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Abstract 

We construct and analyse chains of solitons in various field theories. Particular 

emphasis is placed on the constituent structure, which appears to be be a generic 

feature of chains. 

In Yang-Mills theory, we construct ax:ia1ly symmetric chains of instantons ( caloron.s) 

with instant on charge 2, making essential use of the N ahm transform. We show that 

there are two distinct families of caloron, which can be distinguished using repre

sentation theory. We also construct calorons on hyperbolic space with instanton 

charge 1 and monopole charge 0. This generalises earlier work of Garland and Mur

ray, in t:he same way that non-integer-mass :hyperbolic monopoles generalise the 

integer-mass hyperbolic mo:nopoles of Atiyah. 

We study chains of skyrmions with charge l in both the Skyrme and planar 

Skyrme models, using various approximate analytic ansatze. In the Skyrme model 

chains are argued to exist and to have an energy per baryon number lower than 

the charge 2 skyrmion. In the planar Skyrme model, we show that the stability of 

chains depends on the choice of potential function. 

We study chains and kinks in the C!Pn sigma models analytically, in particular, 

we show that chains are kinks in a sigma model whose target is a homogeneous space 

for a loop group. This is the sigma model analog of the statement that a caloron is 

a monopole whose gauge group is a loop group. 



Declaration 

The work in this thesis is based on research carried out at the Centre for Particle 

Theory, the Department of Mathematical Sciences, Durham University, England. No 

part of this thesis has been submitted elsewhere for any other degree or qualification 

and it is all my own work 1mless referenced to the contrary in the text. 

Chapter 2 contains mostly background material which is included to place later 

work in context. The material in chapters 3'"7 is my own work. The contents of 

chapters 3 and 4 appeared in my publications [Har07] and [Har08] respectively. The 

contents of chapters 5 and 6 represent my own contribution to the joint publicaticm.s 

[HW08b] and [iHW08a] with my supervisor, Prof. R. S. Ward. 

Copyright © 2008 by Derek Harland. 

"The copyright of this thesis rests with the author. No quotations from it should be 

published without the author's prior written consent and information derived from 

it should be acknowledged" . 

iv 



Acknowledgements 

I am indebted to my supervisor, Richard Ward, for introducing me to the subject of 

this thesis and offedng guidance, encouragement and helpful suggestions throughout 

my period of study. In addition I would like to thank Paul Sutcliffe and Wojtek 

Zakrzewski for encouragement and for patiently answering my questions. I also 

thank Dirk Schiitz for answering some topological questions. 

I am fortunate to have received financial support from the Science and Tech

nology Facilities Council (formerly the Particle Physics and Astronomy Research 

Council), which has made my study possible. 

Finally, I am grateful to aH who have made my stay in Durham enjoyable, but 

particularly Jackie, who has been a constant source of joy. 

V 



Contents 

Abstract iH 

Declaration iv 

Acknowledgements· V 

1 Introduction 1 

2 Yang-Mills fields 6 

2.1 Anti~self-dual gauge fields 6 

2.2 Examples 8 

2.2.1 Instantons on JR4 9 

2.2.2 Monopoles on JR3 10 

2.2.3 Caloron.s on JR3 x S 1 11 

2.3 Constructions of anti-self-dual gauge fields 17 

2.4 The ansatz of Corrigan., Fairlie and 't Hooft 18 

2.5 Ca:lorons in the CF'tH ansatz 22 

2.6 The ADHM construction. for instantons . 24 

2.7 The N ahm transform for monopoles . 25 

2.8 The N ahm transform for calorons 27 

2.8.1 Nahm data 27 

2.8.2 N ahm transform 28 

2.8.3 Gauge transformations: (2, 2) case. 29 

2.8.4 Gauge transformations: (2, 1) case. 30 

vi 



Contents 

3 Euclidean calorons with axial symmetry 

3.1 Action of SU(2) on ca1orons and Nahm data 

3.2 U{1}-symmetric {2, 2)-calorons . 

3.2.1 RN tri¥ial . . . 

3.2.2 RN non-trivial . 

3.3 U{1)-symmetric {2, 1)-calorons . 

3.4 Large scale limits ....... . 

3.4.1 {2, 2)-calorons with RN non-trivial 

3.4.2 {2, 2)-calorons with RN triviaJl 

3.4.3 {2, 1)-calorons 

3.5 Large period limits . 

3.6 S-ummary and open problems 

4 Hyperbolic calorons 

4.1 Coordinates aBd metrics 

4.2 Witten's ansatz . . ... 

4.2.1 

4.2.2 

4.2.3 

4.2.4 

Dimensional Reduction . 

Gauge transformations . 

Anti-self-dual equations 

Solution of anti-self-dua:l equations 

4.3 The Corrigan-Fairlie-'tHooft ansatz .. 

4.3.1 Relation with Euclidean version 

4.3.2 Relation with WitteB's ansatz 

4.4 Hyperbolic instantons . . . . . . . 

4.5 Hyperbolic calorons with charge 1 

4.5.1 Calorons from Euclidean instantons 

4.5.2 Non-integral charge 1 calorons . . . 

vii 

31 

32 

33 

34 

3,7 

40 

41 

42 

42 

44 

44 

47 

48 

49 

51 

5ll 

52 

52 

53 

55 

56 

57 

58 

64 

64 

65 

4.5.3 Relation between integral and non-integral hyperbolic calorons 70 

4.6 Taking limits of parameters 

4;6.1 Flat space limit 

4.6.2 InstantoB limit 

4.6.3 Monopole limit 

72 

72 

74 

74 



Contents viii 

4. 7 Summary and 0pen problems . . . . . . . . . . . . . . . . . . . . . . 76 

5 Chains of planar skyrmions 78 

5.1 The planar Skyrme model 79 

5.2 Chains and their topology 83 

5.3 A period-dependent lower bound on the energy 86 

5.4 Ba:by skyrmions from sigma model lamps . 91 

5.4.1 Strictly periodic chains . 91 

5.4.2 Anti-periodic chains 92 

5.5 Chains with the old baby Skyrme potential . 93 

5.5.1 The dipole approximation 93 

5.5.2 The string ansatz 94 

5.5.3 Sammary 95 

5.6 Chains with new baby Skyrme potential 95 

5.6.1 A domain wall . 96 

5.6.2 A pair of domain wa:Hs 99 

5.6.3 Summary .. . 100 

5.7 Summary and open questions . 101 

6 Chains of skyrmions 102 

6.1 The Skyrme model and chains . 103 

6.2 Symmetry of chains . .. . 104 

6.3 Skyrme chains from calorons . . 108 

6.4 The vortex ansatz . . 111 

6.5 Summary and open problems . 114 

7 Chains in sigma models 117 

7.1 The CJP>n sigma models . 118 

7.2 Multi-kinks . 119 

7.3 Chains . 1'23 

7.4 Loop groups . . l25 

7.5 A chain as a loop group multi-kink . 127 



Centents 

7.6 Summary and open problems 

8 Cenclusien 

ix 

. 129 

131 



List of Figures 

1.1 Energy densities of chains in the CIP1 sigma model. . . . . . . . . 3 

2.1 The Dynkin diagrams of various Lie groups and their loop groups 15 

3.1 The large scale limit of a (2, 2)-caloron with RN non-trivial. 

3.2 The large scale limit of a (2, 2)-caloron with RN trivial. . . . 

42 

44 

4.1 Graphs of field strength IIFII 2 as a ftmction of p and 't for .hyperbdl,ic 

instantons with ..\=1, 2, 3, 5. . . . . . . . . . . . . . . . . . . . . . . . 63 

4.2 Graphs of IIFII2 as a function of p and T for hyperbolic calorons with 

S =- 2, {3 = 2n and ,.\ ...:.... 1.2, 2, 5 and 10. . . . . . . . . . . . . . . . . . 75 

5.1 The quantity ( E- Emin) / Emin as a function of log p for a 1-skyrmion 

with the old baby Skyrme potential. . . . . . . . . . . . . . . . . . . . 83 

5.2 Energies of various ansatze for old baby Skyrme chains as functions 

of period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 

5.3 Energy of the new baby Skyrme domain wall as a function of period. 98 

5.4 Energies of various ansatze for new baby Skyrme chains as functions 

of period. . ................................ 100 

6.1 Energies of various ansatze for Skyrme chains as functions of period. . 114 

7.1 The CIP2 multi-kink rea:lised as an adjoint orbit in the Lie algebra of 

SU(3) . ................................... 122 

7.2 The charge 1 CIP1 chain realised as an adjoint orbit in the Lie algebra 

of the loop groop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1'29 

X 



List of Tables 

6.1 Energies for calor:on-generated Skyrme chains at (3 = 1 ........ 110 

6.2 Energies of superposed vortices, minimized with respect to variation 

in a. . ................................... 113 

xi 



Chapter 1 

Intro,d uction 

This thesis concerns static topological solitons in classical field themies. A static 

field theory consists of a set of fields, typica:Hy £unctions on a manifold or sections 

of fibre bundles, and an energy functional, which is expressed as an integral of an 

energy density and depends only on the fields. Fields which are stationary points 

of the energy functional solve the static field equations. A topological soliton is a 

fielcl configuration which is a stationary point of the energy functional, and which 

is topologically non-trivial in some way. One can also consider dynamics of soHtons 

and quantization of solitons, but both of these are beyond the scope of this thesis. 

Typically, the topological properties of a soliton are described by a single integer, 

such as the degree of a map, which is called the charge. The first step towards under

standing the structure of solitons is to look at their energy densities. For example, 

in most theories whose base manifold is Euclidean space, the energy density of a 

charge one soliton is concentrated in a small region of space. To a good approxima

tion, the soliton looks and behaves just like a point particle. Similarly, the energy 

cl.ensity of a charge two soliton is normally concentrated in two disjoint regions of 

space. A charge two soliton looks and behaves like a pair of particles, unless the two 

regions of high energy density are close enough to each other that they overlap. In 

that case the particle approximation breaks down, and some of the deeper structure 

of the solitons becomes apparent. 

There are many different field theories which admit topological solitons, ancl. 

each type of soliton has its own set of applications. An excellent introduction to the 

1 



Chapter 1. Introduction 2 

subject is to be found in the book of Manton and Sutcliffe [MS(i)4]. In this thesis 

we consider instantons and monopoles, which have applications in particle physics, 

skyrmions, which have applications in nuclear physics, and sigma models, which 

have applications in condensed matter physics. Our main area of interest will be 

in the mathematical structure of the solitons. In particular, we are fascinated that 

different types of soliton in different theories call exhibit apparently very similar 

behaviour. 

The overarching theme of our work has been to study chains. A chain can 

be described in different ways. Firstly, if solitons a regarded as point particles in 

!Rn, then a chain consists of an infinitely long line of spatially separated soli tons. 

EquivaleBtly, a chain can be described as a topological soliton in a theory whose 

base manifold is the cartesian product JRn-l x 8 1. 

The classical example is a caloron, which is an instaBtOn Oil JR3 x 8 1. Just as 

instantons mediate tuBnelling effects in quaBtum field theories at zero temperature, 

calorons mediate tunnelling effects in field theories at large temperatures. The pe

riod f3 of the chain (or the circumference of 8 1) is inversely proportional to the 

temperature. Again, we can iBvestigate the structure of calorons by looking at their 

energy densities - these depend qualitatively on the ratio /3/ A, where A represents 

the size of the instantons in the chain. If f3 /A is large, the caloron looks like a chain 

of well-separated instantons. However, if f3 /A is sma;lll the energy density is approx

imately independent of the periodic direction. One finds that the energy density is 

concentrated in two (or more) column-like regi<ms, which are called "constituents". 

To us, it was very surprising that a charge one object splits into more than one 

constituent. 

Closer analysis of calor:ons reveals that the constituents are monopoles. These 

were discovered independently by Kraan and van Baal [KvB98], and Lee and Lu 

[LL98], around ten years ago. Since then, chains of monopoles have been shown 

to exhibit a similar consti~tuent structl:lfe [War05]. One of our main motivations 

has been to investigate to what extent constituents are a generic feature of chains 

of solitons. Perhaps the most important problem is to explain why the number 

of constituents is what it is: is there a simple rule which predicts the number of 
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Figure 1.1: Energy densities of chains in the ((:::JP1 sigma model. 

constituents in a chain, in any topological soliton model? 

The second interesting feature of chains is their topology, which tends to be more 

complicated than that of isolated solitons. Calorons actually come equipped with 

not one but at least two topological charges, as we shall see in the next chapter. 

In later chapters we consider various models, each of whose field content is a map 

between manifolds. We will show that chains in these models possess a topological 

charge which is not equivalent to any classical topological invariant that we are 

aware of. 

The discovery of consituent monopoles in calorons was greeted with excitement 

in the high energy physics community, since it was hoped that the monopoles would 

provide a mechanism to explain confinement in QCD. However, the problem of 

confinement is still not settled: other candidate models have been proposed which 

involve other types of topological object, most notably centre vortices. The problem 

of explaining confinement seems to be one of identifying the relevant degrees of 

freedom in the Yang-Mills background. This is tricky, because topological objects 

of one type can merge to form topological objects of another type; in lattice studies 
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it is not easy to distinguish between one type and another. 

We shall now give a more detailed description of the work contained in this thesis. 

The three chapters following the introduction will be devoted to calorons. In chapter 

2 we shall introduce ca:lorons and their classification, and review standard methods 

of constructing them. In chapter 3 we show how some of these methods, combined 

with Fepresentation theory, can be applied to construct and classify calOFons with 

high charge and axial symmetry. In chapter 4 we investigate a change of metric: we 

construct calorons on hyperbolic space. This is quite a natural step to take, in view 

of the close kinship between calorons and monopoles, and in view of the rich theory 

of monopoles on hyperbolic space. 

In the final three chapters we consider chains of solitons in other models, In 

chapter 5 we consider the planar (or baby) Skyrme model, in chapter 6 we consider 

the Skyrme model, and in chapter 7 we consider the CJIDn sigma-models. We make 

some dosing remarks in chapter 8. We shall use chapter 7 to argue that constituents 

in topological soliton models can be understood using loop groups. All topological 

soliton models which appear in this thesis aFe based in some way on Lie groups: for 

monopoles, instantons (and calorons) the Lie group is the gauge group, while for 

the other models the target space is either a Lie group or a quotient space of a Lie 

group. The general pattern we observe is the following: 

In a model associated with a gauge group G, the number of fundamental 

constituents in a chain is equal to the number of simple roots of the loop 

group 'li'xLG. 

By "fundamental constituent", we mean a constitl1ent cannot be separated fur

ther into smaller constituents. An additional qualification is that the boundary 

conditions of the chain must be sufficiently general in order to see the fuH number 

of constituents. For example, the hyperbolic calorons in chapter 3 exhibit one fun

damental constituent rather than two, because their boundary condition is highly 

specialised. One could say that the seeoRd constituent is present, but can't be seen 

because it is massless. 

A relationship between caloroRs and loop groups was observed by Hitchin (see 

[GM88]), which provides an explanation for the above statement for that case. In 
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chapter 7, we show that an aaalogous relationship also holds for chains in C!Pn sigma 

:models. Our hope is that this relationship can be extended to other topological 

soHton models, but this remains to be done. An alternative explanation for the 

a umber of constituents of a caloroa was proposed 11sing string theory [LY97], and this 

could in principle be extended to chains in other models (see for example [Ton02]}. 

However, certain models, such as the Skyrme model, are harder to relate to string 

theory - this is why we have chosen to follow the loop group perspective. 

It is worth considering here how a more precise meaning can be given to the 

statement "a chain splits into constituents". One definition could be the existence 

of l,imits of infinite separation, where all but one constituent can be separated to 

infinity. We shall show that limits of this type exist for examples of calorons in 

chapter 3. More genera:Jily, if the field equations admit a large moduli space of so

lutions, one could hope to find such limits. However, some models, such as the 

Skyrme and planar Skyrme models, are not integrable. For these models, 0ur ap

proach is more he1:1ristic: we show that for sma:l[ periods, chains are well-described 

by an ansatz which represents a superposition of constitllents in some sense. An 

alternative approach could be to consider vibrational modes: one could investigate 

whether a chain has a low energy vibrational mode which corresponds to a splitting 

into constituents. This latter approach is bey0nd the scope of this thesis. 

We have assumed that ol:lf reader is familiar with differential and Riemannian 

geometry. The books [GS87], [MorOl] contain most of the material we shall need. 

We also make llSe of standard material from topology, notably homotopy groups, 

cohonwlogy grollps, and Chern numbers. The last chapter also makes use of stan

dard results from the theory of Lie grollps, as can be found in [BtD85], and loop 

groups, as can be found in [PS86]. In addition to [MS04], background on various 

types of topological soliton may be follnd in [WW90, Ati79, Zak89, AH88]. 



Chapter 2 

Yang-Mills fields 

1n this chapter we will review some well-known methods of constructing instantons, 

rnonopoles, and cal0rons. Most of the material in this section is not original, but 

it is included here because these methods wiH be uti!lised and generalised in later 

chapters. 

2.1 Anti-self-dl!lal gauge fields 

The starting point for this discussion is the definition of a Yang-Mills action on 

a four-manifold and a Yang-Mills-Higgs energy on a three-manifold. Let M be a 

manifold of dimension four with Riemannian metric 9M and volume form WM. Let 

P be a rank n unitary vector bundle over M, and let D = d + A be a unitary 

connection on E, where d is the exterior derivative and A is the 1-form part of D, 

also known as the gauge field. Let F = [ D, D] = dA + A 1\ A be the curvature of D, 

which may also be ca:lled the field strength tensor of A. The Yang-Mills action of 

D (or A) is 

(2.1) 

Here 11·11 2 denotes the natural norm ofF, induced from the metric 9M and the inner 

product (X, Y) = ~ Tr(XY) of the Lie algebra su(n). 

Now let N be a three-manifold with Riemannian metric 9N and volume form 

w N. Let Q be a rank n unitary vector bundle over N with connection D = d + A, 

and let <P denote a section of the adjoint bundle associated with N. Denoting the 

6 



2.1. Anti-self-dual gauge fields 1 

curvature of A by F, the Yang-Mills-Higgs energy of the pair (A, <I>) is 

(2.2) 

There is a simple relation between Sand E just defined. Suppose that (A, <I>) are 

a connection and adjoint bundle section on a vector bundle Q over a three-manifold 

N. Let M=== lR x Nand let 9M = dt2 + 9N be the Riemannian metric on M, where 

t is a coordinate on lR and 9N is a metric on N. A bundle P over M is obtained 

by pulling back Q via the natural projection M ---+ N. Let A = A+ <I>dt define a 

connection on P and let F be its curvature; then IIFII 2 = IIFII 2 + IID<I>II2
. It follows 

that A has action 

8= L Edt, 

where E is the energy of (A, <I>}. 
The earliest motivation to study the Yang-M1lls actim1 and the Yang-Mil[s-Higgs 

energy came from particle physics. The standard model Lagrangian includes Yang

Mills-Higgs terms on a Lorentzian 4-manifold. E represents the static energy of a 

Lorentzian theory, so minima of E might represent observable physical objects. On 

the other hand, S is a Wick rotation of a Lorentzian action, and minima of S are 

believed to mediate tunnelling effects in quantum theories. So we see that minima 

of E and S are interesting to physicists. It has turned out that finding minima E 

or S is also a fascinating mathematical problem. 

All successful attempts to minimize the Yang-Mills action rest on the identity: 

Here *M : A 2 M ---+ A 2 M is the Hodge star, defined by 

It follows from the identity that 

S ~ L Tr(F A F), (2.3) 

with eqllality if and only if 

*MF =-F. (2.4) 
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Equation {2.4) is called the anti-self-dual equation, and its solutions A are called anti

self-dual gauge fields. A similar ar:gument shows that self-dual gauge fields, solving 

F = *MF, are also minima for the action. However, we shall restrict attention to 

anti-self-clual gauge fields, since on the manifolds we are interested in (such as JR4), 

one can be obtained from the other simply by reversing the orientation. 

The lower bound (2.3) is usefuil because the right hand side depends only on the 

topology of the situation and the boundary conditions imposed on A. For example, 

when M is compact, the lower bound is a multiple of the second Chern number of 

the vector bundle over which A is defined, so is in fact independent of the connection 

A. 

A similar lower bound can be found for the Yang-Mills-Higgs energy. The identity 

implies that 

E 2: 2 L Tr(F 1\ DiP) {2.5) 

with equality if and only if 

(2.6) 

Equation (2.6) is called the Bogomolny equation; it is easy to see that the Bogomolny 

equation for (A, iP} is the same as the anti-self-dMal equation for A= A+iPdt defined 

as above, if we give M the orientation defined by the volume form WM = -dt 1\ WN. 

Before moving on to specific examples, we point out here that the anti-self-dual 

equation is conformally invariant. I:n other words, replacing the metric gM by )..2gM 

for some function)..: M-=-+ lR does not change the Hodge star. Similarly, the Yang

Mills action is confor:mally invariant. This observation will be important in chapter 

4. 

2.2 Examples 

We have seen. that a Yang-Mills action or a Yang-Mills-Higgs energy density can be 

defined on any four- or three-dimensional Riemannian manifolcl. However, it is not 

known whether the anti-self-dual equations or Bogomolny equations have solutions 
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on a general manifold. Most published work restricts attention to a particular 

manifold or set of manifolds; the Yang-Mills action has been most e~tensively studied 

on JR4 and JR3 x 8 1, while the Yang-MiHs-Higgs energy has been most extensively 

studied on JR3 . These are the cases which are most relevant physically. In this section 

we shall review the topological charges and boundary conditions which determine 

the lower bounds (2.3), (2.5) in these cases. The remaining sections in this chapter 

will review methods of solving the anti-self-dual equation and Bogornolny equation 

in these cases. 

2.2.1 Instantons 0n R4 

An instanton oR JR4 is an anti-self-dual connection with finite action. Instantons 

have an integer topological charge; the standard way to show this is by comparing 

with instantons on 8 4 • 

JR4 is conformally equivalent to the sphere 84 with a point removed. It follows 

directly that an instanton on 8 4 defines an instanton on JR4 . By a theorem of 

UhleRbeck, the converse is true. Vector bmndles over 84 are characterised by their 

second Chern number, 

c2 = ~ f Tr(F A F), 
81r } 8 4 

which is in fact an integer. The second Chern number is called the charge of the 

instanton. The lower bound (2.3) may be written, S ~ 87f2c2 . 

It will be useful to write everything down in tensor notation: we have 

A - AIL(x) dxiL 

F 
1 -
-F. (x) dxiL A dxv 2 ILV 

FILV - aiLAV - aVAIL + [AIL, Av] 

where J..L, v = 0 ... 3 and AIL, FILv are anti-hermitian 2 x 2 matrix-valued fuRctions of 
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x E JR4 • Then 

w 

Tr(F A F) 

2.2.2 Monopoles oa JR3 

dx0 A dx1 A dx2 A dx3 

- -~Tr(FJ.tvptLv) 

~ p~-tv f 13dx0 A dx/3 4 J.tVO 

- 1Eaf3-y6 Tr(Fa/3 F'Y6) w. 

10 

An SU(n) monopole on JR3 is a pair (A, <I>) solving the Bogomolny equation (2;6) 

with finite energy. Additional boundary conditions are normally imposed, which we 

summarise here, see [Mur84'] for further details. Tb.e simplest type of monopole is 

the SU(2) monopole, and monopoles for other gau.ge groups satisfying the condi

tion of "maximal symmetry breaking" are just superpositions of embedded SU(2) 

monopoles associated with the roots of the gauge group. We willl describe this in 

detail here to emphasise some of the similarities between calorons and monopoles. 

The topology of a monopole is described by n integers kj which sum to zero, 

and the boundary conditions by n real numbers /-lj which also sum to zero. These 

must satisfy /-lj 2: /-lf+l and 'EI=l kj ~ 0 for j = 1, ... , n- 1. If one has /-lj > /-lj+l 

for all j the monopole is said to have maximal symmetry breaking. Monopoles with 

maximal symmetry breaking tend to have nicer mathematical properties than those 

without. 

Let p = en X B 3 denote the trivial bundle over tb.e ball B 3 . Let p 00 denote the 

restriction of P to the boundary 8B3 ; given a connection 1-form a on P00 , one can 

make P00 a holomorphic bundle. Then by Grothendieck's theorem [OSS80] there is 

a canonica:l decomposition P 00 = Ee;=l I) as a sum of line bundles, whose Chern 

numbers kj = c1 (V) are uniquely determined up to permutation. One also has 

a = E;=l aJ, where aJ is a connection 1-form on I); we assume that the curvatures 

j1 = daJ are constant. Let cjJ be a section of the adjoint bundle associated with P00 , 

such that cjJsj = il-£jSj for all sections Sj of I) (in other words, so that the I) are 

eigenbundles for cjJ). 

A monopole is required to satisfy the following: 
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• The gauge field A and Higgs field <P admit extensions to the whole of the 

bundle P (where we have identifed R3 with the interior of B3 ). 

• Over 8B3
, <p = cjJ and A= a. 

One can evaluate the lower bound (2.5) in terms of J..li and k{ one finds that 

In the simplest case n = 2, we have k2 = -k1 and J..L2 = -J..L1 , since the kj's and 

J..L/s sum to zero. We call m:= k1 the charge of the monopole and v := J..li- J..L2 the 

mass of the monopole. Its energy is 47rmv. 

Returning to the case of SU(n), we define "constituent charges" mj = '2:1=1 ki 

and "constituent masses" Vj = J..li - J..li+I for j = 1, ... , n- 1. An i-th fundamental 

rnonopole is a monopole with mi = 0 and Vj .:..:.. 0 except when j = i. The mass 

of this fundamental monopole is vi and its charge is mi. The n ~ 1 fundamental 

monopoles are in fact trivial embeddings of SU(2) monopoles associated with the 

n ~ 1 simple roots of SU(n). A general SU(n) monopole is roughly a superposition 

of fundamental (or co:nstit1:1ent) monopoles with masses vi and charges mi. More 

precisely, the moduli space of SU(n) mo:nopoles has limits in which the fundamen

tal mono poles become infinitely separ:ated. Notice that in terms of fundamental 

monopoles, the lower bound (2.5) on the energy is 

Notice that the condition of max;imal symmetry breaking implies taat none of the 

constit1:1ent masses vi are zero. 

2.2.3 Calorons on JR3 X S 1 

A caloron is an anti~self-dual gauge field o:n R3 x 8 1 with finite action. Three 

standard references describing the topology of and boundary conditio:ns for calorons 

are [GPY78], [GM88], and [Nye01]; an alternative perspective can be found in [EJ08]. 

Here we review the boundary conditions which are needed to evaluate the lower 
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bound on the action (2.3). Our treatment is based on [Nye01], but we have tried to 

simplify some of the proofs. More detailed analytic boundary candition.s, which are 

required by the N ahm transform, can be fmmd in [N yeOl]. 

An SU( n) ca:loron has n + 1 topological charges ki E Z, j = 0 ... , n. k0 is 

called the instanton charge and the remainder are called monopole cll.arges. In 

addition, the boundary conditions imposed on a caloron are described by n + 1 

real numbers J.Li, j = 0, ... , n. J.Lo describes the periodic boundary condition: we 

set J.Lo = 27r //3, where /3 is the period of the ca:loron (the circumference af S 1). 

The numbers (k0 , ... , kn, J.Lo, ... , J.Ln) are collectively called the boundary data of the 

calaron. 

As in the case of monopoles, let P denote the trivial bundle over B 3
. Again 

PrXJ has a decomposition into line bundles I), with compatible c<mnections ai and 

adjoint-valued section ifJ, described by ki and J.Li for j = 1 ... n. Let Q be an 

SU(n) bundle over B 3 X SI, let Qoo denote its restriction to 8B3 X SI, and let 

p : 8B3 X S 1 ~ 8B3 be the obvious projection. Folllowing [Nye01], the bundle Q is 

called framed if there exists a bundle isomorphism Q 00 "" p* P 00 • 

Besides being anti-self-dual, a caloron A is required to satisfy the following 

boundary conditions: 

• A must admit an extension to a framed bundle Q ~ B 3 x S 1 (here we have 

identified JR3 with the interior of B 3
) 

• The restriction of A to 8B3 X S 1 must ta:ke the form A 

p* (L:;=l ai) (here x0 E 1R//3Z is a coordinate on S1). 
(ifJ o p)dx0 + 

The integers ki = c1{ I)) are called the mono pole charges of the ca:lo:ron. We 

define the instanton charge k0 as follows (this definition is our own, but is equivalent 

to those in [NyeOl] and [GPY78]). Let q: B 3 x S 1 ~ S 4 be the map 

q: (x, y) ~ (x, V1- llxll2y), 

where x E JR3 satisfies llxll :::; 1 and represents a point in B 3
, y E R2 has IIYII = 1 

and represents a point in S 1, and S 4 is represented by unit vectors in. R5 . The map 

q is surjective, and maps the boundary 8B3 X S 1 to a 2-sphere in S4 . Restricted to 
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8B3 X 8 1, q agrees with the projection p composed with an inclusion from 8 2 to 84 . 

Any framed bundle is in fact the pull-back via q of a bu.ndle over 8 4
. k0 is defined 

to be the second Chern number of the bun.dle over 84
, and is called the instanton 

charge of the caloron.. 

The following constraints are imposed on the boundary data (see [NyeOl] and 

[GM88]). 

j=l 

j=l 
n 

L ki > 0 for j = 0, ... , n 
j=O 

J-li > J-liH for j = 1, ... , n 

/-ll - 1-ln < J-lo · 

For any connection A satisfying the boundary con.ditions described above, there 

is a well-known formula 

11 . ( 1n ) -·-2 Tr(F 1\ F)= k0 + = L. J-liki . 
81r JR3xSl /-to j=l 

(2.7) 

We prove this formula as follows (see [Nye(i)l] or [GPY78] for alternative proofs). 

First we consider the case where /-lj = 0 for j 2: 1. Then A is the pull-back via q of 

a connection. A over 84 [8892]. We have 

1 1 -
8 2 . Tr(F 1\ F) -

7r B3 xS1 8
\ f Tr(F 1\ F) 
1r } 8 4 

- ko. 

Let A and A' be two connections and let a = A ~ A', the Chern-8imons formula 

[G887] states that 

Tr(F 1\ F)~ Tr(F' 1\ F') = dTr ( 2a 1\ F' +a 1\ da + 2a 1\ A' 1\ a+ ~a 1\ a 1\ a) . 

In the particular case where A satisfies the caloron boun.dary conditions with J-li not 

all zero and a = A0dx0 is the component pointing in the circle direction, we dedu.ce 

that 

8

1
2 

{ Tr(F 1\ F) = 
8

\ { Tr(F' 1\ F') + ~ { Tr(F' 1\ a). 
7r JJ33xS1 7r JB3xS1 47r laB3xS1 
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Since A' is a connection with the same topological charges as A but with 1-Li _..:_ 0 for 

j = 1, ... , n, the first term on the right is k0 . To evaluate the second term on the 

right, we 1.1se the prescribed form of A: 

~ { Tr(F' A a) = 
4

1
2 { Tr(F'cp) A dx0 

47r JaB3xS 1 7r laB3xSI 

1 n 

- -EkjiLj· 
J-Lo i='l 

This cond1.1des our discussion of the topology of calorons; now we desc:ribe the 

constituent mon0poles of the ca:loron. Let 

j 

mi - L ki for j = 1, ... , n 
i=O 

vi - J-ti - f..lHI for j = 1, ... , n - 1 

These are respectively the charges and masses of the e0nstituent monopoles of the 

cal0ron; if all of the masses vi are non-zero the caloron is said to have maximal 

symmetry breaking. One can think of an SU(n) calor0n with maximal symmetry 

breaking as being made of n ft:mdamental constituent SU(2) monopoles, each living 

on JR3 , just as an SU ( n) m0nopole with maxima!l symmetry breaking is made of n -1 

fundamental constituent SU(2) monopoles. The mathematical way to understand 

this lies in Garland and Murray's observation [GM88] that a caloron is the same 

thing as a monopole whose gauge group is a loop group. The loop gr0up has n 

simple roots (see figure 2.1). The general pattern for monopoles is that the number 

of fundamental constituents is determined by the number of simple roots of the loop 

group, s0 one is lead to eX!pect a caloron with maximal symmetry breaking to have n 

fundamental constituent monopoles. Alternatively, the constituent monopoles can 

be thought of as the T-dual description of the brane configuration in string theory 

which represents the caloron [LY97]. Note that if a caloron does not have maximal 

symmetry brea!king, the constituent monopoles need not appear. 



2.2. Examples 

0 
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SU(4) 

LSU(4) 

Figure 2.1: The Dynkin diagrams of various Lie groups and their lo0p groaps 
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The constituent monopoles are defined up to cyclic permutation: the calomn 

with charges (mi. ... , mn) and masses (v1 , ... , vn) is essentially the same as the 

cal0ron with charges (m2 , ... , mn, mi) and masses (v2., ... , vn, vi). The map which 

permutes the constituent monopoles is called the rotation map. The rotation map is 

a large gauge transformation, that is, a gauge transformation which is not periodic, 

but which maps periodic configurations to periodic configurations. Such a gaage 

transformation wiN have a singularity, which accounts for the change in the second 

Chern number k0 . In the loop group picture, the rotation map can be thought of as 

a gauge transformation which permutes the roots of the loop group. Notice that, in 

terms of the constituent monopoles, the formula (2.7) takes the pleasing f0rm: 

1 1 1 n 
-

2 
Tr(F A F) - - L mivi. 

871' JR3xSI J-Lo j=l 

lt is perhaps surprising that the lower bound on the action of a caloron is not 

simply a multiple of an integer, bat can take any rea:l valae. One might ask whether 

this phenomenon is genuine: do ca:lorons exist for which the integral (2.7) is not 

an integer? The answer to this qaestion is yes; mon0poles satisfy the boundary 

conditions of calorons, and can have arbitrary action. 

Let (A, <I>) be an SU(2) monopole with charge m, mass 11, and energy E = 47rmv 

(we give JR3 the volume form -dx1 A dx2 A dx3 for consistency). Then, as described 

in the previous section, the monopole can be lifted to anti-self-daal gauge field over 
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R4 which is independent of one coordinate, alld hence is periodic with any period jJ. 

Hence we obtain an SU(2) caloron with instanton charge 0 alld monopole charges 

k1 = m, k2 = -m, for which 

1 1 - -- ~ 2 Tr(F 1\ F) 
81r JR3xSl 

- -
1
- f 2Tr(F 1\ D4!) 

4nJ.1,o JJR3 

mv 

J.lo 

By varying the period, any value of the action can be attained from a single 

mono pole. 

Actually, we have been slightly careless here; if v > J.lo then the caloron boundary 

comlitions as as described above are not satisfied. The solution is to make a large 

alld singular gauge transformation so that the b0undary conditions are satisfied. 

One obtains 

If v ::; J.lo thell the caloron has constituent monopole charges (m1 , m2 ) = (m, 0) 

and masses (v~, v2 ) = (v, J.lo - v), which seems collsistent with the fact that we 

started with a single monopole with charge m and mass v. However, if v > J.lo both 

constituent monopoles have non-zero charge. 

In what follows, we wiH be interested only in SU(2) calorons, so for simplicity 

we summarise the boundary data for this case. We call k1 the monopole charge of 

the caloron and set k2 = =k1. We also have J.1,2 = -J.1,1 and 0 ::; J.l.I ::; J.l.o/2. The 

constituent monopole charges and masses are 

(ko + k1, ko) 

( 2J.1.I., J.lo - 2J.LI). 

(2.8) 

(2.9) 

We call a caloron with these boundary data an ( m 1 , m2)-caloron. Calorons with 

J.l.I = 0 or J.l.I .·· J.l.o/2 are said to have trivial holonomy, otherwise we say the caloron 

has non-trivial holonomy or maximal symmetry breaking. 

Notice that the monopole charge k1 can usually be identified by looking at the 

asymptotic behaviour of A0 . Suppose that on near a coordinate patch on 8B3 the 
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gauge has been chosen so that 

+-M+ O(r-2
) 0 ) 1 

-1 T 

and Ar = O(r-3 ). Hence For = -orAo + O(r-3
) = Mr- 2 + O(r-3

). In the same 

gauge, the component of the curvature F pointing a:long 8B3 is 

F =-- w. I -ik1 ( 1 0 ) 
2 0 ~1 

wher:e w = *.(dx0 1\dr) / r 2 is the volume form on S2
. From the anti-self-dual equation, 

we deduce that 

2.3 Constructions of anti-self-dual gauge fields 

The charge 1 instanton was constructed by Belavin, Polyakov, Schwarz, and Tyupkin 

[BPST75]. Following this discovery, a search began for instantons of higher charge. 

Among the many constructions for instantons which emerged, we shall focus on 

three: Witten's ansatz [Wit77], the Corrigan-Faidie-'t Hooft (CF'tH) ansatz [CF77], 

and the Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction [AHDM78, CWS78J. 

Witten's ansatz is the easiest to implement and understand, but is a:lso the least 

effective. Witten imposed an 80{3) symmetry on his instantons, but there are many 

instantons which do not fall in to this category. We will return to Witten's ansatz 

in chapter 4, when we consider instantons on hyperbolic space. The CF'tH ansatz 

is still relatively simple to use, and mor:e powerful than Witten's: it was shown by 

Manton [Man78] that all instantons written in Witten's ansatz can also be written 

in the CF'tH ansatz. We shall discuss the CF'tH ansatz further in the next section. 

By far the most powerful ansatz is the ADHM construction. The ADHM con

struction is a non-linear transform which maps instantons to equivalence classes of 

matrices (called ADHM data) solving an equation (called the ADHM equ.ation). 

This transform is a bijection, which means that every instanton can {in pr:inciple) 

be obtained using the ADHM construction. In general the ADHM equations ar:e 
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much easier to solve than the anti-self-dual equations, which is what makes this 

construction useful. It can be tricky to obtain analytic formulae for gauge fields 

from ADHM data, but it is usua:lly possible to obtain the gauge field numerically if 

required. 

It is now realised that the ADHM transform is just one example of a wider set of 

transforms known as Nahm transforms [Jar04]. In general, Nahm transforms map 

anti-self-dual gauge fields on one manifold to anti-self~dua:l gauge fields on another 

"dual" manifold. N ahm transforms are normally invertible, and the inverse N ahm 

transform has the same form as the N ahm transform, as was first noted by Corrigan 

and Goddard [ CG84~. 

The ADHM transform fits this pattern, since the ADHM equations can be inter

preted as anti-self-dual equations for a gauge field defined over a manifold consisting 

of a single point. Another importaat example is the original Nahm transform: this 

relates monopoles to a set of matrix-valued functions on a line (called Nahm data) 

solving a differeRtial equation (caJliled the Nahm equation). As we saw above, the 

Bogomolny equation is the dimensional reduction of the anti-self~dual equation to 

three dimensions; similarly, the Nahm e<!)_uation is the dimensioRal reduction of the 

anti-self-dual equation to one dimension. 

In recent times, many other N ahm transforms have been discovered and analysed 

(see [Jar04'] for a review). A large number of these apply to manifolds that can be 

written as a quotient of JR4 , but N ahm transforms have also been discovered for 

classes of curved manifolds. It is still an open question as to how general an object 

the N ahm transform is. 

2.4 The ansatz of Corrigan, Fairlie and 't Hooft 

Now we return to the CF'tH ansatz. This ansatz obtains anti-self-dual gauge fields 

from solutions to the Laplace equation on JR4 , with point singularities. A geometrical 

derivation of the CF'tN ansatz was provided by Atiyah, Hitchin and Singer [AHS78]. 

The advantage of this derivation is that it easily generalises manifolds other than JR4 . 

The derivation will be summarised here, following closely the treatment in [Lan@5]. 
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To begin, we recall some basic facts about Clifford algebras (see [Har90] or [JM89] 

for more details). Given a real vector space V with a symmetric blinear form g, 

on.e can form an algebra Cl{V), called the C1ifford algebra, which. is generated by 

multiplying elements of V using a product which satisfies the identity u · v + v · u == 

~2g(u, v). 

We form a bracket [</>, 1/J] == 4> ·1/J -1/J · 4> on Cl(V). The sub-algebra spin(V) C 

Cl(V) is generated by adding together elements of the form [u, v] for u, v E V. It 

is closed under the Lie bracket, and acts on VC Cl(V) according to 4>: v 1-'4 [</>, v]. 

spin(V) is the Lie algebra of the Lie group Spin(V), which can also be formed as 

a subset of CL(V), and which is a double-cover for the special orthogonal group 

SO(V). As su.ch, there is an isomorphism be.tween spin(V) and the Lie algebra 

so(V) of skew-adjoint linear maps from V to itself. The isomorphism is 

(2.te) 

where v~-' denotes an orthonormal basis for V, Ov is the dual basis for V* and a~-'v is 

anti-symmetric. 

There is also a natural vector space isomorphism between so(V) and A 2V; this 

is obtained by raising indices using the metric. In the orthonormal basis, the iso

morphism is 

It follows that spin( V) is isomorphic to A 2V as a vector space. In fact, the a;lgebras 

Cl(V) and AV are isomorphic as vector spaces. The action of the Hodge star on 

AV is realised naturally as multiplication by the volume element in Cl(V). 

In the case where the dimension of V is four and g is positive definite, the space 

A 2V spHts into self-dual and anti-self-dual components under the action of the Hodge 

star, A2 =A! EB A:. Likewise, the Lie algebra spin(4) :== spin(V) splits into two 

components. Each component is closed under the Lie bracket and is isomorphic 

to su{2}, we label them as su(2)±. On the Lie group level this splitting is the 

wel,l-known isomorphism Spin(4) "'SU(2) x SU(2). 
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Let ell, p, = 0, 1, 2, 3 be a basis for the quaternions lHI, satisfying the identities, 

e2 
0 - eo 

eoei - eieo = ei (2.11) 

eiei - -8ijeo + Eijkek 

for i, j = 1, 2, 3. Let "Y be the mapping from V into lHI, "Y( vll) - ew Then the 

splitting of spin( 4) is implemented by the mappings: 

"Y+ : u · w ~ --y(u)"Y(w)t 

"f :u·w~ -"f.(u)t"Y(w) 

(2.12) 

(2.13) 

(here we have identified su(2) with the imaginary qtlaternions by setting ei = ~iui). 

Now let (M, g) be a fmrr-dimensional Riemannian manifold. The 1-form part A 

of a connection on T* M is (locally) a section of a bundle so(4) 0 A. By the above 

discussion, it can equally regarded as a section of A 2 0 A 1 or spin( 4) 0 A 1 . We may 

write A = A+ + A_, where A± e Ai 0 A 1 
"' su(2)± 0 A 1. The curvature F of A 

splits as F-=. F+ + F~, where F± E Ai 0 A2 "' su(2)± 0 A2 are the curvatures of 

A±. In the case where A is the Levi-Civita connection and F is the Riemannian 

curvature, there is a well-known splitting [AHS78, Lan05] 

F+ (w+- ~) +R* 
12 ° 

w+-~ 
12 

E A2 0A2 
+ + 

~ E A!0A~ 

F_ (w-- ~) +Ro 
12 

s 
A~0A~ w--- E 12 

Ro E A~ 0A!. 

Here w± are the self-dual and anti-self dual Weyl tensors, s is the scalar curvatme, 

and Ro is the traceless Ricci tensor. In particular, the curvature F+ of A+ is anti

self-dual if and only if its self-dual part vanishes: 

s w+ = --- o. 
12 
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Now suppose that (M, g) is a Riemannian spin manifold with w+ = 0 ~such 

a manifold is called anti-self-dual). Let g' = p2 g be a rescaling of g, where p is 

a positive real function on M. Let A be the Levi-Civita connection for g' and 

define A+ as above. Since the Weyl tensor is conformally invariant, A+ will be an 

anti-self-dual SU(2} connection if and only if the scalar curvatures of A is zero. 

We consider now the case the case M = JR.4 , with the usual Euclidean metric 9E· 

If g' = p2gE, then the Levi-Civita connection A of g' has Christoffel symbols: 

We change to a basis orthonormal with respect to g': we let ()o. -=- p-1(f)j8x0
) and 

V 0 = pdxo.. With respect to this basis; we write A = f':p.OvvJJ.dxo., with 

Note that this expression is antisymmetric in J.L and v, as an so(4) connection should 

be. 

Using the mappings (2.10) and (2.12), we find 

At - -aj Inp ( ~~ ) 

Aj ( +8o In p 8il + Ejlkak In p) ( ;~) . 

More concisely, we have 
1 

Ap. = ZfJp.v8v In p, 

where f]p.v = ( ep.ei - eveL) = --y+ ( [vJJ., vv]) is the self-dual tensor introduced by 't 

Hooft. 

This gauge field wiU be anti-self-dual exactly when the scalar curvature s of g' 

vanishes. We find the scalar curvature is 

where Q.E = (ajaxo.)'l. is the usual Euclidean Laplace operator. Therefore the gauge 

field A+ is anti~self-dual if and only if 

DEp = 0. 
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2.5 Calorons in t:he CF'tH ansatz 

't Hooft considered solutions to the Laplace equation of the form 

N A~ 
p=1+'"' J 

L.J lx- a·l2 
j=l J 

for some Aj E lR and distinct ai E IR4 • The resulting gauge fields were instantons 

with charge N. The points ai have the interpretation. of instanton locations and 

the numbers Aj of instanton sizes. A larger class of solution.s, introduced by Jackiw, 

Nohl, and Rebbi in. [JNR77], are 

N+l A~ 
p='"' ..... J 
~ lx-a:l2 
J="l J 

which also give rise to charge N instantons~ 

(2.14) 

Harrington and Shepard [HS78] considered a generalisation. of 't Hooft's ansatz, 

where the ai are arranged in an infinite periodic chain. If one takes 

then p takes the form, 

(2.15) 

The resulting gauge field is a ca:loron with constituent monopole charges (1, 1) and 

masses (:0, J.Lo). More generally, consider the function 

LN AJ sinh(J.LoTj) 
p= 1+ - .... 

. 2r· cosh(J.Lor·)- cos(J.Lo(x0 - t·)) J=l J . J J 

(2.16) 

where Aj > 0, ri = lx- ail for ai E IRa, ti E S1 an.d the points (ti, ai) are distinct. 

This generates a caloron with constituent mono pole charges ( N, N) and masses 

(0, J.Lo), and will be called a Harrington-Shepard (N, N)-caloron. A Harrington

Shepard caloron is normally thought of as consisting of N ( 1, 1 )-calorons, having 

locations (tj, aj) and scales Aj· These can be seen as distinct lu.mps of action density 

when the scales are small compared with the period, 27r / J.Lo· When the period 

becomes infinitely large, one recovers the instan.tons of Corrigan, Fair lie and 't Hooft. 
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lt is interesting to consider the opposite limit of Harrington-Shepard calorons, 

that is, the l~imit where the scales are large compared with the period. Letting aU 

of the >.i ~ oo in equation (2.116~ is equivalent to removing the constant term, since 

the gauge field is unaffected by constant rescalings of p. We ar:e left with 

~ >.J sinh(J.Lorj) 
p == 'f=: 2ri cosh(J.Lorj) ~ cos(J.Lo( x 0 - ti)) · 

(2.17) 

This function generates genuine calorons, which will be called JNR calorons, owing 

to the resemblance between (2.17) and the Jackiw-Nohl-Rebbi aRsatz for instantons. 

The x0-component of a JNR caloron gauge field at infinity has the form 

Ao =- xi a~ (-! + O(r~2)) 
r 2z r 

for large r. Ther:efor:e these calorons have k1 = = 1 and J.LI = 0. 

One can evaluate k0 for these calorons by evaluating the left hand side of (2.7). 

This is done using a method due to Jackiw et al [JNR77]. Since the gauge field 

is anti-self-dual, the inequality (2.3) is saturated. In the CFt'H ansatz the action 

density is given by Tr(Fa13 paf3) =DO lnp [JNR77] (except at the points where pis 

singular). Therefore we have 

.{ Tr(F 1\ F)==_! 1 . DD lnpd4x, 
JR4 2 R3xSI 

(2.18) 

where the right hand side must be evaluated while ignoring singularities. To remove 

the singularities, we replace p by 

N \2 
I '"' /\j . ) IT { 0 p = L-

2
r. smh{J.Lorj (cosh(J.Lori)- cos(J.Lo\x - ti))). 

j=l J i=h 

This does not change the value of the integral, since I::JD ln(cosh(J.Lori)- cos(J.to(x0 -

ti)) = (i) away from the singularities of p. 

When r is large, p' has the appr:oximate form 

p'"' (TN-ttA:) exp(~!Jor) 
Since 0 ln(rp' I exp(N J.Lor)) = O(r-2

) we aave, 

Dlnp' = (a;+ ~ar) (NJ.Lor -lnr) + O(r-2
) 

2N J.Lo + O(r-2). 
r 
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This larger expansion is used to evaluate (2.18). SiRce DD lnp' has no singular

ities, we may apply Stokes' theorem, obtaining 

{ Tr(F/\F) = 
JJR4 

It follows from (2.7) that k0 = N. So we see that the JNR ca:lomn (2.17) is an 

(N- 1, N)-caloron, with constituent monopole masses (0, J.Lo). 

Things are particularly simple when N -=- 1: the JNR (0, 1)-caloron generated 

by 
1 sinh{J.Lor) p=- ~ ~~ 

2r cosh(J.Lor)- cos(J.Lox0 ) 

has only one constituent monopole, so we expect it to be related to a 1-monopole 

by a large gauge transformation. This result was in fact obtained long .ago by 

Rossi [Ros79J; Rossi's gauge transformation was an explicit example of a rotation 

map. 

There is a finaJllimit which we will consider. In equation (2.17), one can send 

one of the locations ai to infinity. Consider the limit laNI ~ OQ, AN ~ oo such that 

>.~/(2laNI) ~ 1. Then we are left with a function, 

N-1 ).2 .. h( ) 
'""' i ~~ ~~ ~ ~ sm J..Lorj 

p = 
1 + f;::_ 2ri cosh(J.Lorj)- cos(J.Lo(x0 - ti)) · 

The resulting caloron is of course a Harrington-Shepard ( N ~ 1, N ~ 1 )-calo:ron. So, 

to summarise this discussion, we are able to obtain JNR calorons and Harrington

Shepard calorons as limits of each other, and these limiting processes always reduce 

the number of constitueNt monopoles. 

2.6 The ADHM construction for instantons 

The most comprehensive construction for instantons on R4 is the ADHM construc

tion. The ADHM method constructs instantons f:rom solutions to a set of algebraic 
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equations, called the ADHM equations. The construction is complete, in the sense 

that every instanton can be obtained from a solution to the ADHM equations. The 

ADHM equations are in genera:! easier to solve than the anti-self-dual equations. 

The process of constructing an iBstanton from AD HM data can be tricky, but can 

be performed numerically if not analytica}ly. 

The ADHM data for a charge N 8U(2)-instanton consists anN x N matrix of 

quaternions M and anN-row vector A of quaternions. These are combined into a 

single N + 1 x N matrix .6., 

The N x N matrix .6. t .6. is required to be real and invertible. 

Given a set of ADHM data, an instanton is constructed as follows; Let u(x0
) 

be anN+ 1-column vector of quaternions, and let x = x 0 e0 for any point x 0 E JR4 

(where ea is the basis (2.11) for the quaternions). The vector u is req11ired to solve 

the equation, 

and the normalisation condition, 

u(x)tu(x) =eo. 

Then the gauge field 

solves the anti-self-dual equation. 

2. 7 The Nahm transform for monopoles 

The N ahm transform for monopoles is the analogue of the ADHM transform for 

instant0ns. Solutions of the Bogomolny equation are obtained from solutions of a 

first order ODE, which is in general easier to solve than the Bogomolny equation. 

The construction is complete. 
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The Nahm data for a charge k SU(2)-monopole consists of a set of four k x k 

hermitian matrix-valued functions To:(s), defined fors E ( -J..L, J..L). These must satisfy 

the N ahm equation, 

(2.19) 

for j = 1, 2, 3, and the reality condition, 

(2.20) 

where t den.otes matrix transpose. The boundary con.dition imposed is 

(2.21) 

where Ri are an. irreducible k x k representation of the Lie algebra su(2). 

A monopole is constructed from its Nahm data as follows. Set T = To:eo: and 

x = xi.ei for xi E JR3 . Let U(s, xi) be a k-column vector of complex quaternions, 

that is, an element of Ck ® H. Suppose that U sol;ves the Dirac equation 

d . . 
ds U(s, x1 ) = i(T(s) + x)U(s, x1 ) (2.22) 

and the normalisation condition 

(2.23) 

Then the pair (A, <P) defined by 

Ai J: ut!~ds (2.24) 

<P - j'"' isutu ds 
-p. 

(2.25) 

are a monopole. 

A Nahrn data gauge transformation is a function g: [-J..L, J..L] --+ U(2) which acts 

on a set of N ahm data in the following way: 

Ti(s) r-+ g(s)Ti(s)g-1(s) 

T 0 (s) r4 g(s)T0 (s)g- 1(s)- i~! (s)g-1(s). 
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These gauge transformations preserve conditions (2.19) and (2.21). The reality 

condition (2.20) is preserved provided g,( -s) = g(s) (-den.otes complex conjugation). 

It is easy to see that two mono poles arising from gauge equivalent N ahm data are 

identical. In fact that the N a:hm transform is a bijection between the sets of gauge

equivalence classes of N ahm data and gauge-equivalence classes of monopoles. 

Note that gauge transformations can be used to set T 0 :::::: 0, which is the more 

usual form of the Na!hm data. 

2.8 The Nab.m transform for calorons 

The Nahm transform for calorons is similar to the Nahm transform for monopoles. 

Again, the construction is complete, and provides a useful tool in the sense that 

the N ahm equations are relatively easy to solve, and the construction can be imple

mented numerically. The proof of completeness was initiated by Nye [NyeOl] and 

completed by Hurtubise and Charbonneau [CH]. Here we will describe the Nahm 

transform for SU(2) calorons 

2.8.1 N ahm data 

The N ahm transform is formulated in terms of the constituent mono poles of the 

caloron. We begin with a circle IR./ J.LoZ, which is divided into two intervals Ill 12 of 

length v1 and v2 . We let s be a coordinate on the circle and take 11 = ( -J.L1 , J.Ld 

and 12 = {J.Lll J.Lo- J.L1). There are two parts to the Nahm data, associated with the 

intervals 1p and their endpoints ±J.L1. 

On each interval 1p we have a set of four Hermitian mp x mp N ahm matrices, 

Tpo:(s), where a= 0, 1, 2, 3. These must satisfy the Nahm equation (2.19) and reality 

condition (2.20). 

The second part of the Nahm data depends on the clifference m1 - m2 . We will 

only give the details for the two cases which wil'l be relevant to our purposes. The 

first case is when m1 - m2 = 0; we wm write (m1, m2)- (N, N). Then the second 

part of the N ahm data consists of an N row vector W of quaternions and a purely 

imaginary unit quaternion T (by "unit quaternion", we mean TtT = 1). The Nahm 
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data are required to satisfy the matching con.ditions, 

Td(J.L) - T/ (J.L) - i~( ei wt P1 W) 

Tf (- J.L) - Ti(J.Lo - J.L) - i~( ei wt P2 W) 
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(2.26) 

(2.27) 

for j = 1, 2, 3, with P1 := (e0 +iT)/2 and P2 :-~eo ~iT)/2 elements of C®JRlHl. Here 

~refers to the real quaternionic part. In genera:l t will act on complex-quaternionic 

matrices by transposing and taking quaternion and complex conjugates; so in the 

preceding formulae, wt just denotes the quater:nionic-conjugate transpose of w. 
The second case we will consider is m1 ~ m2 = 1; we will write (m1 , m2 ) -=

( N, N- 1). In this case the second part of the N ahm data is an N x ( N- 1) complex 

matrix X satisfying xtx = IN-I· The Na:hm data must satisfy the matching 

conditions 

xtrf(J.L)X 

for j = 1, 2, 3, where- denotes complex conjugation. 

2.8.2 Na:hm transform 

(2.28) 

{2.29) 

Now we will explain how to obtain a caloron from its Nahm data. Let Up(s, x 0
), 

p = 1, 2, be two mp-component column-vectors of complex quaternions, defined for 

sE JP and (x0
) E R3 x 8 1 . Let x = x0 e0 and let Tp = r;eo:. Then (Tp, Up, x) must 

satisfy the Dirac equation (2.22). 

In the case (m1 , m2) - (N, N) we must also define a single quaternion V(xo:), 

and Up and V must satisfy the matching condition, 

U2(J.L, xo:) - U1 (J.L, x0
) - iWt P1V(xo:) 

Ul(-J.L,xo:)- U2(J.Lo- J.L,X0
) - iWtP2V(:t0

). 

Up and V must also satisfy the normalisation condition, 

(2.30) 

(2.31) 

(2.32) 
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Then the caloron gauge field is determined by 

2 

A = z=j ut.aupd. vt av 
a P() s+ ~ . Xa &Xa 

p=l lp 

(2.33) 

In the case where (m1 , m2 ) = (N, N- 1), there is no need to defin.e V. The 

matching conditicms (2.30), (2.31) are replaced by, 

xtu1 (J.L, xa) - U2(1-L, xa) 

XtU1 ( -J.L, xa) U2(J.Lo- J.L, xa). 

(2.34) 

(2.35) 

The normalisation con.dition an.d the equation for the caloron gauge field are the 

same as in the ( N, N) case, except that terms involving V are omitted. 

As we have seen with monopoles, N ahm data are defined up to gauge equiva

lence. The action of gauge transformations is slightly complicated by the boundary 

conditions, so we give the details on1ly for the cases we shall study later. 

2.8.3 Gauge transformations: (2, 2) case 

There are two kinds of gauge transformation present for (2, 2} Nahm data. The first 

is a U(2) gauge tran.sformation, which is defined by a U(2~-valued function g(s). 

This satisfies a reality condition,. g.( -s) = g(s ). g acts in the fol1lowing way: 

Tt(s) 1---t g( s )Tt( s)g- 1 
( s) 

T~(s) 1---t g(s)T~(s)g- 1(s)- i~! (s)g-1(s) 

w 1---t P1 W g- 1(J.L) + P2W g~ 1 ( -J.L) 

Up(s) ~ g(s)Up(s) 

V 1---t V 

The second kind of gauge transformation is a quaternion gauge transformation, 

defined by a unit quaternion h. The action of h on the Nahm data is 

V t---t hV 

W t---t hW 

T 1---t 



2.8. The Nahm transform for calorons 30 

leaving r; and Up fixed. 

It is straightforward to check that these gauge transformations map sets of N ahm 

data to sets of Nahm data, and leave the caloron gauge field unaffected. Given a 

set of Nahm data, it is always possible to make a U(2) gauge transformation and a 

translation in x 0 so that 

rg(s) = i_(a3cos 0 + a 1 sin 0), 
J.Lo 

with constants~ E [0, 1r] and 0 E [0, 2tr}, and where a1 are the Pauli sigma matrices. 

By gauge rotation, one can then fix 0 = e. 

2.8.4 Gauge transformations: (2, 1) case 

We will divide the (2, 1) Nahm data gauge transformations into two types. There are 

U(2) gauge transformations 9I:(s) de:fi;ned fors E / 1 , and U(l) gauge transformations 

g2 (s) defined for s E / 2 • These must satisfy the reality condition gp( -s) = gp(s). 

Their action is as follows: 

T~(s) I--+ gp( s)T~ (s )g;1 (s) 

rg(s) I--+ gp(s)Tg(s)g; 1(s)- ii:(s)g;1 (s) 

X 1--+ 9r(Jl )X 92(Jl )-1 

Up(s) I--+ gp(s)Up(s). 

Using gauge transformations and x 0 translations, it is always possible to make 

X= (sin{3/2, -cos{3/2)t and fix T~ = 0 and Tf- (~/v1 )a3 for some constants 

~ E [0, 1r] and f3 E [0, 27r). 



Chapter 3 

Euclidean calorons with axial 

symmetry 

There is a natural action 0f 8U(2) on gauge fields over ~4 , where the group acts 

by rotation on ~3 and by the adjoint representation on the Lie algebra. This 

symmetry was the basis of Witten's construction of multi-instantons [Wit77], and 

many monopoles have been found invariant under the action of 8U(2) and its sub,.. 

groups [HMM96, HS96b, HS96a, Sut97]. Therefore it seems an important task to 

look for calorons invariant under the action of 8U(2) and its subgroups. In this 

section, we will sh0w how to obtain N ahm data for calorons invariant under the 

action of a subgroup G of 8U(2), and we will give explicit Nahm data for (2, 2)- and 

(2, 1)-calorons which are invariant under the action of U(1) ((1, 1)-calorons have al

ready been completely classified [KvB98, LL98]). At the end of the section, we shall 

investigate how these calorons are related to known instantons and monopoles. 

The results of this section were published in [Har07]. This work is closely 

related to that of van Baal and eo-workers [BvBID2, BNvB03, BNvB04, N05] and 

Ward [War04b], who also construct high charge calorons usin.g the Nahm transform. 

In fact, most of the calorons we construct here have been studied before, but our 

1:1se of representati0n theory is novel. The representation theory allows us to classify 

families of U(1)-symmetric calor0ns, and to prove that the cal0rons con.structed here 

are the only ones with the stated charges and symmetries. U(1)-symmetric calorons 

have also been studied by Chakra:barti [Cha82, Cha87], using a quite different ap-

31 
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pwach. 

3.1 Action of SU(2) on calorons and Nahm data 

The action of SU(2) on calorons is as follows. Let R be an element of SU(2), and 

let R2 denote its image under the fundamental representation. Let R3 denote the 

image of R in the irreducible 3--dimensional representation of SU(2), so that the 

entries of R3 are real. If x = (xl, x2
, x3), we can write (R3x)i = R~kxk. We have 

R2ai R2 1 = R;i ak. Then the action of R on a ca:loron gauge field is 

Ai(x0 ,x) r+ R~k R2Ak(x0
, R31x)R2 1 

Ao(x0
, x) ~----+ R2A0 (x0

, R31x)R21
. 

A caloron is said to beG-symmetric for some subgroup G ~ SU(2) if it is invariant 

under the action of R for a:ll RE G. 

If a caloron is G-symmetric, we expect its N ahm data to be invariant under some 

action of G. Consider the action, 

Ti 
p 1---+ RikR TkR~1 

3 N p N (3.1) 

~ r+ R T 0R-1 
N p N (3.2) 

wt 1---+ RN(R2wt R;?) (3.3) 

't 1-=t R2tTR~1 , (3.4) 

where R ~----+ RN is a real N -dimensional orthogonal representation of G and R ~---+ R2, 

is a 2-dimensiona:l unitary representation of G. In the above expressions, R2 and R2, 

are acting on quaternioas, which is made possible using the standard representation 

of the quaternions, e0 = / 2 and ei == -iai. If a set of Nahm data is invariant 

under this actioa for some choice of representations RN, R2,, and for all R E G, the 

corresponding caloron will be G-symmetric. 

Similar constraints can be derived for the Nahm data of an (N, N- 1) caloron. 

In the case N ~ 2, a caloron will be G-symrnetric if its Nahm data is invariant under 
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the action 

Ti 
1 1---+ 

To 
1 1---+ 

T.i 2 1---+ 

R~k RN T~ R-;/ 

RNT~Ri./ 

RikT.k 
3 2. 
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(3.5) 

(3.6) 

(3.7) 

for all RE G, where RN is the image of R under some real2-dimensional orthog<mal 

representation of G. 

So G-symmetric calorons can be fo11nd by constructing N ahm data satisfying 

the above symmetry conditions. To find this N ahm data, we fust must choose 

the representations RN and R2, so that the symmetry conditions have non-trivial 

solutions. In terms of representation. theory, we must choose representations RN and 

R2, of SU(2) so that the induced representations of G (acting on the Nahm data) 

have trivial subrepresentations. For each such choice of RN and R2,, we attempt to 

solve the Nahm eqliations and matching conditions with G-invarian.t Nahm data. 

3.2 U(l)-symmetric (2, 2)-calorons 

We will look for (2, 2)-calorons invariant under the action of the U(l) subgroup of 

SU(2) generated by a2 . Let P0 denote the trivial representation of U(l), and let Qk 

denote the rea:l 2-dimensional representation, 

( 

cos k() 
Qk : exp(ifJa2

) ~----+ 
-sink() 

sink() )· 

cos k() 

for k E Z. Note that Q0 ::::::: 2P0 and Q_k is equivalent to Qk. We will need to 

consider tensor products of such representations; we have 

Let us consider the representations in (3.1)-(3.4). We have (R ~----+ R2 ) = Q1 and 

(R ~----+ R3) = Q2 EB P0 , where P0 acts on x2 and Q2 acts on. the subspace spanned by 

x1 and x3 . The representation RN is 2-dimensional and real, so it must be of the 

form RN= Qk(R) for some k E Z. We can make quaternion gauge transformations 

so that R2, = Q1 ( R) for some l E Z. 
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Then the representation acting on the 2 x 2 Hermitian matrix T~ in equation 

(3.2) is 

where Q2k acts on the subspace spanned by a 1 and a 3 , and 2P0 acts on the subspace 

spanned by a2 and the identity matrix 12• The representation acting on Tt in 

equation (3.1) is a tensor product of this representation with the representation 

(R 1---+ R3 ) acting on the index j.. So Tt is acted on by 

In equation (3.3) there is a representation acting quaternions, q ~----+ Q1 (R)qQl(R)- 1 . 

One can show that this representation is equal to Ql+l EB Qt~l, where Ql+l acts on 

the subspace spanned by e1 and e3 and Q1-t acts on the subspace spanned by e0 

and e2 . So the representation acting on Win (3.3) is 

We see that the trivial sub:representations of these three representations are 

largest when. (k, l) are equal to (0, ±1), (±1, 0), or (±1, ±2). As we shall see below, 

the N ahm equations can be solved in two of these three cases. 

3.2.1 RN trivial 

First we consider the case (k, l) = (0, ±1), so that the representation R ~----+ RN is 

trivial. The invariant N a:hm data must take the foNowing form: 

To - (~/ J-to)a3 
p 

Ti - 0 p 

T{{8) - exp(iT?8)Y1 exp( -iT?8) 

Ti(8) exp(iT~( 8 - J-to/2) )Y2 exp( -iT~( 8 - J-to/2)) 

{ >. ( cos(iJ/2 )eo, sin (fl/2) exp( ae,)) l=1 
w 

.Xe1 (cos(,B /2)e0 , sin(,B /2) exp( ae2)) l = -1 

T - e2 
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for p = 1, 2 and j = 1, 3. Here A> 0, {3 E [0, 21r) and a E [0, 21r) are constants, and 

we have used gauge transformations and coordinate translations to fix the form of 

T~ in terms of the constant~ E [0, 1r]. Y1 and Y2 are Hermitian matrices, which are 

constant as a conse<luence of the Nahm equation (2.1'9~. We will write 

and the reality condition (2.20) implies that ~2 -=- 0. 

This N ahm data now solves the N ahm equation and the reality condition, so 

it only remains to consider the :matching conditions (2.26), (2.27). After some 

rearrangement these take the form, 

y;o Y,o 
2 - 1 ±A2/4 

±(A2 /4) cosf3 

Yl cos~~v2/ J-Lo)- Y/ cos(~vd J-Lo) - ±(A2 /4) sin/3 cos a 

Ylsin(~v2/J-Lo) + Y/sin(~vi/J-Lo) - (A2/4)sin{3sina, 

(3.8) 

where ± corresponds to the choice l- ±1. In the case where~ =1- 0, the solution of 

the matching conditions is, 

Y,o 
1 - 0 

y;o 
2 

A2 
±-

4 
¥,3 

1 - X 

y;3 
A2 

2 - x ± 4cosf3 (3.9) 

¥,1 A2 sin./3 sin( a 4= ~v2/ J-Lo) 
-1 4 sin~ 

y;1 A2 sin {3 sin( a ± ~v1/ J-Lo) 
-2 4 sin~ 

Here xis a real number and we have fixed Y1° = (i) by making an x2-translation. We 

see that this family of calorens depends on five parameters: A, x, a, {3 and ~· In 

the case where ~ = 0, the solution of the matching conditions can be parametrised 
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in the following way: 

A2 
y2o - ±-· 

4 

Y13 
- X 

y;3 
2 -

Y? 1 -

y;I 
2 -

A2 
X± 4 cos(3 

0 
A2 

±- siR(3 
4 ' 
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(3.l0) 

with a= 0. Here the gauge has beeR chosen so that Yl = (i). This corresponds to a 

three-parameter s1:1b-family of the five-parameter famiLy. 

The expressions (3.9}, (3.10) remain valid when one ofthe monopoles is massless, 

that is, when v2 = 0. In particular, when v2 = 0 and a = 0, the cal0ron obtained 

via the Nahm transform is a Harrington-Shepard (2, 2)-calmon (2.16), with A1 = 

A c0s((3j2), A2 =A sin(f3/2), t1 -= -t2 = -~/ J.lo, and a1 = -a2 = (0, -x, 0). 

The Nahm data (3.9}, (3.10) were first studied in section 3.2 of [BvB02] , where 

a n1:1merical Nahm transform was a:lso implemented. There, the (2, 2)-cal0rons were 

analysed in terms of their four constituent m0nopoles. The e0nsituent monopoles 

appeared as lumps of action density, localised in 1R3 and smeared out over 8 1 . These 

lumps were located on the x2-axis, at the points x2 = Yi, where Y!, Yi are the 

eigenva:lues of Y1 and y;, y:J are the eigenvalues of Y2 . 

Interestingly, these eigenvalues satisfy the inequalities, 

-< -< +< + Yt - Y2 - Y1 - Y2 · (3.11) 

A proof of this is as follows. Let Y; denote the traceless part of Yp, and let IIAIII := 

J- det(A) for any traceless hermitian matrix A. Then the eigenvalues of Yp are 

Yi = ~Tr(Yp) ± IIY;II, 

and (3.11) is equivalent to 

~ Tr(Y2 - Yt) > IIY~II ~ IIY{'II 
1 -Tr(Y2- Yt) > IIY{II - IIY~:II 
2 
1 
2Tr(Y2 = Yt) < IIY{II + IIY~II· 

(3.12) 
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It follows from the matching conditions (3.8) that (1/2)Tr(Y2 ~ Y1) = IIZ2 - Z1 11, 

where 

Z1 - exp(~v1a3 /2J-Lo)Y{ exp( -~v1a3 /2J-Lo) 

Z2 - exp( -~v2a3 /2p,o)Y~ exp(~v2a3 /2J-Lo). 

It is also true that IIZPII = IIY;II, and this can be substituted to the right hand 

sides of the inequalities (3.8). Thus (3.12) can be shown to follow from the triangle 

inequality for 11 · 11· 

3.2.2 RN non-trivial 

When k = ±1 the representation RN is not trivial. We will only consider k = 1 here 

( k = -1 is similar up to minus signs); the invariant N ahm matrices must take the 

form 

T~(s) hp(s)a2 + bp(s)12 

r;(s) - /p(s) exp(i0p(s)a2)a1 

r;(s) 

r;(s) -

9p(s)cr2 + ap(s)12 

/p(s) exp(i0p(s)a2)a3 

forp = 1, 2, where JP, gP, hp, Op, ap, bp are real functions of s € lp. By gauge transfor

mations, we can make T~ = 0. As we shall see, the Nahm equations and matching 

conditions can be solved when l = ±2, but the cannot be solved when l = 0. When 

l ~ :±:2 the invariant forms f0r W and T are 

W _ {.-\exp(ae2)(eo, e2) 

A exp( ae2){e1, e3) 

l=2 

l = =2 

where A > 0 and a E [0, 21r ). One can make a = 0 by gauge transformation. 
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The N ahm equations for this invariant N ahm data are 

J; + 2fp9p - 0 

fpfl~ 0 

9~ + 2/; - 0 

I 
aP - 0, 

and the matching conditions are 

f2(vi/2}cos(O.l.(vi/2)) = fi(vi/2) cos(01(vi/2)) - (i) 

h(vi/2) sin(02(vtf2))- fi(vi/2) sin(01(vi/2)) - 0 

92(vi/2)- 9I{vi/2) 

a2(vtf2)- ai(vi/2) 
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where ± corresponds to the choice l .:._ ±2. The N ahm equations have a trivial 

solution where JP == (i), and 9p is constant. Since 9p is odd, we must have 91 = 0, 

92 = 0. It then follows from the matching conditions that ). = 0, so there are no 

calorons in this case. 

When JP is non-zero, (JP and ap must both be constant. The most general solution 

to the N ahm equations for eveR JP and odd 9p are 

/ 1(s) (DI/2) sec(D1s) 

h(s) - (D2/2) sec(D2(s- J-to/2)) 

9I(s) - -(DI/2)tan(D1s) 

92(s) -(D2/2) tan(D2(s ~ J-to/2)) 

for real constants D 1 and D2, which can be assumed to be positive without loss of 

generality. In order that these functions remain finite, we must have D1 < 1r /v1 and 

D2 < 1r /v2. The matching conditions are easily seen to reduce to, 

02 - 01 (3.13) 

D2 sec(D2v2/2) - D1 sec(D1vtf2) (3.14) 

a2- al - ±).2 /2 (3.15) 

D1 tan(D1vi/2) + D2 tan(D2v2/2) - _x2 0 (3.16) 
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Solving the matching condition.s amounts to solving (3.14). This equation ad

mits a one-parameter family of solutions, since the functions Dp ~ Dp sec(Dpvp/2) 

are bijections from the intervals (0, 1r /vi) to (0, oo ), hence invertible. However, an 

explicit parametrisation of the solutions is not known. Given a solution (Db D2 ) of 

(3.14), the constants A, ai, a2 are determined by (3.16~ and (3.15). Notice that ai 

and a2 are only determined up to addition of a constant, and that this constant can 

be fixed by x2-translations. Notice also that ()1 (and hence B2 ) can be made zero by 

gauge rotation. Therefore, this family of calorons depends on one parameter, if the 

position is fixed. 

These expressions remain valid in the case where one mono pole is massless ( v2 = 

0); s11ch calorons were considered in [War(i)4b]. 

In the case where vi = v2 , the family of ca:lorons considered here forms a sl:lbset 

of the "rectangular" configurations of Bruckman et al. Specifically, in section 6.3 

of [BNvB03] an exact analytic solution of the Nahm equations with vi = v2 is given in 

terms Jacobi elliptic functions. Our calorons correspond to the case where the elliptic 

parameter is zero. Bruckman et al. did not consider the case where vi # v2 . In 

reference [BNvB04] the action densities of these ca:lorons were constructed, making 

use of a numerical implementation of the Nahm transform. The action density is 

con.centrated in two rings in JR.3 , smeared out over SI. The rings are centred on the 

x2-axis and lie in planes perpendicular to the x2-axis. The location of each rin.g is 

x 2 = -ap. The rings are identified with the two constituent 2:..monopoles. 

So far we have only considered N ahm data for which l = ±2. We also need to 

consider the case l = 0; it will turn out that the Nahm equations cannot be solved 

in this case. W takes the form 

where A> 0 and q is a quaternion ofun.it length (qtq = 1). Since~ is trivial, there 

is no restriction on T. The sollltion of the N ahm equations proceeds in much the 

same way as before, but the matching condition (3.16) is replaced by 

This can not be solved for nonzero DI and D2 , because the left han.d side is less 
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than or equal to zero. Therefore no calorons are obtained in this case. 

3.3 U(l)-symmetric (2, 1)-calorons 

Now we will look for U(1)-symmetric (2, 1)-calorons. We start by considering the 

representations acting on the Nahm data in (3.5)-(3.7}. We set RN = Qk(R); then 

representation theory calculations tell us that we only need to consider invariant 

Nahm data in the cases k = 0, ±1. 

When k = 0 (and RN is trivial), the invariant Nahm data m11st have Ti = 0 and 

r; = 0 for p = 1, 2. We choose a gauge so that T~ = 0 and 

T? - (~/v1)u3 

X ( sin(jj /2). ) 
- cos(/3/2) 

for~ e: [0, 1r] and f3 E [0, 21r). We write T'f in the form, 

T{(s). exp(iT?s)Y exp( -iT?s), 

where Y is a Hermitian 2 x 2 matrix. The N ahm equations imply that Y and T:j 

are constant. We write Y = Y012 + Yiui, and the reality condition (2.20) implies 

that Y2 = @. The matching conditions (2.28), (2.29) for this Nahm data are, 

r; = Y0
- Y3 cos/3- Y1 sin f3 cos~. 

We choose to fix Y0 = 0 by making an x2-translation. Then we are left with a 

four-parameter family of calorons, param.etrised by ~' {3, Y1 and Y3 . Note that 

when ~ -= 0 the gauge is no longer fixed, so ~ = 0 corresponds to a two-parameter 

subfamily. This N ahm data has not been considered before in the literature. We 

expect that there is some overlap between this family of calorons and those studied 

by Chakrabarti in [Cha87]. 

These expressions remain valid in the case where the 1-mono pole becomes mass

less, v2 = 0. In particular, when v2 = (i) and Y1 = 0, the ca:lorons obtained 

from this Nahm data are JNR (2, 1)-calorons (2.17), with t 1 = -t2 = -~/ J.l.o, 

a 1 = -a2 = (0, -Y3
, 0), .A1 = cos(/3/2) and .A2 • sin(/3/2).. On the other hand, 
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when the 2-monopole becomes massless, the caloron is just a 1-monopole. This is 

because, when 11 = 0, a caJloron with k = 1 can be gauge rotated to a caloron wit:fu 

k:::-1. 

By analogy with (2, 2)-calorons, we expect the constituent monopoles of these 

(2, 1)-calorons to be located on the x2-axis with x2-coordinates given by the eigen

values of the matrices T[ and T:j. If we denote the eigenvalues of T'f by Y! :::; Yi, 

and write y2 === Ti, then one can show that 

This should be compared with the constraint (3.11) on the mono pole locations for 

the family of (2, 2) calorons with RN trivia:l. 

We should also consider invariant Nahm data with k = ±1. However, no new 

calorons are obtained this way; the only solutions to the N a:hm equations correspond 

to a subset of the N ahm data found for k = 0. 

3.4 Large scale limits 

The large scale limit of a (1, 1)-caloron is a 1-monopole [Ros79, LL98]. For higher 

charges, the large scale limit of a ealoron may be a monopole [Cha87'], or it may 

be a caloron with constituent moBopoles of uiJ.equa:l charge (as was the case for the 

Harrington-Shepard calorons). In this section we will take large scale limits of the 

U ( 1 )-symmetric calorons constructed above. 

As was observed in [LL98] for charge 1, taking infinite scale limits is the same as 

sending monopole locations to infinity. There are a limited number of ways of doing 

this for (2, 2)-caloroiJ.s. Either we send a 2-monopole to infinity, leaving behind a 

(2, 0)-caloron (that is, a 2-monopole), or we seiJ.d a 1-monopole to infinity, leaving a 

(2, 1)-calorcm. Since for the U(1) symmetric 2-monopoles, the representation RN on 

the Nahm data is non-trivial, one would expect the large scale limit of a (2, 2)-caloron 

with non-trivial RN to be a 2-monopole. One would anticipate that (2, 2)-calorons 

with RN trivial have a (2, 1 )-caloron as their large scale limit, for similar reasons. 

We will see that these predictions turn out to be correct; we will also show that 
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the large scale limit of a symmetric (2, 1)-calomn is a (1, 1)-cal~ron. We note that 

similar limits have been considered previously for monopoles [CWG3]. 

3.4.1 (2, 2)-calorons with RN non-trivial 

First we consider the family of (2, 2)-calorons with RN non-trivial, described in 

section 3.2.2. The large scale limit wm be A ----+ oo. From equation (3.15) we see 

that a2 - a 1 ----+ ±oo in this limit. Recalling the interpretation of a1 and a2 as 

2-monopole locations, this means that the separation of the monopoles tends to 

infinity. We will fix the first monopole at a 1 = 0 so that a2 ----+ ±oo. This procedure 

is illustrated in figure 3.1, where we have represented each constituent 2-monopole 

by a :ring. 

From equation (3.16), A =too implies that D1 ----+ 1rjv1 or D 2 ----+ 1rjv2 • But from 

equation (3.14}, D 1 ----+ 1rjv1 if and only if D 2 ----+ 1rjv2• We conclude that, in the 

limit where A----+ oo, the Nahm matrices on the interval ! 2 diverge, while the Na:hm 

matrices on the interval 11 = ( ~J-L, J-L) must converge to 

T{ ----+ -(1r / J-L) tan(7rs/2J-L)£T2 

Tf ----+ (7r/J-L) sec(7rs/2J-L)£T1 for j = 1, 2. 

'fhis is just the NaJhm data for a 2-monopole with mass v1 = 2J-L. 

3 3 

Figure 3.1: The large scale limit of a (2, 2)-caloron with RN non-trivial. 

3.4.2 (2, 2)-calorons with RN trivial 

Now we consider the family of (2, 2)-calorons with RN trivial, described in section 

3.2.1. Recall that the eigenvalues Yt and Yi of Y1 and Y2 were interpreted as the 
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four constituent monopole locations. Our large scale limit will send only one of 

these fmu eigenvalaes to infinity. We have illustrated this procedure in figure 3.2: 

the four constituent monopoles are represented by balls on the x 2-axis; the white 

balls have locations x2 = Yt and the black balls have locations x2 = y~. 

We consider the case l = 1. In terms of the parametrisation given in (3.9), the 

eigenvalaes are 

± 
Y1 

_A2 
y~ ::..: -± 

4 

Yt will} stay finite in the limit where A ---+ oo and a ---+ ~v2/ Jlo, such that 

1
. .A2 sin(,B) sin{a ~ ~v2/ Jlo) 

"':---:- liD - . 
)..-+oo, a-+~V2/ /-LO 4 SlU ~ 

is finite. In this limit, we have 

Yt ---+ oo 

y2 ---+ -rJ cos ~ sin {3 = x cos ,B 

v ---+ ( sin(,B/2) ) ' 
- cos(,B/2) 

where v~ is the eigenvector of Y2 with eigenvalae y:;. 

In order to get sensible NaJhm data in this limit, we need to choose a gauge where 

Ti is constant and diagonal. We maJke the gauge transformation g(s) = g2g1 (s), 

where 

9r(s) = 

makes T~ = (i) and g2 is the matrix which diagonalises Y2 . Now we take the large 

scale limit, discarding the part of Y2 which becomes infinite, and undo the gauge 

rotation g2• We are left with Nahm data, 

Tf(s) (~/vi)a3 

T1
2 (s) - exp(iTfs)(xa3 + rya1

) exp( -iTfs) 

Ti( s) -ry,cos ~sin ,B - X cos ,B. 
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This should be compared with the (2, 1) Nahm data found in section 3.3. We see 

that this N ahm data is exactly what we had before, with Y 1 -=- rJ and Y3 = x and 

X_:_ lim v- = (sin(,B/2),- cos(,B/2))t. 

Figure 3.2: The large scale limit of a (2, 2)-caloron with RN trivial. 

3.4.3 (2, 1 )-calorons 

Finally, we show that the large the large scale limits of the (2, 1 )-calorons described 

in section 3.3 are (1, 1)-calorons. We begin with the eigenvalues of Tf and Tf: 

yf yo ± J(Y1)2 + (Y3)2 

y2 - Y0
- Y3 cos ,8- Y1 sin,Bcos~. 

Recall that these are interpreted as constituent monopole locations. We can take a 

limit where Y0 ~ oo, Y3 ~ oo, Y1 ~ 0 and {3 ~ 1r, such that Yt ~ oo and Y2 and 

y} stay finite. This is the large scale limit of the (2, 1)-caloron. To obtain sensible 

Nahm data in this limit, one should choose a gauge so that Tf is constant and 

diagonal (which can always be done). By taking the large scale limit and discarding 

the part of this matrix which tends to infinity, we are left with 1 x 1 N ahm matrices 

Tf =limy}, T:j = limy2. These are Nahm matrices for a (1, 1)-caloron, and the 

Nahm data is completed by taking W = V2lim(y2 - y}). 

3.5 Large period limits 

In this section we will consider large period limits of calorons. One can show that 

the p0 ~ 0 limit of caloron Nahm data is ADHM data for an instanton, so the large 
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period limit of a caloron is an instanton. We will study the ADHM data for the large 

period limit of the (2, 2}-calorons constructed earlier; we will see that two distinct 

families of U(1)-symmetric 2-instantoR are obtained. Previous, large period limits 

of calorons had been considered only in the case where one constituent monopole is 

massless [War04b]. 

First we consider Nahm data for a11 (N, N)-caloron. Let vL v~ E [0, 1] such that 

v~ + v~ = 1. Suppose that E > 0 and that for each /-to E (0, E), (Tt., T2, W){t-to) 

are a set of N ahm data which sol¥e the N ahm equation and matching conditions 

with Vp = J-toV~. We will assume that for each /-to E (0, E), T1 and T2 have Taylor 

expansions which converge to T1, T2 on the intervals h, /2. 

By considering the Nahm equation (2.19) at s - 0, t-to/2, and substituting the 

Taylor expansions for Tp into the matching conditions (2.26}, (2.27), we arrive at 

the following four equations, true for a:l[ /-to E (@, E }: 

~ (T{(O)) 

~ (T~(t-to/2)) - -i~(T2(J-Lo/2)T2(J-Lo/2)t) 

2~ (T2(J-Lo/2) ~ T1(0)) + O(J-L~) - -i~(wtrw) 

-~ (v~T{(O) + v~T~(t-to/2)) + O(t-to) - ~i~(wtW)/J-Lo· 

In addition, we suppose that the gauge has been chosen so that ~(TI) and ~(T2) 

are constant on the intervals JP and equal.. 

It follows from the above that if the matrix 

~ := lim ( W/.,fiiO) 
1'0--o T1 (o)t 

exists, then it satisfies the ADHM equation, ~(At~) = 0. 

In a similar way, if (U1, U2, V) are solutions of (2.22)-(2.31) for the Nahm data 

(T1, T2, W)(t-to) which are well-approximated by their Taylor expansions, then 

u(x) := 1im ( V(x) ) 
tto->O U1 (0, X )j ..jiiO 

solves (~+x)tu- 0 (if the limit exists). Also (2.32) implies that utu =-- e0 and (2.33) 

implies that lim110_.0 Aa = ut 80 u. Therefore, the whole of the AD HM construction 

is recovered in a large period limit of the ( N, N) N a:hm construction. 
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Now we consider the large period limit of the (2, 2)-calorons with RN trivial 

(section 3.2.1). We let f := ~/ Jlo and A' := )..1 ...fiiO stay fixed as Jlo....,.... 0. Then the 

ADHM matrix is 

when e' =/= 0, and 

when e = 0. 

)..' cos(/3 l2)eo 

feo- xe2 

- A'2 I ( 4f) sin !3 sin ae2 

)..' sin(/3 12) exJ!>( ae2) 

- A'2 I ( 4f) sin f3 sin ae2 

~eeo + xe2 

A' cos(/3 l2)eo A' sin(/3 l2)e0 

~ = -xe2 0 

0 

To take the large sca:le limit of the (2, 2)"'calorons with RN non-trivial (section 

3.2.2), we let A' = )..1 ...fiiO stay fixed as Jlo =+ 0. In this limit, the matching conditions 

(3.14), (3.16) are solved by D 1 == D2 = -J'iN. The ADHM matrix is 

There is a very simple geometrical description of the 2-instanton moduli space, 

due to Hartshorne ~Har78, AM93J. Associated to each 2-in.stanton is a circle and 

an ellipse in JR4 satisfying the Poncelet condition, which states that there exists a 

one-parameter family of triangles whose vertices lie on the circle and whose edges 

are tangent to the ellipse. There are two ways in which the circle and ellipse can 

be invarian.t under U(1) rotations: either they lie in the axis of rotation (the plane 

x1 = x 3 = 0}; or they lie in a plane fixed by the rotation (x2 =constant and 

x0 =constant}, such that the eHipse is a circle, and the centres of both circles sit on 

the axis of rotation. 

It is possible to relate Hartshorne's description of instantons to the JNR ansatz 

(2.14) [AM93], and it is not hard to obtain ADHM matrices for instantons in the JNR 

ansatz [WW90]. Hence it is possible to compare Hartshorne's description of U(1)

symmetric 2-instantons with the ADHM matrices obtained above. It turns out that 
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the instanton limits of the calorons with RN tri:vial correspond to the Hartshorne 

circle and ellipse lying in the Mcis of rotation, while the instanton limits of the 

calmons with RN non-trivial correspond to the pair of concentric circles centred Oil 

the axis of rotation. 

FinaUy, one can take the large period limits of ( N, N - 1 )-calorons. The large 

period limit of an (N, N -1)-caloron is an (N -1)-instanton; in partic11lar, the large 

period limits of the U(1)-symmetric (2, 1)-calorons are 1-instantons. 

3.6 Summary and open problems 

For the sake of clarity, we summarise the results of this chapter here. We looked 

for calo:rons with monopole charges (2, 2) and (2, 1) which were invariant under 

a particular action of the group U(1). We used some simple representation theory 

techniques to classify all possible actions of U(1) on the Na:hm data of such calonms. 

We were able to solve the N ahm e<!]_uations and matching conditions eX!plicitly in all 

these cases. We found one family of (2, 1)-ca:lorons and two distinct families of 

(2, 2)-calmons, which could be distinguished by the adion of U(1) on their Nahm 

data. Finally, we considered limits: one family of (2, 2)-calorons had the fami,ly of 

(2, 1)-calorons as a limit, whi:le the other had a famHy of 2-monopoles as a limit. 

We also obtained two distinct families of 2-instantons as large period limits. 

The techniques we iUustrated here could easily be applied to calorons with dif

ferent symmetries, for example polyhedral groups. This would be an extension 

of [War04'b], where polyhedral Nahm <:lata was constructed for calorons with trivial 

holonomy. One outstanding question is whether these calorons have any interest

ing "hyperbolic" interpration. lnstantolls invariant under an action of U(1) may 

be interpreted as monopoles on hyperbolic space (see the next chapter). Similarly, 

U(1)-symmetric calorons may be interpreted as monopoles on the quotient of hyper

bolic space by a particular action of Z - it remains to be seen whether monopoles 

on this space have any interesting properties or applications. 



Chapter 4 

Hyperbolic calorons 

In this chapter we shall consider anti-self-dual gauge fields on the space JHI3 x R 

A finite-action anti-self-dual gauge field on this space will be called a hyperbolic 

instanton, whHe a finite action gauge field on the space JHI3 x S1 wiH be called a 

hyperbolic caloron. 

The main reason to be interested in these spaces is that there is a conformal 

equivalence, 

Since the anti-self-dual equations are conformally invariant, methods used to con

struct anti-self-dual gauge fields on JR4 can be carried over to JHI3 x JR, at least locally. 

This equ.ivalence was first exploited by Atiyah, who initiated the stu.dy of monopoles 

on hyperbolic space [Ati87], as we shall now describe. 

Let 80(2) act on JR4 with fixed subspace JR2 ; then the action induced on IHI3 x S1 is 

just translation in the S1 direction. Suppose that we have an instanton on JR4 which 

is invariant under the action of 80(2). Then this instanton is equivalently described 

as a translation-invariant gauge field on JHI3 x S1, which {by comments in an earlier 

chapter) is the same thing as a finite-energy solution to the Bogornolny equations on 

1HI3 . Thus an axially-symmetric instanton defines a monopole on hyperbolic space. 

However, the converse is not true: there exist hyperbolic monopoles which do not 

map back to any instanton on JR3 [N as86]. 

To see why, one needs to look at the asymptotic value of the Higgs field of 

the hyperbolic monopole. Like Euclidean monopoles, hyperbolic monopoles are 

48 
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required to satisfy II<I>II = J1 at infinity, for J1 > 0 a constant. Under the confo:rmal 

equivalence, the boundary 2-sphere of JHI3 is identified with the subset ~2 c ~4 

fixed by rotations. When one maps a hyperbolic monopole back to ~4 , one needs to 

check that no singularities appear on ~2 . It turns out that there will be a holonomy 

singularity l:lnless 

11 =- n/ 8, n E Z, 

where S is the radius of curvature of hyperbolic space. 

So, 80(2)-symrnetric instantons define rnonopoles on hyperbolic space, but not 

all hyperbolic monopoles can be obtained this way. An obvious jump to make from 

here is to consider instantons which are not n.ecessarily 80(2)-symmetric. These will 

define finite-action anti-self-dual gauge fields on lHI3 x 8 1, in other words, hyperbolic 

calorons. This trick was exploited by Garland and Murray to study hyperbolic 

calorons and their twistor data [GM89]. However, as in the monopole case, there is 

a cav:eat: not all hyperbolic calorons can be obtained in this way. Specifically, the 

hyperbolk calorons obtained always satisfy the condition: 

f3 = 87r, 

where f3 is the period of the caloron (the circumference of 8 1) and 8 is the radius 

of curvature of JHI3 . 

In this chapter, we will construct hyperbolic calorons for which f3 and 8 take 

arbitrary values. Our method will be essentially to adapt standard ansatze on. ~4 

to the hyperbolic case. We will find hyperbolic versions of both the Witten and 

the CF'tH ansatze. We will construct hyperbolic calorons and instantons explicitly 

in the Witten. ansatz, and consider their relations with each other, with hyperbolic 

monopoles, and with Eudidean calorons. The work appearing in this chapter was 

published in [Har08] 

4.1 Coordinates and metrics 

The metric on ~4 is 
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where t 6 JR, r 2:: 8 is a radial coordinate on JR3 and dfl2 is the metric on 8 2 • Let 

y 1, y2, y3 be coordinates on the hyperbolic ball, satisfying R := JL.1(yi) 2 < 8 for 

some 8 > 0. The metric on IHI3 x lR is 

ds~ dT2 + 6iidyidyi 

- dT 2 + A 2 (dR2 + R 2dfl2
) 

where T E JR, and A := (1 = (R/ 8) 2 ). 

Let J-t = (8/2)arctanh(R/ 8). Then the hyperbolic metric is 

dsj, ~ dT2 + dl'' + ( D 2 

sinh
2 c:) d!1

2
. (4.1) 

Let z = J-t +iT and let Z = r +it. A pair (z,p) with p E S2 determines a point in 

IHI3 x JR, similarly ( Z, p~ determines a point on JR4 . We define a map M : IHI3 x lR --+ JR4 

via 

M: (z,p) ~---+ (Z,p) = (tanh(z/8),p). 

Then it is easy to check that this map is conformal: M*ds~ = ~~2dsh, where 

I az I 8 ( (2~-") (2T)) ~ :::::: :az = 2 cosh S + cos S . 

The image of M is (lR4\82 ) U { oo }, where 82 is the sphere r :::::::: 1, t = (!) and oo 

denotes the point at infinity. Note that the map M is periodic in T with period 81r; 

hence there is a conformal equivalence 

when {3 =- 81r. 

Note that some papers on hyperbolic monopoles use the equivalence 1R4 \lR2 ~ 

IHI3 x 8 1 rather than that descri!bed here. The two are obviously related, since JR2 

can be mapped conformally to 8 2 in JR4 • We work with 32 because it is fixed by an 

obvious 80(3) symmetry. 

Since H3 is topologically equivalent to JR3 , the topological classification of hyper

bolic calomns and instantons is as in the Euclidean case. 
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4.2 Witten's ansatz 

4.2.1 DhRensional Reductio11 

We make the following S0(3)-symmetric ansatz for a gauge field on lHI3 x R 

1 
A= -2(Qa + 1J1dQ + (4J2 + 1)QdQ), 

where 

Here 4J1, 4J2, ar aBd al-L are real functions of Jl aBd 7 only and yi :~ yi / R. 
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(4.2) 

Notice that Q2 = -1, which implies that QdQ = -dQQ. Using this identity, 

one can show that the field strength tensor of A is 

F = -~Qda- ~ (1- I4JI2
) dQ A dQ 

1 
-2(Re(D4J) + Qlm(D4J)) A dQ. 

where 4J = 4J1 + i4J2 and D = d - ia. 

The action of this gauge field is 

s = 47r j (~lldall~ + ~ (1 -14JI 2
)

2 
+ IID4JII~) vh· 

where 

ds~ - J~2(d~-t2 + d72) 

vh - J-2d7 A d~-t 

J(~-t) 
s . h 2~-t - -sm-
2 s· 

(4.3) 

(4.4) 

The factor of 47r arises because we have integrated over S 2 • We have not specified the 

domain of integratioB for 7 and Jl, because this will chaRge dependiBg on whether 

we coBsider hyperbolic calorons or hyperbolic iBstantons. In proving (4.4), we have 

used the identities, 

lldQIIk 21-2 

IIQdQIIk 21=2 

lldQ A QdQ/2IIk J-4
• 
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The action giveR in (4.4) is iclentical to the action for a 2-dimensional U(1) Higgs 

model (or vortex model) with Higgs field ljJ and gauge field a on the manifold with 

metric 9h· (For instantons, the manifold on which the Higgs model lives is the 

uniiVersal cover of the hyperbolic plane with a point removed). 

4.2.2 Gauge transformations 

We consider the gauge freedom allowed by the ansatz ( 4.2). The most genera:l 

80(3)-syrnrnetric gauge transformation is 

( 
).;Q) g=exp - 2 , (4.5) 

where). is a rea:l function of J..L and 7. Consider the transformation g(A) = g-1Ag + 

g- 1dg of A. Using the identities, 

(cos .X+ Qsin.X)dQ, 

1 . 2( -Qd.X- sm .XdQ +(cos).~ 1)QdQ), 

we find 

g (A) = - ~ ( Q (a + d).) + ( lfy1 cos A - l/Y2 sin A) dQ + (qy2.cos A + l/J1 sin A + 1 )QdQ). 

So, in the vortex interpretation, the SU(2) gauge field g(A) has Higgs field ei>-qy 

and U(1) gauge field a+d-X. Therefore the symmetric gauge transformation (4.5) is 

equiiValent to a gauge transformation ei>. in the vortex model. 

4.2.3 Anti-self-dual equations 

The Hodge star can be shown to act in the following way: 

*H (d'T 1\ dQ) - (*hd'T) 1\ QdQ 

*H (dJ..L 1\ dQ) - (*hdJ..L) 1\ QdQ 

*H (Qd'T 1\ dJ..L) - (*h(d'T 1\ dJ..L)) 1\ (~dQ A dQ) . 

Therefore the anti-self-daal equations are 

Dqy - - *h iDqy 

1 - ll/JI 2 
- - *h da. 

(4.6) 

(4.7) 
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Alternatively, equations ( 4.6) and ( 4. 7) can be derived directly from the vortex 

model action ( 4.4), as we shall now show. The vortex model has a topological charge, 

k- _!_fda 
271" 

(4.8) 

which is an integer. The topological charge k forms a lower bound for the vortex 

action (4.4), by means of a standard argument [JT80). 

We define 

2 i (- "Li:\ K = I if> I a + - if>dif> = if>dif> J . 
2 

The identities, 

dK lif>l 2da - iDcp 1\ Dcp 

(*hda + 1- lc/JI 2
)

2Vh - lldaii~Vh + {1- lc/JI 2
)

2Vh + 2(1 = l4>1 2)da 

IIDc/J + *hiDc/JII~Vh - 2IIDc/JII;~Vh + 2iDcp 1\ Dcp 

imply that 

s - 471" j ~ ((*hda + 1 -lc/JI 2? * 2IIDc/J + *hiDc/JII~) vh 

+47r j dK - 47r j da. 

The first integral is positive, and vanishes when (4.6), ( 4. 7) are satisfied. The second 

integral can be evah:Iated using Stokes' theorem, and vanishes if K decays sufficiently 

fast. Therefore, we haveS;:::: -81r2k, with equal,ity if and only if (4.6), (4.7) hold. 

Since ( 4.6), ( 4. 7) are equivalent to the anti-self-dual equations, the above argu

ment shows that 

Probably this formula could also be proved directly, but we have not done so. 

4.2.4 Solation of anti-self-dual equations 

Our method of solving the anti-self-dua:l equations (4.6), (4.7) is similar to the 

method used by Witten in the Euclidean case. Notice that equati0n (4.6) is equiv

alent to 

(4.9) 
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where Dz :~ 1/2(D/-t + iDT). Let us choose a gauge so that 8/-ta/-t + aTaT- 0, This 

allows us locally to write 

for some rea:l function '1/J. This gauge fixing condition still allows for gauge transfor

mations eiA for which !J.z).. = 0. 

Equation ( 4.9) is then equivalent to 

So e'I/Jcp must be a meromorphic function, which we denote f. Equation (4.7) now 

looks like 

(4.1Q) 

We let 

p = -'1/J + ln If I - ln J, 

then the identities 6z ln J = ~J-2 and !J.ln If I = (i) imply that ( 4.10) is equivalent 

to 

This is known as Liouville's equation, and the general solution is 

where g is some meromorphic function. 

In order to avoid singularities in the gauge fi.eld, f and 8zg must have the same 

zeros and poles in the right half-plane J..L > 0. So we may define a function h = _1_8 --
z9 

which is analytic and non-zero in the right half-plane. Thus, the general solution to 

the equations of motion and the gauge-fixing condition is 

'1/J ln (1 ~ lgn -ln2J + ln l:hl (4.11) 

cjJ e-1/Jh8zg (4.12) 

a~-t - =8T'I/J (4.13) 

aT 8/-t'I/J. (4.14) 
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In these forml!llae, h is interpreted as specifying a choice of gal!lge, since it may be 

removed by the gauge transformation ei\ where .>. = (In h - In h) /2. 

Therefore, given a meromorphic function 9 on the right half-plane, we may con

struct a symmetric anti-self-dual gauge field using equations (4.11)-(4.14). Ln order 

that '1/J remains finite, we must impose the constraints 

191 2 < 1 when J.L 2::: 0 

191 2 
- 1 when J.L = (i). 

4.3 The Corrigan-Fairlie-'tHooft ansatz 

(4.15) 

(4.16) 

Now we sha:l[ consider the hyperbolic analog of the CF'tH ansatz. Its derivation is 

essentially an application of the methods of section 2.4. 

Let 9' = p2ds'ii, where ds'ii is the metric (4.1) on H3 x R Orthonormal bases for 

the tangent and cotangent spaces with respect to 9' are 

Oo 
1 a 

-
paT 

(}i 
1 a 

- --
ph8yi 

vo - pdT 

vi - Apdyi. 

Let A denote the Levi-Civita connection of 9', which we write with respect to the 

orthonormal basis: A___: r~'Y(}6v'Ydya. The non-zero coefficents of A are 

r~~ ( 2A ) ( 2A k) 
- ~J 

- ailnp+ 82 y3 8ik- aklnp+ 82 y 8ii 

r~~ - -Aa0 1np8ii 
~J 

r'~~: iO - Aao 1np8ik 

r'k 1 
00 - -A 8klnp 

r'o 1 
Oj - A ai lnp. 

where we have 11sed the convention i, j, k E {1, 2, 3}. 
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Invoking the Lie algebra isomorphisms and splitth1gs (2.10)-(2.13) , we fh1d 

(4.17) 

(4.18) 

The scalar curvatUFe s of the metric g' is 

-3 ( .. 4 ) s = -6p rJnp+ 
82

p , 

where On is the Laplace-Beltrami operator for the metric ds'h: 

fP 1 ( a ) 2 
2 i a 

On= 8T2 + A2 ayi + AS2y 8yi 

Therefore A+ wiH be anti-self-dual if and only if 

(4.19) 

4.3.1 Relation with EucHdean version 

Recall that the hyperbolic metric is itself a c<'mformal rescaling of the Euclidean 

metric: ds~ = eds~. This allows us to relate the above two constructions, and 

provides a check of what we have done so far. Let g' be a rescaling of the hyperbolic 

metric, g' = p2ds~. Then we also have g' = (p~) 2ds~. As before the hyperbolic 

gauge field 0f equations ( 4.17) and ( 4.18) will be anti-self-dual if and only if g' has 

zero scalar curvature. From the Euclidean version, we know that g' has zero scalar 

curvature if and only if 

We will show that this condition is equivalent to the previous condition, (4.19}. 

The following identity holds because ds~ is a conformal rescaling of ds~: 

We a:lso have, for any function.s f, g, 
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Therefore 

We now compute DE~· Note that for functions f depending only on rand t, we 

have 
1 

DEf = ...:.6z(r f), 
r 

where D,.z =a;+ a;. If we also let D,.z =a~+ a;, then 

b.z = I;; I' 6,. 

So using the relations, 

1:;1' 
r = 

e 
S sinh(2JL/ S) 

2~ 

we calculate DE~ = 4e /82
. Therefore g' is flat and A+ is anti-self-dua:l if and <mly 

if 
4 

DHP =- S2p, 

which is exactly the same relation as we had before (4.19). 

4.3.2 Relation with Witten 's ansatz 

We now have two methods for constructing anti-self~dua:l gauge fields on gH; the 

Witten ansatz and the CF'tH ansatz. We show here that the two methods are 

related: all sollltions constructed in the Witten ansatz can also be expressed in the 

CF'tH ansatz. This argument closely follows that of Manton [Man78]. 

Assuming that p depends only on Jl and T, the solutions of the anti-self-dual 

CF'tH ansatz can be written as: 

At - -yaaiLlnp (~:) 

Aj ( Aar lnp8ja + EjakYk ( aR lnp + 
2~~)) ( ~:) . 

Meanwhile, the anti-self-dua:l 80(3)-symmetric gauge field is, 
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These tw0 solutions will be identical if 

'1/J lnp 

cP1 - -AR8r lnp 

cP2 - R8R In p - ( 
2~~

2 

+ 1) . 
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( 4.20) 

( 4.21) 

(4.22) 

If we assume that (4.20) defines p, equations (4.21) and (4.22) may be rewritten in 

(J.L, T) c0ordil1ates: 

cP1 - -JGT'lj; 

c/J2 -JaJ.I'l/J- aJ.IJ. 

These are equhralent to 

Recall that 2Jet/J = (1 - lgl2) lhl and et/JcjJ = h8zg, so this equation is equivalent to 

Lf we choose h = -i(g- 1)-2 , we find 

_.a( 1) 
z az · g ~ 1 

1 1 
(1-1g.n lhl -1- --- ---- . 

g-1 g-1 

Therefore equation ( 4.23) is solved by this ch0ice of h, and we note that 

p = 
l_ 1-lg,l2 

2Jig=112 

- 2~ ( -l- g~-1 = §~1). 

4.4 Hyperbolic instantons 

(4.23) 

(4.24) 

(4.25) 

The goal of this section is t0 constmct hyperbolic instantons. We focus our attention 

on instantons with 80(3) symmetry, and use the hyperbolic Witten ansatz (4.11-

4.16). In this context, a symmetric gauge field is completely determined by an 

analytic function g satisfying appropriate conditi0ns. T0 demonstrate that such a 
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gauge field is indeed an instanton, it is :necessary to prove that its action is finite. 

lt is this task which will occupy most of the discussion of this chapter. 

We consider the function, 

( ~2z) ).. - 2z/S 
g,I{z) = eJCp S ).. + 2z/S' (4.26) 

where ).. > 0 is a real parameter. One can readily verify that this function satisfies 

the conditions (4.15) and (4.1:6~. Therefore to prove that the gauge field generated 

is an instanton, we need only verify that its action is finite. This is the fust :result 

of this subsection. This being done, we calulate the charge of the instanton. 

We first recall the form of the action in Witten's ansatz, (4.4). In view of the 

anti-self-dual equations ( 4. 7), ( 4. 9), this may be written to 

S = 411"1. (~ (1-lc/>12)
2 
J-2 + IDz</>1 2) dT A dJ-t. (4.27) 

J.t>O 2 

The following proposition summarises the asymptotic behaviour of the terms in 

this action. 

Proposi,tion 4.4.1 Let the functions </J, aiL, and ar be generated by the function 

g1(z) as in equations (4.11)-(4.14). Then the· function (1 ~ I<PI 2)/ J(J-t) has a finite 

limit as Jl--+ 0. In the limit lzl --+ oo, we have (for Jl ~ 0) 

I <PI - O(lzl
0

) (4.28) 

1- J</JI
2 

O(lzl-2) ( 4.29) 
J(J-t) 

-

I,D;</JI - O(lzl-2). (4.30) 

Finally, when Jl = 0, Dz</J/ </J = 0. 

Proof: We choose the gauge h = 1 and calculate </J from g according to <jJ -- e-'I/Jaz9· 

'1/J is calculated from equation ( 4.11): 

S (2!-£) l2z/ S + >..1
2 

exp( -'1/JI) = 2 exp S · l2z/ Sl2 + )..2 + 2).. + 2>..p(J-t)' 

where we have introduced p(J-t) := (2J-t/S) coth(2J-£/S)- 1 for convenience. Mean

while, az91 is given by 

a = ~ex (-2z) (2z/ 8}
2 
~ (>..

2 + 2>..) 
zgl - S P S (2z/S+>..) 2 . 

In order to proceed, we need the following lemma. 
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Lemma 4.4.2 The function p(J-L) satisfies the following: 

(a) p(J-L) --+ 0 as J1 --+ 0. 

(c) p(J-L)/ sinh(2J-L/ S) is bmmded. 

(d) p(J-L) = O(lzl1
) as lzl --+ oo 

(e) p'(J-L) --+ 0 as J1 --+ 0, and p' (J-L) is bounded 

Proof: 

(a) is easily computed. To see (b), simply note that coth(2J-L/S);:::: 1 for J1 > 0, 

and hence p(J-L) ~ (2J-L/S)'-l. The function in (c) is finite in the Limit J-L--+ 0 by (a), 

and it is easily shown to converge as J1 =t oo. Therefore the function is bounded. 

To show (d), consider the function 

This function can be shown to have finite limits as J1 tends to zero and infinity. 

Therefore the function is bounded. We have 

for some constant F, and (d) follows. (e) is a matter of computation. 0 

From the expressions precediNg lemma, we have 

4> = . l(2z/S)2- (,\2 + 2.-\)21 

I I l2z/S:I2 + _A2 + 2.X + 2.Xp(J-Lf 

The numerator of this expression is O(lzl 2
). Using part (b) of t'he lemma, 

1 1 
O< 2 < 2 ' 

- l2z/ SI + .-\2 + 2.-\ + 2.-\p(J-L) - l2z/ SI + .-\2 

from which we see that 

Equation ( 4.28) follows. 
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From the expression for lc/>1 we compute 

1- lc/>1 2 2 4(A2 + 2A) (2~-t/ 8)
2 + 4Ap(JL) (12z/ 81

2 + A2 + 2A) + 4A2p(JL)2 

J(JL) - 8 sinh(2JL/8) (l2z/812 + (A2 + 2A) + 2Ap(JL))
2 

We note that (2JL/ 8)/(sinh(2JL/ 8)) and p(JL)/ sinh(2JL/ 8) are bounded (the second 

is part (c) of the lemma). This means in particular that (1-lc/>1 2)/ J(JL) is bounded 

as JL ~ 0, as claimed. Using the boundedness of these two functions and part (d) 

of the lemma, we have: 

(2JL/8)
2 

sinh(2JL/ 8) 
- O(lzl) 

p(JL) (12z 12 + A2 + 2A) -
sinh(2JL/ S) 8 

p(JL)2 
- O(lzl). 

sinh(2JL/ 8) 

Combining these with earlier resu.lts proves equation ( 4.29). 

From the expression for a, (4.13 and 4.14), we derive the identity Dz = e'l/J8ze~'l/J. 

Applying this to cl> -- e~'l/Jazg, one arrives at the formula, 

Dzc/>/4> = 8z.(ln8zg- 21/;). 

From the expressions for 1/;1 and 8:zg1 derived above, we have 

It follows that 

2 4/8 8z 182 + 2Ap' (JL) - - + - ----;;--'--~· ~· ~~="-="=---

8 2z/8 +A l2z/81 2 + A2 + 2A + 2Ap(JL) 
2 4/S Bz/82 - --- .. .. .. +. . . ..... . .. 
8 2z/ 8 +A (2z/ 8)2- (A2 + 2A)' 

- (12z/8l
2 + A2 + 2A + 2Ap(JL)}((2z/8)2 - (A2 + 2A)) 

2Ap'(JL) 

l2z/ 81 2 + A2 + 2A + 2Ap(JL) · 

One may easily check that the first of the terms on the right of this equation is 

O(lzl-2
), using parts (b) and (d) of lemma 1. The second term on the right hand 

side is O(lzl-2}, as can be deduced part (e) of the lemma. This proves equation 

(4.30). 0 

An immediate corollary of proposition 4.4.1 is the following: 
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Corollary 4.4.3 The anti-self-dual gauge field generated by the function g1{z) has 

fi.nite action. 

We may also use proposition 4.4.1 to find the topological charge of the instanton. 

This is the content of the next proposition. 

Proposition 4.4.4 The topological charge k of the vortex generated by the function 

g.1 ( z) converges absolutely. It is equal to -1. Therefore the instanton caarge c2 = 1. 

Proof: Using the anti-self-dual equation (4.7), the vortex charge (4.8) is eqtlal to 

The absolute convergence of this integral follows from equation (4.29). Notice that, 

since 14>1 2 < 1, this formula tells us that k < 0. 

The value of the vortex charge may be evaluated in a manner similar to the 

Euclidean case (see chapter II of [JT80]). We begin by writing 4> in the form 

for some rea:l function 0( z). Then the covariant derivative of 4> is 

Dcj> = d 14>1 ei
8 + 14>1 ei8 (id()- ia) . 

. Therefore we have 

(~4>) - ( ~4>) = 2i(d0- a). 

This equation is integrated over the boundary of a large semicircle r of raditls M to 

obtain 

f dO= fa-- ~ f (Del>) - (D4>). Jr Jr 2z Jr 4> 4> 
The integral on the right of this equation converges to zero as M tends to oo, 

using equation (4.30) of proposition 4.4.1. The second integral on the left converges 

to 27r times the vortex charge, using Stokes' theorem. The first integral· on the left 

is 21r times the winding number of the Higgs field around r. This is equal to the 

number of zeros of the Higgs field, since the the Higgs field is the product of a non

zero real function and an analytic function. One can easily check that the Higgs 

field has only one zero, so we conclude that the vortex charge is k :::::: -1. bJ 
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0.0 

0 

0.0 0.0 

Figure 4.1: Graphs of field strength IIFII 2 as a function of J-l and T for hyperbolic 

instantons with >..=1 , 2, 3, 5. 

The location of the vortex is taken to be the zero of the Higgs field. It is given 

by 

(J-lo, To) = ( ~ J>..2 + 2.\, 0) . 

We have observed that the location of the Higgs field zero is a scale parameter for 

the instanton; as J-lo increases, the instanton action density becomes more spread 

out. 

We may extend the family of solutions by considering translations along the 

time axis. This is equivalent to allowing ).. to be complex with positive real part. In 

this case the imaginary part To of the vortex location specifies the location of the 

instanton on the t ime axis. 
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We propose that following generalisation of the function g1 ( z): 

2z ,\i- 2z/8 
( 

N 

9N(z) = exp - 8 ) g .X,+ 2z/S (4.31) 

where ,\i are complex numbers. The Higgs field generated by this function has N 

zeros, which suggest that the instanton charge should be c2 = N. It is tempting 

to interpret the locations of these zeros as specifying the locations and scales of 

the constituent instantons, but we have no verification of this. We will not prove 

anything about higher charge instantons here, but we note that they motivate the 

construction of hyperbolic ca:lorons, as we shall see in the next section. 

4.5 Hyperbolic calorons with charge 1 

In this section we present a three-parameter family of non-integral hyperbolic calorons 

with topological charge 1. As in the previous section, we consider calorons with 

80(3) symmetry. We will demonstrate directly that the action of these ca:lorons is 

finite and that their charge is 1. 

We begin this section with a direct construction of integral hyperbolic calorons 

from Euclidean instantons. At the end of the section, we will show how these integral 

calorons are included in the family of non-integral calorons. 

4.5.1 Caloro:ns, from Euclidean i:nstantons 

Recall that a Euclidean instanton can be pulled back to an integral hyperbolic 

caloron, via the conformal equivalence IR4 \82
!:::::: H3 x 8 1 (with (3 == S1r). Said more 

directly, a Euclidean instanton can be reinterpreted as an integral hyperbolic caloron 

simply by changing from Euclidean to hyperbolic coordinates. This procedure is 

particularly simple if we restrict attention to 80(3)-symmetric instantons and use 

Witten's ansatz; here we will spell out the details. 

Witten's ansatz for a 80(3)-symmet:ric gauge field over JR4 : 

1 
A= =2{Qa + </J1dQ + (</J2 + 1)QdQ). 
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Here Q = i)( -iai) (note that xi = fl) and a= ardr + atdt, and ar, at, 4;1 and 4;2 

are real functions of rand t. We write 4; = 4;1 +i4;2 and az = (ar- iat)/2. Witten's 

solution of the anti-self-dual equation is 

1/J - ln(1 -I9EI2
) +In lhE;I-1n(2r) 

4; - exp( -1/J)hEBz9E 

az - -i8z1/J 

where 9E and hE are analytic functions of Z (hE represents a choice of gauge). If 

we change coordinates from (r, t) to (J.t, T) and choose the gauge hE= 1, we obtain 

1/J - ln(1- I9EI 2
) -ln(2r) 

az 
4; - exp('I/J) az8z9E 

az -i8zVJ· 

But, using the identity Jjr = IBz/BZ,I, we see that this is exactly matches our earlier 

soluti<m (4.11)-(4.14), with 9.(z) = 9E(Z(z)) and h = 8z/8Z. 

For example, the charge 1 Euclidean instanton located at the origin has 

a-Z 
( )

2 

9E(Z) = a+ z 

wher:e a is a real parameter. The corresponding hyperbolic caloron wiH have 

(a~ tanh(z/ S)) 2 

9 z = 9c z := () () a+tanh(z/S) 

4.5.2 Non-integral charge 1 calorons 

(4.32) 

Recall the th.e function 9N(z) which. conjecturally generates charge N hyperbolic 

instantons (4.31). By thinking of a caloron as a sequence of equally-spaced instan

tons, we arrhre at the folllowing form for the 9-function of a hyperbolic caloron with 

period {3: 

( 
2z) lim ITN A.+2k{3i/S-2z/S. 9oo(z) := exp ---
8
- -

N- 00 k=-N A.~ 2k{3ijS + 2z/S 
(4.33) 

In this subsection we prove that the family of periodic anti""self-dual gauge :fields 

generated by 900.(z) are hyperbolic calorons. We do this first by showing that the 
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infinite product in g00 (z) converges, and then by showing that the action is finite. 

We also evaluate the charges of these ca:lorons. The following proposition establishes 

the convergence of the infinite product. 

Propasitian 4.5.1 The infinite product ( 4.33) converges uniformly on any compact 

set after singular terms have been removed. Moreover, the product has the following 

closed form: 

( ) . ( 
2z) si.nh((z- S>..j2~1rj{3) g z = exp -- ·· 00 S ·sinh((z+S>../2)7r/{3) 

(4.34) 

Proof: 

First we demonstrate the uniform convergence of the product. The product may be 

re-arranged by multiplying the k-th and -k-th terms: 

TIN ).. + 2k{3i/S- 2z/S ).. - 2z/S TIN ( 8)..zjS ) 
k=-N)..- 2k{3ijS + 2z/S ===).. + 2z/S k=l 

1
- ().. + 2z/S)2 + (2k{3/S)2 . 

The pwduct on the right-hand side of this expression. converges uniformly as N ---+ oo 

on any compact set, after removal of singular terms, if and only if the infinite sum 

00 I 8)..zj s I 
~ (>.. + 2z/S)2 + (2k{J/S)2 

converges uniformly on any compact set, after removal of singular terms. 

The uniform convergence of the infinite sum is demonstrated as follows: fix a 

compact set and let R be such that lzl < R for all z in the compact set. Then 

J(>.. + 2z/S)2 + (2k{3/S)2J;?: (2k{3/S)2 - (>.. + 2R/S)2. So we have 

00 I 8)..zj S I 00 

8)..Rj S t; (>..+2z/S)2 + (2k{3/S) 2 ~ t; (2k{3/S)2- ().. + 2R/S)2' 

where M is chosen to make the terms on the right positive. The series on the right 

converges, so the series oR the left converges uniformly (by the Weierstrass M-test). 

Hence the infinite pwduct coRverges uniformly on any compact set, after singular 

terms have been removed. 

To prove equation ( 4.34), we use the familiar product representation of sinh: 

sinh z = z IT (1 + k::2) . 
k=l 
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Applying this to the right hand side of equation ( 4.34) yields 

sinh((z- S>..l2)7r I {3) z- 8>..12 IT ({Jk) 2 + (z- 8>..12)2 
sinh((z + S>..l2).7r I {3) - z + 8>..12 k=l ({Jk)2 + (z + 8>..12)2 · 

After rearrangement, this is equal to the product in e~uation (4.33), and we have 

shown (4.34). 0 

The function g00 (z) satisfies the basic requirements for generating an anti-self

dual gauge field (equations (4.15) and (4.16n; to conclude that the gauge field is a 

ca:loron we only need to show that its action is finite. The method will be similar to 

that used to show the instanton action is finite. We use the simplified vortex form 

of the action ( 4.27), which is vaJ,id for anti-self-dual gauge fields (but note that now 

T is integrated between 0 and {J). 

We note here that the function g00 ( z) and the gauge field generated by it do not 

necessarily have period {3, because of the factor exp ( ~ 2z IS). To make the gauge field 

strictly periodic, we make an aperiodic gauge transformation h00 (z) = exp(2zl S). 

Propesition 4.5.2 Let the Higgs field ljJ and the U(1) gauge field aJ.L, ar be gen

erated by the function g00 (z) with gauge transformation h00 (z). Then in the limit 

J-l- 0, we have the following convergences: 

1-14>12 - 0 
J(J-t) 

Dzl/J 
4> - 0 

In the limit J-t- oo, we have the foNowing convergences (uniformly in r): 

Proof: 

We compute: 

14>1 - ( S1r>..) exp -{3 

1 = 14>12 
0 ( exp (-

2
;)) J(J-t) 

-

ID;l/JI - o(exp(-
2
;))· 

cosh(S1r >..1 fJ) + (S1r I {3) sinh(S1r >..1 {3) - cosh(21rzl {3) 
Ssinh2((z + S>..l2)7ri{J) 

S lsinh((z + S>..l2)7rlf3)1 2 

cosh((2J.-t + S>..)1ri{J)- cos(27rrlf3) + q(J-t)' 

(4.35) 

( 4.36) 

( 4.37) 

(4.38) 

(4.39) 

(4.40) 

(4.41) 
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where q(~-t) :=== ( coth(2~-t/ S) -1) sinh(27r~-t/ {3) sinh(S1r.X/ ,B) was introduced t0 simplify 

the expositi0n. The following lemma states all the properties of q(l-t) we shall n.eed, 

and is easily proved. 

Lemma 4.5.3 The function q(~-t) satisfies the following: 

(a) q(~-t) ~ (87r/{3)sinh(S7r.X/f3) as 1-" tends to 0, and the convergence is O(~-t2 ). 

(b) q(l-t) exp(-21r J.L/ {3) ~ 0 as 1-" tends to infinity. 

(c) q'{~-t) ~ -(27r/{3)sinh(S7r.X/f3) as 1-" ten.ds to 0. 

(d) q'(~-t)exp(-21r~-t/f3) =-t 0 as 1-" tends to infinity. 

C0ntinuing our calcaJation, we find that 

l4>l2 === lcosh(S7r.X/f3) + (S1rj{3) sinh(S1r.Xj{3) ~ cosh(27rz/f3)1
2 

(cosh((2~-t + S.X)1r / {3)- cos(27rT / {3) + q(!-"))2 

In this last expression, the numerator and denominator both converge to the same 

function, 

(cosh(S1r .X/ {3) + (S1r / {3) sinh(S1r .X/ {3) - cos(27rT / {3) )2, 

as 1-" tends to 0. In b0th cases the convergence is faster that ~-t2 . Therefore 1 = 14>1 2 

c0nverges to 0 as J.L tends to 0, and this convergence is O(~-t2 ). It follows that 

(1-lcfiF)/J(~-t) converges to 0 as 1-" tends to 0. This establishes (4.35). 

From the above expressi0n for 14>1 2 one can check that 14>12 tends to a constant, 

exp(-2S1r.Xj{3), as 1-" tends to infinity. Therefore (1-lc/>1 2 )/J(~-t) converges to zero 

exponentially fast as 1-" tends to infinity. This establishes ( 4.37) and (4.38}. 

We recall from the proof of proposition 4.4.1 that Dzcf>/4> === 8z( -2'1/J +ln(h8zg)). 

From the above expressions for el/J and h008z9oo above, we have 

s 211" 
8z1n(hoo8z9oo) === -2 -7Jcoth((z+S.X/2)7r/{3) 

(27r / {3) sinh(27rz/ {3) + ........ . 
cosh(21rzj {3) - cosh(S1r .X/ {3) ~ (S1r / {3) sinh(S1r .X/ {3) 

s 211" 
-28z'I/J -

2 
+7Jcoth((z+S.X/2)7r/{3) 

(21r / f3)(sinh((2~-t + S.X)1rj {3)- i sin(27rT / {3)) + q'(~-t) 

cosh((2~-t + S.X)1r / {3)- cos(2nT /,B)+ q(~-t) 
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One can see by inspection that some terms cancel when these two expressions are 

added. We need to check show that their sum converges to 0 as p tends to 0 and 

infinity, and that the convergence at infinity is exponentially fast. This can be done 

by hand, 'Using lemma 4.5.3. We omit these calculations, as the expressions involved 

are complicated. 

It fol,lows immediately from proposition 4.5.2 that the caloron action is finite: 

Corollary 4.5.4 The action of the periodic anti-self-dual gauge field generated by 

g00(z) is absolutely convergent. 

We may also use results from proposition 4.5.2 to determine the charge of the 

caloron. 

Proposition 4.5.5 The topological charge k of the periodic vortex generated by 

g00 (z) is absolutely convergent. It is equal to ~1. We have A0 --+ 0 as p--+ 0, and 

the monopole charge of the caloron is 0. Therefore, the constituent monopoles of 

this caloron have charges ( 1, 1) and masses ( 0, 21f / (3). 

Proof: 

The proof of this is essentially the same as in the instanton case. We use eq'Uation 

( 4.38) of proposition 4.5.2 to establish the absolute convergence of the topological 

charge. As in the proof of proposition 4.4.4, we have 

Dc/J (Dc/J) -;j; - -~ =-- 2i(d0 +a). 

We integrate over the boundary of the region 0 ::::; p ::::; M for some constant M. 

This consists of two cl:ITves located at p :::::: 0 and p :::::: M, which we denote r 0 and 

r M· We recall that, since the gauge fielcl is periodic, T is integrated only between 0 

and (3. 

The integral of the left hand side over r 0 is zero, since the integrand is zero 

(4.36). As M tends to infinity, the integral of the left hand side over fu tends to 

zero, using equation (4.39). The integral of a over the whole boundary is the same 

as the integral of da over the region it encloses, and this converges to 21fk as M 

tends to infinity. 
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The integral of d() over the whole boundary is the same as 271" times the winding 

number of the Higgs field over the whole boundary. Since the Higgs field is the 

product of a real non-zero function e'I/J I lhool and an analytic function hoo8zg00 , this 

is the same as the number of zeros of the Higgs field in the region it encloses. We see 

that the Higgs field has one zero on the interior, so we conclude that this integral is 

271" when M--+ oo. Therefore the vortex charge k is equal to -1. 

Let p,1 = limtt-+oo IAol and let p,0 = 271" I {3. It is easily deduced from the formula 

given earlier for 7/Joo that 

lim 8tt'lj; = 0, 
Jt--+00 

therefore; using (4.14), p,1 = 0. 

The monopole charge k1 of the calor0n can be found by looking at the curvature 

tensor (4.3). The volume form on 82 is w = ~QdQ 1\ dQI2. Hence the component 

of F on the sphere at infinity is 

It follows that the Chern numbers ~k1 are zero. 

Recall from (2. 7) that 

1 1 . . 2p,lkl 
-

2 
Tr(F 1\ F) = k0 + -·· ·----. 

871" liPxsi P,o 

The left hand sicle is equal to minus the vortex charge k. Since k ~ = 1, the left 

hand side is 1. Since p,1 = 0 the instanton charge k0 = 1. The monopole charges 

and masses are read off from the formulae (2.8), (2.9). 

4.5.3 Relation 'between integral an.d nen-integral hyperbolic 

calorons 

A reasonable requirement for the family of non-integral hyperbolic calorons is that 

it includes the family of integral hyperbolic calorons. In this subsection we verify 

that this is the case. 

Let Ac denote the integral hyperbolic caloron generated by the function g0 ( z) 

(4.32). Ac depends on two parameters, a and S. We will consicler a in the range 
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( 0, 1), since this corresponds to the components of the caloron being located at times 

n81f (in preference to (n + ~)Srr, which happens when o: > 1). The period of Ac is 

S1r. Let Aoo be the hyperbolic caloron generated by the function g00 (z) (4.34) with 

gauge transformation h00 (z). Aoo depends on three parameters: S, {3, and A. We 

wiH find that Aoo and Ac are gauge equivalent when 

{3 - S1r, 

0:2 
A 

- tanh-. 
2 

This result is derived by using the fact that the zeros of the Higgs field are gauge 

invariant. The zeros of the Higgs field of the gauge field Ac are located at 

T = nS1r, nE Z 

/l Sarctanha. 

For the gauge field Aoo, the zeros are 

n/3, nE Z T 

27r~t 
cosh--

/3 
S1rA S1r . S1rA 

- cosh /3 + 7J s1:nh /3. 

By requiring that the zeros of the Higgs field agree for Ac and Aoo, we arrive at the 

two equations relating the parameters /3, S, o: and A which were given above. 

Once the zeros of the Higgs fields agree for both calorons, they must be gauge 

equivalent. This is because both calorons are in fact Eudidean instantons, and we 

know that symmetric Euclidean instantons are completely determined by the zeros 

of their Higgs field [Wit77]. For explicitness, though, we give the precise gauge 

transformatioN taking Acto Aoo (when their parameters are appropriately related) 

Recall that gauge transfomations of solutions were expressed by an analytic 

function h, with '1/J ~ '1/J + ln lhl and 8zg ~ h8z9· So the gauge transformatioN 

taking Ac to Aoo ish= hoo8z9ool8z9C· Explicitly, 

h = _ 1 + o:2 (o:cosh(ziS) + si~h(ziS)): 
2o: ( o:2 cosh( z IS) + smh ( z IS)) 

We check that the gauge transformation h also has the correct relation with '1/J. 

For the solution A00 , '1/J is given by 

e:x!p( -'1/Joo) = S (1 + o:4 ) cosh(2~tl S) + 2o2 sinh(2~tl S) + (o:4
- 1) cos(2T IS) 

2 (1 + o:2)( ( o:2 + 1) cosh(2~tl S) + ( o:2 - 1) cos(2T IS)) 
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For Ac, '1/J is given by 

exp( -'1/Jc) = 28 ((a2 + 1) cosh(2J1JS) + (a2
- 1) cos(2TIS) + 2asinh(2J.LIS))

2 

(a2 + 1) cosh(2J.tl S) + (a2 - 1) cos(2T IS) 

Finally, lhl is given by 

I hi = 1 + a 2 
( ( a2 + 1) cosh(2J.tl S) + (a 2 ~ 1) cos(2T IS) + 2a sinh(2J.tl S) )

2 

4 ( a 4 + 1) cosh(2J.tl S) + (a4 - 1) cos(2T IS) + 2a2 sinh(2J.tl S) 

From these fm:mulae, it is clear that 

which is the correct relation. 

exp( -'1/Jc) 
exp( -'1/Joo) = . I hi .... ' 

4.6 Taking limits of parameters 
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The family of calorons we have constructed depends on three parameters. They are: 

S, prop0:rtional to the radius of curvature of the hyperbolic space; (3, the period of 

the ca:loron; and A, which is related to the size of the caloron. In this section we will 

consider solutions obtained in various limits of these parameters. We wiH show h0w 

to take the flat space limit of a hyperbolic caloron to obtain a Ellclidean caloron. 

We also show that the infinite period limit of a hyperbolic caloron is a hyperbolic 

instanton, and the infinite scale limit is a hyperbolic m0nopole. Thus the family 

of hyperbolic calorons constructed is directly analogous to the family of charge 1 

Euclidean calorons which interpolates between instantons and monopoles. 

4.6.1 Flat space limit 

The limit as S tends to infinity of the hyperbolic metric dsk is the ordinary Euclidean 

metric. So one would hope that it is possible to find Euclidean calorons as some 

limit as S tends to infinity of the hyperbolic caloron A00 • This turns out to be 

possible. The trick is to ma:ke sure the caloron retains finite size as S increases, or 

equivalently in the vortex pictur:e, to fix the location of the vortex while S increases. 

Recall that the locations of the vortices are given by: 

T - n(J, nE Z 

21rJ.t 
cosh-.-

(3 
SnA S1r . S1r A 

- cosh/3+7Jsmh/3. 
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These will remain finite as S tends to infinity if {3 and A.S2 remain fixed. In this 

limit the second equation becomes 

27rJ.L 1f 2 

( )

2 

cosh T = 1 + -g 'AS . 

We now consider the Higgs field and the U(1) gauge field in this limit. To 

keep these expressions well-behaved, we make an additional gauge transformation, 

h(z) = Sl2. We find 

s 
2hoo8z9oo 

s 2 exp('I/Joo) 

1r2>..s2 
---+ =1 + 

2
{32 cosech2 (1rzi,B) 

=-+ 1 + 7r A.S2 
sinh(27rJ.LI {3) . . 

2{3J.L cosh(27rJ.LI {3) - cos(21fT I {3) 

We want to compare this limit with the caloron of Harrington and Shepherd 

[HS78]. Recall from (2.15) that Harrington and Shepherd's caloron was given in the 

CF'tH ansatz, with 

. 1rv
2 sinh(27rJ.LI {3) 

P = 1 + -{3-
11 

-co=sh-(:-"'21f_J.L_I.,-f3..:....) --'--'c-os-':-( 2-1r-T~I ,B-.)" 

It is simple to convert this to vortex form. Using methods from Manton's paper 

[Man 78], we have: 

'1/J lnp 

</J - e-1/J2i8z(J.Lp). 

For the Harrington and Shepherd caloron, 

el/J _ 1 + 1tv
2 

. sinh(27rJ.LI {3) 
f3J.L cosh(27r 111 ,B) - cos( 21fT I {3) 
1f21J2 1fZ . . h2 

z- zjj2cosec 7J' 

So, by directly comparing </J and 7/J, one can see that the flat space limit of the 

hyperbolic caloron is (a gauge rotation of) the Harringt<m-Shepherd caloron, with 
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4.6.2 lnstaNton limit 

In the Euclidean case, an instanton could be obtained as the limit of a caloron. as 

its period tends to infinity. We will show that this is true in the hyperbolic case 

too. We show that the limit as f3 tends to infinity of the hyperbolic caloron AXl is 

a hyperbolic in.stanton, provided we keep S and A fixed. In this limit, the location 

of the vortex at T = (i) tends to 

T 

By comparing vortex locations, this solution should be gauge equivalent to the 

charge one in.stanton generated by the function 

( 2z) A- (2z/S) 
9t(z) = exp ~ S A+ (2z/S)" 

We now verify this. Recall that, for the hyperbolic instanton., 

2 ex (- 2z) (2z/ 8)
2

- (A
2 + 2A) 

S p S ( 2z / S + A )2 

S (2/-L) (2tL/8+A)
2

+(2T/S)
2 

2 exp S (2!-L/ 8) 2 + (2T/S)2 T- A2 + 2).;(2!-L/ S) coth(2tL/ S) · 

If we consider the hyperbolic caloron without the gauge transformation h00 , we find 

az9oo ~ -8zg1 and '1/Joo ~ 'lj;1 pointwise as (3 tends to infinity. So the instan.ton limit 

holds as expected, (note that there is a gauge rotation h = -1 ).. 

4.6.3 Monopole limit 

The monopole limit of a Euclidean caloron was obtained by fixing the period of 

the caloron and allowing its scale to approach ililfinity. So we hope to 0btain. a 

hyperbolic mon.opole from a hyperbolic caloron by :fixing f3 and S, and letting A 

approach infinity. 

To do so, we first need to express the hyperbolic mono pole of Nash [N as86] in 

the n.otation of this article. Nash's solution is equivalent to: 

9M(z) ( 
2Bz) exp -s 

i 

8z9M. 
hM(z) 
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0.0 

0.0 

0.0 0.0 

Figure 4.2: Graphs of IIFII 2 as a function of p, and T for hyperbolic calorons with 

S = 2, {3 = 21r and A = 1.2, 2, 5 and 10. 

One may derive from these 

B sinh(2p,/ S) 
sinh(2Bp,/ S) 
ie-t/J. 

The limit as A tends to infinity of the caloron A00 is 

If we gauge transform by h = (iS/2) (1 +S1r / {3)- 1 exp(27rz/ {3 ), this becomes identical 

to Nash's monopole, with 
S7r 

B = 1 + !f· 
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So by varying j3 and S, all symmetric charge 1 hyperbolic monopoles can be ob>tained 

as limits of symmetric charge 1 calor0ns. 

4. 7 Sum~mary and open problems 

We have demonstrated the existence of hyperbolic calorons by explicitly construct

ing them. Although oliT calorons are related to monopoles as one might expect, they 

do not exhibit the full constituent structHre described in chapter 2, because they 

do not have maximal symmetry breaking. It remains to be seen whether hyperbolic 

calorons can be constructed satisfying more general boundary conditions. Follow

ing the example of Euclidean calorons, more general hyperbolic calorons might be 

constructed using a Nahm transform - but such a N ahrn transform is currently not 

known. 

In view of the emerging theory of Nahm transforms [Jar04], it would be in

teresting to investigate the possibility that a N ahm transform exists for hyperbolic 

calorons. Currently, a N ahm transform is known for hyperbolic monopoles, but only 

in the integral case [BA90]. Closely related is the problem of finding a Nahm trans

form for sing,ular instantons, Instantons can in principle exist with mild singularities 

on a two-sphere - the types of singularity were classified in [SS92, Rad94], and more 

m less correspond to the types of boundary fuehaviour displayed by calorons. Only 

a few examples of .such instantons exist [FHP81,FHP82]; in our view it seems quite 

possible that more could be shown to exist using some kind of Nahm transform. 

We mention briefly a loop group interpretation for hyperbolic calorons. By anal

ogy with the Euclidean case, we expect that a hyperbolic ca:loron can be identified 

as a hyperbolic monopole whose gauge group is a loop group. This monopole could 

be mapped conformally to an axially symmetric instanton whose gauge group is a 

loop group, subject to some integer-mass condition. So hyperbolic calorons could 

be used to study loop group instantons. Loop group instantons would be interesting 

to study, both for their novelty, and because they might tell us something about 

higher dimensional gauge theories. 

A final open question concerns the boundary behaviour of hyperbolic calorons. 
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It was tecently proved that hyperbolic monopoles are completely dete:rmined by the 

connection they induce on the sphere at infinity [Nor04L an example of a "holo

graphic principle". It is natural to ask whether the same is true of calorons: alas, it 

appears not to be for our calorons. The connection induced on the sphere at infinity 

by our calorons is trivial, so cannot determine the caloron. If one applies a rotation 

map (a large gauge transformation), the caloron looks l,ike a monopole at infinity, 

b11t even then the connection at infinity only appears to detect the location of the 

caloron, and not its scale. The faihue of the holographic principle may be related to 

the degeneracy of the boundary condition: perhaps more general hyperbolic calorons 

are determined by their boundary values? 



Chapter 5 

Chains of planar skyrmions 

In this chapter we shall consider chains in the planar (or baby) Skyrrne model. The 

planar Skyrme model is essentially a geReralisation of the CJP1 sigma model (which 

will be studied in chapter 7}: two terms are added to the sigma model Lagrangian 

which l>reak integrability and conformal invariance. The plaRar Skyrme model was 

invented as a two-dimensional toy model for the three-dimensional Skyrme model. In 

a later chapter we will study chains in the Skyrme model, so this chapter represents 

a useful first step. 

Our approach in this chapter is essentially analytic. We will consider a raRge of 

ansiitze which are expected to make a good approximation to tn1e minima of the 

planar Skyrme energy. However, since this model is not integrable, it will ultimately 

be necessary to compare our results with numerical sirnulations. Such simulations 

have been carried out l>y my supervisor, Prof. R. S. Ward, and appeared in our 

joint publication [HW08b]. 

All important feature of the planar Skyrme model is that it includes a potential 

function, which may l>e chosen arbitrarily. Different choices of potential function 

can result in different behaviour of the model, so it is important to consider a range 

of potentials. Ideally, one would like to make statements which depend only on a 

few quaJlitative features of the potential, l>ut to do so is a hard problem which we 

do not address here. 

We l>egin this chapter l>y introducing chains in the planar Skyrme model. We 

shall give a detailed account of the topology, siRce this is not standard. We shall 

78 



5.1. The planar Skyrme model 79 

exhibit two lower bounds on the energies of chains: the first is the standard Bo

gornolny bound which depencls only on the topology; the second depends on the 

period, ancl in partic11lar diverges for small periods. After considering non-standard 

potentials for which the field equations have explicit solutions, we consider in the 

last two sections properties of chains for two standard choices of potential function. 

5.1 The planar Skyrme model 

The field content of the planar Skyrrne moclel on a Riemannian manifold M of 

dimension two is a contin11ous function </J from M to 8 2
, called a planar Skyrme 

field. In components, we write </J = (</>1 , </>2 , </>3 ) with <Pi+ </J~ + </J~ = 1. Let v be the 

volume form on M, and let w be the volume form on 8 2 . The planar Skyrme energy 

functional is 

Er<Pl - E2[</J] + a4E4[</J] + aoEo[<P] 

E2[</J] !M ~lld<PII 2v 
E4[</J] L ~(*M(</J*w)) 2v 

E0 [</J] !M V(<jJ)v. 

Here V is a real function on 8 2 called the potential function, and the real a0 , a 4 are 

parameters of the model. Normally E 2 is called the sigma model term, E4 is called 

the Skyrme term and Eo is callecl the potential term. The planar Skyrme model 

was invented as a two...,dimensional analog of the three-dimensional Skyrme model, 

and each term in the energy functional has a three-dimensional counterpart. Notice 

that, unlike in three dimensions, the potential term is indispensible here: without 

it, Derrick's theorem rules out the existence of static soli tons on IR2
. 

The choice of V is arbitrary, but the two most commonly studied choices are: 

• V(</J) = (1- <jJ3 ) (the old baby Skyrrne model, see ~PSZ95]) 

• V(<jJ) = ~(1- <PD (the new baby Skyrme model, see [KPZ98, Wei99]). 

Notice that the energy densities £2 ,£4 are invariant under 0(3) rotations of 8 2 , 

cailled isorotations. The choice of potential V breaks this symmetry; in the olcl 
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baby Skyrme model the isorotation group is broken to 0(2), while in the new baby 

Skyrme model it is broken to 0(2) X z2 (where z2 describes reflections which swap 

the poles c/J3 = ± 1). 

In the case where H2(M) = Z the map c/J has a degree, denoted B and called 

the charge of cp. By the degree theorem, 

B { w' = { cp * w' 
Js2 JM 

for any volume form w' on S2
• The energy is bmmded from below by a multiple 

of the charge, as we now show. Let R = R 1 + iR2 be the complex function on M 

defined by stereographic projection: 

(5.1) 

(5.2) 

Let z be a complex coordinate on M ancl. such that the metric and volume form on 

M are g :.___ h/2(dz ® dz + dz ® dz) and v = (ih/2)dz A dz. We have identities 

4 IBzRI2 + IBzRI 2 

- h (IRI 2 + 1)2 

*Mc/J*w -
4l8zRI 2 

- l8zRI2 

h (IRI2 + 1)2 

By integrating and applying the degree theorem, we obtain 

with equality if and only if 

On the other hand, we have an identity 

Integrating aBd applying the degree theorem, we obtain 

o:4E4 + o:oEo ~ B { )2aoo:4Vw. Js2 
This bound is satllrated provided 

(5.3) 

(5.4) 

(5.5) 

(5.6) 
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In summary, 

For convenience, we also set 

1 
B - -et>. a1 et> x a2ct> 

4n 
1 

£2 2 (aiel> . aiel>) 

C4 ~(81cp X 02cp)2 

8n2B2 

V(c/>). 

8l 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

In the case M = ~2 , the coefficients a 0 , a 4 can be changed by resca1ing the coordi

nates x1 , x 2 . Therefore it is convenient to use this degeneracy to fix a 0 = a 4 = J..L for 

a rea:l parameter J..L. The bound (5.7) applies t0 the planar skyrrnions on JR2 , since 

finite-energy fields on JR2 must tend to a constant at infinity, hence can be extended 

to maps from 8 2 to 8 2
• 

A finite-energy map cl>: JR2 ---+ 8 2 which minimizes the energy functional wil1 be 

called a planar skyrrnion. Only one charge 1 planar skyrmion is known in each of 

the old and new baby Skyrme models. They may be expressed in p0lar comdinates 

( r, B) in the form of the hedgehog ansatz: 

cl>= (sin f(r) cos(B- x), sin f(r) sinW- x), cos f(r)). (5.13) 

Here x E [0, 2n) is an angle and J(r) is a function satisfying f(O) =nand J(r)---+ 0 

as r =too, which must be chosen to minimize E. 

Notice that the hedgehog ansatz is symmetric: a spatial 80(2) rotation can. be 

compensated by a isorotati0n of the 2-sphere. So the orien.tation parameter x might 

appear to be un.important. However, we shall see later that when multiple planar 

skyrmions are placed next to each other, their relative orientations determine the 

forces b>etween them, s0 it makes sense to leave x in equation (5.13) for now. 



5.1. The planar Skyrme model 82 

We point out here that the charge one skyrmion generally fails to saturate the 

Bogomolny bounds (5.3), (5.5).. The reason is that saturation of each bound requires 

solution of a first order differential equation, and the two differential equati0ns (5.4), 

(5.6) are not in general compatible. It is interesting t0 ask the question: by how 

much does the skyrmion fail to saturate the Bogomolny bmmd? The answer takes 

the form of a graph, such as the solid curve in figure 5.1. There we have plotted 

the fractional excess of the energy E of a charge 1 skyrmion 0ver its Bogomolny 

bound Emin = 47r(1 + 4~-t/3}, as a function of log J-l· We worked with the old baby 

Skyrme potential. It is remarkable that the curve has such a symmetrical shape, 

and we also note that the excess becomes negligible for very large and very small 

values of J-l· The J-l = 0 limit is the CIP1 sigma model, while the J-l = oo theory 

was studied in [GP97]. In both limits, the Bogomolny bound is saturated although 

in the latter case, one must sacrifice smoothness of functions. (We note that the 

authors of [GP97] erroneously claim not to have saturated the Bogomolny bound: 

their mistake was to use a Bogomolny bound which is weaker than the usual one.) 

In order to understand the shape of the curve better, we make a simple analogy. 

We replace fields qy by real numbers x and the fractional excess energy (E[qy] ~ 

Emin)/ Emin by the function 

a fiJ-t 2 
j : X ~ (X + 1? + . (x - 1) , 

1 + IJ-l 1 + IJ-l 

where J-l, a, {3, 1 are positive real parameters. This function is obviously bounded 

below by 0, but the bound is not sat1:1rated, since the "Bogomolny equations", x = 1 

and x = -1, are not compatible. The true minimum of f is 

The dashed curve in figure 5.1 is the graph of this function, with the parameters set 

to a = 0.042, {3 = 0.29, 1 = 0.44. We observe that this curve is a surprisingly go0d 

match for the graph of (E- Emin)/ Emin· 
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Figure 5.1: The quantity ( E - Emin )/ Emin as a function of log J.L for a 1-skyrmion 

with the old baby Skyrme potential. 

5.2 Ch.ains and their topology 

We will be interested in periodic chains of planar skyrmions with a relative orien

tation between neighbouring planar skyrmions. These wi~l be described by planar 

Skyrme fields 4J periodic up to an isorotation. Let the period be f3 > 0, and let the 

isorotation be a E 80(2). Then the planar Skyrme field is required to satisfy: 

(5.14) 

In addition, we impose the boundary condition: 

(5.15) 

In contrast, a domain wall in the planar Skyrme model is required to satisfy 

(5.1!6) 



5.2. Chains and their topology 84 

Two special cases are as follows: if a is the identity we call </> periodic, while if 

a is not equal to the identity but a 2 is we call the chain anti-periodic. Clearly, the 

only anti-periodic boundary condition is a= -I d. 

The energy and charge per unit length of a chain are computed by 

E[</J] - 1!3 1: £[</>] dx 1 dx2 

B{</>] = 1!3 1: B[</>] dx1 dx2
• 

An important question to answer is whether the quantity B is guaranteed to be 

an integer. In the case where a is the identity this is relatively simple to see: the 

boundary conditions ensure that </> can be extended to a map from T 2 to 8 2 . Since 

the second cohomology groups of these manifolds are both Z, </> has a degree defined 

in the usual way, and the degree is computed by the integral B. In the general 

case th.is argument fails, but one still might expect B to be an integer, since </> is 

supposed to represent a chain of particle-like solitons. 

It turns out that B is guaranteed to be an integer for all isorotations a. This is 

a special case of the following theorem: 

Theorem 5.2.1 Let ~be ann-dimensional compact manifold without boundary, 

with volume form w, and with nn-l(~) = 0 and Hn(~) = Z. Let M be an (n ~ !)

dimensional manifold such that Hn(M x 8 1) _:_ Z. Suppose that 80(2) acts on ~ 

and that w is 80(2}-invariant. Fix an element a E 80(2) and let </>: M x 1R ~ ~ 

be a map satisfying 

<jJ~x, y + (3) = a<jJ(x, y) Vx EM, yE JR. 

Then </> has an integer degree, computed by the integral, 

deg:(</>) ~ Vo~(~) 1!3 L <jJ*w. 

Furthermore, deg(</>) is independent of the choice of 80(2)-invariant volume form 

w. 

Proof: The idea of the proof is simple: we deform</> to a strictly periodic map 

using the 80(2) action, and show that the integra:! is unchanged by this deformation. 



5.2. Chains and their topology 85 

First, we introduce some notation: we write the 80(2) action as Rs : I;~ I;, with 

s E lR/Z ,....., 80(2). Let X E TI; be the associated vector field. Let t 0 E lR/Z be 

such that Rto = a-1, and let t(x.,y) = t0yff3 be a function on M x JR. We define a 

deformation, 

~(x, y) = Rt(x,y) o c/J(x, y), x EM, yE JR. 

Then cjJ is a strictly periodic map, hence has a degree computed by 

- 1 {{3 f -
deg,(cjJ) = Vol{I;) Jo J M cjJ*w. 

Now we show that 

For any form () E A *I;, one can show that 

~*O = c/J* R;o + c/J*(ixR;o) A dt. 

Here i x denotes the i:aner derivative of a form. In the particular case () = w, one 

has R;w = w (because the volume form is 80(2)-invariant). Hence 

~*w = cjJ*w + cjJ*(ixw) A dt. 

By Cartan's formula, we have 

Lxw = ixdw + dixw. 

where Lx denotes the Lie derivative. We see immediately that dw = 0, because 

w E An~. On the other hand, Lxw m11st vanish since w is 80(2)-invariant. It 

follows that ixw is closed. Since Hn~l(I;) - 0, ixw is exact, in other words, there 

exists a p, E An-2I; such that ixw = dJ-t. Therefore, 

~*w cjJ*w + cjJ*(dp,) A dt 

- cjJ*w+d(cjJ*p,Adt). 

Integrating and applying Stoke's theorem, we obtain 



5.3. A period-dependent lower bound on the energy 86 

The bmmdary term vanishes since t is constant on the domain of integration, so we 

have the desired resU!lt. 

That deg(<M is independent of the choice of vo1llme form follows from the corre

sponding property of the classiea:l degree. If w' is any other 80(2)-invariant volume 

form, then 

1~ L ~*w' - 1~ L ~*w' 
.... 1~ L ~*w 
- 1~ L ~*w. 

D 

An usefui corrollary of this theorem is that the lower bound's (5.3), ('5.5) apply 

to chains, but the latter applies only in the case where the potential function V(~) 

is 80(2)-symmetric. We stress that it is important that B = deg( ~~ is independent 

of the choice of volume form, since the bounds (5.3), (5.5) are obtained using two 

different volume forms. It would be interesting to know if the degree deg( ~) can be 

defined without making a choice of volume form - this has not been done, as far as 

we are aware. 

5.3 A period-dependent lower bound on the en-

ergy 

It is interesting to consider chains in the limit where f3 is very small. For comparitive 

purposes, we first consider the planar Skyrme model on a manifold M with area form 

v and with finite area. By the Cauchy-Schwarz inequality, one obtains 

so there is a lower bound on the energy: 
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When M has large area, this lower bound is less than the standard Bogomolny 

lower bound. B1:1t as the area of M tends to zero, this lower bound diverges. Heuris

tieally, one can say that squashing the Skyrme field into a small area has the effect 

of increasing the Skyrme term. We note that an analogous res1:llt holds in the full 

Skyrme model [Man87]. See [War04a, diWOl] for studies of planar skyrrnions on 

compact manifolds. 

Of cmuse, the above argument says nothing about chains, because the area of 

M = lR x 8 1 is infinite. But one stiU might expect the energy of a chain to be 

large for small periods. One thing is clear: any lower bound which diverges for 

small periods must involve more than just the Skyrme term. This is because the 

Skyrme term is invariant uncl.er area-preserving maps. Given a chain <f>(x, y) with 

period {3, one can <define a chain ~(x, y) = <f>(x/ ).., y>..) which has period {3/).. but the 

same Skyrme energy. So there cannot be a lower bound on the Skyrme energy that 

diverges as the period becomes smalL 

Now we shall prove the existence of a lower bound on the energy of a planar 

skyrmion chain which does diverge for small periods. Our method will be to consider 

both the Skyrme term and the sigma model term. We will first consider the case 

where both the domain and target of the Skyrme field are diffeomorphic to compact 

cylinders, and find a lower bound on the energy. Then we will show that provided 

a Skyrme field has non~zero winding number, there wiU exist regions in lR x 8 1 such 

that, when the field is restricted to these regions, the previously derived lower bound 

applies. 

Lemma 5.3.1 Let M = [0, W] x 8 1 with Euclidean metric, let f3 be the circum

ference of 8 1 , and let ~ be a Riemannian 2;. manifold diffeonnorphic to M. Let 

</>: M-=+~ such that </>(BM) =a~, and with degree 1. Suppose there exists a).. > 0 

such that for all x E [(1), W], the curve </>(x,-) in ~ has length greater than or equal 

to >... Then the energy of </> satisfies 

[ l 
Vf1).. Area(~) 

E</>?. f3 . 

Proof: Firstly, by the preceding argument, we have 

Area(~) 2 

E4?. 2Wf3 
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Secondly, by the Cauchy-Schwarz inequality we have 

r dx dy r l8vc/>l 2dx dy ~ ( r . l:8yc/>Jdx dy). 
2 

J[o,W)xSl J[o,w)xSl J[o,w)xSl 

The right hand side is the square of fow L[c/>(x, · )]dx, where 

L['y:] := f J8oJdt Js1 
is the integral which computes the length of a closed curve 'Y. So by assumption, 

the right hand side is greater than or equal to (WA)2. Therefore 

E2 :> ~ f Joyc/>J 2dx dy 
2 J[o,W)xSl 
WA2 

> 273" 
Combining the above two inequalities, we have 

WA2 Jl Area(:E)2 

E2 + 11E4 > 2/3 + 2Wj3 

> .jJi A Area(E) 
j3 

0 

In order to relate this lemma to spheres, we make the following definition: 

Definition 5.3.2 Let [a, b] be any interva:l and let 'ljJ : [a, b] x SI ---+ S2 such that the 

curves '1/J(a, ·), '1/J(b, ·)have length A E (0, 27r). Let E > 0 and let .,J;: [a-t:, b+t:] x SI ---+ 

S2 be an extension of 'ljJ such that 

.J;(x,y) '1/J(x,y) for x E [a,b] 

L[.J;(x, · )] < A for x E [a - E, a] U [b, b + t:] 

.,J;(a - t:, y) p 'r/y E SI 

.J;(b+t:,y) _ q'rly E si, 

where p, q are two arbitrary points in S2• Clearly .,J; is a map from S'l- to S2 , and 

hence has a winding number wE 1r2(S2) !:::: Z. We define W['I/J] := w. 

Proposition 5.3.3 W['I/J] is independent of the choice of extension. W is additive 

in the following sense: let a < b < c < d and let 'ljJ : [a, d] x SI ---+ S2 be such that 

L['I/J(x, ·)]=A for x-= a, b, c, d and E['I/J(x, ·)] :::; A for x E [b, c]. Then 

W['I/J]- W['I/J![a,b)xsl] + W['I/Ji[c;d)xSl]. 
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Proof: To see this, suppose that ;f;1 , ;f;2 are two extensions of '1/J. We need to 

show that they are homotopic. Consider the restrictions of ;f;1 , ;f;2 to the interval 

[a- E, a]. These are two maps from D 2 to 8 2 which agree on the boundary fJD2 • We 

can glue them a:long their boundary to obtain a map x: 8 2 
=t 8 2

; if xis contractible 

then the two restricted maps are homotopic. 

We can show that this map is contractible by making use of the condition, 

L[;f;i(x, · )] ~ A < 27r \:/x E [a - E, a']. It follows from this condition that each curve 

;f;i(x, ·) lies within a hemispaere in 8 2 ; hence between any two points y11 y2 in the 

curve, there is a uniq_ue shortest geodesic connecting them, which varies continuously 

with y1 and Y2· Fix a base point Yo E 8 1
, and for all y E S1 let ltx,y) : [0, 1] ---+ 8 2 

be the geodesic connecting ;f;i(x, y) to ;f;i(x, y0 ). For definiteness, assume that 1tx;y) 

is parametrisecl proportional to its arclength. Then 1tx,.) is a homotopy contracting 

the curve ;f;i(x, ·) to a point. But we have defined ltx,y) in such a way that they 

are continuous functions of x, y, t; in particular, when they are glued together, they 

define a homotopy contracting x to a cllfve. Since a curve can be contracted to a 

point, the map xis contractilble. 

A similar construction applies to the interval [b, b + E]. It follows that W['I/J] is 

well-defined. 

To show that W is additive, one needs to show that the restriction c/JI[b;c]xSl can 

be "pinched off" at a point; the result then follows from the corresponding one in 

standard homotopy theory. The pinching off can be achieved using again the fact 

that circles of length less than .A can be contracted along geodesics; we omit the 

details. 0 

Now we are ready to prove: 

Theorem 5.3.4 Let cjJ be a sufficiently regular periodic planar Skyrme chain, or a 

domain wall, with period (3 and charge B > 0. Then 

[ ] 
47r2 ..[fiB 

ec/J~ f3. 

Proof: Let A E (0, 21r) and let X := {x E IRIL[c/J(x, · )J ~.A}. We ass11me that X 

is the union of a finite number of disjoint intervals, X = U~=1 [ai, bi]· This is what 

is meant by "sufficiently regular". Let cPi = c/JI[ai,b,]xsi be the restriction of cP to a 
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cylinder, and let wi = W[tPi] be its winding number. Then by the above, 

n 

deg( 4>~ = 2: wi. 
i=l 

The area enclosed by a curve of length A in S2 is less than 27r ( 1 - v' 1 ~ {A/ 27r) 2). 

It follows that 

Let I = {i I wi > 0}. Then I has less than B elements and :L.:iEI wi 2: B. Then 

E[4J] > 2: E [ <Pi[a;,bi]x SI] 
iE/ 

> VJIAI: . {3 Area [tP([ai,bi] x S 1
)] 

iE/ 

> 4tr .jiiA L ( W;- I+ Jl- ).2) 
p 47r2 

iE/ 

> 41r .jii>. ( ( H) ) B- 1- 1 ~- Ill p 47r2 . 

> 41rB..[iiA~ f3 1- 471"2. 

Notice that we used lemma 5.3.1 in going fr0m the first line to the second line. We 

are left with a family of lower bmmds parametrised by A. The stron.gest lower bound 

is obtained when A2 = 21r2 • 0 

Of course, theorem 5.3.4 applies only to strictly periodic chains- a similar proof 

could be construced for chains with a =I Id, but we do not pursue this here. Instead, 

we are able to obtain a divergent lower bound in the anti-periodic case by using the 

fact that an anti-periodic chain with charge Band period f3 is also a periodic chain 

with charge 2B and period 2/3. The result is: 

Theorem 5.3.5 Let 4J be a sufficiently regular anti-periodic planar Skyrme chain 

with period f3 and charge B > 0. Then 
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5.4 Baby skyrmions from sigma model lumps 

In this section we will construct potentials V such that both Bogomolny bounds 

(5.3), (5.5) are saturated by planar skyrmion chains. The procedure [PZ95, War04a) 

is standard: we first consider the J-L = 0 limit of the planar Skyrme model. This 

limit is the CJP>1 sigma model, and exact solutions are ~nown which saturate the 

Bogmolny bound (see chapter 7). For any given exact solution, it is straightforward 

to choose a potential so that the Bogom0lny bound is sti~l saturated for J-L ¥ 0. 

Let z = x1 +ix2 , and let R be the complex function of z obtained by stereographic 

projection of </J (5.1). Then the Bogornolny equations (5.4), (5.6) are 

V(R) -

0 

8l8zRI 4 

(IRI2 + 1)4. 

(5.17) 

(5.18) 

In the sigma model limit J-L = 0, we only need to solve (5.17) in order to saturate the 

Bogomolny bound (5.3). Given a solution of (5.17}, that is, a meromorphic function 

R, it is easy to find a potential function V so that (5.18) is also satisfied. If V is 

so chosen, then both Bogomolny bounds (5.3), (5.5) may be saturated for non-zero 

J-L. In what follows we follow this procedure for the cases where R is a chain with 

a-= ±1. 

5.4.1 Strictly periodic chains 

The set of strictly periodic sigma model fields satisfying (5.17) were studied in 

[Sni94). They are given by the rational function, 

R(z) = c + dexp(J-Loz) 
a+ bexp(p0z)' 

where J-Lo = 211" / {J and a, b, c, d are complex constants. The functi0n R depends 

on six real parameters, of which two correspond to translations, three correspond 

to isorotations of 8 2 and one is a non-trivial "size" parameter. Notice that it is 

impossible for the R to satisfy the boundary conditions (5.15~ .. So a strictly periodic 

charge 1 skyrmion chain cannot saturate the energy bound (5.3). 
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Amongst alil the fields R, we restrict attention to those satisfying the domain 

wall boundary condition, 

lim cjJ = ~0, 0, ±1). 
x1-=.±oo 

Then, up to a translation, R must take the form 

R = exp( -J.toz). 

The potential defined by (5.18) in this case is 

1 4( 2 2 V = 2~-"o 1 - c/J3) · (5.19) 

We can compute the energy of this chain; the energy is determined by the lower 

bound (5. 7), by construction. We compute 

f (1 - c/JDw = s-n·. 
Js2 3 

The components of the energy are 

and E2 :._ 411". We have checked directly that E2 + J.LE4 exceeds the lower bound 

proved in theorem 5.3.4. 

5.4.2 Anti-periodic chains 

An anti-periodic sigma-model field satisfying the boundary condition of a planar 

skyrmion chain (5.15) is given by 

c 
R(z) = a exp( -J.toz/2) + bexp(J.toz/2) 

with J.to = 2tt / {3 as before and a, b, c E C (see [Bru08]). By making translations and 

rescaling the constants, we can make a = b = 1/2. By making an isorotation, we 

can make c real. Then the potential defined by this field and (5.18) is 

V=~(~~) 
4 
(1- cjJ3)2 [ ((c2 + 1)cjJ3 + (c2 - 1))

2 
+ 4c2c/J~]. (5.20) 

This potential has three vacua, at the points 

.... ( ±2c 1- c
2

) 
cfJ~ (0,0,1), 1+c2' 0, 1+c2 . 
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In the limit where c ---+ oo, the potential (5.1~9~ is obtained. In the limit where c ~ 0, 

J-to ---+ 0 such that c/ J-to remains constant, the potential [PZ95] whose minima are 

isolated planar skyrmions is obtained. 

Again, we can check that this configuration does not violate the lower bound 

proved in theorem 5.3.5. We have not been able to evaluate E4 analytically, bl:lt we 

have found numerically that 

Therefore E2 = 47r and E4 > 1671"4/(3;82
). We have checked that E2 + J-tE4 > 

27r\!Ji/ f3 for all {3. 

5.5 Chains with the old baby Skyrme potential 

In this section, we consider chains in the old ba:by Skyrme model with a = ± 1. We 

will rceview two analytic ansa.tze which indicate some properties of chains. 

5.5.1 The dipole approximation 

An analytic ansatz [PSZ95] is known which describes well-separated planar skyrmions 

to a good approximation. The ansatz is as follows. Let R(l), R(2) be two planar 

skyrmions (5.13) with orientations x(l), x<2), expressed in stereographic coordinates 

(5.1). Suppose that the two planar skyrmions are given a seperation D, and let 

R = R(l) + R(2) be their sl:lperposition. In the lirn:it where D---+ oo, the energy of R 

is twice the energy E1 of a planar skyrmion. It is possible to calculate the leading 

contribution to the difference, 

in the limit where D ---+ oo. Let Kn denote a modified Bessel funetion of order n. 

One finds 
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for large D, where p is a constant related to the decay of the profile function f(r) 

by 

p is a function of J.L, and must be determined numerically: for example, when J.L2 = 

0.1, one finds p = 24.16. This approximation is called t:he dipole approximation, 

because the asymptotic formu:la for / 2 matches the interaction energy of a pair 

of orthogonal scalar dipoles. Notice that the sign of / 2 depends on the relative 

orientation x(2) - x(l); it follows that a pair of aligned planar skyrmions repel, while 

a pair of planar skyrmions with relative orientation 1r attract. 

The same appr<~ximation can be applied to an infinite chain of planar skyrmion.s. 

F0r each j E Z, let R(i) be a planar skyrmion. p0sitioned at (x1
, x2 ) _: (0, j3j), with 

orientati0n x --:- 0. Then the fields 

00 

R± := ~ (±1)i R(i) 
j=-oo 

are planar skyrmion chains with a= ±1 respectively. Let I±= E[R±'] ~ E 1 be the 

interaction energy per unit length of the chain. One can show analytically that 

fm large j3 (notice that 0nly the first term in the sum is significant in this limit). We 

find that (for large /3) h is a positive decreasing function of j3 and I~ is a negative 

increasing fnnction of j3. So, a chain of well separated planar skyrmions will tend 

extend for a = 1 or contract for a = -1. 

5.5 .. 2 The string ansatz 

In [GP96) an ansatz was pmposed for a string-like configuration in the old baby 

Skyrme model. The string satisfies the botmdary conditions of a chain with a = ~ 1. 

The ansatz is 

{

(sin f(xJr) cos vx2 , sin /(x1 ) sin vx2 , cos f(x 1 )) 

</>= 
{sin f( -x1 ) cos vx2 ,- sin f( -x1 ) sin vx2 , cos f( -x1)) 
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where f : [0, oo) -+ 1R satisfies f(O) = 1r and f(t) -+ 0 as t -+ oo, and v = 

1rj{3. The energy density of this field is independent of x2 , but the field itself 

is not translation-invariant, because translations in x2 cannot be compensated by 

isorotations. Therefore there is no reason to expect this ansatz to describe critical 

points of the energy functional. 

The charge per unit length is one and the energy per unit length is 

E' = -f'(t)2 + -- sin2 f(t) + -(f'(t) sinf(t))2 + J.LV(1 ~ cosf(t)) dt. (5.21) 1
00 

V 1 J.l 

0 2 2v 2v 

This energy satisfies a Bogomolny-type inequality: 

E' = loo! ( v +!!:. sin2 f(t)f'{t) + ! sin2 f(t) + 2J.Lv(1- co~f(~))) 
2 

0 2 V V 

- v +!!:. sin2 f(t) _! sin2 f(t) + 2J.Lv(1- cos f(t))f'(t) dt 
V V 

> 1' Jv + ~sin2fJ~sin2 
f + 2Jw(J- cosf)df, 

with equality when 
- - -

f'(t) = -
sin2 f(t) + 2J.Lv2 (1 =cos f(t)) 

v2 + J.L sin2 f(t) 

We can use the Bogomolny bound to determine the e:nergy of a string, for any period 

and any values of J.L and {3 = 1r / v. The Bogomolny bound is an elliptic integral. 

5.5.3 Summary 

In figure 5.2, we have plotted graphs of eNergy as a function of period for both 

ansatze in the case J.L = 1. The energy of a chain of hedgehogs was determined 

by numerical!~ evaluating the energy of the analytic configuration. The minimum 

energy 2.45(47r) occurs in the hedgehog ansatz at a period of around 0.97r, and this 

is iN reasonable agreement with the numerically determined minimum [HW08b]. 

Notice that the string ansatz is preferred for small periods. 

5.6 Chains with new baby Skyrme potential 

IN this section, we consider chains iN the new baby Sk~rme model with a = ± 1. The 

ansatz of well-separated planar sk~rmions, described above in the context of the old 
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Figure 5.2: Energies of various ansatze for old baby Skyrme chains as functions of 

period. 

baby Skyrme model, is also applicable to the new baby Skyrme model. 'fhe same 

result is obtained for the large (3 limit of the interaction energy I±, except that a 

different value for the numerically determined constant p should be inserted. Also, 

the lower bound derived for smaN periods applies to the new baby Skyrme model. 

We present one additional analytic configuration below. 

5.6.1 A domain wall 

Consider the field defined by, 

i> = (sin f(x 1
) cos(vx2 + x), sin J(xi) sin{vx2 + x), cos J(x1 

)), (5.22) 

in which v is a real constant, x is an angle and f(x 1
) is a functi0n satisfying the 

boundary conditions J(x1
) -+ 0 as x1 -+ -oo and J(x1

) -+ 1r as x1 -+ oo. This 
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field defiRes a domain wall which separates the two vac11a rjJ3 = ± 1 of the new ha: by 

Skyrme potential. The old baby Skyrme model does not admit soluti<ms of this 

type, because it has only one vacuum. Walls similar to this have been seen before in 

two different contexts: in [KPZ98] walls with v = 0 were studied dynamically, while 

in [Wei99] it was demonstrated that new baby skyrmions of any charge consist of 

walls similar to (5.22), but wrapped around a circle. 

The charge per unit length of the domain wall is 

1
00 

ll 

-oo Bdxl = 27f' 

and the energy per unit length is 

1
oo 1oo 1 1 . . JW2 

£dx1 = -(!') 2 + ~(v2 + J-L) sin2 f + -.-(!') 2sin2 fdx 1
• 

-00 -00 2 2 2 

Notice that when v == 0 or J-L = 0 the energy per 11n:it length is the energy functional of 

the sine~Gordon model. The energy per uH:it length satisfies a Bogmolnyi inequa:Hty: 

1: t:dx
1 ~ 1: ~ ( .,jl+ p.v' sin2f f'- ,j p. + v' sin/)' dx

1 

+V 1 + J-LV
2 sin2 f J J.-1 + v2 sin f j' dx1 

> 11r V1 + JW'2sin2 fVp4-v2 sinjdj, 

with equality when the Bogornolny equation, 

j' = J J.-1 + v2 sin f , 
V1 + J-LV

2 sin2 f 

is solved. The Bogomolny equation can be solved analytically, to obtain x1 as a 

function of f: 

a 1 + 1 
. · (J~ivarctan ..fiivz + ! ln 

1 
+ z) J J.-1 + v2 2 1 - z 

(5.23) 

-cosf 
z 

.j1 + J-LV2 sin2 f' 

for some constant a1 which specifies the position of the wall. The energy per unit 

length of this field is determined by evaluating the Bogomolny bound analytically, 

and is equal to 
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Figure 5.3: Energy of the new baby Skyrme domain wall as a function of period. 

For fixed J.L, the energy per unit length of this field is minimized when v = (i). 

However, the eRergy per unit charge, 

21r . ·(( _ 1 ) ~v2 ) - J J.L + v2 ..fiiv + . r,; arcsin 2 + 1 , 
ll y~ 1+~ 

is minimized with respect to variation in v when 

( 1 2..fil) ~l/2 ..jjiv - -- - -- arcsin + 1 = Q . 
.Jiiv v3 1 + J.LV2 

We have plotted the energy per unit charge as a function of period with fixed 

J.L = 1 in figure 5.3, along with the two lower bounds on the energy. Notice that at 

its minimum, the energy is very close to the Bogomolny bound, so walls appear to 

be fundamental objects in the new baby Skyrme model. 
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5.6.2 A pair of domain walls 

Now we will describe a field which resembles a pair of domain walls, and which 

satisfies the boundary conditions (5.14), (5.15) for a chain with a = -1. Let cp(l) 

be a domain wall (5.22) with v(ll = 1t I {J and with profile function j(l) given by 

(5.23) and with location a1 = -DI2 for some rea:l number D > @. Let <tJ< 2l be 

a second domaiR wal[ given by (5.22) with v<2l - -1r I {J and with profile function 

J<2l(x1) = J(ll(-x1). Let R(1), R(2) be the stereographic projections of these, as in 

(5.1). Finally define a superpositioR R by 

1 1 1 
R = R(l) + R(2) . 

The field R satisfies the boundary conditions for a chain with period f3 and a = = 1, 

and the charge per unit period is 1. This field resembles a pair of parallel domain 

walls, separated by a distance D, with cp3 ~ -1 between them and c/J3 ~ 1 011 either 

side. 

We will study the iNteraction energy 

of the superposition, which is a function of {J and J.L. This will give indications about 

the stability of new baby skyrmion chains with a = -1. 

lw -+ @ as {J -+ oo, and we have calculated the leading contribution to lw in 

this limit. The calculation is simillar to that performed for two pla11ar skyrmions 

in [PSZ95), but is more complicated in practise for the following reason. In the 

case of two planar skyrmions, the leading contribution is found using an elegant 

argument based on the Euler-Lagrange equations. However, in the case of two walls 

the analogous term vanishes, so we must work to higher order. 

We find that 

l61r exp( 4y'i:tvarctan y'i:tv) ( 4 2 ) ( _ ; 2) 
lw ~ ( 2 ) 2 2v + 2J.LV - 1 Dexp ~2Dv J.L + v · 

V 1 + J.LV 

in the limit D -+ oo, where we have written v = 1r I {J . It follows that a pair of 

well-separated domain walls will attract when 
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and repel otherwise. For large (3, a chain is stable with respect to separation to two 

walls, but for some critical value f3c this is not the case. The above results suggest 

that 

5.6.3 Summary 

NBS chain witt:IJ.1=1 
2.6r-~~------~--------,-------~~------~~~--~ 

2.5 

2.4 

2.3: 

2.2. 

~ 
~ 2.1 

2 

1.9' 

1.8 --superposition of walls 
- - - superposition of hedgehog!) 

1.7 ·wall 
· bogomolny bound 

1.6 L_----~. ___ __L. ___ ....L_~-=· =:::::::::: .. ::::::::L====::::r:::====::::::J 
1.4 1.6 1.8 

~11t 
2 2.2 2.4 

Figure 5.4: Energies of varioMs an.satze for new ba:by Skynne chains as functions of 

period. 

In figure 5.4 we have plotted the energies of various ansatze as functions of 

the period, with !-£ = 1. The energy of two isolated domain walls was determined 

analytically. The energy of a superposition of two walls was determined numerically, 

and was minimized with respect to variations in the separation D. For (3 ~ 1. 77r 

no minimum is found, and this agrees with the analytic formula f3c = J 1 + v'31r :::::::: 
1.657r. The energy of a chain of hedgehogs was determined numericaHy. We have 
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plotted the Bogmnolny bound, bat left out the period-dependent bound since it is 

very small for the periods shown in the graph. 

Let {30 ~ 1.567r be the period at which the chain of hedgehogs and the domain 

wall have equal energies. We expect no stable chains to exist for {3 :::; {30 , and we 

expect stable chains to exist for {3 2: f3c· Somewhere between {30 and f3c there should 

be a critical period at which chains become unstable. Numerical simulations of the 

model indicate that the critical period is around 1.497r [HW08bJ, which is actually 

slightly less than {30 , but still close. 

5. 7 Summary and open qu.estioas 

In this chapter, we have studied chains in the planar Skyrme model using a variety 

of approaches. Two theoretical results were obtained: we proved that chains have 

an integer topological charge, and we found a lower bound on their energy which 

tends to infinity as the period tends to zero. The former result is quite general and 

will be used again in later chapters. 

We also studied chains in detail for three particular choices of potential. The 

first potential was chosen so that anti-periodic chains could be obtained analytically. 

The second two potentia:ls were the well-studied old baby Skyrme and new baby 

Skyrme potentials, which have respectively one and two vacua. With one vacuum 

anti-periodic chains were found to exist for all vahtes of t'he period, but with two 

vacua the chain developed an instabiHty at small periods which was associated with 

a splitting into two infinitely separated domain walls. Thus, like calorons, planar 

Skyrme chains exhibit a constituent structure for small enough periods, but unlike 

ca:lorons, the constituent structure has an associated dynamical instability. 

An obvious next step is to consider chains in the three-dimensional Skyrme 

model: this is done in the next chapter. In chapter 7, we will analyse chains in the 

CIP1 sigma-model, which is the p, = 0 limit of the planar Skyrme model. 



Chapter 6 

Chains of skyrmions 

In this chapter we shall study chains in the Skyrme n10del. The Skyrme model is 

a three~dimensional field theory with top0logical soliton solutions, which is believed 

to provide a good model of nuclear physics (the topological soli tons are identified 

with protons and neutrons}. 

Topological solitons are well-studied in the Skyrme model up to relatively high 

charge. Extended configurations have also been considered: the Skyrme model 

is known to posess a "Skyrme lattice" solution (of dimension two) [BS98] and a 

"Skyrme crystal" (of dimension three) [KS88,KS89,CJJ+89]. "Skyrme chains" (of 

dimension one) were considered long ago [AWM+85], but have since been neglected. 

The field equations of the Skyrme model are non-linear and no exact analytic 

solutions are known, so the only direct means of studying the Skyrme model is by 

numerical simulati0n. Since the theory is three-dimensional, numerical methods are 

not fast. H0wever, a number alternative methods are known. These methods typi

ca:Hy take the form of a simple ansatz, which is empirically observed to approximate 

the true (numerically determined) behaviour of the model. The three most promi

nent ansatze of this type are: Skyrme's product ansatz (see for example [Sch94]), 

the Atiyah-Manton ansatz [AM93], and the rational map ansatz [HMS98]. We have 

been able to adapt the first two to study chains, b11t the rational map ansatz appears 

unsuited. to this task. FUll numerical simulations were carried out by my supervisor, 

Prof. R. S. Ward, and appeared in our article [HW08a]. 
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6.1 The Skyrme model and chains 

The field content of the Skyrme model is a function U : JR3 -+ SU(2). We define 

Li -=- U -Iau /[)xi. Then the energy density of the Skyrme model is 

1 1 
£ ·= --Tr(L·L·) = -· Tr([L- L ·][£. L ·].) . 2 ~ ~ 16 . ~' J ~' J (6.1) 

and the energy functional is 

(6.2) 

We wiU write 

U(x) = a(x)Id + i1ri(x)ai 

where a, 1ri are real functions of x E JR3 satisfying a2 + ~(1ri)2 = 1, Id E SU(2) 

denotes the identity element, and ai are the Pauli matrices. 

Skyrme fields with finite energy must tend to a constant at spatial infinity, and 

this constant is taken to be the identity element. So topologically, a finite energy 

Skyrme field is a map from 8 3 -+ SU(2), and su.ch a map has a degree BE Z. The 

degree can be conveniently computed by the integml, 

B - 1 B dx 1 dx2 dx3 (6.3) 
JR3 

1 . . 
(6.4) B - 247r2 Eijk Tr(LiLj Lk). 

The degree of a Skyrme field forms a lower bound on its energy: 

Finite energy fields U which locally minimize E will be called skyrmions. 

The Skyrme energy density (6.1) is invariant under tae action of the group, 

Here E3 is the group of isometries of JR3 (including reflections) and 0(4)iso is the 

group of isometries of the target SU(2) "' 8 3 , called isorotations. If we represent 

U = a+ i1riai by tae column vector uc = (a, 1r2 , 1r2, 1r3)t, then 0(4)iso acts by 

multiplication from the left. The action of g E E3 is g : U(x) r--t U(g~ 1x). 
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The boundary condition U - Id as r - oo breaks the symmetry group to 

The charge density (6.4) is negated by orientation-reversing transformations of IR3 

or 8 3
, so the symmetry group of the whole model is 

G --::- ker(II) 

where II: E3 X 0(3)iso- z2 is the homomorphism, H(g, h)= det(g)det(h). 

A Skyrme chain with period /3 > 0 and relative orientation a E S0{3hso is a 

Skyrme field U: IR3 
- SU(2) satisfying 

U{x, y, z + /3) =a· U(x, y, z), 

which minimises the energy functional 

E[U] = {f3 { £dx dy dz 
la J'R-2 

and has finite energy. Skyrme chains are required to satisfy the boundary condition, 

U- Id as x 2 + y2
- oo. By theorem 5.2.1, Skyrme chains have a degree BE Z 

computed by the integral, 

B[U] -1!3 f Bdxdydz. 
0 jR2 

6.2 Symmetry of chains 

Clearly, the only Skyrme field invariant under the whole group G is the constant 

field U(x) = I d. Symmetries of other fields are conveniently described by twisted 

subgroups: 

Definition 6.2.1 A twisted subgroup (H, p) of G consists of a subgroup H C E3 

and a homomorphism p : H - 0(3)iso, such that Il'(h, p(h)) = 1 for all h E H. 

The twisted subgroup which describes all symmetries of a field is called the isotropy 

group of the field. 
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A simple example is provided by the charge 1 skyrmion: this can be written 

down in the "hedgehog" form: 

Uh(x) - (Id, m)· exp (if(r)xiai) 

- exp (if(r)miixiai) 

~6.5) 

(6.6) 

Here the function f: [0, oo) --+lR satisfies f(O~ =- 1r and f(r)--+ 0 as r--+ oo, and is 

chosen to minimize the energy of Uh. m E S0(3)iso specifies the orientation of the 

skyrmion and Id denotes the identity in E3 . The isotropy group of this skyrmion is 

(H, p), where H = 0(3) C E3 is the sU!bgroup of rotations and reflections which fix 

the origin, and the homomorphism is p : h ~----+ mh -lm -r. 

Isotropy groups are normally used to describe symmetry-breaking bifurcations; 

in our case they are merely a convenient notation for describing relative orientations 

of pairs of skyrmions. Let U1 , U2 be two skyrmions with orientations m 1 , m2 and 

locations ar, a2 E lR3, with a1 =J. a2. We denote their isotr0py gmups by ( 0(3)i, Pi) 

where 0(3)i C E3 is the group which fixes~· 

The relative orientation is the isorotation which gives U1 the same orientation 

as U2 , that is, m2m11 € 0(3)iso· We can also define a relative spatial rotation 

RE 0(3)1, which is the spatial rotation that gives U1 the orientation of U2 : we have 

R .:____ P11(m2m11
). A superp0sition of the pair (U1 , U2 ) is a charge 2 Skyrme field 

which looks like ul in a neighbourhood of al and like u2 in a neighbourhood of a2. 

It is reasonable to expect the isotropy group (H, p) of the superposition to satisfy 

the following: 

(i) All elements g EH fix the set {a1,a2} c JR3 . 

(ii) If g EH fixes each point~ then p(g) = p1(g) = p2 (g). 

We define the maximal isotropy group for a superposition to be the largest twisted 

subgroup ( H, p) satisfying the a:bove. 

The simplest superposition of the fields U1, U2 is the product ansatz, U-=- U1U2 . 

This ansatz has all the symmetries we might expect, except that the reflection 

P which swaps a 1,a2 is not a symmetry (essentially because UrU2 =J. U2U1). An 

ansatz which is better behaved with respect to symmetries is the relativised product 
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ansatz [NR88]. The isotropy group of the relativised product ansatz is the maximal 

isotropy group. 

Both these ansatze can be used to predict the force between well-separated 

skyrmions. One finds that [Sch94]: 

• When R = Id, the skyrmions repel. This case is called aligned. 

• The strongest repulsive force occurs when R is a rotation through 1r about the 

line l joining a 1 and a2 . This case is cal[ed the repulsive channel. 

• The strongest attractive force occurs when R is a rotation through 1r about 

an axis perpendicular to l. This case is called the attractive channel. 

Proposition 6.2.2 The maximal isotropy gr0ups of an aligned pair and a pak in 

the maximahly repulsive channel are both (0(2)1, P). Here 0(2)1 is the group of 

rotations and reflections which fix l, Pis the reflection which swaps u1 and u2 , and 

( · · · ) denotes the group generated by · · · . The maximal isotropy groap of a pair in 

the attractive channel is (D2 , P), where D2 C 0(2)t is the subgroup generated by 

reflections in two perpendicular planes whose intersection is l. 

Proof: Let the skyrmions be U1 and U2 , let their isotropy groups be 0(3)1 and 

0(3)2, and observe that 0(2)1 = 0(3)1 n 0(3)2. We have U2 = (TR, 1) · U1, where 

T is the translation which maps a1 to a2 . It follows that 

It follows from property (i) that either H = (K, T) or H :-:: K, for some subgroup 

K of 0(2)1• lt follows from property (ii) that every g E K satisfies Pl(g) = p2(g). 

Equivalently, 

Since p1 is injective and T commutes with g E 0(2)t, this condition is equivalent 

to gR = Rg. So K can be no larger than the group {g E 0(2)zlgR -=- Rg }. In the 

aligned and maximally repulsive cases, the maximal K is the whole of 0(2)1• In the 

maximally attractive case, K is a D2 subgroup. 
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If PE H, we must be able to find p(P) such that 

(P, p(P)) · U1 = U2 and (P, p(P)) · U2 = U1. 

Both conditions are satisfied by p(P):- p1(PTR) for the cases we are considering, 

soP EH. It is easy to check that pis a homomorphism, as it should be. 0 

All of this is relevant to chains because if a chain posesses a continuous symmetry, 

it is much easier to analyse numericaHy. On the other hand, we are most interested 

to study chains whose energy is lower than that of an isolated skyrmion. 

We think of a charge 1 chain as consisting of charge 1 skyrmions Un located 

at points an = (0, 0, n/3) and with orientations anm, for n E Z. Each skyrmioR 

has isotropy gi'OUp (0(3)n,Pn), where Pn(g) = anmg-1m-1a-n. The isotropy group 

( H, p) of the chain is required to satisfy: 

(i) All elements g EH fix the set {anln E Z} C lR3
. 

(ii) If g E H fixes a point an then p(g) = Pn(g). 

(iii) The translation T: (x, y, z) ~----+ (x, y, z+/3) is an element of H, and p(T) __.:_ a- 1 

The maximal isotropy group of a chain is the largest twisted subgroup satisfying 

the above. Notice that we do not consider the possibiHty that the chain has any 

symmetries which fix the z-axis but not the points an, becaase by theorem 5.2.1 a 

chain with such a symmetry would have charge per period greater than 1. 

We define R to be the rotation which gives U0 the orientation of Ut, ie R = 

p0 1 
( a-1 ). MotiiVated by results for the case of two skyrmions, we make the following 

definitions 

• A chain with R = 1 d is ca:Hed aligned. 

• A chain for which R is a rotation through 1r about the z-axis is called maximally 

repulsive. 

• A chain for which R is a rotation through 1r about an axis perpendicular to 

the z-axis is called maximally attractive; 



6.3. Skyrme chains from calorons 168 

Proposition 6.2.3 Let P here denote the reflection in the plane z = 0. The maxi

mal isotropy groups of aligned and maximally repulsive chains are both (0(2)z, P, T), 

where 0(2)z fixes the z-axis. The maximal isotropy group of a maJ(imally attractive 

chain is (D2 , P, T). 

Proof: Properties (i) and (ii) imply that either H- (K, P, T) or H = (K, T), 

for some subgroup K of 0(2)z. K is determined just as in the case of a pair of 

skynnions, and we set p(g) = p0(g) for g E K. If P E H we must be able to find 

p(P) that 

The case n __::.. 0 is satisfied only if p(P) == p0(P). It is easy to check that this choice 

of p( P) also works for n # (!), for the cases we are interested in. 

Finally, we must have p(T) = a=1 = p0 (R). It is easilly checked that p is a 

homomorphism. 0 

The product ansatz for two skyrmions tells us that the forces between neigh

bouring skyrmions in rnaxirnally repulsive and attractive chains are repulsive and 

attractive respecti;vely. Therefore, we expect that only the maxima:lly attractive 

chain will have energy less than that of an isolated skyrmion. Disappointingly, it 

appears that a chain ea:n have a continuous symmetry only if its energy exceeds that 

of an isolated skyrmion. 

6.3 Skyrme chains from calorons 

The Atiyah-Manton ansatz is method of obtaining Skyrrne fields on ~3 from SU(2) 

gauge fields over ~4 . If the gauge field is a charge N instanton, then the Skyrme 

:field will also have charge N. It tl!fns out that, if the instanton is chosen so as to 

minimize the energy 0f the resulting Skyrme field, then the Skyrme field obtained 

is a surprisingly good approximation for the true charge N skyrmion. 

The method of the Atiyah-Manton ansatz is to evaluate holonomies of the gauge 

field along a family of parallel lines. For example, we could choose the family of 
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lines parallel to the x0-axis; then the Skyrme field is ob>tained via 

U(x1 ,x2 ,x3
) ~ Pexp (1: A0(x)dx0

). 

109· 

If we want to obtain a Skyrme chain, then we should start with a gauge field satis

fying 

(6.7) 

and integrate along a family of parallel lines perpendicular to the x0 -axis. 

Ca:lorons provide examples of gauge fields satisfying (6. 7). Suppose we have a 

caloron with monopole charge k1 = 0. Recall that asymptotically, 

This is true not just in local gauges, but across the whole 2~sphere at infinity, since 

A0 doesn't wind at infinity. Now we make a gauge transformation, 

A~ gAvg-1
- g-18vg 

g - exp(iJ.LIX0a 3
). 

In the new gauge, A~ ---+ 0 at infi:nity and the gauge field is no longer strictly periodic, 

but satisfies 

where h:::::::: exp(iJ.L1/3a3 ). This gauge choice is known as the algebraic gauge. 

So charge B Skyrme chains can be obtai:ned by integrating holonomies of calorons 

with k0 :::::::: B, k1 :::::::: 0 in the algebraic gauge. Analytic expressions are known for 

all calorons k0 =- 1 and k1 :::::::: 0 [KvB98]. So it seems feasible to study Skyrme 

chains using this family. Since we are ultimately interested in rnaxirnally attractive 

chains, we restrict attention to the calorons which yield a 2 
:::::::: Id but a =I= Id; these 

are the caloro:ns with J.LI :::::::: J.Lo/ 4 :::::::: 1r /2(3. Aligned chains could be obtai:ned from 

calorons with J.LI - 0, such as the Harrington-Shepard calorons [HS78]. Notice that 

our procedure differs from [EK89,NZ89], where caloron holonomies are evaluated in 

the periodic direction in order to obtain skyrmions rather than Skyrme chains. 

The calorons we are interested in are symmetric under rotations about an axis in 

JR3 • If we choose to evaluate holonomies along lines parallel to the axis, the Skyrme 



6.3. Skyrme chains from calorons 110 

chains willi als0 have an S0(2) symmetry: these wiU be maximally repulsive chains. 

If, 0n the other hand, we evaluate holonomies along lines perpendicular to the axis 

of rotation, we obtaiR rnaximally attractive chains. 

We have implemented the Atiyah-Manton ansatz for maxima:lly attractive chaiRs 

numerically, and evaluated the energies of chains. The family of calorons we used 

is parametrised by a scale parameter p and a period (3. The caloron with scale p 

and period f3 is in fact a rescaling of the caloron with scale p / f3 aRd period 1, and 

since the components of the Skynne energy behave simply under rescalings it was 

sufficient only to consider caloroRs with fixed f3 = 1 and a range of values of p. 

The holonornies were evaluated using the Runge-Kutta method. We evaluated 

energies in a £inite box, and extrapolated both in the box size and the lattice spacing 

t0 obtain energies accurate to within 0.1%. We also calctllated B to check the 

accuracy of our method. Our results are summarised in the following table: 

p E2 E4 B-1 

0.2 10.56 509.2 2.0 x w-4 

0.3 16.61 314.3 1.6 x w-4 

0.4 23.20 213.7 1.1 x Jio-4 

0.5 29.68 160.4 7.7 X }iQ-5 

0.6 35.40 135.4 6.3 x m-5 

0.7 40.21 124.6 9.3 x w-5 

@.8 44.25 119.6 1.9 x Hv·4 

Table 6.1: Energies for calomn-generated Skyrme chains at f3 = 1 

In figure 6.1, we have plotted a the minimum energy obtained at each period 

within the Atiyah-Manton ansatz. This graph was obtained by interpolating the 

data in table 6.1 to 0btain E 2 and E4 as polynomial funetions of p, and mimmizing 

the energy E = E2(3 + E4 / f3 with respect to variation in p. 
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6.4 The vortex ansatz 

In this section we describe an alternative ansatz for chains, which is based on the 

idea that a chain can split into constituents. We define a Skyrme vortex to be a 

field, 

Uv =exp (O~vzia3) exp(J(r)ia1)exp (O;vzia3
) 

where (r, 0) are polar coordinates in 1R2 and z is the coordinate in the periodic 

direction. The profile function f should satisfy the boundary conditions, /(0) -= 7r 12, 
f ( r) ----+ 0 as r ----+ oo. The boundary condition at r = 0 guarantees that Uv is well

defined there. Uv is periodic in z with period 27r I v. Since Uv is independent of z 

at infinity, it can be compactified to a map from 8 3 ----+ SU(2), hence has an integer 

degree, or charge per unit period. 

The energy density and charge density for Uv are 

(/
,) 2 cos

2 f 2 . 2 f (!') 2 cos
2 f (!') 2 2 . 2 f v

2 
sin

2 f cos
2 f £ - T- --

2
- + v sm + --2 - + v s1n + 2 r r- r 

1 ll I 
B - ---sinfcosff. 

27r2 r 

We observe that Uv has infinite energy per unit period, which is a consequence of 

the fact that Uv is not constant on the torus at infinity. The charge per unit period 

is 1, which has been verified by integrating B. The profile function f is chosen to 

solve the Euler-Lagrange equation forE= (41r2 lv) J0
00 er dr. 

The Skyrme vortex has been seen before. Kopeliovich and Stern [KS87] consid

ered axially symmetric Skyrme fields: these resemble finite lengths of Skyrme vortex 

joined into a circle. The vortex loops are stable fm B = 2 and unstable for B > 2. 

Here we will use the Skyrme vortex to construct an ansatz for a Skyrme chain. 

Notice that the field U(x, y, z) = Uv(x, -y, -z) also has charge 1, but winds in 

the opposite direction to Uv at infinity. We define a superpositio:n of two vortices 

using the product ansatz: 

with U1(x, y, z) = Uv(x- a, y, z) and U2(x, y, z) = Uv(x +a, -y, -z) This super

position satisfies the boundary conditions of a chain with period (3 = 7r I v and 

a= diag(-1, -1, 1) E S0(3)iso· The field represents a pair of vortices separated by 
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a distance 2a, where a> 0. We obtain a similar, but more symmetric, field by usiRg 

the relativised product ansatz [NR88) 

instead of the product ansatz. The relativised superposition has the same sym

metries as a maximally attracting chain, so we expect this ansatz to describe a 

maximally attracting chain. 

When the separation 2a of the vortices is large, they attract each other, as the 

following heuristic argument shows. Notice that, far from the centre of the vortex, 

the field is approximated by 

U ~ exp(i0cr3
). 

Let R > 0 be sufficiently large that this approximation is valid for r > R, and let a 

be larger than R. We can evaluate the energy of the superposition by splittiNg IR2 

into three regions: the two discs of radius R centred on the vortex locations, and 

the exterior. The energy within each disc tends to a constant as a tends to infinity. 

The energy in the exterior diverges as a- oo; a calculation shows that the leading 

contribution at large a is 

4rr{Jln a. 

So far we have not justified our choice of superposition procedure: it is important 

to ask whether there is another way to superpose two vortices to obtain a lower 

energy. Again, we have a heuristie argument why our superposition is the right thing 

to do, at least at large separations. Consider the fol[owiRg problem. Let F denote 

the exterior of the two discs D1, D2 of radiu.s R and with centres ( x, y) = (±a, 0), 

as before. Let 'ljJ : F- U(l) such that 7/Jiav1 has winding number 1 and 7/Jiav2 has 

winding number -1. We want to know what is the minimum value of the energy, 

e = {3 L llc/>-ldc/>ll2d2x. 

The ansatz we used before corresponds to taking 'ljJ = exp( i'(lh - 02)), where 01 ( x, y) 

is the angle between (x - a, y) aRd the x-axis, and 02(x, y) is the angle between 

( x + a, y) and the x-axis. If the energy of this field is close to the true minimum, 

then we know our ansatz is a good one. Notice that the Skyrme term has disappeared 
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from our energy functional; this is because the Skyrme term evaluates to zero for 

any U( 1) field. 

The easiest way to find the minimum energy is to stereographieally project from 

1R2 to 8 2 ; the energy is conformally invariant so we are allowed to do this. The 

stereographie projection can be chosen so that the two circles 8D1 , 8D2 are described 

by () = o: and () = 1r - a: in spherical coordinates () 6 [0, 1r), 4J E [0, 21r), where 

sin(a) = Rja. The energy functional is n0w written as 

A Bogomolny argument shows that this energy is minimized by '1/J( (), 4J) = exp( i4J); 

the minimum energy is 

47r{3ln cot( a:/2). 

For large a, this agrees with our superposition to leading order. 

{3 E a B~ 1 

1.0 157.9 1.13 5.4 x w-4 

1.1 153,1 1.15 3.4 x w-4 

1.2 149.6 1.16 3.1 x w-4 

1.3 147.1 1.18 2.1 x w-4 

1.4 145.2 1.20 2.0 x w-4 

1.5 144.0 1.21 1.5 x w-4 

1.6 143.2 1.22 1.5 x w-4 

1.7 142.8 1.23 1.2 x w-4 

1.8 142.6 1.24 1.1 x w-4 

1.9 142.8 1.24 9 x w-s 

2.0 143.1 1.25 9 X 10~5 

Table 6.2: Energies of superposed vortices, minimized with respect to variation in 

a. 

We have evaluated the energy of the superposition of two vortices for a range of 

values of (3 and a. The energies were evaluated in a finite box, and we e~trapolated 
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Figure 6.1: Energies of various ansatze for Skyrme chains as functions of period. 

in the box size and the lattice spacing to obtain resalts accurate to within 0.1 %. We 

tried using both the product ansatz and the relativised product ansatz, and found 

that the energies obtained agreed. We also evaluated B as a check on mrr methods. 

Table 6.2 shows the minimum energy of the superposition, together with the value 

of a for which this energy is attained. 

6.5 Summary and open problems 

In figure 6.1 we have plotted the energies of the ansatze described above, along 

with the numerically determined energy of a chain superposed of hedgehog-ansatz 

skyrmions. The minimum energy, E = 1.16(12n2
}, is oMained using the Atiyah

Manton ansatz, and occurs at a period {3 = 2.15. Numerica:l simulations of chains 

have been performed hy my supervisor, Prof. Ward, and appeared in [NW08a]. 
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These indicate that the Skyrme chain attains minimum energy E = 1.143(121!"2) at 

period {3 = 1.98; the Atiyah-Manton ansatz provides a fairly accurate description of 

chains, at least for {3 close to 2. 

The Atiyah-Man ton ansatz appears to give reasonable energies for the whole 

range of periods, although we have not compared with numerical simulations for 

all values of {3. For small periods the vortex ansatz has a lower energy than the 

Atiyah-Manton ansatz, while for large periods the superposed hedgehogs have a 

lower energy than the Atiyah-Manton ansatz. It is worth pointing out that the 

Atiyah-Manton ansatz takes much longer to implement numerically than the others, 

since one needs to solve a differential equation for each point on the grid taken to 

represent space. 

The value ratio E/ B for the chain lies between those of the charge 2 and charge 

3 skyrmions. The value of E /{127t2 B) for a Skyrme crystal [KS88, KS89, CJJ+89] 

is 1.04, and for the Skyrme lattice [BS98] it is 1.06. The value 1.143 obtained 

numerically for a chain is much greater than either of these. It is quite likely that 

higher charge Skyrme chains exist, and would have lbwer energy than the charge 

one chain studied here, see [HW08a] for some numerical results. 

We wil[ mention briefly some things which we have not been able to do. Firstly, 

we have not found .an analog to the rationa:l map ansatz which works for chains. We 

tried an .ansatz which obtains anti-periodic chains using anti-periodic meromorphic 

maps on the torus {such as the Jacobi elliptic functions), but the energies obtained 

exceeded those obtained in the vortex ansatz. We have also been unable to find a 

lower bouad on the energy which diverges for small periods, analagous to theorems 

5.3.4 or 5.3.5. Possibly the difficulty lies in the fact that JR2 x S1 has two non

compact directions rather than. one; it might be easier to find a lower bound for a 

Skyrme lattice. 

One potential application of Skyrme chains is to constructing skyrmions. One 

can easily envisage a charge N skyrmion which consists of N periods of .Skyrme 

chain wrapped around a circle; such a coRfiguration would have a DN symmetry. 

Although these D N skyrmions would certainly have greater energy than the known 

polyhedral skyrmions, they may still be local minima of the energy functional. 
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The fact the vortex ansatz seems to well for small periods indicates that Skyrme 

chains, like other soliton chains, exhibit a constituent structure. However, the con

stituents are only be visible if the chain is s~ueezed beyond its preferred period. 



Chapter 7 

Chains in sigma models 

In this chapter we wm consider chains in the CIPn sigma moclels. These models 

are probably the easiest to work with amongst all models with topological s0litons. 

For this reason they provide a good place to explore new ideas. There is a close 

resemblance between "lump" solitons in sigma models and insta:ntons: both theo

ries have conf0rma:l[y invariant energy functiona:ls, and b0th sets of solit0ns have a 

h0lomorphic structure. 

Chains were studied in sigma models a while ago in coanection with fiaite tem

perature quantum field theory ~MW89, Sni94], and their dynamics were explored 

in [Rom05]. More receatly, it was observed that with different boundary conditions, 

a sigma model chain can exhibit constituents, just as a caloron does [Bru08J. The 

constituents of a calmon can he understood using loop groups; here we will show 

that the same is true of sigrna model chains. 

That a ca:loron exhibits constituents follows from two observations: firstly, that 

a caloron is a m0nop0le whose gauge group is a loop group [GM88], and secondly 

that a monopole is a superposition of "fundamental" SU(2) monopoles, We shall 

show that both of these statements have analogs in the CIPn sigma models. We will 

try to keep our discussion fairly simple, in order to make the ideas dear. We will 

not attempt to develop a general the0ry for sigrna models and loop groups; instead 

we will present a few Hhtstrative examples. 

117 
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7.1 The <CIFn sigma models 

The field content of a sigma model is a map ljJ : M ~ N between two Riemannian 

manifolds. The energy functional is 

In the mathematical literature, a function ljJ which minimizes E is called harmonic. 

In the case where M has dimension two and N is Kiihler, there is a lower bound 

which is saturated if and only if ljJ is holomorphic [Gue85]. In genera:!, the lower 

bound will have a topological interpretation. 

We will be interested in the case where M is C and N is n-dimensional complex 

projectiiVe space CJP>n. CJP>n is one member of the family of symmetric spaces for 

SU(n + 1), all of which are Kiihler manifolds. To construct these symmetric spaces, 

one first fixes a maximal torus Tin SU(n + 1}. All symmetric spaces for SU(n + 1) 

may be obtained as orbits of elements b of the Lie algebra t of T under the adjoin.t 

action of G. The symmetric spaces can also be described as quotients G/C(b), 

where C(b) C G is the centraliser of b. In particular, if b is chosen so that C(b) 

is isomorphic to U ( 1), the symmetric space will be CJP>n. One can also represent 

symmetric spaces as quotients of complex groups GL(n + 1, C). Finally, CJP>n can 

be represented geometrically as the set of lines in cn+I. 

This last description allows us to represent points of CJP>n by non-zero n + 1-

column vectors, defined up to multiplication fuy complex numbers. Thus the charge 

1 CJP>1 sigma model lump may be written redundantly as 

l/J:u~ [ A ] 
u-a 

(7.1) 

where u = x + iy is a coordinate on C and A E C*, a E C are parameters. 
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Multi-kinks are the sigma model analog of monopoles. Here we define a multi-kink 

to be a map <P: R2 --+ CJP>n which obeys the constraint, 

8</J 
-=~X ·</J 
fJy 

for X E su(n + 1), and which minimizes the energy functional 

(7.2) 

Multi-kinks wind in a spatial direction (the y-direction), so are similar Q-kinks 

[AT92b, AT92a], which wind in a temporal direction. 

Given a multi-kink </J, we may set J = exp(yX)</J, so that J is inc:dependent of y. 

In terms of </J, the energy functional is 

E = ! 111BxJII2 + V(J)dx, 
2 lR 

(7.3) 

where V : CJP>n --+ R is the function defined by take the norm squared of the vector 

field induced on cwn by X. This second version of the energy functional, and its 

multi-kink minima, were studied in [GTT01]. 

We may choose coordinates so that X:..:..: i diag(p,1, ... J.Ln+I) for real numbers J.Li 

satisfying P,i ;::: J.Li+I· We assume further that these inequalities are strict; this is 

analogous to the condition of maximal symmetry breaking for monopoles, In order 

that the energy be finite, <P must te::nd to a fixed point of X, called a vacuum, as 

x --+ ±oo. It is easy to see that there are n + 1 vacua in CJP>n, written 

1 0 0 

0 1 0 
VI = ' V2 = ' ... 'Vn+l = 

0 0 1 

There is a lower bound on the energy, 

Here w is the standard Kahler form on <CJP>n and k is the vector field induced by X. 

Since H 1(<CJP>n) = (i), the 1-form ik(w) is exact. In fact we can say mo:re: there exists 
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a function '1/J on CIP'n such that k is the Hamiltonian vector field with Hamiltonian 

'1/J, that is, ikw = d'ljJ. We will show below that '1/J can be constructed explicitly, 

and satisfies '1/J(vi) = -2J.Li, hence the lower bmmd on the energy of a function <P 

satisfying <P( = oo) = vi, <P~ oo) -:: vi is E ;;::::: 2 (J.Li ~ J.li). The lower bound is saturated 

when <P is holomorphic, or equivalently, when J solves 

8 - -
8x <P = iX. </J. (7.4) 

To coNstruct the function '1/J, we work ih the adjoint 0rbit model of CJP>n. Let 

b = -2i/(n + 1) diag(n, -1, ... , -1) E su(n + 1) be a basepoint, which we identify 

with v1,. Points p E CJP>'1 are represented by p = gbg- 1 forgE SU(2). The function 

'1/J is defined by 

'1/J(p) = -Tr(pX). 

'fhe canoNical choice of symplectic form (due to Kostant and Kirillov) is 

for ~' 1J E su( n + 1). The id(mtity ikw ::-: d'ljJ is equivaleNt to 

wp(X, Y) = Ly'I/J WE su(n + 1) 

where L denotes the Lie derivative. We have Ly'I/J = -Tr([Y,p], X) and wp(X, Y) ~ 

- Tr(p[X, Y]), so the identity follows from the invariance of the trace: 

Tr([Y, p]X) + Tr(p[Y, X]:) = 0. 

The simplest case of the above is when n = 1. Since X must be traceless, J.ll > 0 

and J.L2 = - J.L1,. The general solution of the Bogomolny equation is 

(7.5) 

where u = x + iy and a 1, a2 E C* are defined up to rescaling. This solution satisfies 

the boundary conditions, <P(-oo) = v1 , <P( oo) = v2 • We define the mass of the kink 

v to be half its energy: v := J.L1 - J.l2· 
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Actually, this CIP1 kink is the familiar sine-Gordon kink. Consider a kink of the 

form, 

- [ cos(J(x)) ] 
cf>:x~--+ , 

eia sin(J(x)) 

for f a rea:l fuaction and a ER The energy (7.3) of such a kink is 

E = ~ f (8xf) 2 + v2 sin2(J)dx, 
2 JIR 

which is the energy functional of the sine-Gordon model. The kink (7.5) has this 

form, and is identified with the sine-Gordon kink. We define the location of the kink 

to be the point x = x0 where f(x) = n/2, that is, x0 = v=1 ln lat/a2 1. The second 

modulus of the wall corresponds to a U(l) phase. 

is 

The next simplest case is n = 2. The general solution of the Bogomolny equation 

a1 exp(-J.LtU) 

cP: u ~--+ a2 exp( -J.L2u) 

a3 exp( ~J.L3u) 

where a1 , a2 , a3 E C are defined up to rescaling, and at least two are aon-zero. More 

concisely, we can say that [a1, a2 , a3]t E CIP2 \V, whe:re V = { vb v2 , v3} is the set 

of vacua. When a3 = 0, the solution satisfi.es the boundary condition cf>( -oo) = v1, 

cf>( oo) = v2, and the solution is an embedding of a CIP1 kink with mass v1 := J.LI- J.L2. 

Similarly, when a 1 = 0 the solution is an embeddiag of the C1P1 kink and satisfying 

the boundary conditions cf>( =OO) = v2, cf>( oo) = v3 and with mass v2 :- J.L2 - J.L3. la 

all other cases, the boundary condition satisfi.ed is cf>( -oo) = v1 and cf>( oo) = v3 , and 

the mass of the solution is v1 + v2 • 

The cases a3 = (i) and a1 = 0 can be considered fundamental solutions, and they 

can be obtained as limits of the general a1 , a3 # 0 soh1tion. The four real moduli 

of the general solution can be accounted for by thinking of it as the superposition 

the two fundameatal kinks, each posessing two moduli. For this reason, the genel'al 

solution will be referred to as a multi-kink. 

It is easy to see how to generalise the multi-kink, and its fundamental kink 

constitlients, the case of target space C!Pn. The general picture is that a C!Pn multi-
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kink is a superposition of n fundamental kinks of masses vi := J.li- 1-li+I, and posesses 

2n moduli. 

The structure of multi-kinks can be visualised using the Lie algebra model of 

CJP>n. Recall that, in this model, CJP>n is the orbit of a point in the Lie algebra 

su(n + 1). This point represents the vacuum vi , and lies on one of the walls of the 

fundamental Weyl chamber, which is a subset of the Lie algebra t of the maximal 

torus T. We have illustrated this for the CJP>2 case in figure 7.1 : the Lie algebra t 

is two-dimensional, and is represented by the plane. The shaded region represents 

the fundamental Weyl chamber, and the point vi is indicated by a cross. The Weyl 

group W is generated by reflections in the lines HI , H2 , H0 . The other vacua v2 , 

v3 are the images of VI under the action of the Weyl group. The multi-kink, which 

interpolates between vi and v3 , is indicated by a dashed arrow. The fundamental 

kinks are indicated by the solid arrows. 

I 

I 

Hl 

HO 

vl 

Figure 7.1: The CJP>2 multi-kink realised as an adjoint orbit in the Lie algebra of 

SU(3). 

Figure 7.1 suggests a connection between kinks and roots, as we now describe. 

Recall that the roots a of a Lie group are homomorphisms a from the Lie algebra t 
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ofT to lR which together describe the action oft on the Lie algebra of G. The Weyl 

group W := N(T)/T acts on t. Reflections i:n the hyperplanes Ho: := ker(a) are 

elements of W. W is generated by reflections in the walls of the fundamental Weyl 

chamber; the corresponding roots are called simple roots. 

We observe that any pair of vacua vi, Vj E C!Pn determine a unique reflection in 

the Weyl group which swaps them. Hence a kink interpolating between vi and Vj 

may be associated with a root a. We have noticed (but not proven) that the mass 

of such a kink is equal to a(X) E R We have als0 noticed that a fundamental 

kink is associated with a reflection in a wall of the Weyl chamber, which is in turn 

associated with a simple root of the Lie group. 

So it appears that the number of fundamental kinks is equal the number of 

simple r0ots in the Lie group (that is, the rank of the Lie group): SU(n + 1) has n 

simple roots, so a C!Pn multi.-kink has in general n fundamental kinks. Of course, 

this statement is just an observation; we have neither proved it, nor investigated it 

for other symmetric spaces or Lie groups. 

7.3 Chains 

A chain is a map cjJ: IR~ ~ CIPn satisfying the periodicity conditi0n 

cjJ(x, y + {3) = g · cjJ(x, y) 

which minimizes the energy functional, 

E = ~ 1{3 1lldc/JII 2dx dy. 

Here {3 > (i) is the period and g E SU(n + 1). In order that the energy be finite, cjJ 

must tend to fixed points of g as x- ±oo. 

We assume that g is written in the form g = e~p( -X{J), with X= idiag(J-11, ... Jln+l)· 

We assume that Jli > J.li+I and J-11 = Jln+I < Jlo, where J.lo :.....: 27r / {3. We do not c0n

sider at present the possibility that some of the Jli are equal. Then the fixed points 

of g are the vacua v1, ... Vn+I described in the preceding section. 

As usual, there is a Bogomolny bound on the energy and solutions of the Bogo

molny equation are holomorphic. If cjJ tends to the same vacuum as x - ±oo then 
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the lower bmmd on the energy is a multiple of an integer, by theorem 5.2.1. In the 

general case, </>( -oo) = vi and </>( oo) = vi, we have found that the lower bmmd is 

</> (w) = 47r ko + · · · 1 * ' ( Jli = J.tj ) 
RxSl J.to 

for a:n integer k0 . 

This identity is proved in a similar manner to theorem 5.2.1. Let </>'(x, y) = 

exp(yX)</>(x, y) be a strictly periodic map, and let k0 be its degree. We have an 

identity, 

cfi'*(w) = </>*(w) + </>*(ikw) 1\ dy. 

We recall from earlier the identity ikw = d'lj;. Integrating, we obtain 

r . </>*(w) = 
1RxS1 

as required. 

The sdlution considered by Bruckmann [Bru08] was 

(7.6) 

where a0 , a_I, b0 are non-zero complex parameters, defined up to an overall scal

ing. Note that J.L2 = -J.LI because X is traceless. This map satisfies the boundary 

conditions </>( -oo) = VI, </>( oo) = vll and its degree is 1. 

Bruckmann observed that, for certain values of the parameters ai, a0 , b0 the chain 

resembles a superposition of two fundamental kinks, with masses VI - J.LI - J.L2 and 

v2 = J.to - VI· To see this, we fix some of the parameters: by ma:king translations 

and phase rotations, we can choose a 1 = -a0 = 1 and b E R, b > 0. The chain (7.6) 

becomes 

When b is large, the field resembles two kinks of the form (7.5), with masses vi, v2 

and locations x1 -=- -v}Iln b, x2 = v2I1n b. When b is small, the field resembles a 
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lump (7.1) located at u = 0, with scale parameter .A= b/~-to· Energy densities for 

various values of b are illustrated in figure 1.1. 

It is easy to write down higher charge chains, including chains whose charge is 

fraetional. It is also a simple matter to write down chains in different sigma models. 

For example, the analog of the Bruckmann chain in the CJP>2 sigm.a model is 

a1 exp( (~-to - J-t.I)u) + ao exp( -J-tl u) 

bo exp( -J-t2u) 

Co exp( -~-tau) 

(7.7) 

This CJP>2 chain has three constituents, with masses v1 :..:::.. ~-t 1 - 1-£2 , v2 = ~-t 2 - 1-£3 , 

v3 = J-to = v1 - v2 . More generally, the charge 1 CJP>n chain has n + 1 constituents. 

We would like to find a more systematic way to understand the constituents. We 

wiH argue below that the natmal way to lmderstand them is witll loop groups. 

7.4 Loop groups 

A loop group LG is a grollp whose elements are maps from the circle 8 1 to a Lie 

group G. The product of two loops is obtained by pointwise multiplication, using 

the product in G. We consider in particular the group of smooth maps, although 

there are other possibilities. The standard reference on loop groups is the book by 

Pressley and Segal [PS86J, Although loop groups are infinite-dimensional, their root 

strllcture is similar to that of finite-dimensional Lie groups, which is part of the 

reason why they are interesting to study. 

Here we shall describe some symmetric spaces for loop groups. The starting 

point is to introduce the group 1r of rigid rotations of 8 1 , which acts on LG in an 

obvious way. We take a semi-(iireet product 'JrxLG. Let T be a maximal torus in 

G, let G also denote the sllbgroup of LG of constant loops, and let T denote the 

subgroup of constant loops taking values in the torus. Then 1r x T is a maximal 

torus in 1r x LG. Symmetric spaces of loop groups are obtained in an analogous way 

to symmetric spaces of finite-dimensional Lie groups: we choose a subgroups Z of 

the maximal torus 1r x T, and consider the quotient 'lrxLG/C(Z). 
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We are interested in the case G ~ SU(n + 1). We list three infinite-dimensional 

symmetric spaces for SU(n + 1) below. 

• Suppose that Z = '][' x T. Then C(Z) = '][' x T, we denote the homogeneous 

space txLSU(n + 1)/1L x T = LSU(n + 1)/T by ?+1. 

• Suppose that Z = 1L. Then C(Z) = 1LxSU(n+1), we denote the homogeneous 

space '1LxLSU(n+ 1)/1L x SU(n+ 1) = LSU(n+ 1)/SU(n+ 1) by OSU(n+ 1). 

• Suppose that Z is a U(1) subgroup of T. Let Y denote the centraliser of 

Z in SU(n 4- 1). Then C(Z) = ']['xLY, we denote the homogeneous space 

TxLSU(n + 1)/'1LxLY = LSU(n + 1)/ LY by DCJPn, it is identified with the 

space of loops in CJPn. 

The spaces OSU(n + 1) and p+I are well studied; they are called respectively 

the fundamental homogeneous space and the periodic flag manifold. However, we 

shaH be primarily interested in the space LCJPn, which appears to be much less 

weH-studied. 

We will represent points of LCJPn by column vectors of functions zi : S1 - C: 

Here 0 E lR/27rZ"' 8 1. The functions i must not be a:ll zero for any value of 0, and 

they are defined up to overall multiplication by functions from S1 to C*. 

The space LCJPn inherits a natural metric from CJPn. Let z = z(O) denote a point 

in LCJPn; if two tangeNt vectors ~' 1J E TzLCJPn can be :represented by a functions 

v, w : S1 - Tz(o)CJPn then we define 

The normalisation factor is chosen so that if z, ~, 1J are all constant loops theB their 

norm in LCJPn equals their norm in CJPn. Notice that LCJPn a:lso inherits a complex 

structure from CJPn, so it is quite possible that LCJPn is a Kahler manifold. 
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Like the finite-dimensional symmetric spaces, infinite-dimensional symmetric 

spaces can be modelled as adjoint orbits in a Lie algebra. We consider the ex

ample of DCP1
. The Lie algebra of the maxima:l toms 1I' x T is spanned by the 

vectors 89 and t, where 89 is a basis vector for the Lie algebra of 1I' and t is a basis 

vector for the Lie algebra ofT ~ U(l). The stabHiser of the point t is the group 

'JI'x LT; it follows that the orbit oft under the adjoint action of '1I'xLSU(2) is DCP1
. 

As in the finite-dimensional case, the fixed points of 1I' x T in the DCP1 ave the 

images of the base point under the action. of the Weyl group. The Weyl group for 

'1I'xLSU(2) is generated by the following transformations: 

a8o + bt ~--+ aBo - bt 

a8o + bt ~--+ aBo + (2b- a)t 

when t is suitably normalised, and where the coefficients a, b E R It follows that 

LCP1 has two vacua, v1 = t and v2 = -t. Written as vectors, these are 

The group '1I'xLSU(2) has two simple roots, which are identified with the two 

gen.erators of the Weyl group introduced above. More generally, 'li'xLSU(n) has n 

simple roots (see figure 2.1) 

7.5 A chain as a loop group multi-kink 

We are now ready to apply loop groups to chains. We shall show that a cpn chain 

is the same thing as a mu.lti-kin.k in. a sigma model whose target is LClP,n. Let ifJ be 

a chain satisfying ifJ(x, y + /3) = exp( -f3X)cp(x, y). Define a map ifJ : R ---+ LCPn by 

~(x) = exp(X0/1-Lo)r!J(x,OJ!-Lo). 

The Bogomolny equation for r/J, 

(a a) - +i~ r/J = 0, 
ax f)y 
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is equivalent to 

a- ( a)-ox <P = i x - 1-loao </J. 

This is forma:Hy identical to the Bogomolny equation for a multi-domain wall (7.4), 

since X- Jlo8o is an element of the Lie algebra of SU(n + 1)x1l'. Similarly, the 

energy functional for <P is equal to 

where the potential function V : DCJP>n --"-+ IR is equal to the norm squared' of the 

vector field induced on DCJP>n by X - Jlo80 . Here we are e:x:plicitly using the metric 

defin.ed on DCJP>n. 

As a concrete example, the Bruckmann chain (7.6) is mapped to 

- [ a1 exp((J.lo = Pt)X. )ei.O + ao exp( -J.ttX) ] 
<P(x) = . 

bo,exp( -Jl2X) 

We have illustrated this object in figure 7.2. The horizontal axis represents the Lie 

algebra ofT and the vertical axis represents the Lie algebra of 1l'. The orbit of v1 = t 

is DCJID1. The dashed arrow represents the chain, while the two solid arrow indicate 

the fundamental ( consituent) kinks. The kink pointing from v1 to v2 has mass ll1, 

the kink pointing from v2 to v1 has mass ll2• These two types of kink are identified 

with the two simple roots of 1l'xLSU(2). 

It is easy to see how figure 7.2 generalises to higher charge. For example, a 

dashed arrow which passes from VI to v2 to v1 to v2 :represents a chain with two 

constituents of mass ll1 and one constituent of mass ll2 . The energy of such a chain 

is ( 41T/ J.l0,)(2v1 + v2). It is also easy to guess what will happen for different target 

spaces, For example, the CJID2 chain (7.7) is represented by an. arrow in the figure 

7.1 passing from a vacuum v1 to v2 to v3 and then back to v1. 

Notice that there is a definite ordering to the fundamental kinks of a chain. For 

example, a kink lying to the right of kink of mass ll1 always has mass ll2 . This is 

because, in figure 7.2, the arrow pointing from v2 to v1 is always associated with a 

kink of mass ll2 . The ordering prescription looks quite reminiscent of the orderin.g of 

constituent monopoles in axially-symmetric calorons, described by equation (3.11) 

and figure 3.2. It might be possible to relate axially-symmetric ca:lorons and loop 
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vl 

------- ---

v2 vl 
----- ----

v2 

Figure 7.2: The charge 1 ClP'1 chain realised as an adjoint orbit in the Lie algebra 

of the loop groop 

group multi-kinks using results of Atiyah [Ati84] or Charbonneau and Hurtub>ise 

[CHB8]. 

7.6 Summary and open problems 

In this chapter we have explored a connection b>etween chains and multi-kinks in 

sigma models. We showed that the a ClP'n -chain is the same thing as an DClP'n

multi-kink, and argued that this explains the appearance of fundamental kinks in 

a chain. We pointed out some connections between the structure of multi-kinks 

and the root structure of Lie groups. J,t would b>e interesting if these connections 

could be derived in a more fundamental way: could one deduce the properties of 

a multi-kink moduli space using instead machinery from group theory? And could 

such analysis be applied to more general symmetric spaces? 

We point out here that sigma models have been studied in connection with loop 
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groups before. Atiyah has demonstrated the existence of a bijection between m0dul,i 

spaces of SU(n) Yang-Mills instantons and moduli spaces oflumps in sigma models 

with target O.SU(n) [Ati84, Gue85]. Charbonneau and Hurtubise have explored a 

similar correspondence for calorons [CH08]. It remains to be seen whether the LCJPn 

sigma model, or its chain or multi-kink solitons, can be related to Yan.g-Mills theory 

m any way. 

A final question concerns spha:lerons, which are saddle points of the energy func

tional. Sphalerons have been found in certain sigma models, and have a: nice mathe

matical structure [Zak89]; one wonders whether kink- or chain-type sphalerons also 

exist. 



Chapter 8 

Conclusion 

We begaR this thesis by describing some simple properties of chains of solitons, and 

asking some basic questioRs about them. In the following three chapters we investi

gated in detail various aspects of calorons, which were historically the first type of 

chain to receive any attention. IR the final three chapters we investigated chains in 

three more models, namely the planar Skyrme model, the Skyrme model, and the 

C.IPn sigma models. We have seen that chains, and their constituent structl1re, are 

fairly generic. The only case where no C0Rstituents were found was for calorons on 

hyperbolic space - but this was to be expected, since our bouRdary conditions were 

degenerate. 

At the end of each chapter we have mentioned some open problems and possible 

directions for genera:Lisation. In view of the title of this thesis, we will make a 

few remarks here about the general status of research iR chains. Monopole chains 

have also been studied and their N ahm transform and spectral curves analysed 

(see [War05] and refereRces thereiR). It remains to be seen whether monopole chains 

inherit any other mathematical structure from monopoles, such as ratioRal maps. 

A cursory glance at the coRtents page of [MS04] reveals that the only topological 

soliton model where chains have not been studied is the vortex model - but note the 

string-theoretic arguments at the end of [Ton02]. Lumps in the C.JP>n sigma model 

are known to describe semi-local vortices effectively, so a chain of semi-local vortices 

would presumably bear some resemblance to the the C.JP>n chains described in chapter 

7. 

131 
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Finally, as was emphasised in the introduction, it seems that that the constituent 

structures of chains in different models are in some way related to the root structure 

of loop groups. Loop groups have previously been related directly to calorons, and 

we have shown that they are also related to sigma model chains (and by extension, 

planar skyrmion chains). It remains to be seen whether monopole, skyrmion, or 

vortex chains can be described using loop groups. 
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