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Abstract 

A series o f cyclic triphosphenium ions containing three adjacent phosphorus atoms linked 

by a hydrocarbon backbone has been synthesised. They vary in ring size (four- to seven-

membered rings), substituents on the four-coordinate phosphorus atoms, and organic 

backbone, and have been characterised by 3 I P N M R spectroscopy. Variable temperature 

studies probing the mechanism of formation of cyclic triphosphenium ions from a 

reaction o f PX3 with a diphosphane have shown a three-step mechanism: (i) the addition 

of PX 3 to the diphosphane to form an acyclic intermediate, ( i i ) cyclisation to afford a 

heterocycle with a halogen still bonded to the central P atom, and (i i i ) removal o f the 

halogen to afford the cyclic triphosphenium ion. 

The syntheses o f P c-alkyl and aryl derivatives o f cyclic triphosphenium ions using two 

different methods are described. Direct ethylation o f a cyclic triphosphenium ion using 

ethyl triflate is only possible when the substituents on the four-coordinate phosphorus 

atoms are small e.g. Et. Synthesis o f Pc-alkyl and aryl derivatives with larger substituents 

on the four-coordinate P atoms, and/or Pc, have been achieved via reaction o f a 

diphosphane with a dichlorophosphane in the presence o f A1CI 3 or SnC^. A series o f 

tetraphosphonium ions containing four adjacent P atoms linked by an organic backbone 

has also been synthesised. These derivatives have been characterised using 3 I P N M R 

spectroscopy and where possible X-ray diffractions studies and elemental analyses. The 

P-P bonds in these derivatives are typical values for single bonds. 

The synthesis of Pt(ll) complexes containing cyclic triphosphenium ions has been 

achieved to afford cis and/or trans isomers via reaction o f a cyclic triphosphenium ion 

with fra«.s-[Pt(PR3)Cl(uCl)]2. However, i f the cyclic triphosphenium ion contains phenyl 

groups on both o f the four-coordinate phosphorus atoms, ring scission followed by 

complexation of the diphosphane to Pt is observed. In the Pt(II) complexes containing 

cyclic triphosphenium ions, an unusually small 'Jr-p value to the phosphenium central P 

( 9 8 1 - 1 2 6 7 Hz) suggests that the bond between the phosphenium central P atom and the Pt 

centre is long. Hydrolysis reactions o f several Pt(II) complexes containing 
31 

chlorophosphane ligands have been monitored by P N M R spectroscopy. 
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Abbreviations 

Ar 2,4,6-tris(trifluoromethyl)phenyl 

Ar' 2,6-bis(trifluoromethyl)phenyl 

A r " 2,4-bis(trifluoromethyl)phenyl 

biphep 2,2'-bis(diphenylphosphino)-l,l '-biphenyl 

Cpent cyclopentyl 

Cy cyclohexyl 

d doublet 

DBU l,8-Diazabicyclo[5.4.0]undec-7-ene 

D C M dichloromethane 

dcpe 1,2-bis(d ichlorophosph i no)ethane 

dcypb l,4-bis(dicyclohexylphosphino)butane 

dcype l,2-bis(dicyclohexylphosphino)ethane 

dcypm bis(dicyclohexylphosphino)methane 

dcypp l,3-bis(dicyclohexylphosphino)propane 

dedppe (l-diethylphosphino-2-diphenylphosphino)ethane 

depe 1,2-bis(diethylphosphino)ethane 

depp 1,3 -b is(d iethy lphosph i no)propane 

D F T density functional theory 

dippb l,4-bis(di-isopropylphosphino)butane 

dippf 1,1 '-bis(di-isopropylphosphino)ferrocene 

dippp l,3-bis(di-isopropylphosphino)propane 

dmpe l,2-bis(dimethylphosphino)ethane 

dmpm bis(dimethylphosphino)methane 

dpdtbpf (l-diphenyl-l'-ditertiarybutylphosphino)ferrocene 

dpfppe l,2-bis(dipentafluorophenylphosphino)ethane 

dppb 1,4-bis(diphenylphosphino)butane 

dppben l,2-bis(diphenylphosphino)benzene 

dppdmx 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene 
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dppe 1,2-bis(diphenylphosphino)ethane 

dppE cM,-bis(diphenylphosphino)ethene 

dppf 1 ,F-bis(diphenylphosphino)ferrocene 

dpph 1,6-bis(diphenylphosphino)hexane 

dppm bis(diphenylphosphino)methane 

dppme l,l-bis{diphenylphosphanyl)methyl]ethene 

dppox bis(a,a-diphenylphosphino)-o-xylene 

dppp 1,3-bis(diphenylphosphino)propane 

dpppe 1,5-bis(diphenylphosphino)pentane 

dtbpf 1,1 '-bis(di-tertiarybutylphosphino)ferrocene 

dtbpox bis(a,a'-di-t-butylphosphino)-o-xylene 

Ethyl triflate ethyltrifluoromethanesulfonate 

H O M O highest occupied molecular orbital 

HOMO-1 second highest occupied molecular orbital 

m multiplet 

Methyl triflate methyltrifluoromethanesulfonate 

Morph N-morpholino 

NBO non-bonding orbital 

N L M O natural localised molecular orbital 

NMR nuclear magnetic resonance 

Phenyl triflate phenyltrifluoromethanesulfonate 

R T room temperature 

s singlet 

t triplet 

'Bu tertiary butyl 

tetraphos tetrakis(diphenylphosphinomethyl)methane 

T H F tetrahydrofuran 

tht tetrahydrothiophene 

T M E D A tetramethylethylenediamine 

Triflic acid trifluoromethanesulfonic acid 

triphos2 tris(diphenylphosphinomethyl)ethane 
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Chapter 1: 
Introduction 

1.1 What are cyclic triphosphenium ions? 

Cyclic triphosphenium ions were first reported in 1982 by Schmidpeter et al..x They are 

positively charged heterocycles containing three adjacent phosphorus atoms linked to form 

a ring by a hydrocarbon backbone (Figure 1.1). The two 'outer' phosphorus atoms each 

have two aryl or alkyl substituents, whereas the central phosphorus atom is 'bare,' and is in 

the +1 formal oxidation state. 

Figure 1.1: The general structure o f a cyclic triphosphenium ion 

The favoured representation features the positive charge delocalised over all three 

phosphorus atoms (Figure 1.2). X-ray diffraction studies carried out on some isolated 

R 2 r \ -

A 

+ 
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cyclic triphosphenium ions have shown that the phosphorus-phosphorus bond lengths are 

intermediate between values for a single and a double phosphorus-phosphorus bond.1"6 

R 

R R 

R R 

R R 

Figure 1.2: Resonance forms of cyclic triphosphenium ions 

These heterocyclic triphosphenium ions are readily characterised using 3 1 P { ' H } N M R 

spectroscopy, as they present a triplet at very low frequency corresponding to PA and a 

doublet at higher frequency corresponding to PB. The 'jp.p coupling constant is usually in 

the region of 400-500 Hz. 

These heterocycles are interesting not only because they provide a quick and easy route to 

low coordinate phosphorus compounds, but because they have different steric and 

electronic properties compared to traditional phosphane ligands. For example, the structure 

of a cyclic triphosphenium ion differs from those o f traditional phosphanes, with steric 

bulk being located one atom further away from the donor P atom. 

1.2 Synthesis of cyclic triphosphenium ions 

The two most commonly used synthetic routes involve reacting a diphosphane with a 

phosphorus trihalide, with or without tin(II) halide (Scheme 1.1). The advantage in using 

the t in(Il) halide is that only one phosphorus-containing product is afforded. 
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(a) r\ 
Po. . 

2PCI 
C 

R R 

+ |diphosphaneX 2| 2 +2X-

p. ^p p p 

R 2PCI 
(b 2 SnCL 

2SnC R 

+ SnCI 4 

Scheme 1.1: (a) 3:2 reaction between a diphosphane and P X 3 and (b) 1:1:1 reaction 

between a diphosphane, PX 3 and SnX 2 

A variation on these methods was reported by Macdonald et ai, involving the 

disproportionation o f P2I4 (Scheme 1.2).4 This method also affords only one phosphorus-

containing product, with the other product, I 2 , easily removed from the reaction mixture. 

2 
R R P, 

1 I 
R R 

Scheme 1.2: Synthesis of cyclic triphosphenium ions from disproportionation of P2I4 

Recently Macdonald et al. have reported a new synthetic method to form chloride and 

bromide salts o f cyclic triphosphenium ions using cyclohexene as a halogen-scavenger 

(Scheme 1.3).7 For reactions involving PCI3 a mixture o f other products is formed, 

including HC1, cz's-1,2-dichlorocyclohexane and 3-chlorocyclohexene, although, when 

using PBr 3, the only other product formed is /ra«5-l,2-dibromocyclohexane. 
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+ R PX R R 

R o R 

where X = CI/Br 

Scheme 1.3: Synthesis o f cyclic triphosphenium ions using cyclohexene as a halogen-

scavenger 

Since their discovery in 1982,' many different cyclic triphosphenium ions have been 

synthesised which vary in ring size, hydrocarbon backbone and substituents on the four-

coordinated phosphorus atoms. 

1.2.1 Synthesis of four-membered ring cyclic triphosphenium ions 

Although four-membered rings are generally thought to be unstable species, several four-

membered ring cyclic triphosphenium ions have now been reported (Table 1.1). 5PA for the 

cyclic triphosphenium ions containing nitrogen and methyl substituents is at higher 

frequency than observed for other cyclic triphosphenium ions. Another interesting point is 

that for all the four-membered cyclic triphosphenium ions the ]Jp.p coupling constants are 

much lower compared to those in the larger rings, except for the dmpm cyclic 

triphosphenium ion. 

Attempts to form a four-membered ring from dppm and PCI3 (with and without SnC^) 

were unsuccessful.3 Some colour changes were noted, but there were no N M R data to 

support the formation o f the ring. The 3 1 P { ' H } N M R data suggested that two phenyl 

groups had been replaced by chlorine, as one o f the products appeared to be ChPCFhPPr^ 

(8P P h -25.3 ppm, 5PCi 187.8 ppm, V P . P = 141 Hz). 8 
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Cyclic triphosphenium ion 
8PA, 

ppm 

8P B , 

ppm Hz 
Reference 

(morph^PCx^^^/PCniorph); 
P 

+ 

CI -90.0 56.0 347 9 

P 

+ 

c r -126.0 56.0 358 9 

M e 2 P < ^ / ^ ^ P M e 2 

P 

+ 

CI -153.7 21.3 452 10 

C y 2 P < ^ ^ > p c y 2 

p 

+ 

CI -214.6 45.1 333 10 

C y 2 P \ ^ ^ P C y 2 

P 

+ 

SnCI<> -216.1 45.4 331 10 

Table 1.1:31P{'H} N M R literature data for four-membered cyclic triphosphenium ions 

1.2.2 Synthesis of five-membered ring cyclic triphosphenium ions 

The first cyclic triphosphenium ion was synthesised from the diphosphane dppe in 1982 by 

Schmidpeter et al. (Scheme 1.4).1 

r\ 
Po , ^P rx Pta Ph Ph 2PCI Ph 

SnCI 
2SnCI Ph Ph Ph Ph 

+ SnCI 

Scheme 1.4: The synthesis o f the first cyclic triphosphenium ion 

- 10-
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The 3 1 P { ' H } N M R spectrum showed the characteristic doublet and triplet (5PA = -231.6 

ppm, 8P B = 63.8 ppm, ' j P . P = 448.9 Hz). Colourless crystals were collected; X-ray 

diffraction studies showed that the ring had an envelope conformation, and the two P-P 

bond lengths were intermediate between single and double bond lengths [2.128(2) A and 

2.122(1) A]. This suggested that the positive charge was delocalised over all three 

phosphorus atoms. 

An alternative synthesis for this five-membered cyclic triphosphenium ion was reported by 

Schmidpeter et al. in 1985, via a hexaphenyltriphosphenium tetrachloroaluminate species 

(Scheme 1.5). 1 , 1 1 The 3 1 P { ' H } NMR data obtained for this species were consistent with the 

previous synthesis (5PA = -232.0 ppm, 5P B = 64.4 ppm, Vp-p = 451.5 Hz). 1 

PCI 3 + 3PPh3 + 2AICI3 

[Ph 3P-P-PPh 3 | + |AICl 4 | dppe 

+ |Ph 3PCI] +|AICI 4-| -2PPh3 

Ph. 

Ph' 

.Ph 

Ph 
AICI 

Scheme 1.5: The alternative route to form the l,l,3,3-tetraphenyl-R 5,2A. 3,3X 5-

triphospholenyl cation 

Further studies into reactions to form the l,l,3,3-tetraphenyl-lA.5,2X3,3A.5-triphospholenyl 

cation from dppe have since been carried out. One study involved the synthesis o f the dppe 

cyclic triphosphenium ion using PX 3 (where X=CI, Br, I) with and without the use o f 

SnX2. The 3 1 P { ' H } N M R data showed little variation in the chemical shifts or coupling 

constants when using the different trihalides indicating that there is little/no ion-pair 

interactions.3 

In 2003 Macdonald et al. reported that the cyclic triphosphenium ion made from dppe and 

PI3 would react with NafBPlu], where the iodide counter-ion is exchanged with the 

tetraphenyl borate (Scheme 1.6).4 Again the 3 l P { l H } N M R data showed little change in the 

chemical shift o f the central phosphorus atom, suggesting that there is little interaction 

between the cation and anion when in solution. 
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Po ,^P / \ 
PO, ^P 

Ph Ph Ph Ph NaBPh 
BPh/ + Nal 1 

T H F / D C M Ph Ph Ph Ph 

Scheme 1.6: Reaction between the ring formed from dppe and P^and NafBPru] 

The molecular structures o f several salts o f the dppe cyclic triphosphenium ion have now 

been reported. ' ' 5 ' 7 For each salt the P-P bond lengths are very similar and are intermediate 

between those for single and double P-P bonds (Table 1.2). 

X = 

S n C I 6

2 I" BPh 4" B r -

P(l)-P(2) 2.122(1) 2.1263(17) 2.1166(6) 2.1231(9) 

P(2)-P(3) 2.128(2) 2.1315(18) 2.1293(6) 2.1308(9) 

P(l)-C(5) 1.821(5) 1.821(5) 1.8164(17) 1.818(2) 

P(3)-C(4) 1.820(4) 1.826(5) 1.8430(16) 1.817(2) 

P(l)-P(2)-P(3) 88.9(1) 88.37(7) 86.52(2) 88.37(3) 

Reference 1 5 5 7 

Table 1.2: Selected bond lengths and angles for some dppe cyclic triphosphenium ion salts 

Other five-membered cyclic triphosphenium ions have been synthesised from dppE, 3 

depe,2 dppben,2 dmpe,2 and dcype. 1 0 The 3 1 P { ' H } N M R data obtained for each cyclic 

triphosphenium ion are in good agreement with those reported for Schmidpeter's original 

ring (Table 1.3).' 

- 12-
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Cyclic triphosphenium ion 
5PA, 

ppm 

S P B , 

ppm 

Jp-p, 

Hz 
Ref. 

r i + 

P I T Ph 

Cl- -248.4 473 71.9 

3 

r i + 

P I T Ph 

Br- -247.6 473 71.8 

3 

r i + 

P I T Ph 
I - -246.9 473 70.9 3 

r i + 

P I T Ph SnCl 6

2" -247.6 473 71.2 

3 

r i + 

P I T Ph 

SnBr6

2- -247.1 472 71.5 

3 

E K s \ / \ /^E t 

Kt ^ p ^ Et 

+ 

cr -269.2 81.6 441 2 

Ph. / \ A'h 

^ P k - /P^T 
P I T ^ p / ^ ^ P h 

+ 

Cl" -212.8 57.6 453 2 

Mev. / \^ Me 

Me P ' ' ' ^ ^ E 

+ 

cr -212.9 60.4 430 2 

c ' \ / \ ^ y 

C y ^ ^ ^ p ^ ^ C y 

+ 

cr -289.6 87.3 457 10 

Table 1.3:31P{'H} N M R literature data for five-membered cyclic triphosphenium ions 

X-ray diffraction studies were carried out on crystals obtained from the reaction between 

dppben and PC13, and the resulting molecular structure is shown in Figure 1.3. 
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C27 C28 

r 26 

C13 
C7 

C30 C25 

PI P3 

P2 
C13 CI 

/ 
J 

Figure 1.3: Molecular structure o f the cyclic triphosphenium ion derived from dppben and 

PC1 3

2 

The benzene backbone gives the five-membered ring a planar conformation. As with 

Schmidpeter's dppe ring system, the P-P bond lengths (2.124 A and 2.122 A) are 

intermediate between normal single P-P (2.20-2.25 A) 1 2 and double P-P bond lengths 

(2.00-2.03 A). 1 2 

Another five-membered cyclic triphosphenium ion was synthesised from the diphosphane 

dedppe to afford an unsymmetrical ring (Figure 1.4).2 Similar to the other ring systems, 

there was little difference in the chemical shifts or coupling constants when synthesising 

the ring from PC13, PBr3, or PI 3 , with or without SnX 2 (Table 1.4). 

f~\ 1 + 

E t 2 P < - y¥Ph2 

B C 
A 

Figure 1.4: The five-membered ring synthesised from dedppe 

- 1 4 -
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System 5P A , 8P„, 5Pc, 1 / 
•fPA-PBi 

2«A>B-PO 

ppm ppm ppm Hz Hz Hz 

dedppe, PCI3 -251.0 78.0 67.1 431 460 10.4 

dedppe, PBr 3 -251.0 78.9 67.0 433 461 10.4 

dedppe, PI 3 -249.6 78.2 66.7 435 461 9.6 

dedppe, PCI 3, SnCl 2 -251.0 81.3 69.4 434 466 9.6 

Table 1.4:31P{'H} NMR literature data for the dedppe ring 

Other diphosphanes that could potentially form five-membered heterocycles, such as dcpe6 

and dpfppe, 1 8 were reacted with phosphorus trihalides. However there was no 3 1 P { ' H } 

N M R evidence for the formation of the rings. This suggests that ring formation is not 

favoured by the presence o f very electronegative groups on the diphosphane. 

1.2.3 Synthesis of six-membered ring cyclic triphosphenium ions 

The first six-membered cyclic triphosphenium ions were reported by Schmidpeter et al. in 

1985." They were made from the diphosphanes triphos2 (a tridentate ligand) and tetraphos 

(a tetradentate ligand) (Scheme 1.7, Table 1.5). 

diphosphane 8P A , ppm 5P B , ppm 5P C , ppm ' • /pA-PB* 

triphos2 -242.8 19.5 -30.2 444 

tetraphos -249.6 17.6 - 441 

Table 1.5:3IP{'H} NMR data for two six-membered cyclic triphosphenium ions 
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(a) 

(b) 

Me 

PPh, 

Ph3P-P-PPh3

+ AICI4-
>-

PPh 2 PPh 2 

PPh 2 PPh 2 

2 Ph 3P-P-PPh 3

+ AIC14-

PPh 2 PPh 2 

Me 

Ph7P 

PPh 2 

C 

Ph2P<^ >PPh 2 

B P B 
A 

2+ 

(AICV) 2 +2PPh3 

PPh, 

P h 2 P ^ -^PPh2 

B P B 
A 

2+ 

(A1C14)2 +4PPh3 

Scheme 1.7: 6-membered rings from (a) triphos2 and (b) tetraphos 

Other six-membered cyclic triphosphenium ions have since been synthesised from dppme, 

dppp, dppf, dcypp, depp and dppNap. The 3 1 P { ' H } N M R data obtained for each of these 

rings are consistent with those reported for other cyclic triphosphenium ions (Table 1.6). 

For the reaction between dppf, P C I 3 and SnCl 2, the triplet corresponding to the central 

phosphorus atom in the resulting cyclic triphosphenium ion, P a , was at higher frequency 

compared with those for other cyclic triphosphenium ions. However this is probably due to 

the ferrocene backbone, which has different electronic properties to the other diphosphanes 

previously used to synthesise cyclic triphosphenium ion. 

- 16-
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1 5P 8P / p . p . Mi 
Cyclic triphosphenium ion Reference 

Hz ppm ppm 

Ph Ph 213.4 23.0 431 13, 14 
SnCI 

Ph Ph 

Ph Ph 
209.4 23.1 424 3,5, 7,14 Cl 

Ph Ph 

Df Fe 
C l 135.4 33.3 496 14, 15 

Ph Ph 

Ph Ph 

Cy Cy 
36.5 293.3 456 14, 16 Cl 

Cy Cy 

Et Et 
30.4 14, 16, 17 253.5 4 7 Cl 

Et Et 

6, 14 216.0 26.0 392 
I Ph Ph 

Ph Ph 

Table 1.6:3IP{'H} N M R literature data for six-membered cyclic triphosphenium ions 
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When the reaction was carried out between depp and PCI3, two sets of doublets and triplets 

were seen in the 3 1 P { ! H } N M R spectrum (Table 1.7). This suggested that two rings had 

formed, although on standing the doublet and triplet at 42.7 ppm and -103.2 ppm 

disappeared. This second doublet and triplet were initially assigned to impurities. 

5P, ppm ^Jp-P, Hz Multiplicity 

42.7 351 d 

30.4 417 d 

-103.2 351 t 

-253.5 417 t 

Table 1.7:31P{1H} N M R literature data for the reaction between depp and PC1 3 

Crystals were isolated from a reaction between dppp, PC1 3 and SnCb. Single crystal X-ray 

diffraction studies were carried out, and the resulting molecular structure is shown in 

Figure 1.5.3 

C14 

C13A C13 

E 

/ f'JA 
i i 

C7 

/ 

Figure 1.5: Molecular structure o f the cyclic triphosphenium ion formed from dppp, PCI 

3 and SnCl 
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The molecular structures o f several other salts o f the dppp cyclic triphosphenium ion have 

been reported. 3 ' 5 > 7 - 1 8 The P-P bond lengths are very similar for each salt, showing that the 

counter-ion has little effect on the crystallographic parameters for the cation (Table 1.8). 

X P(l)-P(2) P(2)-P(3) P(l)-C(5) P(3)-(C4) P(l)-P(2)-P(3) Reference 

SnCI 6

2 " 2.132(1) 2.132(1) 1.815(3) 1.815(3) 96.44(6) 3 

A1CI 4 2.1529(5) 2.1310(5) 1.8146(13) 1.8143(13) 95.579(18) 18 

r 2.1318(6) 2.1203(6) 1.8068(16) 1.8112(16) 97.77(2) 5 

BPh 4" 2.1224(13) 2.1326(14) 1.807(3) 1.804(3) 93.98(5) 5 

P F 6 
2.122(2) 2.113(2) 1.811(6) 1.815(6) 97.19(9) 5 

G a C I 4 
2.1276(12) 2.1211(12) 1.815(3) 1.816(3) 93.76(5) 5 

Br- 2.1138(11) 2.1262(11) 1.801(3) 1.807(3) 98.30(4) 7 

H C I 2 2.1254(8) 2.1132(8) 1.811(2) 1.814(2) 96.70(3) 7 

Table 1.8: Selected bond lengths and angles for isolated dppp cyclic triphosphenium ion 

salts 

1.2.4 Synthesis of seven-membered ring cyclic triphosphenium ions 

The first seven-membered cyclic triphosphenium ion was reported by Byers et al. in 

1999 3 ( j i p h O S p h a n e dppb was reacted with P C I 3 to form the seven-membered 

equivalent o f Schmidpeter's first ring. Further work on seven-membered ring cyclic 

triphosphenium ions has been carried out using the diphosphanes dppox, dtbpox, dcypb 

and biphep. The 3 1 P { ' H } NMR data for each ring show a triplet at low frequency, a doublet 

at higher frequency and a large 'jp.p (Table 1.9). 

- 19-
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Cyclic triphosphenium ion 

Phv /Ph 

T»h 
Cl 

cr 

cr 

Cy^ 

Cy' 

y 

Cy 
cr 

^Ph 

Ph 

SnCL 

8PA, 

ppm 

-210.9 

-214.5 

-237.5 

-258.7 

-153.6 

5P B , 

ppm 

34.3 

25. 

45.5 

47.4 

29.9 

/p.p, 

Hz 

455 

436 

565 

486 

432 

Reference 

19 

17 

20 

Table 1.9: 3 1 P { ' H } N M R data for cyclic triphosphenium ions formed from dppb, dppox, 

dtbpox and dcxpb 

- 2 0 -
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1.2.5 Synthesis of eight-membered ring cyclic triphosphenium ions 

Dillon et al. reported the synthesis o f an eight-membered cyclic triphosphenium ion in 

2000. 2 1 This was made using dpppe with P C I 3 , as an eight-membered analogue to 

Schmidpeter's original ring. However the 3 1 P { ' H } N M R spectrum showed two sets o f 

doublets and three sets o f triplets, unlike previously synthesised cyclic triphosphenium 

ions. The synthesis was repeated but only two doublets and triplets were observed (Table 

1.10). 

5P, ppm Multiplicity ' /P-P , Hz 

30.2 d 465 

29.3 d 465 

-198.1 t 467 

-215.8 t 466 

Table 1.10:3IP{'H} N M R data obtained from the reaction o f dpppe with PCI 3 

The data obtained suggested that a monomer and a dimer had formed (Figure 1.6). It was 

proposed that the third triplet observed could be due to the 'open-end' form of the dimer. 

\ 
Ph,P PPh b) a X / . 

Ph,P 

P I H P PPh Ph 

Figure 1.6: Possible products from the reaction of dpppe and P C I 3 (a) monomer, (b) dimer 

Another eight-membered cyclic triphosphenium ion was synthesised from the diphosphane 

dppdmx. 2 0 The 3 I P { * H } N M R spectrum shows a triplet at low frequency and a doublet at 

higher frequency corresponding to PA and P B respectively, and a large 1 Jp.p (Table 1.11). 

-21 -
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Ph. J*h 

P I T Ph 

+ 

Br 

8 PA , 

ppm 

8 P B , 

ppm 
' J P P, Hz 

Ph. J*h 

P I T Ph 

+ 

Br 
-112.2 26.1 553 

Table 1.11: 3 I P { ' H } NMR data obtained for the dppdmx cyclic triphosphenium ion as its 

bromide salt 

1.2.6 Synthesis of nine-membered ring cyclic triphosphenium ions 

Attempts to synthesise a nine-membered cyclic triphosphenium ion using the diphosphane 

dpph with PC13 afforded three products. The 3 1 P { ' H } N M R spectrum showed three sets o f 

doublets and triplets (Table 1.12). These were assigned to monomer, dimer and open 

chained species with a singlet corresponding to the ends o f the chain (Figure 1.7). 

5P, ppm Multiplicity './p-p, Hz 

30.5 d 463 

30.3 d 468 

23.2 d 423 

-11.5 s -

-197.8 t 468 

-198.5 t 463 

-209.1 t 423 

Table 1.12: 3 I P { ' H } N M R literature data for the formation o f a nine-membered ring (plus 

dimer and open chain) synthesised from dpph and PCI3 

- 2 2 -
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PPh 

+ 

Figure 1.7: The proposed structure of the open chain species 

1.3 Bonding in cyclic triphosphenium ions - DFT calculations 

Examination of the frontier orbitals o f the model compound [(dmpe)P] + by Macdonald and 

Ellis has provided further insight into the electronic structure of cyclic (and acyclic) 

triphosphenium ions. The results obtained suggest that there is a 'lone pair' orbital on the 

central phosphorus atom (P A) which is in the P-P-P plane (HOMO-1), and that the HOMO 

consists mainly o f 3p x orbitals on P A . 5 

The stability o f cyclic triphosphenium ions was attributed to stabilisation o f the HOMO 

through back-bonding interactions. Electron density from the 3p x orbitals on PA is donated 

to empty anti-bonding orbitals on the four coordinate phosphorus atoms (P B ) (Figure 1.8).5 

R 3 P P 

^ - o 
P b P a 

antibonding 3px 

orbital 

Figure 1.8: Back-bonding interactions between filled 3p x orbitals on PA and empty anti-

bonding orbitals on P B

5 
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NBO population analysis and N L M O calculations were also carried out by Macdonald and 

Ellis. The results provide evidence for backbonding as there is a decreased population o f 

the 3p x orbital on P A and there is significant delocalisation o f the 'lone pair' orbitals 

respectively.5 

1.4 Reactions of cyclic triphosphenium ions 

1.4.1 Protonation reactions 

The first reported protonation o f cyclic triphosphenium ions was carried out by 

Schmidpeter in 1985." The dppe cyclic triphosphenium ion was reacted with 'BuCl in the 

presence of aluminium trichloride to afford the P-protonated derivative (Scheme 1.8). 

PhjPO ,PPh2 

B 

'BuCl + AICI3 Ph,R 

2+ 

(AICI 4) 2 

Scheme 1.8: Protonation o f the dppe cyclic triphosphenium ion using 'BuCl and A1C1 3 

There are two possible sources for the proton. One possibility is the abstraction of the 

proton from 'BuCl to afford an alkene (Scheme 1.9). Since AICI3 is easily hydrolysed, the 

alternative source o f protons is H 2 0 or OH" groups on the surface o f the AICI3. 

*BuCI + AICI3 H + + A I C 1 4 - + M e 2 C = C H 2 

Scheme 1.9: Abstraction o f a proton from 'BuCl 

- 2 4 -
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The 3 I P { 1 H } N M R spectrum o f the product showed that the triplet corresponding to the 

central phosphorus atom (P c ) had shifted to higher frequency (Table 1.13). This is due to 

deshielding by the proton. The coupling constant decreased compared to that of the cyclic 

triphosphenium ion, due to the 7i-bonding being lost. Analogous reactions were carried out 

with cyclic triphosphenium ions derived from tetraphos, depe, dppben, dppE, dppp and 

dppb. The 3 1 P { ! H } N M R data for each P-protonated derivatives showed a shift to higher 

frequency for the triplet (P ( ) and a decrease in the ' j P . P compared to those for the parent 

cyclic triphosphenium ion (Table 1.13). 

For the reaction between the dppE ring, AICI3 and l BuCl an unusual result was reported.2 2 

Along with the expected doublet and triplet corresponding to the protonated ring, a second 

doublet and triplet were apparent in the 3 1 P { ' H } N M R spectrum (d, 8P 29.9 ppm, t, 8P 54.9 

ppm, 2JP.p = 25.1 Hz) corresponding to the norbornane-like trication isolated as its 

(AICLO3 salt (Figure 1.9). 

035 
Pi 

C2 

C1V 

, : r : 

C3 P2 PI 

2 2 3 

Figure 1.9: Molecular structure of the l,4,7-tris(diphenylphosphonium) norbornane 

trication 2 2 
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P-protonated cyclic triphosphenium ion 
SPc, 

ppm 

5Po, 

ppm Hz Hz 

Phv 

p r 

Ph 

Ph 

H 

2+ 

(AlCl4) 2 

n=2 •154.5 53.5 240 NR 

n=3 -156.2 13.8 226 223 

n=4 •134.4 28.6 255 236 

Ph 2P PPh 2 

P h 2 P ^ ^ P P h 2 

I 
H 

4+ 

(A1C14)4 

•177.0 11.7 232 NR 

E r 

^Et 

Et 
I 

H 

2+ 

( A I C I ^ •183.9 68.0 255 NR 

2+ 

(AlCUJi 
•133.0 42.7 241 219 

Ph. 

Ph 

Ph 

Ph 

2+ 

(A1C14)2 -157.2 58.1 258 231 

Table 1.13: 3 1 P { ' H } and 3 1 P N M R data for some P-protonated cyclic triphosphenium ions 

using 'BuCl and A1C13 (NR - not recorded) 

- 2 6 -
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Isolation of the nine-membered ring derived from dpph had not been achieved. Addition of 

A I C I 3 and l BuCl to a solution containing a mixture of the cyclic triphosphenium ion, the 

dimer and monomer resulted in the protonation of all three species. Other protonations 

reactions were attempted, including those for the rings formed from dppox and dppf, 

although, these proved unsuccessful.17 

An alternative method to synthesise P-protonated derivatives of cyclic triphosphenium ions 

was reported by Dillon et al. in 2004.1 7 This method involved reacting the cyclic 

triphosphenium ion with triflic acid instead of A I C I 3 and 'BuCl (Scheme 1.10). 

+ 

X" 
excess 

C F 3 S 0 3 H 

2+ 

X \ CF3SO3-

Scheme 1.10: Protonation of cyclic triphosphenium ions using triflic acid 

The 3 I P { ' H } NMR data for P-protonated derivative of cyclic triphosphenium ions using 

this method were consistent with those previously reported (Scheme 1.10). There was a 

shift to higher frequency of the triplet corresponding to P c and a decrease in "jp.p compared 

with those for the parent cyclic triphosphenium ion (Table 1.14). 

For cyclic triphosphenium ions derived from dppox, dppf, dpppe and dcypm, attempts to 

synthesise P-protonated derivatives were unsuccessful. This was attributed to the strength 

of triflic acid, which caused decomposition of the rings.1 7 

- 2 7 -
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/ L \ 

A 

2+ 

X . C F 3 S O 3 8Pc, 

ppm 

S P d , 

ppm Hz Hz 

R = L = 

8Pc, 

ppm 

S P d , 

ppm Hz Hz 

Ph C2H4 -153.1 53.4 241 NR 

Ph C2H2 -159.2 58.1 273 NR 

Et C2H4 -180.7 72.3 243 230 

Et C3H6 -182.0 29.0 232 223 

Cy C4H8 -166.5 49.3 276 267 

Me C2H4 -148.6 55.7 240 218 

Cy C2H4 -203.1 77.6 259 228 

Table 1.14: 3 1 P { ' H } and 3 1 P N M R data for P-protonated cyclic triphosphenium ions 

synthesised using trif l ic acid (NR - not recorded) 1 7 

1.4.2 Alkylation reactions 

Schmidpeter et al. reported the first alkylation o f a cyclic triphosphenium ion in 1986.9 The 

reaction involved the chloromethylation o f the ring formed from tetraphos and PCI3 

(Scheme 1.11). 

- 2 8 -
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Ph PPh, 

Ph 2P<- ->PPh2 

2+ 

( A I C I 4 ) 2 

2CH 2 C1 2 

2A1C13 

CH 2C1 

Ph 2P 

CH 2 C1 

4+ 

(A1C1 4) 4 

Scheme 1.11: Chloromethylation o f the tetraphos cyclic triphosphenium ion 

Similar to the results reported for P-protonation reactions, the 3 1 P { 1 H } N M R spectrum 

showed a shift of the triplet corresponding to P ( and a decrease in 'jp.p compared with 

those for the triphos cyclic triphosphenium ion (Table 1.15). P-alkyl derivatives were also 

synthesised by reacting the diphosphane dppe with either C H 2 C I P C I 2 or 'BuPCb to afford 

P-chloromethyl and P- lButyl derivatives (Scheme 1.12, Table 1.15).23 

Ph 2P PPh, 
(a) CH 2 CIPC1 2 + 2AIC13 

(b) 'BuPCI 2 + 2A1CI3 

Ph 2R 
D 

A' 

PPh 2 

D 

2+ 

(A1CI4)2 

1. R = CH 2C1 
2. R = 'Bu 

Scheme 1.12: Synthesis o f P-chloromethyl and P-'Butyl derivatives of the dppe cyclic 

triphosphenium ion. 
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Alkyl derivative 5P C , ppm 6P D , ppm V P . P , Hz Reference 

triphos-PCH 2Cl -79.8 8.7 282 11 

dppe-PCH2Cl -78.0 52.0 282 23 

dppe-P'Bu -79.0 52.0 283 23 

Table 1.15:31P{*H} N M R literature data for P-alkylated cyclic triphosphenium ions 

1.4.2.1 Methylation reactions 

The first attempt to methylate a cyclic triphosphenium ion was carried out by Wilkinson in 

2001, which involved reacting the dppe cyclic triphosphenium ion with methyl iodide. This 

was unsuccessful.2 4 However, Dillon et al. showed that reaction o f cyclic triphosphenium 

ions with methyl triflate afforded the P-methylated derivatives, although excess methyl 

triflate was required for 100% conversion (Scheme 1.13, Table 1.16). 1 4 ' 2 5 ' 2 6 

+ 
excess 

C F 3 S 0 3 M e 

R , P 

2+ 

X . C F 3 S 0 3 

Scheme 1.13: Synthesis o f P-methyl derivatives o f cyclic triphosphenium ions using 

methyl triflate. 

Similar to the 3 1 P { ' H } N M R data reported for P-protonated and P-alkylated derivatives, 

upon methylation the triplet corresponding to the central phosphorus (P c ) is shifted to 

higher frequency. This suggests that for P-protonated and P-alkylated derivatives the 

central P is effectively deshielded compared with the P(I) centre in cyclic triphosphenium 

ions. In all cases 'jp.p is decreased, compared with those for the parent cyclic 

triphosphenium ion probably due to the increased P-P distance upon loss o f delocalisation 

(Table 1.16). 
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1 
Me 

2+ 

X.CF 3 S0 3 - 8Pc, 

ppm 

S P d , 

ppm Hz 
Reference 

R = L = 

8Pc, 

ppm 

S P d , 

ppm Hz 
Reference 

Ph C2H4 -91.3 54.8 284 14, 25 

Ph 1,2-C6H4 -68.6 45.4 291 14, 25 

Ph C3H6 -88.7 12.2 263 14, 25 

Ph C4H8 -75.2 30.9 306 14, 25 

Ph 1,2-(CH 2) 2C 6H4 -73.4 15.8 298 14, 25 

Et C2H4 -98.0 65.7 289 26 

Et C3H6 -102.1 28.1 274 26 

Cy C4H8 -76.3 43.4 321 26 

Cy C H 2 -35.1 33.6 195 10 

Table 1.16:31P{*H} N M R data for P-methyl derivatives o f cyclic triphosphenium ions 

1.4.2.2 Ethylation reactions 

Attempts to synthesis a P-ethyl cyclic triphosphenium ion using ethyl triflate were 

unsuccessful when the substituents on the four-coordinate P atoms in the cyclic 

triphosphenium ion were phenyl or cyclohexyl. This was attributed to steric hindrance o f 

the phenyl/cyclohexyl groups, which restricted the approach o f the ethyl group to the 

central phosphorus atom. 2 6 

However Dillon et al. reported the synthesis o f two P-ethylated derivatives o f cyclic 

triphosphenium ions where the substituents on the four-coordinate P atoms of the ring were 

ethyl (Table 1.17).26 The 3 1 P { ' H } N M R data for the P-ethyl derivatives, as expected, 

showed a shift o f the triplet corresponding to P c to higher frequency and a decrease in 1 J P . P 

compared with those for the corresponding parent cyclic triphosphenium ion. 
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P-Et derivative 5P<, ppm 8P D , ppm './p.p, Hz 

Et 

2+ 

-89.8 66.1 291 

1 
Et 

2+ 

-89.8 28.6 283 

Table 1.17: 3 1 P { ' H } N M R literature data for the P-ethyl derivatives o f the depp and depe 

cyclic triphosphenium ions 2 6 

1.4.3 Deprotonation using DBU 

Gamper and Schmidbaur reported a reaction between the dppme cyclic triphosphenium ion 

and D B U (Scheme 1.14). Following deprotonation, isomerisation occurs to afford a neutral 
13 

phosphinine. 

+ 2 DBU Fli Ph I'd Ph 
SnCI 

-(DBIHr) 2SnCI Ph Pti Ph Ph 

Scheme 1.14: Deprotonation o f the dppme cyclic triphosphenium ion using D B U . 

3 1 P { ' H } N M R data for both the parent cyclic triphosphenium ion and the phosphinine 

show a shift to lower frequency for both the doublet and triplet resonances (Table 1.18). 
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The 1 3 C and ' H N M R data were consistent with those for a methallylic fragment on an sp2 

carbon with a partial negative charge. 

System 5P A , ppm 8P B , ppm ' J\'~\'t Hz 

dppme cyclic 

triphosphenium ion 
-216.4 23.0 431 

phosphinine -232.9 16.1 375 

Table 1.18:31P{'H} N M R data for the dppme cyclic triphosphenium ion and the 

phosphinine synthesised via a deprotonation reaction 1 3 

1.4.4 Synthesis of phosphamethine cyanine salts 

Schmidpeter et al. reported in 1983, the synthesis o f a phosphamethine cyanine salt 

through a reaction o f an acyclic triphosphenium cation with an electron-rich olefin 

(Scheme 1.15).27 The salt formed through insertion of the P(I) centre o f the triphosphenium 

ion into the olefin. 

N N 

> < 
N N 
R R 

(Me 2N) 2P''' © "•• P(NMe 2)2 
2P(NMe 2 ) 3 

Scheme 1.15: Synthesis o f a phosphamethine cyanine salt from a triphosphenium ion and 

an electron-rich o le f in 2 7 

It has also been demonstrated that reaction o f cyclic triphosphenium ions with 

N-heterocyclic carbenes affords phosphamethine cyanine salts (Scheme 1.16).28 An 

alternative route to synthesise the phosphamethine cyanine salt involves reacting the 
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N-heterocyclic carbene with PCI3. However by using the dppe cyclic triphosphenium ion 

by-products are easily removed from the reaction mixture, and also a smaller amount of the 

N-heterocyclic carbene is required. 

R 
N N 

1 NR NR 
R R R Ph,P- © PPh 2 Vy NR 

dppe R R 

Scheme 1.16: Synthesis of a phosphamethine cyanine salt from a triphosphenium ion and 

an N-heterocyclic carbene28 

1.4.5 Reactions with /ra«s-[Pt(PEt3)CI(n-Cl)]2 

Investigations into the coordination of cyclic triphosphenium ions to form Pt(II) complexes 

have been carried out by Dillon et al.]9 By reacting a cyclic triphosphenium ion with trans-

[Pt(PEt3)Cl(u-Cl)]2, it was proposed that the reactions would afford the cis and/or trans 

complexes (Scheme 1.17). 

R,P< 

E t 3 P x x C l x yC\ 
+ ,/2 SKSK 

Cl CI PEt 3 

R,P< 

C l — P t - P R 3 

I 
Cl 

and/or 

R,P< Ri 

C l — P t - C I 
I 
PR, 

Scheme 1.17: Proposed synthesis of Pt(II) complexes containing cyclic triphosphenium 

ions 
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The first attempted reaction was between the dppe cyclic triphosphenium ion and trans-

[Pt(PEt 3)Cl(u-Cl)] 2. The 3 1 P { ' H } N M R spectrum showed that the main product o f the 

reaction was [Pt(dppe)(PEt3)Cl]+ and there was no evidence for coordination o f the cyclic 

triphosphenium ion to platinum (Figure 1.10, Table 1.19). 

< Pt 1 

Ph Ph 
it 

/ \ CI PEt 

+ 

Figure 1.10: Main product o f the reaction between fr-<ms-[Pt(PEt3)Cl(u.-Cl)]2 and the dppe 

cyclic triphosphenium ion, [Pt(dppe)(PEt3)Cl]+ 71 

5P, ppm 
2 , 

•'PC-PE> 

Hz 

2r 
•/PC-PD? 

Hz Hz Hz 
Assignment 

53.5 368 7 - 2251 Pc 

43.7 - 7 17 3537 PD 

17.2 368 - 17 2289 P E 

Table 1.19: 3 1 P { ' H } N M R data for the complex formed in a reaction between dppe and 

frwtt-[Pt(PEt3)Cl(u-Cl)]2 

Similar results were obtained from the reaction between the dppf cyclic triphosphenium 

ion and /raHs-[Pt(PEt 3)Cl(u-Cl)] 2 Again the 3 I P { ! H } N M R spectrum showed no evidence 

of coordination o f the cyclic triphosphenium ion to platinum, and the main product o f the 

reaction was [Pt(dppf)(PEt 3)Cl] +(Table 1.20). 
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5P, ppm 
2«JPC-PE» 

Hz 

2-JpC-PD» 

Hz 

?«/pD*PE> 

Hz 

'•/pt-p» 

Hz 
Assignment 

23.4 408 15 - 2325 P ( 

12.8 - 15 20 3785 PD 

15.8 408 - 20 2362 P E 

Table 1.20: 3 1 P { 1 H } N M R data for the complex formed in a reaction between dppf and 

/rfl«5-[Pt(PEt 3)Cl(n-Cl)] 2 

Reaction of the unsymmetrical cyclic triphosphenium ion derived from dedppe with 

/ra«s-[Pt(PEt 3)Cl(u-Cl)]2 was carried out (Scheme 1.18). The 3 1 P { ' H } N M R data showed 

that the cw-complex had formed (Table 1.21). Upon complexation the triplet corresponding 

to the central P atom of the cyclic triphosphenium ion (P c ) had shifted to higher frequency, 

as in the protonation, methylation and ethylation reactions. The 'jpt.p coupling to the 

phosphenium central P is unusually small for a one-bond phosphorus-platinum coupling at 

1096 Hz. It was suggested that this could be due to a long Pt-P bond, possibly due to the 

cationic nature o f the ligand. 

Et,R CI 

+ V 2 

* \ / \ / 

A / 1 

CI 

£1 

\ / \ 
CI PEt, CI—Pt—PEt 3 

CI F 

Scheme 1.18: Reaction between the dedppe cyclic triphosphenium ion and trans-

[Pt(PEt 3)Cl(u-Cl)] 2 
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8P, ppm Multiplicity Assignment 
Vp.p, 

Hz 

2/p.p, 

Hz 

Vpt-p, 

Hz 

Vpt-p5 

Hz 

72.9 ddd P D 357 30 - 13 

50.8 ddd P E 366 30 - 11 

10.7 s P F 363 - 3385 -

-89.5 t(dd) P 360 - 1096 -

Table 1.21: 3 1 P { ' H } N M R data for the complexation o f the Pt dimer to the dedppe cyclic 

triphosphenium ion 

Further investigations showed that, i f the cyclic triphosphenium ion contains substituents 

on the four-coordinate phosphorus atoms that are not phenyl, or only phenyl groups on one 

phosphorus atom, then complexation does take place to afford cis and/or trans complexes 

(Scheme 1.18). In all the complexes synthesised the 'jpt.p coupling to the phosphenium 

central P is unusually small for a one-bond phosphorus-platinum coupling (Table 1.22).19 

The data obtained from these reactions show that when forming a Pt (II) complex from a 

cyclic triphosphenium ion with cyclohexyl or any ethyl substituents, the /ra«5-complex, the 

kinetic product, forms first but this then converts to the more thermodynamically stable 

product, the cw-isomer. I f all the substituents are tertiary butyl groups then only the trans-

complex forms, due to steric hindrance. When there are phenyl groups on both four-

coordinate phosphorus atoms, the cyclic triphosphenium ion undergoes ring scission, 

followed by complexation to the platinum. 

These experimental results suggest tat the failure to synthesise complexes with phenyl 

substituents on both four-coordinate P atoms is due to electronic rather than steric effects, 

with alkyl phosphanes being better donors. 
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Cyclic triphosphenium 

ion 

8Pc, 

ppm 
8PD, 

ppm 

8 P E , 

ppm 
'•/pt-pc 

Hz 

'•/pt-PE 

Hz 

'/p-p, 

Hz 

2/p.p, 

Hz 

cis/ 

trans 

E K n \ r 

YAT Et 

+ 

-104.3 70.0 11.4 1059 3407 363 - cis 

E K ^ 
+ 

-102.3 18.9 3.1 1098 3399 340 - cis 

Et 

+ 

-137.0 25.9 9.6 * * 348 180 trans 

<Bii ""'Bu 

+ 

-136.5 50.8 11.4 * * 549 375 trans 

/ \ <^ 
"^Cy 

+ 
-107.9 69.6 9.0 1097 3430 384 - cis / \ <^ 

"^Cy 

+ 

-148.2 72.6 16.3 1023 2974 408 321 trans 

C y ^ 
» < V / J 

p 

+ -102.7 20.3 3.4 * * 371 - cis 

C y ^ 
» < V / J 

p 

+ 

-152.4 27.4 15.6 * * 369 255 trans 

A\ 
P 

/Cy 

Cy 

+ 
-78.6 38.5 3.9 1222 3438 420 - cis 

A\ 
P 

/Cy 

Cy 

+ 

-129.5 42.8 15.0 * * 426 279 trans 

Table 1.22: 3 1 P { ' H } N M R data for Pt(II) complexes containing cyclic triphosphenium 

ions (* - Pt satellites were weak so J values could not be calculated) 
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1.5 Acyclic triphosphenium ions 

Schmidpeter et al. reported the synthesis o f acyclic triphosphenium ion in 1985. 2 9 The 

reaction between P C I 3 , PPh3 and A I C I 3 formed the acyclic triphosphenium ion and a 

chlorophosphonium salt (Scheme 1.19). The 3 1 P { ' H } N M R data for this cation were 

similar to those obtained for the cyclic triphosphenium ions, with a triplet at low 

frequency, a doublet at higher frequency and a large 1 JP.p (Table 1.23). X-ray diffraction 

studies confirmed that the P-P bond lengths were intermediate between values for single 

and double P-P bonds, as in cyclic triphosphenium ions. 2 9 Many other symmetrical and 

unsymmetrical acyclic triphosphenium ions have since been reported. The ' P i ' H } N M R 

data for these ions are similar to those obtained for the cyclic species (Table 1.23). 

P C l 3 + 3 P P h 3 + 2AICl 3 p h 3 P > 
B 

p P h 3 

B 
AICI4- + P h 3 P C l + AICI4-

Scheme 1.19: Synthesis o f an acyclic triphosphenium ion 

Schmidpeter also reported the P-protonation and P-alkylation o f acyclic triphosphenium 

ions (Scheme 1.20). The 3 1 P { ' H } N M R data for the products were consistent with the 

results obtained for the cyclic analogues, with a shift to higher frequency for Pc and a 
1 23 29 

decrease in Jp.p compared with the parent triphosphenium ion (Table 1.24). X-Ray 

diffraction studies confirmed that the P-P bond lengths were consistent with those for 

single P-P bonds, indicating a loss of rc-bonding between the phosphorus atoms. 

R 3 P • 
B 

P R j 
B 

+ 

A I C L 

(a) R T C I 2 

(b) R ' C l 

A l C h 

R* 

R3P 
D 

PR3 
D 

2+ 

(A1C1 4 ) 2 

Scheme 1.20: Synthesis o f P-protonated and P-alkylated acylic triphosphenium ions 
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L ' L 2 

8PA, 

ppm 

5P B , 

ppm 

8Pc, 

ppm 

'•/pA-PB, 

Hz 

'•/pA-PC, 

Hz 

•/PB-PC, 

Hz 
Ref. 

PPh3 L 1 -174 30 - 502 - - 29 

PMePh 2 L 1 -176 - 23 - 480 25 29 

PMe2Ph L 1 -159 - 12 - 463 26 29 

PBu 3 L 1 -229 - 33 - 458 41 29 

PPh 2(NEt 2) L 1 -164 - 79 - 501 30 29 

PPh(NEt 2) 2 L 1 -163 - 64 - 479 27 29 

PPh2(NHPh) L 1 -182 - 47 - 524 27 29 

P(NMe 2 ) 3 
L 1 -194 - 85 - 493 30 29 

P[N(CH 2 ) 5 ] 3 L ' -193 - 79 - 497 32 29 

P [ 0 ( C H 2 ) 4 N ] 3 L ' -207 - 78 - 527 32 29 

P(OEt) 3 L 1 -218 - 82 - 562 15 29 

PPh3 PMePh 2 -180 30 - 482 464 - 29 

PPh3 PMe 2Ph -173 31 - 481 451 - 29 

PPh3 PBu 3 -199 32 - 503 473 - 29 

PPh3 PPh 2(NEt 2) -167 30 - 510 508 - 29 

PPh3 PPh(NEt 2) 2 -170 30 - 524 510 - 29 

PPh3 PPh 2(NHPh) -178 29 - 479 498 - 29 

PPh3 P(NMe 2 ) 3 -180 29 - 523 518 - 29 

PPh3 P[N(CH 2 ) 5 ] 3 -173 29 - 542 560 - 29 

PPh3 P [ 0 ( C H 2 ) 4 N ] 3 -181 28 - 526 566 - 2 9 

PPh3 P(OEt) 3 -196 32 - 437 508 - 29 

P(NMe) 3* P(NMe) 3 -194 85 - 518 - - 27 

Table 1.23: 3 1 P { ' H } N M R literature data for acyclic triphosphenium ions [L 'P A L 2 ]A1C1 4 " 

where 5P 8 corresponds to a PPh3 ligand (* reaction carried out with NaBPh 4 instead of 

A1C13) 
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P R 3 R' Preparation 
8Pc, 

ppm 

5PD, 

ppm 

'•JpC-PD» 

Hz 

"«/p-H, 

Hz 

PPh3 
H (b) -120 23 286 236 

PPh3 Me (b) -48 23 330 -

PPh3 CH2C1 (a) and (b) -41 25 330 -

PPh3 Et (b) -37 22 334 -

PPh3 'Pr (b) -23 21 354 -

PPh3 Ph (a) -28 24 358 -

PMePh2 H (b) -121 18 261 230 

PMePh2 CH2C1 (b) -38 20 305 -

PMe2Ph H (b) -116 18 255 227 

PMe2Ph CH2C1 (b) -31 21 300 -

PBu3 H (b) -146 38 277 233 

PBu3 CH2C1 (b) -39 39 319 -

Table 1.24: 3 1 P{ 1 H} NMR literature data for P-protonated and P-alkylated derivatives of 

acyclic triphosphenium ions23 

1.6 Neutral P(I) cycles 

Karsch et al. reported the synthesis of some neutral P(I) cycles from reactions between 

diphosphinomethanides and PC13. Depending on the substituents on the 

diphosphinomethanide and the reaction stoichiometry and conditions, rings of various sizes 

were synthesised. 

A neutral four-membered ring was synthesised from a reaction between PC13 (or P4) with 

Li[C(PPh2)2(SiMe3)] at low temperatures (Scheme 1.21, Table 1.25).30'33 
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SiMe 

PC13 or P 4 

2 Li[C(PPh2)2.SiMe3 

Ph,P + Ph 5L /PPh 2 

SiMe3 

Scheme 1.21: Synthesis of a neutral four-membered cycle 

With methyl groups on the carbanion, and by changing the ratio of P C I 3 to 

diphosphinomethanide to 1:3, neutral six- and eight-membered rings were synthesised 

(Figure 1.11, Table 1.25) 31,33 

B 
Me 2P + PMe 2 

M e 3 S i ^ \ p / ^ S i M e 3 

C Me 2 

B B 
M&P/••" \ PMe 2 

Me.Si 

Me 2 P<; 

y — S i M e 3 

PMe 2 

Figure 1.11: Six- and eight-membered neutral P(I) cycles 

Ring size d l \ , ppm 8PB, ppm 5P ( , ppm '•JpA-PB, Hz Reference 

4 -86.3 20.2 - 261 30 

6 -140.4 5.5 13.5 348 31 

8 -109.5 7.9 - 251 33 

Table 1.25:31P{'H} NMR literature data for some neutral P(I) cycles. 
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1.7 Tetraphosphonium, tetraphosphenium ions and other diphosphonium 
cations containing four adjacent phosphorus atoms 

Tetraphosphonium ions, first reported in 2007, are heterocycles containing four adjacent 

phosphorus atoms, which can be synthesised in a novel (n + 1 + 1 ) cycloaddition reaction, 

(Scheme 1.22). 3 4 Although this is not a formal cylcoaddition, the end product resembles a 

cycloaddition product and is described as such in the literature.34 Several tetraphosphonium 

ions were synthesised using this method (Table 1.26). 

PR, + 2R'PCI2 +SnCl 2 

R' R 

2+ 

SnClfi

2-

Scheme 1.22: General synthetic route for cyclic tetraphosphonium ions 

SPA, 8 P X , J, Jx, 
Diphosphane R' = 

Jx, 
Diphosphane 

ppm ppm Hz Hz Hz Hz 

dppb Et -64.7 29.4 289.2 -95.1 263.1 64.0 

biphep Et -55.9 30.1 321.0 -77.2 121.7 12.5 

dppdmx Et -41.9 28.5 309.5 -86.5 202.4 123.8 

dppe Et -73.6 27.3 297.5 -48.1 87.5 2.7 

Table 1.26:31P{'H} NMR literature data for some cyclic tetraphosphonium ions 

In the reaction between biphep, EtPCk and SnCb, transient intermediates were detected in 

the 3 , P { ' H } NMR spectra recorded soon after the addition of the chlorophosphane (Table 

1.27). The first step in the mechanism of formation necessarily involved the addition of the 

EtPCb to the diphosphane to form an acyclic intermediate. 3 , P { 1 H } NMR data suggested 
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that the next step involved the formation of an unsymmetrical intermediate. Cyclisation 
could then take place to afford the tetraphosphonium ion (Scheme 1.23). 

P atom 8 3 1 P, ppm '^p.p, Hz 

PG -13.3 s -

PD or P F 13.4 d 320 

PD or P„ 12.9 d 300 

P e -14.3 t* 317 

11 1 

Table 1.27: P{ H} NMR literature data for the unsymmetrical intermediate in the 

formation of the biphep cyclic tetraphosphonium ion (* broad) 

EtPCI 

T ci 
PPh PPh PPh PPh 

I R 

CI E l 

EtPCI SnCI 

2+ 

Ph,P. Ph PPh PPh PPh 
I" 

/ \ I t Et El 
CI E t 

Scheme 1.23: Proposed mechanism for cyclic tetraphosphonium ions derived from biphep 

X-ray diffraction studies on the cyclic tetraphosphonium ion derived from biphep showed 

that the P-P bond lengths were typical values for single P-P bonds (2.218(2) - 2.235(2) A). 

The molecular structure is shown in Figure 1.12.34 
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C6 C28 

C2 5 CI 
C13 

r. V-PA c i 
p.* 

P2 v--0 

C2 

Figure 1.12: Molecular structure of the biphep cyclic tetraphosphonium ion 

Further investigation into the synthesis of heterocycles containing four adjacent 

phosphorus atoms has been carried out by Dillon et al, including the synthesis of the first 

cyclic tetraphosphenium ion (Scheme 1.24).35 The cyclic tetraphosphenium ion contains 

four adjacent phosphorus atoms, and similar to cyclic triphosphenium ions, one of the 

central phosphorus atoms is 'bare' and in the +1 formal oxidation state. This cationic 

species has not been isolated but has been characterised using 3 1 P{ 'H} NMR spectroscopy, 

including 2D spectra (Table 1.28). 

'iiu 

i 

tin PC 
le •e 

SnCI, 

B>CI 
'Bu 'Bu I) 

'Bu 

+ 

Scheme 1.24: Synthesis of a cyclic tetraphosphenium ion derived from dtbpf 
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5, ppm /p.p, Hz 

P a -92.0 » J A B = 410, l y A C = 515 ,2 / A D = 26 

P b 143.6 l J X B = 4\3, 1 J B D = 5 2 5 , 2 j B C = 66 

Pc 62.8 l y A C = 516,2y B C = 66 

P d 38.1 l j B D = 5 2 6 , 2 j A D = 33 

Table 1.28:31P{'H} NMR data for the cyclic tetraphosphenium ion derived from dtbpf 

Although many acylic diphosphonium cations are known,' ' the only examples of 

homocyclic diphosphonium cycles were reported by Schmutzler41 and Burford 4 2 containing 

four and six phosphorous atoms (Figure 1.13). The four-membered ring was synthesised in 

a reaction of 2,6-dimethoxyphenyl(trimethyl)stannane with chlorodifluorophosphane 

forming the dication with two Me3SnF2 counter-ions, whereas the six-membered cycle was 

synthesised in a reaction between a cyclopolyphosphine ((PhP)5X PPh2Cl and GaC^. In 

both the four- and six-membered cycles the P-P bond lengths are typical values for single 

P-P bonds, between 2.231 A and 2.232 A and between 2.217(2) A and 2.242(2) A 
, i 41 42 

respectively. ' 

Ph s Ph 

I I 
P h ^ j ^ P h 

Ph' Ph 

Figure 1.13: Four-41 and six- 4 2 membered homocyclic diphosphonium cations 

R - P — / 
R 

P—R 
R 
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Chapter 2: 
Synthesis and Characterisation of Some Cyclic 
Triphosphenium Ions 

2.1 Introduction 

Since their discovery in 1982 by Schmidpeter et al} many different cyclic triphosphenium 

ions have been synthesised which vary by ring size, substituents on the outer two 

phosphorus atoms, or their hydrocarbon backbone.2"13 The well-established methods of 

preparation are via a one pot reaction to give high yields, and provide a quick and easy 

route to the formation of these low coordinate phosphorus compounds. 

It is the ease of preparation and the possibility of tuning these novel heterocycles that make 

them so attractive as potential ligands. This chapter details the synthesis and 

characterisation of a range of cyclic triphosphenium ions. This will allow an in-depth study 

into the reactivity and coordination properties of these novel heterocycles. By having a 

variety of different ring sizes, with different backbones and with different substituents on 

the outer, four-coordinate P atoms, we could investigate the effect on the reactivity of these 

novel heterocycles and also their coordination to metal centres. 
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2.2 Synthesis of a four-membered ring cyclic triphosphenium ion from 
dcypm 

Using the diphosphane dcypm, the cyclic triphosphenium ion (la) was prepared according 

to a literature procedure (Scheme 2.1). The product displayed a characteristic triplet at 

5P = -216.0 ppm and doublet 5P = 45.4 ppm ('jp. P = 331 Hz) in its 3 1P {'H} NMR 

spectrum.9 

Cy Cy Cy Cy 2PCI 
CI 

Cy Cy Cy Cy 

2+ + |dcypm.CI 2 I i T 2CI 

Scheme 2.1: Synthesis of the dcypm cyclic triphosphenium ion (la) 

This same cyclic triphosphenium ion was also synthesised as a hexachlorostannate (lb) 

(Scheme 2.2). Again the product displayed a characteristic doublet at 5P = 45.4 ppm and 

triplet 8P = -215.2 ppm ( 'J P . P = 333 Hz) in its 3 IP { ] H} NMR spectrum.9 There is a small 

difference in shift compared with la as the counter-ion has changed from 2C1" to SnCU2" 

indicating that there is little interaction between the anion and cation. 

Cy Cy 2PCI Cy Cy 
S n C L * + SnCI 

2SnCI Cy Cy Cy Cy 

Scheme 2.2: Synthesis of the dcypm cyclic triphosphenium ion using SnCh (lb) 
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2.3 Synthesis of some five-membered ring cyclic triphosphenium ions from 
depe, dcype, dppe and dmpe 

Four different five-membered cyclic triphosphenium ions were synthesised using 

previously reported literature procedures. With the exception of the cyclic triphosphenium 

ion derived from dmpe, these heterocycles were synthesised both as their chloride and 

hexachlorostannate salts (Scheme 2.3). Cyclic triphosphenium ions were also synthesised 

from dppe as a tetrachloroaluminate salt (4d), and from depe as a bromide salt (2c). 

/ \ 
p p 

R R 2PCI 
C 

R R 

+ |diphosphaneCl 2| z + 2CI 

/ \ / \ 
P P 

R R R 2PCI 
SnCI 

2SnCI R R R 

+ SnCI 

Scheme 2.3: Synthesis of five-membered ring cyclic triphosphenium ions (2a-5a) 

During the synthesis of the depe cyclic triphosphenium ion, extra resonances were 

observed in the 3 I P{ 'H} NMR spectrum recorded only 15 minutes after the addition of 

P C I 3 . These extra resonances were attributed to transient intermediates, and will be 

discussed in greater detail in Chapter 3. Upon standing for 12 hours the reactions had gone 

to completion. The 3 I P{ 'H} NMR data for the depe cyclic triphosphenium ions 2a-2c, are 

in good agreement with those previously reported (Table 2.2). 7 ' 1 4 The only other signals in 

the spectra were assigned to residual PCI3 (s, 220.3 ppm),1 5 and in the synthesis of the 

chloride salt, [depe.Cl2]2+2Cl" (s, 109.9 ppm, 2ax) and the bromide salt, [depe.Br2]2+2Br* 

(s, 95.2 ppm, 2cx).1 4 
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The cyclic triphosphenium ion containing cyclohexyl groups on the four coordinate P 

atoms, synthesised from dcype, was also obtained both as its chloride, 3a, and 

hexachlorostannate salt, 3b. The 3 1 P{ 'H} NMR data for the chloride salt showed the 

expected doublet and triplet with a large ]JP.P (Table 2.1).9 The hexachlorostannate salt 

showed similar NMR parameters, with a small change in shift attributed to the change of 

counter ion . 1 6 ' 1 7 

Cyclic triphosphenium ion X= 
8PA, 

ppm 

5PB, 

ppm 

lJp.p, 

Hz 
Reference 

i - + 

X" 

2a CI -269.7 81.5 441 7 

E t ^ Et 

+ 

X" 2b SnCl6

2~ -268.3 81.3 440 7 
E t ^ Et 

+ 

X" 

2c Br~ -268.8 81.4 441 * 

Cy Cy 

+ 
3a Cl -289.3 87.2 457 9 

Cy Cy 

+ 

3b SnCI6

2" -289.0 87.2 455 * 

|- + 

X" 

4a CI -230.0 65.0 450 6 

Ptl \ p ^ Ph 

+ 

X" 4b SnCI6

2" -229.3 64.9 449 1 
Ptl \ p ^ Ph 

+ 

X" 

4d A1CU' -229.7 65.0 450 3 

Me' P ^ ^ M e 

+ 

X" 5a CI -213.4 60.5 430 7 

Table 2.1: 3 1 P{ 'H} NMR data for five-membered ring cyclic triphosphenium ions 

(* previously unreported) 
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Cyclic triphosphenium ions were also synthesised from dppe with CI" (4a), SnCl62"(4b) and 

AlCU" (4d) as the counter-ions. The 3 I P{ 'H} NMR spectra showed a doublet and triplet 

with large values 'jp.p for each compound , in good agreement with Schmidpeter's results, 

and those reported since (Table 2.1).1'6'8 In each case the cyclic triphosphenium ion was 

obtained as the major product of the reaction, although a small amount of the chlorinated 

diphosphane was present in each case (Table 2.2). 

Pti | | Ph 
L ci ci J 

x= 
Compound 

number 
5P, ppm 

Pti | | Ph 
L ci ci J 

2cr 4ax 76.2 
Pti | | Ph 

L ci ci J SnCl6

2" 4bx 77.3 Pti | | Ph 
L ci ci J 

( A I C L O 2 4dx 76.1 

Table 2.2:3IP{'H} NMR data for chlorinated dppe with various counter-ions 

The synthesis of the dmpe-derived cyclic triphosphenium ion often resulted in precipitation 

of the product before a solution spectrum could be obtained, especially when attempting to 

synthesise the hexachlorostannate salt. As a result of this, the ring was only synthesised as 

a chloride salt (5a) using a dilute solution. The 3 I P{ 'H} NMR spectra of the solution 

showed a characteristic doublet and triplet resonances, with their shifts, and the magnitude 

of 'jp.p, in good agreement with those previously reported (Table 2.1).7 

2.4 Synthesis of some six-membered ring cyclic triphosphenium ions from 
depp, dcypp, dippp, dippf and dpdtbpf 

Five six-membered ring cyclic triphosphenium ions, including three new ones, were 

synthesised as their chloride and hexachlorostannate salts with the exception of the dippf 

cyclic triphosphenium ion which formed only the chloride salt (Scheme 2.5). Bromide salts 

for the depp, dippp and dcypp cyclic triphosphenium ions, and the iodide salt of the depp 

cyclic triphosphenium ion were also synthesised. 
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I T 

2PX 3 

X = CI, Br or I + |diphosphaneCI 2| 2 + 2CI 

2SnCI 2 

+ SnCI 4 

SnCI 6 

2 

2-

Scheme 2.5: Synthesis of six-membered ring cyclic triphosphenium ions (6a-10c) 

The synthesis of the depp cyclic triphosphenium ion to form the chloride (6a), 

hexachlorostannate (6b), bromide (6c) and iodide salts (6e), showed extra resonances in 

the 3 1 P{ 'H} NMR spectrum recorded only a short time after the addition of PX3. These 

extra resonances correspond to the formation of transient intermediates and will be 

discussed in greater detail in Chapter 3. Upon standing overnight, the reactions went to 

completion to give the desired cyclic triphosphenium ions, 6a- 6c and 6e. The 

characteristic doublet and triplet, and large magnitude of lJ?.p attributed to these 

compounds were observed (Table 2.3). 1 2 , 1 4 In both cases, the only other resonance present 

in the 3 l P{' l - I} NMR spectra corresponded to the halogonated diphosphane (s, 109.6 ppm, 

6ax;14 s, 79.6 ppm, 6bx; s 94.9 ppm, 6cx; s 104.3 ppm, 6ex), where the significant 

difference in shift can be attributed to the change of counter-ion (Figure 2.1) 16, 17 

E r Et 
CI C I 

2+ 

X 
X = 2C1" 6ax 
X = S n C I 6

2 " 6bx 
X = Br" 6cx 
X = I 6ex 

Figure 2.1: By-product of the synthesis of the depe cyclic triphosphenium ion 
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The synthesis of the dcypp cyclic triphosphenium ion was carried out to form the chloride 

(7a), hexachlorostannate salt (7b) and bromide salt (7c). In each case doublet and triplet 

resonances with large values of 'jp.p were observed, which were in good agreement with 

previously reported data.16 In the solution NMR spectra obtained from the synthesis of the 

chloride salt, two other species were also observed (s, 104.9 ppm; s, 21.8 ppm) which were 

assigned to dcypp tetrachloride (7ax)14, and dcypp dioxide (this resonance was also visible 

in the 3 1 P{ 'H} NMR spectrum of the starting material as an impurity)1 8. In the synthesis of 

the bromide salt, formation of the dcypp tetrabromide (7cx) also occurred (s, 97.3 ppm). 

Cyclic triphosphenium ions were also synthesised from dippp as chloride (8a), 

hexachlorostannate (8b) and bromide salts (8c). For the reaction between dippp and PCI3, a 
3 1 P{ 'H} NMR spectrum recorded as soon as possible after reactant mixing showed 

resonances corresponding to intermediates in the formation of the cyclic triphosphenium 

ion. This will be discussed in detail in Chapter 3. Upon standing overnight, the 3 1 P{ 'H} 

NMR spectrum showed, as expected, doublet and triplet resonances with large 1 Jp.p values 

corresponding to the desired cyclic triphosphenium ion (Table 2.3). These data are 

consistent with those for other cyclic triphosphenium ions.2"13 Also apparent was a singlet 

(115.0 ppm), assignable to the dippp tetrachloride (8ax).14 The reactions to form the 

hexachlorostannate and bromide salts showed no evidence of any intermediates, only the 

peaks corresponding to the cyclic triphosphenium ions, and the formation of 

[dipppBr2]+2Br (8cx) in the synthesis of the bromide salt (s, 108.1 ppm). 

The second previously unreported cyclic triphosphenium ion was synthesised from the 

diphosphane dippf (9a). Cyclic triphosphenium ions containing a ferrocene backbone 

typically have a larger lJP.P coupling constant compared to other cyclic triphosphenium 

ions and also the triplet is at higher frequency.12 The 3 1 P{ 'H} NMR data obtained for this 

cyclic triphosphenium ion were consistent with this (Table 2.3). Attempts to synthesise the 

hexachlorostannate salt proved to be unsuccessful. An orange precipitate formed upon 

addition of PCI3, and no solution spectra could be obtained. 

-56-



- Cyclic Triphosphenium Ions and Related Species -

Cyclic triphosphenium ion X= 
5P A , 

ppm 

6 T B , 

ppm Hz 
Reference 

6a c r -254.3 30.7 417 12 

E k 

,x>l 
P 

JEt 
+ 

X" 

6b SnCl 6

2" -255.4 31.2 416 12 
E k 

,x>l 
P 

JEt 
+ 

X" 

6c Br" -253.3 30.6 417 * 

6e I -252.1 30.6 418 * 

r "I + 

X" 

7a CI" -293.5 37.0 454 14 

Cy Cy 

+ 

X" 7b SnCl 6

2" -292.9 36.6 456 14 

+ 

X" 

7c Br- -297.7 36.7 450 * 

i p r \ r " " 
"^Po. > P 

^ ^ P r 

+ 

X" 

8a Cl" -299.6 44.7 458 * 

i p r \ r " " 
"^Po. > P 

^ ^ P r 

+ 

X" 8b SnCl 6

2" -299.4 44.8 457 * 

8c Br" -299.7 44.8 458 * 

^ J P r 

'Pr 

+ 

X-
9a CI" -148.7 51.9 490 * 

Table 2.3: 3 I P { ' H } N M R data for six-membered ring cyclic triphosphenium ions (6a-9a) 

(* - previously unreported) 
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A new unsymmetrical cyclic triphosphenium ion was also synthesised from the 
diphosphane dpdtbpf, as various salts (Figure 2.2). 

Bii I'll 

t Bu 

Figure 2.2:The unsymmetrical cyclic triphosphenium ion synthesised from dpdtbpf (lOa-c) 

Instead of the unusual A2B pattern we see that of A B X in the 3 1 P { ] H } N M R spectrum. The 

large 'jp.p values and shift of P A are consistent with those previously reported for other 

cyclic triphosphenium ion containing a ferrocene backbone (Table 2.4). 1 2 

Compound 

No. 
X= 

5PA, 

ppm 

8P B , 

PPm 

8Pc, 

PPm 

!«/pA-PB» 

Hz 

!«/pA-PC» 

Hz 

2-/pB-PO 

Hz 

10a CI -139.4 65.6 37.0 531 549 37 

10b SnCl 6

2" -137.9 65.8 37.5 525 546 37 

10c A1CV -139.3 65.5 37.2 529 548 37 

Table 2.4: 3 1 P { ' H } N M R data for the six-membered ring cyclic triphosphenium ion 

synthesised from dpdtbpf (lOa-c) 
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2.5 Synthesis of some seven-membered ring cyclic triphosphenium ions 
from dcypb, dppb and dippb 

These heterocycles were synthesised both as a chloride salt and a hexachlorostannate salt 

(Scheme 2.5). The cyclic triphosphenium ions synthesised from dcypb and dppb, were 

obtained both as their chloride, 11a and 12a, and hexachlorostannate salts, l i b and 12b. 

The 3 I P { ' H } N M R data for the chloride salts showed the expected doublet and triplet 

resonances with a large magnitude of lJp.P (Table 2.5). 6 ' 1 2 The hexachlorostannate salts 

showed similar N M R parameters to the chloride. In the formation o f the dcypb cyclic 

triphosphenium ion as its chloride salt, a singlet (107.1 ppm) was also observed in the 
3 1 P { ' H } NMR spectrum and was assigned to [dcypb.Cl 2 ] 2 + 2Cl"(llax). 

2PCK 

2PCU 

2SnCI 2 

+ [diphosphaneCI2r 2CI~ 

c r 

SnCI 2-

+ SnCI 4 

Scheme 2.5: Synthesis of seven-membered ring cyclic triphosphenium ions (lla-13b) 

The synthesis o f the previously unreported dippb cyclic triphosphenium ion was also 

carried out to form both the chloride (13a) and hexachlorostannate (13b) salt. In each case 

a doublet and triplet resonance with a large value o f 'Tp.p were observed which were 
2 13 

consistent with data reported for other cyclic triphosphenium ions (Table 2.5). J In the 

solution spectra o f both the chloride and hexachlorostannate salt, an extra resonance was 

also visible (s, 116.5 ppm, 13ax; s, 114.8 ppm, 13bx) which was assigned to chlorinated 

dippb (Figure 2.3). 
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2+ 
13ax X = 2CI Pr Pr 

13bx X =SnC Pr Pr 
CI CI 

Figure 2.3: By-product o f the synthesis o f the dippb cyclic triphosphenium ion 

Cyclic triphosphenium ion X = 
5P A , 

ppm 

5P B , 

ppm 

'/p.p, 

Hz 
Reference 

+ 
11a CI -261.7 48.0 474 12 

+ 

l i b SnCI 6

2" -260.8 48.1 476 12 

Ph. .Ph 
+ 

X" 

12a CI 211.1 34.3 454 6 

I'll \ p > ^ Ph 

+ 

X" 

12b SnCle2" -211.2 34.0 455 6 

' P r ^ ^ 

iPr 
+ 

X" 

13a Cl -264.8 55.9 474 -

' P r ^ ^ 
P>X > > P \ 

+ 

X" 

13b SnCl 6

2" -262.5 55.5 480 -

Table 2.5:31P{'H} N M R data for seven membered cyclic triphosphenium ions (11a - 13b) 
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2.6 Conclusions 

This chapter details the synthetic routes for the preparation o f a family of cyclic 

triphosphenium ions. The synthesis o f some known cyclic triphosphenium ions was carried 

out, along with the synthesis of some new heterocycles. The one pot synthesis gave the 

desired cyclic triphosphenium ions as the major product o f the reactions, with only a small 

amount of [diphosphane.2Cl"]2+ X" in the case o f depe (2ax and 2cx), dppe (4ax, 4bx and 

4dx), depp (6ax-cx and 6ex), dcypp (7ax and 7cx), dippp (8ax and 8cx), dcypb (11 ax) and 

dippb (13ax-bx). The cyclic triphosphenium ions themselves were readily characterised 

using 3 I P { ' H } N M R spectroscopy, as they exhibit a doublet and triplet (at low frequency) 

with a large *Jp.p 

This range of cyclic triphosphenium ions was prepared so that a thorough study into the 

reactivity and coordination o f cyclic triphosphenium ions could be carried out. By having a 

variety of different ring sizes, with different backbones and with different substituents on 

the outer, four-coordinate P atoms, we could investigate the effect on the reactivity of these 

novel heterocycles and also their coordination to metal centres. 

2.7 Experimental 

A l l manipulations were carried out in a nitrogen-filled glove box or under an atmosphere 

of dry nitrogen or in vacuo, using standard Schlenk and cannula techniques as these 

compounds are sensitive to both air and moisture. A l l NMR-scale reactions were 

conducted using Young's tap valve N M R tubes. The N M R solvent, C D C I 3 , was dried over 

P2O5, distilled and degassed prior to use. 

3 1 P { ' H } N M R spectra were recorded on a Varian Unity 300, Mercury 400 or Inova 500 

Fourier-transform spectrometer at 121.40, 161.91 or 202.3 MHz respectively. Chemical 

shifts were referenced to external aqueous 85 % H3PO4 ( 3 I P), to residual protio impurities 
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in the deuterated solvent ( ' H - CDC1 3, 7.27 (s)), or to the l 3 C shift o f the solvent ( 1 3 C -

C D C I 3 77.2 (d)). Chemical shifts are reported in ppm and coupling constants in Hz. 

Example reactions: 

Synthesis of the dppe cyclic triphosphenium ion 

dppe (0.0430 g, 0.11 mmol) was dissolved in 1.0 mL CDC1 3. PC13 (0.006 mL, 0.07 mmol) 

was then added and a 3 1 P { ' H } N M R spectrum recorded soon after mixing. 

Synthesis of the dppe cyclic triphosphenium ion using SnCI 2 

dppe (0.0260 g, 0.07 mmol) and SnCl 2 (0.0133 g, 0.07 mmol) were dissolved in 1.0 mL 

C D C I 3 . PCI3 (0.006 mL, 0.07 mmol) was then added and a 3 I P { ' H } N M R spectrum 

recorded soon after mixing. 

Synthesis of the dppe cyclic triphosphenium ion using A I C I 3 

dppe (0.0677 g, 0.17 mmol) and A I C I 3 (0.0227 g, 0.17 mmol) were dissolved in 1.0 mL 

C D C I 3 . PCI3 (0.015 mL, 0.17 mmol) was then added and a 3 I P { ' H } N M R spectrum 

recorded soon after mixing. 

General information: 

For each cyclic triphosphenium ion synthesised any residual PCI3 was removed in vacuo, 

although on occasion not all the PCI3 was removed. Attempts to isolate the cyclic 

triphosphenium ions through crystallisation (by slow evaporation o f solvent in an inert 

atmosphere or by layering with hexane or pentane) were unsuccessful. The cyclic 

triphosphenium ions were used without further purification in subsequent reactions. 
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Quantities of reagents used: 

c T3 
Quantity of Quantity of Quantity of Quantity of 

D
ip

ho
sp

ha
 

om
po

un
 

diphosphane 

used 

P X 3 
used SnCI 2 used AICI3 used 

D
ip

ho
sp

ha
 

U g mmol m L mmol g mmol g mmol 

dcypm l a 0.0248 0.06 0.010 0.11 - - - -

dcypm l b 0.0254 0.06 0.010 0.11 0.0198 0.10 - -

depe 2a 0.0587 0.28 0.017 0.19 - - - -

depe 2b 0.0263 0.13 0.011 0.13 0.0246 0.13 - -

depe 2c 0.0745 0.36 0.025 0.26 - - - -

dcype 3a 0.0060 0.01 0.010 0.11 - - - -

dcype 3b 0.0400 0.10 0.008 0.10 0.0180 0.10 - -

dppe 4a 0.0430 0.11 0.006 0.07 - - - -

dppe 4a 0.0260 0.07 0.006 0.07 0.0133 0.07 - -

dppe 4d 0.0677 0.17 0.015 0.17 - - 0.0227 0.17 

dmpe 5a 0.0133 0.09 0.005 0.06 - - - -

depp 6a 0.0415 0.19 0.010 0.11 - - - -

depp 6b 0.0093 0.04 0.003 0.04 0.0076 0.04 - -

depp 6c 0.0444 0.20 0.010 0.11 - - - -

depp 6c 0.0419 0.19 0.054 0.13 - - - -

dcypp 7a 0.0250 0.05 0.005 0.05 - - - -

dcypp 7b 0.0395 0.09 0.008 0.09 0.0170 0.09 - -

dcypp 7c 0.0543 0.12 0.010 0.11 - - - -

dippp 8a 0.0448 0.16 0.010 0.11 - - - -

dippp 8b 0.0136 0.05 0.004 0.05 0.0100 0.05 - -

dippp 8c 0.0396 0.14 0.010 0.11 - - - -

dippf 9a 0.0508 0.12 0.010 0.11 - - - -

dpdtbpf 10a 0.0361 0.08 0.010 0.11 - - - -

dpdtbpf 10b 0.0140 0.03 0.003 0.03 0.0060 0.03 - -
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Quantities of reagents continued ... 

B T3 Quantity of Quantity of Quantity of Quantity of 

D
ip

ho
sp

ha
i 

om
po

um
 

diphosphane 

used 

PX3 used SnCI 2 used AICI3 used 

D
ip

ho
sp

ha
i 

U g mmol mL mmol g mmol g mmol 

dpdtbpf 10c 0.0284 0.06 0.007 0.06 - - 0.0085 0.06 

dcypb 11a 0.0569 0.11 0.010 0.11 - - - -

dcypb l i b 0.0329 0.07 0.006 0.07 0.0330 0.07 - -

dppb 12a 0.1360 0.32 0.020 0.23 - - - -

dppb 12b 0.0936 0.25 0.020 0.22 0.0938 0.49 - -

dippb 13a 0.0286 0.10 0.010 0.11 - - - -

dippb 13b 0.0235 0.08 0.007 0.08 0.0152 0.08 - -

Additional analysis: 

NMR for 2a: 

'H (399.9 MHz, CDCI3) : 8 0.99 (dt, V P . H = 20.0 Hz, 2J = 8 Hz, 12H, P C H 2 C H 3 ) ; 2.02 (m, 

8H, PCH2CH3), 2.72 (m, V P . H = 13 Hz , 4H, -P(CH2)2P) 

NMR for 2b: 

' H (399.9 MHz, CDC1 3): 8 1.15 (dt , 3 J P . H = 20.0 Hz, 2J = 8 Hz, 12H, PCH 2 CH,) ; 2.12 (m, 

8H, PCH2CH3), 2.83 (m, V P . H = 13 Hz , 4H, -P(CH2)2P 
1 3 C {'H} (125.67 MHz, CDC1 3): 8 7.3 (s, P C H 2 C H 3 ) , 21.9 (m, ]JCP = 53 Hz, P(CH 2 ) 2 P), 

24.3 (m, 1 J C p = 37 Hz, P(CH 2 ) 2 P) 

NMR for 4a: 

'H (399.9 MHz, C D C I 3 ) : 8 3.70 (d, 2JP.H = 16.4 Hz, 4H, P ^ C H ^ - P ) ; 7.46 - 7.81 (o-lm-lp-

PhH) 
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NMR for 4b: 

'H (299.9 MHz, CDCI3) : 8 3.70 (d, 2JP.H =• 16.4 Hz, 4H, P ^ C H ^ - P ) ; 7.46 - 7.81 {o-lm-lp-

PhH) 

NMR for 4c: 

' H (399.9 MHz, CDCI3) : 5 3.33 (d, 2JP.H = 15 Hz, 4H, P-CQfcfc-P); 7.55 - 7.79 (20H, o-

/m-/p-PhH) 

NMR for 5a: 
] H (399.9 MHz, CDCI3): 8 2.08 (m, 2JP.H = 13 Hz, 12H, PCH3); 3.23(d, 2JP.H = 13 Hz, 4H, 

P(CH2)2P) 
l 3 C { ! H} (125.67 MHz, CDCI3) : 8 18.4 (d, 'jfc-p = 57 Hz, PCH 3 ) , 27.9 (d, 'j Cp = 45 Hz, 

P(CH 2 ) 2 P) 

NMR for 6b: 

'H (399.9 MHz, CDCI3): 8 1.23 (m, 2 J P . H = 16.4 Hz, 12H, P-CH 2-CH3 ), 8 1.23 (m, 2JP.H = 

16.4 Hz, 8H, P-(CH2-CH 2-CH2-P); 8 2.22 (m, 8H, P-CH 2 -CH 3 ) , 8 2.22 (m, 8H, P-Cfcb-

C H 3 ) 
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Chapter 3: 
Investigation into the Mechanism of Formation of 
Cyclic Triphosphenium Ions 

3.1 Introduction 

Since the first cyclic triphosphenium ion was reported back in 1982,' many different ring 

systems have been synthesised, varying in ring size, backbone and substituents on the two 

outer phosphorus atoms.2"12 However, the mechanism of formation of these heterocycles 

had not yet been established. 

Due to the formal conversion of the central phosphorus from P(III) to P(I), a redox step is 

necessary. It has been determined that a powerful reducing agent is not essential, as the 

cyclic triphosphenium ions can be synthesised from just a phosphorus trihalide and a 

diphosphane.6"9'11"12 In this case the diphosphane itself acts as the reducing agent, which 

leads to the formation of the diphosphane tetrahalide, if the reagents are taken in the 

correct proportion. 

For the synthesis of some cyclic triphosphenium ions containing ethyl substituents, a 

second doublet and triplet were sometimes observed in the 3 I P { ' H } NMR spectra recorded 
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approximately 15 minutes after reactant mixing. However, as the reaction proceeded these 

peaks disappeared, suggesting that we were detecting an intermediate in the formation of 

the cyclic triphosphenium ions. This prompted us to undertake a more detailed study to 

investigate this further. 

3.2 Detection of transient intermediates in the synthesis of the depp cyclic 
triphosphenium ion using P X 3 (X = CI or Br) 

A reaction between depp and PCI3 at room temperature showed signals in the 3 1 P { ' H } 

NMR spectrum assignable to an acyclic intermediate and a cyclic intermediate, along with 

those corresponding to the cyclic triphosphenium ion (6a) 15 minutes after the addition of 

PCI3. One doublet and triplet (30.7 ppm and -254.1 ppm, ]JPP = 417 Hz, respectively) 

correspond to the depp cyclic triphosphenium ion (6a). 1 3 The second doublet and triplet 

(43.0 ppm and -102.6 ppm './p.p = 351 Hz, respectively) were assigned to a cyclic 

intermediate (6aII) with a CI still bound to the central phosphorus atom (Scheme 3.1). 

Also evident were two doublets (57.2 ppm and -48.3 ppm, *JP.p = 278 Hz) which were 

assigned to P G and P F in the acylic intermediate (6al) and a singlet (17.7 ppm) 

corresponding to the 'free' end of the diphosphane, PK (Scheme 3.1). The coupling 

constant for the doublets is typical of 'jp.p for this type of compound.14 

The proposed mechanism for the formation of cyclic triphosphenium ions is shown in 

Scheme 3.1. The first step involves a reaction between the diphosphane and PX3 to form an 

acyclic precursor (I). This is followed by cyclisation and the loss of a halide ion to afford a 

dication with one halogen atom on the central phosphorus (II). The final step involves the 

removal of the bound halogen by another equivalent of depp to form the cyclic 

triphosphenium ion and diphosphane tetrahalide (6ax). 
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P R 2 (I) R,P R,P PR 

/ Q \ 

R 2 (II) R> 2X- + 2 R , P 
II II It • I) I) 

I 

) 
R 2 P P R 2 

Scheme 3.1: Proposed mechanism of formation o f the cyclic triphosphenium ions 

When carrying out the synthesis o f the depp cyclic triphosphenium ion as its 

hexachlorostannate salt (6b), similar results were obtained with the only difference being a 

large shift change for P H , which can be attributed to the change in counter-ion from 2C1" to 

SnCl62" or 2SnCl5_ (Table 3.1). Other halogenophosphonium species have shown similar 

changes in chemical shift with differing counter-ions. 1 5 ' 1 6 

In an attempt to trap the intermediates (6al and 6aII) , the reaction was carried out at 0°C. 

However the 3 1 P { ' H } N M R spectrum recorded only five minutes after mixing gave similar 

results to those obtained from the room temperature reaction, except that the doublet and 

triplet corresponding to the cyclic triphosphenium ion were very weak (Table 3.1). The 

reaction was monitored as the solution warmed to room temperature, and a change in 

intensity o f the signals was observed, as expected. 
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Compound 

Number 

P 

atom 

Room Temp. Room Temp. + S n C h 0°C Compound 

Number 

P 

atom 5, ppm ' / P . P , Hz 5, ppm '•/p.p, Hz 5, ppm ' / p . P , Hz 

6a 1 P L 17.7 s - 17.7 s - 17.8 s -
6a 1 PF -48.3 d 278 -48.3 d 276 -48.3 d 276 

6al PG 57.2 d 278 57.4 d 278 57.5 d 277 

6a II Pc -102.6 t 351 -103.5 t 352 -102.2 t 351 

6a II PD 43.0 d 351 42.8d 352 42.9d 352 

6a PA -254.1 t 417 -252.3 t 419 -254.5 t 416 

6a PB 30.7 d 417 30.5 d 418 31.Id 416 

6x PH 109.0 s - 79.6 s - 109.0 s -

Table 3.1:3IP { ! H } NMR spectroscopic data for the depp-PCl3 reaction 

The same reaction was also carried out at -78°C, in a further attempt to trap the acylic 

intermediate (6al). The spectrometer probe was pre-cooled to -60°C and 3 , P { ' H } NMR 

spectra were recorded at 15 minute intervals. The reaction proceeded very slowly at -60°C 

so the temperature of the probe was also increased at intervals. Figure 3.1 shows a 

stackplot of the 3 1 P { ' H } NMR data obtained. The spectrum recorded 30 minutes after 

mixing showed only very weak signals corresponding to the cyclic triphosphenium ion, 6a. 

The major components were the depp starting material and the cyclic intermediate, 6aII. 

As both time and temperature increased, these signals became less intense and the doublet 

and triplet corresponding to the cyclic triphosphenium ion increased in intensity. After 

approximately 5 hours there were no signals corresponding to either the acylic or cyclic 

intermediates in the 3 1 P { ' H } NMR spectrum, only the doublet and triplet corresponding to 

the cyclic triphosphenium ion itself, the diphosphane tetrachloride, 6ax (s, 109 ppm), and a 

peak corresponding to the diphosphane dioxide (impurity in starting material). 
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Figure 3.1: Stackplot of 3 I P { ' H } NMR spectra for the reaction of depp and PCI3. 

The addition of PCI3 is taken as t = 0 
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To confirm the presence o f a halogen on the central phosphorus atom, the reaction was 

carried out using PBr3 instead o f PCI3 The cyclic intermediate would then contain a Br on 

the central phosphorus atom and hence cause a change in shift for the triplet corresponding 

to P c the 3 1 P { , H } N M R spectrum. Resonances corresponding to both the triphosphenium 

ion and its cyclic precursor were observed (Table 3.2). As expected, there was a significant 

change in shift for the triplet corresponding to Pc o f the cyclic intermediate, to which the 

halogen is directly attached, when the halogen was changed from CI to Br (-102.6 ppm to -

85.1 ppm). 

Compound Number P atom 8, ppm '•/p.p, Hz 

6cII Pc -85.11 350 

6cII PD 34.3 d 350 

6c PA -253.3 t 417 

6c PB 30.6 d 417 

6cx PH 94.9 s -

Table 3.2:31P{ ' H } N M R spectroscopic data for the depp-PBr3 reaction 

In an analogous reaction using P I 3 to synthesis the depp cyclic triphosphenium ion as its 

iodide salt (6e), the only peaks in the 3 1 P { ' H } N M R spectrum were those corresponding to 

the acylic intermediate (6el), the depp cyclic triphosphenium ion (6e) and the diphosphane 

tetraiodide (6ex) (Table 3.3). There was no evidence of the cyclic precursor. The reaction 

was monitored using 3 1 P { ' H } N M R spectroscopy, and this showed that the resonances 

corresponding to the acylic intermediate (P E , P F and P G ) disappeared over time. 

Since T is a better leaving group than CI" , 1 7 it can be removed much more quickly by the 

diphosphane. It is therefore conceivable that the cyclic intermediate would not be visible in 

the 3 1 P { 1 H } N M R spectrum, for as soon as it forms, the I " would be removed to leave just 

the depp cyclic triphosphenium ion as its iodide salt, 6e. 
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Compound Number P atom ft, ppm './p-p, Hz 

6el Pv 16.2 s -

6el PF -47.9 d 278 

6el PG 57.2 d 278 

6e PA -252.1 1 418 

6e PB 30.6 d 418 

6ex PH 104.3 s -

Table 3.3:3IP {*H} N M R spectroscopic data for the depp-PI3 reactions 

3 . 3 Detection of transient intermediates in the synthesis of the depe cyclic 
triphosphenium ion using PX3 (X = CI or Br) 

It was proposed that the formation o f the depe cyclic triphosphenium ion would also 

proceed via the same mechanism (Scheme 3.1). For the reaction between depe and PCI3 at 

room temperature, signals corresponding to the cyclic precursor (2aII) were identified in 

the 3 1 P { ' H } N M R spectrum (Table 3.4). However signals corresponding to the acyclic 

intermediate were not observed. Also present were signals that could be assigned to the 

cyclic triphosphenium ion (2a) (t, -269.0 ppm, d, 81.5 ppm, 'jp.p = 441 Hz) 7 and the 

diphosphane tetrachloride (2ax) (109.9 ppm). 

The reaction between depe and PCI3 was also carried out at 0°C, but 30 minutes after the 

addition of PCI3 the 3 1 P { ' H } N M R spectrum showed only peaks corresponding to the 

cyclic triphosphenium ion (2a), and none corresponding to either the acyclic or cyclic 

intermediate. Similarly, when carrying out the reaction in the presence o f SnCb, the only 

product was the cyclic triphosphenium ion (2c) and there was no evidence of any 

intermediates in the 3 1 P { ' H } N M R spectrum. 

The reaction between depe and PBr3 at room temperature again showed the presence o f the 

cyclic intermediate (2cII) , cyclic triphosphenium ion (2c) and also the diphosphane 
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tetrabromide (2cx), and no signals corresponding to the acyclic intermediate were observed 
(Table 3.4). This could be due to the acyclic intermediates being in low concentration 
and/or the reaction proceeding too quickly. 

Compound 

Number 

P atom X = C1 X = B r Compound 

Number 

P atom 

8, ppm Jp-Pi Hz 8, ppm './p-p, Hz 

2c I I Pc -96.2 t 369 -82.2 t 365 

2c I I PD 86.2 d 369 79.8 d 365 

2c PA -269.01 441 -268.81 441 

2c PB 81.5 d 441 81.4d 441 

2cx PH 109.9 s - 95.2 s -

Table 3.4:31P{'H} N M R spectroscopic data for the depe-PX3 reactions 

In the 3 1 P { ' H } N M R spectrum recorded for the reaction between depe and PBr3, as 

expected, there was a significant change in shift for the triplet corresponding to P ( of the 

cyclic intermediate (2cII), compared with 5P f for the chloride analogue (2dII) (-96.2 ppm 

to -82.2 ppm). 

3.4 Detection of transient intermediates in the synthesis of the dippp cyclic 
triphosphenium ion using PX3 (X = CI or Br) 

Initially the reaction between dippp and PC13 was undertaken at room temperature. A 
3 1 P { ' H } N M R spectrum was recorded as soon as possible after the mixing, and showed the 

presence o f both the acyclic (8al) and cyclic intermediates (8aII), although the signal 

intensities corresponding to the acyclic precursor were very low (Scheme 3.1). 

This reaction was also carried out at 0°C to try and trap the intermediates. The 3 1 P { ' H } 

NMR spectrum showed much more intense signals corresponding to the acyclic precursor 

(8al). 3 1 P { ' H } N M R spectra were recorded at intervals as the solution was allowed to 
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warm to room temperature. The initial 3 , P { ' H } N M R spectrum showed mainly resonances 

corresponding to both the acyclic (8al) and cyclic intermediates (Sail), but as time 

increased and the solution was allowed to warm up, these decreased in intensity and a new 

doublet and triplet appeared, corresponding to the cyclic triphosphenium ion (8a) (Figure 

3.2). The N M R data are listed in Table 3.5. 

Compound 

Number 

P atom Room Temperature 0°C Compound 

Number 

P atom 

5, ppm '•/p.p, Hz 5, ppm './p.p, Hz 

Sal P E -6.4 s - -5.8 s -
8al PF -26.7 d 303 -26.7 d 303 

8a I PG 60.3 d 303 60.3 d 303 

8aI I Pc -81.01 394 -80.91 393 

Hall PD 50.1 d 394 50.1 d 393 

8a PA -299.6 t 458 -299.91 458 

8a PB 44.7 d 458 44.8 d 458 

Sax PH 115.2 s - 114.8 s -

Table 3.5: 3 , P { ' H } N M R spectroscopic data for the dippp-PC^ reactions 

The reaction between dippp and PCI3 in the presence of SnC^, showed no evidence o f any 

intermediates in the 3 1 P { ' H } N M R spectrum. 
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Figure 3.2: Stackplot o f 3 , P { *H} N M R spectra for the reaction of dippp and P C I 3 . 

Reaction carried out at 0°C. The addition o f P C I 3 is taken as t = 0 
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3 . 5 Detection of transient intermediates in the synthesis of the dcypp cyclic 
triphosphenium ion using PX3 (X = CI or Br) 

The reaction between dcypp and P C I 3 to synthesise the cyclic triphosphenium ion as a 

chloride salt was carried out at -78°C, again in the hope of observing the acyclic 

intermediate (Scheme 3.1). The spectrometer probe was pre-cooled to -60°C before the 

sample was prepared. After the initial spectrum had been recorded, the solution was 

allowed to warm up gradually and 3 , P { ' H } N M R spectra were recorded at 15 minute 

intervals with the results obtained being shown in Figure 3.3 and Table 3.6. 

Compound Number P atom 5, ppm '•/p.p, Hz 

7al PE -5.7 s -
7al PF -33.8 d 301 

7al PG 48.7 d 298 

7aI I Pc -84.91 395 

7aI I PD 41.8 d 395 

7a PA -297.4 t 452 

7a PB 36.5 d 453 

7ax PH 104.3 s -

Table 3.6:3'Pf'H} N M R spectroscopic data for the dcypp-PCh reaction 
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Figure 3.3: Stackplot o f 3 I P { ' H } N M R spectra for the reaction of dcypp and PCl 3 . 

The addition of PCI3 is taken as t = 0 
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The spectrum recorded at -60 °C, 20 minutes after mixing showed only weak signals 

corresponding to the cyclic triphosphenium ion (7a). The main component was the cyclic 

intermediate (7aII). As both time and temperature increased, these resonances became less 

intense and the doublet and triplet corresponding to the cyclic triphosphenium ion 

increased in intensity. After approximately 5 hours there were no resonances 

corresponding to either the acyclic, or cyclic intermediate in the 3 1 P { 1 H } N M R spectrum. 

Only the doublet and triplet corresponding to the cyclic triphosphenium ion itself, the 

diphosphane tetrachloride (7ax) (s, 104.3 ppm) and a peak corresponding to the 

diphosphane dioxide were apparent (impurity present in the starting material). 

The analogous reaction to form the dcypp cyclic triphosphenium ion as its bromide salt 

was also carried out at -78°C. This reaction proceeded much faster, with the intermediates 

not observed even in the first 3 I P { ' H } N M R spectrum run at -50°C. The only apparent 

signals corresponded to the cyclic triphosphenium ion (7c) (t, -297.7 ppm, d, 36.7 ppm, 
1 Jp.p = 450 Hz) and the diphosphane tetrabromide (7cx) (s, 97.3 ppm). 

3.6 Attempts to detect transient intermediates in the synthesis of the dppe, 
dcype, dippb and dcypb cyclic triphosphenium ions using PX3 (X = CI 
or Br) 

Attempts to observe the intermediates in the synthesis of the dppe, dcype, dippb and dcypb 

cyclic triphosphenium ions were carried out at -78°C. For the dppe reaction, the 3 1 P { ' H } 

N M R spectrum showed no evidence o f any intermediates, only peaks corresponding to the 

cyclic triphosphenium ion (4a) (t, -229.4 ppm, d, 65.0ppm, 'jp.p = 450Hz). 6 The reaction 

appears to proceed too rapidly, even at low temperatures, for the intermediates to be 

observed. 

In the reactions between dcype, dippb and dcypb with P C I 3 , initial 3 1 P { ' H } N M R spectra 

showed that the reaction had almost gone to completion, even at -78°C. However, a small 

doublet resonance was observed, along with a broad resonance at low frequency in each 

spectrum (Table 3.7). The chemical shift and coupling constant consistent for the doublet 
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in each case, was consistent with those for observed for PD in the depp, depe, dcypp and 

dippp systems. The broad resonance present in each spectrum is in the region where the 

triplet corresponding to Pc would be expected. However without resolving the broad 

resonances, these cannot be assigned conclusively to the cyclic intermediates in the 

formation o f the cyclic triphosphenium ions in question. 

diphosphane px 3 , 

x = 

8Pdoublet» 

ppm 

7 P . P , Hz 8Pbroad signal) 

ppm 

dcype CI 77.0 353 ~-70 

dippb CI 68.9 414 ~-64 

dcypb CI 62.4 447 ~-61 

dcypb Br 30.5 436 ~-103 

Table 3.7:31 P { ' H } NMR spectroscopic data for the dcype, dippb and dcypb-PCh reactions 

at -78°C 

3.7 Conclusions 

Along with the expected acyclic initial product (I) from the reaction o f P X 3 with a 

diphosphane, this 3 1 P N M R spectroscopic study has also shown that there is a second 

intermediate, a cyclic precursor (II) , containing a halogen atom still bound to the central 

phosphorus atom (Scheme 3.1). The 3 I P { ' H } N M R data clearly show that this is a halogen 

atom, as by changing the phosphorus trihalide from PCI 3 to PBr 3, we observed a significant 

change in the chemical shift of the triplet corresponding to the central phosphorus, as 

expected when changing from a P-Cl to P-Br. 

When using PI3 we only observed the acyclic intermediate and the cyclic triphosphenium 

ion in the 3 1 P { ' H } N M R spectrum. This is most probably due to the P-I bond being weaker 

than both P-CI and P-Br, so that I" can be lost more readily. This means that I" can be 
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removed immediately after cyclisation to form the second intermediate, to leave the cyclic 

triphosphenium ion. 

This study has also shown that the rate of reaction to form a cyclic triphosphenium ion 

follows the order P I 3 > PBr3 > PCI3. This can also be attributed to the relative P-X bond 

strengths, with P-I being the weakest and P-Cl being the strongest, meaning that I " is a 

better leaving group than Br" or CI." 

No intermediates in the formation o f the cyclic triphosphenium ion were observed, even at 

low temperature, when using the diphosphane dppe. This behaviour must be due to 

electronic effects, as steric effects can be ruled out because intermediates were observed 

using the diphosphane dcypp which has cyclohexyl substituents that are as bulky as phenyl 

substituents. It is possible that phenyl substituents could help with the electron 

delocalisation recognised in cyclic triphosphenium ions and this provides the necessary 

driving force for rapid formation of the cyclic triphosphenium ion. It is also possible that 

the alkyl groups help to stabilise the phosphonium cations, so prolonging their lifetime in 

solution. 

Although the transient intermediates have only been observed for the depp, depe, dippp 

and dcypp systems with PC13 and in some cases PBr3, it is reasonable to propose that this 

same mechanism is followed in the formation o f all cyclic triphosphenium ions using PCI3, 

PBr 3 or P I 3 (Scheme 3.1). 

3.8 Experimental 

A l l manipulations were carried out in a nitrogen-filled glove box or under an atmosphere 

of dry nitrogen or in vacuo, using standard Schlenk and cannula techniques as these 

compounds are sensitive to both air and moisture. A l l NMR-scale reactions were 

conducted using Young's tap valve N M R tubes. The N M R solvent, C D C I 3 , was dried over 

P2O5, distilled and degassed prior to use. 3 , P { ' H } N M R spectra were recorded on a Varian 
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Unity 300, Mercury 400 or Inova 500 Fourier-transform spectrometers at 121.40, 161.91 or 
202.3 MHz respectively. The chemical shifts are referenced to external 85% H3PO4. 

Example reactions: 

Synthesis of the depp cyclic triphosphenium ion at room temperature 

depp (0.0415 g; 0.19 mmol) was dissolved in 1.0 mL CDC1 3. PC13 (0.01 mL, 0.11 mmol) 

was then added and a 3 1 P { ' H } N M R spectrum recorded as quickly as possible after mixing. 

Synthesis of the depp cyclic triphosphenium ion using SnCI 2 

depp (0.0230 g, 0.10 mmol) and SnCl 2 (0.0197 g, 0.10 mmol) were dissolved in 1.0 mL 

CDCI3. PCI3 (O.OlmL, 0.11 mmol) was then added and a 3 1 P { ' H } N M R spectrum recorded 

as quickly as possible after mixing. 

Synthesis of the depp cyclic triphosphenium ion at 0°C 

depp (0.0230 g, 0.10 mmol) was dissolved in 0.5 mL CDC1 3. A solution o f PC13 (0.01 mL, 

0.11 mmol) in 0.5 mL CDCI3 was also prepared and both solutions were cooled in a Dewer 

containing crushed ice for 15 minutes. The two solutions were mixed and then transported 

to the spectrometer in the ice bath. A 3 I P { ' H } N M R spectrum was recorded as quickly as 

possible after mixing. 

Synthesis of the depp cyclic triphosphenium ion at -78°C 

depp (0.0206 g, 0.09 mmol) was dissolved in 0.5 mL CDCI 3 . A solution o f PC13 (0.005 

mL, 0.055 mmol) in 0.5 mL CDCI3 was also prepared and both solution were cooled in a 

Dewer containing an acetone/solid carbon dioxide slush bath for 15 minutes. The two 

solutions were mixed and then transported to the spectrometer in the acetone/solid carbon 

dioxide slush bath. The spectrometer probe was pre-cooled to -60°C so that 3 I P { ' H } N M R 

spectra could be recorded as quickly as possible after mixing. 
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Quantities of reagents used: 

Diphosphane P X 3 

Mixing 

Temp./ °C Compound g mmol X m L mmol 
Mixing 

Temp./ °C 

depp 0.0415 0.19 CI 0.010 0.11 RT 

depp" 0.0230 0.10 CI 0.010 0.11 RT 

depp 0.0188 0.09 CI 0.005 0.06 0°C 

depp 0.0206 0.09 CI 0.005 0.06 -78°C 

depp 0.0444 0.20 Br 0.010 0.11 RT 

depp 0.0419 0.19 I 0.054 0.13 RT 

depe 0.1132 0.55 CI 0.030 0.34 RT 

depe 0.0365 0.18 CI 0.010 0.11 0°C 

depe 0.0745 0.36 Br 0.025 0.26 RT 

dippp 0.0448 0.16 CI 0.010 0.11 RT 

dippp 0.0397 0.14 CI 0.010 0.11 0°C 

dippp 0.0396 0.14 Br 0.010 0.11 RT 

dcypp 0.0451 0.10 CI 0.010 0.11 RT 

dcypp 0.0543 0.12 CI 0.010 0.11 -78°C 

dcypp 0.0543 0.12 Br 0.010 0.11 -78°C 

dppe 0.0236 0.06 CI 0.004 0.04 -78°C 

dcype 0.0310 0.07 CI 0.010 0.11 -78°C 

dippb 0.0605 0.21 CI 0.010 0.11 -78°C 

dippb 0.0396 0.14 Br 0.010 0.11 -78°C 

dcypb 0.0569 0.13 CI 0.010 0.11 -78°C 

dcypb 0.0797 0.18 Br 0.010 0.11 -78°C 

• 0.0197 g (0.10 mmol) o f SnCl 2 was also added 
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Chapter 4: 
Synthesis and Characterisation of P-Alkyl and P-Aryl 
Derivatives of Cyclic Triphosphenium Ions 

4.1 Introduction 

Since the formal oxidation state o f the central P atom of cyclic triphosphenium ions is 

P(l), oxidation reactions would be expected to take place at this centre. Indeed, 

Schmidpeter et al. demonstrated in 1985 that oxidation reactions at this centre could take 

place (Scheme 4.1). 1 

P h , P ' PPh 

P h 2 P < ^ ^ P P b 2 

P 

4+ 

(a) C H 2 C I 2 / A l C l j 

(b) ' B u C I / A I C I 3 

Ph,P PPh 

P b 2 P ^ J>Ph 2 

P 

2+ 

( A I C I 4 ) 2 

(a) R = C H 2 C I 
(b) R = H 

Scheme 4.1: First oxidation reactions carried out on a cyclic triphosphenium ion 
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Since then the formation of P-protonated derivatives using two different methods has 

been reported,1"4 along with direct methylation o f the central phosphorus atom using 

methyl triflate. 5 , 6 Attempts to synthesise ethyl derivatives using this direct method 

proved to be unsuccessful when the substituents on the outer P atoms were phenyl. 5 

However with ethyl groups on these P atoms, direct ethylation using ethyl triflate was 

possible for the depe and depp systems.7 

Schmidpeter et al. also described the synthesis o f two other alkyl derivatives derived 

from the diphosphane dppe.3 They involved the reaction o f the diphosphane with a 

dichlorophosphane in the presence of AICI3 (Scheme 1.11). The products were readily 

characterised using 3 1 P { ' H } N M R spectroscopy. The alkyl derivatives show a shift to 

higher frequency for the triplet corresponding to P c , and a marked reduction in the 

magnitude o f 'jp.p compared to that o f the equivalent cyclic triphosphenium ion. 

This chapter details the synthesis o f a number o f P c-alkyl and P c-aryl derivatives by two 

different methods: a direct route which involves the synthesis o f the cyclic 

triphosphenium ion first, followed by a reaction o f the ring with an alkyl triflate; or an 

indirect method, following Schmidpeter's route, by which a diphosphane is reacted with 

an equivalent o f a dichloroalkylphosphane or a dichloroarylphosphane to form the 

derivative in one step. 
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4.2 Synthesis of P ( -alkyl and P< -aryl derivatives - A direct method 

4.2.1 Synthesis of Pc-methyl derivatives 

The synthesis of some new methylated cyclic triphosphenium ions was attempted by 

reacting excess methyl triflate with some cyclic triphosphenium ions (Scheme 4.2). 

(CH 2 )„ 
J \ 

.PR, 

+ 

X ' excess 

CF 3 S0 3 Me 

( C H 2 ) n 

/ \ 
R 2 P \ / P R 2 

D p D 

Me 

2+ 

X". CF 3 S0 3 -

n = 2 
3 

R Cy 
Cy 

14 
15 

Scheme 4.2: Direct methylation o f cyclic triphosphenium ions 

The 3 1 P { 'H} N M R spectra o f compounds 14 and 15 each showed, as expected, a doublet 

and triplet resonance. In both cases, there was a large shift to higher frequency for the 

signal arising from the central P atom, and also a marked reduction in the magnitude o f 

'jp.p, compared to the corresponding values for the parent cyclic triphosphenium ions. 

The 3 1 P { ' H } N M R data are shown in Table 4.1. Included are the shifts and coupling 

constants of the precursor triphosphenium ions for comparison. 

Diphosphane 
Compound 5 P B ' 8 P V 

l j 
p-p' 

Compound 5 p

D > 5P C , 1 / 
p-p' Diphosphane 

(CTI ) 

5 P B ' 

(P-Me) 

5 p

D > 

(CTI ) ppm ppm Hz (P-Me) ppm ppm Hz 

dcype 3a 87.3 -289.3 457 14 65.1 -96.1 301 

dcypp 7a 36.2 -293.0 458 15 27.0 -109.5 281 

Table 4.1:3IP { 'H} N M R data for cyclic triphosphenium ions 3a and 7a and their 

P-methyl derivatives (14 and 15) 
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The large shift to higher frequency of the triplet corresponding to Pc can be attributed to 

the change in oxidation state o f the P atom from P(I) to P(HI). The loss of 7i-bonding as 

the delocalisation is removed upon methylation results in the reduction in the magnitude 

of 1 Jp.p. 

4 .2.2 Synthesis of P(-ethyl derivatives 

Attempts to form P f -ethyl derivatives o f cyclic triphosphenium ions using excess ethyl 

triflate had been carried out on some cyclic triphosphenium ions. However when the 

cyclic triphosphenium ion had large substituents on the outer P atoms, the reaction was 

unsuccessful.5 Direct ethylation o f cyclic triphosphenium ions with ethyl substituents 

had been a success (Table 1.17) 7 ' 8 Further reactions were attempted using excess ethyl 

triflate for methyl, /so-propyl and cyc/o-hexyl substituents (Scheme 4.3). 

( C H 2 ) n 

/ 
R>Pv 

\ 
PR, 

+ 

excess 

CF-jSOjEt 

(CH 2 )„ 
/ \ 
1) P D 

l C 

Et 

2+ 

(CF3SO3 ) X 

n = 2 R = Me 
2 R = Cy 
4 R = 'Pr 

Scheme 4.3: Attempted direct ethylation o f some cyclic triphosphenium ions 

Attempted reactions to synthesise P-ethyl derivatives from dcype and dippb cyclic 

triphosphenium ions were unsuccessful, even after the addition o f four equivalents o f 

ethyl triflate. This suggests that there is considerable steric hindrance to formation o f the 

ethyl derivatives. It is expected that the cyclic triphosphenium ion derived from dmpe 

should form the ethylated derivative upon reaction with excess ethyl triflate, as the 

substituents on the four-coordinate phosphorus atoms are methyl. However, the products 

of the reaction proved to be insoluble and hence no solution-state spectra could be 

obtained. 
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4.2.3 Attempted synthesis of Pc -phenyl derivatives 

Following on from the successful reactions to form P(-methyl, and some Pc-ethyl, 

derivatives of cyclic triphosphenium ions, reactions using phenyl triflate were carried out. 

The reaction of excess phenyl triflate with both the depe cyclic triphosphenium ion (2a) 

and the dippb cyclic triphosphenium ion (13a) did not lead to formation of the Pc -phenyl 

dication. For each reaction, the 3 1 P{ 1 H} NMR spectra only showed resonances 

corresponding to the cyclic triphosphenium ion. 

4.3 Synthesis of P c-alkyl and P ( -aryl derivatives - An indirect method 

4.3.1 Derivatives of the depe cyclic triphosphenium ion 

The syntheses of some new P c-alkyl and P( -aryl cyclic triphosphenium ions were 

attempted by reacting depe with various dichlorophosphanes and A1C13 (16a-21a) 

(Scheme 4.4). 

E t 2 P P E t 2 

R P C I 2 

AlCli 

/ \ 2+ 

/ \ 
E t 2 P x / P E t 2 

(AIC1 4 ) 2 

1 
L R J 

R = E t 16a 1 
L R J "Pr 17a 

'Pr 18a 
'Bu 19a 
Cy 20a 
Ph 21a 

Scheme 4.4: Synthesis of alkyl and aryl derivatives of the depe cyclic triphosphenium 

ion by an indirect method 
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The 3 1 P { l H } NMR spectrum of compound 16a showed, as expected, a doublet and triplet 

resonance (Table 4.2). There was a large shift to higher frequency for the central P atom, 

and also a marked reduction in the magnitude of ' jp. P , compared to those of the cyclic 

triphosphenium ion . 9 , 1 0 These NMR data are in good agreement with those obtained for 

the product of direct ethylation of the depe cyclic triphosphenium ion using ethyl 

triflate. 7 ' 8 

Compound 
Compound 

number 

8 P n ' 

ppm 

5 P C , 

ppm 

1 

•'p-p' 

Hz 

I'h Ph 

+ 

cr 2a 81.7 -269.2 441 

Ethylated using 

ethyl triflate 
N/A 66.1 -89.8 291 

Ethyl derivative using E1PCI2 16a 66.0 -92.7 293 

Table 4.2: P{ H} NMR data for the depe cyclic triphosphenium ion and ethyl 

derivatives 

Further reactions were carried out using chlorophosphanes with "Pr, 'Pr, lBu, Cy and Ph 

groups. It was hoped that by using this method, derivatives containing larger substituents 

on the central phosphorus atom could be synthesised, similar to those previously reported 

by Schmidpeter.3 

The 3 1P {'H} NMR spectra of each compound (17a - 21a) showed, as expected, a doublet 

and triplet resonance (Table 4.3). For each derivative in this series there is a large shift to 

higher frequency of the triplet corresponding to the central phosphorus atom, P c 

compared to PA of the cyclic triphosphenium ion. This suggests that for P-alkylated 

derivatives the central P is effectively deshielded compared with the P(I) centre in cyclic 
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triphosphenium ions. Also noteworthy is the marked reduction in the magnitude of 'jp.p 
compared with the values determined for the parent cyclic triphosphenium ion 2a 
probably due to the increased P-P distance upon loss of delocalisation. There is a much 
smaller shift to lower frequency for the doublet corresponding to the outer P atoms for 
the alkyl/aryl derivatives, compared to that of the depe cyclic triphosphenium ion, 2a. 
Although the 1 Jp.p values are very similar for R = Et or "Pr, on going from "Pr through to 
'Bu substituents there is a significant increase. 

Substituent 
Compound 

Number 

8 P o ' 

ppm 

6P ( , 

PPm 

l 
*'p-p» 

Hz 
None (CTI) 2a 81.7 -269.2 441 

Et 16a 66.0 -92.7 293 

"Pr 17a 62.2 -95.1 295 

'Pr 18a 67.3 -66.6 311 

'Bu 19a 66.8 -33.6 338 

Cy 20a 67.0 -71.9 309 

Ph 21a 60.2 -94.2 280 

Table 4.3:31P { ! H} NMR data for some Pc-alkyl and Pc -aryl derivatives of depe 

Attempts to synthesise the P( -methylated derivative via this route were unsuccessful. 

Indeed, upon addition of MePCb to a solution of the cyclic triphosphenium ion, the 

solution turned cloudy and eventually separated out into two layers, one being oily. The 
3 1 P{ 'H} NMR spectrum showed no evidence to support the formation of the P-

methylated derivative. 
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4.3.2 Derivatives of the dppe cyclic triphosphenium ion 

Previous attempts to form a Pc-ethylated derivative of the dppe cyclic triphosphenium 

ion had been unsuccessful when using ethyl triflate. Schmidpeter had reported the 

synthesis of Pc-chloromethyl and Pc-'Bu derivatives of the dppe cyclic triphosphenium 

ion.3 Using this method it was hoped to synthesise a series of P(-alkyl and Pc-aryl 

derivatives of the dppe cyclic triphosphenium ion, which would be unattainable using the 

direct method (Scheme 4.5). The Pf -ethyl P c-'Bu and Pc -phenyl derivatives were also 

synthesised as their chlorostannate salts (23b, 26b and 28b) using SnC^ instead of A I C I 3 . 

2+ 

(AICI 4 ) 2 

R = Me 22a 
Et 23a 
n Pr 24a 
'Pr 25a 

(Bu 26a 
Cy 27a 
Ph 28a 

Ph2P 

RPCI 2 

PPh, 
AlCh 

Ph7P PPh 2 

D ^ n / D 
c 1 

Scheme 4.5: Synthesis of alkyl and aryl derivatives of the dppe cyclic triphosphenium 

ion by an indirect method 

The 3 I P{ 'H} NMR spectra of the P( -methylated derivative (22a) showed a doublet and 

triplet resonance, as expected (Table 4.4). These data are in good agreement with those 

reported for the heterocycle obtained from direct methylation of the dppe cyclic 

triphosphenium ion (8P( -91.3 ppm, 8PD 54.8 ppm, ' j P . P 284 Hz),5 considering the 

difference in counter-ion. 

The complete family of such derivatives was synthesised in solution for R= Me (22a), Et 

(23a and 23b), " Pr (24a), 'Pr (25a), lBu (26a and 26b), Cy (27a and 27c) and Ph (28a 
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and 28b) (Table 4.4). Similar to the depe series, the 1 Jp.p values increase along the series 
with a significant increase for "Pr to 'Pr to 'Bu substituents . 

Schmidpeter et al. reported 8PD 52 ppm, 5P( -79 ppm, ' jp . P 283 Hz, for 26a.3 The 
3 1P{*H} NMR data obtained here from an equivalent reaction gave very different results 

which are much more consistent with the results for the depe series (Table 4.4). It is 

possible that, under the experimental conditions they used, Schmidpeter et al. obtained 

the chloromethyl derivative (also described in the same paper (8PD 52.0 ppm, 8Pc -78.0 

ppm, 1 Jp.p 282 Hz))3 in preference to the lBu derivative (Scheme 4.6). 

2+ 

( A l C l ^ + ^uPClj 

Scheme 4.6: Proposed reaction pathway for the formation of the Pc-chloromethyl 

derivative of the dppe cyclic triphosphenium ion 

For the Pc-cyc/o-hexyl derivative of the dppe cyclic triphosphenium ion from the reaction 

using A I C I 3 , two sets of doublet and triplet resonances were observed. This can be 

explained by having a mixture of CI" and AICI4" counter-ions. Adding more A I C I 3 to the 

reaction mixture caused an increase in relative intensity for the signals at 48.9 and -75.7 

ppm, allowing these signals to be assigned to the bis-AlCl4" salt (27a), with the other 

resonances being attributed to the mixed counter-ion species (27c). 

The reaction between dppe and 'PrPCk was also carried out in the presence of SnCl2. 

Unfortunately, the 3 I P{ 'H} NMR solution spectra could not be resolved, and showed just 

broad signals at 50 ppm and -70ppm, although, crystals suitable for X-ray diffraction 

studies were obtained (see Section 4.4). 

Ph 2P PPh, 

'BuPC^ + 
C H 2 C 1 2 

A 1 C 1 , 

Ph 2 P x 

D 

CH,C1 

PPh2 

D 
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Substituent 
Compound 

Number 

8 P D ' 

ppm 

5PC, 

ppm 

l 

Hz 

None (CTI) 4a 65.0 -230.0 450 

Me 22a 53.2 -96.9 279 

Et 23a 53.4 -93.0 287 

Et 23b 53.6 -96.2 299 

"Pr 24a 53.8 -95.1 288 

'Pr 25a 49.0 -71.3 304 

T3u 26a 49.5 -54.0 332 

lBu 26b 50.2 -54.2 336 

Cy 27a 48.9 -75.7 308 

Cy 27c 50.4 -79.1 311 

Ph 28a 53.1 -76.9 280 

Ph 28b 52.8 -79.2 293 

Table 4.4:31P {*H} NMR data for some alkyl and aryl derivatives of dppe 

4.3.3 P( -ethyl derivatives of other cyclic triphosphenium ions 

Ethyl derivatives of a number of other cyclic triphosphenium ions were also synthesised 

using the same method (Scheme 4.7). The syntheses were carried out to form either the 

tetrachloroaluminate or chlorostannate salts, or in the case of the dcypm, depp and dppben 

systems, both. The 3 1 P{ 'H} NMR data are in good agreement with those obtained for the 

ethyl derivatives of dppe and depe synthesised using this method, and also previously 

reported data for other protonated and alkylated derivatives (Table 4.5). 1 - 6 
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2+ 

R 2 P PR 2 

A1CI3 or SnCl 2 

EtPCl 2 

R 2 P PR 2 

P 
(A1C14 ) 2 or SnCl 4

2 

Et 

Scheme 4.7: General synthesis of P-ethyl derivatives of cyclic triphosphenium ion using 

AlCb or SnCI2 

For the Pc -ethylated derivative of the dcypm cyclic triphosphenium ion, the 1 Jp.p value is 

considerably smaller than for any other ethyl derivative. However, this is not surprising 

since the parent cyclic triphosphenium ion has the smallest lJP.p values reported for these 

systems, 331 Hz.6 The 3 1 P{ 'H} NMR data for the product of direct methylation of this 

cyclic triphosphenium ion also exhibited a small ' jp . P value, 195 Hz.6 The reactions to 

form both the tetrachloroaluminate and chlorostannate salt gave rise to another product, a 

tetraphosphonium ion. This will be discussed in more detail in Chapter 5. A small amount 

of the dcypm cyclic triphosphenium ion was also observed in the 3 1 P{ 'H} NMR spectrum 

of the crude reaction mixture. This formed due to a small amount of PC13 impurity 

present in the EtPCl2. 

For the dppben and depp systems, the Pc-ethyl derivatives were synthesised using both 

AICI3 (32a and 33a) and SnCl2 (32b and 33b). The 3 1 P{ 'H} NMR data for the two salts 

show a difference in shift for the triplet resonance corresponding to the central P atom 

compared to PA of the parent cyclic triphosphenium ion, and also in the magnitude of the 

'JP.P value (Table 4.5). This can be attributed to the difference in counter-ion. " ' 1 2 

-95-



- Cyclic Triphosphenium Ions and Related Species -

Diphosphane Compound * V 5P ( , l 
'p-p' 

ppm ppm Hz 

dcypm 29a 40.4 -59.7 156 

dcypm * 29b 39.5 -62.8 157 

dcype * 30b 57.0 -85.2 319 

dppE 31a 58.9 -93.2 307 

dppben 32a 44.8 -66.7 286 

dppben * 32b 45.1 -72.2 300 

depp 33a 28.9 -85.8 301 

depp * 33b 29.3 -81.9 303 

dcypp 34a 28.7 -92.4 303 

dcypb 35b 32.1 -52.6 305 

biphep 36b 12.8 -14.2 322 

Table 4.5:31P{1H} NMR data for some ethyl derivatives of cyclic triphosphenium ions 

* SnCh was added instead of AlCb 

4.3.4 Other Pc -alkyl and P ( -aryl derivatives of cyclic triphosphenium ions 

The synthesis of Pf -methyl, n-propyl, iso-propyl and phenyl derivatives was also carried 

out using MePCl2, "PrPCl2 'PrPCl2 and PhPCl2 instead of EtPCl2 (Scheme 4.7). 
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The 3 1 P { ] H } NMR data for the Pc-methyl derivative of the dppE ring (37a) are in good 
agreement with those reported for the corresponding product obtained from direct 
methylation of the parent cyclic triphosphenium ion (8PA = -96.5 ppm, 8PB = 57.7 ppm, 
1 Jp.p = 3 1 1 Hz), 5 when taking into account the change in counter-ion (Table 4.6). 
Attempts to synthesise other P-methylated derivatives of cyclic triphosphenium ions gave 
either a white precipitate or an oily solution and 3 1 P{ 'H} NMR solution spectra could not 
be obtained. 

The iso-propyl derivatives of the dcypm cyclic triphosphenium ion were synthesised 

using both A I C I 3 and SnCl2 (41a and 41b). However, the reactions were not very clean 

and resulted in a 50:50 mixture of the desired product and a tetraphosphonium ion (which 

will be discussed in greater detail in Chapter 5). A mixture of the alkylated product and a 

tetraphosphonium ion was also observed in the reaction to form a P t -"propyl derivative 

of the dcypm cyclic triphosphenium ion. 

Diphosphane Compound R'= 
5PD, 8PC, i 

ppm ppm Hz 

dppE 37a Me 59.8 -97.0 301 

depp 38a "Pr 30.0 -89.1 306 

dippp 39a "Pr 37.2 -92.8 288 

dcypm 40b "Pr 41.4 -64.0 159 

dcypm 41a 'Pr 38.8 -29.1 152 

dcypm * 41b 'Pr 38.8 -28.9 150 

dmpe 42a Ph 46.6 -76.4 290 

depp 43a Ph 27.8 -83.7 295 

Table 4.6:31P{'H} NMR data for some alkyl and aryl derivatives of cyclic 

triphosphenium ions (*SnCl2 was added instead of AICI3) 
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4.3.5 Mechanism of formation of P ( -alkyl and Pf -aryl derivatives of cyclic 
triphosphenium ions 

The mechanism of formation of P c-alkyl and Pc-aryl derivatives of cyclic 

triphosphenium ions necessarily involves the addition of the chlorophosphane to one of 

the P atoms of the diphosphane to form a P-P bond and the loss of a halogen, which 

would be accepted by A I C I 3 or SnCb, to form a tetrachloroaluminate or chlorostannate 

anion respectively (Scheme 4.8). Cyclisation would then occur, with loss of the second 

halogen (in the presence of A I C I 3 or SnCb) to yield the product. One noteworthy point is 

that the acyclic intermediate is the same as the first intermediate in the formation of the 

cyclic tetraphosphonium ions, which will be discussed in greater detail in Chapter 5. 

+ PR 
( I R,P PR 

C I C I 
P 

CI 

R 2 P X PR 2 

2+ 

(A!CI 4 -) 2 or S11CI42-

Scheme 4.8: General mechanism of formation for aryl and alkyl derivatives of some 

cyclic triphosphenium ion using A1C13 or SnCl2 

In some systems, the formation of the alkyl derivative occurred relatively slowly, which 

allowed detection of the acyclic intermediate. By 3 1 P { * H } NMR spectroscopy, this 

acyclic intermediate is observed to give rise to two doublet resonances corresponding to 

P F and P G , which have a large ]JP.P value, and a singlet corresponding to the 'free' end, 

PF, 
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Low intensity signals were observed in a 3 1P{*H} NMR spectrum of the reaction between 

depp and EtPCl2 in the presence of A1C13, which could be assigned to PE, PF and PG of 

the acyclic intermediate (33al) (Table 4.7). This acyclic intermediate was only present as 

a minor component of the reaction mixture. The shift of P|. suggests there is only one CI 

bonded to the P atom, as the shift is more consistent with other phosphanes containing 

one chlorine atom than ones with two chlorines (Table 4.8). 1 3 - 1 7 

Similar signals were observed for the reactions of depp with 'PrPCb and with 'BuPCb, of 

dcypp with "PrPCh, and of dippp with 'BuPCb (Table 4.7). However, cyclisation did not 

occur in these four reactions. It seems probable that, due to the bulky substituents on 

either the diphosphane and/or the chlorophosphane, cyclisation to form the alkyl 

derivative is unfavourable. 

Diphosphane Compound R' = 
8 P E , F » 

ppm 

5P r 

ppm 

1 

"̂ p-p, 

Hz 

1 

" 'p-Ht 

Hz 

dppp 44al Me 10.2 60.0 28.7 324 NR 

depe 16al Et 37.6 71.8 22.4 345 470 

depp 33al Et 17.4 57.2 -48.1 278 NR 

dppp 451 Et 9.9 68.7 26.7 329 494 

dcypp 461 "Pr 11.7 50.4 -28.8 309 NR 

depp 471 'Pr 18.2 57.3 ^48.3 278 NR 

depp 481 'Bu 17.5 57.2 -48.2 279 NR 

dippp 491 lBu 33.3 60.1 -26.4 309 NR 

Table 4.7:31P{ 'H} NMR data for the acyclic intermediate in the mechanism of formation 

of alkyl derivatives (NR - not recorded) 

-99-



- Cyclic Triphosphenium Ions and Related Species -

Compound 8P, ppm Reference 

Cl2PPh 166 13, 14 

Cl2PPr 201 13, 15 

Cl2PBu 195 13, 16 

ClP('Bu)Ph 84 13, 17 

ClPPh2 82 13, 14 

Table 4.8:3IP{'H} NMR data for some -PRC1 and -PC12 compounds 

For the reactions of dppp with MePCl2 and EtPCl2, and depe with EtPCl2, resonances 

were observed in the P{ H} NMR spectra that were assigned to acyclic intermediates in 
3 

the formation of the P-alkyl derivatives (Table 4.7). For the depe reaction, JPF-PG was 

measured as 45 Hz. In each of these reactions, the resonance corresponding to PG was at 

much higher frequency compared to those described previously. 3 1 P{ 'H} NMR spectra 

were recorded for the depe and dppp with EtPCl2 reactions. In these spectra, PR became a 

doublet with ' j p . H values of 470 Hz and 494 Hz respectively, suggesting protonation of 

PE had occurred (Figure 4.1). The values obtained for xJp.\\ in 16al and 33al, and the 

chemical shifts, are comparable to those in other R 3P+-H systems (Table 4.9). I 3 ' 1 8 2 0 

/ \ 
PEt Et,P Ph,P PPta 2* 

• I E 
H K / C I Et CI Et 

16a I 33 a I 

Figure 4.1: Suggested structures for compounds 16al and 33al 
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Compound ppm J

P . H , Hz Reference 

Et 3P+H (FS0 3 ) 1 3 ' 1 8 22.5 471 13, 18 

Me3P+H (CP) -2.8 495 13, 19 

Et2PhP+H (HBr 2 ) 18.3 490 13, 20 

Bu 3P +H (FS03 ) 1 3 ' 1 8 13.7 470 13, 18 

Ph3P+H (FS0 3 ) 6.8 510 13, 18 

EtPh2P+H (HBr2") 8.3 515 13,20 

BuPh 2 P + H(HBr 2 ) 2.1 520 13, 20 

'PrPh2P+H(HBr2") 14.0 510 13,20 

Table 4.9:3IP NMR data for some R3P -H compounds 

A1C13 readily picks up water on the surface, so protonation is not impossible. When using 

SnCl2, this side reaction is less probable. It is likely that when protonation of the acyclic 

intermediate occurs, no further reaction, i.e. cyclisation, can take place. Protonation is 

also more likely to occur when the reaction is slower e.g. when there are bulky 

substituents on either the diphosphane or the chlorophosphane. 

4.4 Molecular structures of some P-alkyl derivatives of cyclic 
triphosphenium ions 

Crystals suitable for study by X-ray diffraction of seven Pc—alkyl derivatives of cyclic 

triphosphenium ions were isolated (16c, 17c, 23a, 25b, 34d, 36b and 40a) and the 

resulting structures are shown in Figures 4.2-4.8. Selected bond lengths and angles are 

shown in Table 4.10. However, due to the air-sensitive nature of 40a, the quality of the 

data obtained is such that chemical connectivity can be confirmed but no reliable 

information regarding the bond lengths and/or angles can be obtained. In addition the 

structure shows significant disorder (ca. 30% occupancy) in the central P atom and one 

AICI4" counter-ion. 
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In each of the structures the ring containing the three P atoms is non-planar as expected. 

The P-P bond lengths in each of these derivatives are typical values for normal P-P single 

bonds (e.g. 2.218(2) -2.235(2) A in the tetraphosphonium ion derived from biphep21 and 

2.217(1) A in Ph2P-PPh222). These P-P bond lengths are significantly longer than those 

observed in cyclic triphosphenium ions (2.1132(8) - 2.1326(14) A ) 9 , 2 3 - 2 8 which confirms 

the lack of any P-P multiple bond character consistent with no charge delocalisation for 

an alkyl derivative, as inferred from the NMR data. 

The P-P-P bond angles in the dppe P-alkyl derivatives (23a and 25b) are consistent with 

those reported for the parent cyclic triphosphenium ion, 4.29'15'27 For the five membered 

ring P-alkylated derivatives, 16c, 17c, 23a, and 25b, the P-P-P bond angles are very 

similar [90.3(3) (16c), 90.06(3) (17c), 89.16(11) (23a) and 89.16(11)° (25b)]. Bond 

angles close to 90° suggest that the main contribution to the P-P bonding is from 

P-orbitals. As expected, the P-P-P bond angles for 34d and 36b are larger than those for 

16c, 17c, 23a, and 25b, due to the increase in ring size. In all six structures (16c, 17c, 

23a, 25b, 34d and 36b) the P-P-P bond angle is much smaller than the P-PA-C angle, 

which again suggests that there is a large P-orbital contribution to P-P bonding in these 

P-alkyl derivatives. This is also observed for tetraphosphonium ions21 and some other 

compounds containing four adjacent P atoms.30"32 

Bond Length /A Bond Angle / ° 

P(l)-P(2) P(l)-P(3) P(2)-C(l) P(2)-P(l)-P(3) 

16c 2.2327(9) 2.2108(9) 1.864(3) 90.3(3) 

17c 2.2302(8) 2.2105(8) 1.867(2) 90.06(3) 

23a 2.225(3) 2.202(3) 1.781(8) 89.16(11) 

25b 2.231(3) 2.220(3) 1.880(8) 86.09(11) 

34d 2.199(2) 2.202(2) 1.807(6) 102.95(8) 

36b 2.214(3) 2.197(4) 1.867(9) 96.59(13) 

Table 4.10: Selected bond lengths and angles for isolated P-alkyl derivatives (16c, 17c, 

23a, 25b, 34d, and 36b) 
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16c and 17a have mixed counter-ions, one AlCLf and one CI". This mixture of CI" and 

AICI4" counter-ions was observed in the 'P{'H} NMR spectrum for the Pc-cyc/o-hexyl 

derivative of the dppe cyclic triphosphenium ion from the reaction using AICI3. Two sets 

of doublet and triplet resonances were attributed to having a mixture of CI" and AICI4" 

counter-ions. 

A more unusual counter-ion was observed in 34d, [AI4O2CI10] 2", although there are 

several reported examples of this anion in the literature.33"39 The bond lengths and angles 

in the anion are consistent with those previously reported.3 3'3 7"3 9 

C2 

P3 

PI 
C3 

Figure 4.2: The molecular structure of the dication 16c, showing the numbering scheme 

for the key atoms (the counter-ions have been omitted for clarity). Thermal ellipsoids are 

drawn at 50 % probability. 
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— ^ -, C* 02 

c 
P3 

P2 • 

PI 

C3 

Figure 4.3: The molecular structure of the dication 17c, showing the numbering scheme 

for the key atoms (the counter-ions have been omitted for clarity). Thermal ellipsoids are 

drawn at 50 % probability. 

C131 

C121 012 
C11 

P13 P11 C14 
cm 

P12 

013 

Figure 4.4: The molecular structure of the dication 23a (the counter-ions have been 

omitted for clarity). Thermal ellipsoids are drawn at 50 % probability. 
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C2 

P3 P? 

P1 

1 - 3 

Figure 4.5: The molecular structure o f the dication 25b, showing the numbering scheme 

for the key atoms (the counter-ions have been omitted for clarity). Thermal ellipsoids are 

drawn at 50 % probability. 

1 

LJ L24 

—o f-c-

ra P I n 
V3 

c 

c 

Figure 4.6: The molecular structure o f the dication 34d, showing the numbering scheme 

for the key atoms (the counter-ions have been omitted for clarity). Thermal ellipsoids are 

drawn at 50 % probability. 
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r.3 

C4 

F'2 

P1 

C.6 

Figure 4.7: The molecular structure of the dication 36b, showing the numbering scheme 

for the key atoms (the counter-ions have been omitted for clarity). Thermal ellipsoids are 

drawn at 50 % probability. 

c / i 
P 3 

C2 

Figure 4.8: The molecular structure o f the dication 40a, showing the numbering scheme 

for the key atoms (the counter-ions have been omitted for clarity). 

- 106-



- Cyclic Triphosphenium Ions and Related Species -

4.5 Conclus ions 

This chapter outlines the synthesis of some P c -alkyl and Pc -aryl derivatives o f cyclic 

triphosphenium ions using a direct and/or indirect method (Scheme 4.9). They have been 

readily characterised using 3 1 P { ' H } N M R spectroscopy as they show a doublet and triplet 

resonance, with the triplet at higher frequency compared to that o f the parent cyclic 

triphosphenium ion. This suggests that for P-alkylated derivatives the central P is 

effectively deshielded compared with the P(I) centre in cyclic triphosphenium ions. In all 

cases 'jp.p is decreased, compared with those for the parent cyclic triphosphenium ion 

probably due to the increased P-P distance upon loss o f derealization. The presence o f 

single P-P bonds has been confirmed by X-ray crystallographic studies carried out on 

seven of the derivatives. 

direct method X = C l \ C F 3 S O excess CI PR 

CF*SO*R' 
2+ 

PR 
D li 

R'PCI 

indirect method X" = ( A I C I / ) 2 

AICI 
R,P PR 

Scheme 4.9: Synthesis o f Pc-alkyl and P ( -aryl derivatives o f cyclic triphosphenium ion 

by direct and indirect methods 

The direct method involves the reaction o f a cyclic triphosphenium ion with an excess o f 

an alkyl triflate. The results o f these reactions show that in order for direct alkylation to 

take place, the attacking reagent (alkyl triflate) must contain a small organic substituent 
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e.g. methyl. I f the cyclic triphosphenium ion itself contains ethyl groups on the outer P 

atoms, then direct ethylation is possible. 

Using the indirect method of forming alkyl or aryl derivatives, a larger family o f 

derivatives has been successfully synthesised, including two series for the depe and dppe 

systems. For the derivatives o f the depe and dppe systems the 'jp.p values are very similar 

for R' = Et or "Pr. However, going from "Pr through to lBu substituents there is a 

significant increase in this value. 

Sterics play a significant role in the formation of Pc-alkyl and Pc-aryl derivatives o f 

cyclic triphosphenium ions. Direct alkylation reactions are limited due to steric 

constraints. Sterics are also very important in the formation o f alkyl or aryl derivatives 

using the indirect approach. 

The mechanism of formation of the derivatives using the indirect method necessarily 

involves the addition o f the chlorophosphane to one o f the P atoms of the diphosphane to 

form a P-P bond, and the loss o f a halogen, to form an acyclic intermediate. Cyclisation 

could then occur, sterics permitting, with loss of the second halogen to afford the 

alkyl/aryl derivative. In several reactions the acyclic intermediate was observed in the 
3 I P { ' H } N M R spectrum recorded soon after the addition o f the chlorophosphane. When 

the diphosphane and/or the chlorophosphane contained bulky groups often cyclisation did 

not occur. 
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4.6 Experimental 

Example reaction of direct alkylation: 

Under a nitrogen atmosphere and at room temperature dcype (0.0211 g, 0.05 mmol) was 

dissolved in 1.0 mL CDC1 3. PC13 (0.04 mL, 0.03 mmol) was then added, and a 3 I P { ' H } 

N M R spectrum recorded soon after mixing to check that the cyclic triphosphenium ion 

had formed. An excess o f methyl triflate (0.02 mL, 0.18 mmols) was added, and a 
3 1 P { ' H } N M R spectrum recorded. 

Quantities of reagents used: 

ph
an

e 

CF3SO3R ou
nd

 Quantity of 
diphosphane 

used 

Quantity of 
PCI3 used 

Quantity of 
CF3SO3R used 

D
ip

ho
s]

 

R= 

C
om

p 

m L mmol m L mmol m L mmol 

dcype Me 14 0.0211 0.05 0.004 0.03 0.020 0.18 

dcypp Me 15 0.0696 0.16 0.010 0.11 0.017 0.15 

dcype Et - 0.0042 0.01 0.001 0.01 0.005 0.04 

dippb Et - 0.0145 0.05 0.060 0.05 0.030 0.20 

dmpe Et - 0.0135 0.09 0.090 0.08 0.010 0.08 

depe Ph - 0.0243 0.12 0.010 0.11 0.080 0.48 

Example reaction of indirect alkylation: 

Using A1C13: 

MePCb (0.01 mL, 0.11 mmol) was added, via syringe, to a solution o f dppe (0.0282 g, 

0.07 mmol), and A I C I 3 (0.0193 g, 0.14 mmol) under a nitrogen atmosphere. A 3 1 P N M R 

spectrum was recorded soon after mixing. 

Using SnCl 2 : 

EtPCb (0.03 mL, 0.28 mmol) was added via syringe to a solution of dcypm (0.0497 g, 

0.12 mmol), and SnCl 2 (0.0455 g, 0.24 mmol) under a nitrogen atmosphere. A 3 1 P N M R 

spectrum was recorded soon after mixing. 
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Quantities of reagents used: 

ph
an

e 

R'= 

puno 

Quantity of 
diphosphane 

used 

Quantity of 
R'PC1 2 used 

Quantity of 
AICI3 used 

D
ip

ho
s R'= 

C
om

p 

g mmol m L mmol g mmol 

depe Me - 0.0406 0.20 0.020 0.22 0.0555 0.42 

depe Et 16a/16al 0.0082 0.04 0.004 0.04 0.0162 0.11 

depe n-Pr 17a 0.0347 0.17 0.022 0.17 0.0453 0.34 

depe i-Pr 18a 0.0407 0.20 0.025 0.20 0.0533 0.40 

depe 'Bu 19a 0.0215 0.10 0.016 0.10 0.0267 0.20 

depe Cy 20a 0.0255 0.12 0.018 0.12 0.0322 0.24 

depe Ph 21a 0.4037 0.44 0.270 0.44 0.5220 0.87 

dppe Me 22 0.0282 0.07 0.010 0.11 0.0193 0.14 

dppe Et 23a 0.1372 0.34 0.070 0.68 0.0906 0.68 

dppe nPr 24a 0.1215 0.30 0.040 0.30 0.0800 0.60 

dppe 'Pr 25a 0.0826 0.21 0.025 0.20 0.0600 0.45 

dppe 'Bu 26a 0.0598 0.15 0.024 0.15 0.0400 0.30 

dppe * 'Bu 26b 0.0657 0.17 0.053 0.33 0.0449 0.34 

dppe Cy 27a/27c 0.0438 0.11 0.017 0.11 0.0304 0.23 

dppe Ph 28a 0.0598 0.15 0.090 0.15 0.0569 0.30 

dppe * Ph 28b 0.3306 0.83 0.230 1.69 0.3204 1.69 

dcypm Et 29a 0.0330 0.08 0.010 0.10 0.0220 0.16 

dcypm * Et 29b 0.0497 0.12 0.030 0.28 0.0455 0.24 

dcype * Et 30b 0.0273 0.06 0.020 0.19 0.0280 0.12 

dppE Et 31b 0.0638 0.16 0.020 0.19 0.0421 0.32 

dppben Et 32a 0.0827 0.18 0.020 0.19 0.0481 0.36 

dppben * Et 32b 0.1004 0.23 0.050 0.48 0.1023 0.54 

depp Et 33a/33al 0.0417 0.13 0.020 0.19 0.0349 0.27 

depp * Et 33b 0.0228 0.07 0.020 0.19 0.0265 0.14 
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Quantities of reagents used (continued): 

ph
an

e 

R '= 

puno 

Quantity of 
diphosphane 

used 

Quantity of 
R'PC1 2 used 

Quantity of 
AICI3 used 

D
ip

ho
s R '= 

C
om

p 

g mmol m L mmol g mmol 

dcypp Et 34a 0.0286 0.07 0.010 0.10 0.0187 0.14 

dcypb * Et 35b 0.0226 0.05 0.010 0.10 0.0500 0.26 

biphep* Et 36b 0.0301 0.08 0.010 0.10 0.0301 0.16 

dppE Me 37 0.0223 0.06 0.005 0.06 0.0182 0.13 

depp "Pr 38a 0.0098 0.04 0.005 0.04 0.0107 0.08 

dippp "Pr 39a 0.0130 0.05 0.006 0.05 0.0133 0.10 

dcypm "Pr 40b 0.0394 0.10 0.013 0.10 0.0267 0.20 

dcypm 'Pr 41a 0.0369 0.09 0.011 0.09 0.0240 0.18 

dcypm * 'Pr 41b 0.0319 0.08 0.020 0.16 0.0303 0.23 

dmpe Ph 42a 0.0460 0.30 0.180 0.29 0.0816 0.61 

depp Ph 43a 0.0359 0.11 0.150 0.11 0.0293 0.23 

dppp Me 441 0.0382 0.09 0.020 0.22 0.0280 0.21 

dppp Et 451 0.3189 0.72 0.080 0.77 0.1932 1.45 

dcypp "Pr 461 0.0438 0.11 0.017 0.11 0.0304 0.23 

depp 'Pr 471 0.0105 0.05 0.007 0.05 0.0133 0.10 

depp T3u 481 0.0129 0.06 0.010 0.06 0.0163 0.12 

dippp 'Bu 491 0.0173 0.06 0.010 0.06 0.0162 0.12 

*SnCl2 was added instead o f AICI3 

Isolation of compounds: 

For compounds 16c, 17c, 23a, 25b, 34d, 36b and 40a crystals suitable for analysis by 

X-ray diffraction were obtained through evaporation o f solvent in an inert atmosphere. It 

is notable that these compounds, as with the others described in this chapter are sensitive 

to both air and moisture. 
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Elemental analysis 

Compound 23a: 
Calculated: %C 42.25 % H 3.67 % N 0.00 
Found: %C 42.81 % H 3.79 % N 0.00 

Compound 25b: 
Calculated: %C 35.71 % H 3.19 % N 0.00 
Found: %C 35.66 % H 3.22 % N 0.00 

Compound 36b: 
Calculated: %C 49.93 % H 3.64 % N 0.00 
Found: %C 49.79 % H 3.72 % N 0.00 
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Chapter 5: 

Synthesis and Characterisation of Some Cyclic 
Tetraphosphonium Ions 

5.1 Introduction 

In 1985, Schmidpeter et al. demonstrated that alkyl derivatives o f cyclic triphosphenium 

ions could be synthesised in an (n + 1) cycloaddition reaction (Scheme 1.11)1 Continued 

work in this area led to the synthesis o f some cyclic tetraphosphonium ions containing 

four adjacent phosphorus atoms linked by a hydrocarbon backbone. 2 ' 3 These heterocycles 

were synthesised in a reaction between a diphosphane and EtPCU in a novel (n + 1 + 1) 

cycloaddition reaction, where SnCl2 was required for formation o f the tetraphosphonium 
2 3 

ion to occur (Scheme 1.21). ' Although there are several examples o f cycles containing 

four adjacent phosphorus atoms,4"10 these are the first examples o f heterocyclic 

diphosphonium cations containing four adjacent phosphorus atoms linked by a 

hydrocarbon backbone. 

This chapter outlines the synthesis and characterisation of a series o f cyclic 

tetraphosphonium ions, with and without SnCl2, and also further investigations into the 

mechanism o f formation o f these novel heterocycles. 
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5.2 Synthesis of tetraphosphonium ions from dppm 

Attempts to synthesise cyclic triphosphenium ions using dppm had been unsuccessful," 

possibly because the product would be a four-membered ring, which would be strained 

and unstable. It was hoped that carrying out the (n + 1 + 1) cycloaddition to afford cyclic 

tetraphosphonium ions would be more successful, given that the products would be five-

membered heterocycles, which are known to be more stable (Scheme 5.1). 

Ph,P PPh, 

+ 2R'PC12 

• 

+ SnCl 2 or 2A1C13 

Ph 2P 
x \ 

Ph 2 

X' 

A' 
R' 

2+ 

SnClfi2" or (A1CI4 ) 2 

50a R' = Et SnCl 2 

50b = Et A1C13 

51a ="Pr SnCI 2 

52a = *Pr SnCl 2 

52b = 'Pr A I C I 3 

53a =*Bu SnCl 2 

Scheme 5.1: Synthetic route to cyclic tetraphosphonium ions derived from dppm 

The reaction between dppm and EtPCl 2, in the presence of SnCl 2, to afford the dppm 

(R'=Et) tetraphosphonium ion, 50a, was successful. A 3 1 P { ' H } N M R spectrum of the 

reaction mixture showed two identical multiplet resonances at 57.5 ppm and -40.8 ppm, 

as expected for an A A ' X X ' species (Figure 5.1). The N M R data were analysed as 

described by Giinther 1 2 (see Appendix 2 for fu l l details o f the analysis carried out), with 

the resulting coupling constants being shown in Table 5.1. Notably, the coupling 

constants calculated for this compound are similar to those reported for other 

tetraphosphonium ions (Table 5.2). ' 3 
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I I I I I M I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

61 60 59 58 5? 56 ppm 
I I I I I M | I I I 1 | I I I I | I I I I | I I I I | I I I I | I I I I | I I I I 

-2? -39 -41 -43 ppm 

I . k • 

100 
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

50 0 -50 ppm 

Figure 5.1: 3 I P { ' H } N M R spectrum of the reaction mixture in the formation o f the dppm 

(R'=Et) cyclic tetraphosphonium ion, 50a 

Compound 

Number 
R'PC1 2 , 

R ' = 

SnCl 2 

or 
A1CI 3 

8PA, 
ppm 

8Px, 
ppm 

J, 
Hz Hz 

Jx, 
Hz 

Jx, 
Hz 

50a Et SnCl 2 -40.8 57.5 357 -30 175 74 

50b Et A I C I 3 -41.9 55.3 384 -56 280 58 

51a nPr SnCl 2 -48.7 58.1 - - - -

52a 'Pr SnCl 2 -26.2 51.7 - - - -
52b 'Pr A I C I 3 ~-31 - 4 0 - - • -

53a l Bu SnCl 2 4.2 44.7 339 -9 287 15 

31 1 
Table 5.1: J , P { ' H } N M R data for various dppm cyclic tetraphosphonium ions 
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Diphosphane R P C 1 2 , 
R' = 

8P A , 
ppm 

SPx, 
P P m 

7, Hz 7 , Hz / 4 , H Z / x , H z 

dppb Et -64.7 29.4 289.2 -95.1 263.1 64.0 

biphep Et -55.9 30.1 321.0 -77.2 121.7 12.5 

dppdmx Et -41.9 28.5 309.5 -86.5 202.4 123.8 

dppe Et -73.6 27.3 297.5 -48.1 87.5 2.7 

Table 5.2:31P{'H} N M R literature data for other cyclic tetraphosphonium ions 2 ' 3 

An analogous reaction to afford the dppm (R'=Et) tetraphosphonium ion as its 

tetrachloroaluminate salt, 50b, was carried out using A I C I 3 instead o f SnC^. The reaction 

proceeded very slowly. Initial 3 1 P { ' H } N M R spectra showed three doublets o f doublets 

which were attributed to the formation o f an acyclic intermediate, 50bl (Figure 5.2, Table 

5.3). 

Ph 2P Ph 2 

B AICL 

Figure 5.2: The acyclic intermediate 50bl in the formation o f 50b 

8P (ppm) './p.p, Hz 2«/p.p, Hz V p . P , H z Assignment 

68.6 329 - 87 Pc 

26.6 329 66 - PB 

-27.8 - 66 87 PA 

Table 5.3:31P{*H} N M R data for the acyclic intermediate 50bl in the formation o f 50b 
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Upon standing for one week the cyclic tetraphosphonium ion (50b) formed, with the 
3 1 P { ' H } N M R spectrum showing two identical multiplet resonances at 55.3 ppm and 

-41.9 ppm. Coupling constants were calculated and were consistent with those previously 

reported for other tetraphosphonium ions (Table 5.1). 

Reaction between "PrPCh and 'PrPCb with dppm in the presence o f SnCl2, showed two 

multiplet resonances corresponding to the tetraphosphonium ions 51a and 52a in a 
31 1 

P{ H} N M R spectrum taken o f the reaction solution (Table 5.1). Precipitation o f 

unidentified products in both reactions, however, led to a poor quality spectrum being 

obtained, so the coupling constants could not be calculated. 

In an analogous reaction between dppm and 'PrPC^ with A I C I 3 , a 3 1 P { 1 H } N M R 

spectrum run soon after the addition o f the chlorophosphane showed evidence o f an 

acyclic intermediate, 52bl (Figure 5.3, Table 5.4). 

Ph 2P f 
P 

Ph 
A1CI 13 

Pi C 

Figure 5.3: The acyclic intermediate 52bl in the formation o f 52b 

8P, ppm 'jp.p, Hz 2 
«/p.p, Hz 

j — — — 

Assignment 

79.4 345 - 65 Pc 

25.2 345 69 - PB 

-28.2 - 67 67 PA 

Table 5.4:3IP{'H} N M R data for the acyclic intermediate 52bl in the formation o f 52b 

This reaction also proceeded very slowly. One week after the addition o f the 

chlorophosphane two multiplets (8P 40.2 and -31.8 ppm) were visible as the minor 
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component in the 3 1 P { ' H } N M R spectrum of the reaction mixture. However the signals 

were very weak, and coupling constants could not be calculated. 

A reaction between dppm and 'BuPCl 2 in the presence o f SnCl 2 proceeded even slower 

than when using other chlorophosphanes, probably due to the greater steric bulk of the 

'Bu groups. The initial 3 I P { ' H } N M R spectrum showed only resonances corresponding to 

the starting materials ( l BuPCl 2 200.2ppm, dppm -19.4 ppm). After two days new weak 

signals were observed in the 3 1 P { 1 H } N M R spectrum. Heating the reaction mixture led to 

a noticeable enhancement in the rate o f reaction, with new resonances becoming visible 

in the 3 1 P { ' H } N M R spectrum. These multiplet resonances at 44.7 ppm and 4.2 ppm 

corresponded to the dppm (R'='Bu) tetraphosphonium ion, 53a. Coupling constants were 

again calculated and were consistent with those reported for similar systems (Table 5.1). 

5.3 Synthesis of tetraphosphonium ions from dcypm 

Cyclic triphosphenium ions, and their alkyl or aryl derivatives, can be synthesised from 

the diphosphane d c y p m . 1 3 , 1 4 Synthesis o f a tetraphosphonium ion using this diphosphane 

would afford a five-membered heterocycle (Scheme 5.2). 

!+ 

SnCV" or (A1C14 ) 2 

5.3.1a R' = Et SnCI 
5.3.1b Et A1C1 
5.3.2a "Pr SnCI 
5.3.2b "Pr A1CI 
5.3.3b 'Pr A1C1 

Scheme 5.2: Synthetic route for cyclic tetraphosphonium ions derived from dcypm 

A reaction between dcypm and EtPCl2 in the presence o f SnCl 2, gave a mixture o f 

products. Two identical multiplets, as expected for an A A ' X X ' species were visible, 

+ 2RTC1 
Cy 2 P Cy 2 

r% 
P P 
\ / ' 

P P Cy 2 P PCy 2 + SnCI, or 2A1CI 
A | , 

R' R' 
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corresponding to the cyclic tetraphosphonium ion 54a (-51.6 ppm and 54.4 ppm). The 

calculated coupling constants for this ring were consistent with those for other 

tetraphosphonium ions (Table 5.5). 2 ' 3 

In addition to the tetraphosphonium ion, the major product was the P-ethylated derivative 

(29b) (8PA = -62.8 ppm (t), 8P B = 39.5 ppm(d), = 157 Hz) (Scheme 5.3). 1 4 A 

doublet and triplet corresponding to the dcypm cyclic triphosphenium ion (lb) were also 

apparent (8PA = -215.2 ppm (t), 8P B = 45.0 ppm (d), ' j P . P = 333 H z ) . 1 3 , 1 5 

2+ 

SnCl 6

2 - or (A1CI 4 ) 2 

Scheme 5.3: Formation of P-alkylated by-products in the formation o f the 

tetraphosphonium ions 

An analogous reaction between dcypm and EtPCl 2 in the presence of AICI3 was also 

carried out. Similar to the reaction involving SnCl 2, the tetraphosphonium ion was not 

the only product o f the reaction. The major product was again the P-ethyl derivative 

(29a) (8PA = -59.7 ppm (t), 8P B = 40.4 ppm(d), ' J p _ P = 156 Hz) (Scheme 5.3) 1 4 There 

was also a small amount o f the cyclic triphosphenium ion ( la) present in the reaction 

mixture (8PA = -215.2 ppm (t), 8P B = 45.4 ppm(d), l J w = 333 Hz) . 1 3 ' 1 5 The 

tetraphosphonium ion (54b) gave rise to the expected two identical multiplets in the 
3 1 P { ' H } N M R spectrum at -51.9 ppm and 54.4 ppm. 

Cy 2 P PCy 2 

+ 2R'PC12 

• 

+ SnCl 2 or 2A1C13 

R' 
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Compound 

Number 
R'PC1 2 , 

R ' = 

S n C l 2 

or 
AIC1 3 

8 P A , 

ppm 
SPx, 
ppm Hz Hz 

/ A , 

Hz Hz 

54a Et SnCl 2 -51.6 54.4 290 -36 203 36 

54b Et A1C13 -51.9 54.4 288 -36 202 34 

55a "Pr SnCl 2 -49.2 54.0 241 -49 241 8 

55b "Pr A I C I 3 -48.5 57.2 - - - -
56b 'Pr A lCb -37.9 51.8 306 -41 306 46 

Table 5.5:31P{'H} N M R data for dcypm derived cyclic tetraphosphonium ions 

Tetraphosphonium ions were also synthesised from dcypm with nPrPCl 2 , as both the 

hexachlorostannate and tetrachloroaluminate salts (55a and 55b). The reaction to 

synthesise the dcypm tetraphosphonium using SnCl 2 afforded the hexachlorostannate salt, 

55a, as the only product o f the reaction (Scheme 5.2). However, the analogous reaction 

using A I C I 3 afforded both the tetraphosphonium ion as its tetrachloroaluminate salt (55b) 

and the Pc-"propyl derivative of the cyclic triphosphenium ion, 40b, although coupling 

constants were not calculated as all the peaks were not resolved. 

Surprisingly, reactions between dcypm and 'PrPCl 2 with SnCl 2 showed no evidence o f 

tetraphosphonium ion formation, only the synthesis o f the P-'Pr derivative, 41b (8PA = 

-29.1 ppm (t), 8P B = 38.8 ppm (d), 1Jp.p= 152 Hz) . 1 4 A similar reaction carried out using 

A I C I 3 , however, gave a mixture o f products. Identical multiplets, consistent with an 

A A ' X X ' species, 56b, were observed in the 3 1 P{*H} N M R spectrum at 51.8 ppm and 

-37.9 ppm, and corresponding coupling constants could be calculated from the data 

obtained (Table 5.5). The other major product was the P-'Pr derivative, 41a (8PA = -29.0 

ppm (t), 8P B = 38.8 ppm (d), 152 Hz) (Scheme 5.3). 1 4 
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5.4 Synthesis of tetraphosphonium ions from dppe 

Synthesis o f tetraphosphonium ions from dppe would afford six-membered heterocycles 

which are known to be stable (Scheme 5.4). 1 5 ~ 2 0 

2+ 

SnCl 6

2" or (A1C14 ) 2 

Scheme 5.4: Synthetic route for cyclic tetraphosphonium ions derived from dppe 

An attempt to synthesise a dppe based cyclic tetraphosphonium ion with ethyl groups on 

the central P atoms using A I C I 3 was unsuccessful. A 3 1 P { ' H } N M R spectrum taken o f the 

reaction mixture showed no evidence to support tetraphosphonium ion formation, only a 

doublet and triplet corresponding to the P-ethylated derivative, 23b (5PA = -92.8 ppm (t), 

8P B = 53.5 ppm (d), ' j P . P = 287 Hz) . 1 4 

In contrast a cyclic tetraphosphonium ion was successfully synthesised from dppe and 

PhPCl 2 as its hexachlorostannate salt. Two products were observed in the 3 1 P { ' H } N M R 

spectrum of the reaction mixture, the desired cyclic tetraphosphonium ion (57a) and the 

Pc-Phenyl 3P derivative o f the cyclic triphosphenium ion, 28b (5PA = -80.0 ppm (t), 5PB 

= 52.8 ppm (d), 'jp.p = 293 Hz) . 1 4 Two identical multiplets corresponding to the cyclic 

tetraphosphonium ion (8PA = -73.6ppm, 8PX =27.3 ppm) were apparent. Using the data 

obtained from the 3 I P { ' H } N M R spectrum, coupling constants were calculated (Table 

5.6). 

\ / / \ + 2RPC1 
Ph,P 

P P 

P i 
PPh Ph,P + SnCN or 2A1C1 

R' 
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Compound 
S P A , 8Px, A / A , 

Number ppm ppm Hz Hz Hz Hz 

57a -73.6 27.3 297 -48 88 3 

Table 5.6:31P{*H} N M R data for a dppe based cyclic tetraphosphonium ion, 57a 

Attempts to synthesise cyclic tetraphosphonium ions from dppe with chlorophosphanes 

such as 'PrPCl 2 and l BuPCl 2 were unsuccessful. Only broad signals were observed in the 
3 I P { ' H } N M R spectrum taken o f the reaction mixture when using 'PrPCl 2, and when 

using 'BuPCl 2 the only product o f the reaction was the P-'Bu derivative, 26b (8PA = -54.2 

ppm (t), 5P B = 50.2 ppm (d), ] Jp. P = 336 H z ) . 1 4 

5.5 Synthesis of tetraphosphonium ions from other diphosphanes 

Synthesis o f cyclic tetraphosphonium ions from dmpm and depe in the presence of AICI3 

were also successful. A reaction between dmpm and EtPCl 2 afforded two products, one 

being the desired tetraphosphonium ion (58b) as indicated by the presence o f two 

identical multiplets in a 3 1 P { ' H } NMR spectrum taken o f the reaction mixture (8PA • 

-38.3 ppm, 8PX = 62.1 ppm) (Table 5.7). The outer signals o f the multiplet were not 

observed so coupling constants could not be calculated. 

D
ip

ho
sp

ha
ne

 

Compound 

Number 
R'PC1 2 , 

R ' = 
8P A , 
ppm 

8P X , 
P P m 

•A 
Hz 

/ * 
Hz 

/ v , 
Hz 

Jx, 
Hz 

dmpm 58b Et -38.3 62.1 - - - -
depe 59b Ph -71.1 31.5 307 -30 140 -3 

Table 5.7:31P{ ! H } N M R data for other cyclic tetraphosphonium ions 
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The second product o f the reaction was assigned as monochlorinated dmpm (60) (8PA = 

-47.6 ppm (d), 8P B = 96.4 ppm (d), 1 Jp.p = 72 Hz) as the shift o f P A was consistent with 

that o f the diphosphane itself, the shift of P B was comparable with those reported for 

species with P-Me and P-Cl bonds, and also the coupling constant is a reasonable value 

for 2JP.p (Figure 5.4 Table 5.8). 

Me 2P 
A 

E»Me2 

B 
CI 

A1C14-

Figure 5.4: Monochlorinated dmpm, 60 

Compound 8P, ppm Reference 

dmpm -53.5 -
Me 3 P + CI 87.0 21,22 

Me 2 P + (C 1 8 H 3 7 )Cl 94.7 21,23 

ClPMe 2 96.0 21 

Table 5.8:31P{'H} N M R data for the parent diphosphane dmpm and some R'- +PR 2C1 and 

PR2C1 species 

An analogous reaction was carried out between depe and PhPCh- The major product o f 

the reaction was the tetraphosphonium ion, with two identical multiplet resonances 

observed in the 3 1 P { ' H } N M R spectrum (8PA = -71.1 ppm, 8PX = 31.5 ppm). Coupling 

constants were calculated from the data obtained and were consistent with those 

previously reported for other systems (Table 5.7).2' 3 Two doublet and two triplet 

resonances were also visible in the 3 1 P { ' H } N M R spectrum taken o f the reaction mixture. 

These were assigned to a small amount o f the P c-phenyl derivative containing three 

adjacent phosphorus atoms but with mixed counter-ions (8PA = -86.9 ppm (t), 8P B = 58.1 
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ppm (d), ' j p . P = 283 Hz, 5 P A = -87.2 ppm (d), 8 P B - 57.3 ppm (d), %.P = 284 Hz) (21c 
and 21d) (Scheme 5.3). 1 4 

Reactions involving the diphosphanes dppp and depp with EtPCh and SnCb did not lead 

to the formation o f the cyclic tetraphosphonium ion. Instead the products of the reactions 

were the cyclic triphosphenium ion (due to PCI3 impurity in the EtPCk) and the P-ethyl 

derivative in each case. It seems unlikely that the reason for this behaviour is due to steric 

or electronic effects, as tetraphosphonium ions have been synthesised from equivalent 

diphosphanes containing just one CH2 less in their hydrocarbon backbone. This suggests 

that the main factor is the ring stability, as the cyclic triphosphenium ion and the P-ethyl 

derivatives are six-membered rings, whereas the tetraphosphonium ions would be seven-

membered rings. In these cases the more stable six-membered rings are formed in 

preference to the less stable seven-membered rings. 

5.6 Attempted synthesis of a 'mixed' tetraphosphonium ion 

An attempt to synthesis a 'mixed' tetraphosphonium ion was carried out by reacting 

dppm with EtPCl2 and 'PrPC^ (Scheme 5.4). Using this method, the formation of three 

products is possible: the 'mixed' species, the ethyl derivative 50a, and/ or the wo-propyl 

derivative, 52a (Scheme 5.5). 

A 3 1 P { ' H } N M R spectrum recorded soon after the addition o f the two chlorophosphanes 

showed three singlets corresponding to dppm (-19.4 ppm), EtPCl 2 (198.3 ppm) and 

'PrPCl2 (SP 200.4 ppm). Clearly no reaction had taken place. Upon standing for two 

hours, colourless crystals had formed which were suitable for analysis by X-ray 

diffraction. Analysis showed the structure to be the ethyl derivative (50ap). The resulting 

molecular structure is described in Section 5.7. 
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2+ 
+ EtPCI, + 'PrPCl 

Ph,P 2P\ / 
P P 

Ph SnCL 
Ph,P PPh + SnCl 

! 
Et Pr 

2+ 

Ph,P 

P P 

Ph SnCL 

Et Et 

2+ 

Ph,P 

P P 

Ph SnCU 

I 
Pr Pr 

50a 

52a 

Scheme 5.5: Proposed synthetic route to a 'mixed' cyclic tetraphosphonium ion and 

possible by-products 

An attempt to synthesise a 'mixed' tetraphosphonium ion from dppe using one equivalent 

of EtPCl 2 and one equivalent of PhPCl 2 in the presence of SnCl 2 was also carried out 

(Scheme 5.6). Since cyclic tetraphosphonium ions with both ethyl and phenyl groups on 

the central phosphorus atoms, and the P-ethyl and P-phenyl 3P derivatives, had been 

successfully synthesised, it would be easy to identify known products if a mixture 

formed. 

Ph 2P 

+ EtPCl 2 + PhPCI 2 

PP» 2 + S n C l 2 

Ph,P 

\ P P I I 
Et Ph 

y » P h 2 

2+ 

SnCl f i

2-

Scheme 5.6: Proposed synthesis of a 'mixed' cyclic tetraphosphonium ion 
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A 3 I P { ' H } NMR spectrum was recorded soon after the addition of the chlorophosphanes 

and clearly indicated that a mixture of products had formed, including the dppe cyclic 

triphosphenium ion, 4b (8PA = -230.0 ppm (t), 6P B = 65.2 ppm (d), ' j P . P = 452 Hz) l 5 ' 1 6 > 

1 8 > 2 4 , 2 5 and the P-ethylated derivative, 23b (8PA = -96.2 ppm (t), 8P B = 53.6 ppm(d), lJP.P 

= 299 Hz) (Scheme 5.3). 1 4 

These two attempts to synthesise 'mixed' tetraphosphonium ions have been unsuccessful. 

Further investigations could involve reactions where acyclic intermediates were 

observed, e.g. dppm with EtPCb in the presence of A I C I 3 (Section 5.2). It is possible that 

addition of a second dichlorophosphane at this stage could afford a 'mixed' species. 

5.7 Molecular structures of cyclic tetraphosphonium ions derived from 

dppm and dcypm 

Colourless crystals were obtained from a solution of 50a formed from a reaction between 

dppm, EtPCb and SnCb. The crystals were suitable for analysis by X-ray diffraction; the 

resulting molecular structure is shown in Figure 5.5. Within the unit cell there is one 

SnCU2" counter-ion for the dication and two molecules of C H C I 3 . 

The same dication was isolated from the attempted synthesis of a 'mixed' cyclic 

tetraphosphonium ion from dppm, EtPCb, 'PrPCb and SnCk (Figure 5.6). There are two 

half molecules of SnC^ 2" as counter-ions for the dication and no molecules of solvent, 

making this a pseudo-polymorph of 50a and is designated 50ap. 

In both 50a and 50ap there is one molecule per asymmetric unit, meaning that there is 

not symmetry between the atoms in the dication. By overlaying the two structures it is 

clear that there is little difference in the five-membered rings consisting of four 

phosphorus atoms and one carbon atom, although there are some differences in the 

orientation of the substituents on the phosphorus atoms (Figure 5.7). This is not 
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surprising, as differences within the main ring would be caused by different electronic 

effects (i.e. none in this case), whereas changes in the packing/steric effects due to the 

presence of counter-ions and solvent molecules would account for the differences in the 

rest o f the stuctures. There are no significant differences between 50a and 50ap in the 

packing, hydrogen bonding or contacts. 

C3' 

cm 04 V 

P3 

PI 
P4 

C121 
C42' 

C21 

Figure 5.5: The crystal and molecular structure o f the dication 50a 

The solvent and SnCl62" counter-ion have been omitted for clarity. 

Thermal ellipsoids are drawn at 50% probability. 
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10 : b 

f'4 PI 

C M C1 
P3 

C12 

Figure 5.6: The crystal and molecular structure o f the dication 50ap 

The two half molecules o f SnCU " as counter-ions have been omitted for clarity. 

Thermal ellipsoids are drawn at 50% probability. 

C1A) 

P 4 A 
P(4) 

1 

P(1) 

i 

S 
PI2AI -1 

i P(3) 

PI3A 
P(2) 

Figure 5.7: Overlap o f the dications 50a and 50ap 
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en 

PI 
PA 

C1 i 
P2 C21 

C2 I- ) 

Figure 5.8: The crystal and molecular structure of the dication 54b 

Thermal ellipsoids are drawn at 50% probability. 

Another five-membered ring cyclic tetraphosphonium ion, 54b, formed from a reaction 

between dcypm, EtPC^ and SnCb, was isolated as a crystalline product. The crystals 

were suitable for analysis by X-ray diffraction; the resulting molecular structure is shown 

in Figure 5.8. Within the unit cell there two A1CU" counter-ions for the dication and one 

molecule o f CHCI3 . Selected bond lengths and angles for 50a, 50ap and 54b are shown 

in Table 5.9. 

In all three structures the P-P bond lengths [average P-P bond - 2.2903 A (50a), 2.200 A 

(50ap) and 2.2066 A (54b)] are typical values for normal P-P single bonds. They are 

similar to those found in the 3P-alkyl derivatives o f cyclic triphosphenium ions 

(2.197(4)-2.2327(9)°), 1 4 and also those reported for other compounds containing four 

adjacent phosphorus atoms (2.185(7) and 2.2387(6) A) (Figure 5.9). 4 8 
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Bond Length /A 50a 50a p 54b 

P(l)-P(2) 2.2310(16) 2.2055(17) 2.1946(6) 

P(2)-P(3) 2.2154(17) 2.2045(18) 2.2343(6) 

P(3>-P(4) 2.1814(16) 2.1904(17) 2.1910(6) 

P(l)-C(121) 1.801(5) 1.790(5) 1.8333(16) 

P(2)-C(21) 1.8767(5) 1.855(5) 1.8560(18) 

Bond Angle / ° 

P(l)-P(2)-P(3) 97.74(6) 99.23(7) 92.25(2) 

P(2)-P(3)-P(4) 97.10(6) 96.68(6) 92.23(2) 

Table 5.9: Selected bond lengths and bond angles for dications 50a, 50ap and 54b 

*Bu 

Ph ( T H F ) 3 L i 
A . i B u ' P — N i 

7 - \ 
.p. ^p / A B u Ph / A Bu I»u Ph P 

! 
lit! 3 

*Bu Bu 

Lex and Baudler Wolf and Hey-Hawkins Jones et al. 

! 
p 

'Bu Bl! \ 

P—Me P - M e P 

I I Cy' 2 Bu 
Bu 

Worz et al. Burford et al. Burford et al. 

Figure 5.9: Other literature compounds containing four adjacent P atoms 

For all three dications 50a, 50ap and 54b, the P-P-C bond angles are larger that the P-P-P 

angles, which suggests a large P-orbital contribution to the P-P bonding within the 

structures. For 54b, the P-P-P bond angles are 92.25(2) and 92.23(3)°. These are close to 

the ideal bond angle, 90°, for bonding which involves P orbitals only, and no 

hybridisation. Similar bond lengths and angles are observed in the tetraphosphonium ion 
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derived from biphep by Boyall (Figure 1.12).3 In this tetraphosphonium ion the P-P-P 

bond angles (91.196(6) and 94.45(7)°) are again much smaller than the P-P-C angles, and 

are close to 90°, suggesting a large P-orbital contribution to bonding. 

5.8 Conclusions 

This study has shown that the formation of five- and six-membered cyclic 

triphosphenium ion derivatives containing various alkyl or aryl groups on the central P 

atoms and/or outer P atoms is possible, although reactions are slower when there are 

bulkier substituents on either the four-coordinate P atoms or the dichlorophosphane. 

The synthesis of seven-membered tetraphosphonium ions has been unsuccessful. Several 

reactions have been carried out in an attempt to synthesise a seven-membered analogue 

but these reactions resulted in the formation of the more stable six-membered cyclic 

triphosphenium ion or P-alkyl derivative in preference. 

These studies have also provided more evidence to support the proposed mechanism of 

formation of cyclic tetraphosphonium ions (Scheme 5.7). The first step necessarily 

involves the addition of the chlorophosphane to the diphosphane to form an acyclic 

intermediate (I). Evidence for this step was observed in reactions involving the 

diphosphane dppm, with both EtPCh and 'PrPC^ in the presence of A I C I 3 . The next step 

involves the formation of an unsymmetrical intermediate (II), as shown by Boyall. 2' 3 The 

final step is cyclisation to afford the tetraphosphonium ion. 

While a reducing agent is required to synthesise these novel heterocycles, it has now been 

shown that using SnCh is not necessary, however, as the diphosphanes themselves can 

act as reducing agents to allow the second addition to take place. 
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R 2 P P R 2 

R ' P C I 2 
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R 2P-

R' R' 

V 
/ \ 

P R 2 

2+ 

SnCl 6

2 " 
R,P PR 

CI R 

(II) 

Scheme 5.7: Proposed mechanism of formation o f cyclic tetraphosphonium ions 

X-ray crystallographic studies carried out on two polymorphs o f the cyclic 

tetraphosphonium ion synthesised from dppm, EtPCl 2 and SnCI 2, and also a 

tetraphosphonium ion derived from dcypm. These studies have confirmed the presence o f 

single P-P bonds. 

5.9 Experimental 

Example reactions: 

Using A1C13: 

PhPCl 2 (0.27 mL, 0.44 mmol) was added via syringe to a solution o f dppe (0.0598 g, 0.44 

mmol), and A1CI 3 (0.5220 g, 0.87 mmol) under a nitrogen atmosphere. A 3 1 P { ' H } N M R 

spectrum was recorded soon after mixing. 
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Using SnCI 2 : 

PhPCI 2 (0.03 mL, 0.222 mmol) was added via syringe to a solution of dppe (0.0801 mL, 

0.20 mmol), and SnCl 2 (0.0533 g, 0.40 mmol) under a nitrogen atmosphere. A 3 I P { ' H } 

NMR spectrum was recorded soon after mixing. 

Using two chlorophosphanes: 

A solution of EtPCl 2 (0.04 mL, 0.44 mmol) and PhPCI 2 (0.06 mL, 0.44 mmol) was added 

via syringe to a solution of dppe (0.1720 g, 0.43 mmol), and SnCl 2 (0.1642 g, 0.87 mmol) 

under a nitrogen atmosphere. A 3 1 P { ' H } NMR spectrum was recorded soon after mixing. 

Diphosphane 
Compound 

number 

Quantity of 
diphosphane 

Quantity of 
R P C I 2 

Quantity of 
SnCI 2 / A l C b Diphosphane 

Compound 
number 

g mmol m L mmol g mmol 

dppm 50a 0.0503 0.13 0.030 0.28 0.0512 0.27 

dppm 50b 0.0645 0.17 0.050 0.51 0.0476 0.35 

dppm 51a 0.0577 0.15 0.040 0.30 0.0569 0.42 

dppm 52a 0.0462 0.12 0.030 0.33 0.0460 0.34 

dppm 52b 0.0493 0.13 0.050 0.39 0.0356 0.26 

dppm 53 0.0307 0.08 0.02571 0.16 0.0306 0.16 

dcypm 54a 0.0497 0.12 0.030 0.28 0.0325 0.24 

dcypm 54b 0.0419 0.10 0.010 0.10 0.0267 0.20 

dcypm 55a 0.0360 0.09 0.028 0.27 0.0341 0.18 

dcypm 55b 0.0394 0.10 0.013 0.10 0.0267 0.20 

dcypm 56b 0.0402 0.10 0.012 0.10 0.0267 0.20 

dppe * 57a 0.3306 0.83 0.230 1.69 0.2220 1.66 

dppe 57b 0.0801 0.20 0.030 0.22 0.0533 0.40 

dmpm 58b 0.0268 0.20 0.020 0.22 0.0533 0.40 

depe* 59b 0.4037 1.96 0.270 1.96 0.5220 3.91 

reaction carried out in a Schlenk , T RPC1 2 is a solid so quantity is in g 
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Unsuccessful Reactions - Quantities of reagents used: 

Reaction 
Quantitiy of 
diphosphane 

Quantity of 
R P C h 

Quantity of 
SnClj / AICI3 

g mmol m L mmol g mmol 
dppe EtPCl 2 and A1C13 0.1372 0.34 0.070 0.68 0.0906 0.68 

dppe 'PrPCl 2 and SnCl 2 0.1026 0.23 0.060 0.44 0.0992 0.52 

dppe 'BuPCl 2 and SnCl 2 0.0657 0.17 0.050 0.33 0.0449 0.34 

dppp EtPCl 2 and SnCl 2 0.0427 0.10 0.020 0.20 0.0492 0.26 

depp EtPCl 2 and SnCl 2 0.0228 0.07 0.020 0.19 0.0270 0.14 

dppm 'PrPCl 2 EtPCl 2and 
0.0263 0.07 

0.007 0.07 
0.0265 0.14 

SnCl 2 

0.0263 0.07 
0.009 0.07 

0.0265 0.14 

dppe 'PrPC^ EtPCl 2 and 
0.1720 0.43 

0.040 0.44 
0.1642 0.87 

SnCl 2 

0.1720 0.43 
0.060 0.44 

0.1642 0.87 

Elemental analysis 

Compound 50a: 
Calculated: % C 34.65 %H 3.19 %N 0.00 
Found: % C 34.71 %H 3.23 %N 0.00 

Compound 50ap: 
Calculated: % C 41.67 %H 3.86 %N 0.00 
Found: % C 42.87 %H 3.84 %N 0.00 

Isolation of compounds: 

For compounds 50a, 50ap and 54b crystals suitable for analysis by X-ray diffraction 

were obtained through evaporation of solvent in an inert atmosphere. It is noteworthy that 

these compounds, along with the other described in this chapter, are sensitive to both air 

and moisture. 
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Chapter 6: 
Synthesis and Characterisation of Some Pt(II) 
Complexes of Cyclic Triphosphenium Ions 

6.1 Introduction 

There have been limited investigations into the coordination properties of cyclic 

triphosphenium ions. Previous work has involved the reaction between some cyclic 

triphosphenium ions and /ran5-[Pt(PEt3)Cl(|x-Cl)]2 (Scheme 1.16).1 The results obtained 

suggested that complexation with ring-retention did not take place if the cyclic 

triphosphenium ion had phenyl groups on both the four-coordinate phosphorus atoms. 

Instead ring scission and coordination of the diphosphane to the platinum centre 

occurred. In contrast, for cyclic triphosphenium ions with other groups on the four-

coordinate phosphorus atoms {e.g. Et, Cy, lBu) complexation with ring-retention does 

take place.1 

For each of these cyclic triphosphenium ion complexes the most interesting and unusual 

feature was the 'jpt-p coupling constant to the phosphenium central P, which had values 

between 1059 and 1222 Hz for cis, and 1023 Hz for the trans complex containing the 

- 139-



- Cyclic Triphosphenium Ions and Related Species -

dcype cyclic triphosphenium ion, 3a. These values are unusually small for a one-bond 

phosphorus-platinum coupling, and could indicate a long Pt-P bond. Unfortunately 

crystalline products were not obtained for any of these complexes, hence X-ray 

diffraction studies could not be used to probe the presence of a long Pt-P bond consistent 

with the small 'ŷ .p value. Preliminary calculations by Dr. M. A. Fox for the model 

compound PtCl2(PMe3)[P(P(Me2)2(CH2)2]+ have suggested that the Pt-P bond length in 

trans isomers in particular might be as long as 2.39 or 2.43 A. 2 Platinum is a difficult 

element to model, however, so no firm conclusions can be drawn until a crystal structure 

is obtained. 

The longest reported Pt-P bond length in a Pt(II) compound with two chloro ligands and 

two P ligands is for trans-bis(di-t-butyl(isopropyl))phosphane dichloroplatinum(II) at 

2.388(2) A. 3 , 4 The shortest Pt-P bond length in such compounds, 2.1337(19) A, was 

reported by Carty et al. for a compound containing three bisphosphino diyne ligands 

which are bridging three cis square planar platinum centers (Figure 6 .1 ) 4 5 

C I c 
Pt 

/ \ Ph,P PPh 

\ CI c Pt 
P h 2 \ Ph 

C I C I 

Figure 6.1: Structure reported by Carty et al. containing three bisphosphino diyne ligands 

which are bridging three cis square planar platinum centres5 

For all reported Pt(II) complexes containing two P ligands and two chloro ligands, the 

mean Pt-P bond length is 2.250 A. In 2005 Woollins et al. reported the synthesis and 

structure of (allylamino(diphenyl)phosphane)-dichloro-(dimethylphenylphosphine) 

platinum containing Pt-P bonds of 2.250 A. 4 ' 6 
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The first part of this chapter describes the reaction between cyclic triphosphenium ions 

and /ra«.s-[Pt(PEt3)Cl(u-Cl)]2 (61), f/ww-[Pt(PPhMe2)Cl(u-Cl)]2 (62) and/or trans-

[Pt(PPh2Me)Cl(u-Cl)]2 (63). By changing the phosphane ligand from PEt3 to PPhMe2 or 

PPh2Me using the different Pt dimers (61-63), several new Pt(II) complexes containing 

cyclic triphosphenium ions could be synthesised and it was hoped that crystal growth 

would be more favourable. The second part of this chapter describes the synthesis of 

some Pt(II) complexes containing chlorophosphanes, which were originally formed as 

by-products in reactions between frww-rPt(PR3)Cl(u.-Cl)]2 and cyclic triphosphenium 

ions if there was any residual PC13 in the reaction mixture. Also discussed is a study of 

the hydrolysis of these chlorophosphane complexes. In all the complexes synthesised in 

this chapter, Pt satellites were observed in the 3 1 P{'H} N M R spectra, and the 'JH-P values 

are included in the appropriate tables. 

6.2 Synthesis of Pt(II) complexes containing five-membered ring cyclic 
triphosphenium ions 

6.2.1 Reaction of the depe cyclic triphosphenium ions 2a and 2b with trans-
[Pt(PPhMe2)Cl(u-Cl)]2 and tows-[Pt(PPh2Me)Cl(u-Cl)]2 

Since previous reactions between the depe cyclic triphosphenium ion and the trans-

[Pt(PEt3)CI(u,-Cl)]2 had been successful,1 but no materials suitable for a molecular 

structure determination were obtained, reactions were carried out using both 62 and 63. 

A reaction between /ra>w-[Pt(PPhMe2)Cl(u-Cl)]2 (62) and the depe cyclic triphosphenium 

ion, 2b, afforded two platinum complexes, one being the desired cis complex (64b) 

(Scheme 6.1). The 3 1 P{'H} NMR data were consistent with those previously reported for 

cis complexes containing cyclic triphosphenium ions (Table 6.1).' 
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M^PhP^ y C l ^ y C l 

+ v. Pt Pt 
/ \ / \ 

C l CI PPhMe2 

EI2P<--. ...y\vA2 

D \ p ^ D 

Cl—Pt-PPhMe2 

I E 
C l 

Scheme 6.1: Synthesis of the cis Pt(II) complex (64b) from the depe cyclic 

triphosphenium ion and /ra»5'-[Pt(PPhMe2)Cl(^-Cl)]2 

The second complex (65) observed in the 'PJ1!-!} NMR spectrum was a minor 

component of the reaction mixture (5PA 103.2 ppm, 'J^-PA = 5926 Hz, Vp.p = 17 Hz, 5P B 

1 2 

-5.5 ppm, Jpt-PB - 3142 Hz, J P . P = 17 Hz) and was formed in a side reaction between 

unreacted PCI3 and /ra«s-[Pt(PPhMe2)Cl(u-Cl)]2 (Figure 6.2). This will be discussed in 

more detail in Section 6.7.1.1 

5, ppm Multiplicity Coupling Constant, Hz Assignment 

69.3 d x J m m = 359 PD 

-14.0 s I./p t. r e = 3534 PK 

-113.2 t 'Jrc-p»= 359, %.PC= 1120 Pc 

Table 6.1:31P{'H} NMR data for the cis Pt(II) complex (64b) from the reaction between 

the depe cyclic triphosphenium ion and /ra/M-[Pt(PPhMe2)Cl(u-Cl)]2 

cr > C 1 3 

A 

Figure 6.2: Product of the reaction between /ra«5-[Pt(PPhMe2)Cl(n-Cl)]2 and PC13 (65) 

Complexation of the cyclic triphosphenium ion did not occur in a reaction between 2a 

and /r<ms-[Pt(PPh2Me)Cl(u-Cl)]2 (63). A 3 1 P{ 'H} NMR spectrum taken of the reaction 

mixture showed signals corresponding to unreacted cyclic triphosphenium ion, and two 
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other Pt(II) complexes containing the diphosphane, 66 and 67 (Table 6.2, Figure 6.3). 
The data suggest that the cyclic triphosphenium ring broke up, allowing complexation of 
the diphosphane to the platinum centre to occur. 

5, ppm Multiplicity Coupling Constant, Hz Assignment 

81.5 d './PB-PA=443 PB 

71.7 d 'JPM-PN = 375, 'Jpt-PM — 2350 PM 

58.9 s \ W = 3551 PK 

55.1 d z«/pL-PN = 16, './pt-pL = 3338 P. 

3.0 d 
'JPN-PM= 375, 'jpT-PN= 2 2 6 1 , 

2./pN-PL, = 1 6 
PN 

-269.4 t '•/PA-PB = 443 PA 

Table 6.2: 3 I P { ' H } NMR data for 66 and 67 formed in the reaction between the depe 

cyclic triphosphenium ion and /ra/w-[Pt(PPh2Me)Cl(|x-Cl)]2 

o Et Et 2 
Et E t 

K M K Pt Pt 
ci MePh2P CI CI 

N 
66 67 

Figure 6.3: Products of the reaction between the 2a and rra«5,-[Pt(PPh2Me)Cl(u.-Cl)]2 

A reaction between the depe cyclic triphosphenium ion as its hexachlorostannate salt, 2b, 

and /ra«5-[Pt(PPh2Me)Cl(u.-Cl)]2 also resulted in the complexation of the diphosphane to 

the platinum centre to afford complexes 66 and 67. 
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6.2.2 Reaction of the dcype cyclic triphosphenium ion, 3b, with trans-
[Pt(PPhMe2)Cl(u-Cl)]2 and rrans-[Pt(PPh2Me)Cl(^Cl)]2 

Both the cis and trans complexes containing the dcype cyclic triphosphenium ion had 

been successfully synthesised from /ra«*-[Pt(PEt3)Cl(ji-Cl)]2, but unfortunately no 

crystals were obtained.1 

C y 2 P s V ^ P C y 2 

3b 

r 3 p x x c i x M 
Pt Pt 

/ \ / \ 
CI CI PR3 

n 
Cy2P< >PCy2 i) 

c 
C I — P t - P R 3 

I E 
CI 

PR3 = PPhMe2 68b 
PR3 = PPh2Me 69b 

PCy2 

G 
V 

CI—ijt—CI 

H 
PR3 = PPh2Me 70b 

+ 

Scheme 6.2: Proposed reaction between the dcype cyclic triphosphenium ion and trans-

[Pt(PR3)Cl(u-Cl)]2 

In a reaction between 3b and rra/w-[Pt(PPhMe2)Cl(u-Cl)]2 (62), the 3 1 P{ 'H} NMR 

spectrum recorded 15 minutes after the addition of the dimer showed signals 

corresponding to some un-reacted dimer (5P 16.9 ppm, 'jpt.p = 3926 Hz) and the cis 

complex, 68b (Scheme 6.2, Table 6.3). Subsequent 3 1 P{ 'H} NMR spectra showed no 

further reaction. 
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5, ppm Multiplicity Coupling Constant, Hz Assignment 

69.9 d '•/pD-pt = 381 PD 

-19.6 s 1 JP,.PE = 3492 PE 

-111.6 t ' ^ 0 = 3 8 1 , % ^ = 1179 P< 

Table 6.3: 3 1 P{ 'H} NMR data for the cis complex 68b, formed in the reaction between 

the dcype cyclic triphosphenium ion (3b) and /ra«,s'-[Pt(PPhMe2)Cl(u-Cl)]2 (62) 

A reaction was also carried out using the dcype cyclic triphosphenium ion, 3b, and 

fra«5-[Pt(PPh2Me)Cl(n-Cl)]2 (63). A 3 1 P{ 'H} NMR spectrum recorded soon after mixing 

showed signals corresponding to unreacted cyclic triphosphenium ion, 3b, (8pA = -288.9 

ppm (t), 5pB = 87.2 ppm (d), 1 J P . P = 455 Hz), but also those corresponding to both the cis 

(69b) and trans (70b) complexes (Scheme 6.2, Table 6.4). 

5, ppm Multiplicity Coupling Constant, Hz Assignment 

72.9 d \ W = 392 PD 

72.1 d './pG-PF = 380 PG 

14.4 d VPH-PF = 214, 'jpt-pu = 2783 PH 

0.2 s '•̂ pt-PE = 3625 PE 

-104.1 t ^ = 1183, V - P D = 392 Pc 

-124.7 dt '•JpF-w;= 380, 2Jn-ni =215, 

'Jpt-PK = 1032 

P. 

Table 6.4: 3 1 P{ 'H} NMR data for the cis (69b) and trans (70b) complexes formed in the 

reaction between /ra/w-[Pt(PPh2Me)Cl(u-Cl)]2 (63) and the dcype cyclic triphosphenium 

ion (3b) 
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6.2.3 Reaction of the dppe cyclic triphosphenium ion, 4a, with trans-
[Pt(PEt3)Cl(u-Cl)]2 

Previous reactions between /ra/«-[Pt(PEt3)Cl(u.-Cl)]2 (61) and the dppe cyclic 

triphosphenium ion 4a had shown no evidence to support coordination of the ring to the 

platinum centre.1 It appeared that the cyclic triphosphenium ion had broken up and 

coordination of the diphosphane had occurred (Scheme 6.3).1 This reaction between 4a 

and 61 was repeated to confirm ring scission. A 3 1 P{ 'H} NMR spectrum was recorded as 

soon as possible after the addition of frww-[Pt(PEt3)Cl(u-Cl)]2 to a solution of the dppe 

cyclic triphosphenium ion (Table 6.5). 

Ph 2P^, PPh2 

EtiPv /CI CI 

cr ci PEt3 

"2 
Ph,P /PPhi 

/ \ 
PEt3 

E 

CI 

4a 61 71 

Scheme 6.3: Proposed reaction between the dppe cyclic triphosphenium ion, 4a, and 

fra«s-[Pt(PEt3)Cl(u-Cl)]2,61 

The spectrum showed several species to be present, including the dppe cyclic 

triphosphenium ion, 4a, (8PA = -229.5 ppm (t), 5PB = 65.0ppm (d), 'jp.p = 450 Hz). As 

previously reported, the ring did not coordinate to the platinum, but instead underwent 

ring scission, resulting in the coordination of the diphosphane in a bidentate fashion, 71 

(Table 6.5). The chemical shifts and coupling constants were consistent with those 

previously reported.1 The singlet resonance observed at 48.3 ppm C^Pt-p = 2356 Hz) 

corresponds to the [Pt (dppe)2]2+ complex, 72.7'8 
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SP, 

PPm 

'•̂ PA-PB* 

Hz 

•/PC-PE* 

Hz 

•/PE-PD» 

Hz 

•Jpt'-PD* 

Hz 

'•/pt-p» 

Hz 

Assignment 

53.5 - 369 7 2260 Pc 

43.7 - - 17 7 3542 PD 

17.2 - 369 17 - 2282 PE 

Table 6.5: 3 1 P{ 'H} NMR data for 71 obtained from the reaction between the dppe cyclic 

triphosphenium ion, 4a, and /rons-[Pt(PEt3)Cl(p.-Cl)]2 61. 

6.3 Synthesis of Pt(II) complexes containing six-membered ring cyclic 
triphosphenium ions 

6.3.1 Reactions of the depp cyclic triphosphenium ion, 6a and 6b, with 
fra«s-[Pt(PR 3)Cl(u-Cl)] 2 

Both the cis and trans complexes 73a and 74a have been successfully synthesised, 

previously, from the depp ring, 6a, with /ra«j,-[Pt(PEt3)Cl(|x-Cl)]2, 61, although not all 

the Pt-P coupling constants were reported due to weak satellite peaks,1 and unfortunately, 

crystalline products had not been obtained. 

The reaction between 6a, and /ra«,s-[Pt(PEt3)Cl(u.-Cl)]2, 61, was repeated to obtain 

further NMR data for the resulting products (Scheme 6.4). A 3 1 P{ 'H} NMR spectrum 

was recorded soon after the addition of 61 to a solution of 6a which showed signals 

corresponding to both the cis- (73a) and trans- (74a) complexes (Table 6.6). Also a 

doublet and triplet corresponding to some unreacted cyclic triphosphenium ion were 

observed (6PA = -254.0 ppm (t), 5PB = 30.8 ppm (d), lJP.P= 417 Hz). The 3 1 P{ 'H} NMR 

spectrum clearly shows both the cis and trans isomers had formed, as previously 

reported,1 although some of the Pt satellites were weak and so some lJpt-p values could 

not be obtained. 
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PEt Ft Pt Et 2P 
CI CI PR 

PEt PEt 
i) 

CI—Pt PR CI—Pt—CI 
I CI PR 

R = PEt 3 73a and 73b 
R=PPhMe2 75b R = PEt 3 74a 
R = PPh2Me 76b 

Scheme 6.4: Proposed synthesis of the cis and/or trans Pt(II) complex from the depp 

cyclic triphosphenium ions, 6a and 6b, and fra«.s-[Pt(PR3)Cl(u-Cl)]2 (61-63) 

8, ppm Multiplicity Coupling Constant, Hz Assignment 

26.1 d 1JPO-PC=348 Pc 

19.1 d 1JPG4V= 340, V P D =105 PD 

9.3 d 2Jpn-PF= 172 Pn 

3.2 s Vpt.PE=3369 Pi: 

-102.3 t ' . W = 1 1 0 4 , ,JPC-PD = 341 Pc: 

-136.0 dt '̂ PF-PC; = 348, 27PF-PH = 169, PF 

Table 6.6: 3 , P { ' H } NMR data for the cis- (73a) and trans- (74a) complexes synthesised 

in the reaction between 6a, and fra/«-[Pt(PEt3)Cl(u-Cl)]2 (61) 

Analogous reactions using the hexachlorostannate salt of the depp cyclic triphosphenium 

ion, 6b, were carried out with each of the Pt(II) dimers (61-63). For each reaction the 
3 1 P { ' H } NMR spectrum showed signals corresponding to the cis complex (Scheme 6.4, 

Table 6.7). 
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trans-

[Pt(PR3)Cl(u-CI)]2 

P R 3 = 

8Pc, 

PPm 

8P D , 

PPm 

8PF, 

ppm Hz 

'•/pt-pc* 

Hz 

'«/pt-PE» 

Hz 

Compound 

Number 

PEt3 -98.6 18.0 9.7 344 1117 3392 73b 

PPhMe2 -108.3 18.8 -14.1 338 1166 3550 75b 

PPh2Me -111.6 18.8 -11.0 344 ~ 1200 3642 76b 

Table 6.7:31P{'H} NMR data for the cis complexes synthesised in reaction between the 

depp cyclic triphosphenium ion, 6b, and fra«.s-[Pt(PR3)Cl(u-Cl)]2 

In a reaction between 6b and /ra«s-[Pt(PEt3)Cl(u.-Cl)]2, along with the cis complex, 73b, 

a second complex, 77, was also observed in the 3 1 P{ 'H} NMR spectrum as a minor 

component of the reaction mixture (5PA 101.6 ppm, lJn-p\ = 6062 Hz, 2JP.P = 18 Hz, 8PB 

17.6 ppm, 'Jpt-PB = 2996 Hz, 2 J P . P = 18 Hz) (Figure 6.4). 77 formed in a side reaction 

between the Pt dimer and residual PC13 and will be discussed in more detail in Section 

6.7.1.1. 

CL /PEU 

ci PCI3 
A 

77 

Figure 6.4: Product of the reaction between /ra«.y-[Pt(PEt3)Cl(u-Cl)]2 and PCI3 

6.3.2 Reactions of the dcypp cyclic triphosphenium ions 7a and 7b with 
fra«s-[Pt(PR 3)Cl(^Cl)] 2 

To obtain missing Vpt.p coupling constants the reaction between the dcypp cyclic 

triphosphenium ion, 7b, and /raw.s-[Pt(PEt3)Cl(u-Cl)]2 was repeated in this complexation 

study, along with the synthesis of several new Pt(II) complexes using 

/ra»s-[Pt(PPh2Me)Cl(u-Cl)]2 and fra«.y-[Pt(PPhMe2)Cl(u-Cl)]2 (Scheme 6.5). 
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Cl Cl R*P 3 * \ / \ / 
PCy, Pt + Pt C y ^ y 

Cl C l PR 

2+ 21 

PCy 2 PCy 2 
!> 

C l — P t - P R C l — P t - C l 
C l PR 

l i 

PR 3 = PEt 3 78b 
PR 3 = PPh2Me 79a PR 3 = PPh2Me 80a 
PR 3 = PPhMe2 82b 

Scheme 6.5: Proposed reaction between the dcypp cyclic triphosphenium ions, 7a and 7b, 

and /ra«s-[Pt(PR3)Cl(u-Cl)]2 

The dcypp cyclic triphosphenium ion as a hexachlorostannate salt, 7b was reacted with 

/ra«s-[Pt(PEt3)Cl(u-Cl)]2 to afford the cis complex (78b) (Scheme 6.5, Table 6.8). The 
3 1 P{ 'H} NMR data are consistent with those previously reported by Deng et. al) The 

' jpt-pc coupling was obtained, and is again unusually small for a one-bond platinum-

phosphorus coupling at 1154 Hz. 77 was also observed as a minor component in the 
3 1 P{ 'H} NMR spectrum of the crude reaction mixture (5P A 101.6 ppm, 'Jpt-PA = 6062 Hz, 
2 J p . P • 18 Hz, 5 P R 17.6 ppm, % . p B = 2996 Hz, 2 J P . p = 18 Hz). 

5, ppm Multiplicity Coupling Constant, Hz Assignment 

20.5 d '•/PD-PC =375 PD 

3.6 s 1 Ja.PK = 3456 PE 

-102.3 t , J K ; . P D = 375, 154 Pc 

Table 6.8: 3 1 P{ 'H} NMR data for the cis complex, 78b, formed in the reaction between 

7b and /ra«5-[Pt(PEt 3)Cl(^CI)] 2 
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An analogous reaction between the dcypp cyclic triphosphenium ion 7a and trans-
[Pt(PPh2Me)Cl(u-Cl)]2 showed the formation of both cis (79a) and trans (80a) 
complexes (Scheme 6.5, Table 6.9). 

5, ppm Multiplicity Coupling Constant, Hz Assignment 

27.6 d 1JPG-IV- 366 PG 

20.0 d '•/pD-pc =380 PD 

3.9 d 2«/PH-PF = 266 PH 

0.1 s '•/pt-PE = 3628 PF 

-97.0 t '•/pt-pc = 1267, 'Jpc-PD = 380 Pc 

-148.0 dt '•/pE-PG = 366, VPF-PH = 266 PF 

Table 6.9: 3 1P{*H} NMR data for the cis (79a) and trans (80a) complexes synthesised in 

the reaction between 7a and /ra«5 ,-[Pt(PPh2Me)Cl(^-Cl)]2 

A small amount of residual PCI3 had been observed in the 3 1 P{ 'H} NMR spectrum 

recorded after the synthesis of the cyclic triphosphenium ion. It was therefore not 

surprising that another complex, 81, was also observed in the 3 1P{*H} NMR spectrum of 

the crude reaction mixture as a minor component (5PA 104.3 ppm, lJn-?\ = 5876 Hz, 2 J P . P 

= 15 Hz, 8PB 5.5 ppm, 'jpt-pu = 3229 Hz, Vp.p = 15 Hz) and will also be discussed in 

more detail in Section 6.7.1.1 (Figure 6.5). 

CI /PPh 2Me 

Cl PC13 

A 

81 

Figure 6.5: Product of the reaction between fra«s-[Pt(PPh2Me)Cl(u-Cl)]2 and PC13 
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The cis complex, 82b, was also obtained from a reaction of 7b with 

/rara-[Pt(PPhMe2)Cl(^Cl)]2 (Scheme 6.5). The 3 1 P{ 'H} NMR data are comparable with 

those reported for other complexes containing cyclic triphosphenium ions (Table 6.10).1 

8, ppm Multiplicity Coupling Constant, Hz Assignment 

20.4 d '•/pD-pc = 373 PD 

-13.6 s '.Tpt-PF.= 3513 PE 

-104.7 t '•/PC-PD = 372, 'Jpt-pc— 1227 Pc 

Table 6.10: 3 1 P{ 'H} NMR data for the cis complex 82b synthesised in the reaction 

between the dcypp cyclic triphosphenium ion (7b) and /ram,-|TPt(PPhMe2)Cl(u-Cl)]2 

6.3.3 Reactions of the dippp cyclic triphosphenium ions 8a and 8b with 
fraHs-[Pt(PEt 3)Cl(u-Cl)] 2 and fra/w-[Pt(PPh2Me)Cl(u-Cl)]2 

'Pr,Pv P'Pr, Vt / P \ 
C l C l PR 3 

'Pr7Pv P'Pr-, 
D^-p^ D 

l c 

C l — P t - P R 3 

I E 
C l 

PR 3 = PEt 3 83b 
PR 3 = PPh2Me 85a 

2+ 

'Pr7P P'Pr7 

I 
Cl—Pt—Cl 

PR 3 ii 

2+ 

PR, = PEti 84b 

Scheme 6.6: Proposed synthesis of the cis and trans Pt(II) complexes from the dippp 

cyclic triphosphenium ions 8a and 8b and ^a/M-[Pt(PR3)Cl(u-CI)]2 
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Prior to this work there had been no coordination studies carried out using the dippp 

cyclic triphosphenium ion, 8. These reactions were carried out to determine whether the 

trans complex would form initially then convert to the more thermodynamically stable 

cis complex, or whether the 'Pr groups would be too bulky for conversion to the cis 

isomer to occur. 

Reaction of the dippp cyclic triphosphenium ion 8b with /ra«s-[Pt(PEt3)Cl(u-Cl)]2 

afforded both the cis (83b) and trans (84b) complexes (Scheme 6.6, Table 6.11). Signals 

corresponding to a small amount of unreacted cyclic triphosphenium ion were also 

observed (5PA -298.6 ppm, 5PB 43.1 ppm, 'JPA.PB = 460 Hz) (Figure 6.6). The doublet 

resonance corresponding to Pn was not assigned due to numerous signals observed in the 

region of the spectra where this signal would be expected. 

6, ppm Multiplicity Coupling Constant, Hz Assignment 

34.8 d '•/PG-PF = 380 PG 

27.7 d \ W « 3 6 9 Pn 

4.7 s %-PE = 3447 PE 

-99.1 t %.PC = 1133, ,JPC-PD = 369 Pc 

-122.4 dt lJm*m = 380, 2JpF-pn = 172, 

% . P F =1115 

PF 

Table 6.11:3IP{'H} NMR data for the cis (83b) and trans (84b) complexes formed in the 

reaction between the dippp cyclic triphosphenium ion (8b) and /raws-[Pt(PEt3)Cl(u-Cl)]2 
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PG 

1 

... 

PF 

-95 -100 -105 -110 -115 -120 -125 ppm 

P c PK 

•j | I I i i | HH.if i l 
40 20 

-20 -40 -60 -80 -100 -120 ppm 

Figure 6.6: 3 1P NMR spectrum of the reaction between dippp cyclic triphosphenium ion 

(8b) and /ra«s-[Pt(PEt3)Cl(p.-Cl)]2 

An analogous reaction carried out between 8a fra«s-[Pt(PPh2Me)Cl(u-Cl)]2 afforded a cis 

complex, 85a (Scheme 6.6, Table 6.12). The 3 1 P{ 'H} NMR spectrum also showed signals 

corresponding to the dippp cyclic triphosphenium ion (8PA -298.4 ppm, 5PB 44.3 ppm, 

'̂ PA-PB = 460 Hz). 

8, ppm Multiplicity Coupling Constant, Hz Assignment 

27.6 d %).PC = 374 PD 

0.2 s '•/pt-PE = 3628 PE 

-94.6 t VPC-PD = 374 l J P i r c = 1223 Pc 

Table 6.12:31P{!H} NMR data for the cis complex 85a synthesised in the reaction 

between the dippp cyclic triphosphenium ion and /raws-[Pt(PPh2Me)Cl(u-Cl)]2 
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6.4 Synthesis of Pt(II) complexes containing seven-membered ring cyclic 
triphosphenium ions 

6.4.1 Reactions of the dcypb cyclic triphosphenium ions 11 a and 11 b with 
fram-[Pt(PR3)Cl(u-Cl)]2 

Scheme 6.7: Synthesis of trans Pt(II) complex from the dcypb cyclic triphosphenium ions 

11a and l ib and /ra«s-[Pt(PR3)Cl(u-Cl)]2 

Reactions of the dcypb cyclic triphosphenium ion as its chloride salt, 11a, with 

/ro/?5-[Pt(PPh2Me)Cl(|x-Cl)]2, and as its hexachlorostannate salt, l ib , with 

fr-am-[Pt(PEt3)Cl(u-Cl)]2 and /ra«s-[Pt(PPhMe2)Cl(u-Cl)]2 all afforded trans complexes 

(86b-88a) (Scheme 6.7). The 3 1P{!H} NMR data for each complex were in good 

agreement with those previously obtained for other Pt(II) complexes containing cyclic 

triphosphenium ions (Table 6.13).1 

In the reaction of l i b with /ran.s-[Pt(PEt3)Cl(u-Cl)]2 a singlet was also observed in the 
3 1P{*H} NMR spectrum at 2.8 ppm which was assigned to [Pt(PEt3)Cl3]"; the shift and 

coupling constants are consistent with those reported in the literature (Figure 6.7).9"11 It is 

possible that this could be the counter-ion for the complex. 

1 Pt PI PCy2 Cy2P 
CI PR 5 

pt-ci 
II 

86b PR 3 = PEt 3 

87b PR 3 = PPhMej 
88a PR 3 = PPh2Me 
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/ra»s-[Pt(PR3)Cl(u-Cl)]2 

PR 3 = 

PEt 3 PPhMez PPh2Me 

Cyclic Triphosphenium Ion l ib l ib 11a 

5 PF, ppm -127.8 -124.1 -124.1 

5 P f ;, ppm 43.3 44.0 43.7 

5 P„, ppm 14.6 -3.4 2.3 

'̂ PF-PG, HZ 423 420 421 
2JpK-PH, HZ 281 291 287 

]J?t-pp, Hz 1245 1017 1030 

'•/pt-PH» Hz 2842 2512 2586 

Compound Number 86b 87b 88a 

Table 6.13:31P{'H} NMR data for the trans complexes synthesised in reactions between 

the dcypb cyclic triphosphenium ions 11a and l i b and ^ra«5,-[Pt(PR3)Cl(p-Cl)]2 

I P H 

1 

[Pt(PEt3)Cl3]" 

niiii|iin|mij!iii|i<ii|iii'|iii(|iMi|iiu|(iii|Hi]jnii|iin|iiii[i'>i|i'<'|iiii|H> 

-120 -124 -128 -132 ppm 

*-n i • • ' i " " i " " i ' • i > i " 
60 40 20 " 1 1 " " i " • 1 1 " 1 1 1 ' " 1 1 " 1 • i 1 ' 1 ' i 1 ' ' 1 1 " 1 1 " 1 ' i 1 1 • ' i " ' ' i 1 1 ' ' i 1 • 1 1 1 " " i 

-20 -40 -60 -80 -100 -120 -140 -160 ppm 

Figure 6.7:3lP{'H} NMR spectrum of the reaction between dcypb cyclic triphosphenium 

ion, l ib , and /rarts-[Pt(PEt3)Cl(u-Cl)]2 
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PG PF 

I 
ii 

VI 
MM m i l i n r f i i i i i m i i " r " 1 1 " " ['1 " r 1 " i 1 1 " i 1 1 " i r " 1 ['1" i 1 1 1 i 

1 2 2 1 2 4 - 1 2 6 - 1 2 8 - 1 3 0 1 3 2 - 1 3 4 PPM 

60 20 40 -20 -40 -100 -120 
• 

140 ppm 

Figure 6.8: 3 1P NMR spectrum of the reaction between dcypb cyclic triphosphenium ion 

and /ra«5-[Pt(PPhMe 2)Cl(^CI)] 2. 

The reaction between l i b and /ra«5-[Pt(PPhMe2)Cl(u-Cl)]2 was repeated to ascertain 

whether the trans complex would convert to the cis isomer on standing. A 3 1 P{ 'H} NMR 

spectrum recorded soon after mixing of the reagents showed signals corresponding to the 

cyclic triphosphenium ion ( 8 P A -260.5 ppm (t), 8 P B 48.0 ppm (d), 'JPA-PB = 477 Hz) and 

/rara-[Pt(PPhMe2)Cl(u-Cl)]2 (5P -14.6 ppm(s)), and very weak signals corresponding to 

the cis complex 89b (Scheme 6.8, Table 6.14). There were no signals corresponding to 

the trans complex. Unfortunately due to weak satellite peaks, 'jpt-pc was not obtained. A 

second 3 I P { ' H } NMR spectrum was recorded the following day which showed no sign of 

the signals corresponding to the cis complex, only those for the cyclic triphosphenium ion 

and the unreacted dimer. There was no further reaction. 
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Me 2PhP\ ,CI C l 
Pt Pt 

/ \ / \ Cl Cl PPhMe2 

C y 2 P < - - > P C y 2 

p 

*Cy2 

D D 
Cl—Pt-PPhMe 2 

I i 
Cl 

89b 

Scheme 6.8: Synthesis of the cis Pt(II) complex 89b from the dcypb cyclic 

triphosphenium ion l ib and /ra«s-[Pt(PPhMe2)Cl(u-Cl)]2 

5, ppm Multiplicity Coupling Constant, Hz Assignment 

40.0 d 'J P D.PC = 420 PD 

-15.1 s '«/pt-pE = 3630 PK 

-78.5 t , J K ; ^ = 4 2 2 P F 

Table 6.14:31P{*H} NMR data for the cis complex 89b formed in a reaction between the 

dcypb cyclic triphosphenium ion and Jrans-[Pt(PPhMe2)Cl(u/-Cl)]2. 

6.4.2 Reactions of the dippb cyclic triphosphenium ions 13a and 13b with 
fra/tt-[Pt(PEt3)Cl(u-Cl)]2 and frara-[Pt(PPh2Me)Cl(n-Cl)]2 

Reactions were carried out between /raw.s-[Pt(PEt3)Cl(n-Cl)]2 and both the chloride and 

hexachlorostannate salts of the dippb cyclic triphosphenium ion (13a and 13b), and 

between /rara-[Pt(PPh2Me)Cl(u-Cl)]2 and the hexachlorostannate salt of the cyclic 

triphosphenium ion (13b) (Scheme 6.9). In the all three reactions, the trans complex was 

synthesised. 3 1 P{ 1 H} NMR data for these trans complexes (Table 6.15). Further 3 1 P{ 'H} 

NMR spectra were recorded for each reaction but there was no evidence to suggest 

conversion from the trans complex to the cis complex. 
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'Pr,P k-.. FPr, 
3 N / \ / 

Cl CI PR 3 

'Pr2P^-yPlPr2 

2 G \ p / G 
V 

ci—Pt-Cl 
I 

P , R > 
90a PR 3 = PEt 3 X = Cl 
90b P R 3 = PEt 3 X = SnCl 6 

91b PR 3 = PPhMe2 X = CK 

Scheme 6.9: Synthesis of trans Pt(II) complex from the dippb cyclic triphosphenium ions 

(13a and 13b) and /ra/w-[Pt(PR3)Cl(u-Cl)]2 

/ra«s-[Pt(PR3)Cl(n-Cl)]2 

PR3 = 

PEt 3 PEt 3 PPh2Me 

Cyclic triphosphenium ion 13a 13b 13b 

5 P F , ppm -133.1 -132.5 -127.7 

5 P G , ppm 50.9 50.9 51.1 

5 PH, ppm 15.7 15.6 5.1 

'jpp-PG, HZ 418 420 417 

JpF-PH, Hz 275 275 287 

' Jpt-PF, Hz 943 949 1013 

'̂ Pt-m, Hz 2840 2842 2873 

Compound Number 90a 90b 91b 

Table 6.15 3 1 P{ 'H} NMR data for the trans complexes synthesised in reactions between 

the dippb cyclic triphosphenium ions 13a and 13b and /ra«,s-[Pt(PR3)Cl(u,-Cl)]2 
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6.5 Reactions of diphosphates and cyclic triphosphenium ions containing 
a ferrocene backbone with fra«.s-[Pt(PEt3)Cl(u-Cl)]2 

The dippf cyclic triphosphenium ion (9a) was reacted with /ra«s-[Pt(PEt3)Cl(u-Cl)]2. A 
3 1P{*H} NMR spectrum was recorded soon after the addition of the Pt dimer, which 

showed signals corresponding to unreacted PCI3 (8P -220.5 ppm (s)), some unreacted 

dippf cyclic triphosphenium ion ( 5P A -146.7 ppm (t), 5 P B 52.1 ppm (d), 'JPA-PB = 488 

Hz), and signals corresponding to a Pt complex containing three inequivalent phosphorus 

atoms, one at significantly higher frequency than the others, 92 (Table 6.16). 

8P , ppm Multiplicity lJP.P, Hz %-p, Hz Assignment 

116.3 s - - Pc 

19.2 d 458 2440 PD 

11.4 d 458 2453 PE 

Table 6.16: 3 I P{ 'H} NMR data for the complex 92 formed in the reaction between the 

dippf cyclic triphosphenium ion 9a and /ra«.s-[Pt(PEt3)Cl(u-Cl)]2,61 

The data suggest that coordination of the diphosphane to platinum has occurred instead of 

coordinating of the cyclic triphosphenium ion. It is probable that the diphosphane 

originated from the decomposition of the cyclic triphosphenium ion occurred, similar to 

that observed in reactions between dppe- and dppf-derived cyclic triphosphenium ions 

and rra«5'-[Pt(PEt3)Cl(n-Cl)]2. In similar systems previously reported where the 

diphosphane has bulky substituents on the outer phosphorus atoms, coordination of the 

diphosphane has occurred in a bidentate fashion.12"15 

In this reaction between 9a and /ra«5-[Pt(PEt3)Cl(p.-Cl)]2, the 3 , P { 1 H } NMR data indicate 

that the diphosphane, dippf, has coordinated to the platinum through only one of the 

phosphorus atoms, as a monodentate ligand, and that a /raws-platinum complex has 

formed. Due to the high frequency shift of Pc: (116.3 ppm), it seems likely that a chlorine 

atom is bound to the uncoordinated end of the diphosphane (Figure 6.9). The shift of Pc 
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suggests there is only one Cl bonded to the P atom, as it is consistent with those for other 

four-coordinate phosphonium salts (Table 6.17). 

ft 0̂ Fe V 
P'Pr Pr,P 

i) 

C l — P t C I Cl 
I 
PEt 

Figure 6.9: Proposed complex 92 formed in the reaction between the dippf cyclic 

triphosphenium ion and /,raw.s-[Pt(PEt3)Cl(u-Cl)]2 

Compound 5, ppm Reference 

'Pr3P+Cl cr 117.4 (nitromethane), 

118.4(MeCN) 

16 

'B^P+Cl CI 102.7 (DCM), 

103.3 (nitromethane) 

16 

Et3p+ci cr 110.0 (CHCI3), 

112.1 (MeCN) 

16 

Cy3P+Cl cr 103.2 (nitromethane), 

104.2 (MeCN) 

16 

Table 6.17:3IP{'H} NMR literature data for some R3P+C1 CI" phosphonium salts 

Further investigation into this unusual behaviour involved the reaction of the 

diphosphane dippf with fra«s-[Pt(PEt3)Cl(u-Cl)]2 A 3 1 P{ 'H} NMR spectrum was 

recorded soon after the mixing of the reagents which showed the formation of a Pt 

complex containing three inequivalent phosphorus atoms (Table 6.18). The data confirm 

that the diphosphane coordinates in a unidentate fashion (Figure 6.10). 5Pc (1.4 ppm) is 
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consistent with shifts for three-coordinate phosphorus compounds and the shift of the 

parent diphosphane, suggesting that unlike the previous reaction, the uncoordinated end 

of the diphosphane had not become chlorinated (Table 6.19). In the previous reaction 

between the dippf-derived cyclic triphosphenium ion and fra«.s'-[Pt(PEt3)Cl(|4.-Cl)]2 there 

had been excess PCI3 present in solution, hence a supply of CI" that could allow 

chlorination of the un-coordinated end of the diphosphane to take place. In this reaction 

there was no source (except the Pt dimer) for the chloride ion so chlorination did not 

occur. The coupling constants show that the PEt3 ligand is trans to the coordinated 

phosphorus of the ferrocene derivative. Further 3 1 P{ 'H} NMR spectra were recorded but 

there was no evidence to suggest formation of a Pt(II) complex with the dippf as a 

bidentate ligand as seen when using dppf and dtbpf. 

8P, ppm Multiplicity ^Jp.Pi Hz '•̂ pt-p> Hz Assignment 

20.6 d 459 2473 PD 

10.6 d 459 2420 PE 

1.4 s - - Pc 

Table 6.18:31P{*H} NMR data for complex 93 formed in the reaction between dippf and 

/ra«5-[Pt(PEt3)Cl(u-Cl)]2 

OH) y 
1 P'Pr PnP 

I) 

CI—Pt-CI 

PEt 

Figure 6.10: Proposed complex 93 formed in the reaction between dippf and trans-

[Pt(PEt3)Cl(u-Cl)]2 
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Compound Chemical Shift, ppm Reference 

dippf 1.4 * 

'Pr 2PCH2CH 2CH 2Cl 1.4 16 

'Pr2PCH2PH-'Pr -3.2 16 

'Pr2PCH2PCl-'Pr -5.2 16 

Table 6.19: 3 1 P{ 'H} NMR data for some three-coordinate phosphorus compounds, 

solvent DCM (* this work) 

Further investigation into the coordination properties of diphosphanes containing a 

ferrocene backbone was carried out using the diphosphane dtbpf. A 'Pl 'H} NMR 

spectrum recorded soon after the mixing of the diphosphane dtpbf and trans-

[Pt(PEt3)Cl(u-Cl)]2 showed the signals corresponding to only one product, 94 (Scheme 

6.10). The 3 1 P{ 'H} data confirm the coordination of the diphosphane as a bidentate 

ligand (Table 6.20). The data are consistent with those previously reported for the similar 

complexes containing the diphosphanes dppe and dppf.1 7 

+ 

6 
Fe 

4 Gh EUP Fe 

V + ! Pt Pi / 
BIHP P'Bu a PEt 

PMiu Bu ,P 

C PEt 

94 

Scheme 6.10: Synthesis of the Pt(II) complex 94 from the diphosphane dtbpf and 

fraHS-[Pt(PEt3)Cl(u-Cl)]2 
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8P, ppm Multiplicity VP-P, Hz lJvt-Pi Hz Assignment 

43.0 d 457 2498 PB 

28.4 s - 3861 PA 

9.7 d 456 2459 Pc 

Table 6.20:31 P{'H} NMR data for the Pt(II) complex 94 from the reaction between dtbpf 

and /ra«5-[Pt(PEt3)Cl(H-Cl)]2 

6.6 Synthesis of Pt(II) complexes containing chlorophosphanes 

Initial investigation into the formation of Pt(II) complexes containing chlorophosphanes 

was necessary, to confirm assignments of signals in the 3 1 P{ 'H} NMR spectra for 

reactions between cyclic triphosphenium ions and /ra«,y-[Pt(PR3)Cl(|i-Cl)]2 with PC13 

present as arising from c/.s-PtCl2(PCl3)(PR3) (see Sections 6.2.1, 6.3.1, and 6.3.2 for 

further details). Also previous work within the group had afforded crystalline material 

which, using single crystal X-ray diffraction studies, was determined to be cis-

PtCl2(PEt3)(P(OH)3) (Figure 6.11).18 It was proposed that this was produced by the 

hydrolysis of c/.s-PtCl2(PCl3)(PEt3) which had formed as a by-product in the original 

reaction. 

Phosphorous acid, H 3 P0 3 , is dibasic and usually exists as [HP(0)(OH)2], with 

phosphorus in the +5 oxidation state. Similarly, hypophosphorus acid, H3PO2, usually 

exists as [H2P(0)(OH)]. There are few reports of coordinated P(OH)3 or [H2P(0)(OH)], 

though they have been identified in a few complexes where the P(III) form has been 

stabilized by coordination to a transition metal.19"21 
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Ci: 

Ptt 

en 

p? PI 
01 

CI 02 
C3 

F/gwre 6.77: The molecular structure of cw-PtCl2(PEt3)(P(OH)3)18 

Fedin, Sokolov et al. reported the synthesis and isolation of a complex containing P(OH)3 

in 2001 (Scheme 6.11).19 

[Mo 3 (PdCl)S 4 (H 2 0)9] 3 + + PC13 + 3 H 2 0 

[Mo 3(PdP(OH)3)S 4(H 20)9] 4 + + 3H+ + 4C1" 

Scheme 6.11: Synthesis of a complex containing P(OH)3 1 9 

Addition of cucurbit[6]uril (C36H36N24O12) afforded the crystalline product 

{[Mo3PdP(OH)3S4Cl3(H2O)6]2(C36H36N24Oi2)}Cl2.20H2O.19 The average P-0 bond 

length in this complex is 1.561(12) A, which is similar to those found in 

CI2Pt(PEt3)[P(OH)3] (1.565(4) - 1.581(4) A). 1 8 The bond lengths for these complexes 

containing P(OFT)3 are considerably shorter that those observed in most P(OR)3 esters.4 
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Two complexes containing [HP(OH) 2] were also isolated by Fedin, Sokolov et al. again 

using cucurbit[6]uril to obtain crystalline product (Scheme 6.12).2 0 The P-0 bond lengths 

in the Se complex are 1.585(11) and 1.622(12) A, which are longer than those found in 

the P(OH) 3 complexes. 1 8 , 1 9 

[W 3 (NiCl)Q 4 (H 2 0) 9 ] 3 + + H 3 P0 2 

Q = Se or S 
HCI 

cucurbit[6]uril 

[W 3 (Ni(HP(OH) 2 ) )Q 4 (H 2 0) 9 ]Cl4.C3 6 H 3 6 N 2 4 0 1 2 . l lH 2 0 

Scheme 6.12: Synthesis of complexes containing [HP(OH) 2] 19 

As there are few examples of complexes containing P(OH) 3, it was hoped to find a facile 

synthetic pathway to the formation of c/5 ,-PtCI 2(PEt 3)(P(OH) 3), to obtain further details 

on its formation and analysis. 

6.6.1 Synthesis and characterisation of the parent Pt(II) complexes 

6.6.1.1 Reactions of /ra«s-[Pt(PR3)Cl(u-Cl)]2 with PC13 

In the synthesis of Pt(II) complexes containing cyclic triphosphenium ions, a second 

Pt(II) complex was observed as a minor component of the reaction mixture if there was 

any excess PC13 left from ring synthesis. These complexes were assigned to 

c/s-PtCl 2(PR 3)(PCI 3), formed in a side reaction with the Pt dimer used and PC13. To 

confirm these assignments these complexes were synthesised (Scheme 6.13). For each 

reaction, cw-PtCl 2(PCl 3)(PR 3) was obtained as the only product of the reaction (Table 

6.21 and Figure 6.12). 
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V V + 2 P C 1 3 - 2 v b 

C 1 X \ \ N»R3 c / X P R 3 

A 

P R 3 = PEt 3 77 
P R 3 = PPhMe2 65 
P R 3 = PPh 2Me 81 

Scheme 6.13: Synthesis of m-PtCl2(PCl3)(PR3) 

PA 

/ 

I I I I | t M I [ I I I I | I I I I | I I I I | I M I | I I I I | I I M | I I I I | I I I I [ I 

120 100 90 80 70 60 50 40 30 10 p p m 

Figure 6.12: 3 1P{*H} NMR spectrum of cw-PtCl2(PEt3)(PCl3) 
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Complex A» 

ppm 

8 P B , 

ppm 

'/pt-PAj 

Hz 

'«/pt-PB» 

Hz 

2-/pA-PB> 

Hz 

X 
Cl PEt 3 

A 

17.6 101.6 2996 6062 18 

Cl p p , 
Pt 

/ \ CI PPhMc2 

A 

-5.6 103.2 3145 5922 17 

Pt 
C l ^ ^PP^Me 

A 

5.5 104.3 3229 5876 15 

Table 6.2T. 3 ] P{ 'H} NMR data for m-PtCI2(PEt3)(PCl3) (77), cw-PtCl2(PPhMe2)(PCl3) 

(65) and c/s-PtCl2(PPh2Me)(PCl3) (81) 

6.6.1.2 Reactions of rram-[Pt(PR3)Cl(u-Cl)]2 with PR'C12 

The aim of these reactions was to prepare a family of Pt(II) complexes that could 

potentially undergo hydrolysis, allowing comparisons to be made with the PC13 systems. 

By reacting fraw.y-[Pt(PEt3)Cl(n-Cl)]2 with various R'PC12, it was hoped that cis and/or 

trans complexes would be afforded in good yields, and suitable for further study (Scheme 

6.14). 

E t 3 P x C l Cl 
Pt Pt +2R'PC1 2 

C l ^ \ f X P E t , 

CK , P R ' C I 2 

B Pt 
C r X P E t 3 

A 

CK PR'C1 2 

and/or Pt 

E t j P ^ \ : i 
A 

Scheme 6.14: General synthesis of cis- and/or trans- PtCl2(PEt3)(PR'Cl2) 
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For reactions between /rara-[Pt(PEt 3)Cl(^i-Cl)] 2 and R'PC1 2 where R' = Et, nPr, 'Pr or Ph, 
cw-PtCl2(PCl3)(PR'CI2), formed as the only product o f the reaction (Table 6.22). 
However, reaction of CyPCl 2 or l BuPCl 2 with ^a/w-[Pt(PEt 3)Cl(u-Cl)] 2, afforded both the 
cis and trans isomers in each reaction (Table 6.22). 

The 3 1 P { ' H } N M R spectra for the cis complexes are comparable with those obtained for 

the other R'PC1 2 systems, with a large 'jpt.p coupling. For the trans isomer a large 

magnitude o f Vp.p is observed, and also the chemical shift o f the trans complex (5PB) is 

to higher frequency compared with that o f the cis isomer. For these two reactions, the 

trans complex is the kinetic product o f the reaction and forms initially, but then converts 

to the thermodynamically more stable complex, the cis isomer. 

The reaction between CyPCl 2 with /ran.y-[Pt(PEt3)Cl(u.-Cl)]2 initially showed 

approximately 90% cis isomer (99) and 10% trans (100), compared to 40% cis isomer 

(101) and 60% trans (102) in the analogous l BuPCl 2 reaction (Figure 6.13). Full 

conversion to afford only the cis complex occurred within seven days at room 

temperature for the CyPCI 2 derivative, whereas for the l BuPCl 2 system fu l l conversion 

was much slower, taking approximately three weeks. 
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P B (trans) PB ids) 

Jul L l l li 
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PA (trans) / 

\ _ L _ 

P A ( c« ) 

jJLi j 1 
i 

35 
— I — 

30 
—!— 
25 

— i — 
20 

0 ppm 

15 10 ppm 

Figure 6.13: 3 1 P { ' H } N M R spectrum for a reaction between 'BuPCb and trans-

[Pt(PEt 3)Cl(u-Cl)] 2 showing both cis (101) and ^a«5-PtCl 2 (PEt 3 ) (P t BuCl 2 ) (102) 

complexes (top: fu l l spectrum, bottom: expansion o f the region between -7 and 38 ppm) 
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Complex 
Compound 

Number 

8 P A , 

ppm 

5 P B , 

ppm Hz Hz 

2 r 
•'PA-PB? 

Hz 

C I P E t C I 2 

95 16.6 117.4 3198 4965 14 

C I s ^ / P E t 3 

CI P n P r C l 2 

96 16.5 114.1 3207 4949 14 

C l \ ^ P E t 3 

CI P 'PrCl 2 

97 16.9 130.4 3258 4848 14 

C I > ^ . P E t 3 

CI PPhCl 2 

98 16.6 98.6 3160 5014 17 

C k ^ P E t 3 

c r PCyCl 2 

99 17.2 125.4 3272 4823 14 

C l ^ . P C y C l 2 

Et 3 P CI 
100 15.6 162.5 2700 2799 629 

C k ^ P E t 3 

/ - P t \ CI P 'BuCI 2 

101 15.5 139.2 3181 4803 13 

C l x ^ P l BuCl 2 

Et 3 P CI 
102 16.0 173.2 2651 2781 614 

Table 6.22:3IP{'H} N M R data for cis- and ^a«5-PtCl 2 (PEt3)(PR'Cl 2 ) , P A = PEt3 
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6.6.1.3 Reactions o f / ra«s-[Pt(PR 3 )Cl(n-Cl)] 2 w i t h PR' 2C1 

By reacting fran.s-[Pt(PEt3)Cl(u-Cl)]2 with various R'2PC1 it was hoped that cis and/or 

trans complexes would be afforded in good yields, and suitable for further study (Scheme 

6.15). The purpose o f these reactions was to prepare a family o f Pt(II) complexes which 

could potentially undergo hydrolysis, allowing comparisons to be made with the PC13 and 

PR'2C1 systems. 

E t 3 P x CI CI 
Pt Pt + R' 2 PCl 

/ \ / \ 
CI CI PEt 3 

CK ,PR*2C1 
B Pt 

/ \ 
CI PEt, 

and/or 

Ck 

Et 3 P 

Pt 

,PR*2C1 
B 

v c i 

Scheme 6.15: General synthesis o f cis- and/or /ra«,s-PtCl 2(PEt3)(PR' 2Cl) 

A reaction between Et 2PCl and /ra«,s-[Pt(PEt3)Cl(p-Cl)] 2 showed that the cis complex 

(103) had formed initially although the signals corresponding to PA were very broad 

(Table 6.23). A week later a second 3 1 P { ' H } N M R spectrum was recorded at -50°C to try 

and resolve these signals. The parent complex was still present, but several new peaks 

were apparent. Two sets o f doublets (with Pt satellites) were assigned to the trans isomer 

(104) (Table 6.24). Also apparent were two singlets (5P 98.5 ppm lJn-p = 3982 Hz; 5P 

114.2 ppm 1Jp t-p= 3859 Hz (weak)). The singlet at 98.5 ppm was assigned to the product 

resulting from ligand scrambling, cw-PtCl 2(PEt 2Cl) 2 (114) which had previously been 

reported (5P 100.9 ppm 'jpt-p = 3936 Hz in THF) , 2 2 as there was also a very weak signal 

at 10.2 ppm that was assigned to another product resulting from ligand scrambling, 

PtCl 2(PEt 3) 2 (115). 2 3 

The reaction between Ph 2PCl and fra/w-[Pt(PEt3)Cl(ji-Cl)] 2 afforded the cis complex 107 

(Table 6.24). The data are in good agreement with those reported by Berry et al.22 Two 

other signals were also apparent in the 3 1 P { ' H } N M R spectrum which were assigned to 

products resulting from ligand scrambling, c/'s-PtCl2(PPh2Cl)2 (116) 2 2 and 

m-PtCl 2 (PEt 3 ) 2 (115), 2 3 respectively (Table 6.24). 
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Complex 
Compound 

Number 

8PA, 

ppm 

5P B , 

ppm 

'•fpt-PAj 

Hz 

Vpt-PB5 

Hz 

2/p.p, 

Hz 

C I ^ PEt3 

CI PEt 2 CI 
103 15.8 117.4 3469 4042 13 

C l ^ ^ P E t 3 

ClEt 2 P CI 
104 23.0 122.0 2144 2420 402 

C l ^ ^ P E t 3 

C r P 'Pr 2 Cl 
105 13.6 125.8 3477 4056 12 

C I ^ . P ' P r 2 C I 

Et 3 P C I 
106 14.1 134.1 2266 2581 513 

C I ^ ^ P E t 3 

CI PPh 2 CI 
107 14.5 72.0 3314 4341 15 

C l ^ ^ P E t 3 

C r PCy 2 Cl 
108 13.7 117.5 3492 4039 12 

C I v ^ ^ P C y 2 C l 

/ P t \ 
E t 3 P CI 

109 13.9 122.2 2503 2567 512 

C l ^ ^ P ' B u 2 C I 

/ ^ P t \ 
c r PE t 3 

110 10.8 134.3 3490 4075 11 

C l v ^ . P ' B u 2 C I 

/ p t \ 
Et 3 P CI 

111 12.7 139.2 2511 2543 494 

C I ^ ^ P E t 3 

^ P t \ C r PCpent 2 CI 
112 13.6 113.0 3506 4024 13 

C I ^ PCpent 2 CI 

/ P t \ 
E t 3 P CI 

113 13.7 122.8 2491 2599 520 

Table 6.23: 3 1 P { 1 H } N M R data for both cis- and /ra«s-PtCl 2(PEt 3)(PR2Cl) complexes, 

P A=PEt 3 
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In the reactions between fra«.s-[Pt(PEt 3)Cl(u-Cl)] 2 and iPr 2PCl, Cy 2PCl and Cpent2PCl, 

both the cis and trans complexes were initially observed in 3 1 P { ' H } N M R spectra 

recorded 15 minutes after the addition o f the chlorophosphane (Table 6.24). Figure 6.14 

shows the 3 I P { ' H } N M R spectrum obtained showing both cis and trans-

PtCl 2(PEt 3)(P'Pr 2Cl) complexes (105 and 106). In the time taken for fu l l conversion to the 

cis complex to occur other signals corresponding to products resulting from ligand 

scrambling were observed in each reaction mixtures (Table 6.24 and Table 6.25). These 

additional products are in good agreement with those previously reported for 

cw-PtCl 2 (PEt 3 ) 2 , 2 3 c/s-PtCl2(PPh2CI)2 and cw-PtCl 2 (PEt 2 Cl) 2 . 2 2 For trans-

PtCl 2(PEt 3)(P'Bu 2Cl), initially only the trans complex was observed (Figure 6.15). At 

room temperature, conversion to the cis isomer began after approximately one week, 

although after three months there was approximately 15% cis complex and 85% trans. 

Complex 5P, ppm '«/pt-p» Hz Compound Number 

cw-PtCl 2(PEt 2Cl) 2 98.5 3982 114 

cw-PtCl 2(PEt 3) 2 10.2 3513 115 

cw-PtCl 2(PPh 2Cl) 2 72.3 3780 116 

c/s-PtCI^'PrzClh 129.4 3996 117 

cw-PtCl 2(PCy 2Cl) 2 110.7 4000 118 

cw-PtCl 2(PCpent 2CI) 2 108.1 4037 119 

Table 6.24: 3 I P { ' H } N M R for products resulting from ligand scrambling observed in 

reactions between fra«s-[Pt(PEt 3 )Cl(u-Cl)] 2 and Ph 2PCl, 'Pr2PCl, Cy 2PCl and Cpent2PCl 

R ' 2 PCI Ini t ia l % cis In i t ia l % trans 
Time taken for f u l l 

conversion 

'Pr2PCl 30 70 5 days 

Cy 2PCl 50 50 3 days 

Cpent2PCl 50 50 5 days 

Table 6.25: Ratios o f cis : trans complexes in reactions between rra/7s-[Pt(PEt3)Cl(u-CI)]2 

and 'Pr2PCl, Cy 2PCl and Cpent2PCl, and time for fu l l conversion to the cis isomer at RT 
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/ \ 

P B (trans) 

c/>PtCl2(P iPr2CI)2 

PB (cis) 

J L 
150 145 140 135 130 125 120 115 110 105 ppm 

PA (trans) 

JUL 

PA (cis) 

11 

Figure 6.14: Initial 3 1 P { ' H } N M R spectrum for the reaction between 'Pr2PCl and trans-

[Pt(PEt 3 )Cl(^CI)] 2 showing both cis and /ram-PtCl 2(PEt 3)(P iPr 2CI) complexes (top: fu l l 

spectra, middle: expansion of the region between 98 and 165 ppm, bottom: expansion o f 

the region between -16 and 41 ppm) 
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B 

' I ' ' ' 1 ' ' ' ' 1 I 1 ' ' 1 ' ' 1 ' 1 I ' 1 1 1 ' ' ' 1 ' I ' 1 ' 1 ' ' ' ' ' I ' 1 1 ' i 1 ' 1 1 t ' ' 1 ' 1 ' ' 1 1 I - , - r - i - n - r - i - i ' ' I ' ' ' ' 1 ' ' ' ' i 

160 140 120 100 SO 60 40 20 0 ppm 

Figure 6.15: 3 1 P { ' H } N M R spectrum for the reaction between lBu 2PCl and trans-

[Pt(PEt 3)Cl(u-CI)] 2 showing the /raws-PtCl 2(PEt 3)(P ,BuCl 2) complex 

Puddephatt and Thompson reported ligand scrambling reactions to occur between two Pt 

complexes, one with halide/anionic ligands and the other with alkyl/aryl ligands (Scheme 

6.16). 2 4" 2 6 

R R R 
+ Pt Pt Pt Pt 

R 

R = alkyl/aryl 
X = halide/an ionic ligand 
L = tertiary phosphine/arsine 

Scheme 6.16: Symmetrisation reactions summary showing ligand scrambling 2 4" 2 6 

For the palladium complexes cis- and /ra«5-[Pd(C6F 5) 2(tht) 2], Minniti has shown that they 
27 

spontaneously isomerise to a cislirans mixture, with the cis isomer predominating. This 

suggests that the cis isomer is the more thermodynamically stable species. 

Two possible mechanisms were proposed for this isomerisation, an associative process 

(through a five coordinate intermediate), or a dissociative process (through a three 
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coordinate intermediate). The results obtained by Minniti suggested that the associative 

pathway remains the favoured method of substitution. 2 7 

It is probable that a similar process is involved to afford ligand scrambling products 114-

119, although there was no evidence o f conversion from the cis to the trans isomer in any 

of the reactions. 

6.6.1.4 Molecular structures of the parent Pt(II) complexes containing 
chlorophosphane ligands 

Crystals suitable for X-ray diffraction of three of the parent Pt(II) complexes were 

isolated (77, 95 and 105); the resulting molecular structures are shown in Figures 6.16-

6.18. Selected bond distances and angles for each molecule are listed in Table 6.26. 

Each molecule shows cis geometry at platinum that was inferred from the 3 1 P { ' H } N M R 

data, and also shows near square-planar platinum centres [sum o f angles: (77) = 360.00, 

(95) = 360.22, (105) = 360.01°]. There is some distortion around the square-planar 

platinum center in each complex, with the angles around platinum varying from 85.34(4) 

to 97.05(4)° (77), 86.07(5) to 98.46(5)° (95) and 81.82(7) to 98.53(6)° and 82.90(7) to 

99.24(7)° (105), with the larger P(l)-Pt( l )-P(2) angle to accommodate the bulk of the 

phosphane groups. 

The Pt( l)-P(l) bond lengths in 77, 95 and 105 (2.2935(10) A, 2.2801(14) A and 

2.2596(18) A respectively) are similar in magnitude to those observed for other 

PtCl 2(Pl)(P2) complexes where (PI) = PEt3 (e.g. 2.2550(13) A in cis-

[PtCl 2(PEt 3)(P(OH)3)] 1 8, 2.264(2) and 2.261(2) A in c « - P t C l 2 ( P E t 3 ) 2

2 8 or 2.305(6) A in 

c/>PtCl 2(PEt 3)(PCy) 3). 2 9 

However, the Pt(l)-P(2) bond length for each complex is much shorter (2.1746(10) A 

(77), 2.1835(14) (95) and 2.2312(18) (105) suggesting a stronger Pt-P bond. This is also 
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consistent with the larger 'Jpt-p(i) coupling constant observed for these complexes. As 
expected the Pt(l)-P(2) bond length decreases P'Pr2Cl > PEtCl 2 > PC13 as there are more 
electronegative substituents on the phosphane. The Pt-P(2) bond length in cis-
PtCl 2(PEt 3)(PF 3) is even shorter than that in PtCl 2(PEt 3)(PCl 3) at 2.142(3) A . 3 0 

Bond Length /A 77 95 105 
Pt(l)-P(l) 2.2935(10) 2.2801(14) 2.2596(18) 
Pt(l)-P(2) 2.1746(10) 2.1835 (14) 2.2312(18) 
Ptd ) -c i ( i ) 2.3253(10) 2.3304(13) 2.3459(18) 
Pt(l)-Cl(2) 2.3394(10) 2.3653(13) 2.3791(18) 
Pt(2)-P(3) - - 2.2681(18) 
Pt(2)-P(4) - - 2.2332(19) 
Pt(2)-Cl(4) - - 2.3500(18) 
Pt(2)-Cl(5) - - 2.3583(18) 

Bond Angle 1° 
P(l)-Pt(l>-P(2) 97.05(4) 98.46(5) 99.24(7) 
p (D -p t ( in: i ( i ) 85.34(4) 89.16(5) 91.11(7) 
P(2)-Pt(l)-Cl(2) 90.86(4) 86.07(5) 82.90(7) 
Cl(l)-Pt(l)-Cl(2) 86.75(4) 86.53(5) 86.76(7) 
P(3)-Pt(2)-P(4) - - 98.53(6) 
P(3)-Pt(2)-Cl(4) - - 91.73(7) 
P(4)-Pt(2)-Cl(5) - - 81.82(6) 
Cl(4)-Pt(2)-Cl(5) - - 87.99(6) 

Table 6.26: Selected bond lengths and angles for 77, 95 and 105 
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CI2 Cll 

i 

Ptl 

en PI 

P2 

Figure 6.16: The molecular structure o f 77, showing the numbering scheme for the key 

atoms. Thermal ellipsoids are drawn at 50 % probability. 

i |4 

PI C4 

I 1 15 

Cll 

Figure 6.17: The molecular structure o f 95, showing the numbering scheme for the key 

atoms. Thermal ellipsoids are drawn at 50 % probability. 
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CI3 

PI 
P2 Pt1 

Ci1 

CI6 

P3 P4 
Pt2 

CI5 

CI4 

Figure 6.18: The molecular structure o f 105, showing the numbering scheme for the key 

atoms. Thermal ellipsoids are drawn at 50 % probability. 

6.6.2 Investigation into the hydrolysis of Pt(II) chlorophosphane complexes 

Several Pt(II) complexes containing chlorophosphanes have been previously reported, but 

there has been limited investigation into the hydrolysis o f these complexes. • 

Reported investigations have shown that these hydrolysis reactions, and those o f similar 

complexes, are quite complicated, frequently resulting in multiple product formation 

and/or products containing P-O-P and P-O-H-O-P linkages. 2 2 , 3 3 " 4 0 
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Investigation into the hydrolysis o f some Pt(II) chlorophosphane complexes was carried 

out by Chart and Heaton. 3 3 Due to limited 3 1 P N M R facilities at this time, the majority o f 

analysis was carried out using IR and elemental analysis. Two methods were used to 

synthesise the hydrolysed products. The first, a two-step process, involved the addition o f 

alkali to remove all three halogens, followed by addition o f excess hydrochloric acid 

(Scheme 6.17). 3 3 

C I ^ ^ P R ^ C I 
Pt 

a PR, 

alkali 

-3CI 

H O ^ ^ P R ' 2 0 
Pt 

HO PR, 

excess 

HCI 

C l ^ ^ P R ^ O H 
Pt 

c r PR, 

Scheme 6.17: Two-step synthesis o f the hydrolysed Pt(II) complex 33 

The second, perhaps more convenient method, involved boiling an acetone solution of the 

parent complex with aqueous HX (Scheme 6.18). 

C , \ ^ ^ P R ^ C l HX(aq) 
Pt 

c / \ R 3 

X=C1, Br, I 

X ,PR' 2OH 
\ / 

Pt 

X ^ P R , 

Scheme 6.18: One-pot synthesis o f the hydrolysed Pt(II) complex 

Seven hydrolysed complexes of the type [PtX 2 (PR 3 )(PR' 2 OH)] were reported (X=C1, 

R' = Ph, R = Me, Et; X = Br, R' = Ph, R = Me, Et; X = I , R' = Ph, R = Et; X = CI, 

R' = Et, R = Et; X = CI, R' = Bu, R = Ph). 3 1 P { ' H } N M R data were obtained for 

[PtCl 2(PBu 3)(PPh 2OH)] (Table 6.27). 

Investigations into the hydrolysis o f [PtCl 2(PEt 3)(PPh 2Cl)] and [PtCl 2(PEt 3)(P(OEt) 2Cl)] 

were carried out by Berry et al.22 The addition o f two molar equivalents of water to a 

solution of [PtCl 2(PEt 3)(PPh 2Cl)] in THF afforded the hydrolysed product (Table 6.27). 
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However, an analogous reaction with [PtCl2(PEt3)(P(OEt)2Cl)] afforded a mixture o f 
products, but the desired hydrolysis product was not isolated. Both 
[PtCl 2(PEt 3)(PPh 2OH)] and [PtCl 2(PEt 3)(P(OEt) 2OH)], however, were synthesised by 
reaction of Ph 2 P(0)H or (EtO)2P(0)H with [PtCl 2(COD)] (Table 6.27). 

R = R' = 
8PA, 

ppm 

8P,5, 

ppm 

'./pt-PA> 

Hz 

!^Pt-PB? 

Hz 

2 / 
•/PA-PB* 

Hz 
Reference 

Bu Ph 50.2 116.5 3502 4172 NR 33 

Et OEt 14.9 63.2 3414 5623 23 22 

Et Ph 10.3 72.9 3497 3890 17 22 

Table 6.27: 3 1 P { ' l T } N M R literature data for the hydrolysis products, cis-

[PtCl 2(PR 3)(PR' 2OH)] (NR - not recorded) 

6.6.2.1 Hydrolysis of Pt(II) chlorophosphane complexes through 
exposure to air and 'wet' solvents 

The hydrolysis reactions o f Pt(II) chlorophosphane complexes described in this section 

were carried out by exposure to air and moisture through stirring o f the solution in an 

open vessel. The solutions were topped up with 'wet' D C M as the solvent evaporated. 

These reactions proceeded very slowly and were monitored using 3 1 P { ' H } N M R 

spectroscopy. 

6.6.2.1.1 Hydrolysis of PtCl2(PEt3)(PCl3) - Synthesis of cis-
PtCl2(PEt3)[P(OH)3] 

It was proposed that the hydrolysis o f the PC13 group would occur in three stages 

(Scheme 6.19). Careful hydrolysis o f cw-PtCl 2(PEt 3)(PCl 3) was carried out, and the 

progress of the reaction was monitored by 3 1 P { ' H } N M R spectroscopy. The reaction 
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proved to be very slow at room temperature and had not gone to completion after 12 
months. However, over this period o f time there were peaks in the 3 1 P { ' H } N M R spectra 
corresponding to four different complexes (Table 6.28). 

CK PCI 3 

\ / B 

^PEt , 
A 

77 

H 2 0 , -HC1 CK PCl 2 OH 
\ / D 

ci PEt 3 

c 
H 2 0 , - H C 1 

CK .PCl(OH) 2 CK P(OH) 3 

\ / F H 2 0, -HC1 \ / a 
Pt • Pt / \ / \ 

cr PEt 3 cr PEt 3 

E G 
121 122 

Scheme 6.19: Proposed synthesis o f c«-PtCl 2 (PEt 3 ) [P(OH) 3 ] 

5, ppm Muli tp l ic i ty Jvt-Vt Hz 2 
«/p_p, Hz 

Assignment 

101.6 d 6062 18 PB 

47.3 d 6495 23 Pi) 

39.6 d 5951 24 PF 

36.7 d 5823 23 PH 

17.6 d 2996 18 PA 

16.9 d 3245 23 Pc 

15.0 d 3506 23 PG 

14.5 d 3493 24 P E 

Table 6.28:31P{1H} N M R data for the hydrolysis of c/s-PtCl 2(PEt 3)(PCl 3) 
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t = 12 months 

7 months t 

3 months t 

1 month i 

E 

1 week 

t = 0 days 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ! I I I I I I I I I I I I I I I I I I I I I 

140 120 100 80 60 40 20 0 ppm 

Figure 6.19: Stackplot o f 3 I P { ' H } N M R spectra for the exposure of PtCl 2(PEt 3)(PCl 3) to 

air and 'wet' solvent over a period o f 12 months - synthesis of c/'s-PtCl 2(PEt 3)[P(OH) 3]. 

t = 0 is when PtCl 2(PEt 3)(PCl 3) was synthesised. 
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The N M R spectra show firstly the disappearance o f the peaks corresponding to P A and PB 

and the appearance of those corresponding to P f and P D Over time these peaks also 

disappeared and peaks corresponding to PK and PK , and then finally Po and Pn, appeared 

(Figure 6.19). As each chlorine is replaced by OH, a shift to lower frequency is observed 

for the doublet corresponding to the phosphorus atom is seen, compared with the PB 

resonance of the parent complex, cw-PtCl2(PEt3)(PCl3). This is consistent with the data 

reported for the hydrolysis o f cw-PtCl 2(PEt 3)(PEt 2Cl) and cw-PtCl 2(PEt 3)(PEt 2Cl) using 

NaOH. This spectroscopic evidence clearly supports the proposed pathway (Scheme 

6.19). 

6.6.2.1.2 Hydrolysis of PtCl2(PEt3)(PR'Cl2) - Attempted synthesis of cis-
PtCl2(PEt3)[PR'(OH)2] 

The attempted hydrolysis o f several c/s-PtCl 2(PR'Cl 2)(PEt 3) complexes was carried out 

and the progress o f the reaction was monitored by 3 , P { ' H } N M R spectroscopy. It was 

proposed that the hydrolysis of the PRC12 group would occur in two stages (Scheme 

6.20). For the c/s-PtCl 2(PR'Cl 2)(PEt 3) complexes where R '= Et, *Pr or Ph, the first 

hydrolysis product was obtained and there was no evidence o f the second hydrolysis 

product after 2 months (Table 6.29). 

CK PR'C12 Ck PR'Cl(OH) Ck PR'(OH) 2 

\ / B H O H C I \ / D H 2 0 , -HCI \ / p p t H 2 U , - H I J pj f ^ p / 
/ \ f \ / \ 

CI PEt 3 CI PEt 3 CI PEt 3 

A C E 

Scheme 6.20: Proposed synthesis o f cw-PtCl 2(PEt 3)[PEt(OH) 2] 
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cis-

PtCl 2 (PEt3)[PR'Cl(OH)] 

R ' = 

8Pc , 

ppm 

8 P D , 

ppm 

'•/pt-pc» 

Hz 

'•/pt-PDi 

Hz 

2/p.p, 

Hz 

Compound 

Number 

Et 15.6 94.6 3614 4387 20 123 

'Pr 15.4 96.5 3638 4323 19 124 

Ph 13.0 75.9 3553 4484 21 125 

Table 6.29: ^ P ^ H } N M R data for c/s-PtCl 2(PEt 3)[PR'Cl(OH)] where R' - Et, 'Pr and Ph 

For the three hydrolysis products obtained, a shift to lower frequency is seen for the 

doublet corresponding to P D , compared with that for P B o f the parent complex, 

cw-PtCl 2(PEt 3)(PR'Cl 2), as the chlorine is replaced by OH. This is consistent with the 

data reported for the hydrolysis o f c/s-PtCl 2(PEt 3)(PEt 2Cl) and cw-PtCl 2(PEt 3)(PEt 2Cl) 

using NaOH, 3 3 and for the hydrolysis o f c/s-PtCl 2(PEt 3)(PCl 3) (Section 6.6.2.1.1). The 

N M R spectra for each reaction, over a period o f time, showed firstly the disappearance o f 

the resonances corresponding to PA and P B and the growth of those corresponding to P(; 

and PD This is again consistent with the proposed hydrolysis pathway. 

During the monitoring period, ligand scrambling occurred for all reactions except that 

involving c/5-PtCl 2(P tBuCl 2)(PEt 3), probably because of the bulky phosphane ligand. The 

ligand scrambling products are shown in Table 6.30. 

The 3 1 P { 1 H } N M R data for both cis and /ra«s-PtCl 2 (PEt 3 )(PRCl 2 ) complexes are 

consistent with those previously reported.1 3' 2 3 In the attempted hydrolysis o f 

cw-PtCl 2(PEtCl 2)(PEt 3), the singlet at 84.3 ppm was assigned to cw-PtCl 2[PEtCl(OH)] 2 as 

the shift was significantly to lower frequency compared with that o f the PEtCl 2 in the 

parent Pt(II) complex, suggesting a hydrolysis product. The assignment o f 

c/s-PtCl 2[P'PrCl(OH)] 2 was made due to the chemical shift being similar to that for 

cM-PtCl 2(PEt 3)[P'PrCl(OH)], and also to lower frequency compared to the parent 

complex. 
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Parent 

Complex 

Ligand 

scrambling 

product 

8Pc, 

ppm 

8 P D , 

ppm Hz 

'•/pt-PD* 

Hz 

2/p.p, 

Hz 

Compound 

Number 

95,97, 

98, 99 
cw-PtCl2(PEt3)2 10.3 - 3518 - - 115 

95, 97 /rara-PtCl 2(PEt 3) 2 
13.3 - 2394 - - 126 

95 
cis-

PtCl 2[PEtCl(OH)] 2 

- 84.3 - 4470 - 127 

95 
trans-

PtCl 2(PEt 3)(PEtCl 2) 
19.7 119.2 2110 3064 422 128 

97 
cis-

PtCl 2[P iPrCl(OH)] 2 

- 86.7 - 4484 - 129 

97 
trans-

PtCljCP'PrCl^ 
20.1 114.1 3213 3626 418 130 

Table 6.30: 3 1 P { ' H } N M R data for products resulting from ligand scrambling in the 

attempted hydrolysis o f c/5-PtCl 2(PR'Cl 2)(PEt 3) where R' = Et, fPr, Cy and Ph 

( P c = PEt 3) 

6.6.2.1.3 Hydrolysis of PtCl2(PEt3)(PR2'Cl) - Attempted synthesis of cis-
PtCl2(PEt3)[PR2'(OH)] 

The attempted hydrolysis o f several cw-PtCl 2(PEt 3)(PR 2 'Cl) complexes were carried out 

and the progress o f the reaction was monitored by 3 1 P { ' H } N M R spectroscopy. It was 

proposed that the hydrolysis o f the PEt 2Cl group would occur as shown in Scheme 6.21. 

For the c/s-PtCl 2(PR 2 'Cl)(PEt 3) complexes where R'= Et or Cy, the hydrolysis product 

was obtained (Table 6.31). 
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CK PR'2C1 Ck PR' 2(OH) 
\ p / B H 2 0 , - H 0 V D 

/ \ / \ 
cr PEt 3 cr PEt 3 

A C 
R' = Et 131 
R' = Cy 132 

Scheme 6.21: Proposed synthesis o f cw-PtCl 2(PEt 3)[PR' 2(OH)] 

cis-

PtCI 2(PEt3)(PR2'(OH)) 

R ' = 

8Pc , 

ppm 

o P D , 

PPm 

'«/pt-pc» 

Hz Hz 

2/p.p, 

Hz 

Et 15.8 93.5 3672 4005 16 

Cy 13.1 97.5 3704 4023 16 

Table 6.31:31P{'H} N M R data for c/5-PtCl2(PEt3)[PR2'(OH)] where R' = Et or Cy 

Ligand scrambling was observed in all reactions, except that involving cis-

PtCl2(P tBu2Cl)(PEt3). Again this is probably because of the bulky phosphane ligand. The 

products resulting from ligand scrambling are shown in Table 6.32. 

Parent Ligand scrambling 8 P C , S P D , '•Jpt-pc* '•fpt-PD* Compound 

Complex product ppm ppm Hz Hz Number 

103,105, 

107,108 
c/5-PtCl 2(PEt 3) 2 10.3 - 3518 - 115 

105 c/5-PtCl 2(P'Pr 2Cl) 2 - 119.3 - 3995 133 

107 c/5-PtCl 2(PPh 2(OH)) 2 - 51.4 - 4098 134 

108 / ra«s-PtCl 2 (PCy 2 Cl) 2 - 110.5 - 3967 135 

Table 6.32: 3 1 P { 1 H } N M R data for products resulting from ligand scrambling in the 

attempted hydrolysis o f cw-PtCl 2(PEt 3)(PR'Cl 2) where R' = Et, jPr, Cy and Ph 

(Pc = PEt 3) 
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In the attempted hydrolysis of cz'.s-PtCl2(PEt3)(PPhCI2), a third platinum complex (136) 

containing three phosphane ligands was also observed in the 3 1 P { 1 H } N M R spectrum 

(Table 6.33, Figure 6.20). 

8, ppm Multiplicity 1Jpt-p* Hz 2-/pA-pc» Hz —2 
«/p-Pi Hz 

Assignment 

79.5 dd 2774 402 18 Pc 

62.0 t 3886 - 18 PB 

13.1 dd 2156 402 18 PA 

Table 6.33: 3 1 P { 1 H } N M R data for a by-product in the hydrolysis o f 

m-PtCl 2(PEt 3)(PPh 2Cl) 

From the chemical shifts of the signals the three phosphane ligands must be different. P A 

and P f have similar shifts to PEt3 and PPh2Cl in the parent complex. The third phosphane 

can be assigned to PPh 2OH as the signal is to lower frequency than that for PPh 2Cl, as 

previously observed for hydrolysed chlorophosphanes.16' 2 1 2 3 The ' j p t - p coupling 

constants also agree with this assignment as PA and Pf; have values typical for trans 

complexes, which dominates coupling, and P B has a typical value for a cis complex. 

ClPh 2 P. PPh 2 (OH) 
C \ / R 

Pt 
/ \ 

c i P E t 3 

A 

136 

Figure 6.20: Proposed by-product in the hydrolysis o f c/'s-PtCl2(PEt3)(PPh2Cl) 

A third platinum complex containing three phosphane ligands was also observed in the 
3 1 P { ' H } N M R spectrum o f the attempted hydrolysis o f cw-PtCl 2(PPhCl 2)(PEt 3) (Table 

6.34). The 3 1 P{*H} N M R data clearly show that there are three phosphane ligands, and 

that two of the phosphanes are identical and are trans to each other. The shifts suggest 

that the phosphanes are Cy 2PCl and PEt3, as they are similar to those observed for the 
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parent complex, with the proposed complex (137) (Figure 6.21). Upon standing 
crystalline material was obtained. However single crystal X-ray diffraction studies 
showed the structure to be c/s-PtCl2(PEt3)2.CDCl3, a product o f ligand scrambling, which 
w i l l be discussed in more detail in Section 6.6.2.2.3. 

8, ppm Multiplicity 1Jpt-Pi Hz 2JP\-PB, Hz Assignment 

114.9 d 2546 17 PB 

14.5 t 3622 18 PA 

Table 6.34: 3 , P { 1 H } N M R data for a by-product in the hydrolysis o f 

cw-PtCl 2(PEt 3)(PCy 2Cl) (137) 

CK PCy 2 Cl 

Pt " 

ClCyzP^ X P E t 3 

B A 

137 

Figure 6.2T. Proposed by-product in the hydrolysis o f c/5-PtCl2(PEt3)(PCy2) 

6.6.2.2 Hydrolysis reactions using 2-aminobenzyl alcohol 

Reactions carried out by Dyer and Wright suggested that 2-aminobenzyl alcohol could be 

used as a mild, anhydrous source of OH". 4 1 This prompted an investigation into the 

potential application o f 2-aminobenzyl alcohol in hydrolysis reactions o f Pt(II) 

chlorophosphane complexes. 
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6.6.2.2.1 Hydrolysis of cw-PtCl2(PEt3)(PCl3) using 2-aminobenzyl 
alcohol -Synthesis of c/s-PtCl2(PEt3)[PCl2(OH)] and cis-
PtCl2(PEt3)[PCl(OH)2] 

A mixture o f two complexes were observed in a 3 1 P { ' H } N M R spectrum recorded 15 

minutes after the addition of 2-aminobenzyl alcohol to a solution o f 

cw-PtCl2(PEt3)(PCl3). The proposed reaction is shown in Scheme 6.22. The main 

component (70%) was the parent complex, c w - P t C l 2 ( P E t 3 ) ( P C l 3 ) (d, 5 P A 101.5 ppm, 1
 J P t - p 

= 6044 Hz, V P . P = 18 Hz, d, 5 P B 17.8 ppm, =2979 Hz, 2 J P _ P = 18 Hz). The other 

complex (30%) was assigned to a product o f hydrolysis (138). Complete conversion to 

this hydrolysed product occurred in 5 hours (Figure 6.22). 

NH 

Civ PC13 

CI PEt 3 

A 

CK PCl 2(OH) 
X / D 

Pt 
/ \ 

c r PEt 3 

c 

NH 

OH 

NH 

C l v ^PCKOHJi 
\ / F 

Pt 
/ \ + 

c r PEt 3 

NH, 

CI 

Scheme 6.22: Proposed hydrolysis o f c/5-PtCl2(PEt3)(PCl3) using 2-aminobenzyl alcohol 
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PD 

Pc 

J . JUL. _ L 

/ 
PA 

120 100 80 60 40 20 

Figure 6.22: 3 1 P { 1 H } N M R data for the reaction between cw-PtCl 2(PEt 3)(PCl 3) and 

2-aminobenzyl alcohol. Bottom: parent complex, top: spectrum after 5 hours of reaction 

ppm 

Upon standing, a solution of 138 afforded colourless crystals that were suitable for 

analysis by X-ray diffraction, the resulting molecular structure being shown in Figure 

6.23. Selected bond lengths and angles are shown in Table 6.35. 

As observed with the parent Pt(II) complex, 77, the molecular structure of 138 reveals a 

near square planar platinum centre (sum o f angles = 359.98°). There is some distortion 

around the Pt(II) centre, with the angles around Pt varying from 86.25(7) to 93.97(10)° 

and the larger P(l)-Pt(l)-P(2) angle to accommodate the bulkier phosphane groups. The 

Pt( l )-P(l) bond is shorter that the Pt(l)-P(2) bond length, which is consistent with more 

electronegative substituents on P( l ) . 

The P(l)-0(1) bond length is significantly shorter than P-0 bond lengths in complexes 

containing [P(OH) 3] {e.g. 1.565(4) - 1.581(4) A in c/s-[PtCl 2(PEt 3)(P(OH) 3] 1 8 or 

1.561(12) A in { [Mo 3 PdP(OH) 3 S 4 Cl 3 (H 2 O) 6 ] (C 3 6 H 3 6 N 2 4 Oi 2 )}Cl 2 . 20H 2 O)) 1 9 , compounds 

containing P-O-H-O-P links {e.g. 1.562 and 1.581 A in [Mo(CO) 4 {(PPh 2 0) 2 H}]" ) 4 2 or in 
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other products o f hydrolyis (e.g. 1.581(4) and 1.597(5) A in c/.y-[PtCl 2(PPh 2OH) 2]) 2 2. 
This is expected since the product is a salt. 

Hydrogen bonding is present within this structure, with the NH3 group on the protonated 

2-aminobenzylchloride hydrogen bonding to the oxygen in the hydrolysed Pt(II) 

complex, as well as to chlorine atoms in other molecules. 

Bond Length /A Bond Angle 1° 
Pt ( l ) -P( l ) 2.217(2) P(l)-Pt( l ) -P(2) 93.97(10) 
Pt(l)-P(2) 2.267(3) P(l>-Pt(l)-Cl(4) 89.96(8) 
P(1)-C1(2) 2.041(4) P(2)-Pt(l)-Cl(5) 89.80(9) 
PO) -O( l ) 1.474(6) Cl(4>-Pt(l)-Cl(5) 86.25(7) 

Table 6.35: Selected bond lengths and angles for 138 

CM 

CI3 
Pt1 

CI2 P1 

P2 01 

CI1 

Figure 6.23: The molecular structure o f 138, showing the numbering scheme for the key 

atoms. Thermal ellipsoids are drawn at 50 % probability. 
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The difference in chemical shifts is obviously due to the product of hydrolysis from 

exposure to air and 'wet' solvent, c/'.s-PtCl2(PEt3)[PCI2OH] (120) is not a salt, whereas 

the product of the hydrolysis reaction using 2-aminobenzyl alcohol is the salt, 

[PtCl2(PEt3)(PCl20)] [l,2-C6H4(CH2Cl)(NH3)]+(138), A similar change in shift has been 

reported in other systems (Table 6.36). 1 6 

First product of hydrolysis Second product of hydrolysis 

120 138 121 139 

5 P c , ppm 16.9 17.3 8 P E , ppm 14.5 18.6 

5 P D , ppm 47.3 72.7 8 P F , ppm 39.6 62.1* 

'•/pt-pc, Hz 3245 3237 '•/pt-PE, Hz 3493 3390 

'•/pt-PD. Hz 6495 5904 '•At-PF, Hz 5823 -6000 

2-/PC-PD, Hz 23 22 VPE-PF, HZ 24 24 

Table 6.36: 3 1 P{ 1 H} NMR data for the first and second hydrolysis products of 

c/s-PtCl2(PEt3)(PCl3) obtained through exposure to air and 'wet' solvent and using 

2-aminobenzyl alcohol (* broad signal) 

Since the reaction using 2-amino benzyl appeared to be selective, with only one CI being 

replaced by OH with the addition of one equivalent, it was proposed that by adding two 

equivalents of 2-aminobenzyl alcohol the second stage of hydrolysis product, 

cw-PtCl2(PEt3)[PCI(OH)2] (or the corresponding salt), would be obtained. 

Fifteen minutes after the addition of 2-aminobenzyl alcohol, a 3 I P { ' H } NMR spectrum 

showed no signals corresponding to the parent complex, c/5-PtCl 2(PEt 3)(PCl 3). The main 

product of the reaction was the first hydrolysis product 138, although signals 

corresponding to a second platinum-containing complex (a minor product) were apparent. 

The data suggest that this could be the second stage of hydrolysis product, as the shift of 

the P D resonance is to lower frequency, while there is a decrease in the value of './pt-PD 

and also there is an increase in the value of lJpi.pc- The broad signals suggest that 

exchange is taking place. 
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However the 3 1 P { ' H } NMR data for this second hydrolysis product are not consistent 

with those obtained for 121 from the slow hydrolysis of the parent complex through 

exposure to air and 'wet' solvent (Table 6.36). As seen in the previous reaction, there is a 

difference in shift for P F of the product obtained when using 2-aminobenzyl alcohol 

compared to that obtained by slow hydrolysis. This suggests that the product obtained is 

again a salt, [PtCl2(PEt3)(PCl(OH)0)]"[l,2-C6H4(CH2Cl)(NH3)]+(139) 

6.6.2.2.2 Hydrolysis of cw-PtCl2(PEt3)(PR'Cl2) using 2-aminobenzyl 
alcohol 

Following the successful hydrolysis of cz's-PtCl2(PEt3)(PCl3) using 2-aminobenzyl 

alcohol, it was proposed that hydrolysis of cw-PtCl 2(PEt3)(PR'Cl 2) complexes would also 

occur in a stepwise fashion (Scheme 6.23). 

NH, 

CL PR'CI 2 

\ / B 

/ • V 
ci PEt 3 

A 

u ^ O H 

CK PR'(CI)(OH) 
\ / D 

Pt 

C l ^ PEt 3 

C 

Scheme 6.23: Proposed synthesis of c/5-PtCl2(PEt3)(PR'(Cl)(OH)) using 2-aminobenzyl 

alcohol 

Addition of one equivalent of 2-aminobenzyl alcohol to c/s-PtCl 2(PEt3)(PR'Cl 2) 

complexes afforded the hydrolysed product although 100% conversion was not achieved, 

even after one week (Table 6.37, Table 6.38). Formation of hydrolysed products is much 

faster compared to those by exposure to air and 'wet' solvent discussed in Section 

6.6.2.1. However some ligand scrambling was observed to afford a small amount of 

cw-PtCl 2(PEt 3) 2 in all the reactions (s, 8 10.2 ppm, = 3515 Hz) 1 3 ' 2 3 For the 

hydrolysis products of cz's-PtCl 2(PEt 3)(PR'Cl 2) complexes where R' = Et and 'Pr, the 
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3 I P { ' H } NMR data obtained is comparable to those from the products of hydrolysis 
through exposure to air and 'wet' solvents. This suggests that the products are non-salts. 

However, the 3 1 P { ' H } NMR spectrum for the product of hydrolysis of 

c/.s-PtCI2(PEt3)(PPhCl2) using 2-aminobenzyl alcohol suggests that it is the salt 

[PtCl 2(PEt 3)(PPhCl(0)]" [1,2-C6H4(CH2C1)(NH3)]+(143), as there is a large difference in 

shift of P D compared to 1 2 5 obtained by slow hydrolysis (Table 6.39). 

cis-

PtCl 2 (PEt 3 ) [PR'CI(OH)l 

R' = 

8 P c , 

ppm 

8 P D , 

ppm Hz Hz 

2/p.p, 

Hz 

Compound 

Number 

Et 17.1 95.7 3576 4421 16 1 2 3 

"Pr 17.1 93.5 3549 4404 17 140 

'Pr 16.7 101.3 3601 4367 16 1 2 4 

Cy 16.5 99.0 3615 4087 16 141 

lBu 16.3 106.9 3540 4358 15 142 

Table 6.37:3IP{'H} NMR data for cis- PtCl 2(PEt 3)[PR'Cl(OH)] complexes synthesised 

using 2-aminobenzyl alcohol 

R'= 
Initial Spectrum 

Parent: Hydrolysis 

Spectrum after 1 week 

Parent: Hydrolysis 

E t P C I 2 
1:1 -

n P r P C l 2 2:1 2:1 

'PrPCI 2 2:1 2:3 

Ph 1:2 -

Cy 1:2 -

Table 6.38: Ratios of parent complex to cis- PtCl 2(PEt 3)[PR'Cl(OH)] complexes 
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c«-PtCI 2 (PEt 3 )[PPhCI(OH)] 
[PtCl 2 (PEt 3 ) (PPhCl(0) ] 

[ 1 , 2 - C 6 H 4 ( C H 2 C I ) ( N H 3 ) ] + 

Compound number 1 2 5 1 4 3 

8 P c , ppm 13.0 13.7 

8 P„, ppm 75.9 92.7 

'•̂ pt-po Hz 3553 3350 

'•̂ pt-PD. Hz 4484 4698 

2«/pc-PD» Hz 21 19 

Table 6.39:3IP{'H} NMR data for the hydrolysis products cw-PtCl 2(PEt 3)[PPhCl(OH)] 

and [PtCI 2(PEt 3)(PPhCl(0)]-[ 1,2C 6H 4(CH 2C1)(NH 3)] + 

In the reaction between c/5-PtCl 2(PEt 3)(PPhCI 2) and one equivalent of 2-aminobenzyl 

alcohol, a small amount of the second hydrolysis product, cw-PtCI 2(PEt 3)(PR'(OH) 2) was 

synthesised ( 1 4 6 ) (Table 6.40). By replacing CI with OH, there is a shift to lower 

frequency of the doublet resonance corresponding to PF in the 3 I P { ' H } NMR spectrum, a 

reduction in the magnitude of 'Jpt-PF and an increase in xJ?\-?v. compared to that 

determined for the parent complex, and the first hydrolysis product ( 143 ) . 

5, ppm Mulitplicity '/pt.p.Hz Vp.p.Hz Assignment 

78.2 d 4614 18 PF 

16.4 d 3504 18 P E 

Table 6.40: 3 I P { ' H } NMR data for the second hydrolysis product of 

cw-PtCl 2(PEt 3)(PPhCl 2) using 2-aminobenzyl alcohol ( 1 4 6 ) 
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6.6.2.2.3 Hydrolysis of cis-PtCl2(PEt3)(PR2'Cl) using 2-aminobenzyl 
alcohol 

It was proposed that hydrolysis of c«-PtCl 2(PEt3)(PR 2'Cl) complexes using 

2-aminobenzyl alcohol would also occur to afford only one product (Scheme 6.24). 

NH 

CK PR' 2 CI 
\ / B 

Pt 

G / PEt 3 

A 

OH Clv^ ^ P R ' 2 ( O H ) 

CI PEt 3 

c 

Scheme 6.24: Proposed hydrolysis of c/.s-PtCl 2(PEt 3)(PR' 2Cl) using 2-aminobenzyl 

alcohol 

Reaction of c;'5-PtCl 2(PEt 3)(PEt 2Cl) with 2-aminobenzyl alcohol should afford only one 

hydrolysis product (Scheme 6.24). A 3 1 P { ' H } NMR spectrum recorded soon after the 

addition of 2-aminobenzyl alcohol showed signals corresponding to the parent complex, 

103 (d, 5 106.4 ppm, XJH.? = 4042 Hz, 2JP.P = 13 Hz, d, 5 15.8 ppm, ' jpt.p = 3467 Hz, 

V P -p = 13 Hz) and c/s-PtCl 2 (PEt 3 ) 2 ,114 (s, 8 10.3 ppm, ' ^ . p = 3515 Hz), showing that 

some ligand scrambling was already taking place. However, there were signals 

corresponding to a c/s-platinum complex, which was assigned as the hydrolysis product, 

cw-PtCI 2(PEt 3)[PEt 2(OH)], 131 (Table 6.41). The 3 I P { ' H } NMR data is similar to those 

obtained from the product obtained through exposure of c/s-PtCl2(PEt3)(PEt2Cl) to air 

and 'wet' solvent. This suggests the product is a non-salt. 

8, ppm Multiplicity ' / H P, Hz 2«/pc-PDi Hz Assignment 

34.6 d 3947 15 PD 

10.7 d 3645 15 Pc 

Table 6.41:3,P{1H} NMR data for cw-PtCl 2(PEt 3)[PEt 2(OH)], 131 
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Analogous reactions between c/.s-PtCl 2(PEt 3)(PR 2'CI) (where R'= 'Pr, 'Bu, Cy or Cpent) 

and 2-aminobenzyl alcohol did not afford the expected hydrolysis products, and for the 

'Pr and 'Bu systems no reaction at all was observed. This has been attributed to the 

presence of the bulky phosphane ligands. However, in the reaction between 

cw-PtCl 2(PEt 3)(PCy 2'CI) and 2-aminobenzyl alcohol, signals were seen corresponding to 

cw-PtCl 2(PEt 3) 2 ( 1 1 4 ) (s, 5 10.3 ppm, % . P = 3513 H z ) . 1 3 ' 2 3 Similarly in the reaction 

between c/'s-PtCl2(PEt3)(PCpent2'Cl) and 2-aminobenzyl alcohol, signals corresponding 

to 114 and c/s-PtCl 2(PCpent 2Cl) 2 ( 1 1 9 ) (s, 5 108.1 ppm, lJpt.P = 4037 Hz) were observed 

in the 3 1 P { ' H } NMR spectrum of the reaction mixture, indicating that ligand scrambling 

was taking place. 

Upon standing, the c/s-PtCl 2(PEt 3)(PCpent 2'Cl) and 2-aminobenzyl alcohol reaction 

mixture afforded colourless crystals of c/s-PtCl 2 (PEt 3 ) 2 .CDCl 3 ( 1 1 5 ) that were suitable 

for analysis by X-ray diffraction; data were collected at 120K. The resulting molecular 

structure is shown in Figure 6.24. This compound is a pseudo-polymorph (or solvate) of 

cw-PtCI 2(PEt 3) 2 previously reported by Otto and Muller, 2 8 where no solvent was present. 

Single crystal X-ray diffraction studies were also carried out at 220K on 115 , the 

resulting molecular structure being shown in Figure 6.25. The Pt-P and Pt-Cl bond 

lengths and angles are similar to those reported by Otto and Muller. 2 8 Selected bond 

distances and angles for all three pseudo polymorphs are listed in Table 6.42. 
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Figure 6.24: The molecular structure o f 115 at 120K, showing the numbering scheme for 

the key atoms. Thermal ellipsoids are drawn at 50 % probability. 
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Figure 6.25: The molecular structure o f 115p at 220K, showing the numbering scheme 

for the key atoms. Thermal ellipsoids are drawn at 50 % probability. 
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120K 220K Otto and 
Muller 2 8 

Space Group Orthorhombic Pmna Monoclinic 
Bond Length /A 

Pt(l)-P(l) 2.2562(11) 2.2525(16) 2.264(2) 
Pt(l)-P(2) 2.2529(11) 2.2525(16) 2.262(2) 
Pt(l)-Cl(4) 2.3673(11) 2.3618(17) 2.364(2) 
p t ( in : i (5 ) 2.3699(10) 2.3618(17)) 2.374(2) 

Bond Angle 1° 
P(l)-Pt(l)-P(2) 103.87(4) 104.82(9) 98.39(7) 
P(l)-Pt(l)-Cl(l) 85.17(4) 84.63(6) 84.63(9) 
P(2)-Pt(l)-Cl(2) 85.10(4) 84.63(6) 91.33(7) 
Cl(l)-Pt(l>-CI(2) 85.93(4) 85.92(10) 85.66(9) 

Table 6.42: Selected bond lengths and angles for c/'s-PtCl2(PEt3)2.CDCl3, at 120K and 

220K, and for c«-PtCl 2 (PEt 3 ) 2

 2 8 

The change in space group for c/s-PtCl2(PEt3)2 CDCI3 at different temperatures is due to 

the CDCI3 molecule spinning at higher temperature. This forms a mirror plane through 

both the Pt(II) complex and the CDCI3 molecule. At lower temperatures the CDCI3 stops 

spinning but not on the mirror plane. This results in the disappearance of the mirror 

plane, which changes the space group. 

6.7 Conclusions 

Numerous Pt(II) complexes containing five-, six- and seven-membered ring cyclic 

triphosphenium ions have now been synthesised via a reaction between the cyclic 

triphosphenium ion and /rans-[Pt(PR 3)Cl(n-Cl)] 2, where PR 3 is PEt 3 , PPh2Me or PPhMe2. 

Using this method the cis and/or trans complexes can form (Scheme 6.1). If the 

substituents are very bulky, e.g. using the cyclic triphosphenium ion derived from dtbpox, 

only the trans isomer forms.1 However, with less bulky substituents the trans complex 

often forms initially as the kinetic product of the reaction, but then converts to the more 

thermodynamically stable cis complex. 
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An important and interesting feature of both cis and trans complexes containing cyclic 

triphosphenium ions is the 'jpt-p coupling constant to the phosphenium central P. The 

magnitudes of these couplings are unusually small with values between 1104-1267 Hz for 

cis and 981-1245 for trans Hz. The other 'jpt.p coupling constant to the PR3 within the 

complexes are as expected for cis or trans couplings. This suggests that the bond between 

the phosphenium central P atom and the Pt centre is long, which is not surprising due to 

the cationic nature of the cyclic triphosphenium ion ligand. Unfortunately isolation of 

crystalline products was unsuccessful for any of these complexes, and so the reason for 

the small 'jpt.p value has not yet been established conclusively. 

Further supporting evidence for the proposal of a long Pt-P bond is found when 

comparing 'Jpt-pn coupling constants for the trans cyclic triphosphenium ion complexes, 

with literature values for trans phosphorus ligands. The 'Jpt-PM couplings observed for the 

trans cyclic triphosphenium ion complexes are much larger than those observed for 

phosphanes containing alkyl groups, and are more consistent with those reported for 

more electronegative ligands on platinum (Table 6.43). This could be due to a shortening 

of the Pt-PR3 bond because the Pt-Pc bond trans to it is long. There would not be as 

significant an effect in the cis complexes. 

This study into the synthesis of some Pt(II) chlorophosphane complexes, and their 

hydrolysis reactions, has led to some interesting results. For cw-complexes, large values 

of % - P were observed in all cases (2996-6062 Hz), along with small values of 2Jp.p 

(12-18 Hz). For the /raws-complexes the Vp.p values are much larger (494-614 Hz), 

whereas lJpt.P values are much smaller (2266-2781 Hz). This is consistent with the data 

reported by Pidock et al.43 and Grim et al.44 for similar complexes. As expected, with 

more electronegative substituents on the phosphane, the shift is to higher frequency and 

'jpt.p is much larger.43 Where both cis and trans parent complexes were synthesised, the 

chemical shift of the chlorophosphane ligand (PB) of the trans complex was always to 

higher frequency than that for the cis. Also the cis complexes had significantly larger 
1 Jpt.p coupling constants compared to those for the corresponding trans complexes. 
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Complex P. P2 Reference 

70b 3b PPh2Me 2783 * 

86b l i b PEt3 2842 * 

87b l i b PPhMe2 2512 

88a 11a PPh2Me 2586 * 

90a 13a PEt3 2840 * 

90b 13b PEt3 2842 * 

91b 13b PPh2Me 2873 * 

Pt Bu 
c r > E t 3 

PEt3 PEt3 2372 45 

H A 
P h 2 P ^ / P P h 2 

Cr PPhMe2 

PPH2- PPhMe2 2371 46 

/raAw-PtCl2(PEt3)(ArPCl2) ArPCl 2 PEt3 2886 47 

/ra/w-PtCl2(PEt3)(Ar' PF2) Ar'PF 2 PEt3 2723 48 

/rara-PtCl2(PEt3)(Ar" PCI) Ar"PCl PEt3 2686 49 

/ra^-PtCl2(PEt3)(Ar'' PH) Ar"PH PEt3 2677 49 

rra/w-PtCl2(PEt3)(Ar'' PBr) Ar"PBr PEt3 2638 49 

Table 6.43: 3 1 P{ 'H} NMR data for trans complexes obtained in this work and literature 

data for similar trans complexes (* this work) 

Using the parent complexes containing the chlorophosphanes EtPCl2, 'PrPC^, PhPCl2, 

Et2PCl and Cy2PCl, a hydrolysed product was observed in each case. However, none of 

these reactions resulted in complete conversion to the hydrolysed product. 
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As each chlorine is replaced by OH, a shift to lower frequency for the doublet 

corresponding to P», compared to PR of the parent complex, c;.y-PtCl2(PEt3)(PCl3) is 

observed. This shift to lower frequency is due to the CI being replaced by the less 

electronegative OH. Also 'jpt-po decreases in value and './pt-pc increases in value 

compared to that of the parent complex. In most cases, with the exception of the 

complexes containing 'BuPCb and 'B^PCl , ligand scrambling occurred. This method is 

obviously not the optimum route to the hydrolysis of the P-Cl bond(s) in the coordination 

sphere of Pt(II). 

Using 2-aminobenzyl alcohol as a mild source of OH" was more successful, and in most 

cases ligand scrambling did not occur. It is thought that the reaction proceeds as shown in 

Scheme 6.25. 

TO c c NH NH C 
C PR Pt \ / B + 

Pt OH PR PEt 
C PEt H 

CI 

NH NH PR2(OH) ( CI PR2(OH) C 
\ / D D Pt Pt 

CI 
c PEt CI PEt 

Scheme 6.25: Proposed reaction pathway for the hydrolysis of cis-

PtCl2(PEt3)(chlorophosphane) using 2-aminobenzyl alcohol 

Single crystal X-ray diffraction studies carried out on the product of the reaction between 

c/'i-PtCl2(PEt3)(PCl3) and one equivalent of 2-aminobenzyl alcohol showed the 
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hydrolysed product to be a salt. This accounts for the discrepancy in the 3 1 P{ 'H} NMR 

data for the compound compared to those obtained through exposure of the parent 

complex to air and 'wet' solvent. Although the isolated product from the hydrolysis of 

c/s-PtCl2(PEt3)(PCl3) using 2-aminobenzyl alcohol was a salt, the 3 1 P{ 'H} NMR data 

obtained for other systems suggests that a salt is not always formed as the product of the 

hydrolysis reaction (Table 6.44). 

cis-

Cl 2Pt(PEt 3)(L) 

L = 

Exposure to air and 'wet' solvents Using 2-aminobenzyl alcohol cis-

Cl 2Pt(PEt 3)(L) 

L = 
SPD, 

ppm 

VptpD, 

Hz 

8Pc, 

ppm 

Vptpe* 

Hz 

Vp.p, 

Hz 

8PD, 

ppm 

VptpD, 

Hz 

8Pc, 

ppm 

Jptvc, 

Hz 

Vp.p, 

Hz 

PCl2(OH)* 47.3 6495 16.9 3245 23 72.7 5904 17.3 3237 22 

PCl(OH)2* 39.6 5951 14.5 3493 24 62.1 -6000 18.6 3390 24 

P(OH)3 36.7 5823 15.0 3506 23 - - - - § 

PEtCl(OH) 94.6 4397 15.6 3614 20 95.7 4421 17.1 3576 16 

P'PrCl(OH) 96.5 4323 15.4 3638 19 101.3 4367 16.7 3601 16 

PPhCl(OH)* 75.9 4484 13.0 3553 21 92.7 4698 13.7 3350 19 

PEt(OH)2 93.5 4005 15.8 3672 16 34.6 3947 10.7 3645 15 

PCy2(OH) 97.5 4023 13.1 3704 16 - - - - -
PnPrCl(OH) - - - - - 93.5 4404 17.1 3549 17 

PPh(OH)2* - - - - - 78.2 4614 16.4 3504 18 

PCyCl(OH) - - - - 99.0 4087 16.5 3615 16 

P'BuCl(OH) - - - - - 106.9 4358 16.3 3540 15 

Table 6.44: Table containing 3 1 P{ 'H} NMR data for hydrolysis products of Pt(II) 

complexes containing chlorophosphanes (* salts formed when using 2-aminobenzyl 

alcohol) 

Ligands which are stronger acids, e.g. PC13, favour formation of a salt as the product. 

However weaker acids, e.g. ligands containing ethyl or /.so-propyl groups, seem to favour 

non-salt formation (or possibly equilibrate between salt and non-salt). Comparisons 

between 3 I P{ 'H} NMR data obtained for the hydrolysis reactions through exposure to air 
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and 'wet' solvent, and when using 2-aminobenzyl alcohol (Table 6.44) suggest that salt 

formation has occurred for L = PCl2(OH), PCl(OH)2, PPhCl(OH) and probably 

PPh(OH)2. In the other cases it seems likely that the product is a non-salt or perhaps in an 

equilibrium as the 3 I P{ 'H} NMR data (where obtained) are very similar when the 

hydrolysis was carried out by both methods. 

6.8 Experimental 

6.8.1 Three-stage synthesis of fra«s-[Pt(PEt3)Cl(n-Cl)]2 

A three step literature method was followed to synthesise /ra«5-[Pt(PEt3)Cl(u-Cl)]2 

(Scheme 6.26). 5 0 

PtCl, 
excess 

PhCN 

C l ^ / P h C N 

Pt 
/ \ 

CI PhCN 

C l x / P E t a 

Pt 
/ \ 

CI P E t 3 

PtCI, 

CI C I P E t 3 

Scheme 6.26: Synthesis of /ra/w-[Pt(PEt3)CI(|j.-Cl)]2, a three step reaction 50 

Step 1: Synthesis of c«-[PtCI2(PhCN)2] 50 

PtCl2 (6.1956 g, 23.3 mmol) was added to PhCN (60 mL). The resulting solution was 

dark brown and was heated to 100°C for 30 minutes until the solution was yellow in 

colour. The solution was then cooled overnight. A yellow precipitate formed so the 
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solution was filtered, the crystals washed with petroleum ether and dried under vacuum. 
Yield = 8.94 g (81%). 

Step 2: Synthesis of cis-[PtCI2(PEt3)2]50 

PEt3 (6.0 mL, 4.8 g, 40.6 mmol) was added to a solution of cw-[PtCl2(PhCN)2] (8.94 g, 

19.0 mmol) dissolved in CH2CI2 (50 mL). The reaction mixture was then stirred for 18 

hours at RT. Solvent was removed in vacuo, upon which white crystals formed along 

with a yellow oil. Hexane (20 mL) was then added and the suspension stirred at RT for 

30 minutes, after which time the colour had changed from yellow to white. The reaction 

was filtered via a cannula filter, yielding a thick white oil. A 3 I P{ 'H} NMR spectrum 

showed that along with the desired product, c/5-[PtCl2(PEt3)2], a trisubstituted Pt complex 

also formed, [PtCl(PEt3)3]+ (d, 5P 18.3 ppm = 2278, t, 5P 11.3 ppm - 3439).13 

This mixture was used in Step 3 without separation. 

Step 3: Synthesis of fra/is-[Pt(PEt3)Cl(n-CI)]2

50 

cw-[PtCI2(PEt3)2], (9.95 g, 19.9 mmol - assuming all the product was PtCl2(PEt3)2), was 

added to a solution of PtCl2 (10.52 g, 39.7 mmol) dissolved in (CHC12)2 (20 mL). The 

solution was then heated to 150°C for two hours. During this time the solution turned 

black in colour. When the solution was cooled, orange crystals formed. The black 

solution was assumed to be platinum black. 100 mL of DCM was added to dissolve the 

crystals. A very fine filter cannula was then used to remove the solution containing the 

crystals. The solution was bright yellow. The solvent was then removed in vacuo and 

recrystallised using DCM. Yield = 7.87 g (79%). 

3 I P (300 MHz, CDC13): 8 11.4 ppm (s, ' 7 ^ = 3844 Hz) 

Elemental Analysis: Calculated: %C 18.76, %H 3.94, %N 0.0 

Actual: %C 18.52, %H 3.91, %N 0.0 
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The 3 l P{'H} NMRdata were in good agreement with those previously reported, and the 

analysis results were in good agreement with calculated values, so the dimer was used 

without further purification. 1 ' 4 9 

6.8.2 Synthesis of /ra«j-[Pt(PEt 3)Cl(^-Cl)] 2- An alternative method51 

PtCl2(4.53 g, 17.1 mmol) and PEt3 (2.4 mL, 16.0 mmol) were added to p-chlorotoluene 

(15mL) and the mixture was stirred to give a dark brown muddy coloured solution. This 

was then heated to 250°C for 120 minutes. The solvent was then removed in vacuo to 

afford a dark brown solid. DCM (20 mL) was then added and the solution was filtered 

through celite. The solid was washed with further quantities of DCM until the filtrate ran 

clear. Upon standing overnight bright orange crystals formed. These were recrystallised 

from DCM. Yield = 10.56 g (76%). 

3 1 P (300 MHz, CDC13): 8 11.5 ppm (s, lJn.P= 3839 Hz) 

Elemental Analysis: Calculated: %C 18.76, %H 3.94, %N 0.0 

Actual: %C 18.89, %H 3.95, %N 0.0 

6.8.3 Synthesis of *ra™-[Pt(PPh2Me)Cl(n-Cl)]2 dimer 5 1 , 5 2 

PtCl2 (2.11 g, 7.96 mmol) and PPh2Me (1.4 mL, 7.41 mmol) were added to p-

chlorotoluene (lOmL) and the mixture was stirred to give a dark brown muddy coloured 

solution. This was then heated to 180°C for 90 minutes. The solvent was then removed in 

vacuo to afford a dark brown solid. DCM (20 mL) was then added and the solution was 

filtered through celite. The solid was washed with further quantities of DCM until the 

filtrate ran clear. The yellow filtrate was then concentrated to approximately 10 mL and 

pentane (40 mL) added. Upon addition of pentane, a yellow precipitate formed. The 

solution was then filtered to isolate the yellow solid. Yield = 9.12 g (54 % ) . 
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3 , P (300 MHz, C D C I 3 ) : 6 -6.4 ppm (s, ' j p , ^ 4003 Hz) 

Elemental Analysis: Calculated: %C 33.49, %H 2.81, %N 0.0 

Actual: %C 33.19, %H 2.87, %N 0.0 

6.8.4 Synthesis of fra«s-[Pt(PPhMe2)Cl(u-Cl)]2 dimer51 

PtCb (2.1 g, 7.96 mmol) and PPhMe2(1.4 mL, 7.41 mmol) were added to p-chlorotoluene 

(lOmL) and the mixture was stirred to give a dark brown muddy coloured solution. This 

was then heated to 180°C for 90 minutes. The solvent was then removed in vacuo to 

afford a dark brown solid. DCM (30 mL) was then added and the solution was filtered 

through celite. The solid was washed with further quantities of DCM until the filtrate ran 

clear. The filtrate was then concentrated to approximately 10 mL and pentane (40 mL) 

added. Upon addition of pentane, a yellow precipitate formed. The solution was then 

filtered to isolate the yellow solid. Yield = 11.33 g (77%) 

3 , P (300 MHz, CDCI3) : 8 -70.0 ppm (s, %.,>= 3928 Hz) 

Elemental Analysis: Calculated: %C 23.78, %H 2.74, %N 0.0 

Actual: %C 23.76, %H 2.75, %N 0.0 

6.8.5 Synthesis of Pt(II) complexes containing cyclic triphosphenium ions 

It is noteworthy that these compounds are sensitive to both air and moisture so reactions 

were carried out in an inert atmosphere. 

Example Reaction: 

Reaction of the depe cyclic triphosphenium ion with /ra/w-[Pt(PPhMe2)Cl(u.-Cr)]2 

depe (0.0300 g, 0.14 mmol) and SnCl2 (0.0265 g, 0.14 mmol) were dissolved in 1.0 mL 

CDCI3 . PCI3 (0.014 mL, 0.14 mmol) was then added and a 3 1 P{ 'H} NMR spectrum 

recorded soon after mixing to confirm the formation of the cyclic triphosphenium ion. 

When necessary residual PCI3 was removed in vacuo. fra/w-[Pt(PPhMe2)Cl(n-Cl)]2 dimer 

(0.0560 g, 0.07 mmol) was then added to the solution. 
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Quantities of reagents used: 

Compound 

Number 

Quantity of 

diphosphane 

Quantity of 

PC13 

Quantity of 

SnCl 2 

Quantity of 

Pt dimer 
Compound 

Number 
g mmol mL mmol g mmol g mmol 

64b 0.0300 0.14 0.014 0.14 0.0265 0.14 0.0560 0.07 

2a repeat 0.0427 0.21 0.020 0.22 0.0392 0.21 0.0996 0.11 

68b 0.0193 0.05 0.004 0.05 0.0095 0.05 0.0202 0.03 

69b/70b 0.0310 0.07 0.010 0.11 0.0139 0.07 0.0342 0.04 

73a/74a 0.0642 0.19 0.015 0.15 - - 0.0456 0.05 

73b 0.0230 0.10 0.010 0.11 0.0197 0.10 0.0398 0.05 

75b 0.0140 0.06 0.005 0.06 0.0114 0.06 0.0242 0.03 

76b 0.0210 0.10 0.010 0.11 0.0190 0.10 0.0242 0.06 

78b 0.0239 0.05 0.005 0.06 0.0157 0.08 0.0192 0.03 

79a/80a 0.0446 0.10 0.010 0.11 - - 0.0466 0.05 

82b 0.0260 0.06 0.005 0.06 0.0114 0.06 0.0242 0.03 

83b/84b 0.0136 0.05 0.004 0.05 0.0100 0.05 0.0191 0.03 

85a 0.0397 0.14 0.010 0.11 - - 0.0513 0.06 

86b 0.0900 0.20 0.018 0.20 0.0400 0.20 0.1532 0.10 

87b 0.0196 0.04 0.004 0.04 0.0145 0.08 0.0162 0.02 

88a 0.0569 0.13 0.010 0.11 - - 0.0498 0.05 

89b 0.0733 0.16 0.014 0.16 0.0303 0.16 0.0647 0.08 

90a 0.0305 0.11 0.010 0.11 - - 0.0466 0.05 

90b 0.0280 0.10 0.010 0.11 0.0291 0.15 0.0583 0.08 

91b 0.0235 0.08 0.007 0.08 0.0151 0.08 0.0323 0.04 

92 0.0252 0.06 0.010 0.11 - - 0.0235 0.03 

93 0.0312 0.07 - - - - 0.0271 0.04 

94 0.0290 0.06 - - - - 0.0230 0.03 
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6.8.6 Synthesis of parent Pt(II) complexes containing chlorophosphanes 

Example Reactions 

Synthesis of c«-PtCl2(PEt3)(PCI3) (77) 

/ra«s-[Pt(PEt3)Cl(u-Cl)]2 (0.0416 g, 0.054 mmol) was dissolved in CDC13 (1.0 mL) to 

afford an orange solution. PC13 (0.01 mL, 0.11 mmol) was added via a syringe. Upon 

addition of PCI3 the solution became colourless. 

Synthesis of cis- and fra/ts-PtChOPEt^CP'BuCb) (101 and 102) 

/ra«5-[Pt(PEt 3)Cl(^Cl)] 2 (0.1532 g, 0.20 mmol) was dissolved in CDC13 (0.7 mL) to 

afford an orange solution. A solution of P'BuCl2 (0.0671 g; 0.42 mmol) in 0.3 mL was 

added via a syringe. Upon addition of P lBuCl2 the solution became pale yellow in colour. 

Synthesis of cis- and /ra/is-PtCl2(PEt3)(P iPr2CI) (105 and 106) 

/ra»5-[Pt(PEt3)Cl(p-Cl)]2 (0.1302 g, 0.17 mmol) was dissolved in CDCI 3 (1.0 mL) to 

afford an orange solution. P'Pr2Cl (0.0570 g, 0.34 mmol) was added via a syringe. Upon 

addition of P'Pr2Cl the solution became pale yellow in colour. 

Crystals of 77, 95 and 105 were obtained by slow evaporation of solvent in an inert 

atmosphere. It is noteworthy that these compounds, along with the other described in this 

section, are sensitive to both air and moisture. 
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Quantities of reagents used: 

Compound 

Number 

Quantity of 

chlorophosphane used 

Quantity of trans-

[Pt(PEt3)CI(u-Cl)]2 used 

Colour of 

resulting 

solution 

Compound 

Number 
mL mmols g mmols 

Colour of 

resulting 

solution 

77 0.010 0.11 0.0416 0.05 colourless 

65 0.016 0.18 0.0727 0.09 colourless 

81 0.014 0.16 0.0709 0.08 colourless 

95 0.017 0.16 0.0595 0.08 colourless 

96 0.010 0.13 0.0340 0.05 colourless 

97 0.030 0.24 0.0828 0.11 colourless 

98 0.033 0.24 0.0933 0.12 colourless 

99/100 0.045 0.30 0.1095 0.14 colourless 

101/102 0.0671* 0.42 0.1532 0.20 pale yellow 

103/104 0.040 0.34 0.1273 0.17 colourless 

105/106 0.0570* 0.34 0.1302 0.17 pale yellow 

110/111 0.0500* 0.28 0.1055 0.14 pale yellow 

107 0.043 0.24 0.0902 0.12 colourless 

108/109 0.084 0.11 0.0420 0.06 colourless 

112/113 0.045 0.20 0.0765 0.10 colourless 

* chlorophosp lane was solid not liquid so quantity is in g. 

6.8.7 Hydrolysis reactions 

Example Hydrolysis Reaction through exposure to air and 'wet' solvent 

Hydrolysis of c«-PtCI2(PEt3)(PCI3) 

rra«j-[Pt(PEt 3)CI(^CI)] 2 (0.0416 g, 0.054 mmol) was dissolved in CDCI 3 (1 mL) to 

afford an orange solution. PCI3 (0.01 mL, 0.11 mmol) was added via a syringe. Upon 

addition of P C I 3 the solution became colourless. A 3 I P{ 'H} NMR spectrum confirmed the 

formation of the complex as the only product. The solution was then transferred to a large 
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necked open vial. 'Wet' DCM was then added (15.0 mL). A magnetic stirrer was added, 

and the solution stirred continuously. 'Wet' DCM was added when the level of solvent 

dropped to approximately 5.0 mL. To monitor the reaction by 3 1 P{ 'H} NMR all the 

solvent was allowed to evaporate before CDCb was added to provide a deuterium lock. 

Quantities of reagents used: 

Chlorophosphane 

Used 

Quantity of trans-

[Pt(PEt3)Cl(u-CI)]2 

used 

Quantity of 

chlorophosphane 

used 

Chlorophosphane 

Used 

mL mmol mL mmol 

PCb 0.0416 0.05 0.010 0.11 

EtPCI 2 0.0595 0.08 0.017 0.16 

'PrPCl 2 0.0828 0.11 0.030 0.24 

PhPCh 0.0470 0.06 0.016 0.12 

CyPCI 2 0.0855 0.11 0.035 0.23 

'BuPCl 2* 0.1532 0.20 0.0671 0.42 

Et 2 PCI 0.1273 0.17 0.040 0.34 

'Pr 2PCl* 0.1302 0.17 0.0570 0.34 

'Pr 2PCl* 0.1299 0.17 0.0600 0.34 

'B^PCI* 0.1055 0.14 0.050 0.28 

Ph 2PCI 0.0902 0.12 0.043 0.24 

Cy 2 PCI 0.0765 0.10 0.045 0.20 

* chlorophosphane was solid not liquic so quantity is in g. 

Example hydrolysis reaction using 2-aminobenzyl alcohol 

Hydrolysis of c«-PtCl 2(PEt 3)(PCl 3) 

fra/w-[Pt(PEt3)CI(u-Cl)]2 (0.1116 g, 0.15 mmol) was dissolved in CDC13 (1.0 mL) to 

afford an orange solution. P C I 3 (0.41 mL, 0.30 mmol) was added via a syringe. Upon 

addition of P C I 3 the solution became colourless. A 3 1 P{ 'H} NMR spectrum confirmed the 
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formation of the complex as the only product. 2-aminobenzyl alcohol (0.0363 g, 0.30 

mmol) was then added and the solution was agitated. The reaction was monitored using 
3 I P{ 'H} NMR spectroscopy. Crystals were obtained by slow evaporation of solvent in an 

inert atmosphere. 

Quantities of reagents used: 

Compound 

Number 

Chloro-

phosphane 

Used 

Quantity of trans-

[Pt(PEt3)Cl(u-Cl)]2 

used 

Quantity of 

chlorophosphane 

used 

Quantity of 2-

aminobenzyl 

alcohol used 

Compound 

Number 

Chloro-

phosphane 

Used 
g mmols mL mmols g mmols 

138 PC13 0.1116 0.15 0.041 0.30 0.0363 0.30 

139 PCb 0.0780 0.10 0.018 0.20 0.0492 0.40 

140 EtPCI 2 0.0715 0.09 0.019 0.18 0.0221 0.18 

141 "PrPCl 2 0.1000 0.13 0.034 0.26 0.0320 0.26 

142 'PrPCh 0.0501 0.07 0.017 0.14 0.0172 0.14 

143 PhPCI 2 0.0933 0.12 0.033 0.24 0.0299 0.24 

144 CyPCl 2 0.0606 0.08 0.024 0.16 0.0197 0.16 

145 'BuPCIz* 0.0957 0.13 0.0400 0.25 0.0303 0.25 

147 Et 2 PCI 0.0656 0.09 0.022 0.18 0.0221 0.18 

- 'Pr 2PCI* 0.1762 0.23 0.0700 0.46 0.0283 0.23 

- *Bu2PCl* 0.1685 0.22 0.0800 0.44 0.0271 0.22 

- Ph 2PCI 0.0916 0.12 0.043 0.24 0.0152 0.12 

- Cpent2PCI 0.0840 0.11 0.042 0.22 0.0271 0.22 

- Cy 2 PCl 0.0600 0.08 0.035 0.16 0.0197 0.16 

* chlorophosphane was solid not liquid so quantity is in g. 
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Additional analysis of compounds 

c/s-PtCl2(PEt3)(PCl3) (77) 

'H (300 MHz, CDCI3) : 8 2.23 (3H, dt, J= 7.4 Hz, PCH2CH3), 4.28 (2H, m, PCH2CH3). 
, 3 C a (63 MHz, CDC13): 8 8.4 (PCH 2CH 3), 15.7 (PCH 2CH 3). 

Elemental Analysis: Calculated: C% 13.82 H% 2.90 N %0 

Actual: C% 13.81 H% 2.91 N % 0 

m-PtCl 2(PPhMe 2)(PCl 3) (65) 

' H (300 MHz, CDC13): 82.10 (6H, dt, J= 12 Hz, P(CH3)2), 7.42-7.84 (5H, m, PPhH). 

c«-PtCl2(PPh2Me)(PCl3) (81) 

*H (300 MHz, CDC13): 8 2.35 (3H, dt, J= 12 Hz, PCH3), 7.50-7.74 (5H, m, PPhH). 

c/s-PtCI2(PEt3)(PEtCl2) (95) 

'H (300 MHz, CDCI3): 8 1.19 (9H, dt, J= 7.6 Hz, P(CH 2CH 3) 3, 1.40 (3H, dt, J= 9 Hz, 

P(CH2CH3)C12, 2.20 (6H, m, PCH2CH3), 3.18 (2H, m, P(CH2CH3)C12). 
c/5-PtCl 2(PEt 3)(PnPrCl 2) (96) 
'H (400 MHz, CDC13): 1.11 (3H, bm, P(CH2CH2CH3), 1.18 (9H, dt, J = 18 Hz, 

P(CH 2CH 3) 3, 1.87 (2H, bm, P(CH 2CH 2CH 3), 2.18 (6H, m, PCH 2CH 3), 3.11 (2H, bm, 

P(CH 2CH 2CH 3), 
, 3 C {'H} (101 MHz, CDC13): 8 8.1 (d, 2JCp = 3.6 Hz (P(CH 2CH 3) 3), 14.2 (d, V C P = 22.5 

Hz (PCH 2CH 2CH 3), 8.1 (d, 'j Cp = 38.9 Hz (P(CH 2CH 3) 3), 17.4 (s (PCH 2CH 2CH 3), 46.3 

(d, 'JCP = 32.0 Hz (PCH 2CH 2CH 3), 

c/s-PtCl^Et^^'PrCh) (97) 
'H (300 MHz, CDC13): 1.19 (9H, dt, J= 18 Hz, P(CH 2CH 3) 3, 1.38 (3H, d, J= 6.7 Hz, 

PCH(CH3)(CH3), 1.45 (3H, d, J = 6.7 Hz, PCH(CH3)(CH3), 2.18 (6H, m, PCH2CH3), 

3.95 (1H, m, PCH(CH3)2). 
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1 3C {'H} (101 MHz, CDCb): 5 8.2 P(CH 2CH 3) 3, 15.7 P(CH 2CH 3) 3 J= 39.5 Hz , 16.4 
PCH(CH3)2, 40.6 PCH(CH 3) 2 J= 27.9 Hz 

m-PtCl2(PEt3)(PPhCl2) (98) 
' H (400 MHz, CDC13): 5 1.15 (9H, dt, J = 18 Hz, P(CH 2CH 3) 3, 2.09 (6H, m, PCH2CH3), 

7.52-7.64 (3H, m, aromatic protons), 8.06-8.17 (2H, m, aromatic protons) 
, 3 C {'H} (175.9 MHz, CDCI3): 8 8.6 (d, 2JCP = 3.3 Hz (P(CH 2CH 3) 3), 15.9 (d, 'j Cp = 38.9 

Hz (P(CH 2CH 3) 3), 129.1 (d, V C P = 15.8 Hz, o-PhQ, 134.3 (s, p-PhC), 131.1 (d, V C P = 

18.5, w-PhQ, 137.5 (d, 'yCp = 62.5 Hz, /-PhC) 
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Chapter 7: 

Future Work 

7.1 Cyclic triphosphenium ions coordination chemistry 

The Pt(II) complexes described in Chapter 6 are some of the first transition metal 

complexes o f cyclic triphosphenium ions. In each complex the 'jp.pt coupling constant to 

the phosphenium central P was unusually small for a one-bond phosphorus-platinum 

coupling. Although no molecular structures were obtained, preliminary theoretical 

calculations seem to suggest that this is due to a long Pt-phosphenium central P bond,1 

which is not surprising due to the ligand being cationic. However further investigation is 

needed to confirm this. 

Isolation of the complexes is essential. X-ray diffraction studies (where possible) and 

additional calculations are necessary to investigate further the bonding within these 
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heterocycles and their metal complexes. Comparisons could be made to the more 

traditional phosphanes, including the effect o f the unusual electron-rich centre in cyclic 

triphosphenium ions. This wi l l provide invaluable insight into whether a long, weak bond 

is formed between the cyclic triphosphenium ion and the Pt metal, or whether the 
i 

unusually small J p is in fact just a function o f the ligand. Other possible investigations 

could involve synthesis o f complexes o f different transition metals e.g. palladium(II) or 

rhodium(I). 

7.2 P-alkyl and P-aryl derivatives 

P-alkyl/aryl derivatives can now be synthesised in a one pot reaction with many different 

substituents on the central P atom (Et, 'Pr, nPr, Cy, 'Bu, Ph). However there have been no 

reported investigations into the coordination o f these heterocycles to transition metals. 

One possibility is to react these P-alkyl/aryl derivatives with /ra«s-[Pt(PEt3)CI(|i.-Cl)]2 in 

analogous reactions to those described in Chapter 6 using cyclic triphosphenium ions 

(Scheme 7.1). 

2+ 

R 2 R / ^ R 2 

P 
I 

R' 

CI CI P R , 

R ? P \ 

C I — P t - P R 3 

I 

CI 

2+ 

and/or 

2+ 

R 2 R . / P R 2 

P \ 
I R ' 

C I — P t - C I 

I 

PRi 

Scheme 7.1: Proposed synthesis o f Pt(II) complexes with P-alkyl/aryl derivatives o f 

cyclic triphosphenium ions 
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Comparisons could then be made of the lJp.p\ coupling constants to the phosphenium 

central P in these complexes with those obtained when carrying out the reaction with 

cyclic triphosphenium ions. This would be o f interest to see i f there was any difference in 

the Pt-P bond strengths when using a trivalent, P(III) ligand (P-alkyl/P-aryl derivative) 

compared to a divalent, P(I) ligand (cyclic triphosphenium ion). Although both P-alkyl/P-

aryl derivatives and cyclic triphosphenium ions are positively charged donors, cyclic 

triphosphenium ions are monocations whereas P-alkyl/P-aryl derivatives are dications. 

This may also affect the Pt-P bond strength within the complex. 

7.3 Tetraphosphonium ions 

In the synthesis of many cyclic tetraphosphonium ions a mixture o f tetraphosphonium 

ions and P-alkyl/aryl derivatives is obtained. It would be advantageous to synthesise the 

tetraphosphonium ions without the simultaneous formation o f the P-alkyl/aryl derivative. 

Possible investigations could involve: 

• addition o f excess SnCl , which should favour the formation of the 
2 ' 

tetraphosphonium ion; 
t 

• using bulky chlorophosphanes, e.g. BuPCl 2 , which should hinder ring closure at 

the 3P (P-alkyl/aryl derivative) stage. 

Other possible investigations could include the formation o f new families o f 

unsymmetrical tetraphosphonium ions by adapting the known synthetic route. 

Investigation into the formation o f a 'mixed' tetraphosphonium ion through the addition 

of two different chlorophosphanes rather than two equivalents o f one chlorophosphane 

could be explored further (Scheme 5.8). One possible route could be using bulky R 

groups on the chlorophosphanes or the diphosphane to hinder cyclisation and so slow the 

reaction. Another possibility is to use an unsymmetrical diphosphane (i.e. R 2 P A PR' 2 ) as a 

starting material. 
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There have been no reported investigations into the coordination o f tetraphosphonium 

ions to transition metals. One possibility is the reaction of a tetraphosphonium ion with 

fra/w-[Pt(PR3)Cl(u-CI)]2, although potentially there are a number o f possible products 

(Scheme 7.2). This highlights the difference between these systems and classical 

phosphanes. Similar to the P-alkyl/ P-aryl derivatives, the tetraphosphonium ions are 

dications and are trivalent, P(III) ligands. Although there is the potential for coodination 

to occur through both P atoms to form a three-membered (-P-P-C-) ring. It is expected 

that only one P atom wi l l donate due to geometric reasons. 

Investigations into the coordination o f tetraphosphonium ions to platinum through 
1 

reactions with f/ww-[Pt(PR3)Cl()j.-Cl)]2 would again allow a comparison of J p values 

to be made with those obtained for Pt(II)-cyclic triphosphenium ion complexes 

previously described in Chapter 6. This would help to establish the effect ( i f any) o f 

changing from a divalent, P(I) donor atom to a trivalent, P(III) donor atom on the Pt-P 

bond strength within the complex. 

R 2 P + 

P-

R 

+ P R 2 

? + V , 
R 

R ' 3 P V X X 

Pt Pt 

X X P R ' , 

R , P + 

X — P t — P R ' 3 

or 

X 
unidentate 

cisltrans 
bidentate 

or 

\ 
P-
I 

R 

+ P R 2 

/ 
I 

R 

R 2 P + 

\ 
P R ? 

Pt 
/ \ 

X x 

-p-
I 

R 

/ 

X = C I / B r 
R = A l k y l / A r y l group 

bridging 

Scheme 7.2: Possible products from the reaction o f cyclic tetraphosphonium ions with 

/ ™ - [ P t ( P R 3 ) C l ( u - C l ) ] 2 
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Further investigation into the mechanism of formation o f these novel heterocycles, for 

example using variable temperature N M R studies, would help confirm the three stage 

mechanism. 

7.4 Tetraphosphenium ions 

Preliminary work has shown that the synthesis o f a tetraphosphenium ion is possible 

when using the diphosphane dtbpf which has bulky l Bu substituents on the phosphorus 

atoms. 2 ' 3 Several important to things to note are: 

• using dtbpf, the corresponding cyclic triphosphenium ion cannot be synthesised; 

• using the diphosphane dpdtbpf, containing 'Bu groups on one phosphorus atom 

and Ph on the other, the tetraphosphenium ion cannot be synthesised, and only the 

cyclic triphosphenium ion forms. 

This suggests that along with steric bulk, for the formation o f cyclic tetraphosphenium 

ion to take place it is essential that formation o f the cyclic triphosphenium ion is less 

favourable. 

The prime candidate for further studies is the diphosphane dppm. Previous investigations 

have shown that the formation o f the cyclic triphosphenium ion from dppm is not 

possible.4 However, using dppm, the synthesis o f cyclic tetraphosphonium ion is 

possible.5 This was attributed to the five-membered tetraphosphonium ion being more 

stable than a four-membered cyclic triphosphenium ion. This all suggests that dppm 

could be an ideal starting material for the formation o f a new cyclic tetraphosphenium ion 

(Scheme 7.3). 
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p h p ^ \ p p h 2 + 2PX 3 + 2SnX 2 

X = C I / B r 

Ph 2P 

\ Jl 
PPh, SnX 5 " + S n X 4 

Scheme 7.3: Proposed synthesis o f a cyclic tetraphosphenium ion from dppm 

I f stabilisation and/or isolation o f a cyclic tetraphosphenium ion were achieved, possible 

further investigations could involve the removal o f the halogen. Two possible 

investigations are shown in Scheme 7.4. 

Ph,P PPh 
1 \ J 

P P X = C I / B r 
/ 

11 T T J 

\ - - / 
P P P P 

Ph,P PPh 
\\ // 
p — p 

2*^ «y 

P = P 

Scheme 7.4: Possible outcomes from the removal o f X from a cyclic tetraphosphenium 

ion 
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7.5 Potential applications in catalysis 

Well-defined phosphane complexes are vital components in many catalytic systems. 

Metal-mediated catalysis (especially homogeneous catalysis) lies at the heart o f many of 

the most successful strategies for the preparation o f essential 'tailored' materials and 

molecules and for the production o f key chemical intermediates for industry. Further 

advances in this technologically important and challenging area rely on the development 

of finely honed catalysts through rational design o f the ligands. 

The preliminary work on cyclic triphosphenium ion coordination chemistry has 

highlighted that their overall positive charge may favour an unusually long metal-P 

interaction, something that wi l l facilitate exchange reactions, while rendering the 

complex unusual electronic properties. This could be very significant in a number o f 

catalytic systems, with those for the synthetically important hydroamination (direct 

addition o f an N H bond across an unsaturated C-C bond) being particularly relevant, 

where platinum complexes are known to be active catalysts, but where substrate binding 

is inefficient due to the low electrophilicity o f the Pt complex, something that would be 

enhanced using cyclic triphosphenium ions as ligands.6 Additionally, the structure o f 

cyclic triphosphenium ions differs from those o f traditional phosphanes, with their steric 

bulk being located one atom further away from the donor centre, something that is likely 

to induce unusual reactivity/behaviour o f the cyclic triphosphenium ion complexes. 

In the field o f pharmaceuticals it is very important to be able to synthesise one 

enantiomer rather than another because different enantiomers o f a molecule often exhibit 

different biological activity. In industry it is also important to be able to produce products 

as pure as possible in large quantities. For this reason the use o f catalysts is very 

important.7 The use o f small amounts o f chiral, enantiomerically pure catalysts can lead 

to the formation o f large amounts o f enantiomerically pure or enriched products. One 

method is to form complexes derived from chiral ligands.7 Synthesis o f chiral derivatives 

of P-alkyl or P-aryl derivatives o f cyclic triphosphenium ions and cyclic 

tetraphosphonium ions is possible given suitable starting materials. This could lead to 

further applications in asymmetric synthesis. 
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7.6 Hydrolysis reactions 

Further investigation into the use of 2-aminobenzyl alcohol in hydrolysis reactions is 

required. In the reactions discussed in Chapter 7, there seems to be a degree o f selectivity 

when using 2-aminobenzyl alcohol to hydrolyse Pt(II) complexes containing 

chlorophosphane ligands. Isolation o f the product o f hydrolysis is necessary to confirm 

assignments to a salt or a non-salt. Perhaps alkylation o f the amino group would help 

solubility problems and increase the yield o f hydrolysed product. 
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