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Larval ecology of malaria vectors and the impact of larviciding on 
malaria transmission in The Gambia 

Abstract 

The study reported in this thesis explored the ecology of aquatic stages of mosquitoes 

in the middle reaches of the Gambia River in order to assess the feasibility and impact 

of microbial larviciding on malaria transmission in large river ecosystems in sub-

Saharan Africa. 

Al l accessible water bodies in four study zones covering 400 km 2 were mapped 

and sampled for mosquitoes. Microbial larvicides were applied in the four zones in a 

cross-over design and the impact of larviciding on mosquito densities assessed. 

Anopheline and culicine mosquitoes were found in all sampled habitats, apart 

from those with moving water. Similarly, all habitats, except puddles and water 

channels, had similar larval and pupal densities. Anopheles gambiae sensu lato, the 

major malaria vector in Africa, exploited a wide range of habitats and despite a 

decrease in population density during the dry season, could be found in breeding sites 

throughout the year. Mosquitoes shared habitats with other invertebrates including 

their predators. A closer look at rice fields revealed that mosquitoes were abundant in 

rice fields closer to the landward edge of the floodplains where water is fresher and 

contains high quantities of nutrients. 

Mosquitoes of The Gambia were highly susceptible to both Bacillus 

thuringiensis var. israelensis (Bti) and B. sphaericus microbials, however no residual 

activity against anopheline larvae was observed. The basic training of personnel in 

identification of habitats, calibration of application equipment and active larviciding 

proved to be successful. 

Routine larviciding was associated with > 91 % reduction (p < 0.001) in 

anophelines late stage larval density and 72 % (p < 0.001) in culicines. Overall, 

larviciding was associated with a 28% (p = 0.005) reduction in the number of adult 

female Anopheles gambiae s.l. found indoors, although this rose to 42%, when the 

study zone with the greatest abundance of breeding sites was excluded from the 

analysis. No significant reduction in adult culicines was observed. 

Ground application of Bti in areas with extensive floodplains is unlikely to 

contribute to a substantial reduction in malaria transmission in The Gambia, therefore 

vector control in such areas should target adult mosquitoes. 
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Chapter 1 

Background and introduction 

The burden of malaria, vector ecology and control measures 

• 

Figure 1.1 Child suffering from malaria 
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Background and introduction 

The burden of malaria, vector ecology and control measures 

The burden of malaria 

Although malaria is a preventable and curable disease, it remains one of the most 

prevalent parasitic diseases of humans (Gardiner et al. 2005). Most figures showing 

the burden of malaria in the World particularly in Africa are a result of best guesses 

(Hay and Snow 2006) because of the absence of informative maps of malaria risk. 

However, recent estimates based on epidemiological data linked to the endemicity of 

malaria in different regions of the World show that in 2002 there were 515 million 

(range 300-660 million) episodes of clinical Plasmodium falciparum malaria (Snow et 

al. 2005). A staggering 70% of these cases (365 million clinical cases) occurred in 

Africa, representing close to a 40% increase over only 10 years from the figures 

reported by same authors in 1995 (Snow et al. 1999). It is worth noting that the 1995 

figures were based on epidemiological data while the 2005 were more specific and 

took into account the endemicity of different regions. Malaria increased in the 1990s 

compared to the 1980s when measured in terms of proportions of populations at risk, 

severity of infections and number of deaths (RBM 2005). While mortality resulting 

from other diseases decreased, child mortality due to malaria increased two-fold 

between the 1980s and early 1990s (RBM 2005). 

The economic burden caused by malaria is enormous and the gross domestic 

product (GDP) in malarious country is estimated to be more than five times less than 

in countries without high levels of malaria (Gallup and Sachs 2001). Countries with a 

high proportion of the population living in malarious areas had an annual economic 

growth rate 1.3% lower than other countries between 1965 and 1990 (Gallup and 

Sachs 2001). It is estimated that malaria alone costs African countries USD12 billion 

each year in lost GDP and consumes up to 25% of household income and 40% of 

government health spending (RBM 2005). Although the causes of poverty in sub-

Saharan Africa (SSA) cannot be explained by malaria alone, it is striking that where 

malaria prospers most, human societies prosper less (Sachs and Malaney 2002) but the 

causality in the relationship between poverty and malaria seem to run in both 

directions. Malaria causes poverty and poverty results in more malaria. 

13 



Malaria transmission 

Studies on transmission stability show that malaria is transmitted more robustly in SSA 

than it is elsewhere and this would be due to the intrinsic properties of vectors coupled 

with favourable climatic conditions than to differences in health systems or malaria 

interventions (Kiswewski et al. 2004). The annual entomological inoculation rate (EIR 

expressed as the number of infective mosquito bites per person per year) as a measure 

of transmission is very heterogeneous in Africa. A review done in 2000 on the EIR 

across Africa from 1980 onwards show an average of 121 infective bites in 159 

spatially distinct sites with a maximum of 884 and a minimum of zero (Hay et al. 

2000). This variation is usually due to the heterogeneity in the ecology of the area and 

human activities (Mabaso et al. 2007) which to a great extent determine vector 

behaviour. Overall rural areas are more exposed to malaria transmission, followed by 

irrigated areas (extensive and usually industrial agriculture), and urban areas are less 

exposed, although this varies in different locations (Hay et al. 2000). Rainfall 

seasonality, minimum temperature and irrigation in some areas are the major 

determinants of the intensity of the EIR (Mabaso et al. 2007). 

Malaria eradication and control 

The Global Malaria Eradication programme initiated by the World Health 

Organisation (WHO) in 1955 did not include Africa although this is the continent that 

bore the greatest burden allegedly because Africa was not ready to undergo a major 

eradication or control programme. Since then malaria control in Africa was neglected 

until the late 1990s when WHO inaugurated a new programme to Roll Back Malaria 

(RBM) (Dobson et al. 2000). The ambitious vision of the RBM partnership is that by 

2015 malaria would not be a major cause of mortality and a barrier to social and 

economic development anywhere in the World. Its strategic approach is to support 

countries to have access to effective treatment and prevention against malaria, to 

improve management and healthcare, to maintain malaria high on the development 

agenda and provide a comprehensive research agenda from product development to 

implementation strategies (RBM 2005). 

Although targets and promises are not always met by the donor's community 

funding malaria research and control (Attaran et al. 2004), there is more awareness 

today for the problems caused by malaria and expansion of resources and more 

commitment from endemic country governments (Yukich et al. 2007). In order to 
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achieve its goals, RBM recommends use of efficient drugs for case management, 

insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS) for vector 

control and other environmental and biological measures (RBM 2005). Cheap drugs 

which were once efficient, such as chloroquine, are no longer advocated due to a 

spread of resistant strains of parasites against this drug. More recently resistance 

against sulfadoxine-pyrimethamine has been recorded in East and Southern Africa 

(EANMAT 2003). Artemisinin has proven to be an effective treatment against 

Plasmodium species and in order to avoid the spread of resistance to the single 

molecule, artemisinin-based combination therapies (ACT) are being advocated as first 

line drug policy in many African countries (Mutabingwa 2005). The major challenge 

with this new policy is the cost of antimalarials and the implementation of the policy in 

low income countries to make ACTs available for patients at an affordable price 

(Mutabingwa 2005). WHO is subsidising the ACT in some countries to make it 

affordable to many but most countries would benefit from a free-drug policy in order 

to reach all in need. 

More than 100 trials in different settings worldwide have shown the protective 

impact of ITNs in reducing childhood and adult morbidity and mortality (Lengeler 

2004b). ITNs reduced malaria incidence by 50% compared to no use of ITNs and by 

39% compared to use of untreated bednets in areas of stable malaria. The incidence 

was reduced by 62% compared to no use of ITNS and by 43% compared to use of 

treated bednets in areas with unstable malaria. Close to six lives were saved for every 

1000 children protected by ITNs (Lengeler 2004a). The use of ITNs is associated with 

a reduction in malaria infections in pregnant women and a reduction in low birth 

weight in babies and fewer children dying before birth compared to those not using the 

ITNs (Gamble et al. 2006). ITNs are viewed as the most efficacious and feasible 

intervention to prevent malaria morbidity and mortality in Africa (Lengeler et al. 1998, 

Phillips-Howard et al. 2003, Rozendaal 1997). Long lasting insecticide-treated nets 

(LLINs) have recently been manufactured that can last for at least three years without 

need of re-treatment (N'Guessan et al. 2001). In some areas these LLINs are being 

distributed freely or heavily subsidised for pregnant women and children less than five 

years old, however there is an ongoing debate on whether to subsidise the nets or 

simply make them free for all who need them (Roberts 2007). The challenge with 

ITNs is the spread of resistance against pyrethroids in a number of malaria endemic 

countries (Awolola et al. 2002, Diabate et al. 2002, Hargreaves et al. 2000). This is of 
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great concern since the pyrethroids among other insecticides, have many advantages; 

they are safe, highly active and with a long persistence (Kolaczinski and Curtis 2004). 

The development of multiple insecticide resistance mechanisms in An. gambiae is 

particularly alarming for the future of malaria control with insecticides (Corbel et al. 

2007). 

Indoor residual spraying (IRS) has been part of vector control programmes 

since 1911 when it was used in military barracks in Dar es Salaam and later on in the 

1930s in South Africa to control malaria epidemics (Kouznetsov 1977). IRS 

contributed to the eradication of malaria in countries such as Brazil and Egypt in the 

1930s and early 1940s (Soper and Wilson 1943) although both programmes relied 

heavily on larval control of vectors. However, there are very few countries in Africa 

that have used IRS in their routine vector control programmes among them South 

Africa, Zimbabwe, Botswana, Madagascar and Ethiopia (Curtis and Lines 2000). 

Large-scale malaria control programmes using dichlorodiphenyltrichloroethane (DDT) 

and Benzene Hexachloride (BHC) started as early as 1948-49 in southern Africa and 

these projects were extended to other parts of Africa in 1952-53 using DDT, BHC and 

Dieldrin (Kouznetsov 1977). IRS has seen its rise and fall when DDT was once 

considered as "the" solution for malaria vector control in the 1960s but after 30 years 

of tangible success mainly outside Africa, it was withdrawn in most parts of the World 

for fear of its possible harmful side-effects on the environment and humans. Another 

reason for its withdrawal was the quick development of resistance that occurred in 

against Anopheles sacharovi in Greece in 1949 (http://timlambert.org/2005/06/ddtl0/ 

accessed 11/09/2008) 

The impact of DDT on people and the environment when it is strictly used for 

indoor spraying remains unclear. The controversy around the use of DDT has been in 

existence for many decades. However the report of the WHO in Brazzaville in 1972 

suggested that DDT was the most effective weapon in areas where time-limited 

eradication was not practical (Kouznetsov 1977). The Stockholm convention on 

persistent organic pollutants (POPs), which aims at protecting human health and the 

environment by eliminating or reducing the release of POPs into the environment, did 

not exclude totally the use of DDT (http://www.pops.int/ accessed 30.01.2008). With 

the development of resistance to DDT and its feared side-effects, other 

organophosphates, carbamates and pyrethroids compounds have been formulated such 

as fenitrothion, dichlorvos, malathion and propoxur. However their costs and 
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possibility of development of resistance do not allow use of these compounds at large 

scale. In 2006 the WHO backed the use of IRS for malaria control in areas with 

constant and high transmission including throughout Africa 

(www.who.int/mediacentre/news/releases/2006/pr50/en/ accessed 17.01.2008). The 

same report stressed that DDT has advantages over the other dozen of insecticides 

recommended by WHO for IRS. DDT is more effective, presents no health risk when 

properly used and is cost-effective. However, a study published in 2007 shows that 

women who were exposed at an early age (below 14 years) top, p' -DDT, the active 

ingredient of DDT, had a higher risk of breast cancer (Conn et al. 2007). By 2006, up 

to 14 countries in SSA were using IRS for malaria control and 10 of these were using 

DDT. However, upon release of this report, the idea of reintroducing DDT for malaria 

control at large scale in SSA was challenged mainly because of the lack of 

infrastructure required to implement large-scale interventions (Ahmad 2006). 

The advances in molecular biology and the progress brought forth by the 

completion of the sequence of genomes of Anopheles gambiae (Holt et al. 2002) and 

P. falciparum (Kissinger et al. 2002) was seen as a breakthrough in the malaria 

research community. It has raised hopes of acquiring effective drugs and vaccine 

against malaria and genetically engineered mosquitoes that could disrupt the spread of 

the disease. Research into genetic manipulation of malaria mosquitoes aims on the one 

hand at replacing naturally malaria-transmitting species with genetically modified ones 

refractory to P. falciparum. On the other hand it aims at releasing sterile males to out-

compete natural populations in mating and produce no offspring, which in the long 

term would eradicate the population (Catteruccia 2007). 

The historical slow progress in developing a vaccine against malaria could be 

explained by (1) the fact that Plasmodium has several antigens varying throughout its 

life cycle therefore requiring sequential consecutive immune response, (2) the 

immunity to malaria is strain specific, (3) the knowledge on acquired immunity is 

limited and incomplete and no surrogate markers of immunity have been found so far, 

and (4) the absence of an appropriate animal model requires costly efficacy trials (Aide 

et al. 2007). The RTS,S/AS02A trial in 2004 showed 58% efficacy of the vaccine for 

severe malaria after six months in children 1-4 years old. The vaccine reduced 

prevalence of P. falciparum infection by 37% and its efficacy for extending the time to 

first infection was 45% (Alonso et al. 2004). Recently there has been more progress 

supporting the feasibility of a malaria vaccine (Aide et al. 2007). However, the 
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problem remains that even i f an efficient vaccine was found it would take up to 10-12 

years before it could be marketed (Bonn 2005). 

Successes in malaria control have been registered recently in a number of 

African countries mainly due to the surge in ITN coverage, the return of IRS control 

measures, the switch to ACTs as first line drug in most countries and increased and 

new funding opportunities (Okiro et al. 2007, Wakabi 2007). A study in Kenya showed 

that after the expansion of ITN use, a 44% reduction in children mortality was 

achieved (Fegan et al. 2007). There is optimism that Mali, Senegal, Benin and Togo 

might reach the Abuja target (RBM 2003) of halving the malaria burden by 2010 

(Wakabi 2007). WHO reported a dramatic reduction by more than 50% in malaria 

cases and deaths for Rwanda and Ethiopia and a less dramatic reduction in Zambia and 

Ghana (http://www.who.int/ accessed 30.04.2008). These successes were attributed to 

a wide distribution of LLINs and ACTs in the public sector. Amidst these encouraging 

successes the Bil l and Melinda Gates foundation on 17 th October 2007 called for the 

world to launch a malaria eradication campaign (http://www.gatesfoundation.org/ 

accessed 30.04.2008). A few days later the controversy caused by the call for 

eradication prompted an editorial in one of the leading journals in medical research, 

the Lancet, and a publication in the journal Science discussing the consequences of 

such ambitious plans. For the success of this daunting task new tools would be needed 

such as an effective vaccine and strong health care systems. The two publications also 

call for caution because the eradication campaign might divert scarce resources and i f 

it failed might undermine support for global health initiatives in the future 

(Anonymous 2007a, Roberts and Enserink 2007) 

Malaria in The Gambia 

Malaria started to be studied systematically in The Gambia in the 1950s. In late 1980s 

malaria was responsible for 4% infant deaths and 25% of deaths of children between 1 

and 4 years (Greenwood et al. 1987). In a study published six years later, it was 

reported that malaria was responsible for about 40% of deaths in children aged 1-4 

years (Alonso et al. 1993). 

The EIR in The Gambia is very heterogeneous like in other places in Africa 

and was estimated to average 42 varying between 0 and 177 (Hay et al. 2000). A 

recent study done in the central region of the country reported a variation of EIR 

between 0 and 166 (Begh et al. 2007). Malaria prevention relies heavily on the use of 
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bed nets. Until the 1990s the level of bed net use against mosquitoes in The Gambia 

was one of the highest on the continent, reaching a 76% coverage in the central 

division of the country and 58% overall (D'Alessandro et al. 1994). The Government 

of The Gambia launched a National Impregnated Bed net Programme (NIBP) in 1992 

through the primary health care system (Muller et al. 1997). An evaluation of the 

implementation of the programme suggested that 77% of children under five years old 

and 78% of women at childbearing age were sleeping under ITNs (Cham et al. 1996). 

However, in villages where the insecticide for re-treatment of nets was charged, 

coverage was as low as 14% compared to 77% coverage in areas where free insecticide 

was distributed (Cham et al. 1997). Despite a long history of bed net use only one in 

four people were aware that mosquitoes cause malaria (Aikins et al. 1993). However a 

study done three years later show that 50% of interviewed women said that bed nets 

prevented malaria (Clarke 2001). Expenditure on bed nets including treatment and 

repair in The Gambia constitute only 10% of total expenditure towards mosquito 

prevention, while 81% is spent on coils, indoor sprays, smoke and aerosols (Wiseman 

et al. 2006). 

The strategy for malaria control in The Gambia follows the RBM-WHO 

guidelines with a main focus on case management (NMCP 2002). Prevention is 

centred on the use of bed nets and larval control of malaria vectors is done on a very 

small scale in the Banjul area and occurs only in the rainy season. The policy towards 

use of intermittent preventive treatments (IPT) in children or pregnant women was 

introduced late in West Africa (Newman et al. 2006) but is part of the prevention 

programme in The Gambia for pregnant women. 

Ecology of mosquito larvae 

The An. gambiae complex has been described as including the most efficient vectors of 

malaria known from anywhere in the world. The complex comprises at least six named 

species: An. gambiae sensu stricto, An. arabiensis, An. melas, An. merus, An. 

bwambae, An. quadriannulatus and one unnamed species referred to as An. 

quadriannulatus B (Hunt et al. 1998). An. gambiae is widely distributed in tropical 

Africa except at high altitudes and in deserts (Coetzee et al. 2000, Gillies and 

DeMeillon 1968). Although it has long been considered to breed mostly in shallow 

open sun-lit pools, its larvae exploit a wide range of water bodies such as borrow-pits, 

drains, brick-pits, ruts, car-tracks, hoof-prints, pools resulting from overflow of rivers 
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or left by receding rivers, backwaters, and rainwater in natural depressions (Gillies and 

DeMeillon 1968). In rural Kenya where malaria is perennial, An. gambiae exploits 

both natural and artificial water bodies and permanent and semi-permanent water 

bodies are equally productive (Fillinger et al. 2004). The oviposition cues for malaria 

vectors in Africa are still poorly understood and the preferential behaviour of these 

mosquitoes to different water habitats varies greatly in different ecological settings 

(Holstein 1954, Huang et al. 2006). 

In the dry savannas of Africa mosquito populations are highly seasonal with 

high densities occurring in the rainy season. During the rains, anopheline mosquitoes 

exploit sunny and temporal breeding sites such as rain-fed pools not covered with 

vegetation (Taylor et al. 1993). In the dry season they exploit pools created by 

receding rivers, edges of man-made lakes, irrigated gardens, wells and flooded borrow 

pits (White and Rosen 1973). In some areas, distinct habitat types show a higher 

production of mosquito immatures than others. Rice fields are very productive for An. 

gambiae when recently flooded and rice is low (Holstein 1954, Ijumba and Lindsay 

2001, Snow 1983). Later, when rice is fully grown, breeding may continue at a lower 

level on the fringes of the rice fields (Gillies and DeMeillon 1968). In some instances, 

vegetated areas, irrigated channels and permanent wells can be colonised by mosquito 

larvae and even permanent marshes as observed in the Congo (Gillies and DeMeillon 

1968). 

All these examples illustrate the plasticity of An. gambiae to exploit a variety 

of breeding sites with different ecological conditions. However, productivity of 

mosquitoes is not homogeneous in all types of breeding sites. In the western Kenyan 

highlands, farmlands were more productive for An. gambiae than natural forest or 

swamps (Munga et al. 2006). In The Gambia the landscape is shaped by the Gambia 

River which bisects the country and creates wide areas of floodplains. These areas are 

the major source of mosquitoes where most breeding occurs up to 1400 m from the 

edge of alluvial floodplains (B0gh et al. 2003). The main vectors of malaria in this area 

are An. gambiae s.s., An. melas and/in. arabiensis (Bryan 1983, Lindsay et al. 1993). 

A study done in this area showed a niche partitioning of different members of the 

complex. An. melas developed mainly in Avicennia mangroves monthly covered by 

tides, An. gambiae s.s. was associated with Paspalum and Eleocharis species and An. 

arabiensis was dominant in rice fields fed by rain water (B0gh et al. 2003, Giglioli 

1964). 

20 



There is little information available on the importance of chemical and physical 

factors in breeding sites occupied by An. gambiae (Gillies and DeMeillon 1968). The 

same is true for organic matter content which varies widely in different water bodies 

occupied by ,4M. gambiae. However, algae (Laird 1988) and detritus (Merritt et al. 

1992, Wallace and Merritt 1999) are well known as a food source for An. gambiae 

larvae. In western Kenya, a study concluded that the primary food source for^n. 

gambiae larvae was derived from algal growth and the second source was bacterial 

growth (Gimnig et al. 2002). Although water temperature is an important factor for the 

survival and development of mosquitoes, An. gambiae larvae seem to have a wide 

range of thermo tolerance. Some authors report that minimum temperatures around 

7°C and maximum of 42°C are generally accepted but other authors believe no natural 

collection of water could be too hot for the larvae (Gillies and DeMeillon 1968). In 

The Gambia under laboratory conditions all larvae died at cold temperatures (10-12°C) 

and at high temperatures (38-40°C (Bayoh and Lindsay 2004)). The development rate 

from larvae to adult was highest between 28 and 32°C and adult emergence was 

highest between 22 and 26°C (Bayoh and Lindsay 2003). An. gambiae is usually a 

pioneer species and develops in high densities in small pools formed after the rains 

before development of many predators. Apart from predation and cannibalism 

determining larval survival (Koenraadt and Takken 2003, Koenraadt et al. 2004b), the 

development rate of An. gambiae varies mainly with temperature. In general it takes 1 -

2 days for eggs to hatch and 6-9 days for larvae to develop and 1 -2 days for the pupal 

stage. However under optimal conditions the cycle might be completed in 6 days 

(Gillies and DeMeillon 1968). Under laboratory conditions in The Gambia 

development from larvae to adult took 9 days at 28°C (Bayoh and Lindsay 2003). It 

has been shown in western Kenya, which is generally cooler than The Gambia, that 

water temperature in shallow pools can reach 38-39° C (Paaijmans et al. 2008). 

Adult mosquito distribution 

Population dynamics of An. gambiae follow the seasonal pattern of rainfall. In the 

Sahel region with only one rainy season, mosquito numbers rise at the onset of the 

rainy season and reach a peak in the middle of the rainy season (Gillies and DeMeillon 

1968). In the Gambia, this peak is observed around September (Lindsay et al. 1993) 

and it is during this time that most larvae are caught when the alluvial soils bordering 

the river are covered by relatively fresh water (Begh et al. 2003). Afterwards mosquito 
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numbers decrease as vegetation grows high and predators colonise the breeding sites 

(Gillies and DeMeillon 1968) or oviposition decreases as the breeding sites remain 

available for a long time and predators increase in abundance (Service 1977a). 

Moderate rain distributed over the rainy season sustains pools for a long time and 

therefore contributes to a higher production of mosquitoes. On the contrary heavy 

down pours over a short time although creating many breeding sites could result in 

flushing out of pools (Gillies and DeMeillon 1968, Paaijmans et al. 2007) decreasing 

production of adult mosquitoes. In areas with large river systems affected by tides such 

as The Gambia, the availability of breeding sites is usually regulated by the tidal 

movement of water. It was observed that adult mosquitoes in these areas may invade 

villages 8 to 10 days after the spring tides (Mouchet et al. 1994). 

The flight range of mosquitoes varies with species and its study is less 

conclusive because it is usually influenced by external factors difficult to adjust for 

such as wind speed and vegetation cover prevailing at the time of the study. Another 

challenge is that testing the flight range of mosquitoes is usually determined by mark-

release-recapture techniques. These methods require a huge number of mosquitoes to 

be released in the wild in order to recapture a significant number. Extensive reviews on 

these studies show that the recapture rate is generally low (Service 1997, Vlach et al. 

2006). These kinds of studies are not only difficult to design in the field but they also 

pose an ethical problem of releasing potentially harmful vectors in the wild. However, 

large semi-field systems are being developed where such studies could be successfully 

done in the future (Ferguson et al. 2008). The flight range of one of the widespread 

mosquito species in the Americas, the black salt marsh mosquito Ochlerotatus 

taeniorynchus has been reported to reach 48-96 km (Vlach et al. 2006). A study done 

in Tanzania (Takken et al. 1998) suggests that dispersal of An. funestus and An. 

gambiae is not random but influenced by the availability and type of breeding sites, 

and could also be affected by the distribution of hosts (Gillies 1961). In The Gambia it 

was shown that vector density and EIR decreased away from breeding sites and for 

people within 4 km away from breeding habitats there was a 11.5 fold reduction in 

infective bites per person (B0gh et al. 2007). 

Lessons from the past 
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Successful programmes for malaria control in the past have relied mainly on 

controlling the vectors. However the complexity of malaria transmission and vector 

behaviour implies that no single tool can be sufficient to control the disease 

successfully. Interventions in the past have relied on integrated vector management 

tools to achieve success in malaria control. Change in land use, agricultural methods, 

house design and targeted vector control together contributed to the elimination of 

malaria from North America and Europe (Greenwood and Mutabingwa 2002). 

One of the most efficient tools for vector control is larval source management 

(LSM). Between the two World wars larval control was almost the only method used 

for malaria control at large-scale in Africa (Kouznetsov 1977). This could be done 

either through larval source reduction by manipulation of the environment such as 

drainage of flooded areas and swamps, modification of river boundaries and vegetation 

clearance or through larviciding (Utzinger et al. 2001). However, a successful control 

programme would require that most productive breeding sites are reached and treated, 

and in places with numerous and scattered breeding sites, larviciding would be 

logistically demanding (Walker and Lynch 2007). Malaria control across Europe, Asia 

and the Americas before World War II focused on environmental manipulation and 

larviciding of breeding sites using chemical or biological agents (Kitron and Spielman 

1989, Walker 2002). The advantage of control measures directed at larval stages is that 

they suppress the vectors before they are capable of transmitting diseases. Because 

mosquito larvae do not move far (Koenraadt et al. 2003) they are not capable of 

escaping control measures targeted at their habitats. 

The African malaria vector An. arabiensis (Parmakelis et al. 2008) was 

eradicated from an area approximately 54,000 km 2 in Brazil with ecological settings 

similar to those in many parts of Africa (Killeen et al. 2002a). This is an outstanding 

example of the success of larval management for malaria control (Soper and Wilson 

1943). The main efforts of this programme were larviciding with Paris Green, an 

arsenic-based insecticide, which was very effective and could be mixed with dust and 

sand therefore not needing expensive diluents. This unprecedented success was mainly 

achieved by well defined and rigorous organisation of larval control activities (Killeen 

et al. 2002a) and was successfully repeated in the River Nile valley of Egypt (Shousha 

1948). One of the advantages in these two areas where larval control was successful is 

that they were relatively confined areas and therefore not subjected to invasion of 

mosquitoes from other places. However, these were very large areas covering 
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thousands of kilometres suggesting that this method could be successful in a number of 

malaria endemic countries in Africa. Another successful programme is the control of 

malaria in the copper belt in Zambia between 1930 and 1950 (Watson 1953). This 

integrated programme relied heavily on larval source reduction by clearing vegetation, 

modification of river boundaries, draining swamps and oil application to water bodies. 

Houses were screened and part of the population was treated with quinine and the 

occupants were stimulated to use bed nets. This programme resulted in a reduction of 

malaria related mortality, morbidity and incidence rates by 70-95% (Utzinger et al. 

2001). 

A variety of compounds have been used to kill mosquito larvae and pupae such 

as crude kerosene and distilled petroleum oils, Paris Green, temephos, fenitrothion and 

chlorpyriphos. The juvenile hormone mimic pyriproxifen has been used for a long time 

for mosquito control mainly in Asia. It only requires low concentrations (0.01 mg 

a.i./l) to inhibit the development of larvae and prevent adult emergence (Yapabandara 

et al. 2001), therefore its impact can only be seen in the adult mosquito density. 

Pyriproxifen was found to be safe for non-target organisms such as fish, mammals and 

other invertebrates including mosquito predators (Mulla et al. 1986). 

Expandable polystyrene beads (EPB) have also been used mainly for the 

control of Culex mosquitoes breeding in enclosed habitats such as wet pit latrines, cess 

pits and flooded cellars (Curtis 2005). The EPB suffocate mosquito larvae and by 

obstruction prevent further oviposition when properly applied (Curtis et al. 1989). This 

approach is cost-effective because the beads do not rot and would continue to prevent 

oviposition i f they are not moved (Curtis et al. 1989). In Zanzibar the application of 

EPB in 500 pit latrines in a community of 12000 people achieved ~ 98% reduction in 

mosquitoes entering bedrooms (Curtis 2005). In Sri Lanka a comparable study of 

pyriproxifen, polystyrene beads, temephos, used engine oil and filling of pits revealed 

that pyriproxifen was the most cost-effective approach because it required only two 

applications per year (Yapabandara and Curtis 2002). In Tanzania an integration of 

polystyrene beads in enclosed breeding sites and pyriproxifen in open breeding sites 

reduced the density of Culex quinquefasciatus by 46-77% (Chavasse et al. 1995). 

Since some of the products used for larval source management such as Paris 

Green were highly toxic to people, a generation of safer chemical and biological 

larvicides were developed. Biological larvicides are better than chemical ones because 

they are often specific to target organisms and do not harm the environment where 
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they are applied (WHO 1999). The efficacy of these larvicides against malaria vectors 

is increasingly stimulating research and control communities to integrate larval control 

as an additional tool for malaria control. 

Microbial larvicides 

A great number of studies have been conducted in the laboratory to assess the potency 

of different bacterial agents against mosquito larvae. Among them the mosquitocidal 

properties of spore-forming bacteria Bacillus thuringiensis var. israelensis (Bti) and B. 

sphaericus (Bs) have been proven (Lacey 2007). Both bacteria have a specific mode of 

action against Culicidae and Simulidae and can be produced inexpensively in artificial 

media (Regis et al. 2001). 

During sporulation Bti and Bs produce crystals and when released in water and 

ingested by larvae, the alkaline pH and intestinal proteinases of the larval midgut 

solubilise the crystals and release the toxins. These toxins bind to the midgut cells and 

cause lysis of the epithelium of the gut which result in death of the larvae (Charles 

1987). Bti releases four toxins: Cry 4A, Cry 4B, Cry 11A Cytl A which act in synergy 

(Poncet et al. 1995) and on different target molecules. This combination of different 

toxins explains why no resistance to Bti has occurred in the field after 30 years in use. 

In contrast Bs releases only two similar toxins (Bin A and B) which although acting in 

synergy cannot be considered as individual toxins as those of Bti. These toxins use the 

same receptors and therefore easily display cross-resistance. It has been suggested that 

Bs should be used with caution while monitoring the development of resistance, and 

preferably in combination with other species such as Bti. 

Bti larvicidal properties have been known since 1977 (Goldberg and Margalit 

1977). Its efficacy and specificity for certain families of Nematocera enabled Bti to be 

quickly registered as a commercial larvicide and to be used in routine large-scale 

mosquito control programmes in Europe (Becker 1998). It was the first bacterium to be 

used in a public health programme to control Simulium damnosum, the vectors of 

Onchocerca volvulus. This Onchocerciasis Control Programme (OCP) started in 1974 

and covered 11 countries in West Africa using organophosphates for control in the first 

instance. When larvae became resistant to the organophosphates, Bti was introduced in 

1983 to manage the resistance (Regis et al. 2001). Within 16 years onchocerciasis was 

contained and was no longer a public health problem in those countries (Hougard et al. 

1997). Bti was also used on large scale in a Similium control programme in Brazil and 
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in temperate countries for control of nuisance mosquitoes. Since 1981 Bti has been 

widely used in Germany against Culex pipiens and floodwater or snow-melt 

mosquitoes (Becker and Rettich 1994). Bti tested in increasing dosages up to 10 kg/ha 

had no effect on rotifers, Cyclops sp, Daphnia sp, ostracods, Baetis sp, corixids, 

notonectids, coleoptera, and other non-target invertebrates were not affected (Ali 

1981). In general, dosages of Bti that kill mosquito larvae are far less than those that 

could kill non-target organisms. One set back with Bti is that it does not persist long in 

the environment and requires re-application at short intervals, sometimes weekly. In 

contrast Bs has been advocated for larval control mainly because in many 

environments it persists longer and might be recycled under natural conditions 

(Hertlein et al. 1979, Mulligan et al. 1980, Skovmand and Bauduin 1997), and in larval 

cadavers (Correa and Yousten 1995). Therefore the best practice would be to apply Bs 

for its long residual effect together with Bti to counter development of resistance 

(Wirth et al. 2004). 

The level of efficacy of these bacteria vary with the environment where they 

are used and with the susceptibility of indigenous mosquitoes (Becker and Rettich 

1994). Therefore it is important to evaluate them locally before they can be used as 

mosquito control agents. The success of control measures relying on larviciding would 

require a good understanding of the behaviour and ecology of mosquitoes and their 

environment. Because larviciding is logistically demanding, the most efficient 

intervention would be one that targeted the most productive breeding sites. In places 

with seasonal malaria transmission, it would be cost-effective to target larviciding at 

the transmission season preferably before the peak in mosquito numbers wherever 

appropriate. 

In summary, today it is widely acknowledged that the best approach to tackle 

malaria vectors is through integrated vector management programmes. This strategy 

uses interventions that have shown efficacy in combination or separately instead of 

relying on a single tool. Such interventions reduce the selection of pressure on 

insecticides or drugs i f they were used alone (WHO 2004). There is a need for as many 

effective tools as possible to fight the disease and vectors and an informed decision on 

which tools to use in different settings in order to achieve good control. The 

complexity and heterogeneity of malaria vector ecology observed in different areas 

requires a thorough understanding of ecosystems where intervention programmes are 

planned. One of the best ways to suppress malaria vectors is through targeting them at 
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the larval stage before they become adults and spread disease. This historical approach 

has led to eradication of malaria in ecosystems similar to those where malaria is 

endemic today, therefore raising hope that this approach might be a valid tool to 

consider in these areas. A successful implementation of anti-larval measures for 

malaria control requires a comprehensive knowledge of vector breeding sites in order 

to target larviciding efforts at the most productive habitats wherever possible. It also 

requires an efficient and specific larviciding agent and one that can persist in the 

environment without causing adverse effects to non-target organisms. And finally it 

requires efficient organisation, management and monitoring of the implementation 

process. 

Study Goal 

The goal of this study was to determine whether mosquito larval control through the 

use of Bti and Bs will reduce malaria transmission in The Gambia. 

Objectives 

The specific objectives were to: 

1. describe immature mosquitoes' spatial distribution and the most productive 

habitats for mosquitoes in the middle reaches of the Gambia River; 

2. test the efficacy of Bti and Bs on Gambian mosquitoes; 

3. implement routine larval control in the area, and measure its impact on 

immature and adult mosquito densities. 

Hypotheses 

The hypotheses for this research were as follow: 

1. The distribution and abundance of mosquito larvae and pupae is not random in 

rural Gambia but clustered to some habitats. 

2. Microbial larvicides Bti and Bs are efficient against mosquitoes in The Gambia. 

3. Larval control can be used to reduce malaria vector densities and consequently 

malaria transmission in rural Gambia i f applied routinely in the most 

productive habitats. 
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Chapter 2 

Spatial distribution of mosquito larvae and the potential for targeted 

larval control in The Gambia* 

*5r 
< 

Figure 2.1 A sample of mosquito breeding habitats found in rural Gambia 

This chapter will appear as a paper, in a modified format with the same title by S. 
Majambere, U. Fillinger, C. Green, D.R. Sayer, and S.W. Lindsay in the American Journal 
of Tropical Medicine and Hygiene 
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Spatial distribution of mosquito larvae and the potential for targeted 

larval control in The Gambia 

Abstract 

Background There is a growing interest in the scientific community for use of larval 

control as a tool for integrated vector management. Here the distribution of the aquatic 

stages of malaria vectors in rural Gambia was examined to assess the practicality of 

targeting larval control. 

Method Every accessible water body in a 400 km area in rural Gambia was mapped 

and sampled for two consecutive years. Each water body was characterised by its 

distance to the edge of the alluvial plains, perimeter, habitat type, landcover type and 

the presence or absence of mosquito larvae assessed by standard dipping. Sampling 

was continuous in each site through the rainy and dry seasons. 

Results During the rainy season, the peak period of malaria transmission, habitats in 

the floodplain of the Gambia River were 70% more likely to have anopheline larvae 

than upland habitats (p < 0.001). However, mosquitoes were found in all habitats, apart 

from moving water. Habitats most often colonised by anopheline larvae were the 

largest water bodies, situated near the landward edge of the floodplain, where culicine 

larvae were present. In the wet season 49% of all sites had anophelines versus 19% in 

the dry season (p < 0.001). 

Interpretation Mosquitoes colonise a wide range of habitats, therefore larval control 

targeted at specific habitats is unlikely to be successful in this setting. Nonetheless, 

larval control initiated at the end of the dry season and run throughout the rainy season 

could help reduce transmission. 
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Introduction 

There is a growing interest in using larval control as a tool for integrated vector 

management programmes for malaria control in SSA (Fillinger et al. 2003, Fillinger 

and Lindsay 2006, Gu and Novak 2005, Killeen et al. 2002a, Killeen et al. 2002b, 

Killeen et al. 2006, Shililu et al. 2007, Utzinger et al. 2002, Utzinger et al. 2001). The 

first operational larviciding programmes in modern Africa recently commenced in the 

city of Dar es Salaam, Tanzania (Fillinger et al. 2008). Data needed to inform these 

programmes are starting to grow. Recently pilot studies in lowland and highland 

Kenya showed that microbial larvicides could reduce Anopheles larval densities by 

95% with a concomitant reduction in exposure to mosquito bites of over 90% 

(Fillinger and Lindsay 2006). Most importantly, in highland sites larviciding was 

associated with a 50% reduction in malaria parasite infection (Fillinger U and others, 

unpublished data). Similar reductions in vector productivity have been achieved with 

larval source management using microbial larvicides in Eritrea (Shililu et al. 2007). 

The eradication of Anopheles arabiensis (Parmakelis et al. 2008), one of the 

principal vector of malaria in SSA, from large flooded areas in Brazil in the 1930s 

(Soper and Wilson 1943) suggested a similar approach could be effective in 

comparable habitats in SSA, including those in rural Gambia. Before embarking on a 

larval control campaign it is crucial to understand where and when the aquatic stages 

of the vectors are found in order to direct control activities at these sites. Since 

larviciding in large river ecosystems like the Gambia River would be logistically 

complicated and expensive, identifying the sites where Anopheles larvae occur most 

frequently and/or in highest density for targeting larval control (Gu and Novak 2005, 

Killeen et al. 2006) would increase the cost-effectiveness of the operation. 

In SSA Anopheles larval habitats are frequently associated with human activity 

(Gillies and DeMeillon 1968). These are typically open sunlit pools created when 

depressions made by people and their animals fill with rain or ground water. Such sites 

are common close to human habitation and in fields. In addition, regions with large 

river systems including The Gambia often face seasonal flooding which creates large 

areas of standing water for extended periods of time and provides potential breeding 

sites for mosquitoes (Bogh et al. 2003, Giglioli and Thornton 1965). 

Few larval surveys have been conducted in The Gambia (Bertram et al. 1958, 

Begh et al. 2003, Giglioli 1964, Thomas and Lindsay 2000) and most of these studies 

were small scale or along transects confined largely to the floodplains in the rainy 
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season making it difficult to generalise the findings from these studies. Originally it 

was recognised that higher numbers of adult mosquitoes were captured in villages 

close to the Gambia River compared with those further away (Lindsay et al. 1993). 

Since the river is too fast flowing to provide mosquito breeding sites an investigation 

of the riverine habitats was carried out. This investigation revealed that the number of 

adult mosquitoes found in a village was positively related to the proximity and extent 

of pooled sediments bordering the river, suggesting that this was the most productive 

area for anophelines (Thomas and Lindsay 2000). This finding was confirmed several 

years later when the highest densities of mosquito larvae collected along transects were 

close to the landward edge of the alluvial plains, although high numbers could also be 

found more than a kilometer into the alluvial floodplains (Bogh et al. 2003). Anopheles 

gambiae sensu stricto and An. melas were found mainly within the flooded areas, 

whilst An. arabiensis occurred mainly in rain-fed rice fields close to this area. 

The present study was carried out to prepare for a large trial of microbial 

larvicides where all potential breeding habitats within the study area needed to be 

identified. Larval data collected during this study was used to determine and 

characterise those water bodies commonly frequented by anopheline larvae, both in the 

floodplains and the upland sites, during the dry and wet seasons. This information is 

essential for determining whether targeting interventions at a limited number of 

specific habitats highly colonised by mosquitoes would be a viable option for malaria 

control in rural Gambia, and in other areas with major river systems. The study 

represents a comprehensive longitudinal survey of potential larval breeding sites, 

surveying every accessible water body in a 400 km area from the river to the 

Senegalese borders of the country repeatedly over a two year period. 

Material and methods 

Study area 

The study was carried out East of Farafenni town in The Gambia from June 2004 to 

May 2006. The Gambia is in the southern Sahel and is characterised by a short rainy 

season from June to October and a long dry season from November to May. The 

country lies in an area of open flat Sudan savannah that is dominated by the River 

Gambia, a large, slow moving waterway, characterised by tidal movements and 

saltwater intrusions as far as 200 km up river. River Gambia is representative of many 

large river systems in Africa. Its tidal movements flood successive belts of vegetation 
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from the mangrove forest through flooded Phragmites, sedge and grass species, 

punctuated by large bands of barren floodplain. 

The study area was selected to comprise the most common habitats found in 

large river ecosystems, where many water bodies contained brackish, as well as 

freshwater. Four zones, each approximately 100 km 2 in area, were selected (Figure 

2.2) two on the north bank of River Gambia around Balanghar Ker Nderry (Zone 1 

UTM: 1510598N, 456756E) and Bantanto Jawara (Zone 2 UTM: 1513745N, 

473014E), and two on the south bank, near Jalangbereh (Zone 3 UTM: 1480043N, 

457259E) and Sutukung (Zone 4 UTM: 1489734N, 470794E). Each zone can be 

divided broadly into (1) the upland area that is predominantly woodland savannah and 

farmland, where the main crops are millet and groundnuts, and (2) the river 

floodplains, where large areas of alluvial soils are flooded during the rainy season and 

rice is grown. The average annual rainfall during the study period was 837 mm. 

The Gambia 
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Figure 2.2 Map of the study area. Discontinuous lines show zone limits. 

Water body measurements 

Each water body encountered while walking the entire breadth of the study area was 

given a unique identification number and its position recorded using a handheld Global 
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Positioning System (GPS, Garmin GPS 12 XL, 15 meters accuracy). The depth, size, 

type of water body (referred to as habitat here forth), and surrounding landcover was 

recorded for every accessible aquatic habitat found during the study. Surveys were 

carried out continuously, with each zone being surveyed 6 to 8 times during the study. 

Water depth was classified as shallow when the water level was below knee-high and 

deep when it was above the knee. The perimeter of each breeding site was categorised 

by eye as: (1) < 10 m, (2) 10 - 100 m, or (3) > 100 m. Each aquatic habitat was 

classified into one of the following categories which are usually found in succession 

from the village towards the main river: (1) Brick or sand pits: borrow pits (> 2 m 

diameter) resulting from brick-making or other construction activities, (2) Cattle 

troughs attached to village pumps, (3) Pools: discrete (< 200 m diameter) and shallow 

(< 50 cm) standing water bodies, usually drying out towards the end of the dry season, 

(4) Edges of floodwater: the shallow landward edges of the extensive floodwater in the 

floodplains of the river or its tributaries, partly barren and partly associated with grass 

{Paspalum and Sporobolus sp.) and sedge (Eleocharis sp.), (5) Ponds: discrete and 

permanent water bodies, more than 100 m in circumference fed by groundwater and 

deeper than pools, (6) Water channels: used for irrigation or drainage, (7) Stream 

fringes: the shallow edges of permanent streams associated with grass or sedge, and 

tall reeds in deeper parts, (8) Puddles or tyre tracks: small natural or vehicle-made 

depressions, (9) Footprints: made by people, cattle or other animals where water 

collects, often associated with edges of large water bodies (floodwater, streams, pools 

and ponds), (10) Floodwater: inundated areas in the floodplain further away from the 

landward edge, towards the river, (11) Rice fields: seasonally flooded areas used to 

grow rice, and (12) Mangrove: water body characterised by densely growing mangrove 

trees (Rhizophora and Avicennia sp.) near the main river. 

Additionally, the dominant landcover around each aquatic habitat was recorded 

as: (1) Upland grassland (Poaceae): vegetation dominated by Paspalum and/or 

Sporobolus species: not affected by the river, (2) Upland agriculture: such as fields of 

groundnuts, maize, pumpkins, sorghum and millet, (3) Shrubs of the West Sudanian 

savannah ecoregion, (4) Forest: densely growing, tall trees, (5) Barren floodplain: 

under tidal influence without any vegetation, (6) Sea-purslane (Sesuvium sp.): a 

succulent salt indicator plant forming a low carpet of thick leaves, (7) Grass (Poaceae) 

on the floodplain: vegetation dominated by Paspalum and/or Sporobolus species, (8) 

Sedge (Cyperaceae): vegetation dominated by the spike-rush (Eleocliaris sp.), (9) Rice 
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(Oryza sativa) plantations, (10) Reeds: Phragmites karka and Cyperus papyrus form 

the reed beds, usually found in deep water, and (11) Mangrove forest of Rhizophora 

or Avicennia sp. usually next to the main river and large tributaries. 

Larval sampling 

Purposeful sampling was done to maximise collection of the aquatic stages of 

mosquitoes using a 350 mL dipper (Clarke Mosquito Control Products, Illinois, USA). 

At each site 10 dips were made in places likely to harbor mosquito larvae, such as 

around tufts of submerged vegetation or substrate, edges of water bodies and around 

floating debris. In extensive water bodies dipping was carried out over a 100 m walk. 

Larvae were classified either as anophelines or culicines. Anopheline larvae were 

stored in 100% ethanol which was refreshed upon reaching the laboratory. Random 

sub-samples of anopheline larvae were selected during the routine mapping of the area 

and sibling species of the An. gambiae complex identified by amplification of 

ribosomal DNA using the polymerase chain reaction (PCR) (Scott et al. 1993b). 

Statistical analysis 

Coordinates of each water body were entered into a Geographical Information System 

(ArcGIS-ArcInfo Version 9.1 software) and plotted on a map of The Gambia using the 

Geographic Coordinate System: GCS WGS 1984, Datum: D WGS 1984. The map 

templates were obtained from the Department of Lands and Surveys (The Government 

of the Republic of The Gambia, 2004). These maps were used to localise and visualise 

all surveyed aquatic habitats. The distance between a specific breeding site and the 

nearest human settlement was obtained by measuring the distance between points 

(breeding sites) and polygons defining the human settlements using the ArcGIS 

software. A layer was defined along the edges of the alluvial floodplains and the 

nearest distance between all breeding sites and this edge determined. Habitats close to 

the alluvial edge, created by floodwater were referred to as 'edge of floodwater'. For 

the purpose of estimating the area of this habitat type, its width was assumed to be 50 

m based on maps from the Department of Lands and Surveys. Further into the 

floodplain the habitats are usually deeper and semi-permanent and are described as 

'floodwater', a further category. 

The impact of different water body characteristics on the presence or absence 

of mosquito larvae was explored individually. Comparisons between proportions were 
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made using chi-square analysis. Al l variables were incorporated in a mathematical 

model and their overall impact on the presence of anopheline larvae tested using 

Generalised Estimating Equations (GEE). This model was used because it takes 

account of repeated measures in the analysis since the same water bodies were 

repeatedly sampled during the study. The habitat ID was used as subject unit for 

repeated measures assuming an exchangeable correlation matrix. Larval data (presence 

or absence) was fitted to a binomial distribution with a logit link function. After testing 

for collinearity of predictors in the model those that were not highly correlated (R > 

0.9) were used together in the model. The 'edge of floodwater' was selected as the 

reference group in the model for comparison of different habitat types, since this 

habitat had been identified in an earlier study as most likely to be colonised by 

mosquito larvae (Bagh et al. 2003). Various landcover types were compared to 

floodplain areas without any vegetation which is characteristic of many parts of the 

edge of floodwater. Regression analysis was used to test for relationships between key 

variables. Logistic regression was used to elucidate any differences between sites with 

An. gambiae s.l. and sites with other anophelines and between anopheline early and 

late instar larvae. Analyses were performed with SPSS version 15 and Epilnfo version 

(TM). Missing data were excluded from the analysis. 

Results 

Characteristics of aquatic habitats 

A total of 6038 visits were made to 1076 different water bodies in the four study zones 

over two consecutive years. 71% of the water bodies in the floodplain contained 

anopheline larvae on at least one occasion (528/739), compared with 50% in the 

upland (138/337; P < 0.001). 60% (3673/6038) of visits took place in the dry season 

and 40% (2410/6038) in the rainy season. Most habitats were visited on six to eight 

occasions over the study period with 35% of habitats occurring in Zone 3 (373/1076), 

25% in Zone 4 (269/1076), 21% in Zone 1 (224/1076) and 19% in Zone 2 

(210/1076). Although there were more aquatic habitats in Zone 3, the risk of habitats 

being colonised by anopheline larvae in Zone 3 was less compared to other zones (P < 

0.001). On occasions when sites were visited, 84% (2031/2410) contained water 

during the rainy season, while only 45% (1666/3673) had water during the dry season 

(P < 0.001). Sites contained water on 88% of occasions in the floodplains and 67% of 

occasions in the uplands during the rainy season (P < 0.001). In the dry season sites 
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were wet on 58% of occasions in the river's floodplains and only 15% of occasions in 

the upland (P < 0.001). 

Characteristics of larval habitats 

Since the presence of late instar anopheline larvae was strongly correlated with early 

instars (R = 0.59, P < 0.001) the results for early and late instars were pooled for all 

further analyses. 42 of 3695 (1%) records for anophelines were missing in the dataset 

and were not included in the analysis. 

GEE modelling for the entire data set adjusting for study zone, the location of 

the habitat in the upland or in the floodplains, the season of sampling, the habitat type, 

the habitat size, distance to the landward edge of the alluvial plains and dominant 

landcover type demonstrated that anopheline larvae were four times more likely to be 

found during the rainy season than during the dry season (OR = 4.06; 95% CI = 3.31-

4.99; P < 0.001) and were less common in the upland than in the floodplains, although 

this was of borderline significance (OR = 0.64; 95% CI = 0.41-1.01; P = 0.055). 

However when only the rainy season was considered the likelihood of finding 

anophelines was significantly less in the upland sites compared to the floodplain (OR = 

0.30; 95% CI = 0.22-0.39; P < 0.001). 

Given these differences between occurrence of larvae in floodplain and upland 

sites and between dry and rainy season, data were analysed in subsets to identify 

potential risk factors for the presence of mosquitoes in the floodplains and upland 

during rainy (June-October) and dry season (November-May) separately. The distance 

from a habitat to the nearest village as well as the water depth of habitats were not 

significantly associated with the presence of anopheline larvae and were therefore not 

included in any of the final models. 

In the floodplains during the rainy season (Table 2.1) habitats farther away than 

1 km from the landward edge of the alluvial plains were 58% less frequently colonised 

by anophelines than those within the first 1km (P < 0.001) and larger habitats, with 

more than 100 m in perimeter, seven times more frequently than smaller ones (P = 

0.006). Notably, these most colonised habitats represent those most frequently 

encountered (over 80% of the site visits). 

Rice fields (n = 413), open floodwater (n = 439), stream fringes (n = 295) and 

pools (n = 105) were most frequently flooded in the floodplains during the rainy 

season and the majority of the Anopheles samples were taken from these sites (n = 272, 
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190, 125 and 105, respectively). Nevertheless, although some habitat types were 

available more frequently, GEE modelling revealed that adjusting for the location of 

the habitat and its size, the risk of finding Anopheles larvae is the same for the majority 

of habitat types. There was a positive association between anopheline abundance and 

habitats in areas dominated by grass, sedge and rice as compared to floodplain areas 

without vegetation. 

The probability of finding Anopheles larvae in the floodplains in the dry season 

(Table 2.2) was the same for the entire width of the floodplain area and independent of 

the size and type of habitats or the dominant land cover type. 

Table 2.1 Factors associated with the presence and absence of anopheline larvae in the 

floodplain in the rainy season. C.I. is 95% confidence interval. 

Factor Number of Anophelines present Odds Lower Upper P 
visits (n) Occasions Proportion (%) ratio C.I. C.I. 

Zone 
Zone 4 411 234 56.9 0.55 0.37 0.83 0.004 
Zone 3 346 122 35.3 0.24 0.16 0.37 <0.001 
Zone 2 469 243 51.8 0.26 0.17 0.38 <0.001 
Zone 1 304 205 67.4 1.00 

Distance to edge of alluvial plains 
1-3 km 142 45 31.7 0.42 0.27 0.64 <0.001 
< 1km 1388 759 54.7 1.00 

Perimeter 

> 100 m 1285 696 54.2 6.81 1.72 26.92 0.006 
10-100 m 222 101 45.5 3.20 0.82 12.55 0.095 
< 10 m 23 7 30.4 1.00 

Habitat types 
brick or sand pits 10 8 80.0 0.56 0.13 2.49 0.450 
cattle troughs 8 4 50.0 0.67 0.14 3.28 0.625 
pool 165 105 63.6 0.93 0.46 1.86 0.831 
pond 14 10 71.4 1.42 0.19 10.62 0.730 
water channel 33 8 24.2 0.56 0.20 1.57 0.266 
stream fringe 295 125 42.4 0.49 0.25 0.95 0.036 
puddles or tyre tracks 50 23 46.0 1.17 0.42 3.32 0.762 
footprints 5 1 20.0 0.13 0.02 0.82 0.030 
floodwater 439 190 43.3 0.56 0.31 1.01 0.056 
rice fields 413 272 65.9 0.62 0.27 1.43 0.265 
edge of floodwater 98 58 59.2 1.00 

Land cover 
Mangrove 39 3 7.7 0.59 0.15 2.42 0.467 
Reeds 298 107 35.9 1.78 0.71 4.44 0.220 
Sea-purslane 20 4 20.0 0.58 0.12 2.76 0.490 
Bush 52 29 55.8 1.24 0.41 3.73 0.706 
Sedge 260 138 53.1 3.11 1.26 7.63 0.013 
Rice 355 238 67.0 3.33 1.09 10.16 0.035 

Grass 476 280 58.8 2.92 1.25 6.84 0.013 
Barren floodplain 30 5 16.7 1.00 

Culicines 
present 656 556 84.8 18.35 13.19 25.54 <0.001 
absent 859 233 27.1 1.00 
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Table 2.2 Factors associated with the presence and absence of anopheline larvae in the 

floodplain in the dry season. C.I. is 95% confidence interval. 

Factor Number of Anophelines present Odds Lower Upper P 
visits (n) Occasions Proportion (%) ratio C.I. C.I. 

Zone 
Zone 4 284 62 21.8 2.90 1.57 5.38 0.001 
Zone 3 343 28 8.2 0.92 0.44 1.93 0.830 
Zone 2 459 144 31.4 2.43 1.55 3.81 <0.001 
Zone 1 329 61 18.5 1.00 

Distance to edge of alluvial plains 
1-3 km 216 47 21.8 1.09 0.67 1.78 0.719 
< 1km 1199 248 20.7 1.00 

Perimeter 
> 100 m 1234 278 22.5 1.61 0.30 8.76 0.583 
10-100 m 152 14 9.2 0.73 0.12 4.45 0.733 
< 10 m 29 3 10.3 1.00 

Habitat types 
brick or sand pits 5 1 20.0 0.40 0.06 2.83 0.361 
cattle troughs 9 1 11.1 0.53 0.04 7.79 0.644 
pool 59 14 2 3.7 1.02 0.39 2.67 0.961 
water channel 69 1 1.4 0.15 0.02 0.96 0.045 
stream fringe 387 74 19.1 0.90 0.47 1.71 0.736 
puddles or tyre tracks 6 1 16.7 4.31 0.30 62.43 0.284 
floodwater 425 57 13.4 0.57 0.29 1.12 0.101 
rice fields 375 120 32.0 2.10 0.60 7.38 0.248 
edge of floodwater 80 26 32.5 1.00 

Landcover 
Mangrove 76 2 2.6 0.2 2 0.02 1.99 0.178 
Reeds 391 58 14.8 0.53 0.07 3.88 0.529 
Sea-purslane 9 1 11.1 1.03 0.11 9.40 0.982 
Bush 36 6 16.7 0.50 0.05 5.62 0.578 
Sedge 250 58 23.2 1.30 0.18 9.09 0.794 
Rice 328 107 32.6 0.73 0.08 6.89 0.785 
Grass 308 60 19.5 0.85 0.12 5.82 0.869 
Barren floodplain 17 3 17.6 1.00 

Culicines 
present 346 213 61.6 18.86 13.23 26.89 <0.001 
absent 1066 79 7.4 1.00 

In the upland area during the rainy season (Table 2.3) the most frequently recorded 

aquatic habitats were pools (n = 152), cattle troughs (n = 140), and puddles (n = 115). 

The majority of Anopheles records were taken from pools (n = 80), cattle troughs (n = 

42), puddles (n = 21), and rice fields (n = 21). Risk factor analyses showed that 

habitats larger than 10 m in perimeter were three times more often associated with 

anopheline larvae than smaller ones (P = 0.009) but the risk of finding Anopheles 

larvae in the most frequently encountered aquatic habitats in the upland was not 
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significantly associated with any landcover or habitat type. The presence of larvae was 

significantly less when aquatic habitats were more than 3 km away from the edge of 

the alluvial plains. In the dry season aquatic habitats were rarely encountered in the 

upland. Out of 214 sampling events, only 14 had Anopheles larvae, 64% of these were 

found in cattle troughs and the rest in puddles and pools. 

Table 2.3 Factors associated with 

upland area in the rainy season. C 

the presence and absence of anopheline larvae in the 

.1. is 95% confidence interval. 

Factor Number of Anophelines present Odds Lower Upper P 
visits (n) Occasions Proportion (%) ratio C.I. C.I. 

Zone 
Zone 4 411 234 56.9 0.55 0.37 0.83 0.004 
Zone 3 346 122 35.3 0.24 0.16 0.37 <0.001 
Zone 2 469 243 51.8 0.26 0.17 0.38 <0.001 
Zone 1 304 205 67.4 1.00 

Distance to edge of alluvial plains 
1-3 km 142 45 31.7 0.42 0.27 0.64 •cO.001 
< 1km 1388 759 54.7 1.00 

Perimeter 
> 100 m 1285 696 54.2 6.81 1.72 26.92 0.006 
10-100 m 222 101 45.5 3.20 0.82 12.55 0.095 
< 10 m 23 7 30.4 1.00 

Habitat types 
brick or sand pits 10 8 80.0 0.56 0.13 2.49 0.450 
cattle troughs 8 4 50.0 0.67 0.14 3.28 0.625 
pool 165 105 63.6 0.93 0.46 1.86 0.831 
pond 14 10 71.4 1.42 0.19 10.62 0.730 
water channel 33 8 24.2 0.56 0.20 1.57 0.266 
stream fringe 295 125 42.4 0.49 0.25 0.95 0.036 
puddles or tyre tracks 50 23 46.0 1.17 0.42 3.32 0.762 
footprints 5 1 20.0 0.13 0.02 0.82 0.030 
floodwater 439 190 43.3 0.56 0.31 1.01 0.056 
rice fields 413 272 65.9 0.62 0.27 1.43 0.265 
edge of floodwater 98 58 59.2 1.00 

Landcover 
Mangrove 39 3 7.7 0.59 0.15 2.42 0.467 
Reeds 298 107 35.9 1.78 0.71 4.44 0.220 
Sea-purslane 20 4 20.0 0.58 0.12 2.76 0.490 
Bush 52 29 55.8 1.24 0.41 3.73 0.706 
Sedge 260 138 53.1 3.11 1.26 7.63 0.013 
Rice 355 238 67.0 3.33 1.09 10.16 0.035 
Grass 476 280 58.8 2.92 1.25 6.84 0.013 
Barren floodplain 30 5 16.7 1.00 

Culicines 
present 656 556 84.8 18.35 13.19 25.54 <0.001 
absent 859 233 27.1 1.00 
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Rice fields and pools were most frequently found, especially during the rainy season 

(Table 2.1 -2.3), but differed greatly in the area they covered (Table 2.4). Rice fields 

stretched in total over approximately 2150 ha (21.5 km 2) whereas pools covered less 

than 1 ha within the entire study area. In comparison, the edge of floodwater was 

approximately 500 ha. 

Independent of location and season, there was a very strong positive 

association between the presence of anophelines and the presence of culicines in the 

aquatic habitats (Table 2.1-2.3, Figure 2.3). 

Table 2.4 Sampling frequency and size of major anopheline breeding habitats 

Habitat Frequency Area (ha*) Habitat Frequency 

Zone 1 Zone 2 Zone 3 Zone 4 Total 

Rice fields 20% (1234/6083) 647 256 116 1136 2155 

Pools 16% (997/6083) 0.225 0.040 0.388 0.161 0.814 

Edge of floodwater 
-rrr—rr^r^— 

5% (296/6083) 155 75 145 125 500 

*1 ha= 10,000 m 

I 
i 

0 1 2 3 4 5 6 7 

N° of times Anophelines present 

Figure 2.3 Relationship between the frequencies at which culicine and anopheline 

larvae occurred together. Bars represent standard errors. 
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PCR analysis 

Of a sub-sample of 124 anopheline habitats, PCR analysis conducted on 1401 samples 

showed that 52% of these habitats were occupied by An. gambiae s.l. (35% An. 

gambiae s.s., 1 \ %An. melas, 6% An. arabiensis). Most An. arabiensis (86%) and An. 

gambiae s.s. (58%) were found in rice fields, and in pools. An. melas was 

predominantly found in floodwater and edges of floodwater (57%, Figure 2.4). Binary 

logistic regression revealed no significant difference between characteristics of habitats 

occupied by An. gambiae s.l. and those of other anophelines. 

An. gambiae s.s. 
An. arabiensis 
An. melas 

i l l 11 11 l II 11 I Jl 
1 2 3 4 5 6 7 8 9 10 

habitat type 

Figure 2.4 Frequency of An. gambiae s.l. in different habitat types where 1: pool, 2: 

rice fields, 3: pond, 4: puddles and tyre tracks, 5: stream fringe, 6: constructions, 7: 

floodwater, 8: edge of floodwater, 9: brick or sand pits, and 10: water channel 

Discussion 

This study represents the most comprehensive survey of mosquito larvae in The 

Gambia and is of relevance to other parts of the Sahel, where large river systems 

dominate the local malaria ecology. Aquatic habitats were mapped in an area of 

approximately 400 km over two years, including both floodplain and upland areas 

during the dry and wet seasons. Whilst it was attempted to achieve full coverage of the 

study area, some sites may have been missed in deeper water close to the river. This 

study is unique in that it covers such a large area over an extended time period in 
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contrast to the majority of published ecology studies which were small-scale in space 

and time (Minakawa et al. 1999, Mutuku et al. 2006a, Mwangangi et al. 2007, Sogoba 

et al. 2007). Only large-scale studies allow making generalisations about the larval 

ecology of malaria vectors relevant for operational larval control programmes. 

Specifically, this research was carried out to determine whether it is possible to 

identify habitat characteristics associated with the presence of anopheline larvae using 

practical operational tools. It was hoped that any such characteristics could be used to 

guide interventions to target larval control at specific sites or time periods. 

Most anopheline breeding habitats were confined to the floodplains, in 

agreement with previous studies (B0gh et al. 2003, Thomas and Lindsay 2000). These 

habitats are created by flooding from the river and heavy rainfall in the rainy season 

and persist due to the high water table and impervious clay ground, unlike the dry and 

porous sandy upland (Dunsmore et al. 1976). The importance of naturally flooded 

areas for mosquito proliferation is supported by earlier studies in The Gambia where 

the salt water malaria vector An. melas was associated with Avicennia mangrove in 

flooded areas of the River Gambia (Giglioli 1965). Similarly An. gambiae s.l. was 

associated with flooded areas in Liberia (Gelfand 1955) and Nigeria (Barber et al. 

1931,Chwatt 1945). 

The risk of finding anopheline larvae in the floodplains during the rainy season 

was increased when habitats were located within 1 km of the landward edge, were large 

in size (100 m or more in perimeter) and located in areas where grassy vegetation 

(including rice and sedge) dominated the land cover. This includes over 80% of all 

habitats encountered during the two years of rainy season surveys and does not 

represent selection criteria which could easily be used to guide anti-larval 

interventions. One exception might be the distance from the edge of the alluvial plains. 

The farther away from the edge and the closer to the river the more difficult it is to 

access habitats and to implement anti-larval interventions unless aerial spraying is 

used. Specifically the application of larvicides becomes difficult in these highly tidal 

environments. For operational reasons it would be wrong to target larviciding 

operations only at the landward edge of the floodplains because mosquitoes found 

further into floodplains would be missed. 

During the dry season the small water bodies in the uplands dried out, leaving 

those in the floodplains as the main refugia for anophelines. Hence the probability of 

finding anopheline larvae during the dry season was reduced compared to the rainy 
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season. Presumably this was a consequence of the lower water level and the reduction 

in habitat availability. In the floodplains, habitats suitable for larval development were 

found everywhere irrespective of landcover, habitat type or size. 

There were fewer aquatic sites in the upland areas compared with the floodplains. 

Specific risk factors for finding sites which could be targeted for anti-larval 

interventions were not identified. Even though fewer in number, these upland habitats 

are important for malaria transmission in The Gambia due to their closeness to human 

settlements. Mosquitoes emerging from these sites are more likely to feed on people 

and become infected with malaria parasites than mosquitoes that have to fly far to 

reach people. The upland sites, unlike the extensive breeding sites in the floodplains, 

could be reduced by filling unused pits and pools and ensuring that pooling does not 

occur around water pumps and cattle troughs. However, larval control cannot be 

successfully targeted only at the upland sites close to human settlements because of the 

greater propensity of larvae to be found in the floodplains. Adult studies also show a 

gradient indicating that the majority of adults emerge from the landward edge of the 

floodplains (B0gh et al. 2007, Thomas and Lindsay 2000). 

These findings are consistent with the hypothesis that blood fed mosquitoes 

have a long flight range in The Gambia, a situation typical of sparsely populated 

savanna (Gillies and DeMeillon 1968, Service 1997, Thomas and Lindsay 2000). 

Unlike urban or densely populated areas where flight range for anophelines is often 

around 1km (Service 1997, Trape et al. 1992a) settlements in rural Gambia are tightly 

clustered and not widely dispersed as in many other African countries. Thus, for a 

blood-questing mosquito in the floodplain it would appear to be more difficult to 

locate a blood meal than elsewhere, particularly as people living close to the 

floodplains are more likely to use bednets (Clarke et al. 2002). Whether in these areas 

mosquitoes will change their biting times or switch to other hosts has not yet been 

investigated in The Gambia. This implies that larval control cannot focus on breeding 

sites close to human settlements alone, but must also attack those farther away. 

Even though rice fields presented as much a risk factor for Anopheles breeding 

as any other large water body with grassy vegetation, it is important to emphasise that 

rice fields were by far the most common aquatic habitats, covering a surface area of 

over 20 km 2 in the study area. Most of these are found in the floodplain, although rice 

is also grown in valley depressions in the uplands. It is well known that rice cultivation 

encourages mosquito production (Ijumba and Lindsay 2001, Service 1989, Snow 
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1983), although most studies describe the importance of irrigated rice, rather than the 

traditional 'swamp' rice grown in floodplains of the River Gambia. During the rainy 

season when rice was cultivated, a high proportion of all rice fields (66-68%) were 

colonised by anopheline larvae. Although rice fields cannot be singled out as preferred 

Anopheles larval habitats in The Gambia, their sheer abundance and the ease of 

recognising them in the field, makes them an important target for anti-larval 

interventions. Nevertheless, given the large variety of suitable water bodies for 

anopheline development, targeting rice fields exclusively might not be enough to 

reduce malaria transmission to such an extent to be cost-effective. 

The large areas covered by rice fields as well as the fact that one in four habitats 

colonised by anophelines in the upland close to human settlements is man-made 

emphasises the importance of breeding sites created by people in the ecology of 

malaria in The Gambia. 

Anopheline larvae were predominantly found in habitats covered by relatively 

short vegetation such as (early stage) rice, grass and sedge in accordance to larval 

ecology studies elsewhere in Africa (Briet et al. 2003, Fillinger et al. 2008, 

Klinkenberg et al. 2005, Lindsay et al. 1991b, Mwangangi et al. 2006, Snow 1983). 

These types of vegetation allow water bodies to be exposed to sunlight, a situation 

preferred by ovipositing mosquitoes (Muirhead-Thomson 1951), unlike tall and thick 

vegetation such as reeds and mangrove. 

The finding that large water bodies are more important than small ones for 

mosquito breeding in both the floodplains and upland areas in the rainy season 

contradicts a common view, held since the 1950s, that small water bodies are typical 

habitats for An. gambiae (Holstein 1954, Muirhead-Thomson 1951). Indeed the lack of 

enthusiasm for anti-larval measures for malaria control in SSA was due partly to the 

idea that such small sites were too common and difficult to locate (Najera and Zaim 

2002). 

Anopheline larvae were rare and difficult to find in the field. Anophelines were 

found in only 309 site visits, after approximately 15,000 dips, during the dry season 

and on 992 site visits, after about 18,000 dips, during the rainy season. The small 

number of anophelines found is likely to be due to a combination of factors. Larvae are 

frequently clustered(Service 1971) and these clusters were distributed over a huge area 

in the floodplains making sampling challenging. Although dipping is a simple 

sampling tool, it is inefficient and only likely to capture a small proportion of the 
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mosquito larvae present in any habitat (Robert et al. 2002). Other sampling methods 

could be used to increase chances to capture larvae. For example metal cylinders also 

called area samplers give a more accurate comparative index of larval populations than 

dippers. Nets mounted on a strong frame can be used to sample larvae in different 

habitats and can be used to estimate the population size of the sampled area (Service 

1977b). However these methods would be time consuming and could only be 

considered in experimental settings (Chapter 4). 

Interestingly, anophelines and culicines were commonly found together. 

Similar findings have been reported in habitats in East Africa (Fillinger et al. 2004). 

The over-riding impression in The Gambia is that whilst some water bodies support a 

wide diversity of life, others are truly inimical for invertebrates. This would explain 

why anophelines and culicines shared the few prolific habitats available in the area. 

Niche partitioning, occurring at a finer spatial scale (B0gh et al. 2003, Boyd 1949, 

Gimnig et al. 2001, Minakawa et al. 2004, Sattler et al. 2005, Toure et al. 1998), was 

only apparent in this study when the habitat preferences of different members of the 

An. gambiae complex were examined. An. gambiae s.s. predominated in pools, An. 

arabiensis was more common in rice fields and An. melas was most frequently found 

in floodwater, which was likely to be saline. The impact of water characteristics on 

mosquito production such as the conductivity, oxygen content, pH and turbidity was 

studied in our study area and will be published elsewhere (U. Fillinger, personal 

communication). 

In this study the characteristics of sites with anopheline mosquitoes were 

described, not those specifically relating to An. gambiae s.l. the major malaria vector 

in The Gambia. This approach is relevant for determining wherein, gambiae s.l. is 

found since members of the complex inhabited the same water bodies as other 

anophelines. Larval control programs mostly concentrate on monitoring the density of 

late stage larvae or pupae, since they represent sites most likely to produce adult 

vectors (Fillinger et al. 2008). However, for a large routine program, it would be too 

demanding to measure larval density in each habitat and pupae are rare and difficult to 

sample with a dipper as shown in other surveys (Chapter 4). Collecting data on 

mosquito emergence from each habitat would present the optimal way to estimate 

habitat productivity but would require a lengthy and thorough study which would be 

difficult to implement in a routine control program. The most feasible approach under 
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operational conditions is to employ local residents with relevant training to collect data 

on presence and absence of larval stages (Fillinger et al. 2008). 

In The Gambia the probability of finding late instars was positively and 

strongly correlated with finding early stage larvae. Thus the findings for both early and 

late instars of anopheline mosquitoes are also generally applicable for determining 

sites most commonly occupied by late stages of An. gambiae s.l. Furthermore, in large-

scale operational programmes evidence-based decisions on re-treatment intervals need 

to be made instantly in the field and will therefore be based on the presence of any 

anopheline larva, not necessarily the presence of An. gambiae (Fillinger et al. 2008). 

The findings reported here, based on practical operational monitoring and evaluation 

tools, show that anopheline larvae are present in a wide variety of habitats and 

associated characteristics, implying that successful larval control cannot be targeted at 

specific habitats in The Gambia. This calls for blanket treatment of all available 

aquatic habitats at regular intervals and the implementation of sustainable 

environmental modifications where applicable. 

The comparatively small number of habitats during the dry season (November-

May) would in principle suggest that there could be an advantage for dry season larval 

control, which then might lead to a large reduction in overall population size. 

However, the wide distribution of few sites over a vast area of floodplains and upland 

without any risk factors to guide the intervention to specific sites would be logistically 

demanding and the overall impact on malaria transmission questionable. Nevertheless, 

to delay the rise of adult mosquito numbers during the rainy season (Sogoba et al. 

2007) and also to allow field teams to adapt slowly to the changing environment and 

increasing habitat numbers, anti-larval measures should be started one to two months 

prior to the rainy season. Furthermore, the quickly increasing risk of vector 

proliferation and malaria transmission with the start of the rains makes it necessary to 

implement anti-larval intervention throughout the wet season. 

Since mosquito habitats are distributed over a large area and involve extensive 

water bodies situated far away from human settlements, larval control will be 

logistically demanding. However these sites are largely accessible and less effort is 

needed to control larvae in moving and deeper water bodies covered by tall reeds or 

mangrove forest. The long flight range of An. gambiae in this country means that 

larval control activities would have to be carried out over large areas to reduce the 

likelihood of adults flying into control areas from surrounding locations. 
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Although there would be considerable advantage in targeting larval control to 

specific breeding sites i f they would be identifiable as the most productive habitats for 

malaria vectors (Gu and Novak 2005), it is necessary to be cautious about this 

approach since the heterogeneity in productivity of different breeding sites is not 

always predictable and breeding sites are highly dynamic and influenced largely by the 

rainfall (Killeen et al. 2006) and the fluctuation of the level of the river. 
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Chapter 3 

Productivity of different habitats for Anopheles larvae and pupae in 

rural Gambia 

• 
Figure 3.1 Ebrima Kuyateh sampling for mosquito larvae in the floodplains of 

river Gambia 
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Productivity of different habitats for Anopheles larvae and pupae in 

rural Gambia 

Abstract 

Background Because anopheline larval control operations are logistically demanding, 

understanding which sites produce most mosquitoes should help target control and 

thus reduce operational costs. This study was designed to determine which habitats 

produced most mosquito larvae and pupae in the middle reaches of River Gambia, in 

order to determine whether it was feasible to target larval control at selected habitats in 

the area. 

Methods 10 sentinel sites, representative of the main habitat types in each zone, were 

selected in each of four study zones (400 km 2 in area). Larval and pupal productivity 

was assessed using dippers in each site weekly for 19 months. 

Results A total of 26,301 larvae and pupae were collected, 58% of which were early 

instar larvae, 35% late instars and 7% pupae. Larvae were more abundant in the rainy 

season than in dry season (p < 0.001) but pupal density did not differ between seasons. 

All habitats had similar larval and pupal densities, except puddles and water channels 

that had fewer larvae and pupae in the rainy season. Anopheles gambiae s.l. occurred 

in all habitats, except in floodwater, and were mainly associated with habitats 

containing sedge and grass. 

Interpretation Anopheline mosquitoes in rural Gambia exploit a wide range of 

habitats and although the highest densities of mosquitoes are observed in the rainy 

season, larval and pupal development continues throughout the year. In such settings 

larval control cannot be targeted at selected habitats but should be applied to all areas 

of standing water, starting before and continuing through the rainy season. 
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Introduction 

Successful integration of larval control into the framework of integrated vector 

management for malaria control will require a thorough understanding of larval 

ecology in areas where it is envisaged. Because larviciding campaigns are logistically 

demanding usually due to the short retreatment intervals (Walker and Lynch 2007), it 

would be cost effective to target control at selected habitats and/or at a specific times 

of the year in areas with seasonal malaria transmission, like The Gambia (Bogh et al. 

2003). Targeting larval control has raised debate in the malaria vector control 

community (Gu and Novak 2005, 2006, Killeen et al. 2006) mainly because larval 

ecology varies in different ecosystems making it difficult to standardise when and 

which habitat types should be targeted. 

Although oviposition occurs in a wide variety of habitats, more than 90% of 

larvae do not reach the adult stage (Service 1973, 1977a). In The Gambia a study 

reported 47% larval mortality in puddles and 75% in rice fields (Bayoh 2001). 

Therefore understanding which habitats produce more late instar Anopheles larvae and 

pupae is likely to better indicate which habitats are likely to produce adult malaria 

vectors. A study in western Kenya showed that pupal production occurred only in a 

subset of habitats even when larvae were recorded in all habitats (Mutuku et al. 2006b) 

suggesting that larval control targeted at these habitats would reduce vectors density. 

In contrast a study in Tanzania did not reveal ecological characteristics of breeding 

sites associated with production of Anopheles larvae, concluding that every stagnant 

open water should be considered as a potential malaria vector breeding site (Sattler et 

al. 2005). These mixed results show the necessity of a careful study of the contribution 

of different mosquito breeding sites to adult mosquito production before deciding 

whether larval control should be targeted at restricted sites or whether it should be 

comprehensive and directed at all potential breeding sites. 

The study reported here is part of a large-scale study looking at the ecology of 

the aquatic stages of anopheline mosquitoes in rural Gambia in preparation for a 

larviciding programme in the area (Chapter 5). A parallel study has shown that most 

habitats were colonised during the rainy season giving possibilities of targeting larval 

control at the end of the dry season and continued throughout the rainy season 

(Chapter 2). However it also showed that mosquitoes colonised a wide range of 

habitats therefore suggesting that targeted larval control to selected habitats might not 

be successful in this setting (Chapter 2). Since all colonised habitats are not equally 
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productive of adult mosquitoes, this study investigated the differences in habitat 

productivity of late instar larvae and pupae between the seasons in order to assess 

whether productivity of habitats is high at a restricted time of the year and/or in 

selected habitats in order to inform a larval control programme of possibilities of 

targeted control. 

Methods 

The study area is described in full in Chapter 2. Briefly, the study was carried out east 

of Farafenni town and run from November 2004 to April 2006 before the beginning of 

a larval control programme. This area has one short rainy season running from June to 

October. Each study zone was divided into an upland area not connected to the river 

and the river's floodplain. Each zone was 12 km wide, divided into a central band 4 

km wide with 4 km wide buffer zones either side of the central band. Ten sentinel sites 

were selected randomly within the most common habitats in the central band of each 

zone. 

Water body measurements 

At each wet site the following parameters were recorded: perimeter of aquatic habitat 

(categorised as ^00 m or > 100 m), depth of water, and the vegetation coverage. 

Habitats were classified as "sparsely vegetated" when more than 50% of their water 

surface could be seen from top and "shaded" when they were covered with emergent 

vegetation and less than 50% of the water surface could be seen. Eight different 

aquatic habitats were surveyed and classified into the following categories (as 

described in Chapter 2): (1) cattle troughs, (2) pools, (3) ponds, (4) water channels, (5) 

stream fringes, (6) puddles or tyre tracks, (7) floodwater and (8) rice fields. 

Additionally, the five following dominant landcover around each aquatic habitat were 

recorded: (1) shrubs, (2) grass, (3) sedge, (4) rice, and (5) reeds. 

Mosquito sampling 

At each sentinel site 10 dips were made using a dipper in places likely to harbour 

mosquito larvae. Late stage anopheline larvae and all pupae were stored in 100% 

ethanol which was refreshed upon reaching the laboratory. Specimens were identified 

as members of the An. gambiae complex by amplification of ribosomal DNA using the 

polymerase chain reaction (PCR) (Scott et al. 1993b). 
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Statistical analysis 

The mean larval and pupal density was calculated for each habitat using the 

Generalised Estimating Equations (GEE) by running the model without calculating the 

intercept. The model returned the mean of the dependent variable for each variable 

used as a predictor. Al l variables were incorporated in a mathematical model and their 

overall impact on the density of late instar Anopheles larvae and pupae tested using 

GEE. This model was used because it takes account of repeated measures in the 

analysis since the same sentinel sites were repeatedly sampled during the study. The 

sentinel identity (ID) was used as subject unit for repeated measures assuming an 

exchangeable correlation matrix. Larval and pupal density data was fitted to a negative 

binomial distribution with a log link function. Rice fields were used as a reference 

group for comparison with other habitats and sedge was the reference for the landcover 

type. These references were selected because they were the most frequent habitat and 

landcover type when both seasons were considered. Analyses were performed with 

SPSS version 15. Missing data were excluded from the analysis. 

Results 

The 40 sentinel sites contained water on 1,982 occasions during 19 months of data 

collection. During the rainy season habitats were dry only in 2% of the sampling 

occasions and in 21% of sampling occasions in the dry season. A total of 26,301 larvae 

and pupae were collected, with 15% of these sampled in zone 1, 13% in zone 2, 55% 

in zone 3 and 17% in zone 4. Early instar larvae (1 s t and 2 n d instars) represented 58% 

of the total collections (15209/26301), late instar larvae (3 r d and 4 t h instars) represented 

35% (9150/26301) and pupae 7% (1942/26301) of the total collections. The data 

discussed below focus on late instar Anopheles larvae and pupae which is a useful 

proxy measure for the production of adult mosquitoes. 

Larvae 

When both seasons were considered, and after adjusting for the variation between 

zones, anopheline larvae were more abundant in the rainy season than in the dry 

season (OR = 2.42; 95% CI = 1.85 - 3.16; p < 0.001). The mean number of late instar 

Anopheles larval density was 2.0/dip (95% CI = 1.7- 2.4) in the rainy season and 

0.8/dip (0.6 - 1.0) in the dry season. The data were analysed separately for the rainy 

and dry season to assess the factors affecting the abundance of mosquito larvae at 
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different times of the year. Figure 3.2 shows the fluctuation in larval and pupal 

densities and the rainfall pattern during the study period. Larval density increased with 

the rains and peaked in October. High densities continued to be observed up to 

December then decreased for the rest of the dry season. 

larvae 
pupae 
rainfall 

- 200 a 

Figure 3.2 Monthly fluctuations in larval and pupal densities and rainfall pattern. 

During the rainy season, and after adjusting for the variation between zones (Table 

3.1), surprisingly, habitats sparsely vegetated had 31% fewer larvae than those shaded 

(p = 0.011). Larger habitats and increased water depth were positively correlated with 

larval abundance. Higher densities of anophelines were found in ponds, pools, stream 

fringes and in floodwater than they were in rice fields. However puddles had 

significantly fewer larvae than rice fields. Troughs, water channels and rice fields had 

similar larval densities. Habitats covered with tall reeds or grass as dominant landcover 

types had significantly fewer larvae than those covered by sedge while those covered 

by rice or shrubs had similar densities as habitats covered with sedge. 
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Table 3.1 Factors associated with abundance of late instar Anopheles larvae in the 

rainy season 

Factor Average 
larvae/visit 

Odds 
ratio 

Lower 
C.I. 

Upper 
C.I. 

P 

Zone 
Zone 4 1.7 2.16 1.52 3.07 < 0.001 
Zone 3 3.0 3.25 2.36 4.46 < 0.001 
Zone 2 1.7 1.60 1.14 2.24 0.006 
Zone 1 1.5 1.00 

Vegetation 
sparsely vegetated 2.1 0.69 0.51 0.92 0.011 
shaded 1.7 1.00 

Perimeter 
> 100 m 1.9 1.51 1.07 2.14 0.019 
<= 100 m 3.1 1.00 

Depth 1.02 1.00 1.04 0.041 
Habitat type 

troughs 2.1 1.48 0.68 3.25 0.325 
puddles 0.7 0.54 0.32 0.90 0.018 
water channel 1.6 0.84 0.49 1.43 0.513 
pond 4.6 2.27 1.29 4.00 0.004 
pool 2.4 1.68 1.12 2.51 0.012 
stream fringe 2.2 1.94 1.12 3.34 0.018 
floodwater 1.8 2.08 1.09 3.97 0.027 
rice fields 1.6 1.00 

Landcover type 
tall reeds 1.6 0.48 0.35 0.66 < 0.001 
rice 2.0 1.36 0.79 2.32 0.265 
grass 1.1 0.63 0.49 0.82 < 0.001 
shrubs 2.3 1.12 0.58 2.16 0.736 
sedge 2.8 1.00 

During the dry season, and after adjusting for the variation between zones (Table 3.2), 

there was no significant difference in anopheline density between habitats sparsely 

vegetated and those shaded. The size and depth of habitats had no impact on larval 

abundance. Al l water bodies were likely to have similar densities of larvae regardless 

the type of habitat or landcover type. Figure 3.3 shows the variation in the mean 

number of Anopheles larval density between the rainy and dry seasons. During the 

rainy season larval density was similar in most habitats except for puddles where it 

was lower and ponds where it was the highest. During the dry season larval density 

was consistently lower in all habitats compared to the rainy season, except for puddles 

where it is slightly higher during the dry season. Larval density was highest in pools 

during the dry season. 
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Table 3.2: Factors associated with abundance of late instar Anopheles larvae in the dry 

season 

Factor Average 
larvae/visit 

Odds 
ratio 

Lower 
C.I. 

Upper 
C.I. 

P 

Zone 
Zone 4 0.5 1.07 0.41 2.81 0.887 
Zone 3 0.7 0.68 0.20 2.33 0.541 
Zone 2 0.7 0.47 0.19 1.18 0.109 
Zone 1 1.0 1.00 

Vegetation 
sparsely vegetated 0.8 1.49 0.81 2.72 0.199 
shaded 0.6 1.00 

Perimeter 
> 100 m 0.8 2.60 0.77 8.77 0.124 
<= 100 m 0.5 1.00 

Depth 1.07 1.04 1.10 < 0.001 
Habitat type 

troughs 0.5 0.66 0.22 1.99 0.463 
puddles 0.6 2.57 0.47 14.18 0.278 
water channel 0.4 0.41 0.09 1.80 0.236 
pond 0.8 1.61 0.54 4.74 0.391 
pool 2.1 2.00 0.71 5.59 0.189 
stream fringe 0.7 1.11 0.32 3.88 0.868 
floodwater 0.6 0.89 0.28 2.84 0.838 
rice fields 0.5 1.00 

Landcover type 
tall reeds 0.7 1.34 0.67 2.67 0.405 
rice 0.6 0.79 0.28 2.26 0.666 
grass 0.5 0.50 0.17 1.44 0.198 
shrubs 2.8 2.27 0.47 10.90 0.305 
sedge 0.7 1.00 
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Figure 3.3 Mean Anopheles larval density in different habitats in the rainy and dry 

seasons. 

Pupae 

After adjusting for variation in zones, surprisingly there was no significant difference 

in pupal density between seasons. However the data for rainy and dry season were 

analysed separately to assess the factors affecting the abundance of pupae through time 

in order to assess possibilities of a time-targeted control. 

During the rainy season and after adjusting for the variation between zones 

(Table 3.3) habitats sparsely vegetated were six times more likely to have high 

densities of pupae than those shaded (p = 0.034). The size and depth of habitats did not 

affect pupal abundance. Puddles and water channels had fewer pupae than rice fields 

while troughs, ponds, pools, stream fringes and floodwater habitats had similar 

densities of pupae as rice fields. Pupae were more abundant in habitats containing rice 

and grass than those covered by sedge while habitats covered by tall reeds or shrubs 

had similar densities as those covered by sedge. 
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Table 3.3: Factors associated with abundance of pupae in the rainy season 

Factor Average 
pupae/visit 

Odds 
ratio 

Lower 
C.I. 

Upper 
C.I. 

P 

Zone 
Zone 4 0.7 1.19 0.15 9.22 0.867 
Zone 3 1.5 3.89 0.62 24.50 0.148 
Zone 2 0.3 1.03 0.15 7.12 0.974 
Zone 1 0.2 1.00 

Vegetation 
sparsely vegetated 0.9 5.83 1.14 29.82 0.034 
shaded 0.1 1.00 

Perimeter 
> 100 m 0.5 0.44 0.17 1.13 0.089 
<= 100 m 2.8 1.00 

Depth 0.99 0.97 1.00 0.141 
Habitat type 

troughs 3.6 1.33 0.42 4.21 0.622 
puddles 0.1 0.06 0.03 0.12 < 0.001 
water channel 0.3 0.23 0.12 0.45 < 0.001 
pond 1.0 0.87 0.38 2.01 0.740 
pool 1.4 1.55 0.54 4.47 0.419 
stream fringe 0.4 1.59 0.75 3.37 0.224 
floodwater 0.0 0.19 0.02 2.10 0.176 
rice fields 0.7 1.00 

Landcover type 
tall reeds 0.2 3.67 0.70 19.31 0.125 
rice 0.8 2.31 1.39 3.86 0.001 
grass 1.0 1.96 1.30 2.96 0.001 
shrubs 1.0 0.85 0.23 3.14 0.812 
sedge 0.4 1.00 

During the dry season and after adjusting for the variation between zones (Table 3.4), 

habitats sparsely vegetated surprisingly had 49% less pupae than those shaded (p = 

0.016). The size and depth of the water bodies was not related to pupal abundance. 

Troughs and pools were more likely to have high densities of pupae, while puddles had 

significantly fewer pupae. Water channels, ponds, stream fringes and floodwater had 

similar densities of pupae as rice fields. Pupal density was significantly less in habitats 

covered with tall reeds, rice and grass than in habitats covered with sedge. The density 

of pupae in habitats covered by shrubs was similar as habitats covered by sedge. 

Figure 3.4 shows the variation in mean number of pupal density between the rainy and 

dry seasons. Surprisingly pupae were less abundant in the rainy season compared to 

the dry season. In both seasons pupal density was highest in troughs and pools. 
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Table 3.4 Factors associated with abundance of pupae in the dry season 

Factor Average Odds Lower Upper P 
pupae/visit ra tio C.I. C.I. 

Zone 
Zone 4 1.1 55.02 16.91 179.00 < 0.001 
Zone 3 3.3 38.27 16.83 87.04 < 0.001 
Zone 2 0.2 4.10 1.92 8.78 < 0.001 
Zone 1 0.1 1.00 

Vegetation 
sparsely vegetated 1.7 0.51 0.30 0.88 0.016 
shaded 0.2 1.00 

Perimeter 
> 100 m 0.8 1.86 0.97 3.55 0.061 
<= 100 m 4.5 1.00 

Depth 1.02 1.00 1.05 0.113 
Habitat type 

troughs 5.3 4.08 1.50 11.12 0.006 
puddles 0.4 0.39 0.16 0.96 0.041 
water channel 1.7 0.81 0.23 2.90 0.745 
pond 3.0 1.69 0.54 5.28 0.367 
pool 4.3 5.28 2.15 13.01 < 0.001 
stream fringe 0.4 0.67 0.21 2.21 0.514 
floodwater 0.1 0.61 0.10 3.50 0.576 
rice fields 0.6 1.00 

Landcover type 
tall reeds 0.1 0.35 0.17 0.68 0.002 
rice 0.2 0.16 0.05 0.46 0.001 
grass 1.3 0.39 0.16 0.92 0.031 
shrubs 6.4 1.49 0.53 4.17 0.453 
sedge 1.2 1.00 
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Figure 3.4 Mean pupal density per dip in different habitats in the rainy and dry 

seasons. *The GEE model could not return the mean for troughs because pupae were 

found in troughs at very few sampling occasions therefore the arithmetic mean is 

presented. 

Anopheles gambiae complex 

A subsample of late instar Anopheles larvae and pupae was subjected to PCR for 

species identification. Out of 644 samples processed 215 (33%) did not amplify either 

as a result of failure in the DNA amplification process or species not belonging to the 

An. gambiae complex; 217 (34%) belonged to the An. gambiae complex and 212 

(33%) were other Anopheles species. Of the An. gambiae complex 86 (40%) were An. 

gambiae s.s., 5 (2%) were An. arabiensis and 126 (58%) were^4«. melas. 

Although most samples processed (31 %) came from rice field habitats, only 7% of 

these samples were An. gambiae s.l. The proportion of An. gambiae s.s. was highest in 

troughs, stream fringes and water channels where the landcover type was 

predominantly sedge. An. arabiensis was relatively rare, but when it was found it was 

more abundant in ponds and where the landcover types were dominated by sedge. The 
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highest proportion of An. melas was found in puddles and water channels where the 

landcover types were predominantly sedge and grass. Other Anopheles that were 

identified in the area are An. coustani complex, An. pharoensis, An. rufipes. These 

were distributed in all habitats sampled but were most abundant in troughs. Figure 3.5 

and 3.6 shows the proportion of An. gambiae species in different habitats and 

landcover types respectively. The proportion of An. gambiae s.s. and An. arabiensis 

was highest in ponds, and in water channels for An. melas. A l l three species were 

found in high proportion in habitats covered with sedge, grass and rice. 
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Figure 3.5 Proportion of An. gambiae species relative to the total number of 

mosquitoes in different habitat types. 
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Figure 3.6 Proportion of An. gambiae species relative to the total number of 

mosquitoes in different landcover types. 

Discussion 

This study surveyed populations of immature mosquitoes over a 19 month period. This 

is to my knowledge the first study investigating population dynamics of immature 

mosquitoes routinely for such a long period in the Sahel region of Africa. The findings 

are relevant for programmes planning larval control in the Sahel region. One of the 

factors determining the level of malaria transmission is the density of vectors in the 

area, and this is a result of availability of breeding sites and their productivity 

(Fillinger et al. 2004, Zhou et al. 2007). The low densities of Anopheles larvae 

obtained in this area are similar to densities observed in market-garden wells in 

Senegal (Robert et al. 1998) and in rice fields in Mali (Klinkenberg et al. 2003) 

As observed in Chapter 2, other studies have shown that anopheline mosquitoes 

exploit a wide range of habitats (Fillinger et al. 2004, Sattler et al. 2005) and 

concluded that all potential breeding sites should be exhaustively targeted in larval 

control programmes. However other studies argue that not all habitats where 

oviposition takes place are likely to produce adult mosquitoes. It has been suggested 

that it is not necessary to manage all aquatic habitats to obtain a significant reduction 

in malaria incidence (Gu and Novak 2005). In rural Kenya pupae mostly occurred in 
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burrow pits and streambeds and it was concluded that larval control should target those 

habitats producing pupae (Mutuku et al. 2006b). 

This study revealed that Anopheles larvae are found throughout the year and 

their densities are three times greater during the rainy season compared to the dry 

season. Although the rains start usually in June, larval density peaks later in the season 

(September-October) when most sites are flooded. This could be due to the fact that 

the water in habitats on the floodplain is still saline, but as the rains increase creating 

or expanding more freshwater habitats, larval density increases and peaks in October. 

Although the rains stopped in October, high densities of larvae continued to be found 

up to December. This could be due to the fact that unlike breeding sites in the upland 

that dry out quickly due to the sandy texture of the soil (Chapter 2), habitats in the 

floodplain where most sentinel sites were located are wet for a longer time. These sites 

might sustain larval production for a long period before the water is too salt to allow 

larval development (B0gh et al. 2003). Despite these high densities observed after 

October, adult densities show a decline to low densities from November onwards 

during the dry season (Lindsay et al. 1993). This indicates that although larvae are 

found during the dry season, their development to adult stage is reduced at this time. 

It was surprising that habitats sparsely vegetated had fewer anopheline larvae 

during the rainy season since it has been a common belief that in West Africa 

anopheline larvae prefer sun exposed water bodies (Muirhead-Thomson 1951, Taylor 

et al. 1993). This could be an artefact, explained by the fact that habitats sparsely 

vegetated had a large surface of open water without vegetation, and larvae usually 

collect next to vegetation rather than the open water. It has also been observed in this 

area that larvae prefer vegetated areas where there are fewer predators (fish) than in 

open waters (Bagh et al. 2003). Moreover, the difference observed in habitat 

occupancy between seasons could be due to the difference in species composition over 

time. Apart from the An. gambiae complex, members of the An. coustani complex and 

An. pharoensis were found in the study area (Fillinger et al., in prep). These species 

have different habitat requirements for larvae, with An. gambiae often found in open 

sunlit habitats, An. pharoensis in habitats with emergent vegetation, and An. coustani 

can develop in shaded or non-shaded habitats (Horsfall 1955). 

Large water bodies had higher densities of larvae and this was in line with the 

findings in Chapter 2 showing that these habitats were more likely to be colonised by 

Anopheles larvae than small ones. However during the dry season all habitats were 
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similarly colonised by Anopheles larvae. The lack of rain and the changing 

environment during the dry season might affect larger water bodies in such a way that 

they offer similar conditions as small habitats for larval development. Increasing depth 

was positively correlated with presence of larvae. In hot areas like The Gambia where 

outside maximum temperatures can reach more than 40°C (Chapter 4) it is likely that 

shallow water bodies heat up and hamper larval development. Laboratory studies 

showed that adult mosquitoes did not emerge when water temperature was beyond 

34°C and larval survival was shortest between 38-40°C (Bayoh and Lindsay 2003, 

2004). 

During the rainy season, most habitats have a similar and relatively high 

productivity in mosquito larvae, except in puddles. It is likely that in puddles larvae are 

flushed out during heavy downpours (Paaijmans et al. 2007) and do not survive in 

these habitats. Although rice fields are important breeding sites for mosquito larvae 

(Chapter 2), and a source for mosquito production (Ijumba and Lindsay 2001, Service 

1989, Snow 1983) other habitats in this area had higher larval densities than rice fields. 

Ponds had a high larval density, probably because ponds do not dry out during the dry 

season and are relatively undisturbed by human activities and might sustain more 

nutrients for larvae than seasonal rice fields. This could be explained by the fact that 

rice fields in this area are very extensive therefore larvae might be dispersed over a 

large area. In such case large habitats might have been under-sampled since a similar 

number of ten dips were made in each habitat therefore the importance of rice fields 

should not be overlooked. In a similar ecosystem in Mali, rice fields were an important 

breeding site for An gambiae s.s. during the early growing stage (Klinkenberg et al. 

2003) 

During the dry season although pools seem to have the highest larval density, 

the model suggest that all habitats are likely to have similar densities of Anopheles 

larvae. It is interesting to realise that although mosquitoes drop significantly in 

numbers during the dry season all sampled habitats can sustain some level of 

productivity throughout the dry season. This implies that although in this area the rainy 

season is the main malaria transmission season (Thomson et al. 1999) larval 

production is sustained throughout the year. Earlier studies in The Gambia showed that 

although An. gambiae s.s. decrease substantially in the dry season, An. melas maintain 

their population throughout the dry season (Giglioli 1964). Although mosquito 

densities might not be sufficiently high to sustain malaria transmission during the dry 
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season, it would be beneficial to control these populations and delay the rise in density 

observed in the rainy season. A larval control programme should start in the dry season 

when there are fewer sites (Chapter 2) before the rise in larval density observed in the 

rainy season. Most habitats were equally productive for Anopheles larvae during the 

rainy season and the same pattern was observed in the dry season. Therefore targeting 

larviciding to some habitats only is unlikely to succeed in this setting. 

Pupae are the last stage before metamorphosis into adult mosquitoes and in the 

absence of adult emergence studies this is a good indicator of habitats contributing to 

adult emergence (Mutuku et al. 2006b). Although pupae are difficult to sample with a 

dipper (Chapter 4) a good number of pupae were sampled in this study and their 

habitat preference assessed. It was surprising that pupae were not more abundant in the 

rainy season than the dry season, and the proportion of pupae in all habitats seem to be 

higher in the dry season. It is possible that the pupal stage is longer in the dry season 

and sampling at that time is likely to pick the pupae and/or pupae might have reduced 

movements during the dry season and therefore become easier to sample with dippers. 

Unlike larvae, pupae were more abundant in habitats sparsely vegetated during 

the rainy season, but this was the reverse during the dry season. Although during the 

rainy season shaded habitats had high densities of larvae, a high proportion did not 

reach the pupal stage. During the dry season larvae similarly exploited sparsely 

vegetated as well as shaded habitats but it is likely that those developing in shaded 

habitats were more protected from predators (Bogh et al. 2003) therefore could reach 

the pupal stage. Most pupae were found in pools which are usually situated in bushy 

environments in the upland area and these are often shaded. 

The size and depth of a water body did not affect pupal productivity in both the 

rainy and dry seasons. Most habitats in the rainy season were similarly productive of 

pupae, except puddles and water channels that were less productive. As observed for 

larvae, heavy downpours in the rainy season that flush out larvae reduce their chances 

of development into pupal stages in the puddles. Because water channels have running 

water especially in the rainy season they might not be able to support pupal 

development. In the dry season puddles were less productive possibly due to the fact 

that they dry out quickly (Chapter 2) and do not keep water for long enough to support 

larval development. Another reason could be that water in puddles heats up quickly 

and high temperatures might reduce mosquito development (Bayoh and Lindsay 

2003). Troughs and pools were more productive for pupae both in the rainy and dry 

64 



season. These habitats are discrete and not under the river's influence therefore are 

subjected to less or no fish predation. In addition these habitats are closer to human 

settlements and might contribute greatly to adult mosquitoes reaching homes. 

An. gambiae s.s is the main malaria vector in The Gambia (Hemingway et al. 

1995, Lindsay et al. 1993) and shows a high plasticity in its ability to exploit a wide 

range o f habitats. Results reported in Chapter 2 have shown the importance o f 

floodplains for mosquito distribution and an earlier suggested that An gambiae was 

almost exclusively confined to the alluvial floodplains (B0gh et al. 2003). However 

An. gambiae s.s. was also found in troughs which are in the upland area, closer to 

human settlements. In line with previous studies (B0gh et al. 2003) An. gambiae s.s. 

and An melas overlapped in their habitat requirements and were both associated with 

sedge and grass. Although An. melas is more salt tolerant, An gambiae s.s. shows a 

high salt tolerance and could be found in waters up to 30% sea water (Etagh et al. 

2003). Both species were found in all the habitat types sampled, except floodwater 

habitats where mosquito predators are usually abundant (Chapter 2). Despite 

narrowing the investigation to malaria vectors only, this study illustrates the 

difficulties o f finding risk factors associated with mosquito productivity in different 

aquatic habitats o f rural Gambia. 

In conclusion, mosquitoes in The Gambia exploit a wide range of habitats. 

Although the highest densities o f adult mosquitoes are observed in the rainy season, 

larval and pupal development continues throughout the year. In such settings larval 

control targeted at few habitats is unlikely to be successful thus a comprehensive 

control starting before and continuing through the rainy season might reduce vectors 

density. 
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Chapter 4 

Agriculture and the promotion of insect pests: swamp rice cultivation 

and malaria vectors in The Gambia 

Figure 4.1 Lamin Jarju emptying a mosquito trap in a rice field 
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Agriculture and the promotion of insect pests: swamp rice cultivation 

and malaria vectors in The Gambia 

Abstract 

Background Anopheles gambiae, the principal mosquito vector o f malaria in Africa, 

frequently breeds in ricefields. Here we explore how 'swamp rice' cultivation in the 

floodplains o f the Gambia River, an ancient agricultural practise in West Africa, 

affects the production o f anopheline mosquitoes during the rainy season, the period o f 

peak malaria transmission. 

Methods Routine surveys were carried out f rom June 2005 to January 2006. 500 m 

long transects crossing rice fields f rom the landward edge of the floodplains to the 

river were surveyed weekly. Aquatic invertebrates were sampled using area samplers 

and emergence traps and fish sampled using caste nets. Semi-field experiments were 

used to investigate whether the presence o f nutrients commonly found in natural rice 

fields affected larval abundance. 

Results At the beginning o f the rainy season rice is grown on the landward edge of the 

floodplains. This is the first area to flood with fresh water and it is rich with dung left 

by cattle feeding on the rice stubble from the previous year's harvest. Later, rice plants 

are transplanted close to the river, the last area to dry out on the floodplain. Nearly all 

An. gambiae s.l. were collected <100 m from the landward edge o f the floodplains, 

where immature rice plants were grown. These paddies contained stagnant freshwater 

with high quantities o f nutrients, and mosquito larvae were protected f rom 

insectivorous fish found outside the paddies. Semi-field trials showed that cattle faeces 

were associated with high mosquito numbers. 

Interpretation Rice fields close to the landward edge were most commonly colonised 

during the rainy season, since they were large areas o f standing freshwater, rich in 

nutrients, were protected f rom fish, and were situated close to human habitation, where 

egg-laying mosquitoes from the villages had a short distance to f ly . 

Whilst people exploit the ecology o f the floodplains for rice cultivation in West 

Africa, these sites are also exploited by malaria vectors. As the demand for locally-

produced rice gathers pace, rice farming communities must be protected against 

malaria. 
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Introduction 

It is ironic that the world's huge agro-ecosystems designed to feed the ever increasing 

human population also provide a habitat for a far greater number o f insects to exploit 

and to thrive in. Each year nearly 18% of the world's crops are damaged or consumed 

by insect pests (Oerke 2006). Agro-ecosytems also provide ideal breeding habitats for 

many insects. For example, irrigation is associated with the production o f vectors that 

transmit pathogen to humans, including those responsible for malaria and Japanese B 

encephalitis (Oomen et al. 1988). In order to manage vector populations it is important 

to know which specific human practices promote those pests. 

It is well known that rice cultivation leads to increased mosquito production in 

Africa (Ijumba and Lindsay 2001, Lacey and Lacey 1990, Muturi et al. 2006, Service 

1989, Surtees 1970). Increases in the number o f Anopheles gambiae s.i, the major 

malaria vectors in Africa, typically correspond with the beginning o f rice cultivation, 

when the paddies are first flooded and rice is short (Klinkenberg et al. 2003, Lacey and 

Lacey 1990, Lindsay et al. 1991b, Muirhead-Thomson 1951, Mwangangi et al. 2006, 

Snow 1983). Most research on rice and malaria focuses on irrigated rice production 

(Audibert et al. 1990, Doannio et al. 2002, Faye et al. 1995, Klinkenberg et al. 2003, 

Lindsay et al. 1991b, Robert et al. 1992, Snow 1983) and not traditional practices 

(Dossou-Yovo et al. 1998, Gbakima 1994). 

Rice has been grown in The Gambia for many centuries (Parks 1799). 

Traditional lowland rice is grown in the floodplain o f the Gambia River, and is known 

locally as lbafaro' or 'swamp rice'. However as the population increase, local rice 

production cannot meet the demand and the country has to rely increasingly on 

imported rice (Figure 4.2). Swamp rice production is one o f the oldest forms o f rice 

cultivation in West Africa, wi th approximately 200,000 ha under cultivation in Guinea, 

Guinea Bissau, Senegal, Sierra Leone and The Gambia (Agyen-Sampong 1994). 

During the rainy season in The Gambia, a combination o f heavy rainfall and a rising 

river level results in the Gambia River flooding extensive parts o f the alluvial 

floodplain. It is here the rice fields are constructed during the rainy season. Rice is 

cultivated between 110-290 km from the river mouth, where the river is still tidal and 

often salty, which reduces rice yield but also limits the growth o f weeds and, 

consequently reduces the amount o f weeding needed in the fields (Webb 1992). A 

recent comprehensive study o f larval habitats over a 400 k m 2 area along the middle 

reaches o f the River Gambia demonstrated that lowland rice fields on the edge o f the 
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floodplains were an important breeding habitat o f anopheline larvae (Chapter 2). Here 

we investigated the reasons for this observation in the hope that we could improve 

malaria control in this environment. 
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Figure 4.2 Rice imports and exports in relation with the rising population in The 

Gambia. No data on imported rice prior to 1990. Data f rom FAO (faostat.fao.org) and 

Webb 1992 (Webb 1992). 

Methods 

Study area 

The transect study was carried out near Tamba Koto Village ( U T M coordinates: 

1331776N, 1530990W) 10 km east o f Farafenni town ( U T M coordinates: 1500200N, 

435500E), close to the Gambia River (Figure 4.3). The population o f the village was 

about 215 inhabitants(Anonymous 2003), predominantly Mandinka. The area is 

generally flat, open farmland and sparse woodland, typical o f Sudan savannah. The 

major crops are rice, cultivated on the floodplains, and groundnuts, millet, sorghum 

and vegetables, which are grown inland. The area has a short rainy season f rom June to 

October, followed by a long dry season f rom November to May. The semi-field study 
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was carried out at the Medical Research Council Field Station, in Farafenni. Rainfall 

data were also collected at the Station. 

Tamba-Koto 

Legend 
Barren mudflats 

• Freshwater marsh 

mm Mangrove 

Transect 

N 

i 1 
0 0.5 km 

Figure 4.3 Map o f study area. 

Aquatic surveys 

Three parallel transects each approximately 500 m in length, 20 m wide, and 200 m 

apart were sampled weekly f rom June 2006 to January 2007. Transects were situated 

across the alluvial floodplains o f the Gambia River, in an area o f swamp rice 

cultivation, starting on the landward edge near the village and ending near the river 

(Figure 4.3). Since we had evidence that many mosquitoes were breeding on the edge 

of the floodplains (Chapter 2; (B0gh et al. 2003) we concentrated our sampling here. 

Larvae were sampled at 0 m, 25 m, 50 m, 75 m, 100 m, 200 m, 300 m, 400 m and 500 

m along each transect (Figure 4.4). A t each distance three samples were made with an 

area sampler (AS; (Service 1977b)) one at the centre and two at opposite ends o f the 

paddy. The AS was a 39.5 cm long aluminium tube, with serrated teeth around the 

bottom lip to grip into the substrate. They had an upper diameter o f 47cm and a lower 

one o f 40cm (surface area o f 0.126 rri )• The AS were plunged quickly into water 

bodies most likely to contain larvae (i.e. edge o f water or near emergent vegetation 

(WHO 1992b)) and left for 30 seconds to allow the water to settle and larvae to come 

to the surface. A standard 350 ml dipper was used to empty the water f rom the AS and 

transferred into a white plastic bowl containing clear water. Excess water was carefully 

removed to concentrate any organisms present in the bowl. A l l mosquito larvae and 
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other specimens were collected and placed in 100% ethanol before being transported to 

the laboratory for identification. 
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Figure 4.4 Schematic representation o f sampling frame in the study area. Where 

broken lines represent the three transects, red circles represent weekly sampling points 

for aquatic invertebrates and blue circles weekly sampling points for emerging 

invertebrates. 

Emergence fauna 

Floating emergence traps were used to sample adult insects continuously for the entire 

study period (LeSage and Harrison 1979, Southwood 1978, Stagliano et al. 1998). 

Emerging invertebrates were sampled in three zones along each transect: 0-75 m from 
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the landward edge, 100-300 m and 400-500 m at weekly intervals f rom June 2006 to 

January 2007 (Figure 4.4). Traps were positioned 4 m either side o f each transect over 

water bodies thought likely to contain larvae. In each zone samples were made: (1) <1 

m from the edge of the field nearest the village, (2) in the centre of the field, and (3) in 

the same field near the edge furthest from the village. This procedure was repeated in 

all zones along each transect. Emergence traps were designed to collect positively 

phototaxic arthropods that emerged from the water. They were constructed f rom 

conical metal frames 1 m in height and 1 m in diameter (0.786 m 2 surface area) and 

were covered in transparent nylon netting which reduced any shading o f the water 

surface which might reduce catches o f emerging invertebrates (Davies 1984 ). Traps 

were made buoyant by attaching plastic 1L bottles to the base with wire to allow the 

water to f low undisturbed under the trap. Each trap was tethered to a wooden stake 

anchored to the ground allowing the trap to rotate freely. Traps placed over mature rice 

plants were not tethered. 

The top o f each cone opened into a plastic insect collection chamber (Bioform, 

Germany). The chambers were filled with 250 ml o f 60% glycol in order to k i l l and 

preserve f ly ing insects that collected there. A netting sleeve on the side o f each trap 

allowed f ly ing insects caught within the netting cone to be removed with an aspirator. 

Insects were removed weekly and transported to the laboratory for invertebrate 

identification. Traps were moved every week from its previous sampling position to a 

new location where larvae had recently been found. 

Specimen identification 

A l l insects, excluding mosquitoes, were separated into the fol lowing taxonomic 

groups: dragonfly larvae (Odonata; sub-order Anisoptera), damselfly larvae (Odonata; 

sub-order Zygoptera), beetle larvae (Coleoptera), adult beetles (Coleoptera), mayfly 

larvae (Ephemeroptera), water measurer adults (Hydrometridae), greater water 

boatman adults (Notonectidae), lesser water boatman adults (Corixidae), water 

scorpion adults (Nepidae), pond skater adults (Gerridae), creeping water bug adults 

(Noucoridae), pigmy backswimmer adults (Pleidae) and broad-shouldered water 

striders (Veliidae). Mosquito larvae were counted and identified as anopheline and 

culicine in the field. In the semi-field studies, 1 s t and 2 n d stage larvae were recorded as 

early instars and 3 r d and 4 t h stage larvae as late instars. Pupae were removed from the 

bowls, counted and transferred into separate cages for each treatment where adult 
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mosquitoes emerged. A l l mosquitoes were identified with the aid o f morphological 

keys and members o f the An. gambiae complex identified by PCR analysis (Scott et al. 

1993a). 

Fish sampling 

Fish were sampled using a cast net (diameter: 230 cm, mesh size: 10 mm) and a hand 

net (25 x 17 cm, mesh: 2 mm) at 50 m intervals, as in the larval sampling, once along 

each transect in August. At each sampling point three cast-net throws were made at 

three different locations within 10 m o f either side o f the transect point. Five 

cumulative minutes o f sweeping were also undertaken with the hand-net within the 

same sampling area, with only enough time between sweeps and net throws to remove 

the fish f rom the net. Fish were identified to species using Paugy and co-workers 

(Paugy et al. 2003 ). 

Physical measurements 

At each mosquito survey point a number o f physical measurements were made. Water 

depth was measured with a metre rule at three different locations within the sampling 

area and averaged. We recorded whether the water was under the influence o f the tides 

by visual inspection. Water conductivity, pH, temperature and dissolved oxygen 

content were measured with a multi-parameter probe (350i W T W , Germany) and 

water turbidity wi th a turbidity meter ( H A N N A , USA). A l l samples were taken 

between 07:00 and 14:00 h. Rice height was measured f rom the water surface to the 

maximum vertical height o f the plant. During the long, hot dry season cattle are 

allowed to graze freely in the floodplains. Counts o f cow dung were made at 0 m, 25 

m, 50 m, 75 m, 100 m, 200 m, 300 m, 400 m and 500 m along each transect in June, 

before the start o f the rainy season. 

Semi-field experiments 

We investigated whether nutrients commonly found in ricefields affected mosquito 

production. 12 plastic bowls filled with 20L of tap water served as artificial breeding 

sites for mosquitoes. The bowls were arranged in open grassland in a grid o f parallel 

rows, wi th each bowl 1 m from its neighbour. Each bowl had a surface area o f 0.21m 2. 

Three small holes, 1 cm in diameter, were made at the top o f each bowl and covered 

with netting to prevent rain water washing larvae out o f the bowls. The bowls were 25 
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cm deep and were sunk into the ground with 5 cm remaining above the ground. 

Approximately 5g o f alluvial soil f rom the River Gambia floodplain was added to each 

bowl in order to provide the biotic and abiotic conditions suitable for mosquitoes 

(Chapter 5, (Fillinger et al. 2003). 

Each bowl had one o f the fol lowing treatments: cow dung (20 g), urea (200 g, 

46% nitrogen, grain size 0.85mm, Honorich Technology Co., China) and tap water 

served as a control. The amount of cow dung and urea was roughly approximated to 

conditions seen in the field. Treatments were allocated to bowls in a balanced design. 

For each o f the four trials, each treatment was randomly allocated a different bowl 

number. Bowls were covered for two days to allow the soil to settle and then left open 

for wi ld mosquitoes to lay their eggs for seven days. Larval sampling was done using a 

standard 350ml dipper. Five scoops o f water were taken from the surface o f each bowl, 

four on the edges and one in the centre. This was done daily for 14 days over a 12 

week period. Anopheline larvae were counted and returned to the bowl. A l l pupae 

were removed to avoid emergence o f mosquitoes. 

Nutrient analysis 

In the semi-field trial nutrients were measured in 9 bowls, each containing the three 

different treatments (i.e. 3 bowls/treatment) and sampled after 1 day, 4 days and 7 

days. 250ml water samples were filtered using 0.45/xm cellulose acetate membrane 

filters and analysed spectrophotometrically for filterable reactive phosphorus (FRP -

PO43") fol lowing the ascorbic acid method (Clesceri et al. 1998 ), for filterable reactive 

nitrogen (FRN - NO3/NO2) using the Feree method (Ferree and Shannon 2001) and 

ammonia (NH 4 ) , fol lowing the Nessler method (Clesceri et al. 1998 ). Colour, an 

indirect measure o f the concentration o f tannins, was measured by taking a reading at 

440nm (Cuthbert and Del Giorgio 1992 ). A l l measurements were carried out on the 

same day o f collection to minimise any change in water qualities in the samples. 

Statistical analysis 

Non-normal data were normalised by log transformation or squared to stabilise the 

variance. Comparisons between normally distributed data were made using t-tests. 

Proportions were compared using chi-square analysis. The number o f insect taxa found 

was counted. A l l variables were incorporated untransformed in a mathematical model 

and their overall impact on the presence or absence of anopheline larvae or adults 
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tested using Generalised Estimating Equations (GEE). This was a logistic model and 

adjusted for repeated measures. GEE were also used to examine the relationship 

between larval numbers and treatment group, adjusting for repeated measures. 

Analyses were performed with SPSS version 15 and Epilnfo version (TM) . Missing 

data and data f rom emergence traps that were not fu l ly working were excluded from 

the analysis. 

Results 

Meteorology 

Total rainfall during the 2006 rainy season was 807.9 mm. Rain started in the 

beginning o f June and ended in the middle o f October. The rainfall was similar to the 

mean annual rainfall o f 772.8 mm (95% Confidence intervals = 694.9-850.7 mm) for 

the period 1990-2005. 

Flooding patterns in the river floodplains 

The profile o f the landscape from Tamba Koto village to the River Gambia is 

characterised by upland agricultural fields, the tree-lined fringe of the upland 

savannah, followed by an area o f barren mud, before the first rice fields and the large 

areas o f floodwater beyond. Further into the floodplain tall reeds are found before 

reaching the second area o f rice fields close to the river and the mangrove forest 

fringing the banks o f the river. Different parts o f the floodplain are subjected to 

different patterns o f flooding (Table 4.1). Rice fields within the first 100 m from the 

landward edge were the first to flood in August, f i l led by rain water. In September the 

rice fields close to the river were flooded due to a combination o f rainfall and rising 

river levels. Whilst those paddies close to land dried out by the middle o f October, 

those near the river were more permanent and did not completely dry until January. 

75 



Table 4.1 Seasonality o f flooding in study area. Grey fill represents flooding in at least 

one o f the three transects each week. 

Month Week Distance from landward edge (m) Month Week 
0 25 50 75 100 200 300 400 500 

Jul 1 

2 

3 
4 

A u g 1 

2 

3 

4 

Sep 1 

2 

3 
4 

Oct 1 

2 

3 

4 no data collection 

5 
Nov 1 

2 

3 

4 

Dec 1 

2 

3 
4 

Jan 1 

2 

3 

4 

5 

Rice cultivation 

Fields closer to the upland were divided into small fields with high embankments built 

to help conserve rain water, whilst those close to the river were less clearly 

demarcated. Rice cultivation started in June when farmers ploughed their fields. Nerica 

rice, an African-Asian hybrid, was sown twice on raised nursery beds close to the 

landward edge of the alluvial floodplains. The first seedlings were transferred to the 

fields closest to the landward edge by the end o f August. Here the rice was grown to 

maturity, even though some of the fields were not water-logged later in the season. The 

second batch o f seeds were sown in the nursery beds in early August and transplanted 
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to the fields near the river f rom late September to the end o f October. Urea was applied 

to fields by hand when transplanting rice plants in September or shortly afterwards at a 

dose of 25Kg of urea to 50m . Rice was harvested from December to January, starting 

with paddies closer to the landward edge. 

Physical measurements 

Water in the fields on the landward edge o f the floodplain was stagnant, shallower, 

warmer, wi th a lower conductivity and pH and richer in cow dung (80% o f deposits) 

than water in fields close to the river (Table 4.2). 

Table 4.2 Characteristics o f water and distribution o f invertebrates along the transects 

obtained during larval surveys. Values shown are means after the data were 

normalized a by log transformation (ln(x +1)), or ''by squaring values. Figures in 

parenthesis represent 95% confidence intervals for abiotic variables and proportion o f 

sites with specimens for biotic variables. 

Variables Distance from landward edge 

0- 100m (N = 140) >100m (N = 415) 

P 

3Depth (cm) 9 (8.4-9.7) 10.7(10.1-11.2) 0.001 

"Turbidity (ntu) 107.9 (86.9-133.9) 129(120.8-137.8) ns 

, b p H 
7 (6.8-7.3) 7.6 (7.5-7.7) <0.001 

"Conductivity (mS/cm) 1 (0.9-1.2) 2.5 (2.3-2.7) <0.001 

"Temperature °C 30.2 ( 29.8- 30.6) 28.6 (28.3-28.9) <0.001 

Oxygen content units (mg/L) 5.6(5.2-6.1) 6(5.8-6.2) ns 
Presence of moving water (%) 4.30% 99.00% <0.001 

Height of rice (cm) 17(12.9-21.1) 39.1 (35.5-42.7) <0.001 

Cow dung samples/site 132 (N = 638) 33(N=802) <0.001 

Total anopheline larvae 349 (58/638) 26 (13/789) <0.001 
Anopheles gambiae s.l. 66 (19/638) 14 (9/802) 0.011 

Anopheles gambiae s.s. 15 (3/638) 8 (2/802) ns 

Anopheles arabiensis 30 (6/638) 6 (2/802) ns 
Anopheles melas 21 (4/638) 0 (0/802) 0.038 

Culicine larvae 423 (53/638) 19 (7/802) <0.001 

Other aquatic insects 912 (19/638) 532 (9/802) <0.001 
Mean no. invertebrate taxa, 3.1(2.6-3.6) 0.9 (0.8-1.0) <0.001 
exclud ing mosquitoes 

Mean no. fish species/sample 0 1.19 (0.68-1.59) 
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Aquatic invertebrates 

375 anopheline larvae and 442 culicine larvae were collected f rom 555 samples during 

the study. There were 80 An. gambiae s.l. o f which 45% were An. arabiensis, 29% An. 

gambiae s.s. and 26% An. melas. This is equivalent to 1.14 An. gambiae s.l./m2. 

Members o f the An. gambiae complex were found shortly after the fields were first 

flooded in August (Figure 4.5), but their numbers fell to zero in early November 

coincident with the drying out o f the fields close to the landward edge (Table 4.1) and 

increased height o f rice. Most aquatic invertebrates were sampled within 100 m from 

the landward edge of the alluvial floodplains (i.e. 83% anophelines, 96% culicines and 

63% of other invertebrates). Even though the first 100m of each transect were sampled 

more intensively than sites further away, the sites closer to land dried out more quickly 

(i.e. 140 vs 415 water bodies sampled). After adjusting for differences in flooded sites, 

93% o f An. gambiae s.l. larvae were found in the first 100 m o f each transect. 

Multivariate modelling revealed that the presence o f all anophelines and An. 

gambiae s.l. larvae was highest within rice fields less than 100 m from the landward 

edge of the floodplains (Table 4.3). Within each paddy larvae were more common 

along the edge than in the centre. The presence o f rice in area samplers and culicine 

larvae were also positively associated with the presence o f anopheline larvae and those 

of An. gambiae s.l. There was also a direct relationship between the abundance o f An. 

gambiae s.l. larvae and number o f insect taxa (r 2 = 0.19, F = 123.5, P<0.001). 
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Figure 4.5 Seasonality o f anopheline larvae and adults in ricefields. a is the total 

number o f anophelines collected, whilst b is anopheline density. Where black bars are 

weekly larval collections, grey bars are total number o f adults collected weekly and the 

solid line is the average height o f rice. 
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Table 4.3 Factors associated with the presence or absence o f anopheline larvae. 

Variables A l l anophelines An. gambiae s.I. 
Wald Odds Ratio (95% CI) P | Wald Odds Ratio (95% CI) P 

Spatial measurements 
Distance from landward edge of transect 

1-100m 1 1 

>100m 40.5 0.04 (0.01-0.10) O.001 13.15 0.13(0.04-0.39) O.001 

Position of sampling point within rice field 
Landward edge 1 1 

Centre 4.97 0.23 (0.06-0.84) 0.026 5.75 0.1 (0.02-0.66) 0.016 
Riverside edge 3.95 0.31 (0.10-0.98) 0.047 2.42 0.33 (0.08-1.34) 0.081 

Biotic measurements 

Rice in area samples 

Absent 1 1 
Present 13.78 28.25 (4.84-164.85) <0.001 7.01 10.53 (1.84-60.16) 0.008 

Culicine larvae 

Absent 1 1 
Present 9.72 2.78 (1.46-5.30) 0.002 14.23 6.06 (2.38-15.44) O.001 

Insect biodiversity 2.92 2.16(0.89-5.20) 0.087 0.17 1.21 (0.50-2.95) ns 

Mosquito adult emergence 

90 anopheline and 140 culicine adults were collected f rom 279 samples made with 

emergence traps during the study (Table 4.4). There were 66 An. gambiae s.l. o f which 

92% were An. arabiensis, 6% An. gambiae s.s. and 2% An. melas. This is equivalent to 

0.30 An. gambiae s.l./m2. Adults o f the An. gambiae complex were collected when the 

rice fields were first flooded in August (Figure 4.5), but the last adult was collected in 

early November coincident with the drying out o f the fields close to the landward edge 

(Table 4.1) and increased height o f rice. Most invertebrates were collected within 100 

m f rom the landward edge o f the alluvial floodplains (i.e. 94% An. gambiae s.l., 100% 

of other anophelines, 95% culicines and 60% o f other invertebrates) even though more 

than twice as many samples were made in the middle and far zone combined, 

compared with the near zone alone (i.e. 188 vs 91). After adjusting for differences in 

flooded sites in different parts o f each transect, 97% o f An. gambiae s.l. adults were 

found in the first 100m o f each transect. The water within the first 100m of each 

transect was shallower, non-tidal and had smaller, and therefore, younger rice plants 

compared with the fields further away which were characterised by deeper, tidal water 

where taller, more mature rice plants were transplanted. 
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Table 4.4 Characteristics of water parameters and distribution of adult mosquitoes and 

invertebrates along the transects. Values shown are mean values after the data were 

normalized aby log transformation (ln(x +1)). Figures in parenthesis represent 95% 

confidence intervals for abiotic variables and proportion of sites with specimens for 

biotic variables. 

Variables Distance from landward edge P Variables 

0-100m(N=91) >100m (N=188) 

"Depth (cm) 9.8 (9.2-10.5) 11.9 (10.3-11.5) 0.032 

Presence of moving water 10/91 188/188 <0.001 

Height of rice (cm) 17 (12.9-21.1) 39.1 (35.5-42.7) <0.001 

Anopheles gambiae s.l. 62 (36/91) 4 (3/188) <0.001 

Anopheles gambiae s.s. 4(4/91) 0 (0/188) 0.01 

Anopheles arabiensis 57 (34/91) 4(3/188) <0.001 

Anopheles melas 1 (1/91) 0(0/188) ns 

Other anophelines 24(12/91) 0 (0/188) <0.001 

Culicine adults 133 (49/91) 7 (6/188) <0.001 

Other aquatic insects 353 (69/91) 234 (88/188) <0.001 

Insect families 2.2 (1.8-2.5) 0.9(0.7-1.0) <0.001 

Multivariate modelling demonstrated that the emergence of An. gambiae s.l. adults was 

most common within rice fields less than 100 m from the landward edge of the 

floodplains, particularly along the edge of the fields (Table 4.5). The emergence of 

anopheline adults was associated with shorter rice plants and the simultaneous 

emergence of culicine adults. In the final model insect biodiversity was of borderline 

statistical significance, suggesting that/1m. gambiae s.l. adult emergence was 

associated with higher biodiversity in general. This is also indicated by the direct 

relationship between the abundance of An. gambiae s.l. adults and biodiversity (Figure 

4.6; r 2 = 0.43, F = 62.2 PO.001). 
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Table 4.5 Factors associated with the presence or absence of anopheline adult 

emergence. 

Variable An. gambiae s.l. 
Wald Odds Ratio (95% CI) P 

Spatial measurements 
Distance from landward edge of transect 

l-100m 1 
>100m 4.1 0.23(0.05-0.95) 0.042 

Position of sampling point within rice field 
Edge 1 
Centre 4.9 0.23(0.06-0.84) 0.026 

Biotic measurements 
Height of rice (cm) 3.4 0.99(0.98-1.00) 0.024 
Culicine adults 36.8 2.22(1.72-2.88) O.001 
Insect richness 3.4 1.78(0.97-3.28) 0.065 
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Figure 4.6 Relationship between anopheline mosquitoes and diversity of other 

emergent insects. 



Fish sampling 

Four species of fish were collected: 17 Periophthalmus barbarus, 12 Tilapia 

quineensis, 1 Epiplatys spilargyreius and 1 Porogobius schlegelli. No fish were 

collected within 100m from the landward edge of each transect, whilst 1.19 species of 

fish were caught on average every sampling occasion further away (Table 4.2). 

Semi-field trials 

A total of 6,233 anophelines and 11,234 culicine were collected during the four trials. 

Of the 135 members of the^n. gambiae s.l complex collected 55% were^ln. 

arabiensis (n = 74), 44% An. gambiae s.s. (n=59) and \%An. melas (n=2). 

Multivariate modelling revealed that the presence of cow dung in water significantly 

increased the number of anopheline and culicine larvae (Tables 4.6 and 4.7). 

Table 4.6 GEE analyses of different treatments adjusting for trial. 

Anopheline larvae Culicine larvae 

Early instars Late Inslars Early instars Late Instars 

Explanatory Odds Ratio Odds Ratio Odds Ratio O Odds Ratio n 
variables (95% CI) r (95% CI) r (95% CI) I (95% CI) r 

Trial 
1 1 1 1 1 
1 

2 

1 

15.82 (8.30-30.15) O.001 

1 

3.91 (1.75-8.72) O.001 

1 

2.61 (1.61-4.25) O.00I 

I 

1.39 (0.64-3.01) 0.400 

3 14.53(7.80-27.05) O.001 0.83(0.36-1.91) 0.661 4.27(2.88-6.34) O.001 0.78(0.38-1.60) 0.498 

4 1.47(0.59-3.64) 0.405 0.96 (0.25-3.70) 0.956 2.37(1.63-3.46) <0.001 1.2(0.49-289) 0.691 

Treatmcnl 

Water 1 1 1 1 

Urea 0.96 (0.56-1.67) 0.899 0.631 (0.30-1.35) 0.234 0.72 (0.48-1.07) 0.101 1.57 (0.78-3.13) 0.203 

Cow dung 1.73(1.20-2.50) 0.003 2.38(1.12-5.09) 0.025 1.49(0.97-2.28) 0.068 4.11 (2.17-7.78) O.00I 

Table 4.7 Mean number of larvae per bowl and treatment. 

Mean number of larvae/bowl in different treatment (95% CI) 
Water Urea Cow dung 

Anopheline 
Early instars 4.75(2.85-7.93) 4.15(2.36-7.28) 7.67(4.97-11.83) 
Late instars 0.92 (0.48-1.79) 0.59(0.28-1.23) 1.77(1.11-2.81) 

Culicine 
Early instars 6.84 (4.62-10.12) 5.63 (4.03-7.85) 11.94 (8.30-17.19) 
Late instars 1.48(0.89-2.46) 2.25(1.35-3.74) 5.76(3.57-9.31) 
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FRN, FRP, N H 4 and colour differed significantly between treatments (Figure 4.7). 

There was 80% more nitrogen, 76% more phosphorous and 33% more N H 4 in the 

cattle dung treatment compared to the control. Urea contained 76% more N H 4 than the 

control. The water had 97% higher tannin content in the cattle dung treatment and 13% 

less in the fertiliser treatment (borderline significance) compared to the control. 
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Control Cow Dung Urea 

I I 
Control Cow Dung Urea 

Figure 4.7 Means and 95% C.I.'s of (a) FRP, (b) FRN, (c) NH3 and (d) colour for the 

different treatments. 

Discussion 

Here we describe the dynamic process of swamp rice cultivation in wetlands bordering 

the River Gambia where rice production follows the changing pattern of surface water 

over the rainy season and demonstrate how the cultivation of rice increases the 

production of malaria vectors. This is the first estimate of mosquito production in a 

rice growing area and confirms our earlier conclusions that rice fields on the edge of 

the floodplains are a major site for malaria vectors in the middle reaches of The 

Gambia (Chapter 2; (B0gh et al. 2003). Our findings suggest that a 100m strip of 
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ricefields along the edge of the floodplains, 1km in length, can generate 86,500 An. 

gambiae adults/week during the rainy season. 

After the seasonal rains start in June, women plough their fields in the 

floodplains of the Gambia River and prepare raised beds for growing rice. The 

floodplain marks the edge of the open savannah and is an area of flat open land. Two 

sets of young plants are transplanted to the fields. The first are transplanted early on in 

the rainy season in paddies close to the landward edge of the floodplain in August. 

These are the first areas to flood after the soil becomes saturated following several 

heavy downpours. The water in these fields is fresh, non-tidal and contains the 

greatest abundance of insect life on the floodplain. These paddies are clearly 

demarcated by raised embankments that help keep the fresh water in the fields for as 

long as possible. However, by October, they are drying out and the second set of 

young rice plants are transplanted to fields close to the river from late September to 

early October. Here the water is largely flowing in from the River Gambia. It is 

slightly salty and tidal, but the fields are flooded and will remain so for several 

months, enough for the rice to mature and be cultivated. 

Although it is well known that rice fields are often prolific sources of 

mosquitoes (Ijumba and Lindsay 2001, Service 1989, Surtees 1970), the density of An. 

gambiae s.l. produced in this study was relatively low with 1.14 larvae/m2 and 0.30 

adults/m2. Yet the area of ricefields bordering the river is huge covering many 

hectares. In the rice fields, An. arabiensis was the most common member of the An. 

gambiae complex. This species is frequently associated with rice fields in The Gambia 

(Chapter 2; (Etegh et al. 2003) and elsewhere (Ijumba et al. 2002, Mukiama and 

Mwangi 1989, Mutero et al. 2000). Quite why this should be so remains unexplained. 

Nonetheless, this is not always the case since An. gambiae s.s. can also predominate in 

irrigated rice fields (Klinkenberg et al. 2003, Lindsay et al. 1991b). 

Overall 93% of An. gambiae s.l. larvae and 97% of adults came from rice fields 

close to the landward edge of the floodplains, even though many more samples were 

made further away. There are a number of explanations for this finding related to (1) 

the geographical position of the fields, (2) their water characteristics, (3) the presence 

or absence of fish and (4) the presence or absence of nutrients. 

A rice field close to the landward edge of the floodplain represents the shortest 

flight distance for an ovipositing female leaving a village to lay her eggs. Previous 

studies have demonstrated that rice fields and habitats close to the landward edge were 
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associated with an increased risk of finding anopheline larvae (Chapter 2; (B0gh et al. 

2007). The phenomenon of finding larvae on the edges of rice fields has been shown 

before (Minakawa et al. 2002) and other habitats close to human habitation has also 

been recorded (Staedke et al. 2003, Trape et al. 1992b). We also found evidence from 

this study that this effect may exist at a finer spatial scale since within individual 

fields, higher numbers of larvae were found at the edge closest to the land compared to 

the edge nearer the river. In common with other studies, larvae were less likely to be 

found in the centre of the field compared with the edge (Andis and Meek 1984). 

Rice fields on the landward edge of the floodplain were situated in an area of 

undisturbed water that was warm, fresh and exposed to sunlight, providing conditions 

ideal for An. gambiae s.l. and many other species of aquatic insect. It was here that the 

majority of anophelines, culicines and other insect life were dominant. The association 

found between anopheline and culicine larvae has been seen before in The Gambia 

(chapter 2) and Kenya (Chandler and Highton 1975, Mwangangi et al. 2006). 

However, it was surprising to find anophelines sharing habitats with a diverse taxa of 

insects since it has typically been thought that many species of invertebrate were 

important anopheline predators (Service 1973). However, fish never occurred where 

anophelines were found suggesting their importance as major mosquito predators 

(Homski et al. 1994, Linden and Cech 1990, Louca et al. 2008, WHO 2003b). 

Lastly, our findings from the semi-field trial illustrate that cattle dung increases 

the number of larvae found in breeding sites. Nutrient analysis showed that the water 

was rich in reactive nitrogen and phosphorous, and ammonium radicals. These 

nutrients are key drivers of invertebrate abundance in aquatic systems (Sanford 2005 ) 

and presumably they provide the nutrients for the organisms upon which mosquito 

larvae feed early in the rainy season. The reason for the large concentration of cattle 

dung close to the landward edge is a result of transhumance. In the dry season cattle 

are grazed on the grass and rice stubble found in the floodplains. Most grazing occurs 

on the landward edge of the floodplain where the water is less salty for the cattle to 

drink in this part of the country. During the rainy season the cattle are grazed 

elsewhere. Unlike an earlier study in Kenya (Mutero et al. 2004) we did not find that 

nitrogenous fertilizer increased larval numbers. 

The phenology of adult mosquitoes in relation to rice production has been well 

documented (Chandler and Highton 1975, Klinkenberg et al. 2003, Snow 1983), but 

fewer studies have described the dynamics of larval populations (Muturi et al. 2007a, 
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Mwangangi et al. 2006). In this study larvae colonised rice fields shortly after flooding 

and remained there until the rice grew tall and/or the fields dried out. It has been 

shown previously that few, i f any, larvae are found in dense growths of rice, since 

vegetation prevents mosquitoes from ovipositing on water (Muirhead-Thomson 1951). 

Our findings clearly indicate that mosquito production was seasonal and highly 

associated with rice cultivation. 

Whilst an increased production of malaria mosquitoes is an inevitable 

consequence of rice production, swamp rice cultivation is likely to increase in the 

future. Rice is the staple food in The Gambia and locally produced rice has failed to 

keep up with the demand for more rice for the growing population, with imports 

soaring (Figure 4.1), straining the countries meagre financial resources. Since the 

world's consumption of rice outstrips production rice prices are expected to double in 

the next two years (www.warda.org: accessed 26/7/7). Thus local production of rice 

must increase, to offset the rapidly increasing cost of imports. Increasing acreages of 

rice will increase the vector population. Quite what this will mean for the level of 

malaria in the country is uncertain, since generally in sub-Saharan Africa increasing 

transmission associated with rice irrigation does not necessarily lead to more 

malaria(Ijumba and Lindsay 2001). Nevertheless, this is not a time for complacency 

and it will be essential to ensure that local communities near rice-growing areas are 

protected with long-lasting insecticide treated nets and effective antimalarials. 

Moreover, since we have demonstrated that in this setting vector production is limited 

to one area of the ricefields it raises the possibility that in the future control activities 

could be targeted at these sites. At a time when there is a growing threat of food 

shortages around the world rice production will need to expand. Ensuring that the 

farmers and their families remain healthy is a pressing priority. 
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Chapter 5 

Microbial larvicides for malaria control in The Gambia* 

H i 

Figure 5.1 Setting up standardised field experiments for testing microbial 

larvicides. 

T h i s chapter appeared as a paper, in a modified format with the same title by S. 
Majambere, S.W. Lindsay, C . Green, B . Kandeh and U . Fillinger in Malaria Journal 6:76 
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Microbial larvicides for malaria control in The Gambia 

Abstract 

Background Mosquito larval control may prove to be an effective tool for 

incorporating into integrated vector management (IVM) strategies for reducing malaria 

transmission. Here the efficacy of microbial larvicides against Anopheles gambiae s.l. 

was tested in preparation for a large-scale larviciding programme in The Gambia. 

Methods The impact of water-dispersible (WDG) and corn granule (CG) formulations 

of commercial Bacillus sphaericus strain 2362 (Bs; VectoLex ) and Bacillus 

thuringiensis var. israelensis strain AM65-52 (Bti; VectoBac®) on larval development 

were tested under laboratory and field conditions to (1) identify the susceptibility of 

local vectors, (2) evaluate the residual effect and re-treatment intervals, (3) test the 

effectiveness of the microbials under operational application conditions and (4) 

develop a method for large-scale application. 

Results The major malaria vectors were highly susceptible to both microbials. The 

lethal concentration (LC) to kill 95% of third instar larvae of Anopheles gambiae s.s. 

after 24 hours was 0.023 mg/1 (14.9 BsITU/1) for Bs WDG and 0.132 mg/1 (396 ITU/1) 

for Bti WDG. In general Bs had little residual effect under field conditions even when 

the application rate was 200 times greater than the LC95. However, there was a residual 

effect up to 10 days in standardised field tests implemented during the dry season. 

Both microbials achieved 100% mortality of larvae 24-48 hours post-application but 

3 r d instar larvae were detected 4 days after treatment. Pupal development was reduced 

by 94% (95% CI = 90.8-97.5%) at weekly re-treatment intervals. Field tests showed 

that Bs had no residual activity against anopheline larvae. Both microbials provided 

complete protection when applied weekly. The basic training of personnel in 

identification of habitats, calibration of application equipment and active larviciding 

proved to be successful and achieved full coverage and control of mosquito larvae for 

three months under fully operational conditions. 

Interpretation Environmentally safe microbial larvicides can significantly reduce 

larval abundance in the natural habitats of The Gambia and could be a useful tool for 

inclusion in an I V M programme. The costs of the intervention in this setting could be 

reduced with formulations that provide a greater residual effect. 
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Introduction 

At the start of the new millennium malaria is still deeply entrenched in Africa and 

effective malaria control is under threat from drug and insecticide resistance (Coleman 

et al. 2006, Winstanley et al. 2002). In response to that, mosquito larval control has 

recently received renewed attention by the international scientific community (Chen et 

al. 2006, Fillinger and Lindsay 2006, Fillinger et al. 2004, Gu and Novak 2005, 

Killeen et al. 2002a, Mutuku et al. 2006b, Shililu et al. 2003, Vanek et al. 2006, 

Yohannes et al. 2005) and recent attempts to develop integrated vector management 

(IVM) strategies for different eco-epidemiological settings re-consider mosquito larval 

control as one of the tools to reduce malaria transmission (WHO 2003a). 

Promising new formulations of the microbial larvicides Bacillus sphaericus 

(Bs) and B. thuringiensis var. israelensis (Bti) have recently been shown to give 

excellent control of the major vectors of malaria in Africa (Fillinger et al. 2003, 

Fillinger and Lindsay 2006). Use of these biological control agents is better than 

chemical larvicides since they are very species specific, environmentally safe (WHO 

1999) and appear not to induce resistance when used together(Mulla et al. 2003). It is 

envisaged that the utilisation of such biological control agents may be best carried out 

using a vertical approach that actively involves local communities (Mukabana et al. 

2006, Vanek et al. 2006). The national strategy for malaria control in The Gambia 

includes larval control (NMCP 2002), yet there has been no detailed evaluation of this 

methodology. Whilst Bs and Bti have been tested in different ecological settings in 

Africa (Fillinger and Lindsay 2006, Hougard et al. 1993, Karch et al. 1992, Karch et 

al. 1991, Nicolas et al. 1987, Ravoahangimalala et al. 1994), the riparian habitats 

found in The Gambia represent a novel habitat for investigating these microbials. In 

the present study the efficacy of microbial larvicides was tested against malaria vectors 

in The Gambia, West Africa, to identify the optimal formulations, dosages and 

application methods in order to prepare for a large-scale larviciding programme. 

Material and methods 

Study area 

The study was based in and around Farafenni town (UTM zone 28, 1500200mN, 

435500mE), in the central part of the country, about 100 km from the coast (Figure 

5.2). Laboratory and standardised field tests were carried out at Farafenni Field Station 

of the Medical Research Council (MRC) Laboratories. Field tests were implemented 

90 



near Tamba-Koto village, 10 km east of Farafenni. The area is predominantly flat 

farmland and woodland savannah. The main upland crops are sorghum, millet, 

groundnut and pumpkin and in the floodplains swamps rice is grown during the rainy 

season. The villages in the area are discrete clusters of houses and are not scattered as 

seen in many parts of Africa. 
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Figure 5.2 Map of The Gambia, West Africa (A) and the study area (B). The black line 

encloses the control, the red line the intervention area. The 24 sentinel sites for larval 

surveys are marked as stars. 

Climate 

Data on daily minimum and maximum temperatures were available from the 

meteorological station at Kaur 30 km from Farafenni town. Rainfall was collected with 

a rain gauge at the MRC station, Farafenni. 
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Larvicides 

Water-dispersible granular formulations (WDG) of the commercial strains of Bs 

(VectoLex strain 2362, Lot number 115-498-PG, 650 International Toxic Units, 

ITU/mg) and Bti (VectoBac® strain AM65-52; Lot number 114-114-32, 3000 ITU/mg; 

Valent Biosciences Corporation, Illinois, USA,) were tested in the laboratory and 

under field conditions, in a similar manner to that described by Fillinger et al. 

(Fillinger et al. 2003) in Kenya, in order to make direct comparisons between West and 

East Africa. WDG formulations were applied as liquid with handheld or knapsack 

sprayers. Bs (VectoLex®, Lot number 117-999-NB, 50 ITU/mg) and Bti (VectoBac®, 

Lot number 131-661-NB, 200 ITU/mg) corn granule (CG) for hand application or 

motorised granule spreaders was evaluated under field conditions only. 

Laboratory assays 

Laboratory assays were conducted to assess the susceptibility of the principal malaria 

vector in The Gambia, An. gambiae s.s., to microbial larvicides. Laboratory assays 

were carried out with a colony of insectary-reared larvae originated derived from wild-

caught mosquitoes collected from Saruja in The Gambia and maintained at the MRC 

Laboratory in Farafenni since 2002. Al l mosquito larvae used in the laboratory 

experiments were reared at a room temperature of 28°C, 80% relative humidity and an 

approximate 12 hour light: 12 hour dark cycle. Larvae were reared in transparent, 1.5 

L capacity plastic containers (24x17x8 cm) filled with 1 L tap water that had been left 

in the insectary for at least 48 hours to equilibrate. Larvae were fed by adding a pinch 

of crushed Tetramin® (Tetra, Germany) fish food spread evenly on the water surface 

twice daily. 

Assays were performed with the WDG formulation of VectoLex® and 

VectoBac to determine their minimum effective dosages following the standard 

testing procedures for microbial tests (WHO 1999). Fifty third instar larvae were 

randomly collected for the experiment from several bowls to compensate for size 

differences that could have reflected the amount of food available (Koenraadt et al. 

2004a) and transferred to new 1.5 L plastic containers filled with 1 L of the test 

solution or distilled water only (control). On every test date a fresh stock solution of 

100 mg/1 WDG was prepared and test aliquots made up to 1 L with distilled water. 

After range finding tests (WHO 1999), five to six different test concentrations were 
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chosen for each experiment. Test concentrations ranged between 0.001 and 0.1 p.p.m 

for Bs and between 0.001 and 0.016 p.p.m for Bti. Each experiment contained an 

untreated control. The experiment was run in three replicates at the same time and the 

entire experiment carried out on five occasions. Larvae were not fed during the 

experiments and all tests were run at ambient temperature ranging between 21 and 

34°C. Larvae were counted and mortality scored after 24 hours. Where mortality 

exceeded 10% in the controls, the experiment was discarded and repeated. 

Standardised field trials 

Standardised field trials were conducted at the MRC field station in Farafenni during 

the rainy (September to October 2004) and dry season (December 2004 to May 2005) 

to identify the optimum dosages of Bs and Bti required under field conditions and to 

evaluate the residual effect and re-treatment intervals for the test microbials. Artificial 

ponds were created following the experimental design of Fillinger et a/.(Fillinger et al. 

2003). Eighteen light blue plastic tubs (0.5 m diameter) were buried into an open sunlit 

field in three lines of six tubs (distances between tubs was approximately 2 m). The 

tubs were filled with approximately 6 kg of top soil from the experimental area to 

provide the abiotic and biotic conditions suitable for mosquitoes. Tubs were filled with 

tap water and maintained at a depth of 0.4 m. Overflow holes were created at the 0.4 m 

level and screened with nylon netting to allow excess water to leave the tubs during 

heavy rainfall and prevent larvae from being washed over the edges. The habitats were 

left open for mosquito oviposition. Experiments were implemented eight to nine days 

after the tubs were set-up to allow third and fourth instar larvae to develop. Water 

temperatures during the experiments ranged between a minimum of 23°C and a 

maximum of 40°C. Acknowledging the hazard artificially created breeding sites 

present, all habitats were carefully screened for pupae twice daily with a dipper and 

visually and any pupae were removed to prevent the emergence of malaria vectors. 

Of the 18 artificial habitats, six served as untreated controls and two treatments 

(six tubs each) were allocated to the remaining 12. Treatment and control ponds were 

selected randomly using the web-based randomisation tool at 

http://wAvw.randomization.com. Treatment concentrations were calculated on the basis 

of a standard water depth of 0.1 m and fixed surface area (Ragoonanansingh et al. 

1992, Schnetter et al. 1981) irrespective of the actual water depth to simulate 

operational procedures. Both microbial larvicides were tested in this set up at the 
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following concentrations: Bs WDG at 0.5, 1.0, 2.5 and 5 mg/1 (0.5, 1, 2.5 and 5 

kg/ha), and, Bti WDG at 0.2 mg/1 (equivalent to a surface application of 0.2 kg/ha). 

Each concentration was tested in six habitats at a time and repeated once (i.e. 12 

habitats in total). The first round of tests with Bs were implemented during the rainy 

season 2004 and replicated during the dry season 2005. Bti was tested during the cold 

dry season, in December, and repeated during the hot dry season in May (Figure 5.3). 

Liquid formulations were sprayed evenly over the entire water surface of the habitats 

using a 250 ml handheld sprayer. Each day the average number of larvae and pupae 

per dip (350ml capacity dipper, Clarke Mosquito Control Products, Illinois, USA) was 

determined by taking five dips from four different directions of each pond close to the 

edge and one from the middle. Mosquito larvae were classified as anophelines or 

culicines and recorded as early (1 s t and 2 n d ) or late (3 r d and 4 t h) instars. After counting, 

larvae were returned to the water and pupae removed. Treatment was done once at day 

zero. The experiment was terminated when the difference between late instar and pupal 

density was no longer statistically significant between control and treatment tubs. A 

sub-sample of 69 Anopheles adults were allowed to emerge from pupae collected from 

the control and identified morphologically; rDNA-PCR markers were used for species 

determination of adults of the An. gambiae species complex (Scott et al. 1993b). 
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Figure 5.3 Temperature ( C) and rainfall pattern (mm) during the study period. 
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Field trial 

Based on the results from the laboratory and the standardised field tests a pilot-scale 

field operation was designed and implemented between August and November 2005 to 

test the efficiency and life span of the larvicides under natural conditions in 

representative habitat types in the floodplains of the River Gambia. The field tests 

served to identify (1) the operational requirements e.g. time needed per surface area 

treated, equipment and manpower needed, (2) the optimal microbial and (3) the best 

formulation in preparation for large-scale larviciding campaigns scheduled for the 

following rainy season 2006. 

Liquid (WDG) and granule (CG) formulations of both Bs and Bti were tested. 

Liquids were applied using 5 L capacity compression sprayers (Mesto Resistent No. 
(Si 

3600, Freiberg, Germany) or 15 L capacity diaphragm knapsack sprayers (SOLO 

475, Sindelfingen, Germany). Both sprayers were operated at an average pressure of 4 

bar. Corn granules were either applied by hand carrying the granules in a 5 L bucket 

on a carrying strap over the shoulder or were spread with 13 L backpack power 

chemical applicators (MD 150DX-13 Maruyama, Tokyo, Japan) covering a swath 

width of 10-15 metres. 

The pilot zone was situated 10 km east of Farafenni and had an area of 24 km . 

The area included the major breeding habitats for anophelines in this region of The 

Gambia: extensive rice fields, pools that were people-made and natural, and large 

floodwater areas interspersed with grass. Notably, aquatic habitats harbouring 

anopheline larvae in the Gambia might be described as 'atypical' when compared with 

other parts of Africa. The habitats are water-fed primarily through the flooding of the 

river and are additionally under tidal influence leading to flooding and contraction of 

the habitats which are usually shallow but can be extensive in size and are probably 

fairly typical for many large rivers in the Sahel. 

After mapping all aquatic habitats in the pilot zone the area was divided into an 

intervention and a non-intervention zone (Figure 5.2). In the intervention zone, 6 km 2 

was routinely larvicided. In each zone 12 sentinel sites were randomly selected from 

the total list of habitats for measuring mosquito larval density. The sentinel sites were 

located in rice fields and floodwater habitats covered with grass and sedge. Larviciding 

was implemented under operational conditions by a team of four men from the 

National Malaria Control Programme who had undergone two weeks of training prior 

to the field trial. The monitoring of the intervention's impact in the 24 sentinel sites 



was implemented independently by the research team. The larviciding teams were 

unaware of the location of the sentinel sites. 

Bs treatments were applied at rates of 1 kg/ha for WDG and 15 kg/ha for CG; 

dosages proven to be effective from the standardised field trials and previous 

experiences (Fillinger et al. 2003, Fillinger and Lindsay 2006). Bs WDG was tested for 

two consecutive weeks and followed by Bs CG for one week. This allowed the authors 

to train larviciding staff how to use different application equipment and assess whether 

the two formulations performed differently under field conditions. Larval density was 

surveyed using the standard dipping technique (WHO 1992a). Ten dips were taken at 

each sentinel site to determine the larval density at the day of the first treatment (day 0) 

and at day two, four and seven after treatment for three consecutive weeks. Purposive 

sampling was done to maximise the sensitivity of collections. Re-treatments took place 

on a weekly basis i f late instar larvae occurred at day four. 

Following the Bs field test, operational application of Bti was evaluated at 

dosages of 4.0 kg/ha for CG for two weeks, followed by WDG applications of 0.2 

kg/ha for seven weeks. Dosages were based on laboratory and field trial results and on 

previous studies (Fillinger et al. 2003, Fillinger and Lindsay 2006). During the 

application of Bti larval density was monitored once a week in the sentinel sites using 

the same methodology as described above. The monitoring was implemented one to 

three days after application. Due to the specific habitat characteristics in the tidal 

floodwater of The River Gambia the entire surface of all aquatic habitats was covered 

with larvicides. 

Statistical analysis 

LC50 and LC99 values were determined using log-probit regression analysis. The 

percentage reduction in larval mosquito densities in the standardised field trials was 

calculated using the formula of Mulla et al. (Mulla et al. 1971): % Reduction = 100 -

(C1/T1 x T2/C2) xlOO, where Ci and C2 describe the average number of larvae in the 

control tubs pre- and post-treatment, T| and T2 describe the average number of larvae 

in the treated tubs pre- and post-treatment. The percent reduction shows for each day 

after treatment the proportion of larvae that have died compared to the previous day. 

Mean number of larvae and pupae per dip in control and treatment sites in field tests 

were compared using non-parametric Mann-Whitney tests. The tests were 

implemented separately for each sampling day comparing mean numbers of immature 
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stages in the controls with treatments. When multiple comparisons of more than one 

treatment and control were made the Bonferroni correction was used to define the 

alpha cut off value. The corrected significance levels are presented with the figures. 

All analyses were carried out using SPSS version 11.0. 

Results 

Climate 

Figure 5.3 summarises average minimum and maximum temperatures and the monthly 

rainfall during the study period from September 2004 to November 2005. The dry 

season extended from November 2004 to May 2005 and can be portioned into a 'cold 

dry season', from November to February, and a 'hot dry season', from March to May. 

The rainy season is characterised by more constant temperatures with little difference 

between minimum and maximum values. Rain fell only once during the experiments 

on day 4 of the rainy season test of low Bs WDG dosages (Figure 5.5 A), but did not 

appear to influence the results. 

Laboratory assays 

After 24 hours exposure of third instar larvae of An. gambiae s.s. to Bs WDG 

(VectoLex®, 650 BsITU/mg), a concentration of 0.004 mg/1 (2.6 BsITU/1) caused 50% 

mortality (LC 5 0 ) and a concentration of 0.023 mg/1 (14.9 BsITU/1) caused 95% 

mortality (LC95). Bti WDG (VectoBac®, 3000 ITU/mg) concentrations of 0.039 mg/1 

(117 ITU/1) killed 50% of the larvae and 0.132 mg/1 (396 ITU/1) 95% (Table 5.1). 

Table 5.1 Laboratory bioassays results of Bs and Bti WDG against third instar larvae 

of Anopheles gambiae s.s. after 24 h exposure (lethal concentrations (LC) in p.p.m.) 

WDG 

Formulations 
LC 5 0 (95% CI) LC95 (95% CI) 

Slope 

(SE) 
c2 (d.f.) 

VectoLex 

(650 BsITU/mg) 

VectoBac 

(3000 ITU/mg) 

0.004 0.023 2.208 123.518 

(0.003<LC<0.005) (0.016<LC<0.042) (0.112) (25) 

0.039 0.132 3.110 140.513 

(0.033<LC<0.047) (0.100<LC<0.199) (0.141) (23) 

CI, confidence interval; SE, standard error; d.f., degrees of freedom 
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Standardised field trials 

Throughout the year, oviposition occurred soon after the artificial habitats were set up 

and immature stages of anopheline and culicine mosquitoes detected after four to five 

days. Overall Anopheles larvae accounted for 40% of larvae collected during the trials. 

69 Anopheles adults that emerged from pupae collected from the control tubs were 

identified to species level. 36 Anopheles adults belonged to the An. gambiae s.l. 

species complex and PCR analyses revealed that the tubs contained a mix of An. 

arabiensis (66%), An. gambiae s.s. (30%) and An. melas (4%). Since there were no 

differences of the impact of the larvicides on anophelines and culicines in the 

standardised field trials the data were pooled for all analyses and presentation. 

Bti WDG Field trials with Bti WDG were implemented with the minimum 

dosage (Becker and Rettich 1994) required to cause 100% mortality within 24-48 

hours after application as identified in the laboratory assays. Since no improvement of 

the impact or activation of any residual effect was expected (Charles and Nielsen-

LeRoux 2000) higher dosages were not tested after the minimum dosage of 0.2 kg/ha 

(10 times the LC95 to accommodate for differences between laboratory and field 

conditions) under standardised field conditions killed all larvae within 48 hours and 

provided therefore optimum control for the period of one week (Figure 5.4 and Table 

5.2). Although reduced late instar densities were recorded up to eight to ten days after 

application (Table 5.2) these differences were only statistically significant up to day 

five (Figure 5.4) in both test periods. Late instar larvae and pupae developed in 

increasing numbers five to six days after Bti application. The seasons had little impact 

on the outcome of the trials. 
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Figure 5.4 Impact of Bti WDG at 0.2kg/ha on early and late larval and pupae density in 

standardised field tests. A: during cold dry season (Dec); B: during hot dry season 

(May). Daily differences in immature densities were analysed using Mann-Whitney 

tests at a significance level of p < 0.05. Different letters (a,b) on top of bars indicate a 

significant difference at the specific sampling day. 
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Table 5.2 Percent reduction (%) of late instar larvae (Anopheles and culicines 

combined) after application of Bti WDG at 0.2 kg/ha in the cold (Dec) and hot (May) 

dry season 

Day after Cold dry Hot dry 

application season season 

1 100 95 

2 100 100 

3 100 95 

4 100 94 

5 98 81 

6 90 54 

7 67 68 

8 45 68 

9 0 33 

10 0 74 

Notably, pupal production could not be completely suppressed despite the well-

controlled implementation of the experiment, although pupal production was more 

successfully suppressed during the cold than the hot dry season. The results indicate 

that weekly treatment intervals can reduce pupae production by 64-94%. A recent 

study though showed that higher rates of the WDG formulation of Bti may produce 

longer control since the WDG particles redistribute throughout the water column after 

application (S. Krause, personal communication) and, therefore, the effect of higher 

Bti WDG rates on field residual control of An. gambiae requires further study. 

Bs WDG Four different doses of Bs WDG were tested (0.5, 1.0, 2.5 and 5.0 

kg/ha) and each experiment run twice to evaluate whether any residual effect of the 

larvicide could be detected which would allow extended re-treatment intervals. The 

results of the impact of the different dosages are presented in Figure 5.5 and 5.6. The 

results are shown separately for the replicates implemented during the rainy (A) and 

the dry season (B). The daily percent reduction of late instar larvae is summarised in 

Table 5.3. 
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Irrespective of dosage and season 96-100% larval mortality was achieved 24-48 hours 

after application. No residual effect of a single Bs application was detected during the 

rainy season at any application rate tested but was extended during the dry season for 

all tested dosages (Figure 5.5 and 5.6, Table 5.3). Statistically significant reductions in 

pupae densities were achieved up to five days post-treatment in the rainy season and 

up to 10 days during the dry season. There were no statistically significant differences 

between the different test concentrations (Figure 5.5 and 5.6). Consequently, pupae 

development could be reduced by over 95% when Bs WDG was applied at weekly 

intervals. During the dry season similar suppression of pupae densities could be 

achieved at 10-day re-treatment intervals. 
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Figure 5.5 Impact of low dosages of Bs WDG (0.5 and 1 kg/ha) on immature mosquito 

density in standardised field tests. A: during rainy season; B: during dry season. Daily 

differences in immature densities were analysed using Mann-Whitney tests at a 

significance level of p < 0.017. Different letters (a, b) on top of bars indicate a 

significant difference at the specific sampling day. 



Table 5.3 Percent reduction (%) of late instar larvae (Anopheles and culicines 

combined) after application of Bs WDG in different dosages in the dry and rainy 

season 

Rainy season Dry season 

Day after 0.5 1.0 2.5 5.0 0.5 1.0 2.5 5.0 

application kg/ha kg/ha kg/ha kg/ha kg/ha kg/ha kg/ha kg/ha 

1 100 100 100 100 96 96 100 100 

2 100 100 96 100 100 100 100 95 

3 100 100 89 68 100 100 100 100 

4 100 100 68 85 100 100 100 100 

5 60 44 52 55 100 100 88 100 

6 59 0 86 69 76 100 96 60 

7 11 0 62 2 4 68 89 84 

8 9 0 74 0 40 100 91 94 

9 - - 70 1 54 54 58 97 

10 - - 36 0 0 17 60 86 

11 - - - - 0 0 4 75 

12 - - - - 0 48 0 70 

13 - - - - 0 0 0 54 

14 - - - - 0 0 - 66 

15 - - - - 0 0 - -

16 - - - - 0 0 - -

17 - - - - 0 0 - -

18 - - - - 0 0 - -

-, test was terminated earlier 
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Figure 5.6 Impact of high dosages of Bs WDG (2.5 and 5 kg/ha) on immature 

mosquito density in standardised field tests. A: during rainy season; B: during dry 

season. Daily differences in immature densities were analysed using Mann-Whitney 

tests at a significance level of p<0.017. Different letters (a, b) on bars indicate a 

significant difference at the specific sampling day. 

Field trial 

Field trials were conducted in the floodplains of the River Gambia to confirm results 

from standardised field set up and to evaluate the effect of larviciding under 

operational conditions. The field tests were implemented during the rainy season 

which is the main malaria transmission season in The Gambia and the period with 

most larval habitats. At the start of the field trials late instar Anopheles larvae were 

found in 33% of all sentinel sites. The proportion of habitats with late instar Anopheles 

increased in the non-intervention sites with continuous rainfall to 67% in October 

2005. Culicine and anopheline larvae co-existed in most of the habitats and did not 

show any difference in response to the larviciding. Both sub-families have, therefore, 

been pooled for presentation and analyses. 

Bs WDG and CG formulations were evaluated to detect any residual effect of 

the microbial under operational application in the field. Application took place at 
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weekly intervals to evaluate whether continuous application might result in an 

increasing residual effect with time. The results of the three week trial are presented in 

Figure 5.7. 100% mortality of late instar larvae was achieved two days post-treatment 

at any application date irrespective of the formulation applied. A residual effect of the 

microbial which would allow re-treatment intervals greater than one week was not 

detected (Figure 5.7), which supports the results from the standardised field trials. 

Weekly application of Bti under operational conditions (Figure 5.8) achieved a 

consistent suppression of larval development over the entire nine weeks study period 

with minimum dosages (as identified in laboratory) irrespective of the formulation and 

equipment used. Surprisingly, pupae were not collected under field conditions in either 

the intervention or control sites and this was unexpected in the control sites. It is likely 

that pupae in the area are very hard to sample or are extremely rare. 
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Figure 5.7 Efficiency of Bs treatments under operational field conditions. 

Bs application took place on day 0, day 7 and day 14 (arrows). WDG formulation was 

applied on day 0 and 7; CG formulation was applied on day 14. Differences in 

immature densities were analysed using Mann-Whitney tests at a significance level of 
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p<0.05. Different letters (a, b) on bars indicate a significant difference at the specific 

sampling date. 
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Figure 5.8 Efficiency of Bti treatments under operational field conditions. 

Bti application took place weekly. The monitoring of the sentinel sites was done 1 -3 

days after application. CG formulation was applied in week (wk) 1, 2 and 3, WDG 

formulation was applied from week 4. Differences in immature densities were 

analysed using Mann-Whitney tests at a significance level of p<0.05. Different letters 

(a, b) on bars indicate a significant difference at the specific sampling date. 

Larvicides were applied by four men from 7:00 to 13:00 (6 hours) a day. While 

staff worked continuously to cover the entire study area, each habitat was spayed only 

once a week. Al l formulations could be successfully applied under operational 

conditions and were equally effective. Different application equipment though had an 

impact on the time required per surface area treated. On average seven hectares were 

treated per day (0.29 ha/person/hour) using 5 L compression sprayers or 13 L 

motorised granule spreaders; nine hectares were covered using 15 L knapsack sprayers 

(0.38 ha/person/hour) and 5 hectares when granules were applied by hand (0.21 

ha/person/hour). 
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Discussion 

The results show that the major malaria vectors in The Gambia are highly susceptible 

to Bs and Bti under laboratory and field conditions, with Bs even more toxic per weight 

applied than Bti. The LC values found in the laboratory experiments are very similar to 

those found in earlier studies (Fillinger et al. 2003, Seyoum and Abate 1997) 

conducted in East Africa suggesting that the susceptibility of malaria vectors to 

microbial larvicides is inherent to the species and not to the ecological settings of the 

area. Bs has shown residual activity for two to 10 weeks in previous studies (Hougard 

1990, Lago et al. 1991, Mulla et al. 1999, Sutherland et al. 1989), with repeated 

applications increasing the likelihood of greater residual activity (Fillinger and Lindsay 

2006, Karch et al. 1990). Larvicides with long residual activity would be advantageous 

for larviciding campaigns because less manpower and larvicide would be required, 

helping to keep down costs and increase effectiveness. However, in contrast to 

previous results Bs did not show extended residual effect under field conditions in The 

Gambia even after repeated treatments and when the application rate was as high as 

200 times the LC95 (5kg/ha). Only a slightly extended residual effect up to 10 days 

could be detected in the standardised field tests implemented during the dry season 

(January to March) but not the wet season. It can be hypothesised that the different 

daily water temperature profile in the experimental tubs during the rainy season might 

be responsible for the reduced effect of the microbial. It has been observed in a study 

done in Kenya that the daily temperature in small pools is correlated with the amount 

of daily rainfall (Paaijmans et al 2008 b). 

Although the average air temperatures did not differ between the experimental 

periods in the rainy and dry seasons the low variation between minimum and 

maximum temperatures during the rainy season (Figure 5.3) will have resulted in high 

water temperatures for longer during the rains compared with the dry season. High 

water temperatures result in faster destruction of the protein toxin (Rojas et al. 2001). 

The low residual activity could also be due to the low larval density observed in the 

artificial and natural habitats. Bs seems to persist or recycle in some environments 

because it rapidly increases its numbers in the midgut of killed larvae (Becker et al. 

1995, Charles and Nicolas 1986, Skovmand and Bauduin 1997). Where larval densities 

were high the residual activity of the microbial larvicides appears to be greater 

(Pantuwatana and Sattabongkot 1990, Skovmand and Sanogo 1999). Dead and dying 
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larvae release the bacteria into the water increasing the bacterial content of the water 

and infecting new generations of larvae. 

The presence and abundance of pupae can serve as a proxy measure for adult 

mosquito emergence, since pupae survive for only a few days before adult emergence. 

The identification of the most productive habitats for adults could help target 

larviciding operations especially in the extensive water surface areas of the river's 

floodplains. In this study no pupae were collected in the field during the pilot field 

tests. This unexpected finding may be a consequence of the dipping technique. 

Although the technique is commonly used for studying larval ecology in Africa, it 

appears to be inappropriate for sampling the very sensitive and agile pupae from 

natural aquatic habitats, particularly in The Gambia where larval densities are 

generally low consequently leading to even lower pupae densities. This insensitivity of 

the sampling technique is further compounded by the highly aggregated distribution of 

pupae in natural habitats compared to larvae (Robert et al. 2002, Service 1971, WHO 

1992a). Even in the tubs dipping underestimated the density of pupae. Sweep nets 

may prove to be a better sampling tool for larvae and pupae since they collect 10 times 

more pupae in fewer sweeps than dips (Robert et al. 2002). Since pupal abundance is 

often used for establishing the 'productivity' of habitats (Mutuku et al. 2006b) further 

studies to develop more efficient sampling protocols are desirable. However , the 

absence of pupae in the control area cannot be attributed entirely to the weakness of 

the sampling tool since the same dippers successfully sampled pupae (Chapter 2). 

Other causes not investigated in this study might explain the absence of pupae. 

At the end of the wet season most sites dry up quickly leaving only a few dry 

season refugia (Chapter 2 and 3). For these dry season sites a targeted application of Bs 

might be useful to suppress the build up of the adult population at the start of the rains. 

The results indicate that with commercially available microbials weekly larviciding 

will be necessary during the rainy season in The Gambia. In this instance the use of Bti 

products is preferred since the costs for this microbial are far lower than Bs (Fillinger 

and Lindsay 2006) and the development of resistance is unlikely(Charles and Nielsen-

LeRoux 2000, Mulla et al. 2003, Zahiri et al. 2002). Very low dosages of 0.2 kg/ha 

(representing the LC99) lead to optimal suppression of mosquito larvae and pupae 

which is consistent with results from East Africa (Fillinger et al. 2003, Fillinger and 

Lindsay 2006). 

107 



Granule and liquid formulations have proven equally effective in killing 

mosquito larvae but the selection of application equipment was important for the speed 

of coverage. The 5 L compression sprayers were easier to carry than the higher 

capacity sprayers, but they were slower to use because they needed to be refilled more 

frequently. This was exacerbated by the fact that most water bodies in the floodplains 

of The Gambia are shallow and muddy, and, therefore, unsuitable for water collection, 

which led to long distances being covered to re-fill the sprayers. Another disadvantage 

of the compression sprayers was that they have to be pressurised by pumping air into 

the tank before spraying which proved difficult on the muddy ground in the 

floodplains. The problem of finding suitable water sources for mixing WDG 

formulations and the increasing plant growth during the rainy season favours the 

application of granule formulations in an environment like the river floodplains. 

Motorised granule spreaders provided excellent coverage and proved especially 

useful in areas with tall vegetation where access on foot is impossible. However, when 

filled with the microbials they weighed close to 20 kg and walking on soft ground 

became difficult and, coupled with the loud noise of the engine, made them 

uncomfortable for long-term use. The relatively high purchase and running costs of 

motorised spreaders (approximately USD300/spreader plus fuel costs) compared to 

knapsack sprayers (approximately USDIOO/sprayer) represent another disadvantage in 

resource poor African settings. Based on the pilot field trial, it is recommended for a 

large-scale larviciding programme in The Gambia to use 15 L knapsack sprayers for 

all large, open water surface areas, and to use granule formulations for highly 

vegetated areas. Hand application is the preferred method for larvicide application 

because it represents a low-tech and low-cost technology. Even though granule 

distribution does not result in an even application, as that achieved with motorised 

sprayers, it is easily manageable and maintenance free. Nevertheless, motorised 

sprayers must be used where tall vegetation dominates or access on foot is impossible 

due to high water level or soft underground. 

The basic training of larviciding personnel in identification of habitats, 

calibration of application equipment and active larviciding proved to be successful and 

achieved full coverage and control of mosquitoes for three months under fully 

operational conditions. To reduce labour and management effort it would be desirable 

to have larvicides which would express extended efficiency under extreme climate 
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conditions. Microbial larvicides were chosen in this study because, in contrast to many 

other larval control agents, they exhibit the highest environmental safety to non-target 

organisms and application personnel, they are very easy to handle and are unlikely to 

lead to the development of resistance (Becker and Ludwig 1993, Charles and Nielsen-

LeRoux 2000, Mulla et al. 2003, Zahiri et al. 2002). Nevertheless, it would be useful to 

explore whether greater persistence could be achieved with alternative products. 

Organophosphates, like temephos, appear to be less useful since in some field studies 

they did not show much persistence compared with microbials (Rozendaal 1997, 

Shililu et al. 2003). Moreover, organophosphates can have a negative impact on non-

target organisms (Anonymous 2007b, Pinkney et al. 2000) and need careful resistance 

management. On the other hand, the use of insect growth regulators (IGRs), like 

pyriproxyfen, might prove more advantageous (Yapabandara and Curtis 2004, 

Yapabandara and Curtis 2002, Yapabandara et al. 2001). IGRs have been highly 

successful elsewhere when applied at monthly intervals, although this was usually 

administered in highly confined habitats (Seng et al. 2006, Yapabandara et al. 2001). 

Whether this residual effect could be replicated in a highly mobile aquatic environment 

like the floodplains of The Gambia needs careful evaluation. Some of the advantages 

of pyriproxyfen are its photostability, which prevents it being degraded by ultraviolet 

light, and it can remain in waterbodies, without being degraded, for many months 

(Blagburn and Ann Ball 2007). The greatest disadvantage of IGRs though is the 

difficulty in monitoring whether they are still effective or not since larvae will always 

be detected in the water and the development and emergence of pupae needs to be 

observed, which represents a challenge given the difficulty of collecting any pupae. 

Moreover complicated monitoring systems using emergence cages or similar devices 

might not be easy to handle in a large-scale operational programme. The impact of 

IGRs will then have to be monitored in adult mosquito populations but the weakness of 

this monitoring system is that it will take longer (at least 1-2 weeks) to spot failure in 

the field applications and it would be too late to make the necessary changes in the 

field. 

In conclusion the results reported here support the hypothesis that the 

implementation of large-scale larviciding with commercially available microbials in 

The Gambia will lead to a reduction in larval abundance in the natural habitats. Both 

microbial strains tested, can be applied successfully in extended floodplain areas either 
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as liquid with knapsack sprayers or as granules by hand and motorised sprayers. Due 

to the lack of residual effect of Bs products, Bti should be applied weekly during the 

rainy season. Dry season refugia should be targeted with bi-monthly Bs applications. 

Environmentally safe microbial larvicides could be an additional tool in an 

IVM programme in The Gambia but due to the lack of residual effect of the microbial 

larvicides, there is a need to assess the costs of weekly applications in consideration of 

reduction in transmission intensity. 
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Chapter 6 

Impact of larviciding on malaria vectors in The Gambia 

Figure 6.1 Spraymen applying Bti in open water habitats 
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Impact of larviciding on malaria vectors in The Gambia 

Abstract 

Background There is growing interest in the use of anti-larval measures as a 

component of integrated vector management for malaria control in Africa. The 

application of microbial larvicides in rural areas which experience large-scale seasonal 

flooding and produce extensive areas of potential breeding sites for mosquitoes has not 

been investigated in Africa. This study aims to assess the impact of microbial 

larvicides on malaria transmission in the middle reaches of the Gambia River. 

Method A cross-over study was carried out in four zones, each approximately 100 

km 2. Baseline data were collected in 2005, whilst in 2006 Bacillus thuringiensis var. 

israeliensis (Bti, Vectobac) was applied routinely to two zones during the main period 

of transmission (June to November). In 2007 microbial larvicides were applied only to 

those zones that were untreated the previous year. Routine larval surveys were carried 

out using dippers and collections of adult mosquitoes made using CDC light traps. 

Results Larviciding was associated with a 92 % reduction (p < 0.001) in the likelihood 

of finding water bodies colonised by late stage anophelines and culicines. Similarly, 

late stage larval density was reduced by 91 % (p < 0.001) in anophelines and 72 % (p < 

0.001) in culicines in treated areas. Larviciding was associated with a 28% (p = 0.005) 

reduction in the number of adult female Anopheles gambiae s.l. found indoors in all 

zones, and a 42 % (p < 0.001) reduction when zone 4 was excluded. No significant 

reduction in adult culicines was observed. 

Interpretation Despite successful control of larvae the reduction of adult malaria 

vectors was unsatisfactory for an operational programme with a high demand in 

resources. This relatively small reduction in adult mosquitoes may have been due to 

overspill of vectors from untreated areas outside the treated zones or from sites within 

the zones that were missed or impractical to treat. Ground application of larvicides by 

teams of spraymen in areas of extensive flooding cannot be recommended for malaria 

control in The Gambia. 
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Introduction 

The realisation that successful malaria control and prevention cannot rely on a single 

tool and the need for evidence-based vector control methods has prompted the World 

Health Organisation (WHO) to promote a global framework for integrated vector 

management ( I V M ) (WHO 2004). This type o f programme seeks to use a combination 

of control measures in order to achieve greater control than could be achieved by using 

only one intervention. Control measures such as the use o f long-lasting insecticide 

treated nets and indoor residual spraying are effective tools for malaria control and are 

the mainstay o f vector control in sub-Saharan Afr ica (SSA). However the increasing 

threat of malaria vectors resistance against pyrethroids in Africa (Awolola et al. 2002, 

Chandre et al. 1999, Hargreaves et al. 2000, Stump et al. 2004) and the capacity o f 

adult mosquitoes to avoid control interventions (Killeen et al. 2002b) has prompted the 

need to also attack the larval stages o f mosquitoes. This has lead to a renewed interest 

in the use o f larval source management (LSM) for inclusion in I V M programs for 

malaria control in Africa. Larval control works well in urban areas with high 

population densities and relatively fewer breeding sites for vectors (Keiser et al. 2004, 

Walker and Lynch 2007) and in rural areas where breeding sites are aggregated 

(Fillinger and Lindsay 2006, Shililu et al. 2003). 

Over the past five years a series o f pilot studies have been undertaken to 

investigate the efficacy o f L S M in different biomes in SSA: in urban areas (Fillinger et 

al. 2008), rural townships (Fillinger and Lindsay 2006), highlands (Fillinger et al in 

prep), and semi-arid (Shililu et al. 2007) ecosystems. Here the efficacy o f L S M in an 

area o f intense seasonal transmission was tested, where extensive anopheline breeding 

sites are formed in the floodplain o f the River Gambia during the rainy season (Bogh 

et al. 2003) as observed in Chapter 2. 

The river is brackish up to 200 km from its mouth (B0gh et al. 2003) due to salt 

intrusion from the Atlantic Ocean but during the rainy season fresh water dilutes the 

river. The flooding caused by the Gambia River has created a well defined floodplain 

where large expansive water bodies are under the influence o f the tides. Upland areas 

are sandy and have fewer breeding sites, but these may well be important for malaria 

transmission, since they are closer to the villages (Chapter 2). 

The floodplain area is extensive and includes a number o f different types o f 

habitats that are interconnected and ill-defined. However most of these extensive areas 

are accessible around their edges where mosquito larvae are usually found (Chapter 2), 
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(Begh et al. 2003) therefore making it possible to control those (Chapter 2). Here 

mosquitoes are found in low densities, but occur over extensive areas. Since these 

habitats would be dif f icul t to refi l l or alter in order to eliminate standing water, 

larviciding is an appealing method for reducing larvae in this setting. Previous studies 

showed that commercial microbial larvicide Bacillus thuringiensis var. israelensis 

(Bti) were effective in ki l l ing mosquito larvae under field conditions in rural Gambia 

(Chapter 4). 

Malaria transmission is highly seasonal in The Gambia (Thomson et al. 1999) 

being confined largely to the rainy season which lasts f rom June to October. Since the 

density o f mosquitoes is greatly reduced during the dry season, larval control was 

targeted by starting the application o f microbials at the end o f the dry season and 

continued weekly application throughout the rainy season. It was unfeasible to target 

specific habitats since anopheline larvae were found in a wide range o f different water 

bodies (Chapter 2). Moreover, since this was an operational programme, it was 

important to keep instructions simple for the spray teams with limited training in larval 

ecology. For both reasons it was considered that blanket coverage o f all potential 

breeding habitats was most appropriate in this setting. 

The aim of this study was to assess the impact o f larval control wi th microbial 

larvicide Bti on the aquatic mosquito populations and on adult mosquito populations in 

rural Gambia. 

Methods 

Study area 

The study was carried out east o f Farafenni town ( U T M zone 28 1500200mN, 

435500mE) in The Gambia from May 2005 to November 2007. Four zones, each 

approximately 100 k m 2 in area, were selected two on the north bank and two on the 

south bank o f River Gambia. Each zone was 12 km wide and was divided in 3 

subzones: a 4 km wide central band and 4 km wide buffer zones either side of the 

central band (Figure 6.2). Sampling o f adult mosquitoes was confined to villages 

located in the central band. The 4 km buffer zones were thought to be sufficiently wide 

to prevent overspill o f mosquitoes f rom untreated sites into treated zones, since earlier 

studies in the area showed that only few mosquitoes f l y further (B0gh et al. 2007, 

Lindsay et al. 1991a). The study area has been extensively described elsewhere 
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(Chapter 2). Al l study villages within the study zone were located between one and 

eight kilometres from the River Gambia. 

The Gambia 

• t • • 

r Zone 2 

Zone 1 

: 

Farafenni 

Zone 4 
N Soma 

SfoneV 
5 km 

Figure 6.2 Map of study area. Red dotted lines sketch the zonal subdivision and study 

villages are shown in red plain circles and other villages in plain black circles. 

Study design 

A cross-over design was used for applying larvicides. Baseline data were collected in 

2005 when no larvicides were applied and operational larviciding covered the rainy 

seasons for two consecutive years (2006-2007). In 2006 larvicides were applied in 

zones 1 and 3. These zones were selected since they were close to Farafenni station 

which allowed easier access and planning and helped to build up experience of running 

a larviciding programme. In 2007 zones 2 and 4 were treated and zones 1 and 3 left 

untreated. 

Larval distribution 

During the baseline year all water bodies in each zone were continuously sampled 

from May 2005 to November 2006 using a 350 ml dipper (Clarke Mosquito Control 

Products, Illinois, USA). In each water body 10 dips were done purposively in parts of 
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the water body most likely to harbour mosquito larvae, such as the edges around tufts 

of vegetation or floating debris in shallow water bodies. During the intervention years 

(2006 and 2007) sampling for presence o f mosquito larvae was done daily in 40 sites 

randomly selected out o f 1076 total sites mapped in the four zones before the 

larviciding period. In the zones where larviciding was ongoing these sites were not 

known to the spraymen and served as sites to monitor whether the larviciding team had 

successfully covered all water bodies. In very few cases where sites were found 

containing late instar larvae because they had been missed, spraymen were alerted and 

the sites were immediately treated. The random selection o f sites for spot-checking 

was stratified in such a way that sampling would evenly cover alternatively all the 

three subzones in each zone within a week. 

Larval density 

After four months of mapping all water bodies in the area, 10 sentinel sites were 

randomly selected from each zone. These sites represented the most common habitats 

in each zone; where larval density was measured weekly. In these sites purposive 

sampling was done by making 10 dips in areas likely to harbour mosquito larvae with 

a dipper and the number o f anopheline and culicine larvae and pupae recorded. Late 

instar anopheline larvae and all pupae were stored in 98% ethanol and brought back to 

the laboratory for species identification with PCR (Scott et al. 1993b). Larval sampling 

during the dry season was scaled down to all field teams to take their annual leaves. In 

this thesis only rainy season data is reported for larvae. 

Adult sampling 

Sentinel houses were randomly selected proportional to population size with one to 

three traps per village in each central subzone where adult collections were made. 

During the rainy season sampling was done every fortnight and every month during 

the dry season. Houses wi th open eaves, thatch roof, no ceiling and where a single 

person slept were selected. Mosquitoes were sampled using standard miniature CDC 

light traps (Model 512; John W. Hock Company, Gainesville, Florida, USA) 

positioned one meter above the floor at the foot end o f the bed next to a man sleeping 

under an untreated bed net. Traps were set at 7:00 pm and collected at 7:00 am the 

following morning. When room occupants moved house the traps were moved to the 

nearest similar house in the same village. When occupants did not spend a night in the 
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selected room or when the trap was faulty these data were excluded from the analysis. 

Mosquitoes were taken to the laboratory for species identification and were scored as 

blood fed, unfed, gravid or semi-gravid An. gambiae s.l. females, An. gambiae males, 

other Anopheles females and males, and other nuisance mosquitoes. Blood fed An. 

gambiae s.l. females were subsequently subjected to an ELISA analysis (Burkot et al. 

1984) for sporozoite rates identification. 

Larviciding 

Microbial larvicide Bacillus thuringiensis var. israelensis (Bti, VectoBac , Valent 

Biosciences Corporation, Illinois, USA) was applied weekly from June to November 

in 2006 and May to November in 2007. Where the vegetation was low (<30 cm) and 

more than 50% of water surface could be seen through the vegetation, dissolved water 

dispersible granular (WDG) formulation o f Bti was used at a dosage o f 0.2 kg/ha. 

Spraying was done using 15 L capacity diaphragm knapsack sprayers (Solo 475, 

Sindelfingen, Germany) for W D G formulations. Where the vegetation was more than 

knee-high and covering more than 50% o f the water surface, granular formulations 

(CG) were applied by hand using 5 L buckets held with a strap around the waist or 

neck. In areas where access on foot was diff icul t or when there was need to spread the 

granules at a larger distance, 13 L capacity motorised sprayers ( M D 150DX-13 

Maruyama, Tokyo, Japan) were used (Chapter 4). 

Microbial larvicides were stored in three houses in the three subzones o f each 

intervention zone. After calibrating the pace o f spraymen and the knapsack output, 

WDG formulations were divided into 286g sachets, that were easy to carry, and mixed 

with 15 L o f water in a knapsack and stirred to ensure complete dispersal. Each 

morning spraymen were supplied with enough Bti to last the day and were dispatched 

to the intervention area. Teams o f three to four spraymen walked abreast 8m apart. 

Each sprayman covered a 180° swath in front as he walked while spraying f rom the 

beginning o f a water body to the end o f it or until progress was impossible in deep 

water bodies close to the river or its major tributaries. Once the spraying mixture was 

exhausted, a new mixture was made from the microbial aliquot mixed with water from 

the field. Flags were used as landmarks to help spraymen remember where spraying 

had stopped on a previous visit. Any previously mapped or new water body reached by 

spraymen was treated on a weekly basis. 
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Statistical analysis 

The proportion o f sites colonised by anophelines and the mean number o f mosquito 

larvae and adults was calculated for each zone using the Generalised Estimating 

Equations (GEE) by running the model without calculating the intercept. The model 

returned the mean o f the dependent variable for each variable used as a predictor. The 

impact o f larviciding on presence and density o f mosquito larvae was assessed using 

GEE after adjusting for the zone and year. The habitat identity (ID) was used as 

subject unit for repeated measures assuming an exchangeable correlation matrix. The 

impact o f larviciding on adult mosquito density was assessed using GEE after 

adjusting for the zone, the distance o f a village to the edge of alluvial floodplains and 

the use o f ITNs in study villages. The trap ID was used as subject unit for repeated 

measures assuming an exchangeable correlation matrix.This model was used because 

it takes account o f repeated measures in the analysis since water bodies and sentinel 

houses were repeatedly sampled during the study. Binary larval data was fitted to a 

binomial distribution with a logit l ink function. Count data for mosquito larvae and 

adults were fitted to a negative binomial distribution with a log link function. A l l 

analyses were performed with SPSS version 15. 

Results 

Spraymen were recruited and trained one month before the start o f the larviciding 

campaign. They covered the intervention zones (200 km ) weekly working from 7:00 

am to 1:00 pm. In the first year o f intervention, 60 spraymen applied 4,933 K g of Bti 

W D G and 2,712 K g o f Bti CG to zones 1 and 3 from June to November 2006. In the 

second year 64 spraymen applied 6,705 K g o f Bti W D G and 7,553 K g o f Bti CG to 

zones 2 and 4 f rom May to November 2007. 

Habitats colonisation 

A total o f 1,155 visits were made in the four zones from May to November during the 

baseline year 2005, 1,109 during the first year o f intervention (2006) and 1,092 in the 

second year o f intervention (2007). Annual rainfall collected at Farafenni Field Station 

was 858.3 mm in 2005, 807.9 mm in 2006 and 751.4 mm in 2007. During the baseline 

year there was no difference in the likelihood o f finding anopheline larvae between the 

peripheral subzones but the central subzone was 54% less likely to be colonised by 

anophelines than the peripheral subzones (OR = 0.46; 95% CIs: 0.36-0.58; p < 0.001). 
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During the intervention years, there was no difference in the likelihood of finding 

anopheline larvae in all subzones. 

Larviciding reduced significantly the proportion of sites colonised with 

Anopheles larvae in the four study zones (Figure 6.3). During the baseline year when 

no larviciding was done, the proportion of sites with Anopheles larvae was 41% 

(626/1537). In the first year of larviciding only 2% (28/1526) of sites were colonised 

with Anopheles in zones where larviciding took place and 45% (647/1425) in the 

untreated zones. In the second year of larviciding 6% (88/1437) of sites had Anopheles 

larvae in the zones where larviciding took place while 17% (254/1506) of sites had 

Anopheles in the untreated zones. 

2005 (No larviciding) 
2006 (Larviciding in Zones 1&3) 
2007 (Larviciding in Zones 2&4) 

JS 50 

Zone 1 Zone 2 Zone 3 Zone 4 

Figure 6.3 Proportion of sites colonised with Anopheles larvae during the rainy season 

GEE modelling after adjusting for the year and the zones revealed that larviciding was 

associated with a 92 % reduction in the likelihood of finding water bodies colonised by 

late stage anophelines (OR = 0.08; 95% CIs = 0.06 - 0.10; p < 0.001) and culicines 

(OR = 0.08; CIs = 0.07 - 0.11; p < 0.001). 
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Larval density 

A total of 993 sampling occasions were done at 40 sentinel sites selected in the four 

zones from May to November during the baseline year (2005), 1,107 occasions during 

the first year of intervention (2006) and 1,190 during the second year of intervention 

(2007). 

The mean of late immature Anopheles density per dip was significantly reduced in all 

zones during the larviciding period although the reduction in zone 4 was not as 

dramatic as that observed in the other zones (Figure 6.4). GEE modelling after 

adjusting for the year of intervention and the zones showed that larviciding reduced the 

risk of finding higher densities of late instar Anopheles larvae by 91% (OR = 0.09; CIs 

= 0.05 - 0.16; p < 0.001) and culicines by 72% (OR = 0.28; CIs = 0.19 - 0.42; p < 

0.001). During year two of intervention no late instar larvae or pupae were found in 

zone 2. 

Monthly rainfall (mm) 
Mean Anopheles larval density/dip 
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Figure 6.4 Mean Anopheles larval density per dip in the four zones and rainfall pattern. 
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Adult mosquito densities 

A total o f 61 CDC light traps were set in 40 villages in the four study zones each year. 

Traps were sampled on 2,248 occasions and on 27 occasions traps were not working 

properly or the human subject had moved away and these results were excluded from 

the analysis. The total number o f adult mosquitoes sampled for the three consecutive 

years is shown in Table 6.1. O f all mosquitoes collected indoors 47% were An. 

gambiae s.l. in 2005, 5 1 % in 2006 and 30% in 2007. The mean number o f female An. 

gambiae s.l. and the sporozoite rate per zone are shown in Table 6.2. A subsample o f 

626 An. gambiae s.l. females caught in houses was subjected to PCR for species 

identification. 82 (13%) o f these samples did not amplify and f rom the rest o f the 

samples 54% were^4n. gambiae s.s., 27% were An melas and 19% were^n arabiensis. 

The sporozoite rate decreased in 2006 compared to 2005, and increased in 2007 

compared to 2006 in all zones regardless where larviciding took place. 

A t baseline the risk o f having a high number o f mosquitoes in houses decreased 

by 77% (OR = 0.27, 95% CIs: 0.07 - 0.76, p = 0.016) with increasing distance from 

houses to the edge of alluvial swamps. This trend did not change during the larviciding 

period. 

Table 6.1 Total number o f adult mosquitoes caught indoors with CDC light traps 

during the study period in the four zones 

Species 2005 2006 2007 

bloodfed^4«L gambiae s.l. 488 595 553 

unfed An. gambiae s.l. 22,275 14,032 20,047 

gravid/semigravid/4H. gambiae s.l. 94 27 1 

male An. gambiae s.l. 429 299 381 

other female anophelines 1,674 886 1,648 

other male anophelines 235 59 11 

female nuisance mosquitoes 23,875 13,048 45,318 

male nuisance mosquitoes 514 571 1,441 

Total 49,584 29,517 69,400 
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Table 6.2 Mean o f female An. gambiae s.l. (95% CI in brackets) and the sporozoite 

rate per zone, indicates the zones where larviciding was done. 

Factor 2005 2006 2007 

MeanArap/night 

Zone 1 5 .6(4.0-8.0) 1.8(1.4-2.3)* 3.2 (2.2-4.7) 

Zone 2 29.3 (23.0- 37.4) 19.9(14.9-26.6) 14.7(11.1 - 19.4)* 

Zone 3 93.0(32.2-268.7) 45.4(16.6- 124.3)* 61.7(35.9- 106.2) 

Zone 4 16.9(13.8-20.7) 7.9(5.5- 11.3) 16.8(12.0-23.5)* 

Sporozoite rate 

Zone 1 1.1% (13/1191) 0% (0/469)* 0.37% (2/546) 

Zone 2 0.2% (16/8332) 0% (0/4105) 0.08% (3/3493)* 

Zone 3 0 .1% (16/15136) 0.08% (7/9315)* 0.16% (25/15796) 

Zone 4 0.2% (7/3008) 0.12% (4/1633) 0.14% (6/4154)* 

The impact o f larviciding on An. gambiae s.l. adult density varied between zones but 

was less apparent in zone 4 (Figure 6.5). Overall the mean number o f An. gambiae s.l. 

adults density per trap in the non- intervention areas was 28.1 (17.2 - 45.8) and this 

number was reduced to 19.6 (11.1 - 34.5) in the intervention areas. Univariate 

analyses showed that the probability o f having increased densities o f adult An. 

gambiae s.l. in areas where larviciding was done is reduced by 30% (OR = 0.70; 95% 

CIs: 0.59 - 0.82; p < 0.001) compared to areas where no larviciding was done. After 

adjusting for ITN use in villages, the zones and the distance f rom houses to the edge of 

swamps, the model revealed that the risk o f having increased densities o f adult An. 

gambiae s.l. was reduced by 28% (p = 0.005) in larviciding areas compared to the non­

intervention areas (Table 6.3). When data for zone 4 were excluded from the analysis, 

larviciding reduced by 42% the risk o f exposure to An. gambiae mosquitoes (p < 

0.001, Table 6.3). Nuisance mosquitoes caught inside houses increased in areas where 

larviciding was done in a univariate analysis, however after adjusting for ITN use in 

villages, the zones and the distance f rom houses to the edge o f swamps, the model 

revealed no impact o f larviciding on nuisance mosquitoes. 
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Table 6.3 Impact o f larviciding on Anopheles gambiae mosquitoes adjusting for ITN 

use, zones, and distance between trapping house and the edge of alluvial plains 

Factor Odds Lower Upper P 
ratio C.I. C.I. 

with zone 4 
larviciding 0.72 0.57 0.90 0.005 
no larviciding 1.00 
ITNs 1.00 1.00 1.00 0.002 
Zone 4 8.58 4.45 16.56 < 0.001 
Zone 3 13.78 6.70 28.33 < 0.001 
Zone 2 7.09 5.08 9.90 < 0.001 
Zone 1 1.00 
distance house-flood plains 0.39 0.26 0.59 < 0.001 

without zone 4 
larviciding 0.58 0.47 0.70 < 0.001 
no larviciding 1.00 
ITNs 1.00 0.99 1.00 < 0.001 
Zone 3 18.48 8.90 38.40 < 0.001 
Zone 2 6.82 5.06 9.19 < 0.001 
Zone 1 1.00 
distance house-flood plains 0.47 0.34 0.66 < 0.001 

123 



i • Monthly rainfall (mm) 
Mean An gambiae adult density/trap 

•WD 400 
Zonel Zone 2 

6 J00 300 

200 200 

20 00 100 0t3 

01 p—i—i 

145 400 - 400 Zone 4 Zone 3 

V 30 fl 120 

2 300 300 
100 

so 20 
-2O0 200 

60 15 

\ 10 
1CO too 

20 

n D - I — I 1 

nlliiillllllPllillli m 8-66 5 O Z Q ^ S 

larviciding larviciding 

Figure 6.5 Mean An. gambiae s.l. adult density per trap in the four zones and rainfall 

pattern. 

Discussion 

A large and closely monitored larviciding programme was undertaken and assessed the 

impact of larviciding with Bti on malaria transmission. It is the first large-scale 

assessment of the impact of microbial larvicides in rural ecosystems dominated by the 

ecology of major floodplains like the Gambia River. Larviciding reduced by 92% the 

likelihood of colonisation with mosquito larvae and also reduced by 72-91% the 

probability of having high densities of late instar larvae or pupae. Larviciding was so 

successful in reducing larvae that despite a thorough sampling of ten sites daily (on 

average a total of 100 dips) in zone 2 no single larva was found in the whole rainy 

season during the intervention year. However, despite the significant resources put in 

its implementation larviciding reduced by only 28-30% the risk of exposure to An. 

gambiae females mosquitoes, the primary vectors of malaria in The Gambia (Lindsay 

etal. 1993). 
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The resources necessary for a successful implementation o f the larviciding 

programme are significant. On average 60 spraymen successfully applied larvicides to 

200km 2 area each week. In 2007 more spraymen were recruited compared to 2006 due 

to the large extent o f water bodies in zone 4. Finding all water bodies and getting 

familiar wi th the intervention zone is a key to the success o f the larviciding campaign 

(Fillinger and Lindsay 2006, Walker and Lynch 2007). It did not take too much effort 

for spraymen to know the area because most spraymen were recruited f rom within the 

intervention area and were already familiar wi th the water bodies in the area. Training 

spraymen how to apply larvicides took only one week and was relatively simple 

because the equipment used was easy to use. Spraymen worked six hours per day 

starting early morning to avoid the hottest hours o f the day since in this area 

temperatures can reach 45°C (Giglioli and Thornton 1965), with high humidity close to 

the river making the work physically demanding. A considerable quantity o f 

microbials was needed to cover the entire area, more so in the second year because 

larviciding started one month earlier than in the previous year. This was done in order 

to reduce the dry season mosquito density before the start o f the rainy season. It was 

expected that this would help in delaying the rise in mosquito numbers observed at the 

onset o f the rainy season (Lindsay et al. 1993), however although this rise was delayed 

in zone 2 compared to the previous year, it was not the case for zone 4. 

In zone 4 larval collections show that late instars were still found in this area 

during the larviciding period, indicating a failure in treating all the sites. This can be 

explained by two main reasons: first, zone 4 has tributaries o f River Gambia running in 

the upland area very close to human settlements (Figure 2.2). These tributaries create 

more breeding sites for mosquitoes than anywhere else in the study area and l imit f u l l 

access to spraymen in deeper areas. Second, this zone had the largest areas covered by 

rice fields both in the floodplains and the upland area. These extensive rice fields are 

so uniform and similar that it is easy for spraymen to confuse where larviciding 

reached or not. 

There were more habitats with tall vegetation in the second year o f intervention 

requiring more granular formulation product than the previous year. This might also 

imply that fu l l coverage was not achieved since areas with tall vegetation are diff icul t 

to access. Within these areas it is likely that small pockets o f sun exposed habitats go 

unnoticed by spraymen. Bti does not spread after hitting the water surface and settles 
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rapidly (Lacey 2007) therefore in these vegetated environments larvicides with surface 

films activity (Cameron and Richard 2007) might be a better option. 

The system used for monitoring the success o f larviciding was adequate to find 

sites that might have been missed by the spraying team. Spray teams did not know a 

priori where the field worker in charge o f monitoring was going to survey nor did the 

investigator until the sites were randomly selected in advance. The routine surveillance 

of mosquito density in sentinel habitats and houses provided an additional robust tool 

to investigate fluctuations in mosquito numbers and the impact o f larviciding. 

The results show that Bti works well against immatures of malaria vectors in 

the floodplain ecosystem o f rural Gambia as it has been observed in other ecosystems 

in SSA. The reduction in larvae observed in this study is supported by studies in rural 

Kenya where larviciding reduced mosquito larvae density by 95% and exposure o f 

humans to mosquito bites by 92% (Fillinger and Lindsay 2006). Similarly a study done 

in semi-arid conditions in Eritrea found that larviciding with Bti and Bs could control 

mosquito populations (Shililu et al. 2003) and when coupled with environmental 

management reduced larval and adult mosquito production (Shililu et al. 2007). 

Despite reducing mosquito larvae by a magnitude, the impact o f larviciding on 

adult An. gambiae s./.was less impressive. An overall reduction of 28% in An. gambiae 

s.l. was achieved, although this was 42% when zone 4, the area with most breeding 

sites, was excluded. Similar to these results, only a 3 1 % reduction in the primary 

vector o f malaria, was observed after one year o f community-based larviciding in 

urban Dar es Salaam (Fillinger et al. 2008). However, it is possible that with increasing 

experience in larviciding and knowledge o f the intervention area, results in controlling 

adult mosquitoes might be improved, as observed in Dar es Salaam (Fillinger, personal 

communication). A number o f reasons might explain why the success in controlling 

larvae due to larviciding did not have a big impact on adult mosquito densities. First, 

mosquito larvae are relatively rare in the water bodies o f rural Gambia (Chapter 2) 

compared to the huge numbers of adult mosquitoes observed in houses mainly because 

larvae are thinly distributed over huge areas o f water bodies. This might explain why a 

90% reduction in mosquito larval density due to larviciding did not translate into a 

similar reduction in adults because the area sampled for mosquito larvae (and where 

larvicides were applied) might not be the only source o f adult mosquitoes. This 

situation is different f rom what is usually observed in other areas such as in East 

Africa where mosquito larvae are clustered in discrete habitats, usually human-made 
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(Fillinger et al. 2004, Mutuku et al. 2006a). In such areas, ground application o f 

larvicides is more likely to yield better results than in extensively flooded areas like 

those observed in this study. 

Second, the flooded area o f the Gambia River is subjected to regular and strong 

tidal movements (Giglioli 1964) that might disperse and dilute microbials applied in 

the floodwater. Since spraying was done weekly, any larvae not killed within 24-48 

hours o f spraying are likely to develop to maturity i f they do not die o f other causes 

because Bti does not show any residual effect in The Gambia (Chapter 4). A study in 

The Gambia showed a development rate for mosquito larvae o f approximately 10 days 

at temperatures beyond 28°C (Bayoh and Lindsay 2003) and the average water 

temperature in the study area was 29.9°C (95% CI = 29.3-30.5, Fillinger et al in prep). 

However the l i fe cycle o f mosquitoes could be shorter at high temperatures (Giglioli 

and Thornton 1965) and the maximum found in the study area was 42°C (Chapter 4). 

Mosquito eggs can survive on damp soil for up to 12 days (Beier et al. 1990) and once 

these sites are flooded with water, the eggs hatch and larvae develop successfully to 

adult stage. A similar situation might occur in The Gambia when eggs laid at low tide 

on damp soil remain viable for days. At high tide when these sites are flooded, the 

eggs might hatch and develop quickly due to the lack o f residual activity o f Bti or due 

to the dilution o f the microbial at high tide. This is supported by previous observations 

where development to adult emergence took less than five days, consequently leading 

to failures in weekly larviciding (McCrae 1998). I f this is the case for The Gambia, a 

successful intervention would require larviciding at shorter intervals instead o f weekly 

application as adopted in this study. Alternatively other larvicides with a longer 

residual effect and not affected by the tidal movement o f the water might be effective 

in this area. One candidate could be the insect growth regulator pyriproxifen which has 

a long residual effect (Yapabandara and Curtis 2002) but have not yet been tested in 

Africa. 

Third, i t is possible that mosquitoes might have invaded the study areas from 

non-treated sites outside the intervention areas. Earlier studies in The Gambia show 

that almost all mosquitoes emerge from the flooded alluvial plains, but the fact that 

mosquitoes can be found further away where there are very few or no breeding sites is 

a result o f their dispersal and survival capacity (Bagh et al. 2007). It was observed that 

within 4 km from breeding sites there was almost a 12-fold reduction in the mean 
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number o f infective mosquito bites received per person (B0gh et al. 2007). However, 

in these open savannah areas mosquitoes might f ly further fol lowing wind gradients. 

The proportions o f An. gambiae s.s., An. melas and An. arabiensis found indoor 

is similar to results obtained around Farafenni area (Kirby et al. 2008) although in the 

study area An. arabiensis was less common. These findings concur with previous 

studies in the area showing the role o f the three species in malaria transmission in The 

Gambia (Lindsay et al. 1993). Although larviciding reduced malaria vectors, it is 

diff icult to draw a conclusion about its impact on the EIR. The sporozoite rate was 

highly variable in the different zones and between years as observed in earlier studies 

in the Gambia and across SSA (B0gh et al. 2007, Hay et al. 2000). The sporozoite rate 

was lower in 2006 for all the zones compared to 2005 and increased in 2007 in all 

zones despite larviciding occurring in zones 2 and 4. These results suggest that the EIR 

in the area might be influenced by other factors not investigated in this study and no 

direct impact o f larviciding on the EIR was detected. 

The results reported here revealed that An. gambiae production although at low 

density, continues during the dry season (Figures 6.4). This could be explained by the 

fact that breeding sites in the floodplains such as edges o f floodplains and fringes o f 

river tributaries have a permanent and semi-permanent character and do not dry out 

during the dry season. Although survival o f mosquitoes is lower during the dry season, 

when breeding sites are available malaria transmission may continue at a low rate 

during the dry season (Lindsay et al. 1991b). The high production o f mosquitoes 

observed in zone 2 during the months o f December and March 2006 is unusual. This 

might be due to the tidal movement o f the river creating suitable breeding sites in the 

area and a combination o f other biotic and abiotic factors allowing mosquito 

production in high numbers. 

Although the small reduction obtained in malaria vectors was not seen in other 

nuisance mosquitoes, it was not due to the difference in susceptibility between 

anopheline and culicine larvae to Bti. In semi-field and field conditions both 

anophelines and culicines show a high susceptibility to Bti (Chapter 4, (Fillinger et al. 

2003)). Two main reasons might explain why larviciding did not reduce culicine 

mosquitoes. First, culicine mosquitoes might be breeding in the deeper waters distant 

from the landward edge of the floodwater, where spraymen could not reach or where 

the deep water might reduce microbial activity. It has been observed that in deep water 

Bti might work less efficiently because o f the rapid settling o f the toxins which reduces 
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its residual effect (Lacey 2007). Second, culicines can breed in a wide variety o f water 

bodies covered by emergent and floating vegetation (Muturi et al. 2007b) where Bti 

might not reach the water surface successfully, unlike the open sun-lit habitats 

commonly known to be preferred by anophelines (Minakawa et al. 2004, Munga et al. 

2006). Moreover water bodies entirely covered by grassy vegetation might not be easy 

to locate and missed by spraymen. 

This study has shown a reduction in malaria vectors due to larviciding. 

However the reduction is so small that it might not translate into a large reduction in 

the burden o f malaria in the area. Only a considerable reduction o f transmission would 

be able to reduce the burden o f malaria for the whole community on a long-term basis 

(Trape and Rogier 1996). In the context o f the Macdonald model for malaria 

transmission (MacDonald 1957), larviciding cannot reduce the longevity o f vectors, 

however a substantial reduction o f the mosquito biting population through larviciding 

would reduce malaria transmission. Since there was no reduction in nuisance 

mosquitoes, it would be hard to convince the community to support such intervention 

over many years. The relationship between malaria, mosquito species and habitats is 

usually unknown in local communities (Clarke 2001, Mutuku et al. 2006a, Vundule 

and Mharakurwa 1996) and mosquitoes are often seen as a nuisance more than a 

disease vector (Adongo et al. 2005, Klein et al. 1995, Schellenberg et al. 1999). 

Therefore an intervention not reducing the nuisance o f mosquitoes is less likely to be 

received with enthusiasm by the community (Stephens et al. 1995). Similar to the lack 

o f community protection after mass administration o f gametocidal drugs (von Seidlein 

et al. 2003), there is no record o f community effect by larviciding unlike the use o f bed 

nets (Hawley et al. 2003). In areas like The Gambia where mosquitoes have a long 

flight range exceeding 4 km, it would be diff icul t to show impact on disease 

transmission unless the area covered by larviciding is very big. 

The ecology of mosquito larvae, the tidal movements o f the river, the extent o f 

breeding sites, the flight range o f mosquitoes and lack o f long residual activity for Bti 

might explain why larviciding in this area did not greatly reduce adult mosquitoes. 

In this study a low technology approach o f ground spraying was used which was 

assumed to be cost-effective for majority o f Africa. However in areas with extensive 

flooded areas and ecological settings similar to the study area, it might be better to 

consider aerial application o f larvicides. However, the sustainability o f such operations 

in SSA would need to be assessed. 
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Although this study covered a substantial area in the middle reaches of the 

Gambia River, the ecological settings are not similar for the whole country. Further 

upriver the flooded area is relatively smaller and not under tidal influence. In such area 

larviciding might produce better results than in the flooded area where this study was 

conducted. 

Although larviciding is a viable tool for ki l l ing mosquito larvae in The Gambia, 

its impact on adult malaria vectors was minor and it had no impact on nuisance 

mosquitoes. The results obtained do not seem to be worth the resources involved. 

Therefore the effectiveness o f anti-larval measures for malaria control would be 

questionable in extensive floodplains o f The Gambia and in similar large river 

ecosystems of the Sahel region. Other vector control methods such as those directed to 

adult mosquitoes should be advocated in these settings. 
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Chapter 7 

General conclusions 

Figure 7.1 Spraymen wi th their certificates o f completion at the end 

of the larviciding campaign. 
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General conclusions 

Malaria continues to cause a huge death toll and is a serious economic burden in 

countries where it is endemic, mainly in SSA countries (Sachs and Malaney 2002). 

Many major efforts to control and prevent the disease are under way and some 

interventions such as the use o f ITNs and IRS together with efficient drugs such as 

ACTs have contributed greatly to curbing the disease and a number o f success stories 

in Africa are being reported (Wakabi 2007). However the battle is still a long way 

from being won and with the threat o f the development o f resistance against currently 

efficient insecticides (Santolamazza et al. 2008) and drugs (Mutabingwa 2005) there is 

an increasing necessity for new tools to combat this old disease. 

Vector control is one o f the best ways to tackle malaria (WHO 2004) and today 

it is recognised that not one tool can be sufficient alone to control malaria vectors in 

long term, therefore the W H O has proposed a global strategic framework for 

integrated vector management ( I V M ) that comprises interventions that have shown 

efficacy in combination or separately such as use o f ITNs and IRS (WHO 2004). 

Among these interventions, larval source management (LSM) for malaria control is 

regaining ground as an efficient tool for malaria control. A number o f pilot studies are 

taking place in Afr ica (Fillinger et al. 2008, Fillinger and Lindsay 2006, Shililu et al. 

2007) in order to inform decision makers o f the possibilities o f incorporating L S M as a 

component of the I V M programmes. Since the efficacy o f larvicides depends on the 

ecology of the area and the susceptibility o f indigenous mosquitoes (Becker and 

Rettich 1994) this study assesses for the first time the impact o f microbial larviciding 

on malaria transmission in areas o f Afr ica with riparian habitats such as The Gambia. 

In this area malaria transmission is highly seasonal and peaks in the one rainy season 

running f rom June to October (Lindsay et al. 1993). The main vectors are An. gambiae 

s.s.,An. arabiensis, and An. melas all belonging to t h e ^ H . gambiae complex (Lindsay 

et al. 1993). The country is bisected by the Gambia River which creates flooded areas 

where most breeding o f mosquitoes is confined (B0gh et al. 2003, B0gh et al. 2007). 

The goal o f this study was to determine whether routine larval control with 

microbial larvicides in the main anopheline breeding sites w i l l reduce mosquito 

densities and consequently malaria transmission in rural Gambia. Because larval 
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control is logistically demanding it would be cost-effective to target control at the 

habitats most productive o f mosquitoes. This requires knowledge and characterisation 

of habitats in which mosquitoes occur and where they are likely to emerge from in 

order to inform larval control programmes on where to target control. This study 

describes the spatial distribution o f mosquito larvae in the middle reaches o f Gambia 

River. 

The majority o f water bodies that were mapped contained Anopheles larvae. 

Although Anopheles larvae were more likely to be found in the rainy season than in the 

dry season, larvae were found throughout the year mainly in the alluvial plains shaped 

by the Gambia River. Although adult mosquito densities are highest during the rainy 

season (Lindsay et al. 1993) the continuous presence o f water bodies created by the 

tidal movements o f the river sustains larval production throughout the year. The 

implication o f these findings is that in these areas, vector control measures should not 

only be focused on the rainy season. Although most breeding sites for Anopheles were 

found in large habitats close to the landward edge of the flooded alluvial plains, larval 

control targeted at these sites alone cannot be successful because it would miss many 

other important habitats, such as those closer to human settlements, which although 

few in number are likely to contribute to malaria transmission. Therefore all standing 

water bodies in this area should be considered as potential breeding sites for 

anopheline mosquitoes. This finding is not particular to these riparian habitats alone, 

two studies in East Afr ica came to a similar conclusion (Fillinger et al. 2004, Sattler et 

al. 2005). 

Rice is a staple food for Gambians and rice fields were the most common 

breeding habitat in the area. Rice cultivation is known to contribute to the proliferation 

o f mosquitoes (Ijumba and Lindsay 2001, Service 1989, Snow 1983) implying that in 

such areas humans activities are contributing to the rise in disease transmission. 

However, increased transmission does not necessarily lead to increased malaria in 

local communities (Ijumba and Lindsay 2001). Reasons for this apparent paradox are 

uncertain, but one suggestion is that rice production can provide wealth and better 

nutrition leading to greater protection against this disease. As the population grow in 

The Gambia so does the area o f rice cultivation and with that the risk o f increasing 

malaria transmission. This real dilemma cannot be solved by reducing rice cultivation 

because o f its importance in these poor areas. One o f the solutions would be to focus 

malaria control activities in such areas. The ricefields can be easily defined therefore 
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can be targeted during larviciding programmes. However these cannot be the exclusive 

target since other bodies o f water were equally colonised by anophelines and might 

contribute to malaria transmission. A significant number o f habitats dry out during the 

dry season and the probability o f finding anophelines is greatly reduced at this time, 

therefore it would be advantageous to start larviciding at this time before the number 

of mosquito habitats increase with the rains. The programme should continue 

throughout the rainy season when most breeding occurs and adult mosquitoes peak in 

number. 

The hypothesis that the distribution o f mosquito larvae is clustered in specific 

habitats does not hold. This study revealed that larval control in this area cannot target 

selected habitats but would have to cover all accessible water bodies. This is likely to 

render larval control efforts more challenging than in areas where larval habitats are 

discrete and clustered. The aim to describe the spatial distribution o f anopheline 

mosquitoes in rural Gambia was achieved and it is recommended that larval control 

should be comprehensive and applied to all potential breeding sites. The results 

reported here are relevant for any programme planning to use anti-larval measures for 

malaria control in similar riparian habitats in the Sahel region. 

Studies in East Africa have shown that not all habitats colonised by mosquito 

larvae produce adult mosquitoes (Mutuku et al. 2006b), suggesting that only a few 

habitats produce adult mosquitoes and can be targeted in a larval control programme. 

Therefore within the mapped habitats the next step was to describe the most productive 

habitats for mosquitoes in rural Gambia. Although the spatial distribution o f 

anopheline mosquitoes is a good tool to inform larval control programmes, it is 

important to know which o f the habitats colonised by mosquito larvae are more 

productive for late instar larvae and pupae. This would provide a good proxy for adult 

mosquito emergence and i f these habitats can be identified readily, they could be 

targeted for larval control, resulting in a more cost-effective programme. 

The results o f this study show that Anopheles larvae were more abundant in the 

rainy season than in dry season, however, surprisingly pupal density did not differ 

between seasons. However the dry season collections may be over-estimates since the 

surface area o f the water bodies is much reduced, making it easier to sample wi th a 

dipper. It is also possible that there were more larval predators in the rainy season than 

in the dry season, however further studies are required to confirm this. As observed 

with the distribution o f larvae, larger habitats had more larvae in the rainy season but 
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in the dry season both large and small habitats were similarly productive. Larval and 

pupal densities were similar in most habitats and were low only in puddles, which are 

minor habitats in the area compared to the extensive and permanent and semi­

permanent habitats connected to the river. The main malaria vectors in The Gambia 

belong to the An. gambiae complex (Bryan 1983, Lindsay et al. 1993). Both An. 

gambiae s.s. and An. melas shared the same habitats and occupied the majority o f 

habitats sampled. This finding has serious implications for communities l iving close to 

standing water bodies in the area since these might be a potential source for mosquito 

breeding. Earlier studies had revealed that the risk o f malaria transmission was higher 

for communities l iving closer to the alluvial plains o f Gambia River than those farther 

away (B0gh et al. 2007, Thomas and Lindsay 2000). This study clearly illustrates that 

most habitats in rural Gambia can produce mosquito larvae and pupae in both seasons 

therefore any targeting o f larval control to a selected number o f habitats is unlikely to 

succeed. 

The hypothesis that larval and pupal production is clustered to some habitats 

does not hold. Most habitats are equally productive o f mosquito larvae and pupae and 

any larval control programme should be comprehensive and cover all accessible water 

bodies in the area. 

The aim to describe the habitats most productive o f mosquito larvae and pupae 

in rural Gambia was achieved and it is recommended that in The Gambia and in 

ecosystems with extensively flooded habitats larval control should be comprehensive 

and applied to all potential breeding sites. This approach would be very challenging 

with ground application o f larvicides but might be feasible with aerial application. 

These findings are relevant for any programme planning to use anti-larval measures for 

malaria control in similar ecosystems of the Sahel region. 

Results from this study have shown the importance o f rice fields in the 

production o f mosquito larvae (Chapter 2). For this reason I attempted to find out how 

swamp rice cultivation affects the production o f malaria vectors. The landward edge of 

the floodplains is the first area that gets flooded with freshwater at the beginning o f the 

rainy season. This is the first area where rice is grown and it is rich with nutrients, 

including cow dung , which is associated with high mosquito larval densities. 93% of 

An. gambiae s.l. larvae and 97% o f adults came from this area. The main reasons for 

this finding are that this strip o f water is closest to human settlements and is the 

shortest flight distance for an ovipositing female. Water is relatively fresh here and 
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exposed to the sun, a situation preferred by An. gambiae mosquitoes. This area also 

has few fish which are known to be predators o f mosquitoes. Since it is likely that rice 

demand w i l l continue to increase (www.warda.org: accessed 26/7/7), it is a priority to 

make sure that rice fanners and populations closer to rice fields are well protected 

against malaria. 

This study has revealed more insight in the biology of An. gambiae in rural 

Gambia and similar ecosystems. An. gambiae shows a high plasticity in exploiting a 

wide range o f habitats. A l l standing water bodies might be breeding sites for 

mosquitoes. Despite a decrease in population density during the dry season, mosquito 

production continues throughout the year. 

New formulations o f Bti and Bs have shown good control against malaria 

mosquitoes in East Africa (Fillinger and Lindsay 2006, Shililu et al. 2007). However 

because their efficacy might vary in different ecological settings (Becker and Rettich 

1994), it was necessary to assess their efficacy on mosquitoes in the riparian habitats 

o f The Gambia and to determine the optimal formulations, dosage and application 

methods before starting a large-scale larval control programme in the area. 

In the laboratory, the main malaria vectors in The Gambia showed a high 

susceptibility to both Bti and Bs at very low dosages comparable to the results obtained 

in East Africa (Chapter 4). These results imply that the susceptibility o f mosquitoes to 

the microbials is inherent to the species and not to the ecological settings. Therefore 

these microbials can be recommended for mosquito control in different areas. In 

standardised field conditions both microbials successfully killed all larvae and Bs 

showed a short residual activity up to 10 days. However in natural field conditions 

although both microbials achieved fu l l control o f mosquitoes, third instar larvae 

appeared four days after treatment for both microbials suggesting that with available 

larvicides, larval control w i l l have to be repeated at least at weekly intervals. The 

implication o f this finding is that although mosquitoes are susceptible to microbials, 

the residual activity o f microbials varies depending on the ecology o f the area where 

they are applied. Application methods o f microbials in the field vary in areas where 

water bodies are covered with a mixture o f low and tall vegetation. Liquid 

formulations should be applied to habitats with low vegetation where the microbials 

can reach water surface, and in areas wi th tall vegetation granular formulations should 

be applied. 
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Training o f field staff in recognising habitats, calibration and microbial 

application was relatively easy and spray teams were able to work under fu l ly 

operational field conditions for three months and achieving a successful control o f 

mosquitoes. These teams should be selected among the communities within the 

intervention area since they are likely to locate the breeding sites easily and would 

benefit financially from this work. This would help keep moral high for such a 

physically demanding task. Because Bs did not show any residual activity Bti should 

be used in those areas because although it does not have residual activity, it has no 

record o f developing resistance despite being used for more than 30 years in the field, 

unlike Bs (Charles and Nielsen-LeRoux 2000). In the future larvicides wi th a longer 

residual effect would be more cost-effective for places like rural Gambia. 

The hypothesis that microbial larvicides Bti and Bs are efficient against 

mosquitoes in The Gambia was correct. Full control o f mosquitoes was achieved with 

both microbials. The aim to test the efficacy o f Bti and Bs on Gambian mosquitoes was 

achieved and this study has shown that both microbials are efficient against malaria 

vectors in The Gambia. 

After studying the ecology o f mosquitoes in rural Gambia and testing Bti in the 

field, it was concluded that blanket coverage o f all potential breeding habitats was the 

best larviciding approach. Routine operational larval control was implemented in the 

study area using this strategy. The results show that larviciding was associated with a 

92% reduction in the likelihood o f finding mosquito larvae in breeding sites. 

Larviciding also reduced the density o f Anopheles larvae by 91 %. Although this 

reduction is encouraging and similar to what other studies obtained in East Africa 

(Fillinger and Lindsay 2006), it did not translate into a similar reduction o f adult 

mosquitoes. However whilst there was a 28% reduction in malaria vectors where 

larvicides were applied this reduction was not observed for nuisance mosquitoes. 

These findings reveal that although microbial larvicides are clearly effective against 

immatures o f malaria mosquitoes, their application in large river ecosystems such as in 

the Sahel region does not translate into a major reduction o f adult mosquitoes. The 

28% reduction in An. gambiae s.l. density is not expected to have a large impact on the 

overall malaria burden. Only a considerable reduction o f transmission would is able to 

reduce the burden o f malaria for the whole community on a long-term basis (Trape and 

Rogier 1996). On the other hand, the lack o f reduction in nuisance mosquitoes might 

cause a lack o f enthusiasm and involvement o f communities in larviciding operations. 
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The overall implication o f these findings for public health is important: areas 

with large river ecosystems are likely to create extensive breeding sites for mosquitoes 

in their floodplains. In western Kenya and Tanzania where similar studies have been 

conducted (Fillinger et al. 2008, Fillinger and Lindsay 2006), the impact o f larviciding 

on adult mosquitoes and malaria transmission is much greater than in The Gambia. 

The main difference between these sites and The Gambia is in the types o f breeding 

sites. Areas where larval control was implemented in Kenya and Tanzania were 

relatively discrete habitats, and the water source was mostly rainfall or ground water 

not subjected to extensive flooding. These are relatively easier to access and treat with 

larvicides. In contrast most breeding sites in The Gambia are a result o f flooding 

caused by rainfall or tidal movements o f River Gambia that create extensive and i l l -

defined bodies o f water. In this area mosquito oviposition seems to be overly dispersed 

in extensive breeding sites. This combined with the fact that mosquitoes show a rather 

high plasticity to exploit a wide range o f habitats with different biotic and abiotic 

conditions implies that targeting larval control to selected habitats is unlikely to 

succeed. The logistics needed for a larval control programme to cover such large areas 

are a challenge and since the microbial larvicides available today would require a 

weekly application, larviciding does not seem to be a cost-effective approach in such 

areas. 

Although L S M is a viable and efficient tool for mosquito control and is advocated to 

be incorporated in I V M programmes their use cannot be recommended in areas like 

the Sahel region o f Afr ica with large river ecosystems that flood large areas and create 

extensive breeding sites for mosquitoes. Vector control in such areas could rely on 

other measures that have proven efficacy such as ITNs and IRS. L S M would then be 

used as an additional tool in areas where mosquito breeding occurs in discrete and 

relatively small and few water bodies o f the urban or peri-urban area, or in rural upland 

sites. 

The immensity o f the area flooded by the river and the extent o f breeding sites 

created thereof suggest that ground application o f microbials in such areas is likely to 

miss some water bodies. I f logistics allow, aerial spraying could be a better approach 

in such ecosystems as observed in the control o f Onchocerciasis in 11 countries o f 

West Africa (Hougard et al. 1997). However the cost-effectiveness o f such an 

operation and its sustainability represent major challenges. Moreover a larvicide agent 

with a longer residual activity than Bti would reduce the costs o f weekly applications. 
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In conclusion, mosquitoes in rural Gambia exploit a wide range o f aquatic 

habitats throughout the year. Ground application o f larvicides in areas with extensive 

floodplains is not likely to reduce substantially malaria transmission, therefore other 

vector control interventions directed to adult mosquitoes should be considered. 
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