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I Abstract 

C O L -

Land pressures today and government policy 4 requires previously developed, 

'brownfield' land to be brought back into beneficial use. The nature of these sites means that 

they may have been subject to some form of contamination from previous uses. The risk any 

pollutant has to human health and the environment must be assessed and, i f deemed 

unacceptable, remediation must be undertaken. Risk assessment may be carried out utilising 

generic values for contaminant properties that can give misleading results. 

This thesis describes the effort to further assess the controls on adsorption of organic 

pollutants and its spatial variability. Spatial sampling of two brownfield sites was undertaken 

with generic soil parameters being measured. To better describe soil organic matter, organic 

extracts were prepared from soils, allowing 1 3C NMR spectra to be collected. The collected 

soil dataset is analysed to discern any correlations between soil parameters. The nature of the 

organic pollutants used in this study (benzene, phenol, p-xylene and p-cresol) is described 

using calculated molecular descriptors. The variation in experimental adsorption results, 

provided by Sheffield University, were then statistically analysed using soil measures as 

predictors and then also adding molecular descriptors to the analysis. The percentage of black 

carbon may also have an influence on adsorption and so this was also measured and added to 

the list of predictors available for inclusion in stepwise regression. 

Results show that adsorption of these organic compounds can be partially described 

using the measured soil parameters. Molecular descriptors such as a molecule's surface area 

can also be used to predict adsorption. The percentage black carbon was an important 

predictor in only one instance for p-xylene adsorption. Soil parameters were also shown to be 

predicted by other soil variables from the dataset, giving good results that were improved 

upon by transforming all parameters to normality. 
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1 Introduction 

1.1 Government Policy: Redevelopment 

The government has set targets that require 60% of new homes to be built on previously 

developed 'brownfield' sites by 2008 (DETR, 1999). Brownfield land is defined as 

'Previously developed land which is or was occupied by a permanent structure, including the 

curtilage of the developed land and any associated fixed surface infrastructure' (PPS3, 2006). 

This definition does not require the soil to be contaminated. 

For the purposes of pollution control in England and Wales, contaminated land is 

defined in section 78A of the Environmental Protection Act 1990 as "any land which appears 

to the local authority in whose area it is situated to be in such a condition, by reason of 

substances in on or under the land, that - (a) significant harm is being caused or there is a 

significant possibility of such harm being caused; or (b) pollution of controlled waters is 

being, or is likely to be, caused". Land can only be classed as contaminated when: 

• A contaminant has been identified (source). 

• Linkage between this source and a receptor (harm or pollution of controlled waters) 

has been found (pathway). 

• The receptor can be human health (or other living organism), an ecological system, a 

piece of property or controlled waters which are or could be affected by the 

contaminant. 

The pathway and receptor need not be contained within the area of land deemed 

contaminated. The source-pathway-receptor linkage must be broken and this can be achieved 

in many ways. The required amount of remedial action to break this linkage is determined 

using risk based analysis. 

Risk assessment is the raison d'etre of this project. As stated in Section 1.3, it is a better 

understanding of pollutant adsorption and therefore transport that is the main goal of this 

project. The computer software Consim is used to predict the mobility of a contaminant using, 

amongst other parameters, its adsorption coefficient to the soil. I f the adsorption coefficient is 

badly chosen or subject to variation within a given area, any risk assessment based on 

coefficients from literature for a particular contaminant could give misleading results. This in 

turn may result in expensive remediation when none was required or the opposite scenario 

where nothing is done to break the source-pathway-receptor linkage as it is wrongly deemed 

not to present a risk. The magnitude of risk is a function of the size and mobility of the 

source, the sensitivity of the receptor and the nature of the pathway. 



1.2 Maior Causes of Organically Contaminated Land 

During the 20 century economic development was built on the back of the industrial 

revolution of the previous century. The industrial revolution had the impact of urbanising the 

population of the UK. In 1700, -55% of the population lived in rural communities and 

worked in agriculture. By 1900 25% and by 2005 < 1 % of the workforce in the UK was 

employed in agriculture. This concentration of the populous was driven by industrialisation 

and mechanisation of society. Industrialisation could not have taken place without the 

insatiable demand for energy being satisfied. Industrialisation was initially powered by the 

sustainable use of water power. After the harnessing of steam power, carbon in the form of 

coal soon became the dominant power source. A carbon based economy (coal, oil & natural 

gas) has now flourished in the UK and indeed worldwide for over 100 years. The amount of 

global fossil carbon emissions by carbon source, as shown in Figure 1.1, indicates the position 

coal has had and still has as a major source of global energy. 

Figure 1.1: Fuelling The Industrial Revolution and Bevond 
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The coal based economy of the 19 and 20 centuries is one of the main sources of 

contaminated sites ripe for redevelopment in the UK. Coal itself is not a major concern but 

gasworks are, which used coal as a feedstock for coal carbonisation to produce town/coal gas 

(hydrogen containing large amounts of carbon monoxide and other minor hydrocarbon 

constituents). Other products of coal carbonisation are coke, tar and ammoniacal liquor. The 

coal tar produced in town gas works is one of the main sources of the 4 organic contaminants 

under study here, namely benzene, phenol, p-cresol and p-xylene (see Section 1.3). Coal tar 

would normally be stored in underground brick tanks surrounded by clay to reduce leakage. 

Uses of coal tar include as a fuel to heat the carbonisation retorts and as a source of 

organic chemicals that were separated by distillation. The peak of this application came in 

1926 when there were 400 coal tar distillation works in the UK. This compares to a figure of 

-1800 gas and coke works and carbonisation plants in 1930 (DOE, 1995). The total number 

of sites found (1846-1996) where these processes have taken place in England is 13716 with 

an area of 29117 hectares (EA, 2002). In terms of area this figure is only surpassed by that 

associated with engineering works (30104 hectares) and railway land (71408 hectares) both of 

which are liable to also contain the contaminants under study. Some of the potential sources 

of the contaminants under study (by no means exhaustive) are shown in Table 1.1. 

Table 1.1: Potential Sources of Organic Contamination by Landuse 

Landuse 
Potential Contaminants 

Landuse 
Benzene Phenol p-Xylene p-Cresol 

Railway Land * * * * 
Engineering Works * * 
Coal Carbonisation * * * * 

Disinfectant 

Manufacturing 
* * 

Fine Chemical 

Manufacturing 
* * * * 

Rubber Processing * * 
Dockyards * * * 

Oil Refineries * * 
Timber Treatment 

Works (creosote) 

3 



1.2.1 Case Studv: Yarm Gasworks 

Yarm is typical of settlements this size in that it was served by a gasworks last century. 
The photograph shown in Figure 1.2 was taken in 1954 and shows the gas storage tank in 
Yarm close to the viaduct carrying the railway tracks. The advent of natural gas meant that by 
the 1970's the site was derelict and was redeveloped for housing. Yarm today can be seen in 
Figure 1.3, which also shows the proximity of the River Tees. Potential contaminants on this 
site therefore have three possible receptors: 

• Human Health 

• Groundwater 

• The River Tees 

A conceptual site source-pathway-receptor model of Yarm Gasworks is shown in 

Figure 1.4. The potential transportation of contaminants from the source to the recptors gives 

rise to the risk that one or more of the receptors wil l be adversely affected by pollution. 

During remedial action after the presence of soil contamination had been discovered, a 

coal tar tank was discovered during excavation work as shown in Figure 1.5. Soil 

contamination caused by leakage from this tank is shown in Figure 1.6. Test boreholes were 

sunk and found that the contaminant plume had not extended as far as the important 

underlying aquifer (Bunter sandstone). 

The magnitude of potential pollution that could reach ground and surface waters was 

deemed insignificant and required no remedial action. To protect human health, soil was 

removed from all gardens in the development to a depth of 1 metre and replaced with 

uncontaminated soil from off site. 

Figure 1.2: Yarm Gasworks Circa 1954 

tit* K^Ptmi^^H 



Figure 1.3: Former Site of Yarm Gasworks 

Figure 1.4: Conceptual Site Model of Yarm Gasworks 
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Figure 1.5: Soil Contamination from Yarm Coal Tar Tank 

Figure 1.6: Soil Contamination from Yarm Coal Tar Tank 
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1.3 DAVe 

The work undertaken in this thesis was part of a larger EPSRC funded project entitled 

'Deconstructing Adsorption Variability: The Prediction of Spatial Uncertainty in Pollutant 

Movement'. The project involved collaboration between The Department of Earth Sciences: 

Durham University, The Department of Mathematics: Durham University and The 

Department of Civil & Structural Engineering: Sheffield University. 

DAVe's main aim was to understand the controls upon the adsorption of organic 

pollutants onto soil. A first approximation of the controlling factor is generally accepted to be 

the organic matter content of the soil, providing it is above a threshold value. Northcott & 

Jones (2000) suggest a threshold value of just 0 1 % organic carbon. Given the fraction of 

organic carbon in a soil, you can then correct the adsorption coefficient (K<j) of the adsorbate 

under study to give the organic carbon normalised adsorption coefficient (Koc)- The Koc 

value for a particular adsorbate should therefore be constant across soils (adsorbents). 

Published results however show that Koc values can change by an order of magnitude over a 

single study site and by several orders of magnitude between different locations (Hornsby et 

al., 1996). 

Calculation of Koc allows adsorption to be independent of the organic matter content of 

soil. Adsorption wil l still be subject to variation caused by secondary controls, including clay 

content, surface area, pH and the nature of the organic matter (Andersson et al., 2002; Reddy 

& Locke, 1994). Grathwohl (1990) showed that log Koc was correlated with the 

hydrogen/oxygen (H/O) atomic ratio of the soil organic matter, whilst Ahmad et al. (2001) 

showed that the adsorption of organic pesticides to soil was correlated to the fraction of 

aromatic type carbon in the soil as found by C NMR. 

The fate and transport of organic contaminants must be ascertained i f the risk these 

contaminants have to the environment is to be estimated. Adsorption is one of the controlling 

factors of this risk. I f a pollutant is strongly bound to soil through adsorption, the mobility of 

that pollutant in the environment wil l be limited. This reduction in rate of transport is 

designated as a retardation factor and works in tandem with the rate of degradation. 

Degradation can be both chemical and biological. Both degradation pathways are affected by 

field conditions including temperature, oxygen availability, whether oxidising or reducing 

conditions prevail, the prescence or abscence of catalytic species for chemical degradation 

and the amount and type of biological activity for biodegradation. 
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It is not just the nature of the soil that controls adsorption, but also the nature of the 

organic contaminant (adsorbate). Chemometrics allow molecular parameters to be computed 

from first principles, and therefore without error, using many software packages. The intrinsic 

properties of any adsorbate will help account for its environmental behaviour. Research by 

Randic (1976) and Kier & Hall (1976) led to the chemometric studies widely used in the 

pharmaceutical industry to develop Quantitative Structure Activity Relationship (QSAR) 

models. QSAR models inform drug design by linking biological activity to molecular 

parameters. These models can be adapted to serve the adsorbent/adsorbate interactions of soil 

and pollutants. 

Connectivity indices are an example of topological parameters that have been widely 

utilised to predict soil sorption coefficients (Boethling et al., 1992; Tao & Lu, 1999). There 

are a huge number of topological parameters and molecular properties that can be calculated 

from first principles and semi-empirical methods. Reddy & Locke (1994) showed that semi-

empirical properties, namely Van der Waals volume, molecular polarisability, dipole moment, 

and energy of highest unoccupied molecular orbital accounted for 70% of the variation in Koc 

values. It should therefore be possible to model the potential environmental fate of organic 

adsorbates using molecular and soil parameters in tandem. 

It has been reported that black carbon may be partially responsible for the non-linear 

adsorption isotherms shown by some sediments and soils (Accardi-Dey & Gschwend, 2002; 

Chiou & Kile, 1998). There have therefore been a number of studies undertaken to try and 

quantify and characterise black carbon (Lim & Cachier, 1996; Gelinas et al., 2001; Huang et 

al., 2002). 

To account for differences in Koc values, five main areas of research were highlighted: 

• Do not solely rely just on the fraction of organic matter/carbon. Use l 3 C NMR 

spectroscopy on organic extracts to give information on the type of carbon 

molecules the soil contains. 

• Collect adsorption data for a number of organic compounds which are known 

contaminants of brownfield sites within the UK. 

• Measure a wide range of soil parameters, including black carbon content and other 

possible secondary controls on adsorption to undergo statistical analysis with the l 3 C 

NMR and adsorption data. 

• Map & model the spatial variation of the soil parameters after sampling a number of 

sites using a predefined grid sampling scheme. 

• Calculate molecular parameters of the organic compounds to further enhance the 

statistical analysis and discern the controls on adsorption variability. 
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Adsorption data was collected by colleagues based in The Department of Civil & 

Structural Engineering, Sheffield University. Due to the time involved in collecting this data 

and laboratory limitations, adsorption studies were carried out using 4 organic contaminants 

as listed below, for a maximum of 20 different soils: 

• Benzene 

• Phenol 

• Para-xylene 

<• Para-cresol 

Colleagues based in The Department of Mathematics, Durham University utilised 

Bayesian statistical techniques as a means of linking predictors of adsorption variability to 

measurable site parameters. This was to produce a generic tool for adsorption prediction to be 

used by contaminated land practitioners that can work with models such as ConSim that is 

both capable of learning and updating as new information becomes available. 

Al l other aspects of the project were undertaken as part of this thesis. 

1.3.1 Research Hypothesis 

The hypothesis of this thesis is that organic matter is the primary control of the 

adsorption of organic contaminants in natural soils. It is further hypothesised that by better 

understanding the nature of both the soil and organic pollutant, a better understanding of 

adsorption variability can be deduced. 

1.3.2 Thesis Outline 

• Chapter 1 introduces the rationale for the DAVe project and also details the study sites 

and soil sampling locations. 

• Chapter 2 details sampling and laboratory methods. 

• Chapter 3 deals solely with soil properties and their statistical and spatial analysis. 

• Chapter 4 details the calculation of molecular parameters and an analysis of the 

adsorption data provided by collegues at Sheffield University. Together with the soil 

parameters from Chapter 3, the molecular parameters are used to try and predict the 

variation found in adsorption. 

• Chapter 5 details methods to quantify the black carbon content of soil. 

• Chapter 6 summarises and concludes the previous chapters and discusses possible 

further work. 

9 



1.4 Study Sites & Soils 

The remit of the project involves risk assessment of contaminated land. Clearly 

sampling a contaminated site would have a huge impact on the soil parameters and the results 

of adsorption experiments. It was therefore decided that the best option was to spatially 

sample two brownfield sites with no major evidence of severe organic contaminant pollution. 

Gateshead Metropolitan Borough Council had a representative on the steering committee of 

DAVe and offered a number of brownfield sites from which we could choose. 

One site for which a spatial sampling strategy was prepared was Jennings Yard. This 

was within an area of Gateshead waterfront undergoing redevelopment. Previous uses 

included a scarp yard, railway shunting yard and a coal storage facility for the nearby 

dockyards. Unfortunately unbeknown to the project team, Jennings Yard (see Figure 1.7) was 

covered in hardcore and transformed into a temporary car park before spatial sampling could 

be undertaken. 

Figure 1.7: Jennings Yard: Potential Study Site 
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Two other sites close to Jennings Yard were also available for spatial sampling, the site 

of an abattoir (henceforward known as - The Abattoir) and the site of a demolished housing 

estate (henceforward known as - Salt Meadows). These sites are within 300 metres of each 

other (see Figure 1.8) and are described in more detail is Sections 1.4.1 & 1.4.2. Surrounding 

features in Figure 1.8 are highlighted in pink for clarity with sampling point locations shown 

as blue dots, being spatially orientated using a herring bone pattern as described in 

Section 2.1. These brownfield sites are underlain by sandstone that is part of the middle coal 

measures formation. To gain wider variability in soil parameters, agricultural soils overlying 

different geological rock types were collected as outlined in Section 1.4.3. 

After these samples were collected and following measurement of their soil parameters 

(as outlined in Section 2.2) and statistical analysis (as shown in Chapter 3), a validation site 

was sampled (Image Hil l see section 1.4.4). Image Hil l is 5 miles west of the Gateshead 

locality of The Abattoir and Salt Meadows sites. 

Figure 1.8: Location of The Abattoir & Salt Meadows Sampling Sites 
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1.4.1 The Abattoir 

The Abattoir site (National Grid reference NZ258636) was as the name suggests the site 

of an abattoir and also warehouse storage facilities. The site is bordered by a railway track, 

engineering works and a public house (The Vulcan Inn). A photograph of The Abattoir site 

taken shortly after sampling is shown in Figure 1.9 looking north towards Scotland. It is clear 

that the site has been cleared of all buildings and that the underlying soil will have been 

mixed and homogenised to an extent. This was deemed as not a significant problem as it 

mimics the real conditions found on many brownfield and/or contaminated sites. It should be 

noted that the site had not been used for parking prior to sampling. Such is land pressures at 

such sites that this was the case soon afterwards. An aerial photograph taken around 1999 is 

shown in Figure 1.10 and shows buildings still present on site. 

Figure 1.9: Abattoir Study Site 
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Figure 1.10: otoeraph of The Abattoir 

12 



The historic layout of The Abattoir (from the 1 s t revision of The National Grid 1:2500 

series published 1970) is compared to the modern layout in Figure 1.11. The positions of 

sampling points are again shown as blue circles. Clearly the site has changed immeasurably 

since Gateshead's industrial heyday, with these changes summarised below: 

• A row of terraced housing ran southwards from the Vulcan Inn up until shortly 

before World War I I . 

• There have been at least two different warehouse developments occupying the 

north-west corner of the site between 1893 and 1949. 

• The engineering works in the south-east corner first appear on the 1949 map 

edition and must have been built after the demolition of the street that previously 

occupied the area. 

• The site of The Abattoir has a building referred to as the central kitchen from 

1954 until the 1 s t revision map is published (1970). 

Site changes were reflected in the soil samples taken from the site. Whilst the area as a 

whole had been subject to much earthworks leading to homogenised samples, there was still a 

marked difference in soil texture and colour running the length and breadth of the site. Some 

sample points fell on sand & gravel material that was clearly imported to the site recently and 

other points had visible fragments of brick and other masonry work. Again it was deemed that 

these factors mimicked sampling in real world conditions. 

Figure 1.11: Historical Layout of The Abattoir Site 
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1.4.2 Salt Meadows 

The Salt Meadows site (National Grid reference NZ261637) was an area of housing 

centred on Suffolk Place and bounded by Hawks Road, Dorset Road and Norfolk Road, 

Gateshead. The photograph of Salt Meadows shown in Figure 1.12 was taken facing north­

west and differs significantly from The Abattoir in that demolition and earthworks on site 

took place well before sampling took place. Salt Meadows was laid out in well established 

rough grass during sampling and indeed a group of travelling people had a horse out to 

pasture in the corner that was not sampled. A reference point shown in both Figure 1.9 & 

Figure 1.12 is the Baltic Centre for Contemporary Art located on the Gateshead Quays. 

Samples collected at Salt Meadows appeared more homogeneous when compared to The 

Abattoir. Again there was some brick & masonry from the demolished homes that once 

occupied the site. 

The first development in the Salt Meadows sampling area is as a football pitch on maps 

dating from 1898. Housing does not appear on the site until the 1942 map edition. The 

historic layout of Salt Meadows (from the 1949-1992 1 s t revision of The National Grid 1:2500 

series published 1970) is compared to the modern layout in Figure 1.13. Whilst there is no 

evidence on historical maps to suggest a past industrial use this cannot be ruled out due to the 

proximity of surrounding industrial sites. An aerial photograph of Salt Meadows circa 1999 is 

shown in Figure 1.14, showing some housing is still present on site. 

Figure 1.12: Salt Meadows Study Site 
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Figure 1.13: Historical Layout of The Salt Meadows Site 
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Figure 1.14: Aerial Photograph of Salt Meadows 
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1.4.3 Agricultural Soil Samples 

The agricultural soil samples collected to increase soil variation were sourced above the 

following underlying rock types: 

• Hunter sandstone. This sandstone extends from the Middlesbrough coastline south-west 

towards Nottingham and is more recently referred to as Sherwood sandstone. The Sherwood 

sandstone is an important aquifer and used to provide drinking, industrial & agricultural 

water over a large area of England. The importance of Bunter sandstone is reflected in the 

two soil samples taken above this (designated BS1 & BS3, with BS2 being a duplicate of 

BS1) that were used in adsorption experiments. 

• Carboniferous limestone. This aquifer is less important from a groundwater perspective, 

was sampled in duplicate (CL1 & CL2) and CL1 was used in adsorption experiments. 

• Upper chalk. The chalk aquifer of south-east England is another of primary importance 

due to its use as a drinking water source in this parched part of the UK. Not only potential 

contamination, but also over abstraction of this finite resource threatens future 

anthropogenic use and natural base flow to rivers and other important aquatic environments. 

Again this sample was used in adsorption experiments. 

• Coal measures. Deposits of coal are widely distributed in the north-east of England. 

Whilst not an important aquifer, coal has been mined in the UK for centuries giving rise to 

contaminated surface waters due to acid mine discharge from flooded, abandoned mine 

workings. Agricultural soil above coal measures was again sampled in duplicate with one 

sample used in adsorption experiments. 

• Magnesian limestone. This aquifer is also of secondary importance but increases the 

variation in geology below soil samples used in adsorption experimentation. Again it was 

sampled in duplicate (ML1 & ML2). 

• Peat. A sample of peat was collected from Grinton Moor (National Grid reference 

SE057963) and serves as an end member in terms of organic matter content (~100%). 

Experiments conducted on peat (GMP) would be expected to show markedly different 

adsorption characteristics compared with all other soils. The underlying geology of Grinton 

Moor is Millstone Grit but this is likely to have a negligible effect on results from the peat 

sample. The area has been historically subject to lead and coal mining and is pock marked 

with shallow workings and mine shafts. Grinton Moor is now managed as grouse moorland. 

• Jennings Yard. Soil from Jennings Yard (underlain by coal measures) was included with 

agricultural samples again to increase the variation of soil provenance. Soil from Jennings 

Yard (JY1) has a distinct rust colour and contained metal particles from its last use as a 

scrap yard. 
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The location of these geological rock types was discerned from the local solid geology 

map for County Durham. Local geology and the study site locations are shown in Figure 1.15. 

The third Bunter sandstone soil sample (BS3) and the chalk soil sample were taken whilst the 

author was on a trip to the south of England. The sample underlain by chalk was taken on the 

outskirts of Welwyn Garden City whilst BS3 was taken west of the A l road between 

Gamston and Newark on Trent. It must be noted that although these soil samples are taken 

from above different solid geological features, of more importance is the potential layers of 

drift deposits from glaciation or alluvial action. The exact location of these samples is 

unknown as this was deemed unimportant. 

The reason for collecting agricultural soil samples was to increase the variation shown 

in measured soil characteristics. These agricultural soil samples are likely to show more 

variation in the measured soil characteristics (see Table 3.4) due to their different parent 

material and localities. 

Figure 1.15: Study Sites & Local Geology 
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1.4.4 Image Hf l l 

The Image Hil l site (National Grid reference NZ177637) lies five miles (~8km) east of 

The Abattoir & Salt Meadows sites and is underlain by the lower coal measures formation. 

The photograph of Image Hil l shown in Figure 1.16 was taken facing north-east with the 

River Tyne in the distance. Historic maps show this site to never have been developed. This 

directly contrasts with the other spatially sampled sites and was undertaken due to the results 

from those brownfield sites (see Chapter 3). Samples collected from Image Hill appeared to 

have more variation when compared with the brownfield sites. The variation appeared to 

result from the slope of the site and the varying moisture of the soil. This was most evident by 

the fact that one sample point had to be moved due to a small pond downhill from a small 

spring source. The vegetation growing on the Image Hil l site also changed markedly 

depending on soil moisture. 

The sampling pattern used at Image Hill also changed from the standard herringbone as 

used on the brownfield sites. The layout of sample locations can be seen in Figure 1.17 and is 

described in Section 2.1. An aerial photograph of Image Hil l is shown in Figure 1.18. 

Figure 1.16; Image Hil l Site 
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Figure 1.17: Image Hi l l Sample Point Layout 
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Figure 1.18: Aerial Photograph of Image Hil l 



2 Methods 

2.1 Sampling Protocol 

The herring bone sampling was undertaken using a 1 Om grid pattern with the sampling 

points offset as shown in Figure 2.1. The sampling pattern in this study should make little 

difference to any results but it has been shown that when dealing with contaminated land the 

herringbone pattern is the most appropriate (Ferguson, 1992). This is due to the probable 

shape of any plume of contamination. The herringbone pattern allows the density of sampling 

points to be lower whilst still giving you the desired coverage and probability of sampling a 

'hotspot' or plume. 

Figure 2.1: Herring Bone Sampling Pattern 
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The sampling pattern designed for the Image Hill site was based not on the best practice 

when dealing with brownfield sites or site with potential plume distributions of contaminants. 

To give better short range sampling it was decided to group the sampling points into nine 

groups of four with a spacing of six metres between each sampling point in each group and a 

spacing of thirty metres between groups. The maximum axis length of the sampling sites was 

then increased by the addition of four more points -seventeen metres from the points of the 

square sampling grid as shown in Figure 2.2. 
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Figure 2.2: Sampling Pattern at Image Hi l l 
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The equipment taken when sampling included: 

• Sampling Plan • Plastic Bags 

• Permanent Markers • Logbook 

• Tape Measures •> Survey Pegs 

• Trowel • Spade 

• Mallet 

Before spatial sampling could take place, sampling locations needed to be pegged out 

with markers. This was carried out in stages on the Salt Meadows and The Abattoir sites but 

carried out at Image Hil l all at once. The positioning of sampling locations were all checked 

by triangulation using neighbouring sampling points with final placements all within 20cm of 

the sampling plan. A l l surface soil samples were taken from the top 20cm of soil with any 

large debris (brick, concrete, scrap metal etc) removed before bagging. The quantity of soil 

bagged for each sample was ~ lkg . Five randomly selected sampling points from Salt 

Meadows were sampled into the top 10cm and also the 10-20cm layer to help gauge shallow 

depth effects. 
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2.2 Laboratory Methods 

Where possible experimental procedures used in this study are standard, soil analytical 
methods well established in the literature. Due to the number of samples, methods were 
adjusted to allow greater and simpler collection of results without compromising the quality 
of the data. Unless otherwise stated all weights were recorded to four decimal places on a 
Mettler AJ100 electronic balance, calibrated frequently using a standard (E2) lOOg weight. 
The order of analysis was not fixed except that procedures for moisture content and redox 
potential required fresh undried soil. Al l other procedures could be carried out on dried, 
sieved samples. 

2.2.1 Moisture Content 

A clean batch of 24 porcelain crucibles was dried in an oven at 105°C for at least 2 

hours. After cooling in a desiccator, the crucibles had their weights recorded. Duplicates for 

each fresh soil (~10g) were placed into the porcelain crucibles and weighed before being 

dried in an oven at 105°C for 24 hours. The crucibles were then reweighed after cooling in a 

desiccator (Hesse 1971). 

W - W 
The percentage moisture equals: — ^ - x 100 Equation 2.1 

Where: W| = weight of empty crucible 

W2 = weight of empty crucible + fresh soil 

W 3 = weight of empty crucible + dried soil 

2.2.2 Redox Potential 

Redox potential (Eh) was measured by carefully inserting a platinum (Ag/AgCh 

reference) combination redox electrode (BDH Gelplas) directly into a sample of fresh, 

untreated soil. Care was made to ensure a good contact between the end of the electrode and 

the soil. The electrode was connected to a Whatman® PHA 230 digital bench pH meter. A 

measurement in millivolts {mV) was taken after several minutes to allow stabilisation of the 

reading. 

Eh was calculated by: Eh = mV + 199 Equation 2.2 
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2.2.3 Soil Preparation 

All soil samples had to be dried before further analysis could be undertaken. Soil 

samples were first split into two halves with one half being frozen as a fresh sample without 

any preparation. The other half was left open to air in the lab and allowed to dry at room 

temperature. To aid the drying process, soil samples were rotated into an oven at a 

temperature of 35°C. The length of time a sample took to dry was dependent on its moisture 

content, typically samples were left for 1-2 weeks. Samples were gently disaggregated by 

hand whilst drying. This greatly reduced the need for forceful disaggregation of samples 

before sieving. Dried samples were then passed through a 2mm sieve (Endecotts Ltd, BS410 

standard). Samples that had 'caked' together were broken up as gently as possible. Particles 

larger than 2mm were discarded. The dried, sieved soil was then split into two so one half 

could be frozen. A 50g sample of 2mm soil was then ground to pass a 0-25mm sieve. Grinding 

was initially carried out in a TEMA mill and then finalised by hand using a mortar and pestle. 

2.2.4 Loss on Ignition 

A clean batch of 24 porcelain crucibles was dried in an oven at 105 °C for at least 2 

hours. After cooling in a desiccator, the crucibles had their weights recorded. Duplicates for 

each air-dried soil (~2g) were placed into porcelain crucibles and weighed before being dried 

in an oven at 110°C for 24 hours. The crucibles were then reweighed after cooling in a 

desiccator. The dried samples were then heated at 375 °C in a Carbolite CSF 1100 furnace for 

a further 24 hours, cooled in a desiccator and weighed. A quality control (QC) sample was run 

in each batch. 

W - W 
The percentage loss on ignition equals: - — • — x 100 Equation 2.3 

Where: Wi = weight of empty crucible 

W 2 = weight of empty crucible + dried soil 

W3 = weight of empty crucible + ignited soil 

During the validation stage loss on ignitions were carried out at 375, 600 and 900 °C. 

Due to the higher temperature, 900 °C ignitions were carried out over 2 hours. Before 

validation samples were run the furnace was calibrated. Calibration was carried out using a 

digital thermometer (HANNA HI 8757, REK2 glass fibre thermocouple). Results of the 

calibration are shown in Figure 2.3. Equation 2.4 shows how the furnace temperature was set. 

This was required so that a more direct comparison of these results with thermo gravimetric 

analysis (TGA) and differential scanning calorimetry (DSC) could take place. 
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Figure 2.3: Furnace Temperature vs. Thermocouple Temnerature 
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2.2.5 Organic Extraction 

One of the primary objectives for extracting the organic matter from the soil was in 

order to produce 1 3C NMR spectra. To obtain a good 1 3C MMR signal, ~100mg of organic 

extract was required. Depending on the amount of extractable organic matter contained in the 

soil, 1 to 8 aliquots were required. Organic extraction was carried out using 0 1 M NaOH 

(de-oxygenated by bubbling N 2 through it for 1 hour). A lOg sample of dried, 2mm soil was 

weighed into a centrifuge bottle with 100ml of OTA/ NaOH being added. Batches of 8 or 12 

samples were placed on an IKALabortechnik K.S125 shaker table and shaken at 500 Mot/min 

overnight (16 hours). 

The samples were then balanced in pairs by the addition of RO water and centrifuged in 

an ALC PK121 multispeed centrifuge at 4000/pm for 80 minutes. The supernatant from each 

sample was decanted into a clean centrifuge bottle with 1 -2g of NaCl being added (results in a 

-0-3A/ Na + solution). The samples were swirled gently to avoid frothing before being 

rebalanced and centrifuged again at 4000/pm for 60 minutes. The supernatant was again 

decanted into a clean centrifuge bottle and acidified using 2ml of 6M HC1. A 30cm strip of 

dialysis tubing (BioDesign. 8000 D MWCO, 28-7mm diameter) was rinsed in RO water; 

sealed at the bottom; and tested for leaks by filling with RO water. 
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The tubing was then emptied and filled with the acidified extract. Two extractions of the 

same soil could be placed in one length of dialysis tubing. Air was squeezed out and the 

tubing sealed using a reusable plastic bag clip. The extract was then dialysed against -10/ of 

-0-0001A/ HC1 (-10/ RO water + \ml 1A/HC1) in a plastic bucket for 2 days. The 0 0001M 

HC1 was then replaced with -10/ of RO water, this being refreshed each day for 5 days. This 

step wil l reduce the NaCl molarity to ~2xlO" n M and the H Q molarity to ~ l - 5 x l 0 " 1 3 M 

Without dialysis, salt would still be present to such an extent that freeze drying would not 

produce a pure organic extract. The extract was then decanted into a 500m/ round bottomed 

flask and frozen. 

The frozen extract could then be freeze dried (Thermosavant ModulyoD, -50 °C, 

~300mbar, Figure 2.4). Typically freeze drying took 2-3 days, depending on the number of 

samples undergoing the process. The freeze dried extract was then weighed and stored in a 

sterilin tube in the dark. 

Figure 2.4: Freeze Dryer 
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2.2.6 Conductivity 

To measure conductivity a soil paste had to be prepared for each soil sample. This was 

achieved by placing 5g of dried, 2mm soil onto a filter paper sitting on a ~1 -5cm bed of damp, 

washed sand (the sand was washed with RO water until the washings had a conductivity of 

less than 150/jS). The soil was left overnight to dampen due to capillary action before being 

pasted into a conductivity probe. Quality control samples and calibration solutions were run 

per batch. Conductivity is dependent on the temperature and so this was noted. 

2.2.7 Particle Size Analysis 

Particle size analysis was carried out using a Coulter L S 2 3 0 (Figure 2 .5) laser 

granulometer on pre-treated soil. Pre-treatment was carried out in batches of 2 0 and included 

a quality control and blank sample (Buurman et al., 1996). 

Figure 2.5: Coulter LS230 Particle Size Analyser 

To remove carbonates, 2g (l-98-2 02g) of dried, 2mm soil was placed in a centrifuge 

tube and 50m/ of \M sodium acetate, buffered to pH 5 by acetic acid, was added. This was 

heated on a water bath and mixed occasionally for -45 minutes. A 3m/ aliquot of glacial 

acetic acid was then added and mixed. Heating in the water bath continued for 30 minutes 

before a further 3m/ of glacial acetic acid was added. 
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After an additional heating period of 30 minutes the samples were cooled, balanced and 

centrifuged at 4000rjww for 40 minutes. The supernatant was decanted and discarded. The 

samples were then washed twice by adding 50m/ of RO water and centrifuging at 4000^pm 

for 40 minutes, decanting and discarding the supernatant washings. 

Organic matter was then removed by adding 5ml of 30% hydrogen peroxide. The 

reaction was allowed to take place at room temperature for 30 minutes and only cooled i f too 

vigorous. Samples were mixed regularly by swirling the contents of the tubes, care being 

taken not to allow sample to stick to the sides of the tubes. The samples were then warmed 

and regularly swirled in an oven at 70 °C for -30 minutes, again making sure that the reaction 

was not too vigorous. Another 5ml of 30% hydrogen peroxide was added to the samples 

which underwent further heating and swirling for -2 hours at 70 °C. A l l samples would have 

one more addition of 5ml of 30% hydrogen peroxide and be heated to -90 °C overnight. This 

procedure removes any more resilient organic matter and decomposes any remaining 

hydrogen peroxide. I f samples were high in organic matter more hydrogen peroxide (1-4 5ml 

additions) would be added at this higher temperature. After the addition of 20ml RO water, 

the samples were balanced and centrifuged at 4000rpm for 40 minutes with the supernatant 

being decanted and discarded. 

Iron oxides were then removed using the sodium dithionite-citrate-bicarbonate (DCB) 

method. This procedure extracts 'free' iron oxides, aluminium, manganese and silicon and so 

the extract was collected and analysed by ICP-OES. A solution of 0-3M sodium citrate/0-\M 

sodium bicarbonate was made fresh on the day of use, with 50m/ being added to each sample. 

The samples were heated at 70 °C for -20 minutes before ~2g of sodium dithionite with the 

samples being heated for a further -20 minutes. The addition of sodium dithionite was 

repeated, and after an additional 30 minutes of heating the samples were allowed to cool. A 

reddish-brown colour is indicative of incomplete iron removal and would result in a further 

DCB extraction until the samples had lost the reddish-brown colouring. The samples were 

then balanced using RO water, had their weights recorded, and were centrifuged at 4000rpm 

for 40 minutes. A sample of the supernatant was decanted into a clean sterilin tube for future 

analysis and the rest discarded. The samples were then dried at 105 °C overnight. The dried 

weights were also recorded to allow calculation of the volume of supernatant (presuming it is 

pure water at STP). The samples were then washed twice by adding 50m/ of RO water and 

centrifuging at 4000rpm for 40 minutes, decanting and discarding the supernatant washings. I f 

the second washing was yellow, the sample would be washed until the supernatant was clear. 
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A small number of samples were repeated having all the extractant and washings 

collected and made up to volume in a volumetric flask (250 or 500ml). This was to test the 

accuracy of the free iron extractions when only a sample of the extract was taken and a 

volume calculated as discussed above. The samples were then dried and gently disaggregated 

using a mortar and pestle, ready for particle size analysis. 

For particle size analysis 0-5g of a sample was placed in a sterilin tube with 20m/ of RO 

water and 2m/ of 3% sodium hexametaphosphate solution being added. The sample was left 

overnight before being washed into the variable speed fluid sample chamber of the Coulter 

LS230. The Coulter LS230 uses polarisation intensity differential scatter (PIDS) for particles 

in the range 0 04-0-4^m and laser diffraction optics (obscuration: Obs) to calculate particle 

sizes of 0-4-2000^/m. Each sample was run twice with an acquisition time of 90 seconds. 

Sonication was switched on during loading to aid dispersion. Values of PIDS and Obs should 

be close to the optimum (-55% and -12% respectively). Results were given as a percentage 

by volume of particles below a size. I f there was good agreement between the two runs for an 

individual sample, results were averaged and recorded as % Clay (<2^m), % Silt 

(>2//m <63/wm) and % Sand (>63//m). I f the Obs value fell below 5%, or i f the individual runs 

varied considerably, particle size measurement would be recorded with a longer acquisition 

time (180 seconds) using the same sample. I f repeat runs still failed to agree a new sample 

would be prepared, with more sample being used (l-2g) where the Obs value was low (<5%). 

2.2.8 fiH 

A soil slurry was prepared by mixing 5g of 2mm soil with 50m/ of 0 01M CaCh- This 

was stirred intermittently for 30 minutes before being allowed to stand for 1 hour. A Hanna 

HI 1230 pH electrode was immersed into the clear supernatant and the pH recorded using a 

Whatman® PHA 230 digital bench pH meter (calibrated daily). To aid quality control, the pH 

of the 0 0\M CaCh used, the RO water used to make the solutions and a QC sample were 

recorded for each batch. 

The pH of soil is difficult to measure with any degree of consistency without altering 

natural conditions. This method standardises measurement conditions whilst also increasing 

the conductivity of the soil slurry. No attempt is made to account for the potential difference 

between the pH measurements and natural conditions (ie. CaC^ soil slurry compared to 

damp/dry natural soil). 
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2.2.9 Surface Area 

Surface area was measured using the weight gained by adding ethylene glycol 

monoethyl ether (EGME, 2-ethoxyethanoI) to a sample of soil. Using the method outlined 

below, any weight gain is presumed to be due to a monolayer of EGME on the surface of the 

soil particles, which therefore allows you to calculate surface area. 

Preparation of C a C h - E G M E solvate: To remove all traces of water, \05g of 

anhydrous CaCb powder was placed into a glass beaker and dried in an oven at 210 °C for 1 

hour. Without cooling, lOOg of dried CaCh was added to a glass culture chamber 

(20cm diameter, 5cm high with a lid) containing 20g of EGME and mixed immediately and 

thoroughly with a spatula. This was repeated for a second culture chamber, with both being 

stored in a vacuum desiccator containing anhydrous CaCh as a desiccant. Each culture 

chamber could hold 4 aluminium cans, therefore allowing 4 samples to be run in duplicate per 

batch. Because of the small number of samples in a batch, a QC sample was only included in 

every second batch. 

Soil Pre-treatment: Samples (3g, 0 25mm soil) were saturated with Ca by the addition 

of 50m/ \M CaCh. The samples were shaken for ~4 hours, balanced and centrifuged 

(4000>7?m, 40 minutes) before decanting the supernatant. Another 50m/ of lA/CaCh was then 

added before the samples were shaken overnight. The samples were centrifuged again and 

after decanting the supernatant, excess CaCh was removed with three successive 50m/ RO 

water washings, centrifuging and decanting the supernatant each time. The samples were then 

air dried (-105 °C) and passed through a 0 25mm sieve, grinding i f necessary. 

Sorption Technique: A sample of pre-treated soil (~lg) was weighed into an 

aluminium can of known weight (dried at -105 °C until constant) including the lid ( W A I ) . The 

soil and can was dried at 105°C until constant weight was attained ( W C ) . The dry weight of 

soil (W s = W c - W A I ) was noted before adding 3m/ of EGME to each sample. The samples 

were swirled to form a slurry before being placed, with the lid beneath, in a culture chamber. 

The lids on the culture chambers were elevated by ~2mm to allow gas to escape. The culture 

chambers were placed in the vacuum desiccator and left for 30 minutes to allow equilibration. 

The desiccator was evacuated for 45 minutes before being allowed to stand for at least 4 

hours. The vacuum was then released by connecting the outlet to another desiccator 

containing both anhydrous CaCh and silica gel. This helped minimise weight gain due to 

moisture in the atmosphere. Before weighing the soil and can, the lids were placed onto the 

cans to prevent water adsorption. After weighing the cans were returned to the culture 

chamber, again placing the lids beneath. The vacuum desiccator was then evacuated again and 

left for 2 to 4 hours. 
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The vacuum was then released and the cans weighed as above. This process was 

repeated until the samples attained a constant weight (weighing's within 0-001g). Generally 

no more than three weighing's were required. The mean of 2 successive weights that agree to 

within a few tenths of a milligram was used as the final weight (Wf). Table 2.2 gives a list of 

measurements taken and Equation 2.5 shows how surface area was calculated. 

W 
Surface Area = E2iffi Equation 2.5 

(W s x 0O00286) 

(0-000286 is the weight of EGME required to form 

a monomolecular layer on a square metre surface) 

Where: 

W E G M E = weight of EGME (Wf-W c ) 

W s = weight of oven dried pre-treated soil (W c - W A I ) 

WAI = weight of oven dried aluminium can and lid 

W w = weight of air dried pre-treated soil 

W c = WAI + W W 

Wf = Mean weight of soil, aluminium can, lid and monolayer of EGME 

2.2.10 Dichromate Oxidation 

Dichromate oxidation is a measure of the amount of oxidisable carbon contained in a 

soil sample. Potassium dichromate is used as the oxidising agent and is heated (-120 ° Q 

using the heat of dilution of the added concentrated sulphuric acid. This method has been 

shown to oxidise 75% of the organic carbon in soils and thus a correction factor is employed 

(Walkley & Black, 1934). The correction factor varies in the literature (1-03-1-41) and is 

dependant on soil type but 13 is widely used. The carbon undergoing oxidation is also 

presumed to have an average valence of zero as shown in Equation 2.6. Outlined below is an 

updated version of the original Walkley-Black method (Gaudette et al., 1974). 

2Cr 2 0 7

2 ' + 3C° + 16H+ <- 4Cr 3 + + 3C0 2 + 8H 2 0 Equation 2.6 

A 0 5g sample of dried 0-25mm soil was placed into a 500m/ conical flask. Each soil 

was measured in duplicate with a QC sample and a blank measured at the beginning and the 

end of a batch. An aliquot of 10m/ 0167M potassium dichromate solution (K 2Cr 207) was 

pipetted into each flask (Gilson PI 0 pipette) and mixed by swirling. Each flask then had 20m/ 

of concentrated H2S04 added and was mixed by gentle rotation for -60 seconds. Care was 

taken to avoid throwing the soil onto the sides of the flask. After the flasks had been allowed 

to stand for 30 minutes, the oxidised samples were diluted to 200m/ with RO water. 
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Additions of 10m/ 85% H3PO4 and 0-2g of NaF were then made to each flask to help 

define the endpoint of the titration. Diphenylamine indicator (-15 drops) was added to the 

flasks, producing a dark green to black coloured solution. The sample solutions were titrated 

against 0-5M ferrous ammonium sulphate solution [Fe(NH4)2(S04)2-6H20]. A spotlight was 

positioned to shine light through the sample solution whilst titrating to aid identification of the 

end point. The solution would change to a bluish-black-grey before reaching a 1-drop end 

point and turning back to green. If more than 75% of the Potassium dichromate has reacted, 

the sample would be repeated using less soil (0-2-0-4g). Occasionally when the soil had a 

high carbon content (for example, peat) the amount of potassium dichromate added would be 

increases to 20m/ or even 30m/. 

To calculate the percentage organic carbon the following equation was used: 

% Organic Carbon is equal to: 
0-167 xVxl2x- i -

xl00% Equation 2.7 
w 

Where: 

0167 

T 

V 
w 
s 

12 

Soil sample titration 

Blank standard titration (average of 2) 

Weight of soil added in grams 

Volume of potassium dichromate added in litres 

Molarity of K 2 C r 2 0 7 

Atomic weight of carbon 

Number of moles of carbon oxidised by 1 mole of K2Cr207 

Equation 2.7 simplifies to 

0-3V 
% Organic Carbon = 1 

W 
Equation 2.8 

(V is now given in ml) 
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2.2.11 X-R f t Y Pi f fr f tCt i9BAn^is 

X-ray diffraction (XRD) analysis was only undertaken for the soils that were also used 

for the adsorption experiments carried out at Sheffield University. The samples were prepared 

in the same way as for particle size analysis, the only difference being that 0-25mm soil was 

used. The samples were then cation exchanged using 50m/ of 1M KC1, centrifuged (4000/pm, 

40 minutes) and after decanting the supernatant, excess K G was removed with three 

successive 50ml RO water washings, centrifuging and decanting the supernatant each time. 

The samples were then air dried (-105 °C) and ground to a fine paste. The samples were 

added to XRD cells, levelled and orientated in a random way. A 20 spacing of 0 02 is used 

with the wavelength being scanned between 5° and 90°. 

2.2.12 Inductively Coupled Plasma- Ontical Emission Spectrometry 

Inductively coupled plasma- optical emission spectrometry (ICP-OES) was carried out 

on all DCB extracts produced as part of particle size analysis pre-treatment process outlined 

in Section 2.2.7. These extracts contained 'free' iron oxides, aluminium, manganese and 

silicon which could all be measured quickly and efficiently by ICP-OES. A Perkin Elmer 

Optima 3000 Family Optima 3300RL ICP Emission Spectrometer (see Figure 2.6) was used 

for all ICP-OES analysis (Samples loaded using a Perkin Elmer AS90 autosampler, with this 

and the spectrometer being controlled by a PC running Perkin Elmer ICP WinLab™ software. 

Figure 2.6: Perkin Elmer Optima 3300RL 
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Standard linear calibration curves were calculated by the WinLab™ software using 

standard solutions made up from analytical grade standard stock solutions (lOOOOppm Fe, A l , 

Si & Mn). A secondary standard solution (50ml) containing 200ppm Fe, 40ppm A l & Si and 

4ppm Mn was made up by dilution using RO water. For accuracy, 50ml of RO water was 

measured into a sample bottle using a calibrated pipette from which aliquots totalling the 

volume of stock solutions to be added was removed again using calibrated pipettes of the 

appropriate size. This allowed the accurate addition of aliquots of lOOOOppm standards to give 

the appropriate concentrations i.e. 1ml of lOOOOppm Fe, 0-2ml each of lOOOOppm A l & Si 

and 0 02ml of lOOOOppm Mn. A new, clean pipette tip was used for each individual solution 

during the preparation of solute mixtures for ICP-OES calibration & analysis. The secondary 

standard solution was further diluted in the same manner to give the calibration standards 

given in Table 2.1. The calibration standards were chosen to cover the same range found in 

the diluted DCB extracts. 

Table 2.1: Analytical Standards Used For ICP-OES Calibration 

Standard 

Number 

Analytes & Calibration Concentrations ( ppm) Standard 

Number Fe A l Si Mn 

1 200 40 40 4 

2 100 20 20 2 

3 50 10 10 1 

4 25 1 1 0-5 

To reduce matrix effects and prevent detector saturation, DCB extracts were diluted 1 in 

10. A l l solutions undergoing ICP-OES analysis had an internal standard added. The internal 

standard used was a solution of lOppm yttrium, which was added to all solutions in the ratio 

of200uL lOppm yttrium per 10ml of solution. 

For each analyte, multiple lines in their emission spectrum were chosen for 

measurement. This allowed averages to be taken presuming no interference but allowed data 

to still be gathered i f intereference affected areas of the emission spectra. The lines chosen are 

tabulated in Table 2.2. The calibration solutions were rerun after each batch to check for 

machine drift. One calibration solution was also repeated every 20 samples as a further check. 

Table 2.2: Spectral Emission Lines measured bv ICP-OES 

Element—* Y Fe A l Si Mn 

Spectral 
Lines 

361 104 234-349 394-401 212-412 259-372 

Spectral 
Lines 

324-227 238-204 396-153 252-851 260-568 Spectral 
Lines 360073 239-562 237-313 

Spectral 
Lines 

371 029 259-939 
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2.2.13 Thermogravimetric Analysis 

Thermogravimetric analysis (TGA) was carried out using a Thermal Sciences STA 1500 

simultaneous TGA/DSC analyser. Samples that underwent TGA analysis were the adsorption 

samples and a selection of samples from the Image Hill validation site. TGA was carried out 

using 0 25mm soil (~50mg) placed into an alumina crucible and gently compacted using a 

metal rod. TGA analysis was performed from 25°C to 990°C at a heating rate of 5°Cmin~'. 

The program was initially set to record data every second but this was subsequently reduced 

to every eight seconds so as to give at least one reading for every degree of temperature 

increase. A number of samples were also doped with varying amounts (1, 2, 4 & 6% by 

weight) and types of carbon (coal, commercial wood charcoal, charcoal produced from hay 

and commercial humic acid) as shown in Table 5.1. These dopes were ground in a TEMA 

mill so as to pass a 0-25mm sieve. The hay charcoal was produced by the combustion of 15g 

of purchased dried hay meant for animal bedding. The hay was chopped into small pieces 

using a kitchen blender, placed in a Pyrex beaker and covered with a watch glass. The beaker 

was then placed into a cold furnace, the temperature being increased to 450°C and held there 

for 1 hour (Skjemstad & Taylor, 1999). The resulting hay charcoal is shown in Figure 2.7 and 

was 29-33% of the original weight. Table 5.2 shows the sand standards that were carried out 

to calibrate the signal from the doped samples shown in Table 5.1. The sand used was ground 

in a TEMA mill to pass a 0-25mm sieve, acid washed (100m/ of 1M HC1 for 40g of sand), 

centrifuged, rinsed twice with RO water and dried at 105 °C before again passing a 0-25mm 

sieve. Full details of the method development are contained in Chapter 5. 

Figure 2.7: Hav Charcoal 
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2.3 NMR - E P S R C Solid State Service 

DAVe was funded by the EPSRC and as such was given time to use the EPSRC solid 

state service based in the Department of Chemistry, Durham University. The project was 

granted the resources to have , 3 C NMR spcectra collected for 120 organic extracts. Section 

2.2.5 details the method used to extract organic matter, with these sampes being provided for 

analysis without any further preparation. The service has a Varian UNITY Inova spectrometer 

with a 7-5T Oxford Instruments magnet. The spectrometer was set to as closely match the 

settings used by Ahmad et al. (2001) with the settings used given below in Table 2.3. The 

number of repetitions was tailored to give as short a period as possible whilst still giving a 

good signal, with a low signal to noise ratio. 

The organic matter sent for 1 3C NMR analysis had two distinct components attributed 

to humic and fulvic acid. The organic extraction procedure wil l leave fulvic acid in solution 

whilst humic acid is precipitated out. Both are freeze-dried together, producing a mixture with 

the humic acid appearance more dark and solid than the light, f luffy fulvic acid freeze dried 

from solution. A 7mm (o.d) rotor was used to collect l 3 C NMR spectra. This was seen as the 

best trade off between using a smaller rotor that would not require the subtraction of a blank 

signal and the possibility in bias when loading partial samples. The majority of spectra were 

collected on the whole freeze dried organic extract but tests were carried out by the NMR 

service to check for sample loading bias when this was not possible. Vigorous shaking of the 

humic/fulvic acid mixture was shown to give repeatable spectral results. 

Table 2.3: NMR Spectrometer Settings 

Frequency 75-398MHz 

Spectral Width 299996 3Hz 

Acquisition Time 15 0ms 

Recycle/Relaxation Delay 0-5s 

Contact Time 100ms 

Spin-rate 9000Hz 

Gaussian Broadening 0 005s 

Run at ambient temperature using cross po arisation- magic angle spinning (CP-MAS) 
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2.4 Adsorption Experiments - Sheffield University 

The adsorption experiments undertaken at Sheffield University were conducted in 

50 mL glass bottles with Teflon liners in the caps. Stock solutions of benzene, p-xylene, 

phenol and p-cresol were prepared in Ultra High Quality Water containing 1-5% methanol 

and 0 1 % Sodium Azide (bacterial growth inhibitor). The soils used in adsorption experiments 

are listed in Table 2.4. Soil samples weighing l-2-5g were placed into bottles and filled with 

UHQ water and the appropriated amount of stock solution to give concentrations from 1 to 

500mgr' of adsorbate. Samples were run in triplicate, with every batch containing blanks 

made up with only water and adorbate. No air was left in the bottles, which were sealed using 

Teflon liners. The soil slurries were placed on a shaker table and continuously mixed at 

constant temperature (20 ± \°C). Kinetic studies of each compound/substrate showed that 

phenol and p-cresol reached equilibrium within 24 hours, with benzene and p-xylene taking 

48 hours. 

The aqueous phase of phenol and p-cresol samples were transferred to Teflon centrifuge 

tubes to remove remaining solids by centrifugation at 8000rpm for lOmin, before being 

filtered using cellulose nitrate membranes. Blanks were treated the same way. Equilibrium 

liquid-phase concentrations of the adsorbates were determined by reverse-phase High 

Performance Liquid Chromatography equipped with UV-visible detection at 260nm, on an 

Allsphere ODS-2 5um column and guard column from Alltech. The mobile phase was a 

60:40 mixture of methanol and water with a flow rate of 1 mlmin"1. Calibration was 

performed by external standards and found to be linear in the 1 to 500mgL"' range. Samples 

containing benzene or p-xylene had a 5ml aliquot of the supernatant liquid transferred to a 

10ml headspace vial. After gas-liquid equilibrium was achieved, 0-5ml of the headspace was 

analysed by Gas Chromatography with Flame Ionisation Detector on a VOCOL 30m x 0-53 

column. Again, calibration was performed using external standards and found to be linear in 

the 1 to 500 mgL"' range. 

The measured concentrations of adsorbate were all corrected using the measured 

concentrations in blanks. The blank corrections were always small giving a - 1 % difference in 

HPLC and a -5% difference in GC-FID measurements. 
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Table 2.4: Soils That Underwent Adsorption Analysis 

SM0804 SM0806 SM106127 SMI 113 (0-10) SMI 113 (10-20) 

AB0722 JY2 BS1 BS3 CL1 

Chalk Coal 1 GMP ML1 QC 

AB 07/3 19/2 
Image Hil l validation soils 

AB 07/3 19/2 
18 6010 64050 31 

The adsorption coefficient K<j can be calculated using Equation 2.9 and is normalised to 

Koc using Equation 2.11. 

The adsorption coefficient Kd equals: 
aq 

Equation 2.9 

Before calculating Koc, the fraction of organic carbon ( f ^ ) must be calculated using the 

percentage organic carbon (Equation 2.8). A correction for non oxidisable organic carbon 

(factor of 1 -3, see Section 2.2.10) must be employed giving: 

far = %OCx — JOC 1 0 Q 

Equation 2.10 

The organic carbon normalised adsorption coefficient Koc equals: 
K , 

fc oc 
Equation 2.11 

Where: C, 

foe 

%OC 

the contaminant concentration in soil 

the contaminant concentration in solution 

the fraction of organic carbon in soil 

the percentage oxidisable carbon 
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2.5 Summary 

Chapter 2 outlines the methods used to gather, prepare, store and analyse the soil 

samples collected as part of this study. Standard methods were employed whenever possible 

and are summarised in Table 2.5. The methods used in data analysis are given in the 

appropriate sections of the following chapters but are summarised in Table 2.6. 

Table 2.5: Soil Characterisation Methods Employed in This Study 

Parameter Method Reference 
Moisture Content Weight loss Hesse (1971) 

Redox Potential Platinum combination reference 
electrode 

Methods of Soil Analysis. Soil 
Science Society of America Inc. 

Loss on Ignition Weight loss 
Nelson & Sommers (1996) 

Methods of Soil Analysis. Soil 
Science Society of America Inc. 

Organic Extraction NaOH (deoxygenated) Swift (1996) 

Conductivity Soil paste into a conductivity 
probe 

Methods of Soil Analysis. Soil 
Science Society of America Inc. 

Particle Size 
Analysis 

Laser granulometer analysis of 
prepared sample Buurmanetal. (1996) 

pH pH electrode into a soil slurry Methods of Soil Analysis. Soil 
Science Society of America Inc. 

Surface Area EGME vacuum Carter etal. (1965) 
Chiouetal. (1990) 

Oxidisable Carbon Dichromate oxidation Walkley& Black (1934) 
Gaudette et al. (1974) 

Clay speciation XRD analysis of prepared particle 
size samples 

Whittig & Allardice (1986) 
Buurmanetal. (1996) 

Free Fe, Mn, Si, Al ICP-OES analysis of DCB extract Buurmanetal. (1996) 
Weight loss Thermo gravimetric analysis Skjemstad & Taylor (1999) 

Carbon speciation NMR analysis of organic extracts Ahmad etal. (2001) 

Table 2.6: Data Analysis Methods Employed in This Study 

Analysis Section Parameters 
Boxplot 3.2 A l l individual soil characteristics 

Principal Component 
Analysis 3.3.1 The Abattoir & Salt Meadows soil characteristics 

Stepwise Regression 3.3.2 The Abattoir & Salt Meadows soil characteristics 
Spatial Distribution 3.4 The Abattoir moisture content 
Molecular Topology 4.1 & 4.2 Organic Adsorbents 
Linear Regression 4.3 Adsorption data 

Stepwise regression 4.4 Adsorbent & adsorbate characteristics 
Signal separation 5.2 Carbon species 

Stepwise regression 5.3 Adsorbent & adsorbate characteristics including 
carbon speciation 
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3 Soil Properties 

3.1 Introduction 

The aims of the DAVe project do not include a better understanding of individual soil 

parameters. However, it is important to describe how soil parameters vary both spatially 

within a site and on a site by site, soil by soil basis. It is within the remit of DAVe to better 

understand the controlling factors relating to the variation shown by organic contaminant 

adsorption and these wil l relate to soil properties. Chapter 3 is split into sections dealing with: 

• Individual measurements. These are outlined in Section 3.2 and include boxplots 

showing the variation in soil parameters between The Abattoir, Salt Meadows and 

agricultural datasets. Other figures where appropriate show other relevant information to 

each parameter to give a full descrition before further analysis. 

• Models of Soil Properties. These are outlined in Section 3.3 and are split between 

principal component analysis (PCA) and stepwise regression. PCA is explained fully in 

Section 3.3.1 but can be summarised as allowing simplification of large datasets that 

may be subject to many collinear variables. PCA allows complex datasets to be 

simplified and explained in terms of overall variation. Stepwise regression is fully 

explained in Section 3.3.2 but can be summarised as only picking the statistically 

relevant predictors to explain the variation shown by a measured parameter. Regression 

equations may then allow you to produce pedotransfer functions, allowing prediction of 

soil parameters based on the results of other measured soil parameters. 

• Spatial Distribution of Soil Properties. This is outlined in Section 3.4 and allows 

measurements to be mapped spatially to discern whether there are any correlations 

between the distance and direction between sample locations. The maximum distance 

between correlated sample locations can be calculated, giving information on the 

required number of sampling points to correctly characterise an area. 
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3.2 Individual Measurements 

A boxplot is given for each measured variable with the key given in Figure 3.1. 

Boxplots give a good graphical indication of the spread of data points around the central value 

(median). The central shaded box marks the interquartile range that is bounded by Ql and Q3. 

The interquartile range gives a graphical representation of the spread of the 25% of data 

values immediately above and below the median (total 50%). 

Figure 3.1: Boxplot Key 
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3.2.1 Moisture Content 

The percentage moisture content (%H20) of a soil is arguably the most changeable 

parameter ascertained in this study. The fluctuation in rainfall wil l obviously affect the 

moisture content of soil. Al l soils studied were sampled in dry conditions during the summer 

months and had not been subjected to prolonged periods of heavy rainfall (see Section 2.1). 

The moisture retaining capacity of soil is dependent on many factors including: 

• Soil Type 

• Soil Structure 

• Flora & Fauna 

• Climate 

• Drainage 

The above list is by no means inclusive of all parameters that wil l affect the moisture content 

of soil. It is also clear that the parameters listed above are inter-dependent to varying degrees. 

A boxplot of the percentage moisture content of the soils under study is shown in Figure 3.2. 

The soils from The Abattoir and Salt Meadows sites have comparable distributions of 

moisture content, both having median values close to 10%. The median value for the 

agricultural soils is -20% and has a larger distribution. The moisture content of Grinton Moor 

peat (73 -2%) is not included on Figure 3.2 for clarity. 

Figure 3.2; Moisture Content of Soils 
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3.2.2 Redox potential 

Redox potential (Eh) was only measured for The Abattoir and Salt Meadows samples. 

The results are shown in Figure 3.3. These measurements appear to be well behaved in that 

they have a normal distribution, as shown in Figure 3.4 and Figure 3.5, but readings would 

fluctuate widely during collection. Although care was taken to ensure a good contact between 

the end of the electrode and the soil, the reading would change with the smallest movement 

even after being allowed to stabilise. This led to a time consuming data gathering exercise 

with a certain amount of doubt connected to the results. For these reasons no Eh 

measurements were taken for soils sampled after The Abattoir and Salt Meadows. 

Figure 3.3; Redox Potential (Eh) of Soils 
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Figure 3.4: Histogram of Redox Potential (Eh) Values From The Abattoir 
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Figure 3.5: Histogram of Redox Potential (Eh) Values From Salt Meadows 

20 

15 

g. 10 

5 • 

Mean 497.9 
StDev 33.70 
N 1U 

Normal 

390 420 450 480 510 
Salt Meadows Redox Values 

540 570 

43 



3.2.3 Loss On Ignition 

Loss on ignition was undertaken at 375"C (LOI375) after the soil samples were first 

dried at 110°C (LOI110). The soil had previously been air dried at 35°C and therefore for 

completeness Figure 3.6 shows the percentage weight loss at 110oC. No sample lost more 

than 10% of its weight after drying at 110°C. The weight losses found when drying at 35°C 

and 110°C may be comparable as water wil l be potentially the largest component removed at 

either temperature. Drying at 110°C can also lead to weight loss caused by the oxidation and 

volatilisation of organic components of soil (Gardener, 1986). The potential for two different 

components to contribute to the weight loss measured at 110"C is apparent when viewing a 

plot of %H20 versus LOI110 for Salt Meadows as shown in Figure 3.7. It is clear that there is 

a range of LOI110 values for a given %H20 leading to a two-component mixing diagram with 

varying inputs from water and the more volatile and easily oxidisable component of organic 

matter. 

Figure 3.6: Weight Loss on Drying At 110 °C 
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Figure 3.7: % Weight Loss On Drying At 35 gCvs. U0°C 
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The results of the loss on ignitions carried out at 375°C are shown as a boxplot in Figure 

3.8. Grinton Moor Peat (79-8% weight loss) is omitted for clarity. I f this extreme is ignored, 

the weight losses of samples from The Abattoir site have a larger distribution than samples 

from Salt Meadows or from the agricultural soils. 

Loss on ignition at 375"C is a proxy to the organic matter content of the soil. This 

temperature is used because at higher temperatures any clay in the soil starts to lose structural 

water through dehydroxylation (Nelson & Sommers, 1996). Ignition at 375°C may however 

result in weight loss due to black carbon (Gelinas et al., 2001). The distributions shown in 

Figure 3.8 suggest organic matter content varies more over the small scale of The Abattoir 

site than the differences seen over agricultural soils taken from sites many miles apart. 
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Figure 3.8: Loss On Ignition At 375 V 
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3.2.4 " C N M R 

The 1 3C NMR spectra of organic extracts do not allow for any one compound to be 

identified. The organic extracts produced in this study are a mixture of humic and fulvic acids 

extractable from soil using NaOH. A typical example of the l 3 C NMR spectra produced from 

these extracts (SM 0804) is shown in Figure 3.9. The spectra are split into sections selected by 

the type of carbon that gives rise to the signal in that region, as shown in Table 3.1. 

(Ahmad et al., 2001). The area of each region can then be calculated to give the percentage of 

the total signal attributable to that carbon species. 

Table 3.1: Carbon Species Attributable to Regions in 1 3 C NMR Spectra 

Region in , J C NMR Spectra Carbon Species 

0-45ppm Alkyl (Alkyl C) 

45-110ppm Oxygen containing Alkyl (O-Alkyl C) 

110-140ppm Aryl (Aryl C) 

140-165ppm Oxygen containing Aryl (O-Aryl C) 

165-190ppm Carboxyl (Car C) 

190-220ppm Aldehyde & Ketone (A/K C) 
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Figure 3.9: 1 3C NMR Spectra for SM 0804 Extract 
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The example C NMR spectra shown in Figure 3.9 is indicative of all spectra gathered 

in that the aldehyde/ketone carbon signal is small and noisy and therefore should be viewed 

with caution in any further analysis. A boxplot of the remaining carbon species is shown in 

Figure 3.10. It can be seen that O-Alkyl accounts for the largest percentage of the signal. This 

is to be expected due to this region generally having the largest peak in the spectra and the 

widest footprint. Further analysis wi l l ascertain what can be deduced from the distribution of 

the I 3 C NMR species. 

Figure 3.10: Boxplot of Carbon Species 
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After splitting the C NMR results by site and by carbon species (Figures 3.11-3.16) it 

can be seen that: 

• Alkyl distribution is very similar 

• Salt Meadows and the agricultural soils have a higher amount of O-alkyl content 

compared to The Abattoir 

• The Abattoir soils have a higher amount of aryl content compared to the Salt 

Meadows and agricultural soils. 

• O-aryl values are broadly comparable 

• The Abattoir and Agricultural soils have similar carboxyl content. 

• Salt Meadows has a larger distribution of carboxyl values 

The distribution of aromaticity (sum of aryl & O-aryl carbon) values are shown in 

Figure 3.16 and again the results are broadly similar. Ahmed et al. (2001) showed that the 

aromaticity of an organic extract affects the adsorption of organic pesticides in soil. This will 

be further investigated in Chapter 4. 

Figure 3.11: Boxnlot of Allcvl Carbon 
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One sample worthy of individual highlighting in the , 3 C NMR spectra is JY2 (Jennings 

Yard). This was included in the agricultural soil subset but is an outlier in the O-alkyl, aryl, 

O-aryl and aromaticity figures (Figures 3.12-3.14 & Figure 3.16). Geographically, JY2 is 

close to both The Abattoir and Salt Meadows sites and clearly was not taken from an 

agricultural field (see Section 1.3.2). It should therefore be noted that JY2 might be better 

compared to the values observed from The Abattoir and Salt Meadows. 

Figure 3.12: Boxnlot of O-Alkvl Carbon 
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Figure 3.13: Boxnlot of A r v l Carbon 
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Figure 3.14: Boxplot of O-Arvl Carbon 
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Figure 3.15; Boxplot of Car boxy 1 Carbon 
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Figure 3.16: Boxplot of Aromaticitv 
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3.2.5 Conductivity 

Conductivity was measured using a soil paste of each sample. There were problems with 

the experimental method that resulted in large, unknown variables. The amount of water in 

the sand bed used to dampen the soil before measurement affected measurements. Readings 

ranged from 171//S to 199/JS and had a mean of 365/iS. Measurements were taken in 

duplicate and tended to be in good agreement. Repeat measurements however showed large 

variations with QC samples having a standard deviation equal to 63 (see Table 3.2). This 

called into question the validity of the data and so conductivity was only measured for Salt 

Meadows samples. 

Table 3.2; QC Conductivity Measurements 

Conductivity (JJS) 
430 311 256 

Conductivity (JJS) 
337 330 262 

Mean 321 

Standard Deviation 63-3 

Relative Standard Deviation 19-7 

The conductivity data collected for Salt Meadows is shown in Figure 3.17. There are a 

number of outliers with greater conductivities two of which are samples taken at depth, which 

may be important. The interquartile range is quite small but may be dubious due to the 

potential error in the individual measurements. 

Figure 3.17: Boxplot of Conductivity 
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3.2.6 Particle Size Analysis 

Particle size was split into three groups: 

• % Clay (<2/xm) 

• % Silt (>2nm <63///w) 

• % Sand (>63vm) 

The boxplots shown below (Figures 3.18-3.20) show similar patterns due to the 

dependency that clay, silt and sand have as percentages. The relative particle percentages of 

The Abattoir and agricultural soils have a wider range compared to Salt Meadows soil. 

Figure 3.18: Boxplot of % Clav 

14 

12 

10 

& 8 

# 6 

Abattoir Salt Meadows Agricultural Soils 

53 



Figure 3.19: Boxnlot of %Silt 
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Figure 3.20: Boxnlot of % Sand 
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3.2.7 pH 

The distribution of pH values is shown in Figure 3.21 but does not include the value for 

Grinton Moor Peat (2-8). Again the agricultural soils show the most variation. Both The 

Abattoir and Salt Meadows have a number of outliers but otherwise have small, well-defined 

distributions. Grinton Moor Peat excluded, all pH values lie between 5-5 and 8-5. 

Figure 3.21: Boxolot of p H 
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3.2.8 Surface Area 

A Boxplot of the surface area (SA) measurements gathered is shown in Figure 3.22. As 

with LOI375, The Abattoir shows the largest variation in surface area. The interquartile range 

of the agricultural soils is broader than that of The Abattoir soils but the lower number of data 

points in the agricultural soils dataset should be remembered (12 as opposed to The Abattoir's 

50 surface area measurements). 

It has been reported that measuring surface area by the EGME method, as shown in 

Section 2.2.9, can be interfered with by the presence of organic matter (Chiou et al., 1990). 

The organic matter allows cation solvation and dissolution of EGME into the organic phase. 

Other studies have found that removal of the organic matter makes negligible difference to the 

measured surface area (Kennedy et al., 2002). A cautious approach can be taken with the 

EGME calculated surface area being viewed as a measure of the uptake capacity of a soil for a 

polar adsorbate (Pennell, 2002). 

55 



As part of the particle size measurements (Section 2.2.7) it is possible, using the LS230 

software, to calculate the specific surface area (SSA) based on the hypothetical surface area of 

spherical particles with a measured diameter (size). A Boxplot of the SSA measurements 

gathered is shown in Figure 3.23. The calculated SSA data is given in units of m2cm'3 

whereas SA is measured in units of m2g"'. The SSA data for The Abattoir was plotted against 

SA as shown in Figure 3.24. It is clear that the SSA values are lower than that of SA although 

a direct comparison may be inappropriate due to the different units (m2g"' & m2cm"3). 

To justify this comparison the density of the clay, silt and sand mixture undergoing 

particle size analysis must be accounted for. The average percentages of clay, silt and sand for 

The Abattoir samples are ~6, -30 and -60% respectively. Clay has a density of-0-8 gem"3 

whereas sand has density of -1-8 gem'3. To convert SSA measurements into units of m2g"' 

would require the measurements to be divided by the density of the sample given in units of 

gem'3 This gives a maximum and minimum multiplication factor of -1-25 and -0-5 

respectively if the soils are 100% clay or sand respectively. Therefore, after allowing for the 

different units, SSA is still at least a factor of 10 smaller than SA. 

The reasons for SSA being smaller than SA include: 

• SA measures the internal & external surface area of particles based on sorption 

ofEGME. 

*l* SSA measures external surface area based on the assumption that all particles 

are spherical. 

Figure 3.22: Boxnlot of Surface Area (SA) 
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The values shown in Figure 3.24 suggest that there are different internal to external 

surface ratios between samples. This may be due to differing amounts of clay species that will 

have different structures and therefore different surface areas (internal & external). There are 

a small group of samples that seem to have relatively large SSA values when compared to 

their SA values. These have been labelled with their Abattoir grid references and it appears 

they are grouped together. This may indicate a change in soil structure or perhaps some form 

of blocking of internal surfaces. 

Figure 3.23: Boxnlot of Specific Surface Area (SSA) 
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Figure 3.24: The Abattoir Specific Surface Area vs. Surface Area 
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3.2.9 Dichromate Oxidation 

The percentage oxidisable carbon (%OC) for all data except Grinton Moor Peat is 

shown in Figure 3.25 in boxplot format. These results have not been multiplied by a 

correction factor to give percentage organic carbon. Grinton Moor peat's organic matter 

content is well above the level that is suggested for dichromate oxidation analysis. A 

reproducible result (-30%) was nevertheless achieved by using 30ml of potassium dichromate 

solution. All other values are below 10% with The Abattoir having the largest distribution. 

Salt Meadows has a smaller distribution but numerous outliers. The distribution of the 

agricultural soils lies between the range of The Abattoir and Salt Meadows sites. 

There should be a strong correlation between LOI375 and the percentage oxidisable 

carbon (%OC) as shown for the plot of LOI375 against %C for data from all three soil 

groupings in Figure 3.26. The %OC has been multiplied by 13 to give %C, allowing 

correction for organic carbon that is not easily oxidised by the dichromate method used 

(Nelson & Sommers, 1996). The three linear equations shown in Figure 3.26 represent 

different cut-off points for the LOI375 results. It has been reported that dichromate oxidation 

is not a good method to use when the percentage organic matter is above a certain level. 
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Figure 3.25: Bnxnlot of Oxidisable Carbon 
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Taking LOI375 as the percentage organic matter (%OM), it should be possible to use 

the Van Bcmmelen factor (1 -724) to convert %C (organic carbon) to %OM. This conversion 

factor is based on the assumption that organic matter contains 58% organic carbon. The Van 

Bemmelen factor has been widely used for conversion of %C to %OM but is now considered 

to be the lower end of a spectrum of conversion factors ranging from 1-724 to ~2-5 

(Nelson & Sommers, 1996). A more appropriate factor for surface soils is 1 -9, with a factor of 

2 0 more universally accepted. The conversion factor employed from %C to %OM is 

therefore variable and dependent on the type of soil. 

Two reference conversion factors (y- 1 -724x & y« 2 Ox) are shown on Figure 3.26 and 

are good boundaries for the plotted linear equations. The linear equation that contains all 

LOI375 data includes the Grinton Moor Peat data point, which will have high leverage due to 

its large value but has a low discrepancy position and so will have a moderate influence. The 

linear equations do not pass through zero, as LOI375 will measure the weight loss not only 

due to ignition of organic matter but also due to dehydroxylation of clays. 
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Figure 3.26: Loss on Ignition at 375 °C vs. Organic Carbon 
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3.2.10 ICP-OES 

Free iron (% Fe), aluminium (% Al), manganese (% Mn) and silicon (% Si) were 

extracted using the DCB method as part of the particle size sample preparation. The extracts 

were then analysed by ICP-OES (see Sections 2.2.7 & 2.2.12). The results for each element 

are given below. 

3.2.11 Iron 

A boxplot of the % Fe of samples analysed is shown in Figure 3.27. The result for JY2 

(16-15%) has been omitted for clarity due to its high value. This value has little to do with 

soil properties and can be attributed to contamination of the soil by elemental iron (Fe°) from 

scrap metal. Outlying values shown for The Abattoir and Salt Meadows sites may also be due 

to a larger contribution of iron from anthropogenic sources. 
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Figure 3.27: Boxnlot of % Iron 
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3.2.12 Aluminium 

The boxplot shown in Figure 3.28 shows the % Al for the three soil groupings. The 

amount of aluminium in the soil is a small fraction and because of this will be variable due to 

the inherent heterogeneity of soil. There is a clear difference in % Al between the three soil 

subsets. 

Figure 3.28 Boxplot of % Aluminium 
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3.2.13 Manganese 

The % Mn in soil as shown in Figure 3.29 is present in trace amounts and does not vary 

greatly. This is most evident when looking at samples from The Abattoir as the median has 

the same value as Ql , indicating that at least 25% of the data lies at this value (0 02). The 

% Mn found at AB 1023 appears high but the other measurements taken in the same batch are 

not suspect and so there is no reason to assume that this result is an anomaly. 

Figure 3.29 Boxplot of % Manganese 
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3.2.14 Silicon 

The % Si found in soil is shown in boxplot format in Figure 3.30. There are a large 

number of outliers associated with The Abattoir site, which may indicate a large variation in 

the mineralogy between samples. This premise is confirmed further by the boxplots relating to 

particle size and surface area (Figure 3.18-3.20 & 3.22) that also show a large range for The 

Abattoir's samples. 
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Figure 3.30: Boxplot of % Silicon 
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3.2.15 X-Rav Diffraction Analysis 

XRD patterns were only collected for samples that also underwent adsorption 

experiments (see Table 2.4). An XRD diffraction pattern was not collected for the JY2 or 

AB0722 samples, as these samples would not stay in the XRD cell, which is rotated upside 

down during analysis. Due to the high iron content of JY2 soil, any diffraction pattern may 

have suffered from interference from iron fluorescent radiation (Tucker, 1991). Quartz was 

the major pattern evident in all XRD analysis as shown for ML1 in Figure 3.31. A breakdown 

of the possible clays present in the diffraction pattern is shown in Figure 3.32. After a 

qualitative analysis of the diffraction patterns, a list of possible clays present for each sample 

is shown in Table 3.33. Generally the agricultural soils appear to have more varied clay 

content, showing signs of illite and saponite over and above the commonly found clays from 

The Abattoir and Salt Meadows sites. 

The XRD results here are qualitative and only give an indication whether or not a clay 

species is present. These results were therefore not used in further analysis. 
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Figure 3.31: XRD Diffraction Pattern for ML1 
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Figure 3.32: Clav Minerals in ML1 
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Table 3.3: Clav Types Present in Adsorption Samples 
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Albite * * * 
Aragonite * * * * * * 
Calcite 
Chlorite * * * * * * 
Mite * 
Kaolinite * 
Muscovite * * * 
Orthoclase * * * 
Quartz * * * 
Saponite * 

3.2.16 Thermogravimetric Analysis 

Thermogravimetric analysis (TGA) is covered in depth in Chapter 5. Again the main 

samples to undergo TGA are the adsorption soil samples (see Table 2.4). Weight loss was 

measured to 990 °C but no sample showed any important weight loss above 900 °C, as shown 

for the example given in Figure 3.33. There are 5 distinct elements to the weight loss shown: 

• 70-120 °C is associated with water loss, oxidation and volatilisation of organic 

components of soil (Gardener, 1986). 

• 120-270 °C is associated with the decomposition of labile and simple organic 

matter components. 

• 270-550 °C is associated with humified organic substances (fulvic acid, humic 

acid and humin) and also woody and lignin type materials. 

• 550-800 °C is associated with the decomposition of carbonates and black carbon 

(both organic and inorganic) (Cuypers et al., 2002). 

• 800-990 °C has no discernable weight loss. 
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Figure 3.33: TGA Weight Loss of SM 08(14 
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3.3 Models of Soil Properties 

3.3.1 Principal Component Analysis 

Principal component analysis (PCA) allows identification of the soil parameters that 

control the variation seen between samples. This allows for simplification during further 

statistical analysis as parameters found to have little effect on the variation can be removed. 

Comparing PCA values allows for parameters showing covariance to be identified and 

removed from further analysis. Matrix plots of the scores obtained from PCA also allow 

potential outliers and end-points to be identified. 

There are many different criteria used to decide how many principal components (PCs) 

are retained in PCA. Principal components (PCs) with eigenvalues greater than one explain 

more of the variation than any one of the original variables. The eigenvalues correspond to the 

associated eigenvectors that are in turn calculated from the covariance matrix of the data. The 

first PC with an eigenvalue less than one explains less of the variance in the data than one of 

the variables used in PCA but should also be retained. This is because any variable that is 

more or less independent of all other variables will have an eigenvalue close to one but will 

still be important when explaining the overall variance (Jolliffe, 2002). The eigenvalue below 

which no PC should be retained is often considered to be ~0-7. The retained PCs should 

explain between 70 and 90% of the variation. In PCA data quality requires that the ratio of 

samples to measured parameters should be no less than 5:1 (Worrall et al., 2003). A list of 

measured parameters for the soil samples is shown in Table 3.4. 

Table 3.4: Parameters Measured For Soil Samples 

% Clay 
Moisture Content 

(%H20) 

% Aluminium 

(%A1) 
% Aryl C 

% Silt 
Loss On Ignition at 110 °C 

(LOI110) 

% Iron 

(%Fe) 
% O-Aryl C 

% Sand 
Loss On Ignition at 375 °C 

(LOI375) 

% Manganese 

(%Mn) 

% Carboxyl C 

(%Car C) 

Area 

(SA) 

% Oxidisable Carbon 

(%OC) 

% Silicon 

(%Si) 

% Aldehyde/Ketone C 

(%A/K C) 

Conductivity 
Specific Surface Area 

(SSA) 
% Alkyl C 

% Aromatic C 

(%Ar C) 

pH 
Redox Potential 

(Eh) 
% O-Alky 1C 

% Acidic C 

(%Ac C) 
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The parameters shown in Table 3.4 have groups that are highly correlated. The % clay, 

% silt and % sand will add to give 100. These measurements are also used in the calculation 

of the specific surface area (SSA). The % alkyl, O-alkyl, aryl, O-aryl, carboxyl and A/K C 

also add to give 100. The % aromatic C (sum of aryl & O-aryl) and % acidic C (sum of 

carboxyl & A/K C) are simplifications of the NMR signal. The correlation between LOB 75 

and % oxidisable carbon (%OC) is shown in section 3.2.9. 

There is a probable link between %H20 and LOI110 as already discussed in Section 

3.2.3. Loss on ignition was carried out on dried soil and so may measure weight loss due to 

volatilisation and oxidation of the organic component of soil (Gardner, 1986). A comparison 

of LOI110 and moisture content for all three sites is shown in Figure 3.34. Clearly there is no 

strong correlation between moisture content and LOI110. These measurements may therefore 

be individually important in explaining a proportion of the variance in the soils samples. PCA 

was undertaken for The Abattoir and Salt Meadows sites. 

Figure 3.34; Loss On Ignition at 110°C vs. Moisture Content 
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3.3.1.1 The Abattoir 
There were 80 soil samples taken from The Abattoir site, which allows for 16 variables 

to be used in PCA. NMR data was collected for only 23 samples from this site thus reducing 

the number of variables to be used in PCA to 4 or 5. Using all variables (23 parameters) gives 

7 principal components that account for 91-4% of the variance in the dataset as shown in 

Table 3.5. A scree plot of the component number versus eigenvalue is shown in Figure 3.35. 

Table 3.5: Eigenvalues and Proportion of Variance From PCA of The Abattoir Samples 

Principal 

Component 
Eigenvalue 

Proportion of 

Variance 

Cumulative 

Variance 

1 7-6439 0-332 0-332 

2 4-2651 0185 0 518 

3 3-1677 0138 0656 

4 2-0952 0 091 0-747 

5 1-7194 0 075 0-821 

6 1-3114 0 057 0 878 

7 0-8102 0035 0-914 

Figure 3.35: Scree Plot of Component Number vs. Eigenvalue for The Abattoir Dataset 
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Over 50% of the variance is explained by the first two principal components (PC1& 

PC2). The coefficients obtained by PCA for the parameters measured are shown in Table 3.6. 

For clarity, coefficients with values <-0-3 are shown in red and those >0-3 are shown in 

black. PCI coefficients show the correlation between clay, silt, sand and SSA. The values of 

O-alkyl and aryl C (& aromatic C) also help explain the variance accountable to PCI. The 

variance attributable to PC2 is associated with the %A1, %Fe, %Mn, %Si (all positive) 

grouping. 

A matrix plot is groupings of bivariate plots that give a visual indication of trends 

between plotted variables. These plots are also useful in visualising outlying points that do not 

follow general trends and therefore may adversely affect further statistical analysis. A matrix 

plot of %A1, %Fe, %Mn and %Si is shown in Figure 3.36. This figure below clearly shows 

that these four species show similar trends between each other and are highly correlated. In 

further PCA, %A1, %Fe, %Mn and %Si could be described by one variable. There is also 

some evidence, most notably for pairings including % Mn that these parameters are subject to 

the mixing behaviour of two separate components. Unfortunately this is based on the 

inclusion of two extreme values that i f removed would at the very least change the end 

components of this mixing. 

Figure 3.36; Matrix Plot of The Abattoir % A 1 . %Fe. % M n & %Si 
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Table 3.6: Coefficients From PCA of The Abattoir Samnles 

-0037 -0-063 -0-260 

-0-328 

0177 LOI110 

0192 -0057 0110 0126 LOI375 

0 192 -0-403 0182 0020 0184 %oc 
-0045 0056 -0014 0 065 %H20 m 51 

0 056 -0150 0 056 0011 Yo Clay 

-0 088 0075 0 000 0115 % sut 
-0-281 -00 4 0105 0 089 % Sand 

0-182 0136 0-261 0-245 0-240 

0090 -0058 0149 A l k y l C 

0032 O-AlkyI C 

-0058 0-208 0014 0090 0 030 A r y l C 

0079 0-252 -0-318 0 098 0149 O-Aryl C 

I -0-317 I 

-0196 

0136 Carboxylie C 0144 

-0048 0145 0 092 A / K C •4:o 

-0146 -0-319 I 

0177 

0060 

0129 -0058 0 041 0 086 

0139 0029 -0080 0 044 

0-227 0020 0081 -0 092 

-0 083 -0102 -0 062 0-4 l) 

0 077 0 057 -0072 0029 -0098 0-421 % M n 

0149 0-206 0190 0 052 0110 

0144 -0134 0058 Aromatic C 

0169 -0049 0092 -0116 AcidC 
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PC3 has large negative coefficients for LOI110, O-aryl C, carboxylic C and acid C. It is 

interesting that LOI110 is associated with a larger proportion of the variance than LOI375, 

%OC and %H20. These four parameters are important in PC4 (LOI110 is not highlighted as it 

just less than the 0-3 cut-off) with LOI110 and %H20 having positive coefficients contrasting 

with the negative coefficients of LOI375 and %OC. Surface Area is also an important 

parameter in PC4 and has a negative coefficient. The important coefficients in PC5 are the 

highly correlated LOI375 & %OC (negative) and the NMR parameters (also correlated) alkyl 

C (negative), A/K C and acid C (both positive). PC6 is similar to PCI in that the important 

coefficients are connected to particle size distribution and NMR data but also pH. PC6 has 

large positive coefficients for SSA, pH and alkyl C contrasting with the negative coefficient 

ofO-alkyl C. 

A matrix plot of NMR values is shown in Figure 3.37. This shows the correlation 

between the alkyl C and aryl C pairs and also the strong inverse relationship between O-alkyl 

C and aryl C. It is worth noting that alkyl C appears related to O-alkyl C but not strongly to 

the other NMR variables. The A/K C shows no strong relationship to the other NMR variables 

and this may be further indication of the invalidity of this measurement (see Section 3.2.4). 

Figure 3.37: Matrix Plot of The Abattoir % NMR Data 
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A matrix plot of particle size variables is shown in Figure 3.38. There is a great deal of 

correlation between these variables and so it may be possible to reduce the number of 

variables in further PC A. PC7 has large coefficients for LOI375 (negative), SA and Eh (both 

negative). The fact that the coefficient for Eh is not flagged until PC7 may be due to them 

explaining a small proportion of the variance or data quality issues. 

Figure 3JM: Matrix Plot of The Abattoir Particle Size Date 
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The loadings (coefficients) and scores for the first two PCs are shown in Figure 3.39 and 

Figure 3.40 respectively. A plot of PCA loadings give a graphical representation of how 

individual variables contribute to the plotted PCs. PCI loadings are highly dependent on the 

correlated particle size variables and the correlated NMR data (especially O-alkyl and 

aromatic C). PC2 loadings show the variance caused by % carboxyl C and % A/K C. PC2 

also shows the grouping and correlation of %Mn and %Fe with %Si but %A1 is separate and 

may be important in describing the variance as well as one of the first three elements 

mentioned. 

A plot of the scores gives a graphical representation of the relative influence individual 

points have on the plotted PCs. The scores shown in Figure 3.40 suggest that two points 

(AB 0722 & AB 1002) are responsible for the variance attributable to PC2. AB 0722 has the 

lowest percentage for carboxyl C and the highest percentage for A/K C. AB 1002 is an outlier 

in terms of LOI375 as shown in Figure 3.8. Remembering the data quality issues regarding 

A/K C it is evident that the variables contained in PCA need to be reduced. 
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Figure 3.39: Loadings of PCI vs. PC2 of The Abattoir Soil Parameters 
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Figure 3.40: PCI vs. PC2 Scores From PCA of The Abattoir Soil Parameters 
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There are many different strategies for the removal of variables to simplify datasets 

using PCA (Jolliffe, 2002). Two opposite but complimentary methods are: 

• Removal. For the last few PCs (eigenvalues <~0-7) remove the variable with the 

largest coefficient. PCs with small eigenvalues correspond to near constant 

relationships between a subset of the variables, therefore the variable with the 

largest coefficient in that PC can be removed. 

• Retention. For the PCs to be retained (eigenvalues >~0-7) associate variables 

with the highest coefficient to the individual PCs. Al l other variables can be 

removed and no variable should be picked for more than one PC. By picking a 

single variable for a PC, any correlating variables in that PC will be removed 

whilst leaving most of the variation shown by the correlated group. 

The above methods were used to pick subsets of variables to aid simplification of PCA. 

One of the major goals in this project is to find descriptors for the NMR data. The collection 

of NMR data is time consuming and expensive. Therefore it would be useful i f other variables 

can act as proxies to the information on organic matter given by NMR analysis. The NMR 

variables are highly correlated and so to remove this correlation PCA was carried out on the 

dataset using each individual NMR variable. This reduces the number of variables from 23 to 

16. The variables found for removal and retention are shown in Table 3.7 and Table 3.8 

respectively. The first three variables flagged for removal in Table 3.7 are independent of the 

NMR variable contained in the PC dataset. It is unsurprising that two or three of the 4 particle 

size measurements are flagged for removal due to their high correlation. Between two and 

four of the %A1, %Fe, %Mn and %Si grouping are also removed, with %A1 and %Fe always 

being removed. 

The variables contained in brackets in Table 3.7 have the next largest coefficients after 

the variables that would be removed from previous PCs. For example, PCA with O-alkyl as 

the NMR variable results in % Fe being marked for removal in PC 12 and PC 11. The next 

marked for removal in PC 11 would be %H20. PCA results obtained when using a single 

NMR variable tend to mark at least one of the organic matter measurements (LOI375 & 

%OC) and one of the moisture measurements (LOI110 & %H20) for removal. Other variables 

marked for removal when using certain single NMR variables are pH, SA and the NMR 

variable itself. 
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Table 3.7: PCA Variables Acceptable For Removal 

16 15 14 13 12 11 10 9 8 7 6 

Alkyl % 
Sand SSA % A I % Silt LOI 

375 %Fe pH 
LOI 
110 %OC SA -

O-Alkyl % 
Sand SSA %A1 %Si %Fe %Fe 

(%H 2 0) pH LOI 
110 %oc SA -

Aryl % 
Sand SSA %A1 %Si %Fe %Fe 

(% H 2 0) pH LOI 
110 %Mn NMR -

O-Aryl % 
Sand SSA %A1 % Silt LOI 

375 %Fe % 
H 2 0 pH %Mn %OC -

Carboxyl % 
Sand SSA %A1 % Silt LOI 

375 %Fe pH 
LOI 
110 %OC NMR SA 

Aldehyde 
/Ketone 

% 
Sand SSA %A1 % Silt %Si %Fe % 

H 2 0 
LOI 
110 %OC SA NMR 

Aromatic % 
Sand SSA %A1 %Si LOI 

375 %Fe PH 
% 

H 2 0 %Mn NMR -

Acid % 
Sand SSA % Al % Silt LOI 

375 %Fe % 
H 2 0 

LOI 
110 %OC SA -

The variables marked for retention shown in Table 3.8 again show a certain amount of 

independence on the NMR variable included. The first two variables that should be retained 

are always % sand or % clay and %Fe or %A1. The third and fourth variables marked for 

retention generally are LOI 110 or % H 2 0 and %OC. The exception to this is when carboxyl C 

is the NMR variable, marking LOI375 for retention. This difference may be due to the 

carboxyl components of the NMR signal being more thermally labile than the other carbon 

species. The fif th and sixth variables marked for retention always include Eh and either SA or 

the NMR variable. The NMR variable would only be retained as the seventh most important 

variable when using aryl, O-aryl, carboxyl and aromatic C. 

It is interesting to compare the variables tabulated in Table 3.7 & Table 3.8. The most 

relevant variables marked for retention (% sand & %A1) are some of the first variables 

marked for removal. These parameters are highly correlated to other variables and therefore it 

may be of little consequence that these two different methods for reducing the number of 

variables give contradictory results. Intuitively it seems more reasonable to use the parameters 

marked for retention as they are associated with the first principal components having the 

largest eigenvalues. The two reduced sets of variables are compared in Table 3.9. 
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Table 3.8: PCA Variables Acceptable For Retention 

1 2 3 4 5 6 7 

Alkyl % Clay %Fe LOI110 %OC NMR Eh -

O-Alkyl % Sand %Fe % H 2 0 %oc Eh NMR -

Aryl % Sand %Fe % H 2 0 %oc Eh SA 
(NMR) 

0-5518 

O-Aryl % Sand %A1 LOI110 %oc Eh SA 
(NMR) 

0-4481 

Carboxyl % Clay %Fe LOI375 %H 2 0 Eh 
(SA) 

0-6822 

(NMR) 

0-4847 

A/K % Sand %A1 LOU 10 %OC Eh 
(NMR) 

0-6792 
-

Aromatic % Sand %Fe LOI110 %oc Eh SA 
(NMR) 

0-5180 

Acid % Sand %Fe LOI110 %oc NMR Eh -

The cumulative variances calculated by PCA shown in Table 3.9 show that the strategies 

for simplification of the variables give similar results overall. The variables chosen for 

inclusion in PCA are partly dependent on the NMR variable (aryl C was used as the NMR 

variable in the examples below). The variables chosen were picked as the most prevalent set 

from the results given in Table 3.7 & Table 3.8. Surface Area is associated with PC6 or PC7 

and is therefore on the borderline for inclusion in both strategies as is the NMR variable itself. 

Table 3.9: Variables To Be Included In PCA After Removal/Retention Procedures 

Simplification 

Strategy 
Remaining Variables 

Principal 

Components 

Cumulative 

Variance 

Removal 
% Clay %Si % Mn 

SA 
Eh NMR % H 2 0 

4 0-854 

Retention 
%Sand %Fe LOI110 

SA 
Eh NMR %OC 

4 0-848 
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The number of variables has been reduced from 23 to 7 as shown in Table 3.9. Although 

similar results are obtained for the two simplification strategies different variables are found 

to be the best descriptors for the variation shown by the particles size subset (% sand, % silt, 

% clay & SSA) and the DCB extraction subset (%A1, %Fe, %Mn & %Si). It is important to 

pick the best descriptors from these subsets to retain and explain as much of the variation in 

the whole dataset, whilst allowing for simplification. To obtain a further indication of the 

most appropriate variable to pick from each subset PCA was carried out for each particle size 

and NMR variable individually as shown in Table 3.10. This reduces the number of variables 

to 13. 

Table 3.10: PCA of The Abattoir Samples Using Single NMR & Particle Size Variables 

| NMR Component j 

1 Particle Size Component | 

| NMR Component j % Sand % sat % Clay SSA | NMR Component j 

i Cumulative Variance For PC1-+PC5 1 

Alkyl 0-839 0-840 0 838 0-838 

O-Alkyl 0-862 0-863 0-860 0 859 

Aryl 0 868 0-869 0-865 0-864 

O-Aryl 0-862 0-861 0-861 0-861 

Carboxyl 0-854 0-854 0-853 0-852 

A/K 0-835 0-834 0-834 0-833 

Aromatic 0-869 0-870 0-867 0 866 

Acid 0-836 0-837 0-836 0-835 

From the results in Table 3.10 the particle size variable that retains the most 

information on variance can be seen to be % silt. The other particle size variables can now be 

removed from PCA and further simplification can be achieved by repeating PCA for each 

DCB extraction parameter and NMR variable individually as shown in Table 3.11. The 

number of variables is now reduced to 10. 

The DCB extract giving the highest cumulative variance is %Fe (%A1 gives a slightly 

better cumulative variance for %A/K C) and allows the other DCB variables to be removed. A 

final set of PCA was undertaken to eliminate variables from the LOI375/%OC and 

LOI110/% H2O pairs and is shown in Table 3.12. This will further reduce the number of 

variables to 8. The best descriptors of the variance are shown to be %H20 and %OC. 
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Table 3.11: 

PCA of The Abattoir Samples Using Single NMR & DCB Extraction Variables 

1 NMR Component 1 

i DCB Extraction Component | 

1 NMR Component 1 %A1 %Fe %Mn %Si 1 NMR Component 1 

i Cumulative Variance For PC1-*PC5 | 

Alkyi 0-837 0-847 0-839 0-834 

O-Alkyl 0-863 0-873 0-863 0-868 

Aryl 0-871 0-883 0-872 0-876 

O-Aryl 0-860 0-868 0-858 0 864 

Carboxyl 0-845 0-861 0-856 0-852 

A/K 0-844 0-842 0-833 0-839 

Aromatic 0-871 0-882 0-872 0-876 

Acid 0-831 0-841 0-831 0-829 

Table 3.12: PCA of The Abattoir Samples From Single NMR. LOI375/% P C & 

LOI110/% H?Q Variables 

i NMR Component J, 

I Water/Carbon Components J, 

i NMR Component J, 
L O U 10 & 

LOI375 

LOI110& 

% O C 

% H 2 0 & 

% O C 

% H z O & 

LOI375 
i NMR Component J, 

| Cumulative Variance For PC1-»PC5 | 

Alky] 0 868 0-872 0-888 0-875 

O-Alkyl 0-891 0-904 0-910 0-898 

Aryl 0 899 0-916 0-920 0-906 

O-Aryl 0-887 0-903 0-903 0-890 

Carboxyl 0-876 0-891 0-897 0-883 

A/K 0 862 0-869 0-877 0-865 

Aromatic 0 899 0-917 0-919 0-905 

Acid 0-862 0 868 0-878 0-865 
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The parameters to be included in PCA have now been reduced to the 8 variables shown 

in Table 3.13. There are 8 NMR variables from which to choose but Table 3.10 to Table 3.12 

all show that aryl C gives the highest variance. When using aryl C as the NMR variable, the 

eigenvalue and proportion of variance for the PC's are shown in Table 3.14. A scree plot of 

the component number versus eigenvalue is shown in Figure 3.41. 

Table 3.13: Parameters to be Included in PCA of The Abattoir Soils 

% Silt % H 2 0 PH Eh 

SA %OC %Fe NMR 

Table 3.14: 

Eigenvalues and Proportion of Variance from PCA of The Abattoir Samples 

Principal 

Component 
Eigenvalue 

Proportion of 

Variance 

Cumulative 

Variance 

1 2-4714 0-309 0-309 

2 1-6927 0-212 0-521 

3 1-3881 0174 0 694 

4 1 2060 0151 0-845 

5 0-6055 0076 0-920 

Figure 3.41: Scree Plot of Component Number vs. Eigenvalue 
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The eigenvalues of the PCs when using 8 variables are greatly reduced compared to the 

values shown in Figure 3.35 where 23 variables were used in PCA. This is due to the highly 

correlated subsets contained within the original 23 variables as discussed previously. 

Although PC5 is the first component with an eigenvalue less than one, it is below the 0-7 cut­

off and so these 8 variables can be described using 4 PCs accounting for 84-5% of the 

variation in the dataset. The coefficients for the included variables are shown in Table 3.15. It 

can be seen that all remaining variables are important contributors to the variance as described 

by the first 4 PCs. The only variable that is unimportant in the first 2 PCs is surface area as 

shown from the data in Table 3.15 and from Figure 3.42, which shows the loadings of PCI 

versus PC2. 

Table 3.15: Coefficients From PCA of The Abattoir Samples Using 8 Variables 

PCI PC2 PC3 PC4 

%OC -0018 -0 500 -0 564 -0063 

% H 2 0 -0145 0-569 -0-400 -0-275 

% Silt -0059 0167 0141 

PH 0-436 

0 558 

-0132 0-376 0-439 

A r y l C 

0-436 

0 558 0145 -0172 -0 059 

SA 0 066 -0 050 -0-568 0-621 

Eh -0389 0013 0-093 

%Fe 0-237 -0-480 -0014 -0-557 

PCI is dominated by % silt and aryl C whereas PC2 is being dominated by %H20 with 

%OC, Eh and %Fe playing a lesser role. Surface area plays a dominant role in PC3 and PC4 

as well as %OC, % H 2 0 (PC3), %Fe (PC4) and pH (PC3 & 4). A matrix plot of the PCI, PC2, 

PC3 and PC4 coefficients is shown in Figure 3.43. No variables are limited to the centre (low 

values in PCs), bottom left (large negative values in PCs) and top right (large positive values 

in PCs). Any variable that was limited to these areas may provide little information in regards 

to the overall variation. As this is not the case, all retained variables are important descriptors 

of the overall variation in the dataset. 
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Figure 3.42: 

Loadings of PCI vs. PC2 of The Abattoir Soil Parameters Using 8 Variables 
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PCA was repeated for each of the NMR variables and the other variables shown in 

Table 3.13. The results are shown in Appendix 7.2 with a matrix plot of the coefficients for 

PC1-PC4 for the NMR variables shown in Figure 3.44. PCI has the largest coefficient apart 

from A/K C. The PCI coefficients are to a large extent independent of the NMR variable used 

in size but not in sign. One notable difference is that surface area has a large coefficient in 

PCI when carboxyl C is used as the NMR variable. 
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Figure 3.43: Matrix Plot of P C I — PC4 of 8 Abattoir Soil Variables 
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Figure 3.44: Matrix Plot of The Abattoir Soil PCA Coefficients For NMR Variables 
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In summary, it is possible to simplify The Abattoir dataset using PCA. The reduction in 

the number of variables and the calculation of principal components focuses the descriptors of 

the variation shown by the dataset as a whole. It is also possible to replace highly correlated 

variables, for example particle size data, with principal components for use in regression 

analysis (see Section 3.3.2). 
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3.3.1.2 Salt Meadows 

There were 117 soil samples taken from the Salt Meadows site, which allows for 23 

variables to be used in PCA. NMR data was collected for only 37 samples from this site thus 

reducing the number of variables to be used in PCA to 7. Using all variables (24 parameters) 

gives 8 principal components that account for 92 -7% of the variance in the dataset as shown 

in Table 3.16. A scree plot of the component number versus eigenvalue is shown in 

Figure 3.45. 

Table 3.16: Eigenvalues & Proportion of Variance from PCA of Salt Meadows 

Principal 

Component 
Eigenvalue 

Proportion of 

Variance 

Cumulative 

Variance 

1 7-7485 0-323 0-323 

2 4 7191 0197 0-519 

3 3-3776 0141 0-660 

4 1-7142 0071 0-732 

5 1-4371 0 060 0-792 

6 1-3944 0 058 0-850 

7 1 -2532 0 052 0-902 

8 0-5951 0 025 0-927 

Figure 3.45: Scree Plot of Component Number vs. Eigenvalue for Salt Meadows 
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As with The Abattoir data, over 50% of the variance is explained by the first two 

principal components (PC1& PC2). The scree plot shown in Figure 3.45 has a marked change 

in gradient between PC7 and PC8 with PC8 only accounting for 2-5% of the variance and 

having an eigenvalue <0-6. PC8 was therefore discounted as although it is the first PC with an 

eigenvalue <1, it is below the often used cut-off of 0 -7 and only explains a small proportion of 

the variance. The coefficients obtained by PC A for the parameters measured are shown in 

Table 3.17 As before, coefficients with values <~0-3 are shown in red and those >0-3 are 

shown in black. Other coefficients that lie close to these bounds (>0-250 & <-0-250) are 

shown in lavender. It should be noted there is no hard and fast rule in deciding these cut-off 

points, it is merely to assist in identifying the more important parameters. 

PCI coefficients show the correlation between clay, silt, sand (& SSA). The values of 

O-alkyl, aromatic C and %Fe also help explain the variance accountable to PC 1. The variance 

attributable to PC2 is again associated with clay, silt, sand & SSA and also alkyl C, carboxyl 

C (acid C), %H 20 and LOI110. The variance in PC3 is attributable to %A1, %Fe, %Mn, %Si, 

LOI375, %OC (all negative), and % O-aryl C (positive). A matrix plot of %A1, %Fe, %Mn 

and %Si is shown in Figure 3.46. As with The Abattoir results shown in Figure 3.36, this 

figure shows that these four species are correlated and could be described by the mixing of 

two components with different proportions of these parameters. This gives rise to the 

triangular distribution most evident in the %Al/%Fe pairings in Figure 3.46. 

Figure 3.46: Matrix Plot of Salt Meadows %A1. %Fe. %Mn & %Si 
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Table 3.17: Coefficients from PCA of Salt Meadows Samples 

0111 0010 0090 LOI110 

0120 0-210 0166 LOI375 0 046 

-0160 0 002 0 080 %oc 

0109 0130 0114 

-0-273 0 073 0 077 0 048 -0 061 -0127 % Clay 

0 009 -0 039 -0 074 % Silt -0-272 -0119 

% Sand 0-276 0-265 0048 0042 0 072 0122 

0-230 0048 0073 0069 0 092 

AlkylC 

0004 0 098 O-AIkyl C 0 045 

[ 0-277 ArylC 0-239 0065 0-215 0 072 

O-Aryl C 0-243 0-221 0-250 0154 0 052 0010 -0128 

0-224 -0084 0172 Carboxyl C 

0-207 0146 A/KC 

-0-218 0181 0106 0 098 0 049 -0102 

0 084 0 066 0-220 0020 

-0-237 0-259 -0185 0152 -0-203 

-0116 0168 

0-266 0-285 0106 0 039 

0-229 -0058 % M n 

0 004 0 039 -0 060 0144 0-376 

Aromatic C 0-239 0-217 0068 0187 

AcidC 0-234 0-218 

Conductivity 0140 -0178 
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PC4 is dominated by pH and alkyl C but also has a large negative coefficient for 

conductivity. As shown previously in section 3.2.5 the conductivity measurements were 

difficult to duplicate and are therefore of questionable quality. The important coefficients in 

PC5 are the highly correlated LOI375 & %OC (positive), A/K C, area, %A1 and %Si. PC6 

has a large positive coefficient for Eh and important inputs from LOI110, aryl C and 

conductivity. PC7 has a large negative coefficient for Eh and a positive coefficient for %H20 

which contrasts with PC6 where Eh and LOI110 both have positive coefficients. PC7 also has 

important inputs from aryl C (& aromatic C), A/K C and %Mn. 

The PCA of the Salt Meadows dataset is interesting to compare to the initial PCA 

analysis of The Abattoir dataset as shown in Table 3.6 namely: 

• The coefficients for %A1, %Fe, %Mn & %Si (PC2) show little differentiation 

in The Abattoir dataset whereas in the Salt Meadows dataset they are more 

individually important (%Fe in PCI, All in PC3, %A1 & %Si in PC5 and 

%Mn in PC7. 

• The coefficients of LOI110 & "/oF̂ O are always paired in The Abattoir 

dataset but are separated by PC6 & PC7 in the Salt Meadows dataset. 

• The NMR values appear similar between the PCA of the datasets. A matrix 

plot of Salt Meadows NMR values is shown in Figure 3.47. 

*** The points shown in red are the 10-20cm depth samples and are highlighted 

to show that they do not correspond with outlying data points (neither do the 

0-10cm depth samples). The matrix plot of Salt Meadows NMR data shows 

the correlation between the NMR groupings. 

• A comparison of the NMR matrix plots (Figure 3.37 & Figure 3.47) show 

that The Abattoir dataset's strongest correlation is between O-alkyl and aryl 

C (correlation coefficient = -0-941) whereas with Salt Meadows it is between 

O-aryl and carboxyl C (correlation coefficient = 0-751). 

No further PCA was undertaken on the Salt Meadows dataset as a whole. PCA 

was carried out on highly correlated subsets as part of stepwise regression analysis in 

Section 3.3.2.2. 
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Figure 3.47: Matrix Plot of Salt Meadows % NMR Data 
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3.3.2 Stepwise Regression 

Regression analysis is primarily used to predict the values of one variable by using the 

values of one or more predictors (variables). The soil variables under study are continuous as 

opposed to categorical and therefore the least-squares method was used in regression. 

Minimising the sum of the squared errors optimises the predicted value of the variable. 

Regression was performed using Minitab® that allows standard regression analysis and 

stepwise regression to be undertaken. Using all available variables (Table 3.4) in regression 

analysis is not possible due to the high correlations between variables as explained in Section 

3.3.1. Minitab will automatically remove highly correlated variables and will then produce a 

regression equation that includes all remaining variables irrespective of their statistical 

significance. 

Another approach is to use stepwise regression. Using stepwise regression allows all 

variables to be included or excluded in analysis based on their significance. Variables are 

added and removed based on the level of significance (a) as set by the user. Minitab sets a at 

0-15 by default and this is the value used in this study. This defines the error associated with 

wrongly rejecting the null hypothesis that states the coefficient of the variable in question is 

zero. In this instance a is equal to the P-value. A variable is added to the regression analysis 

stepwise in order of significance (i.e. the smallest P-value with all values being <0-15). The 

addition of an additional variable will alter the significance of variables already added to the 

regression model and so any variable whose P-value increases to >0-15 is removed. Stepwise 

regression only includes variables that are unlikely to have a coefficient equal to zero and 

therefore excludes all variables having a coefficient of variation that is likely to be zero. 

Stepwise regression can therefore allow the prediction of one soil variable using a 

statistically significant subset of the remaining soil variables. Running stepwise regression in 

Minitab automatically lists: 

• Alpha values used in the prediction. 

• Variable being predicted. 

• Number of predictors (variables) available. 

•t* Number (N) of datum used in the prediction plus number with missing observations 

and total. 

• Variables included in the prediction at each step with their coefficients and the 

corresponding T-values and P-values. 

• Standard deviation (S) at each step. 

• R2 at each step. 

• R2 (adjusted for degrees of freedom) at each step. 
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An example of the output from Minitab when carrying out stepwise regression is shown 

in Figure 3.48. This is the prediction of LOI110 from The Abattoir using all remaining 

variables (22 measurements). Although there were 80 samples collected at The Abattoir, only 

23 had their NMR spectra collected. As the NMR variables are included, this limits prediction 

to only utilise the data from 23 samples. There are four steps in the regression with step one 

using pH as the most statistically significant predictor and accounting for 46 02% (R2) of the 

variation in LOI110. Step four uses pH, aromatic C, SSA and redox potential to predict 

LOI110 and accounts for 72-32% of the variation. The regression equation found is shown 

below as Equation 3.1. 

LOI110 = 36-76 -5-52 pH + 0-221 aromatic C + 0 00012 SSA + 0 0062 redox potential 

(R2= 72 32%) Equation 3.1 

Figure 3.48: Standard Output of Minitab Stepwise Regression Analysis 

Stepwise Regression: LOI110 versus LOI375, % Oxidisable C, . . . 

Alpha-to-Enter: 0.15 Alpha- to-Remove : 0.15 

Response i s LOI110 on 22 p r e d i c t o r s , w i t h N = 23 
N(cases with m i s s i n g o b s e r v a t i o n s ) = 57 N ( a l l c a s e s ) = 80 

Step 1 2 3 4 
Constant 34 . 64 39.86 40.87 36.76 

PH -4.21 -5.16 -5. 64 -5.52 
T-Value -4.23 -5.26 -6.31 -6.38 
P-Value 0. 000 0.000 0.000 0.000 

Aromatic 0.113 0.207 0.221 
T-Value 2.40 3.68 4.03 
P-Value 0.026 0.002 0.001 

SSA 0.00013 0.00012 
T-Value 2.50 2.32 
P-Value 0.022 0.032 

Redox 0.0062 
T-Value 1.58 
P-Value 0.131 

S 0. 970 0.876 0.779 0.750 
R-Sq 46.02 58.10 68.47 72.32 
R-Sq(adj) 43.45 53.91 63.49 66.17 
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The P-values shown in Figure 3.40 are all <015 with all values except redox potential 

being <0 05 and therefore above the 95% confidence interval. The additional variation 

predicted by redox potential may therefore be viewed with more scepticism. 

Stepwise regression was performed for all variables on a site-by-site basis and also on 

all data collected. Due to correlations within the dataset not all variables were included when 

predicting highly correlated variables. For example, when a NMR variable was undergoing 

prediction no other NMR parameters were allowed as predictors. Another problem with 

certain variables is their distributions varying from that of normality. I f a variable has a 

normal distribution its Boxplot as shown in section 3.2 would be symmetrical about the point 

having the mean and median value. It is clear that many of the measurements for each site are 

therefore not normally distributed. An example of a normally distributed boxplot and a 

distribution that deviates from normality are shown in Figure 3.49 and Figure 3.50 

respectively. Boxplots only give an indication as to whether the variable has a normal 

distribution but is a good visual starting point. 

Figure 3.49; Boxplot Showing Normally Distributed % O-Aryl from The Abattoir 

Abattoir 
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Figure 3.50: Bnxnlot Showing Distribution of % Silt from The Abattoir 

Abattoir 

There are several methods to determine how close data is normally distributed: 

• Skewness (yi or pi). This is the third moment of the data about its mean and is 

calculated using Equation 3.2. It is a measure of how symmetrical the data is about its 

mean with a value of zero indicating total symmetry (Webster, 2001). 

• Kurtosis (P2). This is the fourth moment of the data about its mean and is calculated 

using Equation 3.3. It is a measure of how the peak shape differs from that of a normal 

distribution, again with a value of zero indicating normality. A positive value indicates a 

sharper peak than a normal distribution (leptokurtic) with a negative value indicating a 

broader peak than normality (platykurtic) (Press et al., 1992). 

• Anderson-Darling Normality Test (A 2). This measures the area between the normal 

fitted line and the plotted points based nonparametric step function. This squared 

distance statistic is weighted more heavily towards the tails of the distribution. Smaller 

values again show that the normal distribution fits the data better with the test statistic 

being calculated using Equation 3.4. 
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Skewness equals: 
N 

(N-1XN-2) 
Equation 3.2 

Kurtosis equals: 
N(N + l) 

(N-l)(N-2)(N-3)' 
(*,-*)T 3(N-1) 2 

(N-2)(N-3) 
Equation 3.3 

Where : N = number of observations 

xi = ith observation 

x = Mean 

S = standard deviation 

Anderson-Darling Normality Test equals: 

N - -
I N 

X (2i - lXln F(Y,) + ln(l - F(Y # + 1_ ))] Equation 3.4 

Where: N = number of observations 

F = the cumulative distribution function 

of the normal distribution 

Y = the ordered observations 

Skewness was calculated using minitab for all variables to ascertain whether any 

measurement required transformation. The criteria used to decide whether or not to transform 

is set out below in Table 3.18. The two main transformations used were to square root or to 

take the natural logarithm of the data (Webster, 2001). Any negatively skewed variable 

(<-0-50) was reflected as a first step before the appropriate transformation for a positively 

skewed variable (Tabachnick & Fidell, 1996). To reflect a variable an addition of 1 is made to 

the largest data value to create a constant. Each value is then subtracted from this constant to 

create a new variable. This effectively flips the sign of the skewness from negative to positive 

or vice versa. Reflecting is only useful i f the variable is negatively skewed and can be the first 

transformation step before an additional transformation. 

I f these transformations failed to reduce the skewness to an appropriate level a power 

transformation was undertaken. The solver routine in excel® was used to find the power that 

would reduce the skewness of the variable to zero. This was undertaken by setting up a 

spreadsheet containing the dataset and calculating the skewness of each variable requiring 

further transformation using Equation 3.2. 
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Table 3.18: Limits Used To Decide Transformation For Skewed Variables 

Skewness Yi Transformation 

y,<-0-50 Reflect 

-0-50 < y i < 0-50 No Transformation (already -normal) 

0-50 <YJ< 1 Square Root 

Yi>l Logarithm 

Yi > 0*50 after logarithm transformation Power1 (on original variable) 

After transforming the data so that all variables are more normally distributed, stepwise 

regression was repeated using the transformed data. There are now six steps in the regression 

compared to four before transformation (Figure 3.48). Stepwise regression can now predict 

86 13% of the variation shown by LOI110 with the relationship shown in Equation 3.5. The 

P-values of the predictor variables in Equation 3.5 are all < 0 05 (acid groups = 0 052) and 

are therefore more statistically significant than the prediction shown in Figure 3.48 before 

transformation. 

LOI110 = {-4 02 -5 53[(9-2 - pHT0 9 9 2 9 ] + 0108 aromaticity + 2-56 log SSA 

- 0- 122[(530-redox potential)0 3 9 4 2 ] - 0-57(Clay)°s -0 086 acid NMR groups}2 

(R2= 86 13%) Equation 3.5 
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3.3.2.1 The Abattoir 
The results of stepwise regression analysis for all of The Abattoir variables are 

summarised in Table 3.19. The values tabulated are the percentages of the variation of the 

variable undergoing prediction (first column) explained by the individual predictors. The red 

boxes are to signify predictors that were not added to stepwise analysis due to their high 

correlation with the variable being predicted. These calculations are based on 23 data points 

due to the number of NMR measurements from The Abattoir samples as previously 

mentioned. The R values of the predictions in Table 3.19 vary from zero (Acidic C) to 92% 

(pH). The individual results will be discussed further when being compared with the results 

obtained after transformation. Results worthy of mentioning now include: 

• % H 2 0 is largely predicted by LOI110 (R2 = 38-72) but i f this is not included in 

stepwise regression a better prediction is obtained using %OC, pH and O-Alkyl C 

(total R 2of 75-47 compared with 58-66). 

• Silt & Sand are found to be predicted by the % Aryl C with R2 values of 57-61 and 

55-18 respectively. 

• 8 predictors are used to predict pH giving an R2 of 92. Clay, sand and SSA are all 

included and are highly correlated which may give rise to large variance inflation 

factors (VIF's). 

• O-Alkyl and Aryl C are both predicted by % Silt with R2 values of 47 65 and 

57-61 respectively. 

• The total R2 for the Aryl C prediction is 83-19 and includes LOI110, % H 20, % 

Silt, pH and % Fe in stepwise regression. 

• %A1, %Fe, %Mn and %Si are all predicted to varying degrees by a selection of 

NMR variables most notably Aryl, O-Aryl and Carboxylic C. 

Variance inflation factors (VIF's) relate to multicollinearity between the predicting 

variables and are calculated using Equation 3.6. This will not affect the overall R2 found but 

can affect the coefficients of the individual predictors (Tabachnick & Fidell, 1996; 

Montgomery & Peck, 1982). High values of VIF are considered anything over 5 with a value 

of 1 indicating no collinearity between predictors (Minitab). The VIF values for the data 

contained in Table 3.19 were calculated with only high VIF values (>5) found for % Clay, 

% Sand and SSA when predicting pH. 
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Table 3.19; P e r c e n t . ^ Var ia t ion Predicted hv V a r l a h l * . I , Tfc« Abat to i r Stenwiie RggrpMlon 

Variables 

i i 
Predkton (With Percentage of AttribntaMe Variation of Variabiet in Coinmns) 

LOI 

110 

l.OI 

375 

L O I I U 

% 

oc 

LOI375 

%oc 
% H,0 

48 

% 
HjO 

%H 2 0 

CUy 

Silt 

Sand 

pH 

A l k v I C 

O-Alkyl C 

A r y l C 

O-ArylC 

C«rC 

A/KC 

Area 

Eh 

SSA 

% A I 

39 

6-7 

48 

Clay 

46 

13 

12 

5-4 

Sand pH 

46 

33 

3-5 

14 

5-4 

7-6 

48 
58 

22 

A l k y l 

C 
O-Alkyl C 

21-98 

Aryl 
C 

57-6 
55-2 

O-Ary l 

c 

4-77 

Car 
C 

417 

A/K 
C 

Area 

6-58 

1-46 

5-9 

Eh 

3-9 

11 

SSA 

10-4 

7-2 

3-6 9-4 

25 503 902 

20-1 

15-2 

34-1 

22 

10 

24 

12 

6-3 

8-8 
15 

2-9 

% 

M n 

4-9 

A r 

C 

12-0 

8-33 

44-4 

Ac 

C 

Total 

72-32 

73-43 

7701 
58-66 

75-47 

51-06 
57-61 

5518 

18-8 2-72 92-00 m 28-41 

47-65 

30 

42-3 

8319 

60-80 

49-28 

24-49 

3141 

22-13 

42-31 

87-84 

%Fe 7-9 37-28 24-5 9-5 87-90 

% M n 30-0 5-24 73-48 

'/.Mb 4-4 3-72 33-36 3O0 71-54 

% Si 6-3 18-62 24 22-7 71-59 

ArC 55 
AcC 

—--J—— 55-09 
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Variance Inflation Factor equals: — ^ - j - Equation 3.6 
1-RX 

Where: R \ is the coefficient of determination of predictor x 

when regressed against all remaining predictors in the model. 

The effect of multicollinearity can be corrected easily for by simply removing the 

offending predictor(s). This will affect the R but is an acceptable course of action if the 

change in R2 is minimal (Minitab). Another method is to undertake PCA on the collinear 

predictors and replace them with the orthogonal scores produced (i.e. replace clay, sand and 

SSA with Scores PS1, PS2 & PS3). These two methods were tested to remove the 

multicollinearity in the prediction of pH, the results being shown in Table 3.20. 

After removal of SSA or % Clay, the high VIF's shown by the, particle size parameters 

disappear. This is not just because one predictor has been excluded but also because sand is 

no longer included as a predictor in stepwise regression. Multiple NMR predictors are now 

included which have high VIF's. This problem is even more apparent when sand is chosen as 

the particle size parameter for removal, leading to 13 predictors accounting for 99-35% of the 

variation in pH. Of these 13 predictors, 9 have high VIF values. 

Two attempts at removal of the original predictors and addition of PCA scores 

calculated using the removed terms are shown in Table 3.20. The first attempt removed all 

particles size and NMR predictors with PCA being undertaken on these groups separately to 

produce new predictors (PS1-PS3 & NMR1-NMR6). Stepwise regression now predicts 

85 39% of the variation in pH using 6 predictors that all have low VIF values. Exchanging % 

Al, Fe, Mn & Si with the PCA scores created from these (M1-M4) as an additional 

substitution on top of the previous substitutions does not improve the prediction of pH 

(76 -13%) but does reduce the number of predictors to 4, all of which have low VIF values. 
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Table 3.20: Test Results For Removing Multicollinearitv from The Abattoir P H 

Prediction CN= 231 

Removed Predictors Predictors Chosen Using Stepwise Regression Analysis R 2 

-
LOI 

110 
Clay Silt Area Eh SSA 

Ar 

C 

Ac 

C 92 00 
VIF 1-4 33-8 131 11 1-4 14-8 41 1-7 

SSA 
LOI 

110 

Aryl 

C 

% 

H 2 0 
%Fe 

Ar 

C 83-26 

VIF 2 1 290 2-2 1-4 291 

Clay 
LOI 

110 

Aryl 

C 

% 

H 2 0 
SSA 

% 

OC 
Area 

O-

Alkyl 89-52 

VIF 20 111 21 17 1-5 13 10-4 

LOI 

110 
SSA Clay Eh Silt Area %Fe 

VIF 
Sand 

3-4 24-8 51-9 1-5 161 3-9 116 
99-35 

VIF 
Sand % O- % Car O- Ac 

99-35 

OC Alkyl Al C Aryl C 

VIF 2-8 3-6 5-8 120 131 90 

Particle Size, NMR 

PCA Added 

LOI 

110 

NMR 

1 
PS3 

% 

H 2 0 

% 

OC 
Area 

85-39 

VIF 1-9 11 11 2 1 1-3 1-2 

Particle Size, NMR 

% Fe, Al, Mn & Si 

PCA Added 

M3 
LOI 

375 
PS3 Area 

7613 

VIF 1-4 1-3 1-2 1-2 
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The Abattoir dataset was tested to see i f the measured parameters were normally 

distributed. Skewness was the primary test used for normality with the criteria for any 

transformation undertaken given in Table 3.18. Values of skewness, kurtosis and the 

Anderson-Darling Normality Test (A 2) before and after transformation are given in Table 

3.21. Although not shown, transforming the NMR data that did not require transformation 

resulted in data that deviated further from normality. Because of this, different 

transformations were attempted for some of the measurements: 

• LOB75 was originally just above the cut-off point for transformation and so 

may benefit from no transformation. Taking the square root flips skewness 

from positive to negative, reduces kurtosis significantly but doubles A 2 . 

• Power transformations use the solver routine in excel to find the power to 

reduce skewness to zero. As this may overcorrect the data, power 

transformations were also calculated to reduce skewness to 0-50. 

• When pH and % Al are power transformed to give the higher value of 

skewness, A 2 is lower than when skewness is power transformed to zero. 

• After logarithm transformation, % Al is just above the skewness cut-off point. 

Power transformation may therefore be inappropriate. 

Stepwise regression was carried out again for The Abattoir dataset after transformation 

with results given in Table 3.22. Initial results showed that the square root transformed 

LOI375 was better predicted using the transformed dataset than untransformed LOI375. The 

transformed LOI375 predictor was also always chosen by Minitab during stepwise regression 

and so the untransformed LOI375 predictor was removed and is not shown in Table 3.22. 

The extra predictors for measurements that underwent more than one transformation 

have also been removed from Table 3.22. A comparison of the differences associated with 

these transformations was undertaken to help decide which transformed predictors to remove. 

Stepwise regression was undertaken, substituting the choice of transformed predictors to 

gauge the differences between them. This was only possible when one of the transformed 

predictors requiring simplification was included in stepwise regression, allowing substitution. 

The results of these tests are given in Table 3.23 & Table 3.24. 
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Table 3.21: Normality Tests & Transformations For The Abattoir Data 

Skewness Kurtosis A 2 Transformation Skewness Kurtosis A 2 

LOI110 1 76 6-28 2-60 Square Root SqRt 0-42 1 78 1 68 

LOI375 0-54 104 0-66 SqRt -0-39 018 1 29 

%OC 0-83 1 38 0-98 SqRt -014 0-43 0-74 

% H 2 0 106 112 1 78 Logarithm 0-24 001 0-40 

% Clay 0-64 -0-62 1 88 SqRt 0-32 -105 131 

% Silt 0-84 -0-26 2-36 Logarithm 0-32 -0-99 1 26 

% Sand -0 71 -0-62 2 41 Reflect & SqRt 0-26 -106 1 25 

pH -1-92 6-43 4-56 Reflect &Pr° 9 9 2 9 005 5-77 2-47 

PH -192 6-43 4-56 Reflect & P r 1 4 0 7 2 0-50 6-82 2-34 

AlkylC -0 13 -0-88 0-26 None 

O-Alkyl 002 -0-90 0-29 None 

ArylC -0-36 -0-80 0-51 None 

O-Aryl C 006 -0 04 0 31 None 

Car C -017 -004 015 None 

A/KC 0-20 109 0-30 None 

Area 0-30 0-37 0-62 None 

Eh -1-65 3-81 2-47 Reflect & Pr° 3 9 4 2 -000 0-79 0-62 

Eh -1 65 3 81 2-47 Reflect & Pr° 5 5 8 0 0-50 1 03 0 68 

SSA 106 -005 3-90 Logarithm 0-42 -0 81 1 45 

%A1 203 505 3-92 Logarithm 0-52 0 71 107 

% A l 203 505 3-92 Power"03022 -000 0-94 0-72 

%A1 203 505 3-92 Power"05552 0-50 200 0-60 

%Fe 1 59 3 81 1 71 Logarithm 017 010 0-37 

%Mn 5 05 3318 604 Power"0 5 8 8 6 0 00 0-53 0-42 

%Mn 505 3318 604 Power'0 9 7 9 2 0-50 0-20 0-78 

%Si 301 1331 4-87 Power"0 3 8 0 1 000 004 0-67 

% Si 301 13-31 4-87 Power"0 7 3 1 4 0-50 013 0-94 

ArC -0 31 -0-27 0-26 None 

AcC -0 21 -0-90 0-24 None 
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Table 3.22: Percentage Variation Predicted by Variables in Transformed Abattoir Stepwise Regression (N=23) 

V 
LOI 
110 

LOI 
375 

% 
oc 

Log 
H 2 0 

V 
Clay 

Log 
Silt 

VRef 
Sand 

Ref 
ppj-l-4072 

Alkyl 
C 

O-
Alkyl 

C 

Aryl 
C 

O-
Aryl 

C 

Car 
C 

A/K 
C Area Ref 

Eh 0 * 3 9 4 2 

Log 
SSA 

ŷ-0.5552 Log 
Fe M n ^ 6 gj-0-3801 % 

Ar 
% 
Ac 

Total 
R 2 

V L O I I I O 6.2 29.4 17 10.58 18.81 3.67 85.66 
VLOI375 5.61 55.03 7.32 9.98 7.71 85.65 
V%oc 55.03 7.36 4.96 6.59 9.68 83.62 
Log H 2 0 7.36 14.9 28.68 19.56 70.5 
VClay 4.16 11.6 1 22.46 21.8 1.57 34.34 96.92 
L O R Silt 6.78 55.69 1.44 5.21 2.78 19.02 90.92 
VRef 
Sand 7.95 16.31 30 23.7 3.42 12.32 93.73 

Ref 
pH"'-4072 32.39 1.8 5.82 31.18 8.09 11.27 90.55 

AlkylC 12.1 9.49 17.15 5.89 6.84 13.65 65.11 
O-Alkyl C 7.26 14.7 47.4 9.07 3.67 82.05 
ArylC 15.3 3.51 2.83 54.07 8.33 4.98 3.61 92.63 
O-ArylC 13.04 8.86 30.48 52.38 
CarC 6.46 15.5 25.8 47.75 
A / K C 13.4 13.43 
Area 7.33 14.83 10.25 18.38 14.73 65.52 
Ref 
Eh0-3942 30.4 9.2 39.61 

Log SSA 44.06 6.39 50.45 
ŷ-S-5552 12.07 10.63 14.07 13.33 20.2 70.30 

Log Fe 10.92 5.36 7.98 34.66 21.3 80.22 
M B * ™ " 8.3 23.09 25.76 57.15 

12.56 14.37 7.49 7.31 19.49 2.58 22.07 85.87 
% Ar 7.44 45.59 19.21 10.7 6.29 89.2 
% Ac 0 
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Table 3.23: Stepwise Regression Tests to Optimise tbe Choice of Transformed Variables 
Ref Ref D i 

pfT**" Drr'* 0 7 1 R 
Ref Ref „i 

Eh*39*1 Eh0** R M D * 5 * Mn* 9 7 9 1 R l sr**01 sr*7 3'4 R J 

V L O I H O 
0 0 0 0 8 6 1 3 

0 - 0 0 0 8 5 - 6 6 

0 0 0 0 8 6 1 3 

0 0 0 1 8 5 - 3 3 

V L O I 3 7 5 
0 - 0 1 1 8 6 - 5 8 

0 0 1 0 8 6 - 7 6 

v%oc 0 0 9 8 4 7 - 7 6 

0 - 0 9 8 4 7 - 7 6 

0 0 0 0 8 3 - 6 2 

0 0 0 0 8 3 - 3 3 

LogHjO 0 - 0 0 0 7 5 - 6 9 

0 - 0 0 0 7 5 - 3 9 

0 0 0 1 7 5 - 6 2 

0 - 0 0 1 7 5 - 6 9 

Vciay 0 0 0 0 9 6 - 3 9 

0 0 0 0 9 6 1 6 

Log Silt 0 0 0 4 9 2 - 4 6 

0 0 0 5 9 2 - 4 1 

0 0 0 6 9 2 - 6 8 

0 0 0 7 9 2 - 4 6 

0 - 0 0 0 9 2 - 5 9 

0 - 0 0 0 9 2 - 4 6 

VRef Sand 0 0 0 3 9 3 - 5 3 

0 0 0 3 9 3 - 4 7 

0 0 1 2 9 3 - 5 3 

0 0 1 6 9 3 - 3 1 

0 0 0 3 9 3 - 5 1 

0 0 0 2 9 3 - 5 3 

Ref 0 0 2 0 9 0 - 6 2 

0 0 1 8 9 0 - 7 1 

Ref 
pH 1 * 0 7 1 

0 0 1 7 9 0 - 5 5 

0 0 1 5 9 0 - 6 7 

AlkylC 0 0 0 7 6 1 - 3 7 

0 0 0 7 6 1 - 7 9 

0 0 2 0 6 0 - 2 2 

0 0 1 9 6 1 - 7 9 

O-AlkylC 0 0 0 0 8 1 - 5 4 

0 0 0 0 8 2 0 5 

ArylC 0 0 0 0 9 2 - 3 8 

0 - 0 0 0 9 2 - 6 3 

0 0 2 0 9 2 - 6 3 

0 0 2 3 9 2 - 4 6 

CarC 0 0 0 7 4 7 - 7 5 

0 0 1 7 4 0 - 4 7 

Area 0 0 9 6 6 5 - 5 2 

0 0 9 6 6 5 - 6 9 

RefEh" 9 4 2 0 1 2 8 3 9 - 6 1 

0 0 1 3 3 9 - 6 1 

RefEb" 5 8 0 0 0 0 0 3 6 - 4 6 

0 0 0 1 3 6 - 3 6 

Log Al 0 - 0 4 1 4 8 1 6 

0 0 4 3 4 7 - 9 2 

AT* 3 0 2 2 0 0 5 4 4 3 - 3 9 

0 0 5 6 4 3 - 2 1 

AT* 5 5 5 1 0 0 2 9 3 2 1 8 

0 0 2 9 3 2 1 7 

Sf*3801 0 0 4 3 8 5 - 6 9 

0 0 3 9 8 5 - 8 7 

sr* 7 3 1 4 0 0 1 2 8 3 - 2 0 

0 0 1 0 8 3 - 4 0 

Ar 0 0 0 0 8 8 - 7 6 

0 - 0 0 0 8 9 - 2 

0 0 0 1 8 9 - 2 0 

0 0 0 2 8 8 - 9 2 

0 0 0 0 9 0 1 5 

0 0 0 0 8 9 - 5 5 
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To decide which transformations to choose from the predictors in Table 3.23 is not 

immediately apparent as the different transformations for pH, Eh and Si make <1% 

difference. In one instance, power transforming Mn by -0-5886 gives an R2 value -7% 

improved over power transforming by 0-9792. A simple tally of the best pH and Eh R2 values 

suggest power transformations of -1 -4072 and 0-3942 respectively as the most appropriate to 

pick. Tallying the respective R2 values of Si gives no indication as to whether either be a 

better choice. The chosen transformations for Mn, pH and Eh all correspond to the lower A 

values shown in Table 3.21. Picking the lower A values for Si and Al give power 

transformations of -0-3801 and -0-5552 respectively. Power transforming Al by -0-5552 is 

confirmed by tallying the best R values in Table 3.24. This transformation gives a -18% 

improvement over the other tabulated transformations in respect to Ar C. 

Table 3.24: 

Stepwise Regression Tests to Optimise the Choice of Transformed Variables 

Log Al AT"™ A ^ 5 8 5 2 R 2 

\LOI375 
0 000 86-76 

0 000 86 19 
0 001 85-47 

VClay 
0 000 90-82 

0 000 94-57 
0 000 96 16 

Log Silt 
0 000 90-47 

0 000 92 04 
0 000 92-46 

VRefSand 
0 000 83-61 

0 000 93 10 
0 000 93-53 

AlkylC 
0 015 61-79 

0 012 62-45 
0 012 62-44 

O-Alkyl C 
0090 81-25 

0 079 81-48 
0 073 81-63 

A / K C 
0 049 17 17 

0 067 15 07 
0 085 13-43 

A r C 
0 000 72-24 

0 000 72-24 
0 000 90 15 
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To check for multicollinearity, VIF values were calculated for all variables and are 

given in Table 3.25. Seven variables (VLOI110, VClay, Ref pH-1-4072, Alkyl C, Aryl C, 

Al"° 5 5 5 2 & Ar C) have predictors with high VIF values, with groupings: 

Vday&LogSSA 

VClay, VRef Sand & Log SSA 

• Si"0 3 8 0 1 & Log Fe 

• Si-° 3 8 0 1 &Al-°- 5 5 5 2 

It is apparent that whenever VClay is included in stepwise regression log SSA is also 

included as a predictor. The log SSA predictor is only included in one instance (O-Aryl C) 

without Vciay. It is therefore appropriate to remove either log SSA or VClay or to replace all 

particle size predictors with PCA scores as demonstrated in Section 3.3.1. Both log Fe and Si" 
0 3 8 0 1 are included as predictors of VClay and have high VIF values and could with A l - 0 5 5 5 2 

and Mn be replaced by PCA scores. It may also be beneficial to just remove log Fe as 

this contributes little (<2%) to the overall stepwise regression prediction of VClay. When 

predicting Alkyl C, Al"° 5 5 5 2 and Si - 0 3 8 0 1 have high VIF values and again this could be solved 

by removal or substitution with PCA scores. 

The removal of the appropriate predictors causing the high VIF values, together with the 

substitution of these predictors with the corresponding orthogonal PCA scores, is given in 

Table 3.26. The results of these tests are summarised on the following page: 
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• VLOIl 10 is best predicted without including VClay or VRef Sand. This reduces 

the number of predictors from 6 to 4, with these 4 accounting for -76% of the 

variation. 

• VClay is adequately predicted after the removal of Log Fe. This removes a single 

predictor from stepwise regression and makes a -2% difference to the prediction 

of variation (94-32% as opposed to 96-92%). 

• To remove all high VIF values when predicting Ref pH"1 4 0 7 2 VClay, Log Silt and 

VRef Sand need to be excluded from stepwise regression. The number of 

predictors is increased from 6 to 7 and account for -88% of the variation in 

RefpFT1 4 0 7 2 . 

• Alkyl C is difficult to predict accurately and requires the use of PCA scores 

calculated from VClay, Log Silt and VRef Sand as well as Al"° ' 3 3 3 2, Log Fe, 

Mn"0 5 5 5 2 and Si"0 3 8 0 1 . This allows -57% of Alkyl C's variation to be predicted 

using 4 predictors. 2 of these predictors are scores produced by PCA using the 2 

groups of inputs above. 

• Two particle size predictors must be removed before Aryl C can be predicted 

with low VIF values. Log Silt is the important particle size predictor, that 

together with Ref pH"' 4 0 7 2 , LOI110 and Ref Eh0 3 9 4 2 accounts for -83% of the 

variation in Aryl C. 

• Predicting the variation in Al"° 5 3 3 2 is heavily dependent on whether you exclude 

Vciay or Log SSA from stepwise regression. The removal of VClay results in 

only -41% variation being predicted whereas the removal of Log SSA allows 

-87% of the variation shown by AT 0 ' 3 5 5 2 to be predicted. The removal of 

collinear predictors allows Al"° 3 5 3 2 to be better predicted (86-73% as opposed to 

70-30%). 

• Ar C is also marginally better predicted after the removal of VClay from 

stepwise regression. 

• Removing collinear predictors tends to affect the number of predictors in 

stepwise regression, which in turn affects the percentage variation that can be 

explained. 

• Generally, when the number of predictors decreases the explained variation also 

decreases and vice versa. 
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Table 3.25: VIF Values For Transformed Abattoir Predictors Included In Stepwise 

Regression 

: 
- 0 . 3 8 0 1 

-0.5886 

Log Fe 

Log SSA 

R e f E h 0 3 9 4 2 

A/KC 

CarC 

O-Aryl C 

ArylC 

O-AIkyl C 

Alkyl C 

1.4072 RefpH 

VRef Sand 

Log Silt 

Log H,0 

VLOI375 

VLOI110 

no 



Table 3.26: Stepwise Regression Analysis To Reduce The Abattoir V I F To <5 

Variable Removed Predictors Predictors Chosen Using Stepwise Regression Analysis R l 

V L O I I I O 

VClay 
VIF 

R e f p H 1 * 0 7 2 

1-7 
ArC 
2-4 

Ref E h 0 5 9 4 2 

1-5 
Log SSA 

7-7 
VRef Sand 

9-2 
78-83 

V L O I I I O 

Log SSA 
VIF 

RefpH- 1 *" 2 

1-9 
ArC 
1-9 

Ref E h 0 3 9 4 2 

1-3 
H 2 0 
1-6 

70-24 
V L O I I I O 

VClay, VRef Sand 
VIF 

RefpH-" 4 0 7 2 

1-4 
ArC 
2-4 

Ref Eh* 3 9 4 2 

1-4 
Log SSA 

19 
75-79 

V L O I I I O 

Particle Size, PCA added 
VIF 

R e f p H 1 ^ 7 2 

20 
ArC 
20 

Ref E h 0 3 9 4 2 

1-4 
H 2 0 
1-6 

PS2 
1-2 

73-89 

VClay 

Log Fe 
VIF 

A l * " 5 2 

2-5 

gj-O-3801 

2-7 
O-ArylC 

1-9 
CarC 

2-2 
H 2 0 
1-7 

V L O I I I O 

1-9 
94-32 

VClay 

gj-O-3801 

VIF 
A l * 5 5 5 2 

3-2 
Log Fe 

2-7 
VL0I375 

1-7 
Ref p H ' M 0 7 2 

21 
O-Aryl C 

15 
Alkyl C 

1-3 
90-81 

VClay A l * 5 5 5 2 , LogFe .Mn* 5 8 8 6 

S i * 3 8 0 1 PCA Added 
VIF 

ArylC 

35-9 

M3 

20 

H 2 0 

20 

M2 

1-5 

ArC 

33 0 

VLOI375 

1-4 

96-20 
VClay 

A l " 0 , 5 5 5 2 , Log Fe, M n ' 0 ' 5 8 8 6 

S i * 3 8 0 1 , ArC,PCA Added 
VIF 

M3 

1-6 

H 2 0 

1-6 

M2 

1-5 

O-ArylC 

1-4 

VLOI375 

1-7 

R e f p H 1 4 0 7 2 

1-8 

96-67 

Ref 

P I T " 0 * 

Log SSA 
VIF 

ArylC 
1-5 

VLOIl 10 
1-2 

Ref E h 0 3 9 4 2 

1-7 
70-45 

Ref 

P I T " 0 * 

VClay 
VIF 

ArylC 
2-7 

V L O I I I O 

2-3 
Log SSA 

9-6 
H 2 0 
19 

Ref Eh* 3 9 4 2 

2-2 
VRef Sand 

319-8 
Log Silt 
260-9 

90-47 Ref 

P I T " 0 * VClay, LogSilt, VRef Sand 
VIF 

ArylC 
21 

V L O I I I O 

2-5 
Log SSA 

1-8 
H 2 0 
1-9 

%OC 
1-3 

Ref E h 0 3 9 4 2 

20 
A l * 5 5 5 2 

1-4 
87-83 

Ref 

P I T " 0 * 

Particle Size PCA Added 
VIF 

ArylC 
1-5 

V L O I I I O 

1-2 
Ref E h 0 3 9 4 2 

1-7 
70-45 

Alkyl C 

VClay 
VIF 

RefprT'^ 0 7 2 

1-6 
H 2 0 
2-3 

gj-O-3801 

5-9 
A l * 5 5 5 2 

5-5 
VRef Sand 

3-3 
56-46 

Alkyl C 

Log SSA 
VIF 

Re fp rT 1 4 0 7 2 

1-6 
H 2 0 
2-3 

gj-O-3801 

5-9 
A l * 5 5 5 2 

5-9 
VClay 

3-4 
59-22 

Alkyl C 

A l * 5 5 5 2 

VIF 
RefpH- 1 4 0 7 2 

1-2 
H 2 0 
1-3 

gj-O-3801 

11 
42-89 

Alkyl C 
gj-O-3801 

VIF 
Ref p H ' M 0 7 2 

1-2 
H 2 0 
1-2 

29-24 
Alkyl C 

Particle Size, A l - 0 5 5 5 2 

LogFe, M n * 5 8 8 6 

Si"0 3 8 0 1 PCA Added 
VIF 

RefpH- 1 4 0 7 2 

1-3 

H 2 0 

1-9 

M3 

2-8 

PS2 

20 

57-46 

A r y l C 

VRef Sand, Log SSA 

(VClay, Log SSA) 

(VRef Sand, Log SSA) 
VIF 

Log Silt 

1-7 

RefpH-' 4 0 7 2 

1-7 

V L O I I I O 

1-6 

Ref Eh* 3 9 4 2 

1-7 

82-73 

A r y l C Particle Size, PCA Added 
VIF 

PSI 
2-2 

RefpH" 1 4 0 7 2 

1-7 
V L O I I I O 

1-8 

Al- 0 5 5 5 2 

4-6 

gj-O-3801 

3-6 
86-37 A r y l C 

Particle Size, A l " 0 5 5 5 2 

LogFe .Mn* 5 8 8 6 

s i-o-380i p C A A ( J d e d 

VIF 

PSI 

1-3 

M4 

11 

RefpH 1 4 0 7 2 

17 

LOI110 

1-8 

H 2 0 

1-5 

86-58 

VClay 
VIF 

VLOI110 
10 

CarC 
10 

A/KC 
10 

40-88 

Log SSA 
VIF 

CarC 
1-4 

VClay 
1-9 

O-ArylC 
2-2 

Alkyl C 
1-6 

RefpH" 1 4 0 7 2 

1-5 
VLOI375 

2-5 
%OC 
2-6 

86-73 

Particle Size, PCA Added 
VIF 

CarC 
1-4 

PSI 
1-9 

O-Aryl 
19 

Alkyl 
1-5 

RefpH 1 4 0 7 2 

1-4 
71-89 

A r C 

VClay 
VIF 

V L O I I I O 

1-9 
RefpH- 1 4 0 7 2 

1-7 
Log SSA 

21 
Ref E h 0 3 9 4 2 

1-6 
A l - * 5 5 5 2 

3-8 

gj-O-3801 

3-7 
%OC 
1-3 

92-61 

A r C Log SSA 
VIF 

Ref p H " M 0 7 2 

1-5 
A l - 0 5 5 5 2 

4-5 

gj-O-3801 

3-2 
VRef Sand 

2-3 
VL0D75 

1-2 
Mn- 0 - 5 8 8 6 

2-6 
90-72 A r C 

Particle Size, PCA Added 
VIF 

PSI 
2-2 

RefpH 1 4 0 7 2 

1-5 

A l * 5 5 5 2 

4-5 

gj-O-3801 

3-2 
VL0I375 

1-2 
M n * 5 8 8 6 

2-5 
90-84 
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The enhancement of the prediction of variables from The Abattoir, after the predictors 

have been transformed to a more normal distribution and been checked and corrected for 

multicollinearity, is compared to the original stepwise regressions produced in Table 3.27. 

Transformed data is generally better predicted with a greater number of significant predictors. 

The overall average improvement in prediction is -12% rising to ~23% when only positive 

differences are considered. It should be noted that the R2 values before transformation may be 

subject to high VIF values, especially pH and % Mn. This may account for the negative % 

differences shown in Table 3.27. The number of variables with R values >80% has also 

increased from 4 to 12. These 12 variables include: 

• Measures of organic matter & carbon. 

• Particle size distribution. 

• pH. 

• % O-Alkyl & Aryl, which together account for 58-75% of the NMR signal. 

• Extractable iron content. 

It is nonsensical to, for example, extract organic matter to allow collection of NMR data 

so as to provide input variables in stepwise regression to predict %OC. The value in 

predicition lies in using cheap, easily collectable data to predict the variation shown in the 

NMR data. 

In Conclusion, using stepwise regression it is possible to predict a large proportion of 

the measurements collected from The Abattoir soil samples. This is achieved using 

independently measured soil properties as predictors. The equations produced could be used 

as pedotransfer functions to further predict soil properties using data from separate study sites. 

This was not carried out as part of this study. It has been shown that it is beneficial to 

transform all data to normality. 
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Table 3.27: Comparison of Stepwise Regression Before & After Transformations For 

The Abattoir Data 

Before Transformation After Transformation 
% 

Difference 
No. of 

Predictors 
R 2 R 2 

No. of 
Predictors 

% 

Difference 

LOI110 4 72-32 75-79 5 3-47 

LOI375 4 73-43 85-65 5 12-22 

% O C 6 77 01 83-62 5 6 61 

% H 2 0 3 58-66 70-50 4 11-84 

% Clay 2 51-06 94-32 6 43-26 

% Silt 1 57-61 90-92 6 33-31 

% Sand 1 5518 93-73 6 38-55 

pH 6 85 39 87-83 7 2-44 

AlkylC 2 28-41 57-46 4 29 05 

O-Alkyl 1 47-65 82 05 5 34-40 

ArylC 5 8319 82-73 4 -0-46 

O-Aryl C 4 60-80 52-38 3 -8-42 

CarC 3 49-28 47-75 3 -1 53 

A / K C 1 24-49 13-43 1 -1106 
Area 2 3101 65-52 5 34-51 

Eh 1 2213 39-61 2 17-48 
SSA 1 42-31 50-45 2 8 14 

% Al 8 87-84 86-73 7 -111 

%Fe 5 87-90 80-22 5 -7-68 
%Mn 4 73-48 5715 3 -16-33 
%Si 4 71 59 85-87 7 14-28 
A r C 1 55 09 92-61 7 37-52 

AcC 0 0 0 0 0 
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33.2.2 Salt Meadows 
The results of stepwise regression analysis for all Salt Meadows variables are 

summarised in Table 3.28, which is formatted the same as The Abattoir data in Table 3.19. 

The values tabulated are the percentages of the variation of the variable undergoing prediction 

(first column) explained by the individual predictors. The red boxes are to signify predictors 

that were not added to stepwise analysis due to their high correlation with the variable being 

predicted. These calculations are based on 33 data points due to the number of NMR 

measurements from the Salt Meadows samples as previously noted in Section 3.3.2.1. The R 

values of the predictions in Table 3.28 vary from 14% (Aromatic C) to 93% (LOI375). The 

individual results will be discussed further when being compared with the results obtained 

after transformation. Results worthy of mentioning now are: 

• LOI375 and %OC are very highly correlated (-88%) but both can be predicted 

independently of each other with good results (R 8114 & 69 20% 

respectively) with % Fe being by far the most important predictor (-50%). 

• Clay, Silt, Sand & SSA are well predicted but may have high VIF values. The 

proportion of their variation predicted by Area seems to be dependent on the 

particle size and therefore surface area. This behaviour was not evident in The 

Abattoir data. 

• O-Alkyl is the best-predicted NMR variable with an R2 value of 67-86 but the 

predictors may be subject to high VIF values. 

The VIF values for the data contained in Table 3.28 were calculated and any variables 

whose predictors have high VIF values (>5) are shown in Table 3.29. Subsequent stepwise 

regressions where the offending predictors with high VIF values have been removed or 

replaced by PCA scores are also shown. The chosen regressions for these variables are shown 

in bold. The choice of regression equation was based on the best R2 value having no high VIF 

values and without involving PCA. Undertaking PCA in addition to stepwise regression 

would only be appropriate if this extra level of complexity makes a significant difference to 

the resulting R2 value. Adding PCA where appropriate results in <3% improvement over 

regressions having low VIF's. 
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Table 3.28; Percentage Variation Predicted bv Variables in Salt Meadows Stepwise 

Regression 

s 
Total R 

% M n 

A/KC 

CarC 

O-Aryl C 

ArylC 

O-Alkyl 

% Sand 

/o Silt 

Vo Clay 

% H O 

LOI375 

LOI110 
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Table 3.29: Stepwise Regression Analysis to Reduce Salt Meadows VIF To <5 

Variable Removed Predictors Predictors Chosen Using Stepwise Regression Analysis R' 

H 2 0 

VIF 
LOI375 

13 
SSA 
7-8 

AlkylC 
2-4 

Clay 
8 8 

ArC 
52 1 

A/KC 
30 

Aryl C 
46-2 

7699 

H 2 0 

Aryl C 
VIF 

LOI375 
1-3 

SSA 
7-7 

AlkylC 
2-3 

Clay 
8 1 

A/KC 
18 

O-Aryl C 
2-5 

76-27 

H 2 0 

ArC 
VIF 

LOI375 
1-6 

Clay 
15 9 

Silt 
94 

AlkylC 
1-5 

Aryl C 
15 

Eh 
1-5 

SSA 
7-9 

Mn 
2-2 

76-84 

H 2 0 

Silt, Sand, SSA 
VIF 

Clay 
1-4 

%OC 
1-2 

Alkyl C 
12 

Eh 
10 

53-60 
H 2 0 

Clay, Sand, SSA 
VIF 

Silt 
14 

LOI375 
11 

AlkylC 
13 

52 50 
H 2 0 

Clay, Silt, SSA 
VIF 

Sand 
1-5 

LOI375 
1-2 

AlkylC 
13 

52 27 

H 2 0 

Clay, Silt, Sand 
VIF 

LOI1I0 
1-2 

Eh 
10 

AlkylC 
12 

44-90 

H 2 0 

Particle Size, PCA Added 
VIF 

PS1 
1-5 

LOI375 
12 

AlkylC 
1-3 

51 79 

Silt 

VIF 
Fe 
6-5 

Area 
1-7 

Al 
3 1 

AlkylC 
2-4 

Si 
6-5 

LOI375 
3-2 

O-Aryl C 
2-3 

Mn 
3-4 

85 71 

Silt 

Si 
VIF 

H 2 0 
1-4 

%OC 
11 

Area 
12 

Al 
11 

Eh 
11 

75-37 

Silt 

Fe 
VIF 

O-Alkyl C 
21 2 

Area 
1-7 

%OC 
18 

AlkylC 
16 3 

Al 
2-3 

Si 
50 

O-Aryl C 
23 1 

Mn 
3-5 

83-78 

Silt Fe, O-Aryl C 
VIF 

H 2 0 
1-7 

LOI375 
18 

Area 
1-5 

Al 
2-3 

Si 
2-7 

AlkylC 
14 

81 11 Silt 

Fe, Alkyl 
VIF 

Area 
1-5 

%OC 
1-7 

H 2 0 
14 

Al 
2-5 

Si 
30 

76-22 

Silt 

Fe, O-Alkyl C 
VIF 

Area 
15 

%OC 
1-8 

Al 
2-3 

Alkyl 
19 

Si 
4-8 

O-Aryl 
2 1 

Mn 
3-4 

81-99 

Silt 

NMR, Al, Fe, Mn, Si, PCA Added 
VIF 

M2 
1-6 

Area 
1-3 

NMR2 
1-4 

LOI375 
15 

M4 
1-3 

NMR5 
1-2 

84-23 

Sand 

VIF 
O-Alkyl C 

21 2 
Area 
1-7 

%OC 
1-8 

Al 
2-3 

Si 
50 

AlkylC 
16 3 

O-Aryl C 
231 

Mn 
3-5 

86 54 

Sand 

O-Aryl C 
VIF 

Area 
14 

%OC 
15 

Al 
2 1 

Alkyl 
1-1 

Si 
2-6 

81 18 

Sand 

AlkylC 
VIF 

Area 
15 

%OC 
16 

H 2 0 
15 

Al 
2-4 

Si 
2-8 

Eh 
11 

8108 
Sand 

O-Alkyl 
VIF 

Area 
16 

LOI375 
1-7 

HiO 
1-9 

Al 
2 3 

Si 
2-6 

Alkyl C 
14 

83-79 
Sand 

NMR, PCA Added 
VIF 

NMR2 
12 

Area 
15 

LOI375 
16 

Al 
2-2 

Si 
5-2 

NMR5 
1-4 

Mn 
30 

86 36 

Sand 

NMR, Al, Fe, Mn, Si, PCA Added 
VIF 

M2 
16 

Area 
13 

NMR2 
1-4 

LOI375 
15 

M4 
1-3 

NMR5 
1-2 

8612 

O-Alkyl 

C 

VIF 
Silt 
2-5 

Fe 
4-2 

Si 
6 1 

Mn 
3 1 

Al 
40 

%OC 
2-2 

67 86 

O-Alkyl 

C 
Si 

VIF 
Silt 
1-8 

pH 
1-1 

Fe 
1-7 

56-93 
O-Alkyl 

C 
Al, Fe, Mn, Si, PCA Added 

VIF 
Silt 
I I 

M4 
11 

59-67 

Eh 

VIF 
Mn 
2-8 

Si 
2-4 

L01375 
6-9 

%OC 
7-3 

5967 

Eh %OC 
VIF 

Mn 
1-2 

Si 
2-6 

LOI375 
2-3 

50-45 Eh 

LOI375 
VIF 

Mn 
2-7 

Si 
2-5 

Fe 
20 

Area 
11 

50 I I 

Si 

VIF 
Clay 
7-3 

SSA 
71 

H 2 0 
12 

47 83 

Si SSA (Particle Size, PCA Added) 
VIF 

%OC 
10 

Area 
10 

22-71 Si 

Clay 
VIF 

%oc 
1-3 

Area 
1-5 

SSA 
1-7 

31-48 
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The Salt Meadows dataset was tested to see if the measured parameters were normally 

distributed using the method set out in Section 3.3.2. Values of skewness, kurtosis and the 

Anderson-Darling Normality Test (A 2) before and after transformation are given in Table 

3.30. This dataset deviates slightly less from normality than The Abattoir dataset and 

therefore required less extreme transformations to be undertaken. Power transforming A/K C 

by 0-2996 reduces the skewness to zero and gives the lowest value of A 2 (0-62 as opposed 

0-80) and so was chosen over power transforming by 0-4968. 

Table 3.30: Normality Tests & Transformations for Salt Meadows Data 

Skewness Kurtosis A 2 Transformation Skewness Kurtosis A 2 

LOI110 1 38 2-88 2-73 Logarithm 0-22 -0-45 0-44 

LOI375 0-92 115 1 67 SqRt 0-48 0-46 0-79 

%OC 0-70 0-30 0-64 SqRt 0-36 015 1 56 

% H 2 0 0-30 -0-22 0-30 None 

% Clay 004 -0-87 0-48 None 

% Silt -0 03 -0-64 0-24 None 

% Sand -001 -0-74 0-29 None 

PH -018 -010 0-33 None 

AlkylC 0-57 -0-52 0-61 SqRt 0-38 -0-74 0-42 

O-Alkyl C 0-32 -016 0-30 None 

ArylC -0-31 -0 07 018 None 

O-ArylC -0-64 012 0-41 Reflect & SqRt 013 -0-32 018 

Car C 006 -0-70 0-72 None 

A/KC 1 21 115 1 44 Power 0 2 9 9 6 -0 00 003 0-62 

A/KC 1 21 115 1-44 Power0 4 9 6 8 0-50 -019 0-80 

Area 0-37 -0-53 0 51 None 

Eh -0 81 1 24 110 Reflect & SqRt -0-27 1 66 0-49 

SSA 016 -0-70 0-27 None 

%A1 0-63 0-65 0-38 SqRt 016 016 017 

%Fe 0-94 0-65 1 49 Logarithm 001 0-56 0-51 

%Mn 1-48 301 1-47 Logarithm 019 -005 0-29 

%Si 0-95 0-67 1-33 SqRt 0-28 014 0-50 

ArC -0-65 -015 0-47 Reflect & SqRt 006 -0-68 017 

AcC 0-42 -0-42 0-80 None 
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Stepwise regression was carried out again for the Salt Meadows dataset after 

transformation with results given in Table 3.31. The predictor A/K. 0 ' 2 9 9 6 was not included in 

stepwise regression, as this would reduce n from 33 to 26. This is due to a number of negative 

values for A/K that cannot be transformed. Before commenting on the results shown in 

Table 3.31 it is important to measure the VIF values as a cursory look at this table shows 

many examples of predictors that have shown multicollinearity previously. Variables that 

have high VIF values in their predictors are shown in Table 3.32, together with the removals 

and substitutions undertaken to lower VIF values to < 5 . 

The collinear groupings are similar to those found for The Abattoir, with particle size 

and NMR measurements accounting for most of the high VIF values. Both VLOI375 and 

V%OC are used to predict VRefEh, giving rise to VIF values close to 10. The predictions 

shown in bold were deemed to be the most appropriate, having both low VIF values and the 

best R2 values without resorting to PCA. Undertaking PCA in many cases does not give better 

results and where an improvement in R is evident, the differences are minimal (<5%). 

The final predictions for the Salt Meadows variables, after normalisation and correction 

for multicollinearity are given in Table 3.33. The results for Salt Meadows have fewer 

variables predicted with R2 values above 80% when compared to The Abattoir (5 compared 

with 12). Important points when predicting Salt Meadows variables are: 

• Log LOI 110 and H 2 O are important predictors of each other but when excluded can be 

replaced by other variables (Area predicts Log LOI110 & % Silt predicts H2O) . 

• V L O I 3 7 5 and V%OC as expected are strongly correlated and predict each other 

(R2 = 88%) but again i f excluded from stepwise regression another predictor 

(log Fe, R -50%) can be substituted in their place. 

• Clay, Silt and Sand are now all predicted by Area to the same degree (-30%), which 

differs significantly from the results in Table 3.30. 

• The only NMR variable well predicted is O-Alkyl (R2 = 70%) that accounts for 

50-70% of the NMR signal from Salt Meadows samples. 

• Clay is the most important particle size measurement when predicting Area. 

The equations produced using stepwise regression could be used as pedotransfer 

functions to further predict soil properties using data from separate study sites. However, the 

predictors chosen for prediction of The Abattoir dataset vary from those found for Salt 

Meadows. 
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Table 3.31: Percentage Variation Predicted bv Variables in Transformed Salt Meadows 
Stepwise Regression (N=33) 
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Table 3.32: Stepwise Regression Analysis to Reduce Transformed Salt Meadows VIF To <S 

Variable Removed Predictors Predictors Chosen Using Stepwise Regression Analysis R J 

VLOI375 
VIF 

V%OC 
14 

VRef Eh 
I I 

LogLOll 10 
16 

O-Alkyl 
18 

S S A 

4 6 
Sand 
5-7 

94-70 

VLOI375 Sand 
VIF 

V%OC 
1-4 

VRef Eh 
1 1 

Log 
1-6 

O-Alkyl 
1-8 

SSA 
4 0 

Silt 
4 - 8 

9 4 - 6 9 VLOI375 

Particle Size, PCA Added 
VIF 

V%OC 
13 

VRef Eh 
11 

LogLOll 10 
1-2 

O-Alkyl 
14 

PH 
11 

93-93 

HiO 

LogLOIllO 
VIF 

Clay 
10 1 

V%OC 
15 

SSA 
96 

Alkyl 
15 

VRefArC 
14 

VRef Eh 
15 

Log Mn 
2-6 

7818 

HiO 

LogLOIllO&SSA 
VIF 

Silt 
1-3 

VLOI375 
11 

Alkyl 
1-2 

51-38 

HiO LogLOIU0.Clay«Sand 
VIF 

Silt 
4-7 

VLOI375 
11 

S S A 

41 
Alkyl 

16 
VRefAr C 

1-7 
6604 

HiO 

LogLOll 10, ParticleSize 

PCA Added 
VIF 

PSI 

13 

VLOI375 

I I 

Alkyl 

12 

50-84 

Clay 

VIF 
O-Alkyl 

190 
Area 
18 

V%OC 
18 

V A I 

2-3 
VSi 
4 4 

Alkyl 
13 5 

Log Mn 
3-4 

VRefO-Aryl 
20-3 

87-78 

Clay 

VRefO-Aryl C 
VIF 

Area 
1-5 

V A I 

21 
VSi 
4 3 

Alkyl 
I I 

V%OC 
17 

Log Mn 
2 9 

85 39 

Clay AlkylC 
VIF 

LogFe 
2-4 

Area 
14 

V A I 

2 6 
VSi 
4 1 

AcC 
12 

8097 Clay 

O-Alkyl 
VIF 

Area 
1-7 

V A I 

2-3 
VSi 
4-4 

Alkyl 
1-8 

V%OC 
1-8 

VRefO-Aryl 
3-3 

Log Mn 
23 

8 6 - 6 1 

Clay 

NMR, PCA Added 
VIF 

NMR2 
14 

Area 
16 

V%OC 
18 

V A I 

2-3 
VSi 
4-2 

Log Mn 
2 9 

85 65 

Silt 

VIF 
Area 
19 

Alkyl 
2-4 

VLOI375 
31 

V A I 

2-7 
VSi 
5 9 

VRefO-Aryl 
24 

Log Mn 
3 3 

LogFe 
5 7 

84-80 

Silt 

LogFe 
VIF 

Area 
19 

Alkyl 
13 4 

VLOI375 
19 

V A I 

2-2 
VSi 
2-6 

VRefO-Aryl 
20 1 

O-Alkyl 
18 5 

81 51 

Silt 
VSi 
VIF 

H 2 0 
14 

V%OC 
11 

Area 
13 

V A I 

1-2 
VRef Eh 

11 
73-98 

Silt 
Log Fe & O-Alkyl C 

VIF 
Area 
1-7 

Alkyl 
1-8 

VRefO-Aryl 
2-3 

V A I 

2 -3 

VSi 
4-4 

Log Mn 
3-3 

V%OC 
18 

82-39 
Silt 

VRefO-Aryl C 
VIF 

Area 
15 

AJkyl 
11 

V%OC 
16 

V A I 

2 1 
VSi 
2 6 

75-75 

Silt 

NMR, PCA Added 
VIF 

NMR2 
14 

Area 
17 

VLOI375 
17 

V A I 

2 2 
VSi 
4 2 

NMR5 
I I 

Log Mn 
2 9 

84 08 

Sand 

VIF 
O-Alkyl 

19 0 
Area 
18 

Alkyl 
13 5 

V%oc 

18 
V A I 

23 
VSi 
4-4 

VRefO-Aryl 
20 3 

LogMn 
3-4 

8632 

Sand 
VRefO-Aryl C 

VIF 
Area 
15 

V%OC 
16 

V A I 

21 
Alkyl 

11 
VSi 
2 6 

79-43 
Sand 

AlkylC 
VIF 

Area 
1-7 

V%OC 
2 - 3 

H 2 0 

1-7 

V A I 

2 - 6 

VSi 
4-S 

Log Mn 
3 - 2 

O-Alkyl 
2-1 

8 3 - 3 6 

Sand 

NMR, PCA Added 
VIF 

NMR2 
14 

Area 
16 

V%OC 
18 

V A I 

2-3 
VSi 
4 2 

NMR5 
11 

Log Mn 
29 

85-72 

VRef Eh 
VIF 

LogMn 
3-2 

VSi 

2-8 
VL01375 

9 7 
V%oc 

94 
LogLOll 10 

2 1 
H 2 0 
17 

Area 
17 

73-33 

VRef Eh V%OC 
VIF 

Log Mn 
2-8 

VSi 
2 - 6 

VLOI375 
12 

54-93 VRef Eh 

VLOI375 
VIF 

Log Mn 
3 0 

Vsi 
2 8 

Log Fe 
2 4 

VLOI375 
15 

54-63 

LogFe 

VIF 
V%OC 

12 
Clay 
20-3 

O-Alkyl 
17 

Sand 
17-1 

SSA 
5 7 

8017 

LogFe 
Silt, Sand & SSA 

VIF 
V%OC 

1-3 

Clay 
1-6 

O-Alkyl 
1-7 

72-79 
LogFe 

Clay 
VIF 

V%OC 
13 

O-Alkyl 
17 9 

PH 
12 

VRefO-Aryl 
19 8 

Alkyl 
12 9 

75-94 
LogFe 

Particle Size, PCA Added 
VIF 

v%oc 

13 
O-Alkyl 

20 
PS2 

I I 

O-Aryl 
1-8 

77-52 

Vsi 

VIF 
Clay 
71 

SSA 
60 

H 2 0 
1-5 

50-26 

Vsi 
S S A 

VIF 
V%OC 

11 
Area 
11 

23 95 
Vsi 

Clay 

VIF 

V%OC 

14 

Area 

1-7 

SSA 

1-7 
34-51 
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Table 3.33; Corrected Percentage Variation Predicted bv Variables in Transformed Salt 

Meadows Stepwise Regression (N=33> 
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Table 3.34: Comparison of Stepwise Regression before & After Transformations for Salt 

Meadows Data 

Before Transformation After Transformation 
% 

Difference 
No. of 

Predictors 
R 2 R 2 

No. of 

Predictors 

% 

Difference 

LOI110 4 5017 59-76 3 9-59 

LOI375 4 93 05 94 69 6 1-64 

% O C 4 92-52 93-83 6 131 

% H 2 0 4 53-60 i 6615 5 12-55 

% Clay 7 87 66 86-61 7 -105 

% Silt 7 81 99 : 82-39 7 0-40 

% Sand 6 83-79 ! 83 36 7 -0-43 

pH 3 34-75 34-88 3 013 

AlkylC 1 21.59 40-18 3 18-59 

O-Alkyl 3 56 93 70-33 6 13-40 

Ary lC 1 16-74 16-74 1 0 

O-Aryl C 3 28 48 19 61 2 -8-87 

C a r C 2 33 80 33-53 2 -0 27 

A / K C 4 41 89 35-70 2 -6 19 

Area 5 66 69 66-70 5 001 

Eh 3 50-45 54-93 3 4-48 

SSA 5 72-38 71-23 5 -115 

% Al 1 2624 28-20 1 1 96 

% F e 4 76-22 72-79 3 -3-43 

%Mn 3 46 18 4408 3 -2-1 

% S i 3 31-48 34-51 3 3 03 

A r C 1 1404 13-32 1 -0-72 

A c C 4 46 50 28-92 2 -17-58 
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3.4 Spatial Distribution of Soil Properties 

"G. de Marsily started the defence of his hydrogeology thesis by showing the audience a 

jar filled with sand and announced 'here is a porous medium.' Then he shook the jar and 

announced 'and here is another,' shook it again 'and yet another.' " 

(Ghiles & Delfiner, 1999). 

3.4.1 Introduction 

The spatial variability of soil properties is easy to visualise graphically. There are many 

computer programs that can convert spatially measured soil parameters into contour maps 

showing the variation over a given area. The 'raw' contour map can be smoothed and 

modelled using different criteria such as the inverse distance weighted variation between 

neighbouring sampling points and kriging. After modelling spatial data it is possible to find 

the confidence limits of the modelled variation. This information allows risk assessment as to 

possible levels of contaminants over a given area and how accurate those predictions are. 

When redeveloping brownfield sites it is important to be able to find whether the soil meets 

the governement regulations regarding the future use of the site, with the allowed soil 

guidance value of contaminants dependent on that future use. 

Before the advent of modern geostatistical methods, the sampling strategy was designed 

with in-built randomisation and made no assumptions about the variable soil parameter 

(Webster & Oliver, 2001). Geostatistics assumes that the variable is random with models 

based on the prediction of random processes. Each measured value is only one of many 

possible answers to a random process giving a random variable. Each measurement at a 

spatial point has its own random process leading to a random variable, with these random 

processes being spatially dependent (Rossiter, 2005). 

To model this spatial variation we need to make the following assumptions: 

First Order Stationarity: 

• Assume that all the means of the random processes at all locations are the same to 

allow estimation of the common means (random variables) and the presumed 

spatial structure. 

• Nearby observations may be connected with the individual random variables 

making up a regionalised variable that has an associated covariance. 

• This covariance can be considered to only depend on the separation and possibly 

the direction between the points that created it. 
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Second Order Stationarity: 

• You cannot estimate the covariance of one point from one measurement. 

• Assume that the variance at all points is the same finite value which can be 

estimated from the nugget variance (See Figure 3.51). This essentially lumps 

together the random variables. 

• Assume that the covariance between points depends only on their separation and 

not their location or individuality. The covariance can then be estimated from a 

large number of sample pairs all separated by approximately the same vector 

(distance and possibly direction). 

There are problems associated with these assumptions in that first order stationarity is 

often not likely as the mean wil l change over distance and second order stationarity is affected 

by covariance changing with area (Rossiter, 2005). To help compensate for this it is possible 

to replace the mean values with the mean differences. Over a small separation, the mean 

differences between values will be the same. The covariance between values can now be 

replaced with the variances of the differences at a particular separation. 

The above assumptions now mean that semi-variance is given as an estimate of 

covariance in the spatial field with the semi-variance allowing modelling of the spatially 

correlated component of the regionalised variable. The semi term in semi-variance refers to 

the fact that there are two ways to compute the variance of any point pair combination. This 

gives [n(n-l)]/2 point pairs for any dataset. It is possible to follow a protocol (Webster & 

Oliver, 2001) when modelling spatial variation: 

• Remove any outliers (see Section 3.2). When calculating the experimental 

(empirical) variogram (see below) each set of data points are paired. Outliers are 

therefore paired with all other points and therefore have high leverage. 

Removing outliers stops the result being skewed whilst still allowing outliers to 

be added back after modelling using the remaining data points. Outliers are 

identified in Section 3.2. 

• Transform the data to normality (see Section 3.3.2). Geostatistical analysis may 

presume a normal distribution and so transforming all data to normality is a 

prerequisite (note: i f data requires transformation no outliers should be removed 

until after transformation). 

• Check the transformed data for directional, long range trend. Geostatistical 

analysis assumes stationarity and therefore is incompatible with data displaying 

trend. 
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Produce the variogram cloud (semi-variance versus distance). The variogram 

cloud allows visualisation of any pairs of data points that show high (outlying) 

semi-variance. Any point that leads to several point pairs with outlying semi-

variance should be removed to aid modelling. 

Check for geometric anisotropy by computing the experimental variogram using 

different ratios of the coordinates (1-25, 1-5, 1-75 & 2 00) lying at different 

angles (0°, 45°, 90° & 135°) to the horizontal axis. The experimental variogram 

has the same form as the variogram cloud (semi-variance versus distance) but the 

average semi-variance is computed at various separations (lag increments). The 

number of points in each lag increment (bin) needs to be > 100 and will give a 

more reliable result i f >300 (Rossiter, 2005). I f the variograms produced all have 

approximately the same size and form then the data is isotropic. Differences in 

semi-variance indicate zonal anisotropy where there is more variance in certain 

directions. 

Compute the experimental variogram over all directions (omnidirectional). The 

general features shown on a variogram are shown in Figure 3.51 namely: 

• The Sill. This is the maximum semi-variance and is a priori known as it 

equals the population variance. 

• The Range. This is the separation between point pairs where the sill is 

reached and is the maximum distance at which spatial dependence is found. 

• Nugget Variance. This is the variance found at close to zero separation and is 

the point at which spatial variance cannot be accounted for due to the inherent 

heterogeneous nature of the samples at close range. 

Model the experimental variogram. The shape of the variogram will affect the 

choice of model and can be split into four groups: 

I . Pure Nugget. Effectively the sample mean wil l estimate every point and there 

is no spatial structure evident. 

I I . Unbounded. The semi-variance increases with area and has no sill or range. 

This suggests that the study area is smaller than the range of spatial 

dependence and is best modelled using a power function. 
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I I I . Bounded. The semi-variance reaches a sill at a definable range. There are 

several models that can model a bounded variogram: 

• Linear. Semi-variance increases linearly with distance to a maximum 

(sill) at a given distance (range). 

• Circular. This model is based on the overlap of two discs and is good 

where the variability is spread in patches interdispersed with transition 

zones that may overlap. 

• Spherical. This model takes the 2-D circular model and extends it into 3-

D by looking at the volume of intersection of two spheres. This is often 

the best when modelling soil variability even when soil samples are only 

collected in two dimensions (Webster & Oliver, 2001). 

• Pentaspherical. This model is a five-dimensional analogue of the circular 

and spherical models. 

IV. Bounded Asymptotic. The semi-variance approaches a sill at some effective 

range. The effective range is usually taken as the distance at which the semi-

variance reaches 95% of the sill variance. This can be modelled by either an 

exponential or Gaussian model. The Gaussian model differs from the 

exponential at small separations where the semi-variance wil l be close to 

zero. 

The chosen model should match the experimental variogram closely, minimising 

the sum of least-squares between them. 

Use the model variogram to predict values at unsampled locations. This is 

achieved by ordinary kriging which computes a weighted average of the data. 

The weights are determined by the configuration of the data and the variogram 

model. The closer the sampled location, the larger the weighting with distant 

points having negligible weight unless there is a large proportion of nugget 

variance. 

Produce a map to show graphically the results of ordinary kriging. 
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To give good confidence intervals for the spatial variability of a measurement 100-150 

sampling points are required (Webster & Oliver, 2001). This number increases to -250 i f the 

data is anisotropic. The maximum number of samples from The Abattoir and Salt Meadows 

are 80 and 117 respectively. These figures suggest that only Salt Meadows has enough spatial 

data for good confidence intervals. There also should be no less than 100 point pairs in each 

lag increment. This wil l cap the number of bins depending on the level of reliability required 

and number of sample points. These variables are summarised in Table 3.35. The size of the 

lag increments also needs to be set with a good starting point being the distance between 

sample points i f on a regular grid pattern. The number of lag increments multiplied by their 

size should approximately equal half the maximum distance between sample points 

(S+SpatialStats, 2000). Because of this the number of lag increments utilised for the datasets 

under study wil l be further reduced and dependent on the sample point spacing and overall 

dimensions of the sample sites. 

The computer programs used to model spatial distribution were: 

• S-Plus® 7.0 for Windows Enterprise Developer (Insightful™ Corporation) 

including the S+SpatialStats module (version 1.5.7, Mathsoft Inc.). 

• ArcMap™ 9.1 (ESRI®) including the geostatistical analyst tools. 

One major disparity between these different software programs is in the setting of bin 

increments. S+SpatialStats sets the first increment as half of the designated bin size whereas 

ArcMap does not. This allows S+SpatialStats to more efficiently model the nugget effect 

(personal correspondence, Insightful Support). This in turn means that all subsequent bins are 

offset from the bins as set by ArcMap. 

S+SpatialStats was used to produce variogram clouds of the data as it is possible to 

highlight outlying points and therefore remove the sample locations from further analysis. It 

was then possible to check for geometric anisotropy and again remove the offending sample 

points ( i f any). Both programs could be used to produce an experimental variogram but 

S+SpatialStats has the benefit of allowing you to, in addition to setting the size and number of 

lags, set the minimum number of pairs in any bin. 

ArcMap™ was then used to model the experimental variogram as it allowed use of a 

better range from the models described above. For robustness the best model could then be 

manually modelled using S+SpatialStats to allow the minimum number of pairs in each bin to 

be set. Ordinary Kriging can then be undertaken to produce a contour map to graphically 

show both the predicted variation and its associated error. 
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Table 3.35: Site Specific Values Important in Geostatistical Analysis 

Site 

Total Number of 

Sample 

Locations 

Maximum 

Number of 

Point Pairs 

Maximum 

Number of Lag 

Increments 

Reliable 

Number of Lag 

Increments 

The Abattoir 80 3160 31 10 

Salt Meadows 117 6786 67 20 

Figure 3.51: Features of a Semi-Variogram Graph 
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The moisture content of The Abattoir soil samples was used as an example to test this 

spatial distribution and mapping technique. 
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3.4.2 The Abattoir 

The Abattoir Site was spatially sampled at 80 locations as shown in Figure 3.52. This 

may not reach the required number for a more robust spatial analysis as outline in Section 

3.4.1 but the results for the individual measurements are given below. Of the samples 

collected, 69 were taken on a standard herring-bone grid pattern, with the remaining 11 being 

taken at shorter random spacings to better measure more localised variation (<10m). The grid 

is based on 10m increments with the nearest neighbours being 10- 19m apart due to the sample 

locations being skewed by the herring-bone pattern. When the sample points at random 

spacings are taken into account, the average minimum distance between points is reduced to 

7-85m. The niinimum distance between points changes to ~8m after removal of outlying 

points or missing data for all datasets apart from NMR values. It therefore seemed prudent to 

use lag increments of 8 and 10-2 in geostatistical analysis. 

The maximum distance between two sampling points was -212m, giving an effective 

maximum range of ~106m. Taken with the lag increments, this allows for 10 (10 x 10-2 = 

102m) and 13 (8 x 13 = 104m) lags to be used. The number of point pairs in each lag 

increment as would be used by ArcMap are shown in Figure 3.53 and Figure 3.54. Both 

graphs show that when using all sample points from The Abattoir site it is possible to meet 

the minimum criteria for valid spatial analysis. The short range variation picked up by 

samples taken off the standard grid does not give a useful number of point pairs (18) but using 

a lag increment of 8 does allow maximisation of the number of lag increments (bins). 
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Figure 3.52: The Abattoir Sample Locations 
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Figure 3.53: 

Number of Point Pairs in Lag Increments From The Abattoir When Lag Size = 8 
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Figure 3.54: 

Number of Point Pairs in Lag Increments From The Abattoir When Lag Size - 10 2 
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It has been shown that with the ful l 80 data points available it is possible to meet the 

minimum criteria for the number of points in each lag increment. After the removal of outliers 

only the transformed moisture content has all 80 points available for data analysis. NMR 

analysis was only undertaken for 23 Abattoir samples which require it to be discounted from 

spatial analysis. The dataset with the next lowest number of points is the surface area 

measurements (53) with all other datasets having at least 64 points. To gauge how this will 

affect spatial analysis, Figure 3.55 compares the point pairs in each bin using a lag increment 

of 8 when the dataset is reduced to 54, 64 and 74 points. It can be seen that the majority of 

bins when using 64 or 74 points still have a reasonable number of point pairs in all bins bar 

the first, although at a range of 72 & 88 the number drops well below the accepted minimum 

of 100. 

Figure 3.55: Comparison of Point Pairs Using a Lag Increment of 8 With a Reduced 

Abattoir Dataset 
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A solution to the problem associated with the reduction in size of datasets is to increase 

the size of the lag increments. The number of point pairs in each bin when using a lag 

increment of 10-2 on a reduced dataset is shown in Figure 3.56. The larger bin size increases 

the number of point pairs in each bin to > 100 (apart from the first bin when using 64 points). 

A further increase in lag increment to 15 is needed to allow a dataset with 54 points to achieve 

this level as shown in Figure 3.57. 
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The individual spatial analyses wil l therefore be subject to different lag increments 

depending on the number of data points. Different datasets may also be better modelled by 

different model variograms, with the goodness of fit being tested using the standardised root 

mean squares of the residuals. 

Figure 3.56: Comparison of Point Pairs Using a Lag Increment of 10-2 With a Reduced 

Abattoir Dataset 
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Figure 3.57: Comparison of Point Pairs Using a Lag Increment of 15 With a Reduced 

Abattoir Dataset 
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Outliers to be removed before spatial analysis are given in Section 3.2. Any 

transformations being undertaken were applied to the whole dataset (Table 3.21) followed by 

the removal of outliers from the transformed dataset. Further points removed from variogram 

cloud analysis and geometric anisotropy are given individually. Geometric anisotropy, where 

present, could be reduced by the removal of a small number of points (<5). 

3.4.2.1 Moisture Content 

Moisture content was log transformed (LogF^O) giving no outliers. The variogram 

cloud shown in Figure 3.58 has a number of outlying points with AB0908 as one of the point 

pairs. Geometric anisotropy analysis yielded the results shown in Figure 3.59. This figure 

plots the experimental variogram using different ratios of the coordinates (1-25, 1-5, 1 -75 & 

2 00) lying at different angles (0°, 45°, 90° & 135°) to the horizontal axis. Geometric 

anisotropy analysis indicates that the data is generally isotropic but has outlying points at 90° 

that may affect modelling. These points are not evident after removing extreme values 

(AB0817, 0908, 0909 & 0910) as shown in Figure 3.60. 

Figure 3.58: Variogram Cloud of LogH^O Data 
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Figure 3,59: Geometric Anisotronv Analysis of LogHbO Data 

o o 

—r-

N=80, 2139 Point Pairs <106 

.1 T 

,, o Tr" O 
O 

»025 
0020 
sot* 
0010 

M tOO SO tOO 150 0 60 MS MO 

0-026 
0-030 
0-016 
0010 
0000 

—i 1 1 1 r 
20 40 00 W tOO 

—r-
• too 160 0 

—I 1 1 I I I I I I I 
90 100 150 20 40 W W 100 140 

• • ' J , n - ° 0 ' - ° u ' Z < t e 
• 0 n 0 >n Qao no 

l 1 l t l ' I l l 1 l l l 'V l I i 1 l 1 I I l I 

20 40 00 *0 100 20 40 «0 W 100 120 1400 50 100 ISO 20 40 M SJ 100 120 

SOI* 
O0I0 

0025 
0-020 
0015 
0010 
0005 

" II ° n ° II Pi 

~—at 
o , o ° o ° - ° oo o o o o. 

' o o 
opf i(P-uti o o u u u <J 

a _ 
• 

20 40 (0 SO 100 20 4 0 W K I I O D 120 0 20 4 
Distance (m) 

<0 100 120 20 40 W W 100 

Figure 3.60: Geometric Anisotronv Analysis of LoeH;Q Data After Point Removal 
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After data transformation and correction, an empirical variogram was produced and 

modelled using the criteria set out in Section 3.4.1. The results of computer modelling are 

given in Table 3.36 and show that a circular model variogram best fits the data giving the 

standardised root mean square closest to 1. However, also shown in Table 3.36 are two 

examples of manual fits created using the geostatistical analyst wizard tool contained in 

ArcMap. It is possible through manual fitting to produce a model with a standardised RMS 

value of 1. Both manual spherical models given have sill and nugget values that add to give 

the a priori known variance in the dataset but give widely differing values for the range. The 

graphical interface used with the geostatistical analyst tool is shown in Figure 3.61 and 

visualises the shortcomings of attempting to manually fit an empirical variogram. The 

semivariogram given does not give a single, averaged point for each lag increment making a 

visually fitted empirical variogram subject to large user error. 

Table 3.36: Model Variogram Results for LogH;Q 

Model 
Lag 

Increment 
Range Sill Nugget 

Standardised Error 

Root-Mean-Square 

Circular 
8 

10-2 

26 08 

29-75 

0 00686 

0 00539 

000741 

000886 

0-9741 

0-9631 

Spherical 
8 

102 

28-49 

31 36 

0 00720 

0 00578 

0 00707 

0'00845 

0-9657 

0-9636 

Tetraspherical 
8 

102 

30-36 

33 98 

0 00748 

0-00594 

000677 

0 00830 

0-9706 

0-9606 

Pentaspherical 
8 

10-2 

32-71 

36-60 

0 00759 

0 00602 

000666 

0 00822 

0 9678 

0-9588 

Exponential 
8 

102 

26-72 

30-43 

001010 

000802 

0 00425 

000632 

0-9326 

0-9407 

Gaussian 
8 

102 

23-97 

27-47 

0 00612 

0-00475 

000814 

000950 

0-9656 

0-9653 

Manual Fit 

Spherical 
8 17-90 0-01410 000000 1 0000 

Spherical 
8 33-77 0 00705 000705 1 0000 
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ArcMap's geostatistical wizard produces a number of different measures of error. A QQ 

plot shows that the standardised error is normally distributed but both the error and 

standardised error are not evenly distributed about zero. The measured versus predicted 

LogFbO plot is produced automatically by the removal of each individual point and then 

predicting its value using a minimum of two and a maximum of five (Geostatistical Analyst 

defaults) of the nearest neighbouring values. Again LogF^O predicted values are not evenly 

distributed around the optimal 1:1 measured: predicted ratio. 

Figure 3.61; ArcMan Geostatistical Analyst Interface 
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S+SpatialStats allows for a more user friendly graphical interface that more clearly 

shows how well a model fits an associated empirical model. Unfortunately S+SpatialStats 

does not contain a circular model leading Figure 3.62 to show the fitted spherical model as 

optimised automatically by ArcMap instead. The model may not account for the first point in 

the empirical variogram but as this is only produced using 18 point pairs it would be 

appropriate to remove it or at least discount it. ArcMap was then used to produce the kriged 

map of soil moisture content as shown in Figure 3.63 using a circular variogram model and a 

lag increment of 8. 
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Figure 3.62: Semivariogram of Log ILO With Spherical Fitted Line 
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The modelled surface shown in Figure 3.63 does not show an underlying trend in any 

direction as already discussed but does appear patchy having distinct areas with similar values 

that will lead to the range of spatial correlation being -30 metres. The prediction error 

associated with this modelled surface is given in Figure 3.64. Errors are shown to be low and 

relatively constant but increase towards the edge of the modelled surface. This is inevitable 

when modelling at a boundary where there is lack of data to aid modelling beyond. The range 

of spatial correlation, and therefore variability of soil parameters is another tool that may aid 

in describing the variability associated with pollutant movement where soil parameters with a 

definite range have a controlling influence on adsorption. 
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Figure 3.63: Kriged % Soil Moisture 
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Figure 3.64: Prediction Error of % Soil Moisture Kriged Surface 
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3.5 Summary 

Chapter 3 firstly detailed the results of the individual soil parameters collected, 

indicating the known interdependencies between variables such as LOI375 and %OC. The 

ratio between organic matter and organic carbon was found to equal 1-98, which falls within 

the generally accepted range (l-724-~2-5). It has also been shown that whilst % H 2 0 and 

LOI110 will be strongly influenced by the moisture content of the soil, LOI110 also measures 

the variation in easily oxidisable and/or volatile components between soils. 

Boxplots have been shown to provide a good visual representation of the distribution of 

measured soil parameters. Boxplots are helpful in regards to both the distribution within a 

site, allowing outliers to be viewed that may strongly influence further analysis, and the 

variation in the distributions between sites. It would be reasonable to presume that the 

distribution of agricultural soil characteristics would be greater than that of The Abattoir or 

Salt Meadows but this is not always evident unless the Grinton Moor peat sample is included. 

The agricultural soil samples do have a wider distribution of particle size, pH, suface area, 

%Fe, %A1, %Mn and %Si but this is not the case for the important NMR results. 

The overall dataset variation was described and simplified using PCA, with these results 

tested as predictors in stepwise regression. The Abattoir and Salt Meadows both have 7 

principal components that can account for over 90% of the variance in their datasets. The 

measured soil characteristics have groups of interrelated parameters (particle size 

measurements, NMR fractions) that increase the complexity of PCA analysis without 

appreciable benefit. The correlation between these parameters was visualised using matrix 

plots. PCA analysis also suggested a correlation between the species measured by ICP-OES 

(Fe, Al, Mn & Si) obtained from the dithionite-citrate-bicarbonate (DCB) extractions. This 

was confirmed using matrix plots with data from The Abattoir showing a stronger correlation 

than Salt Meadows. 

The number of parameters used in PCA analysis from The Abattoir dataset was reduced 

using two different methods (retention & removal). Both methods gave similar results and 

reduced the number of PCs required to account for 90% of the datset variation from 7 to 5. A 

noticeable difference between The Abattoir and Salt Meadows PCA analysis was the NMR 

parameters having the largest coefficients in PCI & PC2. The Abattoir has large coefficients 

for O-alkyl and aryl C whereas Salt Meadows has large coefficients for alkyl and O-alkyl C. 

Stepwise regression analysis found useful predictors (R2 > 70%) for 14 of The Abattoir 

soil measurements compared to 8 for Salt Meadows. The regression equations were generally 

improved upon by transforming the distribution of predictors to normality. Three different 

transformations were used (square root, log & power) with this dependent on how far the 

variable was from being normally distributed. 
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Further tests were undertaken to check whether the different transformations would 

affect stepwise regression results. It was found that only the % Al transformation for The 

Abattoir data had an appreciable effect, giving an 18% improvement in the prediction of 

Ar C. To check for multicollinearity, variance inflation factors (VIF) were calculated as part 

of all stepwise regression calculations. Any predictor with a VIF value above 5 was removed 

in order of least importance from the dataset used for stepwise regression. The removal of 

these collinear predictors tended not to greatly affect results. The only exception to this is 

predicting The Abattoir alkyl C variable where the PCA scores of the particle size and DCB 

extraction subsets is required. This allows prediction of 57% of the variation shown by The 

Abattoir alkyl C. 

Using the principal components from PCA as predictors in stepwise regression can help 

reduce high VIF values. The increase in the R2 values of regression equations must be 

weighed against the added complexity of undertaking two separate analyses. It is also more 

difficult to interpret results obtained using principal components that may have several 

important coefficients from seemingly different soil measurements. 

The moisture content of The Abattoir soil samples was used as an example of the 

technique to model spatial distribution and variability. To obtain good results when 

undertaking spatial modelling requires more sample points than present at either The Abattoir 

or Salt Meadows. When modelling the empirical variogram it was found that a circular model 

gave the lowest error (R2 = 0-9741) to give a range for spatial correlation of 26m. Using this 

model variogram it was then possible to produce a kriged map of the variation of moisture 

content over The Abattoir site. 
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4 Adsorption Modelling 

4.1 Introduction 

When measuring organic contaminant adsorption in soils, it is widely used practise to 

convert the adsorption coefficient K<j to the organic carbon normalised adsorption coefficient 

Koo By correcting for organic carbon, Koc is to a large degree independent of the soil but 

will still be subject to variation in secondary controls that include clay content, surface area, 

pH and the nature of the organic matter (Andersson et al., 2002; Reddy & Locke, 1994). 

There are many studies that have correlated (log) Koc to the (log) octanol/water partition 

coefficient (logKoWalso known as logP) of organic adsorbates (Seth et al, 1999; Sabljic et al. 

1995; Karickhoff, 1981). The aqueous solubility (Log S) of organic chemicals has also been 

widely used and is highly correlated to log Kow (Sablji6 et al. 1995). 

A major problem when modelling adsorption is the large variation in experimental Koc 

values for a given organic compound. Paya-P6rez et al. (1992) found that the Koc value for 

atrazine varied by a factor of four whilst Hornsby et al (1996) concludes that Koc values can 

change by an order of magnitude over a single study site and by several orders of magnitude 

between different locations. The variation in Koc values is shared by variation in 

experimental Kow values. Sabljic (1987) showed that experimental Kow values had ranges 

between 0-5 and 3 3 log units and that when using these Kow values in published quantitative 

models for calculating soil sorption coefficients, the resulting predicted coefficients had an 

average range of 1 - 5 log units (a factor of 35). It is therefore evident that any modelling of 

adsorption cannot overcome the variation and uncertainty in experimental Koc values. 

There have been numerous studies undertaken to further enhance the modelling of Koc 

variation. Grathwohl (1990) showed that log Koc was correlated with the hydrogen/oxygen 

(H/O) atomic ratio of the soil organic matter, and this allowed adjustment of Koc values 

calculated using Kow- This work followed on from a study by Garbarini & Lion (1986) that 

found Kd values for trichloroethylene and toluene were correlated not only to the fraction of 

organic carbon in the adsorbents but also the percentage of oxygen and sulphur (as found by 

difference using CHN analysis and % ash). 
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Experimental values of Kow have been shown to vary considerably but many computer 

programs (For example: HyperChem®, Pallas, KowWin, DRAGON & TOPKAT®) can now 

calculate Kow (logP) from first principles using molecular and atomic parameters. This leads 

onto the wider application of chemometrics, where molecular parameters are calculated and 

then used to discern how the intrinsic properties of the molecule account for its behaviour. 

Chemometric studies are widely used in the pharmaceutical industry to develop Quantitative 

Structure Activity Relationship (QSAR) models that inform drug design by linking biological 

activity to molecular parameters. 

Research by Randic (1976) led to a skeletal branching index that correlated with 

physical properties of alkanes, whilst Kier & Hall (1976) wrote a seminal book discussing the 

use of molecular connectivity indices after earlier relating connectivity to the activity of local 

anaesthesias. The branching index envisaged by Randic is now termed the first order 

connectivity index and is calculated as the sum of the reciprocal square root products of the 

hydrogen-suppressed vertex valences (Hall & Kier, 2001). The vertex valences are a count of 

the neighbours a carbon atom has and therefore it's branching. 

The first order connectivity index chi ('x) is defined in Equation 4.1. As 'x only 

accounts for sigma electrons and treats all atoms as carbon sp3, to account for pi (rc) and lone 

pair (n) electrons in second row atoms in the periodic table, first order valence indices ('x*) 

must be calculated as shown in Equation 4.2. Higher order connectivity indices can be 

calculated based on: 

•t* A set of connected edges where no vertex can be counted more than once (path). 

• A set of connected edges where a vertex must be counted more than once (cluster). 

• A set including both types of vertices (path-cluster). 

These calculations are carried out using Equation 4.3. 

The first order connectivity index x equals: Equation 4.1 
k 

The first order valence indices xv equals: 
k 

Equation 4.2 

Higher order valence connectivity indices "x, equals: Equation 43 

Where: 6 = the sigma electron count 
Sv = the valence electron count 
m = the number of edges 
t = subgraph type (path p, cluster c or path-cluster p-c) 
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Connectivity indices have been widely utilised to predict soil sorption coefficients. 

Boethling et al. (1992) showed that 96% of the variation in Koc (86% in the validation 

dataset) was successfully predicted by 'x but required the addition of polarity correction 

factors for any compounds with polar fragments. Tao & Lu (1999) did a similar study using 

connectivity indices and polarity factors to estimate Koc for 543 chemicals (400 used in 

development & 143 in validation). Connectivity indices are only one aspect of a huge number 

of topological parameters and molecular properties that can be calculated from first principles 

and semi-empirical methods. Lohninger (1994) showed that the Koc values of a large 

pesticide dataset (120 used as a training set & 81 used as a test set) could be modelled using 

eleven descriptors. Of these eleven descriptors, only two were topological indices, the other 

nine describing various structural fragments. 

Reddy & Locke (1994) did not use topological indices at all, but predicted the Koc 

values of 71 herbicides using semi-empirical molecular properties calculated using the 

computer program Chem-X. Four semi-empirical properties, namely Van der Waals volume, 

molecular polarisability, dipole moment, and energy of highest unoccupied molecular orbital 

accounted for 70% of the variation in Koc values. Many Koc prediction methods are specific 

to particular classes of chemicals and cannot be broadened to include differing chemical 

groups. Andersson et al. (2002) showed that whilst calculated logP (LogKow) values allowed 

estimation of Koc values to indicate sorption potential, other descriptors were required to 

allow more accurate Koc prediction, with these descriptors limited to compound classes and 

specific chemical characteristics. 

The application of QSAR techniques in soil sorption allows agro-chemists to screen 

potential pesticides & herbicides before synthesis. The potential environmental fate of these 

agro-chemicals can be ascertained in a similar way as their potential biological potency. 

Worrall (2001) showed that pesticides could be discriminated between polluting and non-

polluting using the sixth-order molecular path connectivity (Vp)- T W s one parameter 

accounted for 86% of the variation in the dataset. When a pesticide had a 6x v

p value of less 

than 0-55, it was likely to be polluting (i.e. found in groundwater). 
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4.2 Adsorbate Molecular Parameter Calculations 

The adsorbate molecules used in this study are shown below in Figure 4.1 together with 

some basic parameters. The molecular structures shown in Figure 4.1 were manually drawn 

using Hyperchem® software (version 7, obtained from Hypercube Inc.). After drawing, the 

structures needed to be geometrically optimised. Hyperchem® has many methods of 

undertaking geometrical optimisation. The standard optimisation settings chosen are the same 

as used by Huq & Yu (2002) and Comelissen et al. (2005) namely the Polak-Ribiere 

(conjugate gradient) algorithm in vacuo with termination conditions of a RMS gradient of 

OOlkcal/Amol (or a maximum of 240 cycles). These settings were used in conjunction with 

three different molecular modelling methods: 

• The semi-empirical Parametric Method 3 (PM3) 

• The semi-empirical Austin Model 1 (AMI) 

•> The molecular mechanics MM+ method (Hyperchem® default) 

Figure 4.1: Adsorbate Molecules with Basic Parameters 

Benzene 

CeH6 

Molar Mass: 

78-llg/mol 

Solubility in Water: 

l-79g/l(25<C) 

O H 

Phenol 

C6H5(-OH) 

Molar Mass: 

94-llg/mol 

Solubility in Water: 

98-0g/l (25 <C) 

O H 

Q 
para-Cresol 

C6H4(-OH)(-CH3) 

Molar Mass: 

108 14g/mol 

Solubility in Water: 

190g/l(25<C) 

Q 
para Xylene 

C6H4(-CH3)2 

Molar Mass: 

106 16g/mol 

Solubility in Water: 

sparingly soluble 
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The PM3 and AMI semi-empirical methods listed above make less drastic 

approximations than other semi-empirical methods and are therefore generally accepted to 

give better results for organic molecules (Huq & Yu, 2002). This does not preclude PM3 and 

AMI calculations giving poor results that should be viewed as part of an overall trend rather 

than accurate prediction of a molecular property. Semi-empirical calculations have no 

associated statistical error but may contain systematic error linked to the assumptions required 

to enable computation. This computational error is considered to be approximately constant 

throughout a series of related compounds (Karelson et al., 1996). 

The MM+ molecular mechanics method of geometry optimisation is a variant of the 

widely used MM2 force field parameter. The MM2 modelling parameter was first developed 

in 1977 and was updated in 1991, retaining the same functional form but having a new 

parameter set. The MM+ force field is of the same form as MM2 but is extended to include 

molecular dynamics calculations and code allowing generation of missing parameters 

(Hocquet & Langgard, 1998). Huq & Yu (2002) found that the results of MM+ molecular 

mechanics calculations did not describe the solubility difference between 

2-hydroxypyridine and 3-hydroypyridine as well as AMI semi-empirical calculations. 

Hyperchem allows the user to rotate the loaded structure in three dimensions visually 

on-screen. After manually drawing the four adsorbates, all structures were planar before 

geometric optimisation. The carbon ring structure of benzene is planar by nature but this is 

not the case regarding the attached -CH3 groups in p-xylene and p-cresol. The sp3 hybridised 

-CH3 group should have molecular symmetry and be three-dimensional in nature. 

During geometric optimisation, Hyperchem® updates the screen image of the molecule 

undergoing optimisation after each cycle. This allows the user to visually follow the 

optimisation process and was most evident when the structure included a -CH3 group (p-

cresol & p-xylene). The three molecular modelling techniques used for geometric 

optimisation (PM3, AMI & MM+) all started using the same manually drawn structures and 

settings but gave different optimised results with only PM3 optimisation giving non-planar -

CH3 groups in p-xylene and p-cresol. 
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The PM3 optimised p-cresol molecular structure is compared to the initial manually 

drawn (planar) structure in Figure 4.2. Due to the graphical evidence that AMI and MM+ 

optimisation was not resolving the planar nature of -CH3 groups, the optimisation routines 

were run cyclically in the order PM3 —» AMI —» MM+. After three cycles, all values being 

recorded had stabilised and separate Hyperchem® files were saved after the last run of each 

optimisation routine. The values computed by Hyperchem® are listed in Table 4.1 with the 

actual values for the four adsorbates listed in Appendix 7.3. It should be noted that the QSAR 

properties LogP, refractivity, polarisability and molecular weight are independent of any 

optimisation routine. The method used also did not compute HOMO and LUMO orbital 

energies for the MM+ optimised structures. 

Figure 4.2: Comparison of PM3 Geometrically Optimised p-Cresol Structure with 

Manually Drawn Hyperchem® Structure 

r 
PM3 Optimised Manually Drawn 
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Table 4.1; Hypcrchem Computed Adsorbate Properties 

QSAR Properties: 

• Surface Area (approximate) (A2) • LogP 

• Surface Area (grid) (A2) • Refractivity (A3) 
• Volume (A3) • Polarisability (A3) 
• Hydration Energy (kcal/mol) • Molecular weight 

Molecule Properties: 

• Total Energy (kcal/mol) • Dipole Moment (D) 

Orbitals: 

• HOMO(eV) • LUMO (eV) 

As previously stated there are a number of different computer programs that allow 

computation of a multitude of molecular parameters. Hyperchem® was used to generate the 

optimised structures of the adsorbates and their associated parameters given in Table 4.1. The 

computer program DRAGON (version 5.4) can calculate an array of 1664 molecular 

descriptors. A selection of topological & constitutional descriptors, connectivity indices and 

molecular properties (53 parameters) were calculated for the adsorbates and are given in 

Table 4.2. Definitions of the parameters are available in a handbook written by the developers 

of the DRAGON software package (Todeschinni & Consonni, 2000). 

153 



Table 4.2: Molecular Parameters Computed Using DRAGON 

Sum of atomic Van der Waals 
volumes (scaled on carbon atom) 

Mean atomic Sanderson electronegativity 
(scaled on carbon atom) 

Sum of atomic polarizabilities Mean atomic Van der Waals volumes 
(scaled on carbon atom) 

Mean atomic polarisability Sum of atomic Sanderson electronegativities 

E-state topological parameter Sum of Kier Hall electrotopological states 

Kier symmetry index 1-path Kier alpha-modified shape index 

Path/walk 2 - Randid shape index 2-path Kier alpha-modified shape index 

Path/walk 3 - Randic shape index 3-path Kier alpha-modified shape index 

Path/walk 4 - Randic shape index Average connectivity index °xA v 

Path/walk 5 - Randic shape index Average connectivity index 'xAv 

Connectivity index °x Average connectivity index 2x A v 

Connectivity index 'x Average connectivity index 3x A v 

Connectivity index 2% Average connectivity index 4x A v 

Connectivity index x Average connectivity index 5x A v 

Connectivity index 4x Valence connectivity index °xv 

Connectivity index 5x Valence connectivity index V 

Solvation connectivity index V Valence connectivity index 2xv 

Solvation connectivity index 'xs Valence connectivity index 3xv 

Solvation connectivity index 2x s Valence connectivity index 4xv 

Solvation connectivity index 3xs Valence connectivity index 5xv 

Solvation connectivity index V Average valence connectivity index V 

Solvation connectivity index V Average valence connectivity index 'xv 

Hydrophilic factor Average valence connectivity index 2xv 

Ghose-Grippen molar refractivity Average valence connectivity index 3xv 

Morigux Kow Average valence connectivity index V 

Ghose-Crippen Kow Average valence connectivity index 5xv 

Modified Randic connectivity index Reciprocal distance squared Randic-type index 

Reciprocal distance Randid-type index 
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4.3 Experimental Adsorption Results 

The results of adsorption experiments carried out in Sheffield University were received 

as an excel spreadsheet separated into sections for each of the four adsorbates. The Kd values 

were calculated using the initial adsorbate concentrations that gave a linear response when 

plotted as Cs versus C a q. The %OC data provided to Sheffield University (see Section 2.2.10), 

was corrected for non oxidisable carbon by applying a multiplication factor of 1 -3 to give the 

total percentage organic carbon (%TOC). The %TOC allows the fraction of organic carbon 

(foe) to be calculated (see Equation 2.10) and in turn allows calculation of Koc values 

(see Equation 2.11). 

As discussed in Section 4.1, Koc values for organic adsorbates vary widely and are 

difficult to obtain experimentally. I f each of the 15 soils given in Table 2.4 had Kd measured 

for all adsorbates there would be a dataset of 60 values. This number would increase to 68 i f 

the adsorption data (for p-cresol & p-xylene) for the 4 validation soils from Image Hill are 

included. Due to laboratory difficulties a total of 59 IQ values found below were obtained 

from Sheffield University. An example of an adsorption isotherm (for p-cresol onto SM 0804) 

is given in Figure 4.3. A trendline showing the gradient of the initial linear concentrations 

(R2 = 0-9107, n=2) gives a K<i value of-100 Lkg'1. 

Figure 4.3; Isotherm of p-Cresol Adsorption onto SM 0804 
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4.3.1 Phenol 

The adsorption results for phenol are given in Table 4.3. The goodness of fit of linear 

isotherms to the phenol data is gauged by the R values. It should be noted that all linear 

isotherm R2 values are calculated using three or four points inclusive of the origin. The 

highest Kd & Koc values measured are for AB 07/3 19/2 and SM 1113 (0-10) respectively. 

The lowest values area those found for BS3 and JY2. The high values for AB 07/3 19/2 and 

SMI 113 (0-10) are difficult to account for whereas BS3 does have the lowest %TOC and 

LOI375 of the soils given in Table 4.3. A plot of Kd against %TOC as shown in Figure 4.4 

without Grinton Moor peat for clarity, demonstrates that there is no linear relationship 

between adsorption and organic matter. Phenol is a polar molecule that has the highest 

solubility in water of the 4 adsorbates studied here. Phenol adsorption is therefore controlled 

by other factors including clay content and structure. 

Table 4.3: Experimental Adsorption Coefficients of Phenol 

Soil Kd 
(linear model) 

R2 

(linear model) 
Koc 

(linear model) 

QC 362 0-93 14406 

MLl 12 0-94 256 

BS1 72 100 2223 

BS3 2 0-86 170 

GMP 54 100 137 

Chalk 24 0-97 823 

SM 1113 (0-10 D) 361 0-93 11436 

SM 1113(10-20 D) 97 0-65 2873 

SM 0804 106 0-57 3131 

SM 0806 50 0-92 1687 

SM 10/6 12/7 302 0-93 9730 

Coal 1 45 0-95 650 

AB0722 134 0-99 4020 

JY2 4 0-48 105 

AB 07/3 19/2 720 0-90 14421 

Carb lime 1 6 0 71 147 
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Figure 4.4: Graph of Phenol K,i values versus %TOC 
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4.3.2 p-Cresol 

The adsorption results for p-cresol are given in Table 4.4. The R2 values tend to be less 

than the comparable results found for phenol. The highest Kd & Koc values are found for 

M L l . The lowest Kd value is found for JY2 with the lowest Koc value found for Coal 1. The 

range of Kd values shows a much larger range than those given for phenol in Table 4.3. The 

plot of Kd against %TOC given in Figure 4.5 shows some evidence for linear trends when 

data from individual sites are viewed separately. The Salt Meadows and Image Hill soils 

appear to be linearly distributed, albeit with markedly different gradients. It should be noted 

that the %TOC values for the Salt Meadows soils do not have a large distribution, which may 

account for the linearity of their distribution. Further evidence for this is that the depth 

samples from Salt Meadows may lie on a linear trend but have a large variation that is not 

accounted for by their similar %TOC values (3 16 & 3-38%). This differs for the Image Hill 

64050 depth sample that has a very low %TOC value (0-71%) and trends towards an 

accordingly smaller Kd value in comparison to the other Image Hill soils. 
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Table 4.4: Experimental Adsorption Coefficients of p-Cresol 

Soil (linear model) 
R2 

(linear model) 
Koc 

(linear model) 

oc 1189 0-84 47320 
ML1 1873 0-97 40019 
BS1 194 0-95 5993 
BS3 39 0-83 3306 
GMP 76 0-93 193 
Chalk 15 0-75 515 
SM 1113(0-10) 359 0-98 11373 
SM 1113(10-20) 45 0-83 1333 
SM 0804 100 0-91 2954 
SM 0806 915 0-94 30885 
SM 10/6 12/7 13 0-89 419 
18 38 0-93 676 
6010 40 0-93 374 
64050 10 0-99 1410 
31 44 0-97 292 
Coal 1 12 0 91 174 
AB0722 21 0-99 630 
JY2 9 0-94 237 
AB 07/3 19/2 12 0.92 240 
Carb lime 1 225 0.94 5509 

Figure 4.5: Graph of Para-Cresol Kg values versus %TOC 
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4.3.3 p-Xvlene 

The adsorption results for p-xylene are found in Table 4.5. The adsorption values found 

have a distribution range in-between phenol and p-cresol but do not have any of the 

associated low values found in Table 4.3 or Table 4.4. The R2 values for p-xylene linear 

isotherms tend to be comparable to those found for phenol. The highest Kd value is for GMP 

but the corresponding Koc value for GMP is the lowest in the range, reflecting its high 

%TOC. The converse is found for 64050 which has the lowest Kd value but the second largest 

Koc value after BS3, both of which have low %TOC values (0-71 & 118% respectively). The 

Salt Meadows depth samples for p-xylene show the opposite trend as p-cresol. The slightly 

deeper sample from SMI 113 (10-20cm deep as opposed to the top 10cm layer) has higher Kd 

& Koc values whereas the much deeper layer from Image Hill sample 6 (40-50cm deep as 

opposed to the top 10cm layer) has a lower Kd value with a correspondingly higher Koc value 

due to its low %TOC. The plot of Kd versus %TOC for p-xylene adsorption (Figure 4.6) 

shows similar trends for the Salt Meadows and Image Hill data as plotted in Figure 4.5. This 

adsorbate is less polar than the others studied here and therefore more adsorbent on soil 

organic matter. 

T a b l e 4.5: Exper imenta l Adsorpt ion Coefficients of p-Xvlene 

Soil Kd 
(linear model) 

R2 

(linear model) 
Koc 

(linear model) 

QC 174 0-98 6938 
MLl 87 0-92 1868 
BS1 185 0-91 5709 
BS3 156 0-95 13240 
GMP 249 0-69 633 
Chalk 89 0-98 3054 
SM 1113(0-10) 86 0-94 2724 
SM 1113(10-20) 206 0-80 6109 
SM 0804 178 0-64 5251 
SM 0806 118 0-98 3997 
SM 10/6 12/7 169 0-83 5453 
18 143 0-97 2545 
6010 179 0-83 1664 
64050 82 0-99 11519 
31 223 0-96 1478 
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Figure 4.6: Graph of p-Xvlene K* values versus %TOC 
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4.3.4 Benzene 

The adsorption results for benzene can be found in Table 4.6. Laboratory pressures 

unfortunately mean that this dataset is smaller than for the other adsorbates. The linear 

isotherms again have R2 values comparable to the quality of the other adsorbates. Again GMP 

has the highest and lowest Kd & Koc values respectively. The lowest Kd value was found for 

chalk and the highest Koc value is again for BS3. The Kd values for benzene are plotted 

against %TOC in Figure 4.7. Because there are only 8 data points on Figure 4.7 it is difficult 

to infer any possible trends. 

Table 4.6; Experimental Adsorption Coefficients of Benzene 

Soil Kd 
(linear model) 

R2 

(linear model) 
Koc 

(linear model) 

ML1 103 0-95 2191 
BS1 21 0-98 648 
BS3 39 100 3284 
GMP 155 0-99 395 
Chalk 17 0-80 593 
SM 1113 (0-10) 42 0-99 1316 
SM 1113 (10-20) 74 0 86 2187 
SM0806 62 0-84 2097 
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F i g u r e 4.7: G r a p h of Benzene K,i values versus % T O C 
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In conclusion, 58 adsorption coefficients were calculated for the 4 adsorbates using the 

initial linear concentrations. These Kd values tended to have good linear relationships with 

almost all having R2 values above 80%. Using the fraction of organic carbon, as calculated 

from %OC results, allows calculation of Koc values. Plots of Kd versus %TOC would give 

linear relationships for each adsorbate i f %TOC was a correlated, controlling factor. This is 

not the case for phenol or p-cresol.The adsorption of p-xylene does appear somewhat 

controlled by %TOC for the Salt Meadows and Image Hills subsets, whereas there is not 

enough data to discern any relationship between benzene adsorption and %TOC. 

The soils that have %TOC values at either end of the given range also tend to show the 

widest distribution of Koc- Grinton Moor peat has high values of Kd for p-xylene and benzene 

but correspondingly low values of Koc due to its high organic carbon content (%TOC). Soils 

with high values of Koc tend to be the samples with low %TOC values {BS3, SMI 113(10-20) 

& 64050} with two of these also being depth samples. 
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4.4 Adsorpt ion Model l ing Methodology 

Modelling of adsorption was carried out using the two methods given in Sections 4.4.1 

& 4.4.2. Section 4.4.1 takes the adsorbates separately and models their variation using the 

collected soil parameters whereas Section 4.4.2 uses the soil parameters and the calculated 

molecular parameters of the adsorbates. The same analysis as used in Chapter 3 was used, 

namely multiple stepwise regression. Stepwise regression is explained in Section 3.3.2 with 

this method also being used in Sections 4.4.1 & 4.4.2. This involves an initial analysis using 

the raw data before normalising each measurement. The level of normalisation required by the 

K<i and Koc datasets is shown but it should be noted that both had their natural logarithms 

taken as this is frequently how they are reported in the literature. Adsorbate parameters were 

normalised but should be viewed with caution due to there being only four values for any 

parameter. Variance inflation factors (VIFs) were accounted for in Section 3.3.2 and are 

measured here again. However, R.andic" (2001) states that molecular descriptors which show 

high correlation, and therefore high VIF values should not be discarded. This is due to the fact 

that it is the small difference between two highly correlated molecular descriptors that may 

provide useful information to allow better prediction of some molecular behaviour. 

The results shown in Section 4.3 suggest that the Salt Meadows and Image Hill data 

show linear correlations between adsorption and %TOC. Although taking these subsets 

individually will greatly reduce the number of points that prediction is based on, this was 

undertaken. It should also be noted that Image Hill soils were originally sampled and 

underwent adsorption experiments as a validation dataset for models produced using data 

from Salt Meadows, The Abattoir and agricultural soils. The data from Image Hill can 

however be viewed as coming from a different subspace to the other soils. 
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Validation of adsorption modelling was therefore undertaken using the following 

methods: 

• PRESS Statistic. The sum of the squares of the prediction error (PRESS) assesses a 

model's predictive ability. This is achieved by removal of the ith observation from the 

dataset, estimating the regression equation using the remaining n-1 observations and 

then using the fitted regression function to obtain a predicted value for the ith 

observation. The smaller the PRESS value, the better the model's predictive ability. 

• Predicted R2. The predicted R2 value is calculated from the PRESS statistic, with 

higher values suggesting a model with a greater predictive capability. It is therefore 

useful to compare the predicted R2 value with the R2 value as this allows a comparison 

of how well the model predicts unknown values compared to how well the actual 

observations fit the model. 

• Split The Dataset. The dataset was split randomly into training and validation subsets 

with a 4:1 ratio. This gives a validation subset of 10 observations (-20% of the complete 

dataset). Models calculated from the training subset can be compared to models created 

from the whole dataset and the predictions for the validation subset can be compared to 

actual values and results obtained from the whole dataset. 
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4.4.1 Single Compound Models 

The following sub-sections contain tables detailing the results of stepwise regression 

analysis on individual adsorbates. It is immediately evident that the results based solely on 

Salt Meadows data suffer from the size of the dataset (n=6). This leads to Minitab warning 

that there is insufficient data to add additional predictors during stepwise regression. The 

same warning is also displayed when performing stepwise regression on the Image Hill 

dataset (n=4). The benefits in transforming such small datasets to normality can also be 

questioned. The results of stepwise regression of the K<j and Log Kd adsorption values found 

are given in Appendix 7.4. 

4.4.1.1 Phenol 

Taking the results for Salt Meadows, adsorption is predicted by the percentage aryl and 

carboxyl carbon as found by 13C NMR. Although these two parameters are both sections of 

the overall l 3C NMR signal, they give low VIF values indicating limited multicollinearity. 

Over 90% of the variation in adsorption can be predicted, with the resulting equations having 

a large (-90%) predictive capacity. Carrying out stepwise regression using transformed 

variables increases the number of predictors (from two to three or four), which in turn 

increases the R values of adsorption prediction. 

The phenol adsorption values for all soils are somewhat different to the Salt Meadows 

dataset. Using all data (n=16), phenol adsorption is more accurately modelled with %Mn and 

pH as predictors. Adsorption prediction is then further enhanced by the addition of various 

NMR variables including carboxyl carbon. The overall R2 values for the complete phenol 

dataset are in the 80-90% range. The predictive capacities of the found relationships are much 

lower than those found for the Salt Meadows dataset and vary from -40% to -70%. It is also 

worth noting that transformed predictors do not improve the prediction of phenol adsorption 

when using the whole dataset. 

When comparing the phenol Kd stepwise regression results to the log Kd regression 

results given in Appendix 7.4.1, it is evident that taking the log of the adsorption gives a 

stronger correlation with the chosen predictors. By taking the log of the Kd data it is possible 

that the adsorption values distribution is transformed to more closely match the distribution of 

predictor variables. 

The Kd values found for phenol adsorption have been modelled but stepwise regression 

does not pick a direct measure of organic matter/carbon (%OC or LOI375) as important in 

predicting variation in adsorption. Organic carbon normalised adsorption coefficients have 

never the less been calculated and undergone stepwise regression, with the results again given 

in Appendix 7.4.1. 
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No variables show correlation with the Koc values found for the Salt Meadows soils. 

However, log Koc values from Salt Meadows show similar correlation to K<j values. Again 

aryl and carboxyl carbon are important predictors, followed by the moisture content. Perfect 

R2 values (100%) when predicting six adsorption values using four variables should be 

viewed with extreme caution. However, using aryl carbon as a single predictor accounts for 

58-84% of the variation (P=0 075) shown by phenol adsorption (log Koc) on Salt Meadows 

soils. 

The results of stepwise regression on the whole phenol dataset for log Koc are more 

stable than those for Salt Meadows in that taking the log of the Koc values makes little 

difference. Again pH and %Mn are important predictors followed by an NMR predictor (alkyl 

or carboxyl carbon) or log LOI375. Because these adsorption values have been normalised for 

organic carbon content, any correlation with LOI375 may in fact be an underlying affect 

based on the multicollinearity between LOI375 and %OC. Removing log LOI375 from 

stepwise regression results in Minitab finding a larger number of statistically valid predictors, 

with a corresponding increase in R2 values (increases from -90% to -99% for log Koc 

prediction). 

4.4.1.2 p-Cresol 

Adsorption data for p-cresol was collected on a total of 20 soils including both Image 

Hill and Salt Meadows subsets. The adsorption of p-cresol to Image Hill soils shows a strong 

correlation with %Mn, which was also evident in some phenol adsorption results. Adsorption 

to Image Hill soils also have LOO 75 as a predictor, as would perhaps be expected from 

agricultural soil and the common practise of normalising K<| to Koc- The other predictor for p-

cresol adsorption in Image Hill soils is %A1. These three predictors give high VIF values and 

appear somewhat interchangeable (see Appendix 7.4.2). Again it should be noted that the very 

high R values based on such a small dataset should be viewed with caution. 

p-Cresol adsorption values for Salt Meadows soils are well predicted by %OC, 

accounting for 79% and 70% of the variation in K<i for raw and normalised data respectively. 

Increasing the number of predictors to four results in R2 values of 100% but again these must 

be viewed with caution. After calculating log Kd values, adsorption onto Salt Meadows soils 

is now predicting soley by carboxyl carbon and accounts for -55% of the variation in 

adsorption. 

165 



Taking all p-cresol adsorption data together, particle size parameters now become the 

most important predictors in stepwise regression. The percentage clay accounts for 30-40% of 

the measured variation in Kd & log Kd, and based on previous multicollinearity analysis in 

chapter 3, can be replaced by any of the other particle size measurements. The other 

predictors of p-cresol adsorption are %Si and aryl carbon, giving overall R2 values of 40-60% 

after correction for high VIF values. The percentage silicon found in the soils will be 

intrinsically linked to the mineralogy of the soil and therefore also the particle size 

distribution. 

It is worth noting that the tabulated R2 values for p-cresol vary from 40-100%. The 

variation in the predictive power [R2 (pred)] of the calculated regression equations is even 

greater. The predictive ability of Image Hill regression equations varies from 0 to -100%. 

This adds further caution to using such small datasets as all R2 values are greater than 98%. 

When using all available p-cresol adsorption data, there is still a large variation in predictive 

ability. This ranges from 0-75% to 24-25% after correction for high VIF values. 

The Kd result for p-cresol showed some correlation with organic matter/carbon 

measures. Correcting for organic carbon gives the Koc and log Koc values that underwent 

stepwise regression, with the results given in Appendix 7.4.2. The R2 values found for 

predicting Image Hill Koc & log Koc values are all greater than 95%, with the lowest 

predictive capability now -75%. Image Hill log Koc values are predicted largely by LOI110 

and to a lesser degree % sand whereas Koc is predicted by SSA or, when using transformed 

predictors, VLOI375 and O-aryl carbon. 

Salt Meadows Koc and log Koc values are largely predicted to a similar extent as Kd and 

log Kd except when predicting Koc using transformed variables, where no significant 

predictors are found. The Koc values from Salt Meadows are largely predicted by carboxyl 

carbon (69-54%) and %Mn (18-22%) when using the raw predictors as opposed to the 

transformed ones. 

The Koc and log Koc values for the whole p-cresol dataset are very similar to the results 

achieved for Kd and log Kd. This may be due to the results not being correlated with any 

predictor that could be construed as a proxy to organic matter. Clay again is the largest 

predictor. 
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4.4.1.3 p-Xvlene 

A total of 15 soils had p-xylene adsorption coefficients collected experimentally. This 

includes the Image Hill and Salt Meadows subsets. Stepwise regression results for Kd and log 

Kd (raw & transformed data) are given in Appendix 7.4.3 and all have different predictors 

giving R2 values greater than 98%. The resulting regression equations have high predictive 

capabilities but as previously described must be viewed with caution due to the dataset size. 

In comparison, the Kd and log Kd results for Salt Meadows soils all have %A1 as the 

largest predictor of adsorption (-75%). Various NMR variables then account for -20% of the 

variation in adsorption, with the overall R2 values increased to -100% by small contributions 

from various other predictors. Again R2 (pred) varies from 0 to values approaching 100%. 

Taking all p-xylene adsorption data together (n=15), stepwise regression of the Kd and 

log Kd values gives either %OC or LOB 75 (log transformed) as the sole predictor. The 

variation associated with the organic matter measures is 30-40% but again the predictive 

capability varies from zero to a maximum of -26%. 

Stepwise regression results using all Koc & log Koc values for p-xylene are given in 

Appendix 7.4.3. Results for the Image Hill soils give, in many cases, %Mn as a predictor. 

Other important predictors include LOI375, %silt and the NMR variables carboxyl and 

O-aryl carbon. Again R values are all close to 100% but R (pred) vary from zero to -100%. 

The results for Salt Meadows soils are similar to the Kd & log Kd results in that again 

%A1 explains the largest proportion of adsorption variation (-70%). All Salt Meadows 

stepwise regression results also have the % silt as the next most important predictor 

(attributable R2~25). The R2 (pred) values for Salt Meadows soils are again more stable than 

those shown for Image Hill soils and vary from -75% to -100%. 
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4.4.1.4 Benzene 

Adsorption data for benzene was only collected for eight soils. The limited size of the 

dataset (n=8) results in the same problems accounted with the Image Hill and Salt Meadows 

subsets. Stepwise regression results are again given in Appendix 7.4.4. Important predictors 

for the Kd & log Kd include %Si, LOI110, LOI375, %Fe & %A1. The R2 values are all above 

90%, with R2 (pred) values ranging from -40% to -90% after correction for high VIF values. 

After normalising Kd values to Koc values, stepwise regression of the benzene dataset 

yields on surface area as a predictor. Surface area predicts -40% of the variation shown by 

Koc but has R2 (pred) values of -3%. Log Koc results, shown in Appendix 7.4.4, has six 

predictors accounting for 100% of the variation in the raw data. Again this should be viewed 

with caution as after correcting for large VIF values the R2 value barely drops but R2 (pred) 

falls from -50% to zero. Transfomation gives only log LOI375 as a predictor of log Koc and 

accounts for -45% of the variation found. 
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4.4.2 Multi-Compound Models 

The adsorption results used individually for each adsorbate in Section 4.4.1 are now 

combined to allow the addition of molecular descriptors to stepwise regression. Inevitably this 

means that whilst there are a total of 59 adsorption values, the bottleneck in the dataset is the 

four organic chemicals used to study adsorption behaviour. Stepwise regression results are 

given individually for Kd, log Kd, Koc & log Koc in Tables 4.7-4.10 respectively. The n 

values given in these tables are for the total number of adsorption values used in stepwise 

regression and not the number of discrete sets of molecular descriptors. For example, n is 

given as 8 for the Image Hill dataset but adsorption data was only collected on Image Hill 

soils for p-cresol and p-xylene (n=2). 

The results of stepwise regression using Kd are given in Table 4.7. The variation in Kd 

shown by Image Hill soils is predicted by MMGrid SA & %Mn and accounts for -92% of the 

variation. MMGrid SA is a QSAR surface area property of the adsorbates whereas %Mn is a 

soil property. The Kd values of Salt Meadows soils are predicted by different molecular 

parameters, namely the sum of Kier Hall electrotopological states and, for the transformed 

dataset, the square-root of the Kier Hall symmetry index. Salt Meadows soils are not well 

predicted in the combined dataset (R2=~13%). 

Taking all Kd data together, stepwise regression gives three predictors including both 

adsorbate (E-state topological parameter) and soil (% clay & %A1) properties. These 

predictors account for less than 20% of the variation in Kd and have little predictive ability 

(-1%). In comparison to this, the combined log Kd dataset shown in Table 4.8 is better 

predicted (R2=~30%). The predictors include %Mn, valence connectivity index V and alkyl 

carbon for raw predictors and PM3 Approximate SA, V%Mn, %clay, log RpH & log %OC for 

the transformed predictors. Whilst these calculations are based on 59 log Kd values, again it 

must be remembered that there are only four molecular descriptor datasets. The transformed 

predictors used in stepwise regression therefore outnumber the actual number of unique 

molecular descriptor datasets. 

No predictors were found by stepwise regression for the log Kd Salt Meadows dataset. 

Image Hill log Kd values are predicted by log P and %Mn giving an R value of 96% and a 

high predictive capability (-86%). Log P is a QSAR calculated molecular property relating to 

the octanol-water partition coefficient and is often used to model organic chemical adsorption 

data in soil (see Section 4.1). 

169 



Table 4.7:1Q Stepwise Regression Results for all Adsorption Data & Including 

Molecular Descriptors 

Predictors R2 R2 

(adj) 
R2 

(pred) n 

Image Hill MMGrid SA %Mn 

92-24 8914 71 02 8 Attributable 
Variation 72-87 19-37 92-24 8914 71 02 8 

VIF Values 10 10 

92-24 8914 71 02 8 

Salt Meadows Sum of Kier Hall electrotopological states 12-60 7-46 0 19 

All Data 
E-state 

topological 
parameter 

%Clay %A1 

18-97 14-55 116 59 Attributable 
Variation 7-38 6-48 5-11 18-97 14-55 116 59 

VIF Values 10 2-8 2-9 

18-97 14-55 116 59 

Transformed Predictors 

Image Hill MMGridSA %Mn 

92-24 89-14 71-02 8 Attributable 
Variation 72-87 19-37 92-24 89-14 71-02 8 

VIF Values 10 1-0 

92-24 89-14 71-02 8 

Salt Meadows VKier symmetry index 13-52 8-44 000 19 

All Data 
Log RE-state 
topological 
parameter 

%Clay %A1 

19-79 15-41 0-64 59 Attributable 
Variation 906 613 4-60 19-79 15-41 0-64 59 

VIF Values 10 2-8 2-9 

19-79 15-41 0-64 59 
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Table 4.8: Log KA Stepwise Regression Results for all Adsorption Data & Including 

Molecular Descriptors 

LogKj Predictors R 2 R 2 

(adj) 
R 2 

(pred) n 

Image Hill LogP %Mn 

9600 94-40 86-57 8 Attributable 
Variation 72-39 23-61 9600 94-40 86-57 8 

VIF Values 10 10 

9600 94-40 86-57 8 

Salt Meadows None 

All Data %Mn Valence connectivity 
index chi-5 5x v Alkyl 

27-86 23-92 18-69 59 Attributable 
Variation 

14-67 6-95 6-24 27-86 23-92 18-69 59 

VIF Values 1-3 11 1-2 

27-86 23-92 18-69 59 

Transformed Predictors 

Image Hill LogP %Mn 

9600 94-40 86-57 8 Attributable 
Variation 72-39 2-61 9600 94-40 86-57 8 

VIF Values 10 10 

9600 94-40 86-57 8 

Salt Meadows None 

All Data 
PM3 

Approx 
SA 

V%Mn %Clay Log RpH Log 
%OC 

32-25 25-86 15-23 59 Attributable 
Variation 12-51 4-93 6.62 500 319 32-25 25-86 15-23 59 

VIF Values 11 1-6 1.1 1-5 1-6 

32-25 25-86 15-23 59 
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Normalising the K<j values to Koc values yield the stepwise regression results given in 

Table 4.9. Again the results for the Salt Meadows dataset give low R 2 values with a single 

predictor accounting for -12% of the variation in Koc values. Image Hill Koc values are 

predicted in a similar way as K<j and again have %Mn as a soil parameter predictor and a 

molecular parameter predictor, the sum of Kier Hall electrotopological states. This gives an 

R 2 value of -65% but with no predictive capability. 

Taking all Koc data together, stepwise regression yields three predictors (E-state 

topological parameter, %clay & %A1) accounting for -20% of the variation in Koo In the 

transformed dataset, after correction for high VIF values, 5 predictors account for -30% of 

the variation in Koc- Neither of the above results give a strong predictive capability, with 

R 2 (pred) values no more than -10%. Undertaking stepwise regression using log Koc yields 

the results in Table 4.10. The results for all log Koc data improves R 2 values to ~40% and 

gives R 2 (pred) values of 30-35%. The predictors now include moisture content, PM3 

approximate surface area and %Fe for the raw dataset with %Fe being replaced by %clay & 

%A1 in the transformed dataset. 

Log Koc stepwise regression results for the Salt Meadows dataset give no predictors 

whereas Image Hill is again well predicted (R2=~98%) by MM approximate SA, %Mn & 

%silt. Image Hill results also give a high R 2 (pred) value (-92%). 
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Table 4.9:Kr>r Stepwise Regression Results for all Adsorption Data & Including 

Molecular Descriptors 

Koc Predictors R 2 R 2 

(adj) 
R 2 

(pred) n 

Image Hill %Mn Sum ofKier Hall 
electrotopological states 

65 09 5113 0 8 Attributable 
Variation 38-76 26-33 65 09 5113 0 8 

VIF Values 10 1-0 

65 09 5113 0 8 

Salt Meadows E-state topological parameter 12-09 6-92 0 19 

All Data E-state topological 
parameter %Clay %A1 

21-93 17-67 7-27 59 Attributable 
Variation 8-37 6-33 7-23 21-93 17-67 7-27 59 

VIF Values 10 2-8 2-9 

21-93 17-67 7-27 59 

Transformed Data 

Image Hill %Mn Sum ofKier Hall 
electrotopological states 

65-09 51-13 000 8 Attributable 
Variation 38-76 26-33 65-09 51-13 000 8 

VIF Values 1-0 10 

65-09 51-13 000 8 

Salt Meadows VKier symmetry index 12-98 7-87 000 19 

All Data 
Log 

RE-state 
topological 

%Clay SSA 

21-09 16-78 611 59 
Attributable 

Variation 10-09 5-95 5-05 21-09 16-78 611 59 

VIF Values 10 127-8 127-7 

21-09 16-78 611 59 

Remove SSA 
Silt & Sand 

Log 
RE-state 

topological 
%Clay Log RpH %Si Carboxyl 

31-21 24-72 1007 59 Attributable 
Variation 1009 5-95 3-62 8-76 2-79 31-21 24-72 1007 59 

VIF Values 1-0 1-3 1-5 1-8 11 

31-21 24-72 1007 59 

173 



Table 4.10: Log K^r Stepwise Regression Results for all Adsorption Data & Including 

Molecular Descriptors 

LogKoc Predictors R 2 R 2 

(adj) 
R 2 

(pred) n 

Image Hill MMApprox 
SA %Mn %Silt 

98-30 9703 92-37 8 
Attributable 

Variation 54-45 42-15 1-7 98-30 9703 92-37 8 

VIF Values 10 2-7 2-7 

98-30 9703 92-37 8 

Salt Meadows None 

All Data %H 20 PM3 
Approx SA %Fe 

40-56 37-32 34-59 59 Attributable 
Variation 20-38 13-38 6-80 40-56 37-32 34-59 59 

VIF Values 11 11 1-2 

40-56 37-32 34-59 59 

Transformed Predictors 

Image Hill MMApprox 
SA %Mn %Silt 

98-30 9703 92-37 8 Attributable 
Variation 54-45 42-15 1-7 98-30 9703 92-37 8 

VIF Values 10 2-7 2-7 

98-30 9703 92-37 8 

Salt Meadows None 

All Data Log %H 20 PM3 
Approx SA % Clay %A1 

41-74 37-42 31-31 59 Attributable 
Variation 21-73 13 02 2-72 4-27 41-74 37-42 31-31 59 

VIF Values 1-1 11 3-2 3-1 

41-74 37-42 31-31 59 
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4.5 Summary 

The Hyperchem® and DRAGON computer programs allowed the calculation of a large 

array of molecular parameters. The adsorbate molecules containing CH3 groups (p-cresol & 

p-xylene) showed the shortcomings of geometry optimisation using 2 of the molecular 

modelling techniques employed by Hyperchem®, namely the semi-empirical Austin Model 1 

(AMI) and the molecular mechanics MM+ method. The semi-empirical Parametric Method 3 

(PM3) did however allow optimisation of all 4 adsorbate structures. When PM3 optimisation 

was run cyclically with the AMI & MM+ optimistaions, all optimisation routines achieved 

stable results after 3 cycles. 

Adsorption coefficients (Kd) were calculated from C s versus C a q plots having good linear 

relationships, with 51 out of the 58 R values above 80%. The quantity of organic matter in 

the soil samples does not control the adsorption of phenol or p-cresol. The adsorption of 

p-xylene does appear somewhat controlled by %TOC for the Salt Meadows and Image Hills 

subsets, whereas there is not enough data to discern any relationship between benzene 

adsorption and %TOC. Soils that have high (Grinton Moor peat) or low {BS3, 64050 & 

SMI 113 (10-20)} levels of organic matter show the widest distribution of Koc values. 

The results of adsorption modelling show that it is difficult to achieve good results with 

a small dataset. Single compound models give better results than the combined multi-

compound stepwise regression models but are based on smaller datasets. Normalising the 

calculated K j values for organic carbon content of the soil is not bourne out as a good 

standard method from the results given here. The %OC is only once found to be a good 

predictor, for Salt Meadows soils adsorbing p-cresol. Stepwise regression finds LOI375 as a 

predictor but this is often for Koc or log Koc values and therefore will be subject to the 

collinearity between %OC and LOI375. Other measured soil parameters are more consistently 

found to be better predictors of adsorption, namely %Mn, % carboxyl carbon, pH, %A1 and a 

particle size measure that tends to be % clay. 

Multi-compound models are found to have adsorption predicted by both soil and 

molecular parameters. Stepwise regression on the whole dataset consistently picks % clay and 

a molecular descriptor which tends to be the E-state topological parameter or the PM3 

approximate molecular surface area. These predictors do not predict even 50% of the 

variation shown in adsorption and so have little analytical use. They do however help describe 

the factors that affect adsorption to some degree. 

The adsorbates under study here are polar organic molecules and therefore may benefit 

from the addition of polarity correction factors. These have been successfully used in other 

studies to give good results with useable prediction of Koc values. 
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5 Black Carbon 

5.1 Development of New Methods 

Black carbon has a number of definitions (Lim & Cachier, 1996; Gelinas et al., 2001): 

• Sometimes referred to as charcoal or 'char', which encompasses any partially 

combusted organic matter formed at low temperatures (<600 °C) resulting in 

refractory carbonaceous products with particulate sizes ranging from 5 to 100/̂ w. 

• The product of combustion processes, both natural and anthropogenic, produced at 

temperatures greater than 600 °C, resulting in carbonaceous aerosols in the sub-/zm 

size. (Lim & Cachier, 1996) 

• A mixture of the above materials. (Gelinas et al., 2001) 

It has been suggested that black carbon may be partially responsible for the non-linear 

adsorption isotherms shown by some sediments and soils (Accardi-Dey & Gschwend, 2002; 

Chiou & Kile, 1998). There have therefore been a number of studies undertaken to try and 

quantify and characterise black carbon (Lim & Cachier, 1996; Gelinas et al., 2001; Huang et 

al., 2002). Lim & Cachier (1996) used dichromate oxidation to remove organic matter, 

leaving black carbon, which allowed the relative proportions to be measured using 

coulometric titration of the CO2 evolved by combustion at 1200 °C under pure O2. Gelinas et 

al. (2001) report a method for the removal of char/charcoal black carbon by heating at 375°C 

for 24 hours. This allows the quantification of the soot/graphitic black carbon fraction by 

CHN analysis. Huang et al. (2002) fractionated black carbon by first removing minerals 

(HC1/HF digestion), lipids (soxhlet extraction), humic acid (NaOH extraction) and kerogen 

(dichromate oxidation). The remaining material after these extractions is assumed to be black 

carbon and was measured by CHN analysis. 
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Thermogravimetric analysis of soils, sediments and humic substances has been 

performed and reported by many researchers (Turner & Schnitzer, 1962; Dell'Abate et. al., 

2002; Cuypers et. al., 2002). Cuypers et al. (2002) report that there are up to four peaks in the 

rate of weight loss TGA thermograms of soil and sediment samples. The peak maxima have 

the range: 

• 290-310 °C Assigned to the decomposition of labile structures and relatively simple 

organic matter components. 

• 370-390 °C & 530-540 °C Assigned to more humified organic substances with 

contributions from humic, fulvic and humin fractions. Non-humified materials 

(wood and lignin) can also produce peaks in these regions up to 520 °C. 

• 680-730 °C Assigned to the endothermic decomposition of carbonate and also the 

exothermic decomposition of very condensed graphite-like substances (i.e. coal and 

soot). 

Dell' Abate et al. (2002) report the peak maxima for humic and fulvic acid mixtures as 

extracted from two soil profiles using a NaOH/Na^Oy solution and also two standard humic 

acid samples (one extracted from soil and the other extracted from peat) obtained from the 

International Humic Substances Society (IHSS). The humic acid extracted from peat had 

peaks at 340 °C and 450 °C whereas the humic acid extracted from soil had peaks at 330 °C, 

513 °C and 625 °C. These compare to the humic and fulvic acid mixtures that had peaks at 

-300 °C, -440 °C and -570 °C. 

The purpose of this study is to use TGA analysis to try and quantify the amounts of 

carbonaceous materials contained in the samples studied by the measurement of different 

forms of carbon and doped samples. 
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5.1.1 Method of Additions 

The addition of an internal standard to a set of samples undergoing analysis is widely 

used in science (Millar & Millar, 1989). This allows for the quantification of signal strength 

between samples. The two main methods of adding an internal standard are: 

(i) The addition of a known amount of a substance that is not contained within the 

samples under study. This can be referred to as a spike and must be chosen so as to 

not interfere with species or areas of the spectra being studied. 

(ii) The addition of a range of known amounts (e.g. 1, 2, 4 & 6%) to a series of 

identical samples. If the sample already possibly contained a certain amount of the 

added material it is possible, using linear regression, to calculate how much was 

already present (i.e. zero addition). 

The second method above can also be used to test the efficiency of a particular analysis 

for substances contained within a sample, e.g. whether dichromate oxidation of a soil sample 

will measure the amount of black carbon contained in the soil. For details of the TGA 

experimental method, see Section 2.2.12. The soils that underwent TGA analysis before and 

after the addition of humic acid, wood charcoal or both are shown in Table 5.1 below. Sand 

standards that underwent analysis after the addition of various forms of carbon are shown in 

Table 5.2. A number of the TGA samples also underwent dichromate oxidation and loss on 

ignition and this is noted on Tables 5.1 & 5.2. 
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Table 5.1:Doped Samples Undergoing T G A Analysis 
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Table 5.2: Doped Sand Standards Undergoing T G A Analysis 

Sand Standards 1% 2% 4% 6% 

Wood charcoal * * 
Humic Acid * * * * 
Humic acid & 

Wood charcoal 
* * * 

Coal 

Hay charcoal <* 

^ Also have loss on ignition (section 2.2A.) & dichromate oxidation (section 

2.2.10.) data. 

5.2 TGA Results & Analysis 

5.2.1 Raw Data 

The majority of TGA data was gathered with a recording rate set at every second. This 

resulted in multiple data points for every degree of temperature increase and so subsequently 

the data recording rate was reduced to every eight seconds. Both sets of data still required to 

be standardised in the following manner: 

Temperatures rounded to the nearest degree 

One reading per °C 

Offset to start at 50 °C 

Further filtered to give a reading every 10°C 

Datasets collated for analysis 

The above standardisations were carried out using visual basic macros within Excel®. 

The amount of weight lost by sand standards containing 4% humic acid, 4% wood charcoal 

and both 4% humic acid and 4% wood charcoal are compared with a sand blank in Figure 5.1. 

All TGA results are from individual runs apart from the sand blank which is the average 

obtained from three separate runs that had excellent agreement. A plateau is evident in all 

samples at -150 °C allowing the weight loss up to 170 °C to be attributed to dehydration. 

Another plateau is reached at -700 °C with no major weight loss above this temperature. 

Therefore during further interpretation the weight loss between 170 °C and 700 °C was used. 
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Al l results were corrected for weight loss below 170°C and no further weight loss above 

700 °C is considered. It can be seen from Figure 5.1 there are clear differences between the 

weight loss of humic acid and wood charcoal. The TGA result for the mixture containing 4% 

humic acid and 4% wood charcoal shows regions that can be attributed to one species. Wood 

charcoal's weight loss occurs between 300 °C and 520 °C. The weight loss between 520 °C 

and 650 °C can be attributed to humic acid. It should therefore be possible to construct the 

signal for a soil sample from that of the humic acid and wood charcoal signals by the addition 

of the separate species signals. 

Figure 5.1: Comparison of Percentage Weight Loss For Different Carbon Dopes 
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In further analysis the % weight loss is normalised to give the relative weight loss 

between 0 and 1. The same data as in Figure 5.1 but after correction to zero weight loss at 

170°C and normalisation between 170°C and 700°C is shown in Figure 5.2. 
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Figure 5.2: Comparison of Normalised Weight Loss For Different Carbon Dopes 
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5.2.2 Signal Separation 

The first method used to de-convolute the TGA signal was to add the standardised 

weight loss curves from the individual components together to try and reproduce the result for 

the mixture of components. The separate TGA signals of 4% humic acid and 4% wood 

charcoal were added and then normalised. The result of this addition is compared to the actual 

TGA obtained for a 4% humic acid and 4% wood charcoal mixture in Figure 5.3. The 

agreement between these two normalised weight losses is good. A measure of the error 

between these two lines was calculated by the addition of the squares of the differences 

between each set of points and found to be 0-0358. 
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Figure 5.3: Comparison of Summed vs. Measured Carbon Mixtures 
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A program was set up in Excel to allow for the minimisation of the difference between 

the actual normalised TGA result and that calculated for a mixture of 4% humic acid and 4% 

wood charcoal. This utilised the solver routine in Excel® which is a multi parameter non­

linear least squares function and an implementation of the Levenberg-Marquardt algorithm 

(de Levie, 2001). The Solver was set to minimise the error, as outlined above, by the 

fractional addition of the humic acid and wood charcoal signals. Constraints were set so the 

fraction of either signal must be between 0 and 1 and the sum of the fractions less or equal to 

1. The result of this line-fitting program is shown in Figure 5.4 and compared to the measured 

result for a 4% humic acid and 4% wood charcoal mixture. The error is now reduced to 

0 0121 by adding 0-247 of the normalised 4% humic acid signal to 0-732 of the normalised 

4% wood charcoal signal. Clearly the fit is better up to 500 °C but above 500 °C the calculated 

normalised weight loss does not match the measured result as well as the simple addition of 

the separate signals shown in Figure 5.3. 
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A possible reason for this is the weight loss of sand. A sand blank is shown in Figure 5.1 

and clearly loses an appreciable amount of weight (~1 -6% from 50-700 °C). This explains 

why a 4% wood charcoal sample loses 5 -2% in weight. It also accounts for the addition of the 

actual weight losses for the individual 4% humic acid and 4% wood charcoal samples being a 

higher percentage loss when compared to a mixture of 4% humic acid and 4% wood charcoal 

(9-6% versus 7-6%). 

Figure 5.4: Comparison of Calculated vs. Measured Carbon Mixtures 
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The weight loss due to sand was corrected for by the subtraction of the sand blank signal 

from the sand standards shown in Table 5.2. The appropriate fraction of the sand signal was 

used in this subtraction depending on the percentage of added carbonaceous material to the 

sand standard (i.e. 0-96 of the sand signal was subtracted from the standards with a 4% 

addition). The result of the line fitting after the subtraction of the sand signal is shown in 

Figure 5.5. The error is now 0 0145 after the addition of 0-369 of the normalised, sand 

corrected, 4% humic acid signal to 0-631 of the normalised, sand corrected, 4% wood 

charcoal signal. 
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Figure 5.5: Comparison of Sand Corrected Calculated vs. Measured Carbon Mixtures 

4% Humic Acid & 4% Wood Charcoal 
(Sand Corrected) 

0,8 
Calculated 4% Humic Acid & 
4% Wood Charcoal (Sand Corrected) 

.2*0.6 

0.4 

0.2 

0 
170 200 230 260 290 320 350 380 410 440 470 500 530 560 590 620 650 680 

Temperature ( C) 

Instead of removing the sand signal from the measured carbon mixtures, it is possible to 

calculate the fraction of the signal due to sand. This is achieved in the same way as the 

previous results but the Solver routine now minimises the error associated with the fractional 

addition of the humic acid, wood charcoal and sand signals. The signal calculated when 

adding 0-250 of the humic acid, 0-512 of the wood charcoal and 0-233 of the sand signal 

together is shown in Figure 5.6. The error associated with this calculation is 0 0070. The 

errors and data associated with Figures 5.3-5.6 are shown in Table 5.3. 
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Figure 5.6: Comparison of Calculated Humic Acid. Wood Charcoal & Sand vs. 

Measured Carbon Mixtures 
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Line fitting the TGA data in the above manner gives a good result. No effort has been 

made to tailor the fitting process to the actual temperatures where the individual components 

lose weight. To achieve this, differential thermograms (DTG's) were calculated for 4% humic 

acid, 4% wood charcoal and a sand blank. These are shown in Figure 5.7. 

Table 5.3: Collated Data from Figures 5.3-5.6 

Figure 

Fraction of 

Wood 

Charcoal 

Fraction of 

Humic Acid 

Fraction of 

Sand 

Error 

(sum of squared differences) 

5.3 1 1 - 0 0358 

5.4 0-732 0-247 00121 

5.5 0 631 0-369 
sand 

subtracted 
00145 

5.6 0-512 0-250 0-233 0 0070 
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Figure 5.7; Comparison of Differential Thermograms For Different Carbon Dopes 
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The sand blank's weight loss occurs mainly between 200 and 300 °C and needs to be 

subtracted before the temperatures where humic acid and wood charcoal lose weight can be 

correctly ascertained. The DTG signal's for humic acid and wood charcoal are shown in 

Figure 5.8 after subtraction of sand. 

Figure 5.8: Comparison of Corrected DTG's For Different Carbon Dopes 
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It is clear from Figure 5.8 that there are areas of the DTG curve where the signals from 

the individual components overlap. This can be overcome by assigning particular temperature 

ranges to humic acid, wood charcoal and sand as shown in Table 5.4. The temperature ranges 

for each component were given a numbering scheme also shown in Table 5.4. This numbering 

scheme was utilised to choose the temperature ranges used to calculate the error between the 

best line fit and the actual TGA signal. The errors were calculated just for the chosen 

temperature ranges. This helps to eliminate any anomalous line fitting not due to the 

components being studied. For example, the H24C2 target uses the data from the temperature 

ranges 260-310 °C (H2), 530-640 °C (H4) and 320-430 °C (C2) in the solver routine to 

minimise the error at these temperatures. 

Table 5.4; Temperature Ranges Used For Line Fitting Calculations 

Component Full Signal = S1H13C1 No Overlap = S2H24C2 

Sand SI 200-300 °C S2 200-250 °C 

Humic Acid HI 260-320 °C H3 440-640 °C H2 260-310 °C H4 530-640 °C 

Wood Charcoal C I 320-520 °C CI 320-430 °C 

The results of the targeted line fittings compared to the original Figure 5.4 and Figure 

5.5 fittings are shown in Figure 5.9 with the comparative results for Figure 5.6 in Figure 5.10. 

The percentage improvement in fit was calculated for each targeted fitting so as to account for 

the fact that some targets had more points to fit and therefore you would expect a larger error. 

It is clear from the results that targeting the line fitting give better results, with the best 

improvement being for the H24C2 target where there is no overlap between the individual 

components. 

After subtracting the sand signal from the individual components to produce the result 

shown in Figure 5.5 the error increases compared to that of Figure 5.4. By targeting the line 

fitting you can reduce this error and produce a better fit at the temperatures where the actual 

components being studied lose weight. This will be important when applying these results to 

ascertaining the fraction and types of carbon contained in actual soil samples. 
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Figure 5.9: Comparison of Errors Between The Original and Targeted Temperature 

Ranges for Figure 5.4 & Figure 5.5 
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Figure 5.10: Comparison of Errors Between The Original and Targeted Temperature 

Ranges for Figure 5.6 
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Another method to try and produce a better line fit would be to target the temperature 

values that have the smallest errors. To achieve this, the percentage error for each temperature 

was calculated using the results shown in Figures 5.4-5.6. Percentage errors were also 

calculated for the H24C2 targeted results. Any temperature that had a percentage error of less 

than 1% of the total was used in the solver routine with the results shown in Figure 5.11. The 

individual temperatures were also ranked so that the 50% of values with the smallest errors 

could be used in the solver routine as outlined before with the results shown in Figure 5.12. 

By using the H24C2 target on the data used to produce Figure 5.6 it is possible to get a 

fit that is 75-13% better over the targeted temperature range. This compares to a 36-27% 

improvement when the fitting program targets points with an individual error of less than 1% 

and a 41 04% improvement when the fitting program targets half the total points with the 

lowest errors. Further improvement is achieved by using the results from the H24C2 target to 

improve the selection of the temperatures used as shown in Figure 5.11 and Figure 5.12. This 

leads to improvements over and above those already achieved by using the H24C2 target. 

Figure 5.11: Comparison of Errors Between The Original Error and Targeted 

Temperatures With Individual Errors <1% 
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Figure 5.12: Comparison of Errors Between The Original Error and Targeted 

Temperatures With The 50% Lowest Individual Errors 
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It should be noted that on closer inspection it is evident that the main source of error in 

the H24C2 targeted results for Figure 5.5 and Figure 5.6 is at 420 °C and 430 °C. When these 

points are removed from the H24C2 targeted solver routines, the percentage improvement in 

fit increases from 69-75% to 84-42% and from 75-13% to 88-61% respectively. The new 

target is referred to as H24C2X and was used to calculate the y-residuals between it and the 

measured result for the 4% humic acid and 4% wood charcoal sand standard. This is 

compared to the y-residual from the original Figure 5.6 line fitting in Figure 5.13. 
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Figure 5.13: Comparison of v-Residuals between Figure 5.6 & H24C2X Calculations 
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The above analysis shows that to target the appropriate temperatures where the different 

forms of carbon lose weight gives the best improvement when fitting the data. It is also the 

most logical method as it is illogical to decrease the error when line fitting, using the points 

with the lowest error, if these points occur at temperatures that are comparatively unaffected 

by the addition of humic acid or wood charcoal. The major problem with targeting the line 

fitting is that to achieve the best results the large weight loss of wood charcoal between 

420 °C and 510 °C cannot be included in the targeting regime. The y-residuals of this 

untargeted temperature range also increase as shown in Figure 5.13. Conversely, the 

y-residuals of the H24C2X targeted temperatures decrease. The normalised weight loss line 

fitting of the H24C2X target is shown in Figure 5.14. 
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Figure 5.14: Comparison of H24C2X Targeted Humic Acid. Wood Charcoal & Sand vs. 

Measured Carbon Mixtures 
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The figure above clearly shows very good agreement between the normalised weight 

loss at the H24C2X targeted temperatures. Although this gives a worse fit between 420 °C and 

510 °C, the agreement above this temperature allows the overall normalised weight loss to be 

calculated more accurately. Therefore it is only the rate of weight loss between 420 °C and 

510 °C that cannot be calculated. There are several possibilities why it is difficult to line fit at 

this temperature. 

By comparing the normalised weight loss of different percentages of wood charcoal as 

shown in Figure 5.15, it is possible to see that the amount of combustible material affects the 

weight loss. This effect is more pronounced between 420 °C and 510 °C as shown in Figure 

5.16 and may account for the difficulty in line fitting at this temperature. Clearly 100% wood 

charcoal is an extreme case, however even the smaller percentage changes between 1 and 6% 

is enough to change the normalised weight loss between 420 °C and 510 °C. 
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Figure 5.15: Comparison of Sand Corrected Wood Charcoal Standards 
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Looking at the 100% wood charcoal result it can be surmised that when the percentage 

combustible material increases it affects the TGA response. This could be due to the TGA 

analysis not being run under a flow of air. The TGA combustion chamber was open to the 

atmosphere via tubing, with airflow controlled by convection. Temperature ramping during 

TGA analysis would cause this convection. Oxygen supply could be a limiting factor when 

the differential weight loss is above a threshold amount. It is obvious that the differential 

weight loss of wood charcoal between 420 "C and 500 °C shown in Figure 5.8 is higher than 

values at other temperatures and for the other materials studied. 

The comparison of sand corrected normalised signals shown in Figure 5.17 may also 

point to the fact that there has to be good separation of the humic acid and wood charcoal 

signals for the fractions attributable in a mixture of the two to be calculated. This would 

explain the high errors at 420 °C and 430 °C as the humic signal crosses the other carbon 

signals. The mixture of humic acid and wood charcoal normalised signal between 440 °C and 

490 °C shows very little input from humic acid and so follows closely the wood charcoal 

normalised signal. If this temperature range was used in the solver routine the fraction 

attributable to wood charcoal would greatly increase. The H24C2X targeted temperatures 

(260 "C -410°C & 530 °C -640 "Q have good separation and allow accurate calculation of the 

individual fractions of humic acid and wood charcoal. 
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Figure 5.16: 

Comparison of Sand Corrected Wood Charcoal Standards Between 400 °C - 540 °C 
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Figure 5.17: Comparison of Sand Corrected Normalised Carbon Standards 
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In conclusion, it is possible to separate the fractions of the TGA signal attributable to 

humic acid, wood charcoal and sand. A comparison of the actual fractions measured with the 

calculated results is shown in Table 5.5 and Figure 5.18. The percentage differences between 

the actual and calculated fractions are also tabulated, with good agreement being achieved. 

Table 5.5: Comparison of The Actual Fractions and Calculated Fractions of Humic 

Acid. Wood Charcoal & Sand 

Humic Acid Wood Charcoal Sand 

Actual Fraction 0-392 0-608 
Calculated 

Fraction 0-405 0-592 

% Difference 3-298 2-635 
Actual Fraction 0-320 0-497 0182 

Calculated 

Fraction 0-323 0-481 0193 

% Difference 0-717 3-341 6 057 

Figure 5.18: Comparison of The Actual Fractions and Calculated Fractions of Humic 

Acid. Wood Charcoal & Sand 
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5.23 Standard Method of TGA Analysis 

Section 5.2.2 demonstrates how it is possible to calculate the TGA signal from a mixture 

of carbonaceous materials. The best result obtained involves targeting the temperature ranges 

260 °C -410 °C and 530 °C -640 °C (H24C2X). These temperature ranges are then utilised in 

the solver routine contained in Excel® to niinimise the difference between a measured TGA 

signal from a mixture of humic acid and wood charcoal with that of a calculated signal. The 

calculated signal is obtained by the fractional addition of the separate humic acid and wood 

charcoal TGA signals. Using this method it is possible to compare the actual TGA signals for 

all humic acid and wood charcoal sand standards with the calculated signals. The results for 

the 1, 2,4 and 6% mixtures of humic acid and wood charcoal are shown in Figure 5.19 for the 

fractions of carbonaceous materials only and in Figure 5.20 for the results that include the 

fraction of weight loss due to sand. 

Figure 5.19: Comparison of The Actual Fractions and Calculated Fractions of Humic 

Acid & Wood Charcoal For 1-6% Mixtures 
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After expanding the calculated fractions to include all sand standards it is clear that a 

better fit of the TGA signal occurs when sand is not included in the solver routine. It is also 

apparent and to be expected that the fraction of weight loss due to sand would decrease as the 

percentage of carbonaceous material increases. Sand is not included in the fitting regime used 

to produce Figure 5.19. Therefore this figure shows a better correlation of the fraction of 

weight loss due to the different carbonaceous materials as their percentages are increased. 

Figure 5.20: Comparison of The Actual Fractions and Calculated Fractions of Humic 

Acid. Wood Charcoal & Sand For 1-6% Mixtures 
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The fraction of humic acid shows poor correlation between the actual and calculated 

result at 1%. This could be due to an over correction for the weight loss due to sand in the 1% 

humic acid standard as shown in Figure 5.21. It would be possible to use standards 

uncorrected for the weight loss due to sand (see Figure 5.4) but this gives results for the 

fractions of humic acid and wood charcoal that will include an input from sand. 
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Figure 5.21: Comparison of Sand Corrected Humic Acid Standards 
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There are issues when applying this method to soil, as the percentage of carbonaceous 

material is unknown. As shown in Figure 5.15 and Figure 5.21, there is good agreement 

between the 2,4 and 6% normalised weight losses of both wood charcoal and humic acid. The 

average weight loss of these standards was calculated and used to calculate the fraction of the 

TGA signal due to wood charcoal and humic acid as outlined previously. Again the greatest 

difference is seen in the 1% mixture. To compare the accuracy of the two calculations, 

Table 5.6 shows the sum of the individual percentage differences for each method (H24C2X 

& H24C2Xaverage). 

Table 5.6: Comparison of The Errors Associated With The Calculated Fractions of 

Humic Acid. Wood Charcoal & Sand 

Sum of % Differences for 1-6% Calculations 

Calculation 

Method 

Humic Acid & 

Wood Charcoal 

Humic Acid, Wood Charcoal 

& Sand 

H24C2X 23-49* 
•Sum of Figure 5.19 date 

43-21*/72-53* 
* Sum of Figure 5.20 data 

H24C2Xaverage 43-85 74-64*/92-10 
# Sum of carbon date only 

199 



The previous table shows that when using the average normalised carbon signals in 

the solver calculations, the sum of the percentage differences increases. It is also apparent that 

including sand in the solver routine substantially increases the error even if you ignore the 

error in the sand calculation itself. 

The fractions attributable to humic acid and wood charcoal now have to be applied to 

produce equations that can be used to calculate the percentage weight of carbonaceous 

materials in soil samples. This was achieved by multiplying the fraction due to the humic acid 

and wood charcoal by the weight loss of the individual standards. This gives the weight loss 

attributable to the humic acid and wood charcoal and therefore allows us to compare actual 

weight losses with the amount added to the sand standards. The equations calculated for wood 

charcoal are shown in Figure 5.22 and those for humic acid in Figure 5.23. These are the 

relationships that do not take sand into account as all the standards have been corrected for the 

weight loss due to sand. 

Figure 5.22: Relationship Between % Wood Charcoal Added and % Weight Loss 
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The error associated with these linear relationships is small and allows the back 

calculation of the percentage of humic acid and wood charcoal added to the sand standards. 

Similar figures were produced that included the relationship for the percentage weight loss 

due to humic acid, wood charcoal and sand (see Appendix 7.5). 
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Figure 5.23: Relationship between % Humic Acid Added and % Weight Loss 
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The equations to be used for the calculation of the actual weight percentages of humic 

acid, wood charcoal and sand for the H24C2X and H24C2Xaverage solver routines are shown 

in Table 5.7. The R 2 values of the equations in Table 5.7 are all relatively low apart from the 

linear relationships calculated for sand. These calculations are not primarily intended to 

ascertain the percentage sand in soil samples. Therefore there is no need for further 

consideration to be given to improving sand calculations. 
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Table 5.7; Humic Acid. Wood Charcoal & Sand Equations 

Solver Routine Humic Acid & Wood Charcoal R 2 

H24C2X 
% Hiirnic Acid = 1 • 7016 x % Wt Loss + 0 • 0920 0-9980 

H24C2X 
% Wood Charcoal = 1 •3051x % Wt Loss -0-3055 0-9996 

H24C2Xaverage 
% Humic Acid = 1 • 7216 x % Wt Loss + 0 • 0468 0-9936 

H24C2Xaverage 
% Wood Charcoal = 1 • 2436 x % Wt Loss - 0 • 1360 0-9999 

Humic Acid, Wood Charcoal & Sand 

H24C2X 

% Humic Acid = 1 • 7786 x % Wt Loss + 0 • 0656 0-9894 

H24C2X % Wood Charcoal = 1 • 2728 x % Wt Loss - 0 • 2498 0 9999 H24C2X 

% Sand = 28 • 9180 x % Wt Loss + 54.2083 0-3145 

H24C2Xaverage 

% Humic Acid = 1 - 8491 x % Wt Loss - 0 • 2438 0-9840 

H24C2Xaverage % Wood Charcoal = 1 • 2236 x % Wt Loss - 0 • 0704 09998 H24C2Xaverage 

% Sand = 21 • 0027 x % Wt Loss + 66-1143 0 0357 

Taken together, Table 5.6 and Table 5.7 show that with regards to the standards, the 

linear relationships found for the H24C2X solver routines give the lowest combined error for 

the calculation of humic acid and wood charcoal after sand is removed from the individual 

humic acid, wood charcoal and the 1-6% mixtures. There is a small increase in error between 

the H24C2X and H24C2Xaverage calculations. This increase is much smaller than the error 

of the fractions of carbonaceous materials shown in Table 5.6. It still may be more 

appropriate to use the H24C2Xaverage equations as they can be used for a range of carbon 

content without any prior knowledge of the amount contained in a soil. The accuracy of the 

H24C2Xaverage equations, without taking into account sand, are shown in Figure 5.24. 
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Figure 5.24: % Difference of Mixed Sand Standards and Calculated % Weight Loss 
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The differences in the residuals obtained from the equations used in the H24C2X and 

H24C2Xaverage calculations are shown in Figure 5.25. The residuals of wood charcoal are 

less than those of humic acid which is to be expected due to the larger and more defined 

nature of the wood charcoal signal as shown previously in Figure 5.7. 

Figure 5.25: Comparison of v-Residuals of H24C2X & H24C2Xaverage Calculations 
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The difference between the residuals of wood charcoal and humic acid leads on to 

another important issue. The regime used to calculate the percentage of carbonaceous material 

is quite convoluted and could be simplified considerably. More simplistic methods of 

calculating the fraction of weight loss attributable to humic acid and wood charcoal were 

attempted in Section 5.2.2 but did not give as good results. It can now be seen in Table 5.6 

that the H24C2Xaverage solver routine does not give as good a match of the actual fractions 

of carbon compared with H24C2X. This is obvious as it will be more accurate to match like 

with like than with an average. The difference between the fractions calculated using these 

solver routines is negated by the linear relationships calculated from the results as shown in 

Figure 5.22 and Figure 5.23. The fractions calculated using simpler methods could be 

corrected for when the percentage weight loss associated with that fraction is compared to the 

actual percentage weight added. To check this possibility the fractions of weight loss 

attributable to humic acid and wood charcoal were calculated for a range of targeted 

temperatures as shown in Table 5.8. For each temperature targets there were two different 

carbon inputs into the solver routine: 

^ The individual normalised signals at the appropriate percentage 

• The average of the 2,4 & 6% normalised signals 

Table 5.8: 

Solver Routines For The Calculation of Fractions of Humic Acid & Wood Charcoal 

Solver Routine Targeted Temperatures Solver Routine Targeted Temperatures 

Full 

2-6% average 
170-700 "C 

H24YC2X 

2-6% average 
260-410°C& 500-640 °C 

H24C2X 

2-6% average 
260-410°C&530-640°C 

S1H13C1 

2-6% average 
260-640 °C 

H24XC2X 

2-6% average 
260-410°C& 450-640 °C 

S2H24C2X 

2-6% average 
200-410°C& 530-640 °C 
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The solver routines shown in Table 5.8: were selected to include the total normalised 

temperature range (Full), the full DTG signal (S1H13C1) and variations of the H24C2X 

solver routine that allow for the signal due to sand (S2H24C2X) or increase the temperature 

range associated with both wood charcoal and humic acid (H24XC2X & H24YC2X). These 

solver routines in no way simplify the complexity of the calculations apart from using the full 

normalised signal from 170 °C to 700 °C. Simplification is achieved by not correcting the 

inputs for sand and/or not including sand in the calculations. Therefore the solver routines in 

Table 5.8: were used for the following normalised inputs: 

• Wood charcoal, humic acid and a wood charcoal/humic acid mixture (c h c+h) 

• Wood charcoal, humic acid, sand and a wood charcoal/humic acid mixture (c h s c+h) 

• Wood charcoal (sand corrected), humic acid (sand corrected) and a wood 

charcoal/humic acid mixture (c-s h-s c+h) 

• Wood charcoal (sand corrected), humic acid (sand corrected) and a wood 

charcoal/humic acid (sand corrected) mixture (c-s h-s c+h-s) 

• Wood charcoal (sand corrected), humic acid (sand corrected), sand and a wood 

charcoal/humic acid mixture (c-s h-s s c+h) 

Best practise would be to utilise standards that were as close to the raw data as possible. 

Any correction for sand content may increase the error in the associated weight loss of the 

carbonaceous materials. The sand correction also presumes that there is a linear response to 

the differing percentages of sand (88-98%) contained within the standards. When applying the 

results to soils there will be no correction for sand as pure soil samples were analysed. The list 

above starts with uncorrected inputs without any calculation for the fraction of sand and 

progresses to sand corrected carbon inputs and sand as an input parameter. The solver 

routines with the smallest combined errors for the actual and average of each input parameter 

variations are shown in Table 5.9. A perfect result for the linear relationships of humic acid 

and wood charcoal would give a combined R2 value of 2 000 and a value of 3 000 when sand 

is included. 
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Table 5.9: Best Solver Routines For Calculating Humic Acid & Wood Charcoal 
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The first point to take from Table 5.9 is that an accurate linear relationship for wood 

charcoal can easily be achieved without any data correction. R2 values of 0-9999 for wood 

charcoal are achievable from both corrected and uncorrected input parameters. The same is 

not true of humic acid. The best R2 value for uncorrected humic acid is 0-9937 compared to a 

value of 0-9981 after sand correction. When sand is included in the uncorrected calculations, 

poor results are achieved with the best linear relationship found for sand having an R2 value 

of 0-6793 (S1H13C1 2-6% average). This in turn leads to a very poor relationship for humic 

acid (R2 = 0-2360). 

It is clear that using the full signal gives the best results when no correction is 

undertaken. As before, switching to average routines with no correction gives a less accurate 

result. When the input parameters are corrected for sand, there is a marked improvement. 

Removing sand completely (c-s h-s c+h-s) increases the sum of the R values to 1-9977 

(S2H24C2X) from the best value without correction of 1 -9932 (Full signal). Correcting the 

carbon signals for sand content but including the sand fraction in the calculations (c-s h-s s 

c+h) does not improve the results and gives a value of 1 -9790 for the sum of the R2 values of 

the carbon materials (H24XC2X 2-6% average) and 2 8101 (H24C2X) when including sand. 

It should also be noted that the large discrepancies in the sum of percentage differences 

of the calculated versus actual fractions are not carried through and apparent in the accuracy 

of the linear relationships. For example, the H24YC2X solver routine has the smallest sum of 

percentage differences (10-42 for c-s h-s c+h-s) that in terms of the linear relationships gives 

a combined R2 value of 1-9964. This compares to values of 24-87 and 1-9977 for the 

S2H24C2X solver routine. No improvement was found over the H24C2X 2-6% average 

solver routine when using the sand corrected (c-s h-s c+h-s) input parameters. 

When applying these results to soil it may be appropriate to use sand corrected humic 

acid and wood charcoal but not correcting the mixture (c-s h-s c+h). This will better match the 

parameters when calculating the carbon content of the soil, as the soil will not be corrected for 

sand and the carbon inputs will not have a sand signal associated with them. Unfortunately 

Table 5.9 shows that these input parameters do not give as good results as full correction for 

the sand signal. 
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Updated equations for the calculation of humic acid, wood charcoal and sand are shown 

in Table 5.10. The equations show that a small percent of carbon would be calculated even 

when the percentage weight loss due to carbon is zero. In contrast the percentage of sand is 

calculated to be 105% when the percentage weight loss due to sand is zero. Although the R2 

value of the linear relationship for sand has improved the result is still spurious. The equations 

in Table 5.10 are from data that has been corrected for sand where appropriate. Whilst it may 

be possible to produce linear equations with equivalent R2 values without correcting for sand 

these cannot be applied to the soil data. This is due to the TGA analysis of the soil samples 

being undertaken as pure samples and not diluted in sand. 

Table 5.10: Equations For The Calculation of Percentage Weights of Humic Acid. Wood 

Charcoal & Sand 

Solver Routine Humic Acid & Wood Charcoal R2 

H24C2X 2-6% 

average 

% Humic Acid = 1 • 7216 x % Wt Loss + 0 • 0468 0-9936 H24C2X 2-6% 

average % Wood Charcoal = 1 • 2436 x % Wt Loss -01360 0-9999 

Humic Acid, Wood Charcoal & Sand 

H24XC2X 2-6% 

average 

% Humic Acid = 2•0331x % Wt Loss + 0 • 5899 0 9888 
H24XC2X 2-6% 

average 
% Wood Charcoal = 1 • 0824 x % Wt Loss + 0-2121 0-9902 

H24XC2X 2-6% 

average 
% Sand = -8 • 3279 x % Wt Loss + 105 12 0-5931 

In conclusion, it has been shown that the H24C2X solver routine developed in Section 

5.2.2 can be applied to a range containing 1 to 6% of humic acid and wood charcoal 

(2-12% total carbon content). This involves minimising the difference between TGA signals 

in the temperatures ranges of 260-410°C and 5 30-640 °C from sand corrected normalised 

samples. To apply this to soils of unknown carbon content it is more appropriate to use the 

H24C2X 2-6% average solver routine. The error in the calculated fractions of humic acid and 

wood charcoal increases substantially when using the H24C2Xaverage solver routine 

(Table 5.6) but this is negated to some extent by the linear relationships calculated 

(Figure 5.22 & Figure 5.23). 
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5.2.4 Alternative Methods of Humic Acid & Wood Charcoal Calculation 

A number of alternative methods of discerning the fraction and therefore percentage 

weight of humic acid and wood charcoal in the TGA standards were attempted: 

• Normalise the weight loss between 300°C and 700°C. 

• Use the percentage weight loss at the associated targeted temperatures when 

calculating the linear relationships for humic acid and wood charcoal. 

• Target the wood charcoal and humic acid signals separately. 

Normalising the weight losses between 300°C and 700°C instead of between 170°C and 

700°C will stop the weight loss of sand below 300°C (see Figure 5.7) from interfering with 

the calculations. This would allow sand standards uncorrected for the weight loss due to sand 

to perhaps perform as well as the sand corrected results shown in Section 5.2.3. Results from 

these calculations are shown in Appendix 7.5 but do not show any improvement and are 

therefore not considered further. 

Targeting temperatures that show a good signal for humic acid and wood charcoal 

decreases the error in the calculation of the percentage weight loss due to these types of 

carbon. This was achieved by using the weight loss of the carbon mixtures between 170°C 

and 700°C after correction for the weight loss due to sand (see Figure 5.22 and Figure 5.23). 

Greater accuracy could possibly be achieved by using the weight loss at the targeted 

temperatures only (i.e. the weight losses between 260°C and 410°C plus 530°C and 640°C for 

the H24C2X solver routine). This would have the added advantage of further minimising the 

possibility of other TGA signals affecting the carbon calculations. The results are again 

shown in Appendix 7.5 but again do not show any improvement. 

The previous calculations all use solver routines that calculate the fractions of humic 

acid and wood charcoal in tandem. It is possible to target the temperatures of individual peaks 

in the DTG Signal (see Figure 5.8 & Table 5.4) or the targets associated with one form of 

carbon (e.g. H24 targets the humic acid signal at 260°C-310°C and 530°C-640°Q. Targeting 

either humic acid or wood charcoal requires that you presume the remainder of the fraction of 

weight loss is due to the other species. The results of this targeting using 2-6% average, sand 

corrected inputs are shown in Figure 5.26. 
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Figure 5.26: 
Comparison of Targeted Individual Humic Acid & Wood Charcoal Calculations 
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The above figure shows that it is possible to produce good results when targeting 

either wood charcoal or humic acid. The best results are achieved when the well-defined 

humic acid signal (HI & H2) or the wood charcoal signal that is not subject to interference 

(C2X) is used. The assumption that when targeting one species the other accounts for the 

remainder of the weight loss appears to fit the data as well as when both humic acid and wood 

charcoal are targeted together. It may be possible to correct for this assumption further by 

performing the individual calculations back to back. Therefore there would be a calculated 

fraction for the non-targeted carbon in the second calculation. A summary of these 

calculations (2-6% average, sand corrected inputs) is shown in Figure 5.27 with all results in 

Appendix 7.5. 

The results shown in Figure 5.27 clearly show that it is possible to reduce the error when 

calculating humic acid and wood charcoal i f these are calculated independently of each other. 

By first calculating the wood charcoal fraction using the C2X target and then using this 

fraction as an input whilst calculating the humic acid fraction using the H24 target gives a 

combined R2 value of 1 -9978. This compares favourably to the value of 1 -9935 found when 

using the combined H24C2X target. It is also apparent that better results are achieved when 

the wood charcoal fraction is calculated before the humic acid fraction. This is shown by 

comparison of the sum of the R2 values of H2>C2X (1 -9937) and C2X>H2 (1 -9987). 
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Figure 5.27: Comparison of Combining The Targeted Individual Humic Acid & Wood 

Charcoal Calculations 
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The best result shown in Figure 5.27 is achieved using the C2X target to calculate the 

wood charcoal fraction and then the H2 target to calculate the humic acid fraction. Looking 

back at Figure 5.8 it can be seen that the H2 target (260-310°Q is better defined than the H4 

target (530-640°C). This leads to the possibility that perhaps a H2C2X target would have 

given a better result in Section 5.2.3. The fractions of humic acid and wood charcoal were 

calculated using a H2C2X target in the solver routine. This gave a value of 1 -9960 for the 

sum of the R2 values. All H2C2X calculations are found in Appendix 7.5. 

These alternative calculations were carried out for all types of input parameters (i.e. no 

sand correction, sand included and sand corrected- see Appendix 7.5). Only the sand 

corrected inputs without any calculation for the fraction of sand showed significant 

improvement. A summary of the improved equations obtained for the calculation of humic 

acid and wood charcoal are shown in Table 5.11. These equations were all produced using 

sand corrected average (2-6%) input parameters. 
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Table 5.11; Equations For The Caiculation of Percentage Weights of Humic Acid & 

Wood Charcoal 

Solver Routine Humic Acid & Wood Charcoal R2 

H24C2X 
% Humic Acid * 1 • 7216 x % Wt Loss + 0-0468 0-9936 

H24C2X 
% Wood Charcoal « 1 • 2436 x % Wt Loss - 0 • 1360 09999 

H2C2X 
% Humic Acid «1 • 7316 x % Wt Loss + 0-0859 0-9965 

H2C2X 
% Wood Charcoal = 1 • 2567 x % Wt Loss - 0 • 2490 0-9995 

C2X>H24 
% Humic Acid « 1 • 7755 x % Wt Loss + 0 • 0636 0-9980 

C2X>H24 
% Wood Charcoal»1 • 2227 x % Wt Loss -0-1459 0-9998 

C2X>H2 
% Humic Acid «1 • 6868 x % Wt Loss + 0 • 3052 0 9989 

C2X>H2 
% Wood Charcoal«1 • 2227 x % Wt Loss - 0 1459 0-9998 

Figure 5.28: Comparison of v-Residuals of Selected Humic Acid Calculations 
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The equations in Table 5.11 were used to calculate the residuals of the actual percentage 

humic acid and wood charcoal with the calculated amounts. The residuals for humic acid are 

shown in Figure 5.28 and for wood charcoal in Figure 5.29. There is a noticeable 

improvement in the humic acid residuals from the H24C2X solver routine to the C2X>H2 

solver routines. The corresponding residuals associated with wood charcoal do not improve 

but are still less than the humic acid values. 
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Figure 5.29: Comparison of v-Residuals of Selected Wood Charcoal Calculations 
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In conclusion, it has been shown that the H24C2X solver routine developed in Sections 

5.2.2 & 5.2.3 can be improved. This is achieved by first calculating the wood charcoal 

fraction by using the C2X solver routine whilst presuming the humic acid fraction makes up 

the difference. The calculated wood charcoal fraction is then used to allow the humic acid 

fraction to be calculated using the H2 solver routine. The C2X>H2 solver routines allows the 

percentage humic acid to be more accurately calculated without sacrificing the good result 

already achieved for the percentage wood charcoal. 

5.2.5 Coal & Hav Charcoal 

The types of carbon being studied were increased by the inclusion of hay charcoal and 

coal. These two carbon types were treated as previously outlined in Sections 5.2.1 & 5.2.2. 

The CHN data for all carbonaceous materials being studied is given in Table 5.12. This shows 

that the wood charcoal and coal have similar carbon, hydrogen and nitrogen contents. A 

comparison of the DTG signals of the four carbon materials is shown in Figure 5.30. 
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Table 5.12: CHN Data For Types of Carbon 

Sample 
% 

Carbon 

% 

Hydrogen 

% 

Nitrogen 

Humic Acid 46 03 3-54 108 

Wood Charcoal 77-15 4-92 1-80 

Hay Charcoal 6403 2-52 1 08 

Coal 7602 496 1 61 

Figure 530: Comparison of Corrected DTG's For Different Carbon Dopes 
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Clearly there is a difference between hay charcoal and wood charcoal as shown in 

Figure 5.30. The DTG signal of coal is very similar to that of wood charcoal and so it may be 

difficult to distinguish these from one another. A number of tests were carried out to ensure 

that coal, hay charcoal, humic acid and wood charcoal could be distinguished from each other. 

This involved using the H24C2X 2-6% average solver routine and substituting the average 

wood charcoal (c) normalised signal with the average (2&6%) hay charcoal (hy) or coal (cl) 

normalised signal. These signals were also added individually and together to the input 

parameters. The full results of these calculations are shown in Appendix 7.5. 
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When substituted for wood charcoal in the input parameters, neither hay charcoal nor 

coal can calculate the carbon fractions to the same accuracy in the 1-6% wood charcoal and 

humic acid mixtures. When added to the input parameters, coal does not affect the 

calculations of wood charcoal and humic acid fractions. Conversely, hay charcoal does affect 

the calculations but in a positive manner. The error associated with the fraction of humic acid 

is reduced. When the fraction of wood charcoal is added to the fraction of hay charcoal, the 

combined fraction of black carbon better fits the actual fraction of wood charcoal. These 

results are summarised in Table 5.13. 

Table 5.13: Humic Acid. Wood Charcoal. Hay Charcoal and Coal Calculations 

Sum of % Differences R2 of Linear Relationships 

Input 

Parameters 

Humic 

Acid 

Wood 

Charcoal 

Hay 

Charcoal 
Coal 

Black 

Carbon h BC h + BC 

h c hy cl BC 

ch 19-20 18-71 - - 18-71 0-9936 0 9999 1-9935 
hyh 52-70 - 33-90* - 33-90 0-9915 0-9999 1-9914 
clh 54-33 - - 43-33* 43-33 0-9922 0 9998 1-9920 

c cl h 19 19 18-85 - - 18-70 0-9933 0 9998 1-9931 
c hy h 12-68 43-72 - - 14-33 0-9954 0 9999 1 -9953 

c hy cl h 13-63 126-98 - - 15-27 0-9941 0-9999 1-9940 

*These differences were produced by comparison to the wood charcoal fraction 

Coal and hay charcoal was also added to the C2X>H2, C2X>H24 and H2C2X solver 

routines. A summary of the results is shown in Table 5.14 with all calculations available in 

Appendix 7.5. Again it can be seen that adding hay charcoal to the input parameters has a 

beneficial effect on the error associated with humic acid whilst having the opposite effect on 

black carbon. When coal is also added the error associated with black carbon does not 

improve for any of the solver routines. Conversely, the error associated with humic acid 

greatly decreases (R2 = 1 0000) for the H2C2X routine and improves for the C2X>H2 and 

C2X>H24 routines. 
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Table 5.14: 
Alternative Humic Acid. Wood Charcoal. Hav Charcoal and Coal Calculations 

Sum of % Differences R2 of Linear Relationships 
Solver Input Humic Black 

Routine Parameters Acid Carbon h BC h + BC 

h BC 

C2X>H2 c hy h 35-40 14-44 0-9994 0-9995 1 9989 C2X>H2 
c hy cl h 20-81 16 78 0 9999 0-9993 1-9992 

C2X>H24 c hy h 23-96 14-44 0-9991 0-9995 1-9986 C2X>H24 
c hy cl h 20-68 16-78 0-9993 0 9993 1-9986 

H2C2X 
c hy h 20-82 67-55 0-9974 0-9376 1-9350 H2C2X 

c hy cl h 1607 60-30 1 0000 0 9085 1 9085 

In Conclusion, it has been shown that in isolation hay charcoal or coal standards cannot 

be used to calculate the fraction of wood charcoal with the same accuracy that wood charcoal 

itself achieves. When the input parameters include both hay and wood charcoal (plus humic 

acid) the addition of the wood and hay charcoal fractions gives a black carbon fraction. This 

black carbon fraction corresponds well with the actual fraction of wood charcoal in the 

standards. It also achieves improvement in the calculation of the humic acid fraction in the 

standards. Adding coal to the input parameters improves the calculation of the humic acid 

fraction but has the opposite effect on the black carbon fraction. 

These results suggest that it may be difficult to ascertain one type of black carbon from 

another in a sample/soil of unknown content using this method. It may be appropriate to use a 

variety of solver routines and input parameter combinations when attempting calculations 

with soils. A judgement can then be made on the fractions of humic acid and black carbon and 

on the source of the black carbon (wood, hay or coal). The linear equations shown in 

Table 5.15 include hay charcoal and coal as additional input parameters. 
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Table 5.15: Equations For The Calculation of Percentage Weights of Humic Acid & 

Wood Charcoal Using Humic Acid. Wood Charcoal. Hav Charcoal & Coal Signals 

Solver Routine Humic Acid & Wood Charcoal R2 

H24C2X 
% Humic Acid = 1 • 7388 x % Wt Loss + 0 • 0759 0-9941 

H24C2X 
% Wood Charcoal = 1 • 2342 x % Wt Loss -0-1513 0-9999 

C2X % Wood Charcoal = 1 • 1725 x % Wt Loss - 0 • 0448 0-9993 

C2X>H24 % Humic Acid = 1 • 9145 x % Wt Loss-01221 0-9980 

C2X>H2 % Humic Acid = 1 • 7968 x % Wt Loss + 0-1622 0-9989 

5.3 Application of TGA Standards To Soil 

TGA data was gathered for soils for which adsorption data is also available. These soils 

are listed in Table 5.16. After analysis of the DTG results of these soils it is clear that they 

mainly show peaks associated with humic acid, hay charcoal and/or coal. 

Table 5.16: Soils That Underwent TGA & Adsorption Analysis 

Coal 1 SMI 113 (0-10) SMI 113 (10-20) 

Mag Lime 1 SM0806 SM0804 

JY2 GMP Chalk 

Carb Lime 1 BS3 BS1 

AB0722 SM106127 
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An example of a DTG result for SM0804 is show in Figure 5.31. SM0804 has peaks that 

correspond to humic acid (~300°C), hay charcoal (~430°C) and coal (~500oQ. The DTG 

peaks shown by the soils listed in Table 5.16 are tabulated in Table 5.17. 

Figure 531: Comparison of DTG's of Carbon Dopes & SM0804 
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Table 5.17: DTG Peaks in Adsorption Soils 

Soil Humic Acid Hay Charcoal 
Wood 

Charcoal 
Coal 

Mag Lime 1 * 
JY2 

Carb Lime 1 * * 
AB0722 * 

(very small) 
* 

SM0806 * * 
SM0804 * * * 
GMP * shoulder 

BS3 

SM106127 * 
Chalk * 
BS1 * * 
Coal 1 * * 
SMI 113 (0-10) * 
SMI 113 (10-20) * 

(very small) 

The fractions attributable to humic acid and black carbon were calculated using the 

H24C2X solver routine for the soils given in Table 5.17. This was chosen as it allowed 

concurrent calculation over the other routines given in Table 5.15. The results are given in 

Table 5.18 together with the corresponding percentage figures as calculated using the 

H24C2X equations given in Table 5.15. Values marked with an asterix are anomalies that 

were either changed to 100% humic acid (GMP) or 0% black carbon (JY2 & GMP). 
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Table 5.18: 

Calculation of % Weight of Humic Acid and Black Carbon in Adsorption Soils 

Soil 

Humic Acid Black Carbon 

Soil Calculated 

fraction 

Calculated 

% 

Calculated 

fraction 

Calculated 

% 

Mag Lime 1 0-838 18-66 0-122 1-77 

JY2 100 22-30 000 000* 

Carb Lime 1 0-959 15-18 0-041 0-31 

AB0722 0-386 8-57 0-431 6-58 

SM0806 0-848 11-87 0-112 0-95 

SM0804 0-687 12-69 0-272 3-39 

GMP 100 100* 000 000* 

BS3 0-913 4-89 0087 017 

SM106127 0-902 15-40 0098 1-03 

Chalk 0-891 10-19 0109 0-73 

BS1 0-845 12-83 0-155 1-51 

Coal 1 0-660 14-42 0-184 2-69 

SMI 113 (0-10) 0-776 11-25 0-224 2-14 

SMI 113 (10-20) 0-719 11-33 0-274 2-89 

5.3.1 Black Carbon Adsorption 

Stepwise regression was rerun out on the complete untransformed adsorbate datasets 

and multi-compound dataset with the inclusion of the calculated percentages of humic acid 

and black carbon given in Table 5.18. The percentage humic acid was not picked as a 

predictor but the % black carbon (%BC) was, with these instances given in Table 5.19. 

Black carbon is shown to be a predictor of the adsorption of benzene and phenol. For 

benzene %BC is chosen as a predictor for K j , log K<j and log Koc values and account for 

~28% of the variation in log K<j with albeit lower values for the other adsorption parameters 

(8% & <1%). BC is a minor predictor of phenol log K<j (~6%) but is the most significant 

predictor of log Koc accounting for ~32% of the variation. It should however be noted that the 

inclusion of %BC does not improve the overall prediction of phenol adsorption and slightly 

reduces the predictive capacity of the regression equation. 
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Table 5.19; Stepwise Regression Results with Black Carbon as a Predictor 

Adsorbate Predictors R 2 R 2 

(adj) 
R 2 

(pred) n 

Benzene Kd %Si LOI110 BC 

94-91 9110 60-90 8 Attributable 
Variation 72-43 14-34 800 94-91 9110 60-90 8 

VIF Values 2-3 1-7 1-5 

94-91 9110 60-90 8 

Benzene 
logKd %Si BC O-

Akyl 
97-53 95-67 89-51 8 Attributable 

Variation 64-40 27-71 5-42 97-53 95-67 89-51 8 

VIF Values 2-2 1-5 3-4 

97-53 95-67 89-51 8 

Benzene 
logKoc 

pH %Si A/K Aryl BC LOI110 

99-91 99-67 84-50 

8 

Attributable 
Variation 45-79 43-04 6-86 3-51 0-71 009 99-91 99-67 84-50 

8 VIF Values 25-7 3-6 21 20 7-2 13-7 

99-91 99-67 84-50 

8 

Remove 
LOI110 pH %Si A/K Aryl BC Alkyl 

100 100 9906 

8 

VIF Values 4-2 3-6 1-9 2-2 2 1 2-3 
100 100 9906 

8 

Phenol 
loglQ %Mn pH BC Aryl O-

Alkyl 
9115 85-62 73-34 14 Attributable 

Variation 52-20 21-05 6-22 4-98 6-2 9115 85-62 73-34 14 

VIF Values 1-8 2-1 1-8 3-4 3-3 

9115 85-62 73-34 14 

Phenol 
log Koc 

BC Aryl pH %Mn O-
Alkyl LOI110 

96-34 93-21 71 06 14 Attributable 
Variation 31-85 18-50 1411 22-59 5-13 416 96-34 93-21 71 06 14 

VIF Values 1-9 3-5 3-0 3-7 4-7 50 

96-34 93-21 71 06 14 
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5.4 Summary 

Black carbon is reported to be an important factor in non-linear adsorption in soils. A 

method was derived to allow the measurement of black carbon using thermogravimetric 

analysis. The method utilised the solver routine in excel® to allow line fitting of different 

forms of black carbon and humic acid to the measured weight loss. Line fitting was 

undertaken using several methods that involved fingerprinting the individual forms of carbon 

(humic acid, wood charcoal, hay charcoal, coal) using their weight losses at different 

temperature ranges. 

The best fit of standard mixtures of humic acid and black carbon weight losses was 

achieved by targeting the temperature ranges 260-310 °C, 530-640 °C (humic acid) and 

320-410 °C (black carbon). This allowed back calculation of the fractions of humic acid and 

black carbon in calibration standards. Linear relationships were found between the actual and 

calculated percentage weights of humic acid (R 2 0-9936) and black carbon (R 2 0-9999) in 

calibration standards. 

This method is more quantitative than previously utilised procedures and is also 

relatively quick and cost effective. Limitations in TGA analysis can be viewed as relatively 

small samples sizes, especially when dealing with heterogenous soil samples. The actual 

quantity of combustable material has been shown to affect results but this could easily be 

corrected for by appropriate limits set on sample size and the production of sand:soil 

mixtures. 

The percentage weight loss attributable to humic acid and black carbon was calculated 

for soils for which adsorption data had been collected. Stepwise regression was then repeated, 

including these additional parameters, for all adsorption as outlined in Section 4.4. The 

percentage weight loss attributed to humic acid was not picked as a predictor of adsorption. 

However, the percentage weight loss attributed to black carbon was picked as a predictor of 

-28% of the variation shown by benzene log Kd values and -32% of the variation shown by 

phenol log Koc values. The addition of black carbon to these stepwise regression equations 

did not improve upon the results obtained in Chapter 4, merely changed the predictors. 
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6 Conclusion 

This study was undertaken as part of the EPSRC funded project DAVe. The project 

remit is in the title, with this thesis elucidating the problems in measuring, predicting and 

therefore understanding pollutant movement through adsorption variability. 

Brownfield redevelopment is one of the drivers requiring a better understanding of 

adsorption variability. With this in mind, two brownfield development sites were found in 

Gateshead and spatially sampled. A wide range of general soil parameters were measured to 

characterise the sites and be used to model the variation in organic pollutant adsorption. The 

Abattoir and Salt Meadows sites challenged DAVe by their very nature as typical brownfield 

development land. Soil properties were shown to vary but this variation does not come from 

natural processes but from human intervention on site. The heterogeneous nature of these sites 

is both the goal of the project to understand but also the reason why sites such as these are 

difficult to characterise. 

Some meaningful correlations between soil parameters were found, with a strong 

correlation found between soil organic matter and oxidisable carbon. Differences between the 

moisture content and weight loss at 110 °C were found, showing the importance easily 

oxidisable and/or volatile components have at this temperature. The agricultural soils were 

found to have a wider distribution of particle size, pH, suface area, %Fe, %A1, %Mn and %Si 

compared with The Abattoir and Salt Meadows. This was not the case for the NMR results. 

Over 90% of the variance in The Abattoir and Salt Meadows datasets was accounted for using 

principal component analysis. PCA analysis also suggested a correlation between Fe, A l , Mn 

& Si which was confirmed using matrix plots. It was found possible to simplify PCA input 

parameters whilst still describing over 90% of the variance shown by The Abattoir dataset. 

Stepwise regression analysis found useful predictors for 14 of The Abattoir and 8 of the 

Salt Meadows soil measurements, with R 2 values >70%. These analyses were generally 

improved on by transforming input predictors to normallity. Where high correlations between 

predictors were found, variance inflation factors were calculated. Predictor's with VIF values 

>5 were removed from stepwise regression but tended not to greatly affect results. Where an 

appreciable effect was seen when predicting The Abattoir alkyl C variable, PCA scores of the 

particle size and DCB extraction subsets were added to the predictors available to 

compensate. Using the principal components from PCA as predictors in stepwise regression 

can help reduce high VIF values. The increase in the R values of regression equations must 

be weighed against the added complexity of undertaking two separate analyses. It is also more 

difficult to interpret results obtained using principal components that may have several 

important coefficients from seemingly different soil measurements. 
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It has been shown that the spatial distribution of soil parameters can be calculated but 

this requires many data points to be valid. The moisture content of The Abattoir soil samples 

was used as an example of this technique. Using the model variogram produced a kriged map 

of the variation of moisture content over The Abattoir site was plotted, giving a range of 

spatial correlation equal to 26m. The range of interdependency in soil measurements allows 

the prediction of adorption variation where the soil parameters have a controlling influence. 

Adsorbate molecular properties were modelled after optimisation using routines 

included in Hyperchem® software. The semi-empirical Parametric Method 3 (PM3) allowed 

optimisation of all 4 adsorbate structures. I f PM3 optimisation was run cyclically with the 

A M I & MM+ optimistaions, all routines achieved stable results after 3 cycles. More 

molecular parameters were also calculated using DRAGON software, allowing a large dataset 

to be obtained to model adsorption results interms of adsorbate properties. 

Adsorption modelling given here shows the need for a larger, more robust dataset. 

Correcting K<i values for organic carbon content to give organic carbon normalised 

coefficients (Koc) does not appear appropriate for the adsorbates studied here. The hypothesis 

of this thesis is that the soil organic matter is the primary control of organic pollutant 

adsorption. The evidence presented here does not agree with this hypothesis. 

The hypothesis of this thesis also states that a better understanding of the nature of both 

the organic pollutant and the soil will lead to a better understanding of adsorption variability. 

Given that both soil and pollutant parameters have been found to predict the variation shown 

in adsorption data, this part of the hypothesis is valid. 

Soil parameters that are found to predict adsorption include %Mn, % carboxyl carbon, 

pH, %A1 and a particle size measure that tends to be % clay. Molecular parameters found to 

predict adsorption include the E-state topological parameter or the PM3 approximate 

molecular surface area. Less than 50% of the variation shown in adsorption is predicted by 

these parameters, therefore giving little practical benefit. The adsorbates under study here are 

polar organic molecules and therefore may benefit from the addition of polarity correction 

factors. These have been successfully used in other studies to give good results with useable 

prediction of Koc values. 

Adsorption data has been modelled using both adsorbent and adsorbate properties. It is a 

lack of breadth in the number of organic pollutants for which adsorption data was gathered, 

and the overall number of adsorption results that constrain any analysis and predictive 

capability of the results. Other research has been shown to use much larger datasets, allowing 

broader interpretation and prediction. 
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Stepwise regression undertaken including adsorbate descriptors showed that measures 

decribing the nature of the organic compunds can account for a portion of the adsorption 

variation in tandem with the soil adsorbent properties. Molecular surface area predicts 

adsorption variation in some instances whereas % clay is correlated with the surface area of 

soils. Molecular descriptors were limited to four sets of values for the four adsorbates studied. 

This figure would need to be greatly increased to give statistical robustness to any correlations 

found. 

This study has blurred the view between primary (organic carbon) and secondary 

controls on organic contaminant adsorption. An important secondary control is viewed as 

black carbon content. This has been difficult to measure accurately in the past but using TGA 

analysis of known standards containing different forms of black carbon and humic acid allows 

quantification of the fraction contained in soil. The percentage of black carbon in soil has 

been shown to predict the variation in adsorption of benzene and phenol. Again a larger 

dataset would allow a better understanding of this. 

6.1 Further Work 

The objective of DAVe was to predict the spatial uncertainty in pollutant movement. 

This aim could be further solved and the work in this thesis could be extended to incude: 

• More spatial adsorption data on a larger number of adsorbates. The adsorption 

dataset needs to compliment the size of the dataset describing the soil structure 

and makeup. 

• The variation in soil properties would be better served and would compliment a 

larger adsorption dataset by being taken from a site in an agricultural setting. 

This may not mimic the conditions in real world brownfield locations but may 

allow stronger correlations between adsorbent, adsorbate and spatial spatial 

variation to be elucidated. 

• Clay was found to predict adsorption and so any future dataset should try and 

contain some quantitative analysis of clay structure. 

• The interactions of sand, silt and clay with other adsorption controlling 

parameters like organic matter and more specifically the individual discernable 

fractions of organic matter. 

• Further characterisation of organic matter and soil by IR and/or fluorescene 

spectroscopy before, during and after adsorption may provide useful 

information on how adsorbates interact and change the adsorbent. 
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7 Appendix 

7.1 Furnace & Thermocouple Temperature Readings Required For Furnace 

Calibration 

Furnace 
Temperature (°C) 100 100 150 150 200 200 250 250 300 300 325 325 

Thermocouple 
reading (°C) 

90-2 90 3 135-2 135 8 175-8 175-9 223 224 283 283 307 307 

Furnace 
Temperature ( °Q 350 350 375 375 400 400 394 394 400 400 405 405 

Thermocouple 
reading (°C) 331 332 356 357 383 383 378 379 384 385 391 390 

Furnace 
Temperature (°C) 410 410 395 395 390 390 385 385 380 380 

Thermocouple 
reading (°C) 396 396 381 381 376 376 371 371 366 366 

7.2 PCA of Simplified Dataset and Individual NMR Variables for The Abattoir 

pel pc2 pc3 pc4 pc5 

%oc 0-060 0-534 497 -0-205 0-207 

% H20 0-255 -0-526 -0-351 -0-327 0-127 

% Silt 0-524 0-060 0-299 0-139 0-264 

pH -0-523 0-091 0-186 0-480 0-117 

alkyl -0-421 -0-193 -0-077 -0-171 0-791 

Area 0-067 0-142 -0-661 0-520 -0-022 

Eh 0-372 0-388 0-239 0-083 0-444 

%Fe -0-251 0-467 0-068 -0-543 -0-185 

pel pc2 pc3 pc4 pc5 

%OC 0-008 0-487 -0-585 0-074 -0-166 

% H20 0-145 -0-577 -0-394 0-265 0-284 

% Silt 

0-145 

0-069 0-140 -0-123 -0-059 

pH -0-445 0-144 0-362 -0*440 0-146 

o-alkyl 

-0-041 

0-138 0-202 -0-063 469 

Area -0-041 0-058 -0-557 -0-076 

Eh mm 7 0-028 -0-085 0-800 

%Fe -0-229 1 -0-022 0-555 -0-028 
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pel pc2 pc3 pc4 pc5 

%oc -0030 0̂*495 0-085 -0-241 

% H20 -0-139 0-576 -0-387 0-277 0-280 

% Silt -0-062 0-146 -0-140 -0-118 

pH 0-434 -0-151 0-355 449 0-088 

aryl 0549 0-127 -0-182 0-055 0-407 

Area 0-054 -0-053 -0-011 

Eh -0-379 0-030 -0-099 0-822 

%Fe 0-225 -0-484 -0-011 0*559 0-032 

%oc 0-003 

% H20 

% Silt -0-202 0-134 

0-189 

-0-267 0-399 

0-190 

0-389 

0-336 0-541 

%OC -0-097 

% H20 -0-133 0-204 

% Silt 

0-503 0-442 

carboxyl 0-126 -0-065 0-220 

0-360 

0-082 0-374 

230 



pel pc2 pc3 pc4 pc5 

% o c -0-139 -0-508 0-306 444 -0-200 

% H20 0-438 0113 -0-393 -0-443 0036 

% Silt 0-455 -0-317 0-082 0-390 0130 

pH -0-443 0-368 0-324 0-281 0-233 

aldehyde/ketone -0-294 -0-301 -0-438 -0-077 0-776 

Area 0-085 0-044 0-595 -0*490 0-395 

Eh 0-193 505 0-242 0-354 0-125 

%Fe -0-504 -0-381 -0188 -0-060 

pel pc2 pc3 pc4 pc5 

%oc 0-018 -0-488 0-567 0-056 "0 311 

% H20 -0-148 0-572 0-397 0-262 0-249 

% Silt -0-101 -0-091 -0-130 -0-110 

pH 0-417 -0-132 - (I" 4 ̂  o 0-092 

aromatics 0-542 0-129 0-226 0-053 0-409 

Area 0089 -0-036 0-545 -0-634 -0-021 

Eh 0-029 -0-093 0-807 

%Fe 0-255 -0-470 0-024 0-555 0-034 

pel pc2 pc3 pc4 pc5 

%OC 0-060 0-473 558 -0-192 0-082 

% H20 386 -0-462 -0-224 -0-361 0-071 

% Silt -0-539 0-222 0-105 0-282 -0-211 

pH 0-549 -0-031 0-195 0-464 -0-041 

acid 0-210 -0-236 -0-443 0-013 -0-823 

Area 0-051 -0-010 -0-623 0-427 0-434 

Eh -0.32.T 0-002 0-247 -0-276 

%Fe wm B 0-069 -0-542 -0-024 
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7.3 Hyperchem & Dragon Results 

p-Cresol p-Xylene Benzene Phenol 
MMApprox SA 260-82 288-93 212-28 220-24 
AMIApprox SA 259-65 287-58 212-18 219-54 
PM3Approx SA 259-08 287-48 211-86 218-82 
MMGrid SA 278-27 296-8 237-55 250-91 
A M I Grid SA 276-75 296-33 239-98 250-32 
PM3Grid SA 276-37 294-68 241-06 248-9 
MMVolume 407-59 439-04 332-15 354-58 
A M I Volume 405-6 436-79 331-81 354-12 
PM3Volume 404-65 434-82 330-6 352-81 
MMHydration Energy -7-57 0-4 -2-11 -8-9 
A M I Hydration Energy -7-66 0-39 -2-11 -8-99 
PM3Hydration Energy -7-62 0-39 -2-11 -8-96 
LogP 2-23 2-98 2-05 1-76 
Refractifity 32-79 36-14 26-06 27-75 
Polarisability 12-91 14-1 10-43 11-07 
MMTotal Energy -2-5696 -3-0424 -2-64 -2-36 
A M I Total Energy -30492-9453 -26798-7051 -19609-7305 -27003-1465 
PM3 Total Energy -28640-6875 -25418-9727 -18513-9688 -25291 1856 
MMDipole Moment 0-9987 0-0063 0 1116 
AMIDipole Moment 1-333 0-0557 0 1-233 
PM3Dipole Moment 1-201 0-0444 0 1-142 
A M I HOMO -8-8811 -91183 -9-653 -9-1147 
PM3HOMO -8-9513 -9-1822 -9-7513 -9-1747 
AM1LUMO 0-4306 0-5167 0-5548 0-3977 
PM3LUMO 0-3268 0-3573 0-3962 0-2909 
sum of atomic 
van der waals volumes 9-9 10-99 7-79 8-31 
(scaled on carbon atom) 
sum of atomic Sanderson 
electronegativities 15-86 17-42 11-65 12-98 

sum of atomic 
polarizabilities 10-5 11-81 8-28 8-74 

sum of Kier Hall 19-33 15-33 12 17-67 electrotopological states 19-33 15-33 12 17-67 

mean atomic 
van der Waals volumes 0-62 0-61 0-65 0-64 
(scaled on carbon atom) 
mean atomic Sanderson 
electronegativity 
(scaled on carbon atom) 

0-99 0-97 0-97 1 

mean atomic 
polarizability 0-66 0-66 0-69 0-67 

E-state 
topological parameter 6-657 5181 2-414 4-856 

Kier symmetry index 20 12 0 15-651 
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p-Cresol p-Xylene Benzene Phenol 
1-pathKier alpha-
modified 5-321 5-359 3-412 4-344 
shape index 
2-path Kier alpha-
modified 1-969 1-994 1-606 1-757 
shape index 
3-path Kier alpha-
modified 1-332 1-353 0-845 1-017 
shape index 
path/walk 2 -
Randic shape index 0-567 0-567 0-5 109 

path/walk 3 -
Randic shape index 0-288 0-288 0-25 0-915 

path/walk 4 -
Randic shape index 0122 0122 0125 0-538 

path/walk 5 -
Randic shape index 008 008 0-063 0-274 

connectivity index chi-0 5-983 5-983 4-243 5113 
connectivity index chi-1 3-788 3-788 3 3-394 
connectivity index chi-2 3-365 3-365 2-121 2-743 
connectivity index chi-3 2-305 2-305 1-5 1-894 
connectivity index chi-4 1-427 1-427 1061 1-307 
connectivity index chi-5 1-305 1-305 0-75 0-901 
average connectivity 
index chi-0 0-748 0-748 0-707 0-73 

average connectivity 
index chi-1 0-473 0-473 0-5 0-485 

average connectivity 
index chi-2 0-337 0-337 0-354 0-343 

average connectivity 
index chi-3 0-23 0-23 0-25 0-237 

average connectivity 
index chi-4 0-143 0143 0-177 0-163 

average connectivity 
index chi-5 0109 0109 0-125 0113 

valence connectivity 
index chi-0 4-757 5-309 3-464 3-834 

valence connectivity 
index chi-1 2-545 2-821 2 2-134 

valence connectivity 
index chi-2 1-836 2-155 1155 1-336 

valence connectivity 
index chi-3 1-034 1-218 0-667 0-756 

valence connectivity 
index chi-4 0-545 0-637 0-385 0-428 

valence connectivity 
index chi-5 0-38 0-526 0-222 0-242 

average valence 
connectivity index chi-0 0-595 0-664 0-577 0-548 

average valence 
connectivity index chi-1 0-318 0-353 0-333 0-305 
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p-Cresol p-Xylene Benzene Phenol 
average valence 
connectivity index chi-2 0184 0-215 0192 0-167 

average valence 
connectivity index chi-3 

0-103 0122 0111 0095 

average valence 
connectivity index chi-4 

0-054 0064 0064 0-053 

average valence 
connectivity index chi-5 0032 0 044 0-037 003 

solvation connectivity 
index chi-0 5-983 5-983 4-243 5113 

solvation connectivity 
index chi-1 

3-788 3-788 3 3-394 

solvation connectivity 
index chi-2 3-365 3-365 2-121 2-743 

solvation connectivity 
index chi-3 

2-305 2-305 1-5 1-894 

solvation connectivity 
index chi-4 1-427 1-427 1061 1-307 

solvation connectivity 
index chi-5 1-305 1-305 0-75 0-901 

modified Randic 
connectivity index 23-304 22-726 18 20-94 

reciprocal distance 
Randic-type index 1-924 1-924 1-8 1-857 

reciprocal distance squared 
Randic-type index 33-373 33-373 20 26-454 

hydrophilic factor -0-158 -0-946 -0-921 -0088 
Ghose-Grippen molar 
refractivity 32-793 3614 26058 27-752 

Moriguchi octanol-water 
partition coefficient 1-859 2-942 2-255 1-506 

Ghose-Crippen octanol-
water partition coefficient 2-049 2-802 1-83 1-563 
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7.4 Stepwise Regression Results for Single Compound Models 

7.4.1 Phenol 

Stepwise Regression Results for Phenol 

Predictors R2 R2 

(adj) 
R2 

(pred) n 

Salt 
Meadows Aryl Carboxyl 

95-80 93 00 87-86 6 Attributble 
Variation 56-44 39-36 95-80 93 00 87-86 6 

VIF Values 10 10 

95-80 93 00 87-86 6 

All Data %Mn PH Carboxyl Alkyl 0-
Aryl 

87 09 80-63 50-90 16 Attributable 
Variation 2219 22 07 20 11 17-45 5-27 87 09 80-63 50-90 16 

VIF Values 1-7 1-5 1-5 11 1-9 

87 09 80-63 50-90 16 

Stepwise Regression Results for Phenol using Transformed Predictors 

Transformed Predictors R2 R2 

(adj) 
R2 

(Pred) n 

Salt 
Meadows Aryl VCarboxyl %H 20 Log 

%A1 
99-99 99-95 95-94 6 Attributble 

Variation 56-44 38-57 417 0-79 99-99 99-95 95-94 6 

VIF Values 1-4 10 11 1-2 

99-99 99-95 95-94 6 

All Data p H 8 5 1 2 3 O-Aryl Carboxyl Log 
SA 

80-69 73-66 40-52 16 Attributable 
Variation 21-21 1801 26 12 15-35 80-69 73-66 40-52 16 

VIF Values 1-7 1-5 1-6 1-2 

80-69 73-66 40-52 16 
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Log K H Stepwise Regression Results for Phenol 

LogKd Predictors R2 R2 

(adj) 
R2 

(pred) n 

Salt 
Meadows Aryl Car boxy 1 

97-57 95-95 88 29 6 Attributble 
Variation 6710 30-47 97-57 95-95 88 29 6 

VIF Values 10 10 

97-57 95-95 88 29 6 

All Data %Mn pH Alkyl LOI110 A/K 

89-95 84-93 72-80 16 Attributable 
Variation 55-82 22-26 4-94 3-72 3 21 89-95 84-93 72-80 16 

VIF Values 1-3 2-5 1-5 3-5 1-3 

89-95 84-93 72-80 16 

Log Stepwise Regression Results for Phenol using Transformed Predictors 

Log Kd Transformed Predictors R2 R2 

(adj) 
R2 

(Pred) n 

Salt 
Meadows Aryl VCarboxyl %OC12 5 4 4 0 

99-73 99-32 97-88 6 Attributble 
Variation 6710 39-32 3 31 99-73 99-32 97-88 6 

VIF Values 11 11 11 

99-73 99-32 97-88 6 

All Data %Mn p H 8 5 1 2 3 A/K O-
Aryl 

81 86 75-27 66 29 16 Attributable 
Variation 55-82 16-37 4-69 4-98 81 86 75-27 66 29 16 

VIF Values 18 1-3 1-2 21 

81 86 75-27 66 29 16 

Knf Stepwise Regression Results for Phenol 

Koc Predictors R2 R2 

(adj) 
R2 

(pred) n 

Salt 
Meadows none 6 

All Data %Mh pH Carboxyl Alkyl O-Alkyl 

93-28 89-92 83-41 16 Attributable 
Variation 23-46 29-58 15-35 13-27 11-62 93-28 89-92 83-41 16 

VIF Values 1-4 1-7 20 2-2 2-6 

93-28 89-92 83-41 16 
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Knr Stepwise Regression Results for Phenol using Transformed Predictors 

-a 

o •*-» u 
•3 
T3 

u 
G o c 

a, ° 

o 

O 
<s 

X 
^? 
00 

o 

i n 
00 ^ 
o £2 

J O 

Q 

oo 

so 

oo 

i n 

oo oo 
so 

o so 
i n 

os 
S O 

© 
in 

so 

3 c 

S O 

m 

"3 
> 

S O 

i n 

S O 
CO 
oo oo 

ON 

O 
X 
oo o 

f 

o u 

< 
o 

q _ 
J O 

> o 
6 

2 

i n 

O 
00 

o 

oo 

i n 

9s 

in 

237 



Log Knr Stepwise Regression Results for Phenol 

LogKoc Predictors R2 R2 

(adj) 
R2 

(Pred) n 

Salt 
Meadows Aryl Carboxyl %H 20 Sand 

100 100 100 6 Attributble 
Variation 58-84 3910 202 004 100 100 100 6 

VIF Values 1-5 11 1-2 1-4 

100 100 100 6 

All Data pH %Mn Carboxyl O-Aryl 

92 05 8916 84-85 16 Attributable 
Variation 3010 49-94 500 701 92 05 8916 84-85 16 

VIF Values 1-5 1-7 1-5 1-9 

92 05 8916 84-85 16 
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Log Knr Stepwise Regression Results for Phenol using Transformed Predictors 
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7.4.2 p-Cresol 

Stepwise Regression Results for p-Cresol 

Predictors R2 R2 

(adj) 
R2 

(Pred) n 

Image Hill %Mn LOI375 

100 100 99-96 4 Attributble 
Variation 90-53 9-47 100 100 99-96 4 

VIF Values 100 10 0 

100 100 99-96 4 

Salt 
Meadows %OC Aryl %Si %A1 

100 100 99-51 

6 

Attributble 
Variation 79 00 16-80 3-82 0 38 100 100 99-51 

6 VIF Values 10-3 1-2 221 118 

100 100 99-51 

6 

Remove 
%A1 %OC Aryl %Si 

99-62 99 04 92-84 

6 

VIF Values 20 1-2 2-3 
99-62 99 04 92-84 

6 

All Data Clay Silt Aryl %Si 

74-41 67-59 42-55 

20 

Attributable 
Variation 35-97 18-47 9-33 10-64 74-41 67-59 42-55 

20 VIF Values 8-3 8-4 1-4 1-5 

74-41 67-59 42-55 

20 
Remove 

Silt, Sand 
&SSA 

Clay %Si Aryl 
62-34 55-28 20 03 

20 

VIF Values 1-7 1-3 1-4 

62-34 55-28 20 03 

20 
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KA Stepwise Regression Results for Para-Cresol using Transformed Predictors 

Transformed Predictors R2 R2 

(adj) 
R2 

(pred) n 

Image Hill VLOI375 %A1 

99-49 98-47 0 

4 

Attributble 
Variation 83-60 15-89 99-49 98-47 0 

4 VIF Values 237-7 237-7 

99-49 98-47 0 

4 

Remove %A1 VLOI375 %Mn 2 0 5 8 3 

99 39 9818 0 

4 

41-2 41-2 
99 39 9818 0 

4 

Salt Meadows %OC7 7 2 3 9 Si l t 7 9 1 1 7 VRAlkyl Log 
pH 

100 100 99-98 

6 

Attributble 
Variation 7018 26 11 3-6 O i l 100 100 99-98 

6 VIF Values 30 1-7 61 6-9 

100 100 99-98 

6 

Remove Log 
PH %OC7 7 2 3 9 Si l t 7 9 " 7 VRAlkyl Log 

Fe 100 100 99-98 

6 

VIF Values 1-6 2-4 2-4 3-3 
100 100 99-98 

6 

All Data VClay %Si Aryl VSand LOI 
110° 4 6 7 7 

71-29 61 04 25-82 

20 

Attributable 
Variation 29-34 15-40 9-29 11-77 9-49 71-29 61 04 25-82 

20 VIF Values 19 8 1-7 1-5 19 3 1-2 

71-29 61 04 25-82 

20 

Remove VSSA, 
VRSand&VSilt VClay %Si Aryl 

54 03 45-41 0-75 

20 

VIF Values 1-8 1-4 1-3 
54 03 45-41 0-75 

20 
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Log K j Stepwise Regression Results for n-Cresol 

LogKd Predictors R2 R2(adj) R2 

(pred) n 

Image Hill %Mn %A1 

100 100 99-92 

4 

Attributable 
Variation 85-95 1405 100 100 99-92 

4 VIF Values 35-7 35-7 

100 100 99-92 

4 

Remove 
%A1 %Mn LOI375 

99 98 99-93 714 

4 

VIF Values 100 100 
99 98 99-93 714 

4 

Salt 
Meadows Carboxyl 

55-57 44-47 19 3 6 Attributable 
Variation 55-57 

55-57 44-47 19 3 6 

All Data Clay Silt LOI375 

5813 50-28 48-23 

20 

Attributable 
Variation 37-81 13 02 7-30 5813 50-28 48-23 

20 VIF Values 7-5 7-3 1-2 

5813 50-28 48-23 

20 
Remove 

Silt, Sand 
&SSA 

Clay %Si 
45-78 39-40 24-25 

20 

VIF Values 1-2 1-2 

45-78 39-40 24-25 

20 
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Log Stepwise Regression Results for Para-Cresol using Transformed Predictors 

LogKj Transformed 
Predictors R2 R2 

(adj) 
R2 

(Pred) n 

Image Hill VLOI375 %A1 

99 08 97-25 0 

4 

Attributable 
Variation 77-95 2113 99 08 97-25 0 

4 VIF Values 237-7 237-7 

99 08 97-25 0 

4 

Remove %A1 VLOI375 %Mn 2 0 5 8 3 

98-93 96-80 0 

4 

VIF Values 41-2 41-2 
98-93 96-80 0 

4 

Salt Meadows VCarboxyl 
55-67 44-59 1919 6 Attributble 

Variation 55-67 
55-67 44-59 1919 6 

All Data VSSA VRSand 

46-61 40-33 26-17 

20 

Attributable 
Variation 32-36 14-25 46-61 40-33 26-17 

20 VIF Values 16 8 16 8 

46-61 40-33 26-17 

20 

Remove VSilt, 
VClay & VRSand VSSA %Si 

40-49 33-49 1210 

20 

VIF Values 1-3 1-3 
40-49 33-49 1210 

20 
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Knr Stepwise Regression Results for p-Cresol 

Koc Predictors R2 R2 

(adj) 
R2 

(Pred) n 

Image Hill SSA 
9610 94-14 74-87 4 Attributble 

Variation 9610 
9610 94-14 74-87 4 

Salt Meadows Carboxyl %Mn Aryl A/K 

99-98 99-92 0 6 Attributble 
Variation 69-54 18-22 11-64 0-58 99-98 99-92 0 6 

VIF Values 11 1-4 11 1-5 

99-98 99-92 0 6 

All Data Clay %A1 O-Aryl Silt 

63-93 54-31 38 02 

20 

Attributable 
Variation 28-36 1719 9-39 8-99 63-93 54-31 38 02 

20 VIF Values 81 2-8 11 81 

63-93 54-31 38 02 

20 

Remove SSA, 
Silt & Sand Clay %A1 O-Aryl 

54-94 46-49 25-45 

20 

VIF Values 2-6 2-7 11 
54-94 46-49 25-45 

20 

Kp^ Stepwise Regression Results for p-Cresol using Transformed Predictors 

Koc Transformed Predictors R2 R2 

(adj) 
R2 

(Pred) n 

Image Hill VLOI375 O-Aryl 

99-98 99 94 97-58 4 Attributble 
Variation 89-89 1009 99-98 99 94 97-58 4 

VIF Values 10 10 

99-98 99 94 97-58 4 

Salt 
Meadows none 6 

All Data VClay %Si Aryl 

51-24 4210 9-62 20 Attributable 
Variation 25-52 1605 9-67 51-24 4210 9-62 20 

VIF Values 18 1-4 1-3 

51-24 4210 9-62 20 
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Log K^r Stepwise Regression Results for p-Cresol 

LogKoc Predictors R2 R2 

(adj) 
R2 

(Pred) n 

Image Hill LOI110 Sand 

100 100 100 4 Attributble 
Variation 96-32 3-68 100 100 100 4 

VIF Values 2 1 21 

100 100 100 4 

Salt 
Meadows Carboxyl 

58-57 48-22 26 85 6 
Attributble 
Variation 58-57 

58-57 48-22 26 85 6 

All Data Clay Silt 

57-84 52-88 49-53 

20 

Attributable 
Variation 43-63 14-21 57-84 52-88 49-53 

20 VIF Values 7-3 7-3 

57-84 52-88 49-53 

20 

Remove Silt, 
Sand & SSA Clay %A1 

52-40 46-80 3810 

20 

VIF Values 2-5 2-5 
52-40 46-80 3810 

20 

Log Knc Stepwise Regression Results for p-Cresol using Transformed Predictors 

Log Koc Transformed Predictors R2 R2 

(adj) 
R2 

(Pred) n 

Image Hill LOI110 Sand 

100 100 100 4 Attributble 
Variation 96-32 3-68 100 100 100 4 

VIF Values 21 21 

100 100 100 4 

Salt Meadows A/K 
55-80 44-75 23-35 6 Attributble 

Variation 55-80 
55-80 44-75 23-35 6 

All Data VClay VRSand O-Aryl 

63-68 56-87 50-84 

20 

Attributable 
Variation 42-96 15-27 5-45 63-68 56-87 50-84 

20 VIF Values 15-2 15 2 11 

63-68 56-87 50-84 

20 
Remove VSSA, 
VSilt & VRSand VClay 

42-96 39-79 32-50 

20 

Attributable 
Variation 42-96 

42-96 39-79 32-50 

20 
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7.4.3 p-Xvlene 
Kji Stepwise Regression Results for p-Xvlene 

Kd Predictors R2 R2 

(adj) 
R2 

(pred) n 

Image Hill LOI110 
98 81 98-21 9119 4 Attributble 

Variation 98 81 
98 81 98-21 9119 4 

Salt 
Meadows %A1 O-Alkyl O-Aryl %OC 

100 99-99 99-19 6 Attributble 
Variation 74-06 21 96 3 88 010 100 99-99 99-19 6 

VIF Values 1-9 1-7 2-7 11 

100 99-99 99-19 6 

All Data %OC 
39-42 34-76 5-92 15 Attributable 

Variation 39-42 
39-42 34-76 5-92 15 

Id Stepwise Regression Results for p-Xvlene using Transformed Predictors 

K d Predictors R2 R2 

(adj) 
R2 

(pred) n 

Image Hill V%Fe %Silt 

99 96 99-87 97-92 4 Attributble 
Variation 98-96 100 99 96 99-87 97-92 4 

VIF Values 2-3 2-3 

99 96 99-87 97-92 4 

Salt Meadows V%A1 Log 
O-Alkyl VO-Aryl SA 

100 100 99-65 6 Attributble 
Variation 71-91 24-53 2-84 0-27 100 100 99-65 6 

VIF Values 1-7 1-9 2-5 1-4 

100 100 99-65 6 

All Data Log 
LOI375 38-32 34 11 26-32 15 Attributable 

Variation 38-32 
38-32 34 11 26-32 15 
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Log KA Stepwise Regression Results for p-Xvlene 

LogKd Predictors R2 R2 

(adj) 
R2 

(pred) n 

Image Hill %Mn SSA 

99-99 99-96 9815 

4 

Attributble 
Variation 98-09 1 90 99-99 99-96 9815 

4 VIF Values 6-8 6-8 

99-99 99-96 9815 

4 

Remove 
SSA %Mn A/K 

99-94 99-82 9716 

4 

VIF Values 1-6 1-6 
99-94 99-82 9716 

4 

Salt 
Meadows %A1 O-Aryl Alkyl 

99-31 98-28 90-56 6 Attributble 
Variation 78 05 17-87 3-39 99-31 98-28 90-56 6 

VIF Values 1-7 1-6 1-5 

99-31 98-28 90-56 6 

All Data %OC 
28-22 22-70 0 15 Attributable 

Variation 28-22 
28-22 22-70 0 15 

Log Kd Stepwise Regression Results for p-Xvlene using Transformed Predictors 

LogKa Predictors R2 R2 

(adj) 
R J 

(pred) n 

Image Hill VLOI375 Clay 

100 99-99 99-70 4 Attributble 
Variation 96-10 3-90 100 99-99 99-70 4 

VIF Values 1-3 1-3 

100 99-99 99-70 4 

Salt 
Meadows V%A1 Log 

O-Alkyl 
Log 
pH VCarboxyl 

99-97 99-84 0 6 Attributble 
Variation 75 06 19 62 4-71 0-58 99-97 99-84 0 6 

VIF Values 20 2-9 3-3 2-2 

99-97 99-84 0 6 

All Data %oc-°-2040 

31-76 26-51 15-70 15 Attributable 
Variation 31-76 

31-76 26-51 15-70 15 

247 



Knr Stepwise Regression Results for p-Xvlene 

LogKoc Predictors R2 R 
(adj) 

R2 

(pred) n 

Image Hill %Mn LOI375 

99-94 99-82 3812 

4 

Attributble 
Variation 86 21 13-73 99-94 99-82 3812 

4 VIF Values 100 100 

99-94 99-82 3812 

4 

Remove 
LOI375 %Mn %A1 

99-85 99-54 0 

4 

VIF Values 35-7 35-7 
99-85 99-54 0 

4 

Salt 
Meadows %A1 Silt Aryl 

98-89 97-22 73-82 6 Attributble 
Variation 72-26 22-35 4-28 98-89 97-22 73-82 6 

VIF Values 1-3 1-5 1-5 

98-89 97-22 73-82 6 

All Data Silt Aryl O-Aryl %H 20 %Fe 

92-77 88-76 83-20 15 Attributable 
Variation 63-38 8-64 10-62 3-77 6-36 92-77 88-76 83-20 15 

VIF Values 2-4 3-6 3-6 1-3 1-7 

92-77 88-76 83-20 15 
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Knr Stepwise Regression Results for p-Xvlene using Transformed Predictors 

Predictors R2 R2 

(adj) 
R2 

(Pred) n 

Image Hill %Silt Carboxyl 

99-92 97-65 0 4 Attributble 
Variation 79 04 2018 99-92 97-65 0 4 

VIF Values 10 10 

99-92 97-65 0 4 

Salt Meadows V%A1 gj60778 
V R S S A LOI110 

100 100 100 

6 

Attributble 
Variation 69-89 26-51 3-48 012 100 100 100 

6 
VIF Values 5-5 20-3 23-3 41 

100 100 100 

6 
Remove V R S S A, 

LogRClay 
& Log Sand 

V%A1 Silt6 0 7 7 8 %H 20 Aryl 
100 99-99 99-63 

6 

VIF Values 1-3 1-8 11 20 

100 99-99 99-63 

6 

All Data Log 
LOI375 %Silt 

74-55 70-31 48-58 15 Attributable 
Variation 65-31 9-24 74-55 70-31 48-58 15 

VIF Values 10 10 

74-55 70-31 48-58 15 
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Log Kor Stepwise Regression Results for p-Xvlene 

LogKoc Predictors R2 R2 

(adj) 
R2 

(Pred) n 

Image Hill %Mn 0-
Aryl 

100 99 99 99-81 4 Attributble 
Variation 93-97 603 100 99 99 99-81 4 

VIF Values 10 10 

100 99 99 99-81 4 

Salt 
Meadows %A1 Silt Aryl A/K 

100 100 99-97 6 Attributble 
Variation 77-43 19-39 313 005 100 100 99-97 6 

VIF Values 5-7 4-6 1-8 5-6 

100 100 99-97 6 

All Data LOI110 %H 20 LOI375 

8710 83-59 74-80 

15 

Attributable 
Variation 70-48 802 8-60 8710 83-59 74-80 

15 VIF Values 5-8 4-7 10 9 

8710 83-59 74-80 

15 

Remove 
LOI375 %H 20 %Fe O-Aryl Sand Aryl 

95-60 93 16 87-54 

15 

VIF Values 1-4 1-8 3-6 2-6 3-7 
95-60 93 16 87-54 

15 
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Log Knr Stepwise Regression Results for p-Xvlene using Transformed Predictors 

LogKoc Predictors R 2 R 2 

(adj) 
R 2 

(Pred) n 

Image Hill VLOI375 Mn'6236 

99 97 99-90 76 04 
4 

Attributble 
Variation 88 91 11 06 99 97 99-90 76 04 

4 
VIF Values 303 303 

99 97 99-90 76 04 
4 

Remove 
VLOI375 V%Fe 86-80 80-20 0 

4 

Salt Meadows V%A1 Silt 6 0 7 7 8 Log RClay Aryl 

100 100 0 

6 

Attributble 
Variation 73-96 24-85 1 1 009 100 100 0 

6 
VIF Values 2-4 27-5 22-5 4-6 

100 100 0 

6 
Remove 

Log RClay, 
Log Sand 
&VRSSA 

V%A1 Silt 6 0 7 7 8 Log 
O-Alkyl 99-90 99-76 9914 

6 

VIF Values 1-3 1-7 1-4 

99-90 99-76 9914 

6 

Al l Data Log 
LOI375 Log % H 2 0 %Si 

91-36 89 00 84-78 15 Attributable 
Variation 85 00 4-31 205 91-36 89 00 84-78 15 

VIF Values 1-9 2-5 1-5 

91-36 89 00 84-78 15 
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7.4.4 Benzene 
Stepwise Regression Results for Benzene 

Predictors R 2 R 2 

(adj) 
R 2 

(pred) n 

A l l Data %Si LOI110 pH 

92-99 87-73 39-63 8 Attributable 
Variation 72-43 14-48 608 92-99 87-73 39-63 8 

VIF Values 2 1 3-5 4-6 

92-99 87-73 39-63 8 

Transformed Predictors 

Al l Data Log 
LOI375 %A1 V%Fe A/K Log 

O-Alkyl 
100 100 99-55 

8 

Attributable 
Variation 69-36 12-27 16 89 119 0-29 100 100 99-55 

8 VIF Values 3 0 8-6 4 1 170 11 

100 100 99-55 

8 

Remove 
A/K 

Log 
LOI375 %A1 V%Fe 

98-52 97-41 89 02 

8 

VIF Values 1-3 1-8 2 0 
98-52 97-41 89 02 

8 
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Log Stepwise Regression Results for Benzene using Transformed Predictors 

LogKd Predictors R 2 R 2 

(adj) 
R 2 

(pred) n 

Al l Data %Si Carboxyl %Fe % H 2 0 Sand O-
Alkyl 

100 99.99 80.88 

8 

Attributable 
Variation 64-40 22-50 710 3-66 1-83 0 51 100 99.99 80.88 

8 VIF Values 5-6 1-9 4-9 4-5 6-6 2-3 

100 99.99 80.88 

8 
Remove 

SSA, Clay, 
Silt & Sand 

%Si Carboxyl %Fe % H 2 0 
97-66 94-55 54-78 

8 

VIF Values 2 1 10 2 0 2-7 

97-66 94-55 54-78 

8 

Transformed Predictors 

Al l Data %A1 Log 
LOI110 V%Fe A/K gj-0-5325 

99-97 99-89 56-59 

8 

Attributable 
Variation 44-95 26-58 24-77 3 07 0-60 99-97 99-89 56-59 

8 VIF Values 13 3 3-4 6-4 20-9 5-4 

99-97 99-89 56-59 

8 
Remove 

SSA, Clay, 
Silt & Sand 

%A1 Log 
LOI110 V%Fe 

96-30 93-53 66-31 

8 

VIF Values 1-8 10 1-9 

96-30 93-53 66-31 

8 

Knr Stepwise Regression Results for Benzene 

Koc Predictor R 2 R 2 

(adj) 
R 2 

(pred) n 

Al l Data SA 
42-65 33 09 3-2 8 

Attributable 
Variation 42-65 

42-65 33 09 3-2 8 

Transformed Predictor 

Al l Data SA 
44-44 3518 3-58 8 

Attributable 
Variation 44-44 

44-44 3518 3-58 8 
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Log Knr Stepwise Regression Results for Benzene 

Log Koc Predictors R 2 R 2 

(adj) 
R 2 

(pred) n 

All Data pH %Si A/K Aryl 
0-

Alkyl %A1 

100 99.98 51-77 

8 

Attributable 
Variation 45-79 43 04 6 86 3 51 0-68 012 100 99.98 51-77 

8 VIF Values 74-2 161-3 142-9 6-6 2-2 301-3 

100 99.98 51-77 

8 

Remove 
%A1 pH %Si A/K Aryl 

0-
Alkyl 99-88 99-58 0 

8 

VIF Values 3-6 3 6 2 0 1-6 1-5 
99-88 99-58 0 

8 

Transformed Predictors 

Al l Data Log LOI375 
44-43 3517 21-73 8 

Attributable 
Variation 44-43 

44-43 3517 21-73 8 

7.5 TGA Calculations 

Wood charcoal, humic acid and a wood charcoal/humic acid mixture (c h c+h) 

Solver Routine 

c h c+h 

Targeted 

Temperatures 

R of linear relationships Sum of 

Carbon R 2 

Values 

Solver Routine 

c h c+h 

Targeted 

Temperatures 
Wood 

Charcoal 
Humic 
Acid 

Sum of 

Carbon R 2 

Values 

Full 

2-6% average 
170-700 °C 0-9995 0-9937 1-9932 Full 

2-6% average 
170-700 °C 

1 0000 0-4524 1-4524 
H24C2X 

2-6% average 

260-410°C& 

530-640°C 
0-9973 0-9870 1-9843 H24C2X 

2-6% average 

260-410°C& 

530-640°C 1 0000 0-9819 1-9819 
H24XC2X 

2-6% average 

260-410°C& 

450-640°C 
0-9992 0-9920 1-9912 H24XC2X 

2-6% average 

260-410°C& 

450-640°C 1 0000 0-8581 1-8581 
H24YC2X 

2-6% average 

260-410°C& 

500-640 °C 
0-9992 0-9935 1-9927 H24YC2X 

2-6% average 

260-410°C& 

500-640 °C 1 0000 0-9181 1-9181 
S1H13C1 

2-6% average 
260-640 °C 0-9992 0-9910 1-9902 S1H13C1 

2-6% average 
260-640 °C 

1 0000 0-8679 1-8679 
S2H24C2X 

2-6% average 

200-410°C& 

530-640 °C 
0-9971 0-9868 1-9839 S2H24C2X 

2-6% average 

200-410°C& 

530-640 °C 1 0000 0-9816 1-9816 
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Wood charcoal, humic acid, sand and a wood charcoal/humic acid mixture (chs c+h) 

Solver 

Routine 

c+h+s no 

correction 

Targeted 

Temperatures 

R2 of linear relationships Sum of R 2 Values Solver 

Routine 

c+h+s no 

correction 

Targeted 

Temperatures 
Wood 

Charcoal 
Humic 
Acid Sand Carbon 

Carbon 

+ Sand 

Full 

2-6% average 
170-700°C 0-9995 0-9937 00000 1-9932 1-9932 Full 

2-6% average 
170-700°C 

1 0000 0-3032 0-5285 1-3032 1-8317 
H24C2X 

2-6% average 

260-410°C& 

530-640°C 
0-9973 0-9870 00000 1-9843 1-9843 H24C2X 

2-6% average 

260-410°C& 

530-640°C 0-9996 0-2415 0-4576 1-2411 1-6987 
H24XC2X 

2-6% average 

260-410°C& 

450-640 °C 
0-9992 0-9920 00000 1-9912 1-9912 H24XC2X 

2-6% average 

260-410°C& 

450-640 °C 0-9999 0-2401 0-6564 1-2400 1-8964 
H24YC2X 

2-6% average 

260-410°C& 

500-640 °C 
0-9992 0-9350 00000 1-9342 1-9342 H24YC2X 

2-6% average 

260-410°C& 

500-640 °C 0-9997 0-0049 0-4576 1-0046 1-4622 
S1H13C1 

2-6% average 
260-640 °C 0-9992 0-9910 00000 1-9902 1-9902 S1H13C1 

2-6% average 
260-640 °C 

0-9999 0-2360 0-6793 1-2359 1-9152 
S2H24C2X 

2-6% average 

200-410°C& 

530-640°C 
0-9971 0-9868 00000 1-9839 1-9839 S2H24C2X 

2-6% average 

200-410°C& 

530-640°C 0-9996 0-2381 0-4576 1-2377 1-6953 

Wood charcoal (sand corrected), humic acid (sand corrected) and a wood 

charcoal/humic acid mixture (c-s h-s c+h) 

Solver Routine 

c-s h-s c+h 

Targeted 

Temperatures 

, 

R of linear relationships Sum of 

Carbon R 2 

Values 

Solver Routine 

c-s h-s c+h 

Targeted 

Temperatures 
Wood 

Charcoal 
Humic 
Acid 

Sum of 

Carbon R 2 

Values 

Full 

2-6% average 
170-700 °C 0-9909 0-9842 1-9751 Full 

2-6% average 
170-700 °C 

0-9995 0-9849 1-9844 
H24C2X 

2-6% average 

260-410°C& 

530-640 °C 
0-9829 0-9856 1-9685 H24C2X 

2-6% average 

260-410°C& 

530-640 °C 0-9997 0-9870 1-9867 
H24XC2X 

2-6% average 

260-410°C& 

450-640 °C 
0-9923 0-9853 1-9776 H24XC2X 

2-6% average 

260-410°C& 

450-640 °C 0-9995 0-9849 1-9844 
H24YC2X 

2-6% average 

260-410°C& 

500-640 °C 
0-9895 0-9851 1-9746 H24YC2X 

2-6% average 

260-410°C& 

500-640 °C 0-9996 0-9856 1-9852 
S1H13C1 

2-6% average 
260-640 °C 0-9910 0-9840 1-9750 S1H13C1 

2-6% average 
260-640 °C 

0-9995 0-9849 1-9844 
S2H24C2X 

2-6% average 

200-410°C& 

530-640 °C 
0-9825 0-9853 1-9678 S2H24C2X 

2-6% average 

200-410°C& 

530-640 °C 0-9997 0-9870 1-9867 
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Wood charcoal (sand corrected), humic acid (sand corrected) and a wood 

charcoal/humic acid (sand corrected) mixture (c-s h-s c+h-s) 

Solver Routine 

c-s h-s c+h-s 

Targeted 

Temperatures 

R 2 of linear relationships Sum of 

Carbon R 2 

Values 

Solver Routine 

c-s h-s c+h-s 

Targeted 

Temperatures 
Wood 

Charcoal 
Humic 
Acid 

Sum of 

Carbon R 2 

Values 

Full 

2-6% average 
170-700 °C 0-9999 0-9939 1-9938 Full 

2-6% average 
170-700 °C 

0-9996 0-9881 1-9877 
H24C2X 

2-6% average 

260-410°C& 

530-640°C 
0-9996 0-9939 1-9935 H24C2X 

2-6% average 

260-410°C& 

530-640°C 0-9999 0-9936 1-9935 
H24XC2X 

2-6% average 

260-410°C& 

450-640°C 
0-9999 0-9943 1-9942 H24XC2X 

2-6% average 

260-410°C& 

450-640°C 0-9996 0-9896 1-9892 
H24YC2X 

2-6% average 

260-4 lO'C & 

500-640 °C 
0-9995 0-9969 1-9964 H24YC2X 

2-6% average 

260-4 lO'C & 

500-640 °C 0-9998 0-9924 1-9922 
S1H13C1 

2-6% average 
260-640 °C 0-9999 0-9938 1-9937 S1H13C1 

2-6% average 
260-640 °C 

0-9996 0-9887 1-9883 
S2H24C2X 

2-6% average 

200-410°C& 

530-640°C 
0-9996 0-9981 1-9977 S2H24C2X 

2-6% average 

200-410°C& 

530-640°C 0-9998 0-9935 1-9933 

Wood charcoal (sand corrected), humic acid (sand corrected), sand and a wood 

charcoal/humic acid mixture (c-s h-s s c+h) 

Solver 

Routine c-s 

h-s s c+h+s 

Targeted 

Temperatures 

7 
R of linear relationships Sum of R2Values Solver 

Routine c-s 

h-s s c+h+s 

Targeted 

Temperatures 
Wood 

Charcoal 
Humic 
Acid Sand Carbon 

Carbon 

+ Sand 

Full 

2-6% average 
170-700 °C 0-9928 0-9613 0-8161 1-9541 2-7702 Full 

2-6% average 
170-700 °C 

0-9903 0-9847 0-5649 1-9750 2-5399 
H24C2X 

2-6% average 

260-410°C& 

530-640 °C 
0-9912 0-9804 0-5042 1-9716 2-4758 H24C2X 

2-6% average 

260-410°C& 

530-640 °C 0-9938 0-9717 0-5081 1-9655 2-4736 
H24XC2X 

2-6% average 

260-410°C& 

450-640 °C 
0-9936 0-9276 0-8873 1-9212 2-8085 H24XC2X 

2-6% average 

260-410°C& 

450-640 °C 0-9902 0-9888 0-5931 1-9790 2-5721 
H24YC2X 

2-6% average 

260-410°C& 

500-640 °C 
0-9938 0-9541 0-7772 1-9479 2-7251 H24YC2X 

2-6% average 

260-410°C& 

500-640 °C 0-9925 0-9797 0-5177 1-9722 2-4899 

S1H13C1 

2-6% average 
260-640 °C 0-9937 0-9270 0-8894 1-9207 2-8101 S1H13C1 

2-6% average 
260-640 °C 

0-9903 0-9895 0-6027 1-9798 2-5825 
S2H24C2X 

2-6% average 

200-410°C& 

530-640°C 
0-9911 0-9805 0-5047 1-9716 2-4763 S2H24C2X 

2-6% average 

200-410°C& 

530-640°C 0-9937 0-9719 0-5173 1-9656 2-4829 
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Substituting & adding the average (2&6%) hav charcoal (hv) or coal (cD normalised 

signal for the average wood charcoal (c) normalised signal using the H24C2X 2-6% 

average solver routine 

c+h hy+h cl+h c+cl+h c+hy+h c+hy+cl+h 

1% 

Humic Fraction 0-374 0-269 0-432 0-374 0-361 0-361 
Wood Charcoal Fraction 0-594 - - 0-594 0-549 0-549 
Hay Charcoal Fraction - 0-677 - - 0056 0056 

Coal Fraction - - 0-549 - - 0000 
Humic Error 12044 19-460 29-350 12045 8043 8-043 

Wood Charcoal Error 10-836 - - 10-836 17-650 17-650 
Sum of Black Carbons 0-594 0-677 0-549 0-594 0-605 0-605 

Error 10-836 1-583 17-595 10-836 9184 9-184 

2% 

Humic Fraction 0-404 0-301 0-459 0-404 0-389 0-393 
Wood Charcoal Fraction 0-577 - - 0-577 0-524 0-367 
Hay Charcoal Fraction - 0-659 - - 0067 0-097 

Coal Fraction - - 0-535 - - 0-123 
Humic Error 4-467 22-235 18-485 4-467 0-396 1-416 

Wood Charcoal Error 5-832 - - 5-832 14-574 40081 
Sum of Black Carbons 0-577 0-659 0-535 0-577 0-590 0-588 

Error 5-832 7-457 12-697 5-832 3-713 4-130 

4% 

Humic Fraction 0-390 0-289 0-425 0-390 0-384 0-385 
Wood Charcoal Fraction 0-610 - - 0-610 0-576 0-441 
Hay Charcoal Fraction - 0-691 - - 0-040 0-071 

Coal Fraction - - 0-575 - - 0104 
Humic Error 0-335 26-305 8-463 0-335 1-908 1-851 

Wood Charcoal Error 0-216 - - 0-216 5-298 27-446 
Sum of Black Carbons 0-610 0-691 0-575 0-610 0-616 0-615 

Error 0-216 13-536 5-451 0-216 1-229 1193 

6% 

Humic fraction 0-417 0-314 0-451 0-418 0-405 0-411 
Wood charcoal fraction 0-582 - - 0-570 0-543 0-329 

Hay fraction - 0-663 - - 0049 0091 
Coal fraction - - 0-549 0-012 - 0168 
Humic error 6033 20010 14-810 6-301 3-074 4-446 

Wood charcoal error 4086 - - 6148 10-601 45-782 

Sum of black carbons 0-582 0-663 0-549 0-581 0-592 0-588 
Error 4086 9-183 9-595 4-219 2-506 3-081 


