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Abstract

We construct and analyse chains of solitons in various field theories. Particular
emphasis is placed on the constituent structure, which appears to be be a generic
feature of chains.

In Yang-Mills theory, we construct axially symmetric chains of instantens (calorons)
with instanton charge 2, making essential use of the Nahm transform. We show that
there are two distinct families of caloron, which can be distinguished using repre-
sentation theory. We also construct calorons on hyperbolic space with instanten
charge 1 and monopole charge 0. This generalises earlier work of Garland and Mur-
ray, in the same way that non-integer-mass hyperbolic monopoles generalise the
integer-mass hyperbolic monopoles of Atiyah.

We study chains of skyrmions with charge 1 in both the Skyrme and planar
Skyrme models, using various approximate analytic ansatze. In the Skyrme model
chains are argued to exist and to have an energy per baryon number lower than
the charge 2 skyrmion. In the planar Skyrme model, we show that the stability of
chains depends on the choice of potential function.

We study chains and kinks in the CP" sigma models analytically, in particular,
we show that chains are kinks in a sigma model whose target is a homogeneous space
for a loop group. This is the sigma model analog of the statement that a caloron is

a monopole whose gauge group is a loop group.
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Chapter 1
Introduction

This thesis concerns static topological solitons in classical field theories. A static
field theory consists of a set of fields, typically functions on a manifold or sections
of fibre bundles, and an energy functional, which is expressed as an integral of an
energy density and depends only on the fields. Fields which are stationary points
of the energy functional solve the static field equations. A topological soliton is a
field configuration which is a stationary point of the energy functional, and which
is topologically non-trivial in some way. One can also consider dynamics of solitons
and quantization of solitons, but both of these are beyond the scope of this thesis.

Typically, the topelogical properties of a soliton are described by a single integer,
such as the degree of a map, which is called the charge. The first step towards under-
standing the structure of solitons is to look at their energy densities. For example,
in most theories whose base manifold is Euclidean space, the energy density of a
charge one soliton is concentrated in a small region of space. To a good approxima-
tion, the soliton looks and behaves just like a point particle. Similarly, the energy
density of a charge two soliton is normally concentrated in two disjoint regions of
space. A charge two soliton looks and behaves like a pair of particles, unless the two
regions of high energy density are close enough to each other that they overlap. In
that case the particle approximation breaks down, and some of the deeper structure
of the solitons becomes apparent.

There are many different field theories which admit topological solitons, and

each type of soliton has its own set of applications. An excellent introduction to the
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Chapter 1. Introduction , o 2

subject is to be found in the book of Manton and Sutcliffe [MS04]. In this thesis
we counsider instantons and moenopoles, which have applications in particle physics,
skyrmions, which have applications in nuclear physics, and sigma models, which
have applications in condensed matter physics. Our main area of interest will be
in the mathematical structure of the solitons. In particular, we are fascinated that
different types of soliton in different theories can exhibit apparently very similar
behaviour.

The overarching theme of our work has been to study chains. A chain can
be described in different ways. Firstly, if solitons a regarded as point particles in
R™, then a chain consists of an infinitely long line of spatially separated solitons.
Equivalently, a chain can be described as a topological soliton in a theory whose
base manifold is the cartesian product R™! x S!.

The classical example is a caloron, which is an instanton on R® x S. Just as
instantons mediate tunnelling effects in quantum field theories at zero temperature,
calorons mediate tunnelling effects in field theories at large temperatures. The pe-
ried 3 of the chain (or the circumference of S!) is inversely proportional to the
temperature. Again, we can investigate the structure of calorons by looking at their
energy densities - these depend qualitatively on the ratio 5/, where A represents
the size of the instantons in the chain. If 8/X is large, the caloron looks like a chain
of well-separated instantons. However, if 3/ is small the energy density is approx-
imately independent of the periodic direction. One finds that the energy density is
concentrated in two (or more) column-like regions, which are called “constituents”.
To us, it was very surprising that a charge one object splits into more than one
constituent.

Closer analysis of calorons reveals that the constituents are monopoles. These
were discovered independently by Kraan and van Baal [KvB98|, and Lee and Lu
[LL98|, around ten years ago. Since then, chains of monopoles have been shown
to exhibit a similar constituent structure [War05]. One of our main meotivations
has been to investigate to what extent constituents are a generic feature of chains
of solitons. Perhaps the most important problem is to explain why the number

of constituents is what it is: is there a simple rule which prediets the number of
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it is not easy to distinguish between one type and another.

We shall now give a more detailed description of the work contained in this thesis.
The three chapters following the introduction will be devoted to calorons. In chapter
2 we shall introduce calorons and their classification, and review standard methods
of constructing them. In chapter 3 we show how some of these methods, combined
with representation theory, can be applied to censtruct and classify calorons with
high charge and axial symmetry. In chapter 4 we investigate a change of metric: we
construct calorons on hyperbolic space. This is quite a natural step to take, in view
of the close kinship between calorons and monopoles, and in view of the rich theory
of monopoles on hyperbolic space.

In the final three chapters we consider chains of solitons in other models. In
chapter 5 we consider the planar (or baby) Skyrme model, in chapter 6 we consider
the Skyrme model, and in chapter 7 we consider the CP" sigma-models. We make
some closing remarks in chapter 8. We shall use chapter 7 to argue that constituents
in topolegical soliton models can be understood using loop groups. All tepological
soliton models which appear in this thesis are based in some way on Lie groups: for
monopoles, instantons (and calorons) the Lie group is the gauge group, while for
the other models the target space is either a Lie group or a quotient space of a Lie

group. The general pattern we observe is the following:

In a model associated with a gauge group G, the number of fundamental
constituents in a chain is equal to the number of simple roots of the loop

group Tx LG.

By “fundamental constituent”, we mean a constituent cannot be separated fur-
ther into smaller constituents. An additional qualification is that the boundary
conditions of the chain must be sufficiently general in order to see the full number
of constituents. For example, the hyperbolic calorons in chapter 3 exhibit one fun-
damental constituent rather than two, because their boundary condition is highly
specialised. One could say that the second constituent is present, but can’t be seen
because it is massless.

A relationship between calorons and loop groups was observed by Hitchin (see

[GM8S]), which prevides an explanation for the above statement for that case. In
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chapter 7, we show that an analogous relationship also holds for chains in CP" sigma
models. Our hope is that this relationship can be extended to other topological
soliton medels, but this remains to be done. An alternative explanation for the
number of constituents of a caloron was propesed using string theory [LY97], and this
could in principle be extended to chains in other models (see for example [Ton02}).
However, certain models, such as the Skyrme model, are harder to relate to string
theory — this is why we have chosen to follow the loop group perspective.

It is worth considering here how a more precise meaning can be given to the
statement “a chain splits into constituents”. One definition could be the existence
of limits of infinite separation, where all but one constituent can be separated to
infinity. We shall show that limits of this type exist for examples of calorons in
chapter 3. More generally, if the field equations admit a large moduli space of so-
lutions, one could hepe to find such limits. However, some models, such as the
Skyrme and planar Skyrme models, are not integrable. For these models, our ap-
proach is more heuristic: we show that for small periods, chains are well-described
by an ansatz which represents a superposition of constituents in some sense. An
alternative approach could be to consider vibrational modes: one could investigate
whether a chain has a low energy vibrational mode which corresponds to a splitting
into constituents. This latter approach is beyond the scope of this thesis.

We have assumed that our reader is familiar with differential and Riemannian
geometry. The books [GS87], [Mor01] contain most of the material we shall need.
We also make use of standard material from topology, notably homotopy groups,
cohomology groups, and Chern numbers. The last chapter also makes use of stan-
dard results from the theory of Lie groups, as can be found in [BtD85], and loop
groups, as can be found in [PS86]. In addition to [MS04], background on various
types of topological soliton may be found in [WW90, Ati79, Zak89, AH8S].



Chapter 2
Yang-Mills fields

In this chapter we will review some well-known methods of constructing instantons,
monopoles, and calorons. Most of the material in this section is not original, but
it is included here because these methods will be utilised and generalised in later

chapters.

2.1 Anti-self-dual gauge fields

The starting point for this discussien is the definition of a Yang-Mills action on
a four-manifold and a Yang-Mills-Higgs energy on a three-manifold. Let M be a
manifold of dimension four with Riemannian metric g)s and volume form wps. Let
P be a rank n unitary vector bundle over M, and let D = d + A be a unitary
connection on E, where d is the exterior derivative and A is the 1-form part of D,
also known as the gauge field. Let F' = [D, D] = dA+ A A A be the curvature of D,
which may also be called the field strength tensor of A. The Yang-Mills action of
D (or A) is
S = / |1 F||Pwas- (2.1)
M
Here || - || denotes the natural norm of F, induced from the metric gps and the inner
product (X,Y) = =Tr(XY) of the Lie algebra su(n).
Now let N be a three-manifold with Riemannian metric gy and volume form
wpy. Let @ be a rank n unitary vector bundle over N with connection D = d + A,

and let ® denote a section of the adjoint bundle associated with N. Denoting the
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2.1. Anti-self-dual gauge fields 7

curvature of A by F, the Yang-Mills-Higgs energy of the pair (A, ®) is
Bi= [ IFI+ D0l . (22)

There is a simple relation between S and F just defined. Suppose that (A, ®) are
a connection and adjoint bundle section on a vector bundle () over a three-manifold
N. Let M =R x N and let g)s = dt? + gy be the Riemannian metric on M, where
t is a coordinate on R and gy is a metric on N. A bundle P over M is obtained
by pulling back @ via the natural projection M — N. Let A = A+ ®dt define a
connection on P and let F' be its curvature; then || F||2 = || F||? + || D®||. It follows

S=/Edt,
R

The earliest motivation to study the Yang-Mills action and the Yang-Mills-Higgs

that A has action

where F is the energy of (A, ®).

energy came from particle physics. The standard model Lagrangian includes Yang-
Mills-Higgs terms on a Lorentzian 4-manifold. F represents the static energy of a
Lorentzian theory, so minima of E might represent observable physical objects. On
the other hand, S is a Wick rotation of a Lorentzian action, and minima of S are
believed to mediate tunnelling effects in quantum theories. So we see that minima
of E and S are interesting to physicists. It has turned out that finding minima F
or S is also a fascinating mathematical problem.

All successful attempts to minimize the Yang-Mills action rest on the identity:
IFIPwss = Tr(F A F)+ SIF +xaFPanr
Here xpr : A2M — A?M is the Hodge star, defined by
u A %0 = gpr(u, v) wpy
It follows from the identity that
s> /M Tr(F A F), (2.3)

with equality if and only if
*yF = —F. (2.4)
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Equation (2.4) is called the anti-self-dual equation, and its solutions A are called anti-
self-dual gauge fields. A similar argument shows that self-dual gauge fields, solving
F = xp F, are also minima for the action. However, we shall restrict attention to
anti-self-dual gauge fields, since on the manifolds we are interested in (such as R?),
one can be obtained from the other simply by reversing the orientation.

The lower bound (2.3) is useful because the right hand side depends only on the
topology of the situation and the boundary conditions imposed on A. For example,
when M is compact, the lower bound is a multiple of the second Chern number of
the vector bundle over which A is defined, so is in fact independent of the connection
A.

A similar lower bound can be found for the Yang-Mills-Higgs energy. The identity

(IF|I*> + |D®)|*)wn = ||F + *nD®||*wy + 2Tr(F A D®)

implies that
E>2 / Tr(F A D®) (2.5)
N

with equality if and only if
F = —xy D®. (2.6)

Equation (2.6) is called the Bogomelny equation; it is easy to see that the Bogomolny
equation for (A, ®) is the same as the anti-self-dual equation for A = A+ ®dt defined
as above, if we give M the orientation defined by the volume form wys = =dt A wy.

Before moving on to specific examples, we point out here that the anti-self-dual
equation is conformally invariant. In ether words, replacing the metric gy by A2gxs
for some function A : M — R does not change the Hodge star. Similarly, the Yang-
Mills action is conformally invariant. This observation will be important in chapter

4.

2.2 Examples

We have seen that a Yang-Mills action or a Yang-Mills-Higgs energy density can be
defined on any four- or three-dimensional Riemannian manifold. However, it is not

known whether the anti-self-dual equations or Bogomelny equations have solutions
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on a general manifold. Most published work restricts attention to a particular
manifold or set of manifolds; the Yang-Mills action has been most extensively studied
on R* and R?* x S, while the Yang-Mills-Higgs energy has been most extensively
studied on R3. These are the cases which are most relevant physically. In this section
we shall review the topological charges and boundary conditions which determine
the lower bounds (2.3), (2.5) in these cases. The remaining sections in this chapter
will review methods of solving the anti-self-dual equation and Bogomolny equation

in these cases.

2.2.1 Instantons on R*

An instanton on R* is an anti-self-dual connection with finite action. Instantons
have an integer topological charge; the standard way to show this is by comparing
with instantons on S*.

R* is conformally equivalent to the sphere S* with a point removed. It follows
directly that an instanton en $* defines an instanton on R*. By a theorem of
Uhlenbeck, the converse is true. Vector bundles over S* are characterised by their
second Chern number,

1

= — Tr(FAF)
€2 87!'2 g4 T( ),

which is in fact an integer. The second Chern number is called the charge of the
instanton. The lower bound (2.3) may be written, S > 8x2c,.

It will be useful to write everything down in tensor notation: we have

A = Au(z)dz*
F = %Fw(z)dm“/\dm"

F,. = 0,A, —8,A,+[AL A

where p,v = 0...3 and A,, F,, are anti-hermitian 2 x 2 matrix-valued functions of
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z € RY. Then

w = di® Adz! Adg? Adr?

1 -
IFIP = —Tr(Fu ™)
1
*F = ZF“”eﬂyaﬂdmaAdzﬂ
Tr(FAF) = ieaw Tr(FoPFr) .

2.2.2 Monopoles on R?

An SU(n) monopole on R3 is a pair (A, ®) solving the Bogomolny equation (2.6)
with finite energy. Additienal boundary conditions are normally imposed, which we
summarise here, see [Mur84] for further details. The simplest type of monopole is
the SU(2) monopole, and monopoles for other gauge groups satisfying the condi-
tion of “maximal symmetry breaking” are just superpositions of embedded SU(2)
monopoles associated with the roots of the gauge group. We will describe this in
detail here to emphasise some of the similarities between calorons and monopoles.

The topology of a monopole is described by n integers k; which sum to zero,
and the boundary conditions by n real numbers x; which also sum to zero. These
must satisfy p; > p;4, and Zf:zl ki >0for j=1,...,n—1. If one has p; > p;41
for all j the monopole is said to have maximal symmetry breaking. Monopoles with
maximal symmetry breaking tend to have nicer mathematical properties than those
without.

Let P = C* x B® denote the trivial bundle over the ball B3. Let P,, denote the
restriction of P to the boundary 0B3; given a connection 1-form a on P, one can
make P,, a holomerphic bundle. Then by Grothendieck’s theorem [OSS80] there is
a canonical decomposition P, = @], I’ as a sum of line bundles, whose Chern
numbers k; = ¢;(L7?) are uniquely determined up to permutation. One also has
a= )7, d, where a/ is a connection 1-form on L’; we assume that the curvatures
f? = da’ are constant. Let ¢ be a section of the adjoint bundle associated with P,
such that ¢s; = iu;s; for all sections s; of L’ (in other words, so that the L’ are
eigenbundles for ¢).

A monopole is required to satisfy the following:
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e The gauge field A and Higgs field & admit extensions to the whole of the
bundle P (where we have identifed R3? with the interior of B3).

e Over B3 ® = ¢ and A = a.

One can evaluate the lower bound (2.5) in terms of y; and k;: one finds that
2| Tr(FAD®)=4 kjp;.
/]R , r( ) ”; gl

In the simplest case n = 2, we have ky = —k; and py = —p;, since the k;’s and
p;'s sum to zero. We call m := k; the charge of the monopole and v := p; — s the
mass of the monopole. Its energy is 4mmu.

Returning to the case of SU(n), we define “constituent charges” m; = zf:l k;
and “constituent masses” v; = p; — pj41 for j=1,...,n — 1. An i-th fundamental
monopole is a monopole with m; = 0 and v; = 0 except when j = i. The mass
of this fundamental monopole is v; and its charge is m;. The n — 1 fundamental
monopoles are in fact trivial embeddings of SU(2) monopoles associated with the
n = 1 simple roots of SU(n). A general SU(n) monopole is roughly a superposition
of fundamental (or constituent) monopoles with masses v; and charges m;. More
precisely, the moduli space of SU(n) monopoles has limits in which the fundamen-
tal monopoles become infinitely separated. Notice that in terms of fundamental
monopoles, the lower bound (2.5) on the energy is

n—1

2/11&3 Tr(F AD®) = 4x ijl/j.

Jj=1
Notice that the condition of maximal symmetry breaking implies that none of the

constituent masses v; are zero.

2.2.3 Calorons on R3 x S!

A caloron is an anti-self-dual gauge field on R® x S! with finite action. Three
standard references describing the topology of and boundary conditions for calorons
are [GPY78], [GM88], and [Nye01]; an alternative perspective can be found in [EJ08].

Here we review the boundary conditions which are needed to evaluate the lower
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bound on the action (2.3). Our treatment is based on [Nye01}, but we have tried to
simplify some of the proofs. More detailed analytic boundary cenditions, which are
required by the Nahm transform, can be found in [Nye01].

An SU(n) caloron has n + 1 topological charges k; € Z,j = 0...,n. ko is
called the instanton charge and the remainder are called monopole charges. In
addition, the boundary conditions imposed on a caloron are described by n + 1
real numbers pj, j = 0,...,n. po describes the periodic boundary condition: we
set puo = 2m/B, where 3 is the period of the caloron (the circumference of S%).
The numbers (ko, . . ., kn, [, - - - , 4n) ar€ collectively called the boundary data of the
caloron.

As in the case of monopoles, let P denote the trivial bundle over B3. Again
P, has a decomposition into line bundles L/, with compatible connections ¢’ and
adjoint-valued section ¢, described by k; and p; for j = 1...n. Let @ be an
SU(n) bundle over B3 x S1, let Qo denote its restriction to dB* x S, and let
p: OB x S' — AB3 be the obvious projection. Following [Nye01], the bundle Q is
called framed if there exists a bundle isomorphism @y = p* Peo.

Besides being anti-self-dual, a caloron A is required to satisfy the following

boundary conditions:

e A must admit an extension to a framed bundle Q@ — B? x S' (here we have

identified R? with the interior of B3)

e The restriction of A to 9B% x S! must take the form A = (¢ o p)dz® +
p* (Z;;l aj) (here z° € R/BZ is a coordinate on S?).

The integers k; = c1(L7) are called the monopole charges of the caloron. We
define the instanton charge ko as follows (this definition is our ewn, but is equivalent

to those in [Nye01] and [GPY78]). Let g : B3 x S! — S* be the map
q: (z,y) = (z, V1 - |lzl|y),

where z € R? satisfies ||z|| < 1 and represents a point in B3, y € R? has |jy|| = 1
and represents a point in S!, and S* is represented by unit vectors in R®. The map

q is surjective, and maps the boundary 8B% x S! to a 2-sphere in S*. Restricted to
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0B% x 81, q agrees with the projection p composed with an inclusion from $2 to S%.
Any framed bundle is in fact the pull-back via ¢ of a bundle over S%. ky is defined
to be the second Chern number of the bundle over S*, and is called the instanton
charge of the caloron.

The following constraints are imposed on the boundary data (see [Nye0l] and

[GM88)).
j=1
duy =0
j=1
> ki
=0

di = Mjforj=1,...,n

v

Ofor j=0,...,n

M1 = pn < Ho-

For any connection A satisfying the boundary conditions described above, there

is a well-known formula

. , 1 &
! Tr(FAF) = (kg o > ujk,) . (2.7)
051

872 Jroysn
We prove this formula as follows (see [Nye01] or [GPY78] for alternative proofs).
First we consider the case where p; = 0 for j > 1. Then A is the pull-back via g of

a connection A over §* [SS92]. We have

1 _ 1 L.
TT‘(F/\F) @ S4TT(F/\F)

= ko.

812 Jpax s

Let A and A’ be two connections and let & = A — A’, the Chern-Simons formula

[GS87] states that
2
Tr(FAF)=Tr(F'AF')=dTr <2a/\F’+a/\da+2a/\A'/\a+ 5a/\a/\a) :

In the particular case where A satisfies the caloron boundary conditions with y; not
all zero and o = Aydz® is the component pointing in the circle direction, we deduce
that
1 1 oo, L ,
Tr(FAF)=— Tr(F'AF)+ -— Tr(F' A o).
B3xS1 aB3x §1

8m? B3x St 82 472
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Since A’ is a connection with the same topological charges as A but with y; = 0 for
j =1,...,n, the first term on the right is k3. To evaluate the second term on the
right, we use the prescribed form of A:

! Tr(F' Aa) = — / Tr(F'¢) A da
-‘8B3x 81

472
— 1 / if] )
B 27po Japs =1 HTH
1 o :
— Y uer (L)
Ho j=1

1 &
= =2 kit
Fo 4

This concludes our discussion of the topology of calorons; now we describe the

47['2 8B3x 81!

constituent monopoles of the caloron. Let

J
m; = ijforjzl,...,n
i=0
Vi = pj—pjpforj=1,...,n-1

Un = po— M1+ Un.

These are respectively the charges and masses of the constituent monopoles of the
caloron; if all of the masses v; are non-zero the caloron is said to have maximal
symmetry breaking. One can think of an SU(n) caloron with maximal symmetry
breaking as being made of n fundamental constituent SU(2) menopoles, each living
on R3, just as an SU(n) menopole with maximal symmetry breaking is made of n—1
fundamental constituent SU(2) monopoles. The mathematical way to understand
this lies in Garland and Murray’s observation [GM88] that a caloron is the same
simple roots (see figure 2.1). The general pattern for monopoles is that the number
of fundamental constituents is determined by the number of simple roots of the loop
group, so one is lead to expect a caloron with maximal symmetry breaking to have n
fundamental constituent monopoles. Alternatively, the constituent monopoles can
be thought of as the T-dual description of the brane configuration in string theory
which represents the caloron [LY97]. Note that if a caloron does not have maximal

symmetry breaking, the constituent monopoles need not appear.
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O O—O O O O
SUQ) SUQ3) SU@)
LSUQ2) LSU(3) LSU4)

Figure 2.1: The Dynkin diagrams of various Lie groups and their loop groups

The constituent monopoles are defined up to cyclic permutation: the caloron
with charges (m;,...,m,) and masses (v,...,V,) is essentially the same as the
caloron with charges (ma, ..., my,, m1) and masses (v, ..., Vs, 1). The map which
permutes the constituent monopoles is called the rotation map. The rotation map is
a large gauge transformation, that is, a gauge transformation which is not periodic,
but which maps periodic configurations to periodic configurations. Such a gauge
transformation will have a singularity, which accounts for the change in the second
Chern number ky. In the loop group picture, the rotation map can be thought of as
a gauge transformation which permutes the roots of the loop group. Notice that, in
terms of the constituent monopoles, the formula (2.7) takes the pleasing form:

1

1 n
— Tr(FAF)=— V.
872 Jpoysr T( ) o Z_;mJVJ

It is perhaps surprising that the lower bound on the action of a caloron is not
simply a multiple of an integer, but can take any real value. One might ask whether
this phenomenon is genuine: do calorons exist for which the integral (2.7) is not
an integer? The answer to this question is yes; monopoles satisfy the boundary
conditions of calorons, and can have arbitrary action.

Let (A, ®) be an SU(2) monopole with charge m, mass v, and energy E = 4nrmv
(we give R? the volume form —dz* A dz? A dz3 for consistency). Then, as described

in the previous section, the monopole can be lifted to anti-self-dual gauge field over
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R* which is independent of one coordinate, and hence is periodic with any period 3.

Hence we obtain an SU(2) caloron with instanton charge 0 and monopole charges

k1 = m, ko = —m, for which
| L Tr(FAF) = ! / 2Tr(F A D®)
82 R3xS1 - 471’#0 R3
_ m
Ho

By varying the period, any value of the action can be attained frem a single
monopole.

Actually, we have been slightly careless here; if v > g then the caloron boundary
conditions as as described above are not satisfied. The solution is to make a large
and singular gauge transformation so that the boundary conditions are satisfied.

One obtains

(X _ BE_KoV | _E H|¥V
(kkalakZ’/"'Oaﬂla/JQ)_ ([HOJ,m’ m,,ng,2 2 [qua 2+ 2 [MOJ)

If v < po then the caloron has constituent monopole charges (m;,m3) = (m,0)
and masses (v1,v5) = (v, o — v), which seems consistent with the fact that we
started with a single monopole with charge m and mass v. However, if v > pug both
constituent monopoles have non-zero charge. |

In what follows, we will be interested only in SU(2) calorons, so for simplicity
we summarise the boundary data for this case. We call k; the monopele charge of
the caloron and set k; = —k;. We also have pyy; = —py and 0 < p; < po/2. The

constituent moenopole charges and masses are

(m1,ma) = (ko + k1, ko) (2.8)

(n,v2) = (201, pio — 2m1). (2.9)

We call a caloron with these boundary data an (m;,ms)-caloron. Calorons with
p1 =0 or gy = po/2 are said to have trivial holonomy, otherwise we say the caloren
has non-trivial holonomy or maximal symmetry breaking.

Notice that the monopole charge k; can usually be identified by looking at the

asymptotic behaviour of Ag. Suppose that on near a coordinate patch on dB3 the
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gauge has been chosen so that

: 10 1 _
Ao =i | +-M+0(r™*)
0 -1 r
and A, = O(r~%). Hence Fy, = —8,A0 + O(r=) = Mr~2 4 O(r~3). In the same

gauge, the component of the curvature F' pointing along 9B3 is

-k [ 1 0

F =
2 \o -1

where w = *(dz®Adr)/r? is the volume form on S2. From the anti-self-dual equation,

we deduce that

2.3 Constructions of anti-self-dual gauge fields

The charge 1 instanton was constructed by Belavin, Polyakov, Schwarz, and Tyupkin
[BPST75]. Following this discovery, a search began for instantoens of higher charge.
Among the many constructions for instantens which emerged, we shall focus on
three: Witten’s ansatz [Wit77], the Corrigan-Fairlie-'t Hooft (CF’tH) ansatz [CF77],
and the Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction [AHDM78, CWS78].

Witten’s ansatz is the easiest to implement and understand, but is also the least
effective. Witten impesed an SO(3) symmetry on his instantons, but there are many
instantens which do not fall in to this category. We will return to Witten’s ansatz
in chapter 4, when we consider instantons on hyperbolic space. The CF’tH ansatz
is still relatively simple to use, and more powerful than Witten’s: it was shown by
Manton [Man78] that all instantons written in Witten’s ansatz can also be written
in the CF’tH ansatz. We shall discuss the CF’tH ansatz further in the next section.

By far the most powerful ansatz is the ADHM construction. The ADHM con-
struction is a non-linear transform which maps instantons to equivalence classes of
matrices (called ADHM data) solving an equation (called the ADHM equation).
This transform is a bijection, which means that every instanton can (in principle)

be obtained using the ADHM construction. In general the ADHM equations are
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much easier to solve than the anti-self-dual equations, which is what makes this
construction useful. It can be tricky to obtain analytic formulae for gauge fields
from ADHM data, but it is usually possible to obtain the gauge field numerically if
required.

It is now realised that the ADHM transform is just one example of a wider set of
transforms known as Nahm transforms [Jar04]. In general, Nahm transforms map
anti-self-dual gauge fields on one manifold to anti-self-dual gauge fields on another
“dual” manifold. Nahm transforms are normally invertible, and the inverse Nahm
transform has the same form as the Nahm transform, as was first noted by Corrigan
and Goddard [CG&4].

The ADHM transform fits this pattern, since the ADHM equations can be inter-
preted as anti-self-dual equations for a gauge field defined over a manifold consisting
of a single point. Another important example is the original Nahm transform: this
relates monopoles to a set of matrix-valued functions on a line (called Nahm data)
solving a differential equation (called the Nahm equation). As we saw above, the
Bogomolny equation is the dimensional reduction of the anti-self-dual equation to
three dimensions; similarly, the Nahm equation is the dimensional reduction of the
anti-self-dual equation to one dimension.

In recent times, many other Nahm transforms have been discovered and analysed
(see [Jar04] for a review). A large number of these apply to manifelds that can be
written as a quotient of R*, but Nahm transforms have also been discovered for
classes of curved manifolds. It is still an open question as to how general an object

the Nahm transform is.

2.4 The ansatz of Corrigan, Fairlie and 't Hooft

Now we return to the CF’tH ansatz. This ansatz obtains anti-self-dual gauge fields
from solutions to the Laplace equation on R*, with point singularities. A geometrical
derivation of the CF’tH ansatz was provided by Atiyah, Hitchin and Singer [AHS78].
The advantage of this derivation is that it easily generalises manifolds other than R*.

The derivation will be summarised here, following closely the treatment in [Lan05].
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To begin, we recall some basic facts about Clifford algebras (see [Har90] or [JM89]
for more details). Given a real vector space V with a symmetric blinear form g,
one can form an algebra Cl(V), called the Clifford algebra, which is generated by
multiplying elements of V' using a product which satisfies the identity u-v+wv-u =
=2g(u, v).

We form a bracket [¢,¥] = ¢- 19 — - ¢.0n Cl(V). The sub-algebra spin(V') C
Cl(V) is generated by adding together elements of the form [u,v] for u,v € V. It
is closed under the Lie bracket, and acts on V C Cl(V') according to ¢ : v + [, v].
spin(V) is the Lie algebra of the Lie group Spin(V'), which can also be formed as
a subset of CL(V), and which is a double-cover for the special orthogonal group
SO(V). As such, there is an isomorphism between spin(V) and the Lie algebra

so(V) of skew-adjoint linear maps from V to itself. The isomorphism is
p 1 v :
au e, — —Za,,,,v“ Y, (2.10)

where v* denotes an orthenormal basis for V, 8, is the dual basis for V* and a,, is
anti-symmetric.

There is also a natural vector space isomorphism between so(V) and A%V; this
is obtained by raising indices using the metric. In the orthonormal basis, the iso-
morphism is

a0, — ay vt AV

It follows that spin(V') is isomorphic to A%V as a vector space. In fact, the algebras
Cl(V) and AV are isomorphic as vector spaces. The action of the Hodge star on
AV is realised naturally as multiplication by the volume element in CI(V).

In the case where the dimension of V is four and g is positive definite, the space
A2V splits into self-dual and anti-self-dual components under the action of the Hodge
star, A2 = A2 @ A?. Likewise, the Lie algebra spin(4) := spin(V) splits into two
components. Each component is closed under the Lie bracket and is isomorphic
to su(2), we label them as su(2)+. On the Lie group level this splitting is the
well-known isomorphism Spin(4) = SU(2) x SU(2).
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Let e,, it = 0,1,2, 3 be a basis for the quaterniens H, satisfying the identities,

6(2) = €
€0€; = €6 = €; (2.11)
61'6]' = —dije'o + eijkek

for i,j = 1,2,3. Let  be the mapping from V into H, y(v*) = e,. Then the
splitting of spin(4) is implemented by the mappings:

Y oiuewe —y(u)y(w) (2.12)
Y ouwe —yw)irw) (2.13)
(here we have identified su(2) with the imaginary quaternions by setting e; = —io?).

Now let (M, g) be a four-dimensional Riemannian manifold. The 1-form part A
of a connection on T*M is (locally) a section of a bundle so(4) ® A. By the above
discussion, it can equally regarded as a section of A% ® A! or spin(4) ® A'. We may
write A = A, + A_, where Ay € A2 ® A! = su(2): ® Al. The curvature F of A
splits as F' = F + F., where Fy € A2 ® A? 2 su(2); ® A? are the curvatures of
Ay. In the case where A is the Levi-Civita connection and F' is the Riemannian

curvature, there is a well-known splitting [AHS78, Lan05]

_ +_ S .

Fo= (W 12)+R°
wu% € A2@A2
Ry, € A2®A?
_ s

Fo= (w _E)J’R"
W‘—% € A2®A
Ry € A2@A2.

Here W* are the self-dual and anti-self dual Weyl tensors, s is the scalar curvature,
and Ry is the traceless Ricci tensor. In particular, the curvature F, of A, is anti-

self-dual if and only if its self-dual part vanishes:

S
Wt=—==0.
12 0
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Now suppose that (M, g) is a Riemannian spin manifeld with W+ = 0 (such
a manifold is called anti-self-dual). Let g’ = p?g be a rescaling of g, where p is
a positive real function en M. Let A be the Levi-Civita connection for ¢’ and
define A* as above. Since the Weyl tensor is conformally invariant, A* will be an
anti-self-dual SU(2) connection if and only if the scalar curvature s of A is zero.

We consider now the case the case M = R*, with the usual Euclidean metric gg.

If ¢ = p?gg, then the Levi-Civita connection A of g’ has Christoffel symbols:
Iou = 0uInp O +OuInpda, — 0, Inp iy,

We change to a basis orthonormal with respect to g’: we let 8, = p~1(9/0x*) and

v (0 1
apdvtdz®, with

v® = pdz®. With respect to this basis, we write A =T
Loy = 0uInpdo, — 0, Inpda,.

Note that this expression is antisymmetric in y and v, as an so(4) connection should
be.
Using the mappings (2.10) and (2.12), we find

J
* = —gmp(Z
A 3P (22)
o
Aj = (+80 lIl’p(Sjl + Ejlkak lnp) (Z) .
More concisely, we have
1_
A, = 577,“,8,, In p,
where 7, = (eqef — e el) = —y*([v#,v"]) is the self-dual tensor introduced by ’t

Hooft.
This gauge field will be anti-self-dual exactly when the scalar curvature s of g

vanishes. We find the scalar curvature is
s = ;6p—3DEp )

where Og = (8/8x)? is the usual Euclidean Laplace operator. Therefore the gauge

field At is anti-self-dual if and oenly if

Ogp =0.
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2.5 Calorons in the CF’tH ansatz

't Hooft considered solutions to the Laplace equation of the form

for some A; € R and distinct a; € RY. The resulting gauge fields were instantons
with charge N. The points a; have the interpretation of instanton locations and
the numbers )\; of instanton sizes. A larger class of solutions, intreduced by Jackiw,
Nohl, and Rebbi in [JNR77], are

N+1

2.14

which also give rise to charge N instantons.
Harrington and Shepard [HS78] considered a generalisation of 't Hooft’s ansatz,

where the a; are arranged in an infinite periodic chain. If one takes

a; = (27Tj/[.l,0, O'; 07 0), A] = )‘/\/ITO

then p takes the form,

2 & 1 X sinh(uer)
po £~ |z —asf N 2r cosh(por) — cos(poz®)

(2.15)

The resulting gauge field is a caloron with constituent monopole charges (1,1) and

masses (0, 1o). More generally, consider the function

ARPY; sinh(por;)

. v
p=1+ ;z: 2r; cosh(uoT‘J) - COS(.UJO( tJ))

(2.16)

where A; > 0, r; = |x — a;| for a; € R3, t; € S* and the points (t;,a;) are distinct.
This generates a caloron with censtituent monopole charges (N, N) and masses
(0, o), and will be called a Harrington-Shepard (N, N)-caloron. A Harrington-
Shepard caloron is normally thought of as consisting of N (1,1)-calorons, having
locations (t;,a;) and scales \;. These can be seen as distinct lumps of action density
when the scales are small compared with the period, 27/ug. When the period

becomes infinitely large, one recovers the instantons of Corrigan, Fairlie and ’t Hooft.
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It is interesting to consider the opposite limit of Harrington-Shepard calorons,
that is, the limit where the scales are large compared with the period. Letting all
of the A; — oo in equation (2.16) is equivalent to removing the constant term, since

the gauge field is unaffected by constant rescalings of p. We are left with

N A2

smh(u()r])
, - — 2.1
p= z « 2r; cosh(por;) — cos(po(z° — t;)) 217

This function generates genuine calorons, which will be called JNR calorons, owing
to the resemblance between (2.17) and the Jackiw-Nohl-Rebbi ansatz for instantons.

The z°-component of a JNR caloron gauge field at infinity has the form

Ag = x—Ja—] (—l + O(r_:’))

T 2i T
for large . Therefore these calorons have k; = =1 and y; = 0.

One can evaluate ko for these calorons by evaluating the left hand side of (2.7).
This is done using a method due to Jackiw et al [JNR77]. Since the gauge field
is anti-self-dual, the inequality (2.3) is saturated. In the CFt’H ansatz the action
density is given by Tr(F,zF*?) = OOIn p [JNR77] (except at the points where p is

singular). Therefore we have

/ Tr(FAF)= —-l/ 00 In p diz, (2.18)
R4 R3xS1

where the right hand side must be evaluated while ignoring singularities. To remove

the singularities, we replace p by

A2
Z 5—‘7— sinh(por; H(COSh(MOTi) — cos(po(z® — t))).
= oy

This does not change the value of the integral, since OO In(cosh(uor;) — cos(puo(z® —
t;)) = 0 away from the singularities of p.
When r is large, ¢’ has the approximate form
N ‘
AN-1 N\ Nuor)
'x [2-N-157 p2 ) xRN Hor)

Since Oln(rp'/ exp(Nuor)) = O(r~2) we have,

Olng = (8,2 + %8,) (Nuor —Inr) + O(r~?)

2N po
r

+0(r™?).
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This large r expansion is used to evaluate (2.18). Since OO0 In p’ has no singular-

ities, we may apply Stokes’ theorem, obtaining

/ TrHFAF) = —: lim 8,01n p'|,—p R2dpda”
']R4 2R—'°° S2x St
1. 2N _
= —= lin 2220 1 O(R%) ) R?dyda”
Rl—Ivrolo §2xS1 ( R2 +O( )) R 202
1 . e
= 5 jm (2N po(4m)(27/ o) + O(R™Y))
= 8m?N.

It follows from (2.7) that kg = N. So we see that the JNR caloron (2.17) is an
(N — 1, N)-caloren, with constituent monepole masses (0, t).
Things are particularly simple when N = 1: the JNR (0, 1)-caloron generated
by
1 sinh(jsor)

- Zcosh‘(uor) - cos(uolafoj

has only one constituent monopole, so we expect it to be related to a 1-monopole
by a large gauge transformation. This result was in fact obtained long agoe by
Rossi [Ros79]; Rossi’s gauge transformation was an explicit example of a rotation
map.

There is a final limit which we will consider. In equation (2.17), one can send
one of the locations a; to infinity. Consider the limit |ay| — oo, Ay — oo such that
A% /(2lan|) — 1. Then we are left with a function,

=2 cosh(por;) — cos(po(z° — t;))

The resulting caloron is of course a Harrington-Shepard (N =1, N — 1)-caloron. So,
to summarise this discussion, we are able to obtain JNR calorons and Harrington-
Shepard calorons as limits of each other, and these limiting processes always reduce

the number of constituent monopoles.

2.6 The ADHM construction for instantons

The most comprehensive construction for instantons on R* is the ADHM construc-

tion. The ADHM method constructs instantons from selutions to a set of algebraic
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equations, called the ADHM equations. The construction is complete, in the sense
that every instanton can be obtained from a solution to the ADHM equations. The
ADHM equations are in general easier to solve than the anti-self-dual equations.
The process of constructing an instanton from ADHM data can be tricky, but can
be performed numerically if not analytically.

The ADHM data for a charge N SU(2)-instanton consists an N X N matrix of
quaternions M and an N-row vector A of quaternions. These are combined into a

single N + 1 x N matrix A,

A=
M

The N x N matrix A'A is required to be real and invertible.
Given a set of ADHM data, an instanton is constructed as follows. Let u(z®)

be an N + l-column vector of quaternions, and let x = 2%, for any point z* € R*
(where e, is the basis (2.11) for the quaternions). The vector u is required to solve
the equation,

0

A+ z| u(z)=0,
In

and the normalisation condition,
u(z) u(z) = e,.

Then the gauge field
Ax(z) = u'0su

solves the anti-self-dual equation.

2.7 The Nahm transform for monopoles

The Nahm transform for moenopoles is the analogue of the ADHM transform for
instantons. Solutions of the Bogomolny equation are obtained from solutions of a
first order ODE, which is in general easier to solve than the Bogomolny equation.

The construction is complete.
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The Nahm data for a charge k SU(2)-monopole consists of a set of four k x k
hermitian matrix-valued functions T*(s), defined for s € (—pu, ). These must satisfy

the Nahm equation,
-d_,ST —"L[T 7T]—§€jkl[T ,T]=0 (219)
for 7 = 1,2, 3, and the reality condition,
T*(—s) = T*(s)', (2.20)
where ! denotes matrix transpose. The boundary condition imposed is
Ri

Tj(s) = s+ p +O((s+ u)—z) (2.21)

where R’ are an irreducible k x k representation of the Lie algebra su(2).

A monopole is constructed from its Nahm data as follows. Set T = T%e, and
r = gle; for 27 € R®. Let U(s,2z?) be a k-column vector of complex quaternions,
that is, an element of C* ® H. Suppose that U solves the Dirac equation
d .. i ‘ ;
d—SU(s,ac’) = i(T(s)+ z)U(s,2’) (2.22)

and the nermalisation condition

, .
/ UtUds = ey. (2.23)
—p
Then the pair (A, ®) defined by
v LoU
. i
Aj /_#U 57 ds (2.24)
H
¢ = / isU'Uds (2.25)
-

are a monopole.
A Nahm data gauge transformation is a function g : [—u, ] — U(2) which acts

on a set of Nahm data in the following way:

Ti(s) — g(s)T(s)g™(s)

TO(s) = gls)T°(s)g™(s) 1% (s)g™(s).
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These gauge transformations preserve conditions (2.19) and (2.21). The reality
condition (2.20) is preserved provided g(—s) = g(s) ("denotes complex conjugation).
It is easy to see that two monopoles arising from gauge equivalent Nahm data are
identical. In fact that the Nahm transform is a bijection between the sets of gauge-
equivalence classes of Nahm data and gauge-equivalence classes of monopoles.
Note that gauge transformations can be used to set T° = 0, which is the more

usual form of the Nahm data.

2.8 The Nahm transform for calorons

The Nahm transform for calorons is similar to the Nahm transform for monopoles.
Again, the construction is complete, and provides a useful teol in the sense that
the Nahm equations are relatively easy to selve, and the construction can be imple-
mented numerically. The proof of completeness was initiated by Nye [Nye0l] and
completed by Hurtubise and Charbonneau [CH]. Here we will describe the Nahm

transform for SU(2) calorons

2.8.1 Nahm data

The Nahm transform is formulated in terms of the constituent monopoles of the
caloron. We begin with a circle R/poZ, which is divided into two intervals I, I, of
length 1, and v,. We let s be a coerdinate on the circle and take I) = (—u1, t1)
and Iy = (p1, po — p1)- There are two parts to the Nahm data, associated with the
intervals I, and their endpoints £pu;.

On each interval I, we have a set of four Hermitian m, x m, Nahm matrices,
T3 (s), where a = 0, 1,2, 3. These must satisfy the Nahm equation (2.19) and reality
condition (2.20).

The second part of the Nahm data depends on the difference m; — my. We will
only give the details for the two cases which will be relevant to our purpeses. The
first case is when m; — mgy = 0; we will write (m;, my) = (N, N). Then the second
part of the Nahm data consists of an N row vector W of quaternions and a purely

imaginary unit quaternion 7 (by “unit quaternion”, we mean 77 = 1). The Nahm
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data are required to satisfy the matching conditions,

T -T{ () = R(e;W AW) (2.26)
Ti(—p) — Ti(po — p) = iR(e; W' PW) (2:27)

for j = 1,2, 3, with P, := (eg+%7)/2 and P, := (eg~i7)/2 elements of C Qg H. Here
R refers to the real quaternionic part. In general ' will act on complex-quaternionic
matrices by transposing and taking quaternion and complex conjugates; so in the
preceding formulae, W' just denotes the quaternionic-conjugate transpose of W.
The second case we will consider is m; — my = 1; we will write (mi,mp) =
(N, N —1). In this case the second part of the Nahm data is an N x (N —1) complex
matrix X satisfying XX = Iy_,. The Nahm data must satisfy the matching

conditions

X'T{(wX = T(w) (2.28)
X'T(-mX = T(po— ) (2.29)

for j = 1,2, 3, where~denotes complex conjugation.

2.8.2 Nahm transform

Now we will explain how to ebtain a caloron from its Nahm data. Let Uy(s, z%),
p = 1,2, be two m,-component column-vectors of complex quaternions, defined for
s € I, and (z*) € R* x S'. Let z = z%, and let T, = T*e,. Then (T, Up, z) must
satisfy the Dirac equation (2.22).

In the case (m;,my) = (N, N) we must also define a single quaternion V(z?),

and U, and V must satisfy the matching condition,

Us(p, z%) — Uy (p, 2%) = WPV (z?) (2.30)
Uy(=p, %) — Us(pto — p, 2%) = iWTRV(2%). (2.31)

Up and V must also satisfy the normalisation condition,

2

> | UlUpds + VIV = e (2.32)

p:l 'Ip
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Then the caloron gauge field is determined by

oy, av
Z/ Up 5 Lds +VIo—. (2.33)

In the case where (m;,my) = (N, N — 1), there is no need to define V. The

matching conditions (2.30), (2.31) are replaced by,

XMW, 2%) = Upl2°) (2.34)
XU (—p,x®) = Us(po — p, z%). (2.35)

The normalisation cendition and the equation for the caloron gauge field are the
same as in the (IV, N) case, except that terms involving V are omitted.

As we have seen with monopoles, Nahm data are defined up to gauge equiva-
lence. The action of gauge transformations is slightly complicated by the boundary

conditions, so we give the details only for the cases we shall study later.

2.8.3 Gauge transformations: (2,2) case

There are two kinds of gauge transformation present for (2,2) Nahm data. The first
is a U(2) gauge transformation, which is defined by a U(2)-valued function g(s).
This satisfies a reality condition, g(—s) = g(s). g acts in the following way:

Tis) = g(Ti(s)g™ (5
Ts) = go)Ts)g™(s) ~ i ()97 (s)
W — PWg'(u)+ PWg(~p)
Up(s) = 9(s)Up(s)
V. —» V.

The second kind of gauge transformation is a quaternion gauge transformation,

defined by a unit quaternion h. The action of h on the Nahm data is

V - hV
W — hW

T — hthl,
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leaving T and U, fixed.

It is straightforward to check that these gauge transformations map sets of Nahm
data to sets of Nahm data, and leave the caloron gauge field unaffected. Given a
set of Nahm data, it is always possible to make a U(2) gauge transformation and a
translation in z° so that
T)(s) = %(aacos 6 + o' sin6),
with constants £ € [0, 7] and @ € [0, 27), and where o7 are the Pauli sigma matrices.

By gauge rotation, one can then fix § = 0.

2.8.4 Gauge transformations: (2,1) case

We will divide the (2, 1) Nahm data gauge transformations into two types. There are
U(2) gauge transformations g;(s) defined for s € I, and U(1) gauge transformations
g2(s) defined for s € I,. These must satisfy the reality condition g,(—s) = gp(s).

Their action is as follows:

Ti(s) = gp(s)T3(s)s;(5)
Ts) = gpl)T2A5)g5(5) — iS22 ()05 (s)

Using gauge transformations and z° translations, it is always possible to make
X = (sinfB/2, —cos B/2)t and fix TY = 0 and TY = (£/v1)0? for some constants
¢ € [0,7] and B € [0, 2m).



Chapter 3

Euclidean calorons with axial

symmetry

There is a natural action of SU(2) on gauge fields over R*, where the group acts
by rotation on R® and by the adjoint representation on the Lie algebra. This
symmetry was the basis of Witten’s construction of multi-instantons [Wit77], and
many monopoles have been found invariant under the action of SU(2) and its sub-
groups [HMM96, HS96b, HS96a, Sut97]. Therefore it seems an important task to
look for calorons invariant under the action of SU(2) and its subgroups. In this
section, we will show how to obtain Nahm data for calorons invariant under the
action of a subgroup G of SU(2), and we will give explicit Nahm data for (2, 2)- and
(2, 1)-calorons which are invariant under the action of U(1) ((1, 1)-calorons have al-
ready been completely classified [KvB98,LL98]). At the end of the section, we shall
investigate how these calorons are related to known instantons and monopoles.
The results of this section were published in [Har07]. This work is closely
related to that of van Baal and co-workers [BvB02, BNvB03, BNvB04, N05] and
Ward [War04b], who also construct high charge calorons using the Nahm transform.
In fact, most of the calorons we construct here have been studied before, but our
use of representation theory is novel. The representation theory allows us to classify
families of U(1)-symmetric calorens, and te prove that the calorons constructed here
are the only ones with the stated charges and symmetries. U(1)-symmetric calorons

have also been studied by Chakrabarti [Cha82, Cha87|, using a quite different ap-

31
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proach.

3.1 Action of SU(2) on calorons and Nahm data

The action of SU(2) on calorons is as follows. Let R be an element of SU(2), and
let Ry denote its image under the fundamental representation. Let Rj3 denote the
image of R in the irreducible 3-dimensional representation of SU(2), so that the
entries of R3 are real. If X = (z!, 22, 2%), we can write (R3x)? = RiFz*. We have

Ryo'R;! = R';j o*. Then the action of R on a caloron gauge field is

Aj(z%,x) — RYRyAi(«°, Ry'x)R;}
Ap(z%,x) — RyAo(z°, R3'x)R;".

A caloron is said to be G-symmetric for some subgroup G C SU(2) if it is invariant
under the action of R for all R € G.
If a caloron is G-symmetric, we expect its Nahm data to be invariant under some

action of G. Consider the action,

T! — RIRNT!Ry (3.1)
T! — RNT)Ry (3.2)
W' — Ry(R.WIR;Y (3.3)
T = R2/7’R2_,1, (34)

where R — Ry is a real N-dimensional oerthogonal representation of G and R = Ry
is a 2-dimensional unitary representation of G. In the above expressions, By and Ry
are acting on quaternions, which is made possible using the standard representation
of the quaternions, ¢y = I, and e; = —io?. If a set of Nahm data is invariant
under this action for seme choice of representations Ry, Ry, and for all R € G, the
corresponding caloron will be G-symmetric.

Similar constraints can be derived for the Nahm data of an (N, N — 1) caloron.

In the case N = 2, a caloron will be G-symmetric if its Nahm data is invariant under
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the action
T! — R}*RyTFRy (3.5)
T? — RNT{ Ry (3.6)
T — RYTE (3.7)

for all R € G, where Ry is the image of R under some real 2-dimensional orthogonal
representation of G.

So G-symmetric calorons can be found by constructing Nahm data satisfying
the above symmetry conditions. To find this Nahm data, we first must choose
the representations Ry and Ry so that the symmetry conditions have non-trivial
solutions. In terms of representation theory, we must choose representations Ry and
Ry of SU(2) so that the induced representations of G (acting on the Nahm data)
have trivial subrepresentations. For each such choice of Ry and Ry, we attempt te

solve the Nahm equations and matching conditions with G-invariant Nahm data.

3.2 U(l)-symmetric (2,2)-calorons

We will look for (2,2)-calorons invariant under the action of the U(1) subgroup of
SU(2) generated by o2. Let P, denote the trivial representation of U(1), and let Q

denote the real 2-dimensional representation,

coskf sin k6
—sinkf coskf

Qr : exp(if0?)

for k € Z. Note that Qy = 2P, and Q_; is equivalent to Q. We will need to

consider tensor products of such representations; we have

Qr ® Q1 = Qry1 © Qx—1-

Let us consider the representations in (3.1)-(3.4). We have (R — Rp) = @, and
(R — R3) = Q3 @ P,, where P, acts on z? and @, acts on the subspace spanned by
z! and z3. The representation Ry is 2-dimensional and real, so it must be of the
form Ry = Q(R) for some k € Z. We can make quaternion gauge transformations

so that Ry = Q;(R) for some [ € Z.
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Then the representation acting on the 2 x 2 Hermitian matrix Tz? in equation
(3.2) is
Q2k @ 2F, 0

where Q9. acts on the subspace spanned by ¢! and 02, and 2P, acts on the subspace
spanned by o2 and the identity matrix 1,. The representation acting on Tg in
equation (3.1) is a tensor product of this representation with the representation

(R — Rg) acting on the index j. So T/ is acted on by

(Q2® Ry) ® (Qar © 2F) = Qayar © Qo © 2Q2 © Qar © 25,

In equation (3.3) there is a representation acting quaternions, ¢ — Q;(R)q@Q:(R)™!.
One can show that this representation is equal to Q14; @ @1, where (14 acts on
the subspace spanned by e; and e3 and Q;_; acts on the subspace spanned by e

and e;. So the representation acting on W in (3.3) is

Qk @ (Q141 D Q1-1) = Qrti1 D Qr—i—1 P Qrri-1 D Qr—141-

We see that the trivial subrepresentations of these three representations are

largest when (k, 1) are equal to (0, 1), (£1,0), or (£1,£2). As we shall see below,

the Nahm equations can be solved in two of these three cases.

3.2.1 Ry trivial

First we consider the case (k,l) = (0,+£1), so that the representation R — Ry is

trivial. The invariant Nahm data must take the following form:

T, = (§/w)o’
T = 0
Ti(s) = exp(iTys)Y;exp(—iT}’s)
Ti(s) = exp(iT;(s — po/2)) Yz exp(—iT3(s — po/2))
A(cos(B/2)eo, sin(/2) exp(aes))  1=1

Aei(cos(8/2)eq, sin((/2) exp(aes)) 1= -1

T = €9

W =
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for p=1,2and j =1,3. Here A > 0, B € [0,27) and a € [0, 27) are constants, and
we have used gauge transformations and coordinate translations to fix the form of
Tz? in terms of the constant £ € [0,#]. Y; and Y, are Hermitian matrices, which are

constant as a consequence of the Nahm equation (2.19). We will write
Y, =Y 1+ Y],

and the reality condition (2.20) implies that Y? = 0.
This Nahm data now solves the Nahm equation and the reality condition, so

it only remains to consider the matching conditions (2.26), (2.27). After some

rearrangement these take the form,

- = £X°/4
Y2 -Y2 = +(\%/4)cosf (3.8)
Yy cos(€vy/ug) — Y cos(€vy /i) = Z£(A\%/4)sinBcosa

Yy sin(éva/po) + Y7 sin(€vi/po) = (A?/4)sinBsina,

where + corresponds to the choice [ = £1. In the case where & # 0, the solution of

the matching conditions is,

Y =0
/\2
0 _ +2
Yz 4
Y13' = X
2
Y] = x+=—cosp 3.9
2 4
2 )\_‘i"Sin'ﬂ sin(a F €va/ o)
! 4 sin& )
v = Mesinginfa ke
2 4 siné

Here x is a real number and we have fixed Y = 0 by making an z-translation. We
see that this family of calorons depends on five parameters: A, x, @, 8 and €. In

the case where £ = 0, the solution of the matching conditions can be parametrised
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in the following way:

Yy = 0
0 ’\2
YY) = +=
2 4
P = «x
)\2
Y? = x:l:zcosﬁ (3.10)
Y} =0
2
w==izmm,

with o = 0. Here the gauge has been chosen so that Y;! = 0. This corresponds to a
three-parameter sub-family of the five-parameter family.

The expressions (3.9), (3.10) remain valid when one of the monopoles is massless,
that is, when v, = 0. In particular, when v, = 0 and a = 0, the caloeron obtained
via the Nahm transform is a Harrington-Shepard (2, 2)-caloron (2.16), with A; =
Acos(0/2), A2 = Asin(8/2), t; = —t2 = —§/po, and a3 = —ag = (0, —x, 0).

The Nahm data (3.9), (3.10) were first studied in section 3.2 of [BvB02] , where
a numerical Nahm transform was also implemented. There, the (2, 2)-calorons were
analysed in terms of their four constituent monopoles. The consituent monopoles
appeared as lumps of action density, localised in R? and smeared out over S*. These
lumps were located on the z?-axis, at the points * = yT, where y;, yi are the
eigenvalues of Y; and v, , y5 are the eigenvalues of Y5.

Interestingly, these eigenvalues satisfy the inequalities,
v <¥ <y <vy;. (3.11)

A proof of this is as follows. Let Y, denote the traceless part of ¥}, and let || 4| :=
v/ — det(A) for any traceless hermitian matrix A. Then the eigenvalues of Y, are

1 ,
v = =Te(Y,) £ ||V,

P2
and (3.11) is equivalent to
1,
"D(v-) 2 1Y~ 1Y)
1 '
"D - > Y- I (3.12)

1 ! /]
§TT(Y2;Y1) < IYE -+ Y2l
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It follows from the matching conditions (3.8) that (1/2)Tx(Yz — Y1) = ||Z2 — Zi||,

where
Z, = exp(€1n0®/2u0)Y| exp(—€v10%/2u0)
Zy = exp(—£va0®/2u0)Y; exp(Eva0®/2u0).
It is also true that ||Z,|| = ||Y,||, and this can be substituted to the right hand

sides of the inequalities (3.8). Thus (3.12) can be shown to follow from the triangle
inequality for || - ||.

3.2.2 Ry non-trivial

When k = +1 the representation Ry is not trivial. We will only consider & = 1 here

(k = —1 is similar up to minus signs); the invariant Nahm matrices must take the
form

TY(s) = hy(s)o® +by(s)1s

Tis) = fy(s) exp(iy(s)o?)o’

sz(s) = g,,(s)a2 + ay(s)1,

T(s) = fy(s)exp(ify(s)o®)o®

for p = 1,2, where f;, gp, hp, 0p, a,, b, are real functions of s € I,,. By gauge transfor-
mations, we can make Tz? = 0. As we shall see, the Nahm equations and matching
conditions can be solved when [ = 2, but the cannot be solved when [ = 0. When
[ = +2 the invariant forms for W and 7 are

Aexp({aez)(eg,e2) =2
b e e

Aexp(aez)(e;,e3) = =2
T = €3

where A > 0 and a € [0, 27). One can make a = 0 by gauge transformation.
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The Nahm equations for this invariant Nahm data are

fo+2fogp = 0

b =0
g+2ff =0
a, = 0,

and the matching conditions are

fa(11/2) cos(02(11/2)) = f1(11/2) cos(01(11/2)) = ©
fo(11/2) sin(62(v1/2)) — fi(v1/2) sin(0:(11/2))
92(11/2) —g1(n/2) = X*/2
)

(12(V1/2) —al(ul/Q = :i‘:A2/2,

= 0

where + corresponds to the choice | = +2. The Nahm equations have a trivial
solution where f, = 0, and g, is constant. Since g, is odd, we must have g; = 0,
g2 = 0. It then follows from the matching conditions that A = 0, so there are no
calorons in this case.

When f,, is non-zero, 6, and a, must both be constant. The most general solution

to the Nahm equations for even f, and odd g, are

fi(s) = (D1/2)sec(Dys)

fa(s) = (D2/2)sec(Da(s — po/2))
91(s) = —(D1/2)tan(D;s)

92(s) = —(D2/2)tan(Da(s = po/2))

for real constants D; and D,, which can be assumed to be positive without loss of
generality. In order that these functions remain finite, we must have D; < /v, and

Dy < w/v,. The matching conditions are easily seen to reduce to,

6, = 6 (3.13)

Dy sec(Davyf2) = Djsec(Dyn/2) (3.14)

ag—a; = £A?/2 (3.15)

Dy tan(Dyv1/2) + Dytan(Davy/2) = A2 (3.16)
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Solving the matching conditions amounts to solving (3.14). This equation ad-
mits a one-parameter family of solutions, since the functions D, — D, sec(Dpvp/2)
are bijections from the intervals (0, 7/11) to (0, 00), hence invertible. However, an
explicit parametrisation of the solutions is not known. Given a solution (D, Ds) of
(3.14), the constants A, a;, ay are determined by (3.16) and (3.15). Notice that a,
and ay are only determined up to addition of a constant, and that this constant can
be fixed by z-translations. Notice also that #; (and hence ;) can be made zero by
gauge rotation. Therefore, this family of calorons depends on ene parameter, if the
position is fixed.

These expressions remain valid in the case where one monopole is massless (v, =
0); such calorons were considered in [War04b.

In the case where v; = v, the family of calorons considered here forms a subset
of the “rectangular” configurations of Bruckman et al. Specifically, in section 6.3
of [BNvBO03] an exact analytic solution of the Nahm equations with v, = v, is given in
terms Jacobi elliptic functions. Our calorons correspond to the case where the elliptic
parameter is zero. Bruckman et al. did not consider the case where v; # v5. In
reference [BNvBO04] the action densities of these calorons were constructed, making
use of a numerical implementation of the Nahm transform. The action density is
concentrated in two rings in R3, smeared out over S. The rings are centred on the

z2-axis and lie in planes perpendicular to the z2?-axis. The location of each ring is

z? = —a,. The rings are identified with the two constituent 2-monopoles.
So far we have only considered Nahm data for which | = 2. We also need to
consider the case | = 0; it will turn out that the Nahim equations cannot be solved

in this case. W takes the form
W = A\g(1, —=e3)

where A > 0 and q is a quaternion of unit length (q'q = 1). Since R is trivial, there
is no restriction on 7. The solution of the Nahm equations proceeds in much the

same way as before, but the matching condition (3.16) is replaced by
—D2 t&n(Dg/VQ) —_ D1 tan(Dl;V1/2) = /\2.

This can not be solved for nonzero D; and D,, because the left hand side is less
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than or equal to zero. Therefore no calorons are obtained in this case.

3.3 U(l)-symmetric (2,1)-calorons

Now we will look for U(1)-symmetric (2, 1)-calorons. We start by considering the
representations acting on the Nahm data in (3.5)-(3.7). We set Ry = Qi(R); then
representation theory calculations tell us that we only need to consider invariant
Nahm data in the cases k = 0, 1.

When & = 0 (and Ry is trivial), the invariant Nahm data must have T, = 0 and

T3 = 0 for p = 1,2. We choose a gauge so that 77 = 0 and

W = (¢/n)e d
¥ = sin((3/2)
— cos(3/2)

for £ € [0, 7] and 8 € [0, 27). We write 77 in the form,
T2(s) = exp(iTYs)Y exp(—iTs),

where Y is a Hermitian 2 x 2 matrix. The Nahm equations imply that ¥ and T2
are constant. We write Y = Y%1, + Y707, and the reality condition (2.20) implies
that Y2 = 0. The matching conditions (2.28), (2.29) for this Nahm data are,

T2 =Y%—-Y3cos B3 — Y'sinfBcos&.

We choose to fix Y® = 0 by making an z?-translation. Then we are left with a
four-parameter family of calorons, parametrised by £, 8, Y! and Y3. Note that
when £ = 0 the gauge is no longer fixed, so & = 0 corresponds to a two-parameter
subfamily. This Nahm data has not been considered before in the literature. We
expect that there is some overlap between this family of calorons and those studied
by Chakrabarti in [Cha87).

These expressions remain valid in the case where the 1-monopole becomes mass-
less, v = 0. In particular, when v = 0 and Y! = 0, the calorons obtained
from this Nahm data are JNR (2,1)-calorons (2.17), with ¢, = —t; = =&/,
a, = —a; = (0,-Y30), \; = cos(8/2) and Ay = sin(3/2). On the other hand,
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when the 2-monopole becomes massless, the caloron is just a 1-monopole. This is
because, when 4 = 0, a caloron with k = 1 can be gauge rotated to a caloron with
k=-1.

By analogy with (2,2)-calorons, we expect the constituent monopoles of these
(2, 1)-calorons to be located on the z2-axis with z?-coordinates given by the eigen-
values of the matrices 72 and TZ. If we denote the eigenvalues of T2 by y; < yf,

and write y, = TZ, then one can show that
i <y <yf

This should be compared with the constraint (3.11) on the monopole locations for
the family of (2, 2) calorons with Ry trivial.

We should also consider invariant Nahm data with ¥ = +1. However, no new
calorons are obtained this way; the only solutions to the Nahm equations correspond

to a subset of the Nahm data found for k£ = 0.

3.4 Large scale limits

The large scale limit of a (1,1)-caloron is a 1-monopole [Ros79, LL98]. For higher
charges, the large scale limit of a caloron may be a monopole [Cha87], or it may
be a caloron with constituent monopoles of unequal charge (as was the case for the
Harrington-Shepard calorons). In this section we will take large scale limits of the
U(1)-symmetric calorons constructed above.

As was observed in [LL98] for charge 1, taking infinite scale limits is the same as
sending monopole locations to infinity. There are a limited number of ways of doing
this for (2,2)-calorons. Either we send a 2-monopole to infinity, leaving behind a
(2, 0)-caloren (that is, a 2-monopole), or we send a 1-monopole to infinity, leaving a
(2, 1)-caloren. Since for the U(1) symmetric 2-monopoles, the representation Ry on
the Nahm data is non-trivial, one would expect the large scale limit of a (2, 2)-caloron
with non-trivial Ry to be a 2-monopole. One would anticipate that (2, 2)-calorons
with Ry trivial have a (2, 1)-caloron as their large scale limit, for similar reasons.

We will see that these predictions turn out to be correct; we will also show that
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the large scale limit of a symmetric (2, 1)-caloron is a (1, 1)-caloron. We note that

similar limits have been considered previously for monopoles [CW03].

3.4.1 (2,2)-calorons with Ry non-trivial

First we consider the family of (2,2)-calorons with Ry non-trivial, described in
section 3.2.2. The large scale limit will be A — oco. From equation (3.15) we see
that as — a3 — Zoo in this limit. Recalling the interpretation of a; and a; as
2-monopole locations, this means that the separation of the monopoles tends to
infinity. We will fix the first monopole at a; = 0 so that as — 4o00. This procedure
is illustrated in figure 3.1, where we have represented each constituent 2-monopole
by a ring.

From equation (3.16), A — oo implies that D; — 7/ or Dy — 7/v,. But frem
equation (3.14), D; — /v, if and only if Dy — 7/vs,. We conclude that, in the
limit where A — oo, the Nahm matrices on the interval I, diverge, while the Nahm

matrices on the interval I; = (—u, #) must converge to

T? — —(mw/p)tan(ms/2u)o?

T! — (n/p)sec(ns/2u)o? for j =1,2.

This is just the Nahm data for a 2-monoepole with mass v; = 2u.

3 3

- U 5 - X U X
Figure 3.1: The large scale limit of a (2, 2)-caloron with Ry non-trivial.

3.4.2 (2,2)-calorons with Ry trivial

Now we consider the family of (2, 2)-calorons with Ry trivial, described in section

3.2.1. Recall that the eigenvalues yf and yZ of Y; and Y, were interpreted as the
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four constituent monopole locations. Our large scale limit will send only one of
these four eigenvalues to infinity. We have illustrated this procedure in figure 3.2:
the four constituent monopoles are represented by balls on the z%-axis; the white
balls have locations 22 = yi* and the black balls have locations z2? = y3.

We consider the case [ = 1. In terms of the parametrisation given in (3.9), the

eigenvalues are

- \/; 4 A4 sin(6) s — v/ )

o = 16 sin? £

sin?(8) sin*(a + €11/ o) ) |

sin? ¢

A2 A? At -
+ . 2 i 2 coc2 A <
Ys 4:i:\/x +x2cosﬁ+16(cos B+
yE will stay finite in the limit where A — oo and a — £vy/ g, such that

_ X2 sin(B) sin(er = v/ i)
= A—o00,a—Eva /o 4 SiAIlE

is finite. In this limit, we have

Y7 — xo®+no!

vy

— 00
Yy, — -—mncossinf = xcosf
sin(3/2)
~ cos(8/2)
where v~ is the eigenvector of Y3 with eigenvalue y, .
In order to get sensible Nahm data in this limit, we need to choose a gauge where
T2 is constant and diagonal. We make the gauge transformation g(s) = gag1(s),

where

exp (iiﬁsas‘) sel;

Ho 1
exp (_Zﬁ% (s — 1) 03) sel,

makes T = 0 and g, is the matrix which diagonalises Y,. Now we take the large

gi(s) =

scale limit, discarding the part of Y5 which becomes infinite, and undo the gauge

rotation g;. We are left with Nahm data,
TY(s) = (&/m)d’
T2(s) = exp(iTs)(xo> + no') exp(—iT)s)

T(s) = —ncos€sinf — x cosp.
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This should be compared with the (2,1) Nahm data found in section 3.3. We see
that this Nahm data is exactly what we had before, with Y1 = n and Y3 = x and
X = limv~ = (sin(3/2), — cos(8/2))".

3 3
—
O @ x2 -O- sz
X‘1 x1

Figure 3.2: The large scale limit of a (2, 2)-caloron with Ry trivial.

3.4.3 (2,1)-calorons

Finally, we show that the large the large scale limits of the (2, 1)-calorons described

in section 3.3 are (1, 1)-calorons. We begin with the eigenvalues of T7? and T3:

gt = YO+ /(YT)2+ (Y3)?
y2 = Y°—Y3cosB~— Y'sinfBcost.

Recall that these are interpreted as constituent monopole locations. We can take a
limit where Y° — 00, Y3 — 00, Y! — 0 and # — m, such that 3" — oo and y; and
y; stay finite. This is the large scale limit of the (2, 1)-caloron. To obtain sensible
Nahm data in this limit, one should choose a gauge so that T? is constant and
diagonal (which can always be done). By taking the large scale limit and discarding
the part of this matrix which tends to infinity, we are left with 1 x 1 Nahm matrices
T? = limy;, T = limy,. These are Nahm matrices for a (1,1)-caloron, and the

Nahm data is completed by taking W = v/2lim(yz — v7).

3.5 Large period limits

In this section we will consider large period limits of calorons. One can show that

the pg — 0 limit of caloron Nahm data is ADHM data for an instanton, so the large
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period limit of a caloron is an instanton. We will study the ADHM data for the large
period limit of the (2, 2)-calorons constructed earlier; we will see that two distinct
families of U(1)-symmetric 2-instanton are obtained. Previous, large period limits
of calorons had been considered only in the case where one constituent monopole is
massless [War04b).

First we consider Nahm data for an (N, N)-caloron. Let v}, v} € [0,1] such that
vy + vy = 1. Suppese that ¢ > 0 and that for each uy € (0,¢€), (T, T2, W)( 1)
are a set of Nahm data which solve the Nahm equation and matching conditions
with v, = pov,. We will assume that for each uo € (0,€), Ty and T have Taylor
expansions which converge to 17, T; on the intervals Iy, I.

By considering the Nahm equation (2.19) at s = 0, uo/2, and substituting the
Taylor expansions for T}, into the matching conditions (2.26), (2.27), we arrive at

the following four equations, true for all ug € (0, €):

I(Ti(0)) = —iS(TL(0)T1(0)")
S (Ta(ro/2)) = —iS(Tz(no/2)Ta(ko/2)")
23 (Ty(mo/2) = Ta()) + Okg) = —iS(W'TW)
~S (N T1(0) + ¥4T5(wo/2)) + Omo) = —iS(W'W)/ho.

In addition, we suppose that the gauge has been chesen so that R(77) and R(T3)
are constant on the intervals I, and equal..

It follows from the above that if the matrix

A := lim ( Wivio )
T:(0)

exists, then it satisfies the ADHM equation, S(AtA) = 0.

In a similar way, if (U, Uy, V) are solutions of (2.22)-(2.31) for the Nahm data
(T1, T3, W)(20) which are well-approximated by their Taylor expansions, then

u(z) := lim ( V()
po—0 Ul('@, -'L')/\/N—O

solves (A+x)tu = 0 (if the limit exists). Also (2.32) implies that u'u = ey and (2.33)
implies that lim,, .o A, = u'8,u. Therefore, the whole of the ADHM construction

is recovered in a large period limit of the (N, N) Nahm construction.
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Now we consider the large period limit of the (2,2)-calorons with Ry trivial
(section 3.2.1). We let &' := §/po and X' := A/ /jio stay fixed as g — 0. Then the
ADHM matrix is

X cos(B/2)eg X sin(3/2) exp(aez)
A= E'eg — xe2 —\?2/(4¢") sin B sin aey
—X?2/(4€") sin Bsin ae, ~&'eg + xe2

when £ # 0, and
XN cos(3/2)eg XN sin(3/2)eg
A= —X€s2 0
0 Xez

when ¢ = 0.

To take the large scale limit of the (2, 2)-calorons with Ry non-trivial (section
3.2.2), we let X' = A/ /lig stay fixed as po — 0. In this limit, the matching conditions
(3.14), (3.16) are solved by D; = D, = v/2X. The ADHM matrix is

\/ieo \/562
AI
A=— —€3 —€

V2

=€1 €3

There is a very simple geometrical description of the 2-instanton moduli space,
due to Hartshorne [Har78, AM93]. Associated to each 2-instanton is a circle and
an ellipse in R* satisfying the Poncelet condition, which states that there exists a
one-parameter family of triangles whose vertices lie on the circle and whose edges
are tangent to the ellipse. There are two ways in which the circle and ellipse can
be invariant under U(1) rotations: either they lie in the axis of rotation (the plane

z! = 23 = 0); or they lie in a plane fixed by the rotation (z? =constant and

.'170

'=constant), such that the ellipse is a circle, and the centres of both circles sit on
the axis of rotation.

It is possible to relate Hartshorne’s description of instantons to the JNR ansatz
(2.14) [AM93], and it is not hard to obtain ADHM matrices for instantens in the JNR
ansatz [WW90]. Hence it is possible to compare Hartshorne’s description of U(1)-

symmetric 2-instantons with the ADHM matrices obtained above. It turns out that
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the instanton limits of the calorons with Ry trivial correspond to the Hartshorne
circle and ellipse lying in the axis of rotation, while the instanton limits of the
calorons with Ry non-trivial correspond to the pair of concentric circles centred on
the axis of rotation.

Finally, one can take the large period limits of (N, N — 1)-calorons. The large
period limit of an (N, N —1)-caloron is an (N — 1)-instanton; in particular, the large

period limits of the U(1)-symmetric (2, 1)-calorons are 1-instantons.

3.6 Summary and open problems

For the sake of clarity, we summarise the results of this chapter here. We looked
for calorons with monopole charges (2;2) and (2,1) which were invariant under
a particular action of the group U(1). We used some simple representation theory
techniques to classify all possible actions of U(1) on the Nahm data of such calorons.
We were able to solve the Nahm equations and matching conditions explicitly in all
these cases. We found one family of (2, 1)-calorons and two distinct families of
(2, 2)-calorons, which could be distinguished by the action of U(1) on their Nahm
data. Finally, we considered limits: one family of (2, 2)-calorons had the family of
(2, 1)-calorons as a limit, while the other had a family of 2-monopoles as a limit.
We also obtained two distinct families of 2-instantons as large period limits.

The techniques we illustrated here could easily be applied to calorons with dif-
ferent symmetries, for example polyhedral groups. This would be an extension
of [War04b], where polyhedral Nahm data was constructed for calerons with trivial
holonomy. One outstanding question is whether these calorons have any interest-
ing “hyperbolic” interpration. Instantons invariant under an action of U(1) may
be interpreted as monopoles on hyperbolic space (see the next chapter). Similarly,
U(1)-symmetric calorons may be interpreted as monopoles on the quotient of hyper-
bolic space by a particular action of Z — it remains to be seen whether monopoles

on this space have any interesting properties or applications.



Chapter 4
Hyperbolic calorons

In this chapter we shall consider anti-self-dual gauge fields on the space H? x R.
A finite-action anti-self-dual gauge field on this space will be called a hyperbolic
instanton, while a finite action gauge field on the space H? x S! will be called a
hyperbolic caloron.

The main reason to be interested in these spaces is that there is a conformal
equivalence,

H® x ' ~ RY\R2.
Since the anti-self-dual equations are conformally invariant, methods used to con-
struct anti-self-dual gauge fields on R* can be carried over to H3 x R, at least locally.
This equivalence was first exploited by Atiyah, who initiated the study of monopeles
on hyperbolic space [Ati87], as we shall now describe.

Let SO(2) act on R* with fixed subspace RZ%; then the action induced on H3x S is
just translation in the S! direction. Suppose that we have an instanton on R* which
is invariant under the action of SO(2). Then this instanton is equivalently described
as a translation-invariant gauge field on H3 x S?, which (by comments in an earlier
chapter) is the same thing as a finite-energy solution to the Bogomolny equations on
H3. Thus an axially-symmetric instanton defines a monopole on hyperbolic space.
However, the converse is not true: there exist hyperbolic monopeles which do not
map back to any instanton on R3 [Nas86).

To see why, one needs to look at the asymptotic value of the Higgs field of

the hyperbolic menopole. Like Euclidean monepoles, hyperbolic monopoles are
48
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required to satisfy ||®|| = p at infinity, for 4 > 0 a constant. Under the conformal
equivalence, the boundary 2-sphere of H? is identified with the subset R? C R*
fixed by rotations. When one maps a hyperbolic monopole back to R*, one needs to
check that no singularities appear on R2. It turns out that there will be a holonemy
singularity unless

where S is the radius of curvature of hyperbolic space.

So, SO(2)-symmetric instantons define monopoles on hyperbolic space, but not
all hyperbolic monopoles can be obtained this way. An obvious jump to make from
here is to consider instantons which are not necessarily SO(2)-symmetric. These will
define finite-action anti-self-dual gauge fields on H3 x S!, in other words, hyperbolic
calorons. This trick was exploited by Garland and Murray to study hyperbolic
calorons and their twistor data [GM89]. However, as in the monopole case, there is
a caveat: not all hyperbolic calorons can be obtained in this way. Specifically, the

hyperbolic calorons obtained always satisfy the condition:
g = 8w,

where (3 is the period of the caloron (the circumference of S!) and S is the radius
of curvature of HB3.

In this chapter, we will construct hyperbolic calorons for which 3 and S take
arbitrary values. Our method will be essentially to adapt standard ansitze on R*
to the hyperbolic case. We will find hyperbolic versions of both the Witten and
the CF’tH ansitze. We will construct hyperbolic calorons and instantons explicitly
in the Witten ansatz, and consider their relations with each other, with hyperboelic
monopoles, and with Euclidean calorons. The work appearing in this chapter was

published in [Har08]

4.1 Coordinates and metrics

The metric on R? is

ds% = dt* + dr? + r’dQ?,
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where t € R, » > 0 is a radial coordinate on R® and dQ? is the metric on S2. Let
y',y% y* be coordinates on the hyperbolic ball, satistying R := /3.(3/)? < S for

some S > 0. The metric on H® x R is

ds% = dr*+ é;dy'dy’

= dr? + A*(dR? + R%*d0?)
where 7 € R, and A := (1 = (R/S)?).
Let p = (S/2)arctanh(R/S). Then the hyperbolic metric is

2
ds% = dr? +dp® + (g) sinh? (2?“) dQ?. (4.1)

Let z = u+ir and let Z = r +4t. A pair (2,p) with p € $? determines a point in
H? x R, similarly (Z, p) determines a point on R*. We define a map M : H® xR — R*
via

M : (z,p) — (Z,p) = (tanh(z/S5), p).

Then it is easy to check that this map is conformal: M*ds% = £-2ds%;, where

-5 (con (%) - (2)).

The image of M is (R*\S?) U {oc}, where S? is the sphere r = 1, = 0 and oo

0z

denotes the point at infinity. Note that the map M is periodic in 7 with period S;

hence there is a conformal equivalence
(RY\S?)U {00} ~ H? x S!

when § = S7.

Note that some papers on hyperbolic monopoles use the equivalence R*\R? ~
H® x S! rather than that described here. The two are obviously related, since R2
can be mapped conformally to S% in R*. We work with 52 because it is fixed by an
obvious SO(3) symmetry.

Since HB3 is topologically equivalent to R3, the topological classification of hyper-

bolic calorons and instantons is as in the Euclidean case.
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4.2 Witten’s ansatz

4.2.1 Dimensional Reduction
We make the following SO(3)-symmetric ansatz for a gauge field on H? x R:
A= —2(Qa-+ $rdQ + (62 +1)QAQ), (4.2
where
Q = ¥(-i)
a = a,dpu+a.dr.
Here ¢1, ¢, a, and a, are real functions of  and 7 enly and §’ := y’/R.
Notice that Q% = —1, which implies that QdQ = —dQQ. Using this identity,
one can show that the field strength tensor of A is
F o= —3Qda-7(1-[67)dQAdQ (43)
~2 (Re(D§) + QIm(D)) A dQ.

where ¢ = ¢ +i¢y and D = d — ia.
The action of this gauge field is

1 1 L2\ 2 :
s=an [ (Gldall+ 5 (1= 168)" + 1DOIR ) Vi (4.4)
where
ds? = J?(dp®+dr?)
Vi = J 27 Adp
S . ou
J(p) = -é-smh?.

The factor of 47 arises because we have integrated over S2. We have not specified the
domain of integration for 7 and u, because this will change depending on whether
we consider hyperbolic calorons or hyperbolic instantons. In proving (4.4), we have

used the identities,
@iy = 2J7°
IQdQIE = 2J7°
14Q A QdQ/2IlF = J™*
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The action given in (4.4) is identical to the action for a 2-dimensional U(1) Higgs
model (or vortex model) with Higgs field ¢ and gauge field a on the manifold with
metric gp. (For instantons, the manifold on which the Higgs model lives is the

universal cover of the hyperbolic plane with a point removed).

4.2.2 Gauge transformations

We consider the gauge freedom allowed by the ansatz (4.2). The most general

SO(3)-symmetric gauge transformation is

) 5

where ) is a real function of u and 7. Consider the transformation g(A) = g~ 'Ag +

g~ 'dg of A. Using the identities,

(cos A + @ sin A\)dQ,

2
ol
N
o[
N’
2
O
[¢]
”
=)
—~
|8
Na——”’
|

exp (g) d (exp <_§29)) _ .;.(_de — sin AdQ + (cos A — 1)QdQ),

we find
g(A) = —--;—(Q(a 4+ dX) + (¢1 cos A — ¢o5in A)dQ + (da.cos A + ¢y sin X + 1)QdQ).

So, in the vortex interpretation, the SU(2) gauge field g(A) has Higgs field e**¢
and U(1) gauge field a + dA. Therefore the symmetric gauge transformation (4.5) is

equivalent to a gauge transformation e** in the vortex model.

4.2.3 Anti-self-dual equations
The Hodge star can be shown to act in the following way:
*g (dr AdQ) = (*pd7T) A QdQ
g (dpAdQ) = (adp) A QdQ
it (Qdr Adp) = (xn(dr Adu)) A (%dQ A dQ) .
Therefore the anti-self-dual equations é,re
D¢ = —*yiD¢ (4.6)
1—|¢> = —uda. (4.7)
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Alternatively, equations (4.6) and (4.7) can be derived directly from the vortex

model action (4.4), as we shall now show. The vortex model has a topological charge,

1
k= — d 4.8
2m 4 (48)

which is an integer. The topological charge k forms a lower bound for the vortex

action (4.4), by means of a standard argument [JT80].
We define

K = (¢ a + = (3¢ — ¢d9)

The identities,

dK = |¢|’da —iD¢ A Do
(ada+1—10")*Va = [daliVa + (1 = 6]*)*Va + 2(1 ~ |¢|*)da
D¢ +%xiDo||aVa = 2||Dgl[zVh + 2:Dp A D¢

imply that

1
5 = 4n [ 5 (6ada+ 1= 9P+ 2Dg + i) Vi

+47r/dK—4‘7r/da.

The first integral is positive, and vanishes when (4.6), (4.7) are satisfied. The second
integral can be evaluated using Stokes’ theorem, and vanishes if K decays sufficiently
fast. Therefore, we have S > —8w?k, with equality if and enly if (4.6), (4.7) hold.

Since (4.6), (4.7) are equivalent to the anti-self-dual equations, the above argu-
ment shows that

k= —C3.

Probably this formula could also be proved directly, but we have not done so.

4.2.4 Solution of anti-self-dual equations

Our method of solving the anti-self-dual equations (4.6), (4.7) is similar to the
method used by Witten in the Euclidean case. Notice that equation (4.6) is equiv-
alent to

Ds¢ =0, (4.9)
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where D; :=1/2(D,, +iD,). Let us chooese a gauge so that d,a, + d,a, = 0. This

allows us locally to write

- T'»b
ar = 0Oy

ay

for some real function 1. This gauge fixing condition still allows for gauge transfor-
mations e** for which A\ = 0.

Equation (4.9) is then equivalent to
az(ew¢) =0.

So e¥¢ must be a meromorphic function, which we denote f. Equation (4.7) now
looks like
Ap=J2— J 2% 2 f|2 (4.10)
We let
p=—9+n|f]-InJ,
then the identities A,InJ = —J~2 and Aln|f| = 0 imply that (4.10) is equivalent
to

N,p= e

This is known as Liouville’s equation, and the general solution is

1—|g|*)
p=—In ( 2|g|) +1n 3.4,

where g is some meromorphic function.

In order to avoid singularities in the gauge field, f and 0,g must have the same
zeros and poles in the right half-plane p > 0. So we may define a function h = 52%
which is analytic and non-zero in the right half-plane. Thus, the general solution to

the equations of motion and the gauge-fixing condition is

= In(1-|g[*) —In2J +In{h| (4.11)
¢ = e Yhi.g (4.12)
a, = =08, (4.13)
a; = Ou. (4.14)
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In these formulae, h is interpreted as specifying a choice of gauge, since it may be
removed by the gauge transformation e**, where A = (Inh — Inh)/2.

Therefore, given a meromorphie function g on the right half-plane, we may con-
struct a symmetric anti-self-dual gauge field using equations (4.11)-(4.14). In erder

that 1) remains finite, we must impose the constraints

l9° < 1when >0 (4.15)

lgI* = 1 when p=0. (4.16)

4.3 The Corrigan-Fairlie-’tHooft ansatz

Now we shall consider the hyperbolic analog of the CF’tH ansatz. Its derivation is
essentially an application of the methods of section 2.4.
Let g’ = p®ds%, where ds? is the metric (4.1) on H? x R. Orthonormal bases for

the tangent and cotangent spaces with respect to g’ are

10

1 0
% ey
' = pdr
v\ = Apdy'.

Let A denote the Levi-Civita connection of g/, which we write with respect to the

orthonormal basis: A = I' f;v7dy*. The non-zero coefficents of A are

2A 2A
rj = (aj Inp+ “S—z‘y]) Oik — (3k Inp+ §Uk> dij

1":’8 = AGyInpdy
I"g‘:o = - —j]iak lnp
e = %8,- In p.

where we have used the convention i, j, k € {1,2, 3}.
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Invoking the Lie algebra isomorphisms and splittings (2.10)-(2.13) , we find

1 o®
+ - __9.1 B
A = Aaa Inp (21) (4.17)
AF = [+A8Inpds + €jar | O lnp+%yk z (4.18)
§ (U] Hija ja k 52 2% : .

The scalar curvature s of the metric ¢’ is

_ 4
s=—6p° (an+ ﬁp) ,

where Oy is the Laplace-Beltrami operator for the metric ds%:

o, P 1(2Y, 2 .9
=52 " \ay) " As?Y By

Therefore A* will be anti-self-dual if and only if

4

4.3.1 Relation with Euclidean version

Recall that the hyperbolic metric is itself a conformal rescaling of the Euclidean
metric: ds% = £2ds%. This allows us to relate the above two constructions, and
provides a check of what we have done so far. Let ¢’ be a rescaling of the hyperbolic
metric, ¢ = p?ds};. Then we also have ¢’ = (p£)’ds%. As before the hyperbolic
gauge field of equations (4.17) and (4.18) will be anti-self-dual if and only if ¢’ has
zero scalar curvature. From the Euclidean version, we know that ¢’ has zero scalar
curvature if and only if

Og(£p) = 0.

We will show that this condition is equivalent to the previous condition, (4.19).

The following identity holds because ds? is a conformal rescaling of ds%:
ga‘DHp = §0gp + 20,p0,€.
We also have, for any functions f, g,

Og(fg) = fOgg + g0gg + 20,90,9.
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Therefore
Op(€p) = £€0pp + pOEE.
We now compute Og€. Note that for functions f depending only on r and ¢, we

have
1
Opf = ;Az(Tf),
where Ay = 82 + 8. If we also let A, = 82 + 92, then
oz |?

Dy = £ A,.
So using the relations,
?_2_2 = ¢2
A
_ Ssinh(2u/S)
= g ,

we calculate Og€ = 4£3/52. Therefore ¢’ is flat and A* is anti-self-dual if and only
if
4
Ugp = —ﬁp’

which is exactly the same relation as we had before (4.19).

4.3.2 Relation with Witten’s ansatz

We now have two methods for constructing anti-self-dual gauge fields on gy; the
Witten ansatz and the CF’tH ansatz. We show here that the two methods are
related: all selutions constructed in the Witten ansatz can also be expressed in the
CF’tH ansatz. This argument closely follows that of Manton [Man78].

Assuming that p depends only on p and 7, the solutions of the anti-self-dual

CF’tH ansatz can be written as:

~a o’
AY = —j Bﬂlnp(-z—z)

. 2AR o
A;' = (Aa,- lnp(Sja + ejakyk (8R Inp+ —ng—)) (Z) .
Meanwhile, the anti-self-dual SO(3)-symmetric gauge field is,
ap  O°
Ay = —9 a;ﬂl)%

~jaq +1 7, g i
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These two solutions will be identical if

Y = Inp (4.20)

¢ = —ARO Inp (4.21)
2AR?

¢2 = —RBRlnp—— (—'IST'F].) . (422)

If we assume that (4.20) defines p, equations (4.21) and (4.22) may be rewritten in

(i, T) coordinates:

¢ = —Joy
by = —JO — O,

These are equivalent to

ey = —2i0, ‘(Je"") .

Recall that 2Je¥ = (1 — |g)*) |h| and e¥¢ = hd,g, so this equation is equivalent to
hd,g = —id, ((1 - |g[*) Ih|) (4.23)
If we choose h = —i(g — 1)72, we find

.0 1
20 = i (55)

(1—1gl*) |0l

Il
I
p—t
|
|
’

11— |gf’
- - 4.2
p 2J| 12 (424
1 1 1
_ PR S 4.2
2J( - g9-1 g- 1) (4.25)

4.4 Hyperbolic instantons

The goal of this section is to construct hyperbolic instantons. We focus our attention
on instantons with SO(3) symmetry, and use the hyperbolic Witten ansatz (4.11-
4.16). In this context, a symmetric gauge field is completely determined by an

analytic function g satisfying appropriate conditions. To demonstrate that such a
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gauge field is indeed an instanton, it is necessary to prove that its action is finite.
It is this task which will occupy most of the discussion of this chapter.

We consider the function,

—2z) A—22/8 (4.26)

91(2) = exp ( S ) X+22/5
where A > 0 is a real parameter. One can readily verify that this function satisfies
the conditions (4.15) and (4.16). Therefore to prove that the gauge field generated
is an instanton, we need only verify that its action is finite. This is the first result
of this subsection. This being done, we calulate the charge of the instanton.

We first recall the form of the action in Witten’s ansatz, (4.4). In view of the

anti-self-dual equations (4.7), (4.9), this may be written to
’ 1 . v ,
S =4n / (— (1- 61%)* T2 + IDz¢|2> dr A dp. (4.27)
>0 2
The following proposition summarises the asymptotic behaviour of the terms in

this action.

Proposition 4.4.1 Let the functions ¢, a,, and a, be generated by the function
91(2) as in equations (4.11)-(4.14). Then the function (1 = |¢|?)/J(x) has a finite

limit as g — 0. In the limit |z| — oo, we have (for u > 0)

|¢2| = 0(|2") (4.28)
110l _ -2

o~ = Ol (4.29)

[D(;"S = 0(™). (4.30)

Finally, when p =0, D,¢/¢ = 0.

Proof: We choose the gauge h = 1 and calculate ¢ from g according to ¢ = e~¥9,g.
1 is calculated from equation (4.11):

S 2 22/8 + A]°
exp(—11) = 7 exp (—u) 2 2/ ‘ l ,

2 S/ 22/8)° + A2+ 2) + 2)2p(p)
where we have introduced p(y) := (21/S) coth(2p/S) — 1 for convenience. Mean-

while, 0,9, is given by
2 22\ (22/8)* = (A2 + 2))
8,91 = = = :
& seXp( S) (22/5 + \)?

In order to proceed, we need the following lemma.
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Lemma 4.4.2 The function p(u) satisfies the following:
(a) p(u) > 0as p— 0.
(b) p(p) = -1Vp20.
(¢) p(u)/sinh(2u/S) is bounded.
(d) p(u) = O(2]") as |2 = oo
(e) p(n) — 0 as p — 0, and p'(u) is bounded

Proof:

| (a) is easily computed. To see (b), simply note that coth(2u/S) > 1 for u > 0,

and hence p(p) > (2u/S) — 1. The function in (c) is finite in the limit 4 — 0 by (a),

and it is easily shown to converge as = oo. Therefore the function is bounded.
To show (d), consider the function

2 _ 2 (om 1) -
p(u) T =g <coth 5 1) 1.

This function can be shown to have finite limits as u tends to zero and infinity.

Therefore the function is bounded. We have

2p 2u
L _FP<pw)<E4+F
5~ F pln) < = +1

for some constant F', and (d) follows. (e) is a matter of computation. O
From the expressions preceding lemma, we have

|(22/5)* — (A +2))?|
122/8)” + X2 + 2) + 22p(p)

¢l =

The numerator of this expression is O(|z|?). Using part (b) of the lemma,

0< 1 < 1
T 122/87 + A2+ 20+ 2Ap(p) T [22/S)F + A2’

from which we see that
(122/82 + A2+ 2X + 2p(w)) " = 0 (1272 .

Equation (4.28) follows.
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From the expression for |¢| we compute

1- o _ 24X +2)) (2M/5) +4xp(p) (122/SI” + A2+ 2X) + 4X?p(u)?
Jw S sinh(2/S) (122/S12 + (A2 + 2X) + 2Ap(w)) '

We note that (24/S)/(sinh(24/S)) and p(u)/ sinh(2u/S) are bounded (the second
is part (c) of the lemma). This means in particular that (1 — |¢|?)/J(u) is bounded
as p — 0, as claimed. Using the boundedness of these two functions and part (d)

of the lemma, we have:

@/ _ o,
snnizers) 00D
p(r) 2", _ )
sinh(2u/S) ( S +A +2’\) = O(|2[")
P’ _ o,
sinh(2u/S) O(lzl)-

Combining these with earlier results proves equation (4.29).
From the expression for a, (4.13 and 4.14), we derive the identity D, = e¥8,e~.

Applying this to ¢ = e~¥9,g, one arrives at the formula,

D.¢/¢ = 3,(In 8,9 — 2¢).

From the expressions for v, and 0,¢; derived above, we have

2., _4YS 8z/s2+2,\p( )
—0,(2 -+ _ \p' (1)
) 2
0.(ndg) = — 245 L &/

S 2z/S+ A (2z/S) (A2 + 2/\)
It follows that
o (16p/SH (A2 +2)) + (162/5’2))\1)( )
(|2z/S| +)\2+2/\+2/\p(u))((2z/3) ()\2 +2)\))

22p' ()
122/82 4 X2 + 2X 4 2)p()

8z(ln azgl - 2"/]1) =

One may easily check that the first of the terms on the right of this equation is
O(|z|™2), using parts (b) and (d) of lemma 1. The second term on the right hand
side is O(]2| %), as can be deduced part (e) of the lemma. This proves equation
(4.30). O

An immediate corollary of proposition 4.4.1 is the following:
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Corollary 4.4.3 The anti-self-dual gauge field generated by the function g;(z) has

finite action.

We may also use proposition 4.4.1 to find the topological charge of the instanton.

This is the content of the next proposition.

Proposition 4.4.4 The topological charge k of the vortex generated by the function

91(2) converges absolutely. It is equal to —1. Therefore the instanton charge ¢, = 1.

Proof: Using the anti-self-dual equation (4.7), the vortex charge (4.8) is equal to

1- ¢’

T dr Ad
27r T

The absolute convergence of this integral follows from equation (4.29). Notice that,
since |¢|? < 1, this formula tells us that k£ < 0.
The value of the vortex charge may be evaluated in a manner similar to the

Euclidean case (see chapter II of [JT80]). We begin by writing ¢ in the form
= |¢| €”,
for some real function #(z). Then the covariant derivative of ¢ is

D¢ = d|¢|e® + |¢| (idf — ia).

(2) 2 -

This equation is integrated over the boundary of a large semicircle I' of radius M to

foo- [o=5/(3)- (%)

The integral on the right of this equation converges to zero as M tends to oo,

Therefore we have

obtain

using equation (4.30) of propesition 4.4.1. The second integral on the left converges
to 27 times the vortex charge, using Stokes’ theorem. The first integral on the left
is 27 times the winding number of the Higgs field around I'. This is equal to the
number of zeros of the Higgs field, since the the Higgs field is the product of a non-
zero real function and an analytic function. One can easily check that the Higgs

field has only one zero, so we conclude that the vortex charge is k = —1. O
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We propose that following generalisation of the function g;(2):

22\ v A\ — 22/8 ,
on(z) = exp (—75.-) Hﬁ (4.31)

where )\; are complex numbers. The Higgs field generated by this function has N
zeros, which suggest that the instanton charge should be ¢; = N. It is tempting
to interpret the locations of these zeros as specifying the locations and scales of
the constituent instantons, but we have no verification of this. We will not prove
anything about higher charge instantons here, but we note that they motivate the

construction of hyperbolic calorons, as we shall see in the next section.

4.5 Hyperbolic calorons with charge 1

In this section we present a three-parameter family of non-integral hyperbolic calorons
with topological charge 1. As in the previous section, we consider calorons with
SO(3) symmetry. We will demonstrate directly that the action of these calorons is
finite and that their charge is 1.

We begin this section with a direct construction of integral hyperbolic calorons
from Euclidean instantons. At the end of the section, we will show how these integral

calorons are included in the family of nen-integral calorons.

4.5.1 Calorons from Euclidean instantons

Recall that a Euclidean instanton can be pulled back to an integral hyperbolic
caloron, via the conformal equivalence R*\S? ~ H? x S! (with # = Sw). Said more
directly, a Euclidean instanton can be reinterpreted as an integral hyperbolic caloron
simply by changing from Euclidean to hyperbolic coordinates. This procedure is
particularly simple if we restrict attention to SO(3)-symmetric instantens and use
Witten’s ansatz; here we will spell out the details.

Witten’s ansatz for a SO(3)-symmetric gauge field over R*:

A= —%-(Qa + $1dQ + (62 + 1)QdQ).
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Here Q = #/(—i0?) (note that 3/ = §’) and a = a,dr + a;dt, and a,, a4, ¢ and ¢,
are real functions of r and t. We write ¢ = ¢; +i¢, and az = (a, —ia;)/2. Witten’s

solution of the anti-self-dual equation is

Y = In(1- |gE|2) +1n|hg| — In(2r)
¢ = exp(—v¥)hedzge
az = —i0zyY

where gg and hg are analytic functions of Z (hg represents a choice of gauge). If

we change coordinates from (r,t) to (i, 7) and choose the gauge hg = 1, we obtain

= In(1 - |gg|*) — In(2r)
¢ = exp(w)(9

2
52@913
a, = —i0.

But, using the identity J/r = |82/0Z], we see that this is exactly matches our earlier
solution (4.11)-(4.14), with g(2) = gr(Z(z)) and h = 92/0Z.

For example, the charge 1 Euclidean instanton located at the origin has

9e(Z) = (a — Z>2

a+ 272
where « is a real parameter. The corresponding hyperbolic caloron will have

. {a=tanh(z/8))?
9(2) = ge(z) == (a+tanh(2/3)) .

(4.32)

4.5.2 Non-integral charge 1 calorons

Recall the the function gn(z) which conjecturally generates charge N hyperbolic
instantons (4.31). By thinking of a caloren as a sequence of equally-spaced instan-
tons, we arrive at the following form for the g-function of a hyperbolic caleron with
period -

N

deolz) = exp (_gs_z_) lim A+ 2kBi/S — 2z/S (4.33)

N — oo b X=2kBi/S +22/S

In this subsection we prove that the family of periodic anti-self-dual gauge fields

generated by go(2) are hyperbolic calorons. We do this first by showing that the
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infinite product in g (2) converges, and then by showing that the action is finite.
We also evaluate the charges of these calorons. The following proposition establishes

the convergence of the infinite product.

Proposition 4.5.1 The infinite product (4.33) converges uniformly on any compact
set after singular terms have been removed. Moreover, the product has the following

closed form:

22) sinh((z ~ $3/2)n/6) (434)

9eo(2) = exp (“E “sinh((z + SA/2)7/B)
Proof:
First we demonstrate the uniform convergence of the product. The product may be
re-arranged by multiplying the k-th and —k-th terms:
N

A+ 2kBi/S —22/S  A—22/S 8\z/S
H N—2kfi/S+22/S ~ X+22/S ] H ( (A +22/9)2 + (2kﬂ/S)2) '

The product on the right-hand side of this expression converges uniformly as N — oo

on any compact set, after removal of singular terms, if and only if the infinite sum
[e9]
=1

converges uniformly on any compact set, after removal of singular terms.

8Az/S -
(A +22/S5)2 + (2kB/8S)?

The uniform convergence of the infinite sum is demonstrated as follows: fix a
compact set and let R be such that |2| < R for all z in the compact set. Then
(A +22/8)2 + (2kB/S)?| > (2kB/S)? — (A + 2R/S)?. So we have

S SAR/S
- :c;d (2kB/S)2 — (A + 2R/S)?’

’ - 8Az/S
(A + 22/5) + (2kB/5)?

where M is chosen to make the terms on the right positive. The series on the right
converges, so the series on the left converges uniformly (by the Weierstrass M-test).
Hence the infinite product converges uniformly on any compact set, after singular
terms have been removed.

To prove equation (4.34), we use the familiar product representation of sinh:

22
sinh 2 = zH (1 + k27r2)
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Applying this to the right hand side of equation (4.34) yields
sinh((z — SA/2)w/B) _ z— SA/2 v (Bk)? + (2 — SA/2)?

sinh((z + SX/2)7/B) — 2+ SA/2 1 (Bk)2 + (2 + SA/2)

After rearrangement, this is equal to the product in equation (4.33), and we have
shown (4.34). O

The function g.,(z) satisfies the basic requirements for generating an anti-self-
dual gauge field (equations (4.15) and (4.16)); to conclude that the gauge field is a
caloron we only need to show that its action is finite. The method will be similar to
that used to show the instanton action is finite. We use the simplified vortex form
of the action (4.27), which is valid for anti-self-dual gauge fields (but note that now
7 is integrated between 0 and ).

We note here that the function g (2) and the gauge field generated by it do not
necessarily have period 3, because of the factor exp(=22/5). To make the gauge field

strictly periodic, we make an aperiodic gauge transformation ho,(2) = exp(2z/5).

Proposition 4.5.2 Let the Higgs field ¢ and the U(1) gauge field a,, a, be gen-
erated by the function g.,(2) with gauge transformation ho(2). Then in the limit

1 — 0, we have the following convergences:

— 0 4.35
J(p) (4:35)
D,¢ ,
0 4.36
p (4.36)
In the limit u = oo, we have the following convergences (uniformly in 7):

TA

16| — exp (——S%) (4.37)

S ofw() e

D,
: ¢¢ = 0 (exp (—%)) (4.39)
Proof:
We compute:
habuge, = ORSTVB) +(Sn/B)sinh(SnA/B) — cosh(@nz/B) 4,

Ssinh?((z + SA/2)n/B)
S |sinh((z + SA/2)7/B)|"
cosh((2p + SA)m/B) — cos(2r7/B) + q(p)’

exp(—to) = (4.41)
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where g(u) := (coth(2u/S)—1) sinh(27u/B) sinh(S7A/B) was introduced to simplify
the exposition. The following lemma states all the properties of ¢(u) we shall need,

and is easily proved.
Lemma 4.5.3 The function g(x) satisfies the following:
(a) q(u) — (Sm/B)sinh(S7A/B) as u tends to 0, and the convergence is O(u?).
(b) g(u) exp(—2mu/B) = 0 as p tends to infinity.
(c) ¢'(n) — —(2m/B) sinh(SmA/B) as p tends to 0.
(d) ¢'(n)exp(—2mp/B) = 0 as u tends to infinity.

Continuing our calculation, we find that

_ |cosh(STA/B) 7-|:£S7r/ﬂ) sinh(S7A/0) = cosh(2w;/ﬂ)‘|2
(cosh((2u + SA)7/B) — cos(2n7/B) + q(w))*

In this last expression, the numerator and denominator both converge to the same

8|

function,

(cosh(SmA/B) + (S /B) sinh(SwA/B) — cos(2n7/B3))?,

as p tends to 0. In both cases the convergence is faster that u2. Therefore 1 — |¢|?
converges to 0 as p tends to 0, and this convergence is O(u?). It follows that
(1 — |#]?)/J (1) converges to 0 as u tends to 0. This establishes (4.35).

From the above expression for |¢|” one can check that |¢|* tends to a constant,
exp(—287)/B), as p tends to infinity. Therefore (1 — |4|2)/J (1) converges to zero
exponentially fast as u tends to infinity. This establishes (4.37) and (4.38).

We recall from the proof of proposition 4.4.1 that D,¢/¢ = 8,(—2¢ + In(hd,g)).

From the above expressions for e¥ and h.0,9. above, we have

0. 1n(hecdige) = — = 5 oth((z + SN/2/P)
4 ~ (2n/p)sinh(27rz/B)
cosh(2mz/B3) — cosh(SmA/B) = (S7/B) sinh(S7A/ )
29 = % %” coth ((z + S\/2)/8)

(2n/8)(sinb (24 + SX)m/8) — sin(2r7/8)) + (1)
cosh((2u + SA\)7/B) — cos(2m7/B) + q(u) '
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One can see by inspection that some terms cancel when these two expressions are
added. We need to check show that their sum converges to 0 as u tends to 0 and
infinity, and that the convergence at infinity is exponentially fast. This can be done
by hand, using lemma 4.5.3. We omit these calculations, as the expressions involved
are complicated. o

It follows immediately from proposition 4.5.2 that the caloron action is finite:

Corollary 4.5.4 The action of the periodic anti-self-dual gauge field generated by

Joo(2) is absolutely convergent.

We may also use results from proposition 4.5.2 to determine the charge of the

caloron.

Proposition 4.5.5 The topological charge k of the periodic vortex generated by
9o(2) is absolutely convergent. It is equal to —1. We have Ag — 0 as u — 0, and
the monopole charge of the caloron is 0. Therefore, the constituent monopoles of

this caloron have charges (1, 1) and masses (0,27/3).

Proof:
The proof of this is essentially the same as in the instanton case. We use equation
(4.38) of propesition 4.5.2 to establish the absolute convergence of the topological

charge. As in the proof of proposition 4.4.4, we have

D¢ (D) _ o
5 (¢) 2i(d0 + a).

We integrate over the boundary of the region 0 < u < M for some constant M.
This consists of two curves located at u = 0 and ¢ = M, which we denote I'y and
I'p. We recall that, since the gauge field is periodic, 7 is integrated only between 0
and 3.

The integral of the left hand side over Iy is zero, since the integrand is zero
(4.36). As M tends to infinity, the integral of the left hand side over I'ss tends to
zero, using equation/(4.39). The integral of a over the whole boundary is the same
as the integral of da over the region it encloses, and this converges to 27k as M

tends to infinity.



4.5. Hyperboelic calorons with charge 1 70

The integral of df over the whole boundary is the same as 27 times the winding
number of the Higgs field over the whole boundary. Since the Higgs field is the
product of a real non-zero function e/ |ho| and an analytic function hwo8,geo, this
is the same as the number of zeros of the Higgs field in the region it encloses. We see
that the Higgs field has one zero on the interior, so we conclude that this integral is
2m when M — oo. Therefore the vortex charge k is equal to -1.

Let p; = lim, o |Ao| and let po = 2m/B. It is easily deduced from the formula
given earlier for 1, that

lim 9,9 =0,

Ji—00
therefore, using (4.14), p, = 0.

The monopole charge k; of the caloren can be found by leoking at the curvature
tensor (4.3). The volume form on S? is w = =QdQ A dQ/2. Hence the component
of F on the sphere at infinity is

lim (1 - |4)Qw = 0.

p—co

It follows that the Chern numbers =%k; are zero.

Recall from (2.7) that

1 , : 211k
— Tr(F AF) = ko + 2222
872 Jrayst Ho

The left hand side is equal to minus the vortex charge k. Since k = =1, the left
hand side is 1. Since y; = 0 the instanton charge ko = 1. The monepole charges

and masses are read off from the formulae (2.8), (2.9). ]

4.5.3 Relation between integral and non-integral hyperbolic

calorons

A reasonable requirement for the family of non-integral hyperbolic caloerons is that
it includes the family of integral hyperbolic calorons. In this subsection we verify
that this is the case.

Let Ac denote the integral hyperbolic caloron generated by the function gc(z)

(4.32). Ac depends on twe parameters, @ and S. We will consider a in the range
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(0, 1), since this corresponds to the components of the caloren being located at times
nS7 (in preference to (n + 3)Sm, which happens when a > 1). The period of Ac is
Sm. Let Ay be the hyperbolic caloren generated by the function g (z) (4.34) with
gauge transformation ho(2). A depends on three parameters: S, 3, and A\. We

will find that A, and Ac are gauge equivalent when

g = 8,

o’ = tanhZ=.

2
This result is derived by using the fact that the zeros of the Higgs field are gauge
invariant. The zeros of the Higgs field of the gauge field A¢ are located at

T = nSwm, n€Z

¢ = Sarctanha.

For the gauge field A, the zeros are

T = nB, ne’
2mu SaA  Sm . SmA
cosh — = cosh —— + — sinh ——.
B g g B

By requiring that the zeros of the Higgs field agree for Ac and A, we arrive at the
twoe equations relating the parameters 4, S, @ and A which were given above.

Once the zeros of the Higgs fields agree for both calorons, they must be gauge
equivalent. This is because both calorons are in fact Euclidean instantons, and we
know that symmetric Euclidean instantons are completely determined by the zeros
of their Higgs field [Wit77]. For explicitness, though, we give the precise gauge
transformation taking Ac to Ay (when their parameters are appropriately related)

Recall that gauge transfomations of solutions were expressed by an analytic
function h, with ¢ — ¢ + In|h| and 3,9 — hd,g. So the gauge transformation
taking Ac t0 A 18 h = hoo0.900/0.9c. Explicitly,

_ 140 (acosh(z/S) + sinh(z/5))"*
2a  (a2cosh(z/S) + Sinh(z/S))2

We check that the gauge transformation h also has the correct relation with .

h=

For the solution A, ¥ is given by
S (1 + a*) cosh(2u/S) + 2a? sinh(2u/S) + (a* — 1) cos(27/.S)

FP(~Vx) = T a2 ((a? + 1) cosh(2a/S) + (o ~ 1) cos(27/5))
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For Ac, % is given by

28 ((a®*+1) coﬁsh(2u/:5j) +(a?-1) cos(i_27'7/S)ﬂ+ 20:5inh(2p/5))*
(@2 + 1) cosh(2u/S) + (a2 — 1) cos(27/5) '

exp(—tc) =

Finally, |h| is given by

= LF o? ((o® + 1) cosh(2u/S) + (a® = 1) cos(27/S) + 2asinh(2u/5))*
4 (a*+1)cosh(2u/S) + (a* — 1) cos(27/S) + 2a?sinh(2u/S)

From these formulae, it is clear that

exp(—teo) = expr_ld’C),

which is the correct relation.

4.6 Taking limits of parameters

The family of calorons we have constructed depends on three parameters. They are:
S, proportional to the radius of curvature of the hyperbolic space; 3, the period of
the caloron; and A, which is related to the size of the caloron. In this section we will
consider solutions obtained in various limits of these parameters. We will show how
to take the flat space limit of a hyperbelic caloron to ebtain a Euclidean caloron.
We also show that the infinite period limit of a hyperbolic caloron is a hyperbelic
instanton, and the infinite scale limit is a hyperbolic monopoele. Thus the family
of hyperbolic calorons constructed is directly analogous to the family of charge 1

Euclidean calorons which interpolates between instantons and monopoles.

4.6.1 Flat space limit

The limit as S tends to infinity of the hyperboelic metric ds? is the ordinary Euclidean

metric. So one would hope that it is possible to find Euclidean calorons as soeme

limit as S tends to infinity of the hyperbolic caloron A,. This turns out to be

possible. The trick is to make sure the caloron retains finite size as S increases, or

equivalently in the vortex picture, to fix the location of the vortex while S increases.
Recall that the locations of the vortices are given by:

T = nB, ne’

cosh 2—7TH = cosh §7_r_/\_ + §E sinh §'7r_/\

g g B g
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These will remain finite as S tends to infinity if 3 and AS? remain fixed. In this

limit the second equation becomes

27y (7r>2 9
cosh— =14+{ =] AS-.
B B

We now consider the Higgs field and the U(1) gauge field in this limit. To
keep these expressions well-behaved, we make an additional gauge transformation,

h(z) = S/2. We find

S 7T2A52 2
Ehooé?z 0o — =1+ 55 cosech®(7z/f3)
mAS? sinh(2m /)

S _
Eexp(%o) = 1+

2B cosh(2mp/B) — cos(2n7/B)

We want to compare this limit with the caloron of Harrington and Shepherd
[HS78]. Recall from (2.15) that Harrington and Shepherd’s caloron was given in the
CF’tH ansatz, with

7 v’ sinh(2mu/B)
P =t B cosh(@ruB) — cos2nT]B)

It is simple to convert this to vortex form. Using methods from Manton’s paper

[Man78|, we have:

= Ilnp

¢ = e ¥2i0,(up).

For the Harrington and Shepherd caloron,

P o= 14 T2 sinh(27u/03)
- Bu cosh(2mwp/B) — cos(277/ )
2,2
2i0,(up) = i- iZ 5,2/ cosechz%i.

So, by directly comparing ¢ and ), one can see that the flat space limit of the

hyperbolic caloren is (a gauge rotation of) the Harrington-Shepherd caloron, with

A
V—S 5
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4.6.2 Instanton limit

In the Euclidean case, an instanton could be obtained as the limit of a caloron as
its period tends to infinity. We will show that this is true in the hyperbolic case
too. We show that the limit as 3 tends to infinity of the hyperbolic caloron A, is
a hyperbolic instanton, provided we keep S and A fixed. In this limit, the location

of the vortex at 7 = 0 tends to

T =

0
S r——

By comparing vertex locations, this solutien should be gauge equivalent to the
charge one instanton generated by the function

- 22\ A (22/5)
)= (-5) 35z

We now verify this. Recall that, for the hyperbolic instanton,
2 , ) 2 2 .5
9.0 = Zexp (_2_2) (22/5)% — (A2 +2X)

S S (22/S + \)?
_ S 2u _ (2u/S+ )+ (27/8)
exp(—th) = Fexp (?) (2u/8)2 + (21/5)2 + X2 + 2A(21/S) coth(21/S)”

If we consider the hyperbolic caloron without the gauge transformation h,, we find
0,900 — —0,91 and Y, — 1 pointwise as (3 tends to infinity. So the instanton limit

holds as expected, (note that there is a gauge rotation h = —1).

4.6.3 Monopole limit

The monopole limit of a Euclidean caloron was obtained by fixing the period of
the caloron and allowing its scale to approach infinity. So we hope to obtain a
hyperbolic monopole from a hyperbolic caloron by fixing 8 and S, and letting A
approach infinity.

To do so, we first need to express the hyperbolic monopole of Nash [Nas86] in

the notation of this article. Nash’s solutien is equivalent to:

gm(z) = exp <—%)

hat(z) = ——.







4.7. Summary and open problems 76

So by varying 3 and S, all symmetric charge 1 hyperbolic monopoles can be obtained

as limits of symmetric charge 1 calorons.

4.7 Summary and open problems

We have demonstrated the existence of hyperbolic calorons by explicitly construct-
ing them. Although our calorons are related to monopoles as one might expect, they
do not exhibit the full constituent structure described in chapter 2, because they
do not have maximal symmetry breaking. It remains to be seen whether hyperbolic
calorons can be constructed satisfying more general boundary conditions. Follow-
ing the example of Euclidean calorons, more general hyperbolic calorens might be
constructed using a Nahm transform — but such a Nahm transform is currently not
knewn.

In view of the emerging theory of Nahm transforms [Jar04], it would be in-
teresting to investigate the possibility that a Nahm transform exists for hyperbolic
calorons. Currently, a Nahm transform is known for hyperbolic monopoles, but only
in the integral case [BA90]. Closely related is the problem of finding a Nahm trans-
form for singular instantons. Instantons can in principle exist with mild singularities
on a two-sphere — the types of singularity were classified in [SS92,Rad94], and more
or less correspond to the types of boundary behaviour displayed by calorons. Only
possible that more could be shown to exist using some kind of Nahm transform.

We mention briefly a loop group interpretation for hyperbolic calorons. By anal-
ogy with the Euclidean case, we expect that a hyperbolic caloron can be identified
as a hyperbolic monopole whose gauge group is a loop group. This monopole could
be mapped conformally to an axially symmetric instanton whose gauge group is a
loop group, subject to some integer-mass condition. So hyperbolic calorens could
be used to study loep group instantons. Loop group instantons would be interesting
to study, both for their novelty, and because they might tell us something about
higher dimensional gauge theories.

A final open question concerns the beundary behaviour of hyperbolic calorons.
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It was recently proved that hyperbelic menopoles are completely determined by the
connection they induce on the sphere at infinity [Nor04], an example of a “holo-
graphic principle”. It is natural to ask whether the same is true of calorons: alas, it
appears not to be for our calorons. The connection induced on the sphere at infinity
by our calerons is trivial, so cannot determine the caloroen. If one applies a rotation
map (a large gauge transformation), the caloron looks like a monopole at infinity,
but even then the connection at infinity only appears to detect the location of the
caloron, and not its scale. The failure of the holographic principle may be related to
the degeneracy of the boundary condition: perhaps more general hyperbolic calerons

are determined by their boundary values?



Chapter 5

Chains of planar skyrmions

In this chapter we shall consider chains in the planar (or baby) Skyrme model. The
planar Skyrme model is essentially a generalisation of the CP! sigma model (which
will be studied in chapter 7): two terms are added to the sigma model Lagrangian
which break integrability and conformal invariance. The planar Skyrme model was
invented as a two-dimensional toy model for the three-dimensional Skyrme model. In
a later chapter we will study chains in the Skyrme model, so this chapter represents
a useful first step.

Our approach in this chapter is essentially analytic. We will consider a range of
ansatze which are expected to make a good approximation to true minima of the
planar Skyrme energy. However, since this model is not integrable, it will ultimately
be necessary to compare our results with numerical simulations. Such simulations
have been carried out by my supervisor, Prof. R. S. Ward, and appeared in our
joint publication [HWO08b].

An important feature of the planar Skyrme model is that it includes a potential
function, which may be chosen arbitrarily. Different choices of potential functien
can result in different behaviour of the model, so it is important to consider a range
of potentials. Ideally, one would like to make statements which depend only on a
few qualitative features of the potential, but to do so is a hard problem which we
do not address here.

We begin this chapter by introducing chains in the planar Skyrme model. We

shall give a detailed account of the topology, since this is not standard. We shall

78
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exhibit two lower bounds on the energies of chains: the first is the standard Bo-
gomolny bound which depends only on the topology; the second depends on the
period, and in particular diverges for small periods. After considering non-standard
potentials for which the field equations have explicit solutions, we consider in the

last two sections properties of chains for two standard choices of potential function.

5.1 The planar Skyrme model

The field content of the planar Skyrme model on a Riemannian manifold M of
dimension two is a continuous function ¢ from M to S?, called a planar Skyrme
field. In components, we write ¢ = (¢1, @2, ¢3) with ¢? + ¢2 + ¢2 = 1. Let v be the
volume form on M, and let w be the volume form on S2. The planar Skyrme energy

functional is

El¢] = Eb[¢] + asEyld] + aoEolg]
. 1 ‘
Blg) = [ slasliv
J M
1 *
Ey¢] = / 5(*M(¢ w))?v
M
Bl = [ Viow
J M
Here V is a real function on S? called the potential function, and the real oy, a4 are
parameters of the model. Normally E; is called the sigma model term, Ej is called
the Skyrme term and Fjy is called the potential term. The planar Skyrme model
was invented as a two-dimensional analog of the three-dimensional Skyrme model,
and each term in the energy functional has a three-dimensional counterpart. Notice
that, unlike in three dimensions, the potential term is indispensible here: without
it, Derrick’s theorem rules out the existence of static solitons on R2.

The choice of V is arbitrary, but the two most commonly studied choices are:
e V(¢) = (1 — ¢3) (the old baby Skyrme model, see [PSZ95])
e V(¢) = 2(1 — #3) (the new baby Skyrme model, see [KPZ98, Wei99]).

Notice that the energy densities &, &4 are invariant under O(3) rotations of S2,

called isorotations. The choice of potential V' breaks this symmetry; in the old
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baby Skyrme model the isorotation group is broken to O(2), while in the new baby
Skyrme model it is broken to O(2) x Z, (where Z, describes reflections which swap
the poles ¢3 = %1).

In the case where H*(M) = Z the map ¢ has a degree, denoted B and called
the charge of ¢. By the degree theorem,

B/ w'=/ oW
52 M

for any volume form ' on S?. The energy is bounded from below by a multiple
of the charge, as we now show. Let R = R; + iRy be the complex function on M

defined by stereographic projection:

¢1 + i
R = 5.1
1+ (5.1)
- 2R 2R, 1—7|7R|2 ‘ ’
» = <|R|2+1’ RE+1 [RP+1)° (52)

Let z be a complex coordinate on M and such that the metric and volume form on

M are g = h/2(dz ® dzZ + dZ ® dz) and v = (ih/2)dz A dz. We have identities

1 4 |3ZRI2 + |3§R12

Ndoll2 = = Minthe

* ¢*w _ EIBZRP T,I,BE‘RI2
M k(R +1)

By integrating and applying the degree theorem, we obtain
E; > 4nB (56.3)

with equality if and only if
aZR = 0; (5.4)

On the other hand, we have an identity

Qg * 2 1 - * 2 * IDEY
S (9'w))? + oV (9) = 5 (@ xnr (¢w) — \/2aoV) F ok (\/2a0'a4Vw) .
Integrating and applying the degree theorem, we obtain

C!4E4 -+ OloEo 2 B/ vV 2a0a4Vw, (55)
S2?

This bound is saturated provided

*u(P'w) = 2a0V /a4 (5.6)
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In summary,
E>B (47r +/ \/‘2aoa4Vw) (5.7)
SZ

In the case where M = R?, we have E; = [, £d*z and B = [, Bd’z, where

1
B = E¢ 016 X D¢ (5.8)
1
E = 5(8,-(;5 - 0;0) (5.9)
1 .
54 = —2'(81¢ X 82¢)2 (510)
= 8n’B?
& = Vig). (5.11)
For convenience, we also set
£ = 82 + 0[484 + aogo. (512)

In the case M = R? the coefficients g, a4 can be changed by rescaling the coordi-
nates r', £2. Therefore it is convenient to use this degeneracy to fix ag = a4 = p for
a rea] parameter 4. The bound (5.7) applies to the planar skyrmions on R?, since
finite-energy fields on R? must tend to a constant at infinity, hence can be extended
to maps from S? to S2.

A finite-energy map ¢ : R? — S? which minimizes the energy functional will be
called a planar skyrmion. Only one charge 1 planar skyrmion is known in each of

the old and new baby Skyrme models. They may be expressed in pelar coordinates

(r,0) in the form of the hedgehog ansatz:

¢ = (sin f(r) cos(d — x), siﬁf(,r) sin(@ — x), cos f(r)). (5.13)

Here x € [0,27) is an angle and f(r) is a function satisfying f(0) = 7w and f(r) — 0
as r =» 00, which must be chosen to minimize FE.

Notice that the hedgehog ansatz is symmetric: a spatial SO(2) rotation can be
compensated by a isorotation of the 2-sphere. So the orientation parameter x might
appear to be unimportant. However, we shall see later that when multiple planar
skyrmions are placed next to each other, their relative orientations determine the

forces between them, so it makes sense to leave x in equation (5.13) for now.
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We point out here that the charge one skyrmion generally fails to saturate the
Bogomolny bounds (5.3), (5.5). The reason is that saturation of each bound requires
solution of a first order differential equation, and the two differential equations (5.4),
(5.6) are not in general compatible. It is interesting to ask the question: by how
much does the skyrmion fail to saturate the Bogomolny bound? The answer takes
the form of a graph, such as the solid curve in figure 5.1. There we have plotted
the fractional excess of the energy E of a charge 1 skyrmion over its Bogomolny
bound E,;, = 4m(1 + 411/3), as a function of log . We worked with the old baby
Skyrme potential. It is remarkable that the curve has such a symmetrical shape,
and we also note that the excess becomes negligible for very large and very small
values of u. The g = 0 limit is the CP! sigma model, while the u = oo theory
was studied in [GP97]. In both limits, the Bogomolny bound is saturated although
in the latter case, one must sacrifice smoothness of functions. (We note that the
authors of [GP97] erroneously claim not to have saturated the Bogomelny bound:
their mistake was to use a Bogomolny bound which is weaker than the usual one.)

In order to understand the shape of the curve better, we make a simple analogy.
We replace fields ¢ by real numbers z and the fractional excess energy (E[¢] —
Erin)/ Emin by the function

o By
C T z+1)% 4 =L
d 1+7u( ) L+yp

(iL' - 1)27

where u,a, 3,7 are positive real parameters. This function is ebviously bounded
below by 0, but the bound is not saturated, since the “Bogomolny equations”, x = 1
and £ = —1, are not compatible. The true minimum of f is

_ 4ofu
(1 +yu)(o+ Bp)

The dashed curve in figure 5.1 is the graph of this function, with the parameters set
to a = 0.042, 8 = 0.29, v = 0.44. We observe that this curve is a surprisingly goed
match for the graph of (E — Epnin)/ Emin-
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Figure 5.1: The quantity (E — Epin)/Emin as a function of log pu for a 1-skyrmion
with the old baby Skyrme potential.

5.2 Chains and their topology

We will be interested in periodic chains of planar skyrmions with a relative orien-
tation between neighbouring planar skyrmions. These will be described by planar
Skyrme fields ¢ periedic up to an isorotation. Let the period be 3 > 0, and let the
isorotation be o € SO(2). Then the planar Skyrme field is required to satisfy:

é(zt, 2% + B) = op(z, z?). (5.14)
In addition, we impose the boundary conditien:
o(z', %) — (0,0,1) as ' — %oo. (5.15)
In contrast, a domain wall in the planar Skyrme model is required to satisfy

o(z', 2?) — (0,0,£1) as ' — Foo. (5.16)
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Two special cases are as follows: if ¢ is the identity we call ¢ periodic, while if
o is not equal to the identity but o2 is we call the chain anti-periodic. Clearly, the
only anti-periodic boundary condition is o = —Id.

The energy and charge per unit length of a chain are computed by

sl = [ [ elatas

/Oﬁ /_Z B[] dx' d2®.

An important question to answer is whether the quantity B is guaranteed to be

Bl¢]

an integer. In the case where o is the identity this is relatively simple to see: the
boundary conditions ensure that ¢ can be extended to a map from 72 to S2. Since
the second cohemology groups of these manifolds are both Z, ¢ has a degree defined
in the usual way, and the degree is computed by the integral B. In the general
case this argument fails, but one still might expect B to be an integer, since ¢ is
supposed to represent a chain of particle-like solitons.

It turns out that B is guaranteed to be an integer for all isorotations ¢. This is

a special case of the following theorem:

Theorem 5.2.1 Let ¥ be an n-dimensional ecompact manifold without boundary,
with volume form w, and with H*"}(X) = 0 and H"*(X) = Z. Let M be an (n = 1)-
dimensional manifold such that H"(M x S') = Z. Suppose that SO(2) acts on &
and that w is SO(2)-invariant. Fix an element o € SO(2) and let ¢ : M xR - ¥

be a map satisfying
¢z, y +0) = op(z,y) Vz € M,y € R.

Then ¢ has an integer degree, computed by the integral,

dea(®) = 73755 |, [ s

Furthermore, deg(¢) is independent of the choice of SO(2)-invariant volume form

w.

Proof: The idea of the proof is simple: we deform ¢ to a strictly periodic map

using the SO(2) action, and show that the integral is unchanged by this deformation.
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First, we introduce some notation: we write the SO(2) action as R, : ¥ — X, with
s € R/Z = S0(2). Let X € TX be the associated vector field. Let ty € R/Z be
such that Ry, = 0™, and let ¢(z,y) = toy/B be a function on M x R. We define a
deformation,

qz(w,y) = Rt(z,y') ° ¢(l‘, y)) TE May € R.

Then ¢ is a strictly periodic map, hence has a degree computed by

deg(d) = Voll(z) / ’ /M o

[ ] Lo

For any form 6 € A*Y, one can show that

Now we show that

$*0 = ¢*R;0 + ¢*(ix R;0) A dt.

Here ix denotes: the inner derivative of a form. In the particular case § = w, one

has Rjw = w (because the volume form is SO(2)-invariant). Hence
P*w = P*w + ¢*(ixw) A dt.
By Cartan’s formula, we have
Lyw = ixdw + dixw.

where Ly denotes the Lie derivative. We see immediately that dw = 0, because
w € A"E. On the other hand, Lyw must vanish since w is SO(2)-invariant. It
follows that ixw is closed. Since H" }(X) = 0, ixw is exact, in other words, there

exists a o € A" 2% such that ixw = du. Therefore,

P'w = Pw+P*(du)Adt
d'w + d(d*u A dt).

Integrating and applying Stoke’s theorem, we obtain

[ Lgom [ foas [founa],
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The boundary term vanishes since ¢ is constant on the domain of integration, so we
have the desired result.
That deg(¢) is independent of the choice of volume form follows from the corre-

sponding property of the classical degree. If ' is any other SO(2)-invariant volume

[ Lo [ Lo
- [
[

An useful corrollary of this theorem is that the lower bounds (5.3), (5.5) apply

form, then

a

to chains, but the latter applies only in the case where the potential function V()
is SO(2)-symmetric. We stress that it is important that B = deg(¢) is independent
of the choice of volume form, since the bounds (5.3), (5.5) are obtained using two
different volume forms. It would be interesting to know if the degree deg(¢) can be
defined without making a choice of volume form — this has not been done, as far as

we are aware.

5.3 A period-dependent lower bound on the en-

ergy

It is interesting to consider chains in the limit where 3 is very small. For comparitive
purposes, we first consider the planar Skyrme model on a manifold M with area form

v and with finite area. By the Cauchy-Schwarz inequality, one obtains

| v [ poapv ( / (*¢*w)u)2,

so there is a lower bound on the energy:

a4 B? Area(S?)?
> > 7 ATedw )
E2aBy 2 2  Area(M)
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When M has large area, this lower bound is less than the standard Bogomolny
lower bound. But as the area of M tends to zero, this lower bound diverges. Heuris-
tically, one can say that squashing the Skyrme field into a small area has the effect
of increasing the Skyrme term. We note that an analogous result holds in the full
Skyrme model [Man87]. See [War04a, dIWO01] for studies of planar skyrmions on
compact manifolds.

Of course, the above argument says nothing about chains, because the area of
M = R x S! is infinite. But one still might expect the energy of a chain to be
large for small periods. One thing is clear: any lower bound which diverges for
small periods must involve more than just the Skyrme term. This is because the
Skyrme term is invariant under area-preserving maps. Given a chain ¢(z,y) with
period 3, one can define a chain ¢(z,y) = ¢(x/), yA) which has period 8/ but the
same Skyrme energy. So there cannot be a lower bound on the Skyrme energy that
diverges as the period becomes small.

Now we shall prove the existence of a lower bound on the energy of a planar
skyrmion chain which does diverge for small periods. Our method will be to consider
both the Skyrme term and the sigma model term. We will first consider the case
where both the domain and target of the Skyrme field are diffeomorphic to compact
cylinders, and find a lower bound on the energy. Then we will show that provided
a Skyrme field has non-zero winding number, there will exist regions in R x S* such
that, when the field is restricted to these regions, the previously derived lower bound

applies.

Lemma 5.3.1 Let M = [0, W] x S* with Buclidean metric, let 3 be the circum-
ference of S!, and let £ be a Riemannian 2-manifold diffeormorphic to M. Let
¢ : M — ¥ such that ¢(OM) = 0%, and with degree 1. Suppose there exists a A > 0
such that for all z € [0, W], the curve ¢(z,-) in X has length greater than or equal

to A. Then the energy of ¢ satisfies

VI Area(X)
E[¢] > B

Proof: Firstly, by the preceding argument, we have
Area(%)*

>
Ey 2 2W 3
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Secondly, by the Cauchy-Schwarz inequality we have
2
[ [ jeePdsdy> ( [ 1elis dy) |
0,W]xs1 [o,W]xS1 [0,W]xS?
The right hand side is the square of fOW L[¢(z, -)|dz, where

Lp)i= [ londt
Sl
is the integral which computes the length of a closed curve 7. So by assumption,

the right hand side is greater than or equal to (W\)2. Therefore

B > 1 / 18, 6[%dz dy
2 Jio,wixst
. wx
—— 2ﬂ *

Combining the above two inequalities, we have
WA2  pArea(X)?
26 2wW@
Vi A Area(X)
5 .

Ey+upuEy >

2

In order to relate this lemma to spheres, we make the following definition:

Definition 5.3.2 Let [a, b] be any interval and let ¥ : [a,b] x S* — 52 such that the
curves 1(a, -), (b, -) have length A € (0,27). Let € > 0 and let ¢ : [a—¢, b+¢| x S* —

52 be an extension of ¢ such that

P(z,y) = (z,y) for z € [a,b]
Lip(x,))] < Aforz€[a—ea]U[bb+¢
Pa—ey) = pWyeS!

Y(b+ey) = gVye s,
where p, q are two arbitrary peints in S2. Clearly 4 is a map from S? to S2, and

hence has a winding number w € m5(S5?) = Z. We define W[y] := w.

Proposition 5.3.3 W([y] is independent of the choice of extension. W is additive
in the following sense: let @ < b < ¢ < d and let 1 : [a,d] x S! — S? be such that
Liip(z, )] = A for x = a,b,c,d and L[y(z,-)] < A for z € [b,c]. Then

W[IP] = W[d)l[a,b]xsl] + W[wl[c-,djxsl]-
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Proof: To see this, suppose that 9,1, are two extensions of ). We need to
show that they are homotopic. Consider the restrictions of 91, ¥, to the interval
[a —¢€, a]. These are two maps from D? to S? which agree on the boundary 8D?. We
can glue them along their boundary to obtain a map x : $2 — S?; if x is contractible
then the two restricted maps are homotopic.

We can show that this map is contractible by making use of the cendition,
L{ti(z,-)] < A < 27 Vz € [a — €,a]. Tt follows from this condition that each curve
1/3,»‘(:1:,, -) lies within a hemisphere in S?; hence between any two points y1,ys in the
curve, there is a unique shortest geodesic connecting them, which varies continuously
with y; and y,. Fix a base point yo € S, and for all y € S! let 'yfm) : [0,1] — S2
be the geodesic connecting (z,y) to i (x,yo0). For definiteness, assume that ﬁz;y)
is parametrised proportional to its arclength. Then 7&,,) is a homotopy contracting
the curve ¢i(z,-) to a point. But we have defined 'fo,y) in such a way that they
are continuous functions of z,y, t; in particular, when they are glued together, they
define a homotopy contracting x to a curve. Since a curve can be contracted to a
point, the map x is contractible.

A similar construction applies to the interval [b,b + €]. It follows that W([y] is
well-defined.

To show that W is additive, one needs to show that the restriction ¢|p,qxs1 can
be “pinched off” at a point; the result then follows from the corresponding one in
standard homotopy theory. The pinching off can be achieved using again the fact
that circles of length less than A can be contracted along geodesics; we omit the
details. a

Now we are ready to prove:

Theorem 5.3.4 Let ¢ be a sufficiently regular periodic planar Skyrme chain, or a
domain wall, with period 3 and charge B > 0. Then

4m?,/uB
E[¢] > —5

Proof: Let A € (0,27) and let X := {z € R|L[¢(z,-)] > A}. We assume that X
is the union of a finite number of disjoint intervals, X = J;_,[a;, b;]). This is what

is meant by “sufficiently regular”. Let ¢; = ¢|(,;5)xs1 be the restriction of ¢ to a
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cylinder, and let w; = W|[¢;] be its winding number. Then by the above,
deg(¢) = Z Wi-
i=1

The area enclosed by a curve of length X in S? is less than 2w (1—4/1 = (\/27)32).
It follows that

—
|Area [¢([ai, bi) x S")]| = 4n (|wi_| —144/1= T) .
Let I = {i|w; > 0}. Then I has less than B elements and »_,.; w; > B. Then

El¢] > ZE[aﬁl[a.A,bl-}xSI]

icl
> ‘_/.ﬁ_/\ ZArea [(b([ai, bi] x Sl)]
B o
> 47r\ﬂ/ﬁx\z(wi_1+ 1—4/\—:2)
iel

v

4m /A X
4 B\/uX ] B A2
2 75 Vi@

Notice that we used lemma 5.3.1 in going from the first line to the second line. We
are left with a family of lower bounds parametrised by A. The strongest lower bound
is obtained when A2 = 272, O

Of course, theorem 5.3.4 applies only to strictly periodic chains - a similar proof
could be construced for chains with ¢ # Id, but we do not pursue this here. Instead,
we are able to obtain a divergent lower bound in the anti-periodic case by using the
fact that an anti-periodic chain with charge B and period [ is also a periodic chain

with charge 2B and period 28. The result is:
Theorem 5.3.5 Let ¢ be a sufficiently regular anti-periodic planar Skyrme chain
with period 8 and charge B > 0. Then

Blg) > ZVEE.
>3
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5.4 Baby skyrmions from sigma model lumps

In this section we will construct potentials V such that both Bogomolny bounds
(5.3), (5.5) are saturated by planar skyrmion chains. The procedure [PZ95, War(4a]
is standard: we first consider the g = 0 limit of the planar Skyrme model. This
limit is the CP! sigma model, and exact solutions are known which saturate the
Bogmolny bound (see chapter 7). For any given exact solution, it is straightforward
to choose a potential so that the Bogomolny bound is still saturated for u # 0.

Let z = z1+iz?, and let R be the complex function of z obtained by stereographic

projection of ¢ (5.1). Then the Bogomolny equations (5.4), (5.6) are

R = 0 (5.17)

_ 8lo.R*

In the sigma model limit x4 = 0, we only need to solve (5.17) in order to saturate the
Bogomolny bound (5.3). Given a solution of (5.17), that is, a meromorphic function
R, it is easy to find a potential function V so that (5.18) is also satisfied. If V is
so chosen, then both Bogomolny bounds (5.3), (5.5) may be saturated for non-zero

p. In what follows we follow this procedure for the cases where R is a chain with

o= *+1.

5.4.1 Strictly periodic chains

The set of strictly periodic sigma model fields satisfying (5.17) were studied in
[Sni94]. They are given by the rational function,

_ c+dexp(poz)

R(z) = a + bexp(ugz)’

where po = 27/ and a,b,c,d are complex constants. The function R depends
on six real parameters, of which two correspond to translations, three correspond
to isorotations of S? and one is a non-trivial “size” parameter. Notice that it is
impossible for the R to satisfy the boundary conditions (5.15). Se a strictly periodic

charge 1 skyrmion chain cannot saturate the energy bound (5.3).
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Amongst all the fields R, we restrict attention to those satisfying the domain
wall boundary condition,

lim ¢ =(0,0,+1).

zl=do0

Then, up to a translation, R must take the form
R = exp(—po2).
The potential defined by (5.18) in this case is
V= b1~ $2 (519)

We can compute the energy of this chain; the energy is determined by the lower

bound (5.7), by construction. We compute

81
(1-¢Rw = 3
vSZ B
The components of the energy are
6474
Ei=FE; =
4 0= 35

and E, = 4m. We have checked directly that F, + uF, exceeds the lower bound

proved in theorem 5.3.4.

5.4.2 Anti-periodic chains

An anti-periodic sigma-model field satisfying the boundary condition of a planar
skyrmion chain (5.15) is given by

c

R(z) = aexp(—uoz/2) + b exp(oz/2)

with po = 27/0 as before and a, b, c € C (see [Bru08]). By making translations and
rescaling the constants, we can make a = b = 1/2. By making an isorotation, we
can make c real. Then the potential defined by this field and (5.18) is

1 4
V=3 (@) (1 - ¢a)? [((c2 + )3 + (2 - 1))° + 4c2¢§] : (5.20)
2 \2c
This potential has three vacua, at the points
4+2c 1-2c? \
1 + 021 ’ 1 + C2 .

é=(0,0,1), (
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In the limit where ¢ = o0, the potential (5.19) is obtained. In the limit where ¢ — 0,
po — 0 such that ¢/uo remains constant, the potential [PZ95] whose minima are
isolated planar skyrmions is ebtained.

Again, we can check that this configuration does not violate the lower bound
proved in theorem 5.3.5. We have not been able to evaluate E; analytically, but we
have found numerically that

/vQVw > lim vV2Vw
Js2 52

C—00 .

- (5) Lo-ae

Therefore F, = 47 and E; > 167%/(35%). We have checked that Ey + uFE; >
2ﬂ2ﬁ/,8 for all g.

5.5 Chains with the old baby Skyrme potential

In this section, we consider chains in the old baby Skyrme model with o = 1. We

will review two analytic ansétze which indicate some properties of chains.

5.5.1 The dipole approximation

An analytic ansatz [PSZ95] is known which describes well-separated planar skyrmions
to a good approximation. The ansatz is as follows. Let R, R® be two planar
skyrmions (5.13) with orientations x(), x@, expressed in stereographic coordinates
(5.1). Suppose that the two planar skyrmions are given a seperation D, and let
R = RM 4+ R®@ be their superposition. In the limit where D — oo, the energy of R
is twice the energy F; of a planar skyrmion. It is pessible to calculate the leading

contribution to the difference,
Ig = E[R(l) + R(z)] - 2E1,

in the limit where D — oo. Let K, denote a modified Bessel function of order n.

One finds

p2'u’2 }
I ~ ©-5 cos(x? ~ X©) Ko(/ED).
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for large D, where p is a constant related to the decay of the profile function f(r)
by
£(r) ~ SeKa (V).

p is a function of p, and must be determined numerically: for example, when p? =
0.1, one finds p = 24.16. This approximation is called the dipoele approximation,
because the asymptotic formula for I, matches the interaction energy of a pair
of orthogonal scalar dipoles. Notice that the sign of I, depends on the relative
orientation x® — x(; it follows that a pair of aligned planar skyrmions repel, while
a pair of planar skyrmions with relative orientation 7 attract.

The same approximation can be applied to an infinite chain of planar skyrmions.
For each j € Z, let RY) be a planar skyrmion pesitioned at (z!,z?) = (0, 37), with
orientation x = 0. Then the fields

RE = i (:l:l)jR(j)
j=—c0
are planar skyrmion chains with o = +1 respectively. Let I, = E[R*] — E; be the
interaction energy per unit length of the chain. One can show analytically that
I =~ i(il)jﬁffo(\/ﬁjﬁ)
i=1 4
for large B (notice that only the first term in the sum is significant in this limit). We
find that (for large 8) I, is a positive decreasing function of # and I_ is a negative
increasing function of . So, a chain of well separated planar skyrmions will tend

extend for o = 1 or contract for o = —1.

5.5.2 The string ansatz

In [GP96] an ansatz was proposed for a string-like configuration in the old baby
Skyrme model. The string satisfies the boundary conditions of a chain with ¢ = =1.

The ansatz is

(sin f(x') cos vz?, sin f(z!) sin vz?, cos f(z')) 1 >0

(sin f(—x') cosvz?, —sin f(—z!) sinvz?, cos f(—z')) z' <0
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where f : [0,00) — R satisfies f(0) = 7« and f(t) —» 0 as ¢t — oo, and v =
n/B. The energy density of this field is independent of x2, but the field itself

2 cannot be compensated by

is not translation-invariant, because translations in z
isorotations. Therefore there is no reason to expect this ansatz to describe critical
points of the energy functional.

The charge per unit length is ene and the energy per unit length is

B = /000 2PV + oo sin® £(E) + o (f(8)sin £(8)7 + (1 = cos (0) db. (5.21)

This energy satisfies a Bogomolny-type inequality:

\ 2

E = ]000 % (\/;+ %sin2 FOf @) + \/%sin2 f(t) +2uv(1 - cos f(t)))

o Eaint o[ i 1)+ 201 - con ) 0

2 / Yyt e s \/ sin? f + 2uv(1 - cos f)d,
0

with equality when
£t) = — sin? f(t) + 2uv?(1 = cos f‘(t))
TN P+ usin? f(b) h

We can use the Bogomolny bound to determine the energy of a string, for any period

and any values of 1 and 8 = w/v. The Bogomelny bound is an elliptic integral.

5.5.3 Summary

In figure 5.2, we have plotted graphs of energy as a function of period for both
ansitze in the case 4 = 1. The energy of a chain of hedgehogs was determined
by numerically evaluating the energy of the analytic configuration. The minimum
energy 2.45(4w) occurs in the hedgehog ansatz at a period of around 0.97, and this
is in reasonable agreement with the numerically determined minimum [HWO08b].

Notice that the string ansatz is preferred for small periods.

5.6 Chains with new baby Skyrme potential

In this section, we consider chains in the new baby Skyrme model with ¢ = £1. The

ansatz of well-separated planar skyrmions, described above in the context of the old
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Figure 5.2: Energies of various ansétze for old baby Skyrme chains as functions of
period.

baby Skyrme model, is also applicable to the new baby Skyrme model. The same
result is obtained for the large 8 limit of the interaction energy I, except that a
different value for the numerically determined constant p should be inserted. Also,

the lower bound derived for small periods applies to the new baby Skyrme model.

We present one additional analytic configuration below.

5.6.1 A domain wall

Consider the field defined by,

¢ = (sin f(z') cos(vz?® + x), sin f(z') sin(vz® + x), cos f(z!)), (5.22)

in which v is a real constant, x is an angle and f(z') is a function satisfying the

boundary conditions f(z') — 0 as ' — —oo and f(z!) — 7 as ' — oco. This
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field defines a domain wall which separates the two vacua ¢3 = 1 of the new baby
Skyrme potential. The old baby Skyrme model does not admit solutions of this
type, because it has only one vacuum. Walls similar to this have been seen before in
two different contexts: in [KPZ98] walls with v = 0 were studied dynamically, while
in [Wei99] it was demonstrated that new baby skyrmions of any charge consist of
walls similar to (5.22), but wrapped around a circle.

The charge per unit length of the domain wall is

/ Bdz! =

and the energy per unit length is

00 00 4,2
/ Edz! = / -;—(f")2 + %(l/z-f- ) sin? f 4+ %{—(f')zsiwn2 fdz!.

Notice that when v = 0 or & = 0 the energy per unit length is the energy functional of
the sine-Gordon model. The energy per unit length satisfies a Bogmolnyi inequality:

0o 1) _ 2
/ Eda? =/ 1(,/1+uu2sm2ff'-\/y+y2sinf) dz!
+4/1 + pv?sin’ \/,u+1/2s1nff dr?

/ /1 + wﬂsm f\/u + v2sin fdf,
0
with equality when the Bogomolny equation,

= A+ visin f
T+ misin [

is solved. The Bogomolny equation can be solved analytically, to obtain z! as a

v

function of f:

' = o+ —— \/__ (fuarctan Vivz + —ln1 ) (5.23)

u+y2 1=z

for some ‘constant a' which specifies the position of the wall. The energy per unit
length of this field is determined by evaluating the Bogomolny bound analytically,
and is equal to

T2
3% ((\/ﬁu + L) arcsin HV‘ + 1) ,

VBV 1+ p?
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Figure 5.3: Energy of the new baby Skyrme domain wall as a function of period.
For fixed u, the energy per unit length of this field is minimized when v = 0.
However, the energy per unit charge,

2 - . _ 1 uv?
- 2 7 - i 1
> w+v ((\/ﬁz/+ \/ﬁl/) arcsin T+ ? + ) ,

is minimized with respect to variation in v when

We have plotted the energy per unit charge as a function of period with fixed
¢ =1 in figure 5.3, along with the two lower bounds on the energy. Notice that at
its minimum, the energy is very close to the Bogomolny beund, so walls appear to

be fundamental objects in the new baby Skyrme model.
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5.6.2 A pair of domain walls

Now we will describe a field which resembles a pair of demain walls, and which
satisfies the boundary conditions (5.14), (5.15) for a chain with 0 = —1. Let ¢
be a domain wall (5.22) with v(!) = 7/8 and with profile function f®) given by
(5.23) and with location @' = —D/2 for some real number D > 0. Let ¢® be
a second domain wall given by (5.22) with v® = —x/8 and with profile function
f@(z") = fO(—z'). Let R(1), R® be the stereographic projections of these, as in
(5.1). Finally define a superposition R by

1 1 1

R RO T RO
The field R satisfies the boundary conditions for a chain with period § and o = =1,
and the charge per unit period is 1. This field resembles a pair of parallel domain
walls, separated by a distance D, with ¢*> ~ —1 between them and ¢3 ~ 1 on either
side.

We will study the interaction energy
I, := E[R] — E[RY] — E[R?]

of the superposition, which is a function of § and u. This will give indications about
the stability of new baby skyrmion chains with ¢ = —1.

I, — 0 as 8 — oo, and we have calculated the leading contribution to I, in
this limit. The calculation is similar to that performed for two planar skyrmions
in [PSZ95], but is more complicated in practise for the following reason. In the
case of two planar skyrmions, the leading contribution is found using an elegant
argument based on the Euler-Lagrange equations. However, in the case of two walls

the analogous term vanishes, so we must work to higher order.

We find that
167 exp(4 arct .
I, ~ m exp(4y/pvarctan ) (2v* + 2u? — 1) D exp(—2D+/p + v?)

v(1 4 pv?)?
in the limit D — oo, where we have written v = 7/3 . It follows that a pair of

well-separated domain walls will attract when

Bt — 2un?@? - 27 > 0
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and repel otherwise. For large 3, a chain is stable with respect to separation to two

walls, but for some critical value g3, this is not the case. The above results suggest

e <mu+ Vit +2

that

5.6.3 Summary

NBS chain with p=1

2.6 — T T — i
25}
24}
2.3F
2.2+
;’E 2 1 —_
T
2 4
1.9t .
18F_ . . . _ . e
superposition of walls
— — — superposition of hedgehogs
1.7+ o wall N
-— - — - bogomolny bound B
1.6 ' . L E—— I
14 1.6 1.8 2 2.2 24

pin

Figure 5.4: Energies of various ansatze for new baby Skyrme chains as functions of

period.

In figure 5.4 we have plotted the energies of various ansdtze as functions of
the period, with 4 = 1. The energy of two isolated domain walls was determined
analytically. The energy of a superposition of two walls was determined numerically,
and was minimized with respect to variations in the separation D. For § < 1.7#

ne minimum is found, and this agrees with the analytic formula 8, = /1 +V3r~

1.657. The energy of a chain of hedgehogs was determined numerically. We have
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plotted the Bogomolny bound, but left out the period-dependent bound since it is
very small for the periods shown in the graph.

Let By =~ 1.56m be the period at which the chain of hedgehogs and the domain
wall have equal energies. We expect no stable chains to exist for § < f, and we
expect stable chains to exist for 3 > (.. Somewhere between §y and 3. there should
be a critical period at which chains become unstable. Numerical simulations of the
model indicate that the critical period is around 1.497 [HWO08b], which is actually
slightly less than 3y, but still close.

5.7 Summary and open questions

In this chapter, we have studied chains in the planar Skyrme model using a variety
of approaches. T'wo theoretical results were obtained: we proved that chains have
an integer topological charge, and we found a lower bound on their energy which
tends to infinity as the period tends to zero. The former result is quite general and
will be used again in later chapters.

We also studied chains in detail for three particular choices of potential. The
first petential was chosen so that anti-periodic chains could be obtained analytically.
The second two potentials were the well-studied old baby Skyrme and new baby
Skyrme potentials, which have respectively one and two vacua. With one vacuum
anti-periodic chains were found to exist for all values of the period, but with two
vacua the chain developed an instability at small periods which was associated with
a splitting inte two infinitely separated domain walls. Thus, like calorons, planar
Skyrme chains exhibit a constituent structure for small enough periods, but unlike
calorons, the constituent structure has an associated dynamical instability.

An obvious next step is to consider chains in the three-dimensional Skyrme
model: this is done in the next chapter. In chapter 7, we will analyse chains in the

CP! sigma-model, which is the y = 0 limit of the planar Skyrme model.




Chapter 6
Chains of skyrmions

In this chapter we shall study chains in the Skyrme model. The Skyrme model is
a three-dimensional field theory with topelogical soliton solutions, which is believed
to provide a good model of nuclear physics (the topological solitons are identified
with protons and neutrons).

Topological solitons are well-studied in the Skyrme model up to relatively high
charge. Extended configurations have also been considered: the Skyrme model
is known to posess a “Skyrme lattice” solution (of dimension two) [BS98| and a
“Skyrme crystal” (of dimension three) [KS88,KS89,CJJ*89]. “Skyrme chains” ( of
dimension one) were considered long ago [AWM™85), but have since been neglected.

The field equations of the Skyrme model are non-linear and no exact analytic
solutions are known, so the only direct means of studying the Skyrme model is by
numerical simulation. Since the theory is three-dimensional, numerical methods are
not fast. However, a number alternative methods are known. These methods typi-
cally take the form of a simple ansatz, which is empirically observed to approximate
the true (numerically determined) behaviour of the model. The three most promi-
nent ansitze of this type are: Skyrme’s product ansatz (see for example [Sch94]),
the Atiyah-Manton ansatz [AM93], and the rational map ansatz [HMS98]. We have
been able to adapt the first two to study chains, but the rational map ansatz appears
unsuited to this task. Full numerical simulations were carried out by my supervisor,

Prof. R. S. Ward, and appeared in our article [HWO08a].

102
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6.1 The Skyrme model and chains

The field content of the Skyrme model is a function U : R® — SU(2). We define
L; = U18U/8z*. Then the energy density of the Skyrme model is

1 1
€= = Tr(LiLs) = 1 Te([L, Ly][Ls, Ly)) (6.1)

and the energy functienal is

E[U]:= [ &dz'dz?dz®. (6.2)

R3

We will write

U(&) = o(Z)Id + in? (F)o?
where o, 77 are real functions of ¥ € R? satisfying 0% + X(n9)? = 1, Id € SU(2)
denotes the identity element, and o7 are the Pauli matrices.
- Skyrme fields with finite energy must tend to a constant at spatial infinity, and
this constant is taken to be the identity element. So topologically, a finite energy

Skyrme field is a map from S* — SU(2), and such a map has a degree B € Z. The

degree can be conveniently computed by the integral,

B = Bdz' dz? dz® (6.3)
R3
1 o

B = mﬁijk’:[‘l‘(LiLij). (64)

The degree of a Skyrme field forms a lower bound on its energy:
E > 127%B.

Finite energy fields U which locally minimize E will be called skyrmions.

The Skyrme energy density (6.1) is invariant under the action of the group,
E3 X 0(4)1'80.

Here F; is the group of isometries of R? (including reflections) and O(4);,, is the
group of isometries of the target SU(2) = $3, called isorotations. If we represent
U = o + ine’ by the column vector U¢ = (o, w2, w2, x3)", then O(4),, acts by

multiplication from the left. The action of g € Ej is g : U(x) ~— U(g™'x).
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The boundary condition U — Id as r — oo breaks the symmetry group to

E3 X 0(3')1'30.

The charge density (6.4) is negated by orientation-reversing transformations of R3

or S3, so the symmetry group of the whole model is
G = ker(1T)

where I : E3 x O(3)is0 — Z is the homomorphism, II(g, h) = det(g)det(h).
A Skyrme chain with period § > 0 and relative orientation o € SO(3);,, is a
Skyrme field U : R® — SU(2) satisfying

U.(E, Y,z + /8) =0 U(%Z/’ Z),

which minimises the energy functional

B
E[U]=/ / Edz dydz
o Jre

and has finite energy. Skyrme chains are required to satisfy the boundary condition,
U — Id as 22 + y?> — 00. By theorem 5.2.1, Skyrme chains have a degree B € Z
computed by the integral,

B
B[U] =/ Bdx dydz.
0 JR2

6.2 Symmetry of chains

Clearly, the only Skyrme field invariant under the whole group G is the constant
field U(x) = Id. Symmetries of other fields are conveniently described by twisted

subgroups:

Definition 6.2.1 A twisted subgroup (H,p) of G consists of a subgroup H C Ej
and a homomorphism p : H — O(3)is, such that II(h, p(h)) = 1 for all h € H.
The twisted subgroup which describes all symmetries of a field is called the isotropy
group of the field.



6.2. Symmetry of chains 105

A simple example is provided by the charge 1 skyrmion: this can be written

down in the “hedgehog” form:

Un(x) = (Id,m)-exp (if(r)i'c?) (6.5)
= exp (if(r)m;;&70") (6.6)

Here the function f : [0, 00) — R satisfies f(0) = = and f(r) — 0 as 7 — oo, and is
chosen to minimize the energy of Uy. m € SO(3);s, specifies the orientation of the
skyrmion and /d denotes the identity in E5. The isotropy group of this skyrmion is
(H, p), where H = O(3) C Ej3 is the subgroup of rotations and reflections which fix
the origin, and the homomorphism is p : h — mh=im™!,

Isotropy groups are normally used to describe symmetry-breaking bifurcations;
in our case they are merely a convenient notation for describing relative orientations
of pairs of skyrmions. Let U;, U; be two skyrmions with orientations m;, my and
locations a;, a; € R3, with a; # a;. We denote their isotrepy groups by (O(3);, p;)
where O(3); C Ej3 is the group which fixes a;.

The relative orientation is the iserotation which gives U; the same orientation
as Us, that is, mom;' € O(3)i,,. We can also define a relative spatial rotation
R € O(3),, which is the spatial rotation that gives U; the orientation of Us: we have
R = p'(mam;'). A superposition of the pair (Uy,Us) is a charge 2 Skyrme field
which looks like U; in a neighbourhood of a; and like U, in a neighbeurhood of a,.
It is reasonable to expect the isotropy group (H, p) of the superposition to satisfy
the following:

(i) All elements g € H fix the set {a;,a;} C R3.
(ii) If g € H fixes each point a; then p(g) = p1(g) = p2(g).

We define the maximal isotropy group for a superposition to be the largest twisted
subgroup (H, p) satisfying the above.

The simplest superposition of the fields U;, U, is the product ansatz, U = U, Us.
This ansatz has all the symmetries we might expect, except that the reflection
P which swaps a;,a; is not a symmetry (essentially because UyUs # UsU;). An

ansatz which is better behaved with respect to symmetries is the relativised product
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ansatz [NR88|]. The isotropy group of the relativised product ansatz is the maximal
isotropy group.
Both these ansitze can be used to predict the force between well-separated

skyrmions. One finds that [Sch94]:
e When R = Id, the skyrmions repel. This case is called aligned.

e The strongest repulsive force occurs when R is a rotation threugh 7 about the

line [ joining a; and as. This case is called the repulsive channel.

e The strongest attractive force occurs when R is a rotation through = about

an axis perpendicular te [. This case is called the attractive channel.

Proposition 6.2.2 The maximal isotropy groups of an aligned paif and a pair in
the maximally repulsive channel are both (O(2);, P). Here O(2); is the group of
rotations and reflections which fix [, P is the reflection which swaps 0; and 05, and
(---) denotes the group generated by - --. The maximal isotropy group of a pair in
the attractive channel is (Ds, P), where Dy C O(2), is the subgroup generated by

reflections in two perpendicular planes whose intersection is [.

Proof: Let the skyrmions be U; and Us, let their isotropy groups be O(3); and
O(3)2, and observe that O(2); = 0(3); N O(3),. We have U, = (TR, 1) - Uy, where

T is the translation which maps a; to a;. It follows that
pa(g9) = p(R'T~'gTR) Vg € O(3)s.

It follows from property (i) that either H = (K, T) or H = K, for some subgroup
K of O(2),. It follows from property (ii) that every g € K satisfies p;(g) = p2(g).
Equivalently,
pi(g) = p(RT'T'gTR) Vg € K.

Since p; is injective and T commutes with g € O(2),, this condition is equivalent
to gR = Rg. So K can be no larger than the group {g € O(2);JgR = Rg}. In the
aligned and maximally repulsive cases, the maximal K is the whole of O(2);. In the

maximally attractive case, K is a D, subgroup.
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If P € H, we must be able to find p(P) such that
(P,p(P)) - Uy = U, and (P, p(P)) - Uy = Uh.

Both conditions are satisfied by p(P) := p;(PTR) for the cases we are considering,
so P € H. It is easy to check that p is a homomorphism, as it should be. O

All of this is relevant to chains because if a chain posesses a continuous symmetry,
it is much easier to analyse numerically. On the other hand, we are most interested
to study chains whese energy is lower than that of an isolated skyrmion.

We think of a charge 1 chain as consisting of charge 1 skyrmions U, located
at points a, = (0,0,n0) and with orientations o™"m, for n € Z. Each skyrmion
has isotropy group (O(3)n, pr), where p,(g) = o"mg~'m~1o~™". The isotropy group
(H, p) of the chain is required to satisfy:

(i) All elements g € H fix the set {a,|n € Z} C R3.

(ii) If g € H fixes a point a, then p(g) = p,(g).

(ili) The translation T : (z,y, z) — (z,y, 2+ ) is an element of H, and p(T) = 7!

The maximal isotropy group of a chain is the largest twisted subgroup satisfying
the above. Notice that we do not consider the possibility that the chain has any
symmetries which fix the z-axis but not the points a,, because by theorem 5.2.1 a
chain with such a symmetry would have charge per period greater than 1.

We define R to be the rotation which gives Uy the orientation of Uj, ie R =
05 (c™1). Motivated by results for the case of two skyrmions, we make the following

definitions
e A chain with R = Id is called aligned.

e A chain for which R is a rotation through 7 about the 2-axis is called mazimally

repulsive.

e A chain for which R is a rotation through n about an axis perpendicular to

the z-axis is called mazimally attractive.



6.3. Skyrme chains from calorons 7 ) 108

Proposition 6.2.3 Let P here denote the reflection in the plane z = 0. The maxi-
mal isotropy groups of aligned and maximally repulsive chains are both (O(2),, P, T),
where O(2), fixes the z-axis. The maximal isotropy group of a maximally attractive

chain is (D,, P,T).

Proof: Properties (i) and (ii) imply that either H = (K, P,T) or H = (K, T),
for some subgroup K of O(2),. K is determined just as in the case of a pair of
skyrmions, and we set p(g) = po(g) for g € K. If P € H we must be able to find
p(P) that

(P, p(P))U, =U_, Vn € Z.

The case n = 0 is satisfied only if p(P) = po(P). It is easy to check that this choice
of p(P) also works for n # 0, for the cases we are interested in.

Finally, we must have p(T) = 07! = po(R). It is easily checked that p is a
homomorphism. m]

The product ansatz for twe skyrmions tells us that the forces between neigh-
bouring skyrmions in maximally repulsive and attractive chains are repulsive and
attractive respectively. Therefore, we expect that only the maximally attractive
chain will have energy less than that of an isolated skyrmion. Disappointingly, it
appears that a chain can have a continuous symmetry only if its energy exceeds that

of an isolated skyrmion.

6.3 Skyrme chains from calorons

The Atiyah-Manton ansatz is method of obtaining Skyrme fields on R3 from SU(2)
gauge fields over R%. If the gauge field is a charge N instanton, then the Skyrme
field will also have charge N. It turns out that, if the instanton is chesen so as to
minimize the energy of the resulting Skyrme field, then the Skyrme field obtained
is a surprisingly good approximation for the true charge N skyrmion.

The method of the Atiyah-Manton ansatz is to evaluate holonomies of the gauge

field along a family of parallel lines. For example, we could choose the family of
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lines parallel to the z%-axis; then the Skyrme field is obtained via

U(z', 1%, 1%) = Pexp (/

—00

o0

Ao‘(.’E)dﬂ'JO) .
If we want to obtain a Skyrme chain, then we should start with a gauge field satis-
fying
Au(z® + 6,2, 1%, 2%) = 0 - A,(2°, 2", 27, 7°) (6.7)
and integrate along a family of parallel lines perpendicular to the z%-axis.
Calorons provide examples of gauge fields satisfying (6.7). Suppose we have a
caloron with monopole charge k; = 0. Recall that asymptotically,
i 0
0 —¢

Ao — 1y

This is true not just in local gauges, but across the whole 2-sphere at infinity, since

Ap doesn’t wind at infinity. Now we make a gauge transformation,

A, = gAgl—gag
g = exp(iu;_la:ova?’).

In the new gauge, A — 0 at infinity and the gauge field is no longer strictly periodic,
but satisfies

Al (2° + B, 2,22, 2%) = hA, (2% ', 2%, 23)h !
where h = exp(ip1 B0?). This gauge choice is known as the algebraic gauge.

So charge B Skyrme chains can be obtained by integrating holenomies of calorons
with kg = B, k; = 0 in the algebraic gauge. Analytic expressions are known for
all calorons kp = 1 and k; = 0 [KvB98]. So it seems feasible to study Skyrme
chains using this family. Since we are ultimately interested in maximally attractive
chains, we restrict attention to the calorons which yield 02 = Id but ¢ # Id; these
are the calorons with u; = po/4 = 7/23. Aligned chains could be obtained from
calorons with u; = 0, such as the Harrington-Shepard calorons [HS78]. Notice that
our procedure differs from [EK89,NZ89], where caloron holonomies are evaluated in
the periodic direction in order to obtain skyrmions rather than Skyrme chains.

The calorons we are interested in are symmetric under rotations about an axis in

R3. If we choose to evaluate holonomies along lines parallel to the axis, the Skyrme
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chains will alse have an SO(2) symmetry: these will be maximally repulsive chains.
If, on the other hand, we evaluate holonomies along lines perpendicular to the axis
of rotation, we obtain maximally attractive chains.

We have implemented the Atiyah-Manton ansatz for maximally attractive chains
numerically, and evaluated the energies of chains. The family of calorons we used
is parametrised by a scale parameter p and a peried 3. The caloron with scale p
and period (3 is in fact a rescaling of the caloren with scale p/8 and period 1, and
since the components of the Skyrme energy behave simply under rescalings it was
sufficient only to consider calorons with fixed § = 1 and a range of values of p.

The holonomies were evaluated using the Runge-Kutta method. We evaluated
energies in a finite box, and extrapolated both in the box size and the lattice spacing
to obtain energies accurate to within 0.1%. We also calculated B to check the

accuracy of our method. Our results are summarised in the following table:

. 5 [5 [5-1
0.2 |10.56 | 509.2 [ 2.0 x 1074
0.3]16.61 | 314.3| 1.6 x 107¢
0.4]23.20 | 213.7 | 1.1 x 1074
0.5)29.68 | 160.4 | 7.7 x 107°
0.6 | 35.40 | 135.4 | 6.3 x 1073
0.7 ( 40.21 | 124.6 | 9.3 x 107°
0.8 | 44.25 | 119.6 | 1.9 x 10=*

Table 6.1: Energies for caloron-generated Skyrme chains at § =1

In figure 6.1, we have plotted a the minimum energy obtained at each period
within the Atiyah-Manton ansatz. This graph was obtained by interpolating the
data in table 6.1 to obtain E5; and E; as polynormial functions of p, and minimizing

the energy E = E,(3 + E4/3 with respect to variation in p.
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6.4 The vortex ansatz

In this section we describe an alternative ansatz for chains, which is based on the
idea that a chain can split into constituents. We define a Skyrme vortex to be a

field,
0—vz

U, = exp < 'R i03) exp(f(r)ic') exp (9-1-2uzi03)

where (r,0) are polar coordinates in R? and z is the coordinate in the periodic
direction. The profile function f should satisfy the boundary conditions, f(0) = 7 /2,
f(r) — 0 as r — oo. The boundary condition at r = 0 guarantees that U, is well-
defined there. U, is periodic in z with period 27 /v. Since U, is independent of z
at infinity, it can be compactified to a map from S® — SU(2), hence has an integer
degree, or charge per unit period.

The energy density and charge density for U, are

0s” 2082 2 2 2
g = 17+ L araw 4 (L (st g o TS
1 N
B = ——Zsinfcos«ff’.
2r%r

We observe that U, has infinite energy per unit period, which is a consequence of
the fact that U, is not constant on the torus at infinity. The charge per unit period
is 1, which has been verified by integrating B. The proﬁle function f is chosen to
solve the Euler-Lagrange equation for E = (47%/v) [ Erdr.

The Skyrme vortex has been seen before. Kopeliovich and Stern [KS87] consid-
ered axially symmetric Skyrme fields: these resemble finite lengths of Skyrme vortex
joined into a circle. The vortex loops are stable for B = 2 and unstable for B > 2.
Here we will use the Skyrme vortex to construct an ansatz for a Skyrme chain.

Notice that the field U(z,y, 2) = U,(z, —y, —2) also has charge 1, but winds in
the opposite direction to U, at infinity. We define a superposition of two vortices

using the product ansatz:

U=UU,

with Uy(z,y,2) = Uy(z — a,9, 2) and Us(z,y, 2z) = U,(z + a, —y, —2) This super-
position satisfies the boundary cenditions of a chain with period 8 = 7/v and

o = diag(—1,—1,1) € SO(3);s- The field represents a pair of vortices separated by
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a distance 2a, where a > 0. We obtain a similar, but more symmetric, field by using

the relativised product ansatz [NR8S|

U= (UlvUz + U2U1)/\/(det(UlU2 + UgUl)

instead of the product ansatz. The relativised superposition has the same sym-
metries as a maximally attracting chain, so we expect this ansatz to describe a
maximally attracting chain.

When the separation 2a of the vortices is large, they attract each other, as the
following heuristic argument shows. Notice that, far from the centre of the vortex,
the field is approximated by

U ~ exp(ifa®).

Let R > 0 be sufficiently large that this approximation is valid for r > R, and let a
be larger than R. We can evaluate the energy of the superposition by splitting R?
into three regions: the two discs of radius R centred on the vortex locations, and
the exterior. The energy within each disc tends to a constant as a tends to infinity.
The energy in the exterior diverges as a — o0; a calculation shows that the leading
contribution at large a is

47fB1na.

So far we have not justified our choice of superposition procedure: it is important
to ask whether there is another way to superpose two vortices to obtain a lower
energy. Again, we have a heuristic argument why our superposition is the right thing
to do, at least at large separations. Consider the following problem. Let F' denote
the exterior of the two discs Dy, D; of radius R and with centres (z,y) = (%a,0),
as before. Let ¢ : F — U(1) such that 1|sp, has winding number 1 and ¥|sp, has

winding number —1. We want to know what is the minimum value of the energy,

=3 /F TR

The ansatz we used before corresponds to taking 1 = exp(i(f; — 62)), where 6;(z,y)
is the angle between (z — a,y) and the z-axis, and 0y(z,y) is the angle between
(z + a,y) and the z-axis. If the energy of this field is close to the true minimum,

then we know our ansatz is a good one. Notice that the Skyrme term has disappeared
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from our energy functional; this is because the Skyrme term evaluates to zero for
any U(1) field.

The easiest way to find the minimum energy is to stereographically project from
R? to S2; the energy is conformally invariant so we are allowed to do this. The
stereographic projection can be chosen so that the two circles D!, 8D? are described
by 8§ = a and § = m — a in spherical coordinates 8 € [0,7], ¢ € [0,27), where

sin(@) = R/a. The energy functional is now written as

2
e= ,6’/ / Y1 0p)? + sin~2 0y 9y1p)?) sin 6 df dp.

A Bogomolny argument shows that this energy is minimized by (6, ¢) = exp(i¢);
the minimum energy is

473 In cot(a/2).

For large a, this agrees with our superposition to leading order.

8 | FE a B-1

1.0 [ 157.9 | 1.13 | 5.4 x 104
1.1 153.1 [ 1.15 | 3.4 x 10™*
1.2 1496 | 1.16 | 3.1 x 1074
1.3]147.1[1.18 {21 x 10
1.4 | 145.2 120 | 2.0 x 1074
1.5(144.0 [ 1.21 [ 1.5 x 1074
1.6 {143.2 [ 1.22 | 1.5x 1074
1.7]142.8 [ 1.23 [ 1.2x 1074
1.8 142.6 | 1.24 | 1.1 x 1074
1191428 |1.24|9x107°
2.0 (1431|125 [9x107°

Table 6.2: Energies of superposed vortices, minimized with respect to variation in

Q.

We have evaluated the energy of the superposition of two vortices for a range of

values of # and a. The energies were evaluated in a finite box, and we extrapolated
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Figure 6.1: Energies of various ansitze for Skyrme chains as functions of period.

in the box size and the lattice spacing to obtain results accurate to within 0.1%. We
tried using both the product ansatz and the relativised product ansatz, and found
that the energies obtained agreed. We also evaluated B as a check on our methods.
Table 6.2 shows the minimum energy of the superposition, together with the value

of a for which this energy is attained.

6.5 Summary and open problems

In figure 6.1 we have plotted the energies of the ansétze described above, along
with the numerically determined energy of a chain superposed of hedgehog-ansatz
skyrmions. The minimum energy, E = 1.16(12n2), is obtained using the Atiyah-
Manton ansatz, and occurs at a period § = 2.15. Numerical simulations of chains

have been performed by my supervisor, Prof. Ward, and appeared in [HWO08a].
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These indicate that the Skyrme chain attains minimum energy E = 1.143(1272?) at
period 8 = 1.98; the Atiyah-Manton ansatz provides a fairly accurate description of
chains, at least for 3 close to 2.

The Atiyah-Manton ansatz appears to give reasonable energies for the whole
range of periods, although we have not compared with numerical simulations for
all values of 4. For small periods the vortex ansatz has a lower energy than the
Atiyah-Manten ansatz, while for large periods the superposed hedgehogs have a
lower energy than the Atiyah-Manton ansatz. It is worth pointing out that the
Atiyah-Manton ansatz takes much longer to implement numerically than the others,
since one needs to solve a differential equation for each point on the grid taken to
represent space.

The value ratio E/B for the chain lies between these of the charge 2 and charge
3 skyrmions. The value of E/(127%B) for a Skyrme crystal [KS88, KS89, CJJ+89]
is 1.04, and for the Skyrme lattice [BS98] it is 1.06. The value 1.143 obtained
numerically for a chain is much greater than either of these. It is quite likely that
higher charge Skyrme chains exist, and would have lower energy than the charge
one chain studied here, see [HW08a] for some numerical results.

We will mention briefly some things which we have not been able to do. Firstly,
we have not found an analog to the rational map ansatz which works for chains. We
tried an ansatz which obtains anti-periodic chains using anti-periodic meromorphic
maps on the torus (such as the Jacobi elliptic functions), but the energies obtained
exceeded those obtained in the vortex ansatz. We have also been unable to find a
lower bound on the energy which diverges for small periods, analagous to theorems
5.3.4 or 5.3.5. Possibly the difficulty lies in the fact that R? x S! has two non-
compact directions rather than one; it might be easier to find a lower bound for a
Skyrme lattice.

One potential application of Skyrme chains is to constructing skyrmions. One
can easily envisage a charge N skyrmion which consists of N periods of Skyrme
chain wrapped around a circle; such a configuration would have a Dy symmetry.
Although these Dy skyrmions would certainly have greater energy than the known

polyhedral skyrmions, they may still be local minima of the energy functional.
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The fact the vortex ansatz seems to well for small periods indicates that Skyrme
chains, like other soliton chains, exhibit a constituent structure. However, the con-

stituents are only be visible if the chain is squeezed beyond its preferred period.



Chapter 7
Chains in sigma models

In this chapter we will consider chains in the CP" sigma models. These models
are probably the easiest to work with amongst all models with tepological selitons.
For this reason they provide a good place to explore new ideas. There is a close
resemblance between “lump” solitons in sigma models and instantons: both theo-
ries have conformally invariant energy functionals, and beth sets of solitons have a
holomorphic structure.

Chains were studied in sigma models a while ago in connection with finite tem-
perature quantum field theory [MW89, Sni94|, and their dynamics were explored
in [Rom05]. More recently, it was observed that with different boundary conditions,
a sigma model chain can exhibit constituents, just as a caloron does [Bru08]. The
constituents of a caloron can be understood using loop groups; here we will show
that the same is true of sigma model chains.

That a caloron exhibits constituents follows from two observations: firstly, that
a caloron is a moenopole whose gauge group is a loop group [GM88§], and secondly
that a monopole is a superposition of “fundamental” SU(2) monopoles. We shall
show that both of these statements have analogs in the CP" sigma models. We will
try to keep our discussion fairly simple, in order to make the ideas clear. We will
not attempt to develop a general theory for sigma models and loop groups; instead

we will present a few illustrative examples.

117
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7.1 The CP" sigma models

The field content of a sigma medel is a map ¢ : M — N between two Riemannian

manifolds. The energy functional is

1
B=: / ld |-
M

In the mathematical literature, a function ¢ which minimizes F is called harmonic.

In the case where M has dimension two and N is Kahler, there is a lower bound

EE/MW(MN)

which is saturated if and only if ¢ is helomorphic [Gue85]. In general, the lower
bound will have a topological interpretation.

We will be interested in the case where M is C and N is n-dimensional complex
projective space CP". CP" is one member of the family of symmetric spaces for
SU{n+1), all of which are Kéahler manifolds. To construct these symmetric spaces,
one first fixes a maximal torus T in SU(n+ 1). All symmetric spaces for SU(n +1)
may be obtained as orbits of elements b of the Lie algebra t of T under the adjoint
action of G. The symmetric spaces can also be described as quotients G/C(b),
where C(b) C G is the centraliser of b. In particular, if b is chosen so that C(b)
is isomorphic to U(1), the symmetric space will be CP". One can also represent
symmetric spaces as quotients of complex groups GL(n + 1,C). Finally, CP" can
be represented geometrically as the set of lines in C"*1,

This last description allows us to represent points of CP" by non-zero n + 1-
column vectors, defined up to multiplication by complex numbers. Thus the charge

1 CP! sigma model lump may be written redundantly as

A
d:ur— (7.1)

u—a

where u = x + iy is a coordinate on C and A € C*, a € C are parameters.
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7.2 Multi-kinks

Multi-kinks are the sigma model analog of monopoles. Here we define a multi-kink

to be a map ¢ : R? — CP" which obeys the constraint,

09 _

Oy X9

for X € su(n + 1), and which minimizes the energy functional

1
E=3 /]R |ldo||*dz. (7.2)

Multi-kinks wind in a spatial direction (the y-direction), so are similar Q-kinks
[AT92b, AT92a], which wind in a temporal direction.
Given a multi-kink ¢, we may set ¢ = exp(yX)¢, so that & is independent of y.

In terms of ¢, the energy functional is

1 Lo~ ~
E= /R 18,8112 + V(@) da, (7.3)

where V : CPP" — R is the function defined by take the norm squared of the vector
field induced on CP™ by X. This second version of the energy functional, and its
multi-kink minima, were studied in [GTTO1].

We may choose coordinates so that X = idiag(uy, ... tn+1) for real numbers y;
satisfying p; > piy1. We assume further that these inequalities are strict; this is
analogous to the condition of maximal symmetry breaking for menopoles. In order
that the energy be finite, ¢ must tend to a fixed point of X, called a vacuum, as

T — *oo. It is easy to see that there are n + 1 vacua in CP", written

1 0 0
0 1 0
nh = . y Ug = ) v s Unygl =
| 0] | 0] |1

There is a lower bound on the energy,

EZ/]R¢*ik(w).

Here w is the standard Kéhler form on CP” and k is the vector field induced by X.

Since H!(CP") = 0, the 1-form ix(w) is exact. In fact we can say more: there exists
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a function ¥ on CP" such that k is the Hamiltonian vector field with Hamiltonian
Y, that is, {xw = dyp. We will show below that 1/ can be constructed explicitly,
and satisfies 9¥(v;) = —2p;, hence the lower bound on the energy of a function ¢
satisfying ¢(=00) = v;, ¢p(00) = v; is E > 2(u; — p;). The lower bound is saturated

when ¢ is holomorphic, or equivalently, when 43 solves

5% b=iX - ¢. (7.4)

To construct the function v, we work in the adjoint orbit model of CP". Let
b= —2i/(n+ 1) diag(n,—1,...,—1) € su(n + 1) be a basepoint, which we identify
with v;. Points p € CP" are represented by p = gbg™! for g € SU(2). The function
1 is defined by

¥(p) = —Tr(pX).

The canonical choice of symplectic form (due to Kostant and Kirillov) is

wp(€,m) = =Tr(pl§, 7))
for £,m € su(n +1). The identity iyw = di) is equivalent to
wp(X,Y) = Lyy VY € su(n+1)

where L denotes the Lie derivative. We have Lyt = —Tr([Y, p], X) and w,(X,Y) =
—Tr(p[X,Y]), so the identity follows from the invariance of the trace:

Tr(lY, p}X) + Tr(plY, X]) = 0.

The simplest, case of the above is when n = 1. Since X must be traceless, u; > 0

and ps = —p3. The general solution of the Bogomelny equation is

¢ N /5] exp(—ﬂlu) (75)

ag exp(—pau)

where u = z + iy and a3, a3 € C* are defined up to rescaling. This solution satisfies
the boundary conditions, ¢(—o0) = v;, ¢(00) = v5. We define the mass of the kink

v to be half its energy: v = u; — uo.
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Actually, this CP! kink is the familiar sine-Gordon kink. Consider a kink of the

form,

cos(f(z))
e sin(f(z))
for f a real function and a € R. The energy (7.3) of such a kink is

t

E= % /R (0. )2 + v sin?(f)dz,

which is the energy functional of the sine-Gordon model. The kink (7.5) has this
form, and is identified with the sine-Gordon kink. We define the location of the kink
to be the point z = z, where f(z) = 7/2, that is, o = v~!In|a;/as|. The second
modulus of the wall corresponds to a U(1) phase.

The next simplest case is n = 2. The general solution of the Bogomolny equation
is

ay exp(—piu)
¢:urs | agexp(—ppu)
az exp(=psu)
where a1, ag, ag € C are defined up to rescaling, and at least two are non-zero. More
concisely, we can say that [a;, az,a3]! € CP?\ V, where V = {vy,v,,v3} is the set
of vacua. When a3 = 0, the solution satisfies the boundary condition ¢(—o0) = vy,
#(00) = v,, and the solution is an embedding of a CP! kink with mass vy := p; — ps.
Similarly, when a; = 0 the solution is an embedding of the CP' kink and satisfying
the boundary conditions ¢(—=00) = va, ¢(00) = v and with mass vs := ps — 3. In
all other cases, the boundary condition satisfied is ¢(—00) = v; and ¢(oc0) = v3, and
the mass of the solution is v; + 5.

The cases azg = 0 and a; = 0 can be considered fundamental solutions, and they
can be obtained as limits of the general a;, a3 # 0 solution. The four real moduli
of the general solution can be accounted for by thinking of it as the superposition
the two fundamental kinks, each posessing two moduli. For this reason, the general
solution will be referred to as a multi-kink.

It is easy to see how to generalise the multi-kink, and its fundamental kink

constituents, the case of target space CIP". The general picture is that a CP" multi-
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of T to R which together describe the action of t on the Lie algebra of G. The Weyl
group W := N(T)/T acts on t. Reflections in the hyperplanes H, := ker(a) are
elements of W. W is generated by reflections in the walls of the fundamental Weyl
chamber; the corresponding roots are called simple roots.

We observe that any pair of vacua v;, v; € CP" determine a unique reflection in
the Weyl group which swaps them. Hence a kink interpolating between v; and v;
may be associated with a root a. We have noticed (but not proven) that the mass
of such a kink is equal to a(X) € R. We have also noticed that a fundamental
kink is associated with a reflection in a wall of the Weyl chamber, which is in turn
associated with a simple root of the Lie group.

So it appears that the number of fundamental kinks is equal the number of
simple roots in the Lie group (that is, the rank of the Lie group): SU(n + 1) has n
simple roots, so a CP" multi-kink has in general n fundamental kinks. Of course,
this statement is just an observation; we have neither proved it, nor investigated it

for other symmetric spaces or Lie groups.

7.3 Chains
A chain is a map ¢ : R? —» CP" satisfying the periodicity condition

¢z, y+B) =g é(z,y)

which minimizes the energy functional,

1 [? 9
E = 3 ld¢||“dz dy.
0 JR

Here # > 0 is the period and g € SU(n + 1). In order that the energy be finite, ¢
must tend to fixed points of g as £ — *oo.

We assume that g is written in the form g = exp(—X (), with X = idiag(u1, . - . ptn+1)-
We assume that u; > pirq and gy — ping1 < po, where pg := 27 /3. We do not con-
sider at present the possibility that some of the u; are equal. Then the fixed points
of g are the vacua vy, ...vny4) described in the preceding section.

As usual, there is a Bogomolny bound on the energy and solutions of the Bogo-

molny equation are holomorphic. If ¢ tends to the same vacuum as £ — 00 then
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the lower bound on the energy is a multiple of an integer, by theorem 5.2.1. In the

general case, ¢(—00) = v; and ¢(co) = v;, we have found that the lower bound is
/ ¢*(w) = 4m (ko + - ﬂ])
RxS? o

This identity is proved in a similar manner to theorem 5.2.1. Let ¢'(z,y) =

for an integer k.

exp(yX)o(z,y) be a strictly periodic map, and let ko be its degree. We have an
identity,

¢"(w) = ¢"(w) + ¢" (ixw) A dy.
We recall from earlier the identity i¢xw = di. Integrating, we obtain

¢"(w)

RxS? RxS1

= 47rk0—ﬁ/ dy

#*(w 5/¢ (d)

A
= dmko+ — o — (pi — 1)

as required.

The solution censidered by Bruckmann [Bru08] was

biurs | @ exp((po — p1)u) + ao exp(—pmu) (7.6)
bo exp(—pau) :

where ag, a_1, by are non-zero complex parameters, defined up to an overall scal-
ing. Note that py = —p; because X is traceless. This map satisfies the boundary

conditions ¢(—o00) = vy, ¢(00) = vy, and its degree is 1.
Bruckmann observed that, for certain values of the parameters a,, ag, by the chain
resembles a superposition of two fundamental kinks, with masses 14 = u; — s and
Vg = iy — 1. To see this, we fix some of the parameters: by making translations

and phase rotations, we can choose a; = —ap = 1 and b € R, b > 0. The chain (7.6)

becomes
b~ (exp(vou) — exp(nu))
1

¢:uw—

When b is large, the field resembles two kinks of the form (7.5), with masses vy, v,

and locations z; = —v;'Inb, o = v;'Inb. When b is small, the field resembles a
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lump (7.1) located at u = 0, with scale parameter A = b/uo. Energy densities for
various values of b are illustrated in figure 1.1.

It is easy to write down higher charge chains, including chains whose charge is
fractional. It is also a simple matter to write down chains in different sigma models.

For example, the analog of the Bruckmann chain in the CP? sigma model is

a1 exp((po — p1)u) + ao exp(—p1u)
¢:u— bo exp(—piau) - (7.7)
| co exp(—f13u)

This CP? chain has three constituents, with masses 1, = p; — pa, Vo = o — ps,
V3 = jg — 1 — Va. More generally, the charge 1 CP" chain has n + 1 constituents.
We would like to find a more systematic way to understand the constituents. We

will argue below that the natural way to understand them is with looep groups.

7.4 Loop groups

A loop group LG is a group whose elements are maps from the circle S! to a Lie
group G. The product of two loops is obtained by pointwise multiplication, using
the product in G. We consider in particular the group of smooth maps, although
there are other possibilities. The standard reference on loop groups is the book by
Pressley and Segal [PS86]. Although loop groups are infinite-dimensional, their root
structure is similar to that of finite-dimensional Lie groups, which is part of the
reason why they are interesting to study.

Here we shall describe some symmetric spaces for loop groups. The starting
point is to introduce the group T of rigid rotations of S!, which acts on LG in an
obvious way. We take a semi-direct product TXLG. Let T be a maximal torus in
G, let G also denote the subgroup of LG of constant loops, and let T" denote the
subgroup of constant loops taking values in the torus. Then T x T is a maximal
torus in Tx LG. Symmetric spaces of loop groups are obtained in an analogous way
to symmetric spaces of finite-dimensional Lie groups: we choose a subgroups Z of

the maximal torus T x T, and consider the quotient Tx LG/C(Z).
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We are interested in the case G = SU(n + 1). We list three infinite-dimensional

symmetric spaces for SU(n + 1) below.

e Suppose that Z =T x T. Then C(Z) = T x T, we denote the homogeneous
space TxLSU(n+1)/T x T = LSU(n + 1)/T by F*t1.

e Suppose that Z = T. Then C(Z) = Tx.SU(n+1), we denote the homogeneous
space TXLSU(n+1)/T x SU(n+1) = LSU(n+1)/SU(n+1) by QSU(n+1).

e Suppose that Z is a U(1) subgroup of T. Let Y denote the centraliser of
Z in SU(n + 1). Then C(Z) = TXLY, we denote the homogeneous space
TxLSU(n+1)/TxLY = LSU(n +1)/LY by LCP", it is identified with the

space of loops in CP".

The spaces QSU(n 4+ 1) and F™*! are well studied; they are called respectively
the fundamental homogeneous space and the periodic flag manifold. However, we
shall be primarily interested in the space LCP", which appears to be much less
well-studied.

We will represent points of LCP" by column vectors of functions 2% : ST — C:

21(6)

Zn+1 (9)

Here § € R/27Z = S*. The functions z* must not be all zero for any value of 8, and
they are defined up to overall multiplication by functions from S! to C*.

The space LCP" inherits a natural metric from CP". Let z = z(6) denote a point
in LCP"; if two tangent vectors £, € T,LCP" can be represented by a functions
v,w: St — T, CP" then we define

1
o:(6m) = 57 [ 92 (00), 0 @),
The normalisation factor is chosen so that if z, £, 7 are all constant loops then their
norm in LCP" equals their norm in CP". Notice that LCP" also inherits a complex

structure from CP", so it is quite pessible that LCP" is a Kahler manifold.
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Like the finite-dimensional symmetric spaces, infinite-dimensional symmetric
spaces can be modelled as adjoint orbits in a Lie algebra. We consider the ex-
ample of LCP'. The Lie algebra of the maximal torus T x T is spanned by the
vectors 0y and t, where @y is a basis vector for the Lie algebra of T and ¢ is a basis
vector for the Lie algebra of T = U(1). The stabiliser of the point ¢ is the group
Tx LT; it follows that the orbit of ¢ under the adjoint action of Tx LSU(2) is LCP.

As in the finite-dimensional case, the fixed points of T x T in the LCP' are the
images of the base point under the action of the Weyl group. The Weyl group for
Tx LSU(2) is generated by the following transformations:

ads + bt = ady — bt

alp+bt — adp+ (2b—a)t

when t is suitably normalised, and where the coeflicients a,b € R. It follows that

LCP! has two vacua, v; =t and v, = —t. Written as vectors, these are

The group TXx LSU(2) has two simple roots, which are identified with the two
generators of the Weyl group introduced above. More generally, Tx LSU(n) has n

simple roots (see figure 2.1)

7.5 A chain as a loop group multi-kink

We are now ready to apply loop groups to chains. We shall show that a CP" chain
is the same thing as a multi-kink in a sigma model whose target is LCP". Let ¢ be

a chain satisfying ¢(z,y + 8) = exp(—8X)¢(z,y). Define a map ¢ : R — LCP" by

¢(z) = exp(X 0/ o) b(, 0/ o).

The Bogomolny equation for ¢,

A
(52 +izg) 2 =0
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is equivalent to

g~ . 0\ -

% —Z(X—'/.IIQ%)(]S
This is formally identical to the Bogomolny equation for a multi-demain wall (7.4},
since X — uodp is an element of the Lie algebra of SU(n + 1)xT. Similarly, the

energy functional for ¢ is equal to

Jé] ~ ~
E=5 [ 106+ V(@)z

where the potential function V : LCP"™ - R is equal to the norm squared of the
vector field induced on LCP" by X — uo0y. Here we are explicitly using the metric
defined on LCP".

As a concrete example, the Bruckmann chain (7.6) is mapped to

Hz) = a1 exp((po — p1)z)e” + ag exp(—p1z)
boexp(—par)

We have illustrated this object in figure 7.2. The horizontal axis represents the Lie
algebra of T and the vertical axis represents the Lie algebra of T. The orbit of v; = ¢
is LCP!. The dashed arrow represents the chain, while the two solid arrow indicate
the fundamental (consituent) kinks. The kink pointing from v; to ve has mass v,
the kink pointing frem v, to v; has mass 1. These two types of kink are identified
with the two simple roots of Tx LSU(2).

It is easy to see how figure 7.2 generalises to higher charge. For example, a
dashed arrow which passes from v; to vy te v; to ve represents a chain with two
constituents of mass v, and one constituent of mass v,. The energy of such a chain
is (4m/uo) (211 + vp). It is also easy to guess what will happen for different target
spaces. For example, the CP? chain (7.7) is represented by an arrow in the figure
7.1 passing from a vacuum v; to v, to vz and then back to v;.

Notice that there is a definite ordering to the fundamental kinks of a chain. For
example, a kink lying to the right of kink of mass v, always has mass v,. This is
because, in figure 7.2, the arrow pointing from v, te v; is always associated with a
kink of mass v;. The ordering prescription looks quite reminiscent of the ordering of
constituent monopoles in axially-symmetric calorons, described by equation (3.11)

and figure 3.2. It might be possible to relate axially-symmetric calorons and leop
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vl

v2

Figure 7.2: The charge 1 CP' chain realised as an adjoint orbit in the Lie algebra
of the loop groop

group multi-kinks using results of Atiyah [Ati84] or Charbonneau and Hurtubise
[CHO08].

7.6 Summary and open problems

In this chapter we have explored a connection between chains and multi-kinks in
sigma models. We showed that the a CP"-chain is the same thing as an LCP"-
multi-kink, and argued that this explains the appearance of fundamental kinks in
a chain. We pointed out some connections between the structure of multi-kinks
and the root structure of Lie groups. It would be interesting if these connections
could be derived in a more fundamental way: could one deduce the properties of
a multi-kink meduli space using instead machinery from group theory? And could
such analysis be applied to more general symmetric spaces?

We point out here that sigma models have been studied in connection with loop
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groups before. Atiyah has demonstrated the existence of a bijection between moduli
spaces of SU(n) Yang-Mills instantons and moduli spaces of lumps in sigma models
with target QSU(n) [Ati84, Gue85). Charbonneau and Hurtubise have explored a
similar correspondence for calorons [CHO8]. It remains to be seen whether the LCP"
sigma model, or its chain or multi-kink solitons, can be related to Yang-Mills theory
In any way.

A final question concerns sphalerons, which are saddle points of the energy func-
tional. Sphalerons have been found in certain sigma models, and have a nice mathe-
matical structure [Zak89]; one wonders whether kink- or chain-type sphalerons also

exist.



Chapter 8
Conclusion

We began this thesis by describing seme simple properties of chains of solitons, and
asking some basic questions about them. In the following three chapters we investi-
gated in detail various aspects of calorons, which were historically the first type of
chain to receive any attention. In the final three chapters we investigated chains in
three more models, namely the planar Skyrme model, the Skyrme model, and the
CP" sigma models. We have seen that chains, and their constituent structure, are
fairly generic. The only case where no constituents were found was for calorons on
hyperbolic space — but this was to be expected, since our boundary conditions were
degenerate.

At the end of each chapter we have mentioned some open problems and possible
directions for generalisation. In view of the title of this thesis, we will make a
few remarks here about the general status of research in chains. Monepole chains
have also been studied and their Nahm transform and spectral curves analysed
(see [War05] and references therein). It remains to be seen whether monopole chains
inherit any other mathematical structure from monopoles, such as rational maps.
A cursory glance at the contents page of [MS04] reveals that the only topological
soliton model where chains have not been studied is the vortex model — but note the
string-theoretic arguments at the end of [Ton02]. Lumps in the CP" sigma model
are known to describe semi-local vortices effectively, so a chain of semi-local vortices
would presumably bear some resemblance to the the CP" chains described in chapter

7.

131
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Finally, as was emphasised in the introduction, it seems that that the constituent
structures of chains in different models are in some way related to the root structure
of loop groups. Loop groups have previously been related directly to calorons, and
we have shown that they are also related to sigma model chains (and by extension,
planar skyrmion -chains). It remains to be seen whether monopole, skyrmion, or

vortex chains can be described using loop groups.
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