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Abstract

It has been known that the CSW rules correctly reproduce all tree-level scattering

amplitudes for perturbative non-abelian gauge theory but fail to explain some of the

loop order results. In this thesis we generalise the lagrangian derivation of the rules

and account for the missing amplitudes in dimensional regularisation scheme. We

analyse generically when the equivalence between MHV rules lagrangian and Yang-

Mills lagrangian theory is violated and hence the CSW rules do not apply. We find

a type of generalised measure-preserving transformations which when applied to the

Yang-Mills lagrangian also produce vertices that have same the helicity structure as

the CSW rules. Among these transformations we find in 4-dimensions the canonical

transformation generates the MHV vertices that are described by the Parke-Taylor

formula. Finally we generalise the canonical transformation on supersymmetric the-

ories. In light-cone gauge the physical components of the N = 1 SYM lagrangian

are closed under a subgroup of the SUSY transformations. We find the N = 1 super

Yang-Mills lagrangian can be rewritten in terms of chiral and anti-chiral superfields.

In both N = 1 and N = 4 theories we perform a fermionic integral transformation

on superfields analogous to Fourier transform which takes functions from coordi-

nate space into momentum space. The on-shell SUSY generators we derive from

the integral transformation agree with the prescription commonly used in the su-

persymmetry BCFW recursion formula. We apply the canonical transformation on

both supersymmetric theories and compute the generic n-point MHV super-vertex.

The N = 4 MHV super-vertices are shown to agree with Nair’s formula which was
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originally derived from WZW model.
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Chapter 1

Introduction

In the Standard Model the fundamental forces of nature (except gravity) are de-

scribed by gauge fields. The theory of electroweak interaction is given by the la-

grangian that respects SU(2)×U(1) gauge symmetry and for the strong interaction

by the lagrangian with SU(3) symmetry [1]. However the standard perturbative

calculation using Feynman rules is known to be challenging for non-abelian gauge

theories. This is because the number of Feynman diagrams contributing to a scatter-

ing amplitude increases rapidly with the number of external legs. Even at tree-level,

a 10-gluon amplitude requires the calculation of more than ten million diagrams,

making the analytic computation practically impossible [2, 3].

In [4] Parke and Taylor conjectured a summarising formula for the squares of

general n-point tree-level amplitudes with special helicity configurations. Later it

was proved by Berends and Giele [5] that scattering amplitudes containing only

positive helicity gluons and those containing all positive except one negative helicity

gluons are vanishing.

A(+ + · · ·+) = 0, (1.1)

A(+ · · · − · · ·+) = 0, (1.2)

The first non-vanishing scattering amplitudes, also called the maximally helicity

violating (MHV) amplitudes, contain two negative helicity gluons, and were found

to be given by the remarkably simple formula

1



Chapter 1. Introduction 2

A(+ · · · − · · · − · · ·+) = gn−2 〈i j〉4
〈12〉 〈23〉 · · · 〈n1〉 . (1.3)

A corresponding formula was found by Nair [6] which summarises all amplitudes

that are related to the MHV amplitude by the supersymmetry Ward identity in the

N = 4 supersymmetric Yang-Mills theory.

Inspired by the correspondence between twistor string theory and the gauge

theory, Cachazo, Svrčeck and Witten (CSW) discovered a new set of rules which

dramatically simplifies gluon amplitude calculations [7, 8]. A tree-level amplitude

with generic helicity content in the CSW rules is constructed by gluing together off-

shell continued MHV amplitudes with scalar propagators [9]. Later the rules were

successfully generalised to one-loop level [11] and to include quarks and superpart-

ners [12, 13].

In [14, 15] an on-shell recursion formula was found by Britto, Chachazo, Feng

and Witten (BCFW) by analysing singularities of the amplitude when external leg

momenta are shifted by a complex value. Using Cauchy’s theorem it was shown

that a generic n-point amplitude can be derived from scattering amplitudes of fewer

particles whose momenta are shifted by an amount determined by the positions of

poles. By shifting negative helicity legs Risager [16] provided a direct proof to the

CSW rules using BCFW recursion. The method of BCFW recursion was shown to be

a powerful tool for tree-level calculations [17] and was extended to theories containing

massive particles and fermions [18, 19]. Combining with generalised unitarity the

BCFW recursion relation was also extended to loop-level calculations [20]. Recently

the recursion method was modified to be incorporated into N = 4 SYM theory [21].

All tree-level super-amplitudes were obtained by Drummond and Henn in [23] by

shifting Nair’s MHV super-amplitude formula.

Alternatively, it has been shown by Mansfield [24] and independently by Gorsky

and Rosly [25] that the CSW rules can be directly derived by canonically transform-

ing the Yang-Mills lagrangian in the light-cone gauge where the transverse com-

ponents A and Ā of the gauge field in light-cone coordinates were assumed to be

functions of new field variables B and B̄.
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A1 = B1 + Υ123B2B3 + · · · (1.4)

Ā1 = B̄1 + Ξ2
123B̄2B3 + Ξ3

123B2B̄3 + · · · (1.5)

The coefficients of the expansion (1.4), (1.5) were carefully chosen so that the self-

dual part of the Yang-Mills lagrangian was transformed into a free field lagrangian

in the new field variables.

L−+ [A] + L−++ [A] = L−+ [B] (1.6)

The vertices in the new lagrangian were shown to have the helicity feature pre-

scribed by CSW rules. However at one-loop level, amplitudes constructed from the

(− + +) vertex which originally appeared in the LCYM lagrangian were found to

be inexplicable by CSW rules. In [26] Brandhuber, Spence, Travaglini and Zoubos

adopted the light-cone friendly regulator of Thorn [27] and the contribution to the

“missing” all-plus 4-point amplitude was found to be provided by the counterterm.

In Chapter 3 we take another approach and regularise the theory in dimensional reg-

ularisation scheme. We show in D-dimensions the translation kernels Υ and Ξk in

(1.4) and (1.5) have non-trivial contributions to scattering amplitudes, which results

in a violation to the equivalence theorem. In section (3.3) we analyse generically

when such a violation happens.

In [24] it was argued that since in 4-dimensions the MHV amplitudes only receive

contributions from vertices in the new lagrangian at tree-level the difference between

MHV vertices and the Parke-Taylor formula can only consist of terms containing

squares of external leg momenta, which vanish on-shell. Such differences can be

argued to be non-existing from holomorphy. An explicit verification up to 5-points

was given by Ettle and Morris in [29]. We show in chapter 4 that the holomorphic

property originates from a condition implicitly taken in the canonical transforma-

tion. In section (4.1) we give a direct proof showing that a generic n-point MHV

vertex in the new lagrangian has the same form as the Parke-Taylor formula.

The canonical transformation of Mansfield was generalised to QCD and SQCD

by Ettle, Morris and Xiao by taking the transformation separately on quark, gluon
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and gluino fields [30, 31]. The corresponding MHV lagrangians generate the CSW

rules for the physical field components. In chapter 5 we use the chiral superfields

of Brink, Lindgren and Nilsson [32] to reconstruct the N = 1 SYM lagrangian in

light-cone gauge. We show that the first two terms in the superfield lagrangian

can be arranged into the same form as the self-dual part of the pure Yang-Mills

lagrangian, from which we derive a simple canonical transformation formula for

chiral superfields. The general n-point vertices in the new lagrangian are shown to

take a simple general form

V MHV
N=1 (1+, 2+ . . . i−, j−, . . . n+) =

〈i j〉3
〈12〉 〈23〉 · · · 〈n1〉

n∑

i,j=1

〈i j〉 ηiηj. (1.7)

At the end of the chapter we directly derive the super-amplitude formula of

Nair [6] from a lagrangian point of view. By applying the canonical transformation

to the N = 4 SYM theory we show that the resulting MHV lagrangian naturally

give rise to the supersymmetry generalisation of the CSW rules.

A summary of the background and notation we use in this thesis is given in

chapter 2.



Chapter 2

Preliminaries

From the modern point of view, the existence of Quantum Field Theory is a direct

consequence of the combination of the principles of quantum mechanics and the

symmetries of nature [34]. According to quantum principles the probability ampli-

tude of an event is given by the inner products of physical states vectors, which

are rays in the Hilbert space labeled by symmetry generators. The dynamics of

the physical states is given by the symmetry invariant action formed by contracting

particle fields, and accordingly, the particle fields are required to be representations

of the symmetry.

In addition to spacetime symmetry, the theories in the Standard Model are as-

sumed to be invariant under gauge transformations. Quarks and leptons fields carry

extra indices that label colours or hypercharges and can be arranged into fundamen-

tal representations of SU(2) or SU(3) group. Generically a gauge transformation

can be coordinate-dependent

ψ → eiα(x)ψ, (2.1)

where α(x) = αa(x)T a and T a is a generator of the gauge group, normalised so

that tr
(
T aT b

)
= δab. The kinetic term ∂µψ in the lagrangian requires evaluation

of the fermion fields at different points and does not have a simple transformation

property. Therefore the assumption that the lagrangian be invariant under local

gauge transformation (2.1) naturally brings about the introduction of a connection,

which is itself a non-abelian gauge field Aa
µ(x) in the adjoint representation. In

5
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the absence of fermions, the action of the system is given by the integral of the

Yang-Mills lagrangian

S =
−4

g2

ˆ

d4x tr (F µνFµν) , (2.2)

with the field strength given by Fµν = [Dµ, Dν ], and the covariant derivative is

defined as Dµ = ∂µ + Aµ. When calculating particle scattering amplitudes in this

thesis the analysis we use does not depend on properties exclusive to any specific

gauge group. In the following we shall assume that the lagrangian is invariant under

a generic SU(NC) and the particles generated by the gauge field are commonly re-

ferred to as gluons. We compute the Green function perturbatively using functional

integral, in which the gauge degree of freedom is fixed by the De Witt-Faddev-Popov

method with the help of the introduction of the ghost fields. The particle scattering

amplitudes observed in particle colliders are then calculated from Green functions

using the LSZ reduction

A(p1, σ1, a1; p2, σ2, a2 · · · ) = lim
p2

i→0

∏

i

p2
i√
Z

〈ǫσ1 · Aa1(p1) ǫ
σ2 · Aa2(p2) · · · 〉 , (2.3)

where pi, σi, ai label the momenta, helicity, and the colour of the gluons respec-

tively, and the factors ǫσi , Z appearing on the right hand side of the equation (2.3)

are the polarisation and the field-strength renormalisation.

The Yang-Mills lagrangian (2.2) contains a 3-point and a 4-point self-interacting

term:
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p3, ρ, c

p1, µ, a p2, ν, b

fabc

g2 (gµν(p2 − p1)
ρ + gνρ(p3 − p2)

µ + gρµ(p1 − p3)
ν)

p1, µ, a p2, ν, b

p4, σ, d p3, ρ, c

1
g2

(
fabef cde(gµρgνσ − gµσgνρ)

+fadef bce(gµνgρσ − gµρgνσ)
+facef bde(gµνgρσ − gµσgνρ)

)

Figure 2.1:

As noted in the introduction, a direct analytic calculation of the gluon scatter-

ing amplitude using perturbative method was found to be inefficient because the

number of Feynman diagrams contributing to an amplitude increases rapidly with

the number of external legs. (Asymptotically greater than n! for an n-gluon scat-

tering process. [35]) In this chapter we summarise the techniques that simplify the

calculation. More thorough reviews can be found in [36, 37].

2.1 Colour decomposition and the colour ordered

Feynman rules

In a series of papers [38, 39], an algebraic procedure was developed to manage the

colour indices ubiquitous in the Feynman rules. From (Fig.2.1) we see that the

colour dependence shows up in both the 3-point and the 4-point vertices through

structure constants, which can be rewritten as a subtraction of two traces.

i fabc = tr
(
T aT bT c

)
− tr

(
T bT aT c

)
(2.4)

In a perturbative calculation the colour indices in these traces are linked by the

Kronecker deltas δab in the propagator. After using the Fierz rearrangement identity
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(T a)i
j (T a)k

l = δi
lδk

j − 1

NC
δi

jδk
l (2.5)

to combine the traces with repeated dummy indices the Green function is given

by a sum over products of traces containing only colour indices of the external

legs multiplied by colour-ordered sub-amplitudes that depend on purely kinematic

factors. The factorisation of the colour dependence into trace factors allows us to

compute the trace part and the kinematic part separately. The traces associating

with each sub-amplitude can be easily calculated from a diagrammatic approach

and the kinematic sub-amplitude can be read off from the diagram using Feynman

rules with colour dependence stripped off.

For tree-level amplitudes, the colour dependence is especially simple. The scat-

tering amplitude factorises into single trace terms multiplied by the colour-ordered

amplitude.

Atree(p1, σ1, a1; p2, σ2, a2 · · · )

= (2π)4δ(
n∑

i=1

pi)g
n−2

×
∑

j∈Sn/Zn

tr(T aj1T aj2 · · · tajn )Atree(pj1, σj1 , aj1; pj2, σj2 , aj2 · · · ) (2.6)

where the summation runs through all possible permutations of the external legs

that cannot be arranged into each other by a cyclic permutation.

For the purpose of calculation, it is also useful to compute the trace factors in an

extended U(NC) = SU(NC)×U(1) theory, where the Fierz rearrange identity (2.5)

does not have the 1/NC term because of the inclusion of an auxiliary U(1) gauge

“photon” field A0
µ. The zero colour identity “generator” T 0 = I/

√
NC associated with

the new photon field commute with all other generators in the SU(NC), i f 0ab =

tr(T aT b) − tr(T bT a) = 0, therefore introducing a U(1) gauge photon into internal

lines does not alter the value of gluon scattering amplitudes. By choosing one of

the external legs to have zero colour we arrive at an identity relating colour-ordered

amplitudes with different permutations. For example, if we assume the particle

carrying momentum p1 to be a photon, from the above argument the scattering
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amplitude vanishes. Collecting terms with the same colour dependent trace factor

tr(T a2T a3 · · ·T an), we obtain the photon decomposition equation [39]

A(1σ1 , 2σ2 , 3σ3, · · ·nσn) + A(2σ2 , 1σ1 , 3σ3, · · ·nσn)

+A(2σ2 , 3σ3 , 1σ1, · · ·nσn) + · · · = 0 (2.7)

2.2 Spinor, spinor brackets, and the Parke-Taylor

formula

Perhaps to one’s surprise, the colour-ordered sub-amplitudes introduced in the previ-

ous section often take remarkably simple forms when expressed in terms of spinors.

In this section we introduce the spinor and light-cone coordinate notations used

throughout this thesis.

To start with, we adopted the shorthand notation (p̌, p̂, p, p̄) to describe covari-

ant vectors in 4-dimensions in light-cone coordinates, which is related to Minkowski

coordinates by

p̌ = (p0 − p3) , p̂ = (p0 + p3) , p = (p1 − ip2) , p̄ = (p1 + ip2) . (2.8)

In the light-cone coordinates the metric is off-diagonal. The inner product of

two vectors is given by

p · q = (p̌q̂ + p̂q̌ − pq̄ − p̄q) /2. (2.9)

To keep the notation simple, we directly use the number n with the appropriate

decoration (ň, n̂, ñ, n̄) to denote the momentum pn µ of the nth external leg of a

scattering amplitude in light-cone coordinates.

A 4-vector can be written in the form of a bispinor

Pαα̇ = pµσµαα̇ =



 p̌ −p
−p̄ p̂



 (2.10)
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by contracting with σµ = (I2,
−→σ ), where I2 is the 2 × 2 identity matrix and σ

stands for Pauli matrices, and we use a capital letter to distinguish the bispinor

and the 4-vector participating the contraction. If pµ is lightlike, p̌ = pp̄/p̂ and the

bispinor factorises as pαα̇ = λαλ̄α̇, where

λα =



 −p/√p̂
√
p̂



 , λ̄α̇ =



 −p̄/√p̂
√
p̂



 . (2.11)

Note that for complex value momenta the spinor λ̄α̇ is not necessarily related

to λα by complex conjugation. Spinors λiα, λjα associated with different massless

particles carrying momenta pi µ and pj µ can be contracted to given an anti-symmetric

Lorentz invariant angle bracket

〈i j〉 = ǫαβλiαλjβ =
(i j)√
î ĵ
. (2.12)

Similarly, we define a square bracket to be the spinor product of λ̄iα̇, λ̄jα̇

[i j] = ǫα̇β̇λ̄iα̇λ̄jβ̇ =
{i, j}√
î ĵ
, (2.13)

The round bracket and the curly bracket in (2.12) and (2.13) are

(i j) = î j̃ − ĵ ĩ, {i j} = î j̄ − ĵ ī (2.14)

We shall refer to spinor λα, the angle bracket and the round bracket as holo-

morphic, while the spinor λ̄α̇ and brackets associated with it are referred as anti-

holomorphic because of the bar-component dependence. Using the definition for

angle and square brackets the inner product of two null vectors can be expressed as

p · q =
1

2
〈p q〉 [p q] (2.15)

An advantage of introducing the spinor notation is that the polarisations of the

gauge field have simple expressions in terms of spinors. In the textbook description

the polarisation vectors are usually defined with the help of a light-like reference

momentum ηµ. However, by assuming the polarisation as a function of 4-momentum
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and the reference momentum one always encounters a branch cut in the definition [8].

A convenient solution to the problem is to define the polarisation as a function of

spinors. In [40] a formula was given by Xu, Zhang and Chang

ǫ±µ (η, p) = − u∓(η) γµu∓(p)

u∓(η)u±(p)
, (2.16)

where u± and v± are the Dirac 4-spinors in the Weyl representation, γµ =

 0 σµ

σ̄µ 0



, and ǫ±µ denotes the polarisations of positive and negative helicity glu-

ons. Since both the gluon momentum and the reference momentum are null vectors,

we can express the Dirac spinors in terms of the two-component spinors in (2.11)

u+(p) = v−(p) =



 λα

0



 , u−(p) = v+(p) =



 0

ǫα̇β̇λ̄β̇



 (2.17)

Applying the algebraic identities gµν σµ αα̇σν ββ̇ = ǫαβǫα̇β̇ and σ̄α̇α
µ = ǫβασµ ββ̇ǫ

β̇α̇

to the definition (2.16), we arrive at a compact notation for the polarisations in

bispinor form ǫ±αα̇ = ǫ±µσµ αα̇,

ǫ+αα̇ =
ηαλ̄α̇

〈η λ〉 , ǫ
−
αα̇ =

λαη̄α̇

[λ η]
(2.18)

The polarisation vectors defined above can be easily checked to satisfy the fol-

lowing properties

ǫ±(η, p) · η = ǫ±(η, p) · p = 0, (2.19)

ǫ±(η, p) · ǫ±(q, p) = 0, (2.20)

ǫ±(η, p) · ǫ±(η, q) = 0, (2.21)

ǫ±(η, p) · ǫ∓(p, q) = 0, (2.22)

and ǫ± are normalised so that

ǫ+(η, p) · ǫ−(η, p) = 1. (2.23)
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2.2.1 MHV amplitudes

An argument was provided by Dixon in [36] using the identities (2.19) to (2.23)

for polarisation vectors to show that the colour-ordered amplitudes for arbitrary

number of external legs having all positive helicities and all positive except one

negative helicities vanish at tree-level. In amplitudes that contain only positive

helicity gluons, we can choose all of the reference momenta to be the same. Because

an n-point gluon scattering amplitude can have at most n-2 vertices, there are at

most n-2 momenta to be contracted with polarisation vectors, leaving at least one

pair of ǫ+ · ǫ+, which is zero from (2.21). For amplitudes with one negative helicity

gluon, we choose the reference momenta for positive gluons to be the momentum

carried by the negative helicity gluon. From (2.22) we have ǫ− · ǫ+ = 0 for all

possible pairs of polarisation vectors1. Since scattering amplitudes do not depend

on reference momenta, the argument holds for other choices as well. The next

amplitude is non-vanishing because even when all reference momenta of positive

gluons are taken to be one of the negative gluon momenta, the polarisation of the

other negative helicity gluon can have non-zero inner products with the polarisation

of the positive helicity gluons. In [5] Berends and Giele proved from a recursion

method that the generic n-point two-negative helicity amplitude at tree-level can be

written as

A(1+, 2+, · · · i−, · · · j− · · ·n+) = gn−2 〈i j〉4
〈12〉 〈23〉 · · · 〈n 1〉 . (2.24)

The formula was first conjectured by Parke and Taylor and verified up to 6-

points. Because the amplitude (2.24) has maximum number of positive helicity

gluons, it is commonly referred to as Maximally Helicity Violating amplitude, or

MHV for short.

Because taking complex conjugate of a polarisation vector reverses its helicity

1 There is, however, one exception because the reference momentum of the polarisation ǫ±µ (η, p)

is not allowed to be parallel to p. In a three-particle scattering event the only combination of three

null vectors that satisfy momentum conservation has all three vectors parallel to each other and

therefore the reference momenta of leg 2 or leg 3 cannot be chosen as p1. For real momenta we can

still show that the amplitude A(1−, 2+, 3+) vanishes. We present the argument in section 2.4.1.
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(ǫ±µ )∗ = ǫ∓µ , the above argument can similarly be used to show that the all-negative

and the all-negative-except-one-positive amplitudes are zero, and the two-positive

helicity amplitudes are given by the Parke-Taylor formula (2.24) with all the angle

brackets replaced by square brackets.

As an example we calculate the A(1−, 2+, 3−, 4+) MHV amplitude. Choosing

reference momenta η̄1 = η̄3 = λ̄4 and η2 = η4 = λ3, from (2.19) to (2.23) we see that

the only non-vanishing inner product between polarisation vectors is ǫ−1 ·ǫ+2 , therefore

the choice we made eliminates all except one of the Feynman graphs (Fig.2.2).

[
ǫ+4 · ǫ−1 (p1 − p4)

µ + ǫ−µ
1 ǫ+4 · (p2 + p3 − p1) + ǫ+µ

4 ǫ−1 · (p4 − p2 − p3)
]

×
[
ǫ+2 · ǫ−4 (p3 − p2)µ + ǫ−3 µǫ

+
2 · (p2 + p3 − p1) + ǫ+2 µǫ

−
3 · (p4 − p2 − p3)

]

×1/(p1 + p4)
2 (2.25)

To compare the amplitude with Parke-Taylor formula we use (2.18) and (2.15)

to express the polarisation vectors and the inner products in (2.25) as products of

spinors. Because all of the external leg momenta are light-like, by contracting the

total momentum in bispinor form
∑

i λiλ̄i with an arbitrary pair of holomorphic and

anti-holomorphic spinors we obtain an identity for products of brackets

∑

i

〈j i〉 [i k] = 0, (2.26)

which allows us to convert (2.25) into

A(1−, 2+, 3−, 4+) = −g2 〈13〉4
〈12〉 〈23〉 〈34〉 〈41〉 . (2.27)

2.3 CSW rules

Inspired by the twistor string theory, Cachazo, Svrček and Witten developed a set

of rules which allows gluon scattering amplitudes of generic helicity contents to be

more easily calculated [7]. In the CSW prescription the Parke-Taylor formula (2.24)
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Figure 2.2:

which was originally used to describe MHV amplitudes is taken as the formula for

the new vertices. The vertices are linked by scalar propagators 1/p2 to construct

amplitudes of generic helicity structures. When an MHV vertex is connected to

an internal line the off-shell continuation of the spinor associating to the line is

defined by λα = Pαα̇η̄
α̇/ [λ η], where η̄ is an arbitrary anti-holomorphic spinor. In [7]

the CSW rules were verified to reproduce the known scattering amplitudes up to

7-points. At one-loop level however, amplitudes consisting of only positive helicity

gluons cannot be built from MHV vertices, and yet such amplitudes were found to

be non-vanishing [43–47].

For example the amplitude A(1+, 2+, 3+, 4+) was computed by Bern, Chalmers,

Dixon Kosower and Mahlon in [43,44] to have non-vanishing quadruple cut, which is

defined by replacing the four propagators in box integral by delta functions. The box

diagram is therefore cut into four subamplitudes each contains one gluon scattered

by two massive scalars:

g4
u−(η1) /q u−(p1)

〈η11〉
u−(η2) (/q − /p2

) u−(p2)

〈η22〉

×
u−(η3) (/q − /p2

− /p3
) u−(p3)

〈η33〉
u−(η4) (/q + /p1

) u−(p4)

〈η44〉
, (2.28)

and the cut conditions can be rearranged as

q2 − µ2 = 0, q · p2 = 0, q · p3 = p2 · p3, q · p1 = 0 (2.29)

Choosing reference spinors η1, η2 to be p2, p1 allows us to combine the numerators

of the first two terms into a trace tr(/p1
(/q − /p2

)/p2/q). From (2.29) the trace yields

(p1 · p2)q
2 = 〈12〉[12]µ2. Applying a similar method on the last two terms gives

A(1+, 2+, 3+, 4+)
∣∣
quadruple cut

= g2 [12] [34]

〈12〉 〈34〉 µ
4 J, (2.30)
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where J is the jacobian obtained from integrating over four delta functions. In [48]

it has been shown by Bern, Dixon, Dunbar and Kosower (BDDK) that a generic

one-loop graph can be spanned by scalar box, triangle and bubble integrals upto

a rational kinematic term, while the expanion coefficients can be quickly found

by matching the discontinuities of the original LCYM box graph contribution and

the discontinuities of the basis. The above analysis on quadruple cut determines

the discontinuity that happens when the singularities from the surfaces q2 = 0,

(q− p2)
2 = 0, (q− p2 − p3)

2 = 0 and (q+ p1)
2 = 0 all collide with each other, which

only occurs in box integral among the basis, so we have:

A(1+, 2+, 3+, 4+) = g2 [12] [34]

〈12〉 〈34〉 K4 + triangle + bubble + rational term, (2.31)

where K4 is the dimension-regularised box integral with the loop momenta de-

fined in (Fig.2.3).

K4 =
1

(4π)4−2ǫ

ˆ

d4−2ǫq
µ4

q2 (q − p1)2(q − p1 − p2)2(q + p4)2
(2.32)

Equation (2.31) shows that the all-plus amplitude is clearly nonzero at one-loop

level. In the next chapter we shall provide a lagrangian point of view to explain the

origin of this amplitude.

4 3

1 2
q

q − p2 − p3

q + p1 q − p2

Figure 2.3:
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2.4 BCFW recursion relation and a proof to the

formula for general n-point MHV amplitudes

In [14] an on-shell recursion relation was found by Britto, Cachazo and Feng which

allows us to quickly generate scattering amplitudes by reusing known amplitudes

with fewer legs. The recursion relation was proved with the help of Witten us-

ing Cauchy’s residue theorem [15]. Instead of calculating amplitudes directly using

Feynman rules, we can consider the amplitude as a function of complex value mo-

menta obtained by shifting the chosen external lines by a null vector η

pi → pi + z η (2.33)

where z is a complex variable and the internal lines are also shifted in accordance

with momentum conservation. An inspection of the basic elements used in the

Feynman rules shows that the singularities of the amplitude can either come from

the denominator of polarisation vectors or from a propagator. By choosing the

reference momenta of the shifted legs to be η we can eliminate all of the z dependence

from the terms 〈η λ〉 and [η λ] in the polarisation vector (2.18). Since scattering

amplitudes do not depend on the reference momenta chosen, this suggests that

singularities of the first type must cancel for arbitrary choices of reference momenta.

Consider integrating 1
z
A(z) over a contour at infinity. If A(z) → 0 at infinity,

nothing contributes to the integral. From Cauchy’s Theorem, the sum over residues

is zero, and the unshifted physical scattering amplitude A(0) can be derived from

adding up all other residues on the complex plane.

0 =
1

2πi

˛

C at∞

dz
1

z
A(z) = A(0) +

∑

rest of the poles zi

1

zi
ResziA(zi) (2.34)

Because η is light-like, (pi + z η)2 = p2
i + 2 z (pi · η), the singularities from the

propagators contain only simple poles. At pole zi = −p2
i /2(pi · η) the factor 1/z

combines with the overall coefficient 2(pi · η) extracted from the simple pole term to

restore the unshifted propagator −1/p2
i .

The residue at zi has a clear physical meaning [15]: The propagator responsible
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for producing the pole divides tree-level graphs into two parts, both of which retain

the original kinematic dependence prescribed by Feynman rules but with legs shifted.

If we allow complex value momenta the left and right part of all the divided graphs

combine as before to yield amplitudes, where the dividing legs are guaranteed to be

null by singularity conditions. Writing the left and right part of the subamplitudes

as AL(zi) and AR(zi), the above identity can be written as

A(0) =
∑

poles zi 6=0

AL(zi)
1

p2
i

AR(zi), (2.35)

Alternatively the above identity can be understood from an algebraic point of

view: Imagine all of the differences from residues in A(z) were forcibly extracted

and collected as remainders, which would diverge as z → ∞ due to the difference

factor (z − zi) in the numerator. For amplitudes that vanish for large z such terms

can only be canceled by each other, leaving the formula as (2.35). In the following

we choose shifting directions η to derive the frmula for n-point MHV amplitude and

to prove CSW rules.

2.4.1 Proving the Parke-Taylor formula

The BCFW recursion just introduced can be used to prove that the n-point MHV

amplitude is described by the Parke-Taylor formula (2.24). First we need to derive

the formula for the 3-point MHV amplitudes A(1−, 2−, 3+). In section 2.2.1 we

showed that for specially chosen reference momenta all amplitudes containing all

negative helicity or only one positive helicity gluons are vanishing. However as noted

in footnote 1 for the 3-point amplitude such choices are forbidden by momentum

conservation and on-shell conditions. Because gluons are massless, p2
3 = (p1 +p2)

2 =

0, from (2.15) we have

〈12〉 [12] = 0. (2.36)

Similarly, for the other two gluons,

〈23〉 [23] = 0, (2.37)

〈31〉 [31] = 0. (2.38)
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For real value momenta, equations (2.36) to (2.38) give | 〈12〉 |2 = | 〈23〉 |2 =

| 〈31〉 |2 = 0 and all three spinors are parallel to each other. Since the reference

momentum of the polarisation vector ǫ−µ (η1, p1) is not allowed to be parallel to p1

we cannot choose η1 = p3 to make ǫ−(η1, p1) ·ǫ+(η3, p3) vanish. However the 3-point

amplitude is straightforward to calculate,

A(1−, 2−, 3+) = g
3̂

1̂ 2̂
(12) . (2.39)

When external leg momenta are real, (12) = 0 so the amplitude vanishes. The

same argument shows that the 3-point MHV amplitude is also zero.

For complex momenta it is possible to have [13] = 0 so that we are again not

allowed to choose reference momentum to let η1 = p3. Because angle brackets are

no longer related to square brackets by complex conjugation, generically (12) can

be non-zero and the 3-point MHV amplitude can be put into the form

A(1−, 2−, 3+) = g
〈12〉4

〈12〉 〈23〉 〈31〉 (2.40)

which agrees with the Parke-Taylor formula. Following the same analysis the 3-

point MHV amplitude A(1+, 2+, 3−) is given by a similar formula with angle brackets

in (2.40) replaced by square brackets

A(1+, 2+, 3−) = g
[12]4

[12] [23] [31]
. (2.41)

To apply the BCFW recursion on an n-point MHV amplitude we label its external

lines cyclically starting from one of the negative helicity gluons. The scattering

amplitude is considered as a function of spinors associated with external lines: The

momentum flowing through an internal line is defined by its bispinor (2.10), which

is in turn related the spinors of external lines through momentum conservation; the

scalar product of two vectors p, q (not necessarily null) appearing in the vertices

is given by the contraction of their bispinors, p · q = 1
2
ǫαβPαα̇Qββ̇ ǫ

α̇β̇, and the

polarisation vectors are defined by spinors of external line momenta and reference

momenta through equation (2.18). We shift the adjacent legs p1 and pn of the MHV

amplitude A(1−, 2+, · · · i−, · · ·n+) by

P
′

1 αα̇(z) = λ1 αλ̄1 α̇ − z λ1 αλ̄n α̇ (2.42)

P
′

n αα̇(z) = λn αλ̄n α̇ + z λ1 αλ̄n α̇ (2.43)
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The above conditions leave λ1 and λ̄n unchanged, while λ̄
′

1(z) = λ̄1 − z λ̄n,

and λ
′

n(n) = λn + z λ1. From the recursion formula (2.35) the amplitude receives

contributions from (Fig.2.4) and (Fig.2.5). Reading off from graph (Fig.2.4) gives

〈1, i〉4
〈12〉 〈n− 2, q′〉 〈q′, 1〉

1

〈n− 1, n〉 [n− 1, n]

[n− 1, n]4

[n− 1, n] [n, q′] [q′, n− 1]
(2.44)

where we used the condition Q2 = (Pn + Pn−1)
2 = 〈n− 1, n〉 [n− 1, n] to sub-

stitute the unshifted propagator. After replacing the remaining q
′

dependent terms

by

〈
n− 2, q

′

〉[
q
′

, n
]

= 〈n− 2, n− 1〉 [n− 1, n] (2.45)
〈
1, q

′

〉[
q
′

, n− 1
]

= 〈1, n〉 [n, n− 1] (2.46)

equation (2.44) has the desired form (2.24).

The other graph can be shown to be vanishing: At pole the internal line in

(Fig.2.5) carries momentum

Q
′

αα̇(z) = λ1 αλ̄1 α̇ − z λ1 αλ̄n α̇ + λ2 αλ̄2 α̇ = λ
′

q αλ̄
′

q α̇, (2.47)

where z = [12]/[n2]. Contracting with λ1 α we obtain

〈
1 q

′

〉
λ̄

′

q α̇ = 〈12〉 λ̄2 α̇ (2.48)

If λ2 is not parallel to λ1 then λ̄2 =

D

1 q
′
E

〈12〉
λ̄

′

q. Otherwise λ2 = c λ1 for some

constant c and we have λ
′

q = λ1 and λ̄
′

q = λ̄1− [12]
[n2]

λ̄n + c λ̄2. In both cases
[
q
′

2
]

= 0

and the 3-point MHV amplitude on the left hand side is zero. Since the 3-point

MHV amplitude (2.40) agrees with the Parke-Taylor formula by induction this is

generalised to n-points.

Note that in (Fig.2.4) we implicitly assumed that the other negative helicity

leg does not happen to be the leg pn−1 on the right hand side of the graph. For

amplitudes beyond 4-points we can choose to shift the other negative helicity so that

after turning the graph upside down and relabeling the external lines we return to
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the situation described by (Fig.2.4). The only amplitude left is A(1−, 2+, 3−, 4+),

which we computed directly in section (2.2.1).

2.4.2 Proving the CSW rules

A proof to the CSW rules was given by Risager in [16] using BCFW recursion.

Starting with the next-to-MHV amplitude (NMHV) we shift the anti-holomorphic

spinors of the three negative helicity legs pi, pj and pk in the direction of an arbitrary

spinor η̄.

P
′

i αα̇(z) = λi α

(
λ̄i α̇ + z 〈j k〉 η̄α̇

)
(2.49)

P
′

j αα̇(z) = λj α

(
λ̄j α̇ + z 〈k i〉 η̄α̇

)
(2.50)

P
′

k αα̇(z) = λk α

(
λ̄k α̇ + z 〈i j〉 η̄α̇

)
(2.51)

Additional brackets 〈i j〉 are included in the shiftings so that the total momentum

shifted in (2.49) is zero from Jacobi identity. The singularities in the propagators

split the NMHV amplitude into two MHV amplitudes (Fig.2.6, 2.7).

The argument applies to the NpMHV amplitudes which contain 2 + p negative

helicity gluons. This can be done either by recursively shifting any three of the
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negative helicity gluons to split the amplitude into two fewer leg amplitudes or

shifting all of the negative helicity gluons by

P
′

i αα̇(z) = λi α

(
λ̄i α̇ + z ri η̄α̇

)
(2.52)

with the coefficient ri chosen so that
∑p

i=1 λiri = 0. From section 2.4.1 we saw

the MHV amplitudes are described by the holomorphic Parke-Taylor formula, and

therefore remain unchanged after the shifting (2.49) or (2.52). Applying BCFW re-

cursion yields a product of p+1 MHV amplitudes linked by one unshifted propagator

obtained from the first splitting together with p− 1 shifted propagators p
′

j .

∑

poles zi

1

p2
i

∏

j 6=i

1

p
′ 2
j

(2.53)

Consider a fictitious theory in which the building blocks in the Feynman rules

contain scalar propagator and vertices that have the helicity structure prescribed

by the CSW rules, but instead of contributing kinematic factors, in this fictitious

theory the vertex factors are simply identities. Applying the same shifting (2.49) or

(2.52) in such a theory on the same NpMHV amplitude from BCFW recursion we

obtain an identity
∏

i
1
p2

i

=
∑

i
1
p2

i

∏
j

1

p
′ 2
j

, which allows us to replace (2.53) by the

product of unshifted propagators. The recursion formula then agrees with the CSW

prescription.
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2.5 The MHV-rules lagrangian for pure Yang-Mills

theory

In [24] and [25] a direct derivation of the CSW rules from the Yang-Mills lagrangian

was developed by Mansfield, Gorsky and Rosly. When expressed as a bispinor, a

generic off-shell 4-momentum can always be written as a sum of two bispinors of

light-like momenta.

Pαα̇ = pµσµ αα̇ = ηαη̄α̇ + λαλ̄α̇ (2.54)

We choose λ and λ̄ to be the same holomorphic and anti-holomorphic spinors

used in section 2.4.1 to derive n-point MHV amplitudes.

ηα =




√
p̌− pp̄/p̂

0



 , η̄α̇ =




√
p̌− pp̄/p̂

0



 (2.55)

λα =



 −p/√p̂
√
p̂



 , λ̄α̇ =



 −p̄/√p̂
√
p̂



 (2.56)

For massless particles η and η̄ vanish on-shell and Pαα̇ is separable. The polari-

sation vectors of the gauge field are defined as in (2.18)

ǫ+αα̇ =
ηαλ̄α̇

〈η λ〉 , ǫ
−
αα̇ =

λαη̄α̇

[λ η]
, (2.57)

where instead of allowing the reference spinors to be chosen later on we fix them

as the spinors η and η̄ in (2.55). Note that the same square roots
√
p̌− pp̄/p̂ factorise

from both the numerator and the denominator so that we can use the limit of (2.57)

to define the polarisation vectors for on-shell momenta. Equivalently we can extract

the square root
√
p̌− pp̄/p̂ in advance and define the reference spinors η and η̄ in

(2.57) both to be



 1

0



. The polarisation vectors satisfy the condition

p · ǫ± =
1

2
(ηη̄ + λλ̄)αα̇ ǫ

±αα̇ = 0 (2.58)

even when off-shell.
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2.5.1 Light-cone gauge Yang-Mills Theory

The reference momenta chosen in (2.57) allows us not only to identify the compo-

nents needed in the Green function in order to calculate the scattering amplitude but

also to associate helicities to gluons exchanged in the internal lines of a Feynman

diagram. By comparing (2.57) and the bispinor expression of an arbitrary light-

like vector (2.10), we see the polarisation vectors have the following components in

light-cone coordinates

ǫ̌+ = − p̄
p̂
, ǫ+ = −1, ǫ̌− =

p

p̂
, ǭ− = 1, (2.59)

while the rest of the components are zero. Recalling that the inner product in

light-cone coordinates is given by an off-diagonal metric, p·q = (p̌q̂ + p̂q̌ − pq̄ − p̄q) /2,

the positive and negative helicity fields are

ǫ+ · A = − p̄

2p̂
Â +

1

2
Ā, ǫ− · A =

p

2p̂
Â − 1

2
A. (2.60)

In light-cone gauge the Â component of the gauge field is taken to be zero,

so a positive helicity gluon can only be created by the A field and annihilated by

the Ā field, and the reverse applies to negative helicity gluons. After integrating

over the non-dynamical Ǎ component, we arrive at the light-cone Yang-Mills action

containing only the physical components of the gauge field 2

S =
−8

g2

ˆ

dτL (2.62)

where the lagrangian can be divided into a free field part, two 3-point interaction

terms, and one 4-point interaction term.

2Alternatively, we can use the four possible combinations of spinor constructed from η, η̄, λ

and λ̄ to span the off-shell momentum space gauge field,

Aαα̇ = ηαη̄α̇A(η) +
λαη̄α̇

[λ η]
A(+) +

ηαλ̄α̇

〈η λ〉 A
(−) + λαλ̄α̇A(λ) (2.61)

and use the identity gµν = 1
2 ǫ

αβσµ αα̇σν ββ̇ ǫ
α̇β̇ extensively to rewrite the Yang-Mills theory

entirely in terms of spinor notation. The lagrangian we obtain after fixing gauge condition A(λ) = 0

and integrating out A(η) is the same as (2.64) to (2.67) with A and Ā replaced by A(+) and A(−).
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L = L−+ + L−++ + L++− + L−−++, (2.63)

and

L−+ [A] =

ˆ

τ

d3
x Ā

(
∂̌∂̂ − ∂∂̄

)
A, (2.64)

L−++ [A] =

ˆ

τ

d3
x ∂̂Ā

[
A, ∂̄∂̂−1A

]
, (2.65)

L+−− [A] =

ˆ

τ

d3
x ∂̂A

[
Ā, ∂∂̂−1Ā

]
, (2.66)

L−−++ [A] =

ˆ

τ

d3
x

[
Ā, ∂̂A

]
∂̂−2

[
A, ∂̂Ā

]
, (2.67)

and the lagrangian is quantised on surface of constant light-cone “time” τ = (x0−
x3). Note that from the gauge condition the ghost effective action is

´

d4x d4y ω∗a(x) ∂̂δ(x−
y)ωb(y) so the ghost fields decouple. In a Green function calculation ghost loops

factorise to cancel those from the vacuum bubbles and therefore can be neglected.

2.6 Canonically transforming the LCYM lagrangian

The Feynman graphs built from (2.64) to (2.67) clearly have well-defined helicity

assignments associated with internal lines. The propagator connects negative helic-

ity ends with positive helicity ends of the vertices as prescribed by the CSW rules,

and the 3-point MHV vertex V −−+ originates from the L−−+ interaction term (2.66)

can be put into the same form as that of the Parke-Taylor formula using momen-

tum conservation, with spinors appearing in the formula generically associated with

off-shell momenta defined from light-cone coordinate components (2.56).

V −−+(123) =
−8

g2

3̂

1̂2̂
(12)

=
−8

g2

〈12〉4
〈12〉 〈23〉 〈31〉 (2.68)

It is easily seen that the 3-point MHV amplitude A(1−, 2−, 3+) receives contri-

bution only from this vertex. As noted in section (2.4.1) the amplitude vanishes for

real value momenta but not for complex momenta. The other 3-point vertex factor
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conjugate to the MHV vertex however is not included in the CSW construction.

V ++−(123) =
−8

g2

3̂

1̂2̂
{12}

=
−8

g2

[12]4

[12] [23] [31]
(2.69)

In addition the light-cone Yang-Mills lagrangian contains two 4-point vertices

that have the same helicity contents as prescribed by CSW rules but do not agree

with the Parke-Taylor formula and the interaction terms stop at 4-points.

V −−++(1234) =
8

g2

1̂3̂ + 2̂4̂

(1̂ + 4̂)2
, (2.70)

V −+−+(1234) =
−8

g2

(
1̂4̂ + 2̂3̂

(1̂ + 2̂)2
+

1̂2̂ + 3̂4̂

(1̂ + 4̂)2

)
(2.71)

To produce a lagrangian that generates the CSW rules in the standard perturba-

tive calculation it was assumed in [24,25] that the field variables A(τ,p) and Ā(τ,p)

at light-cone time τ are functionals of the new field variables B(τ,p), B̄(τ,p) defined

in 3-momentum space through expansion formulae

A(p1) = B(p1) +

ˆ

Υ(123)B(p2)B(p3) + · · ·

+

ˆ

Υ(123 · · ·n)B(p2) · · · B(pn) + · · · , (2.72)

Ā(p) = B̄(p) +

ˆ (
Ξ2(123)B̄(p2)B(p3) + Ξ3(123)B(p2)B̄(p3)

)

+ · · ·
ˆ n∑

k=2

Ξk(123 · · ·n)B(p2) · · · B̄(pk) · · · B(pn) + · · · . (2.73)

The transformation in (2.72), (2.73) is assumed to be canonical, in the sense

that the variation of the canonical conjugate variable ∂̂Ā in the functional integral

is taken as the inverse of the variation of field variable A,

∂̂Āa(τ,y) =

ˆ

d3
x
δBb(τ,x)

δAa(τ,y)
∂̂B̄b(τ,x), (2.74)

and the unwanted MHV 3-point vertex (2.69) is absorbed into the free field

lagrangian through the transformation
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L−+ [A] + L−++ [A] = L−+ [B] . (2.75)

It can be easily verified that the Jacobian determinant of a canonical transforma-

tion (2.74) is unity, therefore we can apply the functional integral method directly

on the new lagrangian and treat the B and B̄ fields as the new integration variables.

When combined together equations (2.74) and (2.75) provide us with the condition

to determine the translation kernels Υ and Ξk

(
∂∂̄

∂̂
A + [A, ∂̄

∂̂
A])a(τ,x) =

ˆ

d3
y
∂∂̄

∂̂
Bb(τ,y)

δAa(τ,x)

δBb(τ,y)
(2.76)

Note that the transformation is designed so that to the lowest power an A or

Ā field is simply transformed into a B or B̄ field, and as one goes to higher powers

terms the number of B fields increases but not the number of B̄ fields. Translating

the remaining interaction terms L−−+ and L−−++ in the light-cone Yang-Mills la-

grangian into new variables produces an infinite number of terms, each of them has

two B̄s.

L = L−+ [B] + L−−+ [B] + L−−++ [B] + L−−+++ [B] + · · · (2.77)

Apparently the Feynman rules derived from the new lagrangian have the same

helicity structure as the CSW rules. From the equivalence theorem, in the stan-

dard scattering amplitude calculation using LSZ reduction the higher power terms

in the expansions (2.72) and (2.73) are generically suppressed by the p2 factors in

the on-shell limit, so B and B̄ can be interpreted as the helicity field components

that generate positive and negative helicity gluons. However a few nontrivial ex-

ceptions exist when one generalises the canonical transformation method to obtain

a D-dimensional MHV lagrangian theory. The higher power terms are found to be

responsible to the all-plus amplitude which cannot be constructed from CSW rules

alone. In chapter 3 we discuss all possible situations in the dimensional regularisa-

tion scheme for which the equivalence theorem can be violated.

In [29] Ettle and Morris found in 4-dimensions a generic n-th power term trans-

lation kernel can be summarised by the simple formula
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Υ (1 · · ·n) =
1̂2̂ · · · n̂− 1

(23)(34) · · · (n− 1, n)
, (2.78)

and the coefficients for the Ā expansion were found to be proportional to Υs

Ξk(1 · · ·n) = − k̂
1̂
Υ(1 · · ·n) = − k̂2̂ · · · n̂− 1

(23)(34) · · · (n− 1, n)
(2.79)

where the definition for round brackets (2.14) were used to simplify the notation.

Both formulae were proved in [29] by induction.

2.7 The MHV SQCD lagrangian

The canonical transformation discussed in the previous section were generalised by

Ettle, Morris and Xiao to derive the MHV lagrangian theories for QCD and SQCD

[30,31]. In the standard approach to SQCD the lagrangian is constructed from two

chiral superfields Φ1, Φ2 and the supersymmetric field-strength W α, which contain

a large quantity of field components. In the chiral superfields we have (φ1, ψ1, F1),

(φ2, ψ2, F2), where ψ, φ represent the quark and squark fields. In additon, in the

supersymmetric field-strength we have (Λα, Fµν , D), where Λα, Fµν stand for the

gaugino field and the gauge field field-strength. The rest of the fields F1, F2 and D

are auxiliary fields.

LSQCD =

ˆ

τ

d3x
[
Φ†

1e
2V ∗

Φ1 + Φ†
2e

2V Φ2

]∣∣∣
θ4

+
4

g2
[W αWα|θ2 + h.c.] +m (Φ1Φ2|θ2 + h.c.) (2.80)

As in the pure Yang-Mills theory, the SQCD lagrangian is defined at light-cone

time τ = (x0 − x3). The following notations were assigned to quark, squark and

gaugino fields in order to distinguish each component.

ψα
1 = (β̄+, ᾱ+), ψ̄α̇

1 = (β−, α−), ψ2α = (α+, β+), ψ̄2α̇ = (ᾱ−, β̄−), (2.81)

φ1 = φ̄+, φ∗
1 = φ̄−

1 , φ2 = φ+, φ∗
2 = φ−, (2.82)

Λα = (Λ, T ), Λ̄α̇ = (T̄ ,−Λ̄) (2.83)
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After choosing the gauge fixing condition Â = 0, the non-dynamical components

T , T̄ , β±, β̄± and the auxiliary fields were integrated out. The rest of the components

were then canonically transformed on a pair by pair basis to produce the MHV SQCD

lagrangian.
{
A, ∂̂Ā

}
→
{
B, ∂̂B̄

}
,
{
Λ, Λ̄

}
→
{
Π, Π̄

}
, (2.84)

{
α±, ᾱ∓

}
→
{
ξ±, ξ̄∓

}
,

{
φ−, ∂̂φ+

}
→
{
ϕ−, ∂̂ϕ̄+

}
,
{
φ̄−, ∂̂φ̄+

}
→
{
ϕ̄−, ∂̂ϕ̄+

}
(2.85)

In chapter 5 we focus on the gauge and gaugino field sector and introduce a dif-

ferent approach, starting by rewriting the N = 1 super Yang-Mills lagrangian in the

light-cone gauge as a functional of chiral superfield instead of super field-strength,

the transformations in (2.84) can be combined into the canonical transformation of

superfields. The corresponding N = 1 generalisation of the MHV lagrangian can be

used to calculate super-amplitudes which contain all physical scattering amplitudes

related to the MHV amplitude (2.24) by SUSY Ward identity.



Chapter 3

Equivalence theorem evasion

In chapter 2 we saw that applying a canonical transformation on the LCYM la-

grangian successfully produced an MHV lagrangian theory in which the vertices

have the same helicity structure prescribed by the CSW rules. However at loop-

level, non-trivial scattering amplitudes were found that cannot be explained by the

CSW construction. For example in the LCYM theory the 4-point all-plus box dia-

gram is constructed from connecting four MHV vertices. With the MHV interaction

term absorbed into the free lagrangian during the transformation, it is not pos-

sible to rebuild another all-plus amplitude at one-loop using MHV vertices only.

In [26] Brandhuber, Spence, Travaglini and Zoubos adopt the 4-dimensional light-

cone friendly regularisation scheme given by Chakrabarti, Qiu and Thorn [27,61,62]

and showed that the “missing” amplitude A(1+, 2+, 3+, 4+) can be accounted for by

counterterms.

In this chapter we take another approach and use the dimension regulator to

regularise loop integrals. In the standard LSZ reduction scheme a generic scattering

amplitude is given by the on-shell limit of the Green function multiplied by the

appropriate polarisation vectors and momentum squares.

A(· · · i+, · · · j−, · · · ) = lim
p2

i→0

∏

i

p2
i√
Z

〈
· · · 1

2
Ā(pi) · · ·

−1

2
A(pj) · · ·

〉
. (3.1)

Using the expansion formulae (2.72), (2.73) to express A and Ā into the new

variables, the Green function is expanded into an infinite series

29
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〈
· · · Ā(pi) · · ·A(pj) · · ·

〉

=
∑

m,n

m∑

k=2

ˆ

Ξk
i 23···m Υj 2′3′ ···n′

×
〈
· · ·
(
B(p2) · · · B̄(pk) · · · B(pm)

)
· · · (B(p2′ ) · · · B(pn′ )) · · ·

〉
(3.2)

When a helicity field splits into a number of new fields, the momenta carried

by the new fields are related to the momentum of the original helicity field by the

law of conservation of momentum. After Wick contracting the new fields a number

of propagators are created, but generically none of them has the same value as the

propagator that would be produced if we performed the contraction on the original

A and Ā fields. If no other factor can cancel LSZ factors p2
i the higher order terms

in the A and Ā field expansions are suppressed in the on-shell limit, we then have an

equivalent theory which allows us to calculate the same scattering amplitude using

Green functions of the new variables. In D-dimensions, however, we find in certain

special cases the translation kernels Υ and Ξk do generate an effective propagator

to cancel the suppressing p2
i . The contributions from these cases explain the non-

vanishing amplitudes that appeared to be “missing” from the CSW viewpoint.

In order to regularise loop integrals, in section (3.1) we generalise the light-cone

gauge Yang-Mills lagrangian to D-dimensions and perform the canonical transfor-

mation to obtain the corresponding MHV lagrangian. We find in the dimensional

regularisation scheme the 4-point all-plus amplitude A(1+, 2+, 3+, 4+) is explained by

tadpole graphs constructed from self-contracting translation kernels (section (3.2.1)).

In sections (3.2) and (3.3) we introduce a graphical notation which allows us to sum-

marise the mathematical structure of the kernels and we discuss all of the possible

situations where the higher order expansions in (3.2) can contribute to a scatter-

ing amplitude. Finally in section (3.4) we discuss some special cases where the

singularities of the kernels need to be treated carefully to keep the loop integral

well-defined.

The work was published in [28] and [59].
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3.1 Dimension regularising the MHV lagrangian

The Yang-Mills lagrangian defined as the trace of the contracted fieldstrengths

tr(FµνF
µν) can be directly generalised to D-dimensions by allowing the indices to

run through allD components. As in section (2.5) we express the lagrangian in light-

cone coordinates before performing the canonical transformation. In D-dimensions

the components of a covariant vector pµ = (p0, p1, · · · pD−1) in light-cone coordinates

are defined as

p̌ = (p0 − pD−1) , p̂ = (p0 + pD−1) , (3.3)

pI = (p2I−1 − ip2I) , p̄I = (p2I−1 + ip2I) . (3.4)

In addition to the hat and check components, in D-dimensions we have D/2− 1

pairs of holomorphic and anti-holomorphic transverse components pI and p̄I , where

the indices I range from 1 to D/2 − 1. The definitions for the round bracket and

the curly bracket (2.14) generalise to

(p, q)I = p̂qI − q̂pI , {p, q}I = p̂q̄I − q̂p̄I (3.5)

From (3.3) and (3.4) it is straightforward to see that the metric in D-dimensional

light-cone coordinate system is off-diagonal. The inner product of two vectors is

given by the formula

p · q = (p̌q̂ + p̂q̌ − pI q̄I − p̄IqI) /2 (3.6)

As in the 4-dimensional theory, we choose the gauge condition as Â = 0 and

integrate over the Ǎ component. The lagrangian can be divided into parts according

to their helicity features.

S =
−8

g2

ˆ

dτL, L = L−+ + L−++ + L++− + L−−++ (3.7)

where

L−+ [A] = tr

ˆ

τ

dD−1
x ĀI

(
∂̌∂̂ − ∂J ∂̄J

)
AI , (3.8)

L++− [A] = tr

ˆ

τ

dD−1
x ∂̄IAJ

[
∂̂ĀJ , ∂̂

−1AI

]
+ ∂̄IĀJ

[
∂̂AJ , ∂̂

−1AI

]
, (3.9)
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L−−+ [A] = tr

ˆ

τ

dD−1
x ∂IAJ

[
∂̂ĀJ , ∂̂

−1ĀI

]
+ ∂IĀJ

[
∂̂AJ , ∂̂

−1ĀI

]
, (3.10)

L−−++ [A] =
1

4
tr

ˆ

τ

dD−1
x

[
∂̂AI , ĀI

]
∂̂−2

[
∂̂AJ , ĀJ

]

−
[
∂̂ĀI , AI

]
∂̂−2

[
∂̂ĀJ , AJ

]

+2
[
∂̂AI , ĀI

]
∂̂−2

[
∂̂ĀJ , AJ

]

− [AI , AJ ]
[
ĀI , ĀJ

]
−
[
AI , ĀJ

] [
ĀI , AJ

]
, (3.11)

and we quantise the theory on the constant light-cone time surface τ = (x0 −
xD−1). Generically the correlation function of a given number of fields

〈
· · ·AI · · · ĀJ · · ·

〉

can be computed from the functional integral in which we integrate the D/2 − 1

pairs of transverse components of the gauge field. To obtain the physical scattering

amplitude we recall that in the LSZ reduction the amplitude is calculated from the

correlation function of the values of gauge fields which are measured in the direction

defined by polarisation vectors.

ǫ+ · A =
1

2
(A1 + iA2) , ǫ

− · A = −1

2
(A1 − iA2) . (3.12)

In light-cone coordinates (3.4) these two factors correspond to the transverse

components AI and ĀI when the index I equals one. So following the standard

LSZ reduction scheme the dimensionally regularised scattering amplitude is obtained

from the correlator
〈
· · ·A1 · · · Ā1 · · ·

〉
by multiplying by the appropriate LSZ factors,

identifying the dimension D as 4 − 2ǫ, and then take the on-shell limit p2
i → 0.

From the equations (3.8) to (3.11) we read off the vertices in light-cone gauge as

V −−+(1I , 2J , 3K) =
(31)J δKI

2̂
+

(23)I δJK

1̂
(3.13)

V ++−(1I , 2J , 3K) =
{31}J δKI

2̂
+

{23}I δJK

1̂
(3.14)

As in 4-dimensions the lagrangian contains a 3-point MHV vertex, a 3-point

MHV vertex, and two 4-point vertices. We apply the canonical transformation to

rewrite the self-dual part as the free lagrangian of the new field variables. The

transverse components are assumed to be functionals of BI , B̄I , and the powers of
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the anti-holomorphic component fields are fixed in the expansions to ensure that in

terms of the new fields the vertices will have exactly two negative helicity legs.

AI(p1) = BI(p1) +

ˆ

Υ(1I , 2J , 3K)BJ(p2)BK(p3) + · · · (3.15)

ĀI(p1) = B̄I(p1) +

ˆ

Ξ2(1I , 2J , 3K) B̄J(p2)BK(p3)

+

ˆ

Ξ3(1I , 2J , 3K)BJ(p2) B̄K(p3) + · · · (3.16)

The translation kernels are iteratively solved from the condition

L−+ [A] + L++− [A] = L−+ [B] . (3.17)

Substituting AI with (3.15) and collecting terms from both sides of the equation

we find

Υ(1I , 2J , 3K) =
1

1̂

V ++−(2J , 3K , 1I)
p2
1

1̂
+

p2
2

2̂
+

p2
3

3̂

. (3.18)

Substituting (3.18) into the transformation condition again, we have

Υ(1I , 2J , 3K, 4L)

=
1

1̂

1
∑4

i=1 p
2
i /p̂i



 1

1̂ + 2̂

V ++−(2J , 3 + 4A, 1I)V ++−(3K , 4L, 1 + 2A)
(p1+p2)2

1̂+2̂
+

p2
3

3̂
+

p2
4

4̂

1

1̂ + 4̂

V ++−(2 + 3A, 4L, 1I)V ++−(2J , 3K , 1 + 4A)
(p1+p4)2

1̂+4̂
+

p2
2

2̂
+

p2
3

3̂



 .

(3.19)

Note that in the above equations (3.18), (3.19) both Υs depend on the MHV

vertex factor absorbed during the transformation.

3.2 Graphical conventions for the canonically trans-

formed lagrangian theory

As noted at the beginning of this chapter the helicity field components can split

into a number of B and B̄ fields through the canonical transformation so generically
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we need to consider a series of Green functions that contain all possible terms in

the expansion (3.15), (3.16). In order to keep track of the contributions made by

translation kernels we introduce graphical notation.

A1

B2

....

Bn

Figure 3.1: Graphical representation of an (n− 1)-th order Υ kernel

When an (n− 1)-th order term in the A field expansion is present in the Green

function we draw a blank circle to represent the translation kernel Υ12···n and n lines

stretching out from the circle to denote the fields associated to the kernel, (n−1) of

the lines represent the (n−1) -tuple B fields created during the transformation, and

one of the line represents the original A field being replaced by the transformation

(Fig.3.2). We attach a small dot to indicate the negative helicity direction of the

lines. In (Fig.3.2) the dot also distinguishes the line associated to the A field from

those associated to the B fields. For simplicity in the following expressions we shall

suppress the indices I that was introduced to denote the (D/2− 1) transverse field

components in D-dimensions. Using the graphical convention just introduced the

expansion formula (3.15) can be represented as

A = B +
B

B
+ B

B

B

+ ....

Similarly, we use the small dots to decorate the negative helicity ends of the lines

that are attached to the original LCYM vertices. The MHV and the MHV vertices

are represented by the graphs
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Figure 3.2: The MHV vertex and the MHV vertex

In section (3.1) we used the transformation condition (3.17) to solve for the

translation kernel algebraically as a combination of the MHV vertex and the factor

1/(
∑

i p
2
i /p̂i). The same condition can also be expressed in graphical notation, which

allows us to visualise the iterative pattern underlying the structure of the kernels

and to relate kernels with the vertex factors in the original LCYM theory. Stripping

off a factor p̂B̄(−p) from both sides, equation (3.17) becomes

pp̄

p̂
A(p)−

ˆ

dD−1q
1

p̂
V ++−(q, p− q,−p)A(q)A(p− q) =

ˆ

dD−1q
qq̄

q̂
BδA(p)

δB(q)
(3.20)

Using (3.15) to substitute the A field in the first term and collecting terms of

the same powers in the new fields, we arrive at an identity which relates Υ12···n to

translation kernels of lower order.

(
n∑

i=1

−pip̄i

p̂i

)
Υ12···nB(p2) . . .B(pn)

=
terms that have (n− 1) − th

power ofB in

[
ˆ

dD−1q
V ++−(q,−p0 − q, p0)

p̂
A(q)A(−p0 − q)

]
,

(3.21)

where when deriving the above equation we reversed the direction of p1 to con-

form the convention for labeling particle fields by outgoing momenta.

In graphical notation, equation (3.21) can be expressed as

(∑n
i=1

−pip̄i

p̂i

) B....
B

= −∑

B....
B

B
..
..
B
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B....
B

=
∑

B....
B

B
..
..
B

Dividing
(∑n

i=1
−pip̄i

p̂i

)
from both sides, we obtain the graphical identity

On the right-hand-side of the equation we introduce a dashed line bubble sur-

rounding the graph to represent the factor 1/
(∑n

i=0
−pip̄i

p̂i

)
, which receives contri-

butions from all of the lines crossing through the bubble. The summation on the

right hand side of the identity runs over combinations of subgraphs that add up to

produce the same number of B fields as the translation kernel Υ12···n. All graphi-

cal representation of the kernels can be solved by repeatedly substituting the lower

order kernels into the right hand side of the identity. The expansion formula of A
field can be more explicitly expressed as

A = B +
B

B
+

B

B

B

+

B

B

B

+ ...

It is clear that the contribution from each term can be easily read off from graphs.

The structure underlying the kernels resembles the Feynman diagrams built from

MHV vertices only. However note that the straight lines connecting vertices in

the representations above do not contribute as propagators and are merely used to

indicate the algebraic structure of the momenta flowing through the lines.

In the same spirit we can introduce a graphical notation that allows us to derive

the MHV vertex dependence embedded in the Ā field expansion formula. In order

to distinguish the expansion coefficients Ξk from Υ we use a gray circle to denote the

kernels Ξk
12···n in the Ā transformation. The (n− 1)-th order term in the expansion

(3.16) is represented by the graph
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1̂Ā1

...
B2

...
k̂ B̄k

Bn

Figure 3.3: Graphical representation of an (n− 1)-th order Ξk kernel

and a small dot is attached to the line representing the B̄ field being created

during the transformation. In the graphical notation the negative helicity field Ā is

related to the new variables by the identity

∂̂Ā = ∂̂B̄ +
∂̂B̄

B
+

B

∂̂B̄

+ ∂̂B̄

B

B

+ B

∂̂B̄

B

+ B

B

∂̂B̄

+ ....

As in the case of the positive helicity field, kernels in the above identity can be

expressed more explicitly in terms of MHV vertex factors. We recall that the kernel

Ξk is related to Υ by the canonical transformation condition.

ˆ

dD−1y
δA(y)

δB(x)
∂̂Ā(y) = ∂̂B̄(x) (3.22)

Combining with the graphical conventions above, identity (3.22) yields

∂̂B̄ =
∑

B

B

..

..
∂̂B̄

B

B

..

..

where on the right hand side we sum over all possible terms in the Ā and A field

expansion formulae. The Υ kernels appearing in the graph above came from the

variation factor δA/δB in equation (3.22). Note that mathematically the variation

δA/δB is obtained from stripping off one of the B fields in the A field expansion

formula, so in the graphical expression of the identity (3.22) one of the lines branch-

ing from the blank circle is not attached with a B field. By matching terms that
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have the same number of B fields we arrive at an identity which allows us to express

the kernel Ξk as a linear combination of Υ and Ξs of lower order. Alternatively

we can start with the kernel graph (Fig.3.2) with the Ā and the B̄ lines held fixed,

pointing to the opposite directions, and draw all of the graphs that can be obtained

by moving B field lines to the left hand side. Summing over all of the graphs and

identifying the summation as zero yields the same identity as (3.22).

∂̂B̄

B

B

..

..
= −∑′

B

B

..

..
∂̂B̄

B

B

..

..

where in the above expression we used
∑′

to indicate that in the sum we include

graphs with at least one B field leg moved to the left.

Substituting lower order kernel graphs repeatedly we can explicitly express the

MHV vertex dependence and the bubble structure in all of the kernel factors Ξk in

the Ā field expansion formula.

∂̂Ā = ∂̂B̄ −
B

∂̂B̄
−

∂̂B̄

B
−

∂̂B̄

B

B

−
B

B

∂̂B̄

+

B
B

∂̂B̄

+ ...

Finally, we can apply the same procedure to obtain the graphical representations

for MHV vertices. We use the 3-point and the 4-point LCYM vertices as the basic

structure and replace the A and Ā fields attached at the legs of the vertices by trees

of B and B̄ that appear in the A and Ā expansions. For example, the (− − ++)

4-point MHV vertex is represented by the sum of the following four graphs.
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MHV = +

+ +

Figure 3.4: Graphs contributing to the 4-point MHV (−− ++) vertex

3.2.1 The “missing” one-loop level (+ + ++) amplitude

In this section we show that the “missing” all-plus 4-point amplitude A(1+, 2+, 3+, 4+)

is explained by the contribution from the translation kernel. In LCYM theory the

standard Feynman rules allow us to connect four pieces of MHV vertices to form

box diagrams, which are responsible for the non-vanishing all-plus amplitude at

one-loop.

+

+ +

+

− +

+ −

+ −

− +

4 3

1 2
q1

q3

q4 q2

+

+ +

+

+ −

− +

− +

+ −

4 3

1 2
q1

q3

q4 q2

Figure 3.5: LCYM box graphs

From (Fig.3.5) we have the loop integral

A(1+, 2+, 3+, 4+) = lim
p2

i→0

ˆ

dDq

(2π)D

XIJKL

q2
1 q

2
2 q

2
3 q

2
4

∣∣∣∣
I,J,K,L=1

, (3.23)



3.2. Graphical conventions for the canonically transformed lagrangian

theory 40

where q1 = q, q2 = q − p2, q3 = q − p2 − p3, q4 = q+ p1 are the momenta carried

by the propagators in the loop and we used a symbol XIJKL as an abbreviation of

the vertex factors in the graph.

XIJKL = V ++−(−qD
4 , 1

I , qA
1 )V ++−(−qA

1 , 2
J , qB

2 )

×V ++−(−qB
2 , 3

K , qC
3 )V ++−(−qC

3 , 4
L, qD

4 ) (3.24)

Figure 3.6: Graphs contributing to the (+ + ++) amplitude

For a physical scattering event which takes place in 4-dimensions we choose the

values of the indices I, J , K, L to be 1 and the momenta associated with the

external lines are taken to their on-shell limits at the end of the calculation. From

the graphical representations given in the last section we saw that after the canonical

transformation the original MHV interaction term is no longer included in the MHV

lagrangian as a vertex, instead the same factor is implicitly contained in both types

of the translation kernels Υ and Ξk, which can appear in an amplitude either through

the helicity fields A, Ā being evaluated in the Green function or through an MHV

vertex which has helicity fields being replaced by trees of new field variables during

the transformation. In this case the contribution can only come from translating

helicity fields because none of the possible contraction between MHV vertices or

self-contraction among the legs of a MHV vertex can result in an all-plus amplitude

at one-loop level. We find the types of graphs in (Fig.3.6) and (Fig.3.7) created

from translation kernels have the required helicity structure. Note that in order to
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distinguish from the line structure within the kernels we use wavy lines to represent

propagators.

p1

p2 p3

p4

(a) (b) (c) (d)

Figure 3.7: Tadpole graphs

B̄

Ā

B

B B

B

Figure 3.8: Vertex structure embedded in the kernel Ξ2
1234556

From the iterative formula introduced in section (3.2) we see that the translation

kernels are represented by tree graphs with MHV vertices implicitly embedded. A

6-point kernel Ξ2
123456 contains a series of graphs having tree structure of the form

(Fig.3.8), each associated with different bubbles attached to its vertices. Contracting

B̄ and B on the left side of the graphs to create 4-point tadpoles we see that the graph

(Fig.3.7(a)) has the same MHV vertex factors as LCYM box diagrams. Collecting

terms with all possible bubble structures we see that tadpole (Fig.3.7(a)) yields

ˆ

dDq

(2π)D

XIJKLC(a)

q2
1 q

2
2 q

2
3 q

2
4

, (3.25)

where XIJKL contains the vertex factors given in (3.24). In the on-shell limit

p2
1, p

2
2, p

2
3, p

2
4 → 0 we have

C(a) =

q2
1

q̂1

q2
2

q̂2

q2
3

q̂3(
q2
1

q̂1
− q2

4

q̂4

)(
q2
2

q̂2
− q2

4

q̂4

)(
q2
3

q̂3
− q2

4

q̂4

) . (3.26)
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The contributions from other three tadpole graphs are obtained by cyclically

permuting the indices in (3.26). Summing over all factors yields

C(a) + C(b) + C(c) + C(d) = 1 (3.27)

so we find the tadpole graphs restore the same loop integral that was originally

given by the box diagram in the LCYM theory and therefore reproduce the correct

value for the all-plus 4-point amplitude. The other one-loop graphs in (Fig.3.6) all

contain factors of the form 1/(
∑

i q
2
i /q̂i) in the integrand, which cannot be directly

computed using the standard integration techniques. In fact the specific values of

these integrals depends on the way we define the singularities in the translation

kernel, though the sum of these graphs can be shown to produce vanishing result.

In section (3.4) we shall show that with suitable arrangements with singularities we

can neglect the contributions from translation kernels at one-loop level except for

tadpole graphs.

3.3 Equivalence theorem evasion in general

Although introducing the numerous translation kernels may seem to have made the

amplitude calculation more complicated, we find that these factors are negligible

except in a few special cases. When an A or Ā field in the Green function is

expanded in terms of the new field variables the momentum it carries is redistributed

into a number of B and B̄ fields. Generically the momenta flowing through the B
field propagators deviate from the original A field momentum, leaving the LSZ

factors p2
i + iǫ uncanceled. If the Green function has a finite on-shell limit then

the contribution to the scattering amplitude is suppressed by the LSZ factors. So

the exceptions can only come from singularities of the Green function, where it is

possible to produce an effective propagator 1/p2
i asymptotically.

Tree-Level

(a) All-Plus-Except-One-Minus Amplitudes

The simplest case consists of graphs formed by kernels and no vertex. This
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happens when one of the A or Ā in the Green function
〈
Ā1A2 · · ·An

〉
is translated

to higher order term and carries a kernel Υ or Ξk while the other (n− 1) fields are

simply translated into single B or B̄. Contracting B and B̄ in pairs leads to tree-level

graphs of the type

Ā,+

Ā,+
...

A,−

B
B

B̄
Ā,+

Ā,+

...

.

Ā,+

B

B
A,−

Figure 3.9: All-plus-except-one-minus amplitudes built from kernels

where all of the lines stretching from the kernel are linked to physical states

which carry light-like momenta. In 4-dimensions all of the all-plus-except-one-minus

amplitudes are known to be vanishing. However in the MHV lagrangian theory these

amplitudes are vanishing not because they can be suppressed by LSZ factors, but

because the MHV vertices contained in the kernel are zero. The simplest example

is the 3-point MHV amplitude A(1+, 2+, 3−). Note that although no vertex can

be used to connect
〈
B̄B̄B

〉
at tree-level the amplitude receives contributions from

(Fig3.10(a), (b) and (c)).

1 2

3

=

(a)

+

(b)

+

(c)

Figure 3.10: The sum of graph (a), (b) and (c) restores the LCYM MHV vertex

When combined together the three kernel graphs restore the original off-shell

value MHV vertex.
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V ++−(p1, p2, p3)

=

p2
3+iǫ

p̂3

p2
1+iǫ

p̂1
+

p2
2+iǫ

p̂2
+

p2
3+iǫ

p̂3

V ++−(p1, p2, p3)

+

p2
1+iǫ

p̂1

p2
1+iǫ

p̂1
+

p2
2+iǫ

p̂2
+

p2
3+iǫ

p̂3

V ++−(p1, p2, p3)

+

p2
2+iǫ

p̂2

p2
1+iǫ

p̂1
+

p2
2+iǫ

p̂2
+

p2
3+iǫ

p̂3

V ++−(p1, p2, p3) (3.28)

The vertex V ++−(p1, p2, p3) contains the curly bracket {12}. The curly bracket

equals zero because for real values of momenta p2
3 = | {12} |/2 1̂2̂, but not for complex

momenta. Therefore from equation (3.28) we see the MHV lagrangian reproduces

the correct value for the A(1+, 2+, 3−) amplitude even for complex momenta. In sec-

tion (3.2) we saw that the translation kernel can have an overall factor 1/(
∑

i p
2
i /p̂i)

represented by the dashed line bubble. Because in an all-plus-except-one-minus am-

plitude all of the lines carry null momenta, such factor is singular in the on-shell

limit.

We note that the value of a specific graph depends on the order we choose to send

momenta on-shell despite there is no such a dependency in the standard Feynman

rules derived from the Yang-Mills lagrangian. For example in equation (3.28) if the

momenta are taken on-shell according to the order p1, p2 and then p3, graphs (b)

and (c) will be suppressed. After sending p2
1 and p2

2 to zero in the denominator of

the kernel in graph (a) the factor p2
3/p̂3 is left to cancel the LSZ factor, so in this

order graph (a) is responsible for the amplitude A(1+, 2+, 3−). When we change the

order to be p2, p3, p1, the same mechanism picks graph (b). Generically the value of

an amplitude is unchanged as long as we keep the same order for all of the graphs

contributing to the amplitude.

In the graphical identity (Fig3.10) graphs (a), (b) and (c) are everywhere iden-

tical except each graph has a different propagator emerging from the bubble being

replaced by a straight line. From the graphical convention defined in section (3.2)

a straight line is used to indicate that the momentum flowing from one side to the

other of the line remains the same value and the straight line itself does not con-
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tribute any numerical value to the graph. So effectively the straight line can also be

regarded as a propagator multiplied by an additional p2
i . Combining with the 1/p̂i

factor carried by the MHV vertex embedded in the kernel, each graph contribute a

factor of p2
i /p̂i in addition to the common factor. Therefore summing over graphs

which have different propagators crossing through the bubble replaced by straight

lines produces a new graph where the bubble factor 1/(
∑

i p
2
i /p̂i) is removed. By ap-

plying the graphical identity (Fig.3.10) repeatedly we can remove all of the bubbles

and identify the graphs constructed from MHV lagrangian to those from the LCYM

lagrangian. As an example in appendix (A) we restore a LCYM graph contributing

to the amplitude A(1−, 2+, 3+, 4+) from ten MHV lagrangian graphs which have

more complicated kernel structure.

(b) Special Momentum Configurations

The other exception at tree-level happens only for some specific values of mo-

menta. A graph consisting of translation kernel and vertices like (Fig.3.11) normally

does not contribute because even when on-shell no factor in the graph can generate

the effective propagator 1/p2
1. However when p2 + p3 and p5 + p6 happen to be light-

like the factor 1/
∑

(p2
i +iǫ)/p̂i in the kernel becomes 1/(p2

1/p̂1) if we send p4 on-shell

before p1. As in the previous case all of the lines linked to the kernel are null so

the graph does not contribute, but not because of the suppressing LSZ factor. For

this particular combination of momenta another graph which contains a translation

kernel from Ā(p4) combines with the contribution from (Fig.3.11), and yields the

same analytic form as for non-null p2 + p3 and p5 + p6. For practical calculations we

can ignore these graphs and only consider the graphs that generically contribute.

Despite the scattering amplitudes are not given by a direct application of LSZ re-

duction on Green functions of B and B̄ fields, we find at tree-level all amplitudes

can be accounted for by the CSW rules.

One-Loop

(a) Tadpole graphs
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p5 + p6

6

5 4

1

p2 + p3

2

3

Figure 3.11: Tree-level graph constructed by kernel that can become non-vanishing

for special combinations of leg momenta

At one-loop level there are more non-trivial graphs that can be built from trans-

lation kernels. By contracting a B̄ and a B in the same Ā field expansion a kernel

can be used to form a tadpole diagram. Because in a self-contraction the momenta

flowing in and out of the loop must be equal and opposite the corresponding con-

tributions to factor 1/
∑

(p2
i + iǫ)/p̂i cancel each other, leaving only the momenta

flowing into external lines to be summed over. Taking on-shell limit of this type of

graphs is analogous to those of the all-plus-except-one-minus amplitudes, for which

the order we send external line momenta on-shell determines whether a particular

graph vanishes or not, but does not affect the sum of all graphs to contribute to the

same amplitude. However unlike the all-plus-except-one-minus amplitudes, the sum

of tadpole graphs do not vanish because the lines contracted to form loops are not

null and therefore the MHV vertices contained in the kernel generically are not zero.

As we saw in section (3.2.1) the tadpole graphs are responsible for the non-vanishing

of the 4-point all-plus amplitude A(1+, 2+, 3+, 4+).

(b) Dressing propagators

Another kind of cancellation of the LSZ factor happens when two of the legs

from a translation kernel rejoin each other at a 3-point vertex. We divide this kind

of graphs into two sub-types, the graphs in which the translation kernels are not

attached to other external lines (Fig.3.12(a)), and otherwise (Fig.3.13). In both

graphs we use a crossed circle to denote structure in the graph that is irrelevant to

our current discussion.

In graph (Fig.3.12(a)) the legs of the kernel Υ123 are contracted with the legs

of an MHV vertex. On the other side of the vertex a propagator is required by
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(a)

p1 p1

×
pn

..

.
p2

(b)

p1 p1

×
pn

..

.
p2

(c)

p1 p1

×
pn

..

.
p2

Figure 3.12: Single leg dressing propagator combines with MHV vertices as self-

energy bubble

conservation of momentum to have the value of 1/p2
1. With the LSZ factor can-

celed the graph survives in the on-shell limit. From the identity (3.28) we see that

combining (Fig.3.12(a)) with (Fig.3.12(b)) and (Fig.3.12(c)) eliminates the bubble

factor 1/
∑

(p2
i + iǫ)/p̂i and the sum contributes as the self-energy graph at one-loop

which we absorb into the field renormalisation.

The other sub-type of the graphs contains kernels attached to external lines

and cannot be absorbed into renormalisation factors. In (Fig.3.13) the propagator

connecting with the MHV vertex contributes as 1/(p1 + p2)
2. If the momentum

(p1 + p2) is also null, p1 and p2 become parallel to each other in the on-shell limit,

and the inner bubble 1/ (p2
1/p̂1 + p2

2/p̂2 + (p1 + p2)
2/(p̂1 + p̂2)) becomes singular.

p1

p2

p1 + p2

×
p1 + p2

Figure 3.13: Multiple leg dressing propagator

Nevertheless this type of graphs does not contribute to the physical scattering
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amplitude because the left MHV vertex V ++−(p1, p2,−p1 − p2) vanishes for on-shell

real value momenta. So the graphs containing dressing propagators can be neglect

altogether for practical calculations.

(c) Kernels contracted with other structures to form a loop

p1
q

−j − q

p2

p3

..

.

pn

×

Figure 3.14: A loop contribution given by direclty contracting the kernel

In the most general case a translation kernel can contract with an arbitrary

subgraph to form a loop. The contribution is given by loop integral of the form

(p2
1 + iǫ)

ˆ

dDq
1

p2
1+iǫ

p̂1
+

p2
2+iǫ

p̂2
+ q2+iǫ

q̂
+ (q+p1+p2)2+iǫ

−q̂−p̂1−p̂2

1

q2 + iǫ

1

(q + p1 + p2)2 + iǫ
f(q)

(3.29)

where the first factor in the integrand is given by the outer bubble of the trans-

lation kernel and we use f(q) to denote the factors represented by the subgraph

on the right together with the rest of the factors contained in the kernel. An LSZ

factor p2
2 is canceled by the propagator 1/(p2

2 + iǫ) so we assume it is safe to send p2

on-shell, and we rewrite the integral as

ˆ

dDq
1

−p1p̄1+iǫ
p̂1

+ −qq̄+iǫ
q̂

− −(q+p1+p2)(q̄+p̄1+p̄2)+iǫ
q̂+p̂1+p̂2

1

q2 + iǫ

1

(q + p1 + p2)2 + iǫ
f(q).

(3.30)

As noted at the beginning of this section, if a graph constructed from kernel is

to produce a finite contribution then the Green function, which contains the loop

integral (3.30) in this case, has to be divergent in the on-shell limit. This is possible if

we have singularities colliding with one another from different sides of the integration
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contour. When we integrate over components of the loop momentum qµ the position

of the singularities of the propagator and of the kernel can be solved as functions

of leg momenta p1 and p2. As p1 approaches its on-shell limit these singularities

move in the complex plane and can walk through the integration surface, producing

a divergent integral. This type of source for the divergent behaviour is avoided if

we are allowed to deform the contour. However the option is not available if there

are other singularities pinching from the other side of the contour. A thorough

discussion was given in [63] to show that the pinching has the effect of producing an

effective pole in the space of parameters in the integrand.

Generically the translation kernel introduces a number of factors of the form

1/
∑

i(p
2
i /p̂i) to the integrand, which can not be spanned by Lorentz invariant prod-

ucts using the standard Passarino-Veltman technique, nor can it be combined with

propagators to produce an easily calculated integrand with the help of introducing

Feynman parameters. However the integral (3.30) can be simplified by first noting

that the kernel is independent of check-component momenta, which allows us to

integrate over the q̌ by closing the contour and pick up residues from propagators.

The q̌ component singularities of the propagators can be in the upper half or the

lower half plane, depending on the signs of q̂ and q̂ + p̂1 + p̂2. The sum of residues

from either half of the complex plane gives

(θ(q̂)θ(−q̂ − p̂1 − p̂2) − θ(−q̂)θ(q̂ + p̂1 + p̂2))

× 1
−qq̄+iǫ

q̂
− p̌1 − p̌2 − −(q+p1+p2)q+p1+p2+iǫ

bq+p̂1+p̂2

1

q̂(q̂ + p̂1 + p̂2)
. (3.31)

We see in the on-shell limit p̌1 = p1p̄1/p̂1, p̌2 = p2p̄2/p̂2 the second factor in the

above equation has the same form as the bubble factor 1/
∑

i(p
2
i /p̂i) in the integral

(3.30). A propagator is forcibly extracted if we expand the product of the residue

(3.31) and the kernel into a linear combination of these two terms.

1

p2
1 + iǫ

ˆ D/2−1∏

i=1

dqx(i)dqy(i)dq̂ (θ(q̂)θ(−q̂ − p̂1 − p̂2) − θ(−q̂)θ(q̂ + p̂1 + p̂2))

×
[
1/

(
−p̌1 − p̌2 +

−qq̄ + iǫ

q̂
− −(q + p1 + p2)q + p1 + p2 + iǫ

q̂ + p̂1 + p̂2

)
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−1/

(−p1p̄1 + iǫ

p̂1

+
−p2p̄2 + iǫ

p̂2

+
−qq̄ + iǫ

q̂
− −(q + p1 + p2)q + p1 + p2 + iǫ

q̂ + p̂1 + p̂2

)]

× p̂f(q)

q̂(q̂ + p̂1 + p̂2)
(3.32)

With the LSZ factor canceled by the extracted 1/p2
1 + iǫ, graph (Fig.3.14) will

survive in the on-shell limit as long as the integral (3.32) is non-vanishing. However

if the two terms in the square bracket have imaginary parts of the same signs then

as we perform the subsequent integration the singularities from both terms are in

the same half-plane. In the on-shell limit these singularities will coincide each other

without crossing through the contour and picking additional contributions in the

process. As a result the two terms in the square bracket cancel each other.

In the standard loop integral calculation the positions of the poles of propagators

are determined by the iǫ prescription. The infinitesimal imaginary part allows sin-

gularities to deviate slightly from the real axis for real values of momenta and keeps

the integrand well-defined. In the first term in the square bracket we see that after

we integrate over the q̂ component, the two imaginary terms are fixed by step func-

tions to have the same sign. Both 1/q̂ and −1/(q̂+ p̂1 + p̂2) are positive or negative

when multiplied by θ(q̂)θ(−q̂ − p̂1 − p̂2) or θ(−q̂)θ(q̂ + p̂1 + p̂2) respectively. Deter-

mining the signs of the imaginary terms in the kernel bubble 1/
∑

i(p
2
i /p̂i) however

requires more careful analysis. In the next section we show that the singularities of

the kernels can be arranged so that its imaginary part remains the same sign with

the residue term (3.31). For this specific arrangement the two terms in the square

bracket of (3.32) cancel for arbitrary external line momenta. So we can neglect the

contributions from graphs of the type (Fig.3.14).

3.4 Loop integrals that contain translation kernels

From the graphical representation introduced in section (3.2) we saw that the trans-

lation kernels generically contain a number of dashed line bubbles, which contribute

factors of the form 1/
∑

i p
2
i /p̂i, making the integral non-compatible to the standard

techniques. In addition to practical reasons we find the singularities of the kernel

need to be carefully defined in a few symmetrical graphs. For example the momenta
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q q

p p

Figure 3.15: A divergent symmetrical loop graph constructed from the translation

kernel

flowing in the legs of the kernel in self-energy graph (Fig.3.15) are required by con-

servation of momentum to be equal and opposite in pairs. In the denominator of

the kernel a naive iǫ prescription would give

∑

i

p2
i + iǫ

p̂i
=
p2 + iǫ

p̂
+
q2 + iǫ

q̂
+
q2 + iǫ

−q̂ +
p2 + iǫ

−p̂ = 0 (3.33)

The mirror symmetry of the graph causes a cancellation even for real values of

momenta. Although all dashed line bubble factors are eventually canceled through

the identity (3.28) when we combine graphs to give the physical amplitude, it is clear

that we need to give a prescription to singularities of the kernels in the complex plane

so that for arbitrary combinations of momenta {p1, p2, · · · pn} the kernels Υ12···n and

Ξk
12···n remain well-defined.

In equation (3.32) we showed that after integrating out the q̌ variable the sum

of residues picked up from propagators is given by the formula

1

−p̌1 − p̌2 + −qq̄+iǫ
q̂

− −(q+p1+p2)q+p1+p2+iǫ
bq+p̂1+p̂2

, (3.34)

which has the same on-shell limit as the bubble factor in the kernel

1
−p1p̄1

p̂1
+ −p2p̄2

p̂2
+ −qq̄

q̂
− −(q+p1+p2)q+p1+p2

bq+p̂1+p̂2
+ (infinitesimal imaginary part)

(3.35)

In the subsequent q̂ component integral we need to cope with terms of the form

−pp̄
p̂

+
−qq̄
q̂

− −(q + j)(q̄ + j̄)

q̂ + ĵ
± iξ

=
−pp̄
p̂

1

q̂

1

q̂ + ĵ

[
q̂ −

(
α(+) ∓ iǫ(+)(ξ)

)] [
q̂ −

(
α(−) ± iǫ(−)(ξ)

)]
, (3.36)
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where we introduced the symbol j = p1 + p2, p = p1 to simplify the above

expression and ξ denotes a positive infinitesimal term in propagator or in the kernel.

The two roots (α(+) ∓ iǫ(+)) and (α(−) ± iǫ(−)) are given by

α(±) =
−B ±

√
D

2A
, ǫ(±) =

ξ

2A2

(
±(B + A) +

√
D +

AC√
D

)
, (3.37)

where

A =
pp̄

p̂
ĵ, B = −pp̄

p̂
ĵ − qq̄ + (q + j)(q̄ + j̄),

C =
pp̄

p̂
ĵ − qq̄ − (q + j)(q̄ + j̄),

D = (pp̄)2 + (qq̄)2 + (q + j)2(q̄ + j̄)2

−2pp̄qq̄ − 2qq̄(q + j)(q̄ + j̄) − 2pp̄(q + j)(q̄ + j̄). (3.38)

Note that for real value momenta A, B, C and D are real.

When D < 0 the two roots are complex. So the singularities from the propagator

(3.34) are at a finite distance from the real line, which is the integration contour in

the q̂ integral. If before the process of sending p1 and p2 on-shell we choose to start

with off-shell continued parameters that are close enough to their on-shell values, the

singularities of the kernel (3.35) will also approach the singularities of (3.34) from

near by positions. Therefore for both sign options for the imaginary part of the

translation kernel, the singularities of the kernel move to their destinations in the

on-shell process without crossing through or deforming the contour. In the integral

(3.32) the two terms in the square bracket cancel when D < 0.

If on the other hand D > 0 then α(±) are real and the singularities of (3.34)

and (3.35) are infinitesimally close to the real line. From triangular inequality it is

straightforward to show that both ǫ(±) are positive, which indicates that (α(±)+iǫ(±))

are in the upper half plane and (α(±)− iǫ(±)) are in the lower half plane. In equation

(3.32) the sign of the imaginary part in the propagator term is determined by the sign

of the factor 1
q̂
− 1

q̂+ĵ
. When the step function θ(−q̂)θ(q̂+ ĵ) in (3.32) is distributed

to the propagator term its imaginary part is restricted to be negative, and the

propagator term can be expanded as
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q̂(q̂ + ĵ)(
−pp̄

p̂

) 1

q̂ −
(
α(+) + iǫ(+)(ξ)

) 1

q̂ −
(
α(−) − iǫ(−)(ξ)

)

∣∣∣∣∣∣
ξ=ǫ

, (3.39)

where we have one singularity α(−) − iǫ(−) in the lower half plane and the other

α(+) + iǫ(+) in the upper half plane. So if we assume that the translation kernel

(3.35) also has a negative imaginary part −iξ0, its singularities are given by the

same formulae as those of the propagator with ǫ replaced by ξ0.

1
−p1p̄1

p̂1
+ −p2p̄2

p̂2
+ −qq̄

q̂
− −(q+p1+p2)q+p1+p2

bq+p̂1+p̂2
− iξ0

=
q̂(q̂ + ĵ)(

−pp̄
p̂

) 1

q̂ −
(
α(+) + iǫ(+)(ξ)

) 1

q̂ −
(
α(−) − iǫ(−)(ξ)

)

∣∣∣∣∣∣
ξ=ξ0

. (3.40)

Apparently the singularities of the kernel are distributed in the complex plane

in the same way as the singularities of the propagator term, so the two terms in the

square bracket cancel. However in the integrand of (3.32) we have another possibility

where the propagator term is multiplied by the step functions θ(q̂)θ(−q̂ − ĵ), which

demands the imaginary part
(

1
q̂
− 1

q̂+ĵ

)
iǫ of the denominator to be positive. In this

term the pole near α(−) is in the upper half plane and the other one near α(+) is in

the lower half plane.

q̂(q̂ + ĵ)(
−pp̄

p̂

) 1

q̂ −
(
α(+) − iǫ(+)(ξ)

) 1

q̂ −
(
α(−) + iǫ(−)(ξ)

)

∣∣∣∣∣∣
ξ=ǫ

(3.41)

Therefore if we assume that the translation kernel (3.35) has a negative imaginary

part −iξ0, then the singularities of the kernel will be sitting at the opposite side of

the contour after we apply the on-shell condition. The two terms in the square

bracket can be simplified as

θ(q̂)θ(−q̂ − ĵ)
q̂(q̂ + ĵ)(

−pp̄
p̂

) 1

α(+) − α(−)

[
δ(q̂ − α(−)) − δ(q̂ − α(+))

]

= −2πiθ(q̂)θ(−q̂ − ĵ) δ(
−pp̄
p̂

+
−qq̄
q̂

− −(q + j)(q̄ + j̄)

q̂ + ĵ
), (3.42)
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where in the above equation we used the identity 1/(x−iǫ)−1/(x+iǫ) = 2πiδ(x)

to replace subtraction between terms by delta functions. Restoring the q̌ integral

by inserting a delta function which forces q̌ to take the value at the singularity we

picked, equation (3.32) can be rewritten as a double cut integral

ˆ

dDqθ(q̂)θ(−q̂ − ĵ) δ(q2) δ((q + j)2) f(q). (3.43)

Note that the step functions restrict that the loop momenta q1 = q and q2 =

−q − j be on-shell and flow forward in light-cone time. For example if in the loop

integral (3.32) −p1, −p2 correspond to incoming particle momenta and p3 to pn

correspond to outgoing momenta, the cut integral is equivalent to the scattering

amplitude < p3, · · · pn| − p1,−p2 > with two particle intermediate states inserted.

< p3, · · ·pn|q1, q2 >
dD−1q1
q̂1

dD−1q2
q̂2

< q1, q2| − p1,−p2 > (3.44)

In graphical representation the translation kernel that contains negative imagi-

nary part contributes as the cut graph (Fig.3.16(a)).

(a)

×
1

2

3

...

n

(b)
2

1

× 3

...

n

Figure 3.16: Kernel loop graphs contribute as cut diagrams

Following the same analysis as shown above, it is straightforward to show that

the positive imaginary part option for the translation kernel favours the other term

in the integrand which contains the step functions θ(−q̂)θ(q̂+ ĵ). For this choice the

kernel restricts q1 and q2 to flow backward in (light-cone) time and the contribution

is represented as in graph (Fig.3.16(b)). So in order to eliminate complicated loop

integrals constructed from translation kernels and to keep symmetric graphs such as
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(Fig.3.15) well-defined at the same time, we need to pick an iǫ prescription for the

kernel that switches sign according to the leg momenta and treats the legs of the

kernel in an unsymmetrical way to avoid cancellation. Note that once a prescription

has been decided the same translation kernel can also be used to construct other

graphs in which the legs of the kernel are linked to different objects. An option that

satisfies all of the requirements is to set up a priority system to determine the sign

of the imaginary part. Starting with the naive iǫ prescription with an infinitesimal

imaginary part associated with each term

−pp̄+ iǫp
p̂

+
−qq̄ + iǫq

q̂
− −(q + j)(q̄ + j̄) + iǫq+j

q̂ + ĵ

→ −pp̄
p̂

+
−qq̄
q̂

− −(q + j)(q̄ + j̄)

q̂ + ĵ
+ iξ, (3.45)

we redefine the overall sign of the imaginary part according to a number of rules:1

• If all of the momenta are 4-dimensional, we let the imaginary part be repre-

sented by the iǫ term associated with the A field line, iξ = iǫ/p̂.

1

The set of rules presented here can be summarised as assigning a hierarchy of ǫs. Generically

the dashed line bubble factor can be written as

p2
1 + iǫA
p̂1

+
p2
2 + iǫB
p̂2

+ · · · p
2
n + iǫB
p̂n

(3.46)

In the above expression we associate ǫA to the line from which the A field is translated and ǫB

to the legs that represent the B fields to avoid symmetry, and we have

ǫA = ǫ2 + ǫ1θ(µ
2), ǫB = ǫ3 + ǫ1θ(µ

2) (3.47)

where θ(µ2) is the step function of the momentum square in the extended D − 4 dimensions,

µ2 =
∑D/2−1

I=2 qI q̄I . The sign of the imaginary part of the translation kernel is determined by

the dominant term in when we impose the priority condition ǫ1 ≫ ǫ2 ≫ ǫ3. Note that we fix

the sign for every combination of momenta {p1, p2, · · · pn} according to the hierarchy instead of

keeping the sum iǫA

p̂1

+ iǫB

p̂2

+ · · · iǫB

p̂n
as the imaginary part. In the later case the sign can still

become undetermined because the proportionality between different p̂i change dramatically when

we integrate over loop momentum.
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• If a subset or all of the legs extend to D-dimensions and their hat-components

are of the same sign, then the imaginary part is determined by the iǫ part of

these terms, iξ = iǫ/q̂ or iξ = iǫ/(−q̂ − ĵ).

• If a subset or all of the legs extend to D-dimensions and the signs of their

hat-components disagree with each other, we assign an iǫ to every one of them

on an equal weighting. If the iǫ terms are not completely canceled, the sum

determines the imaginary part. iξ =
(

1
q̂
− 1

q̂+ĵ

)
iǫ. If on the other hand they

do cancel each other then we use the iǫ term from the A field line. iξ = iǫ/p̂.

Note that we use D-dimension extension as a way to distinguish legs contracted

in the loop and the legs contracted to form external lines. When the iǫ prescription

is modified by the above rules the imaginary part of the kernel in equation (3.32)

adjusts its sign to agree with that of the propagator term both when −q̂ and q̂ + ĵ

are positive or negative. So all loop integral of the form (3.32) can be neglected

and the translation kernels only contribute to the scattering amplitude as tadpole

graphs for practical calculations.

Applying the modified iǫ prescription we see that in the symmetrical graph

(Fig.3.15) the imaginary part is determined by the A field line and does not vanish.

Equation (3.33) is modified as

∑

i

p2
i + iǫ

p̂i

=
iǫ

p̂
(3.48)

So graph (Fig.3.15) vanishes because the translation kernel fails to generate a

propagator 1/p2 to cancel the suppressing factor from LSZ reduction.

3.4.1 Correction terms originating from the modification on

the iǫ prescription

Although the iǫ prescription just described allows us to get rid of loop integrals con-

structed from the kernel, the modified definition of the kernel also generate new ver-

tices in the transformed lagrangian. Because the problem caused by graph (Fig.3.15)
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originates from symmetry we assigned different ǫs to the legs associated with A fields

and B fields. A naive approach to realise this modification would be to adjust the

canonical transformation condition so that in the B field free lagrangian the ǫ is

different from that of the LCYM lagrangian.

L−+
A [A] + L++−[A] = L−+

B [B], (3.49)

where

L−+
A [A] = Ā(p2 + iǫA)A(p), L−+

B [B] = B̄(p2 + iǫB)B(p) (3.50)

However comparing terms with the same number of B fields from both sides of

the equation (3.49) results in contradictions. In particular, the lowest order term

on the left hand side of the equation is p2+iǫA

p̂
B(p) while on the right hand side we

have p2+iǫB

p̂
B(p). So instead we modify the ǫs starting from the B2 term.

L−+
A [A] + L++−[A] = L−+

A [B] + Lǫ[B] (3.51)

where an infinite number of infinitesimal correction terms are generated to keep

the transformation equation (3.51) self-consistent.

Lǫ[B] =

ˆ (
B̄ − Ā

)
i(ǫA − ǫB)B

=

(
∞∑

n=2

ˆ n∏

i=1

dD−1ki
k̂

p̂
Ξk

12···n B2 . . . B̄k . . .Bn

)
i (ǫA − ǫB)B(p) (3.52)

Following the graphical convention introduced in section (3.2) we use a gray

circle to represent the translation kernel Ξk contained in the new effective vertex

terms. We denote the infinitesimal factor (ǫA − ǫB) by a small double circle. These

new vertices generically can be neglected except in a few extremely divergent graphs

which we discuss in the next section.

The translation kernels are determined from the transformation condition (3.51).

In momentum space we have

p2 + iǫA
p̂

A(p) + i

ˆ

dD−1q[
q̄

q̂
A(q), A(p− q)]
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B B̄

B

B̄ B

B

......

B B̄ BB

B

Figure 3.17: Infinitesimal vertices

=

ˆ

dD−1q
q2 + iǫA

q̂
B(q)

δA(p)

δB(q)

+

∞∑

n=2

ˆ n∏

i=2

dD−1qi

(
n∑

j=2

i (ǫA − ǫB)

q̂j

)
Υ12...nB(q2) . . . B(qn)

=

ˆ

dD−1q
q2 + iǫA

q̂
B(q)

δA(p)

δB(q)
+
i (ǫA − ǫB)

q̂
B(q)

δA(p)

δB(q)
− i (ǫA − ǫB)

p̂
B(p). (3.53)

Matching both side of the equation we arrive at

Υ123 =

1
p̂1
V ++−(p2, p3, p1)

p2
1+iǫA

p̂1
+

p2
2+iǫB

p̂2
+

p2
3+iǫB

p̂3

. (3.54)

As described in footnote (1) in the modified definition the imaginary part of the

kernel is determined by a set of rules that picks the dominant term to replace the

sum of iǫ contributed from the legs. In the same spirit we use the factor (ǫA − ǫB)

in equation (3.52) to denote the infinitesimal correction required to balance the

transformation equation (3.51). The factor (ǫA − ǫB) is regarded as a function of

the same leg momenta {p1, p2, · · · pn} that appear in the Ξk
12···n to which the factor

(ǫA − ǫB) is multiplied to and its value can only be +ǫ or −ǫ which we determine by

matching kernels Ξk
12···n and Υ12···n of the same set of leg momenta {p1, p2, · · ·pn}

from both sides of the equation (3.51).

3.4.2 Self-energy graphs

In the LCYM theory the self-energy graphs contributing to the field renormalization

at one-loop level can contain MHV vertices. These graphs appear missing when we

canonically transform the lagrangian to absorb the MHV vertex. In section (3.3) we

showed that in the MHV lagrangian theory the MHV vertex factor can be provided

by the translation kernels in the form of tadpole graphs. The vertex factors in the
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〈
ĀĀ

〉
self-energy bubble in the original LCYM theory however are not explained

by this type of graph. As discussed in section (3.4) the symmetrical tadpole graph

(Fig.3.15) does not produce an effective propagator to cancel the LSZ factor so the

graph is non-contributing. We find the MHV vertices are resupplied from the new

vertices carrying infinitesimal correction ǫs. In this section we restore all self-energy

bubble diagrams in LCYM at one-loop from the viewpoint of the MHV lagrangian

theory.

(a)

+
−

−
+

++ −−A A

(b)

+
−

−
+

−− ++Ā Ā

(c)

+
−

−
+

+− −+Ā A

(d)

+−
+− −+Ā A

Figure 3.18: LCYM self-energy graphs

The 〈AA〉 self-energy graph (Fig.3.18(a)) is not altered in the MHV lagrangian

theory because it only contains 3-point MHV vertices. Using the standard Passarino-

Veltman reduction it is straightforward to show that the loop integral of a 〈AµAν〉
graph is proportional to the flat spacetime metric ηµν . Since the metric is off-diagonal

in light-cone coordinates graph (Fig3.18(a)) yields zero.

The
〈
ĀĀ

〉
graph on the other hand has a more complicated structure. Both

of the MHV factors in the original LCYM graph are supplied by the infinitesimal

vertex. When self-contracted the kernel factor attached to the new vertex generates

a singular factor 1/i (ǫA − ǫB) and cancels the infinitesimal factor carried by that

vertex. Expanding the translation kernels represented by gray circles into graphs

that contain MHV vertices and dashed line bubbles we find graphs (Fig.3.19(a), (b))

are replaced by the sum of (Fig.3.19 (c), (d), (e), (f)). Their contributions Y(c), Y(d),

Y(e), Y(f) can be read off as
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(a)

p

p

(b)

p

p

(c)

p

p

q
(d)

p

p

q

(e)

p

p

p− q

(f)

p

p

p− q

Figure 3.19:
〈
ĀĀ

〉
self-energy graphs

Y(c) = −
ˆ

dqIdq̄Idq̂
1

p2+iǫB

−p̂
+ q2+iǫB

q̂
+ (p−q)2+iǫA

p̂−q̂

× (θ(−q̂) − θ(q̂))
πi

q̂ (p̂− q̂)

×V ++− (p, q − p,−q) V ++− (−p, q, p− q) , (3.55)

Y(d) =

ˆ

dqIdq̄Idq̂

1
q̂

1
p̂−q̂

+ 1
q̂

1
q2+iǫA

q̂
+ p2+iǫB

−p̂
+ (p−q)2+iǫB

p̂−q̂

× (θ(−q̂)θ(p̂− q̂) − θ(q̂)θ(q̂ − p̂))
πi

q̂ (p̂− q̂)
V ++− (p, q − p,−q)

×V ++− (−p, q, p− q) , (3.56)
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Y(e) =

ˆ

dqIdq̄Idq̂
1

p2+iǫB

−p̂
+ q2+iǫB

q̂
+ (p−q)2+iǫA

p̂−q̂

× (θ(−q̂ + p̂) − θ(q̂ − p̂))
πi

q̂ (p̂− q̂)

×V ++− (p, q − p,−q) V ++− (−p, q, p− q) , (3.57)

Y(f) = −
ˆ

dqIdq̄Idq̂

1
p̂−q̂

1
p̂−q̂

+ 1
q̂

1
q2+iǫA

q̂
+ p2+iǫB

−p̂
+ (p−q)2+iǫB

p̂−q̂

× (θ(−q̂)θ(p̂− q̂) − θ(q̂)θ(q̂ − p̂))
πi

q̂ (p̂− q̂)

×V ++− (p, q − p,−q) V ++− (−p, q, p− q) . (3.58)

In the above expressions we integrated over the q̌ component loop momenta to

make them more easily combined. The sum of these four graphs is given by

Y(c) + Y(d) + Y(e) + Y(f) =

ˆ

dqIdq̄Idq̂
1

q2+iǫA

q̂
+ p2+iǫB

−p̂
+ (p−q)2+iǫB

p̂−q̂

× (θ(−q̂)θ(q̂ − p̂) − θ(q̂)θ(−q̂ + p̂))
πi

q̂ (p̂− q̂)

×V ++− (p, q − p,−q) V ++− (−p, q, p− q) , (3.59)

which is the same as the LCYM self-energy bubble with the q̌ component in-

tegrated over. Note that the loop integral (3.59) vanishes because the metric ηµν

does not have non-trivial diagonal elements. So in practice the new vertices can be

neglected. However the reason for vanishing came from the structure of the MHV

vertices instead of the infinitesimal nature of the new vertices.

The only non-trivial self-energy graphs are contained in
〈
ĀA

〉
, where MHV

vertex is implicitly provided by the 4-point MHV vertex. Recall that the MHV

vertices in the canonically transformed lagrangian are obtained from replacing the

A and Ā fields attached to the original LCYM vertices by terms in the expansion

formulae (3.15) and (3.16). In graphical notation the contributions are represented

by

In this chapter we saw that despite in the MHV lagrangian theory the scattering

amplitudes are given by Green functions of the new field variables attached with
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AĀ Ā A

Figure 3.20: Contributions to the
〈
ĀA

〉
at one-loop are given by factors in the MHV

vertex

translation kernels, which violate the equivalent theorem, in most situations these

kernels are suppressed in the on-shell limit. In the special cases where the kernel

generates a singular factor to counteract the suppression mostly the vertex factors

embedded in the kernel vanish for real value 4-dimensional null momenta. The only

exception for which all these mechanisms fail to protect the equivalence theorem are

the tadpole graphs. However as shown in section (3.4) the D-dimensional analytic

continuation of the kernel has a complicated formula and is not compatible to the

standard loop integration techniques. In the next chapter we shall present other in-

tegration measure preserving transformations which produce vertices with the same

helicity structure as the canonically transformed lagrangian.



Chapter 4

The measure-preserving

transformations that lead to MHV

lagrangians

The canonical transformation introduced in chapters 2 and 3 re-expresses the helicity

fields A and Ā as series expansions in the new field variables. In the expansion

formulae (2.72), (2.73) the powers of B fields increases while the powers of B̄ are held

fixed, so that in terms of the new variables the 3-point and the 4-point interactions in

the LCYM lagrangian are rewritten as an infinite number of new interaction terms,

all of them contain two negative helicity fields.

L−−+ [A] + L−−++ [A] = L−−+ [B] + L−−++ [B] + · · ·+ L−−+···+ [B] + · · · (4.1)

The Feynman rules derived from the new lagrangian allow us to construct scat-

tering amplitudes from vertices and propagators that have the same helicity feature

as prescribed by the CSW rules, with only a few exceptions coming from the transla-

tion kernels. In chapter 2 we show that at tree-level for generic values of leg momenta

the contributions from translation kernels are suppressed by the LSZ factors p2
i . So

in the on-shell limit an MHV amplitude only receives the contribution from the

vertex in the new lagrangian. In [24] it was argued that the new n-point vertex

can only differ from the Parke-Taylor formula by squares of leg momenta. Because

63
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the translation kernels (2.78), (2.79), 3-point, 4-point vertices in the original LCYM

lagrangian and the Parke-Taylor formula are all holomorphic, such factors must be

absent. This was verified by explicit calculations of the MHV vertices up to 5-points

by Ettle and Morris in [29].

We find the holomorphy of the translation kernels Υ and Ξk originates from

a choice implicitly taken in the transformation condition. In (2.74) the canonical

conjugate momentum ∂̂Āa(τ,x) was assumed to transform inversely to that of the

field variable Aa(τ,x). The Jacobian determinant of the change of variables is

field independent and does not introduce new factors to change the Feynman rules.

However we find the inverse transformation condition can be relaxed to f(∂)Āa(x)

with f(∂) an arbitrary function of differential operator. The transformation

f(∂)Āa(y) =

ˆ

dD
x
δBb(x)

δAa(y)
f(∂)B̄b(x) (4.2)

performed in the full D-dimensions also leaves the integration measure invariant.

Because the expansion formulae (4.3), (4.4) for the generalised measure-preserving

transformation have the same helicity structure as the expansions for the canon-

ical transformation, the vertices in the new lagrangian all have the same helicity

assignments as the effective vertices of the CSW rules.

A1 = B1 + Υ
′

123B2B3 + Υ
′

1234B2B3B4 + · · · (4.3)

f(∂1)Ā1 = f(∂1)B̄1 + Ξ
′2
123

(
f(∂2)B̄2

)
B3 + Ξ

′3
123B3

(
f(∂3)B̄3

)
+ · · · (4.4)

Nevertheless for a generic choice of f(∂) the translation kernels are not holomor-

phic and the MHV vertices are not described by the Parke-Taylor formula.

In chapter 3 we saw at loop-level the integral contribution from a symmetric

diagram (Fig.3.15) that contains translation kernels requires careful definition to its

singular behaviour. Generically the factor 1/ (
∑
p2

i /p̂i) included in the kernels also

makes the loop integral difficult to be carried out because standard methods such as

Passarino-Veltman reduction do not apply. For practical calculations both of these

problems can be avoided by a suitable choice of f(∂) in the transformation (4.2).

We divide this chapter into two parts. In section (4.0.3) to (4.0.4) we prove that

the integration measure is invariant under the transformation (4.2) for arbitrary f(∂)
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and derive the modified kernels. In section (4.1) we calculate directly to show that

in 4-dimensions, when the operator f(∂) is chosen to be ∂̂, the generic n-point MHV

vertex generated by the canonical transformation
{
A, ∂̂Ā

}
→
{
B, ∂̂B̄

}
matches

with the Parke-Taylor formula.

This work was published in [58].

4.0.3 Proof of the measure invariance under the transforma-

tion
{
A, f(∂)Ā

}
→
{
B, f(∂)B̄

}

Before computing the Jacobian we divide the transformation
{
A, f(∂)Ā

}
→
{
B, f(∂)B̄

}

into intermediate steps. The same transformation can be achieved if we first define

the mapping

A′a(x) = Aa(x), Ā′a(x) = f(∂)Āa(x) (4.5)

for every field variable labeled by the spacetime coordinates in D-dimensions and

colour index, and then take
{
A′

, Ā′
}
→
{
B′

, B̄′
}

under the condition

δĀ′a(x)

δB̄′b(y)
=
δB′b(y)

δA′a(x)
, (4.6)

and followed by the mapping
{
B′

, B̄′
}
→
{
B, f(∂)B̄

}

Bb(y) = B′b(y), B̄b(y) = f(∂)B̄′b(y) (4.7)

In analogy with the canonical transformation used in [24,29] we assume that the

field variable A′

is a functional of B′

in the form of a series expansion, and Ā′

is a

functional of B′

and B̄′

with the power of the bar-component field in every term fixed

to be one. However in both of the expansion formulae (4.3), (4.4) the functional

integrals run through the full D-dimensions instead of a constant light-cone time

surface.

The Jacobian for DADĀ → DA′ DĀ′ can be readily shown to be independent

of field variables.
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det




δAa(x)
δA′b(y)

0

0 δĀa(x)
δĀ′b(y)



 = det



 δa
b δ(x− y) 0

0 δa
b f(∂)−1δ(x− y)



 = const., (4.8)

provided the inverse of the operator f(∂) exists. Similarly, for the transformation

DB′ DB̄′ → DBDB̄ the Jacobian is

det




δB′a(x)
δBb(y)

0

0 δB̄′a(x)

δB̄b(y)



 = det



 δa
b δ(x− y) 0

0 δa
b f(∂)δ(x− y)



 = const. (4.9)

Multiplying the two determinants above yields the determinant of a unit matrix.

From the inverse relation (4.6) and the assumption that A′

is independent of B′

, we

have

det




δA′a(x)
δBb(y)

δĀ′a(x)

δB′b(y)

0 δĀ′a(x)

δB̄′b(y)



 = det(I) (4.10)

So the combination of three successive transformations
{
A, f(∂)Ā

}
→
{
A′

, Ā′
}
,

{
A′

, Ā′
}
→
{
B′

, B̄′
}

and
{
B′

, B̄′
}
→
{
B, f(∂)B̄

}
produces a unit Jacobian deter-

minant.

Using the three transformation relations we find the f(∂)Ā can be expressed as

f(∂)Āa(x) = Ā′a(x) =

ˆ

d4y
δĀ′a(x)

δB̄′b(y)
B̄′b(y) =

ˆ

d4y
δBb(y)

δAa(x)
f(∂)B̄b(y), (4.11)

which is the same as equation (4.2), therefore we have proved that the transfor-

mation
{
A, f(∂)Ā

}
→
{
B, f(∂)B̄

}
leaves the integration measure invariant for an

arbitrary field independent differential operator f(∂). Note that when substituting

Ā′a(x) in the above equation (4.11) we used δĀ′a(x) =
´

d4y δĀ′a(x)
δB̄′b(y)

δB̄′b(y) together

with the assumption that Ā′a(x) is linear in B̄′b(y), which allows us to interchange

the variations δĀ′a(x), δB̄′b(y) with Ā′a(x) and B̄′b(y).

4.0.4 Translation kernels and the CSW rules generated by

the measure-preserving transformation

The generalised transformation
{
A, f(∂)Ā

}
→
{
B, f(∂)B̄

}
can be applied on the

LCYM theory as introduced in section (2.5). We impose the condition that the
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transformation rearranges the self-dual part of the original lagrangian into a free

field theory

L−+ [A] + L−++ [A] = L−+ [B] . (4.12)

Stripping off a factor of f(∂)B̄ from both sides of (4.12) and inverting the vari-

ation δBb(y)/δAa(x), we arrive at the equation

f−1(∂)∂2A +

ˆ

dDx f−1(∂)V −++A2A3 =

ˆ

dDy
δA(x)

δB(y)
f−1(∂)∂2B, (4.13)

from which we can solve the generic n-th order kernel Υ12···n iteratively. The

translation kernel Ξk
12···n are then determined by the inverse transformation relation

(4.6). It is straightforward to show that in momentum space the new transformation

the formulae for Υ12···n and Ξk
12···n are given by the original formulae with the p̂i

dependence replaced by f(pi). For example, the lowest order translation kernel Υ123

is

Υ123 =

1
f(p3)

V −++(p1, p2, p3)

p2
1

f(p1)
− p2

2

f(p2)
− p2

3

f(p3)

. (4.14)

In section (3.3) we saw that when combined together the translation kernels Υ123,

Ξ2
123 and Ξ3

123 derived from the canonical transformation reproduce the absorbed

LCYM MHV vertex (Fig.3.10 (a) (b) (c)). Since the cancellation of the bubble

factors 1/(
∑
p2

i /p̂i) did not depend on specific properties of p̂ we see that combining

the generalised kernels with all p̂ replaced by f(p) yields the same result. The same

argument also applies to more complicated identities between kernel and LCYM

graphs such as the ones shown in appendix A. Similarly, we can recombine graphs

from the lagrangian which underwent generalised measure-preserving transformation

to form LCYM graphs since the canonically transformed lagrangian is known to

reproduce the LCYM amplitudes as long as kernels are included in the formalism.

As noted at the beginning of this chapter we can simplify loop calculations by

choosing a suitable function f(p). One of the options is to have f(p) = p2 so that in

the denominator
∑

i (±p2
i /f(pi)) becomes a numerical factor. We see for this option,

the vertex attached with a small dot in the graphical notation simply represents the
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V −++ MHV vertex multiplied by the propagator associated with the dotted line, and

the dash line bubble represents a numerical factor. So the n-th order translation

kernel Υ12···n is proportional to the sum of contributions from graphs that are built

from propagators and MHV vertices. Every such graph is proportional to a Feynman

graph which contributes to the corresponding all-plus-except-one-minus amplitude.

In 4-dimensions, we can apply BCFW recursion on the iterative formula which

defines the translation kernel and repeat the argument used in section (2.4.1) to

show that these graphs vanish on-shell for real values of momenta. In D-dimensions

however, the 1/f(pi) attached to the MHV vertex cancels the LSZ factor p2
i and

generically the kernels are nonzero in the on-shell limit. This is not unexpected

because in D-dimensions the all-plus-except-one-minus scattering amplitudes are

known to be nonzero even at tree-level [57] and after the canonical transformation

these amplitudes can only be constructed from translation kernels. For f(p) = p2

the kernels are singular only when the p2
i associated to the dotted line is zero. This

type of singularity is fixed by the standard iǫ prescription. The kernels are also well

defined in symmetrical graphs like ((Fig.3.15) so we do not need to distinguish the

iǫ in the A field and the B field theories or to introduce new vertices to explain the

contributions to these graphs.

Another option is to choose f(p) = 1. In this option the denominator of a kernel

becomes (p2
1 + iǫ) −∑i6=1(p

2
i + iǫ) and remains nonzero for real value momenta if

we adopt the usual iǫ prescription. Although the denominator does not cancel the

suppressing LSZ factor p2
i directly for generic external line momenta, as discussed in

chapter 3, at tree-level when we apply the on-shell conditions to remove the p2
i in the

denominators of a kernel one by one, there is always a last p2
i term left to cancel the

LSZ factor, leaving one of the graphs non-vanishing. So the D-dimensional all-plus-

except-one-minus amplitudes are generically nonzero. When the legs of a kernel are

contracted in a loop, the denominator of the kernel (p2
1 + iǫ)−∑i6=1(p

2
i + iǫ) can be

combined with propagators using the standard Feynman parameter technique, and

the loop integral can be straightforwardly computed.
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4.1 MHV vertices in 4 dimensions and the Parke-

Taylor formula

In the previous sections we saw that a generic change of variables which takes the

form as the expansions (4.3), (4.4) and satisfies the inverse variation relation (4.2)

preserves the integration measure of the functional integral. The vertices in the

new lagrangian have the same helicity structure as the effective vertices used in

CSW rules. Nevertheless an arbitrary choice of the operator f(∂) does not produce

holomorphic translation kernels and the vertices generically can not be summarised

by a simple formula.

For the canonical transformation in 4-dimensions
{
A, ∂̂Ā

}
→
{
B, ∂̂B̄

}
, Ettle

and Morris have shown from a recursive method that the n-th order kernel can be

summarised by a simple formula [29].

A1

B2

....

Bn

A1 →
1̂ 3̂4̂ · · · n̂− 1

(23) · · · (n− 1, n)
B2B3 · · · Bn (4.15)

Similarly, the Ā expansion was shown to have the form

1̂Ā1

...
B2

...
k̂ B̄k

Bn

1̂Ā1 →
k̂ 3̂4̂ · · · n̂− 1

(23) · · · (n− 1, n)
B2B3 · · ·

(
k̂B̄k

)
· · · Bn (4.16)

In the following sections we shall directly show that when the helicity fields A,

Ā attached to the 3-point and the 4-point vertex terms in the LCYM lagrangian are

transformed according to the above formulae (4.15), (4.16) the new vertices have

the same form as the Parke-Taylor formula. In order to keep the notation simple,
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first we shall prove that when the negative helicity gluons are adjacent to each other

both the MHV vertices described above and the Parke-Taylor formula 〈12〉4

〈12〉〈23〉···〈n1〉

can be spanned by terms of the form

1

(23) (34) · · · (k − 1, k)
× 1

(k + 1, k + 2) · · · (m− 1, m)

× 1

(m+ 1, m+ 2) · · · (l − 1, l)
× 1

(l + 1, l + 2) · · · (n, 1)
(4.17)

together with terms of the form

(12)

(23) (34) · · · (k − 1, k)
× 1

(k + 1, k + 2) · · · (l − 1, l)
× 1

(l + 1, l + 2) · · · (n, 1)
, (4.18)

then we shall check the coefficients of the expansion agree with each other. At

the end of this chapter we extend the method to non-adjacent vertices. The de-

nominators of (4.17) and (4.18) contain round brackets of adjacent legs arranged by

the following rules: To obtain the products in (4.17) or (4.18) we consider chopping

the cyclically labeled legs into three or four sets respectively. For example, for the

5-point case the legs can be arranged as {1}{2, 3}{4, 5}. We then write down the

sequential products of brackets using labels in each set. ((23) and (45) in this ex-

ample.) If there happens to be only one number in the set we simply drop off the

corresponding leg.

The vertices and the Parke-Taylor formula are regarded as functions of tilde

component variables p̃ contained in the round brackets while expansion coefficients

depend only on hat components p̂. For example, the 5-point Parke-Taylor formula

can be rewritten as

(12)4

(12) (23) (34) (45) (51)
= A

(12)

(23) (34)
+B

(12)

(23) (45)
+ C

(12)

(23) (51)

+D
(12)

(34) (45)
+ E

(12)

(34) (51)
+ F

(12)

(45) (51)

+G
1

(23)
+H

1

(34)
+ I

1

(45)
+ J

1

(51)
(4.19)

The coefficients can be easily determined by the methods frequently used in

partial fraction. To calculate A we let (23) and (34) be zero. These conditions allow

us to solve 3̃ and 4̃ in terms of 2̃.
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3̃ =
3̂

2̂
2̃, 4̃ =

4̂

2̂
2̃ (4.20)

Brackets formed by momenta 3 and 4 with other legs p q can therefore be replaced

by brackets of 2 with p q.

(3, p) =
3̂

2̂
(2, p) , (4, q) =

4̂

2̂
(2, q) (4.21)

Together with momentum conservation the remaining brackets (45) and (51)

can be expressed in terms of (12). Matching both sides of the equation gives us

coefficient A. For terms like G that do not have (12) in the numerator we apply the

conditions that (12) and (23) are zero. The other coefficients are then determined

through the same procedure.

A =
2̂3̂5̂

1̂
(
2̂ + 3̂ + 4̂

) , B =
2̂
(
1̂ + 2̂ + 3̂

)2

1̂
(
2̂ + 3̂

) , C =
1̂2̂4̂(

1̂ + 5̂
) (

2̂ + 3̂
) ,

D =
4̂
(
3̂ + 4̂ + 5̂

)2

1̂2̂
, E =

−1̂4̂
(
1̂ + 2̂ + 5̂

)2

2̂3̂
(
1̂ + 5̂

) , F =
1̂3̂5̂

2̂
(
1̂ + 4̂ + 5̂

) (4.22)

Note that the Parke-Taylor formula contains a (12) dependence in the numerator

so the expansion coefficients G, H , I, J are all zero.

G = H = I = J = 0 (4.23)

At the end of the argument we shall show this is generally also true for the n-

point MHV vertex, but for convenience for the moment we will keep them in the

expansion.

4.1.1 Partial fraction expansion

To justify the expansion we need to show (4.17) and (4.18) are sufficient for de-

scribing MHV vertices and Parke-Taylor formula. An n-point vertex in the MHV

lagrangian theory consists of terms split from the 3-point and 4-point LCYM ver-

tices. Translating A and Ā fields associated with each leg into B and B̄ produces

a series of bracket product. The contributions from the 4-point vertex (Fig.4.1) are

naturally of the form (4.17). For vertices originate from the 3-point vertex (Fig.4.2),
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using the bilinear property the round bracket (1 + · · · (l + 1) , 2 + · · ·k) in the nu-

merator can be expanded into brackets of single leg momenta (p, q) with p and q

running through 1 to l + 1 and 2 to k respectively. Each term (p, q) can then be

rewritten as a linear combination of brackets of adjacent momenta by noticing that

(p, q)

p̂q̂
=
q̃

q̂
− p̃

p̂
=
q̃

q̂
− p̃− 1

p̂− 1
+
p̃− 1

p̂− 1
− p̃

p̂

=
(p− 1, q)

p̂− 1q̂
+

(p, p− 1)

p̂p̂− 1
(4.24)

Applying (4.24) repeatedly p and q can be moved toward 1 and 2, resulting in a

term of the form (4.18) while brackets of adjacent momenta produced in the process

cancel brackets in the denominator, resulting terms of the form (4.17).

1
n
l + 1
..

l

m+ 1
...

k + 1

m
...

k

2
...

Figure 4.1: Translated 4-point vertex

1
n
l + 1
..

k + 1

l

...

k

2
...

Figure 4.2: Translated 3-point vertex

To prove that the Parke-Taylor formula can also be spanned by (4.17) and (4.18)

we need to express three of the four brackets (12) in the numerator of the Parke-

Taylor formula as a linear combination of products (ab) (cd) (ef) which contains

three different brackets of adjacent legs, so that after cancellations the product

(ab) (cd) (ef) divide the cyclic product (12) (23) · · · (n1) in the denominator into

three sequential parts, leaving one bracket (12) in the numerator.
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Because (12) is itself an adjacent bracket, one (12) automatically cancels with

the denominator. The other two (12) brackets can be replaced by other different

brackets by first noticing that the momentum labels are defined cyclically. So from

the definition of the round bracket we have the identity

n∑

k=1

(k, k + 1)

k̂k̂ + 1
=

n∑

k=1

(
k̃ + 1

k̂ + 1
− k̃

k̂

)
= 0 (4.25)

In the case of a 5-point vertex, the identity reads

(12)

1̂2̂
+

(23)

2̂3̂
+

(34)

3̂4̂
+

(45)

4̂5̂
+

(51)

5̂1̂
= 0 (4.26)

Another identity which allows us to substitute the round bracket (12) comes from

momentum conservation. (12) + (32) + (42) + · · · (n2) = 0 Using equation (4.24)

again to convert all brackets into adjacent ones, we obtain

(12) =

(

1 +
4̂

3̂
+

5̂

3̂

)

(23) +

(
2̂

3̂
+

2̂5̂

3̂4̂

)

(34) +
2̂

4̂
(45) (4.27)

The above two identities are both linear equations of the form

(12) = a1 (23) + a2 (34) + a3 (45) + a4 (51) , (4.28)

(12) = b1 (23) + b2 (34) + b3 (45) + b4 (51) . (4.29)

where the coefficients depends only on hat component variables. Multiplying

equation (4.28) by (12), we obtain

(12)2 = a1 (12) (23) + a2 (12) (34) + a3 (12) (45) + a4 (12) (51) . (4.30)

The brackets (12) on the right hand side of the equation (4.30) can be further

replaced by linear combinations of the brackets other than the one they are mul-

tiplied to. For example, for the term (12) (23) we used the identities (4.28) and

(4.29) as simultaneous equations and solve (12) and (23) in terms of (34), (45), (51).

Repeating the same procedure for other terms, we have

(12)2 =
(a1b2 − a2b1)

2

(a1 − b1) (a2 − b2)
(23) (34) +

(a2b3 − a3b2)
2

(a2 − b2) (a3 − b3)
(34) (45)
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+
(a3b4 − a4b3)

2

(a3 − b3) (a4 − b4)
(45) (51) +

(a4b1 − a1b4)
2

(a4 − b4) (a1 − b1)
(51) (23)

+
(a1b3 − a3b1)

2

(a1 − b1) (a3 − b3)
(23) (45) +

(a2b4 − a4b2)
2

(a2 − b2) (a4 − b4)
(34) (51) (4.31)

where the coefficients are

a1 = − 1̂

3̂
, a2 = − 1̂2̂

3̂4̂
, a3 = − 1̂2̂

4̂5̂
, a4 = − 2̂

5̂
(4.32)

b1 = 1 +
4̂

3̂
+

5̂

3̂
, b2 =

2̂

3̂
+

2̂5̂

3̂4̂
, b3 =

2̂

4̂
, b4 = 0 (4.33)

Similarly, for the n-point Parke-Taylor formula for adjacent negative gluons we

use the cyclic identity (4.25) and momentum conservation to re-express (12)3 as

three different adjacent brackets.

4.1.2 Matching expansion coefficients

Since the MHV vertices and the Parke-Taylor formula are spanned by functions of

round brackets with coefficients depending on hat components only, as in the 5-

point case shown at the beginning of this section we are free to adjust all of the

tilde component variables on both sides of the expansion equation to solve for the

coefficients. First let us check coefficients of (4.18). For the n-point MHV vertex, the

contributions to (4.18) come solely from terms translated from the 3-point LCYM

vertex (Fig.4.2). Following the graphical conventions introduced in [28] we read off

the contribution as

2̂

2̂ + · · · k̂
2̂ 3̂ · · · k̂ − 1

(23) · · · (k − 1, k)

× 1̂

l̂ + 1 + · · · 1̂
k̂ + 2 · · · l̂ − 1

(l + 1, l + 2) · · · (n1)

1̂ l̂ + 2 · · · n̂
(k + 1, k + 2) · · · (l − 1, l)

× k̂ + 1 + · · · l̂(
l̂ + 1 + · · · 1̂

)(
2̂ + · · · k̂

) ((l + 1) + · · · 1, 2 + · · ·k) (4.34)

Using conditions

k̃ =
k̂

k̂ − 1
k̃ − 1, · · · , 3̃ =

3̂

2̂
2̃ (4.35)
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l̃ + 1 =
l̂ + 1

l̂ + 2
l̃ + 2, · · · , ñ =

n̂

1̂
1̃ (4.36)

k̃ + 1 =
k̂ + 1

k̂ + 2
k̃ + 2, · · · , l̃ − 1 =

l̂ − 1

l̂
l̃ (4.37)

and conservation of momentum

l̃ = −1̃ − 2̃ − · · · − l̃ − 1 − l̃ + 1 · · · − ñ (4.38)

the numerator simplifies to

((l + 1) + · · · 1, 2 + · · ·k) =

(
l̂ + 1 + · · · 1̂

)(
2̂ + · · · k̂

)

1̂2̂
(12) (4.39)

Similarly, for the expanded Parke-Taylor formula we have

(k, k + 1) =
k̂

2̂

k̂ + 1

l̂

(
l̂ + 1 + · · · 1̂

)

1̂

l̂(
k̂ + 1 + · · · l̂

) (12) (4.40)

(l, l + 1) =
l̂ + 1

1̂

(
k̂ + · · · 2̂

)

2̂

l̂(
k̂ + 1 + · · · l̂

) (12) (4.41)

Collecting terms, both (4.34) and the Parke-Taylor formula give the same coef-

ficient for (4.18).

1̂2̂ · · · n̂
k̂k̂ + 1 l̂ l̂ + 1

(
k̂ + 1 + · · · l̂

)2

(
k̂ + · · · 2̂

)(
l̂ + 1 + · · · 1̂

) (4.42)

As for the coefficient of terms (4.17), we receive contributions from graphs trans-

lated from the 4-point vertex (Fig.4.1), for which the translation kernels from the

legs yield factors of the form (4.17), along with contributions from graphs using the

3-point vertex as backbone (Fig.4.3 (a) to (c)), in which case the bracket in the nu-

merator cancels another bracket coming from the kernel and splits the denominator

into two sets of continuous bracket products.

For simplicity we extract the common factors from each graph:

2̂ 3̂ · · · k̂ − 1

(23) · · · (k − 1, k)
× k̂ + 2 · · · m̂− 1

(k, k + 1) · · · (m− 1, m)

× m̂+ 2 · · · l̂ − 1

(m,m+ 1) · · · (l − 1, l)
× 1̂ l̂ + 2 · · · n̂

(l, l + 1) · · · (n, 1)
(4.43)
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(a)

1
l + 1 l

m+ 1

k + 1

m

...

k

2
..
. (b)

1

l + 1

...

m+ 1

l

...

m

2
k

k + 1

(c)

1
...
l + 1

k + 1

m+ 1
m

l

k

2
..
.

Figure 4.3: Contributions from the 3-point vertex

The remaining factors are then simplified by partial fractions. For graph (a),

this is

l̂ l̂ + 1

(l, l + 1)

((m+ 1) + · · · 1, 2 + · · ·k)(
m̂+ 1 + · · · 1̂

)(
2̂ + · · · k̂

)
1̂2̂
(
k̂ + 1 + · · · m̂

)

(
m̂+ 1 + · · · 1̂

)(
2̂ + · · · k̂

) =
1̂2̂

(a+ d)2

c2d

b
,

(4.44)

where a, b, c and d are the momenta carried by internal lines:

a = l̂ + 1 + · · ·+ n̂ + 1̂ (4.45)

b = 2̂ + 3̂ + · · · + k̂ (4.46)

c = k̂ + 1 + · · ·+ m̂ (4.47)

d = m̂+ 1 + · · ·+ l̂ (4.48)

Similarly for graph (b) we have

k̂ k̂ + 1

(k, k + 1)

((l + 1) + · · · 1, 2 + · · ·m)(
l̂ + 1 + · · · 1̂

) (
2̂ + · · · m̂

)
1̂2̂
(
m̂+ 1 + · · · l̂

)

(
l̂ + 1 + · · · 1̂

) (
2̂ + · · · m̂

) =
1̂2̂

(a+ d)2

cd2

a

(4.49)

After simplification graph (c) is proportional to (12), therefore vanishes
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((l + 1) + · · · 1, 2 + · · ·k) =
l̂ + 1 + · · · 1̂

1̂

2̂ + · · · k̂
2̂

(12) = 0 (4.50)

Putting (4.44) and (4.49) together cancels the contribution from (Fig. 1)

− 1̂2̂

(a + d)2

cd

ab
(ac+ bd) (4.51)

we thus verified that all of the expansion coefficients for terms of the form (4.17)

are zeros, as claimed at the beginning of this section.

4.1.3 MHV vertices with non-adjacent negative helicity glu-

ons

For the cases where negative gluons are not adjacent to each other, we span the

MHV vertices and the Parke-Taylor formula by

1

(h+ 1, h+ 2) · · · (k − 1, k)
× 1

(k + 1, k + 2) · · · (m− 1, m)

× 1

(m+ 1, m+ 2) · · · (l − 1, l)
× 1

(l + 1, l + 2) · · · (h− 1, h)
(4.52)

and

(i j)

(l + 1, l + 2) · · · (k − 1, k)
× 1

(k + 1, k + 2) · · · (m− 1, m)

× 1

(m+ 1, m+ 2) · · · (l − 1, l)
. (4.53)

From the formulae for translation kernels and the LCYM vertices we see the

MHV vertices produced by the canonical transformation are readily given by linear

combinations of terms of the form (4.52), (4.53). To justify that the Parke-Taylor

formula with non-adjacent negative helicity gluons can also be spanned by these two

types of products, again like in the adjacent case we need to show that we can express

three of the round brackets (i j) in the numerator as a linear combination of three

different bracket products of adjacent legs (ab) (cd) (ef). These three brackets then

split the cyclic product in the denominator into three sequential products, creating

a term described by (4.53). However since i and j are not adjacent we can not use
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(i j) to cancel the bracket in the denominator directly, instead we use the identity

(4.24) to replace (i j) by brackets of adjacent legs. For example, in the case of a

5-point Parke-Taylor formula, if (i j) = (13), we have

(13)

1̂3̂
=

(12)

1̂2̂
+

(23)

2̂3̂
. (4.54)

Note that because the labels of momenta are assigned cyclically, using the iden-

tity (4.25) we can express (i j) as brackets of legs which come from the opposite side

of those in (4.54).

(13)

1̂3̂
=

(12)

1̂2̂
+

(23)

2̂3̂
= −(34)

3̂4̂
− (45)

4̂5̂
− (51)

5̂1̂
(4.55)

The above equation gives us one more condition than in the case when the

negative helicity gluons are adjacent. Combining (4.54), (4.55) and momentum

conservation

(13) + (23) + (43) + (53) = 0 (4.56)

we have three identities which allow us to express (13) in terms of brackets of

adjacent legs.

(13) = a1 (12) + a2 (23) + · · ·a5 (51) , (4.57)

(13) = b1 (12) + b2 (23) + · · · b5 (51) , (4.58)

(13) = c1 (12) + c2 (23) + · · · c5 (51) . (4.59)

Multiplying both sides of the equation (4.57) by a bracket (13), and substituting

the brackets (13) on the right hand side by the solution to the simultaneous equations

(4.57) and (4.58), we obtain an identity relating (13)2 to a linear combination of

products of two different brackets (ab) (cd). Multiplying this identity by (13) again

and substituting the brackets (13) on the right hand side by the solution to the

three simultaneous equations (4.57), (4.58), (4.59) yields the identity relating (13)3

to a linear combination of (ab) (cd) (ef), which allows us to express the Parke-Taylor

formula for non-adjacent negative helicity gluons as terms of the form (4.53). As in

the adjacent case we find the expansion coefficients of the n-point MHV vertex and

the Parke-Taylor formula agree with each other.



Chapter 5

Generating MHV super-vertices for

the N = 1 and the N = 4 SYM

theories

Recently, the BCFW recursion method introduced in section (2.4) has been gener-

alised to tree-level amplitude computations in N = 4 supersymmetry Yang-Mills

theory [21]. Instead of shifting individual scattering amplitudes labeled by particle

species and momenta, in the supersymmetry generalisation of the BCFW recur-

sion one considers super-amplitudes whose initial and final states are described by

momentum space super-wavefunctions. The super-wavefunction contains a super-

position of all the single particle states in the N = 4 supermultiplet, each of them

being tagged by bookkeeping Grassmann variables ηA,

Φ(p, η) = G+(p) + ηAΓA(p) +
1

2
ηAηBS

AB +
1

3!
ηAηBηCǫ

ABCDΓ̄D(p)

+
1

4!
ηAηBηCηDǫ

ABCDG−(p). (5.1)

The conventional scattering amplitude is obtained from differentiating the super-

amplitude with respect to the appropriate Grassmann variables which are deter-

mined by the species of the particles participating the scattering event. For example

differentiating Nair’s formula for the N = 4 MHV super-amplitude

79
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AMHV
N=4 (1, 2, · · ·n) =

1

〈12〉 〈23〉 · · · 〈n1〉
4∏

A=1

(

n∑

i,j=1

〈i j〉 ηAiηAj) (5.2)

with respect to ηAi and ηAj, from A = 1 to 4, yields the familiar Parke-Taylor

formula for gluon scattering, where the i-th and j-th legs are associated with nega-

tive helicity gluons. The supersymmetry BCFW recursion formula can be derived

from applying Cauchy’s theorem to the super-amplitude with leg momenta shifted

according to (2.42) and (2.43) as in the pure Yang-Mills theory, together with the

Grassmann variables associated with the selected leg shifted as ηA 1 → ηA 1 + zηA n.

In [8] Witten introduced an on-shell representation for N = 4 SUSY generators

Qα A = λαηA, Q̄
A
α̇ = λ̄α̇

∂

∂ηA

, (5.3)

and showed that Nair’s MHV super-amplitude formula is superconformal invari-

ant. However the connection between the standard of SUSY generators and the

representation (5.3) is missing. The existence of a supersymmetry BCFW recur-

sion relation that allows us to combine super-amplitudes labeled by η into super-

amplitudes with more scattering particles also suggests that a corresponding set of

supersymmetric CSW rules can be built.

In this chapter we generalise the canonical transformation introduced in section

(2.5) to supersymmetric theories and derive the corresponding MHV lagrangians

that directly yield super-amplitudes such as (5.2) from Feynman rules. In sections

(5.1) to (5.4.2) we first test the method on the N = 1 SYM action. We show that in

the light-cone gauge the standard supersymmetry Yang-Mills lagrangian built from

vector superfields can be rewritten as a functional of the chiral and anti-chiral super-

fields given by Brink, Lindgren and Nilsson [32]. Then we perform a Grassmannian

analogue to the Fourier transformation which replaces the standard super-space “co-

ordinate” variables θ, θ̄ in the superfields by Grassmannian “momentum” η (section

5.2). We compute the generic n-point MHV super-amplitude for N = 1 SYM theory

by applying BCFW recursion technique in section (5.3.1).

In section (5.4) we canonically transform N = 1 chiral superfields to produce an

MHV lagrangian. The formula for translation kernel of the superfield automatically
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summarises the kernels of gluon and gluino fields,
{
A, ∂̂Ā

}
and

{
Λ, Λ̄

}
, which are

regarded as components of the superfield. We develop a set of off-shell manifestly

supersymmetric CSW rules from functional integral over chiral superfield variables.

In section (5.4.1) we use the method introduced in chapter 4 to prove that the N = 1

MHV super-vertices are given by the simple formula

V MHV
N=1 (1+, 2+ . . . i−, j−, . . . n+) =

〈i j〉3
〈12〉 〈23〉 · · · 〈n1〉(

n∑

i,j=1

〈i j〉 ηiηj). (5.4)

Finally, in section (5.5) we extend the method described above to N = 4 super

Yang-Mills lagrangian in light-cone gauge and show that the MHV super-vertices

have the same form as Nair’s formula (5.2), in which the Grassmann variables ηA

are interpreted as the super-space momenta.

This work was published in [49].

5.1 Chiral construction of the N = 1 SYM lagrangian

In the textbook approach, the supersymmetric non-abelian gauge theory is con-

structed from the fieldstrength of a vector superfield. In Wess-Zumino gauge the

vector superfield contains gluon, gluino and an auxiliary field Aµ, ψα and D. The

gauge invariant supersymmetric action is given by

S =
1

4g2

ˆ

d4x d2θ tr (W αWα + h.c.)

=
−16

g2

ˆ

d4x tr

(
1

4
F µνFµν + iψ̄σ̄µDµψ +

1

2
D2

)
. (5.5)

Under a SUSY transformation we have

δξAµ = ξ̄σ̄µψ + ψ̄σ̄µξ, (5.6)

δξψα = − i

2
σµσ̄νξ F

µν + ξαD, (5.7)

δξD = −i(ξ̄σ̄µDµψ −Dµψ̄σ̄
µξ), (5.8)

and the SUSY transformation for a given parameter ξα is defined by δξAµ =

i(ξQ+ Q̄ξ̄)Aµ, where Qα =



 Q0

Q1



 and Q̄α̇ =



 Q̄0̇

Q̄1̇



 are representations of the
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SUSY generators. To arrive at an MHV lagrangian we can pick a convenient gauge,

integrate over unphysical degrees of freedom, and canonically transform the helicity

gluon and gluino fields separately. However the underlying supersymmetry implies

that we can organise these physical fields into a conceptually simpler structure. In

pursuit of this idea we may be tempted to apply the canonical transformation di-

rectly to the vector superfield, but the vector superfield depends on a large number

of unphysical degrees of freedom and the lagrangian does not have an easily manip-

ulated structure when it is written in terms of vector superfields. As a first step

of the simplification, we extract the ξ0 and the ξ̄0̇ dependent terms from equations

(5.6) to (5.8). These equations give the effect of the SUSY generators Q1 and Q̄1̇

operating on field components. We note that on the right hand side the quadratic

terms all depends on the commutator of Â with other fields. In light-cone gauge the

physical fields are closed under this subalgebra.

Q1A = iΛ, Q̄1̇A = 0, Q1Ā = 0, Q̄1̇Ā = −iΛ̄, (5.9)

Q1Λ = 0, Q̄1̇Λ = ∂̂A, Q1Λ̄ = −∂̂Ā, Q̄1̇Λ̄ = 0, (5.10)

where we used ψα =



 T̄

Λ̄



, ψ̄α̇ =



 T

Λ



 to denote gluino fields. With the

quadratic terms eliminated by gauge condition, the transformations (5.9) and (5.10)

are the same as their asymptotic forms.

The closure of SUSY subalgebra allows us to define chiral superfields without

the help of auxiliary fields [32].

Φ(x, θ) = A(y) + iθΛ(y), (5.11)

Φ̄(x, θ) = Ā(ȳ) + iθ̄ Λ̄(ȳ), (5.12)

where gluons and gluinos with positive or negative helicities are enclosed into the

same chiral or anti-chiral superfields, and y = (x+, x−+ 1
2
iθθ̄, xz , xz̄). We introduce

a shorthand notation for representations of the SUSY covariant derivatives and

generators D1 = d, D̄1̇ = d̄, Q1 = q, and Q̄1̇ = q̄, which stand for

d =
∂

∂θ
+
i

2
θ̄∂̂ , d̄ = − ∂

∂θ̄
− i

2
θ∂̂, (5.13)
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q =
∂

∂θ
− i

2
θ̄∂̂ , q̄ = − ∂

∂θ̄
+
i

2
θ∂̂. (5.14)

The definitions (5.11) and (5.12) satisfy the chiral constraints d̄Φ = d Φ̄ = 0.

Operating q, q̄ on Φ and Φ̄ reproduces the same effects as the transformation defined

in (5.9) and (5.10) so Φ and Φ̄ are legitimate chiral and anti-chiral superfields.1

Using the chiral superfields just defined, we can construct a SUSY invariant

lagrangian as a D-term integral

S =
−4i

g2

ˆ

d4x dθ dθ̄ tr

(
Φ̄
∂2

∂̂
Φ + [Φ,

∂̄

∂̂
Φ]Φ̄ + [Φ̄,

∂

∂̂
Φ̄]Φ − i

[
Φ, d̄ Φ̄

] 1

∂̂2

[
Φ̄, dΦ

])

(5.16)

It is straightforward to verify that after integrating θ, θ̄ equation (5.16) is the

same as the standard N = 1 SYM lagrangian (5.5) with Â eliminated by light-

cone gauge condition and all of the unphysical fields integrated out. This is not

unexpected because to the lowest order in θ and θ̄ the chiral superfield lagrangian

is the same as the pure Yang-Mills lagrangian in light-cone gauge. The rest of the

terms are automatically determined by supersymmetry. A similar method was used

by Ananth, Brink, Lindgren, Nilsson and Ramond to derive the N = 4 light-cone

SYM lagrangian dimensionally reduced from 10-dimensions [32, 50].

1

As in the case of pure Yang-Mills theory discussed in chapter 2, we can also identify the physical

part of the gluino field from the spinor point of view. A generic off-shell gluino spinor field ψα can

be spanned by the holomorphic 2-spinors of its momentum (2.55), (2.56).

ψα = ηαΛ̄(η) + λαΛ̄(λ), (5.15)

where Pαα̇ = ηαη̄α̇ + λαλ̄α̇, and similarly we span the ψ̄α̇ by the anti-holomorphic spinors.

Substituting (5.15) and (2.61) into the the formulae for SUSY transformation (5.6) to (5.8) it

is easy to see that A(+), Ā(−), Λ(λ) and Λ̄(λ) satisfy the same relations as the fields in light-

cone coordinates (5.9) and (5.10). Furthermore, the representations of the SUSY generators and

covariant derivatives can also be spanned by the same basis. The q, d operators defined in (5.13),

(5.14) correspond to 〈Qη〉 / 〈λη〉, 〈Dη〉 / 〈λη〉. The Grassmann scalars θ, θ̄ used in (5.13), (5.14)

are related to the standard Grassmann 2-spinors θα, θ̄α̇ by θ = 〈θλ〉 and θ̄ = [λθ]. Other terms in

the expansion such as 〈θη〉 do not show up in the above identities. From this point of view it is

natural that N = 1 SYM lagrangian can be rearranged into a simpler form.
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5.2 Transforming light-cone gauge SYM into the

new representation

We note the superfields defined in (5.11) and (5.12) have two Grassmannian de-

grees of freedom and are constrained by chiral conditions. This suggests that we

can simplify the superfields by introducing a new super-space variable. In the way

analogous to a classical field satisfying field equations can be transformed into mo-

mentum space, where the energy variable is expressed in terms of the 3-momentum,

we perform a fermionic integral transformation to replace the “coordinate” depen-

dence θ, θ̄ by a Grassmannian “momentum” η.2

Φ̄(p, θ) = −
ˆ

dη e−
1
2
θθ̄p̂δ(θ̄p̂

1
2 − η) φ̄(p, η), (5.19)

d̄ Φ̄(p, θ) = −p̂ 1
2

ˆ

dη e
1
2
θθ̄p̂δ(1 − θηp̂

1
2 ) φ̄(p, η), (5.20)

Φ(p, θ) =

ˆ

dη e
1
2
θθ̄p̂δ(1 − θηp̂

1
2 )φ(p, η), (5.21)

dΦ(p, θ) = −p̂ 1
2

ˆ

dη e−
1
2
θθ̄p̂δ(θ̄p̂

1
2 − η)φ(p, η) (5.22)

where we have used the Taylor expansion to convert functions of y = (x+, x− +

1
2
iθθ̄, xz, xz̄) into f(y) = e

i
2
θθ̄∂̂f(x) before transforming into the momentum space.

2When “negative energy” continuation for p̂ is needed, we use

Φ̄(p, θ) = −
ˆ

dη e−
1

2
θθ̄p̂δ(θ̄|p̂| 12 − η) φ̄(p, η), (5.17)

d̄ Φ̄(p, θ) = −|p̂| 12
ˆ

dη e
1

2
θθ̄p̂δ(1 − θηp̂/p̂

1

2 ) φ̄(p, η) (5.18)

in place of (5.19) and (5.20) to take care of the possible phase ambiguity produced by square

roots. The modification is more natural had we defined the superfields in spinor language as in

footnote 1, where the θ̄ is identified as [λθ]. In that case we simply define the delta function as

δ([λθ] − η). Note that equations (5.17) and (5.18) only affects the overall phase for a gluino field

so the inclusion of a square root does not modify the kinematic part of the vertex. In the following

we implicitly assume that the negative energy continuation (5.17) and (5.18) are used throughout

the derivation. However we neglect the square root in the results for simplicity. The minus signs

can be quickly restored from matching the MHV vertices with the known amplitudes that contain

gluino pairs.
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The same θ dependence in the equations (5.19) and (5.22) guarantees that d Φ̄ =

d dΦ = 0, and similarly for the equations (5.20) (5.21).

In the integral transformations defined above we bring functions of two Grass-

mann variables θ and θ̄ to functions of η only. However the superfields satisfy chiral

constraints so in the subspace where chiral superfields are defined the degrees of free-

dom are not reduced under these transformations. Their inverse transformations are

given by

φ(p, η) = −p̂− 1
2

ˆ

dθe−
1
2
θθ̄p̂δ(1 + θηp̂

1
2 ) Φ(p, θ), (5.23)

φ̄(p, η) = −1

p̂

ˆ

dθe−
1
2
θθ̄p̂δ(1 + θηp̂

1
2 ) d̄ Φ̄(p, θ), (5.24)

and the momentum space superfields are

φ(p, η) = iΛ̄(p)p̂
1
2 + ηA(p), (5.25)

φ̄(p, η) = Ā(p) + ηiΛ(p)p̂−
1
2 . (5.26)

After the integration the SUSY generators are also transformed into the new

representation just like the symmetry generators of the Poincare group can both

be expressed in terms of spacetime coordinates or of momenta. Operating the rep-

resentations of SUSY generators (5.14) on the integral transformations (5.19) to

(5.22) and moving the operators to the right gives the simple representations for the

light-cone SUSY generators as

q = p̂
1
2 η, q̄ = p̂

1
2
∂

∂η
(5.27)

It is easy to see that the above representations in the new Grassmannian mo-

mentum space have the same effect as applying the (5.9), (5.10) directly on φ and

φ̄, so they meet with the criteria as superfields. However because the number of

Grassmann variables is reduced by one during the integral transformation, the new

superfields φ and φ̄ in the momentum representation no longer satisfy chiral con-

straints. To see how a generic SUSY transformation is represented in the Grassman-

nian momentum space we recall that the light-cone SUSY generators are defined as

the 1 and 1̇ components of the 2-spinor generators, Q1 = q and Q̄1̇ = q̄. The ef-

fects of the other components can be derived from the definitions, equations (5.6) to
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(5.8), by filling in the field components which were integrated out by their classical

solutions. It is straightforward, though tedious, to verify that after neglecting all of

the commutators appearing in the expressions, in the on-shell limit we have

Qα = λαη, Q̄α̇ = λ̄α̇
∂

∂η
, (5.28)

which are the N = 1 version of the on-shell SUSY generators introduced by

Witten in [8].3

5.2.1 3-point MHV and MHV vertices

The light-cone gauge SYM lagrangian can be quickly rewritten in terms of the new

representation by applying (5.19) to (5.22) to its field contents. In addition to a

momentum conservation delta function, the free field part contains a Grassman-

nian momentum delta function, which demands that gluons and gluinos cannot be

interchanged into each other in the absence of an interaction.

Sfree =

ˆ

d4x dθdθ̄L−+ =

ˆ

d4p1 d
4p2 dθ dθ̄ Φ̄

p2
2

p̂2
δ(4)(p1 + p2)Φ

=

ˆ

d4p1 d
4p2 dη1dη2φ̄(p1, η1)δ

4(p1 + p2)δ(η1 + η2) p
2
2 φ(p2, η2) (5.30)

For the (− − +) interaction term we apply the same transformation again to

have
ˆ

d4x dθdθ̄L−−+ = tr

ˆ

d4x dθdθ̄[Φ̄,
∂

∂̂
Φ̄]Φ (5.31)

= tr

ˆ

d4p1 . . . dη1 . . .
(12)

1̂2̂
3̂

1
2 (3̂

1
2 η1η2 + 1̂

1
2 η2η3 + 2̂

1
2η3η1) φ̄1φ̄2φ3 (5.32)

3Again the formulae given in (5.28) have a simpler explanation in spinor language. The 2-spinor

SUSY generator can be spanned as

Qα = λα
〈Qη〉
〈λη〉 + ηα

〈λQ〉
〈λη〉 (5.29)

Following the same derivation as for the generators in light-cone coordinates, the operator

〈Qη〉 / 〈λη〉 in the momentum space can be shown to be represented by the multiplication of

the Grassmann variable η. Since the spinor ηα vanishes on-shell (2.55), we have Qα = λαη. The

anti-holomorphic part can be similarly derived.
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Using momentum conservation condition we can combine all of the hat-components

and the round bracket into spinor brackets. Note that the vertex factor resembles

the super-amplitude formula given by Nair for N = 4 SYM theory.

tr

ˆ

d4p1 . . . dη1 . . .
〈12〉3

〈12〉 〈23〉 〈31〉 (〈12〉 η1η2 + 〈23〉 η2η3 + 〈31〉 η3η1) φ̄1φ̄2φ3 (5.33)

We then compute the (+ + −) term to give

ˆ

d4x dθdθ̄L++− = tr

ˆ

d4x dθdθ̄[Φ,
∂̄

∂̂
Φ]Φ̄

= tr

ˆ

d4p1 . . . dη1 . . .
{12}
1̂2̂

3̂
1
2 (1̂

1
2η1 + 2̂

1
2η2 + 3̂

1
2η3)φ1φ2φ̄3 (5.34)

= tr

ˆ

d4p1 . . . dη1 . . .
[12]3

[12] [23] [31]
([23] η1 + [31] η2 + [12] η3) φ1φ2φ̄3 (5.35)

In the defining equations for integral transformations (5.19) to (5.22) we chose

to replace the θ̄p̂
1
2 dependence in Φ̄ and dΦ by the newly introduced Grassmann

variable η. As an alternative we can choose our definition to the Grassmannian

Fourier transform as replacing the θp̂
1
2 in Φ and d̄ Φ̄. The transformation formula

for Φ̄ follows from

Φ̄ =

{
d, d̄

}

−i∂̂
Φ̄ =

d

−i∂̂
(
d̄ Φ̄
)
, (5.36)

and in the expressions for the 3-point MHV and MHV vertices (5.33) and (5.35)

we will have the same spinor bracket factors but with the ([23] η1 + [31] η2 + [12] η3)

and (〈12〉 η1η2 + 〈23〉 η2η3 + 〈31〉 η3η1) swapped. This is because by exchanging the

conventions for η we modified the labeling of particle species associated with the

legs of the vertex. The same correspondence between the η assignment of the super-

wavefunction (5.1) and the η dependence in the super-amplitudes for N = 4 SYM

was found by Drummond, Henn, Korchemsky and Sokatchev in [23, 51, 52].

The remaining two 4-point vertices can be calculated following the same proce-

dure.

V 2
1234 =

1
(
2̂ + 3̂

)2
((

1̂3̂ + 2̂4̂
)
η1η2 − 1̂

1
2 3̂

1
2

(
2̂ + 3̂

)
η2η3 + 2̂

1
2 3̂

1
2

(
1̂ + 4̂

)
η1η3
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+2 1̂
1
2 2̂

1
2 3̂

1
2 4̂

1
2 η3η4 − 2̂

1
2 4̂

1
2

(
1̂ + 4̂

)
η4η1 + 1̂

1
2 4̂

1
2

(
2̂ + 3̂

)
η2η4

)
, (5.37)

and

V 3
1234 = −

(
3̂4̂

(
1̂ + 4̂

)2 +
1̂4̂

(
3̂ + 4̂

)2

)
η1η3 −

1̂
1
2 2̂

1
2 4̂

(
3̂ + 4̂

)2η2η3 −
2̂

1
2 3̂

1
2 4̂

(
1̂ + 4̂

)2η1η2

+3̂
1
2 4̂

1
2

(
1(

1̂ + 4̂
) − 1̂

(
3̂ + 4̂

)2

)

η4η1 + 4̂
1
2 1̂

1
2

(
1(

3̂ + 4̂
) − 3̂

(
1̂ + 4̂

)2

)

η3η4

−1̂
1
2 2̂

1
2 3̂

1
2 4̂

1
2

(
1

(
1̂ + 4̂

)2 +
1

(
3̂ + 4̂

)2

)
η2η4, (5.38)

where we used V 2
1234 and V 3

1234 to denote the vertices that have adjacent and

next-to-adjacent negative helicity legs.

ˆ

d4x dθdθ̄L−−++ =
4

g2

ˆ

d4x dθdθ̄
[
Φ, d̄ Φ̄

] 1
(
i∂̂
)2

[
Φ̄, dΦ

]

=
4

g2
tr

ˆ

V −−++
1234 φ̄1φ̄2φ3φ4 + V −+−+

1234 φ̄1φ2φ̄3φ4 (5.39)

5.3 Calculating super-amplitudes using functional

methods

One of the advantages of rewriting light-cone N = 1 SYM lagrangian in terms of

chiral superfields is that it allows us to compute super-amplitudes from a set of

manifestly supersymmetric Feynman rules. In a system where supersymmetry is

effectively unbroken it is reasonable that particles in the same supermultiplet can

be treated altogether as a single object. Nevertheless, in the standard functional

integral approach to Green function calculations there is a fundamental distinction

between a field and the field of its superpartner. The gluon fields are bosonic while

the gluino fields are taken as fermionic, both fields are regarded as independent

variables to be integrated over in the functional integral. A naive attempt to combine

these two fields by a change of variables reduces the degrees of freedom and does
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not make sense mathematically. So instead of on integration variables we focus on

the generating functional that generates Green functions.

Z [J ] =

ˆ

DADĀDΛDΛ̄ eiS+i
´

j(A)A+Āj(Ā)+j(Λ)Λ+Λ̄j(Λ̄)

, (5.40)

where S is the N = 1 SYM action (5.16) in light-cone gauge, and we introduce

generating currents j(A), j(Ā), j(Λ) and j(Λ̄) for every physical fields. We note that

the current term integral can be simplified by the introduction of super-currents

ˆ

d4p j(A)A + Āj(Ā) + j(Λ)Λ + Λ̄j(Λ̄) =

ˆ

d4p dη Jφ+ φ̄J̄ , (5.41)

where we defined4

J = j(A) − ip̂
1
2 ηj(Λ), J̄ = ηj(Ā) − ip̂

1
2 j(Λ̄). (5.42)

As in the standard calculation we extract the interaction terms as variation

operators of the generating currents. From equations (5.32) to (5.38) we saw the

interactions in the lagrangian can be written as functionals of the momentum space

superfields. This means that using chain rules the variations with respect to the

currents associated with physical fields can be combined as −i δ
δJ

and i δ
δJ̄

, and the

vertices are simply given by equations (5.32) to (5.38), where the variation with

respect to a function of both bosonic and fermionic variables is defined as [53]

δJ(p
′

, η
′

)

δJ(p, η)
= δ4(p

′ − p) δ(η
′ − η) (5.43)

Therefore we have

Z [J ] = eiSint[ δ
δJ ]Z0 [J ] (5.44)

The free generating functional is calculated by integrating over all field variables.

Z0 [J ] = ei
´

j(Ā)∆(A)j
(A)+j(Λ̄)∆(Λ)j

(Λ)

= ei
´

J̄∆J (5.45)

4The signs of the square root in the super-currents are chosen so that after integrating η they

cancel the p̂ dependence in φ and φ̄ completely.
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where the light-cone gauge gluon and gluino propagators are given by ∆(A)(p1, p2) =

1
p2
2
δ4(p1+p2), ∆(Λ)(p1, p2) = p̂2

p2
2
δ4(p1+p2). We find that the currents associated with

gluons and gluinos can be again organised into the super-currents (5.42), and the

propagators of two different particle species are replaced by

∆(p1, η1; p2, η2) =
1

p2
2

δ4(p1 + p2) δ(η1 + η2) (5.46)

Note that despite the free generating functional (5.45) was derived without treat-

ing the chiral superfields as field variables, the propagator (5.46) takes the form as

the inverse of the free superfield lagrangian (5.30), allowing us to reintroduce su-

perfields φ and φ̄ as auxiliary field variables, where we generalised the functional

integral to fields labeled by both bosonic and fermionic indices p and η in the same

way as in [53, 54] so that the integration over φ and φ̄ has the same properties as

over ordinary fields. The interaction part of the action extracted as a functional

of variation operators can be applied back to Z0 [J ] to restore the lagrangian as a

functional of φ and φ̄. It is easy to see that the lagrangian has the same propagator

and vertices given in (5.30) to (5.38).

Z0 [J ] =

ˆ

DφDφ̄ eiSfree+
´

Jφ+φ̄J̄ , Z [J ] =

ˆ

DφDφ̄ eiS+i
´

J̄∆J (5.47)

For the purpose of computing generating functionals and Green functions it

makes no difference whether the functional integral was defined from the physical

fields or the superfield.

By using the standard Wick contraction and the LSZ reduction on (5.44) and

(5.45) it is straightforward to derive a set of supersymmetric Feynman rules for

N = 1 SYM theory based on the super-momentum space lagrangian, and the method

naturally leads to a combination of scattering amplitudes related to each other

by supersymmetry transformation. We define the super-amplitude of a specific

momentum and helicity configuration as

A(pi, σi, ηi) = lim
p2

i→

∏

i

p2
i

〈
· · ·φ · · · φ̄ · · ·

〉
(5.48)

To convert the super-amplitude into the physical scattering amplitudes of gluons
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V −−+(123)

= 〈12〉3

〈12〉〈23〉〈31〉
(〈12〉 η1η2 + 〈23〉 η2η3 + 〈31〉 η3η1)

V ++−(123)

= [12]3

[12][23][31]
([23] η1 + [31] η2 + [12] η3)

V −−++
1234

= 1

(2̂+3̂)
2

((
1̂3̂ + 2̂4̂

)
η1η2 − 1̂

1
2 3̂

1
2

(
2̂ + 3̂

)
η2η3 + 2̂

1
2 3̂

1
2

(
1̂ + 4̂

)
η1η3

+2 1̂
1
2 2̂

1
2 3̂

1
2 4̂

1
2 η3η4 − 2̂

1
2 4̂

1
2

(
1̂ + 4̂

)
η4η1 + 1̂

1
2 4̂

1
2

(
2̂ + 3̂

)
η2η4

)

V −+−+
1234 = −

(
3̂4̂

(1̂+4̂)
2 + 1̂4̂

(3̂+4̂)
2

)
η1η3 − 1̂

1
2 2̂

1
2 4̂

(3̂+4̂)
2 η2η3 − 2̂

1
2 3̂

1
2 4̂

(1̂+4̂)
2η1η2

+3̂
1
2 4̂

1
2

(
1

(1̂+4̂)
− 1̂

(3̂+4̂)
2

)
η4η1 + 4̂

1
2 1̂

1
2

(
1

(3̂+4̂)
− 3̂

(1̂+4̂)
2

)
η3η4

−1̂
1
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(
1
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2

)
η2η4

Figure 5.1: Super-vertices in the light-cone gauge N = 1 SYM lagrangian

and gluinos we extract terms with the Grassmann variables corresponding to the

particle species participating the event:

〈
1+ · · · 2+

Λ · · · 3− · · ·4−Λ
〉

=
∂

∂η4

· · · ∂

∂η1

∏

i

p2
i 〈A1 · · ·

Λ2

p̂
1
2
2

. . . Ā3 · · ·
Λ̄4

p̂
1
2
4

〉 (5.49)

From the definitions of superfields (5.25), (5.26) we see a Grassmannian momen-

tum ηi is present whenever there is a positive helicity gluon or a negative helicity

gluino. The appropriate polarisations factors for the LSZ reduction formula are au-

tomatically included from the definition of a super-amplitude (5.48). Note that the

superfields φ and φ̄ here are regarded as auxiliary fields introduced in the functional

integral (5.47) which do not contain physical gluon or gluino fields as components.

The expansion from the definition of a super-amplitude (5.48) into a series of physical

scattering amplitudes (5.49) relies on current algebra. However since the chain rule
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of variations does not distinguish whether the current j(A) − ip̂
1
2ηj(Λ) is multiplied

by the combination iΛ̄(p)p̂
1
2 + ηA(p) or the newly introduced integration variable

φ(p, η), the scattering amplitude calculated from integrating over gluon and gluino

fields is the same as the amplitude calculated from integrating over φ(p, η).

5.3.1 Applying BCFW to calculate the N = 1 MHV super-

amplitudes

In [21, 22] the BCFW recursion method is generalised to N = 4 SYM theory to

compute super-amplitudes that have super-wavefunctions as initial and final states.

We adapt the argument provided by Brandhuber, Heslop and Travaglini originally

designed to apply on shifting two positive helicity legs [22] to shifting one positive,

one negative leg in the N = 1 theory and derive the formula for 4-point MHV

super-amplitude. 5

MHV MHV

−
2

−1
′

+
3

+
4
′

+
q
′

−

Figure 5.2: Shifting the super-amplitude A(1−, 2−, 3+, 4+)

Consider shifting the leg 1 and 4 of the super-amplitude A(1−, 2−, 3+, 4+) (Fig.5.2).

The momenta p1 and p4 are shifted in the same way as in the pure Yang-Mills theory

(2.42), (2.43).

P
′

1 αα̇(z) = λ1 αλ̄1 α̇ − z λ1 αλ̄4 α̇,

P
′

4 αα̇(z) = λ4 αλ̄4 α̇ + z λ1 αλ̄4 α̇ (5.50)

5The difference between the helicities of the shifted legs is because N = 4 SYM theory is CPT

self-conjugate and particles with opposite helicities are enclosed in the same chiral superfield. The

relation between the helicity and the Grassmann variable assigned to the legs of a vertex factor

will become clear when we derive the supersymmetric Feynman rules for N = 4 SYM in section

(5.5).
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In addition to momenta we also shift the Grassmann variable associated with

the negative helicity leg.

η
′

1(z) = η1 − z η4, (5.51)

while all other momenta and Grassmann variables are unchanged. A super-

amplitude defined in (5.48) generically contains a series of physical amplitudes, each

of them multiplied by the corresponding Grassmann variables. The ratio between

different physical amplitudes are fixed by the SUSY Ward identities. Because the

on-shell SUSY generators Qα, Q̄α̇ are momentum dependent, and therefore z depen-

dent, generically so are the ratios. As z → ∞ it is possible for the super-amplitude to

diverge, causing the Cauchy’s theorem fail to apply. However we note that the shift-

ing given by equations (5.50), (5.51) have the effect of leaving the SUSY generators

invariant

Q̄
′

α̇ =
4∑

i=1

λ̄
′

i α̇

∂

∂η
′

i

= Q̄α̇, Q
′

α =
4∑

i=1

λ
′

αη
′

i = Qα (5.52)

so the ratios do not depend on the complex variable z. For the MHV super-

amplitude A(1−, 2−, 3+, 4+), we solve the ratios explicitly by repeatedly applying

SUSY Ward identity with different SUSY transformation parameters, and the super-

amplitude is proportional to

〈12〉 η1η2 + 〈23〉 η2η3 + 〈34〉 η3η4 + 〈41〉 η4η1 + 〈13〉 η1η3 + 〈24〉 η2η4, (5.53)

which is also invariant under the shifting (5.50) and (5.51).

In chapter 2 we saw in the case of pure gluon scattering, the amplitude shifted

according to equation (5.50) vanishes as z → ∞, which correspond to the coefficient

of the η1η2 term. So the super-amplitude vanishes at infinity. From the above

argument we also see that the generalisation to N = 1 SYM does not introduce new

singularities, therefore we have, from BCFW recursion,

A4(0) =

ˆ

dηq dηq
′ AL(z)

δ(ηq + ηq′ )

q2
AR(z)

∣∣∣∣
z=−〈34〉/〈31〉

(5.54)
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=
〈12〉2

〈2 q′〉 〈q′ 1〉
1

〈34〉 [34]

[34]2

[4 q′] [q′ 3]

×



 〈12〉 [34] η
′

1η2 −
〈
2 q

′
〉 [

4 q
′
]
η2η3 −

〈
2 q

′
〉 [
q
′

3
]
η2η4

+
〈
q
′

1
〉 [

4 q
′
]
η

′

1η3 +
〈
q
′

1
〉 [
q
′

3
]
η1η4



 ,

(5.55)

where q = p3 + p4. Simplifying the above expression gives the 4-point super-

amplitude

A(1−, 2−, 3+, 4+) =
〈12〉3

〈12〉 〈23〉 〈34〉 〈41〉

(
4∑

i,j=1

〈i j〉 ηiηj

)
. (5.56)

Since the argument for asymptotic behaviour and the algebraic derivation we

just used do not depend on the number of legs, we can replace the amplitude AL(z)

on the left hand side of the propagator by an (n− 1)-point MHV super-amplitude.

By induction an n-point MHV super-amplitude is given by the formula (5.4). The

BCFW recursion also extends beyond MHV super-amplitudes because the argument

for asymptotic behavior only rely on the fact that the SUSY generators are invariant

under the shifting (5.50) and (5.51).

5.4 Super-space canonical transformation

So far we have derived a supersymmetry equivalence of the LCYM theory. A natural

next step is to perform a canonical transformation on the field variables as in pure

Yang-Mills theory [24] to absorb the unwanted MHV term so that in terms of the

new variables the lagrangian automatically generates CSW rules for N = 1 SYM

theory. In [31] Morris and Xiao applied the canonical transformation on a pair by

pair basis. In the gauge field sector the gluon, gluino fields and their canonical

conjugate momenta
{
A, ∂̂Ā

}
and

{
Λ, Λ̄

}
were transformed into the corresponding

new fields
{
B, ∂̂B̄

}
and

{
Π, Π̄

}
according to the following expansions

A1 = B1 + Υ123B2B3 + · · · , (5.57)

∂̂Ā1 = ∂̂B̄1 + Ξ2
123∂̂B̄2B3 + Ξ3

123B2∂̂B̄3 + · · ·

+Ξ2
123Π̄2Π3 + Ξ3

123Π2Π̄3 + Ξ2
1234Π̄2Π3B4 + Ξ2

1234Π̄2B3Π4 + · · · , (5.58)
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Λ1 = Π1 + Υ123Π2B3 + Υ123B2Π3 + · · · , (5.59)

Λ̄1 = Π̄1 + Ξ2
123Π̄2B3 + Ξ3

123B2Π̄3 + · · · . (5.60)

In order to keep the notation simple we neglected the overall momentum con-

servation delta functions in the above expressions. The coefficients Υ and Ξk in the

expansion are the translation kernels originally defined for the Yang-Mills theory.

Υ12···n =
1̂ 3̂ · · · n̂

(23) (34) · · · (n− 1, n)
,

Ξk
12···n =

k̂3̂ · · · n̂
(23) (34) · · · (n− 1, n)

. (5.61)

The transformation expansions (5.57) to (5.60) were verified to generate a unit

Jacobian and have the effect of absorbing the L++−
A , L++−

ΛA terms into the new

lagrangian. In this section we take a different approach and apply the transformation

on superfields directly. As noted in section (5.3) Green functions can be computed

from functional integral over superfields labeled by super-space momenta p and η.

Similarly a generating functional of currents in coordinate space originally derived

from integrating over physical filed components A, Ā, Λ, Λ̄ can be reorganised as a

functional of super-currents

Z0[J ] =

ˆ

DADĀDΛ̄DΛ

exp

{
iS

ˆ

d4x dθdθ̄Lfree + i

ˆ

d4x j(A)A + j(Λ)Λ + Āj(Ā) + Λ̄j(Λ̄)

}
(5.62)

= exp

{
ˆ

d4x j(Ā)∆(A)j(A) + j(Λ̄)∆(Λ)j(Λ)

}
= exp

{
ˆ

d4x dθdθ̄ J̄∆J

}
(5.63)

where we defined the super-currents in coordinate space as

J(x, θ) = θθ̄j(A)(x) − iθ̄j(Λ), (5.64)

J̄(x, θ) =
1

i∂̂
j(Ā) − iθj(Λ), (5.65)

and we have extracted the interaction part of the lagrangian as variation oper-

ators with respect to the supercurrents. As in the momentum space we introduce
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superfields as auxiliary field variables and restore the full action in chiral and anti-

chiral superfields by operating the variation operators back onto the free generating

functional.

Z [J ] =

ˆ

DΦ(x, θ)DΦ̄(x, θ) exp

{
iS [Φ] + i

ˆ

JΦ + Φ̄J̄

}
, (5.66)

where S [Φ] is the N = 1 SYM action in light-cone gauge introduced at the

beginning of this chapter (5.16). Inspired by the canonical transformation originally

applied on pure Yang-Mills to derive an MHV lagrangian [24] we make an analogous

change of variables. The superfield Φ(τ,x, θ) at light-cone time τ is assumed to be a

functional of χ(τ,y, ξ) defined through power expansion. As in the pure Yang-Mills

theory the expansion for the anti-chiral superfield Φ̄(τ,x, θ) is assumed to contain

only one χ̄(τ,y, θ) in each term, while the power of χ(τ,y, ξ) increases term by term.

This arrangement ensures that the new lagrangian will have exactly two anti-chiral

superfields in every vertex as demanded by the CSW rules. In chapter 4 we proved

that the integration measure is invariant under the transformation as long as the

variation of the conjugate momentum f(∂)Ā with respect to f(∂)B̄ is the inverse

of δA/δB, where f(∂) is a generic function of differential operators. It is straight-

forward to generalise the proof to fields labeled by super-space coordinate variables

and the function f(∂) is then generalised to an arbitrary function of derivatives and

SUSY covariant derivatives. However, as pointed out in chapter 4 for an arbitrary

choice of f(∂) the translation kernels are not holomorphic, and the MHV vertices

generically differ from the Parke-Taylor formula by squares of external leg momenta.

So we choose the operator for the transformation on N = 1 SYM theory to be the

covariant derivative d̄, which is the natural extension of ∂̂ into the supersymmetric

theory. We assume the transformation is given by

d̄ Φ̄a(x, θ) =

ˆ

d3y dξdξ̄
δχb(y, ξ)

δΦa(x, θ)
d̄ χ̄b(y, ξ), (5.67)

and after the transformation the unwanted super-vertex is absorbed into the new

free field lagrangian L−+ [Φ] + L−−+[Φ] = L−+ [χ].

We note that the nilpotency of the Grassmann variables θ θ̄ allows us to replace

the anti-chiral superfield by θ̄ d̄ Φ̄,
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tr

ˆ

d4x dθdθ̄ Φ̄
∂2

∂̂
Φ + Φ̄[Φ,

∂̄

∂̂
Φ] = tr

ˆ

d4x dθdθ̄ θ̄ d̄Φ̄

(
∂2

∂̂
Φ + [Φ,

∂̄

∂̂
Φ]

)
(5.68)

Using the condition (5.67) and stripping off an θ̄ d̄ χ̄ from both sides of the

equation, we have

∂2

∂̂
Φ(x, θ) + [Φ,

∂̄

∂̂
Φ](x, θ) =

ˆ

d3y dξdξ̄
∂2

∂̂
χ(y, ξ)

δΦ(x, θ)

δχ(y, ξ)
(5.69)

From (5.69) we determine the translation kernels in the expansions of Φ and

Φ̄. Since the above condition is the same as the condition we used to solve for

translation kernels in the pure Yang-Mills theory (2.76), we see that the kernels are

simply given by the same formulae as in (5.61).

Φ(x1, θ) = χ(x1, θ) +

ˆ

Υ123 χ(x2, θ)χ(x3, θ) + · · · (5.70)

d̄ Φ̄(x1, θ) = d̄ χ̄(x1, θ) +

ˆ

Ξ2
123

(
d̄ χ̄(x2, θ)

)
χ(x3, θ)

+

ˆ

Ξ3
123 χ(x2, θ)

(
d̄ χ̄(x3, θ)

)
· · · (5.71)

We Fourier transform the chiral superfields into momentum space and then apply

the integrals defined in equations (5.19) to (5.22) to obtain the superfields in the

new representation. The expansion formulae in momentum space are

φ(p1, η1) = χ(p1, η1)

+

ˆ

Υ123
−1

1̂
1
2

(−η11̂
1
2 + η22̂

1
2 + η33̂

1
2 )χ(p2, η2)χ(p3, η3) + · · ·

+

ˆ

Υ12···n
−1

1̂
1
2

(−η11̂
1
2 + η22̂

1
2 + · · · ηnn̂

1
2 )χ(p2, η2) · · ·χ(pn, ηn) + · · · , (5.72)

and

φ̄(p1, η1) = χ̄(p1, η
′

1)

+

ˆ

Ξ2
123

−2̂
1
2

1̂
(−η11̂

1
2 + η22̂

1
2 + η33̂

1
2 ) χ̄(p2, η2)χ(p3, η3) + · · ·

+

ˆ

Ξk
12···n

−k̂ 1
2

1̂
(−η11̂

1
2 + η22̂

1
2 + · · ·ηnn̂

1
2 )χ(p2, η2) · · · χ̄(pk, ηk) · · ·χ(pn, ηn) + · · · .

(5.73)
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In order to avoid introducing too many symbols we slightly abuse the notation

and use χ both for superfields before and after the integral transformations (5.19) to

(5.22), in the same spirit as the same symbol is commonly used for wave functions

before and after the Fourier transformation in the standard notation. The distinction

between these two types of fields should be clear judging from the labels (x, θ) or

(p, η) attached to the superfields. In equations (5.72) and (5.73) we neglected the

overall momentum conservation delta function and the integrations are understood

to be performed over momenta p2 to pn as well as superspace momenta η2 to ηn.

The above expansion formulae can be conveniently summarised if we generalise

the graphical notation introduced for pure Yang-Mills in chapter 3. When an n-th

order term in (5.72) contribute to the calculation we use a blank circle follow by

(n + 1) lines to represent the translation kernel, where one of the lines comes from

the superfield φ being translated. For the φ̄ translation, we use a similar graph with

the blank circle replaced by a gray circle.

φ

χ

....

χ

φ̄
...

χ

...
χ̄

χ

Figure 5.3: Graphical representations of superfield expansions

5.4.1 Generating MHV super-vertices

Following the same steps as for pure Yang-Mills theory the super-amplitude is gener-

ically transformed into a series, each of the term contains a number of translation

kernels

∏

l

p2
l

〈
· · ·φi · · · φ̄j · · ·

〉

=
∑

m,n

∏

l

p2
l

〈
· · · (Υi i2···imχi2χi3 · · ·χim) · · ·

(
Ξk

j j2···jn
χj2 · · · χ̄jk

· · ·χjn

)
· · ·
〉
.(5.74)

At tree-level these kernels are suppressed by LSZ factors, so an MHV super-

amplitude simply equals the on-shell limit of the corresponding MHV super-vertex.
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In section (5.3.1) we derived the formula for a generic n-point N = 1 MHV super-

amplitude from supersymmetric BCFW recursion. Applying the same argument

used in chapter 4, the formula for MHV super-vertices and super-amplitudes can

only differ by squares of leg momenta. Since the expansion coefficients in (5.72) and

(5.73) are holomorphic, such difference is absent, so an n-point MHV super-vertex

is provided by the same formula as for the super-amplitude.

Alternatively, we can directly compute the n-point MHV super-vertex. An MHV

super-vertex in the new lagrangian receives contributions from the original 3-point

(5.32) and the 4-point vertices (5.37), (5.38), and the superfields attached to the legs

of the vertices branch into trees of new field variables according to the expansion

formulae (5.72) and (5.73). In the appendix B we prove that the formula for an

n-point MHV super-vertex is the same as the super-amplitude (5.75) by matching

their coefficients under partial fraction expansion.

V (1+, 2+ . . . i−, j−, . . . n+) =
〈i j〉3

〈12〉 〈23〉 · · · 〈n1〉

(
n∑

a,b=1

〈a b〉 ηaηb

)
. (5.75)

From the generating functional we derive the CSW rules algebraically for N = 1

SYM theory with the vertices given by (5.75) and the propagator given by (5.46).

As noted in section (5.3), although we introduce φ and φ̄ as integration variables,

from current algebra these variables can be interchanged by the corresponding com-

binations of gluon and gluino fields in a Green function calculation. Substituting

(5.25) and (5.26) into the canonical transformation formulae of superfields (5.70)

and (5.71) suggests that the MHV lagrangian can be as well derived by transform-

ing physical field components separately. Writing the new field variables as

χ(x, θ) = B(y) + iθΠ(y), (5.76)

χ̄(x, θ) = B̄ ¯(y) + iθ̄ Π̄ ¯(y), (5.77)

and integrating over Grassmann variables θ and θ̄, we find the same transfor-

mation relations as equations (5.57) to (5.60) originally given by Morris and Xiao

in [31]. Operating the SUSY generators and covariant derivatives q, q̄, d, d̄ on φ, φ̄

and collecting terms we find the new fields χ, χ̄ satisfy the same chiral constraints,
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and the new components B, B̄, Π, Π̄ transform in the same way as positive and

negative helicity gluon fields are transformed into gluino fields (5.9), (5.10). The

chiral property of the new fields can also be seen by solving the inverse relation to

the canonical transformations. By rewriting the expansion (5.70) as

χ(x1, θ) = Φ(x1, θ) −
ˆ

Υ123 χ(x2, θ)χ(x3, θ) − · · · (5.78)

and substituting iteratively the new field is expressed as a functional of chiral

superfield Φ. Because the translation kernels are independent of θ, θ̄, on the right

hand side of the equation we have a series of chiral superfields. The series itself

therefore also satisfy the chiral constraint.

5.4.2 SUSY Ward identity

In [8] Witten introduced an on-shell representation of the SUSY generators for N =

4 SYM theory and verified that the MHV super-amplitude given by Nair [6] is

superconformal invariant. We find both the on-shell SUSY generators and the super-

amplitude for N = 4 theory resemble the formulae we derived in (5.28) and (5.75).

It is then straightforward to verify that the n-point N = 1 MHV super-amplitude

is SUSY invariant. The on-shell SUSY transformation operator Q(ξ) is given by

contracting generators with the parametric spinors ξα.

Q(ξ) =
n∑

i

〈ξi〉 ηi + [iξ]
∂

∂ηi

(5.79)

The transformation operator consists of a multiplication part and a differentia-

tion part. When operating on formula (5.75) we find the two parts are separately

zero. Collecting terms having the same Grassmann numbers, the multiplication part

vanishes because from Jacobi identity

〈ξ1〉 〈23〉 η1η2η3 + 〈ξ3〉 〈12〉 η3η1η2 + 〈ξ2〉 〈31〉 η2η3η1 = 0 (5.80)

for any three of the momenta carried by external lines. The differentiation part

is proportional to
∑

i

[ξi] 〈ij〉 ηj = 0 (5.81)
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which vanishes from conservation of momentum. We note that supersymmetry

is taken as a build-in property of the super-amplitude. Since the functional integral

is invariant under SUSY transformation

∏

i

p2
i

〈
Q(ξ)φ1φ2φ̄3 · · · φ̄n

〉
= 0. (5.82)

Differentiating both sides of the identity (5.82) with respect to η1 η2 ηj for ex-

ample, gives the familiar SUSY Ward identity relating the amplitude that consists

of a pair of gluino and the amplitude of all gluons.

〈21〉
〈
1+

Λ , 2
+, 3−, · · · j−Λ · · ·n−

〉
+ 〈2j〉

〈
1+, 2+, 3−, · · ·n−

〉
= 0 (5.83)

5.5 MHV super-vertices of the N = 4 SYM lagrangian

In this section we extend the method discussed in this chapter to N = 4 SYM

theory and derive the on-shell SUSY generators (5.3) from Grassmannian integral

transformation. We find the super-vertices in the MHV lagrangian automatically

assume the same form as Nair’s formula for MHV super-amplitude (5.2).

The light-cone gauge action constructed as a functional of chiral superfields was

given by Brink, Lindgren and Nilsson first in 10-dimensions and then reduced to the

4-dimensional Minkowski spacetime [32].

S = tr

ˆ

d4x d4θd4θ̄ Φ̄
∂2

∂̂2
Φ +

2

3

([
Φ, ∂̄Φ

] 1

∂̂
Φ̄ + c.c.

)

+
1

2

([
Φ, ∂̂Φ

] 1

∂̂2

[
Φ̄, ∂̂Φ̄

]
− 1

2

[
Φ, Φ̄

] [
Φ, Φ̄

])
(5.84)

After integrating over eight Grassmann variables θA, θ̄A the action was found to

agree with the standard N = 4 light-cone gauge action [55]. The chiral superfield

is defined as

Φ(x, θ) =
1

∂̂
A(y) +

i

∂̂
θAΛA(y) +

i

2
θAθBC̄AB(y)

+
i

3!
ǫABCDθ

AθBθCΛ̄D +
1

4!
ǫABCDθ

AθBθCθDĀ(y) (5.85)
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where y = (x+, x− + 1
2
iθAθ̄A, x

z , xz̄). Unlike in the N = 1 theory, the superfield

(5.85) contains both of the helicity fields of gluon and gluino and is CPT self-

conjugate.

Φ̄(x, θ) =
1

4!
ǫABCDdAdBdCdD ∂̂

−2Φ(x, θ) (5.86)

Using the above condition all of the Φ or Φ̄ dependence can be expressed in terms

of the other. The superfields satisfy the constraints dA Φ̄ = d̄A Φ = 0 and trans-

form as a representation under the SUSY generators. The N = 1 SUSY covariant

derivatives and generators in light-cone coordinates are

dA =
∂

∂θA
+
i

2
θ̄A∂̂ , d̄

A = − ∂

∂θ̄A

− i

2
θA∂̂,

qA =
∂

∂θA
− i

2
θ̄A∂̂ , q̄

A = − ∂

∂θ̄A

+
i

2
θA∂̂ (5.87)

We transform the anti-chiral superfield defined on the hypersurface of superspace

which satisfy the chiral constraint in a way analogous to the transformation defined

for the N = 1 anti-chiral superfield.

Φ̄N=4(p, θ) =
1

p̂

ˆ

d4η e
−1
2

θB θ̄B p̂δ(4)(θ̄Ap̂
1
2 − ηA) φ̄N=4(p, η) (5.88)

We note that the integration d4η, the delta functions and the exponentials to-

gether factorise into four copies of the same integral, each of them contains only

Grassmann variables θA, θ̄A and ηA with the same index number for extended su-

persymmetry. As for the N = 1 SYM theory the integral transformation has the

effect of removing the exponential factor originated from the y dependence in the

definition (5.85) and replacing the θ̄Ap̂
1
2 by ηA. After the transformation we have

φ̄N=4(p, η) = Ā(p) + ηA
Λ̄A(p)

p̂
1
2

+
i

2
ηAηBC

AB(p)

+
1

3!
ηAηBηCǫ

ABCD ΛD(p)

p̂
1
2

+
1

4!
ηAηBηCηDǫ

ABCDA(p), (5.89)

which takes a similar form to the super-wavefunction (5.1) taken as the end states

of a super-amplitude in [17, 21, 22]. The light-cone gauge super-momentum space

lagrangian can be readily computed by substituting all of the Φ that appear in the
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lagrangian by d̄4Φ̄ using the CPT self-conjugate condition (5.86) and transforming

Φ̄ using the integral (5.88). Although the chiral and anti-chiral superfields are

interchangeable in the N = 4 SYM theory, we find the 3-point MHV interaction

is given by the term that originally contains two Φ and one Φ̄ superfield as in the

N = 1 theory.

tr

ˆ

d4x dθdθ̄
[
Φ, ∂̄Φ

] 1

∂̂
Φ̄

= tr

ˆ

d4pid
4ηi 1̂2̂3̂ {32}

4∏

A=1

(
1

2̂
1
2 3̂

1
2

η1 A +
1

3̂
1
2 1̂

1
2

η2 A +
1

1̂
1
2 2̂

1
2

η3 A

)

×φ̄(p1, η1)φ̄(p2, η2)φ̄(p3, η3) (5.90)

Rotating cyclically we find the MHV super-vertex is

V MHV
N=4 (1, 2, 3) =

1

[12] [23] [31]

4∏

A=1

([23] η1A + [31] η2A + [12] η3A) (5.91)

which takes the same form as the formula for 3-point MHV super-amplitude

in [23]. Similarly we derive the 3-point MHV super-vertex.

V MHV
N=4 (1, 2, 3) =

1

〈12〉 〈23〉 〈31〉
4∏

A=1

(〈12〉 η1Aη2A + 〈23〉 η2Aη3A + 〈31〉 η3Aη1A)

(5.92)

The transformation (5.93) for chiral superfield in coordinate space was found

by Feng and Huang [33] to have the effect of rearranging the self-dual part of the

lagrangian into a free field lagrangian of the new variables.

∂̂Φ(x1, θ) = ∂̂χ(x1, θ) +

ˆ

Υ123∂̂χ(x2, θ)∂̂χ(x3, θ) + · · · (5.93)

We again replace the chiral superfield dependence on both sides of the equa-

tion by d̄4Φ̄ and apply the integral transformation on anti-chiral superfields. The
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expansion formula in momentum space is given by

φ̄(p1, η1) = χ̄(p1, η1)

+

ˆ

Υ123
1

1̂2

4∏

A=1

(−η1 A1̂
1
2 + η2 A2̂

1
2 + η3 A3̂

1
2 ) χ̄(p2, η2)χ̄(p3, η3) + · · ·

+

ˆ

Υ12···n
1

1̂2

4∏

A=1

(−η1 A1̂
1
2 + η2 A2̂

1
2 + η3 A3̂

1
2 + · · ·ηn An̂

1
2 )

×χ̄(p2, η2)χ̄(p3, η3) · · · χ̄(pn, ηn) + · · · (5.94)

Translating all of the chiral superfields into the new field variables we arrive at

the MHV lagrangian for N = 4 SYM theory. By matching the coefficients in the

partial fraction expansion as in appendix (B) it is straightforward, though tedious,

to show that a generic n-point super-vertex in the new lagrangian agrees with Nair’s

formula (5.2)

V MHV
N=4 (1, 2, · · ·n) =

1

〈12〉 〈23〉 · · · 〈n1〉
4∏

A=1

(
∑

i, j

〈ij〉 ηiAηjA

)
. (5.95)

As in the pure Yang-Mills and the N = 1 SYM theories we can also argue from

holomorphy that the n-point super-vertex must given by the above formula. An N =

4 MHV super-vertex can only differ from corresponding super-amplitude by squares

of momenta that vanish on-shell. Because the 3-point and 4-point supersymmetry

LCYM vertices and the translation kernel (5.94) are all holomorphic in 4-dimensions,

the super-vertex must also be holomorphic.

After the integral transformation, we find the holomorphic and anti-holomorphic

SUSY generators in light-cone coordinates are the same as the Q1 and Q̄1̇ compo-

nents of the on-shell SUSY generators introduced by Witten in [8].

Qα A = λαηA, Q̄
A
α̇ = λ̄α̇

∂

∂ηA
(5.96)

The other components can be verified to match (5.96) by substituting the field

components which were integrated out by their classical values.

Despite the similarities between N = 1 and N = 4 theories allows us to generalise

the methods discussed in this chapter directly we notice there is a major difference in

the Feynman rules of these two theories. In N = 4 SYM theory since both positive
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and negative helicity fields of the gluon and gluino are included in the same superfield

we can not associate helicities to the lines connecting to super-vertices. Because

physical field components only show up in the lagrangian through superfields their

corresponding generating currents can be combined into super-currents so that the

generating functional Z [J ] is a functional of supercurrents. As in previous sections

we introduce φ̄ as an auxiliary field, and we have

Z [J ] =

ˆ

Dφ̄ eiS+
´

φ̄ J̄ . (5.97)

With all of the φ replaced φ̄ the generating functional is similar to that of a

scalar field theory for which we are allowed to connect any two legs of the vertices

by a propagator. Generically a super-amplitude or a super-vertex is a series of

Grassmann numbers with the coefficients given by physical amplitudes or vertices

that have different helicity contents. The helicity of a leg is instead determined by

the Grassmann variables assigned to that leg. It is easy to see that the propagator

1

p2
2

δ4(p1 + p2) δ
4(η1 A + η2 A) (5.98)

makes sure that the same particle species is interchanged when we connect super-

vertices and the super-amplitude defined as in (5.48) from a direct generalisation of

the LSZ reduction to superfields

∏

i

p2
i

〈
φ̄1φ̄2 · · · φ̄n

〉
(5.99)

reproduces the same super-amplitude defined from the transition amplitude be-

tween super-wavefunction end states.



Chapter 6

Summary and discussions

In the past few years a considerable amount of the progress has been made in

gluon scattering amplitude calculations based on the observation made by Cachazo,

Svrčeck and Witten [7,8] that the calculations can be drastically simplified when we

treat the MHV amplitudes [4,5] as the new building blocks. The CSW rules however

were found to be incomplete. None of the graphs given by the CSW prescription

yields an all-plus helicity amplitude at one-loop level and yet amplitudes of this type

were found to be non-vanishing. In chapter 3 we generalised the canonical trans-

formation method which was originally used in [24] to rewrite the D-dimensional

light-cone gauge Yang-Mills theory in terms of the transformed new field variables.

The canonical transformation reorganises the self-dual part of the LCYM lagrangian

as the new free lagrangian. We found the all-plus helicity amplitude that appeared

“missing” in the CSW rules are explained by the translation kernels which were

created during the canonical transformation. The translation kernels entered the

scattering amplitude when the helicity fields A and Ā in the Green function were

replaced by terms in the expansion formulae (3.15), (3.16). The inclusion of these

kernel factors as a patch to the Feynman rules that were derived from the MHV

lagrangian restores the correct result for scattering amplitudes to all order (Ap-

pendix A). From the graphical notation developed in section (3.2) we saw that the

MHV vertex absent in the CSW rules are implicitly carried by the kernels. We

found the translation kernels generically do not contribute to the amplitude either

because they are suppressed by LSZ factors or because when the on-shell condition
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is applied the kernels equal the all-plus-except-one-minus amplitude (− + + · · ·+),

which vanishes for real value momenta. We showed that for a suitable choice of

sign convention for the iǫ prescription in the kernel, the tadpole graphs are the only

exceptions to the CSW rules for practical amplitude calculations.

In chapter 4 we showed that the canonical transformation belongs to a class
{
A, f(∂)Ā

}
→
{
B, f(∂)B̄

}
in which all transformations preserve the integration

measure and have the effect of rearranging the lagrangian into the helicity structure

as implied by the CSW rules. By adjusting the operator f(∂) we demonstrated that

the kernels can be chosen to have simpler singular behaviour and no additional in-

finitesimal vertex terms are needed to account for symmetrical graphs. For f(∂) = 1

or f(∂) = ∂2 the loop integral that contains translation kernels can be evaluated

using the standard Passarino-Veltman technique. The MHV vertices produced by

the generalised measure-preserving transformation are generically not the same as

the Parke-Taylor formula. In [24] Mansfield argued that for the canonical transfor-

mation these two objects are the same because of holomorphy. The vertices were

calculated by Ettle and Morris up to 5-points [29]. In section (4.1) we proved that

for canonical transformation the formula applies to n-points in 4-dimensions.

Following the same spirit we generalised the canonical transformation on super-

symmetric theories. In the N = 1 SYM theory we found in light-cone coordinates

the physical components of the gluon fields A, Ā together with the gluino fields Λ,

Λ̄ are closed under the SUSY subalgebra Q1, Q̄1̇. The field components possessing

the same helicities can be packed into the superfields Φ and Φ̄ of Brink, Lindgren

and Nilsson [32]. We found that when light-cone gauge condition is applied and

all of the auxiliary components are integrated out the N = 1 SYM lagrangian

can be rewritten in terms of these superfields. The superfields Φ and Φ̄ chiral

and anti-chiral constraint respectively, which eliminates one degree of freedom. In

the way analogous to a Fourier transform converts a field variable from coordinate

space to momentum space we introduce a Grassmannian integral transform which

converts a superfield from the surface of super-space where chiral constraint is sat-

isfied to a Grassmannian momentum space where the superfields are labeled by

single variable η. The integral transformation provides a link between the MHV
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super-amplitude formula commonly used in the recent amplitude calculation using

the BCFW recursion approach [21, 22] and the light-cone gauge super Yang-Mills

lagrangian constructed from chiral superfields. We found when expressed in Grass-

mannian momentum space the 3-point MHV and MHV vertices in the N = 1 SYM

lagrangian take similar forms to the formulae given by Nair [6] for N = 4 MHV

super-amplitudes. We adapted the argument developed by Brandhuber, Heslop and

Travaglini [22] to show that the BCFW recursion technique can be applied to N = 1

SYM super-amplitudes. As an example we derived the formula for n-point MHV

super-amplitudes. Algebraically, we found the generating functional of the N = 1

SYM theory is equivalent to a functional integral over superfield variables which are

reintroduced as auxiliary fields after the physical field components were integrated

over. By performing the canonical transformation on superfields we arrived at an

MHV lagrangian. The formula for the n-point MHV super-vertex was proved to

agree with the super-amplitude. At the end of the chapter we extended the method

to N = 4 and calculated the MHV and MHV vertices.

The SUSY Feynman rules derived in chapter 5 can be immediate applied to com-

pute tree level graphs with generic helicity configurations. It is appearant that the

formalism generalises to loop-level provided a suitable regulator is defined such as

the one used in the “light-cone friendly” 4-dimensional regulariation scheme [62]. Al-

ternatively the chiral lagrangian may be analytically continued to extra-dimenions,

which will enable the dimension regulator to be applied on loop level diagrams.

In [55] a similar super-space formalism was used to argue that N = 4 SYM theory

is UV finite. It is possible that the same can be seen from the structure of the

supersymmetric light-cone gauge action or the MHV action.

In both pure and supersymmetric MHV lagrangian theories the derivation of

the MHV vertex formula depends heavily on holomorphy of the translation kernels

and also of the LCYM 3-point MHV vertex and 4-point vertices. When extended

to higher dimensions these factors will no lnger remain holomorphic due to the

fact that the inner product becomes p · q = (pq)I{pq}I/p̂q̂ and the contraction

between transverse direction indices I prevent brackets from factorisation, therefore

the anti-holomorphic dependence does not cancel completely. In this case one can
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still reorganise (super-)vertices or amplitudes by choosing more complicated basis

and concentrate on analysing the poles related to holomorphic variables. However

the amplitudes in higher dimensions may not have a simple formula in terms of the

bracket notation. Nevertheless it is still possible to develope a BCFW recursion

base on the computing these singularities.



Appendix A

Converting between LCYM graphs

and the MHV lagrangian graphs

As shown in chapter 2 in the LCYM lagrangian theory the building blocks of a

scattering amplitude are the 3-point MHV, MHV vertices and two different 4-point

vertices. When the canonical transformation is applied, in the new lagrangian these

are replaced by the an infinite number of MHV vertices and translation kernels Υ12···n

and Ξk
12···n. Generically any LCYM graph can be derived from a sum of graphs in

the MHV lagrangian theory using the graphical identity shown in (Fig.3.10). As an

example, we demonstrate how to recover (Fig.A.1) from MHV graphs contributing

to the same tree-level amplitude A(1−, 2+, 3+, 4+).

1

2
3

4

Figure A.1: A (− + ++) LCYM graph

In the MHV lagrangian theory only the translation kernels have the helicity

configuration that fits into the amplitude A(1−, 2+, 3+, 4+) at tree-level. One type of

the contributions comes from translating one of the helicity fields in
〈
A1, Ā2, Ā3, Ā4

〉

and connect all of the legs stretching from the kernel directly with the rest of the

fields. From the graphical expansions of A and Ā fields we find the following six
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graphs have the same tree structure as (Fig.A.1).

(a) 1

2
3

4

(b) 1

2
3

4

(c) 1

2
3

4

(d) 1

2
3

4

(e) 1

2
3

4

(f) 1

2
3

4

Figure A.2: All-plus-except-one-minus graphs constructed from kernels

We use wavy lines to indicate propagators. The dashed line bubble represents

a factor of 1/(
∑

i p
2
i /p̂i) summing over the momenta crossing through the bubble.

In addition to the graphs shown in (Fig.A.2), the contribution to the amplitude

A(1−, 2+, 3+, 4+) can also come from joining two translation kernels which originates

from any two of the helicity fields in
〈
A1, Ā2, Ā3, Ā4

〉
.

(g) 1

2
3

4

(h) 1

2
3

4

(i) 1

2
3

4

(j) 1

2
3

4

Figure A.3: Graphs constructed from joining two kernels

From the graphical convention introduced in chapter 3 a straight line is equivalent

to the propagator multiplied by p2, therefore summing over a series of graphs each

has one of the propagators stretching out of the same bubble replaced by a straight

line yields a graph with the bubble removed. We divide the graphs into three groups

according to whether the leg 2 and 3 are propagators or straight lines. Summing

over (b) (g) (h) and (e) (i) (j) removes the upper bubble.
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(b) + (g) + (h) =

1

2
3

4

(k)

(e) + (i) + (j) =

(l) 1

2
3

4

Adding the rest of the graphs together removes the outer dashed line bubble.

(a) + (c) + (d) + (e) =

(m) 1

2
3

4

Finally, collecting the sums yields the LCYM graph (Fig.A.1)

(k) + (l) + (m) =

1

2
3

4

By applying the same graphical identity repeatedly we can restore LCYM graphs

with an arbitrary helicity configuration. Note that the identity we use applies to

off-shell momenta as well, therefore the method extends to loop-level graphs.



Appendix B

The N = 1 MHV super-vertices

In this appendix we prove that when the superfields φ and φ̄ are canonically trans-

formed into new fields χ and χ̄ the original 3-point and 4-point vertices in the

light-cone gauge SYM generate MHV super-vertices of the form (5.2). For simplic-

ity we show this is true when the two negative helicity particles are adjacent. The

method outlined here generalise to arbitrary configurations.

Labeling the negative helicity leg momenta as leg 1 and 2 the formula (5.2) reads

V (1−, 2−, 3+ . . . n+) =
〈1 2〉3

〈12〉 〈23〉 · · · 〈n1〉

(
n∑

a,b=1

〈a b〉 ηaηb

)

=
(12)2

(23) · · · (n1)

3̂ · · · n̂
1̂

1
2 2̂

1
2

(
n∑

a,b=1

(a b)

â
1
2 b̂

1
2

ηaηb

)
(B.0.1)

1
n
l + 1
..

l

m+ 1
...

k + 1

m
..

.k

2
..
.

Figure B.1: Translated 4-point vertex

From (5.61) we saw the factors Υ and Ξk appearing in the translation formula

(5.72) and (5.73) contain in the denominators a sequential product of round brackets.

After the canonical transformation the 3-point and 4-point vertices constitute three
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1
n
l + 1
..

k + 1

l

...

k

2
..
.

Figure B.2: Translated 3-point vertex

and four groups of products of round brackets (Fig B.2 and B.1). Therefore when

regarded as functions of tilde component variables p̃ which are contained in the round

brackets, both formula (B.0.1) and the translated 3-point and 4-point vertices can

be spanned by terms of the form

1

(23) (34) · · · (k − 1, k)
× 1

(k + 1, k + 2) · · · (m− 1, m)

× 1

(m+ 1, m+ 2) · · · (l − 1, l)
× 1

(l + 1, l + 2) · · · (n, 1)
(B.0.2)

together with terms of the form

(12)

(23) (34) · · · (k − 1, k)
× 1

(k + 1, k + 2) · · · (l − 1, l)
× 1

(l + 1, l + 2) · · · (n, 1)
(B.0.3)

where the expansion coefficients depend on pairs of Grassmann numbers ηiηj with

i j running through all possible combinations of external legs and on hat component

momenta p̂.

To obtain the coefficients we use the method of partial fractions. For terms of

the form (B.0.2) we adjust tilde components to set

(12) = 0 (B.0.4)

(23) = · · · = (k − 1, k) = 0 (B.0.5)

(k + 1, k + 2) = · · · = (m− 1, m) = 0 (B.0.6)

(m+ 1, m+ 2) = · · · = (l − 1, l) = 0 (B.0.7)

(l + 1, l + 2) = · · · = (n, 1) = 0 (B.0.8)
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Similarly, the coefficient of term (B.0.3) can be obtained by applying the condi-

tions

(23) = · · · = (k − 1, k) = 0 (B.0.9)

(k + 1, k + 2) = · · · = (l − 1, l) = 0 (B.0.10)

(l + 1, l + 2) = · · · = (n, 1) = 0 (B.0.11)

We shall prove that the translated 3-point and 4-point vertices combine to give

the formula (B.0.1) by showing their expansion coefficients agree with each other.

First we check the coefficients for four sequential products of brackets (B.0.2).

Applying conditions (B.0.8) on formula (B.0.1) gives zero because of the (12) de-

pendence in the numerator. The 3-point vertex contribution to the coefficient of

(B.0.2) can be from the following three cases

(a)

a+ d

b c

1
α

l + 1
l δ m+ 1

k + 1

γ

m

k
β

2

(b)

b+ c

a

d

1
α
l + 1

m+ 1

δ

l

mγ

2
β
k

k + 1

(c)

1

l + 1

k + 1 γ

m+ 1
m

δl

k

2
β

α

a

bc+ d

In each graph one of the sequential products of brackets splits into two. Summing

over contributions from these three graphs gives

∑

α,β,γ,δ

1

c
1
2d

1
2 (b+ c)2

(
(ac+ bd) α̂

1
2 β̂

1
2 ηαηβ − a (b+ c) β̂

1
2 γ̂

1
2ηβηγ − b (a+ d) δ̂

1
2 α̂

1
2 ηδηα

+2 abγ̂
1
2 δ̂

1
2 ηγηδ + b (a+ d) α̂

1
2 γ̂

1
2 ηαηγ + a (b+ c) β̂

1
2 δ̂

1
2 ηβηδ

)
(B.0.12)

where we used ηα ηβ ηγ ηδ to denote Grassmann variables associated with legs

from each of the four branches emerging from the original 4-point vertex. The index
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α is to be summed over from (l + 1) to 1, β from 2 to k, γ from (k + 1) to m, and

finally δ from (m+ 1) to l. For simplicity we denote the four internal lines of (Fig.

4-point) by a, b, c and d.

a = l̂ + 1 + · · ·+ n̂ + 1̂ (B.0.13)

b = 2̂ + 3̂ + · · · + k̂ (B.0.14)

c = k̂ + 1 + · · ·+ m̂ (B.0.15)

d = m̂+ 1 + · · ·+ l̂ (B.0.16)

1

l + 1 l

m+ 1

k + 1

m

k

2

a

b c

d

β

α

γ

δ

Figure B.3: Notation for the 4-point vertex expansion

The contribution from the original 4-point vertex can be readily derived by trans-

lating the superfields φ and φ̄ attached to (5.37), which cancels (B.0.12). The ex-

pansion coefficient of terms (B.0.2) vanishes, therefore agrees with the coefficients

obtained by expanding the formula (B.0.1)

The coefficients of term (B.0.3) can be calculated using the same method. How-

ever we note that since in the pure YM case the LCYM 3-point vertex was verified to

give the same expansion coefficients as the Parke-Taylor formula, which corresponds

to the η1η2 term of the formula (B.0.1), the proof is complete as long as the ratio

between the expansion coefficients of each ηiηj term from the original 3-point vertex

is the same as ratio of coefficients of ηiηj from the formula (B.0.1). Using α, β and

γ to denote external legs from each of the three branches of (Fig.B.4), we find the

translated 3-point vertex contribute to the expansion coefficient of (B.0.3) as

∑

α,β,γ

c α̂
1
2 β̂

1
2 ηαηβ + a β̂

1
2 γ̂

1
2ηβηγ + b γ̂

1
2 α̂

1
2 ηγηα (B.0.17)

where a, b and c here stand for
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a = l̂ + 1 + · · ·+ n̂ + 1̂ (B.0.18)

b = 2̂ + 3̂ + · · · + k̂ (B.0.19)

c = k̂ + 1 + · · ·+ l̂ (B.0.20)

1

l + 1

k + 1

l

k

2

a

b c

β

α

γ

Figure B.4: Notation for the 3-point vertex expansion

The numerator of the formula (B.0.1) can accordingly be written as

∑

α,β,γ

〈αβ〉 ηαηβ + 〈βγ〉 ηβηγ + 〈γδ〉 ηγηα (B.0.21)

Applying (B.0.11) this becomes

(12)

1̂2̂

1

c

(
∑

α,β,γ

c α̂
1
2 β̂

1
2 ηαηβ + a β̂

1
2 γ̂

1
2ηβηγ + b γ̂

1
2 α̂

1
2ηγηα

)
(B.0.22)

The ratio between the coefficients of the ηαηβ term, ηβηγ term and ηγηα term

are the same as the ratio in (B.0.17).
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