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Quantal calculations on the 
rovibrational excitation of H2 

and HD induced by H 

Steven A. Wrathmall 

Abstract 
Cross sections have been computed for non~reactive rovibrational transitions 
of H2 and HD, induced by collisions with H atoms, using the H+H2 interac
tion potential calculated recently by Mielke et al. (39] and an earlier potential 
of Boothroyd et al. [38]. The calculations relate explicitly to non-reactive 
scattering, excluding the proton-exchange channels. Cross sections derived 
using a simple harmonic oscillator approximation to the vibrational motion 
are compared with results obtained using numerically 'exact' solutions of the 
rovibrational eigenvaJlue equation. The convergence of the cross sections with 
respect to the size of the rovibrational basis set is investigated. Convergence 
is found to be slow, owing to the strength of the collisional coupling between 
vibrational manifolds. 

The cross sections are used to derive the rate coefficients for the rovibra
tional excitation of H2 and HD by H. For viorationally inelastic transitions, 
the new rate coefficients at T "' 1000 K are larger than the results of ear
lier calculations in which the vibrational motion was treated approximately, 
by means of a simple harmonic oscillator model. As a result, much better 
agreement is oDtained with the empirical estimates by Allers et al. (59] of 
the rate coefficients for vibrational relaxation of the levels (v, j) = (1, 3) 
and (2, 3) of H2 . However, the effects of the new data on the resmts of 
illustrative astrophysical models are less pronouncecl than the changes to the 
rate coefficients for vibrationally inelastic transitions might suggest. 
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Chapter 1 

Introduction and Motivation 

In this chapter the basic concepts of collision theory are introduced. The mo
tivation for investigating collisions in the H +H2 and H + HD atom-diatom 

systems is discussed, and the general research aims of this thesis are pre

sented. 

1.1 Atom-molecule collision theory 

When investigating the properties of an atomic or molecular system some 

quantities of interest (e.g. the interaction potential of the system) cannot 

be measured directly. Rather, other quantities, Sl:lch as cross sections or 

rate coefficients, are measured which can be used to derive indirectly the 

quantity of interest. Atom-molecule collision theory provides a framework 

relating these measured quantities (e.g. rate coefficients, cross sections, etc.) 

to various properties of the atomic and molecular system ( e,g. interaction 

potential, bound energy levels, etc.). 

The theoretical framework for atom-molecule collisions has been developed 

extensively over the past five decades. The growth in the field is closely 

linked to growth of computing technology. With the advent of larger and 

more powerful machines there exists more powerful techniques and routines 

for solving the Schrodinger equation. The complexity of the problem, and the 

accuracy of its solution, is often limited by the available computing power. 

The calculations prese:n.ted in this thesis consider atom-diatom collisions in 

2 



Chapter 1. Introduction and Motivation 3 

which the interaction potential is already gi;ven. In this case the cross sections 

and rate coefficients are calculated, for the given interaction potential, with 

the goal of achieving the highest accuracy that is computationally practical. 

1.1.1 Cross sections 

The cross section, C1f=•i', for a process resulting in a system in state j under

going a transition to state j' is defined as the transition probability per unit 

time, per unit target scatterer and per unit flux of the incident particles with 

respect to the target, Classically, the cross section is interpreted as an area 

centred on the target scatterer through which an incident particle must pass 

for the transition, j --+ j', to occur and is defined [1] by 

(1.1) 

where P;-+;'(b~ is the transition probability for impact parameter b. Using 

atomic units the impact parameter is related to the angular momentum, l, 

through the relation 

2p,Eb2 - l(l + 1) 

- k2b2 
' 

(1.2) 

where k is the wave number at collision energy E and p, is the reduced mass. 

Through differentiation of equation (1.2) and setting dl = 1 in the quantal 

limit one obtains 
b db= 2l + 1 

2k~ ' 
(1.3) 

which enables the quantum mechanical equivalent of equation (1.1) to be 

obtained as 

Uj-+j' = ;. L:(2l + 1)Pj-+j'(l) ' 
J l 

(1.4) 

where k; is the wave number in the initial channel. Assuming the state j is 

degenerate with w; degenerate sub-levels labelled by 0 then the transition 

probabilities are given by the relation 

(1.5) 
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where T(l) is an element of the transition matrix T. The transition matrix 

contains all the information on the scattering process [2]. It is related to the 

scattering matrix, S, thi'ough 

8=1-T, (1.6) 

where 1 is the unit matrix. The scattering matrix is related to the reactance 

matrix K by 

S = (1 + iK)(1- iK)-1
, (1.7) 

where i is J=T, and the elements of the reactance matrix are rea:l. Often, the 

reactance matrix, K, is calculated first, and the transition, T, and scattering, 

S, matrices are determined from it using the above relations [2]. The incident 

fl:ux of the particles is conserved, therefore 

L IS;'O',jOI
2 

= 1 (1.8) 
j'O' 

The S matrix is symmetric, due to time-reversal s~etry (micro reversibil

ity), thus its elements are related by 

(1.9) 

which gives the relationship between cross sections for the scattering process, 

and its reverse process, as 

(1.10) 

Note: The symmetry of S implies the symmetry of T and hence equation 

(1.1) is obtained through use of equations (1.4) and (1.5). However this is 

for the subset of problems where l is conserved. 

Cross sections, in atomic and molecular physics, are typically given in units 

of w-16 cm2 • 

1.1.2 Rate coeflicients 

Rate coefficients are usually required to interpret experimental data or as

tronomica:l observations. The calculation.s presen.tecl. in this thesis involved 
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determining the thermally averaged (MaxweHian) rate coefficients, which are 

related to the cross sections through 

(av)i--i' = (B:aT)! 100 

Xja(xj)e-xidxi, 
.f..t 0 

(1.11) 

where xi = p,vJ /2kaT, vi is the relative collision speed, ka is Boltzmann's 

constant, and ( 8kaT / 1r J.t) 112 is the mean thermal speed at kinetic temperature 

T. 

Rate coefficients are typically given in units of cm3 s-1. 

1.2 Molecules in space 

Over the past 70 years it has been determined that the interstellar gas con

tains a variety of molecules [3]. Although originally thought to contain a gas 

predominantly made only of hydrogen atoms and ions, a variety of molecular 

species from simple diatomics to complex organic species have now been ob

served. The molecules tend to be found in dense extended regions and also in 

highly dense star forming regions [4]. Understanding :molecular processes not 

only provides information about the the evo11ltion of these regions, but also 

provides a way of determining the composition and various physical proper

ties of the gas (e.g. kinetic temperatl.ITe, atomic and molecular abundances, 

densities, etc.). 

1.2.1 The importance of Hydrogen 

Molecular hydrogen, H2 , is the most abundant molecule in the universe and 

is the most abundant molecule present in interstellar molecular gas clouds [3]. 

Electronic, rotational, and rovibrational transitions have been observed for 

H2 in the interstellar medium [5-8] through use of a wide range of observing 

techniques (as these transitions occur over a wide range of wavelengths~. As 

a consequence of its high elemental abundance atomic hydrogen can also be 

the most abundant atomic species in interstellar molecular gas clouds. 

In some regions, atomic and molecular hydrogen have comparable number 

densities. In these regions there are several astronomical contexts in which 
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inelastic collisions involving H2 molecules and H atoms are crucial to the 

thermal balance of the medium: 

• In the primordial gas, subsequent to the recombination of H+ with elec

trons at redshift z"' 1000, the most abundant species wasH, followed 

by He; but there were trace amounts (fractional abundance "' 10-6
) 

of H2 [9]. Rovibrationally inelastic scattering of H on H2 and on 

its singly--deuterated form, HO, provided the cooling essential to the 

gravitational collapse of inhomogeneities in the primordial gas and the 

formation of the first stars. 

• In the Galactic interstellar medium, shock heating of molecular gas 

can lead to partial dissociation of H2, in which case H+H2 collisions 

determine the thermal profile and chemicaJl evolution of the post-shock 

gas as it cools to its equilibrium. state. 

• In photon-dominated regions of the interstellar medium, which are ex

posed to sources of ultraviolet radiation, there exists a region of overlap 

of atomic and molecular hydrogen, where the optical depth in the ultra

violet electronic absorption bands of H2 becomes sufficient to shield the 

H2 deeper in the cloud from the dissociating radiation ('self-shielding'). 

The kinetic temperature in this region is controlled by inelastic H + H2 

collisions. 

For observations, and computational simulations, of these regions to be in

terpreted accurately there must be accurate rate coefficients available for the 

H+ H2 and H + HD systems. 

H + H2 and H + HD are ostensibly the simplest atom-molecule systems, in

volving only three singly charged nuclei and three electrons. Accordingly, it 

might be anticipated that the cross-sections for rotational and rovibrational 

excitation of H2 and HD by H would be well established. However, this is 

not the case: the H+ H2 interaction comprises a very shallow van der Waals 

potential well ( rv 20 K), where the atom-molecule interaction is only weakly 

anisotropic. Because the region of the van der Waals minimum. is crucial in 

calculations of rotational excitation cross-sections at low collision energies, 

such calculations impose stringent requirements on the accuracy to which the 
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absolute H + H2 interaction energy must be calculated. Furthermore, as the 

collision energy increases, approaching values comparable to the barrier to 

proton exchange ( rv 5000 K), reactive scattering can occur. At such energies, 

the H + H2 interaction gives rise to strong collisional coupling between the 

vibrational manifolds of the molecule. As a consequence: 

1. The rovibrational cross-sections converge slowly with the size of the set 

of rovibrational states. 

2. More care than usual must be taken with the representation of the 

rovibrational wave functions of the molecule. 

In SJ!)ite of the difficulties outlined above, the H + H2 system offers a unique 

opportunity to perform essentially exact calculations of rovibrational cross

sections. Owing to the low mass of H2 , and hence its large rotational con

stant, there are only 318 bound rovibrationallevels, with the largest value 

of the rotational quantum number, j, being j = 29. _Consequently, quan

tum mechanical calculations using the exact coupled-channels method, with 

a complete or near-complete basis of bound rovibrational states, might be 

envisaged. 'The H + HD system contains 399 rovibrational energy levels with 

the largest va:lue of the rotational quant1m1 number, j, being j = 35. 

Unlike H2 , HD has a small but finite permanent dipole moment. It follows 

that radiative transitions with tlj = 1 are permitted in HD, whereas the 

(electric quadrupole) selection rule in H2 is tlj = 2. Similarly, in collisions 

with H, transitions of HD involving odd values of j can occur, even in the 

case of non-reactive scattering, when there is no exchange of protons. On the 

other hand, during non-reactive scattering of H on H2 , oaly those transitions 

with even values of j are permitted, thus preserving ortho-H2 (j odd) and 

para-H2 (j even) as distinct species. 

1.3 Previous studies of collisions in H+H2 and 

H+HD 

The rotational and rov:ibrational excitation of H2 resulting from collisions 

with H has been the subject of many previous quantum mechanical studies 
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[lQ-18]. 

The rotational and rovibrational excitation of HD resulting from collisions 

b>y H has been the subject of the following previous quantum mechanical 

studies [1!9, 20]. 

1.4 Research aims 

The aims for the work presented in this thesis were as follows: 

1. 'Fo calculate cross sections, as a function of collision energy, and 

thermally=averaged rate coefficients, as a function of kinetic tempera

ture, for the H + H2 and H + HD atom-diatom systems, using the most 

accurate input data and methods availa:ble, and compare with those 

obtained from previous calculations. 

2. 'Fo apply the newly calculated rate coefficients to astrophysical pro'b

lems, relevant to the H+H2 and H+HD systems, and compare the 

output to that obtained from using rate coefficients calculated previ

ously. 

1. 5 Thesis outline 

This rest of this thesis is structured as follows: 

• Part 2: Theory - The background theory and calculation meth

ods are discussed. Chapter 2 presents the coupled-channel theory of 

atom-diatom scattering and the theoretical concepts used to determine 

the cross sections and thermally averaged rate coefficients. In Chap

ter 3 the interaction potentials available for H + H2 are analysed, and 

the potentials most appropriate for our calculations are discussed. In 

Chapter 4 the computational methods used in the scattering calcula

tion are presented. The methods used to test their validity are also 

discussed. 
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• Part 3: Results - The cross sections and rate coefficients calculated 

for the H+H2 and H+HD systems are presented in Chapter 5 and 

Chapter 6, respectively. Several applications of the results, including 

those of an astrophysical context, and their implications are discussed 

in Chapter 7. 

• Part 4: Co:nclusions and Future Work- The conclusions drawn 

from performing the scattering calculations, and their application, are 

discussed in Chapter 8. Possible improvements and further work on the 

scattering calculations and their applications is presented in Chapter 

9. 

• Part 5: Appendices - contains the appendices and other supporting 

material. 

1.6 Pubi:ished work 

The work in this thesis has been partially covered in the following publica

tions: 

• A quantum-mechanical study of rotational transitions in H2 induced 

byH 

WrathmaU SA and Flower D R 2@06 J. Phys. B: At. Mol. Opt. Phys. 

391249 

• The rovibrational excitation of H~ induced by H 

Wrathmall SA and Flower D R 2007 J. Phys. B: At. Mol. Opt. Phys. 

40 3221 

• The excitation of molecular hydrogen by atomic hydrogen in astrophys

ical media 

Wrathmall' SA, Gusdorf A and Flower DR 2007 Accepted for publica

tion in MNRAS. 
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Chapter 2 

Scattering Theory for 

Atom-Diatom Collisions 

This chapter presents an overview of the theory of non-reactive atom-diatom 

scattering. The theoretical framework, for atom=diatom coUisions, has been 

developed extensively over the past five decades. The theoretical methods 

have been presen.ted many times and comprehensive sources include [1], [21] 

and [22]. The overview given here foliows the presentation of Flower [21] 

in which the Born=Oppenheimer approximation is introduced first followed 

by the theory of rotational excitation in atom~atom collisions, the theory 

of rovibrational excitation in atom-diatom collisions, the solutioB of the re

sulting coupled-channel equations, and the determination of the thermally

averaged rate coefficients. 

2.1 The Born,_Qppenheimer Approximation 

Consider the collision between a one electron atom, A, and a fully stripped 

ion, B. We con.sider this system for illustrative purposes; the conclusions 

drawn can be generalised for collisions between atoms and molecules. Atomic 

l:lllits are adopted, in which e = me = 1i = 1, throughout this and the 

following discussions. 

When studying the collisions we are iBterested in the relative motion of the 

particles and not in the motion of the centre of mass ( barycentre) of the 

11 
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system. The velocity of the centre of the mass remains constant and is, 

therefore, irrelevant to the scattering processes. 

We denote the position of the centre of mass relative to a space-fixed or 

laboratory reference frame as Re, the coordinates of atom A and ion B as 

RA and Ra, respectively, and R is a vector connecting the centre of mass 

of A to B in the direction of A to B (see figure 2.1). We have defined the 

position of the centre of mass such that 

where the momentum of the system given by 

mARA +maRs - mA(Rc- RAc) + ma{Rc +Rea) 

- (mA +ma)Rc, 

(2.1) 

(2.2) 

with use of equation (2.1). Therefote the momentum of the system is due to 

the total mass, located at the centre of mass Re. 

The kinetic energy of the system is given by 

where J.t = mAma/(mA + ma) is the reduced mass of the system. Therefore 

the kinetic energy consists of two components: 

1. The first component is due to the kinetic energy of the total mass 

m0ving with the velocity of the centre of mass. 

2. The second component is due to the reduced mass moving with the 

relative velocity, R, of A and B. 

Assuming the system is isolated, the velocity of the centre of mass is constant 

and therefore may be removed by an appropriate change 0f inertial frame. 

We are left with the kinetic energy due to the relative motion of A and B, 

which may be used to excite internal degrees 0f freedom system. Thus we 
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may consider the atom, A, to move with with mass, J.l-, relative to a fixed 

centre of force, B. 

The Hamiltonian of system AB may be written as 

'V~ H(x,R) = HA(x,R)- 2; + V(x,R), (2.4) 

where x is the position vector, with respect to the centre of mass of A and 

B, of the electron, HA(x, R) represents the electronic Hamiltonian of the 

atom A, V(x, R) represents the interaction potential between A and B, and 

- 'V~ /(2J.1,) is the relative kin.etic energy operator. In collision problems we 

aim to solve the eigenvalue equation 

H'II=EW, (2.5) 

where E is the total barycentric energy of the colliding system, which is the 

relative kinetic energy of A and B at infinite separation. 

The wave function is of the form W = W(x, R). We now write the wave 

function in the following form, which retains generality but hints at the 

separation of the relative coordinates, R, and the electronic coordinates, x: 

(2.6) 

At fixed R (where R = IRI)., equation (2.6) is an expansion of the wave 

function in terms of the solutions of the wave equation 

[HA(x, R) + V(x, R)]4>i(x, R) = Ei(R)4>i(x, R) , (2. 7) 

which form an orthonormal set of functions, such that 

(2.8) 

Substituting equation (2.6) in the eigenvalue equation (2.5) and projecting 

out 4>i by operating with J dx 4>j{x., R) on both sides of the equation, we 

obtain 

[ ~~: + Ei(R)--- El Fi(R) 

= ~. . [(4>JI'Val4>i)·vaFi.(R) + (4>JI V~ l4>i)Fi(R)l (2.9) 
~-. . J.1, ~ 
' 
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The terms on the right hand side of equation (2.9) are due to coupling be

tween the electronic and relative motions. Were it not for their presence we 

would have succeeded in separating the eigenvalue equation into: 

• Equation (2. 7) for the electronic motion at a given value for R, and 

• Equation (2.9) for the relative motion on a given electronic potential 

energy surface, Ei (R). 

The Born=Oppenheimer approximation, also know as the 'adiabatic' approx

imation, consists of n.eglecting the terms on the right hand side of equa

tion (2,9~. These terms give rise to transitions between potential energy 

surfaces. For the purpose of this discussion, the rovibrational excitation in 

atom-diatom collisions, the collisions are assumed to take place along a single 

adiabatic poten.tial energy surface. 

2.2 The scattering of a:n atom by a rigid rotor 

Following the ana:lysis of Flower [21] we fust consider the scattering of an 

atom by a rigid rotor. We consider both space-fixed and body-fixed reference 

frames analyses for the collisions and develop the scattering formalism for 

both cases. 

The theory for atom-diatom scattering is presented for the space-fixed frame 

(SF) and body-fixed (BF) frame for several reasons: 

• The framework for either representation is equivalent. Identical cross 

sections are obtained using either coordinate system. 

• Some problems are more suited to one representation. This is often 

due to the behaviour of the interaction potential under consideration. 

• The computational programs used to calcUilate the cross sections use 

one, or both, of the coordinate systems. 

Figure 2.2 illustrates the relationship between the coordinate systems. In the 

space-fixed coordinate system the polar coordinates of the atom are defined 
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by a coordinate system whose origin is at the centre of the mass M of the 

rotor BC and is fixed in space. Two further angles define the orientation of 

BC in the same coordinate frame. 

In the body-fixed coordinate system the polar angles of BC are defined rel

ative to a coordinate system whose Z~axis coincides with MA and rotates 

in space through the course of the collision. This reference frame offers a 

more natural way of expressing the interaction potential, which depends on 

R and (}' only. However, as BC is rotating in a coordinate system which is 

also rotating, we have to consider the effects of Coriolis forces and centrifugal 

forces when using the body-fixed system. 

The orientation of the body-fixed (BF) Z-axis relative to the space-fixed 

frame (SF), xyz, is denoted by (8, <P). More comJi)rehensive details of each 

system are given in the discussion below. 

2.2.1 The space-fixed frame method 

The scattering of a structureless particle by a rigid rotor was first considered 

in a quantum mechanical context by Arthurs and Dalgarno [23]. They con

sidered a collision between a particle without internal structure (or whose 

internal structure may be neglected) and a two-particle system possessing 

internal angular momentum. The system is treated in the 'space-fixed' (SF) 

sense; in that the degrees of freedom of such a system are defined by the 

three polar coordinates of the atom, A, in a coordinate system whose ori

gin is at the centre of mass, M, of the rotor, BC, and which is fixed in 

space along with two further angles defining the orientation of BC in this 

same coordinate frame. In this system the atom moves with reduced mass 

p, = mA(ms + mc)/(mA + ms +me) relative to the centre of mass of BC. 

We denote the polar coor:dinates of the atom A in the SF frame as 

(R, 8, <P).The polar angles of the rotor, BC, relative to the SF frame are 

gi¥en by (8, </>). 

We begin calculations by expressing the wave function of the rotor in terms 

of a complete orthonormal set of functions of the polar angles ( (}, </>). The 

normalized spherica:l harmonics, Y, form such a set. We denote the angular 
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A 

Re 

0 
Rs 

B 

Figure 2.1: In this figure the space-fixed coordinate system of atom, A, the 

fully stripped atom, B, and their centre of mass, C, are denned. 

z 

y 

Z A 

Figure 2.2: The space-fixed c0ordinate system xyz and the body-fixed Z

axis for the collision. between an atom A and a rigid rotor BC, whose centre 

of mass is M. The coordinates R and ()' are known as 'Jacobi coordinates'. 

[21] 
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momentum quantum number of the rotor by j and its projection on the SF 

z-a.xis by m, therefore 

with 

(2.11) 

where .lj(cos (}) is an associated Legendre polynomial [26]. 

The functions in equation (2.1(!)) are eigenfunctions of j 2 and iz, with eigen

values j (j + 1) and m respectively, with 3 as the angular momentum operator. 

The total angular momentum of the system is composed of the angular mo

mentum of the rotor, j, and the angular momentum of the atom :relative to 

the rotor, I: 

J- j+l, 

Jz - iz + lz · 

The total angular momentum is conserved <during the collision. 

The eigenfunctions of j 2 and iz are given by }jm:((}, 4>). The corresponding 

eigenfunctions for 12 and lz are given by Yim1(8, <I>), with eigenvalues of l{l+1) 

and mz, respectively. The product of }jm((}, 4>) and Yim1(8, <I>) is an eigen

function of j 2 , iz, 12 and lz, but it is not an eigenfunction of the total angular 

momeBtum operators J 2 or Jz. Eigenfunctions for J 2 and Jz are formed by 

(2.12) 
mm1 

where M= m+ mz and c~-:n,M is a Clebsch~Gordan coefficient [27-29}. 

The Clebsch-Gordan coefficients are related to the Wigner 3j-symbols 

through the following relation [27], 

C~~~M = (-1)i=l+M(2J + 1}~ ( mj l J ) 
mz -M · 

(2.13) 

The parity of the eigenfunctions of the system A+ BC is conserved during the 

collision. The symmetry operation associated with this conservation property 
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is the inversion of the coordinates of a;hl particles (A, B and C) about the 

origin of the SF coordinate frame: 

() ---+ 11' - ()' 4> ---+ 11' + 4>' 

E> ---+ 11' - E>, ~ ~ 11' + ~ . (2.14) 

The operator that corresponds to this transformation of angles is P. Oper

ating on the eigenfunctions (2.12) of J 2 and Jz with P we find 

PYjzJM(o, 4>; e, ~) - YjzJM(11'- o, 11' + 4>; 11'- e, 11' + ~) 
- ( -1)HzyjlJM(o, 4>; e, ~) , (2.15) 

where we have made use of the properties of the spherical harmonics in 

equation (2.10). Therefore YjlJM is an eigenfunction of J2 and Jz, with 

eigenva:lues J(J + 1) and M, respectively, and also for the inversion operator, 

P, with eigenvalue ( -1 )i+l. The eigenvalues of P are equivalent to the parity, 

p, of the wave function with values p = ±1. From now on the space-fixed 

eigenfunctions YjlJM((), 4>; e, ~)are denoted by YjlpJM((), 4>; e, ~). 

The functions YjlpJM((), 4>; e, ~) are used as a basis in which to expand the 

total wave function, '11, as 

w(r, R) = ""' pi'l' (jlpJMIR) Y . (". R) 
~ R . jlpJM r, , 

jlpJM 

(2.16) 

where r = (0, 4>), R = (8, ~) and R = (R, e, ~) are polar coordinates, and 

pi'l' (jlpJ MlR) are the radial channel wave functions. The primed quantum 

numbers are those corresponding to the final scattering state. For example, 

a pure rotational transition is denoted by j ....-+ j'. 

We may write the eigenvalue equation (2.5) as 

(H- E)'ll =0, (2.17) 

where the Hamiltonian, H, (after separation of center of mass motion) is 

given by 

(2. 1!8) 

The first term, in equation (2.18), corresponds to the rotational energy of 
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relative motion of atom A and rotor BC. We may separate it into radial and 

angular parts: 

(2.19) 

where J.1 is the reduced mass of system A+BC. The third term V(R, B') 

represents the interaction potential between atom A and the rotor BC on a 

given potential energy surface (written above as Ej(R) in equation (2.9)). 

The energy of the interaction potential is most naturally expressed in the BF 

frame coordinates R and B'. The inte:raetion potential is independent of </>' as 

the potential is invariant under rotations of the internuclear axis BC about 

the BF Z-axis. 

Therefore, we may rewrite equation (2.18) as 

[
j2 1 82 12 ] 
21- 2J-1B8R2R+ 2J.1R2 + V(R,B') = E '11 = 0 ' (2.20) 

where '11 given by equation (2.16). 

Using the eigenvalue equation for YjlpJM 

equation (2.20) may be rewritten as 

(2.21) 

where we have defined 

kJ - 2j.1 [ E - Ej rot.] 

- 2J.1 [E- Bj(j + 1)] (2.22) 

where B = 1/ (21) is the rotational constant of the molecule BC, and Ej tot. is 

the rotational energy of the molecule BC with rotational angular momentum 

j. 

The basis functions YjlpJ M have the fol~owing orthonormality properties: 

The double-prime (") notation is used for dummy variables. It does not 

represent any further transitions. 
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Operating on equation (2.21) from the left with 

j dr ciR YjzpJM(r; R) , 

20 

and using equation (2.16) for the wave function, W, equation (2.21) reduces 

to 

[ 
d.2. - l(l + 1) k~] pi'z'( ·,l JMIR) 

dR2 R2 +J JP 

= 2p, L (jlpJMI'V(R, B')lj"'l''p' J" M") 
j"l"p'' J" M" 

X pi'l' (j"l"p" J" M"IR) ' (2.23) 

where we have made use of 

which gives rise to the centrifugal term, l ( l + 1) / R2• The more compact 

bra-ket notation has been used in writing the right hand side of equation 

(2.23). 

Equations (2.23) are the coupled-channel equations for the SF frame coordi

nate system. 

The matrix elements of the potential in equation (2.23) are given by 

(jlpJMIV(R, B')li"l"p" J" M") 

= j YjzpJM(r; R)V(R, B')Y;"l"p''J"M"(r; R)df d!R. (2.24) 

The interaction. potential, V (R, B'), is expanded in a complete set of functions 

of the angular variable, (}', 

00 

V(R, B') .:..._ L V>.(R)P>.(cos B') , (2.25) 
>.=0 

where P>. is a Legendre polynomial [26]. 

The matrix elements of the potential can now be rewritten as, 

(jlpJMIV(R, B')li"l"p" J" M") 

= L v>.(R) j YjzpJM(r; R)P>.(cos B')Y;"l"p''J"M"(r; R)dr dR. (2.26) 
>. 
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To evaluate the integral we make use of the spherical harmonic addition 

theorem [27], 
). 

P).(cos 8') = 
2
.\
4
: 

1 
2: Y).v(r)Y;v{R) , 

v=-). 

(2.27) 

where Y).v is a spherical harmonic. The theorem is used to transform the 

dependence of the potential from the BF coordiDates, 8', to the SF angles 

r = (8, </>)and R = (8, 4>). This allows the integrals in equation (2.26) to be 

evaluated. 

With use of the SF basis functions in equation (2.12), and the composition 

relations for spherical harmonics [27] we obtain 

1 

J Y .* ( ... )V ( ... )·v·. ( ... )d, ... = [(2j" + 1)(2_\ + 1)]2 oj").j rfi").j 
Jm r I.).v r I.J"m" r r 47r(2j + 1) m"vmvooo ' (2.28) 

and 

Thus, the matrix elements in equation (2.26) are given by 

(jlpJMI'V(R, 8')1i"l"p" J" M") 
- 1 

= """' (R) [ ( 2i" + 1) ( 2l + 1) ]
2 erN cz>J." 

~V). (2j + 1)(2l" + 1) 000 
OOO 

"""' 0 1zJ cl' ).j cl'l" J" 0 z).z" 
X ~ mm,M m"vm m"m1,M" m,vm,, · (2.30) 

mm,m"mz" 

Equation (2.30) may be expressed in terms ofa Racah coefficieDt, W, through 

use of angular momentum recoupling theory [30] 

(jlpJMI·V(R, 8')1j''l"p" J" M") 
. 1 

~ ~ ·( 1)J+j"-J"""' (R) [(2j + 1)(2l + 1),(2j" + 1)(2l" + 1))2 
= UJJ"UMM11 

- ~V). (2.\ + 1) 
). 

xC/£:/c~~).W(jlj"l"; J.X) . (2.31) 

The Racah coefficient, W, is related to the 6j-symbol by 

W(J.lJ""l"·, J.X) = (-1)j+l+j"+Z" { j l J } (2.32,) 
l" j" .X 
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Conservation of the total angui'ar momentum, J, and its projection M, on 

the SF z-axis is ens11red by the presence of the Kronecker 8 symbols in equa

tion (2.31). 

The Clebsch-Gordan coefficients, 0/£/' and Olf::o\ vanish unless j + j" + A 

and l + l" + A, respectively, are even. Hence 

( ~1)d+i"+>.+l+l"+>. = +1 = ( -1)j+l+j"+l" ' (2.33) 

as A is an integer. Therefore 

p = ( ~ 1 )d+l = ( -1 )i" +l" = p" ' (2.34) 

and we confirm the parity is conserved. We may rewrite equation (2.3l) in 

a more compact form 

(jlpJMIV(R, O')lj"l"pJM) = L v.x(R)f.x(jl,j"l"; J) , (2.35) 
>. 

where 
1 

f ( ·z ·"z"·J) = (-1)Hi"-J[(2J + 1}(2l + 1)(2J" + 1)(2l" + 1))2 
>. J 'J ' (2A + 1) 

x r-1ii'' >-all''>-w (1·z1·"z" · J A) vooo ooo · ' ' (2.36) 

is an algebraic coefficient independent of the projection <!J.Uantum nmnber 

M. The coefficients f.x(jl,j"l"; J) are known as 'Percival=Seaton coefficients' 

and were first introduced by Percival and Seaton in [24]. We may rewrite the 

coupled equations (2.23) as 

[ 
d2 - l(l + 1) . k~] pi'l'( ·z JIR) 

dR2 R2 +J JP 

-=- 2J..L L v.x(R)f>.:(jl,j"l"; J)Fi'l'(j"l"pJIR) . (2.37) 
j"l">. 

We note that equation (2.37) is independent of M. 

Examination of these equations provides insight into the relationship between 

the interaction potential an.d allowed transitions. For example when A = 0 

the Clebsch-Gordan coefficients in equation (2.36) are non-zero only when 

j = j" and l = l" and thus no collisional coupling between the rotational 

states of the molecule BC can occur. The A = 0 term in the interaction 
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potential is angle independent. It cannot induce rotationally inelastic transi

tions in the molecule. Hence v0(R) corresponds to elastic scattering of A on 

BC. 

Terms with A ~ 1 can induce rotationally inelastic transitions assuming the 

triangular inequalities IJ - j"l ~ A ~ j + j" and l'l - l"l ~ A ~ l + l", 

and the requirement that j + j" + A should be an even integer are satisfied. 

These criteria ensure the Clebsch-Gordan coefficients are non-zero and hence 

collisional coupling between different states of the molecule can occur. Hence, 

if j = e then A= j' = j'- j .:=. l::t.j. For example, in the molecule, HD, the 

transition j = 0 ---+ j' = 1 is induced by the A = 1 term in the interaction 

potential. Similarly the j = 0 ---+ j' = 2 transition is induced by the A = 2 

term. The absolute magnitudes of vx(R), in the expansion of the interaction 

potential (see equation (2.25)), tend to decrease as A increases and so the 

proba:bility of transitions involving higher l::t.j become smaller. 

For homonuclear molecules, such as H2 , the interaction potential is invariant 

under exchange of B and C. This is equivalent to the coordinate transforma

tion ()' ---+ 1r - ()'. Since cos( 1r - ()') = - cos ()', and 

P>.( -cos()')= P>.(cos O') , (2.38) 

when A is even, and 

P>. (-cos O') = - P>. (cos O') , (2.39) 

when A is odd, hence only terms with even va:I;ues of A appear in the in

teraction potential. Because j + j' + A must be an even integer, collisional 

transitions between even and odcl values of j are forbidden. 

2.2.2 The 'body-fixed' frame method 

The polar angles of the rotor, BC, relative to the BF frame are given by 

(()'' cf/). 

To determine the coupled-channel equations in the body~fixed frame (BF) we 

follow a similar approach as that used for the SF case. We begin by expressing 

the wave function of the rotor in terms of a complete orthonormal set of 

functions }jn(O', cfl), where n is the projection of j, the angular momentum 
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of the rotor, on the BF Z-axis. To establish the relationship between between 

the BF functions, Y;o ( ()', 4>'), and SF functions, Y;m ( (), 4>), we make use of the 

Euler angles and the rotation matrix, D [27]. 

The Euler angles (a, {3, "'!) describe a sequence of rotations that takes the SF 

coordinate system into the BF coordinate system. The rotations are taken 

in the positive sense. The first rotation is a about the z-axis, the second is 

f3 about the new y-axis, and the third is "'/ about the new z-axis. In this case 

the Euler angles are a= <P, {3 = 8, and"'/ is taken to be zero. The elements 

of the rotation matrix, D, as defined by Rose [27] are 

(2.4ID) 

where lim) =- Y;m ( (), 4>) and j z, jy are components of the angular moment1:1m 

operator in the SF system, and where 

·2 + ·2 + ·2 -- •2 lx Jy lz -- J · (2.41) 

Using the quantum theory of angular momentum, we may rewrite equa

tion (2.40) as 
n:i ( {3 ) __ -im" adj ({3)· -imiy LFm"m a, ' "'/ -- e m"m e ' 

with 

dtn"m(!3) = (jm"le-i~j11 ljm) . 

Explicit expressions for d'tn"m (!3) are given in [27]. 

Using equation (2.40~ we may obtain 

Y;m(O, 4>) = L d,:o(<P, e, O)Y;o(O', 4>') ' 
{} 

and the following inverse relation 

Y;o(O', 4>') = L D!no{<P, e, O)Y;m(O, 4>) . 
m 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

The functions in equation (2.45) are eigenfumctions of j 2 and j.z with eigen

wlues j (j + 1) and n, respectively. 

We now consider the BF equivalent of the SF eigenfunctions, Y;zJM. These 

BF f1:1nctions will be eigenfunctions of J 2 and J z. 
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Through use of equation (2.44) and the folloWing relationship 

(2.46) 

we may re-express equation (2.12) as 

1 

YjlJM(O, </>; 8, 4>) = (2l4~-1 ) 
2 L c~~zM}jn(O', </>

1
) 

mmz 
n 

xd,;0 (4>, 8, O)D:10 (~, 8, 0) . (2.47) 

Using the Clebsch-Gordan series [27] we obtain 

(2.48) 

and as the Clebsch~Gordan coefficients are real we may rewrite equa

tion (2.47) as 

(,(}1 ') J"* ( ) x}jnt.: , </> DMn 4>, 8, 0 . (2.49) 

With use of the following orthonormality relation of the Clebsch-Gordan 

coefficients [30] 
""" cjlJ oilJ" -- ~ ~ LJ mmzM mmzM" = 0 JJ" 0 MM" ' (2.50) 
mmz 

we may rewrite (2.49) as 

1 

( 
2l + 1 ) 2 """ "lJ YilJM(O, </>; 8, 4>) = 2J + 1 · ~ Cb0nZirtJM(O', </>

1
; 8, 4>) , (2.51) 

where 
1 

((}I 1 8 ) (2J + 1) 2 
J* ( 8 )-- ( 1 1) ZinJM , </>; , ~ = 

4
7r DMn 4>, , 0, }jn 0, </> , (2.52) 

is an eigen£unction of J 2 and J z. These eigenfunctions are the BF frame 

equivale11.t of YilJM with equation (2.51) specifying the unitary transforma

tion that relates the eigenfunctions of J 2 in the SF frame, YilJM(O, </>; 8, 4>), 

to the corresponding eigenfunctions in the BF frame, ZjrtJM(01
, </>

1
; 8, 4>). 
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Equation (2.51) is an important result as it allows quantities evaluated in 

the BF frame to be transformed into the SF frame. (Note: As the BF Z

axis is taken to be coincident with MA, the projection of the orbital angular 

momentum, 1, of A relative to BC on this axis is zero, as I is perpendicular 

to MA. Therefore, jz- Jz.) 

We now consider the conservation of parity in the BF frame. Operating on 

equation (2.52) with P we find 

PZ;nJM(O', q/; 8, q>) - Z;nJM(O', 1r- f/>'; 1r- 8, 1r + q>) 

- (-1)JZ;,~nJM(O',ql;8,q>). (2.53) 

We see that Z;nJM is not an eigenfunction of Pas n appears on the left side, 

and -n appears on the right side of equation (2.53). We may form such 

eigenfunctions from the linear combination 

z _ _ (Z;oJM + t:.Z;,-fiJM) 
jO.fJM- 1 ' 

[2(1 + 8no)P 
(2.54) 

where n = 1!11 and f.= ±1. Operating on Z;neJM with p we find they are 

eigenfunctions of P with eigenvalues p" = (-1)Jt:. When f.- (-1)i+l+J we 

find p" = p, and Y;lJM and zjOEJM are related by 

. - 1 

""" [ 2(2l + 1) ]
2 

jlJ 
Y;ZJM(O, 4>; e, q>) = ~ (1 + 8oo)(2J + 1) coon 

xZ;oEJM(()', f/>'; 8, q>) . (2.55) 

Transforming from the SF to the BF frame leaves the parity of the wave 

function unchanged. Therefore equation (2.55) is only applicable when p" = 

p. With p"- p = ( -1Vt: we may rewrite equation (2.54) as 

We may now use the BF functions Z;opJM(fJ', 4>'; e, q>) as a basis to expand 

the total wave function, W, as 

·1{'1.1 -

w(A' R) = """ G
3 

(jr2pJMIR) z.- (A'· R) 
r ' ~ R JO.pJM r ' ' (2.56) 

jO.pJM 
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where i' = (fJ', </>'), R = (8, ~) and R = (R, e, cl>) are polar coordinates. 

Using the orthonormality properties of zjOpJM 

and operating on the left of equation (2.21) with 

j di' dR z;opJM(r'; R) , 

we obtain the following coupled-equations in the BF frame 

[ d~2 + kJ l Gj'O' (jOpJ MlR) 

= 2~-t L (jOpJMIV(R, fJ') + 2 ·~2lj"O"p" J" M") 
j"fl"p" J" M" J.t 

Gj'fi' (j"O"p" J" M"'IR) . (2.57) 

When considering the matrix elements of the potential in equation (2.57) we 

introduce the effective potential Vet£, 

(2.58) 

The matrix of elements of the effective potential V eff are given by 

(jf!pJ MIV(R, fJ') + (2~~2) li"O"p" J" M") 

= j z;opJM(r'; R) [ V(R, fJ') + (2~~2)] zj"o"p''J"M"(r'; R)dr' dR(2.59) 

We first consider the contribution due to the interaction potential V( R, fJ') 

to the integral in equation (2.59). We make use of the BF basis functions 

from equation (2.52), the following relatien 

1 

- ( fJ') - ·( 47r ) 2 (fJ' '·) P>.. cos = 2-X + 1 Y>..o • , </> , (2.60) 

the orthogonality relation for the rotation matrix elements D 
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the composition relation for spherical harmonics 

1 Jy-.-. (.Af)\7 (A')Y:· . (A.')d.;../- J:. [(2j" + 1)(2-X + 1)]
2 

aj">..jaj">..j _ jn r .1 >..o r _ J"fl" r r - unn" 41r(2j + 1) non · ooo ' 

(2.62) 

to obtain 

(jOpJMIV(R, O')lj''O"p" J" M") 
1 n" [(2j + 1)(2j" + 1))2 

= 800,8pp~'8JJ"8MM"( ~1) 7 V>..(R) -(2A + l) 

ajj" >..oJJ" >.. 
X 000 0-00 · 

' 
(2.63) 

The Kronecker 8 symbols ensure the same conservation properties (J -= J", 

M -=- M", p = p"} as those obtained in the SF analysis. In addition, Q = n", 
is conserved. This arises from the invariance of the poteatial under rotations 

about the BF Z-axis, as V(R, 0') is independent of 4;'. 

We now consider the contribution of the centrifugal potential operator in 

equation (2.59~. Using the quantum theory of angular momentum, it may 

be shown [25], [31], [32] 

and 

-

- J2 -
(jO.pJ Ml

2 
R2:1jnpJ M) _,_, 

J(J + 1) +j(j + 1)- 2fl2 

2J.LR2 

- . J2 - -
(jO.pJMI

2
,_,R2 1j, n ± 1,pJM) 

1 1 
- -(1 + 800)2 (1 + 80±1,0)2 

(2.64) 

X [J(J + 1)- 0(0 ± 1~~~2(j + 1)- Q(O ± 1)]J (2.65) 

Matrix elements for the case IO"- -I >a ar.e equal to zero. The additional 

complexity of equations (2.64) and (2;65) when compared to their SF coun

terparts is due to the existence of Coriolis and centrifugal forces in the BF 

frame. 

We observe that equations (2,63-2.65) are independent of the projection 
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quantum number, M. Hence,we may rewrite the coupled equations (2.57) as 

[ d~2 + kJ] aln' (JOpJIR) 

_:... 2J.L :L:": Vetr.(JO, j"O"; JIR)G;'n' (j"O"pJIR) , (2.66~ 
j"fl" 

where Yetr(jO,j"O"; JIR) denotes a matrix element, from equation (2.59), of 

the effective potential, from equation (2.58). 

2 .. 3 Scattering of an atom by a vibrating ro

tor 

We now consider the case of an atom colliding with a vibrating rotor. In doing 

so we must allow for the extra degree of freedom, of the diatom BC, given 

by the internuclear distance (vibrational coordinate), r. 'Fhe interaction 

potential is now given by 

00 

V(r, R, 0') = :L:": V>.(r, R)P>.(cosO') . (2.67) 
>.=0 

This summation is, in principle, infinite but is usuall:r truncated to a small 

number of terms when solving the problem computationally. 

Consider the eigenvalue equation 

H"iJ! = E"iJ!, (2.68) 

which may be solved in the space-fixed (SF) coordinates, "iJ! = "iJ!(r, R), or 

body-fixed (BF) coordinates, "iJ! = "iJ!(r', R).We note that lrl = lr'l· 

The Hamiltonian, H, of the atom-molecule system is given by 

2 

H __:h-i:+ V(r,R,O'), 

where 
\12 

h= ~-r +v(r) 
2m · ' 

(2.69) 

(2. 70) 

is the internal Hamiltonian of the diatomic molecule BC at infinite. separation 

from the atom, and m = mBmc/(mB +me) is the reduced mass of the 

molecule. 



Chapter 2. Scattering Theory for Atom-Diatom Collisions 30 

The kinetic energy operator in equation (2. 70~ is given by 

1 2 1 82 j2 

'- 2m \1 r = - 2mr 8r2 r + 2mr2 ' 
(2.71) 

where j is the rotationa:l angular momentum of the molecule. 

The eigenvalue equation for the isolated vibrating rotor is given by 

h'l/J(r) = €7/J(r) , (2.72) 

with the vibrational eigenfunctions, 7/J(r), taking the form 

(2.73) 

where vis the vibrational quantum number. 

The rovibrationa:l wave functions, x(vjlr), satisfy 

-- + J J . + 2mv(r)- K
2 X(Vjlr) = 0 , [ 

d2 
'(. + 1) ] 

dr2 r 2 
(2.74) 

where K
2 = 2m€. 

We may solve (2. 74) numerically subdect to the boundary conditions 

x(vjlr) ~ 0' 

as r ~ 0 or r ~ oo. Alternatively we may wish to approximate the form 

of the internuclear potential, v(r), for which the wave functions x(vjlr) are 

known analytically. The evaluation of the vibrational eigenfunctions is dis

cussed further in Section 4.1. 

As in the case for equation (2.16) and equation (2.56), the total wave function 

\11 of the atom-molecule system is expanded as functions of radial and angular 

coordinates. For the SF coordinates case we have 

,y,·( R) _ "" pv'J'l'(vjlpJMIR) x(vj.lr)y. . ("•R") 
';l' r, - L- R JlpJM r, . ' 

. r 
VJlpJM 

(2. 75) 

and for the case of BF coordinates 

iT•·( I R)- "" av'j'O' (vjOpJMIR) x(vj.lr)z.- ("''· R ... ) 
';l' r ' - ~ R r JflpJM r ' . (2.76) 

vjO.pJM · 
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Using an approach analogous to the rigid rotor case, the eigenva1ue equation 

(2.68) may be reduced to a set of coupled differential equations. For the SF 

case we obtain 

[ 
d2 ~ l(l + 1) k2.] pv'i'l'( ·z JIR) 

dR2 R2 + VJ VJ p 

= 2J.L L f>,.(jl,j"l"; J)y>.(vj, v"j"IR)Fv'j'l' (v"j"l"pJIR) , (2.77) 
v" j 11l 11 ).. 

where 

Y>-.(vj, v"j"IR) =loo x*(vjlr)v>.(r, R)x(v"i"lr)dr, (2.78) 

and J>.(jl,j"l"; J) is a Percival-Seaton coefficient given by (2.36), k~i = 

2J.L(E- fvj), where fvj is the rovibrational energy of the molecule BG in the 

state (v, j). The coefficient Y>.(vj, v''j"IR) determines the coupling between 

the vibrational states v and v". 

For the case of the BF coordinate system, equation {2. 76), we obtain the 

following coupled equ.ations 

[ 
d2 2] v' ·lfil -

dR2 + kvj G ' (vjflpJI:R) 

= 2J,£ L Veff(vjO, v"j"O"; JIR)Gv'i'O' (v"j"O"pJIR) , (2.79) 
v 11 j 110 11 

where 

Veff(vjn, v"j"O"; JIR) 
- 12 -

= (vjJlpJMIV(r, R, 0') + 
2

J.LR2 Iv"j"fl"pJM) , (2.80) 

are the matrix elements of the effective potential 

12 
Veff.(r, R, O') == V(r, R, (}') + 

2
J.LR2 , 

an.d are independent of the projection quantum number, M. 

(2.81) 

The non~vanishing elements of 1;2 /(2J.LR2
) are given by equation (2.64) and 

equation (2.65). The non-vanishing elements of V(r, R, 0') are 

(vjOpJMIV(r, R, O')lv"j"OpJM) 
1 

=- (-1)n""' [(2i + 1H2i" + 1)]
2 

cH'>.cH'>._ y (v1· v"J."IR) (2.82) 
L...J (2>. + 1} ooo n,-no >. ' ' 

).. 

where Y>.(vj, v"j"IR) is given by equation (2.78). 
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2.4 Solving the equations 

The scattering problems considered in this thesis are concerned with prob

lems whe:re 

V(R, 0') >> E, 

as R ---+ 0, and 

V(R, O') rv R-n , 

as R ---+ oo, where n ~ 2 is an integer. Boundary conditions are required 

for the SF and BF frame cases to solve the coupled equations. The first 

boundary condition appropriate for these problems is 

pvi'l' (vjlpJIR) --+ 0 , 

or 

av'i'O' (vjOpJIR) --+ 0 , 

as R ---+ 0. This boundary condition is in the classically forbidden region, 

where the potential is much greater than the total ene:r,gy, and is typically 

located near the origin. 

'The solutions are propagated numerically, from the classically forbidden re

gion, into the asymptotic region where the potential V has become vanish

ingly small (i.e. very small compared to the collision energy). 'The asymptotic 

region is usually taken to occur at large values of R. When using the BF 

frame solution a unitary transformation is applied in the asymptotic region 

to convert it to the SF frame solution. The transformation used is analogous 

to that in equation (2.51). This transformation is required as the quantities 

we wish to calculate (e.g. cross sections) are measured eXperimentally in a 

space-fuced (or laboratory) frame. 

The information from the scattering event is obtained by matching the SF 

solutions to the appropriate asymptotic (R ---+ oo) forms [33] 

pr'z' ( ')'lpJIR) fV 

(2.83) 
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where 'Y denotes vj, 'Y' denotes v'j', and K'Y'l' ('YlpJ) are elements of the 

reactance matrix K. We use matrix notation for efficiency. The transmission 

matrix, T, and the scattering matrix, S, are given by 

T - -2iK(1- iK)-1 

_ 1-S. (2.84) 

All the information from the scattering event is contained in these three ma

trices. All derivable collision quantities may be obtained using these matrices. 

The probability, P, of transition 'Y'-+ 'Y is given by 

') 1 """I 'l' )12 PJP('Y-+ 'Y = ( 2 . + 1) L- rr ('YlpJ , 
J ll' 

(2.85) 

for each value of J and p. The transition probabilities are used to determine 

the total cross sections which are given by 

a('Y-+ 'Y') -= ; L(2J + 1)PJP('Y-+ 'Y') . 
"'( JP 

(2.86) 

Finally, the principle of detailed balance gives the relationship between cross 

sections for a transition and its reverse process as 

(2.87) 

where w'Y is the statistical weight 

W'Y = Wvj = 2j + 1 , 

and k'Y -= kvi, with k~i = 2p,(E- €vj)· 

So far the theoretical determination of the cross sections has been presented. 

In Section 4.4 the computational methods used to solve the equations are 

discussed. 

2.5 Determination of rate coeflicients 

Rate coefficients are often required for the interpretation of experimental 

data or astronomical observations. They are related to the cross sections 

through 

(av) = 100 

va.(v) f ( v, T) dv , (2.88) 
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where v denotes the relative collision velocity of the atom and molecule and 

( 
J.£ ) ~ 2 ( J.£V

2 
) f(v, T) = 47r 21rkaT v exp - 2kaT ' (2.89~ 

is the velocity distribution at kinetic temperature, T. The distribution cho

sen is of Maxwellian form. This form is justified as the elastic collisions 

in a molecular gas, which ten.d to thermalise the velocity distribution, oc

cur more quickly than those for inelastic collisions (which a:lso have smaller 

cross sections than elastic collisions). We define the dimensionless quantity, 

x = J.£V2 /(2kaT), so that equation (2.88) can be re-written as 

(
8k T)! {

00 

(av) = 7r: Jo xa(x)e-x dx , (2.90) 

where [8kaT /( 7rJ.£)]! is the mean relative collision velocity. The rate coeffi

cients obtained using equation (2.90) are also known as thermally-averaged 

rate coefficients. 

Rate coefficients for excitational transitions may readily be obtained from 

those of de-excitational transitions, and vice versa, using detailed balance 

(2j + l)(av)v;~v'j'(T) = (2j' + l)(av)v'j'-+vj(T}exp [- (Ev'j~B-;,Ev;)] , 

(2.91) 

where ka denotes Boltzmann's constant. 



Chapter 3 

Interaction p:otential 

In this chapter the interaction potentials available for the H +H2 system are 

discllssed. 

The interaction potential between two systems is defined as the change in 

total energy when the systems are brollght together from infinite separation.. 

When determining the interaction potential there can be considerable dif

ficlllties in performing experimental measurements. Therefore, theoretical 

methods are often llSed in conjunction with whatever reliable experimental 

data are avai~able. 

The interaction potential plays a fundamental role in the study of coNisions. 

For collisions between an atom, A, and diatomic molecule, BC, the interac

tion potentia:!, V(r, R, 0'), and terms derived from it, V>.., appear directly in 

the coupled-channel equations. 

The theoretical calculation of interaction potentials [34] involves determining 

the total energy of the collection of all the electrons and nuclei in the systems 

present. The electronic motion is considerably faster than that of the nuclei, 

so the problem is reduced to determining the electronic energy as a function of 

fixed nuclear geometry (Born-,Oppenheimer approximation). Typically, the 

largest contributions to the energy are the kinetic energy of the electrons, the 

Cowomb interactions between the electrons and the nuclei, and other effects 

such as spin-orbit interaction. Generally, when performing the calculation, 

the problem is broken down in to three parts: 

35 
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1. Long internuclear distances ~ at large distances the systems can 

be described as non-overlappin.g charge distributions. The calculation 

then reduces to a standard electrostatic problem of interacting perma

nent and induced dipole moments. In this region the interaction is 

small and can be represented accurately as a perturbation of separated 

systems. 

2. Small internuclear distances - where the charge distribution of the 

systems overlap strongly, and the interaction is repulsive. In this region 

the systems can be described as a single molecule and molecular orbital 

techniques such as the Hartree-Fock (HF) method may be used. 

3. Intermediate internuclear distances - are the most difficult to per

form calculations for as the long-range .attractive forces and short

range repulsive forces compete to perform a potential well. In this 

region the perturbative and HF metb.ods become inadequate and con

figuration interaction (Cl) methods must be used. 

Calculations are performed for a large number of nuclear geometries resulting 

in an equally large number of interaction energies. The energies are then 

fitted to a suitable polynomial form, so that interaction energies may be 

calculated for arbitrary nuclear geometries. The quality of the fit is extremely 

important as the accuracy of the interaction potential is directly related to 

it. 

The calculation of an accurate interaction potential is extremely detailed and 

computationally demanding. Only an overview has been presented here as 

calculations in this thesis only make use of the potential; no calculations were 

performed for determining the interaction potential of H+H2 • 

3.1 Survey of previous potentials for H+H2 

A large number of theoretical and experimental studies have been performed 

for the H+H2 system over the years. As a result, several' interaction po

tentials have been computed. The most widely known are those of Liu [35], 

Varandas et al. [36], Boothroyd et al. [37], and Boothroyd et al. [38] which 



Chapter 3. Interaction potential 37 

are denoted by LSTH, DMBE, BKMPl, and BKMP2, respectively. More 

recently the potential of Mielke et al. [39] has been made available. Whilst 

all these calculations agree with regard to the general features of the poten

tial (which becomes repulsive at short range, displays only a shallow Van der 

Waals minimum of approximately rv2 me V ( rv20 K), and becomes attractive 

at long range) there remain significant differences in the predicted anisotropy 

of the potential; and it is the anisotropy which determines the magnitude of 

the rovibrationally inelastic cross sections~ 

3.2 Choosing the 'best' interaction potential 

When performing the scattering calculations we wish to use the most accurate 

and suitable interaction potential ,available. This is achieved by examining 

the accuracy of the fit for each interaction potential and by surveying the 

performance in scattering calcl:rlations from previous work. 

Table 3.1 compares the root-mean-square (rms) errors and largest errors for 

the fits of the interaction potentia.ls of H+H2 • The potential with the small

est errors is that of Mielke et al. [39] which is the most recently calculated 

potential. 

A considerable amount of work has previously been performed on the inelas

tic scattering of H+H2 • Forrey et al. [16] provide a detailed survey, of which 

a summary is given here. Full quantum calculations for rotationally inelastic 

cross sections at low velocities were performed by Sun and Dalgarno [13] us.

ing the DMBE potential, which was considered to be more accurate than the 

earlier LSTH potential. They found that rate coefficients calculated using 

the DMBE potential were larger. Semiclassical calculations were performed 

by Lepp, Buch and Dalgarno [40] using the DMBE and LSTH potentials 

which demonstrated that the differences in the size of the rate coefficients 

were largely due to the interaction potentials. Boothroyd et al. [38] con

ducted a comparison of the LSTH, DMBE, and BKMP1 potentials which 

concluded that the LSTH and DMBE potentials were too poorly constrained 

at the intermediate distances (rv 3.5 a0 ) most responsible for low-energy ro

tational excitation. However, the BKMP1 was also found to be too weakly 
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constrained in the critical interaction region so a refined potential, BKMP2, 

was developed. BKMP2 has the same functional form as BKMP1 but with 

additional constraints. Flower and Wroe [14];, using the rigid rotor approx

imation. showed that rotatio:nally inelastic cross sections obtained using the 

BKMP1 potential were approximately an order of magnitude smaller than 

those obtained by Sun and Dalgarno [13] who used the DMBE potential. 

However, because the rigid rotor approximation underestimates the magni

tude of rotational cross sections, it is difficult to determine how much of the 

difference is due to the poten.tial and how much to the scattering approxima

tion. Boothroyd et al. [38] performed quasi-classical trajectory calculations 

for the LSTH, DMBE, BKMP1, and BKMP2 potentials to confirm the sensi

tivity of low-energy rotational transition rate coefficients to the nature of the 

interaction potential. They suggested that the BKMP2 potential, and quan

tum mechanical calculations, are required when calculating low-temperature 

rate coefficients. Forrey et al. [16] used full coupled-channel calculations and 

a vibrating oscillator model to show that the BKMP2 potential is the most 

reliable for rotationaJl transition cross sections. No previous calculations have 

been performed with the potential of Mielke et al. [39]. However Mielke et 

al. [39] claim that their potential offers a considerable improvement over 

earlier poten.tials. 

After careful investigation the potentials of Boothroyd et al. [38] and Mielke 

et al. [39] were chosen for the scattering calculations presented in this thesis. 

3.3 CompariBg the interaction potentials 

The interaction potentials are used to calculate the Y>..(vj, v'j'IR) integraJls. 

The magnitude and behaviour of cross sections for the vj ---t v' j' tran.sitions 

are directly dependent on these integrals. 

In Figure 3.1 the Y>..{vj, v'j'IR) integrals are plotted for v.:.... v' = j = j' = 0 

and A = 0, 2 using the potentials of Mielke et al. [39] and Boothroyd et 

al. [38]. There is excellent agreemen.t for the isotropic term, A = 0, but, as 

the expanded plot at the bottom of Figure 3.1 shows, there are important 

differences for the first non-zero anisotropic term, A = 2. The calculations 
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Figure 3.1: A comparison of Y>-.(vj, v'j'IR) using the potential of Mielke et 

al. [39] (lines) and the potential of Boothroyd et al. [38] (markers). In this 

Figure, v = v' = j = j' = 0. The 'exact oscillator' model was used for the 

molecule. 
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of Boothroyd et al. [38] imply a A = 2 term which remains negative beyond 

its minimum, at R = 2.25 a0 , whereas the calculations of Miel!ke et al. [39] 

lead to a A = 2 term which varies betwee:n positive and negative values 

for 3.7 ~ R ~ 12.9 a0 • For atom-molecule separations that correspond 

to low classically-allowed energies, the v2 term is small in magnitude for 

both potentials, Therefore, one would expect the rotationally inelastic cross 

sections to be small at low collision energies. 

3.4 Summary 

The H+H2 system is the simplest triatomic system, in terms of its structure, 

but it has proved to be diflicclt to obtain an interaction potential which is 

sufficiently accl:liate to yield reliable coNision cross sections near threshold. 

The interaction potential of Mielke et al. [39] (with an rms error of 3.25 K) 

represents a significant improvement in accuracy over earlier interaction po

tentials, such as that ofBootmoyd et al. [38] (with an rms error of 85.59 K). 

The potential surface of Miel!ke et al. [39] should yield more accurate scatter

ing data, particularly near-threshold cross sections and their corresponding 

low-temperature rate coefficients. 
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Surface (year) rms error (K) Largest deviation (K) 

LSTH (1973) 85.55 276.77 

DMBE (1!987) 120.77 n/a 

BKMP1 (1991) 80.51 608.89 

BKMP2 (1996) 85.55 1957.51 

Mielke et al. (2002) 3.25 87.56 

Table 3.1: R0ot-mean-square (rms) errors and largest errors for the fits of 

the interaction potentials of H+H2 • 



Chapter 4 

Numerical Methods 

In this chapter the numerical methods used in performing the scattering 

calculations are presented. For each calculation the method is presented, 

followed by details specific to our calculations. 

4.1 Determination ofrovibrational eigenfunc

tioas 

The rovibrational eigenfunctions were obtained by sol:ving the following 

eigenvalue equation. 

h?j;(r) -- E?j;(r) , (4.1) 

with the vibrational eigenfunctions, 7/J(r), taking the f0rm 

"''( ) - x(vj.lr)y;. (A) 
o/ r - Jm; r , 

r 
(4.2) 

where v is the vibrational quantum number. The vibrational wave functions, 

x(vilr ), satisfy 

[ 
d2 j(" + 1) l - dr2 + J r 2 + 2mv(r)- K

2 x(vjlr) = 0, (4.3) 

where K2 = 2mE. In determining x(vjlr) we must decide what form of v(r) 

to use. One may choose an approximate form of the internuclear potential, 

v(r), for which the wave functions, x(vjlr), are known analytically. One 

42 
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such approximation would be to approximate the vibrating rotor as a simple 

harmonic oscitlator (SHO) where 

1 
v(r) = 2K(r ~ r 0 )

2 
, (4.4) 

where the force constant, K, and the equilibrium distance, r0 , are determined 

by a best fit to the energy levels, as determined from spectroscopic data. The 

analytic wave functions for the harmonic oscillator potential are well known 

[41]. 

An alternative, and more accurate, form of v(r) used was the Morse oscillator 

(MO) potential 
v(r) = D [e-a(r-ro)- 1]2 . (4.5) 

The constants a and D were derived by a best fit to the spectroscopic data; D 

is the dissociation energy of the molecule measured relative to the minimum 

of the potential well, at r = r0 , where v(r) = o~ The wave functions for the 

MO potential are known analytically [42]. 

The 'exact oscillator' wave functions were determined by solving equa

tion (4.3), using an internuclear potential v(r) derived from the interaction 

potential (e.g. the potentials of Boothroyd et al. BKMP2 or Mielke et al. 

[39]) subject to the boundary condition 

x(vj:l.r) --t 0 ' (4.6) 

as r --t 0 or r --t oo. 

An alternative approximation to the 'exact oscillator' model is to neglect the 

centrifugal term, i~t1>, in equation ( 4.3). In this case wave functions with 

no j-dependence are produced. This approximation is denoted as the ENCO 

model. 

The wave functions for the ENCO and 'exact osciilator' models were ob

tained by solving equation ( 4.3) using the LEVEL [43] code, The internu

clear potential was determined, for either interaction potential, by setting the 

atom-molecule distance to be very large {in theory, infinite) and then vary

ing the internuclear distance, r, and Roting v(r). This data is inputted into 

LEVEL. The vibrational wave functions calculated using LEVEL were veri

fied using the independent method and code of Marston et al. [44]. Excellent 

agreement was found between the codes. 
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ln Figures 4.1-4.3 the wave functions for increasing vibrational quantum 

number, v, are shown for the SHO and 'exact oscillator' models. Using the 

'exact' internuclear potential has introduced an asymmetry within the wave 

functions. This is expected as the internuclear potential is also asymmetric. 

For larger v the discrepancies between the SHO and 'exact oscillator' wave 

functions increase. As j = 0 in Figures 4.1~4.3 the wave functions for the 

'exact oscillator' correspond to those for the ENCO model too. 

ln Figure 4.4 the effect of including the centrifugal term in equation (4.3) 

is shown for the v = 1 wave function. As j increases the wave function is 

'stretched' towards increasing r. For large j this effect can become significant, 

for low j the effect is small. The case where j = (!) corresponds to the v = 1 

wave function for the ENCO model. 

For the scattering calculations presented in this thesis: 

• Wave functions with 0 ~ v ~ 6 and 0 ~ j < 28, for even j, were 

calculated for para-H2 • 

• Wave functions with 0 ~ v < 6 ami 1 ~ j < 29, for odd j, were 

calculated for ortho-H2 • 

• Wave functions with 0 ~ v ~ 6 and 0 ~ j < 29 were calculated for 

HD. 

There was good agreement found between rovibrational eigenfunctions ob

tained llsing the potential of Boothroyd et al. [38] and the potential of Mielke 

et al. (39]. 

4.2 Determination of the potential expansion 

coefficieBts 

The potential expansion coefficients v~(r, R), in equation (2.67), were calcu

lated by solvin.g 

v~(r, R) = 11 

V(r, R, 8')P~.(cos8')dcos8', 
-1 

(4.7) 
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Figure 4.1: A comparison of results obtained for the v = 0, j = 0 wave 

function, x(vjlr), using the SHO (broken curve) and 'exact oscillator' (full 

curve) models for H2 . The interaction potential of Mielke et al. [39] was 

used in these calculations. 
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Figure 4.2: A comparison of results obtained for the v = 2, j = 0 wave 

function, x(vjlr), using the SHO (broken curve) and 'exact oscillator' (full 

curve) models for H2 . The interaction potential of Mielke et al. (39] was 

used in these calculations. 
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Figure 4.3: A comparison of results obtained for the v = 4, j = 0 wave 

function, x(vjir), using the SHO (broken curve) and 'exact oscillator' (full 

curve) models for H2 . The interaction potential of Mielke et al. [39] was 

used in these calculations. 
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Figure 4.4: A comparison of results obtained for the H2 wave functions 

x(vjlr) for v = 1 and various j . The interaction potential of Mielke et al. 

(39) was used in these calculations. 



Chapter 4- Numerical Methods 49 

where P>.. is a Legendre polynomial. The numerical integration is performed 

using the Gauss~Legendre integration method [45]. 

In principle the sum in equation (2.67) is infinite; in practice we truncate the 

series to a fixed number of terms. This is reasonable because as A increases 

the magnitude of V>..(r, R) decreases rapidly. This is illustrated in Figure 4.5 

where we see a rapid decrease in the magnitude of V>..(r, R) as .A increases. 

For larger values of R the difference in magnitudes between the V>. (r, R) 

terms, for different A, can be several orders of magnitude. The number of 

terms retained is determined by performing cross section calculations for a 

fixed number of terms. Higher order terms are then added until suitable 

convergence is found. In our calculations the convergence criterion was to 4 

significant figures within the cross sections. 

For calculations presented in this thesis: 

• Terms with 0 ::; A ::; 6 were retained for the H2 calculations. 

• 'Ferms with 0 ::; A < 6 were retained for the HD calculations. Note: 

HD contains odd values of A in its potential expansion due to the 

asymmetric position of its centre of mass. 

4.3 Calculatiag t:ne yA(vj, v'j'IR) integrals 

The rovibratio:nal eigenfunctions x(r)/r and the potential expansion coeffi

cients V>. ( r, R) are required to calculate the integrals 

Y>..(vj, v'J'IR) = 1oo x*(vjlr)v>..(r, R)x(v'j'lr) dr . (4.8) 

The integrals were calculated numerically using a form of Romberg inte

gration [45]. The results weFe verified through agreement with independent 

integration routines. The Y>..(vj, v'J'IR) integrals are discussed in more detail 

for H2 and HD in the results Sections 5.1 and 6.1 respectively. 
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Figure 4.5: A comparison of V>.(r, R) where 0 ::; .A ::; 6 for H2 • Note r = 

1.4012a0 , where a0 is the Bohr radius.The interaction potential of Mielke et 

al. [39) was used in these calculations. 
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4.4 Cross sections 

The cross sections are calculated by solving the coupled-channel equations 

for the SF frame, equation (2.77), or the BF frame, equation (2.79). Both 

methods are equivalent and identical cross sections are obtained (assuming no 

further approximations are made). Both sets of equations share the following 

properties: 

1. Both are sets of ordinary differential eq1:1ations which are linear in the 

functions of the radial co-ordinates, F(R) or G(R)1. 

2. Both involve second order derivatives with respect to R. 

3. Both are 'coupted' through the matrix elements on the right hand side 

of the eq1:1ations. 

There are several computationa:l packages available for specmcally solving 

problems of this nature. Examples include MOLCOL [46], MOLSCAT [47], 

and HIBRlDON [48], The calculations presented in this thesis were per

formed using MOLCOL. 

4.4.1 MOLCOL 

MOLCOL [46] is a FORTRAN program that enables cross sections to be 

calculated for collisions between two systems of arbitrary angular momentum. 

It uses the quantal coupled channel method. Previo1:1s calculations have been 

performed for the H+H2 system using MOLCOL [15, 18]. 

Numerical method 

MOLCOL solves the BF coupled-channel equations (2.79). The equations 

are solved numerically, subject to the inner and o1:1ter boundary conditions~ 

The inner boundary condition is applied at point Rm., which is sufficiently 

1 F(R) and G(R) correspond to matrices containing the solutions for transitions from 

all available initial states to all final states, for given values of J and p, at a .fixed 

R. The elements of matrices F(R) and G(R) are represented by pv'j'l' (vjlpJjR) and 

av'i'0 ' (vjOpJjR) respectively. 
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far i:ato the classically forbidden region that V(R, (}') » E, where E is the 

barycentric collision energy relative to the ground states of A and BC. At 

this point G(~n) = 0. The coupled equations are propagated from Rin 

to a point Rout where the potential is va:aishingly small compared to the 

baryce:atric collision energy relative to all internal states of A + BC, Ean 

(i.e. V(R, (}') << Eat1). At this point a transformation to the SF frame is 

made using a unitary transformation [49]. The SF solutions are matched to 

spherical Bessel functions of the first and second kinds, and the T -matrix is 

derived. The cross sections are derived from the T-matrix (see Section 2.4). 

Many routines exist that can perform the numerical propagation for the 

coupled-channel equations (2.79). The routines used for the calculations 

presented within this thesis were based on the log-derivative algorithm of 

Johnson r5o]. This method was chosen as it is the most stable and quickest 

of the available routines in MOLCOL. Stabilisation issues can arise when 

G(R) is propagated through the classically forbidden region. This is due 

to the exponential growth of the individual solutions within the classically 

forbidden region. In most cases one solution can grow more rapidly than 

others, dominating each column in the matrix, which destroys the linear 

independence of the solutions. To prevent this from happening stabilisation 

routines are used. However, in the log-derivative method the log-derivative 

X(R), 
d G'(R) 

X(R) = dR lnG(R) = G(R), (4.9) 

where G'(R) is the first derivative of G(R) with respect toR, is propagated 

from the inner to outer boundary conditions. This eliminates the stability 

problems when starting the propagation deep inside the classically forbidden 

region. 

Propagation parameters 

MOLCOL requires several input parameters to use the propagation routines. 

The parameters were varied until convergence of the computed cross sections, 

to four significant figures, had been obtained. 
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• RDB- the inner boundary condition point, R;,n, which must be suf

ficiently within the classically forbidden region (short-range repulsive 

region of interaction potential) that G(R) = 0. This is the point at 

which X(R) is propagated outwards to the asymptotic region. 

• RFN -the outer boundary condition point, Rout, at which the interac

tion potential has become negligible and the outer boundary condition 

may be applied. This is the point where X(R) is propagated to. 

• FPT - the number of integration points per arch of the oscillatory 

arch of the scattering wave function. A value of 10 was formd to be 

satisfactory. 

• RMIN - the value of R at which the minimum of the most attractive 

potential e:nergy curve occurs (taken to be YJ..=o(v = 0 j = 0, v' = 0 j' = 
OIR)). 

• DELTAE - the absolute value of this minimum, in atomic units. 

The variables FPT, RMIN, and DELTAE are used to determine the step size 

for the numerical propagator routines. 

Input 

The basis set used to represent the system A+ BC is inputted into MOL

COL by entering several variables. These ar:e the vibrational and rotational 

quantum numbers, for each level, and their corresponding bound-state energy 

level value, with respect to the v = 0, j == 0, in kelvin. When determin

ing the size of the basis set one wishes it to be as complete in terms of v 

and j as possible. However when performing full coupled-channel equations 

the number of equations, or coupled-channels, can grow rapidly [21]. This 

is because each vibrational manifold, v, contains a certain number, iv, of 

bound rotational states. For coupled-channel calculations the number of 

coupled=-channels is given by 

iv 
L:U + 1) == (iv + 1)(iv + 2)/2 , 
j==.O 
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for one value p, and 
iv 
Li == iv(jv + 1)/2, 
j=O 

for the other value of p. For iv = 16 there are 153 and 136 coupled equa

tions, respectively, for the vibrational manifold, v. In our calculations we 

must consider several manifolds at once (all v :::; 6). Also, in our systems 

the energy levels of the vibrational manifolds overlap as states with small v 

and large j have similar energies to those with large v and small j. When 

performing coupled-channel calculations one tries to include all states below 

a given energy in the basis set for completeness and reliability of the results. 

Hence, large iv are necessary for the lower manifolds. As the number of cou

pled channels depends quadratically on iv, and with the coupling between 

vibrational manifolds, the problem can quickly become computationally de

manding or impractical. It is only for the lightest molecules H2 and HD 

that the full coupled-channels calculations are possible, as in our case. The 

size of the basis sets used for calculations in this thesis were considerably 

larger than those used in previous calculations. The method of determining 

the size of the basis sets is discussed in Sections 5.2 and 6.2. 

MOLCOL also requires the values for the y_x(vO, v'OIR) integrals. MOLCOL, 

in its original form, does not have the facilities to handle j--dependent Y.x 

integrals. 

Cross section parameters 

MOLCOL calculates the partial cmss sections for each value of the total 

angular momentum, J. The partial cross sections are then summed over J 

to give the total cross section. The highest value of J, for which the partial 

cross sections are calculated at, is determined by the parameters: 

• FJDB- the initial va:l:ue of of J. For our calculations, FJDB = 0. 

• F JFN - the final value of J. This is set sufficiently large to ensme prior 

convergence of the partial wave series. For our ca:ktrl.ations, F J1FN = 

500. 
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• OPCMN- this parameter determines the convergence of the partial 

wave series. Partial cross sections are calculated until the probabilities 

for inelastic scattering transitions become less than 0 PCMN. For our 

calculations, OPCMN = 10-8 • 

These parameters were chosen for convergence to four significant figures in. 

the total cross sections. 

Cross section tests 

To ensure the calculated cross sections were reliable, several tests were per

formed for a variety of collision energies: 

1. Cross sections were calculated using an alternative numerical propaga

tion routine. ln our case, alternative routines based on the algorithm 

of de Vogelaere [51] were used. 

2. Cross sections were calculated independently using MOLSCAT [47]. 

Independent numerical methods are used by MOLSCAT to0. 

3. Cross sections were compared to previous results, using the same basis 

set size, obtained for the SHO model [15]. 

For all tests excellent agreement was found; typically to four significant fig

ures. 

4.4.2 Modifying MOLCOL 

As mentioned previously, MOLCOL in its present form cannot handle j

dependent Y>. integrals. This means it can only perform calculations for 

the SHO, Morse oscillator and ENCO models. Extensive modifications were 

made to the program to allow j-dependent Y>. in.tegrals to be used; The mod

ified MOLCOL is capable of performing calculations for the 'exact oscillator' 

model. To ensure the modified program was functioning correctly, com

puted cross section.s were compared with those determined with MOLSCAT. 
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MOLSCAT can handle j-=dependent Y>.. integrals in its original form. Excel

lent agreement between the programs was found; typicall;y to four significant 

figures. However, MOLCOL was found to be moderately quicker for most 

calculations. 

4.5 Determlnatio11 of the rate coefficients 

The rate coefficients are determined from the tota:l cross sections using (see 

Section 2.5 for more details) the following equation 

(8ksT)~ loo (uv) = ----:;;-
0 

xu(x)e-x dx . (4.10) 

When calculating the cross sections, the grid of collision energies (i.e. the 

collision energies at which cross sections were calculated) must have suffi

ciently high resolution to pick up energy-dependent features within the cross 

section. This is particularly important near threshold where the cross sec

tions can vary rapidly. Considerable effort was made to ensure a fine enough 

collision energy grid was used for our calculations~ This can. be a consid

erably difficult task due to the large number of transitions and the extra 

computational resources that are required for extra collision energies. 

The rate coefficients were calculated numerically on a grid of temperatures. 

Specific calculation. details are given in Sections 5.4 an.d 6.4. A simple quadra

ture method (the trapezium rule) was used with cubic spline interpolation, to 

determine cross section values between. energy grid points, when evaluating 

the rate coefficient integrals. 
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Chapter 5 

Calculations for H + H2 

In this chapter the results of the scattering calculations for H + H2 axe pre

sented. We begin with an analysis of the potential expansion. coefficients for 

the H+H2 system. Next, we discuss the basis sets used to describe the sys

tem in the scattering calculations. Then the cross sections as a function of 

the barycentric collision energy, E, are presented. Finally, the correspondffig 

rate coefficients axe presented as function of kinetic temperature, T. 

Results from this chapter have been presented in (52-54]. 

5.1 Potential expansion coefficients 

When performing the scattering calculations it is necessary to express the 

interaction potential as an expansion in terms of Legendre polynomials 

V(r, R) = L V>.(r, R)P>..(f · R), (5.1) 
>. 

where r is the intramolecular vector, which is taken to coincide with the 

internuclear axis, R is the vector associated with distance between the atom 

and the centre of mass of the molecule, P>. (r · R) is a Legendre polynomial 

of order A, and V>.(r, R) is a potential expansion coefficient. In the case of a 

homonucleax molecule, such as H2, only even values of A contribute to the 

expansion in equation (5.1); symmetry considerations dictate that the terms 

with odd values of A van.ish identically. 
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The potential expansion coefficients, V>..(r, R), are used to determine the in

tegrals 

Y>..(vj, v'j'IR) =loo x*(vjlr)v>..(r, R)x(v'j'lr), (5.2) 

where x(r)/r are the rovibrational eigenfunctions of the molecule. The nu

merical calculation of the rovibrational eigenfunctions was discussed earlier 

in Chapter 4. The Y>..(vj, v'j'IR) are calculated numerically for later use by 

the scattering program. 

The integrals, Y>.:(vj, v'j'IR), were calculated using the interaction potential 

of Mielke et al. [39] and Boothroyd et al. [38], for 0 <). < 6 and 1.0 < R < 
25.0 a0 ; the terms with).= 0, 2, 4, 6 were sufficient to obtain convergence of 

the potential expansion. The magnitude of the integrals rapidly decreases 

as ). increases. This was confirmed by inspection of the coefficients and by 

performing some cross section calculations with higher order terms included. 

In terms of the cross sections, 'convergence' was to 4 significant figures. 

Figure 5.1 shows Y>..(vj, v'j'IR) for ). - 0, 2 using the interaction potential 

of Mielke et al. [39] and the 'exact oscillator' functions. The full black line 

represents Y>.=o(O@, OOIR), which controls elastic scattering. It is considerably 

larger in magnitude than the Y>..=2(v0, v'OIR) terms also shown in Figure 5.1. 

This trend agrees with the previous observation that the Y>..(vj, rlj'IR) rapidly 

decrease in magnitu.de as ). increases. 

The integrals, Y>.(vj, v' J'IR), for the interaction potential of Mielke et al. [39] 

and the SHO functions are shown in Figure 5.2. In comparison to the case 

for the exact oscillator, shown in Figure 5.1, we see that the Y>..=o~OO, GGIR) 

is approximately the same in magnitude for the SHO case. However, the 

Y>..=2(v0, v'OIR) for the SHO case are considerably smaller in magnitude than 

the corresponding results for the 'exact oscillator' case. 

We note that the Y>..=2(v0, v'OIR) shown in Figures 5.1 and 5.2 contribute to 

transitions involving D..J -= 2. The cases where v =f:. v' are associated with 

vibratioBally inelastic transitions and the Y>..=2(v0, v'OIR) are much larger ill 

magnitude for the 'exact oscillator' case than they are for the SHO case. 

The integrals Y>..(vj, v'j'IR) also were determined using the interaction poteB

tial of Boothroyd et al. (38] for both the 'exact osdllator' and SHO functions. 

The same trends were observed betweeB the two vibratioBal representations 
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Figure 5.1: The variation with R of Y>.(vO, v'OIR), in units of kelvin, for 

A = 2 and selected pairs of values of v, v' . The full black line represents 

Y>.=o(OO, OOIR) , which controls elastic scattering. The results presented here 

refer to the potential of Mielke et al. [39] and the exact oscillator functions. 

Note that the magnitudes of terms (v =I v'), which control vibrationally 

inelastic scattering, increase with increasing v, v'. 
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for the interaction potentials of Boothroyd et al. [38] and Mielke et al. [39]. 

The magnitudes of the Y>..(vj, v'j'IR) were comparable between the two dif

ferent interaction potentials. 

5.2 Basis set 

Molecular hydrogen e:rists in two forms, ortho-H2 and para-H2, and we must 

take this into account when selecting a suitable basis set. The para-H2 basis 

set contains rovibrational energy levels with even values of j, and the ortho

H2 basis set contains rovibrational energy levels with odd values of j. 

At high collision energies ( I"V5000 K) the potential barrier to reactive scat

tering may be overcome by the incident H atom and H-atom exchange may 

occur. As a consequence the hydrogen molecule may undergo a transition 

from an ortho-state to a para-state and vice versa. The product H2 may be 

formed in rovibrationally excited states in which case the reactive scattering 

process contributes to the total excitation probability and the correspond

ing cross sections. In our calculations the reactive scattering processes have 

been neglected and the incident H-atom retains its identity throughout the 

collision. As a consequence the results presented in this thesis provide only 

a lower limit to the rovibrational excitation probabilities, and their corre

sponding cross sections, at collision energies E ~ 5000 K. When hydrogen 

atom exchange is neglected the calculations for para- and ortho-H2 can be 

performed completely independently. 

The incident H~atom is assumed to be structureless and therefore cannot un

dergo internal excitation. The electronic excitation of the incident H-atom 

is also neglected. We may justify this assumption in two ways. Firstly, the 

first excited electronic state of atomic hydrogen requires requires an excita

tion energy of /"V 118,500 K (/"V 10.2 eV), from the ground state, which is 

considerably larger than even the largest collision energy calculations were 

performed for. Secondly, the transfer of energy from the heavy nuclei to the 

relatively light electrons is an inefficient process, 

The electronic excitation within the hydrogen molecule is also neglected. 

This may be justified, again, by the inefficient transfer of energy from the 
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Figure 5.2: The variation with R of Y>.(vO , v'OIR) , in units of kelvin, for 

.X = 2 and selected pairs of values of v, v'. The full black line represents the 

Y>.=o(OO, OOIR), which controls elastic scattering. The results presented here 

refer to the potential of Mielke et al. [39] and the simple harmonic oscillator 

functions. Note that terms (v =I v') , which control vibrationally inelastic 

scattering, are considerably smaller in magnitude than the corresponding 

'exact oscillator' results in Figure 5.1. 
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heavy nuclei to the light electrons. Also, the energy required to achieve 

the electronically excited ·states is typically much larger than the incident 

H-atom collision energies used in our calculations. 

The basis set used in our calculations consisted of one energy level, corre

sponding to the ground state of the st:ructureless atom, and the rovibrational 

energy levels of para-H2 or orthcr-H2 (depending on which form of H2 is being 

considered). The rovibrational energy levels of the hydrogen molecwe used 

iR our ca:lculations were taken from the paper by Dabrowski [55] who calcu

lated a total of 318 rovibrational energies with 0 < v :::; 14 and 0:::; j < 29, 

where v is the vibrational quantum number and j is the rotational quantum 

number, from eJq>erimental observations and theoretical data. For para=H2 

the basis set levels used corresponded to the even valued j rovibrational en

ergy levels from [55]. The basis set levels used for ortho-H2 were the odd 

valued j rovibrationa;l energy levels from [55] 

5.2.1 Determining the size of the basis set 

When performing the cross section calculations we truncate the size of the 

basis set because use of a 'complete' basis set, consisting of all the rovibra

tional energy levels of ortho- or para~H2 , is computationally impractical. 

Our approach in determining the size of the basis set was empirical: the 

basis set was extended upwards in the energy of the H2 rovibrational levels 

until satisfactory convergence was obtained. Owing to the strong coupling 

between the vibrational levels (see Figures 5.1 and 5.2), it was necessary to 

include energy levels which were much higher than the relative collision en

ergy of the atom and the molecule. This is illustrated in Figures 5.3 and 5.4. 

The results are presented as a function of basis set size for para-H2, with 

rotational states j = 0, 2, 4, 6 being included in each vibrational manifold, 

11p to the specified value of the vibrational quantum number, v. We see that 

rovibrationallevels upto v = 6 are required to achieve a satisfactory conver

gence for the v = 0, j = 2 -t v' = 0, j' = 0 transition1. Similar results were 

foURd for the case of ortho=H2 . 

1Transitions involving higher initial rovibrational states may require a basis set that 

includes rovibratienallevels with v > 6 to achieve satisfactory convergence. 
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In summary, for the calculations presented in this thesis: 

• the first 54 rovibrationallevels of para....;H2 (up to and including v = 6, 

j = 4) were included for calculations involving para=H2 . They are 

listed in Appendix A. 

• the first 54 rovibrationallevels of ortho-H2 (up to and including v = 0, 

j = 23) were included for calculations involving ortho-H2 . They are 

listed in Appendix B. 

5.3 Cross sections 

With a basis set size of 54 levels there will be data produced for 291!6 transi

tions. Therefore only a representative subset of our results can be presented 

here although the general conclusions drawn are believed to apply to most 

transitions. Checks have been made by sampling different transitions to ob

serve the general conclusions still hold. 

De-excitation cross sections are presented within this thesis. The principle of 

detailed balance (see equation (2.87)) may be used to obtain the correspond

ing excitation cross sections. The complete set of cross sections, as a function 

of barycentric collision energy, is available from http:/ /ccp7.dur.ac.uk. 

The cross section results are presented for both the para-H2 and ortho-H2 

cases. 

5.3.1 Cross sections for H+para-H2 

Cross sections for H +para-H2 were ca:lculated for 130 barycentric collision 

energies ranging from 560 K to 60000 K. When selecting specific collision 

energies care was taken to choose values sufficiently close to threshold energies 

(as the cross sections vary rapidly near threshold). The collision energies 

chosen are believed to give good coverage for low-energy and high-energy 

structure in the cross sections. 

Calculations were performed using the interaction potentials of Mielke et al. 

[39] and Boothroyd et al. [38]. Cross sections were obtained for SHO, Morse 
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Figure 5.3: Cross section for the v = 0, j = 2 ---+ v' = 0, j' = 0 transition, 

calculated using SHO vibrational eigenfunctions. The results are given as a 

function of basis set size, with rotational states j = 0, 2, 4, 6 being included 

in each vibrational manifold, up to the specified value of the vibrational 

quantum number, v. 
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Figure 5.4: Cross section for the v = 0, j = 2 ~ v' = 0, j' = 0 tran

sition, calculated using the ENCO vibrational eigenfunctions. The results 

are given as a function of basis set size, with rotational states j = 0, 2, 4, 6 

being included in each vibrational manifold, up to the specified value of the 

vibrational quantum number, v. 
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oscillator, EN C02 , and 'exact oscillator' vibrational representations of the 

H2 molecule. The greatest discrepancies were between the SHO and 'exact 

oscillator' calculations; the Morse oscillator and ENCO results were closer 

to the 'exact oscillator' results. Discussion of the results is restricted to the 

SHO, ENCO, and 'exact osciJilator' representations within this thesis. 

Comparison of cross sections between different representations of 

the vibrational motion of the molecule for H+para-H2 

First, we compare the results obtained using different representations of the 

vibrational motion of the molecule. Figures 5.3 and 5.4 show the cross section 

plotted for the vibrationa:lly elastic transition v = 0, j = 2 ---+ v' = 0, j' = 0, 

as a function of the barycentric collision energy; the cross section was calcu

lated using both the SHO and the ENCO rovibrational eigenfunctions and 

t:he potential of Mielke et al. [39]. The results are shown for increasing vi

brational basis set size, including the rotational states j = 0, 2, 4, 6 in each 

vibrational manifold. It may be seen that convergence with respect to the vi

brationall quantum number, v, is slow, particularly when the ENCO functions 

are used: states up to at least v = 6 are required for complete convergence. 

Furthermore, there are substantial differences between the cross sections cal

culated using the SHO approximation and the ENCO vibrational functions, 

even in this case of a vibrationally elastic transition. The cross section in• 

creases more rapidly from t:hreshold when the ENCO rather than the SHO 

vibrational functions are used, as was demonstrated earlier by Forrey et al. 

[16], who employed previous potentials. 

Figures 5.5 and 5.6 show the analogous results for the first rovibrationally 

inelastic transition v = 1, j = 2 ~ v' = 0, j' = 0. There is considerable vari

ation in the cross section as levels with higher vibrational quantum numbers 

are added. Once again, the rotational states j ~ 0, 2, 4, 6 were included in 

each vibrational manifold. The slow convergence of the cross sections, with 

respect to the vibrational basis, is evident. When vibrational states v > 1 

are included in the basis, the cross section calculated using the ENCO repre-

2ENCO refers to the exact oscillator rovibrational eigenfunctions with the centrifugal 

term neglected, see section 4.1. 
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Figure 5.5: Cross section for the v = 1, j = 2 -t v' = 0, j' = 0 transition, 

calculated using SHO vibrational eigenfunctions. The results are given as a 

function of basis set size, with rotational states j = 0, 2, 4, 6 being included in 

each vibrational manifold, up to the specified value of the vibrational quan

tum number, v. The ranges of the axes are identical to those of Figure 5.6 

in order to facilitate the comparison with this figure. 
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sentation of the vibrational eigenfunctions increases much more rapidly from 

threshold (at 6472 K) than is predicted by the SHO approximation. The 

sensitivity of the cross section to the inclusion of high vibrational levels in 

the basis set relates to the magnitudes of the corresponding coupling terms, 

which are plotted in Figure 5.1; these terms are smaller in magnitude when 

the SHO appro:rimation is used. 

Calculations were performed for the potential of Mielke et al. [39] using the 

'exact oscillator' vibrational functions. Figure 5. 7 shows the case for the 

v = 0, j = 2 --+ v' = 0, j' = 0 transition. Substantially more structure 

is observed in the data for the 'exact oscillator' case, at collision energies 

1!0000 K ~ 20000 K, than for cross sections obtained using the SHO functions. 

The rate of in.crease from threshold is faster for the 'exact oscillator' case 

than for the SHO case, although the cross section peaks at a lower value 

when using the 'exact oscillator' functions. 

The cross section for the v = 1, j = 2 --+ v' :....._ 0, j' = 0 transition is 

shown in Figure 5.8 using the 'exact oscillator' rovibrational eigenfunctions. 

There is more structure contained in the cross section, using the 'exact os

cillator' functions, than for those obtained using the ENCO representation. 

A faster increase in the cross section from threshold is obtained usin.g the 

'exact oscillator' functions than those obtained using the SHO and ENCO 

representations. The logarithmic plot in Figure 5.8 clearly shows the large 

discrepancies in the cross section near threshold between the SHO and 'exact 

oscillator' representations for the vibrationally inelastic transition.. 

Comparison of cross sections between different representations of 

the interaction potential for H+para~H2 

We proceed now to a comparison of the results obtained using the ENCO vi

brational eigenfunctions but using different reJ>resentations of the interaction 

potential [39], [38]. Figure 5.9 shows a comparison of converged calculations 

of the cross section for the v = 0, j = 2 --+ v' = 0, j' = 0 pure rotational 

transition, obtained using these two potentials. It may be seen that, over 

the extended range of collision energies in this figure, the results are gener

ally in good agreement. In an earlier study [52], a similar comparison over 
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Figure 5.6: Cross section for the v = 1, j = 2 ~ v' = 0, j' = 0 tran

sition, calculated using the ENCO vibrational eigenfunctions. The results 

are given as a function of basis set size, with rotational states j = 0, 2, 4, 6 

being included in each vibrational manifold, up to the specified value of the 

vibrational quantum number, v . 
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Figure 5. 7: A comparison of converged results obtained for the v = 0, j = 
2 ---+ v' = 0, j' = 0 transition using the SHO (broken curve) and 'exact 

oscillator' (full curve) models. The interaction potential of Mielke et al. [39] 

was used in these calculations and a basis set comprising all states of para-H2 

up to and including v = 6, j = 4. 
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Figure 5.8: A comparison of converged results obtained for the v = 1, j = 
2 -t v' = 0, j' = 0 transition using the SHO (broken curve) and 'exact 

oscillator' (full curve) models. The interaction potential of Mielke et al. [39] 

was used in these calculations and a basis set comprising all states of para- H2 

up to and including v = 6, j = 4. 
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a more restricted range of collision energies, E :::; l!O 000 K, was made. As 

the threshold of the transition, atE= 510 K, is approached, significant dif

ferences between cross sections computed using the two potentials become 

apparent; they are just discernible in Figure 5.9. 

For the v = 1, j = 2 ---+ v' = 0, j' = 0 rovibrationally inelastic transition, 

shown in Figure 5.10, there are substantial differences between results ob

tained using the two potentials, notably in the near~threshold region, where 

the cross section computed with the potential of Mielke et al. [39] increases 

less steeply. The structure which is seen in the energy dependence of the cross 

sections arises from the potential coupling (see right= hand side of equation 

(2.79)). 

5.3.2 Cross sections for H+ortho-H2 

The results for the H+ortho-H2 scattering calculations are presented in this 

section. The results follow similar trends to those found for H+para-H2 in. 

Section. 5.3, 1. 

For the H +ortho-H2 system calculations were performed for 130 barycentric 

collision energies ranging from 1000 K to 60000 K; the first inelastic scattering 

channel opens at 1015.2 K. 

Comparison of cross sections between different representations of 

the ¥ibrational motian af the malecule for H +ortho-H2 

In Figure 5.11 the cross section for the v = 0, j = 3 ---+ v' = 0, j' = 1 

transition is plotted, as a function of barycentric collision energy, using the 

SHO (broken curve) and 'exact oscillator' (full curve) models representations. 

Again, as in the case for H +para-H2 , the cross sections increase more rapidly 

from threshold when the 'exact oscillator', rather than the SHO, vibrational 

eigenfunctions are used. 

Figure 5.12 shows the the cross section for the v = 1, j = 3---+ v' = 0, j' = 1 

transition, plotted as a function of barycentric collision energy, using the 

SHO (broken curve) and 'exact oscillator' (full curve) representations. There 

are substantial differences between the 'exact oscillator' and SHO representa-
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Figure 5.9: A comparison of converged results obtained for the v = 0, j = 

2 ---+ v' = 0, j' = 0 transition using the potentials of Boothroyd et al. [38] 

(broken curve) and Mielke et al. [39] (full curve) . The ENCO vibrational 

functions were employed in these calculations and a basis set comprising all 

states of para-H2 up to and including v = 6, j = 4. 
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Figure 5.10: A comparison of converged results obtained for the v = 1, j = 

2 ---+ v' = 0, j' = 0 transition using the potentials of Boothroyd et al. [38] 

(broken curve) and Mielke et al. [39] (full curve). The ENCO vibrational 

functions were employed in these calculations and a basis set comprising all 

states of para-H2 up to and including v = 6, j = 4. 
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Figure 5.11: A comparison of results obtained for the v = 0, j = 3 ---+ v' = 

0, j' = 1 transition using the SHO (broken curve) and 'exact oscillator' (full 

curve) models. The interaction potential of Mielke et al. [39) was used in 

these calculations and a basis set comprising all states of ortho-H2 up to and 

including v = 0, j = 23. 
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tions. These differences are related to the differences in magnitude between 

the vibrationally inelastic poten.tial expansion coeffiCients for the SHO (Fig

ure 5.2) and 'exact oscillator' (Figure 5.1) representations. 

Cemparison of cross sections between different representations of 

the interaction potential for H +orth.:rH2 

Cross sections for the transition v = 0; j = 3 -+ v' = 0, j' = 1 are shown in 

Figure 5.13. Here the ENCO functions have been used and a comparison has 

been taken between the two interaction potentials of Boothroyd et al. [38] 

(broken curve) and Mielke et al. [39] (full curve). At low collision energies 

(near threshold) there are significant differences between the two potentials. 

However at higher collision energies there is generally good agreement. 

In Figure 5.14 considerable differences are found between the two potentials 

for the v = 1, j = 3 -+ v' = 0, j' = 1 transition, when 1:1sing the ENCO 

representation. In the near-threshold region the cross sections computed with 

the potentia:! of Mielke et al. [39] increase less steeply than those computed 

with the potential of Boothroyd et al. [38]. At higher energies there are 

considerable differences between the cross sections calculated for the two 

potentials. At approximately E > 250@0 K, and higher, the results are 

generally in good agreement. 

5.3.3 Further examples of transitions in H+para-H2 aDd 

H+ortho-H2 

The first inelastic rotational transition and first inelastic rovibrationa:l transi

tion have been presented for H+para-H2 and H+ortho-H2 . There are sub

stantially more transitions available, approximately 6000, for presentation. 

It is, of course, impractical to present every transition within this thesis. 

Therefore transitions have been selected that represent the overall findings 

from the calculations. For 'completeness' sake we present cross sections for 

several other transitions in the H +para-H2 and H +ortho-H2 systems. 
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Figure 5.12: A comparison of results obtained for the v = 1, j = 3 ---+ v' = 

0, j' = 1 transition using the SHO (broken curve) and 'exact oscillator' (full 

curve) models. The interaction potential of Mielke et al. [39] was used in 

these calculations and a basis set comprising all states of ortho-H2 up to and 
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Figure 5.13: A comparison of converged results obtained for the v = 0, j = 
3 --+ v' = 0, j' = 1 transition using the potentials of Boothroyd et al. [38] 

(broken curve) and Mielke et al. (39] (full curve) . The ENCO vibrational 

functions were employed in these calculations and a basis set comprising all 

states of ortho-H2 up to and including v = 0, j = 23. 
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Figure 5.14: A comparison of converged results obtained for the v = 1, j = 

3 ---+ v' = 0, j' = 1 transition using the potentials of Boothroyd et al. [38] 

(broken curve) and Mielke et al. [39] (full curve) . The ENCO vibrational 

functions were employed in these calculations and a basis set comprising all 

states of ortho-H2 up to and including v = 0, j = 23. 
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Cemparison of cross sectiens between different representations of 

the v:ibrational motion of the molecule 

Figure 5.15 shows a rotationally inelastic transition with ~j = 6, and Fig

ure 5. 1!6 shows a rotationally inelastic transition with ~j = 4. Similar trends 

are seen in both. Despite both transitions being vibrationally elastic there 

are substantial differences between the cross sections obtained using the SHO 

and 'exact oscillator' functions. The cross sections obtained u.sing the 'ex

act oscillator' model are orders of magnitude larger than those for the SHO 

model. The cross sections calculated for the 'exact osciUator' increase more 

rapidly from threshold and have more structure. 

In Figure 5.17 the cross section for a rovibrationally inelastic transition with 

~v = 2 and ~j = 2 is shown. Figure 5.18 shows the case for a transition 

with ~v = 3 and ~j = 2. Despite a difference in the magnitude of ~v 

similar trends appear in both cases. The cross sections, obtained using the 

'exact oscillator' model are orders of magnitude larger near threshold. The 

magnitude of the discrepancy increases as the magnitude of ~v increases. 

The rate of increase in the cross sections, from threshold, is greater using the 

'exact oscill.ator' model and the corresponding cross sections are larger over 

the entire energy range. 

Comparison of cross sections between different representations of 

the interaction potential 

Figures 5.1~5.20 show cross sections for pure rotationa.Ny inelastic transi

tions (cf. Figures 5.15-5.16) obtained for different interaction potentials. 

For both transitions there is reasonable agreement between the potentials of 

Boothroyd et al. [38] and Mielke et al. ['39] near threshold. Cross sections 

obtained using the potential of Mielke et al. [39] increase at a slightly faster 

rate, from threshold, than those obtained with Boothroyd et al. [38]. At 

higher energies there are notable discrepancies between cross sections ob

tained using the two potentials. 

In Figures 5.1'9-5.20 the cross sections are shown for rovibrational:ly inelas

tic transitions (cf. Figures 5.15-5.16) using different interaction potentials. 
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Figure 5.15: A comparison of converged results obtained for the v = 1, j = 

8 ---+ v' = 1, j' = 2 transition using the SHO (broken curve) and 'exact 

oscillator' (full curve) models. The interaction potential of Mielke et al. [39] 

was used in these calculations and a basis set comprising all states of para-H2 

up to and including v = 6, j = 4. 
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Figure 5.16: A comparison of converged results obtained for the v = 2, j = 

7 ---+ v' = 2, j' = 3 transition using the SHO (broken curve) and 'exact 

oscillator' (full curve) models. The interaction potential of Mielke et al. [39] 

was used in these calculations and a basis set comprising all states of ortho

H2 up to and including v = 0, j = 23. 
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Figure 5.17: A comparison of converged results obtained for the v = 2, j = 
6 ~ v' = 0, j' = 4 transition using the SHO (broken curve) and 'exact 

oscillator' (full curve) models. The interaction potential of Mielke et al. [39] 

was used in these calculations and a basis set comprising all states of para-H2 

up to and including v = 6, j = 4. 



Chapter 5. Calculations for H + H2 

0.2 

'() 

-0• 0.15 
c 

0.05 

/ 
/ 

-./ 
/ 

/ 
/ 

/ 

o ~~~~~~~~~~~~~~_w 

20000 25000 30000 35000 40000 45000 50000 55000 60000 

I ~ 

0.1 

~ 

8 0.001 ,...., 
§ 

"Q g 0.0001 I 
8 I 

I 
I 
' 

I 

Collision Energy (K) 

/ 
I 

/ -./ 

w·' '------~---~--~-~ 
20000 30000 40000 50000 60000 

CoUision Energy (K) 

85 

Figure 5.18: A comparison of converged results obtained for the v = 4, j = 

5 -t v' = 1, j' = 3 transition using the SHO (broken curve) and 'exact 

oscillator' (full curve) models. The interaction potential of Mielke et al. [39) 

was used in these calculations and a basis set comprising all states of ortho

H2 up to and including v = 0, j = 23. 



Chapter 5. Calculations for H + H2 

0.15 

"" ~ 
'0 

b -'-' 
·~ 0.1 

~ 
"' "' "' 8 

0.05 ----
o~~~~~~~~~~~~~~ 

10000 20000 30000 40000 50000 60000 

Collision Energy (K) 

0.1 

:e s 0.01 
'-' 

·~ 
~ 
., 0.001 

8 
0.0001 

w·s L___----~--~-~-~_____j 
10000 30000 

Collision Energy (K) 

50000 

86 

Figure 5.19: A comparison of results obtained for the v = 1, j = 8---+ v' = 

1, j' = 2 transition using the potentials of Boothroyd et al. [38] (broken 

curve) and Mielke et al. [39] (full curve). The ENCO vibrational functions 

were employed in these calculations and a basis set comprising all states of 

para- H2 up to and including v = 6, j = 4. 
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Figure 5.20: A comparison of results obtained for the v = 2, j = 7---+ v' = 
2, j' = 3 transition using the potentials of Boothroyd et al. [38] (broken 

curve) and Mielke et al. [39] (full curve). The ENCO vibrational functions 

were employed in these calculations and a basis set comprising all states of 

ortho-H2 up to and including v = 0, j = 23. 
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There is good agreement between the potential of Mielke et al. [39] and 

Boothroyd et al. [38] neat threshold. For both transitions the cross sections 

peak at a higher vah1e when using the potential of Boothroyd et al. [38]. 

There are notable discrepancies between the cross sections, obtained for each 

potential, at higher energies. 

5.3.4 Summary of cross sectioas for H+H2 

• Cross sections have been presented for rovibrationally inelastic transi

tions in H+para-H2 and H +ortho-H2 using the quantum mechanical 

coupled-channels method. 

• The convergence of the cross sections with respect to the extent of the 

basis of rovibrational states was investigated carefully. Convergence 

was found to be slow, with couplings to states with vibrational quan

tum number v = 6 being significant for transitions between v = 1 and 

v =- 0, for example. One possible reason for slow convergence is that 

vibrational excitation requires a substantial transfer of energy t~ the 

internal nuclear motion. of H2 . This can. only occur when the H atom 

is sufficiently close to the H2 molecule for energy transfer to be ef

fective. Therefore the use of vibrational states of the isolated H2 as 

a basis set may be unsatisfactory. In. other words, the slow con.ver

gence relates to the fact that H can undergo reactive scattering with 

H2, at collision energies exceedin.g a few thousand kelvin. The increase 

in the magnitudes of the potential coupling coefficients, Y>.(vj, v'j'IR) 

(v =F v') (equation 5.2), which control vibrationally inelastic scattering, 

with increasing v, v' (see Figure 5.1}, reflects this fact. 

• Considerable differences were found in the cross sections between the 

vibrational representation of the molecule. The SHO model of the 

vibrational motion was found to be unsatisfactory, particularly with 

regard to the predicted rate of increase from threshold of cross sections 

for vibrationally inelastic transitions. 

• Cross sections obtained using the ENCO and 'exact oscillator' models 

displayed considerably more structure than those obtained using the 
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Figure 5.21: A comparison of results obtained for the v = 2, j = 6---+ v' = 
0, j' = 4 transition using the potentials of Boothroyd et al. [38] (broken 

curve) and Mielke et al. [39] (full curve). The ENCO vibrational functions 

were employed in these calculations and a basis set comprising all states of 

para- H2 up to and including v = 6, j = 4. 
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Figure 5.22: A comparison of results obtained for the v = 4, j = 5 - v' = 
1, j' = 3 transition using the potentials of Boothroyd et al. [38] (broken 

curve) and Mielke et al. [39] (full curve). The ENCO vibrational functions 

were employed in these calculations and a basis set comprising all states of 

ortho-H2 up to and including v = O,j = 23. 
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SHO model. 

• Cross sections for rov:ibrationally inelastic scattering, obtained. using 

the potentials of Mielke et al. [39] and Boothroyd et al. [381, exhibit 

significant differences in magnitude, nota:bly in the near-threshold re

gion. 

5.4 Rate coefliicients 

In order to obtain rate coefficients as functions of the kinetic temperature, 

T, the cross sections are integrated over a Maxwellian velocity distribution 

(see equation (2.90)). When calculating the rate coefficients care was taken 

to ensure the grid of collision energies was adapted to the opening of new 

thresholds and other effects which caused rapid variation in the cross sections 

as a function of barycentric collision energy. However due to the increased 

structure observed when the 'exact oscillator' representation is used it be

comes difficult to incorporate every feature for all transitions. 

The rate coefficients were computed numerically on a grid of temperatures 

extending from 0 K to 6000 K at every lOa K. Only a subset of the calculated 

rate coefficients are presented in this thesis. A complete coltlection of the 

calculated rate coefficients can be found at http:/ /ccp7.dur.ac.uk. 

Comparison of rate coefficients between different representations 

of the vibrational motion of the molecule 

Figure 5.23a shows the rate coefficient, as a function of kinetic temperature, 

for the v = 0, j :....._ 2 ~ v' = 0, j' = 0 transition using the SHO (broken 

curve) and 'exact oscillator' (full curve) models. The potential of Mielke et 

al. [39] was used. There is reasonable agreement in the magnitude of the 

rate coefficients between the two vibrational representations over the entire 

temperature range. However, there are differences in the behaviour of the 

rate coefficients between the two models and this is related to the behaviour of 

their associated cross sections as function of energy (see Figures 5.3 and 5.4). 

At low temperatures the rate coefficients for the 'exact oscillator' model 
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are smaller than those for the SHO model. A similar trend is seen in the 

corresponding cross sections, at low energies. At intermediate energies the 

cross sections for the 'exact oscillator' rise more rapidly than those for the 

SHO and this is seen at intermediate temperatures for their corresponding 

rate coefficients. For the highest temperature values the SHO rate coefficient 

is larger than that of the 'exact osciUator'. This is reflected in the high energy 

behaviour of the corresponding cross sections. 

In Figure 5.23b the rate coefficient, as a function of kinetic temperature, is 

shown for the v = 1, j = 2 --+ v' = 0, j' = @ transition for the SHO (broken 

curve) and 'exact oscillator' (full curve) models using the potential of Mielke 

et al. [39]. At low temperatures the rate coefficients obtained using the 

'exact oscillator' model are over two orders of magnitude larger than those 

determined using the SHO model. Large discrepancies remain between the 

two vibrational representations as the temperature increases. Only at higher 

temperatures (T > 5000 K) do the rate coefficients become comparable. 

The large discrepancies in the rate coefficients between the SHO and 'exact 

oscillator' models are related to the large discrepancies between their corre

sponding cross sections (see Figures 5.5 and 5.6). At higher collision energies 

there is better agreement between the cross sections and this is reflected in 

the behaviour of the high temperature rate coefficients. 

Figures 5.24a and 5.24b show pure rotationally inelastic transitions for 

Aj = 6 and Aj = 4, respectively. At low temperatures the rate coefficients 

calculated using 'exact oscillator' functions are several orders of magnitude 

larger than those obtained using the SHO functions. At higher temperatures 

the rate coefficients for the 'exact oscillator' are several factors larger than 

those obtained using the SHO functions. 

In Figures 5.24c and 5.24d the rate coefficients are presented for rovibra

tionally inelastic transitions with Av = 2, Aj = 2 and Av = 3, Aj = 2, 

respectively. At low temperatures the rate coefficients for the 'exact os

dliator' model are several orders of magnitude larger than those obtained 

using SHO functions. The discrepancies at low temperature increase as Av 

increases. The rate coefficients obtained using 'exact oscillator' functions re

main substantially larger, than those using SHO functions, over the entire 

temperature range calculations were performed at. 
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Figure 5.24: A comparison of rate coefficients, as a function of kinetic tem

perature T, obtained for the for the (a) v = 1, j = 9---+ v' = 1, j' = 3 , (b) 

v = 2, j - 7---+ v' = 2, j' - 3 , (c) v = 2, j = 6 ---+ v' = 0, j' = 4 , (d) 

v = 4, j - 5 ---+ v' = 1, j' - 3 transitions using the SHO (broken curve) 

and 'exact oscillator' (full curve) models. The interaction potential of Mielke 

et al. [39] was used in these calculations. 
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Comparison of rate coefficients between different representations 

of the interaction potential 

The rate coefficients, as a function of kinetic temperature T, obtained for 

the v = 0, j = 2 --4 v' = 0, j' -=- 0 transition using the poteutials of 

Boothroyd et al. [38] (broken curve) and Mielke et al. [39] (full curve) are 

shown in Figm-e 5.25a. The ENCO vibrational :functions were employed in 

these calcU!lations. There is reasonable agreement between the two potentials, 

although the rate coefficients determined for the potential of Boothroyd et 

al. [38] are larger than those of Mielke et al. [39] over the entire temperature 

range. This is expected, as examination of the corresponding cross sections 

(see Figure 5.9) shows those obtained with the potentia:! of Boothroyd et al. 

[38] are larger over the entire energy range. 

Figure 5.25b shows the rate coefficients, as a function of kinetic temperature 

T, obtained for the v = 1, j = 2 --4 v' = 0, j' = 0 transition using the 

potentials of Boothroyd et al. [38] (broken curve) and Mielke et al. [39] (full 

curve). Again, the ENCO vibrational functions were employed. There are 

considerable differences between the rate coefficients obtained for each poten

tial which are directly related to the considerable differences found between 

their corresponding cross sections (see Figure 5.10). 

Rate coefficients for pure rotationally inelastic transitions with ll.j = 6 and 

lil.j = 4 are presented in Figures 5.26a and 5.26b, respectively. There is 

good agreement between the rate coefficients obtained using the potentials 

of Boothroyd et al. [38] and Mielke et al. [39] for all calcUilated temperatures. 

Any notable discrepancies occur at the lowest temperatures. 

In Figures 5.26c and 5.26d rate coefficients are presented for rovibrationally 

inelastic transitions ll.v = 2, ll.j = 2 and Av = 3, ll.j = 2, respectively. At 

low temperatures good agreement is found between Fate coefficients obtained 

using both potentials. As the temperature increases the rate coefficients 

calculated using the potential of Boothroyd et al. [38] becomes moderately 

larger than those obtained for the potential of Mielke et al. [39]. 
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Figure 5.25: A comparison of rate coefficients, as a function of kinetic tem

perature T , obtained for the for the (a) v = 0, j = 2 ---+ v' = 0, j' = 0 , (b) 

v = 1, j = 2 ---+ v' = 0, j' = 0 transitions using the potentials of Boothroyd 

et al. [38] (broken curve) and Mielke et al. [39] (full curve). The ENCO 

vibrational functions were employed in these calculations. 
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Figure 5.26: A comparison of rate coefficients, as a function of kinetic tem

perature T, obtained for the for the (a) v = 1, j = 9-+ v' = 1, j' = 3 , (b) 

v = 2, j = 7-+ v' = 2, j ' = 3 , (c) v = 2, j = 6 -+ v' = 0, j' = 4 , (d) 

v = 4, j = 5 -+ v' = 1, j' = 3 transitions using the potentials of Boothroyd 

et al. [38] (broken curve) and Mielke et al. [39] (full curve). The ENCO 

vibrational functions were employed in these calculations. 
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5.4.1 Summary of rate ceefficients for H+H2 

• Thermally averaged rate coefficients have been presented for rovibra

tionally inelastic transitions in H+para-H2 and H+ortho-H2 . 

• Rate coefficients calculated using the 'exact oscillator' and ENCO mod

els were considerably larger than those obtained using the SHO model 

at low temperatures. The 'exact oscillator' rate coefficients were t)'!pi

cally the largest over the entire temperature range. 

• The rate coefficients calclliated for the potentials of Mielke et al. [39] 

and Boothroyd et al. [38] were in reasonable agreement. Some discrep

ancies were found at low temperatures. 



Chapter 6 

Calculations for H + HD 

In this chapter the results of the scattering calculations for H + HD are pre

sented. We begin with an analysis of the potential expansion coefficients for 

the H+HD system. Next, we discuss the basis sets used to describe the sys

tem in the scattering calculations. Then the cross sections as a function of 

the barycentric collision energy, E, are presented. Finally, the corresponding 

rate coefficients are presented as function of kinetic temperature, T. 

Results fr;om this chapter have been presented in [54]. 

6.1 Potential Expansioa Coefficients 

As for the case of H + H2 , the potential expansion coefficients are required 

to proceed with the scattering calculation. The theoretical methods used are 

the same as those discussed in Section 5.1. 

The electrostatic interaction between H and HD is identical to that between 

H and H2 • Therefore the same interaction potentials, as those used in the 

H+H2 calculations, may be used. However, the centre of mass of HD is 

displaced from the midpoint of its internuclear axis. As the {Jacobi) coor

dinates of the incoming atom are expressed relative to the centre of mass of 

the molecule, the corresponding interaction potential contains terms which 

give rise to inelastic scattering in which the rotational quantum number, j, of 

the HD molecule changes by .l!>oth even and odd integers, .6.j. For example, 

transitions with !::l.j = 1, forbidden in non-reactive H+H2 scattering, are 

99 
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Figure 6.1: The variation with R of Y.x(vO, v'OIR), in units of kelvin, for 

A = 1 and selected pairs of values of v, v'. The full black line represents 

Y.>.=o(OO, OOIR), which controls elastic scattering. The results presented here 

refer to the potential of Mielke et al. [39] with the SHO functions (top) and 

the EN CO functions (bottom). 
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allowed in collisions of H with HD. Essentially odd,\ terms are now included 

in the expansion of the interaction potential (see equation (5.1)). 

The potential expansion coefficients are used to determine the integrals given 

in equation (5.2). The rovibrational eigenfunctions for HD are different to 

those for H2 , due to the difference in the reduced mass of HD, and were 

calcill.ated using the methods given in Chapter 4. 

The integrals Y>..(vj, v'j'IR) were calculated using the interaction potential 

of Mielke et al. [39] and Boothroyd et al. [38], for 0 :::; ,\ :::; 6 and 1.0 :::; 

R < 25.0 a0 ; the terms with ,\ = 0, 1, 2, · · · , 6 were sufficient to obtain 

convergence of the potential expansion. This was confirmed by inspection of 

the coefficients and by performing some cross section calculations with higher 

order terms included. In terms of the cross sections, 'convergence' was to 4 

significant figures. 

In Figure 6.1 the integrals, Y>..{vj, v'j'IR), for .A = 0,1 are shown for the 

interaction potential of Mielke et al. [39] using the 'exact oscillator' and 

SHO functions. The integrals are larger in magnitude for v =f v' when the 

'exact oscillator' functions are used. 

Figure 6.2 shows the integrals, Y>..(vj, v'j'IR), for ,\ = 0, 2 calculated using 

the interaetion potential of Mielke et al. [39] and using the 'exact oscillator' 

and SHO functions. 'Fhe integrals are, again, larger for the 'exact oscillator' 

case. In comparison to the ,\ = 2 terms for H2 (see Figure 5.1), the terms 

for HD are moderately smaller in magnitude. 

Also, the integrals, Y>..(vj, v'j'IR), calculated for the interaction potential of 

Boothroyd et al. [38] were comparable to those determined from the potential 

of Mie1!ke et al. [39]. 

6.2 Basis Set 

The HD molecule contains rovibrational energy levels with even and odd 

values of j. As for the case of H + H2 , reactive scattering may occur at high 

collision energies (see section 5.2). For H+HD the reactive channels open for 

collision energies higher than E "' 4500 K [56]. For the calculations presented 

in this thesis reactive scattering is neglected. Therefore no reactive scattering 
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Figure 6.2: The variation with R of yA(vO, v'OIR) , in units of kelvin, for 
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YA=o(OO, OOIR) , which controls elastic scattering. The results presented here 

refer to the potential of Mielke et al. [39] with the SHO functions (top) and 
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states are present in the basis set. 

States associated with the electronic excitatio11 of the H-atom or the HD 

molecule are not included in the basis set. The energy transfer from heavy 

nuclei to the relatively light electrons is typica:lly an inefficient process and the 

energy required to achieve electronically e:xcited states is typically higher than 

the barycentric collision energies at which calculations have been performed 

for. 

The basis set set used for the calculations of H + HD contains one energy 

level corresponding to the ground state of the structureless atom, and the 

rovibrational energy levels of HD. The rovibrational energy levels of the HID 

molecule used in our calculations were taken from the experimental work 

of Dabrowski and Herzberg [57] complemented by the theoretical values of 

Abgrall, Roueff, and Viala [58]. 

6.2.1 Determining the size of the basis set 

The approach in determining the 'Size of the basis set was empirical: the 

basis set was extended upwards in the energy of the HID rovi:brational levels 

until satisfactory convergence was obtained. Owing to the stro11g coupling 

between the vibrational levels (see Figures 6.1 and 6.2), it was necessary 

---to ineJude-energy-levels--whieh --were-much-higher-than-the -relative-collision 

energy of the atom and the molecule. 

Figures 6.3--6.4 show the first two pure rotational transitions in HID as a func

tion of basis set size, with rotational states j = 0, 1, 2, · · · , 6 being included 

in each vibrational manifold, up to the specified value of the vibrational 

quantum number, v. The v = 0, j - 1 ---+- v' = 0, j' = 0 transition1 (iu 

Figure 6.3) achieves convergence to four significant figures for v :5 6. For 

the case of the v = 0, j = 2 ---+- v' = @, j' = 0 transition, the convergence 

rate is slower. With a basis set size of v :5 6 the convergence was achieved 

to several percent over the energy range. 

The convergence problem for the :fust two rovibr:ationally inelastic transi-

1Transitions involving higher initial rovibrational states may require a basis set that 

includes rovibrational levels with v > 6 to achieve satisfactory convergence. 
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Figure 6.3: Cross section for the v = 0, j = 1 --+ v' = 0, j' = 0 transition, 

calculated using SHO (top) and ENCO (bottom) vibrational eigenfunctions. 

The results are given as a function of basis set size, with rotational states 

j = 0, 1, 2, · · · , 6 being included in each vibrational manifold, up to the 

specified value of the vibrational quantum number, v. 
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Figure 6.4: Cross section for the v = 0, j = 2 ~ v' = 0, j' = 0 transition, 

calculated using SHO (top) and ENCO (bottom) vibrational eigenfunctions. 

The results are given as a function of basis set size, with rotational states 

j = 0, 1, 2, · · · , 6 being included in each vibrational manifold, up to the 

specified value of the vibrational quantum number, v. 
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Figure 6.5: Cross section for the v = 1, j = 1 --+ v' = 0, j' = 0 transition, 

calculated using SHO (top) and ENCO (bottom) vibrational eigenfunctions. 

The results are given as a function of basis set size, with rotational states 

j = 0, 1, 2, · · · , 6 being included in each vibrational manifold, up to the 

specified value of the vibrational quantum number, v. 
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tions in HD is considered in Figures 6.5-6.6. In both Figures the rate of 

convergence is faster for the SHO model than for the ENCO model. For 

high collision energies there is reasonable convergence for both models and 

both transition.s. However, for collision energies ranging from threshold up 

to 40000 K there are convergence problems in both transitions when using 

the ENCO model. 

The basis set for H + HD calculations contains both even and odd j rovi

brational energy levels. 'Therefore, the size of the basis set increases more 

rapidly as a function of v than the basis set for H+ H2 calculations. To 

achieve convergence for rovibrationally inelastic transitions a large basis set 

was needed. In the case of HD, we included the lowest 1'2(i) of the total of 399 

bound rovibrational energy levels (i.e. the basis set contains all rovibrational 

energy levels up to and including v = 5, j = 11 for HD~. They are listed in 

Appendix C. 

6.3 Cross Sections 

With a 120 level basis set size there will be data produced for 14400 transi

tions. Only a representative subset of results are presented within this thesis. 

However, a large number of other transitions have been analysed to ensure 

that the trends found, for the results presented here, hold for most of the 

avail.able transitions. 

De--excitation cross sections are presented within this thesis. The principle of 

detailed balance (see equation {2.90)) may be used to obtain the eqmvalent 

excitation cross sections. The complete set of cross sections, as a function of 

barycentric collision energy, is available from http:/ fccp7.dur.ac.uk. 

Cross sections for H + HD were calculated for 160 barycentric collision energies 

ranging from 150 K to 60000 K. When selecting specific collision energies, 

care was taken to choose values sufficiently close to threshold energies. The 

chosen collision energy grid is believed to give reasonable coverage for low

energy and high..,energy structure in the cross sections. 

Calculations were performed using the interaction potentials of Mielke et al. 

[39] and Boothroyd et al. [38]. Cross sections were obtained for SHO, Morse 



Chapter 6. Calculations for H + HD 

0.1 

0.08 

~ 

~ 
~ 0.06 -.._., 

8 ·a 
~ r.n 0.04 

"' e 
u 

0.02 

- • v sl 
-- •vs2 
- ----v s4 
- · -··vs6 
--vsl 
--·vsiO 

, ,-- --~ :: ____ ______ ___ _ 

,', r;1-'411:::~:U;...-::Yoi!J ... , 
, / / 

,' I / 
I / 

/1 / 
, / / 
/ / ,... 

0 ~~~~~~~~~~~~~~_L~~ 

0.1 

0.08 

i 
~ 0.06 
..... .._., 

§ 
·a 
~ r.n 0.04 

"' e u 
0.02 

0 I 0000 20000 30000 40000 50000 60000 

Collision Energy (K) 

--

- •v s l 
---v s2 
-----vs4 
-·-··vs6 ./ 
- vs I 
-••Y:IIIO 

0 ~c...J..k.::~__._L..........._~..L.......~.......L~';::::::;::c:;::;:::;::::;=.! 

0 10000 20000 30000 40000 50000 60000 

CoUision Energy (K) 

108 

Figure 6.6: Cross section for the v = 1, j = 2 ----+ v' = 0, j' = 0 transition, 

calculated using SHO (top) and ENCO (bottom) vibrational eigenfunctions. 

The results are given as a function of basis set size, with rotational states 

j = 0, 1, 2, · · · , 6 being included in each vibrational manifold, up to the 

specified value of the vibrational quantum number, v . 
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oscillator, and ENC02 vibrational representations of the HD molecule. The 

greatest discrepancies were between the SHO and ENCO calc11iJ.ations; the 

Morse osciliator results were closer to the ENCO results. 

Comparison of cross sections between different representations of 

the vibrational motion of the molecule for HD 

In the cross sections for H + H2 there were considerable discrepancies found 

between cross sections obtained using the SHO and ENCO models, particu .. 

larly for rovibrationa:Hy inelastic transitions. The cross sections obtained for 

H + HD exhibit similar discrepancies. 

In Figures 6.7 and 6.8 the first pure rotational transitions in HD, which are 

v = 0, j = 1 ---+ zJ = 0, j' = 0 and v = 0, j ....:. 2 ---+ zJ = 0, j' -.: 0 

respectively, are shown for the SHO and ENCO models using the interaction 

potential of Mielke et al. [39]. At low energies, near threshold, and energies 

increasing from threshold, there is good agreement between the SHO and 

ENCO vibrational representations. At higher energies discrepancies emerge 

between the two models, with considerably more structure present for the 

ENCO case. For both transitions, the cross sections for the ENCO model 

decrease at a faster rate from their respecti<ve maximum values. The cross 

section for the v = 0, j =- 2 ---+ v' = 0, j' = 0 transition is comparable, in 

magnitude, to that obtained for the same transition in H2 (see Figure 5.4) 

but is considerably smaller than the cross section obtained for the v = 0, j = 

1 ---+ zJ ....:. 0, j' = 0 transition. 

Fig11res 6.9 and 6.10 show cross sections corresponding to the rovibrationally 

inelastic transitions v = 1, j = 1 ---+ v' = 0, j' = 0 and v = 1, j = 2 ---+ 

v' = 0, j' ::..... 0, respectively. There are considerable differences between 

cross sections, obtained for the SHO and ENCO models, for energies near, 

and increasing, from threshold. The cross sections obtained using the ENCO 

model contain considerably more structure for energies 11p to 2500Q-300(i)(!) K. 

At high collision energies the cross sections continue to increase for both 

vibrational models, although discrepancies remain between the two. The 

2ENCO refers to the exact oscillator rovibrational eigenfunctions with the centrifugal 

term neglected, see section 4.1. 
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increase in cross sections, at the highest energies, could hint at a possible 

divergence problem. Further calculations, at higher energies, would need to 

be performed to see if the cross section decreases in magnitude. The D.j = 1 

cross section is, again, several factors larger than the D.j = 2 case. The 

magnitude of the v = 1, j = 2 ...-.+ v' = 0, j' = 0 cross section is comparable 

to the corresponding cross section in H+H2 . 

Cross sections for the v = 3, j = 7 ----+ v' = 3, j' = 5 transition are shown 

in Figure 6.11. In this case there are substantial differences in the cross 

sections, obtained for the SHO and ENCO models, at energies near and 

increasing from threshold. 

In Figure 6.12 a D.j = 3 transition is shown. In comparison to the .8.j = 2 

transitions shown in Figures 6.8 and 6.11 the overall magnitude of the cross 

section is smaller. This is anticipated as the the magnitude of the cross 

sections typically reduce with increasing D.j. The cross section for v ..:::. 

1, j - 3 "'"'"'+ v' = 1, j' = 0 shows good agreement between the vibrational 

models at energies near threshold. This may be due to the low vibrational 

quantum number, v = 1, present in the initial and final states. 

Figure 6.13 shows cross sections for the v = 4, j = 2 ----+ v' = 2, j' = (]) 
transition. There are considerable discrepancies between the ENCO and SHO 

models at low energies and near threshold. At high energies the cross section 

for the ENCO model continues to increase. However, the corresponding cross 

section for the SHO case begins to decrease. If calculations for the ENCO 

model are performed at higher collision energies we may expect its cross 

section to decrease too. 

In Figure 6.14 the rovibrationally inelastic cross section for the v = 4, j = 
6 ----+ v' = 1, j' = 3 transition is plotted. The cross section obtained using 

the ENCO model is larger for all energies than that obtained for the SHO 

model. The largest discrepancies occur at low energies. In this rovibrational 

transition the cross section for both models is decreasing at high energies. 
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calculations and a basis set comprising all states of HD up to and including 

V = 5, j = 11. 
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Figure 6.12: A comparison of results obtained for the v = 1, j = 3-----+ v' = 
1, j' = 0 transition using the SHO (broken curve) and ENCO (full curve) 

functions. The interaction potential of Mielke et al. (39] was used in these 

calculations and a basis set comprising all states of HD up to and including 

l/ = 5,j = 11. 
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Figure 6.13: A comparison of results obtained for the v = 4, j = 2 ---t v' = 
2, j' = 0 transition using the SHO (broken curve) and ENCO (full curve) 

functions. The interaction potential of Mielke et al. [39] was used in these 

calculations and a basis set comprising all states of HD up to and including 

V= 5,j = 11. 
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Figure 6.14: A comparison of results obtained for the v = 4, j = 6 -t v' = 

1, j' = 3 transition using the SHO (broken curve) and ENCO (full curve) 

functions. The interaction potential of Mielke et al. [39) was used in these 

calculations and a basis set comprising all states of HD up to and including 

v=5,j=11. 
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Comparison of cross sections between different representations of 

the interactien potential for H + HD 

The cross sections for H + HD are now compared using the interaction po

tentials of Boothroyd et al. [38] and Mielke et al. [39]. The cross sections 

examined here, are the same as those transitions examined when investigating 

the vibrational representations of the molecule, HD. For these calculations 

the ENCO model is used. 

The pure rotationally inelastic transitions are considered first. In Figure 6.15 

cross sections are compar:ed for the v = 0, j = 1--+ v' = 0, j' = 0 transition. 

There is good agreement between the cross sections for each potential. 

Figures 6.16 and 6.17 show cross sections for tlj = 2 transitions. Again, 

cross sections obtained using the two potentials are are in good agreement 

with each other. Small discrepancies did occur between the cross sections at 

higher energies. 

The cross section corresponding to the v .....: 1, j = 3 --+ v' = 1, j' = 0 

transition is shown in Figure 6.18. Large discrepancies between cross sections 

obtained using each potential occur near threshold. The cross sections for 

the potential of Boothroyd et al. [38] peak at a larger value. 

For the pure rotationally inelastic transitions, in H+HD, there is reasonable 

agreement between cross sections obtained using each interaction potential. 

In the cases where there are significant discrepancies, the cross sections ob

tained from Boothroyd et al. [38] typically gives the larger values. 

Larger discrepancies were found between cross sections obtained from each 

interaction potentia:!, for rovibrationally inelastic transitions. Figure 6.19 

shows cross sections for the v ....::. 1, j = 1 --+ v' = (i), j' = 0 transition. At 

low and high collision energies there is reasonable agreement between cross 

sections obtained from each potential. The cross sections continue to increase 

at higher energies for both potentials. 

In Figure 6.20 cross sections for the v = 1, j = 2--+ v' = 0, j' = 0 transition 

are shown whilst those for the v == 4, j = 2 --+ v' = 2, j' = 0 transition 

are shown in Figure 6.21. For both transitions there is excellent agreement 

between cross sections obtained from each potential at low collision energies. 
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Figure 6.15: A comparison of converged results obtained for the v = 0, j = 

1 -t v' = 0, j' = 0 transition using the potentials of Boothroyd et al. [38] 

(broken curve) and Mielke et al. [39] (full curve). The ENCO vibrational 

functions were employed in these calculations and a basis set comprising all 

states of HD up to and including v = 5, j = 11. 



Chapter 6. Calculations for H+HD 121 

0.35 

0.3 

--- 0.25 M e 
(.) 

'Cl -b 0.2 ....... 
'-" 

t:::: 
0 

"+=l 
(.) 

0.15 Q) 
Cl} 

Cl} 
Cl} 

0 
1-< 

u 0.1 

0.05 

0 ~~~~~~~~~~~~~~~~~~~~~ 

0 10000 20000 30000 40000 50000 60000 

Collision Energy (K) 

Figure 6.16: A comparison of converged results obtained for the v = 0, j = 
2 ---+ v' = 0, j' = 0 transition using the potentials of Boothroyd et al. [38] 

(broken curve) and Mielke et al. [39] (full curve) . The ENCO vibrational 

functions were employed in these calculations and a basis set comprising all 

states of HD up to and including v = 5, j = 11. 
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Figure 6.17: A comparison of results obtained for the v = 3, j = 7---+ v' = 
3, j' = 5 transition using the potentials of Boothroyd et al. [38] (broken 

curve) and Mielke et al. [39] (full curve). The ENCO vibrational functions 

were employed in these calculations and a basis set comprising all states of 

HD up to and including v = 5, j = 11. 
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Figure 6.18: A comparison of results obtained for the v = 1, j = 3 -t v' = 
1, j' = 0 transition using the potentials of Boothroyd et al. [38] (broken 

curve) and Mielke et al. [39] (full curve). The ENCO vibrational functions 

were employed in these calculations and a basis set comprising all states of 
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Figure 6.19: A comparison of results obtained for the v = 1, j = 1 --t v' = 
0, j' = 0 transition using the potentials of Boothroyd et al. [38] (broken 

curve) and Mielke et al. [39] (full curve) . The ENCO vibrational functions 

were employed in these calculations and a basis set comprising all states of 

HD up to and including v = 5, j = 11. 
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Figure 6.20: A comparison of results obtained for the v = 1, j = 2 ---+ v' = 
0, j' = 0 transition using the potentials of Boothroyd et al. (38] (broken 

curve) and Mielke et al. (39] (full curve). The ENCO vibrational functions 

were employed in these calculations and a basis set comprising all states of 

HD up to and including v = 5,j = 11. 
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Discrepancies emerge at higher energies; the cross sections for the potential 

of Mielke et al. [39] are larger for the highest energies, although those for 

Boothroyd et al. [38] tend to be larger at lower energies. These cross sections 

continue to increase at the highest collision energies. 

Figure 6.22 shows the cross sections for the v = 4, j = 6 ---+ v' = 1, j' = 3 

transition. There is good agreement between cross sections obtained from 

each potential for low and high collision energies. The cross sections obtained 

using the potential of Boothroyd et al. [38] are larger than those for Mielke 

et al. [39] for collision energies of 250(!)@-50000 K. 

6.3.1 Summary of cross sections for H+HD 

• Cross sections have b>een presented for rovibrationally inelastic tran

sitions in H + HD using the quantum mechanical cou.pled--'Channels 

methocil. 

• The convergence of the cross sections with respect to the extent of the 

basis of rovibrational states was investigated carefully. Convergence 

was found to be slow, with couplings to states with vibrational quantum 

number v;::: 6 being significant. As for the case of H+H2 (see section 

5.3.4), this may be due to reactive scattering states being neglected 

from the basis set. 

• Considerable differences were found between cross sections calculated 

for different vibrational representations of the molecule. The SHO 

model of the vibrational motion was found to be unsatisfactory par

ticularly with regard to the predicted rate of increase from threshold 

of cross sections for vibrationally inelastic transitions. 

• Cross sections obtained using the ENCO and model displayed consid

erably more structure than those obtained using the SHO model. 

• There was :reasonable agreement between cross sections calculated using 

the potential of Mielke et al. [39] ancil Boothroyd et al. [38] for most 

collision energies. 
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Figure 6.21: A comparison of results obtained for the v = 4, j = 2 -t v' = 

2, j' = 0 transition using the potentials of Boothroyd et al. [38] (broken 

curve) and Mielke et al. [39] (full curve) . The ENCO vibrational functions 

were employed in these calculations and a basis set comprising all states of 

HD up to and including v = 5, j = 11. 



Chapter 6. Calculations for H+HD 128 

0.07 

0 .06 

,....... 
0.05 N s 

0 
'oD -b 0 .04 -'-" 

1:1 
0 ·a 
0 

0.03 Q.) 
C"ll 

C"ll 
C"ll 
0 
1-o 

u 0.02 

0.01 

0 
0 10000 20000 30000 40000 50000 60000 

Collision Energy (K) 

Figure 6.22: A comparison of results obtained for the v = 4, j = 6 ---+ v' = 
1, j' = 3 transition using the potentials of Boothroyd et al. [38] (broken 

curve) and Mielke et al. [39] (full curve). The ENCO vibrational functions 

were employed in these calculations and a basis set comprising all states of 

HD up to and including v = 5, j = 11. 
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• At high collision energies cross sections obtained for several rovibra

tionaHy inelastic transitions continued to increase. Future calculations 

at higher collisian energies may be required ta ensure there is no prob

lem of divergence in the cross sections. 

6.4 Rate Coefficients 

In order to obtain rate caefficients as functions of the kinetic temperature, 

T, the cross sections are integrated over a Maxwellian velocity distribution 

(see equation (2.90)). When calculating the rate coefficients care was taken 

to ensure the grid of collision energies was adapted to the opening of new 

thresholds, and other effects, which cause rapid variation in the crass sections 

as a function of barycentric collision energy. However due to the increased 

structure observed when the ENCO representation is used it can become 

difficult to incorporate every feature for all transitions. 

The rate coefficients were computed numerically on a grid of temperatures 

extending fram 0 K to 6000 K at every 100 K. Only a subset of the rate coef

ficients are presented in this thesis. A complete collection of rate coefficients 

can be found at http:/ /ccp7.dur.ac.uk. 

Comparison of rate coefficients between different representations 

of the vibrational motion of the molecule 

Rate coefficients for pure rotationally inelastic transitions calculated using 

the SHO and ENCO models are considered first. 

Figlll"e 6.23a shows a comparison of the rate coefficients for the v = 0, j = 

1 ---+- v' = @, j' = 0· transition. There is reasonable agreement between the 

vibrational models at low temperatures. At higher temperatures the rate 

coefficient for the SHO model is moderately larger. 

In Figure 6.23b rate coefficients for the v = 0, j == 2 ---+- v' = 0, j' -

0 transition are shawn. There is good agreement between the SHO and 

ENCO models at low temperatures. At higher temperatures there are small 

discrepancies. 
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Rate coefficients are shown for the v ...:.... 3, j ..:.... 7 ~ v' = 3, j' = 5 transition, 

using the ENCO and SHO models, are shown in Figure 6.23c. There are 

considerable discrepancies between the two vibrational models at low tem

peratures. At higher temperatures the size of the discrepancy reduces. The 

rate coefficient for the EN CO model is larger over the entire temperature 

range calculations were performed fer. 

Rate coefficients for a Aj = 3 transition are shown in Figure 6.23d. There 

is reasonable agreement between the vibrational models at the lowest tem

peratures. Discrepancies begin to emerge as the temperature is increased. 

The magnitude of the rate coefficient for the ENCO model is greater for all 

considered temperatures. 

The rotationally inelastic transitions considered a:bove show that as the size 

of Aj increases, the magnitude of the rate coefficient reduces. This trend is 

observable in their corresponding cress sections and relates te the,convergence 

in the expansion of the interaction potential (see equation 5.1).. 

The rovibrationally inelastic cross sections calculated for H + HD exhibited 

large discrepancies, between which vibrational model is used, near threshold 

and for most of the collision energy range. Therefore, large discrepancies are 

expected in the rate coefficients too. 

In Figure 6.24a and Figure 6.24b, rate coefficients are shown for transitions 

with l!iv = 1. There are large discrepancies, between the vibrational mod

els, at low temperatures where the ENCO model gives a larger magnitucl:e 

for the rate coefficient in both transitions. The discrepancies are larger in 

Figure 6.24b althou.gh the magnitude of the rate coefficient is smaller as it 

is a l!ij = 2 transition. The rate coefficient in Figure 6.24a corresponds to a 

Aj = 1 transition. 

Figure 6.24c shows rate coefficients calculated for the v = 4, j = 2 --+ 

v' = 2, j' = 0 transition. There are very large discrepancies, between the 

SHO and ENCO models, at low temperatures. The rate coefficient for the 

ENCO model remains larger over the entire range of ca:lculated temperatures. 

However, the size of the discrepancy reduces dramatically as the temperature 

increases (with near agreement at T = 6000 K). 

The rate coefficients for the v = 4, j = 6 ~ v' - 1, j' = 3 transition 
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these calculations. 
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Figure 6.24: A comparison of rate coefficients, as a function of kinetic tem

perature T, obtained for the for the (a) v = 1, j = 1 ---+ v' = 0, j' = 0 , 

(b) v = 1, j = 2 ---+ v' = 0, j' = 0 , (c) v = 4, j = 2 ---+ v' = 2, j' = 0 , 

(d) v = 4, j = 6 ---+ v' = 1, j' = 3 transitions using the SHO and ENCO 

models, H+HD. The interaction potential of Mielke et al. (39] was used in 

these calculations. 
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are shown in Figure 6.24d. There are large discrepancies between the two 

vibrational models at all calculated temperatures. The ENCO model rate 

coefficients are larger, although the magnit11de of the discrepancy decreases as 

the temperature increases. At low temperatures the ENCO model produces 

a rate coefficient approximately 5 orders of magnitude greater than that of 

the SHO model. 

The rate coefficients calculated for rovibrationally inelastic transitions, in 

H +HD, have larger discrepancies between the ENCO and SHO models than 

those found in rotationatly inelastic cross sections~ 

Comparison of rate coefficients between different representations 

of the interaction potential 

Rate coefficients were calculated for transitions using the interaction poten

tials of Mielke et al. [39] and Boothroyd et al. (38]. 

Figures 6.25a, 6.25b, and 6.25c show rate coefficients for pure rotationally 

inelastic transitions in HD. There is good agreement between rate coefficients 

obtained for both potentials for each transition. This is expected as there was 

good agreement between the corresponding cross sections f0r each transition. 

The rate coefficients for transitions corresponding to t:J..j = 2 are substantially 

smaller than those for ilj .:...._ 1, as expected. 

In Figure 6.25d the rate c0eflicients for the v = 1, j = 3 ~ v' = 1, j' = (i) 

transition are shown. The rate coefficient obtained using the potential of 

Boothroyd et al. (38] is approximately an order of magnitude larger than 

that obtained 11sing the potential of Mielke et al. [39]. As the temperature 

increases the size of the discrepancy rapidly reduces~ 

Figures 6.26a, 6.26b, 6.26c, and 6.26d show rate coefficients, calculated using 

the interaction potentials of Boothroyd et al. (38] and Mielke et al. [39], for 

rovibrationally inelastic transitions in HD. There is reasonably good agree

ment between the two potentials for each of the transitions shown. Any 

discrepancies that are present are small in magnitude. 
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Figure 6.25: A comparison of rate coefficients, as a function of kinetic tem

perature T, obtained for the for the (a) v = 0, j = 1 ~ v' = 0, j' = 0 , (b) 

v = 0, j = 2 ~ v' = 0, j' = 0 , (c) v = 3, j = 7 ~ v' = 3, j' = 5 , (d) 

v = 1, j = 3 ~ v' = 1, j' = 0 transitions, for H + HD, using the potentials 

of Boothroyd et al. [38] (broken curve) and Mielke et al. [39] (full curve). 

The ENCO vibrational functions were employed in these calculations. 
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Figure 6.26: A comparison of rate coefficients, as a function of kinetic tem

perature T, obtained for the for the (a) v = 1, j = 1 ~ v' = 0, j' = 0 , (b) 

v = 1, j = 2 ~ v' = 0, j' = 0 , (c) v = 4, j = 2 ~ v' = 2, j' = 0 , (d) 

v = 4, j = 6 ~ v' = 1, j' = 3 transitions, for H+ HD, using the potentials 

of Boothroyd et al. [38] (broken curve) and Mielke et al. [39] (full curve). 

The ENCO vibrational functions were employed in these calculations. 
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6.4.1 Summary of rate coeflicients for H + HD 

• Thermally averaged rate coefficients have been presented for rovibra

tionaNy inelastic transition.s in H+HD. 

• Rate coefficients calculated using the ENCO model were considerably 

larger than those obtained using the SHO model for low temperatures. 

• The rate coefficients obtain.ed using the ENCO were model were, typi

cally, larger than those of the SHO model for all temperatures. 

• The rate coefficients calc-ulated for the potentials of Mielke et al. [39] 

and Boothroyd et al. [38] were in reasonable agreement. Some discrep

ancies were found at low temperatures. 



Chapter 7 

Applications 

In this chapter several applications of the cross sections and rate coefficients 

are presented. The rate coefficients are most commonly used in astrophysical 

areas of study which are beyond the scope of this thesis. Hence, only a brief 

details of the astrophysical applications are given. This discussion in this 

chapter is more concerned with any significant changes produced as a reswt 

of using the newly calculated rate coefficients. 

Results from this chapter have been presented in [54]. 

7.1 Vibrational relaxation rate coefficients 

The vibrationa:l relaxation rate, kv rei. (v, j) is obtained by summing over col

lisional transition rates, ( uv )·vj-w' j', to all levels ( v', j') with v' < v. 

Allers et al. ([59], table 6) listed determinations of the v~brational relax

ation rates, for H2 , for the level (v, j) = (1, 3) to a:lllower rotational levels 

of the v = 0, and similarly for (v,j) = (2, 3) to v = 0 and v = 1, at 

T = 1000 K, along with their own estimates, based on observations of the 

Orlon bar Photon-Dominated Region (PDR). Their tabulated values are re

produced in Table 7.1. 

The calculations presented in this thesis, so far, have been for non-reactive 

scattering. Therefore, for comparison with the tabulated values presented 

in Allers et al. [59], an estimate of the reactive scattering rate was made 
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using the prescription of Le Bourlot et al. [62]. In this method the non~ 

reactive scattering rate, (av)~jr:::,yt·, is related to the reactive scattering 

rate, (av)~j:!~'i'' using the following relations 

(av)r~t .. = (av)n~.n.·-re;a.ct. x exp -max 0 . · · ·· 3 3 
( { [

3900- (Ev·- Ev'"' )] }) 
VJ-+V

1
J 1 VJ.-+V1J' . . ' T 

(7.1) 

for when (lj - j'l even.), 

( )react. 1 [( )non-react. + ( )non-react.] av vj-+v1j1 = 2 av vj-+v'j'-1 aV· vj-+v1j1+1 

X exp ( -max { O, [3900- (~;- Ev'j')] }) (7.2) 

for when {lj- j'l odd and j even), and 

( )react. 1 [( )non~react. + ( )non-react.] av· vj-+v'j' = 6 av vf·-+V'j'-1 av vj-+v'j'+1 

x exp ( -max { O, [-39_0e_· -~(E-;3=--· -~E__.v'3~·')] } ) (7.3) 

for when (lj- j'l odd and j odd). In the above relations Ev; and Tare given 

in units of kelvin. 

The vibrational relaxation rate coefficients, determined from the rate coeffi

cients in this thesis, are compared with those of Allers et al. [59] in Table 7.1. 

For the ENCO model, the estimated reactive scattering contribution was 54% 

of the total for (v, j) = (1, 3) and 57% for {v; j) = (2, 3) at T = 1000 K. 

Flower and Roueff [18] have observed that the quasi-classical trajectory cal

culations of Garcia and Lagana [63], and Mandy and Martin [61] show that 

the reactive and non-reactive contributions to the rate coefficient for vibra

tional relaxation v = 1 --+ v = () at T = 300 K of H2 by H are :related 

by (av)react. ~ 2(av)non-react.. This relationship, which probably relates to 

the larger number of final rotational states accessible in reactive scattering, 

where j may change by both even and odd integers, is consistent with the 

present estimate .of the contribution of the reactive scattering channels to 

the total vibrational relaxation rate coefficient of H2 . Nonetheless, the con

tribution of the reactive scattering channels remains a significant source of 

rmcert;ainty, which can be removed only by quantum mechanical calculations 

that allow for proton exchange. 
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For the case of HD, the contribution of the reactive scattering may be ex

pected to be smaller, by a factor of 2, as only one proton is available for 

exchange. For the work in thls thesis1, no correction has been applied for 

reactive scattering in H + HD. 

The large variations in Table 7.1 are due to several factors: 

• Differences in the ca:lculation of H + H2 interaction potential. 

• Differences in the representation of the vibrational eigenfunctions (i.e. 

SHO, Morse, ENCO, 'exact oscillator' etc.). 

• Differences in the treatment of the collision problem (i.e. Basis set size, 

quantum mechanica:l or semi~lassica:l methods, etc.). 

The results obtained in this thesis are in good agreement with the empirical 

estimates of Allers et al. [59]. There are large discrepancies with the earlier 

study of Le Bourlot et al. [62] which are largely due to the improved rep

resentation of the rovibrational eigenfunctions, rather than changes in the 

H+ H2 interaction potential, for which we have adopted the results of the 

ca:lculations of Mielke et al. [39], whereas Le Bourlot et al. [62] used the 

potential calculated by Boothroyd et al. [38]. 

The agreement with Allers et al. [59] is encouraging. However, without the 

availability of accurate experimental data it is difficult to comment on the 

accuracy of the present work or that of Allers et al. [59]. There is little 

experimental data available for comparison with due mainly to the difficulty 

in performing such experiments. 

7.2 Astrophysical models 

It was shown, in Chapters 5 and 6, that there can. be considerable differences 

in the magnitude of the rate coefficient depending on which vibrational rep

resentation is used, and in some cases on which interaction potential was 

1Cooling by HD is significant for the application in Section 7.2.2 where pure rotational 

excitation in the v = 0 vibrational state at temperatures T ;S 1000 K, is dominant. 
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used. The magnitude of the differences was often dependent on the temper

ature given. However even with significant differences in the rate coefficients 

it does n.ot follow automatically that the consequences in astrophysical sim

ulations will be as significant. Even when the dominant excitation mecha

nism is collisions with H atoms, the populations of the rovibrational levels 

of H2 depend on the relative importance of radiative (electric quadrupole) 

and collisional de-excitation. If the density is sufficiently high, collisional 

de-excitation dominates and the relative populations tend to a Boltzmann. 

distribution. The values of the collisional rate coefficients are then irrele

vant, except in so far as they determine the 'critical density', at which the 

Boltzmann. distribution begins to be approached. At densities much less than 

the critical density, collisional excitation is followed by radiative decay, and 

so collisional excitation rates determine the line intensities. However, the 

spontaneous transition probabilities of H2 are small, because electric dipole 

transitions are not allowed. Consequently, the critical density tends to be 

low, and regimes of even lower density may only have limited significance, in 

the context of the model. 

For HD there is an electric dipole present, however the relative abundance 

ratio of HD to H2 is typically nHn/nH2 = 10-5. 

The calculations of Le Bourlot et al. [62], which used the SHO model and the 

potential of Boothroyd et al. [38], have been used in previous astrophysical 

modelling. They were used as a benchmark for some of the present calcu

lations, which used the 'exact osci:Nator' model with the potential of Mielke 

et al. [39], when used in astrophysical modelling. For the astrophysical ex

amples presented in this thesis the rate coefficients were fit to the following 

function of temperature, T: 

(7.4) 

where t = 10=3T + 8 and 8 = 1.0 ensures the rate coefficients remain well 

behaved at low T. 
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Figure 7.1: The excitation diagram computed for a C-type shock model, 

using the H+H2 rate coefficients of Le Bourlot et al. [62) (in blue) and the 

present values (obtained using the 'exact oscillator' model and interaction 

potential of Mielke et al. [39]) (in red). Results are plotted for rotational 

levels in vibrational manifolds 0 ::; v ::; 4. For v = 0, the blue and the red 

symbols overlap. The data for this figure was kindly provided by Antoine 

Gusdorf. 
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7.2.1 C-type shock waves in molecular clouds 

In this application the H+H2 rate coefficients are used. The rate coefficients 

for the rovibrational excitation of H2 by H may be expected to play a sig

nificant role in C-type shock waves, propagating in a molecular gas [21]. 

Shock wave heating leads to partial dissociation of H2 , enriching the gas in 

atomic H. Rotational and particularly rovibrational excitation of H2 takes 

place, under conditions in which the excited vibrational levels are depopu

lated principally by spontaneous radiative decay to lower vibrational levels, 

rather than collisional!ly. Under these circumstances, the relative populations 

of the vibrati0nal manifolds do not approach a Boltzmann distribution. 

In Figure 7.1, the 'excitation diagram' of H2 for a C-type shock model2 is 

plotted with the following parameters: shock speed V8 = 30 km s-1 ; pre

shock gas density nH = 104 cm-3 ; and pre-shock magnetic field strength, 

transverse to the direction of the (one-dimensional) flow, B = 100 p,G. The 

initia:l chemical composition of the gas was calculated assuming that a steady 

state prevailed. 

If the populations of the rovibrationa:l levels conformed to a Boltzmann dis

tribution at a given kinetic temperatme, T, the data points in Figure 7.1 

would fall on a single straight line, whose gradient is proportional to r-1; in 

practice, this is not the case. However, within each vibrational manifold, the 

rotational levels fall approximately on straight lines corresponding to tem

peratures which tend to increase with the vibrational quantum number, v. 

Differences are apparent, for v > 0, between the results obtained using the 

present H+H2 rate coefficients and those of Le Bourlot et al. [62]. 

The results plotted in Figure 7.1 are readily understandable in the light of the 

previous discussion. For the populations of the levels of the v = 0 manifold, 

only the vibrationally elastic (and rotationally inelastic) rate coefficients are 

important, for which the 'old' and the 'new' values do not differ substan

tially at the temperatures relevant to the formation of the corresponding 

emission lines. On the other hand, for vibrationally excited levels, the new 

rate coefficients yield larger populations and column densities. Nonetheless, 

the changes are not as large as might have been anticipated from a glance 

2The C-type shock models w:ere run by Antoine Gusdorf. 
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at Table 7.1. The gas which is heated in the shock wave undergoes com

pression also, leading to an approximate thermalisation of the populations 

of the rotational levels within a given vibrational manifold. Furthermore, 

to the larger rates of rovibrational excitation corresponds a higher rate of 

cooling by H2 • Because H2 is a major coolant, the kinetic temperature 

falls, thereby reducing (exponentially) the rates of rovibrational excitation. 

In other words, there is a feedback loop which maintains the rate of cooling 

by H2 at an approximately constant value. 

7.2.2 Gravitational collapse of an inhomogenei,ty in the 

primordial gas 

It is believed that the initial gravitational collapse of inhomogeneities in 

the primordial gas was made possible through radiative cooling by the trace 

amounts of molecular hydrogen which were produced in the post recombina

tion era (Palla et al. [64]). The cooling by HD can be comparable to that by 

H2 , owing to: 

1. chemical fractionation, which enhances the deuterium content of molec

ular hydrogen. 

2. the lower rotational constant of HD, which makes its rotational levels 

more energetically accessible. 

3. the fact that HD has a permanent electric dipole moment, and hence 

transitions between adjacent rotational states can occur. 

A model of gravitational collapse of a spherical condensation of the primor

dial gas was run3, starting from the conditions of the primordial gas at a 

redshift z ~ 40 and attaining z ~ 10 asymptotical1y. A comparison of 

the thermal profiles obtained with the present and the previous values of 

the rate coefficients for the excitation of H2 (Le Bourlot et al. [62]) and 

HD (Flower et al. [65]) by H is shown in Figure 7.2, through to a density 

nH = n(H) + 2n(H2 ) + n(HD) + n(H+) = 1012 cm-3 • 

3The gravitational collapse models were run by Professor David Flowel'. 
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Figure 7.2: The temperature profile of a gravitationally collapsing spherical 

condensation of the primordial gas. The full curve was calculated with the 

present H+H2 and H+HD rate coefficients (obtained using the 'exact oscil

lator' model and interaction potential of Mielke et al. [39]) , the broken curve 

using the earlier data of Le Bourlot et al. [62) and Flower et al. [65) . The 

data for this figure was kindly provided by Professor David Flower. 
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In the initial phase of the collapse, the kinetic temperatme, T, increases 

adiabatically: the density is so low that the rate of cooling by H2 and HD 

is negligible. Approaching nH = lQ cm-3 , collisional cooling assUmes sig

nificance, and its rate increases quadratically with the density, nH. As a 

consequence, T decreases, reaching a minimum for nH ~ 104 cm - 3• The in

creases in the rate coefficients for rov:ibrationally inelastic scattering of H on 

both H2 and HD (see Sections 5 and 6~ lead to lower temperatures; but the 

progressive thermalisation of first the rotational levels and then, at higher 

densities, the vibrational levels ( cf, Flower and Harris [66]) mitigates the 

effects on T. Furthermore, as the temperature does not exceed T ~ 1000 K 

over the range of density in Figure 7.2, the contribution of cooling due to vi

brationally inelastic scattering is limited, as the v = 1 vibrational threshold 

is approximately 6000 K. 



Chapter 7. Applications 

Reference 

Sternberg and Dalgarno (60] 

Manay ana MartiB (61] 

Le Bourlot et al. (62] 

Allers et al. [59] 

Present work: SHO, Mielke et al. 

Present work: ENCO, Mielke et al. 

Present work: 'Exact', Mielke et al. 

kv rei. (v, j) = (1, 3) 
~ ~ ~ 

5.5(-W) 

6.3(-12) 

6.3(-13) 

5.4(-11) 

6.9(-13) 

1.6(-11) 

2.1(-11) 
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kv rei. (v, j) = (2, 3) 

7.5(-10) 

3.6(-11) 

9.2(-13) 

7.9(-11) 

9.1(-13) 

1.5(-10) 

1.4(-10) 

Table 7.1: Vah:1es of the vibrational relaxation rates of the the specified upper 

rovibrationallevel, (v, j), of H2 , in units of cm3 s-1 . The numerical values 

were evaluated for T == 1000 K by summing the the rate coefficients from the 

initial level, (v,j), to all lower levels with v' < v. Numbers in parentheses 

are powers of 10. 
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Chapter 8 

Concluding remarks 

In this chapter the conclusions drawn from the scattering calculations and 

their application are summarised. 

8.1 Scattering calculations 

Cross sections, as a function of barycentric collision energy, and rate coeffi

cients, as a function of kinetic temperature, were calculated for H + H2 and 

H + HD using the quantum mechanical coupled=-ehannels method. The cal

culations were performed for different vibratioRal representatiolls of the 

molecule, and for the interaction potentials of Boothroyd et al. [38] and 

Mielke et al. [39]. The conclusions are summarised in the following subsec

tions. 

8.1.1 Convergence and basis set 

The convergence of the cross sections with respect to the extent of the basis 

of rovibrational states was investigated carefutly. Convergence was fonnd to 

be slow, with couplillgs to states with vibrational quantum number v = 6 

being significant for transitions between v--- 1 and v--- 0, for example. The 

slow convergence relates to the fact that H can undergo reactive scattering 

with H2 and HD at collision energies exceeding a few thousand kelvin. The 

increase in the magnitudes of the potential coupling coeflicients, Y>.. (vj, v' J"IR) 

148 



Chapter 8. Concluding remarks 149 

(v =f: v'), which control vibrationally inelastic scattering, with increasing v, v' 

(see figures 5.4 aild 6.2, for example), reflects this fact. 

8.1.2 VibratiBg oscillator model 

The SHO model of the vibrational motion. was found to be unsatisfactory, 

particularly with regard to the predicted rate of increase from threshold of 

cross sections for vibrationally inelastic transitions. Cross sections obtained 

using the ENCO or 'exact osciiJ.lator' models were considerably larger in mag

nitude near threshold than those obtained using the SHO model. The cross 

sections calculated for the 'exact oscillator' and ENCO models contained 

significantly more structure than those of the SHO model. 

The rate coefficients are determined directly from the cross sections. Thus 

discrepancies between the vibrational representations are expected in the rate 

coefficients too. Rate coefficients calculated using the 'exact oscillator' and 

ENCO models were considerably larger than those obtained using the SHO 

model, at low temperatures. The 'exact oscillator' and ENCO models tended 

to produce rate coefficients which were larger over the entire temperature 

range, than those obtained using the SHO model. 

8.1.3 Interaction potentials 

Overa:ll, for H+H2 and H+HD, there was reasonable agreement between 

cross sections calculated using the potential of Mielke et al. [39] and 

Boothroyd et al. [38] for most collision energies. Cross sections for some 

rovibratianally inelastic transitions in H + H2 exhibit significant differences 

in magnitude, notably in. the near~threshald energy region, between the two 

interaction potentials. 

The rate coefficients calculated for the potentials of Mielke et al. [39] and 

Boothroyd et al. [38] were in reasonable agreement. Some discrepancies were 

found at low temperatures. 
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8.2 Applications 

8.2.1 Vibrational relaxation coefficient 

The cross sections for tovibration.al excitation of H2 and HD are much larger 

near threshold when the numerically 'exact oscillator' eigenfunctions are em

ployed compared with calculations based on the SHO approximation to the 

eigenfunctions. As a result, the rate coefficients for vibrational relaxation. 

of the levels (v,j) = (1, 3) and (2, 3) are in much better agreement with 
• 

estimates by Allers et al. [59], based on the observations of the Orion bar 

PDR. 

8.2.2 Astrophysical models 

The calculated rate coefficients, for the exact 'oscillator' representation, were 

incorporated into illustrative astrophysical models- of a C-type shock wave 

propagating in an interstellar molecular cloud and of the gravitational col

lapse of a condensation of the primordial gas. The conclusions may be sum

marised as follows: 

1. There are significant consequences for the H2 excitation diagram (Fig

ure 7.1) predicted by an illustrative C=type shock model of speed 

V8 = 30 km s-1, propagating into molecular gas of density nH = 104 

cm - 3 ; the new rate coefficients give rise to larger values of the column 

densities of the vibrationally excited levels. However, the increases in 

the column densities are much smaNer than might be anticipated on 

the basis of a comparison of the new and the old rate coefficients, owing 

to the existence of a feedback loop, which maintains an approximately 

constant rate of cooling by H2 . 

2. In the model of the gravitational collapse of a condensation of the pri~ 

mordial gas, there is little modification of the thermal profile when the 

new rate coe:fficents are introduced. In this case, pure rotational exci

tation within the vibrational ground state, v = 0, is more important 

to the thermal balance than vibrational excitation, and the changes in 
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the rate coefficients for pure rotational excitation are less pronounced. 

Furthermore, the populations of rotational levels within a given vi

brational manifold thermalize at lower gas densities, nH, than do the 

relative popwations of levels belonging to different vibrational states. 
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Future work 

It is believed that the scattering calculations presented in this thesis offer 

significant improvement over previous work performed on the H+H2 and 

H+ HD systems~ However, there still remain several areas where the cal

culations could be modified to offer further improvement. In this chapter 

possible improvements to the scattering calculations and astrophysica1 appli

cations are considered. 

9.1 Scattering calculations 

For each system considered, in this case H+H2 and H+HD, there are several 

possible areas of improvement; such as the basis set size and the vibrational 

representation of the molecule. One area that is not open to immediate im

provement is that of the interaction potential. The interaction potential of 

Mielke et al. [39] should be the most reliable, according to the precision 

quoted for the calculations, but future interaction potentials may offer even 

higher precision. In this case calculations wolli.d need to be repeated par

ticularly for low collision energies. With an improved interaction potential, 

and the modifications suggested below, even higher accuracy cross sections 

and rate coefficients couicl be determined. Future experiments, and high~ 

precision astrophysical observations, will allow further comparison between 

theoretical and experimental data which may enable further uncertainties in 

the calculation process to be reduced. 
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The H + H2 scattering calculations were performed for a 54 level basis set 

l:lSing the SHO, ENCO, and 'exact oscillator' vibrational representations. 

The 'exact oscillator' model is the most accurate vibrational model to use, 

but it is also the most computationally demanding. The run-time, memory 

requirements, and input-file size grow rapidly as the basis set size increases. 

An increased basis set size offers higher accuracy in the convergence rate, and 

also opens higher (v, j) transitions. The maximum number of rovibrational 

energy levels in the electronic ground state of para-H2 and ortho-H2 are 

163 levels and 155 levels, respectively. Calculations with a complete basis 

set for H +para-H2 and H +ortho-H2 using the 'exact oscillator' are close 

to being feasible. This is the next stage for scattering calculations of this 

system and it is possible that it may be completed in the near future. 

9.1.2 H+HD 

The H + HD scattering calculations were performed for a 120 level basis set 

using the SHO and ENCO vibrational representations. Due to the large size 

of the basis set it was computationally impractical to perform calculations 

using the 'exact oscillator'. The maximum number of rovibrational energy 

levels in the electronic ground state of HD is 399 levels. Therefore, to perform 

ca:lculations using a full basis set is computationally impractical. There are 

two routes of progress for future work on H+HD. One way is to use the 'exact 

oscillator' model for as large a basis set as computationally feasible ("' 1!68 

levels). The other way would be to increase the basis set size to as large as 

computationally feasible ("' 200 levels) using the ENCO model. It is possible 

that both routes may be investigated in the future. 

9.2 Astrophysical applicatio:ns 

The implications of using the newly calculated rate coefficients, from this the

sis, was investigated earlier in Chapter 7. If significant differences are found 

in future rate coefficient calculations then the astrophysical implications will 
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have to be reinvestigated. 

Regarding the newly calculated rate coefficients, the implications in other 

astrophysical axeas will not be immediately apparent until further use is made 

of them by the astrophysical community. H and H2 axe the most abundant 

atomic and molecwax species, respectively, in the universe and therefore the 

rate coefficients for H+H2 and H+HD axe required for calculations in a wide 

variety of astrophysical environments. 

9.3 Reactive scattering 

The calculations presented within this thesis have considered only non

reactive scattering in the H+H2 and H+HD systems (i.e. where the reactive 

states have been neglected from the basis set). This is reasonable for low 

collision energies but for higher energies it is an unrealistic approximation. 

It was found that the reactive scattering rate coefficients were a significant 

component of the total vibrational relaxation rate coefficients in Section 7.1. 

They were determined from approximations previously derived in [62] and 

therefore could provide only an estimate to the reactive scattering :rate. Nev

ertheless, the contribution of the reactive scattering channels remains a sig

nificant source of uncertainty which can be removed only by quantum me

chanical calculations which allow for proton exchange. Computer programs 

exist to solve this type of problem already, an example is ABC [67]. These 

programs could be modified to incorporate the interaction potential of Mielke 

et al. [39], and a laxge basis set, such that reactive scattering rates could be 

produced to complement the non-reactive rates presented within this thesis. 
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Appendix A 

Basis set used for para-H2 

Table A.1: The basis set used in the H+para~H2 calcu-

lation. 

Basis set no. H2 Level no. V j Energy (K) 

1 1 0 0 0.0000 

2 3 0 2 509.85 

3 5 0 4 1681.6 

4 7 0 6 3474.4 

5 9 0 8 5829.7 

6 ]jQ 1 0 5987.1 

7 1:2 1 2 6471.6 

8 15 1 4 7584.6 

9 17 0 10 8677.3 

10 t8 1 6 9286.6 

11 21 1 8 11521.8 

12 22 2 @ 11635.7 

13 24 0 12 1194@.3 

14 25 2 2 12095.2 

15 28 2 4 13150.7 

16 31 1 ]@ 14221.1 

17 32 2 6 14764.1 

18 33 0 14 1:5540.2 

continued on next page 
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Table A.1: continued 

Basis set no. H2 Level no. V j Energy (K) 

19 36 2 8 16880.5 

20 37 3 0 16952.8 

21 39 1 12 17311.2 

22 40 3 2 17387.7 

23 44 3 4 18386.5 

24 47 0 16 19403.4 

25 48 2 10 19434.9 

26 49 3 6 19912.2 

27 50 1 14 20717.8 

28 54 3 8 21911.7 

29 55 4 0 21942.7 

30 57 4 2 22353.2 

31 58 2 12 22355.3 

32 62 4 4 23295.6 

33 63 0 18 23459.8 

34 66 3 10 24322.6 

35 67 1 16 24368.4 

36 68 4 6 24734.0 

37 70 2 14 25570.5 

38 74 5 0 26606.7 

39 75 4 8 26617.0 

40 77 5 2 26992.8 

41 78 3 12 27074.1 

42 81 0 20 27644.5 

43 83 5 4 27878.7 

44 84 1 18 28194.8 

45 87 4 10 28883.7 

46 88 2 16 29009.3 

47 89 5 6 29229.5 

48 92 3 14 30097.8 

49 96 6 0 30943.2 

continued on next page 
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Table A.l: continued 

Basis set no. H2 Level no. V j Energy (K) 

50 97 5 8 30995.5 

51 99 6 2 31304.6 

52 lOO 4 12 31466.5 

53 103 0 22 31900.3 

54 105 6 4 32133.2 



Appendix B 

Basis set used for ortho--H2 

Table B.1: The basis set used in the H+ortho-H2 calcu-

lation. 

Basis set no. H2 Level no. 1J j Energy (K) 

1 2 0 1 170.50 

2 4 0 3 1015.2 

3 6 0 5 2503.8 

4 8 0 7 4586.3 

5 11 1 1 6149.2 

6 13 1 3 6951.5 

7 14 0 9 7196.9 

8 16 1 5 8365.2 

9 19 0 11 10261.7 

10 20 1 7 10341.5 

11 23 2 1 11789.5 

12 26 2 3 12550.5 

13 27 1 9 12817.5 

14 29 0 13 13703.1 

15 30 2 5 13890.7 

16 34 1 11 15722.2 

17 35 2 7 15763.3 

18 38 3 1 17098.3 

continued on next page 
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Table B.1: continued 

Basis set no. H2 Level no. ll j Energy (K) 

19 41 0 15 17443.9 

20 42 3 3 17818.6 

21 43 2 9 18107.4 

22 4'5 1 13 18979.7 

23 46 3 5 19086.4 

24 51 2 11 20853.8 

25 52 3 7 20856.5 

26 53 0 17 21411.6 

27 56 4 1 22080.0 

28 59 1 15 22517.1 

29 60 4 3 22759.8 

30 61 3 9 23069.9 

31 64 2 13 23930.7 

32 65 4 5 23955.8 

33 69 0 19 25539.6 

34 71 4 7 25623.8 

35 72 3 11 25659.8 

36 73 1 17 26263.6 

37 76 5 1 26735.9 

38 79 2 15 27266.2 

39 80 5 3 27375.2 

40 82 4 9 27706.7 

41 85 5 5 28498.9 

42 86 3 13 28556.6 

43 90 0 21 29766.6 

44 91 5 7 30064.3 

45 93 4 11 30139.9 

46 94 1 19 30154.6 

47 95 2 17 30792.3 

48 98 6 1 31064.1 

49 101 6 3 31662.3 

continued on next page 
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Table B.1: continued 

Basis set no. H2 Level no. V j Energy {K) 

50 102 3 15 31690.2 

51 104 5 9 32015.7 

52 108 6 5 32712.7 

53 109 4 13 32855.1 

54 113 0 23 34037.5 



Appendix C 

Basis set used for HD 

Table C.1: The basis set used in the H+HD calculation. 

Basis set no. H:O Level no. V j Energy (K) 

1 1 0 0 0.0000 

2 2 0 1 128.38 

3 3 0 2 384.24 

4 4 0 3 765.86 

5 5 0 4 1270.6 

6 6 0 5 1895.2 

7 7 0 6 2635.7 

8 8 0 7 3487.4 

9 9 0 8 4445.1 

10 10 1 0 5226.5 

11 11 1 1 5349.3 

12 12 0 9 5503.2 

13 13 1 2 5594.1 

14 14 1 3 5959.2 

15 15 1 4 6442.1 

16 1:6 0 ]0 6656.0 

17 17 1 5 7039.5 

18 18 1 6 7747.5 

19 19 0 11 7897.3 

continued on next page 
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Table C.1: continued 

Basis set no. HD Level no. V j Energy (K) 

20 20 1 7 856iJ..7 

21 21 0 12 9220.7 

22 22 1 8 9477.1 

23 23 2 @ HH97.7 

24 24 2 1 10315.1 

25 25 1 9 10488.3 

26 26 2 2 10549.0 

27 27 0 13 10620.0 

28 28 2 3 10897.9 

29 29 2 4 11359.2 

30 3(!) 1 10 11589.6 

31 31 2 5 11929.9 

32 32 0 14 12088.7 

33 33 2 6 12606.2 

34 34 1 11 12775.0 

35 35 2 7 13383.7 

36 36 0 15 13620.6 

37 37 1 12 14038.5 

38 38 2 8 1425.7.5 

39 39 3 0 14918.7 

40 40 3 1 15030.7 

41 41 0 16 15209.4 

42 42 2 9 15222.5 

43 43 3 2 15254.0 

44 44 1 13 15373.9 

45 45 3 3 15586.9 

46 46 3 4 16027.(!) 

47 47 2 10 16273.2 

48 48 3 5 16571.4 

49 49 1 14 16775.2 

50 50 0 17 16849.1 

continued on next page 
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Table C.1: continued 

Basis set no. HD Level no. V j Energy (K) 

51 51 3 6 17216.4 

52 52 2 11 17403.8 

53 53 3 7 17957.6 

54 54 1 15 18236.0 

55 55 0 18 18533.8 

56 56 2 12 18608.3 

57 57 3 8 18790.5 

58 58 4 0 19392.7 

59 59 4 1 19499.5 

6(!) 60 3 9 19709.9 

6iJ.. 61 4 2 19712.2 

62 62 1 16 19750.6 

63 63 2 13 19880.9 

64 64 4 3 20029.2 

65 65 0 19 20257.8 

66 66 4 4 20448.4 

67 67 3 1!0 20710.5 

68 68 4 5 20966.8 

69 69 2 M 2121!5.6 

7(!) 70 1 l7 21312.9 

71 71 4 6 21:580.6 

72 72 3 11 21786.7 

73 73 0 20 22015.7 

74 74 4 7 22286.0 

75 75 2 15 22606.4 

76 76 1 18 22917.3 

77 77 3 l2 22932.9 

78 78 4 8 23078.2 

79 79 5 0 23622.0 

80 80 5 1 23723.5 

81 8il. 0 21 23802.0 

continued on next page 
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Table C.1: continued 

Basis set no. HD Level no. V j Energy (K) 

82 82 5 2 23925.6 

83 83 4 9 23952.3 

84 84 2 16 24047.5 

85 85 3 13 24143.1 

86 86 5 3 24226.9 

87 87 1 19 24558.2 

88 88 5 4 24625.1 

89 89 4 10 24903.2 

90 90 5 5 25117.4 

91 91 3 14 25411.7 

92 92 2 17 25533.2 

93 93 0 22 25611.9 

94 94 5 6 25700.3 

95 95 4 11 25925.4 

96 96 1 20 26230.4 

97 97 5 7 26369.7 

98 98 3 15 26732.8 

99 99 4 12 27013.3 

100 100 2 18 27057.9 

101 101 5 8 27121.2 

102 102 0 23 27440.6 

103 103 6 0 27606.9 

104 104 6 1 27703.0 

105 105 6 2 27894.5 

106 106 1 21 27928.6 

107 107 5 9 27950.1 

108 108 3 16 28100.8 

109 109 4 13 28161.3 

no 110 6 3 28180.0 

111 111 6 4 28557.2 

112 112 2 19 28616.2 

continued on next page 
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Table C.1: continued 

Basis set no. HD Level no. V j Energy (K) 

113 113 5 10 28851.1 

114 114 6 5 29023.3 

115 115 0 24 29283.4 

U6 116 4 14 29363.7 

117 117 3 t7 29510.0 

118 118 6 6 29574.9 

119 119 1 22 29647.9 

t20 120 5 11 29819.1 



Bibliography 

[1] Ed. G.W.F. Drake 2(!)06 Atomic, Molecular & Optical Physics Handbook 

(Springer-Verlag) 

[2] MurreN J Nand Bosanac S D 1989 Introduction to the Theory of Atomic 

and Molecular Collisions (John Wiley & Sons) 

[3] Tielens A G G M 2005 The Physics and Chemistry of the Interstellar 

Medium (Cambridge: Cambridge University Press) 

[4] Lequeux J 2005 The Interstellar Medium (Springer) 

[5] Carruthers G R 1971 ApJ 166 349 

[6] Spitzer L, Drake J F, Jenkins E B, Morton D C, Rogerson J B and 

York D G 1973 ApJ 181 L116 

[7] Shull J M, Tnmlinson J, Jenkins E B et al. 2000 ApJ 538 L 73 

[8] The Infrared Space Observatory (ISO) special isstle 1996 A&AS 315(2) 

[9] StancH P C, Lepp S and Dalgarn.o A 1998 ApJ 509 1 

[10] Allison A C and Dalgarno A 1967 Proc. Phys. Soc. London 90 609 

[11] Eastes Wand Secrest D 1972 J. Chem. Phys. 56 640 

[12] Green S and Truhlar D G 1979 ApJ 231 L101 

[13] Sun Y and Dalgarno A 1994 ApJ 427 1053 

[14] Flower D R and Wroe R A 1996 J. Phys. B: At. Mol. Opt. Phys. 29 

L851 

1!67 



Bibliography 168 

[15) Flower D R 1997 J. Phys. B: At. Mol. Opt. Phys. 30 3009 

[16) Forrey RC, Balakrishnan N, Dalgarno A and Lepp S 1997 ApJ 489 

1000 

[17) Flower D R 1!997 MNRAS 288 627 

[18) Flower D R and Roueff E 1!998 J. Phys. B: At. Mol. Opt. Phys. 31 

L955 

[19) Roueff E and Flower D R 1999 MNRA.S 305 353 

[20) Roueff E and Flower D R 1999 MNRAS 309 833 

[21) Flower D R 2007 Molecular Collisions in the Interstellar Medium, Sec

ond Edition (Cambridge: Cambridge University Press) 

[22) Child MS 1974 Molecular Collision Theory (Academic Press) 

[23) Arthurs A M and Dalgarno A 1960 Proc. Roy. Soc. London A256 540 

[24) Percival I C and Seaton M J 1957 Proc. Cambridge Phil. Soc. 53 654 

[25) Pack R T 197 4 J. Chem. Phys. 60, 633 

[26) Abramowitz M and Stegun I A 1965 Handbook of Mathematical Func

tions (Dover Publications, New "York) 

[27) Rose ME 1957 Elementary Theory of Angular Momentum (John Wi:ley 

& Sons, New York) 

[28) Brink D M and Satchler G R 1968 Angular Momentum (Clarendon 

Press, Oxford) 

[29] Edmonds A R 1960 Angular Momentum in Quantum Mechanics 

(Princeton University Press, Princeton N.J.) 

[30) Messiah A 1969 Quantum Mechanics, vol. 2 (North Holland Publish

ing, Amsterdam) 

[31) Launay J -M 1976 J. Phys. B: Atomic & Molecular Physics 9, 1823 

[32] Danby G 1983 J. Phys. B: Atomic & Molecular Physics 16, 3393 



Bibliography 169 

[33] Lester A J 1971 Methods in Computational Physics 10 211 

[34] Kaplan I G 2006 Intermolecular Interactions: Physical Picture, Com

putational Methods and Model Potentials (John Wiley & Sons) 

[35] Liu B 1973 J. Chem. Phys. 58 1925 

[36] Varandas A J C, Brown F B, Mead C A, Truhlar D G, 1987 J. Chem. 

Phys. 86 6258 

[37] Boothroyd A I, Keogh W K, Martin PG and Peterson M R 1991 J. 

Chem. Phys. 95 4343 

[38] Boothroyd A I, Keogh W K, Martin P G and Peterson M R 1996 J. 

Chem. Phys. :1!04 7139 

[39] Mielke S L, Garrett BC and Peterson K A 2002 J. Chem. Phys. 116 

4142 

[40] Lepp S, Buch V and Dalgarno A 1995 ApJS 98 345 

[41] Schiff L I 1968 Quantum Mechanics (McGraw~Hill Book Company, 

Singapore) 

[42] Fliigge S 1974 Practical Quantum Mechanics (Springer-Verlag) 

[43] Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the 

Radial Schrodinger Equation for Bound and Quasibound Levels Uni

versity of Waterloo Chemical Physics Research Report CP-663; see 

http:/ /'leroy. uwaterloo.ca/programs/ 

[44] Marston C C and Balint-Kurti G G 1989 J. Chem. Phys. 91 3571 

[45] Press W H, Teukolsky SA, Vetterling W T and Flannery BP 1992 Nu

merical Recipes in FORTRAN, Second Edition (Cambridge University 

Press) 

[46] Flower D R, Bourhis G and Launay J-M 2000 Computer Physics Com

munications 131 1187 

[47] Hutson J M and Green S 1994 Collaborative Computational Project 6 

Daresbury Laboratory : UK Science and Engineering Research Council 



Bibliography 170 

[48] Manolopoulos DE and Alex8.1lder M H 1992 J. Chem. Phys. 97, 2527 

[49] Launay J -M 1977 J. Phys. B: Atomic & Molecular Physics 10, 3665 

[50] Johnson B R 1973 J. Comput. Phys. 13 445 

[51] de Vogelaere R 1955 J. Res. Nat. Bur. Stand. 54 119 

[52] Wrathmall S A and Flower D R 2006 J. Phys. B: At. Mol. Opt. Phys. 

39 L249 

[53] Wrathmall S A and Flower D R 200.7 J. Phys. B: At. Mol. Opt. Phys. 

40 3221 

[54] Wrathmall S A, Gusdorf A and Flower D R 200.7 MNRAS Accepted 

for publication. 

[55] Dabrowski I 1984 Can. J. Phys. 62 1639 

[56] Chao S D, Harich S A, Dai D X, Wang C C, Yang X and Skodje R T 

2002 J. Chem. Phys. 117 8341 

[57] Dabr:owski I and Herzberg G 1J976 Can. J. Phys. 54 525 

[58] Abgrall H, Roueff E and Viala Y 1982 A &AS, 50 505 

[59] Allers K N, Jaffe D T, Lacy J H, Draine B T and Richter M J 2@05 

ApJ 630 368 

[60] Sternberg A and Dalgarno A 1989 ApJ 338 197 

[61] Mandy M E and Martin P G 1993 ApJS 86 199 

[62] Le Bourlot J, Pineau des Forets G and Flower D R 1999 MNRAB 305 

802 

[63] Garcia E and Lagana A 1986 Chem. Phys. Lett. 123 365 

[64] Palla F, Salpeter E E and Stahler SW 1983 ApJ 271 632 

[65] Flower D R, Le Bourlot J, Pineau des Forets G ana Roueff E 2000 

MNRAS 314 753 



Bibliography 171 

[66] Flower D Rand Harris G J 2007 MNRAS 377 705 

[67] Skouteris D, Castillo J F and Manolopoulos D E 2000 Computer 

Physics Communications 133 128 


