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Abstract 

Silenes, compounds containing a Si=C double bond, are highly reactive and are 

normally observed as transient intermediates which readily dimerise. Evidence for their 

existence was first reported in 1967 by Gusel'nikov and Flowers.' However, since then 

only minimal effort has been made to exploit their unique reactivity in organic 

synthesis. 

This thesis describes research concerning the chemistry of silenes and more specifically 

their Diels-Alder adducts, silacyclohex-4-enes. These cycloadducts were utilised as 

building blocks for organic synthesis, enabling the total synthesis of prelactone B (R = 

'Pr) and an analogue (R = Ph) to be achieved in high yields over 5 steps (Figure l ) . 2 

4 steps HO HO R R R 

SMe O Si-«SiMe 
HO 

Ph Ph 
O 

Figure 1 

In addition, a unique application of the Hosomi-Sakurai reaction to the cycloadducts 

provides access to a unique 1,4-monoprotected diol and tetrahydronaphthalene, both 

possessing four contiguous chiral centres. This methodology was then applied to the 

total synthesis of the podophyllotoxin analogue, epipicropodophylin (Figure 2) . 3 - 6 
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Figure 2 
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M Molar 
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MS Mass spectroscopy 
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OSO4 Osmium tetroxide 
PCC Pyridinium chlorochromate 
ppm Parts per million 
PPTS Pyridinium /7-toluene sulfonate 
q Quartet 
Rf Retention factor 
i t Room temperature 
s Singlet 
t Triplet 
TBAF Tetra-jV-butylammonium fluoride 



TBAT ter/-Butylammonium difluorotriphenylsilicate 
TBDPS ter/-Butyldiphenylsilyl 
TBS ter/-Butyldimethylsilyl 
TES Triethylsilyl 
TFA Trifluoroacetic acid 
TiCl 4 

Titanium tetrachloride 
TIPS Triisopropylsilyl 
TLC Thin layer chromatography 
TMS Trimethylsilyl 
p-TSA /?ara-Toluene sulfonic acid 
TTBP 2,4,6-Tri-teAV-butylpyrimidine 
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1 Introduction 

This thesis describes research concerning the chemistry and application of silacyclohex-

4-enes in organic chemistry. The following chapter will focus on some selected aspects 

of organosilicon chemistry, with particular emphasis on silene generation, reactivity and 

isolation to generate the desired silacyclohex-4-enes. Chapter 2 wil l present the first 

total synthesis of Prelactone B and an analogue starting from silacyclohex-4-enes. 

Chapter 3 focuses on Hosomi-Sakurai methodology applied to elaborate silacyclohex-4-

enes to 1,4-monoprotected diols and tetrahydronaphthalenes. Chapter 4 wil l highlight 

this methodology by completing the total synthesis of the podophyllotoxin analogue, 

epipicropodophyllotoxin. Finally, Chapter 5 wil l conclude the work presented and look 

at prospects for future work arising from this thesis. Chapter 6 wil l detail the 

experimental procedures. 

1.1 Selected Aspects of Organosilicon chemistry 

1.1.1 General Organosilicon Chemistry 

Silicon is a group 14 element positioned directly below carbon. Silicon shares many 

characteristics with carbon, such as having a valency of 4 and forming tetrahedral 

compounds.7 However, silicon has found widespread use in organic synthesis because 

of its distinct differences when compared to carbon and other elements.8 This section 

wil l briefly outline some of these aspects and give an overview into silicon's reactivity. 

1.1.1.1 Bond Length and Strength8 

A great deal of silicon chemistry is driven by the formation of longer and stronger 

silicon-oxygen and silicon-fluorine bonds at the expense of others, such as silicon-

1 



carbon (Table 1 ) . Of particular importance is the silicon-fluorine bond, which is longer 

and almost twice as strong as its carbon equivalent. This key bond is greatly exploited 

in organic synthesis. 

Bond to C Bond Length3 Bond Energy" Bond to Si Bond Length8 Bond Energy" 

C-C 1 . 5 4 3 3 4 

C=C 1 . 3 2 6 2 0 

C - 0 1 .41 3 4 0 

C-Cl 1 . 7 8 3 3 5 

C-F 1 . 3 9 4 5 2 

Si-C 1 . 8 9 3 1 8 

Si=C [ 1 . 7 2 ] 4 9 0 

Si -0 1 .63 5 3 1 

Si-Cl 2 . 0 5 4 7 1 

Si-F 1 . 6 0 8 0 8 

a Bond lengths quoted in angstroms; b Bone energy quoted in kJ mol"1 

Table 1 

1.1.1.2 Inductive Effects 

In addition to the physical properties of silicon bonds, the electronic properties also play 

a crucial role in their chemistry. Silicon is an inductive electron donor to carbon 

(electronegativities: Si 1 .64 ; C 2 . 3 5 ) leading to a polarised bond, Si6+-C6", which allows 

for nucleophilic attack at silicon. Moreover, silicon is less electronegative than 

hydrogen, forming Si 6 +-H 6", allowing Et3SiH to act as a reducing agent. 

1.1.1.3 Nucleophilic Substitution at Silicon 

It is the electronic factors outlined above that allow for nucleophilic substitution to 

occur at silicon by an SN2-type mechanism. This mechanism is referred to as an SN2 -S i 

pathway. This pathway proceeds with inversion of stereochemistry via a 

pentacoordinate intermediate 2 (Scheme 1). 
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Ph 
S - C 

Ph Ph 

r • 
Ph 

R - S i - C l R - S i 

Ph 

1 2 3 

Scheme 1 

In contrast, the S N 2 pathway for that of carbon goes via a pentacoordinate transition 

state. The SN2-Si mechanism is made possible by the availability of low-lying J-orbitals 

on silicon. 

1.1.1.4 a-Carbon-Metal and (3-Carbocation Stabilisation 

Another useful characteristic of silicon is its ability to stabilise both a carbanion in the 

a-position and a carbocation in the (3-position. This ability to stabilise a-carbanions can 

be attributed to several factors: 1. Overlap of the cc-carbon-metal bond with a silicon d-

orbital. 2. Overlap of the a-carbon-metal bond with the adjacent o* antibonding orbital 

between silicon and carbon. This overlap can occur because the antibonding orbital on 

silicon is larger than on carbon and silicon is more electropositive (Figure 3). 

Silicon also stabilises P-carbocations through overlap of the vacant p orbital on the |3 

carbon atom and the o orbital between the silicon atom and the a carbon atom. This 

effect means that allyl, aryl, vinylsilanes, silyl enol ethers and other such molecules 

react with electrophiles to place the positive charge p to the silicon (Figure 4). 

M 

*C-S a 
aC-M 

J J S i 
AE Stabilisation 

Figure 3 
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a p 
aSi-C 

pC 
AE Stabilisation S 

Figure 4 

1.1.1.5 Conclusion 

In conclusion, silicon possesses four key properties: 

- The ability to form strong silicon-fluorine bonds 

Is an electron donor to carbon and hydrogen 

- Undergoes nucleophilic attack via an SN2 mechanism which proceeds through a 

pentacoordinate intermediate 

- Has the ability to stabilise both a-carbanions and (i-carbocations 

It is these properties that give silicon a unique role in organic synthesis. 

1.1.2 Uses of Silicon in organic chemistry 

1.1.2.1 Protecting groups 8 , 9 

Silicon groups were first employed to increase the volatility and stability of polar 

compounds during gas chromatography and mass spectrometry. Now silicon groups are 

primarily used as protecting groups for hydroxyl moieties, but can be used to protect 

other functional groups such as carboxylic acids, amines and thiols. The most 

rudimentary silicon protecting group to be employed for hydroxy protection is the 

trimethysilyl group (TMS) 4. However, TMS groups are very labile and readily cleaved 

under acidic and basic conditions. To overcome this problem, a number of bulkier silyl 

ethers 5-8 have been developed. These are more stable to acidic and basic conditions 

and as a result have found widespread use in organic synthesis (Figure 5). 

4 
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Figure 5 

As a direct result of their widespread use, many methods for their introduction and 

removal have been developed. The most common method utilises the corresponding 

silyl chloride or the more reactive silyltriflate in the presence of a suitable base such as 

pyridine, Et3N, Hiinigs base, imidazole or DBU (Scheme 2). 

ROH + R 3 SiX 

9 10 
X = CI, OTf 

Im 
R 3 S i - N ^ j 

11 

, 0 - S i R , 

12 

Scheme 2 

Cleavage of silicon protecting groups is commonly undertaken utilising a source of 

fluoride (e.g. TBAF, HF-MeCN, HF-py, Et3N.3HF). Fluoride is employed because of 

its high affinity for silicon and the strength of a Si-F vs a Si-0 bond (cf. Section 1.1.1.1) 

enables a mild and selective cleavage of the protecting group (Scheme 3). 

R 
i 

. O - S i - R 
R I 

R 

12 

HF 
^ O - S i , 

R I ' F 
R 

:.«R ROH 

13 

Scheme 3 

Many examples exist in the literature describing the use of silicon as a protecting group. 

A noteworthy example reported by Evans et al, highlighted the versatility of silicon 

protecting groups in a total synthesis of Cytovaricin.10 This synthesis employed a wide 

range of silicon protecting groups and demonstrated that they would withstand a 
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phlethora of reactions including Grignard addition, Swern oxidation and Horner-Wittig 

reactions, until the last step when they were all cleaved with HF-Py (Scheme 4). 

ODEIPS 

OTBS 

OTES 

SbTO, 

OTES c y m a r o s e 

14 

HF-Py 

Scheme 4 

OH 

'OH 

OH 

IS 

OH 
OMe 

' ° - \ ° ^ O H 

1.1.2.2 Silyl enol ethers 

Despite protecting groups being the most well known function for silicon, other 

applications have been explored. One such application utilises silicon to trap and 

stabilise an enolate anion as a silyl enol ether (e.g. 17), which may be isolated, purified 

and characterised by analytical methods. Silyl enol ethers are generally prepared from 

ketones in the presence of a strong base and the corresponding silyl chloride, however, 

they can also be generated by capturing an enolate anion formed in a nucleophilic 

addition reaction (e.g. 19) (Scheme 5). 

o 
A 

16 

O 

LDA 

R 3 SiCl 

R 2 CuLi 

R 3 SiCl 

cr 
.S iR, 

17 

O ' 
,SiR, 

18 19 

Scheme 5 

When symmetrical ketones are utilised, only one silyl enol ether can be formed. 

However, unsymmetrical ketones give rise to selectivity issues. For example, 2-



methylcyclohexanone 20 could give two silyl enol ethers 21 and 22. However, utilising 

the correct conditions one silyl enol ether can be formed exclusively in preference to the 

other. So, under conditions of kinetic control (route 1), deprotonation at the least 

hindered site is favoured and the enolate anion with the least substituted double bond is 

formed. However, under conditions of thermodynamic control (route 2), equilibration of 

the two enolates occurs and eventually gives rise to the enolate containing the most 

substituted double bond. Therefore, silyl enol ethers can be thought of as synthons for 

stable regiochemically-pure enolate anions and, as such, they have found widespread 

application in organic synthesis (Scheme 6). 

o OS R OS R 

-6 ^5 

20 21 22 

1. LDA, -78°C 
Route 1 1 99 

2. R3SiCl 

R3SiCl, Et3N 
Route 2 *• 99 1 

130 °C 

Scheme 6 

Silyl enol ethers have been utilised in a phlethora of reactions with a range of 

electrophiles in the presence of a Lewis acid. For example, alkyl halides, aldehydes and 

ketones react with silyl enol ether 17 to give a stabilised carbocation. Carbocation 23 

then collapses with loss of the silicon group to give ketone 24 (Scheme 7). Silyl enol 

ethers react exclusively at the terminal carbon, since any other position would give rise 

to an unstabilised carbocation. This selectivity, coupled with the regioselective 

formation of the enolate anion, makes silyl enol ethers very versatile reagents. 

7 



,SiR, 
or 

,SiR, 

17 
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23 
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24 

Scheme 7 

Again, many examples exist in the literature describing the use of silyl enol ethers. The 

most commonly employed reaction is the Lewis acid-promoted aldol reaction of silyl 

enol ethers with aldehydes. This reaction has been exploited to great effect in natural 

product synthesis. An example reported by Kwon et al. demonstrates their versatility in 

a synthesis of the [5-7-6] tricyclic core of Guanacastepene A utilising a silyl enol ether 

derived from 25.11 The silyl enol ether 26 was generated in situ by trapping the enolate 

formed from the conjugate addition of a methyl group to the cyclopentenone. The 

intramolecular Mukaiyama aldol reaction was then undertaken by reacting 26 with 

TiCU at -78 °C to give the tricyclic core of guanacastepene A 27 in 80% yield (Scheme 

8). 

O OMe CO,Me 
" MeO ' 

MejCuLi.TMSCI. 

E(3N, HMPA 

TMSO OMe CO,Me C02Me 

TiCU, -78 °C 

25 26 27 

Scheme 8 

1.2 Silene Chemistry 

1.2.1 Introduction 

As outlined in the previous subsections, silicon-based reagents have found widespread 

use in organic synthesis. However, multiply-bonded silicon species have found very 

little. Silenes are molecules that contain a Si=C double bond and are primarily observed 

as highly reactive transient intermediates. Their high reactivity arises because of a low 

8 



Si=C double bond energy (490 kJ mol"1) when compared to O C (620 kJ mol"1). The 

low bond energies are rationalised in two ways: firstly the low electronegativity of 

silicon leads to weak attraction for bonding electron density and secondly there is poor 

overlap of the Si 3p and carbon 2p orbital. Two contributions to this are the mismatch of 

energy levels and the diffuse nature of the silicon orbitals at the increased bond length 

due to the lower effective nuclear charge (Figure 6). 

\ 1 2 A

b 1.32 A 

» g - 8 c c ^ c 

Figure 6 

As a direct result of these factors, silenes are primarily generated in situ using three key 

techniques: gas phase pyrolysis, photolysis and a modified Peterson reaction. The 

following section wil l examine each technique. However, due to the large amounts of 

literature available, only a small number of examples for each technique will be 

described. 

1.2.2 Generation of Silenes 

1.2.2.1 Gas Phase Pyrolysis 

Gas phase pyrolysis is a technique well documented in the literature. However, it is 

seldom used as it requires very harsh reaction conditions. Despite this, gas phase 

pyrolysis was utilised to great effect by Gusel'nikov and Flowers.1 They provided the 

first evidence for the existence of silenes in 1967 utilising this technique. Their seminal 

work focused on the pyrolysis of 1,1-dimethylsilacyclobutane 28. They demonstrated 

that when pyrolysed, 28 gave rise to ethylene and 1,3-disilacyclobutane 30. This 

suggested that silene 29 was formed first by a retro [2+2] cycloaddition followed by 
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head-to-tail dimerisation. Subsequent studies showed that trimethylsilanol 31 and 

hexamethyldisiloxane 32 were generated on addition of water to the reaction. This 

provided further evidence for the intermediacy of silene 29 (Scheme 9). 

I 
—Si • 

28 

J 
460 °C, 60mmHg 

\ 
Si = 

29 

H,0 

Me3Si—OH 

31 

\ / \ / 
Si Si 

/ V \ 

30 

Me 3Si—0-SiMe 3 

32 

Scheme 9 

Following the work of Gusel'nikov and Flowers, other groups began to utilise the 

pyrolysis technique for silene generation. One distinct approach was reported by Barton 

et ah, which focused on the thermolysis of allylsilane 33. Barton et ah demonstrated 

that allylsilane 33 underwent a retro-ene fragmentation to give silene 34. Subsequent 

dimerisation gave the head-to-tail dimer 35, identical to that observed by Gusel'nikov 

and Flowers. Interestingly, in this case, the silene 34 could also be trapped by a diene in 

a Diels-Alder reaction (Scheme 10).12 

Me2Si 

l _ SiMe, 

Me,Si 2o. ., 600 °C r , 
2 • 1 1 1 Me2Si = J 

35 

H 

33 

-C3H6 Diene 

34 

R - 0 
l i V s ^ S i M e 2 

36 

Scheme 10 

1.2.2.2 Photolysis 

In spite of the reports highlighted in the previous section, pyrolysis was abandoned as a 

technique for silene generation. Instead photolysis was readily adopted as a mild 

10 



technique when compared to pyrolysis. An early report by Boudjouk and Sommers 

demonstrated that 1,1-diphenylsilacyclobutane 37 (structurally similar to 28 reported by 

GusePnikov and Flowers) could be photolysed to generate silene 38 under very mild 

conditions. Silene 38 was subsequently trapped with methanol to give silyl ether 39 

(Scheme l l ) . 1 3 

Ph 
I 

Ph—Si—| 
u 

37 

J 
hi) 

P \ MeOH P \ / 

/ S i = ~ ~ ~ * p / U O M e Ph Ph 

38 39 

Scheme 11 

Even though silacyclobutanes are capable of generating silenes, only simple substrates 

such as 1,1-dimethyl- and 1,1-diphenylsilacyclobutanes have been used. To expand the 

application of this technique, new substrates were explored. Work by Ando et al. 

highlighted the use of silicon-based diazo compounds,14 which were examined because 

carbon-based diazo compounds had been shown to undergo an intramolecular carbon-

carbon insertion reaction to yield alkenes. More specifically, these workers reported that 

trimethylsilylcarboalkoxy diazoacetates 40, when photolysed, generate silene 42 which 

was subsequently trapped with methanol to give migrated product 43. This result 

suggested that silene 42 was generated from a 1,2 methyl migration in carbene 

intermediate 41. Three other products were also isolated, further confirming the 

intermediacy of carbene 41. One product arose from the direct reaction of carbene 41 

with methanol and the other two from a Wolff rearrangement (Scheme 12). 

N 2 

u 
'Si COOR 

40 

" ^ S i ^ C O O R 

41 

" S i X O O R 
I 

42 

MeOH X 
MeO" Si COOR 

43 

Scheme 12 
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A similar rationale was employed when Barton and Hoekman reported their work using 

bis(trimethylsilyl)diazomethane 44. When photolysed, silene 45 was generated from 

diazo compound 44 via carbene formation and 1,2 methyl migration (as before). Silene 

45 was then trapped as its head-to-tail and linear dimerisation products 46 and 48 

(Scheme 13) 15 

N 2 

u 
Me 3 Si-^^SiMe 3 

44 

Me,Si"^ SiMe 

45 

r—Si-SiMe3 I I 
-Si—1 

I 
SiMe3 

46 

SiMej 

Me,Si 
I 

Me,Si 

SiMe, 

47 

Me2Si 

SiMe3 

Me->Si 
I H 

SiMe3 

48 

Scheme 13 

In spite of their unique reactivity, diazo compounds still provide a limited range of 

substrates for this technique, due primarily to their unstable nature. Therefore, 

subsequent investigations explored more stable substrates for photolysis. A report by 

Ishikawa et al.16 demonstrated that 1-vinyldisilanes are stable substrates, able to 

generate silenes utilising this technique. Ishikawa et al. reported that, when photolysed 

and quenched with methanol, 1-vinyldisilane 49 generated disilane 51. Isolation of 

disilane 51 suggested that the intermediate silene 50 was generated by a 1,3-sigmatropic 

shift of the silyl group to the terminal vinyl carbon (Figure 7). 
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Figure 7 
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Notwithstanding the substrates discussed so far, the biggest advance for this technique 

arose through investigations into acylsilanes. A report by Brook et al. demonstrated that 

the stable acyldisilane 52 underwent photolytic activation to generate intermediate 

silene 53, which was trapped with methanol to give siloxane 54, and carbene by-product 

55 which underwent attack of methanol to generate the acetal 56 (Scheme 14).17"19 
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P h 3 S ' \ ^O. .Ph 
Ph^ I 

Ph 

55 

p h 3 S l s ^Ph 
Ph^ I , / OMe 

Ph H 

56 

Scheme 14 

Brook et al. also demonstrated that a large variety of substrates could be utilised in this 

process. This variety allowed the same workers to isolate the first crystalline 'stable' 

silene 58 by photolysis of acyl silane 57. Silene 58 was isolated as a white crystalline 

solid. The stability of silene 58 was attributed to the steric bulk imparted by the 

adamantyl group, blocking its dimerisation. Furthermore, isolation of silene 58 enabled 

X-ray crystallographic studies to be undertaken to unequivocally prove the existence of 

silenes (Figure 8) . 1 8 , 2 0 

o 
Me3Si 

.Si 
M e ^ r I 

Me3Si s 

OSiMeg 
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Figure 8 
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1.2.2.3 Modified Peterson Reaction 

Subsequent to their use in photolysis, acylsilanes were employed in other techniques to 

generate silenes. One technique that was explored for silene generation was the Peterson 

reaction. A report by Ishikawa and co workers described this technique for silene 

21 

generation. They demonstrated that acylsilane 59, when reacted with methyllithium, 

generated ct-silyl-oxy anion 60. The anion 60 then underwent a modified Peterson 

reaction, by first abstracting a trimethylsilyl group intramolecularly. The silyl anion 61 

eliminated the trimethylsilanolate to give silene 62, which subsequently dimerised in a 

head-to-head fashion to generate dimer 64. Also, silene 62 reacted as a diradical 

tautomer 63 to give vinyldisilane 65 (Scheme 15). 
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(Me3Si)2Si 

(Me 3 Si ) 2 Si^ 
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X (M^Si^Si 
(Me3Si)2SU H 

65 

Scheme 15 

As a result of this report, other groups investigated the modified Peterson reaction. 

Oehme and Wustrack further established this technique by demonstrating that a a-silyl-

oxy anion (identical to that reported by Ishikawa, cf. Scheme 15) could be generated in 
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situ from the reaction of silyllithium 66 and acetone.22 The anion 60 then rearranged (as 

above) to give silene 62, which reacted with another equivalent of silyllithium 66 to 

give a second anion, which was quenched on work-up to give silane 67 (Scheme 16). 

Moreover, being able to generate ct-silyl-oxy anions in situ by reacting silyllithiums 

with ketones and aldehydes allowed a large number of substrates to be investigated.23 
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.Si ^ 
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SiMe3 

61 

M e 3 S \ 
,Si Si(SiMe,), 

H I 3 3 

SiMe, 

67 

MejSi^ 
Si' 

I 

SiMe3 

62 

Scheme 16 

However, to this point, the modified Peterson reaction had been shown to generate 

silenes by reaction of an isolated acylsilane with methyllithium or in situ by reaction of 

a silyllithium with a ketone or aldehyde. In an attempt to understand the reaction 

pathway, it was advantageous to isolate the active a-silyl-oxy anion species before it 

underwent elimination to form a silene. A report by Oehme provided a procedure for 

isolating a a-silyl-oxy anion analogue, a-silylalcohol 70. Oehme demonstrated that by 

reacting silyl Grignard reagent 68 with carbonyl compounds, an oxy-magnesium 

bromide 69 was generated. This did not undergo spontaneous migration and elimination 

to form the corresponding silene (as with the silyllithium species, cf. Scheme 16) but, 

upon work-up, yielded a-silylalcohol 70 (Scheme 17). 2 4 - 2 9 
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Moreover, the isolation of a-silylalcohol 70 allowed conditions necessary for migration 

and elimination to be investigated. Another report by Oehme provided conditions that 

would allow migration and elimination to take place. Oehme demonstrated that on 

addition of strong base to a-silylalcohol 70, the a-silyl-oxy anion 71 (cf. Scheme 16) 

was generated and underwent spontaneous migration and elimination as observed 

earlier to give silene 73, which was isolated as its dimerisation product (Scheme 18). 

OH 
M e 3 S ' s J<R' 
Me 3SK I 

SiMe, 

70 

R' 
Me 3Si N A 

Si I 
I 
SiMe3 

73 

O Li 
Me3Si^> J U R ' 

^.Si R 
Me 3Si^ I 

SiMe3 

71 

© 
Li OSiMe3 

M e 3 S i s © J c - R ' 
Si R 
I 

SiMe3 

72 

OSiMe3 

M&,SiN L - R ' 
Si R 

H I 
SiMe3 

74 

Scheme 18 

Now, with mild conditions established for the generation of a variety of a-silylalcohols 

and conditions for the formation of silenes documented, attention turned to the reactions 

of silenes utilising these conditions. 
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1.2.3 Reactions of Silenes 

1.2.3.1 Dimerisation Reactions 

As highlighted in earlier sections, silenes are transient and unstable molecules that, in 

the absence of any other reagents, dimerise rapidly. It is this reaction mode that 

facilitated their discovery by pyrolytic formation of a head-to-tail dimer 30 by 

Gusel'nikov and Flowers.1 Many of the methods discussed for silene generation relied 

on the isolation of dimerisation products to prove their existence. One example reported 

by Ishikawa et al. generated a head-to-tail dimer 76 of silene 75 (Scheme 19).16 

Silene dimerisation was not just used to prove the existence of silenes. A report by 

Brook et al. suggested that silenes were in a dimer-monomer equilibrium. This 

hypothesis was investigated by refluxing dimer 77 in methanol to isolate silyl ether 79. 

This suggested that dimer 77 interconverted to silene 78 via a retro [2+2] reaction, and 

78 was then trapped by methanol (Scheme 20). 1 8 
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Ph s / / s Si 

S :s. Si 

Si 

Si-

/ vPh 
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1.2.3.2 Reactions with Nucleophiles 

In addition to dimerisation, silenes were demonstrated to react with alcohols as 

nucleophiles by oxygen addition to silicon and hydrogen addition to carbon. This 

reactivity and regioselectivity of addition are attributed to silene's bond polarisation and 

silicon's affinity for oxygen (cf. Scheme 11, Scheme 12, Figure 7). Organometallics 

have also been shown to react in a similar way, yielding various products after 

rearrangement. Brook et al published extensive research into the reaction of silenes 

with Grignard reagents in 1991.3 0 

1.2.3.3 Reactions with Carbonyl Compounds and Imines 

Silenes not only react with nucleophiles, but with carbonyl compounds and imines. A 

report by Maas et al. demonstrated that silenes, generated by photolysis of a diazo 

silane, would react with carbonyl compounds.31 Silene 80 was shown to react in an 

'ene' manner yielding siloxane 81, unless the ketone was non-enolisable, in which case 

a [4+2] cycloaddition was seen, generating siladioxene 82 (Scheme 21). 

Enolisable Ketone Non Enolisable Ketone 

H 
SMe O S Me V SiMe S Me R R s r ^ Si o \ o o Si Si o o o X R R Ph Ph 

O 
Ph 

80 81 

80 82 

Scheme 21 

Interestingly, Brook et al. also demonstrated that a,|3-unsaturated aldehydes and ketones 

wil l undergo [4+2] cycloadditions yielding cyclic silapyran regioisomers 85 and 86. The 
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ratio of regioisomers depended on the substituents present in aldehyde 84 (Scheme 

22).3 2 

OSiMe, 

83 

R 
Me 3Si^ A R—(\ O 
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R R 
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v Si-SiMe, 
O 
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Me3 + fT i OSiMe, 
,Si-SiMe 3 

R' R ' S i M e 3 

86 

Scheme 22 

Another report by Brook e/ al. described the use of imines to trap silenes.33 Using 

triphenyl imine 88 and /-butyl or adamantyl silene 87, the [4+2] cycloadduct 89 was 

initially isolated. Interestingly, on standing in the dark, cycloadduct 89 rearranged to 

give the [2+2] cycloadduct 90. It was found that when exposed to light, [4+2] 

cycloadduct 89 rearranged much faster to the [2+2] cycloadduct 90, suggesting that a 

radical rearrangement was taking place (Scheme 23). 

Ph 

N 

X 
OSiMe3 P h 

Me,Si v 3 Si R 
I 
SiMej 

R = 'Bu, Ad 

87 88 

Ph 

SiMe3 

OSiMe3 

89 

Me,Si OSiMe, I 
Me,Si—Si R 
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Scheme 23 

1.2.3.4 Reactions with Dienes 

As well as carbonyl compounds and imines, Brook and co workers examined the use of 

dienes as trapping agents to prove the existence of silenes. A report by Brook and co 

workers described the reaction of dienes with silenes in great detail using the stable 

adamantyl silene 58. They demonstrated that reactions of dienes with silenes gave 

mixtures of Diels-Alder product 92 and the 'ene' product 93 (Scheme 24).3 4 
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Scheme 24 

Other dienes were also utilised in this study. Butadiene and cyclohexadiene reacted with 

silenes to give [2+2] addition products in a ratio of ca. 1:3, besides the expected [4+2] 

products. 

1.2.3.5 Conclusion 

In conclusion, three techniques have been utilised to generate silenes. Of these three, 

photolysis and the modified Peterson olefination have been shown to be mild and 

reliable techniques. Moreover, they enable the most varied array of precursors to be 

utilised. 

Once generated, silenes have been shown to undergo a variety of reactions. However, 

particular emphasis was placed on 'trapping' experiments to unambiguously prove their 

existence. This meant that little effort has been made to exploit their unique reactivity in 

organic synthesis. Therefore, our intention was to initiate a study to apply this 

reactivity. The following section wil l highlight this early work. 

1.3 Previous work in the group 

Early work in the group investigated the synthesis of a silene precursor that could be 

utilised in organic synthesis. Griffiths adapted Oehme's methodology to generate an 

array of a-silylalcohols 96 possessing a phenyl ring on the silicon atom (Scheme 25). 3 5 
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With the a-silylalcohols in hand, Griffiths then went on to demonstrate that when 

subjected to the modified Peterson reaction conditions (reported by Oehme), a-

silylalcohols 96 underwent migration and elimination to give silenes. More specifically, 

when a-silylisobutanol 97 was treated with MeLi at -78 °C and warmed to -30 °C, 

silene 98 was generated. This was then trapped in situ with 1,3-pentadiene 99 in a Diels-

Alder reaction generating silacyclohex-4-ene 100 in 66% yield (Scheme 26) . 2 4 " 2 7 , 3 6 , 3 7 
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However, attempts to reproduce the reaction reliably with MeLi failed and the use of 

other bases, such as H-BuLi and LiHMDS led preferentially to the formation of silane 

101. To address this issue of reproducibility, Whelligan implemented a systematic study 

of bases for silene generation. After extensive research, it was found that treatment of 

a-silylalcohol 97 with «-BuLi in the presence of a catalytic amount of LiBr generated 

silacyclohex-4-ene 100 reproducibly in 50% yield. 2 9 
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These results were rationalised by analysing the bases used and the mechanism outlined 

(Scheme 27). Commercially available MeLi (1.6M in ether) is described as 'low 

chloride' and contains approximately 6% LiBr, where as other bases, such as «-BuLi 

(1.6M in hexane) do not. The need for the presence of lithium salts to facilitate the 

crucial elimination reaction would explain the lack of reproducibility, due to the varying 

amounts in each commercially available batch of MeLi. 
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Scheme 27 

Following this development of a robust protocol for silene generation, Whelligan was 

able to demonstrate their versatility in organic synthesis by reaction with a range of 

simple alkyldienes. This generated a whole variety of silacyclohex-4-enes 102-105 in a 

reliable manner with reproducible yields and diastereoselectivities. With the 

silacyclohex-4-enes in hand, attention turned to their elaboration. Subsequent 

investigations by Whelligan demonstrated that silacyclohex-4-enes 102-105 could be 

elaborated utilising the Fleming-Tamao reaction (oxidative cleavage of organosilanes 
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with hydroperoxide). This enabled a series of lactones 106-109 to be prepared in 

moderate yield (Table 2). 

Diene [4+2] Silacycle Lactones 

X 
Ph 

102 
42% (83:17) 

-V \ ° 
o o 

106 
63% 64% 

y 
Ph Ph 

103 
36% (84:16) 

0 o o 
107 

25% (66:44) 

7 Ph 
104 

43% (80:14:4) 

o o 
108a 108b 

45% 26% (79:11:8:2) 

7 Ph 
105 

38% (86:9:4:1) 

o o 
109a 109b 
13% 60% (87:10:3) 

Table 2 

Now that a reliable procedure had been established for the generation of silacyclohex-4-

enes and their elaboration to lactones, attention turned to utilising these in organic 

synthesis. More specifically, the intention was to apply silacyclohex-4-enes to the total 

synthesis of prelactone B, a P-hydroxy-6-lactone isolated from a bafilomycin-producing 

Streptomyces griseus. The following chapter will report our endeavours towards the 

first total synthesis of prelactone B, starting from silacyclohex-4-enes. 
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2 Total synthesis of Prelactone B 

2.1 Introduction 

5-Lactones, specifically (3-hydroxy-5-lactones, are found as components of many 

bioactive natural products. In addition, they also represent useful building blocks for the 

synthesis of more complex structures. A sub-group of this class of compounds are the 

prelactones, 110-113 isolated from various polyketide-macrolide-producing 

microorganisms (Figure 9). 

The most widely studied prelactone is prelactone B 110. First isolated by Bindseil and 

Zeeck in 199339 from the bafilomycin-producing Streptomyces griseus, 110 represents 

an early metabolite in the biosynthesis of polyketide antibiotics. Although a direct 

product of the polyketide synthase (PKS) enzymes responsible for the synthesis of the 

macrolide, prelactone B is not incorporated into the natural macrolide and therefore is 

believed to be a shunt product of the biosynthetic pathway. To investigate this 

biosynthetic pathway, a number of synthetic routes to prelactone B have been 

developed. The following section will highlight these routes focusing on key synthetic 

transformations. Subsequent sections will then describe an alternative approach, discuss 

the merits and shortcomings of this approach and finally report a total synthesis of 

prelactone B 110 starting from silacyclohex-4-ene 100. 
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Prelactone B, 110, R = CH(CH 3 ) 2 

Prelactone C, 111, R = CH=CHCH 3 

Prelactone V, 112,R = C H 3 

Prelactone E, 113, R = C 2 H 5 

Figure 9 
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2.2 Previous syntheses of Prelactone B 

2.2.1 Hanefield route 

The first synthesis of 110 was reported in 1999 by Hanefield et al., who synthesised 

both C-4 epimers to make them available as reference compounds.40 Hanefield et al. 

began their synthesis with the aldol reaction of homochiral amide 114 and 

isobutyraldehyde to generate a mixture of 116a and 116b (Scheme 28). 

o o o o o o OH OH 

Y r Bu 2BTf, DIPEA 
N N O O o 

Ph Ph Ph 

114 115 116a 116b 
63% 28% 

Scheme 28 

The desired anti-d\do\ isomer 116a was separated and protected as the TBS ether. 

Selective reduction of the amide moiety with lithium borohydride in the presence of 

water produced 118 in good yield. Oxidation of 118 with Dess-Martin periodinane 

produced the unstable aldehyde 119, which was treated immediately after purification 

with lithiated tert-butyl acetate. The aldol product 120 was then cyclised with dilute 

HC1 over 7 days to generate a 1.23:1 mixture of 110 and 121, which were subsequently 

separated by reverse phase HPLC (Scheme 29). 
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Scheme 29 

2.2.2 Fournier route 

The Fournier approach was a racemic approach utilising a unique aqueous HF-promoted 

translactonisation process.41 Fournier et al. began their synthesis with the reaction of 

isobutyraldehyde 122 and crotyl bromide 123 in the presence of indium in water. This 

gave the homoallylic alcohol 124 as a mixture of diastereoisomers. Homoallylic alcohol 

124 was subsequently protected as the TBS ether and the alkene subjected to ozonolysis 

to yield aldehyde 125. The aldehyde was then transformed into (3-lactone 127 through a 

two-step sequence involving Lewis-acid-catalysed [2+2] cycloaddition and TBAF-

promoted desilylation. Finally translactonisation of 127 with aqueous HF generated 110 

as a 5.7:1:1 diastereomeric mixture, arising from a stepwise mechanism involving the 

intermediate 128 (Scheme 30). 

26 



o V OH TBSO O Vr 1. Im.,TBSOTf In, H 2 0 122 
2. 0 3 , MeOH/CH 2Cl 
3. DMS, A 

Br 
124 125 123 

62% 88% 
85:15 anti/syn 85:15 anti/syn 

O 

%''SiMe 3 
BF,«OEt 

H 

O O 
TBSO O TBSO O aq. HF TBAF.3HiO 

O 
SiMe H H 

O 

110 127 126 
79% 71% 
7:2:1 5.7:1: 

O 
HO 

128 

Scheme 30 

2.2.3 Enders route 

The Enders approach synthesised prelactone B 110 asymmetrically utilising a 

SAMP/RAMP-hydrazone to govern the stereochemistry and a homogenous 

hydrogenation as a key step.42 The synthesis began by preparing the (./?)-l-amino-2-

methoxymethylpyrrolidine (RAMP) hydrazone 129 from the condensation of 2,2-

dimethyl-l,3-dioxan-5-one and the corresponding hydrazine. Alkylation with isopropyl 

iodide at the a-position followed after work-up by a second alkylation at the a'-position 

with ter/-butyl bromoacetate gave 130 in good yield. Subsequent cleavage of the 

hydrazone with aqueous oxalic acid led to dioxanone 131 (Scheme 31). 
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Wittig methylenation of the dioxanone 131 generated 132 in good yield (80% yield over 

the three steps). Subsequent removal of the acetonide with TFA and lactonisation 

provided lactone 133, which was stereoselectively reduced by hydrogen in the presence 

of Crabtree's catalyst ([Ir(cod)(PCy3)(py)]PF6) to generate prelactone B 110 with high 

de and ee (Scheme 32). 

o 

- M r r 0/-Bu O/-B11 Ph,P=CH 
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HO H 
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Scheme 32 

2.2.4 Chakraborty route 

Chakraborty described another asymmetric route to prelactone B 110, this time by a 

radical-mediated opening of a trisubstituted epoxy alcohol using CpiTiCl. 4 3 Starting 

from monoprotected propane-1,3-diol 134 the a,|3-unsaturated ester 135 was generated 

in two steps. Swern oxidation followed by Wittig olefination gave exclusively the E-

28 



isomer. Subsequent reduction with LAH, Swern oxidation and Grignard addition 

generated the allylic alcohol 136 in good overall yield. With the allylic alcohol 136 in 

hand, Sharpless asymmetric epoxidation and kinetic resolution was undertaken with 

titanium(IV) isopropoxide and unnatural diethyl D-(-)-tartrate to yield the chiral epoxy 

alcohol 137 (Scheme 33). 
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Scheme 33 

Disappointingly, the desired chiral epoxy alcohol 137 was generated in only 30% yield. 

Also, the chirality was unable to be confirmed at this juncture. Nevertheless, the stage 

was now set to carry out the radical-mediated ring opening reaction. Treatment of 137 

with Cp2TiCl did not provide the desired '2-methyl-l,3-dioP; but instead the |3-hydride 

elimination product 138 was generated. Subsequent double bond reduction and 

debenzylation gave 139 with the correct C-5 stereochemistry (ds 9:1). An ensuing 

protection/deprotection strategy, followed by oxidation of the primary hydroxy group to 

the corresponding acid and O-methylation with CH2N2 provided the acetonide ester 141 

in good yield. At this stage the major isomer was separated and the acetonide cleaved 

with aqueous acetic acid to provide a 1,3-diol that underwent concomitant cyclisation to 

prelactone B 110 (Scheme 34). 
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2.2.5 Pihko route 

The Pihko approach provided a very short enantioselective approach to prelactone B 

utilising a unique proline-catalysed crossed-aldol reaction between propionaldehyde 

142 and isobutyraldehyde 122.44 This reaction gave the aldol product 143 in > 99% ee 

and 40:1 anti. syn diastereoselectivity. Immediate reaction of the unstable aldol product 

143 with TBSOTf generated silyl ether 144 in good yield. Subsequent aldol reaction of 

144 with silyl enol ether 145 in the presence of BF3*OEt2 provided 146 with Felkin-

Ahn selectivity. Deprotection and simultaneous lactonisation of 146 with aqueous HF 

led to (-)-prelactone B 110 (Scheme 35). 
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2.2.6 Dias route 

The Dias approach to (+)-prelactone B utilises the same intermediate protected aldehyde 

144 described above in the Pihko approach.45 Dias et al. gained access to the protected 

aldehyde 144 via a very efficient Evans oxazolidinone-mediated anti-a\dol reaction. 

Reaction of methacrolein 147 and oxazolidinone 148 gave the anti aldol product 149 in 

good yield and 15:1 diastereoselectivity. Intermediate 144 was produced following 

reduction of the double bond, TBS protection of the free hydroxy group, reductive 

cleavage of the chiral auxiliary and Swern oxidation of the primary alcohol. Lewis-acid-

promoted aldol reaction, as previously described by Pihko et al., then generated 152 

with >95:5 diastereoselectivity. Removal of the TBS group and lactonisation with 

aqueous HC1 resulted in the formation of (+)-prelactone B 110 in 77% overall yield 

(Scheme 36). 
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2.2.7 Aggarwal route 

The Aggarwal approach highlighted the application of a unique sulphur-ylide-mediated 

epoxidation to the asymmetric total synthesis of prelactone B 110.46 The synthesis 

began by treating isobutyraldehyde with a chiral sulphur ylide generated from sulfide 

153 and hydrazone 154 to provide epoxide 155 in 50% yield and 9:1 ds. Importantly the 

major diasereoisomer was generated in >93% ee (Scheme 37). 

MeO. 

© 

N Ts 

O 
II 

PTC, Rh 2 (OAc) 4 

153 154 

OMe 

50%, 9 (93% ee): 1 (70% ee) 

Scheme 37 

With the major epoxide isomer in hand, elaboration towards the target molecule 

continued with regio- and stereoselective ring opening of the epoxide by a methyl 

cuprate in the presence of a Lewis acid, followed by Birch reduction of 156 under 

standard conditions to generate 157 in excellent yield. Ozonolysis of the double bonds 

provided hydroxy keto ester 158, which was chemo- and stereoselectively reduced to 
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give dihydroxy ester 159. Lactonisation of 159 with water completed the synthesis of 

110 in 66% yield and 93% ee from 158 (Scheme 38). 

OH OH 
Li , f-PrOH, NH CuCN, MeLi 

155 OMe OMe BF.'OEt 

156 157 
61%,93%ee 84% 

1.0 3 , py 
2. Ph.P 

OH OH O OH O H,0 O NaBH(OAc) 
(+)-110 

AcOH/THF OMe OMe 
66% 

Scheme 38 

2.2.8 Yadav route 

The Yadav approach highlighted a convergent route to prelactone B through Prins 

cyclisation of a homoallylic alcohol 162.47 Yadav et al. showed that the key 

intermediate, homoallylic alcohol 162, could be prepared from (+)-benzyl glycidyl ether 

160 in 3 steps. Starting from 160, the chiral epoxide was opened with propynyllithium 

in the presence of BF3»OEt2 to give 161 in good yield. Birch reduction of the 

propargylic alcohol 161 led selectively to trans-162, which was then regioselectively 

protected as the benzyl ether. With allylic alcohol 162 in hand, the crucial Prins 

cyclisation was investigated. The results of the investigation revealed that the best 

conditions for cyclisation were TFA followed by hydrolysis of the esters with potassium 

carbonate in methanol. These conditions enabled 163 to be generated in 60-68% yield 

(Scheme 39). 
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Scheme 39 

Substituted tetrahydropyran 163 was transformed rapidly into prelactone B via 

methoxymethyl (MOM) protection of the secondary alcohol and deprotection of the 

benzyl group by dissolving metal reduction to give 164. Alcohol 164 was then treated 

with PCC in refluxing benzene to generate the lactone 165, which was then MOM 

deprotected (Scheme 40). 

OMOM 

1. MOMCI, DIPEA, DMAP 
163 

HO 2. L i , NH 3 liq 
O 

164 
100% 

PCC 

OMOM 
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(+) 110 

O o 
86% 
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Scheme 40 

2.2.9 Salaskar route 

The Salaskar approach was developed to take advantage of 1,2-cyclohexylidene 

glyceraldehydes as chiral templates.48 The key features of this synthesis were the 
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stereoselective crotylation of 1,2-cyclohexylidene glyceraldehydes and the 

enantioselective reduction of a ketone. The synthesis began with a Barbier-type reaction 

of 166 and crotyl bromide to generate 167 as a mixture of diastereoisomers separable by 

column chromatography (Scheme 41). 

Q Q Q Q Br O O O O O O O O Zn 

CHO 
HO HO HO 

167a 167b 167c 
85%, 64 : 34 : trace 

Scheme 41 

It was noted, however, that the major stereoisomer 167a possessed the incorrect 

stereochemistry and therefore a stereoinversion had to be undertaken. This was 

achieved by oxidation of 167a with PCC followed by reduction with K-selectride to 

provide the opposite stereoisomer 169 (Scheme 42). 

Q Q Q PCC K-se ectnde O O O O O O 

HO HO O 

167a 168 169 
83% 75% 

Scheme 42 

Alcohol 169 was then benzyl protected, dihydroxylated with osmium tetroxide and 

oxidised to the aldehyde 170 with sodium periodate. Aldehyde 170 was then reacted 

with isopropylmagnesium bromide to give an inseparable mixture of mono-protected 

diols. Fortunately, acylation of the mixture enabled chromatographic separation of the 

isomers. The desired major isomer 171b was taken forward and treated with aqueous 

trifluoroacetic acid to remove the cyclic acetonide. The resultant diol was then 
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converted to the olefin 172 by mesylation and heating with Nal and zinc dust. 

Hydroboration of the double bond and in situ oxidation with Na2CrC>4 led directly to the 

desired lactone. Subsequent debenzylation led to (-)-prelactone B 110 in moderate yield 

(Scheme 43). 

w 9 1. NaH, BnBr ^ Q ^ Q 1.,-PrMgBr^ 0 ^ 0 + o ^ P 

2 . 0 s 0 4 , N M O \ 1 I 2 .Ac 2 0,py \ 1 f 
3. NaI0 4 

BnO / \ BnO ' ° BnO / \ BnO 
AcO AcO 

170 171a 171b 
65% 

over 3 steps 6 4 % . 1 : 2 
over 2 steps 

\.aq. TFA 
2. MsCl,Zn,NaI 

( ) 110 -

43% 
over 2 steps 

1. BH 3«SMe 2 , 

Na 2 Cr0 4 , H 2 S 0 4 

2. H 2 , Pd/C 

over 2 steps 

Scheme 43 

2.3 Our approach to Prelactone B 

Our interest in prelactone B arose from the development of new synthetic methodology 

described earlier (cf. Section 1.3). The key step involved the novel [4 + 2] cycloaddition 

of silenes (compounds containing a Si=C double bond) with dienes to yield 

silacyclohex-4-enes 174 possessing good diastereoselectivity. It was then demonstrated 

that the cycloadducts could be elaborated to ^-lactones through a sequence involving 

reduction, Fleming-Tamao oxidation and lactonisation (Scheme 44). 
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As a result of this preliminary work, a retrosynthetic analysis of prelactone B 110 was 

undertaken. This revealed that the key step would involve the stereoselective 

introduction of the C-4 hydroxyl group. The remaining steps would involve protection 

of the hydroxy group and Fleming-Tamao oxidation to provide diol 176, which would 

be lactonised and deprotected to supply the final product (Scheme 45). 

HO, 

,Si-*SiMe 3 

Ph 
Si-"SiMe 3 

Ph 
100 177 

Scheme 45 

With the analysis in mind, a brief search of the literature suggested that the desired 

hydroxysilacyclohexane 177 could be accessed in three ways: (i). hydroboration of the 

silacyclochex-4-ene 100 with the regiochemical outcome directed by the allylsilane 

unit, (ii). epoxidation of the allylsilane unit followed by silicon-directed fragmentation 

to give intermediate 181 with the correct regiochemistry, (iii). dihydroxylation of 

silacyclohex-4-ene 100 followed by silicon-directed fragmentation to give a similar 

intermediate 181 (Scheme 46). 
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The following sections wil l examine each approach individually, discuss the value and 

limitations of each and ultimately, utilising one approach, report the total synthesis of 

prelactone B. 

2.4 Results and Discussion 

As discussed in the previous section, our approach to prelactone B relied on the 

preparation of silacyclohex-4-ene 100. Accordingly this became the first objective of 

the project. It was found that by repeating the silene-diene Diels-Alder reaction, 

pioneered by Whelligan, the desired silacyclohex-4-ene 100 was produced in good yield 

and good diastereoselectivity. Silacyclohex-4-ene 100 was obtained as an inseparable 

mixture of isomers with the minor components reflecting the presence of small amounts 

of exo-addition products and trace amounts of the adducts of the alternative £(Si) silene 

(Scheme 47). 
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Scheme 47 

The major diastereomer (boxed in red) is thought to arise from a Z(Si) silene 98 reacting 

in an endo Si-Ph orientation. With the silacyclohex-4-ene mixture 100 in hand, attention 

turned to the introduction of the C-4 hydroxyl group by means of a hydroboration 

reaction. 

2.4.1 Hydroboration 

The synthetic utility of the hydroboration reaction in organic chemistry is well known.8 

To date, many borane and organoborane reagents have been developed.49 In 1980 

Brown et al. undertook a study to investigate the hydroboration of acyclic vinyl, allyl 

and butenylsilanes with borane-THF complex and organoboranes.50 They found that 

when vinylsilanes were treated with borane-THF complex and oxidised, a mixture of cc-

and ^-substituted alcohols were generated. This mixture was attributed to the stabilising 

effect of silicon with p-carbocations (discussed in Section 1.1.1.4). However when 

treated with 9-BBN and oxidised, vinylsilanes produce exclusively the (3-product. This 

switch in selectivity is attributed to the steric interaction between the silicon containing 

group and bulky alkyl group surrounding the borane, overriding the stabilising effect of 

silicon. 

Following this result, Brown et al. went on to investigate the reaction of allylsilanes. 

When allylsilanes were treated with borane-THF complex and oxidised, the y-silanol 

185 was generated exclusively. This alteration in selectivity is attributed to the 
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stabilising effect of silicon with p-carbocations. It was also noted that when treated with 

a bulky alkyl borane the reaction proceeded via the same pathway, providing y-silanol 

185 exclusively (Scheme 48). 

c . . . R-3H-THF ,SiMe3 _£ ^ 
e j 4 

Q R = H, alkyl 

182 183 

[Ol 
HO^ / \ ^SiMe 3 « R2B SiMe3 

185 184 

Scheme 48 

Following this, a great number of groups looked at the hydroboration of acyclic 

allylsilanes, however, very little work was done to investigate the reaction of cyclic 

allylsilanes.51"53 Only one publication in 1998 by Soderquist et al. looked at the 

hydroboration of cyclic allylsilane 186. It was found that treatment of 186 with borane-

methylsulfide complex followed by oxidation led to a racemic mixture of alcohols 187 

(Scheme 49). 5 4 In this case the regioselectivity of the reaction was driven by the methyl 

substituent present on the ring, not the stabilising effect of the silicon. 

BH3«SMe2 X \ ^ 0 H 

186 187 

Scheme 49 

Consistent with these observations, preliminary work in the group by Whelligan, 

showed that when a solution of borane-THF complex was treated with a solution of 

silacyclohex-4-ene 100 in THF at 0 °C and oxidised under standard alkaline conditions, 

a hydroxyl silacyclohexane 178 was generated in 22% yield and isolated after 
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chromatography as a single diastereoisomer. Unfortunately the regiochemical outcome 

of the reaction was not assessed (Scheme 50). 

( f ^ S ^ ^ i- BH3«THF r ^ ^ T ^ 

k ^ S i ^ S i M e j i i . aq. NaOH, aq. H 2 0 2 , A k ^ S i - " S i M e 3 

Ph Ph 
100 178 

ds, 70:20:10 22% 

Scheme 50 

Building on these earlier observations, initial investigations looked to repeat this result 

in order to improve both the yield and to assess the regiochemical outcome of the 

reaction (Table 3). 

HO i. borane reagent 

Si-*SiMe3 i j . oxidation method Si-«SiMe 
Ph Ph 

100 178 
ds, 70:20:10 

Entry Borane reagent Oxidation method Order of addition Solvent Yield 

1 BH 3»THF H 2 0/NaOH/H 2 0 2 Alkene to borane THF 30% 

2 BH 3«THF H 2 0/NaOH/H 2 0 2 Borane to alkene THF Starting material 

3 BH 3«THF NaB0 3 .4H 2 0 Alkene to borane THF Decomposition 

4 BH 3»THF NaB0 3 .4H 2 0 Alkene to borane Hexane Decomposition 

5 BHCl 2«SMe 2 NaB0 3 .4H 2 0 Alkene to borane Hexane Decomposition 

6 BH 3 »SMe 2 H 2 0/NaOH/H 2 0 2 Alkene to borane THF 49% (4:1) 

7 BH 3«SMe 2 H 2 0/NaOH/H 2 0 2 Alkene to borane Hexane 26% (4:1) 

Table 3 

On a larger scale, the Whelligan procedure afforded the hydroxysilacycle in 30% yield 

(entry 1). However, this yield could not be consistently reproduced as varying amounts 

of decomposition products were observed. To address this issue the order of reagent 
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addition was reversed (entry 2). Disappointingly, when the borane reagent was added to 

the silacyclohex-4-ene, hydroboration did not take place and starting material was 

recovered unchanged. This suggested that the order of addition was crucial, so 

subsequent investigations explored changing the oxidation conditions, borane reagent 

and solvent (entries 3-7). Ultimately, substitution of borane-THF complex with borane-

dimethylsulfide complex (as described by Soderquist et al, entry 6) afforded 

hydroboration of silacyclohex-4-ene 100 with a 49% yield and 4:1 regioselectivity in 

favour of the correct isomer. The regioselectivity was determined by analysing the *H 

NMR splitting paterns of the regioisomeric carbinol protons (Scheme 51). 

HO i. BH3«SMe2, THF 

Si-SiMe Si -SiMe 3 i i . a q . NaOH, aq. H 2 0 2 , A Si-"SiMe 
HO Ph Ph Ph 

100 178 
ds, 70:20:10 49% (4:1) 

Scheme 51 

Introduction of the hydroxyl group was confirmed by analysis of the IR spectrum, 

which showed a broad signal at 3368cm"1 coupled with a peak at 3.26 ppm in the 'H 

NMR corresponding to the carbinol proton. The major regioisomer was isolated as a 

single diastereoisomer by flash column chromatography. Further investigations were 

undertaken to improve the yield by altering the solvent to hexane (entry 7), but this led 

to a significant drop in yield. The decision was then taken to curtail further examination 

of this process and the optimum reaction conditions were set (entry 6). 

Initial attempts to carry out the Fleming-Tamao oxidation of hydroxysilacyclohexane 

178 were unsuccessful and led to decomposition products. This suggested that the 

unprotected hydroxyl group interfered with the reaction. Therefore to advance the 
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hydroxy substrate to prelactone B, protection of the secondary hydroxy unit was 

essential (Scheme 52). 

i . BF3«2AcOH, A HO HO 
ii. aq. H 2 0 2 , KHCO 

OH Si-SiMe THF:MeOH (1:1), A 
Ph 

OH 
178 188 

Scheme 52 

After considering many protecting groups it was decided that a benzyl group would be 

able to survive both the acidic/basic conditions of the Fleming-Tamao procedure. 

Consequently, investigations were undertaken to ascertain suitable conditions for benzyl 

protection of 178 (Table 4) 

H O ^ >v . Conditions RO > s . 

l S s ^Si-"SiMe 3 L^ /Si-"SiMe 3 

Ph Ph 
178 189 

Entry Conditions Outcome 

1 Benzyl bromide, TBAI, NaH Starting material 

2 Benzyl bromide, Ag20 Starting material 

3 Benzyl acetimidate, /?TSA Starting material 

4 PMBC1, DIPEA 

Table 4 

Starting material 

Disappointingly, every effort to introduce a benzyl ether proved unsuccessful. The 

reason for this failure was not obvious and there was concern that any functionalisation 

of the hydroxyl group would be difficult. Consequently, other protecting groups were 

then explored. 
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Firstly, acetate protection was attempted. When treated with pyridine and acetic 

anhydride the desired acetate protected product 190 was generated in 46% yield. In 

addition to acetate protection, the hydroxyl unit was protected with a benzyloxymethyl 

(BOM) group. On treatment with benzoxymethyl chloride and DIPEA, the desired 

protected product 191 was generated in 50% yield. Disappointingly, when 191 was 

subjected to the Fleming-Tamao conditions, the BOM group did not survive the initial 

acidic reaction conditions and led to quantitative recovery of the unprotected 

hydroxysilacyclohexane 178. As a result, the hydroboration route to prelactone B was 

abandoned (Scheme 53). 

BOMCI, DIPEA ROMO AcO Ac,0, Py HO 

Si^SiMe, Si-SiMe Si-SiMe 
Ph Ph Ph 

190 178 191 
46% 50% 

i. BF3»2AcOH, A 
ii . aq. H 2 0 2 , KHCO 

THF:MeOH (1:1), A 

BOMO 

OH 

OH 
192 

Scheme 53 

2.4.2 Epoxidation 

Disappointed with our initial foray, attention turned to an alternative route involving 

epoxidation. Epoxidation of alkenes has been utilised extensively in organic synthesis,55 

however to the best of our knowledge, only one example exists in the literature for the 

epoxidation of silacyclohexenes. This was reported in 1996 by White et al. who showed 

that dimethylsilacyclohexene 194 could be epoxidised to 195 utilising a modified Payne 

oxidation (Scheme 54).5 6 
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Scheme 54 

Our intention was to utilise this or other epoxidation reactions to provide access to the 

silacyclic oxirane 196. It was hoped that when subjected to the Fleming-Tamao 

oxidation conditions, 196 would undergo a regioselective ring fragmentation reaction, 

directed by the silicon atom, to produce the fragmented dihydroxyl product 199 

(Scheme 55). 

i . BF3«2AcOH, A Epoxidation HO 
O ii. aq. H 2 0 2 , KHCO 

Si-""SiMe OH Si-SiMe THF:MeOH(l:l),A 
Ph Ph 

100 196 199 

HO © 
F , B - 0 

Si-SiMe 
Ph Ph 

G 

197 198 

Scheme 55 

With this hypothesis in mind, epoxidation reactions of silacyclohex-4-ene 100 were 

investigated (Table 5). Entries 1 and 2 highlight our initial attempts at this chemistry. 

Silacyclohex-4-ene 100 was reacted, under classical epoxidation conditions with meta-

chloroperbenzoic acid (mCPBA) and excess NaHCC>3 at various temperatures. 

Disappointingly, both reactions led to decomposition of the starting material. To address 

the sensitivity of silacyclohex-4-ene 100 a milder method for epoxidation was 

investigated. Jacobsen's catalyst has been shown to epoxidise several cyclic and acyclic 

trisubstituted olefins under mild conditions.57 Utilising this methodology, entry 3 shows 
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that when 100 was treated with Jacobsens catalyst, no reaction was observed and the 

starting material was recovered quantitatively. Subjecting silacyclohex-4-ene 100 to the 

modified Payne conditions (entry 4) also proved disappointing with starting material 

being recovered quantitatively. 

Conditions 

O 
Si-«SiMe Si-*SiMe 

Ph Ph 
100 196 

Entry Conditions Outcome 

1 mCPBA, NaHC0 3, 0 °C Decomposition 

2 wCPBA, NaHC0 3 , -78 °C Decomposition 

3 Jacobsen catalyst, NMO, NaOCl, 5NNaOH — 
Starting material 

4 MeCN, MeOH, H 2 0 2 Starting material 

Table 5 

A search of the literature was then undertaken to find milder reaction conditions. The 

results showed that dioxiranes have been utilised as epoxidising agents and first came to 

prominence in 1985 when Murray et al. reported their synthesis and application.59 Since 

then they have found much use in organic chemistry, particularly in sugar chemistry 

because they epoxidise alkenes under neutral conditions. With this promising new 

method to hand, the reaction of silacyclohex-4-ene 100 was attempted (Table 6). 
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Conditions HO 

^Si-SiMe, Si-SiMe 
HO Ph Ph 

100 200 

Entry Conditions Outcome 

1 Oxone, KH2PO4, acetone, H 2 0 , DCM, 18-crown-6 Starting material60 

2 DMDO, acetone, DCM 20% 6 1 

3 
Oxone, trifluoromethylacetone, aq. EDTA 

disodium salt, NaHC03 
22% 6 2 

4 MTO (cat.), TTBP, THF/H 2 0 2 (3:1) Starting material 

Table 6 

Following the original literature provided by Murray et al. a phase transfer reaction 

(entry 1) was attempted. The reactive dioxirane, dimethyldioxirane (DMDO) is 

generated in situ through the reaction of acetone with oxone. Disappointingly, the 

reaction provided only starting material after workup. Readdressing the literature it was 

discovered that DMDO could be generated as a solution in acetone and then used to 

epoxidise alkenes. Gratifyingly, when silacyclohex-4-ene 100 was treated with an 

acetone solution of DMDO (entry 2), the compound isolated after chromatography was 

not the silacyclic oxirane 196 but the dihydroxy compound 200 (Scheme 56). 

H DMDO/Acetone HO 
O 

Si-«SiMe Si-*SiMe Si-SiMe 
Ph Ph Ph 

100 196 200 
20% 

Scheme 56 

Fragmentation of the silacyclic oxirane was confirmed by analysis of the IR and 'H 

NMR spectra, which showed a broad signal at 3060cm"1 for the hydroxyl group coupled 

with peaks at 5.75, 5.21 and 5.08 ppm in the *H NMR for the allyl group. Moreover, the 
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dihydroxy compound 200 was generated as a single diastereoisomer. Its stereochemistry 

was assigned by analogy to work described in Chapter 3.4. This would suggest that 

initial addition of DMDO occurs syn to the trimethylsilyl group giving rise to the 

anti:anti:anti stereochemistry. The fragmentation of silacyclic oxirane 196 was believed 

to arise from an acidic rearrangement mechanism during silica gel chromatography 

(Scheme 57). 

H HO 
O 

Si-»SiMe Si-^SiMe 
Ph Ph 

196 200 

HO © 
HO 

S - S Me Si^SiMe, H.O Ph Ph 
H.O 

201 202 

Scheme 57 

Despite a low yield of 20%, the remaining 80% was recovered as starting material, 

demonstrating that the reaction is very mild. Subsequently, the low conversion of 

silacyclohex-4-ene 100 was attributed to the difficulty in isolating the acetone solution 

of DMDO. To overcome this problem, several groups have reported practical, general 

and efficient protocols for the in situ generation of DMDO and its more reactive 

substrate methyl(trifluoromethyl)dioxirane.62 Utilising methyl(trifluoromethyl)dioxirane 

generated in situ, silacyclohex-4-ene 100 was epoxidised to give direct access to the 

dihydroxyl compound 213 (entry 3) in 22% yield. Attempts to further improve the yield 

were unsuccessful. 
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Due to the promising results obtained with dioxiranes, a metal equivalent was 

investigated. Methyltrioxorhenium (MTO) has been used as an oxidation catalyst in the 

presence of hydrogen peroxide for the epoxidation of olefins. Their use was first 

highlighted in 1991 by Herrmann et al. who proposed that olefin epoxidation occurred 

via a hydroperoxy complex.63 Employing the same methodology, silacyclohex-4-ene 

100 was reacted with catalytic MTO and hydrogen peroxide to give access to the 

silacyclic oxirane 196. Interestingly, no reaction was observed and starting material was 

recovered quantitatively. 

In conclusion, despite epoxidation of silacyclohex-4-ene 100 providing the dihydroxy 

compound 200 the isolated yield was disappointing. With every effort made to improve 

the yield exhausted, this route had to be abandoned. 

2.4.3 Dihydroxylation 

To advance silacyclohex-4-ene 100 to prelactone B 110, our attention turned to a route 

involving dihydroxylation. Dihydroxylation is a well-documented transformation for 

alkenes and has been studied extensively.64 However, to the best of our knowledge, 

there are no examples in the literature that employ silacyclohex-4-enes in a 

dihydroxylation reaction. Therefore, our intention was to utilise this methodology to 

provide access to dihydroxysilacyclohexane 180, which would undergo a regioselective 

silicon directed ring fragmentation, similar to that described for epoxides (cf. Scheme 

55) when subjected to the Fleming-Tamao oxidation conditions. This would provide 

access to the dihydroxy compound 199 (Scheme 58). 
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100 180 199 
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Ph 
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Scheme 58 

With this in mind, initial efforts focused on developing methodology for the 

dihydroxylation of silacyclohex-4-ene 100. For this, we intended to use a model 

compound, phenylsilacyclohex-4-ene 206, as this could be prepared in high yields, 

identical diastereoselectivity (ds 7:2:1) and possesses a strong chromophore for easy 

analysis of late stage intermediates. Firstly, phenyl silacyclohex-4-ene 206 was 

generated by reaction of phenyl silyl alcohol 205 under identical conditions to those 

outlined in Section 2.3 (Scheme 59). 

OH 
Me 3Si^ .JL. i. n-BuLi, piperylene, r.t. 
Me3Si"T P h ii.LiBr,-20°C, 17h 

Ph 

205 

v . / S i - « S i M e 3 

Ph 
206 

Scheme 59 

Then, to our delight when subjected to the Upjohn dihydroxylation conditions (cat. 

Os0 4, NMO, Acetone:H20 20:1) the corresponding diols 207a-c were isolated in 82% 

yield (Scheme 60). 
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Ph 
207b 

82% (7:2:1) 

Si Me, 
207c 

Flash chromatography of the isomeric mixture enabled the major diastereoisomer 207a 

to be separated. Importantly, 207a was shown to possess the 4-hydroxy group trans to 

the methyl group by nOe experiments (Figure 10). 

207a 

Figure 10 

With the 1,2-diol 207a in hand, the fragmentation reaction was investigated, utilising 

the Fleming-Tamao conditions. On a small scale, when treated with BF3*2AcOH 

complex, followed by hydrogen peroxide oxidation as a one-pot - two-step reaction, 

diol 208 was generated in 72% yield as a single diastereoisomer (Scheme 61). 

HO, kPh i . BF3«2AcOH 

H 0 ^ V / S i / - S i M e 3 i i . H 2 0 2 , K 2 C0 3 

HO, Ph 

OH 
Ph 

207a 208 
72% 

Scheme 61 

To probe this rearrangement, the crude material obtained before oxidation, was analysed 

by 'H (Figure 11) and l 9 F NMR. Surprisingly, the 'H NMR showed that an 

intermediate was generated as a 1:1 mixture of diastereoisomers and just as surprisingly 

the 1 9F NMR showed that no fluorine was present in the molecule. 
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Puzzled by this result, the reaction was repeated on a larger scale and the unknown 

intermediate isolated by flash chromatography and fully analysed. Examination of the 

mass spectrum (obtained by electrospray analysis) showed the molecular ion to have 

m/z = 352. This, coupled with a characteristic peak (-21 ppm) for a siloxane group in the 

2 9 Si NMR and no fluorine signals in the 1 9F NMR enabled the unknown intermediate to 

be identified as the cyclic siloxane 212. 

o s •"SiMe 
Si(CH,) Ph 

212 

CH 

5-H 

liii_J I i A""1 
J 

Figure 11 

Two possible reaction pathways could account for this observation. The first involves 

an intramolecular SN2 reaction of the allylic alcohol with the silyl fluoride species 210. 

The second involves the allylic alcohol reacting with a transient silyl cation 211, 

generated by an SNI reaction (Scheme 62). 
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Scheme 62 

To explain the stereochemical outcome of the initial rearrangement, pathway 1 may be 

ruled out because an SN2 reaction at the silyl fluoride atom will only give rise to a single 

diastereoisomer. However, pathway 1 may not be concerted and silicon may enter a 

pentacoordinate transition state 213 (Figure 12). This might allow the transition state to 

undergo Berry pseudorotation and scramble the stereochemistry.65 This would give rise 

to the observed isomeric product. On the other hand, pathway 2 is rather unlikely as 

silyl cations are very rare species and highly reactive.66"71 

• F f 
0 - S i . , S i M e 3 
/ I 'Ph 

R R 

213 

Figure 12 

In order to determine the reaction pathway and a potential mechanism, further 

experiments were undertaken. Since both pathways require the intermediacy of a ring-

opened silyl fluoride species 210, the cyclic siloxane 212 was treated with BF3»2AcOH 

complex to attempt to open the ring, and give access to this species. Interestingly, when 

analysed by ! H and l 9 F NMR, the 1:1 diastereomeric mixture of siloxane 212 had given 
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rise to a single diastereomeric compound possessing one fluorine atom (Figure 13). This 

was proposed to be the ring opened silyl fluoride 210 based on the characteristic 

fluorine doublet observed in the 1 9F NMR (Figure 14). 

HO*. 3 

Si-«SiMe3 
5 F Ph 

Si(CH3)3 

, j l l ) 

CH, 

3-H 

Figure 13 

S i - F 

Figure 14 

Unfortunately, all attempts to purify and fully characterise this compound were 

unsuccessful and led to decomposition. Attempts to trap the reactive hydroxyl group as 

a TBS ether were also unsuccessful, giving only decomposition products. Analogous 

results were obtained when attempting to cyclise 210 back to the siloxane 212 using a 
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variety of bases. However, oxidation of silyl fluoride 210 using hydrogen peroxide 

generated the diol 208, albeit in a low (21%) yield (Scheme 63). In conclusion, the 

silacyclic diol 207a could be advanced to the 1,3-diol 208 in good yield via the 

intermediacy of cyclic siloxane 212 and in lower yield via the proposed silyl fluoride 

species 210. Two proposed reaction pathways may account for the formation of cyclic 

siloxane 212; however, no evidence exists to support either one. 

H O V ^ % > P h BF 3»2AcOH 

S i S i M e 3 

Ph 
HO' 

207a 
Me^Si 

^ Si-"SiMe 3 

F Ph 

210 

\ H 2 0 2 , K H C 0 3 / 
100% \ S2l% 

HO, 'YY 
OH 

208 

Ph 

Scheme 63 

2.4.4 Synthesis of Prelactone B 

Despite the interesting reactivity of silacyclic diol 207a, allylic diol 208 could be 

synthesised reproducibly in good yield, so attention turned to the synthesis of the 

prelactones. This required a search of the literature, which revealed a procedure that 

would enable hydroboration of the double bond in allylic diol 208 followed by 

oxidation to the lactone in one step (Scheme 64). 7 2 

BH,«SMe, 

OH 

TPAP, NMO if excess 

214 215 216 217 
80% 

Scheme 64 
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However, attempts to replicate this procedure using diol 208 failed to provide the 

desired product. Therefore, it was decided to split the reactions and attempt to isolate 

and purify the triol intermediate. So, when 208 was treated with BH3 ,SMe2 complex 

and oxidised with hydrogen peroxide, the desired triol 218 was generated in 64% yield 

as a single regioisomer based on the presence of two methylene signals at 3.89 and 1.98 

ppm, and the absence of a second signal for the regioisomeric methyl group, in the ! H 

NMR. Unfortunately, attempts to lactonise triol 218 were unsuccessful, returning only 

complex mixtures of products (Scheme 65). 

TPAP, NMO i . BH,«SMe HO Ph HO Ph HO Ph 

T̂̂ OH k OH 
i . H 2 0 2 , NaOH 

O ^ OH OH 

OH O 

208 218 219 
64% 

Scheme 65 

Disappointed with these results, a new strategy involving protecting groups had to be 

adopted. It was proposed that to selectively protect the desired allylic hydroxyl group of 

diol 208 in the presence of a benzylic hydroxyl group would be difficult and would give 

rise exclusively to the di-protected product. Therefore, the silacyclic diol 207a had to be 

protected before the Flaming-Tamao procedure. Attempts to protect both hydroxy units 

of the silacyclic diol 207a as a PMB ether or a benzyl ether were unsuccessful. 

Frustrated with this string of unsuccessful results, attempts to achieve a selective 

protection of the diol 208 were investigated. Fortunately, on treatment with a large 

excess of TBSC1 and imidazole, a single product possessing only one TBS group by *H 

NMR was isolated in 70% yield. To ascertain the position of the TBS group, nOe 

experiments were undertaken. Gratifyingly, a correlation was observed between the 

methyl group of the TBS unit and the allylic CH, rather than the benzylic CH, 
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confirming that the protecting group had reacted exclusively with the allylic alcohol. 

None of the di-protected or benzylic protected product was detected (Scheme 66). 

? I ? 
H O ^ ^ ^ . P h TBSCl, Im.^ t B u - S i - O v ^ - \ > P h 

208 220 
70% 

Scheme 66 

The monoprotected diol 220 could now be advanced to the desired lactone through a 

sequence involving hydroboration and lactonisation. Initial investigation of the 

hydroboration reaction began by utilising BH3°SMe2 complex followed by hydrogen 

peroxide oxidation. When subjected to these conditions, monoprotected diol 220 was 

hydroborated to give a 1:1 regioisomeric mixture of diols 221a and 221b in 60% yield 

(Scheme 67). The undesired regioisomer was separated from the desired product by 

flash chromatography and isolated as a single diastereoisomer. *H NMR analysis 

showed a new signal at 1.26 and 3.99 ppm corresponding to the new methyl group and 

carbinol proton respectively. 

TBS(X / \ ^Ph i . BH,«SMe, TBSCv > \ ^Ph TBSCv ^Ph 

OH 
OH 

OH 
220 221a 221b 

60%, 1:1 

Scheme 67 

This result contrasts that obtained earlier for the hydroboration of diol 208 (cf. Scheme 

65). It was proposed that the TBS group forces the allyl group into close proximity with 

a co-ordinated borane molecule 222 whereas, in the previous case, the borane molecule 

co-ordinates both hydroxyl groups 223, locking the molecule and enabling selective 

hydroboration (Figure 15). 
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Furthermore, it was found that the regioisomeric diol 221b was formed as a single 

diastereoisomer. This selectivity was proposed to arise through an intramolecular 

hydroboration reaction of the alkene via transition state A. Transition state B was 

discredited due to A 1 ' 3 strain. Despite this, the stereochemistry was not fully confirmed 

(Scheme 68). 

To circumvent this problem, efforts to block the benzylic group were briefly 

investigated. Treatment of the monoprotected diol 220 with acetic anhydride and 

pyridine gave the desired di-protected product 224 in low yield, accompanied by 

starting material and a large amount of decomposition. As a result, alternative solutions 

were considered (Scheme 69). 

H H H B' OH Ph O Ph O 
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TBSO Ph i . BH„«SMe H 
221b i i . H , 0 2 , NaOH ^ OH 
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Scheme 68 
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Reinvestigation of the literature emphasised that when regioselectivity was an issue, 

utilising a bulky borane (such as 9-BBN) restored the selectivity of the hydroboration 

reaction (cf. Section 2.4.1). Moreover, these reagents are less likely to bind to the 

hydroxyl group. With this in mind, attention turned to utilising a bulky borane to 

hydroborate the alkene of mono-protected diol 220. Knowing that the product of the 

reaction would be a diol, it was decided that 9-BBN would not be utilised because the 

by-product from its oxidation, cyclooctane diol, may hinder purification. Consequently, 

dicyclohexylborane was selected because the by-product from its oxidation is 

cyclohexanol, which should not interfere with purification of the diol. 

To our satisfaction, when treated with an excess of freshly prepared dicyclohexylborane 

and oxidised under standard conditions, the desired diol 221a was generated as the sole 

product in 60% yield. None of the regioisomeric product was present by TLC or *H 

NMR analysis of the crude material (Scheme 70). 

T B S O V ^ \ > P h '• C y 2 B H T B S O ^ A ^ P h 

T T i i . H 2 0 2 , NaOH T T 
^ OH 2 2 OH 

OH 
220 221a 

60% 

Scheme 70 

With an efficient synthetic strategy in place to gain access to the 1,5-diols, attention 

turned to the final steps. Lactonisation of diol 221a was undertaken with TPAP and 

NMO. Pleasingly, the lactone product 225 was generated in quantitative yield as 

ascertained by analysis of the *H NMR. This revealed no signals for the starting 

material; therefore, no purification was undertaken and the crude lactone product was 

subjected to mild silicon deprotection utilising Et3N.3HF in THF. Subsequent overnight 
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reaction, workup and flash chromatography provided the p-hydroxy-8-lactone 219 in 

100% yield from diol 221a (Scheme 71). 

TBSO, Ph TPAP, NMO TBSO, Et 3N.3HF H 0 

00% 
over 2 steps 

Scheme 71 

With the model study completed and a synthetic route defined, attention now turned to 

the synthesis of prelactone B 110. Dihydroxylation of silacyclohex-4-ene 100 (ds 4:1) 

afforded the silacyclic diol 226 in 42% yield (entry 1). Flash chromatography of the diol 

226 enabled the major isomer to be isolated as a single diastereoisomer. The 

stereochemistry was confirmed by nOe experiments as before. Since the yields for the 

dihydroxylation were lower than those obtained with the phenylsilacyclohex-4-ene, 

attempts to improve this utilising other dihydroxylation conditions were then 

undertaken (Table 7). 

Conditions 

Si-*SiMe 3 

Ph 
Si-*SiMe 3 

Ph 
100 226 

Entry Conditions Outcome 

1 Os0 4, NMO, Acetone:H20 20:1 42% 

2 
K 2 0s0 4 .H 2 0 , K 3Fe(CN) 6, K 2 C 0 3 , Quinuclidine, 

Methane sulfonamide 
46% 

3 OsC>4, TMEDA, Ethylenediamine 37% 

Table 7 
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Unfortunately no significant improvement in yield was observed, and therefore the 

Upjohn procedure was used for subsequent reactions. With sufficient material in-hand, 

attention turned to the ring fragmentation reaction. When treated with the Fleming-

Tamao conditions silacyclic diol 226 was transformed, via the cyclic siloxane, to the 

corresponding allylic diol 227 in 64% yield. Delighted with this result, protection of the 

diol was then undertaken utilising TBSC1 to give mono-protected diol 228 in 52% yield. 

As before, the protecting group was shown by nOe experiments to be on the allylic 

alcohol, analogous to the model study. Hydroboration of the double bond was 

undertaken with dicyclohexyl borane to give, following oxidation and flash 

chromatography, the diol 229 as a single regioisomeric product in 70% yield. 

Cyclisation with TPAP and NMO provided the lactone in quantitative yield, followed 

by silyl ether cleavage with Et3N.3HF yielding prelactone B 110 in 90% yield. The 

spectroscopic data for this compound proved to be identical with those reported in the 

literature (Scheme 72). 

i . BK«2AcOH HO HO Tab e 7 
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2.5 Conclusion 

In conclusion, this work has demonstrated that silacyclohex-4-enes 100 and 206, 

derived from silene-diene cycloadditions are viable substrates for the total synthesis of 

prelactone B 110 and an analogue 219. The key steps in the synthesis involved the 

dihydroxylation of the silacyclohex-4-enes to provide the hydroxyl moiety and the 

selective silicon protection of the diol 227 and 208. The following chapter focuses on 

Hosomi-Sakurai methodology applied to elaborate silacyclohex-4-enes to 1,4-

monoprotected diols and tetrahydronaphthalenes. 
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3 Hosomi-Sakurai Chemistry 

3.1 Introduction 

Allylsilanes are widely used in organic chemistry and have been shown to undergo a 

plethora of reactions at both the silicon and olefinic moieties (Figure 16). 7 3' 7 4 

Y 

A Y 

A SiR 
R R R R R R R R,Si Y = 0 , N Y = 0 , N 

230 R YH 
231 232 O 

r1 R 

O 

R 
233 

Figure 16 

In 1948 Sommer et al. reported that the allyl-Si a bond of allylsilanes was easily 

cleaved by electrophiles and Bronsted acids.75 Later, Frainnet et al. established that 

allylsilanes react preferentially at the y-carbon.76 Following this early work, increased 

interest in allylsilanes came about when Hosomi et al. reported the first carbon-carbon 

bond forming reaction in the late 1960s.77 Then in the 1970s, a flourish of publications 

by the groups of Abel, Calas and Hosomi highlighted the use of allylsilanes in 

synthesis. Abel et al and Calas et al. both reported that allylsilanes added to activated 

carbonyl compounds, such as perfluoroacetone.78'79 Later in the mid 1970s, an 

independent study by Hosomi et al. reported that carbonyl compounds in the presence 

of a strong Lewis acid (TiCL;) underwent smooth allylations with allylsilanes 230 

(Scheme 73). 8 0 
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Since this discovery by Hosomi et al., the Lewis-acid-promoted addition of allylsilanes 

to carbonyl compounds and related electrophiles (now referred to as the Hosomi-

Sakurai reaction) has found considerable use in synthesis. The following section wil l 

briefly review this methodology, highlighting its application to organic synthesis. 

Subsequent sections wil l then discuss our results obtained by utilising this methodology 

with silacyclohex-4-enes. 

3.2 Hosomi-Sakurai reaction 

The Hosomi-Sakurai reaction is the Lewis-acid-promoted addition of allylsilanes to 

carbonyl compounds and related electrophiles. The simplest allylsilanes, 

allyltrimethysilane 236 and (E/Z)-crotylsilane 238, were utilised by Hosomi and Sakurai 

in their independent studies. Together, they published the reaction of 236 and 238 with 

a whole variety of ketones and aldehydes to emphasise the usefulness of this 

transformation in organic synthesis (Scheme 74). 

o x 
R - ^ R ,TiCl 4 

Me 3 Sr v ^ \ / V ' R 

236 237 
R = alkyl, aryl, cyclohexyl 

OH 

: ' i 
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O 

X OH T i n . i R R . T i C l 4 

T R 

238 239 
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Scheme 74 

64 



Subsequent studies by Fleming et al. led to the generally accepted mechanism for this 

transformation (Scheme 75).8 1 The mechanism proposed involves initial addition of an 

electrophile (C + or H + ) to an allylsilane leading to the formation of a carbocation 

intermediate, stabilised by the presence of a P-silicon atom. Such stabilisation is 

believed to arise from orbital overlap between the empty pn orbital on the carbocation 

and the co-planar C-Si oorbital. Subsequent Lewis-acid-catalysed or proto-desilylation 

of intermediate 240 leads to the allylated product 241. 

SiR 
SiXR 

Hi 
LA 

230 240 241 

Scheme 75 

Following these early results, many research groups have found numerous applications 

for this new methodology in stereoselective synthesis. Moreover, this methodology has 

been further developed to permit cycloaddition reactions with electron-deficient olefins, 

carbonyl compounds and imines to access carbocycles as well as four-, five-, and six-

membered heterocycles (Scheme 76). 
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The following subsections will examine the use of acyclic and cyclic allylsilanes in the 

Hosomi-Sakurai reaction and demonstrate its application in organic synthesis. 

3.2.1 Acyclic allylsilanes 

3.2.1.1 Access to Carbocycles 

Carbocycles of the type shown in Scheme 76 are a unique product from the Hosomi-

Sakurai reaction. An early report by Knolker et al. demonstrated this unique reaction 

and outlined a mechanism for their formation. Cycloalkanes 246 and 247 were 

generated by the Lewis-acid-mediated [2+2] or [3+2] annulation reactions of 

allylsilanes with electron-deficient olefins. These annulation reactions were proposed to 

involve initial conjugate addition of allylsilane 230 to unsaturated substrates 244 

(Scheme 77). 

LA e o o 
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230 ® 
X Lewis acid a 

244 250 245 
path a 

path b 

O 
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X 

247 246 

Scheme 77 

This provides fJ-silyl cation intermediate 250, which may collapse through three 

possible pathways: (i). the silyl group can be displaced with a halide from the Lewis 

acid to provide the allylated product 245, (ii). the enolate moiety reacts intramolecularly 

by a 4-exo process with the carbocation (pathway a) to afford cyclobutane 246, (iii). the 

enolate moiety reacts through a 5-endo process by a sila-Wagner-Meerwein shift 
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(pathway b) to give cyclopentane 247. Pathways a and b are dominant pathways when 

the R groups on silicon are larger than methyl. Knolker et al. then applied this 

methodology to great effect in a stereocontrolled total synthesis of (±)-Fragranol 251 

(Figure 17). 8 2 ' 8 3 

251 

Figure 17 

The synthesis began with the reaction of allyl-tert-butyldiphenylsilane 252 with methyl 

methacrylate 253 to afford 254 as two diastereoisomers and the silylcyclopentane 255 in 

a 14:2:1 ratio (Scheme 78). 

lBuPh,Sr P O M e O ^ ^ O 
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OMe 14 2 1 
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Scheme 78 

y4«//'-cyclobutane 254 was then oxidised under Fleming-Tamao conditions to give the 

corresponding primary alcohol. This was subsequently oxidised to aldehyde 256, which 

was then elaborated to isopropenyl derivative 257. Methyl ester 257 then underwent a 

one-carbon homologation in four steps to complete the total synthesis of (±)-Fragranol 

(Scheme 79). 
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Further application of this methodology to more complex examples was described by 

Giese et al, who utilised a [3+2] annulation reaction of simple dienone 258 and 

allylsilane 259 to construct a bicyclo[2.2.1]heptanone 260.84 Initial Nazarov 

electrocyclisation of 258 led to the tricyclic oxyallyl intermediate 261 that was trapped 

with the allylsilane 259 to provide P-silylcarbocation 262. Cyclisation of 262 led to the 

annulated polycyclic system 260 in 91% yield (Scheme 80). 

o OPr^Si-
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3.2.1.2 Access to Heterocycles 

As described earlier, as well as carbocycles, access to heterocycles through the 

cycloaddtion of allylsilanes with aldehydes and imines has been studied. 

Mechanistically, allylsilanes 230 react with activated carbonyl compounds to generate a 

P-silylcarbocation intermediate 264. The coordinated oxygen atom can then attack the 

carbocation intermediate through two pathways analogous to those described in the 

preceeding section. Pathway A affords oxetane 265 and pathway B furnishes 

tetrahydrofuran 266 (Scheme 81) 
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Scheme 81 

These two competing pathways have led to some very interesting results. Akiyama et al. 

provided an example of a highly stereoselective construction of oxetanes 268 via a 

TiCU-promoted [2+2] cycloaddition of allylsilane 252 to a-oxo ester 267 (Scheme 

82). 8 5 

o 
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Scheme 82 
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Also, Schinzer et al. went on to provide an example of tetrahydrofuran formation by 

path B. The methodology was adapted to allow cyclic 1,3-diketone 269 to undergo a 

novel tandem reaction to provide a tricyclic furan 270. Compounds of type 270 are a 

subunit of the triterpenes 271, present in the hopane family (Scheme 83). 8 6 

'BuPh^Si 
H 

EtA CI ^SiPh2'Bu 
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H 

D O 
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Scheme 83 

Mechanistically, the previous two examples require the p-silylcarbocation intermediate 

to be trapped by the alkoxy anion generated. However, there are some examples where 

other nucleophiles are used to trap the (3-silylcarbocation intermediate. One such 

example is provided by Angle et al. who reported the use of a-triethylsilyloxy-

aldehydes with allysilanes in the preparation of tetrahydrofurans. The products 275a 

and 275b of this reaction arose from the formal [3+2] cycloaddition of 272 with 

allylsilane 273. Nucleophilic attack of the p-silylcarbocation intermediate occurred with 

the triethylsilyl ether oxygen and not the Lewis acid complexed alkoxide, as previously 

described (Scheme 84). 8 7 
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In addition, Angle et al went on to apply this methodology to the formal synthesis o f 

(-)-a//o-muscarine 277. Oxidation o f furan 275a led to the diol 276, which underwent 

activation o f the primary hydroxy group wi th tosyl chloride and subsequent 

displacement with trimethylamine (Scheme 85). 
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In an extension to this methodology, Angle et al. then undertook a series o f reactions 

with p-triethylsilyloxy aldehydes 278. Their results demonstrated that aldehydes 

possessing an a-stereocenter react with allylsilanes to provide tetrahydropyrans 281a 

and 281b as an ~1:1 mixture o f diastereoisomers (Scheme 86) . 8 8 
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3.2.1.3 Asymmetric allylations and natural product synthesis 

The examples shown so far have utilised the Hosomi-Sakurai reaction to generate a 

whole variety o f highly stereoselective products. However, none o f the examples have 

used this methodology in a catalytic or asymmetric manner. Recently, Shibasaki et al. 

and Yamamoto et al. have looked to address this. Shibasaki et al. instigated a study o f 

the general catalytic allylation o f ketones, aldehydes and imines using 

allyltrimethoxysilane 282. After much investigation, a catalytic system ( l m o l % CuCl-

T B A T ) was optimised for this process (Scheme 87) . 8 9 

x 

i . R ^ " R . 
CuCl-TBAT 

XH 

(MeO ) 3 Sr R i . 
3 2. H + R 

2 8 2 R = alkyl,aryl 2 8 3 

R, = H o r a l k y l 
X = 0 , N 

Scheme 87 

With a catalytic system established, attempts to extend this methodology to a catalytic 

enantioselective process were undertaken. Results o f this investigation showed that by 
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adding p- tol-BINAP to the catalytic system, a moderate 6 1 % enantioselectivity could be 

obtained (Scheme 88). 
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TBAT 
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Scheme 88 

This was the first example o f a catalytic enantioselective allylation o f ketones using 

allylsilanes. Yamamoto et al. undertook a similar study, this time utilising a silver-

fluoride catalysed process.9 0 Indeed, a complex o f AgF-(7?)-BINAP in MeOH provided 

the tertiary alcohol 287 in 90% yield wi th a 63% ee. Following this initial result, a 

survey o f ligands and catalyst loadings was undertaken. The results showed that a 1:1 

mixture o f AgF and (i?)-DIFLUORPHOS in THF/MeOH provided a significant 

improvement (>80%) in enantioselectivity using various aromatic and cyclic ketones 

(Scheme 89). 
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Subsequently, investigations o f various allyltrimethoxysilanes, such as (E/Z)-

crotylsilane 289 were undertaken, which demonstrated that both E- and Z- crotylsilanes 

289a and 289b when, subjected to the same catalytic system, generated branched syn-

products 290a and 290b with high diastereo- and enantioselectivity (Scheme 90). 

?| R i AgF-(7?)-DIFLUORPHOS(l:l) 

Ph ^ (MeO) 3Si R ^ 

2 8 8 289a, R = Me, R, = H 290a, 60%, 9:1 ds, 95% ee 
289b, R = H, R, = Me 290b, 95%, 9:1 ds, 93%ee 

Scheme 90 

Being able to undertake the Hosomi-Sakurai reaction in a catalytic, diastereoselective 

and asymmetric fashion has facilitated its application to the synthesis o f a variety o f 

complex natural products. Panek et al. applied this methodology to synthesise the 

dihydropyran moiety o f the natural product (-)-Apicularen A 291 (Figure 18). 9 1 

OH 

Figure 18 

Panek et al. initiated a study concerning the [4+2] annulation o f a chiral allylsilane 292 

with phenylacetaldehyde. The results demonstrated that the trans-pyran product 293 

could be obtained in good yield and excellent diastereo- and enantioselectivity (91%, 

>30:1 dr) when (a) the chiral silane possessed the cis (R.3Si/OSiMe3) relative 

stereochemistry and (b) the R moiety was CH 2 OMe only. Other R moieties (CC>2Me, 

CH2OAC) gave the pyran products wi th cis- stereochemistry (Scheme 91). 
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Consequently, the chiral allylsilane was utilised in the total synthesis o f (-)-Apicularen 

A . Functionalised aldehyde 294 was coupled with allylsilane 295 in the presence o f 

T M S O T f to yield trans-pyran 296 as a single isomer. Substituted pyran 296 was then 

elaborated to (-)-Apicularen A 291 i n 15 steps (Scheme 92). 

OAc 
OSiMe, C C M e OMe 15 steps TMSOTf 

Me 291 H H 
M e O X 

O SiPhMe 

AcO 
294 295 296 

Scheme 92 

Substituted pyran units similar to the one described above have also been elegantly 

synthesised by Marko et al. using an asymmetric Sakurai multicomponent reaction. 9 2 

Marko et al. showed that by mixing chiral aldehyde 297, allylsilane 236 and chiral 

allylsiloxane 298 in the presence o f a catalytic amount o f T M S O T f generated 299 in 

8 1 % yield and >95:1 dr (Scheme 93). 

TBDPSO OTBDPS 
H H TMSOTf O T Me,SiO CHO 

297 298 
SiMe^ 

236 299 

Scheme 93 
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Subsequent Grubbs metathesis, silicon deprotection and oxidation o f the resulting 

alcohol provided pyran 301, a fragment o f the natural product (+)-Ambruticin 302 

(Scheme 94). 

TBDPSO TBDPSO O 
H H 

X T O 

7 
: H H 

O r RCM O X T 
" H H l . T B A F 

2. Dess-Martin 
Periodinane 

299 300 301 

C R u = \ 
CI I 

PCy 3 Ph 

PCy3 

I 
Grubbs 1 s t generation catalyst = 

H H H 
O O 

H 
OH 

H 

H 0 2 C 

OH 302 

Scheme 94 

3.2.2 Cyclic allylsilanes 

As shown earlier (cf. Section 3.2.1), acyclic allylsilanes undergo a plethora o f reactions 

to yield highly complex products. However, by comparison, cyclic allylsilanes undergo 

a minuscule number o f reactions. This lack o f reactivity can be attributed to one factor: 

the p-silicon effect. As stated earlier, allysilanes react by initial addition o f an 

electrophile ( C + or H + ) leading to the formation o f a carbocation intermediate stabilised 

by the presence o f a ^-silicon atom. Such stabilisation is believed to arise f rom orbital 

overlap between the empty pit orbital on the carbocation and the co-planar C-Si o 

orbital. Whilst such an orbital alignment is trivial in acyclic systems, in cyclic systems 

this is not the case as the correct conformation for orbital alignment is di f f icul t to attain. 

In spite o f this, there are some transformations o f cyclic and bicyclic substrates. 

Bicyclonorborn-5-ene 303 and substituted silacyclohex-4-ene 305 have been shown to 
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undergo acid-promoted cleavage in MeOH to give siloxane 304 and 306 respectively 

(Scheme 95)."'" 

s 

c-HCl/MeOH 

Si 

303 
OMe 

304 

PhMeSi c-HCl/MeOH 
MePhSi 

.OMe 

305 306 

Scheme 95 

These transformations validate the ability o f cyclic substrates to undergo pseudo-

Hosomi-Sakurai reactions; however, they only report the use o f protons as electrophiles. 

More recently, several examples utilising carbon electrophiles and cyclic siloxanes 307 

have been reported. These examples utilised the Hosomi-Sakurai methodology to 

synthesise a series o f substituted tetrahydrofuran substrates 308 (Scheme 96). 9 5" 9 7 

Importantly, these cyclic siloxanes do not react by the mechanism outlined in Scheme 

75. In this case, initial attack o f the oxonium ion is at oxygen and not the allylic double 

bond, giving rise to acetal 309, which undergoes rapid ring cleavage to give siloxane 

310. Siloxane 310 then undergoes a typical Hosomi-Sakurai reaction o f the allylsilanes 

with the new oxonium ion to give the tetrahydrofuran 308 (Scheme 97). 

R R i Lewis Acid 

O S R R O R X 
3 

O 
R H 

307 308 

Scheme 96 
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Scheme 97 

310 

Despite this alternative mechanism, Marsden et al. has applied this methodology to 

great effect in the stereocontrolled total synthesis o f (+)-Virgatusin 311 (Figure 19) . 9 8 

MeO >— OMe 

OMe 

Figure 19 

To begin, synthesis o f the functionalised enantiomerically enriched allyl siloxane 315 

had to be undertaken. This was achieved in three steps f rom oxazolidinone 312 by 

deconjugative aldol reaction o f 312 wi th veratraldehyde 313 followed by silylation wi th 

allyldimethylsilyl chloride and ring closing metathesis (Scheme 98). 
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Si 

O 
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COX MeO 

315 
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(over two steps) 

Scheme 98 

With the cyclic siloxane 315 in hand, attention turned to the crucial condensation 

reaction. After much investigation, the reaction o f cyclic siloxane 315 was undertaken 

with T M S O T f and piperonal to yield the desired furan 316a/b as an inseparable mixture 

o f isomers (Scheme 99). 

\ / 
o o o 

MeO 
TMSOTf, 

cox c 
MeO DCM O O 315 

O O 
OMe OMe O O O 

316a 316b O 
63%, de (91:9) 

O 

Scheme 99 

Finally, to complete the synthesis o f Virgatusin, furan 316a/b was dihydroxylated and 

oxidised to give the corresponding aldehyde, which was reduced with concomitant 

removal o f the chiral auxiliary and reduction to the diol 317. Finally, methylation o f 

diol 317 returned (+)-Virgatusin 311 in modest yield as an inseparable ca. 3:1 mixture 

o f diastereoisomers (Scheme 100). 
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Scheme 100 

In spite o f these elegant examples, there has been only one example describing the use 

of silacyclic allylsilanes i n the Hosomi-Sakurai reaction. This was reported by Shea et 

al. utilising a novel bridgehead allylsilane 318." Shea et al. reported that allylsilane 318 

underwent a Hosomi-Sakurai reaction with a variety o f electron-deficient aldehydes to 

give acid 320 (Scheme 101). 

OH 
/ 

HO Si O Si O 

ft 

ArCHO O O O 
Lewis acid 

Ar 
Ph Ph Ph H H 

OH OH 
318 319 

Scheme 101 

Initially, silanol 319 was isolated at the end o f the reaction. However, on stirring the 

mixture with acid or base, the ester was cleaved to give acid 320 as the sole product. 

Interestingly, this cyclic allylsilane partakes in the reaction, where others failed, because 

the silicon atom is locked at a 78° angle to the C=C plane. This is close to the ideal 90° 
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angle required for stabilisation o f carbocations and as such is sufficient to enable the 

reaction to take place (Figure 20). 

/ 
S i 

o 

f Ph 

318 

Figure 20 

Despite this example, there have been no reports describing the use o f silacyclic 

allylsilanes, where the silicon atom is incorporated into the same ring system as the 

double bond. The fol lowing section w i l l now outline our approach utilising this 

methodology. 

3.3 Our approach utilising this methodology 

Our interest in utilising this methodology arose f rom the development o f new synthetic 

methodology described earlier (cf. Section 1.3). This methodology allowed 

silacyclohex-4-enes 174, possessing an allylsilane moiety (marked in red) to be 

generated in good yield and diastereoselectivity (Scheme 102). 

O H 

> i R 
Me ,SK I 

Ph 

96 

Me 3 Si-
S i ^ 

I 

Ph 

173 

R - f r 

R 

Si —SiMe 3 

Ph 
174 

Scheme 102 

We proposed that silacyclohex-4-enes 174 would undergo a Hosomi-Sakurai reaction 

with acetals in the presence o f a suitable Lewis acid to give ring-opened disilane 321. 

The regiochemistry being consistent wi th electrophilic addition to the allylsilane, 

forming a carbocation intermediate stabilised by the P-silicon substituent. The ring 



opened disilane 321 would then undergo Fleming-Tamao oxidation o f the activated 

silicon centre to give 1,4-monoprotected diols 322 (Scheme 103) 

O R OR 

OH 

R R R Lewis Acid 1 amao R R 
Oxidation ^ OH . S i Si Me X I 

Ph l'h 
174 321 322 

Scheme 103 

A n example o f this type o f reaction was provided earlier (cf. Section 2.4.2, Scheme 56), 

during epoxidation studies for the synthesis o f Prelactone B. It was shown that when 

epoxidised, silacyclohex-4-enes 174 were ring opened to give the hydroxyl siloxane 

200, similar in structure to the desired intermediate 321 described above (Figure 21). 

OR 

I K ) R 
R 

-Si Si-«SiMe Si Me HO X I 
Ph I'h 

200 321 

Figure 21 

Therefore, the fol lowing section w i l l discuss the results o f our proposal, providing 

mechanistic insight into the reaction o f silacyclohex-4-enes with acetals and present an 

array o f results demonstrating the versatility o f silacyclohex-4-enes in this reaction. 

3.4 Results and Discussion 

As discussed in previous sections, our proposal relied on the preparation o f 

silacyclohex-4-ene 100. Accordingly, this became the first objective. It was found that 

by repeating the silene-diene Diels-Alder reaction, pioneered by Whelligan, the desired 

silacyclohex-4-ene 100 was produced in good yield and good diastereoselectivity. The 

silacyclohex-4-ene 100 was obtained as an inseparable mixture o f isomers wi th the 
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minor components reflecting the presence of small amounts o f exo-addition products 

and trace amounts o f the adducts o f the alternative E(Si) silene (Scheme 104). 

Oil o Me,Si McSi 
Si—SiMe S i I I 

Me,Si" I 
Pli I'h I'h I'h i'h 

97 98 1 0 0 

50%, 7 :2 :1 

Scheme 104 

The major diastereomer (boxed in red) is thought to arise from a Z(Si) silene 98 reacting 

in an endo Si-Ph orientation. With the silacyclohex-4-ene mixture 100 in hand, attention 

turned to utilising the allylsilane in the Hosomi-Sakurai reaction. 

To begin the investigation an experimental procedure had to be established. Reassessing 

the literature provided a general experimental procedure commonly used for this 

reaction. The procedure requires that oxonium ion 324 be generated prior to the addition 

of the cyclic allylsilane 174. This would provide the ring opened disilane 321. However 

the choice of Lewis acid would be important, as an activated silicon centre was required 

for the subsequent Tamao oxidation. It was decided that BF 3»OEt2 would be used, as 

this would provide the activated Si-F intermediate 321, capable o f undergoing Tamao 

oxidation to provide the desired 1,4-monoprotected diols 322 (Scheme 105). 

RCH(OR). 

I-

OR X X . 
% Oh 

i'h i ; © BF,OF.t Tamao 17-1 l\ R 
Oxidation ^ OH R S i SiMe X I 

I'h 
323 324 321 

X = F 

Scheme 105 
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Initial attempts to generate the ring-fragmented silyl fluoride 327, fol lowing the 

procedure outlined above were unsuccessful, leading to an intractable mixture o f 

products. I t was proposed that the oxonium ion 326 underwent significant 

decomposition prior to reaction with the silacyclohex-4-ene 100 (Scheme 106). 

PhCH(OMe). 

S i SiMe 
O M e 

© I'll BFj'OEt OMe 100 
H i 

Ph . S i SiMe F I 
Ph 

325 326 327 

Scheme 106 

Undeterred by this initial result, the original procedure was modified to account for this 

observation by premixing silacyclohex-4-enes wi th the acetal, prior to the addition o f 

BF 3»OEt2. Consequently, when silacyclohex-4-ene 100 and benzaldehyde dimethyl 

acetal 325 were premixed in D C M at 0 °C, then treated with BF 3 »OEt 2 , the desired silyl 

fluoride 327 was produced after aqueous work-up and flash chromatography in 60% 

yield as a 2:1 mixture o f stereoisomers (Scheme 107). 

OMe 

BF^OEt Ph 
+ PhCH(OMe) 

S i SiMe S i 0 ° C SiMe F I 
Ph Ph 

ds, 7:2:1 60%(ds2:l) 

Scheme 107 

The stereochemistry was ascertained by 1 9 F N M R integration [5 F -184.72 (d, J = 15.8 

Hz); 5 F -185.57 (d, J = 17.8 Hz)] . However, at this stage it was not possible to ascertain 

which o f the three new stereocenters was responsible for the relative stereochemistry 

(Figure 22). 
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Figure 22 

In line wi th the outlined procedure and to determine which stereocentre gave rise to the 

overall stereochemistry, the newly generated silyl fluoride 327 was oxidised under 

Tamao conditions (35% w/w H2O2, KHCO3, A) to provide 1,4-monoprotected diol 328 

in 80% yield (Scheme 108). 

OMe OMe 

35% w/w H-,0 Ph Ph 
KHCO3, A .S i OH SiMe F I Ph 

327 328 
60%(ds2:l) 80%(ds2:l) 

Scheme 108 

Importantly, diol 328 was produced as a 2:1 mixture o f diastereoisomers (Figure 23) as 

confirmed by analysis o f the IR and ! H N M R spectra, which showed a broad signal at 

3326cm"1 corresponding to the hydroxyl groups and peaks at 6.04, 5.09 and 4.76 ppm 

arising f rom the allyl group. 
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Figure 23 

This result implied that the silyl fluoride 327 was formed as a single Si stereoisomer, 

given that Tamao oxidation is known to proceed with retention o f configuration at 

carbon. Moreover, the major diol isomer provided crystals amenable to single crystal X -

ray studies, the results o f which confirmed the stereochemistry o f the major isomer to be 

syn:anti:anti (Figure 24). 

OMe 
C(12) 

Figure 24: CCDC No.: 298851 
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Disappointingly, the minor isomer would not crystallise and so the carbon stereocentre 

responsible for the mixture of isomers could not be established. Consequently, a second 

experiment using 4-methoxybenzaldehyde dimethyl acetal was undertaken to ascertain 

which carbon centre was responsible. In this case, the addition of BF3»OEt2 to the 

mixture of silacyclohexene 100 and 4-methoxybenzaldehyde dimethyl acetal led 

directly to the formation of the non-conjugated diene 329 in 47% yield (Scheme 109). 

Importantly, diene 329 was formed as a single diasteroisomer. This suggested that 

initial addition of the oxonium ion to silacyclohex-4-ene 100 occurred stereoselectively 

to the face syn to the trimethylsilyl group. This would give rise to the correct vinyl 

stereochemistry observed from the crystal structure above. Subsequent generation of a 

vinylogous oxacarbenium ion (p-quinone methide) 330 followed by an intramolecular 

hydride transfer affords a silicon-stabilised carbocation 331. This undergoes rapid 

fluoride-promoted desilylation to generate the second alkene (Scheme 110). As a result 

of this experiment, it can be unambiguously confirmed that the methoxy- bearing 

carbon centre is responsible for the mixture of isomers observed with benzaldehyde 

dimethyl acetal. 

B R O E t 

S — S M e 4 - M e O - C 6 H 4 - C H ( O C H 3 ) MeO 
0 ° C 1'h 

100 329 
4 7 % (ds 1:0) 

Scheme 109 
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Scheme 110 

Having established that the methoxy carbon centre was responsible for the observed 

stereochemistry, a reaction pathway was proposed. To begin, initial addition of the 

oxonium ion occurs syn to the trimethylsilyl group (as highlighted earlier). This requires 

co-planarity of the C-Si a bond and alkene Ji-orbital (cf. Section 3.2), which can only be 

efficiently achieved when the silacyclohex-4-ene adopts a pseudo boat structure. Whilst 

this is possible for the major silacyclohex-4-ene isomer, the alternative diastereoisomers 

are inhibited from adopting such a conformation by eclipsing interactions between the 

Si-Ph and C-2 substituent. Therefore, the observed selectivity is a matter of approach of 

the oxonium ion to the least hindered (convex) face of the major isomer 333, i.e that 

which avoids prow interactions between the methyl group and a C-6 hydrogen. This 

generates the observed 2,3-anti, 3,4-a«r/ configuration. The methoxy carbon 

configuration is then a matter of synclinal or antiperiplanar alignment of the oxonium 

ion with the allylsilane, such that the aryl group is orientated in an "exo" position. 

Formation of the observed products suggests the former is of lower energy giving rise to 

the major isomer 337 (Figure 25). 
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Figure 25 

Having established the relative stereochemistry and a robust procedure for the 

transformation of silacyclohex-4-enes, a series of experiments were undertaken to 

expand the range of substrates and acetals (Table 8). Most of these experiments were 

undertaken utilising a two-step one-pot procedure. This enabled the desired 1,4-

monoprotected diols to be generated directly, without isolation and characterisation of 

the intermediate silyl fluoride species. However, in some cases, it was necessary to 

isolate and fully characterise the intermediate, as the yields obtained for the two-step 

one-pot process were poor. 
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R 

, S i - ^ S i M e 3 

Ph 

100 (R = 'Pr) 
206 (R = Ph) 

i . R , C H ( O R 2 ) 2 , B F j ' O E t j , 

D C M , 0"C 

321Aa-d 

i i . K H C O j , H 2 0 2 , 
THF-MeOH 

OR 

SiMei 

322Aa-j 
R 2 = Me 

Entry Silacycle 
(R) 

Acetal 
(R1) 

Si-F Yield 
(dr) 

Alcohol 
Yield 
(dr) 

1 100 C6H5 
327 

60% (2:1) 
328 

50% (2:1) 

2 100 4-MeOC 6H 4 

329 
47% (1:0) 

3 100 4-CF 3C 6H 4 

338 
321Aa 

32% (2:1:1) 

322Aa 
23% 

(2:1:1) 

4 100 4-BrC 6H 4 

322Ab 
23% 
(2:1) 

5 100 CH 3 

321Ab 
45% (2:1) 

322Ac 
21% (2:1) 

6 206 C6H5 
321Ac 

72% (2:1) 
322Ad 

55% (2:1) 

7 206 C 6 H 5 

339 
322Ae 

8% (2:1) 

8 206 4-CF 3C 6H 4 

338 
322Af 

50% (8:3:2) 

9 206 4-BrC 6H 4 

322Ag 
46% (3:1) 

10 206 4-N0 2 C 6 H 4 

340 
322Ah 

63% (7:4:2) 

11 206 CH 3 

321Ad 
38% (2:1) 

322Ai 
32% (2:1) 

n 206 341 

13 206 CeHi3 

322Aj 
20% (1:1) 

a. 2-phenyl dioxane used - product is the 3-hydroxypropylether 

Table 8 
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. R 
f| i . R , C H ( O R 2 ) 2 , B F 3 « O E t 2 , 

\ ^ S i ^ " S i M e 3 D C M . O ' C 
Ph 

100 (R = 'Pr) 
206 (R = Ph) 

Entry Silacycle 
(R) 

Acetal 
(R 1) 

Si-F Yield 
(dr) 

Alcohol 
Yield 
(dr) 

4-MeOC6H4 321B 
44% (5:1) 27% (5:1) 

15 206 C6Ff4CH=CH 
344 

322B 
44% (7:2) 

Table 9 

Arising from these experiments were a series of interesting results, beginning with 

entries 3, 8 and 9 (Table 8). These results demonstrated that when reactive electron 

deficient oxonium ions were utilised, the 1,4-monoprotected diols were isolated as tri-

isomeric mixtures. This contradicts the proposed reaction pathway. However, it was 

proposed that the third isomer arose from reaction of the minor silacyclohex-4-ene 

diastereoisomer. Consistent with this proposal, when less reactive acetals were utilised, 

it was possible to recover small quantities of the starting silacyclohex-4-ene, enriched in 

the minor isomers. Although these results were interesting, they are only observed with 

very reactive electron deficient acetals. 

Of greater interest was the reaction of cyclohexane carboxaldehyde dimethylacetal with 

silacyclohex-4-enes (entry 12, Table 8). It was demonstrated that, under the optimised 

two step - one pot procedure the 1,4-monoprotected diol 342 was generated in good 

yield as a 1:2 mixture of diastereoisomers. The major isomer, in this case, possessed the 

anti:anti:anti stereochemical arrangement (Scheme 111). 

I ! I I l . „ S i M e 3 

vSi vOH i i . K H C 0 3 , H 2 0 
X THF-MeOH 

R K 

322B 321B 
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342 
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Scheme 111 

This reversal in stereochemistry was confirmed by X-ray crystallographic studies 

(Figure 26). However, reasons for the reversal of selectivity are not obvious and cannot 

be explained by the proposed mechanism. 

Finally, the most interesting results arising from this series of experiments are 

highlighted in entries 14 and 15 of Table 9. These results were achieved by adapting 

methodology, described earlier for the formation of the non-conjugated diene 329 (cf. 

Scheme 109). In the formation of 329 it was demonstrated that silacyclohex-4-ene 100 

underwent hydride migration to trap a secondary oxonium ion formed from an electron 

rich acetal. This suggested that further carbon-carbon bond formation could be 

combined with the Sakurai reaction i f a suitable nucleophile could be incorporated into 

the silacyclohex-4-ene. Gratifyingly, reaction of silacyclohex-4-ene 206, possessing a 

phenyl substituent, with 4-methoxybenzaldehyde dimethyl acetal in the presence of 

0(141 

0(15) 

0(161 
C(13) 

cm; cm) 
0(1) O M e 0 10 

0(3; 
C 17 0(2) on 0(8! 

0(7) 0(6) 

; i j ; 0(18) 

" A 

C(3! 

I 

Figure 26: CCDC No.: 298852 
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BF3#OEt2 at 0 °C afforded, after Tamao oxidation, the tetralol 343 in moderate yield as a 

5:1 mixture of stereoisomers. The relative stereochemistry of the major isomer was 

assigned on the basis of *H NMR coupling constants (marked in red) and NOESY 

experiments (Scheme 112) 

li I 'h B F i O E t a ,< )H 
4 - M e O C 6 H 4 C H ( O C H 3 ) 2 , 0 ° C 

Si SiMe 
n . 35% w/vv H , 0 

I'h I K H C O i , A 

2(16 MeO 
ds, 4:1 343 

( d r 5 : l ) 

I I 
II 

5 Hz 12 Hz Ar H 

NOESY Couplings 

Coupling constants 

Scheme 112 

Consistent with previous experiments, the diastereomeric ratio was unchanged on 

oxidation of the silyl fluoride to tetralol 343, indicating that, as before, the silicon centre 

was generated as a single stereoisomer and the mixture of diastereoisomers reflects 

alternative configurations at the benzylic carbon. This suggested that an identical 

reaction pathway was being followed. As before, initial addition of the oxonium ion 

occured syn to the trimethylsilyl group of the major isomer. This provided the silyl 

fluoride intermediates 336 and 337, as a mixture of diastereoisomers at the methoxy 

carbon centre. The silyl fluoride intermediates 336 and 337 were then able to generate a 

single vinylogous oxacarbenium intermediate 345, which underwent carbon-carbon 

bond formation with the aryl ring to afford a silicon-stabilised carbocation 346. This 

then undergoes rapid aromatisation to give the silyl fluoride species 347 (Scheme 113). 
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Scheme 113 

The preferential formation of the 1,2 anti configuration in the cationic cyclisation has 

considerable precedent in lignan synthesis literature (cf. Chapter 4.1) and is consistent 

with cyclisation proceeding through a chair-like transition state with all substituents 

occupying an equatorial position 345. 

3.5 Conclusion 

In conclusion, this work has demonstrated that silacyclohex-4-enes, derived from 

silene-diene cycloadditions are viable substrates for the Hosomi-Sakurai reaction with 

both aryl and alkyl acetals. Following Tamao oxidation of the resultant silyl fluoride, 

1,4-monoprotected diols can be obtained in moderate yield and diastereoselectivity. 

Moreover, when aryl acetals containing ortho or para electron-donating substituents are 

94 



combined with silacyclohex-4-enes containing an aryl substituent, a further cyclisation 

occurs to afford the tetralol skeleton found in many lignan natural products. Expanding 

on this observation, the following chapter will report our results obtained through 

application of this methodology to the total synthesis of a podophyllotoxin analogue, 

epipicropodophyllotoxin. 
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4 Total synthesis of PodophyOlotoxin analogue, Epipicropodophyllin 

4.1 Introduction 

Lignans are a large family of secondary metabolites widely encountered in the plant 

kingdom. 1 0 0 ' 1 0 1 The term lignan was first introduced by Harworth 1 0 2 in 1942 to describe 

a group of plant phenols whose general structure 348 was determined by the union of 

two derivatised cinnamic acid residues linked via the p\P' bond (Figure 27). 

Within this large family of lignans are the aryltetralin lignans 349, 350 and aryltetralin 

lignan lactones 351, 352, which have long been recognised as important natural 

products (Figure 28). To date, several hundred of these lignans have been isolated. 

Whilst their biological role in plants is unclear and remains to be fully elucidated, they 

have been shown to display a substantial variety of biological activity and have a long 

and fascinating medical history that emanates from their use as folk remedies to treat an 

assortment of conditions.103 

R 

R 

348 

Figure 27 
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Figure 28 

The most prominent member of this group of natural products is podophyllotoxin 353. 

This compound, together with analogues 354-358 are aryltetralin lignan lactones 

isolated from the American Mayapple {Podophyllum peltatum) and related Indian 

species {Podophyllum emodi). Structurally these natural products are characterised by a 

substituted 1,2,3,4-tetrahydronaphthalene core, containing an aryl unit at position 1 and 

a butyrolactone ring fused to positions 2 and 3 of the C ring. This lactone fusion may 

have either cis or trans stereochemistry. Further functionalisation of the C ring occurs at 

C-4 (Figure 29). 
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Since its first isolation in 1953 by Hartwell, 1 0 4 podophyllotoxin 353 and its isomers 

have been the subject of numerous synthetic endeavours, due primarily to their potent 

activity and stereochemical complexity. 1 0 5" 1 1 1 Moreover, the fact that aryltetralin lignan 

lactones, such as podophyllotoxin, are still isolated from natural sources in higher yields 

than achieved through synthesis, renders them a tantalising target for synthetic chemists. 

Therefore, our attention was drawn to the synthesis of lignan lactones using 

methodology described in Chapter 3. Consequently, the following section wil l examine 

earlier syntheses of podophyllotoxin and its isomers, focusing primarily on the methods 

employed in the formation of the CD ring moiety. Subsequent sections wil l then 

describe an alternative approach to the CD ring moiety of podophyllotoxin, discuss the 

merits and shortcomings of such an approach, and finally report a total synthesis of 

epipicropodophyllin 356 starting from silacyclohex-4-enes. 
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4.2 Synthetic Routes to the CD ring of Podophyllotoxin and its analogues 

Synthetic approaches towards the aryl tetralin lactone skeleton follow either a linear AB 

h-> ABC t-> ABCD or a convergent AB + D h ABCD strategy. In both approaches the 

cyclisation precursor can be either assembled with all the C-ring substituents in place or 

these can be introduced following completion of the skeleton. In all cases 

stereochemical issues dominate. The particular challenge when synthesising aryltetralin 

lactones is in establishing the correct stereochemistry of the lactone moiety. This is 

highlighted during the synthesis of podophyllotoxin when a trans- lactone ring fusion is 

required. This particular stereochemical combination enforces severe conformational 

strain on the system and, as such, on mild base treatment the lactone undergoes rapid 

• 119 

epimerisation to afford a 97.5:2.5 mixture of picropodophyllin and podophyllotoxin. 

Consequently, a second challenge associated with the synthesis of aryl tetralin lactones 

is at what stage the stereochemistry at C- l , C-2 and C-3 should be established. With 

these issues in mind, the following subsections will outline the linear and convergent 

approaches to the CD ring moiety, paying particular attention to the stereochemical 

outcomes. 

4.2.1 C-Ring formation by Aryl Substitution 

The most common approach to complete the aryl tetralin lactone skeleton has been by 

electrophilic aromatic substitution forming the C-l - C-6 bond, simultaneously 

establishing the stereochemistry at C- l . As indicated above, this can be undertaken 

using acyclic precursors or with the D ring established. The latter is most attractive and 

considerable effort has been expended towards this end using a three component 

coupling procedure involving a benzylic anion 359, a butenolide Michael acceptor 360 

and an aldehyde 361 (Figure 30). 
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Whilst such an approach leads to the establishment of the fr-am-Tactone stereochemistry 

at an early stage, forming the 1-6 bond in this fashion has a major limitation in the 

preferential production of the 1-2 /ram-stereochemistry. This selectivity can be affected 

by the presence of additional stereochemical elements in the cyclisation process. This is 

highlighted by the early efforts of Zeigler, Gonzalez, Pelter and Ward who 

demonstrated that the precise nature of the substituent at C-4 and the cyclisation 

conditions seem to be crucial. For example, SnCU-promoted cyclisation of arylcarbinol 

364 and subsequent dithiane deprotection afforded a single product 365 with the 1,2-

trans rather than the desired 1,2-cis configuration (Scheme 114a).113 Similarly, when 

the C-4 dithiane substituent was reductively cleaved, prior to cyclisation with TFA, the 

lignan lactone 367 was generated with isopodophyllotoxin stereochemistry (Scheme 

114b).1 0 5'1 1 4"1 1 6 In contrast to these observations, TFA mediated cyclisation and dithiane 

hydrolysis of the 4-hydroxyphenyl- containing carbinol 368 afforded a mixture of the 

podophyllotoxin and picropodophyllin isomers 369 and 370 (Scheme 114c).1 1 7 This 

unusual contrathermodynamic isomerisation has been reinvestigated and it appears that 

control of the stereochemistry through manipulation of the aryl substituents is unlikely 

to provide efficient access to the podophyllotoxin series.118 A highly cis- selective 

cyclisation is observed in the related cyclisation of arylcarbinol 371 which can be 

attributed to the additional constraints enforced by the fused silacyclic acetal (Scheme 

114d). 119 

100 



b 

O 

.SnCl O O 
O O 2. NIS 

< O o H O " \ 
O O [Ar = 3 ,4 ,5-(MeO) 3 C 6 H ] 

364 365 
6 % 

cpu OMenthyl PhS 
O O . N C U / N a B H 

< O O 

< 
2. NaBR, / NaOH O O 
3 . T F A 

O O 

[Ar = 3 ,4 ,5- (MeO) 3 C 6 H 2 - ] 

d 

36% 

O O 

O o o 1. TFA 
O O + O 

2. HgO, B F 3 O E t O o o H O ^ \ 
O O O [Ar = 4 - H O C 6 H 4 - ] 

368 369 370 36% 4:6 

'Bu Bu Bu Bu > .Si 
o o o o 

o o MsCI, E t 3 N 

O C O , H O CO-,H 
HO 

rtI [ A r = 3 , 4 , 5 - ( M e O ) 3 C 6 H 2 - ] A r 

371 372 
56% 

Scheme 114 

In a drive for enhanced synthetic efficiency, this highly convergent approach continues 

to attract significant attention. More recent attempts have explored cyanohydrins and 

sulfoxides as the acyl anion equivalent.120"123 Whilst the former are efficient, careful 

control of pH in the regeneration of the ketone function is necessary to avoid 

epimerisation at C-3. Application of sulfoxide anions seems to avoid this problem and 

Bhat has used a chiral sulfoxide in an exceptionally concise asymmetric synthesis of 

podophyllotoxin (Scheme 115a).124 This synthesis is particularly noteworthy as TFA-

mediated cyclisation of aryl carbinol 375 followed by sulfoxide hydrolysis afforded 

podophyllotoxin albeit in low yield. Formation of the desired cis 1-2 stereochemical 

arrangement in such an acid-catalysed cyclisation is unusual. Casey has subsequently 

demonstrated that isolation of the aryl carbinol can be avoided (Scheme 115b).125 



Following tandem conjugate addition - aldol condensation between sulfoxide 376, 

crotonate 377 and 3,4,5-trimethoxybenzaldehyde, in situ tosylation afforded the tetralin 

skeleton 378 in a single operation. However, in this case the normal \,2-trans-

stereochemistry was produced. Subsequent C-S to C-0 conversion and lactonisation of 

the D ring afforded picropodophyllotoxin. In further contrast to the report by Bhat, 

attempts to enhance the synthetic efficiency of the process through the use of an intact 

D ring (butenolide) in the conjugate addition were not successful. 
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Whilst these highly concise sequences are attractive, considerable effort has also been 

applied to more stepwise approaches. These involve the initial preparation of a D ring 

unit, enabling the 2,3-trans- stereochemistry to be established at an early stage. For 

example, Me3Sn' initiated carbocyclisation of diene 379 afforded a 1:4 cis/trans mixture 

of lactones 380. 1 2 6 1 2 7 Protection of the lactone carbonyl group as an acetal, and 

oxidative cleavage of the C-Sn bond with CAN in MeOH, followed by reduction with 

NaBH 4 then afforded a separable mixture of acetal isomers 381. Following elaboration 

to the aryl carbinol, acid-catalysed cyclisation was explored in the hope that the acetal 

stereocentre would influence the stereochemistry. However, this proved not to be the 
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case with cyclisation affording deoxyisopodophyllotoxin 382 in moderate yield 

accompanied by various poly cyclic by-products (Scheme 116). 
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Scheme 116 

Another approach by Genet described a method for the production of a D-ring aldehyde 

385 using a novel carbohydroxypalladation cycloisomerisation of a 1,6-enyne (Scheme 

117). Importantly the reaction installs the desired hydroxy function at C-4 with 

exclusive 3,4-trans- selectivity.1 2 8 Whilst this could be elaborated to a cyclisation 

precursor containing the correct podophyllotoxin stereochemistry at C-2, C-3, and C-4, 

treatment with MsCl and Et3N afforded an alternative tetracycle 386. The reasons for 

this are not immediately obvious, as many similar examples provide the desired 

cyclisation products (cf. Scheme 114). 
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One challenge in many of these methods, which was not discussed earlier, is in 

establishing the absolute stereochemistry. Reflecting the control obtained in 

electrophilic additions to enolates derived from ^-substituted butyrolactones, a popular 

approach has been to develop enantioselective syntheses of these versatile intermediates 

and then elaborate these to the aryltetralin lactone skeleton. The initial asymmetric 

centre has been established in a number of ways including asymmetric hydrogenation of 

succinates 387 (Scheme 118a),1 2 9 C-H insertion of diazoesters 390 (Scheme 118b)1 3 0 

and enolate alkylation 392 (Scheme 118c).131 In this context it is pertinent to note that 

Pelter has demonstrated that the 3-component coupling reaction of enantiomerically 

pure 5-menthyloxyfuranone proceeded with complete diastereoselectivity (cf. Scheme 

114b). 
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Whilst the majority of syntheses involving C ring formation by aromatic substitution 

follow an SeAr pathway using a stablised cation derived from a C-l aryl carbinol, other 

strategies have been explored. Similar cationic intermediates (quinone methides) are 

probably generated in the oxidation of 4'-demethylyatein 395 with DDQ in the presence 

of TFA. This gave rise to the isopodophyllotoxin stereochemistry (Scheme 119).131 
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This benzylic oxidation was suggested to be a biomimetic process.132 In support of this 

Kutney and others have shown that various oxidative enzymes can promote a similar 

transformation. 1 3 3 , 1 3 4 For example, treatment of the butanolide 398 with a cell-free 

enzyme preparation derived from Catharanthus roseus (AC3 CFE) led directly to a 

fully substituted C ring lactone possessing the cis, trans, trans- stereochemistry (Scheme 

120). 
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Scheme 120 

Alternatively, the corresponding C-l ketone 400 can be used as the cyclisation 

substrate. This, on acid treatment led to the unsaturated lactone derivative 401. 

Saponification of the D ring followed by reduction and re-cyclisation afforded the 

desired 1,2-cis stereochemistry, albeit as a mixture of lactone stereoisomers 402 and 

403 (Scheme 121). 1 2 9 
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A similar unsaturated lactone was generated in a novel Heck cyclisation developed by 

Ishibashi and Ikeda (Scheme 122).135 In this approach, the stereochemistry of the 

starting alkene is crucial. Whilst use of the Z-lactone 404 afforded a good yield of 

apopicropodophyllin 403, similar treatment of the ^-isomer resulted in a complex 

mixture of products. This is suggested to result from the latter isomer requiring a 

pseudoaxial aryl group in the transition state, thereby inhibiting the desired cyclisation. 

Attempts to achieve this ring closure using radical means were less successful with 

cyclisation of both isomers favouring the 5-exo pathway, the ^-lactone doing so 

exclusively. 
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Finally, a conceptually different radical approach to the podophyllotoxin skeleton 

involving formation of the C-4 - C-5 bond in a cascade cyclisation sequence was 

reported by Renaud (Scheme 123). 1 3 6 Treatment of iodide 406, synthesised in four steps 

from piperonoyl chloride, with 0.5 equivalents of dilauroyl peroxide (DLP) afforded the 

D-ring acetal 407 as a single isomer. Subsequent reaction with excess DLP generated 

the ABCD ring system, albeit accompanied by significant quantities of the 

regioisomeric tetracycle 409. Attempts to undertake the cascade in a single process also 

produced 409 in similar overall yield, but only as a component affording a complex 

mixture of products that was difficult to separate. 
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4.2.2 C-Ring Formation via Cycloaddition Reactions 

The other principal strategy for construction of the C ring has been the Diels-Alder 

reaction. This has the advantage of installing much of the stereochemistry in a single 

operation. The challenge for this approach is the generation of a diene component that 

provides efficient stereocontrol of all centres. This strategy was pioneered by Rodrigo 

who recognised that the oxabicycloadduct 412 derived from isobenzofuran 411 and 

137 139 

DMAD contains all the required carbon and oxygen atoms for podophyllotoxin. 

Whilst the use of DMAD necessitates the additional steps of reduction and C-3 

epimerisation, these proceed efficiently and are preferable to a more direct fumarate 

cycloaddition as the latter leads to a mixture of endo- and exo- stereoisomers. 

Importantly, the reductive cleavage of the oxa bridge with Raney nickel occurs chemo-

and stereoselectively, with retention of the C-l stereochemistry, establishing the \,2-cis, 

2,3-trans- relationship. When combined with the efficient lactonisation procedure 

developed by Jones,140 this provided rapid access to epipodophyllotoxin 414 and, after 

C-4 epimerisation, podophyllotoxin 353 in 19 and 11% yield from piperonal 

respectively (Scheme 124). 
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Alternatively, acid-catalysed elimination of the oxa bridge leads to the dihydronaphthol 

416 and catalytic reduction of this leads to the desired \,2-cis- stereochemistry.141 

Whilst simple reduction of 416 with H2/IM-C gave a 1:2 mixture of the 

picropodophyllin : podophyllotoxin isomers, hydroxyl- directed reduction using the 

cationic rhodium complex [Rh(nbd)(diphos-4)BF4] afforded enhanced selectivity 20:1 

in favour of the former stereochemistry (Scheme 125). 
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A range of other dienophiles have been employed in these reactions with o-

quinodimethane equivalents. However, the regioselectivity observed was frequently 

only modest when non-symmetrical dienophiles were used.1 4 2"1 4 7 For this reason, a 

number of approaches have used simple symmetrical maleate systems exploiting the 

greater accessibility of the C-3 carbonyl group for subsequent selective epimerisation 

and reduction of the cycloadduct.1 4 8'1 4 9 The particular problems of fumarate 

cycloadditions are illustrated by the early work of Durst (Scheme 126).150 In this an o-

quinodimethide was generated and trapped in a photo-enolisation Diels-Alder strategy. 

Whilst reaction with methyl fumarate established the syn C-l and C-4 arrangement, it 

also led to the formation of the alternative epiisopodophyllotoxin trans,trans,cis-

stereochemistry. 
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Charlton has proposed two solutions to this problem. The first was based on the 

observation that the fumarates of lactate and mandelate 422 lead preferentially to an 

exo- adduct.151 The reasons for this are not immediately clear but have been exploited to 

provide a short synthesis of neopodophyllotoxin 424 (Scheme 127a).145 The second 

strategy was to use an or-hydroxy-a-aryl o-quinodimethide 426 in which the hydroxy 

group would control the regio- and stereochemistry of the cycloaddition. The o-

quinodimethane was generated from the corresponding benzocyclobutane 425 with the 

ring opening giving the E- 'diene' as predicted by torqueselectivity rules. Whilst this 

generated the required 2,3-trans- stereochemistry, reduction of the C-l hydroxy 1 group 

with inversion proved not to be trivial. After some experimentation a combination of 

BF3»OEt2 and LiAltLt proved successful giving a 15:2 mixture of the C-l a and |3 

isomers with the major isomer 428 being elaborated to deoxypodophyllotoxin (Scheme 

127b).152 
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An alternative solution to the problem of controlling the selectivity of crotonate 

cycloadditions was to carry out the Diels-Alder reaction in an intramolecular fashion 

using a C-4 linked tether. In this way, the activating group on the dienophile was forced 

to occupy the C-2 position and then an endo- transition state leads to the desired 

podophyllotoxin stereochemistry (Scheme 128). 1 5 3 - 1 5 5 
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The challenge of controlling the stereo- and regiochemistry of addition to o-

quinonedimethane-type dienes has also been studied by Jones. In an elegant series of 

papers using the readily accessible, and sometimes isolable pyrones 433, he has shown 

that whilst a C-2 aryl substituent induces an exo- orientation for a methoxy carbonyl 

group at C-2, this directing effect can be overcome using more compact dienophiles. 

1 5 6 - 1 5 8 Whilst the lactate fumarate 422a used by Charlton proved non-selective, the 

menthyloxy-furanone 434 gave complete selectivity for the endo- adduct. Following 

acid-promoted elimination across the lactone bridge, hydrogenation afforded the 

podophyllotoxin 1,2-cw 2,3-trans stereochemistry (~7:1) with the selectivity directed by 

the chiral auxiliary. Subsequent C-4 oxidative decarboxylation, hydrolysis of the chiral 

auxiliary, reduction and lactonisation afforded (-)-podophyllotoxin 353 in 15% overall 

yield from pyrone 433 (Scheme 129).1 4 6 
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Whilst the Diels-Alder reaction is most commonly undertaken to realise a 1-2, 3-4 

disconnection strategy, Klemm and Yamaguchi have reported an alternative 2-3, 1-6 

bond construction strategy involving the intramolecular Diels-Alder reaction of 

propargylic ester 437. Whilst catalytic reduction of the lactone 438 afforded the al l-m-

isomer, use of the free hydroxy acid 439 led to the desired 1,2-cw 2,3-trans 

stereochemistry, albeit in low yield (Scheme 130).159 Alternatively, electrochemical 

reduction of unsaturated lactone 438 led to the \,2-trans 2,3-cis picropodophyllin 

stereochemistry.160 

115 



o o o < I < o 
o o o 

o Ar 
437 438 l .KOH 

2. H Hg cathode 
HBr, MeCN, 
TEAB 

O o OH 
< I o 
o o CO,H 

O Ar Ar 
439 440 
98% 68% 

. H,/Pd-C 
2. TsOH 

O 
O 

< O 

o Ar 

441 
17% 

[Ar = 3,4,5-(MeO)3C6H2-] 

Scheme 130 

4.2.3 Other modes of C-ring Construction 

Whilst the majority of approaches to the CD ring moieties follow one of the two 

strategies described in previous sections, a few methods have completed the CD rings 

through the formation of the C-2 - C-3 bond. In the main this reflects the ability to 

generate an enolate anion at C-2 due to the presence of the future lactone carbonyl 

group. The process can be rendered very convergent through application of a Michael 

induced ring closure (MIRC) sequence and can be achieved in a very concise fashion 

(Scheme 131). 1 6 1 ' 1 6 2 However, the drawback to such an approach is the formation of the 

undesired 1,2-trans- stereochemistry. 
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In a unique approach to the aryltetralin skeleton, Toste has employed an intramolecular 

Heck reaction of 1,7-enyne 445 to construct the C ring in his synthesis of 

podophyllotoxin (Scheme 132).163 
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Lastly, in a complementary approach to the tandem conjugate addition strategy 

described earlier, Harrowven has assembled the C ring via construction of the 1,2 and 

3,4 bonds through a type I I MIRC procedure (Scheme 133).1 6 4 
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4.2.4 Functionalisation of Preformed C-Ring 

The other principal strategy for the preparation of CD ring moieties relies on an early 

construction of the C ring and then subsequent introduction of the remaining 

functionality to provide the D ring. Final manipulation of the stereochemistry is then 

undertaken to obtain the desired isomeric product. In this respect, it is pertinent to note 

that conditions for the interconversion of various podophyllotoxin diastereoisomers 

have been established, notably that of picropodophyllin.1 1 2 

In many cases, the C ring is initially established using methods discussed in the 

previous section. Gensler, following such an approach, reported the first synthesis of the 

most prominent aryl tetralin lactone podophyllotoxin in 1962. Gensler had identified the 

tetralone 451 as a key C-ring precursor in an earlier synthesis of picropodophyllin. 1 6 5 ' 1 6 6 

Oxo ester 451 was generated in 4 steps from benzophenone derivative 450 through a 

sequence involving Stobbe condensation, reduction, activation of the carboxylic acid 

and Friedel-Crafts acylation.1 6 7 Functionalisation of the C ring was achieved by Claisen 

condensation with ethyl formate, followed by reduction to introduce the hydroxymethyl 

sidechain. Subsequent dehydration and lactone saponification afforded a-

apopodophyllic acid 453, which could be resolved using quinine. Lactonisation and 

hydration of the alkene then afforded picropodophyllotoxin 355 albeit in low yield 

(Scheme 134).1 6 8 
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Whilst this established the basic skeleton o f aryltetralin lactones, the stereochemistry 

represented the thermodynamically favoured outcome. However, based on earlier 

studies exploring the picropodophylin-podophyllotoxin equilibrium, Gensler proposed 

that kinetic reprotonation o f the relatively planar lactone enolate would proceed f rom 

the less hindered |3-face to afford the desired trans- lactone. Importantly, proceeding via 

picropodophyllin establishes the correct stereochemistry at C-3 through preferential 

formation o f a cis lactone. Consequently, fol lowing alcohol protection as the THP 

acetal, enolate formation with triphenylmethylsodium and subsequent rapid 

reprotonation using acetic acid afforded, after deprotection, a separable 45:55 mixture 

of podophyllotoxin and picropodohyllin. 1 6 5 The lower than expected ratio o f trans- to 

cis- lactones was attributed to a high degree o f pyramidalisation o f the enolate in the 

transition state favouring the less strained picropodophyllin geometry. 
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Following this pioneering synthesis, others have described syntheses o f 

podophyllotoxin and its isomers via the same 7-0x0 ester intermediate. However, whilst 

Gensler generated the C ring by a 4,5 bond connection wi th the C - l , C-2 trans 

stereochemistry established, most subsequent syntheses o f this intermediate have 

completed the C-ring through the 1-6 bond. 1 6 9 " 1 7 1 The most concise and efficient o f 

these approaches to the keto-ester 451 is that described by Murphy and Wattanasin 

involving Lewis-acid-mediated rearrangement o f the cyclopropane 456 (Scheme 135). 

0 +- 0 

^ Jl Me 2SCHC0 2Et ^ U 

454 456 
BF 3«OEt 2 

O 

[Ar = 3,4,5-(MeO) 3C 6H 2-] 

o 
< I 
o CO.Et 

Ar 

451 
95% 

Scheme 135 

Importantly, as discussed above, in the absence o f other stereocontrolling elements, all 

such approaches produce the 1,2-trans- stereochemistry. Consequently, whilst the 

subsequent steps o f the synthesis to picropodophyllone have also been enhanced, the 

ultimate conversion to podophyllotoxin still requires the unfavourable lactone 

epimerisation. This challenging transformation can be addressed by carrying out the 

isomerisation at an earlier stage o f the synthesis prior to introduction o f the C-3 

substituent or fol lowing hydrolysis to the keto-acid. 1 7 2 , 1 7 3 Importantly, the former 

approach facilitates the stereocontrolled introduction o f the C-3 hydroxymethyl group 

as seen in the work o f Vyas and Wong (Scheme 136). 
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These approaches have largely established the C- l stereochemistry early in the 

synthesis and used this to control the introduction o f the remaining stereocentres. 

However, it is possible to reverse this process, and to introduce the C- l aryl group and 

fix the stereochemistry at this centre as part o f the end game strategy. The particular 

attraction for doing so is that it provides easy access to a range o f analogues. Conjugate 

addition to the unsaturated acyl oxazolidinone 460 occurs to give the desired C- l a-

isomer presumably directed by the bulk o f the TIPSO group at C-3. Unfortunately 

protonation o f the resultant enolate also occurs f rom the same face leading to the 

picropodophyllin stereochemistry (Scheme 137a). 1 7 4 In the presence o f L i C l , addition 

of an aryllithium to a C- l keto-lactol 462 occurs stereoselectively to afford tetracyclic 

aryl carbinol 463. Unfortunately, conditions for the selective reduction o f the tertiary 

alcohol remain to be identified (Scheme 137b). 1 3 6 Elimination to apopodophyllotoxin is 

possible and related reductions in this series have previously been demonstrated to 

provide the desired 1,2-cis 2,3-trans- s tereochemistry. 1 2 9 ' 1 4 1 1 5 9 The A 1 ' 2 unsaturated 

skeleton can also be accessed f rom the C- l ketone via enol triflate formation and 

Suzuki-Miyaura cross coupling (Scheme 137c). 1 7 5 
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Scheme 137 

A particularly elegant approach, which simultaneously establishes the D-ring lactone 

and introduces the C- l aryl group, involves a tandem radical cyclisation - radical 

translocation sequence (Scheme 138). 1 7 6 Reflecting the tethered nature o f each step, 

high diastereoselectivity was obtained leading to the isopicropodophyllin 

stereochemistry. The starting thiocarbonates can be prepared in either enantiomeric 

series using either an Evans' asymmetric aldol-RCM sequence or a Meyers' asymmetric 

nucleophilic dearomatisation o f a naphthalene. 
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Scheme 138 

Enantioselective dearomatisation o f a naphthalene formed a key step in one of the early 

syntheses o f podophyllotoxin. 1 7 7 Whilst this step proved efficient, the intrinsic 

diasteroselectivity o f the process results in the generation o f the \,2-trans-

stereochemistry which required late stage epimerisation. This synthesis has been refined 

to provide (-)-epipodophyllotoxin in 96% ee and 30% overall yield from piperonal. 1 7 8 In 

this modification, the key 1,2-cw, 2,3-trans- stereochemistry is controlled by the C- l 

alcohol through a silicon-tethered radical hydroxymethylation, albeit wi th only 

moderate diastereoslectivity at C-2 (Scheme 139). 

123 



1. ArBr, ' -BuLi P 
< 

471 

^ 0 2. MeS0 3 H, MeOH o 
\ ) 

tBu 

*C0 2 Me 

Ar 
472 

64%; 96%ee 

I. 
0 ^ s ; l .Et 3 N,CISiMe 2 CH 2 Br 

2. Bu,SnH, AIBN O 

• < 
Ar 

474 

C0 2 Me 

3. KF, H 2 0 2 , K H C 0 3 

OH + (J 
'CO zMe 0 

Ar 

475 
68%, 

1. D M DO 
2. LHMDS 

OH 

C0 2 Me 

Ar 

473 
89% 

[Ar = 3,4,5-(MeO) 3C 6H 2-] 

Scheme 139 

4.3 Our approach to the podophyllotoxin analogue, Epipicropodophyllin 

Our approach to the synthesis o f the aryl tetralin lactone skeleton arose f rom the 

development o f new synthetic methodology described earlier (cf. Section 3.4). This 

methodology demonstrated that the Hosomi-Sakurai reaction o f silacyclohex-4-enes 

206 wi th electron-rich aromatic acetals generated tetrahydronaphthalenes 343 in good 

yield and diastereoselectivity (Scheme 140). 

1. BF,«OEt OH Ph 
4-MeO-C 6H 4-CH(OMe) 2, 0 °C 

i i . 35% w/w H-,0 
Ph K H C 0 3 , A 

MeO 206 
343 (ds 4:1) 

(ds5:l) 

Scheme 140 
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Therefore, it was our intention to apply this methodology to the total synthesis o f 

epipicropodophyllin 356. Firstly, a retrosynthetic analysis o f epipicropodophylin was 

undertaken. This revealed that the key steps would involve the Hosomi-Sakurai reaction 

o f a new, highly functionalised silacyclohex-4-ene 477 wi th 3,4,5-trimethoxy 

benzaldehyde dimethyl acetal, to provide the aryl tetralin skeleton 476. The remaining 

steps would involve deprotection o f the tetrol 476 and introduction o f the D ring lactone 

to supply the final product (Scheme 141). 

OH OH MeO OMe RO o o o 
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si-o Si-SiMe MeO OMe Ph 
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477 5^ 478 OMe MeO OMe MeO 
OMe OMe 
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v 

MeiSi 
RO S OH 

Ptf 
SiMe^ O Si 

< II / SiMe, 
Ph O 

o o 481 
480 479 

Scheme 141 

With this analysis in mind, the fol lowing section w i l l discuss the results o f our synthetic 

endeavours, highlighting key issues with this approach and, ultimately, report the total 

synthesis o f epipicropodophyllin. 

4.4 Results and Discussion 

As discussed in the previous section, our approach to epipicropodophyllin relied on the 

preparation o f the highly functionalised silacyclohex-4-ene 477. Accordingly this 

became the first objective o f the project. To begin, silyl alcohol 481 was synthesised in 

good yield fol lowing the procedure described by Whelligan (Scheme 142). 
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Silyl alcohol 481 was confirmed by analysis o f the IR spectrum, which showed a broad 

signal at 3564cm"1 coupled with peaks at 5.90 and 5.10 ppm in the ' H N M R spectrum, 

corresponding to the dioxolane methylene group and Si-G// proton respectively. With 

the silyl alcohol in hand, attention turned to the synthesis o f hydroxydiene 483. A brief 

search o f the literature revealed that the desired diene 483 could be prepared f rom 

piperylene 482 (Scheme 143). 1 7 9 ' 1 8 0 

Scheme 143 

Treatment o f piperylene wi th Schlosser's base generated a conjugated anion, which was 

trapped with trimethyl borate. The borate ester was then oxidised with hydrogen 

peroxide to generate the hydroxy diene 483 in good yield. The structure o f diene 483 

was confirmed by comparison of *H N M R data wi th that given in the literature. 1 7 9 Diene 

483 was then protected wi th a variety o f protecting groups. This sequence enabled large 

amounts o f diene precursor to be synthesised (Table 10). 

HO 

i . n-BuLi, KO'Bu 

i i . B(OMe) 3, -78 °C 
o i i . H 2 0 2 , NaOH, -78 UC - it 482 

483 
43% 

E/Z9:l 
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483 479 

Entry R group Conditions Yield 

1 TBS TBSC1, Im. D C M 95% 

2 TBDPS TBDPSC1, Im. D C M 56% 

3 Ac A c 2 0 , DIPEA, D M A P , D C M 32% 

Table 10 

With three diene substrates in hand, attention turned to their application in the crucial 

Diels-Alder reaction. Each diene substrate was utilised in the silene-diene Diels-Alder 

reaction, pioneered by Whelligan to produce the highly functionalised silacyclohex-4-

enes (Table 11). 

RO RO O OH 

XT* 
i . «-BuLi, rt .SiMe O O s < II + / SiMe o i i . cat. LiBr, -20 U C Ph Si-"SiMe O 

'Ph 

481 479 477 

Entry R group Yield (ds) 

1 Ac 0% 

2 TBDPS 55% (complex) 

3 TBS 60% (80:13:7) 

Table 11 

Initially, when diene 483 was protected with an acetate group (entry 1) no product was 

generated. Instead, the acetate group migrated to the silyl alcohol during the reaction. 

As a result, acetate-protected silyl alcohol 485 was isolated in a 40% yield, along with 

the unprotected diene 483 (Scheme 144). 

127 



HO AcO OAc OH 
S Me 1. n-BuLi, rt O SMe O Si S i " + 

< I / SMe / SiMe i i . cat. LiBr, -20 °C Ph Ph O O 

481 484 485 483 

Scheme 144 

Undeterred by this result, when the hydroxydiene was protected as a silyl ether (entries 

2 & 3) excellent results were obtained. With the TBDPS ether, silacyclohex-4-ene 477 

was generated in modest yield, but as a complex mixture o f stereoisomers. However, 

when the TBS ether was utilised, silacyclohex-4-ene 486 was generated in higher yield 

and with comparable diastereoselectivity to that obtained with piperylene (cf. Section 

3.4). Formation o f silacyclohex-4-ene 486 was confirmed by analysis o f the *H N M R 

and MS data, which showed peaks at 6.03 and 5.80ppm characteristic o f the two 

olefmic protons along with a mass spectrum (obtained by electron impact ionisation) 

showing the molecular ion to have m/z = 510. The stereochemistry o f the major isomer 

was confirmed by nOe experiments to be identical to that obtained with piperylene (cf. 

Section 3.4) (Figure 31) 

TBSO 

TBSO H O H 
I-

O 
\ H Ph H S Si-"SiMe 

'Ph SiMe 

486 

Figure 31 

With a robust, high yielding procedure established to gain access to the desired 

silacyclohex-4-ene 486, subsequent studies focused on its elaboration utilising the 

Hosomi-Sakurai reaction. Initial reaction o f silacyclohex-4-ene 486 wi th acetal 478, 

under the standard conditions, was disappointing generating only trace amounts (7%) o f 
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the unprotected aryltetralindiol 487. Interestingly, 487 was generated as a single 

diastereoisomer (Scheme 145). 

OH TBSO O 

> O BF 3 OEt 2 , 0 °C MeO CH(OMe)2 

o OH 
O i i . 35% w/w H,0 Si-*SiMe3 MeO KHC0 3 , A 'Ph 

XX OMe 486 
478 ds (4:1) 

MeO OMe 
OMe 

487 
7% 

ds(l:0) 

Scheme 145 

The low yield was believed to arise f rom cleavage o f the labile TBS group during the 

cyclisation step with BF3»OEt2. Nevertheless, enough of the aryltetralindiol 487 was 

isolated to determine the relative stereochemistry by nOe experiments (Figure 32). 

Importantly, the single diastereoisomer possesses the same stereochemistry as that 

observed during earlier experiments (cf. Section 3.4). 

OH 

o 
OH 

OH O H H 
H 

XX Ar 
OH 
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487 

Figure 32 

Having shown that aryltetralindiol 487 could be generated, albeit in low yield, attention 

turned to optimisation o f the reaction in an effort to increase the overall yield. Initial 

studies focused on alteration o f the protecting group. The TBS ether o f silacyclohex-4-

ene 486 was easily cleaved utilising />-TSA to give hydroxysilacyclohex-4-ene 488. 

Generation o f the hydroxylsilacyclohex-4-ene was confirmed by analysis o f the IR and 
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' H N M R spectra, which showed a broad signal at 3500 cm"1 for the hydroxyl group 

coupled with peaks at 3.55 and 3.45 ppm corresponding to the methylene protons. 

Subsequent protection was then undertaken to provide silacyclohex-4-enes 489 and 490 

in good yield (Scheme 146). 
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0.5M aq. HC1 
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486 488 
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S i -S iMe 
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489, R = Ac, 70% ds (4:1) 
490, R=Piv ,60%ds(4 : l ) 

Scheme 146 

Confirmation o f acetate and pivaloate protection was confirmed by analysis o f the lH 

and 1 3 C N M R , which showed signals at 1.99 and 1.17 ppm for the acetate methyl and 

'Bu protons respectively, coupled wi th signals at 171 and 178 ppm corresponding to the 

respective carbonyl carbons. With these two substrates in hand, attention turned to their 

Hosomi-Sakurai reaction. Gratifyingly, when subjected to the standard conditions 

outlined above, acetyl-protected silacyclohex-4-ene 489 underwent smooth conversion 

to the aryltetralindiol 487 as a single diastereoisomer in good yield. Pivaloyl 

silacyclohex-4-ene 490 also underwent the Hosomi-Sakurai reaction; although a 

considerable quantity o f starting material remained when compared to the former 

reaction (Scheme 147). 
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Scheme 147 

To probe this reaction, the crude material obtained before oxidation was purified by 

flash chromatography and ful ly analysed. Interestingly, the isolated product was 

established as the ful ly protected silyl fluoride species 491 by examination o f the *H 

N M R (1.99ppm, acetyl methyl group) and mass spectra (m/z = 659 (MNa + ) , 1295 

(2MNa + ) . This demonstrated that protection o f the primary hydroxy group during the 

Hosomi-Sakurai reaction was crucial. Furthermore, examination o f the 1 9 F N M R 

spectrum demonstrated that the fu l ly protected silyl fluoride 491 was generated as a 4:1 

mixture o f diastereoisomers (Scheme 148). 

SiMe 3 

AcO Ph O Si 
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OMe 
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Scheme 148 

In addition, to further highlight the necessity for protection o f the primary hydroxyl 

group during the Hosomi-Sakurai reaction, the free hydroxysilacyclohex-4-ene 488 and 

acetal 478 were treated under the standard conditions. Following oxidation o f the 

131 



intermediate silyl fluoride, the highly substituted furan 492 (similar to that reported by 

Marsden et al, c f . Section 3.2.2) was generated in modest yield as a single 

diastereoisomer. Formation o f furan 492 was confirmed by analysis o f the mass 

spectrum (obtained by electrospray analysis), showing m/z = 437 (MNa + ) and m/z = 851 

(2MNa + ) and the stereochemistry was assigned by nOe experiments (Scheme 149). 
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Scheme 149 

4.4.1 Synthesis of Epipicropodophyllin 

With a robust procedure established to generate the desired aryltetralindiol 487, 

subsequent work focused on elaboration o f the aryltetralin 487 towards 

epipicropodophyllin. Initially it was proposed that elaboration o f the double bond via 

ozonolysis would generate an aldehyde diol , which, under the reaction conditions, may 

generate lactol 493. Subsequent oxidiation would provide the D ring lactone o f 

epipicropodophyllin. However, attempts to implement this strategy utilising aryltetralin 

diol 487 failed to provide the desired product, instead an intractable mixture o f products 

was identified by ' H N M R (Scheme 150). 
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As a result o f this initial study, it was decided that a stepwise approach to the D ring 

lactone was required. This was to be achieved by first protecting the aryltetralin diol 

487, followed by oxidative cleavage o f the alkene to give aldehyde 495. I f possible, 

over-oxidation to the carboxylic acid 496 was desirable, as concomitant deprotection 

and lactonisation would then generate epipicropodophyllin in one step. Otherwise, 

aldehyde 495 would be deprotected and under suitable conditions generate lactol 497. 

Subsequent oxidation to the D ring lactone would complete the synthesis o f 

epipicropodophyllin 356 (Figure 33). 

487 

O P O P O P ] 

O o o O P O P OH 

o o o 
o o XX XI OMe MeO OMe MeO OMe MeO 

OMe OMe OMe 

494 496 495 

OH OH 

O O 
O O 

O O 
OH O 

XX rx =5x 
OMe MeO MeO OMe 

OMe OMe 

497 356 

Figure 33 
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With this in mind, attention turned to the protection o f aryltetralindiol 487. A brief 

search o f the lignan literature revealed that similar diol substrates were typically 

protected as cyclic acetals. To this end, a series o f protecting groups were utilised to 

protect aryltetralindiol 487 (Table 12). 

x OH 

O O 

O O 

XX Xk 
MeO OMe MeO OMe 

OMe OMe 
487 

Entry X Conditions Result 

1 (Me 2 )C (MeO) 2 C(CH 3 ) 2 , /?-TSA, acetone decomposition 

2 PhCH Benzaldehyde, PPTS, D C M Starting material recovered 

3 'Bu 2Si ( 'Bu) 2 SiCl 2 , Im. , D C M Starting material recovered 

4 C = 0 CDI , D M A P , D C M 80% 

Table 12 

Initial attempts to protect the aryltetralindiol 487 as an isopropylidene acetal (entry 1) 

were unsuccessful, leading primarily to decomposition. However, fol lowing flash 

chromatography a new compound was isolated as a single diastereoisomer in 20 % 

yield. This compound was fu l ly analysed and determined by *H N M R (a signal at 3.40 

ppm corresponding to a fourth methoxy group) and MS data (obtained by electrospray 

ionisation, indicationg a pseudomolecular ion at m/z = 451) to be the 

methoxyaryltetralin 500. I t was proposed that methoxyaryltetralin 500 arose f rom an 

acidic displacement o f the secondary hydroxyl group, giving oxonium ion 499, which 

then underwent attack by MeOH, released f rom 2,2-dimethoxypropane on the least 

hindered face. The stereochemistry o f this isomer was confirmed by nOe experiments 

(Scheme 151). 
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Scheme 151 

Subsequently, attempts to protect the aryltetralin diol 487 as a cyclic acetal or siloxane 

were equally unsuccessful, leading primarily to recovered starting material (entry 2 & 

3). Despite these results, protection of the aryltetralin diol 487 was achieved in high 

yield utilising CDI (entry 4). This was confirmed by analysis of the IR and MS data 

which showed a strong signal at 1748 cm"1 corresponding to the carbonyl group coupled 

with a m/z = 451 (MNa +, obtained by electrospray ionisation). Delighted with this 

result, attention turned to generating the protected aldehyde 502. Previous work had 

shown that ozone was unable to elaborate the aldehyde, and therefore subsequent 

attempts would need to be undertaken utilising cat. OSO4, NaIC>4 and 2,6-lutidine. 
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Consequently cyclic carbonate 501 was subjected to the above conditions, however, on 

work-up and analysis it was discovered that the compound had decomposed (Scheme 

152). 

o o 
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487 SOI S02 

Scheme 152 

Frustrated by these results, it was decided that, to advance aryltetralindiol 487 to the 

desired product, other protecting groups had to be explored. Firstly, acetate protection 

was attempted. Gratifyingly, when 487 was treated with two equivalents of acetic 

anhydride and an excess of DIPEA, the desired diacetate aryltetralin 503 was generated 

in 82% yield. This was confirmed by analysis of the IR spectra, which showed a strong 

signal at 1731cm"1 corresponding to the carbonyl groups, and *H NMR spectra which 

contained peaks at 2.08 and 2.00 ppm corresponding to the two acetate methyl groups. 

Delighted with this result, attention turned to generating the desired aldehyde. 

Pleasingly, when treated with cat. OSO4, NaIC>4 and 2,6-lutidine, aryltetralindiacetate 

503 was converted to the desired diprotected aldehyde 504 in 25% yield. This was 

confirmed by analysis of the 'H and 1 3C NMR spectra, which showed a signal at 

9.03ppm for the aldehyde proton and a signal at 200ppm corresponding to the aldehyde 

carbon respectively (Scheme 153). 
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Scheme 153 

Importantly, both the diacetate aryltetralin 503 and the diprotected aldehyde 504 were 

generated as single diastereoisomers. In addition, to increase the yield longer reaction 

times were employed. However, the maximum yield obtained after 3 h was 40%. The 

remaining material consisted of starting material and decomposition products (60%). 

Undeterred by the low yield, elaboration of the diprotected aldehyde 504 to 

epipicropodophyllin was then undertaken. It was proposed that this could be achieved in 

two steps by oxidation of the aldehyde to the carboxylic acid, followed by concomitant 

deprotection of the acetate groups and lactonisation in aqueous acid (Scheme 154). 

OAc OAc OAc 

NaCIO,, NaHPQ 4 

2-methylbut-2-ene 
BuOH 

OH aq.HCi ( 1 
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OMe 

504 
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Scheme 154 

Disappointingly, efforts to oxidise the aldehyde to the desired carboxylic acid generated 

complex mixtures of products, none of which corresponded to the desired product. The 

reason for this failure was not obvious and there was concern that any oxidation of the 

aldehyde would be difficult. 
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Consequently, our attention turned back to the direct elaboration of aryltetralindiol 487 

to the lactone. As highlighted earlier, aryltetralindiol 487 could not be elaborated to the 

lactol 493 utilising ozone. However, conditions for the elaboration of the vinyl group to 

the corresponding aldehyde had been discovered with aryltetralindiacetate 503. 

Therefore, it was our intention to employ these conditions with the unprotected 

aryltetralin diol 487. 

Pleasingly, when treated with cat. OsC^ and NalCu as previously described, 

aryltetralindiol 487 was converted to the lactol 493 in 58% yield as a 3:1 mixture of 

diastereoisomers about the new lactol chiral centre. This was confirmed by subsequent 

oxidation, which gave rise to a product that was isolated as a single diastereoisomer 

(Scheme 155). 
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Scheme 155 

The lactol product was confirmed by analysis of the 'H NMR spectra which showed a 

new signal at 4.70ppm corresponding to the lactol CH, and MS data, which gave a 

pseudomolecular ion at m/z = 855 (2MNa+) by electrospray ionisation. Delighted with 

this result, attention turned to the oxidation of lactol 493 to the desired lactone. A brief 

search of the literature revealed that oxidation could be achieved in the presence of a 

secondary alcohol with NIS and T B A I . 1 8 1 Therefore, lactol 493 was subjected to 5eq. 

NIS and 2eq. of TBAI in DCM. Following isolation and purification by flash 
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chromatography, the desired product, epipicropodophyllin 356 was generated in 26% 

yield as a single diastereoisomer. However, a second product was also isolated as a 

single diastereoisomer in 26% yield. This was determined to be the undesired over 

oxidation product picropodophyllone 506. The identities of both products were 

confirmed by comparison of the 'H NMR with that given in the literature (Scheme 

156). 

OH 

O NIS, TBAI 

DCM 
P + < 1 

Scheme 156 

Pleased to have completed the synthesis of epipicropodophyllin, but disappointed with 

the oxidation yield, a subsequent experiment was undertaken to try to improve this. A 

further literature search indicated that the reaction could be undertaken with 

significantly less NIS and TBAI. Therefore, the reaction was repeated with leq. NIS 

and 0.4eq. TBAI. Gratifyingly, when isolated and subjected to flash chromatography 

epipicropodophyllin 356 was generated in 63% yield with only trace amounts of the 

over oxidation product 506 (Scheme 157). 

O NIS, TBAI 

MeO " O M e 

OMe 
506 

trace amounts 

Scheme 157 
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4.5 Conclusion 

In conclusion, this work has demonstrated that highly functionalised silacyclohex-4-

enes, derived from silene-diene cycloaddition reactions of highly functionalised silenes 

and dienes, are viable substrates for the total synthesis of aryltetralin lignan lactones. 

The key steps in the synthesis involve the Hosomi-Sakurai reaction of silacyclohex-4-

enes with electron rich acetals and elaboration of the vinyl group to the lactone ring 

(Scheme 158). 
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The following chapter wil l focus on other studies that were undertaken alongside this 

work, future work related to the studies highlighted in earlier chapters and conclude this 

thesis. 
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5 Other Studies and Future Work 

5.1 Future studies with the Hosomi Sakurai reaction 

5.1.1 Introduction 

It was proposed in Chapter 3 that the stereochemistry of the vinyl group generated 

during the Hosomi-Sakurai reaction arises from selective approach of the oxonium ion 

to the least hindered (convex) face of the major silacyclohex-4-ene isomer when it 

adopts a pseudo-boat conformation. This approach would avoid prow interactions 

between the methyl group and a C-6 hydrogen. At this stage it is unclear i f this is 

accurate, therefore future work will focus on trying to provide evidence to support this 

statement. 

5.1.2 Strategy 

This is to be achieved by generating a series of silacyclohex-4-ene substrates 194, 507-

511, possessing various substituents at different positions around the ring. This means 

that when silacyclohex-4-enes 194, 507-511 are subjected to the Hosomi-Sakurai 

reaction, different stereochemistries wi l l be imparted into the final molecule due to the 

position of the substituent. Ultimately, one position and substituent around the ring will 

provide the same stereochemical outcome as that observed for the fully substituted 

silacyclohex-4-ene. Therefore, by inference, the substituent responsible for the 

stereochemical outcome of the fully substituted silacyclohex-4-ene will have been 

identified and the above statement proved or disproved (Figure 34). 
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Figure 34 

To begin this study, a brief search of the literature was undertaken to provide a synthetic 

route to the simplest silacyclohex-4-ene 194. This search revealed very few reports, 

however silacyclohex-4-ene 194 had previously been synthesised via two routes. The 

first involved a lengthy 7-step synthesis starting from dichlorodimethylsilane 193.56 

Despite the length, silacyclohex-4-ene 194 was generated in a respectable 10% overall 

yield. The second route describes the synthesis of silacyclohex-4-ene 194 in 3 steps, 

starting from chloro(chloromethyl)dimethylsilane 516. This route involved sequential 

addition of allylmagnesium chloride to dichlorosilane 516 to generate dimethylallyl(n-

butenyl)silane 518. Subsequent ring-closing-metathesis utilising R^Ch-AbC^ and 

SnBu4 generated the desired silacyclohex-4-ene 194 in 77% yield (Scheme 159). 1 8 2 
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Scheme 159 

As a direct result of the literature search, it was our intention to modify the shorter route 

to incorporate one less step. This is possible by reacting commercially available 

allylchlorodimethylsilane 519 with but-3-enylmagnesium bromide to generate the same 
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allyl(butenyl)dimethylsilane precursor 518. Subsequent ring-closing metathesis with 

Grubbs 1 s t generation catalyst would generate the desired silacyclohex-4-ene 194 in 

only 2 steps. Gratifyingly, when this strategy was implemented, the desired 

silacyclohex-4-ene 194 was generated in a respectable 25% yield over 2 steps. The two 

products 518 and 194 were identified by comparing their 'H NMR data with that given 

in the literature (Figure 35). 5 6 ' 1 8 3 

Grubb's 1st gen. 0 
519 518 194 

55% 54% 

Figure 35 

5.1.3 Application in the Hosomi-Sakurai reaction 

As described in the previous section, it was now our intention to utilise the 

silacyclohex-4-ene 194 in the Hosomi-Sakurai reaction. Therefore, silacycohex-4-ene 

194 was combined with benzaldehyde dimethyl acetal and treated with BF3»OEt2 to 

give fluorosilane 520. The intermediate fluorosilane 520 was not purified, but directly 

subjected to the Tamao oxidation conditions to provide mono-protected diol 521 in 55% 

yield over the two steps (Scheme 160). 

BF 3«OEt 2 

PhCH(OMe) 2 

OMe 

S | — 0 °C 

194 

Scheme 160 
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As expected, H NMR analysis of the mono-protected diol 521 revealed that the product 

had been generated as a 1:1 mixture of diastereoisomers. This was in agreement with 

our proposal, as there is no stereochemistry in the starting silacyclohex-4-ene 194 to be 

transferred to the final compound, and therefore a 1:1 mixture of diastereoisomers is 
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expected. Pleased with this initial result, future work wil l now concentrate on the 

synthesis of the other substrates 507-511 outlined in Figure 34. 

5.2 Future synthesis of Podophyllotoxin 

5.2.1 Introduction 

Pleased to have completed the synthesis of epipicropodophylin in Chapter 4, our aim 

was for future work to focus on completing the synthesis of podophyllotoxin and other 

aryl tetralin lignan lactones, despite the fact that synthesis of epipicropodophyllin can be 

considered a formal synthesis of podophyllotoxin. 

5.2.2 Strategy 

Our intention is to utilise the same synthetic strategy outlined in the previous chapter to 

give access to the aryl tetralin diol 487. Once synthesised, the lactone ring would not be 

formed at this stage, as stereochemical manipulations have to be undertaken. Instead, 

protection of the primary hydroxyl group would stop lactol formation when treated with 

cat. OSO4 and NaI04 (cf. Scheme 155). Therefore, when subjected to these conditions it 

was hoped that aldehyde 523 could be generated. At this stage, isomerisation of the 

aldehyde 523 would be undertaken with thermodynamic control to give a mixture of 

stereochemistries that could be separated by flash chromatography. Once separated, the 

primary hydroxyl group of the desired isomer would be deprotected and lactolised in 

situ. Subsequent overoxidation with NIS and TBAI (cf. Scheme 156) would generate 

oxo lactone 369 which can be selectively reduced with LiAlH(0'Bu)3 (Scheme 161). 
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Scheme 161 

5.2.3 Synthesis of Podophyllotoxin 

With this strategy in mind, a brief investigation of the literature was undertaken to 

discover a protecting group suitable for this route, given that other protecting groups 

had been difficult to introduce or were too labile during subsequent reactions {cf. 

Section 4.3.2). Also, selectivity over primary vs secondary alcohol protection maybe an 

issue. Therefore, it was our intention to use a bulky silicon protecting group such as 

TBDPS. Gratifyingly, when treated with TBDPSC1 and imidazole in DCM at room 

temperature the monoprotected diol 525 was generated, albeit in a low 54% yield. This 

was confirmed by analysis of the ! H NMR and MS data which, respectively, revealed a 

new peak at 0.99 ppm corresponding to the 'Bu group and a pseudomolecular ion at m/z 

= 675 (MNa +) obtained by electrospray ionisation. 

Despite the low yield, protected diol 525 was then subjected to cat. OsCU and NaI04 to 

generate the desired aldehyde 526. Surprisingly, the desired aldehyde 526 was not 
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isolated from the reaction, but instead a cross ring lactol 527 was isolated in 40 % yield. 

This was confirmed by examination of the *H NMR, which revealed a new signal at 

4.31 ppm corresponding to the lactol CH. This *H NMR signal corresponds closely to 

the signal observed for the same proton of lactol 493 (4.70 ppm). Also, MS data (m/z = 

1331 (2MNa+), obtained by electospray ionisation further confirmed the generation of 

lactol 527 (Scheme 162). 
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Scheme 162 

5.2.4 Future studies 

Disappointed by this result and with no time remaining, a new strategy for future studies 

was proposed. The new strategy begins with an acidic isomerisation of the secondary 

hydroxyl group utilising aqueous acid. Subsequent selective protection of the primary 

hydroxyl group would again be undertaken with TBDPSC1, despite the low yields. 

Monoprotected diol 528 would then be subjected to cat. OSO4 and NaI04 (cf. Scheme 

155) to give the desired aldehyde 529. This time it is hoped that the cross ring lactol 
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would not form, as the secondary hydroxyl group at C-4 is present on the opposite ring 

face. 

At this stage aldehyde 529 would be isomerised as before. However, in this case it was 

believed that, when isomerised, the desired aldehyde isomer would lactolise in situ (cf. 

Scheme 162) with the secondary hydroxyl group and give lactol isomer 530 as the sole 

product. This process would alleviate issues discussed earlier regarding the difficulty 

involved in isomerising the C-2 stereocenter (cf. Section 4.2.4) I f lactol 530 was 

formed, it could be oxidised with NIS and TBAI to the lactone 531. Finally hydrolysis, 

deprotection and cyclisation with aqueous acid would generate podophyllotoxin 353 in 

one step (Scheme 163). 
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5.3 Synthesis of Silasteroids 

5.3.1 Introduction 

Alongside the work described in the proceeding chapters, a collaborative study was 

initiated with Ass. Prof. Ottosson at Uppsala University in Sweden. This study was 

undertaken to investigate the synthesis of bicyclic silicon species via intramolecular 

silene Diels-Alder reactions. I f successful, this new synthetic methodology will be 

utilised in the synthesis of complex bicyclic silicon species that may be elaborated to 

silasteroids similar to 532 and 533 (Figure 36). 

OH OH 

H H 

Si 

O O 

Figure 36 

To begin our collaboration, it was our intention to synthesise simple unsubstituted 

bicyclic ring systems (marked in red, Figure 36), by intramolecular silene Diels-Alder 

reactions, to locate a silicon group at the bridgehead position and within the six 

membered ring. To achieve this, suitable substrates for the intramolecular Diels-Alder 

reaction were required. Consequently, this became the first objective of the project. 

5.3.2 Strategy 

A retrosynthetic analysis of the two species was undertaken first. This revealed that 

bicyclic silicon species 534 could be generated from the corresponding silene precursor 

535, which in turn could be generated from the corresponding iodooctadiene 536 and 

acylpolysilane 537. The second bicyclic silicon species 538 could be generated from the 
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corresponding silene precursor 539 which in turn could be generated from nonadienal 

540 and tetrakis(trimethylsilyl)silane 94 (Figure 37). 

o MeaSi R A O Men Si 00 A I Si R Si + S R Me, Si S Me 
S Me 

534 
537 535 536 

R R (Me 3Si) 3Si 

OH J u 
.Si CO o + Si(SiMe) OH 

94 

538 
539 540 

Figure 37 

With this strategy in mind, a brief search of the literature revealed that the desired 

iodooctadiene 536 and nonadienal 540 would require lengthy and difficult synthetic 

campaigns. Therefore, to aid a more rapid assessment of this methodology, shorter 

diene precursors, accessible by concise synthetic routes was essential. Pleasingly, 

previous work in the Ottosson group had demonstrated an elegant and short synthesis of 

iodoheptadiene 544 starting from penta-l,4-dienol 541. 1 8 4 They went on to couple 

iodoheptadiene 544 with diethylaminoacylpolysilane 545 to give access to the silene 

precursor 546 in good yield. I f cyclised, silene precursor 546 would have generated a 

[5,6] fused ring system. However when subjected to sealed tube NMR experiments, 

silene precursor 546 generated only decomposition products (Scheme 164). 
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Consequently, it was our intention to utilise this elegant route to generate shorter chain 

silene precursors 549 and 550. Firstly, heptadienol 543 would be synthesised on a large 

scale. A portion would then be taken through to iodoheptadiene 544 and the remainder 

oxidised to heptadienal 547. Once synthesised, iodoheptadiene 544 would be coupled 

with the more stable /-butyl acyl polysilane 548 and heptadienal 547 would be coupled 

with tetrakis(trimethylsilyl)silane 94 (Figure 38). 
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5.3.3 Synthesis of Silene Precursors 

Gratifyingly, the synthesis of iodoheptadiene 544 preceded smoothly following the 

established synthesis. In addition, heptadienal 547 was generated in good yield via 

Swern oxidation of heptadienol 543. At every stage the products were identified by 

comparing the 'H NMR data for the synthetic compound with data given in the 

literature (Scheme 165). 1 8 4 , 1 8 5 
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Scheme 165 
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With the desired diene moieties in hand, attention turned to their coupling with the 

silicon moieties 548 and 94. To begin, /-butyl acyl polysilane 548 had to be synthesised. 

This was achieved in good yield by reacting silylpotassium 551 in toluene with pivaloyl 

chloride 552.1 8 6 Subsequently, acylpolysilane 548 was coupled with iodoheptadiene 544 

to give the desired silene precursor 549. Additionally, reduction of silene precursor 549 

was effected with LiAlFLj to generate another silene precursor 553. Finally, heptadienal 

547 was coupled with the silyl Grignard reagent 554 from tetrakis(trimethylsilyl)silane 

94 to give the desired silene precursor 550. Each silene precursor 549, 550 and 553 was 

identified by comparison of the *H NMR data with that obtained by Ottosson et. al. for 

silene precursor 546 (Scheme 166). 
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Scheme 166 

5.3.4 Synthesis of bicyclic silicon species 

With the silene precursors 549, 550 and 553 in hand, attention turned to their 

application in the intramolecular silene Diels-Alder reactions. Firstly, silene precursor 

549 was investigated utilising two different methods for silene generation. The first 
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involved heating silene precursor 549 at high dilution in a microwave tube to generate a 

Brook-type silene 555a which would be trapped to give a [5,6] fused ring system 556. 

The second involved reaction of silene precursor 549 at high dilution with KO'Bu to 

give a silenolate 555b, which would be trapped as the [5,6] fused ring system 556 

(Scheme 167). 

o MeiSi Me,Si OR A OR Me^Si Bu 1. A or 2. KO'Bu 'Bu Si Si 
Si 0.01M 'Bu SiMe 

556 
R = H, SiMe 549 555a, R = 0 

555b, R = SiMe 3 

Scheme 167 

Disappointingly, every effort to generate the desired product failed, returning either 

unchanged starting material or decomposition products. In an effort to probe these 

reactions and determine i f silenes 555a/b were being generated, 2,3-dimethylbutadiene 

was utilised to trap the silene instead of the tethered diene. This would enable an 

intermolecular reaction to take place, generating silacyclohex-4-ene 557 and confirm 

the formation of silenes 555a/b. Unfortunately, utilising either set of conditions, acyl 

polysilane 549 polymerised (Scheme 168). 

OSiMe O Me,Si Me,Si OR Me^Si tBu A S l .Aor 2. KO'Bu S 'Bu Si 
Bu 

SiMe3 

549 555a, R = © 
557 555b, R = SiMe, 

R = H, SiMe 

Scheme 168 

Frustrated by this initial set of results, attention turned to the use of silene precursors 

550 and 553. Our intention was to utilise silene precursors 550 and 553 in a modified 
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Peterson reaction utilising the conditions developed by Whelligan. Therefore, silene 

precursors 550 and 553 were treated at high dilution with n-BuLi at room temperature, 

then cooled to -20 °C and treated with a 0.03M solution of LiBr in ether. Having been 

left overnight, the reactions were quenched with aq. NH4C1 and extracted with ether. 

Disappointingly, 'H NMR analysis of the crude products showed only decomposition 

products had been generated during these reactions (Scheme 169). 
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Scheme 169 

The reasons for this were unclear. However, it was proposed that either the polarity of 

the silene was incorrect, leading to poor orbital overlap with the diene and a large 

energy gap or the diene tail was unable to orientate itself towards to silene because of its 

decreased length. Therefore, future studies wil l look initially to lengthen the diene 

chain, then look to orientate the diene towards the silene by introducing geminal 

substituents to promote a Thorpe-Ingold effect (Scheme 170). 
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Work currently undertaken within the group has briefly investigated the strategy 

outlined above. These results will not be presented at this time. Needless to say, bicyclic 

silicon species are still an elusive target to approach by means of an intramolecular 

silene Diels-Alder reaction, but work in the group continues towards this goal. 
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6 Experimental Procedures 

6.1 General Procedures 

All reactions were carried out under an argon atmosphere in glassware dried under high 

vacuum by a heat-gun unless otherwise stated. 

Solvents 

40-60 pet. ether refers to the fraction of petroleum ether boiling between 40 and 60 °C 

and was redistilled before use. Ether refers to diethyl ether. Solvents were distilled from 

the following reagents under nitrogen atmosphere: ether and THF (sodium 

benzophenone ketyl); DCM, xylene and benzene (calcium hydride); chloroform 

(phosphorus pentoxide) and methanol (sodium methoxide) or obtained from Innovative 

Technology Solvent Purification System. In cases where mixtures of solvents were 

utilised, the ratios refer to the volumes used. 

Reagents 

Reagents were used as supplied unless otherwise stated. Lithium bromide was made 

anhydrous by heating at 100 °C at 0.06 mmHg for 3 h. Magnesium bromide was 

synthesised by addition of 1,2-dibromoethane to an equivalent amount of magnesium in 

ether. Aldehydes and dienes were distilled, immediately prior to use, from anhydrous 

calcium sulphate and sodium borohydride, respectively. 

Chromatography 

Flash chromatography was carried out using silica gel 40-63 fx 60A. Analytical thin 

layer chromatography (TLC) was performed using precoated glass-backed plates (silica 
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gel 60A F254) and visualised by UV radiation at 254 nm, or by staining with 

phosphomolybdic acid in ethanol or potassium permanganate in water. 

Melting point 

All melting points were determined using a Gallenkamp melting point apparatus and are 

uncorrected. 

Gas chromatography 

Gas chromatography was carried out on a Hewlett-Packard 5890 Series I I fitted with a 

25m column. Detection was by flame ionisation. 

IR spectroscopy 

Infrared spectra were recorded using a Diamond ATR (attenuated total reflection) 

accessory (Golden Gate) or as a solution in chloroform via transmission IR cells on a 

Perkin-Elmer FT-IR 1600 spectrometer. 

NMR spectroscopy 

*H NMR spectra were recorded in C D C I 3 on Varian Mercury 200, Varian Unity-300, 

Varian VXR-400 or Varian Inova-500 instruments and are reported as follows; 

chemical shift 5 (ppm) (number of protons, multiplicity, coupling constant J (Hz), 

assignment). Residual protic solvent C H C I 3 (6H = 7.26) was used as the internal 

reference. 1 3C NMR spectra were recorded at 63 MHz or 126 MHz, using the central 

resonance of C D C I 3 (5 C = 77.0 ppm) as the internal reference. A l l chemical shifts are 

quoted in parts per million relative to tetramethylsilane (SH = 0.00 ppm) and coupling 

constants are given in Hertz to the nearest 0.5 Hz. Assignment of spectra was carried 

out using COSY, HSQC, HMBC and NOESY experiments. 
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Mass spectroscopy 

Gas chromatography-mass spectra (EI) were obtained using a Thermo TRACE mass 

spectrometer. Electrospray mass spectra (ES) were obtained on a Micromass LCT mass 

spectrometer. High resolution mass spectra were obtained using a Thermo LTQ mass 

spectrometer (ES) at the University of Durham, or performed by the EPSRC National 

Mass Spectrometry Service Centre, University of Wales, Swansea. 

6.2 Experimental Details 

Tetrakis(trimethylsilyl)silane, 94 

I 
Me,Si—Si-SiMe, 

I 
SiMe 3 

To a solution of chlorotrimethylsilylsilane (224 ml, 1.8 mol) in THF (400 ml) were 

added pieces of lithium ribbon (31.0 g, 4.5 mol) and the mixture was stirred for l h at 

room temperature. A solution of silicon tetrachloride (43 ml, 0.4 mol) in THF (300 ml) 

was prepared and 40 ml of this was then added to the stirred TMSC1 solution dropwise 

[CAUTION: Exotherm]. The reaction mixture was stirred for 4 h at room temperature; 

then the remaining SiCU solution was added over 2 h. The reaction was then stirred 

overnight. The crude reaction mixture was filtered through celite to remove LiCl salts 

and excess unreacted lithium metal [CAUTION: Fire hazard]. The filter cake was then 

washed with ether. The filtrate was added to 5M aqueous hydrochloric acid (300 ml). 

The aqueous layer was separated and extracted with ether (3 x 140 ml). The combined 

organic layers were dried over MgS04, filtered, concentrated and dried in vacuo. 

Recrystallisation of the semi-solid residue from acetone yielded the title compound as a 

cream crystalline solid (60.4 g, 56%); m.p. 240-242 °C; vmax (thin film) 2951, 2893, 

1394, 1243, 818 cm"1; 5 H (300 MHz, CDC13) 0.20; 8 C (100 MHz, CDC13) 2.7; m/z (EI) 
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320 ( M + , 32%), 305 ( M + -CH 3, 22%), 232 ( M + -CH 3 , -Si(CH 3) 3, 84%), 173 ( M + -

2Si(CH 3) 3, 72%), 158 ( M + -2Si(CH3)3-H, 76%); all data agree with those reported by 

Whelligan.35 

Phenyltris(trimethylsilyl)silane, 95 

SiMe, 
I 

P h - S i - S i M e , 
I 
SiMe 3 

Dry tetrakis(trimethylsilyl)silane 94 (17.5 g, 54.6 mmol) and potassium-terr-butoxide 

(6.4 g, 57.3 mmol) were combined under argon. Dry THF (260 ml) was added and the 

solution stirred for 2 h, after which time it was dark red. Phenyl magnesium bromide 

(1.0M, 60 ml, 60 mmol) was added and a white precipitate was formed. The mixture 

was stirred for l h and then cooled to -78 °C. Bromobenzene (8.6 ml, 81.9 mmol) was 

quickly added with rapid stirring, creating an exofherm (observed as effervescence in 

the dry ice/acetone bath). After stirring for 1 h, the mixture was warmed to room 

temperature, freshly prepared dry magnesium bromide diethyletherate (1.4 g, 5.5 mmol) 

was added, and the mixture was refluxed overnight. The reaction was cooled to room 

temperature and additional phenylmagnesium bromide (1.0M, 60 ml, 60 mmol) was 

added. Then the reaction was refluxed overnight until NMR showed completion of the 

reaction. Saturated aq. NH4CI (260 ml) was then added. The aqueous layer was 

separated and extracted with ether (3 x 260 ml). The combined organic layers were 

dried over MgSC>4, filtered, concentrated and dried in vacuo. Flash chromatography 

(pet. ether) followed by Kugelrohr distillation (100 °C, 2 mbar) afforded the title 

compound as a grey semi-solid (14.3 g, 80%); R f 0.74 («-hexane); u m a x (thin film) 2950, 

2893, 1426, 1243 cm - 1; 5 H (300 MHz, CDC13) 7.46-7.42 (2H, m, ortho Ax-H), 7.26-7.23 

(3H, m, meta and para Ax-H), 0.22 (27H, s, Si(Si(C// 3) 3) 3); 5 C (126 MHz, CDC13) 136.5 

(Ar-C), 135.5 (Ar-Q, 127.7 (Ar-Q, 127.3 (Ar-Q, 1.2 (Si(Si(CH 3) 3) 3); m/z (EI) 324 

160 



( M + , 16%), 309 ( M + - CH 3 , 6%), 251 ( M + -Si(CH 3) 3, 10%), 236 ( M + - CH 3 , -Si(CH 3) 3, 

14%), 191 (26%), 174 ( M + -Ph, -Si(CH 3) 3, 92%), 159 ( M + -Ph, -Si(CH 3) 3, -CH 3 , 42%), 

135 (66%), 73 ((CH 3) 3Si + , 100%); all data agree with those reported by Whelligan.35 

6.2.1 Standard procedure for the preparation of Silyl alcohols 

Dry phenyltris(trimethylsilyl)silane 95 (43.0 mmol) and potassium /ert-butoxide (44.3 

mmol) were combined under argon. THF (100 ml) was added and the resulting solution 

stirred for 2 h after which time it had become bright red. The THF was evaporated 

directly using a vacuum manifold and ether (100 ml) was added. The resulting solution 

was added via cannula to a suspension of magnesium bromide diethyl etherate (56.0 

mmol) in ether (75 ml) [KBr precipitates generating a white suspension]. The reaction 

mixture was stirred for 1 h and then cooled to -78 °C. Freshly distilled aldehyde (47.3 

mmol) was then added and the mixture stirred for 1.5 h. Saturated aq. NH4CI was added 

and the mixture allowed to reach room temperature. The aqueous layer was separated 

and extracted with ether. The combined organic layers were dried over MgSCM, filtered, 

concentrated and dried in vacuo. Flash chromatography (pet. ether; pet. ether/ether 39:1, 

29:1) afforded the desired silyl alcohols. 

l,l»lJ3»3,3-Hexamethyl-2-phenyl-2-(l'-hydroxy-2'-methylpropyl)trisilane, 97 

OH 

Following the standard procedure outlined on page 161, phenyltris(trimethylsilyl)silane 

95 (14.0 g, 43.0 mmol) was combined with isobutryaldehyde to give the title compound 

as a colourless oil (6.9 g, 49%); R f 0.57 (pet. ether/ether 9:1); 5 H (200 MHz, CDC13) 

7.54-7.49 (2H, m, Ax-H), 7.32-7.28 (3H, m, Ax-H), 3.79 (1H, d, J 7, SiCtf), 1.96 (1H, 

M&.S1 
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octet, J 7, C#(CH 3) 2), 0.99 and 0.88 (each 3H, d, J 7, CH(C// 3) 2)), 0.24 and 0.2 (each 

9H, s, Si(C// 3) 3); 6 C (126 MHz, CDC13) 136.5 (Ar-Q, 135.6 (Ar-C), 128.1 (Ar-C), 

127.9 (Ar-C), 72.4 (SiCH), 34.6 (CH(CH 3) 2), 21.16 and 19.86 (CH(CH 3) 2), 0.5 

(Si(CH 3) 3), 0.2 (Si(CH 3) 3); m/z (CI) 342 (MNH 4

+ , 10%), 324 ( M + , 36%), 307 (M + -OH, 

100%); all data agree with those reported by Whelligan.3 5 

(l,14»3»3»3-Hexamethyl-2-phenyl-trisilan-2-yl)-phenyl-methanol, 205 

OH 

Following the standard procedure outlined on page 161, phenyltris(trimethylsilyl)silane 

95 (5.0 g, 15.4 mmol) was combined with benzaldehyde to give the title compound as a 

yellow solid (1.5 g, 36%); R f 0.40 (pet. ether/ether 9:1); 5H (200 MHz, CDC13) 7.55-

7.53 (2H, m, Ar- / f ) , 7.34-7.32 (2H, m, Ax-H), 7.23-7.14 (6H, m, Ar-H), 5.18 (1H, d, J 

3.5, SiC//), 1.75 (1H, d, J A, CftOH), 0.14 and 0.10 (each 9H, s, Si(C// 3) 3); m/z (CI) 376 

(MNH4+, 5%), 358 ( M + , 12%), 341 ( M + -OH, 15%); all data agree with those reported 

by Whelligan.35 

6.2.2 Standard procedure for the preparation of SilacycIohex-4-enes 

»-Butyllithium (1.6M sol. in hexanes, 6.5 mmol) was rapidly added to a stirred solution 

of silyl alcohol (6.2 mmol) and substituted diene (37.0 mmol) in dry ether (70 ml) at 

room temperature. The mixture was stirred for 2 h after which time TLC showed 

complete consumption of starting material. The solution was then cooled to -20 °C and 

an anhydrous suspension of LiBr in ether (0.31M, 0.3 mmol) was added. The solution 

was stirred at -20 °C for 19.5 h, after which time saturated aq. NH4C1 (70 ml) was added 

and the mixture allowed to reach room temperature. The aqueous layer was separated 

Me^Si 
3o. ^ S 

Me„Sr I 
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and extracted with ether. The combined organic layers were dried over MgS04, filtered, 

concentrated and dried in vacuo. Flash chromatography (pet. ether) afforded the desired 

silacyclohex-4-ene as an inseperable mixture of isomers 

(15if,2/f5,35/f)-l-Phenyl-l-trimethylsilyl-2-(isopropyl)-3-methylsi]acyclohex-4-ene, 

100 

Following the standard procedure for silene generation and cyclisation outlined on page 

162, silyl alcohol 97 (2.0 g, 6.2 mmol) was transformed into the title compound which 

was isolated as a colourless oil (0.8 g, 41%) together with small amounts of isomers in 

the ratio 86:9:3 by GC; R f 0.71 (pet. ether); u m a x (thin film) 2998, 2950, 2868, 1460, 

1426, 1396, 1243, 1100, 830, 733, 696 cm"1; 5 H (500 MHz, CDC13) 7.51-7.49 (2H, m, 

Ar-H), 7.31-7.29 (3H, m, Ar-H), 5.82 (1H, dtd, J 10, 5, 2, 5-H), 5.54 (1H, ddt, J 10, 5, 

2, 4-H), 2.36 (1H, m, 3-/2), 2.10 (1H, d-septet, J 7, 4, 2C#(CH 3) 2), 1-68 (1H, ddd, J 17, 

5, 2, 6-HR), 1.47 (1H, ddt, J17, 5, 2, 6-HH), 1.20 (1H, dd, J 7, 4, 2-H), 1.03 (3H, d, J 7, 

2-CH(C// 3) 2), 0.93 (3H, d, J 7, 3-C//3), 0.88 (3H, d, J 7, 2-CH(C// 3) 2), 0.14 (9H, s, 

Si(C// 3) 3); 6 C (126 MHz, CDC13) 139.4 (ipso-Ai-Q, 137.4 (4-C), 134.5 (Ar-Q, 128.2 

(Ar-C), 127.6 (Ar-Q, 123.6 (5-Q, 38.2 (2-Q, 32.7 (3-Q, 30.0 (2-CH(CH 3) 2), 23.5 (3-

CH 3), 23.0 (2-CH(CH 3) 2), 22.4 (2-CH(CH 3) 2), 9.7 (6-C), -0.6 (Si(CH 3) 3); m/z (EI) 302 

( M + , 4%), 259 ( M + -jPr, 4%), 229 ( M + -Si(CH 3) 3, 32%), 218 (16%), 203 (28%), 173 

(22%), 161 (100%), 145 (22%), 135 (52%), 121 (40%); all data agree with those 

reported by Whelligan.3 5 
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(l^^if^^-S-Methyl-l^-diphenyl-l-trimethylsilylsilacyclohex^-ene, 206 

Si-«SiMe 

Following the standard procedure for silene generation and cyclisation outlined on page 

162, phenyl silyl alcohol 205 (0.5 g, 1.4 mmol) was transformed into the title compound 

which was isolated as a colourless oil (0.2 g, 39%) together with small amounts of 

isomers in the ratio 70:20:10 by NMR; R f 0.4 (pet. ether); 5 H (500 MHz, CDC13) 7.24-

7.22 (5H, m, Ai-H), 7.05-7.10 (5H, m, Ar-H), 6.00 (1H, m, 5-H), 5.62 (1H, m, 4-H), 

2.82 (1H, m, 3-H), 2.33 (1H, d, J 9, 2-H), 1.85 (1H, m, 6-HR), 1.65 (1H, m, 6-HH), 

0.97 (3H, d, J 7, 3-CHi), -0.07 (9H, s, Si(CJ73)3); m/z (EI) 336 ( M + , 12%), 321 ( M + -

Me), 268 (80%), 253 (100%), 203 (26%), 183 (24%), 175 (22%), 145 (23%), 135 

(64%); all data agree with those reported by Whelligan.3 5 

6.3 Total Synthesis of Prelactone B 

(l^^^SSR^/tS/^-l-Phenyl-l-trimethylsilyl^-OsopropyO-S-methyM-

hydroxysilacyclohexane, 178 

Si-*SiMe 3 

Borane dimethyl sulfide complex (0.06 ml, 0.7 mmol) in THF (4 ml) was cooled to 0 °C 

and treated with a solution of silacyclohex-4-ene 100 (0.2 g, 0.7 mmol) in THF (4 ml). 

The reaction was stirred for 2 h at 0 °C, then for 1 h at room temperature and treated 

with water (0.4 ml) (H2 gas evolved), followed by 3M NaOH (0.2 ml, 0.7 mmol) and a 

35% w/w solution of H2O2 in water (0.2 ml, 2.2 mmol). The mixture was refluxed at 65 

°C for 4 h after which time Na2S203 (10 ml) was added. The aqueous layer was 
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separated and extracted with EtOAc (3 x 10 ml). The combined organic layers were 

dried over MgS04, filtered, concentrated and dried in vacuo. Flash chromatography 

(pet. ether, pet. ether/ether [14:1], [9:1], [4:1], [2:1]) afforded the title compound as a 

white solid (0.07 g, 34%); m.p. 118-120 °C; R f 0.3 (pet. ether/ether 3:2); vmax (thin film) 

3368 (broad-OH), 3067, 2922, 2872, 1726, 1462, 1427, 1244, 1102, 1048, 1019, 852, 

833, 735, 700 cm"!; NMR data provided for the major isomer 6 H (300 MHz, CDC13) 

7.55-7.51 (2H, m, Ai-H), 7.32-7.29 (3H, m, Ai-H), 3.26 (1H, td, 7 11,3, 4-H), 2.18 

(1H, m, 3-H), 2.05 (1H, m, 2-C//(CH 3) 2), 1.65 (2H, m, 6-H2), 1.45 (1H, m, 2-H), 1.26 

(2H, m, 5-H2), 1.14 (3H, d, J 7, 2-CH(C// 3) 2), 1.00 (3H, d, J 7, 3-C//3), 0.75 (3H, d, J 7, 

2-CH(C// 3) 2), 0.29 (9H, s, Si(C# 3) 3); 5 C (126 MHz, CDC13) 139.9 (ipso-Ar-Q, 134.5 

(Ar-Q, 128.5 (Ar-Q, 127.9 (Ar-Q, 77.8 (4-Q, 41.9 (3-Q, 38.6 (2-Q, 35.2 (2-

CH(CH 3) 2), 33.5 (5-Q, 23.5 (2-CH(CH 3) 2), 22.1 (2-CH(CH 3) 2), 18.4 (3-CH3), 9.6 (6-

Q , 0.3 (Si(CH 3) 3); m/z (ES+) 343 (MNa +), 303 ( M + -H 2 0); all data agree with those 

reported by Whelligan.35 

(lS^,2/f5,35/f,4^5'/S'^)-l-PhenyL-l-trimethylsilyl-2-(isopropyl)-3-methyl-4-

acetoxysilacyclohexane, 190 

A solution of pyridine (0.02 ml, 0.2 mmol) and acetic anhydride (0.01 ml, 0.1 mmol) in 

DCM (1 ml) was cooled to 0 °C and treated with silacyclic alcohol 178 (0.03 g, 0.1 

mmol) dissolved in DCM (2 ml). The reaction was then warmed to room temperature 

and reacted for 24 h after which time water was added. The aqueous layer was separated 

and extracted with ether ( 3 x 5 ml). The combined organic layers were dried over 

MgS04, filtered, concentrated and dried in vacuo. Flash chromatography (pet. ether, pet. 

o s ^,Si-«SiMe3 
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ether/ether [95:5], [9:1]) afforded the title compound as an opaque oil (0.02 g, 46%); Rf 

0.2 (pet. ether/ether 95:5); u m a x (thin film) 2957, 2872, 1733 (C=0), 1458, 1427, 1368, 

1245, 1172, 1142, 1100, 1022, 852, 834, 699 era-1; partial NMR data 5 H (400 MHz, 

CDC13) 7.56-7.51 (2H, m, Ar-H), 7.32-7.26 (3H, m, Ar-H), 4.56 (1H, td, J 10, 3, 4-H), 

2.18-2.10 (2H, m, 5-Hi/, 2-C//(CH 3) 2), 2.08 (3H, s, 4-C(0)C// 3), 1.99-1.93 (2H, m, 5-

HH, 3-H), 1.62 (2H, m, 6-H2), 1.30 (1H, m, 2-H), 1.05 (3H, d, J 7, 2-CH(C// 3) 2), 1.00 

(3H, d, J 7, 2-CH(C// 3) 2), 0.82 (3H, d, J 7, 3-C//3), 0.30 (9H, s, Si(C// 3) 3); 6 C (126 

MHz, CDC13) 170.6 (C=0), 139.5 (ipso-Ar-C), 134.5 (Ar-C), 128.5 (Ar-Q, 127.8 (Ar-

C), 79.7 (4-Q, 38.7 (2-Q, 38.6 (5-Q, 29.6 (3-Q, 28.1 (2-CH(CH 3) 2), 23.6 (2-

CH(CH 3) 2), 22.0 (2-CH(CH 3) 2), 21.4 (4-C(0)CH 3), 18.1 (3-CH3), 9.1 (6-C), 0.3 

(Si(CH 3) 3); m/z (EI) 347 ( M + - C H 3 , 1%), 289 (3%), 229 (10%), 211 (100%), 169 (24%), 

135 (33%), 123 (33%). 

A high resolution mass spectrum of this compound was unattainable as the molecular 

ion or adduct was not observed under any form of ionisation 

(S^^^/f.JiW/S^/W/^-S^l-Hydroxy^^^-trimethyl-l-phenyldisilanyO-S-

hydroxy-2,4-dimethy!hept-6-ene, 200 

A solution of silacyclohex-4-ene 100 (0.14 g, 0.5 mmol) in DCM (2 ml) was cooled to 0 

°C and treated with freshly prepared dimethyldioxirane. The reaction was stirred at 0 °C 

for 1 h, then warmed to room temperature and reacted for a further 1 h. The reaction 

was evaporated to a crude colourless oil. Flash chromatography (pet. ether, pet. 

Si SiMe, 
HO Ph 
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ether/ether [99:1], [98:2]) afforded the title compound as a colourless oil (0.012 g, 

11%). 

Method B 

A solution of silacyclohex-4-ene 100 (0.10 g, 0.3 mmol) in acetonitrile (2.5ml) was 

cooled to 0 °C and treated with EDTA disodium salt (1.7 ml, 4xlO"4M) and 

trifluoroacetone (0.3 ml, 3.7 mmol). This solution was then treated with a mixture of 

NaHC03 (0.2 g, 2.6 mmol) and Oxone (1.0 g, 1.7 mmol) over a period of 1 h and 

reacted for a further 3 h, after which time the reaction was poured into water and 

extracted with DCM (3x10 ml). The combined organic layers were dried over MgS0 4 , 

filtered, concentrated and dried in vacuo. Flash chromatography (pet. ether, pet. ether 

[99:1], [98:2]) afforded the title compound as a colourless oil (0.025 g, 22%); R f 0.6 

(pet. ether/ether 9:1); x w (thin film) 3068 (broad-OH), 2956, 2928, 2892, 2870, 1718, 

1427, 1244, 1103, 1004, 855, 835, 699 cm' 1; 6 H (500 MHz, CDC13) 7.58-7.55 (2H, m, 

Av-H), 7.35-7.34 (3H, m, Ar-H), 5.75 (1H, ddd, J 17, 10, 7, 6-H), 5.21 (1H, d, J 17, 7-

HH), 5.08 (1H, d, J 10, 7-H#), 4.53 (1H, t, J 7, 5-H), 2.28 (1H, m, 4-H), 1.99 (1H, 

septet, J 6, 2-H), 1.26 (1H, m, 3-H), 1.09 (3H, d, J 6, l-H), 1.07 (3H, d, J 6, 2-CH3), 

0.86 (3H, d, J 6, 4-CH3), 0.17 (9H, s, Si(C// 3) 3); 6 C (126 MHz, CDC13) 139.6 (ipso-Ai-

C), 137.5 (6-Q, 133.7 (Ar-Q, 128.9 (Ar-Q, 127.8 (Ar-Q, 116.4 (7-C), 84.3 (5-Q, 44.5 

(3-Q, 40.7 (4-C), 27.5 (2-Q, 25.2 (1-Q, 23.4 (2-CH3), 16.6 (4-CH3), -1.4 (Si(CH 3) 3); 

m/z (ES+) 359 (MNa +); HRMS (ES+) Found MNa + , 359.1837 (Ci 8 H 3 2 0 2 Si2Na requires 

359.1833). 

6.3.1 Standard procedure for the dihydroxylation of silacycles 

A solution of silacyclohex-4-ene (0.15 mmol) in acetone:water (2.1 ml, 20:1) was 

treated with NMO (0.3 mmol), cooled to 0 °C and treated with a catalytic amount of 
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osmium tetroxide (0.007 mmol). After stirring for 45 mins the reaction mixture was 

treated with aq. Na2S2C>3 and extracted with EtOAc ( 3 x 5 ml). The combined organic 

layers were dried over MgS04, filtered, concentrated and dried in vacuo. Flash 

chromatography (pet. ether/ether [1:1], [1:2]) afforded the desired dihydroxyl silacycles. 

(15/f,25^,3^,45if,55/?)-4,5-Dihydroxy-3-methyl-l,2-diphenyH-

(trimethylsilyl)silacyclohexane, 207 

Following the standard procedure outlined on page 167, silacyclohex-4-ene 206 (0.05 g, 

0.15 mmol) was transformed into the title compound which was isolated as a colourless 

gum (0.03 g, 56%); R f 0.3 (pet. ether/ether 1:1); u m a x (thin film) 3631-3579 (broad-OH), 

3069, 3026, 2955, 2925, 2895, 2871, 1598, 1426, 1256, 1242, 1049, 1021, 896, 835, 

781 cm - 1; 5 H (500 MHz, CDC13) 7.31-7.21 (5H, m, Ar-H), 7.18-7.12 (3H, m, Ar-H), 

7.08-7.06 (2H, m, Ar-H), 4.48 (1H, m, 5-H), 3.38 (1H, dd, J10, 3 ,4-H), 2.57 (1H, m, 3-

H), 2.15 (1H, d, J 12, 2-H), 1.63 (1H, dd, J 15.5, 6, 6-//H), 1.34 (1H, dd, J 15.5, 6, 6-

HH), 0.95 (3H, d, J 7, 3-C//3), 0.03 (9H, s, Si(C// 3) 3); 5 C (126 MHz, CDC13) 143.2 

(ipso-Ar-Q, 137.2 (ipso-Ar-Q, 134.9 (Ar-Q, 128.9 (Ar-Q, 128.8 (Ar-Q, 128.6 (Ar-

Q , 127.7 (Ar-Q, 125.1 (Ar-Q, 79.8 (4-Q, 72.2 (5-Q, 41.0 (2-Q, 36.1 (3-Q, 18.1 (3-

CH 3), 17.5 (6-Q, -0.7 (Si(CH 3) 3); 5 s i (100 MHz, CDC13) -18.72, -21.22; m/z (ES+) 393 

(MNa +), 425 (MNa+MeOH+), 763 (2MNa+); HRMS (ES+) Found MNa + , 393.1676 

(C 2iH 3o0 2Si2Na requires 393.1677). 

Si-xSiMe, 
HO Ph 
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(l^^if^SS/f^^^^^-Dihydroxy-l-Phenyl-l-trimethylsilyl^-OsopropyO-S-

methylsilacyclohexane, 226 

Following the standard procedure outlined on page 167, silacyclohex-4-ene 100 (0.17 g, 

0.6 mmol) was transformed into the title compound which was isolated as a yellow oil 

(0.06 g, 32%); R f 0.3 (pet. ether/ether 1:1); vmax (thin film) 3498-3211 (broad-OH), 

2950, 2932, 2898, 2864, 1426, 1096, 1022, 992, 832, 731, 697 cm"'; 8 H (500 MHz, 

CDC13) 7.53-7.51 (2H, m, Ar-H), 7.31-7.30 (3H, m, Ar-H), 4.20 (1H, m, 5-H), 3.49 

(1H, m, 4-H), 2.25 (1H, m, 3-H), 2.14 (1H, m, 2-C//(CH 3) 2), 1.36 (1H, dd, J 14, 9, 6-

HR), 1.18 (1H, m, 6-WH), 1.08 (1H, dd, J 9, 6, 2-H), 1.04 (3H, d, J 7, 2-CH(C// 3) 2), 

0.97 (3H, d, J l , 3-C//3), 0.91 (3H, d, J7 , 2-CH(C// 3) 2), 0.21 (9H, s, Si(C// 3) 3); o c (126 

MHz, CDCI3) 140.2 (ipso-Ax-Q, 134.4 (Ar-Q, 128.5 (Ar-Q, 128.0 (Ar-Q, 78.8 (4-Q, 

70.2 (5-Q, 36.8 (2-Q, 35.8 (3-Q, 29.1 (2-CH(CH 3) 2), 23.8 (2-CH(CH 3) 2), 19.4 (3-

CH 3), 16.5 (6-Q, -0.4 (Si(CH 3) 3); 5 S i (100 MHz, CDC13) -17.90, -23.36; m/z (ES+) 359 

(MNa +); HRMS (ES+) Found MNa + , 359.1834 (C 1 8 H 3 2 Si 2 0 2 Na requires 359.1833). 

6.3.2 Standard procedure for the Fleming-Tamao fragmentation of dihydroxyl 

silacyclohex-4-enes 

To a solution of silacyclic diol (0.3 mmol) in dry DCM (4 ml) was added 

trifluoroborane-acetic acid complex (0.6 mmol). The solution was stirred for 15 mins at 

room temperature then mixed with saturated NaHC0 3 solution (5 ml) and extracted 

with DCM ( 3 x 1 0 ml). The combined organic layers were dried over MgSCU, filtered, 

Si-"SiMe 
HO Ph 

Stage 1 
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concentrated and dried in vacuo to give a colourless oil which was used immediately in 

stage 2. 

Stage 2 

To the colourless oil was added KHCO3 (1.0 mmol) and KF (0.7 mmol). The mixture 

was dissolved in methanol:THF solution (1:1,4 ml) and a 35% w/w solution of H2O2 in 

water (3.9 mmol) was added. The mixture was heated to reflux and stirred for 1 h. The 

mixture was then allowed to cool to room temperature and saturated Na2S2C>3 solution 

(5 ml) was added together with EtOAc (10 ml). The aqueous layer was separated and 

extracted with EtOAc (3 x 10 ml). The combined organic layers were dried over 

MgS04, filtered, concentrated and dried in vacuo.. Flash chromatography (pet. 

ether/ether [9:1], [4:1], [3:2], [1:1], [1:2]) afforded the desired diols. 

(15^,25if,3^S)-2-Methyl-l-phenylpent-4-ene-l,3-diol, 208 

Following the standard procedure outlined on page 169, silacyclic diol 207a (0.12 g, 0.3 

mmol) was transformed into the title compound which was isolated as a colourless oil 

(0.05 g, 72%); R f 0.3 (pet. ether/ether 1:1); v m a x (thin film) 3502-3214 (broad-OH), 

3064, 2974, 2886, 1721, 1711, 1690, 1601, 1512, 1450, 1332, 1216, 1128, 1080 cm"1; 

5 H (500 MHz, CDCI3) 7.38-7.36 (4H, m, Ar-H), 7.33-7.28 (1H, m, Ar-H), 6.00 (1H, 

ddd, J 16, 10, 5, 4-H), 5.33 (1H, d, J16, 5-HH), 5.26 (1H, d, J10, 5-H#), 4.69 (1H, d, J 

9, \-H), 4.40 (1H, m, 3-H), 2.95 (1H, bs, -OH), 2.11 (1H, qd, J9, 3, 2-H), 0.82 (3H, d, J 

9, 2-C//3); 6 C (126 MHz, CDC13) 143.7 {ipso-As-C), 138.5 (4-Q, 128.7 (Ar-Q, 128.0 

(Ar-Q, 126.8 (Ar-Q, 115.8 (5-Q, 78.3 (1-Q, 74.9 (3-Q, 44.3 (2-Q, 12.5 (2-CH3); m/z 
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(ES+) 215 (MNa +); HRMS (ES+) Found MNa +, 215.1043 (C 1 2 Hi 6 0 2 Na requires 

215.1043). 

(31fcS,4fl£,5^-4,6-Dimethylhept-l-ene-3,5-diol, 227 

Following the standard procedure outlined on page 169, silacyclic diol 226 (0.06 g, 0.18 

mmol) was transformed into the title compound which was isolated as a colourless oil 

(0.02 g, 64%); R f 0.3 (pet. ether/ether 1:1); u m a x (thin film) 3525-3134 (broad-OH), 

2962, 2870, 1459, 1427, 1118, 1081, 974, 919, 844, 697, 639 cm"1; 5 H (500 MHz, 

CDC13) 5.94 (1H, ddd, J 16, 10, 5, 2-H), 5.29 (1H, d, J 16, l-HH), 5.19 (1H, d, J 10, 1-

HH), 4.41 (1H, s, 3-H), 3.39 (1H, m, 5-H), 3.11 (1H, bs, -OH), 2.53 (1H, bs, -OH), 1.89 

(1H, qd, J 7, 3, 4-//), 1.82 (1H, m, 6-H), 0.94 (3H, d, J 8, 7-CH3), 0.92 (3H, d, J 8, 6-

CH3), 0.87 (3H, d, 77, 4-C// 3); 8 C (126 MHz, CDC13) 138.9 (2-Q, 115.4 (1-Q, 79.8 (5-

Q , 75.1 (3-Q, 39.6 (4-Q, 30.6 (6-Q, 20.0 (7-CH3), 16.0 (6-CH3), 12.2 (4-CH3); m/z 

(ES+) 181 (MNa +); HRMS (ES+) Found MNa + , 181.1199 (C 9 H 1 8 0 2 Na requires 

181.1199). 

6.3.3 Standard procedure for the protection of diols 

To a solution of diol (0.10 mmol) in dry DCM (2 ml) was added imidazole (0.42 mmol) 

and te/7-butylchlorodimethylsilane (0.26 mmol). The solution was stirred for 2 h at 

room temperature then diluted with EtOAc and washed with water (5 ml) and brine (5 

ml). The organic layer was dried over MgSC>4, filtered, concentrated and dried in vacuo. 

Flash chromatography (pet. ether/ether [95:5], [9:1]) afforded the desired mono-

protected diols. 
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(l^^^S^-S-^-ButyldimethylsilyloxyJ-Z-methyl-l-phenylpent^-en-l-ol, 220 

Following the standard procedure outlined on page 171, diol 208 (0.02 g, 0.10 mmol) 

was transformed into the title compound which was isolated as a colourless oil (0.022 g, 

70%); R f 0.3 (pet. ether/ether 95:5); vmax (thin film) 3572-3286 (broad-OH), 2960, 

2932, 2894, 2852, 1468, 1368, 1256, 1026, 926, 832, 770 cm - 1; 5 H (500 MHz, CDC13) 

7.34-7.27 (5H, m, Ar-H), 6.05 (1H, ddd, J 17, 10, 7, 4-H), 5.33-5.27 (2H, dd, J 17, 10, 

5-H2), 4.54 (1H, d, J 9, l-H), 4.45-4.43 (1H, m, 3-H), 2.04 (1H, sd, J 9, 3, 2-H), 0.99 

(9H, s, SiC(C# 3) 3), 0.58 (3H, d, J 9, 2-CH3), 0.17 (3H, s, Si(C// 3) 2 'Bu), 0.12 (3H, s, 

Si(C// 3) 2 'Bu); 5 C (126 MHz, CDC13) 143.9 (ipso-Ar-C), 137.2 (4-C), 128.4 (Ar-C), 

127.7 (Ar-C), 127.3 (Ar-C), 116.7 (5-Q, 78.3 (3-Q, 77.6 (1-Q, 45.7 (2-Q, 26.1 

(SiC(CH 3) 3), 18.3 (SiC(CH3)3), 13.4 (2-CH3), -4.2 (Si(CH3)2T3u) -4.9 (Si(CH3)2'Bu); 

m/z (ES+) 329.3 (MNa +), 635 (2MNa+); HRMS (ES+) Found MNa + , 329.1907 

(C, 8H 3 0O 2SiNa requires 329.1907). 

(3/f.S,4^5,5l?5)-5-(ter/-Butyldimethylsilyloxy)-2,4-dimethylhept-6-eii-3-ol, 228 

Following the standard procedure outlined on page 171, diol 227 (0.02 g, 0.11 mmol) 

was transformed into the title compound which was isolated as a colourless oil (0.016 g, 

52%); R f 0.3 (pet. ether/ether 95:5); vmax (thin film) 3630-3130 (broad-OH), 2957, 

2930, 2857, 1471, 1384, 1254, 1126, 1022, 996, 835, 776 cm"1; 5 H (500 MHz, CDC13) 

5.93 (1H, ddd, J 17, 10, 6, 6-H), 5.22 (1H, d, J 17, 7-//H), 5.19 (1H, d, J 10, 7-HH), 
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4.30 (1H, m, 5-/0, 3.95 (1H, bs, -OH), 3.41 (1H, d,J9, 3-H), 1.82 (1H, m, 4-H), 1.68 

(1H, qd, J l , 2, 2-H), 0.99 (3H, d, J l , \-H), 0.91 (9H, s, SiC(C# 3) 3), 0.86 (3H, d,J7, 2-

C// 3), 0.77 (3H, d, J 7, 4-CH3), 0.09 (3H, s, Si(C// 3) 2 'Bu), 0.06 (3H, s, Si(C// 3) 2 'Bu); 8 C 

(126 MHz, CDC13) 137.3 (6-Q, 116.4 (7-Q, 79.1 (5-C), 77.5 (3-Q, 41.3 (4-Q, 30.1 (2-

Q , 26.0 (SiC(CH3)3), 20.4 (1-Q, 18.4 (SiC(CH 3) 3), 14.2 (2-CH3), 13.1 (4-CH3), -4.3 

(Si(CH3)2'Bu), -5.0 (Si(CH3)2'Bu); m/z (ES+) 295 (MNa +); HRMS (ES+) Found M H + , 

273.2245 (Ci 5 H 3 3 0 2 Si requires 273.2244). 

6.3.4 Standard procedure for the hydroboration of mono-protected diols 

A solution of mono-protected diol (0.07 mmol) in THF (2 ml) was treated with an 

excess of freshly prepared dicyclohexylborane187 at 0 °C. The reaction was then warmed 

to room temperature and reacted for 1 h. The reaction was then treated successively 

with water (0.5 ml), NaOH (0.14 mmol) and H 2 0 2 (0.9 mmol). The mixture was then 

refluxed for 1 h, then cooled, poured into Na 2 S 2 0 3 and extracted with Et 2 0 (3x10 ml). 

The combined organic layers were dried over MgSC>4, filtered, concentrated and dried 

in vacuo. Flash chromatography (pet. ether/ether [1:1], [2:3]) afforded the desired 

mono-protected triols. 

(15/?,2/?5,3/fcS)-3-(ter/-Butyldimethylsilyloxy)-2-methyl-l-phenylpentane-l,5-diol, 

221a 

OH 

OH 

Following the standard procedure outlined on page 173, mono-protected diol 220 (0.02 

g, 0.07 mmol) was transformed into the title compound which was isolated as a 
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colourless oil (0.012 g, 60%); R f 0.3 (pet. ether/ether 2:3); x w (thin film) 3490-3182 

(broad-OH), 2956, 2932, 2886, 2860, 1684, 1676, 1560, 1437, 1259, 1202, 1075, 1050, 

781 cm"1; 5 H (500 MHz, CDC13) 7.34-7.31 (5H, m, Ar-H), 4.58 (1H, d, J 10, \-H), 4.14 

(1H, dt, J10, 3, 3-H), 3.85 (1H, m, 5-UH), 3.75 (1H, m, 5-HR), 2.07-1.96 (2H, m, 2-H, 

4-HR), 1.89 (1H, m, 4-UH), 0.97 (9H, s, SiC(C// 3) 3), 0.57 (3H, d, J 7, 2-C7/3), 0.22 

(3H, s, Si(C// 3) 2 'Bu), 0.16 (3H, s, Si(C// 3) 2 'Bu); 5 C (126 MHz, CDC13) 143.9 (ipso-Ar-

Q, 128.5 (Ar-Q, 127.8 (Ar-Q, 127.3 (Ar-Q, 77.8 (l-Q, 74.6 (3-Q, 60.1 (5-Q, 45.2 

(2-Q, 34.3 (4-Q, 26.1 (SiC(CH 3) 3), 18.2 (SiC(CH3)3), 14.0 (2-CH3), -4.1 

(Si(CH3)2'Bu), -4.6 (Si(CH3)2'Bu); m/z (ES+) 347 (MNa +); HRMS (ES+) Found MNa + , 

347.2014 (Ci 8 H 3 2 0 3 SiNa requires 347.2013). 

(3l^,4i?5,5if5)-3-(ter/-Butyldimethylsilyloxy)-4,6-dimethylheptane-l,5-diol, 229 

Following the standard procedure outlined on page 173, mono-protected diol 228 (0.02 

g, 0.06 mmol) was transformed into the title compound which was isolated as a 

colourless oil (0.012 g, 70%); R f 0.3 (pet. ether/ether 1:1); vmax (thin film) 3562-3356 

(broad-OH), 3005, 2949, 2931, 1713, 1417, 1360, 1223, 1089, 1051, 838, 530 cm - 1; 5 H 

(500 MHz, CDC13) 4.00 (1H, m, 3-H), 3.79 (1H, m, l-UH), 3.70 (1H, m, l-HH), 3.51 

(1H, dd, J10, 2, 5-H), 1.90-1.83 (2H, m, 4-H, 2-HH), 1.78 (1H, m, 2-HH), 1.68 (1H, m, 

6-H), 1.00 (3H, d, J 6, 7-CH3), 0.90 (9H, s, SiC(C// 3) 3), 0.84 (3H, d, J 6, 6-C//3), 0.76 

(3H, d, J l , 4-CH3), 0.41 (3H, s, Si(Ci/ 3) 2 'Bu), 0.11 (3H, s, Si(C// 3) 2 'Bu); 5 C (126 MHz, 

CDC13) 75.4 (3-Q, 60.2 (1-Q, 40.3 (4-Q, 34.0 (2-Q, 30.0 (6-Q, 26.0 (SiC(C// 3) 3), 

20.4 (7-CH3), 18.4 (SiC(CH3)3), 13.83 (6-CH3), 13.82 (4-CH3), -4.1 (Si(CH 3) 2'Bu), -4.7 

OH 

OH 
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(Si(CH3)2'Bu); m/z (ES+) 313 (MNa +), 291 (MH + ) ; HRMS (ES+) Found M H + , 291.2349 

(C 1 5 H 3 50 3 Si requires 291.2350). 

6.3.5 Standard procedure for the lactonisation and deprotection of mono-

protected triols 

Stage 1 

A solution of mono-protected triol (0.04 mmol) in DCM (2 ml) was treated with NMO 

(0.11 mmol) and 4A molecular sieves. The mixture was then treated with TPAP (0.002 

mmol) at room temperature. After 1 h at room temperature the mixture was filtered 

through a pad of silica gel (pet.ether/ether 2:3). The filtrate was concentrated and dried 

in vacuo to give a colourless oil which was used immediately in stage 2. 

Stage 2 

The colourless oil was redissolved in THF (2 ml) and treated with Et3N.3HF (0.40 

mmol) at room temperature. The reaction was left overnight and then mixed with water 

(2 ml) and extracted with DCM (3 x 10 ml). The combined organic layers were dried 

over MgSC>4, filtered, concentrated and dried in vacuo.. Flash chromatography 

(DCM/ether [9:1], [4:1], [7:3]) afforded the desired lactones. 

(4/?5,55i?,6»S/?)-4-Hydroxy-5-methyl-6-phenyltetrahydro-2^-pyran-2-one,219 

o 

o 

Following the standard procedures outlined on page 175, mono-protected triol 221a 

(0.01 g, 0.04 mmol) was converted into the title compound which was isolated as a 
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white solid (0.008 g, 100%); R f 0.3 (DCM/ether 7:3); m.p. 118-120 °C; vmax (thin film) 

3530-3190 (broad-OH), 2922, 2852, 2359, 2339, 1736 (C=0), 1654, 1245, 1161, 1056, 

1022, 894, 837 cm 1 ; 5 H (500 MHz, CDC13) 7.42-7.38 (3H, m, Ar-H), 7.34-7.27 (2H, m, 

Ar-H), 4.77 (1H, d, 7 11, 6-H), 3.95 (1H, m, 4-H), 3.09 (1H, dd, 7 18, 7, 3-HH), 2.69 

(1H, dd, 7 18, 7, 3-HH), 2.00 (1H, m, 5-H), 0.94 (3H, s, 5-C//3); 5 C (126 MHz, CDC13) 

170.1 (C=0), 137.6 (ipso-Ar-C), 129.2 (Ar-Q, 128.9 (Ar-C), 127.7 (Ar-Q, 85.2 (6-Q, 

70.1 (4-Q, 43.5 (5-Q, 39.5 (3-Q, 13.9 (5-CH3); m/z (ES+) 261 (MNa+MeOH+); HRMS 

(ES+) Found MNa+MeOH +, 261.1098 ( d 3 H i 8 0 4 N a requires 261.1097). 

(±)-Prelactone B, 110 

o 

o 

Following the standard procedures outlined on page 175, mono-protected triol 229 (0.01 

g, 0.04 mmol) was converted into the title compound which was isolated as a white 

solid (0.005 g, 90%); R f 0.3 (DCM/ether 7:3); m.p. 90-92 °C (lit. m.p. 97-98 °C) 4 0 ; vmax 

(thin film) 3516-3180 (broad-OH), 2967, 2929, 2876, 2260, 2245, 1731 (C=0), 1600, 

1253, 1009, 896, 716, 650 cm"1; o H (500 MHz, CDC13) 3.78-3.76 (2H, m, 6-H, 4-H), 

2.93 (1H, dd, 7 17, 6, 3-HR), 2.48 (1H, dd, 7 17, 6, 3-HH), 2.00 (1H, qd, 7 7, 2, 6-

C / / (CH 3 ) 2 ) , 1.74 (1H, m, 5-H), 1.10 (3H, d, 77, 6-CH(C// 3) 2), 1.08 (3H, d, J 7, 5-CH3), 

0.92 (3H, d, 77, 6-CH(C/7 3) 2); 5 C (126 MHz, CDC13) 170.7 ( C O ) , 86.2 (6-Q, 69.9 (4-

Q , 39.1 (5-Q, 39.0 (3-Q, 28.9 (6-CH(CH 3) 2), 20.0 (6-CH(CH 3) 2), 14.0 (5-CH3), 13.5 

(6-CH(CH 3) 2); m/z (ES+) 195 (MNa +), 227 (MNa+MeOH+); HRMS (ES+) Found M H + , 

173.1173 (Cc>Hi703 requires 173.1172); all data agree with those reported in the 

literature. 4 0 ' 4 3- 4 5 ' 4 7 ' 4 8 ' 1 8 8 
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(25«/R5,3^,45/?,55/?)-4-Methyl-2,3-diphenyl-2-(trimethylsilyl)-5-vinyl-l,2-

oxasilolane, 212 

To a solution of silacyclic diol 207a (0.04 g, 0.1 mmol) in dry DCM (2 ml) was added 

trifluoroborane-acetic acid complex (0.03 ml, 0.2 mmol). The solution was stirred for 

15 mins at room temperature then mixed with saturated NaHC03 solution (5 ml) and 

extracted with DCM ( 3 x 5 ml). The combined organic layers were dried over MgS04, 

filtered, concentrated and dried in vacuo. Flash chromatography (pet. ether, pet. 

ether/ether [98:2]) gave the title compound as an opaque oil (0.03 g, 72%) in a 1:1 

isomeric ratio; R f 0.3 (pet. ether/ether 98:2); x w (thin film) 2956, 2923, 1650, 1555, 

1427, 1244, 1107, 1003, 835, 698 cm"1; NMR data provided for one isomer 5 H (500 

MHz, CDC13) 7.17-7.03 (9H, m, Ar-H), 6.74 (1H, d, J 8, Ar-H), 5.95 (1H, ddd, J 17, 

9.5, 6.5, 5-C//=CH2), 5.41 (1H, d, J 17, 5-CH=C#H), 5.31 (1H, d, J 9.5, 5-CH=CH//), 

4.92 (1H, t, J 6.5, 5-H), 2.69-2.63 (2H, m, 4-H, 3-H), 0.91 (3H, d, J 6, 4-C// 3), 0.21 

(9H, s, Si(C// 3) 3); 5 C (126 MHz, CDC13) 139.4 (ipso-Ai-C), 138.8 (ipso-Ar-C), 137.2 

(5-CH=CH2), 133.9 (Ar-Q, 133.3 (Ar-Q, 129.0 (Ar-Q, 128.3 (Ar-Q, 127.7 (Ar-Q, 

124.7 (Ar-Q, 116.7 (5-CH=CH2), 83.4 (5-Q, 40.27 (3-Q, 40.25 (4-Q, 15.1 (4-CH3), -

1.3 (Si(CH 3) 3); 5Si (100 MHz, CDC13) 19.5, -21.0; m/z (ES+) 353 (MH + ) ; HRMS (ES+) 

Found M H + , 353.1752 (C 2iH 2 9OSi requires 353.1752). 

o s 
Ph 
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(15^,2.S/f,3^S)-2-MethyI-l-phenylpeiitane-l,3,5-triol,218 

OH 

OH 

A solution of diol 208 (0.02 g, 0.10 mmol) in THF (1 ml) was treated with borane-

dimethylsulfide complex (0.04 ml, 0.37 mmol) at 0 °C. The reaction was then warmed 

to room temperature and reacted for 1 h. The mixture was then treated successively with 

water (0.5 ml), NaOH (0.04 ml, 0.10 mmol) and H 2 0 2 (0.13 ml, 1.25 mmol). The 

mixture was then refluxed for 1 h, at which point the mixture was cooled and poured 

into Na2S203 and extracted with EtOAc (3x10 ml). The combined organic layers were 

dried over MgS04, filtered, concentrated and dried in vacuo. Flash chromatography 

(DCM/MeOH [98:2], [95:5], [9:1]) afforded the title compound as a colourless oil 

(0.015 g, 64%); R f 0.3 (DCM/MeOH 9:1); vmax (thin film) 3348-3119 (broad-OH), 

2962, 2924, 2360, 1684, 1437, 1338, 1223, 1077, 907, 730, 650 cm"1; o H (500 MHz, 

CDC1 3 ) 7.36-7.34 (4H, m, Ax-H), 7.28 (1H, m, Ar-H), 4.68 (1H, d, J 8, \-H), 4.08 (1H, 

d, J 11, 3-H), 3.89-3.82 (3H, m, 5-H2, -OH), 1.98-1.93 (3H, m, 4-HH, 2-H, -OH), 1.55 

(1H, d, J11, 4-RH), 0.83 (3H, d, J 7, 2-CH3); 5 C (126 MHz, CDCI3) 143.8 (ipso-Ar-C), 

128.7 (Ar-Q, 127.9 (Ar-Q, 126.7 (Ar-Q, 78.5 (1-Q, 74.7 (3-Q, 63.0 (5-Q, 44.4 (2-

Q , 34.4 (4-Q, 12.8 (2-CH3); m/z (ES+) 233 (MNa +); HRMS (ES+) Found MNa + , 

233.1148 (C 1 2 Hi 8 0 3 Na requires 233.1148). 
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(15/?,2/?S3^,4/ii,5)-3-(ter/-Butyldimethylsilyloxy)-2-methyl-l-phenylpentane-l,4-

diol, 221b 

A solution of mono-protected diol 220 (0.03 g, 0.07 mmol) in THF (1 ml) was treated 

with borane-dimethylsulfide complex (0.02 ml, 0.18 mmol) at 0 °C. The reaction was 

then warmed to room temperature and stirred for 1 h. The reaction was then treated 

successively with water (0.5 ml), NaOH (0.02 ml, 0.07 mmol) and H 2 0 2 (0.09 ml, 0.9 

mmol). The mixture was then refiuxed for 1 h, at which point the mixture was cooled 

and poured into Na 2 S 2 0 3 and extracted with Et 2 0 ( 3 x 1 0 ml). The combined organic 

layers were dried over MgS04, filtered, concentrated and dried in vacuo. Flash 

chromatography (pet. ether, pet. ether/ether [9:1], [4:1], [1:1], [2:3]) afforded the title 

compound as a white solid (0.007 g, 30%); R f 0.4 (pet. ether/ether 2:3); m.p. 120-122 

°C; umax (thin film) 3518-3190 (broad-OH), 3124, 3030, 2962, 2932, 2856, 1606, 1255, 

1068, 1024, 896, 835, 716 cm"1; 5 H (500 MHz, CDC13) 7.38-7.31 (5H, m, Ar-H), 4.46 

(1H, d, J9, l-H), 4.11 (1H, dd, J5, 2, 3-H), 3.99 (1H, m, 4-H), 2.53 (1H, s, -OH), 2.19-

2.06 (2H, m, 2-H, -OH), 1.26 (3H, d, J 8, 5-H), 0.99 (9H, s, SiC(C// 3) 3), 0.71 (3H, d, J 

1, 2-CH3), 0.22 (3H, s, Si(C773)2'Bu), 0.17 (3H, s, Si(C#3)2T3u); 6 C (126 MHz, CDC13) 

143.9 (ipso-Ar-Q, 128.4 (Ar-Q, 127.7 (Ar-C), 126.9 (Ar-Q, 76.7 (l-Q, 75.4 (3-Q, 

70.3 (4-Q, 41.8 (2-Q, 25.9 (SiC(CH3)3) 19.1 (5-Q, 18.3 (SiC(CH3)3), 12.0 (2-CH3), -

4.2 (Si(CH3)2'Bu), -4.6 (Si(CH3)2'Bu); m/z (ES+) 347 (MNa +); HRMS (ES+) Found 

MNa +, 347.2011 (C 1 8 H 3 2 0 3 SiNa requires 347.2013). 

OH 
OH 
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(15/f,2/?53^y)-l-Acetoxy-3-(tert-Butyldimethylsilyloxy)-2-methyl-l-phenylpent-4-

enyl, 224 

A solution of TBS protected alcohol 220 (0.02 g, 0.07 mmol) in DCM (1 ml) was 

treated sequentially with Et 3N (0.06 ml, 0.41 mmol) and acetyl chloride (0.01 ml, 0.14 

mmol) at room temperature. The reaction was left for 1 h at which point it was poured 

into aq. NaHC0 3 and extracted with Et20 (3x5 ml). The combined organic layers were 

dried over MgSC>4, filtered, concentrated and dried in vacuo. Flash chromatography 

(pet. ether, pet. ether/ether [98:2], [95:5]) afforded the title compound as a colourless oil 

(0.007 g, 33%); R f 0.3 (pet. ether/ether 95:5); vmax (thin film) 2929, 2856, 1731 (C=0), 

1372, 1251, 1103, 1026, 902, 834, 732, 650 cm"1; 8 H (500 MHz, CDC13) 7.31-7.29 (5H, 

m, Ar-H), 5.87 (1H, ddd, J 17, 10, 7, 4-H), 5.42 (1H, d, J 10, l-H), 5.23 (1H, d, J17, 5-

HR), 5.12 (1H, d, J 10, 5-HH), 4.51 (1H, m, 3-H), 2.02 (3H, s, C(0)C// 3), 1.98 (1H, m, 

2-H), 0.94 (9H, s, SiC(C// 3) 3), 0.58 (3H, d, J 7, 2-CH3), 0.02 (6H, s, Si(C// 3) 2 'Bu); 5 C 

(126 MHz, CDC13) 170.2 (C=0), 140.9 {ipso-Ar-Q, 140.4 (4-Q, 128.5 (Ar-Q, 128.2 

(Ar-Q, 127.8 (Ar-Q, 114.9 (5-Q, 78.1 (1-Q, 72.3 (3-Q, 44.7 (2-Q, 26.2 (SiC(CH3)3), 

21.6 (C(0)CH 3), 18.4 (SiC(CH3)3), 10.4 (2-CH3), -3.5 (Si(CH3)2'Bu), -5.1 

(Si(CH3)2'Bu); m/z (ES+) 371 (MNa +); HRMS (ES+) Found MNa + , 371.2020 

(C 2 0H 3 2O 3SiNa requires 371.2013). 
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6.4 Application of the Hosomi-Sakurai methodology 

6.4.1 Acyclic substrates 

6.4.1.1 Standard procedure for the Hosomi-Sakurai reaction of silacycles 

Stage 1 

A solution of silacyclohex-4-ene (0.3 mmol) in DCM (5 ml) was treated with aryl or 

alkyl dimethylacetal (0.6 mmol) and cooled to 0 °C. The solution was then treated with 

BF 3»OEt 2 ([0.5M] in DCM, 0.3 mmol) and reacted at 0 °C for 6 h. The reaction mixture 

was then poured into aq. NH4CI and extracted with DCM ( 3 x 1 0 ml). The combined 

organic layers were dried over MgSC»4, filtered, concentrated and dried in vacuo. The 

concentrated organic material could then be utilised directly in the next stage or purified 

by flash chromatography to afford the silyl fluoride species. These in turn could then be 

utilised in stage 2. 

Stage 2 

The crude organic material or purified silyl fluoride species was dissolved in 

methanohTHF (5 ml, 1:1) and treated with KHCO3 (1.0 mmol) and a 35% w/w solution 

of H2O2 (4.0 mmol) at room temperature. The mixture was then heated at reflux over 5 

h, at which point the mixture was poured into Na 2S 203 and extracted with EtOAc (3 x 

10 ml). The combined organic layers were dried over MgS04, filtered, concentrated and 

dried in vacuo. Flash chromatography (pet. ether/ether [95:5], [9:1], [4:1]) affords the 

desired mono-protected 1,4-diols. 

181 



(3fl£,4S/f,5^/£/)/LS/S/f)-3<l^ 

methoxy(phenyl)methyl)-2,4-dimethylhept-6-en-3-yl, 327 

OMe - I 

Following stage 1 of the standard procedures outlined on page 181, silacyclohex-4-ene 

100 (0.35 g, 1.1 mmol) was combined with benzaldehyde dimethylacetal to give the 

title compound as a pale yellow oil (0.3 g, 60%); R f 0.6 (pet. ether/ether 95:5) as a 

mixture of diastereoisomers in the ratio 2:1 by NMR; vmax (thin film) 2926, 2918, 1675, 

1651, 1536, 1454, 1428, 1359, 1245, 1189, 1105, 916, 836, 800, 735, 729, 699, 543 cm" 

'; NMR data given for major isomer 5 H (500 MHz, CDC13) 7.50-7.49 (2H, m, Ar-H), 

7.35-7.33 (2H, m, Ar-H), 7.32-7.30 (4H, m, Ar-H), 7.19-7.17 (2H, m, Ar-H), 5.70 (1H, 

ddd, J17, 10, 10, 6-H), 4.95 (1H, d, J 10, 7-RH), AAA (1H, d, J 17,1-HR), 3.29 (3H, s, 

5-CH(OC//3)), 2.64 (1H, m, 3-H), 2.56 (1H, m, A-H), 2.20 (1H, t, J 10, 5-H), 1.97 (1H, 

m, 2-H), 1.35 (3H, m, A-CH2), 1.14 (1H, m, 5-C#(OCH3)), 1.03 (3H, m, 2-C// 3), 0.62 

(3H, d, J l , l-H), 0.13 (9H, s, Si(C// 3) 3); 5 C (126 MHz, CDC13) 141.5 (Ar-C), 137.3 (6-

Q , 137.0 (Ar-C), 132.7 (Ar-Q, 132.6 (Ar-Q, 129.0 (Ar-Q, 127.7 (Ar-Q, 127.2 (Ar-

Q , 126.8 (Ar-Q, 118.5 (7-Q, 65.9 (5-CH(OCH3)), 57.44 (5-CH(OCH3)), 57.42 (5-Q, 

38.8 (3-Q, 35.7 (4-Q, 26.2 (2-Q, 25.9 (2-CH3), 24.0 (1-Q, 16.6 (4-CH3), -2.1 

(Si(CH 3) 3); 5 F (300 MHz, CDC13) -185.6 (IF, d, J 18, Si-F); m/z (CI) 460 (MNH 4

+ , 

100%), 428 (35%), 411 ( M + -(OCH3), 40%); HRMS (CI) Found M N H 4

+ , 460.2863 

(C2 6H4 3FOSi 2N requires 460.2862). 

Si S Me F Ph 
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(3/?5,45/f,5/f5)-5-((i?5)-Methoxy(phenyl)methyl)-2,4-dimethylhept-6-en-3-ol, 328 

Following the standard procedure outlined on page 181, silacyclohex-4-ene 100 (0.1 g, 

0.3 mmol) was combined with benzaldehyde dimethyl acetal to give, without 

purification of the fluorosilane, the title compound isolated as a pale yellow oil (0.04 g, 

50%); R f 0.4 (pet. ether/ether 9:1) as a mixture of diastereoisomers in the ratio 2:1 by 

Following stage 2 of the standard procedures outlined on page 181, fluorosilane 327 

(0.3 g, 0.6 mmol) was transformed into the title compound which was isolated as a 

colourless oil (0.1 g, 80%); Rf 0.4 (pet. ether/ether 9:1) as a mixture of diastereoisomers 

in the ratio 2:1 by N M R ; / u m a x (thin film) 3326 (broad-OH), 2958, 2874, 2834, 1605, 

1594, 1498, 1471, 1454, 1363, 1233, 1066, 992, 918, 752, 691 cm"1; NMR data given 

for the major isomer 5 H (500 MHz, CDC13) 7.34-7.31 (2H, m, Ax-H), 121-121, (3H, m, 

Ai-H), 6.04 (1H, ddd, J 17, 10, 10, 6-H), 5.09 (1H, dd, J 10, 2, 1-HR), 4.76 (1H, dd, J 

17, 2 , 1 - R H ) , 4.48 (1H, d, J 4, 5-C//(OCH3)), 3.76 (1H, d, J3, -OH), 3.28 (1H, m, 3-H), 

3.23 (3H, s, 5-CH(OC//3)), 2.26 (1H, m, 5-H), 1.82 (1H, m, 4-H), 1.74 (1H, m, 2-H), 

1.00 (3H, d, J l , 2-CH3), 0.86 (3H, d, J l , 4-CH3), 0.81 (3H, d, J l , \-H); 6 C (126 MHz, 

CDC13) 140.7 {ipso-Ax-Q, 134.3 (6-Q, 128.0 (Ar-Q, 127.4 (Ar-Q, 127.3 (Ar-Q, 

118.8 (7-Q, 86.9 (5-CH(OCH3)), 76.9 (3-C), 57.8 (5-Q, 57.0 (5-CH(OCH3)), 40.9 (4-

Q , 29.6 (2-Q, 20.7 (2-CH3), 17.4 (4-CH3), 13.6 (1-Q; m/z (ES+) 285 (MNa +); HRMS 

(ES+) Found MNa + , 285.1825 ( C n ^ C ^ N a requires 285.1825). 

OMe -. 

NMR. 
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(15if,25/?3^/^if5/5i?)-l-(l-Fluoro-2,2,2-trimethyl-l-phenyldisilyl)-3-((if5)-

methoxy(phenyl)methyl)-2-methyl-l-phenylpent-4-enyl, 321Ac 

Following stage 1 of the standard procedures outlined on page 181, silacyclohex-4-ene 

206 (0.2 g, 0.6 mmol) was combined with benzaldehyde dimethylacetal to give the title 

compound as a pale yellow oil (0.2 g, 72%); Rf 0.6 (pet. ether/ether 95:5) as a mixture 

of diastereoisomers in the ratio 2:1 by NMR; vmax (thin film) 1491, 1449, 1427, 1245, 

1103, 915, 834, 798, 734, 697 cm"1; NMR data given for major isomer 5 H (500 MHz, 

CDC13) 7.43-7.06 (15H, m, Ar-H), 5.76 (1H, ddd, J 17, 10, 10, 4-H), 5.02 (1H, dd, J10, 

2, 5-HH), 4.46 (1H, dd, J 17, 2, 5-H//), 4.37 (1H, d, J 3, 3-C//(OCH3)), 3.24 (3H, s, 3-

CH(OC# 3)), 2.59 (1H, m, 2-H), 2.00 (1H, m, 3-H), 1.20 (3H, d, J 7, 2-CH3), 1.05 (1H, 

m, l-H), 0.09 (9H, s, Si(C// 3) 3); 5 C (126 MHz, CDC13) 141.2 (ipso-Ar-Q, 137.3 (4-Q, 

133.2 (Ar-Q, 131.2 (ipso-Ax-Q, 130.9 (ipso-Ar-Q, 129.4 (Ar-Q, 128.9 (Ar-Q, 127.8 

(Ar-Q, 127.7 (Ar-O, 127.6 (Ar-C), 127.2 (Ar-Q, 126.7 (Ar-Q, 125.4 (Ar-Q, 118.8 

(5-Q, 83.2 (3-CH(OCH3)), 57.1 (3-CH(OCH3)), 55.8 (3-Q, 35.9 (2-Q, 16.7 (1-Q, 16.7 

(2-CH3), -2.0 (Si(CH 3) 3); 8F (300 MHz, CDC13) -184.6 (IF, d, J 11, Si-F); m/z (ES+) 

513 (MK + ) , 499 (MNa +); HRMS (ES+) Found MNa + , 499.2271 (C2 9 H 3 7FOSi 2 Na 

requires 499.2259). 

OMe 
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(l^,25/f,3^S)-3-((if5)-Methoxy(phenyl)methyl)-2-methyl-l-phenylpent-4-en-l-ol, 

322Ad 

OMe 

OH 

Following the standard procedure outlined on page 181, silacyclohex-4-ene 206 (0.1 g, 

0.3 mmol) was combined with benzaldehyde dimethyl acetal to give, without 

purification of the fluorosilane, the title compound isolated as a pale yellow oil (0.05 g, 

55%); Rf 0.3 (pet. ether/ether 9:1) as a mixture of diastereoisomers in the ratio 2:1 by 

NMR. 

Following stage 2 of the standard procedures outlined on page 181, fluorosilane 321 Ac 

(0.17 g, 0.4 mmol) was transformed into the title compound which was isolated as a 

colourless oil (0.04 g, 55%); Rf 0.3 (pet. ether/ether 9:1) as a mixture of 

diastereoisomers in the ratio 2:1 by NMR;/u m a x (thin film) 3355 (broad -OH), 2362, 

2333, 1491, 1452, 1084, 1068, 914, 841, 754, 698 cm"1; NMR data given for major 

isomer 6 H (500 MHz, CDC13) 7.30-7.16 (10H, m, Ax-H), 6.05 (1H, ddd, J17, 10, 10, 4-

H), 5.14 (1H, dd J 10, 3, 5-YUf), 4.80 (1H, dd, J 17, 3, 5-HR), 4.55 (1H, m, 3-

C//(OCH3)), 4.31 (1H, d, / 10 , \-H), 3.81 (1H, s, -OH), 3.26 (3H, s, 3-CH(OC//3)), 2.29 

(1H, m, 3-H), 1.98 (1H, m, 2-H), 0.55 (3H, d, J l , 2-C773); o c (126 MHz, CDC13) 144.1 

(Ar-C), 140.8 (ipso-Ax-C), 134.6 (4-C), 128.2 (Ar-C), 128.1 (Ar-Q, 127.6 (Ar-C), 

127.4 (Ar-Q, 127.2 (Ar-C), 126.6 (Ar-C), 119.2 (5-Q, 86.6 (3-CH(OCH3)), 77.0 (1-Q, 

57.2 (3-CH(OCH3)), 57.0 (3-Q, 43.8 (2-Q, 17.2 (2-CH3); m/z (ES+) 319 (MNa +); 

HRMS (ES+) Found MNa +, 319.1667 ( C ^ ^ N a requires 319.1669). 
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(3i?5,45if,5/W/5/^5/S^)-3-(l-Fluoro-2,2,2-trimethyl-l-phenyldisilyl)-5-((/f)-l-

methoxyethyl)-2,4-dimethylhept-6-en-3-yl, 321 Ab 

OMe - | 

Following stage 1 of the standard procedures outlined on page 181, silacyclohex-4-ene 

100 (0.1 g, 0.3 mmol) was combined with acetaldehyde dimethylacetal to give the title 

compound as a colourless oil (0.034 g, 30%); R f 0.7 (pet.ether/ether 95:5) as a mixture 

of diastereoisomers in the ratio 2:1 by mass; u m a x (thin film) 2959, 2887, 2820, 2362, 

2341, 1463, 1372, 1245, 1101, 1086, 1005, 913, 835 cm"1; NMR data given for major 

isomer 6 H (500 MHz, CDC13) 7.52-7.50 (2H, m, Ax-H), 7.36-7.35 (3H, m, Ax-H), 5.65 

(1H, ddd, J 17, 10, 10, 6-H), 5.22 (1H, d, J 10, 7-HH), 4.97 (1H, d, J 17, 1-HR), 3.58 

(1H, m, 5-C//(OCH3)(CH3)), 3.33 (3H, s, 5-CH(OC#3)(CH3)), 2.45 (1H, m, 4-H), 2.02-

1.90 (2H, m, 5-H, 2-H), 1.40 (1H, m, 3-H), 1.19 (3H, d, J 7, 4-C// 3), 1.09 (3H, d, J 7, 5-

CH(OCH 3)(C// 3)), 1.01 (3H, d, J 7, 2-CH3), 0.67 (3H, d, J 7, \-H), 0.11 (9H, s, 

(Si(C// 3) 3); 5 C (126 MHz, CDC13) 138.6 (6-Q, 138.2 {ipso-Ax-Q, 132.7 (Ar-Q, 128.9 

(Ar-Q, 127.8 (Ar-Q, 118.3 (7-Q, 75.6 (5-CH(OCH3)(CH3)), 56.7 (5-

CH(OCH3)(CH3)), 55.6 (5-Q, 38.7 (3-Q, 35.2 (4-Q, 26.2 (2-Q, 25.9 (2-CH3), 24.0 (1-

Q, 17.5 (5-CH(OCH3)(CH3)), 16.4 (4-CH3), -2.1 (Si(C7/3)3); 5 F (300 MHz, CDC13) -

185.5 (IF, d, J 16, Si-F); m/z (ES+) 403 (MNa +); HRMS (ES+) Found MNa + , 403.2268 

(C 2iH 3 7Si 2FONa requires 403.2259). 

Further elution gave the minor diastereoisomer as a colourless oil (0.017 g, 15%). 

S — Ph 
SiMe 3 
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(3/?.S,45^,5/tS)-5-((^)-l-Methoxyethyl)-2,4-dimethylhept-6-eii-3-ol, 322Ac 

Following stage 2 of the standard procedures outlined on page 181, major fluorosilane 

isomer 321 Ab (0.04 g, 0.1 mmol) was transformed into the title compound which was 

isolated as a colourless oil (0.007 g, 35%); Rf 0.2 (pet. ether/ether 9:1); v m a x (thin film) 

3374 (broad-OH), 2960, 2928, 2878, 1737, 1678, 1600, 1520, 1468, 1428, 1364, 1256, 

1232, 1120, 1072, 1042; cm"1; 5 H (500 MHz, CDC13) 5.93 (1H, ddd, J 17, 10, 10, 6-H), 

5.19 (1H, dd, J 10, 2, 7-HH), 5.03 (1H, m, 7-HH), 4.42 (1H, s, -OH), 3.52 (1H, m, 5-

C//(OCH 3)(CH 3)), 3.34 (3H, s, 5-CH(OC//3)(CH3)), 3.21 (1H, m, 3-H), 2.02 (1H, d, J 

10, 5-H), 1.80-1.68 (2H, m, 4-H, 2-H), 1.12 (3H, m, 5-CH(OCH3)(Ci/3)), 0.92 (3H, m, 

2-CHi), 0.87 (3H, d,J7, 4-CH3), 0.83 (3H, d, J 7, \-H); 5 C (126 MHz, CDC13) 137.2 

(6-Q, 119.1 (7-Q, 80.2 (5-CH(OCH3)(CH3)), 76.0 (3-Q, 57.3 (5-C), 56.6 (5-

CH(OCH 3)(CH 3)), 42.0 (4-Q, 30.0 (2-Q, 20A (2-CH3), 18.0 (4-CH3), 17.4 (5-

C//(OCH 3)(CH 3)), 14.0 (l-Q; m/z (ES+) 223 (MNa +); HRMS (ES+) Found MNa + , 

223.1669 (C 1 2H240 2Na requires 223.1668). 

Oxidation of the minor fluorosilane isomer afforded the title isomeric compound as a 

colourless oil (0.005 g, 53%). 
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(15/?,25/?3^/Si^5/S/?)-l-(l-Fluoro-2,2^-trimethyl-l-phenyldisilyl)-3-((if5)-l-

methoxyethyl)-2-methyl-l-phenylpent-4-enyl, 321Ad 

OMe - r ^ ^ T l 

Following stage 1 of the standard procedures outlined on page 181, silacyclohex-4-ene 

206 (0.3 g, 0.9 mmol) was combined with acetaldehyde dimethylacetal to give the title 

compound as a colourless oil (0.13 g, 38%); Rf 0.6 (pet. ether/ether 95:5) as a mixture 

of diastereoisomers in the ratio 2:1 by NMR; /u m a x (thin film) 2971, 2957, 1493, 1427, 

1374, 1244, 1108, 998, 913, 855, 834, 800, 741, 696 cm' 1; NMR data given for major 

isomer 6 H (500 MHz, CDC13) 7.32-7.24 (5H, m, Ax-H), 7.17-7.07 (5H, m, Ar-H), 5.76 

(1H, ddd, J 17, 10, 10, 4-H), 5.30 (1H, dd, J 10, 2, 5-HR), 4.97 (1H, m, 5-H#), 3.29 

(3H, s, 3-CH(OC//3)(CH3)), 2.80 (1H, dd, J 12, 4, \-H), 2.49 (1H, m, 2-H), 2.28 (1H, 

m, 3-C//(OCH3)(CH3)), 1.74 (1H, m, 3-H), 1.10 (3H, m, 2-C// 3), 1.01 (3H, m, 3-

CH(OCH 3)(C// 3)), 0.10 (9H, s, Si(C# 3) 3); 5 C (126 MHz, CDC13) 140.7 (ipso-Ar-C), 

140.4 (ipso-Ar-C), 140.2 (ipso-Ar-C), 137.6 (4-Q, 133.1 (Ar-C), 131.3 (Ar-C), 127.7 

(Ar-C), 127.7 (Ar-C), 125.4 (Ar-C), 118.8 (5-Q, 79.8 (1-Q, 77.5 (3-CH(OCH3)(CH3)), 

56.3 (3-CH(OCH3)(CH3)), 54.1 (3-C), 41.5 (2-Q, 17.2 (3-CH(OCH3)(CH3)), 14.9 (2-

CH 3), -2.0 (Si(CH 3) 3); 5 F (300 MHz, CDC13) -185.3 (IF, d, J 14, Si-F); m/z (ES+) 437 

(MNa +); HRMS (ES+) Found MNa + , 437.2101 (C 24H 350FSi 2Na requires 437.2103). 

OMe 
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(15/?,2S/f,3^)-3-((^5)-l-Methoxyethy])-2-methyI-l-phenyIpent-4-en-l-ol, 322Ai 

Following stage 2 of the standard procedures outlined on page 181, fluorosilane 321 Ad 

(0.15 g, 0.4 mmol) was transformed into the title compound which was isolated as a 

white solid (0.034 g, 40%); Rf 0.2 (pet. ether/ether 9:1) as a mixture of diastereoisomers 

in the ratio 2:1 by NMR. 

Also, following the standard procedure outlined on page 181, silacyclohex-4-ene 206 

(0.2 g, 0.6 mmol) was combined with acetaldehyde dimethylacetal to give, without 

purification of the fluorosilane, the title compound as a colourless oil (0.011 g, 8%); R f 

0.2 (pet. ether/ether 9:1); vmax (thin film) 3332 (broad-OH), 3071, 3027, 2974, 2930, 

2831, 2359, 2338, 1716, 1683, 1652, 1558, 1540, 1455, 1260, 1197, 1119, 1074, 843 

cm - 1; 5 H (500 MHz, CDC13) 7.33-7.32 (5H, m, Ax-H), 5.80 (1H, ddd, J 17, 11, 10, 4-H), 

5.04 (1H, dd, J 10, 2, 5-HH), 4.91 (1H, dd, J17, 2, 5-HH), 4.50 (1H, m, \-H), 3.46 (1H, 

m, 3-C//(OCH3)(CH3)), 3.42 (3H, s, 3-CH(OC//3)(CH3)), 2.24 (1H, m, 3-H), 2.18 (1H, 

m, 2-H), 1.13 (3H, d, J 6, 3-CH(OCH3)(C//3)), 0.83 (3H, d, J 7, 2-CH3); 5 C (126 MHz, 

CDC13) 144.5 (ipso-Ar-Q, 138.3 (4-C), 128.1 (Ar-Q, 126.9 (Ar-Q, 126.7 (Ar-C), 

118.7 (5-C), 79.5 (1-Q, 76.5 (3-CH(OCH3)(CH3)), 56.1 (3-CH(OCH3)(CH3)), 52.0 (3-

Q, 42.8 (2-C), 17.2 (3-CH(OCH3)(CH3)), 14.8 (2-CH3); m/z (ES+) 257 (MNa +); HRMS 

(ES+) Found MNa + , 257.1510 (Cis^C^Na requires 257.1512). 

Further elution gave a mixture of diastereoisomers as a pale yellow oil (0.033 g, 24%); 

all data for the major isomer agreeing with that given above. 
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(15^,25^,3^)-3-((/f5)-l-Methoxyhexyl)-2-methyl-l-phenylpent-4-en-l-ol, 322Aj 

Following the standard procedure outlined on page 181, silacyclohex-4-ene 206 (0.1 g, 

0.3 mmol) was combined with hexanal dimethylacetal to give, without purification of 

the fluorosilane, the title compound as a yellow oil (0.08 g, 10%); Rf 0.3 (pet. 

ether/ether 9:1); . i w (thin film) 3689, 3602, 3343 (broad -OH), 2958, 2831, 2872, 

2860, 2243, 1681, 1600, 1493, 1455, 1378, 1260, 1197, 1111, 1081, 1011 cm' 1; 5 H (500 

MHz, CDC13) 7.32-7.14 (5H, m, Ai-H), 5.90 (1H, ddd, J17, 11, 10, 4-H), 5.08 (1H, dd, 

J 10, 2, 5-HR), 4.96 (1H, dd, J17, 2, 5-HH), 4.63 (1H, s, -OH), 4.44 (1H, d, J 8, \-H), 

3.43 (3H, s, 3-CH(OC//3)(CH2)4CH3)), 3.37 (1H, m, 3-C//(OCH 3)(CH 2) 4CH 3)), 2.37 

(1H, m, 3-H), 2.14 (1H, m, 2-H), 1.66-1.25 (8H, m, 3-CH(OCH 3)(C// 2) 4CH 3)), 0.87 

(3H, m, 3-CH(OCH 3)(CH 2) 4C// 3)), 0.76 (3H, d, J 1, 2-CH}); 6 C (126 MHz, CDC13) 

144.6 (ipso-Ai-C), 138.0 (4-Q, 128.0 (Ar-Q, 127.0 (Ar-Q, 126.9 (Ar-Q, 116.8 (5-Q, 

81.7 (3-CH(OCH 3)(CH 2) 4CH 3)), 76.6 (1-Q, 57.1 (3-CH(OCH 3)(CH 2) 4CH 3)), 49.7 (3-

O, 42.0 (2-Q, 32.1, 30.4, 23.7, 22.6 (3-CH(OCH 3)(CH 2) 4CH 3), 15.6 (2-CH3), 14.0 (3-

CH(OCH 3)(CH 2) 4CH 3)); m/z (ES+) 313 (MNa +), 603 (2MNa+); HRMS (ES+) Found 

MNa +, 313.2138 (C 1 9 H 3 0 O 2 Na requires 313.2138). 

Further elution gave the minor diastereoisomer as a colourless oil (0.08 g, 10%). 
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(15i?,2S/f,3/f5)-3-((/?5)-Methoxy(4-(trifluoromethy])phenyl)methyl)-2-methyl-l-

phenylpent-4-en-l-ol, 322Af 

Following the standard procedure outlined on page 181, silacyclohex-4-ene 206 (0.1 g, 

0.3 mmol) was combined with trifluoromethylbenzaldehyde dimethylacetal 338 to give, 

without purification of the fluorosilane, the title compound as a colourless oil (0.05 g, 

50%); Rf 0.3 (pet. ether/ether 9:1) as a mixture of diastereoisomers in the ratio 4:1.5:1 

by NMR; u m a x (thin film) 3370 (broad-OH), 2960, 2931, 2876, 1736, 1618, 1599, 1417, 

1325, 1167, 1129 cm"1; NMR data given for the major isomer 5 H (500 MHz, CDC13) 

7.62 (2H, d, J 9, Ax-H), 7.45 (2H, d, J 9, Ar-H), 7.33-7.26 (5H, m, Av-H), 6.09 (1H, 

ddd, J17, 11, 10, 4-H), 5.21 (1H, dd, J10, 2, 5-HH), 4.86 (1H, dd, J\7,2, 5-HH), 4.70 

(1H, d, J 6, 3-C//(OCH3)), 4.43 (1H, d, J 9, l-H), 3.34 (1H, s, -OH), 3.27 (3H, s, 3-

CH(OC// 3)), 2.30 (1H, m, 3-H), 2.04 (1H, m, 2-H), 0.65 (3H, d, J 7, 2-CH3); 5 C (126 

MHz, CDC13) 143.8 (ipso-Ax-Q, 140.6 (ipso-Ax-Q, 134.6 (4-Q, 128.3 (Ar-Q, 127.9 

(ipso-Ax-CCF3), 127.8 (Ar-Q, 127.6 (Ar-Q, 127.1 (Ar-Q, 125.0 (Ar-Q, 124.5 (p-CF}, 

q, J271), 119.5 (5-Q, 85.6 (3-CH(OCH3)), 57.2 (3-CH(OCH3)), 56.7 (3-Q, 43.1 (1-Q, 

43.0 (2-Q, 16.7 (2-CH3); 5 F (300 MHz, CDC13) -62.72 (3F, m, Ar-CF 3); m/z (CI) 382 

(MNH 4

+ ) ; HRMS (CI) Found M N H 4

+ , 382.1985 ( C 2 i H 2 7 0 2 N F 3 requires 382.1988). 
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(3flS,4Sif,5i?S/Si;)J?S/^ 

methoxy(4-(trifluoromethyl)phenyl)methyl)-2,4-dimethylhept-6-en-3-yl, 321 Aa 

Following stage 1 of the standard procedures outlined on page 181, silacyclohex-4-ene 

100 (0.1 g, 0.3 mmol) was combined with trifluoromethylbenzaldehyde dimethylacetal 

338 to give the title compound as a colourless oil (0.031 g, 20%); Rf 0.7 (pet. ether/ether 

95:5); u m a x (thin film) 2981, 2940, 1466, 1411, 1355, 1235, 1100, 967, 908, 845 cm"1; 

5 H (500 MHz, CDC13) 7.56 (2H, d, J 8, Ax-H), 7.51-7.49 (2H, m, Ar-H), 7.37-7.35 (3H, 

m, Ar-H), 7.29 (2H, d,JS, Ar-H), 5.68 (1H, ddd, J17, 10, 10, 6-H), 4.95 (1H, dd, J 10, 

2, 7-Hif), 4.56 (1H, s, 5-C//(OCH3)), 4.41 (1H, dd, J 17, 2, 7-HH), 3.29 (3H, s, 5-

CH(OC7/3)), 2.58 (1H, m, 4-H), 2.18 (1H, dt, J 10, 2, 5-H), 1.90 (1H, m, 2-H), 1.40 

(1H, d, J 17, 3-H), 1.36 (3H, d, J 7, 4-Ci/ 3), 1.03 (3H, d, J 7, 2-CH3), 0.62 (3H, d, J 7, 

\-H), 0.14 (9H, s, (Si(C// 3) 3); 5 C (126 MHz, CDC13) 145.8 (Ar-C), 140.3 (ipso-Ar-Q, 

138.4 (ipso-Ar-C), 136.3 (6-Q, 132.7 (Ar-C), 130.8 (;^o-Ar-CCF 3, q, J33), 129.1 (Ar-

Q , 127.8 (Ar-C), 127.1 (Ar-C), 124.7 (Ar-Q, 124.3 (p-CF3, q, J 272), 119.1 (7-Q, 83.1 

(5-CH(OCH3)), 57.6 (5-CH(OCH3)), 57.3 (5-C), 38.8 (3-C), 35.7 (4-Q, 26.2 (2-CH3), 

25.8 (2-Q, 24.0 (1-Q, 16.6 (4-CH3), -2.1 (Si(CH 3) 3); 5F (300 MHz, CDC13) -62.8 (-

CF 3), -185.5 (Si-F); m/z (ES+) 533 (MNa +); HRMS (ES+) Found MNa + , 533.2289 

(C 27H 3 8OF 4Si2Na requires 533.2289). 

Further elution gave a mixture of diastereoisomers as a colourless oil (0.022 g, 12%); all 

data for the major isomer agreeing with that given above. 

Si—Ph 

OMe 

Si—Ph • \ 
SiMej 
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(3J?5 ,,45«,5/lS)-5-((5)-Methoxy(4-(trifluoromethyl)phenyl)methyl)-2,4-

dimethylhept-6-en-3-ol, 322Aa 

Following the standard procedure outlined on page 181, silacyclohex-4-ene 100 (0.1 g, 

0.3 mmol) was combined with trifluoromethylbenzaldehyde dimethylacetal 338 to give, 

without purification of the fluorosilane, the title compound as a colourless oil (0.012 g, 

Also, following stage 2 of the standard procedures outlined on page 181, fluorosilane 

321Aa (0.03 g, 0.07 mmol) was transformed into the title compound which was isolated 

as a colourless oil (0.012 g, 56%); R f 0.3 (pet. ether/ether 9:1); u m a x (thin film) 3386 

(broad-OH), 2960, 2931, 2872, 1736, 1600, 1517, 1416, 1364, 1325, 1256, 1228, 1128 

cm - 1; 5 H (500 MHz, CDC13) 7.58 (2H, d, J 8, Ar-H), 7.38 (2H, d, J 8, Ar-H), 6.01 (1H, 

ddd, J17, 11, 10, 6-H), 5.09 (1H, dd, J 10, 2, 7-HH), 4.77 (1H, dd, J 17, 2, 7-H//), 4.59 

(1H, d, J 4, 5-C//(OCH3)), 3.30 (1H, m, 3-H), 3.23 (3H, s, 5-CH(OC//3)), 3.08 (1H, d, J 

4, -OH), 2.24 (1H, m, 5-H), 1.79-1.73 (2H, m, 4-H & 2-H), 1.00 (3H, d, J 7, 2-C// 3), 

0.85 (3H, d, J 7, 4-CH3), 0.80 (3H, d, J 7, l-H); 5 C (126 MHz, CDC13) 145.6 (ipso-Av-

Q, 134.7 (6-Q, 128.3 (Ar-Q, 127.9 (ipso-Ai-CCFi, q, J 33), 125.2 (Ar-Q, 124.5 (p-

CF3, q, J 271), 119.1 (7-Q, 86.2 (5-CH(OCH3)), 78.8 (3-Q, 57.5 (5-Q, 57.4 (5-

CH(OCH3)), 40.5 (4-Q, 29.8 (2-Q, 20.8 (2-CH3), 17.2 (4-CH3), 14.0 (1-Q; 5 F (300 

MHz, CDC13) -62.73 (3F, m, CF 3); m/z (ES+) 353 (MNa +); HRMS (ES+) Found MNa + , 

353.1700 (Ci 8H 250 2F 3Na requires 353.1699). 

OMe 

11%). 
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Oxidation of the fluorosilane mixture afforded a diastereomeric mixture of the title 

compound as a colourless oil (0.09 g, 70%), all data for the major isomer agreeing with 

that given above. 

(3if5,45i?,5^-5-((^5)-(4-Bromophenyl)(methoxy)methyl)-2,4-dimethylhept-6-en-

3-ol, 322Ab 

OMe 

OH 
Br 

Following the standard procedure outlined on page 181, silacyclohex-4-ene 100 (0.1 g, 

0.3 mmol) was combined with bromobenzaldehyde dimethylacetal to give, without 

purification of the fluorosilane, the title compound as a colourless oil (0.026 g, 23%); Rf 

0.3 (pet. ether/ether 9:1) as a mixture of diastereoisomers in the ratio 2:1 by NMR; u m a x 

(thin film) 3391 (broad -OH), 2961, 2932, 2875, 2241, 1737, 1486, 1463, 1405, 1364, 

1259, 1072, 1011, 840, 821 cm"1; NMR data given for major isomer 5 H (500 MHz, 

CDC13) 7.47 (2H, d, J 9, Ar-H), 7.16 (2H, d, J 9, Ai-H), 6.01 (1H, ddd, J 17, 11, 10, 6-

H), 5.12 (1H, dd, J 10, 2, 1-HR), 4.81 (1H, dd, J 17, 2, 1-KH), 4.50 (1H, d, J 4, 5-

C//(OCH3)), 3.76 (1H, d, J 6, -OH), 3.30 (1H, m, 3-H), 3.23 (3H, s, 5-CH(OC/73)), 2.22 

(1H, m, 5-H), 1.80-1.74 (2H, m, A-H, 2-H), 1.02 (3H, d, J l , \-H), 0.87 (3H, d, J l , 4-

CH3), 0.82 (3H, d, J l , 2-CH3); 6 C (126 MHz, CDC13) 139.5 (ipso-Ar-C), 135.4 (ipso-

Ar-C), 134.5 (6-C), 131.1 (Ar-C), 129.1 (Ar-C), 118.8 (7-C), 86.0 (5-CH(OCH3)), 76.6 

(3-Q, 57.5 (5-Q, 57.0 (5-CH(OCH3)), 40.3 (4-Q, 29.6 (2-Q, 20.6 (1-Q, 17.1 (4-CH3), 

13.7 (2-CH3); m/z (ES+) 363 ([ 7 9 Br]MNa + ); HRMS (ES+) Found [ 7 9 Br]MNa + , 363.0931 

( C i 7 H 2 5 02 7 9BrNa requires 363.0930). 
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(15/f,25i?,3JR5)-3-((^-(4-Bromophenyl)(methoxy)methyl)-2-methyl-l-phenyIpent-

4-en-l-ol, 322Ag 

Following the standard procedure outlined on page 181, silacyclohex-4-ene 206 (0.1 g, 

0.3 mmol) was combined with bromobenzaldehyde dimethylacetal to give, without 

purification of the fluorosilane, the title compound as a yellow oil (0.051 g, 46%); Rf 

0.3 (pet. ether/ether 9:1) as a mixture of diastereoisomers in the ratio 3:1 by NMR; u m a x 

(thin film) 3605, 3362 (broad-OH), 2960, 2929, 2243, 1719, 1591, 1487, 1453, 1405, 

1269, 1081, 1072, 1011, 839, 818 cm"1; NMR data given for major isomer 8 H (500 

MHz, CDC13) 7.49 (2H, d,J9, Ar-H), 7.40-7.25 (5H, m, Ar-H), 7.21 (2H, d,J9, Ar-H), 

6.07 (1H, ddd, J 17, 10, 10, 4-H), 5.21 (1H, dd, J10, 2, 5-HH), 4.88 (1H, dd, J 17, 2, 5-

HH), 4.60 (1H, d, J 4, 3-C//(OCH3)), 4.40 (1H, d, J 9, \-H), 3.45 (1H, s, -OH), 3.25 

(3H, s, 3-CH(OC//3)), 2.26 (1H, m, 3-H), 1.99 (1H, m, 2-H), 0.61 (3H, d, J 7, 2-C// 3); 

o c (126 MHz, CDC13) 144.2 (ipso-Ax-Q, 140.4 (ipso-Ax-Q, 135.0 (4-Q, 132.1 (Ar-Q, 

131.5 (Ar-Q, 129.6 (Ar-Q, 128.5 (Ar-Q, 127.4 (Ar-Q, 121.5 (ipso-Ax-Q, 119.6 (5-

Q , 86.0 (3-CH(OCH3)), 77.0 (1-Q, 57.3 (3-CH(OCH3)), 57.2 (3-Q, 43.4 (2-Q, 17.2 

(2-CH3); m/z (ES+) 397 ([ 7 9 Br]MNa + ); HRMS (ES+) Found [ 7 9 Br]MNa + , 397.0775 

(C 2 0 H 2 3 O 2

7 9 BrNa requires 397.0775). 

OMe 

Br 
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(15/f,25/f,3J?5)-3-((5)-Cyclohexyl(methoxy)methyl)-2-methyl-l-phenylpeiit-4-en-l-

ol, 342 

Following the standard procedure outlined on page 181, silacyclohex-4-ene 206 (0.2 g, 

0.7 mmol) was combined with cyclohexane dimethylacetal 341 to give, without 

purification of the fluorosilane, the title compound as a white solid (0.031 g, 16%); m.p. 

106-108 °C; R f 0.3 (pet. ether/ether 9 : l ) ; /u m a x (thin film) 3324 (broad-OH), 3068, 3038, 

2930, 2853, 2358, 2241, 1716, 1602, 1540, 1455, 1078, 1010, 834 cm"1; 5 H (500 MHz, 

CDC13) 7.32-7.30 (5H, m, Ar-H), 6.10 (1H, ddd, J 17, 10, 10, 4-H), 5.19 (1H, d, J10, 5-

RH), 5.10 (1H, d, J 17, 5-HR), 4.32 (1H, d, J 10, l-H), 3.58 (3H, s, 3-CH(OCtf 3)), 3.06 

(1H, t, J 6, 3-C//(OCH3)), 2.45 (1H, m, 3-H), 2.14 (1H, m, 2-H), 1.98 (1H, d, J 14, 

(CRH)5), 1.80-1.69 (3H, m, (CH2)5), 1.62-1.59 (1H, d,JU, (CHR)5), 1.31-1.16 (4H, m, 

(CH2)5), 1.10-1.01 (2H, m, (CH2)5), 0.65 (3H, d, J 7, 2-CH3); 6 C (126 MHz, CDC13) 

144.7 (ipso-Ar-C), 137.3 (4-Q, 128.1 (Ar-C), 127.1 (Ar-C), 126.8 (Ar-C), 117.5 (5-C), 

89.5 (3-CH(OCH3)), 76.0 (1-C), 61.6 (3-CH(OCH3)), 51.0 (3-Q, 41.0 (CH 2CHCH 2), 

40.3 (2-Q, 30.0, 29.6, 26.5, 26.3, 26.0 ((CH2)5), 17.7 (2-CH3); m/z (ES^ 325 (MNa +), 

627 (2MNa+); HRMS (ES+) Found 325.2137 (C 2 0 H 3 0 O 2 Na requires 325.2138). 

Further elution yielded the title compound (0.04 g, 20%) as a mixture of 

diastereoisomers by NMR. 

OMe 

OH 
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(15^,25i?,3^'S)-3-((^'S)-Methoxy(4-nitrophenyl)methyl)-2-methyl-l-phenylpent-4-

en-l-ol, 322Ah 

Following the standard procedure outlined on page 181, silacyclohex-4-ene 206 (0.05 g, 

0.15 mmol) was combined with 4-nitrobenzaldehyde dimethylacetal 340 to give, 

without purification of the fluorosilane, the title compound as a pale yellow oil (0.032 g, 

63%); Rf 0.3 (pet. ether/ether 9:1) as a mixture of diastereoisomer in the ratio 3.5:2:1 by 

N M R ; / u m a x (thin film) 3474-3228 (broad-OH), 3079, 2932, 2884, 2361, 2244, 1600, 

1522, 1346, 1107, 1084 cm"1; NMR data given for major isomer 5 H (500 MHz, CDC13) 

8.23 (2H, d, J 8, Ax-H), 7.52 (2H, d, J 8, Ax-H), 7.36-7.24 (5H, m, Ar-H), 6.06 (1H, 

ddd, J 17, 10, 10, 4-H), 5.21 (1H, dd, J 10, 2, 5-HH), 4.86 (1H, dd, J17, 2, 5-HH), 4.77 

(1H, d, J6 , 3-C//(OCH3)), 4.47 (1H, d, J8 , l-H), 3.28 (3H, s, 3-CH(OC//3)), 2.29 (1H, 

m, 3-H), 1.96 (1H, m, 2-H), 0.66 (3H, d, J 8, 2-CH3); 6 C (126 MHz, CDC13) 149.4 

(ipso-Ax-Q, 147.6 (ipso-Ax-C), 143.8 (ipso-Ax-Q, 134.9 (4-Q, 128.5 (Ar-C), 128.0 

(Ar-C), 127.3 (Ar-C), 125.8 (Ar-C), 123.6 (Ar-C), 119.8 (5-C), 85.3 (3-CH(OCH3)), 

77.1 (l-O, 57.6 (3-CH(OCH3)), 56.7 (3-Q, 42.9 (2-Q, 16.5 (2-CH3); m/z (ES+) 364 

(MNa +); HRMS (ES+) Found MNa +, 364.1519 (C 2 0H2 3NO 4Na requires 364.1519). 

OMe 

OH 
O.N 
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l-((2/?5,3^)-3,5-Dimethyl-2-vinylhex-4-enyl)-4-methoxybenzene, 329 

MeO 

A solution of silacyclohex-4-ene 100 (0.05 g, 0.2 mmol) in DCM (5 ml) was cooled to -

78 °C and treated with 4-methoxybenzaldehyde dimethylacetal (0.1 ml, 0.3 mmol), then 

BF3«OEt2 (0.03 ml, 0.2 mmol). The reaction mixture was then warmed to room 

temperature and stirred overnight. The reaction was poured into aq. NH4CI and 

extracted with DCM (3x10 ml). The combined organic layers were dried over MgSC^, 

filtered, concentrated and dried in vacuo. Flash chromatography (pet. ether, pet. ether 

[98:2], [95:5], [9:1]) afforded the title compound as a colourless oil (0.02 g, 47%); R f 

0.7 (pet. ether/ether 9:1); u m a x (thin film) 2955, 2927, 2871, 2833, 2362, 2337, 1510, 

1440, 1299, 1243, 1175, 1038, 910, 834 cm - 1; 5 H (500 MHz, CDCI3) 7.02 (2H, d, J 9, 

Ar-H), 6.80 (2H, d,J9, Ar-H), 5.68 (1H, ddd, J 17, 11, 10, 2-C//=CH2), 5.00 (1H, d, J 

11, 4-H), 4.85 (1H, d, J11, 2-CH=CMf), 4.82 (1H, d, J17, 2-CH=CH//), 3.78 (3H, s, -

OC//3), 2.55 (2H, dd, J 14, 6, \-H2), 2.44 (1H, m, 2-H), 2.24 (1H, m, 3-H), 1.73 (3H, s, 

6-H), 1.57 (3H, s, 5-C//3), 0.92 (3H, d, J 7, 3-CH3); bc (126 MHz, CDC1 3 ) 157.5 

(CH 3 0-Ar-Q, 139.4 (2-CH=CH2), 133.2 (ipso-Ar-Q, 131.2 (5-Q, 130.0 (Ar-Q, 127.3 

(4-Q, 115.9 (2-CH=CH2), 113.4 (Ar-Q, 55.2 (OCH 3), 51.9 (2-Q, 38.2 (1-Q, 35.3 (3-

Q , 26.0 (6-Q, 19.5 (3-CH3X 18.1 (5-CH3); m/z (CI) 262 (MNH 4

+ , 15%), 245 ( M + , 

65%), 161 (10%), 121 (100%); HRMS (ES+) Found M + , 245.1896 (C , 7 H 2 4 0 requires 

245.1900). 

6.4.1.2 Standard procedure for the formation of dimethyl acetals 

Trimethylorthoformate (109.8 mmol) was added to a solution of aldehyde (36.6 mmol), 

p-toluenesulfonic acid (3.7 mmol) and methanol (98.9 mmol) at room temperature and 

198 



under argon. The solution was stirred for 15 h. An excess of sodium bisulfite was then 

added and the mixture stirred for 45 mins. The mixture was then filtered through celite, 

washed with ether, concentrated and dried in vacuo to afford the desired dimethyl 

acetals. 

4-Trifluoromethylbenzaldehyde dimethyl acetal, 338 

OMe 

Following the standard procedure outlined on page 198, trifiuoromethylbenzaldehyde (5 

ml, 36.6 rnmol) was transformed into the title compound which was isolated as a pale 

yellow oil (6.9 g, 85%); 5 H (500 MHz, CDC13) 7.65-7.56 (4H, m, Ar-H), 5.44 (1H, s, 

C//(OCH 3) 2), 3.33 (6H, s, CH(OC// 3) 2); o F (300 MHz, CDC13) -63.0 (3F, s, Ar-CF 3); all 

data agree with those reported in the literature.189 

Dimethoxymethylcyclohexane, 341 

Following the standard procedure outlined on page 198, 4-cyclohexane-carboxaldehyde 

(2.2 ml, 112.2 mmol) was transformed into the title compound which was isolated as a 

semi solid (2.0 g, 71%); 5 H (500 MHz, CDC13) 3.98 (1H, d, J l , C//(OCH 3) 2), 3.33 (6H, 

s, CH(OC# 3) 2), 1.75-1.58 (6H, m, C 6Hn), 1.25-0.95 (5H, m, C 6 H n ) ; 5 C (126 MHz, 

CDC13) 108.8 (CH(OCH 3) 2), 53.8 (CH(OCH 3) 2), 40.3, 28.3, 26.6, 26.0 (C 6 Hi,); all data 

agree with those reported in the literature.190 

XT OMe 

OMe 

a" OMe 
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l-(Dimethoxymethyl)-4-nitrobenzene, 340 

OMe 

XT ^5 

0,N 

OMe 

Following the standard procedure outlined on page 198, 4-nitrobenzaldehyde (1.0 g, 6.6 

mmol) was transformed into the title compound which was isolated as a yellow oil (1.3 

g, 62%); i w (thin film) 1519 (N0 2 stretch), 1340 (N0 2 stretch), 1204, 1098, 1051, 

985, 897, 852, 828 cm - 1; 8 H (500 MHz, CDC13), 8.22 (2H, d, J 9, Ar-#), 7.64 (2H, d, J 

9, Ax-H), 5.48 (1H, s, C//(OCH 3) 2)), 3.34 (6H, s, CH(OC// 3) 2); 5c (126 MHz, CDC13) 

147.9 (ipso-Ar-Q, 145.0 (ipso-Ax-C), 127.8 (Ar-Q, 123.4 (Ar-C), 101.5 (CH(OCH 3) 2), 

52.7 (CH(OCH 3) 2); all data agree with those reported in the literature.191 

2-Phenyl-l,3-dioxane, 339 

Following the standard procedure outlined on page 198, benzaldehyde (5.0 ml, 49.1 

mmol) was transformed into the title compound which was isolated as a colourless oil 

(2.9 g, 36%); 8H (500 MHz, CDC13) 7.49-7.46 (2H, m, Ar-H), 7.37-7.34 (3H, m, Ar-H), 

5.51 (1H, s, 2-H), 4.30-4.25 (2H, m, 0-CH 2 CH 2 C// 2 -0), 4.02-3.99 (2H, m, O-

C// 2CH 2CH 2-0), 2.22 (1H, m, 0-CH 2CH//CH 2-0), 1.45 (1H, m, 0-CH 2C//HCH 2-0); 

5 C (126 MHz, CDC13) 138.7 (ipso-Ar-Q, 128.8 (Ar-Q, 128.2 (Ar-Q, 126.0 (Ar-Q, 

101.7 (2-Q, 67.4 (0-CH 2CH 2CH 2-0), 25.8 (0-CH 2 CH 2 CH 2 -0); all data agree with 

those reported in the literature.192 

J 'o 

CT 
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l-Dimethoxymethyl-4-methylbenzene 

OMe 

XT OMe 

Following the standard procedure outlined on page 198, 4-tolualdehyde (4.9 ml, 41.6 

mmol) was transformed into the title compound which was isolated as a orange oil (7.1 

g, 99%); 5 H (500 MHz, CDC13) 7.35 (2H, d, J 9, Ax-H), 7.19 (2H, d, J 9, Ar-H), 5.38 

(1H, s, C//(OCH 3) 2), 3.33 (6H, s, CH(OC// 3) 2), 2.36 (3H, s, Ar-C// 3 ); 6 C (126 MHz, 

CDC13) 138.1 (ipso-Ar-Q, 135.1 (ipso-Ar-Q, 128.8 (Ar-Q, 126.5 (Ar-Q, 103.1 

(CH(OCH 3) 2), 52.5 (CH(OCH 3) 2), 21.1 (Ar-CH 3); all data agree with those reported in 

the literature.189 

4,6-Dimethyl-2-phenyl-l,3-dioxane 

Benzaldehyde (0.5 ml, 4.8 mmol) and (i??J/?)-(-)-2,4-pentanediol (0.5 g, 4.8 mmol) were 

dissolved in benzene (5 ml). /?-Toluenesulfonic acid (0.01 g, 0.05 mmol) was added and 

the solution refluxed using a Dean-Stark apparatus for 8.5 h. The solution was diluted 

with ether ( 3 x 1 0 ml) and washed with aq. NaHC0 3 and brine. The combined organic 

layers were dried over MgS0 4 , filtered, concentrated and dried in vacuo. Flash 

chromatography (pet. ether/ethyl acetate 20:1, 10:1) followed by Kugelrohr distillation 

gave the title compound as a colourless oil (0.7 g, 75%); Rf 0.5 (pet. ether/ethyl acetate 

10:1); 5 H (300 MHz, CDC13) 7.52-7.50 (2H, m, Ar-H), 7.37-7.34 (3H, m, Ar-H), 5.84 

(1H, s, 2-H), 4.51 (1H, m, 5-HH), 4.22 (1H, m, 5-HH), 2.05 (1H, m, 6-H), 1.50 (3H, d, 

J 7, 6-CH3), 1.47 (1H, m, 4-H), 1.30 (3H, d, J l , 4-CH); 6 C (126 MHz, CDC13) 139.4 

10 

CT St 
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(ipso-Ar-Q, 128.9 (Ar-Q, 128.5 (Ar-Q, 126.5 (Ar-C), 94.3 (2-C), 68.9 (6-Q, 68.4 (4-

Q , 37.0 (5-Q, 22.2 (6-CH3), 17.5 (4-CH3); all data agree with those reported in the 

literature.193 

6.4.2 Cyclic substrates 

(l/f5,2«5^/W,45if/5/>/?5/^)4<l-Fluoro-2,2,2-trimethyl-l-phenyldisiIyl)-4-(4-

methoxyphenyl)-2-methyl-3-vinyl-l ,2,3>4-tetrahydronaphthalen-l -yl, 321B 

Following stage 1 of the standard procedures outlined on page 181, silacyclohex-4-ene 

206 (0.6 g, 1.8 mmol) was combined with 4-methoxybenzaldehyde dimethylacetal to 

give the title compound as a colourless gum (0.4 g, 44%); Rf 0.3 (pet. ether/ether 95:5) 

as a mixture of diastereoisomers in the ratio 5:1 by NMR; u m a x (thin film) 1609, 1509, 

1487, 1442, 1427, 1301, 1243, 1175, 1105, 1036, 912, 835 cm"1; NMR data given for 

major isomer 5 H (500 MHz, CDC13) 7.66-7.64 (2H, m, Ar-H), 7.44-7.42 (3H, m, Ai-H), 

7.38 (1H, m, Ar-H), 7.25 (1H, m, Ar-H), 6.98-6.96 (3H, m, Ar-H), 6.80-6.77 (3H, m, 

Ar-H), 5.71 (1H, m, 3-C//=CH2), 4.87 (1H, d, J 10, 3-CH=C//H), 4.76 (1H, d, J 17, 3-

CH=CH//), 3.87 (1H, d, J 11, 4-H), 3.78 (3H, s, Ar-(OC# 3)), 3.25 (1H, m, \-H), 2.62 

(1H, m, 3-H), 2.31 (1H, m, 2-H), 1.05 (3H, d, J 7, 2-C// 3), 0.14 (9H, s, Si(C// 3) 3); 5 C 

(126 MHz, CDC13) 157.8 (ipso-Ar-Q, 140.2 (3-CH=CH2), 139.9 (ipso-Ar-Q, 138.0 

(ipso-Ar-Q, 136.8 (Ar-Q, 136.4 (Ar-Q, 135.2 (ipso-Ar-Q, 133.2 (Ar-Q, 130.9 (Ar-

Q, 130.4 (Ar-Q, 129.7 (Ar-Q, 128.2 (Ar-Q, 125.9 (Ar-Q, 125.5 (Ar-Q, 116.0 (3-

CH=CH 2), 113.5 (Ar-Q, 55.1 (Ar-(OCH3)), 52.7 (3-Q, 46.3 (4-Q, 38.7 (1-Q, 34.4 (2-

Q , 12.8 (2-CH3), -1.4 (Si(CH 3) 3); 5 F (300 MHz, CDC13) -183.5 (IF, d, J1, Si-F); m/z 

4 .Ph 
Si 

S Me 
8a 

8 
4a 

MeO 

202 



(ES+) 497 (MNa +), 971 (2NT -20CH 3); HRMS (ES+) Found 497.2107 (C29H35Si2OFNa 

requires 497.2103). 

(1^5,2^,3i^,4SJ?)-4-(4-Methoxy-phenyI)-2-methyl-3-vinyl-l,2,3,4-

tetrahydronaphthalen-l-ol, 343 

Following stage 2 of the standard procedures outlined on page 181, fluorosilane 321Ba 

(0.37 g, 0.7 mmol) was transformed into the title compound which was isolated as a 

white solid (0.085 g, 36%); R f 0.1 (pet. ether/ether 9:1); m.p. 122-124 °C; /u m a x (thin 

film) 3350 (broad-OH), 2961,2907, 1611, 1511, 1451, 1301, 1261, 1245, 1177, 1115, 

1026, 913 c m 1 ; 5 H (500 MHz, CD 3COCD 3) 7.68 (1H, d, J 10, %-H), 7.20 (1H, m, 1-H), 

7.09-7.04 (3H, m, 6-H, Ar-H), 6.86 (2H, d, J 11, Ai-H), 6.75 (1H, d, J 10, 5-H), 5.96 

(1H, ddd, J 20, 11, 9, 3-C//=CH2), 5.14 (1H, m, l-H), 4.91 (2H, m, 3-CH=C//2), 4.41 

(1H, d, J 8, -OH), 3.99 (1H, d, J 12, 4-H), 3.79 (3H, s, Ar-OC# 3), 2.82 (1H, m, 3-H), 

2.35 (1H, m, 2-H), 0.94 (3H, d, J 9, 2-C// 3); 5 C (126 MHz, CD 3COCD 3) 159.7 (ipso-Ai-

Q, 142.0 (3-CH=CH2), 140.8 (Ar-Q, 140.5 (Ar-Q, 139.6 (ipso-Ar-Q, 136.7 (Ar-Q, 

136.3 (Ar-Q, 131.9 (Ar-Q, 128.1 (8-Q, 128.0 (7-Q, 116.5 (3-CH=CH2), 115.1 (Ar-C), 

72.8 ( l - O , 56.1 (Ar-OCH 3), 51.9 (3-Q, 48.3 (4-Q, 41.0 (2-Q, 8.7 (2-CH3); m/z (ES+) 

317 (MNa^; Elemental analysis [Found C, 81.15 %; H, 7.59 %; required for C 2 0 H 2 2 O 2 : 

C, 81.59 % ; H , 7.53%]. 

Further elution gave a mixture of diastereoisomers as a colourless oil (0.059 g, 25%); all 

data for the major isomer agree with that given above. 

OH 
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8 
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(l^l^S/fS^if^-l-Methyl^-Cl-phenylethenyO-S-ethenyl-l^^^-

tetrahydronaphthalen-l-ol, 322B 

OH 
2 

8a 
8 

4a 

Following the standard procedure outlined on page 181, silacyclohex-4-ene 206 (0.1 g, 

0.3 mmol) was combined with cinnemaldehyde dimethylacetal 344 to give, without 

purification of the fluorosilane, the title compound as a white solid (0.016 g, 19%); m.p. 

119-121 °C; R f 0.3 (pet. ether/ether 9 : l ) ; ;u m a x (thin film) 3428 (broad-OH), 2958, 2365, 

2357, 1599, 1493, 1448, 1384, 1259, 1091, 1029, 964, 915, 795, 759, 692 cm"1; 5 H (500 

MHz, CDC13) 7.67 (1H, d, J7 , Ar-H), 7.44 (1H, d, J l , Ar-H), 7.32 (1H, t, J l , Ar-H), 

7.25-7.19 (6H, m, Ar-H), 6.56 (1H, d J 16, 4-CH=C#Ar), 6.14 (1H, dd, J 16, 10, 4-

Ci/=CHAr), 6.00 (1H, ddd, J 17, 10, 8, 3-C#=CH 2), 5.14 (1H, d, J 17, 3-CH=CH//), 

5.07 (1H, d, J 8, 3-CH=C//H), 4.98 (1H, t, J5, l-H), 4.36 (1H, d, J5 , -OH), 3.60 (1H, t, 

J 9, 4-H), 2.64 (1H, m, 3-H), 2.36 (1H, m, 2-H), 0.92 (3H, d, J l , 2-CH3); 5 C (126 MHz, 

CDCI3) 140.2 (4a-Q, 139.2 (8a-C), 137.9 (Ar-Q, 136.6 (Ar-Q, 133.8 (3-CH=CH2), 

131.9 (4-CH=CHAr), 129.0 (4-CH=CHAr), 128.7 (Ar-Q, 127.3 (Ar-Q, 126.7 (Ar-Q, 

126.5 (Ar-Q, 126.4 (Ar-Q, 126.1 (Ar-Q, 115.1 (3-CH=CH2), 71.2 (1-Q, 47.5 (3-Q, 

45.2 (4-Q, 38.9 (2-Q, 7.6 (2-CH3); m/z (EI) 290 (M*); HRMS (EI) Found M + , 

290.1663 (C 2 iH 2 2 0 requires 290.1665). 

Further elution gave a mixture of diastereoisomers as a white solid (0.022 g, 25%); all 

data for the major isomer agree with that given above. 
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(3,3-Dimethoxy-propenyl)-benzene, 344 

OMe 

OMe 

Following the standard procedure outlined on page 198, toms-cinnamaldehyde (5.0 ml, 

39.7 mmol) was transformed into the title compound which was isolated as a yellow oil 

(6.7 g, 95%); 5 H (500 MHz, CDC13) 7.51-7.49 (2H, m, Ar-H), 7.38-7.34 (2H, m, Ar-H), 

7.29 (1H, m, Ar-H), 6.74 (1H, d, J 16, Ar-C//=CH), 6.22 (1H, dd, J 16, 5, Ar-CH=C#), 

4.95 (1H, d, J 5, C//(OCH 3) 2), 3.31 (6H, s, CH(OC// 3) 2); 5 C (126 MHz, CDC13) 136.6 

(ipso-Ar-Q, 133.1 (CH(OCH 3) 2), 128.8 (Ar-Q, 128.2 (Ar-C), 126.9 (Ar-Q, 126.5 (Ar-

CH=CH), 103.1 (Ar-CH=CH), 52.1 CH(OCH 3) 2); all data agree with those reported in 

the literature.194 

Piperonal dimethyl acetal 

Following the standard procedure outlined on page 198, piperonal (5.00 g, 33.30 mmol) 

was transformed into the title compound which was isolated as a blue oil (5.92 g, 91%); 

5 H (500 MHz, CDC13) 6.94-6.92 (2H, m, Ar-H), 6.79 (1H, m Ar-H), 5.96 (2H, s, O-

CH2-0), 5.28 (1H, s, C//(OCH 3) 2), 3.31 (6H, s, CH(OGtf 3) 2); all data agree with those 

reported in the literature.195 

OMe 

XT o OMe 
< 

O 
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6.5 Total Synthesis of Epipicropodophyllotoxin 

Benzo[</][l,3]dioxol-5-yl(l,l,l»3)3,3-hexamethyl-2-phenyltrisilan-2-yl)methanol, 

481 

Following the standard procedure outlined on page 161, phenyltris(trimethylsilyl)silane 

95 (13.0 g, 40.0 mmol) was combined with piperonal to give the title compound as a 

yellow solid (6.5 g, 40%); m.p. 80-82 °C; R f 0.3 (pet. ether/ether 9:1); u m a x (thin film) 

3564 (broad-OH), 2952, 2898, 1499, 1482, 1244, 1095, 1036, 1012, 929, 912, 834, 810, 

692 cm"1; 5 H (400 MHz, CDC13) 7.57-7.53 (2H, m, Ar-H), 7.39-7.30 (3H, m, Ar-H), 

6.70-6.61 (3H, m, Ar-H), 5.90 (2H, s, -OC// 20-), 5.10 (1H, s, SiC//), 0.16 and 0.13 

(each 9H, s, Si(C// 3) 3); 8 C (126 MHz, CDC13) 147.5 (Ar-Q, 145.7 (Ar-Q, 139.6 (Ar-

Q, 136.1 (Ar-Q, 135.1 (Ar-Q, 128.4 (Ar-Q, 127.9 (Ar-Q, 118.1 (Ar-Q, 107.9 (Ar-

Q, 106.3 (Ar-Q, 100.7 (-OCH 20-), 69.6 (SiCH), 0.1 (Si(CH 3) 3) 0.07 (Si(CH 3) 3); m/z 

(ES+) 425 (MNa +); HRMS (ES+) Found MNa + , 425.1390 (C 2 0 H 3 0 Si 3 Na requires 

425.1395); all data agree with those reported by Pullin. 1 8 0 

(Zs)-ter/-Butyldimethyl(penta-2,4-dienyloxy)silane, Table 9, entry 1 

To a solution of 2,4-pentadien-l-ol 483 (2.2 g, 26 mmol) in dry DCM (15 ml) was 

added imidazole (7 g, 104 mmol) and tert-butylchlorodimethylsilane (5.9 g, 39 mmol). 

The solution was stirred for 2 h at room temperature then diluted with Et 2 0 and washed 

with water (15 ml) and brine (15 ml). The organic layer was dried over MgSC>4, filtered, 

concentrated and dried in vacuo. Flash chromatography (pet. ether/ether [9:1], [4:1]) 

gave the title compound as a colourless oil (5.0 g, 95%); Rf 0.4 (pet. ether/ether 9:1); 8H 

OH 
M^Si 

O s 
> Me„Si 

Ph O 
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(500 MHz, CDCI3) 6.36 (1H, ddd, J 16, 10, 9, 4-H), 6.25 (1H, m, 3-H), 5.79 (1H, dt, J 

15, 10, 5, 2-H), 5.20 (1H, d, J 16, 5-HR), 5.07 (1H, d, J 10, 5-HH), 4.23 (2H, d,J5, 1-

C// 2), 0.93 (9H, s, SiC(C// 3) 3), 0.10 (6H, s, Si(C// 3) 2 'Bu); 5 C (126 MHz, CDC13) 136.8 

(4-C), 133.4 (2-Q, 130.6 (3-Q, 116.9 (5-Q, 63.6 (1-Q, 26.2 (SiC(CH 3) 3), 18.7 

(SiC(CH 3) 3), -5.0 (Si(CH3)2'Bu); all data agree with those reported by Pullin. 1 8 0 

(£)-tert-Butyl(penta-2,4-dienyloxy)diphenylsilane, Table 9, entry 2 

^ 4 

To a solution of 2,4-pentadien-l-ol 483 (2.2 g, 26 mmol) in dry DCM (15 ml) was 

added imidazole (7 g, 104 mmol) and tert-butylchlorodiphenylsilane (5.9 g, 39 mmol). 

The solution was stirred for 2 h at room temperature then diluted with Et 2 0 and washed 

with water (15 ml) and brine (15 ml). The organic layer was dried over MgS0 4 , filtered, 

concentrated and dried in vacuo. Flash chromatography (pet. ether/ether [9:1], [4:1]) 

gave the title compound as a colourless oil (4.7 g, 56%); Rf 0.3 (pet. ether/ether 9:1); 

u m a x (thin film) 3070, 2957, 2930, 2856, 1427, 1112, 1003, 822, 701 cm - 1; 5 H (500 

MHz, CDC13) 7.75-7.73 (4H, m, Ar-H), 7.49-7.42 (6H, m, Ar-H), 6.45-6.34 (2H, m, 3-

H, 4-H), 5.84 (1H, dt,./ 13, 10, 5, 2-H), 5.23 (1H, d, J 17, 5-HH), 5.12 (1H, d, J 10, 5-

HH), 4.30 (2H, d, J4, \-CH2), 1.13 (9H, s, SiC(C// 3) 3); 8 C (126 MHz, CDC13) 136.9 (4-

Q , 135.8 (Ar-Q, 133.0 (2-Q, 130.5 (3-Q, 129.9 (Ar-Q, 128.0 (Ar-Q, 127.9 (Ar-Q, 

116.9 (5-Q, 64.2 (1-Q, 27.1 (SiC(CH3)3), 19.5 (SiC(CH3)3); m/z (ES+) 345 (MNa +); 

HRMS (ES+) Found MNa +, 345.1647 (C 2iH 2 6SiONa requires 345.1645). 
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(£)-Penta-2,4-dienyl ethanoate, 484 

5 l / O A c 

A solution of 2,4-pentadien-l-ol 483 (0.4 g, 5 mmol) in DCM (5 ml) was treated 

consecutively with DIPEA (3.2 ml, 19.0 mmol), acetic anhydride (0.9 ml, 9.5 mmol) 

and a catalytic amount of DMAP. The reaction mixture was stirred at room temperature 

for 45min after which time aq. NH4CI (10 ml) was added. The aqueous layer was 

separated and extracted with DCM (3 x 20 ml). The combined organic layers were dried 

over MgS0 4 , filtered, concentrated and dried in vacuo. Flash chromatography (pet. 

ether; pet. ether/ether [95:5], [9:1]) afforded the title compound as a colourless oil (0.2 

g, 32%); R f 0.3 (pet. ether/ether 9:1); vmsx (thin film) 3090, 3020, 2954, 2928, 1735 

( C O ) , 1248, 1025, 1005, 955 cm"1; 5 H (500 MHz, CDCI3) 6.40-6.33 (2H, m, 3-H, 4-H), 

5.78 (1H, m, 2-H), 5.24 (1H, d, J 17, 5-HR), 5.17 (1H, d, J 10, 5-HH), 4.60 (2H, d,J6, 

I-C//2), 2.08 (3H, s, -(C=0)CH3); 5 C (126 MHz, CDC13) 170.5 (C=0), 136.4 (4-Q, 

135.5 (2-Q, 127.4 (3-Q, 119.3 (5-Q, 64.1 (1-Q, 20.5 ((C=0)CH 3); all data agree with 

those reported in the literature.196 

Benzo [d] [1,3] dioxol-5-yl(l,l ,1,3,3>3-hexamethyl-2-pheny ltrisilan-2-y l)methy 1 

ethanoate, 485 

M-Butyl lithium (1.6M sol. in hexanes, 1.5 ml, 1.8 mmol) was added to a stirred solution 

of silyl alcohol 481 (0.3 g, 0.7 mmol) and diene 484 (0.2 g, 1.4 mmol) in dry ether (7 

ml) at room temperature. The mixture was stirred for 2 h after which time aq. NH4CI 

(20 ml) was added. The aqueous layer was separated and extracted with ether ( 3 x 1 0 

ml). The combined organic layers were dried over MgSC>4, filtered, concentrated and 

OAc 

roc Me„Si 
s O 

> M e j S r I 
Ph O 
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dried in vacuo. Flash chromatography (pet. ether; pet. ether/ether [95:5], [9:1]) afforded 

the title compound as a colourless oil (0.1 g, 40%); Rf 0.3 (pet. ether/ether 9:1); vmax 

(thin film) 3069, 2954, 2893, 1733 (C=0), 1503, 1488, 1442, 1367, 1245, 1041, 836 

cm"1; 6 H (400 MHz, CDC13) 7.58-7.53 (2H, m, Ar-H), 7.39-7.30 (3H, m, Ar-H), 6.70-

6.61 (3H, m, Ar-H), 6.15 (1H, s, SiCH), 5.87 (2H, s, -OC// 20-), 2.09 (3H, s, -

(C=0)C// 3) 0.16 and 0.13 (each 9H, s, Si(C// 3) 3); 6 C (126 MHz, CDC13) 170.5 (C=0), 

147.4 (Ar-Q, 146.0 (Ar-Q, 136.0 (Ar-Q, 135.4 (Ar-Q, 134.2 (Ar-Q, 128.6 (Ar-Q, 

127.9 (Ar-Q, 119.3 (Ar-Q, 108.0 (Ar-Q, 106.9 (Ar-Q, 100.8 (-OCH 20-), 70.6 

(SiCH), 21.3 ((C=0)CH 3), -0.05 (Si(CH 3) 3) -0.2 (Si(CH 3) 3); Elemental analysis [Found 

C, 58.94 %; H, 7.44 %; required for C 2 2 H 3 2 0 4 Si 3 : C, 59.41 %; H, 7.25 % ] 

(15^,25i?,3/f^)-2-(Benzo[</][l,3]dioxol-5-yl)-3-((/er/-butyldiphenyIsilyloxy)methyl)-

l-phenyl-l-(trimethylsilyl)-silacyclohex-4-ene, Table 10, entry 2 

Following the standard procedure for silene generation and cyclisation outlined on page 

162, silyl alcohol 481 (1.0 g, 2.5 mmol) was transformed into the title compound which 

was isolated as a colourless oil (0.9 g, 55%), as a complex mixture of diastereoisomers; 

R f 0.2 (pet. ether); x w (thin film) 3070, 3018, 2955, 2896, 2858, 2098, 1602, 1503, 

1485, 1427, 1246, 1111, 1041, 837, 699 cm"1; NMR data given for major isomer 5 H 

(500 MHz, CDC13) 7.57-7.50 (5H, m, Ar-H), 7.43-7.24 (10H, m, Ar-H), 6.64 (1H, m, 

Ar-H), 6.56 (1H, s, Ar-H), 6.48 (1H, d, J 6, Ar-H), 6.10 (1H, m, 5-H), 5.93 (2H, s, -

OCtf 2 0-) , 5.88 (1H, m, 4-H), 3.51 (1H, dd, J 10, 5, 3-C//HOSi(Ph)2'Bu), 3.44 (1H, dd, 

J 10, 5, 3-CHi/OSi(Ph)2'Bu), 2.81 (1H, m, 3-H), 2.72 (1H, d, J 9, 2-H), 1.84 (1H, m, 6-

HR), 1.67 (1H, m, 6-HH), 1.01 (9H, s, SiC(C// 3) 3), -0.04 (9H, s, Si(C// 3) 3); 6 C (126 

TBDPSO O 

O 

Si-«SiMe3 
6 Ph 
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MHz, CDCI3) 147.8 (Ar-C), 147.5 (Ar-C), 145.8 (Ar-C), 144.9 (Ar-Q, 144.9 (Ar-Q, 

138.4 (ipso-Ar-Q, 136.4 (Ar-Q, 135.8 (Ar-Q, 134.7 (Ar-Q, 132.7 (4-Q, 129.7 (Ar-

Q , 128.8 (Ar-Q, 127.9 (5-Q, 126.3 (Ar-Q, 120.9 (Ar-Q, 118.6 (Ar-Q, 108.8 (Ar-Q, 

108.4 (Ar-Q, 107.9 (Ar-Q, 106.8 (Ar-Q, 100.9 (-OCH 20-), 66.6 (3-CH2OSi(Ph)2'Bu), 

44.9 (3-Q, 33.4 (2-Q, 27.1 (SiC(CH 3) 3), 19.5 (SiC(CH3)3), 9.5 (6-Q, -1.5 (Si(CH 3) 3); 

m/z (ES+) 657 (MNa +); HRMS (ES+) Found MNa +, 657.2655 (C 3 8 H 4 6 Si 3 0 3 Na requires 

657.2647). 

(15'/f,25,/?3/^-2-(Benzo[<fl[l,3]dioxol-5-yl)-3-((te/-r-butyldimethylsilyloxy)methyl)-

l-phenyl-l-(trimethylsi!yl)-silacyclohex-4-ene, 486 

Following the standard procedure for silene generation and cyclisation outlined on page 

162, silyl alcohol 481 (1.0 g, 2.5 mmol) was transformed into the title compound which 

was isolated as a colourless oil (0.8 g, 60%), along with small amounts of isomers in the 

ratio 80:13:3:4 by GCMS; R f 0.2 (pet. ether); NMR data given for major isomer 6 H (500 

MHz, CDC13) 7.27-7.26 (5H, m, Ar-H), 6.70 (1H, m, Ar-H), 6.63 (1H, d, J 2, Ar-H), 

6.55 (1H, m, Ar-H), 6.03 (1H, m, 5-H), 5.92 (2H, s, -OCH20-), 5.80 (1H, m, 4-H), 3.42 

(1H, dd, J 10, 5, 3-C//HOSi(CH3)2'Bu), 3.25 (1H, dd, J 10, 5, 3-CH//OSi(CH3)2'Bu), 

2.73 (1H, m, 3-H), 2.54 (1H, d, J 9, 2-H), 1.80 (1H, m, 6-HH), 1.64 (1H, m, 6-HH), 

0.83 (9H, s, SiC(C// 3) 3), -0.05 (9H, s, Si(C// 3) 3), -0.1 (6H, s, Si(C# 3) 2); o c (126 MHz, 

CDC13) 147.9 (Ar-Q, 144.9 (Ar-Q, 138.7 (ipso-Ar-Q, 136.7 (Ar-Q, 134.6 (Ar-Q, 

132.6 (4-Q, 128.8 (Ar-Q, 127.9 (Ar-Q, 125.9 (5-Q, 120.9 (Ar-Q, 108.6 (Ar-Q, 

108.2 (Ar-Q, 100.8 (-OCH 20-), 65.6 (3-CH2OSi(CH3)2'Bu), 45.0 (3-Q, 33.5 (2-Q, 

26.1 (SiC(CH 3) 3), 18.5 (SiC(CH 3) 3), 9.4 (6-Q, -1.0 (Si(CH 3) 3), -5.2 (Si(CH 3) 2); m/z (EI) 

TBSO O 

O 

Si -SiMe Si-SiMe : 

6 Ph 
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510 ( M + , < 1 % ) , 437 ( M + -Si(CH 3) 3, 45%) 135 (90%), 73 (Si(CH 3) 3, 100%); all data 

agree with those reported by Pullin. 1 8 0 

(15J?,25^,3^-2-(Benzo[rf][l,3]dioxol-5-yl)-l-phenyl-l-(trimethylsilyl)-3-

(hydroxymethyl)-silacyclohex-4-ene, 488 

HO O 

O 

Si -S iMe 
Ph 

To a solution of hydroxyl protected silacycle 486 (0.2 g, 0.4 mmol) in THF:MeOH (1:1, 

2 ml) was added a catalytic amount of /7-toluenesulfonic acid and 0.5M aq. HC1. The 

solution was stirred for 1 h at room temperature then diluted with Et20 and washed with 

water (5 ml). The organic layer was dried over MgSC«4, filtered, concentrated and dried 

in vacuo. Flash chromatography (pet. ether/ether [9:1], [4:1], [7:3]) gave the title 

compound as a colourless oil (0.1 g, 64%); R f 0.3 (pet. ether/ether 7:3); vmax (thin film) 

3508-3192 (broad-OH), 3016, 2950, 2882, 1606, 1502, 1484, 1246, 1041, 835 cm"1; 

NMR data given for major isomer 6 H (500 MHz, CDC13) 7.29-7.28 (5H, m, Ar-H), 6.72 

(1H, d, J 8, Ar-H), 6.65 (1H, s, Ar-H), 6.57 (1H, d, J 8, Ar-H), 6.15 (1H, m, 5-H), 5.95 

(2H, s, -OC// 20-), 5.76 (1H, m, 4-H), 3.55 (1H, dd, J10, 5, 3-C#HOH), 3.45 (1H, dd, J 

10, 5, 3-CH//OH), 2.82 (1H, m, 3-H), 2.63 (1H, d, J 9, 2-H), 1.87 (1H, m, 6-HH), 1.68 

(1H, m, 6-HH), -0.02 (9H, s, Si(C// 3) 3); 5 C (126 MHz, CDC13) 148.0 (Ar-Q, 145.2 (Ar-

Q , 137.9 (ipso-Ar-Q, 134.6 (Ar-Q, 134.2 (Ar-Q, 131.6 (4-Q, 128.9 (Ar-Q, 128.1 

(Ar-Q, 127.9 (5-Q, 121.1 (Ar-Q, 108.8 (Ar-Q, 108.6 (Ar-Q, 101.0 (-OCH 20-), 65.6 

(3-CH2OH), 45.4 (3-Q, 38.8 (2-Q, 9.8 (6-Q, -0.9 (Si(CH 3) 3); 6 s i (100 MHz, CDC13) -

18.96, -22.60; m/z (ES+) 419 (MNa +); HRMS (ES+) Found MNa +, 419.1473 

(C 2 2 H 2 8 Si 2 0 3 Na requires 419.1469). 
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(15^,25/f,3^-2-(Benzo[(/][l,3]dioxol-5-yl)-l-phenyl-l-(trimethylsilyl)-3-( 

acetoxymethyl)-silacyclohex-4-ene, 489 

A solution of hydroxysilacycle 488 (0.1 g, 0.3 mmol) in DCM (3 ml) was treated 

consecutively with DIPEA (0.18 ml, 1.0 mmol), acetic anhydride (0.05 ml, 0.5 mmol) 

and a catalytic amount of DMAP. The reaction was stirred at room temperature for 

45min after which time aq. NH4CI (10 ml) was added. The aqueous layer was separated 

and extracted with DCM (3 x 20 ml). The combined organic layers were dried over 

MgSC>4, filtered, concentrated and dried in vacuo. Flash chromatography (pet. ether; 

pet. ether/ether [9:1], [4:1]) afforded the title compound as a colourless oil (0.08 g, 

70%); R f 0.5 (pet. ether/ether 7:3); u m a x (thin film) 2955, 2884, 1720 (C=0), 1502, 

1484, 1439, 1285, 1246, 1160, 1041, 896, 835 cm"1; NMR data given for major isomer 

o H (500 MHz, CDC13) 7.30-7.25 (5H, m, Ar-H), 6.71 (1H, d, J 8, Ar-H), 6.62 (1H, s, 

Ar-H), 6.55 (1H, d, J 8, Ar-H), 6.11 (1H, m, 5-H), 5.94 (2H, s, -0C/ / 2 O) , 5.71 (1H, m, 

4-H), 4.00 (1H, dd, J 10, 5, 3-C#HO(C=0)CH 3), 3.81 (1H, dd, J 10, 5, 3-

CHM)(C=0)CH 3), 2.93 (1H, m, 3-H), 2.48 (1H, d, J 9, 2-H), 1.99 (3H, s, 3-

CH 2 0(C=0)C# 3 ) , 1.87 (1H, m, 6-HH), 1.69 (1H, m, 6-HH), -0.01 (9H, s, Si(Ctf 3) 3); 5 C 

(126 MHz, CDC13) 171.1 (3-CH 20(C=0)CH 3), 147.8 (Ar-C), 145.0 (Ar-C), 137.1 

(ipso-Ar-C), 136.4 (Ar-Q, 134.3 (Ar-Q, 133.9 (Ar-C), 130.8 (4-Q, 129.8 (Ar-C), 

127.8 (Ar-C), 127.2 (5-Q, 120.7 (Ar-C), 108.4 (Ar-C), 100.8 (-OCH 20-), 67.1 (3-

CH 20(C=0)CH 3), 41.2 (3-Q, 34.4 (2-C), 20.9 (3-CH 20(C=0)CH 3), 9.5 (6-C), -1.3 

(Si(CH 3) 3); m/z (ES+) 461 (MNa +); HRMS (ES+) Found M H + , 439.1758 (C 2 4 H 3 1 Si 2 0 4 

requires 439.1755). 
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(15^,25V?,3/f5)-2-(BenzoI</][l,3]dioxol-5-yl)-l-phenyl-l-(trimethylsilyl)-3-(methyl 

2,2-dimethylpropanoate)-silacyclohex-4-ene, 490 

A solution of hydroxysilacycle 488 (0.1 g, 0.3 mmol) in DCM (3 ml) was treated 

consecutively with DIPEA (0.18 ml, 1.0 mmol), pivaloyl chloride (0.06 ml, 0.5 mmol) 

and a catalytic amount of DMAP. The reaction was stirred at room temperature for 1 h, 

after which time aq. NH4CI (10 ml) was added. The aqueous layer was separated and 

extracted with DCM (3 x 20 ml). The combined organic layers were dried over MgSC>4, 

filtered, concentrated and dried in vacuo. Flash chromatography (pet. ether; pet. 

ether/ether [9:1], [4:1]) afforded the title compound as a colourless oil (0.07 g, 60%); Rf 

0.8 (pet. ether/ether 7:3); vmax (thin film) 2958, 2928, 2882, 1724 (C=0), 1612, 1501, 

1426, 1246, 1185, 1128, 1040, 905, 836 cm"1; NMR data given for major isomer 5 H 

(500 MHz, CDCI3) 7.28-7.21 (5H, m, Ar-H), 6.72 (1H, d, J 6, Ar-H), 6.63 (1H, s, Ar-

H), 6.55 (1H, d, J 6, Ar-H), 6.09 (1H, m, 5-H), 5.94 (2H, s, -OCH20-), 5.66 (1H, m, 4-

H), 4.00 (1H, dd, J 10, 5, 3-C//HO(C=0)C(CH 3) 3), 3.78 (1H, dd, J 10, 5, 3-

CH//0(C=0)C(CH 3) 3), 2.92 (1H, m, 3-H), 2.53 (1H, d, J10, 2-H), 1.86 (1H, m, 6-HH), 

1.69 (1H, m, 6-UH), 1.17 (9H, s, 3-CH 20(C=0)C(C// 3) 3), -0.01 (9H, s, Si(Ci/ 3) 3); 5 C 

(126 MHz, CDC1 3 ) 178.4 (3-CH 20(C=0)C(CH 3) 3), 147.8 (Ar-Q, 145.0 (Ar-Q, 137.2 

(ipso-Ar-C), 136.5 (Ar-Q, 134.3 (Ar-Q, 133.9 (Ar-Q, 130.9 (4-Q, 128.7 (Ar-Q, 

127.7 (Ar-Q, 127.1 (5-Q, 120.7 (Ar-Q, 108.5 (Ar-Q, 100.8 (-OCH 20-), 66.5 (3-

CH 20(C=0)C(CH 3) 3), 41.7 (3-Q, 38.8 (3-CH 2 0((>0)C(CH 3 ) 3 ), 34.3 (2-Q, 27.2 (3-

CH 20(C=0)C(CH 3) 3), 9.5 (6-Q, -1.3 (Si(CH 3) 3); m/z (ES+) 503 (MNa +); HRMS (ES+) 

Found M H + , 481.2228 (C 2 7 H 3 7 Si 2 0 4 requires 481.2225). 

PivO. O 

O 

Si-«SiMe 
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(3^5,45/?,55/?)-3-((^5)-Benzo[</j[l,3]dioxol-5-yl)-5-(3,4,5-trimethoxyphenyl)-4-

vinyltetrahydrofuran, 492 

Following the standard procedure outlined on page 181, hydroxysilacycle 488 (0.1 g, 

0.3 mmol) was combined with 3,4,5-trimethoxybenzaldehyde dimethylacetal 478 to 

give, without purification of the fluorosilane, the title compound as a white solid (0.02 

g, 20%); R f 0.2 (pet. ether/ether 1:1); m.p. 140-142 °C; v m a x (thin film) 3500-3184 

(broad-OH), 3006, 2983, 2884, 2361, 2245, 1592, 1504, 1488, 1418, 1357, 1247, 1129, 

1041, 1001 cm' 1; 5 H (500 MHz, CDC13) 6.89 (1H, s, Ai-H), 6.77 (2H, s, Ar-H), 6.48 

(2H, s, Ai-H), 5.97 (2H, s, -OCH20-), 5.69 (1H, ddd, J 17, 10, 10, 4-C#=CH 2), 5.11-

5.06 (3H, m, 4-CH=C//2, 5-/7), 4.47 (1H, dd, J 10, 2, 3-Ctf(OH)Ar), 3.84 (6H, s, Ar-

OC// 3), 3.82 (3H, s, Ar-OC// 3), 3.63 (2H, m, 2-H), 3.21 (1H, m, 4-H), 3.00 (1H, m, 3-

H), 2.10 (1H, d, J2, 3-CH(0//)Ar); 5 C (126 MHz, CDC13) 153.0 (q-Ax-C), \A1.1 (q-Ar-

Q , 136.9 (q-Ar-Q, 135.1 (q-Ax-C), 134.6 (Ar-C), 133.4 (4-CH=CH2), 128.2 (q-Ax-C), 

120.0 (Ar-C), 119.1 (4-CH=CH2), 108.5 (Ar-Q, 106.9 (Ar-Q, 103.1 (Ar-Q, 101.4 (-

OCH 20-), 84.7 (5-Q, 73.7 (3-CH(OH)Ar), 68.5 (2-Q, 61.1 (Ar-OCH 3), 56.3 (Ar-

OCH 3), 52.5 (3-Q, 51.8 (4-Q; m/z (ES+) 437 (MNa +), 851 (2MNa+); HRMS (ES+) 

Found MNa + , 437.1573 (C 2 3 H 2 6 0 7 Na requires 437.1571). 

o MeO O 

O MeO 
<5x. OH 

MeO 
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(l /?5,25i?3^,45/f/^5/S«)-l-(l-FIuoro-2,2,2-trimethyl-l-phenyldisilyI)-2-

(acetoxymethyl)-6,7-methylenedioxy-4-(3,4,5-trimethoxyphenyl)-3-vinyl-l,2,3?4-

tetrahydronaphthalene, 491 

Following stage 1 of the standard procedures outlined on page 181, acetyl-protected 

hydroxysilacycle 489 (0.1 g, 0.2 mmol) was combined with 3,4,5-

trimethoxybenzaldehyde dimethylacetal 478 to give the title compound as a colourless 

oil (0.06 g, 44%); Rf 0.1 (pet.ether/ether 7:3) as a mixture of diastereoisomers in the 

ratio 5:1 by NMR; u m a x (thin film) 3071, 3006, 2956, 2940, 2891, 2839, 2245, 1731 

( C O ) , 1591, 1504, 1484, 1422, 1329, 1236, 1129, 1041, 1002, 838 cm' 1; NMR data 

given for major isomer 5 H (500 MHz, CDC13) 7.47-7.36 (5H, m, Ax-H), 6.73 (1H, s, Ar-

H), 6.24 (1H, s, Ar-H), 6.13 (2H, s, Ar-H), 5.87 (1H, d, J 1.2, -OCHM)-), 5.85 (1H, d, J 

1.2, -OC//HO-), 5.77 (1H, ddd, J 17, 10, 10, 3-C//=CH2), 4.98 (1H, d, J 10, 3-

CH=C#H), 4.90 (1H, d, J 17, 3-CH=CHtf), 4.24 (1H, dd, J 11, 6, 2-C/fflOAc), 4.09 

(1H, dd, J 11, 6, 2-CHi/OAc), 3.83 (3H, s, Ar-OC// 3), 3.80 (6H, s, Ar-OC# 3), 3.55 

(1H, d,J8, 4-H), 3.21 (1H, m, \-H), 2.75 (1H, m, 3-H), 2.68 (1H, m, 2-H), 1.99 (3H, s, 

2-CH 20(C=0)C// 3), 0.18 (9H, s, Si(C# 3) 3); 6 C (126 MHz, CDC13) 170.8 (C=0), 153.0 

(q-Ai-C), 145.73 (q-Ar-Q, 145.70 {q-Ar-Q, 140.4 (ipso-Ax-Q, 138.6 (3-CH=CH2), 

136.5 (tf-Ar-Q, 133.0 (Ar-Q, 132.9 (Ar-C), 132.3 (^-Ar-Q, 129.7 (tf-Ar-Q, 128.7 (Ar-

Q , 128.1 (Ar-Q, 117.1 (3-CH=CH2), H0.2 (Ar-C), 108.2 (Ar-C), 106.0 (Ar-C), 100.7 

(-OCH 20-), 64.4 (2-CH2OAc), 60.8 (Ar-OCH 3), 56.1 (Ar-OCH 3), 50.4 (3-Q, 49.6 (4-

Q , 39.7 (2-Q, 35.6 (1-Q, 20.9 (2-CH 20(C=0)CH 3), -1.7 (Si(CH 3) 3); 5 F (300 MHz, 

CDC13) -182.5 (IF, d, J 8, Si-F); bsi (100 MHz, CDC13) 15.90, -19.33; m/z (ES+) 659 

OAc 
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(MNa +), 1295 (2MNa+); HRMS (ES+) Found M H + , 637.2455 (C34H4207FSi2 requires 

637.2448). 

(lJR5,25/f,3^S,45'i?)-2-(HydroxymethyI)-6,7-methylenedioxy-4-(3,4,5-

trimethoxyphenyl)-3-vinyl-l,2,3,4-tetrahydronaphthalen-l-ol, 487 

X)H 

Following the standard procedure outlined on page 181, acetyl-protected 

hydroxysilacycle 489 (2.0 g, 4.6 mmol) was combined with 3,4,5-

trimethoxybenzaldehyde dimethylacetal 478 to give, without purification of the 

fluorosilane, the title compound as a white solid (1.0 g, 53%); Rf 0.7 (ether); m.p. 177-

179 °C; 5 H (500 MHz, CDC13) 7.11 (1H, s, Ar-H), 6.40 (1H, s, Ar-H), 6.17 (2H, s, Ar-

H), 6.01 (1H, m, 3-C//=CH2), 5.95 (1H, d, J 1.4, -OCH//0-), 5.94 (1H, d, J 1.4, -

OC//HO-), 5.09 (1H, d, J18, 3-CH=C#H), 5.05 (1H, d, J7 , 3-CH=CH#), 5.02 (1H, m, 

\-H), 3.97 (1H, m, 2-C//HOH), 3.90-3.89 (2H, m, 2-CH//OH, 4-H), 3.83 (3H, s, Ar-

OCH3), 3.76 (6H, s, Ar-OC// 3), 2.89 (1H, m, l-O//), 2.70 (1H, m, 3-H), 2.47 (1H, m, 2-

H); bc (126 MHz, CDC13) 153.0 (^-Ar-Q, 147.4 (^-Ar-Q, 146.9 (q-Ar-C), 140.7 (ipso-

Ar-Q, 139.4 (3-CH=CH2), 136.5 (q-Ax-C), 131.9 (^-Ar-Q, 130.2 {q-Ax-Q, 116.3 (3-

CH=CH 2), 109.4 (Ar-Q, 107.7 (Ar-Q, 105.9 (Ar-Q, 101.0 (-OCH 20-), 70.4 (1-Q, 

62.0 (2-CH2OH), 60.8 (Ar-OCH 3), 56.1 (Ar-OCH 3), 49.5 (4-Q, 47.0 (3-Q, 42.0 (2-Q; 

all data agree with those reported by Pullin. 1 8 0 

OH 

8a 
MeO 8 

4a 

MeO O 
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(15/f,25if,3^45/f)-2-(Hydroxymethyl)-6,7-methylenedioxy-l-methoxy-4-(3,4,5-

trimethoxyphenyl)-3-vinyl-l,2,354-tetrahydronaphthalene, 500 

OH 

IL A .OMe 

A solution of naphthalenediol 487 (0.05 g, 0.1 mmol) in acetone (2 ml) was treated with 

/>-toluenesulfonic acid (0.002 g, 0.01 mmol) and molecular sieves at room temperature. 

The solution was then treated with 2,2-dimethoxypropane (0.1 ml, 1 mmol) and reacted 

for 1 h. The reaction mixture was then poured into H2O and extracted with Et 2 0 (3x10 

ml). The combined organic layers were dried over MgS0 4 , filtered, concentrated and 

dried in vacuo. Flash chromatography (pet. ether/ether [3:2], [1:1], [1:2], [2:3], [1:4], 

ether) afforded the title compound as a colourless oil (0.011 g, 20%); Rf 0.8 (ether); 

•Umax (thin film) 3420 (broad-OH), 3082, 3010, 2935, 2836, 1718, 1590, 1504, 1483, 

1419, 1329, 1234, 1129, 1041 cm' 1; 5 H (500 MHz, CDC13) 6.87 (1H, s, Ar-H), 6.39 (1H, 

s, Ar-H), 6.27 (2H, s, Ar-H), 5.94 (1H, d, J 1.5, -OCHi/O-), 5.93 (1H, d, J 1.5, -

OCflHO-), 5.80 (1H, ddd, J 17, 10, 8, 3-C//=CH2), 5.11 (1H, d, J 17, 3-CH=C//H), 

5.06 (1H, d, J 10, 3-CH=CH//), 4.48 (1H, d, J 7, l-H), 3.82 (3H, s, Ar-OC// 3), 3.78-

3.73 (9H, s, 2-CtfHOH, 4-H, Ar-OC// 3), 3.64 (1H, m, 2-CMfOH), 3.40 (3H, s, 1-

OCH3), 2.97 (1H, m, 3-H), 2.44 (1H, m, 2-H); 6 C (126 MHz, CDC13) 153.2 (q-Ar-Q, 

147.9 (q-Ar-Q, 146.9 (q-Ar-Q, 141.1 (ipso-Ar-Q, 138.7 (3-CH=CH2), 136.7 (q-Ar-Q, 

132.6 (q-Ar-C), 128.3 (q-Ar-C), 117.2 (3-CH=CH2), 110.1 (Ar-Q, 108.6 (Ar-Q, 106.4 

(Ar-Q, 101.3 (-OCH20-), 78.6 (1-Q, 63.1 (2-CH2OH), 61.1 (l-OCH 3 ), 56.3 (Ar-

OCH3), 54.5 (Ar-OCH 3), 49.5 (4-C), 45.9 (3-Q, 40.3 (2-Q; m/z (ES+) 451 (MNa +), 879 

(2MNa+); HRMS (ES+) Found MNa + , 451.1731 (C24H2807Na requires 451.1727). 

8a MeO 
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4a 

MeO O 
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(l^,25,^,3^S,45^)-6,7-(Methylenedioxy)-4-(3,4,5-trimethoxyphenyl)-l,2,2',3,3,,4-

hexahydro-naptho[2,2'-c]furan-1,3'-diol, 493 

o 
OH HO 

8a 
MeO 8 

4a 

MeO O 
OMe 

A solution of naphthalenediol 487 (0.03 g, 0.06 mmol) in THF:H 2 0 (1:1, 3 ml) was 

treated with 2,6-lutidine (0.01 ml, 0.1 mmol), osmium tetroxide (0.002 g, 0.006 mmol) 

and sodium periodate (0.05 g, 0.2 mmol) at room temperature. The solution was stirred 

for 1 h then poured into H2O and extracted with DCM (3 x 10 ml). The combined 

organic layers were dried over MgSC>4, filtered, concentrated and dried in vacuo. Flash 

column chromatography (ether) afforded the title compound as a light brown oil (0.014 

g, 58%); Rf 0.3 (ether) as a mixture of diastereoisomers in the ratio 3:1 by NMR; vmiX 

(thin film) 3155 (broad-OH), 2982, 2901, 1793, 1591, 1482, 1382, 1238, 1130, 913, 731 

cm"1; NMR data given for major isomer 5 H (500 MHz, CDC13) 6.74 (1H, s, Ar-H), 6.48 

(2H, s, Ar-H), 6.31 (1H, s, Ai-H), 5.91 (1H, s, -OCH//O-), 5.89 (1H, s, -OCHRO-), 

5.19 (1H, m, 2-C//HO), 4.97 (1H, m, 2-CH//0), 4.70 (1H, s, 3-C//OH), 4.24-4.15 (2H, 

m, \-H, 4-H), 3.88 (3H, s, Ar-OC// 3), 3.83 (6H, s, Ar-OC// 3), 3.03 (1H, s, 3-CHOfl), 

2.87 (1H, m, 2-H), 2.73 (1H, m, 3-H); 5 C (126 MHz, CDC13) 153.8 (q-Ai-Q, 148.1 (q-

Ar-Q, 145.8 (q-Ar-Q, 140.0 (ipso-Ai-Q, 135.6 (q-Ar-Q, 132.0 {q-Ar-Q, 109.3 (Ar-

Q , 108.6 (Ar-Q, 106.3 (Ar-Q, 106.1 (Ar-C), 101.4 (-OCH 20-), 97.4 (2-CH 20), 70.3 

(3-CHOH), 67.2 (1-Q, 61.2 (Ar-OCH 3), 56.4 (Ar-OCH 3), 50.1 (2-Q, 43.7 (4-Q, 42.0 

(3-Q; m/z (ES+) 855 (2MNa+); HRMS (ES+) Found 2MNa +, 855.2845 (C 4 4H4 8 0, 6 Na 

requires 855.2835). 
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(±)-Epipicropodophyllin, 356 

o 
OH O 

8a MeO 8 
4a 

St 
MeO O 

OMe 

A solution of lactol 493 (0.01 g, 0.04 mmol) in DCM (2 ml) was treated with NIS (0.02 

g, 0.08 mmol) and TBAI (0.01 g, 0.02 mmol) at room temperature. The solution was 

stirred for 1 h then poured into Na2S203 and extracted with DCM (3 x 10 ml). The 

combined organic layers were dried over MgSC>4, filtered, concentrated and dried in 

vacuo. Flash column chromatography (pet. ether/ether [2:3], [3:7], [1:4], [1:9], ether) 

afforded the title compound as a semi solid (0.009 g, 63%); R f 0.3 (ether); m.p. 185-188 

°C (lit. m.p. 190-192 °C) 1 3 9 ; vmax (thin film) 3155 (broad-OH), 2903, 1765 ( C O ) , 

1483, 1383, 1246, 1130, 1095, 927, 732 cm"1; 5 H (500 MHz, CDC13) 7.01 (1H, s, Ar-H), 

6.60 (1H, s, Ar-H), 6.35 (2H, s, Ar-H), 5.98 (1H, d, J 1.0, -OCH//0-), 5.95 (1H, d, J 

1.0, -OC//HO-), 4.82 (1H, m, \-H), 4.45 (1H, d,J4, 4-H), 4.35 (2H, m, 2-CH20), 3.82 

(3H, s, Ar-OC// 3), 3.78 (6H, s, Ar-OC// 3), 3.44 (1H, dd, J 10, 4, 3-H), 3.16 (1H, m, 2-

H), 2.08 (1H, d, J 5, l-OH); 5 C (126 MHz, CDC13) 178.8 (C=0), 153.3 (q-Ar-C), 147.5 

(<7-Ar-Q, 147.1 (q-Ar-C), 137.6 (ipso-Ar-C), 136.8 (Ar-C), 131.1 (q-Ar-C), 130.1 (q-

Ar-C), 109.8 (Ar-C), 106.3 (Ar-C), 104.9 (Ar-C), 101.2 (-OCH 20-), 68.1 (2-CH 20), 

67.9 (1-Q, 60.9 (Ar-OCH 3), 56.2 (Ar-OCH 3), 45.2 (4-Q, 44.4 (3-Q, 39.5 (2-Q; m/z 

(ES+) 415 (MH + ) ; all data agree with those reported in the literature.139 
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(±)-Picropodophyllone, 506 

o o 
8a 

8 
4a 

OMe 

O 

MeO. 

MeO O 

Overoxidation of lactol 493 utilising an excess of NIS and TBAI, yielded after 

chromatography picropodophyllone as a white solid (0.012, 26%); Rf 0.5 (ether); m.p. 

146-148 °C (lit. m.p. 152-158 °C) 1 7 4 ; t» m a x (thin film) 2982, 1780 (C=0), 1722 (C=0), 

1479, 1383, 1343, 1257, 1161, 1130, 1097, 899, 751 cm"1; 5 H (500 MHz, CDC13) 7.50 

(1H, s, Ax-H), 6.70 (1H, s, Ai-H), 6.23 (2H, s, Ar-H), 6.06 (1H, d, J 1.2, -OCH//0-), 

6.04 (1H, d, J 1.2, -OC//HO-), 4.76 (1H, d,J9, 4-H), 4.69 (1H, s, 3-H), 4.35 (1H, m, 2-

H), 3.79 (3H, s, Ar-OC// 3), 3.75 (6H, s, Ar-OC// 3), 3.31 (2H, m, 2-Ci/ 2 0); 5 C (126 

MHz, CDC13) 177.5 (C=0), 175.9 (C=0), 154.0 (Ar-Q, 153.9 (q-Ai-Q, 148.7 (q-Ar-

Q, 139.8 (ipso-Ar-Q, 138.2 {q-Ax-Q, 137.4, 127.4 (tf-Ar-C), 109.7 (Ar-Q, 106.3 (Ar-

Q, 104.8 (Ar-Q, 102.5 (-OCH 20-), 70.8 (3-C), 66.1 (2-CH 20), 61.1 (Ar-OCH 3), 56.4 

(Ar-OCH 3), 46.9 (4-C), 43.6 (2-Q; m/z (ES+) 413 (MH + ) , 454 (MMeCN +); all data 

agree with those reported in the literature. 1 7 7 ' 1 9 7 

(lJR5,2,S^,3/f5,45/?)-l-Acetoxy-2-(acetoxymethyl)-6,7-methylenedioxy-4-(3,4,5-

trimethoxyphenyl)-3-vinyl-l,2,3,4-tetrahydronaphthalene, 503 

OAc 

A solution of naphthalenediol 487 (0.05 g, 0.1 mmol) in DCM (2 ml) was treated 

consecutively with DIPEA (0.08 ml, 0.5 mmol), acetic anhydride (0.03 ml, 0.3 mmol) 
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and a catalytic amount of DMAP. The reaction mixture was stirred at room temperature 

for lOmin after which time aq. NH4CI (10 ml) was added. The aqueous layer was 

separated and extracted with DCM (3 x 20 ml). The combined organic layers were dried 

over MgSC>4, filtered, concentrated and dried in vacuo. Flash chromatography (pet. 

ether/ether [3:7], [2:3], [1:4]) afforded the title compound as a colourless oil (0.05 g, 

82%); R f 0.5 (pet. ether/ether 2:3); vmax (thin film) 3074, 2960, 2890, 1731 ( C O ) , 

1590, 1504, 1485, 1418, 1369, 1239, 1129, 1041 cm' 1; 5 H (500 MHz, CDC13) 6.88 (1H, 

s, Ar-H), 6.41 (1H, s, Ar-H), 6.24 (1H, d, J5 , \-H), 6.13 (2H, s, Ar-H), 6.00 (1H, m, 3-

C//=CH 2), 5.95 (1H, d, J 1.3, -OCHM)-), 5.93 (1H, d, J 1.3, -OC//HO-), 5.07 (2H, m, 

3-CH=C//2), 4.20 (1H, dd, J 11, 9, 2-C#HOAc), 4.00 (1H, d, J A, 4-H), 3.91 (1H, d, J 

11, 9, 2-C#HOAc), 3.82 (3H, s, Ar-OC// 3), 3.76 (6H, s, Ar-OC// 3), 2.66-2.55 (2H, m, 

2-H, 3-H), 2.08 (3H, s, 2-CH 20(C=0)C// 3), 2.00 (3H, s, 1-0(C=0)C# 3); 6 C (126 MHz, 

CDC13) 171.2 (C=0), 171.1 (C=0), 153.3 (q-Ar-Q, 148.3 (q-Ar-Q, 147.2 (q-Ar-Q, 

140.6 (ipso-Ar-Q, 138.8 (3-CH=CH2), 136.9 (q-Ar-Q, 130.9 (q-Ar-Q, 128.2 (q-Ar-Q, 

116.5 (3-CH=CH2), 110.1 (Ar-Q, 108.5 (Ar-Q, 106.1 (Ar-Q, 101.6 (-OCH 20-), 68.4 

(\-Q, 63.2 (2-CH 20), 61.1 (Ar-OCH 3), 56.4 (Ar-OCH 3), 50.7 (4-Q, 47.5 (3-Q, 36.2 

(2-Q, 21.4 (2-CH 20(C=0)CH 3), 21.1 (1-0(C=0)CH 3); m/z (ES+) 521 (MNa +), 1018 

(2MNa+); HRMS (ES+) Found MNa +, 521.1785 (C27H3o09Na requires 521.1782). 
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(l/?5,25if,3/tS,,45if)-l-Aceoxy-3-formyl-2-(acetoxymethyl)-6,7-methylenedioxy-4-

(3,4,5-trimethoxyphenyl)-3-vinyI-l,2,3,4-tetrahydronaphthaIen-l-ethanoate, 504 

A solution of naphthalene acetate 503 (0.03 g, 0.06 mmol) in THF:H 20 (1:1, 3 ml) was 

treated with 2,6-lutidine (0.01 ml, 0.1 mmol), osmium tetroxide (0.001 g, 0.006 mmol) 

and sodium periodate (0.05 g, 0.3 mmol) at room temperature. The solution was stirred 

for 3 h then poured into H 2 0 and extracted with DCM (3 x 10 ml). The combined 

organic layers were dried over MgS04, filtered, concentrated and dried in vacuo. Flash 

column chromatography (pet. ether/ether [3:7], [2:3], [1:4]) afforded the title compound 

as a white gum (0.012 g, 39%); R f 0.3 (pet. ether/ether 3:7); vmax (thin film) 2962, 2938, 

1736 (C=0), 1591 (C=0), 1505, 1485, 1419, 1371, 1238, 1130, 1041 cm' 1; 6 H (500 

MHz, CDC13) 9.83 (1H, s, 3-CM)), 6.87 (1H, s, Ar-H), 6.48 (1H, s, Ar-H), 6.21 (1H, d, 

J 4, \-H), 6.17 (2H, s, Ar-H), 5.98 (1H, d, J 1.2, -OCH//O-), 5.95 (1H, d, J 1.2, -

OC#HO-), 4.64 (1H, d, J 5, 4-H), 4.41 (1H, d, J 11, 8, 2-CMTOAc), 4.10 (1H, d, J 11, 

8, 2-CHZ/OAc), 3.82 (3H, s, Ar-OC/73), 3.77 (6H, s, Ar-OC// 3), 2.92 (1H, m, 2-H), 2.79 

(1H, m, 3-H), 2.08 (3H, s, 2-CH 20(C=0)C// 3), 2.03 (3H, s, 1-0(C=0)C//3); 5 C (126 

MHz, CDC13) 200.8 (3-CHO), 170.9 (C=0), 170.5 (C=0), 153.6 (q-Ar-Q, 148.7 (q-Ar-

Q, 147.4 (q-Ar-Q, 139.8 (ipso-Ar-Q, 137.2 (q-Ar-Q, 130.5 (q-Ar-Q, 127.6 (q-Ar-Q, 

110.1 (Ar-C), 108.5 (Ar-Q, 106.1 (Ar-Q, 101.6 (-OCH 20-), 68.7 (1-Q, 61.8 (2-

CH 2 0), 61.0 (Ar-OCH 3), 56.5 (Ar-OCH 3), 54.7 (3-Q, 43.2 (4-Q, 36.3 (2-Q, 21.3 (2-

CH 20(C=0)CH 3), 21.0 (1-0(C=0)CH 3); m/z (ES+) 523 (MNa +); HRMS (ES+) Found 

MNa +, 523.1580 (C 2 6 H 2 g Oi 0 Na requires 523.1575). 
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(lJRS,25/f,3^,4Sif)-l,2^-(benzo[</|[l,3]dioxin-2-one)-6,7-methylenedioxy-4-(3,4,5-

trimethoxyphenyl)-3-vinyl-l,2,3,4-tetrahydronaphthalene, 501 

A solution of naphthalene diol 487 (0.02 g, 0.05 mmol) in DCM (2 ml) was treated 

consecutively with carbonyldiimidazole (0.008 g, 0.05 mmol) and a catalytic amount of 

DMAP. The reaction was stirred at room temperature for 2 h after which time aq. 

NH4CI (10 ml) was added. The aqueous layer was separated and extracted with DCM (3 

x 20 ml). The combined organic layers were dried over MgSC>4, filtered, concentrated 

and dried in vacuo. Flash chromatography (ether) afforded the title compound as a 

cream gum (0.017 g, 80%); R f 0.4 (ether); u m a x (thin film) 2966, 2934, 2246, 1748 

(C=0), 1591, 1505, 1485, 1464, 1421, 1242, 1129, 1041 cm"1; 6 H (500 MHz, CDC13) 

7.06 (1H, s, Ar-H), 6.36 (1H, s, Ar-H), 6.16 (2H, s, Ar-H), 5.97 (1H, s, -OCHi/O-), 5.95 

(1H, s, -OCHRO-), 5.78 (1H, m, 3-C//=CH2), 5.65 (1H, d, J 5, l-H), 5.14 (2H, m, 3-

CH=C// 2), 4.55 (1H, dd, J 11, 5, 2-C//HO), 4.33 (1H, d, J 11, 5, 2-C//HO), 3.84-3.82 

(1H, m, 4-H), 3.82 (3H, s, Ar-OC// 3), 3.77 (6H, s, Ar-OC// 3), 2.82 (1H, m, 3-H), 2.77 

(1H, m, 2-H); 5 C (126 MHz, CDC13) 153.3 (q-Ar-C), 148.6 (q-Ar-C), 148.4 (C=0), 

147.4 (q-Ar-C), 139.0 (3-CH=CH2), 136.9 (q-Ar-C), 136.9 (q-Ar-Q, 130.5 (q-Ar-C), 

125.5 (q-Ar-C), 118.1 (3-CH=CH2), 109.5 (Ar-Q, 107.7 (Ar-C), 105.9 (Ar-C), 101.4 (-

OCH2O-), 77.0 (1-C), 67.4 (2-CH 20), 60.8 (Ar-OCH 3), 56.2 (Ar-OCH 3), 48.8 (4-C), 

46.8 (3-Q, 32.5 (2-C); m/z (ES+) 504 (MMeCNNa+), 903 (2MNa+); HRMS (ES+) 

Found MMeCNNa+, 504.1632 (C 2 6 H 2 7 0 8 NNa requires 504.1629). 
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(li?S,25/?,3JRS,45/?)-2-((fer/-butyldiphenylsilyloxy)methyl)-6,7-methylenedioxy-4-

(3,4,5-trimethoxyphenyl)-3-vinyl-l,2,3»4-tetrahydronaphthalen-l-ol, 525 

^OTBDPS 

To a solution of naphthalene diol 487 (0.1 g, 0.2 mmol) in dry DCM (3 ml) was added 

imidazole (0.03 g, 0.5 mmol) and te/t-butylchlorodiphenylsilane (0.07 ml, 0.3 mmol). 

The solution was stirred for 2 h at room temperature then diluted with DCM and washed 

with NH4CI (10 ml) and brine (10 ml). The organic layer was separated, dried over 

MgSC>4, filtered, concentrated and dried in vacuo. Flash chromatography (pet. 

ether/ether [1:1]) gave the title compound as a white solid (0.09 g, 54%); Rf 0.4 (pet. 

ether/ether 1:1); mp 68-70 °C; vmax (thin film) 3459 (broad-OH), 3073, 2962, 2933, 

2246, 1590, 1504, 1481, 1427, 1363, 1236, 1224, 1130, 1113 cm 1 ; 6 H (500 MHz, 

CDCI3) 7.63-7.32 (10H, m, Ar-H), 7.20 (1H, s, Ar-H), 6.34 (1H, s, Ar-H), 6.12 (2H, s, 

Ar-H), 5.97 (1H, d, J 1.3, -OCHM)-), 5.95 (1H, d, J 1.3, -OC//HO-), 5.74 (1H, ddd, J 

17, 9, 7, 3-C//=CH2), 4.94-4.90 (3H, m, 3-CH=C//2, l -# ) , 3.94 (2H, m, 2-C// 20), 3.81 

(3H, s, Ar-OC// 3), 3.73 (7H, s, Ar-OC// 3, 4-H), 3.53 (1H, d, J8 , l-O//), 2.75 (1H, m, 3-

H), 2.51 (1H, m, 2-H) 0.99 (9H, s, SiC(C// 3) 3); 5 C (126 MHz, CDC1 3 ) 153.2 (q-Ar-C), 

147.3 (q-Ar-C), 146.9 (q-Ar-C), 141.1 (ipso-Ar-C), 139.1 (3-CH=CH2), 136.6 (q-Ar-C), 

135.8 (Ar-C), 133.1 (Ar-C), 130.4 (q-Ar-C), 130.1 (q-Ar-Q, 128.0 (Ar-Q, 116.5 (3-

CH=CH 2), 109.5 (Ar-Q, 107.8 (Ar-Q, 106.2 (Ar-Q, 106.1 (Ar-Q, 101.2 (-OCH 20-), 

71.5 (1-Q, 62.9 (2-CH 20), 61.1 (Ar-OCH 3), 56.3 (Ar-OCH 3), 49.5 (4-Q, 47.1 (3-Q, 

42.7 (2-Q 26.9 (SiC(CH 3) 3), 19.2 (SiC(CH 3) 3); m/z (ES+) 675 (MNa +), 1327 (2MNa+); 

HRMS (ES+) Found 2MNa +, 1327.5645 (C 7 8 H 8 8 Si 2 Oi 4 Na requires 1327.5605). 
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(li?5,85/f,9ifcS,10/?5'/Sif,125/f)-12-((ter/-butyldiphenylsilyloxy)methyl)-4,5-

methylenedioxy-8-(3,4,5-trimethoxyphenyl)-10-hydroxy-ll-

oxatricyclo [7.2.1 ] dodeca-2,4,6-triene, 527 

A solution of protected naphthalene 525 (0.08 g, 0.1 mmol) in THF:H 20 (1:1, 3 ml) was 

treated with 2,6-lutidine (0.03 ml, 0.2 mmol), osmium tetroxide (0.003 g, 0.01 mmol) 

and sodium periodate (0.1 g, 0.5 mmol) at room temperature. The solution was stirred 

for 1 h then poured into H 2 0 and extracted with DCM (3 x 10 ml). The combined 

organic layers were dried over MgS0 4 , filtered, concentrated and dried in vacuo. Flash 

column chromatography (pet. ether/ether [1:1], [3:7]) afforded the title compound as a 

colourless gum (0.03 g, 40%); R f 0.5 (pet. ether/ether 3:7) as a mixture of 

diastereoisomers in the ratio 2:1 by NMR; u m a x (thin film) 3691 (broad-OH), 3155, 

2900, 2859, 2253, 1793, 1590, 1483, 1464, 1381, 1246, 1129, 1106 cm"1; NMR data 

given for major isomer 5 H (500 MHz, CDC13) 7.61-7.27 (12H, m, Ar-H), 6.66 (1H, s, 

Ar-H), 6.50 (1H, s, Ax-H), 6.25 (2H, s, Ar-H), 5.91 (2H, s, -OC// 20-), 5.33 (1H, d, 75, 

l-H), 4.76 (1H, s, S-H), 4.31 (1H, s, 10-H), 3.94 (1H, dd, J 10, 7, 12-CHM)), 3.84 (3H, 

s, -OC// 3), 3.74 (7H, s, -OC//3, 12-C//HO), 2.70 (1H, m, 9-H), 2.51 (1H, t, J 10, \2-H), 

0.98 (9H, s, SiC((C// 3) 3); 5 C (126 MHz, CDCI3) 153.4 (q-Ar-C), 147.9 (q-Ar-C), 146.5 

(q-Ax-C), 140.6 (q-Ax-C), 135.6 (q-Ar-C), 135.0 (q-Ax-Q, 133.4 (q-Ax-Q, 133.1 (q-Ar-

Q, 129.9 (Ar-C), 128.3 (q-Ax-Q, 127.9 (Ar-Q, 111.2 (Ar-Q, 107.5 (Ar-Q, 106.2 (Ar-

Q, 102.7 (1-Q, 101.3 (OCH 20), 81.0 (8-C), 64.1 (12-CH 20), 61.1 (OCH3), 56.8 

(OCH3), 53.2 (9-Q, 49.9 (10-Q, 42.7 (12-Q, 26.9 (SiC((CH3)3), 19.4 (SiC((CH3)3); 
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m/z (ES+) 1331 (2MNa+); HRMS (ES+) Found 2MNa +, 1331.5228 (C 76H 840i6Si 2Na 

requires 1331.5190). 

6.6 Other studies 

Allyl(but-3-enyl)dimethylsilane, 518 

4-Bromo-l-butene (7.3 ml, 74.0 mmol) was added dropwise to a suspension of 

magnesium turnings (3.6 g, 148 mmol) in ether (25 ml) and stirred for 30 mins 

[CAUTION: Exothermic]. The supernatant was then added via cannula to a solution of 

allyl(chloro)dimethylsilane 519 (5.0 ml, 37.0 mmol) in ether (25 ml) and the resulting 

mixture refluxed overnight. The solution was then cooled, quenched with NH4CI and 

extracted with ether (3x15 ml). The combined organic layers were dried over MgS04, 

filtered, concentrated and dried in vacuo. Fractional distillation afforded the title 

compound as a colourless oil (3.1 g, 55%); b.p. 160-164 °C, 760 mmHg; 5 H (500 MHz, 

CDCI3) 5.94-5.76 (2H, m, CH 2C#=CH 2), 5.04-4.84 (4H, m, CH 2CH=C// 2), 2.11 (2H, 

m, C// 2CH=CH 2), 1.56-1.54 (2H, d, J 8, C// 2CH=CH 2), 0.67-0.64 (2H, m, 

C// 2CH=CH 2), 0.02 (6H, s, Si(C// 3) 2); 5 C (126 MHz, CDC13) 141.8, 135.3 

(CH 2CH=CH 2), 113.03, 112.99 (CH 2CH=CH 2), 28.1, 23.5, 14.2 (CH 2CH=CH 2), -3.5 

(Si(CH 3) 2); m/z (EI) 154 (M+, 25%), 139 (M+ -CH 3 , 25%), 125 (M+ -CH 2CH 3 , 100%); 

all data agree with those reported in the literature.183 
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l,l-Dimethyl-l,2,3,6-tetrahydrosiline, 194 

Si 

4 

A solution of allylbutenylsilane 518 (2.5 g, 16 mmol) in DCM (32 ml, 0.5M) was 

treated with Grubbs 1 s t generation catalyst (0.10 g, 0.16 mmol) at room temperature. 

The solution was then refluxed for 2 h, cooled to room temperature and filtered through 

silica gel. Fractional distillation afforded the title compound as a colourless oil (1.1 g, 

54%); b.p. 125-130 °C, 760 mmHg; 6 H (500 MHz, CDC13) 5.74 (1H, m, 4-H), 5.63 (1H, 

m, 5-H), 2.22 (2H, m, 3-H2), 1.20 (2H, m, 6-H2), 0.66 (2H, t, J 1, 2-H2), 0.07 (3H, s, 

Si(C// 3) 2), 0.05 (3H, s, Si(CH3)2); 5 C (126 MHz, CDC13) 130.2 (4-Q, 126.0 (5-Q, 22.8 

(3-C), 13.2 (6-C), 10.1 (2-Q, -2.5 (Si(CH 3) 2); m/z (EI) 126 ( M + , 45%), 111 ( M + -CH 3, 

50%>); all data agree with those reported in the literature.56 

(3RS/RS)-3-((/?5/5^)Methoxy(phenyl)methyl)pent-4-en-l-ol, 521 

Following the standard procedure outlined on page 181, dimethylsilacyclohex-4-ene 

194 (0.25 g, 2.0 mmol) was combined with benzaldehyde dimethylacetal to give, 

without purification of the fluorosilane, the title compound as a pale yellow oil (0.23 g, 

55%o); R f 0.3 (pet. ether/ether 1:1) as a mixture of diastereoisomers in the ratio 1:1 by 

NMR; . u m a X (thin film) 3516-3186 (broad-OH), 2942, 2880, 2820, 1458, 1100, 1068, 

990, 914 cm"1; NMR data given for one isomer 5 H (500 MHz, CDC13) 7.37-7.33 (5H, m, 

As-H), 5.69 (1H, ddd, J 16, 10, 9, 4-H), 5.11 (1H, dd, J 10, 2, 5-HR), 5.02 (1H, dd, J 

16, 2, 5-H//), 4.11 (1H, d, J 6, 3-C//(OCH3)), 3.69 (2H, m, l-H2), 3.23 (3H, s, 3-
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CH(OC// 3)), 2.55 (1H, m, 3-H), 1.64 (1H, m, 2-HH), 1.48 (1H, m, 2-HH); 5 C (126 

MHz, CDC13) 140.1 (ipso-Ar-Q, 139.1 (4-Q, 128.4 (Ar-Q, 127.9 (Ar-C), 127.8 (Ar-

C), 117.1 (5-C), 87.2 (3-CH(OCH3)), 61.4 (1-C), 57.3 (3-CH(OCH3)), 48.5 (3-C), 33.8 

(2-Q; m/z (ES +) 207 (MH + ) ; HPvMS (ES +) Found M H + , 207.1379 (Ci 3 Hi 9 0 2 requires 

207.1380). 

Ethylhepta-3,5-dienoate, 542 

5 3 1 

A solution of penta-l,4-dien-3-ol 541 (5 ml, 51.5 mmol) and propionic acid (0.4 ml, 5.2 

mmol) in triethyl orthoacetate (71 ml) was heated to reflux for 1 h. The mixture was 

cooled and ethanol was removed by distillation. The mixture was heated to reflux for 2 

h, cooled and ethanol was again removed by distillation. 2,6-Di-te/t-butyl-4-

methylphenol (0.2 g, 1.0 mmol) was added and triethyl orthoacetate was removed in 

vacuo. The residue was subjected to flash chromatography (pentane/ether 4:1) to afford 

the title compound as a colourless oil (5.7 g, 72%); R f 0.8 (pentane/ether 4:1); 5 H (300 

MHz, CDC13) 6.28 (1H, ddd, J 16, 11, 10, 5-H), 6.09 (1H, dd, J 11, 10, 4-H), 5.72 (1H, 

m, 3-H), 5.11 (1H, d, J 16, 6-HR), 4.99 (1H, d, J 10, 6-KH), 4.14 (2H, m, OCtf 2 CH 3 ) , 

2.40 (4H, m, l-H2, 2-H2), 1.25 (3H, t, J 7, OCH 2C// 3); 5 C (126 MHz, CDC13) 172.9 

(C=0), 136.9 (5-C), 132.7 (4-Q, 131.9 (3-Q, 115.7 (6-Q, 60.4 (OCH 2CH 3), 33.8 (2-

Q, 27.8 (1-Q, 14.2 (OCH 2CH 3); all data agree with those reported in the literature.184 
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Hepta-4,6-dienol, 543 

7 

6 4 

5 3 
OH 

To a suspension of lithium aluminium hydride (2.8 g, 74.0 mmol) in ether (80 ml) at 0 

°C was added ethyl hepta-4,6-dienoate 542 (5.7 g, 37.0 mmol) dropwise. The mixture 

was allowed to warm to room temperature and stirred for 1 h. The excess lithium 

aluminium hydride was cautiously quenched sequentially with ethyl acetate, methanol 

and water. 1M aq. HC1 was added to break up any solid material and the mixture was 

extracted with ether (3 x 20 ml). The combined organic layers were dried over MgSC>4, 

filtered, concentrated and dried in vacuo. Flash chromatography (pentane/ether 4:1, 1:2) 

afforded the title compound as a colourless oil (3.59 g, 87%); R f 0.7 (pentane/ether 1:2); 

5 H (300 MHz, CDC13) 6.31 (1H, ddd, J 16, 10, 10, 6-H), 6.10 (1H, dd, J 16, 10, 5-H), 

5.73 (1H, m, 4-H), 5.13 (1H, d, J 16, 7-HH), 4.99 (1H, d, J 10, 7-HH), 3.68 (2H, t, J 7, 

\-H2), 2.20 (2H, m, 3-H2), 1.70 (2H, m, 2-H2); bc (126 MHz, CDC13) 137.0 (6-Q, 134.3 

(5-Q, 131.5 (4-Q, 115.1 (7-Q, 62.4 (1-Q, 32.0 (3-Q, 28.8 (2-Q; all data agree with 

those reported in the literature.184 

l-Iodohepta-4,6-diene, 544 

To a solution of triphenylphosphine (2.8 g, 11.0 mmol) and imidazole (0.7 g, 11.0 

mmol) in acetonitrile (40 ml) at room temperature under argon was added iodine (2.7 g, 

11 mmol). The solution turned yellow and a white precipitate was observed. Hepta-4,6-

dienol 543 (1.0 g, 9.0 mmol) in acetonitrile was added dropwise. The mixture was 

stirred for 4 h, diluted with ethyl acetate (50 ml) and washed with aq. Na 2 S 2 0 3 and aq. 

C U S O 4 . The organic layers were dried over MgS04, filtered, concentrated and dried in 
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vacuo. Flash chromatography (pentane/ether 4:1) afforded the title compound as a 

colourless oil (1.57 g, 79%); R f 0.8 (pentane/ether 4:1); 5 H (300 MHz, CDC13) 6.29 (1H, 

ddd, J 16, 11, 10, 6-H), 6.07 (1H, dd, J 16, 11, 5-H), 5.63 (1H, m, 4-H), 5.13 (1H, d, J 

16, 7-HR), 5.00 (1H, d, J 10, 7-HH), 3.19 (2H, t, J 7, \-H2), 2.19 (2H, m, 3-H2), 1.93 

(2H, m, 2-H2); 5 C (126 MHz, CDC13) 136.9 (6-C), 132.5 (5-Q, 132.3 (4-Q, 115.6 (7-

Q, 33.1 (3-Q, 32.7 (2-C), 6.3 (1-C); all data agree with those reported in the 

literature.184 

Hepta-4,6-dienal, 547 

A solution of dimethyl sulfoxide (1.0 ml, 13.4 mmol) in DCM (40 ml) was treated with 

oxalyl chloride (1.2 ml, 13.4 mmol) at -78 °C. The solution was stirred for 15 mins and 

then treated with a solution of hepta-4,6-dienol 543 (1.0 g, 9.0 mmol) in DCM (5 ml). 

After 30 mins the solution was then treated with triethylamine (6.3 ml, 44.6 mmol) and 

stirred for 10 mins. The reaction was then warmed to room temperature and reacted for 

a further 1.5 h. After this time the reaction was quenched with water, neutralised with 

I N aq. HC1 and extracted with DCM ( 3 x 1 5 ml). The organic layers were dried over 

MgSC>4, filtered, concentrated and dried in vacuo. Flash chromatography (pentane/ether 

9:1, 4:1) afforded the title compound as a yellow oil (0.673 g, 68%); R f 0.4 

(pentane/ether 4:1); 5 H (300 MHz, CDC13) 9.80 (1H, t, J 2, CHO), 6.30 (1H, ddd, J 17, 

11,10, 5-H), 6.10 (1H, m, 4-H), 5.71 (1H, m, 3-H), 5.14 (1H, d, J17, 6-HH), 5.02 (1H, 

d, J 10, 6-HH), 2.57 (2H, m, \-H2), 2.48 (2H, m, 2-H2); 5 C (126 MHz, CDC13) 201.7 

(C=0), 136.7 (5-Q, 132.3 (4-Q, 132.1 (3-Q, 115.9 (6-Q, 43.1 (1-Q, 25.0 (2-Q; all 

data agree with those reported in the literature.185 
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Tris(trimethylsilyl)silyl pivaloate, 548 

Nfe,Si~^ 
Si 

Me,Si" ' \ 
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S i M e 3 

Dry tetrakis(trimethylsilyl)silane 94 (3.0 g, 9.4 mmol) and potassium tert-butoxide (1.1 

g, 9.9 mmol) were combined under argon. Dry THF (5 ml) was added and the solution 

stirred for 2 h after which time it was dark red. After removal of the solvent, toluene (10 

ml) was added and the solution was added dropwise to a solution of pivaloyl chloride 

(1.3 ml, 10.4 mmol) in toluene (10 ml) at 0 °C. The mixture was stirred for 1.5 h then 

poured into an ice/H2S04 mixture (10%). The aqueous layer was extracted with ether (3 

x 10 ml). The combined organic layers were dried over MgS04, filtered, concentrated 

and dried in vacuo. Flash chromatography (toluene/pentane 9:1) afforded the title 

compound as a semi solid (1.5 g, 50%); Rf 0.7 (toluene/pentane 9:1); 5h (300 MHz, 

CDC13) 1.02 (9H, s, C(C# 3 ) 3 ), 0.23 (27H, s, (Si(C// 3) 3) 3); 5 C (126 MHz, CDC13) 248.3 

(C=0), 49.2 (C(CH 3) 3), 24.7 (C(CH 3) 3), 1.6 ((Si(CH 3) 3) 3); all data agree with those 

reported in the literature. 

Bis(trimethylsilyl)hepta-4,6-dienylsilylpivaloate, 549 

A solution of tris(trimethylsilyl)silyl pivaloate 548 (1.0 g, 3.0 mmol) in THF (3 ml) was 

treated with potassium ter/-butoxide (0.37 g, 3.3 mmol). The resultant solution was 

stirred for 1 h after which time the solution was a deep orange colour. The THF solution 

was then added, dropwise to a solution of 1-iodohepta-4,6-diene 544 (0.7 g, 3.0 mmol) 

in ether (5 ml) at room temperature. The reaction was stirred for 10 mins, quenched 

with water and extracted with ether ( 3 x 1 5 ml). The combined organic layers were 
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dried over MgS0 4 , filtered, concentrated and dried in vacuo. Flash chromatography 

(pentane; pentane/ether 95:5) afforded the title compound as a colourless oil (0.525 g, 

50%); R f 0.4 (pentane/ether 9:1); u m a x ( t h in film) 2964, 2900, 1626 (C=0), 1476, 1448, 

1364, 1238, 1056, 1000, 934, 830 cm"1; 5 H (300 MHz, CDC13) 6.32 (1H, ddd, J 16, 11, 

10, 6-H), 6.06 (1H, dd, J 10, 9, 5-H), 5.69 (1H, m, 4-H), 5.10 (1H, d, J 16, 7-HH), 4.97 

(1H, d, 711 , 7-HH), 2.15 (2H, q, J7, 2-H2), 1.48 (2H, m, 3-H2), 1.33 (2H, s, \-H2), 1.03 

(9H, s, -C(C// 3) 3), 0.17 (18H, s, (Si(C// 3) 3) 2); o c (126 MHz, CDC13) 240.3 (C=0), 137.5 

(6-Q, 134.9 (4-Q, 131.7 (5-Q, 115.1 (7-Q, 37.1 (3-Q, 32.0 (1-Q, 27.1 (2-Q, 25.0 

(C(CH 3) 3), 12.4 (C(CH 3) 3), 0.5 (Si(CH 3) 3) 2); m/z (El) 354 ( M + , 10%), 339 ( M + -CH 3, 

70%), 281 ( M + -SiMe3, 100%). 

l-(2-Hepta-4,6-dienyI-l,l51333-hexamethyltrisilan-2-yl)-2,2-dimethylpropan-l-ol, 

553 

To a suspension of lithium aluminium hydride (0.2 g, 5.7 mmol) in ether (10 ml) at 0 °C 

was added bis(trimethylsilyl)hepta-4,6-dienylsilyl pivaloate 549 (0.3 g, 2.8 mmol) 

dropwise. The mixture was allowed to warm to room temperature and stirred for 1 h. 

The excess lithium aluminium hydride was cautiously quenched sequentially with ethyl 

acetate, methanol and water. 1M aq. HC1 was added to break up any solid material and 

the mixture was extracted with ether (3 x 10 ml). The combined organic layers were 

dried over MgSC>4, filtered, concentrated and dried in vacuo. Flash chromatography 

(pentane, pentane/ether 98:2) afforded the title compound as a colourless oil (0.21 g, 

78%); R f 0.8 (pentane/ether 98:2); u m a x (thin film) 3068 (broad-OH), 2954, 2900, 1366, 

1248, 1060, 1006, 966, 900, 832 cm"'; SH (300 MHz, CDC13) 6.31 (1H, ddd, J 16, 10, 

10, 6-H), 6.06 (1H, dd, J 10, 10, 5-H), 5.70 (1H, m, 4-H), 5.09 (1H, d, J16, 7-HH), 4.96 

O H i f 4 Me^Si 
Si 

i S iMe, 

232 



(1H, d, J 10, 7-HH), 3.54 (1H, d,J8, C//(OH)), 2.12 (2H, q,J7, 2-H2), 1.51 (2H, m, 3-

H2), 1.30 (2H, m, \-H2), 1.19 (1H, d, JS, CH(Otf)), 0.97 (9H, s, -C(C// 3) 3), 0.18 (18H, 

s, (Si(C// 3) 3) 2); 5 C (126 MHz, CDC13) 137.3 (6-Q, 135.0 (4-Q, 131.3 (5-Q, 114.7 (7-

Q , 76.1 (CH(OH)), 37.1 (3-Q, 36.3 (1-Q, 27.7 (C(CH 3) 3)), 26.8 (2-Q, 11.7 (C(CH 3) 3), 

0.7 ((Si(CH 3) 3) 2), 0.6 ((Si(CH 3) 3) 2). 

A mass spectrum of this compound was unattainable due to rapid decomposition under 

all forms of ionisation. 

l-Tris(trimethylsilyl)-hepta-4,6-dien-l-ol, 550 

7 5 3 | S iMej 
O H 

Dry tetrakis(trimethylsilyl)silane 94 (2.0 g, 6.3 mmol) and potassium-fert-butoxide (0.8 

g, 6.9 mmol) were combined under argon. Dry THF (14 ml) was added and the solution 

stirred for 2 h after which time it was dark red. The solution was then treated directly 

with magnesium bromide diethyl etherate (2.1 g, 8.1 mmol). The reaction mixture was 

stirred for 1 h and then cooled to -78 °C. Aldehyde 547 (0.8 g, 6.9 mmol) was then 

added and the mixture stirred for 1.5 h. Saturated aq. NH4C1 was added and the mixture 

allowed to reach room temperature. The aqueous layer was separated and extracted with 

ether (3 x 10 ml). The combined organic layers were dried over MgS04, filtered, 

concentrated and dried in vacuo. Flash chromatography (pentane; pentane/ether 98:2, 

95:5, 9:1) followed by Kugelrohr distillation (90 °C, 2mbar) afforded the title 

compound as a colourless oil (0.18 g, 8%); Rf 0.5 (pet. ether/ether 9:1); vmax (thin film) 

3624 (broad-OH), 2948, 2902, 1440, 1400, 1242, 1008, 950, 900, 834, 822 cm - 1; 5H 

(300 MHz, CDC13) 6.32 (1H, ddd, J 16, 11, 10, 6-H), 6.08 (1H, dd, J 10, 10, 5-/7), 5.71 

(1H, m, 4-H), 5.10 (1H, d, J 16, 7-HH), 4.97 (1H, d, J 11, 7-HH), 3.89 (1H, d, J 10, 1-

H), 2.40 (1H, m, 3-HH), 2.16 (1H, m, 3-HH), 1.81 (1H, m, 2-HH), 1.68 (1H, m, 2-HH), 
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0.21 (27H, s, (Si(C// 3) 3) 3); o c (126 MHz, CDC13) 137.4 (6-C), 134.9 (4-Q, 131.8 (5-C), 

115.3 (7-Q, 65.2 (1-Q, 39.0 (3-Q, 31.0 (2-Q, 1.8 ((Si(CH 3) 3) 3). 

A mass spectrum of this compound was unattainable due to rapid decomposition under 

all forms of ionisation. 

(£)-Dimethyl(penta-2,4-dienyl)(phenyl)siIane, 568 

n-Butyllithium (34 ml, 1.6 M, 54 mmol) was added to a stirred solution of piperylene (5 

ml, 54 mmol) in hexanes (40 ml). The resultant mixture was added to a stirred slurry of 

potassium-tert-butoxide (6.1 g, 54 mmol) in hexanes (38 ml) at 0 °C. After 20 mins the 

reaction mixture was cooled to -78 °C and treated with a solution of 

dimethyl(phenyl)chlorosilane (10 ml, 60 mmol) in diethyl ether (18 ml) and stirred for a 

further 20 mins. Water (100 ml) was added and the biphasic mixture stirred vigorously 

whilst warming to room temperature. The aqueous layer was separated and extracted 

with diethyl ether. The combined organic extracts were dried over MgS04, filtered and 

concentrated in vacuo to afford a yellow oil. Flash column chromatography and 

distillation of the residue afforded the title compound as colourless oil (3.3 g, 30 % ) ; 

b.p. 90-100°C/0.8 mbar; u m ax (thin film) 2954, 1641, 1427, 1249, 1147, 1114, 1000, 

826, 786, 697 cm - 1; 5 H (400 MHz, CDC13) 7.39-7.35 (5H, m, Ai-H), 6.34 (1H, ddd, J 

15, 10, 9, 4-H), 5.96 (1H, dd, J 16, 10, 3-H), 5.71 (1H, m, 2-H), 5.00 (1H, d, J 17, 5-

UH), 4.88 (1H, d, J9, 5-HH), 1.78 (2H, d,JS, \-H2), 0.29 (6H, s, Si(C//3)2Ph); 6 C (126 

MHz, CDC13) 139.0 (ipso-Ax-Q, 138.3 (4-Q, 134.3 (Ar-Q, 131.8 (2-Q, 131.5 (3-Q, 

129.9 (Ar-Q, 128.6 (Ar-Q, 113.9 (5-Q, 23.4 (1-Q, -2.6 (Si(CH3)2Ph); o S i (100 MHz, 

CDC13) -3.8; m/z (EI) 202 (M + ) . 

I .Ph 
1 .S i 
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(15i?,25i?,3^S)-2-(Benzo[</][l,3]tiioxoI-5-yl)-3-((dimethyl(phenyl)silyl)methyl)-l-

phenyl-l-(trimethylsilyl)-silacyclohex-4-ene, 569 

Following the standard procedure for silene generation and cyclisation outlined on page 

162, silyl alcohol 481 (0.5 g, 1.2 mmol) was transformed into the title compound which 

was isolated as a colourless oil (0.3 g, 54%) as a mixture of isomers in the ratio 1:1 by 

NMR; R f 0.5 (pet. ether/ether 9:1); vmax (thin film) 3008, 2947, 2886, 1486, 1440, 1246, 

1108, 1036, 827, 730, 699 cm"1; NMR data given for one isomer 5 H (500 MHz, CDC13) 

7.45-7.41 (5H m, Ar-H), 7.36-7.28 (5H, m, Ar-H), 6.69-6.66 (3H, m, Ar-H), 5.94-5.89 

(3H, m, -OC// 20-, 5-H), 5.60 (1H, m, 4-H), 4.92 (1H, dd, J 10, 5, 3-C//HSi(CH3)2Ph), 

4.20 (1H, dd, J 10, 5, 3-CH#Si(CH3)2Ph), 2.71 (1H, m, 3-H), 2.34 (1H, d, J 10, 2-H), 

1.81 (1H, m, 6-HR), 1.62 (1H, m, 6-HH), 0.25 & 0.22 (each 6H, s, Si(C// 3) 2), -0.03 

(9H, s, Si(C# 3) 3); 8 C (126 MHz, CDC13) 147.8 (Ar-Q, 145.8 (Ar-Q, 139.8 (Ar-C), 

138.8 (ipso-Ar-Q, 137.6 (ipso-Ar-Q, 136.7 (4-Q, 134.6 (Ar-Q, 133.9 (Ar-Q, 129.2 

(Ar-Q, 128.8 (Ar-Q, 124.9 (5-Q, 121.1 (Ar-Q, 118.6 (Ar-C), 108.9 (Ar-Q, 108.4 

(Ar-Q, 100.9 (-OCH 20-), 68.8 (3-CH2Si(CH3)2Ph), 45.0 (3-Q, 33.5 (2-Q, 26.1 

(SiC(CH3)3), 18.5 (SiC(CH3)3), 9.4 (6-Q, -1.2 (Si(CH 3) 3), -1.6 (Si(CH 3) 2), -2.1 

(Si(CH 3) 2); 5 S i (100 MHz, CDC13) -19.0, -20.94, -25.0; m/z (EI) 514 ( M + , 2%), 312 

(50%) 135 (100%), 73 (Si(CH 3) 3, 32%); HRMS (CI) Found M N H 4

+ , 532.2516 

(C 3 0 H 4 2 Si 3 O 2 N requires 532.2518). 

P h . I 
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1,1,1 -Trimethy 1-2-pheny l-2-(phenyl-trimethylsilanyloxy-methyl)-2-

trimethylsilanylmethyl-disilane, 570 

O S i M e 3 

M e 3 S i ^ s r 

Me 3Si"" ^ 

Triethylamine (0.2 ml, 1.8 mmol) and chlorotrimethylsilane (0.1 ml, 0.84 mmol) in 

DCM (3 ml) were treated with a solution of silyl alcohol 205 (0.25 g, 0.7 mmol) in 

DCM (2 ml) at room temperature. The solution was stirred overnight, then poured into 

water and extracted with pet. ether (3x10 ml). The combined organic layers were dried 

over MgSC>4, filtered, concentrated and dried in vacuo. Flash chromatography (pet. 

ether) afforded the title compound as a colourless oil (0.22 g, 72%); Rf 0.6 (pet. ether); 

u m a x (thin film) 2954, 2891, 1600, 1486, 1449, 1426, 1244, 1038, 1024, 828, 743, 696 

cm-1; 5 H (300 MHz, CDC13) 7.51-7.49 (2H, m, Ar-H), 7.29-7.27 (2H, m, Ar-H), 7.16-

7.09 (6H, m, Ar-H), 5.09 (1H, s, CM)Si(CH 3) 3), 0.15 (9H, s, Si(C// 3) 3), 0.05 (9H, s, 

Si(C// 3) 3), -0.08 (9H, s, (Si(C// 3) 3); 6 C (126 MHz, CDC13) 145.4 (Ar-Q, 136.3 (Ar-Q, 

136.1 (Ar-Q, 128.1 (Ar-Q, 127.8 (Ar-Q, 127.5 (Ar-Q, 125.9 (Ar-Q, 125.7 (Ar-Q, 

71.2 (CHOSi(CH3)3), 0.4 (Si(CH 3) 3), 0.34 (Si(CH 3) 3), 0.15 (Si(CH 3) 3); m/z (CI) 448 

(MNH 4

+ , 2%), 431 ( M + , 5%), 415 ( M + - C H 3 , 10%), 358 ( M + -Si(CH 3) 3, 100%); HRMS 

(CI) Found M N H 4

+ , 448.2337 (C22H42S14ON requires 448.2338). 

Dimethyldioxirane, 571 

Water (11 ml), acetone (7 ml, 94.0 mmol) and NaHC0 3 (13 g) were added to a 3-

necked round bottomed flask equipped with a pressure equalising dropping funnel 

containing acetone (8.4 ml, 114.0 mmol) and water (8.4 ml), an air cooled condenser 

fitted with a acetone/dry ice cold finger dewar and finally a solid addition funnel 

' o 
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containing oxone (25 g, 40.7 mmol). The oxone was then added portionwise (2-5 g) to 

the reaction vessel, whilst adding the acetone/water mixture simultaneously to the 

vigorously stirred mixture. The mixture was reacted for 30 mins at room temperature, 

after which time a slight pressure (30 mmHg) was added to finish the reaction off. The 

isolated pale yellow solution was used directly in the following epoxidation reaction. 

(2v^-Trimethyl(penta-13-dien-3-yloxy)silane, 572 

Ethyl vinyl ketone (2.6 ml, 25 mmol), triethylamine (4.4 ml, 31 mmol) and 

chlorotrimethylsilane (4.0 ml, 31 mmol) were mixed and cooled to 0 °C. Sodium iodide 

(4.7 g, 31 mmol) in acetonitrile (31 ml) was added dropwise to the stirred solution. 

Immediately after addition the onium salt formed quantitatively and the reaction was 

then warmed to 80 °C for 10 h after which time the reaction was poured onto ice/water. 

The aqueous phase was separated and extracted with pet. ether (3 x 50 ml). The 

combined organic layers were dried over MgS04, filtered, concentrated and dried in 

vacuo. Kugelrohr distillation (50 °C, 6 mbar) afforded the title compound as a 

colourless oil (0.8 g, 21%); all data given for the major Z isomer; u m a x (thin film) 2960, 

1649, 1605, 1339, 1252, 1052, 900, 842 cm"1; 6 H (300 MHz, CDC13) 6.17 (1H, d, J 10, 

CC//=CH 2), 5.23 (1H, d, J 15, CCH=C//H), 4.95-4.87 (2H, m, CCH=CH//, 

C=C//CH 3), 1.64 (3H, d, J 6, C=CHC// 3), 0.22 (9H, s, Si(C// 3) 3); 6 C (126 MHz, CDC13) 

135.5 (CCH=CH2), 111.4 (CCH=CH2), 110.3 (C=CHCH3), 11.6 (C=CHCH3), 0.6 

(Si(CH 3) 3); m/z (EI) 156 ( M + , 84%), 141 ( M + -Me, 88%), 127 ( M + -Me, -CH 2, 96%); all 

data agree with those reported in the literature.198 

O S i M e 3 O S i M e 3 
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(l,l,l,33?3-Hexamethyl-2-(trimethylsilyl)trisilan-2-yl)(phenyl)methanol, 573 

O H 

Dry tetrakis(trimethylsilyl)silane (10.0 g, 31.0 mmol) and potassium tert-butoxide (3.6 

g, 32.2 mmol) were combined under argon. THF (40 ml) was added and the resulting 

solution stirred for 2 h after which time it had become bright red. The THF was 

evaporated directly using a vacuum manifold and ether (40 ml) was added. The 

resulting solution was added via canula to a suspension of magnesium bromide diethyl 

etherate (10.5 g, 40.6 mmol) in ether (40 ml). The reaction mixture was stirred for l h 

and then cooled to -78 °C. Freshly distilled benzaldehyde (1.0 ml, 34.4 mmol) was 

added and the mixture stirred for 1.5 h. Saturated aq. NH4CI was added and the mixture 

allowed to reach room temperature. The aqueous layer was separated and extracted with 

ether (3 x 30 ml). The combined organic layers were dried over MgSC>4, filtered, 

concentrated and dried in vacuo. Flash chromatography (pet. ether; pet. ether/ether 39:1, 

29:1) afforded the title compound as a yellow solid (2.6 g, 24%); Rf 0.3 (pet. ether/ether 

9:1); m.p. 100-102 °C; x w (thin film) 3696 (broad-OH), 2950, 2892, 1600, 1245, 838 

cm"1; 5 H (500 MHz, CDC13) 7.29-7.27 (3H, m, Ar-H), 7.16-7.14 (2H, m, Ar-H), 5.04 

(1H, s, SiCH), 0.14 (27H, s, Si(Si(C// 3) 3) 3); o c (126 MHz, CDC13) 147.3 (ipso-Ar-C), 

128.3 (Ar-Q, 126.1 (Ar-Q, 125.4 (Ar-C), 69.4 (SiCH), 1.5 (Si(Si(CH 3) 3) 3); m/z (ES+) 

377 (MNa +). 

M e 3 

Me,Si 
S 
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(lS'/f^^^-l-Phenyl-l-trimethylsilyl-l-Cprop^'-yO-S-methylsilacycIohexane, 

574 

A mixture of silacycle 100 (0.1 g, 0.3 mmol) and Pd/C (10% Pd approx. 0.001 g) in dry 

toluene (2 ml) was repeatedly evacuated and flushed with hydrogen from a balloon. The 

mixture was then stirred under a hydrogen atmosphere for 8 h. It was then filtered 

through a celite pad and the pad washed with ether. The filtrate was concentrated and 

dried in vacuo. Flash chromatography (hexane) gave the title compound as a colourless 

oil (0.06 g, 55%); R f 0.9 (pet. ether); 5 H (300 MHz, CDC13) 7.54-7.52 (2H, m, Ar-H), 

7.33-7.30 (3H, m, Ar-H), 2.16 (1H, septet d, J l , 4, 2-C//(CH 3) 2), 1.95 (1H, dm, J 13, 5-

HH), 1.81 (1H, m, 3-H), 1.74 (1H, dm, J 13, 4-HH), 1.50 (1H, qt, J 13, 3, 5-HH), 1.19 

(1H, m, 4-HH), 1.11 (1H, dd, J 10, 4, 2-H), 1.07 (1H, m, 6-HH), 1.05 (1H, m, 6-HH), 

1.02 (3H, d, J l , 2-CH(C// 3) 2), 0.97 (3H, d, J l , 3-CH3), 0.79 (3H, d, J l , 2-CH(C// 3) 2), 

0.27 (9H, s, Si(C// 3) 3); m/z (EI) 304 ( M + , 12%), 289 ( M + -Me, 1%), 231 ( M + -Si(CH 3) 3, 

76%), 187 (10%), 175 (34%), 161 (56%), 153 (44%), 147 (28%), 135 (70%), 121 

(100%), 107 (38%), 105 (52%); all data agree with those reported by Whelligan.3 5 

(4Stf ,5/tS)-4,6-Dimethylheptane-l ,5-diol, 575 

Stage 1 

To a solution of (\SR,2RS,3SR)-\-Phenyl- 1-trimethy lsilyl-2-(prop-2'-yl)-3-

methylsilacyclohexane (0.06 g, 0.2 mmol) in dry chloroform (4 ml) was added 

S i - " S i M e 3 

Ph 

O H 

O H 

239 



trifluoroborane-acetic acid complex (0.5 ml, 3.6 mmol). The mixture was then heated to 

reflux and stirred for 18 h. The solution was then allowed to cool to room temperature 

and saturated NaHC03 solution (5 ml) was added. The aqueous layer was separated and 

extracted with DCM (3x10 ml). The combined organic layers were dried over MgSC>4, 

filtered, concentrated and dried in vacuo to give a dark orange oil which was used 

immediately in stage 2. 

Stage 2 

To the dark orange oil was added KHC0 3 (0.07 g, 0.7 mmol) and KF (0.04 g, 0.7 

mmol). The mixture was dissolved in methanol:THF solution (1:1, 4 ml) and a 35% 

w/w solution of H2O2 in water (0.4 ml, 4.3 mmol) was added. The mixture was heated 

to reflux and stirred for 19 h. The mixture was then allowed to cool to room temperature 

and saturated Na2S203 solution (5 ml) was added together with EtOAc (10 ml). The 

aqueous layer was separated and extracted with EtOAc (3 x 10 ml). The combined 

organic layers were dried over MgS04, filtered, concentrated and dried in vacuo.. Flash 

chromatography (pet. ether/ethyl acetate 1:1) gave the title compound as a colourless oil 

(0.004 g, 14%); R f 0.2 (pet. ether/ethyl acetate 1:1); 5 H (300 MHz, CDC13) 3.65 (2H, t, J 

6, l-H2), 3.09 (1H, t, J 7, 5-H), 1.82 (1H, octet, J1, 6-H), 1.69 (2H, m, 3-UH, 2-HH), 

1.60 (1H, m, 4-H), 1.50 (1H, m, 2-HR), 1.18 (1H, q, J 9, 3-HH), 0.93 (3H, d, J 7, 6-

CH3), 0.90 (3H, d, J 1, 4-CH), 0.89 (3H, d, J 1, 6-CH3); all data agree with those 

reported by Whelligan.35 
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7 Appendix 

This appendix presents 'H and 1 3C NMR spectra to make available evidence for the 

minor diastereoisomers obtained from the Hosomi-Sakurai and other reactions. 

! Hand 1 3C NMR for 328 



'H and 1 3C NMR for 322Ad 
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'Hand 1 3C NMR for 322Ac 
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'H and 1 3C NMR for 322Aj 
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'H and 1 3C NMR for 322Af 
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'Hand 1 3 C NMR for 322Aa 

J*L. A , - J L J . L I 

X 

pDm 

247 



'H and 1 3 C NMR for 322Ab 
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*H and 1 3 C NMR for 322Ag 
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'H and 1 3 C NMR for 342 
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'H and 1 3 C NMR for 322Ah 



'Hand C NMR for 321B 
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'H and 1 3 C NMR for Table 10, entry 2 
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'H and 1 3 C NMR for 486 
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H and 1 3 C NMR for 488 
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'H and 1 3 C NMR for 489 
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'H and 1 3 C NMR for 490 
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'H and 1 3 C NMR for 491 
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'H and 1 3 C NMR for 493 
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lH and 1 3 C NMR for 527 
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'H and l 3 C NMR for 521 
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'H and 1 3C NMR for 572 
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