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Abstract: 

Volatile organosulphur compounds (VOSCs) are key ingredients in the aroma of 

tropical fruit where they are active as both free thiols and the respective 

thioesters. Present as trace high-impact flavourings, VOSCs are however 

problematic to extract and have therefore become targets for bioproduction. 

This work focuses on the endogenous thioesterases in tropical fruit believed to 

catalyze the liberation of thiol VOSCs from thioester precursors. Using a simple 

and sensitive colourimetric assay, a thioesterase activity toward VOSCs was 

identified in purple passion fruit (Passiflora edulis Sims). The enzyme was 

identified as a cell wall-bound protein in the mesocarp of the fruit. Following 

extraction with salt solutions, the thioesterase was purified 150-fold and shown to 

be associated with a 43 kDa polypeptide. Affinity labelling with a biotinylated 

fluorophosphonate suicide probe showed the enzyme to be a serine hydrolase, 

with MS-MS sequencing of tryptic digests identifying it as a pectin acetylesterase 

(PAE). Putative thioesterase PAEs were subsequently cloned from passion fruit 

and Arabidopsis thaliana. The observation that an esterase involved in cell wall 

modification had a secondary role in hydrolysing esterified VOSCs led to the 

consideration of further fruit species as a source of the enzyme. 

Orange (Citrus sinensis) was particularly abundant in thioesterase activity. The 

enzyme was purified 85-fold and identified as a homologous 43 kDa basic (pi: 9) 

PAE. The enzyme was stable (ti/2: 7 days 22 hours) and demonstrated a high 

turnover toward VOSCs (kcat: 7.85 sec"1). Freeze-dried orange peel was found to 

retain activity (>90% activity, 3 months 4°C) and demonstrated comparable 

productivities to those of immobilized microbial enzymes. Here we have initiated a 

programme for developing processes for the bioproduction of VOSCs, in which 

the potential of plant glycohydrolases has been demonstrated. 



"Man cannot discover new oceans, 

unless he has the courage to lose sight of the shore" 

Andre Gide 
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1. Introduction 

1.1 Flavour and Fragrance 
Our world is rich in aroma, a consequence of small volatile chemicals found in 

abundance throughout nature that evoke sensations we recognise as flavour 

and fragrance. Humans, animals and insects have all evolved developed 

senses of taste and smell as a means of detecting the presence of such 

compounds, some being perceived as pleasant, others repulsive. Hence, 

odourant chemicals essentially function as attractants or deterrents, signals of 

communication between organisms that have remarkable influences on 

behaviour. 

Certain tastes and smells warn of danger. Putrescine and cadaverine (Figure 

1.1) are generated through the microbial degradation of proteins and give the 

pungent foul smell to rotten meat, chemicals that we associate with disease-

ridden food. A further example are the bitter-tasting alkaloids produced by 

plants, such as the lethal poison atropine (Figure 1.1) from deadly nightshade, 

which acts as an indicator of the plant's toxicity and makes it unpalatable. This 

association between chemical perception and danger found originally in nature 

is being utilized in our modern synthetic world. For example, small sulphur 

volatiles such as fert-butyl thiol (Figure 1.1) are purposely infused with 

odourless natural gas as humans can detect this chemical at less than one 

part per billion levels and instantly associate it with the dangers of a gas leak. 

Flavours and fragrances (F&Fs) can however also be pleasant and act as 

attractants. This is elegantly illustrated in insects, organisms that utilize aroma 

chemicals as a means of communication. Ipsdienol and ipsenol (Figure 1.1) 

are sex pheromones of the male bark beetle and trace levels, too low for 

human detection, have been shown to attract female beetles from afar1. The 

male ingests the terpene myrcene from the phloem of the host tree Pinus 

ponderosa and through a number of biotransformations is able to convert it 

into aromatic pheromones 2. Plants also utilize aroma chemicals to interact with 

their environment. 
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Aroma Chemical Occurrence Description 

Putrescine Cadaverine 
Rotten meat, urine 

and sweat 

These toxic diamines are foul-
smelling indicators of rotten 

diseased foods 8. 

Atropine 

Atropa belladonna 
(deadly nightshade) 

Atropa is a member of the 
Solanaceae family including 

tomato, potato and tobacco. All 
wild species are known to 

contain similar bitter tasting 
phenolic toxins 6. 

S H 

fert-butyl thiol 

Synthetic chemical 
added to natural gas 

Infused with natural gas to give it 
odour. Sulphur volatiles are 

extremely potent and detectable 
at low concentrations. Hence 

why they are referred to as "high-
impact" aromas 7. 

Myrcene Ipsdienol Ipsenol 

Ips paraconfusus 
(male bark beetle) 

Sex pheromones generated by 
the biotransformation of the 

terpene myrcene ingested from 
the phloem of the host tree 2. 

\ / 
Methyl benzoate 

Antirrhinum australe 
(snapdragon) 

The biosynthesis of this 
phenylpropanoid plant secondary 

metabolite is developmentally 
regulated so as to only attract 

insect pollinators to mature 
flowers 3. 

// w 
2-methyl-3-
furanthiol 

2-pyridine 
methanethiol 

Maillard reaction 
products: generated 
upon roasting beef 

and lamb 
respectively 

Cyclic structures containing 
sulphur, nitrogen and oxygen 

produced from sugars and amino 
acids upon heating foods. 

Sulphur volatiles are important 
roasted notes 4. 

Menthol 

Mentha piperita 
(peppermint) 

A chemical that evokes a cooling 
sensation, a bitter taste and a 
minty smell. Natural menthol 
exists as a single enantiomer 
(1R,2S,5R), highlighting the 

importance of chirality for the 
sensory properties of 

chemicals 1 2 

Figure 1.1 Structures of a number of representative aroma chemicals referred 
to in the text. The chemical diversity of flavouring compounds is great and is 
apparent here even through this small number of examples. 
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Phenolic volatiles emitted from flowers serve to attract insect pollinators. For 

example the volatile ester methyl benzoate (Figure 1.1) from snapdragon 

flowers is biosynthesised in specific regions of the petal where pollinators 

(bumblebees) come into contact with the mature flower3. The plant also 

regulates the biosynthesis of attractants in a rhythmic manner to maximise 

emission during the day, which coincides with pollinator activity. 

Aromatic chemicals are also generated by microbes, such as yeasts which are 

used in fermentation processes in the cheese and brewing industries. In 

addition, flavourings are generated through thermal reactions, whereby the 

high temperatures and pressures associated with cooking generate a unique 

set of flavours 4 (Figure 1.1). Today many food, perfume and cosmetic products 

are artificially flavoured with synthetic chemicals, a result of the F&F industry 

that utilizes chemical processes, catalysts and cheap feedstock to recreate 

natural flavours. 

In nature, the major producers of natural F&Fs are plants. This results from 

their diverse secondary metabolic pathways that generate a vast array of 

unusual chemical metabolites, a considerable subset of which have aroma 

properties5. Both floral and vegetative tissues are well known to sequester or 

emit aroma constituents which include alcohols, aldehydes, esters, terpenes, 

phenolics as well as sulphur- and nitrogen-containing compounds 6. Originally, 

such chemicals were believed to be by-products of metabolism, or a result of 

overflow from central pathways. However, it is now believed they serve 

specific physiological roles in plants; attracting insect pollinators to flowers, 

promoting seed dispersal in animals attracted to fruit or detering insect and 

animal herbivores. 

Humans (and animals) detect the presence of aromatic chemicals through 

receptor proteins embedded in specialised epithelial cells of the mouth and 

nose which pass electrical signals through the trigeminal nerve to the brain 7. 

The human sense of smell is far more developed than that of taste, being able 

to recognise and distinguish between thousands of chemicals present at low 

concentrations (0.001 parts per billion). Conversely, only five major taste 
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sensations can be perceived; bitter, sweet, salty, sour and savoury (umami). 

Bitter tastes are detectable at the lowest threshold of around 1 part per million, 

a likely result of the evolutionary importance of being able to detect toxins. 

Aromatic chemicals interact with different receptors, causing overlap between 

the senses. For example menthol (Figure 1.1) found in leaves of peppermint 

(Mentha spicata) evokes a cooling sensation, a bitter taste and a minty smell. 

As described, F&F principles have unique functions in nature and the amazing 

ability to evoke memory and change behaviour. The importance of flavour to 

human life is apparent through the establishment of a multi billion pound global 

industry that produces F&F fine chemicals8. 

1.1.1 The Flavour and Fragrance Industry 

Plant natural extracts have long been used as flavouring ingredients, with the 

earliest written records referring to the use of herbs and spices in food 8. 

However, it was not until the rise of the Roman Empire in the 1 s t century BC 

when methods for extraction such as distillation were developed and trade 

routes formed that the industrial production of F&Fs was established. Plant 

extracts continue to be important flavouring materials but something of a 

revolution occurred in the mid 19 t h century with the development of the 

chemicals industry and the introduction of synthetic materials. 

Chemists were able to purify aroma constituents from essential oils and 

identify active ingredients, such as benzaldehyde from almond oil, 

cinnamaldehyde from cinnamon bark and vanillin from vanilla beans (Figure 

1.2). Due to rapid developments in organic chemistry during this time it meant 

such natural products could be synthetically recreated in the lab. The first 

perfume containing a synthetic aroma chemical was Houbigant's Fougere 

Royale which went on sale in 1881 and contained synthetic coumarin 9. This 

process of identification, lab synthesis and scale up is essentially the same 

today, only due to technological advances such as the introduction of gas 

chromatography, mass spectrometry and sensitive methods for trapping 

volatiles, such as Solid Phase Micro Extraction (SPME), it has been speeded 

up considerably (Figure 1.2). 
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Identification of cinnamaldehyde - the 1834 
first flavour compound to be identified 

Identification of benzaldehyde 

Identification of vanillin 

Synthesis of cinnamaldehyde 

Enantiomers of aspartate found to 
have different tastes 

/^-aspartate 
(sweet) 

S-aspartate 
(bitter) 

furfuryl mercaptan identified in coffee 
- highlighting the importance of trace 
sulphur constituents in food flavour 

Bioproduction of y-decalactone 
(peach) 

Grapefruit mercaptan identified -
1 -p-menthene-8-thiol 

1837 

1871 

Synthesis of vanillin - marking the -\QJ2 
beginning of the modern F&F industry 

1884 

1887 

1926 

1980 

1982 

1820 

1881 

1888 

1896 

1912 

1939 

1952 

1959 

1964 

1989 

1991 

Foundation of the first flavourings 
company: Roure Bertrand, France 

1 s perfume to contain a synthetic: 
Houbigant's Royale 

1 s determination of an odour 
threshold. Ethyl mercaptan. 

Foundation of Givuadan, 
Switzerland 

Maillard reaction described 

1921 Chanel No. 5 by Coco Chanel 

Lavoslav Ruzicka wins nobel prize 
for work on sex pheromones 

Gas Chromatography 

International Flavors and 
Fragrances founded, USA 

GC-Olfactometry introduced 

Solid Phase Micro Extraction 
(SPME) 

Merger of Givuadan and Roure 

Figure 1.2 Important milestones in the development of the flavourings industry 
(right) and the identification of important aroma chemicals (left). Vanillin is the 
worlds most important flavouring in terms of production (12,000 tonnes/ year), 
second is benzaldehyde. Many sulphur volatiles are important flavourings but 
most have only been identified over the past 30 years due to sensitive sulphur-
GC detectors. Figure adapted from Rowe, D.J.8, 2005. 
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Much of the research into F&F has been carried out by the industry and driven 

by commercial interest, as a result the aroma constituents from different 

natural sources have been isolated and characterised, with a total of more 

than 7,000 documented to date (Flavourings industry database; www.vcf-

online.nl). The industry is worth £9 billion UK (F&F industry consultants: 

www.leffingwell.com) and is dominated by five major companies: Givuadan 

and Firmenich (Switzerland), IFF (USA), Symrise (Germany) and Takasago 

(Japan). In addition, a collection of smaller companies manufacture specialised 

flavourings, such as Oxford Chemicals Limited (UK) that produce high impact 

sulphur-containing ingredients. 

The industry was established and has grown to the size it is today as a result 

of consumer demand for exciting flavour-rich products. With eighty percent of 

sales in developed countries, there is a clear correlation between the affluence 

of society and the demand for flavourings8. Although flavourings have 

improved the quality of life for many people in the developed world, their 

inappropriate use can be harmful. The dissociation of flavours from their 

natural nutritional source can lead to undesirable health consequences. For 

example, snack companies often artificially flavour food products, attracting 

consumers to fatty unnutritional foods they would otherwise find unpalatable, a 

likely contributor to the high levels of obesity in developed countr ies 1 0 , 1 1 . 

An increasingly health conscious society is concerned over what is in its food. 

The media have highlighted the dangers of certain constituents, such as salt, 

monosodium glutamate, acrylamide, toxic metals, saturated fats and 

genetically modified products. Reports are however often contradictory, and 

with the labelling of food products often hard to interpret and misleading, 

consumers are unsurprisingly confused and worried. Natural unprocessed 

foods are now the preferred choice of many. 

These demands have fed down from the food industry to the flavour houses 

and ultimately to the F&F producers and as a result the global demand for 

natural products is on the rise 1 2. Other factors such as legislation on food 

additives and the pressure to develop environmentally-friendly chemical 
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processes will also have contributed toward this trend. As a result the industry 

has turned back to nature to source F&F chemicals from plants. However, this 

dependence on agriculture means yields and quality are unpredictable and 

very much dependent on climate, consequently the value of such products are 

somewhat unpredictable. In addition, the availability of land for growing 

aromatic plants is heavily contested, using the land for growing food for 

animals and humans or for biofuel feedstock is likely to give greater returns 1 3. 

Contamination of extracts with pesticide residues is another major problem 

and renders the product worthless 1 4. In addition the isolation of single 

flavouring chemicals from a mixture requires costly methods such as fractional 

distillation and is often not cost effective when an active ingredient is found at 

trace levels. Hence, the range of flavours derived from plant extracts is limited. 

The high demand for natural flavours in combination with costs associated with 

their isolation gives them high price tags as premium chemicals. Hence, the 

difference in price between synthetic and natural products is substantial. For 

example, synthetic vanillin is worth U.S. $12 kg"1 as opposed to natural vanillin 

extracted from vanilla pods which has a value of U.S. $4,000 k g " 1 1 5 . The use 

of plant and microbial enzymes for bioproduction is now seen by the industry 

as an attractive means of producing such valuable naturals and overcoming 

the difficulties associated with their extraction from plants. 

1.2 Flavour and Fragrance Principles in Exotic Fruit 
One group of aroma chemicals of particular interest to the industry are the 

tropical flavours of exotic fruits. Tropical fruits are native to equatorial regions 

where they develop in warm tropical climates and are characteristically 

spectacular in colour and form and also rich in unusual flavours and aromas. 

They form an important resource for trade in developing countries, accounting 

for 98% of global production, with developed countries consuming 80% in the 

form of imports 1 6. In terms of production, mango forms the major tropical fruit 

crop followed by pineapple, papaya and avocado, with the trade in lychees, 

rambutan, guavas and passion fruit smaller but increasing 1 6. 
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The food and drinks industry is witnessing a substantial growth in demand for 

tropical fruits and flavours 1 7. This could be a result of the cultural diversity in 

our cities or the more adventurous modern consumer who enjoys the exciting 

flavours found in foreign foods. In addition, concerns over diet and health may 

have also contributed towards this trend. Although more and more unusual 

foreign fruits are appearing on supermarket shelves these are only a small 

proportion of those grown in the tropics; most cannot survive the journey to 

higher latitudes as they over-ripen and spoil making their export impractical. 

The flavourings industry has acted on the demand for tropical flavours and has 

artificially synthesized a large number of "nature identical" tropical compounds. 

However, with the industry well aware of the consumer demand for natural 

products, aromatic oils and juice extracts are also becoming big business. As 

has been described this can be problematic, climate in the tropics is 

particularly variable, floods and hurricanes can destroy crops making fruit 

supply unreliable. Other difficulties include trade restrictions and political 

instabilities. In addition, the chemicals responsible for tropical notes are 

present at trace levels within the fruit and as a result they are nearly 

impossible to isolate in pure form from natural materials, hence giving them 

high price tags in the flavourings industry. As a result the biotechnological 

production of such single aroma metabolites is a far cheaper and more 

attractive alternative to extraction from natural sources. 

1.2.2 The Role of Aroma Chemicals in Fruit 

Exotic fruit plants would have originally been found growing in dense tropical 

jungles competing for light, nutrients and space. The single purpose of the fruit 

is to aid in seed dispersal, something that gives the new plant the greatest 

chance of survival. The elegant colours, forms and flavours of the fruit are all 

adaptations to serve this purpose; they are attractants for specific species of 

seed-dispersing jungle animals and birds. 

Flavours in fruit are derived from an array of nutrients, including amino acids, 

sugars and fats. Hence, it has been proposed that F&Fs in fruit act as 

indicators of their nutritional value 1 8 . The fruit offers a rich source of 
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carbohydrate, fat and water and in return animals will transport the plants seed 

long distances within their gut. Seed dispersal is a crucial stage in the life cycle 

of these tropical plants, and when the parent plant passes its genes on to the 

next generation it invests heavily to ensure the survival of its offspring. 

Although avoiding competition for resources may be important, the most likely 

reason for dispersing seed is to move the new plant away from diseases that 

can often plague a group of related plants growing in close proximity 1 9. 

Passing the seed through the digestive system of an animal has the added 

advantage of killing any insect-borne diseases, allowing the seed to germinate 

and start a new life disease free in a rich mound of fertiliser. 

The competition for animals (vectors) is the driving force behind the evolution 

of variability in fruit flavours, something that has led to differences in the fruit 

flavour compositions between species. A plant that accumulates mutations and 

evolves a new flavour profile runs the risk of not being as attractive as its 

neighbours, its genes will not be selected and eventually it will die out. 

However through mutations, such as gene duplication and divergence or 

silencing, new flavour profiles more attractive to animals could evolve. Hence, 

this battle to be the most "attractive" is carried out at the level of biochemical 

pathways with flavour production and diversification important in the evolution 

of tropical fruit. 

In addition, many plant secondary metabolites play an important role in 

defence against insect pests 2 0 , with these signalling compounds often found to 

be volatile and aromatic. There is a battle between plants to produce 

insecticidal toxins and insects to develop resistance to them, and as a 

consequence this drives the evolution of different secondary metabolites and 

ultimately the evolution of different flavour volatiles. 

1.2.3 Flavour and Fragrance Principles in Tropical Fruit 

The aroma contributing volatiles in tropical fruits are of particular interest to the 

flavourings industry. Due to the increase in demand for tropical notes the F&F 

industry set out to discover what were the odour-active chemicals and what 

was so unique about these fruits that gave them such unusual exotic notes. In 
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answering these questions, the volatile constituents of exotic fruits were 

extensively studied and found like other fruits to contain predominantly esters 

and significant levels of alcohols, aldehydes, terpenes, lactones and amino 

acid derivatives 2 1. However, the exotic notes remained elusive until sensitive 

GC detectors were developed and an array of low abundance (<10 ppb levels) 

sulphur constituents were discovered. These were later found to be 

responsible for the true "tropical" flavour in these fruits. The character impact 

volatiles (chemicals responsible for characteristic fruit flavour) from a number 

of important tropical fruit varieties are illustrated in figure 1.3. 

Due to its delicate tropical flavour and its value in the fruit processing industry 

the yellow passion fruit (Passiflora edulis f. flavicarpa) has been extensively 

studied. The fruit was found to contain some 270 volatile compounds 

(www.vcf-online.nl). However, not all of these contribute to flavour, in fact less 

than a quarter (24%) have aroma character at levels present in the fruit 2 2. The 

initial identification of volatile chemicals found that esters comprised 95% of 

the volatile oil, with hexylhexanoate (Figure 1.3) the principal constituent 2 3. The 

chemicals responsible for the attractive tropical notes were however not 

identified until the development of flame photometric GC detectors, which 

identified a number of character impact sulphur volati les 2 4 ' 2 5, the most 

important being 2-methyl-4-propyl-1,3-oxathaine and 3-mercaptohexanol, with 

ester and thioester derivatives of the latter also forming important odour 

volatiles (Figure 1.3). As with many natural aromas, chirality was found to be 

important for aroma character 2 6 , 2 7(Figure 1.3); only the correct optical isomers 

will interact with the active sites on receptor proteins. 

The Durian fruit is highly prized by the people of South East Asia but due to its 

powerful odour it is repulsive to most Europeans. Volatile flavouring 

constituents from this fruit were first identified in 1971 3 0 , and again sulphur 

compounds were found to have high odour impact. In this case the sulphur 

constituents were small and emitted from the fruit, with thioesters, disulsphides 

and sulphides all found to contribute to odour 3 1, 3,5-dimethyl-1,2,4,-trithiolane 

(Figure 1.3) was found to have the highest odour impact 3 2 . 
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Mango is the major tropical fruit crop in terms of production and trade. For this 

reason the volatile constituents have been thoroughly characterised, with more 

than 300 identified to date (www.vcf-online.nl). Terpene hydrocarbons were 

found to be the predominant volatiles, with some 50 types identified 3 3, 8-3-

carene (Figure 1.3) forms the major character impact terpene in most varieties. 

Mango is also found to contain a number of sulphur aroma constituents, 

namely diallyl disulphide and ethyl 3-mercaptobutyrate, the latter only recently 

discovered but found to be an important contributor to overall exotic flavour 3 4. 

Pineapple is another major tropical fruit variety and has therefore attracted 

attention, with over 200 volatiles identified 3 5. Of particular mention are 

pineapple furanone 3 6, esters (ethyl 2-methylbutanoate and methyl hexanoate), 

5-octalactone3 7 and sulphur volatiles (methyl and ethyl thiopropanoates) 3 8. 

The British flavourings company Oxford Chemicals, who specialise in the 

manufacture of high impact flavourings, realised that it was the position of 

sulphur with respect to oxygen within volatiles that produced the tropical note 

and proposed the structure of the tropical olfactophore 4 0 (Figure 1.4). This is a 

chemical structure that must have both the correct conformation and 

vibrational bond energies to trigger a nerve impulse from receptor proteins in 

the nose and mouth which we perceive as "exotic" or "tropical". Tropical fruit 

have therefore utilized sulphur and its remarkable chemistry for the generation 

of unique aroma profiles. They only need invest in the synthesis of small 

quantities of such compounds for them to have a huge impact on fruit aroma, 

hence saving valuable nutrients and metabolic energy. It is the ability of exotic 

fruits to assimilate sulphur and incorporate it into volatiles that makes them 

unique. 

A = H, CH 3 , acyl, ring 
B = H, CH 3 , acyl, absent if carbonyl, ring 
R1, R2 = H, alkyl 
R3 = H, alkyl, ring 
R4 = H, CH 3 , ring 
R5 = H, absent if carbonyl 

Figure 1.4 The Tropical Olfactophore 4 0 

B 

2 A R 

O 

R5 R1 
R4 R2 

R3 H 
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1.3 Aroma Generation in Tropical Fruit 
1.3.1 The Biosynthesis of Aroma in Fruit 

The early research into fruit flavour concentrated on identifying the F&F 

principles and assessing their contribution to overall fruit aroma. However, with 

the technological developments in molecular biology and genetics over the 

past thirty years research is now also focussing on identifying the biochemical 

pathways of flavour generation. An understanding of fruit flavour biosynthesis 

will enable directed plant breeding programmes and the genetic engineering of 

fruit plants to improve flavour quality, something that has deteriorated through 

intensive fruit production. The aroma chemicals in fruit are predominantly 

generated through three major biochemical pathways; fatty acid degradation, 

terpene metabolism and amino acid metabolism, which are reviewed by 

Morton and MacLeod 4 1 , 1990, and Parliment 4 2, 1986. Much of this work has 

focussed on a number of model fruits, predominantly apple (Malus pumila), 

tomato (Lycopersicon esculentum), melon {Cucumbis meld), strawberry 

(Fragaria ananassa), banana (Musa sapientum) and to a lesser extent mango 

(Mangifera indica). Aroma generation in tropical fruit will undoubtedly share 

many of these conserved pathways, whereby sulphur volatiles are generated 

as derivatives of these core aroma metabolites. Hence, their biosynthesis must 

be considered first. 

The methodology for elucidating aroma biogenesis initially focussed on 

identifying precursors and intermediates and studying their accumulation and 

depletion during the ripening process 4 3 4 4 , with feeding studies and 

radiolabelling confirming many of these proposed pathways 4 5 , 4 6 . A number of 

genes predicted to be involved in aroma generation have been isolated and 

cloned through methods such as Reverse Transcription Polymerase Chain 

Reaction (RT-PCR), with in vitro characterisation of such heterologously 

expressed enzymes determining substrate and product specificity 4 7 , 4 8. 

Genomics approaches have also proved successful, with both random and 

targeted screens of fruit cDNA libraries identifying further genes and enzymes 

of interest 4 9, such as those identified in papaya 5 0. Microarray analysis in 

apple 5 1 and strawberry 5 2 has identified genes and enzymes that are 
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upregulated during ripening, a considerable subset of which have been shown 

to be involved in aroma biogenesis. Collectively such studies have provided a 

sound understanding of the core pathways of aroma biosynthesis in fruit. 

1.3.1.1 Fatty Acids as Precursors to Straight Chain Alcohols, Aldehydes 

and Esters 

Fatty acids (FAs) and lipids are important structural and metabolic constituents 

of plant cells, forming cell membranes (phospholipids) and also serving as 

energy storage compounds (triacylglycerols)4 4. However, with the observation 

that many fruit volatiles were composed of even numbered straight-chain 

organic structures, and with the high proportion of C6 aroma metabolites in 

fruits, FAs (being even numbered carbon compounds themselves) were 

chosen as primary candidates as precursors to these aroma constituents 4 1. 

Climacteric fruits, including mango and apple, continue to ripen when picked 

from the tree: they show a characteristic increase in respiration, ethylene 

release, protein synthesis and metabolic activity during maturation (the 

climacteric respiratory rise) which results in the softening of the fruit, colour 

changes and aroma generation. They can be picked from the tree and studied 

under controlled conditions, and as the stage of ripening can be calculated 

from levels of ethylene production, they serve as useful models for studying 

aroma biosynthesis. Such work on climacteric species revealed an 

accumulation of lipids and free FAs in developing fruit, especially during the 

respiratory rise. In mango, levels of linoleic, linolenic and stearic acids 

accumulated during the rise and then decreased following the respiratory 

peak, due to their metabolism into further products 4 3, with ester biosynthesis 

correlating with this rise in free FAs. A similar trend was observed in apple 4 4 . In 

addition it was demonstrated that feeding of FA to homogenates of apple 5 3 and 

tomato 5 4 could increase the production of straight chain aroma volatiles. 

Radiolabelling studies confirmed deuterated FAs were metabolised to straight 

chain aldehydes, alcohols, acids and esters in apple 4 6 . In addition, this study 

demonstrated that 18:3 FAs, such as linolenic acid, were precursors to 

unsaturated C6 volatiles (hexenal and hexenol) whereas 18:2 FAs, such as 

linoleic acid, were precursors to saturated constituents (hexanal and hexanol). 
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Figure 1.5 A. Biosynthetic pathways leading to straight-chain aldehydes, 
alcohols and esters in fruit. B. The reactions catalysed by 
alcoholdehydrogenases (ADH) and alcohol acyltransferases (AAT). 

31 



FAs are metabolised into short chain alcohols, aldehydes and acids (prior to 

ester formation) through oxidative degradation; p-oxidation and/or 

lipoxygenase cleavage 5 5 (Figure 1.5A). FA degradation through p-oxidation 

occurs in peroxisomes and involves the repeated cleavage of C2 units (acetyl 

co-A) from the carboxyl end of fatty acyl-CoAs. This is believed to be 

responsible for the generation of acetic, butanoic and hexanoic acids, which 

may then be reduced to the corresponding aldehydes and alcohols before 

esterification 4 6. Odd numbered carbon structures are a result of a-oxidation 

generating the C5 constituents found in a number of fruit 4 6. The high proportion 

of C6 volatiles, such as hexanal and hexenal are believed to be derived from 

the lipoxygenase (LOX) pathway 5 5. 

Cytosolic lipoxygenases catalyse the oxidation of unsaturated FA at specific 

points along the carbon chain, generating hydroperoxides. Linoleic or linolenic 

acids are the major unsaturated FA in plants, and they are oxidised by LOX 

enzymes at the 12 or 9 positions and subsequently cleaved by hydroperoxide 

lyases to generate C6 or C9 aldehydes respectively, which may be oxidised to 

acids or reduced to alcohols prior to esterification 4 6 (Figure 1.5A). 

The regulation of these pathways is partly through transcriptional control over 

enzymes that metabolise FAs and those that generate esters, however, the 

major controlling factor is believed to be the availability of free FA precursors 4 4. 

It was therefore proposed that the accumulation of free FAs could result from 

the biosynthesis (anabolism) of de novo FAs within the endoplasmic reticulum 

or through their release from phospholipid pools through the action of lipases 

or lipoxygenases. 

It was observed that apples stored under anaerobic conditions only generated 

very low levels of free FA and subsequently did not develop a natural ripe 

aroma 5 3 , this dependence upon oxygen and respiration indicates that the 

anabolic pathway is responsible for FA aroma generation. Furthermore, the 

dependence of free FA accumulation on adenoside triphosphate (ATP) 
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strongly reinforces the anabolism theory . Hence, it is important to consider 

that fruit storage conditions will affect fruit maturation and aroma development. 

The enzymes responsible for the interconversion of aldehydes and alcohols 

(Figure 1.5B)are alcohol dehydrogenases (ADH, EC 1.1.1.1) which have been 

identified in a number of fruits. Considerable work on their effects on aroma 

biogenesis has been carried out in tomato 5 7 , 5 8 , where it was observed that 

ADH accumulated in ripe fruit coinciding with flavour volatile generation. In 

addition, a study using transgenic tomato lines with reduced or increased ADH 

activities were shown to affect fruit flavour 5 7, whereby reduced ADH activity 

resulted in an imbalance of aldehydes and alcohols (low levels of hexanol or 

hexenol) and as a result less diversity and abundance of esters. Hence, ADH 

activity is important in the reduction of short chain aldehydes to alcohols, a 

critical step in the generation of hydroxyl functionality required for subsequent 

ester formation. 

Esters, the major aroma constituents in fruit, are generated through the linkage 

of acyl moieties from acyl co-enzyme A (CoA) to alcohols, a reaction catalysed 

by alcohol acyltransferases (AAT, EC 2.6.1.1) (Figure 1.5B). AATs have been 

studied in apple 5 9 , 6 0 , banana 6 1, me lon 6 2 , 6 3 and strawberry 5 2 , 6 4 . Such studies 

found that AATs generally show substrate specificities that correlate with the 

volatile esters present 6 4, although it is argued that substrate availability rather 

than enzyme specificity controls the types of esters formed 5 9 . 

Hence, FA metabolism generates important core aroma volatiles in fruit. The 

oxidative degradation of FAs initially results in an accumulation of short chain 

aldehydes which give the green notes in underipe fruit, with their subsequent 

metabolism into alcohols, acids and esters providing the fruity notes later in 

maturation. The types of FAs in fruit, and the specific enzymes of FA oxidation 

(LOX enzymes and hydroperoxide lyases) with different regio-specificities, 

account for the accumulation of different degraded FA metabolites in different 

fruits. In addition, the substrate specificities of ADHs and AATs will channel 

these degraded FA metabolites down further alternate pathways resulting in 

the accumulation of different end products, such as hexylhexanoate in passion 
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fruit. As a result of repeated rounds of duplication and divergence ADH and 

AAT gene families in fruits are large and diverse, which allows for the continual 

evolution of fruit flavour. 

1.3.1.2 Terpene Metabolism 

The terpenes (also called isoprenoids) are the most functionally and 

structurally diverse group of plant secondary metabolites 6 5 and form another 

important collection of aroma volatiles. They are classified according to the 

number of C5 isoprenoid units they contain and named hemiterpenes (C 5), 

monoterpenes (C-io), sesquiterpenes (C15) and the diterpenes (C2o). They are 

highly aromatic and function as defence agents against insect pests and 

pathogens or as attractants towards pollinators and seed-dispersing animals. 

Their importance in tropical fruit flavour has already been demonstrated 

through their abundance in mango. 

The pathways leading to the isoprenoids are well characterized, with the basic 

C5 units isopentenyl diphosphate (IPP) and dimethylallyl diphosphate 

(DMAPP) (Figure 1.6A) generated via two alternative pathways; the 

mevalonate pathway (cytosol) and the methylerythritol phosphate pathway 

(plastid), reviewed by Rodriguez-Concepcion and Boronat 6 5, 2002. However, 

the diversity of terpene metabolites is achieved through the action of terpene 

synthases which catalyse transformations and cyclisation reactions 6 6. This is 

demonstrated through monoterpene biosynthesis where GPP is converted to 

various skeletal structures through the action of large families of monoterpene 

synthases. Limonene present in mango and linalool from passion fruit are 

common monoterpenes found throughout the plant kingdom and serve as 

useful examples (Figure 1.6A). One remarkable property of terpene synthases 

is their ability to take a single substrate (e.g. GPP) and convert it into 

numerous products 6 6. Although the larger terpene (C15, C20) metabolites are 

non-volatile, their cleavage can generate important aroma constituents, such 

as p-ionone in passion fruit, formed through the cleavage of carotenoid 

compounds 6 7 (Figure 1.6A). 
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Further diversity still is created through secondary transformations. The large 

family of cytochrome P450 oxidases catalyse hydroxylation reactions 6 8 and are 

involved in numerous metabolic pathways in plants, where they exist as 

multiple isoforms able to hydroxylate diverse chemistries. They have attracted 

particular interest due to their involvement in the initial stages of detoxification 

of xenobiotics (foreign compounds) in plants and animals 6 8. However, in plants 

they are also recruited to catalyse the many reactions of volatile aroma 

generation. Hydroxylation is substrate, regio-, and stereo-specific and 

generates a multitude of products from a single terpene structure. For 

example, in caraway (Carum carvi) fruit, limonene is hydroxylated at the 6 

position to produce carveol 6 9 (Figure 1.6B). This is metabolised further through 

the action of NADP/ NAD-dependent oxidoreductases, such as ADH, which 

oxidises the hydroxyl functionality into a carbonyl group. Hence the aroma 

characteristic is changed through a single biotransformation to produce 

carvone, the major aroma in this fruit. Collectively, secondary transforming 

enzymes such as AATs, ADHs, P450s and terpene synthases create the great 

chemical diversity found in plant aroma constituents and hence maximise the 

odour impact of nutrients channelled away from central metabolism. 

There is considerable interest in both terpene synthase genes and the 

secondary transforming genes for the genetic engineering of plants to improve 

flavour. Due to the importance of terpenoid constituents in essential oils, a 

number of terpene synthases have been isolated and characterised from these 

aromatic plants, including peppermint and spearmint 4 9. Such studies hope to 

be the first steps in genetically engineering commercial essential oil plants to 

obtain improved essential oil yield and composition. 

1.3.1.3 Amino Acid Derivatives- Branched Chain Aromas 

Many fruit ester volatiles contain branched-chain structures, such as the 2-

methyl butanoate esters found in durian and pineapple (Figure 1.3). The 

occurrence of such compounds can not be explained through their metabolism 

from straight-chain FA derivatives. The accepted route for their generation is 

through metabolism of aliphatic amino acids. 
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Much of the work in elucidating branched-chain ester biosynthesis has been 

carried out in apple 4 5 , banana 7 0 , 7 1 and strawberry 7 2 , 7 3 . In strawberry levels of 

amino acids were shown to increase during the ripening period and then fall 

away as branched-chain ester concentrations increased late in ripening 7 2. In 

addition, in vitro feeding of L-isoleucine to strawberry fruit led to a seven-fold 

increase in levels of 2-methylbutanoate esters and a two-fold increse in 2-

methyl butyl esters compared to control fruit 7 3. Similar observations were made 

in banana 7 0. 

More recently, radiolabelling studies have confirmed such pathways. 

Incubation of ripe banana discs with radiolabeled L-leucine resulted in its 

biotranformation into branched-aroma volatiles 7 1, predominantly 3-methyl 

butanol (81%) and 3-methyl butyl esters (10%). Similar studies in apple using 

deuterium-labelled L-isoleucine confirmed its bioconversion into 2-methylbutyl 

and 2-methylbutanoate esters 4 5. Collectively these studies have shown that 

the biosynthesis of 3-methylbutyl, 2-methylbutyl and 2-methylpropyl esters 

proceeds from the amino acids leucine, isoleucine and valine respectively 

(Figure 1.7). The first step is the deamination of precursors catalysed by 

aminotransferases which generate branched-chain oxo acids; their subsequent 

reduction yields branched-chain alcohols or acyl-CoA metabolites. These 

substrates contribute to the pool of alcohols and acyl-CoA compounds 

available for utilization by AATs in ester biosynthesis (Figure 1.7). 

It is evident that the availability of nutrients will have a significant effect on fruit 

flavour: plants growing in poor soils will not be able to invest as much resourse 

in aroma production and consequently will not develop full aroma character. 

An evolutionary driver for plants is to generate maximum aroma impact to 

attract animals, with minimal loss of nutrients to themselves. Interestingly, 

tropical plants have achieved this through incorporating sulphur into 

metabolites. Perhaps the greater competition for resources in dense jungle 

environments puts greater pressure on these species to maximise the use of 

their valuable nutrients in F&F generation. Alternatively, the availability of 

sulphur may be greater in warmer equatorial regions. 
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1.3.2 The Biosynthesis of High-Impact Flavourings in Tropical Fruit 

In addition to the core aroma volatiles described above, tropical fruits also 

contain trace levels of sulphur constituents which impart the characteristic 

"tropical" notes 2 4. The biosynthetic pathways leading to their generation have 

not been studied in such detail in tropical fruit. However, the identification of 

sulphur volatile intermediates, such as cysteine-conjugated aroma precursors 

found in passion fruit 7 4, have allowed possible pathways to be proposed. 

Sulphur is essential for life. The element is electronically very active and 

therefore generally has catalytic or electrochemical function in biomolecules. 

Situated in group six of the periodic table (Figure 1.8A), below oxygen and 

above selenium, its chemistry is often compared to that of oxygen-containing 

compounds. However, a number of important differences must be noted. 

Sulphur has an electronic configuration (Figure 1.8B) with four high energy 3p 

orbital electrons making it a strong nucleophile, a characteristic of the thiol 

group in cysteine. However, unlike oxygen, its highest occupied molecular 

orbitals (HOMO) are further from the nucleus and more diffuse, making it a soft 

nucleophile which favours attack at saturated carbon atoms (sp3 hybridized 

carbon centres) in SN2 reactions, as opposed to oxygen that holds its HOMO 

electrons close to the nucleus, making it hard and favouring attack at carbonyl 

carbons (sp2 hybridized) in SN1 reactions. It has an electronegativity 

comparable to that of carbon (Figure 1.8C) so it is not possible to describe its 

chemical reactions in terms of polarisation of carbon sulphur bonds. Sulphur 

also has empty p, s and d outer orbitals which allow it to have coordination 

numbers from 1 to 7 and variable oxidation states; 2,4,6. Hence, it is a 

versatile element found in a range of functional groups (Figure 1.8D). 

The reason sulphur-containing volatiles are such potent aromas is something 

of a mystery. Humans and animals have evidently evolved to recognise such 

chemicals specifically, perhaps as a means of avoiding unpleasant or toxic 

foods, or conversely as attractants (as is the case in exotic fruits). Sulphur is 

an essential nutrient to animals and important in cellular protection and foreign 

compound detoxification, it is possible we are so sensitive to it because we 

need it in our diet and a deficiency could be fatal. 
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1.3.2.1 Sulphur Metabolism in Plants 

Plants carry out out the important role of fixing inorganic sulphate ( S 0 4

2 ) and 

reducing it to sulphide (S2"), prior to incorporation into organic compounds. 

With anionic sulphate in abundance in soil, it forms the primary source of 

sulphur for plants. Sulphate is actively transported into roots through the action 

of plasma membrane HVSO42" co-transporters driven by an electrochemical 

gradient generated by ATPase proton pumps 7 5 . It is subsequently transported 

throughout the plant and actively taken up by cells of the leaves. Once inside 

the plant cells sulphate can be stored in vacuoles or metabolised in plastids 

through reduction and assimilation (Figure 1.9). The pathways of sulphur 

uptake and assimilation have been well characterised in the model plant 

Arabidopsis thaliana where regulation of the pathways and adaptation to low 

sulphur environments have been studied, reviewed by Leustek 7 5 et al., 2000. 

Adenylation of sulphate is catalysed by ATP sulphurylase which generates 

5'adenylsulphate (APS). APS is subsequently reduced in two enzymatic steps: 

firstly APS reductase transfers 2 electrons (believed to be from glutathione) to 

generate sulphite (SO32") and secondly sulphite reductase transfers six 

electrons from ferredoxin to produce sulphide (S 2 ) 7 5 . Sulphide or thiosulphide 

is then exported from the plastid, as enzymes for cysteine biosynthesis are 

located in the cytosol. The assimilation of sulphur into cysteine requires the 

coordination of both serine metabolism and the sulphate reduction pathway. 

Cysteine forms a central intermediate at a crossroads in primary metabolism 

from which further sulphur biomolecules are synthesised. It can be channelled 

into protein synthesis or metabolised further to form the amino acid methionine 

or secondary metabolites (Figure 1.10). Hence, free cysteine levels are low 

(<10 (iM) but its flux is high due to its incorporation into these further 

compounds 7 5. In addition, cysteine forms the active constituent of the tripeptide 

glutathione (Figure 1.11), which functions to protect cells from biotic and 

abiotic stress 7 6. It is an important redox buffer in cells and through the 

glutathione-S-transferase (GST)-detoxification system it functions as a 

scavenger of electrophilic oxidising agents 7 7 . 
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Many of the sulphur metabolites in plants are believed to function as defence 

agents 7 8. For example the glucosinolates in Brassicaceae act as precursors to 

various volatile sulphur compounds, with pathogen attack inducing their 

hydrolysis through the action of thioglucosidase which generates the "defence-

active" compounds 7 9 (e.g. isothiocyanates and thiocyanates, Figure 1.12A). A 

similar system is found in Allium species (onion and garlic) that sequester high 

levels of stable, odourless S-alk(en)yl cysteine sulphoxide aroma precursors, 

which can account for up to 1 % of the bulb's dry weight 8 0. Again, upon 

herbivore attack, compartmentalised enzymes, allinases, are released which 

cleave precursors generating defensive sulphur volatiles 8 1 (Figure 1.12B). 

The accumulation of sulphur aromatic defence agents appears to be a 

characteristic of vegetables (e.g. onion, garlic, broccoli, cabbage). Fruits 

however, are produced to be eaten and their aromas function as attractants, 

not deterrents. Tropical plants appear to have incorporated the sulphur 

defence-pathways into their own fruit aroma biosynthetic machinery for the 

generation of pleasant exotic notes. 

1.3.2.2 The Generation of High-Impact Aroma Chemicals in Tropical Fruit 

The amino acid methionine forms a likely precursor to sulphur volatiles in a 

number of tropical fruits, such as the generation of methyl and ethyl 

thiopropanaotes in pineapple (Figure 1.3). The acid-contributing parts of such 

esters have an identical structure to the sulphur-containing functional side 

chain of methionine (Figure 1.13). As has been described, amino acid 

metabolism is important in the generation of branched-chain aroma esters 

found in many f ru i ts 4 5 , 7 1 . However, pineapple has evolved to utilize methionine 

specifically for the generation of higher impact volatiles. Perhaps through 

repetitive mutations, these pathway enzymes have evolved to accept 

methionine; conversely, genes that encode enzymes responsible for 

metabolism of other amino acids have been silenced, hence channelling 

methioine into aroma biosynthetic pathways. A likely pathway is depicted in 

figure 1.13. This does however remain to be confirmed through feeding and 

radiolabelling studies similar to those used for the elucidation of similar 

pathways in model fruits. 
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B. S-alk(en)yl cysteine sulphoxide defence agents in Allium. The core structure 
of S-alk(en)yl cysteine sulphoxide precursors is shown, variation is due to 
different side chain structures (R). The origin of such alky or alkenyl 
substituents remains to be confirmed however studies have indicated they are 
generated through amino acid metabolism, e.g. valine 8 1. Cysteine is derived 
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and decompositions to produce disulphide and trisulphide volatiles. 
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Glutathione is another sulphur-containing biomolecule believed to be important 

in incorporating sulphur into aroma chemicals, as illustrated by the generation 

of the S-alk(en)yl cysteine sulphoxide aroma precursors in Allium species 8 2. 

Similar sulphur flavourings are found to be emitted from tropicals such as 

bread fruit and durian fruit, where the biosynthetic pathways are likely to be 

conserved between these species of plants (Figure 1.14). The thiol group of 

cysteine is a strong nucleophile and favours attack at electron rich regions of 

chemicals, such as alkene double bonds. Although the source of the alkyl and 

alkenyl substituents is somewhat unknown, radiolabelling studies in Allium 

using 1 4C-valine showed this amino acid was metabolised into methacrylic 

acid, which is known to react with glutathione 8 1. The S-alk(en)yl sulphoxides 

produced are sequestered in Allium, whereas in durian or breadfruit they are 

emitted, presumably through the action of CS-lyase enzymes under 

developmental regulation. 

The incorporation of sulphur into terpenoid constituents is not common in 

tropical plants and hence it is not discussed here. However, it is important to 

note that in grapefruit the key character impact compound, grapefruit 

mercaptan (Figure 1.2), appears to be derived from sulphur addition to 

terpenes. This is the most potent of all high-impact flavourings and the isolated 

natural product would justify a high price tag in the industry. Hence, a 

metabolic understanding of sulphur metabolite biosynthesis is important for the 

development of systems for the bioproduction of such natural products. 

Another biosynthetic pathway that utilizes glutathione as a means of 

incorporating sulphur into flavourings is found in passion fruit. The evidence for 

this first stemmed from the observation that certain white wine grape varieties, 

Sauvignon blanc grapes in particular, contained unusual tropical notes 

contributing to their overall aroma. The odour active chemicals were isolated 

and found to be 3-mercaptohexan-1-ol (3MH) and its acetate ester, 3-

mercaptohexyl acetate 8 3, the same odour active chemicals found in passion 

fruit. In addition a cysteinylated precursor of 3MH was also identified 8 4 and led 

researchers to look for similar compounds in passion fruit itself where the 

cysteine precursor was identified as S-3-(hexan-1-ol)-L-cysteine74. 
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The identification of this intermediate provided the first strong evidence toward 

how such tropical sulphur chemicals are produced in passion fruit. 3MH is a 

C6 volatile, a likely product of FA oxidative metabolism. Furthermore, the 

electron rich regions of the double bonds in unsaturated hexenals would 

provide the functionality for the incorporation of sulphur. Hence, the early 

biosynthetic steps in the generation of 3MH appear to be a consequence of the 

FA oxidation of linolenic acid through the LOX pathway which generates c/s-3-

hexenal (Figure 1.15A). Sulphur is subsequently incorporated through the 

glutathione detoxification pathway, whereby the thiol group of cysteine (as part 

of GSH) undergoes nucleophilic attack across the double bond in a Michael 

addition reaction catalysed by glutathione-S-transferase. The decomposition of 

GSH through the release of glycine and glutamyl generates S-3-(hexan-1-ol)-

L-cysteine. The cysteine conjugate is not however found at considerably high 

levels in passion fruit (most as free 3MH), as opposed to grapes where 3MH is 

predominantly in the conjugated form 7 4 . This could be a consequence of 

constitutive CS-p-lyase activity in passion fruit which hydrolyses conjugates 

upon their formation or through the chemical acid hydrolysis of conjugates as a 

consequence of the low pH of the fruit juice. CS-p-lyases in passion fruit 

remain to identified. 

Both the alcohol and thiol functionalities of 3MH are reactive and as a 

consequence the compound is metabolised further through the action of 

secondary transforming enzymes, such as AATs, which generate a collection 

of stable exotic sulphur volatiles (Figure 1.15B). Thioesters are likely to be 

formed through the action of ester synthases, such as AATs, as the thiol group 

will undergo esterification just like alcohols when presented with an activated 

acylCo-A donor in the active site of the enzyme. 

Tropathiane is another key character impact aroma in passion fruit and it 

appears to be generated through the formation of a stable cyclic intermediate 

of 3-mercatohexyl acetate (Figure 1.15B). However, radiolabelling studies and 

the cloning and characterisation of enzymes proposed to be involved in such 

pathways are required for the confirmation of such metabolism. 
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It is possible that these sulphur aroma biosynthetic pathways found in tropical 

plants (and Allium and Bracaceae) may be the ancient origins of the sulphur 

detoxification pathways recognised today for the metabolism of synthetic 

chemicals (e.g. agrochemicals) by plants. Such pathways would provide a 

number of possible endogenous roles for enzymes of secondary metabolism, 

such as the GSTs and cytochrome P450 oxidases, and may explain why they 

are found as such divergent gene families. How such sulphur metabolic 

pathways are incorporated into aroma biogenesis at the cellular level remains 

to be determined. The compartmentalisation of enzymes, protein-protein 

interactions and transport of intermediates will evidently be important in 

controlling such metabolism. 

1.4 Storage and Release of Aroma Volatiles in Fruit 
In contrast to aroma biogenesis, less is understood about how fruits store and 

emit aroma chemicals. However, the majority of studies have indicated that 

odourant compounds are synthesized exclusively in epidermal cells of the fruit 

cortex where they are either sequestered or emitted 6. The aroma constituents 

containing reactive side groups, such as alcohols or thiols, could potentially be 

damaging to plant cells. For example, free thiol groups, which are over 500 

times more reactive than the corresponding oxygen analogue 8 5, are likely to 

inactivate proteins through forming covalent disulphide bonds, interfering with 

catalysis and cell signalling. Hence, they are metabolised into the less reactive 

ester and thioester derivatives. However, esters and thioesters still remain 

lipophilic and are likely to interfere with membrane lipid components of plant 

cells, and a system for their storage or excretion is likely to be present. Recent 

studies have found that a considerable proportion of aroma constituents (40% 

in mango 8 6) are locked up as sugar conjugates and exported to the cell wall. 

Similar non-volatile aroma precursors have also been characterised in passion 

f ru i t 8 7 , 8 8 and melon 8 9 . In addition, further chemicals may be transported to the 

vacuole for storage or excreted into the juice of the fruit. Isolating aroma 

chemicals is vital for the protection of cellular metabolism, however, very little 
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is known about such excretory processes or the metabolic trafficking between 

sub-cellular compartments. 

In addition to sequestering aroma chemicals, fruit are also known to emit 

volatiles, a characteristic that first became apparent through the discovery of 

the gaseous hormone ethylene emitted by plants 9 0. This brought about the 

realisation that some of the volatiles released by plants may be of 

physiological importance, even at concentrations too low for human detection. 

The release of alcohols and esters observed in numerous fruits may be due to 

their passive diffusion out of epidermal cells of the peel. However, it has also 

been proposed that enzymatic release is important in controlling volatile 

emission from fru i t 9 3 , 9 4 . One family of enzymes which are upregulated in the 

later stages of fruit maturation and believed to serve this function are the 

esterases. 

1.4.1 Esterases Identified in Fruits Involved in Flavour Release 

Esterases are members of the hydrolase superfamily of enzymes (EC 3) that 

cleave ester bonds through the addition of water (Figure 1.16). 

Figure 1.16 The catalytic mechanism of a serine hydrolase. 
Serine hydrolase enzymes are a large sub-family of esterases which catalyse 
the hydrolysis of ester bonds, including amide esters, thioesters and 
carboxylesters, the latter illustrated here. Three amino acid residues in the 
active site; aspartate (Asp), histidine (His) and Serine (Ser) make up the 
"catalytic triad" which catalyzes hydrolysis. The triad reduces the pKa of serine 
thus making it a more effective nucleophile for attack at the carbonyl of the 
substrate which liberates alcohol and forms the acyl-enzyme intermediate 
(step 1). This is subsequently attacked by a nucleophile, water (under cellular 
conditions), to release the acid and regenerate the enzyme (step 2). 
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They have been found in abundance throughout nature, with plants known to 

express multiple isoforms in different tissues. Their involvement in xenobiotic 

metabolism has attracted particular attention, such as their role in 

agrochemical activation 9 1 and detoxification 9 2. They serve to hydrolyse 

chemical groups on compounds introducing new functionality (e.g. hydroxyl) 

and increasing their solubility, the first stage in plant detoxification pathways. 

Their specific endogenous roles (before the advent of synthetic chemicals) is 

however harder to determine, they show broad specificities and are involved in 

the metabolism of various secondary metabolites and as such they may have 

numerous functions within the plant. 

However, one specific endogenous role for esterases that has been proposed 

is that of generating various volatile aromas which are emitted from the peel of 

ripe fruit. An increase in esterase activity in late ripening was first observed in 

apple, with a total of five distinct carboxylic ester hydrolases being identified in 

the peel 9 3 . This study, and many other assays for carboxylic ester hydrolases 

used synthetic substrates (p-nitrophenyl acetate and ct-napthyl acetate), and 

as a result no direct link to an endogenous role could be claimed. However, 

further studies in apple demonstrated that these fruit esterases were also 

active toward natural substrates, including butyl and hexyl acetates 9 4. 

Alcohols, and in particular butanol, are found at far higher concentrations 

outside the fruit than within its tissues 9 3. This is believed to be a consequence 

of esterases being found predominantly in the cortex and peel such that they 

hydrolyse esters as they diffuse out from the fruit. Such small alcohol volatiles 

may function as attractants indicating that the fruit has reached maturity. It 

appears a further level of chemical communication important for plant-plant, 

plant-insect and plant-animal interactions is found below that of human 

perception. Hence, the difficulties associated with understanding such 

interactions may explain why much of the metabolism involved in aroma 

release is not so well studied in fruit. 

However, such undefined fruit esterases will be of particular interest to the 

flavourings industry as a novel source of biocatalysts due to their potential 
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substrate, regio- and stereo-specificities. With the tools of modern 

biochemistry and genetics, scientists have moved beyond just understanding 

plant aroma metabolism and our now looking at how to utilize such enzymes to 

reproduce the diverse chemistries of plant volatiles. The earliest work in 

organic chemistry focussed on identifying F&Fs and designing processes to 

produce them synthetically, now this is being taken a stage further through 

looking to plants (and microbes) to source the catalytic machinery required to 

generate aroma chemicals on a large scale through natural processes. This 

will undoubtedly revolutionise the F&F industry over the coming decade. 

1.5 The Boioproduction of Flavours and Fragrances - Lipases, 

Esterases and Thioesterases 
The use of Nature's catalysts enzymes for biotransformations in organic 

chemistry is a rapidly expanding area of research. Originally chemists would 

have been apprehensive to consider the use of enzymes in synthetic reactions 

due to their concerns over handling biological materials. However, this is 

changing with the development of efficient enzymatic processes that in many 

cases have become superior to classical methods of organic synthesis. There 

are numerous advantages of using enzymes (Figure 1.17), and they have 

become particularly attractive for use in industrial processes due to the 

pressures to develop environmentally acceptable systems for chemical 

manufacture. Hence, enzymatic processes are being developed through the 

use of whole cell systems (plant cell or microbes), or as isolated enzymes 

(crude preparations or in pure immobilized form) for the generation of specific 

chemicals. The latter are becoming increasingly available commercially and 

are attractive to the classic organic chemist as they can be handled just like 

any synthetic catalyst. 

The major advantage of using biocatalysts is however their ability to carry out 

stereo and regioselective chemical manipulations, a useful tool for producing 

fine chemicals, such as pharmaceuticals, agrochemicals, neutraceuticals 

(health-benefiting compounds) and flavours and fragrances. 

53 



Advantages Disadvantages 

Selectivity: Enzymes are chemoselective; 
acting on particular functional groups, 
regioselective; distinguishing between 
functional groups at different sites on a 
molecule and stereoselective; able to 
distinguish between chiral substrates. 
The latter is termed the "specificity" of an 
enzyme and is a major advantage. 

Efficiency: Enzymatic rates of catalysis 
are high with accelerated rates of reaction 
as great as a factor of 10 1 2. This far 
exceeds those of synthetic catalysts, and 
hence less enzyme is required in 
comparison to chemical catalysts. 

Compatible catalysts: As enzymes 
function under the same reaction 
conditions a number can be used in a 
cascade. Such a system removes the 
requirement to isolate materials between 
reactions and hence prevents the loss of 
intermediates. 

Environmentally acceptable: Enzymes 
are totally degradable and non-toxic, 
unlike chemical catalysts that are harmful 
if residues are released in effluent. 

Act under mild conditions: Optimum 
conditions at ph 5-8, temperature 20-
40°C and in water, which reduces 
decomposition of product and prevent 
undesirable side-reactions. In addition 
less energy is required for such 
processes and hence environmental 
impact and energy costs are reduced. 

Catalyse a broad spectrum of reactions: 
There is an enzymatic-process for almost 
every organic reaction known. 

Not bound to natural role: It is often a 
common misconception that enzymes 
only function on their natural substrate, 
most are also able to act on non-
endogenous chemicals. 

Greatest activity in water: The high boiling 
point and heat of vaporization of water 
makes it an unsuitable solvent for 
recovering product. In addition many 
organic compounds are insoluble in 
water. Hence immobilising enzymes to 
tolerate organic solvents is an active area 
of research. 

Some require cofactors: Some enzymes 
require cofactors such as ATP or 
NAD(P)H and they will not accept man-
made substitutes. This is a major difficulty 
as recycling cofactors is problematic. 
However, systems are being developed. 

Provided in only one form: Enzymes are 
made up of L-amino acids and hence are 
only able to catalyse one form of 
stereoselective synthesis. If the product is 
the undesired enantiomer a search for the 
same function with the reverse selectivity 
must be sought in nature, a difficult task. 

Narrow parameters for operation: If yields 
are low under the mild conditions of 
temperatures and pH there is little room 
for modification. However, remarkable 
enzymes have been found to work at 
extremes of temperature (0°C or 100°C). 

Prone to inhibition: High substrate and 
product concentrations inhibit many 
enzymes and hence reduce productivity. 
Substrate levels can be kept low by drip 
feeding, but removal of product is more 
difficult to achieve. 

Expensive: Some are, but so are many 
chemical catalysts. Enzymes are however 
increasingly being produced on a large 
scale through microbial expression. 

Allergies: Enzymes can cause allergic 
reactions. However, this is irrelevant if 
handled with care and most synthetic 
catalysts will be far more harmful to 
humans and the environment. 

Figure 1.17 Advantages and disadvantages of biocatalysts. Figure produced 
with information from Faber, K.9 5, 2004. 
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Such bioactive compounds often only function as single enantiomers, with the 

other possessing little or even undesirable effects. Hence, the different 

enantiomers should be regarded as distinct species. Concerns over the side 

effects of the "wrong" enantiomers in humans and their impact upon the 

environment has put pressure on these industries to produce enantiomerically 

pure products. In 1990 only 1 1 % of drugs sold globally were single chiral 

compounds whereas today this has increased to around 36%, a consequence 

of stereoselective synthesis often through enzymatic approaches 9 5. 

Enzymes do however have their disadvantages (Figure 1.17), in particular they 

only perform optimally under natural "mild" conditions of pH, temperature, 

pressure and in an aqueous environment. Such reactions conditions are often 

not favourable for conducting certain chemical transformations, overcoming 

these obstacles are the greatest challenges facing biotechnologists. However, 

this discipline is still (relatively) in its infancy and through screening nature for 

novel selective enzymes and through directed evolution, a greater range of 

biocatalysts with further favourable properties will become available. 

As described F&Fs are bioactive compounds with many found in nature as 

single chiral constituents. However, the non-selective synthetic processes 

used industrially generate racemic mixtures (containing equal quantities of 

each enantiomer), with the different forms showing distinct odour properties. 

The subsequent isolation of the desirable enantiomer is costly and difficult to 

achieve. As a result enzymes are now seen by the industry as a novel source 

of chiral catalysts for selective aroma production. Such enzymatic approaches 

should however not be regarded as competing with classical synthetic 

methods or replacing plant aromatic extraction, they are simply an additional 

tool available for manufacture. Ultimately economics will decide which 

processes are adopted. However, the generation of certain aroma constituents 

in their natural form appear only achievable through enzymatic approaches. 

For example, important flavouring constituents, such as raspberry ketone, are 

found at only trace levels in plants (4mg/kg of berries 9 6) making their extraction 

costly and unsuitable, and hence natural biocatalytic systems are very 

attractive in such situations. 
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With the advantages of enzymatic flavour production and the industries' desire 

to introduce such technologies it may appear somewhat surprising that it is not 

widely in use. This is however a likely consequence of the great chemical 

diversity found in aromatic chemicals, the "simple" enzymatic procedures (like 

those available commercially) will not currently suffice to generate this level of 

complexity. In addition, volatile flavouring ingredients are not produced on an 

extremely large scale, only 400 are produced at over one tonne a year, and as 

will be discussed, bioprocesses have therefore only been developed for those 

products in greatest demand (e.g. vanillin, benzaldehyde and menthol) 1 5. This 

is in contrast to the bioproduction of non-volatile food ingredients, such as 

sweeteners, savoury constituents and flavour enhancers which are produced 

on a scale of over 1,000 tonnes per year through enzymatic means 1 5 . Their 

production only requires "simple" biotransformations, with commercial lipases 

and microbiological processes found to be very effective. However, there is a 

considerable amount of academic literature on the biosynthesis of volatile 

flavours and many processes have now been developed for successful lab 

scale synthesis. The processes that have been scaled up for industrial 

production are predominantly based on the use of plant and microbial whole 

cell systems for the generation of "mass produced" flavours. 

The observation that microbes (yeast, fungi and bacteria) were able to 

biosynthesise aroma volatile constituents identical to those found in many 

plants led researchers to explore (or exploit) such organisms for flavour 

production, reviewed by Vandamme, E.J. 9 7 (2003). For example, the plant 

terpenoid pathway appears to be mimicked in the yeast Kluyveromyces lactis 

which generates fruity floral terpenes such as linalool, citronellol and 

geraniol 9 7. Hence, microbes can be used to duplicate plant secondary 

metabolism either through de novo synthesis or by adding a substrate/ 

precursor to enhance levels of desirable volatiles. Of all microorganisms, fungi, 

and in particular basidiomycetes, are found to have the closest volatile 

spectrum to that of plants and hence many have been utilized for industrial 

scale production 1 5. Such an example is the generation of natural benzaldehyde 

by Ischnoderma benzoinum. Microbes fed on media rich in L-phenylalanine 

(cheap and plentiful) were found to degrade it almost completely to the 
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flavouring constituents benzaldehyde and 3-phenylpropanol (Figure 1.18). In 

addition microbes have also been utilised for their ability to mimic plant FA 

metabolism for the generation of flavour lactones 9 7 and phenylpropanoid 

metabolism for the generation of vanil l in". As described, plant secondary 

transforming enzymes are important for generating diversity in aroma 

chemicals, enzyme activities such as P450, ADH and AAT are also evident in 

such microbial processes. The latter being illustrated through feeding 

branched-chain alcohols from fusel oil (a cheap by-product of alcohol 

rectification) to yeast, Williopsis saturnus, generating fruity acetate esters 1 0 0 . 

However, there are certain cases where the desired plant metabolism simply 

can not be found in microbes or it only generates trace quantities of products. 

In such cases plant whole-cell systems have been favoured. The use of plant 

tissue or cell cultures for the production of vanillin serves as a useful example. 

Currently the world demand for natural vanillin can not be met through 

extraction from the p lant" and hence many alternative processes for natural 

production have been developed (Figure 1.19). Systems using Vanilla 

planifolia tissue cultures are of particular interest. Feeding of phenylpropanoid 

precursors, such as cinnamic acid or ferulic acid to tissue or cell cultures 

enhanced the generation of vanillin and vanillic acid. For example a 1.7 fold 

increase in vanillin was observed in cell cultures fed with ferulic acid as 

compared to untreated cel ls 1 0 1 . Yields however remained low (15 mg/kg tissue 

callus/day). A novel method is taking aerial roots from the plant and culturing 

them in media rich in ferulic acid combined with charcoal 1 0 2 . The charcoal acts 

as an adsorbent of vanillin and increased yields to 400 mg/kg tissue/day, this 

is 5-10 times the amount that can be extracted from an equivalent weight of 

vanilla-beans 1 0 2. A further area of research in this field is the use of 

phytohormones, such as naphthalene acetic acid or cytokinins, to increase cell 

division and upregulate the desired metabolism". 

Hence, whole cell plant or microbial processes are effective for aroma 

production when conversion rates are high, cheap feedstock is readily 

available and subsequent extraction of product is not too difficult or costly. 
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Figure 1.18 The bioproduction of benzaldehyde (1.) and 3-phenylpropanol (2.) 
by the fungi Ischnoderma benzoinum. Radiolabeled phenylalanine was added 
to submerged cultures of the yeast and degradation products and 
intermediates identified 9 8. This natural process is however only viable due to 
the plentiful and cheap supply of L-phenylalanine which is an intermediate in 
the production of the sweetener, aspartame. 
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Figure 1.19 The bioproduction of Vanillin. Biotechnological processes for 
vanillin production have utilised plant and microbial whole-cell systems. 
Feeding of precursors such as phenylalanine, phenylpropanoids (cinnamic 
acid, caffeic acid, ferulic acid, eugenol) or lignin (a complex polymer of C9 
phenylpropanoids) have enhanced the generation of vanillin. 

58 



There are however limitations to this approach. High levels of substrate or 

product can be toxic to cells and hence must be drip fed into the reaction or 

products continuously removed. Yields are generally low, rarely greater than 

100 mg/Litre reaction, due to by-product formation and inhibition 9 7. However, 

screening for further microbes and optimising novel forms of plant tissue 

culture will be likely to increase the repertoire of products they can generate on 

an industrial scale. 

Now that the metabolic understanding of aroma biogenesis is becoming clear, 

it is also possible to look to single enzyme systems for "cleaner" production. 

Specific biocatalysts with desirable properties and specificities can be 

screened for in plants and microbes and subsequently genes encoding such 

proteins can be isolated and transformed in to bacteria or yeast for 

overexpression. The enzyme catalyst can then be used as a crude cell lysate 

or can be purified and immobilised to enhance stability and aid in enzyme 

recovery. Such technologies are particularly attractive for the generation of 

volatiles not achievable through whole cell transformations. One group of 

enzymes that have attracted particular interest due to their exceptional 

properties as biocatalysts and that have found there way into numerous 

industrial processes are the lipases. 

1.5.1 Lipases for the Bioproduction of Flavours and Fragrances 

The lipases (EC 1.1.1.3), are believed to account for 40% of industrial 

bioreactions 1 0 3. They are found in abundance throughout nature with the 

biological role of hydrolysing triacylglycerols to release FAs. They function 

through a similar catalytic manner to that described for carboxyl ester 

hydrolases. However, they are unique in their ability to work on insoluble 

substrates at the aqueous/ organic interface, a property that distinguishes 

them from esterases. It is their ability to catalyse different types of chemical 

reactions, such as hydrolysis, esterification and trans-esterification that makes 

them so versatile (Figure 1.20). 
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Figure 1.20 The versatility of lipase catalysed reactions. Different products are 
formed dependent upon the nucleophile that attacks the acyl-enzyme 
intermediate. Such nucleophiles must be in excess of water, hence why such 
reactions are conducted using immobilised lipases in non-aqueous solvents. 
Figure adapted from Faber K. , 2004. 
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Figure 1.21 A. Kinetic resolution. Hydrolases such as lipases and esterases 
are able to discriminate between chiral chemicals, as is illustrated above 
through the stereoselctive cleavage of a carboxyl ester. In theory only 50% 
yield of a single enantiomer can be achieved (the other remains unreacted). 
ee: enantiomeric excess (% of defined enantiomer). In practice the ratios of 
each enantiomeric product is a consequence of rates k1 and k2. B. Dynamic 
kinetic resolution. In dynamic kinetic resolution the unreactive enantiomer is 
converted to the reactive form through racemisation. The active form is then 
converted to product (R-product in this case), with theoretical yields of 100%. 
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Lipases are readily available, as they are secreted by various microbes and 

can be produced on a large scale in fermentations. Immobilised lipases have 

been demonstrated to function in organic solvents 1 0 4. Those sourced from 

thermophilic microbes can tolerate high temperatures 1 0 5, and importantly they 

do not require expensive cofactors. Hence, they are a versatile set of selective 

enzymes that have unsurprisingly gained so much interest as biocatalysts. 

Lipases have therefore become targets for the bioproduction of aroma 

chemicals, with many efficient lab-scale processes now developed. For 

example, various immobilised microbial lipases have been utilized for the 

synthesis of short chain esters in organic media, a means of reversing natural 

hydrolysis. Fruity esters such as ethyl pentanoate (green apple flavour) and 

hexylacetate (pear flavour) have been produced through the use of 

immobilised crude Staphylococcus simulans lipase (fungi) in a biphasic 

reaction 1 0 6 (20% water by weight). Through the careful control of reaction 

conditions; water content, pH, solvent type, temperature and acid/alcohol 

molar ratios, yields of 4 1 % hexylacetate were achieved 1 0 6 . Immobilised lipase 

was recovered from the completed reaction and reused in up to five cycles 

with no loss of activity. Similar studies using lipases from Mucor miehei™7 and 

Candida cylindracea™8 immobilised on nylon supports were also found to be 

effective for the production of short-chain esters. Such studies demonstrate the 

importance of careful choice of biocatalyst, immobilisation support and defining 

the optimum reaction conditions for obtaining maximum yields. 

Lipases have also been utilised for their ability to produce optically active 

products through kinetic resolution and dynamic kinetic resolution (Figure 

1.21). Theoretically lipases will only act on one enantiomer at significant rates 

and leave the other unreacted, a tool for the kinetic resolution of racemic 

mixtures. Such an example is the kinetic resolution of (R)-menthol, an 

important flavouring produced at over 5,000 tonnes a year. The R-enantiomer 

is found in nature and said to be cooling, fresh, sweet and minty, whereas the 

S-enantiomer is less cooling and bitter to taste 9 6 . Pure (R)-menthol has been 

shown to be generated through the transesterification of racemic (R/S)-

menthol using Burkholderia cepacia l ipase 1 0 9 (Figure 1.22). 
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Figure 1.22 The kinetic resolution of (+/-)-menthol using Burkholderia cepacia 
lipase. The optimal conditions for the stereoselective generation of R-menthol 
(desirable form) were achieved using oxime methacrlate as the acyl donor and 
diisopropylether as the solvent. R-menthyl methacrylate can be extracted from 
the reaction mixture due to its different properties and hydrolysed to generate 
R-menthol or polymerised to produce a slow release flavouring. Figure 
adapted from Athawale et a/ . , 1 0 9 2001. 

A drawback of kinetic resolution is that one enantiomer remains unreacted, 

hence theoretically 50% of the feedstock is wasted. This is however overcome 

through dynamic kinetic resolution, whereby the unreacted enantiomer is 

racemised using synthetic catalysts or racemase enzmes (EC 5) to provide 

further substrate for the selective enzyme. This process should theoretically 

convert 100% of starting materials to product. An example is the synthesis of 

chiral 8-lactones, a process which utilises the selectivity of lipases in 

combination with a ruthenium-catalysed alcohol racemisation 1 1 0 (Figure 1.23). 
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Figure 1.23 The dynamic kinetic resolution of 5-lactones through lipase-
catalysed transesterification of 5-hydroxyesters in combination with ruthenium-
catalysed alcohol racemisation. Immobilised Candida antarctica lipase 
(Novozyme-435) selectively transesterified the ester precursors to generate R-
8-hydroxyesters. In combination with a ruthenium catalyst for the racemisation 
of substrate high yields of desired product were achieved. Figure adapted from 
Pamies and Backvall 1 1 0 2002. 
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Hence, the stereoselectivity of lipases in combination with their relaxed 

substrate specificities makes them exceptional biocatalysts. They clearly have 

application for the bioproduction of chiral flavourings and through optimisation 

of such processes they are likely to be used on an industrial scale. 

1.5.2 Esterases for the Bioproduction of Flavours and Fragrances 

One drawback of lipases for aroma bioproduction is that they work optimally on 

larger (non-volatile) substrates. The esterases however show much potential 

for use in systems using short-chain soluble substrates. In contrast to the large 

number of readily available microbial lipases, only a small number of esterases 

are in use commercially, predominantly pig liver esterase (PLE) and horse liver 

esterase (HLE) 1 0 3 . As a consequence the range of esters that can be acted 

upon is limited to the specificity shown by these enzymes. More recently 

efforts have been made to screen microbes for novel esterases, in particular 

those from thermophilic organisms that can withstand higher temperatures 1 1 1. 

Of all the esterases available, PLE remains the best in terms of versatility and 

enantioselectivity and has therefore been used in a number of 

biotransformations. It is particularly useful for the regiospecific hydrolysis of 

protection groups on delicate compounds, as is used for the generation of the 

anti-inflammatory drug prostoglandin E1, that would otherwise be destroyed 

through classical hydrolytic conditions 1 0 3. The ability of the enzyme to generate 

enantiopure products from racemic mixtures has also been utilised for the 

generation of optically pure starting materials for drug synthesis, such as the 

synthesis of carboxylic nucleoside analogs used as antiviral drugs 1 0 3 . 

However, the use of PLE in flavour bioproduction is somewhat prohibited as 

the use of pig enzymes will contravene Halal and Kosher requirements. 

A further potential source of esterases is however fruit. As described, they are 

abundant in esterases. These enzymes have been proposed as useful 

biocatalysts but as they have not been cloned into microbes for 

overexpression, they are not readily available. However, the substrate 

specificities of such enzymes makes them very attractive as a novel source of 

biocatalyst for aroma production. 
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1.5.3 Thioesterases in Plants, a New Source of Biocatalyst for the 

Flavourings Industry 

As described, high-impact sulphur volatiles form the major character impact 

compounds in numerous tropical fruits and are important aroma constituents in 

cooked foods. As a consequence of their high-odour impact, they are however 

only generated in trace quantities in fruit (e.g. 3-mercaptohexanol 5 ng/kg 

passion frui t ) 1 1 2 and hence are difficult and costly to extract in isolated form; 

most are therefore produced as synthetic nature identical chemicals. Many of 

the natural tropical aromas are however present as chiral compounds, for 

example 3-mercaptohexanol and its derivatives are predominantly found in the 

S-form 2 7 (90-98%), with the other enantiomers posing significantly different 

sensory properties 1 1 3. Hence their synthesis through classical synthetic 

methods without resolution of enantiomers can result in reduced flavour 

properties. As a result sulphur volatiles are targets for bioproduction. 

However, surprisingly few studies have been conducted on the biosynthesis of 

such valuable aroma materials. Those of particular mention have 

predominantly focussed on the use microbial enzymes, such as lipases, 

esterases and CS-p-lyases. These studies have investigated the potential of 

microbial enzymes for catalysing thioesterification, transesterification and the 

hydrolysis of thioesters and cysteine conjugates. 

A number of microbial lipases have been shown to possess thioesterase 

activity, such as the yeast Candida rugosa lipase (EC 3.1.1.4, type VII) which 

is one of the most widely used industrial biocatalysts 1 0 3. It was shown to 

catalyse the formation of important thiol-containing food constituents, such as 

2-methyl-3-furanthiol and 2-furfurylthiol through the hydrolysis of the respective 

thioacetate precursors 1 1 4 (Figure 1.24). Through optimising reaction conditions 

(temperature, solvent, pH, substrate and enzyme concentrations) yields at 

equilibrium of 88% and 80% were achieved respectively. A common problem 

encountered with thiol-containing aroma chemicals is their reactivity, causing 

them to readily oxidise to the corresponding disulphides upon storage. Hence, 

it was proposed that the thiol could be protected through acetylation and 
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Figure 1.24 The generation of 2-methyl-3-furanthiol (roast meat) and 2-
furfurylthiol (roast coffee) through lipase catalysed hydrolysis of thioacetates. 
The yeast lipase from Candida rugosa was used in free and immobilised form. 
Both thiols were generated in good yields, however, oxidation of product to the 
disulphide is a problem in water with all of 2-methyl-3-furanthiol converted to 
the disulphide over 2 hours. Hence the reactions were repeated in organic 
solvents (hexane, pentane) with immobilised lipase, rates were slower but 
yields were the same and the thiol product was more stable. Figure produced 
with information from Rhylid et a/.,1 2002. 
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Figure 1.25 Lipase synthesis of short-chain thioesters in solvent free medium. 
Immobilised yeast lipases from Candida antarctica and Mucor miehei were 
used to reverse the natural hydrolysis and generate thioesters in solvent-free 
medium. Reaction conditions were optimised for the generation of thiobutyl 
pentanoate as illustrated above. Thioesterification (A.) had a slower reaction 
rate but yields at equilibrium were greater than the reaction through 
transthioesterification (B.). Figure produced with information from Cavaille-
Lefebvre and Combes 1 1 5 , 1997. 
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subsequently cleaved enzymatically through such a process to generate the 

free mercaptan prior to use, in a sense mirroring what plants do in Nature. 

Immobilised lipases in non-aqueous solvents were studied for their ability to 

reverse the natural hydrolytic reaction. For example, immobilised lipases from 

Mucor miehei and Candida antarctica were shown to produce short-chain 

thioesters in solvent-free medium 1 1 5 (i.e. no water, only thiol and acid) (Figure 

1.25). For example a thioester yield of 40% was achieved for the condensation 

of pentanoic acid and butanethiol at 60°C, 1:5 (acid: thiol) ratio with addition of 

molecular sieves to remove the water generated upon condensation. 

An important emerging area of flavour research is that of CS-p-lyase cleavage 

of cysteinylated aroma precursors for the selective liberation of odour active 

thiols. For example, the stereoselective generation of 3-mercaptohexanol 

(passion fruit) and 8-mercato-p-menthan-3-one (thiomenthone, buchu leaf) by 

microbial CS-p-lyase cleavage of the respective cysteine precursors has been 

invest igated 1 1 6 , 1 1 7 . The process for generation of 3-mercaptohexanol was 

investigated using bacterial lipases, tryptophanase from Escherilia coli and a 

crude enzyme extract from Eubacterium limosum, and yeast cells, all known to 

posses CS-p-lyase activity (Figure 1.26A). Cleavage of the 3-L-

cysteinylhexanal derivative only produced low yields of product (20%) with a 

slight preference for the S-configuration (ee 57%). However, the cleavage of 3-

L-cysteinylhexanol through the two processes demonstrated slightly higher 

selectivities (ee 65%), with tryptophanase generating the S-enantiomer and 

E.limosum selective for the /^-constituent. The same biocatalysts were used to 

study the stereoselective generation of pulegone from cysteine precursors 1 1 7 

(Figure 1.26B). Pulegone can exist in four possible enantiomeric forms (2 

enantiomers and 2 diastereroisomers), each with significantly different odour 

properties 1 1 7. Both enzymes showed little stereoselectivity over the different 

forms of thioether bond. However, discrimination between the two 

diastereoisomers was more significant with a clear preference for the cis-

configuration. Yields however remained low in both cases, possibly due to 

inhibitory effects. 
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Figure 1.26 A. The stereoselective generation of 3-mercaptohexanol. 
Synthetically produced L-cysteine precursors to 3-mercaptohexanal and 3-
mercaptohexanol were used to determine the stereoselective cleavage using 
various CS-p-lyase enzymes. Tryptophanase from E.coli and a crude enzyme 
extract from E.limosum showed little selectivity toward the hexanal derivative 
and slightly improved yield and selectivity toward the hexenol derivative (found 
in nature). Yeast cells were found to metabolise the hexenal derivative to 3-
mercaptohexanol, due to endogenous ADH activity, yields and ee remained 
low. 
B. The stereoselective generation of pulegone through CS-p-lyase cleavage of 
cysteine precursors. Pulegone cysteine conjugates were synthetically 
produced and were a racemic mixture of four stereo forms. The same 
enzymes as above were used to determine selectivity for substrates and 
product. Both tryptophanase and E.limosum showed a preference for the cis 
form of the substrate (1R.4S) ee 64% and (1S.4R) ee 88%. 
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On an industrial scale, thioester functionality can be introduced to chemicals 

through the addition of sulphinic acid across double bonds, with subsequent 

cleavage through acid/base hydrolysis generating the free th io l 1 1 8 (Figure 

1.27). However, such synthetic approaches do not discriminate between 

enantiomeric forms and a racemic mixture is consequently produced. An 

enzymatic means of kinetic resolution would be desirable. A possible approach 

is illustrated through the selective generation of 3-mercaptohexanal by lipase-

catalysed hydrolysis of the thioacetate 1 1 3 (Figure 1.28). A total of 16 

commercially available enzymes (15 microbial lipases and one esterase, PLE) 

were screened for their ability to selectively generate enantiomericly pure 

product at high yields. The lipase from Candida antarctica was found to be 

optimal generating a yield of 36% and with high enantioselectivity for the S-

product (ee 91%). The immobilised form of this enzyme provided even greater 

selectivity for the S-product (ee 97%), believed to be a result of the increased 

rigididity of the enzyme in this form. This approach demonstrates the potential 

of thioesterases for the selective generation of sulphur aroma chemicals with 

enhanced odour properties. Yields however still remain relatively low and more 

specific biocatalysts are desirable. 

Thioesterase enzymes with their ability to transform sulphur aroma chemicals 

and generate them in a sterospecific manner are hence of interest to the 

flavouring industry. However, the studies described account for almost all of 

the published academic research in this area todate and the potential for 

further development is great. Such processes have predominantly used 

microbial enzymes or the mammalian lipase (PLE) for biotransformations and 

plant systems have not been considered. As described, the substrate and 

product specificities of lipases are limited, a property that may account for 

many of the low yields described. Hence lipases are not the optimal catalysts 

for transforming small volatile aroma constituents. 

With the identification of VOSC thioester derivatives in tropical fruit, including 

3-(thioacetyl) hexylacetate identified in passion frui t 1 1 9 and 8-acetylthio-p-

menthan-3-one reported in buchu plant extracts 1 2 0, it is now a logical step to 

look to plant sources, and in particular tropical fruit plants, as a novel source of 
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Figure 1.27 The synthetic synthesis of thioesters and thiols. Thiolacetic acid 
forms the principle reagent for introduction of sulphur into organic molecules. It 
can be achieved through addition across a double bond via a radical anti-
Markovnikoff addition or by Michael addition to a/p-unsaturated carbonyls. The 
thioester can subsequently be hydrolysed to yield the free thiol functionality. 
Note hydrolysis is not stereoselective through this procedure. Figure adapted 
from Jameson, S.B. 1 1 8 , 2001. 

3-(acetylthio)hexanal 
racemic R/S-enantiomers 

H 2 0 acetic acid 

v ) . 
Lipase 

50mM phosphate 
buffer pH 7.4 

25°C 

Reduction, NaBH, 

S-3-thiohexanal 
36% yield 
ee 91% 

S-3-thiohexanol 
e e 9 1 % 

Figure 1.28 The stereoselective generation of 3-mercaptohexanol through 
lipase catalysed hydrolysis of thioacetate precursors. The greatest yield and 
stereoselectivity was produced by Candida antarctica lipase (as above). The 
immobilised form of this enzyme increased the stereoselectivity of the reaction 
(ee product 97%), however, much of the product was lost (up to 75%) through 
adsorption onto the immobilisation resin . 
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thioesterases. They will have evolved over generations to produce the 

selective and specific enzymes required for thioester and thiol production. 

Thioesterases from tropical fruits would potentially show greater "specificity" 

for short-chain substrates important in flavour biosynthesis. In addition they are 

likely to be "selective" for enantiomeric forms with the desired odour 

characteristics. 

The identity of thioesterases in plants involved in F&F release are however 

unknown, and it would be of interest to elucidate how they function. The only 

other reports on plant thioesterases are of those involved in fatty acid 

synthesis 1 2 1. In plants FA biosynthesis occurs in plastids where acyl chains are 

covalently bound to an acyl carrier protein (ACP) through thioester bonds. The 

extension cycle can be terminated by selective thioesterases which generate 

free FAs and ACP. These thioesterases work through a catalytic cysteine in 

the active site, perhaps this functionality is optimal for hydrolysing thioester 

links as opposed to the serine hydrolase functionality found in many 

carboxylesterases and lipases. 

Fruit thioesterases would form potentially "versatile" biocatalysts, being able to 

catalyse many of the important transformations described; thioesterification, 

trans-esterification and would complement synthetic processes through 

stereoselective thiol formation. As these biocatalysts are found in living 

organisms, this system is regarded as "natural" under current European 1 2 2 and 

US legislation 1 2 3, as long as the feedstocks are also from a natural source and 

reaction conditions are mild (temperatures and pressures found in traditional 

home cooking). As a result the products generated would be considered 

premium flavouring agents. The desire to isolate and utilise such unknown 

enzymes from tropical fruit forms the focus of this work. 
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1.6 Aims and Objectives 
The aim of this work was to isolate a thioesterase from tropical fruit for use in 

the bioproduction of natural volatile organosulphur chemicals. Hence, the 

potential of using plant enzymes as improved biocatalysts was initiated. 

Specific attention was paid to the specificity, selectivity and versatility of 

thioesterases to determine if they could be used as industrial biocatalysts in 

the flavourings industry. The work was broken down into the following 

objectives: 

• Develop an assay for measuring thioesterase activity and use this to 

test for the proposed activity in tropical fruit. Screen tropical fruit for the 

optimal activity. 

• Characterise the thioesterase activities in the optimal source through 

the use of natural and synthetic substrates. Conduct initial studies on 

the performance of the enzyme as a biocatalyst; stability, temperature 

tolerance and yields with the crude enzyme. 

• Purify and clone the thioesterase from the optimal tropical fruit. Test the 

performance of the purified thioesterase. 

• Optimise the production of the biocatalyst. 

• Investigate the potential of using tropical fruit thioesterases for the 

bioproduction of volatile organosulphur compounds and optimise the 

processes through immobilisation, defining reaction conditions and 

looking at yields of product and enantioselectivities. Investigate the 

potential for scale-up to an industrial process. 

• It was hoped this work would initiate a programme for developing 

systems for the bioproduction of sulphur aroma chemicals and through 

random screening of a tropical fruit cDNA library further biocatalysts 

were identified for the continuation of this work. 
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2. Materials and Methods 

2.1 Fruit and Plant Materials 
Fruit was supplied by H2H wholesalers (Newcastle Upon Tyne, UK). The 

following fruit varieties were used; purple passion fruit (Passiflora edulis Sims, 

Kenya), yellow passion fruit (Passiflora edulis F. flavicarpa, Brazil), mango 

(Mangifera indica, South Africa), Valencia orange (Citrus sinensis L , 

California, US), lychee (Litchi chinensis), banana (Musa sapientum), grapefruit 

(Citrus paridisi), blackcurrant (Ribes nigrum), raspberry (Rubus ideaus), lime 

(Citrus limettioides) and lemon (Citrus limon). Fruit was stored at the 

wholesalers at 5-8°C under high humidity (85%) to delay ripening. 

Subsequently, fruit was ripened under controlled conditions in growth rooms at 

the Centre for Bioactive Chemistry (Durham, UK), at 25°C with a 16 hour 

photoperiod for a duration stated in the text (5-10 days), dependent upon fruit 

type. Fruit was splashed with water each day and stored under clear plastic to 

increase ambient humidity. All fruit material used for protein extraction was 

fresh and not stored at -80°C prior to use. 

The model plant Arabidopsis thaliana used for gene cloning was grown under 

controlled conditions for 3-4 weeks in plant growth rooms at the Biological 

Sciences Department (Durham, UK). Seeds were germinated in moist potting 

compost and grown under a 16 hour photoperiod (24°C) and an 8 hour dark 

period (22°C). The light intensity was 80 uEinstein/m2 /sec. Compost was kept 

moist with regular watering. At harvest, foliage tissue was removed and flash 

frozen in liquid nitrogen before storage at -80°C. 

2.2 Protein Extraction 
Fruit tissue was homogenised in a chilled Waring blender, with all subsequent 

steps carried out on ice. Protein was extracted in 4 v/w 0.1 M potassium 

phosphate buffer, pH 7.2 containing 0.25 M NaCI, 2 mM EDTA, 4 mM DTT and 

5% w/w PVPP. The homogenate was stirred at 4°C for 2 hours to ensure the 

complete extraction of wall bound protein before filtering through two layers of 
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Miracloth (Calbiochem, Nottingham, UK) and centrifuging at 10,000 g for 15 

min (4°C) to remove insoluble material. Protein precipitating between 40-80% 

ammonium sulphate (NH 4) 2S04 saturation was then recovered using 

centrifugation (10,000 g, 15 min, 4°C) with the resulting pellets stored at -80°C 

until required. Prior to use, protein pellets were resuspended in 10 v/w 20 mM 

potassium phosphate buffer, pH 7.2 and dialysed overnight against the same 

buffer in a semi-permeable cellulose membrane (Sigma-Aldrich) to desalt the 

extract and remove any additives. 

2.2.1 Protein Determination 

Protein content was determined using the Bradford protein dye-binding 

reagent (BIO-RAD) as previously described (Bradford, 1976) 1 2 4 , with y-globulin 

used as a reference protein. 

2.3 Assay Methods 
The high-impact thioester and thiol chemical flavourings were donated by 

Oxford Chemicals Limited (Hartlepool, UK). Enzyme assays were run in 

triplicate with mean specific activities (nkat mg"1 protein) determined. The level 

of variability (error) is displayed as +/- one standard deviation from the mean. 

Heat treated protein samples, denatured at 95°C for 5 min, were run in parallel 

to determine the chemical rate which was subtracted from the total rate (+ 

enzyme) to determine the true enzymatic rate. 

2.3.1 Ellman's Thioesterase Assay 

Protein samples were dissolved in 490 LLI of 0.1 M potassium phosphate buffer, 

pH 7.2. Thioester substrates (0.1 M in acetone) were added to a final 

concentration of 1 mM and incubated at 30°C. An equal volume (500 LII) of 

Ellman's reagent (dithio-£>/s-(2-nitrobenzoic acid)), 4 mg/ml in 0.1 M phosphate 

buffer, pH 7.2 was added to the assay, mixed and analysed on a Beckman 

Coulter DU 530 UVA/is spectrophotometer. Product formation was determined 

by measuring the change in absorbance at 412 nm over 1 min (extinction 

coefficient: 14150 M"1cm"1). Authentic standards were used to produce a 
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standard curve for quantifying product formation, refer to chapter 3 for the 

validation of the Ellman's thioesterase assay. 

2.3.2 Gas Chromatography Thioesterase Assay 

Thioesterase activity was also determined using gas chromatography (GC). 

Protein samples were dissolved in 490 p.1 of 0.1 M potassium phosphate buffer, 

pH 7.2 in air-tight 1 ml glass vials. Thioester substrates (0.1 M in acetone) 

were injected using a Hamilton syringe through a septum to final concentration 

of 1 mM, sealed with Parafilm and incubated at 30°C for 5 min (unless 

otherwise stated). Products were partitioned into dichloromethane (0.5 ml) and 

the organic phase dried over sodium sulphate prior to injection (5 [x\) onto a 

Varian capillary GC column, CP SIL coated (Theromo). A Thermo Focus GC 

system was used with a splitless injection under the following parameters; 

injector temperature: 200°C, Initial oven temperature: 80°C, ramp rate 5°C/min 

to a maximum temperature: 200°C, carrier gas: Nitrogen, column pressure 30 

kPa. Products were identified with a flame ionisation detector, with the identity 

of sulphur volatiles confirmed and quantified using authentic standards. 

2.3.3 Fluorimetric Thioesterase Assay 

Protein samples in 0.1 M potassium phosphate buffer, pH 7.2 (2 ml) were 

incubated with 1 mM thioester substrates at 30°C in a 2 ml fluorimetric cuvette. 

The reaction was started by the addition of 10 |iM bromobimane (3-

bromomethyl-2,5,6-trimethyl-1H). The increase in fluorescence emission at 

475 nm was measured over 2 min using an FP-6200 spectrofluorimeter 

(Jasco), with excitation at 400 nm. A standard curve was established using 

authentic thiol standards to quantify product formation. 

2.3.4 Spectrophotometric Thioesterase Assay 

The emission spectra for authentic thioester and thiol standards (50 ^M) in 

methanol were scanned between 200-600 nm on a spectrophotometer (as 

above) as a means of determining the maximum absorbance wavelength for 

the thiol groups. Protein samples were dissolved in 990 [i\ of 0.1 M phosphate 

buffer, pH 7.2 and incubated with 1 mM thioester substrates at 30°C. The 
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increase in absorbance at the chosen wavelength (e.g. 377 nm for 4-

methylumbelliferyl thioacetate) was measured over 2 minutes. 

2.3.5 HPLC Thioesterase Assay 

Protein samples in 0.1 M potassium phosphate buffer, pH 7.2 (500 iil) were 

incubated with 1 mM thioester substrates at 30°C for 15 min. The reaction was 

stopped by mixing an equal volume of methanol and centrifuging at 12,000 g 

for 5 min. Samples (200 |al) were transferred to HPLC vials and 10 jil injected 

onto a Dionex UltiMate 3000 HPLC with a C18 column (Waters, Symmetry 4.6 

x 30 mm, 3.5 micron beads). Solvent A: 0.5% formic acid in water, Solvent B: 

0.5% formic acid in acetonitrile at a flow rate of 0.8 ml/min starting at 10%B to 

100% B over 12 ml. The identity of the sulphur volatiles was confirmed and 

quantified using authentic standards. 

2.3.6 Carboxylesterase Assays 

Esterase assays were either run on a spectrophotometer or a fluorimeter. For 

the spectrophotometric assay protein samples were incubated with 1 mM 

substrate in 0.1 M phosphate buffer, pH 7.2 at 30°C to a total volume of 1 ml. 

Either p-nitrophenol acetate (p-nitrophenol extinction coefficient: 17000 M"1cm" 
1 ) or a-naphthol acetate (a-naphthol extinction coefficient: 2300 M"1cm"1) were 

used as substrates and the rate of reaction was determined through measuring 

the change in absorbance at 400, or 310 nm respectively over 1 min. 

When using the 4-methyl umbelliferly esters a fluorescence assay was used. 

Protein samples in 0.1 M potassium phosphate buffer, pH 7.2 (2 ml) were 

incubated with 1 mM methyl umbelliferyl esters at 30°C in a 2 ml fluorimetric 

cuvette. The increase in fluorescence emission at 450 nm was measured over 

2 min using a fluorimeter (as above), with excitation at 370 nm. A standard 

curve was established using methyl umbelliferol to quantify product formation. 

2.3.7 Amide-esterase Assays 

The measurement of amide esterase activity was determined using a 

fluorimetric assay (as above), except the substrates used were amides of 4-
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methyl umbelliferol. Excitation and emission wavelengths were as stated 

above. 

2.4 Protein Purification Methods 
Chromatography materials and columns were supplied by GE-Healthcare 

(formerly Amersham Biosciences). Initial chromatography (DEAE and Octyl 

sepharose) was carried out at 4°C using the Akta Basic liquid 

chromatography system (GE-Healthcare). Subsequent chromatography 

using pre-packed high-performance columns (Phenyl superose, Mono S, 

Superdex 200) was carried out at room temperature on an Akta FPLC 

system (GE-Healthcare). The elution of protein was monitored through 

UV absorbance at 280 nm. 

2.4.1 Large Scale Protein Extraction 

For the purification of thioesterases from purple passion fruit and orange, large 

scale protein extracts were made. For the extract from passion fruit the peel of 

25 ripe fruits (30% dry weight) was used (245 g tissue), whereas in the extract 

from orange the peel of 4 ripe fruits was used (200 g tissue). The extraction 

protocol was then followed as described in section 2.2. 

2.4.2 Anion Exchange Chromatography Using DEAE Sepharose 

Proteins preparations were resuspended in 10 v/w 20 mM potassium 

phosphate buffer, pH 7.2 and dialysed overnight against this buffer before 

being centrifuged (10,000 g, 15 min, 4°C). The supernatant was loaded onto a 

pre-equilibrated DEAE sepharose anion exchange column (43 ml) in the above 

buffer at 4 ml/min. The column was washed with 100 ml of phosphate buffer 

before proteins were eluted with a linearly increasing concentration of salt (0-

0.5 M NaCI) over 200 ml. Following an 80 ml wash with phosphate buffer + 0.5 

M NaCI a pulse of high salt phosphate buffer (2 M, 5 ml) was passed through 

the column to elute any remaining bound protein. Fractions (8 ml) were 

collected and 100 îl aliquots assayed for thioesterase activity using the 
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Ellman's method (Section 2.3.1). Active fractions were pooled and applied to 

the following column or precipitated with (NH 4 ) 2 S0 4 and stored at -20°C. 

2.4.3 Hydrophobic Interaction Chromatography Using Octyl Sepharose 

Active fractions eluting from the DEAE sepharose column were pooled and 

(NH 4) 2S04 added to a final concentration of 1 M prior to loading onto an octyl 

sepharose column (47 ml) pre-equilibrated in 50 mM phosphate buffer, pH 7.2 

plus 1 M (NH 4 ) 2 S0 4 at 4 ml/min. The column was washed with 100 ml of this 

buffer before proteins were eluted with a linearly decreasing concentration of 

(NH 4)2S0 4 (1-0 M) over 200 ml. Following an 80 ml wash with phosphate 

buffer a pulse of ethylene glycol (5 ml) was passed through the column to elute 

any remaining bound protein. Fractions (8 ml) were collected and 100 u.l 

aliquots were assayed for thioesterase activity using the Ellman's method. 

Active fractions were pooled and applied to the following column or 

precipitated with (NH 4 ) 2 S0 4 and stored at -20°C. 

2.4.4 Hydrophobic Interaction Chromatography Using Phenyl Superose 

Pools of active proteins eluting from the octyl sepharose column were 

concentrated down to a 10 ml volume through ultrafiltration using centrifugal 

Vivaspin columns (Sartorius; at 3900 g for 30 min). The concentrated protein in 

1 M (NH 4 ) 2 S0 4 was then applied to a high-performance phenyl superose 

column (0.69 ml) in 50 mM phosphate buffer + 1 M (NH 4 ) 2 S0 4 at 0.5 ml/min. 

The column was washed with 5 ml of the above buffer before proteins were 

eluted with a linearly decreasing concentration of (NH 4 ) 2 S0 4 (1-0 M) over 20 

ml. Fractions (1 ml) were collected and 20 u.l aliquots were assayed for 

thioesterase activity using the Ellman's method. This column provided 

sufficient resolution of proteins for the purification of thioesterases from 

passion fruit and pooled fractions were kept on ice during protein 

characterisation or precipitated with (NH 4) 2S04 before storage at -20°C. When 

purifying thioesterases from orange a further Mono S column purification step 

was required. 
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2.4.5 Cation E x c h a n g e Chromatography Using Mono S 

Active fractions eluting from the phenyl superose column were pooled and 

desalted through overnight dialysis against 20 mM Bis-Tris buffer, pH 7.0. Due 

to the small sample volume (2 ml) dialysis was conducted using a Slide-A-Mini 

dialysis unit (Perbio, formerly Pierce). The sample was then applied to a high-

performance cation exchange Mono S column in the above buffer at 1 ml/min. 

Following a wash with 5 ml of Bis-Tris buffer, proteins were eluted with a 

linearly increasing concentrat ion of salt (0-0.5 M NaCI) over 20 ml. Fractions (1 

ml) were collected and 20 ^il aliquots were assayed for thioesterase activity 

using the Ellman's method. Pooled fractions were kept on ice during protein 

characterisation or precipitated with (NhU^SCU and stored at -20°C. 

2.4.6 Gel Filtration Chromatography Using Superdex 200 

In characterizing the thioesterase from passion fruit, a gel filtration column was 

used to determine the molecular mass of the native protein. A semi-purif ied 

fraction of activity retained fol lowing octyl sepharose chromatography (10 ml) 

was applied to a superdex gel filtration column (7.8 ml) in 50 mM phosphate 

buffer, pH 7.2, + 0.15 M NaCI at a flow rate of 0.5 ml/min. 0.5 ml fractions were 

collected and 20 |J aliquots were assayed for thioesterase activity. In addit ion, 

200 |J samples of protein standards (1 mg/ml); cytochrome C, ovalbumin and 

bovine serum albumin made up in the same buffer were applied to the column 

in subsequent runs as above. 

2.4.7 Glycoprotein Interaction Chromatography Using Concanava l in A 

S e p h a r o s e 

In determining the post translational modification of the thioesterase f rom 

passion fruit, concanaval in A sepharose chromatography was used. A 

concanaval in A sepharose 4B column was packed (10 ml) and fol lowing a pre-

wash with 5 volumes of 1 M NaCI, 5 m M MgCb, 5 mM MnC^ , 5 mM CaCl2, the 

column was equil ibrated with 20 mM Tris-HCI, pH 7.4 containing 0.5 M NaCI. A 

1 ml aliquot of active protein eluting from the phenyl superose column was 

dialysed overnight in 20 mM Tris-HCI, pH 7.4 using the mini dialysis unit. 

Following the addition of 0.5 M NaCI to the protein sample it was applied to the 

78 



column in the same buffer at 1 ml/min. Following a 10 ml wash protein was 

eluted using a linearly increasing concentrat ion of methyl-a-D-

mannopyranoside (0-0.1 M). A pulse of 0.5 M methyl-a-D-mannopyranoside (5 

ml) was used to release any remaining bound protein. 1 ml fractions were 

collected and assayed for thioesterase activity. 

2.5 Protein Analysis 
2.5.1 S D S - P A G E 

SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis) slab 

gels were prepared using the Min i -PROTEAN 3 kit (BIO-RAD) according to the 

accompanying cell assembly guide. The resolving gel was polymerised from 

10% or 12% acrylamide b/s-acrylamide in 375 m M Tris-HCI, pH 9.0 containing 

0 . 1 % v/v TEMED (Promega), 0 . 1 % w/v SDS and 0 . 1 % w/v ( N H 4 ) 2 S 0 4 . The 

stacking gel was polymerised from 4 % acrylamide b/'s-acrylamide, 126 m M 

Tris-HCI, pH 6.8, 0 . 1 % v/v TEMED, 0 . 1 % w/v SDS and 0.05% w/v ( N H 4 ) 2 S 0 4 . 

Gel cassettes were assembled in a Min i -PROTEAN 3 electophoresis module 

according to the manufacturer's guidelines. Protein samples were diluted with 

an equal volume of 2 X SDS loading buffer (100 mM Tris-HCI, pH 6.8, 2 0 % v/v 

glycerol, 200 mM DTT, 4 % w/v SDS, 0.2% w/v bromophenol blue) and 

incubated at 95°C for 5 min prior to loading onto gels. The samples were 

electrophoresed in SDS-PAGE running buffer (25 mM Tris, 192 mM glycine, 

0 . 1 % SDS, pH 8.3) at 100 V for the first 10 min and then at 200 V until the dye 

front reached the bottom of the gel. 

2.5.2 Two-Dimensional S D S - P A G E 

The purified thioesterase from passion fruit was analysed by two-dimendional 

(2D) SDS-PAGE, with all reagents and equipment obtained from GE-

Healthcare. Protein samples (1 ml) were concentrated 10-fold using a 

centrifugal evaporator (Jouan RC 1022) to ensure sufficient protein was 

present in the 100 ^l sample used for analysis ( -100 | ig). The sample was 

passed through a mini desalt ing spin column (Sephadex G-25, Sigma) to 

remove any salt and other impurities which may have interfered with 
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separation. Subsequently the protein sample was pre-treated with an equal 

volume (100 \x\) of rehydration solution ( 0 .5% IPG buffer, 9 M urea, 2 M 

thiourea, 4 % w/v CHAPS, 1 % w/v DTT and 2 % v/v pH 3-10 ampholytes) and 

pipetted evenly along the well of an Immobil ine Drystrip rehydration tray. An 

Immobil ine DryStrip pH 3-10 (11 cm) was placed over the solution gel side 

down, covered with mineral oil and rehydrated overnight. The rehydrated strip 

was washed with water, blotted dry and placed in the running tray of a 

MultiPhor II electrophoresis unit (Pharmacia). The cooling plate was set to 

25°C and moistened IEF electrode strips were placed over the DryStrip at the 

anode and cathode. Electrodes were placed over the IEF electrode strips and 

mineral oil was poured into the tray to completely cover the strip. The gel was 

run at 500 V for 1 hr and then at 3500 V for a further 3 hours. The DryStrip 

was then equil ibrated in 2 stages, firstly for 10 min in 1 M Tris-HCI, pH 6.8, 10 

mg/ml DTT and secondly for 10 min in 1 M Tris-HCI pH 6.8, 6 M Urea, 3 0 % v/v 

glycerol, 10% w/v SDS, 45 mg/ml iodoacetamide plus a trace of bromophenol 

blue dye. Proteins were then run in the second dimension using standard 

SDS-PAGE. A 1 mm slab gel (12%) was used to accommodate for the 

thickness of the DryStrip which was blotted dry and inserted across the top of 

the resolving gel . The gel was sealed with agarose sealer ( 0 . 1 % low melting 

point agarose in SDS-PAGE running buffer containing a trace of bromophenol 

blue) and run as described in section 2 .5 .1 . 

2.5.3 Western Blotting and Immunodetection 

Western blotting was used to detect recombinant streptactin fusion proteins in 

bacterial extracts. The soluble and insoluble protein fractions resulting from the 

expression of recombinant protein in bacteria (Section 2.8) were separated 

using standard SDS-PAGE and then electroblotted onto a PVDF membrane 

(Hybond-P, GE-Healthcare) using a mini Trans-Blot cell (BIO-RAD) according 

to manufacturer 's instructions. After blotting the membrane was rinsed in Tris-

buffered saline (TBS) 0.12% w/v Tris, 0.88% w/v NaCI and then blocked for 1 

hr in TBS 3% skimmed milk powder. Anti Streptactin antibody, Strep-Tactin 

alkaline phosphatase conjugate (IBA BioTAGnology, Germany) was added at 

a 1: 5000 dilution and incubated for 1-2 hr at room temperature or overnight at 
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4°C. The membrane was subsequent ly washed twice for 20 min in TBST (TBS 

plus 0 . 1 % Triton X-100) and then for a further 20 min in TBS. No secondary 

antibody was required. The membrane was then rinsed in 100 mM Tris, pH 9.5 

and developed in the dark in 3% v/v 5-bromo-4-chloro-3-indolyl phosphate 

(BCIP; 50 mg/ml) dissolved in /V,/V,/V',A/-dimethylformamide (DMF) and 0.3% 

v/v nitro blue tetrazolium (NBT; 100 mg/ml) dissolved in 7 0 % DMF. The 

reaction was stopped by rinsing the membrane in a large volume of water. 

2.5.4 Protein Staining 

Different protein stains were used dependent upon the level of sensitivity 

required. SYPRO Ruby protein gel stain was the preferred choice due to its 

high degree of sensitivity (minimum detection limit of 1-2 ng protein per gel 

band) and its ease of use. Coomasie staining with its min imum detection limit 

of 10 ng of protein per band was used to ensure sufficient protein was in gel 

bands used for protein identification through mass-spectrometry. In all cases a 

sufficient volume of solution was used to completely cover the gel (25-30 ml) 

with incubation steps carried out under mild agitation on a rocker. Steps 

carried out in the dark required covering the tray with aluminium foil. 

2.5.4.1 S Y P R O Staining 

Following electrophoresis SDS gels were fixed in 4 0 % methanol, 10% acetic 

acid for 1 hour (not required for 1D gels). Gels were then submerged in 

SYPRO Ruby protein gel stain (Invitrogen) and incubated in the dark for 4 

hours-overnight. Following incubation gels were washed twice in 10% 

methanol, 7% acetic acid for 1 hour before imaging under a Gel Doc UV 

transil luminator (BIO-RAD). 

2.5.4.2 C o o m a s s i e Staining 

SDS gels were washed thoroughly with water (2 x 15 min) under gentle 

agitation to remove the SDS and then submerged in Coomassie blue reagent 

(0 .006% w/v coomassie G250, 5% ethanol, 10% v/v phosphoric acid) until 

protein bands were visible. 
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2.5.4.3 Krypton Glycoprotein Staining 

Glycoprotein staining of SDS gels was carried out using the Krypton 

glycoprotein staining kit (Perbio). Following the separation of proteins by 

standard SDS-PAGE, gels were subsequently rinsed thoroughly in ultrapure 

water ( 5 x 1 5 min) and transferred to fixing solution (40% ethanol, 3 0 % glacial 

acetic acid) for 2 x 30 min incubation. Gels were soaked in wash solution (15% 

glacial acetic acid) for 10 min. Prior to staining, it was necessary to oxidise the 

carbohydrate residues on proteins by soaking in oxidizing solution (supplied 

with kit) in the dark for 20 min. Gels were subsequently rinsed twice in wash 

solution for 10 min before adding the Krypton stain solution and incubated in 

the dark for 1 hr (2 hrs for 2D gels). Gels were rinsed in ultrapure water and 

before the destaining solution (supplied with kit) was added and incubated for 

20 min in the dark. The gels were then imaged using an Advanced Image Data 

Analyzer (AIDA) FLA-3000 UV transil luminator (Fujifi lm) exciting at 654 nm 

and reading the emission at 673 nm. Following staining and imaging gels were 

destained in 3% acetic acid for 5 min and then stained with SYPRO Ruby 

(Section 2.5.4.1) for the comparison of total protein. 

2.5.5 Protein Inhibition Studies 

Protein samples dissolved in 0.1 M potassium phosphate buffer pH 7.2 were 

incubated with 1 mM inhibitors (EDTA, paraoxon, iodoacetamide, mercuric 

chloride, fp-biotin (10 |aM)) for 2 hours at 30°C. Samples were subsequently 

desalted using Sephadex G-25 spin columns to remove unbound inhibitor and 

assayed using the Ellman's method. Control reactions with acetone (-inhibitor) 

were run in parallel. 

2.5.6 Protein Labell ing and Visual isat ion Us ing the F luorophosphonate 

Trifunctional Probe (TriFP) 

TriFP was synthesized as described previously (Gershater et a/., 2 0 0 7 ) 1 2 5 and 

made available for use in our laboratory. 100 \i\ aliquots of the crude protein 

extract f rom passion fruit (dialysed fraction) and the purified thioesterase 

(phenyl superose fraction) were incubated with 10 J IM FPP for one hour at 

room temperature. The solution was then passed through a PD-10 desalt ing 
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column (GE-Healthcare) to remove any excess probe before resolving 

peptides by SDS-PAGE. The fluorescently labelled proteins in the gel were 

visualised using the Fujifilm FLA-3000, exciting at 532 nm and reading the 

emission at 580 nm. Gels were subsequently destained in 3% acetic acid for 5 

min and then restained with SYPRO Ruby for the comparison of total protein. 

2.5.7 Protein Identification Using MALDI-ToF Mass Spectrometry 

Bands of protein excised from SDS gels were digested with trypsin and 

analysed by MALDI-ToF-based proteomics on a Voyager-DE STR 

BioSpectrometry Workstat ion (Applied Biosystems, Warr ington, UK), using the 

Durham University proteomic service. The resulting calibrated ion spectra 

generated a peak list which was used to screen non-redundant protein and 

EST databases using Mascot software (www.matr ixscience.com). 

2.5.8 Protein Sequenc ing Us ing Tandem Mass Spectrometry 

Peptides were extracted from SDS-PAGE gel slices prior to trypsin digestion. 

Gel plugs were placed in sterile eppendorf tubes and equil ibrated with 100 yd 

of 25 mM ammonium bicarbonate. Samples were reduced with 30 [i\ of 10 mM 

DTT for 30 min fol lowed by alkylation with 30 (il of 100 mM iodoacetamide for 

15 min. The gel was subsequently destained and dessicated with 2 x washes 

in 50 [i\ of acetonitri le. Gel slices were subsequently soaked for 1 hr 30 min in 

15 |d of 25 m M ammonium bicarbonate containing 6.6 w/v trypsin (Promega). 

10 of water was added to rehydrate the gel slice and left to incubate 

overnight. The gel slice was rinsed in 10 p.l of 25 mM ammonium bicarbonate 

for 10 min before peptides were extracted in 20 |al of 10% formic acid for 10 

min. The solution was retained and 2 further extractions carried out, firstly with 

20 jal of acetonitri le for 15 min and secondly with 30 |ul of acetonitri le for 15 

min. Fractions were pooled and freeze dried before resuspending the digested 

peptides in 10 y\ of 0 . 1 % formic acid. Samples were submitted for MS-MS de 

novo proteomic sequencing on an ion trap mass spectrometer (Thermo LTQ 

FT) using the chemistry department mass spectrometry sevice (Durham, UK). 

The resulting peptide mass fingerprints were used to determine partial amino 
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acid sequence through the automated de novo sequencing software DeNovoX 

(Thermo) and checked by manual calculation for confirmation of sequence. 

2.5.9 Protein Bioinformatics 

Partial amino acid sequence identified through tandem mass spectrometry was 

used to interrogate the plant genome and EST databases using short match 

BLAST (NCBI; www.ncbi.nlm.nih.gov/blast/Blast.cgi). The resulting protein 

sequence matches were aligned using CLUSTALW (Thompson et a/., 

1 9 9 4 ) 1 2 6 . Bioinformatic analysis of proteins was carried out using BRENDA 

software (www.brenda-enzymes. info/) to obtain data on the isoelectric points 

and molecular masses of homologous enzymes identified through BLAST 

searches. In addit ion, further bioinformatic analysis on proteins was carried out 

using the ExPASy proteomic tools (www.expasy.ch/tools/) such as SignalP 3.0 

for the determination of predicted signal peptide cleavage sites and NetNGly 

1.0 for the prediction of glycosylation sites in proteins. 

2.6 Gene Cloning 
Custom oligonucleotides were obtained from MWG-biotech AG (Ebersberg, 

Germany). The sequences of the specific primers used in each PCR reaction 

are detailed in Chapter 5. All reagents and enzymes were supplied by 

Promega unless stated otherwise. 

2.6.1 mRNA Extraction 

Buffers and water used in the extraction of RNA were autoclaved at 120°C for 

15 min to ensure they were RNAase free. For the same reason sterile plastic 

ware was used and the pestle and mortar baked in an oven at 200°C 

overnight. Passion fruit total RNA was extracted from mesocarp t issue, fol iage 

and secretary glands using TRI Reagent (Sigma) as described in the 

accompanying protocol. Samples of passion fruit foliage were obtained f rom 

plants maintained in the glass-houses of the University botanical gardens 

(Durham, UK). 100 mg of each tissue was processed with 2 ml of TRI Reagent 

and the resulting RNA pellet was washed with 7 5 % ethanol before being 
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stored in ethanol at -20°C or dried and redissolved in 10 \i\ of ultrapure sterile 

water for further processing. The concentrat ion and quality of the RNA was 

determined by measuring the OD 2 6 o/ 2 8o ratio (OD26o/28o ratio > 1.7: pure RNA 

without DNA contaminat ion, O D 2 6 o 1.0 = 40 | ig/ml RNA). RNA samples were 

mixed with RNA sample loading buffer (50% glycerol, 1 mM EDTA, 0.25% 

bromophenol blue, 0.25% xylene cyanol) in a 5:1 ratio, heated to 65°C for 10 

min and analysed by agarose gel electrophoresis (Section 2.6.5). 

2.6.2 S y n t h e s i s of cDNA 

Total RNA (5 ng) was mixed with 20 pmols of either an oligo dT primer (Og2) 

or a specific primer and heated to 65°C for 10 min before immediately cooling 

on ice. The fol lowing reagents were added; 4 5x A M V (Avian 

myeloblastoma leukaemia virus) reverse transcriptase buffer, 8 |il dNTP mix (1 

m M each), 0.5 fil RNasin (20 U), 1 ^l AMV reverse transcriptase and ultrapure 

water to a total volume of 20 Reverse transcription was then carried out at 

42°C for 1 hr. 

When amplifying the 5' end of truncated cDNA through 5'-RACE (Section 

2.6.4) it was necessary to increase the reverse transcription temperature to 45-

50°C in order to promote the denaturation of RNA. The more heat stable 

reverse transcriptase RevertAid M-MuLV (Fermentas) was therefore used. 5 

\xg of total RNA was mixed with 10 pmols of primer plus water to 12.5 jil before 

heating to 70°C for 5 min. The fol lowing reagents were added; 4 |il 5x reverse 

transcriptase buffer (supplied with enzyme), 2 \i\ dNTP mix (1 m M each), 0.5 ^l 

RNasin (20 U ) , and ultrapure water to a total volume of 19 JLXI. The sample was 

heated at 37,°C for 5 min before 1 |il of M-MuLV reverse transcriptase was 

added and incubated at 45°C/50°C for 1 hr. The reaction was stopped by 

heating to 70°C for 10 min before cooling on ice. 

2.6.3 Po lymerase Cha in React ion ( P C R ) 

Standard 50 |il PCR reactions were performed in 0.2 ml PCR tubes. The 

following reagents were added to the reaction mix; 
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4.5 }il 11x PCR buffer (0.5 M Tris-HCI pH 8.8, 125 mM (NH 4 ) 2 S04 , 25 mM 

MgCI 2 , 3 uM mercaptoethanol, 50 uM EDTA, each dNTP at 2.25 mM, 1.25 mg/ 

ml BSA) 

5 f-il 10 m M forward primer (50 pmols) 

5 (J.I 10 m M reverse primer (50 pmols) 

1 u.l Taq DNA polymerase 

1-5 pi template DNA 

The reaction mixture was made up to 50 pi with water and subjected to a 

standard PCR programme as detailed in table 2 . 1 , unless otherwise stated, 

using a Mastercycler Gradient PCR machine (Eppendorf, Hamburg, Germany). 

Step Temperature (°C) Duration (min:sec) 

1. Denature 

2. Denature 

3. Anneal 

4. Extend 

5. Extend 

94 

94 

55 

72 

Steps 2-4 repeated over 25 cycles 

72 

Hold 4°C, End 

2.00 

0:15 

0:45 

2:00 

5:00 

Table 2.1 The standard PCR Programme used for the amplif ication of DNA 

For PCR requiring the use of a proof reading DNA polymerase, KOD HiFi DNA 

polymerase was used (Novagen). A 50 pi reaction mix was made up with 1 

Unit (0.4 u.l) of enzyme (1 unit will catalyze the incorporation of 10 nmol of 

dNTP into acid insoluble form in 30 min at 75°C), 20 pmols primers, a suitable 

quantity of template, 20 \iM dNTPs, 2 mM MgCI 2 and 5 uJ 10 x KOD HiFi DNA 

polymerase buffer. PCR amplif ication condit ions were used as above. 
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2.6.4 5' R A C E (Rapid Amplification of cDNA E n d s ) 

5' RACE was used to extend the 5' end of truncated cDNAs, the exact 

sequence of primers used are illustrated in chapter 5. Two antisense 

oligonucleotide primers were designed from the 5' end of truncated cDNAs; 

primer 1 (41 bp) and nested primer 2 (24 bp). cDNA was synthesized from 5 

j ig of total RNA using primer 1 and RevertAid M-MuLV reverse transcriptase 

as detailed in section 2.6.2. The cDNA template was then tailed at the 5' end 

with polyA in the following reaction. Total synthesized cDNA (17 |il) was mixed 

with 2.5 [i\ dATP (2 mM), 2.5 |J terminal transferase buffer (New England 

Biolabs, USA) and water to a total volume of 24.5 |il before heating to 94°C for 

3 min. 0.5 |j.l (10U) of terminal transferase (New England Biolabs) was added 

and incubated for 15 min at 37°C before heat inactivation (70°C, 10 min). The 

tailed cDNA (5 j i l ) was then amplif ied by PCR using primer 1 and an oligo dT 

adaptor primer (5'- CTT ATA CGG ATA TCC TGG CAA TTC GGA CTT TTT 

TTT TTT TTT TTT AGC - 3 ' ) with 35 cycles at an annealing temperature of 

55°C. A 1:20 dilution of the PCR product was prepared and then 5 |il 

subjected to a second round of PCR using an adaptor primer (5'- CTT ATA 

C G G ATA TCC T G G CAA TTC GGA CTT -3') and the nested primer 2. PCR 

condit ions as above. PCR reaction products were resolved by agarose gel 

electrophoresis (Section 2.6.5) and fol lowing purification of DNA from the gel 

slice (2.6.6) products were directly l igated into pGEM-T Easy vector (Promega) 

(2.6.8), cloned in Top 10 competent cells (2.6.10) before plasmid preparations 

were made (2.6.11) and sent for DNA sequence analysis (2.9). 

2.6.5 DNA Agarose Gel E lect rophores is 

Agarose gels were prepared by microwaving 50 ml of TAE (4.84% w/v Tris, 

1.14 v/v glacial acetic acid and 1 % molecular biology grade agarose (Helena 

Biosc iences) until the agarose had melted. The gel mix was cooled to 

approximately 60°C and 0.5 pi of ethidium bromide was added before pouring 

into a UV-transparent plastic casting tray (BIO-RAD). 6X loading buffer (0 .25% 

w/v bromophenol blue, 0.25% v/v xylene cyanol , 15% w/v Ficoll) was added to 

DNA samples in a 1:5 ratio, mixed and loaded onto the gel (5-20 ^il). DNA 

markers (1 Kb DNA ladder, Invitrogen) were added to an adjacent lane for 

8 7 



reference prior to electrophoresis in TAE buffer at 120 V for 20 min using the 

Sub-Cell GT agarose gel electrophoresis system (BIO-RAD). 

2.6.6 Purification of DNA 

PCR products and digested DNA samples were resolved on agarose gels and 

the desired products excised. Gel slices were placed in sterile tubes and 

dissolved in 500 \i\ of binding buffer (6 M Sodium Perchlorate, 50 mM Tris-HCI, 

10 mM EDTA, pH 8.0) at 55°C for 10 min. 10 ^il of resuspended Silica fines 

(166 mg/ml in water, World Mineral Ltd, Hessle, UK) were added, the sample 

vortexed and incubated for 5 min at room temperature. The solution was 

microfuged for 1 min at max imum speed and the resulting pellet washed in 0.4 

M NaCI, 2 mM EDTA, 2 mM Tris-HCI pH 7.5. Following a second wash in 70% 

ethanol the fines were dried, resuspended in 15 |al of ultrapure water and 

incubated at 50°C for 5 min to solubil ise the DNA. The sample was centrifuged 

for 1 min to remove the fines and the supernatant containing DNA was 

transferred to a clean tube. 

2.6.7 Restrict ion Digests 

PCR products and plasmid DNA were digested with various restriction 

enzymes obtained from Promega. 2-10 Units of enzyme(s) were added to the 

sample (0.5-2 |ag DNA) with the appropriate buffer to 20 \i\ volume and 

incubated at 37°C for 1-3 hours. The digests were analysed by agarose gel 

electrophoresis and the desired products excised. 

2.6.8 Ligation 

PCR products produced using Taq polymerase were directly cloned into the 

pGEM-T Easy vector (Promega). The fol lowing were mixed in a sterile tube; 1 

[J T4 DNA ligase, 1 [i\ (50 ng) pGEM-T Easy vector, 5\x\2x l igation buffer, 1-3 

jal purified PCR product to a total volume of 10 ^il with water. The reaction was 

incubated for 1 hour at room temperature or 4°C overnight. 

For cloning into other vectors, such as pET Strep, digested vector and insert 

DNA were mixed in a 3:1 molar ratio with 1 nl of 10 x ligation buffer (as 
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supplied with the enzyme) and 1 jil (3 U) of T4 DNA ligase (Promega) in a 

reaction volume of 10 ul and incubated at 17°C overnight. 

2.6.9 Bacterial culture 

Luria Bertani (LB) medium (1% w/v NaCI, 1% w/v tryptone, 0.5% w/v yeast 

extract) was used for liquid culturing of bacteria. Starter cultures (10 ml) were 

inoculated with single colonies picked from LB agar plates and grown 

overnight at 37°C on an orbital shaker (Kuhner) at 200 rpm with antibiotic if 

required. Bacterial cultures were grown until an adequaute cell density was 

reached (OD 6oo: 0.6-0.7). Bacteria grown on LB agar plates (LB medium plus 

2% agar) were incubated overnight at 37°C with the appropriate antibiotic if 

required; ampicil l in; 100 j ig/ml, chloramphenicol ; 34 ( ig/ml, tetracycline; 12.5 

fig/ml, kanamycin; 50^g/ml, carbenicil l in; 50ng/ml, r i fampicin; 50| ig/ml, 

gentomicin; 26| ig/ml. In the construction of cDNA libraries SM buffer (5.8% 

NaCI, 0.2% MgS0 4 , 5% (v/v) 1M Tris-HCI pH 7.5, 0.5% gelatin) was used for 

the dilution and storage of phage solutions. 

2.6.10 Transformation 

Transformation of chemically competent E. coli cells (One shot Top 10 cells, 

Invitrogen) was used for cloning PCR products in the pGEM-T Easy vector. 25 

pi of competent cells were incubated on ice with 1 pi of plasmid (ligation mix) 

for 5 minutes. The cells were then heat-shocked at 42 °C for exactly 30 

seconds before being returned to ice for a further 2 min. Cells were mixed with 

150 pi LB medium and incubated at 37°C for 1 hr before plating 20-200 pi on 

LB agar containing ampicil l in (100 ng/ml). 

For transformation prior to expression Tuner DE3 pRARE (Tunette) E.coli cells 

were used. Transformation was carried out as for Top 10 cells except 

kanamycin (50 |ag/ml) and chloramphenicol (34 ng/ml) selection was used. 

2.6.11 P lasmid Preps 

10 ml cultures of transformed bacteria were grown overnight (ODeoo: 0.6-0.7) 

and the cells pelleted through centrifugation at 3900 g for 10 min. Plasmid 
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DNA was subsequently purified from the cells using the Wizard Plus SV 

miniprep DNA purification system (Promega) according to manufacturer 's 

instructions. 

2.7 cDNA Libraries 
Passion fruit cDNA libraries were prepared from mesocarp and secretary gland 

tissue (100 mg) taken from ripe fruit (10 days ripening period). Total RNA (0.25 

pg) was used to construct a cDNA library in bacteriophage A TriplEx2 vector 

using the SMART cDNA library construction kit (BD Biosciences). Reagents 

and Escherichia coli bacterial strains (XL1-Blue and BM25.8) were supplied 

with the kit. 

2.7.1 Preparation of Phage Libraries 

First-strand cDNA was synthesised using LD-PCR (long d i s tance -PCR) 1 2 7 to 

ensure full-length cDNA templates were produced. 3 \x\ of total RNA (0.25 u.g) 

was mixed with 1 uJ of the SMART IV ol igonucleotide primer (10 u.M) and 1 uJ 

of the CDS III/3' PCR primer (10 u.M), both containing Sfi I restriction sites. The 

sample was incubated for 2 min at 72°C before immediately cooling on ice. 

The fol lowing was added; 2 ul first strand buffer, 1 ul DTT (20 mM), 1 ul dNTP 

mix (10 mM), 1 ul PowerScript reverse transcriptase and incubated for 1 hr at 

42°C. First-strand cDNA was subsequently amplif ied by LD-PCR in a 100 ul 

volume reaction. 2 ul of first strand cDNA was mixed with 2 ul of 5' PCR primer 

(10 uM), 2 ul of CDS III/3' primer in a standard PCR mix with 2 ul of 50 x 

Advantage 2 polymerase mix (containing Taq polymerase). cDNA was 

amplif ied using 24 PCR cycles with an anneal ing temperature of 68°C. A 5 ul 

sample of amplif ied cDNA was analysed by agarose gel electrophoresis. 

50 ul of amplif ied cDNA (3 ug) was digested with 2 ul of proteinase K (20 

ug/ul) for 20 min at 45°C. cDNA was extracted using a phenol, chloroform, 

isoamylalcohol mix as described in the user manual. The cDNA pellet was 
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resuspended in 79 p.1 of water and digested with Sfil (10 10 x Sfi I buffer, 10 

ial Sfi I enzyme, 1 fil 100 x BSA) for 2 hrs at 50°C. 

DNA was dyed by adding 2 of 1 % cyanol dye before being fractionated on 

CHROMA SPIN-400 columns (supplied with kit). The column matrix was 

resuspended and condit ioned with 700 \x\ of column buffer before applying 

sample (100 nl). Following adsorption of the sample cDNA was eluted with 

column buffer (600 |i l), and single drip fractions ( -40 |il) were collected and 

analysed by agarose gel electrophoresis, removing small cDNA fragments 

(<0.4 kb) and unincorporated primers. Fractions 4-7 were pooled and DNA 

precipitated. The digested cDNA pellet was resuspended in 7 \x\ of water. A 1.5 

nl aliquot was mixed with 1 A TriplEx2 vector, 0.5 ^il 10 x ligation buffer, 0.5 

nl ATP (10 mM), 0.5 |J T4 DNA ligase and water. The ligation mix was 

incubated at 16°C overnight. Vector was packaged into E.coli XL1-blue using 

the Gigapack III gold packaging extract (Stratagene). 25 ^l of packaging 

extract was mixed with vector (2 (il) and incubated at room temperature for 2 

hrs. 500 (il of SM buffer, 20 \x\ chloroform was added and mixed before 

microfuging at full speed for 30 sec. The supernatant containing phage was 

titered. 

The phage packing extract was diluted (5 x, 10 x, 20 x) in SM buffer and 1 

added to 200 |al of XL1-Blue bacteria (grown overnight, OD6oo: 2) and left to 

adsorb for 15 min at 37°C. 2 ml of melted LB top agar (45°C) was added and 

poured onto 90 mm L B / M g S 0 4 agar plates at 37°C. After setting the top agar 

at room temperature for 10 min the plates were inverted and incubated at 37°C 

overnight. Plaques were counted and the fol lowing titers determined: 

endocarp library: 640000 pfu (plaque forming units)/ml 

secretory gland library: 540000 pfu/ml 

2.7.1.1 Amplification of Phage Librar ies 

300|al of unamplif ied library was mixed with 2 ml of overnight XL1-Blue 

bacterial culture, incubated at 37°C for 15 min before 22 ml of melted top agar 

(45°C) was added, mixed and poured onto large (590 c m 2 ) plates. Growth as 
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above. 33 ml of SM buffer was poured onto the plates and incubated at 4°C 

with gentle rocking overnight. The solution containing bacteriophage was 

poured into a sterile tube plus 5% chloroform and mixed before centrifuging 

(5000 g, 10 min). The supernatant containing the amplif ied libraries was 

aliquoted (1 ml) into sterile tubes plus 7% DMSO and stored at -80°C. The 

amplif ied library was again t i tered: 

endocarp library: 2.6 x 10 8 pfu/ml 

secretary gland library: 1.6 x 10 8 pfu/ml 

2.7.2 Preparation of P lasmid Libraries 

A plasmid library was constructed by convert ing the A TriplEx2 clones into 

pTriplEx2 plasmids through in vivo excision and circularisation of a complete 

plasmid in BM25.8 bacteria expressing Cre recombinase activity. 150 ^l of 

BM25.8 bacterial cell culture (ODeoo: 1.4) was mixed with 15 jil of unamplif ied 

libary (or 200 ^l cells + 20 [i\ gland library) and incubated at 31 °C for 30 min. 

The culture was diluted in 20 ml of LB medium and incubated for a further hour 

at 31 °C with shaking (Cre recombinase activity is expressed at 31 °C). Bacteria 

were pelleted through centrifugation (5000 g, 10 min) before the pellet was 

resuspended in 20 ml of SM buffer and aliquoted (1 ml) into sterile tubes plus 

15% glycerol and stored at -80°C. 

The plasmid libraries were titered by diluting (10 x, 100 x) in SM buffer and 

growing 10 ^l on agar plates plus carbenicil l in (50 |ag/ml) overnight at 37°C. 

endocarp library: 1.6 x 10 7 cfu (colony forming units)/ml 

secretary gland library: 1.12 x 10 7 cfu/ml 

2.7.3 Library Screen ing 

Plasmid libraries (1 |il) were diluted 100 fold in SM buffer and plated out on 

large agar plates (490 c m 2 ) plus carbenicil l in (50 jag/ml) and grown overnight at 

37°C. 50 colonies were picked at random from each library and grown in 10 ml 

cultures (plus carbenicil l in) overnight at 37°C. Plasmid preps were made 

(Section 2.6.11) and inserts sequenced using forward and reverse pTriplEx2 

sequencing primers (supplied with the kit). 
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2.8 Recombinant Expression - Bacteria 
Single colonies of transformed Tunette bacteria (Section 2.6.10) were used to 

inoculate 10 ml mini starter cultures containing kanamycin (kan, 50 ng/ml) and 

chloramphenicol (cam, 34 | ig/ml). Following overnight growth at 37°C with 

shaking a 1 ml aliquot was used to inoculate a larger 100 ml LB kan/cam 

culture. Cells were grown as before until dense (OD 6oo: 0.7), when 0.1-1 mM 

IPTG was added to induce expression over 3 hours. Different growth 

temperatures (15-37°C) and +/- IPTG induction was used to optimise 

expression. Following induction and expression cells were centrifuged at 3900 

g for 5 min and the pellet resuspended in 2 ml of Tris-HCI, pH 7.5, achieving a 

50 x concentrat ion. Samples were sonicated 3 t imes at 3 0 % intensity for 20 

seconds using an HD 2070 sonicator (Bandelin), microfuged at full power for 5 

min and the supernatant (soluble protein) col lected. The pellet was 

resuspended in 1 ml of Tris-HCI, pH 7.5, vortexed and stored on ice (insoluble 

protein). Both soluble and insoluble fractions were analysed for recombinant 

expression by western blotting (Section 2.5.3) and assaying for thioesterase 

activity using the Ellman's method. 

2.9 DNA Sequencing and Analysis 
Double stranded cDNAs were sequenced using an Appl ied Biosystems 3730 

DNA Analyser by the University of Durham sequencing service. DNA 

sequences were edited, translated and restriction sites determined using the 

DNA sequence editing and analysis program DNA for Windows 2.4.0 (software 

written by Dr D.P. Dixon, Centre for Bioactive Chemistry, University of Durham, 

UK). DNA and protein sequences were aligned using CLUSTALW and 

sequence similarities were determined using BLAST. RNA secondary structure 

predictions were determined using Mfold version 3 

(www.mfold.bioinfo.rpi.edu/) as developed by M.Zuker, ( 2 0 0 3 ) 1 2 8 . 
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2.10 Bioreactions 
Commercially available immobilized enzymes were supplied by Sigma; 

Lipozyme (lipase from Mucor miehei immobilized on a macroporous ion-

exchange resin) and Novozyme (lipase from Candida antarctica immobilized 

on acrylic resin). 

2.10.1 Preparation of Fruit Enzymes 

Orange or passion fruit peel was homogenized in a waring blender with 4 v/w 

0.1 M potassium phosphate buffer, pH 7.2 and subsequently dried using an 

LP3 freeze drier (Jouan) overnight. Dried material was crushed to a fine 

powder with a pestle and mortar and stored at -20°C. 

2.10.2 Reaction Conditions 

Bioreactions were conducted on a 50 ml scale in round bottomed flasks at 

37°C with stirring. 100 mg of fruit enzyme preparation or immobilized enzymes 

were used in each reaction, unless specified otherwise. Further specific 

reaction conditions are described in chapter 6. 

2.10.3 Gas Chromatography Mass Spectrometry (GCMS) Analysis 

500 pi aliquots of reaction products were partitioned into an equal volume of 

dichloromethane and dried over sodium sulphate. 5 \i\ samples were analysed 

using a Thermo-Finnigan Trace GCMS (Thermo) with a Phenonemex Zebron 

ZB-5 capillary GC column (30 m x 0.25 mm), by the department of chemistry 

analytical services (Durham, UK). The following parameters were used; 

splitless injection, injector temperature: 200°C, Initial oven temperature: 80°C, 

ramp rate 2°C/min to a maximum temperature: 200°C, carrier gas: Nitrogen, 

column pressure 30 kPa. 
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3. Identification and Characterisation of Thioesterases 
in Tropical Fruit 

3.1 Introduction 
Volatile organosulphur chemicals (VOSCs) make a major contribution to 

flavour and fragrance in tropical fruits, where they are found as free thiols or 

the respective thioester derivatives 2 4. The proportion of each is determined by 

the action of thioesterases which are believed to be important in the generation 

of ripe fruit flavour. As has been described, these thioesterase enzymes from 

exotic fruits form a novel source of potential biocatalyst for use in the 

manufacture of high-impact flavourings. The search for such unknown 

enzymes in fruit must however begin with the development of a sensitive and 

simple assay for determining thioesterase activity in fruit tissues. 

VOSCs being high impact aromas, are subsequently found at only trace levels 

in fruit tissue, for example the major character impact volatile in passion fruit, 

3-mercaptohexanol (passion fruit mercaptan), is present at less than lO^g/kg 

passion fruit 2 4 but is still able to make a major contribution to overall fruit 

aroma. When handling fruit VOSCs in their pure form they have an attractive 

fruity note at low concentrations (10-100 ppb), any higher and they smell 

sulphury, unpleasant and are hard to distinguish. Fruit therefore generate trace 

levels of these metabolites with flux through their pathways of biosynthesis low 

and hence difficult to investigate. The enzymes involved in VOSC biosynthesis 

may subsequently be found to have low total activities (e.g. high specific 

activities but with low protein abundance) and a careful choice of assay to 

determine activity was required. Simply determining thioesterase activity in 

tropical fruits was likely to be a challenge and for the subsequent purification of 

the associated protein(s) the assay of choice had to be sensitive and rapid. 

The properties of thioesterases in tropical fruit have not been studied before 

and it was therefore important to determine the location of activity within fruit 

(e.g. peel, juice, pith) and its regulation during maturation. Developing fruit 

undergo many changes both at the physiological level (colour, texture, F&F) 

and at the genetic and biochemical level in terms of gene regulation, protein 
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synthesis, respiration, cell wall degradation, secondary metabolite 

accumulation and nutrient depletion 4 3. Essentially, many developmental 

changes occur over a short period (1-2 weeks) and it was therefore important 

to monitor thioesterase activity over the full course of ripening so as to 

determine when activity was greatest. 

In order to monitor thioesterase activity, an assay for determining the 

hydrolysis of thioester VOSCs was required (Figure 3.1). This could be 

achieved through quantifying the loss of starting materials (thioester) or the 

generation of products (thiol or acid). 

o o 

A Thioesterase H 

S R 2

 + H 2 ° • R l S H + H O ^ R 2 

Thioester flavour Volatile thiol Carboxylic acid 
precursor flavouring product 

Figure 3.1 The enzymatic hydrolysis of thioesters. It was necessary to develop 
an assay for determining the extent of this reaction. Although this is a 
reversible reaction, in vitro assays with buffered aqueous solutions favour 
thioester hydrolysis (right). 

Quantifying the acid formed is achievable through titrating in base to keep the 

pH static, with the amount of base required correlating with the extent of the 

reaction. However, with the requirement of a pH stat and titration syringe this is 

a somewhat laborious method for carrying out routine assays and a simpler 

alternative was to measure the generation of thiol (SH) groups. Due to the 

biological importance of SH groups in proteins, glutathione, cystiene and 

secondary metabolites, a great variety of methods for their determination have 

been published, reviewed by Jocelyn 1 2 9 (1972). The difficulty was therefore in 

deciding which assay was best suited to our needs. The classical approach for 

determining the generation of VOSCs in enzyme assays is to partition the 

volatile products into a suitable organic solvent (e.g. diethyl ether, 

dichloromethane) prior to quantification by gas chromatography 1 1 3 , 1 1 4 . Such 

assays are sensitive and can be linked to a mass spectrometer for the analysis 
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of products, however, they are prone to the loss of VOSCs during processing 

of the organic phase, are time consuming and require access to GC 

equipment. Hence, simpler alternative assays were desirable. 

A further assay for the SH group is based upon measuring the reducing 

potential of the product solution. Thiol containing compounds are well known to 

be important reducing agents in cells (e.g. glutathione as involved in redox 

homeostasis 7 6), a property that can be assayed. For example, titration with 

iodine has been used for the free thiol determination of biological samples 1 3 0 . 

(1) l 0 3 - ( a q ) + 5l"(aq) + 6 H + (aq) • 3 I 2 + 3 H 2 0 

(2) l 2 ( a q ) + R i S H ( a q ) + H 2 0 (I) 21" (aq) + R , S H O + 2 H + 

Figure 3.2 The iodometric determination of thiols in solution. (1) When iodate 
(IO3") is added to an iodide solution (I ) the iodate oxidises the iodide to form 
iodine (yellow). However, when free thiol is added (2) this acts as a reducing 
agent and converts iodine back to iodide. Only at the endpoint of the reaction 
when the reducing capacity of the solution is saturated, does free iodine form. 
The volume of iodate required to reach the end point correlates with the 
reducing capacity and hence the thiol content of the solution. 

This method is however somewhat time consuming for our needs and it does 

not account for the presence of further reducing agents within a sample, such 

as endogenous ascorbic acid or glutathione. 

Assays specific to thiol groups are based on the reactivity of the thiolate anion 

(RS) which is believed to be one of the most reactive groups found in cells, 

over 500 times more reactive than the corresponding oxygen analogue 8 5. 

Hence, thiolate anions can be reacted with further chemical compounds as a 

means of quantifying their presence (Figure 3.3). 
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iodoacetamide 
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R.SH NH 1 
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NO 

COO 0 2 N 

OOC mBrB 
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E 4 1 2 : 211 

3 -

NO 
N 0 2 N 
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N COO OOC 

mixed disulphide thiolate anion R , s 
E 4 1 2 : 210 (yellow) 

E 4 1 2 ' 1 4 150 fluorescent conjugate 
Ext: 400nm 
Em: 475nm 

Figure 3.3 Assaying for thiol groups through chemical derivatisation. 1. 
Alkylation; iodoacetamide can be used in a titrimetric assay as an equivalent of 
hydrogen ions are displaced during the reaction 1 3 1 , 2. Spectrophotometric 
(spec) assay; the addition of thiols across the double bond in maleimides (e.g. 
/V-ethylmaleimide, NEM) produces an adduct with different absorption 
propert ies 1 3 2 , 1 3 3 , 3. Spec assay; mercurials, such as p-chloromercuribenzoic 
acid (CMB) complex with thiols to produce a product with greatly increased 
absorption at 250 n m 1 3 4 , 4. Fluorescence assay; monobromobimane (mBrB) 
reacts with thiols to generate a fluorescent conjugate (excitation 400 nm, 
emission 475 nm) 1 3 5 , 5. Thiol-disulphide exchange spec assay; 5,5'-dithio-
bis(2-nitrobenzoic acid) (DTNB, Ellman's reagent) reacts with free thiol to 
generate a mixed disulphide and an aromatic thiolate anion which has a strong 
absorption at 412 n m 1 3 . 
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Assays for thiols can be specific, such as those that are selective for thiol 

groups on glutathione or cysteine residues in proteins. However, here we 

required a general assay for thiol groups not a specific one. Such 

derivatisation techniques include titrimetric, spectrophotometric and 

fluorescent assays, each with their own limitations which must be considered. 

Long or complex sample analysis does not lend itself to repetitive assays 

(titrimetric assays), certain reactions can only be achieved under acidic or 

basic pH and hence can not be used for following continuous enzymatic rates 

(they must be stopped first). The spontaneous hydrolysis of the thioester bond 

is slow at neutral or acidic pH but is rapid above pH 8, hence such high pH 

must be avoided to reduce chemical hydrolysis 1 3 7. In addition, the solubility 

and decomposition of adducts can be problematic (e.g. NEM 1 2 9 ) and some 

reagents, such as the mercurials are believed to promote thioester 

hydrolysis 1 3 8. Hence, it was of importance to test several assays so as to 

determine which would be most effective in quantifying the enzymatic 

generation of thiols from thioester precursors. Assay development and 

subsequent identification and partial characterisation of thioesterase activity in 

purple passion fruit therefore forms the focus of this initial work. 

3.2 The Development of a Simple Assay for Measuring 

Thioesterase Activity in Fruit Tissue Extracts 
Before testing and developing various assays it was first important to ensure 

thioesterase activity was present in tropical fruit using a method known to 

work. It was therefore decided to start by using the standard gas 

chromatography system. In addition, two commercial enzymes, pig liver 

esterase (PLE) and Candida rugosa lipase (CRL), were selected to assay 

alongside the fruit extracts as positive controls, both enzymes had previously 

been demonstrated to posses thioesterase activity 1 1 3. CRL is a widely used 

industrial l ipase 1 0 3 and PLE is a remarkably versatile esterase which has 

attracted great academic interest for potential use in bioprocessing 1 0 3. It was 

therefore useful to gauge the efficiency of the fruit enzymes against these tried 

and tested biocatalysts. 
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3.2.1 Gas Chromatography Assay 

The high degree of sensitivity achieved using gas chromatography (GC) has 

made it the method of choice for analyzing volatile aroma chemicals. This is a 

likely reason why it was initially chosen for determining the enzymatic 

generation of aromatic volatiles. Here the enzyme reactions were incubated 

with the thioester substrate 2-methyl furan-3-thioacetate (MFTA) as PLE and 

CRL had previously been demonstrated to act on this substrate 1 1 4. MFTA is a 

high-impact sulphur volatile generated upon roasting beef, although not a 

natural fruit metabolite it will be a useful tool for determining activity in fruit at 

this stage. The delocalised furan ring stabilises the thiolate anion making it a 

good leaving group which favours enzymatic hydrolysis and will aid in 

determining what is predicted to be a relatively low abundance activity. The 

general reaction scheme is depicted below. 

o 
Q-

>° Thioesterase; • O 

C \ * H 2 G P L E , C R L , passion fruit ^ f ~ < + ^ 
0.1M potassium phosphate buffer, O 

2-methyl furan-3-thioacetate J ' ' ^ 2-methyl furan-3-thiol ethanoic acid 
(MFTA) 3 0 c (MFT) 

thiolate anion 

Figure 3.4 A reaction scheme illustrating the enzymatic hydrolysis of MFTA. 
Thioesterases including a microbial lipase (CRL), a mammalian esterase 
(PLE) and a fruit crude protein extract (passion fruit) were assayed for activity 
against this substrate. 

The identification of substrate and product was confirmed through running the 

thioester (MFTA) and thiol (MFT) standards through the GC and determining 

their retention times (Figure 3.5A). In addition, MFT was run through the GC at 

varying concentrations (3-50 nmols) for calibration, illustrating the direct 

relationship between GC peak area and the amount of product formed (Figure 

3.5B+C). It was also important to take into account the incomplete partitioning 

of volatiles into the solvent phase during processing, the uptake of MFT into 

DCM was determined at 60% +/- 1 % and was corrected for when calculating 

specific activities. 

100 



B. 

C. 

200°C 

0 min, 
80°C 

2.5 

o 
E 2 

TO 
< 1.5 
CO 

Dl 1 
CP 

> 
0.5 

1 
0 

RT: 8.4 

o 

MFTA 
RT: 14.5 

Retention Time (min) 

50 nmols 
SH 

MFT 

12.5 
ft 6.25 3 . 1 2 5 

Retention Time (min) 

i 
26 

26 min 
200°C 

R 2 = 0.9907 

Peak area = 458000 x MFT (nmols) 

- f 

10 20 30 
MFT (nmols) 

40 50 

Figure 3.5 A. GC separation and identification of the standards 2-methyl 
furan-3-thiol (MFT) and 2-methyl furan-3-thioacetate (MFTA). B. A GC trace 
illustrating the relationship between GC peak area and the amount of thiol 
product MFT. C. The direct linear relationship between peak area and the 
amount of MFT over the range 3-50 nmols. 



At this stage a simple total protein extract was made from 5 ripened (10 days 

incubation at 25°C) purple passion fruit (Passiflora edulis Sims) through 

homogenising whole fruit in a 0.1M potassium phosphate buffer prior to 

(NH 4) 2S04 precipitation (40-80% cut) and overnight dialysis against the same 

buffer. Protein preparations were dissolved in 490 \x\ of 0.1 M potassium 

phosphate buffer, pH 7.2 in air tight 1 ml glass vials before thioester substrate 

(10 u.l) was injected using a Hamilton syringe through a septum to final 

concentration of 20 mM. The vial was sealed with parafilm and incubated for 

12 minutes at 30°C before the reaction was stopped by the addition of an 

equal volume of DCM (500 uJ), mixed and the solvent removed and dried with 

anhydrous sodium sulphate before analysis on the GC (Figure 3.6). The 

amount of thiol product formed could be determined from the size of the peak 

area using the calibration curve (Figure 3.5C) and specific activities (nmol 

product/sec/mg) for each enzyme preparation calculated (Table 3.1). 

Thioesterase CRL PLE P.e. Crude Extract 

Specific Activity 
(nkat/mg) 

510.99 +/- 84.28 0.38 +/-0.08 

Table 3.1 A comparison of thioesterase activities toward MFTA as determined 
using the GC assay. Assays were run in triplicate along with a heat treated 
(95°C, 5min) protein sample used for determining the non-enzymatic chemical 
rate. Errors +/-1 standard deviation from the mean. 

Thioesterase activity toward MFTA was determined in crude passion fruit 

extracts (0.38 nkat/ mg) and forms the first evidence that a thioesterases are 

present in tropical fruit. The thioesterase activity of PLE and CRL was 

confirmed, further supporting the identification of the activity in the fruit extract. 

Thioesterase activity in the fruit was comparable to that of CRL, and although 

considerably lower than that of PLE this is a crude protein preparation and the 

commercial enzymes are in partially purified form. The assay was sensitive 

and reproducible, however, processing of the organic phase was likely to result 

in a loss of volatiles (sulphur volatiles were smelled in the air during extraction) 

and an investigation of further thiol assays was required. 
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HT 
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2 I Avg. PA: 12062621 

0-min, 80°C 

B. 

Retention Time (min) 

Sa: 510.99 nkat mg"1 
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SH 

26 min, 200°C 

MFT 
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MFTA 
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// V v 
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Figure 3.6 The enzymatic hydrolysis of MFTA (20 mM) by A. CRL (2 mg/ml), 
B. PLE (0.002 mg/ml) and C. Passion fruit crude protein extract (0.11 mg/ml). 
Each trace shows the substrate peak (right) and product peak (left) following a 
12 min incubation with enzyme. Traces 1-3 are triplicates of the assay as 
compared to a heat treated protein sample (HT, 95°C, 5 min). From the 
average peak area (Avg. PA) the corresponding amount of MFT can be 
determined and a specific activity (Sa) calculated. 
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3.2.2 Fluorimetric Assay 

It was desirable to carryout the thioesterase assay in an air tight tube, 

preferably in a single solution so as to prevent the loss of product or starting 

materials noted using the GC assay. A method for the analysis of biological 

thiols had been previously developed using monobromobimane (mBrB, (3-

bromomethyl-2,5,6-trimethyl-1H))1 3 9, a non-fluorescent compound that reacts 

with thiols to generate a fluorescent product. This was developed to tag pico-

mol levels of thiols in biological extracts (e.g. red blood cells) and through 

separation using reverse-phase HPLC single metabolites could be 

identified 1 3 5. This assay had the potential to be adapted for determining 

thioester hydrolysis in enzymatic reactions, the basis of which is depicted in 

below. 

o 

(X 
MFTA 

+ H 2 0 

Thioesterase; 
PLE, CRL, passion fruit 

0.1M phosphate buffer 
pH 7.2 ethanoic acid 

mBrB 
non-fluorescent 
derivatisation 

MFT-fluorescent conjugate 
excitation: 400 
emission: 475 
quantification 

Figure 3.7 The determination of thioesterase activity using the fluorometric 
monobromobimane (mBrB) assay and the model substrate MFTA. 

This theory was tested by incubating the thiol standard MFT at various 

concentrations (1-10 u:M) with mBrB (50 jaM) for 1 min at 30°C and measuring 

fluorescence (excitation: 400, emission: 475). An MFT product standard curve 

was established (Figure 3.8), with the relationship between fluorescence and 

thiol content linear over the range 1.5-10 u.M product. 
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Figure 3.8 An MFT standard curve illustrating the direct linear relationship 
between MFT concentration and fluorescence emission following derivatisation 
with mBRB. 
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Figure 3.9 An illustration of the protein dependence of the mBrB assay. 
Varying amounts of passion fruit crude extract (0.06-0.2 mg) were incubated 
with 1 mM MFTA and the amount of product determined using derivatisation 
with mBrB. 
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Having established the assay could theoretically work it was tested on the 

protein extract from passion fruit, which we had shown to posses thioesterase 

activity through the GC assay. Protein samples in 0.1 M potassium phosphate 

buffer pH 7.2 were incubated with 1 mM MFTA at 30°C in a 2 ml fluorimetric 

cuvette. The reaction was started by the addition of 50 \xM mBrB, injected 

through a Hamilton syringe, and the increase in fluorescence emission at 475 

nm measured over 2 minutes on a fluorimeter. The reaction could be 

monitored continuously and it was not required to stop and extract product. 

The rate was linear over 2 minutes and through adding increasing amounts of 

protein fruit extract (0.03-0.1 mg/ml), the assay was demonstrated to be 

protein dependent (Figure 3.9). The specific activity of the fruit preparation was 

determined at 0.31 nkat/mg (+/- 0.03), comparable to that determined through 

the GC assay (0.38 nkat/mg +/- 0.08). 

3.2.3 Spectrophotometric Assay 

The hydrolysis of thioesters can also be followed spectrophotometrically as 

thioester bonds have an absorption peak at approximately 230 nm, somewhat 

lower than that of the corresponding th io l 1 4 0 . It was therefore postulated that 

through determining the absorption maximum of thiol product and then 

following the increase in absorption at this wavelength the thiol content of the 

solution could be measured. However, if protein in solution also absorbed over 

the same maximum then thiol quantification may be masked. In addition, 

different chemical types may shift the absorption maxima or aromatic 

constituents may mask it completely. Although this assay was theoretically the 

simplest to perform as no derivatisation or solvent partitioning was required it 

was however likely to have limitations in practice. 

In this case, the artificial substrate 4-methylumbelliferyl thiopropanoate 

(MUTP) (Figure 3.10) was chosen as it contained a heavily delocalised double 

ring structure which would in theory stabilise the thiolate anion and cause a 

strong absorption of visible light. The chemical structure was larger (Mr: 249, 

MFTA: Mr: 156) and was unlikely to be lost through vaporisation into the 

surrounding air. 
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Figure 3.10 A reaction scheme for the enzymatic hydrolysis of 4-
methylumbelliferyl thiopropanoate (MUTP). The extent of the reaction was 
monitored through determining the absorption maximum for the thiol product 
and following absorption at this wavelength using a spectrophotometer which 
theoretically would directly correlate with product concentration. 

The absorbance spectra for both MUTP and MUT (45 LIM) in phosphate buffer, 

pH 7.2 were independently scanned between 200-600 nm (Figure 3.11). A 

distinct peak in the product spectra (MUT) at 377 nm was not seen in the 

spectra for the substrate (MUTP) and was likely to be due to the thiol 

functionality. Hence, following the reaction at 377 nm enabled the 

determination of thiol product concentration. 

An enzymatic assay was set up by dissolving passion fruit protein preparation 

(50 (il, 2.5 mg/ml) in 1 ml of potassium phosphate buffer, pH 7.2 with 100 \M 

MUTP. The cuvette was mixed and the increase in absorbance at 377 nm 

determined over 5 minutes at 30°C (Figure 3.12). The rate observed was non­

linear over the first 2 minutes and then levelled over the following three 

minutes. This may have been caused by the incomplete solubilisation of MUTP 

and therefore its concentration was reduced to 50 ^M and the assay repeated 

(Figure 3.12), again the rate was non-linear. Hence, following the enzymatic 

reaction at this wavelength does not directly correlate with product formation, a 

linear relationship would be expected for a typical enzymatic reaction. It is also 

possible absorption by compounds (e.g. protein) in the fruit extracts may be 

interfering with the assay. In conclusion it is not a reliable method and as 

further difficulties were likely to be encountered when different chemical 

structures were assayed (which may alter Amax) it was decided to focus on 

alternative methods. 
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Figure 3.11 Spectral scans (pH: 7.2) of A. MUTP and B. MUT over the visible 
range (220-600nm). An absorption peak in the MUT spectra at 377 nm is not 
present in the MUTP trace and may be accounted for by the thiol functionality. 
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Figure 3.12 Spectrophotometric traces for the enzymatic cleavage of 4-
methylumbelliferyl thiopropanoate (MUTP) by the passion fruit extract (0.13 
mg/ml). Thiol product formation was determined by following the change in 
absorbance at 377 nm (MUT generation). Reactions were tested with both 100 
LIM and 50 LIM substrate to see if the incomplete solubilisation of MUTP may 
be causing the non-linear rate. 

3.2.4 Ellman's Assay 

One of the most widely used methods for assaying thiols is the thiol-disulphide 

exchange method, whereby aromatic disulphides react quantitatively with free 

thiols to generate a mixed disulphide and an intensely coloured thiolate anion. 

Such an example is 5,5'-dithio-/)/s(2-nitrobenzoic acid) (DTNB, Ellman's 

reagent) 1 3 6. Ellman's reagent was introduced in 1959 as a biochemical tool for 

quantifying sulfhydryl groups on proteins and primary metabolites such as 

glutathione provided by the amino acid cysteine 1 3 6 . As illustrated in figure 3.13, 

the assay is based upon the organosulphur compound reacting in the form of 

the thiolate anion (RS~) with DTNB to generate a mixed disulphide (RS-TNB) 

and a by-product TNB which absorbs visible light intensely at 412 nm. 
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Figure 3.13 The use of Ellman's reagent for measuring thioesterase activity 
based on the hydrolysis of 2-methylfuran-3-thioacetate (MFTA). 

Passion fruit protein samples were dissolved in 490 ^l of 0.1 M potassium 

phosphate buffer, pH 7.2. with 10 of MFTA (final concentration of 1 mM) and 

incubated at 30°C in a sealed cuvette. An equal volume (500 of Ellman's 

reagent (4 mg/ml in same buffer) was added, mixed and product formation 

determined by measuring the change in absorbance at 412 nm over 5 minutes 

(Figure 3.14A). 

The rate was linear over this period and due to the simplicity and speed of the 

assay it looked very attractive, however further validation was first required. 

The enzymatic reaction was re-run using a different thioester substrate, furfuryl 

thioacetate (FTA, Figure 3.14A). Authentic standards of MFT and furfuryl thiol 

(FT, furfuryl mercaptan) were used to produce standard curves for quantifying 

product formation (Figure 3.14B), theoretically both curves should be identical 

if the derivatisation with Ellman's reagent was not compound specific. 
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Figure 3.14 
A. The enzymatic hydrolysis of MFTA and FTA by passion fruit crude protein 
extract (0.25 mg/ ml). The increase in absorbance (thiol generation) is linear 
over 5 minutes. The specific activities (Sa) of the extract toward both thioesters 
are shown. 
B. Calibration curves generated using furfuryl thiol (FT, red spots) and 2-
methyl furan-3-thiol (MFT, blue spots). When errors are taken into account the 
curves are superimposable. The extinction coefficient for MFT was determined 
at 16600 M ~ W 1 . 
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Both curves were linear indicating that absorbance at 412 nm was directly 

proportional to the concentration of thiol in solution. When considering the 

different chemical types (MFT and FT) both standard curves were 

superimposable when the slight error between triplicates was considered. 

Essentially, the Ellman's assay is able to determine the concentration of thiol in 

solution regardless of the compound conformation on which the group is 

attached. This is supported by the same observation in the literature 1 4 1. 

For further validation of the assay the thioesterase activity of PLE and CRL 

toward MFTA was also determined (Table 3.2) and specific activities were 

found to be comparable to those determined through the GC assay. 

Thioesterase CRL PLE P.e. Crude Extract 

GC Assay 
Specific Activity 0.31 +/-0.08 510.99+/-84.28 0.38+/-0.08 

(nkat/ mg) 
Ellman's Assay 
Specific Activity 0.35+/-0.02 537.88+/-24.65 0.40+/-0.05 

(nkat/ mg) 

Table 3.2 Thioesterase activities toward MFTA determined using the GC and 
Ellman's assay. 

In fact, as no processing of the product solution was required, the error 

resulting from multiple pipetting steps and the loss of volatiles was reduced. As 

a means of validating the assay, increasing concentrations of PLE (0.1-0.8 

ng/ml) were incubated with substrate to ensure product formation was protein-

dependent (Figure 3.15A). Furthermore, the time dependence of the assay 

was investigated by incubating 1 mM MFTA with PLE (0.1 u.g) and following 

the absorbance at 412 nm over 10 minutes (Figure 3.15B). The rate was 

initially linear for the first 3 minutes before a slight drop in gradient (rate) was 

observed, presumably as the temperature of the reaction equilibrated to room 

temperature (RT). However, it was important to carry out assays slightly above 

RT (30°C) so as to avoid fluctuations caused by varying air temperature. Over 

the initial minute the rate was linear and suitable for our requirements. 
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Figure 3.15 Ellman's assay validation 
A. An illustration of the protein dependence of the Ellman's assay using PLE. 
Varying amounts of PLE (0.1-0.8 ng/ml) were incubated with 1mM MFTA 
(total: 1000 nmols). 
B. An illustration of the time dependence of the Ellman's assay using PLE. 0.1 
jig/ml PLE was incubated with 1 mM MFTA for 10 min. The enzymatic rate 
was linear for the first 3 minutes before the gradient fell slightly over the 
remaining time, presumably as the temperature of the reaction dropped to RT, 
and consequently slightly reducing the reaction rate. 
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The Ellman's assay was simple, fast to perform and sensitive enough for our 

requirements with a published minimum detection limit of 0.6 nmol thiol/ml 

solution 1 4 1 . The assay gave a linear response over the range 10-50 uM thiol 

with excellent reproducibility as compared with GC protocols. The only 

limitation to the assay was that reactions had to be performed at close to 

neutral pH with the maximum stability of DTNB at pH 7.2 (most enzymes are 

however active around this pH). Under alkaline conditions (pH > 8.6) 

decomposition of DTNB occurs 1 4 1 . Importantly, while GC analysis takes 50 

minutes per sample and includes solvent partitioning, the one step Ellman's 

assay reaction was complete in 5 minutes with the developed colour being 

stable over 1 hour. The fluorescence assay using mBrB was also simple and 

highly sensitive and formed an equally efficient means for determining 

thioesterase activity in enzyme assays. However, the Ellman's assay could be 

carried out on microtitre plates (96 wells) and run on a flashscan so as multiple 

assays could be conducted over a short time (5 min), a useful approach for the 

large number of assays required when conducting protein purification. 

Although the fluorimetric mBrB assay could also be conducted on such a scale 

using fluorescent imaging, attempts using a FLASHscan® spectrometer 

(Analytik Jena AG, Germany) for conducting multiple assays were found to be 

variable, lacking the sensitivity and reproducibility of the Ellman's method. For 

this reason the Ellman's protocol was chosen as the optimal assay for 

determining thioesterase activity in further work. 

3.3 Sourcing Thioesterases from Tropical Fruit 
Having developed an effective assay for quantifying free thiol generation and 

establishing that thioesterase activity was present in purple passion fruit it was 

important to look to other exotic fruits as possible sources of the enzyme. The 

fruit type was not a concern in this case as the only requirement was finding 

the optimal source of an efficient biocatalyst. A number of fruit were screened, 

including mango, lychee, banana and yellow passion fruit. In each case total 

protein was extracted from whole fruit (Methods 2.2) and assayed for activity 

toward MFTA using the Ellman's protocol. 
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It soon became apparent that purple passion fruit was a good first choice of 

material as it was very problematic extracting protein from other fruit types. 

The high levels of fat and pectin in each variety caused difficulties with the 

ammonium sulphate precipitation of protein and in each case no pellet formed 

and the supernatant formed a thick jelly. Attempts were made to clarify the 

solution prior to salting out the protein, including the addition of 10% (w/v) 

protamine sulphate to the extraction buffer for removal of nucleic acids. 

However, protein recovery was low and no activities could be determined from 

this material. It was therefore decided that at this stage it was best to 

concentrate on the purple variety of passion fruit as activity had been 

determined in this fruit. In addition, it is known to contain numerous 

characteristic tropical notes, which have also been identified as thioester 

precursors 1 1 9. Work concentrated on following this activity as it was always 

possible to return to other fruit types as a source of the enzyme at a later stage 

through a genetic approach (e.g. PCR cloning and expression). 

3.4 Characterizing Thioesterase Activity in purple passion fruit 

(Passiflora edulis Sims) 
Before embarking on the purification of thioesterase activity from purple 

passion fruit it was important to characterize the observed activity further. The 

properties of the enzyme (e.g. stability and temperature tolerance) would be 

important factors to consider in evaluating its potential application in 

bioprocessing. In addition, it was important to determine where in the fruit 

activity was localised and how it was regulated during maturation as a means 

of optimising extraction and for understanding more about the physiological 

role of the protein. 

3.4.1 Localisation of Thioesterases to the Fruit Mesocarp (Peel) 

Initial assays used homogenates made from whole fruit and as such they did 

not tell us anything about the localisation of activity. In order to examine this 

fruit were separated into their component tissues; seed, endocarp, mesocarp, 

exocarp and juice (Figure 3.15). 
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Exocarp; the thin, hard and waxy skin 
of the peel 

Mesocarp (flavedo); the pink/ purple 
layer of tissue containing secretory 
glands and vascular tissue 

Endocarp (albedo): the spongy white 
tissue on the inside of the peel 

Aromatic juice 

Seed and seed casing 

Figure 3.15 Purple passion fruit - physiology and tissue type 

Five ripened fruit (10 days, 25°C) were separated into component tissue types 

and processed (Methods 2.2) before being assayed for activity toward MFTA 

using the Ellman's method (Table 3.3). 

Fruit tissue Specific activity 
(nkat mg"1) 

seed ND 
juice ND 

endocarp 0.06 +/- 0.03 
mesocarp 0.36 +/- 0.04 
exocarp ND 

Table 3.3 The localisation of thioesterase activity in passion fruit 

It was apparent that thioesterase activity was predominantly confined to the 

mesocarp tissue of the peel. The mesocarp is made of cellular material and 

has a higher water content than the inner spongy endocarp which is made up 

of structural material and contained only trace thioesterase activity (0.06 

nkat/mg). The bulk of the peel is composed of the mesocarp and for this 

reason it was not necessary to remove the waxy peel or endocarp tissues. 

Interestingly the mesocarp also contains numerous secretory glands which 

protrude into the interior of the fruit. Such structures could potentially contain 

enzymes of flavour biosynthesis. 
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The peel tissue of fruit appears a very dry environment in which to find enzyme 

activity, especially later in ripening when the fruit loses much of its water 

content. It was therefore speculated that the observed activity may be a 

consequence of a wall-bound enzyme. For this reason, further protein extracts 

were made from the fruit with the addition of salt (0.25-1 M NaCI). Fruit peel 

homogenates were left to soak in the salt extraction buffer with stirring on ice 

for 2 hours to overnight prior to filtering and centrifugation. In each case the 

supernatant was assayed for thioesterase activity. The addition of salt (0.25 M) 

caused a 2.5-fold increase in extractable thioesterase activity (0.97 +/- 0.03 

nkat/mg), with 0.25 M NaCI adequate for the optimal extraction of activity over 

2 hours. Longer incubation times or higher salt concentrations yielded 

comparable activities. Hence, the activity was found to be associated with a 

partially wall bound protein in the outer cortex (mesocarp) of the fruit. 

3.4.2 The Developmental regulation of Thioesterase Activity 

As fruit develop, the numerous biochemical and genetic changes that occur 

cause them to become attractive, flavoursome and nutritious. The sharp 

increase in the production of the gaseous plant hormone ethylene in 

climacteric fruit (including passion fruit) is believed to initiate a cascade of 

genetic and biochemical changes which bring about r ipening 1 4 2 . It is a 

genetically programmed event involving the regulation of specific genes, some 

being expressed constitutively and others activated only when ethylene levels 

reach a specific concentration. An example of the latter are the alcohol acyl 

transferase (AAT) genes, which in apple were found to regulated by ethylene 

which controls this final stage of ester biosynthesis 6 0. Hence, the regulation of 

thioesterase activity in fruit may tell us more about the function of these 

enzymes. However, the developmental stage of the fruit must be determined. 

Fruit from the local markets were stored so as to prevent the onset of ripening 

(5°C, 85% humidity), with development subsequently initiated by transferring 

fruit to a growth room under controlled conditions (25°C, 16 hour photoperiod). 

As the fruit matured they lost weight, shrivelled, their water content dropped 

and the juicy interior became more fragrant (Figure 3.16A+B). 
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Figure 3.16 Developmental changes in ripening purple passion fruit. A. 10 fruit 
were ripened under controlled conditions (25°C), over the 24 day study they 
lost water and their weight fell. B. This was associated with the skin shrivelling 
and drying out. Day 10 was considered to be when fruit was ripe, they 
degraded and lost quality after this. 

118 



As a means of determining the developmental stage of each batch of fruit, their 

average dry weight was calculated, and the % dry weight determined as a 

simple means of measuring the degree of ripening. Twelve fruit were ripened 

over 24 days, with three fruit processed (peel + 0.25 M NaCI extraction) at 

regular intervals and thioesterase activity determined (Figure 3.17). 
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Figure 3.17 The developmental regulation of thioesterase activity. 

Thioesterase activity was present in under-ripe fruit and its expression 

remained static for the first 10 days of ripening. The subsequent rapid loss of 

activity was likely to be a consequence of the low water content of the fruit. It 

appeared that thioesterase activity was expressed constitutively throughout 

ripening, with a loss of activity accounted for by the degradation of the fruit 

when over-ripe. 

3.4.3 Optimizing the Ellman's Assay: Buffers and Co-factors 

In order to ensure optimal thioesterase activity was being quantified in the 

Ellman's assay, a range of different buffers were tested and the enzymes 

dependence on co-factors was determined. Figure 3.18 illustrates the effect of 

different buffers and co-factors on enzyme activity. 
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Figure 3.18 The effect of buffers (A.) and co-factors (B.) on thioesterase 
activity. Precipitated protein was resuspended (0.12 mg/ml) in different buffers 
at 0.1 M concentration and assayed for thioesterase activity toward MFTA. Co-
factor salts were added to protein samples (0.12 mg/ml) in 0.1M phosphate 
buffer to a final concentration of 10 mM and assayed for activity. 
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Changing the buffer or adding co-factor had no effect on enzyme activity and 

for this reason future assays were conducted in 0.1 M potassium phosphate 

buffer, pH 7.2 without co-factor. 

3.4.4 Substrate Specificities 

A useful biocatalyst should accept a variety of substrates, allowing it to work 

on various starting materials, and ideally work with high regio- or stereo­

selectivities. The hydrolytic properties of the passion fruit crude protein extract 

was therefore investigated by assaying toward various thioester substrates, 

including straight chain natural products, cyclic compounds and various 

artificial esters and amides (Table 3.4). It was of interest to determine the 

range of chemical reactions achievable with crude extracts. Would the extract 

function as a carboxylic ester hydrolase or amidase as well as a thioesterase? 

Furthermore, it was important to determine any preference for specific 

chemical types (e.g. straight-chain, bulky or cyclic). Crude protein solutions 

were therefore incubated with various substrates and specific activities 

determined (Table 3.4), the activities of PLE and CRL were also determined 

for comparison. 

The passion fruit extract showed greatest activity toward the thioester 2-methyl 

furan-3-thioacetate (MFTA, 2, 0.97 nkat/mg), the model substrate chosen for 

determining thioesterase activity. When the delocalisation of the furan ring is 

removed as in 3 activity was dramatically reduced (7-fold), presumably as the 

thiolate anion is no longer a stable leaving group. The second greatest activity 

was toward the ester substrate 8, p-nitrophenylacetate (p-NA, 0.67 nkat/mg), 

again a relatively bulky cyclic compound with a short C2 acetate moiety as the 

acyl component. Only trace activities toward 4-methylumbelliferyl esters were 

detected through a sensitive fluorimetric assay (Methods 2.3.6), it appears the 

protein will not accommodate these larger compounds. This is unlike PLE, 

which accommodates these bulky substrates and was most active toward 10 

(1589.26 nkat/mg). Interestingly, the fruit extract appeared to show a 

preference for short-chain acyl components in thioesters/ esters, as 

demonstrated by the reduction in activities between the ester series 9-11 (C2: 

0.04 nkat/mg, C3: 0.03 nkat/mg, C6: 0.0005 nkat/mg). 

121 



Compound 
number Thioester/ ester substrates 

Crude passion fruit 
extract 

(S.a. nkat/mg) 

Porcine liver 
esterase 

(S.a. nkat/mg) 

Candida rugosa 
lipase 

(S.a. nkat/mg) 

10 

A ? 5 

3-(thioacetyl) hexylacetate 

X 
s o 

2-methyl furan-3-thioacetate 

X 
(X 

Tetra hydro 2-methyl furan-3-
thioacetate 

Q 
Methyl thiofuroate 

o 

Furfuryl thioacetate 

8-(acetylthio) menthone 

a-Naphthyl acetate 

o 

p-Nitrophenyl acetate 

4-Methylumbelliferyl acetate 

4-Methylumbelliferyl propanoate 

11 

0.04 

+/- 0.002 

0.97 

+/- 0.03 

0.14 

+/- 0.01 

ND 

0.24 

+/- 0.04 

0.13 

+/- 0.02 

0.26 

+/- 0.9 

0.67 

+/-0.10 

0.04 

+/- 0.003 

0.03 

+/- 0.008 

0.0005 

+/- 0.0001 

14.02 

+/- 0.72 

537.88 

+/- 24.65 

58.71 

+/- 5.68 

100.0 

+/- 9.75 

35.04 

+/- 1.98 

4.17 

+/- 0.02 

159.4 

+/- 16.14 

2117.6 

+/- 87.5 

426.15 

+/- 72.55 

1589.26 

+/-102 

1302.97 

+/-97 

ND 

0.35 

+/- 0.02 

ND 

ND 

0.05 

+/- 0.01 

0.02 

+/- 0.01 

0.58 

+/- 0.01 

5.14 

+/- 0.23 

4.26 

+/-0.18 

118.36 

+/-21.39 

36.59 

+/- 4.00 

4-Methylumbelliferyl hexanoate 

Table 3.4 Enzymatic hydrolysis of thioester and ester substrates by a passion 
fruit crude protein extract, a mammalian esterase (PLE) and a microbial lipase 
(CRL). Activities are means of triplicates +/- standard deviation from the mean. 
ND; no activity detected. 

122 



The passion fruit extract showed less carboxylester hydrolase activity than 

PLE but was active toward various thioesters including 3-(thioacetyl)hexyl 

acetate, a precursor to the major character impact volatile in this fruit, 3-

mercatohexanol. Activities were however low at this stage, a likely 

consequence of the low protein content of fruit peel. A large scale protein 

extraction and purification of the desired activity was therefore required when 

comparing activities with the commercial enzymes. However, at this stage the 

fruit preparation demonstrated different hydrolytic properties to the commercial 

enzymes with a relatively relaxed specificity for chemical types, a useful 

property for an efficient biocatalyst. It was unclear whether activities were due 

to specific thioesterases or multiple enzyme activities derived from different 

families of enzymes, this was investigated further through the chemical 

inhibition of specific enzyme types. 

3.4.5 Enzyme Inhibition 

Having demonstrated the crude protein preparation from passion fruit 

expressed both thioesterase and carboxylesterase activity it was of interest to 

investigate the catalytic mode of action of the enzyme pools which accounted 

for the observed activities. This was achieved using enzyme specific inhibitors, 

such as the insecticide paraoxon, which covalently deactivates serine catalytic 

residues in serine hydrolases 1 4 3. Protein preparations were incubated with 

different inhibitors (1 mM) for 2 hours at 30°C before desalting to remove the 

unbound inhibitor and assaying toward MFTA and p-NA (Table 3.5). 

To test for the presence of a catalytic cysteine, mercuric chloride and 

iodoacetamide were tested as inhibitors of thioesterase activity, resulting in 

25% and 0% inhibition respectively toward MFTA, suggesting a catalytic 

cysteine was not present in the majority of thioesterase activity. Conversely, 

the organophosphate insecticide paraoxon reduced hydrolysis by 87%, 

indicating a catalytic serine was present in the enzyme(s). The serine 

hydrolase inhibitor fp-biotin only knocked out 38% of activity, a possible 

consequence of the long chain structure of the inhibitor which may not be 

accommodated so readily in the active site as paraoxon. 
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Inhibitor 
(hydrolase class inhibited) 

Percentage Inhibition (%) 
thioesterase carboxylesterase 

(MFTA) (p-NA) 

38 +/- 1 83 +/-1 

Fp-biotin 
(serine) 

o o—/ 
87 +/- 3 76 +1-2 

Paraoxon 
(serine) 

NH, 
ND ND 

lodoacetamide 
(cysteine) 

HgCI2 

(cysteine) 25 +/- 1 17 +/-1 

Mercuric chloride 
(cysteine) 

»q ( O H ND ND 

EDTA 
(metallo hydrolase) 

Table 3.5 The inhibition of thioesterase and carboxylesterase activity in crude 
passion fruit preparations. Structures of inhibitors and the hydrolase class they 
are active toward. Percentage inhibition was calculated from the loss of activity 
and is presented as the means of triplicates +/- standard deviation from the 
mean. ND; no inhibition detected. 
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It does however appear likely a serine residue is important in the catalytic 

mechanism of these fruit thioesterases, although further studies on a purified 

fraction were required to confirm this. 

Carboxylesterase activity in the peel extracts showed a similar pattern of 

inhibition, being predominantly effected by serine hydrolase inhibitors such as 

paraoxon (77% inhibition) and fp-biotin (83% inhibition), with cysteine and 

metallo hydrolase inhibitors having little or no effect on activity. The greater 

inhibition of esterases with fp-biotin (83%) compared to the thioesterase pool 

(38%) indicated these were a separate family of enzymes with different active 

site pockets. The thioesterase(s) appeared to be more accommodating of 

small, cyclic, short chain compounds, whereas the carboxylesterases 

appeared less selective and accommodated the longer fatty straight chain 

compounds. Both however appear to use a catalytic serine, as demonstrated 

by the near complete inhibition of both activities by paraoxon. 

3.4.6 Thioesterase Stability 

One of the major drawbacks of biocatalysts is their reduced shelf-life 

compared to synthetic catalysts. This has been overcome in many cases by 

immobilising enzymes on resin supports 1 4 4 . However, only so much 

improvement to enzyme stability can be achieved and essentially a robust 

protein is desirable from the offset. For this reason it was important to 

determine the stability of the thioesterase activity in passion fruit. Protein 

preparations were incubated at 30°C and assayed every 24 hours for both 

thioesterase (MFTA) and esterase (p-NA) activity (Figure 3.19). Thioesterase 

activity toward MFTA was remarkably stable with a half-life of 4.5 days (30°C), 

whereas the esterase activity fell sharply over the first day and then decayed 

with a half life of 14 hours. Interestingly thioesterase activity showed a different 

stability decay curve to that of the carboxylesterases, a further indication 

separate pools of hydrolase activity were present in the fruit. Although each 

pool may demonstrate both carboxylester and thioester hydrolase activities 

there appeared to be significant differences between enzymes that acted on 

carboxylic esters and those that acted on thioesters. 
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Figure 3.19 The stability of thioesterases and esterases in passion fruit protein 
preparations. Protein samples (0.15 mg) in 0.1 M phosphate buffer were 
incubated at 30°C and assayed for thioesterase activity toward MFTA (blue 
spots) and esterase activity toward p-NA (red spots). The rate of loss of activity 
is illustrated by half life values (t-1/2). Assays were run in triplicate and corrected 
for chemical rate by subtracting the activity of a heat treated sample (95°C, 
5min). 
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Figure 3.20 The temperature tolerance of carboxylesterases (red) and 
thioesterases (blue) in passion fruit. Protein samples (0.15 mg) in 0.1 M 
phosphate buffer were incubated at 20-70°C and assayed for thioesterase 
activity toward MFTA and esterase activity toward p-NA. Samples were 
incubated for 5 min at each 5°C increment. Heat treated sample were run in 
parallel as a means of determining relative chemical rates. 
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The initial sharp drop in thioesterase activity may be a consequence of a 

separate pool of thioesterase enzymes or a result of the loss of the 

carboxylesterase pool which also had this activity. 

The temperature tolerance of biocatalysts is also an important property, those 

enzymes that can tolerate higher temperatures can be used in reactions at 

increased temperature which promotes faster reactions and hence greater 

productivity. This is why numerous biocatalysts are sourced from thermophilic 

microbes which contain proteins able to tolerate remarkably high temperatures 

(> 70°C) 1 1 1 . In the case of manufacturing flavouring volatiles, the extraction of 

products from the reaction mixture can be facilitated by increasing the 

temperature to favour volatilisation and extraction of products from the reaction 

medium. An enzyme that can tolerate an increased temperature would favour 

such processes. Protein samples were therefore incubated in a water bath at 

increasing temperatures (20-70°C) and following equilibration at each 

temperature carboxylesterase and thioesterase activity was determined 

(Figure 3.20). Both pools of enzymes show optimal activity around 37°C, with 

the thioesterase(s) able to tolerate slightly higher temperatures with over 50% 

activity remaining at 50°C. 

3.5 D iscuss ion 

Identifying and quantifying a potentially trace activity in an unusual (and 

problematic) plant source was a challenge and required the development of a 

sensitive assay. However, through adapting the Ellman's disulphide exchange 

method it was possible to accurately and reproducibly determine thioesterase 

activity in fruit extracts. Such a simple quantification technique forms a novel 

means of analysing the enzymatic hydrolysis of VOSCs and is also likely to 

have further application in the flavourings and food industries. It serves as a 

simple means of determining the thiol content of food or flavouring products, 

raw materials, and effluent streams 1 4 5 . The decomposition of thioester 

flavourings is a common problem encountered by the industry 1 1 4 and could be 
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tested for using this simple visual test with nothing more than a colorimeter or 

spectrophotometer. 

Partial characterisation of the thioesterases in purple passion fruit indicated 

activity was partially cell wall bound, requiring the addition of NaCI for its 

complete dissociation from the insoluble matrix. Furthermore the activity was 

found to be predominantly localised to the mesocarp tissue of the peel. A 

network of vascular tissue runs throughout the mesoocarp which presumably 

feeds the fruit with water and nutrients for development. It is possible the 

nutrients fed into the cortex are metabolized further here into flavours and 

fragrances before secretion into the aromatic juice of the interior. It is 

interesting activity is found predominantly in this tissue where secretory glands 

are also present. 

Thioesterase activity appears to be distinct from further pools of hydrolases 

(carboxylesterases) within the fruit peel as indicated by the differences in their 

stabilities and inhibition patterns. However, further characterisation of the 

purified activity is required in order to determine how thioesterase activity 

differs from that of other fruit hydrolases. Activity was demonstrated to act on a 

wide spectrum of chemical thioesters including the plant natural products 3-

(thioacetyl)hexylacetate (compound 1, passion frui t 1 1 9) and 8-(acetylthio) 

menthone (6, buchu plant 1 2 0). Such diversity of accommodation in 

combination with the enzymes stability (4.5 days, 30°C) provides promising 

characteristics required of any successful biocatalyst. 

Work will now concentrate on the purification of thioesterase activity from 

purple passion fruit as a means of characterising the enzyme(s) further. 

128 



4. Purification of a Thioesterase from Purple Passion 
Fruit (Passiflora edulis Sims) 

4.1 Introduction 

The presence of thioesterase activity in the mesocarp tissue of ripe purple 

passion fruit provided the first evidence that hydrolases could be involved in 

the release of VOSCs from thioester precursors in tropical fruit. Furthermore, 

this activity was demonstrated to hydrolyse natural thioester substrates 

including 3-thioacetyl hexylacetate, a precursor of the distinctive aroma volatile 

in passion fruit, 3-mercaptohexanol. However, further characterization of the 

enzyme(s) responsible for this activity was required in order to confirm a 

physiological role in the fruit. Isolating the enzyme(s) associated with 

thioesterase activity through protein purification would therefore aid in the 

characterisation and identification of the novel activity. 

Localisation of thioesterase activity to the cortex of the fruit is a characteristic 

of several families of fruit hydrolases. For example, in apple (Malus pumila) 

butyl esters are hydrolysed to release butanol into the surrounding air by 

undefined esterases in the cortex and peel 9 3 . In addition, the outer cortex of 

fruit is also known to contain cell wall hydrolases which control fruit softening 

during ripening through the degradation of structural polysaccharides. 

Hydrolases have previously attracted particular attention as targets for 

controlling fruit softening and increasing shelf life through genetic 

engineering 1 4 6. Tomato has become the model system for studying fruit 

glycosidases (EC 3.2.1), but these enzymes have also been purified and 

characterized from further fruits including polygalacturonases from peach 

{Prunus persica)u?, (3-glucosidases and (3-galactosidases from sweet cherry 

(Prunus avium)™8, (3-1,3-glucanases from banana (Musa acuminate) 1 4 9 and 

pectin esterases from Valencia orange (Citrus sinensis)^50. The fruit exocarp is 

also found to contain chitinases, as characterized in grapefruit (Citrus 

paradisi)^, where they serve as a first line of defence against fungal and 

insect pathogens. In addition to being localised to the periphery of fruit, such 

carbohydrate esterases are also found to be cell wall bound enzymes which 
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require the addition of salt (0.25-1 M NaCI) to liberate them from the complex 

polysaccharide matr ix 1 4 8 , 1 5 0 . 

Hence, the thioesterase activity determined in passion fruit shares many 

common characteristics with other fruit hydrolases. The identity of the enzyme 

will therefore help in determining whether this is a novel esterase or an 

adaptation to an existing form recruited here for a different function. 

Determining the catalytic mode of action of thioesterases in passion fruit will 

also help in the characterization of the enzyme. Through studying the inhibition 

of crude protein activity it is already apparent a catalytic serine is likely to be 

involved in catalysis, as observed through inhibition of thioesterase activity 

(87%) following treatment with the organophosphate insecticide paraoxon. The 

use of chemical probes provides a powerful tool for isolating specific enzymes 

and they will be recruited here to characterize the active site of the purified 

protein. A further property of the enzyme which is somewhat unusual is its 

preference for short chain acyl components in thioesters, such as acetyl 

groups, which is an indication of a constrained acyl-binding pocket. It is hoped 

the isolation of activity will help to resolve the mode of action of the enzyme 

and the cause of such tight chemoselectivity. 

Having developed a reliable and simple assay for monitoring thioesterase 

activity in fruit homogenates, the next step was to purify the enzyme(s) using 

classical biochemical techniques. The purification of fruit cell wall hydrolases 

has previously utilised techniques such as ion-exchange chromatography 

(anion and cation exchange), gel filtration and affinity to concanavalin A-

sepharose 1 5 0 , 1 5 2 . However, the specific properties of hydrolases vary greatly 

between families and even different isoforms of the same enzymes are known 

to posses considerably different characteristics, as observed with the acidic 

and basic pools of pectin esterases 1 5 0. Hence, the properties of thioesterase 

enzymes can not be presumed to be similar to those of other hydrolases in 

fruit and a purification protocol must be developed empirically. 
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This chapter describes the methodology used to maximise the extraction of 

thioesterase activity from passion fruit peel, followed by the biochemical 

techniques used to purify it to homogeneity. Through further characterisation of 

purified fractions in combination with protein sequencing using tandem mass 

spectrometry it was hoped the identity of thioesterase activites could be 

determined. The generation of partial protein sequence would also enable the 

design of degenerate oligonucleotide primers for amplifying the corresponding 

gene sequence from passion fruit, thus enabling the properties of the 

recombinant protein to be examined in a bacterial or yeast expression system. 

4.2 Extraction and Purification of Thioesterases from 

Passiflora edulis S ims 

4.2.1 Optimising the Extraction of Thioesterase Activity 

Prior to embarking on the purification of thioesterase enzymes it was important 

to maximise the extraction of the associated activity from the fruit peel. As has 

been described, this activity may be accounted for by a relatively small amount 

of protein in the mesocarp (low abundance, high activity), due to the high-

impact nature of the products formed. Protein purification protocols inevitably 

result in a loss of recovery of the desired enzyme at each stage and in order to 

ensure sufficient protein is present in the final preparation required for enzyme 

identification through mass spectrometry, it was important to start with 

maximum protein activity. In addition, for the reliable calculation of enzyme 

activity per gram of fruit tissue it was important to ensure complete extraction 

of active protein. The extraction and purification of thioesterase activity toward 

the model substrate MFTA was chosen due to the sensitivity of the assay, 

which would aid in isolating low abundance activities. 

As has been described, initial studies determined that activity was greatest in 

fruit at a maturity corresponding to 30% dry weight, being predominantly 

confined to the mesocarp. Hence, this fruit tissue was harvested and the juice 

and seed removed prior to homogenisation using a waring blender on ice in 

0.1 M phosphate extraction buffer (4:1, volume:weight). As noted previously, 
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the addition of NaCI (0.25 M) increased the liberation of thioesterase enzymes 

(2.5-fold) from the peel, and hence it was added to the extraction buffer. 

The binding of thioesterase activity to the insoluble cell wall matrix in 

homogenates was similar to the way in which proteins adsorb to ion-exchange 

columns and it was therefore postulated that the release of bound protein from 

this material may form a useful purification step in itself. Peel was therefore 

homogenized in a waring blender without salt and then filtered through 

Miracloth (Calbiochem) in order to wash off any unbound protein. The 

insoluble peel tissue was retained and resuspended in extraction buffer 

containing 0.25 M NaCI and stirred for 2 hours on ice to solubilise the 

adsorbed activity before filtering through Miracloth to yield a supernatant 

containing solubilised cell-wall bound protein (Figure 4.1). The supernatant 

fraction was subsequently analysed for activity and although this technique did 

remove much of the unwanted protein resulting in a 3 fold purification of 

activity, only 32% of activity was recovered. Thioesterase activity appeared to 

be present in two pools, an insoluble cell-wall bound fraction and a soluble 

fraction. It was therefore decided that at this stage it was important to retain 

both activities as a single pool and to separate them more efficiently during 

column chromatography. Hence, a single wash containing 0.25 M salt was 

used to extract both soluble and wall-bound proteins together. 

Passion fruit, like most fruit, contains a lot of pectin which forms a major 

structural component of the cell wall. This material is however problematic for 

protein purification as it blocks up columns interfering with the even loading of 

samples and enzyme affinities for the solid matrix. A number of protocols were 

therefore tested to remove the pectin, including adding protamine sulphate, a 

highly cationic peptide which often enhances sedimentation of poorly soluble 

macromolecules in solution 1 5 3. Following extraction with 10% (w/v) protamine 

sulphate and centrifugation (10,000g, 15 min) the supernatant was partially 

clarified with the pellet containing a jelly like layer of pectin. However, no 

detectable thioesterase activity remained in solution and the activity that 

precipitated in the pellet was low (~5% total crude activity). This protocol 

appeared to deactivate or denature the enzyme. 
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10 Purple passion fruit 
30% dry weight, approximately 10 days ripening from purchase at market (25°C) 

330g 

Retain peel; hard waxy exocarp 
+ soft purple mesoocarp tissue 

95g 

-Discard interior; seed, seed 
cassing and juice 

235g 
S .a . ND 
T.a. ND 

+ 0.25M NaCI 
Stir 2 hours, 4°C 

Filter through Miracloth 
Retain supernatant 

Homogenised in a waring blender, 4°C in extraction buffer (4:1, vohweight); 
0.1M Potassium Phosphate buffer, pH 7.2 
2mM EDTA 
4mM DTT 
5% P V P P (weight:vol) 

Discard supernatant, retain insoluble pellet 
Resuspend in extraction buffer + 0.25M NaCI 

Stir 2 hours, 4°C 
I 

t 
Filter through Miracloth 

Retain supernatant 
Filtered through Miracloth 

Protein: 423 
S .a . 0.976 
T.a. 413 
Fold: 1 
Yield: 100% 

Protein: 48 
S.a . 2.750 Fold: 2.8 
T.a. 132 Yield: 32% 

Protein: 403 mg 
S.a . 0.404 nkat/ mg 
T.a. 163 nkat 

Collect supernatant 
Centrifuged 10,000g, 15 minutes 

Collect supernatant 
+ 40% ammonium sulphate 

Stir 1 hour 4°C 

Centrifuged 10,000g, 15 minutes 
Retain supernatant 

+ 80% ammonium sulphate 
Stir 1 hour 4°C 

Centrifuged 10,000g, 15 minutes 
Retain pellet 

Resuspend in 10x (vol:weight) 20mM Phosphate buffer, pH 7.2 

Dialyse overnight in 100x (vohvol) 20mM Phosphate buffer, pH 7.2 

Protein: 175 
S .a . 1.870 Fold: 1.9 
T.a. 327 Yield: 79% 

Figure 4.1 Optimising the extraction of thioesterase activity from passion fruit. 
Solid arrows indicate the extraction protocol used prior to column purification, 
dotted arrows indicate protocols tested but not used due to greater losses of 
activity or reduced fold purification in comparison to the method of choice. The 
specific thioesterase activity toward MFTA (S.a., nkat mg"1 protein) and the 
total activity (T.a., nkat) following protein extraction from 10 fruit is shown. The 
fold purification (fold) and recovered yields (yield) of activity were determined. 
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The most efficient solution was found to be the simple "salting out" 

(precipitation) of protein using ammonium sulphate. The recovery of proteins 

precipitating between 40-80% salt saturation was found to remove a proportion 

of unwanted protein, which was recovered in the 0-40% fraction, and cleared 

the supernatant of the majority of pectin. This was an efficient purification step, 

resulting in a 2-fold enrichment of activity with a 79% recovery. The salting out 

of proteins using ammonium sulphate is a widely used purification technique 

and here it was employed to increase fold purification and remove unwanted 

polysaccharide material. Some pectin did however remain in solution and it 

could often be seen as a thin layer on top of the sepharose following 

chromatography. This small amount was not a problem on large columns, 

however, it was important to clarify the extract prior to loading onto the 

expensive high-performance columns later in the purification. 

A common problem encountered when making protein extracts from plant 

material is the deactivation and precipitation of proteins through oxidation, a 

destructive process that is apparent through the "browning" of an extract. 

These undesirable effects can however be avoided through the addition of 

additives to the extraction buffer which reduce oxidative processes 1 5 4. The 

metal ion chelator ethylenediaminetetraacetic acid (EDTA) was added (2 mM) 

to sequester heavy metal ions (often present as contaminants in buffer salts 

and ammonium sulphate) which catalyse the non-enzymatic oxidation of thiol 

groups on proteins leading to their inhibition or inactivation. In addition, 

phenolic compounds in plant extracts readily form covalent bonds with proteins 

and lead to their aggregation and precipitation, in order to prevent this the 

phenolic metabolite adsorbent polyvinylpolypyrrolidone (PVPP) was added 

(5% w/v). The final measure was to add 1,4-dithiothreitol (DTT, 4 mM) which 

functions as an inhibitor of polyphenol oxidases which account for the 

enzymatic oxidation and inactivation of enzymes. In combination these 

additives prevented the browning of fruit extracts and the associated 

deactivation of enzymes, this was of particular importance as the crude extract 

was left to stir in a salt solution for two hours. Following precipitation of 

thioesterase activity in the 40-80% ammonium sulphate fraction, the protein 

pellet was resuspended in a low molarity buffer (20 mM phosphate, pH 7.2) 
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and dialysed overnight to remove any traces of salt and other additives (EDTA, 

PVPP, DTT) which were no longer required. It was of particular importance to 

remove both salt and DTT which were observed to interfere with the Ellman's 

assay, the latter a consequence of thiol functionality in the compound. 

An overview of the optimal extraction protocol used for the purification of 

thioesterase activity from passion fruit is depicted in figure 4.1. In this case the 

procedure enabled 175 mg of protein to be extracted from 10 passion fruit (330 

g whole fruit/ 95 g peel) with a final thioesterase activity recorded as 1.870 

nkat mg"1, a result of a 2-fold purification and 79% recovery of activity as 

compared with the original crude extract. A 2-fold purification step giving 79% 

recovery was not as efficient as could be hoped but it should be noted that it 

was required for the removal of pectin and clarification of the extract. In 

addition, simply removing the interior of the fruit (seed and juice) removed 70% 

of unwanted tissue (by weight) and resulted in a 3.5-fold purification. The level 

of soluble protein extracted from the peel was low. However, through starting 

with a large scale extract, it was hoped that thioesterase activity could be 

purified to a level that could be analysed by tandem mass spectrometry 

(MS/MS sequencing). It was calculated that 25 fruit would provide 

approximately 1 mg of pure protein at a purification efficiency of 0 .1%, more 

than enough to ensure characterisation and identification of the protein. 

4.2.2 Column Chromatography 

The wide range of adsorbent materials suitable for trapping proteins has made 

column chromatography the most efficient means of separating enzymes 1 5 4 . A 

protein's affinity to adsorb to a variety of solid phases is dependent upon its 

surface properties (charge, hydrophobicity) and these can be used to separate 

single constituents from the protein mixture. In addition, the elution of bound 

protein can be controlled through changing the buffer conditions (ionic strength 

or pH) over a continuous gradient as a means of increasing the resolution of 

proteins further. 

A purification procedure for isolating thioesterase enzymes was essentially 

developed through trial and error. However, it was known that a proportion of 
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activity was cell-wall bound suggesting it may be highly charged (ionic) in 

nature. A number of different column adsorbents were therefore tested prior to 

establishing an efficient sequential purification protocol. 

Firstly the dialysed crude protein extract was applied to hydrophobic columns 

which separate proteins based on differences in their surface hydrophobicities 

(Figure 4.2A). Different ligands immobilised on sepharose beads were tested 

for their ability to resolve thioesterase activity, including butyl, octyl and phenyl 

substituents. In each case the dialysed crude protein extract (8 ml) was 

passed through a relatively small column (10 ml) at a flow rate of 1 ml/minute 

with bound protein eluted with a linearly decreasing concentration of 

ammonium sulphate (1-0 M) over 50 ml. The elution of MFTA-thioesterase 

activity in 1 ml fractions was monitored using the Ellman's assay. A broad peak 

of activity (20 ml) was partially bound to the butyl sepharose column with some 

eluting in the flowthrough (void) and the remainder eluting between 1-0.5 M 

ammonium sulphate. Hence, much of the unwanted protein was not removed 

and only a 3.5-fold purification was achieved with recovery of 42% of the 

activity. The longer aliphatic chain of octyl sepharose provided a more 

hydrohobic matrix and was more efficient at adsorbing activity, a single tight 

peak eluted in 0.05 M ammonium sulphate, after the majority of soluble 

protein. Hence, this was an efficient column purification step resulting in a 9-

fold enrichment of activity with 77% recovery. On the phenyl sepharose 

column, activity eluted midway through the gradient of mobile phase in 0.36 M 

ammonium sulphate, achieving a 4.2-fold purification with 56% of the activity 

recovered. 

The behaviour of thioesterase activity on ion-exchange chromatography was 

also investigated, whereby proteins were separated on the basis of differences 

in their charge characteristics (cationic/anionic), in this case on a 

diethylaminoethyl (DEAE) weak anion-exchange column (Figure 4.2B). A 

dialysed crude sample (140 ml) was applied to a larger (43 ml) column at a 

flow rate of 4 ml/minute as a means of determining the capacity of the column. 

The bound protein was eluted using a linearly increasing gradient of sodium 

chloride (0-0.5 M) over 300 ml. 
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A. Hydrophobic column chromatography 

Butyl sepharose: Sepharose 

1 100 

0.75 » f'3 
n. 
II) 
• 

50 IB 

0.25 E 25 
: 

,,, 
0 

20 30 40 50 0 10 
Fraction number 

Fraction ID Vol (ml) Total protein 
(mg) 

S.a. 
(nkat mg"1) T.a. (nkat) Fold 

purification Recovery 

Crude 8 12.05 0.72 8.31 - 100% 

Column 
fractions 15-35 42 1.46 2.5 3.65 3.6 44% 

Octyl sepharose Sepharose 

100 

0.75 S 75 

111 

0.25 76 
0) 

0 a. • 

0 5 10 15 20 25 30 35 40 45 
Fraction number 

Fraction ID Vol (ml) p r o ^ ^ g ) { n ^ ) J a ^ purification R e c o ^ 

Crude 8 12.05 0.72 8.67 - 100% 

Column 
fractions 35-

45 
22 1.02 6.67 6.67 9.1 77% 

Figure 4.2 Protein purification - column chromatography. The behaviour of 
thioesterase activity on hydrophobic interaction columns (A.) and on a DEAE 
anion exchange column (B.). Blue lines show the elution of UV absorbing 
protein (280nm), red dotted lines indicate thioesterase activity and black lines 
represent the gradient of mobile phase. 
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Phenyl sepharose: 
Sepharose 

100 

S 75 0.75 £ 
ro 

2 50 0.5 

25 0.25 \ 31 

CO 

ID 
n 0 

0 5 10 15 20 25 30 35 40 45 50 
Fraction number 

Fraction ID Vol (ml) 7 ° t a ' . , . S / a ' -n T.a. (nkat) ! l o l d . . Recovery v ' protein (mg) (nkat mg ) v ; purification 3_ 
Crude 8 12.05 0.72 8.67 - 100% 

Column 
fractions 

29-38 
20 1.61 3.02 4.87 4.2 56% 

B. Anion exchange chromatography 
HN 

Sepharose DEAE sepharose: 

Pool II Pool I 100 

0.4 
B 7 5 

ro CD 

in 
50 

ra to 0.2 

i 
£ 25 

0.1 

ro 0) 0 
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

Fraction number 

Fraction ID Vol (ml) Total protein 
(mg) 

S.a. 
(nkat mg'1) T.a. (nkat) Fold 

purification Recovery 

Crude 140 145 0.37 53.65 - 100% 
Pool I: 
column 144 43 0.67 28.8 1.8 54% 

fractions 5-22 
Pool II: 
column 112 14 1.63 22.78 4.4 42% 

fractions 30-43 
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Interestingly this chromatography split the activity into two peaks, a basic 

fraction eluting in the void volume (0 M salt) and a more acidic fraction eluting 

with 0.14 M NaCI (Figure 4.2B). To test for the possibility that the lack of 

retention was due to over-loading of the column, this fraction was reapplied to 

freshly conditioned DEAE sepharose. Again the activity was unretained 

suggesting that the respective enzyme was basic in nature. The first pool (54% 

activity) eluted with the majority of unbound protein and hence a fold 

purification of only 1.8 was achieved as opposed to the second fraction which 

eluted later with a greater fold purification of 4.4. 

After examining the characteristics of thioesterase activity on the different 

columns, a sequential purification protocol was chosen. Twenty-five ripened 

purple passion fruit were used in a large scale purification (Methods 2.4.1). 

Following the removal of juice and seed material, this left 245 g of peel tissue 

from which the enzyme would be extracted. A crude protein extract was 

prepared (Figure 4.1) and following precipitation of the enzyme with 

ammonium sulphate and overnight dialysis the thioesterase was sequentially 

purified using DEAE anion exchange chromatography followed by hydrophobic 

interaction chromatography; firstly using octyl sepharose and then a high 

performance phenyl suparose column (GE Healthcare). 

The crude protein preparation was applied to the DEAE sepharose column (43 

ml) at a flow rate of 4 ml/min with 8 ml fractions collected and assayed for 

activity. As before thioesterase activity eluted in an unbound and bound pool, 

referred to as pools 1 and 2 respectively (Figure 4.3). The unretained pool 1 

activity accounted for slightly more of the recovered total activity (59%) and 

eluted over multiple fractions in the void volume. The bound pool eluted with 

0.196 M salt and was found to have a considerably higher specific activity 

(8.07 nkat mg"1) than that of pool 1 (3.47 nkat mg"1). However, at this stage the 

purification of both pools was pursued so as to distinguish and identify both 

forms of activity. 

Ammonium sulphate (1 M) was added to both pools of activity before they 

were separately applied onto an octyl sepharose column (47 ml) at a flow rate 
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1. 2. 3. M. 4. 5. M 

Figure 4.3 A. Sequential purification of pool 1 thioesterase activity by 
chromatography on (1.) DEAE Sepharose, (2.) Octyl Sepharose and (3.) 
Phenyl Superose. Blue lines show the elution of UV absorbing protein (280 
nm), red dotted lines indicate thioesterase activity and black lines represent 
the gradient of mobile phase. (4.) Analysis of polypeptides at each stage of 
purification via SDS-PAGE, lanes 1-3 12% gels, lanes 4+5 10% gels. 
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of 4 ml/min with 8 ml fractions collected. Both pools of activity demonstrated 

similar characteristics, eluting with 0.49 M and 0.09 M ammonium sulphate 

respectively, an indication they were both relatively hydrophobic proteins, pool 

2 slightly more so than 1. Octyl sepharose chromatography was efficient at 

removing much of the unwanted protein, however, it did result in a large elution 

volume (168 ml and 56 ml respectively). It was therefore necessary to 

concentrate the protein solution to 10 ml by ultrafiltration on centrifugal 

Vivaspin columns (Sartorius) prior to loading on the final column. 

The final purification step using high-pressure liquid chromatography (HPLC) 

with a phenyl-superose column (0.69 ml) provided exceptional resolution of the 

remaining proteins. Pool 1 thioesterase activity bound to phenyl superose and 

was recovered with 0.82 M ammonium sulphate (figure 4.3A). Based on the 

final specific activity of the thioesterase (55.5 nkat mg"1), the enzyme had been 

purified 57-fold in 1 % yield. Pool 2 activity also bound to phenyl superose and 

eluted slightly later in 0.55 M ammonium sulphate (figure 4.3B). Based on the 

final specific activity of the thioesterase (149.38 nkat mg"1), the enzyme had 

been purified 154-fold in 3% yield. A summary of the purification procedure is 

depicted in table 4.1 where the purification fold and recovery of total activity 

are shown for both pools of activity at each subsequent purification step. 

4.2.3 SDS-PAGE Analysis of Purified Activity 

The analysis of polypeptides present at each stage of the purification was 

achieved using SDS-PAGE (sodium dodecyl sulphate polyacrylamide gel 

electrophoresis). Protein samples denatured in SDS were resolved on either 

10% or 12% acrylamide gels, the latter used when the resolution of smaller 

polypeptides was required. Polypeptides were subsequently stained with 

SYPRO Ruby protein gel stain (Invitrogen) and visualised using a UV 

transilluminator. This stain was chosen due to its ease of use and its high 

degree of sensitivity (minimum detection limit of 1-2 ng protein per gel band). 

Gel images showing the total protein extracted from fruit peel and polypeptides 

in subsequent purified fractions highlight the efficiency of each purification step 

(Figure 4.3A+B). A number of polypeptides can be seen in the final preparation 
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of each pool indicating that both thioesterase enzymes had been purified to 

near homogeneity. However, to determine which polypeptides were associated 

with thioesterase activity individual fractions from the terminal purification steps 

were analysed by SDS-PAGE (Figure 4.4A+B). In both cases a 43 kDa 

polypeptide was identified whose relative abundance mirrored eluting 

thioesterase activity. 

4.3 Characterisation of Purified Thioesterase 
The purified thioesterases were termed Passiflora edulis Sims wall-bound 

hydrolase A and B (PeWHa/ PeWHb). Due to the greater specific activity 

demonstrated by PeWHb this activity was selected to be characterised further. 

However, the identity of both pools was of interest, especially in determining 

whether PeWHa was a separate isoform of the protein. Both purified 

polypeptides were therefore excised from the SDS-gels and processed prior to 

protein sequencing (Section 4.4). 

Numerous biochemical techniques were used to characterise purified PeWHb 

further. Firstly, the size of the active protein was investigated using gel filtration 

(Figure 4.5). This technique also referred to as size exclusion chromatography, 

separates proteins on the basis of mass, but unlike SDS-PAGE, it does not 

require proteins to be denatured. They are separated in solution in their 

physiological conformation. This was important in determining the oligomeric 

state of the protein, resolving whether activity was due to a single polypeptide 

or multiple sub-units. Therefore a semi-purified fraction of activity retained 

following octyl sepharose chromatography (10 ml) was applied to a superdex 

gel filtration column (GE Healthcare, 7.8 ml) in 50 mM phosphate buffer, pH 

7.2 with 0.15 M NaCI at a flow rate of 1 ml/min. The elution of activity relative 

to standards of known size indicated that the native enzyme was of a size of 

approximately 20-32 kDa (Figure 4.5). Individual proteins of the same size are 

known to behave differently on size exclusion columns dependent upon their 

surface properties and conformation. This provided evidence that the active 

thioesterase enzyme was a monomer. 
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pool 2 (B.). The active fractions eluting from the final purification column 
(phenyl superose) were analysed via SDS-PAGE and when aligned with 
relative thioesterase activity a polypeptide of 43 kDa mirrored eluting activity, 
as highlighted by the arrows above. 
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Figure 4.5 Characterising the size of PeWHb by gel filtration. A. Gel filtration 
chromatography trace showing the separation of standards (200 ng); bovine 
serum albumin (BSA), ovalbumin (OVA) and cytochrome C (CYC) and the 
elution of thioesterase activity. The elution of activity was in fractions 17-21 
(retention time: 20.5-24.5), with maximum activity in fraction 19. B. A 12% 
SDS-gel showing the polypeptides across the active peak, note the peptide at 
43 kDa (arrow), the abundance of which mirrors elution of activity. C. A 
standard curve showing the linear relationship between Ln protein size (Da) 
and retention time on the size exclusion column. Thioesterase activity 
corresponds to a protein approximately 20-32 kDa in size, a monomer. 
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However, the exact molecular mass was difficult to ascertain as the protein 

eluted later than expected giving it a lower mass than that observed on SDS-

gels. This anomaly was likely to be a result of partial adsorption of the protein 

to the solid matrix through ionic or hydrophobic interactions. Hence, this study 

indicated the active thioesterase was as a monomer with SDS-PAGE analysis 

of the active peak eluting from the gel filtration column confirming its mass as a 

43 kDa protein (Figure 4.5B). 

The isoelectric point of the enzyme was determined using two-dimensional gel 

electrophoresis whereby proteins were resolved by isoelectric focussing over a 

pH gradient (pH: 3-10) in the first dimension and subsequently resolved by size 

in the second dimension. Purified PeWHb eluting from the final phenyl 

superose column was concentrated 10-fold (SpeedVac) to ensure sufficient 

loading of protein in the 100 ju.l (100 \xg) sample applied onto an Immobiline dry 

strip (Amersham) for electrophoresis. The gel strip was inserted onto an 

agarose plate gel (12%) containing SDS and run in the second dimension 

(Figure 4.6). 

Isoelectric point (pH) 
7 

Size 
(kDa) 

Figure 4.6 Characterising the isoelectric point of PeWHb by resolution on a 2D 
gel. Polypeptides eluting from the final phenyl superose column (pool 2) were 
resolved by isoelectric point in the first dimension (horizontal) and then by size 
in the second dimension (vertical). 
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Although partially purified PeWHb was the slightly more acidic of the two pools 

of activity, it was still an unusually basic protein with a pi (isoelectric point): 9.5-

10. PeWHb was resolved as multiple spots over this pH and in order to 

determine whether this was due to different forms of the protein or unequal 

resolution on the gel each spot was excised and analysed using MALDI-ToF 

mass spectrometry (data not shown). Each peptide fragmented in a similar 

pattern and it was therefore confirmed each spot was the same protein, 

PeWHb. This is an occasional problem noted previously in isoelectric 

focussing 1 5 4 , whereby proteins associated with ampholytes in the gel acquire 

isoelectric points which differ from that of the free protein. 

PeWHb was subsequently analysed for post-translational modifications, 

namely glycosylation using a combination of gel staining and concanavalin A 

chromatography. Purified PeWHb appeared to be partially glycosylated based 

on its incomplete adsorption to concanavalin A sepharose (Con-A). Only 43% 

of activity was selectively retained by Con-A and eluted with 0.075 M methyl-a-

D-mannopyronoside (Figure 4.7A). In order to determine whether the bound 

fraction was in fact glycosylated and to rule out that adsorption may be due to 

ionic or hydrophobic interactions with the matrix, the fractions eluting from the 

column were analysed with Krypton glycostain (PIERCE) (Figure 4.7B). The 

stain reacts with periodate oxidised carbohydrate groups on glycoproteins, 

creating a fluorescent dye. Reactivity to the stain suggests the partially bound 

fraction was glycosylated. Hence, a fraction of this activity has undergone 

glycosylation, perhaps as a means of regulating the properties and localisation 

of the protein between soluble and cell-wall fractions. 
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Figure 4.7 Examining glycosylation. A. The binding of thioesterase activity to 
Conconavalin A sepharose, only partial binding was observed (43%). B. The 
fluorescent detection of glycoproteins in fractions eluting from the Con-A 
column using Krypton stain (PIERCE), minimal detection limit 15 ng of protein 
per band. A comparison of total protein stained with Sypro ruby (top) and with 
Krypton stain (bottom). Glycoproteins appear as darker bands, the 43 kDa 
peptide of interest is brighter in respect to other polypeptides following Krypton 
staining. 
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The sensitivity of the enriched thioesterase (phenyl superose fraction) to 

inhibition by the different classes of hydrolase inhibitors was then re-examined 

(Table 4.2). As determined with the crude enzyme, the partially purified 

preparation was selectively inhibited by the organophosphate paraoxon (100% 

inhibition). In addition, the purified enzyme was more susceptible to inhibition 

with the serine hydrolase inhibitor fp-biotin (86% inhibition) as compared to the 

crude protein preparation. The suggestion that the protein was a serine 

hydrolase was confirmed by labelling PeWHb with a trifunctional 

fluorophosphonate activity probe (TriFPP). The custom-prepared TriFPP, 

bearing a reactive fluorophosphonate to covalently modify reactive active site 

serines, and biotin and rhodamine components for recovery and recognition 

respectively (figure 4.8A), had been previously shown to label and inactivate a 

serine hydrolases in the model plant Arabidopsis thaliana^25. Following a 60 

minute incubation with 10 uM probe, 86% of the PeWH's thioesterase activity 

was lost, with the concomitant fluorescent labelling of the 43 kDa polypeptide 

(Figure 4.8B). 

The enzyme was then screened for activity against the panel of thioester and 

carboxylester substrates in comparison with the commercial hydrolases (Table 

4.3). The greatest activity of purified PeWHb was toward MFTA (2); 149.38 nkat 

mg protein, followed by the carboxyl ester p-nitrophenylacetate (8) (11.39 nkat 

mg"1). This is somewhat different to PLE which had greatest activity toward 

carboxyl ester substrates. Interestingly, the position of the thioester functionality 

on the cyclic ring appears important: activity toward 2 where the thioester 

moiety is at position 3 is some 15 times greater than the activity toward 5 where 

the thioester is at position 2. In addition, the hydrolysis of the thioester bond in 

1 occurs at a greater rate (9x) than that of hydrolysis of the carboxylester bond 

in the same compound (as determined using the GC assay). This could be a 

consequence of the higher energy C-S bond compared to the C-0 bond, 

however it is equally as likely to be a consequence of the enzymes preference 

for thioester substituents, an indication that the enzyme shows 

chemoselectivity. 
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Inhibitor 
(hydrolase class inhibited) 

Percentage Inhibition (%) 

Crude protein Partially purified protein 
(PeWHb) 

38 +/- 1 86 +/- 3 

10uM Fp-biotin 
(serine) 

O , , 0 -

87 +/- 3 100 +/- 1 

1 mM Paraoxon 
(serine) 

NH, 
ND ND 

1mM lodoacetamide 
(cysteine) 

HgCI2 

(cysteine) 25 +/- 1 ND 

1mM Mercuric chloride 
(cysteine) 

ND ND 

1mM EDTA 
(metallo hydrolase) 

Table 4.2 The inhibition of thioesterase activity. Structures of inhibitors and the 
hydrolase class towards which they are active. Inhibition of PeWHb is shown in 
comparison to the crude extract from whole fruit. Percentage inhibition values 
were calculated from the loss of activity after treatment with the inhibitor for 2 
hours at 30°C and stated as the average value from triplicates +/- the standard 
deviation from the mean. ND; no inhibition detected. Control studies using 
acetone (- inhibitor) were found to have no effect on enzyme activity. 
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Figure 4.8 A. The structure and function of the biotinylated fluorophosphonate 
suicide probe. B. Labelling with a fluorophosphonate suicide probe. Gel images 
of crude passion fruit extract and purified PeWHb (Phenyl superose 
preparation) showing total protein (Sypro stain, left) compared to labelled 
protein as seen under fluorescent light (right). The 43 kDa polypeptide is 
labelled with the probe confirming it is a serine hydrolase. M: markers kDa. The 
diffuse bands in the fluorescent images at 21 kDa are likely to be due to 
unbound probe. Note the larger peptide bands (97 kDa) highlighted in the 
labelled crude sample indicating the presence of a further set of passion fruit 
hydrolases. 
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Compound 

number 
Thioester/ ester substrates 

Crude passion Pure passion fruit Porcine liver Candida 

fruit extract thioesterase esterase rugosa lipase 

(S.a. nkat/mg) (S.a. nkat/mg) (S.a. nkat/mg) (S.a. nkat/mg) 

10 

3-(thioacetyl) hexylacetate 

X 
I \ 

s o 

2-methyl furan-3-thioacetate 

( X 
Tetra hydro 2-methyl furan-3-

thioacetate 

Q 

Methyl thiofuroate 

o 

Furfuryl thioacetate 

o / 

8-(acetylthio) menthone 

J L 

a-Naphthyl acetate 

•CH. 
C 

p-Nitrophenyl acetate 

4-Methylumbelliferyl acetate 

4-Methylumbelliferyl propanoate 

11 

0.04 

+/- 0.002 

0.97 

+/- 0.003 

0.14 

+/- 0.01 

ND 

0.24 

+/- 0.04 

0.13 

+/- 0.02 

0.26 

+/- 0.9 

0.67 

+/- 0.10 

0.04 

+/- 0.003 

0.03 

0.008 

0.0005 

+/- 0.0001 

1.12 

+/- 0.02 

149.38 

+/-0.0021 

0.54 

+/- 0.05 

ND 

10.06 

+/-

8.84 

+/- 0.08 

4.16 

+/- 0.72 

11.39 

+/- 1.2 

0.66 

+/- 0.08 

0.57 

+/- 0.09 

0.006 

+/- 0.0004 

14.02 

+/- 0.72 

537.88 

+/- 24.65 

58.71 

+/- 5.68 

100.0 

+/- 9.75 

35.04 

+/-1.98 

4.17 

+/- 0.02 

159.4 

+/- 16.14 

2117.6 

+/- 87.5 

426.15 

+/- 72.55 

1589.26 

+/-102 

1302.97 

+1-97 

ND 

0.35 

+/- 0.02 

ND 

ND 

0.05 

+/- 0.01 

0.02 

+/- 0.01 

0.58 

+/- 0.01 

5.14 

+/- 0.23 

4.26 

+/-0.18 

118.36 

+/-21.39 

36.59 

+/- 4.00 

4-Methylumbelliferyl hexanoate 

Table 4.3 Enzymatic hydrolysis of thioester and ester substrates by passion 
fruit (crude protein and purified enzyme), mammalian esterase (PLE) and a 
microbial lipase. Activities are means of triplicates +/- standard deviation from 
the mean. ND; no activity detected. 
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PLE demonstrated broader substrate specificities than the C.rugosa lipase 

which was more selective for longer chain, bulky substituents, an observation 

noted previously 1 0 3. It is likely the lipase would show greater specific activities if 

substrate concentrations were increased above their solubility limits. This may 

account for the relatively low activities observed. In contrast, the thioesterase 

from passion fruit, PeWHb predominantly favoured short chain acyl 

components on the substrate, optimally acetate, as demonstrated by activities 

toward the increasing chain length of methylumbelliferyl esters (9, 10, 11) 

(Table 4.3). Interestingly many natural odorant volatiles are found to be 

acetylated. It will however accept bulky substituents as the alcohol component 

of the compound. In addition PeWHb appears to show a preference for cyclic 

constituents especially those containing oxygen. PeWHb is likely to show 

improved selectivities toward these short-chain volatiles in a regio- and chemo-

specific manner. 

4.4 Identification of Purified Thioesterase 
It was important to establish the identity of PeWHa and PeWHb. However, this 

was likely to be challenging as the enzymes were purified from a non-model 

plant source which had attracted little scientific attention to date. The protein 

data for passion fruit on genomic and EST (expressed sequence tag) 

databases was therefore likely to be limited, meaning the identification of 

PeWHa+b would be based upon homology to proteins from other plant 

species. However, with sufficient protein sequence data generated it was 

hoped the identity of each enzyme could be determined. In addition, being able 

to associate this activity with homologous proteins may shed further light onto 

the mechanism of action of the enzyme, and the associated scientific literature 

may indicate further endogenous roles. 

Mass spectrometry is an outstanding analytic tool which is used to identify 

compounds with remarkable levels of sensitivity 1 5 5. Initially such instruments 

were limited to the analysis of small compounds due to the requirement of 

generating gas-phase ions from a sample. However, over the past twenty 

154 



years instruments have also been optimised for analysis of larger biomolecules 

such as proteins 1 5 5. Through improved ionisation techniques such as MALDI 

(matrix assisted laser desorption ionisation) and novel mass analysers, used 

for separating ions, such as time of flight (ToF) spectrometers the problems 

associated with analysing high-mass multiply charged ions has been 

overcome. Such an instrument offers the only truly reliable determination of the 

molecular weight of a protein. In addition, through tandem mass spectrometry 

whereby parent ions are fragmented further and analysed on a second mass 

spectrometer the structure and sequence of a protein can be determined. Such 

techniques were therefore used to determine the identity of PeWHa+b. 

As described the sample concentration is vital for successful analysis. Micro 

litres of sample are required for MALDI and only part of this is consumed in 

analysis. Through visualising PeWHa and PeWHb on Coomassie stained gels 

it was apparent enough protein (10 ng+) was present. Peptides were extracted 

from the gel slices and digested with trypsin (30 u,g/ml) prior to separation 

using liquid chromatography and analysis through mass spectrometry (LC-

MS). LC-MS using a MALDI-ToF mass spectrometer (Durham proteomics) was 

used to analyse PeWHa+b. The MALDI ion traces for PeWHa+b (Annex I: 

PeWH Protein Analysis) illustrate similar fragmentation of the original peptides, 

indicating they are in fact the same protein. Their different properties may 

therefore be a result of subtle post-translational modifications (e.g. 

glycosylations). 

PeWHb was also analysed further through tandem mass spectrometry (MS-

MS) sequencing on a ToF-ToF mass spectrometer (Thermo). Such an 

instrument has been previously used for successful tandem MS based 

sequencing of unknown proteins from non-model plants 1 4 3 . Initial ionisation 

through MALDI produced a spectrum with five major ion peaks (Figure 4.9). 

Hence, due to the nature of the protein only these five distinct peptides could 

be further fragmented to provide amino acid sequence, somewhat limiting the 

amount of amino acid coverage generated. 
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However, it was hoped these five ions would be sufficient and they were 

therefore fragmented through collision induced dissociation (CID) and 

analysed on a further ToF mass spectrometer (Annex I B). Determining the 

mass difference between consecutive daughter ions allowed the determination 

of amino acid sequence for all five major ions (Table 4.4). 

These sequences were then used to interrogate the plant genome and EST 

databases using short match BLAST (basic local alignment search tool, 

www.ncbi.nlm.nih.gov/blast/Blast.cgi). From the five major hits it was apparent 

the enzyme was homologous to a carbohydrate binding hydrolase. Three 

families of enzymes were matched as top hits; polygalacturonase (EC 

3.2.1.15), B-galactosidase (EC 3.2.1.23) and pectin acetylesterase (EC 

3.1.1.6). Of these proteins identified, pectin acetylesterase was the primary 

candidate, with three of the five fragments generating significant hits toward 

this family of enzymes. The hits were considerably more significant than those 

toward the other enzymes, with higher score values and lower E (Expect). In 

addition, the properties of PeWH did not match well with those of the other 

enzyme families. For example, through comparing p-galactosidase enzymes 

isolated from plants using the enzyme database BRENDA (http://www.brenda-

enzymes.info/index.php4) it was apparent their molecular mass was generally 

larger (>70 kDa), often due to multiple domains, and their isoelectric points 

were lower as determined in mung bean (Vigna radiata) (pi: 7-8) 1 5 6 . A 

comparable search on BRENDA for polygalacturonases showed that those 

isolated and characterized from plants ranged considerably in size (30-330 

kDa) but generally had isoelectric points between pH 7-8, with the greatest 

from Lily (Lilium longiflorum), pi: 8 . 1 1 5 7 . Hence, the high isoelectric point of 

PeWH (9.5-10) could not be accounted for by these enzymes and our focus 

concentrated on the more significant match of pectin acetylesterases (PAEs). 

PeWH (43 kDa) had a comparable molecular mass to other PAEs (42-45 kDa) 

and a similar isoelectric point (pH 8-10) 1 5 8 . In addition, the occurrence of 

peWH as a cell wall bound protein, with a preference for acetylated substrates, 

being basic in nature and with supporting protein MS-MS data all indicated the 

purified thioesterase, PeWH, was a PAE. 
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Database hit Predicted Mr/ 
Peptide fragment (E value / Identification Isoelectric point Accession 

Score) (kDa)/ pi 

1. 

VG(I/L)GNSPSR 

(9 amino acids) 

GNSPSR 
GNSPSR 
GNSPSR 

Lactuca 
sativa 

(21.0/ 692) 

Pectin 
acetylesterase, 

putative 
(member of pectin 

acetylesterase 
family) 

43.7 
8.76 

AAP72959 

2. 

N(I/L)(I/L)APSAVD 

(11 amino acids) 

NILAPSAVD 
N+LAP+AVD 
NVLAPTAVD 

Arabidopsis 
thaliana 

(25.2/ 37) 

Pectin 
acetylesterase, 

putative 
(member of pectin 

acetylesterase 
family) 

42.1 
9.31 AAK96722 

3. 

VP(I/L)T(I/L)VQSAVA 

(11 amino acids) 

VPLTLVQSA 
VPLTL+Q+A 
VPLTLIQAA 

Arabidopsis 
thaliana 

(25.2/41) 

Pectin 
acetylesterase, 

putative 
(member of pectin 

acetylesterase 
family) 

45.9 
6.9 

NP182216 

4. 

TFGFAW(I/L)GGK 

(10 amino acids) 

GFAWLGG 
GFAWL G 
GFAWLNG 

Trifolium 
pratense 

(23.1/ 159) 

B-galactosidase, 
putative 

47.3 
8.04 BAE71266 

5. 

AV(I/L)DD(I/L)(I/L)FK 

(9 amino acids) 

VIDDLLFK 
VIDD LFK 
VIDDNLFK 

Solanum 
lycopersicum 

(23.1/159) 

Polygalacturonase 
(pectinase) 

50.1 
6.4 

P05117 

Table 4.4 Sequencing of the purified thioesterase. Database hits obtained 
from MS-MS sequencing of polypeptides. For each peptide the top BLAST hits 
are presented for known or putative proteins. Both score and expect values 
are shown to highlight the significance of the match. Score: Higher the better, 
measure of how close the match is, taking into account miss matches (space) 
or similar amino acid types (+). Expect: Lower the better, the chance such an 
alignment could occur by chance in the database being searched. 
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4.5 Discussion 
Through the purification and characterisation of thioesterase activity from the 

peel of ripened purple passion fruit it has been demonstrated that a protein 

characteristic of a pectin acetylesterase (PAE) is also able to selectively 

hydrolyse acetylated thioesters to release VOSCs. 

The observed activity was found to be a consequence of two pools of acidic 

and basic enzyme fractions which were independently purified and shown to 

be the same protein through MALDI fragmentation. The differences in their 

properties and activities was therefore a likely consequence of post-

translational modifications, possibly through glycosylation which may alter the 

surface properties of the enzyme thus increasing or decreasing its affinity for 

the cell-wall matrix. Interestingly this observation has been noted before in 

Valencia orange (Citrus sinensis), whereby hydrolase activity was separated 

into two pools of activity on an anion exchange column (Mono S), one pool 

which bound to the matrix and the other which was unbound and eluted in the 

void volume 1 5 0 . This is the same observation noted in our studies and often the 

relationship between the size of the bound and unbound pools varied 

dependent upon the extract, as described in Citrus^50. The regulation of 

polygalacturonase (PG) activity in tomato has previously been linked to post 

translational modification. It was proposed that the binding of the enzyme to a 

further heavily glycosylated peptide, the PG p-subunit, altered the enzyme's 

characteristics through localising it to particular regions of the cell wa l l 1 4 6 . 

PeWH was shown to be a monomeric enzyme, and it therefore appears likely 

that glycosylation influences localisation of the protein in the cell wall. The 

active enzyme may only become glycosylated and recruited to the cell wall late 

in ripening, when it is required for softening the cell-wall matrix, or in the 

release of volatiles from precursors as we postulate here. 

Pectin acetylesterases (PAEs), despite their importance in plant cell wall 

metabolism, have not been well studied at the biochemical level. However, 

what is known about these enzymes does support the identification of PeWH 

as a PAE. Firstly, as determined in Citrus species including grapefruit, orange 
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and lemon PAE activity like PeWH was found predominantly in the peel, but 

not the flesh of the fruit 1 5 9 . PAEs have only been purified from mung bean and 

orange, with the extraction conditions mirroring those required to isolate 

PeWH. For example, high salt concentrations in the extraction buffer (0.2-1 M 

NaCI) were required to solubilise the ionically bound cell wall proteins in mung 

bean 1 5 8 and orange 1 5 0 . Like PeWH, PAEs are unusually basic proteins and are 

of similar molecular mass; the PAE from mung bean was a 43 kDa protein with 

an isoelectric point pH > 9 1 5 8 . 

A 43 kDa cell wall bound PAE was first purified from mung bean (Vigna 

radiata) hypocotyls in 1994 1 5 8 and then sequenced and c loned 1 6 0 . Due to the 

enzyme's preference for hydrolysing acetylated pectin it was termed a "pectin 

acetylesterase". Similar enzyme activities had been previously identified in fruit 

peels, such as Citrus (grapefruit, orange and lemon) 1 5 0 , 1 5 9 , however, the only 

enzyme cloned remains that from mung bean. Based on sequence similarity 

PAEs were grouped into a sub-family of carbohydrate esterases referred to as 

family 13 pectin acetylesterases 1 6 1 , 1 6 2 . The protein entries are catalogued on 

the carbohydrate-active enzyme (CAZy) database which is regularly updated 

and available at www.cazy.org/. This family contains 12 putative PAEs in 

Arabidopsis thaliana and 11 in rice (Oryza sativa). The relatively large number 

of different isoforms of PAEs in plants suggests the spectrum of functions they 

may serve. Those in tropical fruit may well have evolved through divergence 

and diversification to become selective for the varied chemical forms of flavour 

and fragrance metabolites. However, this hypothesis needs to be examined 

further. 

The inhibition studies on the purified enzyme demonstrated that it is a classic 

serine hydrolase, being selectively inhibited by organophosphates which 

covalently modify this catalytic residue. Citrus PAE was also demonstrated to 

be inhibited by organophosphates 1 6 3 which is consistent with the evidence that 

PeWH is a PAE. The presence of an active site serine was clearly illustrated 

using the fluorophosphonate trifunctional probe, which has been also shown to 

act as a suicide inhibitor of carboxylesterases involved in xenobiotic 

metabolism in black-grass 1 4 3 and Arabidopsis 1 2 5. Interestingly, the trifunctional 
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probe also labelled and inactivated a bifunctional thioesterase/ 

carboxylesterase S-formylglutathione hydrolase 1 6 4. PeWH was also a 

bifunctional carboxylesterase and thioesterase, though it was unable to 

hydrolyse amide bonds. The trifunctional probe has been demonstrated to be 

an important tool for characterising hydrolases in these plants and it has great 

potential here to be utilised further in fruit for the specific pull-down of 

hydrolases. Such studies could be used to characterise the different forms of 

cell-wall hydrolases in peel at different developmental stages. This may form a 

useful directed screen for further hydrolases in fruit with potential use as 

biocatalysts in F&F synthesis. 

An examination of plant PAE protein sequences, including the mung bean 

sequence and those with significant similarity with PeWHb, highlight the amino 

acid residues making up the His-Asp-Ser catalytic triad of a serine hydrolase 

(Figure 4.10). In addition, as determined using the SignalP 3.0 server (ExPASy 

proteomics tools, www.cbs.dtu.dk/services/SignalP/), the PAE sequences were 

predicted to contain a signal peptide leader sequence which targets the protein 

to the cell wall (Figure 4.10). To date none of the plant PAEs have been 

crystallized and the presence of an oxyanion hole in the active site remains to 

be confirmed. However, a microbial PAE homologue was crystallized and 

found to be a classic a/3 serine hydrolase enzyme with the oxyanion hole 1 6 5 . 

The most unusual feature of PeWH was its selectivity for acetyl groups as the 

acyl components. This was suggestive of a constrained acyl-binding pocket, 

which is in complete contrast to the accommodation of large acyl chains seen 

with PLE and Candida rugosa l ipase 1 0 3 . Relatively little is known about the 

structure of PAEs and class 13 hydrolases which can account for this 

selectivity for acetyl-esters. However, the specificity of PAEs toward short-

chain acetyl groups as the acyl components has also been observed in Citrus 

species (grapefruit, orange and lemon), where increasing the acyl chain length 

to C4 butyrate esters reduced activity by around 50% 1 5 9 . Plant PAEs are 

regiospecific, hydrolysing ester bonds at C2 and C3 positions on galacturonic 

acid residues 1 6 6. 
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It is possible the oxygen in the cyclic structure of substrates (and sugars) is 

important for the orientation of the compound in the active site of the enzyme. 

This may account for the activity observed toward VOSCs where the 

conformation of the tropical olfactophore (Figure 1.4) has oxygen in a specific 

orientation to the hydrolysed thioester bond. 

The endogenous role of PAEs is somewhat unresolved, however, a number of 

suggestions have been put forward. The enzyme is important in regulating the 

degree of acetylation in pectin and hence has been proposed to be involved in 

cell wall modification, for example in softening fruit t issue 1 6 7 , or in controlling 

cell growth and elongation in developing hypocotyls 1 6 0. However, in Citrus 

PAEs are not only localised to the cell-wall material but are also found at high 

concentrations in juice vesicles, suggesting a possible further ro le 1 6 7 . 

We have therefore highlighted a possible novel function for PAEs in VOSC 

generation in tropical fruit. Work now needs to focus on cloning and expressing 

the enzyme both as a means of confirming identity and for characterizing the 

enzyme further. This will form the focus of the following chapter. 
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5 . C l o n i n g o f P u t a t i v e t h i o e s t e r a s e s f r o m Passiflora 
edulis S i m s a n d Arabidopsis thaliana 

5.1 Introduction 
Following from confirming the presence of thioesterase activity in passion fruit 

and the identification of the purified enzyme, PeWH, as a pectin acetylesterase 

(PAE), work now focussed on the cloning and expression of the respective 

protein. Determination of the complementary DNA (cDNA) coding sequence 

for PeWH and its subsequent expression would enable further characterization 

of the enzyme and confirm the protein's identity, which so far had been 

described through proteomics. Furthermore, the cloning and expression of the 

protein would form the basis of a system for obtaining the purified biocatalyst 

in abundance. An overview of the technical strategy for sourcing the enzyme 

through genetic engineering is depicted in figure 5.1. This process is 

dependent upon an expression construct containing the full length cDNA open 

reading frame for PeWH and its transformation into a suitable expression 

system. 

The demand for enzymes for use in bioprocessing has never been greater, as 

is reflected by the fact that in 1991 8% of all papers published in synthetic 

organic chemistry described the use of enzymatic synthesis 1 6 8. Hence, the 

commercial availability of enzymes both in purified or crude form has 

increased dramatically with over thirty five major global suppliers competing 

today 1 6 9 . The majority of commercial biocatalysts are supplied in crude form 

(1-30% actual protein) where they are shipped by the kilo and often derived 

from microbial sources through fermentation 9 5. Conversely, pure or partially 

purified enzyme preparations are produced on a smaller scale and sold by the 

unit, however, this is increasing as systems for recombinant expression of 

proteins and their subsequent isolation (e.g. affinity purification) are becoming 

easier to perform 9 5. Obtaining purified enzymes through recombinant DNA 

technology is not novel and has been developed over the past 30 years due to 

the wealth of technological advances made in molecular biology and genetics. 
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Development and validation of thioesterase assay 

Screening of tropical fruit for determining the 
optimal source of thioesterase 

Isolation of the thioesterase on the basis of enzymatic function 

*• Characterization 

Determination of partial amino acid sequence 
through tandem mass spectrometry 

Design of degenerate primers to 
partial protein sequence 

Amplification of partial thioesterase cDNA 
sequence through RT-PCR (reverse 

transcription-polymerase chain reaction) 

Design of specific primers from internal sequence and the 
amplification of full length cDNA sequence through RACE (rapid 

amplification of cDNA ends) 

Sequencing of the full length thioesterase cDNA and the 
construction of a suitable expression system 

Expression of tagged protein and affinity purification 
for obtaining purified, active biocatalyst 

Optimization of expression, immobilisation and 
productivity determination 

Figure 5.1 Sourcing thioesterases through recombinant DNA technology. An 
overview of the technical approach employed. A variation on the above would 
be to design oligonucleotide probes for screening a cDNA library prepared 
from the optimal fruit source. 
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Such practices are commonplace in today's biological laboratories where gene 

cloning and expression are powerful experimental tools, however, the 

manufacture of enzymes (biocatalysts) industrially through such an approach 

is relatively in its infancy. The purified enzyme should show improved 

selectivities and reduce unwanted side reactions as compared with chemical 

transformations. A system for immobilisation would be preferable, so as to 

improve the stability of the protein and aid in its recovery. The enzyme could 

be tagged and pulled out of the bacterial lysate mix prior to immobilisation, or 

simply used in its crude form. As fine chemical companies see the clear 

advantages of enzymatic manufacture, they are likely to change their systems 

of production and the classic chemist is now collaborating with biochemists, 

molecular biologists and geneticists to bring such technologies to industry. 

There is a demand for novel hydrolases (carboxylesterases/ thioesterases) for 

use in flavour and fragrance manufacture 1 1 3 , 1 1 4 , and the possibility of obtaining 

such a purified biocatalyst from fruit through recombinant expression is the 

focus of this chapter. To date only a single plant pectin acetylesterase gene 

has been cloned (accession number: X99348). This sequence was obtained 

from three day old mung bean (Vigna radiata) seedlings through an RT-PCR 

approach 1 6 0 using degenerate oligonucletide primers designed to N-terminal 

and internal amino acid sequence derived from the purified protein 1 5 8 . A 317 

bp internal cDNA fragment was amplified and used to design specific primers 

for obtaining the missing 5' and 3' ends through RACE 1 6 0 . There is however no 

description of the expression of this clone. A similar approach will be employed 

here for the cloning of putative thioesterases from purple passion fruit. The 

challenge in working with a non-model plant is that degenerate primers must 

be designed from partial amino acid sequence from the purified protein or from 

regions of conservation identified in putative PAEs in other plants. In many 

cases it may not be possible to find the corresponding nucleotide cDNA 

sequence in the databases, as would have been available if working with 

model plants, such as Arabidopsis or rice. Searching the passion fruit genome 

for the PeWH coding sequence will set a path for further researchers looking to 

clone and express putative genes of flavour biosynthesis from unusual plant 

sources in this collaborative project with Oxford Chemicals Ltd. 

166 



5.2 Partial PAE Thioesterase Sequence From Passion Fruit 

Using Degenerate Primers 
The design of degenerate oligonucleotide primers to the amino acid 

sequences determined from PeWH was considered (Table 5.1). 

Oligonucleotides of 20 residues in length designed to the regions of least 

degeneracy still contained too many possible combinations (768+) to be 

considered specific. This is ultimately a consequence of the high leucine/ 

isoleucine content of each peptide which are encoded by multiple codons, and 

greatly increase the degeneracy of the sequence. For comparison the 

degenerate primers (20 mers) used for the successful cloning of the PAE from 

mung bean both contained 512 combinations 1 6 0, and hence were specific. 

Peptide 
fragment 

Sequence 
Number of possible codons 

Lowest number of combinations 
over 20 mer 

1 VG(I/L)GNSPSR 

4 4 ( 9 ) 4 2 6 4 6 6 
24576 

2 N ( I / L ) ( I /DAPSAVD 
2( 9 ) ( 9 )446442 32768 

3 V P ( I / L ) T ( I / L ) V Q S A V A 
44 ( 9 ) 4 ( 9 ) 446444 36864 

4 TFGFAW(I/L)GGK 
424241 ( 9 )442 768 

5 A V ( I / L ) D D ( I / L ) ( I / L ) F K 
44( 9 ) 2 2 ( 9 ) ( 9 ) 21 4608 

Table 5.1 Designing degenerate primers toward partial amino acid sequences 
from PeWH. Peptides 1-5 all possessed too high a level of degeneracy, shown 
by the number of different possible codons below the sequence. The lowest 
number of possible nucleotide combinations in a 20 mer primer is illustrated 
(right). 

In an attempt to obtain greater amino acid sequence from PeWH for 

subsequent primer design, a different trypsin digestion protocol, optimised 

toward low amounts of protein, was employed 1 7 0 . It was postulated that the 

hydrophobic nature of PeWH may hinder its digestion by trypsin and 

subsequently reduce the number of ions of sufficient intensity required for 

MSMS sequencing. However, the nature of PeWH meant no further protein 

sequence could be determined under the conditions tested. A further approach 
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would have been to determine the N-terminal amino acid sequence of the 

protein through Edman degradation, as was employed in mung bean 1 5 8 . 

However, the carbohydrate active enzyme database (www.cazy.org) contained 

28 full length PAE protein sequences from which degenerate primers could be 

designed toward homologous non-redundant sections of coding sequence for 

the amplification of partial PAE sequence. 

5.2.1 The Alignment of Plant PAEs , Conserved Regions and Degenerate 

Primer Design 

An alignment of all known non-redundant plant PAE protein sequences (n =28) 

from the carbohydrate active enzyme database highlighted conserved regions 

of homology (Annex II: Protein and DNA Sequence Analysis). Such conserved 

amino acids are likely to be involved in maintaining the structural conformation 

of the protein (a-helices/ B-sheets) or are important for catalytic activity, such 

as the GXSXG catalytic motif and the acidic aspartic acid and the basic 

histidine residues which make up the catalytic triad. Designing primers to the 

corresponding coding sequence of these conserved regions would greatly 

increase the chance of specifically amplifying PAE thioeterases from the fruit. 

Sequence homology is however fragmented and for this reason it was 

postulated that sub-families of PAEs may exist, a phylogenetic tree was 

therefore constructed from all of the 28 full length proteins identified (Figure 

5.2). Sequences clustered into three distinct clades of similarity, which when 

aligned were found to have far greater conservation of amino acid sequence 

(Annex II B). It therefore appears plants contain several isoforms of PAEs, at 

least three distinct sub-families, perhaps differing in their surface properties or 

catalytic preference for different metabolites, further evidence this family of 

wall bound hydrolases have diverged to serve different functions within plants. 

To determine the sub-family (clade) to which the partially purified thioesterase 

PeWH belonged, the five peptide sequences from the purified protein 

determined through tandem mass spectrometry (Table 5.1) were used to 

search for matches in each clade. Four of the five peptides (1,2,3,5) matched 

with significant homology to sequences from clade 1 (Figure 5.3), with only 

three of the five peptides matching in the two other sub families, and often with 
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BAD87837 (Os) 
BAD87540 (Os) 

AAF14046 (At) 

AAF14036 (At) 

ABK26312(Ps) 

BAB 10060 (At) 

CAN83189 (Vv) 

ABK24994 (Ps) 

1. BAD07550 (Os) 
AAT70429 (At) 

CAA67728 (Vr) 
AAP72959 (Ls) 

BAF15687 (Os) 

BAD87542 (Os) 

BAD87541(Os) 

BAB62609 (Os) 

BAC10030 (Os) 

AAC34238 (At) 

ABE92546 (Mt) 

AAC33215(At) 

AAM74495 (At) 

AAF23225 (At) 

AAU05497 (At) 3 . 

ABD33181 (Mt) 

ABK93778 (Pt) 
CAN62190(Vv) 

AAK96722 BAB 10249 

<A t> (At) 

Figure 5.2 A phylogenetic tree of all known full length plant PAEs as 
catalogued on the carbohydrate active enzyme database (family 13). The tree 
was generated using the phylogeny package PHYLIP (Felsentein, 1989) 1 7 1 . 
Sequence homology matches cluster the 28 PAE protein sequences into three 
distinct sub-families (clades 1.-3.). Entries are illustrated by accession number 
with the plant species type below; rice {Oryza sativa, Os), Arabidopsis 
(Arabidopsis thaliana, At), mung bean (Vigna radiata, Vr), Barrel medic 
(Medicago trunculata, Mt), Lettuce (Lactuca sativa, Ls), grape (Vitis vinefera, 
Vv), polplar (Populus trichocarpa, Pt) and spruce (P/cea sitchensis, Ps). 
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20 
MTWLKQMHSS 
MGRLKQCpSS 

MDGSSLGKHLC 
MAASSGEHLS 

MMSERGDRjfLCIF 
METSRKGfijtLSV--
MANGGVCLSCS--, 

---------MFKLKQ^LIY 
MVDKRMPGFTERWF; 

MKTTTRLLDLTAAMVL' 
MR VAAYVSA' 

MASTRRSKSVRLLYNFAYIVIKI: 

GEPG 

' VPLTI.VQSAVA ( 3 ) 

. y.. 
I K T 5 D 

i'li Y.kVi 
A T : 

I F D I 

FTTT 7 E E K V S I 
AVIDDLLFK 5 

PTA.l 

SSRHAFFPEg 

" S A T 

GXSXG 

HILAPSAVD (21 

PAVSTED 
?AISTED 
;SIDSES 

FE 
FDQNERPDV-
YDDPSEA 

IHRVFTPLDAPPI-
•R IFTPKEY 
HLIPASTSDFLV 

^ B L I P L P 
2«HNLVFF 

360 
VRS-ATj 

SP-VHS-TPS: 
»IGLGS - |s | ] 
PKPEQS-PANLS| 
GFGNGNS 
GAVGN--I 

QGTP--
IGLGRS — 
IFQNS--
TFRK-S 
QFYTY - I : 
TFKP--|E|( 
VGLGNSPSR (1) 

Figure 5.3 The alignment of clade 1 plant PAEs, demonstrating the greater 
sequence homology within this sub-family. Matches toward PeWH peptide 
fragments (1,2,3,5) are shown. The catalytic motif GXSXG and the conserved 
aspartate and histidine residues which make up the catalytic triad are 
underlined (red). The predicted siganl peptide is underlined in blue. Each 
protein sequence is identified by its Genbank accession number. Black 
shading highlights complete sequence conservation, dark grey shading shows 
80% or greater conservation and light grey shows 60% or greater 
conservation. All peptide matches are flanked by K or R amino acid trypsin 
cleavage sites, except 3, which is the N terminus of the mature protein (- signal 
sequence). 
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numerous mismatches over conserved regions. The unidentified peptide (4) 

may be from a non-conserved region of the protein and hence why it did not 

align with sequences in sub-family one. The greater sequence conservation 

within this family suggested that it would be possible to design primers to the 

corresponding coding sequences. All clade 1 full length cDNA sequences were 

therefore aligned (Annex II C) and the regions of least degeneracy (greatest 

homology) considered for the design of primers. 

It was important to ensure the PCR primers were specific for PAE cDNAs, so 

that they would not amplify non-target sequences. For primers to anneal with 

sufficient specificity they had to meet a number of requirements: 

• 18-24 nucleotides in length (ensuring specificity of binding to the correct 

sequence) 

• 40-60% GC content (ensuring a high annealing temperature could be 

used for PCR to prevent binding to homologous non-target sequences) 

• high GC content at the 5' end (ensuring strong binding where the DNA 

polymerase initiates amplification) 

• minimal mismatches especially at the 3' end 

• ensure primer pairs are non complementary 

Several regions within the aligned sequences showed significant homology, 

however, only two regions matched the requirements above for the design of 

effective primers. Hence, a forward (PeFor) and reverse (PeRev, anti-sense) 

primer were designed at 200 and 610 base pairs from the 5' end respectively 

from these two optimal stretches of DNA (Figure 5.4A+B). PCR amplification 

resulting from the combination of PeFor and PeRev would theoretically amplify 

a 410 bp internal fragment, accounting for approximately 35 % coverage of the 

full sequence (Figure 5.4C). 
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~ 200 bp E G 

C A A 6 7 7 2 8 
A A P 7 2 9 5 9 " 
A A T 7 0 4 2 9 " 
A A K 9 6 7 2 2 " 
BAB102 4 9" 
A B K 9 3 7 7 8 " 
B A D 0 7 5 5 0 " 
B A F 1 5 6 8 7 " 
C A N 8 3 1 8 9" 
B A B 1 0 0 6 0 " 
A B K 2 6 3 1 2 " 
A B K 2 4 9 9 4 ~ 

5 ' GAGGGAGGAGGATGGTG A 3 ' 

W 

T G G T G 
T G G T G 
T G G T G 
T G G T G 
T G G T G 
T G G T G 
T G G T G 
T G G T G 
T G G T G H 
T G G T G 
T G G T G 

1 T ; 

1( * 
I T G 

K 
C A A 6 7 7 2 8 
A A P 7 2 9 5 9 " 
A A T 7 0 4 2 9 " 
A A K 9 6 7 2 2 " 
B A B 1 0 2 4 9 ' 
A B K 9 3 7 7 8 " 
B A D 0 7 5 5 0 " 
B A F 1 5 6 8 7 " 
C A N 8 3 1 8 9" 
BAB10 0 60" 
A B K 2 6 3 1 2 " 
A B K 2 4 9 9 4 ~ 

C L S 
: C B I G B A 

D A A ~610 bp 

: c 

iTG^ffl 
ITG^B 
I T G B T T 

: C B T ' T 

: T 
I T T L 

L-AGT 
; A G C 

j T C A C G p j 
T T H A G H A 

'raGA|GC|GG 
;AT ; C | G G 

I;AT ICTGG 
' TGC G G 

g ; 
; AT 

GAlGC GG 
G A I G C GG 
GA|GC GG 
3AT ; • ; 
;AT ; ; ; 

5 ' A A TG TTTC GATGCTGG T 3 ' 

B. 
PeFor (sense): 5 ' G A G G G A G G A G G A T G G T G Y A 3 ' 
Length: 19 mer, GC content: 6 1 % , Annealing temperature: 60-62X 

PeRev (antisense): 5 ' A W C C A G C A T C W G A A A V R C A Y T T 3 ' 
Length: 22 mer, GC content: 45%, Annealing temperature: 58-64°C 

C. 

5' 
410 bp 

35 % coverage 3' 
- 1200 bp 

o o 
C\J 

o 
5 

Figure 5.4 A. The alignment of cDNA PAE sequences from clade 1 over 
conserved amino acid regions selected for primer design. B. Forward and 
reverse primers, PeFor and PeRev used for the amplification of internal 
sequence. Y = C/T, W = A/T, R = A/G, V = A/C/G. C. A map of the predicted 
fragment amplified using PeFor and PeRev. 
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5.2.2 RNA Extraction From Passiflora edulis Sims and the Amplification 

of Partial PAE Sequence 

RNA was extracted from both the mesoocarp (flavedo) and secretary gland 

tissues of purple passion fruit. Due to the high carbohydrate content of the fruit 

tissue, RNA extraction was however problematic and several different 

experimental approaches were considered, such as the chloroform extraction 

protocol developed for RNA extraction from mango 1 7 2 . It was far less 

problematic extracting RNA of good purity and abundance from leaf tissue so 

this was also run in parallel. In addition, it was of interest to determine whether 

transcripts encoding thioesterase PAEs were expressed in the foliage. The 

optimal method for extraction of RNA was using TRI-reagent 1 7 3 (Sigma, 

Methods 2.6.1), where RNA was purified from 100 mg of each tissue type 

using acid guanidinium thiocyanate-phenol-chloroform extraction. 

The purity of isolated RNA was determined through spectrophotometric 

analysis in order to ensure there was no genomic DNA contamination (Figure 

5.5). RNA samples run on 1 % agarose gels showed the ribosomal RNA 

doublet (18S and 28S rRNAs) and a background smear of varying sized 

mRNAs (Figure 5.5). Extracted RNA from leaf tissue (24 u.g/100 mg tissue) 

was ten fold greater than from fruit samples (2.5-3.5 u.g/100 mg tissue), 

however all were sufficiently pure for reverse transcription (A260/280 > 1-7). 

Reverse transcription of total RNA (1 u.g) was performed using an oligo dT 

(OG2) 3' primer and AMV (Avian myeloblastoma leukaemia virus) reverse 

transcriptase. PCR on template cDNA (leaf, gland, endocarp) using Taq DNA 

polymerase with PeFor and PeRev (10 u.M) primers was run using the 

standard PCR programme (Methods 2.6.3) with 30 cycles of amplification. The 

analysis of PCR products on agarose gels illustrated that several fragments 

had been amplified from each tissue type (Figure 5.6A). A 400 bp product was 

amplified in each case, and was absent in the PCR controls in which no 

reverse transcriptase was added when preparing template cDNA. The larger 

product (750 bp) appears to be due to genomic DNA contamination as it was 

also present in the controls (- reverse transcriptase). 
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Endocarp tissue: 

A260/280 : 1.93 0.6 

2.49 ugl 100mg 0.5 

0.4 
0.3 

0.2 

0.081 0.1 0.042 

220 240 260 280 300 
A (nm) 

Gland tissue: 

2̂60/280 ' 1-86 0.3 

3.32 ng/ 100mg 

0 
0.2 

ra 

0.108 to 
0.1 0.058 

0 4— —, ,— 
220 240 260 280 300 

A (nm) 

Leaf tissue: 

A260 /280 : 1.89 1.5 

24.18 ng/ 100mg 
1.008 CD 

1 

0.534 

0.5 

0 
220 240 260 280 300 

A (nm) 

Figure 5.5 RNA extraction. Spectral scans used to determine the purity and 
abundance of RNA extracted from passion fruit. Agarose gel images of 
extracted total RNA. Note the doublet resulting from abundant 18 and 28S 
ribosomal RNA and the background smear caused by different sized mRNAs. 
1A26ounit: 40 \xg/rr\\ RNA, A26o/28o ratio >1.7: good quality RNA with no genomic 
DNA contamination. Gels were loaded equally with 1 ix\ of each RNA sample. 
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1 2 M 3 4 M 5 6 M 
1. Leaf +RT, 2. Leaf -RT, 3. Gland +RT, 4. Gland -RT, 5. Mesocarp +RT, 6. Mesocarp -RT . 

B. 
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Meso 

L e a f 
Meso 

L e a f 
Meso 

L e a f 
Meso 

L e a f 
Meso 

L e a f 
Meso 

L e a f 
Meso 

L e a f 
Meso 

L e a f 
Meso 

GAGGGAGGAGGATGGTGCAACAATGTCACGACCTGCCTTTATCGTAAGAA 
GAGGGAGGAGGATGGTGCAATAATGTAACAAATTGCGTTAGTCGGATGCA 

* * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * 
TACTCATTTGGGTACATCTAAGCTAATGGGACAACCACTTGCTTTTTCTG 
TACTCGATTAGGTTCATCGAAGAAAATGGTGGAGAACCTTGCTTTCTCAG 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

GGATTCTGAGCAACAGAGGGACATTTAATCCTGATTTCTATAATTGGAAT 
CTATTCTTAGCAATAAGAAACAATATAATCCTGATTTTTACAATTGGAAT 

•] ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
AGAGTCAAGArTAGATACTGTGATGGTTCCTCTTTTA^CGGTGATGTGCA 
AGAGTGAAAGfTTAGATACTGTGACGGGGCATCATTCApAGGAGATGTAGA 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

GAAAGTAAATCCTGCTACTAACCTTCACTTCAGAGGAGCAAGGATTTGGC 
AGCAGTGAACCCTGCTACTAATCTTCACTTCAGAGGTGCTCGAGTTTGGT 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

TAGCAGTTGTTCAGGAATTGTTGGCTAAGGGCATGAAAAATGCTGAAAAT 
TAGCCGTTATGCAAGAGCTGCTAGCTAAAGGCCTGATAAACGCCGAGAAT 

* * * * * * * * * * * • * * * * * * * *** *** *** ** ** *** 
GCAC 
GCTG 

TTCTCTCTGGCTGTTCGGCCGGTGGATTGGCTTCGATTCTGCATTG 
TTTTGTCTGGCTGTTCTGCTGGCGGGTfTAACTTCGCTGATGCATTG 

* * * * * * * * * * * * * * * * ** ** ** ** * * * * * * * 

* * * * * * * * * * * * * * * * * * * * * * * * 

TGATAGCTTCCGAGCTCTGCTACC1ATGGGTGCTAAAGTGAAATGCCTTT 
TGATAGTTTCCGTGCTCTATTACCG-ATGGGAACCAAAGTAAAATGCCTTT 
* * * * * * * * * * * * * * * * 

"CKGACGCTGGTT 3 ' 
_CjrGACGCTGGTT 
* * * * * * * * * * * 

50 

100 

150 

2 0 0 

2 5 0 

300 

350 

4 0 0 

4 1 2 

Figure 5.6 A. PCR products following amplification with degenerate primers 
PeFor and PeRev as visualised on 1 % agarose gels. The predicted PAE 
internal sequence (410 bp) is highlighted (arrow). Control reactions were run 
minus reverse transcription (-RT). B. The alignment of partial PAE cDNAs from 
leaf and mesocarp passion fruit tissues, highlighting consensus matches (*). 
The sequence used for designing further specific primers is shown (boxes), 
including sense primers (1.) and antisense primers (2., 3.). 
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The 400 bp products were excised from the gels and subcloned using the 

pGEM T-Easy vector system (Promega) with Top 10 E.coli competent cells 

(Invitrogen) prior to DNA sequencing (T7/ SP6 sequencing primers). The 

cDNA sequences from each tissue type (Figure 5.6B) were used to screen the 

databases using nucleotide BLAST and translated before screening using 

protein BLAST. The leaf and mesocarp sequences matched with putative 

pectin acetylesterase family proteins, whereas the gland sequence was a 3' 

product matching with an unknown cDNA clone from Populus trichocarpa 

(poplar), accession number: EK146327. Hence, the degenerate primers had 

successfully amplified a PAE internal sequence from leaf and mesocarp tissue. 

However, it was not possible to amplify PAEs from gland cDNA even under 

different PCR conditions. The leaf and mesocarp cDNA sequences shared 75 

% sequence conservation over this internal region with the predicted 

translation products (Annex II D) sharing 79 % homology. It is therefore 

apparent purple passion fruit, like the model plants, contains multiple (at least 

2) isoforms of PAE thioesterases. 

Both protein sequences were subsequently screened for matches toward the 

five peptides from PeWH, although it was predicted that only one of the five 

fragments (5) would fall into this stretch of sequence. The amino acid matches 

were similar but not identical (Annex II D). It appears the two cDNAs isolated 

from leaf and mesoocarp tissue do not encode PeWH, but rather correspond 

to closely-related gene products. Further PCR reactions at increasing 

annealing temperatures with varying amplification cycles using tissues at 

different stages of ripening produced the same products. A "shotgun" approach 

was also used to sequence multiple clones (10 +) from each PCR 410 bp 

product, however no further PAE sequence could be found under such 

conditions. It was therefore decided to obtain the full length nucleotide 

sequences for the PAE products described above. 
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5.3 Full Length Passion Fruit PAE Sequence Through RACE 
The missing 5' and 3' ends of the coding sequences were determined through 

rapid amplification of cDNA ends (RACE). 

5.3.1 3 ' R A C E 

Nested gene specific primers were designed to the internal sequences from 

both leaf and mesocarp tissues (Table 5.2). For 3' RACE, sense primers 

termed PeL1 (Passiflora edulis leaf 1) and PeM1 (mesocarp 1) were designed 

to anneal to the 5' end of the internal fragments (Figure 5.6). A single round of 

PCR using the sense primer plus the complementary 3' primer (Og9) on the 

corresponding tissue cDNAs was sufficient to obtain 1 kp products, predicted 

to be the missing 3' ends (Figure 5.7). In this case a second round of nested 

PCR was not required as a single product was produced. Although smeary, 

cutting this band and employing a shotgun PCR approach using primers 

Pel_1+3 or PeM1+3 to select for positive PAE products provided multiple 

clones for sequencing. The leaf cDNA was extended 752 bp (575 bp of open 

reading frame) whilst the mesocarp sequence was extended 765 bp (575 bp of 

open reading frame). 

5.3.2 5" RACE 

5' RACE was employed to determine the full length passion fruit PAE 

thioesterase sequences. In each case two nested antisense primers, PeL2+3 

(leaf) and PeM2+3 (mesocarp) (Table 5.2) were designed at 600 and 530 bp 

from the 5' ends respectively. Hence two rounds of PCR using 5' primers was 

predicted to provide the missing 200 bp of sequence. 

Initial attempts to amplify the 5' ends of PAEs from passion fruit resulted in 

truncated sequence, some 200 bp short of the full open reading frame. 

Interestingly, products were always truncated at this same point in the 

sequence and optimising PCR conditions (annealing temperatures, cycles) did 

not overcome this. It was therefore postulated this could be a consequence of 

tight RNA secondary structure which prevented the reverse transcriptase from 

reading the full sequence, hence generating truncated cDNA templates. 
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Figure 5.7 A. 3' RACE map of predicted PAE products. Extension is predicted 
to generate 840 bp of open reading frame, plus a section of non-coding 3' 
sequence before the poly A tail. B. PCR products following amplification with 
gene specific primers (PeL1 or PeM1) and Og9 as visualised on an agarose 
gel. Product at 1.1 kb is predicted PAE 3' sequence. C. PCR test for positive 
clones using Pel_1+3 or PeM1+3, expected product 170 bp. 
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This was further supported by an M fo ld 1 2 8 , 1 7 4 RNA secondary structure 

prediction (Figure 5.8) based on the known PAE coding sequence from mung 

bean (Accession: X99348.1). A major branch point can be seen in the folded 

sequence at approximately 200 bp, the cut off point for the truncated 

sequences. A new approach for the synthesis of first-strand cDNA was 

therefore required. A genetically modified reverse transcriptase, RevertAid M-

MuLV (Fermentas) which could tolerate higher extension temperatures was 

used and the reactions run at 50°C. This overcame the difficulties in template 

production from leaf tissue but not from mesocarp material, where it is possible 

an even tighter secondary folding was present. The 5' RACE used to complete 

the leaf sequence is described below. 

Reverse transcription was carried out on total RNA using the antisense primer 

Pel_2 before a homopolymer (polyA) tail was subsequently added to the 5' end 

of the reaction products using a terminal deoxynucleotidyl transferase. The first 

round of PCR using PeL2 and an oligo dT (adaptor dT) primer, which annealed 

to the extended 5' end, generated a single (smeary) 600 bp product (Figure 

5.9B). The nested primer Pel_3 in combination with a 5' adaptor primer were 

used for the second round of PCR in which a single sharp band at 530 bp 

could be seen on an agarose gel (Figure 5.9B). Products were cloned and 

PCR used to select for positives (Figure 5.9C). The full 5' leaf cDNA was 

obtained, where the sequence was extended 219 bp, including the ATG start 

site (methionine) and 200 bp of extended open reading frame (Figure 5.10). 

The partial PAE sequence from mesocarp tissue is depicted in Annex II E. 

To obtain the full-length sequence from Pe leaf, primers Pel_4 and Pel_5 (Table 

5.2) were designed to the 5' and 3' termini plus restriction sites (5': Pad, 3': 

Sa/I) to allow sub-cloning into a modified pET-41a vector (Novagen) such that 

the sequence would contain an N-terminal Strep tag. The vector termed, pET-

STRP3, was constructed by Dixon et a/. , 1 7 5 (2008) to encode an N-terminal 

Strep fusion protein and further restriction sites (Pad and BsfXI) to enable 

subcloning between bacterial and plant vector systems. A further primer was 

designed (PeL 6) for the amplification of a truncated 5' product, minus the 

predicted signal peptide sequence (Figure 5.10, Table 5.2). 
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Figure 5.8 RNA secondary structure prediction for mung bean (Vigna radiata) 
PAE mRNA sequence (Accession: X99348). RNA folding was determined 
using mfold version 3.2 (http://mfold.bioinfo.rpi.edu/), which predicts RNA 
folding upon thermodynamic propert ies 1 2 8 , 1 7 4 . The major branch point at 
approximately 200 bp is likely to require a higher melting temperature and 
hence a heat stable reverse transcriptase was required (>45°C). 
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Figure 5.9 A. 5' RACE map of predicted PAE products. The initial PCR 
reaction is predicted to produce a 600 bp product. A second round of nested 
PCR on this is predicted to give a 530 bp product. Extension is predicted to 
generate 200 bp of missing open reading frame. B. PCR products; 1. 1 s t round 
PCR following amplification with the gene specific primer PeL2 and adaptor 
dT, 2. 2 n d round PCR using PeL2 + adaptor primer. C . PCR test for positive 
clones using Pel_1 + PeL3 , expected product 170 bp. 
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As bacterial expression in E.coli would not recognise plant signal sequences 

and cleave them to produce a mature protein it was important to clone and 

express both forms (+/- signal sequence) to determine which would be stable 

and active using such an expression system. Both full length clones were 

amplified using the proof reading DNA polymerase, KOD, and sequenced in 

both directions to ensure correct sequence. Overlapping sequences were 

aligned to ensure the correct ORF had been produced. The clones were 

named PePAE+ and PePAE- (-signal sequence). 

5.4 Expression of Putative Thioesterases 
5.4.1 Arabidopsis thaliana PAE clone construction 

Cloning of putative PAEs from Passiflora edulis was challenging and for this 

reason it was only possible to produce a single full length clone from leaf 

tissue for subsequent expression studies. Although this clone, PePAE, did not 

match with the purified thioesterase PeWH, it encoded a homologous enzyme 

likely to have similar catalytic activity. In addition, it was decided to clone a 

further putative PAE from the model plant Arabidopsis thaliana. 

The mung bean protein (Accession: CAA67728) previously purified and 

partially characterized was shown to possess acetylesterase activity toward 

pectin and triacetin, and shared many of the characteristics of the thioesterase 

PeWH (size 43 kDa, pi: 9 ) 1 5 8 . The closest Arabidopsis homologue to this was 

therefore chosen, accession number: AAT70429 (Figure 5.11). Primers were 

designed to the 5' (/WPAE1) and 3' (AtPAE2) ends of the coding sequence 

(accession number: BT014978), and a further nested 5' primer (>4rPAE3) used 

for amplification minus signal peptide (Figure 5.12A+B). 5' Primers contained 

Nde\ sites and the 3' primer a Sa/I site for sub-cloning into the pET-STRP3 

vector such that the proteins would contain N-terminal Strep tags. 

Total RNA extracted from leaf tissue was reverse transcribed using the heat 

stable reverse transcriptase, RevertAid M-MuLV, at 50°C plus /UPAE2 to 

generate first strand cDNA template. 

184 



o CD 
c 

'< 

U < CD 
CJ 
H > CD 
< u CD 
u 2 

c5 CC 
CJ 

H > CD 
H 
( H CM 
EH 
<I 

CJ PC 

CD CO CD CJ 

L) PC CD DC CD PC CD PC 
CJ us 

CD ( J CD CJ 

CD CD 

CD DC CD 02 u CD 

u < CD o ID CD 

CD CD CJ CO ID US CD CD 

CJ CD cc CD CD 

CD CO C J CO 

< o CD CD CD CD CJ CO u o 
CD CD CJ PC CD CD CJ CO CJ CO 

CD DC CJ DC CJ DC 

CD CJ CJ DC CD CD CD CO CJ CO 

CD DC CD CO CD CJ 

CJ < CD CD CD CD CJ < U f t CD CD 

CJ «: CJ DC CJ co 

CD DC CD CD 

CJ DC 

CD CD CJ < ID CC CJ < ID CO CD CD 

CD DC CD CD CJ CO CJ OJ CJ CO 

CJ CO CD CD 

cc nc CD PC 
CJ us CD CJ 

u < CJ us CJ co CD CJ CJ CO CJ CO 

CD PC CD CC CD ( J CJ CO CD CD 

CD CD CD CJ 

CD CJ CD CD 

CD CC U CO CD O CJ CJ CO 

CJ CM CD PC CJ f£ CJ PC 

CJ f£ CJ DC 

CD CD 
CD 

CJ C O CJ <C CJ CC CD CO 

CD PC CD CD CD CJ CD CD 

CD DC CJ PC CD US 

CD US 

a, ic CJ CM CD CJ CD CJ CD CJ 

CD 
u < U < F£ EC 

CD PC CD CJ CJ H 

C CD 
O -C 
co ~ 
CO Q . 

< l 
— - CD 
CD E 

I * 
.JO CO 
CO d) 
Q. =5 
O "a 

•5 
CO 

•*-> 
CD 

E -£ 

_^ CD 

CD cc; 

-O O 

I 5 

2 ^ 0 
CD O 

•o E 
i_ o 
CD CD 
E p 

CD 
Cl 
CO 
CD ' 

Z - D 
Q c 
O CD 
111 CD 
< .E 
Q. XJ 

co 
cu 

£ CD 

o ~ 
C D ? 
£ TO 
CD "*= 

CD E 

CD TO 
O CD 
E ° 
E ® 

CD 
•O o 
0 <=-
O -D 

« 2 

T3 
CD 
CO 
13 
co c o 
CT> 
0) i_ 
CD 

-C 

CO 

< 
£L 

UJ LU 

c °-c 
CD 
CD 

.Q cn c 
13 
E 
•a 
CD 

"CD O 

T3 
CD 

' 
03 

Z: 

CO 

Q. 

CD 

•=j-
in 

r - CD CTl 
c o i— oo 
C£> ( 0 0 

o 
o 
o 

•o 
C -
CD W 
fl) CD 

CD X 
o CD 
C CD 

= O) 

T CQ 
l O . . 
0) CD 

.5>i 
L i . C 

CD 

:?£ 

CD 
p CO 

T3 
C 
CD 

LU 
< 
CL 
CD 

- g ^ 
CD 

CL c 
CD 
Q . 

_ CD 
CD Q . 

o 
E 

. o 

T J - r t> 

T3 
CD 
C o 

CT3 

3 X3 
CD 0 

CD 
oo 
CD 
CD 

CD .9 

.55 co 

« o 3-
CD t CD 
O CD CO 

CO 



) 

CDS + signal peptide (1215bp) AtPAE2 

^ 
4fPAE3 

CDS - signal peptide (1199bp) 
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>ArPAE2 antisense 5 ' -

>ArPAE3 sense 5 ' -

GCG CGC CAT ATG TTC AAG 

GCG CGC GTC GAC TTA AAT 
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M 1 2 

Figure 5.12 A. A map of the predicted fragments amplified using /UPAE1 and 
>4fPAE2 (or /UPAE3 and >4fPAE2). B. Forward and reverse primers, >4fPAE1, 
/\fPAE2 and A1PAE3 used for the amplification of AtPAE sequences. C. PCR 
products; 1. full length sequence amplification using /WPAE1 and AtPAE2 
(1215 bp product), 2. truncated sequence amplification with /UPAE3 and 
AtPAE2 used to generate cDNA -signal sequence (1199 bp product). 
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PCR reactions using the proof reading DNA polymerase KOD under the 

standard conditions amplified products of the expected size, 1190 and 1130 

bp (+/- signal respectively) (Figure 5.12C). Products were cloned into the pET-

STRP3 vector and sequenced in both directions to ensure the correct coding 

sequence had been amplified. The full length clones were error free and 

named >4fPAE+ and iAfPAE- (-signal sequence). 

5.4.2 Bacterial Expression 

Four clones were used in expression studies. The putative thioesterase from 

purple passion fruit, with and without signal peptide (PePAE+, PePAE-) and 

the homologue from Arabidopsis, again with and without signal sequence 

(/WPAE+, AtPAE-). Each clone was overexpressed in E.coli with the aim of 

characterising the activities of the recombinant enzymes toward various 

natural and synthetic thioesters. It was also hoped this would support the 

identification of purified fruit thioesterases as PAEs. All four expression 

constructs were used to transform E. coli competent cells, strain Tuner (DE3) 

(Novagen) containing the pRARE plasmid from strain Rosetta (Novagen), and 

the resulting colonies grown in 10 ml LB medium starter cultures overnight at 

37°C before inoculating larger 100 ml cultures. Initially, standard expression 

conditions were used whereby cultures were grown at 37°C to OD600 ~ 0.7 

when 1 mM IPTG was added to initiate recombinant protein expression for 3 

hours. Bacteria were then harvested, sonicated and the lysates analysed by 

SDS-PAGE and western blotting. A comparison of the crude soluble and 

insoluble fractions suggested that the recombinant proteins were being 

expressed, however, they were present only as inclusion bodies (Figure 

5.13A). No thioesterase activity could be determined in any fraction. 

Efforts were subsequently made to optimise expression including slower 

growth (15-30°C overnight) and reducing the IPTG concentration (0-0.1 mM). 

In addition, terrific broth, a nutrient rich medium was tested 1 7 6 . A slower 

induction may enable the correct folding of the protein and prevent it 

accumulating to high levels were it may be aggregating into inclusion bodies. 
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2 8 . 8 -

M Protein markers 

1 PePAE- (insol.) 

2 PePAE- (sol.) 

3 PePAE+ (insol.) 

4 PePAE+ (sol.) 

5AtPAE- (insol.) 

6 AtPAE- (sol.) 

7 AtPAE+ (insol.) 

8 AtPAE+ (sol.) 

Figure 5.13 Recombinant protein expression in E.coli. A. Expression under 
standard conditions; 100 ml cultures grown at 37°C until dense (OD600 ~ 0.7) + 
1 mM IPTG for 3 hours. Total crude protein (100-fold concentrate) is illustrated 
in the coomasie stained gel (top). The detection of recombinant protein was 
achieved through western blotting the same gel (below) using an anti 
Strepdtactin antibody, Strep-Tactin alkaline phosphatase conjugate (IBA 
BioTAGnology), 1:5000 dilution and incubation for 1-2 hr at room temperature. 
Expected protein size marked (arrow). The accumulation of insoluble 
recombinant protein can be seen in each case, except APAE+ where the 
clone appears to have failed to express. Minimal soluble expression can be 
detected in lanes 2 (PePAE-) and 4 (PePAE+), however this may be due to 
protein diffusion during blotting. 
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SDS-PAGE analysis and western blotting indicated that this did reduce the 

accumulation of the recombinant protein in the insoluble fractions. However, 

only minimal protein could be determined in the soluble fractions (PePAE+) 

(Figure 5.13B). No fractions were found to posses thioesterase activity. 

Optimising the expression conditions above did produce low levels of soluble 

protein from the passion fruit PAE clone + signal peptide (PePAE+). However, 

this protein did not demonstrate the associated thioesterase activity and the 

signal sequence may prevent correct protein folding. As a final approach, large 

cultures (500 ml) were used for the expression of both the Arabidopsis and 

passion fruit clones minus signal sequence (AtPAE- and PePAE-). Expression 

under slow growth conditions (15°C + 0.1 mM IPTG) did generate detectable 

levels of soluble recombinant protein from the larger cultures in each case 

(Figure 5.14A). Most was however present as inclusion bodies. The soluble 

recombinant protein was loaded onto a Strep-tactin column (IBA technologies) 

and following washing was eluted as a pure protein in a single purification step 

(Figure 5.14B). Such a system for the purification of recombinant strep tagged 

plant proteins had been demonstrated previously for the isolation of 

glutathione transferases (GST) from Arabidopsis thaliana (Dixon et al., 

2008) 1 7 7 . However, in this case only minimal soluble recombinant protein was 

recovered (< 1.5 mg) and when the thioesterase activity of the corresponding 

fractions was determined using the Ellman's method no significant enzymatic 

rate could be found. A different expression system was therefore required. 
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103 97 77 66 
50 M Protein markers 
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34.3 1 PePAE- (sol.) 

2 APAE- (sol.) 31 28.8 
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Figure 5.14 Large scale recombinant protein expression in E.coli. A. 500 ml 
cultures were expressed at 30°C overnight + 0.1 mM IPTG until dense (OD6oo 
~ 0.7). Total crude protein is illustrated in the Coomassie stained gel (left) and 
the detection of recombinant protein through western blotting (right). The 
clones form passion fruit and Arabidopsis - signal were used (PePAE- and 
AtPAE-) and their expression in soluble (lanes 1 + 2) and insoluble (lanes 3 + 
4) fractions is shown. Soluble expression can be detected in both cases (blots 
lanes 1 and 2). B. The purification of Strep-tagged soluble protein through 
affinity purification. Minimal recovery of recombinant protein was achieved. 
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5.5 Discussion 
Cloning of putative thioesterases from the tropical fruit, purple passion fruit, led 

to a study of known and putative pectin acetylesterases in plants. The 

phylogenetic analysis indicated that from the collection of full length plant 

sequences (n=28), 3 major sub-families existed, each with significant 

differences in protein primary sequence. It is possible that such enzymes of 

primary metabolism predicted to be involved in cell wall modif icat ion 1 6 0 , 1 6 7 , 

have evolved through divergence to form multiple isoforms involved in further 

plant metabolism. This supports our studies which suggest plant PAEs may 

serve a further role in secondary metabolism through the liberation of thiol and 

alcohol volatile flavouring agents from thioester and ester precursors in the 

cortex of fruit. The isoforms may have evolved subtly different active site 

structures which allow for the accommodation of different chemical substrates 

(i.e. flavour esters and thioesters). Changes in the surface properties of the 

enzyme may also be found which influence trafficking of the protein and 

localisation within the cell wall where they could potentially become involved in 

novel metabolism. 

The cloning of a full length PAE from passion fruit leaf tissue, PePAE, adds a 

further sequence to the collection of plant acetylesterases. Aligning with similar 

protein sequences to members of sub-family one, PePAE, shares 68% 

nucleotide sequence and 75% amino acid conservation with the acetylesterase 

purified and cloned from mung b e a n 1 5 8 , 1 6 0 . Both sequences share many 

similarities, including 5' signal sequences which direct the protein to the cell 

wall and the GXSXG serine hydrolase catalytic motif. A predicted secondary 

structure analysis on translated PePAE indicates the mature protein contains 8 

major a-helices and 6 B-strands; such folding is indicative of a/B hydrolase 

family enzymes 1 7 8 (Figure 5.15). In addition PePAE is predicted to contain 

multiple glycosylation sites (Figure 5.10), which fits with the observation that 

the purified thioesterase PeWH bound to conconavalin A Sepharose. 

Glycosylation of the protein may localise it to specific regions of the cell and 

act as a means of controlling the regulation of enzyme activity between the 

cytosol and cell wall, however, this remains to be studied. 
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Figure 5.15 A. Protein secondary structure prediction for translated PePAE. (J: 
predicted a-helix, E: predicted p-strand, C: predicted coil. Active site residues 
are highlighted in blue (serine, histidine and aspartate). The structure 
prediction was made using the protein structure prediction server PSIPRED 
(http://bioinf.cs.ucl.ac.uk/psipred/), developed by Jones, 1 7 9 1999. B. The 
arrangement of secondary structure in a/p hydrolase fold enzymes, adapted 
from Ollis et a/ . , 1 7 8 1992. The assigned p-strands (1-8) and a-helices (A-F) can 
be closely matched on the PePAE predicted structure (top). 
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Although PePAE does not encode the purified thioesterase PeWH it is a 

member of the same family of proteins and is likely to demonstrate similar 

catalytic properties. The Edman degradation of purified PeWH may provide the 

further amino acid sequence required for the design of degenerate primers for 

cloning the corresponding cDNA. However, the PAE degenerate primers used 

to clone PePAE form important molecular tools for the amplification of further 

putative PAE sequences from other plant sources. Cloning of further PAEs 

from plants would increase the collection of acetyl esterases available for 

researchers interested in plant cell wall metabolism and in determining the role 

of hydrolases in fruit ripening. 

Efforts toward the expression of PAEs from both passion fruit and Arabidopsis 

were unsuccessful, a possible consequence of the hydrophobic nature of this 

wall bound enzyme. Attempts were made to express each clone in Nicotiana 

benthamiana, however, no recombinant protein was detected in each case. 

Expression of the clones in further systems is required (e.g. yeast; Pichia 

pastoris) and if successful would be very informative. The purified enzyme 

could be fully characterized and if possible the first crystal structure for a plant 

PAE could be produced so as to elucidate the cause of such tight 

chemoselectivity. It is likely a constrained binding pocket may account for the 

accommodation of short chain (predominantly acetyl) components as the acyl 

moieties. Interestingly, microbes are also found to contain acetylesterase 

enzymes, believed to function in the degradation of plant cell walls as a means 

of obtaining nutrients and breaking this tough physical barrier 1 8 0. Of the 59 

entries on the pectin acetylesterase database two include sequences from the 

thermophilic bacteria, Thermus thermophilus, (Accessions: AAS81248.1, 

BAD71091.1). Cloning and expression of these proteins may yield heat-stable, 

selective enzymes with great potential for application as biocatalysts. 

It remains unlikely, however, that the recombinant expression of plant PAEs 

could provide sufficient yield of the enzyme for it to be considered a means of 

obtaining this potential biocatalyst and hence a further source is required. 
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6. Thioesterases from Orange (Citrus sinensis) and the 
Bioproduction of High-Impact Flavourings 

6.1 Introduction 
Attempts to express the thioesterases PeWH and >4<WH in bacteria and plants 

were unsuccessful, a possible consequence of the unusually hydrophobic 

nature of the proteins which may explain their aggregation into inclusion 

bodies. Recombinant expression of the biocatalysts was therefore non-viable 

and an alternative source of the enzyme had to be sought. Initially it was 

proposed that tropical fruit would be unique in containing thioesterases which 

were believed to be present in only trace amounts, however, it appears this is 

not the case. The identification of PeWH as a homologue to pectin 

acetylesterase (PAE) enzymes, a sub-family of a,B-hydrolases, which are 

found throughout the plant k ingdom 1 5 0 , 1 5 8 indicated that these proteins have an 

important function in addition to their proposed role in primary metabolism. 

Furthermore, the identification of putative PAEs in Arabidopsis and rice 

supports the generalist role of such enzymes in plants and it is therefore likely 

thioesterase PAEs could be sourced from several sources; plant or fruit 

material. In particular, PAEs have been noted in Citrus where they are found at 

significantly high levels in peel mesocarp 1 6 7 . Hence, a screen of further fruit 

species, including Citrus, was conducted as a means of identifying the optimal 

source of this biocatalyst. 

It was important to consider the source of the plant material, if it was ultimately 

going to be used in bioprocessing it had to be cheap, readily available and of 

reliable quality. The screen therefore concentrated on fruit widely used in the 

juicing industries (e.g. Citrus) and those grown in the UK. Fruit processing for 

juicing is a big industry with a global market value of $56.7 billion (US) 1 8 1 , and 

following flavour extraction peel is regarded as a by-product, often discarded 

or used as animal feed 1 8 2 . However, with the realisation that such material is 

rich in hydrolases with potential application as biocatalysts a novel end use 

may emerge. 
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This alternative approach using waste fruit material has a number of merits: it 

does not require the use of microbes or genetic modification and is favourable 

from a consumer perspective. In addition, costly fermentation equipment and 

changes to manufacturing using microbes are not required; the fruit peel 

preparation could be regarded just like any synthetic catalyst. Once the life­

span of the catalyst is reached the material could be easily discarded as it is 

non-toxic and fully biodegradable. 

There are however a number of challenges to this approach: it is likely the 

enzyme will have to be processed and immobilised to increase stability and aid 

in recovery. Furthermore, the catalytic content must be abundant enough in 

the initial material for it to be a cost-effective source of the enzyme. Finally, 

crude enzymatic preparations are prone to catalyzing undesirable side 

reactions which must be avoided. This chapter will look at screening fruit for an 

optimal source of thioesterase enzymes before investigating how to achieve 

maximum productivity from the chosen material. 

6.2 Screening Fruit for Thioesterase Activity 
Crude protein extracts were prepared from nine fruits including Citrus (lemon, 

lime, orange and grapefruit), tropicals (mango, yellow and purple passion fruit) 

and berries (raspberries and blackcurrant). In each case 100 g of peel tissue 

was homogenised, with the exception of berries where whole fruit was used. 

To ensure the complete extraction of wall-bound proteins, 0.25 M salt was 

added to the extraction buffer (Methods 2.2). Dialysed protein samples in 0.1 

M phosphate buffer, pH 7.2 were subsequently assayed for both thioesterase 

and esterase activity toward the panel of substrates using the Ellman's method 

(Figure 6.1). The use of microtitre plates (96 wells) in combination with a 

FLASHscan® spectrometer (Analytik Jena AG, Germany) enabled multiple 

assays to be run over short time periods (10 min). Such a system could be 

used in further high-throughput screens for hydrolases or lyases involved in 

organosulphur volatile transformations. 
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Orange had the greatest specific activity toward MFTA (15.24 nkat/mg), with 

its activities toward all other substrates comparable to, or greater than, the 

other fruit preparations. Grapefruit, lemon and lime all demonstrated relatively 

high levels of activity with the different substrates, illustrating that Citrus 

species are particularly rich in both thioesterase and carboxylesterase 

activities. Interestingly, the pattern of activities determined for the fruit 

enzymes were comparable. Whereas CRL showed a greater preference for 

carboxylester substrates such as p-NA and a-NA. It therefore appeared that 

although the fruit extracts were particularly active toward cyclic thioacetyls, 

such as MFTA, the energy of the thioester/ carboxylester bonds and the 

stability of the respective anions were also important factors in determining the 

pattern of activities observed. 

It was also important to consider total activities per 100 g of fruit peel, rather 

than just specific activities which do not reflect the catalytic capacity of each 

tissue type by weight. Figure 6.2 illustrates the amount of protein extracted 

from each fruit (100g tissue); this was found to vary considerably with 200 mg 

of protein extracted from 100 g of orange peel compared to only 20 mg 

extracted from an equivalent of blackcurrant fruit (10-fold lower). The amount 

of protein and biocatalyst available per 100 g of fruit tissue was an important 

consideration when sourcing the enzyme. A comparison of total thioesterase 

and carboxylesterase activity toward MFTA and p-NA is illustrated in figure 

6.3. Orange peel demonstrated the highest total thioesterase and 

carboxylesterase activities, 3109 nkat and 1140 nkat respectively, making it 

the optimal source of the biocatalyst. The orange juicing industry is large ($2.2 

billion US), and generates 2.3 million metric tonnes of juice per year 1 8 3 . 

Therefore peel by-product is likely to be readily available as a cheap 

feedstock. Oranges are predominantly grown in Spain (Valencia), US (Florida), 

Brazil and Spain so a year round supply is available. However, prior to 

optimizing the use of this peel biocatalyst and testing its productivity it was of 

interest to determine the identity of the enzyme(s) responsible for the observed 

activities. 
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Figure 6.2 Protein extracted from 100 g of fruit tissue following 0.25 M salt 
extraction, filtration through Mira Cloth and 40-80% ammonium sulphate 
precipitation. Results are average protein determinations (triplicates) from 
extracts of multiple fruits. 
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Figure 6.3 A comparison of total thioesterase and carboxylesterase activity in 
100 g of fruit tissue. Through combining both specific activities and protein 
extracted the total activities could be determined. This serves as a more 
informative measure of biocatalytic productivity per weight of fruit material. 
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6.3 Purification and Identification of Thioesterases in Orange 

(Citrus sinensis) 

The pattern of chemical preference determined for the orange extract mirrored 

that of the purple passion fruit sample (Figure 6.1), but whether this was due to 

the action of related PAE enzymes was unclear. Hence, a sequential protein 

purification protocol similar to that used for isolating the passion fruit enzyme, 

PeWH, was employed as a means of determining the identity of the 

enzyme(s). 

6.3.1 The Sequential Purification of Thioesterases from Orange Peel 

The peel of four ripe Valencia oranges (200 g) was homogenized and protein 

extracted in an identical manner to that used for the large scale extraction of 

protein from passion fruit (Methods 2.4.1). The dialysed extract was then 

passed through three sepharose columns, DEAE, octyl and phenyl sepharose 

with the elution of MFTA-thioesterase activity determined using the Ellman's 

assay (Figure 6.4). The purification protocol to this stage was identical to that 

used for the isolation of PeWH and hence the properties of the orange 

thioesterases on each column could be compared to that of PeWH (Chapter 4, 

Figure 4.3). Columns were run under the same parameters of flow rate, 

fraction size and buffers. 

The crude protein preparation was firstly applied to DEAE sepharose where 

thioesterase activity eluted in two distinct pools, an unbound and a bound pool 

referred to as pools 1 and 2 respectively (Figure 6.4 A1). The unbound pool 

which eluted over multiple fractions in the void volume accounted for 

approximately 85% of recovered activity. The smaller bound pool of activity 

was more acidic and eluted with 0.08 M NaCI. This separation of activity into 

two pools based upon differences in isoelectric properties was also observed 

during purification of PeWH from passion fruit, where activity was separated 

equally between two pools, with pool 2 showing the greater specific activity. 

However, in Citrus the opposite was noted, pool 1 had a greater specific 

activity (22.69 nkat/mg) than that of 2 (7.64 nkat/mg). For this reason work 

primarily concentrated on characterizing pool 1 activity. 
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Figure 6.4 A. The sequential purification of Pool 1 thioesterase activity from 
Valencia orange peel by chromatography on (1.) DEAE Sepharose, (2.) Octyl 
Sepharose, (3.) Phenyl Superose and (4.) Mono S Sepharose. Blue lines show 
the elution of UV absorbing protein (280 nm), red dotted lines indicate 
thioesterase activity and black lines represent the gradient of mobile phase. 
Analysis of polypeptides at each stage of purification via SDS-PAGE (right). 
The abundant protein of size 28 kDa in the DEAE pool 1 fraction (gel top right) 
was excised and identified through MALDI-Tof based proteomics as a germin 
like protein, an abundant allergen found in orange (data not shown). 
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Figure 6.4 B. The sequential purification of Pool 2 thioesterase activity from 
Valencia orange peel by chromatography on (1.) DEAE Sepharose, (2.) Octyl 
Sepharose, (3.) Phenyl Superose and (4.) Mono S Sepharose. Blue lines show 
the elution of UV absorbing protein (280 nm), red dotted lines indicate 
thioesterase activity and black lines represent the gradient of mobile phase. 
Analysis of polypeptides at each stage of purification via SDS-PAGE (right). 
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Ammonium sulphate (1 M) was added to both pools of activity before they 

were separately applied onto the octyl sepharose column. Both activities 

demonstrated similar elution characteristics being recovered in 0.27 M and 

0.19 M ammonium sulphate respectively (Figure 6.4 A2 + B2); an indication 

they were both relatively hydrophobic proteins. It was necessary to 

concentrate the protein solution to 10 ml by ultrafiltration prior to loading onto 

the phenyl superose column. Both pools of activity again demonstrated similar 

properties on this high-performance column with activity eluting in 0.52 M and 

0.48 M ammonium sulphate respectively (Figure 6.4 A3 + B3). 

The analysis of polypeptides eluting from the phenyl superose column (Figure 

6.4, gel images) indicated the protein preparations were not adequately pure 

as multiple polypeptide bands were present. Hence, a further purification step 

was required. Due to the basic nature of the homologous thioesterase purified 

from passion fruit (PeWH, pi: 9-10), it was decided that a cation exchange 

column composed of Mono S sepharose may retain the enzyme(s). Protein 

samples were therefore dialysed overnight against 20 mM Bis-Tris, pH 7.0 

before loading onto the high-performance Mono S column (1 ml) at a flow rate 

of 1 ml/min with 1 ml fractions collected. Both pools of activity bound to the 

column with the slightly less basic pool 2 activity eluting with 0.10 M NaCI and 

pool 1 eluting with 0.19 M NaCI (Figure 6.4 A4 + B4). Based on the final 

specific activity (403 nkat mg"1), the pool 1 enzyme had been purified 85-fold in 

1 % yield, whereas, pool 2 with a specific activity of 127 nkat mg" 1, was purified 

27-fold in 0.3 % yield. A summary of the purification procedure is depicted in 

table 6.1 where the purification fold and recovery of activity is shown for both 

pools of enzymes at each subsequent purification step. 
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6.3.2 The Identification of Thioesterases in Oranges as Pectin 

Acetylesterases (PAEs) 

SDS-PAGE was used for the analysis of purified peptides eluting from the final 

Mono S columns (Figure 6.5). In both cases a 43 kDa polypeptide was 

identified whose relative abundance mirrored eluting thioesterase activity. The 

two pools of purified thioesterases from orange were named CsWHa (Citrus 

sinensis wall-bound hydrolase a) and CsWHb. The associated polypeptides 

were excised from the SDS gels, digested with trypsin and analysed by 

MALDI-ToF based proteomics and tandem mass spectrometry (MS-MS 

sequencing). 

The MALDI analysis of CsWHa generated a clear spectrum (Figure 6.6) with 

multiple ions identified above the background level. The ion fragmentation 

pattern was similar to that of CsWHb and through comparing the peak ion lists 

it was apparent CsWHa and b were the same protein (Annex III: CsWH Protein 

Analysis), with the differences in their overall charge properties likely to be 

accounted for by subtle post-translational modifications. The calibrated ion 

peak list for CsWHa was then used to screen the non-redundant protein and 

EST databases using Mascot software (www.matrixscience.com). Mascot 

takes the mass spectrometry data for a digested protein (peak ion list) and 

searches the protein databases for sequences with similar (or exact) peptide 

mass fingerprints. Such methods are however limited to the identification of 

proteins of known sequence stored within the databases. A search of the plant 

non-redundant protein and EST (expressed sequence tag) databases was 

conducted using experimental mass values between 1000-3500 (i.e. removing 

predominantly trypsin ions) with a low peptide tolerance of 20 ppm (providing a 

high level of sensitivity). No significant matches were found in the non-

redundant protein database, however significant hits were found in the plant 

EST database (Figure 6.7A). The best match was toward a cDNA EST clone 

form sweet orange (accession: BQ624005), Ridge pineapple cultivar (Citrus 

sinesis L Osbeck), with a significant Mowse (Molecular weight search) score 

of 125. The translated protein sequence gave a predicted tryptic fragmentation 

of 14 peptides, 12 of which had masses identical to the experimental mass 

values (Figure 6.7B), accounting for 77% coverage of the sequence. 
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Figure 6.5 SDS-PAGE identification of active polypeptides in pool 1 (A.) and 
pool 2 (B.). The active fractions eluting from the final Mono S columns were 
analysed via SDS-PAGE and when aligned with relative thioesterase activity a 
polypeptide of 43 kDa mirrored eluting activity in each case, as highlighted by 
the arrows above. 
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40 50 60 70 80 90 100 110 120 130 
Probability based Mowse score 

1. gi21651174 Mass: 22565 Score: 125 Expect: 1.8e-5 Queries matched: 12 
USDA-FP_01096 Ridge pineapple sweet orange, Citrus sinensis cDNA clone, mRNA 
2. gi63074511 Mass: 19907 Score: 113 Expect: 2.8e-4 Queries matched: 11 
C18008E01RV Drought2 Citrus reshni cDNA clone C18008E01, mRNA 
3. gi42623376 Mass: 20918 Score: 112 Expect: 3.6e-4 Queries matched: 11 
USDA-FP_5969 Ridge pineapple sweet orange, Citrus sinensis cDNA clone, mRNA 

B. Top hit BQ624005: Translated EST clone 
1 TKVKCFADAG YFINAKDVSG ASHIEQFYAQ WATHGSAKH LPASCTSRLS 
51 PGLCFFPQYM ARQITTPLFI INAAYDSWQI KNILAPGVAD PHGTWHSCKL 
101 DINNCSPTQL QTMQSFRTQF LNALAGLGIS SSRGMFIDAC YAHCQTEMQE 
151 TWLRTDSPVL GKMSIAKAVG DWYYDRSPFQ KIDCAYPCNP TCHNRGF 

Peptide Experimental Expected Error Sequence residue No. mass (Mr) mass (Mr) (ppm) 
Sequence 

5-16 1376.6320 1375.6247 1 CFADAGYFINAK 
17-39 2402.1590 2401.1517 -6 DVSGASHIEQFYAQWATHGSAK 
40-48 1028.4900 1027.4827 -4 HLPASCTSR 
49-62 1686.8100 1685.8027 -2 LSPGLCFFPQYMAR 
49-62 1702.8120 1701.8047 2 LSPGLCFFPQYMAR o x i d a t i o n M 
82-99 1959.9480 1958.9407 -1 NILAPGVADPHGTWHSCK 

100-117 2153.0080 2152.0007 -2 LDINNCSPTQLQTMQSFR 
100-117 2169.0110 2168.0037 2 LDINNCSPTQLQTMQSFR o x i d a t i o n M 
118-133 1634.8560 1633.8487 -18 TQFLNALAGLGISSSR 
134-154 2647.1510 2646.1437 12 GMFIDACYAHCQTEMQETWLR 
168-176 1144.5180 1143.5107 11 AVGDWYYDR 
182-195 1777.7230 1776.7157 2 IDCAYPCNPTCHNR 

c. 
Accession Identification Species Predicted 

Mr/pl 
Score/ 
E value 

CAA67728 Pectin acetylesterase Vigna radiata 43 .3 /9 .5 327 / 3e-89 
NP193677 Pectin acetylesterase Arabidopsis thaliana 41 .8 /9 .0 305/1e-82 
AAP72959 Pectin acetylesterase Lactuca sativa 43.7 / 8.76 295 / 2e-79 

Figure 6.7 A. Mascot search results for CsWHa. The graph illustrates the 
number of hits on the plant EST database and their significance based upon 
Mowse scores (-10*log(p), p: probability the observed match is a random 
event). Mowse score > 100 is commonly accepted as significant. Top hits are 
listed. B. The translated EST sequence BQ624005, illustrating predicted 
trypsin cleavage sites (underlined) and peptide mass matches accounting for 
77% sequence coverage (Red). C. The top 3 BLAST hits when searching the 
plant protein databases with translated BQ624005. 
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Two further matches in the plant EST database were also found to be 

significant, however one was from the closely related mandarin fruit (Citrus 

reshni) and the other was also from ridge pineapple sweet orange. 

Interestingly, Valencia orange is a sweet variety and the combination of fruit 

match and high Mowse score indicated that the top hit, BQ624005, was 

significant. 

The EST clone for BQ624005 was translated into all six possible reading 

frames before screening against the plant protein databases using BLAST 

(Figure 6.7C). The top hit with a score of 349 was toward the pectin 

acetylesterase identified in mung bean {Vigna radiata, accession: CAA67728). 

Hence, the purified protein CsWH gave a similar ion fragmentation pattern 

following trypsin digestion and MALDI to that predicted for an EST clone 

encoding a pectin acetylesterase from orange. It appears the purified 

thioesterases from orange are of the same family as those isolated from 

passion fruit, members of the pectin acetylesterase (PAE) protein family. 

BQ624005 is a partial cDNA sequence and does not encode the full length 

PAE open reading frame. Therefore, the short sequence was used to search 

the EST nucleotide database for further overlapping clones from the same fruit 

as a means of building up a near complete translated protein sequence (Figure 

6.8A). This larger and more representative sequence was subjected to a 

predicted MS-tryptic digest using the prospector software 

(www.prospector.ucsf.edu). The predicted ion peak list was compared to the 

experimental ion peak list for CsWHa (Annex III B), where 20 matches were 

found accounting for 76% coverage of this larger sequence (Figure 6.8B). The 

unidentified sequence may be due to a number of factors, namely the 

incomplete digestion of the protein caused by its unusually hydrophobic 

nature, or the fact that this is a homologous protein from a related species 

where the true protein sequence although similar, may differ in exact amino 

acid content which will result in differences in peptide fragment sizes. 

The identification of the protein as a PAE was supported by tandem mass 

spectrometry analysis. The parent ions 1635, 2402, 2554 and 2662 were all of 
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sufficient intensity to provide clear secondary fragmentation and could be used 

to determine partial protein sequence (Annex III C, Table 6.2). Each sequence 

was used to search the plant protein and EST databases using protein BLAST 

(short nearly exact match), with each peptide matching pectin acetylesterase 

proteins (Table 6.2). 

Peptide fragment Database hit 
(Score / E value) 

Identification Species 
Accession 

1. Mr: 1635 

TQF(I/L)NA(I/L)AG 
(l/L)G(l/L)SSSR 

(16 amino acids) 

2. Mr: 2402 

ASH(I/L)EQFYAQW 
ATHGS 

(16 amino acids) 

Q F L N A L A G L G L S S S 
Q F L + A L + G L G S + S 
Q F L D A L S G L G N S T S 

(29.9/1.6) 

A S H I E Q F Y A Q V V A T H G S 
A H I E FY + V V A T H G S 
A Q H I E A F Y N E W A T H G S 

(39.7/ 0.002) 

Pectin 
acetylesterase 

Pectin 
acetylesterase 

Litchi chinensis 

ACF05806 

Litchi chinensis 

ACF05806 

3. Mr: 2555 
DGASFTGDVEAVNP 

ANN(I/L)H 

(19 amino acids) 

4. Mr: 2663 

QNAV(I/L)SGCSAG 
G(I/L)TS(I/L)(I/L)HCD 

NFR 

(23 amino acids) 

D G A S F T G D V E A V N P A N N L H 
D G A S F T G D V E A V N P A N L H 
D G A S F T G D V E A V N P A T N L H 

(57.5/ 8e 0 9 ) 

Q N A V L S G C S A G G L T S L L H C D N F R 
+ N A V L S G C S A G G L S L + H C D + F R 
E N A V L S G C S A G G L A S L M H C D S F R 

Pectin 
acetylesterase, 

Pectin 
acetylesterase, 

putative 

(62 .1 /3e 1 0 ) 

Litchi chinensis 

ACF05806 

Arabidopsis 
thaliana 

NP974575 

Table 6.2 Sequencing of the purified thioesterase CsWH. Database hits 
obtained from MS-MS sequencing of polypeptides. For each peptide the top 
BLAST hits are presented for known or putative proteins. Both score and 
expect values are shown to highlight the significance of the match. Score: 
Higher the better, measure of how close the match is, taking into account miss 
matches (space) or similar amino acid types (+). Expect: Lower the better, the 
chance such an alignment could occur by chance in the database being 
searched. 
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These two independent methods of protein identification, MALDI analysis and 

MS-MS sequencing, both identified the purified thioesterase as a PAE like 

hydrolase. Furthermore, the two analytical techniques can be combined to 

ensure both the peptide mass finger print and the sequence of selected ions 

match (Figure 6.6), as a thorough means of confirming protein identity. 

6.3.3 The Characterisation of CsWH Thioesterase 

When characterizing the purified enzyme particular attention focused on 

determining the properties of the protein with respect to its use in 

bioprocessing, such as stability, chemical activity and kinetic rates. The 

enzyme was screened against the commercial hydrolases (CRL and PLE) and 

the purified thioesterase from passion fruit (PeWH) for activity against the 

panel of thioester and ester substrates (Table 6.3). The purified orange 

enzyme had a high thioesterase activity toward 2 (MFTA; 403.08 nkat mg"1), 

was 2.7-fold more active than PeWH and had similar activity to PLE (537.88 

nkat mg"1). The enzymes pattern of chemical preference was similar to that of 

PeWH, but generally 5-10 fold greater in activity. Partially purified CsWH 

showed preference for short chain acyl components in esters/ thioesters as 

demonstrated through the reduction in activity caused by the increasing acyl 

chain length (C2, C3, C6) in the umbelliferyl ester series 9-11. 

The stability of the enzyme at 30°C in 0.1 M phosphate buffer, pH 7.2 was 

investigated and found to decay steadily over 14 days, with a half life of 7 days 

22 hours. Hence, CsWH was found to be a particularly stable protein, even 

more so than PeWH which had a half life of 4 days 14 hours under comparable 

conditions. 

212 



Compound T n i o e s t e r / e s t e r substrates 
number 

Purified PeWH Purified CsWH Porcine liver Candida rugosa 
thioesterase thioesterase esterase lipase 

(S.a. nkat/mg) (S.a. nkat/mg) (S.a. nkat/mg) (S.a. nkat/mg) 

7. 

10. 

11. 

A 
A 

3-(thioacetyl) hexylacetate 

X 
If % 

2-methyl furan-3-thioacetate 

X 
Tetra hydro 2-methyl furan-3-

thioacetate 

Methyl thiofuroate 

V V 

Furfuryl thioacetate 

O / 

8-(acetylthio) menthone 

J L 

a-Naphthyl acetate 

° l N _ O _ 0 y C H ' 
o 

P-Nitrophenyl acetate 

-A 
4-Methylumbelliferyl acetate 

4-Methylumbelliferyl 

propanoate 

1.12 

+/- 0.02 

149.38 

+/-0.0021 

0.29 

+/- 0.03 

ND 

10.06 

+/-

8.84 

+/- 0.08 

4.16 

+/- 0.72 

11.39 

+/- 1.2 

0.66 

+/- 0.08 

0.57 

+/- 0.09 

0.006 

+/- 0.0004 

3.01 

+/- 0.12 

403.08 

+/- 18.37 

1.08 

+/- 0.09 

ND 

43.62 

+/-2.13 

6.29 

+/- 0.17 

42.11 

+/- 1.98 

135.36 

+/- 11.03 

1.48 

+/-0.19 

0.93 

+/- 0.04 

0.01 

+/- 0.002 

14.02 

+/- 0.72 

537.88 

+/- 24.65 

31.12 

+/- 3.01 

100.0 

+/- 9.75 

35.04 

+/-1.98 

4.17 

+/- 0.02 

159.4 

+/- 16.14 

2117.6 

+/- 87.5 

426.15 

+/- 72.55 

1589.26 

+/-102 

1302.97 

+/-97 

ND 

0.35 

+/- 0.02 

ND 

ND 

0.05 

+/- 0.01 

0.02 

+/- 0.01 

0.58 

+/- 0.01 

5.14 

+/- 0.23 

4.26 

+/-0.18 

118.36 

+/-21.39 

36.59 

+/- 4.00 
4-Methylumbelliferyl hexanoate 

Table 6.3 Enzymatic hydrolysis of thioester and carboxylester substrates by 
CsWH as compared to the thioesterase from passion fruit, PeWH, the 
mammalian esterase (PLE) and a microbial lipase (CRL). Activities are means 
of triplicates +/- standard deviation from the mean. ND; no activity detected. 
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The enzyme kinetics of CsWH were also of interest, both as a means of 

investigating the enzymatic mechanism of the protein and for determining its 

productivity (e.g. turnover number). The effect of substrate concentration on 

reaction velocity was therefore investigated using the model substrate MFTA. 

The variation of reaction velocity with substrate concentration followed classic 

Michaelis-Menten kinetics (Figure 6.9) as confirmed through the linear double 

reciprocal plot (Lineweaver-Burk plot, Figure 6.9B). The kinetic constants for 

CsWH were determined as; 

v W : 181 +/- 26 nmol/ sec/mg protein 

Km: 0.5 mM MFTA 

Kcat: 7.85 nmol product/sec/nmol protein 

The turnover number (Kcat: 7.85 Sec"1) was comparable to other plant enzymes 

involved in the metabolism of xenobiotic compounds, such as an esterase from 

the weed, black-grass (Alopecurus myosuroides), which bioactivates 

aryloxyphenoxypropionate herbicides 1 4 3. Although turnover number is not high 

enough for VOSCs to be considered the natural substrate of CsWH, it is 

nonetheless significantly productive for consideration in bioprocessing. 

Using the turnover number for purified CsWH, it is possible to predict the 

amount of thiol product (MFT) that can be generated per kg of peel, per day, 

per 1 litre reaction (space/ time/ yield value). 

400g peel: 6680 nmol product/ sec 

400g peel: 48 g/ day/ L 

1kg peel: 120 g product/ day/ L 

Due to the high-impact nature of the product only small volumes need be 

produced, the predicted productivity of this biocatalyst is theoretically 

attractive. However, through optimising the extraction and processing of the 

enzyme yields could be improved. 
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Km: 0.4548 +/- 0.2047 mM MFTA 

Kcat: 7.85 +/-1.14 nmol product/sec/nmol protein 

Figure 6.9 Enzyme kinetics of CsWH thioesterase. The dependence of 
reaction velocity (V) on substrate concentration (MFTA) follows a classic 
Michaelis-Menton curve (A.). Through plotting a double reciprocal plot the 
kinetic constants Vmax and K m could be determined and the turnover number 
K c a t defined (B.). 1.5 ug purified protein (final column) was incubated with 
varying substrate concentrations 0.007-3.3 mM MFTA at 30°C and product 
formation determined over 1 min using the Ellman's assay. Values shown are 
averages of triplicates with correction for chemical rates. 
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6.4 The Enzymatic Production of High-Impact Aroma 

Chemicals Using Orange Peel 
Due to the high acetylesterase content of Citrus peel there has previously 

been interest in optimising the material as a novel source of hydrolases 1 8 2 , 1 8 4 . 

Partially purified acetylesterase from Citrus sinensis demonstrated 

regioselectivity in hydrolysing the acetyl group from the C6 position of penta-O-

acetyl-a-D-glucose 1 8 4, a precursor in agrochemical synthesis (Figure 6.1 OA). 

Complete hydrolysis of the ester at position 6 occurred within one hour, where 

longer incubation times did not give rise to further deacetylation products. A 

recent study looked to optimize the acetyl esterases from Citrus sinensis 

through partial purification (190-fold) and immobilisation of the enzyme on 

Sepa-beads-EP (Resindion, Milano, Italy) 1 8 2 . The immobilized enzyme 

removed the acetyl group at the 3 position of (3-lactam antibiotics, such as 

cephalosporin C, with > 98% conversion and subsequent product yields of 91-

93% (Figure 6.1 OB). 

A. 
. N O A c H 2 0 

A c O ^ ' ^ Y ^ 

O HO AcO 
Citrus P A E 

HO 20mM phosphate, pH 8.0, 25°C 
"'// '*// Acetic acid (AcOH) AcO OAc AcO OAc 

OAc OAc 

penta-O-acetyl-a-D-glucose 

B. 
H 2 0 H,N H,N 

i T 20rr 
I A r o t i r arir 

Citrus P A E 

20mM phosphate, pH 8.0, 25°C 
Acetic acid 

C O O H C O O H 

7-aminocephalosporanic acid 

Figure 6.10 Citrus acetylesterase catalysed hydrolysis of penta-O-acetyl-a-D-
glucose (A.) and 7-aminocephalosporanic acid, a precursor in cephalosporin C 
synthesis (B.). Figure produced with information from Pasta et a/ . , 1 8 2 2004 and 
Waldmann e r a / . / 8 4 1994. 
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These studies are consistent with our observations with CsWH and PeWH, 

which demonstrated the enzymes' preference for acetylated substrates. There 

is a clear application for PAEs and PMEs in the regioselective deprotection of 

blocking groups on intermediates used in drug or agrochemical synthesis. 

Furthermore, enzymatic hydrolysis is conducted under mild conditions and 

prevents the decomposition of delicate intermediates which may otherwise 

occur through acid or base catalysis 1 0 3. However, the application of Cs peel 

has to date not been considered for the biotransformation of VOSCs. 

6.4.1 Optimisation of Cs Biocatalyst 

When developing a process for optimizing a biocatalyst one must weigh up the 

pros and cons of each strategy. For example, the purification and 

immobilisation of an enzyme may provide greater stability, recovery and 

prevent unwanted side reactions, however, this can be costly and a readily 

available raw material may suffice for use as a crude preparation. Although 

both strategies, purification/immobilisation and crude preparation, were 

considered when developing the use of Cs peel much of the optimization was 

made through trial and error. 

Previously the extraction and immobilisation of acetylesterase from Cs pee l 1 8 2 

was found to provide a selective esterase which could be recovered and re­

used in subsequent reactions. However, with each stage of processing 

enzyme activity will inevitably be lost (25% in this case). Our own efforts to 

partially purify CsWH through batch purification and filtration, as would be used 

for large scale protein extraction industrially, failed to provide adequate yields 

of the enzyme (Figure 6.11). 

An alternative approach was required. Our studies with CsWH and PeWH had 

previously indicated that the enzymes were wall-bound proteins associated 

with the polysaccharide matrix. Hence, instead of using salt to liberate the 

hydrolases prior to purification and immobilisation it was potentially simpler 

(and cheaper) to use the peel directly with the biocatalyst postulated to be 

partially immobile. 
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Peel of 2 ripe Valencia Oranges 
100g 

Homogenised in a waring blender, 4°C in extraction buffer 
(4:1, vokweight); 0.1M Potassium Phosphate buffer, pH 7.2 

+ 0.25M NaCI 
Stir 2 hours, 4°C 

Filter through Miracloth under vacuum 
Retain supernatant (-400 ml) 

Collect supernatant 
+ 1M ammonium sulphate 

Stir 1 hour 4°C 

Plus octyl sepharose, 80 ml (20% v:v) 
in 0.1 M phosphate buffer, stir 10 min 

4°C, filter under vaccum 

Retain beads, re-suspend in 0.1M phosphate 
buffer (200ml), stir 10 min, and elute enzyme 

in supernatant through filtration 

Plus DEAE sepharose, 40 ml (20% v:v) 
in 0.1 M phosphate buffer, stir 10 min 

4°C, filter under vaccum 

Retain supernatant containing the unbound 
active pool (40 ml). 

Concentrated protein solution rich in CsWH. 
Immobilise. 

Recover sepharose beads, 
wash and re-use 

Recover sepharose beads, 
wash and re-use 

Sample Total activity (nkat/mg) Purification ( x fold) Yield (%) 
Crude salt extract 5120 -

Octyl purified 1690 2.9 33 
DEAE purified 760 8.7 15 

Figure 6.11 Batch purification of CsWH. This simple purification procedure 
was used to mirror a large scale industrial purification process. Filtration 
replaced centrifugation and affinity purification of the protein was conducted in 
single step batches rather than through columns. The recovery of activity and 
fold purification of thioesterase activity toward MFTA is shown (bottom). 
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However, using fresh peel material meant the shelf life had to be considered, 

and in an effort to prevent bacterial contamination, Cs peel was freeze dried. 

The lypholyzed form of the CsWH present in the peel preparation was found to 

be significantly stable for several months at -20°C (3 months: activity > 90%). 

Furthermore, drying the peel meant it could be powdered, greatly increasing 

the surface area for substrate-catalyst interactions in comparison to the fresh 

homogenised peel. 

Further optimisation of the drying process included homogenising the peel in 

different buffers at varying pHs prior to freeze drying. It has been 

demonstrated previously that enzymes have the remarkable property of 

retaining active site conformation following drying, even when used in different 

solvents 1 8 5. This property is described as "memory" and was investigated here 

to determine whether improved activities could be achieved, especially when 

optimizing activity in non-aqueous solvents or biphasic reactions. However, in 

this case it was found that simply drying the fresh homogenized peel without 

buffer was optimal for retaining activity (91 +/- 3 % retained following drying). 

A final consideration was recovery of biocatalytic activity between reactions. 

Although it was postulated the enzyme was partially immobile, would this be 

adequate to recover significant activity for it to be re-used in subsequent 

reactions? As a means of determining this, 5 mg of dried peel was incubated 

(30°C) with 1 mM MFTA in 0.1 M phosphate buffer (1 ml reaction) for 1 minute 

and the specific activity determined through the Ellman's assay prior to 

recovery of Cs peel through centrifugation (5 min, 10,000 g). Recovered 

catalyst was resuspended in an identical reaction and activity again 

determined following 1 minute incubation. Repeated reactions and recovery 

illustrated that the enzyme was in fact partially bound, whereby activity was 

lost exponentially between subsequent reactions (Figure 6.12). However, a 

fraction remained tightly bound and accounted for a retention of 40-45% 

activity over 7 reactions. With the intention of enhancing the enzyme's affinity 

for the pectin matrix, fresh peel was homogenised and soaked in calcium (0.1 

M) buffered solutions prior to freeze drying. It was postulated that Ca 2 + ions 
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which are known to ionically bind to the -ve charges on pectin may act to 

chelate the enzyme to the matrix 1 8 6 . The addition of calcium however 

appeared to remove the partially bound fraction altogether (Figurer 6.12). This 

could be a consequence of calcium or chloride ions interfering with ionic 

binding to the matrix during homogenisation and leading to deactivation of the 

enzyme during freeze drying. 

100 

I 
80 

TO 60 0) 
CO 

CD 

<?> 40 

20 

0 
1 2 3 4 5 6 7 8 

Reaction number 

Figure 6.12 Recovery of Cs peel biocatalyst. 5 mg of dried peel (+/- Ca 2 + ) was 
incubated with 1mM MFTA in 0.1 M phosphate buffer pH 7.2. Relative 
thioesterase activity toward MFTA was determined using the Ellman's assay 
prior to recovery of the catalyst through centrifugation and re-suspension in an 
identical reaction. Black bars; fresh dried peel material (no additives/ buffer), 
red bars; homogenisation in 0.1 M phosphate buffer pH 7.2 prior to drying and 
blue bars; homogenisation in 0.1 M phosphate buffer pH 7.2 + 0.1 M CaCb 
prior to drying. 

An interesting observation made when working on the optimization of Cs peel 

biocatalyst was that the water content of the reaction affected the properties of 

the catalytic material, with the pectin forming a gel at low water content (7% 

w/v). Furthermore, the gel could be set onto the surface of tubes and reaction 

vessels through rotating the container as the gel set. This may serve as an 

efficient system for conducting bioreactions on an industrial scale where 

substrates could be continually flowed over a flat bed of set gel. Through 

220 



warming the solution and increasing the water content the gelling process 

could be reversed. Such an approach may also prove useful for the 

preparation of further biocatalysts where they would essentially be retained in 

a gel between subsequent reactions and washes. 

6.4.2 Productivity of Cs Biocatalyst 

As a means of determining the potential use of Cs peel dried catalyst, it was 

important to assay the material against other commercially available 

biocatalysts. Two immobilised lipases were therefore chosen, Lipozyme (lipase 

from Mucor miehei immobilized on a macroporous ion-exchange resin) and 

Novozyme (lipase from Candida antarctica immobilized on acrylic resin) 

(Figure 6.13). Both optimized enzymes had been previously used for the 

biosynthesis of sulphur aroma chemicals 1 1 5. Small lab scale bioreactions (50 

ml) were set up in round bottomed flasks incubated at 37°C. Initially the 

thioesterase activity of each enzyme preparation (Cs peel, Lipozyme, 

Novozyme) was investigated where 100 mg of catalyst was incubated with 

each thioester substrate (10 mM) for 12 hours as a means of determining the 

hydrolytic conversion to thiol VOSC product (Figure 6.14). Cs peel was a 

superior biocatalyst toward MFTA, 3-(thioacetyl)hexylacetate and furfuryl 

thioacetate. Product yields of thiomenthone were however lower (47%). 

Citrus sinesis; freeze Lipozyme; immobilised Novozyme; immobilised 
dried Valencia peel lipase from Mucor lipase from Candida 

miehei antarctica 

Figure 6.13 Biocatalysts used for the transformation of VOSCs. 
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H 2 0 

2-methyl furan-3-thioacetate 
(MFTA) 

Thioeslerase; 
Lipo, Novo, Cs peel 

0.1M potassium phosphate buffer, 
pH 7.2 
37°C 

2-methyl furan-3-thiol 
(MFT) 

HO' 

ethanoic acid 

Product yield (%) 

Cs peel 

56 

Lipo 

40 

Novo 

53 

A o 

I II + H 2 0 

3-(thioacetyl) hexylacetate 

Thioesterase; 
Lipo, Novo, Cs peel 
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81 
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76 

Novo 
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Thioesterase; 
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37°C 

HO' 

O 

8-thiomenthone ethanoic acid 

Product yield (%) 

Cs peel 

47 

Lipo 
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Figure 6.14 The hydrolysis of thioester VOSCs using Citrus sinensis (Cs) peel 
and the immobilised lipases, Lipozyme (Lipo) and Novozyme (Novo). 100 mg 
of catalyst was incubated with 10 mM substrate for 12 hours prior to 
quantification of thiol product using GC analysis. 
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A previous study had demonstrated that immobilised lipases in solvent free 

media could reverse the hydrolytic reaction and form thioesters from reaction 

media containing pure thiol and ac id 1 1 5 . The immobilised lipases from Mucor 

miehei (Lipozyme) and Candida antarctica (Novozyme) were shown to 

produce short-chain thioesters in solvent-free medium (i.e. no water, only thiol 

and acid) 1 1 5 . A thioester yield of 40% was achieved for the condensation of 

pentanoic acid and butanethiol at 60°C, 1:5 (acid: thiol) ratio with the addition 

of molecular sieves to remove the water generated upon condensation. 

Although the ability to function in non-aqueous systems is characteristic of 

lipases it was interesting to re-run such bioreactions using the dried Cs peel. 

It was however important to ensure the dried peel enzyme could tolerate a 

non-aqueous environment. Therefore freeze dried peel (100 mg) was soaked 

in dichloromethane (DCM) with agitation for 1 hour before being recovered 

through centrifugation (10,000 g, 5 min) and thioesterase activity determined 

through the Ellman's assay. 35 % of activity remained after incubation in 

solvent (DCM) for 1 hour. Evidently a microscopic layer of water had remained 

bound to the enzymes following drying which enabled them to retain 

conformation and activity following contact with solvent. Although only 35% 

activity remained it was interesting to determine whether the dried enzyme 

could drive the natural hydrolytic reaction in reverse. 

All bioreactions were run for 3 hours in round-bottomed flasks (50 ml) with 100 

mg of each biocatalyst. Reaction products were analysed by HPLC (Methods 

2.3.5) and quantified through calibration of peak area using standard 

compounds (Figure 6.15). Both the immobilised lipases, Lipozyme and 

Novozyme, generated equivalent amounts of thioester (18-20%) under such 

conditions. However, no product was observed when using Cs peel. Genetic 

modification of the enzyme active site may be considered when optimising this 

enzyme for non-aqueous environments. 
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Figure 6.15 Reaction scheme illustrating the formation of thioesters in solvent 
free media using immobilised lipases (A.). HPLC traces showing reaction 
products following incubation of biocatalyst (100mg) with butane thiol and 
pentanoic acid (1:5 acid:thiol ratio, 50 ml reaction) for 3 hours at 37°C. A IOja.1 
aliquot was diluted 1000 fold in DCM and dried prior to loading. 
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6.5 Discussion 
Screening further fruits for thioesterase activity demonstrated that Citrus, and 

in particular orange, contained high levels of the desired activity and formed a 

useful source of thioesterases. The orange juicing industry is large ($2.2 billion 

US) 1 8 3 , and produces quantities of waste peel which could be used as a 

source of biocatalyst. 

Purification of MFTA thioesterase activity in Citrus sinensis enabled the 

identification of the enzyme which was found to be a member of the pectin 

acetylesterase family of carboxylester hydrolases. MALDI ToF proteomics 

combined with MS-MS sequencing provided convincing evidence the defined 

thioesterase activity was due to this family of carbohydrate binding esterases. 

Furthermore, the identification of CsWH as a PAE supports the initial work on 

the thioesterase from passion fruit, PeWH, where the enzyme was identified as 

a PAE homologue. It was not possible to use MALDI analysis to identify PeWH 

as there were no matching fruit EST entries for this species within the non-

redundant protein databases. However, the identification of the thioesterase 

CsWH as a PAE in orange adds weight to the proposition the thioesterase 

PeWH is a PAE homologue. The proteins were purified in the same manner 

against the same substrate and shared many properties (size: 43 kDa, pi: 9-

9.5). Hence, it appears both fruit species contain wall bound acetylesterases 

with the ability to transform volatile organosulphur chemicals. As attempts to 

express putative PAEs in bacteria were unsuccessful, this was important in 

linking thioesterase activity in fruit to the proposed family of acetylesterase 

enzymes. 

Freeze dried Cs peel was found to have many favourable properties (stability, 

recovery, turnover) for potential use in flavour and fragrance biosynthesis. This 

illustrates that biocatalysts can be sourced from dried plant materials, such as 

fruit, vegetables, leaves and root extracts which are abundant in certain 

activities. For example, freeze dried extracts from Allium species may provide 

a cheap and readily available source of CS-fB-lyases. Although Cs peel has 

potential for further development as a biocatalyst, the stereoselective 
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properties of the enzyme remain to be determined. This is of particular interest 

for the bioproduction of flavourings which often have significantly different 

characteristics dependent upon optical form. Oxford Chemicals, with their GC 

analytical equipment for separating and identifying different enantiomeric forms 

of volatile flavourings plan to take this forward. 
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7. Discussion and Future Work 

The current human population of 6.1 billion continues to rise (1.33% /annum), 

and is predicted to plateau at 11-12 billion over the coming 150-200 years 1 8 7 . 

This is putting an increasing pressure on natural resources and it has been 

proposed that the sustainability of the population has been reached 1 8 8 . 

However, economies strive to grow and frequently neglect the world around 

them through resculpting the landscape, releasing harmful gases into the 

atmosphere and toxins into r ivers 1 8 7 . Overexploitation is threatening 

biodiversity and a change toward sustainable practices is required to reverse 

further damage. With large industrial companies the major polluters they have 

an urgent responsibility to act. 

This work is a reflection of the change in direction being taken by today's 

chemical manufacturers, that of moving away from metal catalysts and non­

renewable feedstock to more sustainable "clean" processes 1 8 9. The increasing 

price of oil-derived feedstock makes such a transition a necessity 1 9 0. In 

initiating this work for the UK flavourings manufacturer, Oxford Chemicals Ltd., 

we set out to develop a novel means of generating high-impact sulphur aroma 

chemicals through an enzymatic approach. A biocatalyst with thioesterase 

activity was chosen as a potentially versatile tool for transforming volatile 

organosulphur compounds (VOSCs). Based on their ability to act in a 

controlled stereospecific manner, there has previously been interest in 

identifying hydrolases that catalyse the cleavage of thioesters to release 

optically active VOSCs 1 1 3 ' 1 1 4 . However, these studies investigated the use of 

microbial lipases and mammalian esterases where product yields and 

enatioselectivities were found to be inadequate for industrial manufacture. 

Little attention has focussed on the endogenous thioesterases (hydrolases) in 

plants, and in particular those from fruit, which we predicted would have 

evolved enhanced specificities in metabolising short-chain flavour volatiles. 

Exotic fruit, being unique in their ability to combine both sulphur metabolism 

and flavour biosynthesis for the generation of attractive and valuable VOSCs 

were therefore chosen in an initial screen for thioesterase enzymes. 
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7.1 Biochemical Considerations 

When conducting this research it was postulated that VOSCs in tropical fruit 

may be sequestered as the less reactive thioester precursors. This was 

supported by the identification of thioester derivatives, including 3-(thioacetyl) 

hexylacetate identified in passion frui t 1 1 9 and 8-acetylthio-p-menthan-3-one 

which was reported in buchu plant extracts 1 2 0. It was believed that, upon 

ripening, hydrolases would catalyse the liberation of VOSCs through thioester 

hydrolysis under developmental regulation. 

Although such an activity was measured in purple passion fruit (Passiflora 

edulis Sims) it became apparent this was not accounted for by a specific 

thioesterase unique to tropical fruit. The purified enzyme, referred to as PeWH, 

was a wall-bound hydrolase localised in the cortex (mesocarp) and was 

identified as a member of the pectinacetyl esterase family of enzymes (EC 

3.1.1.6). This sub-family of a/B hydrolase fold proteins had been previously 

identified and partially characterised in plants due to their involvement in 

carbohydrate cell wall metabol ism 1 5 8 , 1 5 0 . In addition, such hydrolases were 

found to be particularly abundant in the peel of fruits such as Citrus™7, with 

homologous proteins also identified in model plants, including rice and 

Arabidopsis. The purification and identification of a PAE with thioesterase 

activity (CsWH) in orange (Citrus sinensis), a fruit which does not generate 

VOSCs, illustrates that this hydrolase if involved in flavour metabolism has a 

general hydrolytic function and is not specific to the liberation of VOSCs in this 

case. PeWH did however demonstrate thioesterase activity toward 3-

(thioacetyl)hexylacetate, the proposed aroma precursor in passion fruit, but 

whether this is the endogenous substrate for this enzyme is debatable. The 

activity determined for the partially purified protein was low (1.12 nkat/mg), 12-

fold less than the mammalian esterase (PLE), but with greatest activity toward 

synthetic cyclic thioesters (e.g. MFTA, 149.38 nkat/mg) and carboxylester 

substrates (e.g. p-NA, 11.39 nkat/mg) it appears the enzyme is a somewhat 

versatile hydrolase. 

This does not however discount the possibility that PAEs may serve a role in 

flavour liberation in fruit, and based on our observations with PeWH and 
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CsWH it is possible that pectin associated hydrolases present in fruit peel may 

serve a further role in regulating flavour release. Such a role in natural product 

metabolism may extend to many fruits. The endogenous functions of pectin 

acetylesterases are not well understood, though their activity in regulating the 

degree of pectin acetylation has been ascribed roles in softening fruit t issue 1 6 7 

and in controlling cell growth and elongation 1 6 0. Interestingly, in Citrus fruit 

peel, pectin acetylesterases were localised at high concentrations in oil 

vesicles where functions in wall modifications would seem improbable 1 6 7. 

Furthermore, in apples, butyl esters are hydrolyzed to release butanol into the 

surrounding air by undefined esterases found at high concentrations in the 

cortex and peel 9 3 . In addition a recent study in the tropical snake fruit (Salacca 

edulis) found that pectin methylesterase activity was linked to the metabolism 

of volatile methyl esters 1 9 1 . The diversity of roles adopted by pectin hydrolases 

in fruit r ipen ing 1 9 2 , 1 9 3 and their potential to act as bifunctional enzymes 

contributing to the biogenesis of volatile secondary metabolites is an 

interesting area for future study. 

The fluorophosphonate suicide probe proved a powerful tool in confirming the 

presence of a serine hydrolase catalytic motif and may aid in characterizing 

the roles of further esterases involved in fruit maturation. The active site 

pockets of CsWH and PeWH appear constrained so as to accommodate 

predominantly short chain (C2) acetyl constituents as the acyl components in 

esters, and therefore defining the crystal structure of these plant proteins 

would be important in resolving the cause of such tight chemoselectivity. The 

abundance of acetylated (and methylated) flavourings in fruit 2 5 adds further 

weight to the involvement of cell wall hydrolases such as acetyl- and 

methylesterases in flavour metabolism. In ascertaining whether there is an 

endogenous role for PAEs in flavour and fragrance biosynthesis future studies 

may consider using crude enzyme preparations (or purified PeWH/ CsWH) in 

combination with the postulated substrates, pectin (methylated and/ or 

acetylated) and alcohol-CoAs. Such in vitro analysis of the effects of 

acetylesterases (or methylesterases) on the volatile spectrum generated by 

fruit may help in determining whether an endogenous role for these wall-bound 

hydrolases in flavour biosynthesis does in fact exist. 
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Volatiles in plants are also sequestered as glycosidically bound components, 

where the volatile aromas are released from the stable glycoconjugates 

through enzymatic hydrolysis 8 6 , 8 7 . PAEs and PMEs combine both hydrolase 

activity and an affinity for carbohydrate constituents, and hence it was 

postulated they may serve a role in releasing volatile secondary metabolites 

from wall bound components in the peel of fruit, either through direct hydrolysis 

or acyl- methyl-transferase activity (Figure 7.1 A). 

The potential involvement of PeWH in such metabolism was investigated. The 

glycosidically bound fraction from the pulp of a ripe purple passion fruit was 

isolated through Amberlite XAD-2 adsorption and methanol elution, as 

described previously (Chassagne etal., 1998) 8 8. The extract was subsequently 

incubated with partially purified PeWH (20 |ig), (phenyl superose fraction) for 8 

hours at 37°C (1 ml reaction volume). The volatile components liberated were 

partitioned into an equal volume of solvent (DCM), dried with sodium sulphate 

and concentrated 10-fold prior to GC analysis (Figure 7.1B). A comparison of 

the volatile spectra for enzyme assays and boiled controls indicated a slight 

perturbation in volatile generation whereby the addition of concentrated PeWH 

led to an increase in the liberation of certain volatiles. However, in this case 

their identity could not be confirmed through GCMS as the sample was too 

complex. The reaction was also run with the addition of 3-mercaptohexan-1-ol 

(10 |iM) as a means of investigating the potential transferase activity of PeWH, 

however, no perturbation in the volatile spectrum was observed. Repeating 

such in vitro studies using specialised fibres for trapping volatiles in the 

headspace of sealed reaction vessels (e.g. solid phase microextration, SPME) 

in combination with a GCMS system set-up for such analysis would provide a 

more sensitive and quantitative assay. At the time of this work, our labs 

unfortunately did not have the analytical equipment for such studies. In 

addition, using activated substrates, such as acyl-CoA derivatives may be a 

requirement of the enzyme's transferase activity, however, this remains to be 

studied. 
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Figure 7.1 A A general model for the release of volatile flavourings from 
glycoconjugates (e.g. pectin, monosaccharides, disaccharides) by glycoside 
hydrolases. Top: The hydrolysis of side chain constituents generating volatile 
alcohols (C6 position) and acids (C2,3). Bottom: postulated acyl or methyl 
transfer between side chain constituents or free volatiles (e.g. 3-
mercaptohexanol). B. The involvement of PeWH in the liberation of volatile 
metabolites from glycoconjugates in passion fruit. 20 |ig of partially purified 
PeWH (phenyl superose fraction) in 0.1 M phosphate buffer, pH 7.2 was 
incubated with carbohydrate extracted from an equivalent of one passion fruit for 
8 hours at 37°C (1 ml reaction volume). The GC spectrum of total volatiles 
following extraction into an equal volume of DCM (10-fold concentrate) is shown; 
blue and black lines show duplicate samples, green and turquoise lines show 
boiled controls and pink shows - enzyme. 
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The potential involvement of glycoside hydrolases in the release of flavourings 

from the cortex of fruit is depicted in figure 7.2 which illustrates a simplistic 

model for VOSC metabolism. Such cells have evolved to incorporate sulphur 

into volatile secondary metabolites through pathways that show similarity to 

plant xenobiotic detoxification processes 7 7, whereby glutathione is 

incorporated into short-chain electrophilic metabolites through the thiol group 

of cysteine. The incorporation of glutathione into xenobiotics, or in this case 

flavour precursors, renders them less toxic to the cell and facilitates their 

removal to the vacuole or cell wal l 7 7 . The involvement of glutathione in the 

incorporation of sulphur into aromatic volatiles may be the origins of the 

detoxification system used by plants today as a means of tolerating synthetic 

xenobiotic chemicals, such as agrochemicals which were only developed 

during the 20 t h century. 

7.2 Technological Applications 

Although the endogenous roles of PeWH and CsWH in fruit aroma 

biosynthesis remain to be resolved, it is important to note that both enzymes 

are robust and have the desired catalytic function to be exploited as 

biocatalysts. The greater specific activities toward VOSC thioester precursors 

demonstrated by CsWH made this the enzyme of choice for optimizing as a 

biocatalyst. Freeze-drying the peel of the fruit as a crude enzymatic mix was 

found to be the optimal source of the biocatalyst, where hydrolase content was 

stable (t i / 2 : 7 days 22 hours, 30 °C) with an adequate turnover number toward 

VOSC thioesters (e.g. MFTA, Kcat: 7.8 S"1). This material provides a promising 

and inexpensive biocatalyst for development by the industry in the future and 

highlights that biocatalysts from plants need not be sourced in purified form 

when dried materials may suffice. 

An application for dried orange peel would be in the generation of optically 

active thiol and alcohol flavourings. Currently thiol aromas are industrially 

generated through the hydrolysis of synthetic thioester precursors, produced 

through the addition of sulphinic acid to unsaturated alkenes (Figure 7.3). 
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- acetic acid 

Hydrolysis or reduction of 
unreacted substrate (R) 
i) NaOMe/MeOH 
ii) H + ( a q ) o r H ' 

R/S-3-thiohexanal 
Racemic mixture 

Cs dried peel 
Thioester formation in solvent or 
solvent free media (pure acid + thiol) 
Enantiomeric discrimination may 
favour the formation of optically 
active substrate. 
25°C 

" S H 

thiolacetic acid 
a,b-unsaturaled 

carbonyl, e.g. C 6 

Michael addilion 

3-(acetyl thio)hexanal 
racemic R/S-enantiomers 

H 2 0 acetic acid 

Cs dried peel 
0.1M phosphate 

buffer pH 7.2 
25°C 

Racemisation; 
Conversion of undesirable substrate 
(R) to desirable form (S) 
melal catalyst or racemase enzyme 

V 
f?-3-{acetylthio)hexanal 
Undesirable substrate 

S H O 

e.g. S-3-thiohexanal 

Reduction. 
N a B H 4 

Enantiomeric discrimination 
by thioesterase S-3-thiohexanol 

Desirable optically active thiol 

Figure 7.3 The application of Citrus sinensis (Cs) dried peel thioesterase 
preparation in bioreactions. The illustration shows hypothetical bioconversions 
leading to the formation of optically pure 3-thiohexan-1-ol (passion fruit 
mercaptan). However, through changing the a,p-unsaturated carbonyl starting 
material, different optically pure products could be generated. This illustrates 
how current synthetic chemistries could work alongside enzymatic 
approaches. 

Such an approach is non-selective for specific enantiomers and a racemic 

mixture is produced. Using the identified biocatalyst, CsWH, in crude freeze-

dried form may promote the formation of specific enatiomers. However, this 

remains to be examined and will be taken further by Oxford Chemicals Ltd. It is 

hoped that stereoselective plant thioesterases may link in to further 

biosynthetic processes being developed by the company whereby they would 

form the final biosynthetic steps in generating optically pure VOSCs with 

improved flavour character in comparison to synthetic counterparts. Plant cell 

wall hydrolases form a novel source of biocatalysts to add to the limited 

collection of esterases commercially available. Engineering such enzymes 

through mutation or immobilisation may provide the protein with further 

desirable properties, such as a tolerance toward solvents or biphasic solutions, 

improved stability and recovery of enzyme. The potential to drive natural 
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hydrolysis of esters or thioesters in reverse using such selective catalysts 

would be a very worthwhile endeavour. 

This research initiated a programme for the bioproduction of natural high-

impact aroma chemicals and therefore in addition to isolating the desired 

thioesterase it was important to identify further potential biocatalysts in plants 

for future work. Passion fruit cDNA plasmid libraries were therefore 

constructed from both secretory gland and mesocarp tissues using the SMART 

cDNA library construction kit (BD Biosciences, Methods 2.7), with the purpose 

of identifying further fruit enzymes of interest. A random screen of each library 

(n=30), provided multiple cDNA sequences (Annex IV). Each sequence was 

screened against the databases using nucleotide BLAST and translated in 

each reading frame before screening against the non-redundant protein 

databases using protein BLAST. A total of 28 encoded proteins were identified 

in the mesocarp library and 23 in the gland library (Table 7.1). The majority of 

enzymes (82%) were those of 1° metabolism, including proteins responsible 

for cellular structure, signalling and catalysis in central metabolic reactions. In 

addition, some interesting enzymes of secondary metabolism were also 

identified including a glutathione-S-transferase (GST), an alcohol 

dehydrogenase (ADH) and an alcohol acyl transferase (AAT), all potentially 

involved in aroma biosynthesis in passion fruit. Interestingly, the gland library 

contained a greater collection of secondary metabolic enzymes (22%) 

compared to the mesocarp library (14%), a likely consequence of the 

specialised role these glandular structures are postulated to have in flavour 

metabolism. A larger screen of this library or a targeted approach using probes 

may yield further cDNA sequences encoding enzymes with application in 

VOSC manufacture. 
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Table 7.1 Clones identified through random screening of passion fruit cDNA 
libraries. 30 clones were selected at random from each library (M: mesocarp, G: 
gland) and plasmid inserts sequenced from the 5' end using the 
pTriplEx2Forward primer. cDNA sequences are catalogued in Annex IV. The 
identification of each clone through similarity to database sequences is shown 
and the significance of each hit highlighted through Score and Expect values 
(score: higher the better, measure of how close the match is, Expect: lower the 
better, the chance such an alignment could occur by chance). Partial 5' 
sequences may be full length inserts but require 3' sequencing to determine the 
full length code. Clones involved in 1° metabolism are listed above the blue 
dotted lines, those of 2° metabolism below. 

Clone 
Top BLAST hit 

Description 
Species hit 
Accession 

Score 
E value 

M1 Glyceraldehyde-3-phosphate dehydrogenase. 
Catalyzes the 6 t h step of glycolysis. Full length. 

Solanum lycopersicum 
AAB51592 

298 
2 e 8 0 

M2 

Phosphoenolpyruvate carboxykinase (PEPCK)-
HprK superfamily. Catalyzes the diversion 
tricarboxylic acid cycle intermediates toward 
gluconeogenesis. Partial 3' sequence. 

Flaveria pringlei 
BAB43909 

288 
8 e 7 8 

M3 
M20 dimer superfamily protein. Aspartyl 
aminopeptidase (putative). Protein metabolism. 
Internal sequence. 

Arabidopsis thaliana 
NP200824 

327 
6e- 8 9 

M4 Auxin-repressed protein, cellulose synthase like. 
Full sequence. 

Elaeagnus umbellata 
AAC62104 

186 
8 e 4 7 

M5 
Octicosapeptide/ phox/ bemlp (PB1) domain 
containing protein. Cytoplasmic signalling, kinase 
activity. Full length 

Arabidopsis thaliana 
NP190407 

161 
4e- 3 9 

M6 

Transcription initiation factor II F (S-subunit). 
Interacts with further transcription factors and Vitis vinifera 223 M6 RNA polymerase, required for accurate 
transcription. Full length. 

CAN81117 1e" 5 7 

M7 

Frigida superfamily protein. Hydroxy proline rich, 
probably nuclear and required for the regulation 
of flowering time in late flowering phenotype. 
Partial 3' sequence. 

Arabidopsis thaliana 
NP566709 

344 
3 e 9 4 

M8 
Ribosomal-L22 superfamily protein, core protein 
of the large ribosomal sub-unit. Full sequence. 

Populus trichocarpa 
ABK94222 

347 
2e" 9 5 

M9 
Heat shock cognate protein 70. HSP-70. 
Shaperone protein family member, ATP 
dependent. Partial 5' sequence. 

Thellungiella h 
AAS09825 

491 
2 e - 1 3 8 

M10 ER lumen protein-retaining receptor family 
protein. Partial 3' sequence. 

Oryza sativa 
EAZ09872 

187 
1e" 4 7 

M11 Arabinogalactan protein 10 (AGP10). 
Extracellular matrix protein. Full length. 

Arabidopsis thaliana 
NP192642 

44.3 
2 e 4 

M12 

High mobility group 1 (HMG-1) protein. Contains 
a DNA binding domain involved in chromatin Lanavalia gladiata 167 

M12 restructure and the recruitment of transcription 
factors. Full length. 

BAA19156 2e^ 

M13 Histone H3.2. Maintenance of chromatin Arabidopsis thaliana 273 
M13 structure. Full length. NP001078516 2 e 7 3 

M14 

NAP-superfamily protein. Nucleosome assembly 
protein, moving histones into the nucleus, 
nucleosome assembly and chromatin fluidity, 
affects the transcription of many genes. Internal 
sequence. 

Zeamays 
NP001105594 

220 
2 e 5 7 
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M15 
DEAD/DEAH box helicase (putative). ABC-ATP-
ase superfamily. Involved in RNA metabolism. 
Internal sequence. 

Arabidopsis thaliana 
NP188490 

340 
5e" 9 3 

M16 

Heavy metal associated (HMA) domain 
superfamily protein. Transport of heavy metals, 
detoxification, copper chaperones. Internal 
sequence. 

Arabidopsis thaliana 
NP568449 

194 
l e 4 9 

M17 
Defender against cell death 1 (DAD1) 
superfamily protein. Integral membrane protein, 
causes apoptosis if mutated. Full length. 

Citrus unshiu 
Q9ZWQ7 

224 
1 e 5 8 

M18 Phosphate induced (Phi-1) superfamily protein. 
Partial 5' sequence. 

Vitis vinifera 
CAN84160 

249 
1 e 6 5 

M19 
Domain of unknown function (DUF408). Similarity 
to myosin heavy chain protein. Partial 5' 
sequence. 

Arabidopsis thaliana 
AAB61054 

103 
2 e 2 2 

M20 Unknown protein. Internal sequence. Vitis vinifera 
CA046545 

273 
1 e 7 2 

M21 Unknown protein. Full sequence. Vitis vinifera 
CA061141 

145 
2eM 

M22 Unknown protein. Full length. Populus trichocarpa 
ABK95804 

308 
1e" 8 3 

M23 Unknown protein. Internal sequence. Vitis vinifera 
CA065959 

319 
1 e 8 6 

M24 Unknown protein. Internal sequence. Vitis vinifera 
CA061935 

129 
6 e 3 0 

M25 

Glutathione-S-transferase (Phi class). Catalyses 
the conjugation of reduced glutathione to 
electrophilic centres on a range of substrates. 
Full length. 

Vitis vinifera 
ABW34390 

345 
9e" 9 5 

M26 

AdoHcyclase superfamily protein. S-adenosyl-L-
homocysteine hydrolase (hypothetical). Inhibits 
S-adenosyl-L-methionine-methyl transferases 
activity and modulates their activity. Full length 

Vitis vinifera 
CAN68176 

265 
2e" 7 0 

M27 

Endochitinase I precursor. Chitin bindinding 
domain 1 (chtBDI). Binds N-acetylglucosamine, 
wound induced glyco hydrolase. Partial 5' 
sequence. 

Theobrama cacao 
Q41596 

111 
1 e 2 4 

M28 

AdoHcyase superfamily protein. S-adenosyl-L-
homocysteine hydrolase (hypothetical). Inhibits 
S-adenosyl-L-methionine-methyl transferases 
activity and modulates their activity. Partial 3' 
sequence. 

Medicago trunculata 
ABD28441 

177 
1e" 4 4 

Clone Top BLAST hit 
Description 

Species hit 
Accession 

Score 
E value 

G1 NADH dehydrogenase (sub-unit 7). Partial 3" 
sequence. 

Brassica napus 
YP717100 

298 
8 e 8 1 

G2 
ATP-dependent CLP protease proteolytin sub-
unit, classic ser, asp, his catalytic triad. Partial 3' 
sequence. 

Solanum 
bulbocastanum 

YP538874 

69.7 
4 e 1 2 

G3 
CLP protease superfamily protein. Partial 3' 
sequence. 

Solanum 
bulbocastanum 

YP538874 

70.1 
1 e 1 1 

G4 

ARF family protein. Ar11 ABC-ATPase 
superfamily protein. ADP ribosylation factor 3 
ARF3/ARL1/ATARL1. GTP binding protein of 
RAS family, regulates vesicular traffic and actin 
remodelling. Full length. 

Arabidopsis thaliana 
NP850057 

358 
1e" 9 8 
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G5 
PP2Cc superfamily protein, protein phosphatase 
2C (PP2C). Serine/ threonine phosphatase. 
Partial 3' sequence. 

Fagus sylvatica 
CAB90634 

281 
1 e 7 5 

G6 

Protein phosphatase. Alpha-crystallin-Hsps 
superfamily protein. Partial 3' sequence. Heat 
shock protein believed to be ATP dependent, 
chaperone that prevents aggregation and aids in 
protein folding. 

Rubus idaeus 
CAB61630 

317 
4 e 8 5 

G7 

Putative choline kinase. Catalyzes the formation 
phosphocholine from ATP and choline. Involved 
in glycine, serine and threonine metabolism. 
Internal sequence. 

Arabidopsis thaliana 
NP177572 

186 
4 e 4 7 

G8 
CKL6/PAPK1 Casein kinase ADK1-like protein. 
Regulator of signal transduction. Partial 3' 
sequence. 

Arabidopsis thaliana 
NP567812 

76.3 
1 e 1 3 

G9 
DNA-directed RNA polymerase I, II and III. 7kDa 
sub-unit (putative) 

Arabidopsis thaliana 
NP198917 

72.4 
2 e 1 4 

G10 
PAPA-1 like family protein. Zinc finger (HIT type) 
coordinates zinc. Partial 3' sequence. 

Arabidopsis thaliana 
NP176041 

137 
2 e 3 2 

G11 
HMA superfamily protein. Heavy metal 
associated domain-containing protein. Full 
length. 

Arabidopsis thaliana 
NP197247 

5.216 
9e" 5 6 

G12 
Copper binding family protein. Partial 3' 
sequence. 

Arabidopsis thaliana 
NP974830 

76.6 
3 e 1 4 

G13 
Contains similarity to myosin heavy chain protein. 
Partial 3' sequence. 

Arabidopsis thaliana 
AAB61054 

239 
1 e 6 2 

G14 
Ribosomal L21-e superfamily proteins. 60 S 
ribosomal protein, L21 sub-unit. Partial 3' 
sequence. 

Oryza sativa 
ABF93903 

251 
1e" 6 6 

G15 
Cyclophilin-like protein. Binds to cyclosporin A, 
facilitates protein folding and isomerises peptide 
bonds. Full length. 

Nicotiana tobacum 
ABS30424 

359 
5 e " 

G16 
40 S ribosomal protein 514. Ribosomal S-11 Zeamays 118 

9e" 2 7 G16 superfamily protein. Partial 3' sequence. P19950 
118 
9e" 2 7 

G17 Unknown protein. Full length. 
Vitis vinefera 
CA016842 

93.2 
3 e 1 4 

G18 
Unknown protein, UPF0139 superfamily. 
Uncharacterised. Partial 3' sequence. 

Populus trichocarpa 
ABK93624 

179 
5 e 4 5 

G19 
Cinnamyl alcohol dehydrogenase, putative. 
Oxidoreductase. Partial 3' sequence. 

Malus domestica 
AAC06319 

106 
3 e 2 3 

G20 

Thaumatin superfamily protein. Natural 
sweetener, pathogen response protein believed 
to inhibit sporulation and hyphal growth in fungi. 
Partial 3' sequence. 

Populus trichocarpa 
ABK96488 

150 
2 e 3 6 

G21 
Endoglucanase. Degradation of cellulose. 
Internal sequence. 

medicago trunculata 
ABD33428.1 

221 
2 e 5 7 

G22 
1-amino cyclopropane-1-carboylate oxidase. 
Partial 3' sequence. 

Hera brasiliensis 
AAP41850 

97.1 
2 e 2 0 

G23 
Alcohol acyl transferase (AAT). Catalyzes acyl 
group transfer to alcohols. Internal sequence. 

Hevea brasiliensis 
AF429383 

51.8 
2eA 
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The random library screen and the targeted biochemical approach used for the 

isolation of CsWH and PeWH thioesterases illustrate different strategies for 

obtaining novel biocatalysts for flavour and fragrance biosynthesis. With a 

greater understanding of the metabolism of VOSCs in tropical fruit, such as 

passion fruit, and with the strategy for obtaining the enzymes involved, it is 

possible to build a model for the enzymatic production of sulphur high-impact 

flavourings (Figure 7.4). This "biofactory" encompasses both plant and 

microbial enzymes and illustrates how cheap and readily available feedstock, 

such as plant oils, animal keratin (hair, feathers, wool) and yeast extracts can 

be transformed into an array of distinctive flavourings. Importantly, the 

products derived from such processes are considered natural as feedstock is 

from a natural source, enzyme reaction conditions are mild and there is no use 

of synthetic catalysts or so lvents 1 2 2 , 1 2 3 . Plant fruit cells have evolved over 

thousands of generations to produce specific flavour and fragrance secondary 

metabolites, and here we essentially plan to recreate these processes on the 

factory floor. Chemical manufacturers strive toward efficiency and 

sustainability. What better way of achieving this than to reproduce what nature 

has so elegantly designed? 

Oxford Chemicals Ltd. has invested in fermentation equipment and is funding 

three further biochemists from Durham University to develop the biofactory. 

Their first enzymatically produced high-impact flavouring went on sale in 

February 2008. 
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S u p p l e m e n t a r y D a t a 

Annex I: PeWH Protein Analysis 
A. MALDI data for PeWHa and PeWHb 

B. MS-MS data for PeWHb 

Annex II: Protein and DNA Sequence Analysis 
A. Alignment of full length plant PAE sequences 

B. Alignment of full length plant PAE sequences within each of the three 

distinct clusters of homology (clades 1-3) 

C. Alignment of full length plant PAE cDNA sequences from sub-family 1. 

D. Alignment of translated internal PAE sequences amplified from the leaf and 

mesocarp tissues of purple passion fruit. 

E. Partial nucleotide and deduced amino acid sequence of the PePAE cDNA 

from passion fruit mesocarp tissue 

Annex III: CsWH Protein Analysis 
A. MALDI data for CsWHa and CsWHb. 

B. Predicted MS-tryptic digest of constructed Citrus sinesis L. Osbeck PAE 

C. MS-MS data for CsWHa 

Annex IV: Passion fruit cDNA sequences identified in random 
library sceen 
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3. Monoisotopic peak list for MALDI on PeWHa and PeWHb. The 8 most 
intense peaks from each 100Da window of the spectra are shown. The 
fragmentation pattern indicates they are the same protein with the same mass 
ion fragmentation. Possible post translational modifications must therefore 
account for the differences in properties between the soluble and wall-bound 
forms of the protein. 

PeWHa 
506.2648 
515.3191 
523.3092 
537.3241 
565.3610 
568.1364 
579.5246 
598.3299 
619.5209 
634.2720 
647.5560 
650.0457 
662.3099 
666.0140 
682.3519 
685.4352 
700.2842 
701.3705 
758.4627 
829.4638 
832.3198 
834.3239 
842.5099 
854.2993 
864.4827 
876.2842 
895.5377 
900.4137 
917.5250 
948.4449 
1005.4865 
1015.5644 
1026.5215 
1037.5490 
1068.5211 
1070.5187 
1086.5133 
1092.4988 
1102.5072 
1115.6307 
1124.4556 
1137.6065 

1167 
1170 
1179 
1192 
1214 
1232 
1235 
1277 
1299 
1307 
1308 
1324 
1425 
1447 
1462 
1478 
1479 
1480 
1493 
1495 
1501 
1507 
1511 
1517 
1527 
1533 
1539 
1549 
1708 
1726 
1740 
1748 
1765 
1791 
1846 
1868 
1879 
1901 
1912 
1933 
1993 
2174 

5234 
6319 
6169 
6057 
6307 
6082 
5515 
7281 
7023 
6785 
6685 
6800 
8578 
8254 
7189 
6614 
7377 
7414 
7114 
6790 
7112 
7314 
6714 
6557 
6604 
6455 
6548 
5963 
8182 
8533 
.8245 
.8264 
7822 
7696 
8022 
7938 
.9992 
9906 
0050 
.9805 
.9963 
.0360 

2190. 
2206 
2211. 
2342. 
2692. 
2846. 
2868. 

0339 
0490 
1029 
1459 
3135 
2712 
2497 

PeWHb 
506.2529 
515.3127 
523.3086 
537.3249 
551.4870 
568.1260 
579.5227 
598.3250 
607.5548 
620.3104 
622.0340 
634.2680 
650.0396 
662.3012 
682.3401 
685.4254 
832.3076 
834.3224 
842.5101 
854.2982 
864.4865 
895.5312 
917.5238 
948.4728 
1005.4835 
1015.5730 
1026.5239 
1037.5561 
1070.5199 
1083.5485 
1086.5175 
1092.5035 
1102.5031 
1105.5261 
1115.6309 
1124.6021 
1127.5626 
1137.6084 
1167.5373 
1170.6326 
1226.6569 
1424.8177 

1425 
1447 
1451 
1478 
1479 
1493 
1495 
1501 
1509 
1511 
1517 
1527 
1539 
1549 
1578 
1669 
1726 
1741 
1748 
1758 
1783 
1846 
1868 
1879 
1901 
1911 
2143 
2145 
2174 
2190 
2191 
2206 
2208 
2211 
2225 
2230 
2233 
2341 
2589 
2663 
2677 
2691 

8591 
8376 
7013 
6793 
7443 
6997 
6817 
7306 
6681 
6799 
6719 
6696 
7046 
6504 
9457 
8110 
8542 
7738 
8420 
8591 
8668 
8027 
7984 
9838 
9791 
9861 
0576 
5570 
0396 
0457 
0581 
0440 
0330 
1046 

.1275 

.0596 
0999 
1591 

.1603 

.3573 
2802 
3063 

2720. 
2748. 
2807. 
2846. 
2870. 
3079. 
3095. 
3323. 
3338. 
3347. 

2815 
3483 
3283 
2993 
2789 
3578 
4533 
6935 
8006 
6923 
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Annex II Protein and DNA Sequence Analysis. 

A . Alignment of full length plant PAE sequences from the carbohydrate active 
enzyme database (family 13 pectin acetylesterases). Each protein sequence is 
identified by its Genbank accession number. Black shading highlights 
complete sequence conservation, dark grey shading shows 80% or greater 
conservation and light grey shows 60% or greater conservation. The the 
GXSXG catalytic motif and aspartate and histidine residues which make up the 
catalytic triad are shown conserved across all sequences (underlined red). The 
predicted signal peptide sequence which targets the proteins to the cell wall is 
underlined in blue. 

* 20 40 60 
MTWLKQMWSS igVLAWVjGAR A 
MGRLKQCWSS L VLAVLvkGTG A 

MDGSSLGKWLC 1 VYILTLtKTEGA S 
MAASSGEWLSRAAM V VLGLWASSAKA GD 

MMSERGDRWLCIF VCTLSLliCTEA Y 
METSRKGQWLSV I CWLIJLKAEG V 
MFKLK--QWLIY VCSLVIMNTEG L 
MANGGVCLSCSA VCALVFETVDG DF 
MVDKRMPGFTERWFA K VLVLMVWSANA F I 

MR VAAYVSAV M TCX-WC&LSEPR LE 
MKTTTRLLDLTAAMVLW Y SFSPPLgSGEPG RR 

MASTRRSHSVRLLYNFAYIVIN I CLYTTvflDAAHVGMIKKPKGSKASKANDDLLR 
MKTFNESNGTN ANV 

MIKKCKMKKLLWSWIILFNIHVNGMMMEFDEMEWFTVFNGTKVFQTQNDVFSE AKFPI 
MVKLLLVGFWAGIILGTQANE YgDFNVTEjDRIEELEFGFSKYSS NLNP 
MRKLFLLGFIVAGLVLGNEANG YgEFNVTEljDRIEDLEFGFSKFSS NFNP 
MAKLFWLFIAIG-LVIINLVYG QQHHFFNETEEEFLLEAHEHAASFLEEG NGNPL 

—MVKWGVWAIVGLVFSKWVYGFEFEENGSWVHGLDD|NVTELS-FSDSYGVSA ASRPI 
MK--SVLRIAAAIFWLWLFIVLG VHGSGNVRDTDDEISLLESQLVVTS PSQLLK 
MRRMNIILIIITVTFSSVRSQTQ NBSPRYILENDNDWSVSSSPLLPQ P W. 

MGCSWALAALVLGFLWA gHGSEP^NQTQVYSTNANS GSNGVF 
MAMMERIGVTKLHHHLLLLVLLLVVA AAGGGSVQAAEEDEMSGRRRRSRRR RAADW 

MAIPRFSSLLRCRKWAKSDWLVASIGCVLljFFLSFFFDPTSDSVPSVDRSRPI ISPSDI 
MVIR SLLQCRTWSKSDWLLASIGIVLI|YSFSLSFNSTSDSIP5VDRS D: 
MPPLFSAPALHRRRALRHAAAFALV-LLAVALLFLLLgHPRSLGTPSPSPSYG HRLPTL 

MATSSKLRSPVLPRRRLAEPFLLLBLLLLIAAVARP-TA AAD1 

MAATSGKLRPPFR LOLLLLAAAVAR sv 
MPILPRRRYAEP HLLLLLAAVARSTAA APD' 

SHCj 
JRD AAll 
ER AN11 

3GKQS 
3GKQS 

3GNQ1 
ATO LTTE1 

VS 

VA\ 
RN VY 

INURN VY 

TRR1 IF 
ITHRI VF 

)AAA 
AN 

K-AAI 
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BAB10249̂  
AAK96722_ 
ABK93778_ 
BAF15687_ 
AAP72959_ 
CAA67728_ 
AAT70429_ 
BAD07550_ 
ABK24994_ 
CAN83189_ 
BAB10060_ 
ABK26312_ 
AAC33215_ 
AAM74495_ 
AAF23225_ 
AAU054 97_ 
ABD33181_ 
CAN62190_ 
AAC34238_ 
ABE92546_ 
BAC10030_ 
BAB62 609_ 
AAF14036_ 
AAF14046_ 
BAD87837_ 
BAD87540_ 
BAD87 542_ 
BAD87 541 

180 
llEAVlPT-H! 
EAV|PA-N 
EAVgPK-Ti 
ETVETS-TNI 
EAVfflPN-Tl 

IPA-TNl 

200 220 240 
QjjKSTL |KTA 

RAIL 5RTAS 
LL ASAP 

DLL ATAK 
SQL [ATTH 
SLL RTTK 
MiL MGTK 

RDLF VDTK 
Lt^ KTTK 

ISF L QNAS 
TSYL KNAS 
ELL SSA 

F PTT 
F PST 
F^GST 
FSGWT 

RGFFRRNT 
LF1|GTTT 
tiFgKST 
BFSGSTN 
LLEAAAT 

BAB10249 
AAK96722 
ABK93778 r 

BAF15687 
AAP72959 

KN QNJ CAA67728 
AAT70429 EN EN 
BAD07550 NN 
ABK24 994 IN •< 

SK CAN83189 GT-SI 
BAB10060 
ABK26312 V E E K V 
AAC33215 
AAM74495 lEIilKA-ACJ 

QA-A 
:--SQBKA-A 

GEgQD-AE 
SOITQA-A 

IES-S 
EA-A 

R 
S-L 

PEAEFKNGTROE 
PEAEFKNETR]E 
QDEHQYGATFE 
EAQffiKDGSTflfl 

GEAQgQDGSlflu 
EAOOSQDGSTIIK 

AAF23225 
AAU05497 
ABD33181 
CAN62190 
AAC34238 
ABE92546 
BAC10030 
BAB62 I OS 
AAF14036 
AAF14046 SH KI DAT 

DS 
MKEVS 

BAD87837 
BAD87540 
BAD87542 Kg 

DQHARFgKEVS 
320 

BAD87 541 

KGS 
KTHGS 
HGS 

THGSAK 
THGS 
TLHGS 
ITHGS 
TLQQSV 

S--KT 

{ AH 

KLG-T 

DPS |HAFFP 
KA VSSQ-S 

- HI 
N--RLN 
N-- HLD 

N HLD 
SE LN--

STA 
KS LN-

DQK VAK--
DQN VAH 

SKD LTK--
SKD LAK 

DGSFP 
GS 
GP 

ERH WSVB 
1KRL WS 

NVTQ 
NGTBQLQNVSE ILCS KD LAK 
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BAB1024 9_ 
AAK96722_ 
ABK93778_ 
BAF15687_ 
AAP72 959_ 
CAA67728_ 
AAT70429_ 
BAD07550_ 
ABK24994_ 
CAN83189_ 
BAB10060_ 
ABK26312_ 
AAC33215_ 
AAM74495_ 
AAF23225_ 
AAU0S4 97_ 
ABD33181_ 
CAN62190_ 
AAC34238_ 
ABE92 54 6_ 
BAC10030_ 
BAB62609_ 
AAF14036_ 
AAF14046_ 
BAD87837_ 
BAD87540_ 
BAD87542_ 
BAD87541 

BAB10249_ 
AAK96722_ 
ABK93778_ 
BAF15687_ 
AAP72959_ 
CAA67728_ 
AAT70429_ 
BAD07550_ 
ABK24 994_ 
CAN83189_ 
BAB10060_ 
ABK26312_ 
AAC33215_ 
AAM74495_ 
AAF23225_ 
AAU05497_ 
ABD33181_ 
CAN62190_ 
AAC34238_ 
ABE92 54 6_ 
BAC10030_ 
BAB62609_ 
AAF14036_ 
AAF14046_ 
BAD87837_ 
BAD87540_ 
BAD87542_ 
BAD87541 

360 
AMIAP-VRS-ATT 
Rfl SP-VHS-TPS 
K NIGLGS-SSS 

IDE AA PKPEQS-PANL 
1.EF K NGgGNGNSPS 
TDE R FGAVGN--SPS 
1£E S I G L G R — S S S 
5DE KI KEQGT--PST 

SGDK 
SGDK 
LADK 
LAQG EKT 
LRND 
FWQD IKN HPS 

IKK SPN 
PAA NPN 

ON— SAS 
YTY-SE 

LAND 
LAID 
S 
FQS 
FPGY 
FAQ 
FADD 

TA NPH 
PVN TSE K P — S E T 

SKF--S FSFR-
YAK N KG AMP-
HGK TPS 
GR TPA 

SMS-
SNS-
SRS 
."Mr 

FADDSI 
FSD 

• J-
SH NSS ?Ht D KS ATS-

LTA NGG-
HSLT HQN 

HVN 
SE KKK-
IVKDK 
VVKDK 
KWKDK-

IRE HSAT 
QNL 
GQS PI >:: 

PFDI 

-STFQ STED 
SAFQ 

NTFQ 
FDQNERPDV 

TLFQ FTPLDAPPI 
-NPFQ YDDPSEA 

PASTSDFLVNLDI 

AEV 

- i : : 
-QVVK 

TFRGDY ADA 
- A F . 7 

-KPV 

LEQPYQEG 
LDEAAAADflLSPFVL 

-PTCgSQLPK 
LTG 
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Annex II B. Alignment of full length plant PAE sequences within each of the 
three distinct clusters of homology (clades 1-3). Each protein sequence is 
identified by its Genbank accession number. Black shading highlights 
complete sequence conservation, dark grey shading shows 80% or greater 
conservation and light grey shows 60% or greater conservation. The alignment 
of peptides from PeWH are shown with matches (*) and mismatches (space). 

Clade 1: 

MTWLKQMpSS 
MGRLKQCHSS 

MDGSSLGKlLC ! W Y 1 

MAASSGEfeLSRAAMvitfLG 
MMSERGDRJILCIF 
METSRKGQjjLSV 

MANGGVCLSCS 
MFKLKQffLIY 

MVDKRMPGFTERWFABP\ 
MKTTTRLLDLTAAMVLWY 
MR VAAYVSAVM 

MASTRRSHSVRLLYNfAYIVINI 

kt 

G 

SSAKAG 
TEAY 

GV 
TVDGD 

GL 
AF 

SGEPG 
LSEPR 
DAAHVGM] 

SFSP 
TCX-W 
CLYT 

VPLTLVQSAVA 

3KQS 

FFSHSKK 

KVS SQKPS 
AVIDDLL 

HAFFPE§S| 

SQ-SDfTC 

FK (5) 
360 

P-VRS-A 
5P-VHS-
IGLGS-|S 

PKPEQS-PANL 
GFGNGN 

GAVGN 
EQGTP 

[GLGRS 
IFQNS--) 
FFRN-BTI 

QFYTY-SRI 
TFKP--BE| 

JSPSR NILAPSAVD (2) 

SGDK AVSTED 
AISTED 

DSES 
DDD 
FE 
FDQNERPDV 
YDDPSEA 
F l PLDAI Pi 
F I P K L l 
PASTSDFL\ 
PLE 
F t 

SGDK 

J-GIVKE 
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Clade 2: 

BAD87540_ 
BAD87542_ 
BAD87541_ 
BAD87837_ 
AAF14036_ 
AAF14046 

BAD87540_ 
BAD87542_ 
BAD87541_ 
BAD87837_ 
AAF14036_ 
AAF14046 

M A I P R F S 

M V I R 

20 
ISPVLPRRRLAEPF 
PPFR 

A E P 

L R H A A A F A L V L : 

A K S D W L V A S I Q 

S K S D W L L A S I G I 

40 
L A A V A R P T , 

.VAR S' 
.VARST AAA1 

|LVHPRSLGTPSPSPSYG HRLP 
|SFFFDPTSDSVPSVDRSRPIISPi 

SFSLSFNSTSDSIPSVDRS--

V P L T L V Q S A V A (3 

BADB7540 
BAD87542 
BAD87 541 
BAD87 837 
AAF14036 LTGCSAG 

LTGCSAG AAF14046 
V I D D L L 

SA 
SPDL 

NILAPSAVD (2) 

BAD87540 
BAD87542^ 
BAD87541 
BAD87837 
AAF14036 
AAF140 4 6 

BAD87540 
BAD87 54 2 
BAD87 541 
BAD87837 
AAF14036 
AAF14046 

1 III 1 LCSS« 
DVAF R F P -

KSBDQ 

» 440 
LDEAAAADHLS PFVL 

- | B S S Q L P K 

- | H K L T G 
- | H F N W L E Q P Y Q E G 

- ^ B Y N M N F T 

415 
396 
400 
4 3''; 
427 
409 

254 



Clade 3: 

ABD33181_ 
CAN62190_ 
AAF23225_ 
AAU05497_ 
ABE92546_ 
AAC33215_ 
AAM74495_ 
BAC10030_ 
AAC34238_ 
BAB62609 

A B D 3 3 1 8 1 _ 

C A N 6 2 1 9 0 _ 

AAF23225_ 
A A U 0 5 4 9 7 _ 

A B E 9 2 5 4 6 

A A C 3 3 2 1 5 _ 

AAM74495_ 
B A C 1 0 0 3 0 _ 

A A C 3 4 2 3 8 _ 

B A B 6 2 6 0 9 

' 2 0 * 40 60 
LFWfcFIAJG-Btff INjiVYG QQHHFFNETEELFLLfcAHEHAAgFLEEG-NGNPj 
^VGyVVAkvG^SFSKWVYGFEFEENGSWVHGEDDLNVTKLS-FSDBYGVSA-ASRP 
ULLVGFVVAGHBiGTQANE Y L D F N f T E I D R I | E L E F G F | K Y S S - - N L N P 
P F L L G F I W A G J ^ G N E A N G Y L E F N | T E L D R I 1 D L E F G F | K F S S - - N F N P 

B N l j L I l i T - j T F S S j f R S QTQNHSPRY I LgNDNDVvfvSSSPLLPQP 
HKTFNESNGTN ANV] 

RCKMKKLLWSwM|FN|fHVN GMMMEFDEjjEWFTVFNGTKVFQiEQNDVFSEAKF 
G C S W A | A A L | ^ L G F | S V A | H G S EPWLNQTQVYSTNANS GSNGl 
KStfLRiAAAiFWlmpFl|LG V I G S G N V R D T D D E I SLLEfQLVVTSPSQL 

MAHiEjHiEGVTKLHHHLjg | V L l L V V AAAGGGSVQAAEgDEMSGRRRRSRRRRAAD| 
VPLTLVQSAVA 

ABD33181 
CAN62190 
AAF23225 
AAU05497 
ABE92546 
AAC33215 
AAM7449b 
BAC10030 
AAC34238 
B A B 6 2 6 0 9 

V I D D L L 5) 

ABD33181 
CAN62190 
AAF23225 
AAU05497 
ABE92546 
AAC33215 
AAM74 4 95 
BAC10030 
AAC34238 
EAB62609 

NILAPSAVD (2) 

ABD33181_ 
CAN62190_ 
AAF23225_ 
AAU05497_ 
ABE92546_ 
AAC33215_ 
AAM74495_ 
BAC10030_ 
AAC34238_ 
BAB62609 

4 1 9 

4 2 3 

4 1 5 

4 i e 
4 1 5 

3 6 3 

4 2 3 

4 Of-

4 1 6 

4 1 8 

255 



Annex II C. Alignment of full length plant PAE cDNA sequences from sub­
family 1. Each nucleotide sequence is identified by its Genbank accession 
number. Black shading highlights complete sequence conservation, dark grey 
shading shows 80% or greater conservation and light grey shows 60% or 
greater conservation. The consensus sequence is shown below the alignment. 
The optimal stretches of sequence used for designing degenerate primers 
PeFor and PeRev are underlined (red arrows). 

- E T G G A G A C C A G T 

-|jTGATGAGC|jAA 
-ATGTTC 

G G G 6 -
|AC|-
§GTTC 

ATlACg-T 
| T G G A T § G T T C A 

| T G G C G A A T B G G 

A T G G C T G C T T C G T C C | G C | A A 

H T G A G A B T G B C -
A T G A A G A C G A C G A C T C G G C T C C T C G A T C T A A C A | C G § C -

A T G G C T T C G A C G A G G A G A T C T C A T T C C G T A A G A T T A T T G T A T A A T T T T G C A T A T A T T G T G A T C A A T A T T G T C T G T C T T T A T 8 C A A C A § T G C T -

A T G G T G G A C I A A A G A A T G C C A 

100 

tAAGGj|C|AjgGTTAAI 
G G A G A T C G A E G C T A T G I 

,AGTflGAAGC|A|GTTG -
§TGT TGGT 

B TGGT 
I G B G C T G T G I C 

CTCfCGTGCTCl 
|CGGGCAGCTATG| 

ACiTT|GCjjCGGTC. 
TATGGTTCTAGTBTCTACG] 
GBATGCAjBcCAKTGGGAi 
G§TT|CAC|G|GC|TTGGTT' 

<3 

CTTGG 

CAAG 

140 
GGtACTATBAC 

T I G C A C A T I A A G T T B G T I A T G C , 

•GfGTTCGT 
; C T , 

IGCiAGCCGHGGlGGTGATCj 
GACAT GC 

ICGClGGTGT TC 

A A A G G I 

AGTAA AA GAACAJ 
GGCAG GT GGTGATCI 

GGTGGCGTCGTCAGiT. 
GSCGGAGBCl 

LGGTCjCG 
C T A A C G T G C R C G T G M G C G T A 

JC T f T C T C T C C f C c l c T T G T T gCCGGCGAABCAGG 
T A A G A A G C C C A A A B G G T C T A A G G C T T C T A A A G | T A I T 

C T A | G G T A G | A C T G G | ' R C | G A T G G B T G | G T C A G | G . 

1 6 0 
G A G T T C C T | 

C T T A T G A ' 

G A C T G T T T ! 

A A C T G G A G C C 

— C C A G A G C T | 

— G A G C T A G C . 

- - G T G A T T T C I 

— C G G G C G A T 

C T G G A G 

C G G C G T j 
A T G A T C T T C T G A G i 

- - C A T T T T T 

G C 1 

TCTC 
TCGAGA 

aa Aa TG GG GC gT TG t T GAtGG Ag TA c a 

GAGAT 
T G C A T 

TGAA 
ATGAA 

TGAGT ACAA 

CAGGGT L f i L AG 
G A A T CGT 

l.CGT 
TGCCT 

m m 

GCCAA 
ACAGAGT 

GAgGG GGaggaTGGTG 

380 
T B C C C A A C ( T T C I 

GjCAACAGAGACi 
G G £ A A C C | 

AGACT 
A G A C T | 

AC 
CAGi 

|CCAC|ATC 
|TTTGAG| 
ACCG| 
GTGGCT] 
BCAAGj 

PeFor, 

TT t C Gg 

AGTT' 
•AATA' 

[CAATATl 
.GCACm 
.GCACC 

jGCAGCll 
CCCTGATTAQ 
C|GAGAAAC| 
GCjTCTCT, 
GCCTCTCA 
CCTTCGGA A0GCAAG. 

AA CC GA TT TA aA TGGAA ag g TA TGtGA 
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T G C I .- r. i J CCAGCAACG 
C A A T 

.AG 
GGGACGTQATTG 
AAGGTATJA 
CCGGTCGAT 

-----

aa cT c GG g A t g t gAa 

AA I 

I t C GG TG TC GCtGG Gg t T ZA TGtGA T gC AA GG aTga Aa G C aA GG 

4 J 
G^CACAG-CGI 

CAAAGTC 
TCAA-T 

GAT A-T 
A T C T 

GGTCT-CG 
IGGlG-T 

AATGlT-TTTG 
GCTTGAACCfiC-TCT 

GgAgCAAACCGG-AC 
G S T & F A G T G T A T - C 

TgcJB*GCATAC -C 

GgCTJT rAGAACA 
GCGACG 
ATGGG 
CG 

r 
r c c 
AGTGGAT 
ViCAACT 
4CAJIAAT 
AAAAAC 
AGCTCT 

jAAGAGT 

GATTAT 

GTCCACTC 
GTCTCTCt 
TGACCTTT 
GATCTGC 

TACCAGC 
gACGAGCTATT 

1 
!• 

: T H G ; 

Ml 
FCACG 

GT A A TG GAv GCtGG c gg 
PeRev 

" A G A 

G T 

C T 

ATGAAA 
1GTATGAAG 

G A 

ce 

CAAAC 
.AA' 

B A A T 

H A C A C G C M T I T T T C C C C G A A W M A T C T C 

J T A T G C T I GCAG1 • ' A G A T [ A A 
T A C C G A A A A A C T A G G T A C A C 

A T A A 

TAATGljAGflG G A F - I 

- A gg 

G T A T C A C A 

TTC 
CCA 

CTTC 
CTAAGACC 
CACAGGC 

AAA . 

TggCAg AC CC Gc T a t G A t gTG t T TT CC CA 

1000 

AACA 
G 

.;: : G C C C C 

G C 

C C T T 

A A G G G A A A A G A 

A A A A G C A A A G C 

TCCAftAAAAG 
rCATGGT 

GAAGAC 
T T G C B T H A C G 

I A A A C C H A C G 

I C T C I T H T C A 

. ; A G I 

I K 

A G A T 

C A G C 

: T G C G G C 

G G C 

C C A G T A A A T 

AfiAAAG 

AC 
A G T A T T T 

G A T G C A L 

G R G A T A T 

G A A A C S 

T A G C 

C T 

C T T 

GGGT 
G I T I T 

_ G 

A' AA A ! • 

CA cT AgCt 

1060 
G G T G C - T G T G B B G B A C 

T G G A T T T G I C A A T G B C I A C 

G A T A G G T T T A I | G I G A 

C A C — C G I — T T C A C | G T 
C G C - ^ - C T B — T T C H A T C C 
T A T T G « A C T C G | C | G C 

G G A A C A A G J G l c l 
C C T A A A C C A G A | C | G T 

C C A A T T C T A T A C T T A T 

T G A A T T T C T T — C A | A | A T 

A A A C T T T T A A A C C C 

A A A T A T T T C A G | A C 

( H i 11 0 u 1040 
CBAT 

A'GC 

j J T G 

t g T t aT 

257 



1120 
C T G A A C A C A A ; 

G A A T T C A A 

A G A C A C £ A A C T T 

GA GAAGCGCCjCCl 
GT GAAGCGCTgCCg 

flCT GGTCGGTATdJ 
C T A G A C G C A G ! " 

G G T C C C A G 

A G T C A C A A J 

CTTTAGi 
f:CA A G A A T I 

T C T J J A A A T G I 

T G C C A A G 

* 1220 
A G C j A j - -

AACACGT -
ACATTGT 
3" C A T 

G T A C G T -

G T G C C T - -

ATCCGT--
GGAAGTAT--

(GATAA- = 
AGAAGAAGCG 

GTACAG TG 
GGCAGGGTATTG TTA 

t g g 

1320 
AGACGTATAG 

T C C A A T T T A A 

ATAG 

TTTGGTAAATCTAGATATTTAA 

ATTGA 

IOGAGAAATGACM 
r j j G A G A A A T G A c B 
IgCTGGCAAGATffiT| 
I C C G G T G A C A A A G G T I 

T C C G G C G A C A A A G G T | 

~~ . G C C G A C A A A 3 

iTGCATCTSGTi 
jCGCTCAAGG 

CgGGCAATTGACg 
C B C T C T C C C A C A 

H T C A A T C A A | C | 

C g T G C A A A T G A C f l 
t 

1240 

A : T •. AAACCGA 
AAG CGC( 

ATGC 
GTAG 
A GG i-
AGAA 
ATGA 
AAAT TGGATT 

AT Gc 

TCCT 
CCCT 

GACI 

TTBC 
GatTG 

CA| 
gC gT ggagA TGGt 

1260 * 1300 
^ • T I G I A I H T T B T C I G A A T G A G C G T C C 

. E A A T C G T G T G T T C G A G T A G 

I C K C A G G G T T T T C A C T C C T C T A G A T G C T C C 

T G C T A T C T C T A C T G A A G A C T A G 

T G C A G T A T C B A C T H A G J C T A A - - - " — 

. G T A T T G A T T C C G A A T C A T G A 

I C G A A T C T A C G A C G A C C C C T C A G A A G C 

iCGTGATGATGATTAA 
hriT§AlACCA----TTGCCTTAG 

T A A T C T C A T T G C A G C T T C T A C T T C A G A T T T 

£AACCTTGI8|!— T T C C A T G A - -

l B A A C C G T G M T T C - = - - | C A C C G A A G G A A T 

ATflA 1103 
A C « A 1112 
TTHA 1097 
TTHA 1094 
Tcjrr- 1094 
T C S A 1106 
TpfiA 1103 
TfeCA 1115 
AbBT 1049 
A T M T 1136 
ACaT 1190 
ACflT 1112 

1190 
1188 
1184 
1176 
1176 
1185 
1190 
1191 
1128 
1226 
1266 
1195 

1248 

1200 

Annex II D. Alignment of translated internal PAE sequences amplified from the 
leaf and mesocarp (Meso) tissues of purple passion fruit. Conserved amino 
acid residues are marked (*), strong amino acid matches (:), weak amino acid 
matches (.) and mismatches are marked (space) as determined by 
CLUSTALW. The GXSXG catalytic motif is underlined (red). The predicted 
sequence over which PeWH fragment 5 should match is shown. 

Leaf EGGGWCNNVT TCLYRKNTHL GTSKLMGQPL AFSGILSNRG 40 
MeSO EGGGWCNNVT NCVSRMHTRL GSSKKMVENL AFSAILSNKK 

********** *. * .*.* *.** * . * ***_****. 

Leaf TFNPDFYNWN RVKIRYCDGS SFTGDVQKVN PATNLHFRGA 
MeSO QYNPDFYNWN RVKVRYCDGA SFTGDVEAVN PATNLHFRGA 

80 

. * * * * * * * * * * * . * * * * * ****** ** * * * * * * * * * * 

Leaf 
Meso 

RIWLH 
RVWLH 

IGMKNAEN ALLSGCSAGG LASILHCDSF 
GLINAEN AVLSGCSAGG LTSLMHCDSF 

*.****.*** ****. **** *.******** *.•..***** 
AVIDDL LFK (5) 

120 

Leaf RALLPMGAKV KCLSDAG 
MeSO RALLPMGTKV KCLSDAG 

*******.** ******* 

137 

258 
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2. Monoisotopic ion peak list for MALDI on CsWHa and CsWHb. The 8 most 
intense peaks from each 100Da window of the spectra are shown. The 
fragmentation pattern indicates they are the same protein with the same mass 
ion fragmentation. Masses in bold are identical fragments from each protein, 
excluding values below 1000 (possible trypsin fragmentation). 

515.3151 
523.3062 
524.1267 
537.3243 
551.3402 
565.3591 
568.1242 
579.5160 
607.5511 
634.2722 
642.4281 
656.0525 
662.3029 
663.4272 
664.3808 
685.4371 
710.3350 
726.5240 
831.4058 
832.3088 
832.4937 
842.5101 
955.5694 
1004.5130 
1028.4926 
1042.5068 
1045.5584 
1104.6187 
1144.5141 
1166.4717 
1176.5042 
1201.5830 
1328.6321 
1370.5987 
1371.5921 
1372.6095 
1376.6257 
1386.5995 
1388.6036 
1394.5930 
1404.6009 
1413.6414 

CsWHa 
1429.6218 
1453.7718 
1552.8084 
1574.7935 
1616.7641 
1628.7091 
1634.8532 
1638.7842 
1656.8495 
1684.8375 
1686.8081 
1689.8395 
1700.8268 
1702.8031 
1716.7976 
1733.8026 
1746.8645 
1755.7733 
1777.7198 
1791.7547 
1846.9407 
1876.8212 
1890.8455 
1907.0572 
1959.9501 
1973.9567 
1991.9645 
2078.0344 
2104.9984 
2107.3593 
2150.0443 
2153.0111 
2167.0065 
2169.0130 
2175.0035 
2196.0004 
2210.0264 
2211.1046 
2222.2123 
2233.0895 
2245.1759 
2252.0875 

2255 
2283. 
2331. 
2347. 
2401. 
2402. 
2418. 
2424. 
2451. 
2468. 
2473. 
2483. 
2509. 
2513. 
2553. 
2554. 
2568. 
2571. 
2576. 
2587. 
2600. 
2631. 
2646, 
2660, 
2662. 
2676. 
2679 
2691. 
2706 
2708. 
2719 
2720, 
2748 
2807 
3309 
3324 
3338 
3347 
3348 
3353 

1758 
1754 
1401 
1160 
1564 
1571 
0423 
1292 
2135 
1908 
1703 
1619 
2595 
3166 
1633 
1318 
1444 
2544 
1487 
1407 
1791 
2298 
1326 
2185 
2089 
2129 
2080 
3200 
1706 
3623 
3031 
2658 
3551 
2971 
6949 
7354 
7007 
6522 
5298 
7153 

CsWHb 
512.3264 1733.8050 
515.3212 1744.8261 
537.3283 1777.7264 
551.4979 1959.9419 
568.1298 2153.0082 
579.5325 2183.2633 
580.5346 2211.1046 
591.4950 2233.0835 
607.5648 2283.1600 
607.7429 2402.1644 
619.5265 2424.1177 
635.5957 2451.2244 
647.5622 2513.3211 
662.3150 2554.1296 
663.4374 2648.1254 
685.4402 2662.2403 
719.5666 2663.2156 
726.5224 2678.2256 
747.6069 2691.2621 
825.4734 2720.2352 
832.3114 2748.2633 
842.5100 2807.2953 
931.7913 2944.5102 
937.5307 3310.6907 
959.8303 3324.6818 
1028.5106 3338.6851 
1060.6305 3348.6160 
1076.5854 3350.5190 
1118.5859 
1124.5847 
1144.5200 
1305.7239 
1372.6208 
1411.8054 
1430.7616 
1453.7847 
1471.7139 
1536.8502 
1634.8536 
1686.8143 
1689.8554 
1702.8073 

261 



Annex III B. Predicted MS-tryptic digest of constructed Citrus sinesis L. 
Osbeck PAE using the prospector software (www.prospector.ucsf.edu). 
Considered modifications: peptide N-terminal glutamine to pyro-glutamic acid, 
oxidation of methionine, protein N-terminus acetylation. Missed cleavages: 1. 
Mass values 800-3500. minimum peptide length: 5. 20 predicted ion fragments 
matched with experimental ion masses (red bold), accounting for 76% 
coverage of the protein. 

pi of Protein: 8.5 
Protein MW: 43028 

1 ESFXYVHSXX LLKADGFNVG ITYVENAWK GAVCLDGSPP AYHFDKGFGA GINNWLVHIE 
61 GGGWCNNVTT CLERKKTRLG SSKQMVKWA FSGMLSNKQK FNPDFYNWNR IKVRYCDGAS 
121 FTGDVEAVNP ANNLHFRGAR VFQAVMEDLM AKGMKNAQNA VLSGCSAGGL TSILHCDNFR 
181 ALFPVGTKVK CFADAGYFIN AKDVSGASHI EQFYAQWAT HGSAKHLPAS CTSRLSPGLC 
241 FFPQYMARQI TTPLFIINAA YDSWQIKNIL APGVADPHGT WHSCKLDINN CSPTQLQTMQ 
301 SFRTQFLNAL AGLGISSSRG MFIDACYAHC QTEMQETWLR TDSPVLGKMS IAKAVGDWYY 
361 DRSPFQKIDC AYPCNPTCHN RVFDSNVHSE V 391 

m/z 
(mi) 

m/z 
(av) Modifications Start End Missed 

Cleavages Sequence 

816.4462 816.9351 341 348 0 TDSPVLGK 
832.4927 833.0244 181 188 0 ALFPVGTK 
977.5448 978.2059 79 87 1 LGSSKQMVK 
993.5397 994.2053 1 Met-ox 79 87 1 LGSSKQMVK 
1042.5104 1043.1972 226 234 0 HLPASCTSR 
1059.6561 1060.3330 181 190 1 ALFPVGTKVK 
1132.5269 1133.2100 382 391 0 VFDSNVHSEV 
1144.5058 1145.2238 354 362 0 AVGDWYYDR 
1152.6082 1153.3942 88 98 0 W A F S G M L S N K 
1168.6031 1169.3936 1 Met-ox 88 98 0 W A F S G M L S N K 
1346.7348 1347.6265 341 353 1 TDSPVLGKMSIAK 
1362.7297 1363.6259 1 Met-ox 341 353 1 T D S P V L G K M S I A K 
1372.6069 1373.4791 101 110 FNPDFYNWNR 
1376.6247 1377.5234 191 202 CFADAGYFINAK 
1408.7617 1409.7010 88 100 1 W A F S G M L S N K Q K 
1413.6752 1414.6929 2Met-ox 141 152 VFQAVMEDLMAK 
1424.7566 1425.7003 1 Met-ox 88 100 1 VVAFSGMLSNKQK 
1546.7723 1547.8273 189 202 1 VKCFADAGYFINAK 
1561.8988 1562.9044 1 13 E S F X Y V H S X X L L K 
1613.7859 1614.8147 101 112 1 FNPDFYNWNRIK 
1621.8440 1623.0015 pyroGlu 84 98 1 QMVKVVAFSGMLSNK 
1628.7605 1629.7858 99 110 1 QKFNPDFYNWNR 
1634.8860 1635.8720 304 319 TQFLNALAGLGISSSR 
1637.8390 1639.0009 pyroGlul Met-ox 84 98 1 QMVKVVAFSGMLSNK 
1638.8706 1640.0322 84 98 1 QMVKWAFSGMLSNK 
1653.8339 1655.0003 pyroGlu2Met-ox 84 98 1 QMVKVVAFSGMLSNK 
1654.8655 1656.0315 1 Met-ox 84 98 1 QMVKVVAFSGMLSNK 
1665.8451 1667.0143 138 152 1 GARVFQAVMEDLMAK 
1670.8604 1672.0309 2Met-ox 84 98 1 QMVKVVAFSGMLSNK 
1674.7945 1675.9152 349 362 1 MSIAKAVGDWYYDR 
1676.7737 1677.8876 31 46 GAVCLDGSPPAYHFDK 
1681.8400 1683.0137 1 Met-ox 138 152 1 GARVFQAVMEDLMAK 
1690.7894 1691.9146 1 Met-ox 349 362 1 MSIAKAVGDWYYDR 
1697.8349 1699.0131 2Met-ox 138 152 1 GARVFQAVMEDLMAK 
1697.8423 1699.1194 141 155 1 VFQAVMEDLMAKGMK 

1700.8293 1702.0632 235 248 LSPGLCFFPQYMAR 
1713.8372 1715.1188 1 Met-ox 141 155 1 VFQAVMEDLMAKGMK 
1716.8242 1718.0626 1 Met-ox 235 248 LSPGLCFFPQYMAR 
1729.8322 1731.1181 2Met-ox 141 155 1 VFQAVMEDLMAKGMK 
1731.8125 1732.9045 354 367 1 AVGDWYYDRSPFQK 
1745.8271 1747.1175 3Met-ox 141 155 1 VFQAVMEDLMAKGMK 
1777.7157 1779.0856 368 381 0 IDCAYPCNPTCHNR 
1795.9225 1797.0302 14 30 0 ADG FN VG I T Y V E N A W K 
1973.9656 1975.2507 268 285 0 NILAPGVADPHGTWHSCK 

262 

http://www.prospector.ucsf.edu


2167.0276 2168.4710 286 303 0 LDINNCSPTQLQTMQSFR 
2193.9627 2195.5209 363 381 1 SPFQKIDCAYPCNPTCHNR 
2205.1590 2206.5624 pyroGlu 249 267 0 Q I T T P L F I I N A A Y D S W Q I K 
2222.1856 2223.5930 249 267 0 QITTPLFIINAAYDSWQIK 
2402.1735 2403.6296 203 225 0 DVSGASHIEQFYAQWATHGSAK 
2533.0767 2534.9341 320 340 0 GMFIDACYAHCQTEMQETWLR 
2548.2031 2549.8644 156 180 0 NAQNAVLSGCSAGGLTSILHCDNFR 
2568.1578 2569.7893 115 137 0 YCDGASFTGDVEAVNPANNLHFR 
2582.2465 2584.0780 226 248 1 HLPASCTSRLSPGLCFFPQYMAR 
2598.2414 2600.0774 1 Met-ox 226 248 1 HLPASCTSRLSPGLCFFPQYMAR 
2691.1464 2693.0926 1 Met-ox 320 340 GMFI DAC YAHCQTEMQETWLR 
2720.1650 2722.0275 368 391 1 IDCAYPCNPTCHNRVFDSNVHSEV 
2752.2896 2754.0315 113 137 1 VRYCDGASFTGDVEAVNPANNLHFR 
2781.2798 2783.0296 115 140 1 YCDGASFTGDVEAVNPANNLHFRGAR 

2864.3600 2866.2896 153 180 1 GMKNAQNAVLSGCSAGGLTSILHCDN 
FR 

2880.3549 2882.2890 1 Met-ox 153 180 1 GMKNAQNAVLSGCSAGGLTSILHCDN 
FR 

3017.4145 3019.4114 47 74 GFGAGINNWLVHIEGGGWCNNVTTCL 
ER 

3145.5095 3147.5866 47 75 1 GFGAGINNWLVHIEGGGWCNNVTTCL 
ERK 

3330.5050 3332.8464 320 348 1 GMFIDACYAHCQTEMQETWLRTDSPV 
LGK 

3338.8035 3340.9118 1 30 1 ESFXYVHSXXLLKADGFNVGITYVEN 
AWK 

3346.5000 3348.8458 1 Met-ox 320 348 1 GMFIDACYAHCQTEMQETWLRTDSPV 
LGK 

3354.6284 3356.7242 203 234 1 D V S G A S H I E Q F Y A Q W A T H G S A K H L P 
ASCTSR 

3361.6780 3363.8661 156 188 1 
NAQNAVLSGCSAGGLTSILHCDNFRA 
LFPVGTK 

3362.4949 3364.8451 2Met-ox 320 348 1 GMFIDACYAHCQTEMQETWLRTDSPV 
LGK 

3453.6784 3455.8951 14 46 1 
A D G F N V G I T Y V E N A W K G A V C L D G S P 
PAYHFDK 

3702.7646 3705.1256 191 225 1 
CFADAGYFINAKDVSGASHIEQFYAQ 
VVATHGSAK 

3711.8581 3714.2403 286 319 1 
LDINNCSPTQLQTMQSFRTQFLNALA 
G L G I S S S R 

3727.8531 3730.2397 1 Met-ox 286 319 1 LDINNCSPTQLQTMQSFRTQFLNALA 
G L G I S S S R 

3832.9594 3835.5537 235 267 1 L S P G L C F F P Q Y M A R Q I T T P L F I I N A A 
YDSWQIK 

3848.9543 3851.5530 1 Met-ox 235 267 1 L S P G L C F F P Q Y M A R Q I T T P L F I I N A A 
YDSWQIK 

3979.9000 3982.5392 268 303 1 
NILAPGVADPHGTWHSCKLDINNCSP 
TQLQTMQSFR 

3995.8949 3998.5386 1 Met-ox 268 303 1 NILAPGVADPHGTWHSCKLDINNCSP 
TQLQTMQSFR 
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Annex IV Passion fruit cDNA sequences identified in random library sceen. 30 
clones were selected at random from each library (M: mesocarp, G: gland) and 
plasmid inserts sequenced from the 5' end using the pTriplEx2Forward primer. 
Non-coding 3' sequence is highlighted in lower case. 

M l 
ATGACCACCGTCCACTCAATCACTGCAACTCAAAAGACTGTTGATGGGCCATCAATGAAGGATTGGGGAGGTGGAAGAGCTGCTTCA 
TTCAACATCATTCCTAGCAGCACTGGAGCTGCTAAGGCTGTTGGGAAGGTTCTACCTGCGTTGAATGGGAAACTCACTGGAATGGCT 
TTCCGTGTTCCTACTGTGGATGTCTCCGTAGTTGACCTCACCGTCCGACTTGAGAAGGGAGCTAGCTACGATGAAGTTAAAGCTGCT 
ATCAAAGAGGAGTCTGAGGGAAAGTTGAAGGGAATCTTGGGCTACACCGAAGATGATGTGGTTTCCACCGACTTTGTCGGTGATAGC 
AGGTCAAGCATCTTTGATGCTAAAGCTGGAATTGCTTTGAGCAAGGATTTTTTGAAACTTATCGCCTGGTACGACAACGAATGGGGT 
T A C A G C A C A C G T G T G G T C G A C T T G A T T G T C T A C A T T G C C T C C G T T T C G A A G T G A g c a c t t g t t a t c g t c t t t c c t t c c a c c t g g t t a 
t g g t a t g a g c t g a a t g a a a c a g t a a a a t a a a a t t g c t g c g g g a c a g t g g t g t t t t t a a t a a c a a t t t a a a g c g a g t t g t c t t t a g t t 
t c t t a g g t t t g g g t t c t c c t g t t t c t c g g g g a t g c t g a a a c c c c t c g a a c t t t t a t t t t a t t t t c c g t c a a t t t t c t c t g n c c t g n t 
a c t a a t c a t a C c c c t t c t t t a g c g t c c g a a g t a t g t t c c c c c a c a c a a n t a n c t t a c n t a a n a a t n a t c c n t n g t t g g c c c g c c c t c 
g g g c c c n t t c n a n t t t a a a c t c g a g c c a a g c t t t t g c a t g c g g c c c c a a t t c g a g c t c c t t g g g c c a a t t c c c c 
M2 
GAGGATGGAATTAAAGAGCCACAGGCAACATTCTCGGCCTGCTTTGGTGCAGCTTTTATAATGATGCATCCCACCAGGTATGCAGCT 
ATGCTCTCCGAAAAGATGCAGAAACACGGAGCGACGGGATGGCTTGTCAATACTGGCTGGTCAGGCGGAAGGTATGGATCAGGCAGC 
CGTATCAAGCTTGCGTACACTCGGAAGATTATCGATGCCATACATTCTGGGAGTCTTTTGAATGCCAACTACAAAAAGACTGAAGTG 
TTTGGACTTGAGATCCCGACTGAGATTGACGGGGTGCCGTCTGAAATCCTTGATCCTATAAATACTTGGTCGAACAAGAATGCTTAC 
AACAACACCCTGTTGAAGTTGGCTGGATTGTTCAAGAACAACTTTGAGGTGTTCACAACCCACAAAATTGGAAAAGACAACCAGCTG 
A C G G A G G A G A T C C T T G C A G C G G G T C C T A A T T T C T A A t c a a a g t g t G c t g a t a t t g c a a g a g a g t g t g t a c c 
M3 
GGGAGGGTGATTGTGANAGAAGAAAAGGGTGGNTCTGTTTCTTATGCTGCNCCGGCTGGATCAGAATTGGAGAACCCATTATGCGTG 
TCCCAACCCTTGCAATTCACTTGAACAGGACTGTTAACAGTGAANGGTTTAAAGTGAACACCGAGACTCATCTTGTTCCTATTTTGG 
CAACGTCAATTANGGCCGAACTGACTANAGTGGTTGCTGAAANTGCTCCNCTTGGAANTGATGATCAGTCTGATGGAAAGAANATTA 
ACANGGANACCNGCTCAGAACNTCNCTCTATTCTTCTTCAAATGATTGNNAGTCANCTTGGCTGTGAACCANATGATATATGTGATT 
TCGAATTGCNNGCTTGNGACACTCAACGAAGTACTATAGGTGGTGCTGCANTGGAATTTGTTTACTCTGGAAGGCTTGATAATCTCT 
GCATGTCATTTTGCTCTTTGAAGGCCCTANTAGATGCTACATCTTCTGAAAGGGATCTTGACGAGGAAGCTGGTGTCANAATGGTTG 
CATTATTTGATCATGAGGAGGTGGGATCTGATTCANCACNAGGAGCCGGGTCTCCTGTAATGTTCGATGCTCTGTCACCAATCNCNN 
GTTCCTTCNNCTCAGATTCTAAGCTGCTGCAAAAAGCCATCCAGAGGAGTTTCCTTGTCTCTGCCGACATGGCACATGCAATACATC 
CTAATTATCCGGACAAACACGAGGATAATCATCNGCCCACGATGCACANAGGACTTGTAATAAANCNTAATGCNANTCAACGCTATG 
CNACCNATGCTGTTACTGCCTTCATATTTGGGGAGATANCAANAAANCNTANCCTTCCCNCCCCAANATTTTGTGGTCCGAAACNAC 
NTGCCTTGNGGTTCACAATTGGNCCTATTC 
M4 
ATGGTTTTGCTAGAGAAGTTGTGGGATGATGTTGTTGCTGGACCTCAACCTGAGCGTGGCCTTGGCAAGCTCAGAAAGATCAGCACA 
AAATCTTTGAACATCAAAGATGTAGAGGTTGGAGAAGGAAGCAACTACCAGAGGTCTCTCTCCATGCCAGCAAGTCCGGCCACACCA 
GGGACCCCGGGAACACCCGCCACGCCCTTGTCAGCGCGCAAGGAAAATGTGTGGAGAAGCGTGTTTAATCCTGGCAGCAACCTTGCC 
ACCAGGAGTATCGGAGCTCAGGTGTTTGACAAGCCTGCACACCCTCAGGCCCCTACTGTCTATGACTGGCTTTACAGCGGCGAGTCC 
A G G A G C C A G C A C C G C T G A a g t g g c a a g c c a g g t t g a g c t g a g g t g c c a t g t g t a a a t a a t g t g g t t t t g g t t c t g t c t a t g c t a t t t 
g t c c c c t c t g t t c a a t g g g t g c t a t g a c t a c t a c g t t t t t c t t c a a c a t g c c a t c a a c a a a g a t g a c t a g t t t c c t t g g a g c t t t t g 
g a g t g t t c a a t a a t t c t a t g g t g t t a a a t a t t t g t c c c a g a t a g c t t g a t c t g t g t t g a t c c t g a t c t g c a g t g g a c a a g t g t g a t g 
a g t c t a g t a t a g t a t a t c t a g t a c a a a t a a t c t g t a t t c g g t c c t a c c g a c c g a c c g t c c t t a a t g t a g t t t a t c c t t c c t t t t c t c 
c 

M5 
ATGGCGAGTGATTGTGAATCTAAGAGGAGCTCTGAGACTGTGAAGAAGTTTCTGTGCAGTTACGGCGGTAAAATTCTTCCTCGCTCC 
GGTGACGGCAAGCTCCGTTACGTTGGTGGAGTAACTCGTGTTCTCGCCGTCGATCGTTCCGTATCGTTTGCTGAACTGATGGTGAAG 
CTTGGTGAGTTCTGTGGATACTCCGTGGATTTGAAGTGTCAATTACCTGATGGAGATTTGGAGACGTTGATTTCTGTAAAATCTGAT 
GAAGAGTTGGTGAATTTGATTGAAGAATACGATCGATCCTCCCCTGGTTCAAAAATCAGAGCCGTATTAACCCCGCCGAAATCGCTG 
AAGTCGGTTTCTCCTCTCCCGTCGTCTCCGACGAGTGTTAACTATATTACAACCAGATCTCCGAGCAGCTCCCCCGATTACCGTCGA 
TACCGGAATGATTCCCCGCCGCTAGATTATTCCTTCGGCAGGCTTCTGAATGATTCCCGTCGTGGAATGGGGAATCACAAAGCTCTG 
TGCTGCGGTCCTCGCTGTTGCAACTACTACTGGTGATCGATCGGATGTGCTTGAGACTTAAAAAGGCCCCAAAAAATCTANGGGTAT 
T T C N C C A G A T A G A A T A G A T T A G C T G G A T A A G A A A T A A c g a a c a a a a g a a g t a t a t t g g g a t g a 1 1 t c c c 
M6 
ATGGACTTTTTATTCAGAGGTCTGAATGAGGAATCTGCAAACTCTCATGTTGACATTCATAGGTGTCCCTTTTTGAGGAACATCAAT 
GAGCCAACCAACTTCTCTTTCTCCTCTTCCATGCCTTTTCCTATGCCTGTACGGGCAGGAAAAGGTCCGATTTTTGAAGATGGTCCT 
AATTTTGATATGGCATTTAGGTTATTCCATGGAAATGATGGAGTTGTACCGCTTTCTGAAAGATCACTTTCGTTTTCTGAGAAAAAA 
CCCCAAGCAACCGCACCTGCGTTTAATCCTTTAGCTGCCAAGGCAGCCACCATCAGTCTTTCATCTTTTGGACTTGGTGGTTTCTTC 
GGCTTTGACTCATTTTCTAAGAAGCGGCTGAATGAAAAAAGAAATGGCAAGTCGTCCAATAAAGGATCGTCTTCCAAGGGAGGAGGC 
CCTAATCACGAGGCATTGAGCGATGAATGGCTGAAAAATGGGAACTGTCCCATTGCCAAATCTTTTCNGGCAGTTAGCCATGTCTTG 
GCACTTGTTGGCAAANGCTCTCCAACCCCCCTCAAGGNATGGAAACTGAAAGTGGCCCACCTGCANTGGGTTGCAAGCAAGAGCNAC 
CCATATCCGCGAACTGCTTTTNCNAAGAAACTTCCGGCCTCANCCTTTGGCCTGNAAAAAGTGGTTTGTGGAAAAGGAATGGCTTNG 
G G C A T G G C A G N C N A A A C A T A C C G T T A G g g a a a n t t g g a g a n n a a c a t a c c c g a g g a a a a t t t t c a n n c g c c c a t n g g t t c c n c t g c a 
a g g 
M7 
GGTTCTTTCGGGGATTGTGAAGAAGGAGGATGTGAAACTTGTACCGGCAAGCTTGTAGTTGGGTCCGCTTGGCGTAAACAGATGCCT 
AAGCTTGCTGTTTCGCTCGGTTTGGGTGATGAAATGCCCGATATGATTAAAGAATTAATTAGTAGGGGACAGCAGCTTGATGCGGTG 
CACTTTACTTATGAAGTTGGACTTGTGGATATGTTTCCTCCAGTCCCATTGCTAAAATCCTTTTTGAAGGATGCAAGGAAGGCTGCA 
GCTTCTATTATGGAGGATCCTGATAATAGTGGTCGAGCTGCGGGTCTTGCTGCTCGTAAGGAGCAGTCAGCACTCAGGGCTGTCATC 
AAATGCATTGAAGAATACAAATTAGAGGCTCTGTTCCCTCCAGAGAACCTTAAGAAACGACTTGAACAGCTAGAGAAAGCCAAGACA 
GAGAAGAAAAGACCTGCCGCAGTACCTGCCAACAAACGAACCCGTGCCAGCAATGGTGGCCCAATGCCTCCAGCTAAGGCTGGTCGT 
TTGACAAATGCATATGTTTCATCTTTCCCTGCGCCTCCCACGTTTGTCAGGTCTCCTTCACAAACACAATACATGCCAGCACCACCA 
CCATATCCTTCTCCCCCCGCAGTTTATGGAAGCAGGAGCCCACCATCCCCATATGCCTACTCACCGGAGGCTGTACCTGCTCCCATG 
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GCCGGATCGTATCCTTTGAATTATCAGGCATATGGAGGCTATGGCAATGGTTTTGCACCAGCTTATCAGCAGGCTTACTACCGATAG 
a c a t g a c a a c t c a a t g a t g g t a a c c a c t g a t a t g a t g a c c c c a a t c t c a t t t t g c t t t c c c a n c t g g t t t g t t t t g t a a n c a c t a a c 
c g t t t t a a c n g g t a g c a a t g t c g g g t g t g t t t a t t t a t a a c t g t c c t a c t t c t t g c n g 
M8 
ATGGTGAAGTATTCGAGAGAGCCAGACAATCCCACCAAGTCCTGCAAAGCCAGGGGCTCTGATCTCCGTGTTCACTTCAAGAACACC 
AGAGAAACTGCCCATGCACTTCGCAAGTTGCCTTTGGTCAAGGCTAAAAGGTACCTGGAAGATGTTATGGCCCACAAGCAAGCTATT 
CCATTCCGCCGTTTCTGTCGTGGTGTTGGGCGAACTGCTCAGGCAAAGAACCGTCATTCAAATGGACAAGGTCGTTGGCCTGCTAAA 
TCTGCAAAATTCATTCTTGATTTGCTAAAGAATGCTGAAAGTAATGCTGAGGTCAAAGGTTTGGATGTGGATGCACTCTACATATCT 
CATATCCAAGTTAACCAAGCACAAAAACAACGTCGCCGCACATACCGTGCTCATGGAAGAATCAATCCTTACATGTCCTCCCCGTGC 
CACATTGAGTTAACTTTGTCAGAAAAAGAAGAGGCTGTGCAGAAAGAGCCCGAGACTCAGATTGCTCCCAGGAAACAAAAGGGTAAT 
G C T C T A C A G A G C G G T G C T T C C T C T T A A a t t t g a g c a g c a g a t c a a t g c t g g a t a a a a a a g g a t c c n c c g a c t g a a a a c a t t t t t t g t 
t t t t c c g t a c c t g n t t n n a a c c a c c a a t t t g a a c c t g g t t c t n g g g a a t a a a t g g g g t t t t t t t t t t t t t t c c c c c t t t t t g g c c n t 
t t a n a t g g g g a a a t t t g g a g a n t c c t t n t t t 
M9 
ATGGCCGGTAAAGGAGAAGGACCAGCCATCGGAATCGATCTCGGCACAACATACCCCTGCGTCGGAGTATGGCAGCACGACCGAGTG 
GAGATCATCGCCAACGACCAGGGAAACCGTACGACGCCTTCTTATGTTGCTTTCACCGATAGCGAGCGTCTTATCGGCGATGCTGCC 
AAGAACCAGGTCGCCATGAATCCCATCAACACCGTCTTCGACGCGAAGAGGTTGATTGGTAGGAGATTCAGTGATTCCTCAGTACAG 
AGTGACATCAAGTTGTGGCCATTCAAGGTCATTCCTGGACCTGCTGACAAGCCCATGATTATTGTCACCTACAAGGGTGAGGATAAG 
CAATTTGCAGCGGAAGAAATCTCTTCCATGGTTCTCATTAAGATGCGTGAGATAGCCGAGGCTTACTTGGGCACTACTATTAAGAAT 
GCAGTGGTCACTGTCCCTGCCTATTTCAACGACTCCCAAAGGCAGGCCACCAAGGATGCCGGTGTGATTGCTGGCCTTAATGTCATG 
CGTATCATCAACGAGCCCACTGCAGCTGCCACTGCTTATGGTCTTGACAAGAAGGCAACCAGTGTCGGTGAGAAGAACGTCTTGATC 
TTCGATTTGGGTGGAGGCACTTTTGATGTCTCTCTTCTTACCATCGAAGAGGGTATCTTTGAGGTTAAGGCCACAGCTGGTGACACC 
CATCTTGGAGGTGAGGACTTTGACNACNGAATGGTGAACCNTTTTGTTCNGGAATTC 
M10 
GGGAGGCTGTTTCAGTATTGCCTCAACTCCGAGTCATGCAGAACGCAAAGATTGTTGAACCATTCACTGCTCATTATGTTTTTGCGC 
TTGGAGTAGCTAGGTTCTTTAGCTGTGCTCATTGGGTTCTCCAGCTGTTAGATAGTCGGGGACTTTTATTGACAGCACTGGGTTATG 
GATTGTGGCCTCCCATGGTCCTCCTCTCAGAAATAGTCCAGACATTCATTCTTGCAGATTTTTGCTACTACTATGTCAAGAGTATCG 
C T G C T G G G C A A C T T G T T C T G C G A C T C C C C T C A G G A G T G G T G T A A g g t c a a a a a c a t g a a g g c a g a t a t g g c t t a c t t c a c c t t c c a c 
a c g c c a a c t t c t c a a g g c t a g c t g t a c a c g c c t g a g c t g c c a c t t a a g a g t t a c t g t a g c a g c t a g c c a t c a a a g g c t g c a g g t g c c 
a t g g c a t t t t a a a g t g t a t a a a a a c c a a t c t a g t g t a c t c c t t a a t t t g a c t t g g a a a a t t t g t c t t c c a c c g g t t t t a g t a c c a t t 
c t g c a a a g a c t t c t t a t t t c a t t a c a a a a t c c g t a c a a a g t c t c g a g t t t t t t t 
M i l 
ATGGCTTACAAGACCATAGTCGCACTGATTCTCTTGTCTCACCTGGCCAGTTCGGCTCTCGCTCAGGCTCCTGGAGCTGCGCCGACC 
AAGTCCCCTCTTTCTCCTGCACCAGCTCCGAAAAAGGCCGCAACTCCACCTCCGGCACCAGCTCAGGCTCCCGCTCTCGCACCACCC 
GTCTCTGCTCCTGCAGACGCTCCCAGCGGCGTACCATCCCCTGCGCCGACCAGCTCGCCACCATCTCCGGTCGCTCCTACAACCGGT 
CCTTCTGCATCTACTACTCCAGGCTCTGTGGCCTCTACTCCAGGCTTGGCGCCAACCAGTACTCCTCCTTCAGGCGGTGCCTTCGTG 
AACGGTGCAGCTGTTTTCAGCACTCTGGTCGGAGCTGCGTCCGCGTTGTCTTTTTTATTGCTGTAGa t c t g a g c a g t a t c g g g c t t t 
a g g t t t t g a t t t t a c t a g g a t a t t g a g t g t t t g a t t t a t t t t t t t g t t t c t t g t c c a t g g a c g g t g g t g g t g g t g a c t t t t t c g a t a 
t g t t g a c g g t t c c g a t t t g a t a t c g c t c t c t t a g g t a g a t c a t t g t t a t c g c t a t t t t t a c c t c 
M12 

ATGAAGGGCGGAAAATCGAAGGCCGGGATCAAAGTTACCGATGCTAAGCTAAAGAGGAAAGGTGCTGGAGCCAGCACGAAAGCGGCC 
AAAAAGGCTGCAAAGGACCCTAACAAGCCAAAGAGGCCTCCTAGTGCTTTCTTCGTTTTCATGGAGGAGTTTAGGCAGGAGTTCAAG 
GCTAAGCATCCTACCAATAAATCTGTAGCTGCTGTTGGTAAAGCTGCTGGTGATAAGTGGAAGTCATTGTCAGAGGCTGAGAAGGCT 
CCTTACCAAGCTAAGGCGGAGAAGAGAAAGGCTGACTACAACAAGAATTTAGCAGCATACAACAAAAAATTGGCTGATGGAGGCCCT 
GCTGATGATGAATCTGACAAGTCAAAATCAGAAGTGAATGATGAGGATGATGAAGAGGAGAGCGGTGGAGAGGAGGAAGAGGATGAC 
G A G T A A t t g a c t a g a a c t g c a a a g g g t g c a a g g g g c c a a a g g a g c a c g t t g a t g t a g a t t g c t t a g g a t g t t g t a c t t g c a t t t c t a 
a t t c a a a t a g t t t a t c t g g c c a t t t t a g t t t a g g t t a g g a t t a a a a c a a a g a t t a g t t t t g g g n a a c a c t t c c t g a a g c t c a t a t g g 
g t a a t g t a c t t a a t g t c t t t t t t a a a g g c a c a a a n a t n n t n a a n g a n n n n n a n n t n c c n t t g t c g g c c n c c c t c g g c c c c 
M13 
ATGGCCCGTACCAAGCAAACTGCTCGTAAGTCTACAGGAGGAAAGGCACCAAGGAAGCAGCTCGCCACCAAGGCTGCCCGTAAGTCT 
GCCCCTACCACCGGTGGGGTTAAGAAGCCCCATCGCTACCGTCCAGGGACTGTTGTTCTTCGTGAAATCCGCAAGTATCAGAAGAGC 
ACCGAGCTGTTGATCAGGAAACTTCCGTTCCAGAGACTTGTTCGTGAAATTGCGCAGGATTTCAAGACTGATTTGCGTTTCCAGAGC 
CATGCTGTGCTGGCCCTGCAAGAGGCAGCCGAGGCGTACTTGGTGGGTTTGTTCGAGGACACTAACCTCTGCGCTATTCATGCCAAG 
CGTGTCACTATAATGCCCAAGGATATCCAGTTGGCCAGGAGGATCAGGGGCGAGCGCGCTTGAggt t t a t a a t a a t g c t g t g a c t a t 
t t c t t t t g g t c c t t t c c c t t g t t g g g g g t t a t c a g t c g g a t g c g t c t a g c a a g a t a g a t t a g a t a g a t a g a g a t a c t t c t g g t c a a t 
t a g c t a t g t t g g g t g c t g a c g g t t t g t a c c a a t c t a t a a a t t c g g a a t t t t c t t g t a a t t t a t a t t a g c t c t g c t g t t t t g t t t g a a 
c a c g a c c t a t t t t t g 
M14 
GGATCCTAAAGGGATTTAAGCCTTGAGTTCTTCTTTGACTCGAACCCATACCTTCAAGAATTCTGTCCTTACAAAGACATATCACAT 
GATTGATGAAGATGAGCCTATTCTCGAGAAAGCCATTGGGACGGAGATTGAGTGGTACCCAGGGAAATGCCTAACGCAAAAGCTTCT 
TAAGAAGAAGCCTAAGAAGGGATCAAAGAGTGCCAAGCCAATTACAAAAACCGAGGAGTGTGAAAGTTTTTTCAATTTCTTTAATCC 
ACCTCAAGTCCCGGAGGATGATGAGGATATTGATGATGACACCGCGGAAGAACTCCAGAATGAGATGGAACAAGATTATGACGTCGG 
GTCTACCATTCGAGACAAGATCATTCCTCATGCTGTGTCATGGTATACCGGGGAGGCCATGCCTGGAGATGATCTTGATATTGATGA 
TGAGGATGACGACGACGATGATATTGATGATGATGANGATGANGATGATG 
M15 
GTATAATGTTCGTTTTGCACCTCGCAATGGAACGGGCGTCGTTGTTATTTGCCCCACAAGAGAGCTTGCCATACAGACACATGCTGT 
GGCAAAGGACCTTCTCAAGTATCACTCCCAGACTCTTGGCTTGGTTATTGGAGGCTCAGCTAGAAGAGGAGAAGCAGAACGCATAGT 
CAAAGGAGTGAACTTATTAGTTGCTACCCCTGGTCGACTTCTTGATCATTTACAAAATACCAAAGGGTTTATTTATAAAAATTTAAA 
GTGCCTCATGATTGATGAAGCAGATAGGATCTTGGAGGCCAATTTTGAAGAAGAAATGACACAAATTATCAAGCTTCTACCCAAGAT 
GAGGCAAACTGCTTTATTTTCAGCTACTCAAACTAAAAAGGTTGAGGACCTTGCCCGCTTGTCGTTTCAGACAACTCCTGTCTATAT 
TGATGTGGATGATGGAAGAAGAAAGGTCACCAATGAGGATCTGCAGCAAGGCTATTGTGTTATTCCAAGTTCCAAGAGATTTATTCT 
TCTCTACTCTTTCTTGAAGAGAAACTTGTCAAAGAAAGTTATGGTCTTCTTCTCTTCATGCAACTCGGTCAAAATTTCATTCTGATT 
TACTCAGATACATTCAGATTGAATGCTTTGACATCCATGGAAAACAAAAGCAGCAGAAACGGACAAACTACATTTTTTGATTTCTGT 
AAAGCAGATAAAGGGGATCTTGCTGTGTACTGATGTTGCTGCCCCGTGGACTCNATATTTCCTGTTGGNGGACTGGGATTGTGCAGT 
ATGATCCCTCCCCGGATGNAACCCAAAGGAATACATTCACAGGANTCCGGCCCGGACAGCNTCGTGGGGGGAAGGTGCCAAAAAGGG 
AAATGCGCTTCTCTTT 
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M16 
GTTTGAGGTGTGGAAGGAGTCACAATAGATATGGCTCAAAACCAGGCTAACCATAAAGGGAATAGTTGAACCTCAAGCAGTTAGTAA 
CAAAATTATGAAGAAAACCAAGAGAAGAGCCAAAGTTCTATCTCCATTGCCTGAAACCGAGGGCGCGCCAATGCCCGAAGTGGTCAC 
TTCACAGGTTAGTGGAGCAACGACTGTGGAGCTTGACGTGAACATGCACTGTGAGGCCTGTGCTGGGCAACTCAAGAGAAAGATACT 
CAAAATGAGAGGAGTGCAAACAGCTGTGACAGATCCAAGTGCAGGCAAAGTCACCGTTACTGGGACAATGGACGCGAACAAGCTGGT 
GGACTATGTCTATAGGCGGACAAAGAAGCAAGCCCGGATTGTACCACAGCCCGAGCCTGAAGCAGAAAAGCCAGAAGAAAAACCAGC 
CGAGGAACCGAAACCT 
M17 
ATGGCGAGATCGACTGGCAAGGATGCGCGAGCTCTGTTCCATTCTCTTCGTTCTGCCTATGCTTCCACACCCACTTCCCTCAAGATC 
ATCGATCTGTACGTGGGTTTTGCGGTTTTCACTGCCCTGATTCAGGTGGTTTACATGGCGATTGTTGGGTCATTCCCATTCAACTCG 
TTTCTCTCAGGAATACTTTCCTCCGTTGGGACTGCAGTGCTCGGTGTCTGCCTCCGAATCCAAGTGAACAAAGAAAACAAGGAATTC 
AAGGATCTACCACCAGAACGTGCTTTTGCTGATTTTGTGCTCTGCAATCTGGTTCTGCATTTGGTGATCATGAATTTCCTAGGTTAA 
g c t g a t g c a a t g c t t t a c c t t a t a t g t a a c t t t t c a g a c a g t t t t g t t a t g t c a t t t t a t g c c a t c a g g c t t a a t t t c c c a a a t t a g 
g a c a a g t a t c t a c a a a c c g g t t t t g a c t g t a t t c a t g a a t t t g t t t t c c t a t c a n g g a a a c a a a t a t c c t c c 
M l 8 
ATGGCTTCTTCTGTTTGCTCCCATCTTCATCTTCTCCTACAAGTTTCTCTTTTGCTCTGTCTGGTTCATTTGAGTTCTGCTTCAAGA 
GAACTAGCTGAGTCAGACCCAACCCAACAACCATTTCTGTTCCAATACCACAACGGTCCTCTTCTAACTGGTGACATCTCAATTAAC 
TTGATCTGGTACGGCAAGTTCAAACCTTCTCAACGTGCTATAGTCACGGATTTCGTTGCTTCAATTTCTTCTTCTAGACCGCCAGCA 
ACTTCAGCCCAACCCTCCGTTGCCAAATGGTGGAAAGGTATAGCAAAATTCTACCACCTGGCTAAGTCCAAGAAGTCATCTTCTCTT 
CTTCTGTCCTTGGGAACACAGATCCTGGAGGAGAACTATCCATTGGGGAAGTCCCTTTCAAACAAGCAAATCGTGCAATTAGCATCA 
AAGGGTGGTCAAAAAAATGCCATCAATGTTGTCTTGACAGCTTCTGATGTTGTGGTCGAAGGGTTCTGCTCCAGTAAGTGTGGAACT 
CACGGGTCTGCTGCAAGTCGCACCGGCAAGAACTCCAAATTCGCTTACGTTTGGGTGGGTAACTCAGAGATTCAATGCCCTGGTCAA 
TGGCGCATGGCCATTCCACCAGCCAAATCTATGGGACCACANGAGTCCACCATTGGGTTGGCACCAAAACAACGAATGGGGGGTAAT 
NGGAATGGNNATGAATTATTAAAACCCTGGGGGTAGGNCCNTTTTTGGGCANGGGNAACCGGCCCACCCAAANCCCAATTTGGGGAA 
AAATGGGCTTANTTTTCCANGGGGTNCCGAAAAAAAAGGCACCT 
M19 
ATGGCGAATAATAATCGATCAGTCTCCACAAGCGAAGTCGTTTACAGATTGCAGCTAGAGCTTCTCGATGGGATAAAGAGCGAGGCC 
CAGCTCTTTGCCGCTGGAGCCATGCTGTCGCTCAGGGACTACCAAGATGTGGTGATCGAGCGTACCATCGCCAACCTCTGCGGTTAC 
CCGCTGTGTCCTAACTCCCTGCCCCCTGAGAGTAACCGGAAGGGACACTACCGTATCTGGCGCAGTGAGCATGAGATCTCTGATTTG 
CACGAGGTTTACCTGTACTGTTCCCCGACTTGCCTGTATAAGAGTAAATCGAGCTTTAAAAAGATGAGGAGCCCGGTTGAGGTTGGG 
GAATTGAGTTTGGAGAGTG 
M20 
GGATGGGTTTTTACATGGAAGAAAGATGGATAAAAAAGTGGAAGAAGATGGAACATTTCATTTCTGTCAATGCCAGTTTATATCAAG 
AGATGGAAATGCTTGCAGATCTGGAACAGACTGTGAGGAGAATGAAGTGTAATGATCCCGAGCCTGATAATTTACTTGACTATCAAA 
AGAAGCTTGTCTGGAAACGGCAGGAAGTGAAGAATCTTCGGGATATGTCCCTTTGGAACACGACTTATGATTATACTATTCGGCTTC 
TAGCGAGATCTTTATTCACAATATACTTCAGAATCAATCATGTTTTTGGAATTGCTCCGATGATTAATCCTGGGCACTCTAAAAATC 
TGAATTCTGATTATATACATCGCAGCCAGTCAGTGTCTGCATTACTGCAGTCTTCGGTTCATCCATCTAAGAATAGTAGCATTCCCA 
GATTTTCCTCTGGCCCCCTTGGGAAGTTTGCCACAAATTGTGATCCAAACTCCAGAACTAATAACACCACCAATTTCCATTCAGGTC 
CTCTTGGTGGCTCAACCACAAAGACTGGTCCTATCACTGGAAAGCATAGGAACTTTAACTTCTTTTCAGGCCCGCTTGGGAGACCCA 
CAACAAAGTCAGGTCCAATTTCTGGAACAAGTAAAAGCAGCAAGAAGATGTGGCAAATCCCTCAATCATCCACTCTTCTGGGAAAGA 
AATCACATTCGAAGCAGAATCGGNTGACTCAAGTAGGACCTTTTAAAGGAGCATGGGAGCTTCCAATAGCTTCACCTGGTGGCCAAT 
GGTTATTTNAATTCAACTGGANGTCCATTCCCAANTTCTCCTCCGGATCCANGGAAGGCCNTNTGGGACTACATGCCTCATTCTACT 
CCATCAATCCTCCGNTCCNAANCANAAAATTTTTGGAAAGGGNGTTCC 
M 2 1 
ATGTCAGGTTGGGACTCCCCTGTCTCAGATCCTAAATCAGGGAAGTATAGAAAGAGTTGGTCATTCACCAAGGAGGAGATAGAATCT 
TACTGGAAACTGAAGAAGAAAATCGAGGAGGAACATCTGAAGGCTATTTCCACTCCATCTGATGGCACCAAGGGTGGCCAGGAGGAG 
GATGGTGGGGCAAAGTTACAGAGATCAAGCTCCGTGCCTGCTGCCGAAAGCAAGACGGGCTTCATGGACAAGGAAACCAAAGCAAGT 
CTGCAACAAATCATGAAGAAAAGTGACTGGTGGACCAGCAGCAGCTGGGCGTTTCTGAATGAACCTCCAGTACTGGACCGTCCTTCC 
A G C A C T T A C A C A T C A C A G T T T C A C A T T G C T A G T A T C T C C A A C T C A A A A G C A G A C C G T G A A A T T G C C A C C T A A t t c t g a a t t e a e g c c 
g c c a c a c g c a a a c t t a t a a t c a a t a g t c t t c a g t a t g t t t t a t a t a a a t a t c c c c g g a a c a g a t t t t g c t c c g a g t t t a c c a c t t g c 
g t a g g a t g g g t g t g a a c a t g a a t c c t g g a t t t a g t t t t g g g t g t g g a a t g c t g t a c a t a t t c g a c t a g a a t a g a t c c t a g c t g t g g g 
t a c t c t c t g t c t g t g t g c t c t g a t a t t g c c g t g c g a g a c t t t g a t t c t t g n a t g t g g n a t t a a c t g g a n t t g t a t a t t c c a t a g a a a 
t t c c c a a c t t a g c t n a g t t c a a g g t 
M22 
ATGGACAAAGGAAAAGCGGTGATGGGATCGGCGCGTAGATGGGCCGTCGAATTCACTGATAATTCCAGCGCTCCTTCTTCTCGCGAC 
ATATCTGATCCTCCCGGCTTCTCCCGCGCCTCACTAGATCAGGACGATTCGACGCTGACCAAGCAGAAGAAGGATGCGGAGGCTACT 
TGGAAAGCTCAGAAAGCTTGGGAAGTTGCACAAGCGCCTTTCAAGAATTTGTTTATGATGGGTTTTATGATGTGGATGGCTGGAAAT 
ACAGTGCATCTGTTTAGCATTGGCATTACATTTTCAGCTCTTTGGCAGCCAATAAGTGCTCTTCAAGGGGTTGGAAAGGTTTNCGAG 
CCTTATAAAGACAAGAAAGTGGACCTTCTTGGCCCTAAATTACTCTTTATTGCCCTTAACTTCNGAGGATTANCTCTTGGTATCTGG 
AAGCNGAACGCGTTGGGTCTTCTNCCNACACACGTATCTGACTGGGTTTCATCCTTACCCCCTGCTCNNGANGTGGAATATTCTGGT 
G G A G G C A T T C C T C T G C A C T A G t g g t c c t t t c t g a t a t a t c a t g a t t c t t a n a t g t t a n t t t t g c c c t g t t n n n c n t t a t c t g t g c n t 
g t c n c a n c c n t g n a c n a t n c n c t g n c n n g g c c n t t t t 
M23 
GGGGGACAAGAATCAAAGAGACAAACAAACATTACACCTTCAGCCTCAAAGACAAAGCTGCCACAAATCATCACCATGCTATCTTCT 
ATCGCTCCCTCACCATGCCAGGATCCTCCAAGCGCCTACCTGCAAACCCTTTTAGCCTCGGCTCGACCCTTCCTTCGAGGAGAATTG 
GAATCCATAGACACAAACCTGCCTTCTCTTGTCTCCGTCTTGCGTTCTGTCGGTGCGGGAGAGTGCTGGCACAGGCACGGTAGCTTT 
CTCGATCACCTGGTTGACATCTACCGCATCCTCAAGATATGGAGAGCACCGGACTCTGTCTGTCTCTGTGGACTGTTTCATTCTGCT 
TATTCCAACTCTTACGTTAATCTTGCCATCTTTGATCCCAACACTGGCCGCGATGTCGTTCGGAATCATGTTGGCGAGGCTGCGGAG 
AGGCTGATTCACTTGTTCTGCATTGTTCCTCGCCAACCCCTTATCCATGATGACCTTTTGTTCAAGTATTCGGATGAGGAACTCGTC 
GATCACCTCAAGGTTTCTGAGTTGTCGTTGAGGAATGCAAAGGAGAAAGGGTTGTTTAATGGGGAAGAACCCTGGAGAATGAAACTG 
TCCTCTCTTTTGCCTGCTGCTGGAATCACTGTGAAGCATATCAAGACTGGAGAGGANGTCTTGCTCACGAGGANGATGGTGGNTACN 
T T T 
M2 4 
GGGAAAAGAACGAGAAGAGTAGAAAGCGGGAAGATGAAAGTGACATGGAAGAAGACAGACAACAACAAGAACAAGAAGCGGTCTTTG 
TCGGCCGTATCAAAGTACCCTAACCTCCCTTTTGATTCGGAACAGCAAGATCAACCTGATACTGCCCCCGACAGTGAGCACCAGCAA 
GCTTTTGTACCTACCGACCAACTGGGTTCCGCGTCCGATTCCCAACTTGCGCAGTCCTTTCAAGCCCAAGGCGACNAGCTTGCGGAG 
GATGGGAAATATCNTGAAGCGCTTGGTAAATGGGAANCTGCTCTCCNTTTGATGCCCAAAAATGCANTCTTACGTGAACAANAGGCN 
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CAAGTTTTGCTTGAGATTGGAGATGCATGGAATGCATTGAANGCANCAACTCGCTTGGATCGCTC 
M25 
ATGGGGGTAAAGGTGTATGGTCCAGCCTACGCTTCTCCGAAGCGGGTGCTCGCATGTCTTTTGGAGAAGGGAGTCGAGTTCAAGGTT 
GTGCCCCTTGATATTATCAAGGGTGAGAACAAAAACCCAGACTTCCTCAAGTTGCAGCCTTTTGGATGGGTTCCTGTAATTCAAGAC 
GGAGATTACACTCTATATGAGTCGAGAGCTATTATACGGTACTATGCTGAAAAATACAAAAGTCAGGGGACTGATTTGCTGGGGAAG 
ACAATAGAAGAAAGGGGCCTTGTCGAGCAATGGCTAGAGGTGGAGGCACATAACTATCATCCAGCAGTTTATGACTTGACCCTTCAC 
ATTTTGTTTGCCTCCTCAATGGGGTTTGAGCCAGACCAAAAGGTCATAGAAGAGAGTGAGCAGAAGCTTAGTAAGGTGCTGGACATT 
TATGAGGACAGGCTCTCCAAATCCAAATACTTGGCTGGGGATTTCTTCAGTCTTGCTGACCTTAGTCACCTCCCATTTACTCAGTAC 
CTGGTCGGTCCGATGAAGAAGGAGCATTTCATAAGGGACCGAAAACACGTCAGCGCGTGGTGGGATGATATCAGCAACAGACCTTCA 
T G G A A G A A G G T G C T T C A A C T C T A G a a t c g t a t t a g c a c a g a g a c c c a t c a t g g a a g a a g c t c c t t c a c t c a a t a a t c a t a t t a g t g t 
g t t t t g t g a g t c g g a a t t t t g t a a t g g n t t c c t t g g c c a n a a g g g a t g c t t g t a a c c n t t a n c t g a a g t t g g t t t a t g t t t t a t t g t 
M2 6 

ATGGCAAGCGTCTCTGTACTCCCTGAACCTGCAAGAAGGCTTGAAGGTAAAGCGGCATTAATCACTGGTGGGTCCCGAGGTATTGGT 
GAGTGCACAGCGAGACTTTTCTTCAAACATGGTGCCAAAGTGGTGATCGCAGACATCCTAGATGATTTGGGCCACGCTGTTTGCAAG 
GAAATCAACTCGGAATCTTTTTCCTATGTCCACTGCGATGTGAGCAAAGAAGCAGACGTGGAGAATGCTGTGAACACAGCTGTTTCA 
AGGTATGGGAAGCTGGACGTCATGTTCAACAATGCTGGTATTGTAGGCGTGGTCAAGACCAACATACTGGATATCACCCAGGACGAA 
TTCGAGCAAGTCATCAAGGTTAATGTAACAGGTACATTCTTGGGCACAAAACACGCAGCCCGAGTGATGATCCCGAATCGCAAGGGC 
AGCATAATCTCAGCCTGTAGCATCTGCGCTAGTGTTGGTGGGTTTGCTTCACACGCCTACACCAGCTCAAAGCATGGGGTGTTGGGG 
ATAGTGAGAAGCACTGCCGTGGAGCTTGGGAACCACNGCATTCGTGTGGAATGCTGTCTCCCGTACATTGTCGAGAGTGACATGTCA 
AAGCATTTCCTGAAACTTGGACNNATGAAAGGGTTTTAAAAACGTGGTACCTCCCAATCCTTNAAAGGGAAGGGTCCNTTCANGGCT 
CCAAGGAATGTGGGCCNAATGCTTGTNCCTGGNTTCNTTGGGCCAAAGCGGAATGNATTGCCNAAANGTAATTGTTAAACCNGGGCC 
CATTAAACCCTTTTTCCGGTCCAAT 
M27 
ATGGGGATTCGCGCCTTTATTGTTACGTCTCTAGTATTCTCGCTGTTAGTCGGAGCCTTAGCTGAGCAATGTGGAAGTCAAGCGGGT 
GGTGCCGAGTGCCCAGGTGGCCTCTGTTGTAGCCAGTGGGGTTGGTGCGGCACCACAGATGAATATTGTTGTACTAGTAAAGGCTGC 
CAAAGCAACTGTCGTGCGTGTGCTGCTATTGGTGGCGGTGCTGATGGTTATCTGGACAGCATCATCTCAAAATCAACATTTAAAAAG 
ATGTTTCCGCAAAGGTACCCCTACGAAGCTTTCATCCAAGCTGCCAAGGCATTTCCTGATGGCTTTCCCATCCAAGGGGAGATAGCT 
GCTTGACTGTTACAATCTTGGACTTGGTANACACCATCNATCTTATCAATCTAATANGGTGTTGTGAACCTTTATCA 
M28 
GGGGGAAGTTGAAGAATGTATCAAATGAATGGGCAAAAGGAGTTCTAGGTGATGCTGAAAACCTTACGGAAGAGAGAGTGGATGAGG 
TTTTGAGGGAGTATCTACGAGATCTCAAAGAGGGTTCTCTGAAGGCCAAAGGCTGGCCTCCTGTTGCATACATACTCTCAAAAGCTG 
CTATGAATGCCTACACCAGGATTCTTGCGAAGAAGTACCCGAATTTCTGTATCAATTCTGTTTGCCCTGGCTATGTCAGTACAGACA 
TCAACTTTCATACTGGAAAATTATCCGTTGAAGAAGGTGCTGAAGGTCCAGTGAAGCTAGCATTGTCTCCTGATGACAGTCTTTCAG 
G C C G G T T C T T T G T T G A G A A G G A A G A A T C A C C T T T T T G A t t g g a t t g t a t c t c t t t c t t c a t g t g a a g c c t a t a a t a t a t t t g g a a a a 
t c g g t a c c a a a c a a g t g t c t t c a g g a a t a a a a g t c a t c a a g c a g t c c a a a t a c a t g t c a g a g t c c a t a a t t t t c t t a g t t t t g a t g t 
a t a a g a a t t g c g c t t t a c a t g t t g t a t t t a t a t t a n c a a a c a c g t g g t t t g a t c n a a c a t n n c c a n t n a a a n g n a t a t a a n n a n n c t 
t g t c g g c c g c c t c g g c c c a c t c g a c t c t a g a c t c g a c c a a g c t t t t g c n t g c g g g c c g c a n t t c n n a g c t e n e t t g g c c a t t t c g c c 
c t a t a g t g n g t c g g n a t n a c a a t t c n c t g n c c g c c g n t t t c c a n c g g n c g t g a c c g n n t a n a c c c n g n n c g t t n a c c c n a c t t a n t c 
g c c t t n n n n g n n n c t c c c c c t t t t c c c c a c c t g g g n t a n t n a n c c g a a t a n g g n c c t n c n c c t n n t n c c c c n t t n c n c c n c n g n t n g 
g c c c c n c c t n g n c g g g c n a n t c g n n t c n t n t a n c n c n n t a c n n t t t t n n g a c a n t t c c c c n c n n n a t t t n t n g t t c a a a a c a n g c c n 
n t n t n n a n c c c g c n t n g t c t a a a c c a 

G l 
GGTACCAGAGGAGATTGTTATGATCGTTACTGTATCCGTATTGAAGAGATGCGACAAAGTGTTCGGATCATTGTGCAATGTCTTAAT 
AAAATGCCTAGTGGCATGATCAAAGCCGATGATCGTAAGCTATGTCCTCCATCACGATGTCGAATGAAACTATCCATGGAATCCTTA 
ATTCACCATTTCGAACTTTATACAGAAGGTTTTTCCGTACCAGCTTCTTCTACCTATACCGCAGTTGAAGCACCTAAAGGAGAATTT 
GGTGTCTTTCTGGTCAGTAATGGAAGCAATCGTCCTTACCGTTGTAAAATAAGAGCACCTGGCTTTGCCCATTTACAAGGACTCGAT 
TTTATGTCCAAACATCACATGCTAGCAGATGTGGTTACCATCATAGGTACTCAAGATATTGTGTTTGGAGAGGTGGATTAGca t a n g 
a c t a t t c a n t t g t t c g n a t c a 
G2 
GNNGACGACGACGCCCGACGACAACGACGACAACGACGTACGACGACGCATAACGTATGACAACAACGAAAACATCCAATTTTTGAG 
GGAAATGGACGAACTAATGATCATTCAGGAAGACATCGCCAAAATTTATGCAGAAAGAACGAATCAACCTTTAGGGGTCATACTCAA 
AGACCTGCAAAGCGATTCTTTTATGTCAGCAACAGAAGCCCAAGCTTATGGAATTGTTGATTTTGTAGCACACTGGGAGCGACGAGT 
T A G A A A A T A A c t g g a a t t t c a t a c a a a t c g t g g t t g g g g t t g t t t c a t a t t t t a t a t t a a c a t t c t a t t a a t t t g a a t a g a a t g t t a 
a t a t a g a a a t a a t c c c t a a t c c t c c g c a t a a t c a t c c g g t t a g g a g c g a c c t a a a c c a a c c c a t t a t g c n t a t g a t t c a t c a t g c c a 
a c t g t t a a a c a a c t t a t t a g g a a g g c a a g a c a g c c a a t c a g a a a t g t c a a c n a a a c c c c c g c g c t t a g a g g g t g t c c t c a g c g c c g a 
g g a a t a t g t a c t c g g g t g t a t g t g c g a c t c 
G3 
GGANGACGAACGACGCCGACGACAACGACGACAACGACGACGACGACGCATTAACGATGACAACAACGAAAACATCCAATTTTTGAG 
GGAAATGGACGAACTAATGATCATTCAGGAAGACATCGCCAAAATTTATGCAGAAAGAACGAATCAACCTTTAGGGGTCATACTCAA 
AGACCTGCAAAGCGATTCTTTTATGTCAGCAACAGAAGCCCAAGCTTATGGAATTGTTGATTTTGTAGCACACTGGGAGCGACGAGT 
T A G A A A A T A A c t g g a a t t t e a t a c a a a t c g t g g t t g g g g t t g t t t e a t a t t t t a t a t t a a c a t t c t a t t a a t t t g a a t a g a a t g t t a 
a t a t a g a a a t a a t c c c t a a t c c t c c g c a t a a t c a t c c g g t t a g g a g c g a c c t a a a c c a a c c c a t t a t g c a t a t g a t t c a t c a t g c c a 
a c t g t t a a a c a a c t t a t t a g g a a g g c a a g a c a g c c a a t c a g a a a t g t c a a c a a a a c c c c c g c g c t t a g a g g g t g t c c t c a g c g c c g a 
g g a a t a t g t a c t c g g g t g t a t g t g c g a c t c g t t c g g a t t g c g g a t t g g a a c a a a a g a a a g g a a a c g a a t t t t c c a c t a t t c g c g a t c 
a a t a c c g a t c a a t a g g a t a g a a t g g t g a a a a c c c c t t c a c t a t c t a a t a t c t a a a a c a c t a t c t a a a a a a a a a a g a t c t a c c a t a t c 
c t t t t a t t g t g t a t c a a a t t t a t g g t t t c t a t t a n t g a a a a t t c n a t c n t c t c a n t t t t c n n a t t t a n t t g t g a a a g a t t c c c c a t t 
g g t a g c n a a t g a t t a n c c g t t a g c a g g g g a a a t c t t a n c t t a g g a a a a g g c c n a a n a t t t n t g c c t c t c t c t t g c a n a c g g g c t 
G4 
ATGGGGATTATTTTTACTCGAATGTTCTCTTCTCTTTTCGGCAACAAAGAAGCTCGAATCCTGGTCCTCGGCCTCGATAACGCCGGC 
AAAACTACCATTCTCTATCGCCTTCAAATGGGTGAGGTGGTGTCCACGATCCCAACAATTGGATTTAATGTGGAAACTGTAGAGTAC 
AACAACATAAAGTTCCAAGTCTGGGATTTAGGTGGGCAGACCACAATCAGGCCATATTGGAGATGCTATTTTCCAAATACTCAGGCT 
GTAATTTATGTGGTTGATTCAAGTGACACTGAGAGAATTAGTGTAGCTAAAGAAGAATTTCACACAATTTTGGAGGAGGATGAACTG 
AAAGGGGCGGTGGTCCTTATCTTTGCAAACAAGCAGGATCTCCCTGGTGCACTAGATGATGCTGCCGTGACCGAGGCCTTGGAGTTG 
CACAAGATCAAAAATCGTCAGTGGGCAATCTTCAAAACCTGTGCAGTTAAGGGTGAAGGCCTCTTTGAGGGTTTGGACTGGCTGAGT 
A A T A C T C T A A A G T C C G T G G G T G C C T A A a t t t g c t t a g c t t t a t a t g c a c g t c g c t g t g g t g a t a a g t t a t a t t a c a t t g a t t g c a c t 
g a a c a c t t t t t t c t t t c t t c g t a a t a t t t t t c a t t t t c t t g g g t g g g t t a t a g c c t t c t n a a t t t a t t g g a a t t t t a g c c t t t a a g t 
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n t a t n a t a n t t t g a t g a a t g t g a a t t t c c a a a a a t g a a t t t t g g g g g g g a a t n a a a a a c c a a g a t g t a t g t t c n t g g 
G5 
GCAGGATCCATTGGCGGATGTATATTTGAAAAAGGCTGAGTTCAACAGGGAGCCTTTATATGCCGAGTTTCGGCTTAGGGAACCAAT 
GAGAAAGCCTATATTAAGCTCGGAACCTTCGATTTCGGTGCATCAGCTACAGCCACATGATCTATTTGTCATATTTGCATCCGATGG 
CCTGTGGGAGCATGTAAGCAATCAAGAGGCTGTTGACATAGTTCAAAGCCATCCACGCTCGGGAAGTGCGAGGAGGCTGGTGAAAAC 
TGCATTGCAAGAAGCAGCAAAGAAGAGAGAAATGAGGTATTCAGACTTGAAGAAGATCGATCGTGGCGTCAGACGGCATTTCCACGA 
TGATATCACTGTGATTGTTGTGTTTCTCGACCCGTATCTTGTTTCCGGCTCTAGCTCAGTTAAATGCTCTAATATATCTGTAAGAGG 
G G G T G G A A T C A G C T T G C G C C C C A G C A C T C T G G C T C C T T G T G C C A C A C C A A C C G A A G C C G G A A G T A C C T G A t g a a g c t g t t t c t c a t g 
t t g t t a a t c t c t c t t g t a t t g t t c t c t t g t g a a t a c c a g g t a g t t t c t g a a g g g g a c a a a a c a g a g g a g g g a g t a t t c t a t t c t t t t 
a a t a t a c a a t g c t a c t t t t t a a c a n g g g a c t g g t t c a c g g t t t t a a g g c g a c a a a a g g g c t a t t g t a a t t a t t t c t t g a g a a a a g t c 
t c t a c t c t g t a c a t t t t t c c a t c t t c t c c g c g c a c t c a g t t t t g t a a a a n c g t t n c c t t g c c a a a t g a a g t c c c t g g g t t c c t g c c t 
g c t c 
G6 
AGAAAGAGGTAGTAGTGACTATATTTGCAAAGGGTGTACCAGCGAGCAGTGTTTCAATTGACTTTGGCGAACAAATTCTAAGTGTTA 
GCATTGACATCCCTGGTGAAGTGCCTACACACTTTCAACCTCGTTTATTTGCAAAGATTGTCCCTGACAAGTGCAAGTTCAGCATCT 
TGTCAACTAAAGTTGAAATCCGCCTTGCAAAAGCTGAACCCATACACTGGACATCTCTTGAATACATGGAGGACACTGCGGTTGTAC 
AGAGGGCTGTTGTGTCATCTGATGCTGGGGCTCAAAAGCCTGTTTATCCCTCATCAAAGCCAAAAAGGGTAGATTGGGATAAGATTG 
AAGCCCAAGTGAAGAAGGAGGAAAAGGATGAAAAGCTAGATGGTGATGCAGCTTTGAACAAATTTTTCCGTGAGATATACCATGATG 
CTGATGAAGACACTAGAAGAGCCATGCAAAAATCTTTTGTGGAGTCAAATGGGACGGTGCTCTCAACGAACTGGAAAGAAGTGGGAA 
A T A A G A A G G T G C A A G G A A G T C C T C C C G A T G G T A T G G A A A T G A A G A A A T G G G A G A T T T A G a a g t c t t g a c a t a t c a t a a c t c g c t a c a 
e g g t t t t g t t c t a t g g a t g t c g t g g a g t t t c c c t g c t g t t a t c a a t g t t g t g t t t g a t t g t c t g g t g g a a t t g t g t t c t t g c a c a g c 
t a t g c t a c t t t t g t a a a g t t g c a t t t c a a a c a n c a t a g c t c c t t t g t t t g a a t a t a t g t a c t g g a t g t c a a c a t g g t c g a a t c t t t g 
a c g t g t g a a c t g g g t c t a t g t c t g c a n t t t g t n c c c c t c c a t t t a c t t t g c a t g g c t g g a a g g g c t t t t g a a t t t t t t a a t t t t a t g 
g g a t c a n t t t n t g 
G7 
GGCAAAGGATATGCTTAAATCATTGGCATCAAAGTGGGATGATGTTGTTGATGCAAACGCACTCCAGGTGATCCCTCTTAAGGGTGC 
TATGACCAATGAGGTATTCCAAATAAAATGGCCTGGAAAGTCCAAGGACATGCCACGGAAGGTTTTAGTTAGGATTTATGGTGAGGG 
TGTGGAGGTGTTCTTCGACCGATGCAATGAGATACAGACGTTTGAGTTTATGTCAAAACAAGGGCAAGGTCCTCGCCTTCTAGGCCG 
TTTCTCCAATGGACGAATTGAAGAGTTCATCCATGCACGGACTTTATCAGCATCTGATTTACATGATCCAGAGATATCTGCTCTTAT 
AGCAAC 
G8 
CGGGAGGAGATGCAAAGATCCTCGGGTACTCTAGAAGCATTTTCCACGAAAAAGATCTCAAGTCCACACGATTCTTCCAGAAATAGG 
ACAGATAACCAACCTGAGCCAGAAAAGGGCCACAGTTCTTCTCATTATGGCAGCAGTGCAAGAAAAGCTGTCATCTCAAAGAGTGGA 
CCGAACTCCTCTGGCGAGCCTAGTGACAATCGTAACAGCAGCCAAATATTCTCAAGTGGTGGCCGTCTGATTTCTTCTGCACAAAGA 
GTCCAACCTGTGTATGAGCCTAAATCATCTCATAGTCGTGGCGCAGCTGCTAGAGGCACTCGCGAGGAGGCCTTCCGGAGCTTCGAG 
T T C C T C T C C A T C A G G A A A T G A a c g a g g a a t t g g a g c t t g t g a g a a g c t a t c g a c t t a c a t a a c c a t t a g g t a a a a t t c t t t t c a a c g 
t g t a g a a a t g g a a c g c g a c c g g g t a c t t g g g a t a c t g g t g g t t a t t c a a c g c t c g t g t c a a a t c a c t t c a a t t c c a t g a a g a a c c t c 
t g g c a c c t t c t t g g t t c c c t t t a t a t t t c c t a c a a g a g t t t c g g a c c a g a a t g c t g t g t a g t a a c t c a g a g a g a g a c g c g t a g a g a a 
a t t a t a t t t g c a t g c a g g c a g a t a t g a c c a c g t t t t c a a t t c a t c c t g g t g g g c g t c t c t t c t t g t t t g 
G9 
GGGACTCAAGGNACGGGAGNTCAAGAAGAGCGTAGCTAGTAAGGGAGAAGCGACANCCCGTGTCATGGTACCCTCCGCCAGCAAGAA 
CCAGNTCAGTTACATCTGCTGGAGATTGTGGCATGGAGAACACAATGAAACCGGGGGATGTGATCCAGTGCAGAGAGTGCGGTTACC 
G C A T C C T C T A C A A G A A G C G T A C T C G C C G A A T T G T C C A G T A C G A G G C A C G C T A G a g g a a t a a a c g a t g a t a t g t g c t t t e t g e a t a t g 
g t g t c c g a t g c c t a a a a g c a t t a c a a a t a g t t g a t g t g t t t g g t t t t c t g t t 
G10 
CAGATTCCACCCGGAAGAAGCGAGAAGACAAACTGNAAGAAACGGCAGGAAGAACTGGCGCAGGAGAAGGCTGCAAATGCTTTTGTA 
CTTCCATCTGACCATGTTCGATGGGTAATAGGGCCCTCGGGAACGGTCGTAACGTTCCCCAACGAGATGGGCTTCCCTAGCATATTT 
GACTCCGGGACTTGCAGCTACCCTCCTCCGCGCGAGAAATGCGCTGCTCCATCCTGTAATAATCCATACAAGTACCGGGATTCAAAA 
TCAAAGCTGCCTTTGTGCAGTCTTCAGTGCTACAAGGTAATAAATGAAAAGGTGGAGCCCCTGACTGCTTGCTAAg t t caagggcaa 
c c a g t g c c c a a g g c c t g a t a a g a g a t g g g a a t a a g g g t g t g a c a a g g c g g t g t g t a t g t a a t g c a a t a a t g a t t g g t g t t g t t t c c a 
g c t a c t c t g g g c a t g g a g a a a t t g t t g g c t t a g c a g c a t a a t a g c t a t a c g t c g a g t g t a t g c a a a t a c t g a a t t a t g t a t t t g t a t 
t a g t t t t t t t t t t a t a t a t g t a a t a a a t t t t g a t g t a a g c t c g t t t t a t t a a c c a g a t g a a a g t g c a g t c t c t c t a a t 
g t t g a a c t a a g g c t t c c t a c a t c c g a a t a a t a c t t a t t a g t t c g g c g t g t a a n c 
G i l 
ATGGGTGCTCTTGATTACCTCTCAAACTTTTGCACTGTCACCAGCACAAGAAGCAAACGCAAAGCAATGCAGACAGTTGAAATCAAA 
GTGAAAATGGATTGTGATGGCTGTGAAAGAAGAGTGAAACATGCAGTTACCACCATGAAAGGTGTAAAGACTGTGGAAGTGAATCGT 
AAACAAAGCCGGGTAGTAGTGAGTGGATATGTTGAACCAAACAAGGTGTTGAAGAGAGTGAGGAGAACAGGCNAGAGAGCTGAGTTT 
TGGCCATATATACCGCAACATCTAGTTTACTATCCTTATGCTGCCGGTGCTTATGACAAAAGGGCACCTGCTGGTTATGTCCGCAAT 
GTCGTTCAAGCTTATCCAGCTTCGACTGCACCTGAGGACAACATGATCTCTCTATTCAGTGATGATAATGTGAATGCATGCTCCGTC 
A T G T A A t t g a c c a g g t t a a t t a a t g t a a t c c a t g c a g g c a t g t t c T 
G12 
GGCGAGAGGAGCTAAAGAGGGTGAAGAAGAGCCCAAGAAGGAAGANGTAGTAGTGGAGGAAAATATCATCAATGTTGAAGAAGAAAA 
TATGAAGAGGACGATGTATTATTACCAGCCGCTATATGTGATTGAGAGAATCCCACCGCCACAAATCTTCAGTGATGAGAATCCCAA 
T G C A T G T T G T A T T A C A T A A c t a c g t a a t c a t c a t g a t a t g a a a a t a t g c t a t t a t g t t g t g t a t c a t t t a t g t a a t c a t a t t c t g t a 
t g g g a a t a a a a a g t c g g t g c a t e g t a t a t a t a t a t a t a g t g t t a c c t a c t t a t a a g t a c t g t a g t c t a c t t g t a t a t a a t a a g a t t c 
c t t t t c t t a a a t a a c 
G13 
TATGGAGGATGCTAATATCCTTGAAGAAGAAAATGCACCTCTTGAGCATCCAACAAAGCCTGGTATTTCACGTTCAGAGCATTTTGA 
CATGGATAATACATGGTACGATGCCGCACCTGATGGATTCAGCTTGACGTTATCTCCTTTTGCAACAATGTGGATGGCGCTCTTTGC 
ATGGGTAACCTCATCTTCTTTGGCTTATATATATGGGAGGGATGAAAGTTCTCACGAAGATTACTCAGAGGTTAATGGGAGAGAATA 
TCCTCACAATATTGTATTGAGTGACGGTCGTTCTAATGAAATTAAGCAGTCGGTTGCTGAATGTCTTAGTCGAGCTTTTCCTGGCCT 
TGTCTCTGAACTCAGGATGGGAACACCATTATCAACTTTGGAGCAAAGAACGGCCTGCTTGTTGGATACAATGTCATTTGTTGATGC 
AATCCCAGCATTCAAACTGAAACAATGGCAAATCATAGCACTTCTCTTCATTGAAGCTCTATCTGTTTCAAGGTTACCTGGGCTTGT 
TTCTTACATGACCAATAGGAGAATGGTCCTTCACAAGTTGTTGGATGGTGCTCACATAACTGCAGAAGAATACGAGACCATGAAGGA 
T C T A T T G A T A C C C C T T G G C C G G G C A C C T G A T T T T T C G C C G C A G A G T G G A G C C T A A t t t g g t c c a a a c g t t t c t c c n a g t a a g c a t g c 
a g g a a a t g t t t g c g a c c a c a t a t t a c c c t g a t c c t t g a a a c g g t a g n t t g a t t c g a g t c a g a a t t t t g g g a a c c t g t g n t t t g t t g g 
t n t a t c g a c a t a a c t g a a a a c a g t g g a t g t g t a t g t a a c t t a t a a a c t c t c g g n t t g c a a t a c c a a t t t g g c a t g g a t c c c t n c t g t 
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t t g 
G14 
GATTGGCGACTATGTTGACATCAAGGTTAACGGCGCCGTCCACAAGGGTATGCCTCACAAGTTCTACCATGGACGTACCGGTCGTGT 
TTGGAACGTCACCAAGCGCGCCGTCGGCGTCGAGGTCGACAAGCAGGTGGGTAACAGGATCATCAGGAAGAGGATCCATGTACGCAT 
AGAGCATCTACAGCCTTCGAGGTGCACTGAGGAGTTCCGTCTGAGGAAGAAGAAGAATGATGAGCTAAAGGCAGAAGCAAAGACAAG 
AGGTGAAGTTATCAGCACCAAGAGACAGCCAGAAGGACCAAAACCTGGATTTATGGTGGAAGGTGCAACATTAGAAACTGTGACTCC 
C A T T C C C T A C G A T G T C G T G A A C G A T C T C A A G G G T G G T T A C T A G g a g t c t c a t g t t t t t g t t c t t U t t c a a t g c t a c t t t g t g c g t g t 
g t t t a a a c t t a t t g g t a t g g a t t a g t a c t t t t g g a t t c t g a a g a t a t a t a a t c g g a g a a t t a t t c c c c 
G15 
ATGGCAAGATCGAGGCATCTCGCTATTACTCTGCTGCTATGGGCTTTGGCTCTTCTTGGAACCGTAACTCTCAGCCAGGCAAAGAAG 
TCGAAGGAAGATTTGAAAGAGATCACGCATAAGGTCTATTTTGACGTTGAGATTGATGGAAAACCAGCTGGGCGGGTTACAATGGGT 
CTCTTTGGAAAGGCGGTTCCTAAAACTGCGGAAAATTTTCGTGCATTGTGCACAGGGGAAAAGGGCATTGGAAAGAGTGGAAAACCC 
CTTCATTACAAGGGGAGCAAATTCCACCGGATTATTCCCAGCTTTATGATACAAGGAGGTGATTTTACACTAGGCGATGGAAGAGGA 
GGAGAATCAATTTATGGAGAAAAATTTGCTGACGAGAATTTTGAGTTGAAGCATACTGGACCTGGGCTTTTATCCATGGCAAATGCT 
GGTAGAGATACTAATGGTTCACAATTCTTTATCACCACCGTGACAACTTCCTGGCTTGACGGAAAACACGTTGTGTTTGGGAAGGTG 
ATATCCGGTATGGACGTGATTTACAAGATTGAAGCCGAAGGCAAGCAGAGTGGCACGCCTAAGAGCAAGGTCATGATTGCAGACAGT 
G G G G A A C T G C C C C T G T A G t c t t t t c c t t c t t t t t t n c c c a a a c t a a a a a t c t t c a g c n a a c a a g t t c a g a t c t t t t g c t g g a g a c c a 
a a t t a t t c c c c c a t a t t t a g c a a t g c c a a c c n t t t t t c t t t n n g g t 
G16 
AAGGAGCTTGGTGTCACTGCTCTTCATATTAAGCTCCGAGCTACAGGTGGCAATAAGACTAAAACCCCTGGTCCTGGTGCACAGTCT 
GCTCTTCGGGCTCTTGCTCGTGCTGGGATGAAAATTGGCCGCATAGAGGATGTGACGCCCATTCCAACTGATAGCACTCGTAGAAAG 
GGTGGTAGAAGAGGAAGAAGGCTGTAAGCTTTTGTGTCTTCCCTGTTGGTACGGGTCTGCTCAGGTTTTATTCTCCATTGTGGGATA 
AGGCAAGGAGTACCTGCTGTCATTGGGTTTTACTTGAAAGCTATTTACCTCTTTCGGAACTGTTGTTTTAGCTTTTTTATTAAAATG 
ACTTGGCCGTGGTTTGTCTTAAAACTGTTGTAGAAGAGATTTTGGATACTTTAATTTTGTGAca t t c 1 1 c c 
G17 
ATGGCGAAGAGACAGTTGCTTGACCCGCGNTAGCAACCGGAGCCGCCGNTGGGGGGTGCTGTCGGCGGCGCTGNTGCTGTTTGGGGA 
ACTTATGAGGCTATTAGGTATAAGGTGCCAGGTCTTATGAAAGTGAGGTATATCGGACAAACTACGCTTGGCACCGCCGCGGTTTTT 
G G G C T C T T T T T G G G A G C C G G A A G C C T A A T A C A T T G T G G A A A G T C T T A C T G A c t g t t t a t c c t t t t g t t g t c t t t a a a a a t t c g t a c t 
g t t t g t g a c a t t t c a a g a g t a t t c a a t c c a a a t c c a g c a t c t g t t t c c 
G18 
ATGTCGTCGCACAGCAGCAACGCGTCGTCTGCTAACGATCCGCGGCTGCCTTCGGCGGCGAAACGTTATGTAGCGCCGATGGTGTCG 
CCGCAGAATCTTCCGGTCGACTACTCTGGATTCATCGCCGTCGTCTTCGGCGTCGCTGGGATGATGTTTAGGTACAAACTGTGTTCT 
TGGCTTGCAATCATATTCTGCGCACAATCGCTTGCGAACATGAGAAACATAGAGAATGATCTTAAGCAGATCTCCATGGCTTCTATG 
T T T G C A A T C A T G G G C T T G G T G A C A A A C T A C T T G G G T G T C G G C C G A G C T A A T C C A A A A A C T T G A g a t t c c t t c a a t c a g a c a t t a g a a 
g g a a a c a c t g g c c g c a c g a t g t t a a t c t a a c g a t g g c a t t g g g t t c g g c a a a g a c g g g t g a t a a c a t t t t a a a a a c t t t t c a t g a t g 
a g a t t t g a t g c a a c g a t t t a g a a c a t g a t g t g a a a a c t t c t t t t g g a a t a t a a a a t t a t g t a g c t t a g a t t g c t g a a c t t t c a a c t t 
g a t t t g t a c t g c a a t t t g t a g a a t t a t t t c a t a t g g c c a t c t c g t t t g a c c t t t t t g g c t t c t t t t a t c c g t a t g t t t g t c t 
G19 
GGGTTCTGCACGAGCTTTATCCTGATTTGAAGCTTCCTGAAAAGTGTGCGGACGACAAGCCTTATGTGCCAACATATCAGGTATCTA 
AAGAAAAAGCCAAGAGCTTGGGCATTGACTTCATTCCCCTGGAGGCGAGCATCAAGGAAACCGTTGAAAGCTTGAAGGAGAAAGGAT 
T T T T C A G T T T C T G A t t e c t a t t c t g t t c t e c t g a t t a c c a a a a a t a a a a a t g a t g t t g g a t g c g c t t t g t e c t t c a a c c t g g t t c t t 
g t g t t t t c t t a g a a t c a c c g t g t t a a c g a t g a t g t a a c g t t t g t t t t g c a t g c a t g t g a t g g c a t t g c t g a a g t t a t c a g a a a t t t g 
a a a c t a a t a a t c a t t a c t g g a t a a t t c t c c c 
G20 
GTACCAGGGAGGGTGCCAAAACCCATGCACTGTATTCAAGACTAATGAGTACTGCTGCACTCAAGGGCAAGGAAGCTGTAGACCGAC 
CAATTACTCGAGGTTTTTCAAGGATAGATGCCCTACTTCTTACAGTTACCCTCAAGATGACCCTTCAAGCACATTCACCTGCCCCGG 
TGGGACTAACTACAGAGTTGTGTTCTGTCCTCGGGGGTCTCCTCATTTTCCTTTGGAGATGGTTGGAGAGAAGAATGTTGAGTAAt t 
a a t c a a g g a c a c g g t g g a t g g a t g c a a g c a t g t g t g t t t t g c g a g g c c t t g a a a a c a a g c t t t g c a a c a a t a a a g g c c t a g t t a t g g 
t t t g g a g t t g t a g a t c c t t t t t t g t t c c c t t t g c g a a c a a a a c a t c a g t t g t g t t t t g t t e a t g c c t g t t a c t g t a c t c a g t t g t t g 
t g a t g g a a a c t t c a g t g a a a t a a a g a c a a c t t t a a a t c g t a t t a c a a t t c a c t g g c c g t c g t t t t a c a a c g t c g t g a c t g g g a a a a c 
c c t g g c g t t a c c c a a c t t a a t c g c c t t g c a g c a c a t c c c c c t t t c g c c a g c t g g c g t a a t a g c g a a n a g c c c c c c c g a t 
G21 
GGCCAACAGACCATTGCCAACAACCAGGNTAACAAAAAGAAAATGAAGACACAACTTTGCTCAAGTGCTGCCTTCCTTACATTTCTT 
TTCCTCGTCTCAATGTGTTCGAGTATAGAAGCTCAGACGTGCAGGCCCAGTGGCAATATCAGAGGGAAAACGCCTCCAGCAAACCAA 
TGTAACCGAGAGAACGATTCTGATTGCTGTGTGGATGGCAAGTTGTATCCCATTTACAAGTGCTCACCCTCAGTTTCCAGCCGTACA 
AAGGCAACACTGACGCTGAACAGCTTCCAGAAAGGTGGGGATGGTGGAGGACCATCAGAATGCGACAACCAATACCACTCGGATGAC 
ACCCCTGTTGTGGCACTCTCAACCGGATGGTTCAACCACAGGAGCAGATGCTTGAACTATATTAACATCTATGGTAATGGAAAGAGT 
GTCAAGGCCATGGTAGTCNATGAGTGTGATTCTNCAATGGGTTGTGATTCTGATCATGATTACCNGCCTCC 
G22 
GGGAGGGATGCCGTGATCTACCCAGCACCAGCCTCTGGTGGAGAAAGAAGCAGAGGAGAAAAAGCAACTGTATCCGAAATTTGTGTT 
CGAGGACTATATGAAGATCTATGCTGGACTAAAATTTCATGCCAAGGAACCAAGATTTGAAGCGTTGAAAGCCGCTGAAAATAATGC 
C A A T T C A G G T C C A A T A G C C A C C G C T T A A g c t c g g c t t t a g t a c a a g a g g a g c a t g t g t t t g g t g t g T t a t t g t c t c t a t a g t g a c t t 
a a a a g a g a a t c a t c a c g a a g g a c a c a t a c a t a t a g a g c t g e c t t g a a a a a c a t t g g t t c g c t c t t g t g a g t g t c g a t a t a g t t a t t g 
t g t a a g a a a t a a a t g e g a t t g t t a t a t g a t a a a t a a g t t t g t t t e a t a g e 
G23 
TGAAAGGAGGAGGATGGGCATCTGCCCTTGTTGTTGAGCTTTTGTAAGCCCTTTTTCAGAGCCAGCGTTTCGTGCAAAGCTCAAAGA 
TCCTGCTTCCTTCATCACCGTACATGCAAATTCCAAATGTATTACACACCAGACGGGAAGGGTGGACCGAAATTTAGCTACATAATT 
GTTAGGTTTTAGTCTTAGATACTGTGAAAGTGAAGTTTTCTTAGATCATTCAGCAAT 
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