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INTRODUCTION

The work in this thesis follows that done by Atkin and
Swinnerton-Dyer [ 3 ], and Atkin and Hussain [ 2 ]. Constant
reference is made to these papers, which we therefore denote
by (ASD) and (AH) respectively. All unspecified notation is
that of (ASD) together with the following additions,

We write
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a=1
f(yq):: P(0),
e 0]
1/§(x) = £ p(n) xo,
n=o

taking p(0) to be unity. {The above notation, with q = 11, is
used in (AH).} Occasionally we need the congruence

fa(y) = f(ya) (mod.q),
which follows from (1 - yr)s @ 1 - yar | modulo q. The enclosure
of an ordered product of a number of variables in square brackets
denotes a summation over all the differenﬁ terms obtainable by

permuting the variables cyclically in a typical term. In such a

_NIVER
Q\)‘\r . .‘:\_\\Eri\'.%
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product one or more of the variables may have degree zero.
Square brackets, then, replace capital sigma (which is rather
an overworked symbol) as used on page 186 of (AH). It should
be pointed out that in such a c¢yclic sum the number of terms
1s not necessarily the same as the number of variables. For
example the following cyclic sum involving eight variables
contains only two terms:

[a, a4 ag a,] = a, a, ag a, + a, a, ag ag-

The symbol <b, ¢, d> is used to denote the following relation,
proved in (ASD) (Lemma 4):

P2 (b)P(c+d)P(c-d)-P2(c)P(b+d)P(b-d)+yc=e¢P2(d)P(b+c)P(b=-c) = O
if none of b, ¢y, d, b £+ ¢, ¢ £ d, b £ d, is divisible by gq.
Similarly <b, ¢, d, e> denotes the relation

P(b+e)P(b-e)P(c+d)P(c=d)=P(b+d)Pb=-d)P(c+e )P(c~e)+

+ye=¢ P(b+c )P (b=c)P(d+e)P(d=e) = O
(none of b + ¢y, b+ dy, bte, c +d, ¢c + e, d+ e, divisible
by gq). The latter relation may be proved by the method used
in (ASD) for the former (which is in fact <b, ¢, d, 0>), but is
however given, in essence, in [14] {equation (LVII_), page 160}.
We note that either relation is homogeneous in the P(a).

The thesis is comprised of five Parts, which are to a large
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extent independent of one another and may in fact be read

separately. The contents of these Parts are as follows.
Part 1, throughout which g = 13, is divided into four

sections (88 1 to 4). In 8 1 the process employed in 8 11

®
of (AH) to express ¥ p(11n + 6)y® in terms of simple

n=o ®
functions of y is used to evaluate £ p(13n + 6)y® in a
n=o
form analogous to Ramanujan's results for g = 5 and q = 73

more elegance of method is possible in the case of g = 13. A
secondary consequence of this process is the determination of
what is in fact the simplest, non~homogeneous relation between

the P(a) for q = 13 {equation (1.17)4.% 8 2 contains the
©

evaluation of g p(13n + s)yr, for all values of s{(s = O to 12)
n=o

except s = 6, in a form which, while more complicated than for

s = 6, involves only simple functions. In actual fact two

such forms are given, but these are essentially equivalent.

Simple congruences for ® p(13n + s)y®, s Oy 15 25 .05 12,
n=o

such as are given in (ASD) for q = 5, q = 7, and g = 11, are

derived in § 3 from the results of 8 2. A complete account

*Neither of the two results of 8 1 is new (see text),
although such an elementary, algebraic method has not previously

been employed. This section is due in its entirety to Dr. Atkin.
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of Dyson's rank functions for the cases g = 5, gq = 7, and g = 11,
is given in (ASD) and (AH). 1In particular the values of the

r,,(d) are obtained for each of these gq. We find the values of the
r,.(d) for g = 13 in 8 4, by a method akin to that used for g = 11.
They are of a somewhat different form than for g = 11 and rather
more complicated, but are, on the other hand, all of the same nature,
similar to that of the expressions given by Theorem 2.2 for

<§ p(13n + s)y» (s # 6). 1In the case of q = 11, the r _(6) and

::: remaining rbc(d) have values not of the same nature. We note
here that in Theorem 4.1, which gives the r, (d) for g = 13, p(0)
must be taken to be zero {see (ASD), page B6}. It is of interest
to observe that there is a set of linear congruence relations,
(4.41), between the r  (d) for a given value of d when q = 13,
corresponding to (AH), equations (9.16), for q = 11.

Parts 2 (8 5) and 3(8 6) contain the evaluations of

® fos!
2 p(17n + 5)y» and 2 p(19n + 4)yn respectively, again by the
n=o n=o

@
method used in (AH), § 11, for 2 p(t1in + 6)ye. In each case
n=o
both the process and the result are more elegant than for g = 11,
but less so than for g = 13. Simple congruences for

® ®

Z p(17n + 5)yr and £ p(19n + 4)y®s are derived from these results.
n=o n=o

The apparently simplest, non-homogeneous relation



between the P(a) for g = 17 and q = 19 is embodied in
Theorem 5.1 (third equation) and Theorem 6.1 (fifth equation)
respectively.

In part 4 (8 7) an alternative expression for

® p(11n + 6)ys 1is derived from that given in (AH)
n=o

{equation (11.9)}, and we then conjecture similar expressions
for %)p(11n + s)y» (s = O to 10) when s # 6. (Such similarity
doesn;gt obviously exist in the case of q = 13.) We make no
attempt to prove our conjecture, which is almost certainly valid,
in this thesis. The form of the expressions concerned 1is

quite different from either of the forms obtained for g = 13 in
§ 2.% It is worthwhile to note that equation (7.1) is, in
effect, what appears to be the simplest, non-homogeneous
relation between the P{(a) for g = 11, and to pause at this point
in order to state together.the simplest relations for all prime
q as far as q = 19. The relations for g = 5t and q = 7 follow

immediately .from [7] «(Kolberg), equations (4.15) and (5.20)

respectively, if, for both q = 5 and q = 7, the g, of this paper

* Kolberg has obtained certain expressions for g)p(5n+s)yh,
s=0, 1, 2, 3, {[7], equations (4.17) to (4.20)}, ::g
T p(7Tn+s)ys, s=0, 1, 2, 3, 4, 6, {[7], equations (5.23) to (5.27),
2;3 (5.29)}. The former decomposition is due originally to

Ramanujan [12].

+ This relation appears in [12] (Ramanujan).



-vi-

q=1
{defined by f(x) = £ g, x*, g, = 9,(y)} are expressed in terms
$=0

of the P(a) by means of (ASD), Lemma 6. We have, remembering
(g=1)/2 '
that f(y)/f(ye) = TI P(a),

a
51 fe (y)/fe(ys) P8 (2)/P8 (1) = 411y - yeP8(1)/P8(2),

q

q = 73 fe(y)/f4(y?) + 8y = P2(2)P(3)/P3(1) + yP3(3)P(1)/P3(2)-

- ysP2(1)P(2)/P3(3),

q = 113 f3(y)/f3(y1r1)

P2(5)P(4) - y2P2(1)P(3) - yP2 (2)P(5)-
- yP2(4)P(1) = yP3a(3)P(2),

g = 13: f8(y)/fa(y2s) P(2)P(5)P(6)/P(1)P(3)P(4) ~ 3y =
~y2P(1)P(3)P(4)/P(2)P(5)P(6),

P(2)P(8)P(6)P(7) - yP(6)P(7)P(1)P(4) -

g = 17+ fe(y)/fe(y1r7)

- y2P(1)P(4)P(3)P(5) - yP(3)P(5)P(2)P(8),

g =191 f(y)/f{yr®) = 1/P(2)P(3)P(5) - y/P(1)P(7)P(8) -
-y2/P(4)P(6)P(9).
The results for q = 11, g = 17, and g = 19, seem to be new.
Parts 1 to 4 involve only elementary algebra. 1In Part 5
(8 8) recourse is made to the theory of the elliptic modular
functions. We show that'fhere exists, for g = 13, a polynomial

relation between xf®(y)/f2(x) and x?f(y13)/f(x), of degrees at
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most 7 and at most 13 in these variables respectively.,*

Then, working for convenience in terms of y~1f2(y)/f2(y13)

and x~7f(x)/f(y'3) as new variables, we show by elementary
algebra that the relation (of degrees at most 7 and at most

13 in the new variables respectively® is irreducible and that
the coefficients involved have, in pairs, a certain symmetry.
The relation is evaluated (in terms of the new variables) by
comparing coefficients of powers of x in the expansions of

the quantities involved, use being made of the symmetry
mentioned above to facilitate the calculation. The result could
also be obtained by using the expressions for x~7f(x)/f(y13)

and y~1f2(y)/fe(y13) in terms of the P(a) {equations (1.1) and
(1.17)}, and the homogeneous relations between the. P(a) previously
described in this Introduction, but this would be comparatively

tedious.t

* It is in fact shown that there is a corresponding result or
‘modular equation" for all prime q, in which the degree of the
function corresponding to x7? f(y13d/f(x) is at most g in the cases
q=5, gq=7, and g = 13, and is at most a greater integral multiple
of g otherwise. We are indebted to Dr. Morris Newman of the
National Bureau of Standards, Washington, D.C., who communicated

the proof to us. The relations for g = 5 and q = 7 have been
obtained, in essence, by Watson {[15], page 105, formula (3.2),

and page 118, (5.2)f, although the formeér is due originally to

Weber fﬁe], page 256, formula (27)].

** The degrees are in fact 7 and 13.

+ I hope to publish in the near future firstly a paper on the
work of Part 5 and secondly, in conjunction with Dr. Atkin, a
paper "Some properties of the coefficients of modular forms
modulo powers of 13", depending upon the first.
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We take this opportunity to observe that it would
probably be possible to use the theory of modular functions

®
to obtain expressions for g p(17n + 5)y® and
n=o

(2 p(19n + 4)y® more easily than in this thesis, and indeed
:;oobtain corresponding results for still greater values of
q (this would otherwise be a very tedious matter), but that
a further development of the theory would be needed.
Tabulated values of p(n) (as far as n = 1000), needed at
various points in the thesis, are to be found in [5 ]. The
table of the coefficients of powers of f{x) computed by
Newman [11] is also required.
Finally, we note that a table of notation {not including

that of (ASD) or (AH)} and a 1list of references are given at

the end of the thesls. Some letters occur more than once in

the text in different senses (this is purposeful where analogous

processes are carried out for different values of q), but the

contexts are so different as to glve no danger of confusion.



PART 1

g = 13 throughout this Part

1. We write
o = - x 2p(2)/P(1), B = - x°P(6)/P(3), %= x"%P(5)/P(4),
Cat= - xPP(3)/P(5), B'= x 'P(a)/P(2), &= x°P(1)/P(6);

then by (ASD), Lemma 6 (with g = 13) we have

(1.1) x_7f(x)/f(y13)=a+B' + T +a' + P+ ¥ O+ 1.

In (1.1) we replace x by w X where w (r = 1 to 13) are the
thirteenth roots of unity, and multiply together the thirteen

resulting equations, obtaining.

13
-7.14 14, 13 -5, ., =7 -2 5 0 - 15
(1.2) vy "f Ay)/f T(y 7)) = I!}(awr +8 wo ot Tw, +a'wr+Bwr

6+ ¥'w
r

+1)

Now as w,. Tuns through the thirteenth roots of unity so does

w;3, so that the product on the right-hand side of (1.2) is

15 ., -5 “7, =2, 5, ., -6
| (o.ur +B w T+ Tw +ta w +Bur+ ¥ W +1),

and is thus unchanged if o, f'y, ¥, a', B, and Y', are inter-

changed cyclically. The product is thus a linear combination
i i i i i i
of terms [a 1 B! 2 ¥ 3 a' 4 B > L 6] where 11 to 16 are non-

negative integers, and considering the left-hand side of (1}2)

such terms as occur can only involve x in terms of y = x13.

i i i i i i

Thus if a | B 2§34 B > ¥ 6 (or any other term of
i i i i

i i i .
[« ! B' 2 y3q0 4 p ° X' b]) occurs we must have

(1.3) -511 - 712 - 213 + 514 - 615 + 1516 =0 - (mod. 13)



(interchanging 11, 12, 13, 14, 15, and 16’ cyclically gives the
same congruence).
Now, writing
a = y2p2(1)/P(a)p(5), at =y 'P(5)/P(6)P(1),
b = -y 'P%(3)/P(1)P(2), b' = -yP?(2)/P(5)P(3),
¢ = -P2(4)/P(3)P(6), ¢t =y 'p2(6)/P(2)P(4),
it is easily verified that
L L P P TR N
(1.4) p13 2 0012 2,6 (T 4 g 13 12 2 6 T 4
$13 2 5012 02 6 7 4 13 2,12 2 6 7 4

It will be noticed that all of the eguations (1.4) may be
obtained from any one of them by interchanging a, b', ¢, a',
b, ¢'y and a, B'y, ¥, a', B, ¥', cyclically. By (l1.4), since

ab' ca' be' = -1,
i i i i i i, 13

s o4 IF O
= (ab' ca' bc')% ;H b 2 ;% al 4 b 5c’6

where o= 2i, + 4i_. + 12i, + 1Bi4 + 16'15 + Bi an even

1 2 3 6’

integer, and

01 = 412+713+614+215+1216, 62 = 413+714+615+216+1211,
o3 = 414+715+°16+211+1212’ g, = 415+716+6i1+212+12i3,
— 4t 473 . . . - a4 . . .
5 416 711+612+213+1214, T 411+712+613+2i4+1215,
moreover o + &« to o+ o, are multiples of 13 by (1.3), hence

1 6

we arrive at the following:
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LEMMA 1.1 - Any expression of the form a11ﬂ'
for which (1.3) holds is of the form aJ1 b'J C a' b c'
where j1 to jé are non-negative integers.

By Lemma 1.1 every term dccurring ip thg right-hand side
of (1.2) is of the form aJ1 b'J2 cJ3 a'J4 bJS c'Jé, and such
terms occur in cyclically symmetrical sets of six terms each.

Further, @(6) is the coefficient of x6 in 1/f(x) regarded
as a polynomial of degree 12 in x with coefficients involving x
in terms of y = x13, so that y-6f14(y)§(6)/f13(y13) i; the
coefficient of x® in y £ N (y)/{f My 2)(atp '+ T 4B+ B 41)].
This is a cyclically symmetric polynomial of degree 12 in
a, p'y ¥, a', B, and ¥'; and the terms which give the
coefficient of xo.occur only in_symmetrical sets of six
expressible as [aJ1 b'J2 cJ3 a'J4 bJ5 c'Jé], as before. (This
is not true for the coefficient of any power of x other than
O3 the six terms of [a], for example, do not appertain to

the same power of x.)

-7.14 14, 13 -6_.14 13, 13, _
Thus v~ £ % (y)/8 (v 2) and yTO T (y)B(6) /63 (y17) are
3y 3, 3, g,
each equal to a linear combination of terms [a 'b' “c “a°
We now write

~y " TP (4)P(6)/P(1)P(5),

yP(1)P(3)P(4)/P(2)P(5)P(6).

A

yP(2)P(3)/P(4)P(6), B

-P(1)P(5)/P(2)P(3):

C

=
I



Then

(1.5) ABC = 1.

<4, 2, 1>, <6, 3, 1>, <5, 4, 3>, <6, 5, 3>, <5, 4, 2>, and
<6, 2, 1>, give, respectively,

(1.6) to (1.8) a A - K, b =B - K, c = C - K

(1.9) to (1.11) a°' A+ 1/K, b'=B + 1/K, c' = C + .1/K;

all of the equations (1.6) to (1.11) may be obtained from any

one of them by interchanging a2, b'y ¢, a'y b, ¢', and A,B,C,

and 1/K - K, cyclically. Also, <5, 3, 2, 1> gives

(1.12) to (1.14) AB + A + 1 =0, BC +B+1 =0, CA+C+ 1=0,
which equations are equivalent by virtue of (1.5), and <5, 2, 1>

gives
a + b' = CA,

which using (1.6), (1.10), and (1.12) to (1.14), becomes

(1.15) A+B+C=-/K + K -1,

(1.16) AB + BC + CA = 1/K - K - 2.

We are now in a position to prove

LEMMA 1.2 - Any expression of the form [a b c “a' b “c¢

is equal to a polynomial in 1/K ;‘K with integral coefficients.
Using (1.6) to (1.11), any [aJ1b'32cj3a'J4bJ5c'36] can be

expressed as a polynomial im A, B, C, 1/K, and =K, with integral

coefficients, cyclically symmetric in A, B, C, and 1/K, - K.

- This polynomial is a linear combination of terms
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{(1/1()h + (-K)h}[A)‘ B* cVY] where h, A\, p, and 0 , are non-
negative integers, for if a term (1/K)h[Ax B" CO] occurs so
does the term (-K)h[Ax B" Co], and vice versa. Further, by
Newton's formula for sums of powers of the roots of a
polynomial equation in one variable, (1/K)h + (-K)h can be
expressed as a polynomial in the coefficients of the quadratic
equation 22 - (1/K = K)z = 1 = 0 having roots 4/K and -k,

i.e. as a polynomial in 1/K - K with integral coefficients.

We now assert that any [AK B* CO] is also equal to a polynomial
in 1/K - K with integral coefficients. - Assume that this 1is
true for all values of N, pyand ¥ , with N + p + Vg T where T 21,
and consider any [Ak B}-L cV] with N\ 4+ p + v = T+ 1. If any

two of A\, p, and ¥V , are non-zero we can express [AK st CV]

as a linear combination of similar sums with M + p + V9T by
using (1.12) to (1.14); and so by the induction hypothesis it
is equal to a polynomial in 1/K - K with integral coefficients.
Also, using Newton's formula,-[Ak] can be expressed as a
polynomial in 1/K - K with integral coefficients, by

(1.5), (1.1%), and (1.16).

Thus if our assertion is true for M + p +V g T it is true for
all AN, p, and v, with X\ + p +v =< + 1; but it is clearly
true for ¥ = 1, hence it is true for all values of <T by

the strong form of mathematical induction. This completes the



proof of Lemma 1.2.

Writing
F o= -12 )/f
we have shown that F7 is equal to a linear combination of terms
j i, 3 J J 3

[a Tpe'2 ¢ at 4 p 2 ¢ 6], and hence, by Lemma 1.2, to a
polynomial in {/K ~ K with integral coefficients.  Further,
this polynomial is of degree 7 since the lowest powers of y
in the expansions of F7 and 1/K - K as ascending power series
in y are -7 and -1 respectively. - By comparing coefficients
of powers of y as far as yO we find that

F/ = (1/K - K - 3)"
or, since F and K are real for rea! vy,
(1.147) F=1/K-K-3.*

similarly y %¢"%(y) § (6)/f 3(y'3)

is equal to a polynomial of

degree 61in YYK-K with integral coefficients, or by (1.17), in F.

Comparing coefficients as far as yo we find that .

(1.18)  yf( (y'®) § (6) = 11/F + 36.13/F° + 38.13%/F° +
+20.13%/F% + 6.13%/F> + 13°/F® + 13%/F’

on dividing through by F'. (1.18) was first found by

Zuckermann [17 ], using the theory of the elliptic moaular

functions.

*
Dr. Atkin points out that this identity is given (in a

different notation) on page 326 of D3J(Ramanujan).
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2. We shall now find expressions for all the Q(s)

(0 s & 12, s#6). consider B(1). y £ (y)B(+)/63(y"3)

is the coefficient of x8 in

-7 .14 14, 13
y £ (y)/{f "(y T)(a + B +¥+a' + P+ ¥+ 1)}, a
cyclically symmetric polynomial in a, B', ¥, a', B, and ¥'.
Thus y‘7f14(y)§(1)x8/ - a f13( 1-3) is the coefficient of x°

in a polynomial in a, p'y ¥, a', p, and ¥'y which altnough

Y

not cyclically symmetric, is a linear combination of terms
i i i i i i

Ca 1-B' 2 y340 4 B > ¥ 6 (the indices here may be presumed
non-negative because - 1/a = B'¥ o' B ¥'), also, for any

such term which occurs in the coefficient of Xoy (1.3) must

hold. Hence, by Lemma 1.1,y-6f14(y)P(1)§(1)/f13(y13)P(2) is

J is 3 J,d j
1,.72.73,,74, 75 6

equal to a linear combination of terms a b’ b

We define #(s), the "normalised" form of ®(s), in the following

six cases:

g(1) = P(1) & (1)/pP(2),
g(12)= -yP(2) § (12)/P(4),
g(a) = -P(4) § (4)/P(5),

g(11)= P(5) & (11)/P(3),
P(3) & (0)/P(6),

~y"TP(6) T (8)/P(1).

Then we have shown that yf(y13)¢(1)F7 is equal to a linear
] J | ] J
combination of terms a ! b' 2 c 3 a' 4 b S c' 6.

A S S
® O
" "

We can show,
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in a similar manner, that this is true if ¢(1) is replaced by
#(s) for s = 12, 4, 11, O, or 8, if we replace the multiplier
-v/a by -1/p', =-1/¥ , -1/a', -1/, or =1/ ¥ ', respectively.
- Further, given an expression for any-¢(5) in the above list,
we may obtain any other such 4(s) by interchanging the #(s)
(in the above order) and a, b'y, ¢, a', b, ¢', cyclically.
We define @(s) in the remaining six cases as follows:
#(10) = P(3) T (10)/p(2), |
- #(9) = -p(6) T (9)/P(4),
g(5) = -yp(1) & (5)/P(5),
g(2) = -P(2) § (2)/P(3),
g(3) = p(a) § (3)/P(e),
(1) =y 'e(s) B (7)/P(1).

We may show that the above result holds for these @(s) by

13

considering y_7 f14(y)/[f14(y13)(u +B' + ¥ +a’ + B+ + 1)}
multiplied by B'¥a', ¥a'B, a'B¥'y, p ¥'a, ¥'a B', and aP' 7y,
instead of -1/a, -1/p', -1/¥ , -1/a', -1/B, and -1/ ¥"',

J i, y, 3 J
- Thus we must now examine a 1b' 20 3a‘ 4b 5c' 6, rather

J Jod J, 3 J
than [a Tpe 7273, 7470 6]. To do this we need certain
preliminary results. Using (1.17), (1.195) can be written as
(2.1) A+B+C+F + 4=0.

Multiplying this equation by A, substituting for AB and CA
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from (1.12) and (1.14), and transposing we obtain

(2.2) C =A%+ (F + 3)A - 2.

Substituting this expression for C in (2.1), and transposing
we have

(2.3) B =-A%2 - (F + 4)A - F - 2.

- Also, (1.17) can be written in the form

(2.4) -K = -1/K + F + 3.

Thus, by virtue of (2.2), (2.3), and (2.4), any polynomial in
A, B, C, 1/K, and -K, with integral coefficients, can be
expressed as a polynomial in A, 1/K, and F, also with integral
coefficients. - Further, multiplying (2.3) by A, substituting
for AB from (1.12), and transposing we obtain

(2.5) A% = —(F + a)A% - (F + 1A+ 1,

and, multiplying (2.4) by 1/K, and transposing we have

(2.6) (/K% = (F + 3)/K + 1.

So, by virtue of (2.5) and (2.6), any polynomial in A, 1/K, and
F, with integral coefficients, can be expressed as a linear
combination of terms

(2.7) Fh(e1A2/K + e2A2 + e3A/K + e, A+ e5/K + e6)

where h is a non-negative integer and €, to e, are positive,
negative, or zero, integers.:  We conclude that any polynomial
in A, B, C, 1/K, and -K, with integral coefficients, is equal

to a linear combination of terms (2.7).
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We note here that by (1.5), (1.14%), (1.16), and (1.17),
A, B, and C, are the roots of the cubic equation
(2.8) 23 4+ (F + a)z° + (F+ 1)z - 1 = 0;
that by (1.17), 1/K and -K are the roots of the quadratic
equation
(2.9) 22 - (F + 3)z - 1 = 0
and that (2.5) and (2.6) follow from (2.8) and (2.9)
respectively.

Now, using (1.6) to (1.11) ény a Tp172.73, b “c¢ can
be expressed as a polynomial in A, B, C, 1/K, and -K, with
integral coefflicients. Thus we arrive at

LEMMA 2.1 - Any expression of the form

3y i, 3 J
2c 3a' 4b 50' 6 is equal to a linear combination of terms

a b
(2.7). This statement remains valid if in (2.7) A is replaced
by any one of A, B, C, and 1/K is replaced by either of 1/K, -K.
The latter sentence follows because of the cyclic properties
of our relations.
We note that if we define F by (1.17) then Lemma 1.2 is a
consequence of Lemma 2.1, for by Lemma 2.1 any
J1 J2 J3 3,4 Js Jg
[a 'b'" “c “a' "b “c¢* "] is expressible as a linear combination
of terms

Fh{e1(1/K-K)[A2]+2e2[A2]+e3(1/K-K)[A]+2e4[A]+3e5(1/K—K)+6e6},

and any such term, in view of (1.15%), (1.16), and (1.17), is
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equal to a polynomial in 1/K - K with integral coefficients.
- Now, we have shown that Yf(yTa)Q(1)F7 is equal to a
linear combination of terms aJ1b'J2c33a'J4bJ5c'Jb, and hence
by Lemma 2.1, to a linear coﬁbination_pf terms (2.7) where,
for a reason which will appear in §3, we choose to replace A
and 1/K by C and -K respectively. Also, given @(1) in terms
of C and -K we obtain all the @g(s) (s = 1, 12, 4, 11, 0, 8)
immediately by interchanging #(s) (in the order given), and

A, B, C, and 1/K, -K, cyclically. We have exactly the same

situation for the other six g(s) (s = 10, 9, %, 2, 3, 7) where,

again for a reason which will appear in §3, we choose to

express'¢(10) in terms of C and =K. Thus if for each of the

twelve values of § we choose variables from A, B, C, and 1/K,

-K, according to the following tables

s| ol 1|4 8 |11 |12 s| 2 |3 {5 |7]9 |10

Al CclB| B C A C (A |[B [B | A C

-K |-K |-k [1/K | 1/K | 1/K 1/K | -k | -K [1/K|1/K | =K
Table 2.1 | Table 2.2

then yf(y13)¢(s)F7 is equal to a linear combination of terms
(2.7) in each of which A and 1/K are replaced by variables

appropriate to the particular value of s, and for each value
of h the coefficients e, to e, in (2.7) are the same for all

the s of one group of six. We find the values of e, to ¢
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(for each value of h occurring) in the two distinct cases by
comparing coefficients, as before.

- Consider the case to whiclr Table 2.1 applies. r Let H be
the highest value of h occurring, i.e. the highest value of h
for which e, to e, are not all zero. : Then-yf(y13)¢($2)F7 is
(without loss of generality) the sum of terms (2.7) with
-0 € h & H. Now, since A and 1/K (expanded as ascending power
series in y) begin y + ... and y_i + ... respectively, the
lowest power of y occurring in the bracket of (2.7) is -1, and
it occurs in the term es/K (and in none of the other five terms
as it happens). Thus, writing E, to Eg for the e, to e,
appertaining to h = H, the lowest power of y in the aggregate
of terms (2.7) is -(H + 1) (since F begins y-umm and it occurs
in the term FHE5/K (only); but yf(y13)¢(12)F7 begins -77y-5+...,
hence E5 = 0 if H+ 1 > 5. Applying this argument to all of the

six ¢(s), using the variables indicated in Table 2.1 in each

case, we obtain (from s =YO, 1, 4, 8, 11, and 12, respectively)
E6 =0 if H > 6,
E2 - E4 + E6 = 0 if H > 6,
E2 =0 if H > 4,

E, =0 if H > 4,

E, - E, + E_. =0 if H > 5,

m
1]
(@)

if H > 4;
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when s = 1, or 11, yf(y13)¢(s)F7 is equal to an expression
in which the lowest power of y occurs in three terms of the
bracket prefixed by'FH. Thus if H > 6, E1 to E6 (found
seriatim) are all zero, but this contradicts the definition
of H, hence H 6. We need only to notice that, from the case
s = 0 above, E, A0 if H = 6, to conclude that in fact H = 6.

It may be shown, by simlilar reasoning, that for the
other group of P(s), H iIs again 6.

For each group of @(s) then we need to find the coefficients
e, to e for each h in the range 0 { h 6. Comparing
coefficients of powers of y for the first 7 powers of y occurring
in the expression for yf(y13)ﬂ5(s)F7 (for each s of the group in
question) we obtain 42 equations relating the 42 unknown
coefficients. It turns out that these equations are sufficient
to determine the coefficlents, in fact; in each of the two cases,
the coefficients appear seriatim,

We state the results* in the form:

THEOREM 2.1 We have

* In actual fact we checked the values of the coefficients
found, in both cases, by comparing the coefficients of the

eighth lowest power of y for s = 8 and s = 7,
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yf(y13)¢(12)=1/F +(-56A/K-33A-1/K +99)/F2+

+13(-6A2/K-3A%-109A/K~31A-9/K+159) /F >+

+13%2(=1142/1-4a -85A/K-16a11/K+105)/F*+

+13%(= 7a%/k-3% -34a/K BA -5/K +37)/F°+

+13%(- 28%/K A% -7a/K -A -1/k - +7)/E+

2

+13%(- 3a%/K-28% - 8A/K -A -1/K- +B)/F,

2

yf(y13)¢(9)=(-39A+3)/E +(=39A% +11A/K-985A-33/K+264) /F°+

2

+13( 2A%/k-67A% +13A/K-786A-83/K+348)/F +

+139( 4A2/K—46A2 +1OA/k-334A-68/K+21O)/F4+

2

+133( 3A2/K-16A2 + 4A/X- B82A-28/K+ 68)/F +

2

C+13%C A?/K- 3A% + A/K - 11A- 6/k+ 12)/FC+

2

+13%( 24%/k- 3% + A/K - 8A- 8/K+ 12)/F,

and these equations still hold if @(12) or g(9) is replaced
by #(s) for values of s occurring in Table 2.1 or Table 2.2
respectively pravided that A iIs replaced by A, B, or C, and

1/K is replaced by 1/K or -K, according to these tables.
| It 1s interesting to compare the powers of 13 occurring
in the equations of this theorem with those occurring in
the expression for yf(y13)§(6) given in (1.18).

We proceed to derive an alternative form of Theorem 2.1.

Writing

1 = y2p(3)/P(6)P(5), m = yP(4)/P(5)P(2), n=-y?P(1)/P(2)P(6),

1'= yP(2)/P(4)P(1), m'=P(6)/P(1)P(3), n'==-yP(5)/P(3)P(4),
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we have immediately, from the definitions of A, B, C, and Kk,

" (2.10) 1/1' = m/m' = n/n' = K,

which equations will be used without explicit mention, and
(2.11) to (2.13) 1/m = A, m/n = B, n/l = C.

We note that equations (2.10) do not remain valid if 1/¥, -k,
and 1, m'y, n, 1'y, my n', are interchanged cyclically, but

that (2.10) to (2.13) all remain valid if A, B, C, and 1/K, -k,
are interchanged cyclically and 1, m*y n, 1, my, and n', are

interchanged according to either

1 m' n 1 m n'
(2.14) (m' -nl1' -m n' —l)
or

1 m' n -1°' m n'
(2.19) (cm' n =1''m =n' 1)

Substituting for A, B, and C, from (2.11) to (2.13), in (1.12)
to (1.14) we obtain in each case
(2.16) 1/1 + 1/m +1/n = 0.
Similarly (2.1) becomes
(2.17) 1/m +m/n +-n/1 + F + 4 = 0.

Now, (2.16) may be written as
(2.18) im/n = -1 -m,
and (2.17) as

12/m =.-1lm/n -F1 - 41 - n

which using (2.18) becomes
(2.19) 1/m = =F1 - 31 + m - n,

and using (2.11) this eguation may be written as
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(2.20) mA2 = -F1 - 31 + m - n

or, dividing through by K,

(2.21) mA%/K = -F1' = 31' + m' - n'.

Also we have trivially from (2.11)

(2.22), and (2.23) mA = 1, mA/K = 1°.

So, multiplying the first equation of Theorem 2.1 by m, and
substituting for mA2, mA2/K, mA, and mA/K, from (2.20) to

13

(2.23), we obtain yf(y ~)m@g(12) as a sum of terms

) . L] ] L] L 1 ] . ] ]
e, 1 + e, m' + el n eyl 4 el m + el n ).

- We chose to take m with-¢(12) for a reason which will appear

(2.24) - F

in 8§ 3. Now we have seen that the first equation of Theorem
2.1 still holds if we interchange #(1), g(12), #(4), @g(11),
g(o), #(8), and A, B, C, and 1/K, -K, cyclically. Hence the
above equation for ¢(12) still holds if we interchange these
#(s) cyclically, and interchange 1, m', n, 1', m, and n',
according to (2.14) or (2.15). - We obtain a similar result
for the other six @(s) by multiplying the second equation of
Theorem 2.1 by m. Thus multiplying ¢(s) by ‘1'y my n'y, 1, m',
and n, when s = 1, 12, 4, 14, 0, and 8, or 10, 9, 5, 2, 3, and
7, respectively, and denoting the result by g'(s), so that

gr(1) = yR(1)/P(4), @' (10)=yP(3)8(10)/P(4)P(1),

g'(12)=-y?§(12)/P(5), #'(9)=-yP(6)T(9)/P(5)P(2),
(225) g'(4) = yB(a)/P(3), @' (5)=yP(1)(5)/P(3)P(4),

g (11)= y2Q(11)/p(6), #'(2)=-y?P(2)8(2)/P(6)P(5),

t



i
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gr(o) = 9(o)/p(1), g'(3) = P(a)®(3)/P(1)P(3),
g'(8) = yb(8)/P(2), gr(7) = -yp(5)4(7)/P(2)P(6),

we may re-state Theorem 2.1 in the form:

#H
H

‘THEOREM 2.2  We have
yf(y13)¢'(12) =m/F- +( 61 -m' - 422 1' +99m »%2+
+13(30 1-15m'+3n+52 -1'+156m+6n*)/F o+
+132(35 1-22m'+4n+39 1'+1O1m+11d)/F4+
+133(17 1-12m'+3n+13 1'+ 34m+7n’)/F5+
+13%( 4 1- 3m* +n 42 1'4+_ 6m+2n")/F%+

+134( 5 1- 4m'+2n +1'+ 6m+3n“)/F7,

yE(y 13 (9)=3m/F

+

( 3 1-33m'+39n-15 1'+225m - )/F%+
$13(13 1-81m'+67n=-45 1'+281m-2n")/F 4
" 4132(12 1-64m'+46n-41 1'+164m-4n')/F 4

#133( 5 1-25m'+16n-18 1'+ 52m-3n')/F°+
+134( l1- 5m'+ 3n ~4 1'+ 9m- n')/F6+
#13%C 1- em'+ 3n -5 1'+ 9m-2n')/F,
and these equations still hold if @'(12) or #'(9) is replaced
by #'(s) for values of s occurring in the first or the
second row of the following table respectively provided

that 1, m'y, n, 1'ym, and n', are inteéchanged according to

this table:
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S 1 12 4 11 0 8
s 10 9 5 2 3 7
n' 1 m' n 1’ m

-1 m' | -n 1* [ -m n'

m' n 1 m n' 1

-n 1' | -m n' |[-1 m'

I m n' 1 m' n

-m n' !l -1 m' | -n 1

We emphasise that for any particular value of s the equation
given in Theorem 2.2 is simply the equation given in Theorem
2.1 multiplied by 1, m'y, n, 1'y m, or n'; the former equation,
of degree O in the P(a), becomes an equation of degree -1 in
the P(a). Although in Theorem 2.1 each I(s) is expressed in
terms of only two variables, such as A and-1/K, the two variables
are different for different values of s. In Theorem 2.2 six
variables are needed, but they are the same for all the-i(s),
and moreover, unlike Theorem 2.1, the expressions aré
homogeneous in these variables.

3. In this paragraph all congruences are modulo 13.
We state and provet

THEOREM 3.1 We have
6P(6)8(6)/P(3)-5yP(0)/P(5),
6P(2)9(6)/P(1)+2yP(0)/P(6),

e et
~ ©
[} n
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b(2) = -5P(3)0(6)/P(2)+8P(0)P(5)/P(2)P(4),

B(3) = 5P(6)B(6)/P(4)+ayP(0)P(3)/P(4)P(5),

(4) = -6p(5)8(6)/P(a)+6P(0)/P(2),

F(5) = -5y 'P(5)9(6)/P(1)+3y 'P(0)P(4)/P(1)P(2),
8(6) = -2p(0)/£%(y),

&(7) = syP(1)§(6)/P(5)+2P(0)P(6)/P(3)P(5),

B(8) = -6yP(1 Q(e)/P<6)—4P(0)/P(3)

0(9) = -5P(4)P(6)/P(6)-6P( 2)/P(1)P(6),

b0 = sP(2)§(6)/P(3)+yP(0)P(1)/P(3)P(6),
B(11) = 6P(3)J(6)/P(5)+3P(0)/P(4)
§(12) = -6y "P(4)8(6)/P(2)+y 'P(0)/P(1)

We note that the form of these congruences is analogous
to that of the corresponding results for g = %, 7, and 11,
given as Theorems 1, 2, and 3, in (ASD). There is a basic
difference only in so far as §13(6) £ 0.

Now, the congruence for-@(b) follows immediately from
- (1.18) {since f(y13)=P(O)§. Substituting for @'(412) from
(2.25) in the first equation of Theorem 2.2 we obtain

35 (y')F(12)/P(5) = m/F + (6 l-m* + 22 1'+ 99m)/E2,

which may be written in the form

§(12) = -y _JL_ O 6 1-m'+22 1°+99m
= ) P(1) f (y) m-1'

Thus, comparing the congruence for @(12) in the theorem with

this congruence {using the congruence for §(6)}, we see that



the former is valid {f
y 2% (y)/P2 (0)

which equation may be written as

(3.1) y'2f4(y)/P2(o) s =5/1 +3/m* - 6/n + 1/1' - 2/m -4/n",

using (2.16) and (2.16) multiplied through by kK. By a

i

1/1 - 6/m' - 99/1' - 22/m

similar argument we may show that for each of the other five
s of the group containing s = 12 the validity of the
congruence in the theorem depends only on the validity of
(3.1) multiplied through by some constant. Further, for
the remaining six s we'find, using the preceding process, that
to prove the congruences in the theorem we need again only to
show that (3.1) holds. We prove (3.1) as follows.
Writing
X = -5/1 -6/n - 2/m
we have, letiplying through by 1 and using (2.11) and (2.12),
‘1X = -5 - 6AB - 2A
which using (1.12) becomes
(3.2) 1X = 4A + 1.
Similarly we may obtain
(3.3) nX = - 3C - 4,
(3.4) mX = - B + 3.
Multiplying together the last three equations we have

1nmx3 = - ABC + 3[AB]+ 4[A] + 1,
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and by (1.5), (1.15), (1.16), and (1.17), the right-hand side
of this equation is congruent to -F so that, squaring both
sides of the equation,

=y 2% (y)/Pt(0);

but from the definitions of 1, n, m, and ¥,

12n2m2x6
12n2n? = yTR(0)K3/E(y),
hence
X6 = y_9f5(y)/P5(0)K3s
or since f13(Y) = P(0)
x? = y2¢%(y)/P2(0)K,
where the value of the coefficient of the lowest power of
y in the expansion of each side of this equation is examined
to determine the appropriate root. By wvirtue of (1.17) we
may write the last equation in the form

X% = y 24 (y)(1/x + 5)2,

whence

(3.5) X “Te2(y)(1/K + B),

il

Y
.where the sign of the coefficient of the lowest power of y
oqfeach side of this equation is examined to determine the
apéropriate root. Now, the right-hand side of (3.1) is

congruent to (5K + 1)(-5/1 - 6/n - 2/m), i.e. to (5K + 1)X,
-1f2

and by (3.5) this is congruent to y (y)(1/K - Kk - 3) which

equals y-2f4(y)/P2(O) by (1.17). Thus (3.1) holds. This

completes the proof of the theorem.

It would be possible to prove Theorem 3.1 by either of



the methods used to prove Theorems 1 and 2, and Theorem 3, in
(ASD). Indeed the congruences of Theorem 3.1 were originally
derived from other more complicated congruences which were
found by Dr. Atkin using the method of Theorems 1 and 2. Itis
because the above congruences for the @(s) were discovered
before the identities given by Theorems 2.1 and 2.2 that I
was able to assign convenient variables to particular J(s)
for the purpose of these two theorems.

4, The values of the rbc(d) for g = 11 proved in (AH)
were actually found empirically; for g = 13 we use a similar
method.

Putting b = 6, 5, 4, 3, 2, 1, and U, in equation (6.2)
of (ASD) (with g = 13), and b = O and 3 in equation (6.3)
of (ASD), we obtain respectively

S(6) = 0, S(7) = =-s(5), - 5(8) =-5(4)
(4.1) s(9) = -s(3), s(10)= -s(2), S(11) =-s(1),

$(12)= -5(0), S(13)= —f(x)+5(0)+1, S(16)=x"2f(x)+S(3M1,
and it is easily seen that there are essentially only six

distinct S(b), which we take to be S(0) to S(5).

We write
@© n
N. = N_(x) = Z.N(b, 13, n)x ,
b b
n=0
Nbc: Nb - Nc’

so that by (6.10) of (ASD)
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(4.2) Nbczdio rbc(d)x .

Then by (2.13) and (6.1) of (ASD), and
f(x)Ng, = {s(0 13)}-{st1)+s(12
F(xIN,, {s )+ ( 12)} -{'s(2)+s(11
f(x)N s ( 1)}-{s(3)+s(10

ey (Mg = (s(2s(10)-(s(2)s
F(xINy, = {s 3)+5(10)}-{s(4)+s(9
f(x)N,, = {s(4 9)} -{s(5)+s(8
F(x)Ng, = {s(5)+s(8)} -{S(6)+5(7)

and putting m = 2, 64 3, 1, 5, and 4,

(4.1) above,
)}=-f(x)+35(0)=-S(1)+1
)}=-s(0)+2s(1)-s(2),
)}=-5(1)+25(2)~-5(3),
)} =-s(2)+2as(3)-s(4),
8)} =-S(3)+25(4)-5(5),
} =-5(4)+25(5),
in (6.7) of (ASD) we

obtain using (4.1) the following expressions for S(O) to

-S(%), respectively.

s(o)zf(x){y2 Eé%g%)+1}

P(3)P(6) 2

-g(2) 1+P

) x5

R A
(1)P(2)P(5) P(3)
6) 12 _P(5) ]

SPH)NS) 9 P(1)P(
X PZ(2)P(6) TX Y P(2)P(4)P

S(1)=f(x){x4y4“§%%8%l}
2 B
P(5)P(6

S(2)=f(x){x 2y? 411*91}+g (3)+P2

~g(6)+P2(0){-x"

S_Y

6 3 P(1)P 9 P
X P(a) XY P(5)P2(6) T B(

(0){ =xy

(5) ¥ *  P(2)P(o)
P(3)P(5)

-

P(1)P(2)P(6) T
(4)P(5) -
2)P(3)P(6))"
2 _P(1) 4 _P(4a)P(5)
P(3)P(4) " P(1)P(3)P(6)

4.4) -y £é23§P(4) ¥ x11,p?2) -l p(?gﬁgggggs)},
S(3)=f(x){—x11y-1-x11 3%%3%)}_9(1)_1+P2(0){x3 FT%%%%ET*X/ F%?T_
OEBIEGL L, REIE vt Elelel

5(4)=f(X){-xy4 g%%g%l}-g(5)+P2(0){‘XY2 p(§§§3§§3(0> ¥
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{4 P(1)P(6) 7 _P(3)P(5)
XY P(2)P(3)P(4) ¥ P(1)PZ(4a)

y 9 _P(3) 10 2 _P(1)P(2) }
P(3)P(4)P(5)

Now, as with q =11, it is clearly convenient to avoid the
terms involving Z(m, O0) which occur in (4.4). For example,

from (4.3) and (4.4) Nyq contains a term

2 £(2,0) 4 4 5(6,0)
-1 + 3{)’ P(O) + 1}-)( Y P(O)

2 2(2,0)

i.e., in view of (4.2), ro1(0) contains a term 3y P(0) + 2,
and ro1(4) contains a term -y4 é%%g%). Also, the forms of

the rbc(d) for q = 5, 7, given in (ASD), and for g=11, together

with the congruences for the § (b) given in Theorem 3.1,

13
suggest that the values of the rbC(O), for example, will involve
either a factor P(6)/P(3) or a factor y/P(5); it is found to

be preferable to consider the factors of the former type. We
accordingly (following the case of g = 11) define

Rbc(d)(o £ d £ 12), the "normalised" form of rbc(d)’ for g=13
as shown; clearly, from the definition of rb(d) and the

relation N(m, g, n) = N(g - my g, n) given in (ASD), we may

consider b and ¢ to lie between O and 6 inclusive.



Rpq(0) = P(3){r,,(0)-3y°5(2,0)/P(0)-2}/P(6),
Ryp(0) = P(3)(r,,(0)+y25(2,0)/p(0)41}/p(6),
Ry, (1) = P(1){ry,(1)-y*2(5,0)/P(0)}/P(2),
R,s(1) = P(1){r, (1)+2y%5(5,0)/P(0)}/P(2),

Ry (1) = P(1){rg, (1)-y*2(5,0)/P(0)}/P(2),

Rpqa(4) = -P(a){r_, (a)+y*2(6,0)/P(0)}/P(5),
R,,(4) = -P(a){r ,(4)-2y*2(6,0)/P(0)}/P(5),
Ry3(4) = -P(4){r,,(a)+y?2(6,0)/P(0)}/P(5),
R,5(8) = -y 'P(6){r, (8)-y’2(4,0)/P(0)}/P(1),
Rgg(8) = =y P(6){r, (8)+2y°2(4,0)/P(0)}/P(1),
Ryp(11)= P(5){r,,(11)-2(1,0)/P(0)-y "} /P(3),
Ry (11)= P(5){r ,(11)+22(1,0)/P(0)+2y  '}/P(3),

R,s(11)= P(5){r, (11)-5(1,0)/P(0)-y™"}/P(3),
12(12)= =yP(2){r ,(12)+y?2(3,0)/P(0)}/P(4),
R..(12)= -yP(2){r23(12)—2y22(3,o)/P(o)}/P(4),
Ry, (12)= -yp(2){r34(12)+y2i(3,o)/P(o)}/P(4),
and, for all other values of b and ¢ with ¢ = b + 1,
Ry (0) = P(3)r, (0)/P(6),
Ry (1) = P(1)r, (1)/P(2),

R, (2) = -P(2)r, (2)/P(3),

R, (3) = P(a)r, (3)/P(6),

R .(4) = -P(4)r,  _(4)/P(5),
Ry (5) = -yP(1)r, (5)/P(5),
Ry (6) =1 (6),
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Ry (7) = vy TP(5)ry (7)/P(1),
R, (8) = =y 'P(6)r, (8)/P(1),
Ry (9) = -P(6)ry (9)/P(4),
Ry (10)= P(3)r, (10)/P(2),

R, (11)= P(5)r, (11)/P(3),

Rbc(12)=.-yP(2)rbC(12)/P(4),

and, for all remaining values of b and c, we use the relations
Rbc(d)+R_ (d) = Rbe(d)’

R b(d) =—Rbc(d).

It will be noticed that in the above definitions the

coefficient of any rbc(d) is precisely the coefficient of

$(d) in the definition of g(d), given in 8§ 2.

We might now proceed as for q = 11, and use (4.3) and
(4.4), together with the congruent form of 1/f(x) given by
Theorem 3.1, to obtain congruent forms of all the Rbc(d)’ as
a first step in the attempt to obtain identical forms. Indeed,
it would be possible to find identical forms directly, by
using the identical form of 1/f(x) given by Theorem 2.1 or
Theoreh 2.2. However, either of these methods would be
extremely tedious, and instead we proceed as follows.

Using (2.13) of (ASD) we determine* each of N to N

01 56’
142

as a power series in x, as far as x In view of (4.2) this

*The divisions by f(x) were carried out by means of a single-
length programme on Durham University's Ferranti -"Pegasus"
computer; further details are given at the end of the Thesis
(page 90 ).



gives us every rbc(d)’ as a power series in y, as far as
y1o, and it is a simple matter to find the corresponding
terminated power series for the Rbc(d)'

We now seek congruences for the R__(d), in the following

bc
manner. The factor P(O)/fz(y) occurring in the congruences
for the (b) given in Theorem 3.1, together with the factor
P2(O) occurring in the expressions for the S(b) given in
(4.4), suggest that each Rbc(d)—congruence will involve a

factor PS(O)/fQ(y). Also, the form of the R d)-congruences

bc(
for g = 11, given in [ 6], and the fact that in (4.4) the
terms in the brackets prefixed by P2(O) are of degree -1 in
the P(a), suggest that each Rbc(d)—congruence will involve a
linear combination of 1, m'y n, 1'y my n', and a fiurther
variable, the further variable being different only for
different values of d and being a multiplicative combination
of these quantities, of degree 1. It is obvious that we may
consider this further variable to be linearly independent of
1, m, n, 1'y m, and n'.

We find, by comparing coefficlents of powers of y in the
expansions of the appropriate quantities (the coefficients are
of course all integral), that in fact, each Rbc(d) appears
to be congruent to the product of P3(O)/f2(y) and a linear
combination of 1, m'y n, 1'y, m, n', and up to two further

variables; the further variables found to suffice are given in
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the following table.

d 0 1 2 3 4 |5 6 7 8 9 10 11 12

K1 | knin'A| K1 | km | km| - | m/K|[m/k]1/K | kn | n'/K|1'/K
Kn|km| - | - | kKt |{- |- -|1/Kl - |- |m/K|n'/K
- Table 4.1

- We draw up a list of apparent congruences for all the Rbc(d)
with ¢ = b + 1. The number of terms found in the expansion

of each Rbc(d) is sufficlent to determine and check the 8

(or less) coefficients involved in each such congruence.
Inspection of 'this list reveals no sets of ccngruent relations

between the R d) for different values of d such as are

bc(
given for g = 11 in (9.1) to (9.14) of (AH), so that we
cannot hope to find identitieé for the Rbc(d) in the way used
for q = 11, Instead wé adopt the following method. ¢

The form of the identities for the §(b) given in Theprem
3.2 suggests that each Rbc(d) may be equal to the sum of two
linear combinations of the type already indicated, multiplied
by Pa(O)/fQ(y) and 13yP5(O)/f4(y) respectively. A difficulty
now arises: we have not found a sufficient number of terms of
any Rbc(d) to enable us to determine the 16 (or less)
coefficients involved in such an identity. We circumvent

this difficulty in a manner sufficiently well illustrated by

the following example.



Writing
U= p2(0)/6%(y), Vo= yP2(0)/ 8y,
so that
(4.5) U = FV,
and noting that for q = 11 the numerical values of the

coefficients involved in the Rbc(d)fidentities are small,

we assume that there is an identity for RO1(O) of the form
Rél(o) = U(-51-3m-3n-21"-2m"'+3Kn)+

{
+13V(f1l+f2m+f3n+f41 +f5

where the U-term on the right-hand side is our congruent form

m‘+f6n'+f7wl+f8Kn),

of R01(O) written so that its coefficients all lie between

+o inclusive, and f1 to f8 are integers. The numbers of

terms found in the expansion of R_,.(0) is sufficient to

o1

determine fl to f, and check the resulting identity.

8
In obtaining apparent identities for all the Rbc(d) we
occasionally find that in the U-bracket a 4, for example, should

be a -9; this presents no serious difficulty. Also, we

should note that for any particular Rbc(d) a certain amount

of transfer between U- and V- brackets is possible. For
example, in the case of ROH(O) we have the relations

(4.6) and (4.7) U(131) = 13V(-3141'-Kf), -U(13n)=13V(-3n+n’'-kn),
found by multiplying (1.17) through by 1 and n respectively and

using (4.5).



We state the result, a complete set of conjectural

values of the Rbc(d) for g = 13, in the form of a theorem,

and then prove that the values are in fact correct.
THEOREM 4.1 We have the following; for each RBc(d)
given, both brackets on the right-hand side involve

1, m'y n, 1'ym, n', and the quantities indicated in Table

4,1, only.
R01(O) = U(f51-3m—3n—2l'—2m'+3Kn)+13V(-2l—2m-2n+m'+n'—Kl),
Ro1(1) = U(-8l+6m+n+l'+m'-2n'-8Kn)+13V(-1+2m+n+l'-m'-n"' -
-Km-2kn),
RO1(2) = U(7m=61"+4m'+4n"'+3n'/K)+13V(3m-21"'+m'+n'+n"'/fK),
Ro1(3) = U(61-9m+3n+m'+7n "' =K1 )+13V(1l-m+2n-1"+m"'+n'+K1),

R _.(4) = U(31=-m+7n+1'+n'-K1+6km)+13V(3n+K1+2km),

R_.(5) = U(51=-3m+3n+41'+n'=-5km)+13V(21l+m+n+n'-2Km),

o1

qu(b) = U(-145m=-6n+31'-m'+2n")+13V(1 +tm-2n+2n"'),

Ro1(7) = U(-1-3n+om'=6n"'+2m'/K)+13V(-2n+3m'-n"'-m"'fK),

RO?(B) = U(-2m-n4+31'-5m'-n'+m' /K)+13V(-2m-n+1"'),

R01(9) = U(3m=10n-1'-2m'+1'/K)+13V(1-3n=1"'-m'+n'+1"'/K),
Ro1(10): U(8l1-8m=-2n-m'+6Kkn)+13V(21-4m-n+m'+2Kn),

Ro1(11): U(m+4n+41'=3m"'-4n'=4n'/K)+13V(m+n+l'=-2m'-2n'-n"'/fK),

R..(12)= U(m=n-61'+3m'+4n'-31"'/K)+13V(m-n-31'+m'+n"');



U(41-m=2n=1'+m'+n'=2K1-Kn)+13V(1l+m-1'-Kn),
U(71+m=-2n-n"+7Kn)+13V(21~-m=-n+Km+2Kkn),
U(=-1-4m=51"+m'+n'+2n'/K)+13V(=-1~m-1"+m'+n"'),
U(=4l+om=4n-m'+n'+2K12)+13V(-14+m=-2n+n"'),
U(6l+m=5n-m'-n"+2K1-3Km)+13V(1=-2n+n'=-Km),
U(=1-3m=7n+41'+n'+Km)+13V(-m-n+1'+n'+km),
U(-1-3m+5n+L'+m'+n")+13V(=-1+2n+1"'),
U(-21+3n-1'+om'=-n'-m'/k)+13V(-1+m+n=-n"'),
U(m+n+41'+2m'+n'-m'/K)+13V(m+n+1'=-m'),
U(-m+9n=31'=2m"'+2n'+21'/K)+13V(=-143n-m'+1'/K),
U(-51+7m=-n+1'42m'-6Kn)+13V(=-1+3m+n+l'-m'-2Kn),
u(-3n+1'-2m'—oﬁ'-n'/K)+13v(—m-2n-n'),

U(l-m+n-1'+3m*'=3n'=-21'/X + n'/K)+13V(n+m'=-n'- 1'/K);

U(51-m+4n+1'°nf-Kl)+13V(2l-m+n-nﬁ+%n),
U{-61+3m-n+3n"'-6Kn)+1+3V(~-21+2m+n+n'=-2kn),
U(-2m+61'-4m'-6n'=4n'/K)+13V(-m+21°-2m'-2n'=-n"'/K),
U(=41+3m+n+m'=7n'+K1)+13V(-1+m+1'-m'-2n"),
U(=-31-5m+m'-K1-Km)+13V(-m=-n'-Km),

U(=-21+10n-31'-2n'+3Km)+13V(-1-m+2n=-2n"'),

‘U(=-1-4n=-1'=-4n"')+143V(-m-2n=-n"),

U(-21-2n+1"'-m'+5n'+m'/K)+13V(-n+m'+2n"'),

U(-1+m=-n=-21"'-4m")+13V{=-n=-1"+n"'),



Ry,(9) = U(-m=9n+41'-m'+n")+13V(1l-m-2n+1'+m"+n'-1"'/K),

R,,(10)= U(71-5m+3n-m'+5Kn)+13V(21-2m-1"+m"'+2Kn),

R23(11)= U(-m+3n-61'-3m'=5n"'-m'/K+5n'/K)+13V(-14n=-1"'-
-m'-n'+m'/K+2n"' /K),
R23(12): U(l4m=n=41'=3m'-n"'+1'/kK-2n'/K)+13V(-m-pn=-1"'-

-m'-n'+1'/fK);
R34(O) = U(-31-6n+1"')+13V(-1-n+l'+n'-Kn),
= U(6l+m+6n-n'=-Km+5Kn)+13V(21-1"'-n"+2kn),
R, (2) = U(8m+31'+m'=2n'+n'/K)+13V(1+2m=-n+n'/K),
R34(3) = U(=-1-7m-n+3n'=-K1)+13V{(-2m+m'+n'),
4) = U(-51+3m+5n-1"'"-m"'+5Km)+13V(-21+n+2Km),
R34(5) = U(51+5m=11n=-31"+n"'=-5Km)+13V(2142m=-3n-21"'+n"'-Km),
R34(6) = U(3m+4n=-21'+m'+2n')+13V(2m+n=-1"),

U(l4+n+1*43m*'=3n"')+13V(n+l'-n"'),

el
w
1N
—~
~J
S
1

Ry,(8) = U(1-3m+n+61'4+m'+n'=m'/K)+13V(-m+n+21'~n"'=-1"'/K),
9) = U(2m+8n+61'+4m'-4n'=41'/K)+13V(2m+tn=-2n'-1"'/K),

R, (10)= U(=414+2m=4n=21"'+m'-3Kn)+13V(-21+m-n-2kn),

Ry, (11)= U(=1+m=3n+41'+5m'+n'+2m' /K =2n"/K)+13V(1+m-n+1"+
+2m'+n'-m'/K-n*/K),
R34(12): U(-14n-2m'+4n'%31'/K+n'/K)+13V(m+n-m'+2n"'+1'/K);



w
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R45(11)=

: R45(12)

Rge(1) =

_3 3.—

U(=-51+2m+6n+n'+2K1) +13V(=1+m+n+Kn),
U(-351-m+4n-1"=-2n"+2Km-3Kn)+13V(-21-m+n+1'=n'-¥Kn),
U(1-10m=51'+3m'+3n"'/K)+13V(-1-2m+n=1'+2m'+n'/K),
U(-6l+6m+2n+5n'-Kl)+13V(-l+2m+n+n'le),

U(=31=-2m=7n+1'+n'-7Km)+43V(m=-n+n'~K1-2km),

UE61+10n+n'+5Km)+13V(=-31+3n+1"'+2km),

U(21-5m=3n-m'+3n")+13V(=-2m+m'+n"'),
U(l=n+l'=-m'=5n'+m'/K)+13V(1l=-n=-n"'),

U(4m+51'-2m'=n'=-1'/K)+13V(1l+m=-n-m'),

U(-2m=5n=-21'=-2m"'+21 ' /K)+13V(-2m=n+1"'),

U(-2n+1'+m'+2Kn)+13V(1l-n+Kn),
U(l-m+2n+31"+2n'%m' /k=4n'/k)+13V(-m+n+1'=m'-n'-n'/K),

U(-m=n+61'+5n")+13V(-m+21"'+m'+n'=1"'/K)}

U(=61+m+2n=21"'=n"'+K1)+13V(-21=-n"),
U(21+2m+2n+1'4+2n'=-Km+Kn)+13V(1+m+n+n'+Kn),
U(7m+1'=4m'=5n'=4n"'/k)+13V(1+m-n-2m'-2n'-n"'/K),
U(51=6m+n=6n'=K1)+13V(1-2m-2n"'),
UE31=-2m+5n=n'+5Km)+143V(=1-2m+n+1'-n'+Km),
U(31+6m=6n+51"'=2n"'=3Km)+13V(214m=2n+1'=-m'=km),

U(4m+n+31'+m'=4n")+13V(1+m+l'-m'~n"'),

U(31+n521'+4m'+7n'-m'/K)+13V(n=-1"+m'+n'),

U(=3m=n=-1'=3m'+2n'+21'/K)+13V(-m+n+1l'+n'),



R..(9) = U(m+2n+21'=3m " +4n'+21'/K)+13V(m+tn-m' +2n'+1"'/K),

56
R56(1o): U(-3144n+1'-2Kn)+13V(=~-1+2n+1"'),
R, (11)= U(m=-n=51"+5m'+6n+5n"'/K)+13V(m=-2L"'+2m*+2n'+n"' fK),

: R56(12)= U(=-1+m+n+31'+4m +n' =41 /K)+13V(m-1'/K-n"'/K).

The following relations will be required in the proof of
this theorem for systematic simplification of expressions

involving 1, m'y, n, 1', m, and n',

(4.8) to (4.10) 1m/n -1-m, mn/1 = -m=-n, nl/m = -n-1;

(4.11) to (4.13) 1°/m = -F1-31+m-n, m?/n=-Fm-3m+n-1,

n2/l = -Fn-3n+1-m;

(4.14) to (4.16) 12/n Fl+21-m+n, m2/l = Fm+2m-n+1,

n2/m = Fn+2n-1+m;

(4.17) to (4.19) K1 = -F1-31+1', Km = -Fm=-3m+m', Kn = -Fn=-3n+n"',

(4.20) to (4.22) 1Yk

F1'+31'+1, m'/K = Fm'+3m'+m,
n'/K = Fn'+3n'+n;
F(31-K1)+101-31%, K°m=F(3m-Km)+10m=3m"',.

K%n = F(3n-Kn)+10n-3n"',

(4.23) to (4.25) k“1

H

(4.26) to (4.28) 1'/K2=F(31'+1'/K)+101'+31,
m'/K2=F (3m' +m'/K)+10m ' +3m,
n'/K%=F(3n'+n'/K)+10n"'+3n.

(4.8) to (4.16) follow from (2.16) and (2.17), (4.17) to

(4.22) from (1.17), and (4.23) to (4.28) from (4.17) to

(4.22) respectively; (4.8) and (4.11) have already been given



as (2.18) and (2.19) respectively. We shall also need the
relations

(4.29) to (4.31) a

1/m=¥, b = m/n-K, ¢ = n/l-K,

(4.32) to (4.34) a'

1'/m* + 1/K, b' = m'/n'+1/k,

c' = n'/1'+1/K,
arising from (1.6) to (1.11) and (2.11) to (2:13).- Of course
all of the equations (4.8) to (4.34) remain valid when
ly, m, n, 1', my and n', are interchanged according to
(2.14) or (2.1%) and a, b', ¢, a', b, and ¢', are interchanged
cyclically. Finally, the following will be required

-P2(0)1'b = P2(0)(1+1'+m'),

29(1)-g(2)+1

2g(2)-g(4)+1 = P2(0)mc' = P2(0)(~-m=n+m"'),

2g(3)-g(6)+1 = ~P2(0)m'c = P2(0)(m+m'+n"),

(4.35) )
2g(4)+g(5) = P(0)n'a = P“(0)(-n-1'=-n"'),

P2(0)1bt = P2(0)(~1-m+1'),

2g(5)+g(3)

29(6)+g(1) = P2(0)na' = P2(0)(~1-n+n');

these relations arise from (ASD), Lemma 8 (with g = 13), and
(4.29) to (4.34) above, using (Aa8) to (4.10) (divided
through by K if necessary).

The proof of Theorem 4.1 is similar to those of (ASD),

Theorems 4 and 5, and (AH), Theorem 6. If we write



Ngq = N01+{—3y22(2,0)/p(o)-2}+x4{y4z(6 0)/P(0)},

Nip, = N12+{Y22(2,0)/P(O)+1}+x { -2y 45 (6 o)/P(o)}+x {ny(a,o)/x@}

Né3 = N23+x4{y42(6,0)/P(0)}+x ‘{-2(1,'0)/P(O%'Y_ }“"
+x12{ -2y“x(3,0)/P(0)},

N;4 = N34+x{-y42(5,0)/P(O)}+x11{22(1,O)/P(O)+2y_1} +

+x'%{y?%3(3,0)/P(0)},

Nio = N45+x{2y4z(5,o)/P(o)}+x8{-y32(4,0)/P(0)}+

+x11{—2 (1,0)/P(0) -y'1},

. 4., v, 8
Neo = Ngo+x{-y 2(5,0)/P(0)}+x {2y z2(4,0)/P(0)},
then in view of (4.2) and the definitions of the Rbc(d) we
have for any fixed values of b and ¢ with ¢ = b + 1

(4.36) N'=P(6)R,/P(3)+xP(2)R P (1) )-x2P(3)R /P(2)+x 35 (6)R ,/P(4)-

-x*P(5)R /P<4)—x5y‘1

(5)R /P 1)+x R +x yP )R /P 5)-
10P(2 R1O/P 1)+
P(4)R12/P(2

where for conVenience the suffix bc is dropped, and R(d) is

—x8yP )R /P 6)-x op 4)R9/P

P(3 11/P 5)-x 2

written as Rd. Thus writing
12
IN'/P(0) = 2t x°
d=0

we can use (4.36) and the expression for f(x)/P(0) given by

(1.1) to find each ty as a linear combination of Rd in which

each Rd occurring is multiplied by some multiplicative

combination of the P(a); for example we find that



t, = -P(2)P(6)(R_+R,)/P(1)P(3)~P(3}P(4)R /P (2)-
-yP(3)P(6)R /P(4 (5)+y2P(1)(R6~R8)/P 6)+
+yP(2)P(5) R1O/P (3)P(4).

If in this example we define T the "normalised" form of

2’

t by

29
T, = -y 2P(6)t,/P(1)
2 2
then we find that

T2=-B(RO+R1)/K-BCbR2—ABo R3-R6+R8—R1O/k,

and the coefficient of each Rd in this eguation is equal to

a simple expression in 1, m'y n, 1'y, m, and n', as follows:
b b4 b

-B/K = -m'/n by (2.12)3

-BCb = -m(m/n-k ) by (2.12),(2.13), and (4.30),
= -m(-1/m-n/1-1/k=-1)/1 by (1.17) and (2.17),
= m'/1-n/1+1 ' by (2.10)3

-ABc'= -1'/n-1 by (2.11),(2.12), and (4.34).

By proceeding in the above manner for all the td’ suitably

normalising the td in each case, we arrive at the following:

T, = y* Tty =m(R*R.)/14E(R 4R, )/n+n(R +Ro V+R,,
T, =y 2p(5)t,/P(1)==m"Ry/1  +(=1/n-m'/n)(R +R, )+
-m/n+K)R +(-l/m-l/K)(R5+R9)+R7,
T, = =y 2P(6)t,/P(1)==m (R +R,)/n+(m'/1=n/141)R +
-1’/n-1)R3-R6+R8-R1O/K,
Ty = =y 'P(8)ty/P(4)==1"R /n+(=n/m-1"/m}(R4R, )+

+(-l/m+K)R7+(—n/l-1/K)(R3+R2)+R9
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4 y—1P(3)t4/P(2)=nR8/m“+(-m'/L'+n/l‘)(R12+R4)+

-n'/1'-1/K)R +(-m'/n'+K)(R2+R5)+R1O,

—
1

5 y-1P(5)t5/P(3):—n R R, )/ 1+(n '/m-l/m+1)R9+

-m'/1-1)R.-R +R,,-R /K,

5 76
@37) Ty = )t /P (R +R )/m+ 1'/n- m/n+1 R+
+(-n'/m-1) R,g~Rg*tR,5-R /K,
T, = P(3)t7/P(6) =I(R11+R8)/m'+ —l/n'—m'/n'+1)R5+
+(n/m'-1)R2--R6+RO+}(R7
Tg = P(1)t8/P(2) =n(R8+R12)/1'+(-n/m'—l'/m'+T)R3+
+(m/1'—T)R7-R6+R1+KR9,
Ty = -P(2)t9/P(3)=—n’R4/m+(-m/l-n'/l)(Ro+R8)+(—n/l+K)R9+
-m/n-1/K)(R1O+R7)+R2
T.0= P(4)‘610/P(6)=1R11/n'+(-n'/m'+l/m“)(-R8+R1_)+

-1'/m =1/K)Re+(=n"/1"+K) (Rg+R, ) +R,

T Tyq= cPLA)E L /P(B)=m(RSHR, ) /04 (=m/ L ent f1 )R,

+(l/n'—1)R9-R6+R4+KR2,

T, .= —yP(1)t12/P(5):mR12/1'+(—L'/n'+m/n')(R11+Ro)+

—m'/n'-1/K)R1O+(—l'/m'+K)(Rj+R3)+R5

- We observe that, apart from To, the-Td fall naturally into
two groups of six given by d = 1, 3, 4, 9, 10, 12, and d = 2,
5, 6, 7, 8, 11, respectively, and that with the normallsing

factors as chosen, interchanging either T,, T T T T

17 74 73 T2 9’

and T1O’ or sz TB’ Téi T11, T5, and T7, cyclically
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corresponds to interchanging RO, R R R R and

R8’ 19 12, 4’ 119

R R R R R cyclically (leaving R, unchanged)

2’ "3 "7 0! R9’ 5° 6

if we interchange 1, m'y, n, 1', my, and n', according to

(2.14) or (2.15); the two groups of six R, occur naturally

d
in Table 4.1. TO is invariant under these interchanges. We
might have anticipated such a situation as an aid in finding
the identities of (4.37) (cf. the proofs of Theorems 2.1 and
2.2).

We now find alternative expressions for the Td. This

time each pair of values of b and ¢ (with ¢ = b +-1) is

considered separately, so that we have 78 T_ (d) (in the

bc
obvious notation) to determine, viz. To1(d) to T56QU for
d = 0 to d = 12. These expressions are found as in the

following examples.

to1(9) (again in the obvious notation) is by definition

the coefficient of x9 in £( )N' /P , thus we have

(4.38) to1(9)=P(O)[ 3yP(1)P(6)/P(2)P(4)P(5)=-P(4)P(5)/P(2)P(3)P

from the definition of N61, the expression for f(x)N01 given

in (4.3), and the values of S(O) and S(1) given in (4.4); of
course the terms involving Z{m,0) all disappear. Multiplying
(4.38) by -yP(2)/P(3) we obtain

L(9)

P(O)(3m"a+n'c),

P(O)(-3m+41'=-m'-n"'/K)

(6)f

P(0)(31'=3m+nn'/1-n) by (4.29) and (4.31),
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by (4.13) (divided through by K) and (1.17). The method of
this example applies when d # O. When d = O the procedure
is slightly different.

t01(0) is the coefficient of x° in f(x)N61/P(O), and
proceeding as in the previous example we obtain

te,(0) = {-3g(2)+g(6)-2}/P(0).
Since T61(O) = y-1t°1(0) this equation becomes

yT 0) = P(O)(-1+m+2n+1'=-2m'+n")

01(
by‘means of relations (4.35).

A complete set of alternative values of yTbC(d)/P(O) is
given in Table 4.2 at the end of this Part (page 46).

By equ?ting our two expressions for each Tbc(d) we now
havé, for any fixed values of b and ¢, a set of 13
simulfaneous linear equations for Rbc(d)(d:O to 12). Moreover
these equations have a unique solution; this may be seen by

proving that a determinant is non-zero, but it is easier to

observe that the equations are in fact the necessary and

12
sufficlient conditions that 2 Rbc(d)xd be the quotient of
d=0
two given power series. Accordingly to prove Theorem 4.1 all

that remains 1s to show that for (b, 0 =@, 9 to®, 6

respectively the values of the R C(»d) given in the theorem

b

satisfy these equations. 1In other words we need to show that

for each of the 78 Tbc(d) the value found by substituting for
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the Rbc(d) from the theorem in the appropriate equation of
(4.37) agrees with the value given by Table 4.2, This is
tedious but straightforwérd; we proceed as in the following
example.

Consider TO1(1) as glven by substituting for the Ro1(d)
from the theorem in the second equation of (4.37). Each
Ro?(d).is expressed in the theorem as the sum of two brackets,
one multiplied by U and the other by 13V. We write down and
simplify {by means of (4.8) to (4}28)]1the total contribution
of the U-brackets and the total contribution of the V-brackets
separately, and combine the resulting two expressions. - The
contribution of the V“brackets is
-m'(-21-2m-2n+m'+n'=k1)/1+(=1/n-m'/n)(-143m=-21"'-Km-2Kn)+
+(=m/n+K)(3m=2L'+m' +n'+n'/K}+(~-1/m=1/K)(31+m=2n=1"=m'+2n"' -2Km+
+1/K)+(=-2n+3m'=n"'-m"' fK)
= (—3l+0m—n—2l'+3m'+2n')+(4Kl+3km+l'/K-m'/K-Qn'/K)+(—l'/k2)+

+(2/K2+3/K-3+K) Im/n+(=1/K°+2/K)mn/1+(=2/K+2) nl/m+
+(=1/K241/K=3)12/m+(=a/K=2)m2/n+(2/K+1) 12/ n+(~1/K°+2/K)m? /1
and this expression, on substituting for L'/Kz, im/n, mn/1,
nl/m, 12/m, m2/n, L2/n, and m2/l, from (4.8) to (4.16) and
(4.23) to (4.28), reduces to

F(4l1+2m=-21"+6m'=m'/K)+(81+11m=-n-61"'+13m'=-3n"' )+

+(3k1+2Km+1'/K=-5m' fK+n' fK)



which expression, on substituting for each term in the third
bracket from (4.47) to (4.22), reduces to

(4.39) E(1-1"+m'+n'-m'/K),

only terms containing a factor F remain. The contribution of
the U-brackets is
-m'(-51-3m=-3n=-21"-2m'+3Kn)/L+(~1/n-m'/n)(-81+7m-51"'+4m'+2n"'~
-8Kn-31"'/K)+(=m/n+K)(7m=61"'+4m'+4n'+3n'/K)+(-1/m=-1/K)(51-

-7n+31'=2m'+n'-5Km+1'/K)+(-1-3n+6m'-6n'+2m'/K)

=(-71+17m+n_51'+7m'+4n')+(13w1+7KmL3L'/k+m'/k-n-/K)+(—L-/k2)+
+(3/K3+5/K2+1O/K—7)Lm/n+(3/K-3)mn/L+(—1/K+7)n1/m+

4 (=1/K23/k=5)12/me (=4 /K% =11 /K=7)m? S+ (3 /K2 +5/K+8) 12 /n+
+(2/k2+3/k)m2/1

and this expression, on substituting for leQ, lm/n, mn/1,
nl/m, 12/m, m2/n, L2/n, and m2/l, reduces to

F(131+7m+51'+14m'+31'/K+6m' /K)+(281+35m+3n+91'+25m'-4n")+
+(13Kl+7Km+71'/K+8m'/K-3n'/K)+(—3L'/K2-3m'/K2)

which expression, on substituting for each term in the third

and fourth brackets from (4.17) to (4.22) and (4.23) to (4.28)
respectively, reduces to

(4.40) F(31'+13m'-3n'+3m'/K)+13(-1+m+l'+2m'=n"),

only terms containing either a factor F or a factor 13 remain.

Multiplying expressions (4.39) and (4.40) by 13V and U
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respectively, and adding, remembering that FV = U, we obtain

01(1)

FU(31'+13m'=3n"+3m"'/K)+13U(m+3m'-m"' /K),

the following expression for T

and this expression, on substituting for m'/K in the second
bracket from (4.21), reduces to

FU(31'=3n'+3m"'/K).

1

Since FU=y 'P(0), this is the same as the value of TQ (1)

;
given by Table 4.2.
We perform the above verification for each of the 78 Tbc(d);

the working is always essentially the same as the above, and

is therefore omitted. This completes the proof of Theorem 4.1.
As in the case of q = 11, there are certain linear
congruence relations (but no identities) between the rbc(d) for
a given value of d when g = 13; if we write
s,(d) = r_ (d)-6r,,(d),

s,(d) = 1 ,(d)-5r, (d),

53(d) = r23(d)-4r56(d),
s,(0) = 1,(d)-3r,,(d),
s (d) = ro(d)-2r,, (d),

we have, modulo 13,

>
L



~4 4 -

5,(0)-65,(0)+5s (0)

3 5
52(1)+3s3(1)—5s4(1)-555(1)
s,(2)
51(2)+s2(2)—553(2) +55(2)
s,(3) -54(3)

52(3) +53(3)—3s4(3)-655(3)

4)+4s 4)-554(4)—05-(4)

3( 5

s (5)-253(5)—454(5)-255(5)
(6) —555(6)
(o)

52(6)+5s (6)+354(0)+39

3
(7)+6s3(7)

5

s (7)--352

s (7) -53(7);354(7) -55(7)

5,(9) ~65,(9)

s.(9) -4s 9)+2s4(9)—655(9)

3(

51(1O)+3sé(10) -555(-10)

52(1Q)+6s3('10)+554(10)-s (10)
(11)

(12

5

s1ﬁ1)+55 (11)-3s 01)—35401)-3s

3
(12+5s302-5s4ﬁ2+35

2 )

51(12)+2s

2 5

T (TR L I X N L LA L (1 11 TV 1 o S T TR TR T T

i

0.

The above congruences with each rbc(d) replaced by the corresponding

R

d we simply divide through by the normalising factor contained

R

bc(

bC(d) (the coefficients of the r

d) follow immediately from Theorem 4.1,

b

and for each value of

in the

C(d) in the congruences- are such
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that the terms involving Z(m, O) disappear).

We may note that since
o o) ® 12
B(d) =2 p(13n + d) =2 2 N(b, 13, 13n + d)y"
n=0 n=

@ n 6 n
= 3 N(O, 13, 13n+d)y +2 2 - 2 N(by13,13n+d)y
n=0 b=1-n=0

{using the relation N(m, q, n) =N(g - m, g, n) given in (ASD)}

= ro1(d)+3r12(d)+5r23(d)+7r34(d)+9r45(d)+11r56(d)(modo13)
{using (6.8) and (6.9) of (ASD)}, Theorem 4.1 may be used in an

alternative proof of Theorem 3.1.
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Table 4.2
¥T, (d)/P(0)
Pg; 0,1 1,2 2,3 3,4 4,5 5,6
O] -1+m+2n+ 21-m+m' - -l+m-n+ -1l-m+n- ‘l+m+m'+n -n-1'-n"
+1'-2m'+n'f -2n' +m'+2n' -2m'-n'
1] 31'-3n'+ -1'-m' /K | 2n' 1-2n" -214+2n" l-n"
- +3m*' /K
2 ‘3m' -m' -0 -m+1'+m’ 2m-21'=2m'| -~m+l'+m!
31 n-m' -2n+2m' n [ -m-n'-1'/K | -m'+2n'+ m'-n'=-1'%
1 +21' /%
41 -1 31+m' -31-2m’ 1+m’ 1-m+Kn -21+2m-
~-2Kn
513n-3m'-4n" -n+m'+3n'| -n' 0 0 0
6 =141'+n' |21-21'-2n'|] =-141'+n' -1 21" -1
71 C 0 -1 21 n+1' -21-2n-21"
81 0 -m-n-n' 2m+2n+2n' -m-n-n' -n 2n
9 1-3m+41"'- m=-31'+2m'+|1'-m'-n' /K| O 1 -21"
-m'-n'/K |[+2n'/K
10] O 0 m-n+K1 -3m+2n- 2m=-n-n'+ ‘m+2n'
-2kl +k1
j1 0 m l-m+m"® -21-m-2m' l+m+m’ 0
12| 3n "1-2n=-Km -21+n=-1"'"+|1+n+21"'- -n-1"' 0
+2Km -Km :
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PART 2

g = 17 throughout this Part

5. We write

a, = -x"P(2)/P(1), a, = -x""2p(6)/P(3), a, = x*°P(1)/P(8),
a, = ~x"*P(3)/P(7), o = O (8)/P(4), = -x""R(7)/P(5),
a, = x 'B(a)/P(2), ag = x°P(5)/P(6);

then by (ASD), Lemma 6 (with q = 17) we have

-12 17, _
(5.1) -x f(x)/f(y ') = a1+a2+a3+u4+05+a6+a7+a8+1.

In (5.1) we replace x by WX where wr(r = 1 to 17) are the
seventeenth roots of unity, and multiply together the

seventeen resulting equations, obtaining
17
-12.18 18, 17, _ -7 -12 28 14 -10
(5.2) -~y f o(y)/f "y )—rLL (o.1wr ta w o THagw THa,w Tdagw T4

-5 -11 3
ta w THaow o tagw +1).

Now as W_ Tuns through the seventeenth roots of unity so does

wi , so that the product on the right-hand side of (5.2) is

equal to
17

3 -7 -12 28 14 -10 -5 -11
II; (a1wr+a2wr tasw - THa,wl togw THacw taw “Hagw +1),

and a_,

and is thus unchanged if a 6> @70 8

1, 029 03, 04, 05, a
are interchanged cyclically. The product is thus a linear

. i i . : - .
combination of terms [a ! a 2 a13 ai4 uis alo a17 ule] where
1 2 3 4 5 6 7 8
11 to 18 are non-negative integers, and considering the left-

hand side of (%.2) such terms as occur can only involve x in



i i i i i i i i
. . 1 2 3 4 5 6 7 8
terms of y = x . Thus if a, a, a a, o 66 a ag
i i i i i i i_
1 2 3 4 5 6 / 8
(or any other term of [u1 a,"as" e, et et oy og 1)

occurs we must have

(5.3) =-7i, - 121, + 281, + 141, - 10i, - 51, - 111, + 31, = 0
(mod.17)

(interchanging 11, 12, i3, i4, 15, ib’ i, and 18’ cyclically
gives the same congruence). °

Now, writing

2

a, = P(1)P(6)/P(2)P(4), a, = -y“P(3)P(1)/P(6)P(5),

- -1 .
ay =y “p(8)P(3)/P(1)P(2), a, = -y P(7)P(8)/P(3)P(6),
ag =y 'P(4)P(7)/P(8)P(1), a, = P(5)P(4)/P(7)P(3),

a, = -yP(2)P(5)/P(4)P(8), ag = yP(6)P(2)/P(5)P(7),

it is easily verified that

—
N
—
-—
(Ve
o -
—
'
-
(8]

N7 2 L4 a12 a1 a9 a3 14 a15 Q17 B a4 a a11.9 .5,

1 %2 93 4 5 6 7 8’ 5 ~ ‘6 7 B8 91 “2 "3 ag

A7 a4 212 a11 a9 5 ,14 15 N7 4 a12 11 a9 as a14 a1
0 2 3 “4 5 6 °7 °8 1 6 7 °8 2 “3 %4 5 °?
X

N2 L4 a12 a11 a9 as 14 a15 17 _ 4 a12 A1 a9 a5 14 15

3 4 °5 6 7 °8 "1 2! 7 T g 1 3 74 75 6

N7 - a4 12 11 a9 5 ,14 a15 017 B a4 12 11 a9 23 a14 15

4 5 Y6 7 8 1 "2 3 8 ~ "9 %2 3 4 °5 %¢ 7

It will be noticed that all of the equations (54) may be obtained

from any one of them by interchanging a,, a

g0 89y A3y 84y 84y 34y

3. a8, and G 5 Qoy Ggy G,y lgy Gy Gy Ggy cyclically. By

(95.4), since a, a, a; a, ag a, a, ag = -1,



o 0y 6 93 9 Iy T 9y g
a8) a, a.“a_"a_ 'a_"a, a._ a

= (ajaja53 0 2.8, 1 92 %3 34 35 ¥ %7 °g

where O= 1011 + 2412 + 1413 + 2614 + 3215 + 1816 + 2817 + 16i_,

an even integei, and

G} = 1512 + 14i3 + 514 + 915 + 111b + 1217 + 418,

oy = 1544 + 141, + 5i 4 91, + 111, + 120 + 4i,,

Gé = 1514 + 1415 + 516 + 917 + 1118 + 12i1 + 412,

Ga = 1515 + 1416 + 517 + 918 + 11i1 + 1212 + 4139

Ty = 15ie + 14i7 + 518 + 91.1 + 11'12 + 12'13 + 414,

S 15i7 + 1418 + 511 + 912 + 1113 + 1214 + 4isa

o, = 1518 + 14'11 + 512 + 913 + 1114 + 1215 + 416,

Gé = 1511 + 14i2 + 513 + 914 + 1115 + 1216 + 417;
moreover O + 0} to O+ Ty are Wultiple§ of 17 by ('..3.3)3 hence
any expression of the f&rm u11 al2 di3 a14 als aié a17 ale for

1 %2 93 % % % 9 g
which (5.3) holds is of the form
Ji 32 33 J4 J5 J6 37 J

a1 a2 a3 a4 a5 a6 a7 a8 where J1 to J8 are non-

negative integers. Thus every term occurring in the right-

J J J J J h)
. , 1 2 3 74 5 6
hand side of (5.2) is of the form a, a," ay” a, a.v A" a ag

and such such terms occur in cyclically symmetrical sets of
eight terms each;

Further, D (5) is the coefficient of x> in 1/f(x)
regarded as a polynomial of degree 16 in x with coefficients

involving x in terms of y = x17, so that y—11f18(y)@(5)/f17(y16
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is the coefficient of xo in

-12.18 18, 17 o
Y £ (y) /L (y )(G1+02+03+a4+a5+u6+a7+a8+1)}. This is a

cyclically symmetric polynomial of degree 16 in

a a,s a and a and the terms which.give

1? %20 %3 g’
the coefficient of x° occur only in symmetrical sets of eight
J1 J2 J3 34 J5 Jb I J8

expressible as [a1 a,” az” a8, a v a. " a, 3 ], as before.

(This is not true for the coefficient of any power of x other

a a

4’ 05’ 6’ a7s

than O; the eight terms of [a,], for example, do not
appertain to the same power of x.)
Thus writing
-2.3 3, 17
F=y “f(y)/f°(y ")
we have the following:
6 17,.6
LEMMA 5.1 - F~ and yf(y -")F* §(5) are each equal to a
J1 32 J3 J4 35 J6 J7 J8

linear ;omblnatlon of terms [a1 a,” ay a3, a5 a,” ay ag ].

We now writle

o
1

(5.9) to (5.8) b1 = a,a,, 5 53¢ by 4350 4 a,3gs

sé that

(5.9) b1b2b3b4 + 1 = 0.
<7, 6, 5, 3> and <8, 4, 2, 1> give, respectively,
(5.10) b, + b, + 1 = 0,

(5.11) b, + b, + 1 o,

1]

While <8, 5, 4’ 3>, <8, 7) 5., 2>, <7’ 6, 4’ 2>, <6’ 5’ 4"1>’.
<5’ 3" 2, 1>, <8) 6’ 3, 2>) <8, 7, 6, 1>’and <7’ 4, 3’ 1>,

give, respectively,



(5.12) to (5.19) a, = b.a, + 1, a, = byas + 1,
a, = b3a4 + 1, a, = baa5 + 1,
(5.16) to (5.19) ag = b136 + 1, a, = b2a7 + 1,
a, = b3a8 + 1, ag = b,a, + 1

It will be observed that each of the equations (5.5%) to (5.19)

b b and a,, a a a

remains valid when b1, b 4° 1 5

2’ 39 3’ 84’ 85, b,
a4, ag, are interchanged cyclically. We are now in a position

to prove

J J
. 1 2
L?MMAj5.2 Any expression of the form [a1 a2 a3 a4 ag a6
7 8

a, 38 ] is equal to a linear combination of terms

k k ‘ka k B
b b44], where k1 to k

1 2 3 are non-negative integers.

4

Eliminating a and a from equations (5.12) to

0 339 4’
(5.15), and using (5.9), we have

(5.20) a, + ag = b, b, byt b b +b +1.

Multiplying this equation through by a and substituting

1’

for a, a_ from (5.%), we have

1 8

1 5
2_ -
(5.21) ay = (b1b2b3\+b1b2-+b1+1)a1 b,.
Now, by means of (5.13) to (5.19), each of the a, to a, can be

expressed in the form

(5.22) Pa1 + Q,

where P and Q are polynomials in b1 to b, with integral

4

coeffiéients, (We dould of course have used any other of the
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a, to ag here instead of a1,) It follows that any expression
J J J J J i, 3 J
1 2 3 4 5 6 7 8
of the form a, 3, a5 a, ag" a, a, ag may be expressed

as a polynomial in a the coefficients being polynomials in

1 9
b1 to b, (with integral coefficients). In view of (5.21)
j j J J J J J J
. 1 2 3 4 5 6 -7 8 .
this means that any a1 a2 ‘a3 a, g a, a, a8 is egual
to an expression of the form (5.22).
J J J j J J j J
. 1 2 3 4 5 6 7 8

Now in [a1 a,“ a” 8,7 2.7 a, " a,l ag ] the term
aJ1 aJ2 aJa aJ4 aJs an aJ7 J8

5 % %7 % %1 92 %3 ¥4

(%,ag,(qvaa,(a&a7h and (a4, 38), also occurs, Further b1 to

obtained under the interchanges

b4 are not affected by these interchanges; so that the sum of
3 J J 3 3 J J J
1 2 3 4 5 6 7 8
the two terms of [a1 a2 a3 a, a5 3y Ay a8 } under

discussion 1s equal to an expression of the form

P(a, + 65) + 2Q,

1
using the cyclic properties of our relations. But by (5.20)

this expression is equal to a linear combination of terms
k1 k2 k3 k4
b1 b2 b3 b4 . Hence Lemma 5.2 follows, since clearly
(again using the cyclic properties of our relations) the
J J J J J J J J
. 1 "2 "3 Y4 ‘5 6 "7 -8]
other three pairs of terms of [a1 a,” a5 a, ag a3, a, ag

correspond to the other three terms of each [b1 b
We further write

N =b, b, + b, b

1 73 2 4
.2 2 2 2
o= b1 b2b3+b2 b3b4+b3 b4b1+b4 b1b2,

and prove the followings:
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LEMMA 5.3 Any expression of the form [b1 b
is eoual to
S(N) + uT(N),
where S(N) and T(N) are polynomials in N with integral
coefficients.
By (5.10) and (5.11) any expression of the form

] 2 3 4 can be expressed as a linear combination of

2
2

Clearly then, performing a cyclic summation, any
k k k k

terms b11 b where l1 and 12 are non-negative integers.

[b11 b22 b33 b, ] is equal to a linear combination of terms
11 12
[b1 b2 ], and we need only consider the latter expression,

rather than the former.
Writing

¢, = b.by, c, = bb,,
we have by multiplying (5.10) and (5.11) through by b, and b,

respectively

2 _
(5.23) b1 = b1 C19

2 - - -
(5.24) b2 = b2 Cpe 1
In view of (5.23) and (5.24) any b,]1 b22 may be expressed
in the form |

A + Bb1 + Cb2 + Db1b2,

where A, B, C, and D, are polynomials in ¢, and ¢, with

1 2

integral coefficients. - Then, since 4 and c2 are not affected
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1 1
. 1 2 .
by the interchanges (b1, b3) and (b2, b4),-b3 b,” is equal to
A + Bb3 + Cb4 + Db3b4o
Hence, using (5.10) and (5.11), we have
1 1 1 1
(5.29) 1 2 3 4 _
b1 b2 +b3 b4 = E + D(b1b2 + b3b4),

where E = 2A - B ~ C.

Now, using the definitions of ¢, and c¢,, the definition

1 2
of A\, and (5.9), may be written as
(5.26) ¢, t ¢, = N,
(5.27) C,C, = -1,
respectively. - From these two equations we derive
(5.28) ¢ = e, + 1,
1 1

(5.29) 2 _

C2 - )\02 + 10

In view of (5.27), (5.28), and (5.29), ‘any polynomial in c,

and c2,with integral coefficients, may be expressed in the form

G + HCT + Ic2,

where G, H, and I, are polynomialsin N with integral coefficients.

Hence we may write (5.25) in the form

1.1 11
b.' b % + b ' b2

’ 0 3 4 = (G + Hc1 + Ic

2)+(G' +-H'c1 +'I'c2)(b1b2+b3b4),

where -G', H', and I', are also polynomialsin N with integral

coefficients, Further‘since interchanging b1, b b and bA,

3’

and leaving

2’

cyclically corresponds to interchanging ¢, and ¢

, 1 2’
k:unchanged, we also have
bé1 b12 + b11 b12 = (G + Hc. + Ic_ )+(G* + H'c. + I'c,)(b.b_+b, b, )
3 4 1 2 1 2 1 2°3 "4717°

Thus, adding the last two equations, and using (5.26) and the



definitions of ¢, and c¢c.» we obtain
1 2
1 1 5

! b22] = 2G + HN 4+ IN + G'[b1b2]+H'[b b, b, ]+1'[b,b b2]°

(5.30) (b, 10,05 1P2P3

But

[b1b2] = (b, + b3-)(b2 + b,) =1
by (5.10) and (5.11), and

24 _ 2 27 - . =

(5.31) p + [b1b2b3] = [b1b2b3]+[b1b2b3] = (b1b3+b2b4)[b1b2] Neto
- Hence (5.30) becomes

l1 l2

[b1 b, ] = (2G+HN+IN4G'+I'N) 4+ p(H*=1'),

and sincé both brackets on the right-hand side of this equation
are polynomials in N with integral coefficients, Lemma 5.3

follows.

We have the following relation between A and p:

(5.32) u2 - Ap 4 k3 + 4x2 + 4N + 15 = O,
k k k k
Since p2 is certainly of the form [b11 b22 b33 b44] we know

by Lemma 5.3 that a relation of the above form exists, and the
coefficients in the equation are found by comparing
coefficients of powers of y in the expansions of the appropriate
quantitlies as power series in y;{cfo the proof of (AH),
equation (8.13),}' We give a direct proof also: we have

bl - AU = -[bfb2b3}[b1b2b§],
using (5.31),

= ={c,(byb+b b )4c (b botb,b }}{c (b b +b b )+c, (byb+b, b, )}

e rp2 42 2 2 2
c1c2([b1 b2]+4b1b2b3b4) (c1 + 02)[b1b2 b3],

T2 127 - 4 - (22 2
= [o] p5] - 4 - (A% + 2)[b b7 b,]



by (5.9), (5.26) and (5.27).  But

2

2 .2
(5.33) [b1 b2] = (b1

2 2
+ b3)(b2 + b

1

(1 - 2b1b3)(1 - 2b2b4)

using (5.10) and (5.11),

=" =2N - 3
using (5.9); and
_ 2 _ 2 2 2
(5.34) [b1b2 ba] = b2b4(b + b3)+ b1b3(b2 + b4)
= b,b, (1 - 2bqb _
24 3)+b1b3(1 2b2b4)

= N + 4,
Equaton (5.32) follows.
6 17,0

Now, by Lemmas 5.1, 5.2, and 5.3, F* and yf(y ")F J(5)
are each equal to an expression of the form S(A) + uT(N\).
Since the lowest powers of y in the expansions of FD, N, and
p, as power series in vy, are -12, -2, and -3, respectively, we
assume a form for F6 with S(N) of degree 6 and G(AN) of degree
4, We find the 12 coefficients involved in these two

. . -12 -11 -2

polynomials by comparing coefficlents of y s Y yeooyy y
and yo, (they appear seriatim), and check the values obtained
by comparing coefficients of y—1. The resulting expression
for F6 is found, using (5.32), to be a perfectcube, and in

fact we have

(5.35)

o]
"

NS = 20N - 56 + 8u,



~5 7~

since F, Ny, and p, are real for real vy. Similarly,
in the case of yf(y17)Fb $(5), S(N) and T(N) are of degrees 5

and 4 respectively, and we find the 11 coefficients involved
by comparing coefficients of y—11, yd1o, oo ey y-2, and yo,

(again they appear seriatim), and check the values obtained by
comparing coefficients of y-1; we obtain

3412675702=14022n-

2

vE(y ' TYE® J(5)=-83ar"+312360%-34498N

(5.36) 3
+162020N-164885),

-112984+p (-7n 4975607 -69280n
- The equations (5.32), (5.35), and (5.36), for q = 17, are of
course analagous to (AH), equations (8.13), (11.7),‘and (11.9),
for g = 11.

We now write

172 2°3 3°4 471"
Then
52 = [62 3] - 2[b b2b, J+ab bbb,
(5.37) = - 4h - 15
by (5.9), (5.33), and (5.34). Also, by (5.3%) and (5.37),
F%2 = (-4n -15) (A% - 20n - 50 + 8u),

and, using (5.32), it is easily verified that the right-hand
side of this equation is equal to
(=25 + 9% + 30)2;
hence we have
(5.38) Fo = -2p + 9N + 30,

where the sign of the coefficient of the lowest power of y in
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the expansion of each side of this equation is examined to
determine the appropriate root. Thus, instead of N and u, we
may take & and F, as new variables; in fact from (5.37) and

(5.38) we have

-(62

(5.39) SN + 15)/4,

2

(5.40) mn -(4F5 + 95° + 15)/8.

Substituting for N and p from (5.39) and (5.40) in
(5.35) we obtain the following relation between & and F:
(5.41) (6° ~ 17)° = 16F(F + 45).

Also, substituting for N and p in (5.36) we obtain
yf(y17)F6:§(5) as a polynomial in o and F. Further since
(5.41) is a quartic in 5, this polynomial is equal to
another polynomial in & and F of degree 3 in 8; in fact we
have

8yf(y ")E® B(5) = 83(84.172F% + 20.17°F) +

2(115.17F4+316.174F2+177) +

+3

(5.42)
+5 (28F°+2476.17°F3432.179F) +
+(6677.17%F + 124.17°F2 - 9.177)

{it is of course obvious from the form of (5.39), (5.40), and

(5.41), that the right-hand side of this equation must be a

2

function of 3, F&, and F2, only}.

We further write

m,= - yP(2)P(8)P(3)P(5)-yP(1)P(4)P(6)P(7), n =-y2P(1)P(4)P(2)P(8),

my=P(6)P(7)P(2)P(8)=y°P(3)P(5)P(1)P(4), n, =P(3)P(5)P(6)P(7).



Then

(5.43) and (5.44)
(5.45)

(5.46) and (5.47)

Also,

2, 2

my/n} (by=bj)
using (5.10), (5.4
{(5.48) m2 =

1

m1/n1 = b1 - b39
n,n, = -y f y)/
n2/n1 = b1b3,
2 2
a (b1+b3) 4b1
3), and (5.46), i,
2
n1 - 4n1n2,

and correspondingly we may obtain

(5.49) mg =
In

(5.50) & = (b1 -
by (5.43), (5.44),
(5.51) 82 = - an -
by (5.37), (5.46)
form

but by (5.91) the

hence we have

where the sign of
each side of this
appropriate root. -

equal to

n2 + 4n_nN

2 127

-2
b3) (b,

(5.4%),

4(

(5.47).

and and a

b b +b2b

Now (

15

and

2 4

)

16(F + 2%) +

right-hand side of
2

16(n1/n2 + n2h1)

F + 25 n1/n2
the coefficient of
equation is examin

Now the right-han

m2/n2 = b2 - b4;
f(

n1/n2 = —b2b4.

b3 = 1 - 4n2/n1,
e °

terms of these new functions we have

17

fQy  Dmom/fE(y)

lso
) - -4(n2/n

5.41) may be written

4 1% = 1-n1/n2)—15,

in the

2

3067 + 289,

this equation is equal to

n2/n1),
the lowest power of y on
ed to determine the

d side of this equation is



v 2e(y 1 ) (0 + 02)/E(y)

by (%.4%), (5.48), and (5.49). Thus using (5.50) we have

(5.52) yzf(y)F/f(y17)=f4(y)/f4(y17) = (m, 4 m2)2,
whence
(5.53) 2 0y) /2 00) =y 4y,

where again care is taken to select the appropriate root.
Further, in view of (5.50) and (5.52) the right-hand side of

(5.41) is equal to

-4 .2

16y ™42 0y ) (my=m )}/ 62 (y 1)

y

whence, taking the appropriate square root of this expression,

(5.54) 62-17=4y-2f(y) —m +m, )/ f(y

We note that elimination of & from equations (5.50) and

(5.54) gives

(5.59) mf mg + 4y2f3(

Making a slight change in notation for convenience, we

(m =m, /f 17)-17y4f2(y)/f2(y17)=0~

now re-state (5.53), (5.55),(5.50), (5.42), and (5.41), 1in
order, as follows.
THEGCREM 5.1 If we write
M, = £20y ) {~yP(2)P(8)P(3)P(5)-yP(1)P(4)P(6)P(7)}/E%(y),
M, = £2(y ) {P(6)P(7)P(2)P(8)-y2P(3)P(5)P(1)P(4)}/E%(y),
then we have
M.+ M. = 1,

+ 4(M M2)/F - 17/F2 = 0,

1
where F = y_2f3(y)/f3(y17); and if we further write

€ = -M1M2,



then we have

2 20.175/F2) +

syf(y'’) §(5) = e>(84.17
+52(115.17.+316.174/F2+177/F4)+
+e(28+2476.173/F2+32.176/F4) +

+(6677.172/F%4124.17°/F%-9.177/F®),

where, from the last three equations but one, there is the

following relation between € and F
(e2 - 17/F%)2 = 16(ae + 1)/F°.

§We conclude this Part by deriving the following simple

congruence

(5.56) §(5)=£2(y" ") £2(y){7P(3)P(5)P(6)P(7)+6y2P(1)P(2)P(4)P(8)}

(mod.17).
Since the only term on the right-hand side of (5.42) without
a factor 17 is 286F5, we have
(5.57) yE(yVYE §(5) = -58 . (mod.17).
But from (5.51)
2

- 8° = -4(n,.

5,
17
5+ an,) /n1n2 (mods17),

and using (5.45)

-1/n1n2=y-2f(y17)/f(y)zy_2f16(y) (mod.17)
since f17(y) = f(y17) (mod., 17), so that, taking the
appropriate square root,

—158

(5.58) b= 2y (y)(n2+4n1) (mod.17).

(5.56) follows immediately, from (5.57), (5.58), and the

definitions of n,, n and F.

1 2’



PART 3

g = 19 throughout this Part

6. We write

ay = =xTPR(2)/P(1), a, = xTUOR(A)/P(2), ay = xTR(8)/P(4),
a, = x20p(3)/P(8), o = =x""OP(6)/P(3), a, = x °P(7)/P(6),
a, = ~x"p(5)/P(7), ag = -x"%(9)/P(5), ag = -x3%p(1)/P(9);

then by (ASD), Lemma 6 (with g = 19) we have
-15 19, _
(6.1) -x f(x)/f(y )—u1+a2+a3+u4+05+u6+a7+a8+u9+1.
In (6.1) we replace x by w_x where wr(r = 1 to 19) are the

nineteenth roots of unity, and multiply together the nineteen

resulting equations, obtaining

19
-15 .20 20, 19, -8 -13 -14 20
(6.2) -y £ (y) /£ (y )-;Eg(u1wr to w o THaaw +o.4wr +
-15 -3 7 -10 36
tagw ta w THaow tagw THa g +1).

Now as w_ runs through the nineteenth roots of unity so does
w?, so that the product on the right-hand side of (6.2) is
equal to

19( 36,0 W e w1 3me w1 e w%ha w1 5ha w3ra wlra w1041
r;1a1WI GoWyp TogWy 4%y CeWr T r Ga%r TOg% 09"y ’

and is thus unchanged if @45 Gy Ggy Gy Ggy Ggy Aoy Gg,

Ggs are interchanged cyclically. The product is thus a linear
i i i i i i, i i i
. . 1 2 3 4 5 6 7 8 9
combination of terms [a1 a,“az" @, a T a” an ag” ag ]
are non-negative integers, and considering the

where 11 to 19

left-hand side of (6G.2) such terms as occur can only involve



x in terms of y = x19. Thus if o ! a,.“ 3 4 > .6 ! 8
i i i i i i i i i

] 1
(or any other term of [a1 a,% a7 0, ag

occurs we must have

(6.3) —811-1312-1413+2014f1515-316+717—1Ur8+3619 = 0 (mod.19)

(interchanging i and i

1’12’13’14’15’16’17’i8’ 9 cyclically

gives the same congruence).

Now, writing

_1 -

a,=y " 'P(6)P(7)/P(2)P(9), a,=y °P(7)P(5)/P(4)P(1),
-1
ag=-y P(5)P(9)/P(8)P(2), a,=-P(9)P(1)/P(3)P(4),

5 | |
ag=y P(1)P(2)/P(6)P(8), ag=-yP(2)P(4)/P(7)P(3),
a ==P(4)P(8)/P(5)P(6), ag=yP(8)P(3)/P(9)P(7),

-1
ag=-y P(3)P(6)/P(1)P(5),
it is easily verified that
a19=a16a a2a7a1365a3a12 a19_a1éa a2a7a13 5a3 12
4 T8 9394953 ¥58g39 2 T93 2495%%7 3%q%y »
Q19:a1ba a28'7613 5a3a12 19_a16 a2a7a13a583612
3 “%a %5%%7%g 29%q%2 G4 T8g 3487339 249533 >
(6.4
19=a16a a2a7a1335a3a12 a19_ 16 a2 713 5_3_12
5 % 4798%9%1 %2%3%, 6 27 2897132 %3%4%
a19=a a aQa7a13aSa3aj2 019—a1ba a237a13 5a3a12
7 991%2%3 4%5%; » 8 %9 %1%2%3%; ¥5%6°%7
a19.,16, ,2,7.13.5 3 12
9 %9 9293%4%5 %6%7% -

It will be noticed that all of the equations (6.4) may be

obtained from any one of them by interchanging



1° 0 30 4" 85’ 369 '37’ 383 39, and a1a 021 Q3) Q4’ 05’
Ags Ggy Ogy A, cyclically. By (©.4), since
a1 a2 a3 a4 a5 a6 a7 a8 a9 = -1,
i i i i i i i i i
1 2 3 4 5 6 7 8 9,19 _
(og 8% 37 a, ag” a7 oyl agt ag”) =
_ c' ay oy T3 04 rs 6% Gﬁ g 6@
(a1a2a3a4asa6a7asa9 a, a,” a, 4 s 3 a, ag 3,
wh S = i s : : ~ s : ~ oAt . .
ere 3011+3212+213+3414+1015+281b+4417+818+2019, an
even integer, and
_ . . . . . . L 416
G} 1212+3}3+514+1315+716+217+18 1619,
ci = 1213+314+515+1316+717+218+19+1011’
Gé = 1214+315+516+1317+718+219+11+1012,
Oz = 1215+316+517+1318+719+211+12+1613,
65 = 1216+317+518+1319+711+212+13+1614,
Gb = 1217+318+519+1311+712+213+14+1615,
o, = 1218+319+511+1312+713+214+15+1616,
- . . . g . C otaes
Gé 1219+311+512+1313 714+215+10 1017,
Gb = 1211+312+513+1314+715+216+17+1018;
moreover O + S to o + Gy are multiples of 19 by (6.3), hence
any expression of the form ulT a12 al3 al4 als a16 u17 a18 al
Y exe 1% %3 % %5 % %7 %g %9
J J Jj J J J
for which (6.3) holds is of the form a11 322 a33 a44 a55 abO
o J
7 8 9 , . . . ‘
a7 88 a9 where 31 to 39 are non-negative integers. Thus
every term occurring in the right-hand side of (6.2) is of



g J9
a a a a a

J NP B aJ4 Jg J, Iy
3 4 5 b 7 8 9 ’

the form a ! a a

1 5 and such terms

occur in cylically symmetrical sets of nine terms each.
Further, §(4) is the coefficient of x4 in 1/f(x

regarded as a polynomial of degree 18 in x with coefficients

involving x in terms of y = x19, so that y_14f20(y)§(4)/f19(y19)

is the coefficient of xO in

~15_20 20, 19 ,
y f (y)/{f (y )(u1+02+a3+u4+a5+ab+a7+08+q9+1)}e This

is a cyclically symmetric polynomial of degree 18 in

o} and a and the terms which

1’ uz, 9;

give the coefficient of x° occur only in symmetrical sets of
J J J J J J 3 J J

nine expressible as [a11 a22 a33 a44 a55 abb 377 a88 agg},

as before. (This is not true for the coefficient of any

a

039 04’ 05, ab’ 7°? 0-8)

power of x other than O; the nine terms of [31], for example,
do not appertain to the same power of x.)

Thus writing

we have the following:

LEMMA 6.1 - F° and yf(y19)F5 $(4) are each equal to a
J 3o J J J J J J '
. C 1 J2 J3 Ja4 Js Jo J7 Jg 39]
linear combination of terms [a1 a," a5 a, ag a, a, ag aghk

We now write

(6.5) to (6.7) b, = a,a,a_, b2 = a,3.3g, by = aja ag;s

(6.8) to (6.10 c, = a,a,taa ta a,, c, = a2a5+a5a8+38a2,
Cq T aj3gtagagtagag;

(6.11)to(6.13) d1 = a,ta,ta,, d2 = 32+a5+38, d3 = 33+36+ag;

so that



(6.14) b,b.,b, + 1 = 0.

<9, 6, 5’ 3>, <9, 7, 0, 1>, <7, 5, 2’ 1>’ <9’ 5, 4’ 2>)
<9, 8! 4, 1>, <8, 3, 2, 1>’ <6, 4, 3’ 2>, <8, 7, 6,'4),

and <8, 7, 5, 3>, give, respectively,

(6.15) to (6.17) a,a, = ajt+i, ajag = a,t1, aja, = agtl,
(6.18) to (6.20) a,a,. = ac+1, agag = a,+1, a ag = agti,
(6.21) to (6.23) aja, = agtl, aga, = a,t1, aga, = a +1.

It will be observed that each of the equations (6.5) to

(6.23) remains valid when b1, b b3, and Cys Cos Cgi and

are

2,

d d d and a,, a a

2* %30 40 8o 33 50 %¢°

interchanged cyclically. We are now in a position to prove

a d

1! 4’ 79 a8’ ag’

LEMMA 6.2 Any expression of the form

3 J J J J Jo 3 J
2 3 4 5 6 7 8 9
[a1 a,“ az” a, agv a  a, ag ag ]

k k k k k k k k k
. . 1 2 3 4 5 6 7 8 9
combination of terms [b1 b b ¢y oy oy dy dy d3 ]

where the square bracket in this case denotes a summation of

is equal to a linear

]

the three different terms obtained by interchanging b1, b b

2’

and d1, d d separately, and k1 to k9 are

4 G20 3o 20 Y30

non-negative integers,.

and ¢,

By eliminating a, and ag from equations (6.15), (6.21),

and (6.23), we obtain

_ .2
(6.24) a, = a1+(b1 d1)a1,
and clearly this equation remains valid when 3,0 35y gy 8,y
35, ab, a,s a8, a9, and b1, b2, b3, and d1, d2, d3, are



interchanged cyclically. Thus, by means of (6.24) and the

eight similar equations, each of the a1 to a9 can be

expreésed as a polynomial in b1, b d d2, d3, and

2’ ba’ 19
with integral coefficients; and hence any expression of

J J J J Je J J J
1 2 3 4 5 6 7 8 g9 .
the form a, a, 85 a8, ag a, a, ag ag’ 1s equal to

a,,

such a polynomial. (We could of course have used any other of

the a, to ag here instead of_a1,) But (in view of the

definitians of b1, Cyo and d1) a, (and a, and a.) satisfies

1 4 7
a cubic equation with coefficients in terms of b1, P and
J J J J J J,. J J J
1 2 3 4 5 6 7 8 9
d1. Hence any a, 32 33 a, a5 a(J a, a_8 a9 may be
expressed in the form
2
Pa1 + Qa1 + R,
where P, Q, énd R, are polynomials 1in b1, b2, b3, c1, c2, c3,
d1, d2, and d3, with integral coefficients.
J J J J J J J g J
. 1 2 3 4 ) 6 7 8 9
Now in [a1 a," aj” a, ag a, ay a8 ag ] the terms
aJ1 aj2 aJ3 aJ4 aJ5 an aJ7 aJ8 aJ9 and
4 5 6 7 8 9 1 2 3
J J J J b J j J J
1 2 3 4 S 6 7 8 9 .
a; ag’ ag a, a8, ag a, ag a,’, obtained under the
cyclic interchanges (a1, a,, a7), (a2, ags a8), and (a3, s ag),
also occur. Further b1, b2, b3, c1, 02, c3, d1, d2, and d3:

are not affected by these interchanges; so that the sum of
J J J J J J J J
1 2 3 4 5 6 7 8

the three terms of [31 a,“ az” a, ag” a, a, ag

discussion is equal to an expression of the form

J
agg] under



P(a2 + a2 + a3)+q(a1 + a

] 2 + a7)+3R,

4

using the cyclic properties of our relations. - Since from the

definitions of c1 and d1

a1+a4+a7:d1s
2 2 2 . L2 _
a1 + a4 + a7 = d1 2c1,

this expression is equal to a linear combination of terms

k. k. k. k. k. k k. k_ k
b1 b2 p 3 ¢ 4,0 d17 d28 d39,

1 5 3 ] 5 3 Hence Lemma 6.2 follows,

since clearly (again using the cyclic properties of our

relations) the other two triplets of terms of

j j J J J J j J J
[a‘11 a22 a33 a44 a55 aéb a77 a88 agg] correspond to the other

two terms of each

ky Ky kg ok, kg kg ko kg kg
[by" by" by™ ¢y ey7 ey dy 7 dyn dg7 ],

We now prove

LEMMA 6.3  Any expression of the form

k k k k k k k k k
2 3 4 5 6 7 8 9+ . .
1 by" byT et c,T cg” 9, d7 dy ] is equal to a linear

k k k 1 1
combination of terms [b1 b, b33]’ where k, to kg are non

negative integers.

Clearly it will be sufficient to show that c c c

2’ 3’

can all be expressed as polynomials in b1, b2,

1 ’

d d and d

1, 2’ 3,
and b%, with integral coefficients., For then any
k k k k k k k k
1 2 3 4 5 6 7 8 9
b1 b2 b3 c, €,  Cg d1 d2 d3 may b? expressed as a
k1 k2 k3

linear combination of terms b1 b2 b3 , and Lemma
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6.3 follows from cyclic considerations.

We have
(6.25) to (6.27) c, = dj+3, c, = d,+3, c, = d 3,
the first of which is (6.15) + (6.18) + (6.21), in the

obvious notation, and

2 2
(6.28) to (6.30) b1—b3+c3+d3+1, b2—b1+c1+d1+1,
2_

b3—b2+c2+d2+1,

the first of which is (6.15).(6.18).(6.21). Substituting for

in (6.28) to (6.30) from (6.25) to (6.27), and

Cys Coo and C3s

solving the resulting equations for d1, d2, and d3, we obtain
e vl 2,,2_ _ -

(6.31) 2d, ==b{+bo+by=b -b +b -4,

(6.32) 2d =—b2+b2+b -b,-b.+b, -4

2 2 73 2 "3 1 ’
2,.,2,.2

(6.33) 2d4==b3+b +bs-b,-b, +b -4.
- We now show that .

(6.34) b,+b,+b +2 = 0.

Then the right-hand side of (6.31) is equal to

2
(b1+p2+b3) —2b1-2(b1b2+b b_+b b1)-(b1+b

Sbgtb, +b3)+2b3-4

2
_ o2
= 2b1 2(b1b2+b2b3+b b, )+2b3+2,

and since the latter expression has a factor 2 we have d1,

and hence ¢, by (6.26),_as a polynomial in b, and b

2 by 37

with integral coefficients; clearly from cyclic considerations
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the same is true of d2, d3, c1, and c3, and we have the Lemma.

(6.34) is proved as follows., We have

b1d1 = C3+2d3+39

which is (6.15).(6.18) + (6.18).(6.21) + (6.21).(6.15).

Substituting for ¢ from (6.27) and then for d1, d2, and d.»

3 3
from (6.31) to (6.33), the resulting equation simplifies to
3,2 .2 L ,2,.2 .2 ) )
b1 b1b2 b3b1'|~4b1-0-b'2 b3+b1b2 b3b1+3b1+b2 3b3 = 0,

and of course we may interchange b1, b2, and b3, cyclically
in this equation to obtain two other similar relations. Auding
all three equations we arrive at

- [b71-[b,b2]=[b2b,1+a[b2]+[b,] = O.
But it is easily verified thatlthe left-hand side of this
~eqguation is equal to

([b;1+2)([b%]-2[b b, 1+2[b,]-3),

using (6.14); and the second of these two factors, expanded as
a power series in y, begins 4yﬁ2+ ... and 1s therefore non-zero.
Thus we arrive at the relation (6.34), and complete the proof
of Lemma 6.3.

We further write

A =[b@2L

- _ 2
k= [b1b2]’

and prove the following:



LEMMA 6.4 - Any expression of the form [b11 b22 b33] is

equal to
S()\) + P-T()\)’
where S(N) and T(N) are polynomials in N with integral

coefficients.
k k k

By (6.34) any expression of the form b11 b, b33 can be

expressed as a linear combination of terms bl1 b12
1 2

are non-negative integers. Clearly then,
2 k! k. k!

performing a cyclic summation, any [b1'1 b 2 b33] is equal to
1 1

2
! bzz], and we need only

where 11 and 1

a linear combination of terms [b1
consider the latter expression, rather than the former.

Now, by (6.14), (6.34), and the definition of A\, b, to b

are the roots of the cubic equation

23 + 222 + N2 + 1 =0,

so that we have

3 _ _onliyp -
(6.35) by = m2bymhb oty
(6.36) b2 = 2b2 Xb2 1.

1 1

In view of (6.35) and (6.36) any b11 b2 may be expressed in

the form

2 2 mn2 2 0.2 2
,*Ib3+KbS+Lb, b +Mbib,+Nb, bS+PbIbS,

where Gy H, I, J,K,L,M, N, and P, are’ polynomials in N with

G+Hb{+Ib

integral coefficients. - Then, since N is not affected when

b1, b2, and b3, are interchanged cyclically, we have



1

1b12]—3G (H+1)[b, J+(J+K)[b2J+L[b, b, ]+M[ bb . ]
g Do )=3G+(HeD) [y J+(I+K) [by J+L by by 1°27%

(6.37) [b

2 2, 2
+N[b1b2]+P[b1b2].
But we have (6.34) and the definitions of N and p
(6.38) to (6.40) - [b,] = -2, [b b ]=x, [b°b, ]
172 172
and

(6.41) [bf] = [b1]2 -2(b,b - 2\,

5]

24_ e, T o
(6.42) [b1b2]—[b1][b1b2] [b1b2] 3b b b =-2N-p+3,

(6.43) [bfbg]z[b1b2]2—2[bfb2b3}z[b1b2]2+2[b1] = A%-a
using (6.14). Hence (6.37) becomes
[bi1b;2]={36-2(H+1)+(4—2k)(J+K)+XL+(-2x+3)N+(k2—4)P}+u{M-N},
and since both curly brackets on the right=-hand side of ‘this
equation are polynomials.in M with integral coefficients,
Lemma 6.4 follows.

We have the following relation between M and pt
(6.44) p2+(2x—3)p+x3-12x+17 = 0.

] ]

k' ko k

Since p2 is certainly of the form [b11 b, 2 b33] we know by

2

Lemma 6.4 that a relation of the above form exists, and the
coefficients in the equation are found by compaiing
coefficients of powers of y in the expansions of the
appropriate quantities as power series in yj {cf. the proof

of (AH), equation (8.13).} We give a direct proof also: we

have



2 o nl 2
by (6.40) and (6.42),
_ 3,3 37 _
= [b1b2] + [b1] 3
using (6.14). But
3,34 _ 4 2,2 2 2
[byb3) = [b, b J{bipS] + [bib,] + [b bS]
using (6.14),

3

= AT =--6N + 3

by (6.39), (6.40), (6.42), and (6.43); and
(631 = [0,105%) - [b%b,] - [bp3],
= 6N - 119
by (6.38), (6.40), (6.41), and (6.42). Equation (6.44)
follows.,

Now, by Lemmas 6.1, 6.2, 6.3, and 6.4, F5 and
yf(y19)F5-§(4) are each equal to an expression of the form
S(N) + puT(N). Since the lowest powers of y in the expansions
of Fs, N, and p, as power series in y, are =15, -2, and -3,
respectively, we assume a form for F5 with S(N) of degree
7 and T(N) of degree 6. We find the 15 coefficients involved

in these two polynomials by comparing coefficients of y-15,

y—14, o v oy y-2, and yo, (they appear seriatim), and check the

values obtained by comparing coefficients of y_1° The
resulting expression for F5 is found, using (6.44), to be a

perfect fifth power, and in fact we have



(6.45) F =p + 5\ + 9,
since F, M, and p, are real for real vy. Similarly, in the
case of yf( 5@ (4), S(N) and T(N) are of degrees 7 and 5

respectively, and we find the 14 coefficients involved by

comparing coefficients of y-14, y_13, o ey y-2, and yo,

(again they appear seriatim), and check the values obtained

by comparing coefficients of y-1; we obtain

6 10180270 °+4089364x 4100821201 3-

—6169242902467638607A=3195614p (=1155\ 2+

(b.46) 2 3 5
© +259455N -3809331N"+10287942N"+2093087N -

Fo0(4)=-5""+27734\

-16560108) .

The equations (6.44), (6.45), and (6.46), for g = 19, are of

course analogous to (AH), equations (8.13), (11.7), and (11.9),

for g = 11.

We now write

m, = yP(R(7)P(8),  my = -y?P(2)P(3)P(5),
my = P(4)P(6)P(9).
Then
. _ .3 19, .
(0'47) m1m2m3 - Y f(Y)/f(Y )’
(6.48) to (6.50) m1/m2 = —b1, m /m = 2, m3/m1 = -b3,
- Also, in terms of these new functions (6°34) becomes
2 2 2 _ _
(6.51) m mo+momi4momi = -2y f y)/f(y

by (6.47) to (6.50). We now prove the following relation
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(6.52) momytmomatmam, = yE<(y)/£(y 7).

Denoting the left—-hand side of this equation by X we have

X/m1m2 = 1-b3+b3b1,

- X/m2m3 = 1—b1+b1b2,

X/m3m1 1-b2+b2 3

by (6.48) to (6.50). Multiplying together these three

equations we obtain

3, 2 2 2
X /m1m2m3

- -[b1b§] + 3[b.b,] -3[b ]+,
using (6.14). But by (6.38), (6.39), and (6.42), the right-
hand side of this equation is equal to p + 5\ + 9, or by
(6.45) to F.  Hence
x? = m2n2n2y et (y)/e0 1) = 20 /e0 ")

using (6.47), and (6.52) follows, since X and ‘f(y) are real for
real y. Next we show that
(6.53) ¥y 2r(y)(m tny4m)/f(y'7) = A-s.
It would be possible to prove this'relation by a method similar
to that used for (6.52), however the following proof is simpler.
Using (6.47) we write (6.52) in the form

A/mi/myrt/my = =y TR Gy ) /6.
Then, in view of this relation, the left-hand side of (6.53) is

edual to



(m1+m2+m 1/m +1/m +1/m ),

= --(m1/m2+m7_/m3+m3/m1)= m1/m3+m2/m1fm3/m2)-3 s

3 [b1]-[b1b2]-3
by (6.48) to (6.50), and hence is equal to -A=5 by (6.38) and
(6.39); thus (6.53) is proved. ' Now, if we write

(6.54) Cob o=y 2 (y

)(m +motm o )/ f(y
then instead of A and p we may take » and F, as new variables,

in view of (6.45) and (6.53). In fact from these two relations

we have
(6-55) - N = -0 - 5,
(6.56) p = F + 5 + 16.

Substituting for N and u from (6.55) and (6.56) in (6.44)
we obtain the following relation between & and -F:
(6.57) 52 = F(F + 8 + 19).
Also, substituting for N and p in (6.46) we obtain

19,57 . . .
yf(y >)E°0(4) as a polynomial in & and F. Further since
(6.57) is a cubic in &, this polynomial is equal to another
polynomial in 8 and F of degree 2 in &; in fact we have

(4 (65.19F41137.19°FE24363.192F+7.19 ")+

(6.58) : (5F +2504, 19 'F +301o 19, F2+232 19~ F+19 )+

+(2276.19F4+5431 19°834717.19°F%424. 19 F+19%).
-*Making a slight change in notation for convenience, we

naw re-state (6.47), (6.%52), (6.51), (6.54), (6.58), and (6.57),

in order, as follows.
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THEOREM 6.1  If we write

2.3, 1 3,1
£3¢ 9 3 (y 9

Moo= v 2 e R (7R (8)/E0(y), M, = =y S P(2)P(3

1

My = yE2(y T)P(a)P(6)P(9)/F (y),
then we have

_ 2
M MM, = 1/F

M MM My MaM =1/ F

2 2 2 _ /2
M1M2+M MM MY = 2/F

=344

/"

where F = vy (y)/f(y19); and if we further write

e = M+ My o+ M,

then we have

v 198(4) = €2(65.1941137.19°/F+363.19°/F%+7.19 " /F>)+

e65+2504.192/F+3o1o.194/F2+232.19°/F3+193/F4)+

+(2276.19/F+5431.19°/F24717.19%/F3+24.19 " /E*+198/F°),

where, from thé last four equations but one, there is the
following relation between € and F
e = (8e + 1)/F + 19/F2

We conclude this Part by observing that in the last

equation but one the only term on the right-hand side without

a factor 19 is %e, so that, in view of the definitions of ¢

and M to M3,

5)/f

we have the following simple congruence, modulo 19,

(y),

(6. 59) Bea)=5f(y "7 0 (y){P(4)P(6)P(9)+yP(1)P(7)P(8)-y°P(2)P(3)P(5)},

19

since f “(y) = f(y19) (

mod. 19).
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PART 4

q = 11 throughout this Part

The notation is that of (AH).
7. The following relations, not given in (AH), are needed,

They are of a type which has no analogue in the cases

q =5, 7, and 13,

(7.1) [rt] = y£2(y)/f2(y??),

(7.2) y=*£2(y)[rsul/f2(y21) = n + 13,

(7.3) y3E2(y) [/ £2(y1h) = —u + 6x + 10,

(7.4) vy Te8(y) [rstul/£8(y2t) = —a® - 114 + 40N + 7.

We prove (7.1) as follows. Denoting the left-hand

side of the equation by X we have, using the definitions of

ay Py vy 8, and ¢,

X/rt = becaP + 6ePp + ef + ¢ + 1,
together with the other four equations obtained on inter-
changing r, s, t, u, v, and a, B, v, 6, €, cyclically.
Multiplying together these five equations we see that
X5/(rstuv)9, i.e. y"ofg(y)x5/f9(y11), is equal to a cyclically

symmetric polynomial in a, B, v, 6, and e, with integral

.

We may note that in view of the relation (7.1) the factor
D in the expressions for the rbc(d) for g = 11 1s equal to

yTlE3(yid)/f8(y).



_79_.

coefficients, 1.e. to a linear combination of terms
[a[ Bm yn 6P eq], each of which is equal to an expression of
the form Qy(N) + pQg(\) by (AH), Lemma 9. Using the method
empléyed in (AH) to find the relations (11.7), (11.8), and
(11.9), that of comparing coefficients of powers of y in
power series expansions, we obtain

y=10£2(y)X2/£3(yll) = ap - 1702 - 1084 + 346N - 131.
But the right-hand side of this equation is the same as the
right-hand side of (AH), equation (11.7). Thus, taking
fifth roots, (7.1) follows, since X and f(y) are real for
real y.

(7.2), (7.3), and (7.4), may be proved in a manner

similar to that used for (7.1), and we omit the details,
although it should be pointed out that we now need (AH),
equation (8.13) as well as (AH), equation (11.7).

From (7.2), (7.3), and (7.4), together with (AH),
equation (11.9), we have the following result:
(7.5) #(6) = = 11y 263 (y11)[rstul/f4(y) + 2.112y£0(y1 1) [r)/Fiyr

- 11363y ) [rsu]/ 7 (y) ey s eri(y2n) /er2(y),

We now give conjectural expressions for the other ten &(s) as

follows. We write
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y“1P(5)8(5)/P(1),

g(o) = y 'p(4) #(0)/P(2), g(5) =

g(4a) = P(3)e(4)/P(4), g(2) = P(1)8(2)/P(2)
g(9) = - P(5)8(9)/P(3), g(1) = - P(2)e(1)/P(4)
g(7) = - yP(1)e(7)/P(3), g(8) = - p(a)e(s)/pP(3
g(10)= - pP(2)8(10)/P(1), g(3) = P(3)e(3)/P(5)

Then
THEOREM 7.1 We have
B(0) = (tv)y™f(y*?)/f2(y) +
+(-5rstu=-53stuv+4ituvr-uvrs+29vrst)y -2 f3(yl1Y)/f4(y)+
+ 11(- 45r+6s+63t 48u+2v)yf yl1) /f (y)+
+ 119 (=-6rsu=328tv+20tur+d4uvs+25vrt)f (y11)/f9(y)+

+ 112 (-r/8-3s/t+2t/u-5u/v-av/r)y*fid(yr1)/f12(y),

B(s) = (7tv)y 2 f(yr1)/f2(y) +
+ (-2rstu-217stuv=10tuvr+15uvrs-6vrst)y 2 f3(yl1)/f4(y)+
+11(-9r-12§+171t+30u-15v)y;6(y11)/f7(y)+ |
#112 (6rsu-67stv-20tur+18uvs+19vrt) S (y11) /£ (y)4

+113(6r/s+7s/t+10t/us8u/v+2v/)yd£i1(y11)/f12(y),

It is of interest to note that (7.5) is essentially the

"right" form for ¢(6), being equivalent to the equation

yf(yit)a(e) = 11gs + 2.11%g4 + 11%g4 + 11%g,
given by Atkin [ 1 ] in his proof of the Ramanujan congruence

for 11%,
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and these equations still hold if g(0), #(4), B(9), &(7),

and $(10), or @(5), B(2), #(1), P(8), and P(3), are interchanged
cyclically, so long as r, s, t, u, and v, are also interchanged
cyclically.

We hope to prove the above theorem at a later date. The
following considerations put its validity beyond any reasonable
doubt.

Firstly the definitions of the @(s) and the ge&eral form

of the theorem are analogous for g = 11 to the case of g = 13

(§.2L Secondly, noting (7.1) and the following relation
r/s + s/t + t/u + u/v + v/r = 1
which is given in (AH) (page 186) as [a] = 1, we point out
the correspondence between the expressions for the ¢(§)
given in the theorem and the expression for $(6) given by
(7.5).
Lastly, in finding the theorem, we assumed tha£ the

@(s) could be expressed in such a form, and then found and

checked the values ot the coefficients involved by comparing
coefficients of powers of y in power series expansions, in a
manner similar to that used for g = 13. In fact we made five
distinct checks in the case of each of our two sets of
coefficients. The powers of 11 which appear in the coefficients

serve as an additional check.
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PART 5

8. .The following theorem is proved in [4] (Theorem
12, pages 95 and 96): '

THEOREM 8.1 Suppose that g and h are simple automorphic
functions on a group G, such that g has precisely a poles in
the fundamental region of G and h has precisely P poles in the
fundamental region of G. Then there is a polynomial in u and
Vi, P(u; v), such that P(g, h) = O and deg,P = p, deg P = a.

In our application of this theorem, g is prime and
G = ro(q9), where the subgroup ro(n) (n a non-zero integer) of
the modular group is defined as the gfoup of transformations

T I ga a, b, ¢, d integral, ad - bc = 1, ¢ = 0 (mod.

T I
Also we choose

g(r) = {n(am)/n(s)}*, h = h(7) = n(a27)/0(7),

where 7(7), the Dedekind modular form, is defined by

9

n(7) = exp(miz/12).£(x), x = exp(2nir), imy > O,

and s = s(q) is the least positive even integer such that

6 = s(q -~ 1)/24

is integral. Clearly

g = x% £ (y)/fe(x)s  h o= x%f(ys)/f(x),
where
A= (g2 - 1)/24



-83-

{and is integral since (g, 6) = 1f. Now, it is shown by Newman
in [9] (g and h are precisely as in this paper) that g is an
entire modular function* on r (q) {and so on ro(qﬂ)j, h is an
entire modular function on ro(qﬂ). Furthermore (see [9]) g

has a pole of order § {in the uniformising variable

z, = exp(=2ni/q7)} at the parabolic ver£ex 7 = 0 and is regular
elsewhere throughout the fundamental region of ro(q), h has a
pole of order A at T = 0 and is regular elsewhere throughout the
fundamental region of r (g®). Since ro(qﬂ) is of index q in
Fo(g), it follows that g has precisely q poles in the fundamental
region of ro(qﬂ). Thus by Theorem 8.1 there is a polynomial in
u and v, P(u, v), such that P(g, h)' = O, deg,P = 5, deg,P = q6 .1

From this point onwards q has the value 13. Then s = 2,

6 = 1, oA = 7, and we have shown that there'is a relation
(8.1) L T c(g, m)g*h™ = 0,
4=0 m=o

with coefficients c(g, m), not all zero. Replacing g and h by

the variables

A= A(T) = g/h? = {n(137)/n(1697)4e = y=r f2(y)/fa(y1s),

1/h = 161)/7(1697) .5 xT7£(x)/f(y1r?)

i

b = b(r)

* The term "entire modular function" is not used in [9]); it is
defined by Newman in [10] (page 352).

t+ This result was communicated to us, with the proof, by Dr. Newman.
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for convenience, we have g = A/b®, h = 1/b, and (8.1) becomes
7 13 - -

(8.2) £ f clg, makp™247™ = o,
£=0 m=o

We now examine (for a reason which will appear shortly)
the effect of the transformation 7 - -1/169T7 on equation (8.2).

As a special case of the transformation formula (1.4) of [9]

we have
n(- 1/1) = (-11)% (7).

Whence
A(=1/1697) = {n(=1/137)/0(-1/7)}® = 13{n(137)/n(7)}2=13A/bs,
b(=1/1697) = n(=1/16971)/0(-1/7) = 137(1697)/7(7) = 13/b,

and so, replacing 7 by -1/1697 in (8.2), we obtain

13

.
(8.3) r v 1374 c(g,m)atp® = 0.*

£=0 m=o0
Furthermore, this relation must be irreducible. We prove
this in an elementary manner as follows. Consider the more

general result

Ao
(8.4) x ¥ d(g, mA%b® = O,

4=0 m=o

as a relation in x. We observe that A%b® begins x 18477,

and denote by -t the overall lowest power of x in the expansions
of those terms d(g, m)Af'bIn which actually occur, i.e. for which

d(g, m) # 0. Then, since the left-hand side of (8.4) is

* We may note that A(T) = 13g(=1/1697) and b(T) = 13h(-1/1697T).
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identically zero, x™* must be the initial power of x in the
expansions of at least two such terms. In other words there

exist distinct integer pairs (g,, m,) and (g,, m,) such that

t = 134, + Tm, = 134, + Tmy, d(g,, m), d(g,, m,) # O,
(8.5)

Os 4y s Ay, Os g, M, 0 sm <, O g my s p.
Now 4, # &, (otherwise m = m, also), so that without loss of

generality we may take g, > gy(z O0) (giving O < m; < m;). But
from (8.5) g, = g5 (mod. 7). Hence g, = 7. Similarly m, 2 13.
Thus, since d(g,, m ), d(gg, my) # O, the degrees in A and b

of any relation of the form (8.4) must be at least 7 and at least
13 respectively. It follows that (8.3) is irreducible, of
degrees 7 and 13 in A and b. Further, taking A = 7,lu = 13, 80

that £, s 7, my s 13, and remembering that, whatever the values

of N\ and p, 4, 2 7, my 2 13, we see that in the case of (8.3)

£, = 7 and my-= 133 since g, > g4, 2 0 and g, = g, (mod. 7),

91.

this means that Lz = O, and similarly m, = O, so that t

1
Thus
c(7, 0), c(0, 13) # 0
and c¢(g, m) = O if 134 + 7m > 91, Le.m > 13 - 133/7, 1l.e. if
m>13 - 24(0 s g < 7)y m>0 (g = 7).
It follows that we may rewrite (8.2) and (8.3) respectively

as
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6 13-2y re
(8.6) c(7, 0)A"b=1¢ + g g c(yg, m)atp™24" < o,
4=0 m=0
6 13-24 e
(8.7)  1377¢(7, 0)A” + 5 £ 1374™ (4, m)ate™ = 0.
L=0 m=0

Multiplying (8.6) by 1377b1¢ and writing m.for 14-24 - m in
the summation we obtain

(8.8) 1377c¢(7, O)A? + S 14£2£ 1377¢ (4,14 - 25 - m)A%™ = 0,
£=0 m=1

Now in each of equations (B8.7) and (8.8) the highest power
of A occurring is 7 {since c(7, 0) # Of and A?” is present in
and only in the initial term. Also, these initiak terms are the
same and (8.7) is irreducible. It follows, since there can be
only one irreducible relation between A and b, that the left-
hand sides of the equations must be identical. Hence, equating
coefficients of Azbm, we have

37Ty, m),

c(gy 14 = 24 = m) = 1
and the overlapping of the m-summation ranges means that either
side of thls equation must be zero whenever m = 0, so that in
(8.7) {or (8.8)} we may take 1 s m g 13 = 24. Thus, taking
c(o, 7) = - 137 (without loss of generality) and writing d(g,m)

for 1374™™ ¢(g, m) in (8.7), we arrive at the following.
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THEOREM 8.2 Let
A= y-ifs(y)/fa(y18), b = x"7f(x)/f(yr3),

Then there 1s an irreducible polynomial relation

with integral coefficients d(g, m) which satisfy

4+m=~7

d(4, 14 = 24 = m) = 13 d( g, m).

The last equation of course follows from the corresponding
result for the c(g4, m). The word "integral" is valid as follows.
We have seen that, in the polynomial relation of Theorem 8.2, if
two or more of the quantitles A*b™ have the same initlal power
of x, then this power must be =91, and that x721 1is the initial
power of x in preclisely two of these quantities one of which is
A7, In other words in the right-hand side no two A%b™ have the
same initial power of x. Thus the d(g, m), determined by
equating the coefficients of powers of x in the expansions of
each side, appeﬁr strictly seriatim. Since in the expansion of
any Azbm, including A7, the coefficient'of the initial power of
x 1s unity and that of any other power of x integral, it follows
that every d(g, m) must be integral.

In obtaining the values of the d(g, m) only the 28 values

such that g + m » 7 need to be calculatedj; the remainder can
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then be written down. These 28 values may be obtained by

comparing the coefficients of x7®1, x7®0, ,,., as far as x~4%;

9 of these 43 powers (viz. -78, -71, -65, -64, -58, -%7, =52, =51,

-50) are not expressible in the form -13g = 7m (0 < 4 s 6,

1 < ms< 13 - 24), so that no new d(g, m) is obtained, and

6(viz. -72, -66, -60, =59, =54, =-53) give, sﬁperfluously,

d(g, m) such that g + m < 7.*
We find that

A7 = A®(11.13b) +
+A8 (36.13b2-204.13b%+36.13%b) +
+A4(38.13b5-346.13b4+126,139b3-346.139b3+38.133b) +
+A3 (20.13b7-222.13b8+102.1328b8-422,132b%+102.13%b3 -

(8.9) -222.13%b2 + 20.13%b)+
+A9(6.13b9-74.13b9+38.133b5-184.133b6+56.133b5—184.133b‘+

+38.13%b3-74,13%b2+6.13%b) +
+A(13b11-132b10+7,132b9-37,132b8+134 b7 -51,133b8 + 136 bB =
~37.13%b%+7.138b3-136b3+136b )+
+(b13-13b12+47,13b11~-3,132p10+15,132b9-5,133b8+149,133b7 -
-5,134b8+15,134p8 -3, 138b%+7,136b3-136p2+1368D)

It turns out then that the d{g, m)-are all non-zero and

that they contain powers of 13 which could not have been anticipated

from Theorem 8.2.

]
* In actual fact we examined the coefficients of suffipnt of
x 91, x790,,,,,x749, and of x %8, to enable us to find each of
and to make 12 independent checks on the 28 values.
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We observe, finally, that while the above result is new,
the relation between A and b® obtainable by "squaring" (8.9)

is given, in effect, by Lehner in [8] (pages 376 and 379).



-90~

THE COMPUTER PROGRAMME (SEE PAGE 26)

The programme was written to divide the first of the

following two power series by the second

Uy +oupx 4 ougx® o4 Lo U xt o+ L,

1T+ vyx + vax® + ...+ vpex® 4+ L.,
both sets of coefficients being integral. Denoting the
quotient power series by

W wyx 4 wax? + L.+ owox® 4+ ..,
we have, equating coefficients of powers of x in the first of

these series with those in the product of the second and

third, and transposing,

W, = U
wg = ug = (vy; w; + vg wo),
wp = U, = (v, Wooy + vaWa_og + ...+ v, wo),

Thus Wos Wis Way wony Wpy oo are integral and may be
successively found by means of these relations.

We omit the actual programme since its notation is
peculiar to "“Pegasus” and content ourselves with the following
observations. The calculation of the w, is basically a simple

process and indeed the only sub-routines used were a "read"
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and a "print" routine. As each w, if found it is both
stored and printed; the process terminates at some pre-
determined value of n (142 in our case), which number forms
part of the data. The computer was set to stop immediately
if "overflow" occurred at any stage, but in fact this did
not happen. The total computer-time taken for the six

divisions was well under an hour,



NOTATION

The pages of definition are indicated.

ii

Part 1 (q = 13)

1y m’y n' 14
16, 17

22

24, 25,‘26

29

36

36

36

37, 38

d) 39



Part 2 (g = 17)

Part 3 (g = 19)

Part 4 (q 11)

Part 5
n(r)s g = g(r)y h = his)

c(ly, m)

A =A(r), b = b(sg)

d(1l, m)

47
48
50
50
52
53
57

58

62
63
65
65
70
74

76

80

82
83
83

86
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