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Abstract 

In this thesis, we demonstrate the use of twistor inspired methods in the 

calculation of gauge theory amplitudes. First, we describe how MHV rules 

and the BCF recursion relations can be used in QED. Then we apply BCF 

recursion to the problem of amplitudes with massive fermions in QCD, using 

the process gg ---+ bbg as an illustration. 

Central exclusive production is a promising method of revealing new 

physics at the LHC. Observing Higgs production in this scheme will be ham­

pered by dijet backgrounds. At leading order this background is strongly 

suppressed by a lz = 0 selection rule. However, at higher orders there is 

no suppression and so it is important to calculate the contribution to the 

cross section of these terms. Among the necessary theoretical inputs to this 

calculation are the loop corrections to gg ---+ bb and the amplitude describing 

the emission of an extra gluon in the final state, gg ---+ bbg. We provide 

analytic formulae for both these ingredients, keeping the full spin and colour 

information as is required. 
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c·hapter 1 

Introduction 

1.1 Basics of pQCD 

Quantum Chromedynamics (QCD~ is an Stl(N) gauge theory describing 

quarks and gluons with N = 3. It is part of the Standard Model of elementary 

patticle physics. Quarks are described in the theory using 4 c0mponent Dirac 

spinors. Imposing SU(N) symmetry requires the introduction of N 2 - 1 

gauge b0sons. These are vector particles ~spin 1) and mediate interactions 

between the quarks. In a n0n-Abelian theory such as QCD, the gluons also 

interact amang themselves. Omitting gauge fixing terms, we can write the 

Lagrangian density as, 

c = al•.(il/J. - m) .. a! •. - ~ea cap,v 
'f't tJ 'f'J 4 p,v · (1.1) 

2 



CHAPTER 1. INTRODUCTION 3 

The <IUark fields 'l/Ji live in the fundamental representation of the gauge group, 

and carry a colour index i, while the gluon fields are in the adjoiBt repre­

sentatioB. They carry a colour iBdex a which runs from 1 ... N 2 
- 1. The 

slash notation is conventioBal, and represents contraction with the gamma 

matrices, 

(1.2~ 

The gamma matrices satisfy the Clifford algebra, 

(1.3) 

The symb>ol D~ is the covariant derivative. It is given by 

(1.4) 

We see that the Lagrangian (1.1) contains the quark-gh:ton-gluon interaction 

term. The matrices tij are the generators of the fundameBtal representation 

of SU(N). They satisfy commutation relations characteristic of the gauge 

group, 

(1.5) 

The second term in Eq. (1.1) describes the kinetic energy of the gluons. It 

is written in terms of the field strength tensor, defined by 

(1.6) 
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where 

(1.7) 

We see that the kinetic energy part contains not only the expected quadratic 

piece, describing a true kinetic energy term, but a:lso terms trilinear and 

quadrilinear in the gluon field. These terms are characteristic of a non­

.Abelian theOFy, and indicate that the gauge bosons will interact among ,them­

selves, 

Scattering amplitudes are related to objects called correlation functions, 

which in turn are obtained from the generating functional of the theory, 

where 'TJ, 1j and J are source terms for the C:IUark, anti-quark and photon fields 

respectively. The generating £unctional Z is a sum over qaantum states. Or­

dinarily this is e<:Iuivalent to an integral over the space of aH field configurar 

tions, as written above. However, in the case of gauge theories such as QCD, 

the same quantum state is represented by an entire subspace of gauge iield 

configurations, and so Eq. (1.8) as written effectively overcounts these states. 

What is needed is a means ,of restricting the path integral to physical states, 

i.e. those not related to each other l!>y a gauge transformation. We can do 

this by introducing extra terms into the Lagrangian, 
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where we have used the covariant gauge. We have introduced an e~tra field, 

called the ghost field, which cancels unphysical p0larisation modes of the 

glmm. The ghost field is unphysical in that it cannot appear in external 

states, but it does appear as an internal particle inside loop diagrams. For 

more information on these issues the reader is directed to [1,2]. 

1.1.1 The Feynman Ru!les 

The physical quantities that we are interested in calculating are typically 

cross sections describing the scattering of partides, or decay rates. Theoret-

ically, these processes are described by the S matrix. 'Fhe elements of this 

matrix descr:ifue the amplit11des for scattering (or decay) pFocesses. Unfor­

tllnately, calculating these elements is extremely difficult. Normally we are 

restricted to perturbation theory, in which we expa:rid a given S matrix ele­

ment as a series in a small parameter. The. success of this procedure depends 

on how sman this parameter actually is (as weN as the behaviour of the co­

efficients). In QCD we use the strong coupling a 8 , which is related to the 

co11pling g which appears in the 1-agrangian by 

(1.10~ 

The terms in the perturbative expansion can be evaluated oFder by order 

using Feyn:man diagrams. This is a pictorial method in which we draw all 

possible diagrams, conforming to a set of rules, which can contribute to a 
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A,ft p B,v 

~ 
,jAB[-g"" + (1- ..\)~Jrh< 

p j 
.;'i_i_ 

p-:-m+i£ 

A p B 
,;AB_; 
~ 

~' -;•J~IIP- kJ",.. + I' - •t•·· + I•- PI" •"'I 

p~ 
A,.Jt C,<I 

A,ft B,v 

X 
D,T C,<I 

-ig2jXACJXBD:g"vguT _ gi'Tgvul 

-ig2jXADjXBG:g"vguT -·g"ug"''] 

-ig2jXABjXCD:g"ug"T -·g"Tgvul 

Figure 1. I: Feynman rules in covariant gauge. In the mle for the three gluon 
vertex a:ll momenta ar:e coBsidered incoming. 

certain process at a certain order. The diagrams are then evaluated using the 

Feynman rules. Each piece of the diagram (lines, vertices etc.) are assigned a 

certain mathematical ol>dect. Combining these in the appropriate way gives 

us the amplitudes we require. Each amplitude will r:eceive contributioBs from 

various diagrams. Individual diagrams are not physical objects as they are 

gauge-dependent, but when they are summed the gauge dependence drops 

out. The Feynman rules for QCD are Hlustrated in Fig.i(l.l) and Fig.(L2). 
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A, J.t 

/ " 
B C 

A, J.t 

z j 

Figure 1.2: Feynman rules in covariant gauge (cc;mt'd) 

1.2 Regui~arisation a:nd RenormaUsation 

Loop amplitudes in QCD are geBerally divergent in the ultraviolet. By this 

we mean that very high energy modes propagate unchecked and lead to iB­

finities in four dimensions. In or.der to make sense mathematically, the looJ> 

integrals must be regulated. This regularisation caB be performed in a vari­

ety of ways, but by far the most convenient and widely used is dimensional 

regularisation. In this scheme we perform the integrals in d = 4 - 2E cli-

mensions. What were infinities in four dimensions now apJ>ear as poles in 

the par-ameter f. The physically relevant case is of ccmrse E ~ 0. 'Fhe pres­

ence of the poles in E is not a clisaster, provided we admit that QCD is not 

applicable at very high energies. In these regimes we imagine some form of 
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aver arching unified theory to ta:ke over, whkh must contain QCD (and the 

rest· of the standard model')· as a low enel}gy effective theory. The 1}!>roblem · 

we face is that low energy }!>hysics appears ta receive contributions :from high 

energy phenomena through the loop integrals. Howevel}, because QCD is a 

renor.mailisa:ble theory, we can still use it to make predictions of low enel}gy 

physics. This is achieved by a partic-ular parameterisatian. We have variaus· 

free parameters in the Lagrangian, such as the charge g, masses mi ancl. nor-
. . 

ma1isations of the fields. These bare parameters are un}!>hysical in that they 

de not in genera!! carresponcl to quantities measur.eci experimentally. We can 

organise the theory such that the illiluence af high enel}gy modes is confined 

to these }!>arameters; and then define them · oper:ationa:lly in terms of real­

world measurements. This amounts ta taking the high-energy physics from 

experiment and using QCD to predict the low energy physics. 

In practise this means setting the bare parameters to be divergent in such 

a way as to render all amplitudes UV finite. It is by no means obvious that 

this is possible - ther:e are only a small number of bare parameter:s, but a 

large number of UV divergent amplitudes. The renorma:lisabi1ity of QCD 

was proven by 't Hooft and Veltman in [3]. We rewrite the bare Lagrangian 

in terms of renormalised parameters, 

(1.11) 

where Fi denotes any of the free }!>arameters of the Lagrangian. The B su-
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perscFipt indicates that this is a bare quantity. The renormalised parameter:s 

Fi ar:e defined mtlltiplicatively: For example, for the gluon field we write 

(1.1'2) 

We can calculate Z3 order fuy 0rder in perturbation theory. It will be cli:ver-

gent-, that is to say, it willl' contain poles in the dimensi0nal regularisation 

parameter E. These poles will cancel some of the poles arising from. the 'loop 

integr:als, The quark field is ren0nmtlised with a factor Z2 , 

nl., zl/2./,1' 
o/ bare = 2 'P 

1ren' (1.13) 

and similarly for all the parameters in the Lagrangian. Once renormalisation 

has been carried 0ut, we find extra Feynman rules correcting the vertkes 

and ~propagators. The contribution 0f the metra diagJCams cancels the UV 

divergent parts of the original set of diagrams. 

1.2.] The Running Coupling 

When we use dimensional regularisation, we are forced t0 introdMce a dhnen-

si0n£ul coMpling gp/- so that the action remains dimensionless. ~he parameter 

J.L is arbitrary, so physical qMantities cannot depend 0n it. Once the diver­

gences are subtracted, the finite parts of the amplitudes retain a dependence 

on J.L, and so does the coupling g = g(J.L). Predictions of a physical observable 
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0 therefore take the schematic form 

(1.14) 
n=no 

We see that l>oth the coupling and the coefficients af the perturbative ex-

pansion depend on the unphysica:l scale J.-t. This dependence cancels when 

they are caml>inecl: as in (1.14). Unfortunately, it is beyond our abilities to 

calculate more than a few terms of this series, and so we must truncate it 

at some ord'er m. Our prediction Om will then suffer from a resid1:1al renor-

malisation scale dependence. One of the advantages of calc1:1lating higher 

order corrections is the partial elimation of this unphysical dependence. In 

practise we choose J.-t to be equal to one of the typical scales in the process 

under consideration, in an effort to keep logarithms of the form 

(1.15) 

wher:e sii = 2 Pi · Pi is the Larentz invariant ptaduct of two of the external 

momenta, as small as possible. As we have described, the QCD coupling a 8 is 

a function of the renormalisatian scale J.-t· This dependence on an unphysical 

scale is a result of the way in whkh we have shifted C0I:ltributions of high­

energy modes out of the Feynman diagrams and into the coupling. The 
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precise functicma:l form of a 8 is .g0verned by the beta function, 

(1.16) 

The beta flillction can be calculated in pertm::bation theory. It is e~panded 

in powers of the c0upling, 

(.1.17) 

lf we retain only the first term in the perturbative expansion of the beta 

fuRction, we can solve (1.~6).. We find 

(1.18) 

This eqtlation gives the running of t:he strong cotlpling. Given a 8 at a scale 

J-lo, we can evaluate it at aRy other sca:le Jl. Experimental qu0tes of the 

coupliRg must specify a scale. It has become cust0rn.ary to use the Z mass 

f0r this pmpose. At the time of writing the w0rld average experimeNtal value 

iS' [4] 

ll 8 (Mz) = 0.1176 ± @.002. (1.19~ 
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1.3 Cross Sections at NL.O 

Although the underlying SU(Nc) gauge theory is well understood, accurately 

predicting the results of e:x!periments involving quarks and gluons is far from 

trivial. In this section we will outline the basic procedure. Suppose we are 

interested in the cross section for two initial state partons to produce m final 

state partons. This cross section can be written 

(1.20) 

where we have separated the contributions according to the power of a 8 • 

The leading order (LO) contribution is obtained by integrating the Born 

amplitude squared over the available phase space, 

aLo = 2~ J IMI2 
p(m) df. (1.21) 

Here we have introduced. the measurement function p(m), which defines the 

experimental observable under consideration. To ensure infrared safety, we 

require that when an m + 1 parton configuration becomes degenerate with 

an m parton configuration, as for instance when a soft or collinear parton is 

emitted, the measurement function behaves similarly, i.e. 

(1.22) 
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This allows the cancellation of soft and collinear singularities, in accerdance 

with the KLN [5, 6] theorem. Beca11se Born level amplitudes are relatively 

easy to obtain, if not analytically then via numerkal reutines such as MAD­

GRAPH [7], the Bmn tevel cross section poses few problems. In practise 

the integral is impossible te perform analytica:Jily, but can be easily evaluated 

using Monte Carlo numerical integration. 

At next-to-leading order (NLO) we must c<msider twe contributions to 

aNLO 

• the real contribution aR, obtained from final states with m + 1 partons 

• the virtual contribution a v, obtained from final states with m partons. 

Note that these q11antities are not by themselves physically well defined. 

They are each afflicted by infrared singularities caused by seft and cellinear 

partons. The total NLO cross section is obtained from a sum of these two 

contriblltions, 

aNLO - aR+av 

- 1 daR + f dav (1.23~ 
m+l Jm 

- 21 1 1Mm+ll2 p(m+l) df m+l + 21 . { IM:n-loopl2 p(m) df m 
8 m+l 8 Jm 

The IR singularities appear directly in IM~-loopl 2 as peles in E. They arise 

from evaiuating the ( dimensienally regulated') loop integrals. These poles 

will be ca;ncelled rby similar poles in the real contribution, which appear 
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after the integral has been performed. Thus we see that bringing abeut 

the cancellation of E pales and integrating the finite remainder requires a 

cembination of analytic and numerical methods. 

1.4 The Helicity Met:hod 

In this thesis we will be interested. in polaFised scattering cross sections, and 

so we will need to calclllate helicity sun-amplitudes. In fact, even for pro­

cesses where we intend te sum over all spins, it is often a great simplification 

to consider first the separate helicity amplitudes, and then sum over these 

numerically. For helicity amplitudes the kinematical invariants such as dot 

products Pi · Pi are not the most suitable variables. Instead., they fined their 

simplest expression in terms of spinor products. In this section we outline 

the basic formalism behind these objects, and describe how they caa be nu­

merically evaluated. 

It was discover.ed long ago [8-13] that amplitudes involving massless mo­

menta Pi a:Rd Pi can be conveniently r.epresented i;n terms of spinor products 

defined as, 

(1.24) 

ln this way amplitudes find their simplest expression. The spinors in ques­

tion can be tho'Ught of either as two-component Weyl or 4-cemponent Dirae 
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spinors. Numerical evaluation of such amplitudes involves the use of the stan;.. 

dard formulae for ,the s:pinor J')roducts in terms of the momentum 4-vectors. 

Following [114], let us first introduce two 4-vectors k0 and k1 such that 

ko · ko = 0 , k1 · k1 = -1 , ko · k1 = 0. {1.25) 

We now define a basic spinor u-(k0 ) via 

(1.26) 

and choose the corresponding positive helicity state to be 

(1.27) 

Using these definitions it is possible to construct spinors for any null momen-

turn p as follows: 

(1.28) 

with A= ±. Note that this satisfies the massless Dirac equation fu(p} = 0, 
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as required. We can. now simply evaluate spinor products. For example, 

[ij] - u+(Pi)u-(pi,) 

u-(ko) 1/i 1/i u+~ko) 

J 4 (Pi · ko)(Pi · ko) 

Tr( i!.p ¥o 1/i 1/i !¥I) 
J 4 (Pi · ko)(Pi · ko) 

(Pi · ko)!(pj · k1) - (Pi · ko)(Pi · k1) - iEJLvpukltpfpjki 

J (Pi · ko )(p3 · ko) 

(1.29) 

(1.30) 

(1.31) 

(1.32) 

The angle bracket product is related 1 to the square bracket product by com­

plex conjugation ami a sign, i.e. (ij) ---:- -~ij~*. The arbitrary k0 and k1 can 

now be chosen so as to yield as simple an expression for the ,product [ij) 

and (ij) as passible, to facilitate numerical evaluation of the ampitudes. The 

choice2 

ko = (1,0,0, 1) 

kl ---: (0, 0, 1, (i)~ 

is a good ene, giving the familiar 

1 1 

[ij) = (p'! + ip~) [pJ- Pjl2 - (p~ + ip:I?) '[,P?- pj]:2 
' ' pi? - p~ J J ipq - p~' 

t t : J J 

(1.33) 

(1.34} 

(1.35) 

In the course of evaluating a Feynman diagram we wHl ailso encounter pelar-

1The reader should note that a similar definition with the opposite sign is found in 
some of the literature. 

2The notation is k~' = (k0 ,,k). 
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isation vectors. These are the external wavefunctions of gauge bosons such 

as glucms. In this thesis we wiH only be concerned with the massless external 

gauge bos0ns (gluon, phot<m), and not the massive weak gauge bosons w± 
and Z. Conse~uently we can Festrict ourselves to t:(p) where p2 .::... ~t We can 

write this in terms of spinors by introducing an auxiliary vector k for each 

external gauge boson. In some sense this parameterises the gauge, and so 

the final answers we obtain for gauge invariant quantities such as a partial 

amplitude must be independent of k. In practise, we usually set k to be one 

of the external momenta, though we are not allowed to set it parallel to its 

associated p. There are different expressi0ns depending on the helicity of the 

boson, 

t:!(p, k) 
ir(k) 'Yp. u~(p) 

(1.36~ - v'2 (kp) 

t:;;(p, k) 
u+(k) 'Yp. u+(p) 

(1.37} -
v'2 [pk]l 

Note that there are only two physical polarisati0ns. J,t is also useful to have 

at hand the 'slashed' form 

_ . m u+(k)u+~P) + u_(p)u=(k~ 
V.!. (kp) ' (1.38) 

m u+ (p~u+ ( k) + u= (k~u~ (p~ 
VL. [pk] . (L39) 

Recall that Dirac-slashing refeFs to contraction with a gamma ~matrbc, so that 

for a four vector, AP. we have .A = AP.'Y w 
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1.4.1 Massive spinors 

For processes involving the light quarks u,d,s and to some exte:nt also the 

charm c, it is a good enough appmximation to set the quark mass to zero. 

This is because for the high energy processes with which we typically concern 

ourselves, these quark masses are dwarfed by the high centre of mass ener­

gies involved. For bottom quarks this approximation starts to look a little 

suspect, and for the top it is clearly not valid at all. So, it is important for us 

to be able to handle the correspoading massive spinors. 'Fo evaluate spinor 

products involving massive spinors, we need to find a definiti0n analogous to 

(1.28). One possibility is that outlined ill [14], 

>. . _ (1+ m)u->.(ko) 
u (p) = J2p · ko ' (1.40) 

which .satisfies the massive Dirac equation, ('1- m)u>.(p) = 0. The m in 

(1.40) is positive or negative when u>.(p) describes. a particle or antiparticle 

respectively. This definition has the virtue3 of being smooth in the limit 

m~ H~ We will use (1.40) to evaluate products involving massive spinors. 

It is easily seen that the familiar [ .. ] and ( .. ) products ta:ke the same 

f0rm for massive spinors as they do for massless ones. Explicit mass terms 

drop out due t0 various trace theorems. However, the :product of like-helicity 

3Care is needed when p · k0 also vanishes in this limit, as we will discuss later. 
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spinors is now non-zero: 

(ij) - -±( ) ± ) u 'Pi u (Pi , (1.41) 

(p . ko) l 3 . . . (1.42) mi -- +z~J 
Pi· ko 

(v1-Pi)l .. (1.43~ - mi o z + z +--t J, 
Pi- Pi 

where in the last line we have used k0 as given in {1.33). Note that the like­

helicity product is the same whatever the heiicity of the spinors involved, 

and that we use a round bracket as a shorthand notation fm it. 

We have been using the word 'helicity' to refer to the spin projection ef 

massive fermions, but in fact this is onl¥ justified if the projection is onto the 

direction of the momentum vecter. For massive particles it is not obvious 

that this is the case. However, one can define a unique polarisatien vector, 

that defines the directien along which we are projecting the ,particle's spin, 

1 ( m
2 

) u~' = - pi' - --kg . 
m p·ko 

(1.44) 

This vector depends on an arbitt:ary reference momentum k0 . The spinors 

(1.40) satisfy 

(1 - A'·lrf)u>. = 0. (1.45~ 

We see that besides the momentum p there is an additional contdbution to 

the polarization vector proportional to k0 . Suppose we have an anti-fermion 



CHAPTER 1. INTRODUCTION 20 

i and fermion j in the initial state and th.ey appwach. along the z axis, in 

the positive and negative directions respectively. ·If we cho0se k0 to be a uait 

vector in the z direction, i.e. 

th.en for momenta4 

Pi 

ko = (1, 0, (), 1}, 

(E, 0, 0;{3E), 

(E, e, 0, -fJE), 

we have the followiag p0larization vectors: 

1 af - -(- E/3, 0, 0, -E), 
mi 

0'~ 
J 

1 -(E/3,0,0, _:.E). 
mi 

(1.46) 

(1.47) 

(1.48) 

(1.49~ 

(1.50) 

If we recall that mi is negative because i is an antiparticle, then we see that 

each polarization vector points in the same direction as the corresponding 

momentum, so that the spinors u~'(p~ are indeed helicity eigenstates. for this 

choice of k0 • H0wever, choosing k0 to be parallel to one 0f the particle's 

momenta results, in the massless limit, in the denominat0rs of pr0ducts such 

as that in (1.43). vanishing. By being car:eful to take the limit a:lgebraically 

4 f.l.- (1 - m2 ).1/2 
iJ - . E'I' 
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this does not present a probl~m.5 But it should be noted that in such cases 

produ~ts like (ij) do not necessarily vanish in the massless limit. We can 

sidestep this issue by choosing a different k0 , though we could not then ta;lk 

of the helicity of the fermion. 

U se:fuf Spinor Preduct Identities 

We summarise here some of the identities which have proven usef.ul during 

the course of our calculations involving massive s:r>inor products. Firstly, the 

ubiquitous expression u.±(i) 1 u±(j) can be handled by using the well known 

formula 

1- m - L u>.(P) uA(p) 

- u+(P) u+(P) + u_.(p) u_.(p~, 

which give us 

u.+(i} 1 u+(j) - [ip](pj) + (ip)(pj) + m~ij), 

u.-:(i} 1 u-(j) - ~ip)[pj] + (ip)(pj) + m{ij), 

u.+(i) 1 u -'(j) (ip~ [pj] + [ipl(pj} + m[ij], 

u.-(i) 1 u+'(j) - (ip)(pj) + (ip~:(pj) + m.(ij). 

5If we take k~ = (1, 0, sin•O., cos 01, then for the momenta defined in (1.47) and (1.48), 
with mi = ~mi =m, w:e have (ij) = ~2mf3cos0(1- {32 cos2 o)-112 ·• Thus ~ij) "'O(m) 
as m ---+ •0 e:l{cept if 0 = 0° when: ( ij) "' 0( E). 
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W:hereas for massless vectors, ki,kj we have the familiar relation 2ki · kj = 

(ij}[ji], in the massive case this is extended to 

For any massive i,j and massless k, l we have 

(ik~!(j,l) 

(i·k) [li] + [ik] (li) 

u±(Pk) 1/i u"'(Pt) 

(il)(jk), 

mi[lk], 

Another useful formula is the Schouten identity, 

(a b)'{e d) + (a c),(d b) + (a· d) (b c) = 0. 

1.5 Colour O~rdering 

(1.51) 

(1.52:) 

(1.53~ 

(1.54) 

(~.5'5) 

!Even if one is interested primar~ly in spin-summed' cross sections, it is useful 

to evaluate the indi;vidual helicity amplitudes separately. Amplihtdes t}q'>i­

cally find their most compact expression in. this way, expressed in terms of 

spin.or products. If one wants to sum over aJ1.il spins then this can be done 

numerically at the end of the calculation. In fact, since in this thesis we are 

interested in. a polarised scattering process, we are obliged to use helicity am­

plitudes·. The way we treat the colour structure of QOID processes is similar 
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to this. The amplitudes can be expressed as' a series of colour structures, 

witb. gauge-indeJ>endent c0efficients. The coefficieRts are called J>arti:al sab­

ampritudes. Recall that the colour factors' for each Feynman diagra:rp come 

from various ta matrices etc. originating in the Feynman rules. For example, 

f0r the 2 ---+ 2 scattering process gg ....,.-+ bb there are· onl¥ three contrihuting 

colour structures, namely 

(1.56~ 

In fact the third structure C3 d0es n0t contribute at tree level. Other pro­

cesses will be exJ!>ahded in a different basis of celour structures. By defining 

a modified set 0f Feynman ndes, given in e.g. ~15], in which there are ne 

col0ur dependeRt factors, and r_estricting the set of diagrams considered, we 

can evaluate directly any of the p&rtial sab-amplitudes. In particalar, we 

oRly ceRsider diagrams with a particular ordering of the exterRal partons. 

~b.e partial amplitudes are ,then evaluated separately, one for each orderiRg. 

When we come to square the amplitude; the partial amplitudes are multiplied 

numerically, and we evaluate the col0ur fact0rs 1by hand. 

So, by colour ordering we mean the separation of kinematic and group 

theoretica:l factors. The price of this separation is that we now Reed to 

eva:l;uate various partial amplitudes, which are the kinematic coefficients of 

the celour structures. Each partial amplitude is distinguished by a particular 

ordering 0f the external part0ns and only those Feynman diagrams with the 



CHAPTER 1. INTRODUCTION 24 

requisite parton ordering (and hence colour structure) contribute to a ghren 

partial amp1itad.e. Each partial amplitude is gauge independent, and as such 

can be worked: out in isolation to others. In this way we breaik up the problem 

into smaJler pieces. 'Fhis is why the colour decomposition is so l:ls~ful. 

Apart from the example above,_ the other process we wHl be concerned 

with in this thesis is gg --+ bbg. Because there ate more partons invohred, 

there are more GOlour structl:lres that can contribute. It is not d.ifficult to see 

that the only strl:lctures present are of the form, 

(1.57) 

for some ordedng of {A, B, C}. There are therefore 3! = 6 different struc­

tl:lres. Of col:lrse, the three-glaon vertices wiHI contribute fa.ctors of JABC, but 

these can always be re-written using the commutation relation, 

(1.58) 

1.6· Outline of th.~is Thesis 

In the two chapters which follow this introduction, we describe alternatives 

to the usaal Feynman diagram method! of evaluating gaage theory ampH­

tudes. These new techniques are inspired by a corresJ>ondeBce [16]1 due to 

Witten between the superymmetric gaage theories and a certain string the­

ory defined. in 'rwistor space. These new methods are distinguished by their 



CHAPTER 1. INTRODUCTION 25 

use <:>f on-shell building blocks, and thus avoid m11cb. of the computational 

difficulty associated with Feynman diagrams, wb.ich use gauge-depenclent, 

off-sb.elil• quantities in intermediate steps. In: Chapter 2 we win discuss the 

applicability af these new methads to a simpler gauge theory -: QED. The 

on-shell techniq11es were originally envisioned as only applying to massless 

partons. Grad11ally after their introduction it was found [il:7, 18] how they can 

·be used for amplitudes with massive fermions, thus increasing still ·further 

their appea:l to phenomenoiogists. ~n Chapter 3 we explain one way in which 

such massive partans can be accomadated. 

In. Chapter 4 we outline the calculation of the loop corrections to the 

process gg ~ bb. We maintain full generality, that is we keep all the spin 

anQI colom information. 'Fhis calculation is a necessary inp11t to any NI.O 

analysis of the central excl11sive production of dijet final states. ln Chapter 

5 we describe in some detail tb.e phenomenological appea:t of this production 

mechanism, and the relevance 0f the amplitudes presented in this thesis. 



C'hapter 2 

QED Amplitudes fr,om Twi~stor 

Space 

2.1 Iat:roductioB 

The calculation of cross sections for multi-particle scattering processes is re­

stricted primadly by the technical difficuLties associated with the evaluation 

of the corresponding amplitudes. These diflkulties are due to the factorial 

growth in the number of diagrams as the number of external particles is 

increased. Also, the number of terms in the expression for each diagram 

qui~ly increases. Significant progress was made in 2004 when Witten [16] 

discovered a connectien between gauge field theeries in four dimensions and 

a string theory define<'}. on twister space. lt was found that field theory am­

plitudes, when re-expressed in terms of twistor space variables, exhibited a 

26 
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structure that was not previously apparent. This development was interest­

ing ,frem a theOFetical point of view, because it suggested hitherto tmkllown 

mathematical structure in. famiHar gauge field th~ories. H may be heped 

that such a reformulatien wil[ be the springboard for further progress; As 

well as this, there was considerable interest among phenemenologists in the 

premise of impreved cakulational methods, for this work suggested much 

improved techniques for the calculatien of tree 'level amplitudes. These new 

techniques, permitted analytical expressions te be werked out for the first 

time for amplitudes with up to eight external particles. It also led to much 

more cempact forms for known amplitudes, which is important fer practica:l 

applications - the less time required for each .function call the higher statistics 

can be obtained in a numerical integration routine such as Monte Carlo. 

T~he cerrespondence that Witten discevered applied only to purely glu'­

onic N = 4 supersymmetric Yang-Mills theory at tree level. However, at 

tree level the amplitudes of this theory ceincide with those of QCD. This is 

easily underst<md when one censiders that the a:bsence of leops means that 

in pmely gluonic diagrams there can be ne involvement of the ether fields in 

the SUSY multipl'et. This made the cetrespondence a useful phenomenolag­

ical tool. Gradually, the scope was extended - for example they were shown 

to be useful also for amplitudes involving quarks [18, 19):. In this chapter we 

will describe the application of the so-called 'MHV -rules' and BCF recursion 

rel'atiolls (these terms will be explained in the proper place) to QED ampli­

tudes. We will begin by describing what MHV amplitudes are and hew they 
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are incorporated in a scalar perturbation theory. We will illustrate our find­

ings with numerous examples of increasing complexity, checking the results 

against an old, yet impressively concise, formulation in terms 0f Feynman 

diagrams. 

2.1.1 MHV amp'litudes 

Let us consider .colour ordered amplitudes at tree level inv0lving only gluons. 

Par.ke and Taylor [2(i)] conjectured that these take remarkably simple forms 

depending on the helicities of the externa:! part0ns. This was later proven 

using a recursive technique by Berends and Giele [21!]. When all the helidties 

are p0sitive1, or if only one is negative, then the amplitude vanishes, 

A(l+ 2+ ·~ +) , ,. , ... ,z , ... ,n 

0 ' 

0. 

(2.1) 

(2.2~' 

These amplitudes are cololll' order:ed partial amplitudes - see Chapter 1 for an· 

explanation of this. In this chapter we adopt the convention that all particles 

are incoming, so that momentum conservati0n reads E~=l Pi = (i). When two 

of the partons have negative hericity, and the rest positi:ve, the amplitucle is 

1We will consider oiily amplitudes with a majority of positive helicity partons. The 
remaining configurations are obtained by parity invariance. 
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:no longer zero. It is, however, onl¥ one term [2ID, 21]:, 

( . ')4 
A(1+ 2+ ·- ·~ +) - '/, J . ' , ... ,z , ... ,) , ... ,n - nn (k k )' 

I. k=l. + 1 
(2.3) 

This type of helicity co:nfiguration is described as being maximally helicity 

v:iolating (MH:V). These results are valid for all n. This represents a large 

scale cancellation of terms in a Feynman diagram expansion. Consider that 

for high n many millions of terms are cancelling down to a single term. This 

structtrre is in no way obvious at the level of the Lagrangian. Increasing be­

yond two the number of negative helidty particles leads to more complicated 

expr:essions, but nonetheless, the simplidty of these results is impressive. 

2·.2 Kleiss~Stirli:ng approach to e+e- ~ n"( 

Let us digress now to consider an old result. Consider tlle process 

(2.4) 

In the massless (electron) limit, helidty is conserved at.each fermion-photon 

vertex and so the helicities of the electron and' positron will be opposite, he- = 

-he+· There are therefore 2n+1 distinct spin amplitudes (two polarisations 

for each photon and he- = ±). In the traditionall,approach, the (n!) Feynman 

diagrams are obtained simply by joining the n photons to the fermion line in 

all' possible ways. La:beHing the distinct polarisation states by S = 1, ... , 2n+1 
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gives an expression for the unpolarised cross sectio11 of 

1 . 1 1 L. .2 da = - ['d,P ] - - I1Ms11 n F , n I 4 . . n . . s 
(2.5) 

where the terms 0n the right-hand side are the flux factor, the phase space 

volume element, the symmetry factor a11d the spin-summed/ averaged ampli­

tude squared respectively. 

The KS result is2 [14~ 

Ms 

(2.6~ 

where pf.l is an arbitrary light-like four vector and 

{2~7) 

The sum i11 (2.6) is over then! distinct permutatio11s kll k2 , , .. of the photo11 

2This expression corresponds to the choice he- = -. The corresponding he- = + 
amplitudes are readily obtained using parity invariance. 
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momenta kb k2, ••• ,from which internal four-momenta are defined by 

i 

qi - Lki -pa' i = 1, ... ,n (qn = Pb) ' 
j=l 

rli 
q[ 

{qf = 0). (2.8) - qi - ------Pi , 
2p. qi 

The (ij} and Tij] spinor products that appear in Eq. (2.6~ are defined in the 

introduction. The full e:x:pression for the amplitude for arbitrary n can then 

be written in just a few lines of computer code. Note that the result for 

the amplitude squared is independent of .pP (which is related to the choice 

of photon gauge) and this provides a powerful check on the calculational 

procedure. 

2.2.1 Phatons 

Tb.e main differ.ence when we consicl.er QED is that there are no pur.e-photon 

tree-level amplitudes, because .photons do not self-interact. There must al­

ways be (at least) one pair of fermions present, which (if massless~- must 'be of 

opposite helicity due to our convention that all particles are -incom-ing. Also, 

in contrast to non-Abelian theories there is no concept of colour ordering, so 

we witl be concerned with fuH physica:l' amplitudes· rather than colour-orderecl. 

partial amplitudes. lt is again the case that amplitudes with only one nega­

tive helieity particle (which must be either the fermion or anti-fermion- we 
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shall take it to be the former) vanish, 

AQED(-f+ ~- 1+ 2+ J+ +)- . · .. , , , , ... , , ... ,n -0. (2.9) 

Here J+ denotes a positive helicity .photon with momentum Pi, and /, ] 

denote fermion and anti-fermion respectively. The dots in Eq. (2.9) indieate 

positive helicity photons. The MHV amplit11des, which are those with two 

negative b.elicity particles, take the following form (for massless fermions }: 

{2.10) 

This is the fundamental MtHV amplitude in QED, and as before it consists 

of only a single term. The factor e" is the gauge coupling constant, which we 

will normally omit in what follows. It is possible [13J to obtain the amplitude 

in (2.10) by symmetrizing colour-ordered non-Abelian amplitudes, 

AQED:CJ, j, 1, 2, 3, ... , n) --::-A(], j, 1, 2, 3, ... , n) +A{], f, 2, 1, 3, ... , n) + .... 

{2.11) 

Each term on the right-hand side is a colour-ordered MHV (Parke-Taylor) 

QCD amplit11de, and we sum over n! permutations of n gluons'. A factor of 2~ 

must also be included to take account of different generator narmalizations 

- our QED generators are normalized ta unity. It sheuld be nated that in 

writing (2.10) in this particular way we have made an apparently arbitrary 

choice of phase. Since the phase of a full (i.e. not partial) amplitude is 
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not a physicalobserva:'ble, any ofthe ( .. ) pmducts in (2.:1!6) could, naively, be 

replaced with the corresponding '[. .]. product. We wiU come back to this point 

later. It is worth mentioning that due to parity invariance the amplitude with 

aJll the helicities fl:ipped has the same magnitude as (2.10) above. Also, one 

can use charge conjugation invariance to switch the fermioh and aHti-fermion. 

We can write (2.10) in a physically more illuminati11g way, emphasizing 

the pole structure: 

_ (!1) 3 (]1) IT ev"i(f]) 

(! !)2 k=l (fk)(fk) 

- (f J)3(]J) nn IS . 
(! J)2 k=~ k 

(2.12) 

It is a fundamental result of general quantum field theories that scattering 

amplitudes have a universal behaviour in the soft gauge bosoH limit. When 

all components of a particular photon's momentll1Il are taken to zero, the am­

plitude fact0rizes int0 the amplitude in the absence 0f that photon multiplied 

by an 'eik0nal factor', 

S ~ ev'2({J) 
k - (fk)i(fk) . (2.13~· 

The form of this factor is universal, by which we mean that any QED am­

plitude (not only MHV ones) will have a similar behaviour ,in the soft limit, 

with the same form for the eikonaJl factor. Since the QED MHV amplitude 

is just a single term, it folllows that the eikonal factors must be present as 

factors - andl indeed they are. 
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2 .. 3 The MHV Rules 

There has been much recent progress in calculating scattering amplitudes in 

perturbative Yang-Mills theery. Cachazo, Svrcek and Witten {22] introduced 

a novel diagrammatic technique, known as the 'MHV rules', in which max­

imaJlly helicity vielating (MHV) amplitudes are used as vertices in a scalar 

perturbatien theory. '['hese vertices are cennected by scalar propagators 

1/ p2 . This arrangement vastly Ieduces the number of diagrams that must be 

evaluated relative te the traditional Feynman rules case. It alse means that 

each diagram requires much less effert te evaluate than with Feynman rules, 

due mainly to the absence of complicated mullti-gluon veitices. 

Although the originaJl CSW paper dealt only with purel~ gluonic ampli­

tudes, the formalism has since then been successf.ully extended te include 

quarks [:US, 19], Higgs [23, 24] and massive gauge hosens {25]. In this chapter 

we will use the amplitudes shewn in Eq, (2.1J(i)) as building blocks, and thereby 

apply the MHV rules to QED processes. We will derive relatively simple for­

mulae for three, four and five photon amplitudes (an electren ancl. positron 

are uncl.erstood to be present also). We ,first pause to describe in mor:e detail 

the Weyl spinor:s .and bispiner representation of extemal momenta that we 

wiH use, 

The Lorentz gieup consists of rotations and boosts. Physical theories 

must be invariant uncl.er Lorentz transfermations, which means that the fun­

damental objects we use te describe physical systems must transform in well-
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defined ways under the group. The generators of retations J and beasts B 

do Rot commute with each other, but one caR show that the fell'owing com­

binatieBS do cemmute: 

M - J'+iB, 

N - J-iB, (2.14) 

and that, furthermore, M and N obey the SU(2) a:lgebm. This means that 

the Lore:ntz group is equivalent to two copies ef SU(2). Representations of 

the fermer can thus be characterised as m ® n, where m and n label the 

representations of each of the SU(2) sub-groups. We call obJects living in 

the l ® (j) representation left-handecl Weyl spiners. They car.ry one index 

only as they are singlets under the second SU(2). Similarly, right-handed 

Weyl spinors li:ve in the 0 ® l representation. They also carry one index, 

thm:1gh it refers to a different representation space and is commonly dotted to 

emphasise this. The vector representation is l ® !, and objects transforming 

lmder it carry two indices, ene dotted and one undotted. It is more common 

te write vectors with a single index as follows, 

Paa = a~a. P~t, (2.15) 

where a~a. are the chiral gamma matrices. One can show that massless vectors 
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can be written using two Weyl spinors1 

(2.16) 

so that each massless eX!terna:l leg of an amplitude can he thought. of as a 

pair of Weyl spiners, of opposite chir.ality3 . 

1ln order to use MHV ain.plitudes as vertices~ it is necessary to continue 

them off-shell, since internal momenta will not be light-like. We need to· 

define spinors A foF ,the internal lines. T_he convention established' in [22], 

which we shall follow, cdefines A to be 

(2.17) 

for an interna:lline of momentum p00 , where iJa. is arbitrary. The same TJ must 

be used for all inteFnal lines and in al[l diagrams contributing to a particular 

amplitude. In pr.actice, it proves convenient ta choase TJ tb fue one of the 

conjugate (opposite ·chiFality) spinoFs :\ ·af the external fermian legs. Note 

that for external lines, which remain on-shell, A is defined in the usual way. 

Having defined the MHV amplitudes, and the manner in which they are 

to be continued off-shell, we are now in a position to calculate non~ MHV 

amplitudes·. 'Fhese ar:e simply those with more than two negative-helicity 

particles. 

3Left handec:l spinors have chii:ality +1 and right handed spinors have chirality -1:, 
though the opposite convention can be found in the literature. 
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2 .. 3.1 Simple Examples 

As a first example let us calctdate A(fi,Ji,3-,4-).4 This is expected to 

vanish, see (2.9). 'There are two contributing MHV diagrams, th<mgh they 

differ only by a permutation of photons. Note that the external legs are 

not constrained to be positioned' cyclically as in the case of colour-ordered 

partial amplitades. The a:hsence of a pure-photon vertex means that the 

internal lines of MHV diagr.ams fer QED processes with two ferrriions can 

only be fermionic. Consider Figure 2.1, which shows the first of the two 

diagrams, We assign the internal helidties in such a way that each vertex 

has two negative helieity J,ines, with the remainder pesitive. They are then 

MHV amplitudes. Schematically, the contribution of this <diagram is 

Left Vertex x Propagator x Right vertex. (2.18) 

Taking expressions for the vertices from Eq. ~2.1(:)}, and using 1/q2 for the 

propagator, the contributioR of ,the diagram in Figl:lie 2.1: can be written 

down immediately as 

(2.19) 

where Aq is the spinor representing the internal line ef momentum q.. This 

expression is simply a produ<::t of two MHV vertices; and a propagater. Using 

4Note the change in notation ~ the spinor representing the fermion is now denoted 2 
(not f) and the spinor representing the anti-fermion is now denoted 1 (not f). Also, for 
clarity we will now omit the coupling constants. 
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Figure 2.1: DiagFam contributing to A(lt ,fi, 3-, 4-) .. Fermien lines are 
dashed, photen lines a11e so'lidi. .Aill particles are incoming. There is also a 
similar diagFam :with photons 3 and 4 interchanged. 

(2.17) we can evaluate the spinor products involving Aq: 

(:.\q 4) - (4 1) </J1 , 

(Aq 1) (1 4) <P4 ' 

(2 .Xq} (2 3) <P3 ' 

q2 - (k2 + k3?' 

- (2 3H2 3] . {2.2e~ 

Here q)i = [71 i] is a function of the (arbitrary) spinor 7]. Simplifying, we find 

~2.21) 
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To, this we must .add the contribution from the diagram with photons 3 and 

4 interchanged, namely 

When we add these two terms we find that mementum conservation, which 

can 'be expressed as (1 4).[4 2] + (1 3}t3 2] = 0, ensures that the sum vanishes, 

so that 

(2.23) 

as expected. In this simple case there was no need to fix the value of TJ, and 

we ,carried the dependence on it through to the end, through the </>i functions. 

In more complicated calculati0ns we will specify TJ as a spinor describing one 

of the externaJl1 momenta, and thereby simplify our task. 

The next d'emonstraticm of the MHV rules applied to QEID processes that 

we will consider is the eva:luati0n of the amplltude A-(ft, fi, 3-, 4-, 5 +). We 

describe this as an MHV amplitude, as it has exactly the 0pposite helicity 

structure te an MHV amplitude, i.e. two positive helicities and the remainder 

negative. There are four ·diagrams (see :fi1igure 2.2), though once again our 

task is shnplified 'Because there are only two independent expressions t0 work 

out, the rest being obtained by appropriate permutations. We :find that 

(2.24} 
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Fig.ure 2.2: Diagi"ams contributing to A(fi, fz, 3-,4-, 5+). The 3 ~ 4 
permutation of each also contributes. 

and 

(2.25) 

If we choose 'TJ = .X1 then </>1 = Q and so N and its 3 +--+ 4 permutation 

vanish. We are left with two terms which, after again invoking momentum 

conservation, simplify to 

A(j+ f- 3- 4~ 5+) = -2~ [1 2](1 5]
3

(
2 5] . (2.26.) 

· 
1 

, 
2 

, , , n~=3l1 k](2 kJ 

Inspection ·of the corresponding MHV amplitude (2.10) shows that this re­

sult has the correct magnitude. Having made a particular choice of phase 

for the MHV amplitudes in (2.10), a definite phase emerges for their MrHV 

counterparts. The former were chosen to be holomorphic functions of the 
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A's af the external legs - they contaia only ( .. ) products. The latter emerge 

as aati-hotomorphic, consisting eflll¥ of ~ .. ] products, Colour-ordered pattial 

arnpfitudes also have this pr0perty. Here h0wever, we are d:eaHag with a 

physical! amplitude, and so the phase is net a measurable quantity. lt is in­

teresting ta nate that choosing the MHV amplitucles to have different phases, 

for instance an expressi0n containing a mixture of ,\ and .X, daes not in gen­

eral lead to catrect results for non-MHV amplitudes. This is to he expected, 

as it is 0nly those amplitudes which, apart from the momeatum-coaserving 

delta function, are comprised eatirely of( .. ) products that transform simply 

onto a line in twistor space t16J. 

Let us introduce the concept of a next-to-MHV amplitude and denote it 

NMHV. By this we mean oae whi€h has three negative helicity partons, with 

the remainder positive. The first non-zero NMHV amplitudes appear for 

n = 4 photons, when two photons have helicity + and t:w0 have he1icity -. 

There are eight diagrams f0r this process but on:l¥ three distinct structures, 

so that we need oaly w0rk out three diagrams and ofutain the 0thers by 

permuting ph0tons. 'ln fact, by a judicious ch0ice of the arbitrary spinor ,TJ we 

call' reduce the expression to just two iadepeadent terms plus permutations. 
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Figure 2.3: Diagrams contributing to A{fi, /2, 3+, 4 +, 5-, 6- ). Various per­
mutations of each also contribute. 

Referring to Figure 2.3, 

A -

B 

c -

-4 c/>~![{2 1)4>1 + (2 6)4>6](2 5)2 

[l 6)4>6(2 3){2 4)1[1(3 t)ct>1 + (3 6)4>6U(4 t)ct>1 + (4 6}4>61 ' 
-4 [(6 1)4>1 + (6 4)4>4]2(2 5)2 ' 

[( 4 l)c/>1 + ( 4 6}4>6)[ (3 2)4>2 + (3 5)4>5](1 4)r2 (2 3) 
[(1 2)4>2 + (1 5)c/>s]l[(6 2)4>2 + (6 5).c/>s]2 

-
4 

[ (3 2)4>2 + (3 5)c/>s] [ (4 2)4>2 + (4 5)4>5](1 3)(1 4)[2 5)4>5 .(
2
.
27

) 

If we choose"'= .;\1 then c/>1 = 0 and the contribution from diagram A above 

vanishes. The other two terms simplify, and we end up with the following 
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expression, 

(1 4)[1 6]:(p2 +Pa + Ps) 2 (2 3)(31:2 +51[] 

+ (3 <--> 4) + (5 <--> 6) + ( : : : ) 

(s,1'2 + S,:J's):{:612 + 51 []2 

+ 
4

(13)(14)r5 2][15](312+SilH4!12+5IlJ: 

+ (5 +=t 6) (2,28) 

Here we have introduced the sherthand notation 

(i 1 i + k ll } = (i i)b t] + (i kHk l!], (2.29) 

and Sij = 2 Pi · Pi. The result above is obviously more complicated than 

the one-term MHV am:plitucl~s, but it is still much simpler than what would 

be dhtained via a Feynman diagram calculation. Although the two alge-

braic forms are very different, we have checkecl that this e:x:pression agrees 

namerica)]ily with the KS results [14'], up to a phase. It is interesting to 

nete that we de not have the freedom to introdace relative phases among 

the set of MHV amplitudes. For example, introducing a factor of - il into 

the 1-photon MHV amplitude while leaving the others fixecl will obviously 

lead to a change in the relative phases, among the terms in (2.28). Our de­

ri<ved expression for A(fi, /2, 3+, 4+, 5-, 6-) will then no longer have the 
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correct magnitude. In this way an apparently anphysical phase affects J>hys­

ica:l c:r:oss sectio:ns. So the phases of the MHV amplitudes in (2.10) must 

be chosen appropriately. We have also calculated the NMHV 5-.photon am­

plitude5 A(]~, fi, 3+, 4+, 5-, 6-, 7+) using the MHV rules, and once again 

found numerical agreement with [,14]. We exJ>ect that further tests will be 

successful. Amplitudes with n photons, two 0f which have negative helidty, 

re<')IUire the evaluation ·0f only n - 1 structures. The fuU set of diagrams is 

then easHy obtained through permutations. Increasing the number of nega­

tive helicity J>hotons leads to MHV diagrams with more than tw0 vertices. 

For QED J>rocesses with two fermions, the absence of a pme-phot0n ve11tex 

means that such diagFams consist only of a linear string 0f vertices - there is 

no branching. Each vertex has one negative helicity photon attached to it, 

and the remaining photons are addecl in a:H possible ways. 

2.3.3 Soft Limits 

We have checked aJl'gebraically that (2.28) has the correct limits when one 

of the photon's momenta is taken to zero, :namely that the expression tends 

to the amplitude in the absence of that photon, multipliecl by a 'soft' factor 

5Note that all non-zero n = 5 helicity amplitudes are either MHV or NMHV, as for 
n = 4. The first NNMHV amplitudes appear at n = 6. 
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caHed the eikona:l factor: 

(~ + ) V2(1 2) 
A A ,/;,4 ,5-,6- X (1 3)(2 3) 

(+ _ + + _) \1'2[1 2] (. . I~ 
A A '/2 '3 '4 '6 X [1 5][[2 5] 2.3(i)J 

and similarly for the ot'aer photons. Notiee that whell a positive helicity 

f)hotoll becomes soft, the eikonal factor is comf)rised entirely of ( .. ) spinor 

products, whereas when a negative helicity photon becomes soft the eikonal 

factor is comf)rised entirely of ~-.] products. We have also verified that the 

amplitudes presented here have the con:ect collinear factorization properties 

when one of the photons is emitted in the direction of the incoming fermion 

or anti-fermion.6 

2 .. 4 Tbe BCF Recursion Re,lations 

A new set of recursion relations [28] has been proposed to calculate tree am­

plitudes ill gauge theories. We wiU here give a brief review of this technique, 

before sh.owing how the relations can ;fue.used, along with (2.1@'), to calculate 

QED amplitudes. Consider an n particle (purely glUoBic, for definiteness) 

scatteriBg amf)litude, with arbitrary helicities. Choose two of the external 

lines to be 'hatted' - this will be defined shortly. Suppose the n-th (posi­

tive helicity) and (n- 1)-th (negative helicity) gh:1ons are hatted. These are 

6The coHinear !behaviour of QCD MHV amplitudes has been studied ·in [26, 27:]:. 
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reference lines. The BCF recursion relation then reads 

where 

Pn,i 
...._ 

Pn,i 

...._ 
Pn-1 

...._ 
Pn 

Identities such as 

-

-

-

1 - - (• I p I n] x - ' 
w 

1 
- -(n- 1 I P I•] x -=- , 

w 

(2.31) 

(2.32) 

(2.33) 

are used to remove the hats, whereupon the resmt can be simplified using 

standard spiner identities. Here w = [P n] and w = (n- 1 P). The fact0rs 

w and w o:nly ever appear in the combination ww = (n- 1 lP In]. 'Fhe 

procedure can be c0nveniently represented diagrammatically, see Figure 2.4 
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for a specific case. 

IH [~7, 29] the relations were shown to work for amplitlldes involving 

fermions, and in [30] it was shown. that the referen.ce gluons need not be 

either adjacent or of the same helicity. Applications to massive particles 

were described in [31-33]. The relations were proven. in. [30] by shifting the 

hatted mom.enta by a complex amount -see Section 2.5. Here we will be 

interested in ·applying the above recursion relation to QED processes. In 

contrast to the MHV rules, the recursion relations involve the use of MrHV 

amplitudes. We can obtain these from (2.10) by switchin.g ( .. ) and [ .. ], and 

using charge con.jugation in.variance to swap the fermion and anti-fermion. 

2.4.1 Examp'le of BCF recursio:n relations applied to a 

QED process 

Consider the MHV amplitude A(f7, /2, 3+, 4+, 5-). As before, f and f 
denote a fermion .and anti-fermion respectively, and i+ represen.ts a positive 

helicity photon of momentum ki. Let us choose the hatted lines to be 1 and 

5, as shown in Figme 2.4. Then there is on.ly one distinct diagram7 for this 

process, which evaluates to 

V2[l3]2 1 2(2 5) 2 

[i i>] (k1 + k3)2 (2 4') (P 4) . 
(2.34) 

7Note that as detailed in (28), diagrams with an upper vertex of (+ + -) or a lower 
vertex of ( ~ ~ +) vanish. We have not drawn such diagrams. 
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2-,',,6-
' ~ 

I+ 
I 
I 

5-
I 

p----~, 

Figure 2.4: BCF Diagram co:ntriibuting to Ai(J:-,Ji,3+,4+,5-}. As usual, 
dashed Hnes are fermiens, solid lines are photons. 

Here we have used (2.1!@}, together with its helicity flipped version, to substi­

tute for the (en-sheN') tree amplitudes in (2.31). P = k1 + k3 is the moment a 

of the internaJl li:ne. Simplifying, we get 

2 (2 5)2 
v'2 (2 4)(3 4)(1 3) , 

(2.35) 

and to this we must add a simiilar expression with photons 3 and 4 inter­

changed, 
(2 5)2 

2v'2 (2 3){4 3) (1 4) . (2.36) 

After simplifying using Schouten's identity8 we recover the expected result, 

A(li' ii' 3+' 4+' 5-} - 2J2(2 4)(~ ~)
2

(1 3) + 2v'2 (2 3)\: ~;(1 4) 

. rrd2 1)(2 5)3 (1 5) 
- 2v ~ .. 5 . (2.31) 

nk=3(1 k)(2 k) 
8For any 4 spinors (a b) (c d) + (a c)(d b) + (a d) (b c) = 0. 



CHAPTER 2. QED AMPLITUDES FROM TWISTOR SPACE 49 

(a) Diagram P (b) Diagram Q (c) Diagram R 

Figure 2.5: BCF diagrams contributing to .AJ(f{, !2, 3+, 4+, 5-, 6- ).. Various 
permutations of each aJISo contribute. 

2.4.2 The NMHV ampHtude A(Jt,f2,3+,4+,s-,6-) 

There are three BCF diagrams for this process, up to permutations, which 

is the same one that we cakulated in Section 2.3 using the MHV rules. 

We can build up the four photon process using am}!)litudes we have already 

calculated. The aiagrams (Figure 2.5) eva:luate to 

p - 4 . . (511 + 312](511 + 3.1;4] 2 

(31:1 + 512]1(511 + 3I6HPt + Pa + Ps)2[2 6](1 3) ' 
Q (2 5)2 [3 ]]2(5113 + 611], 

-
4 

(2 4)(4!13 + 6l1]i(5ll + 3I6MPt + Pa + PaJ2[6 1] ' 
R _ 4 . . (612 + 5li1~ 2,(Pt + P2 + Ps)2 [2 1]2 

(3~12 + .511:]1(412+ 511}(311 + 512](4'11 + 51·2][5 1][2 5] ' (
2
·
38

) 

where we have chosen external lines 1 and 5 to be hatted. The full result is 

then 

A(ft,J:;,3+,4+,5-,6-) = (P+Q) +(3 +-+ 4) +R. (2.39;} 
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We have checked numerically that this e:x:pression is equal to (2.28~ which 

was calculated using the MHV rules. Both are equal to the corresponding 

result obtained fFom the KS formula, up to a phase. 

2.5 Proof Of the BCF Recursi0n Relations 

An elegant proof of the recursion relations originally proposed: in (28] was 1pre­

sented in [30]. Here we will briefly sketch its main elements, before discussing 

its applicability to QED. 

Take a tree ·level amplitude A(l, 2, ... , n) with arbitrary ihe1icities and 

• choose two partides for special treatment, which we can take to be 

H1e k-th and l-th particles with helicities hk and h1 respectively, and 

introduce a complex variable z to rewrite their momenta as 

Pk(z) - .\k(Ak- z.'X,) ..::.:.. Pk~@~ - z.Xk.'Xt , 

p,~z) (.>i., + z.>i.·k)X, _:_ p;.(e~ + z.>i.k.X., . (2.40) 

We have effectively shifted the spinors Aj --+ Aj-+- ZAk and .xk --+ xk- z.X,. 

Note that there is no symmetry between k and l ~ they are treated dif­

ferently. Having d'one this we can now construct the auxiliary function 

A(z) = A(PbP2, ... ,pk(z), ... ,p,.(z), ... ,Pn) . (2.41) 

The aim now is to use the analytic structure of this auxiliary function, 
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considered as a £unction of z, to gain iruormation on the physically 

relevant object A(O). 

• A{z), has only simple .poles, This can be seen by noting that poles can 

o:nly arise from 1propagators such as ~~ K 2 , wllere K is, tlle moment a 

of an internal line. If both Pz a:nd Pk, or neither of them, are present 

in the .sum of e:x:ternal momenta contributing to K then the latter is 

independent of z and there is no z-pole in the .propagator. However,_ if 

only one and not the other is present then the mome:nta of the internal 

line is linearly depeBdent oB z. Thus A(z) has aBly simple J!>Oles. 

• Cauchy's theorem tells us that-

, ~ . . (A(z)) . _ _ (A(z)) A~ID~, = - ~Residue _ -z- · z~~.. - Residue _ -z- z~oo (2.42) 

so that the physical amplitude Al~(i)) is t:ully determined by the finite 

pole positions Za .and residues of the auxilliary £tinction,, provided A(z) 

vanishes at i:nfinity. The finite resid1:1es are just products of lower-n 

tree amplitudes, with Feynman propagators in between. The recursion 

relation then fdllows immediately. 

'Fo demonstrate the vanishing of A(z) as z-+ oo, one may use the MHV 

rules outlined in !(22]. It suffices to show that the MHV amplitl;ldes themselves 

vanish in this limit since, as shOWil in r30], the off-shell continuation does not 

affect the large z beha'Wour of a general MHV diagram. ~t turns out that 
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some choices of reference lines are all.owed (i.e. lead to an aaxiliary function 

that vanishes at infinity), whilst others are Iiot. We can formulate some 

rules to, determine the a:llowed choices. This is aseful because, as the aathors 

of Ref. ;[17] found.', the namber of BCF diagrams, eon.tribating to a given 

amplitude dep~nas strongly -on the reference lines chosen. A careful_ choice 

can save much 1lahour, and yield more compact ex~ression.s. 

First, iet us repeat (2.10) for convenienee, 

A(-/+ f- 1+ 2+ I- +) = 2~(f])n-2(JJ)3(JJ} 
- ' ' '- ... , ' ... , n - ll~=r(fiHfi) ' _(2.43) 

and ruso its MHV counterpart 

(2.44) 

The MHIV rules ean b>e employe<!! using either solely -rvt;HV or solely MHV 

am~litudes. If we choose l to be a positive helicity photon, and eonsider 

(2.43) then it is clear t-hat the am~litude vanishes at infinity since there 

are more factors of z in the denominator than in. the numerator. This is 

true regardless? of the iaentity of k. Similarly if we choose k to b>e a negative 

helicity photon, and consiaer (2.44) then onee again A(z} vanishes at infinity, 

regardless ofou:r choice of l. So in both these cases, which cover a large sub>set 

of the ~ossible ehoices, the reearsion relations will work. The positive helicity 

9In fact if k is, either the fermion or antifermion, then A~z) vanishes as [/z whereas if 
k is another ,plloton then A(z) vanishes as 1/z2 • 
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a:nti-fermion may be used at the lower vertex J>rovided thefermion is net used 

at the upper vertex, as in this case the MHV am}'>litude dees not vanish as 

z--+ 00. 

'It is also possible [3ID] to see the analytic structure of an amplitude by 

certsideting the set of Fey:nman_ diagrams that ce:ntribute to it. £er e+e~ --+ 

n'"'( there are n'! cliagrams, differing .enly in the order in whl.ch the photons are 

attached to the fermion line .. The z-depende:nce ef the dia.gr.am can enly come 

from propagators (which either contribute a factor 1/ z ~or are independent of 

_ · z} and photon p0larization vectors10 which, in the spinor helicity fermalism, 

take the general form 

(2A5) 

for negative and positive helicity photons respectively. Here p, and ·[1, are 

reference spinors. Recall that we shift the ~spiDers representing the momenta 

of the -l-th and k~th legs as 

(2A6) 

so that the polarization vector of the k-th photo:n behaves as 1/ z if it has 

negative he1icity and lineady in z if it has positive helicity. 'Fhe opposite 

10In contrast to. QCD,. the vertices are momentum independent and so cannot ciepend 
on z. 
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holds for the Z:.-th photon. By insJ:!>ecti:ng the set of Feynman. graphs we can 

declhce that choosing hk = - or hl -=- + is always allowed (leads to an A(z) 

which vanishes at z -+ oo). This agrees with what we concluded abave based 

on a cansideratian of the MHV diagrams. 

2.6 Conclusions 

We have shown that the modern techniques inspired by the transformation 

of Yang-Mills scattering aiilplitudes to twistor space [1t6] can be successfully 

applied to QED processes, a:nd yield reasanably compact expressions. As 

well as same simple MHV aiilplitudes, we calculatedi the NMHV amplitude 

A(ff, /2, 3+, 4 +, 5-, 6-) using both the MHV rules and BCF recl'lfsion ap­

proaches~ The expressions obtained are not obviously equal, but numerical 

checks proved them t0 be so and the results were confirmed by compari­

son with the KS [14'] for.mula, which is directly derived from Feynman dia­

grams~ We have alsa checked that the amplitudes have the correct factorising 

( eikonal) form when <me af the phatohs becomes soft. Note that the QED 

NMHV amplitudes we have presented can also in principle be obtained by 

symmetrizing QCD colol'lf-ordered amplitudes, but this, is a laborious proce­

dure and! wiU not lead direct'ly ta compact expressions. We 'have shown that 

it is passible, and much easier, to use physical MHV amplitudes directly in 

the MHV rules. 

We have given explicit e~pressions for up to and including 4-phdton am-
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plitudes. The extensi<m to n 2: 5 photons is in princi:ple straightforward - in 

either the CSW or BCF appn>aches - although there is an inevitable growth 

in cemplexity as mere NnMHV amplitudes start to appear. We have not 

been able to discern any large-n simplification ef the expressiens, in contrast 

to the remarkably compact expressien for arbitrary n (see Eq. (2.6)) in the 

KS approach. 



Cbapt~er 3 

Amplitudes with Massive 

Fermions 

3.1 In.troduction. 

In the 'J>reviol:ls chapter we descrioecl two new methocls for evaluating multi­

particle scattering amplitucles in gauge field theories. Both of these ~grew out 

of Witten's observation [16] that the simJ>licity of the S(rcaB.edl MHV ampli­

tudes, is mirrored by an interesting structure when the same amplitudes are 

expressed in terms of twistor space variaoles. These two methocls are gen­

enrlly known as the 'MHV Rales? [22] and the BCF recursion relations 1[28]. 

In their initial forms, both schemes were restricted to amplitucles involving 

·only massless par,tons. However, it is important phenomenologically to be 

able to deal with massive fermions. We will see in the final chapter that the 

56 
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amplitude with a pair of massive quarks and three gluons wiU be relevant to 

studies 0f Centr:al Exclusive Producti0n at the LHC. 

It was sh0wn in Ref. [34) how to generalise Supersymmetric Ward Iden­

tities [35, 36) to incluae massive particles. In this way, different amplitudes 

involving fields belonging to the same supersY'Jllmetric multiplet are related 

by a ·rotation. F0r instance [37), ampl;itudes involving quarks. and gluons are 

related by SWis to amplitudes involving scalars and gluons, and these have 

been calculated in. Ref. [33).. The .0ff-shell Berends-Giele [2i] recursion has 

also proved useful [38]:. Tree amplitudes with massive fennions are required 

as input within the unitarity [39, 40) method to calculate one-loop ampli­

tudes, and to this ·end Ref. [41ij provides four- and five-point amplitudes w:ith 

D-dimensional fermions, calculated using BCF recursion. 

The BCF ·recursion relati0ns were extended in Ref. [31 )1 to include mas­

sive fermions, and in [32) four-point amplitudes involving two massive quarks 

and two gluons were calculated. Five point amplitudes with massive fermions 

have so far not been treated using BCF recursion. The goal of the present 

work is ,to explore the utility ·of BCF recursion to four and five point ampli­

tudes with massive fermioBS. We find that a treatment of massive fermion 

spinors introduced some twenty years ago in Ref. [14) prove~ to be very 

useftd. This treatment of massive spinor products was outlined in the intro­

duction. In this chapter we will demonstrate the use of BCF recurl'!ion in 

calculating some simple scattering processes with ·massive quarks in QCD. 

We will use 2 -+ 2 amplitudes as building bl'ocks for the eva:l;uation of the 
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phenomenologicali~ relevant gg ---+ bbg colour-ordered partial amplitudes. As 

willll be,expfained in Chapter 5, these are relevant f0r the caJlculation of colour-

singlet cross sections, which are backgrounds to central exclusive production 

of Higgs bosons. 

3.2 Four Point Amplitudes: ijq --+ gg 

'Fo demonstrate the use of the massive spinor products described in tb.e pre­

vious section we calculate the helicity amplitudes MCJ\1,>.2 >.3 >.4 for the simple 

QCD process q>-1 (Pt) q>.2 (p2)---+ g>-3 (P3) g>-4(P4)· The At, ..\2 =±labels on the 

quarks refer to their spin polarisations in the sense already indicated. If we 

choose k0 appropriately then tb.ey can be thought of as helicity labels. We 

will evaluate the partial (colour) amplitudes for the a:bove scattering process, 

Le. we consider contributions only from those diagrams with a particul:ar or;_ 

dering of the external gluo:ns. The full colour-summed amplitudes can then 

be recovered by inserting appropriate colour factors, as described in Chapter 

1. 

We :fust consider the M+-+- partial amplitude, for which tb.ere are two 

Feynman diagrams, shown in Figl:lte 3.1. We will express them in terms of 

massive spinor products. For the slashed gluon polarisation vectors we use 

_ J2 u+(k)u+(P) +u-~~p):u~{k) 
(kp} ' 

(3.1) 

J2 u+(p)u+(k) + u_(k)u_(p) 
. fpk] ' (3.2) 
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3+ 

(a~ Diagram A Cb) Diagram B 

Figure 3.1: Diagrams contributing to the colottr~ordered partial amplitude 
for the process q+(pi)q-(p2) .,.-t g+(Pa)9-(P4)· 

where k is a (null) Fefer:ence vector which may be chosen separately for each 

gluon. Different choices of refel!ence vector amount to wor:king in different 

gauges. The choice k3 = p4 and k4 = p3 is particularly convenient in this 

context, as Diagram B vanishes in this gauge. We have for the other diagram 

which simplifies easily to 

so that 

M+-+- = f3'J214) [~3H42) + (14)[32]. 
4 Pa · P4 P4 · .pi 

(3.3) 

(3.4) 

(3.5) 

As promised, we are left with an ex:pression for the amplitude in terms of 

vector products and massive spinor products. We next consider the other 

M>..1 >..2+- amplitudes. it is interesting to note that these are dil'ectly obtained 

from the M+-+- amplitude simply by changing the type of certain brackets. 
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Thus 

M+++~ 

M--+-

M-++-

[31214) [13] (42) + '(14):(32~' 
4 P3 . P4 P4 . PI 

- [31214) (t3~(42) + (14)![32]' 
4 P3 · P4 P4 · ,pl 

- [31214) (13}(42) + (14):~32). 
4 P3 . P4 P4 . PI 

(3.6) 

(3.7) 

(3.8) 

Those amplitudes where the gluons have helicities '(- +). ,can be ob>tained 

directly from the ones above by complex conjugation. Let us now examine 

the case where the gluons have the same helicity. By direct calculation we 

find 

M--++= m[43] (13)(42)- (14:)(32) 
(34) 2 2 P4 ·PI 

from which we deduce 

M++++ 

M-+++ 

_ m[43] (13)(42) - (1!4)1(32), 
(34) 2 2 P4 · PI 

0, 

m[4!3]i (13) (42) - (14):(32}, 
{34)2 2 P4 • PI 

m[34](12) 
(34;) 2 P-t · PI ' 

(3.9~ 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

where in the last line we have ased the Schouten identity. The amplitades 

with two negative helicity gluons are obtained via complex conjugation. 

'Fhere are several interesting things to note about these results. First, the 
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amplitude M+-++ vanishes (for any choice of k0~ because of the identity1 

(13)(42) ~ (:1!4):(32) = 0. Second, when k0 is para!Nel te the I:ine of approach 

of the fermions (Le. when we work in the heli'city oasis) then the product 

(12); and hence M-+++, vanishes. 

We have verified that when squared and summed over spins and colours, 

the set of 2--+ 2 scattering amplitudes given above matches the well-known 

result (see for example Ref. [42]) calculated using Feynman diagrams and: 

'trace technology', namely 

where 

s 
4m2 

p=--, 
s 

(3.14) 

(3.15) 

Fina:Ny, the m --+ 0 behaviour of the spin amplitudes can easily be read off 

from the expressions given above. For example, if E denotes the typical scale 

1'See Chapter 1 for a 'list of identities and notation. 
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of the 2---+ 2 scattedng2, then in the m/ E ~ 0 limit we have 

M++±=F M--±=F r-v O(l), ' 
M+-±=F M-+F± r-v O(m/E)., 

' 
M++±± M--Ff: r-v O(m2/E2

), ' 
M+--- M-+++ r-v O(m/E), ' 
M+-++ M-+-- - 0. (3.1J6~ ' 

Note that in deriving these results we have assumed! that k0 is not directed 

aloag any of the particle momenta, so that all ,~ij) SJ>inor prodt:Icts are O(m) 

in the m ---+ 0 Limit, and (ij), [ij] products are O(E). If on the other hand 

we choose the (fermion) helicity basis by ta:ldag ko in the direction of ~say) 

PI, then (3.116) becomes 

M+-±=F M-+'F± r-v 0(1), ' 
M+-±± M-+Ff - 0, ' 
M++±=F M--=F± r-v O(m/E), ' 
M++++ M---- r-v O(m/E), ' 
M--++ M++-- r-v O(m3/E3

). ' 
(3.17) 

2We explicitly exclude zero angle scattering. 
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J.n this section we wiU use the BCF recursion relations [28]: to evaluate .five 

partoR QCD amplitudes with a pair of massive fetmions. The recursion 

involves on-shell amplitudes with momeRta shifted by a complex amount. 

We will use the 2--. 2 results of the previous section as building blocks for 

this calculation. A description ·of the recursion, and an outline of its proof, 

was .given ill Chapter 2. We wiU here present the .recursion in a form more 

appropriate for discussing the inclusion of massive pa1.1tons. 

We ibegin by choosing two massless~ particles i and j whose slashed mo-

menta we shift. as follows, 

where 

Pi -.:ji - Pi + z~, 

pi '--+ ji - Pi - z~, {3.18) 

(3.19) 

is such that both Pi arrd Pi remain on-shell. Using the familiar spin~sum 

coRdition, which is valid for massless p, 

L u>-(p) u>-(p) =; (3.20:) 
>. 

3It should be noted' that by only hatting massless external legs we are restricting our­
selves to amplitudes with at least two massless particles, 
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we can re-express the shift (3.18) as a shift of spinors: 

u+(Pi) ---+ u+(Pi) = u+(Pi) + z u+(P;), (3.21) 

u-(Pi) ---+ 1r(j)i) = u-(Pi) + z u-(p,}, (3.22) 

-+c ) u Pi ---+ -+ (-- ) -+ E ) + ( ) u Pi '=- u ·'Pi - z u , :pi'·, (3.23) 

u-(p3) ---+ u-(P;): = u-~P;)- z u--(Pi)· (3.24!) 

In the Weyll spinor notation we are shifting >.i and >.;. For massless particles~, 

Dirac 4-spinors are effectively two copies of a Weyl 2-spinor, hence the fom 

shif.ts of (3.21)-{3.24). Notice that there is no symmetry between i and j- · 

they are treated differently. 

The amplitude is now a complex £unction of the parameter z. What the 

authors of [3(i)] showed was that we can use the analytic properties of the 

amplitude as a :function of z to glean information about the physical case 

z = 0. In particular, we get a reclll'sion relation, which can be stated as 

An= 2: l:AL(Pi, p-s) p 2 ~ m2 AR(-P8 ,P;). 
partitions s · p 

(3.25) 

where the :batted quantities are the shifted momenta. In fact, this is only 

valid if the helicities of the marked particles are chosen appropriately. The 

marked particles are the i and j external lines, as described above. 'fhe 

recursion relati0ns were also descdbed in the previous chapter, and Eq. (3.25) 

is equivalent to Eq. ~2.3J ). The crucial property which must be retained 
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if (3.25~ is to hold is that the shifted amplitude must vanish in the limit 

z· ~ oo. There are rules [17, 3~32] detailing which marlcing prescriptions 

are permitted in different cases. For our purposes, we will qe on safe ground 

if the shifted ~gluens have helidtes (hi, hi) = ( +,-) or (±, ±). 

This method of cal~ulation is 1particul'arly effkient because much of the 

computatiena:l complerity encountered in a Feynman diagram calculation 

is avoided since ·the lower point amplitudes AL and AR can be max~maUy 

simpHfi.ed before being inserted in (3.25). 

The sum is ·over all partitions ef the particles .into a '1left' group and 

a 'right' group, subject to the requirement that particles i and j ate on 

opposite sides ef the di¥ide. The sum over s is a sum over the spins of the 

internal particle. Each diagram is associated with a particular value for the 

cemplex parameter z,.which can be.found via the condition that the internal 

momentum Pis on-shell. Note that Pis always a function of z because of 

the restriction that the marked p·articles i and j appear on opposite sides of 

the divide. 

One useful point to note in practice is that three-point gluon vertices 

vanish for certain marking choices. In particular, for the j side of the diagram 

a gluon vertex with hellcites ( + + -) vanishes, as does the combination 

( ~ - +) on the i side. This was j>0inted! out in Ref. [28]. 

We wi~ll be ·concerned in this work with the process gg ~ :bbg, and se will 

encounter recursive diagrams connected by an internal fermion, the prepa­

gator of which is, in this formalism, the same as that of a scalar. Follewing 
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Ref. [32]:, we 'strip' fermions from the lower point amplitudes which feed .the 

recursion and write 

A '""' '""'A· ( ....... · P~*) Us(P),u8(P) A (-P ....... * ""':.), 
· n - LJ LJ L P" p2 2 . R 'P1 ' -mp 

partitions s · 

'""' A "~ P ....... *) p + mp A. " P ....... * ........ ) L- 'L'~i, · p 2 _ m2 · R\- ,p3 ·· 
partitions p 

(3.26) 

(3.27) 

where P* shows that the amplitude has been stripped of this e:rternal spinor 

wave--function. By way of example, let us reconsider the process ift.q2, ---+ 

gtg4. We mark the ghmns such that i = 3 and j = 4. Then there is mie 

recursive diagram, 

{3.28) 

With the shifts we have chosen, the hats an the polarisation vectors can be 

removed. The E;hi£ted 1part af the internal propagator is killed by either of 

the polarisation vectors. Ho in :fact all the hats can be removed in ~3.28)·, 

which is then identical to the Feynman diagram expression .(3.3~. 

3 .. 4 ijq ~ 3g from BCFW Recursion 

The four-paint amplitudes we derived in Section 3.2 are in such a form that 

it is trivial to strip a ferrnian ·off ·in the manner described above. This, means 

that they are particu~arly convenient for use in BCFW recarsion. Consider 
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s+ 

(a) Diagram A (b) Diagram B 

Figure 3.2: Recursi:ve diagrams contributing to qt(p.l)q-(p2 ) ---+ 

g+ (pa )g- (p4)g+ (Ps}. 

the process qt q; ---+ gt 94 gt, for which there are three recmsive diagrams, 

.sh0wn in Fig. 3.2. We cho0se the marking prescription i = 3, j = 4. 

The two diagrams with internal gh:10ns both vanish, due to the vanishing 

0f M+-++ and the vanishing of the ( + + -) 'glu0n vertex with the shifts we 

have chosen. For the remaining diagram we use 

M+--+= -[4!l:1l3)(13)[42] + [14]{32)·, 
4 Pa · P4 P4 · PI 

and strip the fermi0n u-{p2 ), leaving 

~3.29) 

Aft~r the appropriate relabelling this can be used in Diagram A, which can 
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then ne written 

A _ _
151114

) u*(p
1

) u+(ft4).u+(Ps) ;- u-(Ps)u~(P4} (:f2 - P3 +m) , 
4 Ps · P4; P5 ·P1 (P2- P3)2 - m2 

X ~+;;) u~{P2)· (3.31) 

Due to our choice of marking, all the hats in the numerator can. be remove&. 

'fhe sffi:fted part of the propagator is kilied: by the gluon polarisation vector. 

We are left with . 

M+-+-+= [SI1I4) [m(~4~{42}[53] + (1!5]{42)1[3_!:1~)- (14)1[321[5111(11)]· 
·· 8 Ps · P1 P2 · P3 P4 · Ps ~43) 

(3.32) 

We can work ollt z from the requirement that P2 _- (p2 - p3)2 = m2, an.d 

find· 

The product P4 · Ps is then 

f4·Ps 

-2 P2 · P3 
z = '[31214) . 

(:p4 - z rJ) • Ps 

P2 ·p3 
P4 · Ps + [3l2l4!)![3l5l4). 

(3.33~ 

(3.34) 

(3.35) 

The result (3.32) is much more cor:npact than the expression obtained .from 

a Feynman diagram ca:lcuilation, with which it agrees. See Section 5 for the 

IFeynmah results for this process in terms of massive spinor pr<'>dllcts. We 

have checked that the expression (3.32) behaves as expected in the soft gluon 
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limit. That is, as a particular gluon bec0mes s0ft, the ampl,itude factorizes 

int0 a 2 ---+ 2 amplitude multiplied by a universal 'eikona:l factor'. 

3.4.1 ResuUs for Helicity Conserving Amplitudes 

Here we give all the helidty conserving QCD amplitudes for ijq ---+ ggg.. By 

he1icity cohservi:ng we mean those amplitudes where the spin polarisations 

of the fermions are+-, in the sense described i:n the introduction. Whether 

these labels actually cerrespond physically to helicity depends on the choice 

of k0 . We choose to mark adjacent gluens, so that each amplitude has con­

tdfuuting recursive diagrams of the form of Fig. 3.2, that is, we have a diagram 

with an internal fermion and a diagram with an internal gl:uen; The van­

ishing ef the 2 ---+ 2 amplitude M+-++ simplifies those cases where there is 

a majerity of positive helicity glmms. In particular, the diagrams with an 

internal gluon vanish. In the remaini:ng cases, we evaluate such diagrams in 

the same way as in Ref. [28], using identities such as 

...... [AI PI~) [AP] - ...... ' ~3.36) 
(Pi} 

(PB) ~iiPIB) (3.37). 
[JP]! ' 

with i and j as in ~3.118). These identities hold only when A, B and the 

marked particles i and j are massless. 

The results presented here are valid for arbitrary spin polarisations. Choos­

ing a polarisation basis amou:nts te ch0osing the vector k0 , and when this is 
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clone the e~pressions below will simplify. In the helicity basis for example, 

in which we choose k0 to be parallel to the line of approach of the fermions, 

the building block M+--- vanishes. This causes the first term in each of the 

mostly-minus amplitudes below to vanish. 

M+-+-+= [5llii4) ~m(14)(42)~53J + ~15'](42)[3~14).- (14)[32J:r5lll4)] 
f 8 Ps · P-1 P2 · P3 P4 · Ps (4'3) 

where i = 3, j = 4and 

M+-++-= f41ll5)x 

[
m[14}[32)(54') + [14)(42):[3121~ + 2ps ·Pt(15~[32) + m(15){42~[43)] 

8 P2 · P3 P4 · Ps Ps · PI ( 43) 

where i -- 3,. j = 4! and 

..... . P2 . P3 [315'1'4') P4 · Ps = P4 'Ps + [3,
1214

) .. · , 

(3.38) 

(3.39) 
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M+--++ = [4121:3) X 

[
m[42][15]:(43) - [42]1(14)[51113) - 2p2 · P3[15]{32) + m(14)(32)[54]] 

8 P2 · P3 P3 · P4 Ps · P1'(54) 

where i = 5, j = 4 and 

...... Pl. Ps r I I \ P3 · P4 = P3 · P4 + [5lll4)' '53 4,, 14J = 14]- ( - 2 Pl ·ps)!l5]. 
[51114) 

M+-+-~= mf21](4'5)
3 

. .. . + 
(34)j[(35)2ps · P1 + (34)1r41I2I5)]1(Pl + P.2~ 2 

71 

(3.40) 

,[3l2l4) [m(42)(15l[43]- ~42)i[14][31Jl5:) -__ 2P2 · p3(15)[32] + m[14]![32](54)] 
8 P2 · P3 P3' · P4 Ps · P1[54} 

(3.41) 

where i = 4, j = 5, and 

. ...... + P>~ . Ps [·"'1'3'15} P3 · P4 = P3 · P4 · 141115) ~, , "' 
...... . . (2pl · Ps) .. 
~42) = ~42) + .. [41:115) (52). 
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M+--+- _ m~21](53)4 
(3.42:) 

ViJ. (43)t{45) [(53)'2 P2 · P3 + ('54}[4121:3}] (p1 + P2J2 

+ [4!lll5) [~[14!)[42]{53) + (15)[42]'[4il~3) -j14!](32)[4I!J!5)] 
8 Ps · P1 P2 · P3 P4 · Psr34~ 

where i == 4, j :__ 3, and 

.,... . P2 . P3 (4151'3) P4 · Ps ~ P4 · Ps + (4!l2l3) . · : · 

M . . +---+ = . m[21](43)'
3 

. . + ( ) 
. 10 [ il :3.43 
V 2 ( 45.) ('53)2 P2 · P3 + (54} (4j2j3)~ (PI + P2)2 

[5:lll4} x [m(14)i~32)[54] +(14)[42][5j21~ + 2p5 • pt[15],{32) + m[l5J[42J(43:)] 
8 P2 · P3 P4 · Ps Ps · pt(34~ 

where i = 4, j = 3, ahd 

.,... P2'P3[ I) P4 · Ps - P4 · Ps + (4j2j3)· 4j5 3 , (14) = (14) + (2p 2. p3) (13) 
J ,(4'1213} ' 

14) - 14) + 
2[~~j~3 l3) 
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M+----= m(54}T41I2I3}'[12][45] 
4 [45)2 P5 · P1 P2 • P3 [34) 

(3.44) 

where 

. ...... 2p2 · P3 
(54) = (54) + [41213) (53). 

M+-+++= 0 (3.45~ 

The amplitudes with fermion helicities -+caR be obtained from those above 

by complex cen~ugation. We have checked that in the seft. gluon limit these 

results factorize as expected. 

3.4.2 ResUilts for Helicity Flip Ampi:itudes 

We now consider the helicity flip amplitudes. These have ferniion spin polar­

isatien lab>els ±±. Here we .find diagrams with internal gluons, which cannot 

be treated with the external-spin.or stripping procedure. We must therefere 

evaluate each side of the diagram directly, whkh means evaluating spinor 

products involving the internal mementum. Unfertunately we ar;e una:ble te 

evaluate such products as (Pk~ where k is massive. Here P is the momentum 

internal to the recursive diagram. In the J!>reviells section these preducts did 

net occur. Note that in the massless case round brackets do aet arise, and 

any products (Pk) and [Pk] can be evaluated as described in Ref. [28]. Those 

· amr>litudes in which all gluons have the same helicity do not pose a problem, 
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since the internal gluon diagrams vanish anyway: 

M++---= m(43) [m(15}(42}[43]+ [14](32):f4illl5)- [14}(42)[31115)] 
-4 P5 · P1 P2 · P3[34]2[54] 

(3.46) 

where i = 4, j --=- 5 and 

-: 2 Ps · P1 
14) = 14) + .. [4'111'5) 15). 

M+++++= m[54] [m{14)(32)(54) + (14)(42)[312r5)- (1!5~:(42)[31214)] 
. -4 P5 · P1 P2 · P3(4J5) 2(43) 

~3.47) 

where i = 3, j = 4 and 

A'l 2P2"P3 
I<±J = 14] + ,[31214) 13]. 

We have checke<!l that in the soft gluon limit these results factorize as ex­

pected. The amplitudes M--+++ and M~---- aFe obtained from those 

above by complex ·conjugation. For the Femaining amplitudes we Fesort to 

Feynman diagrams. 
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3.5 Feynman Resulits 

Here we give results for ijq--+ ggg derived f.r:om Feynman rules. Note that in 

a given ampHtude all the helicities can be flipped by complex conjugation. 

In all cases where there is overlap, the following expressions agree with BCF­

derived results' already giveR. 

_ -[4I2I:J) [m[14J.[42](53) + (1!5~:[42][41213·)- [M](32)[4Ill5)] 
l 8 Ps · PI P2 · P3 P3 · P4 [54) 

+ (35) r m[114}t42) (53} + (15) [42] [412J3) - [14] (32}:[4illl5) ];' (3.48) 
l 8 P2 · P3 P3 · P4 P4 · Ps · 

(35} 2 :[[14)(32) + (t3)[42J ft4](52) + (t5H42Jl 
+ (34H45).(pl + P2)2 [54) + [34f ' 
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M+-++~ 

M+-+--

_ _141lll5) [-m{15~{52)[43] + (15)[32]1[41115) - (14]1

1('52)[31215) l 
8 Ps · P.t P2 · Pa P4 · Ps (53) 

+ [43](41115) [ (1:4]:(52~ + (15}[42] l 
4 Ps ·PI Pa · P4(53)[54]. 

_ :[43] [[14]·(5~)[31115) + (l5~i[32](4l;1l5) -:-. m(t5){52)[43]] 
. 4 P5 · PI Pa · P4 P4 · Ps 

(3.49) 

- . ;(43]2(35) [[14](52) + (15)[42] + [13](52) + (15)[32]] 
2 Pa · P4{54J) (PI + P2)2 (53) (54)] ' 

_ [
31214

) [m[13]'![32) (54) -P3]( 42)[31:115} + (15)[32]:[31214) l 
,' -8 Ps ·PI P2 ·PaPa ·P4 (53) 

+ (45}ral'214) [ , ~13]'(42) + (]4)i[3~J .] 
4 P2 · Pa P4 • Ps(43;}![35) 

+ (45) •[ [13](42)[31~2'15} + (15)[32](31214) + m[13]:(32](54}]] 
8 P2 · Pa Pa · P4 P4 · Ps 

(3.50) 

+ (45~ 2 [53] [[l3]{52) + (15)[32] + [13].(42~ + (14).[32]] 
2 P4 · Ps(43}.(Pi + P2)2 (43] (53] . 

The corresponding he1icity flip amplitudes can be obtained from these 

simply by altering the types 0f 1brackets. For example, supp0se we wish 
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to extract M=~-+- from M+--+- given above. We can achieve this by 

changing brackets as foHows: 

[lk) ~ .(lk), 

(lk) ~ (Lk), 

(3.51) 

(3.52) 

where k is massless. Sandwkh products sueh as '[41115) are not changed. This 

transformation results in 

M---+- _ -[
4121

;3) [m(14)[42l(53}+ (15)[42]1[41213) - (14):(32):[41~1'5)] 
8 Ps · Pl P2 · P3 ·P3 · P4 [54'] 

+ (35) [m(14){42J(53') + (15)[42][4'12.13)- {14:)(32);[4'1115} J.. (3.53) 
. 8 P2 · P3 P3 · P4 P4 · Ps J 

+ . . . (35)2 . [{14)(32) + (13)[42] + (14)(52) + (15}[42]] 
. (34)(45)'(pl + P2)2 [54]i [34] . 

Other amJ>litudes can be found! by analogous bracket alterations. 

We have caleulated all the partial spin amplituaes for the ijq ~ ggg scatter-

ing process where q is a massive fermion. For most of the partial amplitudes 

we were able to use the BCFW recursion relations to dbtain fairly comJ>act 

expressions. This was achieved by following the idea of Ref. [32] of strip-
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ping l0wer p0int amplitudes of their external fermion wavefunctions before 

insertin.g them into the recursion. We used a particular representation of 

massive spinors, along the lines of the Appendix of Ref. [14], to define mas­

si;ve spinm :prodl:lcts. In this method informati0n regarding the polarisation 

of the fermion spins is contained in the definition ef the spinor products, 

rather than explicitly in the amplitude. 

We deri,ved new, compact results for the helicity conserving partial ampli­

tudes. Their simplicity can be attributed to the vanishing of certain 2 ~ 2 

scattering amplitudes, which redm:es the number of contributing reclll'sive 

diagrams. We were una:ble t0 treat the helicity flip amplitudes in the same 

way (except for the case where alli the gluon helicities are the same), since 

we were unable to evaluate the corresponcl.:ing recursive diagrams with ,inter­

nal gluons, as in such cases it is not possible to follow the external-spinor 

stripping ,procedille. For these amplitudes we instead: provided expressi0ns 

derived from Feynman diagrams, also in terms of massive spinor products. 

We have confirmed that all the results we have presented have the correct 

factorization ,properties in the soft gluen limit. Another useful check is that 

when the partial amplitudes are combined int0 a spin-summed cross-section, 

the result is independent of the vector k0 used to define fermi0n polarisati0ns. 

'Fhese resl!llts represent an interesting test of the BCFW recursion rela­

tim1s 1[28, 30], which have not previously been applied to 5-point tree am­

plitudes with massive fermions. The massive spinor pr0ducts we used are 

well' suited to such calculations, though there are issues to be res0lved (see 
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a:bove~. Application of these techniques to higher erder pmcesses with mas­

sive fermions, such as ijq --+ gggg, should be possible· though would be ac­

companied by an increase in cemplexity. This increase is, hewever, expected 

to be signficantly !Less than the corresponding increase in complexity llSing 

standard Feynman diagram techniques. 



Chapter 4 

Virtual Corrections 

In this chapter we describe in some detail the calculation of the virtual correc­

tions to gluon induced bb quark production. This amplitude is phenomena­

logically important for central exclusive processes, as we describe in Chapter 

5. What is actually required is the amplitude 

(4.1) 

where the PP superscript indicates that the gluons are in a Jz = 0, colour 

singlet state. We choose to work out the relevant one loop amplitude in full 

generality, i.e. as a vector in colour space. Only then will we apply the colour 

singlet operator to project onto the particular physical configuration we re­

quire. This approach facilitates comparisons with results in the literature, 

and could be useful for future work. 

80 
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Virtual corrections to a given process basically consist of the contributions 

of unobserved iNternal particles. These necessarily form loops in the Feynman 

diagrams. Contrary to the situation with tree level diagrams, the presence 

of loops means that the momenta of each line is not determined. We m1:1st, 

in the spirit of quantum mechanics, integrate over all possible momenta and 

helicities of the internal lines. 

Unfortunately, the loop integrals generally diverge in four dimensions. 

The divergences are of two types: ultraviolet (UV) and infra-red (IR). The 

UV divergences occur in the region where the loop momentum is large or, 

equivalentally, where the typical distance sca:le is small. The occurence of 

such poles points to a breakdown of the theory in the ultraviolet. This is 

hardly unexpected, as we know there must be new physics at small distance 

scales.· If nothing else, gravitational effects must at some point become rele­

vant. In the absence of a deeper understanding of an underlying UV -complete 

theory, it might appear that we can make no progress. But this is not the 

case. Quantum Chromodynamics is a renormalisable theory, which means we 

can take from experiment the short range physics that we do not understand 

theoretically. Renormalisation consists of admitting that the bare parame­

ters in the Lagrangian are unphysical and divergent, and then re-expressing 

physical quantities in terms of other physical quantities. When we do this, 

there are no UV divergences. We have discussed these issues in :more detail 

in Chapter 1. 

The other class of divergences encountered in loop integrals are those 
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1J2,j 

(a) (b) (c) 

Figure 4.1: Feynman diagrams. contributing t0 the l0west order Born ampli­
tude. When we take the prejection ont0 the colour singlet state ggPP, the 
third diagram does not contribute, 

in the infra-red region.. These are long-distance effects, occuring when an 

internal particle goes on shelli. They are cl0sely related . to the lR poles 

arising fr0m integration over the phase space of the real contributi0n t0 the 

total cross section. In fact,· as was discussed in t:he introd1:1ction, f0r well · 

defined 0bserva!fules the IIR poles are required to cancel ;between the r~al and 

virtual contributi0ns by the KLN theorem :[5]. 

For the processes considered in this thesis the virt1:1al parts are simply 2 -+ 

2 scattering amplit11des. The l0op amplitudes contribute to the NLO part of 

the total ·cr0ss· se.cti0n. T:hey are added cohex:ently t0 the Born amplitudes, 

and then sqUared. C0nsequently it is the interference term 2 ~e(Mb:n.nMtoop) 

that we are interested in. The relevant Feynman diagrams are sh0wn at tree 

level in F·ig. 4.1 ·and at ·0ne l0op ·in Fig. 4.2. 
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(a) (b) (c) 

(d) (e) (f) 

(g) ~h) (i) (j) 

(k) (1) (m) ~n) 

)->~ 
(o~ 

Fig.ure 4.2: One-loop Feynman diagrams contdlmting to the process gg ~ bb. 
Dashes indicate gluon, q1:1ark and ghost loops. There a.Fe an additional seven 
graphs corresponding to switching the external gluons of graphs (a) through 
~g} above. 
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4.(i).l Dime:asional Regularisation 

Let us examine a typical leop integal. 

(4.2) 

Hefe k is the loep momentum and p is the momentam of ene ef the external 

partons, or a sam of such mementa. This is a scalar leop integral, so called 

because the numerator does not contain any free LoreRtz indices associated 

with the integration mementum. By simply coanting powers of k we can see 

that the above integral will be logarithmically divergent. If we regulate the 

integral by imposing an apper cut off on k, then we find 

/

F dk 
I -=--+ k --+ :ln(r). ~4.3) 

We call this an ultraviolet (UV) divergence because it is the ·high momen­

tum part of the integration region which leads to the pole. 1n practical 

applications the above regularisation is not particularly useful because it vi-

olates L0rentz invariance. Dimensienal regularisation is almest universally 

preferred, as it has the virtue ef respecting the symmetries present in the the­

ory. It in.volves· redefihiRg the theery to take place in d = 4 - 2E dimensions. 

The 'loop integrals are then finite, but contain poles in E. 

Scalar leop i;ntegrals can be classified. according to the number of factors 

in the denominator. The integral in (4.2~ is ca;lled a two point integral, ancl: 
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we will also enco11n.ter three- and fo1:IT-.p0int integrals. These objects can be 

straightf0rwarcllly evaluated, and expressions for them are avail~ble in the 

literature. We define, 

Ao(m) 

Here we have used the shmthand n0tation Pi ... k = Pi + · · · + Pk. Analytic 

expressions for these integrals can be found ,in, for example [43]. 

4.(!).2 Reductio:n of Tenser Integ,rals 

In the analytical e:x!pression of a given Feynman diagram there are also ten­

sor rinteg;r:als. These have a tens0r structU:re in the numerator in.volvi:ng the 

loop momentum k. Of course, si:nce an amplitude is a scalar ofuject, these 

ten~ors will ultimately be contracted with one of the external momenta Pi or 

p0larisation vectors Ei· 

The te:nsor integvals can be expressed in terms of scalar integrals. There 

are many procedures for achieving this. We wm use the original method, · 

fust outlined by Passarin0 and Veltman in [44]. Let us take as an eX!ample 
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the thFee-p0int tensor integral 

']i',he idea is t0 use Lorentz invariance to express JP."' as a sum of terms, each 

pr0potti0nal to o:ne of .the possible tens0r str:uctures. Thus we write, 

where ~J>i P2} =Pi P2 + p~p'{. We n0w solve f0r the unknown coefficients 

by contracting lp.v with the various external moment a and the metric tensor. 

On the RHS we the:a have terms such ask· PI; which are re-written in terms 

of one or more of the fact0rs appearing in the denominator. For example, 

2k ·PI= [(k + P1)2
- m~]- [k2

- mn +[m~- m~- p~:]. (4.7) 

The first tw0 terms a:bove allow a cancellati0n between numerator and de-

nominator, thus Feducing these teFms to lower point integrals. The last term 

no longer contains the loop momentum, so that the rank of the tensor in the 

numerator is reduced !by one. The next step is to solve the resulting set 0f 

simultaneous equations for the unknown coefficients. This is done for all the 

cases we need in Appendix A. 
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4.0.'3 'File Calculation 

The virtual corrections to the Born level partonic process ggPP ~ bb consist 

of bubble, triangle and box loop integra:ls. A full list of diagFams is given in 

Fig. (4.2}. Each diagram contains a tensor loopintegral. Since these integra;ls 

are in general divergent, both in the UV and IR regions, we regulate them 

by working in d = 4 - 2E dimensions. 'Fhese integrals are written as sums 

of scalar integrals multiplied by tensors independent of the laop mome:n:ttim 

and the metric tensor, as per the usual Passarine-Veltman reduction scheme. 

'Fhe momenta are labelled as 

(4.8)· 

We then express the amplitude as' a linear combinatien ef twenty Dirac struc-

tures, each with a coefficient Kij, 

3 20 

Mvirt = LL ci Kij 1j. (4.9) 
i=l j=l 

The Ci are the fundamental calour structures. There are only three ef these, 

given by 

(4.10) 
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The Dirac structures we have used are: 

T1 - u(pi)v(p2) E(P4) · P1 E(Ps) · P1 

T2 - u(p1)v(p2) E(P4) · Pl E(Ps) · P2 

T3 - u(pi)v(p2~ E(P4) · P2 E~Ps) · P1 

T4 - U~Pl)v(p2) E(P4) · P2 E~Ps) · P2 

Ts - u(pi)J14,v(p2) E(p4) ·PI E(Ps) · P1 

Ts - u(pi)q4v(p2) E(p4) ·PI E(Ps) · P2 

T7 u(pi)J14v(p2) E(p4) · P2 E(ps) · Pl 

Ts u(pi)J14v(p2) E(P4) · P2 E(Ps} · P2 

Tg - u(pi)t~tv(p2) E(Ps) ·PI 

TIO - u(pi)fji,v(p2) E(Ps) . P2 

Tu - u(pi)f/Sv(p2) E(P4) ·PI 

T12 - u(pi)tf5v~p2) E(P4) · P2 

T13 - u(pi)tlt q4v(p2~ E(Ps) ·PI 

T1-t - u(pi)tlt q4v(p2) E(Ps) · P2 

T15 - u(pl)f/5 Jjsv(p2) E(p4) ·PI 

T1s - u(pi)f/5 Jjsv(p2) E(P4) . P2 

T11 - u(pl)f{.; f/tv(p2) 

T1s - u(p,I)tlt !f5v(p2) 

T19 - u(p<I) tit 114 f/5 v(p2) 

T2o - u(p.I) f/5 m tit v(p2) 
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Since ther:e are three colour structures and twenty Dirac structures, this 

means· ther:e are sixty components Kif· Each of these wi1~1 depend on .ktne­

rnatical invariants sii = 2 Pi · Pi and the mass m. All the information as­

sociated with the external waveflmctions, i.e. ·the spirror:s and polarisation 

vect0rs, is contained in the 7i,. Thls means that the Kii coefficients do not 

depend on the helicity configuration. We can evaluate them once and f0r 

all, and then construct the polarised Jz = 0 state we require numerically, 

simply by slimming over those configurati0ns in which the gluons have the 

same helicity. 

Gauge invariance places c0hditions on the coefficients in Eq.( 4.9). Gauge 

invariance can be expressed in terms 0f the Ward identity, which says that 

if we r:eplace a polarisati<m vector with its associated momentum, then the 

amplitude vanishes. When we impose this for each af the intitia:l state gluons, 

we can derive a system of ten simultaneous equations relating the ·coefficients 

of the twenty IDirac structures. Salving this system enables us ta halve the 

number of coefficients rreede<d to expand the amplitude as in. (4. 9?. We choose 

instead to keep the full set of coefficients, and use gauge in.variance as a check 

of the calculation. That is t0 say, once we have evaluated the Kii we can check 

that they col[ectively satisfy the requirements impose~ by gauge in:variance. 

"Fhis is a very strong check on the calculation. 

Beginning with general expressions for each of the Feynman diagrams in 

Fig. 4.2 we used the algebraic manipulatian toot FORM [45] to transform the 

amplitude into the form of Eq.(4.9) and implemen.t the Passarin.o-Veltman 
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reduction of tensor integrals into scalar integrals. The scalar integrals are a:ll 

known and are given in, for example [43]. The output of-the FORM program 

is a series of expressions for the coefficients Kii· These serve as input to a 

FORTRAN n.umerical program. The expressions for the coeffi.dents are too 

large to be presented here, but can be ohtained on request from the author. 

By way of example, we give here the corresponding coefficients for t.he tree 

amplitude, 

K1,11 
2 2 

(4.11) - ---- ---'--~-

' 814 845 

K2,n 
2 

{4.12) - ' 845 

K112 
2 

(4.13) - ' ' 845 

K212 
2 2 

{4.14) - -+-.-,. 
' 815 845 

K1,19 
1 1 

(4.15) - ----
' 814 8<t5 

K2,19 
1 

{4.16) ' 845 

K1,2o 
r 

{4.17) - ' 845 

K22o 
1 1 

{4.18) - -+-, 
' 8J:s 845 

with all the other coefficients zero. We see that at tree level the third colour 

structure 8AB clbes not contribute. 
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4.1 c:necks 

Obviously for such a large and intricate calculation as this it is important 

to have available a range of consistency checks on the final answer. There 

are a few ways in which we can verify that everything has worked correctly. 

Firstly, there is the pole structure. Recall that the loop amplitude is di;ver"" 

gent in 4 dimensions, which is why we re~ated it by working in d = 4 - 2E 

dimensions. The divergences then manifest themselves as poles in epsilen. 

The UV divergences appear as single poles (1/t:},. while the IR divergences 

appe&r as both single and double (1/t2) poles. The structure of these singu­

larities is predictaJble. That is to say, one may check the precise ceefficielits 

of the poles obtained and determine if they are in accordance with what is 

expected. Catani et al. [46] have presented the expected structure in full 

generality. Their results were obtained by direct integration of reail ampli­

tudes squared, which are related through the KLN theorem to the poles ef 

certain loop amplitudes. We present the particular result for gg """'--+ bb here 

for con;venjence1• The pole structure is obtained by operating on the colour 

vector representing the tree level; amplitude with a 3 x 3 matr:ix, 

(4.]9~ 

1In [46] the general' expression for the pole structure was presented in a different nota­
tion. 
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Here each side of the equation is understood to be a vector in colour space, 

i.e. a columB vector where the elements are tb.e coefficieRts of the three colour 

structures given in Eq. (4.10~. The matrices X and Y can be derived from 

the results of r46]!. 

The double pole part, described by X, turns o11t to be diagoRal in the 

colour space, 

1 0 0 

X=-2N (!) 1 0 ~4.20) 

0 (i)~ 1 

Another way of saying this is that the {1/f2 ) part of the loop amplitude is 

proportiona:l the tree level amplitude, with the constant of proportionality 

- 2N. The single pole parts are more complicated. We find, 

Y= (i) y22 y23 

Yi3 y23 Y33 

(4.21) 
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where 

where {3 = J'l - 4m2/s45 . We have checked that the pole·structure we obtain. 

is precisely that predicted in :[46]. 

As rneationed in the preview subsection, an<»ther stro!lg check is based 

on gauge invariance. We can e)(press gaage invariance as a set of eqtiation.s 

which must be obeyed. by the coefficients Kii. These equations .are derived 

by imposing the Ward identity on the general expression Eq. ( 4.9). We obtain 
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the following set of equations: 

0 - Kil sr4 + Ki3 8rs- 4Ki17, 

0 Ki2 Si4 + Ki4 8rs- 4Kns, 

0 Kis 8.r4 + Ki7 srs + 2Ki9, . 

0 - Ki6 8.1.'4 + Kis 8rs + 2Kiro, 

0 Km 8r4 + Ki1:2 srs + 4mKi17- 4mKns, 

.(j): Kits 8.r4 + KH6 815- 2!Kn7 + 2Kns, 

(!)I Kn 8rs· + Ki2 sr~ ~ 4KHs, 

(j) - Ki3 815 + Ki4 sr4 - 4Ki17, 

0 - Kis 8J.s + Ki6· 81.4 - 2Kiu + 4Kil9, 

0 - -Ki7 Srs + Kis 814 ~ 2Kii2 + 4Ki20, 

0 - Ki9 815 + Kno 814 - 4mKii7 + 4mKils - 2si4 KH9 - 28rs Ki2o, 

0 - Ki13 8is + Kn4 s.r:.;~- 2Kils + 2Ki17~ 

94 

Notice that the first index of the coefficient is free - this is the colour in­

dex. The above conditions hold for each of the thr.ee colour structures. We 

have checked numerically that eur results are gauge invariant in. the manner 

described above' 

A third check is provideQ! by the over-determination of the Passarin.o­

Veltman reduction coefficients. Some of the tensor integrail! reduction foF­

tnulae can be salved in more than one way, .giv.ing .several diffetent, ·though 
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equivalent, expressions. One should obtain the same results using either exw 

pression. This is a strong check that the tensor redu:ction haH been performed 

correctly. 

Finally, we have checked our results against a similar calculation descrdfuea 

in [47:]!. The authors of that paper used a different set of Dirac struetlires to 

ours, . and present diagram by diagram results. We have verified numericaUy 

that the two sets of coefficients are fully equivaJlent. 



C!entral Exclusive Production 

In this chapter we describe central exclusive production and why it is. inter­

esting. We also e~plain how the results presented thus far in this thesis find 

applicatian: in the c0nsideration af NLO backgrounds t0 Niggs production. 

Determining the pr:ecise mechanism af electroweak symmetry breaking 

is perhaps ·the most pressing concern in particle physics today. 'Fhe Large 

Hadr:on Collider (LHC), due to came on.line within a few months, is designecl 

with this in mind. lts two main detect0rs, ATI.AS and CMS, will search for 

signatures of the Higgs bosan, thought ta be responsible for spontaneously 

breaking the electroweak symmetry of the stanclard m0d'el. The LEP col­

lider, while failing ta directly abserve the Higgs; did enable a lower bmmd 

af 114 GeV ta be placed on its mass (48]. Meanwhile, the cansideration af 

electraweaik pracesses ta which: virtual Niggs particles wauld be .expected to 

contribute,. suggests [49] that the Niggs is light- in the range 87:!:~~ GeV. 

96 
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1'he f0cus to date has primariiy t>een on. inclusive production, in which 

the two in.cident protons each contribute 0ne parton to the hwd scattering, 

and then. disassociate into unobserved remnants. However, exclusive produc­

tiGn m0des offer a range of advantages (and present same difficulties) and 

should n0t be everlo0ked in the searc.h for new physics, There has been much 

. interest in Cen.tral Exclusive Production (CEP) r50-53l, ;in which each piGton 

is required to remain intact, and is ebserved in the final state. In this way, 

a central reson.ance may be pieduced. If the protons are 0bserved at small 

ang-ular deviations, this resonance must be formed in a Jz = (!) State. i It is 

also easy t0 see that the resonance is requiied to be a colour-singlet, with 

C P = 1. 'l'he consideration of such processes has led to a proposal 1[54, 55} to 

complement the ATLAS and CMS detectors at the LHC with forward prot0n 

detectors, which would be installed 42Gm from the interaction region. 

We den0te the basic process by pp ---+ p EB X EB p. Here the EB signs 

represent an absence 0f hadronk acti:~ity between the two observed outg0ing 

protons aad the cen.traNy pmduced resonance X. This reflects the especialiy 

clean finaJt state configurations. Since the protons are colourless objects, they 

must ,excha:nge' at least two gluons in this process. The centrally produced 

resonance X can t>e anythin.g in a Jz = 0< state and with the appropriate 

quantum numbers, a;s,discussedabove. Perhaps the most interesting situation 

is the formatiou. of a Higgs boson, as i[llustrated in Fig. ('5;1). The .primary 

advantages of this ar,rangement are as follows. 

1Here Jz refers ,to the projection of the angular momentum onto the z axis. 
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p 

--- H 

p 

Figure 5.1: A sketch of the basic mechanism of central exclusive Higgs pro­
duction. The Higgs is produced via a top loop arising from the fusion of the 
active gluon pair. The screening gluon on the left ensures colour conservation. 

• Firstly, the Jz = 0 selection rule eliminates a large portion of the 

QCD background, which is predominantly bb production and mainly 

proceeds through the Jz = 2 state. The leading order background is 

mass-suppressed. For massless quarks it vanishes, and when the mass 

of the b quark is retained we find an 0( m 2 Is) dependence, at least at 

large angles. The amplitude has terms such as 

m 2 1 
E 2 1 - {JcosO' 

(5.1) 

where {3 = (1 - m 2 I E 2 ) 112 . For large angle scattering we see clearly 

the 0( m 2 Is) behaviour mentioned above. For m « E we can expand 

the square root in the definition of {3 as 1 - m 2 I2E2 , while for small 

angles the cosine can be approximated as 1 - 0212. In this limit the 

term above tends to 
2m2 1 
E 2 (miE)2+02 . 

(5.2) 

We can see now that for very small angle scattering the theta term can 
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be ignored and the expression is 0f order unity. H0wever, in ·Feality we 

always impose an experimental cut o:n the angle (), or equivalently on 

the transverse momentum of the final state parto:ns, thus avoiding the 

behaviour described above. 

• Second, by observing the final state pr:otons aBd measuring t:ll.eir m0-

menta, we can i:nfer the mass ef the resonance using si~ple momentum 

conservation. This is impossible in .an in.clusive sitaation,. becaase i:n 

this case the proton remnants go undetected down the beam pipe. 'This 

indivect measurement would typically be' much mor:e accurate .than o:ne 

obtained. from direct observation of the d.ecay proa:ucts of X. If X is, 

for example, a light Higgs boson2 , then it wi1ll decay predomi:nantly to a 

pair of b jets. The branching r.atio of Higgs decays is shown i:n Fig. 5.2. 

Measuring tae energy of jets is in .general a rather inexact business, 

so the availability of an i:ndirect rnethod to ·measme the e:nergy of the 

central' resonance is extremely useful. In tais way accuracies of 0(1%) 

ca:n be achieved. 

• Ordinaf,ily the Higgs d.~cays to fermiens ~~such as. b <!]Uarks) are difficalt 

t0 observe ·expe:rimentaHy d.ue to the large QCD backgrounds. This 

·iS why focus has turned to the '"Y'"Y channel to search for a light Higgs, 

eve:n' though the branchi:ng ratio for this decay is quite smaU. 'fhe 

background problem is alleviated in central exchisive searches due to 

2 t:J.nless stated otherwise,. by 'Higgs boson' we mean a standard model Higgs. 
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Figure 5.2: The branching ratios of the decay of a standard model Higgs 
boson. In the light region , MH ~ 150 GeV the Higgs decays mainly into bb. 

the Jz = 0 selection rule , so that the Higgs coupling to fermions can 

be more easily studied. 

• Lastly, from the mere observation of a. resonance produced in this way, 

one can deduce that the C and the P quantum numbers are + 1. We 

recall here that in the MSSM the various Higgs particles have different 

C and P quantum numbers. In inclusive searches, it is difficult a.t a. 

ha.dron collider to get information on the CP structure. One would 

ideally need a. lepton collider for this purpose. 

The only irreducible background to central exclusive production of a light 

Higgs boson, which is expected to decay mainly into two b-jets , is the direct 
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procluction of two b-jets via the same mechanism. We can write this as 

pp ---+ p EB ggPP ---+ b b EB p, (5.3) 

where the PP superscript indiCates that the gluons are in a Jz = 0, coleur­

singlet state. This' background was considered in Refs. r52, 56-58J. In the 

approximation that the outgoing protons have vanishing transverse momen-

tmn, the leading order backgreund is slip pressed by a J:z = 0 selection rule. It 

vanishes for massless quarks and is CJ~m2) when the b quark mass is retained, 

neglecting. end effects3 . The NiLO corrections consist of virtual diagrams con­

tribating to the ggPP ---+ bb precess and the reail emission ef an extra g1uen 

in the final state, ggPP---+ bbg~ These processes are not expected to be mass 

suppressed, and so we can expect large corrections at NLO. 

We therefore see ,that both the real emissie:h (Chapter 3} and loop (Chap­

ter 4) amplitudes presented in this thesis are necessary inputs to a NtLO 

calculatien of the dijet background, as described above. 

3For (J ~ m/ E the amplitude squared is 0( m2); but for (J ;S m/E we find it to be 0(1). 

~t 
~ 



Summary 

In Chapters 2 and 3 we built on the twistor space inspired methods intro­

duced in [22] and [28]!. These new techniques can be broadly classified as on 

shell methods. The familiar Feynman diagram expansion uses off shell ob­

jects as building blocks. In contrast, the MHV rules and BCF recursion rela­

ti0ns use 0n shell lower point amplitudes. This setup has the advantage that 

work performed in calculating and simplifying the lower p0int amplitudes 

does not have to be repeated - they are simply fed in t0 the ne:w calculation. 

Also, the use of scalar, gauge invariant objects means the resulting diagrams 

are simple - there are no spinor or Lorentz indices. We applied both the 

new techniques to QED amplitudes, artd showed that simple expressions for 

helicity amplitudes can be easily 0btained. We then turned our attention to 

amplitudes involving massive fermions' In the original papeFs [22,28] fermion 

masses were not included. We built on the work of [31, 32] to calculate the 5 
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partcm amplitudes gg---+ bbg. 

Centcr:al Exclusive Production (CEP) is a:n interesting alternative to tra­

ditional avenues for searching for new physics. There ate various advantages 

to Higgs boson searches in this channel, one such being the leadin.g order 

suppression of the dijet background to H ---+ bb~ However at NLO there is 

no such suppression, and so it is important to ascertain by calculation the 

size of the N10 corrections. ln Chapter 3 we evalluated the real emission 

amplitudes needed for such a calclilation, and then in Chapter 4 we pre­

sented the loop amplitude which is responsible for the virtual corrections at 

next to leading order. Chapter 5 consisted of a detailed description of this 

production mechanism, and of the relevance or our results. 



App,,endix A 

Passarino Veltman · 

Decomp~osition 

In this appendix we describe the reduction of tensor loop integralls. The 

basic procedure was outlined in Chapter 4. Here we present e~pressions for 

all the coefficients. Formulae for the scalar integrals A0 , 8 0 , C0 ! and Do can 

be found elsewhere, for example [43~. 

A.l Bubbles 

The bubbles are defined as 

104 
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We do not eBcounter higher ranks than 2 in the case of bubbles. We expand 

the tensor integra:l's as follows, 

We have omitted the arguments of the form factors for clarity. They depend 

on all possible sca:lar invariants of the leg momenta and masses. The curly 

bracket { ... } constraction is a convenient shorthand for representing the 

sum of all possible permutations of different Lorentz indices. So for example 

{P.b P2~ll11 
= PiP2 + PiP'2· 

We find 

with 

B1 - 2~2 [A(mi}- A(m2) +(m~- m~- p2)Bo] 

Ro2- Rm 
d-l 

Ro1- B22 

Rol 

(A.l) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 
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A .. 2 'I'ri!angles 

We will encounter the following tensor triangle integrals, 

By Lore:ntz symmetry, we can express a given tensor integrail· as a sum .ef 

form factors multiplied by tensors composed ef the leg momenta a:nd metric. 

Fellowing [44), we define 

As described in Chapter 4, by contractiNg the var·ious tensor integrals with 

leg mementa and the metric tensor we can obtain a system ef simuiltaneous 

equations, which can then be solved. for the form factors. The results are llS 
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follows: 

f 2 2 2 
1- m2-mi-Pl 

!2 - m~ - m~ - P~ +Pi 
:t 

(d _ 2)[-miCo + (Bo(P2, m2, ma)- /JJCn- hC12)/2] C24 -

R1 - ~~~JrCo + Bo(Ps, m:b ma)- Bo(P2, m2, ma)] 

iJ. 
2:[/2Co + Bo(Pb m11, m2) - Bo(Ps, m1,, ma)]' R'i -

Ra 
iJ. 
21[ft:CH + BI.(Ps, m1, ma) + Bo(P2, m2, ma)] - C24 . 

R4 
J . . . 

2i[h012 + Bl(Ps, m11, ma)- B1(P2, m2, ma)] 

~ . 

2j[/2CH + Bl(Pb m~t, m2) ~ Bl(Ps, m1, ma)] · Rs -

1 
2.[!2C12 - Bl(Ps, m1, ma)] - C24 ~- -
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Here G2 is a Gram matrix which arises in solving fcm the form factors. 

One of the disadvaNtages of this method of tensor intE:~gral reduction is ~that 

for certain configlll"ations of exterNal momenta the inverse of the Gram mar.-

trix cliverges. We then find large cancellatioNs between different parts of 

the calculation. \\fhi:le tllis woul~n't be pr.0blem for an eNtirely aNalytical 

calcalation, in practise we a:lways run simulation.s namerica:lly ancl the large 

cancellations can affect accU:Facy. For the ~r0cesses considered ~in this thesis 

this effect is relatively harmless, bat it is a problem for calculations with 

more external partons . F0rtunately there are nmnerous 0ther techniques for 
. . 

tens0r integral reducti0n which avoid this ~issue, ancl' the reader is directed 

to [59] f0r a review of these. 

Ra -
~ 
2lh024 + B22(p5, m~, m3) - B22(P2, m2, m3)~ 

Rr5 -
~-
2)[!2024 + B22(P11 m~, m2)- B22(p5, m1, m3)~ 

Rs 
~ . 
2J[hC21' + B2r(p5, m1, m3)- Bo(P2, m2, m3)]- 2035 

Rg 
1 
2i[fi1C22-+ B211~5, m1, m3)- B2r(P2, m2, m3~] 

Rw 
!I! 
2J[!J:C23 + B211~P1, m1, m3) + B1{P2, m2, m3)] - Ca6 

Rr2 -
1 . 
2J[f2C21 + B21{P1, m1,.m2)- B2l'(p5, m~, m3)] 

Rt3 -
1 . 
2i[f2C22- B2ili~p5, m11 m3)]- 2Ca6 

Rr4 
1 
2U2C23 - B211~p5, m11 m3)] - 0 35 
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A.3 Boxes 

For the >boxes matters proceed similatl¥ as for the triangles. We make tile 

foN0wing definiti0n, 

D · D~-'· D1.w. D~-'~P Dp.vpu(p p~ p m· m m m ) ~ o, , , , 11, 2, a, . I', 2, a, 4 -

., ' ' ' J ddk. l· kl-'· kJ.tV. kJ.'Vp. kJ.tVpu 
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DP- - pf Du + p~ D12 + p~D1a 

Dp.v - pfpi D21 + ~p~D22 + Jl::p~D2a 

Then we find, 

fa -

R2o -

R21 -

R21 -

m~ - m~ - p~ + p; 

1 
2[hDo + Co(Ps,Pa,rnt, ma, m4) - Co(P2,Pa, m2, ma, m4)] 

1 
2~/2Do + Co(Pl.,p2 + p3, m1, m2, m4)- Co~Ps,Pa, m11 ma, m4):]. 
1 . . 
2~~hDo + Co~PbP2, m1,m2, ma) - Co(pi,P2 + Pa, m1, m2, m4)] 

Du 
-c-l - 3 
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'iFhis time the Gram matrix is 3 x 3, 

P22 p ·p 2. 3 . 

P3 · Pt P3 · P2 P~ 

D21 
1 [ 2 . (d ~ 

3
) -m1Do- UtDu + hD12 + !3D13- Co(P2,P3, m2, m3, m4))/2] 

R3o 
1 
2;[ftDb + Cn (ps, p3, m1., m3, m4) + Co(P2,P3, m2, m3, m4}] ~ JJ27 

R33 
1 
2J!ID12 + Cu(Ps,P3, m,t,, m2, m4)- Cn{P2,P3, m2, m3, m4)]~ 

R36 
1 
2[fiDt3 + Ct2(Ps,P3, m1, m3, m4) - C12~P2,P3, m2, m3, m4)] 

R31 -
1 
2[!2Du + Cu(Pt.,P2 + P3, m1, m2, m4)- Cn~Ps,P3, ml! m3, m4)] 

R34 
1 
2[!2D12 + C12~Pt,P2 + P3, m1, m2, m4)- Cu(Ps,p3, mt, m3, m4)].- D21 

R31 
1 
2[f2Dt3 + Ct2(Pt,P2 + P3, mt,.m2, m4)- Ct2{Ps,P3, m1, m3, m4):] 

R32 -
1 
2[f3Du + Cu~Pt,P2, mt, m2, m3)- Cu{Pt,.P2 + p3, mt, m2, m4)1] 

R3s -
1 
2[fi3Dt2 + Ct2{Ph.P2, m1, m2, m3):]- Cr2(P.ti,P2 + p3, mb m2, m4)] 

R3s 
1 
2[hDt3- Ct2(Pt,P2 + P3, m1, m2, m4)} ~ D21 

R39 -m~Do -t Co(P2,P3, m2, m3,m4} 



APPENDitX A. PASSARINO VELTMAN DECOMPOSITION :1Jl12 

D21 R3o 

D24 
· -1 I 
·~ =G3 R31 i 

D2s R32 

D24 R33 

D22 - c-1 - . 3 R34 i 

' D26 R3s 

D2s R36 

D26 - c-1 - . 3 R31 

D23 R3s 

One point to note is that some 0f the fmm factors are overdetermined, 

in that we iind there is moFe than 0ne possible expressi0n f0r them in terms 

of ·Gram matrix elements and lower rank form factors. This provides a very 

useful check on the consistency of :the calcUifation, for one must of c0mse get 

the same answer whichever alternative is used. 

D3H 

D312 

D313 

-

-

~m~Dn- ~[JID21 + f2D24 + j3D2s + Co(P2,P3, m2,m3, m4)] 

1 2 1[ . )'] 2,m1.D12- 4 !rD24 + f2D22 + hD26- Cu(,P2,P3, m2, m3, m4,: 

~mi,D13- ~[JID2s + f2D26 + !JD23 ~ C12(P2,p3,.m2, m3, m4)] 
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R41 
1 
2[!ID21 - Co(P2,P3, m2, ma, m4) + C2t(Ps,pa, m1, ma, m4)]- 2D3H 

R42 
1 
2[f2D21- C2t{Ps,pa, m1, ma, m4) + C2t(PbP2 + Pa.,.mt, m2, m4)J]: 

R43 -
1 
2[f,aD21- C211~P17P2 + Pa, m1, m2, m4) + C:u(P1lP2, m1, m2, ma)~ 

R44 
1 
2[JID24 + C2l,~P5,Pa, m11 ma, m4) + Cu(P2,pa, m2, ma, m4)]- Da12 

Rso -
1 
2[!ID22- C2l(P2,P3, m2, ma, m4) + C2t(Ps,pa, mb ma, m4)] 

Rs6 -
1 
2·~hD2a- C22(P2,p3, m2, ma, m4) + C22(p5,pa, m1, ma, m4)] 

R4s -
1 
2,~/2D24- C2l(Ps,pa, m1, m3, m4) + C2a(PbP2 + Pa, m1, m2, m4)) = Dau 

Rs1 -
1. 
2ff2D22- C2t(Ps,Pa, mb ma, m4) + C22(p.bP2 + Pa, m1, m2, m4)]- 2Dat2 

Rs1 -
1 
2:[/2D2a- C22(Ps,pa, mb ma., m4) + C22(p1,P2 + Pa, m1, m2, m4)] 

R46 -
1 
2[faD24- C2a{Pt,P2 + Pa, m,t., m2, m4) + C23~17P2, m1, m2, ma)] 

Rs2 -
1 . 
2[faD22- G22(P1,P2 + P3, m'l., m2, m4) + C22~P11P2, mt, m2,ma)] 

Rss -
1 
2[faD2a- C22(p,1,,P2 + Pa, mt, m2, m4)]- Data 

' Dat R41 

Da4 
c-l. 

i = 3 i R42 

Das R4a 
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D36 R5o 

D32 
-a~1 - 3 R51 

D3s R52 

D37 R5a 

D39 
- c-1 - 3 R57 

D33 R5s 

D34 R44 

D3a 
-c-1 - 3 R45 

D310 R4a 

The results so far presented fer the farm factors were gi:ven in the original 

paper ef Passarino and Ve1tman, and suffice for numerical evaluation of all 

the necessary form factors. We previde in addition further expressions for 

same ef the form factors, which, as we have explained already, is useful for 
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the purposes of running self-consistency checks. 

Ql -
1 
2[ftD2s + C23(ps,p3, m1, m3, m4') + Ct2(P2,P3, m2, m3, m4))- D313 

Q2 -
1 
2[/2D2s + C23~P.t,P2 + P3, mt, m2, m4)- C23(ps,p3, m1, m3, m4)) 

Q3 -
1 
2[f,3D2s- C23'(Pt,P2 + P3, m1, m2, m4')]- D31:1 

Q4 
1 
2[ftD26 + C231(Ps,,P3, mt, m3, m4)- 023(P2,p3, m2, m3, m4)J 

Qs -
1 
2[/2.fl26 + C22(P1,p2 + P3, mt, m2, m4)- C23{Ps,P3, m~, m3, m4);]- D313 

Q6 
1 
2[!JD26- C22:(PllP2 + P3, mt, m2, m4)}- D312 

D3s Ql 

D31o -Gd - 3 Q2 

D37 Q3 

D10 Q4 

Da - a-1 - 3 Qs 

Dg Qa 
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