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Abstract 

Northeastern England and the North Sea Basin is a critical location to examine the influence of 

glaciation in the northern Hemisphere during the Quaternary. This region was a zone of confluence between 

the British and Fennoscandian Ice Sheets, and harboured several dynamic ice lobes sourced from northern 

Scotland, the Cheviots, the Lake District and the Southern Uplands. The region thus has some of the most 

complex exposures of Middle to Late Pleistocene sediments in Britain, with both interglacial and glacial 

sediments deposited in terrestrial and marine settings, and being sourced from both the British Isles and 

northern continental Europe. 

The research undertaken involved a thorough reinvestigation of the Quaternary sediments of northeast 

England, making use of enhanced exposures in coastal sections following the cessation of colliery waste 

dumping, and in boreholes from the North Sea. It used detailed sedimentological, stratigraphical, 

chronostratigraphical, lithological, petrological, and geochemical techniques to investigate their depositional 

processes, age, provenance signatures, and regional correlatives to construct an independent model of the 

eastern margin of the British-Irish Ice Sheet (BUS) throughout the Quaternary, and its interaction in the 

North Sea Basin with the Fennoscandian Ice Sheet (FIS). This region was a zone of confluence between ice 

lobes sourced from northern Scotland, the Cheviots, the Lake District and the Southern Uplands, and is 

ideally placed for investigating the geological record of the North Sea Lobe during the Late Devensian. In 

addition, County Durham has one of the most northerly exposures of Middle Pleistocene sediments in 

Britain, including a raised beach and a Scandinavian t i l l . 

This project focussed on a variety of localities in northeastern England and in the North Sea Basin, 

including Whitburn Bay, Shippersea Bay, Hawthorn Hive, and Warren House Gill. At Whitburn Bay, the 

Blackhall and Horden glacigenic members are exposed in superposition and are Late Devensian in age. The 

lower Blackhall Member here is interpreted as a subglacial traction till with a high percentage of locally 

derived erratics. A boulder pavement at the top of the till points to a switch in ice-bed conditions and the 

production of a melt-out lag prior to the deposition of the upper, Horden Member. This second traction till 

contains erratics and heavy minerals derived from crystalline bedrock sources in the Cheviot Hills and 

northeast Scotland, including tremolite, andalusite, kyanite and rutile. Within the Horden Member are 

numerous sand, clay and gravel-filled channels incised into the diamicton, which are attributed to a low 

energy, distributed, subglacial canal drainage system. Coupled with the hydrofractures and the boulder 

pavement, this suggests that a partly decoupled, fast flowing ice stream deposited the Horden Member. The 

eastward, on-shore direction of ice movement indicates that the ice stream was confined in the North Sea 

Basin, possibly by the presence of Scandinavian ice. 

From Hawthorn Hive to Warren House Gill, the Blackhall and Horden members are separated by the 

Peterlee Sands and Gravels, ice-proximal outwash sediments. Beneath the glacial sequence, some 500 m to 

the south is the Easington Raised Beach. The partly calcreted interglacial beach lies directly on Magnesian 

Limestone bedrock at 33 m O.D., and consists of beds of unconsolidated, well-bedded, imbricated, well-

rounded sands and gravels. It has been dated to MIS 7 by amino acid geochronology and OSL dating. The 

Hi 



BETHAN DAVIES 

beach contains exotic gravel, including flint, and previous workers have reported Norwegian erratics. The 

only currently extant source for these is the Scandinavian Drift at Warren House Gill. 

Warren House Gill is a classic Middle Pleistocene site, and has a complex stratigraphy, consisting of a 

lower "Scandinavian Drift" with overlying estuarine sediments, and an upper "Main Cheviot Drift", which 

comprises two tills and glaciotectonised, interstratified sands and silts, traditionally interpreted as Devensian 

in age. The lowest grey Scandinavian Drift is a grey, laminated clay with dropstones. It contains marine 

bivalve fragments, foraminifera, and clasts of northeastern Scotland and Norwegian provenance, as well as 

Magnesian Limestone, chalk, flint, and Triassic red marl from the North Sea. Reworked palynomorphs 

include Eocene dinoflagellate cysts. This is interpreted as a Middle Pleistocene glaciomarine deposit, and is 

renamed the 'Ash Gill Member' of the Warren House Formation, with inputs from both Scottish and 

Scandinavian sources. It is dated to the Middle Pleistocene by AAR dates on the shell fauna, and by the 

relationship to the MIS 7 age raised beach. The overlying well sorted pink and red interbedded sands and 

silts contain carbonate nodules and rare clasts. These shallow subaqueous sediments were deposited through 

suspension settling and bottom current activity, and they may be reworked loess. They are named the 

'Whitesides Member' and are the highest member in the Warren House Formation. 

The overlying "Cheviot Drif t" consists of two ice-marginal traction tills (the Blackhall and Horden 

members), separated by interbedded glaciofluvial red silts and sands. The till lithologies are indicative of a 

northern British provenance, and are rich in limestone, coal, sandstone, greywacke and dolerile. The 

Blackhall Member was deposited by ice during MIS 4, during a period of maximum extent of the British and 

Fennoscandian ice sheets and contact in the central North Sea. The Horden Member was deposited in an ice-

marginal landsystem by the Late Devensian North Sea Lobe, and is correlative with the Skipsea Member in 

Yorkshire and the Bolders Bank Formation offshore. 

The Swarte Bank, Coal Pit, Fisher and Bolders Bank formations from the North Sea Basin were also 

examined. These subglacial and glaciomarine sediments, ranging from MIS 12 to MIS 2 in age, were all 

found to show a similar provenance from the Grampians, Aberdeenshire and the Scottish Highlands, 

indicating repeat ice-flow pathways during the Quaternary. 

This research has significant implications for British Quaternary stratigraphy, as it indicates that 

Fennoscandian ice was a significant influence on the BUS throughout the Quaternary, and that on multiple 

occasions, Fennoscandian ice directly impacted the coast of eastern England. During MIS 12, a marine 

embayment opened in northeast England between the British and Fennoscandian ice sheets. Ice rafted 

material derived from both Scottish and Norwegian sources was deposited in this marine embayment. The 

Ash Gill Member of the Warren House Formation is an isolated remnant of this ancient glaciomarine 

environment, and it is separated from the overlying Devensian sediments by a substantial unconformity. 

During the Early Devensian, ice sourced in Scotland flowed eastwards through the Tyne Gap, where it 

was joined by a minor component of Lake District ice. This was a stage of maximum configuration of the 

BUS, with contact with the FIS offshore. During the Last Glacial Maximum, the North Sea Lobe was 

constrained by the FIS offshore, forcing the North Sea Lobe onshore. This project found no evidence of Lake 

District erratics in County Durham, but found detrital material in the subglacial tills from the coast of 

northeastern Scotland. 
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CHAPTER 1 

Introduction 

1.1 British and Fennoscandian Ice-sheet Interactions during the 

Quaternary 

1.1.1 Introduction and Rationale 

A Climate Change Paradigm 

Understanding dynamic cryosphere-ocean-atmosphere interactions throughout the 

Quaternary is essential to our ability to understand and interpret contemporary climatic 

variability and predict future climatic trends. The ability to constrain long-term ice sheet 

responses to cryosphere-ocean-atmosphere changes during the Quaternary is of critical 

importance in understanding contemporary and possible future climatic change (Elias, 

2007). The British Isles are ideally located to identify these responses, as they are directly 

influenced by changes in the Polar Front and the Gulf Stream; oceanic current fluctuations 

have resulted in extreme climatic fluctuations here throughout the Quaternary. Placing 

Twentieth and Twenty-First Century climate change within the context of long-term 

climate fluctuations provides a context within which to identify unusual trends (Elias, 

2007). In addition, constraining the western extent and dynamics of the Fennoscandian Ice 

Sheet throughout the Quaternary are important, as this was one of the largest ice sheets in 

the world. Constraining the size and volume of this ice sheet is important for constraining 

its contribution to sea level change during the Devensian. Accurate estimations of sea level 

rise and dynamic reactions to climatic change w i l l enable a better understanding of 

cryosphere-ocean-atmosphere interactions, and allow better prediction of large ice-sheet 

responses to climatic change. 

Reconstructions of past areal extents of ice sheets are important, because the volume 

of ice strongly influences global sea level and patterns of oceanic and atmospheric 

circulation. Reconstructing former ice sheets on the northwest European margin provides a 

means to understand this crucial region and past ice-ocean-atmosphere interactions. In 

addition, providing sound geological data and accurate reconstructions of the previous and 
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dynamic configurations of the last British-Irish Ice Sheet allows independent testing and 

training of ice sheet models. 

The eastern section of the last British-Irish Ice Sheet during the Last Glacial 

Maximum was characterised by zones of rapid dynamic f low, with ice streams controlling 

local ice f low velocities and regional ice drawdown. Such ice f low pathways are important 

not only from a dynamic perspective, but also in overall influence on ice sheet behaviour 

and ice / ocean / climate interactions through time. However, to date, many ice-flow 

pathways have only been partly reconstructed, or remain hypothetical. Thus, the behaviour 

of the eastern margin of past British ice sheets and of the western margin of past 

Fennoscandian ice sheets throughout the Quaternary has remained poorly understood. This 

project w i l l investigate the history of this interaction. 

Understanding the role of Scandinavian ice in the North Sea during the Devensian, 

constraining a North Sea Lobe surging down the eastern coast of England, is therefore 

important for reconstructing the L G M ice sheet in Britain. The limits of the Devensian ice 

sheet in Britain are currently poorly constrained, and the role of a North Sea Lobe and of 

Scandinavian ice in the Quaternary glaciation of the North Sea is poorly understood. This 

lithostratigraphic investigation w i l l lead to a better understanding of the complex dynamics 

of the eastern British-Irish Ice Sheet (BUS) throughout the Quaternary. 

In this thesis, the L G M is defined as the period of maximum ice sheet growth, with ice 

extending to the continental shelf. This occurred during MIS 29-22 cal. ka, peaking at 26 

cal. ka BP. The Dimlington Stadial occurred around 22 cal. ka BP. A l l ages reported in this 

thesis are calibrated to calendar years BP using the C A L I B Intcal 04 curve for terrestrial 

ages and the Marine 04 curve for marine shells (Stuiver & Reimer, 1993; Stuiver et al., 

2009). 

Quaternary stratigraphical issues 

Recent research in Norfolk has questioned the timing and frequency of Middle 

Pleistocene glaciations in Britain. In addition, the occurrence of Scandinavian ice at 

different times during the Middle Pleistocene has recently been questioned (Lee et al., 

2002; Lee et al., 2004; Pawley et al., 2004; Hamblin et al., 2005; Gibbard et al., 2008; Lee 

et al., 2008; Pawley et al., 2008). Under the recently proposed model, the FIS reached the 

British coastline only during MIS 6. This model details a multiple BUS event stratigraphy 

stretching back to MIS 16, but is yet to be validated elsewhere in the U K . One of the major 
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obstacles to the validation of this model is the occurrence of the 'Scandinavian Dr i f t ' at 

Warren House Gi l l in County Durham (Trechmann, 1915, 1931b, 1952), as this is 

indirectly overlain by a raised beach dated to MIS 7 (Bowen et al., 1991; Lunn, 1995). The 

Scandinavian Dr i f t , or the 'Warren House Formation' (Thomas, 1999) survives in a buried 

valley of Warren House Gi l l (Francis, 1972), and is overlain by the 'Main Cheviot Dr i f t ' 

(Trechmann, 1952), with two tills attributed to the last glaciation. These tills were renamed 

the Blackhall and Horden tills by Francis (1972) and attributed to a two-stage L G M . They 

were renamed the Blackhall and Horden members by Thomas (1999). Until recently, these 

tills were inaccessible and covered by mining waste. However, recent work to clean the 

beaches (the 'Turning the Tides' programme) has led to erosion of mining waste and the 

re-exposure of the sediments (Bridgland, 1999). 

During the Late Devensian, northeastern England was an area of competing ice lobes. 

Two ice-lobes sourced f rom northwest England and Scotland (depositing the Blackhall and 

Horden Members respectively) overran the area (Smith & Francis, 1967; Lunn, L995). The 

recession of the first ice lobe prior to the advance of the second led to the development of 

large proglacial lakes (Smith, 1994). The second ice lobe, the North Sea Lobe, deposited 

the Horden Member during the Dimlington Stadial (Francis, 1972; Lunn, 1995). However, 

a Late Devensian North Sea Lobe surging down eastern England (Boulton et al., 1977; 

Eyles et al., 1994) is diff icul t to imagine without contact between the BUS and the FIS in 

the North Sea. Recent research on the Devensian in the North Sea Basin has argued for a 

three-stage Devensian model, with no contact between the British and Fennoscandian ice 

sheets during the Dimlington Stadial (Sejrup et al., 1994; Sejrup et al., 2005; Carr et al., 

2006; Bradwell et al., 2008). Without the FIS confining and redirecting the North Sea 

Lobe, the cause of the sharp southwards turn of the Tweed ice stream (Everest et al., 2005) 

and the onshore flow direction of the North Sea Lobe remains unclear (Lunn, 1995; Catt, 

2007). The dynamics of the last BUS in eastern England are therefore poorly understood. 

The North Sea Basin (NSB) is a deep sediment sink that contains vast thicknesses of 

Quaternary glacigenic sediments. However, the stratigraphy of these sediments remains 

uncertain (Carr et al., 2000), and there have been few recent attempts to robustly interpret 

the age, genesis and provenance o f these tills. Onshore-offshore correlations remain 

tentative (Catt, 1991a), and the offshore seismostratigraphic stratigraphy is hard to relate to 

the onshore lithostratigraphic stratigraphy (Gatliffe et al., 1994). 

3 



B E T H A N D A V I E S C H A P T E R 1: I N T R O D U C T I O N 

Therefore, the f low phasing and dynamic interaction of the BUS and FIS in eastern 

England during the Devensian has only been partly reconstructed. There has been little 

quantitative description of these tills, and no detailed analysis of their provenance, 

depositional processes, or type and style of deformation, leading to a limited understanding 

of Late Devensian ice-sheet dynamics and processes. Onshore-offshore correlations have 

not been quantitatively tested, and therefore wider regional ice-sheet dynamics are poorly 

understood. The northeastern coast of England, a focus of these ice lobes, is therefore 

critically located to examine Devensian interlobate ice-sheet history. 

Correlation of the tills in County Durham to other glacigenic sediments in eastern 

England and the North Sea, in particular the Basement, Withernsea and Skipsea Members 

in northeast Yorkshire (Catt & Penny, 1966) and the Bolders Bank and Wee Bankie 

Formation offshore, is vital for understanding the behaviour and previous configurations of 

the last BUS. The coastal sections in northeastern England potentially provide a wealth of 

information about Devensian and Quaternary ice-sheet dynamics, but they remain poorly 

studied. Little new data has been published since the work of researchers in the early 

Twentieth Century, and access has been dif f icul t due to the dumping of colliery waste on 

beaches. This research therefore investigates a number of key sites along the eastern 

English coastline and in the North Sea. They include Whitburn Bay, Warren House Gil l 

and Shippersea Bay. Warren House Gi l l has previously provided evidence of multiple 

glaciations and of Scandinavian ice impinging on eastern England, and is potentially the 

furthest north such exposure (Catt, 2007). In addition, it is ideally located to capture the 

signal of the Blackhall and Horden ice lobes. Whitburn Bay is situated in the region of 

coalescence of these competing ice lobes and at the head of Glacial Lake Wear, making it 

crucial for understanding ice-sheet f low dynamics and flow phasing at the Last Glacial 

Maximum (LGM) . It is located immediately to the east of the Tyne Gap, and therefore 

should be the most northerly site to record evidence of this cross-Pennine ice lobe. Figure 

1.1 shows the location of key sites referred to in this thesis. 

1.1.2 Research Aims and Objectives 

This thesis assesses the lithostratigraphy of Quaternary sediments exposed in coastal 

sections in County Durham and recovered f rom boreholes in the North Sea. The overall 

scientific aim of this thesis is to understand the dynamics, chronology, and interaction of 

different ice lobes and ice sheets within eastern England and the North Sea during the 
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Quaternary; essentially, the interaction between the BUS and the FIS during the 

Quaternary. There are four main subsidiary objectives to this aim: 

• To understand the depositional environments of glacigenic and interglacial 

sediments at Warren House Gi l l , Whitburn Bay, and in the North Sea; 

• To develop a chronostratigraphical framework for the Quaternary sediments 

along the coast; 

• To trace the provenance of these sediments in order to establish ice-flow 

pathways and f low phasing; 

• To understand the interaction and dynamism of the BUS and FIS during the 

Quaternary, including: 

o Understanding the spatially and temporally changing role of the North 

Sea Lobe flowing down the coast of eastern England; 

o Testing established regional correlations to the Basement, Skipsea and 

Withernsea Members. 

This research w i l l focus on the process history, provenance, age, and stratigraphic 

correlations of the glacial sediments, using lithostratigraphic, chronostratigraphic and 

biostratigraphic data into order to investigate the glacial sequence in northeast England and 

the North Sea. Ultimately, through the construction of a stratigraphic framework and 

provenance testing, this research wi l l enable the development of a glacial/interglacial 

model of ice sheet development throughout the Middle and Late Pleistocene. 
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1.1.3 Scope of this thesis 

This thesis therefore reports and interprets work from five localities: Whitburn Bay, 

Hawthorn Hive, Shippersea Bay, and Warren House Gi l l (and the sediments between), and 

from several boreholes from the North Sea Basin. Whitburn Bay contains excellent 

exposures of the Blackhall and Horden members, which are Devensian tills derived from 

the Lake District and the Southern Uplands respectively (Francis, 1972; Thomas, 1999). 

The 8 km f rom Hawthorn Hive to Blackhall Rocks show excellent exposures of these two 

tills. Here, the Peterlee Sands and Gravels separate them. In Shippersea Bay an interglacial 

beach, the Easington Raised Beach, is exposed. At Warren House Gi l l , the Scandinavian 

Warren House Formation is exposed (Thomas, 1999). The work in the North Sea focuses 

on the boreholes and formations nearest to northeastern England. This study therefore 

focused on the Bolders Bank Formation (Fm), the Coal Pit Fm, the Fisher Fm, the Swarte 

Bank Fm, and the interglacial Egmond Ground and Sand Hole formations. 

Below is a summary of the eight chapters in the thesis (Table 1.1). This chapter 

outlines the key conceptual frameworks and the climatological paradigm in which this 

research is situated. It then contains a brief summary of the Quaternary in Britain and a 

more detailed analysis of Quaternary sediments in northern England. The Methodology 

chapter identifies and describes key field and laboratory techniques, and includes a 

discussion on erratic sources in the British Isles. Chapters 3 to 7 present results, data and 

interpretations from each of the key sites. The Discussion chapter attempts to draw all the 

evidence together, and to provide a synthesis and coherent theory for Quaternary 

stratigraphy in northern England. 

Table 1.1: Thesis Outline. 

Chapter 1 Introduction 
Introduces the key research themes. 
Research aims and objectives. 
Summary of Quaternary geology of Britain. 

Chapter 2 Methodology 
Key field and laboratory methodological techniques, including 
examples, rationale for their use, and limitations. 
Interpreting glacigenic processes. 
Erratic sources in Britain. 

Chapter 3 Whitburn Bay 
The first field locality, where complex Devensian glacial 
sediments are exposed. 

Chapter 4 Hawthorn Hive to Blackhall Rocks 
Introduction to the area 
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Facies architecture of the 8 km of Devensian and Quaternary 
sediments which are exposed. 
Detailed descriptions of Hawthorn Hive. 

Chapter 5 The Easington Raised Beach 
Describes, interprets and dates the Easington Raised Beach. 

Chapter 6 Warren House Gill 
Detailed lithostratigraphic and provenance analysis of 
glacigenic sediments at Warren House Gill. 
Site of the Warren House Formation (the Scandinavian till). 
Local correlations. 

Chapter 7 North Sea Basin 
Analyses and interprets glacigenic and interglacial sediments in 
the North Sea. 
Determines processes of deposition and provenance of key 
formations. 

Chapter 8 Discussion 
Explores possible correlations to sediments onshore and 
begins to reconstruct regional ice-sheet dynamics. 
Attempts to draw together all the strings, testing onshore-
offshore correlations. 
Regional correlations. 
Creates of model of British and Fennoscandian ice-sheet 
interactions during the Quaternary. 
Conclusions: Summarises the findings of the thesis. 

Appendix I Methodologies 
Detailed methodological tables for laboratory techniques. 

Appendix II Publications 
(on CD) • Whitburn Bay Boreas manuscript (In Press). 

• Easington Raised Beach Proceedings of the 
Geologists' Association manuscript (Submitted). 

• Heavy-Mineral Analysis: Methodologies. In: Bridgland, 
D.R., Clast Lithological Analysis. Technical Guide 4, 
Quaternary Research Association (Submitted) 

Appendix III Photographs 
(on CD) Selected photographs of Hawthorn Hive to Blackhall Rocks. 

Appendix IV Raw Data 
(on CD) All raw data from this project. 

Palynomorph, U-series, and OSL reports. 
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1.2 Quaternary Geology of Britain 

1.2.1 Middle Pleistocene glaciations 

Introduction 

There is substantial evidence for repeated glacials and interglacials during the 

Quaternary in Britain and in Fennoscandia; however, the number of Middle Pleistocene 

glaciations and the interactions between the Fennoscandian and British ice sheets remain 

unresolved. There is extensive evidence of large scale glaciation in Fennoscandia and in 

the North Sea during each of the main glacial stages (Ehlers et al., 1984; Kleman & 

Stroeven, 1997; Sejrup et al., 2004). Glaciations in Scandinavia are known from the 

Middle Miocene, based on small amounts of IRD in the Norwegian Sea from 12.6 Ma 

(Ebbing et al., 2003). Ice-rafted debris (IRD) in the Norwegian Sea provides additional 

evidence of extensive glaciation extending to the shelf break on several occasions during 

the Middle Pleistocene (Hjelstuen et al., 2004). A deep sea core o f f the Hebridean coast 

indicates that IRD was being delivered by British ice sheets f rom the Late Pliocene, at -2.5 

Ma (Sejrup et al., 2005), although expansive glaciation of the continental shelf did not 

occur until the Middle Pleistocene. IRD in the Norwegian Sea provides additional evidence 

of extensive glaciation extending to the shelf break on several occasions during the Middle 

Pleistocene (Hjelstuen et al., 2004). 

Large-scale lowland glaciations in Britain are widely recognised in MIS 12, 6 and 2 

(Clark et al., 2004b). Coalescence of the Fennoscandian Ice Sheet (SIS) and the British-

Irish Ice Sheet (BUS) in the North Sea Basin (NSB) has been suggested during the Anglian 

(MIS 12), Wolstonian (MIS 6) and the Devensian (MIS 5d to 2) glaciations (Boswell, 

1916; Perrin et al., 1979; Catt & Digby, 1988; Bowen, 1999a; Catt, 2001a; Carr et al., 

2006), with Scandinavian ice reaching the British landmass during the Wolstonian and the 

Anglian (Perrin et al., 1979). Evidence for this Scandinavian ice was principally found in 

Norfolk, but recent work by Lee et al. (2002) indicated that the Anglian North Sea Dri f t o f 

East Anglia, which was thought to contain Scottish and Scandinavian tills, is purely of 

Scottish provenance. The North Sea Dri f t is now divided into the Happisburgh and 

Lowestoft Formations, which are dated by some authors to MIS 16 and MIS 12 

respectively (Lee et al., 2004). However, although this work has included robust and 
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detailed lithostratigraphical analysis, mapping and provenance analysis, the 

chronostratigraphy is poor and more accurate, direct dating on sediments is needed. 

The acceptance of the Marine Isotope Stage record and of repeated major glaciations 

during the Quaternary (Emiliani, 1955; Shackleton, 1967; Shackleton & Opdyke, 1973), 

has led to many attempts to relate the Quaternary sedimentary deposits of the British Isles 

to the deep sea record (Bowen, 1999a). In the late 1980s, workers on the British 

Quaternary formally recognised six cold stages, and defined the transition f rom the Middle 

to Late Pleistocene at the start of MIS 5e, at 132 ka BP, which is still accepted today 

(Bowen et al., 1987; Gibbard, 2003). Currently, the Anglian, Wolstonian and Devensian 

are the best known Middle Pleistocene glaciations (Bowen, 1999a). They are preceded by 

the Cromerian, which dates from MIS 21 to 13 inclusively, and are separated by the 

Hoxnian (MIS 11), unnamed interglacials equivalent to MIS 7 and 9 in the oceanic 

sequence, and the Ipswichian (MIS 5e) interglacial. However, evidence is accumulating to 

suggest that this is an oversimplification of the glacial sequence, and that up to five major 

lowland glaciations occurred in Britain in the Middle to Late Pleistocene (Clark et al., 

2004b; Lee et al., 2004). 

Glacial limits prior to the Devensian are poorly constrained in Britain, due to low 

preservation potential, on account of erosion during successive glaciations (Catt, 2007). 

Sejrup et al. (2005) argued that deep sea boreholes indicate that the British Ice Sheet has 

expanded during each of the main glacial stages (MIS 12, 10, 8, 6, 4 and 2). However, 

Bowen (1999b) proposed that only four major lowland glaciations occurred in the British 

Isles during the Bruhnes Chron, during MIS 16, 12, 6 and 2. Bowen (1999b) emphasised 

the danger of forcing an oversimplified continental stratigraphy into the marine isotope 

record. The terrestrial record is fragmentary and is poorly constrained by dating, and much 

more analysis and independent dating is therefore needed. 

The Anglian (MIS 12) 

North Norfolk contains vast thicknesses of Quaternary sediments, some of which have 

been attributed to the Anglian glaciation. In northeast Norfolk, three tills form the North 

Sea Dri f t Formation (Fm), which is overlain by the Lowestoft T i l l (Solomon, 1932; 

Banham, 1968; Eyles et al., 1989). The Briton's Lane Formation, which contains 

Scandinavian and British lithologies, overlies the Lowestoft Fm. Both the North Sea Drif t 

and Lowestoft formations are Anglian in age. The North Sea Dri f t is derived from the 
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Fennoscandian Ice Sheet (FIS), which entered the area f rom the north or north-north east, 

and the Lowestoft Fm from the 'British Eastern Ice Sheet' (Lunkka, 1994). These two ice-

sheets were thought to coexist (Hart & Boulton, 1991). 

Recent mapping and t i l l petrography has produced some new theories regarding the 

age, provenance and stratigraphy of these Quaternary sediments (Hamblin et al., 2005). 

These new theories are summarised below (Table 1.2). Lee et al. (2002) found no evidence 

for Scandinavian lithologies within the North Sea Dr i f t Fm, although this has recently been 

challenged (Hoare & Connell, 2005). Mapping by the British Geological Survey found that 

the Walcott T i l l , formerly the North Sea Dri f t , was a facies of the Lowestoft T i l l (Hamblin 

et al., 2005). Lee et al. (2004) argued that a terrace in the Bytham river contained t i l l balls 

identical to newly-defined Happisburgh Fm. This terrace was tentatively dated to MIS 16 

(Lee et al., 2004). 

Table 1.2: Revised stratigraphy of north Norfolk (Lee et al., 2002; Hamblin etal, 2005). 

Lithe-stratigraphy Sediment Provenance and Processes Chrono-
stratigraphy 

Briton's Lane Fm Sands and Gravels 
North Sea, Scandinavian, 
North Britain 
Glaciofluvial outwash 

MIS 6 

Sheringham Cliffs Fm North Sea, North Britain 

Weybourne Till 

Bacton Green Till 
(North Sea Drift) 

Diamicton 

Diamicton 

Subglacial till 

Subglacial till 

MIS 10 

MIS 10 

Lowestoft Fm 

Lowestoft Till Chalky, clayey 
diamicton 

Scottish, NE Britain 

Glaciation - subglacial till MIS 12 

Walcott Till 
(North Sea Drift) 

Chalky, silty 
diamicton Glaciation - subglacial till MIS 12 

Happisburgh Fm 
Corton Sands 

Leet Hill sands and 
gravels 

Corton Till 

Happisburgh Till 
(North Sea Drift) 

Chalky, fine sand 

Sands & gravels 

Sandy, brown 
diamicton 
Sandy, grey 
diamicton 

North Sea, northern Britain 

Distal proglacial outwash 

Proximal proglacial outwash 

Glaciation - subaqueous till 

Glaciation - subglacial till 

MIS 16 

MIS 16 

MIS 16 

MIS 16 

MIS 16 

Bytham Sands and 
Gravels Fm 

Coloured quartzose 
sand & gravel 

Bytham river incision followed 
by deposition 

Early 
Pleistocene 

Wroxham Crag Fm Quartzose sands & 
gravels Coastal North Sea Early 

Pleistocene 

Norwich Crag Fm Shelly sand 
& silt and clay Coastal North Sea Early 

Pleistocene 
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The new revised stratigraphy stretches from MIS 16 to MIS 2 and is composed of 

numerous complex formations (Hamblin et al., 2005). Under this model, Scandinavian ice 

only reached the British coastline during MIS 6. However, the dating control for this model 

remains poor. The model is yet to be rigorously tested in other areas of Britain. Further 

work has questioned the validity of the model, as recent O S L dating has suggested that the 

Briton's Lane Fm is MIS 12 (Pawley et al., 2008). 

The Wolstonian (MIS 6) 

The original 'Wolstonian' glaciation in Britain was based on the type site in the 

Midlands, which Keen et al. (1997) dated to MIS 12. The term 'MIS 6' is here 

preferentially used to describe the Wolstonian. It is generally accepted that Scandinavian 

ice impinged on the eastern coast of England at this time, in both Norfolk (Lee et al,, 2002) 

and northeastern England (Catt, 1991b; Bateman & Catt, 1996). 

In the West Midlands, the Ridgacre Formation is regarded by Bowen (1999b) as 

providing evidence for an MIS 6 glaciation (Bowen, 1999b). The 'Older Drift' in North 

East Herefordshire is interpreted as evidence of a post-Hoxnian ice sheet that advanced 

across Herefordshire to the Malvern Hills (Richards, 1998). The Briton's Lane Fm 

provides indirect fluviatile evidence of an MIS 6 glaciation at Weybourne. These gravels 

contain Scandinavian lithologies, and based on this and their stratigraphical position, they 

are correlated to MIS 6 (Pawley et al., 2004). 

Other glacigenic deposits of inferred MIS 6 age include the Warren House Formation 

in Country Durham, the Basement Till (now the Bridlington Member; Lewis, 1999) in east 

Yorkshire and the Welton and Calcethorpe tills of Lincolnshire (Clark et al., 2004b). These 

are all of Scottish, North Sea or Scandinavian provenance (Straw, 1983). The Bridlington 

Member is overlain by the Ipswichian Sewerby Raised Beach (Bateman & Catt, 1996), 

which is dated by its mammalian fauna (Catt & Penny, 1966; Boylan, 1967). Late 

Devensian amino acid ages have been obtained from the Bridlington Member (Eyles et al., 

1994). The technique used to obtain these ages has, however, been vastly improved, and 

these ages cannot now be held to be correct without further testing. The Bridlington 

Member is best exposed on the foreshore at low tide between Kilnsea and Holderness 

(Catt, 2007). Catt and Penny (1966) described it as a very dark grey diamicton with a wide 

range of arctic shells and erratics from northeast England (such as chalk, flint, Jurassic 

sandstones and shales, Magnesian Limestone, Carboniferous Limestone and shale, and 
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Whin Sill Dolerite), Scotland (granites, basalts and gneisses), and Scandinavia (larvikite 

and rhomb porphyries). At Dimlington and Bridlington, the Bridlington Member 

incorporates rafts of fossiliferous Pleistocene marine sediments, the Bridlington Crag (Catt 

& Penny, 1966), interpreted as an erratic mass picked up f rom the North Sea floor by the 

ice sheet that deposited the t i l l . The absence of post-Anglian age indicators suggests that 

the Bridlington Crag is Anglian or older. Six species of ostracoda found in the Bridlington 

Member were also found in the Warren House Fm, and on this basis, the two deposits have 

been correlated (Catt & Penny, 1966; Catt, 2007). 

The Welton T i l l overlies gravels containing an Acheulian hominid culture, dated to the 

Hoxnian. However, the discovery, from sites such as Boxgrove and Pakefield (Parfitt et al., 

2005), of human occupation of Britain during the Late Cromerian Complex, has 

undermined the value of using archaeological evidence to date these gravels. The 

mammalian fauna is stratigraphically undiagnostic, so the 'Wolstonian' age of the Welton 

T i l l is equivocal (Bridgland et al., in prep). There are no clear grounds for assigning the 

Welton T i l l to a post-Anglian glaciation, and both the Welton T i l l and the overlying 

Calcethorpe T i l l could be Anglian age (Straw, 2005). The Welton site could indeed record 

evidence of three glaciations (Clark et al., 2004b; Bridgland et al., in prep). The 

Calcethorpe T i l l is overlain by the Marsh T i l l , correlative with the Skipsea T i l l of the 

Devensian Holderness Fm, which contains the Late Devensian Dimlington Silts (Lewis, 

1999). A palaeosol developed on the Welton T i l l has been interpreted as representing an 

interglacial, possibly the Ipswichian (Straw, 1983). The Warren House Formation of 

Durham is correlated to the Bridlington Member due to its Scandinavian lithologies (Lunn, 

1995). Other age suggestions for the Warren House Formation include Anglian and 

Devensian (Catt, 2007). 

1.2.2 Devensian Glaciations 

The Early Devensian 

The British-Irish Ice Sheet (BUS) was a mobile and sensitive ice sheet, with the Last 

Glacial Maximum (LGM) only one of many events (Clark & Meehan, 2001; Bowen et al., 

2002). There is possibly evidence of an MIS 4 glaciation in east Lincolnshire and east 

Yorkshire (Clark et al., 2004b), with glacial deposits and glacial meltwater landforms 

associated with tills that are younger than the Ipswichian. They are associated with 

lacustrine and fluviatile sediments that have been dated to earlier than the Middle 
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Devensian. There is also evidence of an MIS 4 glaciation in Scotland, with the more 

extensive MIS 4 deposits separated f rom the less extensive MIS 2 deposits (Bowen, 1999). 

There is evidence of extensive glaciation of the North Sea Basin during MIS 4, the Ferder 

Episode of Carr et al. (2006). During the Middle Devensian, the British and Irish Ice Sheet 

(BUS) reached its maximum size before 37 ka BP. The final retreat f rom the continental 

shelf around 25 ka led to first transgression of British and Irish seaways since that of the 

Ipswichian (Bowen et al., 2002). 

The Last Glacial Maximum 

To avoid confusion, the term ' L G M ' (Last Glacial Maximum) here refers to the period 

of global ice-sheet maxima, from 30-22 cal. ka BP, peaking at 26 cal. ka BP (Peltier & 

Fairbanks, 2006), when the last British-Irish Ice Sheet (BUS) extended to shelf-wide 

glaciation (Bradwell et al., 2008). The Dimlington Stadial (and Tampen Stadial) occurred 

around 22 cal. ka BP (Rose, 1985; Bateman et al., 2008; Sejrup et al., 2009). 

Carr et al. (2006) and Sejrup et al. (2005) favoured a two-stage L G M model. In the 

earlier Cape Shore Episode (29-22 cal. ka BP), the FIS and the BUS were confluent. The 

Dimlington Stadial (late L G M ) in Britain, dated to -21 cal. ka BP (Penny et al., 1969; 

Rose, 1985), was more restricted than the L G M , and there is uncertainty about the eastern 

extent of the BUS (Ballantyne et al., 1998). This was addressed by Carr et al., (2006), who 

argued that the eastern margin of the BUS during the Dimlington Stadial corresponded to 

the edge of the Bolders Bank Fm. The Dimlington Stadial is also correlative with the 

Tampen Stadial in Norway and in the Norwegian Sea (Sejrup et al., 2005; Sejrup et al., 

2009). 

The last BUS was a complex, dynamic system, with numerous waxing and waning ice 

streams, and different localised ice-accumulation areas competing for dominance (Bowen 

et al., 2002). Ice-flow pathways changed through time, leading to complex, superimposed 

drumlin flowsets (e.g., Salt & Evans, 2004; Mitchell, 2007; Livingstone et al., in press). 

Constraining these ice flow pathways was first attempted by Sutherland (1984), who 

supplied one of the first comprehensive reviews of the glaciation of Scotland, and 

identified key erratic sources and trains. Recently, the BRITICE database (Figure 1.2) has 

summarised erratics, drumlins, eskers, meltwater channels, ice-limits and more to provide 

a crucial tool in interpreting the L G M (Clark et al., 2004a; Evans et al., 2005). 
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The last Scottish Ice Sheet may have been thinner than in previous reconstructions 

(Boulton et al., 1977). Earlier models assumed confluence with the FIS and extension to 

the shelf edge at the L G M , implying that even the highest Scottish mountains lay under the 

ice sheet. Revised models suggest a more restricted ice sheet with lower shear stresses, 

moving over a deformable bed. Over much of the Highlands, the ice surface altitude lay at 

1000 m O.D., leaving many Scottish mountains as nunataks (Ballantyne et al., 1998). The 

Grampian Highlands were another key ice-accumulation area, dispersing erratics (such as 

granites and the Dalradian quartz-mica-schist) southwards and eastwards through the 

Midland Valley of Scotland (Figure 1.2). The uplands of Dumfries and Galloway dispersed 

erratic trains northwards and southwards (Clark et al., 2004a). 
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In the North Minch Basin, the ice sheet extended no further west than the Greenstone 

Ridge, depositing a 60 km long submarine moraine. Stoker and Bradwell (2005) reported 

the presence of an ice-stream in the Minch during MIS 2 (Figure 1.3). The period of 

maximum ice extent is recorded in the Barra Fan (Knutz et al., 2002), where the clastic 

input peaks at 27 to 26 cal. ka BP. They coincide with increased ice rafting from the 

northwestern sector of the BUS, with IRD peaks associated with Heinrich Events 1 and 2. 

The Dimlington Stadial 

The Dimlington Stadial boundary in England lies between Dimlington and Norfolk 

(highlighted on Figure 1.3). In the Cheshire-Shropshire lowland, ice advanced to the 

Whitchurch Moraine, and was here coeval with Welsh ice from the west (Bowen et al., 

2002). During and after the L G M , ice from the Lake District and southern uplands 

extended into northeast England from the west, through breaches in the Pennine 

escarpment (Teasdale & Hughes, 1999). Erratic pathways defined flow pathways, and are 

shown on the B R I T I C E database (Figure 1.2). The ice flowed east or southeast, but as it 

thinned during deglaciation, the underlying topography exerted an increasing influence. 

Scottish ice coalesced with Lake District ice, which flowed radially out of the main 

mountain mass of the Lake District (Mitchell & Clark, 1994). The dominant Southern 

Uplands ice was deflected around the Lake District, a mountainous region that was able to 

develop an independent ice cap (Sutherland, 1991). 

Recent workers have identified several ice-streams within the Devensian BUS (e.g., 

Merritt et al., 1995; Everest et al., 2005; Stoker & Bradwell, 2005; Golledge & Stoker, 

2006; Bradwell et al., 2007; Roberts et al., 2007; Bradwell et al., 2008). Several of these 

may have operated repeatedly during several different glaciations. Figure 1.3 shows nine of 

the most important ice-streams during the Dimlington Stadial (various authors). 

The competing ice lobes of the BUS trapped vast quantities of meltwater in various 

proglacial lakes. The largest of these were Glacial Lake Humber (Bateman et al., 2008), 

Glacial Lake Pickering, Glacial Lake Tees (Agar, 1954) and Glacial Lake Wear (as first 

described by Smith & Francis, 1967). These lakes were included in B R I T I C E (Clark et al., 

2004a) and are shown on Figure 1.2. In northeastern England, western ice may have 

retreated prior to the advance of the North Sea lobe, resulting in an ice free zone between 

glaciers in valleys and a lobe close to the coastline (Teasdale & Hughes, 1999). The term 

17 



B E T H A N D A V I E S C H A P T E R 1: I N T R O D U C T I O N 

'North Sea Lobe' refers to the southwards-flowing ice lobe in the eastern BUS, as shown 

on Figure 1.3. 

-30000 

140 km 

Figure 1.3: Map of major British ice streams (red arrows) during the LGM. 
See Table 1.3 for description, location and references. Moraines, ice limits and ice-dammed lakes are 
taken from BRITICE database (Clark et al., 2004a; Evans et al., 2005). 
IS: Irish Sea ice stream. IR: Irish ice streams. TW: Tweed ice stream. MF: Moray Firth ice stream. 
M: Minch ice stream. St: Strathmore ice stream. NS: North Sea ice stream. 
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The North Sea Lobe created many ephemeral glacial lakes, such as Glacial Lake 

Wear, and led to the deposition of extensive lacustrine deposits in many valleys. 

Catastrophic drainage of these lakes may have led to the incision of the denes and gills of 

the Durham coast (Smith, 1994). Glacial Lake Wear (Raistrick, 1931) stood at different 

levels as outlets opened and closed during deglaciation. The lowlands around Sunderland 

and Newcastle were at one time almost entirely covered by this lake, in which the 

widespread 'Tyne-Wear Complex' deposits were laid down, consisting mostly of 

laminated clays (Catt, 1991a; Smith, 1994). These were later termed the 'Durham 

Member' by Thomas (1999). They range from interbedded laminated silty clays and clayey 

silts up to 55 m thick and extending up to 132 m Ordnance Datum (O.D.), to proximal 

proglacial gravels (Smith & Francis, 1967; Evans et al., 2005). Finer fractions successively 

overlap the coarser fractions northwards, marking ice lobe recession. These 

glaciolacustrine sequences overlie the Blackhall Member (Evans et al. 2005). Towards the 

coast, the Horden Member overlies this earlier till (Catt, 2007). 

Sediments along the northeast coast of England record one or more North Sea Lobes 

of the British ice sheet, which flowed southwards parallel to the coast (Eyles et al., 1994). 

Eyles et al. (1994) interpreted it as an ice-stream sliding over slippy, deformable, marine 

sediments (Figure 1.3). The glaciofluvial landforms in Holderness are former ice contact, 

coalescent, subaqueous fans representing recessional positions of the North Sea Lobe 

(Evans et al., 2005). Gaunt et al. (1992) argued that the westernmost penetration of a North 

Sea glacier up the Humber estuary is marked by the Horkstow Moraine, which corresponds 

with the westernmost limits of the Skipsea Member of the Holderness Fm (Table 1.4). 

A Vale of York Lobe initially surged into Glacial Lake Humber to Wroot in 

Lincolnshire. This coalesced with glaciers in the dales south of Swaledale. There is 

evidence of palaeo-ice streams in the Vale of York, Vale of Eden, the Yorkshire Dales and 

the Tweed Valley (Evans et al., 2005; Everest et al., 2005; Mitchell, 2008; Bridgland et al., 

in press). Eyles et al. (1994) used the limit of the Withernsea Member to support evidence 

of a surging ice sheet margin in east Yorkshire, and the edge of the overlying Skipsea 

Member (Lewis, 1999) provided the Dimlington ice limits in eastern England (Table 1.3 

and Figure 1.2). 

The till sheets in east Yorkshire off-lap eastwards, recording repeated surges of the 

North Sea ice lobe reaching less far inland during each surge (Teasdale & Hughes, 1999). 

Within Devensian tills along the east coast, the Skipsea Member has erratics indicating a 
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Southern Uplands and Cheviots source, and the Withernsea Member a Lake District and 

Pennines source. This indicates changing dominance of ice source areas during the last 

glaciation (Evans et al., 2005). 

During the Dimlington Stadial, the Irish Sea Basin was occupied by an ice stream 

flowing southwards (Roberts et al., 2007). McCabe et al. (1998) argued that it was fed by 

centres of ice dispersion in the Lake District, Southern Uplands and Ireland. The Killard 

Point Stadial in Ireland records a readvance between 18.8 - 16.4 cal. kyr BP, during the 

North Atlantic Heinrich Event 1 (Thomas et al., 2004; McCabe et al., 2007). This ice 

stream may have impacted ice flowing eastwards across the Tyne Gap, as it would have 

created drawdown into the Irish Sea, resulting in stagnation and decline across the 

Pennines. 

During Heinrich Event 1, the ice advanced to Dimlington Stadial limits once again. 

Between 10 and 45 cal. ka, IRD deposition increased every 2 to 3 ka, similar to the timing 

of Dansgaard-Oeschger Events (Bowen et al., 2002). 
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1.3 Quaternary Geology of County Durham 

1.3.1 Buried Valleys in County Durham 

The Quaternary geology of the region in eastern County Durham is characterised by 

steep-sided denes, cutting through the Quaternary diamictons and locally into the 

Magnesian Limestone bedrock. These denes were probably rapidly cut through the soft 

Quaternary sediments post-glacially, in response to rapid isostatic uplift after deglaciation 

(Evans, 1999). 

The soft Magnesian Limestone bedrock in these denes is also frequently eroded to 

well below sea level to form steep-sided palaeovalleys, which are infilled with Quaternary 

deposits. These buried palaeovalleys characterise the east coast, forming an anastomising 

network (Peel, 1956; Smith & Francis, 1967), and cut across the coastline at Hawthorn 

Hive, Warren House Gill, Limekiln Gill and Castle Eden Dene. Figure 1.4 shows the 

dendritic pattern of the buried valleys in County Durham. They could have been incised by 

ancient rivers, and possibly subsequently influenced by subglacial meltwater / proglacial 

meltwater during glacial periods. 
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Figure 1.4: Buried valleys of County Durham. Modified from Smith and Francis (1967) and Smith 
(1994). 

1.3.3 Middle Pleistocene Sediments in County Durham 

Fissure Fills 

Trechmann (1952) reported a series of fissure fills in the Permian Magnesian 

Limestone. These breccias and clays, now obscured, were said to contain seeds 

representing Tertiary woodland (Francis, 1972), with a later clay containing Middle 

Pleistocene flora and fauna (Reid, 1920). It contains freshwater shells, peat, tree trunks, 

insects, rodent teeth and elephant vertebra resembling Archidiskodon meridionalis (Lunn, 

1995). This clay was named the Blackhall Colliery Formation (Table 1.5) by Thomas 

(1999). 

Warren House Formation 
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Trechmann (1915) described a buried valley about 500 m wide in the Magnesian 

Limestone at the mouth of Warren House Gill , infilled at the base with "Scandinavian 

Drift", now the 'Warren House Till' (Francis, 1972) or 'Warren House Formation' (Table 

1.5; Thomas, 1999). Trechman (1915) reported that this 'boulder clay' was overlain by 

loess, which in turn was overlain by Devensian 'boulder clay' and sands and gravels. The 

Warren House Formation reached a thickness of 2 or 3 m in the cliff section, but thinned 

out and disappeared as the bedrock rose at the side of the depression. The 'boulder clay' 

was locally coloured yellow by the presence of dolomitic Magnesian Limestone, and in 

places was slickensided and sandy (Trechmann, 1915). Beaumont (1967) described the 

Warren House Formation as a grey, sandy clay with rounded, Scandinavian, metamorphic 

crystalline erratics. Magnesian Limestone, the local parent rock, was present in low 

abundances (less than 6.5 %), and no Carboniferous Limestone was present. Boulders of 

larvikite, rhomb porphyries, and Norwegian rocks were also reported in situ and on the 

beach by Trechmann (1931b). Smith and Francis (1967) argued that the arctic shells, flint 

and chalk, red marl, belemnite fragments, and white limestone within the till were 

transported from the North Sea Basin. The clay and silt mineralogy of the Warren House 

Formation is substantially different to the other tills in the region. Beaumont (1967) 

proposed that the minerals were mainly derived from igneous rock material, and limestone 

material such as dolomite and calcite was added later. However, there has been no heavy-

mineral or palynomorph analysis, which could provide valuable and detailed provenance 

information. 

Smith and Francis (1967) suggested that the lack of exposures of the Warren House 

Formation implies that only pockets were preserved beneath younger drift in other buried 

valleys, and that the Scandinavian ice did not extend much further west than the present 

coastline. Subsequent glaciations removed the till, leaving only the small protected pocket 

in Warren House Gill (Beaumont 1967). Previous interpretations of the genesis of the 

Warren House Formation range from deposition as a subglacial till (Bridgland, 1999), to 

deposition from a grounded ice shelf, explaining the purity of the Scandinavian material 

(Beaumont 1967). 

The age of the till is controversial. Trechmann (1931) stated that a substantial 

unconformity and interglacial separated the 'Scandinavian Drift' from the overlying last 

glacial tills. He argued that the evidence for this is present in the sequence at Warren 

House Gill in the form of a bed of loess, on which a palaeosol had developed (Trechmann, 
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1920, 1931b). Trechmann also argued that the apparently greater weathering of the 

'Scandinavian Drift' than the 'Main Cheviot Drift' suggests that it pre-dated the last 

glaciation. This weathering must have occurred during an intervening warm period, such as 

the Ipswichian (Catt, 2007). However, the juxtaposition of abundant rotted and rounded 

clasts of granite and gneiss to a rich and apparently unweathered shell fauna in the till led 

Beaumont (1967) to question the interpretation of differential weathering. However, the 

calcareous groundwater would have preserved and protected the shell fauna. 

Trechmann (1931a) stated that the Easington Raised Beach contained Scandinavian 

erratics derived from the underlying 'Scandinavian Drift'. Bowen et al. (1991) dated the 

beach to MIS 7, which Teasdale and Hughes (1999) have used to argue that the glaciation 

that deposited the Warren House Formation occurred in MIS 8 or earlier. However, the 

Warren House Formation was correlated with the Bridlington Member of Holderness due 

to the coincidence of lithology, fauna, stratigraphical position and biostratigraphical 

remains (Francis, 1972), and was therefore assigned an MIS 6 age by some workers (Catt 

& Penny, 1966; Catt, 1991b; Lunn, 1995; and Thomas, 1999). The age of the Warren 

House Formation, its precise genesis, and the provenance therefore remain unresolved. 

Additionally, dating the Warren House Formation by its relationship to the Easington 

Raised Beach is difficult. Their stratigraphical relationship is unclear, as they are not 

exposed in superposition. It is also illogical to assume that Scandinavian ice reached the 

British coastline only once, given the existence of at least 10 significant glaciations 

recognised from deep ocean cores (Shackleton & Opdyke, 1973). In addition, it is difficult 

to rationalise why the Fennoscandian ice sheet reached the British coastline at all before 

the British-Irish Ice Sheet, which had much shorter distances to travel. One possibility is 

that the BUS disappeared completely in interglacials and so was initially slower to respond 

to abrupt climatic shifts, whilst ice remained in the highlands of Scandinavia even during 

interglacials, thus making the creation of a large ice sheet easier. 

Interglacial Loess 

Trechmann (1920) reported the pale brown or fawn-coloured upper beds as loess, with 

a thickness of approximately 0.3 m to 4 m. It is horizontally bedded, with seams of sand, 

fine gravel and occasional small boulders, and Trechmann interpreted it as having been 

resorted and redeposited by water after deposition. Towards the base of the section, 

Trechmann (1920) described undisturbed loess, which was uniform in colour and 
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appearance. It had no trace of shells or organic remains and was devoid of sand and stones. 

The loess in Warren House Gill was interpreted as interglacial by Trechmann (1920), but 

this is disputed by Francis (1972), as the loesses of Europe and North America were 

deposited in cold steppe environments. Francis (1972) suggested that the loess was 

deposited during the MIS 6 glaciation after the ice cap withdrew from the Durham locale. 

The Easington Raised Beach 

A raised beach at 33 m O.D. was first reported by Woolacott (1900) in Shippersea 

Bay, County Durham. Shippersea Bay is located near the small town of Easington, so 

Woolacott named the beach the 'Easington Raised Beach'. It is located some 800 m north 

of Warren House Gill . Later reinvestigations by Trechmann (1931a) suggested that the 

beach contained Scandinavian erratic material, which he argued must have been derived 

from the Warren House Fm. Trechmann proposed that the beach was from the last 

interglacial, and that the Warren House Fm (or 'Scandinavian Drift') was therefore from 

the previous glaciation. The beach was later dated by Amino Acid Racemisation by Bowen 

(1991), who stated that it was deposited during MIS 7 and that it contained a reworked 

fauna from MIS 9. This creates difficulty as the Warren House Fm was 

lithostratigraphically correlated to the MIS 6 age Basement Till (Bridlington Member; 

Lewis, 1999; Catt, 2001a). 
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1.3.4 Devensian Tills in County Durham 

The 'Main Cheviot Drift' of the Durham coast, as first described by Trechmann 

(1915), overlies the earlier Pleistocene sediments and widely caps the Magnesian 

Limestone cliffs (Bridgland, 1999). It comprises two tills separated by sand and gravel 

(Figure 4.2). In some places, sand and gravel also cap the sequence (Teasdale & Hughes, 

1999). 

The Blackhall Member (Lower Till) 

Francis (1972) named the lower till the 'Blackhall Til l ' , with a stratotype at Blackhall 

Rocks, where it is overlain by the Peterlee Sands and Gravels (or Peterlee Member; 

Thomas, 1999). The Blackhall Till was renamed the 'Blackhall Member' of the 'East 

Durham Formation' by Thomas (1999; Table 4.1). Francis (1972) described the Blackhall 

Member as a deeply weathered, thin, sandy, subglacial till resting directly on the 

Magnesian Limestone, and containing a high percentage of Magnesian Limestone clasts. 

Carboniferous Limestone and sandstones are present in small quantities. The sandstone 

abundance varies inversely with that of the Magnesian Limestone (Beaumont, 1967, 1971). 

Both red sandstones and greywackes are present. There are very small percentages of coal, 

ironstone, quartzose and igneous clasts. The Peterlee Member consists of a lower, red, 

fine-grained sand with beds of silt and clay, sporadic beds of coarser sand, and an upper 

gravel. These sands were interpreted as glaciofluvial outwash by Francis (1972). 

The Tyne Gap was a major artery of the BUS, directing ice from Scotland, the 

Pennines and the Lake District towards eastern England (Yorke et al., 2007; Livingstone et 

al., in prep). Beaumont (1967) argued that striae on both stones and bedrock and clast 

macro-fabrics in County Durham indicate a strong west-to-east movement (Figure 1.5), 

suggesting that an ice sheet came through the Tyne Valley, overrode Gateshead Fell and 

continued eastwards into the North Sea. The till therefore represents the maximum 

glaciation of the Durham area, and was deposited by an ice sheet which moved south-

eastwards across eastern Durham from sources in the Pennines, the Lake District and the 

Southern Uplands (Beaumont, 1967). Beaumont proposed that this eastward flow reflected 

the build up of ice in the Irish Sea basin, which caused an overflow eastwards across the 

Pennines, entering the Durham area via the Tyne Gap (Beaumont, 1971). In the early 

stages, it coalesced with a Weardale Glacier to form a piedmont-lobe glacier in northern 

Durham. At maximum glaciation, it was probably coalescent with Scandinavian ice 
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offshore, and with Tees ice moving over the Stainmore depression in the south (Beaumont, 

1967). 

Francis (1972) correlated the Blackhall Till with the Drab Till of Holderness (as 

described by Catt & Penny, 1966). The Drab Till directly overlies Dimlington Silts of the 

L G M , and therefore dates from 21-22 cal. ka BP (Penny et ai, 1969). The Drab Till was 

renamed the Skipsea Till by Madgett and Catt (1978), and the Skipsea Member by Lewis 

(1999). At the type site in Holderness, the Skipsea Member is overlain by the Withernsea 

Member (Lewis, 1999), formerly the Purple Till (Catt & Penny, 1966) or Withernsea Till 

(Madgett & Catt, 1978). They form the 'Holderness Formation', as defined by Lewis 

(1999; refer to Table 1.4). 

N Compiled from a number of sources. 
Arrows indicate direction as 
suggested by original authors. 
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Figure 1.5: Map of striae orientations in northeastern England. Modified from Beaumont (1967). 

The Harden Member (Upper Till) 

The Horden Member (Table 1.5) is the youngest glacial deposit exposed along the 

Durham coast, and is the uppermost member of the East Durham Formation (Thomas, 
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1999). It overlies the Peterlee Member and its type section is located on the southern side 

of Warren House Gill , where Francis (1972) observed 9 m of brown stony clay with lenses 

of red silty sand near the base. 

Beaumont (1967) described the clay mineralogy of the Blackhall and Horden members 

as very similar, being largely derived from the Coal Measures. Beaumont's (1967) clast 

lithological data from the Horden Member revealed that the Magnesian Limestone content 

of the till was less than 40 %, and he suggested that the Horden Member was partly derived 

from the underlying Blackhall Member. Variations in the Carboniferous Limestone content 

within the Horden Member were larger than in the Blackhall Member. Sandstone was 

higher in the Horden Member, and red sandstones, greywacke, coal and siltstone were 

present in small quantities (Beaumont, 1967). 

Various processes have been proposed to explain the formation for the Blackhall and 

Horden Members, such as a tiered, stacked ice sheet with the Horden and Blackhall 

Members representing the dirty base of the two ice sheets (Catt & Penny, 1966). Beaumont 

(1967) argued that this explanation was unlikely and that there are no present day examples 

of this phenomenon; it is glaciologically implausible. The Horden Member is more likely 

to be a basal till from an ice sheet that overrode the Blackhall Member after the recession 

of Lake District ice (Beaumont, 1967). 

The Horden Member has a much-localised distribution, and extends 10 km west of the 

Durham coastline (Figure 1.6). Clast macro-fabric data and bedrock striae indicate that the 

ice sheet flowed from the northeast to southwest. Teasdale and Hughes (1999) suggested 

that the till was possibly deposited by the Late Devensian North Sea Lobe, sourced from 

the Cheviots and the Firth of Forth. It passed the coast of northeast England and advanced 

south along the Yorkshire coast, before terminating to the northeast of Norfolk. The North 

Sea Lobe was perhaps held in this position by Scandinavian ice in the North Sea Basin 

(Teasdale & Hughes, 1999; Svendsen etai, 2004). 
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1.4 Key Conceptual and Theoretical Frameworks addressed in 

this Thesis 

British Quaternary stratigraphy therefore has several key knowledge gaps that this 

thesis wi l l address. This thesis attempts to address key issues regarding, firstly, the 

depositional processes, interlobate dynamics and ice f low pathways of Devensian 

glacigenic sediments in County Durham. The key issues include whether these ice lobes 

were contemporary or whether there was a period of subaerial exposure, the evidence for a 

North Sea Lobe, and the reasons for the its existence. Critical to this discussion is the 

influence of changing ice divides, and the influence this has on the glaciation of County 

Durham. 

Secondly, this thesis looks at the long-term Quaternary history of County Durham, and 

examines the evidence for onshore Fennoscandian ice in eastern England. The goal of this 

research is to investigate the glaciological conditions that w i l l allow the Fennoscandian ice 

sheet to reach eastern England before the British ice sheet. Additionally, the site at Warren 

House Gil l is ideally located to test new stratigraphic models proposed in Norfolk (see 

Chapter 1.2.1). 

Thirdly, this thesis examines an interglacial raised beach with the aim of establishing 

its age and stratigraphical relationship to the Warren House Fm. Constraining the age of 

the raised beach has implications regarding long-term tectonic uplift of the United 

Kingdom, which again is important to accurately identify to predict future sea level 

changes and crustal responses to isostatic loading. Finally, this thesis attempts to constrain 

onshore-offshore correlations, and to investigate the provenance of some key formations in 

the North Sea Basin, on order to identify any evidence for Fennoscandian ice in the 

western North Sea. 
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CHAPTER 2 

Methodology and Techniques 

2.1 Introduction 

The procedures outlined in this section have four goals: correlation of lithofacies 

between sites, provenance of sediments, processes of deposition, and chronology of the 

sediments (cf. Walden, 2004). The geochemical and lithological properties of a sediment 

can be used to identify a likely source. Chemical, lithological or mineralogical 

'fingerprinting' of a sediment, as illustrated in this chapter, is the only definitive method 

for defining ice sources and ice f low pathways. Therefore, in order to reconstruct the ice 

sheet history of the UK, this project uses a quantified, multi-proxy approach to create a 

coherent description and characterisation of the sediments present. This approach enhances 

each individual technique and the combined, integrated results of multiple data sources 

results in robust and detailed interpretations. The use of multivariate statistical analysis on 

the ful ly quantified data identifies trends and correlations that are otherwise diff icult to 

discern objectively. 

This chapter outlines the methods used and explains their applications and relevance. 

Field techniques include section logging, clast macro-fabrics, striae measurements, clast 

shape, used in conjunction with thin-section analysis. Quantitative lithological and 

geochemical techniques include sedimentary descriptions, particle-size analysis, heavy-

mineral analysis, clast-lithological analysis, and ICP-Mass Spectrometry, combined with 

statistical analysis of the data (Principle Components Analysis and Cluster Analysis), and 

biostratigraphical data (foraminifera, palynomorphs, and macrofauna). This chapter also 

summarises the relevant dating techniques used (U-series, Optically Stimulated 

Luminescence (OSL) and Amino Acid Racemisation (AAR)) , as conducted by workers at 

Royal Holloway, University of London, and the University of York. 
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2.2 A Scientific Methodology 

This section outlines the scientific methodologies used during this project and 

identifies the rationale behind them. One of the key principles of the modern philosophy of 

science is the deductive creation of hypotheses to critically test in the course of scientific 

research. The initial structuring of the model depends in part on the operational constraints, 

such as what experiments w i l l be required, what instruments and techniques are available, 

and what field and laboratory techniques exist (Goudie et al., 1994). However, Quaternary 

geology often necessitates an inductive approach due to the incomplete stratigraphical 

record. 

Case studies are common in geological and geomorphological research. However, they 

can be limited and unrepresentative, becoming trivia and embroiled in minutiae. It is 

therefore important to establish representation, by using multiple case studies and previous 

work. By using secondary data, the case study is situated within the wider area of research, 

which establishes its representativeness (Richards, 1996). The research presented in this 

thesis uses detailed case studies, but the wider data regarding ice sheet dynamics is fu l ly 

considered in this thesis. 

This research therefore is situated within the paradigm of reconstructing climate 

change, with a wider justification of understanding the long term trends and fluctuations of 

ice sheet behaviour and driving mechanisms, so that it can be used as a predictive tool for 

future climate change (Boulton et al., 1991; Bowen et al., 2002; Boulton & Hagdorn, 

2006). This research uses five intensive case studies (Whitburn Bay, Hawthorn Hive, 

Shippersea Bay, Warren House Gi l l and boreholes from the North Sea Basin) to critically 

test well-defined hypotheses. Each of the sites is an intense observational study. These case 

studies are situated within a wider area of research into the BUS during the Quaternary. 
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2.3 Field Techniques 

2.3.1 Lithostratigraphy 

Lithostratigraphy 

Lithostratigraphy is the 'classification of bodies of rock based on the observable 

lithological properties of the strata and their relative stratigraphic positions' (Weerts & 

Westerhoff, 2007). Stratigraphy includes information about processes, geographical 

distributions, and the palaeo-environment of past glaciers and glaciation. It involves an 

attempt to determine the chronological sequence of geological events over a wide area. 

Lithofacies associations, landform-sediment assemblages, depositional processes, syn-

depositional tectonics, landsystems, and geochronology are combined in a hierarchical 

structure to form a 'stratigraphy', through which the history and patterns of past glaciations 

and their associated environments can be reconstructed and interpreted (Rose & Menzies, 

1996; Weerts & Westerhoff, 2007). 

Sedimentological approaches should be based upon the 'lithostratigraphic unit ' , which 

has distinctive lithological properties, should be capable of being mapped and is typically 

tabular (Salvador, 1994; McMil lan, 2005). The lithostratigraphic unit has a hierarchical 

system with the Group, Formation, Member and Bed sub-categories (Rawson et ai, 2002), 

and each new mappable lithostratigraphic unit must be formally proposed with a 

stratotype, and described emphasising lithological properties (Salvador, 1994; Weerts & 

Westerhoff, 2007). A lithostratigraphic scheme therefore: 

1. has a hierarchical structure with the formation as the central (top) unit; 

2. has a clear nomenclature; 

3. describes each facies properly; 

4. Contains mappable units only. 

Therefore, in this research, the overall facies architecture and different lithofacies 

associations are mapped, logged and described in detail. The lithofacies associations are 

ultimately interpreted within a sediment-landform association, primarily in order to assess 

the processes by which glacigenic sediments were deposited and deformed. Through 

detailed lithological and petrological analysis, correlations between lithofacies associations 

and to regional stratotypes, based on processes of deposition, lithological and petrological 

36 



BETHAN DAVIES CHAPTER 2: METHODOLOGY 

similarity, and chronostratigraphy, are possible. Ultimately, it is possible to make 

statements about provenance, age, and regional glacial lithostratigraphy. 

Vertical Profiles 

Lithostratigraphy must take a hierarchical approach. The first stage is individual 

sediment logging. Vertical profiles are a method of recording detailed sedimentological 

information from a section, and they can be used for the comparison and correlation of 

different localities. They highlight gradual, particularly vertical, trends, and provide a 

representative summary of exposures (Jones et ai, 1999). Detailed sketches of macro-scale 

features such as deformation structures can provide information regarding the genesis and 

depositional history of glacigenic sediments. The colour of a sediment is the most 

immediately visible property, and can indicate more fundamental differences in 

composition, such as mineralogy (Gale & Hoare, 1991). Identifying the colour of a 

sediment is essential i f the lithology is to be fu l ly characterised. Facies characteristics are 

noted using standard facies codes (Table 2.1). 

Therefore, in each on-shore field location, a GPS, photography and sketches were 

utilised to accurately map the overall facies architecture and to record spatial relationships 

between lithofacies. Specific exposures were sketched and logged according to standard 

procedures (Evans & Benn, 2004), noting the sedimentary structures, contacts, deformation 

structures, Munsell colour, texture, particle size, clast lithology and shape, grading, and 

sorting of each facies. A l l sections were levelled to metres O.D. using standard levelling 

techniques. 
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Table 2.1: Glossary of abbreviations used in section logs (Kriiger & Kjaer, 1999; Evans & Benn, 2004). 

Diamicton Fine Gravel (2-8 mm) 
Dm Diamicton, matrix-supported GRcl Massive with clay laminae 
Dmm Diamicton, massive, matrix-supported GRch Massive and infilling channels 
Dms Stratified matrix-supported diamicton GRh Horizontally bedded 
Dcm Clast-supported diamicton GRm Massive and homogenous 
Dmg Matrix-supported, graded GRmb Massive and pseudo-bedded 
Dml Matrix supported, laminated GRmc Massive with isolated outsize clasts 
— (p) Includes clast pavement GRmi Massive with isolated, imbricated 
— (g) Graded diamicton clasts 
— (b/s) Banded / sheared GRmp Massive with clast stringers 

GRo Openwork structure 
Silts and Clays (<0.063 mm) GRruc Repeated upward-coarsening cycles 
Fm Fines, massive GRruf repeated upward-fining cycles 
Fl Fines, laminated. GRt Trough cross-bedded gravel 
Flv Fine lamination with rhythmites or varves. GRcu Upward coarsening (inverse grading) 
Frg Graded or climbing-ripple cross-lamination GRfu Upward fining (normal) 
Fcpl Cycopels GRp Cross-bedded 
Fp Intraclast or lens GRfo Deltaic foresets 
—(d) with dropstones 
— (w) with dewatering Coarse Gravel (8-256 mm) 

Gms Matrix supported, massive gravel 
Sands (0.063 to 2 mm) Gm Clast supported, massive 
Sm Massive sand Gs i Matrix supported, imbricated 
St (A) Ripple cross laminated (Type A) Gmi Clast supported, massive, imbricated 
St (B) Ripple cross laminated (Type B) Gfo Deltaic foresets 
St (S) Ripple cross laminated (Type S) Gh Horizontally-stratified gravel 
Scr Climbing ripples Gt Trough cross-bedded gravel 
S s r Starved ripples Gp Gravel, planar-cross bedded 
Sr Sand, ripple-cross laminated Gfu Upward fining (normal grading) 
Sh Very fine to very coarse and horizontally / Gcu Upward coarsening (inverse grading) 

planar bedded or low angle cross Go Open framework gravels 
lamination Gd Deformed bedding 

Sd Deformed bedding Gig Palimpsest (marine) or bedload lag 
St Medium to very coarse trough cross-

bedded 
Sp Medium to very coarse planar cross- Boulders (>256 mm) 

bedded B Boulders 
SI horizontal or draped lamination Bh Horizontally-bedded boulders 
Sh Sheared sand Bms Matrix supported, massive 
Sfo Deltaic foresets Beg Clast supported, graded 
Sfl Flasar bedded B L Boulder lag or pavement 
Se Erosional scours with intraclasts and Bfo Deltaic foresets 

crudely cross-bedded 
Su Fine to coarse with broad shallow scours Bmg Matrix supported, graded 

and cross-stratification 
S c Steeply dipping planar cross bedding Structure 
Sue Upward coarsening Bo Boudinage 
Suf Upward fining Be Bedding 
Srg Graded cross-lamination Ba Banding 
S B Bouma sequence 
S c p s Cycoplasms 
— (d) with dropstones 
— (w) with dewatering 
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Lithofacies Associations 

Each facies is characterised by its individual properties in the vertical profile. On the 

basis of physical similarities, these sedimentary facies are correlated to form 'lithofacies' 

(Evans & Benn, 2004). Lithofacies are sediments with a distinctive combination of 

properties, classified on the basis of their colour, texture, the lithology of clastic particles, 

thickness and geometry, presence / absence of fossils, and other sedimentary structures 

(Eyles & Lazorek, 2007). Their spatial organisation is logged using an overall facies 

architecture sketch. It is important to separate detailed field description and labelling f rom 

genetic perspectives and terminology. Inadequate field descriptions thwart later 

sophisticated environmental re-interpretation (Eyles & Eyles, 1983), as the interpretation 

of a genetic facies is subject to revision as ideas and knowledge change and the science 

develops. Lithofacies therefore are identified only on their physical, biological and 

chemical characteristics, with no inferred genesis (Evans & Benn, 2004). This separation 

of description and interpretation ensures a more objective approach, less prone to bias, 

error and subjectivity. In this thesis, each chapter is analysed separately and the sediments 

are assigned to lithofacies associations particular to that specific site. Regional correlations 

are drawn together in Chapter 8. 

A hierarchical approach to sedimentology is a powerful tool for describing how 

sediments, landforms and landscapes f i t together, and in determining how the landscape 

reflects depositional processes and external controls on the environment (Benn & Evans, 

2004). However, sediments are laid down in associations; these assemblages reflect a range 

of processes active in any one given environment (Benn & Evans, 2004), which can be 

deposited at a range of scales. 'Lithofacies Associations' (LFAs) are distinct vertical 

successions of genetically related lithofacies (Eyles & Lazorek, 2007). Through 

recognising these packages, ancient glacial settings can be recognised and reconstructed. 

Landsystems 

Lithofacies associations can be analysed in conjunction with landforms to create 

sediment-landform associations (Evans & Benn, 2007). Sediment-landform suites are 

indicative and characteristic of specific styles of glaciation ('glacial landsystems'), such as 

surging glaciers, ice streams, plateau ice fields, sub-aquatic landsystems, and active-

temperate terrestrial ice margins (Evans, 2003b). Glacial landsystems are composed of 

'land units' (geomorphological features such as drumlin fields, moraine belts, etc.) and 

'land elements' (a tunnel valley, a moraine, an esker, and the associated sediments), which 
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together form a landsystem, a 'recurrent pattern of genetically linked land units' (Evans, 

2007b). Recent analyses of glacial landsystems stress their complexity and the fact that 

sediment-landform associations are dictated by the location and style of deposition (e.g., 

Alexanderson et al., 2002; Evans & Twigg, 2002; Jennings, 2006; Lukas, 2006; Ottesen et 

al., 2008) 

2.3.2 Clast Shape, Till Fabrics and Striae Orientation 

Clast Angularity-Roundness 

Clasts inherit their shapes from the surrounding environment; erosion, transportation 

and weathering give clasts distinctive geomorphological signatures (Benn, 2007a). 

Angularity-roundness is simple to measure in the field when undertaking till-fabric 

analysis. Descriptive criteria are used to assign clasts to a roundness category (Table 2.2). 

A semi-quantitative approach is used, considering the whole shape of the clast. The 

sharpest edge may not be representative of the whole roundness. Clasts are therefore 

assigned to categories based on descriptive criteria (Benn, 1994). First order clast 

morphology was not conducted due to time constraints. 

Table 2.2: Descriptive clast-roundness categories. From Benn (2007). 

Very Angular (VA) Edges and faces unworn, sharp, delicate protuberances. 
Angular (A) Faces and edges unworn. 
Subangular (SA) Faces unworn, edges worn. 
Subrounded (SR) Faces and edges worn but clearly distinguishable 
Rounded (R) Edges and faces worn and barely distinguishable 
Well Rounded (WR) No edges or faces distinguishable 

Clast Macro-Fabric Analysis 

The measurement of the arrangement of clasts within a diamicton can be a powerful 

tool in the analysis of Quaternary sediments (Benn, 2004), and it is traditionally used, in 

conjunction with striae data, as a standard quantitative tool in the analysis of past ice f low 

directions. More recently, t i l l fabric data has been used to infer process (Carr & Rose, 

2003). In this thesis, t i l l fabric data is used together with striae data to reconstruct ice f low 

direction, and where possible it has been used to help interpret depositional processes. The 

resulting data are three mutually orthogonal eigenvectors ( V | , V 2 and V 3 ) , with the 

principal eigenvector, V | , being parallel to the axis of maximum clustering in the data. V 3 

is normal to the preferred plane of the fabric. The degree of clustering about the 
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eigenvectors is given by the eigenvalues S|, S2, and S3, with their relative magnitudes 

reflecting the fabric shape (Hubbard & Glasser, 2005). A-axis fabric data has a long history 

of research (Lawson, 1979; Hicock et al., 1996; Benn, 2004). Coulomb plastic behaviour 

involves slippage between clasts and the surrounding, faster-flowing matrix. Therefore, 

more elongate clasts assume a minimum cross-sectional area, orientating the a-axis parallel 

to main stress direction. This makes strong, consistent t i l l macro-fabrics in tills useful in 

interpreting palaeo ice-flow directions (Jonsdottir et ai, 1999). 

Jaeren, south-west Norway, forms the onshore border of the Norwegian Channel ice 

stream. The Jaeren escarpment, separating Low Jaeren from High Jaeren, was formed by 

erosion by the ice stream, which occupied the Norwegian Channel on multiple occasions 

during Pleistocene glaciations (Jonsdottir et al., 1999). Early analysis of the t i l l macro-

fabrics indicated a strong westerly to south-westerly flow direction, but in Stavnheim, 

further south in Jaeren, t i l l fabrics measured a northwest to west component (Andersen et 

ai, 1987). Andersen et al. (1987) argued that the glacier in Low Jaeren moved north

westwards in an earlier phase, and then later moved in a westerly direction. Jonsdottir et al. 

(1999) analysed t i l l macro-fabrics and striations, aiming to delineate the pattern of regional 

glacial movements using macro-fabrics and clast lithology. They interpreted the glacigenic 

sediments as lodgement tills. The upper t i l l had a strong, unimodal clustering of clast axes 

around the mean axis, resulting in a high significance value. The clast fabric f rom the 

lower t i l l had a weak, equatorial, near random orientation of clast axes (Jonsdottir et al., 

1999). The direction of maximum clustering ( V | 157° to 161°) coincided with the direction 

of the Jaeren escarpment axis. Jonsdottir et al. (1999) interpreted the upper fabric as 

representing palaeo ice f low direction as towards the northwest. The lower fabric was, 

however, probably influenced by cobbles and boulders, leading to a local fabric probably 

unrelated to glacier f low. 

Recently, eigenvalues (S values) and vectors (V values) have been used to infer the 

genesis of glacial materials, indicating factors such as the rheology of the sediment. For 

example, debris-rich basal ice subjected to high cumulative strains tends to have strongly 

clustered clast macro-fabrics, whereas tills formed under low strain can have either 

strongly clustered or highly variable clast macro-fabrics (Benn, 2004). Other researchers 

have found strong fabrics at low strains (Iverson et al., 1995; Hooyer & Iverson, 2000). 

Hicock et al. (1996) advise caution in using t i l l fabrics to infer genesis of sediments, and 

suggest that they only be used as a starting point. Eigenvalues cannot be used alone, given 

the complexity o f the subglacial environment (Hicock et al., 1996). 
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Some researchers have argued that Jeffery-type rotation (Figure 2.1) is incompatible 

with the deforming bed hypothesis (Piotrowski et al., 2001). March-type rotation (Figure 

2.1) through plastic deformation has been identified as the dominant mode of clast 

orientation in deforming tills (Benn & Evans, 1996). Weak clast macro-fabrics have often 

been reported as typical of deforming bed tills (Hart, 1997), suggesting that particles are 

here free to rotate in a viscous medium (Evans et al., 2006). Inhomogeneous deformation 

may produce a range of clast macro-fabric strengths, and localised fabric patterns reflect 

the deformation history and local strain conditions of the sediment (Evans et al., 2006). 

A 

(B) 

Figure 2.1: Schematic diagram illustrating (A) Jeffery Rotation and (B) March Rotation. In Jeffery 
Rotation clasts are continually rotated as a result of vertical velocity gradients, whereas in March 
Rotation (B), clasts passively trace the deformation of the surrounding medium (from Benn, 2007b) 

Carr and Rose (2003) concluded that "particle orientations in subglacial diamictons 

reflect the strain response of the sediment to the applied total stress during subglacial 

deformation", and that particles of different size are rarely consistently orientated in 

relation to ice f low direction. Therefore it is important to limit the size range in the sample 

(Carr & Rose, 2003). 

To obtain the clast measurements, clasts in the approximate size range 8-32 mm were 

excavated and the long axis (a-axis) and dip angle of 50 clasts per exposure was recorded, 

using a compass-clinometer (Benn, 2007b). The data are presented in equal-area stereonets 

and rose diagrams, according to procedures in Evans and Benn (2004) and Benn (2007b). 
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Clasts were sampled from a 2 m 2 area. Only clasts with elongate a-axes were measured, 

with ratios of > 1.5:1 (Benn, 2004). A l l three eigenvalues are given. 

Striae Orientation 

Striae are used in conjunction with till-fabric analysis to reconstruct past ice-flow 

directions. Striae on individual in situ clasts and boulders were measured using a compass-

clinometer. Up to 50 striae sets were collected per exposure, and at least 10 per clast. I f a 

clast showed several sets of striae, then these were also noted. The data were collated and 

presented in rose diagrams. 

Striae orientation has been often been used successfully in conjunction with clast 

macro-fabric analysis to determine palaeo ice f low directions (Hicock & Fuller, 1995). In 

addition, striae on bedrock forms can be used to infer palaeo ice f low directions (Haavisto-

Hyvarinen, 1997; Ballantyne, 1999; Roberts et al., 2007). Striations are important as they 

provide an independent evidence for ice f low (Benn, 2004). 
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2.4 Thin-section analysis 

2.4.1 Introduction 

Micromorphology is the microscopic examination of the composition and structure of 

sediments. It was originally developed in soil science, with concepts of plasmic fabric and 

morphological features and structures dating f rom the early 1960s (Bullock et al., 1985). 

The undisturbed sediments are examined for a range of recognised microstructures, such as 

those first described by van der Meer (1993) and Menzies and Maltman (1992). They 

introduced key terms and concepts still used today, such as 'plasmic fabrics', and 

identified key structures indicative of subglacial deformation, such as rotational structures, 

necking structures, and crushed grains (van der Meer, 1997; Menzies, 2000; Menzies et al., 

2006). These structures can be used to account for the origins of a sediment, its transport 

pathways, and the processes of deposition and deformation (6 Cofaigh & Dowdeswell, 

2001; McCarroll & Rijsdijk, 2003). Micromorphology now provides detailed information 

to aid the interpretation of sediments that are often massive at macroscale, and can give 

valuable information regarding genesis, deformation history and strain rates (Carr, 2004a). 

Later developments attempted to quantify micromorphology and introduce guidelines 

into its application to glacial sediments (Carr, 2001; Carr, 2004a). Structural geology 

recently influenced the development of micromorphology, and analysis of structural 

features in subglacially and proglacially deformed materials can additionally identify 

different types of characteristic subglacial deformation (Phillips et al., 2007). Systematic 

structural analysis gives a deeper understanding of tectonostratigraphic sequences in soft 

sediments, and the glacier-induced stresses responsible for their development (Phillips et 

al., 2002). 

Now, the combined use of sedimentology and micromorphology is important in 

determining the processes of deposition, post-depositional deformation, and porewater 

fluctuations in glacigenic sediments. It can be used carefully to discriminate between 

macroscopically similar diamictons, such as debris flows, traction tills, and glaciomarine 

and glaciolacustrine sediments (Licht et al., 1999; Carr, 2001). Furthermore, thin-section 

microfabrics give valuable information regarding genesis and strain directions in the 

absence of other directional features, such as clast macro-fabrics (Carr, 2001). 

Micromorphology can be used to account for the origins of a sediment, its transport 
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pathways, and the processes of deposition and deformation. These can be combined to 

create an understanding of sediment-landform associations and landsystems. 

2.4.2 Sample Collection and Preparation 

Thin sections were sampled using Kubiena tins. Representative (and replicate samples 

where pragmatically possible) samples were collected f rom each lithofacies. These 

undisturbed samples were then prepared according to standard techniques (Murphy, 1986; 

van der Meer, 1993; Lee & Kemp, 1994) by Mr David Sales (Department of Earth 

Sciences, Durham University. See Appendix I). 

2.4.3 Sample analysis 

The unlithified, undisturbed samples were analysed at multiple magnifications under 

petrological microscopes {Leica DM EP and Meiji Techno EM2-13TR models). The optical 

properties and relative orientations of the particles can determine the genetic stress history 

of the sediments. Using both plane- and cross-polarised light highlights the textural and 

structural characteristics of the sample. Thin sections were investigated at low 

magnifications between x lO and xlOO, as higher magnifications observe individual grains, 

which may not be helpful for structural interpretation. 

The analysis of thin sections must employ a systematic, standardised description to be 

used meaningfully (Carr, 2001), such as that outlined in Table 2.3. Presentation of all data 

in a single table allows easy comparison between samples. A table of symbols used in the 

presentation of data is given in Figure 2.2. A glossary of terms used in analysis of thin 

sections is given in Table 2.4. Where possible, photomicrographs and scans show distinct 

features. Where this is not possible due to the magnification of the image, features that 

cannot be seen have been marked on to show their position and orientation. Arrows on 

rotational structures have no inferred direction. 
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Table 2.3: Approach for investigation of glacigenic sediments. Adapted from Carr, 2004. 

1. Characterisation of Thin Section 
Sample identification 
Sample location 
Macroscopic description of sample. 
2. Textural Analysis 3. Structural Analysis 
A. Skeleton A. Voids 
Size ranges Void ration, type, distribution 
Particle shape and form 
Distribution B. Macrofabric 
Composition Horizontal / vertical 

B. Plasma / Matrix C. Structures 
Texture Sedimentary structures 
Density Deformation structures 
Distribution Diagnostic features for specific environments 

Diagenesis and post depositional alteration 

4. Plasma Fabric 
Plasma fabric types, distribution, strength 

5. Interpretation 

Sediment filled Preferred orientation 
Water escape conduit of elongate grains and Water escape conduit 

micro fabric. Lineation 
Fault * • • . of grains 

Graded bedding A ' Microfossil F 

Turbate O Direction of faulting \ 
Voids: Vugli V Stringer 

Packing P Crushed Grain X 
Manganese staining M 

Figure 2.2: Key to symbols used in presentation of thin sections in this thesis. Arrows on turbates do 
not indicate direction of rotation. 

Table 2.4: Glossary of common terms used in micromorphology (after van der Meer, 1993; Perkins, 
1998; Carr, 2001; Carr, 2004a; Menzies et al, 2006; Hiemstra, 2007). Refer also to Figure 2.3. 

Anisotropic The anisotropic skeleton grains and plasmic matrix of the slide transmit 
plane polarised light, but under cross-polarised light they extinguish 
(i.e. transmit no light) four times per complete rotation, every 90°. The 
refractive index therefore varies with direction. 

Birefringence Optical property in which interference colours become visible by 
turning the stage of the microscope; cause by double refraction of light 
under crossed polarisers and consequent polarising of bundles of light. 
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Cross polarised light 
(XPL) 

Domain 

Edge-to-edge 
crushing 

When passing plane polarised light through a second filter at 90° to the 
first (the upper polariser), we see the light through crossed polars. 
Cross-polarised light is used to determine properties such as 
dispersion, birefringence, and extinction. 

Small zones in which clay particles are orientated parallel to each 
other, causing them to behave (optically) as a single crystal. Subglacial 
tills may exhibit multiple domains with banding and stratification. 

Clast fragments touching at the edges with visible breakage contacts. 
Breaking and grinding may have occurred in response to high stress 
levels resulting in significant grain-to-grain contacts along grain edge 
asperities. More common in areas with low pore water content. 

Galaxy / turbate / 
Rotational structure 

Grain stacks 

Grain alignments 

Interference colours 

Isotropic 

Circular alignments of grains around cores of consolidated sediment or 
larger grains; indicative of rotation. Closely associated with planar 
features. For example, van der Meer (1993) and Hart (2007). 

Edge-to-edge grains forming to support developing stresses. Develop 
perpendicular to the stress field. For example, Menzies (2000) and 
Menzies et al. (2006). 

Preferred long axis of skeleton grains. Numerous grains in a row with 
aligned long axes. E.g., Hiemstra & Rijsdijk (2003). 

The colour of anisotropic minerals under crossed polars varies, and the 
same mineral shows different colours depending on crystallographic 
orientation. These colours are on Newton's Scale, divided into several 
orders: 

• 1 s t Order: grey, white, yellow, red 
• 2 n d Order: violet, blue, green, yellow, orange, red 
• 3 r d Order: indigo, green, blue, yellow, red, violet 
• 4 t h Order and above: pale pinks and greens. 

Isotropic minerals remain black in all positions when viewed under 
cross-polarised light. They have random atomic structures, so that 
structure and refractive index are the same in all directions. 

Lineations 

Microfabrlc 

Necking structure 

Plane polarised light 
(PPL) 

Plasma (matrix) 

Plasmic fabric: 

Lines of skeleton grains with aligned long axes. May indicate shear 
zone. For example, Hart (2007). 

Skeleton grains commonly show preferred long axis. The vertical 
arrangement of skeleton grains. For example, Carr (2001). 

Squeezing of plasma between skeleton grains. Indicative of matrix 
flowage. 

In normal, unpolarised light, waves vibrate in all directions. Filtering the 
light beam in the microscope with the lower polariser makes all the light 
waves vibrate in one direction, parallel to a particular plane. 

Grains of colloidal size (< 2 urn); may consist of clay minerals, oxides 
and hydroxides of Fe, Al and Mn, soluble salts, etc. Often used to refer 
to matrix - all material smaller than the thickness of the thin section. 
Individual particles cannot be seen. 

Birefringence models of the plasma. Based on optical properties of the 
particles as well as the optical properties caused by the orientation of 
particles relative to each other. For example, see Khatawa & Tulaczyk 
(2001) and Carr (2001). 
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Skelsepic 

Masepic 

Omnisepic 

Unlstrial 

Lattisepic 
Polyphase 
microstructures 

Pressure shadows 

Short distance 
lineations 

Skeleton grains 

Till Pebbles: 

- Pebble Type I 

- Pebble Type II 

• Pebble Type III 

Vugh void 

Plasma particles orientated around a skeleton grain. May form in 
several ways, such as grain rotation under shear stress, or following 
massive deformation resulting in homogenisation of the bulk sediment. 

Plasma particles orientated in bands 

Plasma particles orientated randomly, revealing many different 
orientation directions. 

Anisotropic clay with clear birefringence bands in one direction. 
Indicates a very strong preferred but horizontally localised orientation 
of thin lines of clay-sized particles within the till facies, indicative of the 
prolonged application of high stress. 

Plasma separations occur in two very short, discontinuous sets, 
orientated at right angles to each other. 

Fluctuating porewater pressure and content resulting in overprinting of 
ductile and brittle features. 

Symmetric or asymmetric tails of material on the stoss and lee of large 
grains. Indicative of planar shearing (symmetric) or rotation 
(asymmetric). For example, Phillips (2006) 

Lineations no longer than 15mm in length and never touching adjacent 
larger clasts (for example, Menzies et al., (2006)). 

Single sand or coarse silt grains which are larger than the thickness of 
a thin section (20 to 30 urn). 

Soft sediment intraclasts; torn up and reworked fragments of 
unconsolidated sediment. 

Arrangement of brecciated sediment such that it appears to form a 
series of rounded intraclasts delineated by packing voids. 

Soft sediment intraclasts of material similar in nature to the surrounding 
sample, but with a clearly defined discrete internal plasmic fabric. 

Soft sediment intraclasts of material different in nature to the 
surrounding sample: evidence of reworking of pre-existing sediments. 

Irregularly shaped area with diffuse boundaries filled with resin. 
Caused by poor impregnation of thin section. Packing voids are caused 
during field sampling. 

Recent research has expanded greatly on van der Meer's (1993) classic interpretations, 

and the development of criteria to identify different depositional environments. Hiemstra 

and Rijsdijk (2003) used artificially induced strain in potter's clay to investigate typical 

features found in subglacial diamictons. They found a close relationship between unistrial 

plasmic fabrics and rotational structures (Figure 2.3), and both increased in number with 

increasing strain. Grain lineations commonly occur in association with rotational structures 

such as turbates (Hiemstra & Rijsdijk, 2003). 

Detailed micromorphological study has highlighted the importance of grain size 

variation in the production of rotational structures (Hart et al., 2004). Individual larger 
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clasts may generate perturbations, allowing characteristic rotational structures to develop. 

Increases in grain size allow for more perturbations. As a result, a poorly sorted, coarse

grained till wil l be more micromorphologically inhomogeneous than a finer-grained ti l l . 

Stringer initiation and deformable clasts with tails also indicate syntectonic rotation in a 

ductile, shearing medium (Roberts & Hart, 2005). The combination of lateral shear (Hart, 

2007) and rotational movement results in a variable response to the applied stress field 

according to grain size. 

Q m m a 
mm 0 .0 mm ':<>• X 

.A ft ft 

B. O ' J 0 Q 
O :' n mn ^4 null 

0 

Figure 2.3: Conceptual diagram illustrating the relationship between plasmic fabric and aligned grains 
in response to simple shear (A) and the relationship between unidirectional plasmic fabrics, turbates, 
and skelsepic plasmic fabrics (B). Adapted from Hiemstra and Rijsdijk (2003). 

Hart et at. (2004) argued that the rotational process mobilises particles by 

incorporating grains from the subjacent undeformed bed, as evidenced by van der Meer's 

'Til l Pebbles' (van der Meer, 1993). Hart et al. (2004) therefore proposed that subglacial 

deformation tills contain associations of rotational features, such as skelsepic plasmic 

fabrics, orientations of smaller skeleton grains around larger ones, and rotated, augen-like 

features with tails, with intermediate and linear features. Linear features include inclined 

clasts, lines of grains (lineations) and fragmentation of clasts. Intermediate features include 

mini-shear zones with internal rotation, and clay intraclasts with internal plasmic fabric 
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(Hart et ai, 2004). They argued that deformation tills contain a juxtaposition of rotational 

and linear features. This is a result of dynamism within the subglacial deforming til l layer 

at the microscale, and is related to temporal and spatial variations in porewater content and 

pressure. The overprinting of ductile and brittle deformation within the same area of till is 

evidence of sudden phase changes related to fluctuating porewater pressure (Menzies et ai, 

2006). 

These structures are illustrated in the conceptual diagrams (Figure 2.3 and Figure 2.4). 

Figure 2.4 was developed from work by Van der Meer (1993), Menzies (2000), Hiemstra 

and Rijsdijk (2003), and Menzies et al. (2006). The structures are categorised by their 

genesis. These images only reflect structures observed in glacigenic sediments at Whitburn 

Bay, Warren House Gill, and in various boreholes in the North Sea. 
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Microstructures in glacial sediments 
Subglacial Traction Tills 

Ductile Ductile Brittle 

Soft sediment pebbles, 
Different and same matrix. 
Augen-shaped intraclasts. 

Necking structures with 
skelsepic plasmic fabric 

Faulted domains. 
Discrete shear lines. 

Banding of matrix 
material 

Grain lineations with 
masepic plasmic fabric 

Edge-to-edge grain contacts 
Crushed grains. 

Rotational structures with 
skelsepic / masepic plasmic fabric 

Folds Shear zones. 

Pressure shadow Boudinage, Type 
1 laminations and 
stringer initiation 

Grain stacking 

Polyphase 

Multiple diamicton 
domains 

Porewater induced 

Detached rafts of 
sand laminations 

Water escape and 
liquefaction of sands 

Glaciomarine 

=0 „o OOO cP5oQJ> A ° f i o 

Graded laminations 

14 

Iceberg dump 
structures 

Drops tones 

Marine fossils: 
Foraminifera and 
shell fragments 

Pedogenesis 

Leached, branching pores 
and organic fragments. 
Silt and clay coatings. 

Plasmic Fabrics 

Unis trial 
plasmic fabric 

Lattisepic plasmic 
fabric 

Omnisepic plasmic 
fabric 

Kinking plasmic fabric 

Figure 2.4: Microstructures and plasmic fabrics observed from glacigenic sediments in this study. 
After van der Meer (1993), Menzies (2000), Menzies et al. (2006), and Hiemstra and Rijsdijk (2003). 
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2.5 The Interpretation of Glacigenic Sediments 

Thin-section analysis can therefore be used in conjunction with macroscale 

sedimentological analysis to identify subglacial processes. Traditionally, tills have been 

subdivided based on the typical processes assumed to have been dominant in their 

formation. These were thought principally to be sliding (Brown et al., 1987), lodgement 

(Dreimanis, 1989) and deformation (Alley et al., 1986). Lodgement till has a long history 

of research, being originally defined by Chamberlin (1895) as, 

Sediment deposited by plastering of glacial debris from a sliding glacier sole due to 

the combined effects of pressure melting and frictional drag. 

This process resulted in massive or fissile tills, with slickensides resulting from 

shearing (Boulton, 1970). Clasts are lodged into the substrate and have typical bullet-

shaped ends and clear stoss-and-lee ends. Alternatively, deformation till (Elson, 1961; 

Benn & Evans, 1998) refers to a, 

Rock or sediment that has largely been homogenised by shearing in the subglacial 

layer. 

Subglacial deformation of soft sediments is considered to account for much of the 

forward motion by glaciers (Alley et al., 1986; Humphrey et al., 1993). Massive tills are 

thought to record evidence of high cumulative strains (Hart et al., 1990). Others have 

argued that massive tills are simply the product of melt-out (Clayton et al., 1989). Larsen 

et al. (2004) argued that a melt-out / deformation continuum was responsible for thick 

sequences of massive tills, with vertical accretion of subglacial sediments being melted out 

at the ice-bed interface, and then deformed. However, if deformation of soft beds is 

widespread, then deformation tills should be more prevalent (cf. Piotrowski et al., 2001), 

and macroscopically massive 'deformation' tills often overly undeformed sediments 

(Boulton & Hindmarsh, 1987). 

Glacier motion by sliding and lodgement over soft beds (cf. Clark & Hansel, 1989) 

was thought to occur by the decoupling of the glacier from its bed due to increased basal 

water pressures, which would prevent the transmission of stress to the substrate (Brown et 
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al., 1987). This theory evolved into an proposal of 'slip-stick' sliding at the ice-bed 

interface, with areas of high water pressure inducing decoupling (Fischer & Clarke, 1997). 

Clay-rich tills are less permeable (cf. sandy tills), encouraging the development of high 

water pressures; stick-slip behaviour and decoupling may therefore be at least partially 

lithologically controlled (Boulton, 1996; Evans et al., 2006). Piotrowski and Kraus (1997) 

were among the first to propose a mosaic of sliding bed conditions and deforming 

conditions, where the ice is coupled to the bed. This explains the heterogeneity in tills in 

Germany. 

A continuum with lodgement and deformation end-members will lead to progressive 

changes in bed properties at a particular location (Lian & Hicock, 2000; Boulton et al., 

2001; Nelson et al., 2005). This viewpoint highlights the spatial and temporal variability of 

glacier beds, with ice-bed coupling variability brought about by changes in pore-water 

pressure. Piotrowski et al. (2004) argued that the spatial variability in sliding intensity 

resulted in a mosaic with sliding conditions and deforming spots. During sliding, 

ploughing of clasts may take place. 'Glaciotectonite' (as originally defined by Banham, 

1977; and Pedersen, 1988) refers to sheared rocks and sediments, which still retains some 

of structural characteristics of its parent material (Benn & Evans, 1998). They can display 

both brittle and ductile deformation, or a combination of the two processes. 

Mass flow diamictons (or flow tills) originate from water and sediment released by 

ablation from debris-rich basal ice. These deposits are typically macroscopically massive. 

They may have microscopic near-horizontal laminations. Rotational structures, kinking 

plasmic fabrics, and tile structures form as primary depositional features on a 

micromorphological scale (Lachniet et al., 2001). Debris flows share many characteristics 

in common with subglacial sediments, such as pressure shadows, folds, laminations, 

shears, faults, water-escape structures, and rotational structures (Phillips, 2006). Mass flow 

diamictons, however, can be distinguished by the presence of 'tile structures' in close 

association with rotational structures (Menzies & Zaniewski, 2003). This long and 

extensive history of thin-section analysis of glacigenic sediments has given rise to a set of 

well-defined criteria, summarised in Table 2.5. 

Recently, several researchers have argued that processes at the ice-bed interface are a 

result of a continuum of processes, including melt-out, lodgement, deformation, and 

sliding (van der Meer et al., 2003; Nelson et al., 2005; Evans et al., 2006; Menzies et al., 

2006). It is therefore difficult to pin an exact genetic name onto a specific outcrop of 

diamicton. Evans et al. (2006) argued that the subglacial processes of deformation, flow, 
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sliding, lodgement and ploughing all exist contemporaneously at the base of temperate ice. 

These processes result in the mobilisation, transportation and deposition of sediment. This 

results in stratified or folded to texturally homogenous diamictons. Evans et al. (2006) 

argued that, while specific processes can and should be recognised in the sedimentary 

record, genetic 'finger-printing' of subglacial tills should be less process-specific. 

Subglacial tills are polygenetic, and till classification must recognise the range of processes 

involved by the subglacial till 'production continuum' (Evans et al., 2006). Evans et al. 

(2006) proposed the use of the terms, 'glaciotectonite', as defined above, and 'traction t i l l ' , 

which includes sediments deposited by sliding or deforming at the glacier bed, sediment 

released by pressure melting, and sediment homogenised by shearing. While 'traction t i l l ' 

is a generic term for all these processes, they can still be individually recognised in the 

geological record. Evans et al. (2006) also formally recognise 'melt-out t i l l ' , as a sediment 

released by melting or sublimation at stagnant or slowly-moving, debris-rich ice, without 

subsequent transport or deformation. 

Glaciotectonic deformation of subglacial sediments can result in tectonic laminations, 

which are distinct from glaciomarine or subaqueous laminations. Roberts and Hart (2005) 

identified two types of lamination. Type 1 laminations / stringers typically emanate from 

soft sediment clasts (e.g. chalk), are discontinuous, subhorizontal, and ungraded. In thin 

section, Type 1 laminations have sharp, undulatory contacts with silty or sandy stringers. 

Isoclinal folds are common. Type 2 laminations are laterally continuous, subhorizontal, 

and poorly sorted with dropstone-like structures and often exhibit reworked soft sediment 

clasts. Contact boundaries are sharp and unconformable, and dropstone structures are 

evident. Microfabric birefringence is low, but there are some areas of high birefringence 

sub-parallel to silty lamination contacts (Roberts & Hart, 2005). Type 1 laminations are the 

result of subglacial deformation by ductile, inter-granular, pervasive shear. Hart and 

Roberts (1994) argued that this type of lamination occurs as a result of high extensional 

shear, leading to boudinage. Smaller, less competent perturbations, such as chalk clasts, 

can become stretched out into a lamination under this high shear strain. The laminations 

can deform and rotate within the deforming layer, producing tails to appear as sedimentary 

augens (Hart & Roberts, 1994). 

Type 2 laminations have a subaqueous signal, despite often containing a number of 

syntectonic ductile deformation structures (Roberts & Hart, 2005). At West Runton, 

Norfolk, the subhorizontal lateral continuity and dropstone structures with down-warped 

lower contacts and draped upper contacts are indicative of primary subaqueous origin 
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followed by secondary subglacial deformation. The planar, bedded nature of the strata, 

with sharp contact boundaries, are characteristic of sediments deposited by underflows, 

overflows, suspension fallout, ice-rafted debris processes and subaqueous debris flows, 

with each lamination representing a clear separate depositional event (Roberts & Hart, 

2005). The clear characteristics of these laminations enable easy discrimination of 

glaciomarine and glaciolacustrine diamictons. 

Several additional criteria can distinguish massive and laminated glaciomarine 

diamictons from subglacial diamictons (Table 2.5). Glaciomarine diamictons usually have 

a coarse, winnowed structure with dropstones; common, in situ marine microfossils; a lack 

of deformation structures; laminations, banding, or graded bedding structures; and a lack of 

plasmic fabric development (Carr, 2001; Hiemstra, 2001; Roberts & Hart, 2005). Distal 

glaciomarine sediments are characterised by their bedding and lamination; a medium to 

fine matrix; uniform grain shapes; few deformation structures; dropstone features and no 

plasmic fabric development; and the presence of bioturbation (Carr, 2001). 

Glaciolacustrine sediments share many characteristics of glaciomarine diamictons; 

however, they lack in situ marine microfossils and are mostly geographically more limited 

in extent (6 Cofaigh & Dowdeswell, 2001). Menzies et al. (2006) argued that plasmic 

fabrics indicate the presence of orientated clay particles by strong birefringence. The type 

of plasmic fabric is indicative of a suite of orientations induced by ductile deformation. 

Lodgement tills, formed in a high-strain environment with considerable shear and 

deformation, undergo complete homogenisation and demonstrate unistrial plasmic fabrics 

(Khatawa & Tulaczyk, 2001). 

Subglacial traction tills can therefore have ductile, brittle, polyphase or intermediate 

structures (Figure 2.4). Ductile deformation structures include soft sediment pebbles (Type 

II and III), banding and flow of matrix material, rotational structures with associated 

skelsepic / masepic plasmic fabrics, and strain caps and pressure shadows. Planar features 

such as grain lineations are commonly associated with rotational structures, and occur in 

plastically deforming sediments (Hiemstra & Rijsdijk, 2003). Brittle deformation 

structures include edge-to-edge grain contacts and grain crushing, grain stacking, and 

brittle faulting and discrete shear zones. Grain stacks form to support stresses developing 

in a sediment, and form perpendicular to the stress field (Hiemstra & Rijsdijk, 2003). 

Glaciomarine deposits are characterised by graded laminations, iceberg-dump and 

dropstone structures, and in situ marine microfossils. Porewater-induced soft-sediment 
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deformation structures include liquefaction and homogenisation of sands, rafting, and 

water-escape structures (Figure 2.4). 

Table 2.5: Macroscopic and microscopic criteria for interpretation of some typical glacigenic 
sediments. Refer to Figure 2.4. 

Glacially overridden soft sediments Mass flow 
diamictons Debris Flow 

• Water saturated 
• High porewater pressure and content 
• Associations of: 

Clay-lined normal faults, 
Sand -filled hydrofractures, 
Soft-sediment deformation, 
Liquefaction of sands, and 
Brecciation associated with 
hydrofractures 

(Phillips et al., 2002; Menzies & Zaniewski, 
2003; Hiemstra et al., 2006; Phillips et al., 2007) 

• Kinking plasmic 
fabric. 

• Possibly 
laminations. 

• Turbates. 
• Tile structures. 

(Menzies & 
Zaniewski, 2003) 

• Laminations. 
• Poorly developed 

plasmic fabric. 
• Grain clusters. 
• Turbates. 
• Pressure shadows. 
• Folds and Faults. 
• Water-escape. 

(Lachniet et al., 2001; 
Phillips, 2006) 

Tectonic Laminations (Type 1) Lodgement Glaciolacustrine 
• Non-graded laminations, not onlapping. 
• Point source for laminations. 
• Sinking clasts with laminations 'flowing' 

around them. 
• Pressure shadows, boudins and preserved 

folds, tectonic folds. 
• Discontinuous beds 
• Decollement surface at base. 

(Hart & Roberts, 1994; Roberts & Hart, 2005) 

• Homogenised 
due to high strain. 

• Unistrial plasmic 
fabrics. 

• Planar features. 
• Strong clast 

macro-fabrics 

(Menzies et al., 
2006) 

• Laminated 
• Normally graded. 
• Conformable 

contacts. 
• Rhythmites / 

varved. 
• Weak plasmic 

fabrics. 

(6 Cofaigh & 
Dowdeswell, 2001) 

Traction Till Glaciomarine Diamictons 
• Variable clast macro-fabrics. 
• Associations of planar and rotational 

movement. 
• Strong masepic / skelsepic plasmic fabrics. 
• High birefringence. 
• Brittle deformation and ductile deformation 

together. 
• May have Type 1 (tectonic) Laminations 
• Associations of: 

Grain lineations, 
Grain stacking, 
Edge-to-edge clasts, 
Multiple direction lineations, 
Matrix flowage (necking) 
Rotations / turbates. 
Rounded soft sediment pebbles. 
Pressure shadows. 
Multiple diamicton domains. 

(Can, 2001; Hiemstra & Rijsdijk, 2003; Hart et 
al., 2004; 6 Cofaigh et al., 2005; Roberts & Hart, 
2005; Evans et al., 2006; Menzies et al., 2006; 
Hiemstra, 2007). 

• Coarse, winnowed texture. 
• Horizontal microfabric 
• Laminations / graded bedding / 

stratification. 
• Type 2 (sedimentary) laminations. 
• Conformable contacts. 
• Onlapping beds. 
• Laterally continuous. 
• Dropstones, IRD, iceberg dump structures. 
• Weak plasmic fabrics. 
• In situ Tephra layers. 
• In situ Arctic / sub- Arctic / turbid water 

foraminifera. 
• Sedimentary base to structure. 
• Gravitational flow folds. 
• Post depositional minor micro-faulting. 

(Hart & Roberts, 1994; Licht et al., 1999; Can, 
2001; Hiemstra, 2001; 6 Cofaigh & 
Dowdeswell, 2001; Roberts & Hart, 2005). 
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2.6 Lithological and Geochemical Techniques 

2.6.1 Introduction 

Quantified lithological and petrological analysis of glacigenic sediments provides a 

robust tool in the interpretation and delineation of ice-flow pathways. However, no one 

technique on its own can provide sufficiently detailed and robust provenance data. In 

addition, large bulk samples are required for clast-lithological analysis, which are not 

always possible to obtain; for example, only very small samples are available from 

offshore boreholes. Therefore, it is important to apply a number of quantified lithological 

techniques in order to accurately constrain ice accumulation areas, identify ice flow 

pathways, and provide robust lithological correlations (Passchier, 2007). This thesis uses a 

variety of techniques to achieve these broad goals. Firstly, qualitative sedimentary 

description provides an initial assessment of the lithological properties of a sediment. 

Particle-size analysis is the first necessary quantitative step, as the grain size and degree of 

sorting is the most fundamental property of any sediment (Bridgland, 1986; Gale & Hoare, 

1991; Hoey, 2004). In order to constrain lithological correlations, three principal 

techniques are used: whole-sample geochemistry, heavy-mineral analysis, and clast-

lithological analysis. The results are subjected to vigorous multivariate statistical analysis, 

which has previously been shown to work well (e.g., Ryan et al., 2007). 

The use of several independent techniques adds robustness to lithological cross-

correlations (Passchier, 2007). Each technique is subject to its own, different, limitations, 

as outlined below. Heavy-mineral analysis and clast-lithological analysis are the most 

useful tools in provenance interpretation, as erratics may be traced back directly to outcrop. 

Although erratic train identification has been used before (e.g., Harmer, 1928; Sutherland, 

1991), this is the first study to quantitatively apply all these techniques to north-eastern 

England. When used in conjunction with palynomorph analysis (see below, Chapter 2.9.2), 

robust provenance interpretations can be made. 

2.6.2 Sampling Procedure 

Where possible, samples were collected from open field sections, allowing the full 

variability of the stratigraphy to be sampled. The sampling strategy aimed to collect several 

bulk samples from each facies at each site. Where possible, samples were collected from a 
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vertical profile, demonstrating vertical lithological variations. Surface exposures were 

carefully cleaned and logged prior to sampling. Material was collected well away from the 

land surface and anywhere exhibiting signs of pedogenesis. Careful notes were taken of the 

lithofacies sampled, and sample location including depth / height. Where pragmatically 

possible, a series of vertically spaced samples was collected, to ensure each facies is 

sampled in a representative fashion (Walden, 2004). Due to the spatial variability of 

glacigenic diamictons, multiple samples were taken from several vertical profiles to ensure 

that inter-facies variation is accounted for and that representative samples are taken. 

Multiple sample collection is important to show replicability and robustness of data, and to 

determine errors (Hoey, 2004). In addition, multiple samples from each lithofacies are 

needed for statistical analysis. 

Multiple and replicate bulk samples for detailed sedimentary description, heavy-

mineral analysis, particle-size analysis, geochemistry and microfossil analysis were 

therefore collected from each lithofacies at each location. For well-sorted sands and clays, 

500 g samples were collected. For diamictons, bulk samples of at least 10 kg were needed. 

These are stored in tightly sealed strong, air-tight polythene bags until laboratory analysis. 

Samples were clearly labelled to ensure easy identification. Samples with biogenic matter 

or high water content were kept in cold storage to minimise biological activity. 

For diamictons, in the laboratory, most of the sample was set aside for particle-size 

analysis. 1 kg was retained and the air-dried sample was then gently manually 

disaggregated, then sieved through a 2 mm sieve. Sub-sampling for various lithological 

analyses of the sub-2 mm fraction was achieved through the use of a riffle box. 

2.6.3 Sediment Description 

Various laboratory methods can aid the description and characterisation of sediments 

in conjunction with field descriptions. Visually identifying and recording the fundamental 

properties of a sediment is highly important to give context to other analyses. The first 

stage in the laboratory analysis is the description of the sediments. Before drying, the 

sediments are laid out on a tray, and are inspected for reaction to 10 % Hydrochloric acid 

(HC1); colour according to a Munsell colour chart; fossils (shells, wood fragments); 

texture; sorting; and clast shape, number, and lithology (Gale & Hoare, 1991). The 

sediments are then thoroughly air-dried. 
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2.6.4 Particle-Size Analysis (PSA) 

The particle size distribution is amongst the most fundamental physical properties of 

any geological materials (Bridgland, 1986; Drewey, 1986), and is essential in 

characterising the lithology of unconsolidated rocks (Gale & Hoare, 1991). PSA is a 

sensitive indicator of the physical and environmental conditions, under which the sediment 

was deposited (Benn & Gemmell, 2002). The size and sorting of sedimentary particles 

(and statistical distribution, for example, skew) is therefore indicative of the processes of 

erosion, transportation and deposition of sediments (Hoey, 2004). Glacial tills often have 

very similar particle size distributions over very wide geographical areas (Gale & Hoare, 

1991), which can be used to indicate correlations or differences between different 

stratigraphical units. This thesis uses PSA primarily as a descriptive tool, and to aid the 

correlation and differentiation of lithofacies. The method used for determining particle size 

is given in Appendix I . 

The principal limitation of PSA is that, for diamictons with occasional large clasts, 

extremely large samples are required to obtain an accurate approximation of the particle 

size distribution. Ideally, the largest grain (up to 32 mm diameter) should represent no 

more than 0.1% of the entire sample weight (Gale & Hoare, 1992). For larger grains (up to 

128 mm diameter), 1% of sample weight is allowed (Church et al., 1987). Required sample 

size increases dramatically in very poorly-sorted sediments (Hoey, 2004). This is 

unrealistic to achieve due to the enormous effort needed to sample and sieve tonnes of 

material. Pragmatically, samples of 10 to 20 kg provide a suitable trade-off between 

statistical reliability and efficiency. In addition, because deposits with large particles are 

usually heterogeneous, multiple repeat samples are needed (Hoey, 2004). 

The particle-size distribution of tills can allow interpretations of processes acting at a 

multitude of scales (Benn & Gemmell, 2002). For example, Sharp et al. (1994) used 

particle-size analysis and Gaussian component analysis to resolve the PSA into a series of 

Gaussian curves, representing debris entrainment, communition and depositional processes 

(Sharp et al., 1994). Haldorsen (1981) used different particle size modes in subglacial tills 

in Norway to differentiate between a residual-clast mode, particles produced by crushing, 

and a mode consisting of fine abrasion products (Haldorsen, 1981). Hooke and Iverson 

(1995) analysed the distribution as a whole, aiming to identify key processes acting at all 

scales within the sediment (Hooke & Iverson, 1995). 
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2.6.5 ICP-Mass Spectrometry 

ICP-Mass Spectrometry (Total Metals Extraction) identifies the geochemistry of a 

sediment. It can provide a provenance signature and can be used to correlate between and 

within lithofacies. In this study, the multivariate statistical analysis of the whole-rock 

geochemistry provides an additional tool in the cross-correlation of sediments (cf. Walden, 

2004), and it is supported by heavy-mineral analysis. 

The sample must first undergo Atomic Absorption before it can be analysed by the 

ICP-MS machine (see Appendix I). Amanda Hayton and Martin West (Durham University 

Geography Department) carried out this work. In this project, only the abundant metals 

were analysed. The rare elements occur in such low percentages that the data can be 

unreliable, and small fluctuations are artificially exaggerated in statistical analysis. 

Whilst till geochemistry has been little used in the UK, in America and Canada 

geochemical anomalies are successfully and widely used in conjunction with heavy-

mineral analysis to define ice flow pathways. In particular, geochemical analysis is used in 

prospecting gold and diamonds; geochemical analysis helps to pinpoint areas immediately 

down-flow of diamondiferous dykes (McClenaghan, 1992; Klassen, 1999; Thomas & 

Gleeson, 2000). Identifying clastic dispersal trains, including palimpsest trains, can clearly 

identify and locate bedrock sources (Parent et al., 1996). Parent et al. (1996) note that 

clastic dispersal trains are large and are therefore more easily located than small 

mineralised outcrops. The Canadian Geological Survey have therefore compiled large 

maps detailing clastic erratic trains, resulting in a detailed understanding of the last ice 

sheet. In Britain, this approach is not possible due to the lack of till geochemical data, 

making it difficult to identify anomalies. In this study, therefore, matrix geochemistry is 

used as a correlative tool alone. 

60 



BETHAN DAVIES CHAPTER 2: METHODOLOGY 

2.6.6 Heavy-Mineral Analysis 

Each heavy mineral is a unique messenger of coded data, carrying the details 
of its ancestry and the vicissitudes of its sedimentary history. 

Mange and Wright, 2007 
Heavy Minerals in Use 

Introduction 

A version of this chapter is submitted to the QRA Technical Guide: Clast Lithological 

Analysis. Heavy-mineral analysis (HMA) is the microscopic identification of mineral 

grains with densities greater than 2.85 g cm3, typically 1-2 % of sand samples. 

Applications for the technique in Quaternary Science include sediment description, 

provenance testing (for example, Mange & Otvos, 2005), reconstructing sediment transport 

paths, the correlation of lithostratigraphic units, mapping sediment dispersal patterns and 

delineating sediment-dispersal provenances (Lee, 2003). Many of the 50 translucent heavy 

minerals described by Mange and Maurer (1992) have restricted paragenesis, providing 

crucial and important information which cannot be gained by other means (Morton & 

Hallsworth, 2007). HMA is very useful when sediments are clast poor, such as in matrix-

supported diamictons and well-sorted sands (Gale & Hoare, 1991). HMA should be used 

as part of a multi-proxy study, utilising other techniques such as clast-lithological analysis, 

X-ray diffraction of clay minerals, calcium carbonate determination, matrix geochemistry, 

and biostratigraphical techniques. 

HMA has a long history of use as a correlative tool in eastern England. It was used by 

Boswell (1916) and Solomon (1932) to qualitatively correlate the glacial deposits in north 

Norfolk with those in Yorkshire, Lincolnshire and Cambridgeshire (Boswell, 1916). HMA 

also demonstrated that the Hunstanton Till of northwest Norfolk was the lateral equivalent 

of the Devensian Skipsea Member of east Yorkshire (Catt & Penny, 1966; Madgett & Catt, 

1978; Lee, 2003). The stratigraphical correlation of the chalky tills of East Anglia was 

proved through HMA by Perrin et al. (1979). More recently, heavy-mineral analysis 

correlated and differentiated the fluvial and glacial sediments in the Norfolk-Suffolk 

borders (Lewis, 1999). 

Factors controlling Heavy-Mineral Assemblages 

61 



BETHAN DAVIES CHAPTER 2: METHODOLOGY 

Heavy minerals form a small but varied part of the sand fraction, and may be more 

resistant to weathering than lighter minerals. There are rarely more than 20 heavy mineral 

species identified in any one sample. There are four principal factors controlling heavy-

mineral assemblages in glacial sediments: composition of the source rock, mechanical 

resistance of the minerals, dissolution caused by diagenesis and chemical weathering 

during glacial-interglacial sedimentation, and the density and morphology of mineral 

grains, which affects the deposition of minerals in water-saturated or water-lain sediments 

(Passchier, 2007). During glacial transport, rock fragments and minerals from the ice/bed 

interface are comminuted to their terminal grades. The effect of crushing and abrasion 

decreases with particle size (Passchier, 2007). The terminal grade represents a particle-size 

range for each mineral in the till matrix, depending on the mineral size in the source rock 

and mechanical stability. Garnets, a resistant mineral, reach their terminal size after 80-180 

km of glacial transport, whereas mechanically unstable minerals such as dolomite are 

crushed to their terminal size after 0-3 km (Passchier, 2007). 

Detrital heavy minerals are additionally subjected to a wide range of processes during 

erosion, transportation, deposition and diagenesis. These processes have the potential to 

modify an assemblage radically, leading to the obscuration of provenance signatures. 

Examples include hydraulogical sorting, mechanical weathering, pedochemical 

weathering, geochemical weathering, authigenesis and anthropogenic addition (Bateman & 

Catt, 2007). Resistant minerals such as tourmaline may be reworked from sedimentary 

rocks. An awareness of these processes and attention to their consequences can 

substantially improve the interpretations from the dataset. The complex history of a heavy-

mineral assemblage can be summarised as below (Table 2.6). 
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Table 2.6: The potential history of a heavy-mineral assemblage: an idealised sedimentary cycle 
(Bateman and Catt, 2007). 

A. Pre-erosional phase 
Pedochemical weathering, at source 

B. In transit phase 
Hydraulic sorting 
Mechanical weathering 

C. Post-depositlonal, pre-burial phase 
Pedochemical weathering, at sink 
Authigenic growth 

D. Post-burial phase 
Geochemical weathering 
Authigenic growth 

E. Exhumation phase 
Pedochemical weathering, at (re)exposure 
Authigenic growth 
Anthropogenic addition 

Separation of Heavy Minerals 

HMA is particularly useful when undertaken on a narrow size selection, and so was 

undertaken on the 63-125 urn and 125-250 urn size fractions. Heavy minerals are most 

easily obtained by density separation using the full-freezing technique (see Appendix I), 

which is developed from earlier work by Carver (1971) and Gale and Hoare (1991). The 

recommended heavy liquid is sodium polytungstate (3Na2WO4.9WO3.H2O), which is non

toxic and, although expensive, is recyclable. 

Identification of heavy minerals 

Line counting should be employed, where the microscope slide is moved by means of 

the mechanical stage along linear traverses. All non-opaque grains intersected by the 

crosshairs are identified and counted, and all opaque grains intersected are counted. The 

results are number frequencies. This method is grain-size sensitive, which emphasises the 

importance of counting within a narrow size band (Mange & Maurer, 1992). Under the 

petrological microscope, various optical properties of the heavy minerals can aid 

identification. Opaque minerals are defined here following the pedological approach 

(rather than mineralogical) in that they are black in plane polarised light (PPL) and black 

or very dark brown in crossed polarised light (XPL). This was in order to enable 

comparison with other regional data sets, such as Madgett and Catt (1978). Non-opaque 

minerals transmit plane polarised light. 200 to 300 non-opaques were counted under the 

microscope for each sample as this is a statistically significant number and gives a 
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representative sample (Hubert, 1971; Bridgland, 1986; Walden, 2004). The proportions of 

opaque to non-opaque minerals should be calculated, and the mineral data is presented as 

percentage non-opaque. 

Under PPL, the shape, pleochrosim, cleavage, colour, and relief of the mineral are the 

most obvious properties (Table 2.7 and Table 2.4). The mineral is then observed under 

XPL. The extinction of the mineral upon rotation of the stage, the birefringence, and the 

interference colours of the mineral (Table 2.7) provide further clues as to its identification 

(Mange & Maurer, 1992; Walden, 2004). The flow charts below (Figure 2.5) can aid the 

identification of heavy minerals, but they must be used in conjunction with colour 

photographs and detailed descriptions of mineral species, such as in Mange and Maurer 

(1992), or with a reference collection. Reference to a Michel Levy chart aids identification 

of interference colours (Gribble & Hall, 1992; MacKenzie & Adams, 2001). 

Table 2.7: Glossary of terms in Heavy-mineral analysis (Gribble and Hall, 1992; Mange and Maurer, 
1992). 

Angle of extinction 

Anisotropic 

Birefringence and 
Interference Colours 

Cleavage 

Anisotropic minerals go into extinction four times during a complete 
rotation of the stage. 
All uniaxial minerals possess straight or parallel extinction. A prism 
face or edge, or a prismatic cleavage, is parallel to one of the cross-
wires when the mineral is in extinction. 
Biaxial minerals possess straight or oblique extinction. 
Orthorhombic minerals show straight extinction against a prismatic 
cleavage or a prism face edge. All other biaxial minerals possess 
oblique extinction. 
The angle through which a mineral has to be rotated to bring the 
cleavages parallel to the crosswire is the extinction angle. 

The anisotropic skeleton grains slide transmit plane polarised light, but 
under cross-polarised light they extinguish (i.e. transmit no light) four 
times per complete rotation. 

The colour of anisotropic minerals under crossed polars varies, and the 
same mineral shows different colours depending on crystallographic 
orientation. These colours are on Newton's Scale, divided into several 
orders: 

• 1 s t Order: grey, white, yellow, red 
• 2 n d Order: violet, blue, green, yellow, orange, red 
• 3 r d Order: indigo, green, blue, yellow, red, violet 
• 4 t h Order and above: pale pinks and greens. 

Most minerals cleave along specific crystallographic directions, related 
to planes of weakness in the mineral's atomic structure. These planes 
are straight, parallel, and evenly spaced, which indicate 
crystallographic orientation. When a cleavage is poorly developed, it is 
a parting. 
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Cross polarised light When passing plane polarised light through a second filter at 90° to the 
(XPL) first (the upper polariser), we see it through crossed polars. Cross-

polarised light is used to determine properties such as dispersion, 
birefringence, and extinction. 

Habit / Form The shape that a mineral exhibits in different rock types. E.g., 
euhedral, with well-defined crystal faces; anhedral, with no crystal 
faces apparent; prismatic, when the crystal is elongate in one direction; 
acicular, when the crystal is needle-like; fibrous, when the crystals 
resemble fibres. Flat, thin crystals are tabular or platy. 

Interference Colours 

Interference Figure 

Isotropic 

Newton's Scale represents interference colours. They depend on the 
thickness of the mineral and the birefringence, and can be compared to 
a Michel Levy chart. Interference colours depend on the retardation of 
different wavelengths, which depends on atomic structure, orientation, 
birefringence, and thickness of a crystal. 
Some minerals have anomalous interference colours, which are not 
represented on the Michel Levy chart. They may result if minerals have 
abnormally high dispersion, or are deeply coloured. Examples include 
chlorite, epidote, zoisite, tourmaline and sodic amphiboles. 

All non-opaque minerals show interference Figures, excepting cubic 
minerals. There are two types, uniaxial and biaxial. 

Isotropic minerals remain black in all positions when viewed under 
cross-polarised light. Minerals belonging to the cubic system are 
isotropic; they have the same properties in all directions. 

Plane polarised light 
(PPL) 

Pleochroism 

In normal, unpolarised light, waves vibrate in all directions. 
Filtering the light beam in the microscope with the lower polariser 
makes all the light waves vibrate in one direction, parallel to a 
particular plane. 

Some coloured minerals display characteristic colour changes on 
rotation of the stage under PPL. The two extremes of colour occur 
twice during 360° rotation. Ferromagnesian minerals such as 
amphiboles, biotite, and staurolite possess this property. 
Pleochroism is due to the unequal absorption of light by the mineral in 
different orientations. 

Relief and Refractive The refractive index of resin is 1.54 and of clove oil is 1.535. The 
Index surface relief of a mineral is essentially constant and depends on the 

difference between the Rl of the mineral and the Rl of the clove oil. 
The greater the difference between the Rl of the mineral and the oil, 
the rougher the appearance of the surface of the mineral. If the RIs are 
similar, the surface appears smooth. 
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B l u e / P u r p l e Parallel extinction Prismatic Wmk to moderate 
C o l o u r l e s s birefringence 

Fibrous Weak birefringence 
Extinction grains 

droon 
C o l o u r l e s s 

Parallel extinction Angular-irregular Moderate to strong 
mtirp'nology oiretnngence 

R m w n i s h a r e e n Extinction 12-34° Cleavage fragments Moderate to strong. 
B lack Perfect prismatic 

cleavage 
birefringence 

R e d d i s h brown Extinction 12-34° Moderate to strona 
B r o w n Perfect prismatic 

cleavage 
birefringence 

B l u e i s h a r e e n / a r e e n Parallel extinction Prismatic Moderate to strona 
Pink / red / g r e e n birefringence 

Parallel extinction Prismatic Strona 
birefringence 

Dark brown 
Yellow 

Parallel extinction Anqular-irreqular Moderate 
morphology birefringence 

D u n n red / b rownish red Difficult to measure High relief Moderate to strona 
Yellow / o r a n g e yel low 
amethyst , violet, d e e p red 

Angular-Irregular birefringence 

Liaht vel low / co lour less / m a u v e Moderate 
Blue / purpl ish blue 
Blue / a z u r e blue / violet Often Incomplete 

Variable. 
Inclined 

slender or stumpy 
prisms 

birefringence 

Dumortierite 

Actinolite 

Epidote 

Hornblende 

Hornblende 

Hypersthene 

Tourmaline 

Allanite 

Piemontite 

Glaucophane 
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Figure 2.5: Flow-charts to aid identification of some common heavy minerals. Numerous sources (Gale 
& Hoare, 1991; Deer etal., 1992; Mange & Maurer, 1992; MacKenzie & Adams, 2001; Walden, 2004). 

Provenance studies using heavy-mineral analysis 

Characteristic suites of heavy minerals can be used to identify key provenance zones, 

especially when used in conjunction with clast-lithological data. Multivariate statistical 
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analysis can be used to identify groups of minerals (Davis, 1986; Kovach, 1995). Principle 

components analysis on ful ly quantified heavy-mineral data can be used to tease out subtle 

relationships and related groups of minerals, as well as identifying trends in the data which 

may otherwise be obscured (Bateman & Catt, 2007; Ryan et al., 2007). Cluster analysis 

(dendrograms) can also identify correlative samples. Mineral groups comprising less than 

2 % of the dataset (such as sulphides and sulphates) were excluded due to low numbers, 

which would have a disproportional effect on the statistical analysis. Raw counts were 

square-rooted to reduce strong skew. To aid provenance interpretation, heavy minerals can 

also be grouped into genetic suites (Hubert, 1971), such as reworked sedimentary, low- and 

high-rank metamorphic, igneous, pegmatitic, and authigenic suites (Table 2.8). 

Table 2.8: Provenance zones of some common heavy minerals (Hubert, 1971; Gale & Hoare, 1991). 

Well-rounded grains of rutile, tourmaline, and zircon. 

Biotite, chlorite, spessartite garnet, tourmaline, (especially small, euhedral, brown 
crystals with graphite inclusions). 

Actinolite, andalusite, apatite, almandine garnet, biotite diopside, epidote, 
clinozoisite, glaucophane, hornblende, ilmenite, kyanite, sillimanite, sphene, 
staurolite, tourmaline, tremolite, zircon, zoisite. 

Apatite, biotite, hornblende, ilmenite, monazite, muscovite, rutile, sphene, 
tourmaline, zircon. 

Anatase, brookite, augite, diopside, epidote, hornblende, hypersthene, ilmenite, 
olivine, pyrope garnet, topaz, serpentine. 

Apatite, diopside, cassiterite, garnet, monazite, muscovite, rutile, tourmaline. 

Euhedral crystals of apatite, augite, biotite, hornblende, zircon. 

Tourmaline, zircon, euhedral crystals of anatase, brookite, pyrite, rutile, sphene. 

Some heavy minerals have specific paragenesis and occur in only limited regions. For 

example, olivine and clinopyroxenes occur in the Carboniferous volcanic rocks (olivine 

and clinopyroxene phyric basalts) and high-level intrusions of northern Britain, the 

Midland Valley of Scotland, and locally within the Southern Uplands. The Highlands and 

Islands of Scotland are the sole source for chloritoid (Mange et al., 2005); assemblages of 

garnet-staurolite-chloritoid are characteristic of Stonehavian-type metamorphism, 

developed in a small area to the east of Stonehaven close to the Highland Boundary Fault 

(Stephenson & Gould, 1995; Trewin, 2002). A garnet-andalusite-kyanite assemblage 

(possibly with sillimanite) is a higher grade assemblage developed in the Buchan-type 
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metamorphism, developed along the Scottish coast north of Aberdeen (Stephenson & 

Gould, 1995). 

The relative stability of heavy minerals varies (Table 2.9). The effects of diagenesis 

can cause the loss of valuable provenance information. Parameters used for the 

interpretation of provenance must therefore reflect source characteristics, rather than 

subsequent diagenetic processes. Two complementary approaches should be used, one 

using multivariate statistics to evaluate the whole assemblage, and one concentrating on 

the ratios of specific ultra-stable heavy minerals (Morton & Hallsworth, 1994; Morton et 

al., 2005; Morton & Hallsworth, 2007). 

Table 2.9: Relative stability of detrital heavy minerals (Morton & Hallsworth, 2007). 

Least Stable 
Olivine 
Orthopyroxene, Clinopyroxene 
Calcic amphibole, Andalusite, Sillimanite 
Epidote 
Titanite 
Kyanite 
Sodic amphibole 
Garnet, Chloritoid 
Tourmaline, Monazite, Spinel 
Rutile, Anatase, Brookite, Zircon, Apatite 
Most Stable 

Ratios of specific stable heavy minerals with similar hydrodynamic behaviour reflect 

source area characteristics. Determining the relative proportions of minerals that behave in 

a similar way during the processes of transport, deposition and diagenesis, which have 

similar chemical and mechanical stability and hydraulic behaviour can give a more reliable 

indication of sediment provenance (Morton & Hallsworth, 1994). For example, changes in 

the percentages o f staurolite, kyanite, epidote, amphibole and pyroxene could be attributed 

to their instability. Several pairs of common ultra-stable minerals f u l f i l the criteria for 

similar hydraulic behaviour. These are apatite-tourmaline, rutile-zircon, monazite-zircon, 

garnet-zircon and chrome spinel-zircon (Morton et al., 2005). These are expressed as index 

values, given below in Table 2.10. 
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Table 2.10: Indices of ultra-stable heavy minerals (Morton et al., 2005). 

ATi Apatite-Tourmaline index 10 x apatite count 
Total apatite + tourmaline 

GZi Garnet-Zircon index 100 x aarnet count 
Total garnet + zircon 

RuZi Rutile-Zircon index 100 x rutile count 
Total rutile + zircon 

MZi Monazite-Zircon index 100 x monazite count 
Monazite + zircon 

CZi Chrome spinel-Zircon index 100 x chrome spinel count 
Total chrome spinel + zircon 

Sources of Error in Heavy-Mineral Analysis 

Common sources of error in H M A predominantly involve operator error. This begins 

with contamination of the sample, errors in splitting the bulk sample, errors in sieving to 

the correct size fractions, errors in the density separation technique (such as mineral 

inclusions making light minerals denser), and errors in the identification and counting of 

heavy minerals (Hubert, 1971). Tracing heavy-mineral associations to source regions 

demands an exacting knowledge of regional geology, and is susceptible to error. Finally, 

diagenesis, hydraulogical sorting, and other depositional and post-depositional processes 

can severely affect the heavy-mineral suite. However, careful acknowledgement of this 

means that heavy mineral associations can impart valuable and useful provenance 

information for glacigenic diamictons, and it remains an important correlative tool. 

Summary 

H M A has a long and involved history of use in Quaternary Science. Although it 

became unfashionable in the late twentieth century, it is now regaining recognition as a 

useful and important tool. When used within a framework of understanding the limitations 

and controls on heavy mineral deposition, H M A can provide important information 

regarding provenance, stratigraphic correlation and even depositional processes. H M A 

works well as a complementary technique to the study of glacial tills, and is an invaluable 

tool in the examination of clast-poor diamictons and well-sorted sands. 

2.6.7 Clast-Lithological Analysis 

Methodology 
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Clast identification is used in the description and characterisation of a sediment, and in 

the correlation or differentiation of stratigraphical units. It is a powerful provenance tool, 

and it can also be used in reconstructing variations in the mode of deposition (Bridgland, 

1986). The analysis of erratics within tills is a powerful tool in the reconstruction of ice-

sheet dynamics and f low patterns (Evans, 2007a). For example, clast-lithological analysis 

has recently been used extensively in Norfolk to test the case for a Scandinavian ice sheet 

during the Middle Pleistocene (Lee et al., 2002). Black f l in t and Cretaceous chalk were 

traced to the bedrock of north Norfolk and the North Sea Basin. Carboniferous lithologies 

are distinctive of the Westphalian of northern England. Although the provenance of some 

crystalline erratics was ambiguous, the lack of distinctive Norwegian indicator erratics 

compared to evidence of northern British erratics precluded a Scandinavian origin. 

Over 300 clasts greater than 4 mm and less than 32 mm diameter were sampled f rom a 

2 m 2 area per site to give a statistically significant, representative sample (Bridgland, 

1986). Pebbles should be carefully washed in water and separated into phi size fractions 

(4-8 mm, 8-16 mm, 16-32 mm, and over 32 mm) by sieving. Whilst the under 8 mm size 

stones are too small to accurately identify, they should be retained, and can be used i f the 

sediment in question lacks any stones greater in size. It is normally difficult to obtain 

stones in the greater than 32 mm size fraction in numbers sufficient for quantitative 

analysis, but nonetheless they should be included in stone counts as in some cases, 

especially for durable erratics, examples may only occur in the large size fractions. These 

fractions should be identified and counted and noted during analysis. 

Clasts in the 8-16 cm, 16-32 cm and >32 cm fractions were identified using a low 

powered binocular microscope (model 'Mode SMZ-I68'), a reference collection collected 

at outcrop, and standard rock identification criteria (Gale & Hoare, 1991; Walden, 2004). 

A geological hammer was used to break open the clasts to open a fresh surface for 

identification (Bridgland, 1986). A steel probe was used to test for hardness, and 10 % 1M 

HC1 was used for the identification of carbonates (cf. Bridgland, 1986). Statistical analysis 

is then performed on the data (see Chapter 2.7). Strongly skewed data were square-rooted. 

The classes were divided into lithological categories to reduce the number of variables and 

simplify the dataset. 

Provenance studies using Clast Lithology 

Investigations of provenance using clast lithology use a geological map and a 

reference collection to identify overall source regions. Suites of lithologies can be used to 
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identify likely sources. Statistical groupings of suites of lithologies clearly helps define 

lithological correlations. 

'Indicator erratics' are distinctive clasts which can be traced back to outcrop. They are 

usually granites or distinctive lavas, and these have been used to trace ice-flow pathways in 

the British Isles (Harmer, 1928; Sissons, 1967; Sutherland, 1984; Evans et al.., 2005). A 

classic indicator erratic from the Lake District is the 'Shap Granite' from Shap, near 

Penrith. Distinctive Scottish erratics include Grampian granites such as the Rannoch 

Granodiorite, and the Essexite erratic train f rom Lennox-town. These were all visited and 

sampled at outcrop; comparison to reference samples enabled identification of key 

lithologies. 

Distinctive Scandinavian lithologies (Figure 2.6) have been used to infer the presence 

of Scandinavian ice (e.g., Trechmann, 1931b; Pawley et al., 2004). However, these are 

durable lithologies that may be reworked, and their presence must be interpreted with care 

(Catt, 1991a). The concentration of indicator erratics decreases with distance from the 

outcrop. Concentrations down-ice of the outcrop increase rapidly as new material is added, 

but concentrations decrease rapidly at the outcrop margin (Evans, 2007a). 
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Figure 2.6: Photographs of hand specimens of some Norwegian indicator erratics (courtesy of Dr. Jon 
Lee, BGS). 
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2.7 Erratic sources in Britain 

2.7.1 Introduction 

This section examines the pre-Quaternary geology of Britain, with particular reference 

to areas reported to be principle erratic sources and ice-accumulation areas, such as the 

Southern Uplands, Grampian Highlands, and the Lake District (Harmer, 1928; Sissons, 

1967; Sutherland, 1984; Sutherland, 1991; Bowen et al., 2002). The chapter also examines 

the geology of critical regions, such as the Midland Valley of Scotland. The reviews by 

Sutherland (1984; 1991) highlighted several key erratic sources, and used much of the 

work of the Yorkshire Boulder Committee (Howarth, 1908; Woolacott, 1910; Harmer, 

1928). These regions were again emphasised in the recent review by Evans et al. (2005). 

They include distinctive and easily recognisable granites, such as the Lake District Shap 

Granite, the Criffe l and Loch Doon granites from the Dumfries and Galloway region, and 

the Cheviot andesite. Glaciological models by Bowen et al. (2002) and Boulton and 

Hagdorn (2006) identified the Lake District, the Southern Uplands, and the Grampian 

Highlands as key ice-accumulation areas. 

In order to reconstruct and interpret the Quaternary geology of an area, it is important 

to have a thorough understanding of the regional geology. Changing bedrock lithologies 

between sites can explain clast-lithological variations, which can occur over a very short 

distance. Ice-flow pathways can therefore only be reconstructed through a robust and 

thorough examination of the lithological and petrological properties of a t i l l . 

2.7.2 The Grampian Highlands 

The Grampians and the Northern Highlands of Scotland are large region of structurally 

complex, high-grade metamorphic rocks (Figure 2.7) within the Caledonian orogenic belt 

of Scotland (Strachan et al., 2002). The Grampian Terrane is part of the Dalradian 

Supergroup, and is bounded to the south by the Highland Boundary Fault (Strachan et al., 

2002). Igneous granites (including the Rannoch Muir, Cairngorm, Mount Battock, Glen 

Fyne, Etive, and Glencoe granites) were emplaced during the deposition of the Dalradian 

Supergoup, and were linked to crustal stretching associated with the opening of the Iapetus 

Ocean (Stephenson & Gould, 1995). 
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The Dalradian sediments of the Grampians were deposited as marine sands, silts, muds 

and limestones in the Iapetus Ocean during the Neoproterozoic until the Early Ordovician. 

These were subsequently deformed and metamorphosed during the Mid-Ordovician 

Grampian orogeny (Strachan et al., 2002), forming complex quartz-mica-schist facies 

which are a prominent erratic, dispersed south-eastwards through the Midland Valley 

(Harmer, 1928; Sutherland, 1984). 

Stephenson and Gould (1995) described a suite of basic and ultramafic rocks that were 

intruded into the Dalradian during a late phase of the Grampian orogeny (Strachan et al., 

2002). The bodies occur along the Portsoy-Duchray Hil l Lineament, and are associated 

with areas of high-temperature, low pressure 'Buchan' metamorphism (Stephenson & 

Gould, 1995). Buchan metamorphism is associated with the mineral sequence garnet-

andalusite-kyanite, with accessory minerals biotite, sillimanite and cordierite (Strachan et 

al., 2002). To the southwest, 'Stonehavian metamorphism' records decreasing pressure. It 

is typified by the mineral assemblage garnet-chloritoid-staurolite, with accessory biotite 

minerals. 

2.7.3 The Midland Valley of Scotland 

Lower Palaeozoic 

The Midland Valley is bounded by the Southern Uplands Fault to the south and the 

Highland Boundary Fault to the north (Bluck, 2002). It spans the gap between the deeper 

parts of the Caledonian orogen to the north, where the Dalradian block underwent Cambro-

Ordovician burial, metamorphism and cooling (Bluck, 2002), and the more superficial, 

subduction-related region to the south. Lower Old Red Sandstone rocks and a series of 

Carboniferous basins dominate the present Midland Valley (Figure 2.7). 
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Figure 2.7: Simplified geology of northern Britain. Adapted from BGS Digimap database. © N E R C 
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The Devonian 

The effects of the final closure of the Iapetus Ocean continued into the Devonian, with 

the formation of many granites in Scotland and northern England resulting f rom the 

Caledonian Orogeny (Toghill , 2000), such as the Cheviot, Southern Uplands, Shap, 

Skiddaw and Weardale granites and the granophyre-gabbro complex of Carrock Fell in the 

Lake District (Robson & Johnson, 1995). The Old Red Sandstone deposits are about 418 to 

362 Ma, and the basal parts of the Old Red Sandstone occur in the Silurian. 

The Old Red Sandstone Continent landmass was high, arid, and had low humidity. 

Coarse sediments were laid down in lakes and rivers in the inter-montaine basins of the 

mountainous areas (the Caledonides), and on coastal plains to the south. Shallow-shelf seas 

in the Rheic Ocean provided environments for the deposition of Devonian limestones and 

sandstones (Toghill, 2000). 

The Old Red Sandstone sediments consist of fine- to medium-grained red or buff-

coloured sandstones (Cameron & Stephenson, 1985), with darker red siltstones or 

mudstones. Quartz grains are predominant. Old Red Sandstone deposits outcrop in f ive 

principle areas in the U K , which broadly reflect the original sedimentary basins in which 

they were deposited (Barclay et al, 2005). These are: 

• The Orkney and Shetland islands and north east Scotland, 

• The Midland Valley of Scotland, in an amalgamation of several basins of 

which the largest was the Strathmore Basin (Figure 2.7), 

• The Scottish Borders and Northumberland, in the Scottish Border Basin 

(Figure 2.7), 

• South Wales, 

• The Welsh Borderland and Bristol, in the Anglo-Welsh Basin. 

• Rare conglomerates in the northern Lake District, the Mell Fell Conglomerate, 

and in the inliers around the Northern Pennine Faults may belong to the Old 

Red Sandstone. 

Carboniferous Volcanism 

Igneous activity was widespread in the Midland Valley during the early to middle 

Visean. Cameron and Stephenson (1985) described thick plateaux of alkali olivine-basalt 

and related lavas. Smaller, localised pyroclastic activity continued until the Lower 

Permian. The later volcanic episodes were accompanied by the intrusion of thick sills of 
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alkali dolerites, mainly during the Namurian and early Westphalian (Cameron & 

Stephenson, 1985). Cameron and Stephenson (1985) portrayed the basaltic lavas as 

porphyritic, and classified them on the size and occurrence of plagioclase, clinopyroxenes 

and olivine phenocrysts. 

2.7.4 The Southern Uplands 

A large part of Scotland is underlain by Caledonian and older rocks. The Caledonian 

Orogeny was an important feature of Scottish geological history, because the Iapetus 

Ocean sutured along the Scottish border. The Southern Uplands terrane is a Lower 

Palaeozoic accretionary thrust belt to the northwest of the Iapetus Suture (Oliver et al., 

2002), and southeast of the Southern Uplands Fault. Oliver et al. (2002) noted that the 

Southern Uplands terrane comprised Ordovician and Silurian greywackes and siltstones. 

Caradoc and Ashgill greywackes are dominant in the northwest, Llandovery in the centre, 

and Wenlock greywackes in the southeast. 

Harris (1991) argued that in the northern belt, the wedges of dipping greywackes 

contain pillow lavas, cherts and black shales. Intruded into these are granitic plutons, the 

'Newer Granites', emplaced at 400 Ma (Harris, 1991). The largest and most important 

early Devonian igneous complexes are the Loch Doon, Cairnsmore of Fleet, and Cr i f fe l 

granitic masses (Floyd, 1999), and these were all identified by Sutherland (1984) as key 

erratic sources. They are all calc-alkali granites of Ordovician to Silurian age (Greig, 

1971), intruded as part of the Caledonian orogeny (Floyd, 1999). The Loch Doon is a white 

biotite-granite with quartz, biotite, orthoclase, muscovite and hornblende. The Cairnsmore 

of Fleet muscovite-biotite-granite mass lies between the Loch Doon and Criffe l granites 

(Greig, 1971; Pankhurst & Sutherland, 1982). The Cr i f fe l igneous complex is principally a 

biotite-hornblende-granodiorite and the inner Dalbeattie Granite is porphyritic wi th 

microperthite megacrysts (Pankhurst & Sutherland, 1982). 

2.7.5 The Lake District 

The oldest rocks in the Lake District are the Ordovician Skiddaw Slate Series ( 'SLA ' 

on Figure 2.8) and the Borrowdale Volcanics ( ' A ' on Figure 2.8). The Skiddaw Slates 

formed about 500 Mya in a shallow sea. There are at least 4000 m of mudstones, now 

slates, and siltstones and sandstones (Toghill, 2000). The thick, andesitic Borrowdale 
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Volcanics were erupted from ancient island volcanic island arcs and marginal volcanic 

basins, and are interbedded with marine sediments that are often fu l l of fossils (Eastwood, 

1946). They succeed the Skiddaw Group in the Central Lake District (Millward et al., 

1978). There are up to 6000 m of Llandeilo- to mid-Caradoc-age volcanics, which are 

mainly andesitic lavas, ash fall tuffs and ignimbrites, formed at different volcanic centres 

(Toghill , 2000). 

A major unconformity separates Borrowdale Volcanic Group from the overlying 

Coniston Limestone Group, which encompasses up to 200 m of sandstones, shales and 

limestones with a rhyolite lava to the east. These Ashgill Epoch rocks are overlain 

conformably by dark shallow-water Silurian shales with graptolites (Toghill, 2000). 

The Shap, Eskdale and Skiddaw Granites (Figure 2.8) are the exposed parts of a large, 

composite, acid batholith that underlies the central and northern Lake District (Firman, 

1978). They have been loosely dated to the Devonian, but their ages range considerably. 

Firman (1978) argued that the oldest, possibly Ordovician intrusions, are part of the 

Carrock Fell Complex (the gabbros are indicated on Figure 2.8). Gabbro, granophyre and 

diabase were intruded along the junction between the Skiddaw Slates and the Eycott 

Volcanics, and were later metamorphosed by the Lower Devonian Skiddaw Granite. The 

Ennerdale Granophyre was intruded at a higher structural level than the Eskdale Granite, 

but it only penetrates the lowest andesites of the Borrowdale Volcanic Group (Firman, 

1978). Firman (1978) described it as a fine-grained, pink, quartz-alkali feldspar rock, with 

rare porphyries. The younger Eskdale Granite is a perthite-muscovite granite, which 

penetrates the Ordovician Borrowdale Volcanic group. The Skiddaw Granite is a biotite-

granite with oligoclase and quartz. 

The distinctive Shap Granite (Figure 2.8), identified as a key erratic by the Yorkshire 

Boulder Committee (Howarth, 1908; Harmer, 1928), is a small outcrop of only 8 km 2 . It 

reached a higher stratigraphic level than the other Lake District intrusions. Firman (1978) 

argued that it was contemporaneous with the Skiddaw Granite. The Yorkshire Boulder 

Committee (Kendall & Howarth, 1902), Howarth (1908) and Harmer (1928) carefully 

mapped its distribution in the drifts of eastern England. The Shap Granite contains 

characteristic, idiosyncratic, large pink orthoclase perthite phenocrysts up to 50 mm long in 

a coarsely crystalline matrix of quartz, orthoclase and oligoclase, with some biotite 

(Firman, 1978). 

81 



BETHAN D A V I E S C H A P T E R 2: METHODOLOGY 

1 

6 3 0 6 km 

Igneous 

| Granite 

| Andesitic tuff | 

_ Andesitic 
m lava and tuff 
_ Rhyotitic r-
* Lava 

! Diorite 

Ordovlcian Carboniferous 
^ m Llandeilio • MMMMW 0>H Basalt — Llandeilio 

- Dolerite " B M i & Llanvim 

| Gabbro Silurian 
„ . . Llanvirn 
& L A and Arenig 

] Lake Ludlow 

S W J | Wenlock 

Carboniferous 
Limestone 

owy Westphalian 
Coal Measures 

- • - ] . • Barren Red 
™™ Lithology 

Basal 
™ Conglomerate 

Mesozoic 
Jurassic 
Lower Lias 

T M Triassic 
Mudstones 

p-j-o Permian & Triassic 
sandstones 

P M Permian 
™ Mudstones 
p Permian basal 

breccias 
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2.7.6 The Cheviots 

Old Red Sandstone sediments occur in the Cheviot Hills (Figure 2.9) where the Lower 

Old Red Sandstone includes red siltstones with palaeosols, sandstones and conglomerates. 

These are overlain by the Cheviot Volcanic Group (Toghill, 2000). 

A number of igneous episodes took place during the Devonian (Robson, 1976). The 

Scandian Orogen, from about 435 to 425 Ma, was of Himalayan proportions, and resulted 

from the compression of the Laurentian crust, of which the Scottish Highlands were part 

(Barclay et ai, 2005). This caused volcanism and thrusting along major northeast-trending 

faults, with low-grade metamorphism in northern Britain. The volcanic rocks were 

originally extensive, and their eroded remnants are located at Ben Nevis, Glen Coe, Lorn 

and north of the Highland Boundary Fault. Volcanic rocks also occur extensively in the 

Southern Uplands, and granitic intrusions such as the Cheviot Granite were emplaced 

(Barclay et ai, 2005). 

Robson (1976) argued that igneous activity in the Cheviots began with numerous 

volcanic centres issuing pyroclastic material. Some beds are fine-grained tuffs or ashes, 

whilst others are coarse agglomerates. The ash cones have mostly eroded away, but the 

pyroclastic material was preserved under lava flows. Fifteen metres of rhyolite overlies the 

western pyroclastic flows. They contain phenocrysts of biotite mica, distinguishing them 

from the overlying andesites (Robson, 1976). The Cheviot andesite, a pitchstone-pyrite, is 

grey to black, with fresh plagioclase laths (labradorite), thin red veins, and phenocrysts of 

rhombic pyroxene and augite (Robson, 1995), set in a matrix of feldspar and glass. It is a 

key indicator erratic, long recognised in the Quaternary deposits of eastern England 

(Howarth, 1908; Trechmann, 1952; Catt & Penny, 1966; Eyles et at., 1982; Sutherland, 

1984; Teasdale & Hughes, 1999). 

Some millions of years later, after the end of volcanic action, a major granitic intrusion 

was injected into the mass of lavas (Robson, 1976). The Cheviot Granite has a surface area 

of approximately 70 k m 2 . The junction between the granite and the lava is seldom straight, 

and ramifying veins of fine-grained granite run into the andesites. Dykes associated with 

the major granitic intrusion (Robson, 1976) are concentrated in the south eastern, the 

southern and the south western perimeter of the granite. They are aligned along two trends, 

the north-north-east and north-north-west. Four varieties are recognised, in order of 

decreasing abundance: mica-porphyrites, quartz-porphyries, felsites and pyroxene-
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porphyrites. They have a strong red or pink colour against the prevailing purple or grey 

extrusive rocks (Robson, 1976). 
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2.7.7 Northeast England 

The Carboniferous 

The eroded Old Red Sandstone Continent was invaded by the shallow shelf seas of the 

Rheic Ocean, caused by a eustatic sea level rise. The British area was close to the equator 

with warm, shallow tropical seas, into which the Carboniferous Limestone (Figure 2.9) 

was deposited. Rivers deposited deltaic sediments, the Millstone Grits (Table 2.11), into 

these shallow seas (Toghill, 2000). The climate then became humid and these deltas 

supported swamps and tropical rain forests. Changes in sea level resulted in numerous 

marine transgressions during the Westphalian, and the burial and decay of vegetation led to 

the formation of coal seams, the Coal Measures (Toghill , 2000). 

Table 2.11: Divisions of the Carboniferous Period (Jones et ai, 1995) 

Period Age 
(Ma) Epoch Stages Formation Sediments 

290 Whin Sill Quartz Dolerite 
Stephanian 

300 D 

C Upper Coal 
Measures 

V) 

Westphalian 
B Middle Coal 

Measures 
Mudstone, siltstone, 

sandstone, coals 

fe
ro

u 

A Lower Coal 
Measures 

c 315 Yeadonian 

C
ar

bc
 

325 

Namurian 

Marsdenian 
Kinderscoutian 

Sabdenian 
Arnsbergian 

Pendelian 

Millstone Grit 

Cyclic succession of 
sandstone, siltstone, 
mudstone, limestone 

and coal 

Visean 
Carboniferous 

Limestone 

Sandstone, 
limestone, mudstone 

363 

Dinantian 
Tournaisian 

Carboniferous 
Limestone Interbedded shales, 

dolomitic limestones, 
sandstones 

The Dinantian Carboniferous Limestone group (Table 2.11) comprises sandstone, 

mudstone, limestone and coal. The sandstones are fine to medium-grained and are yellow 

in colour. The argillaceous limestones are hard, grey to dark grey, with conspicuous 

crinoids, brachiopods and corals (Cameron & Stephenson, 1985). The Westphalian Coal 

Measures of Northumberland and Durham (Figure 2.9) incorporate a series of deltaic 

sediments 900 m thick (Jones et cii, 1995). Sandstones, siltstones and shales predominate 

with many seams of coal and underlying seatearths. 
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The Great Whin Sill 

The Whin Sill Complex (Figure 2.9) was intruded into Carboniferous rocks from the 

Late Carboniferous to earliest Permian (Randall, 1995). It was formed by a series of 

basaltic dykes linked at depth. The Whin Dykes associated with the Whin Sill have a 

general east-north-east trend. The Whin Sill Complex intersects the Coal Measures of the 

Westphalian, but not the Permian rocks and was thus emplaced during the time represented 

by the unconformity of the Upper Carboniferous and the Permian of the north of England 

(Randall, 1995). 

The Whin Sill dolerite is highly variable and complex. Petrologically, the 'normal' 

rocks were described by Randall (1995) as a dark, blue-grey quartz-dolerite with a grain 

size average of 0.5 to 1.0 mm. This varies according to speed of cooling, so higher-level 

sills and dykes have a smaller grain size. It bears plagioclase laths forming an interlacing 

network, showing a sub-ophitic texture with granular aggregates of augite. Other types 

include fine-grained rocks of basaltic composition with small phenocrysts of plagioclase 

and pyroxene, and coarse-grained rocks w i l l all the mineral constituents visible to the 

naked eye (Randall, 1995). 

The Permian 

The Permian forms the bedrock for County Durham and is the local bedrock for the 

onshore field sites. Smith (1995b) argued that during the Early Permian, northern Europe 

was similar to the Sahara today. Widespread barren uplands were gradually eroded, to 

form an extensive peneplain of vast areas of Carboniferous rocks. Post-orogenic 

subsidence resulted in the formation of extensive sub-sea-level basins in the areas now 

occupied by the North and Irish Seas (Smith, 1995a). 

The Early Permian Basal Breccias (Figure 2.9) are yellow, 0.6-1.8 m thick, and consist 

of angular to subangular rock fragments in a tough grey matrix of calcite in dolomite-

cemented fine-grained sandstone. The component clasts are Carboniferous Limestone. 

Patination and scattered dreikanter suggest that the breccias may have formed part of a 

stony desert pavement (Smith & Francis, 1967). The younger Yellow Sands are a 

distinctive unfossiliferous formation of weakly cemented aeolian desert sand in eleven 

parallel ridges, characterised by large scale trough cross lamination (Smith & Francis, 

1967). 
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During the Late Permian, a marine transgression from the north established a shallow 

saline sea, the Zechstein Sea, over northern Europe, the North Sea and northeast England 

(Figure 2.10). They infilled the deep basins formed by subsidence in the North Sea region, 

separated by a persistent Pennine Ridge (Smith and Francis, 1967). Thicknesses of 

dolomitic limestones and evaporites were deposited as it dried up (Toghill, 2000). 

Woodcock and Strachen (2000) stated that the preservation of the dune topography when 

sands were still friable indicates rapid transgression by quiet marine waters. Smith (1995a) 

argued that after the transgression, most of east Durham lay in the marginal shelf zone of 

the Zechstein Sea. The Permian Rocks of northern England (Figure 2.9) are therefore a 

thick cyclic succession of marine limestones and dolomites, which outcrop in the eastern 

and southern parts of Tyne and Wear and County Durham (Smith, 1995b). 

1 

Zechstein Sea 

Whitehaven 
Ridge Yorkshire 

Province 

Rocky Hills 
6̂  N 

Elevated roll ing rock desert 

Mercian Highlands 

Figure 2.10: The Zechstein and Bakevellia Seas in the Late Permian. Adapted from Smith (1995a). 

Smith (1979; 1994) argued that the Zechstein Sea modified the immediate climate, 

increasing rainfall and enabling plants to become re-established in former desert areas. 

Large-scale cyclicity was caused by glacio-eustatic sea-level oscillations. The sediments 

are subdivided into four evaporite cycles (Smith, 1995b). Each cycle consists of varying 

proportions of mudstone, limestone, dolomitic limestone and evaporite, deposited in a 
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number of discrete phases. The concentration of salts in each cycle results from the 

desiccation of the surrounding playas and Salinas with continued evaporation in the basin 

(Woodcock & Strachan, 2000). The upward concentration of salts and the increasing 

aridity of the environment through each cycle is mirrored in the complete Zechstein 

succession. 

North of the West Hartlepool Fault, no strata higher than the Magnesian Limestone 

occur. Their former presence is indicated by fragments of red and green mudstones of 

Upper Permian Marl lithology and in collapse breccias in the Middle and Upper 

Magnesian Limestone (Smith & Francis, 1967). Abundant plant debris in the lower parts of 

the carbonates suggests that after each transgression, climatic amelioration occurred 

around the margins of the sea (Smith, 1995b). 

The local bedrock in the study area is the Late Permian Roker Dolomite and 

Concretionary Limestone formations (Smith, 1995b), part of Cycle 2 of the Zechstein 

evaporites. They span a continuum of depositional environments, ranging f rom shelf-crest 

oolite banks (Roker Dolomite facies) to unstable slope deposits (Concretionary Limestone 

facies). The Concretionary Limestone is a grey to brown laminated dolomitic limestone or 

dolomite with abundant turbiditic and slumped beds of cream-coloured dolomite and oolite 

(Smith, 1995b). The Roker Dolomite Formation comprises well-bedded cream to buff-

coloured granular dolomite, often oolitic, with some lamination. 

2.7.8 The North Sea 

Pre-Permian and Permian Geology 

Pre-Permian rocks in the North Sea Basin are exposed along the British coastline, but 

are covered eastwards by younger lithologies (Gatliffe et ai, 1994). The Devonian Old 

Red Sandstone was deposited in the Orcadian Basin around the Moray Firth (Figure 2.11). 

Most of the Central North Sea was a region of continental deposition during the Upper 

Devonian (Gatliffe et ai, 1994), and the Upper Old Red Sandstone has been found in many 

wells. 

There were two major depocentres (the Southern and Northern Permian Basins) in the 

North Sea during the Permian (Gatliffe et a I., 1994). Gatliffe et al. (1994) stated that the 

Lower Permian in the Northern Basin comprised red, clastic sediments deposited in 

continental desert, f luvial and sabkha environments. The overlying Upper Permian 

(Zechstein) sediments were deposited after a transgression (Figure 2.10) and consist of 
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evaporites and carbonates (Smith, 1995b). These sediments continue onshore to eastern 

England. They include red Upper Permian Marls, which have been eroded from the 

English coastline. 

The Jurassic and Triassic 

The North Sea was a major Mesozoic basin, with over 3000 m of deposits occurring in 

the most rapidly subsiding part east of Scotland (Figure 2.11). Lias does occur in quantity 

in the Viking Graben area east of the Shetlands (Hudson & Trewin, 2002). The North Sea 

contains some of the principle oi l reservoirs, located in Middle Jurassic sequences. 

Massive, coarse- to fine-grained sandstones are overlain by mixed shales, sandstones and 

thin coals, with an upper facies of bioturbated marine sands (Hudson & Trewin, 2002). 

Kimmeridgian bituminous shales from the Upper Jurassic are widely distributed in the 

North Sea (Figure 2.11). 
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The Cretaceous and Palaeogene 

The Jurassic-Cretaceous boundary occurs within the Kimmeridge Clay Fm (Gatliffe et 

ai, 1994). Sudden eustatic sea-level fall caused the cessation of Kimmeridge Clay 

deposition. Across a large area in the M i d North Sea High towards the Aberdeen Platform, 

uniform, argillaceous, calcareous sediments were deposited during the Early Cretaceous. 

During the Late Cretaceous and earliest Palaeocene, warm, oxygenated waters transgressed 

the North Sea and Britain. Thick chalk and chalk-marl sequences were deposited in the 

central North Sea (Figure 2.11). Lithospheric cooling led to downwarping in the central 

North Sea, and accumulation of sediments along the central axis (Gatliffe et al, 1994). 

Gatliffe et al. (1994) mapped Palaeogene sedimentary rocks over large areas of the 

central North Sea (Figure 2.11). There is an erosional l imit 100 km east of the U K coast. 

The Palaeogene represents the end of quiescence, uplift of the Hebrides-Shetland axis, and 

extensive volcanicity in the northeast Atlantic Ocean. This was associated with sea-floor 

spreading and the opening of the Atlantic Ocean (Gatliffe et al., 1994). According to 

Gatliffe et al. (1994), the Palaeogene and Eocene rocks of the North Sea comprise deltaic, 

shelf and basin systems, mostly hemipelagic mudstones and sandstones, deposited in 

shallow seas. 
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2.8 Statistical Analysis of the Geochemical Data 

2.8.1 Principle Components Analysis 

Multivariate statistical analysis of the heavy mineral, metals and stone lithology counts 

allowed simplification of variables in the dataset. Ordination techniques attempt to 

represent the relationships of the objects of study in a continuum of one or more 

dimensions. Numerous variables, such as numbers of different heavy mineral species, give 

a multidimensional dataset. The main objective of ordination techniques therefore is to 

reduce the number of dimensions necessary for depicting the major trends in a data set 

(Kovach, 1995). 

Eigenanalysis is an ordination technique that performs linear transformations on 

multidimensional data to extract axes that summarise as much of the data as possible. 

Principle Component Analysis (PCA) is an eigenanalysis of a covariance or a correlation 

matrix, calculated from the original measurement data (Kovach, 1995). It is a method of 

displaying several correlated variables so that the maximum variation is displayed (Ryan et 

ai, 2007). The PCA method uses all the data and requires no factor weighting. Data are 

plotted in hyperspace. 

The elements of the eigenvectors used to compute scores of observations are 

"Principle Component Loadings". These are coefficients of the linear equation that the 

eigenvector defines. The PCA axes represent the variation of the data (Davis, 1986). The 

longest axis, which describes the greatest variance, is the first PCA axis; the second longest 

axis, perpendicular to then first, represents the next set of variance, etc. (Kovach 1995). In 

two dimensions, a graph can be plotted with new axes, the first of which is a best-fit line 

through the data, and the second of which is the axis with least variation (Ryan et al., 

2007). A PCA based on a covariance matrix relates to the squared standard deviation 

within the variables. A PCA based on a correlation matrix relates to the skew of the 

variables. An eigenanalysis is then performed on the matrix (Kovach, 1995). 

For example, Bateman and Catt (2007) used PCA to summarise the numerous 

variables (mineral categories) into a single diagram. In a periglacial landscape in northwest 

England fol lowing the Younger Dryas, multidirectional winds deposited the Shirdley Hi l l 

Sand coversands. Their depositional environments and provenance remain controversial 

(Bateman & Catt, 2007). Likely provenance sources for these reworked sands include 
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Quaternary deposits, the Carboniferous Lower Coal Measures, and the Triassic Bunter 

Sandstones. PCA revealed three main groups. The SHS formed three main groups; the 

uppermost was highest in the succession and was weathered. The other groups indicated an 

origin by aeolian reworking of earlier glaciofluvial sands, i.e., outwash from the Late 

Devensian ice sheet (Bateman & Catt, 2007). 

Principal components analyses (covariance and correlation) and cluster analyses on the 

heavy-mineral assemblages involved first simplifying the mineral phases or lithological 

types into their wider family groups to reduce the number of variables (i.e., silicates, 

epidote group, pyroxenes, amphiboles, micas, oxides and phosphates). In heavy-mineral 

analysis, sulphides and sulphates were excluded from the analysis due to very low numbers 

(less than 2 % of total), and carbonates were excluded due to strong skew. Statistical 

analyses on the stone lithological counts involved simplifying the dataset into groups of 

igneous, Permian, quartzose, Cretaceous, Jurassic, Carboniferous, Southern Uplands, 

sandstone, and Triassic lithologies. Statistical analyses were only conducted on the 

abundant metals in the matrix geochemistry, due to the strong variations and skew in the 

rare metal abundances. 

2.8.2 Cluster analysis 

Cluster analysis is a set of numerical techniques used to divide the observations into 

discrete groups. The clusters are based on the characteristics of the objects (samples), the 

most similar being clustered most closely together (Kovach, 1995). 'Non-hierarchical' 

techniques divide samples into groups without showing the relationships between the 

groups. 'Hierarchical methods' arrange the clusters into a hierarchy, making the 

relationships between different groups apparent (Kovach, 1995). This produces a tree-like 

diagram termed a 'dendrogram'. Agglomerative hierarchical cluster analysis starts with all 

the samples separately, and combines successively the most similar samples until all are in 

a single, hierarchical group. This technique is useful in geochemical analysis of tills, for 

example, as a clear dichotomy between lithofacies, with a high degree of dissimilarity and 

a low degree of clustering, can indicate separate depositional events. Agglomerative 

hierarchical cluster analysis operates by first calculating a similarity matrix for all samples. 

The most similar samples cluster as a pair and are then considered a single object. The 

similarity matrix is recalculated and compared with this new group (Kovach, 1995). 
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'Ward's Linkage' cluster analysis focuses on determining how much variation there is 

within a cluster. The clusters joined in the next round of clustering are chosen by 

determining which two would give the least increase in within-cluster variation (Kovach, 

1995). The clusters are as distinct as possible, as the criterion for clustering is to have the 

least amount of variation. 

Bell et al. (1989) used cluster analysis of erratics within the drifts of northern 

Labrador to distinguish regional and local ice events, and to define ice-flow patterns and 

ice limits in the study area. Gneissic clasts indicated deposition by an easterly f low of the 

Laurentide ice sheet, and the absence of such clasts indicates deposition by a local ice 

source (Bell etal., 1989, 1990). 

Richards (1998) used quantified clast-lithological analysis and matrix geochemistry to 

distinguish different lithostratigraphical units within between the Risbury Fm of 

Herefordshire. PCA and cluster analysis allowed differentiation of individual groupings. 

Multivariate analysis of the clast lithological and fine-fraction geochemical data defined 

consistent populations within diamicton facies from the Risbury Fm of northeast 

Herefordshire. The first population is a subglacial t i l l . Melt-out or secondary processes in a 

proglacial, ice-marginal environment deposited the second population. The matrix 

composition was therefore dependent on the mode of deposition by the ice sheet (Richards, 

1998). 

Thamo-Bozso and Kovacs (2007) used numerical analysis of heavy-mineral data to 

reconstruct the evolving Quaternary fluvial network of the Hungarian Plain. Heavy-

mineral composition the borehole data and modern river sediments, evaluated by cluster 

analysis, showed two, three or four major clusters. This cluster analysis allowed f u l l 

differentiation of the sediments of various palaeo-rivers. 

Parallel with cluster analysis, Thamo-Bozso and Kovacs (2007) performed PCA on all 

samples. Results identified garnet, chlorite, amphibole and pyroxene as the most important 

heavy minerals in the differentiation between the assemblages of the modern and ancient 

Danube and the tributaries of the Tisza River. Comparison of the heavy mineral 

compositions of the modern river samples and the boreholes samples by PCA showed the 

modern river samples to cluster to the right, being devoid of chlorite, with the Quaternary 

sediments clustering to the left, influenced by high percentages of chlorite. This allowed 

inferences regarding transport directions. 
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2.9 Microfossil and Macrofauna Analysis 

2.9.1 Foraminifera 

Foraminifera live in very specific marine environments, either as plankton or as 

benthos. They are amoebas with granular reticulopods, two-way cytoplasm streaming, and 

which either secrete calcareous shells, or agglutinate sediment particles into a shell (a test). 

The test is composed of a series of chambers; different species display diversity in 

architecture and arrangements (Loubere & Austin, 2007). There are about 10,000 species 

of benthic foraminifera, which are taxonomically organised based on their test structure. 

Tests are usually f rom 50 ( jm to 2000 urn in size. The identification of different species by 

their tests and their abundances in an assemblage can give clues as to the environmental 

conditions at the time of deposition. This thesis uses qualitative foraminifera analysis to 

infer between glaciomarine conditions, open-water conditions, and subglacial conditions. 

The separation of foraminifera (forams) follows the methodology outlined in 

Appendix I (cf. Knudsen & Austin, 1996). In each sample, 200-300 specimens are picked 

out f rom a black tray and placed onto a counting tray for identification and counting. 

Identification of foraminifera and their palaeo-ecology is determined with reference to 

described samples in the literature (Hansen & Lykke-Andersen, 1976; Murray, 1979; Hald 

& Korsun, 1997; Jennings el ai, 2004). Some examples are shown in Figure 2.12. The 

specimens are identified by their visual characteristics, including whether they are triserial, 

biserial, planispiral, trochospiral, evolute, involute, how many chambers there are, and the 

presence of septal bridges (Figure 2.13, Loubere & Austin, 2007). 
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Elphidium excavatum f. Clavatum Elphidium incertum Elphidium incerium Elphidium arctica 

Cassidulina reniforme Haynesina germanica 

Melonis barieeanus Haynesina germanica 

Rosalina bradyi 

Rosalina bradyi Brizalina variabilis 

Cibicides lobatulus Cibicides lobatulus 

Figure 2.12: Electron microphotographs of some common benthic calcareous foraminifera. Scale bar is 
0.1mm unless otherwise stated (Korsun et al., 2001) 
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Figure 2.13: Identification of critical parts of foraminifera (Be & Toiderhund, 1971; Vincent & 
Berger, 1981; Korsun etal., 2001). 

A number of typical faunal assemblages have been identified in modern glaciomarine 

environments, such as Svalbard, and can be used as analogues to interpret assemblages in 

ancient glacigenic sediments. For example, the Cassidulina reniforme assemblage is 

negatively related to salinity and temperature. It typically occupies the inner parts of 

glacially-influenced fjords in Svalbard (Hald & Korsun, 1997). Subsidiary species include 

Cibicides lobatulus, Elphidium excavatum f. clavata, and Buccella frigida. These 

assemblages are common in modern glaciomarine environments. 

An Elphidium excavatum f. clavata assemblage is a typical proximal glaciomarine 

fauna (Jennings et ai, 2004). These environments are characterised by seasonal sea-ice 

cover, turbid water and high sedimentation rates. It usually occurs with the C. reniforme 

assemblage, with E. excavatum increasing in dominance close to the glacier snout. The C. 
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reniforme assemblage also extends beyond the areal distribution of the E. excavatum 

assemblage (Hald & Korsun, 1997). A Cibicides lobatulus assemblage with accessory 

species /. norcrossi and A. gallowayi is typical of high energy/low sedimentation rate 

environments. The species has a cosmopolitan distribution (Hald & Korsun, 1997), is 

common in the outer parts of glacier fjords, and is indicative of a high energy bottom-water 

environment. 

2.9.2 Palynomorphs 

Allochthonous palynomorph analysis was also used to establish provenance and help 

in the ice-flow pathway reconstruction (Lee et al., 2002; Riding et al., 2003), based on 

known and established geological and geographical distributions. Palynomorph analysis 

was carried out by Dr. Jim Riding of the British Geological Survey, Keyworth, using the 

separation method outlined in Appendix I (see Riding & Kyffin-Hughes, 2004; Riding & 

Kyffin-Hughes, 2006). 'Palynomorphs' are organic-walled microfossils with a plant or 

animal affini ty (Riding & Kyffin-Hughes, 2004), and can be derived from either terrestrial 

or marine terrains. They are abundant in sedimentary deposits, and their small size, 

ubiquity, and high preservability means they can provide detailed biostratigraphical and 

palaeo-ecological information (Riding & Kyffin-Hughes, 2004). Palynomorphs include 

acritachs, dinoflagellate cysts, chitinozoa, fungal spores, green/blue algae, plant spores, 

pollen grains, and scolecodonts (Jansonius & McGregor, 1996). They do not include wood 

fragments, plant cuticles or other amorphous organic material. 

Dinoflagellates are unicellular organisms occupying most aquatic environments. Most 

species are planktonic and use two flagella to swim in a spiral-like motion (de Vernal et 

al., 2007). Their cysts (dinocysts) yield microfossils, and these are good biostratigraphical 

markers and indicators of changes in sea-surface water masses (de Vernal et al., 2007). 

Dinocysts are the most common organic-walled microfossils or palynomorphs in marine 

sediments. Their presence in Quaternary glacigenic sediments and tills is useful as they can 

be used to determine the source regions for ice sheets; for example, Eocene dinoflagellate 

cysts can only be derived f rom the Late Cretaceous chalk of the northeastern North Sea, 

whereas Carboniferous palynomorphs typically indicate a provenance in northern England 

(Riding et al., 2003). Palynomorph analysis has been used extensively to test for a Scottish 

or Scandinavian ice source in tills in Norfolk (Lee et al., 2002; Riding et al., 2003). 
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2.9.3 Macrofauna 

Marine macrofauna can impart valuable information regarding depositional 

environments and palaeo-environmental conditions (e.g., freshwater / brackish / marine / 

littoral / shelf / temperate / arctic conditions). Additionally, shell fragments can be used for 

amino acid racemisation dating. The shells of different species racemise at different rates 

(Lajoie et al., 1980; Penkman et ai, 2007), so that only racemisation data from the same 

taxon can be meaningfully compared, making species identification particularly important. 

Shells such as marine bivalves and littoral gastropods were identified with reference to a 

specimen guide book (Campbell & Nicholls, 1986) were observed through a low-powered 

binocular microscope (Motic SMZ-168). 
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2.10 Dating Techniques 

The cliffs along the Durham coastline contain directly dateable sediments. Techniques 

utilised for this part of the research include amino acid racemisation (AAR) on marine 

gastropods within the Warren House Formation and the Easington Raised Beach, Optically 

Stimulated Luminescence (OSL) dating on beach, fluvial and marine sediments, and U -

series on the cement of the Easington Raised Beach. 

2.10.1 Amino Acid Racemisation (AAR) 

Amino acids are organic molecules linked by peptide bonds (Mil ler & Clarke, 2007), 

and make up all proteins. A l l protein amino acids have one asymmetric carbon atom or 

centre of symmetry; these are 'chiral' molecules. The mirror images of chiral molecules 

are not superimposable; they exhibit 'handedness' (Miller & Clarke, 2007). They can exist 

in two different configurations or 'enantiomers'. Chiral forms of the same amino acid were 

originally identified by the way they rotated plane-polarised light passed through a solution 

containing the pure enantiomer. Enantiomers rotating light to the left are L-amino acids 

(levorotatory); those rotating light to the right are D-amino acids (dextrorotatory). Living 

organisms utilise exclusively L-amino acids to build protein (Miller & Clarke, 2007). Upon 

the death of an organism, diagenetic reactions degrade proteinaceous residues into their 

constituent amino acids, which spontaneously interconvert to their D-configurations in a 

regular and predictable manner into an equilibrium mixture (Penkman et al., 2007). This is 

'racemisation'. The initial status of 100% L-configuration means that amino acid 

racemisation can be used as a dating technique. 

Amino acid racemisation was carried out on shell fragments of known species using a 

pioneering technique developed by Dr. Kirsty Penkman and Miss Beatrice Demarchi 

(University of York) . Improvements in the methodology developed by Dr. Penkman mean 

that multiple amino acids are analysed f r o m the intra-crystalline fraction (Penkman et al., 

2007; Penkman et al., 2008). Refer to Appendix I for detailed methodology. 

Organic matter within fossil biominerals is subject to contamination. The degradation 

products of the organic matter also need to be retained within the biomineral as diagenetic 

reactions are used to assess the original properties and burial history of the sample. 

Investigation of fossil organic material therefore requires a "closed system" (Penkman et 
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al., 2008). A closed system is essential for the application of amino acid geochronology, 

because the majority of organic matter within fossil biominerals is subject to contamination 

and / or leaching. In closed systems, diagenetic reactions of indigenous biomolecules 

should be predictable, and the original molecules and their degradation products can be 

used to interpret the burial history of the sample (Penkman et al., 2008). As diagenetic 

reactions are used to assess the original properties and burial history of the sample, the 

degradation products of the organic matter must be retained within the biomineral: this is 

the case in closed systems (Penkman et al., 2008). The method is based on the extent of 

protein decomposition, which increases with time, although there is an increased rate of 

breakdown during warm stages and a decrease in cold stages. Amino acids can exist in two 

forms, L and D, and only L-amino acids are formed in shells; modern shells have a D L 

ratio of close to zero. However, when an organism dies a spontaneous reaction occurs 

called racemisation, until there is an equal number of D- and L- amino acids, i.e., a D / L 

value of 1. 

A substantial proportion of molluscan shell protein is subject to diagenesis and 

dissolution after burial. However, a residual fraction of shell protein is retained by amino 

acids, and can be isolated by extensive bleach treatment of shell powders. This intra-

crystalline fraction traps organic material within crystals, and is superior for A A R dating. 

Exposure of the powdered mollusc shells to concentrated NaOCl (bleach) for 48 hours 

reduces the amino acid content to residual levels; this procedure effectively removes the 

readily accessed organic matrix that resides between mineral crystals while isolating the 

intra-crystalline fraction (Figure 2.14). The intra-crystalline fraction of mollusc shells is a 

closed system for the retention of amino acids. 

Rates of racemisation vary between species (the "species effect"), as does diagenesis 

(Lajoie et al., 1980); therefore for an age to be determined f rom the ratios of amino acids, a 

thorough database of species that have been independently dated is needed. 

In this research project, shell fragments were separated from bulk sample by gentle 

wet sieving, and appropriate species were analysed by A A R . The goal was to constrain the 

age of the shell to provide a minimum age estimate for the sediment. 

/ 
101 



B ETHAN D A VIES CHAPTER 2: METHODOLOGY 

1 J J J J J J J J *** ***** 
mineral <2> 

J J ********* ******** inter-crystalline proteins 

re 
TO 

0) 

CJ 

time time 

Figure 2.14: Conceptual model for the effect of bleach on different amino acid fractions in a shell. 

The highly racemised FAA in the matrix (1) are removed first, leading to a small drop in the 
concentration but a decrease in the D/L value. 

A rise in D/L coincides with a rapid drop in concentration as the intact proteins of the matrix (2) are 
removed. Prolonged bleaching may selectively remove amino acids in the intra-crystalline fraction or 
begins to etch the carbonate, exposing intra-crystalline acids (3). From Penkman et al., (2008). 

2.10.2 Optically stimulated luminescence (OSL) 

Optically Stimulated Luminescence (OSL) dating is a direct method of dating 

glacigenic sediments. It can only be used on sediments that have been exposed to light at 

the time of deposition, such as glaciofluvial, glaciolacustrine and loessic sediments. The 

context and depositional environment of the sample sites must be well understood i f the 

dates are to be correctly interpreted. OSL is only applicable on sediments with a significant 

amount of quartz and feldspar grains, so is particularly suited to quartz-rich sand deposits 

typical of glaciofluvial sandurs. Luminescence dating works with sediments f rom a few 

years to several hundred thousand years old (Lian & Roberts, 2006), making it a 

considerably more viable radiometric technique than others due to its longevity and the 

fact that organic remains are not required. OSL dating at Warren House Gi l l was carried 

out and interpreted by Dr. Stephen Pawley (Department of Geography, Royal Holloway 

University of London), using the methodology outlined in Appendix I . 
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Recent examples of direct OSL dating on glaciolacustrine sediments include the ice-

dammed Glacial Lake Humber (Bateman et al., 2008). The dates of 16.6 + 6 kyr constrain 

the advance of the Last British-Irish Devensian ice sheet in the area, as it could only exist 

when ice advanced through the Humber Gap. Glaciofluvial sediments from a sandur and 

other glaciofluvial sediments in west Norfolk were dated by OSL to MIS 12 (Pawley et al., 

2008), contesting recent models proposed for north Norfolk that suggest that these 

sediments are as old as MIS 16. This new research suggests that the Cromer Ridge was 

formed in MIS 12 instead of MIS 6 (Pawley et al., 2008). Refer to Chapter 1.2.1. 

Natural minerals absorb and store ionising energy; when exposed to sunlight, this 

energy is lost (Lian, 2007). In the environment, this energy comes from naturally occurring 

radiation emitted f rom radioisotopes within the mineral grain, from its immediate 

surroundings, and from cosmic rays. The dose rate is therefore proportional to the 

concentration of radioisotopes, and to the intensity of cosmic rays. The amount of uranium 

(U), potassium (K) and thorium (Th) in a sample significantly affect the upper and lower 

limits of the technique. The optical age of the sample is determined by the laboratory dose 

of radiation that produces the same OSL as did the environmental dose; this is the 

equivalent dose. The age of the sediment is the equivalent dose divided by the dose rate 

(Lian, 2007). Optical dating therefore gives the time since the last exposure to sunlight or 

heat (Murray & Roberts, 1997). 

The physical models used to explain OSL are complex and remain poorly understood. 

There are numerous reviews about the mechanisms involved (e.g., Murray & Wintle, 2000; 

Lian & Roberts, 2006; Lian, 2007). The crystal lattice is imperfect and contains impurities 

and structural defects (Lian, 2007), some of which are attractive to electrons which have 

been freed from their normal sites in the valance bands of atoms. These are 'electron 

traps'. Free electrons occur when atoms absorb naturally occurring ionising radiation. Free 

electrons are then held in electron traps; the duration depends on the strength / thermal 

lifetime of that particular trap. Some of these traps w i l l be emptied on exposure to light 

(Lian, 2007). The sediment must have been deposited sub-aerially or in only shallow 

subaqueous conditions, to ensure that the electron traps are ful ly emptied prior to burial. 

2.10.3 Uranium-Series Dating and Stable Isotope Analysis 

Stable isotope analysis can impart valuable information regarding the climatic 

conditions (i.e., interglacial / glacial / wet / dry), as isotopes of oxygen and carbon vary 
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according to the prevailing climatic conditions (Candy et al., 2006; Preece et al., 2007). 

This was conducted by Ian Candy according to standard procedures (Candy et al., 2006). 

Uranium-series (U-series) has been used extensively to date carbonates (e.g., Candy, 

2002; Candy & Schreve, 2007; Preece et al., 2007). U-series utilises the natural decay of 

uranium into its daughter isotopes. There are three U-series decay chains that start with the 

naturally occurring radioactive isotopes " U , " U (Uranium), and Th (Thorium), and 

end with the stable isotopes of lead: 2 0 6 Pb, 2 0 7 Pb, and 2 0 8 Pb respectively (Thompson, 2007). 

The solubility of uranium is relatively high. Therefore, carbonates precipitated f rom 

natural waters frequently contain significant uranium and negligible thorium and 

protactinium (Pa) concentrations, allowing the radioactive decay of uranium to be charted. 

These are ideal conditions for U-series, which requires an initial state of disequilibrium due 

to its very long half l ife (Thompson, 2007). 

The isochron method is most appropriate for surficial carbonates, including calcretes, 

as it corrects for detrital contamination (Candy et al., 2005). U-series sample preparation, 

separation geochemistry and mass spectrometry followed the procedures of Seth et al. 

(2003), Luo et al. (1997) and Pin and Joannon (2001). U-series dating was conducted by 

Dr. Candy, of Royal Holloway, University of London (see Candy, 2008 in Appendix I V ) . 
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CHAPTER 3 

Whitburn Bay 

3.1 Introduction 

A version of this chapter is in press in Boreas (see Appendix I I ) . The behaviour of the 

British-Irish Ice Sheet (BUS) along the eastern coast of Britain during the Last Glacial 

Maximum (LGM) is poorly understood (Carr et aL, 2006). Competing ice lobes from both 

northwest Britain and Scotland overran the area, but the f low phasing of these lobes, and 

their dynamic interaction have only been partly reconstructed. Whitburn Bay in County 

Durham, northeast England (Figure 3.1), is located in an area of coalescence of several 

competing ice lobes, making it crucial for understanding ice-sheet f low dynamics and flow 

phasing during the L G M . This region captures the signal of ice f lowing eastwards from the 

Tyne Gap and ice f lowing southwards down the coast. It is ideally located to determine the 

palaeo ice-flow direction here, to establish whether there is an onshore signal for the North 

Sea Lobe. Sites located further south are within city limits; further north and the Tyne Gap 

signal is not present. In addition, the Glacial Lake Tees is located immediately inland of 

Whitburn Bay, so this is a key site to determine the mechanism and cause of this proglacial 

lake. Furthermore, there is little chronostratigraphic control on the glacial sediments 

associated with both the advance and retreat phases of the BUS in this area. 

It has been suggested that ice f rom northwest Britain crossed the coast first, before ice 

sourced from the Cheviot/Tweed area flowed north to south down the coast (Teasdale & 

Hughes, 1999). The sediments and landforms related to the latter phase of ice flow suggest 

a surge lobe may have operated along this coast (Eyles et al., 1982; Catt, 1991a; Eyles et 

al., 1994; Evans et al., 1995; Teasdale & Hughes, 1999; Boulton & Hagdorn, 2006). This 

late-phase readvance of ice has been linked to Heinrich Event 1 forcing (McCabe et al., 

2005). The coast-parallel f low direction of the ice has also been linked to deflection of the 

BUS by Fennoscandian ice in the central North Sea (Boulton et al., 1991), but this remains 

contentious (Carr et al., 2006). Whitburn Bay (Figure 3.1) is therefore an important site as 
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it exposes both of the Blackhall and Horden members, and was a focal point for ice 

emanating f rom the Lake District, the Southern Uplands and the Cheviots. 
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Figure 3.1: Map to show location of sections investigated at Whitburn Bay. 

Trechmann (1915) was the first to propose the existence of two tills in County Durham 

(now called the Blackhall and Horden members; Thomas, 1999), where they cap the local 

Magnesian Limestone bedrock (Smith & Francis, 1967; Francis, 1972; Bridgland, 1999; 

Bridgland & Austin, 1999). However, there has been little quantitative description of these 

tills and no detailed analysis of their provenance, depositional processes, and type and style 

of deformation, leading to a severely limited understanding of ice-sheet dynamics and 

processes. In the lowlands of Sunderland and County Durham, large proglacial lakes were 

formed, trapped between east coast ice and the higher ground to the west. Extensive 

lacustrine clays, the 'Durham Member', were deposited in this lake (Smith, 1994). These 
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lakes may have had impacts on ice lobe response to climatic forcing and the stability of the 

ice lobes. 

Francis (1972) correlated the lower Blackhall Member with the Skipsea Member in the 

Holderness cliffs on the basis of stratigraphic position and lithology (Madgett & Catt, 

1978), the type locality of the L G M in Britain (Rose, 1985), where it overlies the 

Dimlington Silts, dated to 21350 - 22080 cal. yr. BP (Penny et al., 1969; Sejrup et al., 

2009). These correlations are not quantitative and are based on little empirical evidence 

beyond matrix colour, stratigraphic position and erratic content. The glaciofluvial Peterlee 

Sands (tabular sands and gravels) overlie the Blackhall Member and are in turn overlain by 

the Horden Member (Francis, 1972; Thomas, 1999). Catt and Penny (1966) proposed that 

the Horden and Blackhall members were deposited from the dirty basal parts of a 

contemporaneous, two-tiered (stacked) ice sheet, producing two separate tills. However, 

the Horden Member is more likely to be a basal t i l l f rom an ice sheet that overrode the 

Blackhall Member after the recession of Lake District ice (Beaumont, 1967). 

Detailed process-based research on Devensian glacigenic sediments further north in 

Northumberland (Eyles et al., 1982) identified t i l l sequences interpreted as lodgement t i l l 

complexes with 'shoestring channels' cut subglacially into the t i l l bed, often containing 

irregular debris masses. These were inferred to have originated from the glacier sole, 

dropping from the roof of the channel. Eyles et al. (1982) argued that variable palaeo-

discharges were the result of ponding episodes, possibly resulting from the closure of the 

channel downstream by ice or deformation of the t i l l bed. The tills and glaciofluvial 

sediments were all deposited during a single, complex episode of wet-based subglacial 

sedimentation (Eyles et al., 1982). 

Hence, there is substantial scope for new research to contribute to the understanding of 

ice sheet dynamics in the region during the Late Devensian. This work provides new 

empirical, quantitative data and detailed sedimentological analysis to critically test the 

proposed genesis of the tills, provenance models, regional stratigraphic correlations, and 

the interaction between the British and Fennoscandian ice sheets during the Late 

Devensian. This research aims to reconstruct the glacial processes operating during the 

Late Devensian at the northeast margin of the BUS, as typified in glacigenic sediments 

exposed at Whitburn Bay. Firstly, it uses macroscale and microscale lithofacies analysis to 

reconstruct the subglacial and ice-marginal processes, as well as patterns and phasing of 

flow occurring during ice sheet advance and recession. Secondly, the paper seeks to 
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determine the ice-flow pathways in the region, using lithological, palynological, heavy-

mineral and heavy-metal provenancing techniques. Thirdly, the paper considers the glacial 

land-system operating along the east coast during the L G M and evaluates the evidence for 

a surging ice lobe in the North Sea. Finally, the implications of this research for regional 

Quaternary stratigraphic correlations are considered. Two key testable hypotheses are 

tested. The first is that Whitburn Bay contains two separate tills, with the first recording ice 

advance through the Tyne Gap, with an ice accumulation area in the Lake District. The 

second hypothesis is that the second t i l l was deposited by the North Sea Lobe, sourced in 

the Cheviots and f lowing southwards along the eastern British coastline, and constrained to 

the east by Fennoscandian ice. 
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3.2 Sedimentology, Stratigraphy, and Lithological and 

Geochemical Data 

3.2.1 Site location and general description 

At Whitburn Bay (Figure 3.1), glacigenic sediments are well exposed above the Roker 

Formation Magnesian Limestone bedrock (Figure 3.2). Two lithofacies associations 

(LFAs) are identified as superimposed lower (LFA 1) and upper (LFA 2) diamictons, 

separated by a boulder pavement. Incised into LFA 2 is a laminated sand and clay facies 

(LF 2b), rippled sand, and bedded coarse sand and gravel (LF 2c). The presence of two 

distinct tills supports interpretations by Francis (1972), but the stratigraphy crucially differs 

in relation to the Peterlee Sands, as in the glaciofluvial sediments are considerably more 

variable and complex than previously presented. Instead of the planar outwash described 

by Francis (1972), sands and gravels exist as discrete channels within LFA 2. 

3.2.2 Lithofacies Association 1: massive, matrix-supported diamicton 

Macroscale Sedimentology 

L F A 1, the lower diamicton, is inconsistently exposed at Whitburn Bay (Figure 3.2 

and Figure 3.3). It is a yellowish brown (10YR 4/4), matrix-supported, over-consolidated, 

diamicton with abundant fine to coarse gravel and cobbles. The upper contact is sharp and 

unconformable. The diamicton incorporates faceted and striated clasts of both local and 

far-travelled provenance, such as limestones, sandstones, granites, andesites, rhyolites and 

quartz. In places, the diamicton is fissile and faintly stratified. Clast macro-fabrics show a 

moderately strong, clustering around the S| axis of 0.6 f rom north-west to southeast, with a 

low dip angle to the southeast. A boulder pavement is occurs at the top of LFA 1. 
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The Boulder Pavement 

The boulder pavement occurs consistently at the top of L F A 1 and is laterally 

extensive across Whitburn Bay. It consists of well faceted, striated boulders up to 50 cm 

diameter (Figure 3.3), predominantly of Carboniferous Limestone, Magnesian Limestone 

and sandstone. The spacing between the boulders here ranges f rom a few centimetres up to 

60 cm. In between and above the boulders there are channelised, massive, poorly sorted 

gravels with a sharp, undulating lower contact. The mean dip direction of the boulders is 

141° and the mean dip is 08.5°. Multiple measurements on many of the boulders indicate a 

consistent and strong striae orientation f rom north-north-east to south-south-west. These 

overprint fainter and less numerous striae orientated from north-west to southeast. 

Boulders lodged below the pavement into LFA 1 have numerous and well-clustered striae 

orientated f rom north-west to southeast (Figure 3.3). 

s N 

L i tho fac ies 2 
Si = 0.603 

Boulder pavement 
Si = 0.715 

Boulder pavement 
striae 

L i tho fac ies 1 L f a 
Si = 0.607 

Li thotac ies 1 
Boulders striae 

i - i . r-<l - i J t _ 
Figure 3.3 Photograph of Lithofacies Associations 1 and 2 and the boulder pavement in Section 1, 
Whitburn Bay. The trowel is 20 cm long. 
L F A 1 is a matrix-supported diamicton, with a boulder pavement at the top. The boulders are striated. 
The diamicton is clast-rich and is 60 cm thick. It is a dark yellowish brown (10YR 4/4), it is fissile and 
it is faintly stratified. It has an unconformable upper contact. Clast fabric: S| = 0.607; S 3 = 0.072; V t = 
149°. 
L F 2a is a clast-poor diamicton with coal, Carboniferous Limestone and sandstone gravel. It has a 
sandy texture and is a dark greyish brown (10YR 4/3). L F 2a clast fabric: Si = 0.603; S 3 = 0.098; V, = 
164°. 

M icromorphology 

In thin section, LFA 1 is a light brown, matrix-supported, massive diamicton of even 

density (Table 3.1). Rotational structures and Type I I Pebbles are common, and there is a 
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strong skelsepic plasmic fabric. The skeleton grains are poorly sorted. Larger skeleton 

grains exhibit edge rounding, while smaller grains are generally angular. Elongated grains 

are commonly lineated and aligned. The plasmic fabric is very localised and patchy, with a 

strong skelsepic plasmic fabric around skeleton grains (Table 3.1). 

Sample 1-3, which crosses the contact between LFA 1 and LFA 2 in Section 1 (Figure 

3.4), is a brown, silty, matrix-supported diamicton, divided by a deformed, folded bed of 

clast-supported skeleton grains, with sharp contacts dissected by micro-scale water-escape 

structures. There are rare microfossils, possibly originating f rom the limestone clasts 

present. The sample exhibits well-developed rotational structures with associated pressure 

shadows, lineations of aligned elongate skeleton grains, and rounded Type I I and I I I 

Pebbles (van der Meer, 1993). These intraclasts are coherent, well rounded, and display no 

intergranular disintegration or stringers. Small numbers of crushed grains and necking 

structures between grains are also apparent (cf. Menzies, 2000; Table 3.1). Microfabric 

analysis indicates a strong degree of alignment of skeleton grains. There is a strongly 

developed bimasepic and skelsepic plasmic fabric where clay-sized matrix material is 

abundant. 
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Figure 3.4: Photograph, photomicrographs, and sketch of thin section Sample la-3, taken from the 
boundary between L F A s 1 and 2 in Section 1. 
Photograph A: L F A 1 and L F A 2 in thin section are separated by a bed of clast-supported sand. 
Extensive deformation and mixing can be seen between the two diamictons. On a microscopic scale, 
folded and strongly deformed sand laminations show stringer initiation into the diamicton. Boudinage 
structures are associated with this. 
Photograph B: Sand-filled hydrofracture with sharp, erosive contacts cuts across a matrix-supported 
diamicton. 
Photograph C : Graded sand lamination with rotations and reworked silt pebbles. 
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3.2.3 Lithofacies Association 2: Massive, matrix-supported diamicton, 
with coarse sands and gravels, and laminated sand and clay. 

L F A 2 is an association of several different lithofacies, including a dark brown, 

matrix-supported diamicton with abundant fine gravel but rare coarse gravel (LF 2a; Figure 

3.3; Table 3.2), pipe-injection structures (Figure 3.5), several different facies of laminated 

sand and clay bodies nested within the diamicton (LF 2b), and coarse sand and gravel 

facies (LF 2c and LF 2d). 

LF 2a: Diamicton facies 

The general characteristics of the diamicton are the rare coarse gravel clasts, ranging 

from subangular to angular, and which are faceted and striated, and clast macro-fabrics 

indicating a moderate to strong clustering of a-axes from north-north-east to south-south

west and north-east to south-west. LF 2a is a dark brown colour (10YR 3/3), and contains 

far-travelled erratics (Table 3.3). In some places, the two diamictons (LFA 1 and LF 2a) 

are exposed in superposition (Figure 3.2), but in others, LF 2a overlies either bedrock or 

sands and gravels. In Section 2a, pipe structures are exposed (Figure 3.5). The injection 

structures are similar in colour to LFA 1; they occur repeatedly along Whitburn Bay and 

appear to be associated in particular with the laminated sands (Figure 3.2). 

In Section 10 three facies are exposed (Figure 3.2). Firstly, a coarse, poorly sorted 

sand and gravel rests directly on soft, dolomitised bedrock (LF 2c; Figure 3.6A). This is 

unconformably overlain by a clast-rich, massive, dark yellowish brown (10YR 3/3) 

diamicton (LF 2a). The diamicton is truncated by a coarse, poorly sorted sand and gravel, 

with a convex, undulating base (LF 2c; Figure 3.6A). Above this facies, coal grains pick 

out planar laminated fine sands and sand-silt couplets (LF 2b). Beds 5 and 6, Section 10, 

are laminated sands and silts deformed by dewatering, loading-style soft-sediment 

deformation such as flame and ball and pillow structures. Bed 7 above incorporates 

extended climbing Type A Ripples (Allen, 1963, 1982; Evans & Benn, 2004). Within these 

sands is a small, lenticular, detached diamicton block, surrounded by flame, ball and pillow 

and other dewatering structures. This is overlain by planar laminated sand and clay (LF 2b; 

Figure 3.6A), truncated by the overlying, dark brown diamicton (LF 2a). This diamicton is 

clast-poor, dark brown, and massive. 
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W 
Figure 3.5: Photograph of pipe structures in Section 2a. 
L F l a is a massive diamicton, coloured 1 0 Y R 5/2. It is gravel-rich and has a sharp, erosive upper 
contact. It rests directly on Magnesian Limestone bedrock. 
L F 2a is a massive, gravel-poor, silty diamicton coloured 1 0 Y R 3/3. Granite, Carboniferous Limestone 
and coal are common, ( lasts are striated and faceted. Within L F 2a, pipe structures have been 
intruded upwards from L F A 1. These have a sandy texture, and are overturned to the south ( 1 8 0 ° ) . 
They are coloured 1 0 Y R 5/3. 
L F 2b comprises thinly cross-bedded, well-sorted, fine sands. 

LF 2a: Micromorphology 

L F 2a is a dense, dark brown diamicton, with a small number of sub-rounded to 

rounded, matrix-supported skeleton grains, predominantly in the fine sand to silt size 

fraction (Table 3). Sample 10 (Figure 3.6) shows a highly variable structure. The limestone 
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bedrock has been drawn up into the diamicton forming a stringer structure, and matrix 

material has been squeezed downwards into the limestone. Numerous smaller angular 

flakes and coal grains are evenly distributed across the slide. Aligned clay particles along 

the boundary of the diamicton and bedrock indicate shearing (Table 4.2; Figure 3.6). There 

is a strong presence of rotational structures, Type I I pebbles, and a strong skelsepic and 

masepic plasmic fabric. 

LF 2b: Rippled and laminated sand and clay facies 

The nested lenses of sands within L F A 2 include sequences of laterally variable, 

laminated, draped-rippled and deformed sands and clays (Figure 3.2). Although each 

channel f i l l has a unique sedimentary signature, they consistently have closed edges and 

flat tops, and generally consist of discrete inter-laminated sand and clay beds that have 

undergone varying degrees of soft sediment loading and dewatering deformation (cf. Mil ls , 

1983). In a number of locations, channel walls have partly disintegrated, dropping 

diamicton fragments into the channels. 

Typical characteristics include Type A climbing ripples, overlain by alternating sand 

and clay planar laminations, often deformed by soft-sediment deformation. In Section 9d, 

there is a diamicton (LFA 1) with a boulder pavement at its top, resting on Magnesian 

Limestone bedrock (Figure 3.7). A rippled sand bed (Type A Ripples, Allen, 1963) with a 

scoured lower contact and a gravel lag near the base overlies this (LF 2b). The sand is 

heavily deformed with convoluted bedding and recumbent folds overturned towards the 

south. Type A climbing ripples above this deformed bed grade conformably into a massive 

sand. The interbedded sand and clay above this is strongly deformed: the clay beds have 

been folded and the sands show extensive evidence of dewatering with flames and ball and 

pillow structures. This is overlain by a planar laminated sand and clay bed, which is 

capped by a sandy, massive diamicton (LF 2a) with an erosive, sharp lower contact. 

Adjacent sections exhibit repeated changes between planar laminated bedded sands, 

interlaminated sand and clay couplets, and Type B climbing ripples (Allen, 1963) with 

ripple drapes. 
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Figure 3.6: Photograph of Section 10 with thin section and photomicrographs of Sample 10, taken 
from the basal diamicton of Section 10. The slide shows characteristic, strongly birefringent plasmic 
fabric, Type II Pebbles, lineations of clasts, rotational structures and grain stacking, indicative of 
ductile deformation in a high strain environment. 
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Figure 3.7: Vertical profiles of Section 9. 
Section 9a begins with 20 cm of coarse, poorly sorted sand (10YR 4/3) resting on bedrock, which 

is overlain by 75 cm of planar laminated sand and clay (10YR 3/4) with a sharp lower contact. These 
conformably grade into Type A climbing ripples. The ripples are unconformably overlain by a matrix 
supported, massive diamicton (10YR 4/4; L F 2a). This is overlain by Type B clay draped-ripples and 
then by planar bedded sand and clay ( L F 2b). 

Section 9b has a well-sorted, fine, laminated sand ( L F 2b) at the base, which is overlain by a well-
sorted sand with ball and pillow and flame structures. Embedded within this is a diamicton with sharp, 
scoured contacts. It is overlain by ripple and planar laminated fine sand and clay. 

Section 9c starts with a strongly deformed, fine, well sorted sand, overlain by a massive fine sand 
and then by a clast rich diamicton with sharp, erosive contacts. This is overlain by 0.5 m of laminated 
sand and clay. 

Section 9d starts with a massive, over-consolidated gravel-rich diamicton ( L F 2a). This contains 
stringers emanating from the Magnesian limestone bedrock. It is overlain directly and unconformably 
by heavily deformed sand with a sharp, scoured lower contact, and features recumbent folds, 
overfolds, and convolute lamination ( L F 2b). This is overlain by Type A climbing ripples, and then by 
more strongly deformed sand. This grades into a planar laminated sand. 

In Section 9d, Bed 3, clay and sand laminations are strongly folded and anastomosed into 
overfolds and recumbent folds. Bed 4 consists of planar laminated sand and clay, with a sharp, erosive 
lower contact. L F 2a, a dark brown, massive, gravel-poor diamicton caps the sequence. 

LF 2b: Micromorphology 

Thin-section analysis of the interiaminated channel fills (LF 2b) shows both primary 

sedimentary structures and secondary deformation. Samples 9a-1 and 9a-2 (from Beds 1 
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and 2 of Section 9a, Figure 3.7) show a predominance of thinly bedded sands. The well-

sorted fine sand skeleton grains, with rare larger coal grains, are mostly clast supported, 

and are predominantly sub-angular to angular. Matrix material is largely absent apart f rom 

in small, localised patches distributed across the slides (Table 3.1). Elongate grains are 

aligned sub-parallel with each other. 

Sample 9a-4, f rom Bed 4, has macroscopic, upward-fining, sand and silt-clay 

laminations, is normally faulted, and has recumbent folds (Figure 3.8). The moderately 

sorted sand laminations are clast supported. Skeleton grains are sub-rounded to sub-

angular, with rare larger grains including sandstone, limestone, and fossiliferous coal. The 

inversely graded coarse laminations have sharp contacts, and contain thin lenses of 

masepic plasmic fabric. In contrast, the normally-graded fine sand and silt laminations are 

matrix-supported, with graded basal contacts. Within the fine clay laminations, there are 

rip-up clasts and numerous water-escape structures (Figure 3.8). 
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Figure 3.8: Photomicrograph of deformed bedding in thin section sample 9a-5, demonstrating strong 
masepic plasmic fabric development, which is highlighted on the sketch. 

In Section 2 (Figure 3.2), a channel incises into the underlying diamicton (LFA 1). 

The interlaminated sands and silts (LF 2b) within the channel are heavily deformed, and a 

series of recumbent folds are overturned to the south. A thin-section sample taken f rom 

one recumbent fold (axis c. 070°) demonstrates polyphase brittle and ductile deformation 

(Figure 3.9). The primary planar- and ripple-cross laminations are normally graded. Some 

masepic plasmic fabric development is apparent sub-parallel to the bedding. The sequence 
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is compressively folded f rom a northerly direction and then crosscut by two phases of 

normal faults, which have triggered water escape structures that have pierced the clay 

laminae and caused fluidisation of the coarser sand laminae (Figure 3.9). 
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Figure 3.9: Microfaults and water escape structures relating to overfolding in Section 2b. 
Primary sedimentary lamination (graded bedding with planar and ripple cross lamination). 
Compaction causes masepic plasmic fabric development sub-parallel to bedding. Compression from 
the north caused overfolding, with the offset nature of the faults being conjugate, indicating vertical 
compression. Faulting has been accompanied by liquidisation of sands and water escape. 

LF 2c: Coarse sand and gravels 

There are channels exposed in Sections 6, 7 and 10, where a channelised, coarse, 

poorly sorted, bedded sand and gravel is well exposed (Figure 3.2). For example, the 

incised gravel bed in Section 7 exposes a well-sorted, planar-bedded, cobble gravel, with a 

sharp, erosive, undulating bottom contact, and a flat top contact. 

LF 2d: Clastic dyke fades 

Numerous medium to coarse, clast-supported gravel dykes with sharp, erosive contacts 

vertically dissect the diamicton (LF 2a) in Section 5 (Figure 3.10). Smaller dykes occur as 

branched offshoots from the larger dykes (LF 2d). The clastic dykes have clear-cut, sharply 
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erosive boundaries. Juxtaposed to the coarse gravels is an in f i l l of fine, calcreted, thinly 

bedded sands (LF 2b), which are strongly deformed and contorted. These dykes transform 

laterally into sub-vertically orientated crudely bedded gravel strata (LF 2d), which fan out 

into the overlying diamicton (LF 2a). The lithologies of LF 2d are similar to those of the 

underlying L F 2a, with Magnesian Limestone the most abundant lithology. Intraclasts of 

diamicton occur within LF 2d. 
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Slumped and overgrown LF2b 

LF2a 
a; 

LF2d 
LF2d 
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Figure 3.10: Photographs of Section 5. 

L F 2a: Massive, matrix-supported diamicton, 10YR 3/3, dark brown. Gravel-poor. Unconformable, 
sharp contacts with L F 2d. 
LF 2d: Coarse, massive, poorly-sorted, clast-supported gravel dyke. Coarsest gravel in the centre. 
Gravel is sub-angular to angular. Sharp, erosive, unconformable contacts. Interbedded with 
horizontally bedded, calcreted, strongly deformed and contorted fine sand. Yellowish-brown colour 
(10YR5/4). 
Fans out into Planar-bedded, coarse sand and gravel, matrix-supported. 
LF 2b: Planar-bedded, well-sorted, coarse sand. Fines upwards into well-sorted fine sand and clay. 
Pebble lag at base. 
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3.3 Lithological, Geochemical and Biological Analysis 

3.3.1 Lithological Analysis 

Three bulk samples (from Sections 1, 2, and the pipes in 2) and two gravel samples 

(from Sections 1 and 2) were analysed from LFA 1. LFA 1 is a diamicton with high 

percentages of sand (Table 3.2). The samples reacted vigorously to 10 % hydrochloric 

acid. Four bulk samples f rom sections 1, 2, 4, and 10, and three handpicked clast samples 

from sections 1, 2 and 10 were taken from L F 2a. Both LFA 1 and LF 2a have similar 

particle-size distributions (Table 3.2). LF 2a has a weak to moderate reaction to 

hydrochloric acid. The fine laminated sand facies of LF 2b was sampled in Section 9a. It is 

a yellowish-brown, well-sorted sand (Table 3.2) that reacts vigorously to HC1. 

Table 3.2: Average particle size distribution. For detailed PSA, see Appendix IV. 

LFA 1 L F 2a L F 2b 
% Gravel 
% Sand 
% Silt 
% Clay 

11.82 11.76 0.00 
18.36 17.37 17.60 
39.10 38.88 72.50 
30.70 33.99 9.90 

Clast Lithological Analysis 

Magnesian Limestone dominates LFA 1 (Table 3.3) with 48.5 % of the clasts, and 

Carboniferous Limestone is present in smaller amounts (12.6 % ) . There are also relatively 

low amounts of Whin Sill dolerite erratics (0.8 % ) , and very low amounts of quartzite 

(1.6 % ) , andesite (0.5 % ) and porphyries (0.2 % ) . Other erratics within LFA 1 include Old 

Red Sandstone (0.7 % ) , greywackes (7.6 % ) , and coal (1.6 %; Table 4.3). Notably, there is 

a lack of distinctive Lake District erratics and granites (cf. Francis 1972). For raw data, 

refer to Appendix IV. 

LF 2a is poorer in Magnesian Limestone (33.1 % ) and richer in Carboniferous 

Limestone (18.1 %) than LFA 1 (Table 3.3). There are slightly higher percentages of 

igneous clasts present, including pink porphyries (0.8 % ) , rhyolites (0.8 %) and granites 

(0.2 % ) , typical of the Cheviots region (see Chapter 2), schist typical of the Scottish 

Highlands, and Whin Sill dolerite (2.0 % ) , a local Permian igneous lithology. 
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Table 3.3: Average Clast lithology results from Whitburn Bay, 8-32 mm. Sandstones are distinguished 
on their quartz, feldspar and arenite content. For detailed raw counts, refer to Appendix IV. 

Clast Lithology L F A 1 
Average % 

L F 2a 
Average % 

Diorite 0.00 0.20 
Granite 0.00 0.21 
Gabbro 0.00 0.20 

Igneous Rhyolite 0.00 0.82 
Andesite 0.51 0.72 
Porphyry 0.17 0.83 
Felsite 0.00 0.17 

Metamorphic Slate 
Schist 

0.00 
0.00 

0.49 
0.75 

Sandstone 10.59 12.09 
Sandstone Arenite Sandstone 0.68 1.55 

and Quartzitic Sandstone 8.05 6.11 
Sedimentary Siltstone 0.16 0.70 

Breccia 0.16 0.00 

Jurassic Ironstone 
Mudstone 

1.57 
0.80 

1.76 
2.11 

Brown Orthoquartzite 1.05 0.61 

Trlasslc Red Orthoquartzite 0.17 0.74 Trlasslc 
White Orthoquartzite 0.35 0.37 
White Vein Quartz 0.00 0.43 
Magnesian Limestone 48.46 33.10 

Permian Yellow Sands 1.54 2.79 
Whin Sill Dolerite 0.83 1.97 

Carboniferous Carboniferous Limestone 
Coal 

12.55 
1.63 

18.12 
1.72 

Chert 0.19 0.57 
Devonian Old Red Sandstone 0.67 0.66 

Shale 0.00 0.17 
Ordoviclan Arkose Sandstone 2.25 2.36 
and Silurian Greywacke 7.61 5.63 

Total (n) 512 1073 

Heavy Mineral Analysis 

The most prominent heavy mineral in LFA 1 is dolomite (excluded from Table 3.4 due 

to strong skew). The far-travelled suite constitutes an abundance of medium-grade 

metamorphic minerals such as clinozoisite (14.6 % ) , andalusite (9.7 % ) , kyanite (9.6 % ) , 

garnet (16.6 % ) and olivine (5.6 % ) . Biotite (1.8 %) and tourmaline (3.5 % ) , common in 

many igneous rocks, are also present (Table 3.4). 

The heavy-mineral suite of LF 2a has significant amounts of clinopyroxenes (4.68 %) 

and kyanite (8.8 % ) , and small amounts of rutile (2.3 %) and baryte (0.2 % ) , differentiating 

L F 2a from LFA 1 (Table 3.4). Detrital rutile is sourced f rom high grade, regionally 

metamorphosed terranes or sediments, while amphiboles are likely to be sourced f rom 
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various crystalline bedrock types. L F 2b is comparatively rich in igneous or high-grade 

metamorphic minerals, such as clinopyroxenes (5.9 % ) , rutile (2.9 % ) and amphiboles 

(2.9 % ; Table 3.4). 

Table 3.4: Average Heavy Minerals (percent non-opaques) in glacial deposits at Whitburn Bay 
(excluding carbonates due to strong skew). Combined results of multiple samples. For raw mineral 
counts, refer to Appendix IV. 

SAMPLE LFA 1 L F 2a L F 2b 
n 3902 669 1528 
% Opaques 76.22 69.91 84.26 
% Non Opaques 23.78 30.09 15.74 
% Heavy Minerals 2.37 8.28 13.82 
Olivine Group 5.54 3.77 5.02 
Zircon 3.72 5.69 9.62 
Sphene 1.56 1.62 1.67 
Garnet Group 16.57 18.59 25.52 

Silicate Sillimanite 0.45 3.24 0.00 
group Andalusite 9.70 9.71 3.35 

Kyanite 9.61 8.78 4.18 
Staurolite 1.83 2.77 0.42 
Chloritoid 0.22 0.62 0.00 
Tourmaline Group 3.50 2.90 8.37 

Epidote Zoisite / clinozoisite 14.61 7.80 5.86 
group Epidote 2.35 2.58 0.84 

Enstatite 2.47 1.01 2.51 
Pyroxene Hypersthene 0.21 0.09 1.26 

group Diopsidic Clinopyroxene 1.85 3.14 4.18 
Augitic Clinopyroxene 0.87 1.54 1.67 

Amphibole 
group 

Tremolite 
Actinolite 

0.54 
0.31 

0.00 
0.00 

0.00 
0.00 

Amphibole 
group 

Hornblende 0.57 0.77 2.93 
Muscovite 9.16 11.63 5.44 

Mica group Biotite 1.77 2.37 0.84 
Chlorite Group 5.68 2.87 5.02 
Rutile 0.63 2.30 2.93 

Oxides Brookite 0.56 1.02 1.67 Oxides 
Spinel Group 0.23 0.61 0.00 
Anatase 0.17 0.35 0.00 

Sulphates Baryte 0.31 0.19 0.00 
Sulphides Sphalerite 0.00 0.00 0.42 

Phosphates Apatite 5.01 4.04 6.28 

Geochemical Analysis 

Metals analysis of the matrix by ICP-MS indicates that L F A 1 is high in silicon, 

sodium, magnesium, aluminium, potassium, calcium, iron, manganese and titanium (Table 

3.5). ICP-MS reveals that LFA 1 and LF 2a have similar elemental compositions. The 
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metals suite of L F 2b has noticeably higher proportions of magnesium and calcium than 

the diamicton samples (Table 3.5). 

Table 3.5: Average Heavy Metals results at Whitburn Bay 

Element 
Lithofacies 

(average concentration mg/kg) Element 
L F A 1 L F 2a L F 2b 

L l 7 
59 68 41 

B e 9 2 2 1 
B11 51 67 41 

S i 1 4 
278688 301196 31 

Na 2 3 3823 4375 3650 

Mg 2 4 
1708 1525 3400 

A l 2 7 
29600 32475 18900 

K39 11550 11725 13100 
Ca44 17475 15800 30600 

Ti48 3763 4365 3070 

V51 76 88 53 

C r 5 2 75 87 50 
F e 5 7 31775 35200 24800 
Mn 5 5 389 529 595 
C059 14 15 10 

Ni 6 0 
39 45 28 

C u 6 3 
22 26 17 

Z n 6 6 62 51 44 

A s 7 5 
8 8 8 

Mo 9 8 5 7 2 

Agio? 1 2 1 
S b 1 2 3 0 0 0 
Bai37 337 351 404 

Pbzoe 19.25 22.75 23 

Principal Components Analysis 

A comparison of LFA 1 and LF 2a (Table 3.3) shows that locally sourced, non-durable 

lithologies dominate L F A 1, whereas LF 2a has a larger component of far-travelled and 

igneous erratics (Figure 3.11). Most of the variation could be accounted for by variation 

between the crystalline, Permian and Carboniferous groups, which have strong correlation 

indices. On a ternary plot of these three variables (Figure 3.11), the two diamicton 

lithofacies are well differentiated, with sample WH14, from Section 10, in between. A 

PCA on both the correlation and the covariance matrices replicates this result. The low 
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percentages of crystalline rocks and high percentages of Permian rocks are the main factors 

differentiating LFA 1 f rom LF 2a. A correlation PCA (Figure 3.11) on the total metals 

suite fails to distinguish the three lithofacies and indicates strong within-ti l l heterogeneity. 

Sample WH13 from the sands and sample WH07 from LFA 1 show consistent differences 

to the other samples. 

3.3.2 Biostratigraphy 

Palynological analysis indicates that abundant wood fragments and well-preserved 

palynomorphs are present, with lower proportions of non-woody plant tissue (Riding, 

2007). The palynomorphs are dominated by the long-ranging Carboniferous spores 

Densosporites and Lycospora pusilla. Lower numbers of Endosporites globiformis, 

Florinites spp., and Radiizonates spp., were also present, and are indicative of the 

Westphalian (Smith & Butterworth, 1967). Tripartites trilinguis and Tripartites vestustus 

suggest some Namurian input, possibly f rom the Newcastle coalfield. 
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3.4 Interpretation 

3.4.1 Lithofacies Association 1 

Subglacial traction till 

LFA 1 has the macro-scale characteristics of a subglacial traction t i l l (Evans et al., 

2006). These include striated, exotic, faceted clasts, far-travelled heavy minerals, an over-

consolidated, matrix-supported structure, and clustered clast macro-fabrics (Benn & Evans, 

1998; Evans et al., 2006). The micromorphological analysis also supports an interpretation 

of LFA 1 as a subglacial traction t i l l . Associations of rotational structures, rounded Type I I 

and I I I pebbles, grain lineations, masepic plasmic fabrics and skelsepic plasmic fabrics 

denote ductile deformation (van der Meer, 1997; Hiemstra & Rijsdijk, 2003) and grain 

rotation in a t i l l matrix (van der Meer, 1997; Nelson et al., 2005). The rotation of skeleton 

grains has caused preferential alignment of clay particles (Roberts & Hart, 2005), through 

the transmission of stress perpendicular to the particle edges. Crushed grains imply high 

stress, low strain conditions in a brittle environment (Menzies et al., 2006). The 

combination of both brittle and ductile deformation structures suggests polyphase 

deformation. The common rotational structures, and the lack of f low, marbling and tile 

structures, preclude a genesis by mass movement or debris f low (Lachniet et al., 2001; 

Menzies & Zaniewski, 2003). Sample 1-3 (Section 1, Figure 3.5) shows where LFA 2 was 

emplaced over LFA I . The two varieties of masepic (bimasepic) plasmic fabric indicate 

strong shear in two directions. The numerous soft sediment clasts indicate cannibalisation 

of pre-existing sediments. 

LFA 1 is thus interpreted as a terrestrial subglacial traction t i l l with evidence for both 

lodgement and deformation, which varied spatially throughout Whitburn Bay. The striated 

clasts with aligned long axes and the boulder pavement in Section 1 are indicative of 

lodgement (Menzies et al., 2006). In contrast, L F A 1 in other sections (e.g. 2a, 3, and 10) 

at Whitburn Bay demonstrates structures indicative of extensional deformation, such as 

stringer initiation, weak clast macro-fabrics, massive, homogenous diamictons, and 

micromorphological evidence of extensive ductile deformation. 

The Boulder Pavement 
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The boulder pavement occurs at the top of L F A 1. Striae and clast macro-fabrics are 

north-easterly orientated, consistent with fabric evidence from LF 2a, indicating that the 

second phase of ice f low directly overrode the boulders. There are several competing 

theories for boulder pavement formation, ranging f rom lodgement (Boulton & Paul, 1976), 

deformation with formation by the sinking of clasts through the deforming layer (Clark, 

1991; van der Wateren, 1999; Glasser et ai, 2001), and a continuum between deformation, 

meltout and lodgement with subsequent extensive abrasion, truncating and striating the 

upper surfaces (Hicock, 1991). Boulton (1996) maintained that during erosion of the t i l l 

down to the A/B interface, dense clasts, on being exposed, resist being drawn into glacier 

f low and remain immediately above the A/B interface, concentrating larger clasts f rom the 

mobilised t i l l . J0rgensen and Piotrowski (2003) argued that a boulder pavement is an 

erosional surface, indicating truncation and removal of underlying sediments. Lodgement 

and extensive abrasion at the sole of the ice sheet truncates, orientates and striates the 

upper surfaces of boulder pavements. 

A simple erosional mechanism best explains the boulder pavement at Whitburn Bay 

(Figure 3.12). As the boulders are orientated, planated, and striated strongly in one 

direction, it is unlikely that they have sunk through the deforming layer, as this would have 

led to multiple striae directions and to rotation of clasts (J0rgensen & Piotrowski, 2003). 

The clustering of the boulders at one level suggests that they are some sort of lag deposit. 

This may be the result of the down-ice removal of t i l l matrix by ice, leaving a boulder lag, 

or the result of meltwater activity at the ice/bed interface, which removed the matrix to 

leave a lag of coarser material. Crudely stratified and sorted sand and gravel lenses and 

channels within the pavement point to a surplus of meltwater at the ice/bed interface, 

which would support this latter hypothesis. The boulders were lodged into the deforming 

substrate as ice began to f low north-north-east to south-south-west, causing planation and 

striation before eventual burial by further t i l l accretion (LF 2a). The strong unimodal 

orientation of the clast long axes supports this. This model suggests abundant meltwater at 

the ice/bed interface, perhaps during the quiescence of the first f low phase, and before the 

second phase of ice f lowing northeast to southwest, which planated and striated the boulder 

pavement, and deposited LF 2a. 
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3.4.2 Lithofacies Association 2 

LF 2a: Subglacial Traction Till 

Faceted, striated, exotic clasts and the over-consolidated nature of the diamicton, 

indicate that LF 2a is also a subglacial traction t i l l (Evans et al., 2006). The variable 

localised incorporation of LFA 1 indicates that extensive deformation has homogenised 

and mixed the two tills. A PCA of the heavy mineral content shows strong inter-sample 

heterogeneity, but no dichotomy between the diamictons (Figure 3.11). The failure of this 

method to discriminate between the lithofacies could be a result of the small sample 

numbers, as this can create an artificially high skew. 

Clast macro-fabrics and striae are poorly clustered, but indicate general ice movement 

f rom the north-north-east. The low and variable S| values f rom the clast macro-fabrics 

could suggest extensive deformation (cf. Evans et al., 2006), possibly driven by fluctuating 

subglacial conditions and water pressure. Hart (2007) argued that weak clast macro-fabric 

strengths reflect clast interaction and a dominance of deformation and rotation, and 

furthermore that large grain size and low sorting emphasises rotation, leading to low clast 

macro-fabric strength in subglacial diamictons. Others argue that soft, water saturated 

sediments such as LF 2a behave as Coulomb plastic materials (Larsen & Piotrowski, 

2003). Clasts become aligned parallel to the shear direction when exposed to high strain 

rates, giving a high fabric strength. Weak fabrics are therefore associated with low shear 

strains (Hooyer & Iverson, 2000; Larsen & Piotrowski, 2003). Larsen & Piotrowski (2003) 

argued that strong clast macro-fabrics only develop under conditions of strain homogeneity 

and uniform local conditions. The weak and variable clast macro-fabrics at Whitburn Bay 

therefore reflect heterogeneity in strain, water content, and t i l l rheology. 

In Section 2a, the overturned pipe structures are evidence of the squeezing of the soft, 

saturated LFA 1 into LF 2a under a high ice overburden pressure (Figure 3.13). They are 

overturned towards the southeast, supporting this direction of ice f low. These features have 

a low preservation potential, and are unlikely to have survived the process of lodgement 

(Nelson et al., 2005), suggesting that they postdate the deposition of LFA 2. In all, the 

highly variable and often weak clast macro-fabric strengths, as well as the preservation of 

the pipe structures and canal f i l ls , suggest a low strain deformation signature within LFA 2 

(cf. Evans et al., 2006). They may have formed contemporaneously with t i l l accretion of 

L F 2a. As LFA 1 became buried by an increasingly thick layer of sediment, sealing the 
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lower hydraulic pathways and increasing overburden pressure, and the deforming layer 

moved upwards (the ' A Horizon), the lower non-dilated 'B Horizon' would have 

undergone little deformation, despite ongoing ice movement and t i l l deformation in the ' A 

Horizon' above (cf. Boulton & Hindmarsh, 1987). The pipes would have formed in 

saturated, confined conditions and could have experienced little deformation. 

Micromorphological analysis of LFA 2 reveals numerous micro-scale deformational 

structures, such as circular structures with associated skelsepic fabrics, associated with 

aligned grains and grain lineations (Table 3.3). Elongate grains near the shear plane have 

rotated until they are aligned plane-parallel. Crushed grains and strong masepic plasmic 

fabrics indicate pervasive strain and high pressure. These features are indicative of 

subglacial deposition and deformation (van der Meer, 1997; Carr, 2001). Thin section 10 

shows in detail the junction of LF 2a with the underlying bedrock, and further supports a 

subglacial t i l l interpretation, based on the strong presence of circular structures, crushed 

grains, Type I I pebbles, and a strong plasmic fabric (Figure 3.6). The bedrock has been 

entrained into the t i l l with evidence of stringer formation and cannibalisation of the lower 

soft, dolomitic limestone. 

LF 2b and 2c: Nested Nye channels 

The isolated channelised forms, with concave-up bases and flat tops, and the strong 

variation in height of these channels, preclude a proglacial origin. Distal proglacial sandur 

systems are characterised by trough cross-bedded, cyclic fining-upward sequences of 

gravels, sands and silts with slip face migration of longitudinal and linguoid braid bars. 

This gives rise to planar cross-beds, with abundant ripple-drift and cross-lamination 

(Maizels, 1995). Distal proglacial outwash sediments typically exhibit megaripple 

migration on point-bar surfaces, producing large-scale trough cross-beds. The lack of bars, 

dunes and tabular bedding in the Whitburn channel systems suggests that they are 

subglacial glaciofluvial sediments (Collinson, 1986). They are a low energy subglacial 

braided canal network, as defined by Walder and Fowler (1994), which was active beneath 

the ice sheet that formed the traction tills. The channels formed at the ice-bed interface, 

and were later buried by t i l l accretion. This interpretation is in agreement with previous 

process-based research further north in Northumberland (Eyles et ai, 1982). 

This type of distributed subglacial drainage system is inefficient, and can result in low 

energy flows and ponding beneath the ice sheet. These systems operate when pore-water 
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flow cannot evacuate all the excess water in the system (Benn & Evans, 1996). Such 

systems have long been recognised in the geological record as broad lenses of sorted 

sediment within the tills with concave-up lower contacts and nearly planar upper contacts 

(e.g. Dreimanis et al., 1986; Shaw, 1987; Lunkka, 1994). Englacial conduits rarely extend 

further than 200 m into the ice sheet (Fountain & Walder, 1998; Piotrowski et al., 2006), 

indicating that the sequence at Whitburn Bay formed in a submarginal environment. 

Ductile deformation, despite the high drainage capacity of the bed, would therefore have 

occurred close to the ice margin under low cryostatic pressures. 

Swift et al. (2002) argued that seasonal reorganisation of subglacial drainage can 

occur beneath many temperate and polythermal glaciers, resulting in distributed and 

channelised configurations, with the development of a hydraulically efficient, channelised 

subglacial drainage system during the ablation season. This would involve higher-pressure, 

channelised, faster f lowing canals (such as LF 2c; Section 7) and slower moving, lower 

energy, distributed drainage systems (such as LF 2b; Section 9) evolving (perhaps 

seasonally) throughout the year. These lower energy channels also demonstrate flow 

variability at smaller scales, with evidence of periodic quiescence and ponding, as well as 

periods of faster f low, demonstrated by the juxtaposition of Type A and B ripples, planar 

lamination and clay drapes, which represent alternations of fast flow and suspension 

settling under low- or no-flow conditions. This indicates periodic quiescence of the 

channel with little sediment input (cf. Ashley et al., 1982; Ashley et al., 1985). Repeated 

changes between planar laminated sands and Type B climbing ripples in Section 9d (Allen 

1963) represent fluctuating flow, indicating slowly migrating ripples with high vertical 

aggradation rates (cf. Ashley, 1995), with ripple drapes indicating water ponding. 

Interlaminated sand and clay beds indicate repeated quiescence and fast flow in the 

channels. A pebble lag near the basal contact in Section 9d points to traction current 

activity with bedload saltation. LF 2b and L F 2c therefore demonstrates fluctuations of 

meltwater discharge at multiple scales, and perhaps seasonally. 

An alternative explanation for the laminated clay and sand facies at Whitburn Bay 

could be backfill ing of subglacial canals during times of low or no water flow, related to 

ice-contact lake level fluctuations. There is extensive evidence of such proglacial lakes in 

County Durham and Yorkshire (Smith, 1994). During periods of low lake levels, high 

submarginal discharge in these channels would have resulted in the deposition of rippled 

and bedded sands, but during periods of high ice marginal lake levels, backfilling of the 
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channels could have caused ponding and clay drape lamination. The canal f i l ls could thus 

be related to the activity of local lakes such as Glacial Lake Wear. Indeed, episodically 

changing lake levels, related to both seasonal variations in meltwater and to the movement 

of ice lobes, have been suggested in Glacial Lake Wear (Smith, 1994). The geometry of 

these sand infills is therefore significantly different to the tabular, widespread, subaerial 

glaciofluvial sands and gravels presented by Francis (1972). 

The laminations of LF 2b are locally strongly deformed; their load and water-escape 

structures indicate deformation and remobilisation of the water-saturated beds, suggesting 

rapid deposition (Glasser et al., 2001) or a high overburden pressure. The laminated sand 

and clay channels have closed edges, flat tops, and undulating, convex bottom contacts, 

indicating that they were incised into the diamicton, perhaps in a period of higher energy 

f low (van der Meer et al., 2003). The consistent overturning of folds to the south also 

suggests glaciotectonic disturbance as ice flowed southwards. This is supported by the 

micromorphological analysis, which shows compression of the primary bedding structures 

and masepic plasmic fabric development sub-parallel to bedding, followed by conjugate 

fault development as folds have been compressed, overturned, and extended (Figure 3.9). 

Compression has elevated porewater pressure within the sand beds, which has been 

released during faulting, causing fluidisation of sands and water escape and injection 

structures. 

LF 2d: Hydrofracture 

The sub-vertical clastic dykes in Section 5 (Figure 3.10) are the result of the escape of 

high-pressure groundwater beneath the ice sheet; i.e., as hydrofracture fi l ls (Evans et al., 

2006). Tensional cracks are infil led by sediment fluidised by the escaping water. 

Hydro fractures occur where fluid pressure exceeds the tensile strength of the sediment and 

the smallest component of the ice overburden pressure (Rijsdijk et al., 1999). Juxtaposed 

thinly bedded, calcreted sands, and coarse, well-sorted gravels indicate variable f low 

regimes. 

At Whitburn Bay, subglacial meltwater would have discharged into the Magnesian 

Limestone aquifer. The overlying tills acted as aquicludes, hydraulically confining the 

bedrock (as also observed by Rijsdijk et al. (1999) at Kill iney Bay, Ireland). When the 

supply of meltwater exceeded the capacity of the bedrock aquifer, water pressures rose 

beneath the overlying t i l l . When the water pressure exceeded the tensile strength of the t i l l , 
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it caused tensile fracturing, which enabled hydrofracturing (Figure 3.12). The discharge of 

water was sufficient to fluidise the sands and gravels, transport them through the 

hydrofracture and inject them into the overlying sediments. A high percentage of calcium 

carbonate in the ground water, derived from the bedrock, resulted in calcretion of the 

gravels. Hydrofractures and high porewater pressures may be related to the coarse-grained 

channels operating at the ice/bed interface. These discrete, hydraulically efficient channels 

are highly erosive and incise into the deforming layer at the ice/bed interface, suggesting 

effective evacuation of subglacial meltwater. They were later buried by continued t i l l 

accretion. Hydrofracturing and channel formation was therefore associated with increasing 

basal water pressures during the accretion of LFA 2 from ice overriding from the north. 

Ultimately, LFA 1 and L F A 2 represent a mosaic of processes operating subglacially 

at the time of sediment deposition, at both the macro- and the micro-scale (cf. Piotrowski 

et ai, 2004). The hydrofracture and infil led canals clearly show that basal water pressures 

fluctuated at Whitburn Bay during the deposition of LFAs 1 and 2, as w i l l have pore water 

pressures, which have been influential in the degree of t i l l deformation (cf. Boulton et ai, 

2001). Multiple switches in different modes of deposition and deformation resulted in the 

variable appearance of the two tills and the boulder pavement at Whitburn Bay (cf. 

Piotrowski et ai, 2004; Piotrowski et al., 2006). 

3.4.3 Provenance of the Whitburn Bay tills 

Heavy mineral sources 

Both LFA 1 and LF 2a are rich in clinozoisite, which is common in schists and is a 

product of low- to medium-grade metamorphism (Mange & Maurer, 1992). Both tills are 

rich in olivine and pyroxenes (Table 3.4), which could be sourced from an ultramafic to 

mafic igneous sources. The Permian Whin Sill Dolerite, which outcrops extensively to the 

north and northeast of Whitburn (Smith & Francis, 1967), may have been a primary source 

of detrital pyroxene. However, this microgabbroic intrusion does not contain olivine, 

indicating that a separate basic igneous source was also supplying detritus. One such 

potential source of both olivine and clinopyroxene is the Carboniferous volcanic rocks 

(olivine and clinopyroxene phyric basalts) and high-level intrusions of Northumbria, the 

Midland Valley of Scotland, and locally within the Southern Uplands. As olivine is not 

very robust, it is likely to have been sourced from nearer areas, such as Northumbria. 
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The metamorphic assemblage of heavy minerals within both L F A 1 and LF 2a is 

consistent with a source terrane that includes a significant proportion of upper greenschist 

to upper amphibolite facies of regionally metamorphosed pelitic mudstones. The two key 

mineral assemblages are, firstly, garnet, staurolite and chloritoid, and secondly, garnet, 

andalusite and kyanite. Each assemblage is found only in specific areas of polydeformed 

and metamorphosed orogenic belts. In particular, the Highlands and Islands of Scotland are 

the sole source for chloritoid (Mange et ai, 2005). The garnet-staurolite-chloritoid 

assemblage is characteristic of Stonehavian-type metamorphism, developed in a small area 

to the east of Stonehaven close to the Highland Boundary Fault, implying a possible source 

in northeast Scotland (Stephenson & Gould, 1995; Trewin, 2002). The garnet-andalusite-

kyanite assemblage (possibly with sillimanite) is a higher grade assemblage developed in 

the Buchan-type metamorphism of northeast Scotland (Stephenson & Gould, 1995). 

Younger sedimentary rocks may be a source of reworked minerals. Tourmaline in 

particular is very resistant and is common in many sedimentary rock types. Further 

research should include the identification of the heavy mineral suites in sedimentary rocks 

in the Southern Uplands and Midland Valley, as well as in northern England. This does not 

explain the presence of non-durable mafic minerals, which would not have survived 

reworking. 

Overall till provenance 

The dominant lithologies in L F A 1 are principally locally sourced Magnesian 

Limestone, sandstones, Carboniferous Limestone, Whin Sill Dolerite and Old Red 

Sandstone. The Carboniferous Coal Measures immediately to the west and north of eastern 

Durham are sources for the coal and sandstones of LFA 1. Whin Sill dolerite is a local 

Permian intrusive igneous rock, with abundant outcrops to the north and west of the area. 

LFA 1 is largely a locally derived t i l l . Old Red Sandstone outcrops to the north-west. 

The heavy-mineral assemblage suggests that ice entrained material sourced from 

northwestern England, the Southern Uplands, the Midland Valley, and possibly further 

north f rom northeastern Scotland. Clast macro-fabrics and striae orientations support a first 

phase of ice flow from west to east, which crossed the Pennines through the Tyne Gap and 

deposited the lower traction t i l l . I f the northwest to southeast ice-flow interpretation is 

correct, East Grampian minerals within LFA 1 are most easily explained by the reworking 

of older northerly-derived glacigenic sediments situated on the Durham coastal lowlands. 
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The palynomorph assemblages within LF 2a indicate a likely derivation from the 

Newcastle coalfield, to the north. A lack of Magnesian Limestone in L F A 2 compared with 

LFA 1 (Figure 3.11) indicates that LF 2a has been isolated f rom the local Permian bedrock 

by a mantle of earlier t i l l (LFA 1), which is widespread in the Durham region (Beaumont, 

1967). The distinctive pink granites, rhyolites and porphyries within L F A 2 are from the 

Cheviots; its greywackes may come from the Southern Uplands, while the Grampian 

Highlands are sources of schist and slate. 

The combination of dioritic / granitic lithics with the metamorphic mineral assemblage 

of LF 2a suggests that material was sourced f rom the Dalradian Supergroup, exposed in 

northeastern Scotland. Sources of Old Red Sandstone and Carboniferous sandstone and 

limestones extend eastwards into the North Sea, where they terminate against the North 

Sea Central Graben. Any ice feeding down the coast from the Scottish Highlands would 

have had to cross this area, and may also have coalesced with ice f rom the Midland Valley. 

The lower percentages of olivine and pyroxenes within LF 2a suggest that the Midland 

Valley had less influence on this t i l l . These minerals could also have been derived from 

reworking of the lower LFA 1. 

Collectively, this evidence indicates a northerly source as far north as the East 

Grampian Highlands, before ice coalesced with the Tweed ice stream, and entrained 

Cheviot erratics. A clast macro-fabric and striae on the boulder pavement indicating a 

north-north-westerly f low direction supports this interpretation. 
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3.5 D i s c u s s i o n 

3.5.1 Evolution of the glacigenic sequence at Whitburn Bay 

Recent research has highlighted the fact that there is large spatial variability in basal 

friction below ice sheets, and that glacier beds are mosaics of sliding, deformation, 

lodgement and ploughing (e.g., Piotrowski et al., 2004; Nelson et al., 2005; Evans et al., 

2006). Whitburn Bay demonstrates this well , with evidence for lodgement in the form of a 

boulder pavement, adjacent to extensive evidence for deformation and hydrofracturing. 

Glacigenic sediments at Whitburn Bay can be understood through a multiphase model 

of development (Figure 3.13). The first phase involved the arrival of an ice lobe from the 

west, which deposited LFA 1 (Figure 3.14). This ice originated from Scotland and entered 

eastern England via the Tyne Gap, some time after 21-22 cal. yr BP based on correlation 

with the Dimlington type site (Cameron et al., 1992; Bateman et al., 2008). It was later 

superseded by ice f lowing northeast to southwest, which lodged and planated the boulder 

pavement and deposited LFA 2 (the Horden Member in County Durham and the Bolders 

Bank T i l l in the offshore area (Catt, 2007)). The simplest interpretation of a secondary 

northeast to southwest ice-flow is deflection by Fennoscandian ice in the North Sea. This 

however conflicts with recent research, which indicates decoupling by the Fennoscandian 

and British ice sheets by the Late Devensian (Carr et al., 2006). 
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South North 

Figure 3.13: Land-system 
development at Whitburn Bay. 
A. First ice lobe advances and 
deposits L F A 1. Ice lobe stagnates 
prior to retreat, and boulders 
melt out. As the second ice lobe 
advances, it striates and lodges 
the boulder pavement, as an 
erosional surface. 
B. The deposition of L F A 2 buries 
the boulder pavement. A well-
developed discreet ice-marginal, 
subglacial drainage system drains 
the glacier subaerially. Pipe 
structures and hydrofracture are 
formed. The sediments are 
extensively tectonised. 
C. Discrete drainage system may 
evolve seasonally into a 
distributed, braided, subglacial 
canal system. Low flow periods, 
possibly seasonal or diurnal, 
results in quiescence in the 
channels. As the ice lobes retreat, 
Glacial Lake Wear was formed in 
between them. The depth of the 
lake varied between several high 
stands (CI and C2). The lake may 
have periodically back-filled the 
canals, resulting in quiescence 
and ponding. 

3.5.2 East Coast Surging 

The initiation of the boulder pavement may have been triggered by a period of basal 

ice melting as f l ow from the west waned, resulting in aqueous washing of matrix material. 

The boulders were later lodged and abraded by the ice f lowing f r o m the north that 

deposited LFA 2 (Figure 3.14). A channelised subglacial drainage system of multiple 

braided canals developed beneath the ice, which may have changed, possibly seasonally, to 

a discrete, higher pressure drainage system of more efficient Nye channels. The 

sedimentary signal within the canals was controlled by a fluctuating internal drainage 

system; alternating periods of current f low and ponding suggest an inefficient hydraulic 

regime, which is often typical of surging glaciers (Bjornsson, 1998). It is possible that 

fluctuating local lake levels also influenced the hydraulic efficiency in these submarginal 

canal environments, although this is di f f icul t to substantiate. 
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Bjornsson (1998) argued that glacial surges and fast ice f low are associated with 

subglacial distributed drainage systems, because an increase in pore-water pressure can 

lead to the decoupling of the ice f rom its bed (Bjornsson, 1998). Decoupling can allow 

sliding to occur (Boulton et al., 2001). Additionally, when ice overrides a wet subglacial 

t i l l , enhanced f low velocities may also result f rom t i l l deformation and sliding at the 

ice/bed interface (Ng, 2000; Boulton et al., 2001). 

Modelling by Boulton & Hagdorn (2006) showed that a powerful ice stream flowed 

down the eastern coast of Britain; its advance to the Wash embayment triggered the 

initiation of Glacial Lake Humber. Recent Optically Stimulated Luminescence dates on the 

highstand of this lake (Bateman et al., 2008) of 16.6 ± 1.2 ka BP suggest that the BUS was 

flowing at the western edge of the North Sea Basin, possibly during Heinrich Event 1, 

depositing the Skipsea Member and the Bolders Bank Formation. The Skipsea Member 

overlies silts dated to 21.7 cal. ka BP (Penny et al., 1969). Eyles et al. (1994) argued that 

this east coast ice stream experienced recurrent onshore surging against the rising bedrock 

surface of Holderness and Lincolnshire. The deforming bed mosaic and subglacial canal 

evidence f rom Whitburn could therefore support the existence of such a surge lobe during 

Heinrich Event 1, which is supported by external evidence from modelling and the dates of 

16.6 ka BP from Lake Humber. 
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Figure 3.14: Map showing inferred ice flow directions, overlain onto the B R I T I C E data set for the 
northeast region (Clark et al. 2004). Ice flow around the Tweed area from Raistrick (1931). 
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3.5.3 Implications for Quaternary Stratigraphy of eastern England 

The locally derived Blackhall Member (LFA 1) at Whitburn Bay was previously 

correlated with the Skipsea Member of Holderness (Francis, 1972) due to its stratigraphical 

position, but this is disputed here because of the provenance data. We favour an origin for 

ice f lowing across the Pennines through the Tyne Gap. The Blackhall Member shows a 

distinct west-to-east movement, and comprises mainly local clasts. Previous work has 

suggested that it is limited in extent, and there seems to be no equivalent further south than 

County Durham (Beaumont, 1967). Therefore, the Blackhall Member does not appear to 

correlate with the Skipsea Member. Instead, the mineralogy, particle size, erratic content 

and characteristics of the Skipsea Member indicate a correlation with the Horden Member 

(Table 3.6). 

The macrofabrics of the Horden and the Skipsea Members indicate deposition by ice 

moving inland from the North Sea basin. Ice is suggested to have originated from the 

Southern Uplands, streamed down the eastern coast of Britain (Eyles et al., 1994), invaded 

the North Sea Basin and deposited the Skipsea Member and the Bolders Bank Fm 

(Cameron et al., 1992; Carr et al., 2006). The movement inland could have resulted f rom 

coalescence of British ice with Scandinavian ice offshore in the North Sea. Sejrup et al. 

(2000; 2005) and Carr et al. (2006) argued that the British and Fennoscandian ice sheets 

had decoupled by this stage, but the southerly extension of the North Sea Lobe during the 

latter phases of the L G M cannot have occurred without the continued presence of 

Scandinavian ice offshore. The presence of heavy minerals derived from the eastern 

Grampian Highlands indicates a distant northerly source. The presence of these minerals 

indicates that the ice has been deflected strongly southwards, suggesting that contact with 

Scandinavian ice offshore is needed to direct the ice f low. Shap erratics within the Skipsea 

Member are derived f rom coalescence of the Durham and Tees ice lobes in the Tees Gap. 

Hence, this work suggests that the southward-flowing North Sea Lobe was the second ice 

lobe to transgress the Durham area, but the first ice body to reach the Holderness coast 

during the L G M . 
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Table 3.6: Comparison of characteristics of Skipsea Member at Dimlington, and Horden Member at 
Whitburn Bay (Penny & Catt, 1967; Madgett & Catt, 1978; Evans et al., 1995; Catt, 2007). 

Skipsea Member Blackball Member 
(LFA 1) 

Horden Member 
(LFA 2) 

Type Site Dimlington, Yorkshire Blackhall's Rocks, 
Durham Horden, Durham 

Colour 
Very dark greyish 
brown. 10YR 3/2 

Dark yellowish-brown. 
10YR 4/4 Dark brown. 10YR 3/3 

Sedimentology 

5-9 m thick. Interbedded 
diamictons, 
discontinuous bodies of 
stratified sediments 

Massive, matrix 
supported diamicton. 
Common cobbles of local 
origin. Boulder pavement 
at top. 

Matrix-supported 
diamicton. Nested 
channels within 
diamicton. 

Particle Size 22-38 % clay, 32-42 % 
silt, 22-42 % sand 

31 % clay, 39 % silt, 
18 % sand, 12 % gravel. 

33 % clay, 38 % silt, 
17 % sand, 11 % gravel. 

Erratic content 

Chalk, shale, 
greywacke, Cheviot 
porphyries, granites, 
Whin Sill Dolerite, 
Carboniferous and 
Magnesian Limestone, 
coal, rhomb porphyry 

Magnesian Limestone, 
Carboniferous 
Limestone, 
Carboniferous 
sandstones, Greywacke, 
Old Red Sandstone. 

Cheviot rhyolite and 
andesite, granite, 
Carboniferous 
Limestone, Magnesian 
Limestone, Old Red 
Sandstone, schist, 
greywacke. 

Heavy 
Minerals 

Enriched in amphibole 
and epidote, poor in 
chlorite and biotite. 

Enriched in clinozoisite, 
micas, kyanite, and 
amphiboles. 

Significant amounts of 
pyroxene, kyanite, 
epidote, limited chlorite 
and biotite. 

Palynology None available None available 
Carboniferous spores: 
Westphalian and 
Namurian. 

Macrofabric NNE-SSW direction; 
WNW-ESE fold axes 

Moderately strong; NW 
to S E . 

Weak macrofabric, NE to 
SW. 

Age 
Overlies Dimlington 
Silts: >21.7 cal. ka BP None available None available 
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3.6 Conclusions 

Research at Whitburn Bay supports the existence of a complex, multi-lobate, Late 

Devensian BUS along the east coast of Britain. The traction tills LFA 1 and 2 represent ice 

f low from two different directions within the same glaciation. The Blackhall Member 

(LFA 1) originated in northwestern England, possibly sourced from the Midland Valley 

and western Southern Uplands. It may also have a component of ice f rom northeastern 

Scotland. It flowed south, before passing through the Tyne Gap. There is little evidence of 

a Lake District ice source. The Horden Member (LFA 2) was deposited by an ice lobe 

f lowing down the eastern coast of Britain, which may have originated as far north as the 

eastern Grampian Highlands and which is dominated by Cheviot and Northumbrian 

erratics. The boulder pavement was deposited as a lag through a combination of subglacial 

erosion and aqueous winnowing as ice f low from the west waned and was later lodged and 

abraded by ice moving southwards. 

The braided canal system preserved in the Horden Member suggests a fluctuating low-

flow subglacial drainage system, which, juxtaposed with high-energy gravel channels, 

reflects periodic changes in the subglacial drainage hydraulic regime. Hydrofracturing 

supports the notion of extreme variations in subglacial drainage, which may have triggered 

the development of high-energy channels at the ice-bed interface. The episodic changes 

from rapid water f low to quiescence in these submarginal channels indicate periodic 

ponding events. Seasonal re-organisations of the subglacial drainage system could have 

resulted in the juxtaposition of sand and very high-energy gravel channels. Fluctuating lake 

levels in the proglacial Glacial Lake Wear may have contributed to this variation, as high 

lake levels would have resulted in backfilling of the channels, quiescence, and the 

formation of draped lamination. Evidence for basal decoupling, extreme fluctuations in 

subglacial porewater pressure, and the presence of a deforming bed supports the notion of 

a fast f lowing ice lobe in the vicinity of Whitburn Bay and further south such as at 

Holderness (Boulton & Hagdorn 2006; Eyles et al. 1994; Evans et al. 1995). The 

mineralogy, lithologies and process interpretation of the Horden Member demonstrates that 

it is correlative with the Dimlington Stadial Skipsea Member and possibly the Bolders 

Bank Fm in Yorkshire and offshore respectively. This may suggest that the North Sea ice 

146 



BETHAN DAVIES CHAPTER 3: WHITBURN B A Y 

lobe flowing south was the second ice lobe to transgress the Durham region, but the first 

ice mass to cross the Holderness coast during the L G M . 
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C H A P T E R 4 

Hawthorn Hive to Blackhall Rocks 

4.1 Introduction 

The history of the interaction between the BUS and the FIS throughout the Quaternary 

remains poorly understood. Recent research in Norfolk has presented three alternative 

models, with Scandinavian ice proposed during MIS 12 and 6 (Hart & Pelgar, 1990; 

Lunkka, 1994), just during MIS 6 (Hamblin et al., 2005), and just during MIS 12 (Pawley 

et al., 2008). These rapidly evolving models require rigorous, quantitative testing in other 

regions of the United Kingdom to ensure their robustness and applicability. The 

Quaternary stratigraphy in County Durham is therefore key to our understanding of glacial 

/ interglacial history in Britain, as this area has previously provided evidence of multiple 

glaciations. This chapter uses the stratigraphic nomenclature proposed by Bowen (1999c). 

The next three chapters present results f rom mapping, section logging, thin-section 

analysis and petrological and geochemical analysis of sediments exposed in coastal c l i f f 

sections in the Easington District of County Durham (Figure 4.1). Facies architecture and 

sedimentology at Hawthorn Hive is presented in this chapter. The Easington District of 

County Durham was the type site chosen by Smith and Francis (1967) for the Blackhall 

and Horden tills (see Chapter 1), and here, stacked sequences of Quaternary sediments are 

well exposed over the course of several kilometres (Bridgland & Austin, 1999). 

The Magnesian Limestone bedrock in this region is covered with a mantle of complex 

Quaternary sediments, including a raised beach at a height of 33 m (see Chapter 5). Buried 

palaeo-valleys are infi l led with a series of tills and bedded sands and gravels, and 

numerous steeply incised 'denes' are occupied by small streams. During the Twentieth 

Century, coal mining and the dumping of colliery waste on the beaches obscured much of 

the cl iffs , making research diff icul t . The 'Turning the Tide' programme of the 1990s and 

subsequent coastal erosion has re-exposed much of the natural c l i f f line, which, combined 

with shallow excavations, has made research of the glacigenic sediments possible once 

again. 
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Figure 4.1: Map of eastern County Durham, showing the location of Shippersea Bay. Sites investigated 
in greater detail in this thesis are highlighted (in bold). National Grid (NZ) lines are shown. 
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4.2 Research Aims and Objectives 

4.2.1 Rationale 

Reconstructing the ice-ocean-climate interactions for the last BUS at the L G M is 

important for predicting future cryosphere responses to climatic change, as contemporary 

changes in the mass balance of large polar ice sheets is likely to have a large impact upon 

the human environment. Additionally, providing sound geological data for glaciological 

modellers is vital to allow the testing and development of ice sheet models. 

This region is critically located to capture interlobate ice sheet dynamics during the 

L G M glaciation. Firstly, the Easington district is characterised by a different set of 

glacigenic sediments to Whitburn Bay, with abundant glaciofluvial gravels and no 

evidence of proglacial lakes. Glacigenic sediments are exposed in this location for several 

kilometres, allowing their nature to be characterised. Secondly, Warren House Gi l l has 

previously provided evidence of multiple glaciations (see Chapter 1), and so is a key site to 

investigate the long-term Quaternary history of northern England. Three sites are 

investigated in detail: Hawthorn Hive (this chapter), Shippersea Bay (Chapter 5), and 

Warren House Gi l l (Chapter 6). These sites were the only places where the sediments are 

accessible; high cliffs mean that in the majority of places, sampling is not possible. The 

lithological and geochemical data from all sites are compared in Chapter 6, and regional 

correlations are drawn in Chapter 8. 

4.2.2 Research aims and objectives 

This research aims to establish the interactions between British and Scandinavian ice 

sheets in northern England. This is a key area for reconstructing their past dynamics, as it 

is a region affected closely by competing ice lobes. County Durham contains some of the 

most northerly reported Scandinavian glacial sediments (Clark et al., 2004b), so it is 

crucial in determining the interaction between British and Fennoscandian ice during the 

Quaternary. It is also important to establish why, given the far greater distances involved, 

the FIS reached eastern England during the Pleistocene before the BUS, and why 

specifically and only during MIS 6 and possibly MIS 12 (Clark et al., 2004b). To achieve 

this aim, there are four key objectives, determined by previously published research: 
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1. To map and log coastal exposures of glacigenic sediments between Hawthorn Hive 

and Blackhall Rocks, County Durham. 

2. To determine the genesis of the glacigenic sediments in the study area, with 

particular reference to former ice flow direction indicators, provenance of the 

glacigenic sediments and their depositional history. 

3. To determine the age of the Pleistocene glaciations of the Co. Durham coast using 

stratigraphical techniques, luminescence dating techniques, and amino acid 

racemisation dating. 

4. To determine the stratigraphy of the glacigenic sediments in Co. Durham, and to 

test and identify regional correlatives. 

5. To determine the timing and dynamics of Scandinavian ice in the North Sea, and its 

influence on ice on the eastern coast of Britain, and to constrain the western l imit of 

the FIS. 

Previous work on the Quaternary sediments of northeast England, in particular the 

work by Trechmann and Beaumont, has highlighted a number of controversies and 

unknowns that remain to be answered. Firstly, can the Warren House Formation be 

identified and its genesis, provenance and age determined? A quantitative reassessment of 

the Warren House Formation w i l l allow the proposed correlation to the Bridlington 

Member of northeast Yorkshire (Catt & Penny, 1966) to be tested. Secondly, there remain 

a number of questions regarding Trechmann's interglacial loess. Firstly, loess is normally 

deposited in cold, steppe environments, and not interglacials. Therefore, can Trechmann's 

loess be identified, and the mode of deposition determined? What is the age of the loess, 

and can this provide a stratigraphical tool in the age of the Warren House Formation? 

Finally, the 'Main Cheviot D r i f t ' of the Durham coastline (Trechmann, 1952) remains 

controversial. What were the modes of deposition and the genesis of the tills? Have the tills 

been glaciotectonically deformed? What was the provenance of the tills? Did the ice that 

deposited them originate from the west (Lake District) or the northeast? What was the role 

of the North Sea Lobe in their deposition? Can the tills be correlated between Whitburn 

Bay, Shippersea Bay, Hawthorn Hive, and Blackhall Rocks? What is the relationship of the 

tills with the Skipsea and Withernsea members of the north Yorkshire coast? Building on 

these, some key hypotheses regarding L G M glaciations in Durham can be identified: 

1. The uppermost glacigenic sediments on the Durham coast are Devensian tills. The 

North Sea Lobe f rom the north deposited the upper Horden Member. 
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2. Ice f lowing from the west, through the Tyne Gap, deposited the lower Blackhall 

Member. 

3. These tills correlate with tills at Whitburn Bay. 

In order to answer these research questions, and to test the identified hypotheses, the 

eight kilometres from Hawthorn Hive to Blackhall Rocks were mapped and logged in 

order to understand the stratigraphic context. Three sites were chosen for study in detail: 

Hawthorn Hive, Shippersea Bay (presented in Chapter 4), and Warren House Gi l l . Trial 

pits at Warren House Gil l through the colliery waste exposed the lowest glacial sediments 

of the buried valley for the first time in decades. In the next three chapters, the sedimentary 

logs and sketches, thin sections, and petrological and geochemical results from these sites 

are presented and interpreted. The genesis, provenance, and local and regional correlatives 

of these lithofacies associations are analysed. 
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4.3 Facies Architecture: Hawthorn Hive to Blackhall Rocks 

The facies architecture between Hawthorn Hive and Blackhall Rocks is presented in 

Figure 4.2. For full-size, high-resolution photographs, see Appendix I I I . Hawthorn Hive is 

located at the mouth of Hawthorn Dene, which is a steeply incised contemporary river 

valley cut through the glacigenic sediments and Magnesian Limestone bedrock (Figure 

4.2) . Within the bay, just north of this dene, is a buried valley infil led with diamicton and 

sorted sediments. The colliery waste in the cove protects the c l i f f , so exposures in the 

buried valley are currently limited and are covered with trees. At 24 m above the colliery 

waste in the buried valley, a tabular cobble gravel is well exposed, which is underlain and 

overlain by diamictons. This gravel is very poorly sorted to well sorted, ranging from 

coarse sand to large boulders, and clasts within it are angular to rounded. Within the 

gravel, balls of diamicton are preserved. The Magnesian Limestone rises again steeply to 

the north, and exposures further north than here are very high and inaccessible. 

This sequence of two diamictons separated by a widespread cobble to clast gravel 

facies continues southwards f rom Hawthorn Hive. It is obscured periodically by slumping, 

but the sequence is continuous. At 500 m south of Hawthorn Hive, the Easington Raised 

Beach rests directly on the Magnesian Limestone bedrock. The tabular gravels are absent 

at this point, but poorly sorted sands, cross-bedded sands with foresets picked out with 

coal, and gravels do overly the beach. The upper diamicton onlaps onto these gravels and 

the lower diamicton pinches out against the beach. The beach lies in the cove of Shippersea 

Bay in the lee of Beacon Hi l l , which possibly gave it some protection during the glaciation 

that brought about the deposition of the overlying sands and diamicton. These beach 

gravels are well calcreted and contain bedded, well-sorted sands, and rounded cobble and 

clast gravel bearing shells. To the south of Shippersea Bay, the sequence of gravels 

separating two diamictons continues. Slumping obscures the direct relationship of these 

gravels to the beach, and the c l i f f is too high and steep to allow closer observation. In 

places, the lower diamicton is absent and bedded sands rest directly on the bedrock, 

overlain by the upper diamicton. Here and there, these sands are a bright red colour (Figure 

4.3) . South of Foxholes Dene, the sedimentology is markedly different (Figure 4.2). The 

bright red sands become more prominent southwards, and are discontinuously exposed 
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here. The cobble gravel descends down to bedrock in Exposure K (Figure 4.3), and the 

bedrock dips down below the level of the colliery waste. 
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Figure 4.2: Fades Architecture: Hawthorn Hive to Blackhall Rocks 
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The height of the c l i f f is maintained by an in f i l l of around 50 m of Quaternary 

diamicton. From 300 m south of Exposure K, the cobble gravel is absent. Steeply incised 

denes (Warren House Gi l l , Whitesides Gi l l , and Blackhills Gil l) cut through the in f i l l to the 

level of the colliery waste on the contemporary beach. The Magnesian Limestone is 

fissured and infi l led with Early Pleistocene breccia, some of which is reported to contain 

Cromerian mammal fossils (Trechmann, 1952). The stratigraphy of this infil led valley is 

more complex, with the existence of a limited exposure of a third diamicton at the base of 

the buried valley. It is overlain by a beige silt, previously interpreted as a loess. 

South of Blackhills Gi l l , the height of the bedrock rises sharply. The red sands are 

exposed for a short distance, but disappear some 400 m south of Blackhills Gi l l (Figure 

4.4) . The cobble gravel returns and is inconsistently exposed or obscured by mass 

movement processes until Limekiln G i l l . Logs ii to v (Figure 4.4 and Figure 4.6) record 

detail of the stratigraphy at this site. Castle Eden Dene (Figure 4.5) is a large, wide 

palaeovalley, containing a modern (misfit) stream. The tabular cobble gravel fades out 

after this site. The exposures are poor and are badly slumped until Bluehouse Gi l l (Figure 

4.5) . South of here, the bedrock again rises. Two diamictons are well exposed above the 

bedrock, but the cobble gravel is absent. 
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Figure 4.3: Facies Architecture: Hawthorn Hive to Foxholes Dene. Refer to Appendix III for larger 
photographs. 
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Figure 4.4: Facies Architecture: Foxholes Dene to Castle Eden Dene. Refer to Appendix HI for larger 
photographs. 
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From the analysis of the facies architecture, two diamictons can be seen to outcrop 

almost continuously along the section. They are separated by a sand or gravel deposit. At 

Warren House Gill , the facies architecture is more complex, with the existence of two 

sediments that do not occur elsewhere. Along the high limestone cliff tops, a basal 

diamicton is consistently overlain by a variable sand or gravel deposit with several facies. 

Firstly, it comprises well-sorted red-coloured sands, which exist only in the vicinity of 

Warren House Gill . North of Warren House Gill , there are bedded clast and cobble gravels, 

also red coloured, and the sorted sands and gravels which outcrop from Hawthorn Hive 

southwards. The uppermost deposit in the whole sequence outcrops continuously from 

Hawthorn Hive to Blackhall Rocks. It is a dark brown, clast-rich diamicton. 

Previous researchers have identified two tills with intervening sands and gravels 

outcropping along the cliff tops in this area (Smith & Francis, 1967; Lunn, 1995; Bridgland 

& Austin, 1999). They have identified these as the Blackhall and Horden members 

(Thomas, 1999), with type sites at Blackhall Rocks and at Horden respectively, with the 

intervening Peterlee Sands and Gravels. 
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4.4 Hawthorn Hive 

4.4.1 Sedimentology 

The upland plateau of County Durham is characterised by large Permian stromatolite 

domes on reef dolomite. The bedrock is a multiphase de-dolomised collapse-breccia of 

Cycle 2 (Roker Dolomite) oolite (Smith, 1995b). On the south side of Hawthorn Dene, 

there is an abandoned meander loop with sinkholes. The modern stream has incised a new 

valley down to sea level (Hawthorn Dene) to the south of the palaeo-valley. Within the 

buried palaeo-valley at Hawthorn Hive (Grid Reference NZ 44081; 46130), the lower part 

of the buried valley is covered with colliery waste, slumping and vegetation. However, a 

small section is visible part way up, where two diamictons with intervening sands and 

gravels are visible. This was logged in detail (Figure 4.7) and sampled for lithological and 

geochemical analysis (indicated on Figure 4.7). 

The lower diamicton ( L F A 1) has a low-strength clast macro-fabric, showing little 

clustering of clasts along the a-axis. Gravel clasts are mostly angular to sub-angular, and 

are chiefly composed of limestone. Within the diamicton are tectonised, highly deformed 

sand lenses. Unconformably overlying the diamicton is a deposit of poorly-sorted, chaotic, 

angular boulders and gravels, containing numerous balls of diamicton ( L F 2a; Figure 4.7). 

The gravel is clast-supported, incohesive, structureless, and includes various lithologies 

such as limestone, sandstone, greywacke, and coal. The gravel grades upwards into a well-

sorted gravel ( L F 2b; Figure 4.8), unconformably overlain by a second, upper diamicton 

( L F A 3). Twenty metres to the south of this exposure, these cobble gravels ( L F 2b) are 

exposed as a well-sorted, bedded deposit containing rounded clasts. The sediment is 

strongly calcreted, and eroded to form a cave. The upper diamicton ( L F A 3) is again well 

exposed and both it and L F 2b were sampled at this site. 
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Figure 4.7: Section log, Hawthorn Hive. Lower clast fabric ( L F A 1): S, = 0.539; S 2 = 0.369; S 3 = 0.093. 
Upper clast fabric (of L F 2a, gravels): S, = 0.548; S 2 = 0.106; S 3 = 0.034. 
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Figure 4.8: Photograph and detail of Hawthorn Hive. 

4.4.2 Geochemical and Lithological Analysis 

For detailed raw data, refer to Appendix IV. L F 2a (HAW 01) is the poorly-sorted 

coarse sand and gravel overlying L F A 1 at Hawthorn Hive (Figure 4.7). It is highly 

variable and changes from clast- to matrix-supported. The sands are yellowish-brown 

(10YR 5/4) in colour and very coarse. The clasts are sub-angular to sub-rounded in shape. 

Sample HAW 02 is the lower matrix-supported, laminated diamicton ( L F A 1), directly and 

unconformably underlying the poorly-sorted gravels. It exhibits a vigorous reaction to HC1, 
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and has a silty clay matrix. Sample HAW 03 is the gravel-rich, weathered, upper 

diamicton, overlying the coarse sand and gravel (LFA 3). It is a dark brown colour (10YR 

3/3). The diamicton has a very mild reaction to HC1. The gravel is strongly faceted, and 

mostly sub-angular in shape. The diamicton appears to be weathered. 

Table 4.1 shows that both L F A 1 and L F A 3 have a large proportion of silt, though 

L F A 3 is a finer-grained diamicton with a larger proportion of clay. L F A 1 is coarser-

grained, with significantly higher percentages of gravel than the upper diamicton. L F 2b in 

this location is dominated by the gravel and coarse sand fraction, with very little fines. 

Table 4.1: Particle size distribution, Hawthorn Hive. For detailed raw counts, refer to Appendix I V . 

HAW 02 HAW 01 HAW 03 
Particle Size Lower diamicton Gravels Upper diamicton 

L F A 1 L F 2b LFA 3 
% Clay 9.30 0.69 18.97 

% Silt 37.91 3.23 40.04 

% Fine sand 14.77 4.09 19.84 

% Coarse sand 16.14 36.79 13.82 

% Fine gravel 7.89 24.91 6.40 

% Coarse gravel 13.99 30.29 1.94 

Clast-lithological analysis of L F A 3 reveals a strikingly different suite of lithologies 

compared to the two lithofacies below (Table 4.2). Magnesian Limestone is present in only 

small amounts, with only 27.6 % of the counts. L F A 3 is enriched in greywacke (11.3 %), 

Carboniferous Limestone (13.1 %), sandstone (13.9%), quartzitic sandstone (8%), and 

small numbers of igneous and metamorphic erratics such as rhyolite (1.2%), andesite 

(1.5 %), schist (0.9 %), granite (0.9 %), and gabbro (0.3 %). This contrasts with L F A 1 (the 

lower diamicton) and L F 2b (the sands and gravels), which are dominated by Magnesian 

Limestone (76.9 % to 70.1 %), with small amounts of Carboniferous material, and few far-

travelled erratics. 

L F 2b (HAW 01) is dominated by a significant percentage of locally derived dolomite 

and calcite (51.42%). All three samples are enriched in garnet, andalusite and kyanite, 

while L F A 1 (HAW 02) and L F A 3 (HAW 03) have small amounts of staurolite and 

chloritoid (Table 4.3). LFAs 1 and 3 are also enriched in pyroxenes, tourmaline, epidote, 

and lawsonite in comparison to L F 2b. 
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Table 4.2: Average percentages of clast lithologies at Hawthorn Hive, 8-16, and 16-32 mm. For detailed 
raw counts, refer to Appendix I V . 

HAW 02 HAW 01 HAW 03 

Lithology LFA 1 
Lower 

Diamicton 

L F 2b 
Gravels 

LFA 3 
Upper 

Diamicton 
N 425 551 337 
Diorite 0.00 0.18 0.00 

Granite 0.71 0.00 0.89 

Gabbro 0.24 1.81 0.30 

Igneous Rhyolite 
Andesite 

0.47 

0.00 

1.27 

0.00 

1.19 

1.48 

Basalt 0.00 0.73 0.00 

Porphyry 0.00 0.18 0.00 

Felsite 0.24 0.00 0.00 

Metamorphlc Slate 
Schist 

0.00 
0.00 

0.00 
0.00 

0.00 
0.89 

Sandstone 9.42 2.36 13.94 
Sandstone and Quartzitic sandstone 2.12 0.00 8.01 

sedimentary Siltstone 0.94 0.00 2.97 

Breccia 0.00 0.00 0.00 

Cretaceous Chalk 
Flint 

0.00 
0.00 

0.18 
0.00 

0.00 
0.00 

Jurass ic Ironstone 
Mudstone 

0.24 

0.00 

0.54 

4.90 

0.59 

3.26 

Red marl 1.41 0.00 1.19 

Brown orthoquartzite 1.65 0.18 0.30 

Red orthoquartzite 0.00 0.00 0.59 
Triasslc White orthoquartzite 0.00 0.54 0.00 

Brown vein quartz 0.00 0.00 0.00 

Red vein quartz 0.00 0.00 0.00 

White vein quartz 0.24 0.00 0.00 

Whin Sill Dolerite 0.24 1.27 1.48 

Permian Magnesian Limestone 
Yellow Sands 

70.12 

1.41 

76.86 

0.36 

27.60 

0.59 

New Red Sandstone 0.00 0.00 0.00 

Carboniferous Limestone 3.06 4.54 13.06 
Carboniferous Chert 0.00 0.00 0.00 

Coal 0.47 0.18 2.08 

Devonian Old Red Sandstone 
Shale 

0.00 
0.94 

0.18 
0.00 

2.67 

0.00 
Ordovician and Arkose sandstone 0.00 0.36 6.64 

Silurian Greywacke 6.12 4.36 11.28 
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Table 4.3: Average percentages of heavy mineralogies (percentage non-opaques) at Hawthorn Hive, 
size fractions 63-125 and 125-250 um. For detailed raw counts, refer to Appendix I V . 

HAW 02 HAW 01 HAW 03 

Heavy Mineral Phase L F A 1 
Lower 

Diamicton 

L F 2b 
Gravels 

L F A 3 
Upper 

Diamicton 
n 2633 1926 2640 
% Opaques 76.58 67.98 81.43 
% Non-Opaques 23.42 32.02 18.57 

% Heavy Minerals 1.49 6.41 1.43 

Olivine GP 2.12 0.48 0.97 

Zircon 9.65 0.88 AAA 
Sphene 2.73 1.67 1.23 

Silicate 
Group 

Garnet GP 20.64 6.95 13.62 
Silicate 
Group Sillimanite 

Andalusite 
1.47 

3.49 

0.24 

7.12 

0.75 

4.46 
Kyanite 6.04 3.21 6.78 

Staurolite 0.23 0.00 0.90 

Chloritoid 0.31 0.00 0.19 
Zoisite / Clinozoisite 6.34 6.74 6.60 
Piemontite 0.00 0.71 0.00 

Epidote 
Group 

Epidote 3.33 0.48 6.78 Epidote 
Group Lawsonite 0.31 0.00 0.51 

Epidote 
Group 

Axinite 0.07 0.00 0.04 
Pumpellyite 0.23 0.00 0.00 
Tourmaline GP 3.07 0.00 3.20 

Enstatite 0.66 0.00 1.06 

Pyroxene Hypersthene 0.84 0.00 0.08 
Group Diopsidic Clinopyroxene 1.67 0.24 1.99 

Augitic Clinopyroxene 1.41 1.67 1.69 

Tremolite 0.00 0.00 0.03 

Amphibole 
Group 

Ferriactinolite 
Hornblende 

0.69 
0.35 

0.00 
0.00 

0.00 
0.27 

Amphibole 
Group 

Diallage 0.04 0.00 0.00 

Glaucophane 0.02 0.00 0.00 

Muscovite 6.01 7.87 7.19 

Mica Group Glauconite 
Biotite 

0.08 

6.60 

0.00 

8.55 

0.07 

9.83 

Chlorite GP 2.25 0.88 3.27 

Rutile 3.27 0.24 1.77 

Oxides Brookite 
Spinel GP 

4.21 
0.21 

1.19 
0.00 

2.81 
0.08 

Anatase 0.09 0.00 0.27 
Carbonates Dolomite / Calcite 9.71 51.42 17.23 
Sulphates Baryte 0.00 0.00 0.17 
Sulphides Sphalerite 0.02 0.00 0.00 

Phosphates Apatite 
Monazite 

3.22 
0.65 

0.48 
0.00 

2.41 
0.32 
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The metals analysis at Hawthorn Hive (Table 4.4) indicates that while all samples are 

enriched in the common elements, there is considerable variation in the low abundance 

metals. For example, L F A 3 is impoverished in zinc, but enriched in nickel, chromium and 

lithium. L F A 1 is impoverished in sodium and aluminium, but enriched in magnesium, 

lead and rubidium. L F 2b is enriched in sodium, aluminium, calcium, manganese, zinc, 

cadmium, and strontium (Table 4.4). 

Table 4.4: Metals analysis of Hawthorn Hive. 

High Abundance Elements (mg / kg) 
SAMPLE Na 2 3 Mg 2 4 A l 2 7 K 3 B C a 4 4 Ti48 F e 5 7 

LFA 1 (HAW 02) 
Lower Diamicton 2456 4938 7568 13244 29500 2827 22940 

L F 2b (HAW 01) 
Gravels 16300 2020 138000 12400 117000 1540 24100 

LFA 3 (HAW 03) 
Upper Diamicton 2807 1687 24945 13325 13924 3962 32803 

4.4.3 Summary of Hawthorn Hive 

In summary, Hawthorn Hive is a bay in which a buried palaeovalley is exposed in 

cross-section. A modern stream (Hawthorn Dene) has made a re-incision down to sea level 

to the south of the buried palaeovalley. The buried palaeovalley is infilled with tens of 

metres of Quaternary sediments. Two diamictons are exposed in superposition, with 

intervening coarse, unsorted, chaotic gravels grading to sorted, rounded, bedded gravels 

( L F 2b). The lower diamicton ( L F A 1) exhibits deformed sandy inclusions. It is difficult to 

access the upper diamicton ( L F A 3), which is extensively weathered, but it appears to be 

massive. Both diamictons and gravel contain large amounts of locally derived Permian and 

Carboniferous clasts, with some further-travelled igneous and metamorphic erratics. 

4.4.4 Process Interpretation 

LFA I: The Lower Diamicton 

L F A 1 at Hawthorn Hive infills a palaeovalley of unknown depth. This diamicton is 

interpreted as a subglacial till, based on the following criteria: its over-consolidated, 

diamict texture, the presence of exotic erratics and deformed sandy inclusions, the bullet-

shaped and striated clasts. These characteristics indicate a combination of deformation and 

lodgement (cf. Sharp, 1984; Nelson et cd., 2005; Hart, 2007). The clast macro-fabric 
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indicates ice flow from northwest to southeast. The deformed sandy lenses are interpreted 

as the product of local erosion and entrainment followed by progressive attenuation during 

shearing (cf. Hart & Roberts, 1994; Roberts & Hart, 2005; Hart, 2007). L F A 1 is laterally 

extensive along the coast of Durham, although it pinches out against the flanks of the 

Easington Raised Beach. 

LF 2b: The Middle Gravel 

The sedimentary characteristics of the overlying boulder-cobble-gravel satisfy the 

criteria for a debris flow (Eyles, 1987; Maizels, 1995); these include the lack of sorting, the 

presence of a wide range of clast sizes and forms, the dispersed clast macro-fabric, and the 

poorly-sorted, structureless, clast-supported sedimentation. The lack of fines indicates 

winnowing by water. The presence of till balls and non-durable lithologies such as coal 

indicates that this must be an ice-proximal setting; downstream transportation would 

rapidly eradicate these soft lithologies. Therefore, the bouldery debris overlying the 

subglacial till below is probably an ice-contact debris flow (as defined by Eyles & Miall, 

1984). 

The sorting increases higher up the section and the grain size decreases; non-durable 

lithologies disappear and the rounding of clasts increases. This is consistent with further 

sorting and rounding by flowing water, and indicates increased downstream transportation 

and distance from the glacier terminus. This gravel is very extensive south of Hawthorn 

Hive and forms a laterally extensive tabular deposit. In places, it grades into bedded sands 

and either coarser or finer gravels. The high carbonate content of the Magnesian Limestone 

has contributed to the calcretion of the gravels in several places. The laterally extensive 

nature of these gravels suggests that this is glaciofluvial deposit (Maizels, 1995). This type 

of system is more common distally, as immediate proglacial outwash tends to be 

characterised by deep, single-thread, high energy, erosive courses high in transport 

capacity. Proglacial outwash fans are characterised by the lack of fines and unstable 

channel networks. Bank erodibility is enhanced by the non-cohesive sediments with little 

silt and clay. Fines are removed in suspension, leaving only medium to coarse-grained 

materials to form bank materials (Maizels, 1995). The heterogeneity reflects variations in 

the erosive power of the water that deposited the cobble gravel. 

A proglacial outwash sandur interpretation effectively explains the tabular sands and 

gravels outcropping south of Hawthorn Hive. The variability in the sands and gravels, 
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resulting from channel migration and bar formation, is explained by this subaerial 

glaciofluvial mechanism. The coarse particle-size distribution suggests a proximal 

environment, as meltwater streams rapidly lose competence and discharge quickly lessens 

(Maizels, 1995), leading to a progressively finer bedload. Clast-supported, heterogeneous, 

sub-rounded gravels with a wide variety of textures are typical of glacial outwash deposits. 

Sheet floods are common in the areas in front of ice sheets, which are usually of low relief. 

The low relative relief of the Durham plateau and the tabular nature of the gravels suggests 

that this lithofacies was deposited by sheet flow as part of a proglacial outwash fan (cf. 

Rust & Koster, 1984; Maizels, 1995). 

Lithologically, L F 2b shows an affinity with L F A 1 and is distinct from the overlying 

L F A 3; the high percentage of Magnesian Limestone and low percentage of Carboniferous 

Limestone and sandstone suggests that it is derived from L F A 1. It is therefore likely to be 

genetically associated with the lower traction till and the earlier ice sheet to cover the 

region. 

LFA 3: The Upper Diamicton 

The diamicton overlying the gravel is difficult to access and has been strongly affected 

by slope processes. It was difficult to obtain an accurate clast macro-fabric. However, the 

diamicton also bears the hallmarks of a subglacial till (Evans et ai, 2006); these include 

the lateral extent, the over-consolidated matrix, and the presence of bullet-shaped, far-

travelled, striated erratics. L F A 3 is laterally extensive and extends as an unbroken till 

sheet from Hawthorn Hive to Blackhall Rocks. It shows strong similarity to the diamicton 

overlying the raised beach in Shippersea Bay (see Chapters 5 and 6). 

4.4.5 Provenance Interpretation 

LFA I: The Lower Till 

L F A 1 at Hawthorn Hive (sample HAW 02) has a limited suite of clast lithologies. 

Firstly, there is a significant locally-derived and Pennine component, comprising 

significant quantities of Magnesian Limestone (70%), Carboniferous Limestone (3.1 %), 

sandstone (9.4 %) and other Carboniferous and Permian lithologies (such as yellow 

sandstone, coal, shale, and Whin Sill Dolerite). The igneous erratics were too indistinct to 

determine their provenance but could be derived from the Grampian Highlands or 

elsewhere. There is a minor amount of Triassic red marl (1.4 %), sourced from fissures in 
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the limestone or immediately offshore. The heavy-mineral suite contains more far-travelled 

species, indicative of a high-rank metamorphic source terrane. These include the garnet-

andalusite-kyanite assemblage, diagnostic of Buchan-type metamorphism (Trewin, 2002). 

Garnet, staurolite and chloritoid are indicative of Stonehavian-type metamorphism, from 

near the Highland Boundary fault (Stephenson & Gould, 1995). The ferromagnesian 

minerals (olivine and pyroxenes) are typical of the Carboniferous volcanic rocks such as 

the basalts of the Midland Valley of Scotland, southwards. The Whin Sill Dolerite is also a 

probable source for the pyroxenes, but it cannot explain the olivine component. 

LFA 3: The Upper Till 

L F A 3 at Hawthorn Hive (HAW 03) has a diverse range of clast lithologies. These 

include a significant amount of Carboniferous Limestone (13.1 %) but a relatively low 

percentage of Magnesian Limestone (27.6 %). There are a greater proportion of other 

Carboniferous lithologies, such as coal (2.1 %). Granites and other igneous erratics occur 

in greater numbers than in HAW 02. The presence of schist (0.9 %) indicates an input from 

the Dalradian of northern Scotland (cf. Johnson, 1991). The acid porphyries and basalts 

could be derived from the Midland Valley of Scotland southwards (cf. Trewin, 2002). Old 

Red Sandstone is a typical lithology of the Midland Valley of Scotland, and greywacke is 

associated with the Southern Uplands. This sediment therefore is more northerly derived, 

and was less influenced by local lithologies. The low percentage of Magnesian Limestone 

indicates that the till was isolated from the bedrock by a mantle of pre-existing sediments, 

and many of the lithologies within it are derived from erosion of this lower sediment. This 

explanation has previously been invoked by Beaumont (1967). 

This is also supported by the high-rank metamorphic heavy mineral assemblage. The 

high numbers of kyanite, andalusite and garnet are indicative of Buchan-type 

metamorphism, located near Aberdeen (Trewin, 2002). There are low numbers of 

ferromagnesian minerals, which are probably sourced from the Carboniferous volcanic 

rocks and high-level intrusions of northern Britain. These porphyritic basaltic rocks are 

widely exposed in the Midland Valley of Scotland, and locally within the Southern 

Uplands (Cameron & Stephenson, 1985). 

The lithologies and heavy minerals of the upper and lower tills at Hawthorn Hive are 

very similar, suggesting a similar provenance for each. The majority of the differences can 

be explained by the upper till being isolated from the bedrock, and deriving many of its 
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lithological components from erosion of L F A 1. The clast macro-fabrics and striae noted 

by Beaumont (1967) (Figure 1.5), the distribution of the upper till ( L F A 3) as mapped by 

the BGS (Figure 1.6) and drumlins (Livingstone et al., in prep) and outwash deposits in the 

Tyne Gap (Yorke et al., 2007) indicates the presence of two separate ice lobes, which may 

have been sourced in the same region of the Scottish Highlands. 
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4.5 Conclusions 

Facies architecture from Hawthorn Hive to Blackhall Rocks and section logging at 

Hawthorn Hive clearly identifies five lithofacies associations. Two are present only at 

Warren House Gill, but L F A s 1, 2b and 3 clearly extend southwards from Hawthorn Hive 

to Blackhall Rocks. A thick sequence of sediments infills a buried palaeovalley at 

Hawthorn Hive. L F A 1 is interpreted at Hawthorn Hive as a subglacial till, exhibiting 

predominantly local and Pennine erratics. L F A 2 exhibits many facies. The facies present 

at Hawthorn Hive is interpreted as a debris flow, overlain by proximal glaciofluvial 

outwash. The upper till, L F A 3, exists as a uniform, unbroken till sheet. It exhibits local 

and Pennine lithologies, but in substantially fewer quantities than L F A 1. L F A 3 contains 

higher numbers of northerly and Scottish erratics. 

Previous researchers have interpreted these sediments as subglacial tills and 

glaciofluvial outwash sands and gravels, with L F A 1 being the Blackhall Member, L F A 2 

the Peterlee Sands and Gravels, and L F A 3 the Horden Member (Francis, 1972; Lunn, 

1995; Thomas, 1999). This work therefore supports previous interpretations, but adds 

valuable detail and provenance information, indicating a Pennine transport pathway for 

L F A 1 (the Blackhall Member). 
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CHAPTER 5 

The Easington Raised Beach 

5.1 Introduction 

A version of this chapter is in press in the Proceedings of the Geologists' Association 

(see Appendix II). The Easington Raised Beach (NZ 44318, 45301) is exposed in the cliffs 

above Shippersea Bay, on the coast of County Durham (Figure 4.1), 20 km north of the 

Tees estuary. It is the most northerly known Middle Pleistocene interglacial deposit in 

England, and, as such, is a geological SSSI (Site of Special Scientific Interest). The beach 

lies on the eastern flank of Beacon Hill, a resistant reef dolomite knoll rising to 85.7 m 

O.D., which might account for its survival of at least one glaciation (Bridgland & Austin, 

1999). It was first described and interpreted by Woolacott (1900) and then by Trechmann 

(1931a), who both recognised it as an interglacial beach. Set into the Magnesian Limestone 

bedrock (Figures 5.1 and 5.2), it is approximately 2.5 m thick, and extends laterally for 

about 15 m (Trechmann, 1952). Bowen et al. (1991) confirmed the deposit as an 

interglacial beach, describing it as a calcreted shelly gravel with an abundant temperate 

molluscan fauna of littoral character, resting on a rock platform c. 33 m above O.D. 

(Figure 5.1). Descriptions of the beach have reported eight stratified beds with common 

'bored' clasts, marine molluscs, the brachiopod Rhynconella psitticea and an assemblage 

of shallow water foraminifera (Bowen et al., 1991; Bridgland, 1999). It has been noted that 

local Magnesian Limestone clasts are progressively diluted upwards through the deposits 

(Bridgland & Austin, 1999). Reported exotic components include Scandinavian rocks, 

possibly derived from the Warren House Formation that crops out 3 km to the south, and 

Cheviot granite, Borrowdale Volcanics, and Whin Sill Dolerite (Trechmann, 1931a). More 

angular gravels containing coal that immediately overlie the beach are of glacial origin, 

and relate to gravel that crops out in Hawthorn Hive, 800 m to the north of Shippersea Bay 

(Figure 4.1). Conventional amino acid chronology suggested a correlation of the beach 

deposits with MIS 7, although it was also recognised that there were apparently reworked 

specimens showing greater shell mineral diagenesis, perhaps from MIS 9 (Bowen et al., 

1991). The Easington Raised Beach is overlain by the Horden Member, and the Blackhall 

Member pinches out against its flanks (Bridgland & Austin, 1999; Figure 5.1). 
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Figure 5.1: Simplified stratigraphy of coastal glacigenic sediments in County Durham. Modified from 
Bridgland and Austin (1999). 

The age and stratigraphical relations of the Easington Raised Beach are of 

considerable interest in understanding the history of glaciation in coastal north east 

England, where particular significance is placed upon the recognition of a till of 

Scandinavian origin, the Warren House Formation (Thomas, 1999), at Warren House Gill, 

Horden (Figure 4.1, Trechmann, 1952; Lunn, 1995). The occurrence of Scandinavian 

lithologies in the raised beach (cited above) has led to the suggestion that it post-dates the 

Warren House Formation (Trechmann, 1952; Lunn, 1995; Teasdale & Hughes, 1999), 

although this view originated at a time when the Pleistocene record was viewed in the 

context of relatively few glaciations. The Easington Raised Beach was one of the first 

British deposits to be attributed to an interglacial (Trechmann, 1931a). The raised beach is 

also important for understanding regional long-term uplift and sea level change during the 

Quaternary. 

Recent reinterpretation of the stratigraphy and provenance of the North Sea Drift in 

Norfolk raises questions regarding the timing and dynamic interaction between the British-

Irish Ice Sheet (BUS) and the Fennoscandian Ice Sheet (FIS) at different times during the 

Quaternary (Lee et ai, 2002; Lee et ai, 2004; Hamblin et ai, 2005). Under the recently 

proposed model (Hamblin et ai, 2005), the FIS reached the British coastline only during 

MIS 6. This model details a multiple BUS event stratigraphy stretching back to MIS 16, 

but is yet to be validated elsewhere in the UK. One of the major obstacles to validation is 

the occurrence of the 'Warren House Formation' in County Durham (Trechmann, 1931b; 
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Thomas, 1999), as this would appear to predate the MIS 7 raised beach (Bowen et al, 

1991; Lunn, 1995), implying that it is older than the MIS 6 Scandinavian glaciation of 

Norfolk and eastern Yorkshire, and suggesting multiple incursions of Scandinavian ice to 

the British coastline. 

The aim of this research has been to develop a chronostratigraphic and 

lithostratigraphic framework within which to test the stratigraphical relationship of the 

Easington Raised Beach and the Warren House Formation. Furthermore, developing a 

reliable chronostratigraphy for these sediments will also allow long-term uplift in northern 

England during the Quaternary to be better quantified. 
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5.2 Sedimentology and Stratigraphy 

Three lithofacies associations are recognised overlying the bedrock in Shippersea Bay 

(Figure 5.2). Directly overlying the bedrock is L F A 1, comprising well-sorted, bedded to 

massive sands and gravels with a fossil shell gastropod fauna. It is unconformably overlain 

by massive, incohesive and structureless, coarse and poorly sorted sands and gravels ( L F 

2a) and well-sorted, cross-bedded sands ( L F 2b). This lithofacies is overlain by a dark 

brown diamicton (LFA 3). 

Two exposures (Sections A and B) are accessible from the cliff-top coastal path 

(Figure 5.2). In Section B, L F A 1 lies directly on bedrock, and consists of well-bedded, 

well-sorted sands and gravels ( L F la and L F lb; Figure 5.4). They are overlain by a 

poorly-sorted, massive, sandy gravel ( L F 2a) and then by a well-sorted sand, with foresets 

picked out by fine grains of coal ( L F 2b). The sand is overlain by a dark brown, clast-rich 

diamicton (Figure 5.3; L F A 3; the Horden Till), but the contact is obscured. A lower, 

brown diamicton (the Blackhall Till) pinches out against the flanks of the raised beach 

(Bridgland & Austin, 1999). 

Easington Raised Beach 
Section B 

Easington Raised Beach 
Section A 

Magnesian Limestone cliffs 

M i Hi i i i i i 

Figure 5.2: Photograph of the Easington Raised Beach, Shippersea Bay, G r i d Reference: NZ 44318; 
45301. 
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L F la at Section B (Figure 5.3 and Figure 5.4) consists of five planar beds with 

graded, conformable contacts of massive sand and rounded gravel. These beds are neither 

cemented nor consolidated but are very well-sorted, with strong imbrication of clasts 

(Figure 5.3), and are very pale brown in colour (10YR 7/4). These well-sorted, well-

rounded, clast-supported gravels ( L F la, Bed 3) are predominantly composed of 

Magnesian Limestone. There are uncommon clasts of Carboniferous Limestone, 

greywacke, orthoquartzite, vein quartz, flint, and sparse igneous rocks such as granite, 

porphyries, and rhyolite. Softer lithologies (typically limestones) frequently display 

borings by annelid worms and molluscs. There are frequent gastropod shells within L F la, 

Section A. L F la, Bed 4, is a very coarse cobble-gravel with stones imbricated seawards, 

presumed to result from swash. L F lb (Section B; Figure 5.4B) consists of cemented, well-

rounded, alternating well-sorted sand and gravel beds. The cemented sands that show 

ripple lamination (Bed 2) were sampled for O S L and U-series dating (see Table 1). The 

beds contain a similar suite of gravel clast lithologies. 

L F 2a (Section B, Figure 5.4) is significantly different in character from the 

underlying L F A 1. It is a chaotic, coarse, gravelly, poorly-sorted sand with abundant 

angular to sub-angular clasts including coal, which is completely absent from L F A 1 at this 

section. Stratigraphically above this structureless facies is a current-bedded, well-sorted 

fine sand ( L F 2b), with foresets picked out with coal grains, but the contact was not 

exposed. A small trial pit from the path above the raised beach proved that this body of 

sand is overlain by L F A 3 (Figure 5.3), a weathered, dark yellowish-brown diamicton 

(10YR 3/6), massive in appearance and with numerous angular to sub-angular clasts of 

predominantly local lithologies such as Permian and Carboniferous sandstones and 

limestones. 

177 



B E T H A N D A V I E S CHAPTER 5: SHIPPERSEA B A Y 
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Figure 5.3: Sedimentary logs of Sections A and B, showing LFAs 1 to 3, Shippersea Bay 

178 



BETHAN D A V I E S CHAPTER 5: SHIPPERSEA B A Y 
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Bed 2 tm 
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3 I 

Figure 5.4: Photographs of the Easington Raised Beach, Section B. 

Inset Photograph A: Detailed photograph of L F la, loose sand and gravel, not calcreted. Bed 1: 
rounded shingle gravel. Bed 2: Well-sorted sand with rounded cobble gravel. Bed 3: well-sorted fine, 
rounded gravel. Bed 4: iron-stained cobble gravel. 

Inset Photograph B: Detailed photograph of L F lb. Bed 1: Stratified, calcreted, clast-supported gravel 
with rare porphyries. Bed 2: Laterally short and disjointed, calcreted, thinly ripple-cross bedded fine 
sand with rare fine gravel. Bed 3: Poorly-sorted gravelly sand with rare porphyries. 
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5.3 Geochemical, Lithological, Biological and 

Chronostratigraphical Analysis 

5.3.1 Lithological and Geochemical Data 

Multiple bulk samples were taken from the raised beach (Table 5.I). In L F A l , there is 

a strongly bi-modal particle-size distribution, with a combination of very well-sorted sand 

beds and gravels comprising a less well-sorted range of particle sizes from coarse sand to 

gravel. In general, L F A 3 above the beach has moderate percentages of all particle sizes 

(Table 5.2). For detailed particle size results, refer to Appendix IV. 

The clast lithology of L F A 1 is profoundly different from that of the overlying 

diamicton (LFA 3, Table 5.3). First, L F A 1 is vastly richer in Magnesian Limestone (79 to 

84 %), but greatly impoverished in sandstone (< 0.3 %) compared with L F A 3. Secondly, 

L F A 1 contains flint erratics (0.8 to 2.3 %), and more porphyries, quartz and 

orthoquartzite. L F A 3, in contrast, is enriched in Whin Sill Dolerite (4.3 %) and contains 

sparse igneous and metamorphic erratics, such as basalt (1.7 %), gabbro (1.3 %) and slate 

(0.2 %) (Table 5.3). Geochemical analysis also reveals L F A 1 to be consistently different 

in character to the overlying L F A 3 (Table 5.4). Compared to the former, L F A 3 is 

impoverished in sodium, magnesium, calcium, but significantly enriched in iron, titanium, 

lithium, boron, vanadium, cobalt, nickel, copper, and zirconium (Figure 5.5). 

The contrast between L F A 1 and L F A 3 is highlighted further by the results of heavy 

mineral analysis (Table 5.5), which show that L F A 1, unlike L F A 3, have abundant epidote 

(10.3 %) and related minerals such as zoisite (4.6 %), as well as andalusite (4.1 %) and 

kyanite (6.2 %). The locally-derived mineral dolomite contributes a significant amount 

(15.1 %) to the heavy mineral suite of L F A 1. 
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Table 5.1: Sample locations, Easington Raised Beach 

Location Description Sample Analysis 

Section B. LFA 3. Diamicton E R B 06 PSA, Heavy Minerals, 
Clast Lithology 

Section B. LF 1a 
(Bed 3) 

Well-sorted gravel (far 
right of section) E R B 03 PSA, Heavy Minerals, 

Clast Lithology 
Section B. LF 1a 

(Bed 1). 
Well-sorted gravel (far 

left of section) E R B 04 PSA, Heavy Minerals, 
Clast Lithology 

Section B. LF 1a 
(Bed 2). Well-sorted gravel E R B 01 

PSA, Heavy Minerals, 
Clast Lithology, Shell 

Identification 
Section B. LF 1a 

(Bed 1). Well-sorted sand E R B 05 PSA, Heavy Minerals, 
Clast Lithology 

Location Description Sample Analysis 
Section B. LF 1b 

(Bed 4) 
Bedded, rounded 

cobbles, poorly-sorted EAS01 OSL 

Section B. LF 1a 
(Bed 5) Well-sorted fine sand E A S 02 OSL 

Section B. LF 1a 
(Bed 2) 

Calcreted well-sorted 
bedded sand E A S 05 OSL 

Section A. LF 1a 
(Bed 6a) 

Sand and gravel, 
poorly sorted EAS 03 OSL 

Section A. LF 1a 
(Bed 6a) 

Sand and gravel, 
poorly sorted EAS 04 OSL 

Location Description Sample Analysis 
Section B. LF 1a 

(Bed 2). Well-sorted gravel EaERBOINHbF AAR 

Section B. LF la 
(Bed 2). Well-sorted gravel EaERBOINHbH* AAR 

Section B. LF la 
(Bed 2). Well-sorted gravel EaERB01NI2bF AAR 

Section B. LF 1a 
(Bed 2). Well-sorted gravel EaERB01NI2bH* AAR 

Section B. LF 1a 
(Bed 1). 

Well-sorted gravel (far 
left of section) EaERB04NI1bF AAR 

Section B. LF 1a 
(Bed 1). 

Well-sorted gravel (far 
left of section) EaERB04NI1bH* AAR 

Location Description Sample Analysis 
Section B. LF 1b 

(Bed 2) 
Calcreted well-sorted 

bedded sand E B 1 U-Series 

Section B. LF 1b 
(Bed 3) 

Cemented pebble-
gravel E B 2 U-Series 

Section B. LF 1b 
(Bed 3) 

Cemented pebble-
gravel 

E B 3 U-Series 

Section B. LF 1b 
(Bed 4) 

Bedded,rounded 
cobbles, poorly-sorted 

E B 4 U-Series 

Section B. LF 1b 
(Bed 4) 

Bedded,rounded 
cobbles, poorly-sorted E B 5 U-Series 
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Table 5.2: Average particle size distribution of the beach sands and gravels and the diamicton above. 

Particle Size 
L F 1a 

Beach sand 
L F 1a 

Beach gravel L F A 3 

ERB05 ERB04 ERB06 
% Clay 0.28 0.69 15.28 
% Silt 1.10 3.23 32.79 
% Fine sand 87.48 4.09 21.15 
% Coarse sand 11.14 36.79 13.51 
% Fine gravel 0.00 24.91 3.14 
% Coarse gravel 0.00 30.29 14.13 

Table 5.3: Average percentages of clast lithologies at Shippersea Bay, 8-16, and 16-32 mm. For detailed 
raw counts, refer to Appendix IV. 

Clast Type LFA 1 LFA 3 Clast Type 
ERB01 ERB 04 ERB 03 ERB 06 

n 1077 987 679 464 
Diorite 0.00 0.00 0.00 0.00 
Granite 0.84 1.62 0.44 0.65 
Gabbro 0.00 0.00 0.00 1.29 

Igneous Rhyolite 1.39 0.81 0.59 0.00 
Andesite 0.00 0.20 0.15 1.94 
Basalt 0.00 0.00 0.00 1.72 
Porphyry 4.09 5.27 5.60 0.00 

Metamorphic Slate 
Schist 

0.00 
0.00 

0.00 
0.00 

0.00 
0.00 

0.22 
0.00 

Sandstone Sandstone 0.28 0.00 0.00 45.69 
and 

Sedimentary 
Siltstone 
Breccia 

0.00 
0.00 

0.00 
0.00 

0.00 
0.00 

4.31 
2.16 

Chalk 0.00 0.00 0.00 0.00 
Cretaceous Brown Flint 0.00 2.33 1.47 0.00 

Black Flint 0.84 0.41 1.47 0.00 

Jurass ic Ironstone 
Mudstone 

0.00 
0.00 

0.00 
0.00 

0.00 
0.00 

0.65 
3.02 

Brown orthoquartzite 0.28 0.51 0.00 0.00 
Red orthoquartzite 1.86 1.11 0.88 0.86 
White orthoquartzite 3.44 2.74 3.98 1.29 

Triassic Brown vein quartz 0.09 0.61 0.00 0.00 
Red vein quartz 0.09 0.00 0.29 0.00 
White vein quartz 5.66 4.15 2.50 0.00 
Red marl 0.46 0.00 0.00 0.00 
Magnesian Limestone 79.39 79.43 83.95 20.69 

Permian Yellow Sands 0.56 0.00 0.15 0.86 Permian 
Whin Sill Dolerite 0.19 0.00 0.15 4.31 
New Red Sandstone 0.00 0.00 0.00 0.22 
Carboniferous Limestone 0.28 0.41 1.33 1.29 

Carboniferous Chert 0.00 0.00 0.00 0.22 
Coal 0.00 0.00 0.00 0.00 

Devonian 
Shale 0.00 0.00 0.00 0.43 Devonian 
Old Red Sandstone 0.00 0.00 0.00 1.29 

Silurian Greywacke 0.28 0.00 0.00 4.74 

Other Shell 0.00 0.41 0.00 2.16 
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Table 5.4: Geochemical analysis of sediments in Shippersea Bay 

High Abundance Elements (mg / kg) 
S A M P L E Na 2 3 Mg 2 4 A l 2 7 K 3 9 C a 4 4 T i 4 8 

F e 5 7 

E R B 05 
L F 1a; Beach sand 27100 6440 204000 12000 203000 1110 19500 

E R B 01 
LF 1a; Beach gravels 6570 7550 328000 10500 53800 493 6290 

E R B 06 
LFA 3; Diamicton 2811 433 22456 12388 10558 4113 33355 

Clast-Lithological Analysis 
IGNEOUS 

LFA 3 LF 1a 
Diamicton Beach Gravel METAMORPHIC 

SANDSTONE 

CRETACEOUS 

JURASSC 

~ \ TRIASSIC 

PERM AN 

CARBONIFEROUS 

DEVONIAN 

• ORDOVICIAN & SILURIAN 

OTHER (SHELL) 

Geochemical Analysis 

I 1 LFA 3 
I 1 L F 1a Sand 

LF 1a Gravels 

50,000 100,000 150,000 200,000 

Elements (mg / kg) 

250,000 300,000 350,000 

Figure 5.5: Pie charts of average clast-lithological analysis and bar charts of geochemical analysis, 
Shippersea Bay. 
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Table 5.5: Average percentage heavy minerals in sediments in Shippersea Bay. For detailed raw 
counts, refer to Appendix IV. 

Heavy Mineral Phase LFA 1 LFA 3 
n 8796 2048 
% Opaques 89.04 73.29 
% Non Opaques 10.96 26.71 
% Heavy Minerals 2.17 0.40 

Olivine GP 0.34 0.19 
Zircon 4.90 11.58 
Sphene 1.98 3.45 
Garnet GP 13.03 30.25 

Silicate Group Sillimanite 1.44 0.18 
Andalusite 4.07 2.63 
Kyanite 6.24 2.24 
Staurolite 1.23 0.37 
Chloritoid 0.19 1.74 
Zoisite / Clinozoisite 4.55 1.61 
Piemontite 0.00 0.00 
Epidote 10.33 0.19 

Epidote Group Lawsonite 0.88 0.00 
Axinite 0.00 0.55 
Pumpellyite 0.00 0.00 
Tourmaline GP 2.80 2.63 
Enstatite 1.66 1.32 

Pyroxene Hypersthene 0.00 2.29 
Group Diopsidic Clinopyroxene 2.87 3.36 

Augitic Clinopyroxene 3.03 4.34 
Tremolite 0.00 0.00 

Amphibole 
Group 

Ferriactinolite 
Hornblende 

0.00 
0.00 

0.37 
0.39 

Amphibole 
Group 

Diallage 0.00 0.37 
Glaucophane 0.00 0.19 
Muscovite 8.63 6.63 

Mica Group Glauconite 0.00 0.00 Mica Group 
Biotite 8.43 7.85 
Chlorite GP 2.33 2.21 
Rutile 1.74 6.23 

Oxides Brookite 
Spinel GP 

1.65 
0.00 

1.09 
0.18 

Anatase 0.00 0.18 
Carbonates Dolomite / Calcite 15.19 0.73 
Sulphates Baryte 0.00 0.00 
Sulphides Sphalerite 0.00 0.00 

Phosphates Apatite 
Monazite 

2.13 
0.39 

4.26 
0.37 
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5.3.2 Biological Data 

L F A 1 contains numerous whole gastropod shells. The following species were 

identified: Littorina litoralis, Littorina littorea, Littorina saxatilis, Nucella lapillus, 

Gibbula umbilicalis, and Patella vulgata. This fauna, which confirms and adds to previous 

findings (Bowen et al, 1991), is indicative of a warm littoral environment, such as that 

presiding on the modern beach at Shippersea Bay. Foraminifera (counted and identified by 

William Austin) are also present in these sands (Table 5.6). L F A 1 contains a relatively 

low diversity assemblage of benthic foraminifera, characteristic of temperate intertidal and 

sub-tidal environments (Murray, 1979). These assemblages are consistent with a high 

energy depositional setting, such as a beach deposit, where many of the specimens have 

undergone abrasion and breakage during the transportation / depositional processes. 

Table 5.6: Foraminifera of L F A 1, the Easington Raised Beach. Courtesy of Dr. William Austin. 

Foraminifera species Abundance 
Ammonia beccarii Abundant 
Elphidium williamsoni Common 
Cibicides lobatulus Common 
Elphidium excavatum Common 
Elphidium macellum Common 
Elphidium incertum Rare 
Haynesina germanica Rare 
Elphidium albiumbilicatum Rare 
Rosalina sp. Rare 

5.3.3 Chronostratigraphy 

Introduction 

Three independent dating methods were applied to L F A 1. The first was Optically 

Stimulated Luminescence (OSL) dating, which is a direct method of dating mineral 

sediments. It can only be used for sediments rich in quartz and/or feldspar grains that were 

exposed to light at the time of deposition; this makes it highly suitable for wind-blown, 

fluvial and beach sediments, and therefore applicable to this study (Lian, 2007). The 

context and depositional environment of the sample sites, however, must be well 

understood if the dates are to be correctly interpreted. O S L dating works with sediments 

from the Middle to Late Pleistocene (Lian & Roberts, 2006), making it a valuable 

radiometric technique for studying interglacial deposits. This was conducted by Dr. 
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Pawley, of Royal Holloway, University of London. The report is presented in Appendix 

IV. 

The second dating technique, amino acid racemisation analysis (e.g., Miller & Clarke, 

2007), has been previously applied to the Easington Raised Beach deposits, using an 

earlier methodology measuring the racemisation of a single amino acid in the whole shell 

fraction (cf. Bowen et al., 1991). The analyses reported here used a new technique; 

improvements in the methodology mean that multiple amino acids were analysed from the 

intra-crystalline fraction of protein, which forms a closed system (Penkman et al., 2007; 

Penkman et al., 2008). A closed system is essential for the application of amino acid 

geochronology, because the majority of organic matter within fossil biominerals is 

potentially subject to contamination and / or leaching. As diagenetic reactions are used to 

assess the original properties and burial history of the sample, the degradation products of 

the organic matter must be retained within the biomineral: this is the case in closed systems 

(Penkman et al., 2008). The method is based on the extent of protein decomposition, 

which increases with time, although there is an increased rate of breakdown during warm 

stages and a decrease in cold stages. Amino acids can exist in two forms, L and D, and 

only L-amino acids are formed in shells; modern shells have a D L ratio of close to zero. 

However, when an organism dies a spontaneous reaction occurs called racemisation, until 

there is an equal number of D- and L - amino acids, i.e., a D / L value of 1. This work was 

carried out by Dr. Penkman and Miss Demarchi, of the University of York. Refer to 

Chapter 2.9.1. 

A third application of geochronology was the attempted use of the uranium-series 

method to measure the age of the calcareous cement in the upper part of the raised beach 

sequence, this being an appropriate technique for dating calcium carbonate precipitates of 

this sort (Candy et al., 2004). This was carried out together with analysis of the stable 

isotopes of oxygen and carbon (refer to Chapter 2.9.3). This work was conducted by Dr. 

Candy, also of R H U L , whose report is presented in Appendix IV. 

Optically Stimulated Luminescence 

The Easington Raised Beach was dated by O S L by Dr. Pawley at Royal Holloway, 

University of London (see Appendix IV). O S L samples were collected from L F A 1 by 

hammering opaque plastic tubes into the face of the cleaned section (Figure 5.3 and Figure 

5.6). A carbonate cemented sand bed was sampled (EAS 05) as an intact block, with the 
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light-exposed edges removed by dissolution using 10 % HC1. In estimating burial history, 

it was assumed that the site had been buried by 13 m of Late Devensian glacigenic 

sediments for the past 23 ka, and prior to this, a burial depth o f 2 + 1 m was assumed based 

on the thickness of the raised beach sediments that overlie the sampling locations. A n 

underestimate of the burial depth would result in a commensurate underestimate in 

estimated age; thus, i f the beach was buried by 10 m consistently prior to the Late 

Devensian, perhaps by an earlier glacial deposit, subsequently removed, then this would 

imply a 9 % increase in the estimated age. 

0.70m 

E a s 03 E a s 04 

0.25m 

Calcreted, coarse, poorly 
sorted gravel. 

Moderately sorted medium gravel, 
not calcreted. 
Pebble coarse granular sand, 
poorly sorted, not calcreted 

Fine moderately sorted 
gravel, not calcreted 

Moderately sorted 
medium gravel, not calcreted 

Coarse, calcreted gravel 

Figure 5.6: Location of samples E A S 04 and EAS 05. L F 2a, Section A, Easington Raised Beach 

Dose recovery tests of 200 Gy were performed by Dr. Pawley on groups of four 

aliquots in each sample with the average measured / given dose ratio being 1.06 + 0.04 m, 

very close to unity and confirming the ability of these samples to measure a known 

laboratory dose. The results of the quartz OSL dating are shown in Table 5.7 alongside the 

dose rate data and D e estimates f rom between 12 and 22 aliquots per sample. When the 

OSL ages are compared to the marine isotope curve (Figure 5.7) derived from the ODP677 

site (Shackleton et al., 1990), four out of five dates are within errors of MIS 7 and range 

f rom 153+17 to 250 + 30 ka BP. 

I f the systematic uncertainties scaled on each date are combined in quadrature, a mean 

and error of 201 ± 28 ka is obtained which w i l l cover systematic uncertainties in beta 
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source calibration, gamma-ray spectrometry calibration, dose rate conversion factors, beta 

dose attenuation factors, water content, cosmic dose/burial depth, and internal quartz dose. 

These ages support previous interpretations by Bowen et al. (1991) using conventional 

amino acid geochronology. 

Table 5.7: Results of OSL dates, Easington Raised Beach, courtesy of Dr. Pawley. 

Sample n Burial 
depth (m) 

K 
(%) 

U 
(ppm) 

Th 
(ppm) 

Water 
(%) 

Dose rate 
(Gy/ka) De (Gy) Age (ka) 

EAS01 16 2.0 ± 1.0 0.43 2.01 2.05 5 1.20 ± 0 . 1 1 184 ± 9 153 ± 1 7 
EAS02 13 2.0 ± 1.0 0.45 2.31 1.66 5 1.14 ± 0.11 223 ± 17 196 ± 26 
EAS03 12 2.0 ± 1.0 0.37 1.61 1.98 5 1.10 ± 0.11 260 ± 27 237 ± 35 
EAS04 22 2.0 ± 1.0 0.46 1.84 2.02 5 1.20 ± 0.11 300 ± 21 250 ± 30 
EAS05 14 2.0 ± 1.0 0.30 0.90 0.70 7 0.70 ± 0 . 1 0 130 ± 14 188 ± 3 3 

I — • 

I — • — I 

I — • 

M S 11 MIS 9 MIS 5e 

/ CO MIS 7a 

f 1 

M S 8 
MIS 6 MIS 12 MIS 2 MIS 10 

100 200 300 400 500 600 
Age (ka) 

Figure 5.7: Comparison of OSL ages with the marine isotope record derived from the ODP677 site 
(Shackleton et at., 1990). Image courtesy of Dr. Pawley. 

Amino Acid Racemisation 

Amino acid racemisation analysis (e.g., Miller & Clarke, 2007), has been previously 

applied to the Easington Raised Beach deposits, using an earlier methodology measuring 

the racemisation of a single amino acid in the whole shell fraction (cf. Bowen et al., 1991). 

Dr. Penkman and Miss Demarchi of York University analysed three Nucella lapillus 

gastropod shells for the degradation of intra-crystalline proteins. Two shells were taken 

from sample ERB01, and one shell from the ERB04. Two subsamples were taken from 
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each shell: one for analysis of the free amino acids (FAA) and one for the total amino 

acids, which include the peptide bound amino acids (Total Hydrolysable amino acids; 

THAA). The data from five amino acids (aspartic acid / asparagine (Asx), glutamic acid / 

glutamine (Glx), serine (Ser), alanine (Ala) and valine (Val)) are reported (Table 5.8), as 

these amino acids yield baseline resolution. 

Table 5.8: Amino acid data on Nucella shells from the Easington Raised Beach. Error terms represent 
1 S.D. about the mean for the duplicate analyses for an individual sample. Each sample were bleached 
(b) with the free amino acid fraction signified by ' F ' and the total hydrolysable fraction by 'H* ' . Each 
sample thus has a unique identifier. Results courtesy of Beatrice Demarchi and Kirsty Penkman of the 
University of York. 

Sample Asx D/L Glx D/L Ala D/L Val D/L [Ser]/[Ala] 
ERB01 
NI1bF 0.778 ± 0.016 0.297 ± 0.009 0.435 ± 0.004 0.260 ± 0.001 0.172 ± 0 . 0 0 5 

ERB01 
NMbH* 0.614 ± 0 . 0 0 0 0.199 ± 0 . 0 0 0 0.295 ± 0.006 0.175 ± 0 . 0 0 3 0.170 ± 0 . 0 0 3 

ERB01 
NI2bF 

0.779 ± 0.001 0.391 ± 0.093 0.436 ± 0.002 0.270 ± 0.000 0.167 ± 0 . 0 1 0 

ERB01 
NI2bH* 0.618 ± 0.000 0.208 ± 0.001 0.322 ± 0.002 0.188 ± 0 . 0 0 0 0.165 ± 0 . 0 0 0 

ERB04 
NI1bF 0.791 ± 0.000 0.304 ± 0.005 0.428 ± 0.003 0.274 ± 0.006 0.174 ±0 .001 

ERB04 
NMbH* 0.619 ±0 .001 0.206 ± 0.000 0.306 ±0 .001 0.175 ±0 .001 0.153 ±0 .001 

The results were compared to data from Nucella from other Quaternary Early 

Pleistocene interglacial beach and coastal deposits from around eastern England: 

Bramerton Crag, Sidestrand Crag and the Mya Bed (overlying the Freshwater Bed) at West 

Runton (Norton, 1967; Rose et al., 2001; Rose et al., 2002; Lee et al., 2006; Riches et al., 

2008). All the diagenetic indicators (D/L and [Ser]/[Ala]) indicated a coherent increase in 

protein degradation with time for this species (Figure 5.8). The diagenetic indicators 

therefore strongly suggested a much younger age for the Easington deposits than for the 

other sites, therefore the Easington Raised Beach must be younger than the type 

Cromerian. The values obtained suggest that the deposits are not as young as the 

Devensian. Thus, with the paucity of previous data using this methodology acting as a 

major constraint on resolution, the new analyses placed the Easington deposit as younger 

than the Cromerian and older than Devensian. Assignment to a particular MIS will not be 

possible until a larger database of results from interglacial marine sites is available; as they 

stand, these results do not contradict the MIS 7 age implied by the O S L (above) and the 

earlier conventional amino acid analyses (cf. Bowen et al., 1991). 
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Figure 5.8: D/L values of Asx, Ala, Vak and [Ser]/[Ala] for the free (FAA) and Total Hydrolysable 
Amino Acid (THAA) fractions of the bleached Nucella lapillus shells from the Easington Raised Beach, 
compared with shells from the Cromerian type site (West Runton), and Crag deposits of Early 
Pleistocene age (from Sidestrand and Bramerton). 

Data for Easington are represented with one standard deviation around the mean of the replicates for 
each individual sample. Comparison sites are represented with two standard deviations around the 
mean for the site. The axes for the [Ser]/[Ala] data are plotted in reverse, so that the direction of 
increased protein degradation for each of the indicators remains the same. Note: different scales on the 
v-axes. Courtesy of Beatrice Demarchi. 

Stable Isotope Geochemistry and U-series dating 

Stable isotope geochemistry and U-series dating was conducted by Dr. Candy (Candy, 

2008, see Appendix I V ) . To assess the U-series chronology and date of cementation of the 

beach, densely cemented samples were taken f rom representative sediment fabrics within 

the raised beach sequence. These included well-sorted medium sands, gravels with a 

medium sand matrix, and open-framework gravels. Thin sections were prepared according 

to procedures outlined in Lee and Kemp (1994). Candy (2008) observed that the thin 
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sections of the three samples showed that the carbonate cement matrix to be dominated by 

secondary calcite spar, which is typical of calcification in the phreatic zone (Tucker & 

Wright, 1990; Preece et al., 2007). In the sand samples, where small pore size means that 

there is minimal room for cement crystal growth, the cement was characterised by small 

(10 um) spar crystals. In the open-fabric gravels, the calcite crystals are larger (300 pm). 

Candy (2008) observed that in both the sand-dominated and open-framework sediments, 

the calcite crystals are fibrous in form and exhibit an isopachous arrangement, with 

cements of consistent thickness growing around the pore rim (Figure 5.9). 

Candy (2008) proposed that the petrography and the stable isotopic composition of the 

Easington cements are characteristic of carbonate precipitation by phreatic (groundwater) 

processes. The coarse-spar cements are indicative of calcite precipitation in association 

with regularly recharging waters. Their isopachous arrangement implies that the pores 

were permanently filled with water. Both the oxygen and carbon isotopic values of the 

Easington cements are consistent with those of interglacial 'groundwater' carbonates 

(Figure 5.10), with no indication of precipitation under marine conditions (Candy, 2008). 
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Figure 5.9: Photomicrographs of the microstructure of the Easington beach cement. 

a) Low power view of the sediment and cement matrix. 

b) Carbonate cements within the sandy fabric, fibrous calcite crystals in an isopachous arrangement. 

c) Carbonate cements within the open-framework gravels. 

d) Carbonate cements within the pebble-gravel with sandy matrix. All photo-micrographs are shown 
in cross-polarised light. From Candy (2008); refer to Appendix I V . 
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Figure 5.10: Comparison of the stable oxygen and carbon isotopic composition of the Easington Raised 
Beach with groundwater and tufa sediments from British interglacials (MIS 7 and MIS 11). From 
Candy (2008). 

In an attempt to constrain the age of the raised beach deposits, Dr. Candy took five 

samples of the carbonate cements for 2 3 0 T h / U dating. The most suitable material was the 

large spar cement accumulations f rom the open-framework gravels, as cements in these 

contexts can grow into open pores, resulting in low amounts of detrital contamination with 

the cement lattice. Also, the relatively thick accumulations of cements means that any 

surfaces that have undergone weathering can be removed before analysis. The derived ages 

scatter between 7,470 ± 120 years and 39,360 + 450 years (Table 5.9). 

Candy (2008) suggested that the concentration of 2 3 2 T h (80 to 250 ppb) and the 
230 2^2 

Th/ " Th activity ratio (1 to 6.8) could indicate detrital contamination (cf. Candy et al., 

2005), which would overestimate the true age of the carbonate cement. However, although 

concentrations of thorium are high, they are low compared to concentrations of uranium 

(850-1000 ppb). In many carbonate systems, such a high level of uranium relative to 

thorium would mean that the effect of detrital contamination should be minimal, and the 
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Th/ " Th activity ratio should be » 2 0 . That this is not the case in the Easington samples 

is likely to be a function of the very young age of the cement (Candy, 2008), as when a 

sample is very young, very little Th w i l l have accumulated through radioactive decay. 

As a consequence, the " T h / " Th activity ratio w i l l be relatively low, making the samples 

appear heavily contaminated. Candy (2008) applied a detrital correction to this dataset 

(following Ludwig and Paces (2002) and Sharp et al. (2003)), which altered the ages 

slightly, but the three Holocene ages remained Holocene, and the two Devensian ages 

remained Devensian. 

Table 5.9: Age of cementation from U-series dating. From Candy (2008); refer to Appendix IV. 

Sample EAS1 EAS2 EAS3 EAS4 EAS5 
U (ppb) 853 834 900 1029 925 

Th (ppb) 243 125 250 82 169 
( 2 3 0Th/ 2 3 8U) 0.305 0.066 0.096 0.155 0.08 

2a (-0.003) (-0.001) (-0.003) (-0.002) (-0.001) 
( 2 3 4U/ 2 3 f lU) 0.104 1.15 1.149 1.157 1.158 

2a (-0.007) (-0.005) (-0.006) (-0.006) (-0.006) 
( 2 3 0 T H / 2 3 2 T H ) 3.582 1.543 1.202 6.831 1.538 

2a (-0.015) (-0.022) (-0.021) (-0.068) (-0.022) 
Age (years) 39,360 ± 450 7,470 ±120 10,940 ±310 18,300 ± 260 9,070 ±160 

This data therefore indicates that cementation occurred primarily during the Holocene 

(Candy, 2008). An interglacial interpretation is supported by the stable isotope 

geochemistry, which would require a constant and persistent water table (which would be 

more likely to occur during an interglacial). The two samples placing cementation in the 

Devensian are therefore curious, and suggest that cementation could span 40,000 years, 

and that the relevant groundwater processes are only weakly related to climate (Candy, 

2008). Alternatively, the cementation could be multi-phase, and these older ages could be 

averages. At localised points within the cement, there is evidence that carbonate was 

precipitated during multiple phases and does not represent a single phase of carbonate 

precipitation (Candy, 2008). 
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5.4 Discussion 

5.4.1 Depositional Processes 

LFA I: Sorted sands and gravels 

LFA 1 in the sheltered cove of Shippersea Bay is interpreted as a raised beach, 

supporting interpretations by Trechmann (1952) and Bowen et al. (1991). The presence of 

bored clasts indicating littoral bivalves and annelid worms, the seaward dipping 

imbrication, the well-sorted sands and gravels, the well-rounded clasts, and fossil littoral 

gastropods and foraminifera all suggest a temperate-climate beach interpretation. The 

dating evidence f rom this and earlier studies indicates that the beach formed during MIS 7, 

which was the penultimate interglacial (Bowen, 1999c). The height of the beach, at 33 m 

O.D., can be related to progressive regional uplif t in northern England. This is the case 

with south coast raised beaches such as in west Sussex (Westaway et al., 2006), although 

the uplift history in east Durham has undoubtedly been complicated by repeated depression 

and recovery f rom glacial ice loading and perhaps also by its proximity to the subsiding 

North Sea basin. A n age of MIS 7 and a height of 33 m would indicate a long-term uplift 

rate of -0.19 mm a"1, which is in keeping with a regional pattern of increasing uplift rates 

across England, and is comparable with that in the Pennines (Westaway, in press). There is 

an increase in uplif t northwards, which is related to the thinner (30-32 km thick, Chadwick 

& Pharaoh, 1998) and hotter Palaeozoic crust, with surface heat f low in many localities 

-90 M w m" (Lee et al., 1987), due to the significant radiogenic heat production in 

Palaeozoic granite intrusions (Westaway, in press). The lower crust is therefore much less 

viscous than in the south of England, and is capable of f lowing to a greater extent in 

response to surface processes, essentially driving isostatic uplift in response to rapid 

erosion (England & Molnar, 1990). Westaway (in press) attributed the uplift to 

redistribution of mobile lower crustal material, driven by repeated loading and unloading 

as a result of the growth and decay of ice sheets and the rise and fal l of sea level (these 

being, in any case, interrelated), as well as erosional unloading of the land area (Westaway 

et al., 2002). The process is progressive and affects areas of younger crust worldwide 

(Bridgland & Westaway, 2007), although in glaciated areas like northern England its 

influence is generally masked by the considerably more rapid (but reversible) effects of 

glacio-isostasy. 
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Trechmann (1952) argued that Scandinavian lithologies present within the beach were 

derived from the 'Scandinavian Dr i f t ' (Warren House Formation), implying that the beach 

was younger than the t i l l . No Scandinavian lithologies were found in the beach during the 

course of the present study, however. There are rare incidences of flint, but it is d i f f icul t to 

prove that they originated f rom the Warren House Formation. They could have been 

derived from another deposit, now removed by subsequent processes (as, indeed, could the 

Scandinavian clasts reported f rom the beach by Trechmann). 

Unsorted sands and gravels (LF 2a) and diamicton (LFA 3) 

The coarse, gravelly sands (LF 2a) immediately overlying the raised beach are 

interpreted as glaciofluvial in origin. They are massive, incohesive, poorly sorted, and 

contain numerous erratics. In LF 2b, there are foresets emphasised by grains of coal, which 

is not present in the high-energy environment of the beach. The overlying diamicton, L F A 

3 (the Horden T i l l ) , has been weathered. This is supported by the presence of roots, 

pedogenesis, oxidisation, and the removal of less durable minerals (cf. Eyles & Sladen, 

1981). The presence of striated, sub-angular to sub-rounded, far-travelled stones, and the 

unsorted character all support an interpretation as a subglacially-derived t i l l , originating 

f rom a combination of processes at the ice-bed interface, including lodgement, 

glaciotectonic deformation, and grinding (Hart & Boulton, 1991; Hindmarsh, 1997; Larsen 

et al, 2004). This is f i rmly supported by more rigorous investigations of other diamictons 

correlated with the Horden T i l l at Whitburn Bay (Chapter 3) and Warren House Gi l l 

(Chapter 6). 

4.4.2 Cementation of the Easington Raised Beach 

Candy (2008) argued that the U-series data indicate that the cementation of the raised 

beach (LFA 1) was a Late Quaternary phenomenon. The stable isotope geochemistry 

suggests that the cement precipitation in LF lb occurred in an interglacial climate (Figure 

5.13). This is supported by the necessity for a constant and persistent water table (which 

would be more likely to occur during an interglacial). However, two of the derived ages 

place cementation during the Devensian (Table 5.9). There is, therefore, the possibility that 

cementation spans the last 40,000 years, and that the groundwater processes responsible for 

cementation are only weakly related to the prevailing climate. The cementation could also 

be multi-phase, and although the main phase occurred during the Holocene, earlier phases 
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may have occurred during previous interglacials. Whether the ages obtained were 

averages, or whether there are genuine glacial stage cements within the beach is diff icult to 

prove, however, at localised points within the cement there is evidence that carbonate was 

precipitated during multiple phases and does not represent a single phase of carbonate 

precipitation. 

Candy (2008) proposed that the cementation of the beach required dissolution of 

significant amounts of carbonate from within the hydrological system, and for the re-

precipitation of carbonate within the beach gravels as a result of a change in carbonate 

solubility. The overlying Devensian t i l l is crucial to this story. During an interglacial, the 

expansion of vegetation and soil forming processes across the surface of the t i l l would lead 

to the dissolution of detrital carbonate, due to the presence of organic acids and the high 

partial pressure of CO2 in the soil atmosphere. This causes it to be taken up into solution as 

carbonic acid. Downward percolation of waters through this t i l l is slow, due to the low 

permeability of this deposit. As these vadose waters enter the highly permeable raised 

beach deposits, the increased rate of water flow, increased pore size, and increased pH are 

more conducive to carbonate precipitation. Carbonate consequently precipitates as dense 

spar crystals. The t i l l overlying the beach is therefore critical to the precipitation of the 

raised beach cement matrix (ibid.). It is likely that widespread cementation of the raised 

beach was not possible until after the L G M and the deposition of this t i l l . However, the 

emplacement of an older MIS 6 t i l l , now removed, over the top of the beach, might have 

led to an earlier phase of cementation. 

5.4.3 Provenance 

The Raised Beach 

L F A 1 contains a varied suite of heavy minerals (Table 5.5). The presence of far-

travelled high-rank metamorphic minerals (such as kyanite, andalusite, zoisite, amphiboles 

and detrital micas) indicates littoral reworking of pre-existing, glacigenic sediments. It is 

possible that this includes the 'Scandinavian Dr i f t ' (Trechmann, 1915, 1952), now the 

Warren House Formation (Thomas, 1999), but it is also possible that these minerals were 

derived f rom other, now locally non-extant (eroded), glacigenic deposit(s). Locally-derived 

minerals such as dolomite (15.2 %) are abundant, along with stable minerals such as garnet 

(13.0%) and zircon (4 .9%). Clast lithological analysis confirms the input of some 

reworked, far-travelled material (Table 5.3). While the majority of the clasts are locally-
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derived limestones, the flints, quartzite, vein quartz, acid porphyries (probably Scottish) 

and granites are outside regional f luvial drainage networks (Cameron & Stephenson, 1985; 

Johnson, 1995; Stephenson & Gould, 1995; Strachan et al., 2002; Trewin, 2002), and 

indicate that older glacigenic deposits must have been reworked. The only currently extant 

source for quartz, quartzite and f l int erratics in the local vicinity is the Warren House 

Formation, but this does not exclude pre-existing glacigenic deposits now no longer 

remaining. The absence of non-durable lithologies such as coal, sandstone, mudstone etc., 

probably reflects the high-energy nature of the beach environment. 

The glaciofluvial sands and gravels (LFA 2) and the subglacial till (LFA 3) 

The glaciofluvial sands and t i l l overlying the raised beach at Shippersea Bay share 

many provenance characteristics with other upper-most glacial sediments in County 

Durham. Although the t i l l here shows signs of weathering, provenance-specific indicators 

remain. For example, the presence of slate indicates a source f rom the Grampian Highlands 

of Scotland. Granite, gabbro, acid porphyries, and basalt are all probably derived from the 

Scottish Highlands and the Midland Valley (Cameron & Stephenson, 1985; Stephenson & 

Gould, 1995; Davies et al., in press). Old Red Sandstone is a typical lithology of the 

Midland Valley of Scotland and northwest of the Cheviots (Cameron & Stephenson, 1985). 

The low percentage of Magnesian Limestone in the t i l l implies separation of ice from the 

bedrock at the time of subglacial erosion by a mantle of older t i l l (the Blackhall T i l l ; cf. 

Davies et al., in press), and that most of the limestone clasts were derived secondarily 

through erosion of this older t i l l , as suggested by Beaumont (1967). Clasts of dolerite were 

probably derived from the Whin Si l l , which crops out to the north (Smith, 1994; Randall, 

1995). 

Heavy-mineral analysis of LFA 3 in Shippersea Bay reveals a characteristic garnet-

staurolite-chloritoid assemblage, indicative of Stonehavian-type metamorphism, which 

indicates input of material derived from near the Highland Boundary Fault. The presence 

of the garnet-andalusite-kyanite assemblage suggests input from Buchan, near Aberdeen 

(Stephenson & Gould, 1995; Trewin, 2002), which is comparable to other Devensian tills 

in the area (refer to Chapter 3). 

198 



BBTHAN D A V I E S CHAPTER 5: SHIPPERSEA B A Y 

5.4.4 Implications 

The Easington Raised Beach contains a varied heavy mineral suite and varied gravel 

clast lithologies, clearly demonstrating the input of far-travelled material. This suggests 

that marine erosion, acting upon pre-existing glacigenic deposits, introducing this material 

into the raised beach. For the lithologies to have reached such high percentages, the 

glacigenic deposit must have been widespread. Previous authors (Trechmann, 1931a; 

Francis, 1972; Lunn, 1995; Thomas, 1999) have suggested the Warren House Formation as 

the source. Currently however, this is preserved only in the bottom of a deeply incised pre-

Devensian valley, although it could previously have been more widespread. 

LFA 3, overlying the raised beach (Bridgland & Austin, 1999), is clearly distinguished 

by the low proportion of Magnesian Limestone and the high proportion of sandstone. It 

contains far-travelled erratics, namely gabbro, andesite and basalt, sourced f rom the 

Southern Uplands and the Grampian Highlands. The heavy-mineral assemblage shows a 

clear input f rom near the Highland Boundary Fault. 

Although this study agrees with the interpretation of LFA I as a raised beach, and 

direct dating has indicated an MIS 7 age, this study found no evidence of Scandinavian 

erratics within the raised beach. However, Scottish acid porphyries and granites and 

Cretaceous flints suggest erosion of a sediment that flowed from offshore eastern England 

in a westerly direction. This could include an ice sheet sourced in Scandinavia, and rhomb 

porphyries could therefore potentially exist within the beach in very low numbers. 

The vast majority of the clasts within the beach are locally derived bedrock lithologies. 

The large number of quartzose lithologies and rare fl int lithologies bears resemblance to 

the lithologies within the Warren House Formation. However, these lithologies are very 

durable and could survive several cycles of reworking. Therefore there is no clear 

lithostratigraphical evidence that the beach includes derived clasts f rom the Warren House 

Formation. 
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5.5 Conclusions 

This study is the first fu l ly quantified sedimentological, petrological and lithological 

analysis of the Easington Raised Beach, also providing in-depth analysis of the 

sedimentary structures. The presence of well-sorted sands, and well-rounded, imbricated, 

cobble-gravel with annelid worm and molluscan borings, and of warm-climate, littoral 

shells from species such as Nucella lapillus and Patella vulgata, and shallow, sub-tidal and 

temperate foraminifera, combine to indicate that this is a temperate beach. New dating 

applications have confirmed earlier attributions to MIS 7. The cement matrix was formed 

by groundwater percolation during the Holocene in relation to the overlying subglacial t i l l . 

This study found no evidence of Scandinavian erratics within the raised beach. 

However, Scottish acid porphyries and granites and Cretaceous flints suggest reworking 

from a sediment that was sourced offshore f rom eastern England. This study agreed with 

previous workers that the sediments were deposited in a warm, littoral environment during 

a period of high sea level during MIS 7. 

The diamicton overlying the beach is the Horden T i l l , as defined by Francis (1972). It 

is very weathered and contains numerous sandstone lithologies. It shows a clear 

provenance from north-eastern England, with derived material f rom further away, 

including the Grampian Highlands. The lower Blackhall T i l l pinches out against the flanks 

of the beach. 
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CHAPTER 6 

Warren House Gill 

6.1 Introduction 

The regional Quaternary geology of this area was described in Chapter 1, and the local 

facies architecture was reported in Chapter 4. This chapter presents results from detailed 

section logging, sedimentology, thin-section analysis, and quantitative provenance analysis 

f rom Warren House Gi l l , County Durham. 

6.1.1 Rationale 

Lee et al. (2006) recently highlighted the complex interactions between ice and 

climate at Pakefield on the Norfolk coast, with repeated evidence for ice incursions, sea 

level fluctuations, and changing coastal environments (Lee et al., 2006). Recent 

chronostratigraphical work has highlighted the complexity of Middle Pleistocene 

glaciations (Lee et al., 2002; Rose et al., 2002; Lee et al., 2004). Understanding these long-

term climatic changes and the climatic, oceanic and cryospheric response to them is 

important in understanding contemporary climatic fluctuations. 

Whilst numerous global glacial episodes are recognised from deep ocean cores 

(Shackleton, 1967; Shackleton & Opdyke, 1973), forcing terrestrial evidence into this 

stratigraphical framework is fraught with diff icul ty (Bowen, 1999b). Nevertheless, the 

recent research in Norfolk has aroused questions regarding the dynamics of Quaternary 

glaciations. A key part of this is reconstructing the presence of Scandinavian ice in Britain 

and in the North Sea, and the extent of its coalescence with and influence on the BUS 

during the Quaternary. Only by reconstructing these past events can we understand the 

context for Quaternary climatic change, its timescales, its 'normality', and its likely future 

patterns. In addition, it is important to provide sound geological data and robust 

stratigraphical models of previous cryospheric responses to climate change. These data can 

be used by mathematical modellers to test and train ice-sheet models. These models can 

then be used to predict future ice-ocean-climate interactions, particularly in the field of the 

response of the Greenland ice sheet to oceanic warming and likely resulting sea level rise. 
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Warren House Gi l l has previously provided evidence of multiple glaciations, with 

reported Scandinavian erratics. It is ideally located to independently, critically test recent 

models proposed in Norfolk. It is therefore a key site in understanding British Quaternary 

stratigraphy. 

6.1.2 Previous Research 

Previous research in northern England has indicated the existence of a sequence of 

glacigenic sediments, consisting of three tills with intervening aeolian and fluvial deposits. 

Trechmann (1952) proposed that the sequence in Warren House Gi l l (see Figure 1.1, page 

6) consisted of a 'Scandinavian D r i f t ' deposited by an 'Older Glaciation', which was 

overlain by interglacial loess. He also argued that Shippersea Bay (Figure 4.1) contained a 

raised beach which he named the "Easington Raised Beach" (see Chapter 5), and 

contended that it was deposited during an interglacial postdating the formation of the 

Scandinavian Dr i f t (Trechmann, 1952). Thomas (1999) renamed the Scandinavian Dr i f t 

the 'Warren House Formation'. 

Other workers correlated the Warren House Formation with the Bridlington Member 

(formerly the Basement T i l l ; Table 1.4, Lewis, 1999) of Yorkshire, and assigned it to MIS 

6 (Catt, 1991b). However, the Warren House Formation has been interpreted as 

stratigraphically older than the Easington Raised Beach, dated to MIS 7 (this study, 

Chapter 4); therefore, its age and the stratigraphy remain controversial. These sediments 

are overlain by the Devensian Blackhall and Horden Members, which were correlated to 

the Skipsea Member of Yorkshire (Francis, 1972), and which are the southern extension of 

the tills exposed in Whitburn Bay. The Quaternary sediments in County Durham can 

therefore provide substantial new information and evidence to test evolving theories of 

British and Fennoscandian ice sheet interactions during the Quaternary. The more 

northerly position of the Warren House Formation enables the dynamics and interactions 

of these Middle Pleistocene ice sheets to be better reconstructed and the models proposed 

for Norfolk to be independently tested, so it is a crucial area for research. 

6.1.3 Research Aims and Objectives 

As outlined in Chapter 4 above, this research aims to understand the interaction 

between the British and Fennoscandian ice sheets during the Quaternary. The principle 
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objectives, outlined in Chapter 4.2.2, are to determine the genesis, provenance and 

stratigraphy of these glacigenic sediments, and their regional stratigraphical significance. 

Based on the previous research, outlined in Chapter 1, three key hypotheses have been 

identified: 

1. There have been multiple glaciations in northeast England throughout the 

Pleistocene. 

2. The oldest glacial sediments at Warren House Gi l l represent a t i l l of Scandinavian 

provenance, of MIS 6 age. 

3. The Easington Raised Beach is stratigraphically younger than the Warren House 

Formation and represents the succeeding interglacial. 

In order to achieve these aims and objectives, and to test these hypotheses, systematic 

sampling was conducted at Warren House Gi l l . First, using original logs compiled by 

Trechmann (Trechmann, 1952), targeted shallow excavations were conducted to expose all 

the lithofacies expected. This was followed by detailed stratigraphical analysis (through 

sketches, vertical profiles and levelling) and identification of lithofacies. Systematic bulk 

and thin-section sampling of all lithofacies was then conducted, with multiple and replicate 

samples f rom each lithofacies. Where possible, samples were taken throughout a vertical 

profile (e.g., as in Exposure C). 
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6.2 Sedimentology and Stratigraphy 

6.2.1 Facies Architecture 

Warren House Gi l l (Grid Reference N Z 4772, 4234) is a contemporary stream valley, 

incised into Quaternary deposits inf i l l ing a deep, buried palaeo-valley. The bedrock is a 

collapse-breccia of Roker Dolomite, a facies of the Magnesian Limestone. It is a SSSI for 

its geological and ecological interest, and the limestone grassland is part of a European 

Special Area for Conservation. The National Trust owns the land. Colliery waste and 

slumping obscures most of the cl iffs , and a JCB was therefore used to excavate eleven trial 

pits (Figure 6.1). This and some better exposed sections enabled detailed study of hitherto 

unseen sediments and their stratigraphic relationships, close inspection of their 

sedimentary and deformation structures, and extensive sampling. Several detailed vertical 

profiles (labelled A to K) along a 500 m c l i f f were logged and sketched in detail. The 

sediments are laterally variable and exhibit considerable changes in character across the 

buried palaeo-valley. Nevertheless, similarities between stratigraphic facies in different 

trial pits allowed correlation into lithofacies associations (LFAs; Figure 6.2 and Figure 

6.3). Five lithofacies associations are identified here. 

First is LFA 1, the Basal Shelly Diamicton; previously named the 'Scandinavian Dr i f t ' 

by Trechman (1952) and later renamed the 'Warren House Formation' by Thomas (1999). 

LFA 1 contains three facies: LF la (massive, grey diamicton); LF lb (diamicton with 

bedded sands); and LF lc (deformed association of interbedded grey shelly diamicton and 

pink silts (LFA 2)). LFA I is overlain by beige silts (LFA 2), interpreted by Trechmann 

(1952) as loess. LFA 3, the Middle Diamicton, directly and unconformably overlies this 

silt. It is continuous with LFA 1 identified Hawthorn Hive. L F A 3 is macroscopically 

heterogeneous and comprises several different lithofacies. LF 3a is a dark brown 

diamicton. L F 3b is a tectonised diamicton interbedded with red sands, seen in Exposure 

D2. Gravelly, bedded sands occur frequently at around 10 m O.D., these form LF 3c. In 

Exposure E l , well-sorted, planar bedded sands (LF 3d) are interbedded with LF 3a. In 

Exposure C, two more facies are exposed; LF 3e, which is a thickly bedded well-sorted 

clay, and LF 3f, a laminated diamicton (Figure 6.3). 

L F A 3 is overlain by LFA 4, which exhibits two facies at Warren House Gi l l . These 

are red, bedded sands and silts (LF 4a), and the intimately associated cobble gravel in 
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Exposure K (LF 4b). The final lithofacies association is LFA 5, the Upper Diamicton, 

which is macroscopically massive, clast rich, and directly and unconformably overlies 

LFA 4. L F A 5 exists as an unbroken diamicton sheet f rom Hawthorn Hive southwards. 

Combined with the macroscale sedimentology, this gives a powerful tool for the 

interpretation of glacigenic sediments. This technique was used in conjunction with 

lithological, geochemical, petrological and chronostratigraphical techniques to aid process 

interpretation, stratigraphical correlation and provenance interpretation. The locations of 

bulk, thin section and OSL samples are shown on Figure 6.3. 
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Figure 6.1: Map showing location of trial pits (letters A to I) and exposures (letters J and K) at Warren 
House Gill. 
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LFA 5: Upper Diamicton 

LFA4: Red Sands 

LFA 3: Middle Diamicton 

C ' Z ' S ' G ' D 

LFA 2: Beige Silts 

LFA 1: Basal Shelly Diamicton 

Figure 6.2: Simplified composite stratigraphy, Warren House Gill 
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6.2.2 LFA 1: The Basal Shelly Diamicton 

Sedimentology and Stratigraphy 

Three facies of LFA 1 are exposed at Warren House Gill, exposed in trial pits F, G, 

and H. LF la is a massive, clay-rich diamicton with very rare gravel clasts. LF lb is 

slightly coarser, with more gravel, and deformed sandy lamination. LF lc is a tectonite 

with apparent mixing between LFA 1 and LFA 2. 

LFs la and lb: Massive to laminated diamicton 

Exposure G lies 20 m to the north of Exposure H (NZ 47724; 42343). The trial pit and 

the cliff above show four facies (see Figures 6.5, 6.6 and 6.7). At the base it is a very dark 

grey, massive, fissile, clast-poor diamicton (LF la), bearing broken fragments of marine 

bivalve shells. The gravel content increases with height in the trial pit. At 2 m height, there 

is a conformable contact with an overlying second diamicton (LF lb), with a colour change 

to a yellowish brown and then to a dark olive brown. Gravel clasts increase in number, and 

deformed sand laminations appear (Figure 6.6). A clast macro-fabric taken from this 

location (Figure 6.4 and Figure 6.5) shows little clustering along the a-axis, with a wide 

variety of dip angles. The clasts are mostly sub-angular in shape, with significant numbers 

of angular to sub-rounded varieties. Common clast lithologies include chalk, flint, red 

marl, igneous erratics, quartz, and orthoquartzite. This facies is overlain by coarse, gravelly 

sand with an incised, unconformable, convex lower contact (LF 3c). The contact is difficult 

to observe as it coincides with a step in the trial pit, and is too high to clean. LF 3a, which 

has a significantly higher clast content, overlies this and then by the red, planar bedded 

sands (LF 4a). 
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North 
Warren House Gill Exposure G 

Location: NZ 47724; 42343 

12m-

WHG G4 

V,=214 
S,=0.572 

© 6m • 

wtlG G3 A 
V,=297 N = 50 
S,=0.517 

Clast roundness 
WHG G2 

G 1.9m WHG TS 

A SA S R R WR 
WHG G1 WHG TS G 0.30m 

Cliff-top 

L F A 5 
Dmm. Brown stony diamicton to cliff top. 
Slumped; uncertain upper contact. 

LF 4a 
SI, 7.5YR 5/6 Strong Brown. Silty sand 
Sm, Coarse, gravelly massive sand. 
Sharp, erosive lower contact. 

LF 3a 
Dmm 
10YR 3/3 Dark Brown 
Pods of sand, stringers from 
point sources. 
Carboniferous Limestone, 
sandstone, coal, quartzite, 
Magnesian Limestone gravel 
very common. 

N = 50 

Sm. Coarse, gravelly sand lense. 
LF 1b 
10YR4/3 Brown 
Dms; distinct sand lenses. 
Shell fragments common. 

2.5YR 3/3 Dark Olive Brown 

10YR 5/4 Yellowish Brown. 
Flint, chalk, limestone gravel. 

LF 1a 
10YR 3/1 Very dark grey 
Dmm. Blocky, fissile, prismatic structure. 
Shells and rare cobbles. Occasional 
stringers of red sandstone. 

10YR4/1 Dark Grey 

C ' Z ' S ' G ' D 

Figure 6.4: Vertical Profile of Exposure G, Warren House Gill, showing location of bulk (red writing) 
and thin section (blue writing) sampling points. Lower clast fabric ( L F lb; Si = 0.517; S 2 = 0.337; S 3 = 
0.147). Upper clast fabric (LF 3a; S, = 0.572; S 2 = 0.269; S 3 = 0.091). 
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Poorly exposed. 
L F 4a 
Fm; bioturbated. 
7.5YR 5/6 Strong Brown. Sharp lower contact. 
Stringers into diamicton below. 

Clastic dyke, sharp, erosive contacts. 

L F 3a 
Dmm, gravel-rich. Sandy matrix. 
10YR3/3 Dark Brown 
SA to SR, striated gravel, ranging from fine 
gravel to boulders. 

L F 1b 
Dms; 
sand lenses with internal stratification (Sd) 
Shells present 
2.5YR 3/3 Dark olive brown 

10YR 5/4 Yellowish Brown 

Distinct colour change 
10YR3/1 Very dark grey 

L F 1a 
Dmm 
10YR4/1 Dark Grey 
Silt and clay matrix 
Fissile structure 
Shell fragments common; rare gravel. 

Width (Metres) 

Figure 6.5: Sketch of L F la to L F 4a at Exposure G, Warren House Gill. 
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Figure 6.6: Photograph A. Exposure G, Warren House Gill. Photograph B: L F lb, showing tectonised 
laminations. Pickaxe is 90 cm long. Photograph C: Detail of L F lb. 

In Exposure F (located at NZ 44713; 42320), two diamictons are exposed in 

superposition (Figure 6.7). The basal diamicton, LF lb, is a macroscopically laminated, 

shell bearing (broken marine bivalves), clast poor, dark grey, fissile diamicton. The 

laminations are sheared, and deformed. A bed of coarse, poorly sorted, bedded sand, with a 

scoured, convex basal contact (LF 3c), overlies the diamicton. This is overlain by a 

gravelly diamicton (LF 3a). 
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Warren House Gill Exposure F 
NZ 44713; 42320 

East 

To cliff-top 

WHG F3 

0.572 

Limit of cleaned section 

LF 3a 
Sand lenses 
Dmm, clast-rich. 10YR 3/2 Very Dark Greyish Brown. 
Sharp lower contact with coarse sand. 
Faceted, striated gravel, SA to SR. 
Boulders of Magnesian Limestone. 

C ' Z 1 S ' G 1 D 

L F 3a 
Dmm, gravel-rich. 10YR 3/3 Dark Brown 
LF 3c 
Sm 
Coarse, poorly sorted with sharp, erosive contacts. 

WHG F2 Coarse sand, poorly-sorted. 

WH( 
WH( 

TS F1 
F1 

L F 1a 
Dml, clast-poor 
10YR4/1 Dark Grey 
Fissile structure. 
Sand laminations (Sh, Sd) 
Beds of moderately sorted sand 
(10YR 4/6 Dark Yellowish Brown). 
Gravel is faceted, SA to SR. Includes chalk, 
limestone, sandstone commonly. 

flint, 

Figure 6.7: Vertical Profile of Exposure F at Warren House Gill, showing location of bulk (red writing) 
and thin section (blue writing) sampling points. The clast fabric S vales are: S, = 0.572; S 2 = 0.334; S, = 
0.093. 50 measurements were made. 

LF Ic: Tectonite 

Exposure E2 (Figure 6.8), on the southern side of the current stream, is markedly 

different in character to Exposure G. It is the only trial pit to expose the contact between 

LFAs 1 and 2. LF lc is a clast-poor grey diamicton bearing fragments of bivalve shells, 

chalk and flint gravel, and red marl clasts. Folded into this diamicton are narrow laminae 
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of yellowish-brown silt (LFA 2), which are extended, faulted, folded and deformed, with 

stringers extending from the silt into the diamicton. This is the northern limit of the silts; 

the outcrop narrows and is poorly preserved in this exposure. A matrix-supported, diamict 

gravel overlies the whole facies (LF 3c), and is in turn overlain by a gravel-rich diamicton 

(LF 3a), within which is a large pod of crudely bedded, overturned, gravelly sand (LF 3c). 

North 

Warren House Gill Exposure E2 
Location: NZ 44758; 42238 

2m north of E1 

4 

LFA 3 

x 

1 
LFA 2 

LFA 1 

mmmmm 

LF 3a 
Dmm. Silty diamicton, very well 
consolidated. Very gravel-rich. 
10YR 3/2 Very dark greyish 
brown. Mostly SA toA gravel. 

086° 
0.557 

LF 3c. Sh, Sd 
Sand pod with sharp, erosive 
contacts. Strongly deformed internal 
bedding. 2 parts: 
A is clast-supported, poorly-sorted gravel. 
B consists of sands with sub-vertical, 
discontinuous, deformed beds. 
Stringers / pipes extend from the 
top and from the side. 

1m step in face of section. 

LF 3c. Gms 
Diamictic gravel. 
Matrix-supported. 

LF1c. Dm(s) 
Diamicton with silts 
folded into it. 
7.5YR4/1 Dark grey. Clay rich 
matrix. Plastic, pliable texture. 
Chalk and shell fragments 
present. Silts are 10YR 5/6 
Yellowish Brown. 

Width (m) 

Figure 6.8: Detailed sketch of Exposure E2, with photograph of L F lc, the tectonised contact between 
L F A s 1 and 2. L F A 1 and L F A 2 are folded together. Clast fabric from L F 3a (S, = 0.557; S 2 = 0.31; S., 
= 0.134). 
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Thin-section analysis 

A summary of all the thin sections is presented in Table 6.1. WHG TS Fl was taken 

from LF lb, Exposure F (Figure 6.7 and Figure 6.9). On macroscopic inspection, the 

sample is a massive, dense, brown, matrix-supported diamicton. There are occasional red 

marl grains and fine gravel clasts. 

On microscopic inspection, the skeleton grains are poorly sorted and range in size 

widely from silt to fine gravel. They are sub-angular to sub-rounded and are mostly less 

than 100 (jm. The plasma is of variable density as can be seen on the macroscopic slide 

and is distinctly banded (Figure 6.9). The rare planar voids are inferred to be laboratory 

induced. There are shell fragments and marine microfossils present in the thin section. 

There is some highly deformed graded bedding within the diamicton. Structural analysis 

reveals stratification as well as many deformation structures, such as occasional rotational 

structures with associated necking structures, Type II Pebbles, and Type III Pebbles with 

their own internal plasmic fabric, multiple clay domains, and rare grain lineations. There 

are rare crushed grains with fragments separated by plasma (Figure 6.10 C). The plasmic 

fabric reveals a moderately developed skelsepic and masepic plasmic fabric with a strong 

birefringence (Figure 6.10). The plasmic fabric has multiple crosscutting directions, with 

varieties of masepic plasmic fabric. There are also regions of omnisepic plasmic fabric. 
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Figure 6.9: Photograph of thin section sample W H G TS F l . Box A (Figure 6.10) shows shears. Box B 
shows a crushed grain in detail. Grain lineations that are sub-resolution of the image and masepic 
plasmic fabric have been highlighted to show their orientation and position. 
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Figure 6.10: Photomicrographs, WHG TS F l , from L F A 1 Exposure F at Warren House Gill. 

WHG TS G 0.30 m was taken from LF la, at the base of Trial Pit G, (summarised in 

Table 6.1). Massive at exposure, the thin section is a diamicton with many deformed and 

folded beds of sand with graded contacts (Figure 6.11). There is common fine gravel, 

including soft sediment pebbles, red marl, igneous lithic fragments, and quartz grains. 

There are shell fragments and marine microfossils. Textural analysis of the sand beds 

shows that they consist of a silt to fine sand matrix, and are moderately to poorly sorted. 

The grains are mostly sub-angular in shape. The diamicton beds have a very wide range of 
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grain sizes and shapes. The microfabric is horizontal in the clay matrix, sub-parallel to the 

beds. 

There are abundant sedimentary structures within the slide. The voids within the slide 

are planar, bedding-parallel, packing-induced voids, with occasional laboratory-induced 

vugh voids. The graded sedimentary laminations are strongly deformed by soft sediment 

deformation and have been subjected to ductile 'flow' (Menzies et ai, 2006). There is a 

well-developed masepic plasmic fabric (Figure 6.12 A, B, and C). There is a limited 

amount of manganese staining. Boudinaged bedding is in evidence, crosscut by clay-lined 

normal faults (Figure 6.12 C) and associated in places with are pressure shadows with 

associated plasmic fabric development (Figure 6.12 A). Within the diamicton, there are 

lineations of grains with associated plasmic fabric development, rare rotations (Figure 6.12 

A), a rotated intraclast with a tail, and pressure shadows. The central large intraclast has 

been loaded by a sand grain, splitting and rotating it (Figure 6.12 D and E). Figure 6.12 F 

shows a lamination which has been faulted downwards. The association with a grain 

lineation demonstrates the presence of shear. 
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Figure 6.11: Scans of thin section sample WHG TS G 0 m, L F la. Boxes show location and context of 
photomicrographs in Figure 6.12. Location of sub-resolution features is annotated on the scan. 
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Figure 6.12: Photomicrographs, Thin section W H G TS G 0m. Locations are shown in Figure 6.11. 
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Thin section WHG TS G 1.9 m was sampled from LF lb. In thin section, it is a dark 

brown, iron-stained diamicton with large vugh voids (Figure 6.13). It is mostly fine

grained with one large irregular schistose skeleton grain. There is poor impregnation in one 

part of the slide. Texturally, the diamicton is a fine sand or silt with some fine material. 

The skeleton grains are sub-rounded to sub-angular, with numerous angular fine skeleton 

grains. Skeleton grains are predominantly composed of quartz and plagioclase feldspar; red 

marl, sandstone, basalt, and other igneous lithic fragments are present. Soft sediment 

intraclasts, such as Type I I and I I I pebbles, are present. There are rare microfossils and 

shell fragments. 

Structural analysis reveals 'flow' of matrix material and ductile deformation, 

associated with masepic plasmic fabrics. The matrix is of variable density, and banding is 

present. There are abundant grain lineations associated with rotational structures, both with 

and without a core stone, again associated with masepic plasmic fabrics (Figure 6.14A 

and B). There are lineations of grains, with aligned long axes (Figure 6.14 C). A variation 

in the abundance of clay platelets has led to the variable intensity of the plasmic fabric. 
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Figure 6.13: Warren House Gill thin section sample WHG TS G 1.9m. L F la, the Basal Shelly 
Diamicton. There is a large man-made vugh void in the centre of the slide (laboratory induced, due to 
poor impregnation). Location of masepic plasmic fabric and orientation and location of grain 
lineations are annotated onto the scan. 
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Figure 6.14: Photomicrographs of W H G S G 1.9 m, L F A 1, Warren House Gill. 

6.2.3 LFA 2: The Beige Silts 

Sedimentology and Stratigraphy 

LFA 2 is a moderately well-sorted silt, stratified to laminated in places, and strongly 

deformed. In the southern end of the palaeovalley, LFA 2 rests on bedrock, but in the 

centre of the palaeovalley, it overlies LFA 1. LFA 2 pinches out and is absent in the north 

of the valley (trial pits F, G and H). It is overlain by LFA 3. LFA 2 is strongly variable, 

with each exposure showing different characteristics. Two principle lithofacies are 
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identified. LF 2a is a pink silt with race nodules, sandy laminations and deformed clay 

beds. LF 2a is best exposed in exposures B and C. In exposures C and D, the silts are over 

5 m thick. LF 2b is a complex facies with upturned, interbedded silt and sand, with 

associated clay augen structures. LF 2b is exposed in Exposure D. 

LF 2a: Massive to laminated silts 

Figure 6.15 is a detailed sketch of LF 2a in Exposure B, showing 1.3 m of stratified, 

deformed silts on bedrock, overlain by a stratified diamicton (LF 3a; Figure 6.16). LF 2a is 

a yellowish-brown sandy silt with deformed, folded stratification. Soft sediment, loading 

and dewatering-style deformation is prevalent (Figure 6.17 A). Black beds are interbedded 

within the silts (Figure 6.17 B), but they contain no pollen or other discernible organics. 

The bottom contact is complex, undulating and uneven. The soft Magnesian Limestone 

bedrock is brecciated, and silt has been injected downwards (Figure 6.17 C). Stringers of 

limestone extend upwards into the silts above. At the bedrock interface, there are several 

well-rounded cobbles of exotic origin, including Carboniferous Limestone. Towards the 

top of LF 2a in Exposure B, the sediment is increasingly stratified. There are discontinuous 

planar beds of gritty sand interbedded within the silts, which pinch and swell. These grade 

into a 10 cm shear zone below LF 3a above. This pinches out to the northern end of the 

section. It is overlain by a gravel rich, dark grey diamicton (LF 3a; see Figure 6.3). 
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Warren House Gill Exposure B 
Location: NZ 44810, 42124 »• North 

L F 3a. Dmm (s). 
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contact with sand tense above. 
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10YR 5/4 ^ 

10YR 5/6 

10YR 5/41 

L F 3a 

Dmm, clast-rich. 

L F 3a. Dms (s) 
Silty sand matrix. Discontinuous beds. 
10cm shear zone with contact with L F 2a. Anastomising units of 
laminated material (Fl) and fine gravel beds. 
L F 2a. Fl (w); Fm 
Partially stratified silt and sand. Partially pelletised clay balls. 
10YR 5/6 Yellowish Brown 
Gritty sand lenses. Granular, discontinuous. Pinches 
and swells. Laminated silts with shears. 10YR 5/4 Yellowish Brown 

I Shear zone 

Pods of sand and clay, strongly deformed. 

L F 2a. Fl (w); Frg 
Poorly sorted sandy silt with rare gravel. Originally stratified. Partially 
deformed; variably stratified. Black mud stringers present. 
Rare rounded cobbles at bedrock interface. 
Pipes and water escape structures apparent. 

1 r* 
2 

Width (m) 

3 4 
Surface of Magnesian Limestone bedrock. 
Brown silts are injected into the brecciated, rubbly surface of the 
limestone. Evidence of canibalisation of limestone; Stringers extend 
upwards. Pipes extend downwards into the brecciated surface of the 
bedrock. 

Figure 6.15: Detailed Sketch of Exposure B, L F 2a and L F 3a. Clast fabric ( L F 3a): S, = 0.574; S 2 = 
0.363; S 3 = 0.063. 
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> North 

L F 3a 

L F 3c 

X * 

LF 3a 

LF 3a 

LF 2a 

Bedrock 

Figure 6.16: Photograph of L F 2a and L F 3a, Exposure B. L F 2a lies on bedrock, and is overlain by a 
diamict facies with some bedding, which pinches out on the northern side of the section ( L F 3a). This is 
overlain by a clast-rich diamicton (LF 3a), which contains well-bedded sands which are recumbently 
folded (LF 3c). 
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Deformed, folded sand lense 

Bedrock 

Black mud stringers and inclusions 

J 
Bedrock contact 

Figure 6.17: Detailed photographs of L F 2a, Exposure B. Photograph A shows deformed sand laminae. 
Photograph B shows deformed black inclusions. Photograph C details the nature of the contact with 
the soft, dolomised bedrock. Knife is 19 cm long when extended, and the blade only is 8 cm long. 

LF 2a in Exposure C constitutes over 5 m of a fine grained, well-sorted silt, mostly 

massive with some fluidised sand and clay laminations, overlain by a diamicton (LF 3a). 

Flecks of coal within the silt are apparent, and carbonate 'race nodules' are present 

(numbered in Figure 6.18). LF 2a rests on a grey diamicton bearing shell fragments 
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(LFA 1) on bedrock. The contact of LFA 1 with LFA 2 was observed only in a borehole. 

This is overlain by strongly fluidised sand and clay beds with numerous rounded clay 

intraclasts. Water escape, pipe, ball and pillow, and flame structures are abundant in this 

facies, indicating loading under saturated conditions. The upper contact with the diamicton 

above is sharp, undulatory and sheared. 

Warren House Gill Exposure C 
- • N o r t h Location: NZ 44799; 42151 

7 m -

LF 3a 

erosive contact. 
LF 3c. 
Crudely bedded 
coarse sand 

5m — 

Gradational lower contact 
O 

4m — 

3m — 

LF 3a. Dmm (s) 
Rubbly diamicton with 
stringers of limestone 

Step 

Se. Nested channels. 
Sharp, erosive lower 
contact. 

Sue 

2.20m-

LF 3a. Dmm 
Brown, Clast-rich. 

Undulatory, sharp 
contact. 

Fm. Silty clay with well- rounded 
rare cobbles. 

LF 2a. Fl (w). 
Fluidisation and pelletisation of clay. 
Water escape and pipe structures. 
Fl (w) (discontinuous). Strongly 
deformed and over-turned. 
Micro-faulting apparent. 

LF 2a. Fm (w) 
Fine grained, well sorted silt with 
race nodules ranging from fine gravel 
to cobbles. 
Mostly massive, some pelletisation and 
fluidisation of clay. 
10YR 5/6 Yellowish Brown 
Flecks of coal. 
X - sample 

0m 
J 
1m 2m 3m 

Figure 6.18: Detailed sketch of L F 2 at Exposure C, Warren House Gill, showing bulk (WHG C2; red 
cross) and OSL sampling locations (green cross). Numbers denote carbonate nodules in L F 2a. For 
vertical profile, refer to Figure 5.12. K-axis shows height above bedrock (proved by coring but not 
observed in section to sketch). 
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LF 2b: Upturned, interbedded sands and silts 

Exposure D is in the deepest part of the palaeovalley. Digging by the JCB revealed 

over 5 m of LFA 2, and did not reach the contact with either bedrock or LFA 1. At the 

base, LF 2a is exposed, which is similar to that in Exposure C, with well-sorted silty sands 

showing disturbed laminations, including tightly overturned folds (Figure 6.19). There is 

evidence of fluidisation of sand and clay. There are no apparent carbonate race nodules or 

rounded cobbles at this location. LF 2a is capped by a bed of well-sorted clay that dips 

downwards to the north. It swells sharply into two distinct clay pods with internal sub-

vertical, deformed laminations (Figure 6.20 A, B and C). The sediment above the clay (LF 

2b) is significantly different, with incoherent, interbedded sand and clay with a distinct 

sub-vertical nature. These complex interstratified sediments are heavily fluidised, and they 

contain rare shell fragments. Towards the contact with the overlying diamicton, the 

sediments become increasingly sub-horizontal to horizontal, resulting in more coherent 

laminations (Figure 6.20 D). This is overlain by a narrow, discontinuous bed of poorly-

sorted gritty sand with some internal stratification, which grades into a 10 cm thick bed of 

well-sorted clay. There is evidence of cannibalisation of the sediments below, and the clay 

extends in places as stringers into the diamicton above. The clay bed contains rare clasts 

derived from the diamicton above. The upper contact is sharp and undulatory. 
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upturned features. Shell fragments and rare 
rounded gravel Strong unconformity. 

L F 2a. Fl (w). 
Laminated sandy silt 
10YR 5/6 Yellowish Brown 
Tightly overturned sock and circular folds. 
Fluidised zones. Rare rounded gravel. 
Some evidence of primary laminations present 
Laterally deformed. Dewatering and soft 
sediment deformation structures. 

• 
Width (m) 

Figure 6.19: Detailed Sketch of L F 2a and L F 2b (silts) and L F 3a (Diamicton) and L F 3c (sands and 
gravels) in Exposure D, Warren House Gill. Green crosses show OSL sampling locations. Lower clast 
macro-fabric ( L F 3a): S, = 0.531; S 2 = 0.356; S 3 = 0.112. Upper clast macro-fabric ( L F 3a): S, = 0.577; 
S 2 = 0.32; Sj = 0.103. 
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Figure 6.20: Photographs and detail of L F A 2, Exposure D, Warren House Gill. 

Photograph A: L F 2a and L F 2b. Photograph B: Clay boudin structure, L F 2b. Photograph C: 
Contact L F 2a and L F 2b, showing well-sorted clay bed and boudin structure. Photograph D: Shear 
zone between L F 2b and L F 3a. Trowel for scale is 26 cm long. Spade is 1 m long. 
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Thin-section analysis 

Three thin sections were sampled from LF 2a and LF 2b, Exposure D (Figure 6.21). 

WHG TS Dt'v (LF 3a) is presented in Chapter 6.4.2. The thin sections demonstrate the 

changing nature of these silts. The first thin section (WHG TS D/) was sampled from LF 

2a in Exposure D at 1.3 m height (Figure 6.19). The silt is well-sorted with occasional 

deformed clay laminations. On macroscopic inspection, it has a variable texture showing 

extensive deformation of primary fluvial bedding structures. The slides are summarised in 

Table 6.2. 

The skeleton grains mostly consist of well-sorted silt, predominantly quartz, and are 

angular to well-rounded in shape. Rare larger sand grains are sub-angular to sub-rounded 

in shape. The thin section has two large vugh (laboratory-induced) voids, which may be 

related to manganese staining of the sediments. There is a well developed, north-south 

aligned microfabric. Structural analysis reveals graded bedding structures including the 

foresets of a climbing ripple. This conformable, graded bedding has been extensively 

fluidised under saturated, loaded conditions (cf. Phillips et al., 2007). Cutting through the 

deformed bedding are a series of crosscutting faults. A clay intraclast has been sheared and 

attenuated; this is associated with lineations of microfabric and small skeleton grains. This 

deformation is emphasised with the clear lattisepic and masepic plasmic fabric. 

>• North 

Ex D LF 3a 

Ex D LF 2b 

1 Ex D LF 2a 

Figure 6.21: Location of thin section samples and OSL samples at Exposure D, Warren House Gill. 
Geological hammer is 32 cm long. Penknife is 19 cm long when extended. 
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Figure 6.22: Photograph of Thin Section sample WHG TS Di. The matrix material is deformed and 
intermixed, exhibiting ductile deformation. 
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The second thin section (WHG TS D/z) was sampled from LF 2a of Exposure D, at a 

height of 1.65 m (Figure 6.21). On a macroscopic inspection, it is a strongly deformed silt 

with deformed, disjointed clay-lined beds. The slide constitutes mostly well-sorted silt with 

some sand grains. There are also Type I I I Pebbles visible (van der Meer, 1997). Iron 

staining along particle-size boundaries is apparent. 

Textural analysis indicates that the silt grains are predominantly angular to sub-

angular in shape, while the larger sand grains are more edge-rounded. The matrix is 

composed of silt skeleton grains with some clay matrix material. The voids are vugh-type, 

with some bedding-parallel voids, probably caused during packing. The slide has some 

evidence of primary deposition in water, which has been strongly deformed. There has 

been 'flow' of the bedding (Menzies et al, 2006). This deformation is related to the 

development of a common latti/skelsepic plasmic fabric within the clay matrix. 

Thin section WHG TS Diii was taken from the top of LF 2b in Exposure D, at a height 

of 2.2 m (Figure 6.23). This is a macroscopically homogenous, moderately well-sorted, 

massive silt. It has numerous larger, rounded, clay intraclasts. Textural analysis of the 

skeleton grains reveals that the silt consists mostly of angular to sub-angular grains of even 

distribution. The slide is mostly homogenised, but there are some indications of crude 

primary bedding. The only deformation structures are the numerous rounded Type I I I 

Pebbles, sometimes with their own plasmic fabric development. The matrix displays a 

weakly developed latti/skelsepic plasmic fabric. 
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Figure 6.23: Scan of WHG TS Dtf, taken from L F 2a in Exposure D. L F 2a, height 1.65 m. Location of 
plasmic fabric development is noted. 
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