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Abstract 

Abstract 

Organic Light Emitting Diodes (OLEDs) are a relatively new multi-disciplinary research area. Much of 

the interest generated by OLEDs is due to their commercial potential as market leaders in display 

technology and ambient lighting solutions. The advancement of materials used in OLED devices has 

driven synthetic chemists to produce a great variety of structures for use in devices. Current 

phosphorescent tr iplet emitters are based on heavy metal complexes either as a single unit or 

incorporated into a polymer backbone. 

This work presents the synthesis of ligands via a Suzuki cross-coupling methodology and their 

subsequent homoleptic tris-cyclometalated ir idium complexes. Ligands are based on a carbazole-

pyridyl structure wi th a substituent group on the pyridyl aimed at tuning the complexes' HOMO-

LUMO gap to produce different wavelengths of emission. Several new synthetic strategies were 

employed in an at tempt to simplify the synthesis of the ligands although it was found that the most 

efficient method was the original synthesis of these ligands as performed in the Bryce group. An 

electron donating group (EDG) or an electron withdrawing group (EWG) was added in at tempts to 

blue shift or red shift the emission, respectively. The complexes are based on two parent systems 

(shown below) which give two series of functionalised complexes. 

C«H 6 n 1 3 
N 

N C«H 6 n 1 3 

I r 
N ' 

N 

Investigations were carried out into the photophysical properties of these phosphorescent tr iplet 

emitters to determine the extent to which the functionalisation altered the emission properties. 

Solution state phosphorescence emission studies demonstrated that the substituent EDG and EWG 

groups had a significant effect over the emission of the complex wi th shifts up to 54 nm wi th in a 

series and a total range of emission covering between 504 and 637 nm; green to red emission. 

Solution cyclic voltammetric data are also reported. 
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Abstract 

TD-DFT computations concurred wi th the current theories regarding the excited state of such 

complexes, in that the emission was occurring f rom a mixed MLCT/ji-n* transit ion. Preliminary 

device investigations demonstrated relatively low external quantum efficiencies due to a number of 

factors. It was also determined that the substituent group had a significant effect in shifting 

electroluminescence emission. 
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Chapter 1 An Introduction to Organic Light Emitting Diodes 

Chapter 1 - An Introduction to Organic Light Emitting Diodes 

This chapter aims to give the reader an overview of the Important features of Organic Light Emitting 

Diodes (OLEDs). The chapter will define what an OLED is, what sort of materials go into making an 

OLED and the mechanisms by which they work. This wil l include a brief history of the existing and 

potential applications of OLEDs and the development of the materials that make this possible. 

Firstly it is important to define what exactly an Organic Light Emitting Diode is. The simplest 

definition of an OLED would be an electroluminescent organic material sandwiched in between two 

electrodes to produce light; this wil l be examined later in device structure. Applications for OLEDs 

include ambient lighting and use in display screens for electronic devices. 

Current ambient lighting solutions are not ideal, for example, a tungsten f i lament bulb only 

emits 10% of the energy consumed as light, the rest is emitted as heat. This leads to a poor efficiency 

of approximately 15 I m W 1 and operational lifetimes of about 1000 hours. Recent advances in 

lighting have introduced 'energy efficient' (fluorescent) light bulbs which have increased efficiency to 

approximately 60 ImW" 1 and lifetimes of more than three times that of the tradit ional f i lament bulb. 

Fluorescent lighting is more efficient than fi lament bulbs but is also more costly and there are 

environmental drawbacks as most fluorescent bulbs contain mercury. The standard in ambient 

lighting comes f rom this fluorescent bulb, which OLEDs must surpass, or at the very least compete 

wi th , on a performance and cost efficient basis if they are to succeed as ambient lighting sources. 

Solid state lighting (both organic and inorganic LEDs) is increasingly being used instead of other 

light sources for ambient lighting applications. Everyday examples of this can be seen in the taillights 

of buses or in traffic lights where LEDs have replaced the tradit ional f i lament bulb. OLEDs have been 

demonstrated to be more efficient and have greater lifetimes than fluorescent bulbs which in the 

future should lead to a greater inclusion of OLEDs in everyday lighting applications. 

An application in which OLEDs excel is information displays. The tradit ional Cathode Ray Tube 

(CRT) display has existed for over a century and in recent decades has slowly been replaced by the 

plasma display and Liquid Crystal Display (LCD). Advantages in these displays include a large 

reduction in volume required for the same surface area display, i.e. plasma and LCDs are 'flat 

screen'. Disadvantages include the increased cost of production which is passed onto the consumer; 

the displays can also exhibit 'screen burn' where an image is burnt onto the display through 

excessive use of an unchanging image; LCDs require a backlight to provide the lighting source as the 

liquid crystals simply provide the red, green and blue pixels required to make a 'full colour' display. 
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Chapter 1 An Introduction to Organic Light Emitting Diodes 

The backlight leads to poor contrast ratios of ca. 1,000:1, brightness levels are also approximately 

300 cd /m 2 . 

In contrast, OLEDs do not require a backlight as it is the actual organic material that is emitt ing 

the red, green or blue light that makes up a pixel. Aside f rom leading to much greater contrast ratios 

[ca. 1,000,000:1) the lack of a backlight means the display can be much thinner. OLED displays have 

even been fabricated on flexible substrates wi th good results, although often wi th poorer lifetimes 

due to the non-hermetically sealed display which degrades through contact wi th moisture and 

oxygen in the air. 

The first full colour active matrix OLED (AMOLED) display was commercialised in 2003 wi th its 

incorporation into a digital camera. This represented the first inclusion of an OLED display into a 

small electronic device. Practically every type of electronic device which requires a small display 

screen has now used an OLED display at some point. The expectation that an OLED TV would be 

commercialised came to fruit ion in 2008 when Sony announced the first OLED TV, the XEL-1. 

Although the screen is relatively small in TV terms (it measures 11 inches diagonally) it represented a 

leap forward in the commercialisation of OLEDs. The Sony XEL-1 offers a contrast ratio of 

>1,000,000:1, high brightness and a viewing angle of 178°. Representative images of the products 

can be seen below in Figure 1. 

Figure 1 - First examples of OLED displays 

The increasing use of OLED displays in products such as these has lead to the increase in market 

value of OLEDs. Although estimates vary the worldwide market value of OLEDs is currently wor th ca. 

£250m wi th an expectation that this wil l rise to over £2b by 2010 m . A variety of companies are 

currently involved in OLED technologies leading to an accelerating pace of advances in the field and 

products appearing on the shelves for the benefit of the end users. 
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Chapter 1 

1.1 Luminescence 

An Introduction to Organic Light Emitting Diodes 

Luminescence is the production of light f rom a compound, either organic or inorganic. Luminescence 

can occur fol lowing a number of different mechanisms. Organic compounds suitable for OLED 

applications will display photoluminescence and electroluminescence which wil l be explained in 

detail below. 

In order for a material to emit light it needs to be in a higher energy (excited) state which can 

convert to the ground state through the release of energy in the form of a photon or through a non-

radiative pathway. These excited states can be formed by photoexcitation (photoluminescence) or 

electronic excitation (electroluminescence). 

1 .1 .1 Pho to l um inescence 

In photoluminescence an incident photon excites an electron f rom the highest occupied molecular 

orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). A molecular excited state is 

formed f rom which the electron can then decay back to the HOMO. This process can be radiative or 

non-radiative, i.e. a photon can be released or a non-radiative process can aid the relaxation of the 

electron to the HOMO. The energy of the photon wil l be equal to the energy difference between the 

HOMO and LUMO. A schematic of photoluminescence can be seen in Figure 2 below. 

LUMO 

HOMO 

LUMO LUMO 

HOMO HOMO 

Photon 

photon LUMO HOMO 
Incident light 

Figure 2 - Photoluminescence schematic 

1 . 1 . 2 E lec t ro lum inescence 

Electroluminescence can be defined as the production of light f rom a material when an electric field 

is applied across it. It requires the excitation of the material into a higher energy state which can 
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occur through various mechanisms and the subsequent relaxation of the material to a lower energy 

state resulting in the release of a photon. Long before organic materials were thought of as potential 

electroluminescent materials inorganic semiconductors were being used in light emitt ing diodes -

LEDs 

The first example of electroluminescence was reported over 100 years ago' 2 ' in a note to the 

editors of Electrical World. It was found that when a potential difference was applied across a crystal 

of carborundum (silicon carbide) a yellowish light was produced. Unfortunately, the discovery was 

not fol lowed up and it was not until the mid-1920s that the LED was 're-invented' 1 3 1 . 

When an electric field is applied across an inorganic LED charges are injected at the electrodes; 

the charge flows f rom the p-side to the n-side, which can be regarded as charge f lowing f rom the 

anode to the cathode. The semiconducting material is doped wi th impurities which create a p-n 

junction where opposite charges recombine and relax to a lower energy state producing a photon. 

This mechanism of electroluminescence is called recombination and is also the primary mechanism 

by which organic electroluminescent materials produce light. 

1.1.2.1 Organic Electroluminescence 

Organic electroluminescence is the electronic excitation of organic compounds to emit light. To do 

this electrons are injected f rom the cathode into the LUMO and removed f rom the HOMO to the 

anode. This forms radical anions wi th an electron (negatively charged) on the LUMO and radical 

cations wi th a hole (positively charged) on the HOMO (Figure 3). 

Cathode 

A n o d e 

LUMO LUMO 

i HOMO HOMO 

LUMO LUMO 

HOMO r O HOMO 

Figure 3 - Electron and hole formation 
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These charges migrate within the organic material through a 'hopping* mechanism (vide infra). If the 

charges combine within the emissive material they can form a molecular excited state. These excited 

states are called 'excitons' and are the emissive states that can release photons to decay to the 

ground state (Figure 4). 

LUMO' 
T 

Election 

HOMO-

Electron 

Figure 4 - Exciton formation 

LUMO- LUMO' 

HOMO- f HOMO-

Excited state Hole 

The total spin of the exciton can either be S=0 or S=l . The associated spin multiplicity (using 2S+1) of 

S=0 is 1 and of S=l is 3 hence these states are called singlets and triplets. Wi th a total of 4 states and 

an equal chance of forming each state the probability of forming a singlet or tr iplet exciton is 25% 

and 75%, respectively. The singlet to tr iplet ratio has been measured experimentally' 4 1 and found to 

be wi th in experimental limits of the expected 25:75, although more recent work suggests that in 

some polymeric materials a higher ratio of singlets can be generated' 5 1. 

Electrons can quickly and easily decay f rom singlet excitons to the ground state (HOMO) which 

can release a photon in a process called fluorescence. Alternatively, the electron can decay slowly 

f rom the tr iplet exciton to the ground state wi th the release of a photon - this is called 

phosphorescence. If the molecule has been excited electronically these terms are referred to as 

electrofluorescence and electrophosphorescence. The lifetimes of fluorescence and 

phosphorescence are very different wi th fluorescence being a much faster process relative to 

phosphorescence. This is because of the allowed and forbidden nature of fluorescence and 

phosphorescence, respectively. In fluorescence the decay of an electron f rom the exciton to the 

ground state is 'al lowed' by Pauli's exclusion principle which states that no two identical fermions 

can occupy the same quantum state simultaneously. Hence the decay of an electron f rom a singlet 

exciton in which the electron's spin is paired is allowed, whereas the comparable decay f rom a 

tr iplet exciton in which the electron's spin is unpaired is not allowed. Due to the forbidden transition 

f rom a tr iplet exciton the probability is very low and for most materials this does not occur very 

of ten. The energy of a tr iplet exciton is lower than the energy of a singlet exciton due to the reduced 

repulsion of the electrons. To allow this decay f rom the triplet exciton a mixing of the singlet and 

tr iplet states occurs and the excited electron wil l transfer to the lower tr iplet excited state. This 
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process known as intersystem crossing (ISC) results in a tr iplet state wi th partial singlet character 

making the transition to the ground state possible. This results in a red shift in emission as the 

electron is decaying f rom a lower energy state, hence the gap between the excited state and the 

ground state is lower and according to E=hv the wavelength of the emitted photon wil l be longer. 

Phosphorescent materials that are suited for OLED applications will almost exclusively emit f rom the 

tr iplet exciton leading to very high efficiencies and helping ensure colour purity of the emit ted light. 

In an OLED device the phosphorescent material will usually be dispersed within a charge transport 

layer. The phosphorescent material is often referred to as the guest and the charge transport layer 

as the host. When the absorption spectrum of the guest overlaps wi th the emission spectrum of the 

host efficient transfer of excitons between the two can occur. An efficient transfer of singlet and 

tr iplet excitons should occur between host and guest as it is the latter that should exclusively emit 

within the device. Forster transfer (also called induced dipole transfer) can be used to explain the 

transfer of singlet excitons between the host and guest. However, if Forster transfer occurs along 

wi th the electron exchange between the host and guest (Marcus/Dexter transfer, Figure 5) then 

triplet excitons can also be transferred as the total spin of the system is conserved. Forster transfer 

occurs over relatively large distances of ~100 A, whereas Marcus transfer occurs over shorter 

distances of ~ 10 A, hence the transfer of tr iplet excitons can only occur over these relatively short 

distances where both processes can happen simultaneously. This means that the transfer of both 

singlet and tr iplet excitons f rom the host to the guest can excite phosphorescence. 

A Dipole-Dipole coupled (Forster) energy t ransfer 

Donor Acceptor Donor Acceptor 

B E lectron exchange (Marcus /Dex te r ) energy transfer 

• 

Donor Acceptor Donor Acceptor 

Figure 5-A schematic of Forster energy transfer (A) and Marcus energy transfer (B); reproduced from [22] 

It is often found that there is an opt imum amount of doping of the phosphorescent guest in the host 

material ' 6 1. With too little phosphorescent dopant saturation ('concentration quenching') can occur 

Page | 6 



Chapter 1 An Introduction to Organic Light Emitting Diodes 

due to the long lifetimes of phosphorescent excitons. If this occurs and the host is able to emit, 

emission wil l be observed f rom the host, which is likely to result in a hypsochromic (blue) shift in 

device emission as the host is likely to have higher energy emission. With an excess of 

phosphorescent dopant tr iplet-tr iplet annihilation can occur resulting in the reduction of tr iplet 

excitons. In tr iplet-tr iplet annihilation the total spin of the system is conserved when two triplet 

excitons combine and form a singlet exciton and singlet ground state (Figure 6). 

triplet* singlet' 

triplet* singlet ground state 

Figure 6 - Triplet-triplet annihilation 

1.2 Device Structure 

In order for an electroluminescent material to emit light it is placed between two electrodes. Early 

examples used single crystals, e.g. anthracene as the emissive material. A significant development 

upon this method was the use of thin films (initially of anthracene) which dramatically reduced the 

voltage required to produce electroluminescence (often referred to as the drive or turn-on 

voltage)' 7 1. The organic emissive layer usually forms an amorphous f i lm between the cathode and the 

anode. The cathode is typically a metal electrode [e.g. Al/Ba or Mg:Ag alloy) wi th a low work 

function to promote the injection of electrons into the device. The anode is usually indium-tin-oxide 

(ITO) - a material that is transparent to the emitted light, although thin films of Au have been used in 

the past as the anode; these materials exhibit a high work function to promote the injection of holes 

into the device. It is therefore possible to fabricate a device using only three layers -

Cathode/Emissive layer/Anode. It is not usual to count the cathode and anode as layers, so this type 

of device is usually referred to as a single layer type. (Figure 7). 

O 

o 
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Cathode 

Organic layer 

Anode 

L Glass substrate L 
Figure 7 - Schematic diagram of a single layer OLED 

When an electric field is applied holes and electrons are generated at the anode and cathode 

respectively and migrate towards each other wi th the possibility of forming excitons when they 

meet in the organic layer. Adding an extra layer to the device that is complementary to the 

transporting properties of the emissive material can improve device efficiency. These layers are 

called electron or hole transporting layers (ETL and HTL). In 1987 Tang and VanSlyke were the first to 

introduce one of these layers into a device' 8 1 initiating a revolution in the efficiency of OLEDs. These 

devices can come in several configurations, categorised as two-, three- or multi-layer devices. Two 

layer devices consist of a HTL and an ETL where one layer is the emissive material 

(Cathode/ETL/HTL/Anode). Alternatively three layer devices consist of a HTL and ETL plus a separate 

emissive layer (Cathode/ETL/Emissive layer/HTL/Anode). Certain properties of HTLs and ETLs are 

alike, such as the ability to transport charge effectively across the layer. Thermal stability and the 

capability of forming defect free films are also properties of proficient HTL and ETLs. HTLs should 

possess a low solid state ionisation potential and a low electron affinity (i.e. the ability to form 

cations easily) whereas ETLs possess the converse properties (form anions easily). This also means 

that both ETLs and HTLs should be good at blocking the opposite charge, for example, a HTL should 

transport holes but block electrons. This helps confine the charges in the emit t ing layer and 

improves the chances of exciton formation and consequent emission wi th good efficiency. 

A classic ETL material (used by Tang and VanSlyke) and one that is still in use today is 

tris(quinolin-8-olato) aluminium - Alq 3 , the structure of which is seen below. 

N 

! 

N' 

A l q 3 ( l ) 
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Chapter 1 An Introduction to Organic Light Emitting Diodes 

Variants of A lq 3 have also been used successfully as ETL materials to improve device performance, 

such as A lmq 3

1 9 ' where an extra methyl group is added. 

The HTL material in the Tang and VanSlyke device was a diamine, TAPC (2). Diamines are very 

common as HTL materials and many have similar structures to TAPC wi th multiple phenyl groups and 

a biphenyl linker between the amines such as tyW'-diphenyl-ty/V'-bisp-methylphenyO-l.l'-biphenyl-

4,4'-diamine, TPD (3) 1 1 0 ' . 

Me Me 

Q p f \ \ // 
N N 

P N N 

Me 
Me Me 

TAPC (2) TPD (3) 

Other diamine HTL materials have been synthesised and utilised in devices such as a TPD derivative 

NPB 1 1 1 1, where each amine has a naphthyl unit instead of the tolyl present in TPD. Both TPD and 

other diamine materials make good HTLs because of their strong hole transporting abilities and 

electron blocking properties. 

1.2.1 Dev ice C o m p a r i s o n 

To compare devices we must define several criteria that are suitable for this purpose. 

Devices operate when an electric field is generated by applying a potential difference (voltage) 

between the two electrodes. At a certain voltage the energy barriers for emission wil l be overcome 

and the device wil l start to emit light, this is known as the drive or turn-on voltage. The lower the 

drive voltage the better, as a high drive voltage can lead to an increase in temperature of the 

emissive material and degradation. 

An important criterion for device performance is efficiency, both internal and external quantum 

efficiency. Efficiency can be explained in simple terms as follows - for each pair of charges that is 

injected into the device an exciton can be formed and f rom each exciton a photon can be emit ted in 

the relaxation to the ground state. Ideally the ratios of these events will be 1:1, giving 100% internal 

quantum efficiency. Unfortunately, this does not translate into 100% external quantum efficiency 
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due to device limitations. The formation of an exciton does not guarantee that a photon can be 

observed from the device. This is the first of several chance processes that must all occur in order for 

a photon to be emitted from the device. Indeed, the injection of an electron and hole into the device 

does not guarantee that an exciton is formed. When an exciton is formed it must decay radiatively, 

releasing a photon within the device. This is internal emittance and is measured through internal 

quantum efficiency. Provided the photon is not absorbed internally it can be emitted externally, 

leading to external quantum efficiency. 

A further performance indicator is the brightness or luminance that a device produces. Results 

are often reported at high voltages which could not be maintained during normal device use. This 

leads to another property of devices, lifetime. If a device is to be used in a commercial product such 

as an OLED TV the lifetime must match or exceed that of current products. It is often found that 

devices producing high energy emission (blue) have shorter lifetimes than those producing low 

energy emission (red) due to degradation of the higher bandgap material. 

1.3 Organic Materials 

Organic Materials can either be small molecule or polymeric. This short review will focus on small 

molecules as they are of relevance to the work reported later. For completion it is noted that 

fluorescent polymer light emitting devices, PLEDs, have had a huge impact in the field of OLEDs since 

the discovery of electroluminescence in a poly(phenylenevinylene) (PPV) derivative'1 2 1. 

Small molecule organic materials for LEOs can be classified into two families - fluorescent and 

phosphorescent emitters. 

1.3.1 Fluorescent Emitters 

Early OLED work focused on organic fluorescent emitters and in particular single crystals as the 

organic electroluminescent (EL) material. In 1965 Helfrich and Schneider' 1 3' used anthracene single 

crystals to produce blue electroluminescence using aqueous based electrodes. Improving the charge 

injection on previous work ' 1 4 , 1 5 1 they used aqueous electrodes of cationic and anionic anthracene 

produced through the reaction with AICI3 and metallic sodium, respectively, although these 

electrodes were used in separate devices. Prior to this work, electron injection into anthracene had 

not been observed. Interestingly, they noted a 'luminous zone' in the crystal close to the anode 

suggesting that the electrons were travelling rapidly within the material from the cathode to 

combine with holes near the anode forming excitons to produce the luminescence. They also 

Page | 10 



Chapter 1 An Introduction to Organic Light Emitting Diodes 

commented that although singlet and triplet excitons were expected to be formed through charge 

recombination, only the singlet states were emitting, noting that the triplet states were expected to 

decay through a non-radiative pathway. 

Later developments would see the use of thin amorphous films as the organic layer, e.g. the 

anthracene films studied by Vincett et a/.' 7 '. The film was produced by vacuum deposition, forming a 

0.6 urn film of polycrystalline anthracene. It was found that the drive voltage was dramatically 

reduced to 30 V when viewed under ambient lighting conditions or as low as 12 V when the EL was 

viewed in a darkened room. Although the quantum efficiency of the devices was only ca. 0.05% this 

was the first time that EL had been observed at voltages significantly less than 100 V. It is important 

to reduce the drive voltage in order to reduce degradation and increase the lifetime of the organic 

material. Similar results were achieved for perylene (vide infra) and 1,12-benzperylene for which EL 

had not previously been observed. 

It should be noted for completion that tetracene was also widely used both as single crystal and 

thin film devices' 1 6 ', often in conjunction with anthracene. 

In 1987 Tang and VanSlyke published a revolutionary paper1 8' describing a two layer device of a 

metal chelate complex (Alq 3,1) as the electron transporting and emitting layer and a diamine (TAPC, 

2) as the hole transporting layer. The inclusion of these transporting layers was found to greatly 

improve the efficiency of the device. The device structure is shown in Figure 8. 

Figure 8 - Device structure reproduced from [8] 

The films were deposited through vacuum deposition; the first organic layer on top of the ITO anode 

was a TAPC layer of ca. 750 A thickness followed by layer of Alq 3 of ca. 600 A thickness. The cathode 

was a Mg:Ag alloy with a composition of ca. 10:1 respectively. It was reported that the emission 

spectrum was identical to the photoluminescence spectrum of the Alq 3 thin film demonstrating that 

the Alq 3 layer is the emissive layer in the device and that the charge recombination was taking place 

exclusively in this layer. This work also demonstrated that the diamine TAPC is a unipolar 

transporting material, i.e. it transports only holes. The external quantum efficiency of the device was 

about 1%, a large improvement over the 0.05% reported by Vincett et ai.m in one of the first reports 

Mg:Ag 

Alq3 1 

i Diamine (TAPC, 2) 

Glass 

ITO 
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of thin film devices. The device has a drive voltage of about 6 V and can also produce a high 

brightness of >1000 cd/m 2 at a voltage of less than 10 V. When this is compared to Vincett's 

anthracene film drive voltage of 12 V and a darkened room required to observe the EL, it is clear this 

was a great improvement. To put 1000 cd/m 2 into perspective, a CRT TV will have a brightness of 

around 350 cd/m 2 , easily seen under ambient lighting conditions. 

It is noteworthy that an Alq 3 derivative, tris(4-methyl-8-quinolinolato)aluminium - Almq 3 was 

synthesised in 19971 9'. Using a very similar device structure to Tang and VanSlyke of ITO/3 

(TPD)/Almq3/Mg:Ag this device produced an external quantum efficiency of 2.5% and a maximum 

luminance of 26000 cd/m 2 at 14 V, a good performance for an electrofluorescent based device. 

The advances in 1987 spurned on efforts to create new hole- and electron-transporting 

materials to improve device performance. Adachi and co-workers' 1 0 1 developed a three layer device 

utilising an aromatic diamine (TPD, 3) as the HTL and a perylene tetracarboxylic acid derivative (PV) 

as the ETL. Anthracene, coronene and perylene (see below) were chosen as the emissive materials 

as they fluoresce with different colours. 

Anthracene (4) Coronene (5) Perylene (6) 

This work furthered the use of diamines as the HTLTPD has a similar structure to TAPC originally 

used in Tang and VanSlyke's two-layer device 1 8' (vide supra). The ETL of a perylene tetracarboxylic 

acid derivative (PV) took electron transporting materials in a new direction, moving away from the 

metal chelate complex. The HTL and ETL layers both consist of unipolar transport materials ensuring 

charge recombination takes place in the emitter layer. Hence, the device emission is tuneable based 

on the emitting material; EL peaks of 420, 500 and 600 nm were obtained for anthracene, coronene 

and perylene, respectively. It is noted in this paper that optimisation of the layer thickness in the 

devices had not been undertaken. The layer thicknesses were quite large when compared to Tang 

and VanSlyke's device with the TPD layer having a thickness of 2000 A, and the emitting layer and PV 

layer having thicknesses of 1000 A each resulting in the drive voltage being relatively high and 

emission visible at 50 V in a darkened room. Optimisation of the thicknesses of these layers could 

result in a lowering of the drive voltage and an increase in the efficiency of the device. Figure 9 

shows the device structure. 
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Mg 

PV 

Emitter 

TPD (3) 

Au 

Glass 

Figure 9 - Device structure reproduced from [10] 

Adachi and co-workers 1 1 7 1 further developed their three layer device by testing different emitting 

materials. Several fluorescent dyes were examined before 12-phthaloperinone was chosen which 

emitted yellow {Xm3ll 580 nm) fluorescence at 60 V which was visible under ambient lighting 

conditions. The brightness of this material was reported to be approximately 400 times larger than 

that of the device when perylene was used as the emissive material. Hence, the choice of the 

organic emissive material was established as crucial to the effectiveness of the device it produces. 

In 1989 Tang, VanSlyke and Chen' 1 8 1 published a novel device structure based on their original 

two layer device. This new structure used a fluorescent dopant in the Alq 3 layer giving a device 

structure of ITO/diamine/Alq3(3)/doped Alq3/Alq3(3)/Mg:Ag (Figure 10). 

Figure 10 - Device structure reproduced from [18] 

They noted that to achieve a higher efficiency they must use an emissive material with a higher 

fluorescence quantum efficiency than Alq 3 (8%). This would mean finding an electron transporting 

material as effective as Alq 3 but with better emissive properties or the alternative route of increasing 

the Alq 3 luminescence efficiency. To achieve this, a dopant was introduced into the Alq 3 layer. The 

dopants used were based on laser dyes - DCM1, DCM2 and Coumarin 540. It was found that this 

increased the fluorescence efficiency to as high as 40% compared with the undoped 8% of the pure 

Alq 3 emitter. At optimum concentrations of dopants the external quantum efficiency of the device 

was increased to ca. 2%, a doubling of the undoped Alq 3 device. This method produced tuneable 

Mg: Ag 

Alq Doped Alq 

Diamine 

ITO 
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devices dependant on which dopant is used; a range of colours from blue-green to orange-red were 

produced in the work. 

1.3.2 Phosphorescent Emitters 

With fluorescent emitters' internal quantum efficiency effectively capped at 25% a new type of 

organic luminescent material was needed. The harvesting of both singlet and triplet states is 

necessary for increasing the efficiency of OLED devices. When a material exhibits this property under 

an induced electric field it is known as electrophosphorescence and leads to a theoretical 100% 

internal quantum efficiency. 

The first example of electrophosphorescence was from benzophenone, reported in 1996 1 1 9 1. The 

device used consisted of three layers with the benzophenone guest dispersed in a 

poly(methylmethacrylate) host. It was found that the phosphorescence emission was very weak at 

room temperature (273 K) but was prevalent at 100 K at the turn on voltage of ca. 17 V. This is due 

to poor intersystem crossing in benzophenone and non-radiative processes being the primary 

method of exciton decay at room temperature. No transfer of triplet excitons was found between 

the host polymer and the benzophenone making it unsuitable for OLED applications as this will 

hamper the efficiency of the device. 

Another material that exhibits electrophosphorescence is 2,3,7,8,12,13,17,18-octaethyl-21H-

23H-porphine platinum (II) (PtOEP, 7 - see below). 

N N 

Pt 
\ N N 

PtOEP (7) 

The use of this material was investigated in 1998 by Baldo et al.l ] in an Alq 3 host using a multi-layer 

device. Alq 3 was chosen as its emission spectrum overlaps with PtOEP's absorption spectrum at 530 

nm allowing efficient transfer of singlet excitons and giving a reasonable assumption that triplet 

excitons are likely to be transferred between host and guest. It was found that short range Marcus 
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transfer dominates over longer range Forster transfer in the transfer of excitons. Combining this 

with the fact that PtOEP has a relatively long exciton lifetime lead us to the proposal that saturation 

should occur with lower dopant concentrations. This was indeed observed (at approximately 1% 

dopant concentration) and was supported by the observation of increased Alq 3 emission at low 

concentrations. It can be alleviated by increasing the concentration of PtOEP which demonstrated 

that 6% was the optimum dopant concentration as maximum external and internal quantum 

efficiencies of 4% and 23% respectively were achieved with 290% energy transfer from Alq 3 to PtOEP 

occurring. This work demonstrated that both the singlet and triplet excitons participate in the 

energy transfer between the host and guest. Emission was not observed from the singlet state of 

PtOEP (ca. 580 nm) but was seen from the triplet state at 650 nm demonstrating the strong inter-

system crossing within the material. 

The inclusion of a metal centre into an organic ligand or chelate structure is a common method 

of increasing the efficiency of a material. The inclusion of Pt within the poryphine ring of PtOEP 

increases singlet-triplet mixing, i.e. the triplet state gains further singlet character and vice versa 

facilitating inter-system crossing and reducing the phosphorescence lifetime by increasing spin-orbit 

coupling. The efficiency of PtOEP is limited by the triplet energy of the host material. For example, 

PtOEP in polystyrene exhibits an internal quantum efficiency of 50% 1 2 0 1 where the triplets are 

confined more tightly than in Alq 3. A host material with a larger triplet energy helps confine the 

triplets on the PtOEP and hence increases efficiency. 

1.4 Iridium Complexes 

Iridium complexes are a recent generation of phosphorescent guests in OLEDs. Their octahedral d 6 

configuration is attractive as it increases the crystal field stabilisation energy. The introduction of a 

heavy metal atom such as Ir into a complex increases spin orbit coupling which aids intersystem 

crossing - the mixing of singlet and triplet excited states necessary for efficient phosphorescence. 

Most Ir complexes are charge neutral although charged complexes do exist. This section will focus on 

the work most relevant to what will be presented later. 

The most common oxidation state for iridium is Ir"1, in fact this is exclusively the oxidation state 

of iridium found in neutral complexes for OLEDs. To balance the charge three negatively charged 

ligands are cyclometalated onto the iridium centre forming an organometallic ring structure. C A N 

ligands are often used for this purpose where the C is the cyclometalating element. Iridium 

complexes are often either bis- or tris-cyclometalated, with two identical cyclometalating ligands 

and an ancillary ligand, or three identical cyclometalating ligands. 
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Several different configurations of complexes exist although all involve the cyclometalation of 

organic ligands to the iridium centre. Examples are shown in Figure 11. 

N N N N 

C/ C/ C/ 
it 

N N N N N 

/ac - t r l s -cyc lometa la ted b is -cyc lometa la ted di- ir idium complex 

F/gure J J - Types of Iridium'" complexes 

Iridium complexes exhibit a complex electronic structure' 2 1 1. Aside from the ligand centred excited 

states (LC) and metal centred excited states (MC) mixtures of the two occur. LC states involve the n 

bonding and n* anti-bonding orbitals of the ligand where as MC states involve the d-orbitals of the 

metal. When there is an electron transferred to the ligands from the metal an excited state is 

formed known as a metal to ligand charge transfer state (MLCT). When the reverse occurs, the 

excited state is called a ligand to metal charge transfer state (LMCT). It is often difficult to determine 

the excited state or multiple excited states from which the complex is emissive, although this state is 

usually a mixture of LC and MLCT excited states. MLCT states exhibit stronger spin orbit coupling due 

to a larger overlap with the iridium which leads to an increase in ISC. The energy diagram for a high 

performance phosphor is shown in Figure 12. 

SINGLET TRIPLET 

STATES STATES 

'ligand 

' M L a 
ISC> 

'llgand 

MLCT 

phosphorescence 

Figure 12-An efficient phosphor, reproduced from [22] 
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In this schematic diagram it is the triplet MLCT excited state which is emissive although in a real 

complex it may be a mixture of the triplet ligand centred (n-n*) and triplet MLCT excited states which 

emit. 

1.4.1 /oc-Ir(ppy)3 

Much of the current focus on iridium complexes in OLEDs can be traced back to /oc-tris(2-

phenylpyridine) iridium1" [/oc-lr(ppy)3]. This complex utilising three C A N ligands in a facial 

configuration was synthesised by Baldo ef al. in 1999 and used as a phosphorescent dopant in 

CBP 1 2 3 1 . The prototype device consisted of a transparent ITO anode with a 4,4'-bis[W-(l-napthyl)-A/-

phenyl-amino] biphenyl (a-NPD, a TPD derivative) hole transporting layer followed by the 4,4'-A/,W-

dicarbazole-biphenyl (CBP, 9) layer doped with /oc-lr(ppy) 3 (8) then a 2,9-dimethyl-4,7-diphenyl-

1,10-phenanthroline or bathocuproine (BCP, 10) layer, Alq 3 electron transporting layer and finally 

the Mg:Ag cathode (ITO/NPD//oc-lr(ppy)3(8) in CBP(9)/BCP(10)/Alq3(3)/Mg:Ag), see below for the 

structures of /oc-lr(ppy) 3, CBP and BCP. 

Baldo ef al. chose CBP as the host based on the assumption that although comparison of host 

emission and guest absorption spectra are reliable for the transfer of singlet states, they also have a 

bearing on the transfer of the important phosphorescent triplet states. CBP was a suitable host for 

PtOEP so was a logical choice for/oc-lr(ppy) 3 too. 

The BCP layer used as an 'exciton blocking layer' was found to be particularly important for the 

performance of the device in confining excitons within the emitting doped CBP layer. The 

concentration of dopant was also crucial to the device performance as too low a concentration 

would lead to saturation, although the short phosphorescence lifetime of /oc-lr(ppy) 3 of ca. 1 us 

means that lower concentrations can be used relative to other dopants with longer 

N 

N N 

N N N 
Me 

facMmh («) C B P (9) B C P (10) 
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phosphorescence lifetimes before saturation occurs. Figure 13 shows a comparison of dopant 

concentrations and different device structures. 

m 
rH 

: 

i 
i • • 

! 1 

rtirt-rrti n 
8% IrfppyMn 

BCP 
• 

with • 
i ! mirtppyknCBP 0.1 • 

without BCP 
• 

1 10 10 10 10 10 

Current density (mA/cm2) 

Figure 13-A comparison of dopant concentrations and device structures with relation to EQE and current density. Copied 

from [23] 

It is clear from Figure 13 that the optimum dopant concentration is 6% which gives an EQE of 8.0% at 

10~2 mA/cm 2 . The device performance was excellent for its time with peak power efficiency at 31 

Im/W and a peak luminance of 100,000 cd/m 2 . The Xm a ) < of the EL from the device is 510 nm giving 

green light. Almost no EL is seen from CBP (Am a x = 400 nm) indicating that there is nearly complete 

energy transfer between the CBP host and iridium guest. 

1.4.2 Functionalisatiou and Derivatives 

The functionalisation of the ligand(s) around a heavy metal centre can lead to a shift in the EL 

emission of the complex'2 4'. The addition of either an electron withdrawing group (EWG) or electron 

donating group (EDG) will alter the position of the LUMO or HOMO of the complex affecting the 

wavelength of light emitted. To predict whether the wavelength will be red shifted (bathochromic 

shift) to lower energy or blue shifted (hypsochromic shift) to higher energy, density functional 

theory (DFT) calculations can determine the levels of the HOMO and LUMO; although theoretical 

calculations do not always correspond precisely to the experimental findings. 

Grushin et al.m functionalised phenylpyridine ligands with a variety of different EWGs and 

EDGs and cyclometaiated the ligands to an iridium centre. Aside from affecting the wavelength of 
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light produced, the efficiency and radiance of the device was also altered through the introduction 

of these groups. The groups were attached to either the phenyl or pyridyl rings (or to both) giving a 

series of /oc/a/-tris-cyclometalated iridium complexes as can be seen below. 

x 

I 
N 

I ! 

ir; 

N 

^ 5 

I 

Y 

Table 1 showing the effects of placing groups X on the pyridyl and Y on the phenyl units of lr(ppy)3 

derivatives. 

X Y EL Amni/nm Peak radiance cd/m2 

H 

H 

H 

4-F 

522 

514 

570 

800 

H 3-CF 3 517 1 2 0 0 

5-N02 3-CF 3 521, 2630 
HH9BHBBM!6HBBBHHHHHHRH 

5-CF 3 H 545 400 

5-CFj 3-CF 3 1500 

5-CF 3 4-F 525 4800 

5-CF, 560 514 fl^HI 

5-CF3 
2-F 525 340 

5-CFs 4-OMe • • • • 1 

5-CF 3 3-OMe 5 9 5 360 

5-CF3 
4-OCF 3 H U H H H 

3-CI, 5-CFj 
H 5 7 5 190 

3-(N), 5-CFj 4-F «§ 1500 

Table 1 - The effect of substituent groups on the EL of lr(ppy)3 

As shown in Table 1 a great variety of lr(ppy)3 derivatives were tested in OLED devices with peak 

performance of 4800 cd/m 2 achieved from the use of a CF 3 group in the 5-position on the phenyl and 

a F group in the 4-position of the pyridyl. 
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To explain the shift in emission due to the functionalisation of the ligand the HOMO/LUMO 

levels of the complex must be considered. Hay used DFT calculations to determine the densities and 

positions of the HOMO and LUMO on a 2-phenylpyridine iridium complex in 2002 1 2 5 1. Brooks et al. 

also carried out similar DFT calculations for a ppyPt(acac) complex 1 2 6 1, the results were visualised as a 

contour plot of the HOMO and LUMO orbitals (Figure 14). 

i 

: 
Figure 14 - Contour plots of the HOMO (left) and LUMO (right) orbitals in Pt(ppy)Jacac) from Brooks et al.. For clarity, only 

one ppy ligand is shown. 

Figure 14 shows that the HOMO is a mixture of phenyl and platinum orbitals whereas the LUMO is 

predominantly located on the 2-phenylpyridine ligand. This plot has been shown as it is easier to 

visualise than the data for/oc-lr(ppy) 3 and the position of the HOMO and LUMO orbitals are very 

similar for both complexes. 

Using the information in Figure 14 the shifts in X m a x emission in Table 1 can be explained. It can 

be seen that there is a large LUMO electron density at the 2- and 4-positions of the phenyl ring. 

There are two complexes with an F group on the 2- and 4-positions of the phenyl which brings about 

a shift in emission of the complex. The F group acts as a weak n-donor which raises the level of the 

LUMO; this increases the band gap and blue shifts the emission to X m a x = 514 and 506 nm for the 2-F 

and 4-F, respectively. There is a large HOMO electron density on the 3-position of the phenyl. When 

a CF 3 group is placed on the 3-position of the phenyl it acts as an electron withdrawing group and 

removes electron density from the HOMO, lowering the HOMO level, and increasing the band gap 

therefore blue shifting the emission to X m a i = 517 nm. Similarly when a CF 3 group is placed in the 5-

position on the pyridine it interacts with the LUMO removing electron density and lowering the level 

which reduces the band gap and red shifts the emission to Xm3x- 545 nm. When a strong electron 

donating group is placed on the phenyl such as a methoxy group in the 3-position (large HOMO 

electron density) we can see a large red shift in emission due to the increased HOMO level (A,™ = 

595 nm). 
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Many different ligands have been cyclometalated onto Ir often as a derivative of the 2-

phenylpyridine ligand forming both tris- and bis-cyclometalated complexes' 2 7 1. Lamansky et al. 

reported a number of variants of bis-cyclometalated iridium complexes and their use in OLEDs. The 

structures 11-25 synthesised by Lamansky et al. can be seen below. For clarity the (acac) ligand is not 

shown. 

N N N N N 
Ir 

CH 
l_ —' 2 

ppy(ll) tpy(12) bzq(13) thp (14) btp (15) 

N 
Ir 

N N 
Ir 

NEt 

dpo(16) C6 (17) bo (18) bt(19) bon (20) 

P f = \ 
N N N 

Ir N N 
.Ir 

op (21) absn(22) pbsn (23) btth(24) pq (25) 

Emission in the complexes is thought to predominantly originate from the MLCT bands. The emission 

of the non-ppy or ppy derivative complexes with (acac) as the ancillary ligand varied from 520 nm 

(21) to 612 nm (15) with internal quantum efficiencies varying between 10% (16 and 25) and 60% 

(17). 17 is a common fluorescent laser dye which demonstrates no observable phosphorescence and 
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high quantum efficiency for fluorescence at room temperature. Strong ISC is demonstrated in 17 

through the shift in the emission maxima when comparing the emission of just the C6 ligand to the 

emission of the complex (500 nm and 570 nm, respectively). The red shift demonstrates the strong 

ISC when excitons migrate from the 1MLCT state to the 3MLCT state. 

Iridium complexes have also found a use in the search for white light from an OLED. These so 

called WOLEDs emit over a broad spectrum producing 'white' light (ideal CIE co-ordinates are 0.333, 

0.333). There are several different methods used to produce white light from an OLED. A 

combination of emitters is a favoured method utilising red, green and blue emitters in the right 

concentrations can product white light1281. The problem with this strategy is that excitons can be 

transferred from the blue to green emitters and the green to red emitters resulting in a red shifted 

emission if dopant concentrations are not precisely controlled. 26 was used as a dopant and exciton 

blocking layer in a WOLED device 1 2 9 1. See structure below. 

In a previous effort to produce white light using a single dopant and an ITO/NPD/CBP 

(9):dopant/BCP (10)/Alq3 (3)/LiF/AI device structure 1 3 0 1 there was exciton leakage into the NPD HTL 

layer leading to NPD emission and a blue shift of the emission moving away from white light. A 

dopant was needed that could act as an exciton blocker within the CBP layer ensuring excitons could 

not reach the NPD layer to emit. Ir(ppz)3 meets all the criteria for an efficient exciton blocker, such as 

a high LUMO level to block electrons and a HOMO level above that of the HTL. The device produced 

nearly white light at a peak brightness of 8000 cd/m 2 with a maximum quantum efficiency of 3.3%. 

Use of a mCP (27) host and higher dopant concentrations increased the quantum efficiency to a 

maximum of 6.4%, the highest seen from a WOLED at the time. 

Work in our group established that efficient two-component WOLEDs could be fabricated using 

a single active layer containing blue-emitting polyfluorene host and a yellow-orange-emitting iridium 

tris(tri-fluorenyl)pyridine guest. The two emitted colours complement each other and doping levels 

of 2-3% produced stabilised emission with CIE coordinates 0.348, 0.367 close to pure white. A peak 

XX o 1 N 

N N 

/ac-Ir(ppz)3 (26) mCP (27) 
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external quantum efficiency of 2.8%, and luminance of 16000 cd/m 2 at applied voltage of 5 V [i.e., 

4.57 cd/A) was obtained 1 3 1 1. 

1.4.3 Facial and Meridional Tris-cydometalated Ir Complexes 

In tris-cyclometalated complexes an important factor that must be considered is the configuration of 

the ligands around the Ir centre, i.e. a facial [fac-) or meridional [mer-) complex. The difference 

between fac- or mer- complexes can be seen in Figure 15. 

Figure 15 - Schematic of facial and meridional isomers 

This different ligand configuration gives rise to a difference in optical properties of the two isomers. 

In 2003 a study was under taken by Tamayo et al. into the difference between several facial and 

meridional iridium complexes with interesting results' 3 2 1. The complexes synthesised are shown 

below. 
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It was found that mer- complexes were red shifted over their fac- counterparts, with an emission 

maximum shift of 38 nm for tpy. The mer- complexes give poor quantum photolumlnescence 

efficiencies relative to the fac- isomers by ca. an order of magnitude. From these results it became 

clear that mer- complexes are not suited to OLED applications. The paper raised a number of 

interesting observations. The mer- complex is thought to be the kinetic product of a reaction to 

produce a tris-cyclometalated iridium complex whilst the fac- isomer is the thermodynamic product. 

The mer- complex can be synthesised by reaction at a lower temperature for a shorter time, 

whereas the fac- complex required higher temperature and longer reaction time. Mer- complexes 

can be converted to their/oc- counterparts by heating in a high boiling point solvent such as glycerol 

or irradiating the complex with a UV lamp in a co-ordinating solvent such as DMSO. The two isomers 

are readily identifiable by *H NMR spectra as the fac- complexes exhibit much simpler spectra due to 

equivalence of all the protons on the same position on each ligand. 

1.4.4 Carbazole and Ir Complexes 

As the work later in this thesis will focus on carbazole forming the basis of cyclometalating ligands 

for Ir an overview of the previous work on this subject will now be given. 

Carbazole (32) is an electron rich aromatic system, that is highly conjugated which makes it an 

excellent candidate for OLED work and in combination with a pyridyl substituent forms a ligand 

which can cyclometalate in a similar fashion to 2-phenylpyridine. Very few examples exist in the 

literature of a carbazolyl moiety directly cyclometalated to a metal centre such as Ir. The few 

examples that do exist are described below. 

The first cyclometalation directly onto a carbazole unit - specifically (pyridin-2-yl)carbazole was 

reported in the Bryce group in 2005 1 3 3 'who synthesised the two parent ligands 33 and 34. 

N 
N 

N N N 

H CeHi3 CfiH 1 3 

Carbazole (32) (Pyridin-2-yl)carbazole (33) (Pyridin-3-yl)carbazole (34) 
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By analogy with 9,9-dialkylfluorene units the carbazole nitrogen has an alkyl group attached for 

added solubility. This also aids the solution processability of the derived Ir complex when forming 

layers for an OLED device by spin-casting from solution. The variants of the parent complexes shown 

above included fluorene groups (one or two) in-between the pyridyl and the carbazole units. 

Photophysical studies on the complexes' 3 4 1 demonstrated a 90 nm shift between the pyridin-2-yl 

[lr(Cz-2-Py)3] and the pyridin-3-yl [lr(Cz-3-Py)3] carbazole iridium complexes. The [lr(Cz-2-Py)3] 

complex gave an emission maximum of 500 nm whereas the [lr(Cz-3-Py)3] complex was at 590 nm. 

This can be attributed to the position of the N in the carbazole system. In the [lr(Cz-2-Py)3] system 

the N is para- to the Ir centre with strong electron donation to the Ir, raising the HOMO level and 

lowering the band gap hence red shifting the emission of the complex. The emitting state of the 

complexes are thought to be a mixture of MLCT and n-n* states. External EL quantum efficiencies of 

1.3% and 0.06% were achieved for the [lr(Cz-2-Py)3] and [lr(Cz-3-Py)3] complexes, respectively, as 

blends in a polyfluorene-based host, in a simple solution processed device, with no additional HT or 

ET layers. The quantum efficiency of the [lr(Cz-2-Py)3] complex is higher due to an increased exciton 

trapping efficiency compared to the [lr(Cz-3-Py)3] complex. It was concluded that a host with a 

higher triplet energy is needed to fully exploit these complexes as dopants as the host used has a 

low lying triplet energy leading to quenching of the triplet excitons on the complexes. The complexes 

showed quantum photoluminescence efficiencies of 28% and 39% for [lr(Cz-2-Py)3] and [lr(Cz-3-

Py) 3], respectively. 

In 2006 Wong et al. published very similar Ir complexes' 3 5 1 to those previously reported in our 

group, with W-phenyl substituents, see below. 
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O 
N 

N CinH 10n21 

Ir 
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/ac-[Ir(x-Cz-py)3] 
X = H (35), F (36) 

Ir(2-PyDeCz)2(acac) (37) 
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The complexes 35 and 36 show very similar solution emission spectra with maxima of 515 nm and 

514 nm, respectively. This is explained by the lack of HOMO or LUMO electron density on the N-

phenyl ring, as from the reported DFT calculations; hence the substituent group has little effect on 

the emission spectrum of the complexes. The reported multilayer device structure of 

ITO/NPB/CBP(9):complex/BCP(10)/Alq3(3)/Mg:Ag was fabricated by thermal evaporation techniques 

requiring a large amount of the complex to be synthesised, ca. 100 mg per device. The BCP layer aids 

the confining of excitons within the CBP host layer as it blocks the passage of excitons to the Alq 3 ET 

layer. The device using complex 35 demonstrated a very high external quantum efficiency of 11.6% 

which was explained by the charge balancing features of the carbazolyl moiety. 

A bis-cyclometalated example of a carbazole directly bonded to an iridium centre (37) was 

published in 2008 by Tao et a/.136' (vide supra). This complex showed a photoluminescence emission 

maximum at 594 nm attributed to the MLCT state. In a device (standard configuration -

ITO/PEDOT:PSS/CzOXD:37/BCP(10)/Alq3(3)/LiF/AI) the emission maximum was ca. 613 nm, changing 

slightly with device configuration and dopant concentrations. 

1.5 Conclusion 

OLEDs have progressed at a rapid rate and can be expected to do so for the foreseeable future. 

Fluorescent emitters were usurped by phosphorescent guests and hosts and the goal of 100% 

internal quantum efficiency has effectively been realised with some phosphors. External quantum 

efficiencies and hence power consumption efficiencies as well as device fabrication expertise are 

improving to the point that an OLED TV has been commercialised in early 2008. Iridium complexes 

form the forefront of phosphorescent guests and can be expected to lead the small molecule OLED 

sector. Cyclometalated ligands based on 2-phenylpyridine make excellent OLED candidates when 

combined with an Ir centre. It has recently been established that carbazole can be directly 

cyclometalated onto Ir opening up another avenue to explore and exploit. This will form the basis of 

the work described in the remainder of this thesis. 
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Chapter 2 - Novel Functionalised Iridium Complexes 

The aim of this chapter is to introduce the reader to the new iridium (III) complexes synthesised in 

the progression of this work. This chapter will also discuss the methodology of the syntheses used as 

well as the results from other investigations into the properties of the complexes such as their 

photophysical properties. 

2.1 Synthesis 

As shown in Chapter 1.4 iridium complexes comprise a generation of electrophosphorescent guests 

in OLED devices and excel in their performance. Functlonalisation of the ligands in these complexes 

can lead to significant shifts in absorbance and emission spectra. With a possible end use of these 

complexes in mind as components in information displays, the ability to tune a 'parent' complex's 

electroluminescent spectrum is a great aid. For example, if several structurally different complexes 

had to be synthesised for the RGB components of a display this would be more costly than simply 

functionalising one parent complex. 

Aside from advantages to companies involved in the fabrication of products using OLED 

technology, understanding exactly how functionalisation affects the optical properties of these 

complexes is of fundamental interest and will continue to have an effect on the design of these 

complexes. 

2.1.1 Parent Complexes 

The parent complexes involved in this work were originally published by our research group in 

2 Q Q 5 I 3 3 . 3 4 ) T h i s W Q r k f 0 | | o w s o n f r o m t n e work undertaken into cyclometalation of carbazole onto an 

iridium (III) centre as described in Chapter 1.4.4. The complexes synthesised were the first examples 

of the direct cyclometalation of carbazole onto iridium. Complexes 38 and 39 are the parent 

complexes which form the basis of the new work presented here. 
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6^13 
N 

N C«H 6^13 

N 
N 

39 38 

To affect the photophysical properties of the complexes the HOMO and LUMO levels must be 

changed. To do this electron withdrawing groups (EWGs) or electron donating groups (EDGs) can be 

added to the ligands. The ligands presented in these parent complexes are analogous to 2-

phenylpyridine ligands, with carbazole replacing the phenyl. In order to determine where the 

functionalisation would have the largest effect the position of the HOMO and LUMO DFT 

calculations from Hay1251 were consulted. Hay's calculations show a high LUMO density on the 

pyridine and a high HOMO density on the phenyl. It was decided that for the largest effect the 4- and 

5-positions on the pyridine ring would be functionalised in separate complexes with an EWG and an 

EDG. 

A trifluoromethyl (CF3) group was chosen as the EWG for the electronegativity effect of this 

group in removing electron density from the aromatic system. The CF3 group was chosen over a 

fluoro (F) group as halogens exhibit a mixed electron donating and electron withdrawing effect on 

aromatic systems through n-donation and electronegativity respectively. A methoxy (OMe) group 

was chosen as the EDG as it has a strong electron donating effect on aromatic systems increasing the 

electron density. 

This gives a series of eight iridium (III) complexes (40 - 47) as the initial target complexes in this 

work (vide infra). 

Page | 28 



Chapter 2 Novel Functionalised Iridium Complexes 

,C 6 H 1 3 

40 41 42 
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V->6M13 CeH 6 n 1 3 
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F,C 

43 44 45 

CflH 6 n 1 3 
—N C«H 6 n 1 3 

—N 

MeO 

46 47 

These constitute two series of complexes, distinguished by the position of the functionalised pyridyl 

in relation to the carbazolyl moiety. In series 1 (complexes 40 to 43) the pyridyl is attached to the 3-

position of carbazole; in series 2 (complexes 44 to 47) the pyridyl is at the 2-position of carbazole. 
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The general synthetic route to the complexes was based on the original route to the parent 

complexes 1 3 3 , 3 4 1 from either 2-bromocarbazole (48) or 3-bromocarbazole (49) as starting materials to 

38 and 39. 

Br 

N N 

H H 

48 49 

2.1.2 Synthetic Route to the Starting Materials 

Selectively forming a singly brominated carbazole is an interesting synthetic problem. This is due to 

the directing nature of the secondary amine group. Although the lone pair of the N is more involved 

in the aromatic structure than a standard secondary amine it still directs bromination primarily to 

the ortho and para positions. For the synthesis of 3-bromocarbazole this problem was alleviated by 

control of the equivalents of brominating agent or bromine in the bromination reaction. It was found 

by Tavasli et al. that 1.1 equivalents of bromine in DMF at 0-20 °C over 1-27 h produced a yield of 

3596 of 3-bromocarbazole from carbazole with 3,6-dibromocarbazole 50 as the byproduct (2% yield). 

N 
I 

H 

50 

Producing 2-bromocarbazole is, relatively, more complex. The amine group does not activate the 

meta position on carbazole for bromination, therefore, carbazole cannot be used as a starting 

material. Tavasli er al. produced 2-bromocarbazole starting from 2,5-dibromonitrobenzene (51). This 

underwent a Suzuki coupling reaction with phenylboronic acid (52) (1.0 equivalents) to form 2-nitro-

4-bromo-biphenyl (53) as can be seen in Reaction Scheme 1 (vide infra). An expected by-product of 

this reaction is the formation of compound 54. 
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OzN 
52 51 

Br 
Toluene, 90°C, 5.5h 

Pd(PPh)4, Na 2C0 3 

Br 

0 2 N 

53 

+ 

OzN 
54 

Reaction Scheme 1 - Formation of 2-nitro-4-bromobiphenyl 

If the reaction was not optimised for the synthesis of the target compound 53, then a larger amount 

of 54 would be produced making this route unviable for producing 2-bromocarbazole. The 

separation of 53 and 54 was difficult, but as the by-product will not be able to react in a Suzuki 

reaction to form the ligand it was deemed that the separation was also unnecessary. 

The next step of the route is to cyclise 53 to 2-bromocarbazole. This is done via a reaction with 

triethylphosphite, P(OEt)3, which also acts as a solvent in the reaction. The products isolated are 2-

bromocarbazole (49) and 2-phenylcarbazole (55, produced from the cyclisation of 54). 

This route gave an overall yield 38% of 2-bromocarbazole (49) relative to the starting materials 51 

and 52. 

Other routes were investigated in the progression of this work in an attempt to simplify the 

synthesis and improve on the yield. 

The first route was an attempted one-step ring closure reaction of 56 (commercially available) 

to 2-bromocarbazole via the reaction with a palladium acetate or similar (see Reaction Scheme 2). 

N 
H 

55 
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Br 
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N 
/ ^ B r 

Various conditions 
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Br + 

N N 
H H 

56 49 57 

Reaction Scheme 2 - One step formation of 2-bromocarbazole; 49 could not be purified from the multi-component product 

mixture 

This reaction was following a recent report of the synthesis of a substituted carbazole compound'3 7 ' 

using palladium acetate in a catalytic amount (10 mol%) and copper acetate (2.5 equiv.) to reform 

the palladium (II) species. The reaction was high yielding at 72%. This reaction is originally based on 

work published in 19751 3 8 1 on these types of ring closing reactions forming substituted carbazole 

compounds or similar aromatic heterocyclic compounds. The earlier work used palladium acetate in 

equivalent amounts and did not utilise copper acetate to reform the catalytic species, hence lower 

yields were reported. It should be noted that neither of the published works mentioned attempts to 

produce a carbazole compound substituted at the 2-position. 

The initial attempt to produce 2-bromocarbazole from 56 utilised the same reagents as in the 

2006 paper, namely palladium acetate (10 mol%) and copper acetate (2.5 equiv.). However, the 

desired product was not identified in the multi-component product. A change of catalyst to 

palladium trifluoroacetate (1.0 equiv.) produced 2-bromocarbazole 49 (*H NMR and MS evidence). 

However, *H NMR analysis established that 64% of the product mixture was 2-bromocarbazole, 

the remainder being 4-bromocarbazole 57 (formed by ring closure ortho to the bromine substituent) 

and unreacted starting material. The yield of 2-bromocarbazole was 36%, comparable to the original 

route to this compound by Tavasli et ai. The use of palladium trifluoroacetate in an equivalent 

fashion makes the reaction very expensive; this, combined with the inseparable product mixture led 

to the conclusion that this was not a viable alternative route for the synthesis of 2-bromocarbazole. 

The second route investigated was similar to the synthesis used by Tavasli et al. in that it relies 

on the cyclisation of a nitro-biphenyl compound. This route was designed to eliminate the possibility 

of forming by-products such as 54 and 55. The route involves the bromination of 2-nitrobiphenyl 

(58) to 4-bromo-2'-nitrobiphenyl (59) followed by cyclisation to 2-bromocarbazole (Reaction Scheme 

3). 
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Various conditions 

Brominating agent 
Br 

N0 2 N0 2 

58 59 

Reaction Scheme 3 - Bromination of 2-nitrobiphenyl to 4-bromo-2'nitrobiphenyl; 59 could not be purified from 

the multi-component product mixture 

It was thought that the 2-nitro group would deactivate the benzene ring to bromination leaving the 

most activated site as the proposed 4'-position. The reaction was attempted several times using 

several variables such as the use of bromine and N-bromosuccinimide (NBS) as brominating agents; 

chloroform, acetic acid and water were used as solvents; the temperature and time of the reactions 

were also varied. After the working up of these reactions it was determined from thin-layer 

chromatography that the separation of the starting material and product 59 (for which there was 1H 

NMR evidence) was not possible and the route was not explored further. 

After exploring these separate routes to produce 2-bromocarbazole it was decided that the 

most efficient and reliable route was the original procedure of Tavasli et a/.'331. 

2.1.3 Synthetic Route from Starting Materials to Complexes 

The formation of the complexes starting from 2- and 3-bromocarbazole is a relatively simple process. 

The starting materials (48 and 49) were N-alkylated for added solubility and ease of handling, which 

also aides the solubility of the final complexes. 

The boronic acid species, 60 and 61, were formed from the starting materials, 48 and 49, as 

shown in Reaction Scheme 4. 
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48 

49 

i) n-BuLi (-78°C, 3h) 
• 

ii) ('PrO)3B (20°C, 22h) 
iii) H + (20°C, 2h) 

THF (anhyrdous) 

i) w-BuLi (-78°C, 3h) 
: • V 

ii) (IPrO)3B (20°C, 16h) ^ 
iii) H + (20°C, 2h) 

THF (anhyrdous) 

B' "13 

FJ(OH)2 

60 

B(OH)2 

Reaction Scheme 4 - The formation of the boronic acid species, 60 and 61, from the starting materials, 48 and 

49). 

The ligands are formed through a Suzuki reaction with the appropriate boronic acid (60 or 61) and 

the functionalised halopyridine partner. Two catalysts were used separately in the Suzuki reactions, 

namely bis(triphenylphosphine)palladium(ll) dichloride and 

tetrakis(triphenylphosphine)palladium(0). 

The synthesis of the Ir complexes was originally performed in our group by Tavasli et al. with 

the use of a microwave reactor, although in the present work the reactions were performed at high 

temperature in glycerol using lr(acac)3 to form the thermodynamically favoured facial isomers'321 

(Reaction Scheme 5) 

Ir(acac)3 

Ligand • Iridium Complex 
Glycerol, 72h 

Reaction Scheme 5 - General scheme for the formation of Ir complexes 

The synthesis of complexes 46 and 47 (involving ligands where the OMe group is para to the N on 

the pyridyl) did not proceed as expected. The reactions were carried out in the same manner as all 

other reactions performed to synthesise the complexes. Analysis of the reactions by thin-layer 

chromatography showed that many compounds were present in the reaction mixture and 

subsequent separation by column chromatography on silica could not isolate the complexes. The 

reason for the failure of these reactions is thought to be linked to the bonding of the N on the 

pyridine to the iridium centre and the fact that there is an electron donating methoxy group para to 

this position. 
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As an Interesting observation it is noted that there is the potential for a regioisomer of the 

complexes to be formed if cyclometalation occurred at the alternative carbon atom (41a). 

C«H C«H flni3 6 n 1 3 
N N 

H H 

H H 

N N 

41a 41 

However, this regioisomer was not observed in any of the complexes probably through steric 

hindrance of the ligands around the Ir centre. In the complexes shown above two protons have been 

indicated which aid in distinguishing the complexes from one another. In complex 41 1 H NMR would 

show the two protons as singlets whereas in complex 41a the two protons would be doublets. As 

can be seen in Chapter 3 complex 41a is not formed as the complexes clearly demonstrate three 

distinct singlets from the two protons shown above in complex 41 and the proton in the 3-position 

on the pyridyl. The three singlets are indicated on the example *H NMR spectrum of complex 41 

shown in Figure 1. 
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Figure 1-H NMR of complex 41 in CDJCIJ 

2.2 DSC/TGA Investigation 

Investigations were carried out into the thermal characteristics of the complexes using differential 

scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) techniques. 

DSC studies were performed for complexes 40,41 and 42, i.e. the series in which the pyridyl on 

the carbazole is in the 3-position. Analysis of the available DSC data showed that the complexes are 

amorphous solids which do not undergo any transitions between 0 to 300 °C. There is no evidence of 

crystallisation which was present in some of the complexes synthesised by Tavasli et al.. The 

complexes exhibit sharp melting points between 328 °C and 355 °C. It is predicted that complexes 43 

- 47 would exhibit the same characteristics. Two peaks were observed for complex 40, the first of 

which is thought to correspond to the boiling point of glycerol as a contaminant in the sample. 

Glycerol was the solvent used in the preparation of the complexes from the ligands and lr(acac)3. 

The second peak is thought to be the melting point of the complex at a similar value to those found 

for complexes 41 and 42. A summary of the DSC data can be seen in Table 1 (vide infra). 
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TGA studies were performed for complexes 40,41, 42,45 and 46. With the exception of 40 the 

temperature at which 5% weight loss occurred was over 350 °C and comparable with that of lr(ppy)3 

at 413 °C'3 9 1. The low value of AT 5 % for complex 40 is thought to be due to contamination of the 

sample with glycerol, the evaporation of this contaminant leads to the lowering of the expected AT5* 

value. With the exception of complex 40 the values all indicate that the complexes are stable up to 

relatively high temperatures of >350 °C. A summary of the TGA data can be seen in Table 1 below. 

Complex DSC Melting Point [°C] TGA tig* [°C] 

40[lr(Cz-3-Py(5-CF3))3] 280,333 (sharp) 231 

41 [lr(Cz-3-Py(4-CF3))3] 328 (sharp) 383 

42 [lr(Cz-3-Py(5-OMe))3] 355 (sharp) 369 

45 [lr(Cz-2-Py(4-CF3))3] - 387 

46 [lr(Cz-2-Py(5-OMe))3] - 358 

Table 1 - Summary of DSC and TGA data 

2.3 Cyclic Voltammetry Investigation 

Cyclic voltammetric (CV) investigations were carried out at 298K using an Ag/AgN03 reference 

electrode and the ferrocene/ferrocenium couple'4 0 1 as a secondary reference. The supporting 

electrolyte was a 0.1M solution in DCM of tetra(n-butyl)ammonlum hexafluorophosphate 

(nBu4NPF6). A scanning rate of 100 mV/s was used. 

All complexes exhibited cleanly reversible oxidation potentials assigned to the lr"'/lr' v couple. 

For comparative purposes the oxidation potentials of the parent complexes were also measured. A 

summary of the half-wave oxidation potentials can be seen in Table 2 {vide infra). 

There is an appreciable difference of the oxidation potentials between the two series. On 

comparison of the complexes in series 1 to their counterparts in series 2 it is clear that the former 

are harder to oxidise. For example, when comparing 40 to 44 there is a shift of the oxidation 

potential to lower potentials (+ 0.752 V vs. + 0.541 V). In series 2 the N of the carbazolyl moiety is 

para to the Ir metal centre and thus its electron donating effect through the aromatic ring which 

destabilises the ground state of the complex, raising the HOMO level giving rise to lower oxidation 

values. 
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A difference in oxidation potentials is also noticeable between electron donating groups and 

electron withdrawing groups. This is comparable to the work discussed in Chapter 1.4.2 where 

Grushin ef a/.'241 functionalised phenylpyridine ligands on [lr(ppy)3] (8). In the case of complexes 40 

to 46 the functionalised unit is the pyridyl. If the level of the HOMO in the complexes is considered, 

the effect of an EDG or EWG has upon the oxidation potentials become apparent. An electron 

withdrawing group (such as the CF3 group in complex 40) removes electron density from the HOMO 

thus lowering its level and accordingly increasing the oxidation potential compared to the parent 

complex (+ 0.752 V vs. + 0.536 V, respectively). An electron donating group (such as the OMe group 

in complex 42) increases electron density in the HOMO thus raising its level and decreasing the 

oxidation potential compared to the parent complex (+ 0.486 V vs. 0.536 V, respectively). The 

increased oxidation potential is observed for all complexes where an EWG is present (40,41,44, 45) 

and vice versa for complexes 42 and 46. 

The ligand centered oxidations in the complexes are observed as two and three-electron waves. 

They have higher potentials relative to the lr l l l / l r l v couple, an example of which can be seen in the 

cyclic voltammogram shown in Figure 2. The processes are quasi-reversible unlike the fully reversible 

lr"'/lr l v couple that can be seen at the lower oxidation values. 
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CV of 46 [lr(Cz-2-Py(5-OMe))3] 
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i 6 

Figure 2 - Cyclic Voltammogram of 46 [lr(Cz-2-Fy(S-OMe))J, averaged values over three scans show (46 vs. Ag/AgN03 In 

CH&i), see Table 2. 
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2.4 Photophysical Investigation 

Solution state photophysical properties were ascertained using freshly prepared solutions of the 

complexes 40, 41, 42, 44, 45 and 46 and their parent complexes, 38 and 39, in toluene. Emission 

measurements were taken using solutions which were degassed thoroughly using the repeated 

freeze-thaw technique. All measurements were taken using 1cm pathlength quartz cuvettes. Series 1 

absorption measurements were taken using a Unlearn UV/Vis Spectrometer UV2. Series 2 absorption 

measurements were taken using a Perkin Elmer UV/Vis Spectrometer Lambdal2. All emission 

measurements were taken using a Jobin-Yvon Horiba Spex Fluorolog Spectrometer. A summary of 

the absorption and emission data can be seen in Table 2. 

Complex Absorption 

[nm] 

X maxima Emission X maxima 

[nm] 

E«»l/2 

m 

38 Series 1 parent [lr(Cz-3-Py)3] 329 504 + 0.536 

40 [lr(Cz-3-Py(5-CF3))3] 326 536 + 0.752 

41 [lr{Cz-3-Py(4-CF3))3] 323 558 + 0.753 

42 [lr(Cz-3-Py(5-OMe))3] 313 514 + 0.486 

39 Series 2 parent [lr(Cz-2-Py)3] 334 589 + 0.480 

44 [lr(Cz-2-Py(5-CF3))3] 350 633 + 0.541 

45 [lr(Cz-2-Py(4-CF3))3] 369 637 + 0.532 

46 [lr(Cz-2-Py(5-OMe))3] 346 577 + 0.312 

Table 2-A summary of CV half-wave potentials and absorption and emission A maxima 

2.4.1 Absorption 

The absorption spectra of the complexes in series 1 can be seen in Figure 4, the absorption spectra 

of the complexes in series 2 can be seen in Figure 5 {vide infra). N.B. For clarity the two series were 

not combined onto one figure. 

The complexes exhibit the strongest absorbance bands between approximately 300 to 350 nm 

for series 1, and 325 to 375 nm for series 2. It is observed that the functionalised complexes exhibit 

very similar absorption spectra to their parent complexes and in analogy to the original 

photophysical investigation of the parent complexes'34'these bands are assigned as Swi* transitions. 

The weaker absorptions at ca. 375 nm for series 1 and 450 nm for series 2 are assigned to 1MLCT 

transitions. Very weak absorptions assigned to 3MLCT transitions can be observed at longer 
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wavelengths. These assignments are made by analogy with previously reported iridium complexes'24, 

**• 4 1 1 of a similar structure and TD-DFT calculations performed (vide infra). As an example the 

absorption spectrum of complex 42 is shown in Figure 3 with the absorption peaks assigned to 

specific transitions. 

Absorption Spectra of 42 [lr(Cz-3-Py(5-OMe))B] 
1.200 

1.000 

J 
1 0.800 

< 
i * 

0.600 

is 
I 0.400 

z 
0.200 

0.000 

MLCT 

250 350 400 

Wavelength [nm] 

Figure 3 -Assigned bands in the absorption spectra of complex 42 [lr(Cz-3-Py(5-OMe))}] in degassed toluene solution at 298 

K 

Upon comparison of the absorption spectra and maxima observable from Table 2 and Figures 4 and 

5 it is clear that series 2 exhibits red shifted absorbance spectra relative to series 1. This can be 

compared with the CV results reported in Chapter 2.3 (vide supra). Series 1 exhibited higher 

oxidation potentials than series 2. This is due to the position of the N in the carbazolyl moiety in the 

two series. In series 2 the N is para to the Ir metal centre, and has a large electron donating effect 

which destabilises the HOMO thus raising the level and lowering the gap between HOMO and 

LUMO. A smaller band gap means lower energy light will be absorbed thus red shifting the 

absorption relative to series 1 where there is not such a strong electron donating effect from the 

meta N. 
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Series 1 Absorption Spectra 
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Series 1 parent [lr(Cz-3-Py)s] 
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Figure 4 - Normalised absorption spectra of series 1 complexes and their parent complex in degassed toluene at 298 K 

From Figure 4 it can be seen that the ^LCT absorbance has increased for complexes 40 and 41 

when an EWG (CF3) is present. Interestingly, all complexes are blue shifted relative to the parent 

complex. The EDGs and EWG are all attached to the pyridyl moiety of the complex which exhibits a 

large amount of LUMO density and a very small amount of HOMO density. Therefore, the groups 

must be effecting the position of the LUMO. An EWG would be expected to lower the level of the 

LUMO thus red shifting the absorption spectra. In Figure 4 it can be seen that this is not occurring 

and in fact in complexes 40 and 41 the absorption spectra have been blue shifted. An EDG would be 

expected to raise the level of the LUMO thus blue shifting the absorption spectra which is what is 

occurring for complex 42. This leads us to the conclusion that it is not only electronic effects that 

control the absorption spectra of these complexes but possibly structural changes brought on by the 

addition of these functional groups. 
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Figure S - Normalised absorption spectra of series 2 complexes and their parent complex in degassed toluene at 298 K 

Conversely, it can be seen in Figure 5 that for series 2 the absorption spectra of the functionalised 

complexes have been red shifted relative to the parent complex. This is expected for the EWGs 

present in complexes 44 and 45 where the level of the LUMO is lowered thus red shift ing the 

absorption spectra. It is not expected for complex 46 where the electron donating methoxy group 

should raise the level of the LUMO thus blue shifting the absorption spectra, whereas for the actual 

complex a red shift has been observed. 

2.4.2 E m i s s i o n 

The degassed photoluminescence spectra of all complexes synthesised can be seen in Figure 6 [vide 

infra). It should be noted that the lower energy shoulders exhibited by all complexes are typical of 

vibrational energy levels of mixed MLCT/rc-rc* transit ions' 3 4 1 . 
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Figure 6 - Normalised PL spectra for complexes 40, 41, 42, 44, 45, 46 and their parent complexes in degassed toluene at 
298 K, k a = 355 nm. It should be noted that the peaks at 710 nm are due to the instrument used (double the excitation 
wavelength) 

From both Table 2 and Figure 6 it can be seen that the emission maxima span a large range f rom 514 

nm (green) to 637 nm (red) covering 123 nm and incorporating several colours of emission over this 

range. In Figure 7 the emission f rom several solid state complexes can be seen. 

Figure 7 - Emission from complexes 40,41 and 42 (left to right) under 365 nm UV light. 

The range of emission of the complexes is relatively large when the visible spectrum range of 

approximately 380 to 750 nm is considered. As wi th the original photophysical work performed on 
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the parent complexes' 3 4 1 the data is consistent with the emission from a mixed 3 MLCT/ 3 n-n" state 

comprised of mostly 3MLCT character. 

A distinct difference can be seen in the emission maxima between series 1 complexes and series 

2 complexes. This is analogous to the difference in absorption spectra and CV oxidation values in 

that it is due to the position of the N in the carbazolyl moiety and the raising of the HOMO level in 

series 2 thus red shifting the emission. 

In both series the complexes containing the CF 3 group (40, 41, 44 and 45) are all red shifted 

relative to the parent complex. This is in line with expectations where the electron withdrawing 

group stabilises the LUMO, lowering its level and reducing the band gap from which emission occurs. 

The largest shift in emission occurs for complex 41 of 54 nm relative to the parent complex. This is 

due to a large concentration of LUMO density at the 4-posltion on the pyridyl moiety where the CF 3 

group is located. In turn there is a large effect on the level of the LUMO which is lowered leading to 

the large red shift observed (504 nm vs. 558 nm). 

Interestingly the complexes containing the OMe functionalisation (42 and 46) exhibit different 

emission properties. In series 1, complex 42 is slightly red shifted indicating a reduced band gap (504 

nm vs. 514 nm), opposite of the expected raising of the LUMO level and raising the band gap leading 

to a blue shift in emission. In series 2, complex 46 follows the expected blue shifted emission with a 

shift of 12 nm (589 nm vs. 577 nm) due to the electron donating effect of the methoxy 

functionalisation destabilising the LUMO level and resulting in an increased band gap. 

2.5 Device Investigation 

Preliminary device studies were made by Dr. H. Al-Attar using complex 42 and the parent complex 

40. All devices were fabricated on indium tin oxide (ITO)-coated glass substrates of thickness 125 nm 

and possessing a sheet resistance of 20 fl/D. Poly(3,4-ethylenedioxy-thiophene) doped with 

poly(styrenesulfonic acid) (PEDOT:PSS), obtained commercially from Bayer A.G. Germany, was spin 

coated at 2500 rpm for 60 sec to produce a ~ 40 nm thick hole-transporting layer (HTL). These HTL-

coated substrates were then annealed at 200 °C for 2 min to remove any residual water. A 

chlorobenzene solution of 20 mg/ml of poly(vinylcarbazole) PVK was selected as a high triplet energy 

host material and as a hole -transport material. The PVK solution was doped with 4096 w/w of 2-(4-

biphenylyl)-5-(4-tert-butyl-phenyl)-l,3,4-oxadiazole (PBD, 62, vide infra) as an electron transport 

material for balancing charge carriers transport. Blended devices were made by mixing 8% w/w of 

the Ir complexes to the PVK:PBD 40% . The prepared mixture was filtered with a 25 u,m pore filter 

and spin coated at 2500 rpm on the top of the PEDOT:PSS layer and baked for 10 min at 120 °C. The 
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oligomer or the ollgomer/polymer solution mixtures were then spin-coated onto the substrate. Each 

sample was shadow masked to produce two identical devices of area 4x12 mm; the samples were 

then introduced into a nitrogen glove box, where 4 nm barium cathodes were evaporated onto the 

device at a rate of ~ 1 A/s under vacuum at a pressure of ca. lxlO" 6 mm Hg. This was followed by the 

deposition of a 150 nm capping layer of aluminium under the same evaporation conditions. 

N—N 

PBD (62) 

The current-voltage (l-V) characteristics and the emission intensities were measured in a calibrated 

integrating sphere and the data acquisition were controlled using a home-written Nl LabView 

program which controlled the Agilent Technologies 6632B power supply. The electroluminescence 

(EL) spectra were measured using an Ocean Optics USB 4000 CCD spectrometer supplied with 400 

u,m UV/Vis fibre optic. It should be noted that these devices were not optimised and were prepared 

to investigate the shift in emission between the functionalised complex and the parent complex. 
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Figure 8 - Comparison of device electroluminescence maxima of complexes 40 (left) and 42 fright) 

Figure 8 shows the emission maximum from the parent complex (40) to be 511 nm, whilst complex 

42 has an emission maximum of 520 nm. The red shifted emission of the functionalised complex was 

predictable based on the solution photoluminescence spectra where a similar shift was observed. 

The emission from complex 42 is less defined due to the low external quantum efficiency as 

demonstrated in Figure 9 below. It should also be noted that there is a difference in dopant 
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concentration in the devices due to device optimisation. The device containing the parent complex 

(40) has a complex concentration of 10% whereas the device containing the functionalised complex 

(42) has a complex concentration of 20%. 

1.6n 

A 14 
1.2 

V 1.0 

J # 0.8 
S 0 . 6 UJ / HI 

0.1 

T 1 1 I 1 1 1 1 I I 1 I I < 1 I ' I • I • I > I • I • I 

2 3 4 5 6 7 8 2 3 4 5 6 7 8 
Voltage (V) Voltage (V) 

Figure 9 - Comparison of device EQE of complexes 40 (left) and 42 (right) 

The relatively low external quantum efficiencies measured are partially as a result of using non-

optimised devices. It is envisaged that optimisation of these devices, in particular that of the host 

materials, could significantly increase the EQE. Investigation is continuing into device optimisation. 

It is apparent f rom Figure 9 that the functionalised complex exhibits lower EQE than the parent 

complex (0.4% vs. 1.5%). This is thought to be due to the presence of a lower energy excited state in 

the functionalised complex formed through a mixture of the 3MLCT state and the 3 n-n* state as seen 

previously' 3 4 ' which partially decays through non-radiative processes to the ground state. In both 

complexes the maxima in EQE is attained at approximately 4.5 V, an acceptably low voltage at which 

to run a device for extended periods in commercialised applications. 

2.6 Density Functional Theory Investigation 

DFT studies were carried out by Dr. M. Fox. All ab initio computations were carried out w i th the 

Gaussian 03 package' 4 2 1. The model geometries discussed here were optimised using the B3LYP 1 4 3 ' 4 4 ' 

4 5 , 4 6 1 functional wi th no symmetry constraints. The basis set used was 3-21G*' 4 7 ' ** ]. Frequency 

calculations were carried out on these optimised geometries at the corresponding levels and shown 

to have no imaginary frequencies. Molecular orbital and TD DFT computations were carried out on 

these optimised geometries at the same level of theory. Calculations were carried out on complexes 

wi th a methyl group on the carbazole N rather than the hexyl group which was present in the 
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synthesised complexes. This should not affect the calculated energy levels due to this position 

playing little importance in the electronic structure of the complexes. 

A comparison of the theoretical and experimental absorbance maxima produced from TD-DFT 

computations on the optimised geometries of model complexes can be seen in Table 3. 

The theoretical and experimental data corroborate with each other closely. For example, in 

both the theoretical and experimental data, complexes 40 and 41 red shift relative to the parent 

complex. Similarly in series 2 complexes 44 and 45 red shift relative to the parent whereas complex 

46 blue shifts relative to the parent, all shifts corroborating the theoretical and experimental 

agreement. 

Complex Theoretical X max [nm] Experimental X max [nm] 

38 Series 1 parent [!r(Cz-3-Py)3] 395 393 

40 [lr(Cz-3-Py(5-CF3))3] 430 424 

41 [lr(Cz-3-Py(4-CF3))3] 436 423 

42 [lr(Cz-3-Py(5-OMe))3] 396 385 

39 Series 2 parent [lr(Cz-2-Py)3] 460 444 

44 [lr(Cz-2-Py(5-CF3))3] 501 483 

45 [lr(Cz-2-Py(4-CF3))3] 501 481 

46 [lr(Cz-2-Py(5-OMe))3] 449 432 

Table 3 - Comparison of theoretical and experimental absorption data 

Schematics showing the computed position and density of the HOMO and LUMO for the parent 

complexes of series 1 and 2 are shown in Figures 10 and 11 (vide infra). 
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Figure 10 - HOMO (left) and LUMO (right) representations for series 1 parent [lr(Cz-3-Fy)J with methyl instead ofhexyl 

substituent on carbazole N 

V) 

i l 

Figure 11- HOMO (left) and LUMO (right) representations for series 2 parent llr(Ci-2-Fy))S with methyl instead of hexyl 

substituent on carbazole N 

It is apparent that for series 1 (Figure 10) there is l itt le carbazole involvement in the HOMO or LUMO 

compared to series 2 (Figure 11) where much greater carbazole involvement in both HOMO and 

LUMO can be seen. The resulting increased conjugation in series 2 means the complexes are 
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stabilised. This is supported in the experimental data where both absorption and emission are red 

shifted for series 2 relative to series 1. Vice versa the decreased carbazole involvement in series 1 

destabilises the complexes hence blue shifting the absorption and emission due to the higher energy 

HOMO-LUMO gap. 

The computations also indicate HOMO-LUMO transition in the complexes is primarily from 

mixed iridium d-orbitals to the ligand n system, i.e. a metal to ligand charge transfer state (MLCT). 

This can be seen in Figures 10 and 11 where the HOMO density is mostly based on the iridium atom, 

whereas the LUMO density is mostly based on the ligands. The increased HOMO density on the 

carbazole in series 2 indicates that the HOMO-LUMO transition is more mixed involving both MLCT 

transitions and a greater influence of n-n' transitions. In series 1 the HOMO-LUMO transition is also 

mixed but involves less influence of n-n* transitions. 
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Chapter 3 - Experimental 

This chapter describes the general experimental procedures and equipment used during the project. 

The synthesis and characterisation of all the new compounds presented in this thesis are described. 

The synthesis of several known compounds which were used as precursors is also presented along 

wi th the characterisation data used to confirm their identity. 

3.1 General Procedures 

Reactions that required an inert or dry atmosphere were performed under anhydrous argon which 

was dried by passage through a column of blue indicating silica gel and phosphorus pentoxide. All 

reagents were of standard reagent grade and were used as supplied unless otherwise stated f rom 

Aldrich, Fluka, Lancaster, Alfa Aesar or Alpha. Where an anhydrous solvent was employed it was 

dried through an HPLC column on an Innovative Technology Inc. solvent purification system. 

Petroleum ether refers to the fraction wi th a boiling point of 40-60 °C. Column chromatography was 

carried out using silica gel (40-60 urn). Thin layer chromatography was carried out using Polygram 

SilG/UV F 2 54 TLC plates, wi th visualisation using ultraviolet light (254 or 365 nm). *H NMR spectra 

were recorded on either a Bruker Avance 400 at 400MHz or a Varian Inova 500 instrument at 

500MHz. 1 3C NMR spectra were recorded on the above spectrometers at 100 MHz and 125 MHz, 

respectively. Chemical shifts are reported in ppm downfield of tetramethylsilane (TMS), using TMS 

or the residual non-deuterated solvent as the internal reference. Electrospray (ES+) mass spectra 

were recorded on a Micromass LCT mass spectrometer. MALDI-TOF mass spectra were recorded on 

an Applied Biosystems Voyager-DE STR mass spectrometer. GC-MS mass spectra were recorded on a 

Thermo-Finnigan Trace mass spectrometer. Melt ing points were determined using a Stuart Scientific 

SMP3 melting point apparatus. Elemental analyses were obtained on an Exeter Analytical Inc. CE-440 

elemental analyser. DSC studies were performed on a Perkin-Elmer Pyris 1 DSC. TGA studies were 

performed on a Perkin-Elmer Pyris 1 TGA. Cyclic voltammetric (CV) investigations were carried out 

on a | i Autolab Type 3 Potentiostat/Galvanostat. Measurements were carried out at 298K using an 

Ag/AgN0 3 reference electrode and the ferrocene/ferrocenium couple' 4 0 1 as a secondary reference. 

The supporting electrolyte was a 0.1M solution in DCM of tetra(n-butyl)ammonium 

hexafluorophosphate (nBu 4NPF 6). A scanning rate of 100 mV/s was used. 

All devices were fabricated on indium tin oxide (ITO)-coated glass substrates of thickness 125 nm 

and possessing a sheet resistance of 20 O/D. Poly(3,4-ethylenedioxy-thiophene) doped wi th 
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poly(styrenesulfonic acid) (PEDOT:PSS), obtained commercially f rom Bayer A.G. Germany, was spin 

coated at 2500 rpm for 60 sec to produce a ~ 40 nm thick hole-transporting layer (HTL). These HTL-

coated substrates were then annealed at 200 °C for 2 min to remove any residual water. A 

chlorobenzene solution of 20 mg/ml of poly(vinylcarbazole) PVK was selected as a high tr iplet energy 

host material and as a hole -transport material. The PVK solution doped wi th 40% w / w of 2-(4-

biphenylyl)-5-(4-tert-butyl-phenyl)-l,3,4-oxadiazole (PBD, 62) as an electron transport material for 

balancing charge carriers transport. Blended devices were made by mixing 8% w / w of the Ir 

complexes to the PVK:PBD 40% . The prepared mixture was fi l tered wi th a 25 u.m pore fi l ter and spin 

coated at 2500 rpm on the top of the PEDOT:PSS layer and baked for 10 min at 120 °C. The oligomer 

or the ol igomer/polymer solution mixtures were then spin-coated onto the substrate. Each sample 

was shadow masked to produce two identical devices of area 4x12 m m ; the samples were then 

introduced into a nitrogen glove box, where 4 nm barium cathodes were evaporated onto the device 

at a rate of ~ 1 A/s under vacuum at a pressure of ca. l x l O ' 6 mm Hg. This was fol lowed by the 

deposition of a 150 nm capping layer of aluminium under the same evaporation conditions. 

The current-voltage (l-V) characteristics and the emission intensities were measured in a 

calibrated integrating sphere and the data acquisition were controlled using a home-wri t ten Nl 

LabView program which controlled the Agilent Technologies 6632B power supply. The 

electroluminescence (EL) spectra were measured using an Ocean Optics USB 4000 CCD spectrometer 

supplied wi th 400 um UV/Vis fibre optic. It should be noted that these devices were not optimised 

and were prepared to investigate the shift in emission between the functionalised complex and the 

parent complex. 

Solution state photophysical properties were ascertained using freshly prepared solutions of 

the available complexes in toluene. Emission measurements were taken using solutions which were 

degassed thoroughly using the repeated freeze-thaw technique. All measurements were taken using 

1 cm pathlength quartz cuvettes. Series 1 absorption measurements were taken using a Unicam 

UV/Vis Spectrometer UV2. Series 2 absorption measurements were taken using a Perkin Elmer 

UV/Vis Spectrometer Lambdal2. All emission measurements were taken using a Jobin-Yvon Horiba 

Spex Fluorolog Spectrometer. 
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3.2 Experimental Procedures 

Preparation of 2-chloro-4-methoxypyridine (63) | 4 9 ) 

OMe An argon-filled flame-dried flask was charged wi th 2-chloro-4-nitropyridine (3.00 g, 

18.9 mmol) which was dissolved in anhydrous THF (20 ml). To this solution 

tetrabutylammonium methoxide (6.4 ml, 19.9 mmol) was added and the solution 
c r ^NT 

was stirred for 65 h at room temperature. After this t ime the solution was diluted 

(63) wi th distilled H 2 0 and the organic and aqueous layers were separated. The organic 

products were extracted wi th DCM (4x30 ml) and dried (MgS0 4 ) . The solvent was removed in vacuo 

leaving the crude product as a yellow solid. This was purified by columm chromatography on silica 

using an eluent of DCM:EtOAc (10:1 v/v) isolating 63 (1.06 g, 39%) as clear yellow liquid. 

*H NMR (400 MHz, CDCI3) 6~H 8.17 (1H, d, J 5.8, H-6), 6.82 (1H, d, J 2.3, H-3), 6.73 (1H, dd, J 2.3, 5.8, H-

3), 3.84 (3H, s, OMe). 

Preparation of 3-bromo-9-hexyl-9H-carbazole (64)' 3 3 1 

Br An argon-filled flame-dried flask was charged wi th 3-bromo-9H-carbazole 

(1.05 g, 4.27 mmol) and potassium fert-butoxide (0.62 g, 5.53 mmol) to 

which anhydrous DMF (25 ml) was added. The solution was stirred for 2 h 

at room temperature. After this t ime 1-bromohexane (1.18 g, 7.16 mmol) 

was added to the flask which was heated to 130 °C for 65 h. The reaction 

v ' was quenched with distilled H 2 0 and the organic products extracted wi th 

DCM (4x30 ml) and dried (MgS0 4 ) . The DCM was removed in vacuo to give a light yellow oil as the 

crude product. This was purified by column chromatography on silica using an eluent of petroleum 

ether:DCM (9:1 v/v) to give 64 (1.30 g, 92%) as a clear colourless oil. 

*H NMR (400 MHz, CDCI3) <5H 8.20 (1H, s, H-4), 8.04 (1H, dd, J 7.5, 1.4, H-2), 7.55-7.21 (5H, m), 4.25 

(2H, td,7 7.3, 2.3, NH 2CH 2), 1.85 (2H, m, NCH2CH2), 1.41-0.80 (9H, m). 

6' '13 
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Preparation of 9-hexyl-9H-carbazol-3-yl-3-boronic acid (61)' 1 

B(OH) 2 An argon-filled flame-dried flask was charged wi th 64 (5.14 g, 15.56 

mmol) which was dissolved in anhydrous THF (100 ml) cooled to -78 

°C. n-BuLi (1.6 M in hexane, 7.5 ml, 18.67 mmol) was added dropwise 

^ over 2 h and the solution was stirred for a further 1 h at -78 °C. 

Triisopropylborate (10.77 ml, 46.68 mmol) was added to the solution 

which was stirred for 22 h whilst warming f rom -78 °C to room 

temperature. After this t ime HCI (4 M, 18.3 ml, 73.13 mmol) was added to the solution which turned 

f rom a light yellow colour to a dark green colour. The solution was stirred for 2 h by which point it 

was a dark yellow colour. Na 2 C0 3 solution (2 M) was added until the solution was neutralised and a 

light yellow colour. The organic and aqueous layers were separated and the organic products were 

extracted wi th DCM (4x30 ml) and dried (MgS0 4 ) . The solvents were removed in vacuo to give a light 

brown solid as the crude product. This was purified by column chromatography on silica using a 

graduated eluent system of DCM fol lowed by DCM:EtOAc (1:1 v/v) and then DCM:EtOAc:MeOH 

(5:5:1 v/v) to give 61 (2.90 g, 63%) as a white solid. 

*H NMR (400 MHz, CDCI3) 6 H 9.11 (1H, s, H-4), 8.47 (1H, dd, J 8.2, 1.1, H-2), 8.34 (1H, d, J 7.4, H-3), 

7.59-7.46 (3H, m), 7.38-7.34 (1H, m), 4.37 (2H, t, J 7.2, NCH2), 1.89-1.84 (2H, m), 1.44-1.23 (6H, m), 

0 .90(3H, t ,J6 .9 , CH 3). 

1 3C NMR (101 MHz, CDCI3) 6C 143.67, 140.91, 133.28, 128.96, 125.96, 123.50, 123.03, 120.90, 

119.60, 109.08, 108.45, 43.45, 31.83, 29.19, 27.24, 22.79, 14.25. 

Preparation of 3-[5-(trifluoromethyl)pyridin-2-yl]-9-hexyl-9H-carbazole (65) 

An argon-filled flask was charged wi th 61 (0.56 g, 1.90 mmol) 

which was dissolved in degassed toluene (40 ml). Na 2 C0 3 

solution (2 M, 9.7 ml , 19.38 mmol) , 

bis(triphenylphosphine)palladium(ll) dichloride (0.08 g, 0.11 

mmol) and 2-chloro-5-trif luoromethylpyridine (0.86 g, 4.75 

mmol) were added to the solution which was heated at 90 °C 

for 65 h. After this t ime the solution was diluted wi th distilled 

H 2 0 (50 ml) and the organic products were extracted wi th DCM 

CF 

N 

N 

6' '13 

(65) 
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(4x30 ml) and dried (MgS0 4) . The solvent was removed in vacuo to give an orange coloured oil as the 

crude product. This was purified by column chromatography on silica using a graduated eluent 

system of hexane fol lowed by petroleum ethenDCM (4:1 v/v) and then petroleum ether:DCM (1:1 

v/v) to give 65 (0.53 g, 71%) as an off white solid; mp 88-89 °C. 

Found: C, 72.8; H, 5.9; N, 7.0. Calc. for C 2 4 H 2 3 F 3 N 2 : c, 72.7; H, 5.85; N, 7.1. 

*H NMR (500 MHz, C 6D 6) <5H 8.98 (1H, s), 8.93 (1H, d, J 1.6), 8.39 (1H, dd, J 8.6,1.8), 8.11 (1H, d, J 7.7), 

7.44-7.37 (2H, m), 7.30 (1H, d, J 8.4), 7.26 (1H, t, J 7.1), 7.22 (1H, d, J 8.6), 7.16 (1H, t, J 4.0), 3.76 (2H, 

t, J 7.2, NCH 2), 1.53-1.44 (2H, m, NCH2CH2), 1.14-0.98 (6H, m), 0.79 (3H, t, J 7.1, CH 3). 

1 3C NMR (126 MHz, C 6D 6) 6C 161.88, 147.05, 142.44, 141.83, 133.88, 129.70, 126.77, 125.98, 124.21, 

124.06, 123.96, 121.36, 120.53, 120.26, 119.37, 109.72, 109.58, 43.39, 32.10, 29.40, 27.44, 23.15, 

14.52. 

GC-MS (El) m/z = 325 ( M + - C 5 H n , 100%), 396 ( M + , 71). 

Preparation of 3-(4-(trifluoromethyl)pyridin-2-yl)-9-hexyl-9H-carbazole (66) 

F 3 C An argon-filled flask was charged wi th 61 (0.50 g, 1.69 mmol) which 

was dissolved in 35ml of degassed toluene (35 ml). To this solution 

Na 2 C0 3 solution (2 M, 9.7 ml , 19.38 mmol), 

bis(triphenylphosphine)palladium(ll) dichloride (0.08 g, 0.11 mmol) and 

2-chloro-4-trif luoromethylpyridine (0.29 g, 1.61 mmol) were added and 

I the solution was heated at 90 °C for 65 h. Workup as described for 65 
C 6 H 1 3 

gave a dark brown oil as the crude product. This was purif ied by 
(66) 

column chromatography on silica using an eluent of hexane:DCM (1:1 

v/v) to give 66 (0.42 g, 66%) as a light yellow solid; mp 74-75 °C. 

Found: C, 72.5; H, 5.9; N, 7.0. Calc. for C 2 4 H 2 3 F 3 N 2 : C, 72.7; H, 5.85; N, 7.1. 

*H NMR (400 MHz, CDCI3) <5H 8.88 (1H, d, J 5.0), 8.81 (1H, d, J 1.7), 8.20 (1H, d, J 7.9), 8.17 (1H, dd, J 

8.4, 1.8) 8.06 (1H, s), 7.51-7.48 (2H, m), 7.45-7.05 (2H, m), 7.28 (1H, td , J 7.4, 1.1), 4.34 (2H, t, J 7.3, 

NCH 2), 1.96-1.88 (2H, m, NCH2CH2), 1.44-1.33 (6H, m), 0.86 (3H, t, J 6.8, CH3). 

N 

N 
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1 3C NMR (101 MHz, CDCI3) 5 C 147.05, 142.30, 141.87, 141.28, 126.38, 125.05, 123.72, 123.29, 

123.22, 120.92, 119.71, 119.67, 109.32, 109.26, 43.54, 31.13, 29.17, 27.18, 22.74, 14.20. 

GC-MS (El) m/z = 325 ( M + - C 5 H„ , 100%), 396 ( M \ 71). 

Preparation of 9-hexyl-3-(5-methoxypyridin-2-yl)-9H-carbazole (67) 

^ M e An argon-filled flask was charged wi th 61 (0.51 g, 1.73 mmol) 

which was dissolved in degassed toluene (35 ml). To this 

solution Na 2 C0 3 solution (2 M, 9.7 ml, 19.38 mmol) , 

bis(triphenylphosphine)palladium(ll) dichloride (0.08 g, 0.11 

mmol) and 2-bromo-5-methoxypyridine (0.80 g, 4.23 mmol) 

were added and the solution was heated at 90 °C for 65 h. After 

this t ime the solution was diluted wi th distilled H 2 0 (50 ml) and 

the organic products were extracted wi th EtOAc (4x30 ml) and 

dried (MgS0 4 ) . The solvent was removed in vacuo. The crude product was purif ied by column 

chromatography on silica using an eluent of DCM:EtOAc (20:1 v/v) giving an impure product as an 

orange oil. This was distilled using a Kugelrohr apparatus to give 67 (0.27 g, 44%) as a light orange 

oil. 

(67) 

Found: C, 80 .1 ; H, 7.4; N, 7.5. Calc. for C 2 4 H 2 6 N 2 0 : C, 80.4; H, 7.3; N, 7.8. 

*H NMR (400 MHz, CDCI3) <5H 8.74 (1H, s), 8.46 (1H, d, J 3.0), 8.21 (1H, d, J 7.8), 8.05 (1H, dd, J 8.6, 

1.1), 7.68 (1H, d, J 8.7), 7.48 (1H, t, J 7.6), 7.41-7.38 (2H, m), 7.28 (1H, t, J 7.4), 7.18 (1H, dd, J 8.7, 

2.9), 4.22 (2H, t, J 7.2, NCH2), 3.80 (3H, s, OCH 3), 1.88 - 1.77 (2H, m, NCH 2CH 2), 1.32-1.25 (6H, m), 

0 .88(3H, t , J6 .9 , CH 3). 

1 3C NMR (101 MHz, CDCI3) 6 C 154.27, 151.10, 140.98, 140.64, 136.86, 130.23, 125.78, 124.45, 123.31, 

123.24, 121.48, 120.42, 119.02, 118.43, 108.88, 108.82, 55.59, 43.13, 31.60, 28.97, 26.97, 22.57, 

14.05. 

MS (ES+) m/z = 359 (M + , 100%) 
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Preparation of 9-hexyl-3-(4-methoxypyridin-2-yl)-9H-carbazole (68) 

An argon-filled flask was charged wi th 61 (0.50 g, 1.69 mmol) which 

was dissolved in degassed toluene (40 ml). To this solution Na 2 C0 3 

solution (2 M, 9.7 ml, 19.38 mmol), 

bis(triphenylphosphine)palladium(l!) dichloride (0.08 g, 0.11 mmol) 

and 63 (0.23 g, 1.61 mmol) were added and the solution was 

heated at 90 °C for 65 h. Work-up as described for 67 gave a crude 

product which was purified by column chromatography on silica 

using an eluent of DCM:EtOAc (9:1 v/v) to give 68 (0.21 g, 36%) as 

a light orange oil. 

*H NMR (400 MHz, CDCI3) <5H 8.76 (1H, dd, J 1.8, 0.5), 8.58 (1H, d, J 5.7), 8.21 (1H, d, J 7.5), 8.12 (1H, 

dd, J 8.6, 1.8), 7.54-7.42 (3H, m), 7.38 (1H, d, J 2.2), 7.31-7.25 (1H, m), 6.79 (1H, dd, J 5.7, 2.4), 4.35 

(2H, t, J 7.2, NCH2), 3.97 (3H, s, OCH3), 1.95-1.88 (2H, m, NCH2CH2), 1.47-1.24 (6H, m), 0.89 (3 H, t , J 

7.1, CH 3). 

1 3C NMR (101 MHz, CDCI3) <5C 166.64, 160.32, 150.97, 141.35, 141.17, 130.60, 126.02, 125.04, 

123.41, 120.83, 119.38, 119.30, 109.07, 108.93, 107.57, 106.51, 55.36, 43.45, 31.78, 29.17, 27.17, 

22.74, 14.20. 

MS (ES+) m/z = 359 ( M \ 100%). 

MeO 

N 

N 

CBH 6' '13 

(68) 
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Preparation of /ac-{3-[5-(trifluoromethyl)pyridin-2-yl]-9-hexyl-9H-carbazole}3lridiumm (40) 

An argon-filled flask was charged wi th 65 (0.47 g, 1.19 mmol) and 

lr(acetylacetonate) 3 (0.12 g, 0.25 mmol) which were dissolved in 

degassed glycerol (15 ml). The solution was heated at 220 °C for 65 h 

then it was allowed to cool to room temperature and diluted w i th 

distilled H 2 0 (50 ml) and brine solution. The organic products were 

extracted wi th DCM (4x30 ml) and dried (MgS0 4 ) . The solvent was 

removed in vacuo to give a dark orange oil as the crude product. This 

was purified by column chromatography on silica using hexane:DCM 

(1:1 v/v) to give 40 (0.08 g, 8%) as a light yellow powder; mp 333 °C. 

(40) 

*H NMR (400 MHz, CDCIj) 6H 8.47 (3H, s), 8.13 (3H, d, J 8.6), 8.03 (3H, d, J 7.6), 7.84-7.74 (6H, m), 

7.32 (3H, t , J 7.5), 7.17-7.12 (6H, m), 6.74 (3H, s), 3.76-3.63 (6H, m, NCH 2), 1.42-1.37 (6H, m, 

NCH2CH2), 0.88-0.75 (18H, m), 0.63 (9H, t, J 6.5, CH 3). 

1 3 C NMR (101 MHz, CDCI3) <5C 170.66, 160.35, 144.60, 140.52, 134.30, 133.35, 129.02, 124.73, 

124.38, 123.82, 123.49, 121.94, 119.19, 118.27, 118.24, 118.12, 115.69, 108.71, 42.91, 31.45, 28.53, 

26.86, 22.44, 14.10. 

MS (MALDI-TOF) m/z = 1379 ( M + , 100%). 

Preparation of /oc-{3-[4-(trifluoromethyl)pyridin-2-yl]-9-hexyl-9H-carbazole}3lridium'" (41) 

An argon-filled flask was charged wi th 66 (0.40 g, 1.01 mmol) and 

lr(acetylacetonate) 3 (0.12 g, 0.25 mmol) which were dissolved in 

degassed glycerol (15 ml). Following the procedure described for 40, 

a dark orange oil was obtained as the crude product. This was 

purified by column chromatography on silica using hexane:DCM (1:1 

v/v) to give 41 (0.02 g, 2%) as a bright orange powder; mp 328 °C. 

*H NMR (500 MHz, CD2CI2) <5H 8.53 (3H, s), 8.30 (3H, s), 8.06 (3H, d, J 

7.6), 7.91 (3H, d, J 5.8), 7.34 (3H, t, J 7.7), 7.20 (3H, d, J 8.2), 7.15 (3H, 

t, J 7.5), 7.06 (3H, dd, J 5.8, 1.6), 6.73 (3H, s), 3.78-3.63 (6H, m, 

6' '13 
N 

N 

CF 

6' '13 
N 

N 

(41) 
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NCH2), 1.41-1.36 (6H, m, NCH2CH2), 0.93-0.84 (12H, m), 0.83-0.76 (6H, t, J 16.6), 0.65 (9H, t, J 6.8). 

1 3 C NMR (126 MHz, CD2CI2) <5C 168.97, 160.07, 148.89, 144.67, 140.75, 138.33, 134.93, 124.95, 

124.60, 123.60, 119.45, 118.19, 117.88, 116.95, 116.06, 114.88, 109.10, 43.17, 31.78, 28.86, 27.22, 

22.80, 14.17. 

MS (MALDI-TOF) m/z = 1379 ( M \ 100%). 

Preparation of /ac-{9-hexyl-3-[5-methoxYpyridin-2-yl]-9H-carbazole}3lridium"1 (42) 

An argon-filled flask was charged wi th 67 (0.27 g, 0.75 mmol) and 

lr(acetylacetonate) 3 (0.11 g, 0.21 mmol) which were dissolved in 

degassed glycerol (15 ml). Following the procedure described for 40 

a green solid was obtained as the crude product. This was purif ied by 

column chromatography on silica using hexane:DCM (1:1 v/v) to give 

42 (0.07 g, 8%) as a bright yellow/green powder; mp 355 °C. 

XH NMR (500 MHz, CD2CI2) SH 8.33 (3H, s), 8.03-8.01 (6H, m), 7.44 

(3H, d, J 2.7), 7.33-7.25 (6H, m), 7.16 (3H, d, J 8.1), 7.09 (3H, t, J 7.4), 

6.79 (3H, s), 3.75-3.68 (6H, m, NCH2), 3.66 (9H, d, J 9.6, OCH 3), 1.42-

1.36 (6H, m, NCH2CH2), 0.94-0.85 (12H, m), 0.84-0.77 (6H, m), 0.65 (9H, t, J 6.8, CH 3). 

1 3C NMR (126 MHz, CD2CI2) 6C 160.75, 158.99, 154.91, 143.44, 140.46, 136.87, 134.89, 124.86, 

124.05, 121.99, 119.11, 119.08, 118.63, 117.18, 115.88, 115.35, 108.70, 56.12, 43.10, 31.81, 28.90, 

27.21, 22.81, 14.26. 

MS (MALDI-TOF) m/z = 1265 ( M \ 100%). 

6' '13 
N 

N 

OMe 
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Attempted preparation of/oc-{9-hexYl-3-[4-methoxypyridin-2-yl]-9H-carbazole}3lridiumni (43) 

An argon-filled flask was charged wi th 68 (0.58 g, 1.62 mmol) and 

lr(acetylacetonate) 3 (0.23 g, 0.46 mmol) which were dissolved in 

degassed glycerol (20 ml). Following the procedure described for 40 

gave a dark oil. Thin layer chromatography showed a mult i -

component product mixture f rom which the desired product 43 

could not be isolated. 

— ' 3 

(43) 

Preparation of 4-bromo-2-nitrobiphenyl (53)' 3 3' 

\ An argon-filled flask was charged wi th phenylboronic acid (5.00 g, 41.01 

mmol) and l,4-dibromo-2-nitrobenzene (11.52 g, 41.01 mmol) which 

were dissolved in degassed toluene (125 ml). To this solution Na 2 C0 3 

solution (2 M, 61.5 ml, 123.0 mmol) and 

bis(triphenylphosphine)palladium(ll) dichloride (0.86 g, 1.23 mmol) 

were added and the solution was heated at 90 °C for 5.5 h. After this t ime the solution was allowed 

to cool to room temperature then diluted wi th distilled H 2 0 (50 ml). The organic and aqueous phases 

were separated and the organic products extracted wi th DCM (4x30 ml) and dried w i th MgS0 4 . The 

solvents were removed in vacuo to give a dark brown liquid as the crude product. This was purif ied 

by column chromatography on silica using a short column and an eluent of hexane:DCM (1:1 v/v) to 

give a mixture of 53 and 4-phenyl-2-nitrobiphenyl (54) as a clear yellow liquid (11.50 g). From NMR 

data it was calculated that 77% of the mixture was 53 (8.86 g, 78%). 

*H NMR (400 MHz, CDCI3) 6H 7.97 (1H, d, J 2.2), 7.74 (1H, d, J 2.0), 7.72 (1H, d, J 2.0), 7.58 (1H, s), 

7.55 (1H, d, J 2.2), 7.29-7.25 (3H, m). 
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Preparation of 2-bromo-9H-carbazole (49)' 1 

An argon-filled flask was charged wi th 53 (7.52 g, 27.04 mmol) which 

Br was dissolved in tr iethylphosphite (30.5 ml, 189.3 mmol). The solution 

was heated at 160 °C for 10 h. After this t ime the tr iethylphosphite was 

removed in vacuo at 90 °C resulting in a dark residue to which a mixture 

(49) 

of MeOH:H 2 0 (200 ml, 1:1 v/v) was added giving a brown precipitate. 

The precipitate was fi ltered and washed with MeOH:H 2 0 (1:1 v/v) and was found f rom NMR data to 

contain 49 and 2-phenyl-9H-carbazole (55) in a 9:1 ratio, respectively (3.25 g, 49%). This mixture was 

used in the next step wi thout further purification. 

*H NMR (400 MHz, DMSO-d 6) <5H 11.39 (1H, s, NH), 8.12 (1H, d, J 8.0), 8.07 (1H, d, J 8.0), 7.66 (1H, s, 

H-l) , 7.51 (1H, d, J 8.2), 7.41 (1H, t, J 8.2), 7.29 (1H, d, J 8.2), 7.18 (1H, t, J 8.2). 

MS (El) m/z = 74 (100%), 245 ( M + [ 7 9 Br] , 11), 247 ( M + [ 8 1 Br] , 10). 

Preparation of 2-bromo-9-hexyl-9H-carbazole (69)' 3 3' 

An argon-filled flame-dried flask was charged wi th crude 49 (3.25 g, 

Br 13.21 mmol) and potassium fert-butoxide (1.78 g, 15.85 mmol) to which 

anhydrous DMF (75 ml) was added. The solution was stirred for 2 h at 

room temperature. After this t ime 1-bromohexane (3.25 g, 19.82 mmol) 

(69) was added to the flask which was heated to 130 °C for 65 h. The 

reaction was quenched wi th distilled H 2 0 (50 ml) and the organic products were extracted wi th DCM 

(4x30 ml) and dried (MgS0 4) . The DCM was removed in vacuo to give a dark brown oil as the crude 

product. This was purified by column chromatography on silica using as eluent of hexane:DCM (9:1 

v/v) to give 69 (3.44 g, 79%) as a clear colourless oil. 

*H NMR (400 MHz, CDCI3) <5H 8.04 (1H, d, J 8.2), 7.92 (1H, d, J 8.2), 7.52 (1H, s), 7.46 (1H, t, J 8.2), 7.38 

(1H, d, J 8.2), 7.30 (1H, d, J 8.2), 7.21 (1H, t, J 8.2), 4.23 (2H, t, J 7.3, NCH2), 1.87-1.80 (2H, m, 

NCH2CH2), 1.42-1.22 (6H, m), 0.85 (3 H, t, J 7.1, CH 3). 
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Preparation of 9-hexyl-9H-carbazol-2-yl-2-boronic acid (60) [331 

An argon-filled flame-dried flask was charged wi th 69 (7.10 g, 21.50 

"B(OH) 2 mmol) which was dissolved in anhydrous THF (100 ml) cooled to -

78 °C. n-BuLi in hexane (2.5 M, 10.3 ml, 25.80 mmol) was added 

dropwise over 2 h and the solution was stirred for 1 h at -78 °C. 

(60) 

Triisopropylborate (9.9 ml , 64.50 mmol) was added to the solution 

which was stirred for 16 h whilst warming f rom -78 °C to room temperature. After this t ime HCI (4 

M, 18 ml, 107.5 mmol) was added to the solution. The solution was stirred for 2 h at which point 

Na 2 C0 3 solution (2 M) was added until the solution was neutralised. The organic and aqueous layers 

were separated and the organic products were extracted wi th DCM (4x30 ml) and dried (MgS0 4 ) . 

The solvents were removed in vacuo to give a light brown solid as the crude product. This was 

purified by column chromatography on silica using a graduated eluent system of DCM:EtOAc (1:1 

v/v) fol lowed by DCM:EtOAc:MeOH (5:5:1 v/v) to give a mixture of 60 and the boronic ester of 60 

(3.65 g, 58%) as a white solid. This mixture was converted to the boroxine derivative for elemental 

analysis by heating the solid in a flask in an oven at 100 °C for 16 h. 

Found: C, 77.9; H, 7.2; N, 5.0. Calc. for C^HeoBsNjOj: C, 78.0; H, 7.3; N, 5.05. 

*H NMR <5H (400 MHz, CDCI3) 8.36 (1H, s), 8.27 (1H, d, J 7.8), 8.21-8.18 (2H, m), 7.53 (1H, t, J 7.8), 7.46 

(1H, d, J 7.8), 7.27 (1H, t, J 7.8), 4.45 (2H, t, J 7.2, NCH2), 2.06-1.94 (2H, m, NCH 2CH 2), 1.57-1.22 (6H, 

m), 0.89 (3H, t ,7 7.2, CH3). 

Preparation of 2-[5-(trifluoromethyl)pyridin-2-yl]-9-hexyl-9H-carbazole (70) 

C 6 H 1 2 

An argon-filled flask was charged wi th 60 (1.00 g, 3.39 

mmol) which was dissolved in degassed toluene (150 ml). 

To this solution Na 2 C0 3 solution (2 M, 4.13 g, 38.99 mmol), 

tetrakis(triphenylphosphine)palladium(0) (0.25 g, 0.22 

mmol) and 2-chloro-5-trif luoromethylpyridine (0.59 g, 3.22 

mmol) were added and the solution was heated at 90 °C for 96 h. After this t ime the solution was 

diluted wi th distilled H 2 0 (50 ml) and the organic products were extracted wi th DCM (4x30 ml) and 

dried (MgS0 4 ) . The solvent was removed in vacuo to give an orange liquid as the crude product. This 
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was purif ied by column chromatography on silica using an eluent of petroleum ethenDCM (1:1 v/v) 

to give 70 (0.70 g, 55%) as an off-white/yel low solid; mp 112-113 °C. 

Found: C, 72.7; H, 5.8; N, 7.0. Calc. for C 2 4 H 2 3 F 3 N 2 : C, 72.7; H, 5.9; N, 7.1. 

*H NMR (400 MHz, CDCI3) 6 H 8.97 (1H, s), 8.18-8.16 (2H, m), 8.12 (1H, d, J 7.7), 8.02-7.94 (2H, m), 

7.82 (1H, dd, J 8.3, 1.4), 7.49 (1H, dt, J 8.2, 1.2), 7.42 (1H, d, J 8.2), 7.28-7.21 (1H, m), 4.38 (2H, t, J 

7.3, NCH 2), 1.96-1.85 (2H, m, NCH2CH2), 1.46-1.23 (6H, m), 0.84 (3H, t, J 7 .1 , CH 3). 

1 3C NMR (101 MHz, CDCI3) 5 C 161.67, 146.78, 141.71, 141.10, 135.52, 134.05, 126.61, 124.66, 

124.65, 124.12, 122.57, 121.01, 120.87, 120.42, 119.36, 118.17, 109.18, 108.01, 43.40, 31.81, 29.24, 

27.19, 22.77, 14.22. 

GC-MS (El) m/z = 55 (100%), 146 ( M + - C 1 8 H 2 0 N, 46), 325 ( M + - C 5 H n , 29), 396 ( M \ 8). 

Preparation of 2-[4-(trifluoromethyl)pyridin-2-yl]-9-hexyl-9H-carbazole (71) 

added. Following the procedure described for 70 gave a yellow liquid as the crude product. This was 

purified by column chromatography on silica using an eluent of petroleum ether:DCM (1:1 v/v) to 

give 71 (0.78 g, 61%) as a white powder; mp 120-121 °C. 

Found: C, 72.7; H, 5.9; N, 7.1. Calc. for C 2 4 H 2 3 F 3 N 2 : C, 72.7; H, 5.9; N, 7.1. 

*H NMR (400 MHz, CDCI3) <5H 8.89 (1H, d, J 5.0), 8.20-8.10 (3H, m), 8.05 (1H, s), 7.83 (1H, dd, J 8.2, 

1.5), 7.49 (1H, td , J 8.2, 1.2), 7.45-7.41 (2H, m), 7.27-7.22 (1H, m), 4.38 (2H, t, J 7.3, NCH 2), 1.98-1.83 

(2H, m, NCH 2CH 2), 1.46-1.21 (6H, m), 0.85 (3H, t , J 7.1, CH 3). 

N 

N 

CBH 6' '13 

f solution Na 2 C0 3 solution (2 M, 4.13 g, 38.99 mmol), 

C F 3 tetrakis(triphenylphosphine)palladium(0) (0.25 g, 0.22 mmol) 

An argon-filled flask was charged wi th 60 (l.OO.g, 3.39.mmol) 

which was dissolved in degassed toluene (150 ml). To this 

(71) and 2-chloro-4-trif luoromethylpyridine (0.59 g, 3.24 mmol) were 

Page | 62 



Chapter 3 Experimental 

1 3C NMR (101 MHz, CDCI3) 6 C 159.83, 150.79, 141.67, 141.13, 139.31, 135.69, 126.53, 124.48, 

123.30, 122.59, 120.99, 120.91, 119.34, 118.00, 117.36, 116.54, 109.16, 107.71, 43.38, 31.80, 29.23, 

27.18, 22.77, 14.21. 

GC-MS (El) m/z = 325 ( M + - C 5 H U , 100%), 396 ( M \ 58). 

Preparation of 9-hexyl-2-(5-methoxvpyridin-2-yl)-9H-carbazole (72) 

An argon-filled flask was charged w i th 60 (1.00 g, 3.39 

mmol) which was dissolved in degassed toluene (150 ml). 
OMe 

To this solution Na 2 C0 3 solution (2 M, 4.13 g, 38.99 

mmol), tetrakis(triphenylphosphine)palladium(0) (0.25 g, 

0.22 mmol) and 2-bromo-5-methoxypyridine (0.60 g, 3.17 

mmol) were added. Following the procedure described for 70 gave a dark orange oil as the crude 

product. This was purified by column chromatography on silica using an eluent of DCM to give 72 

(0.52 g, 46%) as a white solid; mp 117-118 °C. 

Found: C, 80.3; H, 7.3; N, 7.9. Calc. for C 2 4 H 2 6 N 2 0 : C, 80.3; H, 7.3; N, 7.8. 

*H NMR (400 MHz, CDCI3) <5H 8.43 (1H, d, J 2.9), 8.12 (1H, dd, J 0.5, 8.1), 8.09 (1H, d, J 7.5), 8.04 (1H, 

s), 7.79 (1H, d, J 8.7), 7.73 (1H, dd, J 8.2, 1.5), 7.45 (1H, td , J 8.1, 1.2), 7.40 (1H, d, J 8.1), 7.30 (1H, dd, 

J 8.7, 3.0), 7.21 (1H, td , J 7.9, 1.1), 4.36 (2H, t, J 7.4, NCH2), 3.91 (3H, s, OCH 3), 1.94-1.84 (2H, m, 

NCH2CH2), 1.46-1.21 (6H, m), 0.84 (3H, t, J 7.1, CH 3). 

1 3C NMR (101 MHz, CDCI3) 6C 155.00, 151.32, 141.50, 141.34, 137.33, 137.14, 126.02, 123.19, 

122.93, 121.69, 120.76, 120.70, 119.14, 117.77, 109.06, 106.99, 100.29, 56.03, 43.41, 31.91, 29.30, 

27.28, 22.88, 14.33. 

GC-MS (El) m/z = 287 ( M + - C 5 H n , 100%), 358 (M + , 89). 

N 

N 

6' '13 

(72) 
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Preparation of 9-hexyl-2-(4-methoxypyridin-2-yl)-9H-carbazole (73) 

N 

N 

CeH 1 3 

f solution Na 2 C0 3 solution (2 M, 4.13 g, 38.9 9mmol), 

OMe tetrakis(triphenylphosphine)palladium(0) (0.25 g, 0.22 mmol) 

An argon-filled flask was charged wi th 60 (1.00 g, 3.39 mmol) 

which was dissolved in degassed toluene (150 ml). To this 

(73) and 2-bromo-4-methoxypyridine (0.60 g, 3.17 mmol) were 

added. Following the procedure described for 70 gave a light yellow liquid as the crude product. This 

was purified by column chromatography on silica using an eluent of DCMrEtOAc (9:1 v/v) to give a 

clear yellow oil 73 (0.57 g, 49%). Upon adding the oil to hexane:EtOAc (2:1 v/v) 73 crystallised as 

shiny white crystals; mp 97-98 °C. 

Found: C, 80.3; H, 7.3; N, 7.8. Calc. for C 2 4 H 2 6 N 2 0 : C, 80.3; H, 7.3; N, 7.8. 

*H NMR (400 MHz, CDCI3) <5H (8.56 (1H, d, J 5.7), 8.17-8.08 (3H, m), 7.76 (1H, dd, J 8 .1 , 1.4), 7.47 (1H, 

td , J 8.1, 1.0), 7.41 (1H, d, J 8.2), 7.36 (1H, d, J 2.4), 7.26-7.20 (1H, m), 6.78 (1H, dd, J 5.7, 2.4), 4.37 

(2H, t, J7 .4 , NCH2), 3.93 (3H, s, OCH3), 1.95-1.84 (2H, m, NCH2CH2), 1.45-1.36 (2H, m), 1.36-1.21 (4H, 

m), 0.84 (3H, t , J 7 . 1 , CH 3). 

1 3 C NMR (101 MHz, CDCI3) <5C 166.59, 160.24, 151.08, 141.47, 141.07, 137.26, 126.11, 123.76, 

122.72, 120.77, 120.56, 119.08, 118.06, 109.02, 107.96, 107.61, 107.48, 55.36, 43.31, 31.79, 29.20, 

27.15, 22.75, 14.20. 

GC-MS (El) m/z = 244 (100%), 287 ( M + - C 5 H U , 56), 358 ( M \ 12). 
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Preparation of /ac-{2-[5-(trifluoromethyl)pvridin-2-yl]-9-hexyl-9H-carbazole}3lridium (44) 

An argon-filled flask was charged wi th 69 (0.41 g, 1.03 mmol) 

and lr(acetylacetonate) 3 (0.14 g, 0.29 mmol) which were 

dissolved in degassed glycerol (15 ml). The solution was heated 

at 220 °C for 65 h. After this t ime the solution was allowed to 

cool to room temperature and was diluted w i th distilled H 2 0 (50 

ml) and brine solution. The organic products were extracted 

with DCM (4x30 ml) and dried (MgS0 4 ) . The solvent was 

removed in vacuo to give a dark red liquid as the crude product. 

This was purified by column chromatography on silica using 

petroleum ether:DCM (3:1 v/v) to give 44 (0.01 g, 1%) as a dark 

red powder. 

*H NMR (500 MHz, CD2CI2) 5 H 8.25 (3H, d, J 9.3), 7.90-7.86 (9H, m), 7.50 (3H, d, J 7.8), 7.43 (3H, s), 

7.34-7.27 (6H, m), 6.87-6.84 (3H, m,), 4.33 (6H, t, J 7.4, NCH2), 1.98-1.87 (6H, m), 1.46-1.29 (18H, m), 

0.88 (9H, t ,J7 .2 , CH 3). 

1 3C NMR (126 MHz, CD2CI2) <5C 171.50, 148.54, 144.74, 142.29, 140.32, 137.75, 133.84, 128.01, 

127.76, 126.45, 124.72, 123.64, 122.33, 121.53, 119.55, 118.34, 108.77, 107.01, 43.50, 32.23, 29.48, 

27.59, 23.18, 14.38. 

MS (MALDI-TOF) m/z = 1378 (M*, 100%). 

N CRH 6' '13 

N 

CF 

(44) 
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Preparation of /oc-{2-[4-(trifluoromethvl)pvridin-2-yl]-9-hexvl-9H-carbazole}3lridium (45) 

N 

N 

An argon-filled flask was charged wi th 71 (0. 41g, 1.02 mmol) 

and lr(acetylacetonate) 3 (0.15 g, 0.31 mmol) which were 

dissolved in degassed glycerol (15 ml). Following the procedure 

described for 44 gave a dark red liquid as the crude product. This 

was purified by column chromatography on silica using 

I r petroleum ether:DCM (3:1 v/v) to give 45 (0.03 g, 2%) as a dark 

red powder. 

Found: C, 63.35; H, 5.2; N, 5.65. Calc. for C^HeeFglrNe: C, 62.7; H, 

3 4.8; N, 6.1. 

(45) 

*H NMR (500 MHz, CD2CI2) 6 H 8.31 (3H, s), 7.88-7.89 (6H, m), 7.49 (3H, d, J 7.9), 7.40 (3H, s), 7.31-

7.29 (6H, m), 7.08 (3H, d, J 5.5), 6.87-6.84 (3H, m), 4.34 (6H, t, J 7 .1, NCH2), 1.97-1.88 (6H, m, 

NCH2CH2), 1.49-1.22 (18H, m), 0.88 (9H, t, J 7 .1, CH3). 

1 3C NMR (126 MHz, CD2CI2) <5C 169.34, 148.87, 147.93, 142.17, 140.61, 138.12, 137.72, 127.84, 

124.67, 126.30, 123.59, 122.38, 121.43, 118.33, 118.12, 115.68, 108.88, 106.19, 43.46, 32.26, 29.50, 

27.54, 23.17, 14.39. 

MS (MALDI-TOF) m/z = 1379 (M + , 100%). 

Page | 66 



Chapter 3 Experimental 

Preparation of /ac-{9-hexyl-2-[5-methoxypyridin-2-yl]-9H-carbazole}3lridium (46) 

An argon-filled flask was charged wi th 72 (0.30 g, 0.84 mmol) 

N 
6' '13 

N 

•^Ir hexane:DCM (2:1 v/v) to give 46 (0.08 g, 8%) as a bright orange 

This was purified by column chromatography on silica using 

and lr(acetylacetonate) 3 (0.13 g, 0.26 mmol) which were 

dissolved in degassed glycerol (15 ml). Following the procedure 

described for 44 gave an orange liquid as the crude product. 

powder. 

Found: C, 68.3; H, 6.0; N, 6.6. Calc. for C 7 2 H 7 5 l rN 6 0 3 : C, 68.4; H, OMe 
3 6.0; N, 6.7. 

(46) 

*H NMR (500 MHz, CD2CI2) <5H 8.04 (3H, d, J 9.1), 7.69 (3H, s), 7.49 (3H, d, J 7.8), 7.37 (3H, d, J 2.7), 

7.28-7.22 (12H, m), 6.82-6.76 (3H, m), 4.42-4.33 (6H, m, NCH2), 3.66 (9H, s, OCH3), 1.96-1.88 (6H, m, 

NCH2CH2), 1.47-1.42 (6H, m), 1.41-1.25 (12H, m), 0.88 (9H, t, J 7.2, CH3). 

1 3C NMR (126 MHz, CD2CI2) 6C 160.37, 155.64, 145.69, 143.09, 141.18, 138.21, 135.45, 127.83, 

125.24, 125.04, 122.96, 121.09, 121.00, 119.99, 117.99, 108.58, 103.86, 56.07, 43.15, 32.28, 29.89, 

27.60, 23.19, 14.42. 

MS (MALDI-TOF) m/z = 1265 (M + , 100%). 

Page | 67 



Chapter 3 Experimental 

Attempted preparation of /ac-{9-hexYl-2-[4-methoxYpyridin-2-yl]-9H-carbazole}3lridium (47) 

MeO 

An argon-filled flask was charged wi th 73 (0.30 g, 0.86 mmol) 

and lr(acetylacetonate) 3 (0.12 g, 0.25 mmol) which were 

dissolved in 15ml of degassed glycerol (15 ml) . Following the 

procedure described for 44 gave a dark oil which was a mult i -

component mixture as judged by TLC observations. The desired 

j j- product 47 could not be isolated. 

(47) 
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Chapter 4 Conclusion 

Chapter 4 - Conclusion 

The aim of this work was to synthesise functionalised iridium complexes based on carbazole-pyridyl 

ligands for studies into the optical properties of the complexes and use in preliminary OLED devices. 

This aim has been achieved in the form of two series of iridium complexes total l ing six new 

complexes wi th either an electron withdrawing or electron donating group on the pyridyl moiety in 

the complex. A number of synthetic routes to the complexes were explored although the highest 

yielding was found to be the previously published route by the Bryce group in the synthesis of the 

parent complexes. 

The functionalisation of the complexes aimed to achieve a significant shift in emission wavelength of 

the complexes in relation to their parent complexes. The addition of the substituent group and the 

subsequent investigation of the optical properties of the complexes have lead to some interesting 

observations. The fluorescence emission maxima of the complexes in solution exhibit a large range 

in wavelengths spanning 123 nm covering green to red emission achieving the aim of tuning the 

emission colour. Preliminary studies on the incorporation of the complexes into OLED devices 

demonstrated low external quantum efficiencies, possibly due to a lower energy partially non-

emissive excited state formed through interaction wi th the substituent group or poor transfer of 

excitons between the host and the guest complexes in the device. 

The commercialisation of these complexes based on the current devices is unlikely due to the low 

external quantum efficiencies. As a study of the effect of substituent groups on the emission of a 

series of complexes this work has been very successful, wi th the application of this knowledge and 

an improved device structure these complexes could become attractive OLED components. 
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