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Stream Ciphers for Secure Display 

Iain Devlin 

Abstract 

In any situation where private, proprietary or highly confidential material is being 

dealt wi th , the need to consider aspects of data security has grown ever more 

important. I t is usual to secure such data from its source, over networks and on to 

the intended recipient. However, data security considerations typically stop at the 

recipient's processor, leaving connections to a display transmitting raw data which 

is increasingly in a digital format and of value to an adversary. W i t h a progression 

to wireless display technologies the prominence of this vulnerability is set to rise, 

making the implementation of 'secure display' increasingly desirable. 

Secure display takes aspects of data security right to the display panel itself, 

potentially minimising the cost, component count and thickness of the final product. 

Recent developments in display technologies should help make this integration 

possible. However, the processing of large quantities of time-sensitive data presents 

a significant challenge in such resource constrained environments. Efficient high-

throughput decryption is a crucial aspect of the implementation of secure display 

and one for which the widely used and well understood block cipher may not be 

best suited. Stream ciphers present a promising alternative and a number of strong 

candidate algorithms potentially offer the hardware speed and efficiency required. 

In the past, similar stream ciphers have suffered from algorithmic vulnerabilities. 

Although these new-generation designs have done much to respond to this concern, 

the relatively short 80-bit key lengths of some proposed hardware candidates, when 

combined with ever-advancing computational power, leads to the thesis identifying 

exhaustive search of key space as a potential attack vector. To determine the value of 

protection afforded by such short key lengths a unique hardware key search engine for 

stream ciphers is developed that makes use of an appropriate data element to improve 

search efficiency. The simulations from this system indicate that the proposed key 

lengths may be insufficient for applications where data is of long-term or high value. 

I t is suggested that for the concept of secure display to be accepted, a longer key 

length should be used. 
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Chapter 1 

Introduction 

LASS liquid crystal displays pervade the modern world, especially in the area 

VJTof consumer electronics, where everything f rom portable music players to 

wide screen televisions use the technology to convey visual information. Such is 

the development drive to improve the efficiency, resolution and responsiveness of 

these displays, that the underlying glass substrate technologies are now capable of 

accommodating integrated circuit electronics. 

These technologies have resulted in the integration of the display with previously 

external electronic systems, including that of video-display drivers found in mobile 

phones. As the technology develops, further integration of other more complex 

systems wi l l become possible, including the merging of security functionally wi th 

the display. This security integration, called 'secure display', would enable secure 

communications wi th the panel substrate, and has potential applications in portable 

display systems dealing wi th valuable or sensitive data, where protection of the 

display link is desirable. 

A secure display system will require integration of a number of security functions 

but due to the high throughput requirements of video data, one of the most crucial 

is data decryption. The choice of algorithm must not only achieve high throughput 

but must also be power and substrate area efficient, to meet the needs of portable 

devices. The class of data encryption algorithms called synchronous stream ciphers 

potentially satisfy these criteria, but find themselves in a period of turbulence after 

recent security failures. A European effort, 'eStream', set up to resolve these concerns 

offers hope that the necessary secure, minimal resource, high speed decryption needed 

for secure display can nevertheless be realised. 

G 
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1. Introduction 

1.1 Thesis Outline 

This thesis looks at the suitability of using modern stream ciphers for secure display 

systems. In doing so, a number of more general issues relating to stream cipher 

security have been addressed and the first public stream cipher key-search engine 

developed. 

The remaining sections of this chapter introduce some basic principles of data 

security and outline how the field has become relevant to consumer electronics. 

Chapter 2 then looks at the value of the secure display concept and how i t may 

be implemented, wi th Chapter 3 examining the related area of audio and video 

data protection schemes. The focus then shifts onto stream ciphers, with Chapter 4 

detailing their history, usage and the current European effort to select a new primitive 

suitable for hardware applications. Chapters 5, 6 and 7 build on this background 

to look at stream cipher key length, evaluating specifically the security provided 

by 80-bit keys through the development of a key search machine - D E L U G E . I n 

Chapter 8, finally, the wider implications of the generated results are examined in 

respect of both stream cipher design and the choice of primitive for applications such 

as secure display. 

A number of the research findings on key length and stream cipher key search 

outlined by this thesis, have previously seen presentation at the European workshops 

SHARCS 2006 [1] and SASC 2007 [2]. A further unpublished letter on the DELUGE 

key search engine written in conjunction with Prof. A. Purvis forms a concise summary 

of aspects surrounding the machine's development and is included in Appendix A. 

1.2 Data Security 

Data security is based around the principles of protecting the confidentiality, integrity 

and authenticity of data. The protection measures used include physical barriers 

though it is more common to focus on operations performed in the digital domain. 

Encrypting data is a fundamental tool in this matter, wi th its aim to provide 

confidentially by turning a large secret, raw data, into a relatively small secret that 

is the cryptographical key. I t is easier to protect this small fixed amount of key 

material, than i t is to protect possible gigabytes of original data. 

I t is impossible for an encryption scheme other than the one time pad (see 
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1. Introduction 

Section 3.2) to be perfectly secure as a computationally unbounded attacker can 

always recover the key. W i t h unlimited resources an attacker can just search the 

finite key space by exhaustive search and check each one for its ability to decode the 

encrypted data (commonly known as ciphertext.) An assumption is therefore made, 

that in reality an attacker is always bounded by time, memory and computational 

effort. I f all possible attacks use an unreasonable amount of one or more of these 

resources, then the cryptographic algorithm is deemed secure. 

A wide variety of apparently secure algorithms often exist. However, choosing 

the most suitable one is not straightforward since i t is impossible to know when 

a chosen algorithm might be broken. A l l that can be done is to choose the most 

suitable algorithm that has stood up to thorough cryptanalysis and hope the high 

probability that it will remain secure holds. 

1.3 Multimedia and Security-
Multimedia is one area in modern times where the consideration of data security 

has grown in significance. Historically copying media such as art works and books 

would be an arduous task that generally produced a copy of inferior quality to the 

original. However, the advent of digital media has removed these factors, and, as 

wi th any digital data set, multiple perfect reproductions are not only possible but. 

indeed, almost t r ivial . 

Multimedia content providers place great value on protecting their data and so a 

number of methods to discourage and prevent the practice of unauthorised copying 

have been proposed and introduced through the years. The business rational behind 

these schemes, is that by l imit ing the consumers' ability to copy the media, its 

availability wi l l be restricted to official channels, thus increasing revenue and sales. 

The alternative rational — that by restricting the consumer's ability to use data, 

value is reduced — has however, gained traction in some sectors with recent moves 

in online music directed towards selling digital rights management free content. 

As is later discussed in Chapter 3, i t is notable that almost all copy prevention and 

control schemes have been broken. This is often clown to some poor security design 

choices, but is also clue to the extremely hostile environment in which protected 

multimedia data finds itself, where the user themselves must be considered an 

adversary. 
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Chapter 2 

Secure Display 

IN the wide range of systems where data security is of importance, great care is 

usually taken to secure network transmissions between each party. Further, where 

one party is in a possibly hostile environment, i t is not unusual to process received 

data in a secure manner through the use of a specialist crypto-processor. This is fine 

for devices such as smartcards. but where the data is to be visually displayed, as in 

the case of some multimedia transmissions, a further unsecured stage (Figure 2.1a) 

is present f rom the processor to the display screen. Depending on the application 

environment and display method this may present a significant security vulnerability 

in respect to covert and malicious data capture. The vulnerability of displays to 

data interception is discussed in detail in Section 2.2.1. 

Secure display (Figure 2.2) attempts to address this issue by securing the trans­

mission all the way to the screen itself. This is unlike High-bandwidth Digital Copy 

Protection (HDCP) present in many high-definition video systems (Section 2.2.3) 

which attempts to secure the data to the display device but not the actual panel 

substrate. The applications and advantages of the secure display approach are 

examined in Sections 2.2.2 and 2.2.4 respectively, w i th design requirements and 

approaches looked at in the later sections of the chapter. 

encrypted 
data 

data Pi * 
provider processor 

raw 
data 

101110.. 
..101010 

a 

display 

Figure 2.1: Typical display system set-up 
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raw 
image 
data 

101110.. 
.101010 

server 

encrypted 
data 

remote CG-Si 
secure display 

image 
to user 

integrated encryption, RNG, 
authentication, tamper resistance 

Figure 2.2: Secured display system set-up 

2.1 System LCD 

The idea of secure display comes from the wider concept of System LCD [3, 4] 
which makes use of recent advances in glass substrate technologies (see Section 2.1.1) 
to allow the integration of external circuitry onto unused display substrate space 
(Figure 2.3). This has typically involved integrating display drivers [5] to decrease the 
size and cost of implementing a LCD (Liquid Crystal Display) system but the System 
LCD concept has a wider aim of freeing the display to be used as a standalone device. 
The implementation of a small microprocessor on glass has already been demonstrated 
[6], and Sharp Corporation [7] have more recently proposed the integration of touch 
screen and optical scanner technologies on a LCD display. 

•mm 

- W peripheral circuit integration 
(little or no panel area increase) 

Figure 2.3: Outline of System L C D concept 

The development of System LCD has relied on the ability of the glass substrate 
to sustain integrated circuits. In the next section we explore the characteristics of 
silicon on glass process technologies so as to understand the limitations placed on 
implementing the secure display concept. 

2.1.1 Silicon on Glass 

Silicon on glass (SOG) is a category of fully depleted silicon on insulator (SOI) 
technology that makes use of glass as the substrate material. Unlike other SOI 
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2. Secure Display 

technologies, development has been driven by the desire to improve thin f i lm tran­

sistor (TFT) display designs and not high speed electronics; this has led to very 

large substrate sizes, 1 .5xl .8m [8] or larger, being used to drive down area costs. 

The constant need for higher resolution, faster response, lower power displays has 

demanded reductions in feature size and increased mobility; as a result a variety of 

process technologies now exist in the field. Two of these, amorphous silicon (a-Si) 

and low temperature poly silicon (LPS), wil l be outlined in the remaining paragraphs 

of this sub-section before the high performance substrate technology that lies behind 

System LCD — continuous grain silicon (CG-Silicon) — is examined. I t should 

be noted that although none compete wi th crystalline silicon processes in terms of 

performance, all have the advantage of reduced substrate cost that ultimately lies 

behind much of the commercial interest in function integration. 

Amorphous Silicon 

The first glass process technology looked at is that of the once widely used amorphous 

silicon technology. Displays based on a-Si are some of the cheapest to manufacture 

and have a thin layer of silicon put on the glass surface by a process such as plasma 

enhanced chemical vapour deposition (PECVD) . This layer lacks the very regular 

structure associated with crystalline silicon, causing the mobility to be just l c m 2 / V s 

and thereby making the technology very slow at transistor switching. 

Low Temperature Polysilicon 

The later LPS process technology aimed to improve on the characteristics of a.-Si 

display through use of a XeCl excimer laser to anneal the silicon layer on a-Si 

substrates so that the silicon would crystallise. This significantly increases electron 

mobility with figures around 200cm 2/Vs achievable [9]; allowing faster response times 

and higher resolution displays with further possibilities of implementing basic driver 

circuitry on the substrate. In view of this, LPS technology has largely replaced a-Si 

as the T F T technology of choice. 

2.1.2 Continuous Grain Silicon 

LPS is not without its problems: crystal grain size is small and misorientation 

angles are large at 30-60° [10] causing the substrate to be inconsistent enough 
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2. Secure Display 

to adversely affect IC implementation. CG-Silicon is a technology developed by 

Sharp, in conjunction with Semiconductor Energy Laboratories, that builds on LPS 

technology to give higher electron mobil i ty (320cm 2 /Vs) by increasing grain size 

to larger than 1 / jm and reducing misorientation angles to less than 10° [10]. This 

also gives the substrate a greater consistency allowing IC electronics to be easily 

integrated onto to the same glass panel as a display. 

CG-Silicon fabrication [10] starts with the deposition of thin layers of SiON and 

SiG"2 on the glass panel to avoid glass impuri ty diffusion. P E V C D is then used 

to form a very thin 45nm layer of a-Si before a spin-coating of Nickel solution is 

applied. This is followed by an annealing process at 450-600C in an atmosphere of 

nitrogen. Finally excimer laser annealing is used to further improve crystal quality 

so that all that is left is well-ordered crystalline silicon. The closeness to crystalline 

silicon significantly reduces the prominence of SOI characteristics such as the kink 

effect in comparison to LPS. However, dimensionally CG-Silicon is not comparable 

wi th modern silicon circuits wi th the order of magnitude larger, 0.8 /un, feature 

sizes quoted by Lee [6] for 2005 processes, meaning that any implemented logic 

on the substrate must operate in a comparatively restricted environment. Further 

substantial reductions in feature size may be achievable for CG-Silicon but wi l l 

require the challenge of defining fine detail over a large substrate to be addressed 

[11]. Therefore, for in the foreseeable future, integration must principally be based 

on cost and area savings. 

2.2 Value of Securing the Display-
Glass LCD displays are prevalent throughout not only the modern consumer elec­

tronics sector but also many other sectors and these displays wi l l on occasion be 

used for displaying valuable private, proprietary or highly confidential material. This 

data is normal transmitted securely in encrypted form to the host's processor unit 

and is sometimes even processed securely wi th in the processor unit: however, on 

its final stage to the display the data is transmitted in the clear. This presents a 

significant security vulnerability in respect to covert and malicious data capture. 

The usage restrictions placed on the display by this vulnerability in the display 

link is also problematic and has conventionally led to displays being shackled in close 

proximity to their parent processors: the case of a workstation computer being but 

one example. By utilising the mount area of the display, cryptographic functions 
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2. Secure Display 

such as decryption could be implemented onto the glass substrate without increased 

cost. This integration would allow the freedom to create the 'display-only' devices 

where data is sent securely to and from a remote server, leaving the display as a low 

power, highly-compact portable device. 

2.2.1 Display data interception 

2.2.1.1 Attack Tree 

In designing a system of secure display i t is useful to consider the potential interception 

methods available to an adversary so that each attack's potential may be accessed 

and, if necessary, prevention methods taken. To do this i t is normal to construct a 

tree diagram of the possible attack methods and so below is presented a series of 

attack trees for obtaining data transmitted to a display. 

Obtain data 
Irom screen 

Visually read Read data in Get data from 
user display transmission server 

/ \ 
Use Use a 
eyes camera 

Get data from 
display circuitry 

Access analogue 
display signal 

I 
Use probe and 

data logger 
Use probe and 

data logger 

Access DAC Access EM 
inputs emissions 

Use aerial and 
data logger 

Figure 2.4: Basic attack tree for a server to display system 

The first of three attack trees designed is shown in Figure 2.4 and represents the 

base level situation where unprotected display links are used and no countermeasures 

are in place. The attacker has four main options open to him: reading the displayed 

data, reading the data in transmission, getting the data direct from the transmitter 

and getting the data from probing the display circuitry. A l l of these options are 

potentially inexpensive and i t is important to note that, although secure display 

targets the protection of data in transmission, a number of other simple attack 

scenarios always remain open. 

The second tree (Figure 2.5) is a partial attack tree on the same display link but 

this time some simple form of encryption has been used to protect the data in transit . 

This tree closely represents the range of threats that are expected to be issues in 

a fixed key secure display system that is shown later in Figure 2.9. A number of 
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Obtain data 
from screen 

Visually read 
user display 

I 
Read data in 
transmission 

Gel data from 
server 

( counter yfa encryption ) 

Access key 
from server 

Intercept key 
data in transit 

Use computing 
resource 

Break crypto, 
algorithm 

Brute-force 
key 

Gel data from 
display circuitry 

Decrypt 
message data 

Get key from 
security circuit 

Tamper with 
security circuit 

Figure 2.5: Attack tree for a server to display system with encryption counter-
measure 

relatively feasible options are st i l l possible to an attacker, especially when focus is 

targeted towards obtaining the encryption key. 

By introducing further countermeasures of a secure key exchange protocol and 

some form of tamper resistance to the cryptographical functions of the display 

circuitry, targeting the key becomes much more challenging to an adversary. A 

partial attack tree for this now improved form of display link protection is shown in 

Figure 2.6. The options available to a adversary are generally expensive or complex 

making this system relatively well protected and as such this is the unattractive attack 

scenario we want to achieve through secure display. The fu l l secure display system 

shown later in Figure 2.10 was envisaged to closely reflect the countermeasures 

of this attack tree although it additionally uses authentication to add a further 

countermeasure to the system and prevent data alteration based attacks. 

2.2.1.2 Display connector attacks 

In reading the data in transmission, possibly the simplest attack that can be envisaged 

against an unprotected display link is that of an attacker tapping the cable at one 

end. This has the requirement that direct access to the display link must be available 

and so a suitable countermeasure against display connector attacks is to keep display 

and l ink in a physically secure location. As seen in Section 2.2.1.1 encrypting the 

data over the link is equally as effective. 
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Obtain data 
from screen 

Visually read 
user display 

I 
Read data in 
transmission 

I 

Gel data Irom 
server 

i Get dala from 
i display circuitry 

(counter via encryption) 

Decrypt 
message data 

Access key 
from server 

Intercept key 
data in transit 

Use computing 
resource 

Get key from 
security circuit 

counter via asymmetric 
crytography 

counter via strong 
algorithm 

counter via tamper 
resistance 

Obtain device 
private key 

Obtain device 
backup key 

Get help to 
decrypt dala 

Break crypto 
protocol 

Brute-force key 
space 

Choose data to 
be transmitted 

Obtain some 
decrypted data 

Determine key 
from RNG 

Alter data 
transmission 

Tamper with 
randomness 

Determine 
RNG state 

Access 
server 

Figure 2.6: Attack tree for a server to display system with a second round of 
countermeasures 

2.2.1.3 Remote attacks 

In conventional digital circuit design i t is normal to leave the design and layout 

as undefined as possible to allow automatic tools to generate the most efficient 

implementation for a particular architecture. In secure systems however, another 

factor must be taken into account: the variability of power consumption during 

operation. This is essential so that power and EM (electromagnetic) analysis do not 

lead to key or state information leaking. I f one operation takes slightly longer for 

a particular data set this can usually be detected using l i t t le more than a modern 

oscilloscope and E M probe [12] making such techniques often by far the cheapest 

way to compromise supposedly secure circuits. 

Worse sti l l is the fact that these attacks do not physically affect the device, 

making detection impossible without securing the environment in which the device 

resides: a task that is all but impossible for consumer electronics. Security conscious 

industries, such as that of smarts cards, are willing to make huge sacrifices in terms 

of area and power consumption to mitigate the effects of side channel leakage and 

logic cell libraries such as W D D L (wave dynamic differential logic) are of growing 

interest despite using 3x area and 4x power of conventional cells [13]. 
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2. Secure Display 

Both time domain [14, 15] and frequency domain analysis must be considered as 
well as an ever increasing variety of other analysis operations. In larger area devices 
spatial layout may start become a consideration, however, present attacks are so 
effective that currently the spatial element is unnecessary A prominent example of 
this effectiveness was the 1985 attack [14] on some RSA encryption (see Section 3.4) 
implementations which, with the observation that processing took different times 
depending on the key in use. rendered the problem of finding a key, impossible to 
retrieve though computing power, almost trivially solvable. 

It has been long known that CRT computer monitors are vulnerable to eaves­
dropping through EM analysis attacks [16] but more recently Markus Kuhn [17] has 
shown that laptop and other TFT-LCD screen displays may be similarly vulnerable. 
In this later case it has been demonstrated that a screen can be read while in another 
room simply by scanning for emanations from the digital video link between the 
display controller and LCD or alternatively from the digital video interface (DVI) 
cabling. This example of EM analysis, although unrelated to data security algorithms, 
demonstrates the ability of side channel attacks to defy physical security. Securing 
the external cable signal is one part of the solution (HDCP described in Section 2.2.3 
potentially does this) however to minimise emanations it is beneficial to secure the 
data flow as far up the system chain as possible: a task which forms the concept of 
secure display. 

2.2.2 Applications of Secure Display 

display 

! " / 
7 

glass panel of 
display device 

security 
electronics 

digital set-top 
box 

media content 
provider 

Figure 2.7: Audiovisual content application of secure display 

The improvement in display data security and the possibility for untethering 
the display creates the potential for a number of applications of the secure display 
concept. However, as in many consumer systems the most commercially attractive 
area of these is that of multimedia content protection. A system diagram for just 
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2. Secure Display 

• Application allows passwords, PIN, etc. to be entered securely via touch screen 
• Security aided by user having vested interest in others not knowing entered data 
• Simple implementation - encryption/authentication need only be low speed 
• Useful "added feature" for other secure display applications 

Secure mobile browser for confidential documents 

• Application allows display of confidential information for in-field use (medical 
records, maintenance info etc.) without documents being stored on the device 

• Ability to deactivate a device in case of loss, minimising security risk 
• Robust user a c c e s s controls required due to radio transmission of data 
• Low power operation essential for mobility 

Secure server to office screen transmission 

• Application avoids the problem of confidential information being stored on a 
workstation: users can look at data but cannot remove it 

• Likely to be desirable in industries such a s financial services and health care 
• Removes possibility of subtle display connector attacks 
• Security aided as will typically be located in physically secure environment 
• Long-term security of encrypted transmissions essential 

Figure 2.8: Three possible applications of the secure display concept 

such an application of secure display is shown in Figure 2.7: the set-top box shown 

may also be reconsidered as a service provider who wants to transmit digital rights 

managed content, such as a movie, to the users mobile. This multimedia streaming 

application has a number of security challenges associated wi th i t . including that 

such data is typically commercially attractive to criminal organizations making a 

well funded attack a real possibility. There is also a certainty that the intended 

mobile devices will fall into the hands of hostile users, willing and able to potentially 

probe and alter signals in the security circuitry and necessitating further counter 

measures in the system design. 

Securing media content transmissions is by no means the only possibility open 

to a secure display system and three other application ideas for the secure display 

concept are presented in Figure 2.8. A l l four application ideas have their own 

attractions: currently, however, high speed, high resolution display technologies, 

such as CG-Silicon, are better suited to small sized displays. This implies that the 

most relevant application areas at present and in the near future wil l be those that 

involve small portable displays. In view of this, minimising power usage without 

compromising security and usability wil l be an essential part of the design process. 
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2. Secure Display 

2.2.3 High-bandwidth Digital Copy Protection 

The most commercially attractive application area of secure displays is that of 

media content protection, due to the strong atti tude the media industry takes to 

access control of copyrighted material. A standard with clear similarities to the 

secure display concept, HDCP [18] (High-bandwidth Digi tal Content Protection), 

was published back in 2000 [19] to address this very issue. This standard attempted 

to secure the transmission of T V and movie data f rom sources such as computers, 

DVD players, and set-top boxes so that i t could only be played back on an authorised 

display device. However, HDCP did not last long as a secure standard: Ferguson 

suggested that a practical attack was possible [20], and I rwin informally published 

an attack [21] within 18 months of the standard's publication. Further cryptanalysis 

of HDCP confirmed the weakness of the protocol [22]. Despite this, HDCP has found 

its way onto a wide range of recent TVs, game consoles and high-definition video disc 

players, although the actual activation of the protocol through an image constraint 

flag on media content has yet to happen. 

2.2.4 The Secure Display Advantage 

The concept of secure display in securing data right to the display substrate not only 

protects against physical and remote display link attacks but also should help prevent 

attacks utilising emanations from the display circuitry itself, as demonstrated by 

Kuhn [17]. I f well designed, i t wi l l provide a much more effective solution to the 

issues surrounding streamed content protection than has previously been seen with 

HDCP. 

The integration aspects of secure display are especially attractive to mobile and 

portable devices in comparison to externally mounted circuitry, providing potentially 

reduced costs, component count and final product thickness. The combining of 

security and display functionality is also another step towards freeing the display to 

be used as an independent device, as envisaged in the concept of System LCD. 
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2. Secure Display 

2.3 Design Requirements 

A clear requirement of any secure display system design is that i t must be capable of 

processing a very high data-rate signal due to the nature of video display signals. For 

applications such as mobile phone displays a typical size LCD is 320x240. Assuming 

6-bit RGB colour and 30Hz refresh rate, this leads to a data input rate of around 

42Mbits/s, and while this figure is high i t would not normally cause problems for 

implementing display link security. However, on the power and area constrained 

substrates of even advanced glass displays (see Section 2.1.2) i t is an aspect which 

wil l have a significant bearing on hardware logic design. 

As an intended application's LCD pixel size is decreased or display area increased 

the data throughput rate wi l l rapidly increase: a 1280x1024 24-bit colour display 

operating at 60Hz indeed requires a throughput rate of nearly 5.7Gbits/s. Data 

compression could significantly reduce this figure and would help wireless connectivity 

tremendously in reducing the data transmitted. However, such compression would 

simply turn the decompression stage into the main system bottleneck with decreased 

output quality and increased latency being amongst a number of further concerns. 

Low latency is an especially desirable attribute for secure display as this would improve 

the user experience, particularly in applications specifying user interaction or involving 

live video, where i t would minimise potential problems of audio synchronisation. 

From a security perspective the attack trees of Section 2.2.1.1 indicate that apart 

from securing the data in transmission, i t is useful to consider implementing a form 

of secure key exchange and tamper resistance when designing secure display systems. 

Tamper resistance w i l l not be specified in the system design of Section 2.4 but i t 

is assumed that a final implementation of secure display would include measures 

to physically protect the logic operation of security circuitry. I t is expected that 

these measures in mobile systems will be similar to those used in modern smartcards 

[23, 24], 

2.4 System Design 

From the attack trees of Section 2.2.1.1 a number of secure display system designs 

can be considered. Two designs: one basic, suited only to prototype implementation; 

and one fully featured, suited towards secure display in a final product: are presented 

in this section. 
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Figure 2.9: Basic fixed key system model for a secure display system 
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Figure 2.10: Secure display system layout 

The basic secure display system (Figure 2.9) involves implementing a single 

countermeasure to display link attacks based on reading data in transmission. This 

system requires only the implementation of symmetric decryption and uses an 

embedded key. Although, as discussed in Section 2.2.1.1. it only provides a minimal 

level of security i t would nonetheless be suitable for demonstration of the secure 

display concept. 

Figure 2.10 shows a more fully featured secure display system, appropriate to final 

product implementation, where keys are no longer fixed but instead exchanged at the 

initialisation of a protected content transmission. This design targets the scenario 

where the display data involves wireless transmission to a mobile display device with 

throughput of data transmissions sided towards the server. To minimise the problems 

of maintaining device portability i t is proposed that initially only the functionality 
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Figure 2.11: System diagram of the cryptographic processing core 

of the security core is implemented on panel, although, as glass substrate technology 

improves, further integration of the transceiver may become possible. The security 

core, also shown in Figure 2.10, implements the basic functionality of secure display 

and takes the transmitted protected data, checks i t for errors and then decrypts i t 

before passing the decoded video information to the LCD. 

The cryptographic processing core of the system controls the general functions 

required to maintain system security. I t can be split down into a further level of 

sub-blocks, as shown in Figure 2.11, wi th a hardware elliptic curve cryptography 

(ECC) unit and random number generator (RNG) providing the ability to handle 

key establishment protocols for setting up the decryption key. The control unit also 

handles a number of other bits of control data including any initialisation value 

( IV) transfer, message authentication code (MAC) transfers, acknowledgements 

and authentication errors. The whole processing block, in essence, acts as a small 

crypto-processor and would seem likely to have similar throughput and processing 

requirements to those of a smart card. 

I t may be noted that fu l l secure display system of (Figure 2.10) is intended 

to provide the confidentiality, data integrity and authentication typical of many 

cryptography applications. Non-repudiation, the fourth goal of information security, 

as set-out in [25] (pp.4), prevents a user denying an action or commitment and would 

only be needed where a user has direct interaction with the display. This might be 

the case with a touch screen display system; however, data rates are likely to be low. 

thereby making large changes to the system unnecessary, as only the operation of 

the cryptographic processing core sub-block would be affected. 
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2. Secure Display 

2.5 Focus 

There are four sub-systems that require high levels of performance to implement the 

system shown in Figure 2.11: authentication, decryption and image processing, due 

to their high throughput requirements; and the cryptography processing core, due 

to the complexity of securely completing key agreement. This final section assesses 

the relative importance of further research in each of these core functions to the 

development of a demonstration system for secure display. 

Imaging processing such as decompression and resolution enhancement is useful 

and possibly adds value to a commercial system, however, the function block is 

not considered fundamental to the concept of secure display. In view of this, i t 

is reasonable to disregard this system component and concentrate research effort 

elsewhere, as the design of early prototype systems and even a final fielded system 

would not need to include i t . 

Authentication is useful in preventing forgery attacks by immediately discarding 

invalid messages. I t is particularly valuable when a two-way protocol, with send and 

receive functionality, is desired such as for a touch screen display. Nevertheless for 

systems where denial of service attacks are not a concern i t is possible that only 

authenticating control signals would be sufficient so long as measures were taken to 

avoid replay attacks: this may include disallowing out of sequence initialisation values 

by expecting the value to be greater each time or the more memory intensive option 

of disallowing initialisation value reuse. This potentially reduces the throughput 

requirements to the extent where minimum area implementations of the core functions 

underlying the message authentication algorithms may be used; indeed given that 

the speed may be much reduced it should be possible to base the MAC around the 

chosen decryption algorithm and let the crypto-processor periodically borrow the 

hardware for this function. 

One caveat to this is the role the authentication function plays in providing 

data integrity wi th in the system, which allows a viewer to be certain that the on 

screen image has been unaltered. This is a particular problem for systems that use 

synchronous stream cipher encryption functions (Section 3.3.2), or related block 

cipher modes of operation, since bit flipping by an adversary would fail to cause a 

catastrophic breakdown in the decrypted output and may allow the rendering of 

unwanted messages on screen. Nonetheless, although data integrity is desirable in 

commercial security systems, it does not affect confidentiality. Applications such 
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2. Secure Display 

as the audio-visual one described earlier deliver data over a fully secured network 

connection and so data is only exposed on the final stage to the screen. In this 

situation data integrity attacks are unlikely as the user wi l l usually be in control of 

this environment and has no reason to corrupt their own data as i t does not help 

them access the underlying content. In light of this, at least at the development stage 

of secure display, data integrity protection of the raw video data is not essential. 

The asymmetric encryption (Section 3.4) required for the init ial key agreement 

between display and data server will generally only be needed at the start of a new 

transmission and is not time critical like the main video data path. This leaves 

area and power considerations the primary concern and makes the requirements of 

this subsystem similar to that of smartcards. Elliptic curve cryptography (ECC) is 

typically the core function of the asymmetric encryption in these devices making it 

likely to be the preferred choice for secure display. As a highly commercial sector of 

data security, smartcard optimised ECC is an increasingly mature technology with 

the scope for further improvements limited and off the shelf modules easily available 

to purchase. Furthermore, at the development stage of secure display a fixed key 

based system should be sufficient to demonstrate the potential of the concept and 

may even have practical uses. 

The provision of confidentiality provided by encryption is fundamental to the 

concept of secure display and cannot be avoided. W i t h this in mind, the research 

work of the thesis concentrates on this remaining sub-block of the secure display 

system and the next chapter will examine the issues surrounding maintaining security 

in high throughput, minimum area data decryption scenarios, as well as looking at 

commercial attempts at multimedia protection. 
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Chapter 3 

Protecting Stream Data 

HE failure to properly secure streamed data is an issue that is certainly more 

JL widespread than HDCP; indeed, almost all popular media formats that use 

encryption and access control have seen some form of successful attack. In this 

chapter various methods of securing data transmissions are examined, with particular 

focus being paid to the suitability of encryption methods for the secure display system 

described in Chapter 2. Current schemes for video and data stream scrambling 

are briefly reviewed before the cryptographically standard structures for encryption 

are examined. W i t h special consideration to the resource constrained nature of 

secure display systems and the need for high throughput, the symmetric encryption 

method of using stream ciphers is concluded to be the most promising direction for 

development. 

As touched upon in Chapter 2, there is great value attached to protecting stream 

data when i t is in the form of multimedia content and during the past few decades a 

number of schemes have been proposed and implemented in an attempt to achieve 

this goal. The difficulty is that this form of data, be i t voice, television, or more 

recently digital video, requires the processing of high volumes of information rapidly 

and at low cost to be economically viable. This has led to deployed schemes often 

focusing on providing something short of fu l l encryption of communications. 

Some of the earliest attempts at protecting stream data were focused at audio 

T 

3.1 Past and Current Methods 
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3. Protecting Stream Data 

wi th concerns about cassette copying leading to schemes devised to spoil copies, 

Anderson [26] (pp.421) describes one such attempt for the 1967 hit record "Sergeant 

Pepper" where an inaudible 20kHz tone was included which was intended to produce, 

through mixing with the bias frequency, a very audible 1kHz tone in any copy. Similar 

attempts would later be made to discourage copying of commercially produced VHS 

tapes with the Macrovision Analogue Protection System [27] inserting pulses into 

the non-displayed signal to affect the recorder's automatic gain control making 

the picture in copies unpleasant to watch due to brightness variations. The move 

to digital data saw these spoiler schemes continue and many commercial DVDs 

now contain a couple of control bits set to cause outputted analogue signals from 

playback devices to include an Analogue Protection System signal [28] with the aim 

of discouraging transfer of content to video tape. Nonetheless in the digital world 

such spoiler schemes have a number of shortcomings in that they do not protect 

the raw data and, although they have minimal processing cost and may frustrate a 

general consumer's attempt at copying, a more determined attacker wi l l have very 

l i t t le difficulty in overcoming the protection. 

In the case of digital video many schemes have been proposed to provide a more 

comprehensive scrambling of the video signal which, although they do not meet the 

criteria for a cryptographically secure system, should prove harder to avoid. Methods 

such as Lian's [29] use encryption of part of the signal to destroy most of the visual 

information while providing litt le in the way of performance penalty to the already 

existing compression and decompression processes. However a scheme described as 

'secure in perception' [29] is unlikely ever to provide protection of the underlying 

data from a determined attacker and, indeed, wi th the ease with which digital data 

can be cloned, from the wider population at large. Li's analysis of a number of 

other published stream data encryption schemes has shown there to be numerous 

insecurities [30, 31]. 

Such security failings in the design of stream data encryption systems are not 

restricted to the research community, w i t h many commercially conceived designs 

likewise failing on scrutiny. These schemes have in the past practised 'security 

through obscurity', using strong licensing conditions to prevent implementation de­

tails being available for analysis. The philosophy is that by restricting the knowledge 

potentially available to attackers, any attacks on a scheme wi l l be more difficult . 

However, the approach has several disadvantages in that a scheme wil l no longer 

receive thorough external analysis before release into a hostile and well-connected 

environment. Leaking or reverse engineering of a scheme's details is almost inevitable; 
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the reverse engineering of the Content Scramble System (CSS) digital rights manage­

ment scheme for DVDs being one notable example and the leaking [32] of the Global 

System for Mobile communications (GSM) encryption standard being another. The 

consequences of this information release can be devastating for data security and the 

original DeCSS software that let users recover unencrypted raw video data from their 

DVDs in 1999 has since gone on to spawn numerous software applications which 

now allow easy and quick removal of CSS encryption to all but the most casual 

of attackers. Similar encryption based failings in the propriety GSM standard for 

mobile phones were found [33] a few years after the original leak, a subject further 

discussed in Section 4.4.1. 

Security failings are not just the preserve of unpublished standards, the well 

published WEP (Wired Equivalent Privacy) scheme [34] widely used in protection 

data across wireless local area networks was shown to be weak only a couple of 

years after its 1999 ratification due to insecurities in the chosen encryption method 

(see Section 4.3.4). Bluetooth systems [35] were similarly be shown to be weak 

at protecting transmitted personal area network data (see Section 4.4.2) and as 

already discussed in Section 2.2.3 the copy protection standard for device to display 

transmissions. HDCP, is widely regarded as broken. 

Even more recently devised encryption schemes with strong commercial drivers 

have suffered problems. A prominent example of this is the content protection 

scheme AACS (Advanced Access Content System) [36] developed to protect data 

on the high definition video disk formats Blu-Ray and HD D V D . The system uses 

conventional cryptography mechanisms such as hash functions, digital signatures 

and encryption in form of AES (see Section 3.3.1) yet although its specification is 

more public than that of its DVD predecessor and has largely resisted analysis i t has 

not remained secure. The necessary use of embedded keys has led to acknowledged 

attacks [37] where encryption keys retrieved from software video players can be used 

to decrypt content. Attempts to expire the compromised keys by the AACS licensing 

administrator [38] may provide some short-term rest-bite for new releases but content 

on older disks wil l remain vulnerable. 

Satellite and cable operators have an advantage over media disk distributors in 

providing secured content as their systems need not include a passive fixed element. 

In fact due to the commercially attractive nature of attacking such a system and the 

critical nature of conditional access to service providers' business models, pay-TV 

operators have been at the forefront of stream data protection mechanisms. A detailed 

outline of the progression from early analogue 'cut-and-rotate' scrambling techniques, 
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where each line would be rotated by set amount before transmission, through digital 

scrambling techniques, to the ups and downs of developing smartcard based systems 

can be found in [26] (pp.423-430). Indeed wi th these experiences and the priori ty 

commercially, current pay-TV schemes are one of the more secure examples of stream 

data protection, employing conventional cryptography mechanisms as well as active 

links back to the service centres giving providers an ability to push security updates 

and to constantly update encryption keys. The strength of this protection has become 

even more critical in recent years wi th the advent of personal television recorders 

such as [39] where data is increasingly accessible due to its storage on a customer's 

set-top-box. 

3.2 One-Time Pad 

Protection schemes as have been outlined are often far from perfect. However i t is 

possible to achieve perfect secrecy and the one-time pad cipher has provided this 

capability to cryptographers since the early 20th century. In this section we wil l 

provide a brief overview of one-time pad encryption. 

In understanding the one-time pad we can consider two parties, Alice and Bob, 

who each have a copy of the same random bit-stream that is the symmetric key for 

the exchange. Alice wants to send Bob her message data or plaintext in a secure 

manner and so decides to mix i t one bit at a time through a modulo-2 addition with 

the key material. Bob, on receiving this encrypted data or ciphertext, then uses his 

copy of the key to reverse the mixing process through another modulo-2 addition, 

this operation being self-inverting, and recovers the original data, He and Alice 

then forget the key material used. Indeed if the key material agreed by Alice and 

Bob remains secret, not reused and is truly random the transmitted ciphertext wil l 

appear to any third party man-in-the-middle attacker as a truly random bit-stream 

and no information of the original plaintext will be gleamed. The theory behind the 

unbreakable nature of this stream and the unique nature of the one-time pad was 

shown by Shannon in 1949 [40]. 

A notable feature of the one-time pad cipher is that as the modulo-2 addition 

( X O R ) used in the combining function is its own inverse, identical hardware may be 

used for both encryption and decryption processes. However, securely generating, 

transporting and storing large quantities of truly random key material is far from an 

easy task and so the disadvantage of the one-time pad's requirement for key material 
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Plaintext Block >• Ciphertext 

Figure 3.1: Block cipher encryption 

equal in size to the plaintext data is a significant one. This is especially true of 

applications requiring large data sets to be communicated, as in video transmission, 

or where one of the parties is inaccessible, as in satellite communications and sealed 

consumer devices. As such, in most data security applications, methods of encryption 

which require only a small fixed length key are typically preferred. 

3.3 Symmetric Encryption 

Encryption schemes such as the one-time pad cipher, where the key is shared between 

the transmitter and receiver, are part of a broad category of encryption primitives 

referred to as symmetric encryption. The confidentiality provided by symmetric 

encryption schemes forms a fundamental part of data security and has led to their 

ubiquitous presence in implemented security systems. 

Symmetric encryption primitives can be broadly split into two main subcategories: 

block ciphers, that operate on discrete blocks of data: and stream ciphers, that work 

on continuous data streams. During the rest of this section we look at each of these 

with a view to their suitability for secure display. 

3.3.1 Block Ciphers 

Block cipher encryption (Figure 3.1) takes a small block of data and maps it through 

a function that aims to mimic that of a truly random permutation so that the equally 

sized output ciphertext block contains no information for an attacker. By making this 

mapping function one-to-one and purely dependant on the key used, the generated 

ciphertext can be decrypted by a party in possession of the same key through use of 

the inverse map. The block size chosen in the cipher's design must make observing a 

match via a dictionary attack impractical. 
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In modern block ciphers the described mapping process is generally achieved 

by mixing the data wi th key material through a series of simple operations in a 

repeated round structure similar to Feistel's 1973 scheme [41]. By using a regular 

structure in the process of diffusing and confusing plaintext data, these networks 

enable flexibility in design implementations and typically it is possible for resource 

reuse between encryption and decryption mapping processes as key material just 

needs to be added in the reverse order. The use of a repeating structure combined 

wi th fixed length key and data inputs has a further design advantage in that i t 

allows for easier analysis of their security, thus giving confidence to users of the 

algorithm. Unlike stream ciphers,1 a number of generally regarded secure algorithms 

exist including perhaps the most prominent symmetric encryption scheme used today, 

the Advanced Encryption Standard (AES) [42]. The 128-bit keyed AES is formed 

around a 10-round structure and 128-bit block size with modern throughput efficient 

implementations requiring 12kGE (NAND Gate Equivalents) [43]. 

The forerunner of the AES, the Data Encryption Standard (DES), was at its time 

of equal prominence, and indeed its introduction in 1977 [44] was driven by a desire 

to popularise cryptography usage in commerce. The cipher operated on shorter 

64-bit blocks and used a Feistel based 16-round structure in a relatively hardware 

efficient design. The DES would also have the unintentional affect of popularising 

public cryptographic research as pre-standardisation changes to the algorithm were 

at the time viewed wi th suspicion. These suspicions proved unfounded; 2 however, 

the DES's small 56-bit key size would eventually lead to its obsolescence as i t was 

found to be vulnerable to exhaustive search [46, 47]. A longer keyed version of the 

cipher, triple-DES [48] is still currently in use. 

Block ciphers would appear to have a great deal of promise for application in 

secure display wi th data throughput rates of 5.163Gb/s possible even on 0.5/im 

silicon CMOS processes [49] (pp.61). This is ample for the 42Mb/s needed for a 

small mobile display even when further speed restrictions caused by integration onto 

glass and need to reduce area usage are accounted for. Where block ciphers fail to 

deliver is in absolute efficiency as they need to process a ful l block of plaintext all at 

once. As we wil l explore next, stream ciphers have a fundamental advantage in this 

regard. 

1 It is often wise to use a block cipher in a mode that imitates a stream cipher so as to prevent 
data regularity leading to security vulnerabilit ies, this is a topic further discussed in Section 4.2. 

2 Coppersmith [45] would later describe that the changes to D E S were actually intended to 
strengthen the algorithm against the advanced attack techniques of differential cryptanalysis. 
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Figure 3.2: Stream cipher encryption 

3.3.2 Stream Ciphers 

The stream cipher aims to produce ciphertext by creating a stream of characters so 

complex that i t is indistinguishable from a truly random stream (see Section 3.5) 

and then combining each of these random characters wi th those of the plaintext. 

When implemented in a binary context this closely shadows the implementation of 

the provably secure one-time pad scheme but has the advantage of using much less 

key material as only a small, fixed length key is needed to create the pseudo random 

bits of the keystream. A typical stream cipher structure is shown in Figure 3.2. 

As stream ciphers aim to mimic the one-time pad and generally are expected 

to operate in a bit-wise manner the combining function typically used is a X O R 
operation. The reversibility of this operation having the added benefit of allowing 

stream cipher encryption and decryption to utilise the same configuration with the 

only difference being the reversal in directions of plaintext and ciphertext streams. 

Other mixing functions have been suggested [50] but hold few benefits. In fact the 

use of X O R is so widespread that the combining function becomes redundant when 

comparing stream ciphers. 

Further implementation advantages transpire from the independence of plaintext 

data to keystream generation, in that stream ciphers only have to process the 

incoming data in the most minimal of ways. For the combining function this means 

incoming data only need be processed through a single X O R gate before outputted, 

thereby giving the stream cipher a low latency characteristic highly desirable for 

video transmissions. The absence of data processing in the keystream generator 

also benefits resource usage, although initialisation to mix the keystream generator's 

state after re-keying is still required to avoid security vulnerabilities. 

Generating the complexity necessary to securely imitate a random stream wi th 

a keystream generator has proved to be a challenging task for cryptographers wi th 
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a number of high profile schemes succumbing to vulnerabilities [51, 52]. However, 

as wi l l be seen when we look at stream ciphers in greater depth in Chapter 4 the 

resource efficiency of this form of symmetric encryption appears to be a good match 

to that of protecting data in a restricted hardware environment and newer algorithms 

would appear to resolve some of the security concerns. Indeed the recent stream 

cipher SNOW3G specified for confidentiality protection [53] in th i rd generation 

mobile phones not only shares a setting similar to that intended for secure display 

but has also proven resistant to attack. 

3.4 Asymmetric Encryption 

A further type of cryptographically secure encryption exists where the parties involved 

in a transmission do not share the same key and instead have their own individual 

keys. This asymmetric situation is very different to symmetric encryption in that 

no secret need be transmitted. The actual encryption process revolves around each 

party generating a fixed length public key which may be used by any other party to 

securely send it information but which on encryption becomes impossible for any 

party apart from the receiver to decrypt. This concept of a public key means that 

asymmetric encryption is more commonly referred to as public-key cryptography. 

Public key cryptography relies on mathematically hard problems that are easy to 

solve in one direction but are extremely difficult to solve in the reverse direction. Two 

problems have typically been used: the factorisation problem, of trying to determine 

factors of a large integer; and the discrete log problem, of t ry ing to determine the 

exponent of a value for a given base. Early public-key schemes making use of these 

problems would respectively be Rivest, Shamir and Adleman's method (RSA) [54] 

and El Gamal's method [55]. 

The price paid for the one way nature of asymmetric algorithms and the associated 

channel security is that of computation cost. Both encryption and decryption require 

computational intensive operations, such as modular exponentiation (calculating 

c = ine(modn)) to perform the underlying mathematics making them orders of 

magnitude slower than symmetric key based ciphers and unsuitable for use in high 

volume data applications. However, for small data quantities such as session key 

transmission and email, these slow speeds are a perfectly acceptable exchange for being 

able to transmit securely over an unsecured channel. In fact, asymmetric encryption is 

of critical importance for key sharing as well as identity authentication and therefore 
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its implementation is desirable for almost all data security devices. Indeed Diffie 

and Hellman, who actually introduced the idea of public key cryptography to the 

research community back in 1976 [56], focused their initial scheme [55] at the area of 

key agreement. 

As is touched upon in Section 6.2, the security of the key length used in public 

encryption schemes has been subject to much analysis, and this increased under­

standing of their vulnerability has led to a growth in key sizes used. Currently i t is 

thought that the RSA algorithm requires a 3072-bits to achieve a similar security 

level to a 128-bit keyed symmetric cipher [57] (pp.19). Storage and manipulation of 

these large values and the need for the costly modular exponentiation operations are 

a significant barrier to the implementation of the discussed public-key cryptography 

schemes in resource constrained environments such as smart cards. 

In view of this, another approach to public-key cryptography was developed by 

Koblitz and Miller based upon the harder elliptic curve discrete log problem [58, 59]. 

Although stil l requiring complex mathematical operations, the modified problem 

allows elliptic curve cryptography (ECC) schemes to utilise smaller 256-bit key sizes 

when providing an equivalent level of security, enabling more efficient implementation. 

Nonetheless both ECC encryption and decryption performance sti l l fall well below 

the capabilities of symmetric encryption schemes with Dormale and Quisquater [60] 

indicating high speed implementations require 35kGE. 

3.5 Random Number Generation 

Universal in both asymmetric and symmetric encryption is the importance of the 

key in providing a system with security. Data protection schemes therefore demand 

a high quality of random variable be used for this value and so in the penultimate 

section to the chapter we briefly explore the concept of randomness and random 

number generation. 

3.5.1 Randomness 

To understand the security provided by cryptography a good foundation is needed 

in the idea of randomness. In the real world something is ful ly random if events 

are entirely unpredictable: often radioactive decay is described as an example of 
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this since a nucleus wi l l decay at a time independent of other nuclei and in an 

unpredictable fashion. While undoubtedly true, this source of randomness does 

not satisfy the cryptography definition of a random source due to the exponential 

distribution of events with time. 

In cryptography, ideal randomness means that not only do outcomes of events 

have to be independent, but also their probability distribution must be flat and 

equal. In the digital world this translates to the outcomes logic 1 and logic 0 each 

having a probability of 0.5 and that successive events be independent of all previous 

events. The information entropy [61] content of each bit of such a binary stream is 

1-bit, meaning that i t is impossible to deduce any outcomes by obtaining another 

part of the stream and i t is not possible to use compression on the stream as the 

information content is already 100%. 

In cryptographic encryption i t is aimed to produce a ciphertext that closely 

mimics this ideal random stream of bits, while ideal randomness is also desired 

for key generation due it rendering all key guessing attacks no more effective than 

exhaustive search. The lack of ideal or at least near ideal randomness is often the 

source of failure in cryptography schemes, with the randomness failings of the MD4 

implementation in Netscape [62] being one well publicised example. 

3.5.2 Random Number Generators 

To produce a truly random bit-stream, cryptographic applications use a dedicated 

random number generator (RNG) to process some fundamental noise source into 

a usable form. I t is desirable to avoid any form of predictability in this source 

and so typically thermal noise, shot, noise and flicker noise are used, harnessing the 

randomness of events at the quantum level. 

W i t h such low level noise sources and the need to avoid bias in the generated 

output, the hardware implementation of a RNG is relatively complex. Typically it 

requires mixed-signal design with the combination of resister noise amplification and 

oscillator j i t te r detection being a common implementation [63, 64, 65]. Designs of 

RNG which avoid the need for amplification have also been suggested, including 

utilising flip-flop metastability [66, 67, 68, 69, 70] and transistor based electron traps 

[71]. To remove any remaining bias and aid the resistance of the RNG to active 

attacks post processing logic is used in fielded designs; this as in the Von Neumann 

corrector [72], where only differing pairs of bits are processed, wi l l usually reduce 
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the output rate of the RNG as well as make it irregular. 

Much of the recent interest in R N G design has focused towards their use in 

smartcards and implementation results by Bucci [64] on these devices have indicated 

that high quality random number generation uses around a quarter the area needed 

for a compact AES implementation [73]. RNG use in the equally restricted application 

environment of secure display should have a similar associated cost. 

3.6 Discussion 

This chapter has considered a wide variety of protection schemes used to secure 

commercial multimedia data in a consumer environment as well as a number en­

cryption types that are cornerstones of modern cryptography. I t is seen that the 

history of multimedia protection schemes has been littered with vulnerabilities and 

failures, again highlighting the difficulties faced in securing multimedia transmissions 

in a secure display system. These failures have been particularly prevalent among 

pseudo-secure and passive security systems where keys cannot be revoked. However, 

the ful ly secure active systems of recent commercial pay-TV are also unsuited to a 

secure display setting, due to high processing requirements. 

The standard cryptographic forms analysed offer greater potential for use in 

the decryption function block of the proposed secure display system. Symmetric 

encryption is well suited to the task, processing high throughput streams of data; 

be this in small blocks, as a block cipher, or as individual characters, as a stream 

cipher. From a security perspective the use of a block cipher to protect display data 

has many attractions as there is a great deal of confidence in the security of these 

modern algorithms, due to their wide use and well understood structure. 

Stream ciphers have had, as noted in Section 3.3.2, numerous high profile algo­

rithmic vulnerabilities and understanding of the issues surrounding secure keystream 

generation has been at a very embryonic stage. These ciphers do, however, have 

inherent characteristics relative to block ciphers, of low resource usage, high through­

put efficiency, and low power consumption, that makes them particularly attractive 

to the constrained environment of secure display. Furthermore, the lack of latency 

seen in stream cipher decryption, makes them ideally suited to time-critical data 

applications such as live video streaming and user interaction scenarios where fast re­

sponse times are critical. The ability of the stream cipher to reuse identical hardware 
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for decryption and encryption may also provide a small additional resource efficiency 

benefit to the application of secure display in data entry panels (Section 2.2.2). 

The attractive characteristics of stream cipher hardware implementation makes 

this category of cryptographic primitive the preferred candidate for use in secure 

display if new secure hardware focused designs can be realised. In late 2004 an 

announcement was made [74] of a new stream cipher competition called 'eStream' 

which aimed to explore just such secure and efficient algorithms. This competition 

and a more generalised discussion of hardware stream cipher design forms the topic 

of the next chapter. 
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Chapter 4 

eStream 

SP E E D and efficiency have long been temptations of cipher designers and i t is the 

stream cipher's potential to offer both that has been captivating cryptographers 

since its conception almost a century ago. However, recent security failings in a 

number of high profile primitives has led to the validity of the stream cipher as a 

useful form of encryption being questioned. 

This chapter charts the rise and fall of the stream cipher and outlines the potential 

road to recovery offered by the recent and ongoing European effort. eStream. A 

number of new cipher proposals are considered in detail so as to both assess their 

potential for usage in secure display and to determine whether the algorithms offer 

sufficient advantages for them to be chosen over the widely used AES block cipher. 

4.1 Introduction to the Stream Cipher 

As mentioned briefly in Section 3.3.2, the stream cipher is a core form of cryptographic 

primitive that is capable of providing symmetric encryption. Its structure is based 

around two core parts: the keystream generator, producing a pseudo-random sequence 

of bits that forms the keystream; and the combining function, mixing this stream 

with an incoming plaintext stream to encrypt, or an incoming ciphertext stream to 

decrypt. Stream cipher combining functions are generally chosen to be self-inverting 

so the decryption process wi l l be identical to that of encryption. A diagram of the 

stream cipher encryption structure can be found back in Figure 3.2. 

Two categories of stream cipher exist: synchronous and self-synchornous. The 

31 



4. eStream 

Key 
Keystream 
Generator 

Keystream 
Generator •Key 

Plaintext1 •©- Ciphertext - - ' v - > Plaintext 

(a) Synchronous stream cipher 

Key Keystream 
Generator 

Plaintext ->• Ciphertext 

Keystream 
Generator Key 

Plaintext 

(b) Self-synchronising stream cipher 

Figure 4.1: S tream ciplier types and their method of operation 

synchronous stream cipher is the most common form and uses only key material for 

its generation of the keystream, while the less common self-synchronising stream 

cipher uses both key material and previous ciphertext symbols. An overview of the 

operation of synchronous and self-synchornous stream ciphers is shown in Figure 4.1. 

As i t is almost universal in modern stream ciphers to use the binary additive form 

of keystream mixing, both figures are shown wi th an X O R operation replacing the 

combining function. 

The independence of a synchronous stream cipher's keystream generation f rom 

the message data provides this type of cipher with a number of properties not present 

in block ciphers. These include resistance to both chosen-plaintext and ciphertext 

attacks, and an ability to prevent bit-flipping errors in a transmitted ciphertext symbol 

from propagating into any other plaintext material except that of the corresponding 

plaintext symbol. The self-synchronising stream cipher's ciphertext input to the 

keystream generator means that it is data dependent, and thus possesses none of 

these properties. However, i t enjoys another unique property — that of an ability 

to resynchronise with the incoming ciphertext stream after an insertion or deletion 

error occurs in transmission. For this to be useful the self-synchronising cipher's 

keystream generator must lose the complete time dependance of the synchronous 

cipher, so that after a fixed number of ciphertext symbols sufficient information is 

obtained to regain synchronicity. 

Internally the keystream generator of both synchronous and self-synchronous 

stream ciphers typically contain three main elements: a state memory, which stores 
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Figure 4.2: General structure of a synchronous stream cipher 

information on the generator's current state; an update function £ which updates 

the state memory in a manner that provides complexity to the system; and a 

filter funct ion h, which disguises the keystream output so that state information 

remains secret. The generalised structure of a synchronous stream cipher's keystream 

generator is shown in Figure 4.2. For a self-synchronous stream cipher this structure 

wil l differ substantially, with the state update function essentially being the entire 

cipher, as a result of the inclusion of ciphertext. 1 

As previously mentioned, stream cipher keystream generation is dependent on 

the symmetric key. However, also shown in Figure 4.2 is a further insertion to the 

keystream generator in the form of an initialisation vector or initialisation value 

(IV). This additional public variable is mixed with the key material at the keystream 

generator's initialisation, making the cipher's starting state a unique combination 

of these two values. Multiple IVs can be used for any single key with the resulting 

advantage that the secret key may be retained for more than one transmission — 

thus avoiding the costly overhead of repeatedly performing secure key exchange. In 

frame based communications, where the I V is typically taken directly as the frame 

number, this advantage is particularly pronounced, leading to widespread acceptance 

of I V use. The incorporation of IVs into the keystream generation process has a 

notable further consequence, wi th the ease of frame retransmission caused by the 

inclusion of an I V diminishing the impact of synchronisation errors in synchronous 

cipher schemes — effectively leaving the primary advantage of the self-synchronising 

stream cipher nullified. 

1 More details on self-synchronous stream cipher structures may be found in the Handbook of 
Applied Cryptography [25] (pp. 194-195). 
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4.2 Cipher Categorisation 

The difference between stream ciphers and block ciphers as described in Section 3.3 

would appear significant. However, the distinctions can become muddied depending 

on how we choose to perceive the algorithm's structure. Indeed a stream cipher 

can be considered as block cipher wi th a very small block size, and a block cipher 

likewise as a stream cipher with a very large character size. 

This overlap in the distinction made between forms of symmetric encryption 

is supplemented by some of the usage configurations seen in these ciphers. Self-

synchronising stream ciphers are a prominent example of this — they have a data 

dependant output characteristic more usually associated wi th block ciphers, but 

equally they retain the time dependent property of a stream cipher that means 

encrypting the same block of data with the same key may produce differing outputs 

due to the dependence on the sequence of previous operations. Similarly, i t is unusual 

to utilise block ciphers in their base form — the electronic codebook (ECB) mode — 

due to its propensity to leave data patterns in the output ciphertext. More commonly 

cipher-block chaining (CBC), cipher feedback (CFB), counter (CTR) and output 

feedback (OFB) modes of operation [75] are used (Figure 4.3), all of which make 

the encrypted output sequence dependant. The later two modes, C T R and OFB, 

actually transform the block cipher into a synchronous stream cipher, while CFB 

mode instead gives the resulting cipher self-synchronising properties. 

This uncertainty as to categorisation also affects consideration of the origins of 

the primitives themselves — for instance i t can be argued that the 16th century 

Vigenere cipher is a form of stream cipher (see Section 4.3.1). I t is notable, however, 

that this cipher is not binary additive, as data and keystream are combined on 

a character by character basis w i th the letter output dependant on an alphabetic 

rotation. As this operation provides much of the complexity to the Vigenere cipher, 

i t is probably more correctly categorised as a block cipher wi th a key being mixed 

with a block of data to produce an equal length ciphertext output. 

A number of cryptographers have attempted to develop better definitions of 

synchronous and self-synchronising stream ciphers, wi th two of the more promising 

being provided by Ekdahl [76]. By combining both these definitions i t is possible to 

derive a complete definition for the extent of stream cipher encryption primitives: 

Definition 4.1: A stream cipher is a finite state machine for which the keystream 

output is generated from the key and a fixed number of previous ciphertext symbols, 
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but independently of the plaintext message. 

Under this definition the synchronous stream cipher is seen as special case of the 

self-synchronising stream cipher, where the fixed number of ciphertext symbols has 

been set to zero. I t wil l be noticed that despite not defining the combining function 

the simple exclusion of plaintext material immediately excludes all block ciphers 

except when used in the CTR, OFB and CFB stream cipher style modes of operation, 

and defines Vigenere's autokey cipher [77] as being distinct from a stream cipher. 

A further curious consequence of Definition 4.1 is that the recent stream cipher 

Phelix (see Section 4.6.5) is not classified as being a stream cipher, due to its plaintext 

input to the keystream generator. The performance characteristics outlined later in 

Section 4.2(c) and the cipher's overall structure would indeed seem to fit more closely 

into the category of a block cipher — perhaps confirming that this definition is still 

accurate. Nonetheless, i t is probably reasonable to continue to refer to Phelix as a 

stream cipher, as when the algorithm's authentication functionality is not needed 

the offending plaintext input can be eliminated. 

4.3 Stream Ciphers and History 

The origins of stream ciphers are as uncertain as their definition, wi th the phrase 

notably absent f rom Kahn's 1967 comprehensive history of secret communications 

[78]. Nevertheless, the origin of the concepts behind stream ciphers would seem to 

lie many years prior to this date, and so a brief examination of their early history is 

useful. 

The stream cipher's recent history is also shrouded in mystery. Their application 

has mainly been in the mili tary and telecommunication industries, where there is 

a strong incentive to keep primitives confidential: an example of this reluctance to 

publish stream cipher schemes can be seen as recently as the 1990s with the GSM 

standard for mobiles (see Section 4.4.1). Laterally however, security concerns and a 

drive towards greater openness in the telecommunications industry have meant that 

a number of stream cipher designs have been publicly disseminated. 
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4.3.1 Early History of Stream ciphers 

In 1553. [79] Giovan Belaso would define a form of encryption that would later 
become know as the Vigenere. This cipher was one of the first primitives that could 
truly be called a stream cipher, with its operation involving the generation of a 
keystream simply by repeating the key, and a combining function consisting of the 
alphabet based modulo-26 addition of individual plaintext characters with keystream 
characters. The balance of complexity provision in this structure — as mentioned in 
Section 4.2 — leads however, to the conclusion that it is better described as a block 
cipher. Nonetheless, as a form of encryption it would remain publicly secure until 
the 19th century. 

The next stage in the development of stream ciphers would occur during World 
War I with the development of the Verman cipher [80]. This cipher, based around 
a paper-tape driven electromechanical device, is arguably the true origin of the 
stream cipher, and its design would later be outlined in Gilbert Vernam's 1919 patent 
[80]. The Vernam cipher introduced the idea of mixing plaintext with keystream 
material through the use of a bit-wise X O R combining function — in this case electric 
relay based. I t also brought automation to the encryption process by using 5-bit 
Baudot coded characters throughout the system and tape inputs for key and plaintext 
material. 

One significant aspect of stream ciphers that was missing from the Vernam design 
was any sort of complexity in the keystream generation process, with the output 
keystream formed directly from key material. This direct use of the key would lead 
to Vernam having a number of problems in managing long reels of key material,2 but 
would also lead to one of the most important developments in cryptography. Repeated 
use of key material and the use of non-random key material had not specifically 
been prohibited by Vernam. and according to [25] (pp.274) shortly after seeing the 
cipher U.S. Army cryptologist Joseph Mauborgne suggested these modifications to 
improve its security. The resulting cipher — the one-time pad — has since been 
proved to be theoretically unbreakable [40] and is thought to be used in some high 
level communications even to this day. 

Subsequent to the Verman design, ciphers moved to a greater range of automation 
and a number of rotor based cipher machines were developed for use with teleprinters. 
These used various sized rotating wheels to provide a long period keystream which 

2 To overcome the problem of long tape reels Morehouse [81] would in 1918 propose generating 
keystream through the combination of two short tapes that were relatively prime in length. 

37 



4. eStream 

could be used for polyalphabetic substitution to encrypt transmissions. Various 

designs existed for these machines but a prominent example that shared much with 

the modern synchronous stream cipher was that of the 1940 Lorenz SZ40 cipher. 3 

This early Lorenz cipher was used by the German Army High Command during 

World War I I and had 12 rotor wheels of varying sizes forming its state. Five of 

these would be rotated incrementally while another five would be variably clocked 

depending on an output generated by the remaining two. A long period, pseudo­

random keystream produced by combining the incremented and variably clocked 

wheel sets was then mixed wi th incoming plaintext characters through a bit-wise 

X O R operation to form ciphertext characters on a 5-bit wide teleprint. The ini t ia l 

rotor positions set by the signal operator were effectively the cipher's IV. The Lorenz 

cipher in its later SZ42 form actually became an autokey cipher and used plaintext 

information along with the key to generate keystream in a fashion not dissimilar to 

a self-synchronous stream cipher's use of ciphertext. 

The adjustable pinwheels used in both machines had sizes {43,47,51, 53, 59,61, 37, 

41,31,29,26,23} giving an effective state size and key length of 501-bits while an IV 

based on the 1.6 x 10 1 9 starting positions was used to maintain the practicality of 

regular message encryption. However, the infrequent alteration of wheel patterns, 

the alphabetic labelling of pinwheel positions, the pairing of wheels for each of 

the 5 teleprinter lines and the limited inter-linking through the variable clocking 

would mean the strength of the cipher was much lower than these figures appear 

to indicate. The lack of true randomness, repeating messages and use of repeated 

settings would indeed allow cryptographers at Bletchley Park in the U.K. to develop 

a fu l l understanding [82, 83] of the Lorenz machines without actually seeing one and 

would further enable many of the initial settings to be retrieved. These key recovery 

attacks developed throughout the war were famously automated in 1944 by the first 

electronic digital computer, Colossus — a topic further discussed in Section 6.2. 

4.3.2 Linear Feedback Shift Registers 

The advent of digital electronics meant that the rotors of the teleprint machines 

were replaced by the binary logic structure of a. Linear Feedback Shift Register 

(LFSR) which is both easy to implement and capable of producing large period 

pseudo-random streams with good statistical properties. Indeed in the United States 

3 The slightly earlier Siemens and Halske T52 cipher also shared many characteristics with modern 
stream ciphers though it, included an unusual state driven transposition at its ciphertext output. 
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Figure 4 .4 : L i n e a r Feedback Shift Register structures 

this component formed the basis of secure government teletypewriter communications 

from 1955 onwards through the use of the electronic KW-26 machine [84]. The 

cipher developed for the KW-26 is one of the first recognisable stream ciphers, using 

a LFSR driven keystream generator, a modulo-2 binary addition combining function 

similar to the Vernam cipher and a fixed length key from a punched card. 

The LFSR itself is based around a shift register tapped at points along its length 

so as the next input is a linear function of its state. I f these tap points are chosen 

carefully and seeded with a non-zero starting state i t is possible to produce a maximal 

sequence of the input bits that produces every non-zero combination possible in an n 

bit register and results in a period (2" - 1) in length. Two types of tapping structure 

exist; the Fibonacci LFSR: where shift register taps are combined every clock cycle 

through an X O R operation and fed back into the input: and the Galois LFSR, where 

the shift register output directly provides the input while also altering the shifting 

process at each tap point via an X O R operation. The two types of LFSR are shown 

in Figure 4.4. 

The Galois structure has an advantage over Fibonacci LFSRs in that the need 

to combine multiple taps is avoided, thus reducing the propagation time between 

states to that of a single XOR. Despite this, the regular shift register structure of the 

Fibonacci configuration means it is commonly favoured. 

Both LFSR configurations have a capability for use as a stream cipher's pseudo­

random keystream generator where the chosen tap positions form the secret infor­

mation of the key. However, the Berlekamp-Massey algorithm developed in 1968 and 
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later presented by Massey [85] can attack the linearity of these structures and this 

has seen their direct use for keystream generation fall out of favour. This iterative 

algorithm requires just twice the state size in outputs to resolve the tap positions 

and effectively forces ciphers founded on the LFSR to maintain huge state registers 

half the message length long if they are not to be vulnerable. As such, in its pure 

form an LFSR based stream cipher provides l i t t le practical advantage over that of 

the one-time pad. 

Attempts have been made to suggest periodic functions capable of replacing the 

LFSR [86] but the good statistical properties, long period and hardware efficiency 

of the LFSR has meant i t has stubbornly remained as the underlying component 

behind most stream cipher update functions to this present day. 

4.3.3 Other Update Functions 

W i t h the insecurity of practical keystream generators based directly on the LFSR, 

cryptographers have looked at other ways to improve the complexity of keystream 

generation. A primary focus has been on destroying the linearity present in the 

LFSR through the addition of a non-linear element. Various functions have been 

proposed to achieve this, including: non-linear feedback shift registers, where the 

feedback to the shift register is altered to no longer be a linear function of the tap 

point values; non-linear filters, where the output of an LFSR is passed through a 

non-linear function before being sent to the keystream output; non-linear combination 

generators, where multiple LFSRs are combined in a manner designed to increase 

complexity; and variable clock control where the LFSR is no longer clocked in a 

regular fashion. The theory and implementation of these mechanisms are outlined in 

much greater detail in the Handbook of Applied Cryptography [25] (pp.202-212) but 

many can also be seen in the various stream ciphers examined later in this chapter. 

4.3.4 RC4 

While derivatives of the LSFR are efficient to implement in hardware, their efficiency 

in software is much less pronounced. So when Ron Rivest of RSA Laboratories 

came to developing a software stream cipher in 1987 [87] he did not use the LFSR 

device at all, instead relying on byte manipulations in the permutation of its internal 

state. This provided great software efficiency and led to RC4 becoming one of the 
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most widely used stream ciphers, wi th applications as varied as securing internet 

communications [88]. wireless networks [34, 89] and document files [90]. However, 

despite this popularity, the history of the cipher has been far from untroubled. 

The algorithm itself was never actually published, remaining a secret unt i l 

anonymously being revealed in 1994 [91]. I t used a range of key sizes from 40-128-

bits and had a state size of 2048-bits which was arranged into 256-bytes. These 

bytes are iteratively swapped and summated during every cycle with the modulo-256 

summation result forming the keystream output. The initialisation of the cipher 

would take 256 cycles. In software terms, RC4 was highly efficient — using fewer 

than 80 lines of code and operating at high speed. However the large state size was 

a significant hindrance to its hardware implementation. 

In terms of security, the main problems wi th RC4 would come from its weak 

initialisation process, which led to a number of effective attacks focused on detecting 

bias in the first few bytes of outputted keystream [92]. The vulnerability would be 

increased by the fact that RC4 lacks any form of I V input mechanism, so when, in 

wireless network protocols such as WEP (Wired Equivalent Privacy) [34], i t was 

desired to encrypt new data without a costly re-keying process, simple concatenation 

of the key and I V was chosen — wi th devastating consequences [51. 93, 94]. 

These related key attacks on W E P would eventually lead to the development 

of the Wi-Fi Protected Access (WPA) that implemented most of the IEEE 802.Hi 

standard [89]. This temporary standard stil l used RC4 but saw the addition of the 

Temporal Key Integrity Protocol (TKIP) to its front end which provided a number of 

features, including a key distribution management structure, to avoid the weaknesses 

in WEP. T K I P crucially used a hash of the 128-bit secret key and I V to generate 

unique keys for each data packet instead of simply prepending a 24-bit I V to a 

104-bit or 40-bit key to form the RC4 seed as in WEP. WPA was not ideal f rom a 

performance perspective, but did provide a temporary security solution that would 

allow RC4 legacy hardware to be reused. The subsequent fu l l implementation of 

the IEEE 802.11i standard WPA2 would see the introduction of block cipher, AES, 

based encryption. 

In recent years attacks against W E P and RC4 have grown ever more effective 

[95, 96] and there have even been attempts to attack the RC4 keystream generator 

itself [97] although this has remained relatively secure. 
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Figure 4.5: Schematic description of the A5/1 keystream generator 

4.4 Stream Ciphers in the Modern World 

Following RC4 a number of other high profile stream ciphers would be fielded in the 

mobile communications industry: A 5 / 1 , used in GSM communications; E0, used in 

Bluetooth; and SNOW 3G, used in th i rd generation mobile phones. Each of these 

ciphers' history and hardware implementation are examined in detail in this section 

to give an overview of the issues affecting stream cipher use in modern mobile devices. 

4.4.1 A 5 / 1 

The A 5 / 1 stream cipher was developed for use in the GSM (Global System for 

Mobile) standard for mobile phone communications to encrypt transmissions between 

the base station and handset. I t saw widespread use during the 1990's and is st i l l 

found in many modern devices to this day. Like RC4, the details of the cipher were 

never officially published, instead being leaked [32], and later reverse-engineered [98]. 

A 5 / I is a very compact, hardware focused, synchronous stream cipher which was 

designed to securely encrypt the small data frames that form GSM communications. 

A5/1 is intended to produce two 114-bit keystreams for each frame and uses a 64-bit 

key in conjunction with a 22-bit frame number that operates as an IV. The design of 

its keystream generator (Figure 4.5) consists of three linear feedback shift registers 

of lengths 19, 22 and 23, providing a state size of 64-bits. Each of these registers 

are clocked dependant on their own control bit being in the majori ty and it is this 

irregular clocking that helps give A 5 / 1 a degree of non-linear complexity. 
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In operation the cipher is initialised by setting the registers to zero and then, 

w i th the irregular clocking deactivated, feeding in the 64-bit key a bit at a time 

to the LFSR feedback loops via an X O R operation. Following this the 22-bit I V is 

similarly fed in before the whole cipher is clocked for 100 cycles wi th the irregular 

clocking activated and the output disabled. The keystream that is outputted for the 

next 228 cycles is collected and XORed wi th the GSM frame data. 

The first attack on A 5 / 1 was presented by Golic in 1997 [33] and targeted the 

cipher's small state through a time-memory trade-off based arrangement. Shortly 

after the fu l l reverse engineering of the specification in 1999, [98] two more refined 

attacks against the cipher were found: Biham's guess and determine attack [99] 

requiring 2 4 0 operations, a similar number of precomputations and 32GB of memory: 

and Biryukov's [100] short active time attack based again on time-memory trade­

off and requiring 2 4 2 pecomputations and 300GB of memory. Subsequent to this 

a number of very practical attacks have been described against A 5 / 1 , including 

a correlation attack by Ekdahl and Johansson that takes just a few minutes of 

precomputation on a standard PC and requires 2 1 6 data frames. As such, the A 5 / 1 

stream cipher is now considered insecure, although the continued strong user base of 

the GSM network means its withdrawal is impractical. 

4.4.2 EO 

The synchronous stream cipher E0 is widely used in short range, low power commu­

nication devices with the cipher being created for the Bluetooth specification [35] to 

encrypt packet payload data. Originally specified in 1999 the security of this compact 

cipher was compromised [101] in only one year and by 2005 practical conditional 

correlation attacks would be being specified against the cipher [102] using just 2 2 4 

data frames and 2 3 8 computations. 

The cipher itself uses four LFSRs of length 25, 31, 33, and 39-bits to provide a 

long period and a small 128-bit state. EO's keystrearn is generated by combining the 

outputs of these shift registers wi th a function calculated by the very same outputs 

(Figure 4.6). The summation combiner and blend function make up a finite state 

machine that introduces crucial non-linearity into the system. 

In operation the E0 has quite a complex initialisation procedure which takes 

the agreed 128-bit key and feeds i t through a function involving the taking of a 

modulus of individual bytes and ANDing them with a constant. This resulting 128-bit 
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Figure 4.6: Schematic description of the EO keystream generator 

cipher key, combined with an I V consisting of a 48-bit bluetooth device address, a 

26-bit clock time and the constant 111001. are then shifted into the four LFSRs with 

feedback ini t ial ly deactivated. As each LFSR is filled, that register's feedback is 

activated and on the filling of L4 the blend function's registers are set to zero before 

a further 200 cycles are used to input the remaining bits and mix the state. The last 

128-bits of produced output is used to refill the LFSRs in a parallel load operation 

before the cipher finally outputs its first bit of keystream. 

Despite the insecurities in the EO cipher other security concerns in the Bluetooth 

specification have been of more pressing concern to the Bluetooth Special Interest 

Group with the recent enhanced data rate version of the specification concentrating 

on addressing the user security issues in areas of key agreement and key strength 

[103]. 

4.4.3 SNOW 3G 

As has been illustrated by the discussions of the ciphers RC4, A 5 / 1 and E0, few of 

the stream ciphers released in the recent past have survived the security tightrope. 

SNOW 2.0 [104] is one of the more efficient exceptions to this trend, making it an 

attractive candidate for ISO standardisation and. in its later incarnation as SNOW 3G 

[53], widely used in 3GPP UTMS mobile phones. 

The origins of SNOW 3G and SNOW 2.0 lie in the synchronous stream cipher 

SNOW [105] first proposed in 2000 as part of the NESSIE evaluation project (see 

Section 4.5.1). The structure of SNOW, is shown in Figure 4.7 and is based around 

a LSFR providing a long period to the internal state and a finite state-machine 
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Figure 4.7: Schematic description of the SNOW keystream generator 

manipulating this in a non-linear way to provide sufficient unpredictability to justify 

128-bit and 256-bit key lengths. The cipher also specifies a 64-bit I V which when 

used requires an initialisation period wi th the keystream disabled of 32 cycles. 

The novel aspect of SNOW in comparison to similar software stream ciphers is 

that all operations take place on 32-bit blocks of data instead of single bytes or bits — 

this allows software to work in a word-orientated manner and facilitates very efficient 

processing of state updates. This wider register structure has a number of negative 

effects on hardware implementation in that it creates a large state size for the cipher 

of 576-bits while increasing the complexity of the modular addition operations and 

the substitution-box transformation in the finite state machine. Nevertheless, in 

applications requiring purely throughput efficiency, the 32-bit/cycle keystreani output 

largely mitigates any area disadvantage. 

The design goals outlined by the authors [105], of being faster than the AES in 

software and having a lower implementation cost in hardware, would largely be met 

by this primitive. The final goal however, to maintain a similar security level, was, at 

the second phase of the evaluation process, proved to be unfulfilled. Two insecurities 

were found in the form of a distinguishing attack [106] and a guess and determine 

attack [107], and although most likely impractical to implement, their complexity 

— at least in the case of the former attack — falls below that of exhaustive search. 

As a result, in 2002 a modified version of the cipher was suggested in the form of 

SNOW 2.0 [104]. 

SNOW 2.0, like its predecessor, uses a keystreani generator structure based around 

a shift register and finite state-machine as shown in (Figure 4.8). The cipher takes 

both 128-bit and 256-bit keys as well as a lengthened 128-bit IV and again operates 
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Figure 4.8: A schematic diagram of SNOW 2.0 

in a word orientated manner to maintain software efficiency. Initialisation involves 

filling the shift register with the key and IV material pre-combined through a specified 

XOR operation and then clocking the cipher 32 times before the first word of key 

stream is outputted. The maximum number of keystream words produced before 

re-keying is set at 2°°. 

The main change f rom the original version is in regards to the feedback loop, 

where efforts were made to improve the spreading of bits and leave the cipher more 

resistant to attack. The cipher has an altered feedback polynomial and also uses 

two constants instead of just one, wi th their move inside the feedback loop noted 

to actually improve the cipher's speed. The other significant changes are in the 

non-lineararity providing finite state machine which takes a second input from the 

shift registers to prevent the guess and determine attack of [107]. SNOW's authors, 

Ekdahl and Johansson, would also change the S-box to that of the AES to provide 

improved diffusion. 

The subsequent five year period has proved SNOW 2.0 to be one of few stream 

cipher algorithms which can reasonably be described as secure and has acceptable 

efficiency in hardware and speed in software. I t has undergone much cryptanalysis in 

this time [108. 109, 110], but the attacks even against the 256-bit key version have 

produced little in the way of results and require too much data to be practical. Indeed 

this confidence has led to SNOW 2.0 becoming part of the ISO/TEC 18033-4 standard 

[111] as a recommended stream cipher primitive. Its high performance in software 

has also led its inclusion as a reference stream cipher for software performance [112] 

in the eStream Project described in the remaining sections of this chapter. As can be 

seen in [113] and Section 4.7.5 the software performance of SNOW 2.0 still compares 
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favourably wi th many more recently proposed designs. 

SNOW 3G [53], shown in Figure 4.9 is based directly on SNOW 2.0 with only an 

extra S-box added by the 3rd Generation Partnership Project (3GPP) to improve 

its resistance against algebraic attacks. The algorithm finds widespread use in 

third generation mobile phones where i t is used for the confidentiality and integrity 

functions f8 and f9 of the 3GPP UTMS (Universal Mobile Telecommunications 

Standard) [53]. However, after the mobile phone industry's previous experience 

experience wi th GSM and the weaknesses in A 5 / 1 , a very cautious approach has 

been taken and the standard also accommodates a variation on the M I S T Y 1 block 

cipher [114], K A S U M I , as an alternative to providing confidentiality and message 

authentication of user data. 

As demonstrated by the implementations in [53] SNOW 3G is about 50% larger 

than SNOW 2.0 and operates with very similar performance, although both have a 

throughput 4 times that of the specified block cipher K A S U M I . These figures are 

less impressive when compared to hardware focused algorithms which tend to have 

the advantage of a much smaller state size. Nevertheless, as seen in Table 4.2(c) 

later in this chapter, the performance of SNOW 2.0, even in hardware, is comparable 

to all but the most efficient stream cipher designs. 

4.5 The eStream Project 

Beginning in 2004 and predicted to finish in 2008. the eStream Project is a multi-year 

attempt by the ECRYPT network of excellence to generate new stream cipher prim­

itives and to comprehensively examine the field of cryptography surrounding stream 
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ciphers. It is hoped that the resulting designs will be suitable for widespread adoption 

and wil l provide benefits to a large number of communication-based applications. 

4.5.1 The Failure of NESSIE 

In 2000 it was decided to review the primitives and protocols used in data security 

systems in a project called NESSIE (New European Schemes for Signatures. Integrity 

and Encryption), with the aim of recommending methods for seven different areas of 

cryptography: block ciphers, stream ciphers, message authentication codes, asym­

metric encryption, digital signatures and digital identification. Seven stream ciphers 

in all were considered B M G L , SNOW, SOBER-U6, SOBER-t32, L E V I A T H A N , 

LILI-128 and RC4 — however, in the final report [115] the NESSIE consortium 

found that although i t could recommend algorithms in six of the seven areas, a 

recommendation in the remaining area of stream ciphers was not possible [116]. 

A comment was made by one of the reports authors that " i t is quite remarkable 

that none of the six submitted stream ciphers meets the rather stringent security 

requirements put forward by NESSIE." [117]. 

4.5.2 A Way Forward 

In response to this failure to find an efficient and secure stream cipher, the ECRYPT 

Network of Excellence set up a pivotal workshop in 2004 called SASC (The State 

of the A r t of Stream Ciphers) w i th the remit to foster a greater understanding of 

what makes a good stream cipher and assess whether the stream cipher had a viable 

future in the face of the widespread acceptance of block ciphers. 

When the workshop took place in October 2004, this viability was openly ques­

tioned on a number of levels, w i t h the exhaustive examination presented by A d i 

Shamir in "Stream Ciphers: Dead or Alive?" [118] arguing that the time of stream 

ciphers may have passed as potential size and speed advantages become irrelevant in 

the face of advancing technology. Despite this, industry contributors such as Steve 

Babbage of Vodafone UK indicated [119] there were indeed a number of commercial 

areas such as those of resource and power constrained communications and high 

speed software based communications where the attractions of the stream cipher 

were still compelling. 

Subsequent discussions centred on the woeful lack of understanding surrounding 
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the design and analysis of stream ciphers when compared to that of block ciphers. As 

a proper assessment of the true viability of stream ciphers could not occur until such 

an understanding had been obtained the workshop concluded that a co-ordinated 

effort would be needed in the field. I t was proposed that the greatest opportunity 

for achieving this lay in instigating a design project along the lines of the National 

Institute of Standards and Technology's block cipher competition [120] that had, 

a few years previously, led to the selection of the popular Advance Encryption 

Standard. 

4.5.3 Call for Primitives 

In November 2004 a call for stream cipher primitives [74] was made by the ECRYPT 

Network of Excellence as part of a competitive project to find a new stream cipher 

suitable for widespread adoption. The project surrounding this call would later be 

entitled, 'eStream.' 

The call proposed that stream cipher entries should be aimed at two key areas 

given the names Profile 1 and Profile 2. Profile 1 would encompass stream cipher 

proposals which targeted the software usage extreme of maximal throughput while 

Profile 2 would focus on stream cipher proposals which aimed to minimise the 

resources needed for hardware implementations. A number of criteria accompanied 

these profiles and Profile 1 ciphers were required to accommodate 128-bit keys and 

a I V of either 64 or 128-bits, w i t h Profile 2 proposals requiring the lesser criteria 

of 80-bit keys and an I V size of either 32 or 64-bits. Alongside this, three security 

criteria were detailed [74]: 

• "Any key-recovery attack (including time-memory-data tradeoff attacks) should 

be at least as difficult as exhaustive search." 

• "Distinguishing attacks are likely to be of interest ... however the relative 

importance of high complexity distinguishing attacks may become an issue for 

wider discussion." 

• "Clarity of design is likely to be an important consideration." 

Further subcategories, Profile 1A and Profile 2A, were specified for cipher pro­

posals that included an authentication method. The message authentication code 
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length was set at 32, 64, 96 or 128-bits for the software focused Profile 1A designs 

and 32 or 64-bits for those designs aimed at the hardware Profile 2A. 

The aim of the initiative was not just to be able to recommend primitives suitable 

for use in commercial systems but also to "derive good stream ciphers1' [74]. W i t h 

the failures of the past i t was seen as critical to increase the understanding around 

algorithm design wi th in the field and as such the first phase of the project was to 

"concentrate on accumulating information" [74], using this to maximise the strength 

of stream cipher proposals. In light of this i t was proposed that changes to submitted 

designs would be readily permitted after the first phase ended in March 2006. 

4.5.4 Comparison to the AES 

Unlike stream ciphers, there is a good level of security confidence in block ciphers, 

with their structure well understood and algorithms tested extensively over a period 

of many years. As hinted at by the original call for primitives, to achieve similar 

levels of acceptance stream ciphers must realistically provide at least one significant 

performance benefit over the de-facto standard in block cipher symmetric encryption, 

the Advanced Encryption Standard (AES) [42]. Hardware implementations of AES-

128 at the start of eStream would use as low as 5.4k NAND gate equivalents (GE) [43], 

a Profile 2 stream cipher which could achieve a smaller footprint or could significantly 

exceed the 311Mbps throughput for a similar area would certainly prove attractive to 

a wide variety of applications. For software, resource usage was seen as less important 

wi th i t essential that Profile 1 stream cipher proposals exceed just the AES's ful ly 

optimised throughput which at around the time of the standard's agreement stood 

at 16 cycles/byte on a Intel Pentium 4 processor [121]. The remaining area where a 

stream cipher may find favour is the inclusion of an integrated authentication facility 

— this is a feature absent from the AES, making Profile 1A and 2A algorithms with 

even comparable speeds and resource usage of potential interest. 

4.6 eStream Candidates 

The 2004 call for stream cipher primitives would eventually lead to 34 proposals 

being submitted to ECRYPT ahead of the Apr i l 2005 deadline, wi th 25 of these 

aimed wholly or in part at the hardware focused Profile 2 criteria. Of these a further 

5 would include some form of authentication functionality allowing them to meet 
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the Profile 2A criteria. 

Due to the sheer number of candidates i t was considered prudent to focus research 

towards a small number of candidates with the potential performance levels to make 

them suitable for implementation on a secure display type device. In selecting 

these ciphers, aspects of design complexity, documentation quality would be of 

importance, but the main criteria, was that a proposed cipher should provide a 

significant advantage over incumbent block ciphers such as the AES. Although 

eStream would allow ciphers to be tweaked in later phases of the project, it was felt 

that with the security standing of self-synchronising stream ciphers at an even more 

embryonic stage than synchronous stream ciphers, only the 23 non-self-synchronous 

design proposals should be considered. 

The first of five stream cipher proposals selected for further analysis. Grain 

[122], has the potential for a throughput per area performance many times in 

excess of AES and is specified flexibly to allow very low resource implementations. 

Similarly the speed, flexibility and low resource usage of Trivium's [123] cross-linked 

feedback structure appears impressive. The third stream cipher. M I C K E Y [124] has 

a more complex structure and a lack of accelerated feedback leads to less flexible, 

lower throughput implementations. Nonetheless, the use of variable clocking and the 

potential of higher security of the co-defined cipher, MICKEY-128, provides a suitable 

contrast from a security perspective to the other selected hardware primitives. 

The final two cipher proposals considered both include authentication functionality 

in their specifications while still potentially operating a greater hardware efficiency 

than AES. The footprint in hardware of these ciphers is likely to be higher than 

than the three ultra low resource ciphers but. the potential resource sharing of 

integrated authentication in a final device for resource sharing was believed worthy 

of consideration. The hardware focused SFINKS [125] provides this authentication 

potential wi th the minimum of resources while the large block cipher structure of 

Phelix [126] potentially provides greater security, good software performance and 

another contrast in stream cipher design principles. 

4.6.1 Grain 

Designed aggressively for high-speed low-area implementation in hardware in its 

original submission, Grain [122] was specified to use an 80-bit key and 64-bit I V , 

meeting the criteria for a Profile 2 stream cipher. The cipher's heritage partially lies 
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Figure 4.10: Schematic description of the Grain keystream generator as original 
specified in eStream: latterly known as Grain vO 

in that of SNOW 2.0. via its second author Thomas Johansson — however, the move 

to a bit orientated structure and the use of less hardware intensive operations leads 

to a much more hardware efficient design. 

The cipher, as shown in Figure 4.10, is primarily based around two shift registers, 

a conventional 80-bit LFSR which helps provide a long minimum period and an 80-bit 

NFSR (non-linear feedback shift register) which through the 11-variable fil tering 

function g provides the cipher's non-linear complexity. These registers form a 160-bit 

state which is processed by the 5 variable filter function h and masked with a NFSR 

bit to generate the keystream. The functions g and can be found in [122] and 

simply consist of a combination of AND and XOR operations which in themselves 

pose litt le restriction to hardware size or operating speed. 

For Grain's initialisation the registers, NFSR (679, ...,6 0) and LFSR (.S79, . . . , So ) , 

are loaded directly wi th the key and I V material as follows: 

NFSR (b79,...,b0) <- (A- 7 9 , . . ,A-o) 

LFSR ( S 7 9 , . . , s 0 ) <- 1 \ . . . . , \ . I V m : . . . : I V 0 ) 

To ful ly mix this data, the cipher is cycled 160 times with the keystream output 

disabled and the output material instead fed back into the two shift registers, as shown 

in Figure 4.11. Following this the cipher returns to the conventional configuration of 

Figure 4.10 and 1-bit of keystream material is generated every cycle. 

An interesting property of Grain is that the choice of tap points for the feedback 

and filter functions allows the use of additional feedback loops to accelerate the 

keystream generation process. Figure 4.12 illustrates the use of additional hardware 

logic to double output generation to 2-bits per cycle, which not only speeds keystream 

production but halves the required initialisation mixing period. The concept can be 
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expanded further wi th the highest throughput configuration specified achieving a 

sixteen times increase in speed with 2-bytes of output per cycle. In this configuration, 

once key and IV material are loaded, Grain needs only 10 cycles to initialise, giving 

the cipher a potentially impressive key agility, although the optimal usage point may 

be less clear-cut wi th routing congestion from the additional feedback polynomials 

potentially adversely affecting achievable clock speeds. Software implementations 

should benefit from the possibilities of using broad 16-bit manipulations, and taking 

a wider context, the accelerated feedback options of Grain provide the cipher with a 

strong level of flexibility in trading data throughput against area usage, a factor which 

should prove useful in its application to resource restricted hardware environments. 

4.6.2 Trivium 

Alongside Grain, the other high performance and ultra-low resource stream cipher in 

the original eStream submissions was Trivium [123]. The cipher is specified to meet 
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Figure 4.13: Schematic description of the Trivium keystream generator 

the criteria for a Profile 2 stream cipher using an 80-bit key and 80-bit I V for its 

generation of keystream material. As shown in Figure 4.13 Trivium is fairly novel in 

its design, being based around three registers of 93-bits , 84-bits and I l l - b i t s wi th 

five element cross linked feedback functions providing both the long period and the 

computational complexity against analysis. As the authors Christophe De Canniere 

and Bart Preneel indicate in their original submission, Trivium "was designed as an 

exercise in exploring how far a stream cipher can be simplified without sacrificing 

its security" and in its use of just a handful of X O R and AND operations the design 

would certainly appear to aggressively test the limits at how simple a stream cipher 

can be whilst remaining secure. The background design philosophy of Tr iv ium is 

further described in [127]. 

Although its update functions are minimal, and well suited to compact hardware 

implementation, its state size at 288-bits is 80% larger than that of Grain, likely 

leaving i t at an overall disadvantage when a minimum area cipher is desired. How­

ever the feedback can, like Grain, be accelerated through parallelisation wi th the 

minimalist nature of the update function providing greater efficiency to the process. 

Furthermore, the large state allows Trivium to be specified for a 64-times increase in 

output giving the cipher improved software efficiency and a very high throughput 

potential of 8-bytes a cycle. This high level of flexibility provided by Tr iv ium in 

trading area usage against throughput again improves its suitability to restricted 

hardware environments. As w i t h Grain the usual caveats on routing complexity 

would apply with regard to maximum clock speeds. 

The initialisation of Trivium is slightly more complex than that of Grain and in 

its non-accelerated form after key loading it requires 1152 cycles of mixing before the 
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output is enabled and keystream bits generated. In the 64-bit parallelised version 

this figure falls to just 18 cycles giving the cipher a stil l potentially excellent key 

agility. For loading the registers Fl, G2, 773 that form the state V are fed directly 

the key and IV material as follows: 

( s 1 ; . . . ^ 9 3 ) <- (A" 0 , . . . . /^79,0, ...,0) 

( s 9 4 , . . , s m ) - (7 \ / 0 ; . . . ,7 \ / 7 9 ,0 , . . . ,0) 

( S l 7 8 . . . . . , 5 2 8 8 ) - (0,..... () ; 1, I , 1) 

4.6.3 M I C K E Y 

M I C K E Y [124] is aimed at resource-constrained hardware environments but places 

its emphasis on minimising area usage and proving security wi th a lower priori ty 

given to data throughput performance. The cipher is specified to meet the Profile 2 

criteria using an 80-bit key and 80-bit I V in its generation of keystream material. 

As shown in Figure 4.14 M I C K E Y ' s keystream generator is based around two 

80 stage, 1-bit wide registers, a variable feedback LFSR 'R' and a variable lookup 

NFSR 'S\ with MICKEY's 1-bit per cycle keystream output generated by combining 

a single bit from each through an XOR operation. The two control bits that regulate 

the cipher's variability are also generated in this manner and these help link the 

structure so that the 160-bits of state material provides the long period necessary 

and good statistical qualities for high quality keystream production. The 'control 

bit R' effectively jumps the LFSR forward (2' 1 0 — 23) times and compliments the 

non-linearity of MICKEY's state update function provided by 'S'. 

Unlike many other stream ciphers, the shift registers of M I C K E Y are of a Galois 

style construction, wi th XOR operators interspersing the individual registers — the 

detailed designs of 'R' and (S' can be found in Figures 4.15 and 4.16 respectively. The 

non-linear 'S' register is especially complex, requiring a large number of NOT and AND 

operations in its feedback structure. Although this will provide non-linear complexity, 

i t will also increase its area usage, especially for ASIC designs. Nevertheless, the fact 

that this feedback is from nearby registers should minimise routing complexities, 

making FPGA implementations efficient and the fixed values defined in [124] for 

the lookup table ' F B ' should, when implemented, lead to almost as much logic 

redundancy as additional AND gates. For the register 'R' 80 AND gates would be 

required to implement its variable feedback. 
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Although the simple operations in M I C K E Y should not significantly affect achiev­

able hardware clock speeds, the additional logic not only increases resource usage 

but also prevents the efficient feedback acceleration achievable in Grain and Trivium. 

This forces the cipher to be operated in bit-wise manner, restricting throughput 

performance and leading to inefficient implementations in software. 

In operation M I C K E Y is initialised by setting the registers to zero and then, 

with the cipher configured as in Figure 4.17. the IV is fed in one bit per cycle to the 

input (IVo being loaded first.) Following this, the 80-bit key is similarly clocked in. 

Then with the input set to zero the cipher is clocked for a further 80 cycles in the 

same initialisation configuration before the keystream is generated as in Figure 4.14. 

Although Profile 2 proposals were specified to accommodate 80-bit key lengths the 

original M I C K E Y submission would include a second cipher proposal accommodating 

larger 128-bit keys — this cipher MICKEY-128 is shown in Figure 4.18. Apart from 

larger 128-bit register sizes and increased initialisation mixing period which aim 

to maintain a target security level greater than exhaustive search, MICKEY-128 

operates in largely identical way to M I C K E Y . The extra resources needed wi l l , 
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Figure 4.18: Schematic description of the 128-bit key version of the MICKEY 
stream cipher, MICKEY-128 

however, adversely affect the cipher's software performance and hardware area usage 

making it attractive only if i t provides extra security over that of an 80-bit key. 

4.6.4 SFINKS 

Still aimed at resource constrained environment SFINKS [125] ha.s a relatively 

aggressive design approach and is specified wi th an 80-bit key and 80-bit I V to 

meet the basic Profile 2 criteria. In addition to this, the proposal describes a simple 

built-in authentication mechanism capable of generating a 64-bit MAC which allowed 

SFINKS to meet the further requirements for categorisation as a Profile 2A cipher. 

The stream cipher without authentication is shown in Figure 4.19 and follows a 

structure based around the non-linear filtering of state material. This material is 

provided by a relatively large 256-bit LFSR which is designed to give the cipher a long 

underlying period. From this 16-bits are taken and fed through a substitution-box 

(S-box) based on inversion in the field C7F(2 1 6) modulo X 1 6 + X5 + X3 + X2 + 1. 

In normal operation only the least significant bit from this operation is used in the 

keystream generation process wi th others simply discarded. A single register bit is 

used to mask this bit and form the keystream output. 

The main complexity in SFINKS comes from the design of the S-box inversion. 

If i t were to be implemented in its raw form it would utilise 64Kb of memory, 

an impractical figure for resource efficient hardware. However, as described in the 

original paper [125] the chosen function can, like the AES S-box [128], be implemented 

in hardware logic using field decomposition to allow a much greater level of resource 

efficiency. Good [129] suggests that further efficiency savings can be made through 
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Figure 4.19: Schematic description of the SFINKS keystream generator 

resource sharing, but the inversion process wi l l sti l l prove costly, requiring among 

other operations an 8-bit multiplier, a table for inversion in the field G F ( 2 2 ) and 

the implementation of transformation matrices to move between fields G F ( 2 1 6 ) and 

C F ( ( ( ( 2 2 ) 2 ) 2 ) 2 ) . 

In operation the initialisation of SFINKS requires the output of the S-box inversion 

to be fed back into LFSR as shown in Figure 4.20 with the LFSR being initial loaded 

with the Key and I V material as follows: 

( S 2 5 5 , . . . . S 0 ) < - {IV7g, . . . , I V 0 , I < 7 9 , .-.,KQ, 1,0,..., 0) 

Due to the authors' pipelined implementation of the inversion function, the cipher 

specifies a 7-cycle delay on feeding back the output. This proves quite expensive 

in hardware terms, necessitating 112-bits of registers: these are reset to zero on 

initial loading. The whole initialisation process takes 128 cycles and. unlike Trivium 

and Grain, this cannot efficiently be reduced by accelerated feedback. Afterwards 

keystream is produced at a rate of a bit per cycle. 

For generating the MAC, SFINKS takes one bit of the S-box output y[0] and uses 

i t as an input to a 64-bit shift register. The contents of this register are combined 

with the plainstream through an AND operation and then further combined wi th 

the previous contents of the M A C register through an X O R operation to produce a 

short 64-bit MAC. Whether this MAC size would be sufficient to provide meaningful 
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Figure 4.20: SFINKS' LFSR during initialisation 

security is open to question — however the authors do suggest that i t is easy to 

"adapt these parameters in a straightforward way" [125]. 

4.6.5 Phelix 

Like SFINKS Phelix [126] is different to the other stream ciphers under consideration 

in the way it combines the properties of encryption with that of message authentica­

tion. This has the potential to eliminate the need for additional electronics to provide 

authentication functionality, and as well as encouraging authentication use, may lead 

to a reduction in overall hardware logic. Phelix is based on the previously broken 

stream cipher Helix [130] and shares much of its conservative design approach. 

The cipher itself uses a 128-bit IV and a 256-bit key size and claims to provide 

128-bit security. The paper further describes a key mixing process for expanding 

small keys allowing Phelix to meet both the software Profile 1 and hardware Profile 2 

criteria, while the fully integrated 128-bit M A C function means the cipher proposal 

also meets the criteria for a Profile 1A and Profile 2A stream cipher. 

Unlike many other stream ciphers, Phelix is based around a rotating block function 

which is fed sub-keys from a key expander in a structure more akin to that of a block 

cipher. As shown in Figure 4.21 each round consists of a 160-bit state register and 

two identical half blocks which operate as an update function. A further 128-bits of 

state material is provided in a 32-bit wide delay block, the output of which is added 

to 32-bits processed from a half-block to produce a 32-bit block of keystream. 

The half block which forms the core processing element of the cipher consists 

of a number of add, X O R and cyclic rotations and is shown in Figure 4.22. While 

in hardware cyclic rotations are effectively free and 32-bit X O R operations not 

overly burdensome, the half block's six 32-bit additions will be very costly, creating 

difficulties for low area, high throughput implementations. Moreover, as shown in 

Figure 4.21 the key expander liberally uses both subtractions and additions meaning 
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Figure 4.22: Schematic description of the encryption half block in Phelix 

that unless a processor based structure is chosen for hardware implementation area 

usage may end up prohibitively high. 

In operation the initialisation procedure involves resetting the delay registers to 

zero then generating eight blocks wi th no plainstream inputted and no keystream 

outputted. The state register is initially set as follows: 

( Z 1 5 9 , ZQ) <- (/Cass, # 2 2 4 , { # 2 2 3 © / V j 2 7 } , - , { # 9 6 © 1V0}) 

Following plaintext encryption a MAC from the cipher can be generated by the 
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X O R of Z 3i;o wi th 0x912d94fl and then cycling the cipher a further eight times 

wi th the plainstream input the length in bytes of the plainstream modulo-4. The 

keystream generated by a subsequent four cycles forms the 128-bit MAC. A method 

for generating a M A C for unencrypted data, such as header information, is also 

specified in the Phelix proposal [126]. 

As the initialisation process requires a 256-bit key size, a pre-mixing process must 

be used if a shorter length of input key is chosen. This involves first appending zeros 

to reach a size of 256-bits and then loading the lower 128-bits into state registers 

Zi27:o- The remaining 32 state bits are filled with a variable based on the key length 

in bytes plus 64 and the block function is then processed wi th the plaintext and 

key input disabled. By combining (through an X O R operation) the lower 128-bits 

and the upper 128-bits of the appended key, new key bits K'255.224 are generated. 

Following this, further key bits are produced by placing the newly generated key bits 

in registers Zw.o and using the previous contents for the post-output X O R operation. 

Generating all 256-bits takes eight block calculations but as key loading is a generally 

infrequent operation this should not greatly affect, the ciphers performance. The 

provision for key mixing wil l however add to hardware implementation complexity. 

Although there is no official acceleration method to increase the throughput 

per area performance of Phelix, there are a number of possibilities available to the 

implementation of its encryption block. A few of these are outlined by Good in [129] 

where in addition to the full round structure of Figure 4.21 architectures based on a 

half round structure and 32-bit datapath architecture are described, offering options 

for reduced area usage. The half round architecture splits the encryption into a 

2-cycle process instead of duplicating the implementation of the half block which 

provides a reduction in resource usage wi th an accompanying drop in throughput. 

However the complexity of the key expander means that a one-to-one trade-off is 

unlikely to be realised and the percentage area gain would be small. As mentioned 

previously, moving to a processor-based design style offers more promise in terms of 

area usage reduction and a datapath architecture would allow resource sharing of the 

S H I F T , A D D and X O R operations. Nonetheless, the complexity of the key expander 

operation, the number of iterations needed for encryption block implementation 

and the required delay prior to keystream output would require the architecture to 

implement a large state machine controller and comparatively large memory while 

having the disadvantage of a very low throughput performance. I t is all but certain 

that the flexibili ty benefits of the architecture variations described are much less 

significant than those accrued in Trivium and Grain. 
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4.7 Notes on Subsequent eStream Progression 

Following the init ial submission of proposals a period of community based analysis 

was proposed by the eStream Project. This culminated a year later in May 2006 

with a further workshop [131] where the results of this cryptanalysis were presented 

and reviewed. 

In August 2006 Phase 2 of the project began with most of the submitted ciphers 

being advanced through. However, the eStream committee decided that three of the 

original Profile 2 submissions should instead be archived for performance or security 

failings. Most significantly this would see the archiving of SFINKS which had by 

this stage been shown to be vulnerable to algebraic attack [132] — an area indeed 

which the authors had noted might prove to be a vulnerability: "we are aware of the 

fact that the security against the (fast) algebraic attack is really on the edge" [125]. 

Despite the same paper making some suggestions on countermeasures no alterations 

to the algorithm were officially made before the start of Phase 2, necessitating its 

withdrawal from the eStream process. 

Alongside the decisions on archiving, in this second phase eStream would introduce 

the concept of giving focus status to algorithms to encourage analysis in areas with 

the most promise. Of the four selected primitives that made it through the archiving 

process all would became focus ciphers for this second phase. In accordance with the 

original principles of the project a number of ciphers were allowed to make alterations 

to improve performance and security, both Grain and Mickey would take advantage 

of this. The progression of these ciphers and that of Trivium and Phelix are outlined 

below. 

4.7.1 Phelix 

No modifications were made to Phelix for Phase 2. However, the advantage of 

packaging encryption and authentication functions in one algorithm proved to be the 

primitive's undoing, with the I V reuse-based attack published by Wu and Preneel 

[133] considered a real-world threat due to the possibility for M A C forgeries. The 

algorithm was archived in March 2007 and did not make it into the third phase of 

the eStream project. 
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4.7.2 Trivium 

Trivium would also remain unaltered for Phase 2, but findings on its security were 

more positive, with the keystream generator surviving cryptanalysis despite significant 

attention from the research community. The best proposed algorithmic attack would 

be by Maximov [134], w i t h a claimed complexity of 2 8 3 3 — a figure very close to 

the intended 2 8 0 security level. Nonetheless i t is unclear whether this attack can be 

further improved and the high 2 6 1 5 keystream requirement may adversely affect the 

attack's practicality. A sister toy cipher B iv ium 4 described in [127] would however 

seem to be very weak wi th Maximov proposing a 2 1 4 complexity state recovery 

attack and McDonald proposing a practical attack using a satisfiability solver [135]. 

Satisfiability solvers would appear however not to threaten Trivium itself [136]. 

Although Trivium's security margin is small, it is present, and so the cipher 

progressed into the final phase of the eStream project (see Section 4.7.9). 

4.7.3 M I C K E Y 2.0 and MICKEY-128 2.0 

M I C K E Y was revised in preparation for Phase 2 after Hong [137] noted various pos­

sible areas presenting vulnerabilities, including T M T O , state entropy loss, keystream 

convergence and weak keys. These would be addressed in M I C K E Y 2.0 [138] and 

MICKEY-128 2.0 [138] by increasing the size of registers in the cipher from 80-bits 

to 100-bits. The resulting revised designs can be seen in Figures 4.23 and 4.24. The 

increased area usage, although significant, may not be detrimental to the appeal of 

the cipher family as its main attraction remains its relatively conservative design 

approach. 

Evidence would suggest that use of irregular clocking is a risky strategy for 

symmetric encryption as far as stream cipher security is concerned, wi th previous 

ciphers based on the strategy, A 5 / 1 , LILI-128 [139], and the Shrinking Generator 

[140], all having suffered major attacks [99, 141, 142]. However the complexity of 

M I C K E Y ' s clocking scheme would appear to be sufficiently secure and successful 

algorithmic attacks against M I C K E Y 2.0 and MICKEY-128 2.0 were not realised 

during Phase 2. In view of this information the eStream committee progressed both 

these revised versions. 
4 Developed to aid cryptanalysis Bivium is a reduced version of Triviuin that removes register Hi 

and uses the combination of output tap points t\ and 1.2 (see Figure 4.13) to generate the output 
key stream. 
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Figure 4.24: The revised MICKEY-128 keystream generator, MICKEY-128 2.0 

4.7.4 Grain v l and Grain-128 

The aggressive nature of the original Grain design meant that its security margin was 

minimal and flaws were found in original keystream generator shortly after conception 

with first a distinguishing attack by Khazaei [143] of 2 6 1 complexity, 2 4 0 memory and 

2 6 1 data, followed by a further much more practical attack by Berbain [144] requiring 

2 4 3 operations and 2 4 2 memory to perform key recovery and leaving Grain effectively 

broken. In light of the attacks a revised version of the cipher was proposed in [145] 

which modified the polynomials used in the feedback and output functions. This 

new primitive was assigned the tit le Grain v l and is shown in Figure 4.25. 

Although using more register terms, the modified g function actually uses one 

fewer operation in its generation, leaving only the slightly increased complexity of the 

output mask potentially affecting performance. Nevertheless, Grain v l should perform 

essentially the same in hardware as its predecessor. Moreover, the modifications 

made would appear to significantly improve security, as by the end of Phase 2 no 

notable attacks against the primitive had been found despite its status as a focus 
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cipher. 

As was allowed by the competition, a further version of Grain called Grain-128 

[146] was proposed in Phase 2 of eStream — this used a larger 128-bit key length 

and was designed to provide a greater level of security. The underlying structure of 

the stream cipher is shown in Figure 4.26 and remains the same as its smaller cousin, 

although both register and function sizes are increased while slight modifications 

were made by the authors to improve software performance and allow a 32-times 

increase in speed. 

W i t h this larger structure, the cipher's initialisation period was increased to 

256 cycles to ensure full mixing of the key and IV. The initial loading of the key and 

IV material is as follows: 

(bu7,--.b0) - ( / W . . , / Y 0 ) 

( S l 2 7 , . . . , S 0 ) < - ( 1 , . . . , 1 , / V 9 5 , . . , / K ) ) 

The simple structure of Grain-128 should mean the cipher retains excellent 
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Table 4.1: Performance of Stream Cipher Keystream Generation Schemes on a 
AMD Athlon 64 X2 System (figures quoted from [147]) 

Keystream Generator Key Size Throughput I V Setup 
cycles/byte cycles 

T R I V I U M 80 4.14 583.80 
SNOW 2.0 128 4.83 528.04 

Phelix 128 5.66 745.04 
AES-128 CT/i 128 13.39 15.58 

Grain-128 128 14.02 467.23 
Grain v l 80 42.13 865.52 

M I C K E Y 2.0 80 627.28 21877.69 
MICKEY-128 2.0 128 730.82 40783.00 

performance in hardware despite its increased size. As of the end of Phase 2 no 

vulnerabilities had been found for Grain-128, allowing i t join Grain v l in the next 

phase of the eStream project. 

4.7.5 Software Performance 

The software performance of the eStream cipher proposals were comprehensively 

assessed in the eStream testing framework [112] and selected results for the four 

Phase 2 candidates under study, f rom the A M D Athlon 64 X2 system tests [147], 

are presented in Table 4.1. From these it can be seen that only Trivium and Phelix 

outperform AES in counter mode, although the throughput performance of Grain v l 

and Grain-128 are close enough that server-side concerns should not unduly influence 

hardware decisions. The initialisation and throughput performance of M I C K E Y 2.0 

and MICKEY-128 2.0, at over an order of magnitude slower may be more problematic 

to application use. One other figure of note is the very low I V set-up time needed 

for AES in counter mode, this advantage over stream ciphers, typical to such modes 

of operation, is beneficial to the processing of small blocks of data but is largely 

negated once packet sizes reach hundreds of bytes. 

Although the absolute results differ for Intel based software test systems [113, 148] 

the performance ordering is similar, with only Trivium and SNOW 2.0 trading places. 
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4.7.6 Hardware Performance 

However impressive software performance is, i t is hardware decryption performance 

that is of key importance for implementing a secure display system, and also the 

standard against which the the selected Profile 2 ciphers are assessed. A number 

of evaluation results have been presented over the course of eStream [129, 149, 150, 

151. 152]: the collated results from these assessments of the candidates under study 

are summarised in the Tables 4.2 and 4.3. Further results for Grain and Tr iv ium 

implemented in the course of this research can be found in Chapter 7. 

Both the results for ASIC (application specific integrated circuit) and FPGA (field 

programmable gate array) implementations show a high degree of consistency in their 

ordering of the Phase 2 ciphers. Where the minimisation of area usage is of primary 

importance Grain v l would appear to be the best option, closely followed by Grain-

128 and Trivium, while for maximising throughput efficiency this order is reversed 

with Tr iv ium appearing to be the most capable. Tables 4.3(b) and 4.2(a) indicate 

that although these three cipher designs are slightly larger than the insecure A 5 / 1 

stream cipher they are capable of exceeding its throughput performance. Moreover 

the figures show Grain and Trivium are each capable of outperforming the AES-128 

in all three aspects of area, power and throughput efficiency, sometimes by a very 

high degree: the throughput efficiency of Tr iv ium on FPGAs is over two orders of 

magnitude higher. The attractions of such performance advantages would certainly 

seem to be sufficient to encourage the introduction of stream ciphers back into the 

hardware environment. 

The results for the other Phase 2 candidates under consideration, M I C K E Y 

and Phelix, have less attractions. Phelix's minimum area usage is particularly high 

and significantly exceeds that of the AES, while M I C K E Y ' s throughput efficiency 

lags behind that of the AES in ASIC environments. Only in FPGA throughput 

performance would either of the designs be seen to have a particular advantage over 

the incumbent AES block cipher standard. 

a Figures derived from quoted physical area. TSiVIC 90nm process density 420k(jates/mm2 [155). 
b Including C B C support in these implementations would allow a fairer comparison to the usage 

model of stream ciphers and is likely to add a further 1.6k gates [156]. 
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Table 4.2: Hardware Performance of Stream Cipher Keystream Generation 
Schemes for Application Specific Integrated Circuits 

(a) A S I C designs optimised for minimum area 

Design Bi t s / 
Cycle 

CMOS 
Process 

Area 
(gate equiv.) 

f 
'mm 

(MHz) 

Setup 
(cycles) 

Grain v l [150] 1 0.13 / im 1.294k 725 321 
Grain-128 [150] 1 0.13 / im 1.857k 926 513 
Trivium [150] 1 0.13 / im 2.599k 358 1333 
Phelix [150] 16 0.13 urn 13.159k 88 51 
Grain v l [153] 1 90 nm (2.063k) a 565 304 
Trivium [153] 
MICKEY-128 [153] 

1 
1 

90 nm 
90 nm 

(3.120k) a 

(6.817k) a 

840 
457 

1312 
416 

Phelix [153] 16 90 nm (22.357k) a 316 44 
A 5 / 1 [153] 
AES-128 b [154] 

1 
0.124 

90 nm 
0.35 / im 

(0.834k) a 

3.400k 
685 
80 

186 
1032 

(b) A S I C designs optimised for low-power 

Design Bi ts / 
Cycle 

CMOS 
Process 

Area 
(gate equiv.) 

Setup 
(cycles) @100kHz,1.5V 

Trivium [152] 
Grain v l [152] 

0.727 
1.231 

0.35 /tin 
0.35 /tin 

3.090k 
3.360k 

1603 
130 

0.68//A 
0.80//.A 

AES-128'5 [154] 0.124 0.35 //.m 3.400k 1032 3 % A 

(c) A S I C designs optimised for maximum throughput to area ratio 

Design Bi ts / CMOS Area Setup Throughput 
Cycle Process (gate equiv.) (cycles) (Mb/s.GE) 

Trivium [153] 64 90 nm (5.645k) a 21 (9.071) a 

Grain v l [153] 16 90 nm (4.302k) a 19 (1.788) a 

Phelix [153] 16 90 nm (22.357k) a 44 (0.226) a 

MICKEY-128 [153] 1 90 nm (6.817k) a 416 (0.067) a 

Trivium [150] 64 0.13 4.921k 24 4.531 
Grain-128 [150] 32 0.13 / im 4.617k 17 3.140 
Grain v l [150] 16 0.13 / im 3.239k 21 3.048 
Phelix [150] 32 0.13 / im 15.032k 34 0.134 
Trivium [149] 64 0.25/im 6.382k - 3.736 
Grain v l [149] 16 0.25 / im 5.454k - 0.918 
M I C K E Y [149] 1 0.25/un 3.709k - 0.079 
SFINKS [149] 1 0.25 / im 6.953k - 0.025 
AES-128 b [43] 11.6 110 nm 12.454k 11 0.136 
AES-128 b [43] 2.4 110 nm 5.398k 54 0.058 
A E S - 1 2 8 O F B [149] 3.12 0.25/tm 12.975k - 0.047 
A 5 / 1 [153] 4 90 nm (1.508k) a 186 (1.064) a 

SNOW 2.0 [53] 32 0.18/mi 7.128k ~1000 0.234 
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Table 4.3: Hardware Performance of Stream Cipher Keystream Generation 
Schemes for Field Programmable Gate Array Designs 

(a) F P G A designs optimised for minimum area 

Design Bi ts / Device Area f 
lmax 

Setup 
Cycle Family (MHz) (cycles) 

Grain vO [129] 1 EPIC 191 LEs 235 -
Grain v l [157] 1 EPIC 219 LEs 242 322 
Trivium [129] 1 EPIC 327 LEs 249 -
Trivium [157] 1 EPIC 393 LEs 295 1578 
MICKEY-128 [157] 1 EPIC 537 LEs 220 603 
SFINKS [129] 1 EPIC 556 LEs 207 -
Phelix [129] 16 EPIC 1455 LEs 82 -
Trivium [129] 1 XC2S 40 slices 102 -
Trivium [151] 1 XC2V 41 slices 207 -
Grain-128 [151] 1 XC2V 48 slices 181 -
Grain vO [129] 1 XC2S 48 slices 105 -
Grain v l [153] 1 XC3S 122 slices 193 304 
MICKEY-128 [158] 1 X C V E 167 slices 170 -
MICKEY-128 2.0 [151] 1 XC2V 190 slices 200 -
Phelix (datapath) [129] 0.11 XC2S 264 slices 82 -
SFINKS [129] 1 XC2S 334 slices 118 -
Phelix [153] 16 XC3S 1197 slices 52 44 
Phelix [151] 16 XC2V 1213 slices 63 -
A5/1 [153] 1 XC3S 57 slices 174 186 
AES-128 [159] 0.03 XC2S 264 eq. slices 67 -

(b) F P G A designs optimised for maximum throughput to area ratio 

Design Bi t s / Device Area Setup Throughput 
Cycle Family (cycles) (Mb/s.LUTeql). 

Trivium [157] 16 EPIC 700 LEs 38 23.31 
Grain v l [157] 16 EPIC 508 LEs 19 6.77 
Grain vO [122] 16 EPIC 553 LEs - 5.67 
Phelix [129] 32 EPIC 1772 LEs - 0.81 
MICKEY-128 [157] 1 EPIC 537 LEs 603 0.41 
Trivium [153] 64 XC3S 388 slices 21 15.67 
Grain v l [153] 16 XC3S 356 slices 19 3.49 
Phelix [153] 32 XC3S 1402 slices 28 0.53 
MICKEY-128 2.0 [151] 1 XC2V 190 slices - 0.53 
MICKEY-128 [158] 1 XCVE 167 slices - 0.51 
Phelix [129] 32 XC2S 1198 slices - 0.40 
A5/1 [153] 1 XC3S 57 slices 186 1.53 
AES-128 [157] 5.8 EPIC 5058 LEs 22 0.12 
AES-128 [160] 1.2 XC2S 522 eq.slices - 0.07 
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4.7.7 Authentication Performance 

During Phase 2 of eStream there was also an attempt to assess the value of integrated 

authentication, wi th Bernstein presenting a number of software results in [161]. 

These figures indicate that Phelix's built-in authenticator may provide some benefit 

for verified decryption in software when compared to separately combined stream 

cipher and message authentication codes, but whether this translates to advantages 

in the hardware environment remains an open question. Moreover, the benefits of 

integration may indeed be misplaced, as the system model of decryption proceeding 

authentication leads to inefficiencies in the quick rejection of incorrect packets. 

4.7.8 Side-Channel Resistance 

One notable area relating to stream cipher design absent f rom the second analysis 

phase would be that of side-channel attacks and the resource cost of masking the 

emanations from implementations. The importance of side-channel attack counter-

measures in sniartcard design has seen the field become a very active research area 

for block ciphers and demonstrated that in hardware the resource cost implications 

can be significantly. 

A t the logic level, techniques are generally based around masking or equalising 

power usage and avoiding state information leakage through glitches — typically 

this w i l l involve the replacement of standard logic cells w i th more complex cells 

based around a form of dual-rail design. T i r i [162] and Popp [163] both describe 

implementations of the AES using such counter-measures with the former requiring 

3 times the area and 4 times the power, and operating at a third the speed of the 

unprotected equivalent: while the later uses 4 times the area and operates at half the 

speed. Even the more basic dual-spaced, dual-rail design described by Sokolov [164] 

uses more than double the area and power of conventional AES implementations 

and Shang's fully balanced, asynchronous design [165] would appear similarly costly 

occupying 1.897 m m 2 on a 0.35/an CMOS process. Further methods to improve 

protection include Guilley's place and route technique described in [166] which, 

when combined wi th dual-rail logic cell design, results in 15 times the area usage 

and a halving of operation speed. These extreme lengths can be justifiable from 

an application perspective as system security wi l l remain the aspect of primary 

importance when making design considerations. 
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I t is likely that these logic cell based techniques would be just as applicable for 

protecting stream ciphers and would result in similar mult iplying factors during 

implementation. 

4.7.9 eStream Phase 3 

After Phase 2 ended in March 2007 a much reduced list of stream cipher primitives 

[167] were advanced for a final phase of analysis in phase 3 of eStream. On both 

the hardware and software sides eight underlying cipher designs found themselves 

under consideration wi th those Prof i leII ciphers: D E C I M v 2 [168], Edon80 [169], F-

FCSR-Hv2 [170], G r a i n v l [145], MICKEY2.0 [138], Moustique [171], Pomaranchv3 

[172] and Trivium [123], being complimented by a number of 128-bit key companion 

versions: DECIM-128 [173], F-FCSR-16v2 [170], Grain-128 [146], MICKEY-1282.0 

[174]. Of the original five selected primitives i t can be seen that three made it 

through as far as this final stage. 

Analysis in phase 3 is due to end in early 2008 wi th the final portfolio of 

recommended stream ciphers being announced in May 2008 at the eStream Project's 

completion. 

4.8 Discussion 

From the depths of the high profile insecurities of RC4, A 5 / 1 and E0 and the failure 

of the NESSIE project, the recent eStream project has seen a number of stream 

cipher designs that would seem to provide a great deal of promise that this area of 

cryptography wil l return to its former prominence in hardware systems. 

The project has instigated the development of some very efficient stream ciphers, 

a number of which would be suitable for restricted hardware environments such 

as that expected for a secure display device. From a performance perspective the 

primitives Grain and Trivium would seem particularly attractive candidates, with a 

combination of low area, high throughput and low power that is unrivalled by the 

block cipher AES-128. A 6kGE implementation of these ciphers even on a relatively 

large 0.25 /xm CMOS process results in a raw keystream throughput of up to 24Gb/s 

[149], indicating that the 48Mb/s data rate needed for a 320x240 colour LCD should 

be achievable on processes with much larger feature sizes and possibly constant grain 
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silicon. Furthermore the flexibility offered by the options of accelerated feedback in 

Grain and Trivium allows any excess throughput overhead to be utilised to reduce 

the area usage. 

What must be remembered, however, is that while such aspects of performance 

are the principle reasons for a stream cipher to be chosen over a block cipher, i t is 

data security that is the primary purpose of symmetric encryption systems. Making 

an insecure but efficient cipher is easy — what is more difficult is to come up wi th 

an algorithm that is both secure and efficient, as eStream set out to do. While 

understanding of what makes a stream cipher secure has undoubtedly been increased 

by the project, confidence that the candidates under consideration are secure enough 

to just i fy their key size wi l l likely not be ascertained even by the end of the final 

project phase. This is especially true for the minimalist designs of Grain and Trivium 

where the margin for error has been pushed to the limits in a search for exceptional 

efficiency and means that only the further passage of time will help confer confidence. 

Even more fundamental to the security equation is the question of whether 

justifying the key size is sufficient in itself to provide viable security to applications 

such as secure display. While the 80-bit key size specified in the original Profile 2 

criteria for eStream is longer than that used on broken block cipher DES i t is 

substantially shorter than keys of other widely used modern symmetric ciphers, such 

as SNOW 3G and the AES. Assessing this aspect of the Profile 2 eStream criteria 

has been the focus of the research effort for much of the research period and wil l be 

discussed at length in subsequent chapters. 
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Chapter 5 

Key Length 

IN 1996 an ad-hoc group of prominent cryptographers wrote "Bearing in mind 

that the additional computational costs of stronger encryption are modest, we 

strongly recommend a minimum key-length of 90 bits for symmetric cryptosystems." 

[175]. Now over a decade later symmetric ciphers are being proposed with 80-bit key 

lengths, posing the question of whether this is sensible? The remaining chapters of 

the thesis aim to work towards answering this question and determining what key 

length should be considered secure. 

5.1 Keys and Security 

Stream cipher designs, like many other cryptographical primitives, place their security 

in a small, fixed length secret, called a key. The concept of a cryptographical key 

is similar to that of a key in the physical world in that while securely transporting 

a house may be impractical, securely transporting a front-door key is a task easily 

achieved by millions, if not billions, of people every day. By condensing the problem 

of securing plaintext data into a problem of securing a small, fixed length value, 

symmetric encryption schemes enable greater practicality in protecting the secret 

during storage and transmission. 

The length chosen for this new secret value is, however, a matter of some 

complexity. Securely exchanging even short values over a public network typically 

requires a key exchange protocol based around asymmetric encryption and is expensive 

and slow for resource constrained environments. As such, even before aspects of 
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protected memory are considered i t is seen as desirable to have a key size that 

is of the minimum length possible while remaining secure. However, to do this a 

determination of the effort an adversary must expend to guess a key must be made. 

Moreover, much as a burglar can break into a house via a window, weaknesses in 

the structure of the cipher can be exploited to bypass exhaustively trying each key 

combination. These forms of algorithm specific cryptographic attack, collectively 

described as algorithmic attacks (see Section 8.1.1), put further strains on the choice 

of key length as a cipher wi th a longer key must justify i t through added resistance at 

the algorithmic level. This leads to a trading of performance considerations against 

security and puts further pressure on ciphers designed for resource constrained 

situations to use small keys. Nonetheless, any key length security trade-off is only 

reasonable if the cost an adversary faces in retrieving protected data remains above 

the value they would place upon i t . 

After some debate at SASC 2004 the target key length chosen in the eStream 

Profile 2 call for stream cipher candidates would be set at 80-bits. Later chapters will 

attempt to assess the economic value of this key size, however in this chapter general 

aspects surrounding key size selection will be addressed, including those inspired by 

BernstieiVs 2004 paper [176] which suggests that the complexity of exhaustive search 

is overestimated when compared to algorithmic attacks. 

5.2 eStream Specification 

The original eStream call for stream ciphers primitives made in 2004 specified two key 

lengths as outlined Section 4.5.3: one of 128-bits for algorithms aimed at software, 

and one of 80-bits for those aimed at hardware. 128-bit key lengths have been widely 

deployed in symmetric encryption schemes before, including the AES, and a good 

deal of confidence exists that such a key length is secure against a computationally 

bound attacker. However the 80-bit key size has only had one notable deployment 

prior to 2004, in the NSA block cipher S K I P J A C K [177], and the value of this key 

length is much less well understood. 

Theoretical assessments made of 80-bit key lengths were described in Section 7.2 

of the 2004 ECRYPT key size report [178] as providing a security protection level in 

symmetric ciphers suitable for "very short-term protection against agencies, long-

term protection against small organizations" and as the "smallest general-purpose 
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level" which "protects against the most reasonable and threatening attack scenarios". 

These comments would seem to indicate that the chosen security level is right on the 

edge of current feasibility. 

Following this a similarly focused report [179] by the NIST (National Institute 

of Standards and Technology, U.S. Department of Commerce) recommended in 

section 5.6.2 that the use of 80-bit key lengths would be insufficient for "Government 

unclassified applications" by 2011 and that a minimum 112-bit security level would 

be needed after this. W i t h the eStream project not due to finish t i l l May 2008 this 

would seem to give any recommended algorithm from Profile 2 less than three years 

before i t would essentially become obsolete; a possibly terminal indictment for the 

commercial acceptance of new stream ciphers. 

The eStream committee have nonetheless maintained the 80-bit key length target 

for Profile 2 candidates throughout the competition process, commenting in 2006 

that they "still see value in this key length" [180] and again in 2007 that their "focus 

is on ciphers wi th 80-bit keys" [167]. 

5.3 Brute Force Attack 

I f the key length of a cipher is sufficiently small an attacker can feasibly and 

successfully try every combination possible in a methodical manner until they succeed 

in decoding the ciphertext message into its original plaintext. This exhaustive search 

of the key space for the correct key is generally known as a brute force attack and is 

a generic attack against all ciphers except the one time pad. 1 As keys may be tried 

in any order, brute force attacks need not operate in sequential fashion and can be 

accelerated through the introduction of parallelism. 

These parallel brute force attacks on key space offer many advantages when all 

practicalities are considered in that their methodology of operation is simple leading 

to efficient and low cost implementations, a fact emphasised by Bernstein in [176]. In 

this same paper Bernstein would go on to suggest that in comparison to algorithmic 

attacks brute force is an underestimated attack form and that the direct link between 

key length and a symmetric cipher's security level should be reconsidered; these are 

ideas that wil l be returned to in Chapter 8. 

1 In a one lime pad the correct plaintext will be indistinguishable as every possible plaintext 
output will be produced by the brute force process. 
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As already stated, brute force attacks are generic in nature and relevant to all 

ciphers; this does not, however, imply that an attack wil l operate wi th a universal 

equality of efficiency. The time taken to check a key wil l vary for different primitives 

due to the attack's dependancy on key set-up time and the specifics of the design 

implementation. As indicated in Chapter 4, well designed stream ciphers can 

significantly outperform ciphers such as AES-128 in the hardware environment 

since modern block ciphers must process a fu l l block of data alongside the key, 

while the operation of a synchronous stream cipher is almost data independent. 

Furthermore, block cipher implementations often require speed to be traded for low 

area implementation whereas a stream cipher can usually provide both properties 

without the need for trade-offs. Consequently, brute force attacks on a stream cipher 

may potentially be many 'bits' easier than raw differences between block and stream 

cipher key length would suggest. 

Traditionally the area of brute force has focused on block ciphers and although 

much research has gone into brute force key search machines aimed at block ciphers 

(see Section 6.2), the area of brute force key search machines for stream ciphers has 

until now received little attention. 

5.4 Stream Cipher Brute Force 

When the aim is a brute force key search, not only must cipher throughput be 

considered, but also the time required for set-up. Indeed for stream ciphers this is 

the factor that dominates the key search process: even if the stream cipher produces 

a single bit of keystream per clock cycle, after just one iteration half of the searches 

can be discontinued (e.g. the keystream bit is a 1 but the search target starts wi th 

0) and after gathering a byte's worth of material 99.6% of searches may be stopped. 

Set-up time is stil l required in block ciphers for key expansion but this takes up 

proportionately less of the key search effort simply on account of the fact that as a 

full block of output bits must be generated with every search, their resource usage is 

fundamentally greater. 

5.4.1 Data Enhanced Brute Force 

Brute force attacks do not have to be restricted to using a single data sample: as 

briefly touched upon by Hellman [181] additional data points may be utilised to 
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F igure 5.1: Impact of plaintext/ciphertext data pairs on key search. The 80-bit 
key is brought closer with more data pairs to the vulnerable 56-bit key length of 
the Data Encryption Standard; in linear terms, considerably closer. 

increase the probability of an attack finding a successful match due to the birthday 

paradox [182]. This form of data enhanced attack has the potential to make searching 

for a key in an implausibly large key space, feasible. 

The reality and efficiency of such enhanced 'meet-in-the-middle 5 attacks has 

previously been demonstrated for block ciphers by Clayton in [183] where a single 

FPGA device was used to attack the security protecting the A T M infrastructure. 

Although the attack relied upon a flaw in a version of the Common Cryptographic 

Architecture (CCA), much of the attack's extreme practicality came from 2 1 6 pre-

calculated output values stored in memory to which a comparison could instantly be 

made. 

The potential for data enhanced brute force attacks when applied to synchronous 

stream ciphers is even greater. The data independent keystream generation and 

the widespread use of simple X O R combining functions means that pre-calculating 

original keystrearn material from collected plaintext-ciphertext pair data is t r ivial . 

In a situation where multiple plaintext-ciphertext sections encoded under different 

keys are available the search effort required to recover one of these keys rapidly 

falls (Figure 5.1). Moreover, as multiple derived keystreanis can be simultaneously 

checked at effectively zero time cost, due to keystream independence f rom data, 

computational requirements wi l l be minimised. 

The sheer effectiveness of the data enhanced attack variation to brute force can 

be shown by the example of eight plaintext-ciphertext pairs being available to an 

adversary, reducing the problem of finding a key match abruptly from ^ t ° ^ 

as there are now 2'' as many outcomes considered positive. This translates to over 
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5 x 10 2 3 fewer searches. I t should be noted that in the context of stream ciphers 

the attack variation does require a consistent I V between plaintext-ciphertext pairs 

for the advantage to be realised; the practicality of this assumption is outlined in 

Section 6.3. 

5.4.2 Probability of Success 

As the observation of data-enhanced search would motivate the design of the DELUGE 

keysearch engine, i t is important to quantify the probability of a match being found 

so that an economic valuation may eventually be made. 

Clayton suggests [183] that the probabilistic reduction in search effort can be 

described by a Poisson distribution wi th the "probability that the first r attempts 

will all fail is e~Ar where A is the probability any given attempt matches". I f again 8 

plainstreams are looked at A will be 2 - 7 7 and so with average luck (p = 0.5) this wi l l 

equate to a match being found after — /7i(0.5)/2~ 7 ' = 2 7 6 ' 1 7 1 attempts. 

However when the number of positive outcomes are small, as in the given example, 

and the key search engines are as described in Chapters 7 and 6, calculation using 

such a Poisson distribution wil l tend to overestimate the complexity of the search 

process. This is due to the probability of a successful match increasing with time as 

possible keys are systematically eliminated and so not being a constant. The true 

probability, P. of a match after r attempts wi l l instead satisfy the equation: 

' n\{q-r)\ ( & } 

where n is the total number keys and q is the number of incorrect keys. The 

equation can be made practical to calculate using a Stirling approximation for the 

factorisations: 
. . In x In 2TT 

In x\ « x In x — x -\ 1 
2 2 

As ??. and q will generally be large, the shortened Stirling approximation, In x\ ~ x In x - x, 

is appropriate. Thus after taking logarithms of both sides, equation (5.1) becomes: 

In (1 — P) ~ q In q - n In n + (n — r) In (77, - 7') — (q — r) In (q — r) 
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which by rearranging gives an approximation to the probability of a successful match: 

P ~ 1 — e l ? , N 9 - " 1 , 1 " - + ( N - R ) | " ( N - R ) ~ ( < 7 _ R ) L N ( ' 7 - R ) ] (5 2 ) 

For very large numbers (i.e. n,q > 2'10) accurate calculation of this probability (5.2) 

becomes computationally difficult due to precision limitations, making use of this 

formula impractical. However, since the number of incorrect keys q wi l l tend to 

approximate the total number of keys n, in such situations equation (5.2) can be 

further approximated to: 

/ > « l _ e [ ( « - l ) ' " ( ^ ) ] (5.3) 

Lett ing p be the number of correct keys so p = n — q and rearranging (5.3) then 

gives a revised equation for the probability of a successful match after r attempts: 

{ n - r \ p , x 

P t a l - ( —^— J n^>p (5.4) 

Where p is small, equation (5.4) wi l l provide improved accuracy over that of a 

Poisson distribution and is therefore used to calculate the search effort required in 

the presented key search engines of Chapters 6 and 7. Calculations in the related 

papers [1] and [2] use the much simpler division calculation which has a tendency to 

underestimate the search effort required: the level of this underestimate wil l , given 

average luck, be below 39% — a figure that translates into less than 9 months of 

computational advancement assuming a continuation of Moore's prediction [184]. 

5.5 Discussion 

The suggestion by ECRYPT that a key length of 80-bits may be teetering on the 

brink of feasibility, combined wi th the potential for stream cipher brute force to be 

potentially less expensive than targeting block ciphers, raises the hypothesis that 

Profile 2 stream ciphers such as Grain and Tr ivium may not be suitable for secure 

display purely from the security context surrounding their key length. The further 

gains offered by the described data enhanced brute force attack only serve to raise 

the priority of resolving this question. 

To find out if an 80-bit key length would be appropriate i t is sensible to consider 

the construction of a key search machine that specifically targets stream ciphers in 
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this manner and in the following two chapters such development is outlined. 

If such a machine is to provide confidence over the security of the 80-bit key 

length, in this context i t must operate on the best case scenario for a adversary. As 

of 2005 Grain vO was among the highest performing and lowest resource entries to 

eStream (see Chapter 4) and with the addition of a parallel loading key interface 

i t was found to load, initialise and produce two bytes of keystream in just 11 clock 

cycles. This high efficiency in key agility and resource usage that was so beneficial to 

the cipher's appeal would ironically identify i t as the most susceptible to brute force 

key search. Consequently, wi th the aim to establish an upper limit on the potential 

of 80-bit key search, Grain vO was used as the principle keystream generator in the 

key search machine developed between 2005-2006 and described in Chapter 6. 
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Key Search Machines 

A L G O R I T H M security is a significant issue of concern in the field of stream cipher 

design and is something that the eStream project has set out to address. Yet 

the comparatively short target key length for Profile 2 proposals raises another more 

fundamental question: if an algorithm is indeed ideal, what is the economic value of 

the protection being provided? In making such an assessment, all forms of generic 

attack must be considered including that of brute force: making i t prudent to consider 

the design of a key search machine. 

Brute force key search has already proved itself to be a practical attack form 

against some block cipher designs. However, its potential in the field of stream 

ciphers has not received similar public attention. As set out in the previous chapter 

exhaustive search attacks aimed at a steam cipher may find great levels of efficiency 

due to their method of operation. Thus a resolution of this gap in understanding is 

of paramount importance if a reasonable security valuation is to be made. 

This chapter sets out to address the design considerations needed in creating 

a stream cipher key search engine based around the data enhanced form of brute 

force outlined in Section 5.4.1. The valuation of security and the recent history of 

key search machines is first examined before the more specific design considerations 

involved in stream cipher brute force are addressed. Later in the chapter, a FPGA 

based architecture capable of performing successful key search will be described and 

analysed. This design, for a key search architecture targeting stream ciphers, would 

originally be presented in early 2006 [ l ] and as such, focuses on ciphers of the first 

eStream evaluation phase. 
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In should be noted that the hardware key search engine described in this chapter 

should be considered only as a theoretical design, as although i t is ful ly expanded 

i t has a number of shortcomings that would prevent deployment. Resolving these 

shortcomings would lead to the development of the ful ly practical hardware key 

search engine which is described in Chapter 7. 

6.1 Data Value 

As mentioned in the Chapter 5, trading security for a shorter key length is only 

reasonable if the cost an adversary faces in retrieving protected data, remains above 

its value to them. This value is determined by a number of factors in the commercial 

world, but wi l l typically have a time dependancy: in some situations, such as a 

financial transaction, data wi l l have a high ini t ia l value but its value wi l l then 

decay rapidly within fractions of a second; others, such as proprietary multimedia 

transmission, wil l have a lower value to an attacker but a relatively gentle value 

decay curve that may extend over weeks, months or even years. 

Value is also determined by the availability of other methods for the attacker 

to receive the data, and for example, Eve, who wants some data f rom Alice Corp., 

would probably find i t much cheaper to bribe Andy who works there than analyse 

the algorithms used and construct a multi-million pound key search machine. Never­

theless, there is a t ipping point where advantages to an adversary of a key search 

machine wil l exceed other possibilities, making their analysis crucial to allowing a 

well-informed decision to be made. 

6.2 History of Key Search 

As already mentioned in Section 4.3.1 the Lorenz cipher used during World War I I 

was attacked by U.K. cryptographers through use of the first digital electronic 

computer, Colossus. The computing resource, made available by this machine, aided 

efforts to decrypt intercepted messages through testing possible initial rotor settings. 

As such it operated effectively as the first electronic key search machine. An account 

of the Colossus development is given in the declassified document 'General Report 

on Tunny' [82, 83] an electronic version of which can be found at [185]. 
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While Colossus was a key search machine, or more correctly an IV search machine, 

it did not try to test every init ial combination in a brute force manner but instead 

exploited weaknesses in the underlying algorithm of the Lorenz machines. I t would 

take another 30 years for a key search machine based on exhaustive search to be 

publicly proposed. DifRe and Hellman in their 1977 paper [186] conceive of a parallel 

architecture key search machine made from millions of ASIC chips, which they 

optimistically estimated to be capable of recovering a key in a day at a cost of 

$20 million. Further theoretical key search machine designs, attacking the DES block 

cipher, were later published by Wiener [187] and Goldberg [46]: Wiener's design 

suggesting a $1 million machine in 1994 would be capable of recovering a key in 

under four hours and Goldberg introducing the idea of low cost FPGA usage in key 

search. 

Around this time the RSA Secret Key challenge was launched [188] challenging 

cryptographers to break the DES for a 24-character known-plaintext. This would 

lead to a number of distributed network attempts at breaking the cipher, as well 

as the first implemented hardware design for DES key search — 'DES Cracker'. 

Developed by the Eletronic Freedom Foundation in 1998 [46], DES Cracker was 

able to recover a 56-bit DES key in 56 hours for an estimated cost of $210,000. 

Its importance as an implemented hardware key search system means we return to 

consider its design details in Section 6.2.2. 

The DES has remained a popular target of more recent key search machine 

designs, and a number of suggestions have been made to improve search efficiency 

further. As metioned previously in Section 5.4.1, Clayton [183] introduced a data 

element into his 2003 DES key search system to improve online search efficiency, 

and create a very low cost practical attack. Time-memory trade-off [189] may also 

improve such attacks. 

One of the most potent demonstration as to ease wi th which the DES's 56-bit 

key space can now be searched is Kumar's [190] FPGA architecture implementation. 

This flexible, parallel search design capable of recovering a key in 9 days, is based 

around the generic computation engine 'COPACOBANA' and cost less than €9,000 

to build. COPACOBANA is further discussed in Section 6.2.3. 
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6.2.1 Key Search in Asymmetric Encryption 

Key search machines are not limited to symmetric encryption; they may also target 

the field of public key cryptography. Public key general number field sieves (GNFS) 

have already successfully targeted 663-bit numbers [191] of the RSA cipher via a 

software implementation and development of hardware based architectures has also 

seen a great deal of interest. One of the early proposed machines T W I R L [192] was 

instrumental in demonstrating in 2003 the vulnerability of using key lengths shorter 

than 1024-bits in factorisation based algorithms. 

A number of architectures have been proposed to further advance the key search 

in the field of number factorisation: SHARK [193]. indicated that even a 1024-bit 

factorisation may be possible given the right level of resources while CAIRN 3 [194] 

aimed to show that targeting a 768-bit key size is possible and relatively low cost. 

Other ideas for how to conduct the sieving process have also been proposed wi th 

Pelzl's design [195] implementing an elliptic curve method. 

A relatively recent concern has been that quantum computers based on qubits 

potentially turned some hard problems such as factorisation into easy ones by making 

use of Shors Algori thm [196], potentially destroying the security of the current 

public-key cryptography structures such as RSA. However, first implemented at the 

2-qubit level in 1998 [197, 198] i t has taken t i l l 2004 for quantum computers to reach 

the 7-qubit level [199] that would allow the factorisation of the 2-digit number 15. 

Even the 12-qubit computer described in 2006 [200] is a long way short of factorising 

the large numbers needed for these computers to be useful in cryptanalysis. 

More recently an attempt [201] has been made at attacking ECC public key 

based systems through use of parallel version of Pollard's rho algorithm [202]. Pelzl 

[203] estimates the cost of attacking an 112-bit ECC key using COPACOBANA at 

262 days. 

6.2.2 DES Cracker 

The Electronic Freedom Foundation 1998 DES Cracker [46] (often referred to as 'Deep 

Crack') would be the first implemented hardware architecture to target the DES. By 

its 56 hour brute force attack on this cipher i t demonstrated the high effectiveness 

of hardware parallelism in key search systems. Moreover, its non-theoretical design 

makes i t of particular interest when considering key search machines. 
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Figure 6.1: System layout of EFF's DES Cracker 

The structure of the DES Cracker (Figure 6.1) is based around custom ASIC 

(application specific integrated circuit) chips, implementing 24 search units and 

running at 40MHz. Each search unit performs a 16-cycle DES decryption and 

compares the result to see if its a known-plaintext or a series of recognised characters. 

A unit is loaded with 24-bits fixed key material by the PC (personal computer) and 

operates on its own small 32-bit area of key space until it is finished. I f it identifies 

an interesting result the search unit passes the key value to the controlling PC for 

fu l l analysis in software. 

In the 1998 DES Cracker, these custom ASICs were organised into boards of 

64 chips, w i th the fu l l system containing 29 boards. The fu l l key search machine 

averaged just under 89 billion searches a second when attempting the RSA DES II-2 

Challenge in which it was successful. The whole machine cost $210,000 of which 

$130,000 was for materials, such as the ASIC chips and boards. 

6.2.3 COPACOBANA 

COPACOBANA [190] was first demonstrated in SHARCS :06 alongside the stream 

key search engine presented later in this chapter. It is not specifically a key search 

engine but its computing structure is flexible enough to enable highly effective search 

engines to be programmed on to i t . 
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Figure 6.2: Inter-unit buses and chip layout of COPACOBANA 

The design of COPACOBANA (Figure 6.2) is based around a rack of 1-20 PCB 

(printed circuit board) modules, each containing six low cost Xi l inx Spartan I I I 

FPGAs. An address decoder and data switch that accompany each board, allow a 

PC, through the USB controller card, to communicate wi th individual FPGAs. 

When configured to implement DES key search each FPGA is programmed with 

four fully-pipelined DES implementations operating at a IOOJVIHZ. Each DES core 

has a 64-bit comparison unit and a 2-bit ID associated wi th i t . This I D number 

uniquely identifies the core and forms the 39th and 40th bits of the key wi th the 

other key bits coming from a counter and a fixed register programmed, on a flexible 

basis, by the PC. Positive matches are, like in DES Cracker, reported back to the 

PC for software analysis. 

The ful l COPACOBANA based DES key search machine averages 48 billion 

searches a second and obtains a key in an average of 8.7 days. The cost is detailed 

at €8,980, of which close to half is from the cost of purchasing the FPGA devices. 

6.2.4 Discussion 

The level of analysis on the DES means that block cipher key search is well un­

derstood and predictions can confidently be made over the security provided by a 

particular key length. In asymmetric encryption schemes, the level of knowledge 

and understanding of key length security is also well developed. However, there is a 

complete absence of public designs based around stream cipher primitives, leaving 

87 



6. Key Search Machines 

estimates as to the security of 80-bit stream cipher key lengths uncertain. To resolve 

the hypothesis of Chapter 5 i t was therefore proposed in 2005 to construct a key 

search machine targeting the efficient Grain vO stream cipher. The design consid­

erations and implementation aspects of the proposed machine form the subject of 

discussion in the remaining sections to this chapter. 

6.3 Attack Scenario 

Server to user content transmission is a common scenario in which the efficiency and 

speed of hardware stream ciphers are ideally suited. In this situation it is likely that 

an adversary may be able to collect a number of these transmissions and use known 

header information to gain the plaintext/ciphertext data pairs necessary to recover 

the init ial bytes of multiple keystreams, allowing an efficient enhanced search. I t is 

reasonably assumed in the design of D E L U G E and the key search machine in this 

chapter, that an adversary would be unconcerned over which user's data is retrieved 

and that differing IVs could be filtered out. The fact that counters are a common 

and easy way of producing unique variables such as an IV and that IVs typically are 

transmitted on open unsecured channels tends to support this later supposition. 

In recent times there has been some debate over the role of IVs [204], however an 

IV and a key are crucially different in that the later is deemed critical to the security 

of data and former is not — if the key is no longer a secret the message secret is 

lost: the condensing of secret information is the aim behind a stream cipher and 

differentiates it f rom the open time pad. I f the criteria for I V is made stricter to 

require randomisation and possibly secure transmission, there is l i t t le advantage to 

the user over defining the cipher to have a larger key size in the first place (the use 

of keys larger than the supposed security level is in fact proposed in Chapter 8 but 

for differing reasons). 

6.4 Platform Choice 

Before the design of a system could begin a considered choice of platform has to be 

made between ASICs (application-specific integrated circuits), as seen in DES Cracker, 

and FPGAs (field programmable gate arrays), as later seen in COPACOBANA. 
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The ASIC allows system design in rawest form with control of individual transistors 

possible. I t provides the maximum performance per unit of substrate area and 

offers the potential of a very efficient and high-speed key search engine. However, 

ASIC design is currently a complex, high cost process wi th shrinking feature sizes 

constantly introducing new challenges to digital design due to changing physical 

device characteristics. These problems are only likely to escalate. 

FPGAs offer an alternative approach and add a extra layer of abstraction in 

the design process, which allows the designer to concentrate on system design and 

not physical layout. Their ever growing popularity has led to FPGA progress being 

incredibly rapid over the past two decades (see Section 6.6.1) wi th falling prices 

and increased logic element counts. This is a trend which looks set to continue as 

the high overheads of nanometer processes encourage migration away from ASIC. 

The FPGA has no overhead costs associated wi th purchases and offers a flexible, 

inexpensive environment for digital designs. The programmable nature of the devices 

has a further effect especially relevant to attack architectures in that this allows an 

adversary to buy blank devices — there is no need to explain to a large multinational 

why a hundred thousand chips with ciphers on them are needed. 

The rapid turn-around, low design costs, covert purchasing and low unit cost are 

very attractive features to a commercially based adversary, and combined with the 

reasonable circuit speeds of modern FPGAs a decision was made that the design 

work should focus on FPGA based systems. 

Having chosen a platform a second design choice is whether the design should follow 

a asynchronous or synchronous approach. FPGAs are largely designed for the latter 

approach, with a register in every logic cell and specialist routes for global clocking 

to ensure synchronous operation. However, another reason is design simplicity. On 

the micro-module scale the design effort of creating data acknowledgement channels 

adds an extra level of complexity to design which can outweigh any possible speed 

advantages of a logic reduction. This leaves the main advantage of asynchronous 

design as that of power reduction, a factor not typically of concern in key search 

system design. 
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Figure 6.3: System diagram of a simple key search system 

6.5 Key Search System Design 

Possibly the simplest brute force key search system is one that takes a single stream 

cipher and varies the key to produce unique keystreams for comparison wi th a 

'plainstream' (the keystream retrieved f rom a plaintext-stream/ciphertext-stream 

data pair). Assuming the cipher uses an 80-bit key, then checking 80-bits of keystream 

material with a known plainstream on average produces one positive match over the 

entire key space. When eventually a match is detected i t is likely that the key in 

question has also been used to produce the original keystream. 

As it has been assumed that multiple data pairs wi th matching I V are available, 

it is reasonable to extend the system so that i t stores the keystream and checks 

each plainstream in turn while the cipher is reinitialising. This leads to the design 

shown in Figure 6.3. I f the number of plainstreams is great enough the memory 

comparison may take much longer than key loading and initialisation making the 

use of additional memory comparison units desirable. Such units have then to be 

identified, and as in Figure 6.3 it is convenient for this identifier to form part of the 

key. 

Although simple, this architecture presents a number of disadvantages to high 

speed, resource efficient key search wi th the major i ty of these founded on the 

need for 80-bit comparison of plainstream and keystream. Reliable comparison is 

desirable to minimise the need for external computation but by introducing a two 

stage process efficiency can be greatly improved: the first stage comparing a small 

amount of keystream material, eliminating the majority of keys: and the second stage 

performing a ful l comparison on those that are left. For large systems the additional 

resource required for a back-end element is far outweighed by the reduced memory 

90 



6. K e y Search Machines 

R E G I S T E R 

Varying Key 

KEYSTREAM 
GENERATOR 

ADDRESS 
COUNTER MEMORY 

contacting 
fnt 16-b/fi ol 
each tvget 
Ptawistraam 

MEMORY 
containing tull 
Ptanstreams varying kay 

KEY CHECKING 
UNIT 

Decoder 16-BfT 

(a) Serial Search - memory-based search system 

R E G I S T E R 
containing 

Varying Key 

R E G I S T E R S 
ccnliinitig frsl let* tuts ot 

largal Plainslrtams 

K E Y S T R E A M 
GENERATOR 

MEMORY 

K E Y C H E C K I N G 
UNrr 

Expandei 
and 

Decode 

(b) Parallel Search - data enhanced brute force 

Figure 6.4: System diagram of two approaches to key search 

requirements, logic and routing complexity seen at the front-end. so long as the key 

elimination rate is high. 

The 16-bit comparisons shown in the design outlined in Figure 6.4(a), are sufficient 

to eliminate 99.9985% of keys and combined with the FIFO buffer, allow a small key 

checking unit in the back-end to function in unison wi th a front-end that is orders 

of magnitude higher in performance. When the number of plainstreams available is 

large this serial search system becomes highly efficient as each sequential memory 

search can continue without performance penalty while other search units are being 

loaded with new keystreams. 

The other theoretical key search system design considered (Figure 6.4(b)) is less 

memory-based and involves a stream cipher producing a small amount of keystream 

which is immediately checked against multiple plainstreams. When the number of 

plainstream comparisons is small this leads to a very low resource, high performance 

key search system without the control complexities required for memory-based 

approaches. 

It is noticeable that the described memory-based architecture (Figure 6.4(a)) can 
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Figure 6.5: System diagram of DELUGE-0 chip module with n=4, p=4 

utilise a much higher data element than the parallel search system (Figure 6.4(b)). 

Thus if an application generates a large number of useful plainstreams for a potential 

attacker then this serial search design is likely have a lower resource overhead and so 

be the optimal low-cost option to key search. Nevertheless, in designing a key search 

machine it is not only desirable to minimise the brute force computation required 
and the addition of a large memory element precludes a system from use in many 

otherwise applicable situations. Parallel search has its optimal data requirement low 

enough that a machine based on this system would be applicable to a wide range 

of applications and thus is a good compromise for the ini t ial evaluation system, 

DELUGE-0. 

6.5.1 D E L U G E - 0 

The theoretical parallel search method forms the basis of the DELUGE-0 design and 

it is envisaged that a large number of independent search modules, each occupying a 

FPGA device, would be lightly controlled by a central computer. A potential module 

of the DELUGE-0 key search system is shown in Figure 6.5. The 16-bit data path 

architecture at the front-end of the module helps minimise the necessary depth of 

the FIFO buffer, while still allowing the Grain vO keystream generator to run with a 

minimum initialisation set-up. 

Simultaneous key loading is used to simplify control of the system but this 

consequently requires the buffer to accept a high number of front-end search outputs 
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in parallel, which in turn necessitates a second smaller but deeper buffer to store 

outputs once expansion and decoding has taken place. The system diagram also 

shows outputs from comparison units being combined in pairs before being sent to 

the primary buffer. Although this requires memory and comparison unit duplication 

at the back-end of the system the speed and resource advantages of reduced buffer 

width more than compensate, particularly when the number of search units n and 

the number of plainstream registers p are large. 

The key used in loading is split in three parts with first being a regularly changing 

variable provided by a system-wide counter, the second being a short identifier that is 

unique to each cipher unit and the third being an externally controlled fixed register 

variable that is unique to the chip. By carefully selection of the register value loaded 

on completion of each counter cycle,1 multiple chips can accomplish a search of the 

80-bit key space. A small control unit (not shown in Figure 6.5) that controls loading 

of this register is also responsible for providing the desired degree of system flexibility 

in I V and plainstream memory values. 

At the system output a relatively simple set-up is used with the key being tristated 

onto an 80-bit bus when a match is found: the probability of two chips in DELUGE-0 

finding a match simultaneously too low to be of concern. Further, as a match may 

be down to pure chance or more than one plainstream-key pair may be desired the 

final system caters for an acknowledgement signal to resume the paused chip. A 

pseudocode description of DELUGE-O's key search operation is given in Section 6.7.1. 

6.5.2 D E L U G E - 0 System Testing 

In i t ia l simulation testing of a DELUGE-0 single chip core was carried out for the 

Altera Cyclone EP1C20F400C6 using Quartus I I 5.0SP2. The results imply that 

the optimal configuration for brute force on this system is 16 search units per chip, 

each with a plainstream search space of 16. The configuration was estimated to run 

at 100MHz and use 12018 logic elements,2 while the use of 4 back-end comparison 

units restrict memory requirements to just 19kbits. Sub-system resource usage is 

further detailed in Table 6.1. 

1 Use of a LFSR based counter in the final system necessitates that one chip in DELUGE-0 should 
be programmed differently, with the counter being held at zero and the fixed key being driven by 
a counter to mitigate the former's inability to cycle through an all zero state. 

2 Excludes resources used to Instate the key output. 
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Table 6.1: Resource Usage for Key Search System on a EP1C20F400 F P G A 

Sub-System Memory Bits Registers Logic Elements No. 
Counter 0 64 66 1 
Stream Cipher 0 160-166* 496-505* 16 
Comparison Unit 0 0 103-160* 16 
Plainstream Register 0 16 16 16 
Primary FIFO 12160 46 71 1 
Front-End (n=p=16) 12160 3189 10995 -
Expander-Decoder 0 73 204 1 
Secondary FIFO 4736 46 64 1 
Translation Unit 4736 119 269 -
Stream Cipher 0 166 493 1 
Plainstream Memory 512 0 0 4 
Compare 0 2 11 4 
Check Control 0 20 26 1 
Back-End Test 2048 212 581 -
Key-IV Register 0 109 109 1 
Loading Control 0 0 20 1 
Total 18944 3681 12018 -

6.6 Results 

If a well informed decision is to be made on the use of 80-bit keys, the performance 

figures of the DELUGE-0 system simulations must be translated into economic terms 

so a comparison to data value can be made. Additionally, although the potential 

of key search systems in the current technological situation is important, users of 

cryptography algorithms need to be confident that security is maintained throughout 

a product's time to market — as such, estimates as to their future practicality are 

also of interest. 

6.6.1 F P G A History and Future Roadmap 

After the conception of the FPGA in 1984 early chips were relatively small and novel 

devices: the 1985 Xilinx XC2064, designed for a 2/j.m process, made available just 64 

logic blocks for logic configuration [205]. 21 years later, FPGAs are commonplace 

devices that are found throughout electronic systems with modern high performance 

chips such as the Xi l inx Virtex-4 XC4VLX200 designed on a 90nm process and 

* Sub-system resource usage varies per instance clue to automatic optimisations made at compilation. 
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containing advanced logic blocks that number in the hundreds of thousands. Looking 

at this substantial progress, i t is clear that the field of FPGA development is fast 

moving. Furthermore, the performance gains to the designer are unlikely to slow in 

the near future as the simple structure of FPGA's repeated cells makes i t likely the 

fu l l benefit of future nanometer process nodes wil l be realised. Moore's law [184] 

predicts that every 3 years the cost-performance ratio should increase by a factor of 

4, a hypothesis that would appear to be adhered to by the previous three generations 

of low-cost Altera FPGAs [1]. That Moore's law should hold in the near future is the 

presumption on which the calculations of future chip cost presented in Section 6.6.2 

are made. 

Chapter 7 wi l l again review these figures for predicted performance in light of 

more recent FPGA developments, which may indicate that the economics of search 

machines may in fact deviate from Moore. 

6.6.2 Extrapolating Keysearch Results 

The EP1C20 simulation device was a very economical chip at its time of release, 

however by late 2005 it was a generation behind current low cost, 90nm FPGAs: 

Altera's 'Cyclone IF and Xilinx's 'Spartan I IP. The most economical Altera offering 

from this 90nm generation was the Cyclone I I EP2C35 wi th a 250k unit volume 

pricing of $22 per chip [206]. Testing showed that the slowest speed-grade of this 

chip accommodates a n=32, p=16 DELUGE-0 search system running at 86MHz. 

Altera also offers a technology called 'HardCopy' which is a form of structured 

ASIC. In this a generic chip, with FPGA style cell structure, is mass manufactured 

without the top few metallisation layers, these layers are then added at a later stage 

to customise individual devices. Although such a manufacturing process sacrifices 

the FPGA's covert nature of design and programming flexibility i t does allow lower 

unit costs and higher performance. The HC210W chip, the most economical of the 

high end, 2005 HardCopy I I devices, had a unit cost of $15 at volumes of 100k and 

a further non-recoverable engineering cost of $225k [207]. Design simulations on 

Quartus I I 5.0SP2 indicate that such a device allows a n=64, p=32 DELUGE-0 

search system to fit on the chip. A lack of timing information means that the 230MHz 

clock speed used in cost calculations is an estimated figure based on the fact that a 

n=64, p=16 DELUGE-0 search system runs at 115MHz on the 'Stratix IP EP2S60 

and that this high performance FPGA family runs on average at half the speed of 

HardCopy I I [207]. 
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These Cyclone I I and HardCopy I I results allow two tables to be constructed 

(Table 6.2 and 6.3) which present the chip cost an adversary would face in building a 

DELUGE-0 system for the regular recovery of a key within the specified time-scale. I t 

is worth noting that in constructing and running a key search machine a substantial 

number of other costs would likely be incurred: PCB manufacture; cost of racks to 

hold the PCBs; cost of a computer to control the system; wiring; power regulators; 

programming chips; air conditioning installation; cost of the building housing the 

machine; power consumption; logistical cost of handling high numbers of components. 

These costs add substantially to the overall expense of any brute force attempt but 

i t is stil l probable that chip cost will still dominate a final bill of materials. 

Table 6.2: Estimated Chip Cost of 80-bit Key Brute Force on EP2C35 and future 
equivalents 

Recovery Time 2005 2010 2015 
1 day $61 billion $15 billion $3.8 billion 

1 month $2.1 billion $520 million $130 million 
1 year $160 million $42 million $10 million 

Table 6.3: Estimated Chip Cost of 80-bit Key Brute Force on HC210 and future 
equivalents 

Recovery Time 2005 2010 2015 
1 hour $88 billion $22 billion $5.5 billion 
1 day $3.8 billion $920 million $230 million 

1 month $180 million $45 million $12 million 
1 year $10 million $2.9 million $930ka 

The figures outlined in Table 6.2 indicate that practical FPGA attacks which 

take under a month to obtain a key are many years away. However, the estimated 

cost a 1-year search in ten years time appears be low enough to be applicable in 

many situations. The structured ASIC results (Table 6.3) cause greater concern as 

even today. $10 million worth of devices makes a one year attack possible, a figure 

potentially viable for a, large organisation [175]. 

6.6.3 Applicability to Other Algorithms 

The Grain vO keystream generator used for the described key search machine, was 

by 2006 found to be algorithmically insecure (see Section 4.7.4). This affects the 
a Cost likely to be higher as below volume threshold. 
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Table 6.4: Keystream Generator Efficiency for Key Search on EP1C20 

Keystream Generator Logic Elements Clock Rate Clk /Key Keys/LE.s 
Grain vO 498 229MHz 11 41803 
Grain v l 543 211MHz 11 35330 
Trivium 633 308MHz 19 25609 

validity of the DELUGE-0 results in as much as the subsequent modification to 

Grain v l [145] slightly reduces the cipher's key agility as seen in Table 6.4. Table 6.4 

also shows that the cost of key search machines based on the 80-bit keyed Trivium 

stream cipher would likely be double the cost. The effects of reducing key agility to 

improve system security are further discussed in Section 8.1.7. 

6.7 Discussion 

This chapter has presented a system for stream cipher key search that provides 

an ini t ia l assessment as to the value of 80-bit keys. The system is not suitable for 

practical implementation as the design targets the core aspects of key search and 

does not consider the ful l practicalities of an engine at system level. 

Nevertheless, the key search machine described indicates that a single $15 chip is 

capable of searching 39 billion key/data possibilities every second. A move to a more 

memory based system or translation to a ASIC architecture mean that, from a data 

protection perspective, the concerning figures presented for 80-bit stream cipher keys 

may sti l l be too optimistic. The next chapter investigates an improved key search 

architecture that is practical to implement and makes use of pipelining to indirectly 

reduce the comparison overheads. 

6.7.1 Pseudocode 

The following code describes the principle operations of the key search system out­

lined in Figure 6.5. 
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Part 1 - FRONT-END SEARCH 

REPEAT UNTIL Set 

SET Done to 0 

SET IV to value stored e x t e r n a l l y 

FOR each value of Counter 

FOR each cipher 

SET Key to {system FixedKey, unique C i p h e r l d e n t i f i e r , Counter} 

CALL rekeyCipher with Key and IV 

ENDFOR 

REPEAT UNTIL c ipher i n i t i a l i s a t i o n period complete 

FOR each cipher 

FOR each p a i r of stored p a r t i a l plainstreams 

SET Comparison to 0 

FOR each stored p a r t i a l plainstream 

I F keystream same as plainstream THEN 

SET Comparison to 1 

ENDFOR 

SET searchFlag for p a i r to Comparison 

ENDFOR 

ENDFOR 

I F any searchFlag non-zero THEN 

STORE a l l searchFlags and Counter value in Primary FIFO 

END I F 

ENDFOR 

SET Done to 1 

Part 2 - TRANSLATION UNIT 

REPEAT UNTIL Primary FIFO not empty 

READ searchFlags and Counter value from Primary FIFO 

WHILE any searchFlag non-zero 

TRANSLATE most s i g n i f i c a n t non-zero searchFlag into 

C i p h e r l d e n t i f i e r and Pla instreamSelect 

STORE C i p h e r l d e n t i f i e r , P la instreamSelect and Counter value 

i n Secondary FIFO 

SET most s i g n i f i c a n t non-zero searchFlag to 0 

WEND 
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Part 3 - BACK-END FULL TEST 

REPEAT UNTIL Secondary FIFO not empty 

READ C i p h e r l d e n t i f i e r , PlainstreamSelect and Counter value from 
Secondary FIFO 

SET testKey t o {system FixedKey, C i p h e r l d e n t i f i e r , Counter value} 
CALL rekeyCipher w i t h testKey and IV 
REPEAT UNTIL ciph e r i n i t i a l i s a t i o n p e r i o d complete 
STORE f i r s t 8 0 - b i t s of keystream 
FOR each memory 

IF keystream same as value a t address PlainstreamSelect THEN 
SET memFlag f o r memory t o 1 

ELSE 
SET memFlag f o r memory t o 0 

ENDFOR 
IF any memFlag i s non-zero THEN 

SET Bus Output t o testKey 
REPEAT UNTIL Acknowledge 

ENDIF 
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Chapter 7 

D E L U G E - a practical stream 
cipher key search engine 

THIS chapter introduces DELUGE, a second generation FPGA-based key search 

system that specifically targets stream ciphers. The design originally presented 

at SASC 2007 [2] should be considered the first modern public design that practically 

implements stream cipher brute force; its hardware code can be found in Appendix C. 

The design itself offers much greater levels of efficiency than seen in the more 

theoretical engine of the previous chapter, and its highly modular and adjustable 

architecture lends itself to large scale multi-chip implementations. Although only a 

small demonstrator system was constructed, this was sufficient to confirm operation 

and allow extrapolation of simulation results to provide an economic assessment of 

the 80-bit key length. The resulting implications of this assessment wil l be addressed 

in Chapter 8. 

7.1 Improving Key Search 

Although the original key search engine described in the Chapter 6 was conceptually 

useful in resolving the methodology of implementing stream cipher brute force, its 

usefulness in making a reliable assessment of the security of key length was more 

limited. A number of shortcomings in the system were apparent but two principally 

stand out: that the failure to target structural aspects of a specific hardware platform 

underestimates the engine's performance potential; and that the simulation-led design 
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process used failed to address many system level design aspects crucial to large scale 

multi-chip set-ups. The creation of a second generation system, D E L U G E , 1 allows 

these factors to be addressed and the potential of exhaustive search on synchronous 

stream ciphers to be fully realised. 

7.1.1 Search Unit Architecture 

The new search unit architecture of DELUGE still owes much to the first generation 

system and, as such, i t targets 80-bit keys, uses the enhanced form of exhaustive 

search and operates towards the same scenario outlined in Section 6.3. The main 

search computation is performed by the search core of Figure 7.1a and this retains 

a buffered three tiered structure which avoids the inefficiency of performing ful l 

80-bit comparisons for every key trial. The first stage uses a single cycle key agility 

stream cipher and short 16-bit partial comparisons to enable rapid elimination of 

the vast majority of keys, whilst the third stage, the 80-bit keystream compare unit, 

performs a ful l comparison for reliable key detection. The lack of pressure for high 

performance in the latter stage again allows a compact cipher implementation and 

serial comparison structure to be used, w i th the expander encoder that forms the 

mid stage of the design, buffering and converting parallel comparison results into the 

serial key and data information required. 

7.1.2 Keystream Generation 

One of the main areas ripe for improvement was that of keystream generation with 

the previous machine using just a basic implementation of Grain vO to generate 

keystreams for comparison purposes. From a security stand point, the Berbain, 

Gilbert, Maximov attack [144] meant i t was chosen not to continue targeting this 

cipher, but instead make the almost equally efficient Grain v l [145] the focus of 

search attempts. 

Improvements in search speed were achieved through pipelining the stream cipher 

initialisation process. As Table 7.1 illustrates, this only provides small improvements 

in the efficiency of Grain v l and, in the case of Trivium, none at all due to the longer 

initialisation procedure. Nevertheless, the consequential improvement in comparison 

' Data Enhanced Logical Unlock-key Generating Engine. The name also reflects the machine's 
inundat ion of a target with keystreains and maintains the water based connotations of the phrase 
'stream cipher'. 
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Figure 7.1: Search unit system architecture of DELUGE 

a Key search core wi th dual keystream pipeline 
b Internal search unit layout 
c Bus interface of search unit 
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Table 7.1: Performance of Keystream Generation Schemes on Altera EP1C20 

Keystream Generator Acceleration Logic, LE Cycles/Key Keys/LE.s 
Grain vO - 498 11 42k 
Grain v l - 543 11 35k 

Grain v l pipe. pipelined 4665 1 46k 
Trivium - 633 19 26k 

Trivium pipe. pipelined 8507 1 26k 
Grain v l X2 x-factor 7647 0.5 53k 
Grain v l X4 x-factor 13554 0.25 58k 

unit utilisation from the continuous feed of keystreams leads to real underlying 

benefit. As a consequence in each case pipelined versions are to be preferred. 

7.1.3 Use of Computational Invariance in Pipelining 

This technique specifically introduced for DELUGE's search core, modifies the 

pipelined initialisation process to take advantage of the fact that two nearly identical 

keys lead to similarities in the cipher state until the latter stages of initilisation. 

For Grain v l (t=16) if two keys are selected so that only A'79 differs, the calculation 

for the next state is identical and so the logic required for the second key may be 

saved. For the second stage a small calculation must be done but most of the state 

wi l l be identical (Table 7.2) leading to similar logic savings. Using 5 stages of this 

invariance in pipes sharing key bits K78..0 produced a 15% efficiency increase in search 

performance (Table 7.1). The remaining key bit, A^g, acts as the pipe identifier. 

The technique may be extended to more pipelines and a 4 pipeline applica­

tion ( G r a i n v l X4) wi th shared key bits A^77..n produces a further 10% efficiency 

improvement. The invariances for this system are presented in Tables 7.3 and 7.4. 

The computational invariance technique is also applicable to the ciphers Trivium 

and Grain-128.2 The invariance and results for these are presented at the end of the 

Chapter in Section 7.4.2. 

2 These ciphers may also be used in the search machine as D E L U G E itself is flexible as to the 
specifics of the search module so long as it produces at least one 16-bit keystream per clock cycle. 
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Table 7.2: Register Invariance in a Dual Grain v l Pipeline 

Stage NFSR LFSR 
1 ^78.0 s 7 9 . 0 

2 ^79. 64, ^62 .0 s 79..0 

3 ^79..76, ^74..72, ^70..68, ^66, ^63..48, ^46.0 •579..72, •570..65, 563..0 

4 ^70, ^63. 60, ^58..56, ^54..52, ^50, ^47..32, ^30..0 •578, S74, •570. 69 ,567 , 563..56, •S54..49 547..0 

5 ^54, ^47 .44, ^42..40, ^38 .36, ^34, & 3 1 . . 1 6 , ^ 1 4 . . 0 • s 62, 558, •554..53, S51, S47..40, '538..33 531..0 

6 ^38, hi..28, ^26 .24, ^22 .20; ^18, ^15 .0 •546, S42, •538..37, s 3 5 , • 5 3 1 . . 2 4 , -522.. 17 •S15..0 
7 ^22, & 1 5 .12, ^10.8; ^6..4, ^2 5.30 •526, 522.21; 519; 5l5..8, 5fi. 1 

8 
q 

•Sl4, S i o , S6..5, 53 

zf 
10 - -

Table 7.3: 1st Order Invariance in Shift Registers of Grain v l : pipelines [id — 
01, 10,11] relative to pipeline [id = 00] 

(a) N F S R 

Stage Pipe [id = 01] Pipe [id = 10] Pipe [id = 11 
0 ^79,77:0 ^78:0 &77:0 

1 ^78:63,61:0 ^79:64,62:0 ^78:64,61:0 

2 ^79:75,73:71,69:67,65,62:47,45:0 ^79:76,74:72,70:68,66,63:48,46:0 "79:76,73:72,69:68,62:48,45:0 

3 ^69,63:59,57:55,53:51,49,46:31,29:0 ^70,63:60,58:56,54:52,50,47:32,30:0 ^63:60,57:56,53:52,46:32,29:0 

4 ^53,47:43,41:39.37:35,33,30:15,13:0 ^54,47:44,42:40,38:36,34,31:16,14:0 ^47:44,41:40,37:36,30:16,13:0 

5 ^37,31:27,25:23,21:19,17,14:0 ^38,31:28,26:24,22:20,18,15:0 ^31:28,25:24,21:20,15:0 

6 ^21,15:11,9:7,5:3,1 ^22,15:12.10:8,6:4,2 "15:12,9:8,5:4 

7 
8 
9 

b& bG 

-

(b) L F S R 

Stage Pipe id = 01 Pipe id = 10 Pipe id = 1 1 
0 •579:0 579:0 5'79:0 

1 578:0 579:0 578:0 

2 579:71,69:64,62:0 •579:72,70:65,63:0 579:72,69:65,62:0 

3 577,73,69,68,66,63:55,53:48,46:0 578,74,70,69,67,03:56,54:49,47:0 569.63:56,53:49,46:0 

4 561,57,53,52,50.47:39,37:32,30:0 •562,58,54,53,51,47:40,38:33,31:0 553,47:40,37:33,30:0 

5 545,41,37,36.34,31:23,21:16,14:0 546,42,38,37,35,31:24,22:17,15:0 •537,31:24,21:17,14:0 

6 529,25,21,20,18,15:7,5:0 •s30,26,22,21,19,15:8,6:l 521,19,15:8,5:1 

7 513,9,5,4,2 s14,10,6,5.3 5'3 

8 
9 
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Table 7.4: 2nd Order Invariance in Grain v l : pipeline [id =11] relative to 
[id = 01,10] 

(a) N F S R (b) L F S R 

Stage Relative to Relative to Stage Relative to Relative to 
[id = 01] [id = 10] [id = 01] [id = 10] 

0 - - 0 - -
1 &79 - 1 579 -
2 ^74,70,66,63 ^75,71,67,65 2 570,63 571,64 

3 ^70,58,54,50,47 ^69,59,55,51,49 3 578,74,70,67,54,47 s77,73,68,66,55,48 

4 ^54,42,38,34,31 ^53,43,39,35,33 4 562,58,54,51,38,31 561,57,52,50,39,32 

5 ^38,26,22,18,15 ^37,27,23,19,17 5 s46,42,38,35,22,15 s45,41,36,34,23,16 

6 ^22,10,6,2 ^21,11,7,3,1 6 S30,26,22,19,6, 529,25,20,18,7,0 

7 h 7 514,10,6,3 513,9,4,2 

8 - - 8 - -
9 - - 9 - -

7.2 A Practical System 

Although the large bus widths of [1] may be suitable for a single chip system the 
need for a large scale multi-chip design when undertaking 80-bit key space search 
renders such an interface impractical. DELUGE comprehensively resolves this issue 
with a redesigned interface structure (Figure 7.1c) based on a more conventional data 
and address bus architecture that would additionally be suitable for implementation 
in generic computational machines such as to COPACOBANA (see Section 6.2.3). 
The simplified interface greatly eases the set-up process, and the introduction of 
separated clock domains means that the search speed is no longer at the mercy of 
interface requirements. 

DELUGE's output register (Figure 7.1b) can be polled via. the data bus to check 
if the allocated key space has been searched or if, indeed, a possible key has been 
found. In this way a single computer may monitor and manage a large number of 
DELUGE search units (Figure 7.2). The only other requirement for DELUGE's 
correct multi-chip operation being that of the chip-select signal address decoders 
— all other interface signals are global to the system. The full outline of operating 
instructions implemented by the DELUGE interface can be found in Appendix B. 
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Figure 7.2: I n t e r - u n i t buses and possible c h i p layout fo r D E L U G E 

7.2.1 Practical Demonstrator 

To be confident the system was practical in real world operation a demonstrator 
system was conceived (Figure 7.3). This placed a DELUGE chip module with a 
Grain v l search unit on a small Altera 'Stratix' EP1S10 FPGA and the associated 
controller on a l APEX ; 20K200EFC FPGA with a 7-segment display feeding in­
formation to the user. The system checked 2 keystreams against 64 plainstream 
every cycle, covering 2 2 8 — 1 of key space every 11 seconds while flagging key matches 
appropriately. The 10MHz bus speed and 50MHz search speed potentially could be 
taken much higher but the demonstrator still was sufficient to show the feasibility of 
large scale DELUGE based search engines. 

7.3 System Results 

The chosen Altera Cyclone I I target platform was again, at the time of design, one 
of the most economic FPGA offerings available with the EP2C35 having a 250k unit 
volume pricing of $22 per chip [206]. This chip could either fit a DELUGE system 
with 2 keystreams and 2 9 plainstreams or 4 keystreams and 2 8 plainstreams,3 the 
simulation results of which are given in Table 7.5. For comparison purposes the 
results presented, also include the pure brute force system later implemented through 
DELUGE by setting its data element to T . 

The actual full system cost of DELUGE, including construction components, 
3 Despite the two keystream set-up producing a s l ight ly lower cost system the four keystream 

system may be preferred in reality due to its lower data requirement. 
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H I 
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Win 

Figure 7.3: I m p l e m e n t e d d e m o n s t r a t o r o f D E L U G E key search 

Table 7.5: C h i p Cos t o f 8 0 - b i t K e y E x h a u s t i v e Search u s i n g D E L U G E o n a 

E P 2 C 3 5 F 6 7 2 C 8 F P G A 

Core Design Core Logic. LE Searches/s Recovery Cores Chip Cost 
n=2x4X, p = l 26.4k 1.0 x 109 lwk 970m $21.3b 
n=4X, p=256 29.2k 138 x 109 lwk 10.0m $221m 
n=2X, p=512 25.5k 144 x 109 lwk 9.6m $211m 
n=2x4X, p = l 26.4k 1.0 x 109 lyr 18.6m $409m 
n=4X, p=256 29.2k 138 x 109 lyr 193k $4.2m 
n=2X, p=512 25.5k 144 x 109 lyr 184k 84.1m 

107 



7. D E L U G E - a practical stream cipher key search engine 

should be considered to be double the Table 7.5 figures — assuming that COPA-
COBANA is reflective of key search system costing. 

7.4 Discussion 

The performance of the DELUGE system is 40 times that described for the FPGA 
platform in [1] and half the cost of the described structured-ASIC machine.4 The 
threat levels originally outlined in 1996 [175] indicate that these figures place DEL­
UGE in the realms of feasibility for a large organisation and indeed with U.S. inflation 
over the intervening period at 35% [208, 209] the $10m level quoted may now under­
estimate the resources available to an attacker. Nonetheless, in making feasibility 
predictions the size of this inflation increase is trivial in comparison to a Moore's 
Law progression over the same period which resulted in an estimated 1600% increase 
in computing resource per dollar. 

Assuming technology trends continue to follow Moore's law, it is apparent that 
future process nodes will bring with them the possibility of a sub-million dollar search 
system. As we see in Section 7.4.1 this fundamental assumption need not continue to 
hold but even at present it is suggested that DELUGE represents a practical threat 
to stream ciphers with short 80-bit key lengths. 

7.4.1 Improving F P G A Technology 

As outlined in Section 6.4 FPGA technology is an area of rapid development and 
following the presentation of DELUGE at SASC'07, Altera made an announcement 
in March 2007 on the release of the 'Cyclone I I I ' FPGA [210]. This new iteration of 
the Cyclone family, based on a 65nm technology, may have been expected to continue 
down the path set by Moore, however the results in Table 7.6 indicate that this is 
not the case — the intervening 18-months between Cyclone I I and Cyclone I I I leads 
to less than a 10% fall in costs. 

Some of this shortfall can be explained by the advance status of these chips 
at the time of testing but much of the reason lies in a change of Altera's design 

4 It is attractive to think of moving D E L U G E to an A S I C platform, bringing further cost reductions 
to short recovery time searches. However, as mentioned in Section 6.4, unlike F P G A s the 
technology forces the creation of one-offs, making it arguably less attractive to an adversary 
considering investment in computing resource. 
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philosophy — from one that is speed and cost focused to one that is orientated 
towards power efficiency. Indeed the large deviation from Moore on cost-performance 
may in part be offset by the 50% power reduction [211] of these devices which will 
lower the running costs of systems such as DELUGE. Nonetheless, the assumption 
of a continued Moore's Law extrapolation for low cost FPGAs would seem likely to 
be unduly pessimistic when calculating the future cost to an adversary. 

Table 7.6: DELUGE Chip Cost on EP2C35F672C8 and EP3C40F484C8 FPGAs 

FPGA Core Design Core Logic, LE Searches/s Recovery Chip Cost 
Cyclone I I n=4X, p=256 29.2k 138 x 109 lyr $4.2m 

n=2X, p=512 25.5k 144 x 109 lyr $4. Ira 
Cyclone I I I n=4X, p=256 28.6k 148 x 109 lyr $3.9m 

n=2X, p=512 23.2k 150 x 109 lyr $3.9m 

7.4.2 Key Search of Other Stream Ciphers 

DELUGE was designed to accommodate the interchange of the cipher under test 
and so it is useful to consider the search machine's operating performance in the 
presence of stream ciphers other than Grain v l . The performance of the keystream 
generator with Trivium has already be observed in Table 7.1 but with a small level of 
modification DELUGE may also operate with a 128-bit key cipher such as Grain-128. 
The keystream generator module results for this stream cipher are presented in 
Table 7.7.5 

The compacted dual pipeline of Grain-128 X2, perhaps surprisingly, illustrates 
that there is very little difference in performance terms between it and its 80-bit 
keyed cousin. Grain-128's dual pipeline would appear to compact with even greater 
efficiency than that of Grain v l , leaving it using less resources despite the larger 
register sizes. The added variables used in the feedback and output functions do 
reduce the achievable speed relative to Grain v l but it remains fast enough that the 
difference would be largely negated by other routing concerns in the full key search 
structure. In view of this, it is thought that Grain-128 may replace Grain v l in 
DELUGE without significant performance penalty except to accommodate searching 

5 It may noted that the figures quoted for the Grain vJ compacted dual pipeline are slightly 
improved in resource efficiency terms compared to those in Table 7 . 1 . This is due to the use 
of a fully compacted pipeline instead of the partial 5-stage one seen in the SASC'07 D E L U G E 
system. As is observed, the difference is minimal and again does not produce large reductions in 
key search machine costs which may affect previous findings. 
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Table 7.7: Updated Performance of Grain v l and Grain-128 Keystream Genera­
tion Schemes on Altera EP1C20 

Keystream Generator Acceleration Logic, LE Cycles/Key Keys/LE.s 
Grain v l - 543 11 35k 

Grain-128 - 776 9 24k 
Grain v l pipe. pipelined 4665 1 46k 

Grain-128 pipe. pipelined 4989 1 37k 
Grain v l X2 x-factor 7600 0.5 54k 

Grain-128 X2 x-factor 7516 0.5 49k 

the larger key space. 

The table for implementing the invariance in the Grain-128 dual pipeline design 
is given in Table 7.8. A similar table for Trivium (Table 7.9) illustrates that large 
parts of Trivium's registers also display invariance to a single bit difference in the 
key, although with its greater set-up time the benefit will be proportionality less 
pronounced than that seen with the Grain ciphers. 
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Table 7.8: Invariance in the shift registers of Grain-128: pipeline [id = 1] relative 
to pipeline [id = 0] 

(a) N F S R 

Stage Invariant Registers 
0 ^126:0 

1 ^126:96,94:0 

2 ^125,122:119,117:108,106:103,101,99:97,94:64,62:0 

3 ^122,120,117:115,110,106,104,93,90:87,85:76,74:71,69,67:65,62:32,30:0 

4 ^90,88,85:83,78,74,72,61,58:55,53:44,42:39,37,35:33,30:0 

5 ^58,56,53:51,46,42,40,29,26:23,21:12,10:7,5,3:1 

6 ^26,24,21:19,14,10,8 

7 -

(b) L F S R 

Stage Invariant Registers 
0 •$127:0 

1 •5l27:0 

2 Sl26:119,117:103,101:97,95:0 

3 5126.120,116:115,112,110,106,104,100,98,94:87,85:71,69:65.63:0 

4 s94,88,84:83,80,78,74,72,68,66,62:55,53:39,37:33,31:0 

5 •562,56,52:51,48,46,42,40,36,34,30:23,21:7,5:1 

6 •530,24,20:19,16,14,10,8,4,2 

7 -
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Table 7.9: Invariance in the shift registers of Trivium: pipeline [id — 1] relative 
to pipeline [id = 0] 

Stage 
0 
1 
2 
3 
4 

6 

7 

9-17 

(a) Shift Register F l 

Stage Invariant Registers 
0 52:93 

1 5 1.01.66:93 

2 sl:59,61:93 

3 51:54,56:93 

4 51:10,19:28,32:40,44:49,51:55,57:93 

5 55,14,21:23,30:32,40:41,43:44,46:47,53:59,65:74,83:92 

6 59,17:18,42,69,78,85:87 

7 537,46,55,64,73,81:82 

8 550 

9-17 -

(b) Shift Register G2 

Stage Invariant Registers 
0 594:177 

1 594:177 

2 594:128,132:155,157:177 

3 594:114,118:123,127:141,143:150,152:177 

4 594:100,104:109,113:118,122:127,129:136,138:145,147:177 

5 599:101,110:113,117:119,124:131,135:140,142:146,148:164,168:173,177 

6 596,121:123,131:132,134:135,137:138.149:150,156,163:165,174:177 

7 s151,160 

8 -

9-17 -

(c) Shift Register H3 

Invariant Registers 
5178:288 

5178:288 

5178:288 

5178:192,198:207,211:219,223:234,236:288 

5178,184,193,200:202,209:211,213:214,118:220,222:229,231:256,262:271, 
275:283,287:288 

5179,188,195:197,204:206,208:209,213:215,217:224,226:233,239:242,248,257, 
264:266,273:275,277:278,282:284,286:288 

5190:192,203:204,208:210,216:219,225,234,243,252,259:261,268:270,272:273, 
277:279,281:288 

5229,254:256,267:268,272:274,280:283 
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Chapter 8 

Discussion 

THE economically feasible implementation of key search shown by D E L U G E 
is in dramatic contrast to other attack techniques, and lends weight to the 

argument that brute-force attacks are underestimated in the security evaluation of 
cipher designs. Moreover, with exhaustive search substantially cheaper than state 
guessing it is suggested that the practice of designing the state to be twice key length 
is excessive and that by lengthening the key. security may be improved. 

The final sections return to consider the key search findings from the context of 
implementing secure display. The suitability of the studied stream cipher proposals 
are reviewed, with aspects of security and performance discussed before a conclusion 
as to their appropriateness for the system's decryption sub-block is made. 

8.1 Implications for Stream Cipher Design 

The high performance of the DELUGE key search engine indicates that a 80-bit 
stream cipher key length is too short to maintain full security and raises some 
important questions over the design philosophies behind stream ciphers. In this 
section we will look more broadly at these issues. 
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8.1.1 Algorithmic Attacks 

The form of attack most dangerous to any cipher is one based on a unanticipated 
weakness in the way an algorithm functions. These attacks have the potential not 
just to lead to minor compromises in security but may instead devastatingly break 
the cipher with an attack that is practical on discovery. In the case of stream 
ciphers correlation between input and output, resynchronisation, period and results 
of algebraic analysis are among a number of factors now relevant to their design 
and it is likely that as understanding matures this list will grow. The realisation of 
new forms and combinations of algorithm based attacks may be inevitable but their 
applicability to a specific stream cipher will remain something of a mathematical 
lottery. 

8.1.2 Assessing Complexity 

An attack of complexity 2 7 9 would typically be considered as breaking an 80-bit 
key stream cipher with intended security 2 8 0 . However, as alluded to by Bernstein 
[176]. complexity is often a rather vague term when used in this context as although 
ideally it should relate to exhaustive search it is often impractical to do so making a 
true comparison difficult: attacks may have a large memory element or simply their 
complexity may not scale linearly. Yet, an attempt must be made as denning the 
true complexity of the differing attack types targeted at stream ciphers is crucial for 
the formation of a balanced security picture. 

8.1.3 Grain Case Study - evaluation of attack complexity 

Conveniently the Berbain, Gilbert, Maximov paper [144] provides an opportunity to 
assess attack complexity as the attack on the original version of Grain allows direct 
comparisons to be extrapolated from the estimated costs presented in [1]. Such 
analysis, first presented in [2], has, in the following section, been revised to reflect 
the results of the DELUGE key search engine. 

Berbain's first attack uses linear approximation to obtain a supposed complexity 
2 5 5 attack against Grain. The impracticalities of cheaply computing the attack mean 
a reduced version of the cipher becomes the focus, with the same techniques producing 
a quoted complexity of 2'55 and taking around an hour on an 2.5GHz Intel Xeon 
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workstation. Expanding this to the level of a 2 7 9 complexity attack, which should 
reasonably be equivalent to 80-bit key exhaustive search, would require 2 billion 
machine years to compute and assuming, possibly optimistically, that Xeon chip cost 
($198 per chip [212]) represents the entire cost of a system this would result in a total 
cost of $398 billion. In reality this figure should be equivalent to the $818 million 
of a non-enhanced exhaustive search system1 (see Table 7.5) and a conclusion can 
be made that the original attack complexity may be understated by around an 
order of 9, making its real complexity in the region of 2 6 4 . Berbain's improved second 
attack has a described complexity of 2 4 3 and so using same methodology the figure 
2 5 1 can be derived for the real complexity of this attack. Both values are significantly 
higher than those quoted and the large memory requirements of each attack, 2 4 9 and 
2 4 2 , should raise these figures higher still, while effectively eliminating any savings 
possible through translation into hardware. 

The values for real complexity indicate that in the production of Grain v l . when 
the original Grain was corrected to provide at least 2 8 0 security, the security level 
against algorithmic attacks may in fact have been raised to beyond 2 8 8 . This is in 
direct contrast to security against enhanced exhaustive search attacks where Grain v l 
like its predecessor remains at a level no better than 2 7 3 and so a key length extension 
of 15-bits or more may be necessary to counteract the imbalance. 

8.1.4 State Guessing 

Another method for attacking stream ciphers, state guessing, involves searching 
for the internal state of the cipher instead of the key. As the internal state stores 
all of a stream cipher's entropy it is typically larger in size than the key, therefore 
rendering exhaustive state search less efficient than one of key-space unless a cipher's 
initialisation complexity is high. To overcome the extra burden, state guessing uses 
large amounts of data and memory to reduce computation requirements in a trade-off 
based arrangement [213, 33] similar to that of enhanced exhaustive search. The 
balance of key length, initialisation procedure and state size determining which of 
these two universal attacks proves more efficient against a particular cipher. 

1 It; is assumed reasonably that the performance of a Grain vO system would be comparable to the 
brute force Grain v l system and that, the full system would be double chip value. 
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8.1.5 Grain Case Study - consequences of key extension on 
state guessing 

Looking at a 15-bit key length extension from the context of state guessing attacks, 
an 80-bit key, generic stream cipher can be imagined that has an initialisation period 
of 2 5 clock cycles and a state size of 160-bits. Thus in extending the key to 95-bits a 
state guessing attack with equivalent computational cost to brute-force would be 
capable of producing around 2" keystream sections2 suitable for comparison purposes. 
These would, on average, need to be compared to 2 G 0 bits of collected plainstream 
data to achieve a successful outcome, leaving a data and memory requirement still 
well in the petabyte region. 

Moreover, while the headline figure for memory seems plausible for a hard-disk set­
up, this would simply ignore the very real time constraints on each search and compare 
operation. The output from each guess must be compared to all 2 6 0 different values 
and if an impractical 2 1 5 9 comparison operations are not to be required the output 
must be directly used to address memory locations with these locations returning 
a 'logic 1' if their position exists in the plainstream data block. Unfortunately this 
leads to an impracticably high-false positive rate unless the memory address space 
is comparable to the state size, something which would in itself lead to memory 
requirements becoming impractical. 

By making the locations return the next part of the plainstream data block and 
a pointer to data location the false-positive rate can be eliminated by a subsequent 
round of comparison operations, with a memory cost per location of under 2 5 bytes. 
For the estimated $266 billion cost3 of a DELUGE enhanced search system capable of 
targeting 95-bit key lengths around a zettabyte of storage could be bought, assuming 
a figure of $100 per half terabyte of hard-disk space. This amount of memory 
would provide 2 6 5 storage locations, leaving a still comparatively feasible number 
of comparisons at 2 9 4 . Nonetheless, memory access on this scale is relatively slow 
process with hard-disk access times typically in the millisecond range and therefore 
with 2 " memory accesses still required and only 31 billion milliseconds in a year, 
sextillions of separate disks would be needed to mount a successful attack within such 
a time-scale. Storage cost means access requirements cannot be sufficiently reduced 
to alleviate the issues of access time and increasing the plainstream data collected 

2 The specifics of system design will afTect this figure: need for a high rate of guess elimination 
will tend lo favour exhaustive search efficiency; use of windowing on the state guessing system's 
keystream output will tend to increase section generation. 

3 Calculated from Table 7.5. 
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to fill all storage locations only reduces accesses by a factor 32 while introducing 
significant collection issues due to data overlap. Therefore in the example outlined 
state guessing remains impractical despite the increase in the ratio of key length to 
state size above the conventional 1 to 2 design limit originally proposed by Babbage 
[213]. The gap in economic equality of the two attacks is such that exhaustive search 
would appear to be the substantive concern for the foreseeable future even when 
consideration of advances in low cost storage technologies are made. 

Translating the state guessing attack to a Biryukov style attack [214] through use 
of the Hellman time-memory trade-off [181] does not alter this conclusion as while 
it potentially reduces data collection it also introduces a large precomputational 
requirement comparable to that of exhaustively searching the entire 160-bit state 
space and so any such attack would again be impractical. 

8.1.6 Key Space Based Time-Memory Trade-off 

If, as described by Hong [204], the Hellman time-memory trade-off is applied to 
search the stream cipher key space rather than the enlarged state, a much more 
effective attack can be realised despite the need for cipher initialisation calculations. 
Both online computational costs and memory requirements would see feasibility due 
the reduced search space, while the precomputation cost, that provides a complexity 
threshold to the attack's practicability, would also be reduced. 

In a theoretical sense this precomputation should be of identical cost to that 
of an enhanced brute-force key space attack with a key length extension equally 
complicating both attack methods. However, the similarity in duration of the 1 
week precomputation described in [215] for a time-memory trade-off attack on 40-bit 
DES and that taken for COPACOBANA [190] to search a full 56-bits of DES key 
space using exhaustive search possibly suggests otherwise. The reality is that the 
complexity of precomputation will generally outweigh that of enhanced brute-force 
due to a corresponding need for point storage and the computational cost incurred 
by search reduction techniques such as distinguishing points. Consequently when 
data, availability is low, enhanced brute-force will represent the lowest entry level 
attack. 
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8.1.7 Alternatives to Key Length Extension 

Key extension is not the only way to increase brute-force resistance, and one alterna­
tive is to simply increase the required length of the set-up protocol. Each doubling 
in length will equate to increasing the key length by one bit as extra effort must be 
expended in terms of hardware resource or processing time. 

Although effective, lengthening the set-up protocol is not an attractive path 
to follow as initialisation time directly affects a cipher's performance: in the case 
of Grain v l , if set-up was extended to provide an equivalent of an extra 10-bits 
of security the set-up time would rise from 10-cycles to over 10000-cycles — a 
level that is likely to be impractical in many applications. Other methods that 
increase the cipher's implementation complexity to raise attack resistance share 
similar performance caveats. 

8.2 Modifying Key Lengths 

An inevitable consequence of enhanced brute-force attacks is that stream ciphers must 
fundamentally lose the direct relationship that presently exists between key length 
and security. This is of little consequence to software stream ciphers, with their long 
keys, as even an enhanced brute-force attack will simply be impractical. However for 
hardware focused ciphers with short 80-bit keys, such as Trivium and Grain v l , it 
is of great consequence, with enhanced brute-force representing a practical threat. 
Unless these algorithms are to follow a path of massively increased initialisation 
set-ups and a redesign to increase implementation complexity — something which 
contradicts the performance aims that underpin this class of cipher — key length 
must be raised. The modifications described in the final sections are one method of 
achieving this. 

8.2.1 Grain 

Grain vl 's state size of 160-bits is right on the conventional limit to avoid state 
guessing attacks so care has to be taken in the level of key length extension used. In 
light of the analysis in Section 8.1.5 it is proposed that key length should be extended 
by 22-bits to a total of 102-bits. This leaves the state-guessing attack possibly 
preferential to enhanced brute-force but still in the realm of impracticality medium-
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term. As such, algorithmic attacks will be re-established as the main theoretical 
concern. 

Due to the comparatively small state size, implementing the proposed extra key 
bits must necessarily have an impact on the available IV range of Grain v l as only 
15-bits of the initial state serve no function and hence a compromise must be made. 
With often predictable values and open transmission the role of IVs in entropy 
provision as described by Hong [204] is negligible so their implementation should be 
regarded primarily as a convenience to the user. Use of a 42-bit IV provides over 
4 trillion possible IVs and should be sufficient for almost all applications, so the 
proposed modification involves placing the extra key material in 22 bit locations 
where IV material would have previously resided: 

By swapping IV state bits directly for key material the expectation is that the 
algorithmic security of Grain v l will be left unaltered by the change but it may be 
more prudent to simply migrate designs to its 128-bit keyed cousin. Grain-128 [146], 
which with its similar structure maintains the family's size and speed advantages. 
Crucially the introduction of the 128-bit key dispels the possibility of practical 
generic attacks in all likely applications and leaves system designers to only concern 
themselves with its maintenance of algorithmic strength. 

Trivium's state size of 288-bits is much larger than that of Grain v l and so state 
guessing attacks are not an issue of concern when considering key length extensions. 
As a consequence a 32-bit key length extension was proposed in [2] which would in 
reality remove enhanced brute-force from the security equation. However the state 
recovery attack outlined by Maximov [134] has complexity similar to that of guessing 
the state of Grain v l and in light of this it is proposed that the key should only be 
lengthened by 22-bits to a total of 102-bits. These extra bits need not impact on the 
possible IV size and it is proposed that they are loaded into the lower 22-bits of the 
register containing state bits s^g, . . . . .S288: 

( 6 7 9 l . . , & 0 ) < - ( ' < 7 9 , . . . , t f o ) 

( S T 9 , - , S 0 ) <- ( 1 , 1 , A" 1 0 i , ...,KmJVi 41 ,-JVo) 

8.2.2 Trivium 

(s ] ; ...,.s<j3) <- (K0, :I<7<>.().....,()) 
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(•S94, 

( « 1 7 8 

. . . , 5177) < - (IV0,...,IV79,0,...,0) 
, ••• ,5288) « ~ ( # 8 0 , - , # 1 0 1 , 0 , . . . , 0,1, 1,1) 

The 22-bit key extension makes current brute-force attacks impractical and should 
leave algorithmic attacks as the non-invasive method most likely to compromise the 
cipher. Indeed, many of these attacks would be made more complex by the additional 
key material, so although the medium term security of Trivium would clearly not be 
guaranteed, the algorithm could avoid the spectre of a practical attack. 

8.2.3 Further Modifications 

Although key length modification is proposed in the preceding paragraphs, in the 
implementation of stream cipher hardware modules it may be prudent to include 
a facility to make the set-up length selectable, as this would provide a facility to 
partially mitigate against future cryptanalysis advances: extending the set-up time 
by a multiple of 32 would potentially make attacks 32-times as costly. By invoking 
this flexibility the performance hit need only be taken as and when circumstances 
dictate. 

It is also worth noting that algorithmic attacks often require high levels of data 
produced under a single key or IV. As such it may be prudent to implement a flexible 
and conservative operation protocol since changing the key and IV more regularly 
potentially stops an adversary observing the data quantity required for a successful 
attack. 

The hardware performance figures presented in Table 4.2 and the keystream gen­
eration performance of the stream cipher module within DELUGE, indicate that 
stream ciphers are capable of achieving the data-rates and efficiency required for 
decryption in secure display systems. However. DELUGE and future trends in FPGA 
cost-performance suggest that an 80-bit key is insufficient for secure, stream cipher 
based symmetric encryption, and places undesirable constraints on secure display 
system use. 

8.3 Stream Cipher use in Secure Display 
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The cost of using larger keys, such as moving to a 128-bit key length, need not 

significantly impact on decoding performance and hardware efficiency, but would 

significantly increase search complexity and hence attack cost, making the long term 

viabili ty of stream cipher proposals much more attractive. The eStream cipher, 

Grain-128, gives essentially equivalent hardware performance (see Table 4.2) to the 

highly efficient 80-bit key ciphers, Grain v l and Tr iv ium. wi th its 128-bit key size 

and increased security making it a promising alternative to the cipher modifications 

proposed in this chapter. In view of this, Grain-128 is suggested as best option for 

the decryption sub-block, in a secure display system. Selection of an unmodified 

80-bit keyed eStream proposal is thought imprudent at this stage. 

8.4 Issues Yet to be Addressed 

Finally, presented below are a number of unresolved issues surrounding secure display 

and stream cipher key search that may prove to be interesting areas for further 

investigation: 

• Chip-on-glass technology: The less restricted environment of a bonded 

silicon chip potentially resolves many of the performance concerns surrounding 

implementing secure display, making it a good option for initial secure display 

designs. 

• Tamper resistant display circuits: The use of tamper resistance in data 

security systems is widespread. However, while knowledge of the techniques 

are well resolved for silicon based applications such as smart cards, i t is not 

known at present how to achieve these on glass. 

• A S I C key search performance: ASIC chips offer potentially significant 

performance advantages to FPGA implementation. However, the size of these 

advantages for key search machines such as DELUGE is unresolved and may 

potentially affect the economic value of stream cipher key-sizes. 

• 3 D chip technologies: these have the potential to create a step change 

in the performance of the D E L U G E key search engine by resolving routing 

complexities through the use of interconnected multilayer chips. This could 

potentially have a substantial bearing on the economic value of key length. 
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Conclusion 

The thesis has examined the concept of secure display wi th particular reference to 

the usefulness that stream ciphers may play. The security benefits of protecting the 

display link right to glass substrate are plausible, especially in the light of Kuhn's 

recent work [17] that has shown flat-panel displays to be vulnerable to being read 

remotely. However, the challenges of designing a secure display are substantial, with 

the high data-rate requirements of video transmission conflicting with the restrictions 

of glass substrates as well as the needs of power and area efficiency in mobile devices. 

The efficiency in hardware of the newly proposed stream ciphers, Tr iv ium and 

Grain v l , present realistic options for meeting these requirements and both have 

impressive performance characteristics well suited to restricted hardware. Their use 

of 80-bit keys is, however, a concern with this key size in block ciphers considered to 

be right on the very edge of what is required for an algorithm's security. 

The hypothesis that these stream ciphers may not be suitable for secure display 

purely from the security context surrounding their key length, has been addressed 

through the design of an original key search machine, DELUGE. This machine 

indicates that although brute force key search does not present a realistic attack 

vector, a data enhanced attack does, and even today places an economic value on the 

80-bit key size at around £ 4 million. The advance of processing power means this 

valuation is set to rapidly fall wi th time and would significantly discourage stream 

cipher use in long-term and high value applications of data security. For secure 

display systems, i t is therefore suggested that a larger key size may be preferred and 

suitable alterations to the ciphers Tr iv ium and Grain v l have been proposed. The 

128-bit keyed stream cipher, Grain-128, offers very similar hardware performance to 
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both Trivium and Grain v l , and it is therefore suggested as the favoured option 

implementing decryption in a secure display system. 
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A. Letter on Key Search of Hardware Focused Stream Ciphers 

Practical key search engine for analysing 
hardware focused stream ciphers 

I. Devlin, A . Purvis 

A FPGA based key search system that specifically targets 
new hardware stream ciphers is presented. The design 
makes use of a data element to enhance the exhaustive 
search process and is practical and economically feasible to 
implement. The results indicate that the security of 80-bit 
key lengths in current stream cipher proposals should be 
considered insufficient to protect data. 

Introduction: Stream ciphers ate widely used in communication 
systems. They use a small fixed length secret key to efficiently 
generate a large secret binary stream which can then be used for 
message encryption. The security of the binary stream, usually-
referred to as the keystream, depends on both the generation 
algorithm and the key itself. Design choices typically trade­
off security against performance with the balance requiring an 
evaluation of attack feasibility. 

Exhaustive search is an attack strategy that in the context 
of stream ciphers targets the key itself. It involves searching 
the entire key space for the single combination that decrypts 
to produce a match to some held plaintext information. Tradi­
tionally the cryptographical exhaustive search attack has been 
focused on block ciphers and recent attacks by the machine 
COPACOBANA [1] have shown the 56-bit keys of the Data 
Encryption Standard (DES) (2| to be a very susceptible and low 
cost target. 

Recently proposed stream ciphers Grain v 1 [3] and Triv-
ium [4] that aim to avoid the algorithmic vulnerabilities typical 
of previous generation stream ciphers use 80-bit keys, a search 
problem potentially seven orders of magnitude more complex. 
However, as synchronous stream ciphers possess data indepen­
dent keystream generation and generally use a simple combining 
function, collection of plaintext-ciphertext pair data by an ad­
versary will allow the trivial recovery of original keystream 
material. In a situation where multiple plaintext-ciphertext sec­
tions encoded under different keys are available the search effort 
required to recover one of these keys falls (Fig. 1) due to the 
birthday paradox with the consequence that searching for a key 
in a larger key space may become feasible; an observation briefly 
touched upon by Hellman [5]. 

In this letter we use this observation as motivation to build 
a practical key search machine, named 'DELUGE, ' and so draw 
attention to the potential false sense of security afforded by a 
80-bit key length. 
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Fig. 1. Impact of Plain/Ciphertcxt. Data Pairs on Key Search, 
p The 80-bit key is brought closer to vulnerable 56-bit key length 
with more data pairs; in linear terms, significantly closer 

Attack Scenario: Server to user content transmission is a com­
mon scenario in which the efficiency and speed of hardware 
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stream ciphers are ideally suited. In this situation it is likely 
that an adversary may be able to collect a number of these trans­
missions and use known header information to gain the data 
pairs necessary to recover initial bytes of multiple keystreams 
and allow an efficient enhanced search. It is reasonably assumed 
in the design of D E L U G E that an adversary would be uncon­
cerned over which user's data is retrieved and that differing 
steam cipher initialisation veclors (TV) could be filtered out. 

Internal Architecture: The search unit architecture of D E L U G E 
which targets the use of 80-bit keys in the outlined scenario is 
detailed in Fig. 2. The main search computation is performed by 
the search core of Fig. 2a. In this system block the enhanced form 
of exhaustive search is implemented with generated keystreams 
compared to stored data from the plaintext-ciphertext pairs. A 
two stage process is used due to the inefficiency of performing 
full 80-bit comparisons for every key trial. The first half of 
Fig. 2a using a single cycle key agility stream cipher and short 
16-bit partial comparisons to enable rapid elimination of the vast 
majority of keys. The second stage being the 80-bit keystream 
compare unit which performs a full comparison for reliable key 
detection. The lack of pressure for high performance in this 
later stage allows a compact cipher implementation and serial 
comparison structure to be used with the expander encoder of 
Fig. 2a buffering and converting the parallel comparison results 
into the serial key and data information required. 
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Fig. 2. Scorch Unit System Arcliitecture. 
a Key search core with dual keystream pipeline 
b Internal search unit layout 
c Bus interface of search unit 

The search unit and indeed the key search core itself, are de­
signed to be cipher independent. However, for testing, the pro­
posed stream cipher Grain vl is used due to its hardware efficient 
performance with pipelining of the 10-cycle initialisation process 
enabling key agility requirements at the search core's front-end 
to be met. In this pipelining, advantage can be made of observed 
invariance in early initialisation stages when two or more cipher 
pipelines share similar keys. In the case of Grain vl the dual 
pipeline of Fig. 2a derives 5.3k keys/LE.s on Cyclone FPGAs 
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lor pipes sharing key bits AVn..n, a 15% efficiency increase in 
search performance. The remaining key bit, A'711, acting as the 
pipe identifier. A larger 58k keys/LE.s quad pipeline is also 
possible using shared key bits A77 . .0 . 
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Fig. 3. Inter-unit buses and possible chip layout for DELUGE. 

System Architecture: D E L U G E 'S internal interface structure fol­
lows a conventional data and address bus design (Fig. 3) so that 
it is suitable lor implementation in a generic computation ma­
chine and will allow a single computer to monitor and manage a 
large number of search units through the use of chip-select signal 
decoders. The output key register (Fig. 2b) of each unit can be 
polled through (Fig. 2c) to check if the allocated key space has 
been searched and if a possible key has been (lagged. Writing 
to the bus interface of a search unit allows the reallocation of 
key space and loading of new IV and data information. 

Results and discussion: A 2 keystream, 64 plainstream practical 
demonstrator search unit was implemented on a Stratix FPGA 
using 10k logic elements with an A P E X 20K acting as the 
control computer. The search core was run at 50MHz and tested 
6.4 billion key-plainstream combinations every second requiring 
allocation by the controller of a new section of key space every 
44 seconds via the 10MHz bus. Simulation of the search unit for 
larger more cost effective devices such as the Cyclone Jl range of 
FPGAs provides the basis of results for a full multi-chip search 
machine capable of targeting 80-bit keys (Fig. 4b,c,d). 
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Fig. 4. 80-bit key space attack cost using DELUGE 
a Year recovery, simple search configuration 
6 Week recovery, dual pipeline, enhanced search 
c Year recovery, dual pipeline, enhanced search 
d Year recovery, quad pipeline, enhanced search 
e Prediction for enhanced search in 2009, year recovery 
/ Estimate for year recovery of a 128-bit key 

A large improvement in machine cost is gained by the move 
from simple exhaustive search (Fig. 4a) to the data enhanced 
search of DELUGE. With the use of 512 data elements (Fig. 4c) 
the advantage is largely maximised and in fact Fig. 4d may rep­
resent the optimal operating point due to a less demanding data 
requirement. The system cost values suggest that; a machine 
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of this type may already fall into the realm of practical con­
cern when dealing with high value, long-term data and FPGA 
development will continue to reduce costs (Fig. 4e) forcing the 
consideration of key search as a possible threat from medium 
sized organisations. Further performance improvements may be 
possible through use of ASIC or structured ASIC technology 
but the aspects of flexibility, cost and privacy will tend to favour 
reconfigurable logic making the described machine representa­
tive of the potential of key search attacks. 

Conclusion: Given future trends in FPGA cost-performance 
the 80-bit key lengt h of some newly proposed stream ciphers is 
insufficient for a wide variety of applications and would place 
undesirable constraints on their use. The cost of using larger 
keys, such as moving to a 128-bit key length, need not signifi­
cantly impact on decoding performance and hardware efficiency 
|6] but would significantly increase search complexity and hence 
attack cost (Fig. 41) making the long term viability of stream 
cipher proposals much more attractive. 
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Appendix B 

System Operation Information for 
D E L U G E 

/ / - -
wr | addr [msb.. Isb J | data | NOTES. . . 

/ / - -
/ / o X | X | ZZZZ | 

/ / ~ ~ 

/ / 1 0 | .V | 0 | {0001} =>done \ read status reg 

/ / 1 1 | {0002} =>}lag | (outputing data) 

/ / \ X \ C \ 1 | {search key} \ read o / p key reg 

/ / 1 1 1 \ | (C selects part) 

/ / - -
/ / ' 1 \ 00 \ X I | write ack 

/ / 1 1 | XXXI | (rekeys core) 

/ / 1 1 | XXX2 | (clears f l a g ) 

/ / | 01 \ X \ A 1 rKey | write reg key 

/ / 1 1 1 I | (A -> part) 

/ / | 10 \ X | A 1 iv 1 write IV 

/ / 1 1 1 I | (A -> part) 

/ / \ 11 \ J \ C | plain | write plainstream 

/ / 1 1 1 I | (J —> position) 

/ / 1 1 1 I | (C -> part ) 

/ / - -

/ / - -
/ / ** raised flag indicates a successful key has been found 

/ / ** note: a two cylce latency is present, on outputs 

/ / - -
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/ / 
/ / xclk | interface clock - optimise for compatibility 

/ / elk | core clock - optimise for max search speed 
/ / 
/ / xaclr \ reset system interface to default state 

/ / | (clears plain, key & IV registers) 

/ / aclr | reset search, core to default state 

/ / | (use after loading new register key) 

/ / 

/ / gpause | pause core ( s l e e p ) 
/ / 



Appendix C 

Code Base - D E L U G E 

The Verilog hardware description language code that describes the DELUGE search 

unit is included in the accompanying CD-ROM to this section. This code may be 

read by any general purpose text-editor but is primarily aimed at Altera's Quartus 7 

design environment and the Cyclone family of FPGAs. The files contained in the 

top-level folder 'DELUGE v e r i l o g hdl f i l e s ' are as follows: 

Deluge.v 
Del_FrontEndSearch.v 
Del_TranslationUnit.v 
Del_BackEndFullSearch.v 

The related stream cipher files are contained in the other top-level folder 'StreamCipher 
v e r i l o g hdl f i l e s ' , and are as follows: 

Stream_Core.v 
SC_Grainl.v 
SC_Grainl28.v 
SC_Trivium.v 
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