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Land pressures today -and government policy~ requires previously developed,

~ Abstract

‘brownfield’ land to be brought back into beneficial use. The nature of these sites means that
they may have been subject to some form of contamination from previous uses. The risk any
pollutant has to human health and the environment must be assessed and, if deemed
unacceptable, remediation must be undertaken. Risk assessment may be carried out utilising
generic values for contaminant properties that can give misleading results.

This theéis describes the effort to further assess the controls on adsorption of organic
pollutants and its spatial variability. Spatial sampling of two brownfield sites was undertaken
with generic soil parameters being meaéured. To better describe soil organic matter, organic
extracts were prepared from soils, allowing BC NMR spectra to be collected. The collected
soil dataset is analysed to discern any correlations between soil parameters. The nature of the
organic pollutants used in this study (benzene, phenol, p-xylene and p-cresol) is described
using calculated molecular descriptors. The variation in experimental adsorption resulfs,
provided by Sheffield University, were then statistically analysed using soil measures as
predictors and then also adding molecular descriptors to the analysis. The percentage of black
carbon may also have an influence on adsorption and so this was also measured and added to
the list of predictors available for inclusion in stepwise regression.

Results show that adsorption of these organic compounds can be partially described
using the measured soil parameters. Molecular descriptors such as a molecule’s surface area
can also be used to predict adsorption. The percentage black carbon was an importaﬁt
predictor in only one instance for p-xylene adsorption. Soil parameters were also shown to be
predicted by other soil variables from the dataset, giving good results that were improved

upon by transforming all parameters to normality.
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1 Introduction

1.1 Gove ent Policy: Redevelopment

The government has set targets that require 60% of new homes to be built on previously
developed ‘brownﬁe}d’ sites by 2008 (DETR, 1999). Brownfield land is defined as
‘Previously developed land which is or was occupied by a permanent structure, including the
curtilage of the developed land and any associated fixed surface infrastructure’ (PPS3, 2006).
This definition does not require the soil to be contaminated.
For the purposes of pollution control in England and Wales, contaminated land is
defined in section 78A of the Environmental Protection Act 1990 as “any land which appears
to the local authority in whose area it is situated to be in such a condition, by reason of
substances in on or under the land, that — (a) significant harm is being'caused or there is a
significant possibility of such harm being caused; or (b) pollution of controlled waters is
being, or is likely to be, caused”. Land can only be classed as contaminated when:
< A contaminant has been identified (source).

% Linkage between this source and a receptor (harm or pollution of controlled waters)
has been found (pathway).

> The receptor can be human health (or other living organism), an ecological system, a
piece of property or controlled waters which are or could be affected by the

contaminant.

The pathway and receptor need not be contained within the area of land deemed
contaminated. The source-pathway-receptor linkage must be broken and this can be achieved
in many ways. The required amount of remedial action to break this linkage is determined
using risk based analysis.

Risk assessment is the raison d’étre of this project. As stated in Section 1.3, it is a better
understanding of pollutant adsorption and therefore transport that is the main goal of this
project. The computer software Consim is used to predict the mobility of a contaminant using,
amongst other parameters, its adsorption coefficient to the soil. If the adsorption coefficient is
badly chosen or subject to variation within a given area, any risk assessment based on
coefficients from literature for a particular contaminant could give misleading results. This in
turn may result in expensive remediation when none was required or the opposite scenario
where nothing is done to break the source-pathway-receptor linkage as it is wrongly deemed
not to present a risk. The magnitude of risk is a function of the size and mobility of the

source, the sensitivity of the receptor and the nature of the pathway.
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The coal based economy of the 19" and 20™ centuries is one of the main sources of
contaminated sites ripe for redevelopment in the UK. Coal itself is not a major concern but
gasworks are, which used coal as a feedstock for coal carbonisation to produce town/coal gas
(hydrogen containing large amounts of carbon monoxide and other minor hydrocarbon
constituents). Other products of coal carbonisation are coke, tar and ammoniacal liquor. The
coal tar produced in town gas works is one of the main sources of the 4 organic contaminants
under study here, namely benzene, phenol, p-cresol and p-xylene (see Section 1.3). Coal tar
would normally be stored in underground brick tanks surrounded by clay to reduce leakage.

Uses of coal tar include as a fuel to heat the carbonisation retorts and as a source of
organic chemicals that were separated by distillation. The peak of this application came in
1926 when there were 400 coal tar distillation works in the UK. This compares to a figure of
~1800 gas and coke works and carbonisation plants in 1930 (DOE, 1995). The total number
of sites found (1846-1996) where these processes have taken place in England is 13716 with
an area of 29117 hectares (EA, 2002). In terms of area this figure is only surpassed by that
associated with engineering works (30104 hectares) and railway land (71408 hectares) both of
which are liable to also contain the contaminants under study. Some of the potential sources

of the contaminants under study (by no means exhaustive) are shown in Table 1.1.

Table 1.1: Potential Sources of Organic Contamination by Landuse

Landuse Potential Contaminants
Benzene Phenol p-Xylene p-Cresol
Railway Land * %* #» *
Engineering Works * %*
Coal Carbonisatioﬁ *» » *» »
Disinfectant
Manufacturing * *
Fine Chemical
Manufacturing * * * *
Rubber Processing #* »* *
Dockyards 3 * * *
Oil Refineries * ¥
Timber Treatment
Works (creosote) * * * *
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1.3 DAVe

The work undertaken in this thesis was part of a larger EPSRC funded project entitled
‘Deconstructing Adsorption Variability: The Prediction of Spatial Uncertainty in Pollutant
Movement’. The project involved collaboration between The Department of Earth Sciences:
Durham University, The Department of Mathematics: Durham University and The
Department of Civil & Structural Engineering: Sheffield University.

DAVe’s main aim was to understand the controls upon the adsorption of organic
pollutants onto soil. A first approximation of the controlling factor is generally accepted to be
the organic matter content of the soil, providing it is above a threshold value. Northcott &
Jones (2000) suggest a threshold value of just 0-1% organic carbon. Given the fraction of
organic carbon in a soil, you can then correct the adsorption coefficient (Kq) of the adsorbate
under study to give the organic carbon normalised adsorption coefficient (Koc). The Koc
value for a particular adsorbate should therefore be constant across soils (adsorbents).
Published results however show that Koc values can change by an order of magnitude over a
single study site and by several orders of magnitude between different locations (Hornsby et
al., 1996).

Calculation of Koc allows adsorption to be independent of the organic matter content of
soil. Adsorption will still be subject to variation caused by secondary controls, including clay
content, surface area, pH and the nature of the organic matter (Andersson et al., 2002; Reddy
& Locke, 1994), Grathwohl (1990) showed that log Koc was correlated with the
hydrogen/oxygen (H/O) atomic ratio of the soil organic matter, whilst Ahmad et al. (2001)
showed that the adsorption of organic pesticides to soil was correlated to the fraction of
aromatic type carbon in the soil as found by 13C NMR.

The fate and transport of organic contaminants must be ascertained if the risk these
contaminants have to the environment is to be estimated. Adsorption is one of the controlling
factors of this risk. If a pollutant is strongly bound to soil through adsorption, the mobility of
that pollutant in the environment will be limited. This reduction in rate of transport is
designated as a retardation factor and works in tandem with the rate of degradation.
Degradation can be both chemical and biological. Both degradation pathways are affected by
field conditions including temperature, oxygen availability, whether oxidising or reducing
conditions prevail, the prescence or abscence of catalytic species for chemical degradation

and the amount and type of biological activity for biodegradation.



It is not just the nature of the soil that controls adsorption, but also the nature of the
organic contaminant (adsorbate). Chemometrics allow molecular parameters to be computed
from first principles, and therefore without error, using many software packages. The intrinsic
properties of any adsorbate will help account for its environmental behaviour. Research by
Randi¢ (1976) and Kier & Hall (1976) -led to the chemometric studies widely used in the
pharmaceutical industry to develop Quantitative Structure Activity Relationship (QSAR)
models. QSAR models inform .drug design by linking biological activity to molecular
parameters. These models can be adapted to serve the adsorbent/adsorbate interactions of soil
and pollutants.

Connectivity indices are an example of topological parameters that have been widely
utilised to predict soil sorption coefficients (Boethling et al., 1992; Tao & Lu, 1999). There
are a huge number of topological parameters and molecular properties that can be calculated
from first principles and semi-empirical methods. Reddy & Locke (1994) showed that semi-
empirical properties, namely Van der Waals volume, molecular polarisability, dipole moment,
and energy of highest unoccupied molecular orbital accounted for 70% of the variation in Koc
values. It should therefore be possible to model the potential environmental fate of organic
adsorbates using molecular and soil parameters in tandem.

It has been reported that black carbon may be partially responsible for the non-linear
adsorption isotherms shown by some sediments and soils (Accardi-Dey & Gschwend, 2002;
Chiou & Kile, 1998). There have therefore been a number of studies undertaken to try and
quantify and characterise black carbon (Lim & Cachier, 1996; Gelinas et al., 2001; Huang et
al., 2002).

To account for differences in Koc values, five main areas of research were highlighted:

< Do not solely rely just on the fraction of organic matter/carbon. Use 3C NMR

spectroscopy on organic extracts to give information on the type of carbon
molecules the soil contains.

% Collect adsorption data for a number of organic compounds which are known
contaminants of brownfield sites within the UK.

% Maeasure a wide range of soil parameters, including black carbon content and other
possible secondary controls on adsorption to undergo statistical analysis with the 3¢
NMR and adsorption data.

“» Map & model the spatial variation of the soil parameters after sampling a number of
sites using a predefined grid sampling scheme.

% Calculate molecular parameters of the organic compounds to further enhance the

statistical analysis and discern the controls on adsorption variability.




Adsorption data was collected by colleagues based in The Department of Civil &
Structural Engineering, Sheffield University. Due to the time involved in collecting this data
and laboratory limitations, adsorption studies were carried out using 4 organic contaminants
as listed below, for a maximum of 20 different soils: |

% Benzene

< Phenol

% Para-xylene

< Para-cresol

Colleagues based in The Department of Mathematics, Durham University utilised
Bayesian statistical techniques as a means of linking predictors of adsorption variability to
measurable site parameters. This was to produce a generic tool for adsorption prediction to be
used by contaminated land practitioners that can work with models such as ConSim that is
both capable of learning and updating as new information becomes available.

All other aspects of the project were undertaken as part of this thesis.

1.3.1 Research Hypothesis

The hypothesis of this thesis is that organic matter is the primary control of the
adsorption of organic contaminants in natural soils. It is further hypothesised that by better
understanding the nature of both the soil and organic pollutant, a better understanding of

adsorption variability can be deduced.

1.3.2 Thesis Qutline

<» Chapter 1 introduces the rationale for the DAVe project and also details the study sites
and soil sampling locations.

% Chapter 2 details sampling and laboratory methods.

< Chapter 3 deals solely with soil properties and their statistical and spatial analysis.

¢ Chapter 4 details the calculation of molecular parameters and an analysis of the
adsorption data provided by collegues at Sheffield University. Together with the soil
parameters from Chapter 3, the molecular parameters are used to try and predict the
variation found in adsorption.

< Chapter 5 details methods to quantify the black carbon content of soil.

< Chapter 6 summarises and concludes the previous chapters and discusses possible
further work.
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143  Agricultural Soil Samples

The agricultural soil samples collected to increase soil variation were sourced above the
following underlying rock types:

< Bunter sandstone. This sandstone extends from the Middlesbrough coastline south-west
towards Nottingham and is more recently referred to as Sherwood sandstone. The Sherwood
sandstone is an important aquifer and used to provide drinking, industrial & agricultural
water over a large area of England. The importance of Bunter sandstone is reflected in the
two soil samples taken above this (designated BS1 & BS3, with BS2 being a duplicate of
BS1) that were used in adsorption experiments.

¢ Carboniferous limestone. This aquifer is less important from a groundwater perspective,
was sampled in duplicate (CL1 & CL2) and CL1 was used in adsorption experiments.

 Upper chalk. The chalk aquifer of south-east England is another of primary importance
due to its use as a drinking water source in this parched part of the UK. Not only potential
contamination, but also over abstraction of this finite resource threatens future
anthropogenic use and natural base flow to rivers and other important aquatic environments.
Again this sample was used in adsorption experiments.

¢ Coal measures. Deposits of coal are widely distributed in the north-east of England.
Whilst not an important aquifer, coal has been mined in the UK for centuries giving rise to
contaminated surface waters due to acid mine discharge from flooded, abandoned mine
workings. Agricultural soil above coal measures was again sampled in duplicate with one
sample used in adsorption experiments.

% Magnesian limestone. This aquifer is also of secondary importance but increases the
variation in geology below soil samples used in adsorption experimentation. Again it was
sampled in duplicate (ML1 & ML2).

% Peat. A sample of peat was collected from Grinton Moor (National Grid reference
SE057963) and serves as an end member in terms of organic matter content (~100%).
Experiments conducted on peat (GMP) would be expected to show markedly different
adsorption characteristics compared with all other soils. The underlying geology of Grinton
Moor is Millstone Grit but this is likely to have a negligible effect on results from the peat
sample. The area has been historically subject to lead and coal mining and is pock marked
with shallow workings and mine shafts. Grinton Moor is now managed as grouse moorland.

< Jennings Yard. Soil from Jennings Yard (underlain by coal measures) was included with
agricultural samples again to increase the variation of soil provenance. Soil from Jennings
Yard (JY1) has a distinct rust colour and contained metal particles from its last use as a

scrap yard.
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2.2 Laboratory Methods

Where possible experimental procedures used in this study are standard, soil analytical
methods well established in the literature. Due to the number of samples, methods were
adjusted to allow greater and simpler collection of results without compromising the quality
of the data. Unless otherwise stated all weights were recorded to four decimal places on a
Mettler AJ100 electronic balance, calibrated frequently using a standard (E2) 100g weight.
The order of analysis was not fixed except that procedures for moisture content and redox
potential required fresh undried soil. All other procedures could be carried out on dried,

sieved samples.

2.2.1 Moisture Content

A clean batch of 24 porcelain crucibles was dried in an oven at 105°C for at least 2
hours. After cooling in a desiccator, the crucibles had their weights recorded. Duplicates for
each fresh soil (~10g) were placed into the porcelain crucibles and weighed before being
dried in an oven at 105°C for 24 hours. The crucibles were then reweighed after cooling in a

desiccator (Hesse 1971).

—4——3x100 Equation 2.1

. W, -W
The percentage moisture equals:
W, =W,

N

Where: W, = weight of empty crucible
W, = weight of empty crucible + fresh soil

W; = weight of empty crucible + dried soil

2.2.2 Redox Potential
Redox potential (Eh) was measured by carefully inserting a platinum (Ag/AgCl;

reference) combination redox electrode (BDH Gelplas) directly into a sample of fresh,
untreated soil. Care was made to ensure a good contact between the end of the electrode and
the soil. The electrode was connected to a Whatman® PHA 230 digital bench pH meter. A
measurement in millivolts (m¥V) was taken after several minutes to allow stabilisation of the

reading.

Eh was calculated by: Eh =mV +199 Equation 2.2
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2.2.3 Soil Preparation
All soil samples had to be dried before further analysis could be undertaken. Soil

samples were first split into two halves with one half being frozen as a fresh sample without
any preparation. The other half was left open to air in the lab and allowed to dry at room
temperature. To aid the drying process, soil samples were rotated into an oven at a
temperature of 35°C. The length of time a sample took to dry was dependent on its moisture
content. Typically samples were left for 1-2 weeks. Samples were gently disaggregated by
hand whilst drying. This greatly reduced the need for forceful disaggregation of samples
before sieving. Dried samples were then passed through a 2mm sieve (Endecotts Ltd, BS410
standard). Samples that had ‘caked’ together were broken up as gently as possible. Particles
larger than 2mm were discarded. The dried, sieved soil was then split into two so one half
could be frozen. A 50g sample of 2mm soil was then ground to pass a 0-25mm sieve. Grinding
was initially carried out in a TEMA mill and then finalised by hand using a mortar and pestle.

2.2.4 Loss on Ignition

A clean batch of 24 porcelain crucibles was dried in an oven at 105 °C for at least 2
hours. After cooling in a desiccator, the crucibles had their weights recorded. Duplicates for
each air-dried soil (~2g) were placed into porcelain crucibles and weighed before being dried
in an oven at 110°C for 24 hours. The crucibles were then reweighed after cooling in a
desiccator. The dried samples were then heated at 375 °C in a Carbolite CSF 1100 furnace for
a further 24 hours, cooled in a desiccator and weighed. A quality control (QC) sample was run
in each batch. '

W,-W

The percentage loss on ignition equals; ———-x100 Equation 2.3
W, =W,
Where: W, = weight of empty crucible

W, = weight of empty crucible + dried soil
W3 = weight of empty crucible + ignited soil
During the validation stage loss on ignitions were carried out at 375, 600 and 900 °C.
Due to the higher temperature, 900 °C ignitions were carried out over 2 hours. Before
validation samples were run the furnace was calibrated. Calibration was carried out using a
digital thermometer (HANNA HI 8757, REK2 glass fibre thermocouple). Results of the
calibration are shown in Figure 2.3. Equation 2.4 shows how the furnace temperature was set.
This was required so that a more direct comparison of these results with thermo gravimetric

analysis (TGA) and differential scanning calorimetry (DSC) could take place.

23












After an additional heating period of 30 minutes the samples were cooled, balanced and
centrifuged at 4000rpm for 40 minutes. The supernatant was decanted and discarded. The
samples were then washed twice by adding 50ml of RO water and centrifuging at 4000rpm
for 40 minutes, decanting and discarding the supernatant washings.

Organic matter was then removed by adding 5m/ of 30% hydrogen peroxide. The
reaction was allowed to take place at room temperature for 30 minutes and only cooled if too
vigorous. Samples were mixed regularly by swirling the contents of the tubes, care being
taken not to allow sample to stick to the sides of the tubes. The samples were then warmed
and regularly swirled in an oven at 70 °C for ~30 minutes, again making sure that the reaction
was not too vigorous. Another Sml of 30% hydrogen peroxide was added to the samples
which underwent further heating and swirling for ~2 hours at 70 °C. All samples would have
one more addition of 5ml of 30% hydrogen peroxide and be heated to ~90 °C overnight. This
procedure removes any more resilient organic matter and decomposes any remaining
hydrogen peroxide. If samples were high in organic matter more hydrogen peroxide (1-4 5ml
additions) would be added at this higher temperature. After the addition of 20m/ RO water,
the samples were balanced and centrifuged at 4000rpm for 40 minutes with the supernatant
being decanted and discarded.

Iron oxides were then removed using the sodium dithionite-citrate-bicarbonate (DCB)
method. This procedure extracts ‘free’ iron oxides, aluminium, manganese and silicon and so
the extract was collected and analysed by ICP-OES. A solution of 0-3M sodium citrate/0- 1M
sodium bicarbonate was made fresh on the day of use, with 50m/ being added to each sample.
The samples were heated at 70 °C for ~20 minutes before ~2g of sodium dithionite with the
samples being heated for a further ~20 minutes. The addition of sodium dithionite was
repeated, and after an additional 30 minutes of heating the samples were allowed to cool. A
reddish-brown colour is indicative of incomplete iron removal and would result in a further
DCB extraction until the samples had lost the reddish-brown colouring. The samples were
then balanced using RO water, had their weights recorded, and were centrifuged at 4000rpm
for 40 minutes. A sample of the supernatant was decanted into a clean sterilin tube for future
analysis and the rest discarded. The samples were then dried at 105 °C overnight. The dried
weights were also recorded to allow calculation of the volume of supernatant (presuming it is
pure water at STP). The samples were then washed twice by adding 50m/ of RO water and
centrifuging at 4000rpm for 40 minutes, decanting and discarding the supernatant washings. If

the second washing was yellow, the sample would be washed until the supernatant was clear.
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A small number of samples were repeated having all the extractant and washings
collected and made up to volume in a volumetric flask (250 or 500m/). This was to test the
accuracy of the free iron extractions when only a sample of the extract was taken and a
volume calculated as discussed above. The samples were then dried and gently disaggregated
using a mortar and pestle, ready for particle size analysis.

For particle size analysis 0-5g of a sample was placed in a sterilin tube with 20m! of RO
water and 2m! of 3% sodium hexametaphosphate solution being added. The sample was left
overnight before being washed into the variable speed fluid sample chamber of the Coulter
LS230. The Coulter LS230 uses polarisation intensity differential scatter (PIDS) for particles
in the range 0:04-0-4um and laser diffraction optics (obscuration: Obs) to calculate particle
sizes of 0-4-2000um. Each sample was run twice with an acquisition time of 90 seconds.
Sonication was switched on during loading to aid dispersion. Values of PIDS and Obs should
be close to the optimum (~55% and ~12% respectively). Results were given as a percentage
by volume of particles below a size. If there was good agreement between the two runs for an
individual sample, results were averaged and recorded as % Clay (<2um), % Silt
(>2um <63um) and % Sand (>63um). If the Obs value fell below 5%, or if the individual runs
varied considerably, particle size measurement would be recorded with a longer acquisition
time (180 seconds) using the same sample. If repeat runs still failed to agree a new sample

would be prepared, with more sample being used (1-2g) where the Obs value was low (<5%).

228 pH

A soil slurry was prepared by mixing 5g of 2mm soil with 50m/ of 0-01M CaCl,. This
was stirred intermittently for 30 minutes before being allowed to stand for 1 hour. A Hanna
HI1230 pH electrode was immersed into the clear supernatant and the pH recorded using a
Whatman® PHA 230 digital bench pH meter (calibrated daily). To aid quality control, the pH
of the 0-01M CaCl, used, the RO water used to make the solutions and a QC sample were
recorded for each batch. '

The pH of soil is difficult to measure with any degree of consistency without altering
natural conditions. This method standardises measurement conditions whilst also increasing
the conductivity of the soil slurry. No attempt is made to account for the potential difference
between the pH measurements and natural conditions (ie. CaCl, soil slurry compared to
damp/dry natural soil).
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2.2.9 Surface Area

Surface area was measured using the weight gained by adding ethylene glycol
monoethyl ether (EGME, 2-ethoxyethanol) to a sample of soil. Using the method outlined
below, any weight gain is presumed to be due to a monolayer of EGME on the surface of the
soil particles, which therefore allows you to calculate surface area.

Preparation of CaCL,-EGME solvate: To remove all traces of water, 105g of
anhydrous CaCl, powder was placed into a glass beaker and dried in an oven at 210 °C for 1
hour. Without cooling, 100g of dried CaCl, was added to a glass culture chamber
(20cm diameter, Scm high with a lid) containing 20g of EGME and mixed immediately and
thoroughly with a spatula. This was repeated for a second culture chamber, with both being
stored in a vacuum desiccator containing anhydrous CaCl, as a desiccant. Each culture
chamber could hold 4 aluminium cans, therefore allowing 4 samples to be run in duplicate per
batch. Because of the small number of samples in a batch, a QC sample was only included in
every second batch.

Soil Pre-treatment: Samples (3g, 0:25mm soil) were saturated with Ca by the addition
of 50ml 1M CaCl,. The samples were shaken for ~4 hours, balanced and centrifuged
(4000rpm, 40 minutes) before decanting the supernatant. Another 50m! of 1M CaCl, was then
added before the samples were shaken overnight. The samples were centrifuged again and
after decanting the supernatant, excess CaCl, was removed with three successive 50m/ RO
water washings, centrifuging and decanting the supernatant each time. The samples were then
air dried (~105 °C) and passed through a 0-:25mm sieve, grinding if necessary.

Sorption Technique: A sample of pre-treated soil (;1 g) was weighed into an
aluminium can of known weight (dried at ~105 °C until constant) including the lid (W,). The
soil and can was dried at 105°C until constant weight was attained (W,). The dry weight of
soil (W= W, -W,)) was noted before adding 3m/ of EGME to each sample. The samples
were swirled to form a slurry before being placed, with the lid beneath, in a culture chamber.
The lids on the culture chambers were elevated by ~2mm to allow gas to escape. The culture
chambers were placed in the vacuum desiccator and left for 30 minutes to allow equilibration.
The desiccator was evacuated for 45 minutes before being allowed to stand for at least 4
hours. The vacuum was then released by connecting the outlet to another desiccator
containing both anhydrous CaCl, and silica gel. This helped minimise weight gain due to
moisture in the atmosphere. Before weighing the soil and can, the lids were placed onto the
cans to prevent water adsorption. After weighing the cans were returned to the culture
chamber, again placing the lids beneath. The vacuum desiccator was then evacuated again and
left for 2 to 4 hours.
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The vacuum was then released and the cans weighed as above. This process was
repeated until the samples attained a constant weight (weighing’s within 0-001g). Generally
no more than three weighing’s were required. The mean of 2 successive weights that agree to
within a few tenths of a milligram was used as the final weight (Wy). Table 2.2 gives a list of

measurements taken and Equation 2.5 shows how surface area was calculated.

Surface Area = Weows Equation 2.5
(W, x 0-000286)

(0-000286 is the weight of EGME required to form

a monomolecular layer on a square metre surface)

Where:
Weemve = weight of EGME (W¢-W,)
W = weight of oven dried pre-treated soil (W, -Wa))
Wal = weight of oven dried aluminium can and lid
Wy = weight of air dried pre-treated soil
W, = Wu+ W,
Wi = Mean weight of soil, aluminium can, lid and monolayer of EGME

2.2.10 Dichromate Oxidation

Dichromate oxidation is a measure of the amount of oxidisable carbon contained in a
soil sample. Potassium dichromate is used as the oxidising agent and is heated (~120 °C)
using the heat of dilution of the added concentrated sulphuric acid. This method has been
shown to oxidise 75% of the organic carbon in soils and thus a correction factor is employed
(Walkley & Black, 1934). The correction factor varies in the literature (1-03-1-41) and is
dependant on soil type but 1-3 is widely used. The carbon undergoing oxidation is also
presumed to have an average valence of zero as shown in Equation 2.6. Outlined below is an
updated version of the original Walkley-Black method (Gaudette et al., 1974).

2Cr,04% +3C° + 16H" « 4Cr** + 3CO; + 8H,0 Equation 2.6

A 0-5g sample of dried 0-25mm soil was placed into a 500m/ conical flask. Each soil
was measured in duplicate with a QC sample and a blank measured at the beginning and the
‘end of a batch. An aliquot of 10m/ 0-167M potassium dichromate solution (K,Cr,07) was
pipetted into each flask (Gilson P10 pipette) and mixed by swirling. Each flask then had 20m/
of concentrated H2SO4 added and was mixed by gentle rotation for ~60 seconds. Care was
taken to avoid throwing the soil onto the sides of the flask. After the flasks had been allowed

to stand for 30 minutes, the oxidised samples were diluted to 200m/ with RO water.
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Additions of 10ml 85% H3PO, and 0-2g of NaF were then made to each flask to help
define the endpoint of the titration. Diphenylamine indicator (~15 drops) was added to the
flasks, producing a dark green to black coloured solution. The sample solutions were titrated
against 0-5M ferrous ammonium sulphate solution [Fe(NH4)2(SO4)2:6H20]. A spotlight was
positioned to shine light through the sample solution whilst titrating to aid identification of the
end point. The solution would change to a bluish-black-grey before reaching a 1-drop end
point and turning back to green. If more than 75% of the Potassium dichromate has reacted,
the sample would be repeated using less soil (0-2-0-4g). Occasionally when the soil had a
high carbon content (for example, peat) the amount of potassium dichromate added would be
increases to 20ml or even 30ml.

To calculate the percentage organic carbon the following equation was used:

1-1)(0-167 xVx]2xi

2) x 100 % Equation 2.7

% Organic Carbon is equal to: ( -

T = Soil sample titration

S = Blank standard titration (average of 2)

w = Weight of soil added in grams

\% = Volume of potassium dichromate added in litres
0-167 = Molarity of K;Cr,0,

12 = Atomic weight of carbon

Number of moles of carbon oxidised by 1 mole of K,Cr,0

Equation 2.7 simplifies to

% Organic Carbon = (1 - %)( 0 '\;V )% Equation 2.8

(V is now given in m/)
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Standard linear calibration curves were calculated by the WinLab™ software using
standard solutions made up from analytical grade standard stock solutions (10000ppm Fe, Al,
Si & Mn). A secondary standard solution (50ml) containing 200ppm Fe, 40ppm Al & Si and
4ppm Mn was made up by dilution using RO water. For accuracy, 50ml of RO water was
measured into a sample bottle using a calibrated pipette from which aliquots totalling the
volume of stock solutions to be added was removed again using calibrated pipettes of the
appropriate size. This allowed the accurate addition of aliquots of 10000ppm standards to give
the appropriate concentrations i.e. 1ml of 10000ppm Fe, 0-2ml each of 10000ppm Al & Si
and 0-02ml of 10000ppm Mn. A new, clean pipette tip was used for each individual solution
during the preparation of solute mixtures for ICP-OES calibration & analysis. The secondary
standard solution was further diluted in the same manner to give the calibration standards

given in Table 2.1. The calibration standards were chosen to cover the same range found in

the diluted DCB extracts.
Table2.1: Analvtical Standards Used For ICP-OES Calibration
Standard Analytes & Calibration Concentrations (ppm)
Number Fe Al Si Mn
1 200 40 40 4
2 100 20 20 2
3 50 10 10 1
4 25 1 1 0-5

To reduce matrix effects and prevent detector saturation, DCB extracts were diluted 1 in

10. All solutions undergoing ICP-OES analysis had an internal standard added. The internal

standard used was a solution of 10ppm yttrium, which was added to all solutions in the ratio
of 200uL. 10ppm yttrium per 10ml of solution.

For each analyte, multiple lines in their emission spectrum were chosen for
measurement. This allowed averages to be taken presuming no interference but allowed data
to still be gathered if intereference affected areas of the emission spectra. The lines chosen are
tabulated in Table 2.2. The calibration solutions were rerun after each batch to check for

machine drift. One calibration solution was also repeated every 20 samples as a further check.

Table 2.2: Spectr: ission Lines measured by ICP-OE
Element— Y Fe Al Si Mn
361-104 234-349 394-401 212-412 259-372
Spectral 324-227 238-204 396153 252-851 260-568
Lines 360-073 239-562 237-313
371-029 259-939
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2.3 NMR - EPSRC Solid State Service

DAVe was funded by the EPSRC and as such was given time to use the EPSRC solid
state service based in the Department of Chemistry, Durham University. The project was
granted the resources to have >C NMR spcectra collected for 120 organic extracts. Section
2.2.5 details the method used to extract organic matter, with these sampes being provided for
analysis without any further preparation. The service has a Varian UNITY Inova spectrometer
with a 7-5T Oxford Instruments magnet. The spectrometer was set to as closely match the
settings used by Ahmad et al. (2001) with the settings used given below in Table 2.3. The
number of repetitions was tailored to give as short a period as possible whilst still giving a
good signal, with a low signal to noise ratio.

The organic matter sent for ’C NMR analysis had two distinct components attributed
to humic and fulvic acid. The organic extraction procedure will leave fulvic acid in solution
whilst humic acid is precipitated out. Both are freeze-dried together, producing a mixture with
the humic acid appearance more dark and solid than the light, fluffy fulvic acid freeze dried
from solution. A 7mm (0.d) rotor was used to collect >°C NMR spectra. This was seen as the
best trade off between using a smaller rotor that would not require the subtraction of a blank
signal and the possibility in bias when loading partial samples. The majority of spectra were
collected on the whole freeze dried organic extract but tests were carried out by the NMR
service to check for sample loading bias when this was not possible. Vigorous shaking of the

humic/fulvic acid mixture was shown to give repeatable spectral results.

Table 2.3: NMR Spectrometer Settings

Frequency 75-398MHz

Spectral Width 299996-3Hz
Acquisition Time 15-0ms

Recycle/Relaxation Delay 0-5s
Contact Time . 1-00ms
Spin-rate 9000Hz
Gaussian Broadening 0-005s
Run at ambient temperature using cross polarisation- magic angle spinning (CP-MAS)
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2.4 Adsorption Experiments — Sheffield University

The adsorption experiments undertaken at Sheffield University were conducted in
50 mL glass bottles with Teflon liners in the caps. Stock solutions of benzene, p-xylene,
phenol and p-cresol were prepared in Ultra High Quality Water containing 1:5% methanol
and 0-1% Sodium Azide (bacterial growth inhibitor). The soils used in adsorption experiments
are listed in Table 2.4. Soil samples weighing 1-2:5g were placed into bottles and filled with
UHQ water and the appropriated amount of stock solution to give concentrations from 1 to
500mgl™ of adsorbate. Samples were run in triplicate, with every batch containing blanks
made up with only water and adorbate. No air was left in the bottles, which were sealed using
Teflon liners. The soil slurries were placed on a shaker table and continuously mixed at
constant temperature (20 + 1°C). Kinetic studies of each compound/substrate showed that
phenol and p-cresol reached equilibrium within 24 hours, with benzene and p-xylene taking
48 hours.

The aqueous phase of phenol and p-cresol samples were transferred to Teflon centrifuge
tubes to remove remaining solids by centrifugation at 8000rpm for 10min, before being
filtered using cellulose nitrate membranes. Blanks were treated the same way. Equilibrium
liquid-phase concentrations of the adsorbates were determined by reverse-phase High
Performance Liquid Chromatography equipped with UV-visible detection at 260nm, on an
Allsphere ODS-2 5um column and guard column from Alltech. The mobile phase was a
60:40 mixture of methanol and water with a flow rate of 1 mlmin". Calibration was
performed by external standards and found to be linear in the 1 to 500mgL"' range. Samples
containing benzene or p-xylene had a 5ml aliquot of the supernatant liquid transferred to a
10ml headspace vial. After gas-liquid equilibrium was achieved, 0-5ml of the headspace was
analysed by Gas Chromatography with Flame Ionisation Detector on a VOCOL 30m x 0-53
column. Again, calibration was performed using external standards and found to be linear in
the 1 to 500 mgL"! range.

The measured concentrations of adsorbate were all corrected using the measured
concentrations in blanks. The blank corrections were always small giving a ~1% difference in
HPLC and a ~5% difference in GC-FID measurements.
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Table 2.4: Soils That Underwen

dsorption Analysis

SM0804 SMO0806 SM106127 SM1113 (0-10) | SM1113 (10-20)
AB0722 JY2 BS1 BS3 CL1
Chalk Coal 1 GMP ML1 QC
Image Hill validation soils
AB 07/3 19
73192 18 6010 64050 31

The adsorption coefficient K4 can be calculated using Equation 2.9 and is normalised to
Koc using Equation 2.11.

g‘ Equation 2.9

ag

The adsorption coefficient K4 equals:

Before calculating Koc, the fraction of organic carbon ( f,.) must be calculated using the

percentage organic carbon (Equation 2.8). A correction for non oxidisable organic carbon

(factor of 1-3, see Section 2.2.10) must be employed giving:

1-3

Joc = $OCx— Equation 2.10
100
The organic carbon normalised adsorption coefficient Koc equals: %— Equation 2.11
ocC
Where: C, = the contaminant concentration in soil
o = the contaminant concentration in solution
foc = the fraction of organic carbon in soil
%0C = the percentage oxidisable carbon
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2.5 Summary

Chapter 2 outlines the methods used to gather, prepare, store and analyse the soil
samples collected as part of this study. Standard methods were employed whenever possible

and are summarised in Table 2.5. The methods used in data analysis are given in the

appropriate sections of the following chapters but are summarised in Table 2.6.

Table 2.5: Soil Characterisation Methods Employed in This Study

Clay speciation

size samples

Parameter Method Reference

Moisture Content Weight loss Hesse (1971)
Redox Potential Platinum combination reference Methods of Soil Analysis. Soil
electrode Science Society of America Inc.

Nelson & Sommers (1996)

Loss on Ignition Weight loss Methods of Soil Analysis. Soil
Science Society of America Inc.

Organic Extraction NaOH (deoxygenated) Swift (1996)

. Soil paste into a conductivity Methods of Soil Analysis. Soil
Conductivity probe Science Society of America Inc.
Particle S}Z&: Laser granulometer analysis of Buurman et al. (1996)

Analysis prepared sample

. . Methods of Soil Analysis. Soil
pH PH electrode into a soil slurry Science Society of America Inc.

Carter et al. (1965)

Surface Area EGME vacuum Chiou et al. (1990)

. 1 . — Walkley & Black (1934)
Oxidisable Carbon Dichromate oxidation Gaudette et al, (1974)
XRD analysis of prepared particle Whittig & Allardice (1986)

Buurman et al. (1996)

Free Fe, Mn, Si, Al

ICP-OES analysis of DCB extract

Buurman et al. (1996)

Weight loss

Thermo gravimetric analysis

Skjemstad & Taylor (1999)

Carbon speciation

NMR analysis of organic extracts " Ahmad et al. (2001)

Table 2.6: Data Analysis Methods Emploved in This Study

Analysis Section Parameters
Boxplot 3.2 All individual soil characteristics
Principal Con.1poncnt 3.3.1 The Abattoir & Salt Meadows soil characteristics
Analysis
Stepwise Regression 332 The Abattoir & Salt Meadows soil characteristics
Spatial Distribution 34 The Abattoir moisture content
Molecular Topology |4.1 &4.2 Organic Adsorbents
Linear Regression 4.3 Adsorption data
Stepwise regression 44 Adsorbent & adsorbate characteristics
Signal separation 52 Carbon species
Stepwise regression 5.3 Adsorbent & adsorbate chafacfteristics including
carbon speciation
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3 Soil Properties

3.1 Introduction

The aims of the DAVe project do not include a better understanding of individual soil
parameters. However, it is important to describe how soil parameters vary both spatially
within a site and on a site by site, soil by soil basis. It is within the remit of DAVe to better
understand the controlling factors relating to the variation shown by organic contaminant

adsorption and these will relate to soil properties. Chapter 3 is split into sections dealing with:

¢ Individual measurements. These are outlined in Section 3.2 and include boxplots
showing the variation in soil parameters between The Abattoir, Salt Meadows and
agricultural datasets. Other figures where appropriate show other relevant information to
each parameter to give a full descrition before further analysis.

» Models of Soil Properties. These are outlined in Section 3.3 and are split between
principal component analysis (PCA) and stepwise regression. PCA is explained fully in
Section 3.3.1 but can be summarised as allowing simplification of large datasets that
may be subject to many collinear variables. PCA allows complex datasets to be
simplified and explained in terms of overall variation. Stepwise regression is fully
explained in Section 3.3.2 but can be summarised as only picking the statistically
relevant predictors to explain the variation shown by a measured parameter. Regression
equations may then allow you to produce pedotransfer functions, allowing prediction of
soil parameters based on the results of other measured soil parameters.

¢ Spatial Distribution of Soil Properties. This is outlined in Section 3.4 and allows
measurements to be mapped spatially to discern whether there are any correlations
between the distance and direction between sample locations. The maximum distance
between correlated sample locations can be calculated, giving information on the

required number of sampling points to correctly characterise an area.
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3.2 Individual Measurements

A boxplot is given for each measured variable with the key given in Figure 3.1.
Boxplots give a good graphical indication of the spread of data points around the central value
(median). The central shaded box marks the interquartile range that is bounded by Q1 and Q3.
The interquartile range gives a graphical representation of the spread of the 25% of data

values immediately above and below the median (total 50%).

Figure 3.1: Boxplot Key
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3.2.1 Moisture Content
The percentage moisture content (%H,0) of a soil is arguably the most changeable

parameter ascertained in this study. The fluctuation in rainfall will obviously affect the

moisture content of soil. All soils studied were sampled in dry conditions during the summer

months and had not been subjected to prolonged periods of heavy rainfall (see Section 2.1).
The moisture retaining capacity of soil is dependent on many factors including:

% Soil Type

% Soil Structure

%  Flora & Fauna

% Climate

o
*

*

Drainage

The above list is by no means inclusive of all parameters that will affect the moisture content
of soil. It is also clear that the parameters listed above are inter-dependent to varying degrees.
A boxplot of the percentage moisture content of the soils under study is shown in Figure 3.2.
The soils from The Abattoir and Salt Meadows sites have comparable distributions of
moisture content, both having median values close to 10%. The median value for the
agricultural soils is ~20% and has a larger distribution. The moisture content of Grinton Moor

peat (73-2%) is not included on Figure 3.2 for clarity.

Figure 3.2: Moisture Content of Soils

30
25 - ' ’
AB 0805
20 % AB10/5 06/5
* AB 0814 -
g .
] .
® 15 .
E \
ae . n
10 - .f’ —— ‘
5 ] ‘
0 : y —
Abattoir Salt Meadows Agricultural Seils
41































Figure 3.15: Boxplot of Carboxyl Carbon
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Figure 3.16: Boxplot of Aromaticity
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3.2.5 Conductivity

Conductivity was measured using a soil paste of each sample. There were problems with
the experimental method that resulted in large, unknown variables. The amount of water in
the sand bed used to dampen the soil before measurement affected measurements. Readings
ranged from 17148 to 799uS and had a mean of 365uS. Measurements were taken in
duplicate and tended to be in good agreement. Repeat measurements however showed large
variations with QC samples having a standard deviation equal to 63 (see Table 3.2). This
called into question the validity of the data and so conductivity was only measured for Salt
Meadows samples.

Table 3.2: OC Conductivity Measurements

. 430 311 256
Conductivity (45)
337 330 262
Mean 321
Standard Deviation 63-3
Relative Standard Deviation 19-7

The conductivity data collected for Salt Meadows is shown in Figure 3.17. There are a
number of outliers with greater conductivities two of which are samples taken at depth, which
may be important. The interquartile range is quite small but may be dubious due to the

potential error in the individual measurements.

Figure 3.17: Boxplot of Conductivity
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3.2.6 Particle Size Analysis

Particle size was split into three groups:

% % Clay (<2um)
* % Silt (>2um <63um)
< % Sand (>63um)

The boxplots shown below (Figures 3.18-3.20) show similar patterns due to the

dependency that clay, silt and sand have as percentages. The relative particle percentages of

The Abattoir and agricultural soils have a wider range compared to Salt Meadows soil.

Figure 3.18: Boxplot of % Clay
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Figure 3.19: Boxplot of %Silt
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Figure 3.20: Boxplot of % Sand
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3.2.7 pH

The distribution of pH values is shown in Figure 3.21 but does not include the value for
Grinton Moor Peat (2-8). Again the agricultural soils show the most variation. Both The
Abattoir and Salt Meadows have a number of outliers but otherwise have small, well-defined

distributions. Grinton Moor Peat excluded, all pH values lie between 5-5 and 8:5.

Figure 3.21: Boxplot of pH
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3.2.8 Surface Area

A Boxplot of the surface area (SA) measurements gathered is shown in Figure 3.22. As
with LOI375, The Abattoir shows the largest variation in surface area. The interquartile range
of the agricultural soils is broader than that of The Abattoir soils but the lower number of data
points in the agricultural soils dataset should be remembered (12 as opposed to The Abattoir’s
50 surface area measurements).

It has been reported that measuring surface area by the EGME method, as shown in
Section 2.2.9, can be interfered with by the presence of organic matter (Chiou et al., 1990).
The organic matter allows cation solvation and dissolution of EGME into the organic phase.
Other studies have found that removal of the organic matter makes negligible difference to the
measured surface area (Kennedy et al., 2002). A cautious approach can be taken with the
EGME calculated surface area being viewed as a measure of the uptake capacity of a soil for a
polar adsorbate (Pennell, 2002).
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As part of the particle size measurements (Section 2.2.7) it is possible, using the LS230
software, to calculate the specific surface area (SSA) based on the hypothetical surface area of
spherical particles with a measured diameter (size). A Boxplot of the SSA measurements
gathered is shown in Figure 3.23. The calculated SSA data is given in units of m’cm™
whereas SA is measured in units of m’g"'. The SSA data for The Abattoir was plotted against
SA as shown in Figure 3.24. It is clear that the SSA values are lower than that of SA although
a direct comparison may be inappropriate due to the different units (m’g”’ & m?cm™).

To justify this comparison the density of the clay, silt and sand mixture undergoing
particle size analysis must be accounted for. The average percentages of clay, silt and sand for
The Abattoir samples are ~6, ~30 and ~60% respectively. Clay has a density of ~0-8 gem™
whereas sand has density of ~1-8 gem™. To convert SSA measurements into units of m’g”
would require the measurements to be divided by the density of the sample given in units of
gem™ This gives a maximum and minimum multiplication factor of ~1-25 and ~0-5
respectively if the soils are 100% clay or sand respectively. Therefore, after allowing for the
different units, SSA is still at least a factor of 10 smaller than SA.

The reasons for SSA being smaller than SA include:

¢ SA measures the internal & external surface area of particles based on sorption
of EGME.
% SSA measures external surface area based on the assumption that all particles

are spherical.

Figure 3.22: Boxplot of Surface Area (SA)
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The values shown in Figure 3.24 suggest that there are different internal to external
surface ratios between samples. This may be due to differing amounts of clay species that will
have different structures and therefore different surface areas (internal & external). There are
a small group of samples that seem to have relatively large SSA values when compared to
their SA values. These have been labelled with their Abattoir grid references and it appears
they are grouped together. This'niay indicate a change in soil structure or perhaps some form .

of blocking of internal surfaces.

Figure 3.23: Boxplot of Specific Surface Area (SSA)
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3.2.13 Manganese
The % Mn in soil as shown in Figure 3.29 is present in trace amounts and does not vary

greatly. This is most evident when looking at samples from The Abattoir as the median has
the same value as Q1, indicating that at least 25% of the data lies at this value (0-02). The
% Mn found at AB 1023 appears high but the other measurements taken in the same batch are

not suspect and so there is no reason to assume that this result is an anomaly.

Figure 3.29 Boxplot of % Manganese
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3.2.14 Silicon

The % Si found in soil is shown in boxplot format in Figure 3.30. There are a large
number of outliers associated with The Abattoir site, which may indicate a large ;/ariation in
the mineralogy between samples. This premise is confirmed further by the boxplots relating to
particle size and surface area (Figure 3.18-3.20 & 3.22) that also show a large range for The

Abattoir’s samples.
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Table 3.3: C resent in Adsorption Sam

w| 2|2
v |z |8 § = § alo
=|E|5|8|28|5|B|B|E|E|E|°
2| & 8|28 |=| S I R
JHHE
S| &
Albite L BEAEIE IR AR * | | W
Aragonite | ¥ L AR IR IR IEIE AR AR AR 2K
Calcite 3 *» | #*
Chlorite L AEJIE IR SE AR ; * | |
Illite 3 3 * | ¥ | ¥
Kaolinite #*
Muscovite *HE BE NE »* » | W | *
Orthoclase | ¥ | # *
Quartz L AEIEIEIE IR IE IR AR AR ZE B .
Saponite * L AE IR BE

3.2.16 ngmogravimet;!'c Analysis

Thermogravimetric analysis (TGA) is covered in depth in Chapter 5. Again the main
samples to undergo TGA are the adsorption soil samples (see Table 2.4). Weight loss was
measured to 990 °C but no sample showed any important weight loss above 900 °C, as shown
for the example given in Figure 3.33. There are 5 distinct elements to the weight loss shown:

% 70-120 °C is associated with water loss, oxidation and volatilisation of organic

components of soil (Gardener, 1986).

% 120-270 °C is associated with the decomposition of labile and simple organic
matter components.

% 270-550 °C is associated with humified organic substances (fulvic acid, humic
acid and humin) and also woody and lignin type materials.

< 550-800 °C is associated with the decomposition of carbonates and black carbon
(both organic and inorganic) (Cuypers et al., 2002).

< 800-990 °C has no discernable weight loss.
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3.3 Models of Soil Properties

3.3.1 Principal Component Analysis
Principal component analysis (PCA) allows identification of the soil parameters that

control the variation seen between samples. This allows for simplification during further
statistical analysis as parameters found to have little effect on the variation can be removed.
Comparing PCA values allows for parameters showing covariance to be identified and
removed from further analysis. Matrix plots of the scores obtained from PCA also allow
potential outliers and end-points to be identified. _

There are many different criteria used to decide how many principal components (PCs)
are retained in PCA. Principal components (PCs) with eigenvalues greater than one explain
more of the variation than any one of the original variables. The eigenvalues correspond to the
associated eigenvectors that are in turn calculated from the covariance matrix of the data. The
first PC with an eigenvalue less than one explains less of the variance in the data than one of
the variables used in PCA but should also be retained. This is because any variable that is
more or less independent of all other variables will have an eigenvalue close to one but will
still be important when explaining the overall variance (Jolliffe, 2002). The eigenvalue below
which no PC should be retained is often considered to be ~0-7. The retained PCs should
explain between 70 and 90% of the variation. In PCA data quality requires that the ratio of
samples to measured parameters should be no less than 5:1 (Worrall et al., 2003). A list of

measured parameters for the soil samples is shown in Table 3.4.

Table 3.4: Parameters Measured For Sojl Samples

Moisture Content % Aluminium
% Clay % Aryl C
(%H,0) (%Al)
Loss On Ignition at 110°C % Iron _
% Silt % O-Aryl C
(LOI110) (%Fe)
Loss On Ignition at 375°C | % Manganese % Carboxyl C
% Sand
(LOI375) (%Mn) (%Car C)
Area - % Oxidisable Carbon % Silicon % Aldehyde/Ketone C
(SA) (%0C) (%Si) (%A/K C)
Specific Surface Area % Aromatic C
Conductivity % Alkyl C
(SSA) (%Ar C)
Redox Potential % Acidic C
pH % 0-Alkyl C
(Eh) (%Ac C)
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There are many different strategies for the removal of variables to simplify datasets

using PCA (Jolliffe, 2002). Two opposite but complimentary methods are:

< Removal. For the last few PCs (eigenvalues <~0-7) remove the variable with the
largest coefficient. PCs with small eigenvalues correspond to near constant
relationships between a subset of the variables, therefore the variable with the

largest coefficient in that PC can be removed.

% Retention. For the PCs to be retained (eigenvalues >~0-7) associate variables
with the highest coefficient to the individual PCs. All other variables can be
removed and no variable should be picked for more than one PC. By picking a
single variable for a PC, any correlating variables in that PC will be removed

whilst leaving most of the variation shown by the correlated group.

The above methods were used to pick subsets of variables to aid simplification of PCA.
One of the major goals in this project is to find descriptors for the NMR data. The collection
of NMR data is time consuming and expensive. Therefore it would be useful if other variables
can act as proxies to the information on organic matter given by NMR analysis. The NMR
variables are highly correlated and so to remove this correlation PCA was carried out on the
dataset using eéch individual NMR variable. This reduces the number of variables from 23 to
16. The variables found for removal and retention are shown in Table 3.7 and Table 3.8
respectively. The first three variables flagged for removal in Table 3.7 are independent of the
NMR variable contained in the PC dataset. It is unsurprising that two or three of the 4 particle
size measurements are flagged for removal due to their high correlation. Between two and
four of the %Al, %Fe, %Mn and %Si grouping are also removed, with %Al and %Fe always
being removed.
| The variables contained in brackets in Table 3.7 have the next largest coefficients after
the variables that would be removed from previous PCs. For example, PCA with O-alkyl as
the NMR variable results in % Fe being marked for removal in PC 12 and PC 11. The next
marked for removal in PC 11 would be %H;0. PCA results obtained when using a single .
NMR variable tend to mark at least one of the organic matter measurements (LOI375 &
%OC) and one of the moisture measurements (LOI110 & %H0) for removal. Other variables
marked for removal when using certain single NMR variables are pH, SA and the NMR

variable itself,
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Table 3.7: PCA Variables Acceptable For Removal

16|15 14| 1312 u |w0]9o|s8|7]|s
0,

Alkyl | % | ssa | %Al |%silt| SOF | %Fe | pH WO |woc| sa | -
% oo | %Fe Lol |, _

O-Alkyl | o | SSA | %Al | %Si | %Fe | i | pH | 770 |%0C]| sA
% ol v o | %Fe Lol |, _

Ayl | gorg | SSA | %Al | wsi | %Fe |,y C o pr | LT oM | NMR
0, 0,

0-Aryl | oo | SSA | %Al |%silt] SO | o4Fe Hf)O pH |%Mn|%o0C| -
- _

Carboxyl | /| SSA | %Al |%silt 13“7051 %Fe | pH %?(: %0C [NMR | saA
(1) 0

‘}:g:t'z]‘i" a1 | SSA | %Al |9 silt] %si | %Fe Hf)O Il“?; %0C| SA |NMR
0, 0,

Aromatic | (7 | SSA | %Al | %si 13“7051 %Fe | pH Hfo %Mn |[NMR | -
0 0,

Acid | | SSA | % Al|%silt| SO0 | oFe Hf)O Il“?(} %ocC| sa | -

The variables marked for retention shown in Table 3.8 again show a certain amount of
independence on the NMR variable included. The first two variables that should be retained
are always % sand or % clay and %Fe or %Al. The third and fourth variables marked for
retention generally are LOI110 or %H>0 and %OC. The exception to this is when carboxyl C
is the NMR variable, marking LOI375 for retention. This difference may be due to the
carboxyl components of the NMR signal being more thermally labile than the other carbon
species. The fifth and sixth variables marked for retention always include Eh and either SA or
the NMR variable. The NMR variable would only be retained as the seventh most important
variable when using aryl, O-aryl, carboxyl and aromatic C.

It is interesting to compare the variables tabulated in Table 3.7 & Table 3.8. The most
relevant variables marked for retention (% sand & %Al) are some of the first variables
marked for removal. These parameters are highly correlated to other variables and therefore it
may be of little consequence that these two different methods for reducing the number of
variables give contradictory results. Intuitively it seems more reasonable to use the parameters
marked for retention as they are associated with the first principal components having the

largest eigenvalues. The two reduced sets of variables are compared in Table 3.9.
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| Table 3.8: PCA Variables Acceptable For Retention

1 2 3 4 5 6 7
Alkyl % Clay %Fe | LOINIIO [ %OC NMR Eh -
0-Alkyl % Sand | %Fe %H,0 %0C Eh NMR -
(NMR)
Aryl % Sand | %Fe %H,0 %0C Eh SA
0-5518
(NMR)
O-Aryl %Sand | %Al | LOIl10 | %OC Eh SA
0-4481
(SA) | (NMR)
Carboxyl | % Clay %Fe | LOI375 | %H,0O Eh
0-6822 | 0-4847
(NMR)
A/K % Sand %Al | LOIN10 | %OC Eh -
0-6792
(NMR)
Aromatic | % Sand | %Fe | LOI110 | %O0C Eh SA
0-5180
Acid %8Sand | %Fe | LOIl10 | %OC NMR Eh -

The cumulative variances célculated by PCA shown in Table 3.9 show that the strategies
for simplification of the variables give similar results overall. The variables chosen for
inclusion in PCA are partly dependent on the NMR variable (aryl C was used as the NMR
variable in the examples below). The variables chosen were picked as the most prevalent set
from the results given in Table 3.7 & Table 3.8. Surface Area is associated with PC6 or PC7

and is therefore on the borderline for inclusion in both strategies as is the NMR variable itself.

Table 3.9: Variables To Be Included In PCA After Removal/Retention Procedures

Simplification Principal Cumulative
Remaining Variables
Strategy Components | Variance
% Clay %Si % Mn
Removal SA 4 0-854
Eh NMR % H;O
%Sand %Fe LOI110
Retention SA 4 0-848
Eh NMR %0C
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The number of variables has been reduced from 23 to 7 as shown in Table 3.9. Although
similar results are obtained for the two simplification strategies different variables are found
to be the best descriptors for the Variation shown by the particles size subset (% sand, % silt,
% clay & SSA) and the DCB extraction subset (%Al, %Fe, %Mn & %Si). It is important to
pick the best descriptors from these subsets to retain and explain as much of the variation in
the whole dataset, whilst allowing for simplification. To obtain a further indication of the
most appropriate variable to pick from each subset PCA was carried out for each particle size
and NMR variable individually as shown in Table 3.10. This reduces the number of variables

to 13.

Table 3.10: PCA of The Abattoir Samples Using Single NMR & Particle Size Variables

| Particle Size Component |

| NMR Component | % Sand % Silt % Clay SSA

| Cumulative Variance For PC1—PCS |
Alkyl 0-839 0-840 0-838 0-838
0O-Alkyl 0-862 0-863 0-860 0-859
Aryl 0-868 0-869 0-865 0-864
O-Anyl 0-862 0-861 0-861 0-861
Carboxyl 0-854 0-854 0-853 0-852
A/K 0-835 0-834 0-834 0-833
Aromatic 0-869 0-870 0-867 0-866
Acid 0-836 0-837 - 0-836 0-835

From the results in Table 3.10 the particle size variable that retains the most
information on variance can be seen to be % silt. The other particle size variables can now be
removed from PCA and further simplification can be achieved by repeating PCA for each
DCB extraction parameter and NMR variable individually as shown in Table 3.11. The

number of variables is now reduced to 10.

The DCB extract giving the highest cumulative variance is %Fe (%Al gives a slightly
better cumulative variance for %A/K C) and allows the other DCB variables to be removed. A
final set of PCA was undertaken to eliminate variables from the LOI375/%0C and
LOI110/% H,0 pairs and is shown in Table 3.12. This will further reduce the number of

variables to 8. The best descriptors of the variance are shown to be %H,0 and %OC.
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Table 3.11:
PCA of The Abattoir Samples Usin

1 DCB Extraction Component |
| NMR Component | %Al %Fe %Mn %Si
| Cumulative Variance For PC1—PCS |
Alkyl 0-837 0-847 0-839 0-834
0-Alkyl 0-863 0-873 0-863 0-868
Aryl 0-871 0-883 0-872 0-876
O-Aryl 0-860 0-868 0-858 0-864
Carboxyl 0-845 0-861 0-856 0-852
A)K 0-844 0-842 0-833 0-839
Aromatic 0-871 0-882 0-872 0-876
Acid 0-831 0-841 0-831 0-829
e 3.12: PCA of The Abattoir Samples From Single NM OI1375/% OC &
LOI110/% H,0 Variables
| Water/Carbon Components |
| NMR Component | LOINI0& | LOINIO& | % H0& | % HO &
LOI375 % OC % OC LOI375
| Cumulative Variance For PC1—PCS |
Alkyl 0-868 0-872 0-888 0-875
O-Alkyl 0-891 0-904 0-910 0-898
Aryl 0-899 0-916 0-920 0-906
O-Anyl 0-887 0-903 0-903 0-890
Carboxyl 0-876 0-891 0-897 0-883
A/K 0-862 0-869 0-877 0-865
Aromatic 0-899 0-917 0-919 0-905
Acid 0-862 0-868 0-878 0-865
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PC4 is dominated by pH and alkyl C but also has a large negative coefficient for

conductivity. As shown previously in section 3.2.5 the conductivity measurements were

difficult to duplicate and are therefore of questionable quality. The important coefficients in
PCS5 are the highly correlated LOI375 & %OC (positive), A/K C, area, %Al and %Si. PC6
has a large positive coefficient for Eh and important inputs from LOI110, aryl C and

conductivity. PC7 has a large negative coefficient for Eh and a positive coefficient for %H,O
which contrasts with PC6 where Eh and LOI110 both have positive coefficients. PC7 also has
~ important inputs from aryl C (& aromatic C), A/K C and %Mn.

The PCA of the Salt Meadows dataset is interesting to compare to the initial PCA

analysis of The Abattoir dataset as shown in Table 3.6 namely:

)
0.0

*,
L4

C/
o

The coefficients for %Al, %Fe, %Mn & %Si (PC2) show little differentiation
in The Abattoir dataset whereas in the Salt Meadows dataset they are more
individually important (%Fe in PC1, All in PC3, %Al & %Si in PCS and
%Mn in PC7.

The coefficients of LOI110 & %H,O are always paired in The Abattoir
dataset but are separated by PC6 & PC7 in the Salt Meadows dataset.

The NMR values appear similar between the PCA of the datasets. A matrix
plot of Salt Meadows NMR values is shown in Figure 3.47.

The points shown in red are the 10-20cm depth samples and are highlighted
to show that they do not correspond with outlying data points (neither do the
0-10cm depth samples). The matrix plot of Salt Meadows NMR data shows
the correlation between the NMR groupings.

A comparison of the NMR matrix plots (Figure 3.37 & Figure 3.47) show
that The Abattoir dataset’s strongest correlation is between O-alkyl and aryl
C (correlation coefficient = -0-941) whereas with Salt Meadows it is between

O-aryl and carboxyl C (correlation coefficient = 0-751).

No further PCA was undertaken on the Salt Meadows dataset as a whole. PCA

was carried out on highly correlated subsets as part of stepwise regression analysis in

Section 3.3.2.2.
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3.3.2 Stepwise Regression

Regression analysis is primarily used to predict the values of one variable by using the
values of one or more predictors (variables). The soil variables under study are continuous as
opposed to categorical and therefore the least-squares method was used in regression.
Minimising the sum of the squared errors optimises the predicted value of the variable.
Regression was performed using Minitab® that allows standard regression analysis and
stepwise regression to be undertaken. Using all available variables (Table 3.4) in regression
analysis is not possible due to the high correlations between variables as explained in Section
3.3.1. Minitab will automatically remove highly correlated variables and will then produce a
regression equation that includes all remaining variables irrespective of their statistical
significance.

Another approach is to use stepwise regression. Using stepwise regression allows all
variables to be included or excluded in analysis based on their significance. Variables are
added and removed based on the level of significance (a) as set by the user. Minitab sets a at
0-15 by default and this is the value used in this study. This defines the error associated with
wrongly rejecting the null hypothesis that states the coefficient of the variable in question is
zero. In this instance a is equal to the P-value. A variable is added to the regression analysis
stepwise in order of significance (i.e. the smallest P-value with all values being <0-15). The
addition of an additional variable will alter the significance of variables already added to the
regression model and so any variable whose P-value increases to >0-15 is removed. Stepwise
regression only includes variables that are unlikely to have a coefficient equal to zero and
therefore excludes all variables having a coefficient of variation that is likely to be zero.

Stepwise regression can therefore allow the prediction of one soil variable using a
statistically significant subset of the remaining soil variables. Running stepwise regression in

Minitab automatically lists:

< Alpha values used in the prediction.

% Variable being predicted.

< Number of predictors (variables) available.

%* Number (N) of datum used in the prediction plus number with missing observations
and total.

< Variables included in the prediction at each step with their coefficients and the

corresponding T-values and P-values.

)
0.0

Standard deviation (S) at each step.

<

R? at each step.

)
(2

% R? (adjusted for degrees of freedom) at each step.

90




An example of the output from Minitab when carrying out stepwise regression is shown
in Figure 3.48. This is the prediction of LOI110 from The Abattoir using all remaining
variables (22 measurements). Although there were 80 samples collected at The Abattoir, only
23 had their NMR spectra collected. As the NMR variables are included, this limits prediction
to only utilise the data from 23 samples. There are four steps in the regression with step one
using pH as the most statistically significant predictor and accounting for 46:02% (R?) of the
variation in LOI110. Step four uses pH, aromatic C, SSA and redox potential to predict
LOI110 and accounts for 72:32% of the variation. The regression equation found is shown

below as Equation 3.1.

LOI110=36-76 -5-52 pH + 0-221 aromatic C + 0-00012 SSA + 0-0062 redox potential
(R*= 72-32%) Equation 3.1
Figure 3.48: Standard Qutput of Minitab Stepwise Regression Analysis

Stepwise Regression: LOI110 versus LOI375, % Oxidisable C, ...

Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.15
Response is LOI110 on 22 predictors, with N = 23

N(cases with missing observations) = 57 N(all cases) = 80
Step 1 2 3 4
Constant 34.64 39.86 40.87 36.76
pPH ~4.21 -5.16 -5.64 -5.52
T-Value -4.23 -5.26 -6.31 -6.38
P-Value 0.000 0.000 0.000 0.000
Aromatic 0.113 0.207 0.221
T-Value 2.40 3.68 4.03
P-Value 0.026 0.002 0.001
SSA 0.00013 0.00012
T-Value 2.50 2.32
P-Value 0.022 0.032
Redox 0.0062
T-Value 1.58
P-Value 0.131
S 0.970 0.876 0.779 0.750
R-Sq 46.02 58.10 68.47 72.32
R-8q(adj) 43.45 53.91 63.49 66.17
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The P-values shown in Figure 3.40 are all <0-15 with all values except redox potential
being <0-05 and therefore above the 95% confidence interval. The additional variation
predicted by redox potential may therefore be viewed with more scepticism.

Stepwise regression was performed for all variables on a site-by-site basis and also on
all data collected. Due to correlations within the dataset not all variables were included when
predicting highly correlated variables. For example, when a NMR variable was undergoing
prediction no other NMR parameters were allowed as predictors. Another problem with
certain variables is their distributions varying from that of normality. If a variable has a
normal distribution its Boxplot as shown in section 3.2 would be symmetrical about the point
having the mean and median value. It is clear that many of the measurements for each site are
therefore not normally distributed. An example of a normally distributed boxplot and a
distribution that deviates from normality are shown in Figure 3.49 and Figure 3.50
respectively. Boxplots only give an indication as to whether the variable has a normal

distribution but is a good visual starting point.

Figure 3.49: Boxplot Showing Normally Distributed % O-Aryl from The Abattoir

7 4 —_
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There are several methods to determine how close data is normally distributed:

% Skewness (v, or B;). This is the third moment of the data about its mean and is
calculated using Equation 3.2. It is a measure of how symmetrical the data is about its
mean with a value of zero indicating total symmetry (Webster, 2001).

¢ Kurtosis (B2). This is the fourth moment of the data about its mean and is calculated
using Equation 3.3. It is a measure of how the peak shape differs from that of a normal
distribution, again with a value of zero indicating normality. A positive value indicates a
sharper peak than a normal distribution (leptokurtic) with a negative value indicating a
broader peak than normality (platykurtic) (Press et al., 1992).

< Anderson-Darling Normality Test (A?). This measures the area between the normal
fitted line and the plotted points based nonparametric step function. This squared
distance statistic is weighted more heavily towards the tails of the distribution. Smaller
values again show that the normal distribution fits the data better with the test statistic

being calculated using Equation 3.4.
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N (x, - J?)]3
Skewness equals: | — Equation 3.2
T W) Z[ s
~\4 2
Kurtosis equals: N(N + 1) Z[(x' x)] - 3(N - 1) Equation 3.3
 (N-DIN-2)(N-3) S (N-2)(N-3)
Where: N = number of observations

x, = ithobservation

X = Mean

S = standard deviation

Anderson-Darling Normality Test equals:

-N- (%)Z (2i -D)finF(Y,)+In(1-F(Y,,,,)]  Equation 3.4

Where: N = number of observations
F = the cumulative distribution function
of the normal distribution
Y. = the ordered observations

i

Skewness was_ calculated using minitab for all variables to ascertain whether any
measurement required transformation. The criteria used to decide whether or not to transform
is set out below in Table 3.18. The two main transformations used were to square root or to
take the natural logarithm of the data (Webster, 2001). Any negatively skewed variable
(5-0-50) was reflected as a first step before the appropriate transformation for a positively
skewed variable (Tabachnick & Fidell, 1996). To reflect a variable an addition of 1 is made to
the largest data value to create a constant. Each value is then subtracted from this constant to
create a new variable. This effectively flips the sign of the skewness from negative to positive
or vice versa. Reflecting is only useful if the variable is negatively skewed and can be the first
transformation step before an additional transformation.

If these transformations failed to reduce the skewness to an appropriate level a power
transformation was undertaken. The solver routine in excel® was used to find the power that
would reduce the skewness of the variable to zero. This was undertaken by setting up a
spreadsheet containing the dataset and calculating the skewness of each variable requiring

further transformation using Equation 3.2.
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Table 3.18; Limits Used To Decide Transformation For Skewed Variables

Skewness v, Transformation
1<-0-50 Reflect
050 <y1<0-50 No Transformation (already ~normal)
0-50<y;<1 | Square Root
11>1 Logarithm
¥1> 0-50 after logarithm transformation Power” (on original variable)

After transforming the data so that all variables are more normally distributed, stepwise
regression was repeated using the transformed data. There are now six steps in the regression
compared to four before transformation (Figure 3.48). Stepwise regression can now predict
86-13% of the variation shown by LOI110 with the relationship shown in Equation 3.5. The
P-values of the predictor variables in Equation 3.5 are all < 0-05 (acid groups = 0-052) and
are therefore more statistically significant than the prediction shown in Figure 3.48 before

transformation.
LOI110 = {-4-02 —5-53[(9-2 - pH)"***°] + 0-108 aromaticity + 2-56 log SSA

- 0-122[(530-redox potential)’ ***?] - 0-57(Clay)”* -0-086 acid NMR groups}*
(R’= 8613%) Equation 3.5
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3.3.2.1 The Abattoir

The results of stepwise regression analysis for all of The Abattoir variables are
summarised in Table 3.19. The values tabulated are the percentages of the variation of the
variable undergoing prediction (first column) explained by the individual predictors. The red
boxes are to signify predictors that were not added to stepwise analysis due to their high
correlation with the variable being predicted. These calculations are based on 23 data points
due to the number of NMR measurements from The Abattoir samples as previously
mentioned. The R? values of the predictions in Table 3.19 vary from zero (Acidic C) to 92%
(pH). The individual results will be discussed further when being compared with the results

obtained after transformation. Results worthy of mentioning now include:

%o

2%

% H,0 is largely predicted by LOI110 (R% = 38:72) but if this is not included in

stepwise regression a better prediction is obtained using %OC, pH and O-Alkyl C

(total R of 75-47 compared with 58-66).

<  Silt & Sand are found to be predicted by the % Aryl C with R? values of 57-61 and
55-18 respectively.

< 8 predictors are used to predict pH giving an R? of 92. Clay, sand and SSA are all
included and are highly correlated which may give rise to large variance inflation
factors (VIF’s).

< O-Alkyl and Aryl C are both predicted by % Silt with R? values of 47-65 and
57-61 respectively.

<  The total R? for the Aryl C prediction is 83-19 and includes LOI110, % H,0, %
Silt, pH and % Fe in stepwise regression.

* %Al %Fe, %Mn and %Si are all predicted to varying degrees by a selection of

NMR variables most notably Aryl, O-Aryl and Carboxylic C.

Variance inflation factors (VIF’s) relate to multicollinearity between the predicting
variables and are calculated using Equation 3.6. This will not affect the overall R? found but
can affect the coefficients of the individual predictors (Tabachhick & Fidell, 1996;
Montgomery & Peck, 1982). High values of VIF are considered anything over 5 with a value
of 1 indicating no collinearity between predictors (Minitab). The VIF values for the data
contained in Table 3.19 were calculated with only high VIF values (>5) found for % Clay,
% Sand and SSA when predicting pH.
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1

Variance Inflation Factor equals: ®R

Equation 3.6

Where: R? is the coefficient of determination of predictor x

when regressed against all remaining predictors in the model.

The effect of multicollinearity can be corrected easily for by simply removing the
offending predictor(s). This will affect the R? but is an acceptable course of action if the
change in R? is minimal (Minitab). Another method is to undertake PCA on the collinear
predictors and replace them with the orthogonal scores produced (i.e. replace clay, sand and
SSA with Scores PS1, PS2 & PS3). These two methods were tested to remove the
multicollinearity in the prediction of pH, the results being shown in Table 3.20.

After removal of SSA or % Clay, the high VIF’s shown by the particle size parameters
disappear. This is not just because one predictor has been excluded but also because sand is
no longer included as a predictor in stepwise regression. Multiple NMR predictors are now
included which have high VIF’s. This problem is even more apparent when sand is chosen as
the particle size parameter for removal, leading to 13 predictors accounting for 99-35% of the
variation in pH. Of these 13 predictors, 9 have high VIF values.

Two attempts at removal of the original predictors and addition of PCA scores
calculated using the removed terms are shown in Table 3.20. The first attempt removed all
particles size and NMR predictors with PCA being undertaken on these groups separately to
produce new predictors (PS1-PS3 & NMRI1-NMR6). Stepwise regression now predicts
85:39% of the variation in pH using 6 predictors that all have low VIF values. Exchanging %
Al, Fe, Mn & Si with the PCA scores created from these (M1-M4) as an additional
substitution on top of the previous substitutions does not improve the prediction of pH

(76-13%) but does reduce the number of predictors to 4, all of which have low VIF values.
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Table 3.20: Test Results For Removing Multicollinearity from The Abattoir pH
Prediction (N= 23)

Removed Predictors | Predictors Chosen Using Stepwise Regression Analysis R?

_ LOI Ar Ac
- Clay | Silt | Area | Eh | SSA
110 C C |92:00
VIF 144 | 33-8 | 13:1{ 11 1-4 | 14-8 4-1 1-7
LOI 1 % Ar
SSA AL % 1y e
110 C H,0 C 83-26
VIF 2.1 1290 (| 22 1-4 |29-1
' LOI | % % O-
Clay Aty ’ SSA ’ Area
110 C H,O oC Alkyl 89-52
VIF 20| 1141 2-1 1-7 1-5 13 10-4
LOI
110 SSA | Clay | Eh Silt | Area | % Fe
VIF 34 248 [51'9] 1:5 [16:1 ]| 39 11-6
Sand 99.35

% | O- | % | Car | O- | Ac
oc |Alkyl | Al | ¢ [Aaml| C
VIF |28 36 |58 120131 90

Particle Size, NMR | LOI | NMR % %
PS3 . Area
PCA Added 110 1 H,O | OC 85-39
VIF 1-9 1-1 1-1 | 21 1-3 12
Particle Size, NMR
' LOI
% Fe, Al, Mn & Si | M3 PS3 | Area
375 76-13
PCA Added
VIF 1-4 1-3 1-2 | 12
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The Abattoir dataset was tested to see if the measured parameters were normally
distributed. Skewness was the primary test used for normality with the criteria for any
transformation undertaken given in Table 3.18. Values of skewness, kurtosis and the
Anderson-Darling Normality Test (A%) before and after transformation are given in Table
3.21. Although not shown, transforming the NMR data that did not require transformation
resulted in data that deviated further from normality. Because of this, different

transformations were attempted for some of the measurements:

s LOI375 was originally just above the cut-off point for transformation and so
may benefit from no transformation. Taking the square root flips skewness
from positive to negative, reduces kurtosis significantly but doubles AZ.

 Power transformations use the solver routine in excel to find the power to
reduce skewness to zero. As this may overcorrect the data, power
transformations were also calculated to reduce skewness to 0-50.

< When pH and % Al are power transformed to give the higher value of
skewness, A? is lower than when skewness is power transformed to zero.

< Afier logarithm transformation, % Al is just above the skewness cut-off point.

Power transformation may therefore be inappropriate.

Stepwise regression was carried out again for The Abattoir dataset after transformation
with results given in Table 3.22. Initial results showed that the square root transformed
LOI375 was better predicted using the transformed dataset than untransformed LOI375. The
transformed LOI375 predictor was also always chosen by Minitab during stepwise regression
and so the untransformed LOI375 predictor was removed and is not shown in Table 3.22.
| The extra predictors for measurements that underwent more than one transformation
have also been removed from Table 3.22. A comparison of the differences associated with
these transformations was undertaken to help decide which transformed predictors to remove.
Stepwise regression was undertaken, substituting the choice of transformed predictors to
gauge the differences between them. This was only possible when one of the transformed
predictors requiring simplification was included in stepwise regression, allowing substitution.
The results of these tests are given in Table 3.23 & Table 3.24.
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Table 3.21:Normality Tests & Transformaﬁons For The Abattoir Data

Skewness | Kurtosis | A? | Transformation | Skewness | Kurtosis | A2

LOI110 1:76 628 | 2-60 | Square Root SqRt |  0-42 178 | 1-68
LOI375 0-54 1:04 |0-66 SqRt -0-39 018 |1-29
% OC 0-83 138 098 SqRt -0-14 043 |074
% H,0 1-06 1-112 | 178 Logarithm 0-24 0-01 |0-40
% Clay 0-64 -0-62 | 188 SqRt 0-32 -1:05 | 131
% Silt 0-84 026 |2:36 Logarithm 0-32 099 |[1-26
% Sand -0-71 -0-62 | 2-41 [ Reflect & SqRt 0-26 -1:06 [ 1-25
pH -1:92 6:43 | 456 | Reflect & Pro®?° |  0-05 577 |2:47
pH -1:92 6:43 | 4:56 | Reflect & Pr'* |  0-50 6:82 [2:34
Alkyl C -0-13 -0-88 (026 None

O-Alkyl 0-02 -0-90 {0-29 None

Aryl C -0-36 -0-80 | 051 None

O-Aryl C 0-06 -0-04 |0-31 None

CarC -0-17 -0-04 [0-15 None

A/K C 0-20 1-:09 (030 None

Area 0-30 0-37 0-62 None

Eh -1-65 3-81 |2:47 | Reflect & Pr®** | -0-00 079 |0-62
Eh -1-65 3-81 |2-47 | Reflect & Pr¥** 0-50 1:03 |0:68
SSA 1:06 -0-05 |3-90| Logarithm 0-42 -0-81 | 145
% Al 2:03 505 [3-92| Logarithm 0-52 071 |1-07
% Al 2:03 505 (392 Power?3® -0-00 094 |0:72
% Al 2:03: 505 392 Power?*** 0-50 2:00 |0-60
% Fe 1-59 3-81 |1-71| Logarithm 017 010 {037
% Mn 5-05 33-18 [6-04| Power?®®88 0-00 0-53 {042
% Mn 5-05 3318 |6:04| Power®®™® 0-50 020 |078
% Si 3-01 13:31 |4-87| Power®* 0-00 0:04 |067
% Si 3-01 1331 [4-87| Power®”" 0-50 0-13 | 0-94
ArC -0-31 -0-27 | 0-26 None

AcC -0-21 -0:90 |0-24 None
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VNN o- O-
Log| V |Log|VRef| Ref |Alkyl Aryl|. Car | A/K Ref Lo osss2 | Lo 05886| 03801 | % | % | Total
'{%‘ 15;’51 (;/°C H;0 | Clay| Silt |Sand | pH*"?| C Alé‘y' C Ag' C | |Aren| gpossa|soy Al Fo M| Si Ar | Ac | R?
VLOI110 6.2 29.4 17 [10.58 18.81|3.67 | 85.66
VLOI375 |5.61 55.03 732 |9.98 7.71 85.65
V%O0C 55.03 7.36 4.96 6.59 9.68 83.62
Log H,0 7.36 14.9 28.68 19.56 70.5
VClay 4.16 11.6 1 22.46 21.8 [1.57 34.34 96.92
Ij(_)gSilt 6.78 55.69 1.44 521 2.78 | 19.02 90.92
Ref 7.95 16.31 30 237 342 | 12.32 93.73
Sand
Ref
DH 472 32.39 1.8 |5.82 31.18 8.09 [11.27 90.55
Alkyl C 12.1]9.49 17.15 580 6.84 13.65 65.11
0-Alkyl C 7.26 | 14.7 47.4 9.07 3.67 82.05
Aryl C 15.3 3.51[2.83 54.07| 8.33 498 [3.61 92.63
O-Aryl C [13.04 8.86 30.48 52.38
Car C 6.46 15.5 25.8 47.75
A/K C 13.4 13.43
Area 7.33 [14.83 10.25 18.38 14.73 65.52
g;fm.z 30.4 9.2 39.61
Lo§ SSA 44.06| 6.39 | 50.45
AV - [12.07 10.63 14.07{13.33 20.2 70.30
Log Fe 10.92[ 5.36 7.98 34.66]21.3 80.22
Mn > 8.3 23.09[25.76 57.15
573801 12.56(14.37] 7.49 731 19.49 2.58 [22.07 85.87
% Ar 7.44 45.59 19.21 10.7 [6.29 89.2
% Ac 0
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Ref Ref 2 Ref Ref 1 05886 09792 2 3801 7314 R?
pH*®® pH ™ R ERO3 | pposs® R Mn Mn R si® o
0-000 86:13 | 0000 8613
vLOI10 0000  BS:66 0001 8533
0011 86-58
VLOI37S 0010 8676
0-098 4776 0-000 8362
0,
V%0C 0098 4776 0000 8333
0-000 7569 0-001 7562
Log H,0 0000 7539 0001 7569
0-000 96-39
VClay 0000 9616
Logsit | 0004 9246 0-006 9268 | 0-000 92:59
0005  92:41 0007  92-46 0000 9246
0-003 9353 0012 9353 | 0003 9351
VRef Sand 0003 9347 0016  93-31 0002 93-53
Ref 0020 9062
pH ™Y 0018 9071
Ref 0017 9055
_ pHM™ 0015 9067
0-007 6137 0020 60-22
Allyl € 0007  61-79 0019  61-79
0-000 81-54
O-Alkyl C 0-000  82:05
0-000 9238 | 0020 9263
Anyl C 0000 9263 0023 92446
0-007 4775
CarC 0017 4047
Area 0-09% 65-52
0096 6569
03942 0-128 39-61
RefEh 0013 3961
05880 0-000 36-46
Ref Eh 0001 3636
0041 4816
Log Al 0043 4792
3022 0-054 43-39
Ar® 0056 4321
A5 0029 3218
0029  32:17
3801 0-043 85-69
sr* 0039 8587
7314 0012 83:20
i 0-010  83-40
Ar 0-000 8876 | 0-001 8920 0-000 90-15
0000 892 0002 88-92 0000  89:55
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To decide which transformations to choose from the predictors in Table 3.23 is not
immediately apparent as the different transformations for pH, Eh and Si make <1%
difference. In one instance, power transforming Mn by -0-5886 gives an R? value ~7%
improved over power transforming by 0-9792. A simple tally of the best pH and Eh R? values
suggest power transformations of -1-4072 and 0-3942 respectively as the most appropriate to
pick. Tallying the respective R? values of Si gives no indication as to whether either be a
better choice. The chosen transformations for Mn, pH and Eh all correspond to the lower A”
values shown in Table 3.21. Picking the lower A? values for Si and Al give power
transformations of -0-3801 and -0-5552 respectively. Power transforming Al by -0-5552 is
confirmed by tallying the best R” values in Table 3.24. This transformation gives a ~18%

improvement over the other tabulated transformations in respect to Ar C.

Table 3.24:

Stepwise Regression Tests to Optimise the Choice of Transformed Variables
Log Al AT AP R’

0-000 8676
VLOI375 0-000 8619

0-001 85-47
0-000 90-82
VClay 0-000 94-57

0-000 96-16
0-000 90-47
Log Silt 0-000 92-04

0-000 92-46
0-000 83-61
VRef Sand 0-000 93-10

0-000 93-53
0-015 61-79
Alkyl C 0-012 62-45

0-012 62-44
0-090 81-25
0-Alkyl C 0-079 81-48

0-073 8163
0-049 17:17
A/KC 0-067 15-07

0-085 13-43
0-000 72-24
ArC 0-000 72-24
0-000 90-15

107



file:///LOI375

To check for multicollinearity, VIF values were calculated for all variables and are

given in Table 3.25. Seven variables (YLOI110, YClay, Ref pH-1-4072, Alkyl C, Aryl C,

AI"%2 & Ar C) have predictors with high VIF values, with groupings:

x4

VClay & Log SSA -
VClay, VRef Sand & Log SSA

Si?3%" & Log Fe
& G030 g A10S5S2

L)

%

¢

*
L4

L ()

It is apparent that whenever VClay is included in stepwise regression log SSA is also
included as a predictor. The log SSA predictor is only included in one instance (O-Aryl C)
without VClay. It is therefore appropriate to remove either log SSA or VClay or to replace all
particle size predictors with PCA scores as demonstrated in Section 3.3.1. Both log Fe and Si’
03801 are included as predictors of VClay and have high VIF values and could with Al03%%2
and Mn™* be replaced by PCA scores. It may also be beneficial to just remove log Fe as
this contributes little (<2%) to the overall stepwise regression prediction of VClay. When
predicting Alkyl C, A% and Si®*"' have high VIF values and again this could be solved
by removal or substitution with PCA scores.

The removal of the appropriate predictors causing the high VIF values, together with the

substitution of these predictors with the corresponding orthogonal PCA scores, is given in

Table 3.26. The results of these tests are summarised on the following page:

108




C/
0.0

<>

VLOI110 is best predicted without including VClay or VRef Sand. This reduces
the number of predictors from 6 to 4, with these 4 accounting for ~76% of the
variation.

VClay is adequately predicted after the removal of Log Fe. This removes a single
predictor from stepwise regression and makes a ~2% difference to the prediction
of variation (94-32% as opposed to 96-92%).

To remove all high VIF values when predicting Ref pH™' **" YClay, Log Silt and
VRef Sand need to be excluded from stepwise regression. The number of
predictors is increased from 6 to 7 and account for ~88% of the variation in
Ref pH 477,

Alkyl C is difficult to predict accurately and requires the use of PCA scores
calculated from VClay, Log Silt and VRef Sand as well as AlI?%5%2 1 og Fe,
Mn?3%2 and Si%*% This allows ~57% of Alkyl C’s variation to be predicted
using 4 predictors. 2 of these predictors are scores produced by PCA using the 2
groups of inputs above.

Two particle size predictors must be removed before Aryl C can be predicted
with low VIF values. Log Silt is the important particle size predictor, that
together with Ref pH %2, LOI110 and Ref Eh"*** accounts for ~83% of the
variation in Aryl C.

193332 5 heavily dependent on whether you exclude

Predicting the variation in A
VClay or Log SSA from stepwise regression. The removal of VClay results in
only ~41% variation being predicted whereas the removal of Log SSA allows

A" t5 be predicted. The removal of

~87% of the variation shown by
collinear predictors allows A% to be better predicted (86:73% as opposed to
70-30%).

Ar C is also marginally better predicted after the removal of \Clay from
stepwise regression. '

Removing collinear predictors tends to affect the number of predictors in
stepwise regression, which in turn affects the percentage variation that can be
explained.

Generally, when the number of predictors decreases the explained variation also

decreases and vice versa.
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Variable | Removed Predictors Predictors Chesen Using Stepwise Regression Analysis R
\Clay RefpH ™|  ArC | RefEN*™ | LogSsA VRef Sand 78-83
VIF 17 24 15 77 92
Log SSA RefpH™! ArC | RefEn®*¥ H;0 70-24
VLOI110 VIF 1-9 1-9 13 1-6
VClay, VRef Sand RefpH'* |  ArC | RefER"™ | LogSsA 7579
VIF 1-4 24 14 19
Particle Size, PCA added |RefpH'*"*|  ArC | RefEn®*% H,0 PS2 73-89
VIF 2:0 2:0 14 16 12
Log Fe Al si®® | oaic | CarC H,0 NLOI10 | 9432
VIF 25 27 1-9 22 17 19
si 0! AT Log Fe VLOI375 | Ref pH'™*" 0-Aryl C AlylC | gp.g]
VIF 32 27 117 21 15 13
VClay | AI°*% LogFe Ma®™% 1 o M3 H,0 M2 ArC VLOB7S | 6620
Si?3%% pCA Added
VIF 359 20 20 15 330 1-4
AT, Log Fe, Mn %% M3 H,0 M2 O-Aryl C VLOI375 RefpH' | o
Si?¥% ArC,PCA Added
VIF 16 16 15 14 17 18
Log SSA Aryl C VLOII10 | RefER**?. 70-45
VIF 15 12 17
\Clay CAniC NLOIN10 | LogSSA H,0 Ref ER***? | VRefSand | Log Silt | gg.47
Ref VIF 27 23 96 19 22 3198 | 2609
PH? | JClay, LogSilt, VRefSand| Aryl C VLOI10 | LogSSA H,0 %0C RefER* % | AT9S¥Z [ oo 02
VIF 21 25 18 19 13 20 1-4
Particle Size PCA Added | Aryl C VLOI110 | RefEn*** 7045
VIF 15 12 1-7
VClay RefpH'*™ |  H,0 §i 0380 A2 1 JRef Sand 56:46
VIF 1-6 23 59 55 33
Log SSA Ref pH 42 H,0 Si ¢80t Al'®5%2 VClay 5922
VIF 16 23 59 59 34
Al-05552 Repr-l-wn Hzo Si-O-JBDI 42:89
VIF 12 13 1
Al c S 038! Ref pH" H,0 2924
VIF 12 12
Particle Size, A%
Log Fe, Mn %8¢ Ref pH '™ H,0 M3 PS2 57-46
Si®%% pCA Added
VIF 13 19 28 20
VRef Sand, Log SSA
(NClay, Log SSA) Log Silt | RefpH'*"2 | VLOI110 | RefEn*»? 8273
(VRef Sand, Log SSA)
VIF 17 17 16 17 :
ArylC | Particle Size, PCA Added PS| RefpH'” | vLomnio | Ar®»? Si 0380 86:37
VIF 22 17 1-8 46 36
Particle Size, A"
Log Fe, Mn 8¢ PS1 ‘M4 RefpH'"2 | LOII10 H;0 8658
Si*%! pCA Added
VIF 13 11 17 1.8 15
Clay VLOI110 CarC AKC 40-88
VIF 1-0 1-0 1-0
Ar*SS Log SSA CarC VClay O-Anyl C AlkylC | RefpH"™™ | VJLOB375 | %OC | gg.73
VIF 1-4 19 22 16 15 25 26
Particle Size, PCA Added [ CarC PSI O-Aryl Alkyl | RefpH'™*™ 71-89
VIF 14 19 19 15 1-4
VClay VLOINO |[RefpH"™ ™| LogSSA | RefER*™? | A?%% Si®* | %0C | g9
VIF 1-9 17 21 1-6 3-8 37 13
ArC Log SSA RefpH™7 | AP®% Si®®" | VRefSand | VLOB75 | Mn®%® 9072
VIF 15 45 32 23 12 26
Particle Size, PCA Added PS1 RefpH 7 [ AP?*% si®0! VLOB37S | Mn®%% 90-84
VIF 22 15 45 32 12 25
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The enhancement of the prediction of variables from The Abattoir, after the predictors
have been transformed to a more normal distribution and been checked and corrected for
multicollinearity, is compared to the original stepwise regressions produced in Table 3.27.
Transformed data is generally better predicted with a greater number of significant predictors.
The overall average improvement in prediction is ~12% rising to ~23% when only positive
differences are considered. It should be noted that the R? values before transformation may be
subject to high VIF values, especially pH and % Mn. This may account for the negative %
differences shown in Table 3.27. The number of variables with R? values >80% has also

increased from 4 to 12. These 12 variables include:

< Measures of organic matter & carbon.

¢ Particle size distribution.

< pH.

* % O-Alkyl & Aryl, which together account for 58-75% of the NMR signal.

¢ Extractable iron content.

It is nonsensical to, for example, extract organic matter to allow collection of NMR data
so as to provide input variables in stepwise regression to predict %OC. The value in
predicition lies in using cheap, easily collectable data to predict the variation shown in the
NMR data.

In Conclusion, using stepwise regression it is possible to predict a large proportion of
the measurements collected from The Abattoir soil samples. This is achieved using
independently measured soil properties as predictors. The equations produced could be used
as pedotransfer functions to further predict soil properties using data from separate study sites.
This was not carried out as part of this study. It has been shown that it is beneficial to

transform all data to normality.
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Table 3.27: Comparison of Stepwise Regression Before & After Transformations For

The Abattoir Data

Before Transformation

After Transformation

No. of

No. of

%

R? R? Difference
Predictors Predictors

LOI110 4 72-32 75-79 5 3.47
LOI375 4 73-43 85-65 5 12-22
% OC 6 77-01 83-62 5 6-61
% H,0 3 58-66 70-50 4 11-84
% Clay 2 51-06 94-32 6 4326
% Silt ] 57-61 90-92 6 33-31
% Sand 1 55-18 93-73 6 3855
pH 6 85-39 87-83 7 2-44
Alkyl C 2 28-41 57-46 4 29-05
O-Alkyl 1 47-65 82-05 5 34-40
ArylC 5 83-19 82-73 4 -0-46
0O-AnylC 4 60-80 52-38 3 842
CarC 3 49-28 47-75 3 -1-53
A/KC 1 24-49 13-43 1 -11-06
Area 2 31-01 65-52 5 34-51
Eh 1 22-13 39-61 2 17-48
SSA 1 42-31 50-45 2 814
% Al 8 87-84 86-73 7 111
% Fe 5 87-90 80-22 5 -7-68
% Mn 4 73-48 57-15 3 -16:33
% Si 4 71:59 85-87 7 14-28
ArC 1 55-09 92-61 7 37-52
AcC 0 0 0 0 0
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3.3.2.2 Salt Meadows

The results of stepwise regression analysis for all Salt Meadows variables are

summarised in Table 3.28, which is formatted the same as The Abattoir data in Table 3.19.
The values tabulated are the percentages of the variation of the variable undergoing prediction
(first column) explained by the individual predictors. The red boxes are to signify predictors
that were not added to stepwise analysis due to their high correlation with the variable being
predicted. These calculations are based on 33 data points due to the number of NMR
measurements from the Salt Meadows samples as previously noted in Section 3.3.2.1. The R’
values of the predictions in Table 3.28 vary from 14% (Aromatic C) to 93% (LOI375). The
individual results will be discussed further when being compared with the results obtained

after transformation. Results worthy of mentioning now are:

% LOI375 and %OC are very highly correlated (~88%) but both can be predicted
independently of each other with good results (R® 81-14 & 69:20%
respectively) with % Fe being by far the most important predictor (~50%).

% Clay, Silt, Sand & SSA are well predicted but may have high VIF values. The
proportion of their variation predicted by Area seems to be dependent on the
particle size and therefore surface area. This behaviour was not evident in The
Abattoir data.

4 O-Alkyl is the best-predicted NMR variable with an R? value of 67-86 but the
predictors may be subject to high VIF values.

The VIF values for the data contained in Table 3.28 were calculated and any variables
whose predictors have high VIF values (>5) are shown in Table 3.29. Subsequent stepwise
regressions where the offending predictors with high VIF values have been removed or
replaced by PCA scores are also shown. The chosen regressions for these variables are shown
in bold. The choice of regression equation was based on the best R value having no high VIF
values and without involving PCA. Undertaking PCA in addition to stepwise regression
would only be appropriate if this extra level of complexity makes a significant difference to
the resulting R? value. Adding PCA where appropriate results in <3% improvement over

regressions having low VIF’s.
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Variable Removed Predictors Predictors Chosen Using Stepwise Regression Analysis R?
- LOI375 SSA | AlkylC | Clay ArC AKC Aryl C 76-99
VIF 13 7-8 2-4 88 521 30 46-2
Ayl C LOI1375 SSA | AlkylC | Clay AKC |O-ArylC 76-27
VIF 13 77 23 81 1-8 25
ArC LOI37S Clay Silt AlkylC | ArylC Eh SSA Mn | 76.84
VIF 1:6 15-9 9-4 1-5 15 1-5 7-9 22
Silt, Sand, SSA Clay %O0C | Alkyl C Eh 53-60
H,0 VIF 1-4 1-2 1-2 1:0
Clay, Sand, SSA Silt LOI375 | Alkyl C 52-50
VIF 1-4 1-1 1-3
Clay, Silt, SSA Sand LOI375 | Alkyl C 52-27
VIF 1-5 1-2 13
Clay, Silt, Sand LOI110 Eh Alkyl C 44-90
VIF 1-2 1-0 1-2
Particle Size, PCA Added PSt LOI375 | Alkyl C 51-79
VIF 1-5 1-2 1-3
- Fe Area Al Alkyl C Si LOI375 |O-ArylC| Mn | gc.qy
VIF 65 1-7 31 24 65 32 23 34
Si H,0 %O0C Area Al Eh 7537
VIF 1-4 1-1 1-2 1-1 i1
Fe O-AlkylC | Area %0C | Alkyl C Al Si O-AylC| Mn | g3.9g
VIF 212 1-7 1-8 16-3 2-3 5-0 23:1 35
Silt Fe, O-Anyl C H,0 LOI375 | Areca Al Si Alkyl C 8111
VIF 17 18 1-5 23 27 1-4
Fe, Alkyl Arca %0C H,0 Al Si 76-22
VIF 1-5 1-7 1-4 25 3-0
Fe, O-Alkyl C Area %0C Al Alkyl Si O-Aryl Mn 81-99
VIF 15 1-8 23 1-9 4-8 2-1 34
NMR, Al, Fe, Mn, Si, PCA Added M2 Area | NMR2 | LOI375 M4 NMRS5 8423
VIF 1-6 1-3 1-4 1-5 1-3 1-2
- O-Alkyl C | Area %0C Al Si AlkylC | O-ArylC | Mn | go.54
VIF 212 1-7 1-8 2-3 5-0 16-3 23:1 35
O-Aryl C Area %0C Al Alkyl Si 81-18
VIF 1-4 15 2-1 1-1 2:6
Alkyl C Area %0C H,0 Al Si Eh 31-08
Sand VIF 1-5 1-6 1-5 24 2-8 11
O-Alkyl Area LOI375| H\,O Al Si Alkyl C 8379
VIF 1-6 1-7 1-9 23 2:6 1-4
NMR, PCA Added NMR2 Area | LOI37S Al Si NMR3S Mn 86-36
VIF 1-2 1-5 1-6 22 52 1-4 30
NMR, Al, Fe, Mn, Si, PCA Added M2 Arca | NMR2 | LOI375 M4 NMRS 8612
VIF 1-6 1-3 1-4 1-5 13 1-2
- Silt Fe Si Mn Al %0C 67-86
VIF 2-5 4-2 61 31 4-0 2:2
O-Alkyl Si Sile pH "Fe 5693
C VIF 1-8 11 17
VIF 1-1 11
- Mn Si LOI375 | %0OC 59-67
VIF 28 2:4 69 7-3
Eh %0C Mo Si LOI375 50-45
VIF 1-2 2:6 2-3
LOI375 Mn Si Fe Area 50-11
VIF 2-7 2-5 2:0 1-1
- Clay SSA H.O 47-83
VIF 7-3 7-1 1-2
Si SSA (Particle Size, PCA Added) %0C Area 22:71
VIF 1-0 1-0
Clay %0C Area SSA 31-48
VIF 1-3 1-5 1-7
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The Salt Meadows dataset was tested to see if the measured parameters were normally
distributed using the method set out in Section 3.3.2. Values of skewness, kurtosis and the
Anderson-Darling Normality Test (A%) before and after transformation are given in Table
3.30. This dataset deviates slightly less from normality than The Abattoir dataset and
therefore required less extreme transformations to be undertaken. Power transforming A/K C
by 0-2996 reduces the skewness to zero and gives the lowest value of A (0-62 as opposed
0-80) and so was chosen over power transforming by 0-4968.

Table 3.30: Normality Tests & Transformations for Salt Meadows Data

Skewness | Kurtosis| A2 | Transformation |Skewness|Kurtosis|A?2

LOI110 1-38 2-88 [2:73 Logarithm 0-22 -0-45 |0-44
LOI375 0-92 1-15 |1-67 SqRt 0-48 0-46 |0-79
% OC 0-70 0-30 |0-64 SqRt 0-36 0-15 |1-56
% H,0 0-30 -0-22 |0-30 None

% Clay 0-04 -0-87 |0-48 None

% Silt -0-03 -0-64 |0-24 None

% Sand -0-01 -0-74 (0-29 None

pH -0-18 -0-10 (0-33 None

Alkyl C 0-57 -0-52 |0-61 SqRt 0-38 -0-74 |0-42
0O-Alkyl C 0-32 -0-16 |0-30 None

Aryl C -0-31 -0-07 |0-18 None

O-Aryl C -0-64 0-12 |0-41| Reflect & SqRt 0-13 -0-32 |0-18
Car C 0-06 -0-70 10-72 None

A/K C 1-21 1-15 |1-44 Power” 2% -0-00 0-03 |0-62
A/K C 1-21 1-15 (1-44 Power? 476 0-50 -0-19 (0-80
Area 0-37 -0-53 |0-51 None

Eh -0-81 1-24 11-10 Reflect & SqRt -0-27 1-66 |0-49
SSA 0-16 -0-70 |0-27 None

% Al 0-63 0-65 |[0-38 SqRt 0-16 0-16 |0-17
% Fe 0-94 0-65 |1-49 Logarithm 0-01 0-56 |0-51
% Mn 1-48 3-01 |1-47 Logarithm 0-19 -0-05 [0-29
% Si 0-95 0-67 |[1-33 SqRt 0-28 0-14 {0-50
ArC -0-65 -0-15 |0-47]| Reflect & SqRt 0-06 -0-68 (0-17
AcC 0-42 -0-42 |0-80 None '
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Stepwise regression was carried out again for the Salt Meadows dataset after
transformation with results given in Table 3.31. The predictor A/K°?**® was not included in
stepwise regression, as this would reduce n from 33 to 26. This is due to a number of negative
values for A/K that cannot be transformed. Before commenting on the results shown in
Table 3.31 it is important to measure the VIF values as a cursory look at this table shows
many examples of predictors that have shown multicollinearity previously. Variables that
have high VIF values in their predictors are shown in Table 3.32, together with the removals
and substitutions undertaken to lower VIF values to <.

The collinear groupings are similar to those found for The Abattoir, with particle size
and NMR measurements accounting for most of the high VIF values. Both VLOI375 and
V%OC are used to predict VRefEh, giving rise to VIF values close to 10. The predictions
shown in bold were deemed to be the most appropriate, having both low VIF values and the
best R? values without resorting to PCA. Undertaking PCA in many cases does not give better
results and where an improvement in R? is evident, the differences are minimal (<5%).

The final predictions for the Salt Meadows variables, after normalisation and correction
for multicollinearity are given in Table 3.33. The results for Salt Meadows have fewer
variables predicted with R? values above 80% when compared to The Abattoir (5 compared

with 12). Important points when predicting Salt Meadows variables are:

»  Log LOI110 and H,O are important predictors of each other but when excluded can be
replaced by other variables (Area predicts Log LOI110 & % Silt predicts H,0).

< VJLOI375 and V%OC as expected are strongly correlated and predict each other
(R* = 88%) but again if excluded from stepwise regression another predictor
(log Fe, R? ~50%) can be substituted in their place.

%  Clay, Silt and Sand are now all predicted by Area to the same degree (~30%), which
differs significantly from the results in Table 3.30.

<  The only NMR variable well predicted is O-Alkyl (R> = 70%) that accounts for

50-70% of the NMR signal from Salt Meadows samples.

Clay is the most important particle size measurement when predicting Area.

*
L4

The equations produced using stepwise regression could be used as pedotransfer
functions to further predict soil properties using data from separate study sites. However, the
predictors chosen for prediction of The Abattoir dataset vary from those found for Salt

Meadows.
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Variable| Removed Predictors Predictors Chosen Using Stepwise Regression Analysis R?
- V%OC | VRef Eh [Log LOI110| O-Alkyl SSA Sand 94-70
VIF 14 11 1:6 1-8 46 5-7
VLOI378 Sand V%OC |VRefEh| Log O-Alkyl | SSA Silt 94-69
VIF 1-4 1 L6 18 4-0 48
Particle Size, PCA Added| V%OC | VRefEh [Log LOI110[ O-Alkyl pH 93-93
VI 13 11 12 14 11
LogLOI110 Clay | V%OC | SsA Alkyl |VRefArC| VRefEh | LogMn 78-18
VIF 10-1 15 96 15 14 15 26
LogLOI110 & SSA silt  [VLOI37S|  Alkyl 51-38
VIF 1:3 11 1-2
H:0 [} ogLO110.ClaysSand|  Silt  [VLOI3?S|  SSA Alkyl | VRefAr C 66-04
VIF 47 1-1 41 1-6 17
LogLOI110, Particle Size PSi VLOI375|  Alkyl 5084
PCA Added
VIF 1-3 1-1 12
- O-Alkyl | Area | V%OC VAl VSi Alkyl | LogMn |VRefO-Aryllgy.7g
VIF 19-0 1-8 1-8 23 44 13-5 34 20-3
VRef O-Aryl C Area VAl vSi Alkyl V%0C | LogMn 8539
VIF 1-5 2-1 43 11 1-7 29
Clay Alkyl C LogFe Area VAl VSi AcC 30-97
VIF 24 14 26 41 1-2
O-Alkyl Area VAl vSi Alkyl V%O0C [VRefO-Aryl| Log Mn 8661
VIF 17 23 44 1-8 18 33 23
NMR, PCA Added NMR2 | Ara | V%OC VAl VSi Log Mn 8565
VIF 1-4 1-6 1-8 23 42 2-9
- Area Alkyl | JLOI375 VAl VSi  [VRefO-Aryl| LogMn | LogFe |g4.89
VIF 19 24 3 27 59 24 33 5-7
LogFe Area Alkyl | VLOI37S VAl VSi  |VRefO-Aryl[ O-Alkyl 81-5]
VIF 19 13-4 19 2:2 26 20-1 18-5
VSi HO [ V%OC | Area VAl VRef Eh 7398
Silt VIF 14 1-1 13 12 1
LogFe & O-AlkylC | Area | Alkyl |[VRefO-Aryll VAl VSi LogMn | V%OC 82-39
VIF 1-7 1-8 23 23 44 33 1-8
VRefO-Aryl C Area Alkyl | V%0C VAl VSi 75-75
VIF 15 1-1 1-6 2-1 26
NMR, PCA Added NMR2 | Area | VLOI37S VAl VSi NMRS | LogMn 84-08
VIF 14 1-7 1-7 22 42 1-1 29
- O-Alkyl | Area | Alkyl V%0C VAl VSi  [VRefO-Aryll LogMn |g¢ .3,
VIF 19-0 1.8 13-5 1:8 23 44 203 3-4
VRefO-Aryl C Area | V%0C VAl Alkyl vSi 79-43
Sand VIF 15 16 21 11 26
Alkyl C Area | V%OC | H;0 Y VSi LogMn | O-Alkyl 83-36
VIF 17 23 1-7 2:6 45 32 21
NMR, PCA Added NMR2 | Area | V%OC VAl VSi NMRS | LogMn 85-72
VIF 1-4 1-6 1-8 23 42 1-1 2-9
- LogMn VSi | VLOI375 | V%OC [LogLOIIOf H.0 Area 13-13
VIF 32 2-8 9-7 94 21 1-7 -7
VRef Eh V%0C LogMn | VSi | VLOI375 54-93
VIF 2-8 2-6 12
VLOI375 LogMn | VSi LogFe | VLOI375 54-63
VIF 30 28 2:4 15
- V%0C | Clay | O-Alkyl Sand SSA 8017
VIF 12 20-3 17 17-1 57
Silt, Sand & SSA V%0C | Clay | O-Alky! : 7279
LogFe VIF 13 16 17
Clay V%0OC | O-Alkyl pH  [VRefO-Aryl|  Alkyl 75.94
VIF 13 17:9 12 19-8 12:9
Particle Size, [CAAdded| V%OC |[O-Alkyl | PS2 O-Aryl | . 1752
VIF 13 2:0 1-1 1-8
- Clay SSA H,;0 50-26
VIF 7-1 6-0 15
SSA N%0C Area 23-95,
Si VIF 1 11
Clay V%OC | Area SSA
34-51
VIF 1-4 1-7 1-7
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Table 3.34: Comparison of Stepwise Regression before & After Transformations for Salt

Meadows Data

Before Transformation After Transformation %
No. of ) ) No. of )
R R Difference
Predictors Predictors

LOI110 4 50-17 59-76 3 9-59
LOI37S 4 93-05 94-69 6 1-64
% OC 4 92-52 93-83 6 1-31
% H20 4 53-60 66:15 ) 1255
% Clay 7 87-66 86-61 7 -1-05
% Silt 7 81-99 82-39 7 0-40
% Sand 6 8379 83-36 7 -0-43
pH 3 34-75 34-88 3 0-13
Alkyl C 1 21.59 40-18 3 18-59
O-Alkyl 3 56-93 70-33 6 13-40
ArylC 1 16-74 16:74 1 0
O-Aryl C 3 28-48 19-61 2 -8-87
Car C 2 33-80 33-53 2 -0-27
A/KC 4 41-89 35-70 2 619
Area 5 66-69 66-70 5 0-01
Eh 3 50-45 54-93 3 448
SSA 5 72-38 71-23 5 -1-15
% Al 1 26-24 28-20 1 1-96
% Fe 4 76-22 72-79 3 -3-43
% Mn 3 46-18 44-08 3 2-1
% Si 3 31-48 34-51 3 3-03
ArC 1 14-04 13-32 1 072
AcC 4 46-50 2892 2 -17-58
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3.4 Spatial Distribution of Soil Properties

“G. de Marsily started the defence of his hydrogeology thesis by showing the audience a
jar filled with sand and announced ‘here is a porous medium.’ Then he shook the jar and

announced ‘and here is another,” shook it again ‘and yet another.’................
(Ghilés & Delfiner, 1999).

3.4.1 Introduction

The spatial variability of soil properties is easy to visualise graphically. There are many
computer programs that can convert spatially measured soil parameters into contour maps
showing the variation over a given area. The ‘raw’ contour map can be smoothed and
modelled using different criteria such as the inverse distance weighted variation between
neighbouring sampling points and kriging. After modelling spatial data it is possible to find
the confidence limits of the modelied variation. This information allows risk assessment as to
possible levels of contaminants over a given area and how accurate those predictions are.
When redeveloping brownfield sites it is important to be able to find whether the soil meets
the governement regulations regarding the future use of the site, with the allowed soil
guidance value of contaminants dependent on that future use.

Before the advent of modern geostatistical methods, the sampling strategy was designed
with in-built randomisation and made no assumptions about the variable soil parameter
(Webster & Oliver, 2001). Geostatistics assumes that the variable is raﬁdom with models
based on the prediction of random processes. Each measured value is only one of many
possible answers to a random process giving a random variable. Each measurement at a
spatial point has its own random process leading to a random variable, with these random
processes being spatially dependent (Rossiter, 2005). |

To model this spatial variation we need to make the following assumptions:

First Order Stationarity:
¢ Assume that all the means of the random processes at all locations are the same to
allow estimation of the common means (random variables) and the presumed
spatial structure.
< Nearby observations may be connected with the individual random variables
making up a regionalised variable that has an associated covariance.
% This covariance can be considered to only depend on the separation and possibly

the direction between the points that created it.
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Second Order Stationarity:

¢ You cannot estimate the covariance of one point from one measurement.

¢ Assume that the variance at all points is the same ﬁnite‘value which can be
estimated from the nugget variance (See Figure 3.51). This essentially lumps
together the random variables.

¢ Assume that the covariance between points depends only on their separation and
not their location or individuality. The covariance can then be estimated from a
large number of sample pairs all separated by approximately the same vector
(distance and possibly direction).

There are problems associated with these assumptions in that first order stationarity is
often not likely as the mean will change over distance and second order stationarity is affected
by covariance changing with area (Rossiter, 2005). To help compensate for this it is possible
to replace the mean values with the mean differences. Over a small separation, the mean
differences between values will be the same. The covariance between values can now be
replaced with the variances of the differences at a particular separation.

The above assumptions now mean that semi-variance is given as an estimate of
covariance in the spatial field with the semi-variance allowing modelling of the spatially
correlated component of the regionalised variable. The semi term in semi-variance refers to
the fact that there are two ways to compute the variance of any point pair combination. This
gives [n(n-1)])/2 point pairs for any dataset. It is possible to follow a protocol (Webster &
Oliver, 2001) when modelling spatial variation:

** Remove any outliers (see Section 3.2). When calculating the experimental
(empirical) variogram (see below) each set of data points are paired. Outliers are
therefore paired with all other points and therefore have high leverage.
Removing outliers stops the result being skewed whilst still allowing outliers to
be added back after modelling using the remaining data points. Outliers are
identified in Section 3.2.

% Transform the data to normality (see Section 3.3.2). Geostatistical analysis may
presume a normal distribution and so transforming all data to normality is a
prerequisite (note: if data requires transformation no outliers should be removed

until after transformation).

0’
.0

% Check the transformed data for directional, long range trend. Geostatistical
analysis assumes stationarity and therefore is incompatible with data displaying

trend.
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Produce the variogram cloud (semi-variance versus distance). The variogram

cloud allows visualisation of any pairs of data points that show high (outlying)

semi-variance. Any point that leads to several point pairs with outlying semi-
variance should be removed to aid modelling.

Check for geometric anisotropy by computing the experimental variogram using

different ratios of the coordinates (1-25, 1-5, 1-75 & 2-00) lying at different

angles (0°, 45°, 90° & 135°) to the horizontal axis. The experimental variogram
has the same form as the variogram cloud (semi-variance versus distance) but the
average semi-variance is computed at various separations (lag increments). The

number of points in each lag increment (bin) needs to be >100 and will give a

more reliable result if >300 (Rossiter, 2005). If the variograms produced all have

approximately the same size and form then the data is isotropic. Differences in
semi-variance indicate zonal anisotropy where there is more variance in certain
directions.

Compute the experimental variogram over all directions (omnidirectional). The
general features shown on a variogram are shown in Figure 3.51 namely:

e The Sill. This is the maximum semi-variance and is a priori known as it
equals the population variance.

e The Range. This is the separation between point pairs where the sill is
reached and is the maximum distance at which spatial dependence is found.

e Nugget Variance. This is the variance found at close to zero separation and is
the point at which spatial variance cannot be accounted for due to the inherent
heterogeneous nature of the samples at close range.

Model the experimental variogram. The shape of the variogram will affect the
choice of model and can be split into four groups:

I. Pure Nugget. Effectively the sample mean will estimate every point and there
is no spatial structure evident. |

II. Unbounded. The semi-variance increases with area and has no sill or range.
This suggests that the study area is smaller than the range of spatial

dependence and is best modelled using a power function.
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II1. Bounded. The semi-variance reaches a sill at a definable range. There are
several models that can model a bounded variogram:

e Linear. Semi-variance increases linearly with distance to a maximum
(sill) at a given distance (range).

e Circular. This model is based on the overlap of two discs and is good
where the variability is spread in patches interdispersed with transition
Zones that may overlap.

o Spherical. This model takes the 2-D circular model and extends it into 3-
D by looking at the volume of intersection of two spheres. This is often
the best when modelling soil variability even when soil samples are only
collected in two dimensions (Webster & Oliver, 2001).

e Pentaspherical. This model is a five-dimensional analogue of the circular
and spherical models.

IV. Bounded Asymptotic. The semi-variance approaches a sill at some effective
range. The effective range is usually taken as the distance at which the semi-
variance reaches 95% of the sill variance. This can be modelled by either an
exponential or Gaussian model. The Gaussian model differs from the
exponential at small separations where the semi-variance will be close to
Zero.

% The chosen model should match the experimental variogram closely, minimising
the sum of least-squares between them.

% Use the model variogram to predict values at unsampled locations. This is
achieved by ordinary kriging which computes a weighted average of the data.
The weights are determined by the configuration of the data and the variogram
model. The closer the sampled location, the larger the weighting with distant
points having negligible weight unless there is a large proportion of nugget
variance.

% Produce a map to show graphically the results of ordinary kriging.
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- To give good confidence intervals for the spatial variability of a measurement 100-150
sampling points are required (Webster & Oliver, 2001). This number increases to ~250 if the .
data is anisotropic. The maximum number of samples from The Abattoir and Salt Meadows
are 80 and 117 respectively. These figures suggest that only Salt Meadows has enough spatial
data for good confidence intervals. There also should be no less than 100 point pairs in each
lag increment. This will cap the number of bins depending on the level of reliability required
and number of sample points. These variables are summarised in Table 3.35. The size of the
lag increments also needs to be set with a good starting point being the distance between
sample points if on a regular grid pattern. The number of lag increments muitiplied by their
size should approximately equal half the maximum distance between sample points
(S+SpatialStats, 2000). Because of this the number of lag increments utilised for the datasets
under study will be further reduced and dependent on the sample point spacing and overall
dimensions of the sample sites.

The computer programs used to model spatial distribution were:

< S-Plus® 7.0 for Windows Enterprise Developer (Insightful™ Corporation)
including the S+SpatialStats module (version 1.5.7, Mathsoft Inc.).
< ArcMap™ 9.1 (ESRI®) including the geostatistical analyst tools.

One major disparity between these different software programs is in the setting of bin
increments. S+SpatialStats sets the first increment as half of the designated bin size whereas
ArcMap does not. This allows S+SpatialStats to more efficiently model the nugget effect
(personal correspondence, Insightful Support). This in turn means that all subsequent bins are
offset from the bins as set by ArcMap.

S+SpatialStats was used to produce variogram clouds of the data as it is possible to
highlight outlying points and therefore remove the sample locations from further analysis. It
was then possible to check for geometric anisotropy and again remove the offending sample
points (if any). Both programs could be used to produce an experimental variogram but
S+SpatialStats has the benefit of allowing you to, in addition to setting the size and number of
lags, set the minimum number of pairs in any bin.

ArcMap™ was then used to model the experimental variogram as it allowed use of a
better range from the models described above. For robustness the best model could then be
manually modelled using S+SpatialStats to allow the minimum number of pairs in each bin to
be set. Ordinary Kriging can then be undertaken to produce a contour map to graphically

show both the predicted variation and its associated error.
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TotalvNumber of Maximum Maximum Reliable
Site Sample Number of Number of Lag | Number of Lag
Locations Point Pairs Increments Increments
The Abattoir 80 3160 31 10
Salt Meadows 117 6786 67 20

Figure 3.51: Features of a Semi-Variogram Graph

Sill

Range

Y Semi-Variance

Nugget Variance

Distance (Lag) h

The moisture content of The Abattoir soil samples was used as an example to test this

spatial distribution and mapping technique.
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3.42 The Abattoir
The Abattoir Site was spatially sampled at 80 locations as shown in Figure 3.52. This

may not reach the required number for a more robust spatial analysis as outline in Section
3.4.1 but the results for the individual measurements are given below. Of the samples
~ collected, 69 were taken on a standard herring-bone grid pattern, with the remaining 11 being
taken at shorter random spacings to better measure more localised variation (<10m). The grid
is based on 10m increments with the nearest neighbours being 10-19m apart due to the sample
locations being skewed by the herring-bone pattern. When the sample points at random
spacings are taken into account, the average minimum distance between points is reduced to
7-85m. The minimum distance between points changes to ~8m after removal of outlying
points or missing data for all datasets apart from NMR values. It therefore seemed prudent to
use lag increments of 8 and 10-2 in geostatistical analysis.

The maximum distance between two sampling points was ~212m, giving an effective
maximum range of ~106m. Taken with the lag increments, this allows for 10 (10 x 10-2 =
102m) and 13 (8 x 13 = 104m) lags to be used. The number of point pairs in each lag
increment as would be used by ArcMap are shown in Figure 3.53 and Figure 3.54. Both
graphs show that when using all sample points from The Abattoir site it is possible to meet
the minimum criteria for valid spatial analysis. The short range variation picked up by
samples taken off the standard grid does not give a useful number of point pairs (18) but using

a lag increment of 8 does allow maximisation of the number of lag increments (bins).
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Figure 3.52: The Abattoir Sample Locations
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After data transformation and correction, an empirical variogram was produced and
modelled using the criteria set out in Section 3.4.1. The results of computer modelling are
given in Table 3.36 and show that a circular model variogram best fits the data giving the
standardised root mean square closest to 1. However, also shown in Table 3.36 are two
examples of manual fits created using the geostatistical analyst wizard tool contained in
ArcMap. It is possible through manual fitting to produce a model with a standardised RMS
value of 1. Both manual spherical models given have sill and nugget values that add to give
the a priori known variance in the dataset but give widely differing values for the range. The
graphical interface used with the geostatistical analyst tool is shown in Figure 3.61 and
visualises the shortcomings of attempting to manually fit an empirical variogram. The
semivariogram given does not give a single, averaged point for each lag increment making a

visually fitted empirical variogram subject to large user error.

Table 3.36: Model Variogram Results for LogH,0

Lag Standardised Error
Model Range Sill Nugget
Increment Root-Mean-Square
. 8 26-08 0-00686 | 0-00741 0-9741
Circular
10-2 29-75 0-00539 | 0-00886 0-9631
8 28-49 0-00720 | 0-:00707 0-9657
Spherical
10-2 31-36 0-00578 | 0:00845 0-9636
8 30-36 0-00748 | 0-:00677 0-9706
Tetraspherical
10-2 33-98 0-00594 | 0-00830 0-9606
) 8 32-71 0-00759 | 0-00666 0-9678
Pentaspherical
10-2 36-60 0-00602 | 0-00822 0-9588
) 8 26-72 0-01010 | 0-00425 0-9326
Exponential
10-2 30-43 0-00802 | 0-00632 0-9407
) 8 23-97 0-060612 | 0-00814 0-9656
Gaussian
10-2 27-47 0-00475 | 0-00950 | 0-9653
Manual Fit
8 17-90 0-01410 | 0-00000 1-0000
Spherical
8 33-77 0-00705 | 0-00705 1-0000
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The modelled surface shown in Figure 3.63 does not show an underlying trend in any
direction as already discussed but does appear patchy having distinct areas with similar values
that will lead to the range of spatial correlation being ~30 metres. The prediction error
associated with this modelled surface is given in Figure 3.64. Errors are shown to be low and
relatively constant but increase towards the edge of the modelled surface. This is inevitable
when modelling at a boundary where there is lack of data to aid modelling beyond. The range
of spatial correlation, and therefore variability of soil parameters is another tool that may aid
in describing the variability associated with pollutant movement where soil parameters with a

definite range have a controlling influence on adsorption.
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3.5 Summary
Chapter 3 firstly detailed the results of the individual soil parameters collected,

indicating the known interdependencies between variables such as LOI375 and %OC. The
ratio between organic matter and organic carbon was found to equal 1-98, which falls within
the generally accepted range (1:724-~2-5). It has also been shown that whilst %H,O and
LOI110 will be strongly influenced by the moisture content of the soil, LOI110 also measures
the variation in easily oxidisable and/or volatile components between soils.

Boxplots have been shown to provide a good visual representation of the distribution of
measured soil parameters. Boxplots are helpful in regards to both the distribution within a
site, allowing outliers to be viewed that may strongly influence further analysis, and the
variation in the distributions between sites. It would be reasonable to presume that the
distribution of agricultural soil characteristics would be greater than that of The Abattoir or
Salt Meadows but this is not always evident unless the Grinton Moor peat sample is included.
The agricultural soil samples do have a wider distribution of particle size, pH, suface area,
%Fe, %Al, %Mn and %Si but this is not the case for the important NMR results.

The overall dataset variation was described and simplified using PCA, with these results
tested as predictors in stepwise regression. The Abattoir and Salt Meadows both have 7
principal components that can account for over 90% of the variance in their datasets. The
measured soil characteristics have groups of interrelated parameters (particle size
measurements, NMR fractions) that increase the complexity of PCA analysis without
appreciable benefit. The correlation between these parameters was visualised using matrix
plots. PCA analysis also suggested a correlation between the species measured by ICP-OES
(Fe, Al, Mn & Si) obtained from the dithionite-citrate-bicarbonate (DCB) extractions. This
was confirmed using matrix plots with data from The Abattoir showing a stronger correlation
than Salt Meadows.

The number of parameters used in PCA analysis from The Abattoir dataset was reduced
using two different methods (retention & removal). Both methods gave similar results and
reduced the number of PCs required to account for 90% of the datset variation from 7 to 5. A
noticeable difference between The Abattoir and Salt Meadows PCA analysis was the NMR
parameters having the largest coefficients in PC1 & PC2. The Abattoir has large coefficients
for O-alkyl and aryl C whereas Salt Meadows has large coefficients for alkyl and O-alkyl C.

Stepwise regression analysis found useful predictors (R? > 70%) for 14 of The Abattoir
soil measurements compared to 8 for Salt Meadows. The regression equations were generally
improved upon by transforming the distribution of predictors to normality. Three different
transformations were used (square root, log & péwer) with this dependent on how far the

variable was from being normally distributed.
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Further tests were undertaken to check whether the different transformations would
affect stepwise regression results. It was found that only the % Al transformation for The
Abattoir data had an appreciable effect, giving an 18% improvement in the prediction of
Ar C. To check for multicollinearity, variance inflation factors (VIF) were calculated as part
of all stepwise regression calculations. Any predictor with a VIF value above 5 was removed
in order of least importance from the dataset used for stepwise regression. The removal of
these collinear predictors tended not to greatly affect results. The only exception to this is
predicting The Abattoir alkyl C variable where the PCA scores of the particle size and DCB
extraction subsets is required. This allows prediction of 57% of the variation shown by The
Abattoir alkyl C.

Using the principal components from PCA as predictors in stepwise regression can help
reduce high VIF values. The increase in the R® values of regression equations must be
weighed against the added complexity of undertaking two separate analyses. It is also more
difficult to interpret results obtained using principal components that may have several
important coefficients from seemingly different soil measurements.

The moisture content of The Abattoir soil samples was used as an example of the
technique to model spatial distribution and variability. To obtain good results when
undertaking spatial modelling requires more sample points than present at either The Abattoir
or Salt Meadows. When modelling the empirical variogram it was found that a circular model
gave the lowest error (R? = 0-9741) to give a range for spatial correlation of 26m. Using this
model variogram it was then possible to produce a kriged map of the variation of moisture

content over The Abattoir site.
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4 Adsorption Modelling

4.1 Introduction

When measuring organic contaminant adsorption in soils, it is widely used practise to
convert the adsorption coefficient K4 to the organic carbon normalised adsorption coefficient
Koc. By correcting for organic carbon, Koc is to a large degree independent of the soil but
will still be subject to variation in secondary controls that include clay content, surface area,
pH and the nature of the organic matter (Andersson et al., 2002; Reddy & Locke, 1994).
There are many studies that have correlated (log) Koc to the (log) octanol/water partition
coefficient (logK,w also known as logP) of organic adsorbates (Seth et al, 1999; Sablji¢ et al.
1995; Karickhoff, 1981). The aqueous solubility (Log S) of organic chemicals has also been
widely used and is highly correlated to log Kow (Sablji¢ et al. 1995).

A major problem when modelling adsorption is the large variation in experimental Koc
values for a given organic compound. Paya-Pérez et al. (1992) found that the Koc value for
atrazine varied by a factor of four whilst Hornsby et al (1996) concludes that Koc values can
change by an order of magnitude over a single study site and by several orders of magnitude
between different locations. The variation in Koc values is shared by variation in
experimental Kow values. Sablji¢ (1987) showed that experimental Kow values had ranges
between 0-5 and 3-3 log units and that when using these Kow values in published quantitative
models for calculating soil sorption coefficients, the resulting predicted coefficients had an
average range of 1-5 log units (a factor of 35). It is therefore evident that any modelling of
adsorption cannot overcome the variation and uncertainty in experimental Koc values.

There have been numerous studies undertaken to further enhance the modelling of Koc
variation. Grathwohl (1990) showed that log Koc was correlated with the hydrogen/oxygen
(H/O) atomic ratio of the soil organic matter, and this allowed adjustment of Koc values
calculated using Kow. This work followed on from a study by Garbarini & Lion (1986) that
found K4 values for trichloroethylene and toluene were correlated not only to the fraction of
organic carbon in the adsorbents but also the percentage of oxygen and sulphur (as found by

difference using CHN analysis and % ash).
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Experimental values of Kow have been shown to vary considerably but many computer
programs (For example: HyperChem®, Pallas, KowWin, DRAGON & TOPKAT®) can now
calculate Kow (logP) from first principles using molecular and atomic parameters. This leads
onto the wider application of chemometrics, where molecular parameters are calculated and
then used to discern how the intrinsic properties of the molecule account for its behaviour.
Chemometric studies are widely used in the pharmaceutical industry to develop Quantitative
Structure Activity Relationship (QSAR) models that inform drug design by linking biological
activity to molecular parameters.

Research by Randi¢ (1976) led to a skeletal branching index that correlated with
physical properties of alkanes, whilst Kier & Hall (1976) wrote a seminal book discussing the
use of molecular connectivity indices after earlier relating connectivity to the activity of local
anaesthesias. The branching index envisaged by Randi¢ is now termed the first order
connectivity index and is calculated as the sum of the reciprocal square root products of the
hydrogen-suppressed vertex valences (Hall & Kier, 2001). The vertex valences are a count of
the neighbours a carbon atom has and therefore it’s branching.

The first order connectivity index chi ('y) is defined in Equation 4.1. As 'y only
accounts for sigma electrons and treats all atoms as carbon sp’, to account for pi (r) and lone
pair (n) electrons in second row atoms in the periodic table, first order valence indices ('x")
must be calculated as shown in Equation 4.2. Higher order connectivity indices can be
calculated based on:

@,

% A set of connected edges where no vertex can be counted more than once (path).
% A set of connected edges where a vertex must be counted more than once (cluster).
% A set including both types of vertices (path-cluster).

These calculations are carried out using Equation 4.3.

1
The first order connectivity index 'y equals: Z(&,é‘ S )k2 Equation 4.1
k
1
The first order valence indices 'y’ equals: Z (5,.“5; );5 Equation 4.2
k
JL
Higher order valence connectivity indices” y, equals: ZH (5,.”) 2 Equation 4.3

1 i |
Where: & = the sigma electron count
6" = the valence electron count
m = the number of edges
t = subgraph type (path p, cluster ¢ or path-cluster p-c)
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Connectivity indices have been widely utilised to predict soil sorption coefficients.
Boethling et al. (1992) showed that 96% of the variation in Koc (86% in the validation
dataset) was successfully predicted by 'y but required the addition of polarity correction
factors for any compounds with polar fragments. Tao & Lu (1999) did a similar study using
connectivity indices and polarity factors to estimate Koc for 543 chemicals (400 used in
development & 143 in validation). Connectivity indices are only one aspect of a huge number
of topological parameters and molecular properties that can be calculated from first principles
and semi-empirical methods. Lohninger (1994) showed that the Koc values of a large
pesticide dataset (120 used as a training set & 81 used as a test set) could be modelled using
eleven descriptors. Of these eleven descriptors, only two were topological indices, the other
nine describing various structural fragments.

Reddy & Locke (1994) did not use topological indices at all, but predicted the Koc
values of 71 herbicides using semi-empirical molecular properties calculated using the
computer program Chem-X. Four semi-empirical properties, namely Van der Waals volume,
molecular polarisability, dipole moment, and energy of highest unoccupied molecular orbital
accounted for 70% of the variation in Koc values. Many Koc prediction methods are specific
to particular classes of chemicals and cannot be broadened to include differing chemical
groups. Andersson et al. (2002) showed that whilst calculated logP (LogKow) values allowed
estimation of Koc values to indicate sorption potential, other descriptors were required to
allow more accurate Koc prediction, with these descriptors limited to compound classes and
specific chemical characteristics.

The application of QSAR techniques in soil sorption allows agro-chemists to screen
potential pesticides & herbicides before synthesis. The potential environmental fate of these
agro-chemicals can be ascertained in a similar way as their potential biological potency.
Worrall (2001) showed that pesticides could be discriminated between polluting and non-
polluting using the sixth-order molecular path connectivity (6x"p). This one parameter
accounted for 86% of the variation in the dataset. When a pesticide had a 6pr value of less

than 0-55, it was likely to be polluting (i.e. found in groundwater).
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4.2 Adsorbate Molecular Parameter Calculations

The adsorbate molecules used in this study are shown below in Figure 4.1 together with
some basic parameters. The molecular structures shown in Figure 4.1 were manually drawn
using Hyperchem® software (version 7, obtained from Hypercube Inc.). After drawing, the
structures needed to be geometrically optimised. Hyperchem® has many methods of
undertaking geometrical optimisation. The standard optimisation settings chosen are the same
as used by Huq & Yu (2002) and Comelissen et al. (2005) namely the Polak-Ribiere
(conjugate gradient) algorithm in vacuo with termination conditions of a RMS gradient of
0-01kcal/Amol (or a maximum of 240 cycles). These settings were used in conjunction with
three different molecular modelling methods:

¢ The semi-empirical Parametric Method 3 (PM3)
¢ The semi-empirical Austin Model 1 (AM1)

< The molecular mechanics MM+ method (Hyperchem® default)

Figure 4.1: Adsorbate Molecules with Basic Parameters

OH

CeHs Ce¢Hs(-OH)

Molar Mass: Molar Mass:

78-11g/mol 94-11g/mol

Solubility in Water: Solubility in Water:

1-79g/1 (25 98-0g/1 (25
Benzene g (23%) Phenol (20

OH

CsHa(-OH)(-CH3) CeHa(-CHs)2

Molar Mass: Molar Mass:

108 14g/mol 106- 16g/mol

Solubility in Water: Solubility in Water:

19-0g/1 (2 sparingly soluble
para-Cresol g (257) para-Xylene paring’y sotd
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The PM3 and AMI semi-empirical methods listed above make less drastic
approximations than other semi-empirical methods and are therefore generally accepted to
give better results fof organic molecules (Huq & Yu, 2002). This does not preclude PM3 and
AM]1 calculations giving poor results that should be viewed as part of an overall trend rather
than accurate prediction of a molecular property. Semi-empirical calculations have no
associated statistical error but may contain systematic error linked to the assumptions required
to enable computation. This computational error is considered to be approximately constant
throughout a series of related compounds (Karelson et al., 1996).

The MM+ molecular mechanics method of geometry optimisation is a variant of the
widely used MM2 force field parameter. The MM2 modelling parameter was first developed
in 1977 and was updated in 1991, retaining the same functional form but having a new
parameter set. The MM+ force field is of the same form as MM2 but is extended to include
molecular dynamics calculations and code allowing generation of missing parameters
(Hocquet & Langgard, 1998). Huq & Yu (2002) found that the results of MM+ molecular -
mechanics calculations did not describe the solubility difference between
2-hydroxypyridine and 3-hydroypyridine as well as AM1 semi-empirical calculations.

Hyperchem® allows the user to rotate the loaded structure in three dimensions visually
on-screen. After manually drawing the four adsorbates, all structures were planar before
geometric optimisation. The carbon ring structure of benzene is planar by nature but this is
not the case regarding the attached -CHj; groups in p-xylene and p-cresol. The sp3 hybridised
~CH3 group should have molecular symmetry and be three-dimensional in nature.

During geometric optimisation, Hyperchem® updates the screen image of the molecule
undergoing optimisation after each cycle. This allows the user to visually follow the
optimisation process and was most evident when the structure included a —CHj group (p-
cresol & p-xylene). The three molecular modelling techniques used for geometric
optimisation (PM3, AM1 & MMH+) all started using the same manually drawn structures and
settings but gave different optimised results with only PM3 optimisation giving non-planar -

CHj; groups in p-xylene and p-cresol.
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Table 4.1: Hme;chem® Computed Adsorbate Properties

QSAR Properties:
< Surface Area (approximate) (A% < LogP
< Surface Area (grid) (A%) < Refractivity (A%)
< Volume (A3 % Polarisability (A%)
¢ Hydration Energy (kcal/mol) < Molecular weight

Molecule Properties:

¢ Total Energy (kcal/mol) < Dipole Moment (D)
Orbitals:
s HOMO (eV) % LUMO (eV)

As previously stated there are a number of different computer programs that allow
computation of a multitude of molecular parameters. Hyperchem® was used to generate the
optimised structures of the adsorbates and their associated parameters given in Table 4.1. The
computer program DRAGON (version 5.4) can calculate an array of 1664 molecular
descriptors. A selection of topological & constitutional descriptors, connectivity indices and
molecular properties (53 parameters) were calculated for the adsorbates and are given in
Table 4.2. Definitions of the parameters are available in a handbook written by the developers

of the DRAGON software package (Todeschinni & Consonni, 2000).
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Table 4.2: Molecular Parameters Computed Using DRAGON

Sum of atomic Van der Waals
volumes (scaled on carbon atom)

Mean atomic Sanderson electronegativity
(scaled on carbon atom)

Sum of atomic polarizabilities

Mean atomic Van der Waals volumes
(scaled on carbon atom)

Mean atomic polarisability

Sum of atomic Sanderson electronegativities

E-state topological parameter

Sum of Kier Hall electrotopological states

Kier symmetry index

1-path Kier alpha-modified shape index

Path/walk 2 - Randi¢ shape index

2-path Kier alpha-modified shape index

Path/walk 3 - Randi¢ shape index

3-path Kier alpha-modified shape index

Path/walk 4 - Randi¢ shape index

Average connectivity index %"

Path/walk 5 - Randi¢ shape index

Average connectivity index 'y*"

Connectivity index %

Average connectivity index 2y

Connectivity index 'y

Average connectivity index x*"

Connectivity index %y

Average connectivity index ‘Y

Connectivity index 3y

Average connectivity index *x*"

Connectivity index K

Valence connectivity index %’

Connectivity index *x

Valence connectivity index 'y"

Solvation connectivity index %°

Valence connectivity index %x*

Solvation connectivity index 'y*

Valence connectivity index *y"

Solvation connectivity index %

Valence connectivity index *x"

Solvation connectivity index *x°

Valence connectivity index >x"

Solvation connectivity index *y°

Average valence connectivity index "

Solvation connectivity index ’x°

Average valence connectivity index 'y"

Hydrophilic factor

Average valence connectivity index %"

Ghose-Grippen molar refractivity

Average valence connectivity index "

Moriguy Kow

Average valence connectivity index ‘"

Ghose-Crippen Kow

Average valence connectivity index °y"

Modified Randi¢ connectivity index

Reciprocal distance squared Randi¢-type index

Reciprocal distance Randi¢-type index
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4.3.1 Phenol
The adsorption results for phenol are given in Table 4.3. The goodness of fit of linear

isotherms to the phenol data is gauged by the R” values. It should be noted that all linear
isotherm R? values are calculated using three or four points inclusive of the origin. The
highest K4 & Koc values measured are for AB 07/3 19/2 and SM 1113 (0-10) respectively.
The lowest values area those found for BS3 and JY2. The high values for AB 07/3 19/2 and
SM1113 (0-10) are difficult to account for whereas BS3 does have the lowest %TOC and
LOI375 of the soils given in Table 4.3. A plot of K4 against %TOC as shown in Figure 4.4
without Grinton Moor peat for clarity, demonstrates that there is no linear relationship
between adsorption and organic matter. Phenol is a polar molecule that has the highest

solubility in water of the 4 adsorbates studied here. Phenol adsorption is therefore controlled

by other factors including clay content and structure.

Table 4.3: Experimental Adsorption Coeflicients of Phenol

Soil . K K . Roc
(linear model) (linear model) (linear model)

QC 362 0-93 14406
ML1 12 0-94 256

BS1 72 1-00 2223
BS3 2 0-86 170
GMP 54 1-00 137
Chalk 24 0-97 823

SM 1113 (0-10 D) 361 0-93 11436
SM 1113 (10-20 D) 97 0-65 2873
SM 0804 106 0-57 3131
SM 0806 50 0-92 1687

SM 10/6 12/7 302 0-93 9730
Coal 1 45 0-95 650

AB 0722 134 0-99 4020
JY2 4 0-48 105

AB 07/3 19/2 720 0-90 14421
Carb lime 1 6 0-71 147
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4.3.3 p-Xylene ,
The adsorption results for p-xylene are found in Table 4.5. The adsorption values found

have a distribution range in-between phenol and p-cresol but do not have any of the
associated low values found in Table 4.3 or Table 4.4. The R? values for p-xylene linear
isotherms tend to be comparable to those found for phenol. The highest K4 value is for GMP
but the corresponding Koc value for GMP is the lowest in the range, reflecting its high
%TOC. The converse is found for 64050 which has the lowest Kg4 va_luc but the second largest
Koc value after BS3, both of which have low %TOC values (0-71 & 1-18% respectively). The
Salt Meadows depth samples for p-xylene show the opposite trend as p-cresol. The slightly
deeper sample from SM1113 (10-20cm deep as opposed to the top 10cm layer) has higher K4
& Koc values whereas the much deeper layer from Image Hill sample 6 (40-50cm deep as
opposed to the top 10cm layer) has a lower K4 value with a correspondingly higher Koc value
due to its low %TOC. The plot of K4 versus %TOC for p-xylene adsorption (Figure 4.6)
shows similar trends for the Salt Meadows and Image Hill data as plotted in Figure 4.5. This
adsorbate is less polar than the others studied here and therefore more adsorbent on soil

organic matter.

Table 4.5: Experimental Adsorption Coefficients of p-Xylene

Soil . K _ K . Koc
(linear model) (linear model) (linear model)

QC 174 0-98 6938
ML1 87 0-92 1868
BS1 185 0-91 5709
BS3 156 0-95 13240
GMP 249 0-69 633

Chalk 89 0-98 3054
SM 1113 (0-10) 86 0-94 2724
SM 1113 (10-20) | 206 0-80 6109
SM 0804 178 0-64 5251

SM 0806 118 0-98 3997
SM 10/6 12/7 169 0-83 5453
18 143 0-97 ' 2545
6010 179 0-83 1664
64050 82 0-99 11519
31 223 0-96 1478
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4.4 Adsorption Modelling Methodology

Modelling of adsorption was carried out using the two methods given in Sections 4.4.1
& 4.4.2. Section 4.4.1 takes the adsorbates separately and models their variation using the
collected soil parameters whereas Section 4.4.2 uses the soil parameters and the calculated
molecular parameters of the adsorbates. The same analysis as used in Chapter 3 was used,
namely multiple stepwise regression. Stepwise regression is explained in Section 3.3.2 with
this method also being used in Sections 4.4.1 & 4.4.2. This involves an initial analysis using
the raw data before normalising each measurement. The level of normalisation required by the
K4 and Koc datasets is shown but it should be noted that both had their natural logarithms
taken as this is frequently how they are reported in the literature. Adsorbate parameters were
normalised but should be viewed with caution due to there being only four values for any
parameter. Variance inflation factors (VIFs) were accounted for in Section 3.3.2 and are
measured here again. However, Randi¢ (2001) states that molecular descriptors which show
high correlation, and therefore high VIF values should not be discarded. This is due to the fact
that it is the small difference between two highly correlated molecular descriptors that may
provide useful information to allow better prediction of some molecular behaviour.

The results shown in Section 4.3 suggest that the Salt Meadows and Image Hill data |
show linear correlations between adsorption and %TOC. Although taking these subsets
individually will greatly reduce the number of points that prediction is based on, this was
undertaken. It should also be noted that Image Hill soils were originally sampled and
underwent adsorption experiments as a validation dataset for models produced using data
from Salt Meadows, The Abattoir and agricultural soils. The data from Image Hill can

however be viewed as coming from a different subspace to the other soils.
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Validation of adsorption modelling was therefore undertaken using the following
methods:

< PRESS Statistic. The sum of the squares of the prediction error (PRESS) assesses a
model’s predictive ability. This is achieved by removal of the ith observation from the
dataset, estimating the regression equation using the remaining n-1 observations and
then using the fitted regression function to obtain a predicted value for the ith
observation. The smaller the PRESS value, the better the model’s predictive ability.

< Predicted R%. The predicted R? value is calculated from the PRESS statistic, with
higher values suggesting a model with a greater predictive capability. It is therefore
useful to compare the predicted R? value with the R? value as this allows a comparison
of how well the model predicts unknown values compared to how well the actual
observations fit the model.

% Split The Dataset. The dataset was split randomly into training and validation subsets
with a 4:1 ratio. This gives a validation subset of 10 observations (~20% of the complete
dataset). Models calculated from the training subset can be compared to models created
from the whole dataset and the predictions for the validation subset can be compared to

actual values and results obtained from the whole dataset.
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44.1 Single Compound Models
The following sub-sections contain tables detailing the results of stepwise regression

analysis on individual adsorbates. It is immediately evident that the results based solely on
Salt Meadows data suffer from the size of the dataset (n=6). This leads to Minitab warning
that there is insufficient data to add additional predictors during stepwise‘ regression. The
same warning is also displayed when performing stepwise regression on the Image Hill
dataset (n=4). The benefits in transforming such small datasets to normality can also be
questioned. The results of stepwise regression of the K4 and Log K4 adsorption values found

are given in Appendix 7.4.

4.4.1.1 Phenol

Taking the results for Salt Meadows, adsorption is predicted by the percentage aryl and
carboxyl carbon as found by '*C NMR. Although these two parameters are both sections of
the overall *C NMR signal, they give low VIF values indicating limited multicollinearity.
Over 90% of the variation in adsorption can be predicted, with the resulting equations having
a large (~90%) predictive capacity. Carrying out stepwise regression using transformed
variables increases the number of predictors (from two to three or four), which in turn
increases the R? values of adsorption prediction.

The phenol adsorption values for all soils are somewhat different to the Salt Meadows
dataset. Using all data (n=16), phenol adsorption is more accurately modelled with %Mn and
pH as predictors. Adsorption prediction is then further enhanced by the addition of various
NMR variables including carboxyl carbon. The overall R? values for the complete phenol
dataset are in the 80-90% range. The predictive capacities of the found relationships are much
lower than those found for the Salt Meadows dataset and vary from ~40% to ~70%. It is also
worth noting that transformed predictors do not improve the prediction of phenol adsorption
when using the whole dataset.

When comparing the phenol Ky stepwise regression results to the log Ky regression
results given in Appendix 7.4.1, it is evident that taking the log of the adsorption gives a
stronger correlation with the chosen predictors. By taking the log of the Ky data it is possible
that the adsorption values distribution is transformed to more closely match the distribution of
predictor variables.

The K4 values found for phenol adsorption have been modelled but stepwise regression
does not pick a direct measure of organic matter/carbon (%OC or LOI375) as important in
predicting variation in adsorption. Organic carbon normalised adsorption coefficients have
never the less been calculated and undergone stepwise regression, with the results again given

in Appendix 7.4.1.
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No variables show correlation with the Koc values found for the Salt Meadows soils.
However, log Koc values from Salt Meadows show similar correlation to K4 values. Again
aryl and carboxyl carbon are important predictors, followed by the moisture content. Perfect
R? values (100%) when predicting six adsorption values using four variables should be
viewed with extreme caution. However, using aryl carbon as a single predictor accounts for
58-84% of the variation (P=0-075) shown by phenol adsorption (log Koc) on Salt Meadows
soils.

The results of stepwise regression on the whole phenol dataset for log Koc are more
stable than those for Salt Meadows in that taking the log of the Koc values makes little
difference. Again pH and %Mn are important predictors followed by an NMR predictor (alkyl
or carboxyl carbon) or log LOI375. Because these adsorption values have been normalised for
organic carbon content, any correlation with LOI375 may in fact be an underlying affect
based on the multicollinearity between LOI375 and %OC. Removing log LOI375 from
stepwise regression results in Minitab finding a larger number of statistically valid predictors,
with a corresponding increase in R? values (increases from ~90% to ~99% for log Koc

prediction).

4.4.1.2 p-Cresol

Adsorption data for p-cresol was collected on a total of 20 soils including both Image
Hill and Salt Meadows subsets. The adsorption of p-cresol to Image Hill soils shows a strong
correlation with %Mn, which was also evident in some phenol adsorption results. Adsorption
to Image Hill soils also have LOI375 as a predictor, as would perhaps be expected from
agricultural soil and the common practise of normalising K4 to Koc. The other predictor for p-
cresol adsorption in Image Hill soils is %Al. These three predictors give high VIF values and
appear somewhat interchangeable (see Appendix 7.4.2). Again it should be noted that the very
high R? vélues based on such a small dataset should be viewed with caution.

p-Cresol adsorption values for Salt Meadows soils are well predicted by %OC,
accounting for 79% and 70% of the variation in K4 for raw and normalised data respectively.
Increasing the number of predictors to four results in R? values of 100% but again these must
be viewed with caution. After calculating log K4 values, adsorption onto Salt Meadows soils
is now predicting soley by carboxyl carbon and accounts for ~55% of the variation in

adsorption.
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Taking all p-cresol adsorption data together, particle size parameters now become the
most important predictors in stepwise regression. The percentage clay accounts for 30-40% of
the measured variation in K4 & log K4, and based on previous multicollinearity analysis in
chapter 3, can be replaced by any of the other particle size measurements. The other
predictors of p-cresol adsorption are %Si and aryl carbon, giving overall R* values of 40-60%
after correction for high VIF values. The percentage silicon found in the soils will be
intrinsically linked to the mineralogy of the soil and therefore also the particle size
distribution.

It is worth noting that the tabulated R? values for p-cresol vary from 40-100%. The
variation in the predictive power [R? (pred)] of the calculated regression equations is even
greater. The predictive ability of Image Hill regression equations varies from 0 to ~100%.
This adds further caution to using such small datasets as all R? values are greater than 98%.
When using all available p-cresol adsorption data, there is still a large variation in predictive
ability. This ranges from 0-75% to 24-25% after correction for high VIF values.

The Ky result for p-cresol showed some correlation with organic matter/carbon
measures. Correcting for organic carbon gives the Koc and log Koc values that underwent
stepwise regression, with the results given in Appendix 7.4.2. The R? values found for
predicting Image Hill Koc & log Koc values are all greater than 95%, with the lowest
predictive capability now ~75%. Image Hill log Koc values are predicted largely by LOI110
and to a lesser degree % sand whereas Koc is predicted by SSA or, when using transformed
predictors, VLOI375 and O-aryl carbon.

Salt Meadows Koc and log Koc values are largely predicted to a similar extent as K4 and
log K4 except when predicting Koc using transformed variables, where no significant
predictors are found. The Koc values from Salt Meadows are largely predicted by carboxyl
carbon (69-54%) and %Mn (18-22%) when using the raw predictors as opposed to the
transformed ones.

The Koc and log Koc values for the whole p-cresol dataset are very similar to the results
achieved for K4 and log K4. This may be due to the results not being correlated with any
predictor that could be construed as a proxy to organic matter. Clay again is the largest

predictor.
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4.4.1.3 p-Xylene
A total of 15 soils had p-xylene adsorption coefficients collected experimentally. This

includes the Image Hill and Salt Meadows subsets. Stepwise regression results for Ky and log
K4 (raw & transformed data) are given in Appendix 7.4.3 and all have different predictors
giving R? values greater than 98%. The resulting regression equations have high predictive
capabilities but as previously described must be viewed with caution due to the dataset size.

In comparison, the K4 and log K4 results for Salt Meadows soils all have %Al as the
largest predictor of adsorption (~75%). Various NMR variables then account for ~20% of the
variation in adsorption, with the overall R? values increased to ~100% by small contributions
from various other predictors. Again R (pred) varies from 0 to values approaching 100%.

Taking all p-xylene adsorption data together (n=15), stepwise regression of the K4 and
log K4 values gives either %OC or LOI375 (log transformed) as the sole predictor. The
variation associated with the organic matter measures is 30-40% but again the predictive
capability varies from zero to a maximum of ~26%.

Stepwise regression results using all Koc & log Koc values for p-xylene are given in
Appendix 7.4.3. Results for the Image Hill soils give, in many cases, %Mn as a predictor.
Other important predictors include LOI375, %silt and the NMR variables carboxyl and
O-aryl carbon. Again R? values are all close to 100% but R? (pred) vary from zero to ~100%.

The results for Salt Meadows soils are similar to the Ky & log K4 results in that again
%Al explains the largest proportion of adsorption variation (~70%). All Salt Meadows
stepwise regression results also have the % silt as the next most important predictor
(attributable R*~25). The R2 (pred) values for Salt Meadows soils are again more stable than
those shown for Image Hill soils and vary from ~75% to ~100%.
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4.4.1.4 Benzene
Adsorption data for benzene was only collected for eight soils. The limited size of the
dataset (n=8) results in the same problems accounted with the Image Hill and Salt Meadows
subsets. Stepwise regression results are again given in Appendix 7.4.4. Important predictors
for the K4 & log K4 include %Si, LOI110, LOI375, %Fe & %Al. The R? values are all above
90%, with R? (pred) values ranging from ~40% to ~90% after correction for high VIF values.
After normalising K4 values to Koc values, stepwise regression of the benzene dataset
yields on surface area as a predictor. Surface area predicts ~40% of the variation shown by
Koc but has R? (pred) values of ~3%. Log Koc results, shown in Appendix 7.4.4, has six
| bredictors accounting for 100% of the variation in the raw data. Again this should be viewed
with caution as after correcting for large VIF values the R? value barely drops but R? (pred)
falls from ~50% to zero. Transfomation gives only log LOI37S5 as a predictor of log Koc and

accounts for ~45% of the variation found.
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4.4.2 Multi-Compound Models

The adsorption results used individually for each adsorbate in Section 4.4.1 are now
combined to allow the addition of molecular descriptors to stepwise regression. Inevitably this
means that whilst there are a total of 59 adsorption values, the bottleneck in the dataset is the
four organic chemicals used to study adsorption behaviour. Stepwise regression results are
given individually for K4, log K4, Koc & log Koc in Tables 4.7-4.10 respectively. The n
values given in these tables are for the total number of adsorption values used in stepwise

regression and not the number of discrete sets of molecular descriptors. For example, n is
| given as 8 for the Image Hill dataset but adsorption data was only collected on Image Hill
soils for p-cresol and p-xylene (n=2).

The results of stepwise regression using K4 are given in Table 4.7. The variation in K4
shown by Image Hill soils is predicted by MMGrid SA & %Mn and accounts for ~92% of the
variation. MMGrid SA is a QSAR surface area property of the adsorbates whereas %Mn is a
soil property. The K4 values of Salt Meadows soils are predicted by different molecular
parameters, namely the sum of Kier Hall electrotopological states and, for the transformed
dataset, the square-root of the Kier Hall symmetry index. Salt Meadows soils are not well
predicted in the combined dataset (R2=~1 3%).

Taking all K4 data together, stepwise regression gives three predictors including both
adsorbate (E-state topological parameter) and soil (% clay & %Al) properties. These
predictors account for less than 20% of the variation in Ky and have little predictive ability
(~1%). In comparison to this, the combined log K4 dataset shown in Table 4.8 is better
predicted (R>=~30%). The predictors include %Mn, valence connectivity index S¥ and alkyl
carbon for raw predictors and PM3 Approximate SA, V%Mn, %clay, log RpH & log %OC for
the transformed predictors. Whilst these calculations are based on 59 log K4 values, again it
must be remembered that there are only four molecular descriptor datasets. The transformed
predictors used in stepwise regression therefore outnumber the actual number of unique
molecular descriptor datasets.

No predictors were found by stepwise regression for the log Ky Salt Meadows dataset.
Image Hill log K4 values are predicted by log P and %Mn giving an R? value of 96% and a
high predictive capability (~86%). Log P is a QSAR calculated molecular property relating to
the octanol-water partition coefficient and is often used to model organic chemical adsorption

data in soil (see Section 4.1).
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Table 4.7: K4 Stepwise Regression Results for all Adsorption Data & Including
Molecular Descriptors

. , | R | R?
Kg Predictors R (adj) | (pred) n
Image Hill MMGrid SA | %Mn
A\‘,t“‘.’“t.ab‘e 72.87 19-37 92:24|89-14 | 71-02| 8
ariation
VIF Values 1-0 10
Salt Meadows |Sum of Kier Hall electrotopological states |12:60| 7-46 0 19
E-state
All Data topological | %Clay | %Al
parameter
Attributable
Variation 7-38 648 511 18:97|14:55} 1-16 | 59
VIF Values 1-0 2:8 29
Transformed Predictors
Image Hill MMGridSA | %Mn
Attributable 72-87 19:37 9224(89-14 | 71-02| 8
Variation
VIF Values 1-0 1-0
Salt Meadows VKier symmetry index 13-52| 844 | 0-00 | 19
Log RE-state
All Data topological | %Clay | %Al
parameter
Attributable
Variation 9-06 613 4-60 19-79( 1541 | 0-64 | 59
VIF Values 1-0 28 29
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Table 4.8: Log K4 Stepwise Repression Results for all Adsorption Data & Including
Molecular Descriptors

. , | R | R?
Log K4 Predictors R (adj) | (pred) n
Image Hill Log P %Mn
A\t,m‘?“‘?b'e 7239 | 2361 96-00|94-40| 86:57 | 8
ariation
VIF Values 1-0 1-0
Salt Meadows None
Valence connectivity
[}]
All Data %Mn index chi-5 5y Alkyl
Attributable |\, o, 695 624 27-86|23-92| 18-69 | 59
Variation
VIF Values 1-3 1-1 1-2
Transformed Predictors
Image Hill Log P %Mn
A{,‘“‘.’“‘.able 7239 2:61 96-00|94-40| 86:57 | 8
ariation
VIF Values 1-0 1-0
Salt Meadows None
PM3 . Lo
All Data Approx | V%Mn | %Clay | Log RpH o g
SA %0OC
Atributable | 1 5, | 493 | 662 5-00 319 | 3225|2586 |15:23| 59
Variation
VIF Values 11 1-6 1.1 15 1-6
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Normalising the K4 values to Koc values yield the stepwise regression results given in
Table 4.9. Again the results for the Salt Meadows dataset give low R? values with a single
predictor accounting for ~12% of the variation in Koc values. Image Hill Koc values are
predicted in a similar way as K4 and again have %Mn as a soil parameter predictor and a
molecular parameter predictor, the sum of Kier Hall electrotopological states. This gives an
R? value of ~65% but with no predictive capability.

Taking all Koc data together, stepwise regression yields three predictors (E-state
topological parameter, %clay & %Al) accounting for ~20% of the variation in Koc. In the
transformed dataset, after correction for high VIF values, 5 predictors account for ~30% of
the variation in Koc. Neither of the above results give a strong predictive capability, with
R? (pred) values no more than ~10%. Undertaking stepwise regression using log Koc yields
the results in Table 4.10. The results for all log Koc data improves R? values to ~40% and
gives R? (pred) values of 30-35%. The predictors now include moisture content, PM3
approximate surface area and %Fe for the raw dataset with %Fe being replaced by %clay &
%Al in the transformed dataset.

Log Koc stepwise regression results for the Salt Meadows dataset give no predictors
whereas Image Hill is again well predicted (R*=~98%) by MM approximate SA, %Mn &
%silt. Image Hill results also give a high R? (pred) value (~92%).
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Table 4.9:Koc Stepwise Regression Results for all Adsorption Data & Including
Molecular Descriptors

: » | R | R?
Koc Predictors R (adj) | (pred) n
. Sum of Kier Hall
0,
Image Hill /eMn electrotopological states
Attributable | 54,76 2633 6509[5113| 0 | 8
Variation
VIF Values 1-0 1-0
Salt Meadows E-state topological parameter 12:09( 692 0 19
All Data E-state topological %Clay %Al
parameter
Attributable 837 633 723 2193 [17-67| 727 | 59
Variation
VIF Values 1-0 2-8 29
Transformed Data
. Sum of Kier Hall
V)
Image Hill ¥oMn electrotopological states
A\t,““?“‘.able 3876 2633 65:09(51-13| 0:00 | 8
ariation
VIF Values 1-0 1-0
Salt Meadows VKier symmetry index 12-98| 7-87 | 0-:00 | 19
Log
All Data RE-state | %Clay | SSA
topological
A\t,m‘.’“‘?ble 10009 | 595 | 505 21-09(1678| 611 | 59
ariation
VIF Values 1-0 127-8 127-7
Log
RemoveSSA | RE-state | %Clay |Log RpH | %Si | Carboxyl
! an topological
Atributable | 159 | 595 | 362 | 876 | 279 |3121|2472| 1007 | 59
Vanatlc_)n
VIF Values 1-0 13 15 1-8 1-1
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Molecular Descriptors

Log Koc Predictors R? R? R* n
g recic (adj) |(pred)
Image Hill | M VoPPX | oiMn | %Sil
A\‘,‘“‘?“‘?b‘e 54-45 4215 17 98-30|97-03 | 92-37| 8
ariation
VIF Values 1-0 27 2-7
Salt Meadows None
PM3
0, 0,
All Data % H>0 Approx SA %Fe
A\t}“l.’“‘.ab‘e 20-38 1338 6-80 4056|3732 | 3459 | 59
ariation
VIF Values 1-1 11 12
Transformed Predictors
Image Hill | MMAPPOX | goMn | osilt
A{,‘"‘?“‘.“‘ble 54-45 4215 17 98-30] 9703 | 9237| 8
ariation
VIF Values 1-0 27 27
Salt Meadows None
PM3
0 0 0,
All Data Log %H,0 Approx SA % Clay | %Al
A{;“t.’“‘.ab'e 2173 1302 272 | 427 | |a1-74}37-42] 3131 59
anation
VIF Values 1-1 1-1 32 3-1
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4.5 Summary
The Hyperchem® and DRAGON computer programs allowed the calculation of a large

array of molecular parameters. The adsorbate molecules containing CH; groups (p-cresol &
p-xylene) showed the shortcomings of geometry optimisation using 2 of the molecular
modelling techniques employed by Hyperchem®, namely the semi-empirical Austin Model 1
(AM1) and the molecular mechanics MM+ method. The semi-empirical Parametric Method 3
(PM3) did however allow optimisation of all 4 adsorbate structures. When PM3 optimisation
was run cyclically with the AM1 & MM+ optimistaions, all optimisation routines achieved
stable results after 3 cycles.

Adsorption coefficients (Kq) were calculated from C, versus C,q plots having good linear
relationships, with 51 out of the 58 R? values above 80%. The quantity of organic matter in
the soil samples does not control the adsorption of phenol or p-cresol. The adsorption of
p-xylene does appear somewhat controlled by %TOC for the Salt Meadows and Image Hills
subsets, whereas there is not enough data to discern any relationship between benzene
adsorption and %TOC. Soils that have high (Grinton Moor peat) or low {BS3, 64050 &
SM1113 (10-20)} levels of organic matter show the widest distribution of Koc values.

The results of adsorption modelling show that it is difficult to achieve good results with
a small dataset. Single compound models give better results than the combined multi-
compound stepwise regression models but are based on smaller datasets. Normalising the
calculated Ky values for organic carbon content of the soil is not bourne out as a good
standard method from the results given here. The %OC is only once found to be a good
predictor, for Salt Meadows soils adsorbing p-cresol. Stepwise regression finds LOI375 as a
predictor but this is often for Koc or log Koc values and therefore will be subject to the
collinearity between %OC and LOI375. Other measured soil parameters are more consistently
found to be better predictors of adsorption, namely %Mn, % carboxyl carbon, pH, %Al and a
particle size measure that tends to be % clay.

Multi-compound models: are found to have adsorption predicted by both soil and
molecular parameters. Stepwise regression on the whole dataset consistently picks % clay and
a molecular descriptor which tends to be the E-state topological parameter or the PM3
approximate molecular surface area. These predictors do not predict even 50% of the
variation shown in adsorption and so have little analytical use. They do however help describe
the factors that affect adsorption to some degree.

The adsorbates under study here are polar organic molecules and therefore may benefit
from the addition of polarity correction factors. These have been successfully used in other

studies to give good results with useable prediction of Koc values.
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5 Black Carbon

5.1 Development of New Methods
Black carbon has a number of definitions (Lim & Cachier, 1996; Gelinas et al., 2001):

% Sometimes referred to as charcoal or ‘char’, which encompasses any partially
combusted organic matter formed at low temperatures (<600 °C) resulting in

refractory carbonaceous products with particulate sizes ranging from 5 to 100.m.

¢ The product of combustion processes, both natural and anthropogenic, produced at
temperatures greater than 600 °C, resulting in carbonaceous aerosols in the sub-um
size. (Lim & Cachier, 1996)

¢ A mixture of the above materials. (Gelinas et al., 2001)

It has been suggested that black carbon may be partially responsible for the non-linear
adsorption isotherms shown by some sediments and soils (Accardi-Dey & Gschwend, 2002;
Chiou & Kile, 1998). There have therefore been a number of studies undertaken to try and
quantify and characterise black carbon (Lim & Cachier, 1996; Gelinas et al., 2001; Huang et
al., 2002). Lim & Cachier (1996) used dichromate oxidation to remove organic matter,
leaving black carbon, which allowed the relative proportions to be measured using
coulometric titration of the CO, evolved by combustion at 1200 °C under pure O,. Gelinas et
al. (2001) report a method for the removal of char/charcoal black carbon by heating at 375°C
for 24 hours. This allows the quantification of the soot/graphitic black carbon fraction by
CHN analysis. Huang et al. (2002) fractionated black carbon by first removing minerals
(HCI/HF digestion), lipids (soxhlet extraction), humic acid (NaOH extraction) and kerogen
(dichromate oxidation). The remaining material after these extractions is assumed to be black

carbon and was measured by CHN analysis.

176




Thermogravimetric analysis of soils, sediments and humic substances has been
performed and reported by many researchers (Turner & Schnitzer, 1962; Dell’ Abate et. al.,
2002; Cuypers et. al., 2002). Cuypers et al. (2002) report that there are up to four peaks in the
rate of weight loss TGA thermograms of soil and sediment samples. The peak maxima have

the range:

< 290-310 °C Assigned to the decomposition of labile structures and relatively simple

organic matter components.
<% 370-390 °C & 530-540 °C Assigned to more humified organic substances with
contributions from humic, fulvic and humin fractions. Non-humified materials

(wood and lignin) can also produce peaks in these regions up to 520 °C.

» 680-730 °C Assigned to the endothermic decomposition of carbonate and also the

L)

exothermic decomposition of very condensed graphite-like substances (i.e. coal and

soot).

Dell’ Abate et al. (2002) report the peak maxima for humic and fulvic acid mixtures as
extracted from two soil profiles using a NaOH/NasP,05 solution and also two standard humic
acid samples (one extracted from soil and the other extracted from peat) obtained from the
International Humic Substances Society (IHSS). The humic acid extracted from peat had
peaks at 340 °C and 450 °C whereas the humic acid extracted from soil had peaks at 330 °C,
513 °C and 625 °C. These compare to the humic and fulvic acid mixtures that had peaks at
~300°C, ~440°C and ~570°C.

The purpose of this study is to use TGA analysis to try and quantify the amounts of
carbonaceous materials contained in the samples studied by the measurement of different

forms of carbon and doped samples.
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5.1.1 Method of Additions

The addition of an internal standard to a set of samples undergoing analysis is widely
used in science (Millar & Millar, 1989). This allows for the quantification of signal strength

between samples. The two main methods of adding an internal standard are:

(i) The addition of a known amount of a substance that is not contained within the
samples under study. This can be referred to as a spike and must be chosen so as to

not interfere with species or areas of the spectra being studied.

(i) The addition of a range of known amounts (e.g. 1, 2, 4 & 6%) to a series of
identical samples. If the sample already possibly contained a certain amount of the
added material it is possible, using linear regression, to calculate how much was

already present (i.e. zero addition).

The second method above can also be used to test the efficiency of a particular analysis
for substances contained within a sample, e.g. whether dichromate oxidation of a soil sample
will measure the amount of black carbon contained in the soil. For details of the TGA
experimental method, see Section 2.2.12. The soils that underwent TGA analysis before and
after the addition of humic acid, wood charcoal or both are shown in Table 5.1 below. Sand
standards that underwent analysis after the addition of various forms of carbon are shown in
Table 5.2. A number of the TGA samples also underwent dichromate oxidation and loss on
ignition and this is noted on Tables 5.1 & 5.2.
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Table 5.1:Doped Samples Undergoing TGA Analysis
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Table S.2: Doped Sand Standards Undergoing TGA Analysis

Sand Standards 1% 2% 4% 6%
Wood charcoal » * » »
Humic Acid 3 * *» *
Humic acid & * » »* »*
Wood charcoal

Coal 204 Lt
Hay charcoal It 203
¥ Also have loss on ignition (section 2.2.4.) & dichromate oxidation (section
2.2.10.) data.

5.2 TGA Results & Analysis

5.2.1 Raw Data

The majority of TGA data was gathered with a recording rate set at every second. This
resulted in multiple data points for every degree of temperature increase and so subsequently
the data recording rate was reduced to every eight seconds. Both sets of data still required to

be standardised in the following manner:

s Temperatures rounded to the nearest degree
“*  One reading per °C

% Offset to start at 50 °C

% Further filtered to give a reading every 10°C
< Datasets collated for analysis

The above standardisations were carried out using visual basic macros within Excel®.
The amount of weight lost by sand standards containing 4% humic acid, 4% wood charcoal
and both 4% humic acid and 4% wood charcoal are compared with a sand blank in Figure 5.1.
All TGA results are from individual runs apart from the sand blank which is the average
obtained from three separate runs that had excellent agreement. A plateau is evident in all
samples at ~150 °C allowing the weight loss up to 170 °C to be attributed to dehydration.
Another plateau is reached at ~700 °C with no major weight loss above this temperature.

Therefore during further interpretation the wéight loss between 170 °C and 700 °C was used.
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It is clear from Figure 5.8 that there are areas of the DTG curve where the signals from
the individual components overlap. This can be overcome by assigning particular temperature
ranges to humic acid, wood charcoal and sand as shown in Table 5.4. The temperature ranges
for each component were given a numbering scheme also shown in Table 5.4. This numbering
scheme was utilised to choose the temperature ranges used to calculate the error between the
best line fit and the actual TGA signal. The errors were calculated just for the chosen
temperature ranges. This helps to eliminate any anomalous line fitting not due to the
components being studied. For example, the H24C2 target uses the data from the temperature
ranges 260-310 °C (H2), 530-640 °C (H4) and 320-430 °C (C2) in the solver routine to

minimise the error at these temperatures.

Table S.4: Temperature Ranges Used For Line Fitting Calculations

Component Full Signal = S1H13C1 No Overlap = S2H24C2
Sand S1 200-300°C _ S2 200-250°C
Humic Acid H1 260-320°C | H3 440-640°C | H2 260-310°C | H4 530-640°C
Wood Ch:;.lrcoal C1 320-520°C C2 320-430°C

The results of the targeted line fittings compared to the original Figure 5.4 and Figure
5.5 fittings are shown in Figure 5.9 with the comparative results for Figure 5.6 in Figure 5.10.
The percentage improvement in fit was calculated for each targeted fitting so as to account for
the fact that some targets had more points to fit and therefore you would expect a larger error.
It is clear from the results that targeting the line fitting give better results, with the best
improvement being for the H24C2 target where there is no overlap between the individual
components.

After subtracting the sand signal from the individual components to produce the result
shown in Figure 5.5 the error increases compared to that of Figure 5.4. By targeting the line
fitting you can reduce this error and produce a better fit at the temperatures where the actual
components being studied lose weight. This will be important when applying these results to

ascertaining the fraction and types of carbon contained in actual soil samples.
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Table 5.7: i id d Charcoal & Sand E ions
Solver Routine Humic Acid & Wood Charcoal R?
% Humic Acid =1-7016x% Wt Loss+0-0920 0-9980
H24C2X
% Wood Charcoal = 1-3051x % Wt Loss -~ 0-3055 0-9996
% Humic Acid =1-7216 x% Wt Loss +0-0468 0-9936
H24C2Xaverage
% Wood Charcoal =1-2436 x % Wt Loss—0-1360 0-9999
Humic Acid, Wood Charcoal & Sand
% Humic Acid =1-7786 x % Wt Loss + 0- 0656 0-9894
H24C2X % Wood Charcoal =1-2728 x % Wt Loss - 0-2498 0-9999
% Sand =28-9180x % Wt Loss +54.2083 0-3145
% Humic Acid =1-8491x% Wt Loss—0-2438 0-9840
H24C2Xaverage | % Wood Charcoal =1-2236 x % Wt Loss - 0-0704 0-9998
% Sand =21-0027 x % Wt Loss + 66-1143 0-0357

Taken together, Table 5.6 and Table 5.7 show that with regards to the standards, the
linear relationships found for the H24C2X solver routines give the lowest combined error for
the calculation of humic acid and wood charcoal after sand is removed from the individual
humic acid, wood charcoal and the 1-6% mixtures. There is a small increase in error between
the H24C2X and H24C2Xaverage calculations. This increase is much smaller than the error
of the fractions of carbonaceous materials shown in Table 5.6. It still may be more
appropriate to use the H24C2Xaverage equations as they can be used for a range of carbon

content without any prior knowledge of the amount contained in a soil. The accuracy of the

H24C2Xaverage equations, without taking into account sand, are shown in Figure 5.24.
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The difference between the residuals of wood charcoal and humic acid leads on to
another important issue. The regime used to calculate the percentage of carbonaceous material
is quite convoluted and could be simplified considerably. More simplistic methods of
calculating the fraction of weight loss attributable to humic acid and wood charcoal were
attempted in Section 5.2.2 but did not give as good results. It can now be seen in Table 5.6
that the H24C2Xaverage solver routine does not give as good a match of the actual fractions
of carbon compared with H24C2X. This is obvious as it will be more accurate to match like
with like than with an average. The difference between the fractions calculated using these
solver routines is negated by the linear relationships calculated from the results as shown in
Figure 5.22 and Figure 5.23. The fractions calculated using simpler methods could be
corrected for when the percentage weight loss associated with that fraction is compared to the
actual percentage weight added. To check this possibility the fractions of weight loss
attributable to humic acid and wood charcoal were calculated for a range of targeted
temperatures as shown in Table 5.8. For each temperature targets there were two different

carbon inputs into the solver routine:
% The individual normalised signals at the appropriate percentage

< The average of the 2,4 & 6% normalised signals

Table 5.8:
Solver Routines For The Calculation of Fractions of Humic Acid & Wood Charcoal

Solver Routine Targeted Temperatures Solver Routine | Targeted Temperatures
Full H24YC2X 0 o
170-700°C 260-410°C & 500-640°C
2-6% average 2-6% average
H24C2X o S1H13Cl1 o
260-410°C & 530-640°C 260-640°C
2-6% average 2-6% average
H24XC2X . . S2H24C2X ) o
260-410°C & 450-640°C 200-410°C & 530-640°C
2-6% average 2-6% average
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The solver routines shown in Table 5.8: were selected to include the total normalised
temperature range (Full), the full DTG signal (SIH13C1) and variations of the H24C2X
solver routine that allow for the signal due to sand (S2H24C2X) or increase the temperature
range associated with both wood charcoal and humic acid (H24XC2X & H24YC2X). These
solver routines in no way simplify the complexity of the calculations apart from using the full
normalised signal from 170 °C to 700 °C. Simplification is achieved by not correcting the
inputs for sand and/or not including sand in the calculations. Therefore the solver routines in

Table 5.8: were used for the following normalised inputs:

% Wood charcoal, humic acid and a wood charcoal/humic acid mixture (¢ h c+h)
** Wood charcoal, humic acid, sand and a wood charcoal/humic acid mixture (c h s c+h)

¢ Wood charcoal (sand corrected), humic acid (sand corrected) and a wood

charcoal/humic acid mixture (c-s h-s cth)

 Wood charcoal (sand corrected), humic acid (sand 'corrected) and a wood

charcoal/humic acid (sand corrected) mixture (c-s h-s c+h-s)

% Wood charcoal (sand corrected), humic acid (sand corrected), sand and a wood

charcoal/humic acid mixture (c-s h-s s c+h)

Best practise would be to utilise standards that were as close to the raw data as possible.
Any correction for sand content may increase the error in the associated weight loss of the
carbonaceous materials. The sand correction also presumes that there is a linear response to
the differing percentages of sand (88-98%) contained within the standards. When applying the
results to soils there will be no correction for sand as pure soil samples were analysed. The list
above starts with uncorrected inputs without any calculation for the fraction of sand and
progresses to sand corrected carbon inputs and sand as an input parameter. The solver
routines with the smallest.combined errors for the actual and average of each input parameter
variations are shown in Table 5.9. A perfect result for the linear relationships of humic acid
and wood charcoal would give a combined R? value of 2:000 and a value of 3-000 when sand

is included.
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olver Routines For Calculating Humic Acid & Wood Charcoal
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The first point to take from Table 5.9 is that an accurate linear relationship for wood
charcoal can easily be achieved without any data correction. R? values of 0:9999 for wood
charcoal are achievable from both corrected and uncorrected input parameters. The same is
not true of humic acid. The best R? value for uncorrected humic acid is 0-9937 compared to a
value of 0-9981 after sand correction. When sand is included in the uncorrected calculations,
poor results are achieved with the best linear relationship found for sand having an R? value
of 0-6793 (SIH13C1 2-6% average). This in turn leads to a very poor relationship for humic
acid (R? = 0-2360). ‘

It is clear that using the full signal gives the best results when no correction is
undertaken. As before, switching to average routines with no correction gives a less accurate
result. When the input parameters are corrected for sand, there is a marked improvement.
Removing sand completely (c-s h-s cth-s) increases the sum of the R? values to 1-9977
(S2H24C2X) from the best value without correction of 1-9932 (Full signal). Correcting the
carbon signals for sand content but including the sand fraction in the calculations (c-s h-s s
c+h) does not improve the results and gives a yalue of 1-9790 for the sum of the R? values of
the carbon materials (H24XC2X 2-6% average) and 2-8101 (H24C2X) when including sand.

It should also be noted that the large discrepancies in the sum of percentage differences
of the calculated versus actual fractions are not carried through and apparent in the accuracy
of the linear relationships. For example, the H24YC2X solver routine has the smallest sum of
percentage differences (10-42 for c-s h-s c+h-s) that in terms of the linear relationships gives
a combined R? value of 1:9964. This compares to values of 24-87 and 1:9977 for the
S2H24C2X solver routine. No improvement was found over the H24C2X 2-6% average
solver routine when using the sand corrected (c-s h-s cth-s) input parameters.

When applying these results to soil it may be appropriate to use sand corrected humic
acid and wood charcoal but not correcting the mixture (c-s h-s ct+h). This will better match the
parameters when calculating the carbon content of the soil, as the soil will not be corrected for
sand and the carbon inputs will not have a sand signal associated with them. Unfortunately
Table 5.9 shows that these input parameters do not give as good results as full correction for

the sand signal.
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Updated equations for the calculation of humic acid, wood charcoal and sand are shown
in Table 5.10. The equations show that a small percent of carbon would be calculated even
when the percentage weight loss due to carbon is zero. In contrast the percentage of sand is
calculated to be 105% when the percentage weight loss due to sand is zero. Although the R?
value of the linear relationship for sand has improved the result is still spurious. The equations
in Table 5.10 are from data that has been corrected for sand where appropriate. Whilst it may
be possible to produce linear equations with equivalent R? values without correcting for sand
these cannot be applied to the soil data. This is due to the TGA analysis of the soil samples

being undertaken as pure samples and not diluted in sand.

Table 5.10: Equations For The Calculation of Percentage Weights of Humic Acid, Wood
Charcoal & Sand

Solver Routine Humic Acid & Wood Charcoal R?
° i i =1- ) ) )
H24C2X 2-6% % Humic Acid  =1-7216x% Wt Loss + 0-0468 0-9936
average % Wood Charcoal = 1-2436 x % Wt Loss —0-1360 0-9999

Humic Acid, Wood Charcoal & Sand

% Humic Acid =2-0331x% WtLoss+0-5899 0-9888
H24XC2X 2-6%
% Wood Charcoal =1-0824 x % Wt Loss+0-2121 0-9902
average
% Sand =-8-3279%x % Wt Loss +105-12 0-5931

In conclusion, it has been shown that the H24C2X solver routine developed in Section
5.2.2 can be applied to a range containing 1 to 6% of humic acid and wood charcoal
(2-12% total carbon content). This involves minimising the difference between TGA signals
in the temperatures ranges.of 260-410°C and 530-640°C from sand corrected normalised
samples. To apply this to soils of unknown carbon content it is more appropriate to use the
H24C2X 2-6% average solver routine. The error in the calculated fractions of humic acid and
wood charcoal increases substantially when using the H24C2Xaverage solver routine
(Table 5.6) but this is negated to some extent by the linear relationships calculated
(Figure 5.22 & Figure 5.23).
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5.2.4 Alternative Methods of Humic Acid & Wood Charcoal Calculation

A number of alternative methods of discerning the fraction and therefore percentage

weight of humic acid and wood charcoal in the TGA standards were attempted:

< Normalise the weight loss between 300°C and 700°C.

% Use the percentage weight loss at the associated targeted temperatures when

calculating the linear relationships for humic acid and wood charcoal.

s Target the wood charcoal and humic acid signals separately.

Normalising the weight losses between 300°C and 700°C instead of between 170°C and
700°C will stop the weight loss of sand below 300°C (see Figure 5.7) from interfering with
the calculations. This would allow sand standards uncorrected for the weight loss due to sand
to perhaps perform as well as the sand corrected results shown in Section 5.2.3. Results from
these calculations are shown in Appendix 7.5 but do not show an)" improvement and are
therefore not considered further.

Targeting temperatures that show a good signal for humic acid and wood charcoal
decreases the error in the calculation of the percentage weight loss due to these types of
carbon. This was achieved by using the weight loss of the carbon mixtures between 170°C
and 700°C after correction for the weight loss due to sand (see Figure 5.22 and Figure 5.23).
Greater accuracy could possibly be achieved by using the weight loss at the targeted
temperatures only (i.e. the weight losses between 260°C and 410°C plus 530°C and 640°C for
the H24C2X solver routine). This would have the added advantage of further minimising the
possibility of other TGA signals affecting the carbon calculations. The results are again
shown in Appendix 7.5 but again do not show any improvement.

The previous calculations all use solver routines that calculate the fractions of humic
acid and wood charcoal in tandem. It is possible to target the temperatures of individual peaks
in the DTG Signal (see Figure 5.8 & Table 5.4) or the targets associated with one form of
carbon (e.g. H24 targets the humic acid signal at 260°C-310°C and 530°C-640°C). Targeting
either humic acid or wood charcoal requires that you presume the remainder of the fraction of
weight loss is due to the other species. The results of this targeting using 2-6% average, sand

corrected inputs are shown in Figure 5.26.
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When substituted for wood charcoal in the input parameters, neither hay charcoal nor
coal can calculate the carbon fractions to the same accuracy in the 1-6% wood charcoal and
humic acid mixtures. When added to the input parameters, coal does not affect the
calculations of wood charcoal and humic acid fractions. Conversely, hay charcoal does affect
the calculations but in a positive manner. The error associated with the fraction of humic acid
is reduced. When the fraction of wood charcoal is added to the fraction of hay charcoal, the
combined fraction of black carbon better fits the actual fraction of wood charcoal. These

‘results are summarised in Table 5.13.

Table 5.13: Humic Acid, Wood Charcoal, Hay Charcoal and Coal Calculations

Sum of % Differences R? of Linear Relationships

Input | Humic | Wood Hay Coal Black
Parameters| Acid [Charcoal |Charcoal Carbon h BC h+BC

h c hy cl BC
ch 19-20 | 1871 - - 18:71 | 0-9936 | 0-9999 | 1-9935
hy h 52:70 - 33.90% - 33-:90 | 0-9915 | 0-9999 | 1-9914
clh 54-33 - - 43-33% | 43-33 | 0-9922 | 0-9998 | 1-9920
cclh 1919 | 18-85 - - 1870 | 0-9933 | 0-9998 | 1-9931
chyh 12-68 | 43-72 - - 14-33 | 0-9954 09999 | 1-9953
chyclh | 13-63 | 126-98 - - 15:27 | 0-9941 | 0-9999 | 1-9940
*These differences were produced by comparison to the wood charcoal fraction

Coal and hay charcoal was also added to the C2X>H2, C2X>H24 and H2C2X solver
routines. A summary of the results is shown in Table 5.14 with all calculations available in
Appendix 7.5. Again it can be seen that adding hay charcoal to the input parameters has a
beneficial effect on the error associated with humic acid whilst having the opposite effect on
black carbon. When coal is also added the error associated with black carboﬂ does not
improve for any of the solver routines. Conversely, the error associated with humic acid
greatly decreases (R? = 1-0000) for the H2C2X routine and improves for the C2X>H2 and
C2X>H24 routines. '
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Table 5.14:
Alternative Humic Acid, Wood Charcoal, Hay Charcoal and Coal Calculations

Sum of % Differences | R? of Linear Relationships

Solver Input Humic Black

Routine | Parameters Acid Carbon h BC h+BC
h BC

corxsH2 | chyh 35-40 14-44 | 0:9994 | 0-9995 | 1:9989
chyclh 20-81 16-78 0-9999 | 0-9993 | 1-9992
CIX>H24 chyh 23-96 14-44 0:9991 | 0-9995 | 1-9986
chyclh 20-68 16-78 0-9993 | 09993 | 1-9986
H2C2X chyh 20-82 67-55 0-9974 | 0-9376 | 1-9350
chyclh 16-07 60-30 1-0000 | 0-9085 | 1-9085

In Conclusion, it has been shown that in isolation hay charcoal or coal standards cannot
be used to calculate the fraction of wood charcoal with the same accuracy that wood charcoal
itself achieves. When the input parameters include both hay and wood charcoal (plus humic
acid) the addition of the wood and hay charcoal fractions gives a black carbon fraction. This
black carbon fraction corresponds well with the actual fraction of wood charcoal in the
standards. It also achieves improvement in the calculation of the humic acid fraction in the
standards. Adding coal to the input parameters improves the calculation of the humic acid
fraction but has the opposite effect on the black carbon fraction.

These results suggest that it may be difficult to ascertain one type of black carbon from
another in a sample/soil of unknown content using this method. It may be appropriate to use a
variety of solver routines and input parameter combinations when attempting calculations
with soils. A judgement can then be made on the fractions of humic acid and black carbon and
on the source of the black carbon (wood, hay or coal). The linear equations shown in

Table 5.15 include hay charcoal and coal as additional input parameters.
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Wood Charcoal Using Humic Acid, Wood Charcoal, Hay Charcoal & Coal Signals

-Solver Routine Humic Acid & Wood Charcoal R?
HD4CIX % Humic Acid =1-7388x% WtLoss+0-0759 0-9941
% Wood Charcoal =1-2342x% Wt Loss-0-1513 0-9999
C2X % Wood Charcoal =1-1725x% Wt Loss —0- 0448 0-9993
C2X>H24 % Humic Acid =1:-9145x% Wt Loss-0-1221 0-9980
C2X>H2 % Humic Acid =1-7968 x% Wt Loss +0-1622 0-9989
5.3 lication of TGA Standards To Soil

TGA data was gathered for soils for which adsorption data is also available. These soils
are listed in Table 5.16. After analysis of the DTG results of these soils it is clear that they

mainly show peaks associated with humic acid, hay charcoal and/or coal.

Table 5.16: Soils That Underwent TGA & Adsorption Analysis

Coal 1 SM1113 (0-10) SM1113 (10-20)
Mag Lime 1 SM0806 SM0804
JY2 GMP Chalk
Carb Lime 1 BS3 BS1
AB0722 SM106127
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Table 5.17; DTG Peaks in Adsorption Soils

Soil Humic Acid | Hay Charcoal Wood Coal
Charcoal

Mag Lime 1 » »

JY2 »*

Carb Lime 1 »* »

AB0722 * »
(very small)

SM0806 »* » : 3

SM0804 * * *»

GMP ¥ shoulder

BS3 > 3

SM106127 *» »

Chalk *

BS1 * »

Coal 1 *»* » »

SM1113 (0-10) ¥ *

SM1113 (10-20) * »*
(very small)

The fractions attributable to humic acid and black carbon were calculated using the
H24C2X solver routine for the soils given in Table 5.17. This was chosen as it allowed
concurrent calculation over the other routines given in Table 5.15. The results are given in
Table 5.18 together with the corresponding percentage figures as calculated using the

H24C2X equations given in Table 5.15. Values marked with an asterix are anomalies that

were either changed to 100% humic acid (GMP) or 0% black carbon (JY2 & GMP).
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Table 5.18:

Calculation of % Weight of Humic Acid and Black Carbon in Adsorption Soils

Humic Acid Black Carbon
Soil Calculated Calculated Calculated Calculated

fraction % fraction %
Mag Lime 1 0-838 1866 0-122 177
JY2 1-00 22-30 0-00 0-00*
Carb Lime 1 0-959 15-18 0-041 031
AB0722 0-386 857 0-431 658
SM0806 0-848 11-87 0-112 095
SM0804 0-687 12-69 0-272 3.39
GMP 1-00 100* 0-00 0-00*
BS3 0-913 4-89 0-087 017
SM106127 0-902 15-40 0-098 1-03
Chalk 0-891 10-19 0-109 0-73
BS1 0-845 12-83 0-155 1-51
Coal 1 0-660 14-42 0-184 269
SM1113 (0-10) 0-776 1125 0-224 214
SM1113 (10-20) 0-719 11-33 0-274 289

5.3.1 Black Carbon Adsorption

Stepwise regression was rerun out on the complete untransformed adsorbate datasets
and multi-compound dataset with the inclusion of the calculated percentages of humic acid

and black carbon given in Table 5.18. The percentage humic acid was not picked as a

predictor but the % black carbon (%BC) was, with these instances given in Table 5.19.

Black carbon is shown to be a predictor of the adsorption of benzene and phenol. For
benzene %BC is chosen as a predictor for Ky, log Kg and log Koc values and account for
~28% of the variation in log K4 with albeit lower values for the other adsorption parameters
(8% & <1%). BC is a minor predictor of phenol log K4 (~6%) but is the most significant
predictor of log Koc accounting for ~32% of the variation. It should however be noted that the
inclusion of %BC does not improve the overall prediction of phenol adsorption and slightly

reduces the predictive capacity of the regression equation.
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Table 5.19: Stepwise Regression Results with Black Carbon as a Predictor

) R? R?
Adsorbate Predictors R (adj) | (pred) n
BenzeneKq| %Si |LOIlII0| BC
ariation
VIF Values 23 1-7 1:5
Benzene o/ Q O-
log Kq %Si BC Aky]
Attributable |, o | 5001 | 540 97-53 | 9567 | 8951 | 8
Variation
VIF Values 22 1-5 34
Benzene o/ Q:
loz Koc pH %Si | A/K | Aryl | BC [LoOI110
A\t}“‘?“t."“ble 4579 | 4304 | 686 | 3-51 | 071 | 009 |99:91|99-67 | 84-50
ariation
VIF Values | 257 3-6 21 | 200 | 72 | 137 8
Remove ;
H %Si | AK 1| BC | Alkyl
Lonio | P > Ary 1 100 | 100 | 9906
VIF Values | 42 3.6 119 | 22 | 21 2:3
Phenol o O-
log Kq %oMn pH BC | Aryl Alkyl
Auributable | o554 | 5105 | 622 | 498 | 62 9115 | 8562 | 73:34 | 14
Variation
VIF Values | 1-8 2:1 18 | 34 | 33
Phenol 0 O-
log Kux BC | Aryl | pH |%Mn Alkyl LOI110
Attributable | 5 o5 | 1850 | 1411 | 2259 | 513 | 416 | 9634|9321 | 71-06 | 14
Variation
VIF Values | 19 35 30 | 37 | 47 50
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5.4 Summary
Black carbon is reported to be an important factor in non-linear adsorption in soils. A

method was derived to allow the measurement of black carbon using thermogravimetric
analysis. The method utilised the solver routine in excel® to allow line fitting of different
forms of black carbon and humic acid to the measured weight loss. Line fitting was
undertaken using several methods that involved fingerprinting the individual forms of carbon
(humic acid, wood charcoal, hay charcoal, coal) using their weight losses at different
temperature ranges.

The best fit of standard mixtures of humic acid and black carbon weight losses was
achieved by targeting the temperature ranges 260-310 °C, 530-640 °C (humic acid) and
320-410 °C (black carbon). This allowed back calculation of the fractions of humic acid and
black carbon in calibration standards. Linear relationships were found between the actual and
calculated percentage weights of humic acid (R* 0-9936) and black carbon (R? 0:9999) in
calibration standards.

This method is more quantitative than previously utilised procedures and is also
relatively quick and cost effective. Limitations in TGA analysis can be viewed as relatively
small samples sizes, especially when dealing with heterogenous soil samples. The actual
quantity of combustable material has been shown to affect results but this could easily be
corrected for by appropriate limits set on sample size and the production of sand:soil
mixtures.

The percentage weight loss attributable to humic acid and black carbon was calculated
for soils for which adsorption data had been collected. Stepwise regression was then repeated,
including these additional parameters, for all adsorption as outlined in Section 4.4. The
percentage weight loss attributed to humic acid was not picked as a predictor of adsorption.
However, the percentage weight loss attributed to black carbon was picked as a predictor of
~28% of the variation shown by benzene log K4 values and ~32% of the variation shown by
phenol log Koc values. The addition of black carbon to these stepwise regression equations

did not improve upon the results obtained in Chapter 4, merely changed the predictors.
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6 Conclusion

This study was undertaken as part of the EPSRC funded project DAVe. The project
remit is in the title, with this thesis elucidating the problems in measuring, predicting and
therefore understanding pollutant movement through adsorption variability.

Brownfield redevelopment is one of the drivers requiring a better understanding of
adsorption variability. With this in mind, two brownfield development sites were found in
Gateshead and spatially sampled. A wide range of general soil parameters were measured to
characterise the sites and be used to model the variation in organic pollutant adsorption. The
Abattoir and Salt Meadows sites challenged DAVe by their very nature as typical brownfield
development land. Soil properties were shown to vary but this variation does not come from
natural processes but from human intervention on site. The heterogeneous nature of these sites
is both the goal of the project to understand but also the reason why sites such as these are
difficult to characterise.

Some meaningful correlations between soil parameters were found, with a strong
correlation found between soil organic matter and oxidisable carbon. Differences between the
moisture content and weight loss at 110 °C were found, showing the importance easily
oxidisable and/or volatile components have at this temperature. The agricultural soils were
found to have a wider distribution of particle size, pH, suface area, %Fe, %Al, %Mn and %Si
compared with The Abattoir and Salt Meadows. This was not the case for the NMR results.
Over 90% of the variance in The Abattoir and Salt Meadows datasets was accounted for using
principal component analysis. PCA analysis also suggested a correlation between Fe, Al, Mn
& Si which was confirmed using matrix plots. It was found possible to simplify PCA input
parameters whilst still describing over 90% of the variance shown by The Abattoir dataset.

Stepwise regression analysis found uséful predictors for 14 of The Abattoir and 8 of the
Salt Meadows soil measurements, with R? values >70%. These analyses were generally
improved on by transforming input predictors to normallity. Where high correlations between
predictors were found, variance inflation factors were calculated. Predictor’s with VIF values
>5 were removed from stepwise regression but tended not to greatly affect results. Where an
appreciable effect was seen when predicting The Abattoir alkyl C variable, PCA scores of the
particle size and DCB extraction subsets were added to the predictors available to
compensate. Using the principal components from PCA as predictors in stepwise. regression
can help reduce high VIF values. The increase in the R? values of regression equations must
be weighed against the added complexity of undertaking two separate analyses. It is also more
difficult to interpret results obtained using principal components that may have several

important coefficients from seemingly different soil measurements.
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It has been shown that the spatial distribution of soil parameters can be calculated but
this requires many data points to be valid. The moisture content of The Abattoir soil samples
was used as an example of this technique. Using the model variogram produced a kriged map
of the variation of moisture content over The Abattoir site was plotted, giving a range of
spatial correlation equal to 26m. The range of interdependency in soil measurements allows -
the prediction of adorption variation where the soil parameters have a controlling influence.

Adsorbate molecular properties were modelled after optimisation using routines
included in Hyperchem® software. The semi-empirical Parametric Method 3 (PM3) allowed
optimisation of all 4 adsorbate structures. If PM3 optimisation was run cyclically with the
AM1 & MM+ optimistaions, all routines achieved stable results after 3 cycles. More
molecular parameters were also calculated using DRAGON software, allowing a large dataset
to be obtained to model adsorption results interms of adsorbate properties.

Adsorption modelling given here shows the need for a larger, more robust dataset.
Correcting Ky values for organic carbon content to give organic carbon normalised
coefficients (Koc) does not appear appropriate for the adsorbates studied here. The hypothesis
of this thesis is that the soil organic matter is the primary control of organic pollutant
adsorption. The evidence presented here does not agree with this hypothesis.

The hypothesis of this thesis also states that a better understanding of the nature of both
the organic pollutant and the soil will lead to a better understanding of adsorption variability.
Given that both soil and pollutant parameters have been found to predict the variation shown
in adsorption data, this part of the hypothesis is valid.

Soil parameters that are found to predict adsorption include %Mn, % carboxyl carbon,
pH, %Al and a particle size measure that tends to be % clay. Molecular parameters found to
predict adsorption include the E-state topological parameter or the PM3 approximate
molecular surface area. Less than 50% of the variation shown in adsorption is predicted by
these parameters, therefore giving little practical benefit. The adsorbates under study here are
polar organic molecules and therefore may benefit from the addition of polarity correction
factors. These have been successfully used in other studies to give good results with useable
prediction of Koc values.

Adsorption data has been modelled using both adsorbent and adsorbate properties. It is a
lack of breadth in the number of organic pollutants for which adsorption data was gathered,
and the overall number of adsorption results that constrain any analysis and predictive
capability of the results. Other research has been shown to use much larger datasets, allowing

broader interpretation and prediction.
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Stepwise regression undertaken including adsorbate descriptors showed that measures
decribing the nature of the organic compunds can account for a portion of the adsorption
variation in tandem with the soil adsorbent properties. Molecular surface area predicts
adsorption variation in some instances whereas % clay is correlated with the surface area of
soils. Molecular descriptors were limited to four sets of values for the four adsorbates studied.
This figure would need to be greatly increased to give statistical robustness to any correlations
found. ‘

This study has blurred the view between primary (organic carbon) and secondary
controls on organic contaminant adsorption. An important secondary control is viewed as
black carbon content. This has been difficult to measure accurately in the past but using TGA
analysis of known standards containing different forms of black carbon and humic acid allows
quantification of the fraction contained in soil. The percentage of black carbon in soil has
been shown to predict the variation in adsorption of benzene and phenol. Again a larger

dataset would allow a better understanding of this.

6.1 Further Work
The objective of DAVe was to predict the spatial uncertainty in pollutant movement.

This aim could be further solved and the work in this thesis could be extended to incude:

< More spatial adsorption data on a larger number of adsorbates. The adsorption
dataset needs to compliment the size of the dataset describing the soil structure
and makeup.

% The variation in soil properties would be better served and would compliment a
larger adsorption dataset by being taken from a site in an agricultural setting.
This may not mimic the conditions in real world brownfield locations but may
allow stronger correlations between adsorbent, adsorbate and spatial spatial

variation to be elucidated.

K/
0.0

Clay was found to predict adsorption and so any future dataset should try and

contain some quantitative analysis of clay structure.

L)
0.0

The interactions of sand, silt and clay with other adsorption controlling
parameters like organic matter and more specifically the individual discernable
fractions of organic matter.

¢ Further characterisation of organic matter and soil by IR and/or fluorescene
spectroscopy before, during and after adsorption may provide useful

information on how adsorbates interact and change the adsorbent.
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7.3 Hyperchem & Dragon Results

p-Cresol p-Xylene Benzene Phenol
MMApprox SA 260-82 288-93 212-28 220-24
AMI1Approx SA 259-65 287-58 212-18 219-54
PM3Approx SA 259-08 287-48 211-86 218-82
MMGrid SA 278:27 296-8 23755 250-91
AMI1Grid SA 27675 296-33 239-98 250-32
PM3Grid SA 276-37 294-68 241-06 2489
MMVolume 407-59 439-04 33215 354-58
AM1Volume 405-6 436-79 331-81 354-12
PM3Volume 404-65 434-82 3306 352-81
MMHydration Energy -7-57 0-4 -2-11 -8:9
AMIHydration Energy -7-66 0-39 -2:11 -8-:99
PM3Hydration Energy -7-62 0-39 -2:11 -8:96
Log P 223 2:98 2-05 1-76
Refractifity 32:79 36-14 2606 2775
Polarisability 12:91 14-1 10-43 11-07
MMTotal Energy -2:5696 -3-0424 -2:64 -2:36
AM|Total Energy -30492:9453  -26798-7051  -19609-7305  -27003-1465
PM3Total Energy -28640-6875 -25418-9727 -18513-9688 -25291-1856
MMDipole Moment 0-9987 0-:0063 0 1116
AMI1Dipole Moment 1-333 0-0557 0 1-233
PM3Dipole Moment 1201 0-0444 0 1-142
AMIHOMO -8-8811 -9-1183 -9-653 -9-1147
PM3HOMO -8-9513 -9-1822 -9-7513 -9-1747
AMILUMO 0-4306 0-5167 0-5548 0-3977
PM3LUMO 0-3268 0-3573 0-3962 0-2909
sum of atomic
van der waals volumes 99 10-99 779 831
scaled on carbon atom)
sum of atomic Sanderson 5 ¢ 17-42 1165 1298
electronegativities
sum of atomic 105 1181 828 874
olarizabilities
sum of Kier Hall
electrotopological states 19-33 15-33 12 1767
mean atomic
van der Waals volumes 0-62 0-61 0-65 0-64
scaled on carbon atom)
mean atomic Sanderson
electronegativity 099 0-97 097 1
(scaled on carbon atom)
mean atomic
olarizability 0-66 0-66 0-69 0-67
E-state
topological parameter 6657 5-181 2414 4-856
Kier symmetry index 20 12 0 15-651
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connectivity index chi-1

p-Cresol p-Xylene Benzene Phenol

1-path Kier alpha-

modified 5321 5-359 3412 4-344

shape index

2-path Kier alpha-

modified 1-969 1-994 1-606 1-757

shape index

3-path Kier alpha-

modified 1-332 1-353 0-845 1-017

shape index

path/walk 2 — . ) . .

Randic shape index 0-567 0-567 0-5 1-09

path/walk 3 — _ . . .

Randic shape index 0-288 0-288 0-25 0-915

path/walk 4 — ' 1 _ _

Randic shape index 0-122 0-122 0-125 0-538

path/walk 5 — i ) . ]

Randic shape index 0-08 0-08 0-063 0-274

connectivity index chi-0 5-983 5-983 4-243 5-113

connectivity index chi-1 3-788 3-788 3 3:394

connectivity index chi-2 3:365 3:365 2-121 2:743

connectivity index chi-3 2:305 2:305 1-5 1-894

connectivity index chi-4 1427 1427 1-061 1-307
_connectivity index chi-5 1-305 1-305 075 0-901

average connectivity 0-748 0-748 0-707 0-73

index chi-0 :

average connectivity 0-473 0-473 05 0-485

index chi-1

average connectivity 0-337 0-337 0-354 0-343

index chi-2

average connectivity 023 023 025 0237

index chi-3

average connectivity 0-143 0-143 0177 0-163

index chi-4

average connectivity 0-109 0-109 0125 0113

index chi-5

valence connectivity 4757 5:309 3-464 3-834

index chi-0

valence connectivity 2-545 2821 2 2-134

index chi-1

valence connectivity 1836 2:155 1155 11336

index chi-2

valence connectivity 1-034 1-218 0667 0-756

index chi-3

valence connectivity 0-545 0637 0-385 0-428

index chi4

valence connectivity 0-38 0-526 0222 0-242

index chi-5

average valence . . . )

connectivity index chi-0 0-595 0-664 0-577 0-548

average valence 0-318 0-353 0-333 0-305
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p-Cresol p-Xylene Benzene Phenol

average valence . ) . .
connectivity index chi-2 0-184 0215 0192 o167
average valence . . . .
connectivity index chi-3 0-103 0-122 0-111 0-095
average valence . ) . .
connectivity index chi-4 0-054 0-064 0-064 0053
average valence . ) . .
connectivity index chi-S 0-032 0-044 0-037 0-03
fsolvatlor} connectivity 5.983 5.983 4243 5113
index chi-0
§olvanoq connectivity 3788 3.788 3 3.394
index chi-1
.solvatlox? connectivity 3365 3-365 2121 2.743
index chi-2
solvation connectivity 2305 2-305 15 1-894
index chi-3
solvation connectivity 1-427 1-427 1-061 1:307
index chi-4
solvation connectivity 1-305 1-305 0-75 0-901
index chi-5
modified Randic 23304 22726 18 2094
connectivity index
reciprocal distance ) . . )
Randic-type index 1-924 1-924 1-8 1-857
reciprocal distance squared 33373 33373 20 26-454
Randic-type index
hydrophilic factor -0-158 -0-946 -0-921 -0-088
Ghose-Grippen molar 32793 36-14 26058 27752
refractivity
Moriguchi octanol-water ) ) . .

artition coefficient 1859 2:942 225 15068
Ghose-Crippen octanol- ) ) . i
water partition coefficient 2:049 2802 183 1263
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ion Results for Single Compound Models

74 Stepwise Re
7.4.1 Phenol
Stepwise Regression Results for Phenol
2 2
) 2 R R
K4 Predictors R (adj) | (pred) n
Salt
Meadows Aryl | Carboxyl
Attri.bu'tble 56-44 3936 95-80 | 93-00 | 8786
Variation
VIF Values 1:0 1-0
0O-
All Data | %Mn pH Carboxyl | Alky!l Aryl
Atributable | 55 19 | 2207 | 2011 [17-45| 527 | 8709|8063 |50:90 | 16
Variation
VIF Values 1-7 1-5 1-5 1-1 1-9
Stepwise Regression Results for Phenol using Transformed Predictors
' 2 2
K4 Transformed Predictors R? (ﬁlj) (Pfe d) n
Salt ) Log
Meadows Aryl [ +Carboxyl | %H,0 %Al
Atributble | 56 40 | 3857 | 417 | 079 [ 9999 | 9995|9594 | 6
Variation
VIF Values 1-4 1-0 11 1-2
All Data pHa'5123 O-Aryl | Carboxyl Ié(;‘g
Atm‘?m_able 21-21 18-01 2612 15-35 80-69 | 73-66 | 40-52 16
Variation
VIF Values 1-7 15 16 1-2
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Log K4 Stepwise Regression Results for Phenol

. 2 R? R?
Log K4 Predictors R (adi) | (pred) n
Salt
Meadows Aryl Carboxyl
Q,ttr{bU_tble 6710 | 30-47 97-57 | 95-95 | 8829 | 6
ariation
VIF Values 1-0 . 1-0

AllData | %Mn pH | Alkyl | LOI110 | A/K

89-95 | 84-93 | 72-80 | 16

Variation
VIF Values 13 25 15 3-5 13
Log K, Stepwise Regression Results for Phenol using Transformed Predictors
. 2 R? R?
Log K4 Transformed Predictors R (adj) | (Pred) n
Salt Aryl | VCarboxyl | %0C!540

Meadows

Attributble | . 39-32 331 99-73 | 99-32 | 97-88 | 6
Variation

VIF Values 1-1 1-1 11
AllData | %Mn | pi**® | ax | &

Aryl

Atm‘?ut?ble 55.82 16-37 4-69 4-98 81-:86 | 75-:27 | 66:29 16
Variation

VIF Values 1-8 1-3 1-2 2-1

Koc Stepwise Regression Results for Phenol

) 2
Koc Predictors R (adj) | (pred) n

Salt none 6
Meadows

All Data | %Mn | pH | Carboxyl [ Alkyl | O-Alkyl

Attributable | 53 46 12958 | 1535 |13-27| 1162 | 9328|8992 8341 | 16

Variation
VIF Values 1-4 17 2:0 2:2 2:6
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Results for Phenol using Transformed Predictors
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Log Koc Stepwise Regression Results for Phenol

. 5 R? R?
Log Koc Predictors R (adj) | (Pred) n
Salt I | Carboxyl | %H,0 | Sand
Meadows Ary arboxy o2
Atributble | 5084 | 3910 | 202 | 004 | 100 | 100 | 100 | 6
Variation
VIF Values | 1-5 1-1 1-2 1-4
All Data pH %Mn | Carboxyl | O-Aryl
Attributable | 50 10 | 49.04 5.00 | 7.01 |9205|89-16 | 84-85 | 16
Vanation
VIF Values | 1-5 1-7 1-5 19
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Transformed Predictors

Results for Phenol usin
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7.4.2

p-Cresol

Kg Stepwise Regression Results for p-Cresol

. ) R® R?
K4 Predictors R adj) | (Pred) n
Image Hill %Mn LOI375
Attributble | g0 o1 | 49 100 | 100 | 99-96 | 4
Variation
VIF Values 10-0 10-0
Salt o . 0
Meadows | %OC Anyl %Si | %Al
Attributble | o0 00 | 1680 | 3.82 | 038 | 100 | 100 | 99:51
Variation'
VIF Values | 10-3 12 221 | 11-8 6
Remove o .
%0C 1 %Si
%Al ° Ary ° 99-62 | 99-04 | 92-84
VIF Values 20 1-2 23
All Data Clay Silt Aryl | %Si
Attributable | 15 o0 | 1547 | 933 [10.64 | 7441 | 67:59 | 42'55
Vanation
VIF Values 83 84 1-4 1-5 20
Remove
Silt, Sand Cla %Si I
% SSA d ’ A 62:34 | 5528 | 20-03
VIF Values 1-7 13 1-4
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Kg Stepwise Regression Results for Para-Cresol using Transformed Predictors

2 2
i , | R R
Kq Transformed Predictors R (adj) | (pred) n
Image Hill | VLOI375 | %Al
Am‘.b“_tble 83-60 15-89 99-49198-47| 0
Variation
VIF Values 237-7 237-7 4
Remove %Al | VLOI375 | %Mn*%®
9939 (98-18| 0
41-2 41-2
77239 | q:1,79117 Log
Salt Meadows | %0C Silt VRAIkyl oH
Attributble | o0 0 | 96 36 | 011 100 | 100 |99-98
Variation
VIF Values 3-0 1-7 6-1 69 |6
Remove Log | o, 7729 | 19117 | yRAlKyl| 108
pH Fe 100 | 100 |99-98
VIF Values 1-6 2-4 2-4 3-3
All Data VClay %Si Aryl |Sand 1116(941677
Attributable | g 4, 1540 | 929 |[11-77| 949 |71:29|61-04 2582
Variation
VIF Values 19-8 1-7 1-5 19-3 1-2 20
Remove VSSA, o/ Q:
VRSand & VSilt VClay %Si Aryl 5403 [45-41| 0-75
VIF Values 1-8 1-4 1-3
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Log K, Stepwise Regression Results for p-Cresol

' 2
Log Kq Predictors R? | R?(adj) (pl:e O n
Image Hill | %Mn | %Al
A\f,ﬂi‘?UQable 8595 | 1405 100 100 | 99:92
anation
VIF Values | 357 35-7 4
Remove 0
%Mn LOI375
%Al ° 9998 | 99-93 | 714
VIF Values 10:0 10-0
Salt
Carboxyl
Meadows
Attributable 55-57 44-47 19-3 6
.. 55-57
Variation
All Data Clay Silt LOI375
Attrit.mt-able 37-81 13-02 7.30 58-13 50-28 48:23
Variation
VIF Values 75 73 1-2 20
Remove .
Silt, Sand | Clay %Si
& SSA 4578 | 39440 | 2425
VIF Values 12 12
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Transformed 2 R? R?
Log K4 Predictors R (adj) (Pred) n
Image Hill VLOI375 %Al
Variation
VIF Values 2377 237-7 4
Remove %Al | YLOI375 | %Mn*®®
98-93 | 96-80 0
VIF Values 41-2 41-2
Salt Meadows | VCarboxyl
. 5567 | 4459 | 19-19 6
Attributble 55-67
Variation
All Data VSSA VRSand
Attributable 32-36 1495 | 4661 | 40-33 | 26:17
Variation
VIF Values 16-8 16-8 20
Remove VSilt N ]
’ SSA %S
VClay & VRSand ot 4049 | 3349 | 1210
VIF Values 1-3 1-3
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Koc Stepwise Regression Results for p-Cresol

. 2
Koc Predictors R @dj) | (Pred)

Image Hill SSA

Attributble
Variation

96:10 | 94-14 | 74-87
96:10

Salt Meadows | Carboxyl | %Mn | Aryl | A/K

Attributble | 0o 54 | 1800 | 1164 | 058 | 9998 [ 9992 | 0
Varnation

VIF Values 11 1-4 1-1 1-5
All Data Clay %Al | O-Aryl | Silt

Atributable | g0 | 1919 | 9.39 | g.g9 | 63:93 | 54:31 | 38-02
Variation

VIF Values | 81 28 | 11 | 81
Remove SSA
: | Cla %Al | O-Aryl
Silt & Sand Y ° 54-94 | 4649 | 25-45

VIF Values 2-6 27 11

Koc Stepwise Regression Results for p-Cresol using Transformed Predictors
R? R?
(adj) | (Pred)

Koc Transformed Predictors R?

Image Hill | YLOI375 | O-Aryl

Variation
VIF Values 1:0 1-0
Salt none 6
Meadows '

All Data VClay %Si | Aryl

Attributable | 55 o | 1605 | 9.67 | 5124 | 4210 | 962 | 20
Variation
VIF Values 1-8 1-4 13
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Lo tepwise R ion Results for p-Creso

Log Koc Predictors R? R’ R® n
€ (adj) | (Pred)
Image Hill LOIl10 | Sand
Attri'bu.tble 96-32 3-68 100 100 100 4
Variation
VIF Values 2-1 2-1
Salt
Carboxyl
Meadows
Atributble 58-57 | 48-22 | 26-85 6
v 58:57
Variation
All Data Clay Silt
Variation
VIF Values 7-3 7-3 20
Remove Silt
’ Cla %Al
Sand & SSA Y o 52:40 | 46-80 | 38-10
VIF Values 25 25
Lo Stepwise Regression Results for p-Cresol using Transformed Predictors
R? R?
Log Koc Transformed Predictors R? n

(adj) | (Pred)

Image Hill LOI110 Sand

Attri.bu.tble 9632 3.68 100 100 100 4
Variation
VIF Values 21 21

Salt Meadows A/K
Attributble

55-80 | 44-75 | 2335 6

Variation 3580

All Data VClay | VRSand | O-Aryl

A\t,tnl-)ut.able 42-96 1527 | 545 | 63:68 | 5687 | 50-84
ariation

VIF Values 15-2 15-2 111 20
Remove VSSA N

. ’ Clay
YSilt & YRSand 42:96 | 3979 | 32:50
Atributable | 4 g6

Variation
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7.4.3

p-Xylene
K4 Stepwise Regression Results for p-Xylene

. 2 R? R?
K4 Predictors R (adj) | (pred) n
Image Hill | LOI110
Atributble 98-81 | 98-:21 | 91-19 4
AR 98-81
Variation
Salt %Al | O-Alkyl | O-Aryl | %OC
Meadows
Atributble | o0 hc | 5196 | 388 | 010 | 100 [ 9999|9919 | 6
Variation
VIF Values 19 1-7 2-7 1-1
All Data %0C
Atribatable 39:42 [ 3476 | 5-92 15
Y 39-42
Variation
K4 Stepwise Regression Results for p-Xvlene using Transformed Predictors
2 2
) 2 R R
K4 Predictors R (adj) | (pred) n
Image Hill V%Fe %Silt
Attributble | ¢ o 1-00 99-96 | 99-87 | 97:92 | 4
Variation
VIF Values 23 23
Log
o -
Salt Meadows | V%Al | - Alky! VO-Aryl | SA
Atributble |\ 7)) | 2453 | 2.84 [o027| 100 | 100 | 9965 6
Variation
VIF Values 1-7 1-9 25 1-4
Log
All Data LOI375 3832 134-11 | 26:32 | 15
Attributable
Y. 38-32
Varnation
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Log K, Stepwise Regression Results for p-Xvlene

2 2
. 2 R R
Log K4 Predictors R (adj) | (pred) n
Image Hill %Mn SSA
Attributble 98-09 1-90 99-99 | 99-96 | 98-15
Variation
VIF Values 68 68 4
Remove °
%Mn A/K
SSA ° 99-94 | 99-82 | 9716
VIF Values 16 1-6
Salt o
Meadows %Al O-Aryl Alkyl
Attributble | g o 17-87 3-39 99-31 | 98-28 | 90-56 | 6
Variation
VIF Values 1-7 16 1-5
All Data %0C
Atributable 28:22 | 22:70 0 15
Variafi 28:22
ariation
Log K, Stepwise Regression Results for p-Xylene using Transformed Predictors
) )
. 2 R R
Log K4 Predictors R (adi) | (pred) n
Image Hill | VLOI375 Clay
Attributble | 00 3-90 100 |99-99 | 9970 | 4
Variation
VIF Values 13 13
Salt 0 Log Log
Meadows V%Al O-Alkyl pH \/Carboxyl
Atributble | ¢ ¢ 1962 | 471 | o058 [9997(9984| 0 |6
Variation
VIF Values 20 29 3-3 2:2
AllData | %OC?%2%%
- 31:76 | 26-:51 | 15:70 | 15
Auribuable | 3).76
ariation
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Koc Stepwise Regression Resuits for p-Xvlene

Log Koc Predictors R’ (adj) | (pred)

Image Hill | %Mn | LOI375

Variation
VIF Values 10-0 10-0
Remove o
%% Mn %Al
LOI375 ° ° 99-8599-54 | 0
VIF Values 357 357
Salt o .
Meadows %Al Silt Aryl
Attri.bu_tble 72.26 2935 428 98-80 | 97-22 | 73-82
Variation
VIF Values 1-3 15 1-5
All Data Silt Aryl O-Aryl | %H,0 | %Fe
Atributable | o3 30 | 864 | 1062 | 377 | 6:36 | 9277 | 8876 | 83-20
Variation
VIF Values 24 36 36 13 1-7
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Koc Stepwise Regression Results for p-Xvylene using Transformed Predictors

) 3 R? R?
Koc Predictors R (adj) | (Pred) n
Image Hill %Silt | Carboxy!
Attributble 79.04 20-18 99-92 [97-65| © 4
Variation
VIF Values 1-0 1:0
Salt Meadows V%Al Si* 778 | JRSSA [ LOI110
”{,tm.b“.tble 6989 | 2651 | 348 | 012 | 100 | 100 | 100
aniation
VIF Values 55 20-3 23-3 41 p
Remove VRSSA,
LogRClay V%Al | Silt*® | %H,0 | Aryl
& Log Sand 100 |99-99 | 99-63
VIF Values 1-3 1-8 1-1 2:0
All Data Log %Silt
LOI375
A‘t/tril?ut?ble 6531 9-24 74-55|70-31 | 48-58 | 15
ariation
VIF Values 1-0 1-0
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Log Koc Stepwise Regression Results for p-Xvlene

. ) R? R?
Log Koc Predictors R (adj) | (Pred) n
Image Hill %Mn O-
Aryl

Attn'bu.tble 93-97 6-03 100 |99-99| 99-81 | 4
Variation
VIF Values 1-0 1-0

Salt .
Meadows %Al Silt Aryl A/K
Atributble | 29 43 | 1939 | 3.13 | 0-05 100 | 100 | 99-97 | 6
Variation .
VIF Values 57 4-6 1-8 5-6
All Data LOI110 | %H,0 | LOI375
Variation
VIF Values 5-8 47 109 15
Remove o

%H,0 %Fe | O-Aryl | Sand 1

LOI375 e ° Ary AV | 9560 | 93-16 | 87-54

VIF Values 1-4 1-8 3-6 26 | 37
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Log Koc Stepwise Regression Results for p-Xylene using Transformed Predictors

. 2 R? R?
Log Koc Predictors R @adj) | (Pred) n
Image Hill | VLOI375 | Mn'*%2%
Attributble | g0 o 11-06 99-97 | 99-90 | 76-04
Variation 4
VIF Values 303 303
Remove o _ ]
JLOI37S V%Fe 8680 [ 8020 | ©
Salt Meadows| V%Al | Silt®" |Log RClay| Aryl
Atributble | o5 95 | 9485 11 | o009 | 100 | 100 | o0
Vanation
VIF Values 24 275 225 4-6 6
Remove
Log RClay, \/o .1.6-0778 Log
%Al | Silt
Log Sand ’ ' O-Alkyl 99-90 | 99-76 | 99-14
&VRSSA
VIF Values 13 1-7 1-4
All Data Log I10g%H,0| %si
LOI375
Atm}?ut.able 85-00 4-31 2-05 91-36 | 89-00 | 84-78 | 15
Variation
VIF Values 1-9 2-5 1-5
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7.4.4 Benzene

K4 Stepwise Regression Results for Benzene

i 2 R? R?
Ky Predictors R (adj) | (pred)
All Data %Si |LOIl0| pH
Auribwable | 7543 | 1448 | 6:08 92:99 | 87-73 | 3963
ariation
VIF Values 2-1 3-5 4:6
Transformed Predictors
Log o o Log
AllData | | 2 | %Al | V%Fe | AK | Alky]
A\‘;“‘.’“‘.able 6936 | 1227 | 1689 |1-19| 029 | 100 | 100 |99:55
ariation
VIF Values 3-0 86 41 {170 11
Remove Log o _
%Al | V%Fe
A/K Lon7s | 7 ° 98-52 | 97-41 | 89-02
VIF Values 1-3 1-8 20
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Log K, Stepwise Regression Results for Benzene using Transformed Predictors

. » | R? R?
Log K4 Predictors R (adj) | (pred)
AllData | %Si |Carboxyl| %Fe | %H,0 | Sand A?k'yl
Af;"t.’“‘.ab'e 6440 | 2250 | 7-10 | 366 | 1-83 | 0-51 | 100 [99.99 | 80.88
ariation
VIF Values 5-6 1-9 49 45 6:6 2-3
Remove
SSA, Clay, | %Si [Carboxyl| %Fe | %H;O
Silt & Sand 97-66 [ 94-55 | 5478
VIF Values 2-1 1-0 20 2-7
Transformed Predictors
Log .-0-5325
[1) 0,
AllData | %Al | =0 V%Fe | A/K |Si
A\t,mt.’“‘.able 44-95 | 2658 | 2477 | 307 | 060 99:97199-89 | 5659
anation
VIF Values | 133 34 6-4 20-9 5-4
Remove Lo
SSA, Clay, | %Al | - 1g o | V%Fe
Silt & Sand LOIl1 96:30| 9353 | 6631
VIF Values 1-8 1-0 1-9
Koc Stepwise Regression Results for Benzene
2 2
. 2 R R
Koc Predictor R (adj) | (pred) n
All Data SA
Atributable 42-65133-09| 32 (8
- 42-65
Variation
Transformed Predictor
All Data SA
Attributable 44-44 | 35-18 | 3-58 (8
. . 44-44
Variation
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Lo Stepwise Regression Results for Benzene
2 2
Log Koc Predictors R? ('iij) (pl:e d)
All Data H %Si | A/K | Aryl O- | oAl
P Alkyl
Af,“"?“‘.ab‘e 4579 | 4304 | 686 | 3-51 | 0-68 | 0-12 | 100 |99.98 | 5177
ariation
VIF Values | 74-2 161-3 | 142-9) 66 2:2 3013
Remove . O-
H %S A/K |
%Al P o1 AL Alky] 99-88 | 99-58 | 0
VIF Values 36 36 20 1-:6 1-5
Transformed Predictors
All Data Log LOI375
Atibutable 44-43 |1 35171 2173
y L. 44-43
Variation

7.5 TGA Calculations

Wood charcoal, humic acid and a wood charcoal/humic acid mixture (¢ h c+h)

R* of linear relationships | Sum of

Solver Routine Targeted 5

Wood . Carbon R
chcth Temperatures Humic
Charcoal Acid Values
Full . . .
170-700°C 0-9995 09937 1:9932
2-6% average 1-0000 04524 | 14524
H24C2X 260-410°C & 0-9973 0-9870 1-9843
2-6% average 530-640°C 1-0000 0-9819 1-9819
H24XC2X 260-410°C & 0-9992 0-9920 1-9912
2-6% average 450-640°C 1-0000 0-8581 1-8581
H24YC2X 260-410°C & 0-9992 0-9935 19927
2-6% average 500-640°C 1-:0000 0-9181 19181
S1H13Cl1 . . .
260-640°C 0-9992 09910 1-9902
2-6% average 1-0000 0-8679 1-8679
S2H24C2X 200-410°C & 0-9971 0-9868 1-9839
2-6% average 530-640°C 1-0000 0-9816 1-9816
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Wood charcoal, humic acid, sand and a wood charcoal/humic acid mixture (c h s cth)

Solver R* of linear relationships Sum of R Values
Routine Targeted
Wood . Carbon
cth+sno | Temperatures Humic Sand Carbon
. Charcoal Acid + Sand
correction
Full
170-700°C | 09995 | 09937 00000 | 19932 | 1-9932
_FO
2-6% average 10000 | 03032 0-5285| 13032| 18317
H24C2X | 260410C& | 09973)  09870| 00000 19843 | 19843
-69 -640°
2-6%average | 530-640°C | 49996 | 02415 04576 12411| 146987
H2XCIX 1260-410C& | 59997 | 09920| 00000| 1-9912| 19912
2-6% average | 450-640°C | 59999| 02401 06564| 12400| 1-8964
H24YCZX | 260-410°C& | 50997 | 09350 0-0000| 1-9342| 19342
-69 - 0
2-8%average | 500-640°C | 09997| 00049| 04576 | 10046| 14622
STHI3CI
260-640°C | 09992 | 09910 | 0:0000 | 1-9902| 19902
_AO
2-6% average 09999 02360| 06793| 1-2359| 19152
SIH2ACIX | 200-410°C& | 59971 | 09868 | 0-0000| 1-9839| 1-9839
-69 - o
2-6%average | 330-640°C" | 49996 | 02381 | 04576 1-2377| 1-6953

Wood charcoal

sand corrected

humic acid

charcoal/humic acid mixture (c-s h-s ¢t+h)

sand _corrected

) R’ of linear relationships | Sum of
Solver Routine Targeted 5
Wood . Carbon R

c-s h-s ct+h Temperatures Humic

Charcoal Acid Values
Full . . .
_ 170-700°C 0-9909 0-9842 1-9751
2-6% average 0-9995 0-9849 1-9844
H24C2X 260-410°C & 0-9829 0-9856 1-9685
2-6% average 530-640°C 0-9997 0-9870 1-9867
H24XC2X 260-410°C & 0-9923 0-9853 1-9776
2-6% average 450-640°C 0-9995 0-9849 1-9844
H24YC2X 260-410°C & 0-9895 0-9851 1-9746
2-6% average 500-640°C 0-9996 0-9856 1-9852
S1H13Cl1 . . .
) 260-640°C 0-9910 0-9840 1-9750
2-6% average 0-9995 0-9849 1-9844
S2H24C2X 200-410°C & 0-9825 0-9853 1-9678
2-6% average 530-640°C 0-9997 0-9870 1-9867
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and a wood



Wood _charcoal

sand corrected

humic acid

sand corrected

charcoal/humic acid (sand corrected) mixture (c-s h-s c+h-s)

R? of linear relationships | Sum of
Solver Routine Targeted )
Wood . Carbon R
c-s h-sct+h-s | Temperatures Humic
Charcoal Acid Values
Full . . }
) 170-700°C 0-9999 0-9939 1-9938
2-6% average 0-9996 0-9881 1-9877
H24C2X 260-410°C & 0-9996 0-9939 1-9935
2-6% average 530-640°C 0:9999 0-9936 19935
H24XC2X 260-410°C & 0-9999 0-9943 1-9942
2-6% average 450-640°C 0-9996 0-9896 1-9892
H24YC2X 260-410°C & 0-9995 0-9969 19964
2-6% average 500-640°C 0-9998 0-9924 19922
S1H13C1 ) . .
2-6% average 0-9996 0-9887 1-9883
S2H24C2X 200-410°C & 0-9996 0-9981 1-9977
2-6% average 530-640°C 0-9998 0-9935 1-9933

and a wood

Wood charcoal (sand corrected), humic acid (sand corrected), sand and a wood

charcoal/humic acid mixture (c-s h-s s ¢+h)

Solver R’ of linear relationships Sum of R® Values
Targeted
.Routine ¢c-s Wood . Carbon
Temperatures Humic Sand | Carbon

h-s s c+h+s Charcoal Acid + Sand
Full . . . . .

170.700°C | 09928 | 09613 | 08161 | 19541 | 2:7702

2-6% average 09903 | 0-9847 | 0-5649 | 19750 | 2-5399

H24C2X | 260-410°C& | 0-9912 | 09804 | 0-5042 | 19716 | 2:4758

2-6% average | 530-640°C | 0.9938 | 0-9717 | 0-5081 | 19655 | 2:4736

H24XC2X | 260-410°C & | 0-9936 | 09276 | 08873 | 19212 | 28085

2-6% average | 450-640°C | 0.9902 | 0-9888 | 0-5931 | 19790 | 2:5721

H24YC2X | 260-410°C & | 09938 | 0-9541 | 07772 | 19479 | 2-7251

2-6% average | 500-640°C | 0.9925 | 09797 | 05177 | 119722 | 2-4899
S1HI3Cl : . . . :

r60.640°c | 09937 | 09270 | 08894 | 19207 | 2-8101

2-6% average 09903 | 0-9895 | 06027 | 19798 | 2:5825

S2H24C2X | 200-410°C& | 09911 | 09805 | 0-5047 | 1:9716 | 24763

2-6% average | 530-640°C | 0.9937 | 09719 | 05173 | 19656 | 2:4829
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Substituting & adding the average (2&6%) hay charcoal (hy) or coal (cl) normalised
signal for the average wood charcoal (c) normalised signal using the H24C2X 2-6%
average solver routine

cth hy+h cl+h | ct+cl+h | cthy+h [cthy+cl+h|
1%
Humic Fraction 0374 | 0269 | 0432 | 0374 | 0-361 0-361
Wood Charcoal Fraction 0-594 - - 0-594 | 0-549 0-549
Hay Charcoal Fraction - 0-677 - - 0-056 0-056
Coal Fraction - - 0-549 - - 0-000
Humic Error 12:044 | 19-460 | 29-350 | 12-:045 | 8:043 8-043
Wood Charcoal Error 10-836 - - 10-836 | 17650 | 17-650
Sum of Black Carbons 0-594 | 0677 | 0-549 | 0-594 | 0-605 0-605
Error 10-836 | 1-583 | 17-595 | 10-836 | 9-184 9-184
2%
Humic Fraction 0-404 | 0-301 0459 | 0404 | 0-389 0-393
Wood Charcoal Fraction 0-577 - - 0-:577 | 0524 0-367
Hay Charcoal Fraction - 0-659 - - 0-067 0-097
Coal Fraction - - 0-535 - - 0-123
Humic Error 4467 | 22-:235 | 18485 | 4-467 | 0:396 1-416
Wood Charcoal Error 5-832 - - 5-832 | 14-574 | 40-081
Sum of Black Carbons 0-577 | 0659 | 0-535 | 0577 | 0-590 0-588
Error 5-832 | 7457 | 12-:697 | 5-832 | 3-713 4-130
4%
Humic Fraction 0-390 | 0289 | 0425 | 0390 | 0-384 0-385
Wood Charcoal Fraction 0-610 - - 0-610 | 0-576 0-441
Hay Charcoal Fraction - 0-691 - - 0-040 0-071
Coal Fraction - - 0-575 - - 0-104
Humic Error 0-335 | 26:305 | 8463 | 0-335 1-908 1-851
Wood Charcoal Error 0-216 - - 0216 | 5298 | 27-446
Sum of Black Carbons 0-610 | 0-691 0-575 | 0610 | 0-616 0-615
Error 0216 | 13-536 | 5-451 0-216 1-229 1-193
6%
Humic fraction 0-417 | 0314 | 0451 0-418 | 0-405 0411
Wood charcoal fraction 0-582 - - 0-570 | 0-543 0:329
Hay fraction - 0-663 - - 0-:049 0-:091
Coal fraction - - 0-549 | 0-012 - 0-168
Humic error 6-033 | 20-010 | 14-810 | 6:301 3-074 4-446
Wood charcoal error 4-086 - - 6-148 | 10-601 | 45-782
Sum of black carbons 0-582 | 0663 | 0-549 | 0-581 0-592 0-588
Error 4086 | 9-183 | 9-595 | 4219 | 2:506 3-081




