993). Therefore, it may not be possible 

to directly correlate the vegetation and ice sheet records in Yorkshire. 

A correlation between the east coast geological record and H1 is also found within the Tees 

Estuary. Plater et al. (2000) drew a comparison between a varve sequence and the GISP ice 

core record. This varve record was thought to have been deposited in pro glacial Lake Tees, 

which was impounded by the North Yorkshire Moors to the south and ice masses to the 

North and North East. A good correlation between this core and the GISP record was 

shown, indicating that sediment supply to the lake was controlled by changes in climate, 

and thereby creating a climate proxy. A deterioration in temperature was seen around the 

same time as Hl. In addition, this core was luminescence dated to 18 365 ± 10015 years 

BP (Plater et al. 2000). NeveFtheless this date has a very large error term attached to it, and 

does not match the date proposed by the correlation with the GISP record. This uncertainty 

is attributed to water content and water content history reconstructions (Plater et al. 2000). 
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However, the thickness of the unit suggested that the record may be influenced by the 

proximity to the lakes shoreline and local deltaic deposits. Therefore, only the period of 18 

000 -16 000 years BP was chosen for correlation as the varve sequence from this time must 

have been deposited during a period of ice impoundment prior to the de glaciation of the 

area (Plater et al. 2000). Thus, the influence of the lake margin and any deltaic deposits 

was minimised. 

Outside Yorkshire and the Tees Estuary other sites can be considered in order to establish 

the de glacial chronology of the east coast. The maximum limit of the last glaci:al ice sheet 

was believed to be just on~hore of the North Norfolk coast (Brand et al. 2002). Therefore 

any chronology along this limit will provide the date of maximum glaciation or initial 

de glaciation. This limit has been mapped by looking at the extent of the Holkam Till 

(Bowen et al. 1'999), previously named the Hunstanton Till (Sudgate and West 1959). 

Brand et al. (2002) did not present directly date any sediments, however, it was suggested 

that the till found in North Norfolk had an afftnity with the glacial deposits ofHoldemess, 

and hence, could be dated to post c 20 559- l9 258 cal. years B'P. The Holkam till 

overlays a raised beach that has been dated to oxygen isotope stage Se, conftrming the 

interpretation of the till as Devensian (Gale et al. 1988). Evidence from north Norfolk was 

also used to sUpport the model of a North Sea Ice Lobe flowing along the east coast of 

England from southern Scotland cPawley et al. 2006). Therefore, if two ice lobes, one from 

the Lake District and one from Scotland, flowed along the coast of Yorkshire only one, 

from Scotland, reached Norfolk. 

Deglacial dates have also been presented from the east coast of Scotland which suggested a 

readvance potentially coHelating with Hl. Radiocarbon dates suggested that a readvance 

of ice at Troup Head, east of Macduff occUITed prior to 15 150- 14 293 cal. years BP 

(Merritt et al. 1995). Other evidence of readvances of the Moray Firth Ice Stream was also 

presented by Merritt et al. (1995). However, they suggested lhat changes in relative sea 

level controlled ice stream behaviour and not climate. 

Peacock (1997) furthered this by suggesting that terrestrial ice reached a maximum extent 

in the North Sea between 17 000 and 116 000 cal. years B'P. A large moraine at St Fergus 

was dated to 17 386- 18 727 cal. years BP (Hall andJarvis 11989). Peacock (1997) 
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suggested that this evidence along with ice sheet movement directions at Fraserburgh 

showed an ice sheet readvance into the North Sea, contemporaneous with H1. He also 

suggested that this conclusion was to be viewed with caution as at the time of publishing no 

dates suggesting a H1 readvance had been published in Ireland. It was recognised that 

there was no direct evidence for a major late Devensian ice readvance at Dimlington which 

would be synchronous with H1. 

Further deglacial dates from eastern Scotland where taken from the Tay Estuary (Peacock 

2003). These dates suggested that deglaciation of the area began around 16 000 -16 500 

cal. years BP resulting in two hypothesis. Firstly, if the ice started retreating at 15 150- 14 

293 cal. years BP then the Tay glacier was retreating during H1. As a result only a weak 

H1 signal can be proposed as may be the case around the entire North Sea. Secondly, if the 

16 000 cal. years BP date is taken to represent deglaciation then there was time for the ice 

to retreat into the Scottish highlands before readvancing. This could correlate with Hl and 

the Perth readvance limits proposed by Sissons and Smith (1965). Peacock (2003) also 

emphasised the need to exercise caution when assigning readvances to the H1 event as a 

result of the varying dates available around the British Isles that had been correlated with 

the event 

This proposal has been supported by a revised model for the de glaciation of the east coast 

of Scotland (McCabe et al. 2007). Radiocarbon dates are used to support previousl·y 

published sedimentary data indicating two glacial readvances before the beginning of the 

Loch Lomond Stadial. The first readvailce, the Lunan Bay readvance was dated to after 20 

250 cal. years BP indicating initial degladation had begun prior to this date. The second 

readvance, the Perth readvance, was dated using two radiocarbon dates from Gallowflat of 

16 355 ± 130 cal. years BP and 16 385 ± 125 cal. years BP. This readvance was thus 

correlated with the Killard Point Stadial proposed· in North Ireland (McCabe et al. 2007a) 

and supported by the dates from the St Fergus silts and those from Peacock (2003). 

Along with the reconstruction of deglacial chronologies on land, attempts at dating the 

offshore record have also occurred. Serjup et al. ( 1994) dated the maximum extent of 

Devensian ice in the North Sea to the period between 22 QO(i) and 29000 14C BP, with the 

central sector ice free around 22 000 14C BP. A possible readvance of ice in the area 
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occWTed around 21 000 cal. years BP, correlating with the Din:ilington Stadia! ofBritain 

and the Tampen Readvance of Norway. Difficulties exist in trying to constrain the age of 

the last glacial period in the North Sea. Radiocarbon dates taken from a marine setting 

carry uncertainties as a consequence of varying reservoir ages. This results in difficulties in 

comparing terrestrial and marine events (Peacock 1995). 

2.5 Field Site 

The sediments of Up gang will be examined to see if a readvance sigaal can be established 

and correlated with Hl. Prev:ious literature published in relation to Upgang suggests that 

the site has two tills separated by sands and gravels and, hence, may show a readvance 

(Section 2.3), although this research has resulted in a number of different stratigraphies 

(Figure 1 b). Harrison ( 1895) reported a lower and upper boulder clay separated in places 

by a non continuous sands and gravels fades. Catt and Madgett ( 1981) described two tills 

con:elating to the Skipsea and Withemsea till often separated by sand and gravel with the 

addition of an intermediate bed of mixed Skipsea and Withemsea Till. Most recently Catt 

(2007) also described Skipsea and Withemsea Till equivalents separated by sands and 

gravels. However, in this interpretation there was no intermediate bed and a lower grey till 

correlated to a pre-LGM glaciation was depicted. In addition, Upgang's location along the 

northern Y mkshire coast will help to provide a link between on going research in County 

Durham and the Tees Estuary with that carried out to the south in Holdemess. 

Upgang beach is located approximately 1 km north of Whitby just south of Sandsend. It is 

situated on the edge of the topographical highland plateau of the North Yorkshire Moors 

National Park (Figure 2) lying on a Jurassic bedrock or shales, clays, limestone and 

sandstone. Topography in the Up gang and North Yorkshire area is dictated by this bedrock 

and consists of dissected hills and wide moorland (Kent 1980). Upgang lies on the high 

irregular cliffs indented by small bays and nanow valleys that characterise the coastline 

between Saltbum and Flamborough Head (Kent 1980). 

The cliff section is approximately 750 metres long and 30 meters high and is composed of 

diamicts, sands and gravels. The cliff section is kept relatively 'clean' by erosion, up to 30 

cm per year; with long shore drift southwards (English Nature 2006). However, there are 

areas of slumping obscuring the in situ sediments. 
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2.6 Geology of the area 

The on and offshore geology for eastern England can be seen in Figure 4. The bedrock in 

North East Yorkshire is Jurassic and runs along the coast between Middlesbrough and 

Filey. This sequence consists of shales and clays with limestones, ironstones, siltstones and 

sandstones (Kent 1980). Shales are the most dominant lithology with limestone, ironstone 

and sandstone outcrops occasionally occurring in the Lower to Upper Lias part of the 

succession. This section of the geological sequence contains regular fossils including 

Ammonites and gryphaea arcuata (devils toe nail). The Middle Jurassic element of the 

succession is characterised by the Dogger unit, a marine unit comprising of similar 

lithologies to the underlying Lias sequence although locally oolitic. Above the Dogger 

formation the geology begins to be dominated by sandstone with some shales, the Saltwich 

formation, and Eller Beck formation consisting of shales and shaley sandstone. 

To the north of the Jurassic sequence, around Middlesbrough, the solid geology is 

dominated by Triassic mudstones which to the north and east become Triassic sandstones. 

Following the solid geology north along the coast line between Hartlepool and South 

Shields is Permian limestone. Between South Shields and Amble are the coal measures 

followed by Carboniferous limestone to the north in Northumberland (Figure 4). A major 

part of the Northumberland geology is the Whin Sill complex, a series of sills and dykes of 

basaltic composition with the most common lithology a dark-blue-.grey quartz dolerite. 

Further north towards the Cheviot Hills the bedrock consists of igneous rocks. This is 

dominated by dark grey and pink granite. There are also outcrops of dark grey or black 

andesite, rhyolites consisting of abundant feldspar and biotite phenocrysts and grey or 

purple porphyry with white or pink feldspars. 

Igneous rocks also occur to the west of the north east in the Lake District. These are 

dominated by various granites of varying colour and composition. Grey, dark green/purple 

andesites and grey fine grained rhyolites are also sound in the area. To the east of the Lake 

District the geology of the Pennines is dominated by large areas of Namurian grit, with 

regions of slate, sandstones and limestone. 
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Overlying the Jurassic bedrock in Yorkshire is a series of Quaternary glacial sediments. It 

is these sediments that have lead to the numerous debates discussed in Section 2.3. 
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Figure 4: Geology of North East England (From BGS Solid Geology Map (North and South) and BGS 

Offshore Solid Geology Map (North and South). 
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3. Methods 

3.1 Sediment Description and Lithofacies Associations 

The accurate description of the sediments present at Upgang provides the framework to this 

investigation. It is one of the most important and useful tools in glacial reconstruction 

(Evans and Benn 2004). Sediment facies often display a distinct set of characteristics 

depending on mode of deposition. This allows the depositional history of a site to be 

recenstructed, although, this interpretation is carried out at a later stage. Logging is purely 

descriptive and objective taking note of sediment colour, grain size, depositional and 

deformational structures, bed thickness, contacts between lithofacies and the presence of 

any inclusions.· This was done by taking sketches, photographs and notes. A more detailed 

description of this process can be found in Jones et al. (1999). Uthofacies codes have been 

used to allow rapid and ·effective description of the sediments in the field. A hybrid scheme 

has been used encompassing the code proposed by Kruger and Kjaer (1999) to describe the 

diamictic sediments, while the sorted material was described using the code in Eyles (1983) 

(Figure 5~. The combination of the two codes allows sediment to be described in greater 

detail. Kruger and Kjaer ( 11999) provided a more detailed code for the description of 

diamicts thanEyles (11983), while the sorted sediment code was more descriptive and wide 

ranging in Eyles (1983). The Munsell Colour Chart was used to objectively describe the 

colour of sediments (Graham 1988). 

For consistency, a hierarchy is used when grouping sediments together in description. The 

largest group that was used in this report is a Lithofacies Association (LFA). This is a 

mappable layer of homogenous material (Evans and Benn 2004). Each LFA can then be 

subdi¥ided into facies which can be divided further into units if necessary. For example, a 

layer of sand and gravels would be classed as an LFA. This may then be sub divided into a 

banded sand facies, each band within this facies would be a unit. 
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Code for diamicts (from Kruger and Kjaer 1999) 

D Diamict 
General appearance: 
m Massive, homogenous 
g Graded 
b/s Banded/stratified 
h Heterogeneous 
Granulometric composition of matrix: 
C Coarse-grained, sandy-gravelly 
M Medium-grained, silty-sandy 
F Fine-grained, clayey-'silty 
Clastlmatrix relationship: 
(c) Clast -supported 
(m1) Matrix-supported, clast poor 
(mz) Matrix-supported, moderate 
(m3) Matrix-supported, clast rich 
Consistency when moist: 
1 Loose, not compacted 
2 Friable, easy to excavate 
3 Firm, difficult to excavate 
4 Extremely firm 

Code for sorted sediments (from Eyles et al. 1:983 
Gravels 
Gms Matrix supported, massive 
Gm Clast supported, massive 
Gsi Matrix supported imbricated 
Gmi Clast supported massive 
Gh Horizontally bedded 
Gt Trough cross-bedded 
Gp Planer cross bedded 
Gfu Upward fining 
Gcu Upward coarsening 
Granules 
GRcl Massive with clay laminae 
GRh Horizontally bedded 
GRm Massive and homogenous 
GRcu Upward coarsening 
GRuf Upward fining 
GRp Cross bedded 

Figure 5: Lithofacies codes 

Sands 
St Trough cross bedded 
Sp Planer cross bedded 
Scr Climbing ripples 
Ssr Starved ripples 
SI Horizontal and draped lamination 
Sm Massive 
Sue Upward coarsening 
Suf Upward fming 
Silts and Clays 
Fl Fine laminations 
Fm Massfve 
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A number of detailed logs were taken of both vertical sections, highlighting the changes in 

sediments up the sequence, and horizontally at sites of interest. A horiz0ntal overview of 

750 metres of the cliff was also taken highlighting the key sedimentary facies, allowing 

sample sites and the sites of detailed logs to be place9 in context. 

The main limitati0n with this method arises during interpretation. It is possible for the 

depositional history of a sediment to be interpreted in a number of different ways. This is 

the result of different processes resulting in the same sedimentary sequence, equifinality. 

However, if used in conjunction with other complimentary techniques a reliable 

reconstruction can be created. 

3.2 Clast Form.Analysis 

Clast form analysis involves measuring and determining the roundness of individual clasts 

to establish the shape. This helps to establish the depositional history of the sediment. The 

long (a), intermediate (b) and short (c) axis of the clasts are measured using a standard tape 

measure (Evans and Berm 2004, Hubbard and Glasser 2005). A sample of fifty clasts needs 

to be ·taken for the data to be statisticaHy significant within an area of one metre squared as 

differences can occur even in small areas as a result of changes in depositi0nal processes. 

As far as possible similar lithologies should be measured to help reduce inconsistencies 

within the sample as different lithologies have different weathering rates and material 

properties. In add~tion similar sizes of clasts were measured (8-40 mm). Problems can 

occur in clast pom sediments as there may not be fifty clasts of a similar lithology within a 

metre square. Therefore it may be necessary to enlarge the sample area or to reduce the 

limitations on lithology. Once the clasts have been measured the roundness needs to be 

evaluated. This was done using the Powers roundness scale(1953). While 0ther 

classification techniques have been suggested (Lees 1964, Olsen 1983), the Powers 

roundness scale is quick and easy to use in the field without involving extra measurements. 

It is based on a six point scale with clasts classified as very angular, angular, sub-angular, 

sub-rounded, rounded or well rounded. Despite the advantage of speed within the field the 

method can be subjective. This data is presented in a number of ways. The measurement 

data is presented in ternary diagrams (Sneed and Folk 1958). These plot the a, b and c axis 

between three forms; spheres, discs and rods (Berm 1994). The benefit of these ternary 

diagrams over other ways to display the data ~cf. Hoffman 1994) is that they represent the 
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continuum of a particle shape with equal weighting and relative simplicity (Benn and 

Ballantyne 1995). Roundness data was plotted on a histogram to allow clear visual 

representation of the data. 

A covariance plot is also constructed using this data in order to assess the transport history 

of·each sample. The C40, the number of clasts below the 0.4 line on the ternary diagrams, 

and RA, the number of angular and very angular clasts, values of each sample is calculated 

and then plotted onto a graph. This graph can then be compared with published data sets 

which differentiate between various transport pathways (cf. Benn 1992, Benn and 

Ballantyne 1994). Scree and supraglaciall:Y transported material will plot to the top right 

corner, while :river deposits and fluvially transported samples will plot to the bottom left. 

3.3 Clast Fabric Analysis 

Clast fabric analysis was under taken in order to support clast form data in establishing 

deposition history. It involved measuring the dip and azimuth of individual clasts within a 

sample (Evans and Benn 2004, Hubbard and Glasser 2005) using a compass and 

clinometer. Again a sample of fifty clasts was measured to reduce random variability 

(Ringrose and Benn t997) within a one metre squared area. Clasts with an a axis 1.5 times 

as long as the b axis should ideally be used as these present a preferred orientation. Clasts 

of a similar size were measured (8 - 40 mm) as it has been shown that fabric data can vary 

with the size of a clast (Kjaer and Kruger 1998, Carr and Rose 2003). Measurements were 

predominantly taken on the a-axis of the clasts; however, for comparison, measurements 

were taken using the a-b plane at six sample sites. A-b plane fabrics were taken as well as 

a-axis fabrics. Some authors believe this method to show a clearer strain signal than a-axis 

fabrics that can align perpendicular to flow (Evans et al. 2007). A-b plane measurements 

were focused on areas just above a boundary as this is where the strain signal will be 

clearest. Data is presented using rose diagrams, indicating ice flow direction and equal area 

stereonets which have been contoured through the step function and Gaussian weighted 

methods using the Rockworks program. 

The usefulness of this me.thod has been considered within the literature. Bennett et al. 

( 1999) question the value of this technique as a method to distinguish between two or more 

tills as different till fades do not always have distinct clast fabric signatures. While it is 

Page 32 



concluded that clast fabrics alone cannot be used to differentiate between tills it is 

suggested that it can be useful as a relative strain indicator. Its wide use by a number of 

glacial researchers cannot be ignored and if used in conjunction with other methods it can 

prove useful in glacial reconstruction. 

In addition to the presentation of the raw data on rose diagrams and stereonets, eigenvalues 

were calculated using the method set out in Mark (1973~. This allows a large data set to be 

reduced to simple descriptive statistics that describe fabric strength and orientation (Benn 

and Ringrose 2001). Accounting for both dip and orientation these values are calculated 

using vector analysis to extract eigenvectors (Vl, V2 and V3) and eigenvalues (Sl, S2 and 

S3) from a 3x3 matrix ~Dowdeswel'l and Sharp 1986). The eigenvector Vl reflects the 

direction of maximum clustering, while V3 reports the direction of minimum clustering. 

The eigenvalues represent the strength of clustering around the axis of Vl, V2 and V3. 

These values are then plotted. Firstly as a ternary graph (Benn 1994) scaled using an 

isotFopy index (I= S3/Sl) and an elongation index (E ~I- (S2/Sl)) and, secondly, as an x­

y graph with S 1 plotted against S3 (Dowdeswell and Sharp 1986). Once constructed these 

graphs can be compared with those in the published literature in order to establish till type, 

potential degree of deformation and fabric 'shape'. However, there is no complete theory 

that describes the variance of fabric eigenvalues or defmitive confidence regions that can be 

plotted onto the graphs (Benn and Ringrose2001). Although Benn and &ingrose (2001) 

use a bootstrapping process to show that the variation within samples is smaller, and often a 

result of random sampling effects, than the variation between till units. Therefore, when 

used in conjunction with other techniques this method can provide a useful tool in the 

differentiation of till depositional histories. 

3.4 Clast Lithology Analysis 

Clast litho logical analysis was under taken in order to establish the provenance of the tills. 

The lithology of the tills at Up gang can be correlated with local and regional geologies in 

order to establish where each till originates from. It has also been used to help differentiate 

between diamict layers and help establish to which, if any, diamict layer the sands and 

gravel sequence can be correlated to. In order to do this 300 clasts were examined from 

each layer, this is the minimum number needed to make the sample statistically significant 

(Bridgland 1986). Clasts were then washed, dried and sieved into size fraction (>32mm, 

Page 33 



16<32mm, 8<16mm and 4<8 mm) in the labs before classification. Classification used a 

low powered microscope in order to identify grain sizes, shapes and composition of the 

rock, with rocks often broken open to expose an unweathered face. In order to help identify 

limestone 10% hydrochloric acid was used as it reacts with the carbonate in the rock. 

Identification used Gale and Hoare (1991), Evans andBenn (2004) and Stow (2005). 

The major source of weakness within this technique is the identification as it can often be 

subjective (Evans and Benn 2004 ). Another limitation with this method is that the weaker 

clasts, for example chalk or shale, may be crushed or crumbled during transpmt and 

deposition, as well as during excavation, especially when using a geological hammer to 

remove clasts from a solid till, leading to a non representative sample. Great care needs to 

be taken in removing clasts if this is the case. However, these lithologies can also continue 

to break up in transportation, washing and sieving, giving an elevated number of clasts than 

was originally sampled. 

In order to attempt to create a lithochronostratigraphy samples were also taken from 

Dimlington (cf. Lee et al. 2004). Ice flow pathways within Yorkshire, suggest that ice 

originated from either the Lake District or northern England, flowing along the coast to 

Dimlington. Hence, the ice depositing tills at Dimlington would have had to overrun the 

Upgang area. Therefore, if similar clast lithologies can be established for the two sites then 

the tills at Upgang can be correlated with those at Dimlington. This would suggest that the 

two sites are of a similar age with all correlating tills deposited post 21 000 cal. years BP, 

creating a relative chronostratigraphy for Upgang. However, with clast lithology studies it 

is often only the most durable clasts that can be transported across long distances with most 

clasts derived locally. 

Clast lithology has also been used to help differentiate between diamict layers and help 

establish to which, if any, diamict layer the sands and gravel sequence can be correlated to. 

Data was statistically analysed using the chi squared test (Davis 2002) in order to test the 

potential correlation between sample sites within and between lithofacies layers. Chi­

squared (X.2) testing calculates the variance of each sample from the mean. Therefore, if a 

small number is obtained the samples are similar to the mean and hence each other, a large 

number indicates a greater variance. 
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0 = Observed value, E = Expected value 

In order to tell how significant the chi-squared value is, the reduced chi-squared value has 

been calculated, dividing ·i by the number of degrees of freedom (n-1 ). In this instance the 

closer the reduced chi-squared is to 1, the stronger the correlation. Using the Upgang data 

set, the chi-squared and reduced chi-squared values have been calculated using the whole 

sample, lithologies making up more than 20% of the sample (limestone and shale). and 

lithologies making up on average more than 10% of the sample Oimestone, shale and 

sandstone) in order to compare the values obtained. Chi-squared testing does not work wel 1l 

when the expected frequencies are too low, as can occur with data sets with a large number 

of zeros in it, characteristic of litho logical counts. It was therefore necessary to vary the 

number of lithologies used in calculations in order to minimise the percentage of lithologies 

with an expected value below five. It has been used on samples within and between each 

lithological unit in order to test for correlation. In addition, tests have been carried out on 

both the percentage and absolute values of each lithology. The Dimlington samples will 

also be 'correlated' with the Upgang tills using this method. 

3.5 Geochemical Analysis 

Another technique used to reconstruct the glacial history of Up gang was geochemical 

analysis. This involved collecting samples of diamict from the site and analysing the 

abundance of elements found within it using an ICP-MS (Inductively Coupled Plasma­

Mass Spectrometer). It was then used to differentiate between diamict layers or to correlate 

with other sites for provenance testing, however, few sites have been geochemically 

analysed in Great Britain. Most examples of the use of geochemical analysis are from 

Canada (e.g. Broster 1985, Shilts 1993), where it is used to spatially differentiate between 

tills. This project used geochemistry from a vertical section to compare tills at Upgang and 

the 'Fees Estuary. The Tees Estuary could prove to be a significant area in reconstructing 

the glacial history of Yorkshire as the ice is believed to have flowed through this area from 

either the north or the west on its way down the coast. There is also a climatic record from 

the Tees Estuary (Plater et al. 2000) that could be linked to Up gang if the two sites can be 

geochemically correlated. 
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Before the sample could be analysed it needed to be prepared in the laboratory, using a 

standardised method. Firstly, the sample was reduced in size, to between 1 and 20g (Gale 

and Hoare 1991 ), taking care to sample only the matrix (grains <2mm) and to avoid 

contamination. Samples were then placed in a minus SO"C freezer overnight before being 

placed in the freeze dryer for twenty-four hours. These samples were then placed in the 

bal1l mill to grind the particles into uniform size. Care needed to be taken at this stage to 

avoid cross contamination between samples, so after each sample the mining equipment 

was carefully cleaned. Samples were then disaggregated using sodium hexametaphosphate 

before microwave digestion to remove any organics. Finally, the sample was placed in the 

ICP-MS machine which determined the relative abundance of isotopes due to the 

differences in atomic mass (Blatt and Tracy 1996). Two runs were carried out one for high 

abundance and one for low abundance elements (Table 2). This was then converted into a 

list of elements, with isotopes of each element combined, and their quantities found within 

the sediments. Major elements can be traced to within 200-300 ppm while the minor 

elements can be assessed to an accuracy of less than 5 ppm (Evans and Benn 2004 ). A 

major concern with interpreting geochemical data is establishing which part of the signal is 

due to provenance changes and which part is a result of changes in geochemistry as a result 

of post depositional weathering (Shilts and Kettles 1990). 
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T bl 2 T bl f I . ed. h "al al. .a e : a e o e emen s examm mgeoc emtc an tysts. 

Hip Abundance Run Low Abundance Run 
Aluminium (AI) Silver (Ag) 
Calcium (Ca) Arsenic (As) 
Iron (Fe) Boron (B) 
Potassium (K) Barium (Ba) 
Magnesium (Mg) Beryllium (Be) 
Sodium (Na) Bismuth ('Bi) 
Titanium (Ti) Cadmium (Cd) 
Phosphorous (P) Cobalt (Co) 
Silicon (Si) Co_l)per (Cu) 

Chromium (Ct) 
Lithiuni (Li) 
Manganese (Mn) 
Molybdenum (Mo) 
Nickel (Ni~ 
Lead (Pb) 
Antimony (Sb) 
Selenium (Se) 
Strontium (Sr) 
Thallium (Tl) 
Vanadium (V) 
Zinc (Zn) 
Cerium (Ce) 
Gallium (Ga) 
Niobium (Nb) 
Rubidium (Rb) 
Tin (Sn) 
Thorium{Th) 
Uranium(U) 
Yttrium (Y) 
Zirconium (Zr) 

Data has been statistically analysed using chi-squared testing as described in Section 3.4 

and cluster analysis in order to establish any differences or correlations between samples. 

In using cluster analysis groups were created 'clustering' samples with similar suites of 

elements using the statistical program Stata, which were then plotted as a cluster 

dendrogram which graphically displays the results. Clustering used Q type analysis as this 

compares samples (sites) rather than variables (elements). Complete linkage clustering is 

used as the longest distance between groups is used to form clusters. Unlike single linkage 

clustering (the shortest distance between clusters) this reduces the likelihood than an outlier 

will cause two groups to cluster even though overal1l they are distinctly different. 

Therefore, many smaller clusters tend to form and they are often more informative. The y 
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axis of the dendrogram represents the Euclidean, or ordinary, distance between clusters 

rather than a relative distance. The closer the samples cluster to zero the more similar they 

are. 

3.6 Geomorphologic Mapping 

Geomorphological mapping highlights the spatial distribution of landforms, accounts for 

their .genesis and can provide the relative ages of their relief (Hubbard and Glasser 2005). 

Therefore the creation of a geomorphological map will provide a greater context for the 

sedimentological part of this study. 

The geomorphological map constructed for this project was created using remote sensing 

techniques. A Digital Elevation Model (DEM) was created of the North East and 

Yorkshire from the NEXT MapDigital Terrain Model (DTM) which provides a five metre 

horizontal resolution and one metre vertical accuracy. A DTM is a type of DEM which 

represents the earth's surface without the presence of vegetation, buildings and other 

human engineering features. The NEXT Map DTM has been derived from airborne 

Interferometric Synthetic Aperture Radar (IFSAR) (http://www.neodc,rl.ac.uk), which 

allowed large areas of Britain to be rapidly covered at a high resolution. 

The visualisation of geomorphological features has been performed using simulated solar 

shading at 315°and 45° to enhance features. A single illumination angle can result in some 

features parallel to the iHumination azimuth being suppressed (Clark and Meehan 2001). 

The map was then constructed on the recognition of features by size, shape, colour and tone 

according to a landform classification scheme using on screen digitisation. For example, a 

moraine rndge may appear as a linear raised area of topography and has been drawn as a 

brown line marking its extent. In addition other linear, arcuate and sinuous features are 

highlighted in brown and recognised by a raised area. Moraines are considered to be larger 

areas of raised land that are softer than the hilly surrounding, marked in pink. Finally 

glacial lakes are considered to be large areas of :tlat un-featured land, marked in blue. 

However, this relies on the assumption that alllandforms have distinct characteristics 

(Hubbard and Glasser 2005). In addition, in complex bedform areas there can be 

considerable scope for misidentification as a result features overlaying one another or 

varying orientations. To supplement the mapping from the DEM the published BRITICE 
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data (Clark et al. 2004a) has also been overlaid onto the map. BRITICE is the collection of 

previously published glacial features which have been complied onto a GIS data base 

forming a map of the glacial features of Great Britain. These features include glacial lakes, 

eskers, drumlins, moraines and meltwater channels. The overlaying of these features has 

allowed a checking of landforms, along with the addition of features identified as a result of 

their sedimentology rather than geomm:phology, for example some glacial lakes, or those 

difficult to identify in complex areas. All areas considered to be glacial lakes as part of the 

mapping process are double checked with BRITICE as the area may be flat lying for 

another reason. H a more accurate geomorphologic map is required then it would be 

necessary to visit the field site to verify the DTM. 

3. 7 Chronology 

In order to construct a chronology that the glacial sediments of Up gang can be correlated 

to, a series of published dates have been used. Radiocarbon, thermoluminescence and 

cosmogenic dates were taken from published accounts of the last de glaciation from around 

Great Britain and Ireland. These included dates of readvances and of de glaciation of an 

area. For consistency those dates that have been published in radiocarbon years have been 

calibrated using Calib 5.0.1 (two sigma Fanges). If however, calibrated years are published 

then these have been the dates reported within this thesis. Throughout this thesis, where 

possible, dates cited in the text are all calibrated, although some radiocarbon dates were too 

old to calibrate. In addition, tables include both the published radiocarbon and calibrated 

dates. 

In addition to using published dates to create a chronology the process of wiggle matching 

vegetation records to the Greenland ice cores has been used. Studies have previously 

shown that there is a good match between the Greenland ice records and British climate 

(Lowe et al. 1995). This has allowed vegetation and climate records with little or no dating 

to be matched to a dated record. 
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4. Results and. Analysis 

4.1 Section Logging 

The overview log of the cliff shows four distinct lithofacies associations (LFAs) within the 

cliffs; Dl, D2, SG and D3. The lowest LFA (Dl) is a grey clast supported diamict, 

separated from the overlying brown matrix supported diamict (D2) by a very distinct 

boundary. D 1 is composed of brecciated bedrock that is highly compact. D2 is a relatively 

structureless diamict that has a modemte number of clasts. This LFA is possibly spilt into 

two; towards the north of the section a colour and clast content distinction separates the 

darker, clast rich D2A from ihe lighter D2B with a moderate clast content, although this 

could be a result of moisture content. The size of the larger clasts also fmes upwards. 

Towards the south D2 appears to have a lighter colour with a stratified facies, D2C, be~ow 

the homogenous diamict. Unlike the potential two facies to the north the stratified facies is 

clast poor in comparison to the overlying diamict and has a lighter colour. A sand and 

gravel layer (SG~, which is subdivided into four facies, can then be seen across the entire 

cliff capped by a red clast poor diamict (03). D3 is clast poor in comparison to D2, with 

smaller clast sizes and appears to have a.fmer grain size composition than the lower diamict 

and has a red tint to it. 

Each LFA can be found in distinct layers throughout the section maintaining the sequence 

described above. No large scale faults or folds are seen. Several sections of the cliffs have 

also been logged at a smaller scale to provide greater detail; the location of each section is 

shown in Figure 6. This lithofacies found within these logs have been depicted on each 

Figure. 
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Figure 6: Overview of the cliff section showing each LFA and the sample sites. Logs are shown with lines 
representing the location of each section and a box indicating the general location of the site for clarity. 
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4.L1 Section A 

Section A (Figure 7) displays sub hm:izontally stratified sand and gravel. The section 

shows a series of laminated sands and granules at the base. To the left of the section there 

are planar laminated sands overlain by horizontally bedded granules and planar laminated 

fines. Towards the middle of the section these laminations become concave in nature 

angled up towards the fines unit. More concave, and some convex, laminations occur 

within this unit towards the right of the section in both sands and granules. The middle 

third of the diagram shows a unit of massive fines with a number of sand inclusions. 

Several of these lenses are oval or circular in shape (Figure 7). The sand within them tends 

to be laminated although the direction of these laminations varies between pods. The 

remaining lenses are elongate with concave upper and lower boundaries the sand 

laminations within these lenses display concave bedding. Above this unit lies an upward 

coarsening sequence of laminated sand and horizontally bedded gravels. 

Figure 7: Log of Section A. This section is. approximately 17 metres from the top of the cliff. 

4.1.2 Section B 

Section B logs the vertical profile of the cliff fFom D2 to D3 in three parts. The lowest 

Section Biii (Figure Sa) consists of homogenous brown diamict, D2. Potentially this LFA 

can be spilt into two separate facies, D2A and D2B. The lower 80 cm to 1 metre of the 

section, D2A, is darker in colour (7 .SYR 4/3) with a greater number of clasts of a larger 

size than the over lying diamict,. D2B (7 .SYR 5/3 ). The two facies m:e sepm:ated by a 

gradual boundary, with the differences in colour as the major difference. D2 is then 

ovedain by a complex sequence of sands and gravels (Figures 9a and 9b ). The lower part 

of this sequence, SGl, is dominated by finer sediments (clay, fmes and fine grained sand) 

which are mainly planar laminated with some Type B climbing ripples towards the top of 
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the facies. This then coarsens upwards, to bedded sands and fines, SG2, with Type B 

ripples within the sand. These ripples have paleocurrent directions to the north west and 

west, dipping at appro:x<imately 20°. The upper section consists of planar bedded coarse 

sand, granules and gravels, SG3. Within the gravel facies pods of sand and trough bedded 

sands can be found. These sand pods are broadly oval in shape with no pinching at either 

end and sharply defined boundaries with the surrounding sediments. The majority of them 

consist of laminated sands. The laminated trough bedded sands have a concave lower edge 

and a more horizontal upper boundary. At the very top of the LFA, SG4 represents a facies 

of sand with Type A ripples within it. This facies is very thin; approximately 20 to 30 cm. 

A relatively sharp boundary with the overlying diamict exists, although there appears to be 

some rafts of diamict within the sands. These rafts are reddish brown the same as the 

overlying D3 (7 .5YR 4/6). They have distinct, angular edges with no mixing with the 

surrounding sand visible. The sand sequence to the right of the rafts appears to have been 

disturbed. The laminations appear as though they have been compressed upwards creating 

a slight wave in the laminations. Paleocurrents from this section can be seen on the 

diagram and tend to be from between NNW and NNE with dip values of approximately 

22 °. Figure 8b shows the fmal section of the cliff Bi. This is 03, a reddish (7.5YR 4/6), 

clay rich, clast poor diamict with various inclusions. Towards the bottom of this section a 

large section of sands has been included within the diamict consisting of laminated sands, 

fmes and granule bands, which is only partly exposed. This feature has a strongly defmed 

horizontal upper boundary with the overlying diamict; the other edges of the feature are 

obscured. The laminated sand and fmes within this block Show some evidence of a fault at 

the base of the feature. The next fearure is a sand pod, consisting of lighter golden coloured 

sand (lOYR 4/3), with fine coal particles. The pod itself has been pinched at either end, 

forming an 'eye' shaped feature. This sand contains some internal laminations, although is 

dominantly massive with small granule sized clast towards the outer edges of the feature. 

Above this feature is an inclusion of reddish (5YR 5/6) clay and fmes which has been 

pinched at one end, as well as horizontal reddish silt/sand bands (5YR 5/6). 
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Figure 8a: Logs and photographs of the diamicts from D2 within Section B. Vertical scale from top of section 
approximately 19 meters from top of cliff. Lithofacies associations shown to right of diagram. 
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Figure 8b: Logs and photographs of the diamicts from D3 within Section B. Vertical scale from top of cliff. 
Lithofacies associations shown to right of diagram. 
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Figure 9a: Logs from the sand and gravels LFA (SG) in Section B. The individual SG facies have been 
named to the left of the diagram. Vertical scale from top of SG section not top of cliff. SG section 
approximately I 0 to 11 m from top of cliff. 
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Figure 9b: Photographs from the sand and gravels LFA (SG) in Section B. The individual SG facies have 
been named to the right of the diagram. Spades for scale. SG section approximately I 0 to ll m from top of 
cliff. 
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4.1.3 Section C 

Section C is another vertical profile efthe section (Figure 10)~ The lower LFA, D2, can be 

split into two fades. At the base ef the section is D2C, a light brown (7 .SYR 3/2) diffusely 

stratified diamict. D2C is a lighter colour with less clasts than the evedying homogenous 

diamict of D2. The sands and gravels overlie D2, although the boundary between diamict 

and. the sands is not visible. This sand and gravel sequence foNows a similar pattern to the 

one logged at Sectien B. At the base of the section is homogenous brown clay overlain by 

laminated sands and fines (SG 1) with some Type B climbing ripples. This is followed by 

SG2 which is a section of largely massive sands with some Type B climbing ripples. This 

facies incorporates a clay inclusion, narrow at one end widening to the right of the diagram 

with a semi~circular end to it. The edges of this feature are clearly defined from the 

surrounding sand with no mixing of the two sediments. Again the sequence coarsens 

upwards to gravels, SG3, although it was not possible to log this section in detail. At the 

top of sequence is D3 which is capped by topsoil. D3 is the reddish (7.5YR 4/6), clast poor 

clay rich diamict. This section also has sand and fmes inclusions within it. The lower 

features are laminated sand rafts at approximately 35° to the horizontal. The sand is golden 

in celour (lOYR 4:/3), as was the sand pod in Section B, and includes small coal particles. 

Two of these rafts are oval in shape while the other two are obscured in places. The visible 

ends of these rafts are not smooth and appear flame like, interlinking with each other, 

although the two rafts remain separate. Towards the top of the section is a laminated clay 

and sand inclusion. The clay appears as the same celour to the diamict with reddish sand. 

The feature is narrow to the right of the diagram widening towards the left before forking 

into two thinner bands. The sediment within the inclusion is finely laminated, with 

laminations following the shape of the feature. 
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Figure lO: Logs and photographs from Section C. Spades and trowels for scale. Vertical scale from top of 
cliff. Each lithofacies has been depicted to the right of the diagram. 
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4.1.4 Section 0 

Section 0 shows a vertical log of the cliff including all four LFAs (Figure 11). At the base 

of the section is D1 which to the right of the section is overlain by a red diamict (7.5YR 

4/3). D1 is grey in colour (lOYR 5/1) consisting of very compact brecciated rock. The 

overlying red diamict is very clast poor and only outcrops for a short distance in a wedge 

shape between 01 and 02, wider at the base narrowing upwards as it arcs over 01. The 

boundary between 01, the red diamict and 02 above are all very distinct with no mixing of 

sediment. However, two oval shaped inclusions of this red diamict can be found, one in 01 

and the other directly above in 02. 02 in this section is homogenous and brown (7.5YR 

3/2), although no distinction between 02A and 02B is seen. Above 02 is the sand and 

gravel LFA that can be seen throughout the cliff. Again the base of the section is 

characterised by planar laminated fmes, SG 1, grading up into alternatively bedded sand and 

gravel facies, SG3. Within this section SG3 is represented by a continuous switch between 

horizontally bedded .gravels and planar laminated sands. There are no inclusions found 

within this sand and gravel LFA. The section is topped by 03. Within this section 03 is 

reddish in colour (7 .5YR 4/6), clast poor and appears to have a high clay content. 

However, towards the top of the section there appears to be some mixing of the diamict 

with clay and silts. These clays and silts are red (5YR 311) and blackish (5YR 2/6). 

Mixing is incomplete with the various colours and sediment types seen. However, there are 

no clear boundaries between these sediments. This part of the section is very clast poor and 

the clasts found are small in size. The sequence is capped by topsoil. 
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Figure 11: Logs and photographs from Section D. Spade and geological hammer for scale. Vertical scale 
from top of cliff. Each lithofacies has been depicted to the right of the diagram. 
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4.1.5 Section E 

Section E focuses on the boundary between D1 and D2 (Figure 12). At this site D1 is a 

light grey colour (10YR 3/1) and is made up of very compact brecciated shale. There 

appears to be no structures or post depositional deformation present within the facies. The 

overlying D2 is a brown (7.5YR 3/2) matrix supported diamict. It has a relatively large 

number of granule to gravel sized clasts within it and appears relatively firm. The 

boundary between the two LFAs is very clear, sharp and distinct. There is no evidence of 

mixing or any erosional features. This sharp boundary can be seen between the two 

diamicts throughout the section. 
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Figure 12: Photograph and log from Section E. Spade for scale. This section has been taken from the very 
base of the cliff. Each lithofacies has been depicted to the right of the diagram. 

4.1.6 Section F 

Figure 13 shows the inclusion of grey clast supported D 1 into D2. This section of D 1 is 

dark grey (lOYR 3/1), clast supported brecciated shale. This has been classed as D1 on the 

basis of the colour, lithology and composition which are identical to this diamict. The 

underlying and overlaying D2 is a brown (7 .5YR 3/2), relatively clast rich, homogenous 

matrix supported diamict. The attenuated wedge feature is pinched to the right of the 

diagram. However, the left side of the feature has been obscured. This general attenuation 

from left to right is interrupted in the middle section by a marginal indent. Distinct 
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boundaries are found surrounding the feature separating the two diamicts. To the far right 

of the diagram the main inclusion of D 1 is separated from a second inclusion of D 1 by a 

thin oval shaped pod of massive sand. This secondary inclusion of D 1 appears to be 

widening towards the right from its pinched end. Within the clast supported grey diamict 

are two elongated planar inclusions of massive grey fines. While below the main feature, at 

the pinched end is a thin horizontal band of reddish sand/silt. 
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A. A. A. 
A. A. 

2 3 4 5 6 7 

Figure 13: Log and photograph from Section F. Geological hammers for scale. The base of this feature is c. 
50 cm from beach level. 

4.1.7 Section H 

Another inclusion within D2 is shown in Figure 14. This feature is an elongate, attenuated 

pod of orange fine sand or silts within the brown diamict. It has formed flat lying lenses 

with flame like structures . Within the middle and to the left are inclusions of fme golden 

brown sands. The sand inclusion to the left of the fmes has also been attenuated at either 

end while the shape of the inclusion in the middle reflects the surrounding fines. Below 

this fines and sand feature are three smaller pods of dark grey (1 OYR 3/2) coarse sands. 
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Two of these pods are oval to circular in shape, while the pod furthest to the left on the 

diagram has a shape similar to two diamonds joined together. 
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Figure 14: Photograph and log from Section H. Trowel for scale. This section is c. 2 m from beach level. 

4. 1 .8 Section J 

Section J is another vertical section (Figure 15) which focuses .on the sand and gravel 

section. At the base of the section is D2, which can be separated into D2A and D2B, 

according to colour and clast content. The overlying sand and gravel section shows a 

similar pattern to those discussed in other locations along the section. The lower part of the 

study area consists of planar laminated sand and fines, SG 1. This facies grades into facies 

SG2 which consists largely of planar laminated sands, with some Type B ripples, some 

foreset bedding and a gravel layer. These ripples have an orientation of SW to W with dips 

between 16 and 30°. Paleocurrent directions taken from the foreset bedding also have a SW 

toW orientation with a dip of 28°. Also within this facies is a pod of matrix supported 

gravel. This pod is elongate in shape, angled approximately 40° from vertical and lies 

through boundaries between the surrounding sand units. This facies is then overlain by 

coarsening up gravels. The gravels at the base of this facies are massive with a concave 

upper boundary to the unit. A thin fmes band, SG4, separates the gravels from the 

overlying D3. 
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Figure 15: Photograph and log from the sand and gravels LFA in Section J. Trowel for scale. Vertical scale 
from top of cliff. Each SG facies has been depicted to the left of the diagram. 

4.1.9 Section K 

Section K shows an isoclinal fold nose of darker diarnict within 02 (Figure 16). At this 

site D2 is a light brown (7.5YR 5/3) homogenous massive diarnict. It is relatively clast rich 

with clast sizes appearing to fme upwards. The darker band that forms the fold nose is a 

similar colour to D2A (7 .5YR 4/3). It is clast poor, clasts found are granule sized, opposed 

to the gravel sized clasts found in the surrounding 02. The fold itself is angled with the 
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lower limb at a much steeper angle than the near horizontal upper limb. This darker band is 

potentially the same facies as D2A which has been included into D2B. 
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Figure 16: Log and photograph from Section K. Person for scale (standing at beach level). 

4.2 Clast Form 

4.2.1 Ternary Diagrams 

Ternary diagrams have been drawn up to represent the shape of the clasts sampled (Figure 

17). These diagrams plot the c:a ratio against the b:a ratio representing the clast shape with 

block like clasts plotting at the top apex, slabs towards the bottom left apex and elongate 

clasts at the right apex. The diagrams representing data from D 1 show that the clasts are 

compact and block like, with the majority of points plotting above the 0.4 line. The points 

appear to be evenly spread along the horizontal representing platy, blade and elongate clasts 

without preference. The diagrams representing D2 are evenly scattered throughout the 

diagrams. However, there are no points in the extreme corners of the triangles. There is no 

pattern to distinguish between samples belonging to D2A, D2B and D2. D3 shows a 

similar pattern to the samples in D2, although the points plot higher up the triangles. 
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Figure 17: Clast form triangles from Upgang andthe location of sample. 
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4.2.2 Roundness histograms. 

Histograms created from the roundness data area shown in Figure 1'8. Samples taken from 

D 1 have a high percentage of very angular clasts, over 65%, with the remaining clasts 

classified as angular. The percentage of very angular clasts compared to angular clasts 

varies according to lithology; those with a higher percentage of very angular clasts have a 

higher percent.age of shale clasts. Data taken from the remaining diamicts appears very 

similar, with a high percentage of sub-angular clasts, between 35% and 65%. The samples 

from D2 show a greater variability, whereas the percentages of sub-angular clasts fmm 03 

are consistently 50-55%. The percentage of angular clasts in each sample ranges between 

20% and 45 %. Two samples from D2A show higher values in angular clasts with 2A.l 

and 2A.4, 40% and 45% respectively. However, the remaining sample from D2A has a 

relatively low value of 25%, meaning that there may be some variation throughout the cliff 

laterally as well as vertically. Rounded clasts also have a significant percentage ranging 

between 10% and 25%. There appears to be no significant correlation between the location 

of samples and the percentage of rounded clast 
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Figure 18: Roundness histograms from Upgang. Location of each sample can be seen in Figure 6. 

4.2.3 Covariance Plot 

Figure 19 shows the covariance plot created from the data colleted at Up gang, plotting C40 

(shape) against RA (angularity). The points have been separated in coleur depending on 

which diamict layer it belongs to. As a control it is expected that scree samples would plot 

in the top right corner with fluvial or purely subglacial material plotting in the bottom left 

corner. 
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Figure 19: Covariance Plot indicating the C40 and RA of each sample site. Each facies has been colour 
coordinated and circled to distinguish where each LFA plots. 

The three samples from Diamict 1 plot towards the top left hand corner, showing a very 

high RA and a low C40 value. The upper diamicts, D2 and D3, plot in similar areas with 

C40 values between 30 and 60 and RA values between 20 and 50. However, differences 

occur between the various tills. D2A has higher RA and low C40 values compared with 

D2B. The two facies are clearly separated from each other on the graph. The remaining 

points from D2 tend to plot closely to those from D2B, plotting with the exception of one 

point within the curve bounding D2B. D3 plots lower on the graph than the points 

associated with D2. They have lower RA values but similar C40 values to those above, 

with the exception of one point they tend to plot below those from D2B. 

4.3 Clast Fabrics 

4.3.1 Rose Diagrams 

The rose diagrams plotted from the orientation of the a-axis of the clasts shows a general 

NE to SW trend in direction (Figure 20 and Figure 21). This trend varies on the mean trend 

of 45° by c. 20-30 °, in both D2 and D3. However, not all sites conform to this trend. 2A.1 

shows no real pattern while 2.5, 2.7, 3.2, 3.3 and 3.5 show a different trend from NW to SE. 

· In addition, samples from D2B seem to show a stronger orientation that those from D2A. 
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Figure 20: Rose diagrams and equal area stereonets from D2 (Gaussian Weighted contours). 
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Figure 21: Rose diagrams and equal area stereonets from D3 (Gaussian Weighted contours). 

4.3.2 A-axis equal area stereonets 

Figures 20 and 21 also show the equal area stereonets plotted from the dip and azimuth 

data. These have been contoured using the Gaussian weighting method. These highlight 

the north east to south west orientation of clasts along with low dip values. Step function 

contours have also been calculated (Figure 22) so they can be classified on a five point 

scheme of modality (Hicock et al. 1996) as follows: Unimodal clusters (2A.2 and 2.5) 

meaning a tightly grouped cluster of a-axis points; Spread unimodal (2B .1 and 3 .5) a single 

concentration of long axis points spread over a wider area; Bimodal clusters (2B .2 and 3.1) 

two grouped clusters at 90° to each other; Spread bimodal (2A.4, 2.6 and 3 .3) loosely 

grouped bimodal concentrations and finally polymodal (2A.1, 2B.4, 2.3, 2.7, 3.2 and 3.4) 

consisting of multiple concentrations or a continuous spread around the perimeter. 

However, there does not appear to be a pattern between modality of each sample site and 

the lithofacies association that they o~iginate from. 
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Figure 22: Step contoured equal area stereonets. 
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4.3.3 A-B plane rose diagra,!lls and equal area stereonets 

The rose diagrams constructed from the a-'b plane fabrics (Figure 23) show either a 

dominant azimuth from NW to SE or NE to SW. When comparing these with those drawn 

using the a-axis data it is possible that the majority of a-axes ocientated NE to SW are lying 

transverse to flow, as several a-axis diagrams also show the NW-SE trend. Alternatively 

the NE to SW trend agrees with the a-axis data, This pattern is again seen on the Gaussian 

weighted stereonet plots. However, the two fabrics taken from just above Dl do not show 

this same pattern, In site ab3 the direction of orientation is N to S, although there is 

considerable spread of points around the diagram while site ab6 shows a direction of E to 

W. The step function contour plots show that all the samples are polymodal. 
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Figure 23: A~B plane data from Upgang. Rose diagrams, step contoured stereonets and Gaussian weighted 
stereonets respectively. 

4.3.4 Eigenvalues plots 

The eigenvalues calculated from the clast fabric data have been plotted on both a ternary 

diagram (Benn 1994) and a S3/S.t plot (Dowdeswell and Sharp 1986) (Figure 24). The 

points within the ternary diagram largely plot towards the lower centre with a few outliers. 
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They plot closer to the cluster vertex of the triangle than the girdle or cluster. On the S3/S 1 

plot these points on the left of the diagram in the centre. Both diagrams show considerable 

variation between samples and fairly poorly clustered fabrics. 
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Figure 24: Eigenvalue plots derived from the a-axis clast fabric data. a) Ternary diagram and b) S l/S3 plot. 
Samples are colour coordinated according to the LFA they were sampled from . 

The eigenvalues plots from the a-b plane data (Figure 25) plot higher on both graphs than 

the a-axis data. On the ternary diagram, the majority of points plot in the centre towards 

the right. On the S l/S3 plot the a-b plane data plot between 0.15 and 0.25 to the left of the 

graph showing considerably weaker fabric strength than the a-axis data. 
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Figure 25: Eigenvalue plots derived from the a-b plane clast fabric data. a) Ternary diagram and b) Sl/S3 
plot. Samples are colour coordinated according to the LFA they were sampled from. 

4.4 Clast Lithology 

Clast lithology has been taken to establish the provenance of the diarnicts. It has also been 

used to correlate and differentiate within and between diarnicts. Sampling locations are 

marked on Figure 6. The percentage of each lithology within each facies can be seen in 

Table 3, with the expanded table in Appendix 1. 
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Table 3: Table showing th e percentage.of each lithology counted depending_ on each sedimentary facie s. 

Geology/Site %01 %02 %02A %028 %03 %SG 
Limestone (Magr:~esian) 30.26 28.09 33~95 45.74 44.29 
Shale 55.80 35.72 4t.51 . 28.31 1'1.15 2.90 
Sandstone _{Quartz) 7.48 6.56 10.30 11.86 33.t6 
Mud rock 43.87 0.17 0.19 0.11 0:06 
Sandstone (Lithic) 6.87 6.66 8~03 5.97 1.0~ 

Limestone 
(Carboniferous) 0.33 3.41 3.47 3.80 7.39 2.43 
Greywacke 4.53 4.05 4.99 3.34 2.66 
Quartzite 2.71 1.83 2.28 1.99 3.08 .. 

Quartz 1.44 0.77 1.74 1.21 3.43 
Siltstone 1.53 t.25 1.74 2.34 0.30 
Wacke 1.47 1.93 1.19 0.64 0.18 
Coal 0.46 0.29 0.87 2.20 0.41 
Oolerite 0.72 0.39 0.98 2.06 1.78 
Ironstone 0.75 0.39 0.33 0.92 0.53 
Porptlyry 0.43 0.29 0.22 0.64 1.84' 
Granite 0.26 0.10 0.12 
Andesite 0.32 0.39 0.64 0.47 
Old Red Sandstone 0.20 0.29 0.21 0.06 
Rhyolite 0.29 0.19 0.22 0.50 0.30 
Oosparite 0.23 0.58 
Sandstone (A~kose) 0.12 0.10 0.33 0.07 0.24 
Flint 0.17 0.29 0.11 0.14 0.24 
Oiorite 0.09 0.10 0.11 
Chalk 0.14 
Pink Rhyolite 0.03 0.50 0.24 
Breccia 0.03 0.11 0.07 
Porphritic Rhyolite 0.06 0.1'0 
Pyrite 0.06 
Phosphate 0.12 0.1!9 0.22 0.06 
Hematite 0.03 
Chart 0.03 0;11 0.12 
Micrograr:lite 0.06 Q.28 0.06 

4.4.1 Prevenancing 

Clasts found within the diamict ate predominantly sourced locally, although in the upper 

diamicts and sands and gravels LFAs far traveHed erratics have been found. D1l consists 

exclusively of local bedrock, shale and mudrock. This is part ofthe Jurassic sequence that 

makes up the solid geology in north east Yorkshire (!Fox-Strangeways and Barrow 1915). 

D2, D3 and the sands and gravels (SG) are made up of a wider range of lithologies although 

those that are locally sourced still dominate: shale and Magnesian limestone. Both till 

layers exhibit similar compositions of lithologies. The percentage of shale is marginally 

greater in D2A than D2B and significantly greater than D3. Both these upper tills and the 
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sand and gravels layer have high proportions of Magnesian limestone and sands tones. The 

sand and gravels LF A has a higher proportion of sandstone than either of the tills. Other 

locally derived clasts within these layers are ironstone, siltstone, mudrock, oosparite, 

phosphate nodules, quartz and quartzite. These lithologies are all part of the bedrock 

Jurassic sequence (Kent 1980). 

However, these LFAs also have many none locally sourced lithologies. It is the provenance 

of these clasts that will allow ice flow directions to be constructed. All three LFAs contain 

coal, carboniferous limestone and dolerite clasts which are derived from Northumberland 

and County Durham to the north of the field site (Johnston 1995). Flint from offshore is 

also found within the section from the Cretaceous beds of the North Sea (BGS Offshore 

map). The flint clasts have been found mainly within D2 and SG, w,ith only one clast found 

within D3 which could have been derived from the LFAs below. The other main source of 

erratics is the Cheviot Hills. Porphyry, rhyolite, andesite and granite are all sourced from 

this area. While the last three lithologies mentioned can also be attributed to the Lake 

District, the pink nature of the rhyolite indicates the presence of feldspar, and is typical of 

these rocks in the Cheviots. The pink rhyolite is mainly found in D3, however, the darker 

red/purple rhyolite found in D2 is also indicative of the Cheviots (Robson 1976). While the 

black or dark grey nature of the andesite separates it apart from the dark green, purple and 

basaltic andesite of the Lake District (Robson 1976). Porphyry is only found in the 

Cheviots or south east Scotland. However, the granites found can be attributed to either the 

Cheviots or the Lake District. Both areas have descriptions of granites with concentrations 

of biotites and pink phenocrysts of feldspar as have been found in the samples from 

Upgang. Erratics that are distinctive to the Lake District are the microgranite, found in D3, 

and Diorite, which is found in very smal11 quantities in D2 (Mosley 1978). While the main 

source of the greywacke found in the samples is the Southern Up hinds in Scotland (Greig 

1971). 

Figure 26 shows a plot of the percentage of locally derived clasts against the percentage of 

those distally derived. This shows a negative correlation between the two classes upwards 

through the sequence. Samples from 01 plot in the bottom right hand corner, showing a 

very high percentage of locally derived clasts. Following this towards the left is the 

samples from D2A then D2B and D2, showing that the lower facies in D2 has the higher 
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proportion of local material. Intermixed with these points is the sands and gravel LF A due 

to the high proportion of sandstone, which has been classified as a local lithology, within 

each sample. While this sandstone is a local lithology associated with the Jurassic 

sequence of northern Yorkshire, the local bedrock at Up gang is predominantly shale and 

mudrock. This indicates that the sandstone and, hence, the sands and gravels LF A, has 

been derived more distally. Samples from 03 show an increase of distally derived clasts 

compared to those sediments below, plotting towards the top left hand corner. The graph 

has been given an artificial regression of -1 as percentages have been used, the two values 

will always add up to 100. However, as each sample is of a different size, using 

percentages has allowed the change in distally compared to locally derived lithologies to be 

seen more clearly. 
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Figure 26: Scatter plot showing the percentage of local compared to far travelled lithologies in each sample. 

4.4.2 Chi-squared testing 

Chi-squared testing was applied to the data set in order to test correlations between samples 

in the same LFA and between LFAs. This is done by comparing each lithology with the 

mean number of clasts in each lithology class, thus indicating how each sample differs from 

the mean (Davies 2002). As discussed in Section 3.4 the closer the reduced chi-squared 

number is to 1 the stronger the correlation. The results obtained are shown in Table 4. 

Results have not been shown for the tests carried out using every lithology as these showed 

extremely low correlations. Due to the nature of the test it does not work well where a data 
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set has a large number of rows or columns with zeros in them~ as is the case with 

lithological samples which contain a range of erratics. A mean is calculated for each 

lithology, from all the sites being tested, meaning that at some sites the observed value 

differs greatly from the expected one. Thus, the whole sample is seen to differ largely from 

what is expected. However, in using only the locally derived lithologies, anything over 110 

or 20% of the sample, chi-squared values can help to correlate and differentiate tills by 

showing how similar the quantities of each lithology is at each site .. This clearly shows any 

differences between or within diamicts based on dominant lithologies; rather than focusing 

on changes in erratics of which only 4 or 5 clasts may appear in the whole section. Results 

from the percentage data appear to show stronger correlation than those from the absolute 

data. As each sample has a different number of clasts within it the expected values derived 

from the absolute data are skewed by the larger samples. For example, a sample of 400 

clasts will have more shale clasts than a sample of 300. As a result the chi-squared value 

from the absolute data would show a poor correlation, yet both samples may have the same 

proportion of shale within them and are hence similar. Therefore, conclusions will be 

drawn using .the percentage data as it is the proportions of each lithology that are important 

in correlation. 
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'F bi 4 T bi f hi d al d . th I l"th I . al d ~a e a e o c . -square v ue comparmg e c ast 1 o og1c f . d . ata over vanous ac1es.an sites. 
XA2 
(using 

Degrees absolute Degrees 
XA2 (using of Reduced values) of Reduced 

Test %)(2 D.P.j Freedom XA2 (2.D.P.) Freedom XA2 
Lithologies ~ 20% (limestone 
and shale) · 
02 36.13 9 4.01 116.12 9 12.90 
02A 2.61 2 1.31 9.08 2 4.54 
028 9.6 2 4.80 28.75 2 14.38 
02A+ 026 117.05 5 23.41 445.74 5 89.15 
03 61.55 4 15.39 181.35 4 45.34 
03 -(without 3~ 1 ) 1.63 3 0.54 4.26 3 1.42 
SG 9.58 3 3.19 38.47 3 12.82 
bithologies ~ 10% 
(limestone, shale and 
sandstone) 
02 58.24 9 6.47 186.14 9 20.68 
02A 209.47 2 104.74 727.45 2 363.73 
026 381.65 2 190.83 1421.25 2 710.63 
03 68.16 4 17.04 201.37 4 50.34 
03 (without 3.1) 3.48 3 1.16 9.26 3 3.09 
SG 11.11 4 2.78 44.16 3 14.72 
Comparison across 
lithofacies (Limestone and 
Shale) 
02vs. 03 175.22 13 13.48 516~92 13 39.76 
D2Avs. 03 131.01 6 21.84 382.41 6 63.74 
02Bvs. 03 86.6 6 14.43 249.56 6 41.59 
D2A+ 026vs. 03 142.48 9 15.83 414.61 9 46.07 
SG vs. 03 10.74 7 1.79 41.25 7 5.89 
SG vs. 02 172.47 13 2R75 687.32 13 52.87 
SG vs. 02A 108.34 6 18.06 423.66 6 70.61 
SGvs. 026 88.98 6 14.83 348.28 6 58.05 
SG vs. 02A +026 141.28 9 23~55 559.54 9 62.17 

Samples taken from within D2 Nncluding those from D2A and D2B) show a fairly strong 

carrelation between them. Samples from D2A and D2B can also lead to the classification 

of two separate facies on the basis of the quantity of shale and limestone within each 

sample. When tested as two separate facies a strong correlation pattern is seen, especially 

within D2A. In order to verify this, samples from both D2A and D2B have been compared, 

excluding those that have not been distinguished as A or B. The resulting chi-squared 

value is significantly large indicating that they are two different facies. 
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DJ correlates as one single till; however, the anomalously large proportion of shale in 

sample 3.1 obscures this correlation. Therefore, it has been excluded when correlating D3 

to other till units. The four sand and gravel samples show correlation with each other 

suggesting they are of the same derivation. 

When cross correlating between LFAs it can be shown that D2 and D3 are distinctly 

different from one another, something that can be seen in comparing shale values in the 

table. SG appears to be more closely correlated with D3 when looking at the locally 

derived proport;ion. However, as a sand and gravel facies it has different methods of 

eroding underlying bedrock to a glacial deposit. The far travelled component also needs to 

be looked at before it can be correlated confidently to either LFA. 

It can easHy be seen from Table 3 that the LF As differ depending on th_e amount of shale 

present within them and, hence, the chi-squared correlations rely upon this value. This in 

itself is problematic as difficulties occur when counting shale and values can depend on 

which size classifications are used. Shale breaks up at almost every stage of the clast 

lithology identification; extraction, transport, washing and sieving. Therefore, the value 

can in some cases be anomalously high, although care is taken to try and minimise this. 

4.5 Geochemistry 

The geochemistry from Upgang has been analysed using chi-squared testing and cluster 

analysis. Sampling sites are marked on Figure 6. 

Chi-squared testing has been used to correlate samples within and between LFAs. The test 

was carried out on all 43 elements and then on just the high and just the low abundance 

metals (Table 5). The results obtained when using al11 of the elements in calculations have 

very high reduced chi-squared values when comparing both samples within and between 

facies, showing a very weak correlation. When separated, the high abundance elements 

again show very high reduced chi-squared values, indicating very poor correlation. 

However, the results from the low abundance elements have values much closer to one and 

hence have a much stronger correlations. These results show a strong correlation within D2 

and D3 along with a strong correlation between the two diamicts, inferring that they are 
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geochemically very similar. 01 is geochemically distinct from both 02 and 03 

emphasising the other differences between these LFAs. 

Table 5: Table of chi-squared values from the geochemistry results. The closer the reduced xA2 number is to 
lth I th I. be I e c oser e corre atton tween samples. 

All High Low 

x"2 Reduced x"2 x"2 Reduced x"2 x"2 Reduced x"2 
02 30861.21 771.53 30555.111 3395.01 19:93 0.64 
03 85116.09 212.90 8316.42 924.05 8.75 0.28 
02Avs. 028 430;29 10.76 391.41 43.49 6.40 0.21 
0'1 VS. 02 50575.95 1264.40 49996.94 5555.22 281.44 9.08 
02vs. 03 41114.02 1027.85 40604.67 4511.63 34.03 1.10 
Q,1 vs. 03 28484.42 712.1'1 27929.10 3103.23 264.59 8.54 

Cluster analysis on the whole geochemistry data set agrees with this similarity between 02 

and 03 (Figure 27). Clustering between samples at the lowest level of the graph does not 

occur within the diamicts found during sediment description. Samples from 02 cluster 

with samples from 03 rather than other samples from 02 at this base level. This lower 

level clustering arguably forms a group including samples 2.1A, 2.1B, 2.5, 3.1 and 3.2 

which could further be split into two. Sample 2. 7 is fairly dissimilar from this main group 

of samples. Sample 1.1 is the most distinct sample with the highest dissimilarity measure 

miuoring the chi-squared results. This dissimilarity value represents the geometric distance 

between clusters. Therefore, the larger the distance the more dissimilar the samples are 

from each other. 
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Figure 27: Cluster dendrogram constructed using the sediment geochemistry results. The closer the samples 
'cluster' towards 0 the more similar the LFAs are according to geochemistry. 

4.6 Geomorphological Map 

Using the NEXT map DTM a geomorphological map highlighting moraines, glacial lakes, 

lineations and a potential drift limit in the North East of England has been created. Using 

this map in conjunction with the published BRITICE map it is possible to consider past ice 

margins and ice flow directions in the area. Features mapped from the BRITICE project 

are based upon published information mapping the location of the features in question 

(Chu:k et al. 2004). Locations mentioned within this section can be seen in Figure 28 

(DTM of the area without any features marked on it). 
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mborough Head 

Figure 28: NEXT Map overview including sites mentioned within the text. 

The inap constructed showing the area around Upgang (Figure 29) shows very few 

geomorphological features. There is a potential linear feature to the east of the head of 

Sandsend Beck along with several eskers at the head of the Sandsend Beck. The existence 

of these eskers is confirmed by the BRITICE (Clark et al. 2004a) database (Figure 30). In 
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addition, Figure 30 shows a series of glacial lakes in the highlands of the North Yorkshire 

Moors which are also described in Daysh (1958) based on sedimentological evidence. 

These eskers and lakes indicate the extent that the North Sea Ice Lobe came on shore with 

eskers representing the drainage system forming the lakes. However, from these maps it is 

unknown if the eskers are sub-, en- or supra-glacial. It is possible that this ice was forced 

onshore through the three river valleys seen along the coast (Figure 29). In comparing 

these valleys to those within the unglaciated North Yorkshire Moors they appear very 

different as though draped in glacial sediment. This sediment has not been considerably 

eroded by the rivers during the Holocene resulting in the softer, rounder nature of the 

watersheds. Therefore, these valleys can be seen as a pre-glacial feature in which sediment 

has been deposited as the ice came onshore. Aside from these features there is potentially 

some hummocky deposits to the north-west of Up gang, although there does not appear to 

be any directional features between the North York Moors and the coast that would indicate 

ice flow direction. Wh.en combined with the BRITICE map (Figure 30) there is still very 

little geomorphological evidence of ice existing in the area. 
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Figure 29: NEXT Map DTM including mapped features focusing on the Upgang area. 
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Figure 30: Map focusing on the Upgang area including features from BRITICE (Clark et al. 2004a). 

Along with these features a drift limit has also been marked on the map (Figure 29). This 

has been constructed on the basis of a difference of shading seen on the NEXT Map DTM. 

Areas covered in sediment appear lighter with a smoother less angular topography. This 

drift limit comes on shore just south of Up gang and follows the lower edge of the highland 

that is incorporated within the North York Moors. Figure 30 shows the Devensian ice limit 

that has been constructed on the basis of the extent of the Skipsea Till and its equivalents 

(Clark et al. 2004). This limit is roughly similar to the drift limit in Figure 29. 

Figure 31 shows the continuation of this ice limit throughout the North East of England as 

depicted on the BRITICE database. This limit has been defmed using the onshore extent of 

the Skipsea till (Clark et al. 2004a). Starting in the west of the map the limit can be seen 

amongst the highland of the Pennines. The marked limit is then broken by Glacial Lake 

Humber before following the eastern edge of the V ale of Y ode. As discussed above the 

limit follows the edge of the North York Moors and the highland area to Flamborough 

Head. It then pushes on shore to the raised area west of low lying Holderness. This ice 

limit has been supported by the identification of a drift limit on the NEXT map image 

around the north and eastern margin of the North Yorkshire Moors (Figure 32). This limit, 
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which has been established on the basis of differences in shading and topography is very 

similar to the limit defined using BRITICE. 
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Figure 31: Map of North East England including the mapped BRITICE features from Clark et al. (2004a) . 
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Figure 32: NEXT Map DTM of North East England including geomorphological features. 

In addition to the LGM drift limit a number of other glacial features have been highlighted 

from the NEXT map DTM of the North East of England (Figure 32). Moraine features, 
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shown in pink, can be seen along the northern edges of the V ale of York, both east and west 

marking the edge of a glacial lake. A moraine can also be seen to the south of 

Middlesbrough marking the edge of another glacial lake and a number of moraines can be 

seen to the north. Two of these moraines, north of the Tyne, are relatively small, while the 

moraine to the south of the Tyne is aligned north to south and considerably larger. The 

BRITICE. data in Figure 31 supports the positioning of these moraine features along with 

the addition of other moraines at Flamborough Head and within the V ale of York. 

Linear, arcuate and sinuous features have been marked on the NEXT map image 

throughout the map (Figure 32). A high concentration of these features, potentially 

lineations or drumlins due to their linear nature, aligned west to east can be seen in the 

Tyne and Stainmore Gaps. To the east of these gaps the alignment of the lineations alters 

to a north-west south-east direction. Howev.er, these lineations in the Tyne and Stainmore 

Gaps have not been depicted on the BRITICE map although an area of drumlinisation to 

the north of the V ale of York has (Figure 31 ). A number of these linear features can also be 

seen in the Vale of York aligned broadly north to south, (Figure 32), which appear to be 

eskers when compared to the BRITICE map (Figure 31 }. Another set of these linear 

features marked on Figure 35 towards the centre of the V ale of York appear to mark an ice 

limit iying almost perpendicular to this north-south direction suggesting that they are end 

moraines. This is supported by the BRITICE database (Figure 3,1) and their arcuate nature. 

Lineations have also been depicted lying north to south in the Holdemess area in both 

Figure 31 and Figure 32. 

In addition, to these features, several glacial lakes have been depicted in the area. Figure 

32, shows three glacial lakes, Tees, Humber and Picketing identified as a result of the low 

lying terrain. This was supported by the BRITICE data (Figure 31) to confirm the 

existence of lakes in these locations. Lake Picketing is situated in the V ale of Pickering 

and is delimited by the highland on three sides of it, while Lake Tees, around the River 

Tees, only has one limiting moraine to the south suggesting it was an ice dammed lake. 

The largest lake, Glacial Lake Humber is limited by the highlands on either side of the V ale 

of York along with several lateral moraines. In addition, BRITICE depicts Glacial Lake 

Wear and a number of glacial lakes within the highlands of the North Yorkshire Moors. A 
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series of meltwater channels on the western edge of the V ale of York have also been 

depicted (Figure 31 ). 
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5. Reconstructing the glacial history of Upgang 

5.1 Diamict 1- genesis and provenance 

D 1 is a grey brecciated bedrock lithofacies that can be seen at the base of the sequence at 

Up gang. As discussed in the previous chapter the lithology of this facies consists of 

Jurassic shale and mudstone from the bedrock that underlies the Quaternary sediments 

around Upgang. The clast form data from this unit shows that the clasts are blocky with 

high RA values. Subsequently they plot in the top left hand corner of the covariance plot 

(Figure 33). High RA values suggest that they were transported only a short distance and 

low C40 values indicate that they have been subject to subglacial processes. When 

compared to the covariance plot produced by Benn (1992) the graph from Upgang shows 

D1 plotting in a similar area to bedrock and raft fragments. However, the results from 

Benn (1992) are from clasts of a crystalline lithology and hence have been altered during 

transport differently to those at Upgang. Therefore, a hypothesis suggesting that 01 is a 

facies of local bedrock fragments can be formed due to the provenance and lithology of the 

unit. The facies is also geochemically distinct from the overlying sediments highlighting 

the local nature of the sediments. 
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Figure 33: Covariance plot from clast form data at Upgang. Envelope adapted from Benn (1992). 
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However, the genesis of the facies is less clear. It could be described as a glaciotectonite 

formed by subglacial processes. Whilst it is also possible that the brecciation of the 

bedrock was emplaced initially as a result of pro glacial thrusting or that the LFA was 

deposited during a glaciation prior to the Last Glacial Maximum (LGM). 

A glaciotectonite is defined as: 

'Rock or sediment that has been deformed by subglacial shearing (deformation) but 

retains some of the structural characteristics of the parent material.' (Evans et al. 

2006 p 169). 

As a result D 1 can be classified as a glaciotectonite due to the barely broken up bedrock 

nature of the facies. The weak sedimentaryJurassic rocks have been subglacially detached 

from their source and entrained resulting in the destruction of pr.imary structures and 

brecciation before deposition (Elson 1985). In some places along the section the rock is 

very highly brecciated, while in other areas the facies consists of solid shale and mudrock ... 
rafts. Due to the softness it is likely that it would have only been transported a short 

distance before the rock was deposited and set, which is supported by the high RA values. 

Pederson ( 1985) described the processes that form a glaciotectonite in a three step model. 

Firstly jointing and fracture occll.r, which is followed by the development of shear planes, 

and fmally the continuous crushing and grinding of fragments to create a fine grained 

matrix. Lithology and pore water pressure play an important role in this process assisting 

in deformation. High pore water pressures can result in deformation at low strain rates 

(Evans et al. 2006). 

It is possible that these processes occurred as the glacier deposited D2 and an analogy could 

be drawn with similar material at Clougher Bay (Hiemstra et al. 2007). However, at 

Clougher Bay the glaciotectonite is separated from the diamict by a layer of heavily sheared 

bedrock. This communition till layer (:Benn and Evans 1996) is not present between D 1 

and D2 at Upgang. One proposal to explain this rapid vertical transition in deformation 

styles between glaciotectonite and overlying diamict are of 'jumps' in sub glacial strain 

rates representing a rapid switch between dialant and non-dialant conditions within the till 

(Alley 1989). An increase in strain rate results in dilation and the weakening of sediments. 

Yet as the strain rates then fall the sediment collapses and strengthens, leading to even 

lower strain rates causing a positive feedback mechanism. It is these feedbacks that Benn 
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and Evans ( 1996) used to e:x:plain the sharp vertical contacts between glaciotectonites and 

deformation tills. However, due to the recorded occurrence of communition till, for 

example at Clougher Head (Hiemstra et al. 2007), these 'jumps' are thought to depend 

upon particular subglacial conditions or sediment granulometry (Benn and Evans 1996). 

The nature of D 1 would limit the amount of water from the overlying ice that could be 

drained through it allowing basal water pressures to build up. The presence of these high 

basal water pressures would lead to glacier decoupling preventing the transmission of 

stresses within 02 down into n1 (Evans et al. 2006). It is therefore these differences in 

lithology between D 1 and D2 that are partly responsible for the formation of the 

decoUement plane (Figure 12). 

Such distinct decollement planes can also represent a sedimentary boundary between pre­

or pro-glacial sediments and sub-glacial tills (Roberts and Hart 2005~. As a result, Dl 

could have been pro glacially ·thrust into this position. Due to the nature of the sediment it 

is possible that brittle deformation took plhce during the proglacial thrusting (Hart and 

Boulton 1991). A decol1lement boundary could then have been formed as the ice depositing 

D2 overran the area resulting in the sharp planar boundary between 0:1 and D2. The 

production of this decollement plane could have been a result of very high water pressures, 

low strain rates or a decrease in basal shear stress (Alley 1991). Piotrowski et al. (2001) 

suggest that these sharp contacts between a till, for example D2 and the underlying 

substratum, Dl, are very common in the glacial record. While it is possible that Dl was 

deformed proglacialiy by thrusting and stacking, the deformation could also have occurred 

sub glacially after initial pro glacial deposition of the shale facies as ice initially overran the 

area. This would require similar mechanisms to those described above existing for the 

formation of a decollement boundary to occur. Catt (2007) suggested that as the bedrock 

lithology immediately inland of Up gang is Jurassic sandstone it is likely that D 1 was 

derived from the sea floor to the north where the lithology is dominated by shale. This 

would appear to support a proglacial origin to the LFA. However, Catt (2007) suggested 

that due to the provenance of the LF A it was likely to ·be a till, supporting the glaciotectonic 

hypothesis. 

An alternative e:x:planation for the existence of D 1 is provided by Hemmingway and 

Riddler (1980). Two liassic shale rafts existing within the same till horizon were described 
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as similar to D1 from this report. One raft was 98 metres long and 3.2 metres thick while 

the other was 30 metres long with an unseen base. As the ba,se of D-1 was never found 

during this investigation it is possible that the facies is part of the series of rafts described 

by Hemmingway and Riddler (1980). These rafts were thought to have been transported 

subglacially f:Fom the submarine Cleveland Ironstone Formation, although no time frame 

for this event was proposed. It was suggested that the ice lobe was confmed by the local 

topography favouring the shearirtg of blocks from this escarpment. The rafts were then 

driven upward and landwards to their position in the cliff. However, as the base of D'l was 

not uncovered during this investigation along with the facies outcropping for considerably 

more than 128 metres this proposed genesis cannot be confirmed. 

Another explanation stemming from the deposition of D 1 is that it may not have been 

deposited during the last .glacial period. Evidence for pre-Devensian sediments are found 

elsewhere along the north east coast. For example, the Basement Till at Dimlington is 

believed to have been deposited prior to the last glacial as it underlies the Dimlington silts, 1 

dated to 21 000 cal. years BP (Madgett and Catt 1978). A considerable amount of time is 

believed to have passed between the deposition of the Basement Till and the overlying 

Skipsea Till, including the Ipswichian interglacial (Catt and Penny 1966). Therefore, D 1 

could have also been deposited by a pre-Devensian glaciation as favoured by Catt (2007). 

This was proposed due to what was considered to be a weathering profile in the upper 40-

60 cm of the diamict, described as being a paler colour to the lower section and weakly 

oxidised (Catt 2007). Despite this proposal, within this study 01 appeared to be the same 

colour through-out the horizontal and vertical profile. However, direct dating control of the 

site and the sediments would be needed in order to pursue this model further. This model is 

weakened by the amino acid dates presented which date the Basement Till to c. 20 000 

years BP (Eyles et al. 1994). Hence, a Devensian overrun proglacial thrust feature or a 

glaciotectonite genesis for Dr1 is the most plausible explanation. 

5.2 Diamict 2 -genesis and provenance 

As described in Section 4.1 D2 is a partially stratified brown sediment found in the lower 

section of the cliffs with the stratification denoted by a crude change in colour. The 

sediment logs and photographs along with the quantitative data suggest that this is a 

subglacial deposit, deposited as part of a deforming bed. 
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The clast form data from this facies plot around the 0.4 line of the ternary diagrams (Figure 

17), suggesting that the clasts have been altered subglacially. This is supported by the 

covariance plot that shows samples from D2 plotting in the area of the graph where 

morainic deposits are considered to dominate (Benn and Ballantyne 1994 ), (Figure 34 ). 

This suggests that not all sediment was transported subglacially and that it could include 

some supraglacially or englacially transported sediment. However, as with the graph from 

Benn ( 1992) used to highlight the raft nature of D 1, the lithologies samples in Benn and 

Ballantyne are predominantly crystalline and, hence, have been affected differently to the 

sedimentary rock lithologies predominantly found at Upgang as a result of transport 

processes. Other lines of evidence discussed within this section will clarify the origin of 

this diarnict more clearly. Samples taken from the lower facies of D2A plot higher on this 

covariance plot than those from D2B which indicates that the samples from D2A have a 

high RA value. This suggests that the clasts in D2A are blockier than those in D2B, which 

could indicate the greater inclusion of local bedrock as the samples from D 1 are blocky 

clasts. While the clast form data indicates a possible subglacial origin for the diarnict a 

clearer depositional history cannot be established using this method as deformation, 

lodgement and meltout tills all have similar clast forms (Bennett et al. 1997). Therefore, 

the clast fabric data and various features from the sediment logging need to be considered 

before any conclusions can be drawn. 
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Figure 34: Covariance plot from Up gang. Envelopes adapted from Benn and Bal~antyne ( 1994). 
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The clast fabric data supports the hypothesis of a subglacial origin for the till. A modality­

isotropy diagram (Hicock et al. 1996) has been constructed using the step contoured 

stereonets (Figure 35). The polymodal and spread bimodal clusters indicate that the 

sediments are subglacial tills formed by deformation, while the remaining points fall within 

the lodgement sector of the graph. As Evans et al. (2006) state that lodgement tills are a 

hybrid of deformation, ploughing and lodgement; these samples can therefore be said to 

show an increased lodgement component. However, there is a subjective nature to this 

method as often the difference between clustered bimodal and spread bimodal can be 

subtle. This is supported by the polymodal nature of the a-b plane data and suggests that 

the few samples with increased lodgement components could be anomalies, especially 

when they are located next to the a-b plane data. 
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Figure 35: Modality-Isotropy Diagram for the samples taken at Upgang based on Hicock et al. (1996). 
Deformation and Lodgement-meltout envelopes from Evans (2000). 

The ternary and Sl/S3 plots (Figures 36 and 37) also indicate a deforming bed origin to the 

sediment. On the ternary plot, samples plot in the area Benn ( 1994) inferred as relating to 

non uniform deformation tills, the upper till studies at Breidamerkurjokull, Iceland. The 

relatively weak nature of the clast fabrics at Upgang suggest Type A deformation occurred 

as was observed at Breidamerkurjokull (Benn 1994). This is interpreted as ductile 

formation and is found at other places along the Yorkshire coast, for example Skipsea 
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(Benn and Evans 1996). The a-b plane data plots within the envelope marked as subglacial 

till by Evans et al. (2007). On the S l/S3 graph the samples plot in the area of the graph 

Dowdeswell and Sharp ( 1986) describe as deformed lodgement till. While on the S l/S3 

plot Hart and Roberts ( 1994) suggest that the area of this graph in which the samples plot 

indicates homogenous soft bed till. By considering the Gaussian weighted stereonets a low 

variable dip can be seen for the clasts, which is a sign of a deforming bed unit. If the dip 

had been stronger in an inconsistent direction then a case could be made for a mass flow 

origin to the sediments. However, other factors should be considered besides clast fabrics 

as they can show great variation both between and within units (Bennett et al. 1999). 
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Figure 37: Sl/S3 plot from a-axis data. Envelopes from Dowdeswell and Sharp (1986) and Hart and Roberts 
(1994). 

Other features from the sediment logs can also be used to support this subglacial deforming 

bed theory. Firstly, the sand feature seen in Section H (Figure 38) can be interpreted as an 

inclusion that has been entrained within the sediment and subsequently folded and 

boudinaged as a result of shear stresses within the till. This feature can be compared to 

many found at the type site of the deforming bed in Britain at West Runton, north Norfolk 

(Hart 1994, Hart and Roberts 1994, Hart 1995, Roberts and Hart 2005). The clast fabric 

data taken from sample 2.5, which is located above the feature, shows a high fabric 

strength, which supports the evidence that this feature is a result of high shear stresses 

(Figure 38). Stress shadows should be found at either end of the boudin resulting in weak 

clast fabrics; strong fabrics should be observed at the sides as sediment is pushed around 

the feature thus increasing stress (Hart 1994 ). As the till has thickened during deposition 

the deforming layer will move up the sequence preserving the feature (Larsen et al. 2004). 

This can also explain the absence of any other boundinage features. It is possible that other 

features are not visible due to slumping of the upper sediments down the cliff covering 

them or that they have not yet been exposed. Although high stresses within the deforming 

layer would lead to the homogenisation of the till resulting in few or no features such as 

boudins (Alley 1991). One other similar feature is the fold seen in Section K (Figure 16). 

This isoclinal fold would have been deposited within the deforming bed as a result of 

simple shearing within the subglacial mass (Hart and Bolton 1991). It is likely that the 

darker diarnict of D2A was detached from its bedding and then folded over by the shear 
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stresses within the diamict at the time of deformation. The form of an individual feature is 

dependent on the strength of the sediment which forms it. For example, fme grained units 

can be highly and often complicatedly deformed, as seen in Section H, whereas more 

coarse grained sediments form relatively undeformed features, Section F (Hart and Roberts 

1994, Benn and Evans 1998). These differences in style of deformation reflect the strain 

response of the various sediments to stress due to contrasts in frictional strength and 

permeability (Benn and Evans 1998). The fine grained sediments of Section H had a 

reduced frictional strength and high permeability resulting in the high level of deformation. 

The isoclinal fold in Section K suggests that the diamict that was folded into D2 also had 

low strength possibly due to a high permeability or low friction between the unsorted 

sediments. However, Piotrowski et al. (200 1) suggest that the preservation of such 

sediments, which remain undisturbed internally with sharp boundaries, is not possible with 

a deforming bed model due to the expected diffuse mixing. Piotrowski et al. (2001) argued 

that due to the simple shear within a deforming bed features should loose their coherent 

appearance within a short time scale as a result of particle diffusion. 

A A A A 
20 

~
ress.s~~ Fm ~-=---rs------A--

.~. ~ Stressshadow 

6 ___ .,6. _____ -:: :- ~ . . dUi> --------A---
10 ~. AAA 

0 
0 

A @A 
~ Direction of stretching and boundlnage _. 

A A E A 

10 20 30 
cm 

40 so 60 

Figure 38: Annotated sketch of Section H showing clast fabric from sample 2.5 along with direction of 
boundinage. 

Secondly, the crudely stratified diamict at the base of the sequence can also be classified as 

a deforming bed feature. Van der Meer et al. (2003) used this apparent development of 

banding in the till as an indication of a deforming bed. Hart and Roberts ( 1994) and 

Page 91 



Roberts and Hart (2005) also described laminated sediments as indicators of tectonic 

deformation within a deforming bed. Under this model the sediment has been folded and 

subsequently exposed te high lateral strain causing them to 'stretch' out to form 

laminations (Figure 39). As the banding is thin and discontinuous a subglacial 

glaciotectenic model can be applied to D2. The boudin feature in Section H lies directly 

above this layer, supporting the levels of high strain, along with the clast fabric diagrams 

from sample sites 2.6 and 2. 7 which also show high strain rates. As the till then grades into 

a massi.ve unit it is suggested that the thickness of the deforming bed altered possibly as a 

result of changes in porewater pressure or the composition of the till matrix. Different 

matrixes, sand, si!lt or clay, result in different depths of deformation (Larson et al. 2004), 

however, the clast size of the matrix has not been analysed as part of this project. At this 

particular location it is difficult to fmd defmitive evidence to show that this feature is a 

result of subglacial deforming bed conditions, although evidence within the same lateral 

unit (Section H and Section K) show tectonic deformation. Due to the ambiguous nature of 

these stratifications an alternative genesis could be deposition as a result of mass flow units 

(Zielinski and van Loon, 1996; Roberts and Hart, 2005). This process would lead to the 

stratified sediments as each bed would belong to a different 'flow' event. Benn (1996) 

interpreted the stratified diamict, underlying massive diamict, at Achnasheen Scotland as 

the result of subaqueous mass flows. It was suggested that the unit was saturated tiH from 

beneath the glacier front which then flowed beyond the margin as cohesive to cohesionless 

debris flows due to gravity. The flows were considered to be non-erosive and 

unchannelised due to undisturbed contacts with the underlying sediments. This description 

is similar ·to the stratification found in D2C. Therefore, this hypothesis could explain the 

genesis of this facies and why the stratified diamict is enly found in a limited area at the 

base of the section. Despite this proposal very little other evidence taken from Up gang, 

supports a mass flow hypothesis suggesting that the stratification formed as a result of high 

shear strain and not as mass flew units. 
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Figure 39: Subglacial glaciotectonic deformation of a large perturbation into folds pods and boudins after 
exposure to high shear strain. From Hart and Roberts (1994). 

Thirdly, a raft of material from D 1 has been shown in Section F (Figure 13). According to 

van der Meer et al. (2003) till rafts are another indication of a deforming bed. 

Ruszczynska-Szenajch ( 1987) suggested that these types of rafts can be formed by 

glaciotectonic processes that involve the rip up and deposition of the feature without being 

incorporated into the ice body. It is suggested that this feature could be a result of 

squeezing up, in which the raft was detached through decollement, transported a short 

distance, maintaining its primary structures, and deposited above the parent sediment unit 

during the squeezing up of the sediment along a shear plane. It is also possible that the raft 

was deposited as part of the deforming bed. As D 1 was overrun it could have been ripped 

up, entrained and incorporated into the deforming bed before deposition. The shear stresses 

responsible for the boundinage of the feature in Figures 14 and 38 could have also caused 

the attenuation and boundinage of the raft in Section F. An alternative genesis for raft 

features is as 'products of englacial transport and deposition later from stagnant ice' 

(Piotrowski et al., 2001 p 142). However, the similarity of the diamict within this feature 

with D 1, along with its attenuated shape favours the rip up proposal for the genesis of this 

feature. Other considerably larger raft features were presented in Hemmingway and 

Riddler ( 1980) as products of sub glacial shearing. 

Another feature that is analogous to a deforming bed origin for the till is the sharp boundary 

between D1 and D2 (Figure 40). This sharp boundary can be described as a decollement 

plane in which D2 has overrun D 1 without deforming or including the sediment within it 

(Alley, 1991; Hart and Roberts, 1994; Hart, 1995). It has been suggested that a low slope 

angle of the ice leads to the deformation of sediments as well as producing a decollement 

plane between the sediment deposited and the underlying unit. Alley ( 1991) listed several 

lines of evidence to support the correlation of a sharp basal contact and the deforming bed 
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model, discussed in section 5.1. Alternatively, Piotrowski and Kraus (1997) suggest that a 

thin film of water separates sub glacial sediments from the shear stresses imposed on them 

resulting in sharp distinct basal boundaries. FoHowing the deposition of D2, the sediments 

of D 1 would have been 'protected' from deformation. Conversely, the presence of large 

quantities of shale and.other local bedrocks within D2 suggests that the two facies must 

have interacted in order for the shale to become part of this facies. Therefore the presence 

of a 'sticky spots' (Evans 2003) beneath the glacier could be inferred. This 'sticky spots' 

model was proposed in Piotrowski and Kraus (1997) suggesting that isolated spots of 

deformation could occur in between areas where ice-bed decoupling occurred, resulting in 

no deformation of the underlying sediments. Deformation occurred in areas where there 

was no significant reduction in ice to bed contact resulting in a 'mosaic of largely 

undeformed substratum with isolated spots of deformed bed' (Piotrowski and Kraus 1997 p 

501). This implies at that areas up flow. of Upgang the bedrock niust have been ripped up 

and incorporated into the diamict, explaining the large quantities of shale by the process of 

advective excavation (Roberts and Hart 2005). Then, as the ice overran the Upgang area 

the basal conditions changed, possibly due to high contrast between the sediments or high 

strain in the upper medium (Boulton et al. 2001) ar a change in strain rate (Alley 1991), 

resulting in decollement. 

0 J:j. 

"' !11 A 
- A ~ ti ~ 
~ 

.Increasing basal shear 
stress or water pressure 

J:j. .6. 
I pw strain rat ,.. 

2 J:j. 
J:j. J:j. 

Sharp basal contact 

Undeformed, weak 
sub-till base 

Figure 40: Annotated log from. Section E showing the sharp basal contact between Dl and D2. 
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In one location D 1 can be seen dipping below present day beach level, Section D (Figure 

41 ). It is a gentle slope with the decollement plane continuing between the two units. 

However, as D 1 slopes down towards the right a band of reddish diamict with very small 

clasts appears. This is potentially an injection feature formed as a result of differences in 

basal water pressure causing the red diamict to be forced up between D1 and D2, similar to 

a diapir formation (Menzies and Shilts 2002). The decollement plane between the two 

sediments would have acted as a structural weakness making this the easiest path for the 

red sediment to take. The red nature if the diamict is likely to have come from the Triassic 

sandstones from the north (Radge 1939). Streaks and rafts of red, along with grey and 

white material are also found along the Holdemess coast suggesting incomplete subglacial 

mixing and shearing (Eyles et al. 1994). 

Structural wea 

Figure 41 : Photograph showing the red injection feature in Section D. Spade for scale. 

While, this evidence points towards the genesis of the till being a result of deformation, 

Evans et al. (2006) suggest that a number of processes lead to the formation of subglacial 

tills. Therefore, it should be classified as a subglacial traction till (Evans et al. 2006) which 

is dominated by deformation processes. 

However, this facies of diamict is very thick compared to modem analogues for 

deformation tills found in Iceland, where the average thickness of till rarely exceeds one 

metre in height (Evans and Twigg 2003). It is possible that due to the topographical 

location of the site the till sequence has been thickened by ice marginal stacking. A till 

wedge is formed under a glacier with the thickest layer of deposits at the ice margin as a 

result of erosion and deposition patterns (Kjaer et al. 2003). Advance and retreat till is 
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thought to withstand erosion, hence, increasing the quantity of sediment at a site (Kjaer et 

al. 2003). Due to Upgang's proximity to the North Yorkshire Moors, which were 

unglaciated during the last glacial, it is plausible that the ice margin was situated prmdmal 

to Up gang. Therefore, as ice pushed up against the uplands of the North Yorkshire Moors 

till would have thickened in the Up gang area. This could be as a result of till staclcing, that 

has been shown to occur at the margins of modem analogues in Iceland (Evans and 

Hiemstra 2005). This process involves the incremental thickening of till by a combination 

of subglacial processes. As the till thickens the depth of deformation alters and results in 

the overprinting of earlier till horizons partially or totally eroding the horizons between 

layers (Evans and Hiemstra 2005). Hence, as the till thickens the lower deformation 

features are preserved and deformation style could be altered as a result of the changes in 

the substrate below this layer (Boulton 1996). It is due to Up gang; s submarginal nature 

that this signal of both extensional and compressional deformation is seen. Material has 

been advected and transported through the zone of deformation into the marginal zone. In 

addition due to the sites location next to the North Sea the diamict will have been heavily 

saturated. It should also be noted that while modem analogues in Iceland show thin till 

sequences Truffer et al. (200 1) present data showing a tilil sequence of 5 to 7 metres thick 

under the Black Rapids Glacier in Alaska, although this is a surging glacier. Additionally 

Dowdeswell et al. (2004) report thick layers of till under fast flowing ice streams of on 

average 4.6 meters thick in Antarctica. Therefore, it is also plausible that the thick vertical 

sequences of till were deposited sub glacially without any stacking processes occurring. 

Alternatively, the thick diamict sequence could be attributed to the process of mass flow. 

These sequences can reach up to 10 m in thickness (Eyles 1987). Although, for a mass 

flow genesis hypothesis to be accepted in relation to D2 the other sedimentological 

evidence would need to match. In a mass flow unit .clast fabrics would be expected to have 

high dip values and variable slope controlled fabric direction, whereas those taken from 

Up gang do not. In addition the eigenvalues, clast form data and many of the 

sedimentological.and structural features preferentially support a deforming bed hypothesis. 

A mass flow unit would also be likely to display stratification representing various mass 

flow events. However, stratification is found at only a small section of the cliff, where it 

has been proposed the stratification was formed as a result of high shear strain values 
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Another feature 0f D2 is the c0lour change in the sequence separating D2A and D2B. D2A 

has a higher concentrati0n of clasts of local bedrock. While D2B has fewer clasts of a 

smaller size than D2A with a marginally higher proportion of distally derived lithologies 

(Figure 26). This visual description, along with the suggesti0n that the clasts from D2A 

had a shorter transport distance from the C40/RA covariance plot, fits with the model 

pr0p0sed in Boulton (1996). This suggests that mean derivation distance of lithologies 

increases upwards within a sequence with sharp contrasts occurring across erosional 

interfaces. As the glacier overruns an area the local larger clasts are dep0sited first, then 

later ice with more distaliy derived smaller clasts will deposit further sediment. The 

boundary between the two units could represent tw0 horizons of the till. Nevertheless, with 

the exception of the variati0n in lithology quantities and colour change, which can be 

explained by moisture content, the remainder of data fails to significantly separate the two 

units from one another. Similarly the geochemical data shows no real elemental differences 

between the two units, although, as only one sample has been analysed from each unit this 

cannot be seen as conclusive. This indicates that D2A and D2B are of the same unit but 

reflect the increasing distally derived sediment up throughout a sequence. 

The provenance of this facies can be determined from the orientation of the clast fabrics 

and from clast lithology data. The rose diagrams (Figure 20 and 21) suggest ice flow was 

from north-north-west. While a large number of these diagrams using the a-axis orientation 

suggest ice flow from the north east these could be lying transverse to flow as a result of 

deformation (Hart 1994). Clasts do not always align parallel to flow with some lying 

transverse to flow and particles of different sizes show different rotations as each particle 

reacts in response to the individual stresses placed upon it (Carr and Rose 2003~ .. Data was 

taken on clasts in a similar size range (8- 32 mm) which will minimise the differences in 

rotation dependent on size. The a-b plane data indicates that ice flow originated a northerly 

direcHon as these rotate in line with glacier flow more readily than a-axes (Evans et al. 

2007), supporting the a-axis fabrics that also indicate a north-north-west origin for ice flow. 

A northern origin of the ice is supported by the clast lithological counts. As suggested in 

Section 4.4 many of the erratics found within the till can be traced to the Cheviot Hills, 

Northumbedand and County Durham, along with the presence of flint from the North Sea. 

Combining this data with the ice flow directions it can be proposed that the till was 
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deposited by the North Sea ice lobe that existed along the coast of Yorkshire during the last 

glacial. 

5.3 Sands and Gravels 

The sands and gravels layer has been split into four units, Section 4.2, to aid description 

and interpretation. Therefore, each unit will be discussed separately before being collated 

to consider the facies as a whole. It is proposed that this entire sands and gravels section 

was deposited in a lacustrine and not a marine environment. The sediments that make up 

the section lack any shells or forams that would suggest that they were deposited in a 

marine environment. In addition, as a marine environment would be tidal the presence of 

herringbone cross stratification and flaser bedding would be expected especially in the fmer 

sediments. However, this is also absent from the sequence. 

5.3.1 SGl 

SGl is a facies consisting of laminated clays, silts and fme grained sands which can be seen 

at the base of each of the sections. The laminated fme nature of these sediments, along 

with the lack of shells or forams, indicates that they were deposited in a lacustrine 

environment. As the sediments are fine, water velocity would have been low or ponded 

with sediment deposited as suspension rain out (Brazier et al. 1998). It is possible that the 

finer grained sediments within this facies were deposited during winter when flow into the 

lake decreased as a result of reduced melting of the ice or the lake froze over allowing them 

to settle out (Teller 2003), although there does not appear to be a coupling of fmer 

sediments and sand that could be classified as varves representing seasonal changes in 

sedimentation. The thickness and nature of these laminated sediments could be a result of 

sediment supply, depth of water and proximity to water .source, as opposed to seasonal 

variation ('Feller 2003). 

The coarsening upwards of this facies could indicate the increasing proximity of an ice 

mass to the area (Smith 1985). The rare presence ofType B climbing ripples in the sand 

towards the top of the unit supports this indicating a reduction in suspended sediment load 

suggesting that the lake was beginning to shallow (Teller2003). These ripples along with 

the coarsening upwards nature of the section could also indicate the initiation of, or an 

increase in bottom currents and underflow activity, supporting the hypothesis ofa 

shallowing environment. 
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5.3.2 SG2 

SG1 continues to coarsen upwards grading into a facies of laminated sands containing more 

frequent ripples and some planar bedding, SG2. The coarser nature of the sediments could 

imply a switch from a deeper water environment to sedimentation in shallower water (Benn 

and Evans 1998) as an ice mass approached the area. Alternatively, this could represent 

increased bottom current activity. It is the increasing coarse nature of these sediments 

which suggest that the ice is getting cleser to the lake, although slope instabilities and river 

channels could also play a role. Alternatively, they could represent increased current 

activity. The Type B ripples found within these sand units record depositien from 

suspension of the whole bedform (Alien 1973), indicating turbid underflows and high 

aggradation rates (Ashley et al. 1982). These ripples also represent an increasing bed load 

coupled with decreasing suspended sediment indicative of an increasingly shallow 

environment (Teller 2003). 

Paleocurrent directions from this facies in Section Bii (Figure 9a) indicate that water 

flowed .from approximately the south-west, while in Section J (Figure 15) they infer that 

flow direction was from the north east. This indicates that in Section J the water is tlowing 

away from the advancing ice margin, while in Section Bii it is flowing towards it. 

Therefore, water is originating from either an advancing ice mass to the north in the case of 

the flow from the north east, or that it is run off from the North Yorkshire Moors to the 

south west. The conflicting directions of flow could be due to meandering streams that 

deposited the ripples. 

The occurrence of units of matrix supported granules within Section Bii and Section J 

indicate periods of more rapid flow or a further lowering of water levels. Conversely, the 

clay unit tewards the top of Section Cii suggests a period of water ponding. Also of 

interest within Section J is a near vertical elongate gravel pod within the rippled sands 

(Figure 1'5). This pod could be the relic of pipe flow within the sand. This type of feature 

is common where the bed is unconsolidated (Benn and Evans 1996). Pipe flow is an 

element of water drainage, typically subglacial. This pipe may have formed either as a 

drainage feature when the ovedying gravels were deposited or when ice overrode the site. 

Although if deposited subglacially the pipe appears to be at a considerable depth to the ice 

itself. Altematively this sub-vertical gravel pod could be a dewatering feature representing 

Page99 



the disruption and displacement of sediment as a result of escaping pore fluid (Benn and 

Evans 1998). Furthermm:e, within Section J, above the rippled sands, is a unit of cross 

bedded sand foresets. These could either be Type A ripples resulting from high stoss side 

erosion or could have been deposited as a result of dune or bank migration (Benn and 

Evans 1998). As well as represe.nting the infilling of a lake and the reduction in water 

velocity these features could also indicate that the area was becoming increasingly ice 

proximal. This facies does not appear to exist in Section D, with the laminated sands and 

fines of SG 1 appearing to grade into the granules and gravels of SG3 without hiatus. 

5.3.3 SG3 

The coarsening upward of the sands and gravels unit continues leading into SG3. This 

facies consists of granules and gravels with some interbedded laminated sands. The 

occ\lll'ence of the larger sized particles indicates deposition by faster flowing shallow water 

in the upper flow regime (Maizels t993). The cross trough bedded shape of the deposits 

suggests that this was in channels in an increasingly ice proximal setting i.iJ. front of 

advancing ice (Thomas 1987). Laminated sand pods found within gravel units in Section 

Bii could be rip up features, with water dissecting the laminated sands below and 

incorporating them within the gravels (Comwell 1998). The nature of these gravel and 

granule channels also suggests that they were infilled rapidly. As they are situated in 

unconsolidated material, a slow infllling mechanism would have caused the slopes to be 

degraded by slumping (Shaw 1987). Till balls found within this layer also indicate that the 

deposition of till has already started to occur up ice flow as the gravel channels were being 

deposited at Upgang (Shaw 1987). Alternatively, these till balls could be derived from the 

erosion of D2 below. However, their colour is very similar to the colour of D3 and not that 

ofD2. 

The direction of paleocurrents taken on the foreset bedding and laminated sands of SG3 in 

Section Bii indicate predominant flow directions from the south with various units showing 

flow directions from the north east (Figure 9a). Again it is possible that the water 

originated as meltwater from the advancing ice, which is believed to have originated from 

the north to northwest from clast fabrics taken within 03, Section 5.4, but that the channels 

are meandering out in front of it. This causes the appearance of water flowing in the 

'wrong' direction especiaHy for the directions taken from the gravel bedding. In 
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meandering and braided rivers, 'bedforms migrate at a variety of angles to the main trend of 

the river' (Benn and Evans 1998 p 402). The flow directions within the sand units could 

have been altered as these units may be a result of rip up within the channels while the 

remaining directions indicating flow towards the north have been taken from foreset 

bedding. As discussed above these could represent dune migration and hence, would not 

necessarily record the direction of main river flow. However, an alternative proposition, 

especial1ly for the currents from the south, is that the water originated from the North 

Yorkshire Moors, as three modem day becks enter the sea from the North York Moors at 

Upgang and Sandsend. Although as the sequence of SG3 indicates an increasingly ice 

proximal location, it would seem more likely for the water to have originated as pro glacial 

p~eltwater flows. 

5.3.4 SG4 

SG4 represents a thin la yet of laminated and rippled sands at the very top of the facies, 

overlying the gravels of SG3. This facies can only be seen in Section Band Section J, as 

the upper boundary of the sands and gravels is only seen clearly in these locations. At 

Section C and D the boundary is obscured either by slumping or it was not possible to gain 

access to consider the site in detail. As this is a retum to finer material after the deposition 

of the upwardly coarsening units, it could be interpreted as the deposit of a sheet flow 

feature that can form at the ice-sediment interface or within till. This implies that the 

overriding ice mass was warm based and that meltwater would have exceeded the amount 

that could have been evacuated by advection through the till or Darcian through flow 

(Murray 1997). As a result discrete channels could have formed at the interface between 

SG3 and D3, as a result of a structural weakness between the two, leading to the deposition 

of SG4, As the ice overriding the Yorkshire coast was part of an ice lobe rather than a 

valley glacier these channel should be low and wide (Walder and Fowler 1994). The shape 

of SG4, which can be seen at the top of Figure 9, shows that the channel would have been 

both wide and shallow, strengthening this sheet flow hypothesis. The partial laminations 

and ripples within SG4 also support this model as the ripples indicate the presence of 

flowing, potentially turbulent, water, as substantiated by the variable paleocurrent 

directions. However, this feature could also represent a wide shallow proglacial channel 

that formed in front of the approaching ice mass. Due to the nature of the sediments within 
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SG4 this channel appears to have been low energy, with the ripples representing underflow 

activity. 

5.3.5 Whole Facies 

Overall this sequence of coarsening up sands and gravels represents the infilling of a lake 

as an ice mass advances (Figure 42). The pattern of deposition is similar to that found in 

other areas that have been described as ice proximal lakes that grade upwards into deltas 

and sandur plains, for example Lairig Ghru and Gleann Eitrich in Scotland (Brazier et al. 

11998~. 

Proximal Distal 

Till dep()sitlon (03) 

SubglaciaVproglacial sheet f10111t(:)(;i4Jji:~i\! ~~~~~~~~~~~~~;::~-_!;!!!!l!!!!i Gravel and granule deposition;in 
channels and by faster flow (SG3) 

Coarser grained sand depOsition 
(SG2) 
Fine grained sediment deposition 

· in deep and slow flowing to 
.stagnant water (SG1) 

Figure 42: Cartoon simplifying the deposition of the sands and gravels at Upgang. 

5.3.6 Section A 

Also logged within this facies is the large fmes unit found within Section A. Section A 

appears to belong to the upper part of SG2 with the lower part of the section dominated by 

laminated and trough bedded sands with some granules. However, the middle third of the 

section is a unit of fmes including laminated sand deposits· before an abrupt start to a unit of 

sands and granules. This fmes unit has not been seen in any of the other logged sections. It 

is likely that this unit of massive fines was deposited as a result of sediment settling out in 

ponded water. The isolated circular, oval and concave elongated sand pods within the fmes 

unit (Figure 43) could be a product of gravity induced soft sediment deformation. As a 

result of saturation and high water pressures sand pods can be deformed in to a sequence of 

fines (Harris et al. 2000). High water .pressure would have resulted in the liquefaction and 

failure of the sand. This sand-water mixture is then injected into the fmes unit following a 

path of least resistance (Visser et al. 1984). These involutions form circular and polygonal 
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structures (Murton et al. 1995) similar to those seen in Section A. The isolated nature of 

these features infers that the overlying sand was deposited rapidly resulting in the loss of 

strength within the fines unit (Collinson and Thompson 1992). This type of gravitational 

soft sediment deformation often has a sharply defined basal boundary (Visser et al. 1984) 

as can be seen in Figure 43 . 

Figure 43: Photograph of part of Section A showing soft sediment deformation. Several of the sand 
inclusions have been highlighted. Trowel for scale. 

5.4 Diamict 3 - genesis and provenance 

Due to the similarities in the quantitative data between D2 and D3 it is sensible to suggest 

similar depositional histories, with the facies also being described as a subglacial traction 

till influenced by deformation. The subtle differences between D2 and D3 are a result of 

the differences in underlying sediments. As the two diamicts are the products of two 

separate ice advances, the substrate underlying each ice advance is different; underlying D2 

is the solid glaciotectonic unit of D 1, while below D3 is the sands and gravels facies. 

Therefore, differences will have occurred in the subglacial effective pressure system 

(Roberts and Hart 2005). 

The clast form data suggests a subglacial origin to the sediment. D3 plots lower on the 

covariance plot (Figure 34) than D2, further towards the corner of the graph that was 

assigned as having a subglacial transport history (Benn and Ballantyne 1994). The clast 

fabric data also indicates that the sediment has been sub glacially deformed, with points 

plotting in the deformation section of the modality-isotropy diagram (Figure 35). Although 
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this, along with the step contoured stereonets, implies that there could be. increased 

lodgement higher up the sequence, conforming to the hwothesis of a subglacial traction 

till. The eigenvalue plots also confirm this hypothesis of deforming processes resulting in 

the deposition of the diamict facies. The position of the samples from D3 on the ternary 

and Sl/S3 plots vary only subtly from D2 (Figures 36 and 37) plotting within the envelopes 

assigned to deformation tills (Benn, 1995; Hicock et al., 1'996). However, the validity of 

these envelopes has been .questioned along with the reliance on clast fabric data to indicate 

till depositional histories (Bennett et al. 1999; Carr and Rose, 2003). 

As with the clast lithology data from D2, D3 displays a high percentage of locally derived 

clasts. However, as Figure 26 shows this facies has a higher number of distally derived 

lithologies than D2. The relatively low percentages of shale are a result of D2 'capping' 

the shale bedrock locally, preventing the rip up of clasts pertaining from the original 

bedrock. Instead many clasts within this facies will have been taken from D2 and SG. 

Another feature that indicates a subglacial origin to the sediment is the sand pod found in 

Section B (Figure 44). This pod appears to have been pinched at either end which can 

suggest boundinage by high shear stresses CHan and Roberts 1994). This pod maintains 

much of its primary structures in the form of laminations, although there appears to be 

some folding of these laminations towards the middle of the feature. Benn and Evans 

( 1996) described similar features at Loch Lomond, Scotland inferring that the pods acted as 

stiff regions within the unit being 'rafted along with more rapidly deforming fmer grained 

units' (Benn and Evans 1996 p 41 ), indicating that the feature was a result of rip up. The 

clast fabric taken to the right of the feature (sample 3.1, Figure 21), shows higher than 

average fabric strength for the site. Equally, this feature could be an infllled englacial 

channel that has later been deformed and pinched by the stresses placed upon it. This 

would favour the model proposed by Piotrowski et al. (2001) that sand pods cannot survive 

in a deforming bed unit, although when considered alongside the other evidence from D3 a 

deforming ·bed origin is more likely. 
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Figure 44: Annotated sketch of sand pod in LFA D3 in Section B. 

Also within Section Bi is an apparent rip up feature consisting of a laminated sand unit, 

probably taken from the underlying sand and gravel section (Figure 8b). This feature 

appears to have been ripped up and deposited within D3 without the internal structures 

being considerably altered, although a fault does appear to exist to the left of the feature. It 

is difficult to fmd another explanation for the existence of this feature although only the 

upper boundary has been exposed, meaning that other indicators of its depositional history 

have been hidden. Other sand inclusions are also found towards the top of Section Ci 

(Figure 10). Due to the shape of these features it is possible that sand has been deposited 

within the till and then folded and deformed (Hart 1994 ). The clay fold towards the top of 

this section indicates a similar origin. 

The shear stresses that appear to have been present within D3 could also account for the 

mixing of clay within the diamict at the top of Section Di (Figure 11 ). Low strain values 

within D3, which would also account for the preservation of the sand and clay features, 

could cause the folding and partial mixing of the sediment without homogenising it, as 

mixing is proportional to strain (Hooyer and lverson 2000). However, this mixing can also 

be seen as a result of a mass flow deposition history. Shaw (1987) described a 

heterogeneous diamict that is mixed with sorted sediments. This was considered to have 

occurred as a result of the intermixing of the two sediments by a combination of processes 

during mass flow. Nevertheless if this mixing was a result of mass flow processes then the 

clast fabrics should exhibit high dip values with variable flow directions, which they don't. 

In addition, the presence of stratifications representing flow units would be expected yet 

there is no stratification found within D3. 
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The basal contact of D3 with the sands and gravels facies is only visible in one small 

section of the field site at Section Bii. Here the contact appears to be fairly distinct, 

although there is some slight mixing of sand and diamict along with the deposition of 

diamict rafts within the sands (Figure 45). This boundary can be indicative of a deforming 

bed unit as many authors believe that the lower sediments can become deformed as the ice 

and tiH override them (Hooyer and I:verson 2000). This would account for the mixing of 

the sand within the diamict. As with the basal boundary of D2, this boundary would also 

require areas of larger scale erosion to account for the sand pods and rip up features within 

the facies. Another explanation for the sand at the base of the diamict and the rafts of 

diamict within the gravels is the presence of water at the ice-sediment contact as the ice 

initially overran the area. Beneath a warm-based ice mass it is believed water could be 

drained by sheet flow as the amount of melt water will exceed the amount that can be 

advected through the till (Murray 1997). Thus, a system of discrete channels could exist 

between the ice-sediment interface or within the till. This would account for the deposition 

of the very upper sand facies (SG4) above the underlying coarsening upwards sequence of 

SG 1 to SG3 before the deposition of D3. Although this facies could also be the result of a 

wide shallow proglacial channel. It is therefore possible that this water caused the 

detachment of the diamict rafts which were then pushed down into the sand and gravels. 

Another explanation leading to the deposition of diamict below its stratigraphic layer could 

be the 'squeezing down' of sediment into depressions within the lower substratum due to 

the .pressure of overriding ice (Ruszczynska-Szenajch 1987). This could account for the 

presence of the rafts ofD3 within SG4 regardless of whether SG4 was proglacially or 

subglacially deposited. 
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Figure 45: Photograph and sediment log of diamict rafts within SG unit at the boundary between SG and D3. 

As discussed above, some modem analogues only show thick till sequences where the till 

has been stacked (Evans and Twigg 2002, Evans and Hiemstra 2005), while others are 4.6-

7 meters thick (Truffer et al. 2001, Dowdeswell et al. 2004 ). The vertical extent of D3 

exceeds six metres in places, and thus, may imply the need for a mechanism to exist to 

emplace such a thick sequence. Therefore, the process of till stacking is again proposed to 

create this facies. The stacking of tills does not necessarily imply that banding will be 

found within the unit, with many stacked tills being homogenous in nature. In order for 

this process to occur, Upgang would have to be ice marginal as discussed in seclion 5.2. 

The geomorphological map from the NEXT Map data (Figure 31) shows that the North 

Yorkshire Moors were not glaciated, and due to the proximity of Up gang to this area it is 

plausible that it was ice proximal. 

The provenance of the facies is similar to that of D2. The clast fabric data of both a-axis 

and a-b planes indicate that ice flow originated broadly from the north west. Lithologies 

from the diarnict also indicate a northern origin with distinct clasts of pink rhyolite from the 

Cheviot Hills. Along with coal, dolerite from the Whin Sill, greywacke and Carboniferous 

Limestone indicating that the ice travelled from the north of England and Southern 

Scotland. The red colour of the diamict is thought to originate from the Triassic Marls of 

the Tees Estuary (Radge 1939). This data suggests that the second diamict at Upgang was 

also deposited by ice from the north or the North Sea as the Triassic Marls extend into the 

sea (Figure 4 ). The red colour of this till could have been emphasised by a weathering 

profile caused by oxidation, as is seen on the Northumberland coast (Douglas 1991). 
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6. Discussion: Correlation with Yorkshire, climate and LGM readvances. 

6.1/s there a readvance signal at Upgang? 

From the discussion of the glacial sediments at Up gang in Chapter 5 an advance-retreat­

Feadvance succession can be proposed. 01 and 02 were deposited as part of the initial 

advance phase. The lower diamict 01 represents either a glaciotectonite formed from the 

Jurassic bedrock underlying Upgang or a:n overrun pFoglacial thrust feature, while 02 is a 

sub glacial traction till dominated by deformation processes. The overlying sands and 

gravels LFA then represents the retreat of the ice resulting in the formation of an ice 

proximal lake. Ice then Feadvanced into the area leading to the infilling of the lake. This is 

supported by the increasingly ice pro~imal nature of the sands and gravels unit along with 

other stratigraphic indicators. This includes the presence of till balls, which have been 

correlated with 03, within SG3 indicating that the deposition of this till had begun up flow 

at the time the gravels were deposited. The deposition at the top of the sequence of another 

subglacial traction till, 03, implies that ice then readvanced over the whole area. The 

entrainment of the lacustrine sediments below into 03 supports this readvance hypothesis. 

Therefore, the sedimentary sequence at Upgang cleady shows ice advance, 01 and 02, ice 

retreat leading to proglacial, lacustrine and subaerial sandur sedimentation, followed by an 

ice sheet readvance depositing 03. 

6.2 How does Upgangfit into Yorkshire's glacial history? 

HoweveF, this advance-retreat-readvance interpretation is not consistent wi!ll published 

work from the Yorkshire coast. The limited research previously carried out at Up gang has 

suggested a number of glacial histories for the area which contradict the new proposal 

outlined above. Harrison ( 1895) suggested that the triple division of the section could be 

attributed to a single ice advance. The lower till was deposited and compacted by the initial 

advance. The sands and gravels then represented englacial channel fills while the upper till 

was believed to be the result of the fmal melting of the ice. The infilled lake (sands and 

gravels LFA), along with its lateral extent contradicts this proposal. The upper till is also 

better described as a subglacial till rather than a melt out till. Madgett and Catt 0981) 

claimed an intermediate till bed between the 'Skipsea' and 'Withemsea' tiU was found at 

Upgang. This was. said to represent a zone of mixing in a multilayer ice sheet. However, 
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this layer has not been found during this investigation weakening the argument for a 

multilayer ice sheet. Catt (2007) provided the most extensive published history of the 

sediments at Upgang. The lowest grey till, Dl, was deemed to be a pre-Late Devensian 

deposit due to the presence of a weathering protile in the upper section of this LFA along 

with the sharp erosional boundary separating it from D2. Although no other evidence for 

its age was presented, on the basis of its appm:ent weathered edge it was correlated with the 

Basement Till of Dimlington. This weathered till was not witnessed in this study. Despite 

this proposal this investigation interprets this LF A as a Devensian glaciotectonite or 

overrun pro glacial feature on the basis of the evidence in Section 5.1. The remaining 

sediments were again correlated with the Skipsea and Withernsea tills of Holderness, 

although the means of deposition was not discussed. 

The new interpretation of the glacial history of Up gang presented in this study is also 

inconsistent with the published wovk from Holderness. Along this coast two tills have been 

identified, the lower Skipsea Till and upper Withernsea Till separated by a distinct 

boundary (Catt 2007). No laterally extensive sorted sediment unit is seen. These tills have 

been correlated both north and south ofHolderness. However, the provenance and genesis 

of these tills has lead to some controversy. Therefore, the glacial sequence of Upgang 

needs to be considered within this context in order to establish how it correlates with the 

sequences to the south. · 

6.2.1 Provenance oftills and ice flow patterns in the area. 

The provenance of the Skipsea and Withernsea tills along the Yorkshire coast has proved 

controversial. One till was assigned to ice aFriving from the north of England and southern 

Scotland, while the other has arrived through the Stainmore Gap from the Lake District. 

However, authors cannot agree on which till originated from which location. Bisat (1939), 

Radge ( 1939) and Foster ( 1987) suggested that the Skipsea till was from the Lake District 

with the Withernsea till originating in the north, while Catt and Penny (1966), Madgett and 

Catt (1978) and Catt (2007) proposed the opposite. These studies were all based on clast 

lithological studies with local ice flow directions being taken from clast fabric orientations. 

However, the clast lithological data from Upgang indicates that the two tills present at this 

site contain similar erratics and therefore are likely to have originated from the same 
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source. Due to the preportionally high percentages of greywacke (Soutllern Scotland), 

dolerite (Whin SilO, Carboniferous Limestone (Northumberland), coal (County Durham) 

and igneous rocks from the Cheviots, ice flow is from the north of England. Erratics from 

the North Sea (flint and chalk) are also found in both tills to support a proposal that both 

tills are deposits of a North Sea Ice Lobe. It is possible that erratics sourced from the Lake 

District described by previous authors were deposited in the area prior to the Devensian and 

have been incorporated into these tills. Clast fabric orientations showing ice flow onshore 

from the North Sea at Upgang support this hypothesis along with clast lithological data 

from North Norfolk (Pawley et al. 2006). The ice arrh·ing at Norfolk would have had to 

overrun Yorkshire due to its ice flow trajectory. This shows ice flow only from north east 

England and southern Scotland, however, only one late Devensian till is present in Norfolk. 

The geochemical data taken from Upgang can also be used to support this hypothesis. 

Samples taken from D2 and D3 show no significant difference in elemental composition, 

with relatively low chi-squared values and the cluster dendrogram showing clustering of 

samples between units as well as within (Figure 27). While these results do not show the 

same composition within samples, the differences are not great enough to indicate separate 

sources for the two tills. 

In order to support this hypothesis of ice flow direction solely from the Cheviots, indicators 

for the wider area also need to be considered. The NEXT map data (Figure 32) along with 

the BRITICE data (Figure 31) shows the ice flow patterns in North East England from 

lineations and moraine ridges. Ice crossed from west to east in two locations within this 

area, the Tyne Gap to the north ~d the Stainmore Gap. The lineation patterns from these 

areas indicate that ice from the Tyne Gap continued towards the North Sea and was 

deflected south. While ice from the Stainmore Gap appears to have been deflected 

southwards over a shorter spatial area. This suggests that ice from the north may have been 

present over the Tees Estuary and coast in order to cause this deflection. Ice from southern 

Scotland and northern England is thought to have arrived at the east coast along the north 

east coast and through the Tyne Gap, with Lake District ice forced through the Stainmore 

Gap. Therefore as the ice from this area appears to have been blocked from entering the 

North Sea by other pre-existing ice lobes it is unlikely that Lake District ice from the 

Stainmore Gap was present along the Yorkshire coast. Instead it would have been forced 
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into the V ale of York. In addition, if the Tees Estuary area was unglaciated allowing the 

Lake District ice to flow along the Yorkshire coast towards Dimlington a mechanism would 

be required to deflect the ice southwards rather than simply spilling into the North Sea. 

Initially, it was suggested that Scandinavian ice must be present in this area causing the ice 

to deflect, however, the presence of Scandinavian ice during this time has recently been 

questioned (Serjup et al. 2000). The proposed presence of a glacial lake in the Tees 

Estuary (Agar 1954) also questions the validity of Lake District ice reaching the east coast. 

For this lake to exist it must have been dammed by ice from the North Sea Lobe to the east 

and ice entering the V ale of York to the west. Therefore, Lake District ice would not have 

been able to flow through the Tees valley to the coast. Nevertheless, Catt (1991) suggested 

that this Lake District ice was forced on top of the North Sea Ice Lobe in the Tees Estuary 

which led to the model of a multi-layer ice sheet. 

However, erratics found at Upgang include those originating from the Cheviot Hills. This 

ice must have flowed from this area in order for these rocks to be incorporated within the 

sediment. This would imply that ice was predominantly :from the north flowing down the 

coast. However, the possibility of sediments being reworked from underlying diamicts 

must be considered due to the low percentage of erratics. Ice flow patterns in this area are 

highly complicated, increasing the potential for reworked se~iments. Interpretations are 

hindered by the lack of knowledge regarding the extent of the Scandinavian ice sheet and 

the glaciation of the North Sea. 

Therefore, using the above evidence, it is proposed that both tills at Upgang have the same 

northern source and were both deposited by a North Sealce Lobe. It is also suggested that 

the Skipsea and Withernsea tills are also from this same northern source; however, this is 

beyond the scope of this project. 

6.2.2 Mode of deposition 

Unlike Up gang, at sites in southern Yorkshire where both Late Devensian tills outcrop, the 

Withemsea Till directly overlies the Skipsea without any lateraHy extensive sorted 

sediments. Many different mechanisms have been discussed regarding the deposition of 

these deposits including surging (Eyles et aL 1994'), a dual layer ice lobe in a single 

advance (Madgett and Catt 11978) and vertical till accretion (Evans et al. 1995). The two 
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tills appear to have been differentiated on colour difference and differences in clast 

lithelogy. It has been suggested above that it is possible both tills eriginated from the same 

location and, hence, show similar litholegies leaving only a colour difference between the 

two tills. Therefore, there may only be one till with differences in coleur stemming from 

different underlying bedrock along with differential mixing and folding of the till. 

Although, work would need to be carried out in order to verify this hypothesis. This 

suggests that the Skipsea and Withemsea tills represent a stacked sequence and do net 

represent two separate ice advances er a multilayer ice sheet. Evans et al. ( 1995) suggested 

that vertical till accretion of a deforming layer was responsible for the till sequence at Filey 

Brigg a sequence, which Catt (19911b) had previously interpreted as displayingboth Skipsea 

and Withernsea Till. This further supports the suggestion that the Skipsea and Withemsea 

Tills are a stacked sequence and indicates that 03 at Up gang may not cerrelate with the 

Withemsea Till. 

It is also possible iliat the glacial sequence of Holdemess was deposited as part of a surging 

ice lobe as proposed by Eyles et al. ( 1994). While the tills along Holdemess may have 

been deposited as part ef a surging lebe it is highly unlikely that those at Upgang can be 

cerrelated with these surges. While 02 could correspend to the surge depositing the 

Skipsea Till, Upgang is considerably further north than the area in which the Withernsea 

Till outcrops. Hence, the ice lobe must have retreated further north than Upgang before the 

surge that deposited the Withemsea Till to allow for the deposition of03. However, this 

would indicate that the extent of the Withemsea till would need to be more expansive. 

Although a paleao-'surging landsystem is difficult te identify, the presence of large thrust 

and push moraines along with patchy hummocky moraines would be expected if glacial 

surging had occurred, fol1lewing the model proposed in Evans and Rea (2003). The NEXT 

map data (Figure 3Z) dees not appear to show such features. 

6.2.3 Extent of the readvance 

If this hypothesis of a single till unit for the majority of East Yorkshire is accepted then it 

can be suggested that the lower tills at Upgang correlate with this initial advance of ice 

along the coast. Ice then retreated to a positien further north than Up gang before 

readvancing. However, the extent of this readvance would need to be examined as the limit 

would exist somewhere between Upgang and the Holdemess coast. Proglaciallake 
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sequences have been shown to exist at Bannston and Skipsea along this coast (Evans et al. 

1995). Although there is no evidence of glacial deposits overlying these, suggesting that 

the limit lies north of Bannston. Nevertheless, the ice lobe readvance may have travelled 

south of these sites remaining offshore and, hence, not overrunning them. 

Alternatively, the sequence found at Up gang may be a response to local conditions, with ice 

retreating and readvancing or surging locally and not along the whole coast. Tills deposited 

by a surging glacier produce similar glaciotectonic features and the thickening of the 

sediments to the flow of non surging glaciers over a deformable bed (Evans and Rea 2003). 

Therefm:e ilie upper till found at Upgang could have been deposited by a non surging 

glacier overriding a deformable bed or a surging glacier. However, paleao-surging can be 

difficult to identify as no landform or sediment sequence unequivocally identifies this style 

of glaciation (Evans and Rea 2003). 

6.2.4 Summary 

Therefore, as the sediments at Upgang show an advance-retreat-readvance succession the 

glacial history of north Yorkshire needs to be reassessed. Clast litho logical analysis 

suggests that both tills were deposited by a single northern ice lobe. However, current 

interpretation of the glacial sequences at other sites in Yorkshire does not support this. 

While the apparent proglaciallake deposits capping the sequence at Barmston and Skipsea 

(Evans et al. 1995) suggest a readvance limit to the north of this area, the presence of the 

Withernsea till to the south could be contradictory. In order for this hypothesis of a single 

North Sea ice lobe depositing both tills, either by surging, till accretion or retreat and 

readvance to be accepted, the coastal sections to the south of Yorkshire need to be re­

examined. 

6.3 Can the glacial history of Upgang be linked to climatic forcing? Vegetation and 

climate records for North Yorkshire. 

The sediments ofUpgang have been interpreted as an advance-retreat-readvance signal. 

The mechanism of this sequence could be a result of ice surging, influenced mainly by 

internal dynamics or a result of changes in climate, with amelioration followed by cooling. 

In order to test if climate was a major driving factor in the readvance of ice at Up gang, 
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published proxy records have been examined. If significant changes in climate in the area 

can be found then a link between the ice advance and climate can be considered. 

Two key sites in the reconstruction of climate in northern Yorkshire are Kildale and the 

Tees Estuary (Figure 46). The proxy records from these sites are shown in Figure 47. The 

record from Kildale (lnnes 2002) contains one radiocarbon date which has been calibrated 

using Calib Rev 5.0.1. The vegetation graph has then been 'wiggle matched' with the 

Greenland ice cores in order to provide a longer chronostratigraphic framework. The Tees 

Estuary recm:d was 'wiggle matched' to the GISP ice core record in Plater et al. (2000). 

The British climate records at the end of the last glacial show a strong correlation with the 

climate records from the Greenland ice cores (Mayle et al. 1999). Thus, the Greenland ice 

cores can themselves be used as a proxy for British climate as well as providing a 

continuous record for other records to be compared to. 

N 

i 
:f 

Figure 46a: Map showing the location of the proxy records listed in Figure 47. 
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Figure 46b: Map showing the location of Kildale and the Tees Estuary with respect to Upgang, the LGM limit 
and Glacial Lake Tees. Glacial Lake Tees formed during the deglacial phase of the LGM between 18 000 and 
16 000 cal. years BP. It was formed by meltwater from the surrounding ice masses (Agar 1954). 
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Figure 47: Proxy record graphs from Hawes water (Jones et al. 2002), Gransmoor (Mayle et al. 2000), 
Whitrig Bog (Mayle et al. 2000), Kildale (lnnes 2002), the Tees Estuary ~later et al. 2000) and the GRIP 
~Mayle et al. 2000) and GISP ~later et al. 2000) ice core records. 
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6.3.1 Kildale 

The vegetation record from Kildale in North Yorkshire pt:ovides a key date for de glaciation 

of the east coast, 19 144- 20 537 cal, years BP (Jones 1!977). Due to the position of this 

date within the core the vegetation record above it can be used as a proxy for temperature at 

the end of the last glaciation. The x axis on the graph (Figure 48) shows the percentage of 

tree pollen within the core; the greater the percentage the warmer the temperature. A 

deterimation in climate is shown at a depth of around 348 cm, zone KA-3 as assigned by 

Innes (2002) (Figure 48). By comparing this graph with the Greenland ice core records, a 

chronostratigraphy can be created suggesting that this cooling occurred between 17 400 and 

16 500 cal. years BP. After this cooling event the climate beings to ameliorate with 

increases in tree pollen, although it is still unstable. A second significant cooling period is 

seen in KA-5, which correlates with the Loch Lomond Stadia! (LLS). These changes in the 

percentage of tree pollen are seen more clearly in Figure 48, as Figure 47 has an 

exaggerated y-axis in order to match it to the ice core records. The lithostratigraphy beside 

the graph shows that during this time Kildale was not glaciated. However, as it is 

positioned just within the LGM ice limit it is in a good position to reflect the climate 

·influencing any local ice mass. Although as Yorkshire was in a 'snow shadow' (Harrison. 

1895) it is uni:ikely that changes in the local climate would have greatly affected the ice 

mass. Instead it is climatic changes in the potential source areas of Scotland and the Lake 

District would have influenced that ice mass to a greater extent. Nevertheless, an advance 

of ice into the area would cause a drop in local temperature. Therefore, while the 

mechanism of advance cannot be confirmed by the record at Kildale, an approximate 

timing for the advance can be inferred. 
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Figure 48 : Pollen diagram from Kildale from limes (2002) 
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6.3.2 The Tees Estuary 

The proxy record taken from the Tees Estuary is a series of varves that were correlated to 

the GISP ice core record (Figure 49) (Plater et al. 2000). The thickness of each varve was 

used as a proxy for temperature. During warmer periods of time the annual melting of the 

ice mass increased. This resulted in an increase in the amount of sedimentation taking 

place within the lake resulting in a thicker rhythmite. However, it was stressed that varve 

thickness is uruikely to create a true climate proxy. Due to the thickness of the entire 

sequence it was proposed that deposition may have been affected by the proximity of the 

core to the lake shore. 'Thus the varve sequence may contain deltaic sediments which have 

not been influenced by climate. Therefore, the varve sequence was correlated with the 

GISP ice core record to verify the extent to which it could be used as a climate proxy. A 

good correlation was shown between the period of 18 000 and 116 000 cal. years BP 

suggesting that climate controlled sediment supply to the lake during this time (Plater et al. 

2000). This proxy record shows an unstable cool climate during the period 16 000-17 750 

cal. years Bp. A sharp deterioration in climate is seen at 16 500 cal. years BP, matching the 

Kildale record. The varve record does not continue following this event. Although, the 

lithostratigraphical progression to Holocene deposits suggests that temperatures 

subsequently rose causing the ice to retreat and the lake to drain before sedimentation 

began again during the Holocene. 

It is inferred that this laminated lake sequence must have taken place before deglaciation as 

if significant retreat had occurred prior to lt6 000 cal. years B'P relative sea level change 

wo~ld have inundated the lake basin (Shennan et al. 2006). Therefore, as Lake Tees was in 

existence at least between 18 000 and 16 000 cal. years BP ice must have been impounding 

it to the east by the North Sea Ice Lobe and west by ice from the Stainmore Gap. The lake 

also implies that ice flowing through the Stainmore Gap did not reach the east coast while it 

was in existence, as was proposed in Madgett and Catt (1978) and Foster (11986). 

While this record was approximately dated using the correlation of the varve record with 

the GISP record absolute dating is problematic. A radiocarbon date taken from the upper 

section of the core indicated that the laminated sediments were deposited prior to 7173-

7431 cal. years BP. In addition, a luminescence date of 18 365 ± 10·015 years BP was 
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taken from the core (Plater et al. 2000). This high error term, which is thought to be a 

result ef water content, makes the date highly unreliable . 
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Figure 49: Comparison between varve thickness in Tees Estuary core T9 and the GISP ice core record from 
Plater et al. (2000). Shaded area signifies area fine grained luminescence dated to 18 365 ± 10:015 years BP. 

6.3.3 Gransmoor 

Proxy records frem Gransmoor have also been used to investigate climate change in 

Y o~kshire. Lowe et al. ( 1995) used a coleoptera record which had been correlated with the 

GISP ice core record, While this record closely matches the GISP ice cere record it does 

not date back far enough to incorporate H1. Although a 4-5°C cooling is shown between 

14 700 and 14 000 cal. years BP following an abrupt warming (Figure 47). Nevertheless, 

due to the dates marking the de glaciation in Yorkshire this climatic caoling does not seem 

likely to have been related to,either ice advance at Upgang. 

6.3 .4 Climate of North Yorkshire during the last de glacial. 

These three records show that climate in Yorkshire was highly variable araund the time af 

the last deglaciation. Overall climate was slowly warming punctuated with cold spells that 

can tentatively be correlated with H1, 16 117 to 17 617 cal. years BP (Bond et al. 1992) 

and the LLS between 10 000 and 11 000 cal. years BP (Lowe and Walker 1997). 

However, many factors aside from climate may have caused the ice lobe te readvance (E.g. 

internal ice dynamics~. Most authors consider the tills deposited along the Yorkshire coast 

to have been depasited befare 20 000 cal. years BP, with the Kildale date cited as a date 
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indica~ing deglaciation of the whole area, although this is considered to be artificially old. 

In addition, the climate proxy records do not date far enough back to show a substantial 

amelioration in climate before this date that would have caused the ice sheet to retreat after 

the initial advance. The records also lack clarity and strong dating control at the beginning 

of the last de glaciation. 

It should also be noted that the ice in Yorkshire was sourced entirely from outside the 

region (Harrison t895) so that climate changes in the areas of ice accumulation would be 

significant. For example, a strong deterioration in climate in Scotland combined with an 

increase in precipitation would cause ice to readvance, although climate may not have 

changed significantly in Yorkshire. Therefore, it is difficult to tie early ice sheet 

readvances to the climatic record in Yorkshire. Nevertheless, Mayle et al. (1999) showed 

similar climatic patterns between Gransmoor (North Yorkshire), Whitrig Bog (Southern 

Scotland), and the GRIP ice core record (Figure 47). This similarity between a British 

climate record and the GRIP ice core record was also shown in Jones et aL (2002) at Hawes 

Water in Cumbria, (Figure 47). These inferred broadly similar climatic patterns throughout 

Great Britain. However, these records do not extent back as far as H1 as the areas 

investigated were still covererl: by ice. Although, if ice was readvancing into the area then it 

. follows that temperature would drop in Yorkshire due to the presence of ice and associated 

albedo affect creating a microclimate. 

6.4 Can a chronostratigraphicframewQrk be established for Upgang? 

The published data from the Tees Estuary along with the sediments from Dimlington 

provide an opportunity to correlate Upgang to these dated sites and, hence, establish a 

chronostratigraphic framework. If a correlation can be drawn with the tills at Dimlington 

or the Tees Estuary cores then the proposals relating to the glacial history of the area can be 

given greater strength and a relative chronology can be established. 

6.4.1 Dimlington - ClastJithology 

Both tHis found at Dimlington overlie the Dimlington silts that have been dated to 20 931 -

22 281 cal. years BP(Penny et al. 1969). If the tills at Upgang can be correlated with these 

glacial sediments then it can be inferred that they were deposited as part of the same ice 

advance and, hence, are contemporaneous. One method of correlating the two sites is by 
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clast lithology. If both sites have a similar erratic suite then it can be inferred that they 

have originated from the same source area and have similar ice flow direction histories. 

A clast lithological sample was taken from both the lower, Skipsea, and upper, Withemsea, 

tills at Dimlington in order to compare them with the multiple samples from Upgang (Table 

6). These two tills exhibit similar compositions to the tills at Upgang, although the 

percentages of each lithology vary. 
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Table 6: 'Fable showing the percentage of each lithology counted depending on sedimentary LFA. Upgang 
I ti . 'th' th LFA va ues.are averages rom sites w1 ID e 

Upper Lower 
Geology/Site %01 %02 %02A %028 %03 %SG Oimlington Oimlington 
Limestone 
(Magnesii:Jm) 30.26 28.09 33.95 45.74 44.29 34.63 
Shale 55.8 35.72 41.51 28.31 11.15 2.9 11.65 .. 

. Sandstone 
(Quartz) 7.48 6.56 10.3 11.86 33.16 7.12 

Mud rock 43.87 0.17 0.19 0.11 0.06 0.32 
Sandstone 
(Lithic) 6.87 6,66 5,03 5.97 1.01 9.06 

Limestone 
(Carboniferous) 0.33 3.4~ 3.47 3.8 7.39 2.43 2.27 

Greywacke 4.53 4.05 4.99 3.34 2.66 6A7 
Quartzite 2.71 1.83 2.28 1.99 3.08 3.56 

Quartz 1.44 0.77 1.74 1.21 3.43 0.97 

Siltstone 1.53 1.25 1.74 2.34 0.3 3.56 

Wacke 1.47 1.93 1.19 0.64 0.18 6.15 
Coal i 0.46 0.29 0;87 2.2 0.41 4.53 

Oolerite 0.72 0.39 0.98 2.06 1.78 0:65 

Ironstone 0.75 0.39 0.33 0.92 0:53 .0;32 

Porphyry 0.43 0.29 0.22 0:64 1.84 1.29 

Granite 0.26 0.1 0.12 0.32 

Andesite 0.32 0.39 0:64 0.47 0.32 

Old Red Sandstone 0.2 0.29 0.21 0;06 1.94 

Rhyolite 0.29 0.19 0.22 0.5 0.3 

Oosparite 0.23 0.58 
Sandstone (Arkose) 0.12 0.1 0.33 0;07 0;24 0;65 

Flint 0.17 0.29 0 .. 11 0.14 0.24 1;62 

Oiorite 0.09 0.1 0.11 

Chalk 0.14 2.59 

Pink Rhyolite 0.03 0.5 0.24 

Breccia 0.03 0.11 0.07 
Porphr;itic Rl:lyolite 0.06 0.1 
Pyrite 0.06 

Phosphate 0.12 0.1·9 0.22 0;06 

Hematite 0.03 

Chart 0.03 0.11 0.12 

Microgranite 0.06 0.28 0;06 

Many difficulties arise when comparing sites by litho logical content because the majoci.ty 

of clasts are locally derived (Boulton 1996), Therefore, the dominant lithologies at Upgang 

are sourced from the underlying Jurassic bedrock, shale, mudrock, limestone and 

sandstone, while the majority of clasts at Dimlington are derived from the Cretaceous 
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bedrock, chalk, flint and limestone. Consequently, it is the erratic suite that needs ·to be 

compared in order to establish if the sediments at Dimlington can be correlated with 

Upgang. This takes two courses, firstly looking at erratics from the samples at Dimlington 

that may have been derived from the Jurassic bedrock of Northern Yorkshire, and secondly, 

the further travelled mainly igneous, erratics. 

Both tills at Dimlington contain indicator erratics from the Jurassic sequence underlying 

Upgang suggesting that the ice depositing the tills at Dimlington had overrun northern 

Yorkshire. While many of the lithologies found at Dimlington could have been derived 

from the Jurassic sequence to the north, for example sandstone, they commonly belong to a 

variety of geological formations and, hence, wiU not be used for correlaHon. Nevertheless 

shale, Jurassic mudstone and Jurassic ironstone all distinctly belong to the Jurassic 

formation of North Yorkshire. However, this bedrock sequence extends offshore for over 

40 miles, so the ice that deposited the tills at Dimlington has not necessari'ly directly 

overrun the Upgang area but has still flowed from north to south. 

Dimlington also has a similar far travelled erratic suite to Upgang, suggesting that one ice 

lobe deposited the sediments at both sites. The upper, Withernsea Till from Dimlington 

shows relatively high quantities of coal and Whin Sill dolerite from the north east of 

England along with porphyry, granite and andesite from the Cheviot Hills. The lower, 

Slcipsea Till does not contain the erratics from north east England but does exhibit rhyolite, 

andesite and granite from the Cheviots. 

Tentatively, this suggests that both tills at Dimlington were deposited by the same North 

Sea Ice Lobe that deposited the tills at Upgang, However, it should be noted that none of 

these igneous erratics in either till are found in any significant quantity, although this is to 

be expected as the number of distally derived clasts decreases with transport length (Larsen 

and Mooers 2004). Also, as only one sample has been taken from each till it is possible 

that other indicator en:atics may be present at the site but have not been collected due to the 

small sample size. While other lithographical studies have been carried out on the 

Yorkshire coast, the original clast counts and quantity of lithologies found have not been 

published in detail preventing the expansion of the data set in this manor. In addition, the 

robustness of lithostratigraphical correlations has been questioned. In north Norfolk, 
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Hamblin et al. (2000) suggested that the Happisburgh Diamict represented an oxygen 

isotope stage (OIS) 16 event following the separation of three tills according to their 

lithological suites. This was later developed by Lee et al. (2004) who correlated other tills 

with this event based on the correlation of litho logical suites. However, Banham et al. 

(2001) queried this initial proposal as an 'OIS reading of the facts' (Banham et al. 2001 p 

8). It is stated that aside from the lithological content that the tills are very sim:iilar. In 

addition, assigning the Happisburgh Diamict to an OIS 16 event was considered to be in 

direct conflict with biologiCal and lithostratigraphical evidence. Thus, correlation and 

differentiation on a purely litho logical basis can be contentious. Nevertheless, many of the 

correlations between the tills along the Yorkshire coast have been based on the far-travelled 

proportion of clast lithological counts. 

6.4.2 Tees Estuary - Geochemistrv 

Geochemical data taken from Plater et al. (2000) provides another opportunity for 

correlation between Upgang and a dated site. Geochemical analysis was carried out on 

several cores taken from the Tees Estuary. For the purpose of this study only the 

geochemical results taken from the tills found at the base of the core have been used. This 

data is an average from these tills opposed to elemental data from each indi¥idual sample. 

The range of elements analysed in the Tees Estuary is smaller than at Up gang. Therefore, 

only the elements in both data sets have been used for correlation by cluster analysis 

(Figure 50) and chi-squared testing (Figure 51). Those elements that have only been 

measured at one location have been removed in order to gain a stronger correlation. 
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Cluster Dendrogram comparing geochemistry fromUpgang with the Tees Estuary 
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Figure 50: Cluster analysis dendrogram comparing the diamict from Upgang with the till found in the Tees 
Estuary. 

x"2 Reduced x"2 
Tees vs 02 463.63 92.73 
Tees vs. 
03 283.22 94.41 

Figure 51: Chi-squared values .correlatmg the geochemtst:cy from the Tees Estuary till (Plater et al. 2000) and 
that atUpgang. 

Neither of these methods displays a strong correlation, with very high reduced chi-squared 

values and high dissimilarity values with both Dl and 02. However, correlation between 

sites using geochemistry has many of the same difficulties as clast lithologies. Locally 

derived elements make up the dominant proportion of a geochemical data set (Larsen and 

Mooers 2004). Therefore, as the Tees Estuary over:lies Triassic bedrock withJurassic 

bedrock below Up gang, the geochemistry of the tills in both areas will be distinctly 

different. Other factors will also influence the geochemistry data leading to poor 

correlation, for example weatheJJing. As the tills sampled from the Tees Estuary have been 

obtained from estuarine cores they could have been weathered differently from those taken 

at the exposed coastal section of Up gang. Problems also arise when comparing samples 

using a data set derived and published by another author, especially if their techniques are 

unknown (Banham et al. 2001 ). Elemental analysis at each site was carried out using 

different equipment which could have different sensitivity levels. Also the data from the 

Tees looked at a smaller set of elements than the samples from Up gang. While only the 

elements analysed at both sites where used in the correlation statistics the values from 

Upgang could be affected as they were quantified initially as part of a larger data set. 
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Nevertheless, this does not mean that the ice depositing the sediments at Upgang didn't 

overrun the Tees Estuary area as the red colouring of the upper till at Upgang, D3, was 

attributed to the Triassic Marls underlying Middlesbrough and extending offshore (Radge 

1'939) (Figure 4). This con:elation in colour was further developed by Agar (1954) 

suggesting that the Tees Red and Drab tills correlated with the Purple and Drab clays at 

Upgang and along Holdemess based on colour. It should be noted, however, that 

correlation on colour alone is inconclusive as many other factors can alter colour, for 

example weathering profiles (Eyles and Sladen 1981). 

6.5 Timing of the ice sheet advances at Upgang. 

It is necessary to establish the timing of the advance-retreat-readvance signal at Up gang so 

that any correlations with Heinrich Event 1 (H1) and other British Last Glacial Maximum 

(LGM~ readvances can be made. The tentative correlation between the tills at Up gang and 

Dimlington discussed in Section 6.4, along with de glaciation dates from Yorkshire, allow a 

relative chronology to be discussed for this glacial sequence. 

The date of 20 931-22 281 cal. years BP (Penny et al. 1i969) from Dimlington was taken 

from a layer of silt underlying both the Skipsea and Withemsea tills. As a result both ofthe 

Dimlington tills must have been deposited after this date, with at least the Skipsea Till 

representing the LGM along the Holdemess coast. The correlation between the tHis at 

Dimlington and Upgang implies that both Upgang tills were also deposited after 20 931 -

22 281 cal. years BP. De glacial dates for Yorkshire come from the vegetation records of 

Kildale, 19 144-20 537 cal. year BP (Jones 1977); and Roos Bog, 14 360-12 628 cal. years 

BP (Beckett 1981). While the Kildale date was believed to be artificially old due to hard 

water errors (lnnes 2002}, the date from Roos Bog was thought to be too young. 

Nevertheless, these dates show that Yorkshire was deglaciated at some time between 19 

000 and 14 000 cal. years BP. These dates along with the date from Dimlington show that 

the advance-retreat-readvance signal at Upgang must have been deposited between 21 000 

and 19 000-14 000 cal. years BP. 

Evidence from the climatic records discussed in Section 6.3 show a clear cooling phase 

between c. 16 000 cal. years BP and 17 000 cal. years BP suggesting that the readvance 
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signal could have been driven by climate. This is supported by the strong association 

between the British climatic records and the Greenland ice core records which show clear 

drops in temperature associated with H1. Therefore, tentatively the readvance sediments at 

Upgang can be correlated to Hl. In addition, the existence of Lake Tees around this time 

implies that ice must have been present at least as far south as the Tees during this period. 

However, the readvance signal represented by 03 may be a result of internal ice dynamics 

and not climate. 

Thus, it is proposed that amajor ice advance occurred after 21 006 cal. years BP depositing 

the lower tills, D 1 and D2 at Up gang e~tending at least as far south as Dimlington. It is 

therefore, these tills that represent the LGM event at Upgang. The ice lobe then retreated 

further north than Upgang resulting in the deposition of the proglaciallake sediments, SG. 

Ice then readvanced to a location south of Up gang depositing 03. It is this readvance that 

is cautiously correlated to climatic cooling and H1. Without absolute dating control at 

Upgang this hypothesis cannot be strengthened. 

6.6 How does Upgang fit in with proposed Last Glacial Maximum (LGM) readvance 

signals in Great Britain and Northern Ireland? 

A number of glacial readvances at the end of the last glacial maximum (LGM) have been 

proposed for different parts of Great Britain and Ireland, on the basis of sedimentological 

and chronological evidence. The two most significant areas of readvance in terms of dating 

control and the number of papers published are in the Irish Sea Basin (ISB) (McCabe et al. 

1998, Merritt and Auton 2000, Thomas et al. 2004, McCabe and Clark 2003, Roberts et al. 

2006, McCabe et al. 2007b) and in the east of Scotland (Hall and Jarvis 1989, Peacock 

1997, McCabe et al. 2007a). Dates relating to these sites along with other sites of 

readvances and the key dates from Yorkshire are shown in Table 7 and Figure 52. 
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Table 7: Published dates marking the deglacial chronology of the east coast of Britain; 

Site Radiocarbon Calibrated Date Site details Literature Source 
Date 

Heinrich Event 1 13 490- 14 500 16 117- 17617* Not specified Bond et al. (1992) 
Bremanger Moraine, 15000-13300 18 085- 18556 * Various microfossils from Nygard et al. (2004) 
Norway 15448- 16138 * glaciomarine unit above 

till. 
Killard Point, Northern 13 785 ± 115 c. 16 500 E. clavatum from marine McCabe et al. (1998) 
Ireland 13 955 ± 105 mud in interbedded 

outwash from Killard 
Point moraine. 

Jurby Head, Isle of Man 15 150 ± 350 li8 578- 17 624 Organic mud overlying 'Ihomas et al. (2004) 
12 890 ± 360 1'5 992- 14 370 the Jurby Formation. 

Jurby, Isle of Man 12 276 ±45 t:3 983 - 14 402 Salix within kettle hole. Roberts et al. (2006) 

Glen Balleria, Isle of 12 492 ±92 14 170-14 996 Salix Witb.in kettle .hole. Roberts eta/. (2006) 
Man 

Blenliam Bog, Cumbria 14 330 ± 230 16 4~6 = 17 985 * Lowest organic material Pennington and 
14280 16 675-17 428 * in kettle hole; Bonny (1970) 

St Bees, Cumbria NIA 15 500 - 1'4 300 Not specified. Thomas et al. (2004) 

Dundalk Bay, Northern 14 157 ±69 16 455 - 17 303 * E. clavatum from McCabe et al. (2005) 
Ireland deformed mud below ice 

pushed morainic 
sediments. 

Wester Ross, Scotland NIA 15 500 ± 240 CUSe) Boulders within the Everest et al. (2006) 
(Cosmogenic date) 17 900 ± 310 ( 111~e) Wester Ross moraines. 

St Kilda, west Scotland 15 200 18 545 - 18 722 * From vibrocores south of Peacock.et al. (1992) 
St Kilda. 

StFergus, east Scotland 14915±210 17 386~ 1,8 727 * St Fergus Silts, towards Hall and J arvis 
top of deposit. (1989) 

Lunan Bay, east 17065 ±50 20 250±40 From raised marine mud McCabe et al. (2007) 
Scotland 17120 ±50 21 130 ±90 overlain by ice contact 

gravel. 
Gallowflat, east 13 655 ±45 16 355 ± 130 From laminated muds 1 m McCabe eta/. (2007) 
Scotland 13 675 ±40 16 385 ± 125 above glacial diamict 

Dimlington, Yorkshire 18 240·± 250 20 931 - 22 281 * Moss within the Penny et al. (1969) 
Dimlington silts. 

Dimlington, Yorkshire NIA 17 500 ::1: 1.6 X 1 0' The loess component of a Wintle and Catt 
(TL date) (TL) solifiuction deposit (1985) 

overlain by till. 
Kildale, Yorkshire 16 713 ± 340 19144_;20537 * Moss within a thick shell Jones (1977) 

marl. (date area was ice 
free) 

J:he Bog, Roos, 13 045 ± 270 14 360-12 628* From a kettle hole within Beckett eta/. (198'1) 
Yorkshire Withernsea till. 

* Caltbrated from published 14C date usmg Caltb Rev 5.0.1 (two stgma ranges) 
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Figure 52: Map indicating the location of sites listed in Table 7. 

The lack of absolute dating control on the site at Upgang makes it impossible to correlate 

the readvance studied with other readvances around Great Britain and Northern Ireland 

with any great certainty, especially with regards to Hl. However, relationships have been 

drawn due to the dates available within Yorkshire. As a result of the dates underlying the 

till at Dimlington, 20 931 - 22 281 cal. years BP, the overlying glacial sediments must have 
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been deposited after this date. As discussed in Section 6.5 the evidence from climatic 

records allows the tentative correlation of the readvance till, D3, at Upgang to Hl. As a 

result the readvance signal at Upgang would correspond with the late glacial readvances in 

the ISB, east Scotland and other parts of Great Britain. However, without absolute dating 

of the sedinlents at Up gang no stronger hypothesis can be formed regarding the chronology 

of events and the potential links with other sites around the country. 

6. 7 Project limitations and further work. 

The major limitation of this project is the lack of direct dating control on the sediments at 

Upgang. This prevents any strong conclusion regarding the timing of the readvance being 

formed. However, a readvance signal was established from the sedimentological analysis 

and it has been possible to consider the site within the context of the glacial history of the 

Yorkshire coast. A corollary of this limitation is the inability to strongly correlate Up gang 

to any of the dated sites in Yorkshire. This is a result of the limitations attached to 

lithostratigraphical and geochemical correlation along with time constraints; preventing 

geochemical analysis of sediments at Kildale, addition geochemical sampling from the Tees 

Estuary and a greater clast lithological analysis of Dimlington. Strong correlation between 

sites would have given the site a clearer, stronger chronology in the absence ·Of direct dating 

evidence. 

In order to overcome this limitation it may be possible to optically stimulated luminescence 

(OSL) date the sand units within SG. This would help to provide a clearer chronology of 

the sediments at Upgang. In addition, it would be an extra date relating to the glacial 

history of Yorkshire and would allow correlation with other deglacial stratigraphies around 

Great Britain and Ireland. 

Additional further work would involve the study of other sites north ofHoldemess to assess 

the extent of the proposed readvance. These sites along with those in Holdemess also need 

to be studied to establish if there is evidence for only one ice lobe advance in the area, 

Detailed clast lithology studies would be vital in this context in order to verify the presence 

of only a northern North Sea Ice Lobe. 
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7. Conclusions 

The coastal section of Upgang, North Yorkshire, shows a distinct advance~ retreat­

readvance sequence. This consists of a grey diamict, D 1, at the base and an overlying 

brown diamict, D2. These tills were deposited during the initial advance of ice. A sand 

and gravellithofacies association was then deposited during the retreat of the ice. The 

section is topped by a reddish brown diamict, DJ, which represents the readvance event. 

D 1 is either a glaciotectonite or an overrun pro glacial thrust feature made up from the local 

shale and mudrock bedrock. Deposited during or prior to the initial ice advance the LF A 

was detached from the bedrock, transported a short 'distance, broken up and then deposited. 

This LFA only outcrops in parts of the cliff section with the degFee of brecciation varying 

between highly deformed and relatively untouched. 

D2 directly overlays D1 with a sharp distinct boundary between the two. 1)2 is a 

homogenous matrix supported diamict which has been interpreted as a sub glacial traction 

till dominated by deformation processes. The clast form and clast fabric data along with 

the presence of boudins, folds, rafts and laminations support this hypothesis. In addition, 

the sharp boundary between D 1 and D2 is interpreted as a decollement plane which is can 

also be seen as indicative of deformation processes occurring at the bed of a glacier. Till 

has been thickened during deposition by till stacking. Clast litho logical analysis from this 

LFA indicates that ice was sourced from Southern Scotland flowing through the Cheviot 

Hills and the North East of England. 

Ice then retreated from the Upgang area resulting in the deposition ofthe clays, silts, sands 

and gravels. This LF A represents a lake that was subsequently infilled through pro glacial 

subaerial sandur sedimentation. At the base of the sequence SG 1 represents a deep lake 

with fmes and sands deposited through suspension. SG2 then represents the shallowing 

and infilling of this lake with laminated and rippled sands deposited by underflow and 

suspension deposition. SG3 is a gravel fades, with coarsening upward units and trough 

bedded channels indicating proximal channels and indicates an increasing proximity to the 
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ice front. The presence of SG4, a thin layer of sand, indicates either proglacial or 

subglacial sheet flow within a wide shallow channel. 

This ice readvance deposited the reddish brown diamict of D3. D3 has also been 

interpreted as a subglacial traction till dominated by deformation processes. As with D2 

this is due to the clast form and clast fabric data supported by boundinaged sand and clay 

inclusions. The LFA was thickened by the process of till stacking resulting from Upgang's 

close proximity to the high ground around the North Yorkshire Moors. Clast lithology 

shows that D3 has the same provenance as D2, with ice originating from Southern Scotland 

and Northern England. 

This advance - retreat - readvance signal does not mirror the published stratigraphy of the 

Yorkshire coast. It is proposed that the section at Up gang has been deposited by a single 

northern ice lobe, and not a multilayered Lake District and northern ice mass as previously 

suggested. This questions the modes of deposition proposed for the Skipsea and 

Withernsea Tills along the remainder of the Yorkshire coast. The extent of the ice 

readvance seen at Up gang is unknown and further work on the exposures south of this area 

is needed to verify this limit. 

Clast lithological s~udies at Upgang and Dimlington show that both sites have a similar far 

travelled erratic suite. Hence, it can be hypothesised that the two tills at Upgang were also 

deposited post 21 000 caL years BP by a single northern ice lobe. It is proposed that the 

initial advance depositing D 1 and D2 occUITed immediately after c.21 000 cal. years BP 

r~presenting the LGM till at Upgang. 

The climate records from Kildale and the Tees Estuary show a decline in climate around 16 

000 cal. years BP, broadly corresponding to Heinrich Event 1. Therefore, this deterioration 

in climate is cautiously proposed as the mechanism causing the ice readvance that 

deposited 03 at Upgang. Thus, the readvance signal is tentatively correlated with Heinrich 

Event 1 and the other Last Glacial Maximum readvances around Great Britain. 
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