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Abstract 

Here I w i l l describe and i m p l e m e n t Bayes l inear me thods f o r f i n d i n g zeros of deter

m i n i s t i c f u n c t i o n s . W e assume t h a t the zero is k n o w n to be un ique . I n i t i a l l y , the value 

of the f u n c t i o n is mode l l ed s i m p l y as the p r o d u c t of t w o independen t fac to rs , the po

s i t i o n of the p o i n t f r o m the zero and a "slope" w h i c h is assumed t o vary " s m o o t h l y " 

w i t h pos i t i on . A d d i t i o n a l p r i o r i n f o r m a t i o n specifies f i r s t and second order proper t ies 

o f the slopes and the pos i t i on of t he zero: i n p a r t i c u l a r , smoothness is specif ied by 

m o d e l l i n g the slope process t o be s t a t i ona ry w i t h a decreasing co r r e l a t i on f u n c t i o n . 

T h i s research is m o t i v a t e d by prob lems ar i s ing i n large scale c o m p u t e r s i m u l a t i o n 

of m a t h e m a t i c a l models of c o m p l e x phys ica l phenomena , where a single r u n of the 

code can be expensive and the o u t p u t d i f f i c u l t t o ass imi la te . Scient is ts are o f t e n 

conf iden t abou t the s t r uc tu r e of the i r m o d e l as a desc r ip t ion of a phys i ca l process b u t 

m a y be unce r t a in abou t the values of ce r t a in m o d e l "parameters" . Such parameters 

usua l ly refer d i r e c t l y t o phys ica l a t t r i b u t e s , and so co l l a t e ra l i n f o r m a t i o n abou t the i r 

values is usual ly avai lable . I n some app l ica t ions , the phys ica l process i t se l f has been 

observed, and several runs of the code are made at d i f f e r en t pa ramete r set t ings i n an 

a t t e m p t to m a t c h the rea l i sa t ion of the code w i t h the ac tua l rea l i sa t ion . 

T h e eventua l a i m is to a id scientists to search t h r o u g h the "paramete r space" 

e f f i c i e n t l y and sys temat ica l ly , using the i r knowledge of the process. Obv ious ly , there 

are several respects i n w h i c h th i s f o r m u l a t i o n does n o t tackle the real p r o b l e m , as we 

m a i n l y consider a s ingle-valued f u n c t i o n of a real var iable . 

As we l l as cons ider ing th i s p r o b l e m I w i l l review the cu r ren t s ta te of p lay i n the 

m o r e general f i e l d o f s t a t i s t i ca l numer i ca l analysis and i ts r e l a t ionsh ip t o d e t e r m i n i s t i c 

c o m p u t e r exper imen t s ; and p a r t i a l bel ief spec i f i ca t ion or Bayes l inear me thods . 
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Chapter 1 

Introduction and Motivation 

W i t h the advent of m o r e p o w e r f u l compute r s , scientists have been able t o develop and 

t r y o u t m o r e and m o r e c o m p l i c a t e d m a t h e m a t i c a l models of m a n y phys i ca l processes, 

o f t e n when phys ica l e x p e r i m e n t a t i o n is imposs ib le ( fo r e x a m p l e i n m o d e l l i n g the 

ear th ' s a tmosphere f o r weather forecas t ing) or very expensive i n e i ther t i m e or m o n e y 

or b o t h . 

Examples of these models can be seen i n m a n y branches of science and i n d u s t r y , 

me teoro logy (weather fo recas t ing) , physics ( t ransmiss ion of hea t ) , c h e m i s t r y ( r eac t ion 

k ine t i c s ) , c o m p u t i n g (design of V L S I s i l icon chips) , su rvey ing ( u n d e r g r o u n d surveys 

by r emote sensing). 

These models have the f o l l o w i n g character is t ics , 

1 T h e y general ly consist of large systems of non- l inear equa t ions , w i t h m u l t i 

d imens iona l i n p u t s and o u t p u t s ; 

2 T h e y are d e t e r m i n i s t i c , i.e. the same set of i n p u t values w i l l a lways p roduce 

the same response; 

3 A single r u n of the code is expensive, some examples take several m i n u t e s t o 

r u n on m o d e r n super compute r s (e.g. C ray X - M P ) . 

T h e y have m a n y uses w h i c h f a l l i n t o three categories, 

1 P r e d i c t i o n / F o r e c a s t i n g - o b t a i n i n g an a p p r o x i m a t i o n fo r t he f u n c t i o n at u n t r i e d 

i n p u t values, e i ther i n the design space ' p r e d i c t i o n ' or ou ts ide ' fo recas t ing ' ; 

1 



2 

2 C a l i b r a t i o n - fitting the c o m p u t e r code t o the ac tua l observed data ; 

3 O p t i m i z a t i o n - finding i n p u t values w h i c h m a x i m i z e or m i n i m i z e the response 

f u n c t i o n or some f u n c t i o n a l of i t ; 

I n t h i s thesis we w i l l be m a i n l y cons ider ing a s imple vers ion o f t he second category, 

where the i n p u t is un iva r i a t e . 

These ( d e t e r m i n i s t i c ) p rob lems are a k i n to those t h a t n u m e r i c a l analysts tackle : 

a p p r o x i m a t i o n , so lv ing equat ions , and o p t i m i z a t i o n . T h e me thods developed f o r solv

i n g these can also be used t o solve the n u m e r i c a l analysts p rob lems . T h e n u m e r i c a l 

analys t ' s f u n c t i o n s are o f t e n m u c h cheaper to c o m p u t e t h a n the resul ts of the deter

m i n i s t i c s imu la t ions , and so they do no t have as t i g h t a cons t r a in t on the n u m b e r of 

observat ions they can take. W e w i l l e x p a n d on th i s i n Chap te r 2, w h i c h conta ins a 

rev iew of the cu r ren t w o r k on the sub jec t . 

A s there are no r a n d o m er ror t e rms i n these models , i t is no t clear how a stat is

t i c a l approach can help solve these p rob lems . T h e r e is however a large n u m b e r of 

u n k n o w n s ( the f u n c t i o n value at every p o i n t we have no t made an "observa t ion" , i .e. 

f u n c t i o n eva lua t ion , a t ) , w h i c h are "cor re la ted" t o each o ther . W e can consider t he 

a p p r o x i m a t i o n of the f u n c t i o n or i ts a t t r i b u t e s as a p r o b l e m of e x p e r i m e n t a l design 

- we need an es t ima te o f the f u n c t i o n or its a t t r i b u t e w i t h a measure o f unce r t a in ty , 

and we need t o choose the i n p u t values of the c o m p u t e r code i n such a way as to 

m i n i m i z e the n u m b e r of t imes we have to r u n the p r o g r a m . 

W e choose a series o f design po in ts X\,..., x n , a t w h i c h we can o b t a i n observat ions 

j / i ( by r u n n i n g the c o m p u t e r code w i t h a;, as the i n p u t var iab les) , o b t a i n an es t ima te 

of t he f u n c t i o n at o ther values of x and q u a n t i f y the u n c e r t a i n t y o f these p red ic t ions . 

F r o m a s t a t i s t i ca l v i e w p o i n t the Bayesian p a r a d i g m lends i t se l f ve ry n a t u r a l l y t o th i s 

p r o b l e m , again we w i l l expend on this p o i n t i n Chap te r 2, where o the r m o r e classical 

approaches requi re c o n t r i v e d reasoning. T h e m a i n p r o b l e m w i t h Bayes ian s ta t i s t ics , 

when app l i ed t o real p rob lems is t h a t the ca l cu l a t i on of pos te r ior d i s t r i b u t i o n s is o f t e n 

c o m p u t a t i o n a l l y d i f f i c u l t i n v o l v i n g m u l t i - d i m e n s i o n a l in tegrals of m u l t i - m o d a l f u n c 

t ions . I n an a t t e m p t t o avo id some of these prob lems we w i l l u t i l i z e the Bayes L inea r 



framework of Goldstein[1981, 1983, 1986, 1987, 1988a, 1988b, 1991], which is sum

marised in Chapter 3, and we will introduce a new design criterion for deterministic 

problems based on this in Chapter 4 

In Chapter 5 we will outline the methods and models developed to locate zeros 

of functions, initially where the input and output are both univariate, but extending 

the model to include multivariate response and input. 

Finally in this introductory chapter we will include a brief description of examples 

of the problems which have motivated this field of research 

Example 1: Kee, Grcar, Smooke and Miller [1985] describe a fluid-dynamics model 

for flames, which contains five unknown parameters (rate constants), with a 

single response, the velocity of the flame. Their aim is to tune the model 

parameters to match physically observed results, and is an example where an 

equivalent physical experiment is impossible because the model parameters are 

fixed physical constants. The code for this example requires twenty minutes per 

run (each choice of parameters) on a Cray X-MP, so highlights the importance 

of the design problem of minimizing the number of runs to be performed. 

Example 2: TWOLAYER is a simulator of heat transfer through a wall containing 

two layers (hence the name) of phase change materials. Output is a measure of 

the storage capacity of the wall and the aim is to maximize this capacity. 

Example 3: FABRICS I I [1984] is a. simulator for silicon circuitry. Inputs are circuit 

parameters and production process parameters (some of which are allowed to 

vary) and the response is a measure of the circuit (for example, delay time). The 

aim is to choose values of design parameters so that the response is insensitive 

to variation in the process parameters. 

Example 4: History matching - Reservoir engineers have developed models for the 

flow of fluids through the earth, which can be used to model oil and gas reser

voirs. These models need the underground structure of the reservoir (geological 

faults, properties of the rock e.g. porosity and permiability - spatially dis

tributed throughout the reservoir, etc.) as input parameters, and outputs are 



4 

typically time series, such as the flow/pressure of gas/oil/water at various well 
sites. Their aim is to match the output of the model to the actual observations 
at the well sites, and so predict the underground structure of the reservoir. 



Chapter 2 

Statistical Numerical Analysis 

Most problems in numerical analysis entail approximating some facet of a given func

tion, whether it is its value over a given interval, the location of its extremes, its 

integral or some other functional, which cannot be directly calculated, or whose di

rect calculation is expensive. In all these cases the numerical analyst evaluates the 

function (or a related function) at a set of ordinates, and uses these values to make 

his approximation. Statisticians can view these as problems of inference. We have 

a parameter, the desired functional which we want to approximate, that we wish to 

make an inference about, and we have some 'experimental observations', the function 

values on which to base this inference. 

For example, suppose we wished to approximate the integral of a function y(-), 

1 

/ y(x)d: 
1 

A numerical analyst would chose a quadrature rule comprising a set of ordinates 

X — {xi,..., .T t l} C [—1,1] and a. set of weights W = {wi,..., wn) and compute Q 

his approximation as 
n 

As a statistician we choose our design X for our 'experiment'; statistically model the 

function; make our 'observations' {y(xl),... ,y(xn)}; and use this to make inference 

5 
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about / . 

The numerical analyst's approach usually neglects any additional information we 

might have about the function, e.g. convexity and symmetry - when he chooses 

the set X, and his optimal design is based generally on worse case criteria, often 

choosing to fit for polynomials up to and including degree n. From a statistical point 

of view this apriori information can be incorporated into the design of the experiment, 

for example in a Bayesian framework, we can lay down a prior distribution on the 

functions which represents our beliefs about their shape. 

This chapter contains a review of work on Bayesian numerical analysis, and more 

general statistical numerical analysis. We will generally consider those methods where 

the function evaluations are assumed to be error free, and so the approximant is inter-

polatory, but we will briefly consider the case where function evaluations are subject 

to error, which lead to numerical 'smoothers'. We start by considering deterministic 

computer experiments. 

2.1 Deterministic computer experiments 

Although this chapter is entitled Statistical Numerical Analysis it could equally have 

been entitled Deterministic Computer Experiments, as most problems in numerical 

analysis can be considered as deterministic computer experiments and vice-versa. 

However, an important consideration is the cost of obtaining a single evaluation 

of our function. Whenever we are considering the sort of experiments outlined in 

the introductory chapter, the cost of a single observation is likely to be high, whereas 

function evaluations in a numerical analysis problem are often relatively cheap. There

fore, when solving deterministic computer experiment problems we can apply a more 

sophisticated technique (one which uses a more complicated procedure for choosing 

design points) to evaluate our functional, because each observation saved saves a lot 

more time and money. It has to be remembered that whichever method we use the 

cost of using it should not exceed the savings we make by reducing the number of 
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function evaluations. 

Another consideration is the precision or accuracy of the function. Generally the 

precision in the numerical analyst's problems will be much greater (as the functions 

are simpler to compute) than in the computer experiment problems. In the latter 

there is a much greater chance of numerical rounding errors, due to the complexity of 

the code, and also model inaccuracy - as the code is modelling real-world phenomena, 

and even with very precise models, there is likely to be some simplification. 

2.2 Interpolation 

Perhaps one of the most common of all numerical problems is that of finding an 

approximation to a function ?/(•), given function evaluations yi,..., yn at x±,. .., xn. 

Usually we would like the approximant to be an interpolant, i.e. match the function 

at the J E , S . Non-interpolatory approximants will covered in Section 2.5. 

I will now outline three statistical approaches to the interpolation problem. The 

first approach entails putting a prior distribution on functions by placing a prior 

distribution on the coefficients of its power series expression, the other two model the 

function explicitly as a realization of a random process. 

2.2.1 Poincare's approach 

Probably the first example of statistical numerical analysis can be found in Poincare's 

Calcul de Probability[l896]. In lesson 21 Poincare examines the problem of approxi

mating a function by a finite polynomial. In lesson 22, however, he expands this to infi

nite polynomials. He supposes y(x) has a power series expansion y(x) = A0+A1X + . . . , 

where the AiS are unknown. He then places a prior distribution on the AiS by sup

posing them to be independent, with zero mean, Gaussian random variables with 

variance af. Then given function evaluations yi,...,yn at xi,...,xn he finds the 

expected values of the AiS. 
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Writing 

g(x) = (7Q + + <*2X + 

Poincare shows that the posterior mean of y(x) given function evaluations yi,.. . ,yn 

at x\,...,xn is given by 

y(x) = kig(xix) + h kng(xnx) 

where the k{S are given by 

ky giXlXy) • • • g ( x i x n ) 
-i 

y-i 

k-n g ( x n x i ) • • • g ( x n x n ) yn 

For example, if we believe that the standard deviation of A,- is half the standard 
2 

deviation of this gives us a] — ^ and g(x) = (1 — for a; G (—4,4). If we 

choose the design x\ = — l , x 2 = 0, X 3 = 1, we have 

y(x) 
-32y2 + 15(yi - y3)x + (32y2 - 15yi - 15y 3)x 

2x2 - 32 

, 2 

2.2.2 Brownian motion 

Diaconis[1988] looks to Brownian motion as a way to model the function. A particle 

exhibits Brownian motion if its velocity is always changing, defined as 

Defn . 2.1 Brownian Motion with drift parameter n and variance parameter a2 > 0 

is a continuous state and time stochastic process Y(x) which exhibits the following 

properties. 

(0 
(«) 

- Y ( x 0 ) ~ J N O ^ ! - a,-0),<72(a:i - x 0 ) ) 

— Y(x0) and Y(x3) — Y(xi) are independent 

if xz > x2 > xi > xQ 
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Standard Brownian motion has fx = 0 and a2 = 1. 

9 

The path of the particle is a continuous, but nowhere differentiable function of x, 

and exhibits the strong Markov property, i.e. knowing where the particle is at time 

x is all that is sufficient to predict its future position. 

We can now identify our function as a possible path of the particle, and if we 

additionally specify a prior distribution for V(0), then we have a ful l prior distribution 

of paths, or functions in C(—oo,+oo). 

Let us consider functions on the unit interval [0,1], with evaluations at yi,... ,yn 

at 0 < x\ < • • • < xn < 1, with a standard Brownian motion prior distribution, 

and with a normal improper ignorance prior distribution on Y(0) [7ry(0)(y) oc 1 Vj/]. 

As Brownian motion exhibits the Markov property the posterior mean of Y(x) given 

j / i , . . . ,yn is just the linear spline interpolant. 

P(Y(x)\y„...,yn) = 

Cov(Y(x)tY(x.)\yu...,yn) = 

2/i if 0 < x < a,"i 

y,^,-*)+, /• + ) (*-*,) j f < x < 

7/n if Xn < X < 1 

— max(a;, x„) if 0 < x, x+ < xt 

( x i + l - m a x ( x , x . ) ) ( m i n ( x , x . ) - x i ) j£ x _ < ^ < x ^ 

if Xn < X, X* < 1 
I i + J — Xi 

min(.r, xm) — xn 

0 otherwise 

The simple posterior mean and covariance structures yield straight forward opti

mal designs for the interpolant based on the variance of the predictor, if we can chose 

n points then we have the following optimal designs: 

Minimum Maximum Variance { ^ z | ' * = l i - - - > n } 

Minimum Average Variance { ^ z f i ^ = 1, • • • ,«} 
(Note: these results are not those obtained in Diaconis [1988]) 

If we integrate the interpolant, and choose a design which minimizes the variance of 

the integral, we obtain the composite mid-point rule, with design ordinates {^7-,? = 
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1,. . . , n } , and 
f1 < \a 1 , 2 z - l 

Jo n " J An 

If we use integrated Brownian motion as our prior distribution, then the posterior 

expectation is the interpolatory cubic spline. Indeed if we repeat this integration m 

times we obtain splines of order 2m + 1 as our posterior estimate. See Wahba[1978] 

2.2.3 Stationary stochastic processes 

The approach employed by Sacks et a/[1989a, 1989b], Schagen[1979, 1980a, 1980b] 

and Currin et a/[1991] is also to model the function as a realization of a stochastic 

process. In the two papers by Sacks et a/[1989a, 1989b] the response is modelled by 

a linear regression term plus an additional "error" term Z(-) with mean zero, 

m 
Y(x) = J2ft(x)f3t + Z(x) (2.1) 

where the /,(-)s are known functions and /?,s are unknown regression parameters, 

and x (E R ' . This additional term is assumed to be a realisation of a stationary 

stochastic process, with mean zero, fixed variance <r2, and the covariance between 

two observations a continuous function solely of their relative positions (not their 

absolute positions), 

Cov(Z(x),Z(x')) = <r2p(x-xm) (2.2) 

They assume also that the Z(-)s have a multivariate normal distribution, although 

this is not necessary to obtain linear estimates. 

Schagen[1979, 1980a, 1980b] and Currin et a/[1991] consider the special case 

of (2.1) when 

Y(x) = n + Z{x) (2.3) 

with Z(-) as before. 

In one dimension, some of the correlation functions considered by these authors 

are (for functions defined on any interval of the whole real line, which are plotted in 
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Figure 2.1) 
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(b) 

.8 0.8 

0.6 0.6 

OA 0.4 
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Figure 2.1: Correlation functions for (a) P2{-), (b) Pi{-), (c) pc+{m) and (d) />/+(•)> with 
0 = 1 

p„(d) 

Pl+(d) 

e-o\d\» 

1 - ^ M l < 0 
= < 

0 otherwise 
, 2 

Pe+(d) = I 

and for the interval [0,1] 

i - 6 ( a ) ' ( i - M ) H 

2 ( l - M ) 3 

0 

< 
f < M | < 0 

otherwise 

Pi(d) = I < 5 < oo 

6 > 0,p > 0 

0 > 0 

0 > 0 

0' < 20 and 0'2 - 600' + 1202 < 240' 

(2.4) 

(2.5) 

In all of these 0 controls the "smoothness" of the predictor, and so the range of 
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influence an observation has on the predictor. 

Schagen[1979, 1980a, 1980b, 1984] uses />2(-); Sacks et a/[1989a, 1989b] use pp(-) 

(in particular p2(')) and also mention pc(-) and pi(-); and Currin et a/[199l] use 

all of these. These functions have different properties. Only p2{-) is continuously 

differentiable everywhere, where as pp(-) (for p £ { 2 , 4 , . . . } ) , pi(-) and /?/+(•) are not 

differentiable at zero, and pc(-) and pc+{-) are twice differentiable everywhere. Both 

pi(-) and pt+(-) lead to piecewise linear interpolants and pc{-) and pc+(') give cubic 

spline interpolants. 

For simplicity it is often assumed that the correlation function p(d) can be fac-

torised into the product of q terms each dependent on only one of the co-ordinates of 

P(^ = f l p i i i ( d i ) . (2-6) 

This assumption makes certain integrations easier to perform, as multiple integrals 

factorise into products of single integrals. However it does rule out certain correlation 

function that we might like to consider, for example e-""^". 

It can be assumed that the correlation function is isotropic, i.e. the correlation 

function in each direction is of the same form with the same smoothness parameter. 

In practice though /)(•) will not be isotropic but will be of the form 

p(d) = e - £ ? - » M ? (2.7) 

Schagen[1980b, 1984] in his later papers adopts a 'half-way' approach by assuming 

he knows the anisotropy factors, and then "re-scaling". 

p(d) = e - ° ^ a i ^ (2.8) 

We will now discuss Schagen[1979, 1980a, 1980b, 1984], Sacks et «/[1989a, 1989b] 

and Currin et a/[1991] estimates for the response functions given their models and 

"observations" ? / i , . . . , yn at X\,..., xn. 
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Sacks et a/[1989a, 1989b] obtain the best linear estimate (which minimizes the 

mean square error) 

where (3 = [F^V^ F)~l f V ~ l y , with associated MSE, 

/(*) = ( M x ) , . . . , f m ( x ) f 

v(x) = (Cov(Y(x),Y(x,)),...,Cov(Y(x),Y(xn))f 

y = {yu- • • ,ynf 

Vn = Cov(Y(xi),Y(xj)) 

FtJ = f j ( x i ) 

O'Hagan's comment on Sacks et a/[1989b] includes a Bayesian justification, putting 

a multi-variate normal prior distribution on the regression parameters, 

which leads to the same form of estimate, but with 0 replaced by 

Y(x) = f { x ) f c + v{x)V-\y - F0) (2.9) 

0 F 
( f ( x ) vT(x)) MSE(Y(x)) 

I v(x) J F V 
(2.10) 

where 

/3~N(l30tB) 

p = (FTV-1F + a2B-1)-l(FTV-1Fp + <r2B-1P0) (2.11) 

which is a weighted average of the prior mean, and the least-squares estimate. If we 

allow the prior variance matrix of the /3 to tend towards infinity, P tends to /3. 
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In Schagen's model, the best estimate is 

14 

Y(x) = v ( x ) V - 1 ( y - f L l ) + v (2.12) 

with associated variance 

Var(y(aj)) = <r 2(l - v{x)V~lv(x)) (2.13) 

The maximum likelihood estimate for / i can be calculated and is given by 

A = ^ (2.14) 

and can be substituted back in the previous equation. 

It would also be useful to find estimates for the other parameters 0 and a2. In the 

model of Sacks et a/[1989a, 1989b] the MLE of a2 is 

a2 = L(y-FP)TV-l(y-F0) (2.15) 
n 

and they use cross validated mean square error to estimate 0. Currin et al use the 

maximum likelihood estimate for 0 as well. 

Schagen uses a cumulative predictor method instead of cross validated mean 

square error or maximum likelihood to estimate 0. He defines 

ei = Y{xi)-Yi-1(xi) 

where yj-_i(x,-) is the predicted value of Y(x{) based on the first i — 1 function eval

uations. He shows the log likelihood of V is then proportional to 

1=1 ° i 

where the variance of these differences a2 can be found by generating the a new matrix 
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V* from V by pivoting on the diagonal elements of V, as follows 

15 

He uses this new matrix to compute the £,s and their variances 

e, = W - ^ + p ^ j ) - / . ) 
a2 = V;' 

and chooses 9 to maximize / / . 

Schagen also examines another simple way of estimating 6, by comparing nearest 

neighbours. Given any design point x, he finds the nearest design point to it a;*, 

and works out the distance d between the two, (including in this any anisotropy 

parameters) 

d2 = ^2a,(xi - xi)2. 

In this simple case he works out the log-likelihood of the covariance matrix, V = 

a2 

( 1 E-8* 

e~ed2 1 

\og(l(V\0)) cx -l-l0(J\V\-l-yV-'y 

where y = (y,j /*) T . Maximizing this with respect to 6 gives us the following cubic 

3 vv' 2 , ,y2 + y'2

 u yy* n 

w -it)' + ( l)u; — - - o 
a1 a* a1 

where w = e~ed, which if it has a solution in [0,1] gives an estimate of 6, — ^ j ^ . He 

now has a collection of n estimates of 0 for different design points, of which he uses 

the median as an estimate of 0. 
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Schagen extends his model by combining two stationary stochastic processes, 
where one represents a long range trend and the other more local departures from i t , 
i.e. 

Y(x) = ZL(x) + Zs(x) + n 

where ZL(-) and Zs(-) are both as above, but with 0L <C 9S- The 6 parameters of 

each process are estimated, for Zs(-) by only considering design points that are very 

close together, and ZL(-) by using the standard approaches above on the function 

Y(-) -

Schagen goes on to use his model for optimization, which we will look at in a later 

section, but does not discuss design issues in relation to the problem of interpolation. 

On the other hand Sacks et a/[1989a, 1989b] do approach the problem of design. 

As they are working with expensive function, they would like to choose the design 

(the set X of OJS taken from a design region £, at which to evaluate the function) 

which minimizes the number of runs that are required. We cannot know this exactly 

(as i t would entail us knowing precisely where the zero is), so instead we need to 

look at other similar criteria. We are not interested here in the pros and cons of 

different design schemes, whether we choose all the points initially or choose the 

points sequentially, as we will be looking into this in more detail in Chapter 5 in 

relation to our problem. Suggestions for criteria to be minimized in their papers are: 

EISE: Empirical Integrated Squared Error is used to compare different interpolants 

when developing models, to test how well an approximant fits the true function 

and is defined by 

EISE[Y) = £ ( V > , ) - Y(iut))2 

i 

where the u>, are TV randomly chosen points in the design space £. 

MESE: Maximum Empirical Squared Error, again used similarly to above, to com

pare different interpolants when developing models 

MESE[Y] = max(Y(wi) - Y ( i U i ) ) 2 . 
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Both this and ETSE have no practical use with real problems but are useful in 

testing the methods, as they need extra function evaluations to calculate them. 

IMSE: Integrated Mean Square Error over a region S is calculated by integrating 

fi(-) in the regression terms, and all the correlation functions are factorizable 

into terms containing only one co-ordinate, and that they are independent of 

the design so only need calculating once. 

MMSE: Maximum Mean Square Error. Instead of finding the average value of the 

MSE, we find its maximum value, although we no longer have any integration 

to perform we do have to find the global maxima of the MSE for every design 

we choose - minimax conditions are always hard to find, as they require two 

optimization stages. 

Entropy: Posterior Entropy is an idea put forward by Lindley[1956] in work on 

Bayesian design. It quantifies the "amount of information" in an experiment. 

If observations are taken at a set of design points X = {x\,..., xn} in £, then 

the posterior entropy is defined as E(— logp), where p is the conditional density 

of Y(-) on X' — £ — X given observations yi,...,yn- It can be shown that 

minimizing the expected posterior entropy on X' is the same as maximizinig 

the prior variance on A'. If we assume normality this is the same as maximising 

the determinant of the covariance matrix of responses. In the Schagen model 

covered by Currin et o/[1991], this is the same as maximizing the determinant of 

V. This criteria has a tendency to place points as far as possible away from each 

other as possible, and this is similar to the criteria to be discussed in Chapter 4. 

Although not considered in any of the papers cited above the averaging criteria 

the MSE of Y(x) obtained earlier, i.e. (For ease of calculation we note that 

a Be = tr&ceBca) 

( / ( * ) / ( * ) f ( x ) v ( x ) 0 F 
IMSE[Y] = I 

Jn 
dx a dx — trace T T 

(x)f (x) v(x)v {x) , F V V 

the multiple integrals in the trace simplify if we assume that all the functions 
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EISE, IMSE and entropy, can be averaged with respect to a known non-uniform 

weight function, which will produce different designs, see Chapter 4. 

Sacks et al perform a robustness study choosing designs which are near optimal 

for a range of values of 0. 

In this section we consider two more approaches to Bayesian integration - we have 

already encountered one in Section 2.2.2. Firstly we can take the interpolant, as 

defined in Section 2.2.3, and integrate it as an approximation to the integral, this 

is the approach mentioned by Schagen[1980a, 1980b], and O'Hagan[1990]. Eberlain 

on the other hand uses an approach similar to Poincare, by placing a prior on the 

coefficients of the function's power series. 

2.3.1 Bayesian quadrature 

Although Schagen only mentions integration in passing, O'Hagan looks at integration 

in more detail. He considers integrals of the form 

where Slx{x) is some measure over the design space X, and r(x) is a product of 

polynomials in the x,s, i.e. r(x) = 7*(1)(a,,i) • • • r^(xn). The functions he is considering 

are unnormalized posterior probability densities, and so is interested in their integral 

- the constant of proportionality in the Bayes analysis; the ratios of two integrals of 

the form 

- which give "moments" of the distribution Y(-) along with other summary statistics, 

which are combinations of these integrals. 

O'Hagan models the function in a similar manner to Sacks et al but from a 

2.3 Integration 

Jr{x)Y{x)dSlx{x) 

fA.r(x)Y(x)dSlx{x) 
J x Y ( x ) d n x ( x ) 
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Bayesian viewpoint. So he assumes that Y(x) has the fol lowing prior 

19 

Y(X)\(3,CT2 ~ N ( f ( x ) ( 3 , * 2 p 2 ( x , x ) ) 

and places an improper "ignorance" prior on the parameters 

7r(/3,<72) OC a~2 

and he defines 

k = J r(x)Y(x)dnx(x) (2.16) 

where r(x) = (ri(x),..., rp(x)) . Using the notation f r o m Section 2.2.3, he finds 

posterior distributions for the parameters 

/3|j/,<7 2 ~ W { P , ( f V - x F ) ~ l ) (2.17) 

a2\y ~ dx~lp (2.18) 

(where d is calculated f rom the data) and for Y(x). He then integrates his interpolant, 

giving us a posterior distr ibution for k 

k\y ~tn.m(k,dW) (2.19) 

where it and W can be calculated f rom the data also, and t n - p is the mult ivariate 

^-distribution w i t h n — p degrees of freedom. 

In general when considering the distr ibution of the ratio of two random quantities, 

we usually f ind i t is not well defined because of the possibility that the denominator 

is zero. However, in the case where O'Hagan is considering, the denominator should 

never be zero as i t is usually the integral of a s tr ict ly positive funct ion, (sometimes 

this integration can be zero or negative as the approximant can be negative) . I f we 

have made sufficient observations then the variation of the denominator should be 

sufficiently small to obtain a reasonably accurate approximation to the ratio, using 
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the "delta-methods", the posterior mean and variance of ^ can be approximated by 

( h . \ „ E(k,\y) ( V a r f c l y ) Covjk,,^) \ 

V feJl ~ / E ( f c , | y ) V / V a r ( ^ | y ) Var(fc,|y) Cov(fc,-,fcJ-|y) \ , 

W ) ~ U ( * i l v ) / U ( * i l l 0 2 E(fc,-|y)» E ^ l y ) ^ ^ ^ ' j 

To complete this O'Hagan now needs to specify the constituents of the model: 

the measure Qx(') over which to integrate; the correlation funct ion p(-); the linear 

regression terms / , ( • ) ; and the functions he wishes to f i nd posterior expectations of 

r t ( - ) . He needs to consider functions which allow h im to compute his estimates for 

k in closed fo rm , otherwise he would st i l l have to resort to numerical integration. 

He assumes that he is integrating over X — IR,'; that flx(^) is the standard normal 

distr ibution ] N ( 0 , / g ) ; and that the correlation funct ion is P2( -)- As w e ^ n e assumes 

that all the /,-(-)s a n c ' r i ( ' ) s a r e simple products of polynomials, this implies that he 

can obtain closed fo rm expressions for each of the integrals. 

O'Hagan suggests two design criteria for choosing the in i t ia l design X\,... ,xn 

both of which minimize the variance of one of the quantities of interest we mentioned 

above 

C\ minimize the variance of one of the ratios of integrals - for example the posterior 

mean of the distr ibution Y(x) 

Jxr(x)Y(x)dnx(x) 
fxY{x)<Klx(x) 

Ci minimize the variance of the denominator in one of the ratios, often 

JxY(x)dSlx(x) 

the constant of proportionality in the Bayes analysis. 

Marginal and conditional distributions derived f r o m the posterior distr ibution Y(-) 

are also of interest in Bayesian analysis and these can be obtained in a similar way. 
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O'Hagan factorises X into Xa and Xb (pu t t ing x = ( x^a x[ f ) and, for simplicity, 
chooses a measure that wi l l factorise, i.e. dQ,x(&) — dQxa(xa)d(lxb(%b), s o n e c a n 

write 

k = JxY(x)dSlx(x) = J x ( J v Y ( x a , x b ) d S l X b ( x b ) ) d n X a ( x a ) 

He also defines 

Pxa(x*)= I Y(xa,xb)dnXb(xb) 

which is the constant of proportionality for the conditional dis t r ibut ion, given he has 

observed xa. He would like to make inferences about pxa{&a), the marginal density 

Pxa(xa)/k a n d the conditional densities Y(x)/pxa(xa), the general integrals 

kxAxa) *= / r(xa,xb)Y(xa,xb)dQxb(xb) 
J xb 

or ratios of the fo rm kxn,i(xa)/pxa(xa) or kxa,i(xa)/k. 

He then repeats the calculations made above to obtain posterior distributions for 

this vector. 

kxa{xa)\y,a2 ~ H(kxA*a),<r2WXa(xaixa)) (2.22) 

kx.M\V ~ tn-g{kxa(xa),dWXa{Xa,Xa)) (2.23) 

where again kxa(xa) and Wxa(xa, xa) are functions of the data. 

From this he obtains posterior estimates of the conditional moments as ratios 

k X a , i ( ' ) , using the "delta-method" approximation as above. To get the marginal dis-

tributions he needs to approximate p * g ^ , the only additional informat ion needed is 

the covariance between kxa(xa) and k, which can again be calculated as above. 

O'Hagan concludes the paper by considering product designs, as the mat r ix alge

bra can be simplified if we assume 

(1) the design we are considering consists of a lattice of points, i.e. {a?i, . . . ,xn} 
T T 

consists of all nanb points of the fo rm ( x a . t x b ) 
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(2) the correlation funct ion />(•) can be factorised, i.e. 

22 

p(x - «») pxa(xa - x*a)pXb(xb - x+b) 

(3) / consists of all m a m(, products of m a functions of xa and nib functions of Xb 

(4) Similarly for r ( i f this condition does not hold, we can always extend the set of 

functions we are integrating to satisfy i t ) 

A l l the matrices i n the calculations can then be factorized into Kronecker products, 

so s impl i fy ing the equations. 

2.3.2 Stick breaking 

Another Bayesian approach to numerical integration is that of Eberlain. He considers 

functions on the interval [—1,1], which have convergent power series, i n a similar way 

to Poincare, identifying each function / ( • ) wi th its set of coefficients. 

f ( X ) = J2 CnXn 

n=0 

He then place a prior on these coefficients: 

Co ~ t / ( - U ) 

C,|Co ~ t / ( - [ l - | C o | ] , [ l - | C 0 | ] ) 

C n + 1 | C n , . . . , C 0 ~ t / ( - [ l - | C 0 | | C „ | ] , [ 1 - | C 0 | | C n | ] ) 

This sets up a prior on the functions bounded above and below (by 1 and -1) such that 

Yl'^Lo | C n | = 1. He extends this to functions bounded above and below by arbitrary 

values, by shift ing and re-scaling. This prior is then used to approximate the integral 

by obtaining posterior expectations {CQ, . . . } for the coefficients {Co, C\,...}, and 
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then computing the integral, of the resulting power series. 

E
 U-i Y ^ d x ) = l\^cnxn 

n=0 
oo 

_ 2 C 2 m 

^ o 2 m + l 

2.4 Optimization 

An obvious approach to finding local or global optima, is to locate the local or global 

opt ima for the approximant, as Schagen[1984] and M6ckus[1989] do. 

Schagen[1980b, 1984], Sacks at a/[1989a, 1989b] and Curr in at a/[1991] maximize 

their interpolant to obtain an estimate of the global max imum of the real funct ion. 

However, Schagen[1984] includes a sequential design criterion for choosing the next 

point to evaluate the funct ion at. The criterion is a composite funct ion which is a 

compromise between looking near the current maxima and looking in any gaps in 

the design to see if a maxima has been missed. He considers functions defined in a 

rectangular region (a\,bi) x . . . x (aq,bq), w i th the criterion to maximize, 

G{x*) = W^£l - ( l - W)^^P- (2.24) 

using the same notation as in Section 2.2, and where 

H(x') = £ p(x* - X i ) + £ e-48^-^2 + e - « « < 6 * - * : > a 

i=i fc=i 

n 
n H m 

For small W (near 0), the second term is dominant, and this "repulsive" funct ion 

chooses design points that are as far away f r o m the other design points (the first 

summation in H(x*)) and the edge of the region as possible (the second summation 

in H(x*)). Therefore the criterion "explores" the region. For W near one, the first 
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term becomes dominant, and so the next design points w i l l be chosen to be close 

to the maxima of the interpolant. Lett ing W increase f rom 0 to 1 he generates a 

design, which in i t ia l ly explores the region and then homes in on the maximum. A 

fixed scheme could be used for the values of W, but i t would be better to choose i t 

when more is known about the funct ion. One scheme is to let W be the "probabili ty" 

that there are no more undetected "lumps". 

M6ckus'[1989] approaches the problem of global opt imizat ion (minimizat ion) of 

functions defined on the rectangular region [—1,1]' i n a similar manner. He defines 

the "distance" of a point in x € X = [—1,1]' f r o m the global m in ima x0 to be 

y(x) — y(x0), rather than the euclidean distance \x — x0\. This funct ion is well 

defined even i f y(-) has mult iple global minima. 

He considers two design criteria. The first a "worst-case" criterion is defined to be 

the maximum "distance" f r o m the global min imum over functions y(-) i n the possible 

space of functions y. The second one, which he uses in the book, is the average 

"distance" f rom the global minima, where the average is taken over functions i n y, 

giving the criterion 

where fi(-) is some additive measure over y. 

His choice of prior distr ibution for the functions is influenced by conditions of 

continuity, and independence of partial derivatives. These arguments lead h im to 

choosing the prior distr ibution to be a stationary gaussian process w i t h mean / i and 

co variance 

Given data y\,..., yn at X\,. .., xn, he obtains the posterior dis t r ibut ion of the func

tions in y, uses this as f i ( - ) to compute C(x), and chooses the next point to minimize 

this criterion. 

C(x) = J \y(x) - y(xQ)\dn(y) 

x 
Cov(Y(x,Y(xm)) = cr2T[ll x 

1=1 
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2.5 Smoothing 
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I f the funct ion evaluations are subject to error (not necessarily random), we require 

a different approach because the approximant no longer matches the true funct ion at 

the design points. 

I f we assume this error is t ru ly random we can expand the work on interpolation 

by stationary stochastic processes by adding a further independent error term to the 

Z(-) process wi th variance <r̂ , this gives us a modified covariance structure 

Cov(Z(aj , ) , Z(xj)) = cr2p(xi - Xj) + er2<5,j 

Here we call the approximants "smoothers" instead of interpolants. We do not neces

sarily need to assume the errors independent, but can use a very short range correlated 

error, as in Schagen's model, and use the long range term ZL(-) as the approximant. 

The methods of Section 2.2.2 can be extended to smoothing, see Wahba[1978]. 

She and other authors use a penalty funct ion, of the f o r m 

L[y) = a j y"{xfdx + i - y(x,)f 

w i t h observations j / J , . . . , yn at Xi,..., xn. This penalty funct ion is a trade off between 

f idel i ty to the data and smoothness of the approximation, a measures the smoothness 

of the response (large a means the funct ion is very smooth, small a means the funct ion 

has high f idel i ty to the data). I t is easy to show that the funct ion that minimizes L[-] 

is a cubic spline. 

Finally in this section, we look at 0'Hagan's[1978] approach to smoothing using 

a local regression model, in which he generalizes the standard linear regression model 

to allow the regression parameters to vary w i t h x. In a standard linear regression we 

model the response Y(x) at x as follows: 

E(Y(x)\x,(3) = f ( x f ( 3 (2.25) 
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where f ( x ) is a vector of known functions and (3 is a vector of unknown parameters. 

O'Hagan generalizes equation (2.25) by allowing the regression parameters to depend 

on x as well 

E(Y(x)\x,(3(x)) = f(x)T(3(x), (2.26) 

and assumes the errors are homoscedastic 

Va.r(Y(x)\x,/3(x)) = a* (2.27) 

O'Hagan lays down a prior distr ibution on the regression parameters, by assuming 

that 

E((3(x)\b0) = b0 (2.28) 

and that i t is a second-order stationary process, 

Cov(/3(x),{3(x')\b0) = p2(\x - x*\)B0 (2.29) 

where P2(m) is as in the previous section, and 6o and BQ are the mean and variance 

of /3(x). He completes the prior distr ibution by assuming the f3(x)s are multivariate 

normal. 

He then obtains posterior distributions for the parameters, given he has observa

tion j / i , . . . ,y„ at a:,,... , x n 

(3(x)^^(b1(x),B1(x,x)) (2.30) 

where b\(x) and B\(x,x) are the posterior mean and variance of /3(x), and can be 

computed f r o m the data, this is then used to obtain the posterior dis tr ibut ion for the 

response 

Y(x) ~ ] N ( / ( X ) T M X ) , < T 2 + ftxfB^xWx)) (2.31) 

This approximant becomes an interpolant when the error variance a2 is equal to zero. 

He uses the mean and variance of this predictor as an approximation y(-) and a 
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measure of error respectively. I f there is l i t t l e or no informat ion available about the 

regression parameters, i t is possible to "plead ignorance" about them by placing an 

improper prior distr ibution on the prior mean vector bo, i.e let 6 0 be distributed as 

6 0 ~ ¥S(b*,kB') (2.32) 

and let k —• 0 0 , he then obtains the following posterior dis t r ibut ion for the parameters 

P(x)~f1(b2(x),B2(x,x)) (2.33) 

where again b2(x) and B2(x,x) can be calculated f rom the data. The posterior 

distr ibution of Y(x) can again be found 

Y(x) ~ N ( f ( x f b 2 ( x ) , a 2 + f ( x f B 2 ( x , x ) f ( x ) ) (2.34) 

f ( x ) b2(x) c a n be used as a "smoother". 

O'Hagan digresses by using these models as a basis to f ind a simple linear predictor 

of the form y(x) — h(x) 7, by choosing the parameters 7 to minimize 

L ( 7 ) = / dn(x)E«y(x) - y(x))2) 

where Cl(x) is a measure expressing the probabili ty that a fu ture prediction w i l l need 

to be made w i t h a given x-value. As y(x) is not known exactly 7 is found to minimize 

the loss over all possible functions using either of the posterior distributions obtained 

above for y(-). He chooses designs which minimize the expected loss of this criteria, 

before he makes any function evaluations. 

2.6 Model inadequacy 

Blight and Ott[1975] use the stationary stochastic process approach to analyse sys

tematic departures f rom a linear regression model, by using a model similar to that 
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in Sacks et a/[1989a, 1989b], including a random error term. 

28 

Y(x,) = f { X i ) P + Z(x,) + e(xi) 

They obtain estimates for the /3 parameters, and then use the additional terms f r o m 

the Z(-) process to measure the inadequacies of the f i t . They use this model to choose 

the prediction weights for linear estimates of the funct ion at various points. Their 

weights put more emphasis on observations near the point where the funct ion is to 

be approximated, whereas in the classical least squares prediction the weighting is 

spread more evenly over the whole of the design region. 



Chapter 3 

Bayes Linear and Partial Belief 

Specification 

Probability doesn't exist — B. de Fine t t i . (Theory of Probability[1970]) 

In this chapter I wi l l endeavour to explain the subjectivist methodology of l imi ted 

belief specification. I n the subjective methodology, instead of probabilities being 

derived f r o m l imi t ing frequency style arguments, the person wishing to analyse his 

beliefs, whom I shall term You, as in de Finetti[1970], lays down his own set of 

probabilities (in the 'classic' approach) or his own set of previsions (expectations) of 

the quantities of interest. 

In a 'classic' f u l l Bayesian analysis we are required to specify f u l l prior distr i

butions for any quantity we want to make inference about, and to specify the f u l l 

conditional distributions needed for the likelihood of each observable, and then apply 

Bayes theorem, 

l(y\x)TTQ(x) 
M X | 2 / J - Jl(y\t)n0(t)dt 

to get the posterior distributions. 

This methodology has many disadvantages. From a computational point of view, 

the formulae for the posterior distributions are not, in general, expressible in closed 

29 
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fo rm, but instead numerical methods have to be used to compute these integrals. A 
more important , and often cited argument against Bayesian methods, is the practical 
and philosophical question of whether or not the prior distributions for the quantities 
and likelihood functions can be elicited f rom the beliefs held by You. 

Consider the following problem; what is your f u l l prior dis tr ibut ion for your height 

(H)? Could you for example specify what value you would put as your expectation 

of H w 7 , or specify the value you would assign for the probabili ty that your height is 

in the interval [h,h + Ah) for all values of hi These are both very di f f icul t (nearly 

impossible to do) but, these are just two of (a possibly infini te) set of judgements you 

are making when you produce the f u l l prior dis tr ibut ion. 

Often to get around this we make some approximation, for example, assume H 

is distributed normally w i t h an appropriate mean and standard deviation. This is 

obviously only an approximation, as you are then allowing your height to possibly 

take negative values or large positive values. Usually the fo rm of prior dis t r ibut ion 

and likelihood are chosen to make the algebra simple enough to make the posterior 

calculations tractable. 

More impor tant ly do you actually need to specify these quantities, are you ever 

really interested in what the 107 t h moment of your height is, or what the probabil i ty 

that your height is between 6' and is. Therefore i t is much more sensible to 

specify just those beliefs you actually hold and/or require for the problem, which 

leads on to the topic of l imited or partial belief specification. The rest of this chapter 

summarises parts of this theory which w i l l be required later in Chapters 4 and 5, and 

Appendix A contains a few additional results, and examples. 

3.1 Prevision 

For the collection of random quantities {Xi, X?,...} of interest we can define the set 

Q of possible values that these quantities can take, we can think of each possible 

outcome as an ordered n-tuple, and Q can be thought of as being embedded in A the 
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linear ambit , a linear affine space. We can also consider the dual linear space £ , which 
consists of linear combinations of the quantities, i.e. X = ( a i , a2,. • •) G C represents 
the linear combination X = a^X^ + a2X2 + • • •, and in what follows I w i l l refer to X 
in either of these forms, or even both simultaneously. I t should be noted here that 
the representation of X as ( a i , a 2 , . . . ) is not necessarily unique as some of the X,s 
may be logically dependent, for example if Xi + X2 = X3, then ( a l 5 a 2 , « 3 5 0.4,...) can 
also be represented as (ai + 0 3 , 0 2 + 0 3 , 0 , 0 4 , . . . ) . 

Now for each of the quantities X we can define its prevision, in tui t ively as the 

size of fixed gain You would consider equivalent to a random gain of size X, which 

we wi l l denote by P(A ' ) . I f we assume countable addi t ivi ty , this has the same value 

as the expectation of X i f you had laid down a f u l l distr ibution for X. 

We say a set of prevision statements is coherent i f You have chosen them such 

that they do not show certain loss. 

This quantity then satisfies the following properties: 

(a) The prevision P(-) is an additive function: 

P(X + Y) = P(X) + P(Y) 

( I f You are indifferent to the swap of X for P(X) and Y for P(Y) then You are 

also indifferent to the swap of X + Y for P(X) + P(Y).) 

(b) The coherent prevision P(-) satisfies : 

i n f X < P(X) < supX 

(This is again obvious as i f your choice is outside these values you would show 

certain loss.) 

From these two properties i t can be seen that P(-) is a linear funct ion i.e. 

P(aX) = aP(X) 
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or more generally 
n n 

P(E«.A',) = £ a t P ( X , ) -
i=i i=i 

so i t can be seen that the set of random quantities for which we can obtain previsions 

for, given we have already declared our previsions of X\,X2, •.. is precisely those 

elements of C (which have a f ini te number of non-zero a,'s - this clarification is 

needed i f we only assume finite add i t iv i ty ) . 

without showing certain loss), then i t can be readily proven to be the closed convex 

hul l of Q in A. 

The above definition is not entirely useful, as although i t is an obvious and intui t ive 

definit ion, i t is d i f f icul t to handle analytically, so we introduce some new alternative 

but equivalent definitions. 

Defn . 3 . 1 a The Prevision of X, P{X) is defined to be the value of x which You would 

choose, so that after You have made this choice You are committed to accepting any 

bet whatsoever with gain c(X — x), where c is arbitrary (positive or negative) and not 

at your control. 

Defn . 3 . 2 a Under definition 3.1a, a set of your previsions is said to be coherent if 

among the set of bets You have committed yourself to accept, there are none for which 

the gains are all uniformly negative. 

Defn . 3 . 1 b The P revision of X, P(A') is defined to be the value of x which in your 

opinion is the best choice if confronted with a penalty L proportional to the squared 

deviation of X from x 

I f we define V to be the set of coherent previsions, (those which we can choose 

X 
L 

(where k is arbitrary, but previously fixed) 



3.2. CONDITIONING 33 

Defn . 3 . 2 b Under definition 3.1b, a set of your previsions is said to be coherent 

if there is no other possible choice for your previsions that would lead to a uniform 

reduction in your penalty. 

I t can be easily verified that these two pairs of definitions are equivalent to each 

other and equivalent to the intui t ive definitions. Although of the pair the first is 

closer to the in tui t ive definit ion, the second is a more practical defini t ion. 

Now we can also introduce the notion of probability, the probabil i ty of an event 

H occurring can be considered to be the prevision of the indicator funct ion IJJ (or for 

simplici ty H) which is 1 i f H occurs and 0 i f i t does not. So even though we defined 

prevision without at first defining probability, we have effectively defined probability, 

and w i l l use the same notation P(-) for both. 

3.2 Conditioning 

We can define the conditional prevision of a quantity X given the event / / to be the 

'called-off' penalty equivalent of Defini t ion 3 . 1 b . So we define, 

Defn . 3.3 The conditional prevision P(X\H) is the value of x we would choose if we 

were to incur the penalty k~2(X — x)2 if H occurs and 0 if it does not, i.e. the value 

of x we would choose if we were to incur the penalty k~2H(X — x)2. 

This notion of a 'called-off' bet can be used to define the set of conditional previ

sions { P ( A ' | / / i ) , . . . , P(X\Hn)} over a part i t ion Ti. = {Hi,..., Hn}. I f we define the 

penalty L-n as 

LH = ^ ( X - x i H 1 xnHn)2 

and observing that H\ - f • • • + / / „ — 1, and H(Hj = SijHj, the set of quantities 

{x-i,... , x n } is precisely the set of conditional previsions. 

This notion can be extended to any set of random quantities, as we no longer 

need to separate events f rom random quantities in general, we can make our choice 
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of {xi,..., xn} which would minimize the penalty L* defined to be 

1 xnXn) 

This development lies at the heart of Goldstein's notion of Limited Belief Specifi

cation [1981, 1988a, 1988b, 1991] which I wi l l now summarise in the fol lowing sections. 

3.3 Belief structures 

The most logical way to combine collections of prevision statements is into inner 

product spaces, which are called Belief Structures 

D e f n . 3.4 A belief structure A is defined as follows: 

a) Start with a (not necessarily finite) set of random quantities C = {XQ, X\,. . .}, 

which includes XQ = 1, the unit constant, and all X{ satisfy P ( X f ) < oo. This 

is the base of A and written C = b(A). 

b) Define C as above, and define the inner product and norm over the equivalence 

classes of C (where X is related to Y if the prevision of (X — Y)2 is zero) by 

Two belief structures (R and S) are the same (R = S) i f they have a common base 

and inner product. 

Belief structures can be added, to increase the level of detail of our specifications. 

I f for example A and B are combined to produce D — A + B, we have to, in addition, 

specify P(XY) for each X € b(A) and Y € b(B). The base of D, b(D) is simply 

b(A)\Jb(B). 

We w i l l now introduce a simple example which wi l l be continued throughout the 

rest of this chapter. To highlight the example i t w i l l be indented and set in slanted 

text. 

(X,Y) = P(XY), X\\ = J ( X , X ) 
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We will consider a simple linear regression. Firstly we construct our 
model: we take n observations Y\,..., Yn at design points X\,..., xn, and 
we believe that 

Yi = A + Bxi + Z„ for i = 1 , . . . , n, (3.1) 

where A, B and the Z{S are unknown quantities. We assume that the error 

terms (the Z{s) are independent with mean zero and common variance s2. 

We then lay down our beliefs about the parameters of the model. 

P(A) = a P(A 2 ) = a2 + s2a2 

P(B) = b P{B2) = b2 + s2r2 

P(AB) = ab + s2arp 

We can then work out our implied beliefs about the observations 

P(Yi) = a + bx, 

P(YiYj) = (a + bx,){a + bxj) + s2(a2 + arp{xi + x3) + T2X,XJ + 8tJ) 

P{AYi) = a2 + s2a2 + (aft + s2arp)xi 

P(BYi) = (ab+s2aTp) + (b2 + s2r2)xt 

We can now set up two belief structures, C with base {1,A,B} and D 

with base {1, Y\,..., Yn }. 

We will use some example data sets to examine our methods, these are 

illustrated in Figure 3.1, and in which our prior beliefs are s = 2, a = 3, 

r = 2, p = — \, a = —5 and 6 = 5. For these parameter values our implied 

beliefs are 
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P(A) 

P(A2) 

= - 5 

= 61 

P(B) 

P{AB) 

P(B2) 

5 P (^ ) = 5 ( . T , - 1 ) 

-37 P(AYi) = 61 - 37.T,-

41 P{BYi) = -37 + 41X-, 

P(YiYj) = 61 - 37(x,- + Xj) + 

i l x i X j + 48ij 

3.4 Conditioning and projection 

The notions in section 3.2 can be considered as projections. Let B be a closed 

subspace of the belief structure A, such that b(B) = {XQ, X\,...}, then the orthogonal 

projection of any general element Y € A, denoted by PB{Y) is the element Y* 6 B 

that minimizes ||V — Y*\\. So letting Y" = (r0,i\,...) = ro-^o + n A ' i + • • • , we need 

to choose r 0 , ?* i , . . . to minimize 

\ \ Y - r 0 X 0 - r l X l - - - - l 

which is the same as minimizing L'. 

If B is not a subset of A, we can still define PB{X), by first constructing the 

augmented belief structure D = A + B, then Ps can be considered to be the restriction 

of the operator Pjg : D —* B to A, considering it as a subspace of of D. 

If B has a finite base b{B) = {Xo, X\,..., Xn], this operator can be easily 

evaluated with matrix operations . As the base of B is finite we can write Y* = 

(^o, • • •, f'n) = roXo + • • • + r n A ' n , and so to find Y* we have to minimize 

L* = \\Y-roXo-nX! rnXn\\2 

= mi2 - 2 E r,(Y, Xi) + riniXuXj) 
i '=0 i = 0 j=0 
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Figure 3.1: Data sets for regression example 
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Differentiating with respect to r, and equating with zero gives 

81 * 71 

U— = -2(X„X) +2Y,ri(Xi,Xj) = 0 
°ri j=0 

and solving this gives in the vector form 

Y* = MB

l

BmBA (3.2) 

where 

MBB = [P(XiXj)]0<itj<n a » d ™BA = [P{X0Y),..., P(XnY)f 

If A also has a finite base, Vb, • • •, Ym, we can write Y — (s0,..., .sm) T = s0Y0 + • • • + 

smYm, (and putting MBA = [^ (A^] 0 <i<n ,o<j<m) w e o b t a i n 

P B ( V ) = MB1

BMBAY (3.3) 

We can therefore represent P B by a matrix, Ps = M B B M B A -

Moreover, if we put 

HB = [ P ( X 1 ) , . . . , P ( A ' n ) ] T VB = [Cov(X,-, Xj)]i<ij<n 

pA = [ P ( y , ) , . . . , P ( F M ) ] T CBA = [Cov(A^O]i<i<na<i<* 

we can write 

MBB = 

MBA = 

1 
T 

\ 
T 

\ HBHB +VB J 

1 HA ^ 
T 

HB HBHA + CBA J 
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and then 

PB = 
1 HA - HB V B C B A 

VR CBA 

using the identity 
1 b 

. T 

X _ 1 / 1 + b T C ~ l b - b T C ~ L \ 

[ b bb + C J c - ' b c -1 

In our example we can calculate PD 

PD = 

d (1 + arpTix + r2T,xx)a — ( n o T p - \ - T 2 T i x ) a 

-(a2Ex + arpHxx)b +(1 + na2 + arpY:x)b 

0 (a2 + a2r2(l - p2)Zxx)l {orp - a2r2(l - p2)Zx)l 

+ (<7TP - < 7 2 r 2 ( l - p2)Hx)x + ( r 2
 + n a 2 T 2 ( l - p2))x 

where d — 1 + na2 + 2arpTlx + T 2 ? , X X + <x 2 r 2 ( l - p2)(nZxx - E 2 ) 

putting our prior beliefs in, gives 

PD 
1 

-5(l+6n+Zx) 
l + 9 n - 6 E I + 4 E I I + 2 7 ( n i ; I 3 : - E 2 ) l + 9 n - 6 £ 1 + 4 E I I + 2 7 ( n £ I I - £ | ) 

n 9 ( l + 3 S J : r ) l -3(1+9ZZ)X - 3 ( l + 9 E I ) l + 9 ( 4 + 2 7 n ) a ; 
U l + 9 n - 6 E I + 4 E j : j + 2 7 ( n E X X - E 2 ) l + 9 n - 6 E I + 4 E I X + 2 7 ( n E I I - E | ) 

For the data sets in Figure 3.1, we obtain the matrices in Table 3.1 

Data set 

1-6 

7 

8 

1 -0.0170 0.0400 
0 0.0S971 - 0.0004a: -0.00041 + 0.0359a; 

1 -0.0136 0.0244 
0 0.09001 + 0.0028a; 0.00281 + 0.0225a; 
1 0.0656 0.0520 
0 0.24881 + 0.0503a; 0.05031 + 0.0040a; 

Table 3 .1 : P D for data sets 

(3.4) 

To finish this section, it is useful to point out three properties of projections in 

general; 
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a) Projections are linear: 

?B(X + Y ) = P B ( X ) + P B ( Y ) 

In this context it just re-iterates that the notion of prevision is a linear property. 

b) Projections are idempotent: 

P B ( P B ( A ' ) ) = P B ( A - ) 

Here it says you can get no more information out of a piece of data, if you re-use 

it later. 

c) Projections are self-adjoint: 

( X , P B ( Y ) ) = ( P B ( X ) , Y ) 

3.5 Adjusting beliefs 

In general if we revise our beliefs about some general random quantity Y of interest, 

we can re-assess our prevision about Y to get a new prevision P*(V). Many ways 

can be used to update this prevision but we will concentrate on the most mechanical 

one here, for further reference see Goldstein[1983]. If we have constructed a belief 

structure B representing relevant data, one way of "updating" our prevision of Y is 

to evaluate the projection of Y on B, i.e. 

P'(Y) = PB{Y) 

Y can then be rewritten as Y — {Y — P B ( Y ) ) + P B ( Y ) , these two terms are orthogonal 

so the variance of Y = \\Y — P(V) | | 2 can be split up as follows 

Var(F) = Var(V - P B ( Y ) ) + Vax{PB(Y)). (3.5) 
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The two variance terms are the residual variability of Y given the data, and the 
variability of Y that can be accounted for by the variability in the data. 

Defn. 3.5 We call the residual quantity Y — PB(Y) the adjusted version of Y and 

denote it by [Y/B], and as an intuitive measure of the information obtained we define 

D ( Y ) = ^r([Y/B}) 
K ' Var(K) 

the adjustment ratio for Y induced by B. 

We also define the complimentary quantity R(Y) = V a ^ ^ ! ^ = 1 — D(Y). The 

measure R(Y) is a measure of the explanatory power of B, if R(Y) is nearly one 

then B contains quantities which explain Y well, but if R(Y) is near zero, it contains 

quantities of low explanatory power, or possibly we have not chosen to specify useful 

aspects of the quantities. 

If we use the notation in equation (3.4), we have 

Vur(PB(Y)) = cBAV£lcBA 

Vnv[Y/B] = v A - c B A V B

x c B A 

and 

D(Y) = l-cBAV£lcBAv-A

x (3.6) 

R(Y) = cBAV^cBAv-A

x (3.7) 

where c B A — (Cov(A'i, F ) , . . . , Cov(X n , F ) ) T and vA = Var(K) 

In our regression example we have 

D(A) = s2a2 

D(B) = s2r2 

1 + T2Exx(1 - p2) 
d 

1 + a2n(l - p2) 
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again incorporating our prior beliefs about A and B we have for our 
example data sets, values of D(A) and D(B) summarized in Table 3.2. 
We see here that we learn very little about A in the last example, as D(A) 
is near one. 

Data set D(A) D(B) 
1-6 
7 
8 

0.3588 0.1437 
0.3601 0.0898 
0.9951 0.2541 

Table 3.2: Values of D(A) and D(B) for example data sets. 

3.6 Adjusted belief structures 

We can extend this notion of adjusting beliefs to adjusting belief structures. When we 

are analysing our beliefs, our main concern is how a set of statements about observ

able data can alter our collection of belief statements. When we do a ful l Bayesian 

analysis we obtain a posterior distribution by updating our prior distribution with 

the likelihood, on the other hand with limited belief specification we are interested 

how one belief structure is modified by observing another belief structure. 

Defn. 3.6 / / A and D are belief structures, [A/D] is the belief structure A ad

justed for the belief structure D, and is defined as the belief structure with base 

b([A/D]) = [b(A)/D]. Where for a set of random quantities C = {Zi,...,Zn}, 

[C/D] = {[Zl/D},...,[ZJD}}. 

an alternative but equivalent definition, that does not need an explicit construction 

of bases is 

Defn. 3.6* / / A and D are belief structures, then the belief structure A adjusted for 

the belief structure D is defined as the orthogonal complement D1 of D in A + D. 
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Now if we denote by I the belief structure whose base is just the unit constant, 
then [A/1] is equivalent to the structure obtained if we use the alternative inner 
product (X, Y)' = Cov(X,Y) which de Finetti uses in his geometric interpretation 
in chapter 4 of his book The Theory of Probability[197Q]. This at first seems a more 
natural inner product, quantities with large norms are those with high variability, and 
quantities that are orthogonal have zero correlation. However with this inner product 
all elements are standardized to have zero prevision, so the 'first order' information 
is lost if we just examine the inner product. This adjustment is useful as i t splits our 
beliefs about A into two parts, our beliefs about the previsions of the quantities in A 
and their variability, and allows us to focus on the second of these which is of more 
interest to us. We can expand this to any adjustment by any belief structure, and we 
need to find ways of quantifying and using the residual variation. 

We can now include some of the properties of adjusted belief structures 

Property 3.1 [/4/Z)] = 0 if and only if A is contained in D. 

i.e. You can only get perfect information about the elements of A if it is contained 

in the data you are given. 

Property 3.2 [A/Z)] = A if and only if A is orthogonal to D. 

i.e. Uncorrelated data gives no information at all. 

Property 3.3 For any AitA2 and D, 

[(A1 + A2)/D] = [A,/D] + [A2/D\. 

Property 3.4 For any A\,..., Ak, 

Ax + A2 + • • • + Ak = D] + D2 + • • • + Dk, 

where we define Dy = Ai, and, for i > 2, JD, = [ Y 4 , - / ( V 4 I + • • • + and D\,..., Dk 

are mutually orthogonal. 
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Property 3.5 For any A and any D\ which is orthogonal to D2, 
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[A/(D> + D2)} = [[A/Di}/D2] = [{A/D2]/D^ 

and if we lift the restriction that D\ is orthogonal to D2) 

[AI{D, + D2)) = [[AIDX)I[D2ID,]} = [[A/D2]/[D1/D2]]. 

This last property is comparable to the conditional probability statement Pv(A\BC) = 
Ppr(B\c) ' a n c ^ m Bayesian statistics to using your posterior distribution from one stage, 

as a prior distribution for the next. 

We can also obtain some relationships between projection and adjustment 

Property 3.6 For any B,D and any X in A, 

P B + D ( X ) = PB(X) + P I D / B ) ( X ) . 

Property 3.7 For any B,D and any X,Y in A, 

{PB+D(X)> PB+D(Y)) = ( P B ( X ) T PB(Y)) + ( P [ D / B ] ( X ) , P [ D / B ] ( Y ) ) 

In particular for any D, 

( X , Y ) = (PD(X),PD(Y)) + ( P [ A / D ] ( X ) , P [ A / D ] ( Y ) ) 

= (PD(X),PD(Y)) + ({X/D},[Y/D}) 

This is the more general form of equation ( 3 . 5 ) . 

3.7 Diagnostics — bearing and length 

Now we have defined the concept of belief structures, and indicated one (probably the 

simplest) way of adjusting them, we need to assign ways of measuring this adjustment. 



3.7. DIAGNOSTICS - BEARING AND LENGTH 45 

Given we have assigned our present (time t) previsions for C = {X\,..., Xn}, 
P(C), and also our present covariance structure i.e. P(X{Xj) for all X{, Xj in C, we 
can produce an orthonormal (uncorrelated) basis for our inner product space. 

Defn. 3.7 A Component Representation of C is any set {Ei,...,Er} of r linear 

combinations of {Xo,..., Xn}, where A' 0 = 1, such that 

a) P(Et) = 0 

b) PiEtEj) = Sij 

c) Each X{ in C can be expressed as a linear combination of EQ — 1 and 

Ei,...,Er. 

Now at a future time point t*, we revise our beliefs about the elements of C, we 

define P*(C), a new set of previsions. We now use the component representation 

obtained at time t to summarise the relative location of our new beliefs. 

Defn. 3.8 / / {E\,..., Er} is a component representation of C, them the bearing of 

P*(C) with respect to P(C) is 

Y' = P*{E1)El + --- + P*{ET)Er 

Lemma 3.1 The bearing is independent of the choice of component representation. 

Proof 

If we choose an alternate component representation {E[,. .., E'r, we can write this as 

(£;,..., E'rf = {QEi,..., Q E r f , where QTQ = /,., so 

Y" = P*((E[,...,E'rf)(E[,. . . , # ) 

= P*((Eu...,ET?)QTQ(Eu...,Er) 

= Y* 

• 
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Lemma 3.2 For all X in Cc we have 
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P'(X) - P ( A ' ) = Cov(X,Y*) 

where the covariance is defined at time t 

Proof 

Every X in Cc can be expressed as 

X = (X, Eo)E0 + (A', E1)El + --- + (X, ET)Er 

because [Eo,. .., Er\ is an orthogonal basis for Cc 

X = P(A) + Cov(A, E1)E1 + --- + Cov(A, Er)Er 

as P(£?,•) = 0 for i ^ 0 then Cov(A', £,•) = P(X£?i) - P(X)P( JB.) = (* ,£ ,• ) , and 

( A , £ 0 ) = P(A'). So taking the prevision at time t* we obtain 

P*(A') = P(X) + Cov(X,E1)P*(E1) + --- + Cov(X,Er)P'{Er) 

= P(A') + Cov(A, E1Pm{E1) + ••• + ETP*{Er)) 

= P(A) + C o v ( A ' , y ) 

• 

I t should be noted in particular, that if A' is uncorrelated with the bearing then 

the prevision at time t" is the same as the prevision at time t. So the bearing indicates 

the 'direction1 of change of belief, it also shows the size of this change. 

Defn. 3.9 The length V of the revision of beliefs over Cc is defined by 
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This length is related to the standardised change in belief by the following theorem 

Corollary 3.3 The maximum value of \P*(X) — P(X)\/^JVar(X), over all X in Cc 

is L*, this maximum being obtained at Y*. 

So in general if Z" = kY*, then a bearing of Z* would represent a k-fold increase in 

the change of prevision for every element of Cc- It should be noted that the bearing 

plays a similar role to the likelihood in a full Bayesian analysis. 

In our example we can find the bearing given all the data. 

Y, = B-b) 
-a 2 S x -a r /?S i . x 1 + ar pY,x + ncr'2 

S y — an — 6SX 

For the data sets we calculate the bearings and lengths listed in Table 3.3. 

Data set Bearing - Y* Var(F*) L* 
1 -0.1176A - 0.0927J5 - 0.1245 0.3736 0.6113 
2 -0.1368A - 0.2836B + 0.7337 1.0293 1.0146 
3 -0.1059/1 - 0.09535 - 0.0532 0.3071 0.5542 
4 -0.1165A - 0.24485 + 0.6415 0.7633 0.8737 
5 -0.0331A - 0.01315 - 0.0990 0.0317 0.1781 
6 -0.0984A - 0.65425 + 3.7791 5.6515 2.3773 
7 -0.0921A - 0.11525 + 0.1150 0.2630 0.5128 
8 -0.0068A + 0.0147B - 0.1702 0.0075 0.0864 

Table 3.3: Bearings and Lengths for data sets 

Data set six automatically stands out as being "abnormal" as its length 

is twice as high as the rest, but we do not notice anything unusual about 

the rest of the data sets, we therefore need to look at the revision more 

closely to pick up other features in the data. 
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3.8 Belief transforms 

It would be useful to have an analogue to the quantities D(Y) and R(Y) defined 

in Section 3.5, to measure the magnitude of the revision we make when we adjust 

one belief structure, by another, rather than just one random quantity by a belief 

structure. We can summarise this by the belief transform, 

Defn. 3.10 The belief transform over B induced by D is the linear operator over B 

defined by 

where PB, and Pp are the orthogonal projections from D to B and from B to D 

We also define a complementary transform 

Defn. 3.11 The complementary belief transform of To is So = I — To 

These transforms have the following properties: 

Property 3.8 So and To are self-adjoint loith respect to the inner product (•, i.e. 

TD = P B P D : B ^ B 

respectively. 

( X M Y ) ) ( T D ( X ) , Y ) 

(X,SD(Y)) = (SD(X),Y) 

Property 3.9 So and To are linear, i.e. 

TD(X + Y) = T D ( X ) + TD(Y) 

Property 3.10 The norms of the So and To are not greater than one. 

Property 3.11 

( X M Y ) ) = (Po(X),PD(Y)) 
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(X,SD(Y)) = ([X/DUY/D]) 

Property 3.12 So and To decompose the inner product 

( X , Y ) = ( X , T D ( Y ) ) + ( X , S D ( Y ) ) 

Property 3.13 Belief transforms can be constructed sequentially, if Di and Di are 

belief structures, and using Properties 3.11, 3.5 and 3.7 

T(DI+D2) = T D L + T [ D 2 / D L ] 

where T[D2/DI] is the belief transform over [B/D\] induced by [D2/D1], but thought of 

as an operator over B. 

Property 3.14 If we choose Di so that, ioe have A = D\ + D2, we have 

I = TA — TD, + T[A/Dt] 

So 

SD! = T[A/DI\ 

If we consider adjustment to be replacing the inner product on B by a new inner 

product {X,Y)n = (X - PD(X),Y - PD(Y)), then TD and SD have the following 

properties; 

Property 3.15 

( X , Y y = (X,SD(Y)) = (SD(X),Y) 
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Property 3.16 For any X in C, 

D(X) = ^ ff» and W = ( A ' W ) ) 

(A ' ,A) (X, X) 

Again if the bases of B and D are finite, the transforms To and So can be 

represented by the matrices (using the same notation as section 3.4) 

T D = MB

J

BMBDMDDMDB and SD = I - MBBMBDM^X

DMDB (3.8) 

respectively. Expanding these in terms of the first-order previsions and second-order 

covariance structure gives us 

TD 

SD = 

' 1 ^B\I - V i X C B D V S L C D B ) 

^ 0 VS^BDV^CDB 

' 0 » B { V B

X C B D V 5 L C D B - I ) 

^ 0 / — VB~1CBDVD1CDB 

(3.9) 

(3.10) 

In the regression example we have the two transforms 

Tn = 

T c 

d [(1 + <JTpLx + r 2 E x x ) a - ( c r 2 £ r + orTpZxx)b]lT 

+ [-{ncrTp + S x r 2 ) a + (1 + no1 + aTpT,x)b]xr 

0 (a2 + < 7 2 r 2 ( l - p2)Zxx)UT + ( r 2 + nr2a\\ - p2))xx 

+(arp - a2r2{\ - p2)Ex)(lxT + x f ) 

(1 + arpT,x + T 2 E r i . ) a 

- ( < T 2 S X + aTpT,xx)b 

no2 + arpT,x+ 

a2T2(l-p2)(nZxx-T;l) 

cr2T,x + arpT,xx 

— (naTp + T2T,x)a 

+ (1 + na2 + arpi:x)b 

narp+r2£E 

aTpHx + T2T,XX+ 

a 2 r 2 ( l - p2)(nExx - Z2

X) 
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and for the particular data sets we have 
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T D = 

T C = 

T D = 

T C = 

T D 

T C = 

Data sets 1-6 

1 -0.01701 + 0.0400a; 

0 0.897011T - 0.0004(a:lT + lxT) + 0.0359xxT 

1 -0.0170 0.0400 

0 0.9868 -0.0039 

0 -0.0098 0.9881 

Data set 7 

1 -0.01361 + 0.0244a; 

0 0.900511T - 0.0028(a:lT + laT) + 0.0225a;a;T 

1 -0.0136 0.0244 

0 0.9863 -0.0030 

0 -0.0110 0.9922 

Data set 8 

1 -0.06561 + 0.0520a; 

0 0.248811T - 0.1005(a;lT + la; T) + 0.0635a;a;T 

1 -0.0656 0.0520 

0 0.9520 -0.0220 

0 -0.0612 0.9676 

It is relatively difficult to understand the complexities of the transform just by 

looking at i t , and so we need to obtain a summary of it similar in nature to the 

summaries D(X) and R(X) we obtained when we adjusted one random quantity 

by a belief structure, and to do this it is useful to analyse the eigenstructure of 

these transforms. We will assume here that the base of B is finite, and TD has a 

set of orthonormal eigenvectors EQ — 1, E \ , . . . , ET, corresponding to the eigenvalues 

1 = Ao > Aj > • • • > XT > 0. The set { E \ , . . . , ER} is a component represention, 

and so its elements are uncorrelated with zero mean and unit variance, and we have 

P B P D ( £ . ) = KET. 
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Defn. 3.12 / / we let M(B) = {Ei,... ,ES} be the subset of {E\,... ,ET} which have 
non-zero eigenvalues, then we call M(B) a map over B. 

Defn. 3.13 We call the values Ai > • • • > As the scale of the map. 

As R(Ei) — A,, axes of the map which have a large eigenvalue are those where a 

large expected change in belief will occur, and those that correspond to a small change 

in belief have correspondingly small eigenvalues. Finally, those eigenvectors with zero 

eigenvalues correspond to directions in which the data will give no information at all. 

We can also consider the complementary transform So which has the same eigen

vectors, but with eigenvalues V{ — 1 — A,-. As B and D are both belief structures we 

can also consider the transforms Tjg and SB- It can be shown that the non-zero eigen

values of TB are precisely the non-zero eigenvalues of To, and similarly the eigenvalues 

of SB less than one are the same as for So- Also the eigenvectors (corresponding to 

non-zero eigenvalues) of To and TB are related as follows 

Lemma 3.4 For each i in { 0 , . . . , s } , F{ = -̂ ==P £>(£,) is the eigenvector of TB with 

unit variance corresponding to the eigenvalue A,. Therefore {F\,... , Fa} is a map, 

M(D), over D induced by B, with the same scale as M(B) 

Note: This result can be seen to be useful from a practical point of view, instead 

of computing what could be a large belief transform To, it is possible to compute a 

smaller one TB, whose eigenvalues and eigenvectors are easier to compute, and then 

making the corresponding transformation. For example, if you were examining how 

one data point influenced your beliefs about a set of n quantities, the eigenanalysis 

of the 2-by-2 belief transform Tg is easier to perform than the eigenanalysis of the 

(n + l ) 2 belief transform Try. 

Defn. 3.14 The maps M(B) and M(D) defined as above are called the twin maps 

for the pair of belief structures B and D. 

If we now perform an eigenanalysis on the transforms in our exa.mple, 

we can get their scales and maps 
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If r 2 £ x = —npoT 

Ai 

A 2 

n ( l - p2)a2 

l+n(l - p2)a2 

2 n 2 2 
T Lixx — np a 

1 + T 2 £ X X - 7Z/}2(72 

57 (̂7 V l — /9 ST 

If (T Y,x - —Y,xxp(TT 

A, 

A 2 

n<72 — p2r2Y,xx 

1 + 7Z<72 - p2T2Exx 

T 2 Z x x ( l - p 2 ) 
1 + r 2 £ x x ( l - /92) 

= ^ ^ - 6 ) - ^ ( A - a ) 
5<T 5 T C T J \ / 1 — 

Ot/iervWse 

Aj = (2c/)"1 (ncr2 + r 2 £ x x + 2crr/>£x + 2 < r V ( l - p2)(nllxx - Y,x)+ 

\J(na2 - r 2 E x x ) 2 + \{n<jrp + r 2 £ x ) ( < 7 2 £ x + arpExx)j 

A2 = (2d)-' (na2 + r 2 £ x x + 2<7T/9EX + 2 a 2 r 2 ( l - /9 2 )(nE x x - £ 2 ) -

\J{na2 - r 2 E x x ) 2 + 4(narp + T 2 £ x ) ( C T 2 E x + crr/?Ex x)^ 

ei oc 2(narp + T 2 E x ) ( / 1 — a) + ( r 2 E x x — ncr 2+ 

^(na2 - r 2 £ x x ) 2 + A{noTP + r 2 £ x ) ( < r 2 E x + <7rp£ x x ) ) ( 5 - 6) 

e 2 oc 2(n.(TTp + r 2 E x ) ( / l — a) + ( r 2 £ x x — na2— 

yj(na2 - r 2 E x x ) 2 + \{narp + T 2 £ X ) ( < T 2 £ X + aTPY,xx)j (B - 6) 

Jf r 2 E x = —npoT 

In our particular example sets we have the eigenvalues listed in Ta

ble 3.4, the eigenvalues for the first seven data, sets are similar, but for the 

eighth, the second eigenvalue is smaller, this comes from the assymetry of 
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the design. 
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Data set Ai A2 

1-6 
7 
8 

0.9937 0.9811 
0.9956 0.9829 
0.9972 0.9223 

Table 3.4: Eigenvalues of belief transforms in regression example 

The bearing can be evaluated using these maps in a symmetric way. 

Lemma 3.5 If M(B) = {Ei,...,Es} and M(D) = {Fi,...,F„} the maps defined 

above with scale {X\ > . . . > A t } . Then the bearing over B induced by D and over D 

induced by B both have the form 

F\ + • • • + yfxlEsFs 

where if we observe D = d, Yd is calculated by putting F, — fi, but if we observe 

B = b, Yb is calculated by putting Ei = e;. 

Corollary 3.6 

P(Var(Vb)) = trace(Tb) - 1 

Proof 

If we observe D = d, Var(y/}) = \ \ f f + ••• + A s / S

2 , and the prevision of this is 

P(A 1F 1

2 + • • • + A S F 2 ) = \iP(F?) + ••• + \SP{F?) = Ax + • • • + A. = trace(Tb) - 1. • 

So in our example, the trace of the transform is 

tra.ce(iDj — 1 = 1 H 
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So we now have a simple summary to alert us to anything unexpected in the data, 
we can compute the value of Var(Vd) and compare it with the trace of the transform, 
if it is large then the data is exhibiting anomalous behaviour. 

In our example for data sets 1-6 the trace is 1.9748; data set 7, 1.9786; 

and data set 8 is 1.9176. 

These maps have another use other than calculating the bearing, for if we make 

the following definition 

Defn. 3.15 We define the heart of the transform TD, H[D/B], as the belief structure 

with base [F\,..., F3\. 

we see the heart of TD, H[D/B], corresponds to the dual map M(D), of TD, and has 

the following useful properties: 

Property 3.17 H[D/B] is contained in [D/B]. 

Property 3.18 For all X in B, 

TD(X) - T H [ D / B ] { X ) . 

Property 3.19 IfH\DIBx] = ••• = H[D/Bm] = H then H[D/(Bl H \-Bm)] = H 

also. 

The heart therefore summarizes exactly which aspects of the data influence the revi

sion of belief. For example if we are looking at the mean of a random quantity, and 

the belief structure D consists of a set of independent observations of that quantity, 

then the only part of D that gives us any information about the mean is the sample 

mean, so the heart of the transform is simply the sample mean. Property 3.19 simply 

says if all the revision of belief structures B\,..., Bm only depend on certain sufficient 

statistics then the adjustment of the combined belief structure Bx + • • • + Bm only 

depends on the set. More generally we have, 
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Property 3.20 

H[D/(B, +••• + Bm)} = H[D/B1] + ••• + H[D/Bm] 



Chapter 4 

Grid Based Design Criteria 

We will now use the results from the previous chapter to construct designs for the 

interpolation problem (using Currin at «/'s[1991] model) from Chapter 2. 

We will assume that we wish to make inference about the function on some 

grid G — { x i , . . . } , by making function evaluations at a set of design points X = 

{£(!),..., X(N)} C G. We will use as a criteria the trace of the belief transform, which 

is a descriptive tool measuring how much information we can receive by taking func

tion evaluations at the design points. If we look at the transform of G by X, we 

will note that this always has trace n, because we reduce the variance of Y(-) at X(i), 

a ,-(2), . . . , .T(n) by a factor of 1 each. As we know we have perfect information about the 

function at the design points we are interested in what we can learn about the func

tion elsewhere, we could therefore look at the transform Tx of G — X by X, and find 

its trace. To find this directly is straight forward, but difficult to do computationally, 

but it can be simplified by using Theorem 4.1, and its corollary. 

Theorem 4.1 The transform T(Q-X) °f X c a n be found as follows 

T(G-x) = I - (BVxx)-1 (4.1) 
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where 

Var(Y) 

V a r - X ( y ) 

where Y = {Y(G - X),Y{X]f 

Proof 

If we invert Var(V) we get 

Vx[G-x) 

^ V(G-X)(G-X) V(G-X)X ^ 

V; X(G-X) 

A Z 

ZT B 

V(G-X)X A z I 0 

Vxx zT B 0 / 

•Vx(G-X)V{G-X)(G-X)V(G-X)xB + V X X B 

-VXXVX(G-X)V{G_X)(G_X)V{Q-X)X + I 

I - V X X B ~ L 

Vxx I 

Z = ~V(G-X)(G-X)V(G-X)xB 

I 

VxxB-1 

= Tin-(G-X) 

• 

Corollary 4.2 

TraceT^ = n - T r a c e ( ( 5 V ^ ) _ 1 ) (4.2) 

We now use this result as a criterion for finding optimal grid based designs. To 

do this we first compute the inverse of the variance matrix for all the points in the 

grid (as we only need to do this once we can use high precision computer programs 

to invert the matrix), and then we can compute the trace for all the designs quickly, 

only needing to invert a u x n matrix each time. This criteria is similar to the entropy 

criteria in Currin et a/[l991], and the designs have similarities, which we will observe 

later. 
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In the examples that follow we will use the correlation function p\(-), as this allows 
us to find an analytic inverse for V. 

4.1 Example 1 — p\(d) on a "Uniform" grid 

We will start with a uniform grid as this is the easiest one to define, with N + 1 points 

in the interval [ -1 ,1] , G - { - 1 + 2i/N : 0 < i < N}. Var(Y) and its inverse, have 

simple forms, 

/ 

Var (y ) = a2 

1 

D 

D2 

DN-1 

V a r - 1 ^ ) = 
<r 2(l - D2) 

D D 2 . . . D N - \ D N 

1 D . . . DN-2 DN-1 

D 1 • •• D N ~ 3 DN-2 

JJN-2 
D N ~ 3 1 D 

DN-l DN-2 . . . D 1 

( 1 - D 0 0 

- D 1 + D 2 - D 

0 - D 0 

V o o 
1 + D2 

-D 

-D 

1 

(4.3) 

(4.4) 

where D = e~29'N 

We can then find the trace of the transform by partitioning the matrix for every 

set of design points to be considered, as an example let us assume we have the n 

design points 0 < ii < ... < in < N, no two being adjacent, then BVxx becomes 

(BVxx),k = ^ C " i ~ ' 4 ' (4.5) 
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We can find its inverse analytically once more, 

1 - D2 

l + D2 

-D'K~ 

•* 

-'*> 
1 

-h) 
- j - i 

D2<''>—>-i>)(l -£>2<' 
1 

l_£> 2<-'n- •n-l ) 

0 

fc = i + i , 

j = k+l, 

j = k = l, 

K j = k< 

j = k = n, 

otherwise. 

(4.6) 

Which has trace 

T r a c e ( ( 5 V ^ ) _ 1 ) = 
£> 2 

1 +£> 2 

n - l 
+ 2 £ — 

1 
Z)2(''j + i-«'i) 

(4.7) 

We are required to maximize n — Tr((BVxx)~l), the maxima occur when the 

design points are as far away as possible from each other. For example for a four point 

design, on a grid of 33 points, we have the optimal design X = { — } f , — ^ T|) f | } - The 

design never chooses the end points of the region in preference to interior points (as 

they give less information) because they have less neighbours. As we can analytically 

invert BVxx, we can look at asymptotic results, letting the number of grid points 

tend to infinity, the optimal m + 1 point design is X — { — 1 + 2 ^ : 0 < i < m } . 

4.2 Example 2 - p\(d) on a "Normal" grid 

We repeat the previous example, but replace the grid by a non-uniform grid, the 

density of which is "normal". We will use a 21 point grid, G* given by, 

±1.9808 ±1.4652 ±1.1798 ±0.9674 

±0.7916 ±0.6375 ±0.4972 ±0.3661 

±0.2420 ±0.1196 0 
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We can view the grids here as discretizations of the metric f i(-) mentioned in Chap
ter 2, by choosing points which have equal probability separations, i.e. f2 (x i + i ) — Cl(xi) 
is a constant. The uniform grid in example 1 is a discretization of ft(x) = 1/2, x G 
[—1,1], and the grid in this example is a discretization of the standard normal metric. 

If we look at the criterion, we can see that the inverses of the two matrices Vxx 

and B contribute different factors, the first is a measure of distance between the 

points in the grid, and the second is a measure of the density of the grid at the design 

points, and so the criterion is a compromise between the two, the former pushes the 

design points further out, and the latter pulling them back in. 

In this case we will look for the designs for various values of 9 ranging from 0.1 to 

10, and for 1 to 4 design points, see Table 4.1. 

Points 0 Trace Design 
0.1 0.9880357609 0.000000 
0.5 0.9402472164 0.000000 
1.0 0.8809195969 0.000000 
2.0 0.7651691290 0.000000 

10.0 0.1674219120 0.000000 
2 0.1 1.8801351469 ±0.967422 
2 0.5 1.7965081434 ±0.637484 
2 1.0 1.6878642412 ±0.497201 
2 2.0 1.4705679971 ±0.366106 
2 10.0 0.3204291940 -0.241040 0.366106 
3 0.1 2.6664274815 ±1.179761 0.000000 
3 0.5 2.5576879674 ±0.967422 0.000000 
3 1.0 2.4096985757 ±0.791639 0.000000 
3 2.0 2.1058135644 ±0.637484 0.000000 
3 10.0 0.4539349485 ±0.241040 0.000000 
4 0.1 3.3438614935 ±1.179761 ±0.241040 
4 0.5 3.2173697441 ±1.179761 ±0.241040 
4 1.0 3.0329182492 ±0.967422 -0.366106 
4 2.0 2.6616004396 ±0.791639 ±0.241040 
4 10.0 0.5780472657 ±0.366106 ±0.119648 

0.241040 

Table 4.1: 1-climensiona.l designs on a "normal" grid 
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4.3 Example 3 — Multi-dimensional grids 

62 

We can extend this method to allow a; to be a m-dimensional vector. If we chose a 

product form for the covariance of the observations, and a lattice for the grid, then 

we note the variance matrix becomes a Kronecker product, of the "marginal variance 

matrices", and so the matrix inverse is simpler to compute. We can apply Theorem 4.1 

and its corollary again, which makes a more dramatic saving of computing power, than 

in the one-dimensional case - the transform would usually be difficult to compute as 

it would require the inversion of a (</m — n) x (gm — n) and a n x n matrix for 

each calculation of the transform - but using this result we only need to invert m 

g x g matrices once to find B, and then an n x n matrix for each calculation of the 

transform. 

Using the product correlation function p(d) — FI"=i e _ ' d ' ', we can generate optimal 

designs for higher dimensions. (The designs may be sub-optimal because they are 

generated by the following algorithm, the best of ten or more runs is used, which only 

finds locally optimal solutions.) 

Choose a design at random 

Repeat 

For each point, in turn 

Choose the point to maximize the criterion 

Until no more updating can be done. 

We will produce examples for two and three dimensions on two 2 1 m point lattices, 

for one to ten points, these are summarised in the following series of tables and figures. 

Table Figure Dimension Grid 

4.2 4.1&4.2 2 "Normal" 

4.3 4.3&4.4 2 "Uniform" 

4.4 3 "Normal" 

4.5 3 "Uniform" 
Where "Normal" refers to the grid from Example 2, and "Uniform" refers to the 

21-point grid { — 1.0, —0.9,..., 0.9,1.0). Although not shown here the optimal designs 
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in the case of multidimensional "Uniform" girds are generally dependent on the value 

of 9, unlike there one-dimensional cousins. 

Points Trace(T) Design 
1 0.985820 ( 0.0000, 0.0000) 
2 1.965840 (-0.3661, -0.3661) ( 0.2410, 0.3661) 
3 2.943155 (-0.4972, -0.4972) ( 0.4972, -0.1196) (-0.1196, 0.4972) 
4 3.918860 ( 0.1196, 0.6374) ( 0.6374, -0.1196) (-0.1196,-0.6374) 

(-0.6374, 0.1196) 
5 4.889073 (-0.1196, -0.6374) (-0.6374, 0.0000) (-0.2410, 0.7916) 

( 0.7916, -0.2410) ( 0.2410, 0.2410) 
6 5.857528 (-0.3661, -0.7916) ( 0.7916, 0.2410) (-0.7916, 0.3661) 

( 0.1196, 0.7916) (-0.1196, 0.0000) ( 0.3661,-0.3661) 
7 6.825350 (-0.4972, -0.4972) ( 0.4972, 0.4972) (-0.7916, 0.2410) 

( 0.2410, -0.7916) ( 0.7916, -0.2410) (-0.2410, 0.7916) 
( 0.0000, 0.0000) 

8 7.788608 ( 0.2410, 0.7916) (-0.3661, -0.4972) (-0.4972, 0.4972) 
( 0.4972, -0.2410) ( 0.1196, -0.9674) ( 0.0000, 0.1196) 
(-0.9674, -0.1196) ( 0.7916, 0.3661) 

9 8.751282 ( 0.4972, 0.3661) (-0.4972, -0.3661) ( 0.3661,-0.4972) 
(-0.3661, 0.4972) (-0.1196, -0.9674) ( 0.1196, 0.9674) 
(-0.9674, 0.1196) ( 0.9674, -0.1196) ( 0.0000, 0.0000) 

10 9.710879 ( 0.0000, -0.3661) ( 0.9674, -0.1196) (-0.3661, 0.0000) 
( 0.2410, 0.2410) (-0.2410, -0.9674) ( 0.6374, 0.6374) 
(-0.1196, 0.9674) (-0.6374, 0.4972) (-0.9674,-0.2410) 
( 0.4972, -0.6374) 

Table 4.2: 2-dimensional designs on a "normal" grid 
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Figure 4.1: 2-dimensional designs on a "normal" grid with one to six points 
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Figure 4.2: 2-dimensional designs on a "normal" grid with seven to ten points 
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Points 
1 
2 
3 
4 
5 
6 

8 

9 

Trace(T) 
0.990066 
1.980118 
2.969742 
3.958110 
4,946558 
5.931798 

6.915816 

7.8997S9 

8.880450 

10 9.859666 

16 15.710535 

Design 
any non-edge 

0.9, 0.9 
, 0.3 
, 0.4 
, 0.9 
, 0.9 
,-0.3 
, 0.9 
, 0.0 
, 0.9 
,-0.6 
, 0.9 
, 0.5 
, 0.9 
,-0.9 
, 0.2 
,-0.7 
,-0.4 
,-0.5 

-0.9, 
-0.9, 
-0.9, 
0.9, 

-0.3, 
0.9, 
0.6, 
0.9, 
0.1, 
0.9, 
0.0, 

-0.9, 
-0.4, 
-0.4, 
-0.2, 
-0.6, 
0.5, 

point 
0.9,-0.9 
0.9 
•0.4 
•0.9 
0.9 

0.9 
•0.4 
0.9 
0.6 
0.9 
0.2 
0.9 
•0.6 
0.9 
0.7 
0.1 

0.9 
-0.9 
-0.9 
-0.9 

-0.9 
-0.3 
0.9 

-0.1 
-0.9 
-0.7 
0.9 
0.1 

-0.8 
0.5 
0.8 

0.3,-0.9) 
0.9,-0.4) 
0.9,-0.9) 
0.3, 0.3) 

•0.9, 0.9) 
0.1, 0.6) 
0.9,-0.9) 
•0.9, 0.2) 
0.7,-0.9) 
0.9,-0.6) 
0.9, 0.6) 
0.3, 0.4) 
0.6, 0.9) 

( 0.4, 0.9) 
( 0.9, 0.9) 
(-0.9, 0.9) 

( 0.0, 0.0) 
(-0.9,-0.9) 

•0.9, 0.9) (-0.9,-0.9) ( 0.0, 0.5) 

(-0.9,-0.9) 

(-0.4,-0.3) 
(-0.6, 0.9) 
( 0.4, 0.4) 
( 0.9,-0.1) 
( 0.2,-0.9) 
(-0.9,-0.9) 
( 0.0,-0.2) 

( 0.6, 0.1) 

( 0.6, 0.0) 

(-0.2, 0.7) 
( 0.1,-0.4) 
(-0.9, 0.0) 
(-0.9, 0.9) 
( 0.8, 0.0) 

Table 4.3: 2-dimensional designs on a "uniform" grid 
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Figure 4.3: 2-dimensional designs on a "uniform" grid with one to six points 
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Figure 4.4: 2-dimensiona,l designs on a "uniform" grid with seven to ten and sixteen 
points 
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'oints Trace(T) 
0.998311 
1.996100 
2.993659 

1 
2 
3 

4 

5 

10 

3.991019 

4.988282 

5.985355 

6.982391 

7.978994 

8.975793 

9.972339 

0.0000 
0.2410 
0.3661 
0.0000 
0.1196 
0.2410 
0.4972 
•0.2410 
0.4972 
0.4972 
0.2410 
•0.1196 
0.3661 
0.2410 
0.1196 
0.1196 
0.1196 
0.3661 
0.4972 
0.1196 
0.1196 
•0.4972 
0.6374 
0.2410 
•0.6374 
0.1196 
0.3661 

•0.7916 
0.1196 
•0.3661 

Design 
, 0.0000 
, 0.2410 
, 0.0000 
, 0.3661 
,-0.2410 
, 0.4972 
,-0.1196 
, 0.2410 
, 0.0000 
, 0.2410 
,-0.1196 
,-0.4972 
, 0.3661 
, 0.6374 
,-0.6374 
, 0.0000 
, 0.2410 
, 0.6374 
, 0.4972 
, 0.0000 
, 0.0000 
,-0.3661 
,-0.1196 
, 0.7916 
, 0.2410 
,-0.2410 
, 0.3661 
, 0.2410 
, 0.2410 
,-0.6374 

, 0.0000 
, 0.2410 
,-0.3661 
, 0.3661 
, 0.4972 
, 0.1196 
, 0.2410 
, 0.4972 
, 0.4972 
, 0.1196 
, 0.4972 
, 0.2410 
,-0.2410 
, 0.1196 
, 0.0000 
, 0.6374 
, 0.0000 
, 0.2410 
, 0.3661 
,-0.6374 
, 0.0000 
,-0.3661 
,-0.2410 
,-0.2410 
, 0.3661 
,-0.1196 
,-0.3661 
,-0.1196 
, 0.7916 
,-0.3661 

0.2410,-0.2410 
0.3661 

0.4972 
0.3661 
0.0000 
0.2410 

0.2410 
0.0000 
•0.6374 
0.6374 
0.6374 
0.0000 

0.6374 
0.0000 
0.2410 
0.6374 
0.3661 
0.0000 
0.1196 
0.2410 

•0.1196 
0.3661 

•0.1196 
0.7916 

•0.4972 

-0.3661 

0.1196 
-0.3661 
-0.4972 
0.4972 

0.6374 
-0.2410 
0,1196 

-0.2410 
-0.1196 
0.1196 

-0.2410 
-0.2410 
-0.6374 
0.0000 
0.4972 

-0.2410 
0.2410 

-0.6374 

0.6374 
-0.4972 
0.0000 
0.0000 

-0.1196 

-0.2410) 
-0.3661) 
-0.1196) 
-0.2410) 

Table 4.4: 3-climensional designs on a "normal" grid 
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Points Trace(T) 
1 0.999010 
2 1.998020 
3 2.997025 
4 3.996031 

5 4.994998 

6 5.993964 

Design 
any non-edge 

0.9,-0.9,-0.9 

6.992880 

8 7.991753 

9 8.990604 

10 9.989434 

0.9 
0.9 
0.9 
0.9 
0.0 
0.9 
0.9 
0.9 
0.9 
0.8 
0.9 
0.9 
0.1 
•0.9 
•0.9 
0.0 
-0.1 
0.9 
0.4 
0.9 

0.9 
-0.9 
0.9 

-0.9 
0.0 

-0.9 
0.9 
0.9 
0.9 
0.5 

-0.3 
-0.7 
0.0 
0.9 

-0.9 
0.0 

-0.9 
0.9 

-0.2 
0.9 

-0.9 
-0.9 
-0.9 
-0.2 
-0.9 
0.9 

-0.9 
-0.9 
0.4 
0.9 

-0.9 
0.7 
0.3 
0.3 
0.9 
0.7 
0.9 

-0.6 
-0.9 
-0.1 

point 
0.9 
0.9 
0.9 

-0.9 
0.9 
0.9 
0.4 

-0.9 
-0.1 

-0.9 
-0.5 
-0.4 
0.9 
0.3 

-0.9 
-0.9 
0.9 

-0.8 

0.9 
0.9 
0.9 

0.9 
0.9 
0.9 
0.5 
•0.8 
0.1 

0.8 
0.9 
•0.9 
0.9 
0.9 
0.1 
0.9 
0.2 
•0.3 

0.9 
0.9 
0.9 

-0.2 
0.9 
0.1 
0.9 

-0.9 
-0.4 

-0.9 
0.9 

-0.7 
0.9 

-0.7 
-0.9 
0.9 
0.9 
0.3 

0.9,-0.9,-0.9 
0.9 •0.9 

0.9 

•0.4 
•0.9 
0.9 

•0.5 

0.9 
0.9 

0.9 
0.9 

-0.3 
-0.9 
-0.7 
0.0 

0.9 

0.9 

0.5 
0.9 
0.9 
0.9 

0.9 
0.9 

0.9 
•0.3 
0.9 
0.9 
0.9 
0.6 

Table 4.5: 3-dimensional designs on a "uniform" grid 



Chapter 5 

Looking For Nothing 

As mentioned in Chapter 1, one of the more common problems when we are consid

ering computer experiments modelling complicated processes is that of matching the 

output of the model to the real observed data, by adjusting the model parameters, for 

example the flame dynamics model of Sacks et a/[1989a]. In the papers mentioned in 

Chapter 2 that cover this topic of calibration, the methods used all consist of finding 

an approximation to the function, and then finding points where this approximation 

matches the observed data. 

Here, we would like to explicitly build into our approximation information about 

the model that is relevant to finding a solution to this problem, which we can express 

as 

y(v) = y0 (5-i) 

where y0 is the observed data. We can w.l.o.g. replace this with the simpler problem 

of solving y(x) = 0, by rewriting y(x) as y(x) — y0. We would like to include prior 

knowledge about the location of the zero, that is our prior prevision (expectation), 

and a measure of uncertainty (variance). Other information could be included, for 

example the slope of the function near the zero. 

In the next few sections, we will consider the simplest case of this problem where 

71 
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the response function y(-) and the parameter x are both univariate. This is a typical 

problem considered by numerical analysts, and so there is a plethora of numerical 

methods already in existence; for example 

Bisection: for a function on an interval [a, 6], whose values at the two end points 

are of opposite sign. To home in on the zero, we repeatedly halve the interval, 

keeping the half in which the function values at the end points have opposite 

sign, and hence contains the zero. 

Secant: for functions of the same type as for the bisection method. The interval is 

split at the point where the straight line through the function evaluations at the 

two end points cuts the axis, and again we keep the half in which the function 

values at the end points have opposite sign. 

Newton Raphson: for differentiate functions. Given a starting value xo, we replace 

it by the point where the tangent line to the function at xo crosses the axis, and 

repeat this until we converge on a solution. 

Inverse Interpolation: for any function. The function is approximated by some means, 

and then we solve (the easier) problem of finding the roots of the approximant. 

5.1 Modelling the problem - the univariate case 

To further simplify this problem, we will make an additional initial assumption that 

the function has just one zero in the region of interest. Some of the methods to 

be produced will identify multiple zeros (even under the assumption that there is 

just one). A much harder problem of estimating the number of zeros the interval is 

omitted, if this was possible, we could build this information into the model. 

We first consider the construction of the model of the function. As we are consid

ering a function with a zero, we choose to explicitly include this in the model. If we 

let XQ denote the location of the zero, the model must have the following property 

Y ( X 0 ) = 0 (5.2) 



5.1. MODELLING THE PROBLEM - THE UNIVARIATE CASE 73 

As most functions we will consider are continuous then we should assume that our 

model of the response is also continuous. 

The first property (5.2) can be modelled in two ways; 

i) We can assume Y(x) has (x — X0) as a divisor i.e. 

Y(x) = B(x)(x - X0) (5.3) 

where B(x) is a continuous function, see figure 5.1 B{XQ) represents the slope 

of the function at its zero. 

'slope B(x) 

Y ( ) 

Figure 5.1: x — XQ factor model for Y(x) 

ii) In general we can write Y(x) in the following form 

Y(x) = G(x) - G(X0) (5.4) 

where G(x) is again continuous, and so when we model G(x) where we do not 

need to put additional constraints on G(A'o). We will look at this model again 
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in section 5.6. 
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The continuity assumption can be modelled by assuming that the prevision of Y(x) 

as a function of x is continuous, and that the correlation between two values of Y(x) 

is also continuous. We will expand on this in the next section. 

5.2 The univariate model 

In this and the next few sections, we will assume the model is as in equation (5.3), 

and model the "slope" process B(-). As we have already stated B(x) should be a 

continuous function of x. For this to happen its prevision should be continuous, and 

that the correlation between the "slope" B(-) at any two points x and x„ should also 

be a continuous function of x and x*. 

We assume for simplicity that the "slope" process B(-) is stationary, so that the 

prevision of B(x) does not depend on x and therefore we have 

V(B(x)) = 6, (5.5) 

for all x in the region of interest. Our prior specification for 6 is based on our prior 

knowledge about the slope at the zero. 

We assume that the correlation of the "slope" B(-) is a continuous monotonically 

decreasing function of the distance between two points. If we believe y(-) to be a 

continuously differentiate function we would also like the correlation function to 

be continuously differentiate. In what follows we will use p(d) = t~6i* {p2{') from 

Chapter 2) as the correlation function, where d is the distance between the two points. 

This condition is not essential, and we will look at some other correlation functions 

later for which this does not hold. We base our prior belief about the variance of 

B(x), a f , on the variation of the slope at the "zero". 

Finally we specify our beliefs about A'o, its location P(Ao) = fio and uncertainty 
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Var(Xo) = <7Q. These assumptions and prior beliefs imply beliefs about the y(-) s> 

P(Y(x)) = b(x-no) (5-6) 

Cov(Y(x),Y(x.)) = (a2

0 + (x-^0){xr-no))alp(x-x.) + b2a2

0 (5.7) 

Cov(X0,Y(x)) = -bo* (5.8) 

Cov{Y(x),B(x.)) = ol{x - Li0)p(x - x.) (5.9) 

These seem natural, the variance of Y(-) grows quadratically as we move away 

from the location of the zero, which is what we would expect if we were considering 

a linear model; the sign in (5.8), highlights that if we observe a value higher than 

expected then (with a positive slope) the zero is more likely to be to the left of the 

original guess; the correlation in the function evaluations tends to 0 as the distance 

between them increases. 

We can look at plots of the correlation (figures 5.2 and 5.3) and covariance (figure 

5.4) of the F(-)s for various values of 6, and 9, under this model (using p2{-)), and 

^ 0 = 0, <7Q = 1 and a\ = 1 (we can use changes of scale and location to transform the 

variables so that ^o, <*o a n c ' a l a i e replaced by 0, 1 and 1 respectively). These give 

us further insight into the structure we have implied. 

We can also produce sample realizations of the random processes with these first 

and second order structures (We extend our prior beliefs about the B(-)s to a full 

prior distribution, by assuming they are multivariate normal), to give us some idea 

of functions which match our model precisely. 

If we let Y\,..., Yn be the unknown function values at x\,..., xn we can adjust 

our beliefs for each of the quantities of interest A' 0 , B{x) and Y(x). We will first 

define some notations to be used throughout the rest of this chapter. 

X = ( . T ] , . . . , . T N ) 

Y = (Yu...,Ynf 
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Figure 5.2: Correlation between Y(x) and Y(x*), using p%\d) as the slope correlation 



5.2. THE UNIVARIATE MODEL 77 

b=0.1,theu=0.1 b=«.l,theta=l b=0.1,thela=10 

(1.75 M . /S 0.75 
0.5 

O.J5 1 0.25 0.25 
i: 0 

? 0 0 
1 

i: n 
l l 

b=l,theta=0.1 b=l,theta=l b=l,theta=10 

1 
;>.!; 0.8 0.8 
o.r , 0.6 0.6 
0.4 0.4 1 
i'.J 0. ' 

I 0 
i 

1 1 I) 

i 1 

b=10,Iheu=O.l b=10,Ih«a=l b=10,theu=10 

1 
„,,, O K 
0.98 O c t 
o . o ; 0 4 1 Din 0X6 0 2 

0 o 

o 1 0 
1 1 

Figure 5.3: Correlation between Y(x) and Y{x*), using pi(d) as the slope correlation 
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Figure 5.4: Covariance between Y{x) and Y(x*), using pi{d) as the slope correlation 

c(u,v) - p(u — v)((u — Hd)(v - no) + CTQ) 

d j — c(x ( ', XjJ 

c = (c(a?*,xi) , , . . c(x», x n ) ) 

c (c(xm,Xt),. . . c(5i», xn)) 

d m ( f > i - f*o)p(x *,xi),..., (xn - (i0)p(xm - xn)f 

d = {(m - p0)p{x *,x{), . . . , ( x n - p0)p(x* - xn)f 

(Note <T^C(.T, .T , ) is the covariance between Y(x) and Y(x») i f 6=0) 

The Bayes linear estimates for X0, B(-) and Y(-) given our prior beliefs can be 

wr i t ten as 

P M M olpo-ol?C-\Y-bx)b , 
P ^ ( A o ) = a\ + o t f C - W ( } 

P y ( f l ( x , ) ) = b + i C - \ Y - b[x - PY(X0)1]) (5.11) 
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Figure 5.5: Traces of Y(x), using P2{d) as the slope correlation 
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PY(Y(x.)) = 6 [ . T . - P y ( A ' 0 ) ] + c T C - 1 ( y - 6 [ a ; - P y ( X o ) l ] ) (5.12) 

and their adjusted variances and covariances are 

2 2 

V a r ^ / y J = oi + afrc-w (5-13) 

Cov([XQ/Y]t[Y(x.)/Y]) = -6(1 - 1TC-XC)V<LT[X0/Y} (5.14) 

C o v ( [ £ ( x . ) / Y ] , [B(x.)/Y]) = a2

b (p(x, - •£„) - <fc~ld) + 

£c-l\fC-ldV*x[X0IY)b2 (5.15) 

Cov([Y(x.)/Y},[Y(xr)/Y]) = a2

b ((a2

0 + ( x . - / i 0 ) ( i , - / i o ) V ( x , - i ) - c V 1 c ) + 

( l - l T C - 1 c ) ( l - c T C - 1 l ) V a r [ A V ^ ] 6 2 (5.16) 

Cov([B(x.)/Y],[Y(x.)/Y)) = al^x-^pix.-x^-^C-'c) 

dtC-ll{lTC-lc-l)Vax\X0lY]b2 (5.17) 

We can now make some observations about these results; 

The posterior estimate for A'o is a weighted average of the prior estimate and 

an estimate based on the data (of the form. 

The posterior estimates for both B(x) and Y(x) both include (x — P y (A^o)) in 

them, as opposed to x — po in the prior estimate, and the covariances include 

Vax[X0/Y]. 

The adjusted covariances between the B(-)s and Y(-) are all linear combinations 

of a2

b and Var[Ayy] /> 2 . 

( C - 1 c ) j = Sij at the design point . T , . 

Before we go on to look at the question of design, we will examine the predictors 

for fixed designs. We will use designs with one, three, five and nine points equally 

spaced in the interval [—1,1], with ao = a^ = b = 9 — 1, and po — 0. As a test 

function we use sin(.i:/2 — 0.1), which has a zero at x = 0.2. With these designs, we 

obtain the adjusted previsions and variances for XQ listed in Table 5.1. We can also 

examine our adjusted previsions and covariances for B(-) and V(- ) , this is most easily 
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performed graphically, see Figures 5.6 (prevision) and 5.7 (covariance). Examining 
these we see that: although the covariances of the Y(-) is reduces by a factor of about 
90% for every additional function evaluation we make, the covariances of the B(-) 
only decrease by at most 20% for each evaluation - the same is true for the posterior 
variance of XQ\ the correlation between Y(x) either side of a design point is negative, 
which is as we would expect; and although the covariance between two F(-)s drops 
to zero near the design points this is not the case for the covariance of the B(-)s. 

Design P V ( X 0 ) V a r [ X 0 / Y ] 
{0} 

{ - 1 , 0 , 1 } 
{ - 1 , - 1 , 0 , 1 , 1 } 

(_1 _ 3 _ 1 _ 1 0 I I 3 1 ) 

0.0499167 0.5 
0.0556568 0.406155 
0.555152 0.405009 
0.0552358 0.392670 

Table 5.1: Posterior mean and variance of Xo given function evaluations 

5.3 The design of the experiment 

Our model is a basis for predicting y(-) at any value of x, using the posterior prevision 

of Y(-) as our estimate of it. The design problem now is how to choose the values 

of x at which to evaluate Y(-) so that we can estimate Xo as efficiently as possible. 

If the function we are trying to approximate is cheap then we have no real limits on 

how many evaluations we can make, so the design question is not as important as 

when the function is expensive. 

We have considered three main design approaches: 

a completely pre-determined "optimal" design, choosing all the points before 

we make any function evaluations; 

a sequential one-step-ahead approach; 

and a mixture of the two, constituting an initial "optimal" pre-determined block 

design followed by a sequential refinement (in which new sets of points are added 

to the design, not necessarily one at a time.) 
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Figure 5.6: Adjusted previsions of B(-) and Y(-), w i t h one standard deviation error 
lines 
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Cov([B(xyY]iBOt-VYJ) for 1 point design. [Cov(Y(xyY],[Y(x-)/Y]) for 1 point design. 
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Figure 5.7: Adjusted covariances of B(-) and Y(-) 
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The pre-determined designs have the advantage that most of the difficult calcu
lations can be computed in advance to a very high degree of accuracy, especially the 
inverse of the correlation matrix. However in some situations these fixed designs are 
too rigid and do not take into account any extra information that becomes available 
every time the function is evaluated. For cheap functions though these designs can be 
useful, because any complicated arithmetic that we might have to compute to get the 
"best" estimator for a set of function evaluations must take less computer time and 
power than a simpler approach which might take more function evaluations. Another 
downside to these designs is the large amount of computing power required to com
pute them initially, with the sequential designs all the optimization required has the 
same dimensionality as x (in this case 1), but with fixed designs it is multiplied by 
the number of design points and soon the problem of finding these "optimal" designs 
becomes more difficult to solve than the original problem. If we have a fixed design we 
can consider the sub-problem of choosing the order of the design points, as we need 
not randomize the ordering to remove "time dependent" biases as none can appear. 

"One-step-ahead" sequential designs have the obvious advantages that, after each 

function evaluation, our beliefs about the function are modified, and so we modify 

the design to take this information into account. Again with cheap functions we 

need to keep sequential designs simple to be as efficient as more naive methods that 

require more function evaluations. On the other hand, when the function we are 

approximating is expensive, we can in general spend more time choosing the next 

design point, for if we can reduce the total number of function evaluations great 

savings of time and money may be possible. 

We can construct a compromise between these two design extremes, by having 

and initial block followed by either a sequence of additional design points, or addi

tional points. The first of these combine the advantages of the two previous design 

types, the ability to compute part of the inverse of the variance matrix before, and 

then the simplicity of the "one-step-ahead" sequential process. On the other hand 

"block-sequential" designs are not as good, as they are generally more complicated 
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to compute, and also suffer from the problem of making "redundant" function eval

uations. 

We are mainly concerned with the expensive function, so we will only consider the 

sequential approach. For this we need a design criterion or criteria to decide which is 

the best point to choose next. Good criteria should: 

1) Use as much information from the data received to choose the next point 

2) Quickly home in on the zero. 

3) Initially explore a sufficiently large area of the design space to make sure i t does 

not miss the zero. 

5.3.1 Test functions 

To compare various methods we shall include some simple test problems, obviously 

these are cheap functions, but they can be treated as expensive ones. They are as 

/ i ( - ) is a simple near straight line with a zero at 0.2, whereas / j O ) is a more 

difficult function for many of zero solvers as the gradient changes greatly throughout 

the interval, being approximately 0 over a large part of the design - for example 

Newton-Raphson starting at x — 0 takes nearly one hundred function evaluations 

to loacate the zero. It has a zero at —0.5. Figure 5.8 shows graphs of these two 

functions. 

5.3.2 The naive estimate 

Using a sequential approach we can re-write our equation for Py } / (Xo) after n + 1 

function evaluations Y\,..., Yn, Y„ at x\,..., a'n, a;*, in terms of our beliefs after n 

follows 

0.2 
sin 

( . r - 0 . 2 ) 1 1 + ( 0 . 7 ) n . 
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(a) (b) 
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-0.5 
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(*=P , ( b ) - f2(x) = (x + 0.5) 1 1 - (0.2) l i igure 5.8: (a) - f ^ x ) Figu sin 

observations, 

k V o 2 + (x. - /<o)2) - cC-'c]?Y(X0)-

6(1 - fC-'c)V^[X0/Y}(Y. - bx. - cC-\Y - bx)) 
P y , n ( A ' ° ) = a 2 { a l + { X t _ ^ ) 2 ) _ C T c _ 1 c + fta(1 _ i T C - i c ) a V a r [ ^ o / y ] 

(5.18) 

Therefore we no longer have to invert the variance matrix when adding the next 

design point if we already have the inverse for n points. We can sequentially calculate 

the inverse as well, 

R-1 

/ 

\ 

Q - \ , C , 7 ' C C T C ^ ' _ . C^C \ 
c ( r , ^ x . ) - C C~1C c(x.,x,)-C C^C 

1 cTc-' 
c ( x . , x . ) - C C - ' C C ( I „ I , ) - C C n " ! C / 

A criterion to compliment this is to choose the design minimizing the adjusted vari

ance of XQ, which from Section 5.2 is 

V a r [ X 0 / r ] = 

which is the same as maximizing TLC ' l . In the sequential design problem, given 
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function evaluations at n previous points, we can choose the next point x* to maximize 

Which only requires maximizing the second term, since the first term is only 

dependent on the first n design points. Note that this criterion depends only on our 

beliefs about the correlation structure of -£?(•), not the mean and variance of its value 

at any x. 

This criterion is also independent of the previous function evaluations and so 

contravenes the first of the above criteria for a good design - using all available 

information - as it does not use any information about the function evaluations when 

it chooses the next design point. It also contravenes the second, the design eventually 

covers the whole of the design space, with new points being spread further and further 

out and does not converge on the zero. If we limit the design space to a large but finite 

interval of the real line then the criterion wants to repeatedly choose points near the 

boundary. Using the simple function /i(-) as a test function, and o\ = cr\ = b = 9 — 1 

and /.to = 0 as our prior beliefs we obtain the design in Figure 5.2. We observe that 

the prevision of A'o and the design points do not converge to any point, and so this 

criterion is virtually useless. 

5.3.3 The blinkered methods 

Like a horse with blinkers on, we could also charge down the path of choosing the 

most likely place for the zero, by using our current estimate of the zero as a next 

design point. We could choose the next design point to be the linear estimate of XQ\ 

a "Newtonian" estimate of A' 0; or a point where the estimate of Y{x) is equal to 

zero, replacing the zero finding problem of the expensive function with that of the 

approximant - "inverse interpolation". 

c 
* T 0 i c r . ' . i n 

n + l 
c(x„X,) 1 

1 1 c n 1 + (5.19) 
C ( X , , . T , ) - CC~XC 
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i Y, Py(Jfo) 
1 0.0000 -0.0998 0.0499 
2 -1.3625 -0.7042 -0.0448 
3 1.3317 0.5361 0.0538 
4 3.0000 0.9854 0.1197 
5 -3.0000 -0.9996 0.0515 
6 -0.7805 -0.4708 0.0494 
7 0.5436 0.1709 0.0527 
8 -1.7480 -0.8272 0.0482 
9 1.9441 0.7657 0.0519 
10 3.0000 0.9854 0.0573 
11 2.9947 0.9850 2.8868 
12 -0.0000 -0.0998 1.4591 
13 -1.9334 -0.8756 2.9544 
14 -1.7480 -0.8272 2.5902 
15 -0.7805 -0.4708 2.7546 

Table 5.2: Sequential design, using naive criterion for 

The first one again behaves poorly, as should be expected, we are trying to fi t a 

linear estimate to a very non-linear quantity - if we think of a straight-forward linear 

regression, the location of zero is the ratio of the slope and the intercept. If we look 

at Table 5.3, we see that this time the design does converge, but not to the zero of the 

function, but to a value that is a compromise between the zero and our prior belief 

about XQ. 

In equation (5.3) we model Y(x) by (x — Xo)B(x), manipulating this equation 

gives us Xo = x — Y(x)/B(x) for each x. Which has a similar form to the Newton 

Raphson equation xn+i = xn — y(xn)/y'(xn). This "Newtonian" estimate, requires 

us to estimate Y(x)/B(x) for some x, we would like to use our posterior prevision 

Py (Y(x)/B(x)), but under the Bayes linear framework we do not have this. Instead 

we can approximate i t , assuming all the posterior moments exist for Y(x) and B(x), 

and that neither of their expectations are zero, we use a bivariate Taylor series ex

pansions of the prevision about ( P y ( F ( i ) ) , P y ( 5 ( i ) ) ) . The first order expansion 
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i Xi Yi Pv (*o) 
1 0.0000 -0.0998 0.0499 
2 0.0499 -0.0750 0.0541 
3 0.0541 -0.0729 0.0601 
4 0.0601 -0.0699 0.0598 
5 0.0598 -0.0700 0.0598 
6 0.0598 -0.0700 0.0598 
7 0.0598 -0.0700 0.0598 
8 0.0598 -0.0700 0.0596 
9 0.0596 -0.0702 0.0601 
10 0.0601 -0.0699 0.0598 
11 0.0598 -0.0701 0.0597 
12 0.0597 -0.0701 0.0598 
13 0.0598 -0.0701 0.0598 
14 0.0598 -0.0701 0.0598 
15 0.0598 -0.0701 0.0598 

Table 5.3: Blinkered design, using posterior prevision of X0 as the design criterion. 

leads to 
.Y(x)\ PY(Y(x)) 

^ [B(X)) - Py(B(x)) ( 5 - 2 0 ) 

We can improve on this by using our knowledge about the second-order structure to 

obtain 

(Y(x)\ ^ PY(Y(x)) ( Vv[B{x)/Y] Cov([B(x)/Y},[Y(x)/Y})\ 
Y \B(x)) ~ PY(B(x)) I + PUB(x)) PY(B{x))PY(Y(x)) I ' 

So we can now obtain two estimates for A'o, which we will denote by A ^ x ) and Xi(x), 

x ( x ) - x

 ?Y(y(*)) ( 5 2 2 ) 
M [ X ) - X PY(B(x)) ( 5 - 2 2 ) 

y (n.\ — P Y ( y ^ ) ) ( , , V**[B(x)/Y] Cov([B(x)/YUY(x)/Y})\ 
M { X ) ~ X - P Y ( B ( X ) ) [ l + Py(B(x)) PY(B(x))PY(Y(x)) j ( 5 - 2 3 ) 

These both simplify if we assume x to be one of the points at which we have evaluated 

the function, as Y(x) is then a fixed quantity. It is easy to check that the prior 
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prevision for both these estimates is ^o- We can also estimate their variances in a 

similar way, if we look at the prevision of the second order power series expansion of 

the ratio, 

r w y <r\ x tr-\\ ~ P y ( r ( * ) ) P y ( r ( * - ) ) (CQV([Y(X)/Y),[Y(X*)/Y}) 
C O V ( A 2 ( , ) , A 2 ( , )) * p y ( j B ( e ) ) P y ( f l M ) { P y ( y ( x ) ) P y ( r ( , . ) ) 

Cov([B(x)/Y],[Y(x*)/Y}) Cov([Y(x)/YUB(x*)/Y}) , 

P y ( 5 ( x ) ) P y ( y ( . T * ) ) PY(Y(x))PY(B(x*)) 
Cw([B(x)/Y],[B(x-)/Y))\ 

Py(B(x))?Y(B(x-)) J [ • ) 

2 

whose prior value is OQ{ \ + ^ 2 ) , which is larger than our prior variance for X0 if we do 

not have precise information about B, and increases as b gets nearer to zero (as would 

be expected as the tangent line gets flatter, so a small increase in the y-direction leads 

to a large increase in the z-direction). 

The simple way to use these methods is to mimic Newton-Raphson, we evaluate 

one of the approximants at our current estimate of Xo, and then use the result as 

our new estimate of AV Here we used these methods on fi(-), and produced designs 

listed in Tables 5.4 and 5.5, A2 converges much quicker on the zero that A i . 

i Xi Xi(xi) H 
A'2(z,-) 

1 0.0000 0.0998 0.1997 
2 0.0998 0.1601 0.2183 
3 0.1601 0.1842 0.2075 
4 0.1S42 0.1938 0.2030 
5 0.1938 0.1975 0.2012 
6 0.1975 0.1990 0.2005 
7 0.1990 0.1996 0.2002 
8 0.1996 0.1998 0.2001 
9 0.1998 0.1999 0.2000 
10 0.1999 0.2000 0.2000 

1 for usi ng Xi(xi) as the r 

The way these two approximants behave depends on the function we are approx-
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i Xi X1(xt) X 2 ( X i ) 
1 0.0000 0.0998 0.1997 
2 0.1997 0.1999 0.2002 
3 0.2002 0.2000 0.2000 
4 0.2000 0.2000 0.2000 

Table 5.5: Design for / i ( - ) , using A ^ ^ t ) as the next design point. 

imating, A ^ - ) works well if the function "behaves" i.e. fits our model, whereas Ai ( - ) 

works (slowly) for most functions we have tried. We can obtain further insight about 

these predictors by plotting them as a function of A', along with their variances: Fig

ures 5.9 and 5.10 plot the predictor Py(F(a:)) , A'I(.T) and A ^ z ) for the first five 

points of each of the above designs (the latter two with ±1SD lines); and Figures 5.11 

and 5.12 plot the covariance between the A^(a;)s. 

A less naive way would be to combine together the estimates at various values of 

x, for example, by taking a weighted average of the predictors at m points z\,..., zm 

m 

X = aiX(zi) 
1=1 

with YlTL-i ° « — 1- The estimate of this with minimum posterior variance has coeffi-

cients a = (a^,..., a m ) given by 

« = (5-25) 

where Bjj = C o v ( A r ( z , ) , X ( z j ) ) . 

The third method is to use the adjusted prevision P y ( y ( x ) ) as an approxima

tion to the function, and then find values of x which solve the simpler problem 

P y ( K ( x ) ) = 0. This has the advantage that the approximation is no longer linear, 

but uses all the detail of the approximant. I t has at least two disadvantages, firstly we 

still have to solve the possibly complicated numerical inverse interpolation problem, 

which is further complicated by the second, that there might be many zeros, several 
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«Y(i)) Xl(.) X2<«) 

Figure 5.9: P y ^ C ^ ) ) , Xt(x) and ^(a*) after one to five design points, using Xi(-) 
to choose the next design point. 
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-OJ OJ 1.0 IX) .0 OJ OJ -OJ 0X1 OJ 1.0 IX) 
X1W X2(i) 

Figure 5.10: Pv(i / (a:)) , A'I(.T) and X2{x) after one to five design points, using A j ( - ) 
to choose the next design point. 
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Figure 5.11: Covariance between the A2(a-')s 
A'i(-) to choose the next design point. 

after one to five design points, using 
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Figure 5.12: Covariance between the X2(o:)s 
X 2 ( - ) to choose the next design point. 

after one to five design points, using 
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of which are caused by oscillations in the interpolant. 

We will again apply this method to our simple example /i(-)> this locates the zero 

in just five function evaluations, summarised in Table 5.6 and Figure 5.13 below. In 

this case the approximant has just one zero. 

i x{ Zero of Py(Y(-)) Y(-) at 'zero' >/Var[Y(-)/y] at 'zero' 
1 0.000000 -0.099833 0.099343 -0.050307 0.171645 
2 0.099343 -0.050307 0.195665 -0.002168 0.039596 
3 0.195665 -0.002168 0.199912 -0.000044 0.000155 
4 0.199912 -0.000044 0.200000 0.000000 0.000000 
5 0.200000 0.000000 0.200000 0.000000 0.000000 

Table 5.6: "Inverse Interpolation" design for / i ( - ) , with model parameters 0 = 6 = 
°o = ab — 1 a n c l /£o = 0 

All these methods have two main disadvantages, firstly they can be lead down, 

the proverbial, garden path - if the function dips sharply but does not cross the axis 

at th minimum, the design will tend to cluster around this minimum, and not be able 

to escape. Secondly the methods also always cluster the points together even when 

not converging on a "false zero", and so the columns of the correlation matrix become 

very similar, and hence it becomes ill-conditioned (see Section 5.12). 

5.3.4 Variance modified criteria 

Instead of looking for values of x which solve the inverse interpolation problem 

P y ( Y ( x ) ) = 0, we could look for values of x which minimize its squared previ

sion. In the linear framework we are unable to get a true estimate of this, but we can 

use the adjusted variance estimates to get an approximation to it 

d ( x ) = P y ( Y ( x ) 2 ) ~ PY(Y(x)) + Vax[Y(x)/Y] (5.26) 

We then find values of x to minimize Ci(-)- We can also use modifications of this 

criterion, which give more weight to points where the squared prevision is small in 

comparison to our uncertainty about its value there. We can do this by dividing 
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Figure 5.13: "Inverse Interpolation" design for / i ( - ) , its approximant and errors using 
function evaluations at i , = 0, x2 = 0.099343, x3 = 0.195665 and x4 = 0.199912, 
with model parameters 6 = b — = al — 1 and // = 0 
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through by our prior or adjusted variance to obtain, 

98 

der P y ( y ( x ) 2 ) ^ PY(Y(x)) + V&r[Y(x)/Y] 
2 { X ) Var(y(a;)) ~ Var(F(x)) 

def P y ( K ( * ) 2 ) 
3 { X ) Va,v[Y(x)/Y\ 

- 1 
Var[y(x)/y] 

(5.27) 

(5.28) 

The last criteria is equivalent to the "inverse interpolation" method of Section 5.3.3. 

Minimizing C\ and C*2 appear to work well, often producing very similar sequential 

designs, because the prior variance does not change much over the region where the 

zero is. I f the function has multiple zeros the design may flip between two points, so 

highlighting this fact. 

To optimize C\ and Ci we assume that the criterion is unimodal between the 

design points, and use the "Golden-Section search" algorithm to locate the unique 

local minimum in each interval, choosing the least of these as the global minimum. 

For every function we have examined this appears to be the case, although we have 

no analytic proof of this fact. 

We now try these methods out on functions /i(-) and / a ( - ) i with our standard prior 

beliefs o^ = a\ = B = b= \ and /.IQ = 0. The designs generated are listed in Tables 

5.7 to 5.10. We observe that there is very little difference in the number of steps 

needed to find the zero in either case. (The odd design point (0.1215) in Table 5.9 is 

probably due to numerical errors in the inversion of the covariance matrix) 

i Y 
1 0.0000 -0.0998 
2 0.0250 -0.0874 
3 0.1358 -0.0321 
4 0.1964 -0.0018 
5 0.2000 -0.0000 

Table 5.7: Design generated by criterion C\ for function . A ( - ) with a\ 
6 = 1 and ^0 = 0 

= ol = 0 = 

The small amount of extra work with this method in comparison to the "inverse 
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i Yi 
1 0.0000 -0.0998 
2 0.0250 -0.0874 
3 0.1360 -0.0320 
4 0.1968 -0.0018 
5 0.2000 -0.0000 

Table 5.8: Design generated by criterion C2 for function / i ( ) with <7Q = o\ — 9 = 
b = 1 and / / 0 = 0 

i Xi Yi 
1 0.0000 0.0198 
2 -0.0197 0.0198 
3 -0.2804 0.0195 
4 -0.4077 0.0156 
5 -0.5803 -0.0455 
6 -0.4866 0.0038 
7 -0.4995 0.0001 
8 0.1215 0.0198 
9 -0.5000 0.0000 

Table 5.9: Design generated by criterion C\ for function /2( ) with a\ = a\ — 0 — 
6 = 1 and //Q = 0 

i Xi Yi 
1 0.0000 0.0198 
2 -0.0049 0.0198 
3 -0.0172 0.0198 
4 -0.1757 0.0198 
5 -0.2872 0.0194 
6 -0.5195 -0.0070 
7 -0.4943 0.0170 
8 -0.5000 -0.0000 

Table 5.10: Design generated by criterion C2 for function / 2 ( - ) with <J\ = o\ = 0 — 
6 = 1 and /z0 = 0 
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interpolation" methods above pays dividends, as it has some advantages. Firstly it 
is less inclined to move a long way away from previous function evaluations to areas 
of the function we are unsure about. If the function being approximated does not 
behave well or some of the parameters have been mis-specified, the approximant can 
oscillate wildly, cutting the axis in many places generally away from previous design 
points. These criteria C\ and Ci try to ignore these. Secondly, it usually produces 
a unique global minimum, whereas the "inverse interpolation" often finds multiple 
zero. 

5.3.5 Modifying the first order structure 

If we look at the form of equation (5.18), we note that the predictor contains P y (Ao) 

as an estimate of A'o in it, but there is not an updated estimate for 6, it appears as 

b. We could therefore make an ad hoc modification to this predictor, by replacing b 

by an estimate of the slope - one possibility is to replace b by P y (•) for our current 

estimate of A'o, ie P y (Z?(Py (A'o))). We can then use this modification in a similar 

way to the methods in Section 5.3.3. 

5.3.6 Trying to modify the second order structure 

As we only specify the first and second order structure of the function we have no way 

to estimate the variance of the predictor from the data using Bayes linear method

ology. We can again use ad hoc methods to estimate the product of erf and a^, we 

cannot get at the two separately, if we put s2 = o\a\ 

s2 = K- b-—l—• L * * } Vc-u ( 5 . 29 ) 
bl{n — 1) 

where /* = 1 (x — -^-)/n. We then define a2 and <TQ SO their product is i 2 , and there 

ratio is the same as our adjusted variances for Var[Ao/V] and Vnr[B(Xo)/Y]. 

This method seems contrived, and in general their is no real improvement on the 
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rate at which the method finds the zero. 
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5.3.7 Initial exploration designs 

It would be desirable to have a criterion like that in Schagen[1984], which is a com

promise between exploring the region and looking for the zero of the function. We 

have examined the second part above. One possibility for an exploratory criterion, 

is to choose the design point to minimize the average (or maximum) variance of the 

approximant over the design space. Another possibility is to minimize the average 

(or maximum) ratio of posterior to prior variances, Goldstien's D(Y) defined in Sec

tion 3.5. We will look at another similar criterion in the next section. 

If we have two criteria, scaled so they are of a similar magnitude, a zero-finding 

one Co(-) and an exploratory one CE(-), we can combine the two to form a composite 

criterion 

C{-) = WC0{-) + ( l - W ) C E ( - ) 

where initially W is near 0 and the criterion selects a mainly exploratory design, and 

W eventually increases to be near 1 and the design then homes in on the zero. 

5.3.8 Belief grid criteria 

We can use a criteria similar to that in Chapter 4 to explore the region, the criteria 

chooses points (or a point) from a grid to minimize the trace of the belief transform. 

Because we are using a grid based design, we can, after each stage, easily modify 

our grid to reflect where we think the zero is. This achieves the objectives of the 

previous section: initially we have very vague knowledge where the zero is and so the 

grid is spread out, but as our knowledge of the function increases, and we have more 

information about the location of the zero, then we can refine the grid to include 

more points near where we think the zero is at the moment. 

We can use this method to produce small pre-determined initial designs. For 

example, if we are looking for a three point initial design, we would lay down a grid, 
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for example { — 1, —0.9,... ,0 .9,1}, and our prior beliefs and compute the transform. 

In this case (with our standard prior beliefs 0 = b — a\ = OQ = 1, fj,0 — 0) we have the 

optimal three point design, {—0.3,0,0.3}. On the same grid the optimal two point 

design is ± { - 0 . 2 , 0 . 3 } . 

5.4 Choosing the smoothness parameter 

An important question that so far has not been addressed is the value of 0, the 

correlation parameter in the model that controls the smoothness of Y(-). We can 

elicit an initial value for 6 using ideas put forward in Section 5.7, but we would like 

some way of estimating it, not necessarily using Bayes linear methods. 

We can use cross validation (a non-Bayesian method) to choose a "best" value of 

0, as follows. For all the design points ,T; used so far, we compute an estimate ?/, for 

y(x{), based on the other design points and then compare this estimate with the true 

function value. We define the Cross Validation Mean Square Error AS 

cvMSE(o) = ±j2(y<-y(x>))2 

n i=i 

which is an average measure of this deviation. We then choose the value of 0 that 

minimizes this. 

For example, if we were approximating / i ( ) by function evaluations at —0.5, 0 and 

0.5, we can plot the CVMSE as a function of 0, in Figure 5.14, using our standard 

prior beliefs O~Q = a\ = b = 1, /to = 0, the optimal value of 0 is 0.00283. This will 

quite often be an underestimate of 0, as when there are only a handful of points, 

we can always fit a much smoother curve through them. If we extend the design 

to include two extra points at ±0 .25 , we can re plot the CVMSE curve, due to 

rounding errors - which creep in because the covariance matrix is very ill-conditioned 

for small values of 0 -the function no-longer has a unique minimum, but if we look 

at the bottom curve of Figure 5.15, we can see that the CVMSE is now minimized 

by 0 ~ 0.0145, which is five times greater than the value we got for the three point 
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problem, suggesting the curve we are now fitting is less smooth, as would be expected. 
The problem of numerical rounding errors is even more accentuated when we apply 
this method to some of the optimal designs examined in the previous section, as they 
tend to place points closer together, and so smoother functions can be generally be 
fitted through them, and so the optimal 0 value is often very small. 

5.5 An extension to the model 

We can extend the previous model by assuming that the average of the slope process 

is an unknown quantity B , with a given mean and variance. We therefore modify the 

assumptions we made in the previous section as follows 

PB(B(X)) = B (5.30) 

Cov([B(x)/B],[B(x.)/B)) = <rlp{x-x.) (5.31) 

where this additional variance term is independent of B, and where 

P ( B ) = 6 (5.32) 

Var(B) = <j2

M (5.33) 

These two additional assumptions give us the following second order structure for 

B(-): 

P(B(x)) = P(PB(B(x))) 

= P ( B ) = b (5.34) 

Cov(B(x),B(x.)) = P(B(x)B(x.)) - P(B(x))P(B{xJ) 

= P((B(x) - B){B(xJ - B) + P(B2) - P(B)2 

= a2

bp(x - x.) + a2

M (5.35) 



,5. AN EXTENSION TO THE MODEL 104 

0.035 

0.03 

0.025 

0.02 

0.015 

0.0 

0.005 

0.8 1 

0.000085825 

0.0000858 

0.000085775 

0.00008575 

0.000085725 

0.004 0.0035 0.003 0.0025 

0.000085675 

0.00008565 

Figure 5.14: Plot of CVMSE against 0, with the design {-0 .5 ,0 ,0 .5} 
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Figure 5.15: Plot of CVMSE against 0, with the design {-0.5, -0 .25,0,0.25,0.5} 
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This can be written in the same form as the model in the Section 5.2, i.e. v2p(x 

work has to be done to work out the estimates. 

.T»), with a\ = a2 + o2

M and p(x — a:,) = ^ ' ^ ^ , and so no further algebraic 

We can now plead "ignorance" for the value of the slope parameter B, by letting 

its prior variance a2

M tend to infinity, and obtain posterior estimates for the prevision 

and variance of B, B(-) and V( ). In this limiting case, the posterior estimates for the 

mean and variance for XQ are the same as their prior values - we can learn nothing 

about the position of the zero from the data, due to the infinite variance about B. 

If we take observations Y\,..., Yn at xi,..., xn we can write down the covariance 

matrices. 

V a r ( Y , Y ) 

C o v ( Y ( . r . ) , Y ) 

C o v ( Y ( z . ) , Y ) 

C o v ( 5 ( x . ) , Y ) 

Cov(5(a%),Y) 

C o v ( f l , Y ) 

a2

M(x-tiol)(x - ^ o l f + (b2 + < 4 , K 2 1 1 T + a\C 

v l f f a ~ Po)(x-p0lf + (b2 + cr2

M)a2^ + rfc 

o-2

M{x. - p 0 ) ( x - p o l f + {b2 + a2

M)a2lT + a2

bc 

a 2

M ( x - f i 0 l f + a2

b£ 

(5.36) 

(5.37) 

where c, c, C, d and d are defined exactly as in Section 5.2. 

When we let a2

M tend to infinity, even though the prior covariance structure is 

infinite, the posterior structure is finite and so we are able to compute our posterior 

previsions of Y ( r c . ) , B( .T») and B. We will first introduce additional notation, F = 

( 1 as), / = (1 x . f , / = 0 i . f -

Py(Y(*.)) 
c C - ' F - f cC'xY 

F C~XF 

= f a + cC~\Y - Fa) (5.38) 
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Py(*(*.)) = 

P y ( 3 ) = 

FTC~1F FTC~1Y 

cfC-'F-(0 1) (fC-'Y 

\FrC~xF\ 

a2 + ic~\Y - Fa) 

FTC~l( i Y ) 

{F^C-'Fl 

Cl'2 

(5.39) 

(5.40) 

where a = (F C'1 F)'*F C~*Y is the weighted least squares estimate in the linear 

regression with error covariances given by c(-, •), and their adjusted covariances 

Cov([Y(xt)/Y],[Y(x.)/Y}) 

FTC~\F FTC-Vc - / 

cC-'F - f cC~lc 
- <yhc„ - ab F C~lF 

(5.41) 

= a\ (c(x.,x.) + (cC-'F - f){FTC-lF)-\FTC-lc - f ) - cC~xc) 

cov([5(xo/y],[5(x.)/y]) 

FTC~'F F T C - i d - ( 0 l f 

IC~XF - (0 1) t f c ~ l d 
abp(x, - x\) - ab {F^C-^Fl 

= <*l (p(x* - x.) - dTC~ld+ 

[JC-'F - (0 \)}{FTC-lFYx \FTC~ld - (0 1)T]) 

Cov([B(x.)/Y],[Y(x.)/Y]) 

FTC~1F FTC~1c - f 

dTC~lF- (0 1) dTC-xc 

(5.42) 

= <7t(x« - Ho)p{x, - x\) - a\ 

= a\ ( ( £ . - Li0)p{x* - £ » ) - dTC~1c+ 

{dTC~'F - (0 \ ) ) ( f C - A F ) - x ( f C - x c - / ) ) 

V a r [ £ / Y ] 

(5.43) 
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1 

f*C-iF 

(xTC~ll)2 

iTc-n 

i - i 
= a\ xC~lx- (5.44) 

Cov([B/Y),[Y(x\)/Y)) 

al^C-1! FTC-^c-f)\ 

\F*C-*F 

= (0 l)(FrC~1F)-'l(FrC-1c-f) (5.45) 

We can then use these estimates in a similar way to those found in Section 5.3, by 

using the variance modified criteria, or the "Newtonian" estimation method. We need 

an initial two point design, and we will use {—0.3,0.3}, as this is a near-optimal, two 

point, symmetric design using the grid based design criteria from Section 5.3.8. For 

example, for / i ( - ) , using the variance modified criterion C\, we have the design listed 

in Table 5.11; using C2, we have Table 5.12; and using the "inverse interpolation" 

method, we have Table 5.13. 

Table 5.11: Design generated by criterion C\ for function / j ( - ) with <TQ = a\ = 0 = 1 
and //o = 0, using the extendend model. 

2 
3 
4 
5 

-0.3000 -0.2474 
0.3000 0.4998 
0.2847 0.0423 
0.2062 0.0031 
0.2000 0.0000 

For /2(-)i using C i , we have Table 5.14; using C2, we have Table 5.15; and using 

the "inverse interpolation" method, we have Table 5.16 - this latter is an example of 

multiple "phantom" zeros and so does not converge. 
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F^C~lF 
1 ( i C - 1 ! ) 2 

at xC~lx 
rc-n 

2 

(5.44) 

Cov([B/Y),[Y(x\)/Y}) 

a\ f C ~ x \ FTC~1c- f ) 

F^C-^F 

= (0 l)(FTC-1F)-l{FTC-'c- f ) (5.45) 

We can then use these estimates in a similar way to those found in Section 5.3, by 

using the variance modified criteria, or the "Newtonian" estimation method. We need 

an initial two point design, and we will use {—0.3,0.3}, as this is a near-optimal, two 

point, symmetric design using the grid based design criteria from Section 5.3.S. For 

example, for /i(-)> using the variance modified criterion C\, we have the design listed 

in Table 5.11; using C2, we have Table 5.12; and using the "inverse interpolation" 

method, we have Table 5.13. 

Table 5.11: Design generated by criterion C\ for function / i ( - ) with = a\ = 0 = 1 
and /to = 0, using the extended model. 

2 
3 
4 
5 

-0.3000 -0.2474 
0.3000 0.4998 
0.2847 0.0423 
0.2062 0.0031 
0.2000 0.0000 

For /2(-), using C\, we have Table 5.14; using C 2 , we have Table 5.15; and using 

the "inverse interpolation" method, we have Table 5.16 - this latter is an example of 

multiple "phantom" zeros and so does not converge. 



5.5. AN EXTENSION TO THE MODEL 

i 
1 -0.3000 -0.2474 
2 0.3000 0.4998 
3 0.2850 0.0425 
4 0.2063 0.0032 
5 0.2000 0.0000 

Table 5.12: Design generated by criterion C 2 f ° r function ) with 
and / i 0 = 0, using the extended model. 

i Xi Yi 
1 -0.3000 -0.2474 
2 0.3000 0.4998 
3 0.1992 -0.0004 
4 0.2000 0.0000 

Table 5.13: "Inverse interpolation" design for function fi(-) with a 
and /.to — 0, using the extended model. 

i Yi 
1 -0.3000 0.0193 
2 0.3000 0.0198 
3 -0.3000 0.0193 
4 -0.3375 0.0187 
5 -0.4989 0.0004 
6 -0.5002 -0.0001 
7 -0.1604 0.0198 
8 -0.5000 0.0000 

Table 5.14: Design generated by criterion C\ for function / 2 ( - ) with 
and no — 0, using the extended model. 
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i xi Y{ 

1 -0.3000 0.0193 
2 0.3000 0.0198 
3 -0.3001 0.0193 
4 -0.3424 0.0186 
5 -0.5026 -0.0008 
6 -0.4996 0.0001 
7 -0.5000 0.0000 

Table 5.15: Design generated by criterion C 2 for function / 2 ( - ) with (7Q = a\ — 0 — 1 
and /.IQ = 0, using the extended model. 

i Xi Y, 
1 -0.3000 0.0193 
2 0.3000 0.0198 
3 -3.0000 -360287 
4 -0.3000 0.0193 
5 -0.2993 0.0193 
6 -0.2989 0.0193 
7 -0.3122 0.0191 
8 -0.3198 0.0190 
9 -0.3401 0.0186 
10 -0.3505 0.0183 
11 -0.3827 0.0171 
12 -0.4244 0.0141 
13 -0.2655 0.0196 
14 -0.2104 0.0197 
15 -0.4487 0.0112 

Table 5.16: "Inverse interpolation" design for function / 2 ( - ) with o\ — o\ = 0 = 1 
and jiQ = 0, using the extended model. 
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5.6 Other models 

1 1 1 

So far we have just considered one basic correlation function p(x — x,) = e - e ( x - x * ) 2

} 

but we could use the other correlation functions from Chapter 2 to repeat the com

putations for either model. The approximations to the function are still continuous 

and differentiable everywhere except at the design points. To try and compare these 

different models, it would be useful to match "like with like" - the 6 parameter in 

each class of models is different. In pi(-) and P2{-), the smaller the value of 0 the 

higher the correlation between observations, but in the other two the opposite is true. 

One such way of comparing these parameters is to look at the "average" correlation 

between any two slopes (as this is zero) we will look at the correlation integrated 

over all separations. We see for P2{-) this integral is /6); for pi(-), 2/0; for pi+(-), 

0; and for pc+(-), | 0 . For the 0 parameters we examined in Section 5.2 we have the 

equivalences tabulated in Table 5.17. We can use these equivalences to examine the 

0 in p2{-) 0 in /»,(•) 0 in />/+(•) 0 in />«.+ (•) 
0.1 0.36 5.60 7.47 
1.0 1.13 1.77 2.36 

10.0 3.57 0.56 0.75 

Table 5.17: Table of equivalent 0s for alternative "slope" correlation functions 

correlation and covariance surfaces for these in a similar way to those for the case 

of p2{-)i see Figures 5.16 to 5.24, and traces of functions that fit the model, see Fig

ures 5.25 to 5.27 for various values of 0. We see that the use of different correlation 

structures do not make much difference to the correlation structure, especially the 

difference between p2{-) and pc+{-)- It appears that the question of which correlation 

function should be used, might only be of importance in the computational side of 

the matrix inversion - pc+(-) and pi+{-) have advantages here as the elements of C 

for different .TS sufficiently far apart are 0 and not very small. We can also compare 

designs and predictors produced for the different covariance structures but, as you 

can guess from the similarities in the correlation functions, these are little different 
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f r o m the designs produced in the case of p2(-) 
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b=0.1,theu=0.36 b=0.1,thela=1.13 b=0.1,theu=3.57 

- 2 - 1 0 1 2 - 2 - 1 0 1 2 - 2 - 1 0 1 2 

b=l,theU=0.36 b=l,lheu=1.13 

0 

b=10.ihen=1.13 b=10.lheu=O.36 

b=l,lheu=3.57 

b=10,lhett=3.57 

Figure 5.16: Correlation between Y(x) and Y(x*), using p\(d) as the slope correlation 

Other models as in equation 5.4 have been investigated, but have not been found 

to be satisfactory, w i th the correlation matrices either being singular, or having to 

make additional assumptions about the parameters. A n example of one such model 

assumes that the G(-) process is stationary, w i t h covariance a2p2{-). I f we wri te 
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b=0.1,theu=0.36 b=0.1,theU=1.13 b=0.1 ,theta=3.57 

i 1 
I (1.75 

0 .5 0 5 (1.5 
( i . \5 11.25 ! I >. 5 

(i l) 
(I D 

1 1 1 
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b=l,theu=0.36 b=I,thcu=1.13 b=l,theta=3.57 

O.J O.i [>.<; 
».<• 0 . 6 1.6 
0 .4 0 .4 0 4 1 02 o :> o ;> 

! 
1 O 0 

b=10,theu=0.36 b=10,lheu=1.13 b=10,lheta=3.57 

1 

I o . l . 
0 .4 1 0 . 9 1 . 0 * 

0 o 
1 I 

( 0 o D 
1 1 

Figure 5.17: Correlation between Y(x) and Y(x*), using p\{d) as the slope correlation 
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b=l,lheta=0.36 b=l,lheta=1.13 b=l,lheta=3.57 

b=l,<heta=0.36 b=l,thela=1.13 b=l,lheu=3.57 

Figure 5.18: Covariance between Y(x) and Y(x*), using p\(d) as the slope correlation 

(? = ^ 2 we have, 

P(Y(x)) = P(G(x)) - ?(G(X0)) = 0 (5.46) 

CovXo(Y(x),Y(x,)) = CovXo(G(x),G(x.))-CoVXo(G(x),G(Xo)) 

-CovA- 0(G(a-,),G ,(Xo)) + Var^ 0(G(Xo)) 

= a2

g(l + e - ^ { x - x ' ) 2 - e - ^ ( x - X o ) 2 + e - ^ ^ - X o ) 2 ) (5.47) 

From a purely linear Bayes viewpoint we can do no more, but if we assume addi

tionally, that A'o is distributed normally with mean fio and variance (Jq, we can take 

expectations giving us 

Cov(F(x) ,F(x»)) = P(CovXo(Y(x),Y(x.))) 
t»—Ho)' (*»=Mfl) 3 \ 

(5.48) 
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b=0.1,theta=0.56 b=0.1,lheta=1.77 b=0.1,theU=5.60 

1 1 

1 I 

I) ; : • 

b=l,thela=0.56 b=l,iheta=1.77 b=l,lheu=S.fiO 

1 

0 

1 

1 1 [1 0 1 

b=10,thela=0.56 b=10,theta=1.77 b=10,theta=5.fiO 

1 1 

0 i l 0 

: i 

0 (I 

Figure 5.19: Correlation between Y(x) and Y(x*), using pi+(d) as the slope correlation 
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b=O.l,thett=5.60 b=0.1,ihetasl.77 b=0.1,theta=0.56 

1 1 0.75 11.75 
o ;s D.5 n 5 

0.25 : 0.25 1 0.2 5 (I 

2 
i i 

0 0 
1 1 

1 II 
1 1 

b=l,theu=5.60 b=l,thcu=1.77 b=l,lheui=0.56 

1 ; 
OX 0.75 
0.6 n.6 |i 5 
II..; n.4 1 0.25 
0 2 0.2 

o • : 
II 

i 

b=10,thela=5.60 b=10,thela=1.77 b=10,theta=0.56 

O.'W 0<w O " 5 
o.w 0 5 0<)7 02)7 1 I) 25 0.06 10* 

II 0 

II 0 I) 

1 1 1 

Figure 5.20: Correlation between Y(x) and Y(x*), using as the slope correlation 
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b=l,theta=5.60 b=10,theta=l.T7 b=l,theta=0.S6 

- 2 - 1 0 1 

b=l,theu=5.60 b=l,lheu=1.77 b=l,theta=0.56 

Figure 5.21: Covariance between Y(x) and Y(x*), using pi+(d) as the slope correlation 

which can be used in a similar way to the correlation structures we obtained earlier, 

and using either one of the variance modified criteria, or the "Newtonian" estimates 

for Xq, as again we have no linear estimate of A'o available. 

5.7 Eliciting prior beliefs 

One of the hardest parts of belief analysis is the elicitation of prior beliefs, although in 

the Bayes Linear context this is usually much easier than for a ful l Bayes specification. 

In the problem we are considering we need to elicit information about the zero and 

the slope process. The first order previsions are not too difficult to elicit, but the 

second order structure can be. This is the reason for explicitly removing any initial 

dependence between B(x) and Xo, as variances are generally easier for people to 

estimate than covariances or correlations. 

One way of obtaining the variance parameters is to ask the scientist to lay down 
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Contour plot of correlation 

b=0.1,theta=0.75 b=0.1,thela=2.36 0=0.1,01012=7.47 

1 

0 0 

1 

1 1 

b=l,theui=0.75 b=l,lheta=2.36 b=l,lheui=7.47 

i : 1 

I 0 

b=10,theta=0.75 b=10,theu=2.36 b=10,Uwta=7.47 

1 1 

0 0 

: 

l l i 

Figure 5.22: Correlation between Y(x) and Y(x*), using pc+(d) as the slope correla 
tion 
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b=0.1,thela=7.47 b=0.1,lhela=2.36 b=0.1,theta=0.75 
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1 : 1 

0.8 0.8 
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b=10,thet»=7.47 b=10,lheu=2.36 b=10,!heu=0.75 
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0 o I 

Figure 5.23: Correlation between Y(x) and Y(x*), using pc+(d) as the slope correla
t i o n 
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b=l,theu=747 b=l,theu=2.36 b=l,theu=0.75 

o 

1 

- 2 - 1 0 1 2 - 2 - 1 0 1 2 - 2 - 1 0 1 2 

b=l,theu=7.47 b=l,lheu=2.36 b=l,lheu=0.75 

1 

1 : 
: (I 

1 ! 

Figure 5.24: Covariance between Y(x) and Y(x*), using pc+(d) as the slope correlation 

intervals around the mean in which he expects the parameter to line in with a given 

percentage. For example if he specifies intervals of 70% or 95%, these give ideas of 

one or two standard deviations from the mean. 

Finally we have to choose an initial value for the smoothness parameter 9. Three 

possible ways of doing this are 

We can use the results of Section 5.9, in which we see that Var(5'(x)) = 20Var(i?(x)), 

and Var(y '(x)) = a\ + 20(Var(F(.r)) — b2al). So 6 measures the amount of variability 

in the first derivative relative to the function itself. 

The second is linked to the first, the variability of the first derivative is related to 

the second derivative, as the variability of the function is related to the first derivative. 

Therefore 6 is a measure of the magnitude of the second derivative to the first, if the 

magnitude of the second derivative is large in comparison to that of the first then 0 

is large, and if the magnitude of it is small, then 0 is small. 

The third method looks at the relationship between two slopes at different values 
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1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 
b=0.1,theta=3.57 b=0.1,theta=1.13 b=0.1,lheta=0.36 
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1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 1.0 1.5 1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 1.5 1.0 -0.5 0.0 0.5 
b=l,iheta=3.57 b=l,ihcia=1.13 b=l,lheu=0.36 
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1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 
b=10,theta=3.57 b=10, theta=1.13 b=10, theta=0.36 

Figure 5.25: Traces of Y(x), using pi(d) as the slope correlation 
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Figure 5.26: Traces of Y(x), using pi+(d) as the slope correlation 
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Figure 5.27: Traces of Y(x), using pc+(d) as the slope correlation 
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of x. Here we can do this by asking the scientist to sketch regions on a graph where he 

thinks that two values of B for different xs will be, as in Figure 5.28, and then working 

out the correlation from the diagram. Assuming the variance of £?(•) is constant, i t 

can easily be shown that p(x — x*) is given by j j ^ , so that0 = l o g(^+^~ 1 °g( t / ~ v ) # 

B(x*) 

/ \ 90% RrobabilityjRegion 

U - ~ x / 
50% Probability Region / 

/ / \ 
/ / > 

Y / / B(x) 

f I / K/ / 
1 \ / 

tSmmmSi \ / 
/ \ / . 

Figure 5.28: Estimating correlation from "probability regions" : = 

5.8 A model with random error 

So far we have been considering the interpolation problem, where the approximation 

function fits the observed data exactly at the design points. If however we assume 

the function is no longer deterministic we can add an extra "error" term. 
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Y(x,) = B(xi)(x, - X0) + Ei (5.49) 

This is easy to implement in a Linear Bayes framework. All we need to do is 

alter the second-order structure. We can however use this approach even when the 

simulation is truly deterministic. We assume we evaluate the function with a small 

error (with variance a\) - which in general will be the case, for example if we use a 

differential equation solver there will always be some numerical error. This now gives 

us a non-interpolatory approximation, which numerical analysts know as smoothing. 

This has one major advantage over the exact methods in the previous section, the 

variance matrix R is replaced by R + a]I. This reduces the condition number of the 

variance matrix, making it easier to invert, and making the approximant more stable 

when there is a large number of observations. 

The model in equation (5.49) can be extended further to have non-independent 

errors, for example, we might assume the error process is stationary, with a simi

lar correlation structure to that of the 5(-)'s, but with a much larger smoothness 

parameter r? >̂ 0, i.e. 

C O V ( £ ( . T ) , E(x.)) = a2

£e-^x~x')2 (5.50) 

We can consider this new term as a systematic departure of the computer model 

from the "real-world" phenomena it is modelling as in Blight and Ott[1975], see 

Section 2.6. This is also similar to Schagen's approach of long and short range trends 

also reviewed in Chapter 2. 

5.9 Including the derivative 

We may have other information about the function as well as its actual value. For 

example, if the problem we are solving involves differential equations we may also 

obtain information about the derivative of the function at the design points. We 
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would like to include this additional information into our methods. 

Assuming we keep the same model as before, we can get this information, by taking 

derivatives of the correlation function, because as both prevision and differentiation 

are bounded linear operators we can interchange them. So we have 

Y'(x) 

P(B'(x)) 

P(Y'(x)) 

Cov{B'(x),B{x')) 

Cov(B'(x),B'{x*)) 

C O V ( F ( . T ) , £ ' ( * * ) ) 

Cov(r(x),A' 0) 

Cov{Y'{x),B{x*)) 

Cov(Y'(x),B'(x')) 

Cov(Y'(x),Y{x')) 

Cov(Y'(x),Y'(x*)) 

B(x) + (x - X0)B'{x) 

0 

b 

-20(x - x*)a2

be-0^-x'^ 

-20(20(x - x')2 - l)a2

be-e{x-x')2 

20{x - no)(x - x*)e-d{x-x')2 

0 

(\-20(x-p0)(x-x*))e-elx-x^ 

20{(x - x') - (x - M o ) ( l - 26{x - x*)2)]a2

be-e(x-x')2 

[(x* - / t 0 ) - 20(x - x'){al + (x - fi0)(x* - ^))}o-2t-°(x-x'? 

(1 - 20(x - x* ) 2 ) [ l + 20{o2

Q + (x - p0)(x* - / < o ) ) K 2

e - ^ - * * ) 2 

We note that in these equations 0 appears outside the exponential term, and so, 

as we mentioned in Section5.7, we can use this to estimate 0. 

If the we take function (Y],... ,Yn) and derivative ( Y / , . . . , Y£) evaluations at 

Xi,... ,xn and defining 

Cyy Cyyi 

Cy'y Cyiyi 

It should be noted that we do not necessarily have to have pairs of function and 

derivative evaluations, but can use function evaluations and derivatives for different 

values of x. 
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We can get adjusted previsions and covariances for random quantities that are 
correlated to the function or its derivative. In general if we were to adjust G by 
Y\,..., Yn and V / , . . . , F^, where our prior beliefs are 

P(G) = go 

Var(G') = a] 

Cov(G,y) = c 

Cov(G,y') = / 

we get 

? Y Y , { g ) = g0 + cC~l{Y - bx + bfi0l) + (c' - CyyCylcf (5.51) 

{Cy.y. ~ Cy.yC-YCyy>)-\Y' - bl - Cy.yCyY(Y ~ bx + bfi0l)) 

V a r ( [ f l / y y ' ] ) = o]-cC-\,c- (5.52) 

(c' — Cy'yCyyC) (Cy'yl — CyiyCyyCyy') 1 (c' — Cy'yCyyC) 

So we can use this extra information to gain knowledge about the function and its 

zero. It can be seen that this extra information is in the form of an adjustment to 

the adjustments made by the function evaluations only. 

If we use our simple example fi(-), with our standard beliefs <TQ = a\ = b — 

9 — 1 and fio = 0, to test this predictor, and for a design criteria choose our next 

point to be the location of the zero of the interpolant, we find the zero in just three 

function/derivative evaluation pairs x\ — 0, £2 = 0.190236 and £3 = 0.200000. We 

can easily see the extra information we receive from the data by comparing the graphs 

of the error bounds, which are at least two orders of magnitude smaller near the design 

points than in the case of function evaluations only. See Figures 5.29 and 5.30. 
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Figure 5.29: Plots of fi(-), and its approximants, given one observation at 0, with 
model parameters 0 = b = = — 1 and p = 0 
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Figure 5.30: Plots of / ,(•) , and its approximants, given two observation at 0 and 
0.190236, with model parameters 0 = b = a% = a% = l and fi = 0 
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5.10 The multi-variate response problem 
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We now consider the case when each observation Y(x) is a m-vector of responses, 

we can still use a variant of the approach we used when it was univariate. Here we 

modify the model as follows, 

Y{x) = B(x)(x - X0) (5.53) 

We can now write down our beliefs about the B(-)s. For any particular .£?,(•) we 

have similar beliefs to those in the univariate model, i.e. 

P(B,(x)) = bi (5.54) 

Cov(B,(x),B,{x.)) = ajp(x-xm) (5.55) 

We also model our beliefs between two parts of the response for a given x, 

Cov(Bi(x), Bj{x)) = OiCji-ij (5.56) 

Finally the correlation between two parts of two separate responses is the product of 

these, i.e. 

Cov(5,(.r), Bj{x,)) = aiajrijp(x - x.) (5.57) 

In many applications, the vector of responses Y(-) can be thought of as a finite 

collection of observations from a continuous time series Y = ( V ( i 1 ) , . . . , Y(tm)). 

Therefore, the equations can be re-written as 

P(B(x,t)) = b(i) (5.58) 

Cov(B(x,t),B(x„t)) = <r{t)2p(x - x.) (5.59) 

Cov(B{x,t),B{x,t„)) = a(t)a(U)r{t - U) (5.60) 

Cov(B(x,t),B(x.,U)) = a{t)a(t,)r(t - t.)p(x - x.) (5.61) 
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We now derive our implied beliefs about Y(-) from our beliefs about XQ and B(-) 

as we did for the univariate response. This gives us: 

(in the case when we are considering discrete observations) 

P(Yi(x.)) = b,(x-ft0) (5.62) 

Cov(X0,Y(x)) = -a2

0k (5.63) 

Cov(Bi(x),Yj(x.)) = ai(Tjrijp(x - rc . )(x, - p0) (5.64) 

Cov(y;(x), V ^ ( . T , ) ) = a i a j r i j p ( x - .r,)(<To + (x - /<0)(.T» - /x0)) + <To^^(5.65) 

(in the case when we are considering observations from a continuous time series.) 

P(Y(x,t)) = b ( t ) ( x - t i 0 ) (5.66) 

Cov(X0,Y(x,t)) = -a2

0b(t) (5.67) 

Cov(B(x,t),Y(x.,Q) = <r(i)<T(U)r(t-L)p(x-x.)(x.-no) (5.68) 

Cov(F(x, t), <*)) = a(t)a(U)r(t - U)p{x - x.)(al + (x - / i 0 ) ( z * - Ho)) 

+a2

0b(t)b(Q (5.69) 

It should be noted that all these equations consist of terms of the form / ( . T , . T * ) X 

g(t,tm) or /(a; , .T») x gij, and so the matrix equations have a Kronecker product form. 

This seems natural, as we are using a grid and there is an "independency" between 

the x and the t; and desireable, as Kronecker product matrices have nice properties 

which we would like to be able to use. 

If we observe Yi,..., Y n at x\,... , xn, then we can derive posterior estimates for 

quantities of interest similar to those in the univariate case. First we will need to 
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define some additional notation. 

132 

Bi = (Bl(xi),...,Bm(xi)) 

= (B(xi,tl),...,B(xi,tm)) 

b = ( 6 i , . . . , 6 m ) T 

= (6( t , ) , . . . ,6(< m ) ) 

in the discrete case 

in the continuous case 

in the discrete case 

in the continuous case (5.70) 

T T 

in the discrete case 

in the continuous case 

So £ = Var(B : ) . Our Bayes linear estimates for XQ, B(-) and Y(-) are 

p = ^ - g g ( l T C - ' 0 6 ^ ) y + g g l T C - ^ 6 V - 6 
Y K ' i+aSiTc-nbTz-ib v ; 

P y ( f l ( i t ) ) = ( l - d T C - 1 [ a 5 - P y ( X 0 ) l ] ) 6 + ( < f C - 1 <g>/)Y (5.72) 

P y ( y ( x . ) ) = ( ^ C - 1 ® / ) y + ( [ . r . - P y ( X 0 ) ] - c T C - 1 [ * - P y ( ^ o ) l ] ) 6 (5.73) 

where all notation is the same as in Section 5.2. The adjusted variances and 

covariances are 

Cov([B(xm)/Y\[B(xm)/Y]) = /> (a ; . - ^ )E -d T C- 1 dE + 

dTC ~111TC ~1 dVar[X0/Y]bbr (5.75) 

Cov([J3(x.)/y], [Y(x.)/Y]) = ( . i . - / i o M - T . - i ^ E - t f C- 1 cS + 

/ C ^ l ^ C " ^ - l )Var [A ' 0 / y ]66 T (5.76) 

Cov([Y(x.)/Y\[Y(x.)/Y]) = c( .T», . f . )p(a ; . -a ; . )S-c T C- 1 cE + 

( c T C _ 1 l - l ) ( l T C _ 1 c - l)Var[X 0 /y]66 T (5.77) 

In the continuous case we can also predict the outcome for any t as we have the 

correlation between Y(t) and Y(t*) for all t and tm. 

Var [A ' 0 / y ] o 
l+a&rc-nbz-ib 

(5.74) 
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These results are analogous to the univariate case, and can be used in a similar 

way. We note that the adjusted covariances above are all linear combinations of II 

and Var[A' 0 /y]66 T 

5.11 The full problem 

The model can be extended further to consider the case when x is also multivariate 

(a q x 1 vector). We build our model in a similar way to before. We again modify the 

model of the response Y(-) to allow for this, and we think of i t as a sum of processes 

in each direction. We will consider only the case of discrete observations from a time 

series as the notation is easier to follow 

Y{x,t) = irBt(x,t)(Xi - X0l) (5.78) 
t=i 

where /?<(•,•) the slope process in the direction of x,. We assume that these £?,(•, •) 

processes are independent, and that each one has a similar structure to those in the 

previous section, i.e. 

P(J3f (*,*)) = bi(t) (5.79) 

Cov(jB,-(aj, t), Bj{x., U)) = Sijaii^a^Qpiix - SB»)r,-(t - Q (5.80) 

We complete the model by assuming that X0 has prevision /z0 and variance Eo- We 

can again calculate our implied beliefs about the response. 

P(Y(x,t)) = £ b , ( t ) ( x t - fxo.) (5.81) 
i=l 

Cov(Y(x,t),Y(x\f)) = b(t?X0b(r) + 

(Ti{t)vi(U)Pi{x - x*)ri(t - f ) [ ( x i - /<o , )« - Mo.) + Soii] (5.82) 
1=1 

Given that our design is {xi,..., xn) ® {ti,... ,tm}, and we have observation 
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{Yi,...,Yn}, where Y { = (Y(xit . . . , Y(x„ t m ) f , we have 
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P(Yi) = B(xi-nQ) (5.83) 

Cov(Yi,Yj) = BE0B+^Ekpk(xi-Xj)[(xik-ftok)(xjk-pok) + '2okk] (5.84) 
k=i 

where 

6,- = (bt(il),...,b,(tm)f 

Sfc = {<Tk{t)ak(U)rk{U - tj))i<i,j<m 

B = (&!,...,&,) 

Put t ing* = (x1,...,xn) ,Y = ( Y ' 1 , . . . , y n ) andCt = (pk(xi-Xj)[(xik-fiQk)(xjk-

Hok) + EofcJt])i<i,j<n we have, 

P ( y ) = ( 5 ® / ) ( x - / i o ® l ) (5.85) 

Var (y ) = (B® l ) ( E 0 ® / ) ( B ® l ) T + ^ E f c ® ^ ( 5 - 8 6 ) 

I t should be noted that the nice algebraic results of the previous section where 

the covariance matrices factor into Kronecker products no longer hold. Therefore 

no nice algebraic results can be obtained - unless we assume that either the Hk or 

Ck are the same for all k - we have to work with the matrix as a whole unit, and 

cannot factorise it into x and t parts. The numerical problems associated with this 

grow in size as the matrix gets larger, i.e, as the dimension Y(-) and the number of 

observations increases, this leads us onto the next section. 

5.12 Computational difficulties 

As has been repeatedly mentioned, the covariance matrices that arise in these prob

lems are often ill-conditioned; i.e., if we try to solve Ax = y, the maximum error in x 

is very large in comparison to the error in y. This can lead to unstable solutions, in 
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fact quite often the error can be many orders of magnitude larger, than their values. 

These are most apparent when computed variances are very large and negative! 

It was noted in Section 5.8 that if we add a random error term to the problem, 

then the condition number decreases. We can use this device (adding a very small 

error term to reduce the condition number) even when we are not considering models 

with random error; compare this with ridge regression in normal error analyses. We 

do not need to restrict ourselves to independent errors, but can use very short range 

correlated errors, as in Schagen[ 1980a]. In many cases the actual computer model 

does not match the actual physical world precisely, so we can consider this additional 

error term as a systematic departure of the computer model (either in the stage of 

modelling nature or implementing it on the computer) from nature, as in Blight and 

Ott[1975]. 

5.13 The full Bayes model 

For completeness we include a full Bayes model for the simplest case, when Y(-) is a 

univariate function of a single variable x. 

We extend our second order beliefs to ful l prior distribution assumptions by adding 

that B(-) has a multivariate normal distribution, and A'o has a normal distribution, 

and we now assume that B(x) and A'o are independent, not just uncorrelated. 

Then 

*xo(*o) = - ^ e - ^ 0 ^ 2 (5.87) 

1 - -^(6- t i ) T H-' (6-6 i ) 
nB(b) = e 2<T> 5.88) 

/ ( y | M o ) = f [ 6 ( y , - b t ( x t - x 0 ) ) (5.89) 
i=l 

where Rij = p{\x{ — xj\) and 8(-) is the Dirac-delta function. We can combine (5.88) 
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and (5.89) together to obtain the likelihood of y given xo, 

l(y\x0) = • ^ (5.90) 

where z; = —^—. 
* Xi-xo 

We now calculate our posterior distributions XQ given n and n + 1 observations, 

the n + IST being at a,-*, 

- -^( .x-o - HO? - ^-2(z - b\)TR-\z - bl) 
irn(xo\y) oc e 2ao 2a6 ( 5 9 1 ) 

1 (z* - b - r*TR~\z - bl))2 

nn+Axo\y.y(x')) oc 7r n (.r 0 | i /)e 2°l I - r ' ^ r * ( 5 . 9 2 ) 

where 2* = x

y j ^J , and 7 '" = /J(|.T, — Thus, to update the relative posterior density 

at any point is relatively easily, needing only to solve one set of linear equations for 

each .r*, Rs* = r*. When we add a new design point x" to the grid, we note that the 

inverse of the new cova.ria.nce matrix R"~l can also be easily updated using s", 

, R~l + ks's*T -ks' 
R = I 

-ks* k 

where k = (1 — s ^ r * ) - 1 . 

We can also compute the predictive distribution for Y(x*) given the previous 

observations. 

1 {z* - b - r*TR~\z - bl))2 

p(y(x*)\x0,y) = , 2a» l-r*R-'r' 
yj{2ira2){\ - r*TR-lr*) 

then integrating this with respect to nn{xo\y) gives us 

p(y{x*)\y) 

http://cova.ria.nce
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dx, 2a\ 
1 

(x0-n0Y-±-2(z-b\)T R7\z-b\)-
b 

1 {z'-b-r*TR-\z-bl)f 
2a\ l-r*TR-ir* 

—oo 

(XQ-HO)2 
1 

( z - 6 l ) T i T 1 ( z - 6 l ) 
*) / dx0 J(2nal)(l-r*TR-^ 2a 2a 

-oo 
(5.93) 

These posterior distributions are not analytically integrable, even if p(-,-) has a 

"nice" form, and so have to be done computationally. The posterior distribution for 

A'o is multi-modal, with zeros at the design points, often climbing very steeply (if 

one of the design points has just missed a zero), so the numerical integration requires 

many ordinates in these regions to obtain accurate predictions. Even the now popular 

Gibbs sampler can not be used in this example without modification, as it can not 

cope with distributions where there are zeros (especially in this example as the zero 

regions can be very wide and flat), as it can get trapped in one of the spikes with no 

chance of escape. 

To avoid the problems of integration we can use the mode of the posterior distri

bution of .To as our new estimate. We will use this method with our first example 

/ i ( - ) , with the model parameters /io = 0 and a% = a\ = b = 9 = 1, at each stage 

adding the mode of the distribution, see figure 5.31. The design points used were 

0.000000, 0.098876, 0.206302, 0.200128 and 0.200000 (The last one is the zero we are 

looking for). Once we have taken four function evaluations the posterior distribution 

of .To around 0.2 becomes very spiked (as you can see the plotting program failed to 

find it after three points), with the spike width being less then 1 0 - 6 . This means we 

have to be very careful when we are searching for the mode that we have not missed 

out the spike. If we can work out the posterior distribution exactly (up to a scale 

factor) this should not pose any problem, as the posterior is unimodal between design 

points, and we can use the "Golden-ratio" search algorithm. However, if we have even 

a very small numerical error in the posterior calculations then this fluctuation will 

cause the above methods to fail. 
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Figure 5.31: (Un-normalised) posterior probability densities of A'o, after each point 
has been added, (after 3 and 4 points the spike near the zero is included separately, 
as is too sharp for the graph plotter to find) 
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This method is nearly impossible to peform, even for small designs, as the com

putational problems far out-weigh any advantages that might be achieved by this 

method. 

5.14 Conclusion 

In this chapter we have developed various models and associated criteria for locating 

the zero of a deterministic function. We have found three methods which appear 

to work well, the "Inverse Interpolation" method, the variance modified methods, 

and the "Newtonian" estimates. Although the first two converge the quickest in 

most examples they do have a more complicated design criteria to choose the next 

point (either the solution of a non-linear equation or the optimization of a function), 

whereas the "Newtonian" method is simpler. These two different types of criteria can 

therefore be used for different jobs: the first for more expensive functions - where the 

added work in choosing would not be two costly; and the second for relatively cheap 

functions - where the added costs out-weigh the benefits. 



Chapter 6 

Conclusions and Further Avenues 

of Research 

We have seen throughout this document how we can use statistical methods to de

velop numerical procedures to solve deterministic problems. In Chapter 2 we saw 

that sometimes this has produced tried and tested numerical procedures, for exam

ple linear interpolation and the "Mid-point rule" from the Brownian motion prior 

in Section 2.2.2, although new designs for different criteria were produced. How

ever, in general they produce completely new methods. One such example is de

rived from the use of stationary stochastic processes to model the function (see 

Sacks et a/[1989a, 1989b], Scha.gen[1979, 1980a, 1980b, 1984], 0'Hagan[1978, 1990] 

and Currin et a/[1991]). In light of this in Chapter 4, we used the Bayes linear meth

ods of Goldstein[19Sl, 1986, 1987, 1988b, 1991] (reviewed in Chapter 3) to arrive 

at a criterion for producing designs for this model which, with some simple algebra, 

greatly simplified the calculations required to find optimal designs, especially in higher 

dimensions when a lattice design region and a factorisable correlation structure was 

chosen. 

In relation to our problem, we have tried to develop new (Bayesian) methods 

to find the zero of a deterministic function, mainly trying to use the Bayes linear 

methodology. Due to computational difficulties we have only be able to fully explore 
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these methods in the case of a single valued function of a single variable, which is a 
much simpler problem than the ful l problem. We developed a statistical model of the 
function which explicitly includes our beliefs about the location of the zero. We then 
used this statistical model to make predictions about aspects of the real function. To 
locate the zero, we developed different search strategies, using various estimators of 
the zero of the function: the Bayes linear estimate Py(A'o); the zero of the predictor; 
the minimum of the squared expectation of the predictor; a "Newtonian" estimator, 
based on our revised beliefs about the slope of the function; and the mode of the 
posterior distribution in a ful l Bayes analysis. Of these by far and away the poorest 
was the naive linear estimator, the rest performing much better. The "Newtonian" 
estimates were just behind the others in convergence speed (in number of observa
tions), but we had an explicit equation for the location of the zero. So we need to 
consider the ease of obtaining the next point in the design, with the "Newtonian" we 
required no optimization or zero finding, whereas with the others much time had to 
be spent finding the maxima or the zero. This problem is amplified when we increase 
the number of dimensions and design points . In the first case we can no longer rely on 
the criterion being unimodal in certain intervals - this is an important assumption as 
often the peaks can be quite narrow and can be missed by more general search algo
rithms. In the second case rounding error makes the computed criterion multimodal 
even when it is truely unimodal. 

In light of these conclusions we see ther are still many loose ends which we would 

like to tie up. Some of the most important of these are: 

The full problem At present the methods for the full problem are only in their infancy, 

and need to be developed further when a suitable test problem appears. The 

search for alternative models is ongoing, and as the functions we are considering 

are very expensive, it might prove cheaper to develop individual models based 

on the "scientists" actual beliefs. 

Varying the covariance structure We need to examine further the differences and sim

ilarities between different covariance structures and the subsequent designs -
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this question can only really be answered again when we have real problems to 
work on. 

The choice of 0 The choice of 8 is an important question, we have noted some ways 

of eliciting prior beliefs about i t , and estimating it using CVMSE estimation 

- but this method does not work satisfactorily for the small number of data 

points we are considering, and we would like some way of indicating that the 

prior beliefs are mis-specified. 

Diagnostics In the simple case we can often see just by looking at graphs of the pre

dictor that certain of our beliefs have been mis-specified, but when we consider 

the ful l problem with multi-dimensional input and output, we cannot easily 

observe these mis-specifications, and we need some diagnostic tools to help. 



Appendix A 

Additional Linear Bayes Results 

and Examples 

This appendix completes the notes on the Bayes linear methods of Chapter 3. 

A . l Trajectories 

The bearing Y* produces an overall summary for the updating. This adjustment 

often comes from various aspects of the data, so it would be useful to break down the 

bearing into a series of smaller components, to see how these aspects give information. 

For example how the individual items of information complement or contradict each 

other. 

Let us suppose the data we have contains two separate pieces of information, which 

we will label these J and K. If we revise our beliefs after observing both J and K, we 

can obtain the bearing (which we shall label V J + A ). We could also write this revision 

as occurring in two stages, observing J first and then observing K. After the first 

stage we have bearing V j , and after the second stage we have bearing YJ+K, which 

is equal to Yj plus the change in bearing obtained by observing K after observing J, 
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which we write as Y[K/J}- If we look at the lengths of these bearings we have 
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LJ+K = LJ + L[K/J] + 2(50, I f r / j]) 

So in adding the extra evidence K, L[KIJ\ expresses the size of the extra adjustment 

in belief having already observed J, and (YJ,Y[K/J\) shows the degree of conflict or 

support between the two pieces of evidence. If the latter term is large and positive, 

the two pieces of data are complementary, but if it is large but negative then they 

are contradictory. 

This notion can be extended to subdividing the data into m sections so we obtain 

a sequence of m belief revisions. (Alternatively we could consider updating our beliefs 

at m time points, for example this can be compared to the way horse-racing odds 

change up to the time of the race.) We therefore have a sequence of sets of previsions 

P(')> P[i](*)> • • • i P[m](-)) where P*(-) = P[ m ]( - )- Then for each P[,](-) we can construct 

the bearing Y[i], and for each pair i , j we can compute the change in bearing between 

stage i and stage j. 

D e f n . A . l We call the difference Yy/i] = Yy] — Yj,-] the bearing for P[jj adjusted for 

P[.l-

We then obtain the following results. 

Corol lary A . l For every X in Cc, and for each i < j, 

P U ] ( X ) - P l i ] ( X ) = (X,Yu/,]) 

Corol lary A.2 For every X in Cc, and for each i < j, \Py](X) — P[,](A')|/^/Var(A') 

has the maximum value of\\Yy/i]\\. 

Of particular interest to us is the set of one step revisions Y[,y,_i] which we shall 

write in short hand as Y[,/]. Then 

D e f n . A.2 A sequence of adjusted bearings Vji], Y [ 2 / ] i • • • , ^[m/] * s a trajectory over C. 
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We have noticed that the length (which is the root of its variance) of each bearing 

is linked to the magnitude of change of belief, and the inner product (or covariance) 

of two bearings is a measure of the conflict/support between them we can define the 

following quantities to summarise the trajectory; let V[i] = ||V(i]|| 2, V[i/} = | |Vj , / ] | | 2 , 

and C[i] = (Yj,_i], Yj,/]), then for each j 

Y b ) = Jin + y[2/i + • + % i 

so 

V[j] = V [ l ] + V[2/} + • + V[JI\ + 2(C[2] + • + C[j\) 

So to examine how the individual effects of each stage of the revision, we must 

look at (a) the individual adjusted bearings V^yj (those with large lengths, identify 

stages where there is a large revision) and (b) the way the raw bearing (not adjusted) 

for the (i — l ) s t stage interacts with the adjusted bearing for the z t h stage (this is 

summarised by the magnitude of C[z]). A useful summary of the trajectory is given 

by the pairs ( V [ i / ] , C[i]). Therefore we make the following definition 

D e f n . A.3 Putting Cr[i] = Corr(Y[,y], Vj,-—1 ]) = j j ^ j ^ p ^ ' ^ ' w e define the route of 

the trajectory to be the set of pairs ( V f i / ] , C?"[z]). 

Now we can combine the ideas of a trajectory with the notions of belief structure 

adjustment by projection in Sections 3.5 and 3.6. If, between time t and f ,we observe 

a set of data, { A ' i , . . . , A^„} and use it as the base for a belief structure D, we can 

choose P*(-) = Prf(-)i the value P D ( - ) takes when we observe D — d. We can then 

compute the data bearing related to this adjustment, which we label Yd- This belief 

structure can be partitioned as { Z ) [ l ] , . . . , Z)[m]}, and we can produce a trajectory 

by adjusting B by £>[1], D[l ] + D[2], .... 

D e f n . A.4 If we adjust our beliefs by projection on a data set, by progressively pro

jecting on larger and larger subsets of the data then the resulting trajectory is termed 

a data trajectory. 
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For our regression example we obtain data trajectories summarised 
in Table A.J, whose routes are summarised in Table A.2. Looking at 
these we see some anomalies: the very large value of V[4/] for data set 
3 - which highlights the outlier; the large value of V[5/} for data set 4 
- which highlights one of the outliers; the large value of V[l], followed 
by small values for all the V[i/]s for data set 6 - shows that the prior 
specifications of —5 and 5 for a and b are not reflected in the data, but 
that it is approximately a straight line. 

We can compute the expected length of the bearings and adjusted bearings using 

the cumulative traces of the transforms, as in Section 3.8. 

In our example we have the cumulative traces listed in Table A.3, in 

this we see that in data, sets 1-6 the cumulative trace grows at a steady 

rate as the data is spread evenly across the area, whereas in da ta sets seven 

and eight, the individual regions show up, where the transform suddenly 

jumps, in set 7 after the sixth data point and in set 8 after the tenth data 

point. 

A.2 Raw and pure trajectories 

As well as the data trajectory, another trajectory of interest can be constructed by 

partitioning the data, and then finding the bearing of each set of data individually. 

Defn. A.5 If we take the partition of D, {D[l],..., D[t]}, we can compute the set 

of bearings . . . , Y{ t }} bij adjusting our beliefs by D[i]. This set of bearings is 

termed a raw trajectory. 

It would be useful if we could choose the D[i]s so that the raw trajectory was also a 

trajectory (as defined in Section A . l ) , an automatic way to choose such trajectories 

is 
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Data set 1 Data set 2 Data set 3 

10 
11 

-0.4550-0.02604+0.06505 
0.1087+0.13044+0.10875 
0.1744-0.22674-0.26165 

-0.3593+0.27234+0.34425 
0.4340-0.26284-0.34965 
0.1602-0.08324-0.11525 

-0.1797+0.08194+0.11785 
0.0097-0.00394-0.00585 

-0.0244+0.00874 + 0.01365 
0.1698-0.05374-0.08765 

-0.1629+0.04544+0.07795 

0.3063+0.01754-0.04385 
0.1071+0.12854+0.10715 
0.1846-0.23994-0.27685 

-0.3425+0.25964+0.32815 
0.4575-0.27704-0.36855 
0.1768-0.09184-0.12715 

-0.1693+0.07714+0.11105 
0.0160-0.00654-0.00975 

-0.0177+0.00634+0.00995 
0.1736-0.05494-0.08965 

-0.1587+0.04424 + 0.07595 

-0.4550-0.02604+0.06505 
0.1087+0.13044+0.10875 
0.1744-0.22674-0.26165 

-0.5809+0.44024+0.55645 
0.5683-0.34414-0.45775 
0.2420-0.12564-0.17405 

-0.1364+0.06214+0.08945 
0.0308-0.01244-0.01865 

-0.0151+0.00544+0.00845 
0.1729-0.05474-0.08925 

-0.1630+0.04544+0.07805 

Data set 4 Data set 5 Data set 6 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

0.3063+0.01754-0.04385 
0.1071+0.12854+0.10715 
0.1846-0.23994-0.27685 

-0.3425+0.25964+0.32816 
0.6010-0.36394-0.48415 
0.1006-0.05224-0.07245 

-0.2138+0.09744+0.14025 
-0.0090+0.00364+0.0054S 
-0.1974+0.07054+0.11005 
0.2270-0.07184-0.11715 

-0.1223+0.03414+0.0585S 

0.0875+0.00504-0.01255 
0.0542+0.06504+0.05425 
0.2447-0.31814-0.36705 

-0.3765+0.28544+0.36075 
0.4046-0.24504-0.32595 
0.1143-0.05934-0.08215 

-0.2469+0.11254 + 0.16195 
-0.0695+0.02804 + 0.04195 
-0.1161+0.04154+0.06475 
0.0714-0.02264-0.03685 

-0.2674 + 0.07454+0.12795 

2.4938 + 0.14254-0.35635 
-0.0371-0.04454-0.03715 
0.0717-0.09314-0.10755 

-0.0330+0.02504+0.03165 
0.1023-0.06194-0.08245 
0.0203-0.01064-0.01465 

-0.0573+0.02614+0.03765 
0.1128-0.04554-0.06805 
0.0891-0.03184-0.04975 

-0.0012+0.00044+0.00065 
-0.1223+0.03414+0.05855 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Data set 7 Data set 8 
0 

-0.1000-0.00674+0.01335 
0.0710-0.01224-0.02645 
0.0251+0.00974+0.00475 
0.0074-0.01064-0.01205 
0.0155-0.02234-0.02545 
0.0177-0.00954-0.01305 
0.0173-0.00904-0.01255 
0.0381-0.01994-0.02755 
0.0020-0.00104-0.00145 
0.0219-0.01074-0.01505 

0.0987+0.00664-0.01325 
-0.0487-0.00324+0.00655 
0.0002+0.00004-0.00005 

-0.0502-0.00334+0.00675 
-0.0605-0.00404+0.00805 
-0.1352+0.04184+0.06885 
0.0022-0.00074-0.00115 
0.0292-0.02614-0.03195 

-0.0356+0.03174+0.03885 
-0.0020+0.00184+0.00225 
0.0947-0.05134-0.07025 

Table A . l : Trajectories for data sets 
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i Data set 1 Data set 2 Data set 3 
V\i] V[i/] Cr[i) V[i] V[i/] Cr[i) V[i] V[i/] Cr[i) 

1 0.1325 0.0600 0.1325 
2 0.4398 0.4610 -0.3110 0.6096 0.4477 0.3110 0.4398 0.4610 -0.3110 
3 0.4043 1.5221 -0.9519 0.5657 1.7045 -0.8576 0.4043 1.5221 -0.9519 
4 0.9381 2.3158 -0.9208 0.7426 2.1044 -0.8833 3.3755 6.0518 -0.9208 
5 0.3446 2.2364 -0.9769 0.7993 2.4851 -0.8938 0.0332 3.8344 -0.9961 
6 1.0972 0.2314 0.9229 1.9507 0.2818 0.9162 0.6613 0.5281 0.3774 
7 0.3518 0.2318 -0.9689 0.9218 0.2057 -0.9745 0.2178 0.1336 -0.9709 
8 0.3768 0.0005 0.8841 0.9944 0.0015 0.9556 0.2854 0.0055 0.8942 
9 0.3223 0.0028 -0.8754 0.9211 0.0015 -0.9685 0.2545 0.0011 -0.9057 
10 0.7544 0.1138 0.8313 1.6855 0.1189 0.9754 0.6756 0.1179 0.8751 
11 0.3737 0.0864 -0.9148 1.0293 0.0820 -0.9928 0.3071 0.0865 -0.9410 

i Data set 4 Data set 5 Data set 6 
V[t\ V[t / ] Cr[i] V[i\ V[i/) Cr\i] V[i/} Cr[i) 

1 0.0600 0.0049 3.9800 
2 0.6096 0.4477 0.3110 0.1342 0.1145 0.3110 3.7462 0.0537 -0.3110 
3 0.5657 1.7045 -0.8576 1.9718 2.9953 -0.9131 4.0722 0.2569 0.0352 
4 0.7426 2.1044 -0.8833 0.0385 2.5429 -0.9995 3.8909 0.0195 -0.3562 
5 1.8408 4.2882 -0.8938 1.4550 1.9436 -0.9640 4.4804 0.1241 0.3348 
6 2.7255 0.0913 -0.9679 2.4005 0.1178 1.0000 4.6157 0.0037 0.5087 
7 1.1909 0.3283 -0.9847 0.7888 0.4377 -1.0000 4.2715 0.0236 -0.5571 
8 1.1452 0.0005 -0.9729 0.5196 0.0282 -0.9969 4.9465 0.0742 0.5336 
9 0.4261 0.1865 -0.9797 0.2211 0.0646 -0.9911 5.5450 0.0380 0.6462 
10 1.1925 0.2033 0.9566 0.3075 0.0201 0.9701 5.5367 0.0000 -0.7210 
11 0.7633 0.0487 -0.9914 0.0317 0.2329 -0.9731 5.6515 0.0010 0.7502 

i Data set 7 Data set 8 
m V[t/} Cr[z) V\z] V[i/\ Cr\i] 

1 0.0000 0.0064 
2 0.0066 0.0066 0.0000 0.0016 0.0016 -1.0000 
3 0.0096 0.0088 -0.3778 0.0017 0.0000 1.0000 
4 0.0023 0.0027 -0.9877 0.0000 0.0017 -1.0000 
5 0.0109 0.0033 0.9863 0.0024 0.0024 0.0000 
6 0.0508 0.0146 0.9972 0.0762 0.0696 0.1623 
7 0.0779 0.0030 0.9819 0.0739 0.0000 -0.9845 
8 0.1095 0.0027 0.9873 0.0235 0.0208 -0.9076 
9 0.1982 0.0133 0.9909 0.0903 0.0000 0.6684 
10 0.2034 0.0000 0.9932 0.0960 0.0001 0.9251 
11 0.2630 0.0038 0.9934 0.0075 0.0872 -0.9603 

Table A.2: Routes for data sets 
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i Data sets 1-6 Data sets 7 Data set 8 
P y ( V [ i ] ) P y ( V [ i / ] ) P y ( V [ i ] ) PY(V[i/\) Pv(V[«l) P y ( V [ i / ] ) 

1 0.9800 0.9737 0.9737 
2 1.0613 0.0813 0.9867 0.0130 0.9867 0.0130 
3 1.2557 0.1943 1.0196 0.0329 0.9911 0.0044 
4 1.5000 0.2443 1.0254 0.0058 0.9933 0.0022 
5 1.6960 0.1960 1.0781 0.0526 0.9946 0.0013 
6 1.8194 0.1234 1.1121 0.0341 1.0314 0.0367 
7 1.8902 0.0708 1.9076 0.7955 1.0550 0.0237 
8 1.9302 0.0400 1.9519 0.0442 1.1105 0.0555 
9 1.9532 0.0229 1.9663 0.0145 1.1510 0.0404 
10 1.9667 0.0135 1.9741 0.0078 1.1818 0.0308 
11 1.9748 0.0081 1.9786 0.0044 1.9196 0.7379 

Table A.3: Traces of transforms 

Defn. A.6 For any hvo belief structures, B and D, we can construct the twin maps 

M(B) and M(D). Any raw trajectory based on a partition { M [ l ] , . . . ,M[i]} of M(D) 

is called a pure trajectory { V { i } , . . . ^ { i } } -

We summarise properties of the pure trajectory in the following theorem 

Theorem A.3 A pure trajectory satisfies 

(a) For any observed set of outcomes the data and raw trajectories are equivalent. 

(b) The bearings are uncorrelated, and the squared length of the bearing corre

sponding to the subset M\i\\ + • • • + M[i)t] of M(D) is equal to the sum of the 

squared lengths of the bearings of M[ii],. . ., M[ik]. 

(c) The expected squared length of is equal to the sum of the eigenvalues of 

To whose eigenvectors are in M[i}. 

This can then be used to construct useful trajectories, by first splitting the eigen-

structure of the transform into useful subsets, and examining the bearing of these 

subsets. 
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A.3 Generalised belief transforms 
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Finally before I go onto some examples it should be pointed out that the idea of 

belief transform in the previous sections does not need to be restricted to adjustment 

of previsions by data. If we have a belief structures B, with two inner products 

(•,•) and (•,•)* we can obtain a bounded positive symmetric functional S such that 

(X, Y)* = (X, 5 (F) ) , and we call S a generalised belief transform. Compare this with 

Property 3.15 of belief transforms from Section 3.8. It does not have all the properties 

of the belief transform, its eigenvalues are no longer bounded above by one. 

As well as S we can define the inverse transform 5 _ 1 , by (X, Y) = (X,S~1(Y))* 

providing we restrict it to the strictly positive part of (•, •)*. The eigenvectors of 5 - 1 

(with strictly positive eigenvalues) are the same as those of S, and the corresponding 

eigenvalue of S - 1 is the reciprocal of the eigenvalue of S. 

This notion can then be used to compare belief structures for such topics as 

hypothesis testing, experimental design and sensitivity analysis where we want to 

compare different stochastic models of the quantities. 

A.4 Some more simple examples 

A.4.1 Example 1 

We would like to refine our estimate of a quantity X, by making repeated observations 

{Xi,..., A ' n } . A priori, we express our prevision of X as / i and our prevision of X2 

as p? + a2. We assume that each observation can be represented by X{ — X + Zi, 

where the Z,s are uncorrelated with zero mean and variance e2, and are independent 

of X. Hence 

P(A',) = P(X) + P(Zi) 

= n, for 1 < i < n 

P(XiX) = P{X2) + P(XZt) 
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= /t 2 + a2, for 1 < i < n 

P ( A , 2 ) = P(X2) + 2P(XZ,) + P(Zf) 

= /t 2 + a2 + £ 2 , for 1 < i < n 

PiXiXj) = P ( X 2 ) + P ( X Z I ) + P ( X Z J ) + P ( Z , Z J ) 

= f.i2 + a2, for 1 < i ^ j < n 

We therefore construct two belief structures, B with base { 1 , X}, and Z) with base 

{1,X\,..., Xn}. PD(X) can be computed - using equation (3.4) - as 

PD(X) = n + a'l(<r'll + e ' I ) - 1 ( X - t i l ) ( A . l ) 

and the adjusted variance 

Var([A7/J]) = a2 - a2\ ( < r 2 l l + e 2 / ) - V 2 l (A.2) 

and then inverting the variance matrix using the identity (Q + LL ) L = Q L(I + 

I I Q ^ L ) - 1 to obtain 

PD(X) 

Var([X/0]) 

na2X + e2/t 
e2 + na2 

a2e2 

e2 + na2 

where X is the sample mean n 1 E"=i X{. We note that the prevision is a weighted 

average of the sample and prior means. The matrices representing Pg and P D are 

PD = 

PB 

1 

0 
e 2+n<7 2 

o i T 
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and the corresponding belief transforms are 

T B = 

T D = 

£ 2 + n < r 2 1 

e 2+n<T 2 

e 2+n<r 2 

2 

f 2+n<7 2 

11' 

The eigenanalysis of To is straight forward, the eigenvalues being Ao = 1 and \i = 
2 V 

J+no2' w ' t h eigenvectors £0 = 1 and £"i = — T h e n by using Lemma 3.4 TB can 
2 

be shown to have eigenvalues A0 = 1, Ai = c ™ n a 2 , A2 = • • • = A n = 0 with F0 = 1 and 

Fi = . The eigenspace corresponding to the zero eigenvalues is spanned by 

the residuals Xi — X. We can write down the bearing of the data, 

Yd = 
X — n X — /.I 

y/e*/n + a2 y/e2/n + a2 ° 

X — /t 
e2/n + a2 

(X - fi) 

To construct the data trajectory we compute the bearings 

Y[i/] 

Xj - n 
s2/i + a2 

(X - ,o 

( A ^ - / 0 e 2 + ( i - l ) ( X , - - A - t - - i y 
(e2 + ia2)(e2 + (i - 1)<T2) 

(X - fi) 

where A, = i 1 Y?j=\ Xj >s the cumulative sample mean. The variance V[i] and V[i/] 

and correlations Cr\i] can be computed, 

V[i\ = 

V[z/} = 

Cr[i\ = 

e 2 / i + a2 J 

( A - , - / 0 £ 2 + ( 7 - l ) ( A , - X , _ 1 ) ( T 2 l 2

 2 

(e2 + ia2)(e2 + {1 - l)a2) J ° 

+ 1 where A , — / i and P_y, x , (A) — Px,,.,.,^., (A') have the same sign 

— 1 where A', — // and Px, ,...,x,(A') — PA-, A ' ,_ I (A ' ) have different signs 
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to produce the data-trajectory. We therefore see that all the data perfectly comple
ments or completely contradicts the previous data. We can compare V[i) with the 
trace of the transforms trace(T£)[1]+...+£)[i]) — 1 = J+i„i •> a n d with the difference 

2 2 

between successive traces trncc(TD[1]+...+£>[,])-trace(TD[i]+.= ( ^ . - ^ ^ . ( . - i ) ^ ) 

to look for any irregularities in the data. 

If for example we elicit that / i = 0, £ 2 = 25 and a = 1, the prevision of the squared 

lengths are + 25), and the prevision of the adjusted lengths are 25/(25 + i)(24 + i ) . 

So if we observe the following data set, d = {3, 7,—3,8,—4,—20,3,—7,2,—2), we 

obtain the trajectory summarised in table A.4. The possibly anomalous result of d$ = 

—20 is highlighted by a large value of V[6/] which is of an order of magnitude greater 

than any of the other V[i/] values, and sixteen times greater than its expectation. 

i d, V[i\ V[i/] Cr[i] P(V[t]) 
1 3 0.013 - - 0.038 -
2 7 0.137 0.065 1.0 0.074 0.046 
3 -3 0.063 0.014 -1.0 0.107 0.033 
4 8 0.2684 0.071 1.0 0.138 0.031 
5 -4 0.134 0.023 -1.0 0.167 0.029 
6 -20 0.084 0.432 -1.0 0.194 0.027 
7 3 0.035 0.011 -1.0 0.219 0.025 
8 -7 0.155 0.043 1.0 0.242 0.024 
9 2 0.105 0.005 -1.0 0.265 0.022 
10 2 0.138 0.002 1.0 0.286 0.021 

Table A.4: Trajectory for example 1 

A.4.2 Example 2 - Poincare's problem. 

We have an unknown function Y(x) which we wish to approximate in some way. To 

do this we assume that Y(x) can be written as a convergent power series, 

Y(x) = A0 + Axx + A2x2 + 
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We then specify our beliefs about the ,4s; for simplicity we believe that they are 
uncorrelated, and have zero prevision, the latter assumption is made because we have 
no knowledge of the sign of the A{. We summarize of our previsions: 

P(Ai) = 0 , f o r O < i 

P(AiAj) = a2gt8tJ, for 0 < i,j 

P{Y(x)) = P{A0) + P(A1)x + P(A2)x2 + ••• = 0 
oo 

P(AiY(x)) = Y , P ( A i A i ) x 3 = ^ . • • T i , f o r 0 < i 
j=0 
oo oo oo 

P(Y(X)Y(W)) = j ^ ^ y ^ ^ s ^ M ' ' 
i=0 j=0 i=0 

where the <7,s are chosen to express our beliefs. Then if we put g[t) = 52v^o#«^') w e 

can write P(Y(x)Y(iu)) = g(xiu). 

We them obtain our estimates for A,, and Y(x+), if we observe y i , . - . , y n

 a t 

X\,..., xn 

PD(Ai) = giXiG-'y 

PD(Y(x*)) = gG-'y 

where x{ = (x\,..., .x^) , Gl} = g ( x i X j ) and g = {g(xxx"),..., g(xnx*)) . We can 

now construct two belief structures, B consisting of the unit constant 1 and the 

coefficients of the approximation A{ and D consisting of 1 and Y, = Y(xj) observations 

of the unknown function at a series of design points { x \ , . . . , xn}. As there is no 

error, knowing all the coefficients means we know the exact function, so Tg the belief 

transform obtained by adjusting D by B is the identity transform, so has n + 1 

eigenvalues all equal to 1, with eigenvectors FQ = 1, F, = (cr2g(x2))~1^2Yi. Then 

using Lemma 3.4 the non-zero eigenvalues of To are n + 1 ones, with eigenvectors 

E0 = 1, E, = (a2g(x2))-^2ET=o^Ji-
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A.4.3 Example 3 - exchangeable belief structures. 

We have a collection of beliefs about quantities { A i , . . . , XR) which we wish to modify 

by making some observations. We have s observables {Y^,..., V( s )}, which we can 

make repeated These observations are to be made in groups {Yn,..., V^a} for i in 

1 , . . . , n . These sets of observations are exchangeable, i.e. 

P(Yij) = rrij V i,j 

P(Y,jYij) = mjmj + v-jj V i,j,J 

P(YijYu) = rrijmj + Ujj V i ^ I , j , J 

and they are coexchangeable with { A ] , . . . , A r } , i.e. 

P(XkYjj) = Hkirij + Ckj V i,j,k 

whose second order structure is 

P(A, ) = fik V k 

P(XICXK) = /tjt/t/c + <?ki< V k,K 

We now define the two belief structures B and D with bases 

{ A ' i , . . . , XT} and {Y\\,..., K l s , . . . , Yni,..., Yns] respectively. We can then compute 

PB and PD (Notation W = V - U) 

PB 

PD = 

1 1 T ® ( m T - pE^C) 

0 1 ® (E-'C) 

1 p - ( l T ® m T ) ( l l T ® U + / ® W) ( l ® C T) 

0 ( l l r ® U + I ® W)^ ( l ® C T ) 
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TB = 

TD = 

1 ix - nm T ([W~ x - n\V-lTJ (nil + W)'1] C*T) 

0 1 ® ([w~l -nW-W(nU + W)-y} C*) 

1 f / - nmT ([n - 1}U + V)'1 CT 

0 i ® [([n - i\u + vy1 cT 

1 l T < 8 > ( m [ / - n ( [ n - l ] C / + F ) - 1 C T S - 1 C ] ) 

0 [ l l T J ® [ ( [n- 1]£/ + V)-xCTV-lC\ 

1 / / [ / - n E ^ C Q n - l ] f / + V ) " 1 ^ ] 

o ns - ' cdn- i]u + vylcT 

Using these results we make the following observations: 

Observation A . l The heart, of the transform (the sufficient statistics) is made up 

of linear combinations of the averages of the observations (averaging over the is), i.e. 

Y-i = n"1 E?=i Ya 

Proof 

The eigenvectors of TB are given in Lemma 3.4 by P#(.E,) where the E{S are the 

eigenvectors of TD, and so have the form 1 ® f = J2j=\ f j ZT=i Yj-

• 

Observation A.2 The number of non-zero eigenvalues is less than the minimum of 

r + 1 and s + 1. 

Observation A.3 If e = (e i , . . . , e r ) T is an eigenvector of 

£ _ 1 C ([n — l]U + V ) - 1 C T corresponding to the eigenvalue X, then 

T 
E - (-ej/ i i - • • • - e r/i r, e i , . . . , er) = e^A'j - ^i) H (- er(A% - fj.r) 

is an eigenvector of TD corresponding to the eigenvalue nX. 
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Observation A.4 If f = ( f i , - - - , f s f is an eigenvector of 

([n — \\U + V)'1 C T £ - 1 C corresponding to the eigenvalue X, then 

F = + ••• + / , m , ) , / i , . . . , /„) T 

n n 

«=i «=i 

is an eigenvector ofTs corresponding to the eigenvalue nX. 

Observation A.5 For all g = (<7i, • • •,fifa) in TR,", and for all 

a = ( ( » ! , . . . , orn) in R n si £ ? = 1 a,- = 0 

0 

a®g 

is an eigenvectors of TB with eigenvalue 0. 

Moreover, if G = 
/ 0 \ ( 0 \ 

a?ir/ H = then 
\ a®g ^ ^ b <g> h j 

(G, H) = (a ® g? ( ( i f ) ® (mm + U) + I ® [V - U]) (b ® h) 

= allTbgr(mrn + U)h + abgT[V - U)h 

= (ab)(gr[V - U)h) 

These observations mean we can work out the eigenstructure of the transforms 

more easily. (Observations A.3 and A.4 show how to find the meaningful eigenvectors, 

and A.5 shows how to find the residuals). If we assume that the number of replicates 

n is large, then we can see that 

PD 
1 nT-mU-1CT 

0 1 ® u~lc 
1 / / ( / - E - 1 C £ / - 1 C T ) 

0 
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You will note that the intra-group covariance disappears and the result just depends 
on the inter-group covariance. This asymptotic result is useful as it means that we 
do not have to work out the transforms each time we receive a new piece of data. 

This model is useful if we are looking at properties of an object which we can 

take repeated observations on some object or class of objects, for example a car, the 

XkS being average speed, maximum speed, petrol consumption etc, and the V^s the 

distances travelled in various times,.. ., for various cars of the same type. 



Appendix B 

Omitted Algebra From Chapter 5 

B . l The univariate model — Section 5.2 

P y ( X 0 ) = /t 0 - bal\\b2alllT + a2C)-\Y - bx + 6/i 0l) 

ba2\TC~\Y - bx + 6/i 0l) 
- Ho 

b 

<7 2 / i 0 - a l f C - \ Y - bx)b 
< 7 2 + < 7 0

2 l r C - U & 2 
(B . l ) 

V a r [ X 0 / y ] = al-bol\T(b2o-l\\r+ alC)-lboll 

b ^ f c - ' i 

(B.2) 

PY(B(x,)) = b + a2

bdT(b2alll + o-2

bC)-\Y - bx + fy0l) 

, , a2

bdTC~'(Y -bx + bit0l) = b+ 

a2

bdTC-llb2a2lTC-\Y -bx + V 0 1 ) 

^ ( i + ^ i ^ - u ) 
b 

= b + d^C-^Y - bx) + 

159 
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£C-Xl{bn{<rl + cr*lTC-llb2) - b2a*lTC-\Y -bx + 6/ipl) 
a2 + a2lTC-nb2 

h + fr-^Y h-r\ i fC-^b{o2v-a2lTC-\Y-bx)b) 
= 6 + {Y-bx) + rt + rtfc-W 
= b + <fC-\Y - b[x - PY{X0)1]) (B.3) 

Cov{[B(x.)/Y],[B(x.)/Y]) 

= a2

bp(x. - x.) - a2

bdT(b2a2UT + a 2 C ) " V 2 d 

2 , . x 4Jc~ld dTc-1\b2a2fc-ld, 
= ^ ( x . _ x 0 _ f f k ( _ _ _ ^ _ _ ) 

= a2 U x . -x.)-dC^d + l I + a ^ c _ n b 2 (B.4) 

P y = - / < 0 ) + (6V0

21 + a 2 c ) T (6 2 a 0

2 l l T + a2C)-\Y - bx + fy0l) 

1 r p n M 1 , a2

bcC-'(Y -bx + b^l) 
= b[x, - Py(Ao)] + —2 

c r 2 c T C - 1 ! 6 2 ( 7 2 l T C - 1 ( y - bx + V o l ) 

aJ(l + £ £ l T C - i l ) 
T . 

b[x. - Py(Ao)] + c C~\Y - bx) + 

cC-ll{bfio(*i + b2allTC-l\) - b2a2V'C-\Y - bx + 6^1)) 
a i

2 + ^ l T C - 1 l 6 2 

% . - Py(Ao)] + cC~\Y - b[x - P y ( A ' 0 ) l ] ) (B.5) 

Cov([Y(x.)/Y],[Y(x.)/Y]) 

= alb2 + cr2((7o + (xr - /t 0)(.i* - /i0))/9(:c. - x„) -

(b2a2

0l + *2c?(b2*2Ur + a2C)-'(b2a2

Ql + a2~c) 

= alb2 + al(al + (a;. - n0)(xr - Ho))p{xt - x») -
b2a2{b2a2fC-'l + a2lTC-'c + a2

bcC^\) _ 

b 
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b 

= a l ((^o + ( x* ~ /*o)(£. - Va))p{x* - xm) - cC~1c+ 

(1 - lTC-lc)b2a*(l - cC-1!)} 

o-i + aiiTc-nv ) 
Cov([B(x.)/Y},[Y(x.)/Y}) 

= (x - ti0)o-2p(x. - x.) - <jl£{b2<rllf + a2

bC)-\b2all + a2

bc) 

aliC^alc , a2£c-'\b2a2^C^alc 
= ( x - f i 0 ) a b p ( x . - x . ) -2 + 6 » g 2 , T ^ _ , 

(B.6) 

b 

a2

bb2a2dC-'l 

^ ( 1 + ^ 1 T C - H ) 
6 

a 2 [ ( . T - / 1 o ) ^ . - d C xc + ^ 2 + ( 7 2 L T C _ L L 6 2 1 (B.7) 

B.2 Determinant results 
Lemma B . l 

\M\\MTjJ1\ = |A / 7 ,7 l |M J i 7 | - |M J i 7 | |M; i 7 | , i ± jandl + J 

where M a i , . , n m i C ) , . . C m is the matrix M with the am columns and c l 5 . . . , c m rows 

removed. 

Proof 

If we divide the 72/75 by the LIIS we get 

Q = 1^7.71 # |A%,7J| _ |J>%,7j | 

V | M | ' | M 7 i 7 | | M | 7 | M 7 J | 

by swapping columns and rows we can w.l.o.g. assume i = I = I and j' — J = 2 so 

we have 

V | M | 7 \M-2il\ \M\ 1 \M-2J\ 
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Writing M 

Q = 

T 

c 2i c22 a2 

bi 6 2 D 

1 C12 a! 
T 

0 C 2 2 a 2 

0 6 2 D 

en C12 a! 
T 

c 2 1 c 2 2 a 2 

61 b2 D 

and applying Cramers rule 

Q 

we have 

1 0 T 0 C\2 
T 

ai 0 1 T 

ai 

0 1 T 

a2 
1 C22 

T 
<»2 — 1 0 T 

a-2 
0 0 D 0 b2 £> 0 0 D 

T T 
C l l 0 T C l l Cl2 ai C l l 1 ai 

C21 1 T 

a 2 
C21 C22 

T 

a 2 

— c 2i 0 
T 

a 2 

0 D 62 Z) 61 0 

( c n - a ^ D 16 1 ) ( c 2 2 - a 2

T Z ? lb2) 
( c 1 1 - a 1

T J 9 - 1 f c 1 ) ( c 2 2 - a 2

T D- 16 2 ) - ( c i 2 - a i T D- 16 2 ) ( c 2 i - a 2

T

J D- 16 1) 
(c 1 2 - a^D'162)(c21 - a 2 D ~ l bi) 

" (c„ - o 1

TD- 161 )(c 2 2 - a / D " 16 2) - (ci 2 - a i T £)- 16 2 ) (c 2 i - a2

TD~l bt) 
= 1 

So LHS = RHS • 

Theorem B.2 

lim / (M + kidibi + • + kmambm ) lg = 
/ T M - M m / M - ^ 

where Aq = [a^,..., a,] ranrf J9, = [&i,. . . , 6,] 

Proof 
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By induction on m. 

lim f{M + kabT)~lg 
k—*oo 

lira / M~xg r -
k^°° l + kbM'^a 

= fM~lg 
f M~xab M~xg 

bTM~^a 

bTM~la bTM-]g 

fM~xa fM~lg 

b M~xa 

So true for m = 1, assume true for m = p\ 

lim f{M + A: 1a 16 1

T+ h fcp+iap+i6p+1 ) xg 
k\ ,...,kp,kp+\ —KX> 

. T ^ . T fM;xap+,bp+?M;xg 
= f M . g — T T — 

5 > B\M'xg 
T 

f M fM~xg 
T 

5 p M " 

B\M~XAP B\M~xav+x 

fTM~XAP f M - x a p + 1 

BT

PM-XAP BT

PM-xg 

bP+1

TM-XAP bp+?M^g 

BPM~XAP BL

PM~XAP 

B\M~XAV B\M~xav^ 

bP+L

TM-XAP bp+iM-xap+x 

BL

PM~XAP 

BT

PM~XAP BR

PM-'ap+1 BT

PM~xg 

M-Mp 
T 

6 p + i M~xap+1 
bp+?M~xg 

/ T M - M P bp+i M~xap+i fM~xg 

B\M- XAP B\M~X 
A P+i 

bP+i

TM " M p bp+1

TM~ 1 < 1 P + I 
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B ; + 1 M " M P + T BT

p+lM-'g 

/ T M - M P + 1 fM-'g 

|5; + 1 M - M P + 1 | 

T T 

(where M, = limjt, kp(M + k^a^bx + • • • + kpapbp )) So if true for m — p then also 
true for m = p + 1. So by inductive argument true for all m. • 

Theorem B.3 

lim kmbm(M + fciO,fcH h kmambm) xg = 
fcl ,...,/:m-*oo \BmM~lAn 

Proof 

lim kmbJ(M + A^ajfcl + h fcmamC) lg 
fc] ,...,km —i-CO 

= lim kmbm

T(M* + ^ m a m 6 m

T ) _ 1 f l f 
fcm-»oo 

,. , • T , ^ 6 m

T M ; 1 a m 6 m

T M , - 1 g 
= Inn fcm6m M. flf T 

1 + kmbm M~xam 

= lim kmbm Mz*g 
km^oo i + kmbm M-lam 

bm M^g 
bm

TM-xam 

5 l M - M M _ 1 BlM-'g 

B'M-'A 

where M, = l im f c l i . . . ! i m _ I ^ 0 0 (M + + (- t m . 1 a m _ i 6 m . 1 ) • 
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Theorem B.4 

lim kmbm(M + k^a\bx H V "•m — 1 — 
,...,km—*oo 

B m_2M~xAm. -i 

BmM-1Am 

Proof 

lim kmbm (M + kidibi + • • • + kmambm ) 1am^km-^ 
ki ,...,km—•oo 

= lim kmbm (M» + / c m _ ia m _ i6 m _ i + kmambm )~ a m _ i& m _ i 

= lim ( M . + ^m-l"m-l^m-l ) "m-1 
fcm_,-oo ftm + & m _ ] O m _ i 6 m _ i ) _ 1 a J 1 

6 m M - M m — 1 
5 m _ 1 M - 1 A m _ 1 

j 5 m _ 1 M " M m _ 1 

-i 

m

T M - M m _ i 

BT

mM~'Am 

where Mm = lim^, ,...,(tm-2-oo(M + ^ a i ^ i + h L - 2 i m - 2 i m - 2 ) • 

Theorem B.5 

lim km 

..,km—co 

T T T j 
kmbm(M + A-^a^! + h kmambm )" 

5 r -1 
1 j4m 

Proof 



B.3. RESULTS FOR "IGNORANCE PRIOR" - SECTION 5.5 

lim km - kmbm{M + k^a^bi + • • • + 
k\ ,...,fcm—>00 

- lim km - k2

mbm

T{M* + kmambm )'lam 
km-*co 

= lim fcm - k2

mbjM, la 
km-*oo 

= lim 

k3

m(bjM^amy 
1 + kmbm

TM-laTl 

kn 

1 
6 m M. - ! a , 

B L i ^ -" M M . -1 
T 

5 m M " 

where M* = lim*, jt m_ 1-,oo ( M + A ^ a ^ + • • • + fcm_iam_i&m_i ) 

B.3 Results for "ignorance prior" - Section 5.5 

Py(Y(x.)) 

= 6(.T, - no) + a Hrn^ ( ^ ( . T , - /i 0)(a;-/iol) T + (b2 + cr2

M)a2lT + a2

bc) 

(a2

M(x-^0l)(x-^l)r + (b2 + a2

M)a2llT + a'C)'1 (Y -b(x- fiQl)) 

\ 
6(.T, - Ho) + 

I 

V 

(aJ-/t 0 l ) T J 

C " 1 , , 
2~( 1 ( s E - / i 0 l ) ) 

(a. - Ho) 

( 

+ (x-Hol) 

\ (x-Hoiy) 

c-1 

—5-( 1 (y -6(a! - / io l ) ) ) 

V 
2 1 

( 1 (X-HOI) {Y-b(x-Hol)) ) 
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\ 
I 

(x-/.i0l) 

fC~xF 

c-
( (aj-ziol) ( y - 6 ( * - M ) ) ) 

/ 
/ 

- l 
b(x„ - /£0) FC-'F + 1 

\ \ W J 
C~\ F 

F C~\ i Y ) 
f C ~ \ x Y ) 

- Ho) F C F 

F T C - ] ( 1 y ) | ) 

FTC- XF fC~XY 

cTC~xF-f c rC~XY 

FTC~1F 

= cC~XY - (cC-lF - f)(FTC-1F)-1FrC-'LY 

Cov([Y(x.)/Y],[Y(x.yY]) 

= lim a2

M(x. - /t0)(.r. - /t0) + (62 + O"M)<7o + alC(-T*>x*) 

((7 (̂a.-* - / i 0 ) (a; - / io l ) T + (62 + (T2

M)a^lT + <rfc

2cT) 

( ^ ( a J - ; t o l ) ( a : - / i o l ) T + (62 + a^)c7 0

2 l l T + <T 6

2 C ) " 1 

(CT^(.T. - flo)(x-Hol) + ( i 2 + cr2

M)a2l + s fc) 

/ V \ 
= cr 2c(.T.,x,) -

(a:-/<ol) T 

^ ( a j - ; i 0 l ) / 
\ 

C " 1 

c _ 1 

— 2 ~ ( 1 (X-Hol) ) 

\ ate 

( 1 (x-(i0l) a2c ) 

- ( s . - / f o ) ( * - / i o l ) T ^ - l - (£. - /to)lT^-2-(a:-/<ol) 

-c-1 T C " 1 

- jt0)(.r. - Ho)l —2~1 + ( a j - / t 0 l ) —2 - ( x - / t 0 l ) 

-(a;, - / i 0) c- •( 1 abc 
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(x. - fi0) 

/ 

c~x 

— 2 ~ ( 1 (x-n0l) ) 

2~( ( * - / i 0 l ) a£c j 

V 1 

/ ( * - / x 0 l ) T X 

2 T 

<72C 

"6 

c-1 

J 

= <76
2C(X.,.T.) - \fC-lF 

( (x -^o l ) 1 ) 

*2 C~\ F ale ) 

+<T2

b(x - xA)TC~\x - xA) + FTC~\ (x-n0l) al'c ) 

-(x„ - fl,0) F C-\ 1 alb ) + C~lF 

-fio FC~\ 1 ale ) - (£* - /«o) C _ 1 F 

/ 1T ) 
o T 

C~lF 

FTC~1F FTC~1c-~f 

cC~xF-f cC~xc 
- fffcc(x., .T.) - cr 2 

= a 2 (C(X„.T.) + ( c ^ F - / T ) ( F T C - 1 F ) - 1 ( F T C - 1 c - / ) - cC-'h) 

Py(B) 

= 6+ lim alf(x-ii0lf 

( ^ ( x - ^ l X x - ^ l f + (b2 + <r2

MyollT + ale)'1 (Y-b{x-fi0l)) 

(B.9) 

= b + 

— ( 1 (Y-b(x-n0l)) ) 

\ c-
{(x-vol? ) 

•( 1 (x-n0l) ) 
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b + 
FTC~\ 1 Y ) 

\FTC~*F\ 

F*C-\ 1 Y ) 

\FC~LF\ 
' l / ^ c - ^ l 

IF^C^Fl 

= ( 0 1 )(FTC-iF)-1(FrC-iy) 

Vax[B/Y] 

- Jim^alf-alfix-iiol? 

(a2

M{x-fiol)(x-fiol)T + (b2 + alf)a2

0lf + a2

bC) ' a 2

M { x - f i 0 l ) 

c-\ 
— 2 ~ ( 1 ( a i - ^ o l ) J ( x - ^ o l ) 

\FTC-*F\ 

Cov([B/Y],[Y(x.)/Y]) 

= l i m < J ^ ( f , - ^ 0 ) - a2

M{x-j.i0\) 

( < 7 ^ ( a ; - / i o l ) ( a : - / 1 o l ) T + (&2 + ^ ) ^ 1 1 T + a2C) 

(a2

M(x. - no)(x-n0l) + (b2 + a2

M)a2l + a2c) 

^ ( a ; - ^ o l ) T , 
— 2 " ( 1 ( * - / * o l ) ) 

c-1 

( x , - / f o ) | l — 1 ( ^ - ^ 1 ) 
V 

/ 

F C~\\ c) 

F^C-'F — x. 
xC~xl 

IF^C-'F F^C-^F 

FRC-'l FTC-1c-~f)\ 

F^C-'F 

= (0 \){FTC-XF)-X{FTC-'c-~f) 

c-

(B.10) 

(B. l l ) 

( l °l~c) 

(B.12) 
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P y ( % ) ) 
= b+ lim (crlf(x - Hoi) + Pbdf 

((7^ ( * - / i 0 l ) ( a ! - / i o l ) T + (b2 + a2

M)a2

0lf + ale)'1 (Y-b(x-n0l)) 

FTC~\ 1 Y ) 

\ ^ F \ + 

( 1 T ^ 
( x - ^ 0 l ) T 

C " 1 

2 ( 1 ( x - / i 0 l ) (y -6(a5-/ iol ) ) ) 

( 1T ^ C7-» 
^ ) a2 ( 1 } 

^ ( i y ) 
o 

+ 
/ ? 

C~\ F Y ) 

\FTC-^F\ 

fC~xF FrC-xY 

dTc~'F- (o i) /c-'y 
\FC~XF\ 

= ic~xY - (tfc-'F - (0 l))(FrC-1F)-1FTC-1Y 

Cov([B(x.)/Y},[B(x\)/Y}) 

= J j m ^ + <T2/)(.X, - x„) - (a2

M(x-Hol) + &bdf 

(a2

M(x-Hol)(x-Holf+(b2 + a2

M)a2llT + a2C) 

(vlf(*-flol) + <r2bd) 

- l 

= er%p(x. - x.) + ̂ l i T c - ] i | 
\FTC~XF\ 

I 

(B.13) 

( a ; - / i 0 l ) T j 

C _ 1 

— r ( 1 ) 

\ ( a j - / i 0 l ) / 

+ 

c-1, 
— 2 ~ ( 1 (X-HQI) ) 

-1 

c-\ 
— 2 " ( 1 (X-HQI) ) + 



B.3. RESULTS FOR "IGNORANCE PRIOR" - SECTION 5.5 171 

V 

(x-nolf 

a2J 

c - 1 1 (aJ-/*ol) old ) 

a2

bP(x.-x\) + \FTC-*F\-x U2|1T^1| - \FT^( l afd )|-

1 / 

aid 

FC-'F 

F C " 1 

F a2d ) 

FC^d-

dC-'F-(0 1) dTC~ld 

\FTC~lF\ 

= a\ (/>(x* - x\) - dTC~xd+ 

[(fc-xF-(0 l ^ C - ' F ) - 1 F C~ld -
V 1 / 

Cov([B(x.)/Y],[Y(z\)/Y]) 

= lim <r^(f. - ^ 0 ) + al(x„ - /.i0)p(x* - £„) - ( a ^ ( x - / t 0 l ) + <rbdf 
0 M * CO 

( < T ^ ( x - / f o l ) ( x - / < 0 l ) T + (b2 + <T2,)<T211T + alCy1 

{°\,{x* - Ho)(x-Hol) + (b2 + a2

M)a2

0l + a2

bc) 

I 
I 

V 

/ 
c-

:C~l 

{x* ~ A*o)|l —5-11 - (x* - /*o) 

^ (aj-/*ol) / 

1 

-( 1 {x-fiol) ) 

- l 

( 1 ( a j - / * „ ! ) ) 

l ( * - / * o l ) ' 
•c-1 

• I I -
/ 

V 

( j c - / i 0 l ) 
o2£ 

C - l 
( 1 (x-A£0l) ) 

c- ( 1 <TB
2C ) 

(B.14) 
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( s c - / x 0 l ) T — 2 ~ ( 1 (x-fi0l) abc ) 

= a2

b(x\ - fi0)p(x, - x.) - \F C-lF\~x 

((*. - fi0)W2

blTC-'l\- <TI\XC~H\ + a ^ o l l ' C - 1 ! ! -

\ f C ~ \ 1 o\c ) | - ( . r . - / t 0 ) 

' X 
C~'F + /.*o 

•r-1. 

/ f ) 
> - /to) 0 T 

j 
& ) ) 

CFC-'F - (0 1) ic~xc 

\FC~XF\ 

= &l ((z* - /to)/>(z. - - d C _ 1 c + 

( / C - ' F - (0 l)){FTC-1F)-\FrC-1c - / ) ) (B.15) 



Appendix C 

C Sources For Programs 

C . l t race .c 

This routine produces the example traces of the functions shown in Figures 5.5, 5.25, 
5.26 and 5.27. The assymetry of these graphs comes from rounding errors in this 

program, which develop assymetrically, as the choleski decompostion starts at the 

Sinclude <math.h> 
Sinclude <stdio.h> 
Sdefine X_range 2.0 
Sdefine Bo_of.points 11 
Sdefine Array_size Ho_of.points+l 
Sdefine Delta.x 2*X_range/(Ho_of_points-l) 
Sdefine Io_of.traces 10 
Sdefino Pi2 6.28318530717958647692528676655900576839433879875 
Sdefine Pi 3.14159265358979323846264338327950288419716939938 

FILE *fopen(),*outfile; 
long i n t seed=1003; 
double m[Array_size][Array.size],u[Array.size][Array.size]; 

/*•****••**••••************••••»**••****** ***************** *** ********* «t«ttttM)tt/ 
/• Generate a uniform [0,x] random variable */ 
/****«*•*•*•**********••**»•*•****•*•*••*******************************************/ 

double uniform(double x) 
{ 
seed=(7S+seed*1741)%65537; 
return(x*seed/65537); 

} 

/**********************************************************************************/ 
/* Using a Uniform[0,l] and a Uniform[2pi] generate a Hormal(0,1) random variable */ 
/*****»****»•*»********************************************************************/ 

left. 

173 
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double normal() 
{ 

return(sqrt(-2.0*log(unifonn(l.0)))*cos(uniform(Pi2))); 
} 
/»»****»«***««»»•••»••••••»»»»*«**«•*•«»«*«««»*»«•»**»*»»«*••««««»«•»**«**»*»»*•»»«/ 
I* Generate a vector of Independent Bormal(O.l) random variables */ 
/****»••**•••»*•»*»**••••••»*••*•••••****•••***••*•••**»•***•**»****»**»*•******•»*/ 

generate(double vec[Array.size]) 
{ 

int 11; 
for(ll=l;ll<=Ho_of.points;ll++> 

vec[ll]=normal(); 
return; 

} 

/»•••**»*»«*«*«««»••»»»*»**••*«*•*»**»*»»»»«••»»«*»»•»»»•»****«**«**••»**«**»*»«*»*/ 
/* Hap theta to i t s "area" equivalent to get compable traces */ 
/•»«•*»«**•»»**»«»»«•»»••»»«••»•••••»«»»«*»«»••»»•«»•»**»*«»«*»«**«***•»•»*»•••*»»«/ 

double thetaa(double theta,int rho.no) 
{ 

svitch(rho.no) 
{ 
case 1 : return(theta); 
case 2 : return(2*sqrt(theta/Pi)); 
case 3 : return(sqrt(Pi/theta)); 
case 4 : return(4*sqrt(Pi/theta)/3); 
} 

} 
/«»•»•»»»•••»•»»»»•••»»•»»••»*»*»•*»•**»«••«•«•»•»«•«»«•»»»»»»«««*»»»»»««««»»»•«»««/ 
/* Output a vector of Honnal(0,U) random variables */ 
/••**•»»**»«»*«••»«•«««««**«««»•«»*•»*»•*•»»«••*»«»••••**«••*••••»••***•••«••••••*«/ 

output(double vec[Array.size],double lam) 
{ 

double t ; 
i n t 11,1; 
for(ll=l;ll<=Ho_of_pointB;ll++) 
{ 

t=lam*(-X_range+(ll-l)*Delta_x); 
f o r ( l = l l + l ;K=Array_size;l++) 

t + = ( u [ l l ] [ l ] * v e c [ l ] ) ; 
f printf(outfile,"X20.10f " , t ) ; 

} 
f p r i n t f ( o u t f i l e , " \ n " ) ; 
return; 

} 

/* Choleski decompose A, into upper triangular matrix B */ 
/*******•*********•••*•***•****•*++•****•*+*++*++*+*•**+++*+*+*•*******+**•*»••••**/ 

choleski(double a[Array_size] [Array_size].double b[Array_size][Array.size]) 
{ 

i n t i , j , k ; 
double t ; 

b [ l ] [ l ] = s q r t ( a [ l ] [ l ] ) ; 
for(j=2;j<=Ho_of.points;j++) 

b [ l ] [ j ] = a [ l ] [ j ] / b [ l ] [ l ] ; 
for(i=2;i<Do_of.points;i++) 

http://rho.no
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t = a [ i ] [ i ] ; 
for(k=l;k<i;k++> 
t-=(b[k][i]«b[k][i]); 

i f ( t > 0 ) 
b [ i ] [ i ] = s q r t ( t ) ; 

else 
b [ i ] [ i ] = 0 ; 

for(j=i+l;j<=Ho_of.points; 
{ 

t = a [ i ] [ j ] ; 
for(k=l;k<i;k++) 

t — < b L k ] [ i ] * b [ k ] t j ] ) ; 
i f ( b [ i ] [i]!»0) 

b [ i ] [ j ] = t / b [ i ] [ i ] : 

else 
b [ i ] [ j ] = 0 ; 

} 
} 

t=a[Ho_of.points][Bo_of.points]; 
for(k=l;k<Ho_of.points;k++) 
t-=(b[k][Ho_of.points]»b[k][Ho.of.points]); 

b[Ho_of.points][Bo_of_points]=sqrt(t); 
return; 

/» Raise 10 to the poser n */ 
/mm********************************************************************************/ 

double t e n d n t n) 
{ 

return(exp(log(10.0)*n)); 
} 

/**********************************************************************************/ 
I* Calculate the covariance betneen Y(x) and Y(y), b=lam, sO=sb=l, muO=0 */ 
/• f o r ''slope'' covariance p2 — n=l; pi — n=2; pl+ — n=3; pc+ — n=4. •/ 
1**********************************************************************************1 

double cov(double x,double y,double th,double lam,int n) 
{ 

svitch(n) 
{ 
case l:return( lam*lam+(l+x*y)*exp(-th*(x-y)*(x-y)) ); 
case 2:return( lam*lam+(l+x*y)*exp(-th*fabs(x-y)) ); 
case 3: 

i f (fabs(x-yXth) 
return( lam*lam+(l+x*y>*(l-fabs(x-y)/th) ); 

else 
return( lam'lam); 

case 4: 
if(fabs(x-y)<(th/2)) 

return( lam*lam+(l+x»y)*(l-6*(x-y)*(x-y)«(l-fabs(x-y)/th)/th/th) ); 
else 
{ 

i f (fabs(x-yXth) 
return( lara*lan>+(l+x*y)*2»(l-fabs(x-y)/th)*(l-fabs(x-y)/th)*(l-fabs(x-y)/th) ); 

else 
return< lam»lam ) ; 

} 
} 

} 

I**********************************************************************************/ 
I* Hain block, produce tables of traces of Y(x), f o r a l l four covariance */ 
/* structures and f o r lam=0.1,1,10, and th-0.1,1,10 */ 
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/**********************************************************************************/ 

main(int argc.char »argv[]) 
{ 

i n t logth,loglam,nnn; 
i n t loopl,loop2,loop3; 
double y[Array.size]; 
double th.lam; 
double temp; 

i f <argc<=l> 
{ 

fprintf(stderr,"BOT EBQUGH FILESXn"); e x i t ( 2 ) ; 
} 

else 
i f ((outf ile=fopen(»++argv,"»,,))==HULL) 
< 

fprintf(stderr,"OUTPUT FILE ERRORXn"); 
e x i t ( 2 ) ; 

} 
for(nnn=l;nnn<5;nnn++) 
for(logth=-l;logth<2;logth++) 

for(loglam=-l;loglam<2;loglam++) 
{ 
th°ten( logth);lam=ten(loglam); 
for(loopl=l;loopl<=Ho_of.points;loopl++) 

for(loop2=l;loop2<=Ho_of.points;loop2++) 
m[loopl][loop2]=cov(-X_range+loopl*Delta_x,-X_range+loop2*Delta_x,thetaa(th,nnn),lam,nnn); 

printf("X2d X2d X2d ",logth,loglam,nnn); 
choleski(m,u); 
for(loopl=l;loopl<=Ho_of.traces;loopl++) 
{ 

generate(y); 
output(y,Ian); 
f p r i n t f ( o u t f i l e , " \ n " ) ; 

} 
p r i n t f ( " \ n " ) ; 

} 
} 

C.2 eqn.c 

This program, was the original program developed to generate optimal designs, and 

is a direct translation of the original FORTRAN77 source, 

•include <stdio.h> 
((include <math.h> 
((define HAX.SIZE 16 
•define PREC 0.00000000001 
((define EHD.COHDITIOH 0.000001 
•define J_ABS(X) ( (X) > 0 ? (X) : -(X) ) 
•define J.HAX(X.Y) ( (X) > (Y) ? (X) : (Y) ) 
•define GDLDED.RATIO 0.61803398874989484820458683436563854 
•define QOLDEH.RATIO.C 0.38196601125010515179541316563436146 
double c[MAX.SIZE][HAX.SIZE],ca[HAX.SIZE][HAX.SIZE], 

cm[HAX_SIZE][HAX.SIZE],y[HAX.SIZE],x[HAX_SIZE],xx[HAX.SIZE], 
c.inv.l[HAX.SIZE],rau,si_0,b,si_b,th,lam,t,si_0_0,si_b_0.mu.star; 
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i n t cp[MAX.SIZE],n,crit_no,mu_no,var_no,fun.no; 
FILE *fopen(),»filo_y,*tile.crit; 
int out.count.count_out,y_flag.crit.flag; 

/«*•»****»•*••*»•*••»•*•»*•*•••»•»»**/ 
/• Protect against errors produced *l 
I* by taking the square root of a */ 
/* negative real */ 
/**•• * **•••/ 

double sqroot(val) 
double v a l ; 
{ 

if(val>=0) 
return(sqrt(val>); 

else 
{ 

printf("SQRT Error % f \ n " , v a l ) ; 
r e t u r n ( s q r t ( - v a l ) ) ; 

} 
} 

/*••* ..*.•*« / 
/* Function to be approximated */ 
/*«»**••»•**»**««**«••**»««*»•*******/ 

double f(double val) 
{ 

SBitch(fun_no) 
{ 
case 1 : return(sin(val/2-.1)); 
case 2 : return((val-0.2)*(val-0.2)*(val-0.2)*(val-0.2)*(val-0.2)» 
(val-0.2)*(val-0.2)»(val-0.2)*(val-0.2)*(val-0.2)*(val-0.2)+0.01977326743); 
case 3 : return((val<0)?l:((val>2)?-l:1-val)); 
case 4 : returnC(val-.5)*(val-.5)*exp(val)); 
case 6 : return((val-.5)*(val-.5)*exp(val)+.1); 
case 6 : return((val-.5)*(val-.5)*exp(val)-.1) ; 
} 

/*»**««««*««*»•«»*»«•»««»«»*««»••»»*«/ 
/• Predictor of Y at x_2 •/ 
/*««»***»**•»«*«*»•»»»»«««•*»*»«•••«»/ 

double yyyyy(double x_2) 
{ 

int 11; 
double p.y.y.c.star.c.inv.l,c_star[MAX_SIZE],c.inv.c_star[HAX_SIZE],tv[NAX.SIZE]; 

f o r ( l l = l ; l l < = n ; l l + + ) 
c_star[ll]=(l+(x_2-mu)«(x[ll]-mu)/si_0)» 

e x p ( - t h * ( x _ 2 - x [ l l ] ) * ( x . 2 - x [ l l ] ) ) ; 
i f ( n = = l ) 

c . i n v _ c _ s t a r [ l ] = c . s t a r [ l ] / c [ l ] [1] ; 
else 

solve_y(n,ca,era,cp,c.star,c_inv_c_star); 
p-y.y=0; 
c_star_c_inv_l=l; 
f o r ( l l = l ; l l < = n ; l l + + ) 
{ 
p_y_y+=c_inv_l[ll]»(tv[ll]=y[ll]-b*(x[ll]-mu)); 
c_star_c_inv_l-=c_inv_c_star[11]; 

} 
p_y_y=p_y_y*c_star_c_inv_l*lani/(l+lam*t)+b«(x_2-mu) ; 
f o r ( l l = l ; l l < = n ; l l + + ) 
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p _ y _ y + = c _ i n v _ c _ s t a r [ l l ] * t v [ l l ] ; 
return(p_y_y); 

} 

/ • •/ 
/• Criterion f o r choosing nes point */ 
/• crit_no=0 Var[X_0/Y]/Var(X_0) */ 
/• =1 (Py(Y)-2+Var[Y/Y])/Var(Y) •/ 
/• =2 Py(Y)"2/Var[Y/Y] •/ 
/* =3 (Py(Y)-2+Var[Y/Y]) */ 
/ •*••••• »/ 

double criterion(double x_2) 
{ 

in t 11; 
double p.y.y,var_y.y,var_y,c_8tar_c_inv_l, 

c.star[HAX_SIZK],c_inv_c_star[HAX_SIZE],tv[HAX.SIZE]; 

for(ll=l;ll<»n;ll++) 
c_star[ll]=(l+(x.2-mu)*(xtll]-mu)/si_0)* 
exp(-th*(x_2-x[ll])»(x_2-x[ll])); 

i f ( n = = l ) 
c _ i n v . c . a t a r [ l ] = c . s t a r [ l ] / c [ l ] [1] ; 

else 
8olve_y(n,ca,cm,cp,c_star,c_inv_c_star); 

if(crit_no==0) 
{ 

c_star_c_inv_l=l; 
p_y_y=l+(x_2-mu)«(x_2-mu); 
f o r ( l l = l ; l l < = n ; l l + + > 
{ 
p.y_y-=c_ inv.c.star[11 ] *c_star [11 ] ; 
c_star_c_inv_l-=c_inv_c_star[11]; 

} 
if(p_y.y<0.0000000000000000000000000001) 

return(O); 
else 

return(c_star_c_inv_l*c_star_c_inv_l/p_y y ) ; 
} 

else 
{ 
P_y_y=0; 
c_star_c_inv_l=l; 
f o r ( l l = l ; l l < = n ; l l + + ) 
< 

P - y - y + = c . i n v . l [ l l ] * ( t v [ l l ] = y [ l l ] - b * ( x [ l l ] - n u ) ) ; 
c _ s t a r _ c _ i n v _ l - = c _ i n v _ c _ s t a r [ l l ] ; 

} 
P_y_y=P-y_y*c_star_c_inv_l»lam/(l+lam*t)+b*(x_2-mu); 
f o r ( l l = l ; l l < = n ; l l + + ) 

p_y_y*=c_inv_c_star[ll]»tv[ll]; 
var_y_y=(var_y=si_0»si_b»(l+(x_2-mu)»(x_2-mu)/si_0+lam))-8i_0«si_b* 

(lara+c_star_c_inv_l*c_star_c_inv_l/(l+lam*t)); 
f o r ( l l = l ; l l < = n ; l l + + > 

var_y_y-=si_0*si_b*c_8tar[ll]»c_inv_c_star[ll]; 
if(var.y.y<0.000000000000000000000000000000001) 
var_y_y=0.000000000000000000000000000000001; 

snitch(crit.no) 
{ 
case 1 : return(-(p_y_y*p_y_y+var_y_y)/var_y); 
case 2 : retum(-p_y_y»p_y_y); 
case 3 : return(-(p_y_y«p_y.y+var_y_y)); 
} 

} 
} 

http://crit.no
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/««**«*««*****»»»»«»«««*««•«*•«*«••«»/ 
/* Finds the maximum value of •/ 
/* c r i t e r i o n from the set */ 
/* {xs+prec,xs+2prec xf-prec} «/ 
/• • •••/ 

double golden(double x.start,double x . f i n i s h .double precision) 
{ 

double max.x.max.y,ptr_y,ptr_x; 
i n t 11,total; 
double Xl,x2,x3,x4,yl,y2 ty3,y4; 

if(fabs(x_8tart-x.finish)<=prociBion) 
return(-999999); 

xl=x_start; 
x4=x_finish; 
x3=GDLDEH.RATI0*x_finish+<]0LDEH.lUTI0_C*x.8tart; 
x2=G0LDEH_RATI0_Ox_finish+OOLDEH_RATIO*x.start; 
y2=criterion(x2); 
y3=criterion(x3); 
y l = c r i t e r i o n ( x l ) ; 
y4=criterion(x4); 
do 
{ 

i f ( J_HAX(yl,y2)>J_HAX(y3.y4) ) 
{x4=x3;y4=y3;x3=x2;y3=y2; 
x2=aQLDEH_RATI0.C*x4+<iOLDEH.RATIO*xl ;y2=critarion(x2) ;} 

else 
{xl=x2;yl=y2;x2=x3;y2=y3; 
x3=00LDEH_RATI0»x4+G0LDED.RATI0_C»xl;y3=criterion(x3);} 

} 
while((x4-xl)>precision); 
if(yl>=y2 ftft yl>=y3 ftft yl>=y4) 

r e t u r n ( x l ) ; 
if(y2>=ylftft y2>=y3 ftft y2>=y4) 

return(x2); 
if(y3>=y2 ftft y3>=yl ftft y3>=y4) 

return(x3); 
if(y4>=y2 ftft y4>=y3 ftft y4>=yl) 

return(x4); 

/ •***.«....*.... .«./ 
/* Finds the maximum value of */ 
/* c r i t e r i o n from the set */ 
/* {sx,sx+prec xf-prec,xf}\ */ 
/* { x . l x.n} •/ 
/»»*••»»««»»««»»•«»»*«*«•««•••«•»•«»•/ 

double maximi2e_x(double start_x.double f i n i s h . x .double precision) 
{ 

double x.max,y_max.x.ptr.y.ptr; 
int 11; 

x_max=golden(start_x,xx[l].precision); 
if(x_max<-10) 
y_max=-99999999; 

else 
y.max=criterion(x_max); 

i f ( n > l ) 
f o r (ll=l;ll<=n-l;11++) 
{ 

x_p t r = g o l d e n ( x x [ l l ] , x x [ l l + l ] . p r e c i s i o n ) ; 
if(x_ptr<-10> 
y_ptr=-99999999; 

else 
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y _ p t r = c r i t e r i o n ( x _ p t r ) ; 
if(y_ptr>y_max) 
{ 
y_max=y_ptr; 
x_max=x_ptr; 

} 
} 

x_ptr°golden(xx[n],finish_x,precision); 
if(x.ptr<-10) 
y_ptr=-99999999; 

else 
y _ p t r = c r i t o r i o n ( x _ p t r ) ; 

if(y_ptr>y_max) 
x_raax=x_ptr; 

return(x.max); 

/*••*«*•««*»»*««»»•***«**•*••»**•*»*»/ 
/• Read in the parameter values and */ 
/* i n i t i a l i z e variables •/ 
/••*•• / 

setupO 
{ 

n=l; 
scanfOld %d %d Xd Xle Xle Xle Xle Xle", 

ftcrit.no,Smu.no,ftvar.no.ftfun.no, 
ftmu,ftsi.O,ftb,ftsi.b,tth); 

lam=b*b/si_b; 
si_b_0=si_b; 
si_O_0=si_O; 
c [ l ] [ l ] = c _ i n v _ l [ l ] = t = l ; 
y [ l ] = f (xx[l]=x[l]=mu); 
return; 

} 

/**************•*********************/ 
/* Compute Py(X.O) */ 
/• update mu_0 */ 
/* mu_no=l put mu_0 = Py(X_0) */ 
/* =2 put mu.O = arg min C r i t ( x ) */ 
/* =something else = do nothing */ 
/* update b */ 
/* mu_no=0 do nothing */ 
/* !=0 put b = Py(B(rau_0)) */ 
/* update Si.O and Si.b •/ 
/* var_no=0 do nothing */ 
/« =1 put Si.O = Var[X_0/Y] */ 
/• Si.b = Var[b/Y] •/ 
/* =2 put Si.O and Si.b in same •/ 
/* r a t i o but so that Si.OSi.b = s */ 
/.........,..»*.,........,. / 

i n t compute.meanO 
{ 
double temp,tvl[MAX.SIZE],tv2[HAX.SIZE],ratio.O,ratio_b, 

d[HAX.SIZE],c_inv.d[HAX.SIZE].si.O.si.b; 
i n t 11,12; 

temp-mu.star=mu; 
f o r ( l l = l ; l l < = n ; l l + + ) 

m u _ s t a r - = c _ i n v _ l [ l l ] * l a m * ( y [ l l ] / b - x [ l l ] ) ; 
mu_8tar/=(l+lam*t); 
switch(mu.no) 
{ 
case 2 : {mu=maximize_x(-3.0,3.0,PREC);break;} 

http://ftcrit.no
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case 1 : {mu=mu_star;break;} 
default : {printf("XlO.5f \n",mu.star);break;} 
} 

if(mu_no!=0) 
{ 

f o r ( l l = l ; l l < = n ; l l + + ) 
tvl[lt]=y[ll]-l>»<x[ll]-Biu_atar); 

i f ( n = = l ) 
t v 2 [ l ] = t v l [ l ] ; 

else 
solve.ydi,ca,cm,cp (tvl,tv2>; 

f o r ( l l = l ; l l < = n ; l l + + ) 
b+=(x[ll]-temp)««xp(-th*<x[ll]-nu)*(x[ll]-itiu))*tv2[ll]/si_0; 

lara=b*b/si_b; 
f o r ( l l = l ; l l < = n ; l l + + ) 

for(tvl[ll]=12=l;12<=n;12++) 
c [ l l ] C l 2 ] = ( l * ( x [ l l ] - m u ) * ( x [ 1 2 ] - m u ) / 8 i . O ) 

• e x p ( - t h * ( x [ l l ] - x [ 1 2 ] ) * ( x [ l l ] - x [ 1 2 ] ) ) ; 
if(solve_0(c,n,ca,cm,cp)) 

r e t u r n ( l ) ; 
else 
{ 

solve.y(n,ca,cm,cp,tvl,c_inv_l); 
t=0; 
f o r ( l l = l ; l l < = n ; l l + + ) 

t + = c _ i n v _ l [ 1 1 ] ; 
} 

} 
if(var_no>0) 
{ 
ratio_0=l/(l+lam»t); 
ra t i o _ b = l ; 
terap=0; 
f o r ( l l = l ; l l < = n ; l l + + ) 

d [ l l ] n ( x [ l l ] - r a u ) * e x p ( - t h * ( x [ l l ] - m u ) * ( x [ l l ] - m u ) ) / s q r o o t ( s i . O ) ; 
solve_y(n,ca,cra,cp,d,c_inv_d); 
f o r ( l l = l ; l l < = n ; l l + + ) 
{ 
ratio_b-=d[ll]»c_inv_d[ll] ; 
temp+=c_inv_d[11]; 

} 
ratio_b+=lam*temp«tomp*ratio_0; 
i f (var_no=l) 
{ 
si_b=si_b_0«ratio_b; 
si_0=si_0_0*ratio_0; 

} 
else 
{ 

if(n<2) 
si_0.8i_b=8i.0*Bi_b; 

else 
{ 

si_0_si_b=temp=0; 
f o r ( l l = l ; l l < = n ; l l + + ) 

t e m p + = x [ l l ] - y [ l l ] / b ; 
temp/=n; 
f o r ( l l = l ;ll<=n;ll++) 

t v l [ l l ] = ( x [ l l ] - y [ l l ] / b - t e m p ) ; 
solve_y(n,ca,cm,cp,tvl,tv2); 
f o r ( l l = l ;ll«=n;ll++) 

si_0_si_b+=tvl[ll]»c_inv_l[ll]; 
si_0_si_b*=-si_0_si_b/t; 
f o r ( l l = l ;ll<=n;ll++) 

s i _ 0 _ s i _ b + = t v 2 [ l l ] * t v l [ l l ] ; 
si_0_si_b/=(b*b*(n-D) ; 
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} 
ai_b=sqroot(si_0_si_b*ratio_b/ratio_0*si_b_0/si_0_0) 
if(si_b==0) 

8i_0_si_b=(si_0=8i_0_0)»(si_b=8i_b_0); 
8i_0=J_ABS(si_0_Bi_b/si_b); 

} 
lam=b*b/si_b; 
f o r ( l l = l ; l l < = n ; l l + + ) 

for(tvl[ll]=12=l;12<=n;12++) 
c[ l l ] [ 1 2 ] = ( l - K x [ l l ] - i n u ) * ( x [ 1 2 ] - n i u ) / s i _ 0 ) 
•exp(-th«(x[ll]-x[12])*(x[ll]-x[12])); 

if(solve_0(c,n,ca,cm,cp)) 
r a t u r n ( l ) ; 

else 
{ 

solve_y(n,ca,cm,cp,tvl,c_inv_l); 
t=0; 
f o r ( l l = l ; l l < = n ; l l + + ) 

t+=c_inv_l[11]; 
} 

} 
return(O); 

} 

/««»»«««»•«•««*••••••»«••»»*«««•••*••/ 
/* Add x_2 to the design and */ 
/* evaluate f(x_2) */ 
/*«**»*»»•»«»•«•••«**•««*»*««#»««»**•/ 

i n t add.x(double x_2) 
{ 

i n t ptr,11,12,error_flag; 
double tv[HAX.SIZE]; 

i f (x_2>xx[n]) 
xx[n+l]=x_2; 

else 
{ 

ptr=n; 
for(ptr=n;(ptr>0 ftft x _ 2 < x x [ p t r ] ) ; p t r — ) 

x x [ p t r + l ] = x x [ p t r ] ; 
xx[ptr+l]=x_2; 

} 
n++; 
for(ll=l;ll<=n-l;11++) 

c[n] [ l l ] = c [ l l ] [ n ] = (l+(x_2-mu)»(x[ll]-mu)/si_0) 
*exp(-th*(x_2-x[ll])»(x_2-x[ll])); 

c[n][n]=l+(x_2-mu)*(x_2-mu)/si_0; 
x[n]=x_2; 
y[n]=f(x_2); 
f o r ( H = l ;ll<=n;ll++) 

t v [ l l ] = l ; 
if(!(error.flag=solve_0(c,n,ca,cra,cp))) 
{ 

solve_y(n,ca,cm,cp,tv,c_inv_l); 
t=0; 
f o r ( l l = l ; l l < = n ; l l + + ) 

t + = c _ i n v _ l [ l l ] ; 
} 

r e t u r n ( e r r o r . f l a g ) ; 
} 
/»»*•»•»«*•••*•»«•»»••*»*»*««»»*•«•••/ 
/* Matrix inversion routines */ 
/* preliminary routine — solve.0 */ 
/* solve for vector — solve.y */ 
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/**»••**«•••«*««»«»»»•»»*»»»*•««*•*«•/ 

i n t solve_0(mat .mat.size ,mat_a,mat_m ,mat_p) 
double mat[MAX.SIZE][HAX.SIZB], mat.a[MAX.SIZE][MAX.SIZE], mat_m[HAX_SIZE][MAX.SIZE]; 
in t mat.size, mat.p[HAX_SIZE]; 

{ 
double s[HAX_SIZE],d_ptr,d_8tar; 
i n t 11,12,13,ptr,temp_i,roB8[HAX_SIZE] ,error_flag=0; 

f o r ( l l = l ; ll<=mat_size; 11++) 
{ 

s[(roB8[ll]"ll)]«"i8.bs(mat_a[ll] [ l ] = m a t [ l l ] [1] ); 
for(12=2; 12<=mat_size; 12++) 

if( f a b s ( m a t _ a [ l l ] [ 1 2 ] = m a t [ l l ] [ 1 2 ] ) > s [ l l ] ) 
s[11]=J_ABS (mat [11] [12] ); 

i f ( s [ l l ] = = 0 ) 
{ 

e r r o r . f l a g = l ; 
break; 

} 
} 

i f ( e r r o r _ f l a g ) 
r e t u r n(error_flag); 

f o r ( l l = l ; ll<=mat_size-l; 11++) 
{ 

d_ptr=fabs(mat_a[roBs[(ptr=ll)]][11])/s[rows[11]]; 
f o r ( 1 2 = l l + l ; 12<=mat.size; 12++) 

if((d_star=fabs(mat_a[ross[12]][11])/s[rows[12]])>d_ptr) 
{ 

d_ptr=d_star; 
ptr=12; 

} 
if(mat_a[roBs[ptr]] [11]==0) 

{ 
er r o r _ f l a g = l ; 
break; 

> 
i f < ( m a t _ p [ l l ] = p t r ) ! = 1 1 ) 
{ 

temp_i=rons[ll]; 
ross[ll]°roHs[ptr] ; 
rows[ptr]=temp_i; 

} 
f o r ( 1 2 = l l + l ; 12<=mat.size; 12++) 
{ 

mat.m[roBS[12]][11]=mat_a[roBS[12]][11]/mat.a[ross[11]][11]; 
f o r ( 1 3 = l l + l ; 13<=raat_size; 13++) 

raat_a[roBs[12]][13]-=(mat_m[rows[12]][ll]*mat_a[roBs[ll]][13]); 
} 

> 
i f ( e r r o r . f l a g ) 

r e t u r n ( e r r o r . f l a g ) ; 
return(mat_a[roBS[mat.size]][mat.size]==0); 

} 
solve.y(mat.size,mat.a,mat_m,mat_p,rhs.solution) 

double mat.a[] [MAX.SIZE] , mat_m[] [MAX.SIZE] , r h s [ ] , s o l u t i o n n ; 
i n t mat.size, mat.p[] ; 

{ 
double rhs_a[HAX_SIZE]; 
i n t temp_i,ll,12,ptr,roBs[HAX_SIZE]; 

f o r ( l l = l ; ll<=mat_size; 11++) 
r h s _ a [ ( r o B s [ l l ] = l l ) ] = r h s [ l l ] ; 
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f o r ( l l = l ; ll<=mat_siz8-l; 11++) 
{ 

i f ( ( p t r = m a t _ p [ l l ] ) ! = l l ) 
{ 
temp_i=ro»s[ll]; 
roBB[ll]=roBs[ptr] ; 
roB8[ptr]=temp_i; 

} 
f o r ( 1 2 = l l + l ; 12<«mat_size; 12++) 

rh8_a[rows[12]]-=inat.ia[roii8[12]] [ l l ] * r h 8 _ a [ r o s s [ l l ] ] ; 
} 

solution[mat.size] Brhs_a[rose[mat.size]]/mat.a[rows[mat.size]][mat.size]; 
f o r ( l l = m a t _ s i z e - l ; 11>=1; 11 — ) 
{ 

s o l u t i o n [ l l ] n r h 8 _ a [ r o o s [ l l ] ] ; 
f o r ( 1 2 = l l + l ; 12<=mat_size; 12++) 

sol u t i o n [ l l ] - = m a t _ a [ r o B 8 [ l l ] ] [12]*solution[12] ; 
solution[ll]/°mat_a[roHs[ll]][11]; 

} 
return; 

/*•*»«»*•»**•*»»***••••**••********»*/ 
/* p r i n t value to FILE * f p , i n ross */ 
/• of f i v e , f o r readability */ 
/•»***»»••»•••»««•»»•*»•**»••***»*»««/ 

f i l e . p r i n t . f ( F I L E *fp,double value) 

{ 
fpr i n t f ( f p , " H l 5 . 7 f ".value); 
if((++out_count)==5) 
{ 

f p r i n t f ( f p , " \ n " ) ; 
out_count=0; 

} 
} 

/*»**•**»**»«»•*•»»*»«»«*»»»**»»«»»•*/ 
/• header routine to l i n k altogether*/ 
/ / 
main(argc,argv) 

i n t argc; 
char *argv[] ; 

{ 
i n t loop.finish.error; 
double x.loop; 
char runf; 
i f (argc == 1) 

y.flag=crit_flag=0; 
else 
{ 

switch((*++argv)[0]) 
{ 
case 'y' : {y.flag=l;crit_flag=0;break;} 
case 'c' : {y.flag=0;crit.flag=l;break;} 
case 'b' : {y.flag=crit_flag=l;break;} 
default : {y.flag=crit_flag=0;break;} 
} 

> 
— a r g c ; 
i f (y_flag==l) 
{ 

i f ( ! ( — a r g c ) I I ( f i l e . y = f open(»++argv, "s")) == BULL) 
{ 

f p r i n t f (stderr,"OUTPUT FILE CREATION ERROR: y.d\n" ,argc) ; 
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e x i t ( 2 ) ; 
} 

} 
i f ( c r i t _ f l a g = l ) 
{ 

i f ( ! ( — a r g c ) I I ( f i l a . c r i t = fopen(*++argv,"w")) == HULL) 
{ 

fprintf(stderr,"OUTPUT FILE CREATIOH ERROR : %d\n",argc); 
e x i t ( 2 ) ; 

} 
} 

do 
{ 
setupO ; 
if(crit_no>=0) 
{ 

p r i n t f ("Criterion.no: %d Hean.adj.no: Xd Var_adj.no: %d Function.no: y.d\n" , 
c r i t . n o , rou.no, var.no, fun.no); 

p r i n t f ("Hu : „6.3f Si.O: y.6.3f b: X6.3f Si.b: 7.6.3f Theta: %6. 3f \n" ,mu ,si.0 ,b ,si.b, t h ) ; 
p r i n t f (" X.n Y.n Nu.O b Si.O Si.b\n") ; 
i f ( y . f l a g ) 
{ 

count.out=out_count=0; 
for(x_loop=-3;x_loop<=3.001;x_loop+=.02) 

f i l e . p r i n t . f ( f i l e . y . x . l o o p ) ; 
f p r i n t f ( f i l e . y , " \ n " ) ; 
count_out=out_count=0; 
for(x_loop=-3;x.loop<=3.001;x_loop+=.02) 

f i l e . p r i n t . f ( f i l e . y , f ( x . l o o p ) ) ; 
f p r i n t f ( f i l e _ y , " \ n " ) ; 

} 
i f ( c r i t . f l a g ) 
{ 

count.out=out_count=0; 
for(x_loop=-3;x_loop<=3.001;x_loop+=.02) 

f i l e . p r i n t . f ( f i l e . c r i t , x . l o o p ) ; 
f p r i n t f ( f i l e . c r i t , " \ n " ) ; 

} 
for(loop=l;loop<=HAX_SIZE-2;loop++) 
{ 
if(error°compute_mean()) 
break; 

else 
{ 

printf("X2d Xl2.7f '/U2.7f y.l2.7f '/.12.7f */.12.7f %12.7f\n", 
»,x[n],y[n],mu,b,si_0,si_b); 

i f ( y . f l a g ) 
{ 

count.out=out.count=0; 
for(x_loop=-3;x_loop<=3.001;x_loop+=.02) 

f i l e . p r i n t . f ( f i l e . y , y y y y y ( x . l o o p ) ) ; 
f p r i n t f ( f i l e . y , " \ n " ) ; 

} 
i f ( c r i t . f l a g ) 
{ 

count.out=out_count=0; 
for(x_loop=-3;x_loop<=3.001;x_loop+=.02) 

f i l e . p r i n t . f ( f i l e . c r i t , c r i t e r i o n ( x _ l o o p ) ) ; 
f p r i n t f ( f i l e . c r i t , " \ n " ) ; 

} 
i f (finish=(J.ABS(y[n] XEBD.COHDITIOH)) 

break; 
else 
{ 

i f (crit.no==6) 
error=99*add_x(mu_star); 

http://Criterion.no
http://Hean.adj.no
http://Var_adj.no
http://Function.no
http://crit.no
http://rou.no
http://var.no
http://fun.no
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else 
{ 

i f (mu_no=2) 
error=2*add_x(mu); 

else 
error=3*add_x(maximize_x(-3.0,3.0,PREC)) ; 

} 
} 

i f ( e r r o r ) 
break; 

} 
} 

i f ( e r r o r ) 
p r i n t f ("Stopped due to singul a r i t y e r r o r W ) ; 

else 
{ 

i f ( i f i n i s h ) 
{ 

if(error=4*compute_mean()) 
break; 

else 
printf("X2d %12.7f Xl2.7f y,12.7f %12.7f %12.7f y.l2.7f \n" 

n,x[n],y[n],mu,b ,si_0,si_b); 
i f ( y . f l a g ) 
{ 

count_out-out_count=0; 
for(x_loop=-3;x_loop<=3.001;x_loop+=.02) 

f i l e . p r i n t _ f ( f i l e _ y , y y y y y ( x _ l o o p ) ) ; 
f p r i n t f ( f i l e _ y , " \ n " ) ; 

} 
i f ( c r i t . f l a g ) 
{ 

count_out=out_count=0; 
for(x_loop=-3;x_loop<=3.001;x_loop+=.02) 

f i l e . p r i n t _ f ( f i l e . c r i t , c r i t e r i o n ( x _ l o o p ) ) ; 
f p r i n t f ( f i l e . c r i t , " \ n " ) ; 

} 
} 

} 
} 

i f ( e r r o r ) 
{ 

p r i n t f ( " E r r o r code : Xd\n",error); 
break; 

} 
} 

while(crit_no>=0); 
} 

C.3 Newer C sources 

The C source is now split into a series of individual blocks which perform various 

different tasks 
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C.3.1 prob.h 

General include file for new code 

(include <stdio.h> 
•include <math.h> 
•define MAX.SIZE 16 
•define SIZE.HAX 40 
•define PREC 0.00000000001 
•define EHD.COHDITIQH 0.000001 
•define J_ABS(X) ( (X) > 0 ? (X) : -(X) ) 
•define J_HAX(X,Y) ( (X) > (Y) ? (X) : (Y) ) 
•define OOLDEi.RATIO 0.61803398874989484820458683436563854 
•define QOLDEH.RATIO.C 0.38196601125010616179541316563436146 
•define PI 3.1415926535897932384626433832795028 
•define SQRT2PI O.39894228O40143267793994605993438163 
typedef double MATRIX[MAX.SIZE][MAX.SIZE]; 
typedef double VECd[MAX.SIZE]; 
typedef double VECD[SIZE_MAX]; 
typedef double MATD[SIZE.MAX][SIZE.MAX]; 
typedef i n t VECi[MAX.SIZE]; 
typedef struct matrix 
{ 
MATRIX m; 
in t ross; 
i n t columns; 

} HAT; 
typedef struct inv 
{ 
MATRIX a; 
MATRIX d; 
VECi p; 

} 
IHV; 
typedef struct mat.inv 
{ 
HAT mi 
IHV i ; 

> 
MAT.IHV; 

double rho(double,double); 
void setupdnt* , i n t * , i n t * , int«) ; 
i n t add.x(double.int); 
void file_print(FILE»,double,int*); 
void f i l e _ p r i n t . x ( F I L E * ) ; 
void f i l e . p r i n t . f ( F I L E * , i n t ) ; 
void f i l e _ p r i n t _ c r i t ( F I L E * , i n t ) ; 
void file_print.y(FILE»); 
double f(do u b l e , i n t ) ; 
double P.Y(double); 
double Cov.XO.Y(double); 
double Cov_B_B(double.double); 
double Cov_B_Y(double,double); 
double Cov_Y_Y(double.double); 
void PY_X0(double*.double*); 
void PY_B(double,double.double*.double*); 
void PY_Y(double,double.double*.double*); 
void PY(double.double,double, 

double*.double*, 
double*.double*, 
double*.double*.double*, 
double* .double*,double*, 
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double*,double*.double*.double*, 
double*.double*.double*); 

void PYV(VECD,int,double,VECD,VECD,HATD.HATD,HATD,VECD,VECD.NATO); 
void display(NAT*); 
int solve_0(HAT_IHV*); 

void solve_y(KAT_IHV*,VECd,VECd); 
void solve_m(HAT_IHV*,HAT*1HAT*); 
double crit e r i o n ( d o u b l e , i n t ) ; 
double golden(double.double.double,int); 
double maximize.x(double.double.double,int); 
void compute.meanO ; 

in t n; 
double th ,rau,s0,b,ab; 
HAT.IBV v; 
VECd x.xx.y; 
VECd c l ; 
double t,mumu,mu_t,aOsO_t; 

FILE * f openO , * f i l e _ y , * f i l e . c r i t ; 

C.3.2 mat2.c 

Routines to display a matrix, display (M); invert a square matrix, solve_0(M); solve 

the set of linear equation Mx = y, solve_y(M,y,x); and solve the set of linear 

equation MA — B, solve_m(M,B,A). The matrix and vector types are denned in 

prob.h, 

tinclude "prob.h" 

void display(HAT *m) 
{ 

int 11,12; 

for(l1=1;ll<=m->ross;ll++) 
{ 

for(12=l;12<=m->column8;12++) 
p r i n t f ( " %14.2f",m->m[ll][12]); 

p r i n t f ( " \ n " ) ; 
} 

} 

i n t solve_0(HAT_I8V *m) 
{ 
double s[MAX_SIZE],d_ptr.d.star; 
in t 11,12,13,ptr,temp.i,roiis[HAX_SIZE] .error.flag=0; 

if(m->m.roH8==l) return(!m->m.m[l][1] ); 
f o r ( l l = l ; ll<=m->m.roB8; 11++) 
{ 

s [ ( r o B 8 [ l l ] = l l ) ] = f a b s ( m - > i . a [ l l ] [l]=m->m.m[ll] [1]) ; 
for(12=2; 12<=in->ia. rows; 12++) 

if(faba(m->i.a[ll][12]=ra->m.ra[ll][12])>s[ll]) 
s [ l l ] = f abs(m->m.m[ll] [12] ); 

i f ( a [ l l ] = = 0 ) 
{ 
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e r r o r . f l a g = l ; 
break; 

} 
} 

i f ( e r r o r . f l a g ) 
{ 

display(_(m->m)); 
r e t u r n ( e r r o r _ f l a g ) ; 

} 
f o r ( l l = l ; ll<=ra->m.ross-l; 11++) 
{ 

d _ p t r = f a b s ( m - > i . a [ r o B s [ ( p t r = l l ) ] ] [ 1 1 ] ) / s [ r o w s [ 1 1 ] ] ; 
f o r ( 1 2 = l l + l ; 12<-m->m.roBs; 12++) 

i f ( ( d _ s t a r = f abs(i_->i .a[roB8[12]] [11] )/s[rows[12]] ) > d _ p t r ) 
{ 

d_ p t r = d _ s t a r ; 
ptr=12; 

} 
i f ( m - > i . a [ r o B s [ p t r ] ] [ 1 1 ] = = 0 ) 

{ 
e r r o r . f l a g = l ; 
break; 

} 
i f ( ( m - > i . p [ l l ] = p t r ) ! = l l ) 
{ 

t e m p _ i = r o B s [ l l ] ; 
roBs[ll]°roBs[ptr] ; 
ro B S [ p t r ] = t a r a p _ i ; 

} 
f o r ( 1 2 = l l + l ; 12<=m->ra.roBs; 12++) 
{ 

m - > i . d [ r o B s [ 1 2 ] ] [ l l ] = m - > i . a [ r o B s [ 1 2 ] ] [ l l ] / m - > i . a [ r o B s [ l l ] ] [ l l ] ; 
f o r ( 1 3 = l l + l ; 13<=m->m.rose; 13++) 

m->i.a[roB S[12]][13]-=(m->i.d[ross[12]][11]»m->i.a[roas[ll]] [13]); 
} 

} 
i f ( e r r o r . f l a g ) 
{ 

display(4(m->m)); 
r e t u r n ( e r r o r _ f l a g ) ; 

} 
error.flag=(m->i.a[rOBB[m->m.rose]][m->m.rows]==0); 
i f ( e r r o r . f l a g ) 

d i splay(_(m->ra)); 
r e t u r n ( e r r o r . f l a g ) ; 

v o i d solve.yOfAT.IHV •ra.VECd rhs.VECd s o l u t i o n ) 
{ 
VECd rhs.a; 
i n t temp.i,ll,12,ptr,roBs[HAX_SIZE] ; 

if(m->m.roBS==l) 
s o l u t i o n [ l ] = r h 8 [ l ] / m - > m . m [ l ] [ l ] ; 

else 
{ 

f o r ( l l = l ; ll<=m->m.roBs; 11++) 
r h 8 _ a [ ( r o B s [ l l ] = l l ) ] = r h s [ l l ] ; 

f o r ( l l = l ; ll<=m->m.roBs-l; 11++) 
{ 

i f ( ( p t r = r a - > i . p [ l l ] ) ! = l l ) 
{ 

t e m p _ i = r o B 8 [ l l ] ; 
r o B s [ l l ] = r o B s [ p t r ] ; 
r o B S [ p t r ] - t e m p . i ; 

} 
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f o r ( 1 2 = l l + l ; 12<=m->m.rows; 12++) 
r h s _ a [ r o w s [ 1 2 ] ] - = m - > i . d [ r o B B [ 1 2 ] ] [ l l ] * r h s _ a [ r o w s [ l l ] ] ; 

} 
8olution[m->m.roBs]=rhB_a[roBs[m->ni. ro»s]]/m->i . a[roBs[m->m.roBs]] [m->m. rose] 
for(ll=m->in.roBB-l; 11>=1; 11 — ) 
{ 

solution[ll]°rhB_a[roBs[ll]]; 
f o r ( 1 2 = l l + l ; 12<=o->m.roas; 12++) 

s o l u t i o n [ l l ] - = m - > i . a [ r o B s [ l l ] ] [ 1 2 ] • s o l u t i o n [ 1 2 ] ; 
s o l u t i o n [ l l ] / = a - > i . a [ r o B 8 [ l l ] ] [11]; 

} 
} 

r e t u r n ; 
} 

v o i d solve_m(HAT_IHV »m, HAT * r h s , HAT ' s o l u t i o n ) 
{ 

i n t temp_i,ll,12,13,ptr,roBs[HAX_SIZE]; 
double rhs_m_a[HAX_SIZE][HAX.SIZE] ; 
i f (ra->m. roB8"">l) 

f o r ( l l = l ;ll<=rh8->column8;ll++) 
8 o l u t i o n - > n [ l ] [ l l ] = r h s - > m [ l ] [ll]/m->ra.m[l] [1] ; 

els e 
{ 

f o r ( l l = l ; ll<=m->m.roBs; 11++) 
{ 

r o B s [ l l ] = l l ; 
f o r ( 1 2 = l ; 12<=rhs->columns; 12++) 

r h s . m _ a [ l l ] [ 1 2 ] = r h s - > m [ l l ] [12] ; 
} 

f o r ( l l = l ; ll<=m->in.roB8-l; 11++) 
{ 

i f ( ( p t r = r a - > i . p [ l l ] ) ! = l l ) 
{ 

t e m p _ i = r o B s [ l l ] ; 
r o B 8 [ l l ] = r o B B [ p t r ] ; 
Toss[ptr]=temp_ i ; 

} 
f o r ( 1 2 = l l + l ; 12<=m->m.ross; 12++) 

f o r ( 1 3 = l ; 13<°rhs->columns; 13++) 
r h s . m . a [ r o B 8 [ 1 2 ] ] [ 1 3 ] - = ( m - > i . d [ r o B s [ 1 2 ] ] [ l l ] * r h s _ m _ a [ r o B s [ l l ] ] [ 1 3 ] ) ; 

} 
f o r ( 1 3 = l ; 13<=rhs->columns; 13++) 

8olution->m[m->m.roBs][13]=rhs_m_a[roBs[m->m.rows]] [13] 
/m->i.a[roB8[m->ra.roBs]][m->ra.rows]; 

f o r ( 1 3 = l ; 13<=rhs->columns; 13++) 
for(ll=m->m.roB8-l; 11>=1; 11 — ) 
{ 

8 o l u t i o n - > m [ l l ] [ 1 3 ] = r h s _ m _ a [ r o B s [ l l ] ] [13] ; 
f o r ( 1 2 = l l + l ; 12<=ra->m.rows; 12++) 

s o l u t i o n - > m [ l l ] [ 1 3 ] - = ( m - > i . a [ r o w s [ l l ] ] [ 1 2 ] * s o l u t i o n - > m [ 1 2 ] [ 1 3 ] ) ; 
B o l u t i o n - > m [ l l ] [ 1 3 ] / = m - > i . a [ r o w s [ l l ] ] [ l l ] ; 

} 
} 

solution->roBS=rhs->roBs; 
solution->columns=rhs->column8; 
r e t u r n ; 
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C.3.3 rhol.c, rho2.c, rho3.c, rho4.c and covl.c 

C sources for the "slope" correlation function p(-) - r h o l . c,... , r h o l . c; and the 

process covarince - c o v l .c. 

r h o l . c — p2(x) 

•include "prob.h" 

double rho(double xa,double xb) 
{ 

return(exp(-th*(xa-xb)*(xa-xb))); 
> 

rho2 . c — pi(x) 

•include "prob.h" 

double rho(double xa,double xb) 
{ 

double xabs; 
xabs=(xa>xb?(xa-xb):(xb-xa)) 
return(exp(-th*xabs)); 

} 

rho3.c - pi+(x) 

•include "prob.h" 

double rho(double xa,double xb) 
{ 
double xabs; 
xabs=(xa>xb?(xa-xb):(xb-xa))/th; 
if(xabs>l) return(O) 

else return(l-xabs); 
} 

rho4.c - pc+{x) 

•include "prob.h" 

double rho(double xa,double xb) 
{ 

double xabs; 
xabs=(xa>xb?(xa-xb):(xb-xa))/th; 
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if(xabs>l) return(O) 
else if(xabs<.5) return(l-6*xab8*xabs*(l-xabs)); 
else return(2*(l-xabs)*(l-xabs)*(l-xabs)); 

c o v l . C 

•include "prob.h" 

double P.Y(double xxx) 

return(b*(xxx-nm)) ; 

double Cov.XO.Y(double xxx) 

return(-b*80*s0); 

louble Cov_B_B(double xxx,double xxs) 

return(rho(xxx,xxs)*sb*sb); 

louble Cov_B_Y(double xxx,double xxs) 

return((xxx-mu)*rho(xxx,xxs)*sb*sb); 

louble Cov_Y_Y(double xxx,double xxs) 

return((sO*sO+(xxx-mu)*(xxs-mu))*rho(xxx,xxs)*sb*sb+sO*sO»b»b); 

C.3.4 golden, c 

Routines to find the maxima, of a function which is unimodal golden; or multimodal, 

but where we know points between which it is unimodal maximize_x. 

(include "prob.h" 

double golden(double x.start.double x.finish.double precision,int c r i t . n o ) 
{ 

double max_x,max_y,ptr_y,ptr.x; 
i n t 11,total; 
double xl,x2,x3,x4,yl,y2,y3,y4; 

if(fabs(x_start-x.finish)<=precision) 
return(-999999); 

x l B x _ s t a r t ; 
x4=x_finish; 
x3=G0LDEH_RATI0«x_finish+O0LDE_.RATI0_C*x_start; 
x2=G0LDEH_RAT10_C*x_finish+G0LDEH_RATIO*x_start; 
y2=criterion(x2,crit.no); 

http://crit.no
http://crit.no
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y3=criterion(x3,crit.no); 
y l = c r i t e r i o n ( x l . c r i t . n o ) ; 
y4=criterion(x4.crit.no); 
do 
{ 

i f ( J_HAX(yl,y2)>J_HAX(y3,y4) ) 
{x4=x3;y4=y3;x3=x2;y3=y2; 
x2=a0LDEH_RATI0_C*x4+a0LDED_RATI0*xl;y2=criterion(x2,crit.no);} 

else 
{Xl"»x2;yl=y2;x2=x3;y2=y3; 
x3°00LDEH.RATI0»x4+a0LDED.RATI0_C»xl;y3=criterion(x3,crit.no);} 

} 
«hile((x4-xl)>precision); 
if(yl>=y2 Aft yl>=y3 At yl>=y4) 

r e t u r n ( x l ) ; 
if(y2>=ylft* y2>=y3 ft* y2>=y4) 

return(x2); 
if(y3>=y2 kk y3>=yl kk y3>=y4) 

return(x3); 
if(y4>=y2 ftft y4>=y3 kk y4>=yl) 

return(x4); 

/*»»»«»•»•«»•••••»••»«••»*•»**•»*•»••/ 
/• Finds the maximum value of */ 
/* c r i t e r i o n from the set •/ 
I* {sx,sx+prec,... ,xf-prec,xf}\ */ 
/* { x . l , . . . ,x.n} */ 
/»»•«*•*•»»»»•*•*«**»*»•««•»••«»*»*»«/ 

double maximize_x(double sta r t . x .double finish.x.double precision, i n t c r i t . n o ) 
{ 

double x.max.y.max.x.ptr.y.ptr; 
i n t 11; 

x_max=golden(start_x,xx[l].precision,crit.no); 
if(x.max<-10) 
y_max=-99999999; 

else 
y_max»criterion(x_max,crit.no); 

i f ( n > l ) 
f or(ll=l;ll<=n-l;11++) 
{ 

x_p t r = g o l d e n ( x x [ l l ] , x x [ l l + l ] . p r e c i s i o n . c r i t . n o ) ; 
if(x.ptr<-10) 
y.ptr=-99999999; 

else 
y _ p t r = c r i t e r i o n ( x _ p t r , c r i t . n o ) ; 

if(y_ptr>y_raax) 
{ 
y.max=y_ptr; 
x_max=x_ptr; 

} 
} 

x_ptr=golden(xx[n].finish.x.precision,crit.no); 
if(x.ptr<-10) 
y_ptr=-99999999; 

else 
y _ p t r = c r i t e r i o n ( x _ p t r . c r i t . n o ) ; 

if(y_ptr>y_max) 
x_max=x_ptr; 

return(x.max); 
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C.3.5 update!., c, update2.c, update3.c and update4.c 

Routines to compute the new estimates of A'o, B(-), Y(-), and there variances. 

u p d a t e l . c - E x t e n d e d model 

Sinclude "prob.h" 

v o i d PY_XO(double •mean, double »var) 
{ 
*mean=mu; 
*var=sO*sO; 
r e t u r n ; 

} 

double det3(double a l l , double a21, double a31, 
double a l 2 , double a22, double a32, 
double a l 3 , double a23, double a33) 

{ 
return(all*a22*a33+a21*a32*al3+a31*al2*a23-

all*a32*a23-a21*al2*a33-a31»a22*al3); 
} 
v o i d PY_B(double xxx, double xxs, double »mean, double *cov) 
{ 
VECd Vl,v2,v3,v4; 
i n t i ; 
double det2; 
double rail,ml2 ,m22,o31,ra32,pl3,p23,p33,vl3,v23,v33; 

f o r ( i = l ; i < = n ; i + + ) 
{ 

v l [ i ] = l ; 
v 3 [ i ] = x [ i ] ; 

> 
s o l v e _ y ( 4 v , v l , v 2 ) ; 
s o l v e _ y ( 4 v , v 3 , v 4 ) ; 
mll=n>12=m22=pl3=p23=0; 
f o r ( i = l ; i < = n ; i + + ) 
{ 
mll+°v2[i]; 
m l 2 + = v 4 [ i ] ; 
m 2 2 + = ( v 4 [ i ] * v 3 [ i ] ) ; 
p l 3 + = ( v 2 [ i ] * y [ i ] ) ; 
p23+=(v4[i]»y[i]); 

} 
det2=mll*m22-ml2*ml2; 
f o r ( i = l ; i < = n ; i + + ) 
{ 

vl[i]°(xxx-mu)*rho(xxx,xx8); 
v 3 [ i ] = ( x x s - m u ) * r h o ( x x x , x x s ) ; 

} 
s o l v e _ y ( f t v , v l , v 2 ) ; 
8 o l v e _ y ( f t v , v 3 , v 4 ) ; 
m31=vl3=p33=v33=0;m32=v23=-l; 
f o r ( i = l ; i < = n ; i + + ) 
{ 

m31+=v2[i]; 
v l 3 + = v 4 [ i ] ; 
m32+=(v2[i]«x[i]); 
v 2 3 + = ( v 4 [ i ] * x [ i ] ) ; 
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p 3 3 + = ( v 2 [ i ] * y [ i ] ) ; 
v33*=(v2[i]»v3[i]); 

} 
(*cov)»Bb*Bb*rho(xxx,xx8>-det3(nill ,ml2 ,vl3,ml2 ,m22,v23,m31 ,m32,v33)/det2; 
Omean)°det3(rall ,ml2,pl3,nil2,m22,p23,m31 ,m32,p33)/det2; 
r e t u r n ; 

v o i d PY_Y(double xxx, double xxs, double 'mean, double *cov) 
{ 

VECd Vl,v2,v3,v4; 
i n t i ; 
double d e t 2 ; 
double ml1,ml2,m22,m31,m32,pl3,p23,p33,vl3,v23,v33; 

for(i°l ;K=n;l++) 
{ 

v l [ i ] = l ; 
v3[i]»x[i]; 

} 
s o l v e _ y ( & v , v l , v 2 ) ; 
s o l v e _ y ( f t v , v 3 , v 4 ) ; 
mll=ml2=m22=pl3=p23=0; 
f o r ( i = l ; i < = n ; i + + ) 
{ 

m l l + = v 2 [ i ] ; 
m l 2 + = v 4 [ i ] ; 
ra22+=(v4[i]*v3[i]); 
P13+=(v2[i]«y[l]); 
p23+=(v4[i]»y[i]); 

} 
det2=mn»n>22-ml2*ml2; 
f o r ( i = l ; i < = n ; i + + ) 
{ 

v l [ i ] = (80*s0+(xxx-mu)*(x[i]-mu))»rho(xxx,x[i]); 
v 3 [ i ] = (BO*sO+(xxs-imi)*(x[i]-mu))»rho(xxs,x[i]); 

} 
s o l v e . y ( f t v , v l , v 2 ) ; 
s o l v e _ y ( f t v ,v3,v4); 
ra31=vl3=-l;p33=v33=0;m32°-xxx;v23=-xxs; 
f o r ( i = l ; i < = n ; i + + ) 
{ 

m31+=v2[i]; 
v l 3 + = v 4 [ i ] ; 
m 3 2 + = ( v 2 [ i ] * x [ l ] ) ; 
v 2 3 + = ( v 4 [ i ] * x [ i ] ) ; 
p 3 3 + = ( v 2 [ i ] * y [ i ] ) ; 
v33+=(v2[i]»v3[i]>; 

} 
(•cov)°sb*sb*(80*80+(xxx-imi)*(xx8-inu) )*rho(xxx ,xxs) 

-det3(rall,ml2,vl3,ml2,m22,v23,m31,m32,v33)/det2; 
(•mean)=det3(mll,ml2,pl3,ml2,m22,p23,m31,m32,p33)/det2; 

r e t u r n ; 

update2.c - S tandard model 

• i n c l u d e "prob.h" 

v o i d PY_XO(double •mean, double * v a r ) 
{ 
VECd v l , v 2 ; 
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i n t i ; 

f o r ( i = l ; i < = n ; i + + ) 
v l [ i ] = l ; 

a o l v o _ y ( 4 v , v l , v 2 ) ; 
(*var)=l/(sO*sO); 
f o r ( i = l ; i < = n ; i + + ) 

( * v a r ) + = ( b * b * v 2 [ i ] / s b / s b ) ; 
(*var)=l/(«var); 
(*mean)=mu/(sO»sO); 
f o r ( i = l ; i < = n ; l + + ) 

(»maan)-=(v2[i]»(y[i]-b*x[i])*b/8b/sb) ; 
(*mean)»=(*var); 
r e t u r n ; 

} 

v o i d PY_B(double xxx, double XX8, double *mean, double *cov) 
{ 
VECd Vl,v2,v3,v4; 
i n t i ; 
double t l , t 2 ; 

f o r ( i = l ; i < = n ; i + + ) 
{ 

v l [ i ] = ( x x x - m u ) * r h o ( x x x , x x s ) ; 
v 3 [ i ] = ( x x s - m u ) * r h o ( x x x , x x s ) ; 

} 
s o l v e _ y ( f t v , v l , v 2 ) ; 
s o l v e _ y ( i v , v 3 , v 4 ) ; 
(•cov)°sb*sb*rho(xxx,xxs); 
t 2 = t l = 0 ; 
f o r ( i = l ; i < = n ; i + + ) 

{ 
( * c o v ) - = ( s b * s b * v l [ i ] * v 4 [ i ] ) ; 
t l + = v 2 [ i ] ; 
t 2 + = v 4 [ i ] ; 

} 
(*cov)+=(tl*t2*s0s0_t«b*b); 
Oraean)=b; 
for(i=l;i<°n;i++) 

( • m e a n ) + = ( v 2 [ i ] * ( y [ i ] - b * ( x [ i ] - m u . t ) ) ) ; 

v o i d PY_Y(double xxx, double xxs, double 'mean, double »cov) 
{ 
VECd vl,v2,v3,v4; 
i n t i ; 
double t l , t 2 ; 
f o r ( i = l ; i < = n ; i + + ) 
{ 

vl[i]=(sO»sO+(xxx-rau)*(x[i]-mu))«rho(xxx,x[i] ) ; 
v3[i]=(s0»s0+(xx8-mu)«(x[i]-mu))»rho(xxs,x[i]); 

} 
s o l v e . y ( f t v , v l , v 2 ) ; 
8 o l v e _ y ( t v , v 3 , v 4 ) ; 
(*cov)=(8b*sb»(80*80+(xxx-mu)«(xx8-mu))»rho(xxx,xxs>); 
t l = l ; t 2 = l ; 
f o r ( i = l ; i < = n ; i + + ) 

{ 
(*cov)-=(sb»sb»vl[i]»v4[i]); 
t l - = v 2 [ i ] ; 
t 2 - = v 4 [ i ] ; 

} 
(*cov)+=(tl*t2*s0s0_t«b»b); 
(*raean)=b*(xxx-mu_t); 
f o r ( i = l ; i < = n ; i + + ) 
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(»mean)+=(v2[i]•(y[i]-b*(x [ i ] - m u _ t ) ) ) ; 
} 

update3.c - S tandard model - Newtonian est imates 

t i n c l u d e "prob.h" 

v o i d PY_XO(double •mean, double *v a r ) 

i n t i ; 

•varos0*s0*8b«8b/t; 
*mean=mu*sb»sb; 
f o r ( i = l ; i < = n ; i + + ) 

•mean-=(sO*sO*b»cl[i]»(y[i]-b»x[i])); 
*mean/=t; 

} 

v o i d PYV<VECD xxx, i n t l e n , double HU, 
VECD Bx, VECD Yx, 
HATD BBx, HATD YYx, HATD BYx, 
VECD X l x , VECD X2x, HATD XXx) 

{ 
HATD vc.vd; 
HATD vex,vdx; 
VECd v t ; 
VECD v c l , v d l ; 
double t e x p ; 
VECd tempi,temp2; 
i n t i , j , j l , j 2 ; 

f o r ( j = 0 ; j < l e n ; j + + ) 
{ 

v c l [ j ] = l ; v d l [ j ] = 0 ; 
} 

f o r ( i = l ; i < = n ; i + + ) 
{ 

v t [ i ] = y [ i ] - b * x [ i ] + b * H U ; 
f o r ( j = 0 ; j < l e n ; 
{ 

v c l [ j ] - = ( 
( 
v c [ j ] [ i ] = (sO»sO+(xxx[j]-mu)*(x[i]-niu) ) * 
r h o ( x x x [ j ] , x [ i ] ) 
) 

»cl[i]); 
v d l [ j ] +=( ( v d [ j ] [ i ] = ( x [ i ] - r o u ) * r h o ( x x x t j ] , x [ i ] ))»cl [ i ] ) ; 

} 
} 

f o r ( j = 0 ; j < l e n ; j + + ) 
{ 

f o r ( i = l ; i < = n ; i + + ) 
tempi [ i ] = v c [ j ] [ i ] ; 

solve_y(ftv,tempi,temp2); 
f o r ( j l = l ; j l < = n ; j l + + ) 
f o r ( i = l ; i < = n ; i + + ) 
{ 

v c x [ j ] [ i ] = t e m p 2 [ i ] ; 
tempi [ i ] = v d C j ] [ i ] : 

} 
solve_y(ftv,tampl,temp2); 
f o r ( i = l ; i < = n ; i + + ) 
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v d x [ j ] [ i ] = t e m p 2 [ i ] ; 
Y x [ j ] = (Bx[j]=b)»(xxx[j]-HU); 
for(i=l:i<=»|itt) 
{ 

B x [ j ] + = ( v d x [ j ] [ i ] * v t [ i ] ) ; 
Yx[j]+=<»cx[j][i>»tm); 

} 
} 

f o r ( j l = 0 ; j K l e n ; j l + + ) 
{ 
fo r ( j 2 = 0 ; j 2 < l e n ; J 2 + + ) 
{ 

t e x p = r h o ( x x x [ j l ] , x x x [ j 2 ] ) ; 
B B x [ j l ] [ j 2 ] = t a x p + 8 0 * 8 0 * b * b * v d l [ j l ] * v d l [ j 2 ] / t ; 
YYx[jl][j2]=texp»(s0*80+(xxx[jl]-mu)*(xxx[j2]-rau))+80«80*b*b*vcl[jl]*vcl[j2]/t; 
BYx[jl][j2]=(xxx[j2]-mu)*texp+BO*sO*b»b*vdl[jl]*vcl[j2]/t; 
f o r ( i = l ; i < = n ; i + + ) 

< 
B B x [ j l ] t j 2 ] - = ( v d [ j 2 ] [ i ] * v d x [ j l ] [ i ] ) ; 
Y Y x [ j l ] [ j 2 ] - = ( v c [ j 2 ] [ i ] * v c x [ j l ] [ i ] ) ; 
B Y x [ j l ] [ j 2 ] - = ( v c [ j 2 ] [i]»vdx[jl] [ i ] ) ; 

} 
B B x [ j l ] [ j 2 ] * = ( s b * s b ) ; 
Y Y x [ j l ] [j2]«=(flb*sb) ; 
B Y x [ j l ] [ j 2 ] * = ( s b * s b ) ; 

} 
X l x [ j l ] = x x x [ j l ] - Y x [ j l ] / B x [ j l ] ; 
X2x[jl]=xxx[jl]-(Yx[jl]»Bx[jl]*Bx[jl]+Yx[jl]*BBx[jl] [ j l ] - B x [ j l ] *BYx [ j 1] [ j l ] )/Bx[ j l ] / B x [ j l ] / B x [ j 1] ; 

} 
f o r ( j l = 0 ; j K l e n ; j l + + ) 

f o r ( j 2 = 0 ; j 2 < l e n ; j 2 + + ) 
X X x [ j l ] [ j 2 ] = ( Y Y x [ j l ] [ j 2 ] * B x [ j l ] * B x [ j 2 ] + B B x [ j l ] [j2]*Yx[jl]»Yx[j2] 

-BYx[jl][j2]*Yx[jl]*Bx[j2]-BYx[j2][jl]*Bx[jl]»Yx[j2]) 
/ B x [ j l ] / B x [ j l ] / B x [ j 2 ] / B x [ j 2 ] ; 

r e t u r n ; 
} 

u p d a t e 4 . c - E x t e n d e d model - Newtonian est imates 

( i n c l u d e "prob.h" 

v o i d PY_XO(double *mean, double *v a r ) 
{ 

i n t i ; 

*var=sO*sO; 
«mean=mu; 

} 

double det3(double a l l , double a21, double a31, 
double a l 2 , double a22, double a32, 
double a l 3 , double a23, double a33) 

{ 
return(all*a22*a33+a21»a32»al3+a31*al2*a23-

all*a32*a23-a21*al2*a33-a31»a22*al3); 
} 

v o i d PYVCVECD xxx, i n t l e n , double HU, 
VECD Bx, VECD Yx, 
HATD BBx, HATD YYx, HATD BYx, 



C.3. NEWER C SOURCES 

VECD X l x , VECD X2x , NATD XXx) 
{ 
VECd cx.cy, 
HATD cd.cc; 
NATD vc.vd; 
VECD c c l ,ccx ,dcl ,dcx,ccy,dcy; 
HATD ccc,ccd,dcd; 
double t d e t . t e x p ; 
VECd tempi,terap2; 
i n t i , j , j l . j 2 ; 
double t i l , t l x , t x x , t l y , t x y ; 

s o l v e . y ( f t v , x , c x ) ; 
8olve_y(ftv ,y,cy); 

t l l = t l x = t x j c = t l y = t x y = 0 ; 
f o r ( l = l ; K = n ; i + + ) 
{ 

t l l + = c l [ i ] ; 
t l x + = c x [ i ] ; 
t l y + = ( c l [ i ] * y [ i ] ) ; 
t x x + = ( c x [ i ] * x [ i ] ) ; 
t x y + = ( c x [ i ] * y [ i ] ) ; 

} 
tdet=tll*txx-tlx»tlx; 

f o r ( j = 0 ; j < l e n ; j + + ) 
{ 

c c l [ j ] = d c l [ j ] = c c x [ j ] = d c x [ j ] = 0 ; 
} 

f o r ( j = 0 ; j < l e n ; j + + ) 
{ 

f o r ( i = l ; i < = n ; i + + ) 
{ 

c c l [ j ] + = ( 
( 
t e m p l [ i ] = v c [ j ] [ i ] = 
(80«s0+(xxx[j]-mu)»(x[i]-mu 
r h o ( x x x [ j ] , x [ i ] ) 
) 

• c l [ i ] ) i 
ccx[j]+=(vc[j][i]«cx[i]) ; 
c c y [ j ] + = ( v c [ j ] [ i ] * c y [ i ] ) ; 

} 
aolve_y(4v,tempi,temp2); 
f o r ( i = l ; i < = n ; i + + ) 
{ 

c c [ j ] [ i ] = t e m p 2 [ i ] ; 
d c l [ j ] + = ( 

( 
t e m p l [ i ] = v d [ j ] [ i ] = 
(x[i]-mu)»rho(xxxtj] , x [ i ] ) 
) 

• c l [ i ] > ; 
dcx[j]+=(vd[j][i]«cx[l]); 
d c y [ j ] + = ( v d [ j ] [ i ] * c y [ i ] ) ; 

} 
solve.ytftv,tempi,temp2); 
f o r ( i = l ; i < = n ; l + + ) 

c d [ j ] [ i ] = t e m p 2 [ i ] ; 
} 

f o r ( j l = 0 ; j K l e n ; j l * + ) 
f o r ( j 2 = 0 ; j 2 < l e n ; j 2 + + ) 
{ 

c c c [ j l ] [ j 2 ] = c c d [ j l ] [ j 2 ] = d c d [ j l ] [ j 2 ] = 0 ; 
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f o r ( i = l ; i < = n ; i + + ) 
{ 

c c c [ j l ] [ j 2 ] + = ( c c [ j l ] [ i ] * v c [ j 2 ] [ i ] ) ; 
c c d [ j l ] [ j 2 ] + = ( c c [ j l ] [ i ] * v d [ j 2 ] [ i ] ) ; 
d c d t j l ] [ j 2 ] * = ( c d [ j l ] [ i ] * v d [ j 2 ] [ i ] ) ; 

} 
} 

b=(tll*txy-tlx»tly)/tdet; 
f o r ( j l = 0 ; j K l e n ; j l + + ) 
{ 

Y x [ j l ] = d e t 3 ( t l l , t l x , t l y , t l x , t x x , t x y , c c l [ j l ] - 1 , c c x [ j 1 ] - x x x [ j l ] , c c y [ j l ] ) / t d a t ; 
B x [ j l ] = d e t 3 ( t l l . t l x . t l y . t l x . t x x . t x y . d c l [ j l ] , d c x [ j l ] - l , d c y [ j l ] ) / t d e t ; 
f o r ( j 2 = 0 ; j 2 < l e n ; j2«"*) 
{ 

t e x p = e x p ( - t h * ( x x x [ j l ] - x x x [ j 2 ] ) * ( x x x [ j l ] - x x x [ j 2 ] ) ) ; 
Y Y x [ j l ] [j2]°Bb*8b*texp*(80*sO+(xxx[jl]-mu)*(xxx[j2]-mu)>-

sb»sb*det3(tll , t l x , c c l [ j 2 ] - l , t l x , t x x , c c x [ j 2 ] - x x x [ j 2 ] , c c l [ j l ] - l , c c x [ j l ] - x x x [ j l ] , c c c [ j l ] [ j 2 ] ) / t d e t ; 
BBx[jl][j2]°sb»8b*texp-

sb*sb«det3(tU , t l x , d c l [ j 2 ] , t l x , t x x , d c x [ j 2 ] - 1 , d c l [ j l ] , d c x [ j l ] - l , d c d [ j l ] C j 2 ] ) / t d e t ; 
B Y x [ j l ] [ j 2 ] = s b * 8 b * t e x p * ( x x x [ j 2 ] - m u ) -

8 b * s b * d e t 3 ( t l l , t l x , c c l [ j 2 ] - l , t l x , t x x , c c x [ j 2 ] - x x x [ j 2 ] , d c l [ j l ] , d c x [ j l ] - l , c c d [ j 2 ] [ j l ] ) / t d e t ; 
} 

} 
f o r ( j l = 0 ; j K l e n ; j l + + ) 
{ 
X l x [ j l ] = x x x [ j l ] - Y x [ j l ] / B x [ j l ] ; 
X 2 x [ j l ] = x x x [ j l ] - ( Y x [ j l ] * B x [ j l ] * B x [ j l ] + Y x [ j l ] * B B x [ j l ] [ j l ] - B x [ j 1 ] * B Y x [ j l ] [ j l ] ) / B x [ j 1 ] / B x [ j 1 ] / B x [ j l ] ; 

f o r ( j 2 = 0 ; j 2 < l e n ; j 2 + + ) 
X X x [ j l ] [ j 2 ] = (YYx[jl][j2]»Bx[jl]«Bx[j2]+BBx[jl][j2]*Yx[jl]«Yx[j2] 

-BYx[jl][j2]»Yx[jl]»Bx[j2]-BYx[j2] [ j l ] * B x [ j l ] »Yx [ j 2 ] ) 
/ B x [ j l ] / B x [ j l ] / B x [ j 2 ] / B x [ j 2 ] ; 

} 
r e t u r n i 

C.3.6 c r i t . c 

Returns the value of the criterion, cr i t_no=l is C2, crit_no=3 is C i , crit_no=5 gives 

the "inverse interpolation" method. 

t i n c l u d e "prob.h" 

double c r i t e r i o n C d o u b l e x x x , i n t c r i t . n o ) 
{ 

double t l , t 2 ; 
s s i t c h ( c r i t _ n o ) 
{ 
case 1: PY_Y(xxx,xxx,fttl,&t2); 

r e t u r n ( - ( t l * t l + t 2 ) / C o v _ Y _ Y ( x x x , x x x ) ) ; 
case 2: PY_Y(xxx , x x x , 4 t l , f t t 2 ) ; 

r e t u r n ( - t l * t l / t 2 ) ; 
case 3: PY.Y(xxx . x x x . f t t l , f t t 2 ) ; 

r e t u r n ( - t l * t l - t 2 ) ; 
case 4: PY_Y(xxx,xxx,fttl,St2); 

r e t u r n ( - t l * t l / t 2 - l o g ( t 2 ) ) ; 
case 6: PY_Y(xxx , x x x , * t l , f t t 2 ) ; 

return(-tl»tl); 
d e f a u l t : P Y _ X 0 ( f t t l , s t 2 ) ; 

r e t u r n ( t 2 / s 0 / s 0 ) ; 

http://crit.no
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} 
} 

C.3.7 setup2.c, setup3.c and add_point2.c. 

setup2.c and se tup3 .c read in the parameter values (th-0, b-6, mu-/zo, sb-cr;,, sO-

<To), the criteria to be used c r i t_no, the test function f un_no, and the first and second 

order modification methods mu_no and var_no. se tup2.c is for the standard model, 

and adds one point, whereas setup3. c is for the extended model, and adds two points 

at fi0 ± b (note that 6 is not needed in its true sense). add_point2. c adds the next 

point to the design grid and updates the variance matrix. 

setup2.c — S tandard model 

• i n c l u d e "prob.h" 

v o i d s e t u p d n t * c r i t _ n o , i n t •mu.no, i n t tv«r.no, i n t *fun_no) 
{ 

n = l ; 
scanfO'Xd %d %d »d Xle Xle Xle Xle Xle", 

crit.no,mu.no,var.no,fun.no, 
ftrau,ftsO,ftb,ftsb,ftt h ) ; 

v.m.m[l][1]=BO*BO; 
v.m.roHB=v.m.columns'3!; 
t = 8 b * s b + s O * s O * b * b * ( c l [ l ] = l / v . m . m [ l ] [ 1 ] ) ; 
y [ l ] = f ( x x [ l ] = x [ l ] = m u ,*fun_no); 
r e t u r n ; 

} 

setup3.c - E x t e n d e d model 

• i n c l u d e "prob.h" 

v o i d setupCint * c r i t _ n o , i n t *rau_no, i n t *var_no, i n t *fun_no) 
{ 

i n t t t t ; 
VECd temp; 
n=2; 
scanfO'Xd Xd Xd Id tie Xle Xle Xle Lie", 

crit.no,mu.no.var.no,fun.no, 
ftmu,ftsO,tb,ftsb,ftth); 

y [ l ] = f (xx[l]=x[l]=mu-b,«'fun_no); 
y [ 2 ] = f (xx[2]=x[2]=mu+b,»fun_no); 
v.m.m[l] [l]=v.m.m[2] [2]=s0*80+b*b; 
v.m.m[l][2]=v.m.m[2][l]=rho(-b,b)*(80«sO-b*b); 
v.m.rous=v.m.columns°2; 
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t t t = s o l v e _ 0 ( 4 v ) ; 
t e m p [ l ] = t e m p [ 2 ] = l ; 
solve.y(ftv,temp,cl>; 
t = c l [ l ] + c l [ 2 ] ; 
r e t u r n ; 

} 

adcLpoint 2 . c 

f i n c l u d e "prob.h" 

i n t add.x(double x x x , i n t fun.no) 
{ 

i n t p t r . l l ; 
i n t t t t ; 
VECd temp; 

i f ( x x x > x x [ n ] ) 
x x [ n + l ] = x x x ; 

else 
{ 

f o r ( p t r = n ; ( p t r > 0 4ft x x x < x x [ p t r ] ) ; p t r - - ) 
x x [ p t r + l ] = x x [ p t r ] ; 

x x [ p t r + l ] = x x x ; 
} 

v.m.ross=v.m.columns=++n; 
x [n ] = x x x ; 
y [ n ] = f ( x x x , f un.no); 
f o r ( l l = l ; l l < n ; l l + + ) 

v . m . m [ n ] [ l l ] = v . m . m [ l l ] [ n ] = ( s O * s O + ( x x x - m u ) * ( x [ l l ] - m u ) ) * r h o ( x x x , x [ l l ] ) ; 
v.m.m[n] [n]°sO*s(H(xxx-mu)*(xxx-mu); 
f o r ( l l = l ; l l < = n ; l l + + ) 

t e r a p [ l l ] = l ; 
t t t = s o l v e _ 0 ( 4 v ) ; 
s o l v e . y ( 4 v , t e m p , c l ) ; 
i f ( ! t t t ) 
{ 

t=0; 
f o r ( l l = l ; l l < = n ; l l + + ) 

t + = c l [ l l ] ; 
t=8b*8b+b*b*sO»sO*t; 

} 
r e t u r n ( t t t ) ; 

C.3.8 f i l e . p r i n t l . c and f i l e _ p r i n t 2 . c 

These routines output the results to a file in rows of 5 for readability, f i l e _ p r i n t 2 . 

just contains the routine f i l e _ p r i n t ( ) which is also in f i l e _ p r i n t l . c . 

( i n c l u d e "prob.h" 

v o i d f i l e . p r i n t ( F I L E *fp,double v a l u e , i n t *out.count) 
{ 
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f p r i n t f ( f p , " X l 5 . 7 f " . v a l u e ) ; 
if((++«out.count)=°6) < f p r i n t f ( f p , " \ n " ) ; * o u t _ c o u n t = 0 ; } 

} 

v o i d f i l e _ p r i n t . x ( F I L E * f p ) 
{ 

double x.loop; 
i n t out.count; 

out_count=0; 
for(x_loop=-3;x_loop<=3.001;x_loop+=.02) 

f i l e . p r i n t ( f p , x . l o o p , t o u t . c o u n t ) ; 
f p r i n t f ( f p , " \ n " ) ; 

v o i d f i l e . p r i n t _ f ( F I L E * f p , i n t fun.no) 
{ 

double x.loop; 
i n t out.count; 

out_count=0; 
for(x_loop=-3;x_loop<=3.001;x_loop+=.02) 

f i l e . p r i n t ( f p , f ( x . l o o p . f u n . n o ) , & o u t _ c o u n t ) ; 
f p r i n t f ( f p , " \ n " ) ; 

v o i d f i l e _ p r i n t _ c r i t ( F I L E »fp,int c r i t . n o ) 
{ 

double x.loop; 
i n t out.count; 

out_count=0; 
for(x.loop=-3;x.loop<=3.001;x_loop+=.02) 

f i l e _ p r i n t ( f p , c r i t e r i o n ( x . l o o p , c r i t . n o ) , f t o u t _ c o u n t ) ; 
f p r i n t f ( f p , " \ n " ) ; 

v o i d f i l e . p r i n t _ y ( F I L E * f p ) 
{ 

double x . l o o p , t l , t 2 ; 
i n t o ut.count; 

out_count=0; 
f o r ( x _ l o o p = - 3 ;x.loop<=3.001;x.loop+=.02) 
{ 

PY.Y(x_loop,-9999,fttl,4t2); 
f i l e _ p r i n t ( f p , t l . t o u t . c o u n t ) ; 

} 
f p r i n t f ( f p , " \ n " ) ; 

C.3.9 computel.c 

This short routine computes the predictor of Xo, and if mu_no is non zero updates b 

by replacing it with its prevision at the current estimate of Xo-

t i n c l u d e "prob.h" 
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i n t compute.meandnt mu.no,int v a r . n o , i n t c r i t . n o ) 
{ 

double t l , t 2 ; 
i n t i , j ; 

PY_X0(4mumu,*tl); 
mu_t=mumu;sOsO_t=t1; 
svitch(mu.no) 
{ 
case 2 : {mu=raaximize_x(-3.0,3.0,PREC,crit.no);break;} 
case 1 : {mu=mumu;break;} 
d e f a u l t : { p r i n t f ( " % 1 0 . 6 f \n",mumu);break;} 
} 

i f (rau.no !=0> 
{ 

PY_B(mu,mu,fttl,*t2); 
b = t l ; 
f o r ( i = l ; i < = n ; i + + ) 

f o r ( j = l ; j < = n ; j + + ) 
v . r a . r a [ i ] [ j ] = ( s O * s O + ( x [ i ] - m u ) * ( x [ j ] - m u ) ) * r h o ( x [ i ] , x [ j ] ) ; 

r e t u r n ( s o l v e _ 0 ( 4 v ) ) ; 
PY.XOUmu.t.ftsOsO.t); 

} 
r e t u r n ( O ) ; 

} 

C.3.10 mainl.c, main2.c, main3.c and main4.c 

These are the main routines which tie all the other routines together, m a i n l . c is 

for the extended model with variance modified criteria is, main2.c is for the stan

dard model with variance modified criteria, main3.c is for the standard model using 

"Newtonian" estimates and main4.c is for the extended model using "Newtonian" 

estimates. 

m a i n l . c - extended model 

( i n c l u d e "prob.h" 

m a i n ( i n t argc,char * a r g v [ ] ) 
{ 

i n t l o o p , f i n i s h , e r r o r ; 
double t l , t 2 , t 3 ; 
i n t y . f l a g , c r i t . f l a g , m u . n o , c r i t . n o , f u n . n o , v a r . n o ; 

i f (argc = = 1 ) 
y . f l a g = c r i t _ f l a g = 0 ; 

else 
{ 

s»itch((*++argv)[0]) 
{ 
case 'y' : y _ f l a g = l ; c r i t _ f l a g = 0 ; b r e a k ; 
case 'c' : y . f l a g = 0 ; c r i t . f l a g = l ; b r e a k ; 

http://mu.no
http://var.no
http://crit.no
http://crit.no
http://rau.no
http://mu.no
http://fun.no
http://var.no


C.3. NEWER C SOURCES 205 

case 'b' : y . f l a g = c r i t _ f l a g = l ; b r e a k ; 
d e f a u l t : y _ f l a g = c r i t _ f l a g = 0 ; 
} 

} 
— a r g c ; 
i f (y_flag«l) 

{ 
i f ( ! ( — a r g c ) I I ( f i l e . y = fopen(*++argv,"_")) == HULL) 
{ 

fprintf(Btderr,"OUTPUT FILE CREATION ERROR: Xd\n",argc); 
e x i t ( 2 ) ; 

} 
} 

i f ( c r i t _ f l a g = l ) 
{ 

i f ( K - - a r g c ) I I ( f i l e . c r i t = fopen(*++argv,"-")) == HULL) 
{ 

fprintf(atderr,"OUTPUT FILE CREATIOH ERROR : X d W . a r g c ) ; 
e x i t ( 2 ) ; 

} 
} 

do 
{ 

setup(ftcrit_no,ftmu.no,ftvar.no,ftfun.no); 
i f ( c r i t _ n o > = 0 ) 
{ 

p r i n t f ( " C r i t e r i o n . n o : Xd Nean_adj.no: y.d Var_adj.no: Xd Function.no: „d\n", 
c r i t . n o , mu.no, var.no, f u n . n o ) ; 

p r i n t f ("Hu : X6.3f Si.O: „6.3f b: X6.3f Si.b: X6.3f Theta: X6. 3f \n" ,mu ,aO,b ,sb, th) ; 
p r i n t f ( " X.n Y.n Hu.O b Si.O Si_b\n"); 
i f ( y . f l a g ) 
{ 

f i l e . p r i n t _ x ( f i l e . y ) ; 
f i l e . p r i n t . f ( f i l e . y . f u n . n o ) ; 

} 
i f ( c r i t . f l a g ) 

f i l e . p r i n t _ x ( f i l e . c r i t ) ; 
for(loop=2;loop<=NAX.SIZE-2;loop++) 
{ 

i f (error=conpute_niean (mu.no, var.no . c r i t . n o ) ) 
break; 

p r i n t f ( " X 2 d X12.7f X l 2 . 7 f X l 2 . 7 f Xl2.7f X l 2 . 7 f X l 2 . 7 f \ n " , 
n,x[n],y[n],mu,b ,sO,sb); 

i f ( y . f l a g ) 
f i l e _ p r i n t _ y ( f i l e . y ) ; 

i f ( c r i t . f l a g ) 
f i l e . p r i n t . c r i t ( f i l e . c r i t . c r i t . n o ) ; 

i f ( f i n i s h = ( J_ABS(y [ n ] XEHD.COHDITIOH)) 
break; 

e l s e 
{ 

if(mu_no==2) 
error=2*add_x(mu.fun.no); 

else 
error°3*add_x(maximize_x(-3.0,3.0,PREC.crit.no),fun.no); 

} 
i f ( e r r o r ) 

break; 
} 

i f ( e r r o r ) 
p r i n t f ( " S t o p p e d due t o s i n g u l a r i t y e r r o r \ n " ) ; 

else 
{ 

i f ( i f i n i s h ) 
{ 

i f ( er ror=4* compute ..me an (mu_ no, var.no , c r i t . n o ) ) 
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break; 
prin t f ( " Z 2 d y.l2.7f y.l2.7f y,12.7f y.l2.7f y,12.7f X l 2 . 7 f \n 

n,x[n],y[n],mu,b,sO,sb); 
i f ( y . f l a g ) 

f i l e _ p r i n t _ y ( f i l e . y ) ; 
i f ( c r i t . f l a g ) 

f i l e _ p r i n t _ c r i t ( f i l e . c r i t , c r i t _ n o ) ; 
} 

} 
} 

i f ( e r r o r ) 
{ 

p r i n t f ( " E r r o r code : Xd\n",error) ; 
break; 

} 
} 

H h i l e ( c r i t _ n o > = 0 ) ; 
} 

main2.c - s tandard model 

• i n c l u d e "prob.h" 

m a i n ( i n t argc,char * a r g v [ ] ) 
{ 

i n t l o o p , f i n i s h , e r r o r ; 
i n t y _ f l a g , c r i t _ f l a g , m u _ n o , c r i t _ n o , f u n . n o , v a r . n o ; 

i f (argc = = 1 ) 
y _ f l a g = c r i t _ f l a g = 0 ; 

else 
{ 

s w i t c h ( ( * + + a r g v ) [ 0 ] ) 
{ 
case 'y' : y _ f l a g = l ; c r i t _ f l a g = 0 ; b r e a k ; 

y _ f l a g = 0 ; c r i t _ f l a g = l ; break; 
y . f l a g = c r i t _ f l a g = l ; b r e a k ; 
y . f l a g = c r i t _ f l a g = 0 ; 

case 'c 
case 'b' 
d e f a u l t 
} 

} 
— a r g c ; 
i f ( y _ f l a g = = l ) 
{ 

i f ( ! ( — a r g c ) I I ( f i l e . y = f open(*++argv,"»")) == HULL) 
{ 

f p r i n t f (stderr,"OUTPUT FILE CREATIOH ERROR: y.d\n" ,argc) ; 
e x i t ( 2 ) ; 

} 
} 

i f ( c r i t _ f l a g = = l ) 
{ 

i f ( ! ( - - a r g c ) || ( f i l e . c r i t = f open(*++argv,"w")) == HULL) 
{ 

fprintf(stderr,"OUTPUT FILE CREATION ERROR : %d\n",argc); 
e x i t ( 2 ) ; 

} 
} 

do 
{ 

setup(ftcrit.no,ftmu.no.ftvar.no,ftfun.no); 
i f ( c r i t . n o > = 0 ) 
{ 
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p r i n t f ( " C r i t e r i o n . n o : Xd Hean.adj_no: Xd Var_adj.no: Xd Function.no: Xd\n", 
c r i t . n o , rau.no, var.no, f u n . n o ) ; 

p r i n t f O ' H u : %6.3f Si.O: X6.3f b: X6.3f Si.b: X6.3f Thata: X6.3f\n",mu,sO,b,sb,th); 
p r i n t f ( " X.n Y.n Mu.O b Si.O S i . b W ) ; 
i f ( y . f l a g ) 
{ 

f i l a . p r i n t . x ( f i l a . y ) ; 
f i l a . p r i n t . f ( f i l a _ y . f u n . n o ) ; 

} 
i f ( c r i t . f l a g ) 

f i l e _ p r i n t _ x ( f i l e . c r i t ) ; 
for(loop=l;loop<=MAX_SIZE-2;loop++) 
{ 

if(error Bcompute_maan(mu.no,var.no.crit.no)) 
break; 

p r i n t f ( " X 2 d Xl2.7f Xl2.7f Xl2.7f Xl2.7f Xl2.7f Xl2.7f\n", 
n , x [ n ] , y [ n ] ,mu,b,sO,sb); 

i f ( y . f l a g ) 
f i l e . p r i n t . y ( f i l e . y ) ; 

i f ( c r i t . f l a g ) 
f i l e . p r i n t _ c r i t ( f i l e . c r i t . c r i t . n o ) ; 

if(finish=(J_ABS(y[n])<E_D_COHDITIOH)) 
break; 

else 
{ 

if(mu_no=°2) 
error D2»add_x(mu.fun.no); 

e l s e 
error=3*add_x(maximize_x(-3.0,3.0,PREC.crit.no).fun.no); 

} 
i f ( e r r o r ) 

break; 
} 

i f ( e r r o r ) 
p r i n t f ( " S t o p p e d due t o s i n g u l a r i t y e r r o r \ n " ) ; 

else 
{ 

i f ( ! f i n i s h ) 
{ 

if(error=4*compute_mean(rau.no,var.no.crit.no)) 
break; 

p r i n t f ( " X 2 d Xl2.7f Xl2.7f Xl2.7f Xl2.7f Xl2.7f Xl2.7f \n", 
n,x[n],y[n],mu.b.sO.sb); 

i f ( y . f l a g ) 
f i l e . p r i n t _ y ( f i l e . y ) ; 

i f ( c r i t . f l a g ) 
f i l e . p r i n t . c r i t ( f i l e . c r i t . c r i t . n o ) ; 

} 
} 

} 
i f ( e r r o r ) 
{ 

p r i n t f ( " E r r o r code : X d \ n " , e r r o r ) ; 
break; 

} 
} 

«hile(crit_no>=0); 
} 

main3.c - s tandard model — Newtonian est imates 

• i n c l u d e "prob.h" 
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FILE * f p r e d , *fcov; 
m a i n ( i n t argc.char »argv[]) 
{ 

i n t 11,12; 
i n t out.count; 
i n t l o o p , f i n i s h , e r r o r , p o s ; 
double mustar,sOstar,temp; 
i n t y . f l a g , c r i t . f l a g , m u . n o , c r i t . n o . f u n . n o . v a r . n o ; 
VECD xxxx,Bxx,Yxx,Xlxx,X2ix; 
HATD BBxx.YYxx.BYxx.XXu; 

i f ( a r g c < 3 ) 
{ 

fprintf(stderr,"IDSUFFICIEHT FILES\n") ; 
e x i t ( 2 ) ; 

} 
i f ( ( f p r e d " fopen(*++argv,"•")) == HULL) 
{ 

f p r i n t f ( s t d e r r ."OUTPUT FILE CREATIOH ERROR: y.d\n" ,argc); 
e x i t ( 2 ) ; 

} 
i f ( ( f c o v = f o p e n ( * + + a r g v , M B " ) ) == HULL) 
{ 

f p r i n t f (stderr,"OUTPUT FILE CREATIOH ERROR : '/.d\n" ,argc) ; 
e x i t ( 2 ) ; 

} 
do 
{ 

f o r ( l l = 0 ; l l < 3 1 ; 1 1 + + ) 
xxxx[ll]=ll»0.2-3; 

setup(ftcrit.no,ftmu.no,ftvar.no,ftfun.no); 
pos=mu*5.0+15.5; 
p r i n t f ( " % 1 0 . 5 f Xl0.6f\n",mu,xxxx[pos]); 
xxxx[pos]emu; 
i f ( c r i t _ n o > = 0 ) 
{ 

p r i n t f ( " X l 2 . 7 f Xl2.7f\n",mu,sO*sO); 
out_count=0; 
f o r ( l l = 0 ; l l < 3 1 ; l l + + ) 

f i l e _ p r i n t ( f p r e d , x x x x [ l l ] . f t o u t . c o u n t ) ; 
o u t . c o u n f O ; 
f o r ( l l = 0 ; l l < 3 1 ; l l + + ) 

f i l e . p r i n t ( f p r e d . f ( x x x x [ l l ] , f u n . n o ) . f t o u t . c o u n t ) ; 
out_count=0; 
f o r ( l l = 0 ; l l < 3 1 ; l l + + ) 

f i l e . p r i n t ( f p r e d , ( x x x x [ 1 1 ] - m u ) * b . f t o u t . c o u n t ) ; 
out_count=0; 
f o r ( l l = 0 ; l l < 3 1 ; l l + + ) 

f i l e . p r i n t ( f p r e d , b , f t o u t . c o u n t ) ; 
out_count=0; 
for(ll°0;ll<31;ll++) 

for(12=0;12<31;12++) 
f i l e . p r i n t ( f c o v , C o v . B _ B ( x x x x [ l l ] , x x x x [ l 2 ] ) . f t o u t . c o u n t ) ; 

out_count=0; 
f o r ( l l = 0 ; l l < 3 1 ; l l + + ) 

for(12=0;12<31;12++) 
f i l e . p r i n t ( f c o v , C o v _ B _ Y ( x x x x [ l l ] , x x x x [ 1 2 ] ) . f t o u t . c o u n t ) ; 

out_count=0; 
f o r ( l l = 0 ; l l < 3 1 ; l l + + ) 

for(12=0;12<31;12++) 
f i l e _ p r i n t ( f c o v , C o v _ Y _ Y ( x x x x [ l l ] , x x x x [ 1 2 ] ) . f t o u t . c o u n t ) ; 

for(loop=0;loop<10;loop++) 
{ 

PY_XO(tmustar,ftsOstar); 
PYV(xxxx,31,mu8tar,Bxx,Yxx,BBxx,YYxx,BYxx,Xlxx,X2xx,XXxx) 
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p r i n t f ( " X l 2 . 7 f *12.7f %12.7f y,12.7f Xl2.7f %12.7f\n", 
mustar,sOstar,xxxx[pos],Xlxx[pos],X2xx[pos],sqrt(XXxx[pos][pos])); 

o u t . c o u n f O ; 
f o r < l l - 0 ; l l < 3 1 ; l l + + ) 

f i l e . p r i n t ( f p r e d , Y x x [ 1 1 ] . f t o u t . c o u n t ) ; 
out_count=0; 
for(ll«0;ll<31;ll++) 

f i l e . p r i n t ( f p r e d , B x x [ l l ] . f t o u t . c o u n t ) ; 
out.count>=0; 
f o r ( l l = 0 ; l l < 3 1 ; l l + + ) 

f i l e _ p r i n t ( f p r e d , X l x x [ l l ] . f t o u t . c o u n t ) ; 
out_count«=0; 
f o r ( l l = 0 ; l l < 3 1 ; 1 1 + + ) 

f i l e . p r i n t ( f p r e d , X 2 x x [ l l ] . f t o u t . c o u n t ) ; 
o u t . c o u n t O ; 
f o r ( l l = 0 i l l < 3 1 i l l + + ) 

f i l e _ p r i n t ( f p r e d , s q r t ( X X x x [ 1 1 ] [ 1 1 ] ) . f t o u t . c o u n t ) ; 
out_count=0; 
f o r ( l l = 0 ; l l < 3 1 ; 1 1 + + ) 

for(12=0;12<31;12++) 
f i l e _ p r i n t ( f c o v , B B x x [ l l ] [ 1 2 ] . f t o u t . c o u n t ) ; 

out_count=0; 
f o r ( l l = 0 ; l l < 3 1 ; 1 1 + + ) 

for(12=0;12<31;12++) 
f i l e _ p r i n t ( f c o v , B Y x x [ l l ] [ 1 2 ] . f t o u t . c o u n t ) ; 

out_count=0; 
f o r ( l l = 0 ; l l < 3 1 ; l l + + ) 

for(12=0;12<31;12++> 
f i l e . p r i n t ( f c o v , Y Y x x [ l l ] [ 1 2 ] . f t o u t . c o u n t ) ; 

out_count=0; 
f o r ( l l = 0 ; l l < 3 1 ; l l + + ) 

for(12=0;12<31;12++) 
f i l e . p r i n t ( f c o v . X X x x [ l l ] [ 1 2 ] . f t o u t . c o u n t ) ; 

i f ( c r i t _ n o = = l ) 
add_x((temp=Xlxx[pos]).fun.no); 

e l s e 
add_x((temp=X2xx[pos]).fun.no); 

pos°temp*5.0+15.5; 
xxxx[pos]=temp; 

} 
} 

} 
B h i l e ( c r i t . n o > = 0 ) ; 

} 

main4.c - extended model - Newtonian est imates 

• i n c l u d e "prob.h" 
FILE «fpred, »fcov; 
m a i n ( i n t argc,char * a r g v [ ] ) 
{ 

i n t 11,12; 
i n t out.count; 
i n t l o o p , f i n i s h , e r r o r , p o s ; 
double mustar,sOstar,temp; 
i n t y . f l a g , c r i t . f l a g , m u . n o . c r i t . n o . f u n . n o . v a r . n o ; 
VECD xxxx,Bxx,Yxx,Xlxx,X2xx; 
NATD BBxx.YYxx.BYxx.XXxx; 

i f ( a r g c < 3 ) 
{ 

fprintf( s t d e r r , " I B S U F F I C I E D T FILES\n"); 
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e x i t ( 2 ) ; 
} 

i f ( ( f p r e d = fopen(»*+argv,"w")) == BULL) 
{ 

f p r i n t f (Btderr ."OUTPUT FILE CREATIOB ERROR: y.d\n" ,argc) ; 
e x i t ( 2 ) ; 

} 
i f ( ( f c o v = fopen ( * + + a r g v , " » " ) ) == HULL) 
{ 

f p r i n t f (stderr/'OUTPUT FILE CREATIOH ERROR : y.d\n" ,argc); 
o j t i t ( 2 ) ; 

} 
do 

{ 
setup(ftcrit_no,tmu.no.ftvar.no,ftfun.no); 
f o r ( l l = 0 ; l l < 3 1 ; l l * + ) 

xxxx[ll]=ll»0.2-3; 
pos=x[l]»10.0+16.6; 
xxxx[pos]°x[l] ; 
pos=x[2]»10.0+15.5; 
xxxx[pos]°x[2] ; 
i f ( c r i t . n o > = 0 ) 

{ 
for(loop=0;loop<10;loop++) 
{ 

PY_XO(ftmustar,ftsOstar); 
PYV(xxxx,31,mustar,Bxx,Yxx,BBxx,YYxx,BYxx,Xlxx,X2xx,XXxx); 
p r i n t f ( " * 1 0 . 7 f *10.7f y,10.7f Y,10.7f y,10.7f y,10.7f y,10.7f\n", 

nustar.sOstar,b,xxxx[pos],Xlxx[pos],X2xx[pos] ,sqrt(XXxx[pos] [ p o s ] ) ) ; 
out_count=0; 
for(ll«=0;ll<31 ;11++) 

f i l e _ p r i n t ( f p r e d , Y x x [ l l ] . f t o u t . c o u n t ) ; 
out.count^O; 
f o r ( l l = 0 ; l l < 3 1 ; 1 1 + + ) 

f i l e _ p r i n t ( f p r e d , B x x [ l l ] . f t o u t . c o u n t ) ; 
out_count=0; 
f o r ( l l = 0 ; l l < 3 1 ; 1 1 + + ) 

f i l e _ p r i n t ( f p r e d , X l x x [ l l ] . f t o u t . c o u n t ) ; 
out_count=0; 
f o r ( l l = 0 ; l l < 3 1 ; 1 1 + + ) 

f i l e _ p r i n t ( f p r e d , X 2 x x [ l l ] . f t o u t . c o u n t ) ; 
out.count=0; 
f o r ( l l = 0 ; l l < 3 1 ; 1 1 + + ) 

f i l e _ p r i n t ( f p r e d , s q r t ( X X x x [ l l ] [ 1 1 ] ) . f t o u t . c o u n t ) ; 
out_count=0; 
f o r ( l l = 0 ; H < 3 1 ;11++) 

for(12=0;12<31;12++) 
f i l e _ p r i n t ( f c o v , B B x x [ l l ] [ 1 2 ] . f t o u t . c o u n t ) ; 

out_count=0; 
f o r ( l l = 0 ; l l < 3 1 ; 1 1 + + ) 

for(12=0;12<31;12++) 
f i l e _ p r i n t ( f c o v , B Y x x [ l l ] [ 1 2 ] . f t o u t . c o u n t ) ; 

out_count=0; 
f o r ( l l = 0 ; l l < 3 1 ; 1 1 + + ) 

for(12=0;12<31;12++) 
f i l 8 . p r i n t ( f c o v , Y Y x x [ l l ] [ 1 2 ] . f t o u t . c o u n t ) ; 

out_count=0; 
f o r ( l l = 0 ; l l < 3 1 ; l l + + > 

for(12=0;12<31;12++) 
f i l e . p r i n t ( f c o v , X X x x [ l l ] [ 1 2 ] . f t o u t . c o u n t ) ; 

i f ( c r i t _ n o = = l ) 
add_x((temp=Xlxx[pos]).fun.no); 

else 
add_x((tamp=X2xx[poa]).fun.no); 

pos=temp»6.0+15.5; 
xxxx[pos]=temp; 

http://tmu.no
http://ftvar.no
http://ftfun.no
http://fun.no
http://fun.no


C.3. NEWER C SOURCES 211 

} 
»hile(crit_no>=0); 

C.3.11 makefile 

As a final subsection, we include the makefile which links all these subroutines to

gether. 

HAIHl_OBJECTS=file.print1.o f u n l . o mat2 .0 covl.o updatel.o setup3.o add_point2.o r h o l . o c r i t l . o 
golden.o coraputol.o mainl.c 
HAIB2_0BJECTS=file_printl.o f u n l . o mat2 . 0 covl.o update2.o setup2.o add_point2.o r h o l . o c r i t l . o 
golden.o computel.o main2.c 
HAIH3_0BJECTS"»file_print2.o f u n l . o mat2.o covl.o update3.o setup2.o add_point2.o r h o l . o main3.c 
HAIB4_0BJECTS=file_print2.o f u n l . o mat2.o covl.o update4.o setup3.o add_point2.o r h o l . o main4.c 
ALL_0BJECTS=add_point2.o computet.o covl.o c r i t l . o f i l e _ p r i n t l . o f i l e _ p r i n t 2 . o f u n l . o golden.o mat2.o 
r h o l . o rho2.o rho3.o rho4.o setup2.o setup3.o updatel.o update2.o update3.o update4.o 
ALL_SOURCES=mainl.c main2.c main3.c main4.c 
FLAGS=-0 -W 
IHC=prob.h 
a l l : raain4 main3 main2 mainl 
888888S88888888888S88888888888888888888888S8888888888S8S888888888888S8888 
8 raain4 i s the main f i l e f o r the 'Heutonian' estimate on extended model 9 
8888888888888888888888888888888888888888888888888888888888888888888888888 
main4: $(HAID4.DBJECTS) $(IBC) 

gcc J(FLAGS) i(MAIH4.OBJECTS) -o main4 -lm 
888888888888888888888888888*888888888888888888888888888888888888888888888 
8 main3 i s the main f i l e f o r the 'Newtonian' estimate on standard model 8 
8888888888888888888888888888888888888888888888888888888888888888888888888 
main3: $(HAIB3_0BJECTS) $(IHC) 

gcc $(FLAGS) $(HAIH3.OBJECTS) -o main3 -lm 
8888888S8888888888888«###8888888888888888S8888888»888888888888*8888888888 
* main2 i s the main f i l e f o r the 2nd order mod c r i t on standard model 8 
8888888888888888888888888888888888888888888888888888888888888888888888888 
main2: $(NAIH2.OBJECTS) $(IHC) 

gcc KFLAGS) $(MAIH2_0BJECTS) -o main2 -lm 
88888888e888ee8888#888888888888888e888888888e8888888888888#888#88S8888888 
t mainl i s the main f i l e f o r the 2nd order mod c r i t on extended model t 
8881888888888888888888888888888888888888888888888888888888888888888888888 
mainl: $(HAIH1.OBJECTS) $(IHC) 

gcc $(FLAGS) $(NAIH1.0BJECTS) -o mainl -lm 

add.point2.o: add_point2.c $(IHC) 
gcc $(FLAOS) -c add_point2.c -o add_point2.o 

computet.o: computel,c $(IHC) 
gcc $(FLAGS) -c computel.c -o computel.o 

c o v l . o : c o v l . c $(IHC) 
gcc $(FLAGS) -c c o v l . c -o c o v l . 0 

c r i t l . o : c r i t l . c $(IBC) 
gcc $(FLAGS) -c c r i t l . c -o c r i t l . o 

f i l e . p r i n t l . o : f i l e . p r i n t l . c $(IHC) 
gcc $(FLAGS) -c f i l e . p r i n t l . c -o f i l e . p r i n t l , o 

f i l e _ p r i n t 2 . o : f i l e _ p r i n t 2 . c $(IBC) 
gcc $(FLAGS) -c f i l e _ p r i n t 2 . c -o f i l e _ p r i n t 2 .o 

f u n l . o : f u n l . c S(IBC) 
gcc $(FLAGS) -c f u n l . c -o f u n l .o 

golden.o: golden.c $(IBC) 
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gcc $(FLAGS) 
mat 2.o: raat2.c $(IBC) 

gcc $(FLAGS) 
r h o l . o : r h o l .c $ ( H C ) 

gcc t(FLAdS) 
rho2.o: rho2.c J(ISC) 

gcc »(FLAOS) 
rho3.o: rho3.c $(ISC) 

gcc $(FLAGS) 
rho4.o: rho4.c $(IBC) 

gcc $(FLAGS) 
setup2.o: 8«tup2.c $(IBC) 

gcc t(FLAOS) 
setup3.o: setup3.c $(IBC) 

gcc 9(FLAGS) 
updatel.o: updatel.c $ ( I i C ) 

gcc »(FLAGS) 
update2.o: update2.c $(IHC) 

gcc $(FLAGS) 
updates.o: update3.c $(IHC) 

gcc J(FLAGS) 
update4.o: update4.c J(IHC) 

gcc $(FLAGS) 

-c golden.c -o golden.o 

c mat2.c -o mat2.o 

•c r h o l . c -o r h o l . o 

c rho2.c -o rho2.o 

•c rho3.c -o rho3.o 

•c rho4.c -o rho4.o 

c setup2.c -o setup2.o 

c setupS.c -o setup3.o 

c updatel.c -o updatel 

c update2.c -o update2 

x update3.c -o update3 

c update4.c -o update4 
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