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Abstract 

We investigate the onset of instability in a variety of fluid models, and present 

results and details of their computation in each case. The fluid models we consider 

are: convection in the setting of the Navier-Stokes equations with boundary slip; 

Poiseuille-type solutions of the Navier-Stokes equations, again with boundary slip; 

Poiseuille-type solutions of the Green-Naghdi and dipolar fluid equations. 

In Chapter two we examine the onset of thermal convection in a thin fluid layer, 

with slip boundary conditions at the top and bottom surfaces of the layer. We show 

that non-zero boundary conditions do not affect the classical steady state solution, 

and the principle of exchange of stabilities still applies. It is seen that boundary slip 

reduces the critical Rayleigh number at which convection begins, below that found 

in the setting of no-slip boundary conditions. 

The next two chapters concern the transition to turbulence of pressure driven 

flow in a microchannel, at the boundaries of which the fluid obeys slip boundary 

conditions. In Chapter three we perform linear and nonlinear stability analyses for 

this flow, and show that we do not have exchange of stabilities for such flows. In 

Chapter four we perform a linear stability analysis for channel flow in the case when 

the fluid viscosity is a function of temperature. We show that for pressure driven 

flow in the plane, boundary slip stabilizes the flow. 

In Chapter five we develop a model of thread-annular flow, in which we believe 

boundary slip to be an important part. As well as our development of the model, 

we present previously unpublished results on the linear stability of thread-annular 



iv 

flow to non-axisymmetric disturbances. Some surprising behaviour is observed in the 

neutral curves, including behaviour missed by the computations of previous auth0rs. 

Finally, we use Chapter six to discuss two alternative fluid models: the Green­

Naghdi equations and the dipolar equations. We find Poiseuille flow type solutions 

in both of these settings, and perform linear stabHity analyses. These fluid models 

are systems of fourth order differential equations, and we show that the fourth order 

derivative terms dominate the stability of the flow. 
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Chapter 1 

Introduction 

A large number of hydrodynamic stability problems are concerned with a Newtonian 

fluid obeying the Navier-Stokes equations for incompressible flow, 

p(u,t+(u·V)u) - -Vp+p~u+F, 

V·u - 0, 

(1.1) 

{1.2) 

for velocity field u, pressure p, density p, dynamic viscosity p, and where F is 

the body force term. Typically, these equations are satisfied on some given domain 

n c JR3 bounded by a,surface an, where often the geometry of n defines the problem 

to be solved. 

Alongside equations (1.1) and (1.2) we must prescribe boundary conditions on 

the fluid at 00. The classical approach is to state that fluid molecules adjacent 

to a solid surface are at rest, with respect to that surface. This is called the no­

slip boundary condition, and despite its historical prevalence in the fluid mechanics 

literature, it is an assumption that cannot be derived from first principles, see [39, 71). 

Boundary slip (that is, motion of a fluid with respect to a solid surface) in 

gases was predicted by Maxwell [41], and experiments have shown that gas flow in 

geometries with dimensions of the order of the mean free path of the gas can show 

signHicant slip at a boundary, see [44]. However, the measurement of boundary 

slip of Newtonian liquids has been the subject of much more recent research, see 

[4,5,9,11,12,15,34,46,49,61,70]. In particular, there is growing evidence that fluid 

1 



Chapter 1. Intraduction 2 

velocity at the boundary is dependent upon the shear strain, see for example Craig 

et al [,15,46) and Zhu & Granick [70). 

Navier [45) proposed a linear boundary condition relating u to the shear rate, 

which has become standard in the study of boundary slip problems. Letting the 

surface an have unit normal ft(x) directed out of the fluid, and t(x) be either of the 

vectors tangent to an at X E an, this boundary condition can be expressed as 

(1.3) 

(1.4) 

Here, f = f(u) is the shear strain tensor, and' Ui = Ui~an) is the ith component 

of the local surface velocity. The model is essentia:lily to set the component of u 

:normal to an to be zero, thus imposing a condition of zero flux across the surface, 

while setting the two tangential components of u proportional to the corresponding 

compo:nents of shear stress. We denote the constant of propo:rtionality >. ~ 0, which 

has the dimension of length, and it can be seen that>.-- 0 in (1.3) and (1.4) recovers 

the no-slip boundary condition. Clearly, if we wish to perform a:ny numerical work 

on the system (1.1)-(1.4) we must have a value for>. at hand. 

We now describe a simple type of fluid motion known as Couette flow, which 

illustrates how the va:lue of>. affects a fluid. Let x- (x, y, zf denote the Cartesian 

coordinates of a point in the domain n = ( -oo, oo) x [-h, h) x ( -oo, oo), on which 

equations (1.1)-(1.4) describe a fluid. Then, n is a channel i:n the (x, z) plane of 

width 2h, bounded aJbove by the surface anh = {x = (x,y,z)iy = h} and below by 

an_h = {x = (x, y, z)iy = -h}. The upper ~surface moves with constant velocity 

(U, 0, O)T where U > 0, while the lower surface moves with velocity -(U, 0, Of (see 

Figure 1.1 }, thus the fluid is sheared and motion is induced along the x-axis. We 

assume that the body farce F = 0. 

We shall assume a solution of the farm u = (u(y), 0, Of, 'Vp = 0. In this 

coordi:nate system the shear strain tensor takes the form, 

(1.5) 

and we note that ft = ((i), ±1, Of while i E {(1, 0, Of, (0, 0, If}. Therefore, substi-
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y 

- u 
- u(y) 

------------------~+-------------------- X 

u(y)~ 

-U --=-

Figure 1.1: Diagram illustrating Couette flow. The two surfaces y = ±h move in 

opposite directions, shearing the fluid held between. 

tuting our forms for u and pinto (1.1)-(1.4) leaves us with the ordinary differential 

equation, 

u" - 0, 

uly=h - U- Au'ly=h, 

uly=-h - -U + Au'ly=-h, 

from which we easily obtain the solution, 

u(y) = (h~ A) y. 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

We arrive at the standard no-slip solution by setting A= 0. However, we note 

that our velocity u(y) appears to satisfy a no-slip boundary condition a distance 

A outside the domain n, see Figure 1.2. For this reason, A is commonly known 

as the slip length. In general, the velocity profile of a fluid obeying slip boundary 

conditions will extrapolate to the no-slip boundary condition a distance of the order 

A normal to a solid surface. 

The larger A is relative to the characteristic length of the domain n, the more 

the velocity profile will differ from that calculated with the no-slip boundary condi­

tion, and so we might expect boundary slip to play an important role for sufficiently 
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U -lu(y~l 

~(h +.X) -h 0 h h+.X 
y 

Figure 1.2: Graph of U - lu(y)l, where u(y) is the Couette flow solution given in 

{1.9) and U is the constant shearing velocity. The no-slip boundary condition is 

seen to be satisfied a distance .X outside the domain n. 

large slip lengths. Therefore, slip-boundary conditions are particularly applicable in 

the study of problems where fluids interact with solids of small length scales, which 

includes flows in porous media, microfluidics, and biological fluids. 

One of the aims of this thesis is to investigate the impact of boundary slip on 

the classical problem of hydroclynamic stability. We begin in Chapter two with the 

problem of the onset of Benard convection in a thin fluid layer, before moving on 

to the problem of the stability of Poiseuille flow in a channel in chapters three and 

four. 

In Chapter five we turn our attention to a modern surgical technique known as 

thread injection, which we model as a fluid stability problem. We argue for the 

applicability of slip boundary conditions in this model, as well as developing the 

current model of thread-annular flow to include rotation. 

In Chapter six we consider two fluid models where the fluid particle obeys equa­

tions of motion different from {1.1). These alternative equations of motion contain 

fourth order derivatives, and we can recover the Navier-Stokes equations from them 

as various parameters approach zero. The first of these models is known as the 
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Green-Naghdi equatioBs, developed by Green & Naghdi [25], while the second model 

describes a dipolar fluid [3]. We find Poiseuille-type flows in both these settings, 

and perform linear stability analyses. 

Throughout this thesis, including above in this chapter, we use bold type to de­

note vector quantities, and we make use of the Einstein index summatioB convention. 

For example, for u(x) = (ubua,u3)T with x = (x1,xa,x3)T, then 

(1.10) 



Chapter 2 

The influence of boundary slip on 

convective instability 

We begin our iavestigation into the effects of slip boundary conditions, by applying 

them to the classical problem of the convective instabHity of a thin horizontal layer 

of stationary fluid, heated from below, 

In most cases, the adverse temperature gradient wiH cause the fluid at the bottom 

of the layer to expand. For a sufficiently large temperature gradient the buoyancy of 

this lower region overcomes the stabilizing effects of viscosity and thermal conductiv­

ity, and the fluid becomes potentially unstable. Moreover, the resulting convective 

motion arranges itself into a tessellating, regular structure of convective cells sepa­

rated by vertical walls, with the fluid rising at the centre of a cell and falling towards 

the edges. This is called Benard convection after the experiments of Benard [2). 

The theory behind such convective instability is due to Rayleigh [52), who iden­

tified a non-dimensional number R given by 

R = Ja{3gh4, 
K.V 

(2.1) 

where a is the thermal expansion coefficient, {3 is the magnitude of the temperature 

difference between the upper and lower surfaces, g is the acceleration due to gravity, 

v is the kinematic viscosity, , is the thermometric conductivity, and h is the depth 

of the fluid layer. Thus R represents the competing effects of buoyancy, viscosity 

and thermal conductivity, and so the stabHity of the fluid is dependent upon the 

6 



2.1. Equations of motion 7 

value of R. We call Ra = R2 the Rayleigh number, and aim to find Ra = Racrit 

such that thermal instability occurs for Ra > Racrit, but the fluid remains at rest 

for Ra < Racrit· 

Rayleigh [52) showed that, in the case of free boundary conditions, we may 

obtain the analytical result Racrit == p1 = 27n4 /4 - 657.5 (see also Chandrasekhar 

[8) and Drazin & Reid [18]), whereas for no-slip boundary conditions (i.e. rigid 

surfaces above and below the layer with classical boundary conditions) we have 

Racrit = P2- 1708 (see for example; Harris & Reid [27), Jeffreys [30]). 

'ln applying slip boundary conditions, we are interested in the thermal stabil­

ity of very thin layers where the fluid depth and slip length are comparable. We 

show that boundary slip allows a critical Rayleigh number in the interval (p11 p2 ). 

Therefore, with respect to the standard no-slip result, boundary slip is shown to be 

a destabilizing factor in Benard convection. 

2.1 Equations of mot~ion 

Let x = (x, y, z) denote the Cartesian coordinates of a point in IR3 . We consider 

a fluid contained in the region n c IR3 , which is the infinite layer defined by n == 

(-oo,oo) x (-oo,oo) x [0,h). We define u(x;t), T(x;t), p(x;t) to be, respectively, 

the velocity, temperature and pressure of the fluid at the point X E n and time 

t E [0, oo), and label the components of velocity u = ( u, v, w) = ( Ut, u2 , u3). 

n is bounded above by the surface anh = {X = (X, y, z}l Z = h} and below by 

Bno = {x. = (x, y, z)'iz = 0}. The temperature at the upper and lower surfaces is 

kept constant, 

(2.2) 

for constants To> Th, and thus the layer is heated from below. 

The behaviour of this fluid is described by the Boussinesq equations (2.3)-(2.5), 

which comprise the Navier-Stokes equations (where the fluid buoyancy is accounted 

for in the body force term, see Boussinesq [6]), and an energy balance equation. 
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z 

X 

Figure 2.1: Diagram illustrating Benard's experiment. A constant temperature 

difference· is applied across a thin horizontal layer of stationary fluid. 

A detailed derivation can be found in the books by Chandrasekhar [8], Drazin & 

Reid [18] aml Straughan [59]. 

Pm (ui,t + UjUi,J) - -P,i + p,D.ui- ki9Pm [1- o:(T _. Tm)], (2.3) 

Ui,i - Q, (2.4) 

T,t 4- UiT,i - K6.T. (2.5) 

The constants a: and Kin (2.3}-(2.4~ are as previously defined; p, is the dynamic vis~ 

cosity; Pm is the density at some appropriate reference temperature T m (for example 

we could choose T0 or Th)i ki is the ith component of the vector k = (0, 0, 1)r. We 

define the temperature gradient f3 = (To - Th)/ h. 

We now apply the boundary conditions (1.3)-(1.4) to the Boussinesq model. 

Since the fluid is confined to n, from (1.3) we impose, 

wlz,,,h = 0, (2.6) 

and we note that since there is no variation of w in the surfaces ano and anh' we 

must have 

W,zlz=O,h = W,ylz=O,h = 0. (2.7) 
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Let .X0 be the slip length associated with the fl.uid..:solid interface at an0 , and define 

Ah similarly. Then, from (1.4) we have 

ulz=O = AoU,zlz=o, vlz=O = AoV,zlz=O! 

uiz=h = ~.Xhu,zi'z=h, viz=h = -.Xhv,zlz=h· 

(2.8) 

(2.9) 

We note that these boundary conditions allow the zero solution u .=. 0, which rep­

resents a fluid at rest. Then, letting T = T(z) only, equation (2.5) simplifies to 

T"(z) = 0, which is easily solved as a linear function in z using (2.2). We can then 

solve for the pressure, and in choosing a pressure scale such that Plz=O = 0 we obtain 

the classic steady-state solution u, 'i', p given by 

u = 0, 'f = -{3z +To, p = -pmg [1 +a (Tm- To)] z- ~pmga{3z2 , (2.10) 

therefore slip boundary conditions have no effect on the steady-state solution already 

reported in the literature (see for example [59]). 

This solution represents the fluid undergoing thermal conduction, and our aim 

is to find necessary and sufficient conditions for cellular, convective motion to be­

gin. We do this by investigating the stability of the steady-state (2.10) to three­

dimensional disturbances which we sha:H assume to be periodic in the x and y di­

rections, and in this way identify the onset of convection with the bifurcation from 

stability to instability. 

We begin by nondimensionalizing equations (2.3)-(2.5) v:ia the scalings 

t = h2Pmt• 
J.1. , 

x __..: hx*, u = _!!:_u• 
Pmh ' 

where the '*' notation denotes a non-dimensional quantity. We also introduce the 

non-dimensional parameters 

_x• ~ .Xo 
0- h, 

_x•
1 

_ .Xh 
h' R* = Pr* --- _.!!:_, 

PmK 

h3 2 
Q• = Pm9 

-- 2 , 
J.1. 

where Pr is the Prandtl number for the system, and Ra = R2 the Rayleigh number. 

Dropping the'*' notation, we obtain from (2,3)-(2.5) the non-dimensional equations 
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of motion 

Ui,t + UjUi,j - -P,i + ~Ui- ki[Q- R (T- Tm)J, (2.11) 

Ui,i - 0, (2.12) 

(2.13) 

at aH points x E A= ( -oo, oo) x ( -oo, oo) x [0, 1] and timet E [0, oo), and subject 

to the boundary conditions 

ulz=O = AoU,zlz=O! vlz==O = AoV,zlz=O, wlz=O = 0, Tlz=O =To, (2.14) 

ulz=l = -.Xlu,zlz=b vlz=l = -.Xlv,zlz=b wlz=l = 0, Tlz=l = T1, (2.15) 

where T0 and T1 are understood to be non-dimensional. Similarly, after nondimen­

sionalizing, our steady-state (2.10) becomes 

li=O, (2.16) 

where the constant T m is also understood to have been non-dimensiona:lized. 

We shall suppose there is some minimal shape aro c JR2 that tessellates the 

(x, y) plane, such that for r = oro X [0, 1] c A then at the onset of convection 

the fluid motion is periodic modulo r. In this way r is a typical convective cell, 

and we restrict ourselves to investigating the stability ofsolution (2.16) for x E r. 
We denote by or1 the projection of or0 on the surface z = 1, and by or the total 

boundary of r. 
With this definition of r, and for volume element dV = dxdydz, let < .. > be 

the inner product with associated norm 11·11 defined by 

< fg >= L fgdV, 11/11 = J< If>. 

Now let H 1(r) be the complex Hilbert space of measurable functions defined on r 

such that for f E H 1(r) we have 

II/II+ II!' II < oo. 



2.1. Equations of motion 11 

Finally, let 1-l be the set of all pairs of vector functions u(x; t) E [H1(r)]3 and scalar 

functions T(x; t) E H 1(r), such that for u = (u, v, w) 

'V·u - 0, (2.17) 

ulz=O - .Xou,zlz=O, vlz=O = AoV,zlz=O, wlz=O = 0, Tlz=O = 0, (2.18:) 

ulz=l - -.Xl,u,zl·z=l, vlz=·l = -AtV,zlz=t, wlz=l = 0, Tlz=l = 0, (2.19) 

and u and T are periodic modulo r (and therefore u satisfies periodic boundary 

conditions on or\ {Bro u 8rt} ). 

We let the steady-state be subject to a disturbance modelled by velocity v(x; t) = 

(u, v, w)T, temperature8(x; t) and pressure q{x; t), where (v, ()) E 'H, i.e. we perturb 

the steady state by 

where q also has periodic (x, y) dependence. We assume that the temperature at 

r 0 and r 1 is kept constant, and therefore we choose the temperature perturbation 

to be zero there. Substituting for our perturbed forms in equations (2.11)-(2.13) we 

obtain the perturbation equations 

Vi,i - 0, 

(2.20) 

(2.21) 

(2.22) 

for x E r, t E [0, oo) and (v, ()) E 'H, and where w = v3 . Finally, we assume that 

the perturbations satisfy the initial data 

fot functions vo(x) and eo(x}. 

We note that although Pr is a property of the fluid substance, it is not a property 

of the fluid flow, and therefore Pr is not a factor in determining the stability of the 

zero solution. R, however, is a measure of the flow, and therefore we move on to 

study the behaviour of solutions to (2.20)-(2.22) with respect to the value of R. 
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2.2 Coincidence of linear and :non ... Jinear stabiHty 

bounds 

We have reduced the problem of finding conditions f0r the onset 0f convection in 

our fluid layer to that of investigating the stability of the zero solution (2.16) with 

respect to perturbations v, 0, q as defined above. In this way we aim to find, for 

fixed Ao and At, the critical Rayleigh number R~rit(Ao, A1 ) such that solutions to 

(2.20)-(2.22) decay over time for R < Rcrit and grow for R > Rcrit, regardless of the 

initial data vo, Oo. 

We do this by showing that there exists RL such that thermal instability will 

occur for R > RL, and RE such that R < RE guarantees stability of the zero 

solutim~, before showing that in fact RE = RL = Rcrit· Though this has been done 

for no-slip boundary conditions (see Joseph [31,32]) we show that this also holds in 

our case of slip boundary conditions. 

2.2.1 Conditions guaranteeing instability 

Removal of the non-linear terms of (2.20)-(2.22) rest:llts in the equations 

Vi,t - -q,i +~vi+ kiRO, (2.23) 

v·. t,t - 0 ' 
(2.24) 

PrO,t - Rw + ~0, (2.25) 

with b0undary conditions as prescribed for (v, 0) E 1-£. We suppose that we can 

expand the solutions v, 0, q to (2.23)-(2.25) as series of Fourier modes 

00 00 00 

v(x;t) = LVn(x)eunt, 0= LOn(x)eunt, q(x;t) = Lqn(x)eunt, (2.26) 
n=l n=l n=l 

where in general O"n E C. It follows that in finding conditions for instability of the 

linearized system it is sufficient to consider just one mode of this expansion (since 

if a single mode grows unboundedly with time, so too does the whole solution), 

and therefore we look for solutions of the form v(x; t) = v(x)eut, O(x; t) = O(x)eut, 
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q(x; t) = q(x)eut. Upon substitution and removal of exponential parts we obtain 

a vi -

V·. 
'·' -

aPr() -

-q,i +~vi+ kiR(), 

0, 

Rw + f::l(). 

(2.27) 

(2.28) 

(2.29) 

We now show that a E IR, and therefore the principle of 'exchange of stabilities' 

applies to the linearized system, an expression formalized by Poincare [50] and Jef­

freys [29]. Let v; be the complex conjugate of v;, and define ()* similarly. Then 

multiplying (2.27) by v; and (2.29) by ()•, taking the volume integral of these two 

expressions over r and adding, leads us to the equality 

a ( < viv; > +Pr < ()()* >) = - < v;q,i > + < v;vi,ii > + < O*O,ii > 

+ R ( < w* () > + < w()* >) . 

Letting dS be a surface element on ar, we obtain 

a(< Viv; > +Pr < ()(}* >) ::::: - < (viq),i > + < vi,iq > + < (v;vi,j),j >- < v;,jvi,j > 

+ < (O*OJ).i >- < OjO.i > +R(< w*() > + < wO* >}, 

- f vi qnidS + f v;vi,inidS + { O*O,inidS lar lar lar 
~ < v;,jvi,j > - < OjO,j > +R ( < w*() > + < w*() > *) , 

where we have used integration by parts, and (2.28). Upon applying the boundary 

conditions on von the surface ar \ {8fo u art}, and the boundary conditions on() 

on or, we aiTive at the expression 

and clearly, for this to hold, we must have that the imaginary part of a is zero, i.e. 

a E JR. Therefore, we have the simple case whereby solutions of (2.27)-(2.29) decay 

for a < 0 and grow for a > 0, and so a = 0 represents a stability bmmdary. We 

are therefore interested in the case a= 0, and so removing parts mU!Uiplied by a in 
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(2.27)-(2.29) leaves us with 

6vi + kiR(} - Q,i! (2.30) 

V·. 
'·' - (i) , (2.31) 

60+ Rw - 0, (2.32) 

which is an eigenvalue problem in R. We select RL as the smallest value of R in 

the spectmm of (2.30)-(2.32), since this is the lowest value of R for which neutral 

stability exists. Instability in the linearized case is sufficient to ensure instability 

of the non-linear system (see for example, Sattinger [56]). Thus, RL represents a 

stability boun.dary such that for R > RL, solutions to (2.20)..,(2.22) do :not decay 

over time, and so we have convective motion. 

2.2.2 Conditions guaranteeing stability 

We now use an energy type method to find conditions that will ensure stability of 

the conductive solution. Define the non-negative quantity E(t) by 

1 1 
E(t) = '2 < vivi > +2Pr < (}2 >, 

so that differentiating with respect to time and substituting for vi,t and O,t from 

(2.20) and (2.22) leaves us the equality 

dE 
= < vivi,t > +Pr < ee,t >, dt 

= < v· (-q · + v· .. + k-RO ~ v·v· ·) > +Pr < e(Rw + e.ii- v·O ·) > 
, ,, '·" , 3 '•3 Pr ' •' ' 

1 
= - < v·q · > + < v·v· .. > -- < (v·v·) ·v· > +2R <we>+< 0(} .. > 

1 ·' ' '·13 2 ' ' ,,J 3 o33 

1 2 
~2Pr < Vi~(} ),i >, 

1 1 
- < (viq),i > + < Vi;iq > + < ViVi,jj > -2 < (viViVj),j > +2 < ViViVj,j > 

+2R < wO > +- < (00 ·) · > ~ < 0 ·0 · > -~Pr < (v·02
) · > +~Pr < v· ·02 >. 

·•3 ,J •3 •3 2 ' ' '1 2 '·' 

We have expanded dE/ dt in this way, since by noting that V · v = 0 we can cancel 

out many of the above terms. Then, upon integrating by parts we arrive at 

dE 
dt 

- -/a v·qn·dS-! /a v·v·v·n·dS + Ja ee ·n·dS- !.P.Ja v·02n·dS ' ' 2 1 ' 3 3 ,3 3 2 r ' 1 ' &r ar ar . ar 
+ < ViVi,jj > +2R < w(} > - < O,jO,j > . 
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Referring to the boundary conditions on (v, e) E 1{, we see that all the above surface 

integrals vanish, such that we are left with 

where I and 1) are .given by 

I(v, e) - 2 <we>, 

dE 
-=RI-V, 
dt 

V(v, e) - - < ViVi,jj > + < e,ie,i >, 

(2.33) 

- _!_ Ia v·v·dS + _!_ Ia v·v·dS+ < v· ·v·. > + < e .e.>> (i). \ t I \ I I t,J I,J ,1 ,1 -
"'O aro "'I ar1 

We now define the quantity RE by 

1 I 
-=max-, 
RE (v,O)E'H V 

(2.34) 

assuming that a bounded maximum exists. This leads us to the inequality 

~~ = V ( R~ - 1) ~ V ( R ~:E) . (2.35) 

We now require to show that provided R < RE, then E(t) decays to zero for 

all E((i)) (i.e. the perturbations v, e will decay for all initial data Vo, eo). If we 

let c 1 = min{..\0\.X!\ 1} and c2 = (RE- R)/RE, then from (2.35) we have the 

inequality 

dE < -c1c2 (Ia V·V·dS + 1 V· ·V· ·dV + 1 e .e ·d:V) . (2.36~ 
dt - ' ' t,J '·3 ·' ·' J arouar1 r r 

We now make use of the following Poincare inequalities. For some (TJv, TJo) E [0, oo) x 

[e, oo) it holds that 

T/9 L e2
dV 

TJv lr ViVidV 

Applying (2.37) and (2.38) to (2.36), and letting c3 = min{TJv, TJo}, we obtain 

dE ( 2 ) dt ~ -CtC2C3 < ViVi > + < e > · 

Finally, setting c4 = min{1, Pr-1} we obtain from (2.35) 

(2.37) 

(2.38') 

(2.39) 
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where c = 2c1c2c3c4 > 0, provided R < RE. We can integrate this with respect to 

time 

dE d dt + cE(t) :::; 0 ==> dt (E(t)ect) < 0, 

==> E(t)ect- E(O) < 0, 

==> E(t) ~ e-ct E(O). 

Therefore the condition R < RE is sufficient to ensure that all perturbations in 'H 

decay at least exponentially as time evolves. 

It is left for us to perform the maximization necessary to find RE, as defined 

in (2.34). If the quotient I(v,0)/1J(v,O) is at a maximum, i.e. v and() have been 

optimally chosen in 'H, then for all (h, 1/J) E 'H we have that 

!!_ ( I(v + Eh, () + €1/J}) I _ 0 
d£ V(v+Eh,0+£1/J) E=O- • 

Using the quotient rule, and assuming I /V is at a maximum, we obtain 

and so I /V is at a maximum provided that 

Calculating the above derivatives, 

d 
= 2 de < (w + eha)(O + e,P) > IE=O• 

= 2 < h30 > +2 < w,P >, 

(2.40) 

(2.41) 
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d 
- df. < (vi+ f.hi)(vi,jj + f.hi,jj) > IE=<> 

d 
+ df. < (O,i + f.'I/J,i)(O,i + f.'I/J,i) > IE=O· 

= - < hiVi,jj > - < Vihi,jj > +2 < 1/J,i(J,i >, 

= - < hiVi,jj > - < (vihi,j),j > + < Vi,j~,j > 

+2 < (·1·9 ·) . > -2 < •1·9 .. > ¥' ,t. ,a If' ,n ' 

-2 < h·v· · · > -2 < ·1·9 ·· > ' '•33 'I' ,n 

+ < (v· ·h·) · > - < (v·h· ·)· · > +2 < (·1·9 ·) · > '·3 ' ·3 • '·3 .3 'I' •• ··' ' 

= -2 < ~Vi,jj > -2 < 1/JO,ii > 

+ l vi,j~njds- l vihi,jnjdS + 2 l .,PO,inids. lar lar lar 

17 

Once more, the surface integrals vanish on Br\ { ar 0 uar 1}, owing to the periodicity 

of hand 1/J, while the surface integral of '1/JO,i vanishes altogether. Therefore, applying 

the boundary conditions on v and h at ar 0 and ar 1' 

1 (v· ·"· - v·h· ·) n ·dS + Ia (v· ·h·- v·h· ·) n ·dS I,J 1"1 I I,J J I,J I I I,J J l 

aro ar1 

-1 (_!_v·h·- _!_v·h·) n·dS A ' I A ' ' J. ar0 o o 

+Ia (-_!_v·h· +- _!_v·h·) n·dS \II \I I J t 

ar1 "1 "1 

0. 

We include the conditions hi,i = 0 by way of a Lagrange multiplier 2cf>(x}, 

2 < hi,icP > - 2 < (hicf>},i > -2 < hicP;i >, 

- 2 { hinidS- 2 < hicP,i >, lar 
- -2 < hicP,i > . 

Finally, grouping all our terms in hi and 1/J, we obtain for equation (2.41) 

(2.42) 

The functions h and '1/J were chosen arbitrarily from 'H. Therefore, in general, we 
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must have 

8v; + REk;(J -

V·. 
'·' -

f::J.(}+ REW -

</>,;, 

0, 

0. 
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(2.43) 

(2.44) 

(2.45) 

Identifying ¢> with q, we see that in deriving equations (2.43)-(2.45) we have recov­

ered system (2.30)-(2.32). That is, we have shown that the stability thre8hold of 

system (2.43)-(2.45) coincides with that for the linear system, and so we conclude 

that RE = RL = Rcrit· Moreover, we can solve the system with solutions of the form 

of single Fourier modes. 

2.3 Solution. of linear stabiUty equations 

To solve system (2.30)-(2.32) we begin by removing the pressure gradient Q,i by 

performing "V x "V x (2.30). We find 

{"V X ("V X v)}; - -l::J.v;, 

{"V X ("V X l::J.v)}i - ~t::J.2vi, 

. {"V X ("V X "Vq)}; - 0, 

{"V X ( "V X k(}) }i - (} ·3 - k·l::J.O ·' ' , 

and so upon choosing i = 3, we obtain 

f::J.(} + Rw - 0, 

(2.46) 

(2.47) 

where !::J.• = (&j8x2
) + (82/8y2

), the Laplacian operator in IR2 • We now turn our 

attention to the boundary conditions on w. Since the fluid is incompressible we have 

that W,z = -(u,x + v,11). Therefore W,zz = -(U,xz + v,11z), and from the boundary 

conditions on u and v we see that w satisfies 

w = 0, W,z = AoW,zz at z = 0, 

W::::: 0, W,z::;: -AtW,zz at Z = 1, 

(2.48) 

(2.49) 



2.4. Numerical solution of instability equations 19 

while we remind the reader that 0 vanishes at z = 0 and z = 1. 

Since v and 0 have the same periodic (x, y) dependence, we let our single mode 

solution to (2.30)-(2.32) be of the form 

w _;_ w(z)f(x, y), 0 = O(z)f(x, y). 

Then, from {2.47) we have that 

O(z)(f(x, y),xx + f(x, y),yy) + O"(z)f(x, y) + Rw(z)f(x, y) = 0, 

==> 1:1* f(x, y) = ~Rw(z) + O"(z) = e 
f(x,y) O(z) ' 

for separation constant e. Therefore 1:1* f = eJ. 
Since we require periodic solutions, we set e = -a2 < 0, and thus our solutions w 

and 0 are consistent with a wave number a such that !J.*w = -a2w, and 1:1*0 = -a20. 

Then, substituting our modes into equations {2.46) and {2.47), and removing the 

( x, y) dependent parts, we have 

( d!l 2) 2 2 - - a w - Ra 0 - 0, 
dz2 

{2.50) 

- -a2 O+Rw - 0, ( 
d2 ) 
dz2 

{2.M) 

for z E [0, 1] and w = w(z), 0 = O(z), subject to the boundary conditions 

w(O) = w{1) = 0, Aow"(O) -w'~O~ = 0, A1w"(1) +w'(1) = 0, 0(0) = 0{1) = 0. 

{2.52) 

Equations {2.50) and (2.51) are the classic stability equations for the Benard prob­

lem. We note that in the limit At --. 0 we obtain from (2.52) the ncrslip boundary 

condition at z = 1, while for At ..,.... oo we recover the free boundary condition (and 

similarly for Ao at z = 0). 

2.4 Numerical solution of iRstability equations 

2.4.1 Chebyshev tau method 

We refer the reader to Appendix A for a thorough description of the Chebyshev tau 

method, and use this Section to explain its implementation in the problem discussed 
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in this chapter. The Chebyshev tau method exploits the orthogonality of Chebyshev 

polynomials over the interval [ -1, 1 J, and so we begin by transfoJCming the domain 

of equations (2.50) and (2.51) from z E [0, 1] torE [-1, 1] via r = 2z- 1. 

Equation (2.50) has a fourth order derivative. Dongarra, Straughan & Walker 

[17] show that high order differentiation matrices, for instance in this case the D 4 

matrix, can introduce significant round off errors. Therefore we use what is described 

in the literature as a D2 method, and make the substitution 

1P = ( 4:2 - a2
) w, (2.53) 

where we now consider w, 1P, () to be functions of the variable r. We assume that 

our solutions can be expanded as series of Chebyshev polynomials, specifically 

00 00 00 

w(r) = L WnTn(r), 1P(r) ;;:: L 1PnTn(r), O(r) = L OnTn(r), 
n==O n=O n==O 

where Tn is the Chebyshev polynomial of degree n. In this way, we aim to approxi­

mate w, 1P and () by the finite dimensional functions w, \II, e given by 

N N N 

W(r) = LWnTn(r), \ll(r) = L WnTn(r), 8{r) = L 8nTn(r), 
n=O n=O n=O 

for some integer N. Rewriting equations (2:50) and {2.51) in terms of the new 

variable r, we require to solve 

{2.54~ 

{2.55) 

(2.56) 

where the constants Ti are a measure of the error in our approximation. Taking 

the weighted Chebyshev inner-products (A.1.4) of Li with Tk where i = 1, 2, 3 and 

k = 0, 1, 2, ... , N- 2, we remove the r's and obtain 3N- 3 equations in the 3N + 3 

unknowns Wn, Wn and 8n, 

We close the system with the six boundary conditions {2.52), using the identities 

Tn{±1) = {±1)n, and T~{±1) = n2 (±1)n+l. Thus with our expansions for W, \II 
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and e we obtain 
N N 

W(1) =- LWn = 0, W( -1) = L( -1)nWn-= 0, 
n=O n=O 

N N 

e(1) =Len= 0, e(-1) = L(-1ten = 0. 
n=O n=O 

The mixed boundary conditions are accounted for by 

2A1 W"(1) + 'W'(1) - 2A1(w(1) + a2W(1)) + W'(1), 

- 2At w(1) + W'(1), 
N N 

- 2At LWn + L:n2Wn = 0, 
n=O n=O 

2Ao'lf( -1)- W'( -1}, 
N N 

- 2Ao L( -1)nwn- L n 2
( -l)n+lWn = 0. 

n""O n=O 

21 

Letting X= (Wo, ... , WN, Wo, ... , WN, eo, ... , etvV the vector of unknown coefficients, 

I be the (N -1) x (N -1) identity matrix, and D2 the (N -1) x (N -1) Chebyshev 

differentiation matrix for Jljdr2 , we obtain the generalised eigenvalue problem 

4D2 - a2I -I 0 0 0 0 

BCl 0 ... 0 0 ... 0 0 ... 0 0 ... 0 0 ... 0 

BC2 0 ... 0 0 ... 0 0 ... 0 0 ... 0 0 ... 0 

0 4D2 - a2I 0 0 0 a2J 

BC3 BC3 o, .. o x=R 0 ... 0 0 ... 0 0 ... 0 

BC4 BC4 0 ... 0 0 ... 0 0 ... 0 0 ... 0 

0 0 4D2 - a2I -I 0 0 

0 ... 0 0 ... 0 BC5 0 ... 0 0 ... 0 0 ... 0 

0 ... 0 0 ... 0 BC6 0 ... 0 0 ... 0 0 ... 0 

where the rows BC1-BC6 are our boundary condition equations. 

We solve this eigenvalue for a given pair of slip length (Ao, )q), by passing the 

above matrices to the NAG routine F02GJF (which utilises the QZ method of Moler 
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& Stewart [42]). For an initial value of the wave number a, we obtain a spectrum 

of eigenvalues where the positi;ve part of the spectrum is {Rl! R2 , Ra, ... }, ordered 

according to~ < ~+1· We select R1 as the smallest eigenvalue such that the fluid 

is stable for all R < R1• We then repeat for other values of a, so that we may build 

the neutml curve of Ra = R~ against a, along which the fluid is neutrally stable. 

By iterating over a we are thus able to obtain the critical Rayleigh number Racrit 

as the minimum value on this curve, which occurs at wave number acrit· 

2.4.2 Compound matrix method 

We refer the reader to Appendix B for an introduction to the compound matrix 

method, and use this Section to present a compound matrix formulation for the 

solution of (2.50)-(2.51). We convert the boundary value problem into a system of 

initial value problems, using the boundary conditions at z = (i) as the initial data. 

We then integrate forwards to z .:::.. 1, while iterating on the value of R until the 

boundary conditions at z = 1 are satisfied. The problem is to formulate the prob­

lem in variables that are zero at z = 0, taking into account the linear slip boundary 

condition on w. We propose the following compound matrix method. 

Alongside w and 8 we introduce the variable Xa given by 

Xa(z) = ,\~Hw"(z) - ,\~w'(z), (2.57) 

for some a E JR, and in this way w(O) = Xa(O) = 8(0), i.e. each of the boundary 

conditions at z = 0 are represented by a single variable. The dependence of Xa on a 

is present to allow for the many variations on how such a variable might be defined. 

Rewriting system (2.50)-(2.51) in terms of w, Xa, and 8 gives us 

We let v(z) = (w,w',xa,x'a,8,8')T be a 'solution vector' to the above system, and 

decompose it into the linear form v = c1v 1 + c2v 2 +cava, for 
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Letting M(z) = (vrv2v3) be the matrix of these solution vectors, we prescribe the 

initial data 
0 0 0 

1 0 0 

M(O) = 
0 0 0 

0 1 0 

0 0 0 

0 0 1 

such that our solution is composed of three linearly independent parts, and satisfies 

the prescribed boundary conditions at z = 0. We then calculate the variables Yi(z), 

i = 1, ... , 20 where Yi is the ith minor of M(z) 

- I + Yl - W1 W2Xa3 · · · Ys = W1X~20a + ... I I (JI + Yl5 = W1Xa2 3 . "· 
_ I I -t Y2- W1W2Xa3 ... yg = w1x~2e; + ... Yl6 = w~020; + ... 

Ya = w1w;ea + ... Y10 = w1020; + ... Y11 = Xa1X~20a + ... 
Y4 = w1w;e;. + ... YH = W~Xa2X~3 + .. · Y1s = Xa1X~2e; + ... 
Ys =- WrXa2Xa3 + ... Y12 = W~Xa203 + ... Yt9 == X at 020; + ... 
Y6 = WtXa203 + ... Yta = w~Xa20; + ... Y2o = x~1 e2e; + ... 
Y7 = WtXa2e; + ... Yl4 = W~X~203 + ... 

Differentiating each Yi with respect to z gives us a system of twenty ordinary dif­

ferential equations y = f{y1, ... , y20 ) with initial condition derived from the z = 0 

boundary conditions 

Yts(O) = 1, Yi~ts(O) = 0. (2.58) 

For a given Rand wave number a, and pair of slip lengths (.X0 , .XI) we integrate this 

system forward, and then test for the condition 

(2.59) 

and repeat, iterating on R using NAG routine C05ADF (a combined linear interpo­

lation, extrapolation and bisection method) until (2.59) is satisfied to within a given 

tolerance, all the while iterating over a until the minimum point (acrit, Rcrit) is found, 

using NAG routine E04ABF (which uses the method of quadratic interpolation). 
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Figure 2.2: Effect of slip length on neutral curve. Graph ·(a) shows the case Ao = 

AI =A, where: A= 0, '-';A~ 10-1 , '--';A= 10°, '-·';A= 101 ' '··'. Graph (b) shows 

the Case When ' - 0 and· ' - 0 ' '· ' - t·Q-l ' '· ' - 1'0° ' '· ' - 1QI ' 1 · AQ - 1 · ' • AI - 1 ~ 1 AI - 1 - - , Al - · · 1 -· 1 AI - · · · , •• · 

2.5 Results 

In the case of symmetric slip ..\0 = A1 = A, with Ao = 0 we obtain no-slip conditions 

at the upper and lower surfaces, and in the limit A -=+ oo we have the free boundary 

case. Thus from the literature we already have the results Racrit(A = 0) = 1107.7 

and Racrit(A-1 == 0) = 657.5, see [8, 18, 27, 30, 52). However, the behaviour of 

Racrit(O < A < oo) represents a new contribution to this hydrodynamic stability 

problem. 

Using the Chebyshev tau method we calculated neutral curves (see Figure 2.2) 

and Racrit for symmetric slip lengths in the range 10-5 < A < 105 , see Figure 2.3 (a) 

and (b). We see that increasing the slip length has a strongly destabilizing effect on 

the critical Rayleigh number at which convection begins, and that for all values of 

A for which we ran our calculations, Racrit was observed to be a strictly decreasing 

function of A. 

NeJd, we performed calculations for the case of no-slip boundary conditions at 

the surface z = 0, and slip boundary conditions at the surface z = 1. Therefore, for 
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Figure 2.3: Graphs (a) and (b): the variation of the critical point (acrit, Racnt) as 

a function of>. in the case of symmetric slip. Graphs (c) and (d): the variation of 

the critical point (acrit, Racrit) as a function of >.1 in the case of no-slip boundary 

conditions at z = 0, slip boundary conditions at z = 1. 
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>.1 = 0 we have the no-slip case Racrit = 1707.7, while in the limit >.1 -+ oo (i.e. a 

free boundary at z = 1, no-slip boundary at z = 0) we have Racrit = 1100.6, see [18]. 

Once more, we show numerically that Racrit is a strictly decreasing function of the 

slip length, see Figure 2.3 (c) and (d). 

When exchange of stabilities can be shown, the compound matrix method has 

proved to be the standard numerical method employed in the literature. However, in 

the previous section we showed that a special formulation of the compound matrix 

method was needed in order to incorporate the slip boundary conditions. In perform­

ing our calculations using this formulation, we were able verify some of the res1:1lts 

generated by the Chebyshev tau method, but for slip lengths much smaller than or 

much larger than>."' 0(10°) the numerical integration of system y 1 = f(y1, .. , y20 ) 

suffered severely from round off errors. 

The exact form of the system of twenty ODEs is given by 

Yi - >-o1
Y1 + Y2, 

y~ - (2a2 - >.()2)Y1 + a2 R>.~+1Ya + >.()(a+1>y5, 

y~ - ). -1 .. ). -(a+l) 
o Ya + Y4 + o Y6, 

y~ - 2 >. =1 . >. -(a+1) a Ya + o Y4 + o Y1, 

y~ - ->.~(2a2 - >.02 )Yw + >.0
1Y5 + a2 R>;~+1 Y6 + Y1i, 

y~ - Y1 + Ys + Y12, 

y~ 2 - a Y6 + yg + Y1a, 

y~ - (2a2 - >.02)(>.~ya + Y6) - >-o1Ys + Y9 + Y14, 

I 
Y16, Yw -

I ---a4 >.~+1 Y1 + a2 R>.~+1Y12, Yn -
I >-o1

Y12 + Y1a + Y14, Y12 -
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Y~a - -Ry1 + a2
Y12 + Xi)1Y1a + Yrs, 

Y~4 - a4 X()+1Ya + (2a2 - Xi)2)Y12 + Y1s + X~(a+l)Y17, 

Y~s - -Ry2 + a4 X()+1y4 + (2a2 - X02)Y1a + a2y14 + a2 RX0+1Yt6 + X~(a+ 1 )Y1s, 
1 R \-1 ,-(a+1) 

Y16 - - Ya + 1\o Y16 + 1\o Yt9'. 

y~7 - a4 X0+1Y6 - X0(2a2 - X02)Y12 - X01Y11 + Yts, 

y~8 - -Rys + a4Xo+lY7- X()(2a2 - X02)Y1a + a2y11 ~ X01Y1s + a2RX0+1Yt9, 

Y~9 - -Ry6 + Y2o, 

Y~o - -Rys - a4 X()+1Y1o + (2a2 - X02)(XoY16 + Y19) - -\01Y2o· 

Since none of the y~ depend on z, we have in effect to solve the system of first order 

differential equations 

I A y == y, Yts(O) = 1, Yifts(0) = 0, (2.60) 

for the constant 20 x 20 matrix A. We integrated this using the NAG routine 

D02EJF, a variable step method for stiff systems of first order ODEs using the 

Backwards Differentiation Formula, see [26]. 

Our expressions for each of the Yi show us that many of the coefficients of A 

are scaled like ~(a+l)' x()-2' Ag, x()+1' i.e. their magnitude depends both on our 

choice of a in defining Xa, and on the slip length we impose at z == 0. Then, we see 

that for large I a I, or lar:ge X0 (or Xi) 1), the coefficients of A will be correspondingly 

large. The effect of this is seen in the norm of the solution ly(z)l == V"'E/i0=1(yi(z))2, 

which increases dramatically as we integrate from z = 0 to z = 1. Thus, both the 

numerical integration, and the checking of condition (2.59) at z = 1, suffer from 

rounding error. 

We see in Figure 2.4 that large values of X, X -l and Ia I all lead to an increase 

in IYI· The optimum choice for a is seen to be close te:> a = 0, while we see that 

computations using slip lengths of a different order than X "' O(l0°) also increased 

the size of IYI· In the special case X= 10° (and so X= x-1) the function ly(z)l was 

not observed te:> vary with a. This can easily be verified by via the role of X in our 

definition (2.57). 
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Figure 2.4: Graphs (a) and (b): the variation of IYI with z for various compound 

matrix formulations (i.e. choices of a) when A = 10-1 , and a = acrit, Ra = Racrit· 

Graphs (b) and (c): the variation of IYI with z for various values of A, with a= 0 

and a = acrit, Ra = Racrit· 



Chapter 3 

Poiseuille flow with slip boundary 

conditions 

We now turn from the problem of convection to that of parallel flows, specifically 

Poiseuille flow. This consists of an incompressible fluid under isothermal conditions, 

contained in an infinite channel, along which there is a constant pressure gradient. 

The fluid moves along this pressure gradient in a laminar way, producing a parabolic 

velocity profile independently of time. Therefore, a crucial difference. with the work 

of the previous chapter is that the steady-state solution is non-zero. 

The problem of instability of pressure driven flow has a long history, starting 

with the experiments of Reynolds [54) on the transition to turbulence of a liquid 

flowing through a circular pipe. The instability of such laminar flows is governed by 

the Orr-Sommerfeld equation [4 7), an eigenvalue problem with the Reynolds number 

Re as a parameter, from which we aim to obtain ReL, the smallest Reynolds number 

such that the flow is unstable for Re > Re L. However, the linear analyses of pressure 

driven flow along a pipe fail as the flow has been shown to be linearly stable, see 

Drazin & Reid [18) for a discussic:m. 

More successful have been the investigations into the related problem of instabil­

ity of pressure driven flow in a channel. An accurate solution of the Orr-Sommerfeld 

equation in this setting was not calculated until the paper of Orszag [48), who found 

the figure ReL = 5772 using the Chebyshev tau method. However, the experiments 

29 
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of Davies & White [16] suggest that transition to turbulence occurs for Reynolds 

numbers closer toRe"' 1000, and this discrepancy between the predictions of linear 

theory and experimental observations is widely reported in the literature, though 

the rectangular channel used by Davies & White was far from the idealised infinite 

channel studied here. Having observed boundary slip to have a destabilizing effect 

on the steady-state solution calculated in the Benard problem, it is interesting to 

turn to the problem of advective instability, since if boundary slip has the same 

effect it could solve the problem of the large experimental discrepancy. 

There has been some recent work published on the solution of the Orr-Sommerfeld 

problem for plane Poiseuille flow with slip boundary conditions, which is in disagree­

ment over the fundamental question of how the slip length affects the stability of the 

steady-state. The papers of Spille, Rauh & Biihring [57] and Lauga & Cossu [38] re­

port increasing slip length to have a stabilizing effect, increasing the critical Reynolds 

number guaranteeing instability. However, the papers of A. Chu [1'3] and W. Chu [14] 

report the opposite to be true. 

With the aim of presenting a clear analysis of the Orr-Sommerfeld problem, 

and so end the disagreement over the effect of the slip length, this chapter begins 

with our work on the instability of Poiseuille flow in the plane with slip boundary 

conditions. We then move on to discuss a nonlinear stability ana:lysis of the problem. 

We include our computational results in both cases. 

3.1 Perturbatio:n equations 

We let x = ( x, y, z) denote the Cartesian coordinates of a point in JR3 , and consider 

a fluid contained in the region n = (-oo, oo) x [-h, h] x ( -oo, oo) C. JR3 . We use the 

standard notation of letting u(x; t), p(x; t) denote the fluid velocity and pressure 

fields at the point x E n and time t E [0, oo), and label the components of velocity 

u = (u,v,w) = (u1,u2,u3). 

Denoting the constant density p and constant dynamic viscosity J-L, the fluid 

obeys the incompressible Navier-Stokes equations (1.1) and (1.2) with F = 0. We 
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y 
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--------------------+--------------·---·----~.-.. X --

Figure 3.1: Diagram of Poiseuille flow in the plane. A constant pressure gradient 

8pj8x = -g < 0 drives para:Hel flow in the x- direction. 

define an_h = {x = (x, y, z)iy = -h} and anh = {x = (x, y, z)iy ~ h} to be the 

upper and lower surfaces bounding the channel 0., at which the fluid satisfies the 

slip boundary condition (1.3), (1.4). Specifically, these are 

ui 11=-h = ..\_hu,11 111=-h, vly==h = 0, wl11=-h = ..\_hw,11 111=-h• (3.1) 

uiy=h == -,.\hu,11 111=h, vly=h = 0, wly=h = -,.\hw,11 111=h, (3.2) 

where ..\h is the slip length at anh, and ..\_h is defined simi,larly. 

We consider a steady-state solution to (1.1)-(1.2) of the form P,:r: = -g < 0, 

ii = (u(y), 0, 0), F == 0. That is, paral1lel flow in the x-direction driven by a constant 

pressure gradient g, and no body f0rce term. Substitution of these assumed forms 

into the Navier-Stokes equations leaves us the system, 

0 - g + J.lii."(y), 

0 - P,y, 

0 - P,z, 

while clearly '\1 · u = 0 already. It is seen that p is a linear function of x only, while ii 

is a quadratic function of y. Applying the boundary conditions we eventually arrive 
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at 

-c g ( 2 h6
2 . 2h6 2) 

u .y) = 2p, h + hu - 2h + u + 2h + u y - y ' p(x) ==Po- gx, (3.3) 

where, for algebraic neatness, we have let u:::::: >..h + A-h and 6 = >..h- >..~h· 

It is convenient to nondimen.sionalize the equations of motion via the scalings 

x = hx*, h * t = :::-- t , 
Umax 

- * -2 * 
U = UmaxU , P = fYUmaxP ' 

where Umax = u(O) (i.e. the maximum value of u when. >..h = >..~h:::::: >..),and introduce 

the nondimensional numbers 

Re = philmax 
J.t , 

where Re is the Reynolds number, based on the half-channel depth h. Then, drop­

ping the '*' notation, the nondimensional equations of motion are 

Ui,i - 0, 

(3.4) 

(3.5) 

for X E r = (-oo,oo) X [-1, 1] X (-oo,oo) and t E [O,oo). Our flow profi·le 

nondimensionalizes to give the steady-state 

_( ) _ (2 + u)2(1 + u- y2)- 6(2 + u)(6 ~ 2y) 
u Y - (1 + u)[(2 + u)2 - 62] . ' 

(3.6) 

where the parameters u and 6 are understood to have been nondimensionalized. We 

note that for u = 6 = 0 we recover the no-slip boundary conditions, and the no-slip 

base solution u = 1- y2 (see, e.g. Drazin & Reid [18]). 

We require to investigate the stability of the flow (3.6) to disturbances which we 

assume to be periodic in the x and z directions. Therefore we pe:rturb the velocity 

and pressure by 

u(y) ~--+ ii(y) + v(x; t), p(x) ~--+ p + q(x; t), 

where v(x;t) = (u,v,w) = (v1,v2 ,v3), and assume that there is some domain A­

[x1,x2] x [-1, 1] x [z1 , z2] that tiles the microchannel r, such that both v .and q are 
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periodic modulo A. Substituting the perturbed forms into equations (3.4) and (3.5) 

we obtain the perturbation equations 

1 
- -q· + -tl.v· -•' Re " 

Vi,i - 0, 

(3.7) 

(3.8) 

for x E A, t E [0, oo) and assume initial data v0(x) such that vlt=O = v0 • Since 

u + v must satisfy the slip boundary conditions, we have for the components of v 

(3.10) 

Finally, we denote by 8A~1 = {x::;::: (x, y, z)IY = -1} the lower surface of A, with 

8A1 similarly defined. 

3.2 Linear theory 

We remove the nonlinear terms of (3.7)-(3.8), and look for sufficient conditions for 

instability of the solution to the linearized equations, 

1 
vi,t + u3'·Vi,3· + v3·ui • - ~q i + -tl.v· 

IJ ' Re '' 

We assume that we can expand our solutions to the linearized system as 

00 00 

V = L Vn(y)ei(anx+.Bnz-aent), q = L Qn(y~ei(anx+.Bnz-acnt), 
n=O n=O 

(3.11) 

(3.12) 

where (o:n,/3n) E IR2 and Cn E C, and since we only require a single mode to be 

unstable for instability of the whole solution, we consider a solution of the form 

v - v(y )ei(ax+.Bz-act), q = q(y)ei(ax+.Bz-act). (3.13) 
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Substitution of (3.13) together with (3.6) into the linearized perturbation equations 

and removal of the exponential parts gives us 

ia(u- c)u + u'v . 1 ( d,2 ( 2 2)) - -taq + - -. - - a + f3 u, 
Re dy2 

ia(u- c)v - -Dq + ~e (d~2- (a2 + /32)) v, 

ia(u ~ c)w . 1 ( d,2 ( 2 2)) - -t/3q + - -- - a + f3 w, 
Re dy2 

. d '{3 n tau + dy v -t t w - "'· 

However, if we add ax(3.14) to f3x(3.16}, and define a 'Squire transform' by 

a= vfa2 + {32 , au= au+ f3w, v = v, aRe= aRe, aq = aq, 

we obtain the system 

ia(u- c)u + u'v 

ia(u- c)v 

o A d A 0 tau+ -d v - . y 

This is exactly as we would have, had we considered a solution of the form 

v == (u(y), v(y), w(y))eia(x-ct), q = q(y)eia(x-ct)' 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

i.e. a perturbation dependent on (x,y) only, since in setting f3 = 0 in (3.14)-(3.16) 

the w equation decouples, and is solved by w = @. 

Moreover, since solutions to (3.18)-(3.20) will resemble solutions to (3.14)-(3.17), 

the fact that Re < Re means that for every unstable (x, y., z) dependent solution 

to the linearized equations, there is a z- independent solution that is unstable for 

a lower Reynolds number. It follows that in looking for instabiHty we need only 

consider solutions to (3.18)-'(3.20). 

Removal of the pressure terms by performing ( d/ dy )x (3.1:8)-ia x (3.19) results in 

the Orr-Sommerfeld equation 

iaR [<u- c) (d~2 - a
2

) - u"] v = (d~2 - a
2

) 

2 

v, (3.21) 
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which, upon transferring the boundary conditions from u onto v using (3.20), we 

must solve subject to 

v(±1) = 0, A1v"(1) + v'(1) = e, A_1v"'( -1)- v'(-1) = 0. (3.22) 

We solve (3.21) using the Chebyshev tau method ~see Orszag [48]), and so we sup­

pose that v can be expressed as the infinite series v(y) = L:~=o vnTn(y). We also 

suppose that there exists the function '1/J(y) = v"(y) -a2v(y) where '1/J has the similar 

expansion 1/J(y) ~ 2:~0 1/JnTn(y). 

We then substitute these series into (3.21), and truncate the series at the n = 

Nth term, so that we in effect approximate v and 1/J by V = L::=o VnTn(y), W = 

E:=o WnTn(y), and due to the error in this series truncation we have 

Ll(V, w) - V"- a2V- w = T!TN-1 + 'T2TN, 

L2(V, w) - iaRe [(u- c) w- u"V] ~ (d~2- a2) w = T3TN-1 + T4TN. 

The r coefficients are then eliminated in the usual way by taking the Chebyshev 
weighted inner products< £ 1 , '1i >and< £ 2 , '1i >,fori= 0, 1, ... , N -2. This leaves 
us with 2N -2linear equations in 2N +2 unknowns \ti, wi. Upon including the four 
boundary conditions, we arrive at the generalized eigenvalue problem (Ar + iAi)x == 
c(Br+iBr)x for xT- (Vo, ... , VN, '1'0 , ... , WN) and (2N +2) x (2N +2) square matrices 
Ar, Ai, Br and Bi, explicitly 

D 2 - a21 -1 0 0 0 0 0 0 

BC! 0 ... 0 0 ... 0 0 ... 0 0 ... 0 0 .. ;0 0 ... 0 0 ... 0 

BC2 0 ... 0 0 ... 0 0 ... 0 0 ... 0 0 ... 0 0 ... 0 o ... o 
+i =c +i ' 

(3.23) 
0 ~D2+a2J -aR'Y aReO 0 0 0 aRe I 

BC3 BC3 0 ... 0 0 ... 0 0 ... 0 0 ... 0 0 ... 0 o ... o 
BC4 BC4 0 ... 0 0 ... 0 0 ... 0 0 ... 0 0 ... 0 0 ... 0 

where D and D2 are the first and second order Chebyshev differentiation matri­

ces, V is the Chebyshev representation matrix of the function u, and the constant 

'Y(A_1, AI}= u". The rows B01 to BC4 are the boundary conditions, 

N 

I)-ItVn=O, 
n=O 

N N 

L (n2Vn +AI Wn) = 0, L (n2
( -1t+1Vn- A_ I( -1twn) = 0, 

n=O n=O 

where we have used the identities T(±1) = (±1)n, T~(±1) = n2 (±1)n+l, and the 

boundary conditions in (3.22). 
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For a given wave number a, Reynolds number Re, and pair of slip lengths 

(,\-b ,\1) we solve the above generalized eigenvalue problem using NAG routine 

F02GJF, obtaining the spectrum {c1,c2 , ... } ordered such that ~m{c1 } ~ ~m{c2 }. 

We iterate over Reusing NAG routine C05ADF until we have ~m{c1 } = 0 (and 

thex:efore neutral stability), and then x:epeat, iterating over a with via NAG routine 

E04ABF until we have the minimum point (aL-, ReL-) such that the system is linearly 

stable for all Re < Re£. 

3.3 Nonlinear theory 

We use the energy method of the previous chapter to find sufficient conditions to 

ensure stabHity of the base flow. That is, we aim to find ReE such that the steady­

state (3.6) is stable for Reynolds numbers Re < ReE. Again, we let < .. > denote 

the L2(A) inner-product with associated norm 11.11, given by 

< fg >= 1 fgdV, II/II= V< ff > VJ,g E L2 (A)., 

for volume element dV = dxdydz, and let H 1(A) be the complex Hilbert space of 

measux:able functions defined on A such that for f E H 1 (A) we have 

11!11 + 11!'11 < 00. 

Then, we can define the subspace 1i c [H1(A)]3 such that for v = (u, v, w) E 1i then 

V ·v = 0, the components ofv satisfy (3.9) and (3.10), and vis periodic modulo A. 

Assuming v E 'H, we let E(t) be the non-negative quantity defined by 

Differentiating E with respect to times and substituting from (3.7) we have 

dE 
dt 

- < V· (-q · + _!_V' ··- U·V· · = V·U· ·- V·V· ·) > • ,, Re s,;3 3 ,,3 3 ,,3 3 ,,3 , 

1 
- - < V·q · > +-·- < V·V· ·· >- < V·U·V· · >- < V·V·U· · >- < V·V·V· · >. ' ·' Re ' '·33 ' 3 '·3 . ' 3 '·3 ' 3 '·3 

We now look at each of these terms, and simplify by integrating by parts and 
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applying (3.9) and (3.10), and the incompressibility condition Vi,i = 0. 

< ViVjVi,j > - < (ViVjVi)J > - < ViVj,jVi > - < Vi,jVjVi >, 

- { ViVjWnjdS- < Vi,jVjVi >, laA 
- - < ViVjVi,j >= 0, 

< ViUjVi,j > - < (viUjVi)J > - < ViUj,jVi > - < Vi,jUjVi >, 

- { ViUjVinjdS- < Vi,jUjVi >, laA 
- - < Vi,jUjVi >= 0, 

for surface element dS, and where we have let Fii = ~(ui,i + Uj,i)· Therefore, the 

energy gradient reduces to 

dE =I- _!_V 
dt Re , 

where the functionals I and V are given by 

If we define ReE by 

I{v) -

V(v) - - < V·V· ·· >> 0 t I,JJ - I 

1 I 
~=max~ 

ReE vert 'D' 

then provided Re < Ree we have 

dE < _ ( ReE - Re) V < O 
dt - ReReE ~ ' 
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and we now aim to use 'D to provide a useful bound for dE /dt. Letting c1 = 

min{.X:L .X}1
, 1} we can use Poincare's inequality as follows. 

-V - --
1-1 v·v·dS ~ A-11 v·v·dS- < v· ·v· · > \ ' ' t t t,J ,,J ' 

A~l 8A-1 8A1 

< -Ct (1 . . V·V·d8+· < V· ·V· · >) ' ' t,J t,J ' 
8A-1U8A1 

< -CtC2 < ViVi >, 

where c2 > 0 is the constant from Poincare's inequality, see previous chapter. There­

fore 

~~ ~ -2c1c2 ( R~:;e:e) E(t) ==> E(t) ~ e-c3t E(O), 

where c3 = 2c1c2(Reg ~ Re)/ ReReE > 0. Hence, all perturbations in 1i to the 

base solution will decay at least exponentially fast, regardless of the initial data v0 , 

provided that we have Re < ReE. 

We now derive the Euler-Lagrange equations to obtain conditions necessary for 

I/'D to be at a maximum. For an arbitrary function h(v) E 'H, I/V is at an 

extremum provided that 

d I(v +«:h) I 
d«: V(v +«:h) E=O 

We now differentiate the I and 'D terms. 

since Fii is symmetric. 
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- < v,hiJj > + < h,vi,jj >, 

- < (v,hiJ),J > - < (vi,jhi},j > +2 < h,vi,jj >, 

- [ v,hi,jnjdS -1 Vi,jhinjdS + 2 < h,vi,jj >, 
laA 8A 

- _ __!___ 1 (v·h·- h·v·)dS- _.!_ Ia (v·h·- h·v·)dS , , , , , A , , , ,. 
"-1 8A~1 1 8A1 

+2 < hivi,jj >, 

- 2 < h,vi,jj > . 

We include the restriction h1,i = 0 via a Lagrange multiplier 2¢>(x), 

2 < h,,,cp > - 2 < (h,cp);i > -2 < hic/>,i >, 

- fa h··"'n·dS ~ 2 < h·"'. > 'l'fJ ' l'f',l ' 
8A 

- -2 < h,¢>,i > . 

Collecting together all terms in hi, I /V is at an extremum provided that 

(3.24) 

Since h was chosen arbitrarily, and if we identify ¢> with the pressure field q, we 

obtain the Euler-Lagrange equations 

!J.v,·- ReEv3·R3· - -q · . ·" 
Vi,i - 0. 

(3.25) 

(3.26) 

We therefore- aim to solve the above Euler-Lagrange equations, which are an eigen­

value problem in ReB, and select the smallest Reynolds number in the spectrum as 

our critical Reynolds number ReB. 

If we substitute fi == (u(y),O,O) into (3.25) and (3.26~, then we see that the 
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system we must solve is 

fl. 1 I (3.27) u- -Reu v - -q,::t, 
2 

fl. 1 I v- -Reu u 
2 

- -q,y, (3.28) 

tl.w - -q,z, (3.29) 

U,x + V,y + W,z - (i). (3.30) 

We note that there can be no analogue of the Squire transform we performed on 

equations (3.14)-(3.1!6), since linearly combining the spanwise components u and w 

fails owing to the u term in (3.28). Therefore, we consider in turn (x, y) dependent 

solutions, and (y, z) dependent solutions. 

3.4 Stability with respect to a z- independent 

perturbatio:n 

If we let v = v(x, y; t), then (3.27)-(3.30) reduce to 

fl. 1 I u- -Reu v 
2 

- -q,x, 

fl. 1 I · v- -Reu u 
2 

- -q,y, 

tl.w - 0, 

U,x + V,y - 0, 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

where u, v and w satisfy (3.9)-(3.10), and tl. = (82 j8x2
) + (B2 j8y2 ). We see that 

the w equation uncouples and is solved by w = 0. Therefore we can eliminate q by 

performing (8j8y) x (3.31)-(8/8x) x (3.32) 

A f ) 1 -I( ) 1 -II u~u - v · - -Reu v - u - -Reu v == 0 ,y ,x 2 ,y ,x 2 . (3.35) 

Differentiating this equality with respect to x, and using (3.34) to substitute u,yx = 

-V,yy and u,xx = -v;yx 1 we arrive at the eigenvalue problem 

tl.2v + Reu1v + ~Reu"v = 0 ,xy 
2 

,x , (3.36) 
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and we are left to transfer the boundary conditions from u onto v. 

uly=±l - =fA±l U,y ly=±l, 

====} U,:cly=±l - =fA±l U,xyly~±l, 

====} V,yly=±l = =fA:J:IV,1111I11=±b 

where we have used (3.34). Therefore v must satisfy 

(3.37) 

We suppose that we can expand vas the infinite series v-=- E~=o vn(y)eian(x-ent). 

Orr [47] and later Joseph & Carmi [33] and :Busse [7] helped establish the precedent 

of using a single Fourier mode of this series to solve equation (3.36). However, a 

complete nonlinear analysis should deal with the full series, as is done in the recent 

work of Kaiser & Mulone [35] and Kaiser & Schmitt [36], who provide estimates on 

the Reynolds number providing coRditional noRlinear stability. 

In order for our work to be consistent with the classic results of [7,33] we consider 

solutions to equation (3.36) of the form v(y)ei=. Substituting this form into (3.36) 

and removing exponential parts results in the equation 

( d~2 = a
2

) 

2 

v -r iaRe ( u'v' + ~u"v) = 0. (3.38) 

We now describe a D2 Chebyshev tau formulation of (3.38), as detailed in Appendix 

A. We begin by making the substitution 

( !2 - a
2

) v - 1/J = 0, 

i.e. we define a function 1/J = ~v. Then, we suppose that the Functions v(y) and 

1/J(y) can be expressed as 

00 00 

v(y) = L VnTn~Y), 1/J(y) = L 1/JnTn(y). 
n=O n=O 

Then, we truncate these series at then= Nth term, and aim to solve 

L1(v,.,P) - (!2 ~ a2
) v -1/J = nTN-1 + r2TN, 

L2(v, 1/1) - C:t~2 - a2
) 1/J + iaRe ( u'v + ~u"v) = r3TN-l + r4TN, 
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where the r's are a measure of the error in our series truncation. Then, taking the 
inner-product (A.1.4) of< Li, Tj > fori= l, 2 and j = 0, l, ... , N- 2 removes the 
r's and, upon letting D2 be the second order Chebyshev differentiation matrix, 0' 
be the Chebyshev representation matrix of the function u' (see Appendix A.4), and 
the constant "Y(A-t, At)= u", we obtain the linear syst~m 

D2 =a2J -1 0 0 0 0 0 0 

BCt 0 ... 0 0 ... 0 o ... o 0 ... 0 0 ... 0 0 ... 0 0 ... 0 

BC2 0 ... 0 0 ... 0 0 ... 0 0 ... 0 0 ... 0 0 ... 0 0 ... 0 
+i x=Re +i 

a(O' +hi) 
x, 

0 D2 -a2J 0 '0 0 0 0 

BC3 BC3 0 ... 0 0 ... 0 0 ... 0 0 ... 0 o ... o o •.. o 
BC4 BC4 o ... o 0 ... 0 0 ... 0 0 ... 0 0 ... 0 0 ... 0 

for solution vector xT = (v0, ... , VN, '1/Jo, ... , '1/JN). 

The rows BC1 to BC4 are our boundary conditions, which (referring to (3.37)) 

and using the identities Tn(±1) = (±1)n and T~(±1) = n2 (±1)n+l, are 

N 

N 

LVN=O, 
n=O 

N 

n=O 

L (At'I/Jn + n2vn) = 0, L (A-t(-1)n'I/Jn- n2(-1)n+tvn) = 0. 
n=O n=O 

For a given pair of slip lengths A=t and At, we choose a value for our wave number 

a and solve the above generalized eigenvalue problem with NAG routine F02GJF 

(which uses the QZ algorithm of Moler & Stewart [42]), and then proceed to iterate 

over choices of a, tracking the smallest positive eigenvalue in the spectrum until we 

have found the critical Reynolds number which we denote by ReE. The iteration 

methods are as described in Chapter two. 

3.,5 Stability with respect to an x- independent 

perturbation 

For the case v,x = 0, Q,x = 0 and letting ~ = (f:P j8y2
) + (82 j8z2

), (3.27)-(3.30) 

become 

~ 1 _, 0, (3.39) u~~Reuv -
2 

~ 1 , v- -Reuu 
2 

-q,y, (3.40) 

~w - -q,z, (3A1) 

V,y +w,z - 0 ' (3.42) 
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and we note that the solution (u, v, w) does not simplify as in the z-independent 

case. We can eliminate q by perfm:ming taking derivatives of equations (3.40) and 

(3.41), and use the continuity equation (3A2) to remove w, 

:z (:z {equation (3.40)} ~ :y {equation (3.41)}) .. :z ( D.(v,z- w,11 )- ~Reu'u,z), 

Ta:king the Laplacian of this, 

1 - . _, 
- 2Re~ (u U,zz), 

_, 1 . _, 
- Reu U,zzy + 2Reu ~U,zz 

-II 1 ( )2 ( -1)2 - Reu U,zzy + 4 Re· · U V,zz 

- D.(v,zz - w,11 z) - ~Reu'u,zz, 
D.2 1 -/ v = 2Reu U,zz, 

o~ 

since u"' = fl, 

using equation (3.39). 

(3.43) 

(3.44) 

We then use equation (3.43) to eliminate the u,yzz term, so that we eventually ani¥e 

at the sixth order eigenvalue problem in (Re)2 

1 . 
(u')2~3v = 4(Re) 2(u')4v,zz + 2u'u"~2v,y- 2(u") 2~2v. (3.45) 

To close the system we need to transfer both the boundary conditions on u and w 

onto v. 

wly=±l - =fA±IW,yly==±l, 

=:::::} W,zly=±l - =fA±l W,yzly=±l, 

=:::::} V,yly=±l - =fA±l V,yy ly=±l using equation (3.42), 

Again, we suppose solutions have the form of a single Fourier mode, in this case 

v = v(y)eiaz, and in anticipation of applying a D2 Chebyshev tau formulation we 

introduce the functions 1/J and ¢J such that 

1/J = (d~2 -a
2

) v, ¢J = (d~2 -a
2

) 1/J. 
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Upon substituting these forms into (3.45), removing exponential parts, and sup­

posing Chebyshev expansions v(y) = E:=o VnTn(y), .,P(y) = E:=o 1/JnTn(y), <f>(y) = 
L::=o <f>nTn(y), we truncate these series at then= Nth term and aim to solve 

Lt(v,t/J) (!2 -a2)v-t/J=rtTN-t+r2TN, 

£2{1/J,¢) = (!2 ~a2)1/J-¢==r3TN-t+T4TN, 

L3(v, 1/J, ¢) _ (u')2 ( : 2 - a2) ¢ + ~
2 

(Re)2(u')4v- 2u'u"¢' + 2(u")2¢ = rsTN-t + -r:NTN. 

We take the inner product (A.l.4) of< Li, Ti >fori = 1, 2, 3, j = 0, l, ... , N- 2 
which removes the r's due to orthogonality. Then, once more letting U' be the 
Chebyshev representation matrix of the function u', the constant I(A-t. >.I) = u", 
and D, D2 denote the first and second order Chebyshev differentiation matrices, 
then we obtain the linear system 

D 2 -a21 -1 0 
0 0 0 

BCI 0 ... 0 0 ... 0 
0 ... 0 0 ... 0 0 ... 0 

BC2 0 ... 0 0 ... 0 
0 ... 0 0.,,0 0 ... 0 

0 D2 -a2J -1 
X= (Re)2 0 0 0 

BC3 BC3 o ... o x, 
0 ... 0 0 ... 0 0 ... 0 

BC4 BC4 0 ... 0 

(0')2D 2 - a2 (0')2 - 2-yU' D + 2-y2 I 
0 ... 0 0 ... 0 0 ... 0 

0 0 -a} (0'}40 ... 0 0 ... 0 0 ... 0 
0 ... 0 0 ... 0 BC5 

0 ... 0 0 ... 0 0 ... 0 
0 ... 0 0 ... 0 BC6 

where xT = (v0 , ... , VN, .,P0 , ... , 1/JN, ¢0 , ... , <!>N ). Our search algorithm for the critical 

Reynolds number ReE is similar to that of the previous Section. 

3.6 Results 

We present results for the case of symmetric slip, where >._1 = >.1 = >.. Figure 3.3 

shows that the critical Reynolds number ReL, above which instability is assured, is a 

rapidly increasing function of slip length >.. Therefore, our results are in agreement 

with the conclusions of Lauga & Cossu (38] and SpiHe et al (5'7]. While contradicting 

the results of A. Chu and W. Chu (13, 14]. 

While the work in (13, 14'] performs a linear analysis using the Orr-Sommerfeld 

equation (3.21) with a base solution u which satisfies slip boundary conditions, the 

pertubation v = (u, v, w) satisfies homogeneous boundary condi,tions at y = ±1. 

We believe this to be in error, since the function u + v must satisfy the linear slip 

boundary conditions prescribed for u, i.e. the components of v must also satisfy 
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Re x uf 

Figure 3.2: Neutral curves from linear analysis, along which the system is neutrally 

linearly stable. 

(a) 
1.04....---~--~--~----. 

~~L---0~.005---0~.01=--~0~16--~~~ 
A 

(b) 
11000r----~--~--~------., 

5000oL---o~.005~---o~.o-1--o~~15--~~~ 
A 

Figure 3.3: The dependence of critical p0int (aL, ReL) on slip length ..\. ReL is an 

increasing function of..\. 
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slip boundary conditions. 

Having found boundary slip to be linearly stabilizing, we tura our attention to 

the results of our nonlinear analysis. The critical Reynolds number ReiY, below 

which the flow is conditionally stable to z-independent perturbations, is observed 

to at first decrease with>. from the no-slip result of Re~Y = 87.6 (first calculated by 

Orr [47]) to a miaimum of Reiy = 85.9 at A = 0.045, see Figure 3.6 ~a). Then, the 

critical Reynolds number is an increasing function of A, such that for A ,..., 0(10°), 

ReiY is observed to increase approximately linearly with A. 

Similar behaviour is observed in the case of x-independent perturbations. The 

critical Reynolds number Re}? decreases from the no-slip result of Re}? = 49.6 (as 

calculated by Joseph & Carmi [33] and Busse [7]) to a minimum value,of Re~z = 48.0 

at A = 0.08. After this, Re~z is an increasing function of A, such that, again, for 

A ,..., 0(10°) Re~z increases with A approximately linearly. 

In our linear analysis we were able to show, by findiag a Squire tfansform, that 

z-independent perturbations were the least stable, and so we could consider per­

turbations depeadent upon (x, y, t) only. We then showed that there was no such 

transform for the equations governing the nonlinear analysis. 

Although Orr [47] believed it sufficient to coasider only z-independent distur­

bances in the nonlinear analysis, the results of [;7,33] show that in the no-slip case, 

x-independent perturbations were the most critical. Our results show this is true 

for A =J 0. Moreover, if ReL is aa increasing function of A with ReLI.~=o = 57'72, and 

ReE = Re}? increases with A from ReEL~=O = 49.6, we cannot have convergence of 

ReL(A) and ReE(A) at Re,..., 1000, the critical figure from the experiments of [16]. 
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Figure 3.4: Effect of boundary slip on the neutral curves resulting from our nonlinear 

analysis. Graph (a) shows the neutral curves corresponding to a z-independent 

perturbation, where: ..\ = 0, '~'; ..\ = 0.05, '- -'; ..\ = O.l, '-·'; ..\ = (l2. ' .. '; ..\ = 0.5, 

dark '-'. Graph (b) shows the effect of..\ for x-independent perturbations, with: 

' - 0 '-'· ' - 0 1 '- -'· ' - 0 2 '-·'· ' - 0 5 ' .. · ' - 0 7 dark'-' A- 1 1 A- • 1 1 A- • 1 1 A- • 1 1 A- • 1 • 



3.6. Results 48 

(a) (b) 
2.4 1200 

2.2 

2 

1.8 
S<w scar ~ 

1.6 

1.4 

1.2 

1 0 
0 2 4 6 8 10 0 2 4 6 6 10 

A A 

(c) (d) 
2.4 500 

450 
2.2 

400 

2 350 

1.8 300 

~al" ~CDW 250 
a: 

1.6 200 

1.4 150 

1.2 

1 
0 2 4 6 6 10 

0- --
0 2 4 6 8 10 

A A 

Figure 3.5: The dependence of critical point (aE, ReE) on slip length ).. for: (a) and 

(b), z-independent disturbances; (c) and ~d), x-independent disturbances. 
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Figure 3.6: The dependence of critical Reynolds numbers Re~Y and Re}? on slip 

length A, for small values of A. 



Chapter 4 

Poiseuille flow with variable 

viscosity 

We now consider the case of Poiseuille flow along a channel under non-isothermal 

conditions. A constant temperature difference is applied across the channel depth, 

and the viscosity of the fluid is considered to be a function of temperature, the form 

of its temperature dependence being at om disposal. 

Control'ling the temperature dependence of the viscosity allows us to observe the 

influence of slip boundary conditions on the instability of a variety of fluids. For 

instance, the viscosity of most liquids is a decreasing function of temperature, while 

at 'ordinary pressures' gases have viscosities that increase with temperature, [69]. 

However, there are some exceptions: for liquid sulphur and liquid helium there are 

a range of temperatures over which the viscosity increases as temperature is raised; 

highly compressed gases become less viscous as the temperature increases. 

While boundary slip has been observed relatively recently in liquids [l, 4, 15, 34, 

46], it is more commonly associated with the behaviour of rarefied gases, see for 

example [41]. Therefore, controlling the form of the viscosity function makes for an 

interesting experiment, as it allows one to see whether, in the mathematical model, 

the slip length A has a greater impact for liquid-like fluids or gas-like fluids. 

Owing to the problems already mentioned (see previous chapter) in performing 

a fully nonlinear stability analysis of fluid systems where the velocity steady-state 

is non-zero, we perform a linear stability analysis only. While we retain control 

50 
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over the viscosity function, we assume throughout that the fluid is incompressible, 

and that buoyancy effects are negligible. In doing this, the main point of reference 

for the work in this chapter is the linear stability analysis of Wall & Wilson [63], 

who assumed no-slip boundary conditions. Their results suggest that the base flow 

stabilizes when the viscosity is an increasing function of temperature. When the 

viscosity decreases with temperature, both increases and decreases in the critical 

Reynolds number ensuring instability were observed. 

4.1 Fluid model 

We let x = (x, y, z) denote the Cartesian coordinates of a point in JR3 , and consider 

a fluid in the channel defined by n = ( -oo, 00) X [-h, h] X ( -oo, oo). Then, for 

X E n and time t E [0, 00), the fluid obeys the N a vier-Stokes equations 

p(U·t+U·U· ·) 
'· 1 '·1 

- -p · + J-LAU· + J-L rT ·{ u· · + u · ·) ·' ' ' ·1 '·1 1·' , 
(4.1) 

U·. 
1·1 = 0, (4.2) 

Tt+u·T· ' 1 ·1 - KAT, (4.3) 

where T(x; t), u(x; t), and p(x; t), are the temperature, velocity and pressure fields, 

and J-L(T) is the viscosity. The constant terms are the density p, and thermometric 

conductivity r;,. Note that in the a:bsence of a body force term we are ignoring 

buoyancy, and that we consider the fluid t0 be incompressible. The c0mponents 

0f the fluid velocity u = (u, v, w) satisfy the slip boundary conditions of (4.1) and 

(4.2), while the temperature satisfies 

(4.4) 

for nonzero constants T_h and Th. 

We look for a steady-state soh:1tion to (4.1)-(4.3) of Poiseuille type, arising from 

a constant pressure gradient P,x = -g < 0. With assumed forms f0r the velocity 
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and temperature u = (u(y), 0, 0) and T = T(y), we have 

0 g + J-LU11 + J-L,rT'u', 

0 - P,y = P,zn 

0 - T" , 

52 

(4.5) 

(4.6) 

(4.7) 

where the prime denotes differentiation with respect toy. We see that the pressure 

is a linear function of x only, while from equation (4. 7) we see that T is a linear 

function of y., which is easily found given (4.4). From equation (4.5) we have 

g + J-LU11 -t J-L,rT'u' = 0, 

. d ( ') ::::::} dy J-LU = -g, 

A-gy 
:::::::::::> u' = for some constant A, 

J-L 

==> u(y) = j ~;(:~) dy + B for some constant B. 

Therefore, we have the steady state solution 

- J A-gy 
u(y) = · J-L(T(y)) dy + B, p(x) = .Po~gx, 

- 1 1 
T(y) =- 2(Th +T-h) +2h (Th -T~h)y. 

(4.8) 

4.2 Nondimensionalization 

Denoting the constant J-L-h = J-L(T(y))ly=-h, we nondimensionalize equations (4.1) 

to (4.3) and steady state ( 4.8) according to the scales 

x= hx*, 
gh2 * 

u=--u, 
2P.-h ( h2 )2 

p=p ~-h p*, 

and introduce the nondimensional numbers 

R gpha Pr- J-L-h 
e- 22' - P"', 1-L-h 

where Re is our Reynolds number, and Pr is our Prandtl number. 

nondirnensional equations of motion are 

(4.9) 

Then, our 

1 1 
Ui,t + u;ui,i - -P,i + ReJ-LAUi + IleJ-L,rT,;(ui.i + u;,i), (4.10) 

Uj,j - 0, (4.11) 
1 

T.t + u;T,; - RePr AT, (4.12) 



4.2. Nondimensionalization 

while our base solution becomes 

_ J A- 2y. 
u(y) = J-t(T(y)) dy + B, 

2 
p(x) =Po- Rex, T(y) = 1 + y. 

53 

( 4.13) 

Wall & Wilson (63] considered three different models for the viscosity function: 

exponential dependence upon temperature; linear dependence upon temperature; 

combined linear and exponential temperature dependence. The exponential model 

J-t(T) ex exp(const.fT) is commonly used to model liquids and compressed gases (69]. 

However, Wall & Nagata (62] performed a linear stability analysis in the case of 

vanishing Peclet number, and found that the precise form of J-t(T) was qualitatively 

irrelevant. What is important is whether J-t is an increasing function of T, or a 

decreasing function. 

Therefore, we choose a linear temperature dependence. Noting that our nondi­

mensionalization results in J-t(T(y))ly=-l = 1, our model is then 

J-t(T) = 1 + kT = 1 + k + ky., (4.14) 

and thus we can control our fluid type through our choice of constant k. In order 

that J-t > 0 we must choose k > ~1/2. For sufficiently small lkl, model (4.14) may 

be thought of as a leading order approximation to an exponential viscosity model. 

Therefore, our model is a reasonable compromise, while its. linear form aids simplicity 

of coding later on. With this choice of viscosity J-t, our steady-state velocity profile 

becomes 

u(y) J A-2y 
- 1 + k + kydy + B, 

(Ak + 2 + 2k) ln{1 + k + ky} + Bk2 
- 2ky 

k2 

and, upon reconciling the boundary conditions (3.9) and (3.10) and assuming A-t= 

A1 (i.e. symmetric slip), we arrive at the base solution 

u(y) = 
2 

k(ln{1 + 2k} + 2Ak] (2(1 +A+ Ak) ln{1 + k + ky} = (ln{1 +2k} + 2Ak)y 

~(1 + A)ln{1 + 2k} + 2A2k2
]. (4.l!5) 
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4.3 Perturbation equ.ations 

We perturb our equations of motion by u, r--+ ui +Vi, p ~ p+ q and T ~ T + 8, where 

the components of v = (v1, v2 , v3 ) :::;: (.u, v, w) satisfy the slip bcmndary conditions 

of (3.9) and (3.1:0), and the temperature perturbation 8 satisfies 8lv=±l = 0. In 

particular, our viscosity function is also perturbed 

~-t(T + 8) 
- - 1 2 -

- ~-t(T) + 8~-t,r(T) + 2,8 /-t,rr(T) + ... 

- ~-t(T) + 8~-t,r(T) + 82ry(T, 8), 

for some function ry(T,O). Ma:king these s1:1bstitutions, we obtain 

-q i + R1 
(9t-t T + 02

.,)Llu; + R1 
(t-t + 9t-t T + ()2

.,}Llv; 
' e ' e ' 
1. 2 + Re (Ot-t,TT + () "l,r)(T.i + O,j)(u;,i + Uj,i + v;,i + Vj,i) 

1 1 
+ Ret-t,r(T.i + e,j}(Vi,j + Vj,i) + Ref-L,TO,j(Ui,j + Uj,i). (4.16} 

v·. J,J - 0, (4.17} 

O,t + uiO.i + viT.i + vjB,i 
1 

R 
-p LlO. 

e· r 
(4.18) 

Eliminating terms nonlinear in v and 8, we find 

1 1 
v;,t + viui,i + uivi,i = -q,; + Re [t-t.rilu; + t-t,rrT.i(u;,i + ui,i)]9 + Re t-t,r(u;.i + ui,iW,i, 

1 1 
+ Ret-tLlv; + Ret-t,rT,j(v;,i + Vj,;}, (4.19} 

v·. J,J 0, 

O,t + UjO,j + VjT,j 
1 

RePrLl(), 

before finally we substitute T == 1 + y, ii = (u, 0, 0) 

(a _a) -
at +uax u+u'v = -q,x + ~e (f-L,TU

11 + f-L,TTU
1 + f-L,TU

1 :U) 8 

+ ~e (t-tLl + f-L,T ~) u + ~ef-L,TV,x, 

(! +uf~) v 

-+u- w (a -a) 
8t ax 

U,x + V;y + W,z 

(! +u!) O+v 

1 _, 1 ( A a) 
= -q,y + R.~ f-L,TU O,x + Re f-L . + 2t-t,T ay v, 

1 1 ( a) - -q,z + Ref-L,TV,z + Re t-tLl + f-L,T ay w, 

0, 
1 

RePrLlO; 

(4.20) 

(4.21} 

(4.22} 

(4.23} 

(4.24} 

(4.25} 

(4.26} 
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4.4 Modal analysis 

Since we are performing a linearized stability analysis, we wish to consider solutions 

to ( 4.22) to ( 4.26) of the form of single Fourier modes, i.e. 

u ~ u(y) exp{i(ax+.Bz-ad);}, v = v(y) exp{i(ax+,Bz~ad)}, w ~ w(y)exp{i(ax+.Bz-act)}, 

0 == O(y)exp{i(ax+.Bz- ad)}, q = q(y)exp{i(ax + ,Bz- ad)}. 

Wall & Wilson [63) neglect to detail the applicability of Squire's Theorem. There­

fore, we now describe a Squire transform that shows that we may consider z~ 

independent disturbances in the u and v components only. Substituting the above 

modal forms into equations ( 4.22)-( 4.26) and removing exponential parts results in 

the system 

ia(u- c)u + u1v 

ia(u- c)v 

ia(u- c)w 

iau + v1 + i,Bw 

ia(u- c)O+v 

However, if we define 

. + 1 ( _, + -1 _l_ -1 {) ) 0 - -taq Re J.l.,ru J.I.,TTu ,.- J.I.,TU {)y 

1 ·( {)2 {) 2 2 ) ia + Re J.l. {)y2 + J.I.,T {)y - J.l.(a + .8 ) u + ReJ.I.,rv, 

I ia -lo 1 ( {)2 8 ( 2 a2)) ~q + -J.I. ru + - J.l.- + 2J.1. r- - J.1. a + /J v; Re ' Re {)y2 ' {)y 

. i,B 1 ( 8
2 

{) 2 2 ) ~ -t,Bq+ -J.I.rv+- J.l.- +wr-- J.l.(a +.8) w, 
Re ' Re 8y2 ' oy 

0, 

1 ( 8
2 

2 2 ) RePr {)y2 - (a + ,8 ) O. 

{4.27) 

(4.28) 

(4.29) 

{4.30) 

{4.31) 

A au+ {3w u= ~____;- v=v, 
A Q 

Re = -Re, 
a 

A a 
q= Qq, 

A Q 
() = -{}, 

a a 

and add ax(4.27) to {3x(4.29), we arrive at 

ia(u- c)u + U1V = -iaq + _;_ (J-L ru" + J-L rru
1 + J-L ru

1 J ) 0 
Re ' ' ' uy 

1 ( {)2 a 2 ) A ia A (4 32) + Re J-L 8y2 + J-L,T ay -a J-L u + .ReJ-L,rV, . 

ia(u- c)v A ia -leA 1 ( a2 

2 a 2 ) A ( 4 33) 
- -q,y + ReJ.t;ru + Re J.t ay2 + /-t,T 8y -a J.t v, . 

iau + v1 - 0, (4.34) 

ia(u-c)O+v 1 ( 02 2) A - -- --a () (4.35) 
RePr a1p . ' 

which is exactly as we'd have had we set {3 = w = 0. Moreover, Re ~ Re, therefore 

the least stable perturbation is associated with a z-independent disturbance in the 

x- and y- directions. 
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4.5 Thermal Q,rr-Sommerfeld equation 

We begin by removing the pressure terms by subtracting iax equation (4.33) from 

djdyx equation (4.32}, 

iaRe(u- c}(u'- iav) + Reu"v - [(J.t,TTT + a2J.t,r)u' + 2J.t,TTU11 + J.t,ru"'JO 

+2(.u u' + u u")()' + 2u u'e" ,-,TT ,-,T ,-,T 

ia(u- c)() -tv = 

-a2J.t,ru + (J.t,TI' - a2 J.t )u' + 2J.t,ru" + J.tU111 

+ia(J.t ,TT + a2 p, )v - iaJ.t ,rv' - iaJ.tv", 

1-(()"- a2e). 
RePr 

We introduce a stream function ¢ such that 

u(y) = ¢'(y), ¢(y) = -ia¢(y), 

and thus the continuity equation iau + v' = 0 is satisfied automatically. With this 

new variable ¢ we define 1/J(y) such that 1/J = ¢" - a2¢. Then, our system becomes 

¢" - a2¢ - 1/J, 

iaRe[( u - c)'I/J - u"¢] - [(J.t,TTT + a2 J.t,r)u' + 2J.t,TTU11 + JL,ru"']'() 

+2 ( 11. u' + 11. u") e' + 211. u' e" ,-,TT ,-,T ,-,T 

+J.t'I/J" + 2J.t,r1/J' + (J.t,TT - a2 I-' )1/J 

+2a2J.t,TT¢, 

iaRePr[(u- c)e- ¢] = ()" - a~e. 

We must now transfer the boundary conditions on u and v onto ¢. 

vl 11=±1 - 0, 

==} ¢11/=±1 - 0, 

ul 11=±1 - 1=A±1u,11 111=±1, 

==} ¢'11/=±1 - 1=A±1¢"111=±1· 

(4.36) 

(4.37) 

(4.38) 

We solve this eigenproblem in eigenfunction ¢, eigenvalue a, using the Chebyshev 

tau method. We suppose that ¢, 1/J and () can be expressed as an infinite series in 
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Chebyshev polynomials 

00 00 00 

</J(y) = L </JnTn(y), 1/J = L 1/JnTn(Y), () = L ()nTn(y). (4.39) 
n=O n=O n=O 

We then substitute these series into system (4.36)-(4.38), and then truncate them 

at then= Nth term, so that we approximate </J, 1/J and ()with the functions 

N N N 

4>(y) = L 4>nTn(y), w(y) = L WnTn(Y), 8(y) = L SnTn(y). 
n=O n=O n=O 

Then, allowing for the error in our truncation, we aim to solve 

L.t.{(), IJ!) (~2 - a
2

) () -IJ! = TJTN-l + r2TN, 

=(iaReu" + 2a2Jl.,TT)() + (iaReu- Jl.,TT + a2
p.- p. ! 2 - 2P.,T ~) 1JI 

- [(u . + a2u )u' + 2u u" +II. fi.
111 ,-,TTT ,-,T ,-,TT ,-,T 

( 
~t _,) d . _, £P ] 

,f-2 Jl.,TTU + Jl.,TU dy + 2J.t.;TU dy2 . 8 

-ciaReiJI = T3TN-l + T4Tn, 

( iaRePru + a2 
- d~2 ) 8 - iaRePr() - ciaRePr8 

= rsTN-l + raTN. 

We foHow the now familiar procedure of taking the inner product (A.l.4) of < 

Li, 1j >, where i = 1, 2, 3 and j = fJ, ... , N- 2, to remove the 7 coefficients, and 

leave us with 3N -3linear equations for the 3N +3 unknowns 4>0, ... , 4>N, W0, ... , WN, 

9 0 , ... , eN. The remaining six equations needed to close the system are found from 

our boundary conditions. 

Letting D and D2 be the first and second order Chebyshev differentiation ma­

trices, and M and [J be the Chebyshev representation matrices for the viscosity 

function IJ and steady-state solution u (with derivatives similarly defined), we have 

the system 

(4.40) 

where Ar, Ai, Br and Bi are (3N + 3) x (3N + 3) square matrices, and x = 

(4>o, ... , W0, .... , 8 0, ... )r. Introducing the notation 

Xa 11 Xa 12 Xa 13 

Xa = Xa 21 Xa 22 Xa 23 

Xa 31 Xa 32 Xa 33 
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where each Xo: ii is a (N + 1) x (N + 1) square block, then 

Ar 12 -I, 

Ar 13 0, 

Ar 22 a2M- M"- MD2
- 2M'D, 

Ar 23 -M"'U'- a2M'U' ~ 'l.M"U"- M'U"'- 2M"U'D- 2M'fJ"D- 2M'U'D2
, 

Ar 31 Ar 32 = 0, 

Ai 11 = Ai 12 = Ai 13 = 0, 

Ai 21 = -aReU", 

Ai 22 aReU', 

Ai 23 0, 

Ai 31 Ai 32 = 0, 

Ai 33 aRePrU'. 

13:,. ij 0. 

Bi 11 Bi 12 = Bi t3 = 0, 

Bi ~1 0, 

Bi 22 aRe/, 

Bi 23 0, 

Bi 31 = Bi 32 == 0, 

Bi 33 aRePrl. 

The boundary conditions are overwritten as rows in the usual way, using the iden­

tities Tn(±1) = (±1)n and T~(±l) = n2 (±1)n+l. 
N N N 

E~n=O, L (n2~n + AtWn) = 0, L8n=O, 
n=O n=O n=O 

N N N 

L( -1)n~n = 0, L (n2
( -1)n+l~n- A-I( -1)nwn) = 0, ~::)~1t8n = 0. 

n=O n=O n=O 
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Therefore, for a given wave number a, Reynolds number Re, slip length .X and vis­

cosity parameter k, we solve (4.40) using NAG routine F02GJ.F to find the spectrum 

{ c1 , c2 , c3 , ... } ordered such that ~m{ c;} ~ ~m{ c;+l}. We proceed to iterate over 

the wave number and Reynolds number finding pairs (a, Re) such that ~m{c1 } == 0 

(i.e. the system is neutrally stable) until we find the minimum Reynolds number 

ReL (at corresponding wave number aL) such that we have instability for Re >Ret. 

The iterative methods are as in Chapter two. 

4.6 Results 

As in Chapter 2, we note that the Prandtl number Pr, unlike the Reynolds number 

Re, is not a measure of the fluid flow and therefore we do not expect our results to be 

strongly dependent upon it. The nondimensionalization of Wall & Wilson [63] made 

use of the Peclet number Pe = Pr Re, and their results were calculated with the 

value Pe = 1.0. Although stating that their results were found to be qualitatively 

similar when they used Pe =J. 1.0, fixing the PeclE~t number does not seem the best 

way to proceed. Rather, fluids tend to be classed by their Prandtl number, for 

instance some typical Prandtl numbers are 

• around 0.015 for mercury, 

• around 0.7 for air and many other gases, 

• around 7.0 for water, 

• between 100 and 40,000 for engine oil, 

• around 7 x HJ21 for the Earth's mantle. 

Wall & Nagata [62] argued that in the case of vanishing Peclet number (and so 

Pr = 0 also), the exact form of the viscosi,ty was irrelevant, only whether J.L,T > 0 

or J.L,T < 0 impacted on the stability of the flow. Also, very small Prandtl numbers 

may be associated with fluids exhibiting boundary slip, for example rarefied gas. We 

therefore performed calculations with a very small Pran.dtl number Pr = 0.1 x w-5 , 

tracking the critical point (aL, ReL) as a function of our viscosity parameter k, for six 
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Figure 4.1: Neutral curves when >. = 0, and when: k::;: ~0.425, '-'; k = -0.2, '- -'; 

k = 0, '~·'; k = 0.5, '··'; k = l.Q, '-' (dark). 

different value of>. E [0, 0.05], see Figure 4.2. We remind the reader that for physical 

reasons we restrict k > -!, while in keeping k < 1 our viscosity J-L(T) = 1 + kT 

might be considered a leading order approximation to an exponential dependence 

upon temperature. 

The results show boundary slip to be stabilizing for all k E [-!, 1]: holding 

k constant, increasing >. causes a corresponding increase in the critical Reynolds 

number ReL. In this way we conclude that boundary slip is linearly stabilizing in the 

case of Poiseuille flow, even when the viscosity is allowed to vary with temperature. 

This increase in stability brought about by an increase in>. is observed to be greater 

fork> 0, i.e. when the viscosity function models a gas, than fork< 0, when J-L(T) 

models a liquid, see Figure 4.2 (b). The effect of increasing >.on the neutral curves 

(for all k considered) was qualitatively similar to that shown in Figure 3.2. 

For a fixed value of>. we see that increasing k > 0 always results in an increase 

in stability. Fork< 0, increasing lkl is seen to at first decrease ReL to a minimum, 
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Figure 4.2: Variation of critical point (aL, ReL) with visc0sity parameter k, f0r slip 

lengths in the range A E [0, 0.05], and with Pr = 0.1 X w-5. 
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before increasing ReL explosively. Thus, there is global minimum critical Reynolds 

number of ReL rv 4044 below which the system is always linearly stable, at least for 

this viscosity model. When k = 0 we have J..t = 1, and in this case the results for 

ReL for each A agree with the work of the previous chapter. 

The explosive behaviour of ReL (and aL) in the limit k--. -~is interesting. We 

note that in this limit 

l. -c ) { 4(1 +A+ y) 
lm u y = 

k-+-! 0 

when y =f 1, 

when y == 1, 
(4.41) 

and so the solution develops a discontinuity at y = 1, while in the region y E [-1, 1), 

u(y) is linear function of y, and so resembles the steady-state profile for Couette flow 

in the channel (see Chapter 1). ThoMgh the experiments of Reichardt [53) suggest 

instability of Couette flow around Re rv '750, the flow has been shown to be lin­

early stable at all Reynolds numbers, see Romanov [55] and the book by Drazin and 

Reid for a discussion [18). Therefore the rapid increase in stability of our system as 

k ~ - ~ is reasonable. 

We repeated our calculations for different Prandtl numbers up to Pr rv 0(10°), 

and were able to verify that altering Prandtl was not observed to have any effect on 

the stability of the system. Not only were the results qualitatively the same as in 

Figure 4.2, but the actual values were in such close agreement as for any difference 

to be attributed to round off error from the difference in scaling. 
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Thread-annular flow 

The papers of Frei, LUscher & Wintermantel [23] and LUscher, Wintermantel & 

Annen [40] have succeeded in drawing attention back to an important problem 

from the field of hydrodynamic stability. Concerned with how to introduce a porous 

medium into a patient in a non-invasi;ve way, Frei et al describe the modern technique 

of thread-injection, in which a hypodermic needle is connected to a syringe of fluid, 

which also contains a spool of surgical thread. One end of the tb.read is introduced 

into the needle, which in turn is inserted into the patient, see Figure 5.1. 

A pressure gradient is applied by the syringe, and the thread is drawn through 

the needle with the fluid into the patient, the speed of the thread being controlled 

by a motor connected to the spool. In this way, a matrix of surgical thread approx­

imating a porous mass builds up inside the patient. The thread-annular problem is 

the investigation into the stability 0f this type of fluid system, and is the motivation 

for this chapter. 

Research into the thread-annular problem can be .seen to have started with the 

work of Mott & Joseph [43], who presented a linear stability analysis for a viscous 

fluid flowing along a constant pressure gradient through a pipe with a solid core along 

its axis. Letting the pipe have inner radius R, the core have radius 8 and setting 

"' = 8/ R, Mott & Joseph investigated the instability of the system to axisymmetric 

perturbations, tracking the critical Reynolds number guaranteeing instability as a 

function of"'· Their results showed the critical Reynolds number varying moncton-

63 
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spool 
body 

thread 

pressure applied to syringe thread matrix 

Figure 5.1: Diagram of thread-injection. A constant pressure gradient is applied to 

the fluid in the syringe, such that the thread is unspooled and drawn out into the 

body of the patient, to create a tangle of thread. 

ically with 'fJ from a finite value at 'fJ = 1 (corresponding to Poiseuille flow in the 

plane), and approaching infinity as TJ -t 0 (corresponding to Hagen-Poiseuille pipe 

flow, see the book by Drazin & Reid for a discussion). This was verified later in the 

work of Strumolo [60]. 

More recent have been the contributions of Walton [64-66], whose model allows 

the inner cylinder to move axially with constant velocity W 2:: 0 in the direction of 

the pressure gradient, and for algebraic neatness uses a different nondimensional­

ization to that of Mott & Joseph. Walton showed that multiple neutral curves can 

coexist when W =1- 0, making the problem of tracking the critical Reynolds number 

much more difficult. 

We bring this model close to the problem considered by Frei et al [23] by including 

two further types of motion. The first , is we allow the solid core to rotate about 

the axis with constant angular frequency f. We show that this introduces another 

component into the steady-state solution, and that increasing the rate of rotation 

has a surprising, destabilizing effect on the stability of the system. 

Finally, we introduce slip boundary conditions, which we allow since we consider 

our model to be valid on the interior of a hypodermic needle. Hypodermic needles 
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in common use can have inner diameters as sma:ll as 76.2 x w-6 metres, and so we 

believe the thread-annular problem to have geometry on a scale such that boundary 

slip is an important part of the model. 

5.1 The thread-annular model 

Adopting the cylindrical polar coordinate system (r, 8, z), we consider a viscous, 
incompressible fluid on the annular domain f2 = {(r, 8, z)ir E [8, R], 8 E [0, 271'), z E 
(-co, oo)} for lengths 0 ~ 5 ~ R. At time t E [0, oo) a fluid particle has velocity 
u = u(r, 8, z; t)er + v(r, 8, z; t)eo + w(r, 8, z; t)ez, which satisfies the Navier-Stokes 
equations on n, 

v v2 

U,t + UU,r + ;:U,9 + WU,z - -;:- -

v uv 
V,t + UV,r + ;v,9 + WV,z + -;:-

V 
W,t + UW,r + ;:W,9 + WW,z 

1 1 
u,r + ;:u + ;:v.9 + w,z 

1 ( 1 1 1 2) --p r + v u rr + -u r + ~u 99 + u u - ~u- ~v 9 p I f T I r2 f I r2 r2 I I 

1 ( 1 1 1 2) -~p 9 +'v v rr + -Vr + ~v 99 + v ••- ~v + ~u 9 fTT' , ' r ' r2 , , r2 r2 , , 

1 ( 1 1 ) --p,z + V W,rr + -W,r + 2W,99 + W,u , 
p r r 

0, 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

where p(r,B, z; t) is the pressure field, and p and v are the constant density and 

kinematic viscosity. 

The thread-annular model is introduced through imposing appropriate conditions 

on the fluid at the surfaces r = 8 and r = R., We suppose that the thread moves 

with constant velocity W ~ 0 along the z~axis, ancl rotates with constant angular 

frequency f ~ 0, such that points on the surface of the thread move with velocity 

of eo+ Wez. The .surfacer= R is motionless. 

We now need to prescribe our slip boundary conditions {1.3), (1.4) on the surfaces 

of25 = {(r, 8, z)ir = 5} and 8HR = {(r, 8, z}ir = R}. In cylindrical polar coordinates 

the symmetric rate of strain tensor Eij is given by 

1 1 
Err= U,TI f99 = -v 9 + -u, fzz = W,z, 

r ' r 

1 
frz = 2 (u,z + W,r) · 

Therefore, referring to the role of Eij in (1.3)...;(1.4), our boundary conditions become 

uir=R = 0, vlr=R = ->..R ( V,r -1v) lr=R, wi~=R = ~>..Rw,rlr=R, {5.5) 
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2R 
2S[ 

Figure 5.2: Diagram of thread of radius o, centred within a hypodermic needle of 

radius R. The thread moves left to right with constant velocity W ~ 0, and rotates 

with angular frequency f ~ 0. 

We consider a time-independent solution of equations (5.1)-(5.4) where we as­

sume the form 

u = u(r)er + v(r)eo + w(r)ez, fi = p(r, e, z), fi,z = -4g < 0, 

arising from the shearing effect of the thread's motion, and the constant pressure 

gradient. In this way the flow may be regarded as being of combined Couette­

Poiseuille type. Substituting these forms into equation (5.4) we obtain 

1 
u' + -u = 0 ===} (ru)' - o, 

r 

===} u(r) A/r, 

for some constant A, and where the prime denotes differentiation with respect tor. 

From the boundary conditions on u we see that A = 0, i.e. u - 0. We are left to 
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solve the system 

v2 
r 

-
1 

-pfi,r, 

() = - _!_P s + v (v" + !v' - _!_v) , 
pr ' r r 2 

0 = ; + v ( w" + ~w'). 
It is immediately clear that the w equation decouples, and so is easily solved, 

w" + !w' = -
49 

==} (rw')' 
r pv 

::;::::::} w' 

==} w(r) 

for constants A and B. 

4g 
- --r 

pv ' 
A 2g 

- ---r, 
r pv 

- B + Alnr- _!!_r2, 
pv 
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(5.7) 

(5.8) 

(5.9) 

By differentiating equation (5.7) with respect to (}, we see that fi.s = h(z) only, 

for some function h. However, we have assumed the pressure's z- dependence via 

the statement P,z = -4g, therefore fi,s = h, constant. Finally, we see that we must 

impose fi.8 = 0, since h =I 0 would result in the pressure varying as a saw-tooth 

wave, discontinuous at (} = 211". Therefore, 

_, + 1_, 1 -
0, v -v- -v -r r2 

==} rs" + 3s' - 0, where we have let v == rs, 
8" 3 ==}-
s' - r' 

==}Ins' - A- 3lnr, 

=}s' A 
redefining A, - r3 

===> s(r) A 
again redefining A, - B--r2 

==} v(r) A 
- Br-~. 

r 
Reconciling the boundary conditions at r = 8 and r = R, we obtain the dimensional 
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steady-state solution for the velocity 

u(r) -

ii(r) 

w(r) 

5.2 InstabiHty equations 

68 

(5.10) 

(5.U) 

(5.12) 

For algebraic neatness, we nondimensionalize using the scalings of Walton [64-66] 

rather than employing the scalings usual to the treatment of parallel flow problems. 

Denoting non-dimensional quantities by the '*'notation, the seatings we use are 

r = Rr*, 

- gR2 * 
U---U 

pv 

z = Rz*, 8 = R8*, 

J= gRr, 
pv 

where Re is our Reynolds number. 

t = pv t* 
gR ' 

gR3 
Re=­pv2, 

Following non-dimensionalization and upon dropping the'*' notation, our equa­
tions of motion (5.1)-(5.3) become the familiar non-dimensional Navier-Stokes equa­
tions 

v v2 

U,t + uu,r + ;:'U,B + wu,z - ; -p,r + ~ ( U,rr + ;u,r + r
1
2 U,BB + u,u - ~12 u- r~ V,B}, (5.13) 

v uv 
V;t + UV,r + ;=V,B + WV,z + --;:- 1 1( 1 1 1 2) 

- ;=P,B + Re v,rr + ;=v,r + r 2 V;BB + v,u - r 2 v + r 2,u,s · , (5.14) 

V 
W,t + uw,r + ;=w,B + ww,z 1 ( 1 1 ) =p,z + Ile W,rr + ;=w,r + r 2 W,BB + W,u , (5.15) 

1 1 
u,r + -;u + ;=v,B + W,z 0, (5.16) 

valid on the domain .X = {(r, 0, z)ir E [8, 1], 0 E [0, 211'), z E ( -oo, oo)}. The 

steady-state solution satisfies 

u(r) 

v(r) 

w(r) 

(5.17) 

(5.18) 

(5.19) 



5.2. Instability equations 69 

Our aim is to investigate the instability ofthe steady-state u, p to three-dimensional 
disturbances v(r, (), z; t), q(r, (), z; t). We begin by perturbing the steady-state ii ~---+ 
u+v, p ~---+ p+q, and substituting this perturbed form into equations (5.13) .. (5.16). 
Upon removing terms nonlinear in u, we obtain the linearized perturbation equa­
tions 

v 2v 
u,t + ;:-u.e +wu,z- r v 

( 
1 V) V V,t + ii + ~ U + -V 8 + WV,z 

r r ' 
ii 

w,t +w'u+ -w 9 +ww,z r , 

1 1 
u,r + ;:-u + ;v.e + tL!;z 

1( 1 1 1 2) -q r + ~ u rr + -u r + -u 99 + u u - -u- -v 9 , Re , t , r2 ' , r2 r2 ' , 

1 1( 1 1 1 2) --qe+- Vrr + -vr +-vee +v u- ~v+ ~u 9 r , Re , r , r2 , , r2 r2 , ' 

1 ( 1 1 ) -q,z + Re W,rr + ;:-w,r + T2~.W,88 + W,u 1 

0, 

where the components of v satisfy the boundary conditions 

ulr=1 = 0, 

ulr=c5 = 0, 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

Rather than performing the instability analysis in the primitive variables (u, v, w, q), 

we employ an Orr-Sommerfeld technique. Although this sacrifices simplicity of cod­

ing and incurs the presence of spurious eigenvalues, the Orr-Sommerfeld approach 

has been seen to converge faster (see the work of Kerswell & Davey [37] on the sim­

ilar problem of flow through an elliptical pipe) and spurious eigenvalues may easily 

be identified and filtered out of our algorithm. 

We suppose that u(r, (), z; t) may be expressed as an expansion of Fourier modes, 

specifically 

00 00 

u(r, 8,.z; t) = L L Unm(r) exp{iam(z- emt)}exp{in8}, (5.26) 
m=On=O 

with a similar expression for v and q, for positive wave numbers am and complex 

growth factors Cm· However, since unbounded growth of a single mode is sufficient 

for instability, we need on1ly consider travelling wave solutions of the form 

(5.27) 

Substituting these into equations (5.20) to (5.23) and removing exponential parts 
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reveals 

'(-) .ii 2ii ~a ·W ~ c u + ~n-u ~ -v 
r r 

I 1 ( II 1 I (n2 + 1 2) in ) ( ) = ~q + Re u + ;:u - ---;:2 + a u - 2 r2 v , 5.28 

ia(w- c)v + in;v + ( ii1 + ;) u 

ii 
ia(w- c)w + w1u + in-w 

r 

in 1 ( 11 1 1 (n2 + 1 2) in ) ( ) -~q+- v + -v- --+a v+2-u , 5.29 
r Re r r2 r2 

1 1 in . 
u + -u + -v + ~aw 

r r 

. 1 ( II 1 I ( n
2 

2) ) -taq + Re w + ;:w - r 2 +a w , 

0. 

5.3 Generalized Orr-Sommerfeld system 

(5.30} 

(5.31} 

We remove the pressure terms by absorbing the U,t equatio:n into the equations for 

v,t and w,t, giving 

. _ . ~n ~nv . tn . _1 v tnw ( . ) . ~ ( . ) [ - . ~I] 
w(w- c) ~av- -;w + 7 tav- ~ w + ta ( v + ;: ) - 7 u 

1 [ lP 1 d ( 1 + n2 
2)] (. in ) 2in . 1 =- ·-+--- ·--+a ~av- -w +--(wu-w), 

Re dr~ r dr r2 r r2 Re 
(5.32) 

, ( ) (in I 1 ) inti (in I 1 ) . ( I V) . I ~a w- c -;u- v - ;:v +-;- -;u- v - ;:v +~a ii +;: w- taw v 

== __!_ [~ + !~- (n
2 

+a2)] (inu- v1
- !v), 

Re dr2 r dr r 2 r r 
(5.33) 

1 1 in . 
u + -u + '-v + zaw = 0. 

r r 
(5.34) 

We then eliminate w using the continuity equation, a:nd upon mU!ltiplying out the 

singularities we arrive at 

[n(nrii + ar2w) (r! + 1) + a2 (r4 ii1 + r3ii)- anr3w1
] u 

+- n4 - n2 + (2a2n2 + a2)r2 + a4r4 - (a2r 3 ~ n2r)- ~ (a2r4 + n2r 2)- v 1 [ d ffl] 
& • ~ 

+in [1- n2 - 3a2r2 - (a2r 3 + n2r +r)~ + 2r2~ + r 3 .!._] u 
Re dr dr2 dr3 

+i(nrii + ar2w)(a2r 2 + n2 )v 

= c [anr2 {r! + 1) u + iar2(a2r 2 + n2 )v] ,5.35) 

[n(nrii + ar2w) + (r2 ii1 + rii~ (r! + 1)] u 

· +-· n2 -1 + a2r 2 + (n2r + a2r3 + r)-- 2r2-- r3- v 1 [ d d2 d3] 
Re dr dr2 dr3 

+: [ 1 -n2 - a2r 2 - r! + r2 :::.21 u + i [ n(r2ii1 + rii) + ar3ul + (nrii + ar2w) (r! + 1)] v 

= c [anr2u + iar2 (r! + 1) v] (,5.36) 
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subject to the boundary conditions 

u = 0, (At+ 1)u' + Aru" = 0, (At- 1)v- AtV1 = 0 at r = 1, (5.37) 

('5.38) 

To implement the Chebyshev tau method we must first transform our variable 

from r E [8, 1] to x E [-1, t] via 

2r- (1 + 8) 
X= 1-8 1 

and so we now consider the £unctions u, v, v and w to be functions of x, and for 

convenience we define the functions ft and h by 

ft(x) = nr(x)v(x) + ar2(x)w(x), (5.39) 

where r(x) = [{1 ~ 8)x + 1 + 81]/2. 
As usual, we suppose that u and v have the Chebyshev expansions u(x) -

I:~=O UnTn(x) and v(x) = I:~=O vnTn(x), which we then truncate at the n ::::::: Nth 
term so that we approximate u and v by U(x) = I:~=oUnTn(x) and V(x) = 
I:~=o VnTn(x). We then substitute U and V for u and v in equations (5.35) and 
(5.36) so that we are left to solve 

and r is understood to be a function of x E [ -1, 1]. 

We take the Chebyshev innerproducts < Li, Tj >fori= 1, 2 and j = 0, 1, 2, ... , N-

3 to obtain 2N- 4 equations in the 2N + 2 unknowns Uk and Vk. The system is 
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closed with the six boundary conditions 

U = (i), (1- 8)(.X1 + 1)U' + 2.X1U" = 0, (1- 8}(.X1 -1)V- 2.X1 V' = 0 at x = 1, 

(5.42) 

U = 0, (1-8)(.X6-8)U'+2.X68U" = 0, (1-8}(A6+8);V -2A68V' = 0 at x = -1. 

(5.43) 

Noting that Tn(±1) = (±1)n, T~(±l) = n2(±1)n+l and r:(±1) = l(n4 - n2)(±1)n, 

these boundary conditions become the equations 

0, (5.44) 
n=O 

N N 

(1- c5)(.Xt + 1) E n2Un + 2.Xt ~ L(n4
- n2 )Un 

n=O n=O 
0, ~5.45} 

N N 

(1 ~ c5}(.Xt ~ 1) L: Vn- 2At E n2 Vn - 0, (5.46} 
n=O n=O 

0, (5.47} 
n=O 

N N 

(1- c5)(.X.s- c5) E n 2
( -1)n+1Un + 2.X.sc5~ L(n4 ~ n 2 }(-1)nUn 

n=O n=O 
0, ~5.48} 

N N 

(1- c5)(.X.s + c5) L(-1}nVn- 2.X.sc5 E n 2
( -1)n+1Vn 0. (5.49} 

n=O n=O 

Once more we arrive at a generalized eigenvalue problem (Ar + iAi)x = c(Br + 
iBi)x, where x = (U0, .. , UN, Vo, ... , VN )T, which we solve using NAG routine F02GJF. 

For fixed values of n, 8, /,.X, and W we vary wave number a and Reynolds number 

Re to find pairs (a, Re) such that the imaginary part of the leading eigenvalue is 

zero (and thus we have neutral stability), before iterating over the wave number to 

find the minimum Reynolds number ReL below which the system is linearly stable. 

The iteration methods are as in Chapter two. 

5.4 Results 

5.4.1 Variation of ReL with aspect ratio 

With such a large parameter space (8, /,A, W), and for each of these the possibility 

of performing calculations for many values of n (where, we remind the reader, n 
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determines the periodicity of the 0-dependence of the perturbations via einB), we 

choose to investigate the effects of each of f, A and W in isolation of each other, 

in each case for at least the two values 8 = 0.4 and 8 = 0.7. The reasons for these 

specific values of 8 will be made clear in our results. 

We begin, though, by setting f =A= W == 0, and calculate the critical Reynolds 

number ReL as a fMnction of the aspect ratio 8, the results of which are in Figure 

5.3. The n = 0 curve agrees with the axisymmetric results of Walton (65] whose 

nondimensionalization we share, and we remind the reader that this is not the 

nondimensiona:lization employed by Mott & Joseph. (43], who found a monotonic 

relation between aspect ratio and the critic Reynolds number under their definition. 

However, we also performed calculations to thoroughly investigate Re L as a function 

of 8 for the asymmetric cases of n > 0. 

For all aspect ratios in the range 0.1 < 8 < 0.9 we found the critical Reynolds 

number to be the minimum point of a unique neutral curve, qualitatively similar 

to that for plane Poiseuille flow, see the illustrations in Drazin & Reid (18] and 

Walton [65]. We find that axisymmetric perturbations appear to dominate only as 

8 approaches 1, i.e. as we tend towards Poiseuille flow in the plane, while the n = 4 

and n = 5 perturbations never dominate, see Ta:ble 5.1. The wave number aL at 

which the critical Reynolds number ReL occurs is seen to decrease as n increments, 

and to increase as 8--+ 1, see Figure 5.3. There also appears to be convergence of 

the aL for each n in this limit. 

The behaviom of Re L at 8 = 0 and 8 = 1 is unclear, owing to lack of convergence 

of the numerical method at high Reynolds numbers. For the same reason, instability 

could not be found for n ~ 6. 

5.4.2 The stabilizing effect of thread velocity W 

We now investigate the effect of W, setting f = A = 0. The most relevant work 

on this problem is that of Wa:lton (66] who performed calculations for the two cases 

8 = 0.4 and 8 = 0.55, for disturbances with periodicities n = 1, 2. In obtaining our 

results on the effect of varying 8 (above) we can corroborate Walton's assertion that 

in the case W = 0 (while f = 0) the neutral curve is always unique. 
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Figure 5.3: Effect on location of critical .point (aL, ReL) of varying aspect ratio 8, 

for n = 0, 1,2,3,4,5. 
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Aspect ratio Periodicity of critical mode 

0.100 < 6 < 0.419 n=1 

0.419 < 6 < 0.665 n=2 

0.665 < 6 < 0. 701 n=3 

0.701 < 6 < 0.758 n=2 

0. 758 < 6 < 0.762 n=1 

0. 762 < 6 < 0.800 n=O 

Table 5.1: The changing periodicity of the least stable mode, for aspect ratios in 

the range 0.1 < 6 < 0.8. 

For the axisymmetric case (n = 0) and 6 = 0.55, Walton found that for W > 0 

a stable intrusion appears in the neutral curve, from the direction of increasing 

Reynolds number, which grew as W was increased uatil the neutral curve was split 

into two separate curves. The iupper' curve (in the domain of higher wave numbers) 

was observed to close up at finite W, whilst the lower curve retreated to infinity, such 

that ultimately the system became linearly stable to axisymmetric perturbations. 

He did not find this behaviour when 6 = ().4. Instead he reports of a unique neutral 

curve which closes with increasing W. 

We now refer the reader to Figure 5.4 where we present our calculations for an 

aspect ratio of 6 = 0.4. In Figure 5.4 (b) we see that a stable intrusion does iB 

fact appear, splitting the curve from the direction of higher Reynolds numbers. By 

Figure 5.4 (d), the intrusion has split the neutral curve in two. The new curve 

closes up at finite W, while the remaining curve closes at a higher thread velocity 

(see Figure 5.4 (f)). It is likely that this behaviour was missed owing to the relatively 

small scale of the new neutral curve, and the smal'l thread velocities (W "'O(J!Q-3)) 

at which the stable intrusion appears. 

We observed similar behaviour in the axisymmetric case, when 6 = 0.7, see Fig­

ure 5.7. However, for this aspect ratio the division of the neutral curve is seen to 

be much more equal, and it is the upper eurve that closes first, the lower curve 

persisting for high values of Re. 



5.4. Results 76 

Thread velocity Periodicity of critical mode 

0.0 < W < 0.9 X 10~5 n=3 

0.9 x lo-s < W < 0.147 x 10-2 n=2 

0.147 X 10-2 < W < 0.328 X 10-2 n=1 

@.328 X 10-2 < W < 0.889 X 10-2 n=2 

o.889 x w-2 < w < o.o3 n:::;:1 

Table 5.2: The changing periodicity of the least stable mode when 6 = 0.7 and 

f =.X= 0, in the range 0 < W < 0.@3. 

Walton [66] also performed computations for the cases 6 = 0.4, n = 1, 2. He 

reported that for both types of 0-dependent perturbation, the neutral curve was 

seen to be unique. However, for n:::: 1 the results of our computations again show 

the process of stable intrusion followed by curve splitting for, see Figure 5.5. 

Our results for n.::..:: 2 are shown in Figure 5.6. For this value of n we were unable 

to find splitting of the neutral curve. However, we note that the scale of the neutral 

curve is very different from the n < 2 cases, existing over an especially narrow inter­

val of wave numbers. This makes the presence of a stable intrusion easy to miss in 

our algorithm. Also, the neutral curve is observed to retreat rapidly in the direction 

of high Reynolds numbers. Therefore, curve splitting may occur at high Re, outside 

the range of the numerical method. 

When curve splitting was observed, the critical Reynolds number was found 

to belong to the larger, easier to detect of the two resulting curves. Therefore, 

our numerical results would indicate that new, smaller curves resulting from stable 

intrusion exist in the region of higher Reynolds numbers, and so do not affect the 

system's transition to instability. Based on this, we present what we believe to be 

the critical Reynolds number at 6 = 0.4 and 6 = 0.7 in Figure 5.11. 
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Figure 5.4: Neutral curves for n:;:: 0 (i.e. axisymmetric) perturbations with aspect 

ratio 8:;:: 0.4, and: (a) W == 0.0; (b) W:;:: 0.007; (c) W:;:: 0.0077; (d) W = 0.00799; 

( e~ W = 0.02; (f) W = 0.035. 
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Figure 5.5: Neutral curves for n = 1 perturbations with aspect ratio 8 = 0.4, and: 

(a) W = 0.0; (b) W = 0.01; (c) W = O.Qi15; (d) W = 0.0165. 
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Figure 5.6: Neutral curves for n = 2 perturbations with aspect ratio 6 = 0.4, and 

(outer to inner): W = 0.0; W = @.005; W = 0.0085. 

5.4.3 The stabilizing i:nfluence of boundary slip 

The linear analyses of Spille et al [57), Lauga & Cossu [38) and the linear and non­

linear analyses of Webber & Straughan [68) (see Chapter 3~ have shown boundary 

slip to have a stabilizing effect on Poiseuille flow in the plane. That is, ReL becomes 

higher with increasing slip length A. Our results for the thread-annular case support 

the assertion that boundary slip is stabilizing in the case of parallel flows. 

Setting W = f = 0 we find that the neutral curve is unique, and resembles the 

classic neutral curve for Poiseuille flow in the plane, as was the case for channel flow. 

As we increase A, the critical Reynolds number increases, and the wave number at 

which ReL occurs decreases. However, in Figure 5.12 (b) we obeserve the neutral 

curve to close up for A ~ 0.011. Though we did not observe this for other values 

of n and 6, it implies that at finite A the system becomes linearly stable to at least 

some types of perturbation. 

Figure 5.14 shows the variation of ReL with A, for various values of n and 6. 
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Figure 5.7: Neutral curves for n = 0 perturbations with aspect ratio 8 = 0.7, and: 

(a) W = 0; (b) W = OJ:l02; (c) W = 0.0075. 
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Figure 5.8: Neutral curves for n = 1 perturbations with aspect ratio 8 = 0.7, and: 

(a) W = 0; (b) W = 0.002; (c) W = 0.003; (d) W = 0.004. 
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Figure 5.9: Neutral curves for n = 2 pertmbations with aspect ratio 8 = 0.7, 

and W = 0, W = 0.002, W ~ (i).005, W = 0.010, W = 0.0!1!5, and W = 0.(i)20 

(descending). 
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Figure 5.10: Neutral curves for n = 3 perturbations with aspect ratio 6 = 0.7, 
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(descending). 
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Figure 5.H: Critical Reynolds number Re'L as a function of thread velocity W, for: 

(a) 8....:. Q.4; (b) 8 = 0.7. Perturbations are of periodicity: n = 0, -; n = 1,- -.- ; 

n = 2,- · -; n = 3, • · ·; n = 4, dark-; n = 5, dark-~~. 

The slip length is seen to influence the ordering of the second and third least stable 

perturbations: in the 8 = 0.4 case, the second least stable disturbance is seen to 

switch from being then = 2 mode to the axisymmetric mode at A "' 0;0035. A 

similar reordering is seen when 8 = 0.6 ar0und A"' 0.0038. 

5.4.4 The destabilizing effect of retation: 

Finally, we set W = A = 0 and investigate the effect of allowing the thread to rotate. 

We remind the reader of the role off in the boundary conditions (5.6): f is the 

angular frequency with which our thread of radius 8 spins around the z-axis, such 

that points on the thread surface have velocity 8feo (when W = 0}, and we showed 

that f > 0 introduced a new component into the steady-state flow. 

For both 8 = 0.4 and 8 = 0.7, our results for axisymmetric perturbations showed 

the neutral curve to be unique. Increasing f had the effect of slowly decreasing the 

value of ReL, so that rotation was seen to be destabilizing, see Figure 5.115. However, 

this was not true in the case of asymmetric perturbations. 

For an aspect ratio 8 = 0.7 and asymmetric perturbations n = 1, 2, 3, increasing 

f caused a stable intrusion to appear, splitting the neutral curve into two separate 
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(a) n = 0; (b) n = 1; (c) n = 2. 
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Figure 5.15: Neutral curves for axisymmetric (n = 0) perturbations when: (a) 

8 = 0.4, and 0.0 < f < 0.25; (b) 8 = 0.7, and 0.0 < f < 0.05. 

neutral curves. The minimum Reynolds number of the two curves was tracked and 

shown to increase with/, stabilizing the flow. 

However, when f > 0 a new, separate neutral curve appears in the region of very 

small wave numbers. We can see in Figure 5.18 that as f increases this neutral curve 

creeps from right to left, until eventually it contains the critical Reynolds number. 

From this point on, ReL is a decreasing function of f. This behaviour was also seen 

8 = 0.4 for n = 1 perturbations. 

For other combinations of aspect ratio and n > 0, we observed this new, desta­

bilizing neutral curve appear, but we did not see curve splitting by stable intrusion. 

There are a variety of possible explanations as to why we did not observe curve 

splitting (if a stable intrusion does indeed occur): often the neutral curve becomes 

very 'thin', and so curve splitting can be easily missed by our iteration over a and 

Re; the numerical method becomes unstable at high Reynolds numbers, especially 

as f is increased, and curve splitting occurs in this numerically unstable region; 

the new neutral curve e~ands and obscures the other neutral curve before curve 

splitting takes place. 

The eventual dominance of this new neutral curve is interesting, in that it implies 
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a sudden change in the system's instability. At a critical value of /, long wave 

(i.e. small wave number) perturbations suddenly become the most unstable form 

of disturbance. This also means that ReL does not vary as a smooth function of/, 

as is illustrated in Figure 5.21. We see that, as f incfeases and so the new neutral 

curve takes over, the most unstable mode is of high periodicity n. Therefore, we 

conclude that for a rotating thread/ core, perturbations of low frequency along the 

z~axis, and high frequency in the azimuthal direction, become the least stable. 
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Figure 5.16: Effect of increasing frequency f when & = 0.4, and n = 1. We see a 
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the new neutral curve grows. 
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5.4. Results 92 

8.---~--~--~--~---. 

f=0:01 
7 

2 4 
Re Re 

f=0.015 f=0.02 

2 4 6 8 10 
0o~· ==~-~1~ .. ~--~=2E===~3====~4 

Re 
X 10

7 Re X 107 

Figure 5.18: Effect of increasing frequency f when 8 = 0.7 and n = 1. 



5.4. Results 93 

f=0.005 

2 4 6 8 10 2 4 6 8 10 
Re 

X 10
7 Re 

X 10
7 

8 8 
f=0.0075 f=0:01 

7 7 

6 6 

Figure 5.19: Effect of increasing frequency f when~= 0.7 and n = 2. 



5.4. Results 

7~--~--~--~--~--~ 

.. 

2 4 

8 

8 
Re 

1=0.0 

8 10 

X 10
7 

1=0.0025 

Re X 107 

.. 

2 4 
Re 

6 

1=();0015 

8 10 

X 10
7 

Figure 5.2(): Effect of increasing frequency f when ~ = 0. 7 and n = 3. 

94 



5.4. Results 

6
x 101 

4 

,.1 

I 

I 
\ ---- ..:"----

'· 

(a) 

-·- -·-·- -·-·- ---

2
x10' (b) 

1.8 . 
I \ 

I 
1.6 I 

I 

1.4 I 

!...j 1 ... :-_-:_"", --~-~---- _-_-

0.8 

0.8 

0.4 

0.2 

,. · .. ·, 
\ . ' 
' ' 
' ' ' .... ...... 

0.002 0.004 0.006 0.008 

95 

0.01 

Figure 5.21: Critical Reynolds number as a function of angular frequency/, for: (a) 

8 = 0.4; (b) 8 = 0.7. Perturbations are of periodicity: n = 0, ~; n = 1,- -; n = 2, -·; 

n ::::: 3, "i n = 4, dark -; n = 5, dark -. 



Chapter 6 

Instability of fluids obeying higher 

order differential equations 

There has recently been interest in equations of motion for viscous fluids that contain 

higher order derivatives than the Navier-Stokes equations. Although one of the main 

reasons for these alternative fluid models is that of regularity, another reason is the 

understanding of turbulence in fluids, see for example Chen et al [10], and Foias et 

al [20,21]. 

Motivated by evidence suggesting that the structure of turbulent flows is affected 

by fluid vorticity and spin of vorticity, Green & Naghdi [25] developed a theory of 

continuum mechanics based on an entropy equality rather than an inequality. For 

an incompressible fluid on some domain n c IR3 with zero body force, and denoting 

u = u(x; t) the fluid velocity at the point x = (x, y, z) En and timet E [0, oo), the 

Green~Naghdi equations are 

p ( 1- :
1 f:l.) Ui,t + puj ( 1- :

1 f:l.) Ui,j - -p,i + J.L ( 1- 2:
1 f:l.) f:l.ui, (6.1) 

Uj,j - 0, (6.2) 

for constants p, J.L and J.L1 , and for p = p(x; t). We see that this is a fourth-order 

system, and resembles the Navier-Stokes equations in the limit J.Lt/ J.L ---+ 0. 

Bleustein & Green [3] developed the eq1:1ations governing a dipolar fluid, which, 

96 
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assuming incompressibility and zero body force, are 

Uj,j - 0, (6.4) 

where l and d are known as the dipolar constants, and aii is the dipolar inertia. 

The similarity between many high derivative models for fluid flow such as equations 

~6.1) and (6.3) invites comparison. In particular, Quintanilla & Straughan [51] have 

shown that the dipolar equations are essentiaHy the same as the Camassa-Holm or 

N avier-Stokes-alpha equations, after a certain mapping of parameters. 

In this chapter we investigate the onset of instability of Poiseuille flow in both 

the setting of the Green-Naghdi equations and dipolar equations. 

6.1 Pressure driven flow 

Once more we consider the domain n = ( -oo, oo) x ( -h, h) x ( -oo, oo ), containing 

an incompressible viscous fluid obeying either of equations (6.1) or (6.3). At y = ±h 

the velocity u = (u, v, w) satisfies 

uiv=±h = U,yyJy=±h = 0, v,lv=±h = v,vlv=±h = 0, wlv=±h = w.vvlv=±h = 0, (6.5) 

after the boundary conditions of Green & Naghdi [25] and Bleustein & Green [3]. 

For either fluid model, we can consider the time-independent solution arising from 

a constant 'pressure gradient' in the x-direction. We assume that this constant 

pressure gradient maintains a certain steady state velocity profile fi(y), where our 

solutions are of the form 

P,x = -g < 0, fi = (u(y), 0, 0), such that u(y),lv=±h == u''(y)iv=±h = 0. (6.6) 



6.2. Green-Naghdi flow 98 

6.2 Green-Naghdi flow 

We first concern ourselves with the Green-Naghdi model. Substituting the above 

forms into ( 6.1) we obtain the system 

0 - g -t J-tu" - 21-£1 u"", 

0 - P,y, 

0 - P,z, 

and upon considering the boundary conditions at y = ±h we find the base solution 

to be 

u(y)~f!_ [~(h2 -y2)+2.!!:_ (cosh([l;y) -1)], p(x)=p0 -gx. (6.7) 
J-£ 2 J-£ 1 cosh ( fi. h) v 2~1 

Equation (6.1) and (6.2) can be nondimensionalized via the scalings usual to the 

Navier-Stokes equations when investigating Poiseuille flow, specifically 

x = hx*, - * u = u0u, t = ~- t*, p = pil~p*, 
uo 

Re = phuo, 
J-£ 

(6.8) 

where Re is our Reynolds number, and flo =..: u(O~ = gh2 /2!-£, and we use '*' to 

denote a nondimensional quantity. We also define the nondimensional constant 

1 2 = h2J-£/2J-£1. Then, upon dropping the '*' notation equations (6.1) and (6.2) 

become 

( 1 - -
1 ~) u' t + u. (1 - -. 

1 ~)· u' . -2/2 - I, J 2/2 I,J 
-p · + __!_ (1 - _!_~)· 6:u· (6 9) ·' R 2 " • e 'Y 

Uj,j - 0, (6.10) 

for x E {( -oo, oo) x ( -1, 1) x ( -oo, oo)} and time t E [0, oo), while our steady 

state velocity becomes 

_( ) [~12 (1- y2
)- 1] cosh (T) +cosh ('Yy) 

u y = 
[~12- 1] cosh ('Y) + 1 

(6.11) 

We aim to investigate the instability of solution ( 6.11) to disturbances periodic 

in the x- and z~ directions. Therefore, we begin by perturbing the steady state 

solution 

u(y) ~--+ u(y) + v(x, t), .p(x) ~--+ p(x) + q(x, t), 
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and substitute these perturbations into equations (6.9), ~6.10). After removal of 
nonlinear terms, we arrive at the linearized perturbation equations 

( 1 - -
1-t:..) v; t + v3· (1 - -

1-t:..)•u; 3· + u3· (1 - ...Lt:..) v; 3· 2-:y2 ' 2-y2 ' 2-y2 ' -q,; + ~ ( 1- : 2 1::!.) l:!.v;, (6.12) 

0. (6.13) Vj,j 

We follow the now familiar method of letting the components of v = (u, v, w) have 

the form of travelling waves, i.e. 

u = u(y)exp{i(ax + {3z =act)}, (6.14) 

for positive real numbers a and {3, and growth rate c E C, with similar forms for 
v, w, and the perturbation q. After substituting these expressions and removing 
exponential parts, we arrive at the system 

-iac (1 - -
1
- [.!!.._ - (a2 +/32)]' ) u + v (1 - ~ cP ) u' + iau (1 - ....!._. [.!!.._ - (a2 + /32)], ') u = -iaq 2-y2 dy2 2-y2 dy2 2-y2 dy2 

1( 1[cP 2 2~)(d2 2 2) . +- 1-- --(a +/3 )1 --(a +/3) u,(6.15) 
Re -y2 dy2 dy2 

-iac (1 - -
1 [.!!.._ - (a2 +/32)]· .) v + iaii (1 - -

1 [.!!.._ - (a2 + /32)]') v = -q' 
2-y2 dy2 2-y2 'dy2 ' 

+_!_ (1 - 2- [ cP - (a2 + /32)]) (.!!.._ - (a2 + /32)) v, (6.16) 
Re 'Y~ dy2 dy2 

-iac (1- -
1
- [.!!.._- (a2 + ,82)]) w+ iaii (1- -

1
-, [.!!.._ - (a2 + ,82)]) w = -i/3q 2-y2 dy2 2-y2 dy2 

1 ( 1 [ cP 2 2 ]) ( cP 2 2) +~ 1-~ --(a +/3) --(a +.8) w,(6.17) 
Re -y2 dy2 dy2 

iau+ v' + i/Jw = 0. (6.18) 

We now observe that upon adding ax(equation 6.1ffi)+{3x(equation 6.17), and 

defining 

A au+ {3w 
u = f)= v, 

a 

we arrive at the system 

A a 
q= -q, 

a 
A a 

Re = -Re, 
a 

. (1 _1 . [ cP - 2]') • + . (1 1 cP ) _, + . - (1 1 [ cP 2]) . . . -lac - - - -a u v - -- u 1au - - - -a u = -1aq 
2-y2 dy2 2-y2 dy2 2-y2 dy2 

+_!_ (1 - ..!.._ [.!!.._ - a2]) ( d.
2
- ~ a2) u, 

Re -y2 dy2 dy2 

. (1 1 [ d
2 

2] )' • . - (1 1 [ cP 2]) . ., -1ac ~ 2':)'2 dy2 - a v + 1au - 2'1'2 dy2 - a J v = -q 

1 ( 1 [ d
2 2]') ( cP 2) . + Re 1- -y2 dy2 -a , . dy2 -a v, 

iau + v' = 0. 

(6.19) 

(6.20) 

(6.21) 

(6.22) 

(6.23) 

We note that this is exactly as we would have, had we set u == u(y)exp{i(ax- ct)}, 

v = v(y)exp{i(ax- ct)}, w = w.(y)exp{i(ax- ct)}, and q = q(y) exp{i(ax- ct)}, 
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i.e. had we considered a z-independent perturbation, since then we would have 

found w =- 0. 

SinceRe$ Re, we see that for every unstable fully three dimensional perturba­

tion, there is a z~independent perturbation that is unstable at the same or lower 

Reynolds number. Therefore we can limit ourselves to studying this reduced system. 

We remove the pressure terms by performing d/dyx (equation 6.20~-iax~equation 
6.22)., and introduce a stream function 4>(y) such that u = 4>'(y) and v = -ia4>(y) 
(so that equation 6.23 is satisfied). Thus we arrive at our generalization of the 
Orr-Sommerfeld equation 

. [ ~ ) ( 1 [ tP 2]) (-" 1 _,,) 1 (-' [ tP 2] -111) d] 1aRe (u-c 1- 2"(2 dy2 -a - u - 2'Y2,u - 2:y2 u d.)P -a -u· dy t/J= 

~ (1- 2_ [.!:___- a 2
]) (.!!:.- a2

)

2 

t/J, (6.24) 
Re "(2 dy2 dy2 

where the boundary conditions of {6.5) become 

(6.25) 

6.3 Dipolar flow 

6.3.1 Bleusteia & Green inertia term 

We now look to equations {6.3) and (6.4). Bleustein & Green [3] proposed an inertia 

term for equation {6.3) of the form O"ii = u;,kuk,i· With this form for u, we see that 

the terms multiplying~ in equation {6.3) are 

O'ji,j - ~(u;,t + UjUi,j) = (u· kUk ·) ·- ~U·t- u ·~u· · = u· ·~u ·- 2u · kU· ·k· 11 1J 1J 11 J 11J 11J J J, 11J ' 

since Ui,jk is symmetric in j and k, while (u;,k- uk,i) is antisymmetric, and so their 

product is zero. Therefore we arrive at the equations of motion for a dipolar fluid 

with Bleustein & Green's inertia tensor, 

u·. J,J 

-p,; + J.£(1 -l2~)~u;, 

0. 

(6.26) 

(6.27) 
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'Looking for a steady-state solution of the form (6.6) leads us to tae system 

0 - 9 + p,u" - l2 p,u"'', 

0 - P,x, 

0 - P,y, 

from which we obtain 

u( ) ~ !!_ [!(h2- 2) + z2 (cosh(yjl) - 1)] , 
y p, 2 y cosh(h/l) p(x) =Po- gx. (6.28) 

With this u(y) we nondimensionalize equations (6.26) and (6.27) using the sca.lings 

of (6.8), and introduce the nondimensional constants l1 = d/h and l2 = l/h, giving 

us the nondimensional equations 

2 2 2 1 2 . (1 -l1 ~)ui,t + ui(1 ~ l1 ~)uiJ -l1uj,kUi,ik - -p,i + Re (1-l2~)~ui,(6.29) 

Uj,j 0, {6.30) 

and nondimensional base flow 

_( ) _ [~{1 = y2
) -l~~ cosh(1/l2 ) + l~ cosh(y/l2) 

u y - [~ -l~] cosh(1/l2 ) + l~ (6.31) 

We proceed as before, by perturbing our steady state solution, substituting this 

into the equations of motion, and then linearizing. The linearized perturbations 

equations (for a velocity perturbation v and pressure pertubation q) are 

{1 -l~,6.)u;,t + v;(1-l~6.)u;,; + u;(1-l~6.)v;,; 

l 2 - z2-
- t•Vj,kUi,jk - 1 Uj,kVi,jk 

v·. J,J 

1 2 
= -Q;i + Re {1 - l26.)6.vi, 

0. 

(6.32) 

(6.33) 

Again, we suppose that the velocity perturbation v = (u, v, w) and pressure per­

turbation q are periodic in the x- and z- directions, such that they have the form 

v = v(y)ei(ax+,Bz-act)' q = q(y)ei(ax+.Bz-act), (6.34) 
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and we substitute these forms into our linearized perturbation equations. Upon 

removal of exponential parts, we see that (u(y), v(y), w(y)) and q(y) satisfy 

-iac ( 1 - l~ [ : 2 - (o2 + {32)]) u + v ( 1 ~ l~ : 2) u' + iou ( 1 - l~ [ ! 2 - (o2 + {32)1) u 

~l~v'u" ~ ia1~.u'u' = -iaq 

+ ~e ( 1-1~ [:2 - (o
2 + {3

2
)]) (:2 ~ (o2 + {3

2
)) u,(6.35~ 

-iac ( 1 - 1~ [ : 2 - (o2 + {32)]) v + iau ( 1 - 1~ [ : 2 - (o2 + {32)]) v 

-ial~,u'v' = -q' 

+_!_(1 -l~ ['!!.....- (o2 + {32)]) ( cP - (o2 + {32)) v,(6.36) 
Re dy2 dy2 

-iac ( 1-l~ [!2 - (o2 + {32)]) w + iau ( 1 -1~ [:2 ~ (o2+ {32)]) w 

-ial~u' w' = ~i{Jq 

1 ( 2 [ cP ( 2 2 ]) ( cP 2 2) ) + R~ 1 ~ l2 dy2 - o + {3 ) dy2 -(a + {3 ) w,(6.37 

iou + v' + i{Jw = 0(6.38) 

We note that by again applying transform (6.19) and adding multiples of the 

above equations as in the example of the Green-Naghdi model (i.e. performing 

ax(equation 6.35)+.8><(equation 6.37)) we obtain the system 

. (1 l2 [ cP 2]) • • (1 l2 cP ) _, . - (1 12 [cP 2]) • ~ac - 1 dy2 - a . u + v = 1 diP u +~au - 1 -=-a u 

1
2·1-/1 . 12-f'•f .• 

- 1 v u - ~a 1u u = -~aq 

1 ( 2 [ cP 2] ) ( cP 2) • + Re 1 - l2 dy2 - a dy2 = a u, 

-iac ( 1 - l~ [ : 2 ~ a2
]) v + iau ( 1 - l~ [ : 2 - a2J) v 

-ial~u' v' ::::: -ii' 
1 ( 2 [ cP 2] ) ( cP 2) • + Ae 1 - l2 dy2 - a dy2 - a v' 

iau+v' = o. 

(6.39) 

(6.40) 

(6.4'1) 

Therefore, we have found a Squire transform, and need only consider perturbations 

dependent upon x andy, as before. 
We remove the pressure terms by differentiating equation (6.39) with respect 

toy, multiplying equation (6.40) by ia, and subtracting, and by defining a stream 
function cp(y) as before, we arrive at the generalized Orr-Sommerfeld equation for 
this problem, 

0 Re [<- ) (1 l2 [ d2 
2·]) ( ~ 2) (-" ,2-1//1) 2l2 (-' [ cf 2] _,,) d] ... ta u - c - 1 dy2 - a · dy2 - a - u - 1·u - 1 u dy2 ~ a ~ u dy: .., "" 

·( 2 [ ~· 2] ) ( ~ 2) 2 
l-l2 --a --.--a 1/J. . dy2 dy2 

(6.42) 
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Again, we have ¢1.11=±1 = ¢'1u=±l = ¢111 lu=±l = 0. 

6.3.2 Green & Naghdi inertia term 

If we use the inertia term of Green & Naghdi [24] given as aij = Uj,kUk,i + Uj,kui,k -

uk,iUk,J• then terms multiplying cP in equation (6.3) become 

-2Uj,kUi,jk 1 

1 
u· ·L(.uL · - u · L)- Au·t- u · ·Au·- u ·Au· · - -(uL ·,uL ·) · 

'·'"' ... ,, ''" '· J,t J J t,J 2 r<,J ... ,, ·'' 

1 
-Au· t- u· ·Au·- u·Au· ·- -(uL ·uL ·.) · 

'· J,t J J t,J 2 "•J "•' ·'' 

where we have disposed of the ui,jk(UkJ- UJ,k) term as before. However, we notice 

that a gradient term is present, which can be absorbed into a modified pressure 

term. 

Upon doing so, our equations of motion are 

p(l - d26.)ui,t + pui(l - cfl A)ui,i - d2uj,iAUj ~p,i + JL(l - l2 A)Aui, (6.43) 

Uj,j = 0. {6.4'1) 

Assuming u = (u(y), 0, 0) and P,x = -g < 0, then our steady-state satisfies 

0 - g + p,u" - J.tl2um'' (6.45) 

d2u'u" - P,y, (6.46) 

0 - P,z, ~6.47) 

where clearly u(y) has the same solution as before (given in 6.28), although this 

time the pressure is solved for by 

~6.48) 

Following the nondimensionalization of (6.8) and again letting l1 = d/h and l2 = l/h, 

we obtain the nondimensional equations of motion 

(1 -l~~)ui;t + Uj{1 -l~A)ui,J -l~uJ,iAUJ - -P,i + ~e (1 -l~~)~ui, (6.49) 

Uj,j - 0, (6.50) 
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where p is understood to be the modified pressure, and u(y) nondimensionalizes to 

the form given in (6.3,1). 

An important difference from the previous dipolar case arises when we look at 

the linearized perturbation equations, which are 

{1 -l~!:l.)ui,t + u;(1 = l~A)ui,; + U.;(1-l~6.)ui,i 

l2~ A l2 A-
- 1 Uj,iU.Uj = 1 Uj,iU.Uj 

u·. J,J 

(6.51) 

(6.52) 

(6.53) 

Substituting travelling wave solutions as before into these equations we obtain 

(6.54) 

(6.55) 

(6.56) 

(6.57) 

There is no Squire transform for these equations owing to the terms in u, in equation 

(6.55). Therefore for reasons of consistency we set a:= a, (3 =@and w = 0, and so 

consider the equations 

-iac ( 1 = lq ~2 - a
2
]) u + v ( 1 - l~ ~2 ) u' + -a ( 1 - l~ [ ~2 - a2

]) u 

-ial~u"u = -iaq 

+ ~ ( 1 - l~ [:2 - a
2
]) ( ~2 - a

2
) u, (6.58) 

" ( 1 [2 [ Jl 2] ) ' - (1 12 [ Jl 2] ) [2 -II I -~ac - 1 dy2 - a v + 'au - 1 dy2 - a : , v - 1 u u 

l2-I[Jl 2] I - 1 u dy2 - a u = -q 

+~e (1-l~ [~2 -a
2
])v. (6.59) 

iau + v' = 0, (6.60) 

and, Upon introducing the stream function¢ as before, we obtain the generalized 
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Orr-Sommerfeld equation for this problem, 

6.3.3 Generalized Orr-Sommerfeld problem 

We can summarise our findings so far by proposing a generalized Orr-Sommerfeld 
e<!}uation, given by 

·&[<- >(1 ,2[IP 2])(1P 2) (~11 ,2-1111) '2(-'[IP 2] -m) d]_.. la u -·c ·. - "l dy2 -a . dy2 -a ~ u - "Iu - "2 u :dy2 =a ~ u dy ., = 

( 
2 

[ az 2
]) ( d

2 
2

) 

2 

1 - ..\3 ,_ -a - -a t/1; 
•dy2 dy2 

(6.62) 

to be solved subject to the boundary conditions ¢(±1)= ¢'(±1)= ¢"'(±1) = 0, and 

where u(y) is given by 

U~(y) __ a(l- y2
) - .X~] cosh(1/ .Xa) +.X~ cosh(y/ .Xa) 
[~ - .X~] cosh(1/ .X3 ) +.X~ 

(6.63) 

The Green-Naghdi model and both dipolar models are to be found within the pa­

rameter space (.X~, .X~, .xn, as follows. 

Green-Naghdi model: (.X~, .X~, .X~) = (~, #, ~). 
Dipolar model, Bleustein & Green inertia: (.X~, .X~, .X~) = (l~, 2l~, l~). 

Dipolar model, Green & Naghdi inertia: (.X~, .X~, .X~) = .(l~, 0, l~) . 

6.4 Numerical solution 

Anticipating the Chebyshev tau method, we introduce the functions 1/J(y) and (}(y) 

such that 

1/J(y) = ¢" (y) - a2¢(y), (}(y) = 1/J" (y) - a21/J.(y ). 

Then equation (6.62) becomes 

iaRe [(u- c) (#'- A~O) - (u11 - A~u"") <f>- A~u'1{/ + A~u111 ql] = 6 ~ A~ ( ::2 - a2
) 6, (6.64) 

with the boundary conditions 

¢(±1) = ¢'(±1) = 1/J'(±1) = 0. (6.65) 
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We suppose that cp(y) is expressible as a Chebyshev polynomial series cp(y) = 

L::=o c/JnT~(y), with '1/J and(} having similar expansions. Then, we aim to approxi­

mate cp, '1/J and(} with the functions~. 'Ill and 8, with the finite expansions 

N N N 

~~y) = L ~nTn(y), w(y) = L WnTn(y), 8(y) = L 8nTn(y), 
n=O n=O n=O 

for some integer N. We then substitute these finite dimensional functions into 

equation (6.64), and so aim to solve 

Lt(~.w) 

£2(1Jt' 9) 

La(~. \II, 9) 

~11 - a2~ -1Jt = TtTN-1 + T2TN, 

w"- a21Jt- 9 === TaTN-1 + T4TN, 

iaRe [(u- c) (1/J ~ A~.1J)- (u"- A~.u"") 4>- A~u',P' + A~u"'rt>'] 
2 ( rP 2) -IJ + Aa dy2 -a IJ = TsTN-1 + T6TN. 

We then take the weighted Chebyshev inner product of < Li, Ti > for i = 1, 2, 3 

and j = 0, 1, .. ,N ~ 2 to remove the,. coefficients, and so obtain 3N- 3 linear 

equations in 3N + 3 unknowns ~i, wi, ei. The system is closed using our six 

homogeneous boundary conditions, and thus we arrive at the generalized eigen­

value problem (A,.. + Ai)x = c(Br + Bi)x for eigenvalue c and eigenvector x = 

(~0 , ... , ~N, 'll10 , ... , WN, 8 0 , ... , 8N)T, with (3N + 3) x (3N + 3) square matrices 

D2- a2I -I 0 

BC1 0 ... 0 0 ... 0 

BC2 0 ... 0 0 ... 0 

0 D2 ~ a2I -I 

Ar::::: BC3 0 ... 0 0 ... 0 

BC4 0 ... 0 0 ... 0 

0 0 -I+ ..\~(D2 - a2 I) 

0 ... 0 BC5 0 ... 0 

0 ... 0 BC6 0 ... 0 
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0 @ a 
0 ... 0 a ... o 0 ... 0 

0 ... 0 a ... o 0 ... 0 

0 0 0 

Ai= 0 ... 0 (L.O 0 ... 0 

0 ... 0 0 ... 0 o ... a 
~aRe (U" - >.~U"") + aRe>.~U111 D aReU - aRe>.~ f)' -aRe>..~{) 

0 ... 0 0 ... 0 o ... 0 

0 ... 0 0 ... a o ... a 
Br __; (0), 

@ 0 0 

o ... a 0 ... 0 0 ... 0 

0 ... 0 0 ... 0 0 ... 0 

0 0 0 

Bi= o ... a 0 ... 0 0 ... 0 

o .. ,o 0 ... 0 0 ... 0 

Q aRe! ~aRe>.~! 

0 ... 0 o ... o 0 ... 0 

0 ... @ 0 ... 0 0 ... 0 

Here, D and D 2 are the first and second order Chebyshev differentiation matrices, 

I is the identity matrix, and 0 is the Chebyshev representation matrix for multipli­

cation by u (with U' and so on defined similarly). 

The rows BCl to BC6 are our boundary condi,tions, which, upon noting that 

Tn(±l) = (±l)n and T~(±l) = n 2(±1)n+l are overwritten as 

(6.66) 
n=O 

N N 

L n2( -l)n+lcl»n = (i), Ln2(-lt+Iwn = 0. (6.67) 
n=O n=O n=O 

For a given set of parameters (>.1, >.2 , >.3 ) we solve this generalized eigenvalue prob­

lem using NAG routine F02GJF, finding points (a, Re) such that we have neutral 

linear stability (i.e. the leading eigenvalue in the spectrum has zero imaginary part) 
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Figure 6.1: The effect of increasing >.3 (when >.1 = >.2 = 0) on: (a) the neutral 

curves, when >.3 = 0.01, 0.05 and 1.0; (b) the critical Reynolds number ReL as a 

function of >.3 . 

over which we iterate until we have the minimum Reynolds number above which 

instability is assured, Re£. The iterative methods are as in Chapter two, 

6.5 ResHlts 

Before presenting our results for the cases of a Green-Naghdi fluid or a dipolar fluid, 

we consider the effect of the highest order derivative in our generalized eigenvalue 

equation (6.64), by setting >.1 = >.2 = 0. Figure 6.1 (a) shows the unique neutral 

curves for this case, and it is clearly seen that, for the three choices of >.3 shown, 

the minimum Reynolds number increases with increasing >.3 . 

However, there is a small initial interval over which the effect of increasing >.3 is 

to destabilize the flow. Fig1:1re 6.1 (b) shows the variation of the critical Reynolds 

number ReL as a function of >.3 . The critical Reynolds number decreases from 

ReL ,...., 5772 at A3 = 0 (the classical, Navier-Stokes case) to ReL ,...., 3080 at >.3 ,...., 0.06. 

For >.3 greater than approximately 0.06, the flow rapidly stabilizes. 

When we turn to the case of a Green-Naghdi fluid, we lose the initial destabilizing 

effect of >.3 . In the Green-Naghdi parameter 'Y (= 1/>.3 ), our base solution u(y) 
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Figure 6.2: Green-Naghdi fluid model. (a) shows neutral curves for >.a= 2.1J2 x 

10-2 ('y rv 33.67}, >.a = 2\1'2 x 10-2 ('Y rv 35.35), and >.a ::;: J2 x 10-2 ('y rv 70.71). 

Graph (b) shows the critical Reynolds number Re L against 'Y-( ~ 1/ >.a). 

satisfies the Navier-Stokes equations in the limit 1-----+ oo (i.e. lim-y__.oo u(y) = 1-y2 ). 

Therefore, in Figure 6.2 (b) we see that the critical Reynolds number ReL tends 

asymptotically to 5772 as 1 becomes large. 

Figure 6.2 (a) shows the neutral curves for different choices of'' and in 6.2 (b) 

we see that as 1 decreases, the base solution rapidly stabilizes. Therefore, despite 

the apparent monotone dependence of ReL upon 1, we conclude that the behaviour 

is very similar the case >.1 = >.2 = 0. It appears that the sixth order derivative terms 

of equation (6.64) dominatethe linear stability of Green-Naghdi pressure driven flow. 

For a dipolar fluid with either of the inertia terms considered, the critical Re~olds 

number at first falls with increasing dipolar constant 12 , before reaching some critical 

value close to 12 = 0.05 from where ReL becomes an increasing function of 12. There­

fore, nonzero values of 12 are see to be destabilizing if 12 is small, and stabilizing if 

12 is sufficiently large. This is seen clearly in Figmes 6.3 and 6A. 

For both inertia terms, providing that 12 is small, the effect of increasing the 

other dipolar constant 11 is to stabilize the flow, that is, increase the critical Reynolds 

number. In the case of the Bleustein & Green inertia term, Figure 6.4 shows that 
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Figure 6.3: Dipolar fluid with Green-Naghdi inertia term. Graph (b) shows the 

variation of the critical Reynolds number for instability ReL as a function of the 

dipolar constant l2 , for l1 == 0.001 ('-') and l1 = 0.01 ('- -'). In graph (a) we see the 

corresponding variation in the wave number aL at which ReL occurs. 

this is also true at higher values of l2 , where as with the Green & Naghdi inertia 

(Figure 6.3) a small increase in l1 was observed to lower the value of Re£. 
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Figure 6.4: Dipolar fluid with Bleustein & Green inertia. In graph (b) we show the 

variation of Re'L with l2 when the dipolar constant l1 = O.OOi ('-'),when l1 = 0.005 

('- -') and when l1 = 0.01 ('·~'). Graph (a) shows the corresponding variation in 



Chapter 7 

Conclusions 

In chapters two through to five, we investigated the role of slip length in the in­

stability of various fluid systems, and there was a difference between the effect of 

slip length A in convective instability, and in the transition to turbulence of parallel 

flows. 

In Chapter two we showed that the presence of boundary slip did not alter the 

steady state, nor the property of exchange of stabilities, in Benard convection. Our 

computations, however, showed the critical Rayleigh number Racrit at which thermal 

convection occurs varied as a strictly decreasing function of A, i.e. as the slip length is 

increased, thermal instability occurs at lower Rayleigh numbers. This suggests that 

for very thin fluid layers, convection is possible at smaller temperature gradients 

than predkted by no-slip theory. However, our results were generated using the 

Chebyshev tau method, whereas the usual method for such problems is that of 

compound matrices, since exchange ofstabilities ensures that this is computationally 

and algorithmically simple. 

We showed that non-homogeneous boundary conditions require a special formu­

lation of the compound matrix method, and the norm of the solutions generated in 

this way became very large, leading to loss of significance problems in our numerical 

integration. 

Given that, in the context of thermal stability, increasing A was seen to have a 

destabilizing effect, it was natural to turn to the problem of Poisuille flow in the 

112 
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plane, since the subcritical transition to turbulence of such flows has been problem­

atic since Orszag [48] first accurately computed the value ReL = 5772. A thorough 

investigation was all the more necessary owing to disagreement in the literatme as 

to the effect of .X on linear stability. 

We found the linear stability result ReL to be an increasing function of slip length 

.X, aad thus boundary slip was seen to have a stabilizing effect. One possibility for 

the disagreement in the literature over the effect of .X on this system's linear stability 

was identified to be the incorrect boundary conditions employed by [13, 14] for the 

velocity perturbations. 

We followed this with a aonlinear analysis. Being 1mable to find a Squire trans­

form for the equations governing the system's nonlinear stability, we considered in 

turn different types of two dimensionaHy dependent perturbations, and found that 

Rel!J became an increasing function of .X, after a small initial interval for which it 

was a decreasing function of .X. 

A possible modification to the work in Chapter three would be to model PoiseuHle 

flow in a channel of finite. width, rather than the infinite channel we considered. This 

would make for interesting comparison with experiments. 

A further modification is to develop the actual equations of motion further, which 

we did in Chapter four by allowing the viscosity to vary as a function of temperature. 

After setting the viscosity to be a linear function of temperature at our disposal, we 

still observed boundary slip to increase the value of ReL, regardless of exact form of 

the viscosity (i.e. regardless of the value of k = /-t,T ). 

We were able to investigate both the case when fluid became increasingly viscous 

with increasing temperature, and when the fluid viscosity decreased with temper­

ature. In this way we were interested in both when the fluid resembled a gas and 

when it resembled a liquid, but a possible modification that may be made in fu,ture 

work is to consider compressible fluids, since boundary slip is historically associated 

with rarefied gases. 

Increasing the value of .X was observed to bring about the greatest increases 

in critical Reynolds number ReL when the viscosity was gas-like (in the region 
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k = /-L,T > 0). However, some liquids such as liquid helium inhabit this viscosity 

regime, and therefore our results on the effects of boundary slip may be of use in 

understanding fluid flows involving liquid helium. 

In Chapter five we described the modern surgical method of thread injection, 

before posing the problem of instability of thread-annular flow. The most recent 

model, due to Walton [64=-66], was developed to include boundary slip at the needle 

wall and at the thread surface, and to allow for rotation of the thread about its axis. 

We showed that this rotation introduced a second component into the steady-state, 

which we believe has not been studied before. 

Our results showed the importance of non-axisymmetric pertubations in the 

linear stability of core-annular problems. We also found the problem to be algorith­

micaHy stiff, in that, for instance, one must iterate over stnall increments in wave 

number, Reynolds number and thread velocity in order to observe the appearance 

of a stable intrusion. 

There is much scope for future work on this problem. For instance: allowing 

the thread to lie off the axis of the needle; treating the thread as an elastic body; 

treating the thread as a porous medium. The inclusion of end effects may also be 

important. 

Finally, in Chapter six we introduced two alternative equations of motion, the 

Green~Naghdi equations and the dipolar equations, that, although not equivalent 

to each other, are at least comparable. Both models have fourth order derivatives, 

and the Navier-Stokes equations can be obtained from them in the limit as various 

parameters (whether Green-Naghdi coefficients or dipolar constants) tend to zero. 

We showed that the behaviour of the high order derivatives dominated the stabil­

ity of Poiseuille flow-type solutions to these equations, s1:1ch that as we move through 

the parameter space away from the Navier-Stokes equations the fluid rapidly stabi­

lizes. 
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Appendix A 

The Chebyshev tau method 

In this chapter we introduce the set of Chebyshev polynomials, and explain some 

important relations used in the computational work described in this thesis. We 

then present a description of the Chebyshev tau method, which we clarify through 

a simple example of its use, as well as explaining a technical detail known as Curtis­

Glenshaw quadrature. 

A.l The Chebyshev polynomials 

For n E {0, 1, 2, 3, ... } we define the function Tn: [~1, 1] ~ [~1, 1] by the relation 

Tn(cos~9)) = cos(n9). (A.1.1) 

Then we call Tn the nth Chebyshev polynomial, and if we set x = cos(9) it is seen 

immediately from setting n = 0 and n = 1 in (A.1.1) that 

T0 (x) - 1, 

Tt(X) - x. 

122 
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Using the standard result 2 cos( A} cos( B) =cos( A+ B)+ cos( A~ B), we see that 

from the definition (A.1.1) 

2Tn(x)Tm(x) - 2Tn(cos(O))Tm(cos(O)), 

- 2cos(n0) cos(mO),, 

and so we have the relation 

= cos((n + m)O) + cos((n- m)O}, 

- cos((n + m)O) + cos((m- n)O), 

(A.1.2) 

which is central to much of the numerical work in this thesis. Upon letting m = 1 

we obtain a J.:ecurrence relation for Tn+1(x), specificall~ 

Tn+1 (x) = 2xTn(x) - Tn~1{x), n = 1, 2, 3, ... (A.1.3) 

and since we have already found T0 and T1 , we can now construct the rest of the set 

of Chebyshev polynomials {Tn}~=o' 

T2(x) - 2x2
- 1, 

T3 (x) - 4x3
- 3x, 

T4(x) - 8x4 - 8x2 + 1, 

Ts(x) - 16x5 
- 20x3 + 5x, 

etc. 

Clearly, Tn is an nth order polynomial, and so is an odd or even function according 

to n. 

The Chebyshev tau method exploits the orthogonality of Chebyshev polynomials. 

We start by considering a weighted integral of Tn(x )Tm ( x) over the interval ( -1, 1), 

11 T. (x)T. (x) 1'11" 
n m dx - . Tn(cos(O))Tm(cos(O))dO letting x = cos(O), 

-1 vf1- x2 o 

- 1'11" cos( nO) cos(mO)dO by definition (A.1.1), 

- 1'11" dO when n = m = 0, 

- 1r. 
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VVhenn#nl, then 

11r cos( nO)cos( nlB)dO -
2

( 
1 

. ) (sin((n + nl)B)]~ + 
2

( 
1 

) (sin((n- nl)O))~, n+nl n-m 
- 0. 

Finally, for the case n = nl # 0, 

{1r 1 {1r 
lo cos(nO)cos(mO).dO - 2 lo (cos((n + nl}O) + cos((n ~ nl)O)) dO, 

111r = 2 0 
(cos((n + nl)O) + 1) dO, 

-
2

( 
1 

) (sin((n + nl)B)]~ + ~' 
n+nl 2 

Therefore, we have shown that the Chebyshev polynomials are orthogonal with 

respect to the weighted £ 2 ( -1, 1) inner-product, according to 

1r if nl = n = 0, 

T. T. -11 
T11(x)Tm(x)d _ 1 < n1 m >- X - 21r if nl = n # 0, 

-1 v'1 ~ x2 
(A.1.4) 

0 if m # 0. 

A.2 Chebyshev differentiation matrices 

Suppose that for some function f E coo ( -1, 1) there exists a uniformly convergent 

series of Chebyshev polynomials Tn(x) such that 

6o 

f(x) = L fnTn(x), (A.2.5) 
n=O 

for coefficients / 0 , ft, /2, .... Clearly, iff is a polynomial of order N then this 

series will be finite, truncating at then= Nth term. We assume similar forms for 

the derivatives f'(x), f"(x) and so on, i.e. 

00 

J<k)(x) = L f~k)Tn(x), k = (]), 1, 2, .... (A.2.6) 
n=O 

where J(k) is the kth derivative of J, and J<0> = f. Our aim is to relate the coef­

ficients in the series expansion of J(k+1) to those of J(k), and use this to develop a 
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method for approximating the solutions of linear ODEs. 

We begin by differentiating Tn(x) with respect to x 

from which it follows that 

dTn 
dx 

dTn d(} 
- d(} · dx' 

nsin(nO) 
sin(O) ' 
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n ll T~H(x)- n ~ 1 T~_r(x) - sin
1
(0) [sin((n + 1)0)- sin((n- 1)0)] I 

- 2cos(n0), 

- 2Tn{x), for n ~ 2. 

Considering the cases n = 0 and n = 1 individually, it is verified that 

(A.2.7) 

Therefore 

00 

L /~1')Tn.( X), 
n=O 

and so 

Equating coefficients of 7i, i ~ 1 we have 

.f ~ ~1) ;(1) 
2PJp- Cp'-t/p-1- Jp+1' p~ 1, (A.2.8) 

where Co = 2 and Ci == 1 for i ~ L We sum both sides of equation (A.2.8) from 
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p = n + 1 to p = oo over the terms p + n = 1 (rn0d 2), i.e. 

2 
()() 

p=n+1 
p+n=1(mod 2) 

Pfv -
00 

L: 
p=n+1 

p+n=1(mod 2) 

(1) . (1) 
Cp-t/p~1 ~ !p+1, 
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!
(1') - !(1) !(1) - !(1) . f(1) - !(1) 

- Cn n n+2 + Cn+2' n+2 n+4 + Cn+4 ·n+4 n+6 + ... , 

f
(l') /(1) . !(1') /(1) f(l) - en n - n+2 + n+2 - 'n+4 + n+4 = •.. ' 

since only eo is n0t equal to 1. Therefore we have cancellation of all terms on the 

right hand side except the first, leaving us with an expression for /~1) in terms of 

{fvl~n+I· Moreover, it is easily seen that in general 

00 

L: pJJk-1>, 
p=n+1 

p+n=l(mod 2) 

n ~ 0. (A.2.9) 

Now, if we consider coefficients of J<2>(x), 

/~2) 
2 

00 

- L: pfJ1)' 
Cn P""n+1 

p+n=l(mod 2) 

2 
00 

2 
00 

- L: p ........ L: qfq, 
Cn p=n+1 Cp q=p+1 

p+n=1(mod 2) q+pEl(mod 2) 

4 00 00 

L p L qfq since Cp~1 = 1, 
Cn p=n+1 q=p+1 

p+n=l(mod 2) q+p=1(mod 2) 

4 
- -(n + 1) [(n + 2~fn+2 + (n + 4)fn+4 + (n + 6)fn+6 + ... ] 

Cn 
4 

+-(n + 3) [(n + 4)/n+4 + (n + 6)fn+6 + (n + 8)fn+8 + ... ] 
Cn 
4 

+-(n + 5) ~(n + 6)fn+6 + (n + B)fn+B + (n + 10)fn+10 + ... ] , 
Cn 
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4 
- -(n + 1}(n + 2)fn+2 

Cn 
4 . 

+-[(n + 1) + (n + 3)](n + 4)fn+4 
Cn 

+_![{n + 1) + (n + 3) + (n + 5)](n + 6)fn+6 
Cn 
4 

+-[(n + 1) + (n + 3) + (n + 5) + (n + 7)](n + 8)/n+B + ... , 
Cn 

4 00 :L pfp 
Cn p=n+2 

p:=n(mod 2) 

p-1 

I: 
q=n+1 

q+n=1(mod 2) 

q. 

This expression is greatly simplified by evaluating the finite sums 

p-1 !(p-nk1 

:L q - :L ( n + 1 -1-- 2k), 
q=n+1 k=O 

q+n~1(mod 2) 

!(p-n)~1 !(p-n)-1 

- (n+1) :L 1+2 L k, 
k=O k=1 

1 1 1 
- 2(n + 1)(p- n) + 2(2(P ~ n)- J)(p ~ n), 

1 
- 4(p2 ~ n2), 
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where we have used the standard identities E~=1 1 =Nand E~=l k = N(N + 1)/2. 

It follows that 
()() 

:L p(p2 _ n2) /p, 
p=n+2 

p:=n(mod 2) 

n>@ 
- ' 

and similar expressions may be found for higher derivatives. 

(A.2.10) 

We now suppose that we can truncate the infinite series J(k)(x) at then= Nth 

term, so that 

f(k) - j(k>(x) + ENH(x), 
N 

- :Lt~k)Tn(x) + EN+l(x), 
n=O 

A · A(k) A(k) A(k) A(k) 
whereENH(x)istheerrorterm. Ifwedefinethevectorsf(k) = (!0 ,/1 ,/2 , ... ,JN )T, 

then upon substituting our approximation into equation (A.2.9) we derive an upper 

triangular (N + 1) x (N + 1) matrix D such that f(k) = Df(k=1>, where Dis given 
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by 

0 1 0 3 0 5 0 7 0 

0 0 4 0 8 0 12 0 16 

0 0 0 6 0 10 (!) 14 0 
D= (A.2.11) 

0 0 0 0 8 0 12 0 16 

0 0 0 0 0 10 0 14 0 

Equation (A.2.10) can be used in a similar way to obtain a matrix D2 such that 

f(k) = D 2f(k-2), where D2 is given by 

0 0 4 0 32 0 108 

D2= 
0 0 0 24 0 120 0 

(A.2.12) 
0 0 0 0 48 0 192 

It is easily seen that f(k) = Df(k-l) = D(Df(k-2>) = ... = nnf, and so D 2 = D x Din 

the sense of matrix multiplication, thus the method is consistent. The coefficients of 

f(k) are then our approximation to the coefficients of the finite series j(x)(k), which 

is in turn our approximation to f(x)<k>. 

A.3 Curtis-Clenshaw quadrature 

Often, we wish to approximate a given function g.(x) by a finite series of Chebyshev 

polynomials g.( x) 
N 

g~x) = L 9nTn(x), (A.3.13) 
n=O 

for coefficients g0 , gb g2, ... , g N· To do this we use the standard discrete orthogonality 

result 

N (' ) (' ) {0 m1f Jn71' 
~dncos }i ·cos N = ~ 

if i =I= j, 
(A.3.14) 

if i = j, 
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where d0 = dN = 1/2 and do<n<N = 1. If we let Xn = cos(mr/N), then for some 

integer k 

t. d.§Gx.) cos ( ~") - t. ~ d.§mTm(x.)"" e~") , 
-t. j; d.§mT m (cos (';)) oos e~") , 
-t. t. d.9m COS C;") COS ( k~1r) ' 

N A 

- 2dk 9k· 

Therefore, we find our approximation g(x) by setting each coefficient according to 

A 2dk ~ A ( (n1r)) (kn1r) 9k = N ~ dng COS ·N COS N . (A.3.15) 

A discussion of this method can be found in the book by Evans [19) 

A.4 Chebyshev matrix represeatation of functions 

Suppose we have two functions f(x) and g.(x), for which we have Chebyshev poly­

nomial approximations /(x) and g(x} respectively, with forms 

N N 

/(x) =I: /nTn(x), g(x) = LYnTn(x), (A.4.16) 
n=O n=O 

for some N, and vectors of coefficients f = (/0 , ... , fN )T, g = (g0, ... , 9N?. Now, we 

define the function h(x~ __; f(x)g(x), and require to approximate h(x) by h(x) which 

has the form 
N 

h(x) = L hnTn(x), (A.4.17) 
n=O 

for the same N, and vector of coefficients h = (h0, ... , hN )T. Then, we aim to 

construct a matrix F such that h = Fg. We start with the simple example of 

/(x) __; x. 

Referring to the weighted inner-product < ., . > defined in (A.1.4) with associ­

ated norm 11.11, we let h(x) = xg(x), an.d take the inner product h(x)Tm(x) for some 
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m ~ 0, before normalizing by 11Tmll2. 
1 AT. 

- 11Tmll2 < xg m >, 
1 A 

IIXmll2 < hTm > 
1 N . 

- IITmll2 ~ fln < xTnTm >, 

1 N 

- IITmll2 ~fJn < T1TnTm >, 

1 1 N 1 1 N 

- 11Tmll2 2 ~fJn < T1Tn+m > +11Tmll2 2 ~fJn < T11ln-m1 >, 

where we have used equation (A.l.2}, and substituted x = T1(x). We now let m 

vary from 0 to N, 

1 A 

liTo 11 2 < hTo > 
I IN . I IN 

= IIToll2 2 ~fln < TtTn > + 11Toll2 2 ~fln < T171nl >, 

A IIT1112 

91 IIToll2' 
I A 

291· 

I I N I I N 

IITII2 2 L fln < T1 Tn+l > + liT 112 2 L fln < T171n-ll >' 
1 n=O 1 n,;l 

L L IA 
= 290 + 290 + 292, 

A I A 

90 + 292· 

Proceeding in this way, and n0ting that the inner product < hTm > /IITmll2 gives 

us the equality 
N 

1 A 1 '"'A A 
11Tmll2 < hTm >= 11Tmll2 ~ hn < TnTm >= hm, (A.4.18) 

we have found a linear relation between the coefficients of h and the coefficients of 

g such that we can write the matrix X, so that h = X g contains the Chebyshev 

coefficients of the functions h(x) = xg(x), where X is given by 

(i) 1 0 0 0 2 

1 (i) 1 0 0 2 

X= 0 1 0 1 0 (A.4.19) 2 2 

0 0 1 0 1 
2 2 
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In this way, by expressing xn in terms of Chebyshev polynomials, we can construct 

the matrices xn, n ~ 0. It follows that we can now easily find the coefficients of 

h = }(x)g(x) using the matrix multiplication method, when j is a low order poly­

nomial, i.e. the function f(x) it is approximating is a finite polynomial. In general, 

f(x) is an arbitrary function of x, and so we now find a way to construct a matrix 

F for general f E C00
( -1, 1). 

The method is to construct the polynomial J ( x) approximating f ( x) using the 
~ N ~ 

method of Curtis-Clenshaw quadrature ~see a:bove), so that f(x) = En=O fnTn(x). 
We now take inner products of hTK for some integer k, and normalize as before 

1 1 NN. 1 NN. 

11Tkll2 < hTk > 211Tkll2 .?;J;O /nflm < Tn+mTk > + 2IITA,II2 ~fo /nflm < Tjn~mJTk >, 

1 (N+m • N~m • m • ) N 
2 . k~ fk-m + k~m fk+m + k=~N fm-k fo flm· (A.4.20) 

The above relation, then, provides us with a computational algorithm to calculate 

each element of the matrix F. 

A.5 Example of the Chebyshev tau method 

We now show how the method of approximation by Chebyshev polynomials can be 

used to solve linear eigenvalue problems. Consider the following eigenvalue problem, 

u"(x) + >.j(x)u(x) - 0, 

u'(l) +au(!) - 0, 

u'( -1) + ,Bu( -1) - 0, 

(A.5.21) 

(A.5.22) 

(A.5.23) 

for x E ( -1, 1), constants a and {3, eigenvalue>., and where f(x) is a given function. 

We begin by assuming that u and f can be expanded as a Chebyshev polynomial 

series 
00 00 00 

u"(x) = L u~2)Tn(x), u(x) = L UnTn(x) f = L fnTn(x), (A.5.24) 
n=O n=O n=O 

for coefficients Un and fn· We now truncate the series expansions at then= Nth 

term, and denote u(x) = E~=O UnTn(x), with u<2> and j defined similarly. Fox (22) 

shows us that the error resulting from this truncation can be expressed thusly 

(A.5.25) 
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and so the r's are a measure of the accuracy of our approximation. Taking the 

weighted Chebyshev inner product of equation (A.5.25) with the polynomial Tk, 

where k = 0, 1, 2, ... N -2, removes the r's, and constructs the representation matrix 

F (as explained above). Finally, letting ii = (u0 ,u1 , ..• ,uN) with ii(2) similarly 

defined, we can make the substitution fi(2) = D2ii, such that we arr.ive at the linear 

system 

(A.5.26) 

where we have added two rows of zeros to the bottom of matrices F and D2 such 

that the matrices are square. We close the system by overwriting these two rows. 

with the boundary conditions. 

We deal with (A.5.22) and (A.5.23) by noting from (A.l.l) that 

Therefore, the boundary conditions can be overwritten as 

N N N N 

L n2un + a L Un ::::: 0, Ln2(-l)n+lun+.BL(-ltun = 0. (A.5.27) 
n=O n=O n=O n=O 

The system is now closed, and can be solved as a generalised eigenvalue problem 

Ax = u Bx using the QZ method of Moler & Stewa:rt [42]. 

We refer the reader to the work of Orszag [48] for further details, as well as 

to Straughan [59] and Dongarra, Straughan & Walker [,17] for more examples of 

implementing the Chebyshev tau method. 
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Appendix B 

The compound matrix method 

The compound matrix method is a modification of the standard shooting method. 

Consider the coupled system 

u" + av - 0, 

v" +au - 0, 

u(1) = v(1) = u( -1) = v( -1) - 0, 

(B.0.1) 

(B.0.2) 

(B.0.3) 

for u = u(x), v = v(x) with x E ( -1, 1), and eigenvalue a. We assume that uand v 

can be decomposed as 

(B.0.4) 

and we transform the boundary value problem (B.O.l)-(B.0.3) in u, v into two initial 

value problems, in ui, VI and u2, v2. 

We must impose enough initial conditions at x = -1 for the problem to be well­

posed. From (B.0.3), we already have ui( -1) = u2( -1) = vi( -1) = v2( -1) = 0. 

The conditions at x = 1 are then replaced with u~(-1) = 1, u~(-1) = 0 and 

vl(-1) = 0, v~( -1) = 1. These are then integrated forward. The correct boundary· 

conditions at x = 1 are then imposed, and we note that this requires 

to hold at x = 1. 

UI(1) U2(1) 

VI(1) ~(1) 

133 

=0, 
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Therefore, we aim to iterate over u producing a convergent sequence { u1 , u2 , ... } 

by repeatedly integrating u1, u2 , VI. v2 , and calculating the above determinant. 

Though simple to implement, the shooting method suffers from one having to locate 

the zero of this determinant. The two quantities u1(1)v2(1) and u2(1)v1(1) must 

be very close to each other, although they need not be close to zero. Therefore, in 

general the method involves subtracting two nearly identical quantities, which may 

lead to significant round off errors. 

The compound matrix method is to convert the problem into a system of ordinary 

differential equations in the determinants themselves. We let x1 = ( u1, u~, Vt, v~ f, 
x 2 = (u2 , u~, v 2 , v~)r, and the 4 x 2 matrix X= (x1x 2)., i.e. 

Ut u2 

ul u~ 
X= 1 (B.0.5) 

Vt V2 

v~ v' 2 

We then let y1 be the first minor of X, with y2 to y6 simHarly defined, 

Yt 
I I 

~ - u 1u 2 - u 2u 1, 

Y2 - UtV2- U:;!Vt, 

Y3 
I I - u 1v 2 - u2v1, 

Y4 
I I - U1V2- U2V1 

Ys 
I I I I - utv2- u2vt, 

Ya 
I I 

- VtV2- V2V1, 

before differentiating each Yi with respect to x. For example 

I I I II I I II 
Y·t - u 1u 2 + u 1u 2 - u 2u 1 - u 2u 1 , 

II II - U1U2- U2U1, 

- Ut ( -uv2) - u2( -uvt), 

- -u(ut.V2- u2vt), 

- -uy2. 
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Proceeding in this way results in a system of six ordinary differential equations in 

six unknowns. 

y~ - -ay2, 

y~ - Y4 + Y3, 

y~ - 0, 

y~ - Ys, 

y~ - a(y2 - Y6), 

y~ - ay2, 

i.e. we arrive at the system y' = Ay where A is a 6 x 6 matrix: with constant 

coefficients, andy= (Yh ... , y6)T. We therefore pick a starting value of u, integrate 

our ODE in y from the initial condition y -= (0, 0, 0, 0, 1, O)T (having substituted 

our assumed initial conditions), and then test om boundary conditions at x = 1, 

which translate as y2 = 0. We then proceed to iterate over a untiil y2 is zero to some 

predefined tolerance. 

A thorough discussion of the compound matrix method can be found in the 

books by Straughan [59] and Drazin & Reid [18], or the work of lvansson [28]. 


