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Abstract

Here I will describe and implement Bayes linear methods for finding zeros of deter-
ministic functions. We assume that the zero is known to be unique. Initially, the value
of the function is modelled simply as the product of two independent factors, the po-
sition of the point from the zero and a “slope” which is assumed to vary “smoothly”
with position. Additional prior information specifies first and second order properties
of the slopes and the position of the zero: in particular, smoothness is specified by
modelling the slope process to be stationary with a decreasing correlation function.

This research is motivated by problems arising in large scale computer simulation
of mathematical models of complex physical phenomena, where a single run of the
code can be expensive and the output difficult to assimilate. Scientists are often
confident about the structure of their model as a description of a physical process but
may be uncertain about the values of certain model “parameters”. Such parameters
usually refer directly to physical attributes, and so collateral information about their
values is usually available. In some applications, the physical process itself has been
observed, and several runs of the code are made at different parameter settings in an
attempt to match the realisation of the code with the actual realisation.

The eventual aim is to aid scientists to search through the “parameter space”
efficiently and systematically, using their knowledge of the process. Obviously, there
are several respects in which this formulation does not tackle the real problem, as we
mainly consider a single-valued function of a real variable.

As well as considering this problem I will review the current state of play in the
more general field of statistical numerical analysis and its relationship to deterministic

computer experiments; and partial belief specification or Bayes linear methods.
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Chapter 1

Introduction and Motivation

With the advent of more powerful computers, scientists have been able to develop and
try out more and more complicated mathematical models of many physical processes,
often when physical experimentation is impossible (for example in modelling the
earth’s atmosphere for weather forecasting) or very expensive in either time or money
or both.

Examples of these models can be seen in many branches of science and industry,
meteorology (weather forecasting), physics (transmission of heat), chemistry (reaction
kinetics), computing (design of VLSI silicon chips), surveying (underground surveys
by remote sensing).

These models have the following characteristics,

1 They generally consist of large systems of non-linear equations, with multi-

dimensional inputs and outputs;

2 They are deterministic, i.e. the same set of input values will always produce

the same response;

3 A single run of the code is expensive, some examples take several minutes to

run on modern super computers (e.g. Cray X-MP).

They have many uses which fall into three categories,

1 Prediction/Forecasting — obtaining an approximation for the function at untried

input values, either in the design space ‘prediction’ or outside ‘forecasting’;



2 Calibration - fitting the computer code to the actual observed data;

3 Optimization - finding input values which maximize or minimize the response

function or some functional of it;

In this thesis we will be mainly considering a simple version of the second category,
where the input is univariate.

These (deterministic) problems are akin to those that numerical analysts tackle:
approximation, solving equations, and optimization. The methods developed for solv-
ing these can also be used to solve the numerical analysts problems. The numerical
analyst’s functions are often much cheaper to compute than the results of the deter-
ministic simulations, and so they do not have as tight a constraint on the number of
observations they can take. We will expand on this in Chapter 2, which contains a
review of the current work on the subject.

As there are no random error terms in these models, it is not clear how a statis-
tical approach can help solve these problems. There is however a large number of
unknowns (the function value at every point we have not made an “observation”, i.e.
function evaluation, at), which are “correlated” to each other. We can consider the
approximation of the function or its attributes as a problem of experimental design
- we need an estimate of the function or its attribute with a measure of uncertainty,
and we need to choose the input values of the computer code in such a way as to
minimize the number of times we have to run the program.

We choose a series of design points 4, ..., ,, at which we can obtain observations
y; (by running the computer code with @; as the input variables), obtain an estimate
of the function at other values of @ and quantify the uncertainty of these predictions.
From a statistical viewpoint the Bayesian paradigm lends itself very naturally to this
problem, again we will expend on this point in Chapter 2, where other more classical
approaches require contrived reasoning. The main problem with Bayesian statistics,
when applied to real problems is that the calculation of posterior distributions is often
computationally difficult involving multi-dimensional integrals of multi-modal func-

tions. In an attempt to avoid some of these problems we will utilize the Bayes Linear



framework of Goldstein[1981, 1983, 1986, 1987, 1988a, 1988b, 1991], which is sum-

marised in Chapter 3, and we will introduce a new design criterion for deterministic

problems based on this in Chapter 4

In Chapter 5 we will outline the methods and models developed to locate zeros
of functions, initially where the input and output are both univariate, but extending
the model to include multivariate response and input.

Finally in this introductory chapter we will include a brief description of examples
of the problems which have motivated this field of research

Example 1: Kee, Grear, Smooke and Miller [1985] describe a fluid-dynamics model
for flames, which contains five unknown parameters (rate constants), with a
single response, the velocity of the flame. Their aim is to tune the model
parameters to match physically observed results, and is an example where an
equivalent physical experiment is impossible because the model parameters are
fixed physical constants. The code for this example requires twenty minutes per
run (each choice of parameters) on a Cray X-MP, so highlights the importance
of the design problem of minimizing the number of runs to be performed.

Example 2: TWOLAYER is a simulator of heat transfer through a wall containing
two layers (hence the name) of phase change materials. Output is a measure of
the storage capacity of the wall and the aim is to maximize this capacity.

Example 3: FABRICS II [1984] is a simulator for silicon circuitry. Inputs are circuit
parameters and production process parameters (some of which are allowed to
vary) and the response is a measure of the circuit (for example, delay time). The
aim is to choose values of design parameters so that the response is insensitive
to variation in the process parameters.

Example 4: History matching - Reservoir engineers have developed models for the
flow of fluids through the earth, which can be used to model oil and gas reser-
voirs. These models need the underground structure of the reservoir (geological
faults, properties of the rock e.g. porosity and permiability — spatially dis-

tributed throughout the reservoir, etc.) as input parameters, and outputs are



typically time series, such as the flow/pressure of gas/oil/water at various well
sites. Their aim is to match the output of the model to the actual observations

at the well sites, and so predict the underground structure of the reservoir.



Chapter 2

Statistical Numerical Analysis

Most problems in numerical analysis entail approximating some facet of a given func-
tion, whether it is its value over a given interval, the location of its extremes, its
integral or some other functional, which cannot be directly calculated, or whose di-
rect calculation is expensive. In all these cases the numerical analyst evaluates the
function (or a related function) at a set of ordinates, and uses these values to make
his approximation. Statisticians can view these as problems of inference. We have
a parameter, the desired functional which we want to approximate, that we wish to
make an inference about, and we have some ‘experimental observations’, the function
values on which to base this inference.

For example, suppose we wished to approximate the integral of a function y(-),

1= /1 y(z)de

-1

A numerical analyst would chose a quadrature rule comprising a set of ordinates
X ={z1,...,2.} C[-1,1] and a set of weights W = {wy,...,w,} and compute @

his approximation as
Q = Y _wiy(wi).
=1

As a statistician we choose our design X for our ‘experiment’; statistically model the

function; make our ‘observations’ {y(x,),...,y(z.)}; and use this to make inference
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about I.

The numerical analyst’s approach usually neglects any additional information we
might have about the function, e.g. convexity and symmetry — when he chooses
the set X, and his optimal design is based generally on worse case criteria, often
choosing to fit for polynomials up to and including degree n. From a statistical point
of view this apriori information can be incorporated into the design of the experiment,
for example in a Bayesian framework, we can lay down a prior distribution on the
functions which represents our beliefs about their shape.

This chapter contains a review of work on Bayesian numerical analysis, and more
general statistical numerical analysis. We will generally consider those methods where
the function evaluations are assumed to be error free, and so the approximant is inter-
polatory, but we will briefly consider the case where function evaluations are subject
to error, which lead to numerical ‘smoothers’. We start by considering deterministic

computer experiments.

2.1 Deterministic computer experiments

Although this chapter is entitled Statistical Numerical Analysis it could equally have
been entitled Deterministic Computer Fzperiments, as most problems in numerical
analysis can be considered as deterministic computer experiments and vice-versa.
However, an important consideration is the cost of obtaining a single evaluation
of our function. Whenever we are considering the sort of experiments outlined in
the introductory chapter, the cost of a single observation is likely to be high, whereas
function evaluations in a numerical analysis problem are often relatively cheap. There-
fore, when solving deterministic computer experiment problems we can apply a more
sophisticated technique (one which uses a more complicated procedure for choosing
design points) to evaluate our functional, because each observation saved saves a lot
more time and money. It has to be remembered that whichever method we use the

cost of using it should not exceed the savings we make by reducing the number of
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function evaluations.

Another consideration is the precision or accuracy of the function. Generally the
precision in the numerical analyst’s problems will be much greater (as the functions
are simpler to compute) than in the computer experiment problems. In the latter
there is a much greater chance of numerical rounding errors, due to the complexity of
the code, and also model inaccuracy - as the code is modelling real-world phenomena,

and even with very precise models, there is likely to be some simplification.

2.2 Interpolation

Perhaps one of the most common of all numerical problems is that of finding an
approximation to a function y(-), given function evaluations y1,...,y, at @y,..., @,.
Usually we would like the approximant to be an interpolant, 1.e. match the function
at the x;s. Non-interpolatory approximants will covered in Section 2.5.

I will now outline three statistical approaches to the interpolation problem. The
first approach entails putting a prior distribution on functions by placing a prior
distribution on the coefficients of its power series expression, the other two model the

function explicitly as a realization of a random process.

2.2.1 Poincaré’s approach

Probably the first example of statistical numerical analysis can be found in Poincaré’s
Calcul de Probability[1896]. In lesson 21 Poincaré examines the problem of approxi-
mating a function by a finite polynomial. In lesson 22, however, he expands this to infi-
nite polynomials. He supposes y(z) has a power series expansion y(z) = Ao+A1z+. . .,
where the A;s are unknown. He then places a prior distribution on the A;s by sup-

posing them to be independent, with zero mean, Gaussian random variables with

2

variance of. Then given function evaluations y1,...,yn at z1,...,x, he finds the

expected values of the A;s.



2.2. INTERPOLATION

Writing
g(z) =02 +olz +ola* + -,
ey YUn

Poincaré shows that the posterior mean of y(a) given function evaluations y;,

at xy,...,Zy, is given by

y(z) = kg(z12) + - + kng(2a)

where the k;s are given by
-1

ky g(z121) g(z12,) Y1

Yn

kn 9(xnz1) 9(znzn)

For example, if we believe that the standard deviation of A; is half the standard
¢ and gz) =(1— %) for z € (—4,4). If we

deviation of A;_;, this gives us o? = 22
choose the design z; = —1,1, = 0,23 = 1, we have

_ —32y2 + 15(y1 — ya)z + (32y2 — 15y; — 151/3)332
B 222 — 32

j(x)

2.2.2 Brownian motion
Diaconis[1988] looks to Brownian motion as a way to model the function. A particle

exhibits Brownian motion if its velocity is always changing, defined as

Defn. 2.1 Brownian Motion with drift parameter u and variance parameter o > 0

is a continuous state and time stochastic process Y (x) which exhibits the following

properties.
() Yim) - Y(zo) ~ N(u(z: = 20), 0@ — 20))
Y(z1) — Y(=o) and Y(x3) — Y(a3) are independent

(22)

‘if.’L'3>.’lIQZ$1>.’l)0
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Standard Brownian motion has u = 0 and o = 1.

The path of the particle is a continuous, but nowhere differentiable function of z,
and exhibits the strong Markov property, i.e. knowing where the particle is at time
z is all that is sufficient to predict its future position.

We can now identify our function as a possible path of the particle, and if we
additionally specify a prior distribution for Y'(0), then we have a full prior distribution
of paths, or functions in C(—o00, +00).

Let us consider functions on the unit interval [0, 1], with evaluations at y;,...,¥x
at 0 < 2; < -+ < z, £ 1, with a standard Brownian motion prior distribution,
and with a normal improper ignorance prior distribution on Y (0) [my@g)(y) x 1 Vy].

As Brownian motion exhibits the Markov property the posterior mean of Y (a) given

Y1,...,Yn is just the linear spline interpolant.
(! f0<z<n
P(Y(T)lyly T y'n) = yi($i+1;f+)j-f;:1(a:—z.') if <z S Tit1
Yn frz, <z <1
(
a1 — max(z, T.) if0<z,z, <2y
(zig1—max(z,z.) ) (min(z,z.)—z) if 2; < 2,20 < Tign
Cov(Y(z),Y(z)|yr,--syn) = ¢ FiermE ' -
min(z, z,) — Z, ifz,<z,z,<1
0 otherwise

\

The simple posterior mean and covariance structures yield straight forward opti-
mal designs for the interpolant based on the variance of the predictor, if we can chose

n points then we have the following optimal designs:

. . e 4i=3  _

Minimum Maximum Variance {:=3,i=1,...,n}

Minimum Average Variance g"—'z,i =1,...,n}
n—1 ) )

(Note: these results are not those obtained in Diaconis [1988])

If we integrate the interpolant, and choose a design which minimizes the variance of

the integral, we obtain the composite mid-point rule, with design ordinates %,z =
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.,n}, and

If we use integrated Brownian motion as our prior distribution, then the posterior
expectation is the interpolatory cubic spline. Indeed if we repeat this integration m

times we obtain splines of order 2m + 1 as our posterior estimate. See Wahba[1978]

2.2.3 Stationary stochastic processes

The approach employed by Sacks et al[1989a, 1989b], Schagen[1979, 1980a, 1980b)]
and Currin et al[1991] is also to model the function as a realization of a stochastic
process. In the two papers by Sacks et al[1989a, 1989b| the response is modelled by

a linear regression term plus an additional “error” term Z(-) with mean zero,

m

Z x)fi + Z(x) (2.1)

where the f;(-)s are known functions and ;s are unknown regression parameters,
and & € RY. This additional term is assumed to be a realisation of a stationary
stochastic process, with mean zero, fixed variance o2, and the covariance between
two observations a continuous function solely of their relative positions (not their

absolute positions),

Cov(Z(z), Z(z")) = a’p(x — x*) (2.2)

They assume also that the Z(:)s have a multivariate normal distribution, although
this is not necessary to obtain linear estimates.
Schagen[1979, 1980a, 1980b] and Currin et al[1991] consider the special case
of (2.1) when
Y(2) = p + Z(=) (2.3)

with Z(-) as before.
In one dimension, some of the correlation functions considered by these authors

are (for functions defined on any interval of the whole real line, which are plotted in
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Figure 2.1: Correlation functions for (a) p2(-), (b) p1(-), (¢) pe+(+) and (d) pi4(-), with

=1

po(d) = el

1-4 41 <0
pe(d) = i
0 otherwise
16 (M) (1-4) |aj<2
3
per(d) = 2(1-14) E<|d]<0
0 otherwise
and for the interval [0,1]
d
p(d) = 1-U lcp<oo
2 0' dJ
peld) = 1-47 4+ 5

0>0,p>0

0’ < 20 and 0% — 600" + 126% < 246’

(2.5)

In all of these 6 controls the “smoothness” of the predictor, and so the range of
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influence an observation has on the predictor.

Schagen[1979, 1980a, 1980b, 1984] uses pa(+); Sacks et al[1989a, 1989b] use p,(-)
(in particular py(+)) and also mention p.(-) and pi(-); and Currin et al[1991] use
all of these. These functions have different properties. Only p,(:) is continuously
differentiable everywhere, where as p,(-) (for p ¢ {2,4,...}), pi(-) and pi4(-) are not
differentiable at zero, and p.(-) and p.(-) are twice differentiable everywhere. Both
pi(-) and pi4(-) lead to piecewise linear interpolants and p.(-) and pcy(-) give cubic
spline interpolants.

For simplicity it is often assumed that the correlation function p(d) can be fac-
torised into the product of ¢ terms each dependent on only one of the co-ordinates of
d,

o(d) =TT p(ds). (2.6)

This assumption makes certain integrations easier to perform, as multiple integrals
factorise into products of single integrals. However it does rule out certain correlation
function that we might like to consider, for example e-oldll,

It can be assumed that the correlation function is isotropic, i.e. the correlation

function in each direction is of the same form with the same smoothness parameter.

In practice though p(:) will not be isotropic but will be of the form
p(d) = e~ Loz O (2.7)

Schagen[1980b, 1984] in his later papers adopts a ‘half-way’ approach by assuming

[

he knows the anisotropy factors, and then “re-scaling”.

p(d) = e Liar il : (2.8)

We will now discuss Schagen[1979, 1980a, 1980Db, 1984], Sacks et al[1989a, 1989b]
and Currin et al[1991] estimates for the response functions given their models and

“observations” y1,...,y, at @1,...,x,.
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Sacks et al[1989a, 1989b] obtain the best linear estimate (which minimizes the

mean square error)
Y(z)=f(z)B+v (x)V'(y - FB) (2.9)

where 3 = (FTV'IF)'lﬂV"ly, with associated MSE,
AN
FVv v(z)

fl) = (A=), (@)
v(z) = (Cov(Y(:t:),Y(:l:l)),...,Cov(Y(:n),Y(:l:n)))T

MSE(

Iy
8
=
Il
Q

[ %]
I
TN
-
D
[
&

where

Yy = (yl)"'ayn)T
Vi = Cov(Y(=:),Y(=;))

Fyi = fi(z)

O’Hagan’s comment on Sacks et al[1989b] includes a Bayesian justification, putting

a multi-variate normal prior distribution on the regression parameters,
B ~ N(Bo B)
which leads to the same form of estimate, but with ﬁ replaced by
B=(FVI'F+o*BY (FV'FB+0*B'8,) (2.11)

which is a weighted average of the prior mean, and the least-squares estimate. If we

allow the prior variance matrix of the 8 to tend towards infinity, 3 tends to ,B
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In Schagen’s model, the best estimate is
Y(z)=v(2)V ' (y - p1) +p (2.12)
with associated variance
Var(Y(z)) = oX(1 — v (2)V o ()) (2.13)

The maximum likelihood estimate for g can be calculated and is given by

. 1Tv-ly

and can be substituted back in the previous equation.
It would also be useful to find estimates for the other parameters § and o?. In the

model of Sacks et al[1989a, 1989b] the MLE of o2 is

5 = ~(y~ FBYV™\(y - FB) (215)

and they use cross validated mean square error to estimate §. Currin et al use the
maximum likelihood estimate for 0 as well.

Schagen uses a cumulative predictor method instead of cross validated mean

square error or maximum likelihood to estimate . He defines

~

gi = Y(2;) — Yioi(z)

where Y;_; (;) is the predicted value of Y (;) based on the first i — 1 function eval-

uations. He shows the log likelihood of V' is then proportional to

n 2

H=-% 2,

1=1 a;

where the variance of these differences o2 can be found by generating the a new matrix
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V* from V by pivoting on the diagonal elements of V, as follows

> -1

Ve = —Vik

* » -1
Va=Vi = Vg Vu

x * _ o . -1
a=V5 = Vi— ViV Vu
He uses this new matrix to compute the ¢;s and their variances

o= V() -0+ LV () - )

2 _ -
of = Vj

and chooses @ to maximize H.

Schagen also examines another simple way of estimating 8, by comparing nearest
neighbours. Given any design point @, he finds the nearest design point to it z*,
and works out the distance d between the two, (including in this any anisotropy

parameters)
q
d* = Za,-(a;,- — 7).
i=1

In this simple case he works out the log-likelihood of the covariance matrix, V =

1 e—0d2
o? , ,
e~ b4 1

log(1(V10) o ~3loglV| - 5"V 'y

where y = (y,y*)'. Maximizing this with respect to 8 gives us the following cubic

-

2 =2 *
s (YT, W

w
o? o?

where w = e7%, which if it has a solution in [0, 1] gives an estimate of 0, —1—‘3(1523. He
now has a collection of n estimates of 8 for different design points, of which he uses

the median as an estimate of 4.
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Schagen extends his model by combining two stationary stochastic processes,
where one represents a long range trend and the other more local departures from it,
i.e.

Y(z)=Zp(x) + Zs(x) + p

where Z1(-) and Zg(-) are both as above, but with 8; < 0s. The § parameters of
each process are estimated, for Zs(:) by only considering design points that are very
close together, and Zi(-) by using the standard approaches above on the function
Y() = Z.(").

Schagen goes on to use his model for optimization, which we will look at in a later
section, but does not discuss design issues in relation to the problem of interpolation.
On the other hand Sacks et al[1989a, 1989b] do approach the problem of design.
As they are working with expensive function, they would like to choose the design
(the set X of s taken from a design region &, at which to evaluate the function)
which minimizes the number of runs that are required. We cannot know this exactly
(as it would entail us knowing precisely where the zero is), so instead we need to
look at other similar criteria. We are not interested here in the pros and cons of
different design schemes, whether we choose all the points initially or choose the
points sequentially, as we will be looking into this in more detail in Chapter 5 in
relation to our problem. Suggestions for criteria to be minimized in their papers are:
EISE: Empirical Integrated Squared Error is used to compare different interpolants

when developing models, to test how well an approximant fits the true function
and is defined by
EISE[Y] =Y (Y (w) - Y (w;))?

where the w; are N randomly chosen points in the design space £.
MESE: Maximum Empirical Squared Error, again used similarly to above, to com-

pare different interpolants when developing models

MESE[Y] = m{ax()}(w;) — Y (w;))?
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Both this and EISE have no practical use with real problems but are useful in
testing the methods, as they need extra function evaluations to calculate them.
IMSE: Integrated Mean Square Error over a region £ is calculated by integrating
the MSE of Y (z) obtained earlier, i.e. (For ease of calculation we note that

a Be = traceBea')

-1

IMSE[Y]:/nazd:n—trace 0 F /8 f(a:)fT(a:) _f(a:)vT(a:) dz

F Vv

the multiple integrals in the trace simplify if we assume that all the functions
fi(+) in the regression terms, and all the correlation functions are factorizable
into terms containing only one co-ordinate, and that they are independent of
the design so only need calculating once.

MMSE: Maximum Mean Square Error. Instead of finding the average value of the
MSE, we find its maximum value, although we no longer have any integration
to perform we do have to find the global maxima of the MSE for every design
we choose — minimax conditions are always hard to find, as they require two
optimization stages.

Entropy: Posterior Entropy is an idea put forward by Lindley[1956] in work on
Bayesian design. It quantifies the “amount of information” in an experiment.
If observations are taken at a set of design points X = {z,,...,,} in &, then
the posterior entropy is defined as E(— log p), where p is the conditional density
of Y(:) on X' = € — X given observations yi,...,yn. It can be shown that
minimizing the expected posterior entropy on X' is the same as maximizinig
the prior variance on X. If we assume normality this is the same as maximising
the determinant of the covariance matrix of responses. In the Schagen model
covered by Currin et al[1991], this is the same as maximizing the determinant of
V. This criteria has a tendency to place points as far as possible away from each
other as possible, and this is similar to the criteria to be discussed in Chapter 4.

Although not considered in any of the papers cited above the averaging criteria
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EISE, IMSE and entropy, can be averaged with respect to a known non-uniform
weight function, which will produce different designs, see Chapter 4.
Sacks et al perform a robustness study choosing designs which are near optimal

for a range of values of 8.

2.3 Integration

In this section we consider two more approaches to Bayesian integration — we have
already encountered one in Section 2.2.2. Firstly we can take the interpolant, as
defined in Section 2.2.3, and integrate it as an approximation to the integral, this
is the approach mentioned by Schagen([1980a, 1980b], and O’Hagan[1990]. Eberlain
on the other hand uses an approach similar to Poincaré, by placing a prior on the

coefficients of the function’s power series.

2.3.1 Bayesian quadrature

Although Schagen only mentions integration in passing, O’Hagan looks at integration

in more detail. He considers integrals of the form

/1 r(2)Y (2)dQx ()

where Qx(x) is some measure over the design space X', and r(@) is a product of
polynomials in the z;s, i.e. #(2) = r1)(z,)---r(™(2,). The functions he is considering
are unnormalized posterior probability densities, and so is interested in their integral
— the constant of proportionality in the Bayes analysis; the ratios of two integrals of

the form
Jyr(2)Y (2)dx(x)
Jx Y(2)dQx ()

— which give “moments” of the distribution Y (-) along with other summary statistics,

which are combinations of these integrals.

O’Hagan models the function in a similar manner to Sacks et al but from a
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Bayesian viewpoint. So he assumes that Y (z) has the following prior
Y(2)IB,0° ~ N(f ()8, 0% p2(=, 2))
and places an improper “ignorance” prior on the parameters
7(B,0%) x a2

and he defines

k= /Xr(a:)Y(a:)dQ,y(a:) (2.16)

where r(x) = (rl(:c),...,rp(a:))T. Using the notation from Section 2.2.3, he finds

posterior distributions for the parameters

Bly,o® ~ N(B,(FV'F)™) (2.17)

olly ~ dx;2, (2.18)

(where d is calculated from the data) and for Y'(z). He then integrates his interpolant,

giving us a posterior distribution for k

kly ~ toyom(k,dW) (2.19)

where k and W can be calculated from the data also, and t,_, is the multivariate
t-distribution with n — p degrees of freedom.

In general when considering the distribution of the ratio of two random quantities,
we usually find it is not well defined because of the possibility that the denominator
is zero. However, in the case where O’Hagan is considering, the denominator should
never be zero as it is usually the integral of a strictly positive function, (sometimes
this integration can be zero or negative as the approximant can be negative) . If we
have made sufficient observations then the variation of the denominator should be

sufficiently small to obtain a reasonably accurate approximation to the ratio, using
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the “delta-methods”, the posterior mean and variance of fL can be approximated by
)

ki ~ E(kily) Var(k;ly)  Cov(ki, kj|y)
E(’“ily) " E(kly) <1+ E(k;ly)? E(k.-|y)E(k,-|y)) (2.20)

ar —k—' ~ (kily) : Var(k;|y) Va,r(k,-|y)_ Cov(ki, kj|y)
v (kjly) B (E(kjk‘/)) (E(kj|y)2 —|-E(kj|y)2 2E(k;|y)E(kj|y)> (2.21)

To complete this O’Hagan now needs to specify the constituents of the model:
the measure Qy(-) over which to integrate; the correlation function p(-); the linear
regressibn terms f;(+); and the functions he wishes to find posterior expectations of
7i(-). He needs to consider functions which allow him to compute his estimates for
k in closed form, otherwise he would still have to resort to numerical integration.
He assumes that he is integrating over X = R?; that Qx(&) is the standard normal
distribution IN(0, /;); and that the correlation function is ps(-). As well he assumes
that all the f;(-)s and r;(-)s are simple products of polynomials, this implies that he
can obtain closed form expressions for each of the integrals.

O’Hagan suggests two design criteria for choosing the initial design zq,...,z,
both of which minimize the variance of one of the quantities of interest we mentioned
above

C: minimize the variance of one of the ratios of integrals — for example the posterior

mean of the distribution Y'(z)

Jyr(2)Y (z)dQy ()
Jo Y(2)dQx ()

C, minimize the variance of the denominator in one of the ratios, often

/,1' Y(x)dQy(z)

the constant of proportionality in the Bayes analysis.
Marginal and conditional distributions derived from the posterior distribution Y'(-)

are also of interest in Bayesian analysis and these can be obtained in a similar way.
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O’Hagan factorises X" into X, and A}, (putting x = (z. =, )T) and, for simplicity,
chooses a measure that will factorise, i.e. dQx(x) = dQx, (x4)dQx,(xs), so he can

write
def

k& /Xy(z)dm-(z)=/% ([YbY(wa,wb)dQXb(mb)> 0, (za)

He also defines

pro(a) [ ¥ (e, 20)d2 (22)
b

which is the constant of proportionality for the conditional distribution, given he has
observed @,. He would like to make inferences about py,(,), the marginal density

px.(®.)/k and the conditional densities Y (@)/px, (x,), the general integrals

def
ke, (2,) /X (T, T8)Y (€0, 24)d D, (25)
b
or ratios of the form ky, ;(2,)/pr.(®.) or ku, i(2.)/k.
He then repeats the calculations made above to obtain posterior distributions for

this vector.

kv (z )|y, 02 ~ N(ky(2a),0* Wy, (€, o)) (2.22)
an(za)|y ~ tn—q(i’r\fn(‘va)adWXu(waawa)) (2'23)

where again ky,(z,) and Wy, (z,,z,) are functions of the data.

From this he obtains posterior estimates of the conditional moments as ratios
k—};—";:"(—(_il, using the “delta-method” approximation as above. To get the marginal dis-
tributions he needs to approximate p—*:Q, the only additional information needed is
the covariance between ky,(x,) and k, which can again be calculated as above.

O’Hagan concludes the paper by considering product designs, as the matrix alge-
bra can be simplified if we assume

(1) the design we are considering consists of a lattice of points, i.e. {®1,...,2,}

consists of all n,n, points of the form (:czi, a:IJ)
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(2) the correlation function p(-) can be factorised, i.e.

p(x — z.) = pr,(Ta — Tua) P, (T6 — Tus)

(3) f consists of all mym, products of m, functions of &, and m, functions of z;
(4) Similarly for = (if this condition does not hold, we can always extend the set of
functions we are integrating to satisfy it)
All the matrices in the calculations can then be factorized into Kronecker products,

so simplifying the equations.

2.3.2 Stick breaking

Another Bayesian approach to numerical integration is that of Eberlain. He considers
functions on the interval [—1, 1], which have convergent power series, in a similar way

to Poincaré, identifying each function f(-) with its set of coefficients.

He then place a prior on these coefficients:

Co ~ U(-1,1)
CilCo ~ U(=[1—|Col],[L = |Col])

Cat1]Cry-..,Co ~ U(=[1=|Co| =+ = |Cul],[1 = |Co| — -~ = |Chl])

This sets up a prior on the functions bounded above and below (by 1 and -1) such that
* olCr] = 1. He extends this to functions bounded above and below by arbitrary
values, by shifting and re-scaling. This prior is then used to approximate the integral

by obtaining posterior expectations {cg,ci, ...} for the coeflicients {Cy, C1, ...}, and
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then computing the integral, of the resulting power series.

E ([_11 Y(:L')d:l:) = /_1 iocnm"

1,-

ad Cam
2',?::0 2m + 1

2.4 Optimization

An obvious approach to finding local or global optima, is to locate the local or global
optima for the approximant, as Schagen[1984] and Maockus[1989] do.

Schagen[1980b, 1984], Sacks at al[1989a, 1989b] and Currin at al[1991] maximize
their interpolant to obtain an estimate of the global maximum of the real function.
However, Schagen[1984] includes a sequential design criterion for choosing the next
point to evaluate the function at. The criterion is a composite function which is a
compromise between looking near the current maxima and looking in any gaps in

the design to see if a maxima has been missed. He considers functions defined in a

rectangular region (ay,b,) % ... X (a4, by), with the criterion to maximize,
f/ * *
Gler) =wX &) - W)HI(; ) (2.24)
g m

using the same notation as in Section 2.2, and where

e—40(ak—:z:; )? + e-—40(bk—z;)2

Mu

1

T g
il

H(z") = j;p(az*—m,-n
H, = e_ (Hp="bk_ak)

For small W (near 0), the second term is dominant, and this “repulsive” function

Ol

chooses design points that are as far away from the other design points (the first
summation in H(x*)) and the edge of the region as possible (the second summation

in H(z*)). Therefore the criterion “explores” the region. For W near one, the first
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term becomes dominant, and so the next design points will be chosen to be close
to the maxima of the interpolant. Letting W increase from 0 to 1 he generates a
design, which initially explores the region and then homes in on the maximum. A
fixed scheme could be used for the values of W, but it would be better to choose it
when more is known about the function. One scheme is to let W be the “probability”
that there are no more undetected “lumps”.

Mockus’[1989] approaches the problem of global optimization (minimization) of
functions defined on the rectangular region [—1,1]9 in a similar manner. He defines
the “distance” of a point in @ € X = [-1,1]? from the global minima xo to be
y() — y(xo), rather than the euclidean distance |€ — @o|. This function is well
defined even if y(-) has multiple global minima.

He considers two design criteria. The first a “worst-case” criterion is defined to be
the maximum “distance” from the global minimum over functions y(-) in the possible
space of functions Y. The second one, which he uses in the book, is the average
“distance” from the global minima, where the average is taken over functions in Y,
giving the criterion

C(@) = [ Iv() - y(@)ldv)

where () is some additive measure over ).

His choice of prior distribution for the functions is influenced by conditions of
continuity, and independence of partial derivatives. These arguments lead him to
choosing the prior distribution to be a stationary gaussian process with mean p and

covariance

Cov(Y(:c,Y(;n.)) — U2f[ (1 _ ER —2$*i|)

Given data yy,...,y, at ®1,...,&,, he obtains the posterior distribution of the func-
tions in ), uses this as §(:) to compute C(z), and chooses the next point to minimize

this criterion.
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2.5 Smoothing

If the function evaluations are subject to error (not necessarily random), we require
a different approach because the approximant no longer matches the true function at
the design points.

If we assume this error is truly random we can expand the work on interpolation
by stationary stochastic processes by adding a further independent error term to the

Z(-) process with variance o2, this gives us a modified covariance structure
Cov(Z(:), Z(2;)) = o’p(@i — z;) + 026;;

Here we call the approximants “smoothers” instead of interpolants. We do not neces-
sarily need to assume the errors independent, but can use a very short range correlated
error, as in Schagen’s model, and use the long range term Zi(-) as the approximant.

The methods of Section 2.2.2 can be extended to smoothing, see Wahba[1978].

She and other authors use a penalty function, of the form

Lly) = o [ y"(2)Pde + - (v — y(a)?

with observations y;,...,yn at @y,...,2,. This penalty function is a trade off between
fidelity to the data and smoothness of the approximation, & measures the smoothness
of the response (large o means the function is very smooth, small & means the function
has high fidelity to the data). It is easy to show that the function that minimizes L[]
is a cubic spline.

Finally in this section, we look at O’Hagan’s[1978] approach to smoothing using
a local regression model, in which he generalizes the standard linear regression model
to allow the regression parameters to vary with . In a standard linear regression we

model the response Y (z) at x as follows:

T

E(Y (z)lz,8) = f(z) B | (2.25)
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where f(x) is a vector of known functions and B is a vector of unknown parameters.
O’Hagan generalizes equation (2.25) by allowing the regression parameters to depend

on z as well

E(Y (z)|z, B(z)) = f(z) B(z), (2.26)

and assumes the errors are homoscedastic
Var(Y (2)|z, B(z)) = o? (2.27)

O’Hagan lays down a prior distribution on the regression parameters, by assuming
that
E(B(x)|bo) = bo (2.28)

and that it is a second-order stationary process,

Cov(B(=), B(z")lbo) = pa(l — =°[)Bo (2.29)

where p,(-) is as in the previous section, and by and By are the mean and variance
of B(z). He completes the prior distribution by assuming the B(z)s are multivariate
normal.

He then obtains posterior distributions for the parameters, given he has observa-

tion y1,...,Yn at T1,..., T,
B(z) ~ N(bs(2), Bz, ) (2.30)

where b,(z) and B;(z,z) are the posterior mean and variance of 3(z), and can be
computed from the data, this is then used to obtain the posterior distribution for the

response

Y(z) ~ N(f(z) bi(z),0 + f(2) Bi(z, ) f(2)) (2:31)

This approximant becomes an interpolant when the error variance o? is equal to zero.

He uses the mean and variance of this predictor as an approximation y(-) and a
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measure of error respectively. If there is little or no information available about the
regression parameters, it is possible to “plead ignorance” about them by placing an

improper prior distribution on the prior mean vector by, i.e let by be distributed as
bo ~ N(b", kB") (2.32)
and let k£ — oo, he then obtains the following posterior distribution for the parameters

ﬂ(’l/) ~ ]I\I(bg(.’l:),Bg(.’L‘,.’l:)) (2'33)

where again by(x) and By(x,z) can be calculated from the data. The posterior

distribution of Y (z) can again be found

Y(z) ~ N(f(z) by(z),0° + f(z) Ba(x,2) f(z)) (2:34)

F(2) by(z) can be used as a “smoother”.
O’Hagan digresses by using these models as a basis to find a simple linear predictor

of the form g(z) = h(z)T‘y, by choosing the parameters <y to minimize

L(v) = [ dU)E((y(x) - §(2))")

where () is a measure expressing the probability that a future prediction will need
to be made with a given x-value. As y(a) is not known exactly v is found to minimize
the loss over all possible functions using either of the posterior distributions obtained
above for y(-). He chooses designs which minimize the expected loss of this criteria,

before he makes any function evaluations.

2.6 Model inadequacy

Blight and Ott[1975] use the stationary stochastic process approach to analyse sys-

tematic departures from a linear regression model, by using a model similar to that
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in Sacks et al[1989a, 1989b], including a random error term.

Y(zi) = f(2:)B + Z(z:) + (i)

They obtain estimates for the 3 parameters, and then use the additional terms from
the Z(-) process to measure the inadequacies of the fit. They use this model to choose
the prediction weights for linear estimates of the function at various points. Their
weights put more emphasis on observations near the point where the function is to
be approximated, whereas in the classical least squares prediction the weighting is

spread more evenly over the whole of the design region.



Chapter 3

Bayes Linear and Partial Belief

Specification

Probability doesn’t exist — B. de Finetti. (Theory of Probability[1970])

In this chapter I will endeavour to explain the subjectivist methodology of limited
belief specification. In the subjective methodology, instead of probabilities being
derived from limiting frequency style arguments, the person wishing to analyse his
beliefs, whom I shall term You, as in de Iinetti[1970], lays down his own set of
probabilities (in the ‘classic’ approach) or his own set of previsions (expectations) of
the quantities of interest.

In a ‘classic’ full Bayesian analysis we are required to specify full prior distri-
butions for any quantity we want to make inference about, and to specify the full
conditional distributions needed for the likelihood of each observable, and then apply

Bayes theorem,

to get the posterior distributions.
This methodology has many disadvantages. From a computational point of view,

the formulae for the posterior distributions are not, in general, expressible in closed

29
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form, but instead numerical methods have to be used to compute these integrals. A
more important, and often cited argument against Bayesian methods, is the practical
and philosophical question of whether or not the prior distributions for the quantities
and likelihood functions can be elicited from the beliefs held by You.

Consider the following problem; what is your full prior distribution for your height
(H)? Could you for example specify what value you would put as your expectation
of H'%7, or specify the value you would assign for the probability that your height is
in the interval [h,h 4+ Ay) for all values of h? These are both very difficult (nearly
impossible to do) but, these are just two of (a possibly infinite) set of judgements you
are making when you produce the full prior distribution.

Often to get around this we make some approximation, for example, assume H
is distributed normally with an appropriate mean and standard deviation. This is
obviously only an approximation, as you are then allowing your height to possibly
take negative values or large positive values. Usually the form of prior distribution
and likelihood are chosen to make the algebra simple enough to make the posterior
calculations tractable.

More importantly do you actually need to specify these quantities, are you ever
really interested in what the 107" moment of your height is, or what the probability
that your height is between 6’ and 6’ ﬁ12—4" is. Therefore it is much more sensible to
specify just those beliefs you actually hold and/or require for the problem, which
leads on to the topic of limited or partial belief specification. The rest of this chapter
summarises parts of this theory which will be required later in Chapters 4 and 5, and

Appendix A contains a few additional results, and examples.

3.1 Prevision

For the collection of random quantities { X1, X2, ...} of interest we can define the set
Q of possible values that these quantities can take, we can think of each possible

outcome as an ordered n-tuple, and @ can be thought of as being embedded in A the
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linear ambit, a linear affine space. We can also consider the dual linear space £, which
consists of linear combinations of the quantities, i.e. X = (a;,a2,...) € L represents
the linear combination X = a,X; + a2 X, + - -+, and in what follows I will refer to X
in either of these forms, or even both simultaneously. It should be noted here that
the representation of X as (a;,as,...) is not necessarily unique as some of the Xis
may be logically dependent, for example if X; + X2 = X3, then (a4, a9, a3,4a4,...) can
also be represented as (a; + a3, a2 + a3,0,a4,. . .).

Now for each of the quantities X we can define its prevision, intuitively as the
size of fixed gain You would consider equivalent to a random gain of size X, which
we will denote by P(X). If we assume countable additivity, this has the same value
as the expectation of X if you had laid down a full distribution for X.

We say a set of prevision statements is coherent if You have chosen them such
that they do not show certain loss.

This quantity then satisfies the following properties:

(a) The prevision P(:) is an additive function:

P(X +Y) =P(X)+P(Y)

(If You are indifferent to the swap of X for P(X) and Y for P(Y') then You are
also indifferent to the swap of X + Y for P(X) + P(Y).)

(b) The coherent prevision P(-) satisfies :

inf X <P(X) <supX

(This is again obvious as i your choice is outside these values you would show
certain loss.)

From these two properties it can be seen that P(:) is a linear function i.e.

P(aX) = aP(X)
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or more generally

so it can be seen that the set of random quantities for which we can obtain previsions
for, given we have already declared our previsions of X, X;,... is precisely those
elements of £ (which have a finite number of non-zero ¢;’s - this clarification is
needed if we only assume finite additivity).

If we define P to be the set of coherent previsions, (those which we can choose
without showing certain loss), then it can be readily proven to be the closed convex
hull of Q in A.

The above definition is not entirely useful, as although it is an obvious and intuitive
definition, it is difficult to handle analytically, so we introduce some new alternative

but equivalent definitions.

Defn. 3.1® The Prevision of X, P(X) is defined to be the value of T which You would
choose, so that after You have made this choice You are committed to accepting any
bet whatsoever with gain ¢(X —T), where ¢ is arbitrary (positive or negative) and not

at your control.

Defn. 3.2% Under definition 3.1°, a set of your previsions s said to be coherent if
among the set of bets You have committed yourself to accept, there are none for which

the gains are all uniformly negative.

Defn. 3.1° The Prevision of X, P(X) is defined to be the value of T which in your

opinion s the best choice if confronted with a penalty L proportional to the squared

X —z\?
L=
(=)

(where k is arbitrary, but previously fized)

deviation of X from T
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Defn. 3.2P Under definition 3.1°, a set of your previsions is said to be coherent
if there is no other possible choice for your previsions that would lead to a uniform

reduction in your penalty.

It can be easily verified that these two pairs of definitions are equivalent to each
other and equivalent to the intuitive definitions. Although of the pair the first is
closer to the intuitive definition, the second is a more practical definition.

Now we can also introduce the notion of probability, the probability of an event
H occurring can be considered to be the prevision of the indicator function Iy (or for
simplicity H) which is 1 if H occurs and 0 if it does not. So even though we defined
prevision without at first defining probability, we have effectively defined probability,

and will use the same notation P(-) for both.

3.2 Conditioning

We can define the conditional prevision of a quantity X given the event H to be the

‘called-off’ penalty equivalent of Definition 3.1°. So we define,

Defn. 3.3 The conditional prevision P(X|H) is the value of x we would choose if we
were to incur the penalty k=2(X — )% if H occurs and 0 if it does not, i.e. the value

of z we would choose if we were to incur the penalty k=2H(X — z)2.

This notion of a ‘called-off’ bet can be used to define the set of conditional previ-
sions {P(X|H,),...,P(X|H,)} over a partition H = {Hy,..., H,}. If we define the
penalty Ly as
1
L'H = ﬁ(X - .’L‘]f]] — s = IL‘an)2
and observing that Hy + --- + H, = 1, and H;H; = 6;;H;, the set of quantities
{z1,...,z.} is precisely the set of conditional previsions.

This notion can be extended to any set of random quantities, as we no longer

need to separate events from random quantities in general, we can make our choice
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of {z1,...,zn} which would minimize the penalty L* defined to be
L* = L X X X,)?
—E( —T1A] — " — Ty n)

This development lies at the heart of Goldstein’s notion of Limited Belief Specifi-

cation [1981, 1988a, 1988b, 1991] which I will now summarise in the following sections.

3.3 Belief structures

The most logical way to combine collections of prevision statements is into inner

product spaces, which are called Belief Structures

Defn. 3.4 A belief structure A is defined as follows:
a) Start with a (not necessarily finite) set of random quantities C = {Xo, X1, ...},
which includes Xo = 1, the unit constant, and all X; satisfy P(X?) < oo. This
is the base of A and written C = b(A).
b) Define L as above, and define the inner product and norm over the equivalence

classes of L (where X is related to Y if the prevision of (X —Y)? is zero) by

(X,Y) = P(XY), X = (X, X)

Two belief structures (R and S) are the same (R = §) if they have a common base
and inner product.

Belief structures can be added, to increase the level of detail of our specifications.
If for example A and B are combined to produce D = A+ B, we have to, in addition,
specify P(XY') for each X € b(A) and Y € b(B). The base of D, b(D) is simply
b(A)U b(B).

We will now introduce a simple example which will be continued throughout the
rest of this chapter. To highlight the example it will be indented and set in slanted

text.
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We will consider a simple linear regression. Firstly we construct our

model: we take n observations Y1,...,Y, at design points z1,...,z,, and

we believe that

Y, = A+ Bz; + Z;, fori=1,...,n, (3.1)

where A, B and the Z;s are unknown quantities. We assume that the error
terms (the Z;s) are independent with mean zero and common variance s.

We then lay down our beliefs about the parameters of the model.

P(A) = «a P(A?) = a?*+ s*0?
P(B?) = b+ s%r?
P(AB) = ab+ storp

~

=
I
o

We can then work out our implied beliefs about the observations

P(Y;)) = a+ bz,

P(Y}Y;) = (a+bx;)(a+ bx;)+ s*(a® + orp(ai + z;) + 725 + 6;5)
P(AY;) = a*+ s*0* + (ab+ s*orp)a;
P(BY;) = (ab+ s?orp)+ (b* + s1%)a;

We can now set up two belief structures, C with base {1, A, B} and D
with base {1,Yy,...,Y,.}.

We will use some example data sets to examine our methods, these are
illustrated in Figure 3.1, and in which our prior beliefs are s = 2, 0 = 3,
T=2,p= —%, a = —5 and b = 5. For these parameter values our implied

beliefs are

35
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P(A) = =5  P(B) = 5 P(Y) = 5(z;i—1)
P(A?) = 61 P(AB) = -31  P(AY) = 61— 37
P(B?) = 41 P(BY:) = —37+4la;
P(YY;) = 61— 37(z: +z;)+

41.’1:,‘:1:]' + 45,']'

3.4 Conditioning and projection

The notions in section 3.2 can be considered as projections. Let B be a closed
subspace of the belief structure A, such that b(B) = {Xo, X1, ...}, then the orthogonal
projection of any general element Y € A, denoted by Pg(Y) is the element Y* € B
that minimizes ||Y — Y*||. So letting Y~ = (ro,71,...) = 70Xo + X1 + - - -, we need

to choose rg,71,... to minimize
Il)/ - 'I‘oXo — 'I‘[Xl — “,

which is the same as minimizing L~.

If B is not a subset of A, we can still define Pg(X), by first constructing the
augmented belief structure D = A+ B, then Pg can be considered to be the restriction
of the operator Pg: D — B to A, considering it as a subspace of of D.

If B has a finite base b(B) = {Xo,X1,...,X,}, this operator can be easily
evaluated with matrix operations . As the base of B is finite we can write Y* =

(roy...yTn) =10Xo+ -+ + 7, Xy, and so to find Y™ we have to minimize

L* = ||Y —reXo— 7 X] — - =X, II?

= VI = 23 X0 + 3 3K X))

=0 j=0
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Figure 3.1: Data sets for regression example
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Differentiating with respect to r; and equating with zero gives

aL*
Br,- -

and solving this gives in the vector form

Y* = MgEmBA

where

MBB = [P(‘X‘XJ)]OSt,]Sn 'dl]d mpy = [P(XQY), .

If A also has a finite base, Yo,...,Y,,, we can write Y = (so, ...

SmYm, (and putting Mps = [P(X;Yj)]0<i<n,0<j<m) we obtain

Ps(Y) = MzLMpaY

We can therefore represent Pg by a matrix, Pg = M 5}91\4 BA.

Moreover, if we put

—2(X;, X) + 2 (Xi, X;)=0

38

(3.2)

Jsm) = so¥o o+

(3.3)

ps = [P(X1),...,P(X)] Ve = [Cov(Xi, Xj)1<ij<n
pa = [PM),....PV)]  Csa = [Cov(Xi,Yj)hcicnicicm

we can write

1 n g
B
Mpp = i
\ #8 mspB + VB

1 7] R
A
Mpsy = .
s pepa +Cpa
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and then
1 T _ TV_lc
Py = A BB Vg LBAa (3.4)
0 V5'Cha
-1
, S 1 b 14b6C%% —bC?
using the identity . =
b bb +C C-'b c1!

In our example we can calculate Pp

-

d (1+o07pZ; +7282)a —(noTp + 725;)a
—(0?Z, + o7pLLz)b +(1 + no? + o7pX,)b
0 (024 0%r%*(1—p*)E)l  (o1p— (1 — pH)E,)1
+(orp— 0121 — pH)E)e  +(r? + no?r¥(1 — p?))z ]

=

where d = 1 + no?® + 207pZ; + 725, + 0*7%(1 — p?)(nZsr — T2)

putting our prior beliefs in, gives

1 —5(14+6X:+L:s) —5(146n+X2;)
Pp = 149n—6L; 448 427(nL:z=52) 149In—6L;+4L;: 427 (nE;-—-122)
0 9(1+3%::)1-3(1+9%; )& —3(149E:)149(44-270)T
149n—6E: 44522 +27(nE2:—52) 1+9In—6Z:+4Ez:+27(nE,: —X2)

For the data sets in Figure 3.1, we obtain the matrices in Table 3.1

Data set Pp
16 ( 1 —0.0170 0.0400 )
0 0.08971 — 0.0004z —0.00041 + 0.0359z
; 1 —0.0136 0.0244
0 0.09001 + 0.0028z 0.00281 + 0.0225x
s 1 0.0656 0.0520
0 0.24881 + 0.0503x 0.05031 + 0.0040z

Table 3.1: Pp for data sets

To finish this section, it is useful to point out three properties of projections in

general;
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a) Projections are linear:
Pa(X +Y)=Pg(X)+Pp(Y)

In this context it just re-iterates that the notion of prevision is a linear property.

b) Projections are idempotent:
Pp(Pp(X)) = Pp(X)

Here it says you can get no more information out of a piece of data, if you re-use
it later.

c) Projections are self-adjoint:

(X, Pp(Y)) = (Pp(X),Y)

3.5 Adjusting beliefs

In general if we revise our beliefs about some general random quantity Y of interest,
we can re-assess our prevision about Y to get a new prevision P*(Y). Many ways
can be used to update this prevision but we will concentrate on the most mechanical
one here, for further reference see Goldstein[1983]. If we have constructed a belief
structure B representing relevant data, one way of “updating” our prevision of Y is

to evaluate the projection of Y on B, i.e.
P*(Y) = Pp(Y)

Y can then be rewritten as Y = (Y —Pg(Y))+Pp(Y), these two terms are orthogonal

so the variance of Y = ||Y — P(Y)]|? can be split up as follows

Var(Y) = Var(Y — Pg(Y')) + Var(Pg(Y)). (3.5)
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The two variance terms are the residual variability of Y given the data, and the

variability of Y that can be accounted for by the variability in the data.

Defn. 3.5 We call the residual quantity Y — Pg(Y') the adjusted version of Y and
denote it by [Y/B], and as an intuitive measure of the information obtained we define

=502

the adjustment ratio for Y induced by B.

We also define the complimentary quantity R(Y) = y%(a%)ﬁl =1- D(Y). The
measure R(Y) is a measure of the explanatory power of B, if R(Y) is nearly one
then B contains quantities which explain Y well, but if R(Y’) is near zero, it contains
quantities of low explanatory power, or possibly we have not chosen to specify useful

aspects of the quantities.

If we use the notation in equation (3.4), we have

Var(Ps(Y)) = cpaVi'ena

VZ’LI’[},/B] = 'UA—-CTBAVB_ICBA

and
D(Y) = 1-cg,V5'epavy! (3.6)
R(Y) = cp,V5'cpavy' (3.7)

where ¢g4 = (Cov(X;,Y),...,Cov(X,, Y))T and vy = Var(Y)

In our regression example we have

2021 + T22zx(1 - /’2)
d

2 1 — 2
DBy = et

D(A) = s
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again incorporating our prior beliels about A and B we have for our
example data sets, values of D(A) and D(B) summarized in Table 3.2.
We see here that we learn very little about A in the last example, as D(A)

Is near one.

Data set | D(A) D(B)
1-6 0.3588 0.1437

7 0.3601 0.0898

8 0.9951 0.2541

Table 3.2: Values of D(A) and D(B) for example data sets.

3.6 Adjusted belief structures

We can extend this notion of adjusting beliefs to adjusting belief structures. When we
are analysing our beliefs, our main concern is how a set of statements about observ-
able data can alter our collection of belief statements. When we do a full Bayesian
analysis we obtain a posterior distribution by updating our prior distribution with
the likelihood, on the other hand with limited belief specification we are interested

how one belief structure is modified by observing another belief structure.

Defn. 3.6 If A and D are belief structures, [A/D] is the belief structure A ad-
justed for the belief structure D, and is defined as the belief structure with base
b([A/D]) = [b(A)/D]. Where for a set of random quantities C = {Z:,...,2Z,},
[C/D] = {[Z,/D),....[Z./D]}.

an alternative but equivalent definition, that does not need an explicit construction

of bases is

Defn. 3.6 If A and D are belief structures, then the belief structure A adjusted for
the belief structure D is defined as the orthogonal complement DY of D in A+ D.
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Now if we denote by I the belief structure whose base is just the unit constant,
then [A/I] is equivalent to the structure obtained if we use the alternative inner
product (X,Y) = Cov(X,Y) which de Finetti uses in his geometric interpretation
in chapter 4 of his book The Theory of Probability[1970]. This at first seems a more
natural inner product, quantities with large norms are those with high variability, and
quantities that are orthogonal have zero correlation. However with this inner product
all elements are standardized to have zero prevision, so the ‘first order’ information
is lost if we just examine the inner product. This adjustment is useful as it splits our
beliefs about A into two parts, our beliefs about the previsions of the quantities in A
and their variability, and allows us to focus on the second of these which is of more
interest to us. We can expand this to any adjustment by any belief structure, and we
need to find ways of quantifying and using the residual variation.

We can now include some of the properties of adjusted belief structures
Property 3.1 [A/D] =0 if and only if A is contained in D.

i.e. You can only get perfect information about the elements of A if it is contained

in the data you are given.
Property 3.2 [A/D] = A if and only if A is orthogonal to D.
i.e. Uncorrelated data gives no information at all.

Property 3.3 For any A;,A, and D,
(A1 + A2)/ D] = [A1/D] + [A2/ D].
Property 3.4 For any Ay, ..., Ay,
Ay+ A+ + A =Dy + Do+ - + Dy,

where we define D, = Ay, and, fori > 2, D; = [Ai/(A1+ -+ Ai_1], end D5, ..., Dy

are mutually orthogonal.
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Property 3.5 For any A and any D, which is orthogonal to D,
[A/(Dy + D2)] = [[A/D1]/ D] = [[A/ Do)/ Dyl
and if we lift the restriction that D, is orthogonal to D,,
[A/(D1r + D2)] = [[A/D1]/[D2/ Dr]] = [[A/ D2}/[D1/ D).

This last property is comparable to the conditional probability statement Pr(A|BC) =

Pr(AB|C)

P (BIC) and in Bayesian statistics to using your posterior distribution from one stage,

as a prior distribution for the next.

We can also obtain some relationships between projection and adjustment

Property 3.6 For any B,D and any X in A,
Ppyp(X) = Pp(X) 4+ Pip/p(X).
Property 3.7 For any B,D and any XY in A,
(Pp4p(X), Pa4n(Y)) = (P5(X),Ps(Y)) + (Pio/ai( X), Proysy(Y))

In particular for any D,

(X,Y) = (Pp(X),Pp(Y)) + (Prasp)(X), Praspy(¥))
= (Pp(X),Pp(Y)) + ((X/D],[Y/D])

This is the more general form of equation (3.5).

3.7 Diagnostics — bearing and length

Now we have defined the concept of belief structures, and indicated one (probably the

simplest) way of adjusting them, we need to assign ways of measuring this adjustment.
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Given we have assigned our present (time t) previsions for C = {X;,..., X},
P(C), and also our present covariance structure i.e. P(X;X;) for all X;, X; in C, we

can produce an orthonormal (uncorrelated) basis for our inner product space.

Defn. 3.7 A Component Representation of C is any set {E,...,E,} of r linear
combinations of {Xo,...,Xn}, where Xo = 1, such that

a) P(E:) =0

b) P(EiE;) = &

¢) Each X; in C can be expressed as a linear combination of Ey = 1 and

Now at a future time point t*, we revise our beliefs about the elements of C, we
define P*(C), a new set of previsions. We now use the component representation

obtained at time ¢ to summarise the relative location of our new beliefs.

Defn. 3.8 If {E;,...,E,} is a component representation of C, them the bearing of
P*(C) with respect to P(C) is

Y* =P (E1)E, + - + P*(E,)E,

Lemma 3.1 The bearing is independent of the choice of component representation.

Proof
If we choose an alternate component representation {Ej, ..., E!, we can write this as

(B!, .. EN = (QFE,,...,QE,)", where Q'Q = I,, so

Y” = P((El,... BN )E,. .., EL)
= P*((Ey,....E))QQ(E,....E,)
= Y
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Lemma 3.2 For all X in Lo we have

P*(X) — P(X) = Cov(X,Y")

where the covariance is defined at time t

Proof

Every X in L can be expressed as

A' = (X, E())E() + ()\,, E])E] + v 4 (X, ET)E.,-

because [Ey,. .., E;] is an orthogonal basis for L¢

X = P(X) + Cov(X, E1)Ey + - - - + Cov(X, E,) E,

as P(E;) = 0 for 7 # 0 then Cov(X, E;) = P(XE;) — P(X)P(E;) = (X, E;), and
(X, Ep) = P(X). So taking the prevision at time t* we obtain

P*(X) = P(X)+ Cov(X, E)P*(E1)+ -+ Cov(X, E,)P*(E,)
= P(X)+ Cov(X,E1P"(Er) + -+ E.P*(E,))
= P(X)+ Cov(X,Y™)

It should be noted in particular, that if X is uncorrelated with the bearing then
the prevision at time ™ is the same as the prevision at time t. So the bearing indicates

the ‘direction’ of change of belief, it also shows the size of this change.

Defn. 3.9 The length L* of the revision of beliefs over L¢ is defined by

L* = /Var(Y*) = /(Y Y*)
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This length is related to the standardised change in belief by the following theorem

Corollary 3.3 The mazimum value of |P*(X) — P(X)|/\/Var(X), over all X in Lc¢

is L*, this mazimum being obtained at Y™*.

So in general if Z* = kY™*, then a bearing of Z* would represent a k-fold increase in
the change of prevision for every element of L¢. It should be noted that the bearing

plays a similar role to the likelihood in a full Bayesian analysis.

In our example we can find the bearing given all the data.

v, = %(A—a Bb) 1+orpE,+7%8,, —1?L,~noTp Yy—an—b%,
std Yye—aXy,—bY,,

08, ~0orpl.,  140o7pE +no?

For the data sets we calculate the bearings and lengths listed in Table 3.3.

Data set Bearing - Y* Var(Y*) L~
1 —0.1176 A — 0.0927B — 0.1245 0.3736 0.6113
2 —0.1368A — 0.28368 + 0.7337  1.0293  1.0146
3 —0.1059A — 0.0953B — 0.0532  0.3071  0.5542
4 —0.1165A — 0.2448B + 0.6415 0.7633  0.8737
5 —0.03314 — 0.0131B — 0.0990 0.0317 0.1781
6 —0.0984A — 0.6542B + 3.7791  5.6515 2.3773
7 —0.0921A - 0.1152B 4 0.1150  0.2630  0.5128
8 —0.0068A4 4 0.0147B — 0.1702  0.0075 0.0864

Table 3.3: Bearings and Lengths for data sets

Data set six automatically stands out as being “abnormal” as its length
is twice as high as the rest, but we do not notice anything unusual about
the rest of the data sets, we therefore need to look at the revision more

closely to pick up other features in the data.
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3.8 Belief transforms

It would be useful to have an analogue to the quantities D(Y) and R(Y') defined
in Section 3.5, to measure the magnitude of the revision we make when we adjust
one belief structure, by another, rather than just one random quantity by a belief

structure. We can summarise this by the belief transform,

Defn. 3.10 The belief transform over B induced by D is the linear operator over B
defined by
Tp =PgPp: B— B

where Pg, and Pp are the orthogonal projections from D to B and from B to D

respectively.

We also define a complementary transform

Defn. 3.11 The complementary beliefl transform of Tp is Sp =1 —Tp
These transforms have the following properties:

Property 3.8 Sp and Tp are self-adjoint with respect to the inner product (-,-), i.e.

(X,Tp(Y)) = (Tp(X),Y)
(X,Sp(Y)) = (Sp(X),Y)

Property 3.9 Sp and Tp are linear, i.e.

Tp(X +Y)=Tp(X)+Tp(Y)

Property 3.10 The norms of the Sp and Tp are not greater than one.

Property 3.11

(X,Tp(Y)) = (Pp(X),Pp(Y))
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(X,5p(Y)) = ([X/D],[Y/D])

Property 3.12 Sp and Tp decompose the inner product

(X,Y)=(X,Tp(Y)) + (X, Sp(Y))

Property 3.13 Belief transforms can be constructed sequentially, if Dy and D, are
belief structures, and using Properties 3.11, 3.5 and 3.7

T(Dl+D2) = TDl + T[DQ/DI]

where Tip,/p,) is the belief transform over [B/Dy] induced by [Dy/D,], but thought of

as an operator over B.

Property 3.14 If we choose D; so that we have A = Dy + D,, we have

I=Ts = Tp, +Tia/py

So
Sp, = Tia/py)

If we consider adjustment to be replacing the inner product on B by a new inner
product (X,Y)" = (X — Pp(X),Y — Pp(Y)), then Tp and Sp have the following

properties;

Property 3.15

(X, Y)" = (X,5p(Y)) = (Sp(X),Y)
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Property 3.16 For any X in L,

(X, Sp(X))
(X, X)

(Xa TD(X))

b{x) = (X, X)

and R(X) =

Again if the bases of B and D are finite, the transforms Tp and Sp can be

represented by the matrices (using the same notation as section 3.4)
Tp = ME};MBDMB})MDB and Sp=1- MEIBMBDMB})MDB (3.8)

respectively. Expanding these in terms of the first-order previsions and second-order

covariance structure gives us

1 ps (I - V5'CepV5lC
Tp = ( ms ( B YBDVYp DB)W (3.9)

0 VB_ICBDVD—ICDB
0 wpp (V5'CepVy'Cps —1
Sp — ( up (Vg'CppVp ' Cpp — 1) (3.10)

0 I-V5'CepVp5'Chs

In the regression example we have the two transforms

d [(1+07pEs + 72802 )a — (%8, + 07pEsz)b] 1
Tp = I +[—(notp+ S.m¥a + (1 4+ no? + o7pE,)ble
d 10 (0% + 021 — p?)Tu) 11" + (72 4+ nr2o?(1 — p?))ax’
i +(orp — o221 — p2)T,) (12 + 1) ]
[ d (14 o01pZ; + 728,2)a —(noTp+ 1i5,)a ]
—(0%E, + o7pB.)b +(1 +no? + orpX.)b
T, — l 0 no’ 4+ otpl.+ notp + 18,
4| ¥l - p*)(nE., — 52)
0 0?8, + oTpEe, oTpEy + T 8+
i o211 — p?)(nZze — L2) |
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and for the particular data sets we have

Data sets 1-6

o= | —0.01701 + 0.0400z ]
| 0 0.897011" — 0.0004(=1" + 1z') + 0.0359z "
[ 1 —0.0170  0.0400
Tc = [0 09868 —0.0039
0 —0.0098 0.9881
If)ata. set 7
[ 1 ~0.01361 + 0.0244z }
TD = T T T T
| 0 0.900511" — 0.0028(21" + 12") + 0.0225z
[ 1 —0.0136  0.0244
Tc = |0 0.983 —0.0030
0 —0.0110 0.9922
ba,ta, set 8
_ [ 1 —0.06561 + 0.0520a ]
| 0 0.248811" — 0.1005(21" + 1') + 0.0635z2"
[ 1 —0.0656 0.0520
Te = |0 09520 —0.0220
| 0 —0.0612  0.9676

It is relatively difficult to understand the complexities of the transform just by
looking at it, and so we need to obtain a summary of it similar in nature to the
summaries D(X) and R(X) we obtained when we adjusted one random quantity
by a belief structure, and to do this it is useful to analyse the eigenstructure of
these transforms. We will assume here that the base of B is finite, and Tp has a
set of orthonormal eigenvectors g = 1, Fy, ..., E,, corresponding to the eigenvalues
l=X2>2A >---2 A >0. The set {E,...,E,} is a component represention,
and so its elements are uncorrelated with zero mean and unit variance, and we have

PsPp(E;) = ME:.
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Defn. 3.12 If we let M(B)={E4,...,Es} be the subset of {Ey,...,E,} which have

non-zero etgenvalues, then we call M(B) a map over B.
Defn. 3.13 We call the values Ay > --- > ), the scale of the map.

As R(E;) = X, axes of the map which have a large eigenvalue are those where a
large expected change in belief will occur, and those that correspond to a small change
in belief have correspondingly small eigenvalues. Finally, those eigenvectors with zero
eigenvalues correspond to directions in which the data will give no information at all.

We can also consider the complementary transform Sp which has the same eigen-
vectors, but with eigenvalues v; =1 — A\;. As B and D are both belief structures we
can also consider the transforms Tg and Sg. It can be shown that the non-zero eigen-
values of Tg are precisely the non-zero eigenvalues of Tp, and similarly the eigenvalues
of Sp less than one are the same as for Sp. Also the eigenvectors (corresponding to

non-zero eigenvalues) of Tp and T are related as follows

Lemma 3.4 For eachi in {0,...,s}, Fi = 7=Pp(E:) is the eigenvector of T with
unit variance corresponding to the eigenvalue X;. Therefore {Fy,..., Fs} is a map,

M(D), over D induced by B, with the same scale as M(B)

Note: This result can be seen to be useful from a practical point of view, instead
of computing what could be a large belief transform Tp, it is possible to compute a
smaller one Tg, whose eigenvalues and eigenvectors are easier to compute, and then
making the corresponding transformation. For example, if you were examining how
one data point influenced your beliefs about a set of n quantities, the eigenanalysis
of the 2-by-2 belief transform T is easier to perform than the eigenanalysis of the

(n + 1)? belief transform Tp.

Defn. 3.14 The maps M(B) and M(D) defined as above are called the twin maps
for the pair of belief structures B and D.

If we now perform an eigenanalysis on the transforms in our example,

we can get their scales and maps



3.8. BELIEF TRANSFORMS

If 2%, = —npot

\ n(l — p?)o?
YT o 1+n(1- p?)o?
728, — nplo?
dy = 2 2,2
1+ 128, — nplo
1 (A—a)—orp(B—0b) B—1b
M =
() { sT7204/1 — p? T osT }

no? — p*r’¥,,
1 4+ no? — p?r2i,,
128.:(1 — p?)
14+ 725,.(1 — p?)
A—a o*(B-b)—orp(A - a)

M(c) = A so sTa?y/1 — p? J

Otherwise

Moo= (2d)7! (na2 + 7280 + 207p%, + 20213 (1 — p*)(nSer — B2)+
J(no? — 725, )2 1 4(norp + 775,)(025, + anEn)>

(2d)~! (na2 + 7280, 4 207p%, + 2027%(1 — p?)(nEer — £2)—
J(n0? = 72507 + 4(norp + 775,) (025, + mpzm))

Az

e; x 2(notp+ T8 (A—a)+ (r"’zm — no’4
\/(n02 —128..) +4(norp + 728,) (%L, + anEI,;)) (B —-b)
e, x 2(notp+ T2Ex)(A —a)+ (7‘22;,,,; Y

\/(na"’ —728:2)2 + 4(noTp + 728,) (028, + a'rpEm)) (B —b)

If 2%, = —npor

In our particular example sets we have the eigenvalues listed in Ta-
ble 3.4, the eigenvalues for the first seven data sets are similar, but for the

eighth, the second eigenvalue is smaller, this comes from the assymetry of

33
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the design.

Data set A A2
1-6 0.9937 0.9811
7 0.9956 0.9829
8 0.9972 0.9223

Table 3.4: Eigenvalues of belief transforms in regression example

The bearing can be evaluated using these maps in a symmetric way.

Lemma 3.5 If M(B) = {F,...,E;} and M(D) = {F\,...,F,} the maps defined
above with scale {\y > ... > \;}. Then the bearing over B induced by D and over D
induced by B both have the form

VMEF: + - +\/AE.F,

where if we observe D = d, Y; is calculated by putting F; = f;, but if we observe

B =1b,Y, is calculaled by putting I5; = e;.

Corollary 3.6
P(Var(Yp)) = trace(Tp) — 1

Proof
If we observe D = d, Var(Yp) = MfZ + -+ + A f?, and the prevision of this is
POMFE+- A F) = MP(F) 4+ A P(F2) =M+ + A, =trace(Tp)—1. O

So in our example, the trace of the transform is

alt} (1 — p?)(nEer — 2) - 1
d

trace(Tp) —1 =1+
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So we now have a simple summary to alert us to anything unexpected in the data,
we can compute the value of Var(Y;) and compare it with the trace of the transform,

if it is large then the data is exhibiting anomalous behaviour.

In our example for data sets 1-6 the trace is 1.9748; data set 7, 1.9786;
and data set 8 is 1.9176.

These maps have another use other than calculating the bearing, for if we make

the following definition

Defn. 3.15 We define the heart of the transform Tp, H[D/B], as the belief structure
with base [Fy,..., Fy).

we see the heart of Ty, H[D/B], corresponds to the dual map M (D), of Tp, and has

the following useful properties:
Property 3.17 H[D/B] is contained in [D/B].

Property 3.18 For oll X in B,

Tp(X) = Tyups(X).

Property 3.19 If H[D/B)| = --- = H[D/B,,] = H then H[D/(B,+- -+ Bpn)| = H

also.

The heart therefore summarizes exactly which aspects of the data influence the revi-
sion of belief. For example if we are looking at the mean of a random quantity, and
the belief structure D consists of a set of independent observations of that quantity,
then the only part of D that gives us any information about the mean is the sample
mean, so the heart of the transform is simply the sample mean. Property 3.19 simply
says if all the revision of belief structures By, ..., By, only depend on certain sufficient
statistics then the adjustment of the combined belief structure By + --- + B, only

depends on the set. More generally we have,
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Property 3.20

H[D/(Bi + -+ Bn)] = H[D/Bi] + -+ H[D/By]

56



Chapter 4

Grid Based Design Criteria

We will now use the results from the previous chapter to construct designs for the
interpolation problem (using Currin at al’s[1991] model) from Chapter 2.

We will assume that we wish to make inference about the function on some
grid G = {z,,...}, by making function evaluations at a set of design points X =
{zay, ... Tmy} C G. We will use as a criteria the trace of the belief transform, which
is a descriptive tool measuring how much information we can receive by taking func-
tion evaluations at the design points. If we look at the transform of G by X, we
will note that this always has trace n, because we reduce the variance of Y'(-) at (),
T(2),. -+, T(n) by afactor of 1 each. As we know we have perfect information about the
function at the design points we are interested in what we can learn about the func-
tion elsewhere, we could therefore look at the transform Ty of G — X by X, and find
its trace. To find this directly is straight forward, but difficult to do computationally,

but it can be simplified by using Theorem 4.1, and its corollary.

Theorem 4.1 The transform T(g_xy of X' can be found as follows

T(G_(y) =71 - (BV,y,y)—l _ (4.1)
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where

Vic-xyc-xy Vie-x)x

Var(Y) =
Vx(G-x) Vyx
1 A Z
Var (YY) = ;
Zz B
where Y = (Y(G = X),Y(X))"
Proof
If we invert Var(Y') we get
Vig-xy6-x) ViG-xx A z| |10
Vyig-x) Vyx z" B 01
Z = —V(al—x)(c-,t')v(G—X)XB

—Vxe-0)\Vgmxyc-nyVie-vx B+ Vax B = 1
~Vax V"'(G"t’)v(al—.l’)(c—,v)V(G—,v),t' +1 = VB!
I - VAT,{’B_] = T(G—X)

Corollary 4.2
TraceTy = n — Trace((BVyx)™") (4.2)

We now use this result as a criterion for finding optimal grid based designs. To
do this we first compute the inverse of the variance matrix for all the points in the
grid (as we only need to do this once we can use high precision computer programs
to invert the matrix), and then we can compute the trace for all the designs quickly,
only needing to invert a n x n matrix each time. This criteria is similar to the entropy
criteria in Currin et al[1991], and the designs have similarities, which we will observe

later.
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In the examples that follow we will use the correlation function py(+), as this allows

us to find an analytic inverse for V.

4.1 Example 1 — p|(d) on a “Uniform” grid

We will start with a uniform grid as this is the easiest one to define, with N +1 points
in the interval [-1,1], G = {—-1+ 2{/N : 0 <i < N}. Var(Y') and its inverse, have

simple forms,

(1 D D* ... DN-1 DN )
D 1 D ... DN-2 pN-
D2 D 1 . DN—3 DN—-2
Var(Y) = o° . _ _ . . ' (4.3)
DN—I DN-2 DN—3 .. 1 D
\ DN DN—l DN—2 D 1 )
(1 —-D o 0 )
-D 1+D* —-D
1
-1 = — — 4
Var™(Y) 221 = D7) 0 D 0 (4.4)
14+D?* -D
0 0 -D 1 )

where D = ¢~ 20/N

We can then find the trace of the transform by partitioning the matrix for every
set of design points to be considered, as an example let us assume we have the n

design points 0 < 7; < ... < 7, < N, no two being adjacent, then BVyx becomes

14+ D?

T plii—ixl (4.5)

(BVyx)x =
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We can find its inverse analytically once more,

4

D'k~ .
T k=j+1,
—D'i % .
o j=k+1,
1-D? _‘(_l.' =D i=k=1,
(BVxx) ™)k = 15z | A | (4.6)
(1_DQ(lj—ij_]))(l_D2(|j+]—.j)) ]- < ] = k < n,
I_DQZ.'};Z.‘_,,__J ] =k= n,
0 otherwise.
Which has trace
1 1 — D? -l 1
Trace((BVyx)™') = 3 D7 2—-n+ 2; [ D) (4.7)

We are required to maximize n — Tr((BVyy)™!), the maxima occur when the
design points are as far away as possible from each other. For example for a four point
design, on a grid of 33 points, we have the optimal design X = {—12, -2, 2 18} The
design never chooses the end points of the region in preference to interior points (as
they give less information) because they have less neighbours. As we can analytically

invert BVyy, we can look at asymptotic results, letting the number of grid points

tend to infinity, the optimal m + 1 point design is X = {—1 + 2# :0 <1 <m}.

4.2 Example 2 — p;(d) on a “Normal” grid

We repeat the previous example, but replace the grid by a non-uniform grid, the

density of which is “normal”. We will use a 21 point grid, G. given by,

+1.9808 +1.4652 +£1.1798 +£0.9674
+0.7916 +£0.6375 +0.4972 +0.3661
+0.2420 4:0.1196 0
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We can view the grids here as discretizations of the metric () mentioned in Chap-
ter 2, by choosing points which have equal probability separations, i.e. Q(z;41)—Q(z;)
is a constant. The uniform grid in example 1 is a discretization of Q(z) = 1/2, z €
[—1,1], and the grid in this example is a discretization of the standard normal metric.

If we look at the criterion, we can see that the inverses of the two matrices Vyy
and B contribute different factors, the first is a measure of distance between the
points in the grid, and the second is a measure of the density of the grid at the design
points, and so the criterion is a compromise between the two, the former pushes the
design points further out, and the latter pulling them back in.

In this case we will look for the designs for various values of § ranging from 0.1 to

10, and for 1 to 4 design points, see Table 4.1.

Points 0 Trace Design

1 0.1 0.9880357609  0.000000

1 0.5 0.9402472164  0.000000

1 1.0 0.8809195969  0.000000

1 2.0 0.7651691290  0.000000

1 10.0 0.1674219120  0.000000

2 0.1 1.8801351469 £0.967422

2 0.5 1.7965081434 +0.637484

2 1.0 1.6878642412 40.497201

2 2.0 1.4705679971 +£0.366106

2 10.0 0.3204291940 -0.241040  0.366106
3 0.1 2.6664274815 +£1.179761 0.000000
3 0.5 2.5576879674 +0.967422  0.000000
3 1.0 2.4096985757 +0.791639  0.000000
3 2.0 2.1058135644 +0.637484  0.000000
3 10.0 0.4539349485 +£0.241040  0.000000
4 0.1 3.3438614935 £1.179761 +£0.241040
4 0.5 3.2173697441 +£1.179761 +£0.241040
4 1.0 3.0329182492 +0.967422 -0.366106  0.241040
4 2.0 2.6616004396 +0.791639 10.241040
4 10.0 0.5780472657 +0.366106 +0.119648

Table 4.1: 1-dimensional designs on a “normal” grid
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4.3 Example 3 — Multi-dimensional grids

We can extend this method to allow & to be a m-dimensional vector. If we chose a
product form for the covariance of the observations, and a lattice for the grid, then
we note the variance matrix becomes a Kronecker product, of the “marginal variance
matrices”, and so the matrix inverse is simpler to compute. We can apply Theorem 4.1
and its corollary again, which makes a more dramatic saving of computing power, than
in the one-dimensional case - the transform would usually be difficult to compute as
it would require the inversion of a (¢™ — n) x (¢™ — n) and a n x n matrix for
each calculation of the transform - but using this result we only need to invert m
g X g matrices once to find B, and then an n x n matrix for each calculation of the
transform.

Using the product correlation function p(d) = [T, e"!%!, we can generate optimal
designs for higher dimensions. (The designs may be sub-optimal because they are
generated by the following algorithm, the best of ten or more runs is used, which only
finds locally optimal solutions.)

Choose a design at random
Repeat
For each point in turn
Choose the point to maximize the criterion
Until no more updating can be done.
We will produce examples for two and three dimensions on two 21™ point lattices,

for one to ten points, these are summarised in the following series of tables and figures.

Table Figure Dimension Grid

42 4.1&4.2 2 “Normal”
43 4.3&44 2 “Uniform”
44 3 “Normal”
4.5 3 “Uniform”

Where “Normal” refers to the grid from Example 2, and “Uniform” refers to the

21-point grid {-1.0,—-0.9,...,0.9,1.0}. Although not shown here the optimal designs
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in the case of multidimensional “Uniform” girds are generally dependent on the value

of 8, unlike there one-dimensional cousins.

Points
1

2
3
4

10

Trace(T)
0.985820
1.965840
2.943155
3.918860
4.889073
5.857528

6.825350

7.788608

8.751282

9.710879

Design
( 0.0000, 0.0000)
(-0.3661,-0.3661)
(-0.4972,-0.4972)
( 0.1196, 0.6374)
(-0.6374, 0.1196)
(-0.1196,-0.6374)
( 0.7916,-0.2410)
(-0.3661,-0.7916)
( 0.1196, 0.7916)
(-0.4972,-0.4972)
( 0.2410,-0.7916)
( 0.0000, 0.0000)
( 0.2410, 0.7916)
( 0.4972,-0.2410)
(-0.9674,-0.1196)
( 0.4972, 0.3661)
(-0.3661, 0.4972)
(-0.9674, 0.1196)
( 0.0000,-0.3661)
(1 0.2410, 0.2410)
(-0.1196, 0.9674)
( 0.4972,-0.6374)

( 0.2410, 0.3661)
( 0.4972,-0.1196)
( 0.6374,-0.1196)

(-0.6374, 0.0000)
( 0.2410, 0.2410)
( 0.7916, 0.2410)
(-0.1196, 0.0000)
( 0.4972, 0.4972)
( 0.7916,-0.2410)

(-0.3661,-0.4972)
( 0.1196,-0.9674)
( 0.7916, 0.3661)
(-0.4972,-0.3661)
(-0.1196,-0.9674)
( 0.9674,-0.1196)
( 0.9674,-0.1196)
(-0.2410,-0.9674)
(-0.6374, 0.4972)

(-0.1196, 0.4972)
(-0.1196,-0.6374)

(-0.2410, 0.7916)

-0.7916, 0.3661)
0.3661,-0.3661)
-0.7916, 0.2410)
-0.2410, 0.7916)

(-0.4972, 0.4972)
( 0.0000, 0.1196)

( 0.3661,-0.4972
( 0.1196, 0.9674
( 0.0000, 0.0000
(-0.3661, 0.0000
( 0.6374, 0.6374
(-0.9674,-0.2410

Table 4.2: 2-dimensional designs on a “normal” grid

63



4.3. EXAMPLE 3 - MULTI-DIMENSIONAL GRIDS

1r 1
@
1 ¢ 1 ) 1
[
1 1
1 1
®
o
® [
1 1 1 o !
o
®
i -1F
1 1f
® ®
®
[ ®
1 d 1 1 d 1
]
®
®
[
1 -1

Figure 4.1: 2-dimensional designs on a “normal” grid with one to six points
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Figure 4.2: 2-dimensional designs on a “normal” grid with seven to ten points
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Points
1

S O R W

10

16

Trace(T)
0.990066
1.980118
2.969742
3.958110
4.946558
5.931798

6.915816
7.899789
8.880450
9.859666

15.710535

Table 4.3: 2-dimensional designs on a “uniform” grid

Design

any non-edge point

0.9, 0.9)

(-0.6,-0.4)
( 0.5,-0.5)

“l
coobbood
—_ O 9~ O WO

- ~

-

~

~

oL O Do D
1
R i S S S g g

-

(-0.9, 0.9)

(-0.9, 0.9)
(-0.1, 0.6)
(0.9,-0.9)
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Figure 4.3: 2-dimensional designs on a “uniform” grid with one to six points
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Figure 4.4: 2-dimensional designs on a “uniform” grid with seven to ten and sixteen
points
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Points
1
2
3

10

Trace(T)
0.998311
1.996100
2.993659

3.991019

4.988282

5.985355

6.982391

7.978994

8.975793

9.972339

Design
( 0.0000, 0.0000, 0.0000)
( 0.2410, 0.2410, 0.2410)
( 0.3661, 0.0000,-0.3661)
( 0.0000, 0.3661, 0.3661)
(-0.1196,-0.2410, 0.4972)
( 0.2410, 0.4972, 0.1196)
( 0.4972,-0.1196, 0.2410)
(-0.2410, 0.2410, 0.4972)
(-0.4972, 0.0000,-0.4972)
( 0.4972, 0.2410, 0.1196)
( 0.2410,-0.1196, 0.4972)
(-0.1196,-0.4972,-0.2410)
( 0.3661, 0.3661,-0.2410)
(-0.2410, 0.6374, 0.1196)
( 0.1196,-0.6374, 0.0000)
(-0.1196, 0.0000,-0.6374)
(-0.1196, 0.2410, 0.0000)
( 0.3661, 0.6374,-0.2410)
(-0.4972, 0.4972, 0.3661)
( 0.1196, 0.0000,-0.6374)
(-0.1196, 0.0000, 0.0000)
(-0.4972,-0.3661,-0.3661)
( 0.6374,-0.1196,-0.2410)
(-0.2410, 0.7916,-0.2410)
(-0.6374, 0.2410, 0.3661)
(0.1196,-0.2410,-0.1196)
( 0.3661, 0.3661,-0.3661)
(-0.7916, 0.2410,-0.1196)
( 0.1196, 0.2410, 0.7916)
(-0.3661,-0.6374,-0.3661)

(-0.2410,-0.2410,-0.2410)
(-0.3661,-0.3661, 0.0000)

(-0.4972, 0.1196,-0.2410)
( 0.3661,-0.3661,-0.3661)
( 0.0000,-0.4972,-0.1196)
( 0.2410, 0.4972,-0.2410)

(-0.2410, 0.6374, 0.0000)
( 0.0000,-0.2410, 0.6374)
(-0.6374, 0,1196, 0.2410)
(-0.6374,-0.2410,-0.1196)
( 0.6374,-0.1196, 0.2410)
(10.0000, 0.1196, 0.6374)

(-0.6374,-0.2410,-0.2410)
( 0.0000,-0.2410, 0.6374)
( 0.2410,-0.6374,-0.1196)
( 0.6374, 0.0000, 0.2410)
( 0.3661, 0.4972, 0.2410)
( 0.0000,-0.2410, 0.6374)
( 0.1196, 0.2410,-0.6374)
( 0.2410,-0.6374, 0.1196)

(-0.1196, 0.6374, 0.1196)
( 0.3661,-0.4972, 0.3661)
(-0.1196, 0.0000,-0.7916)
( 0.7916, 0.0000, 0.1196)
(-0.4972,-0.1196, 0.4972)

Table 4.4: 3-dimensional designs on a “normal” grid
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Points
1

2
3
4

10

Trace(T)
0.999010
1.998020
2.997025
3.996031
4.994998
5.993964

6.992880

7.991753

8.990604

9.989434

Table 4.5: 3-dimensional designs on a “uniform” grid

Design

any non-edge point

(-0.9,-0.9,-0.9)
(-0.9, 0.9,-0.9)
( 0.9,-0.9,-0.9)
(-0.9, 0.9,-0.9)
( 0.9,-0.9,-0.2)
( 0.0, 0.0,-0.9)
(-0.9,-0.9, 0.9)
(0.9, 0.9,-0.9)
(0.9, 0.9,-0.9)
(-0.9, 0.9, 0.4)
(0.8, 0.5, 0.9)
(0.9,-0.3,-0.9)
(-0.9,-0.7, 0.7)
(0.1, 0.0, 0.3)
(-0.9, 0.9, 0.3)
(-0.9,-0.9, 0.9)
(0.0, 0.0, 0.7)
(-0.1,-0.9, 0.9)
(0.9, 0.9,-0.6)
(0.4,-0.2,-0.9)
(10.9,-0.9,-0.1)

(0.9, 0.9, 0.9)
(0.9, 0.9, 0.9)
(0.9, 0.9, 0.9)

co o
©
e
©
=
©

-0.9, 0.8,-0.9)
-0.5, 0.9, 0.9)
-0.4,-0.9,-0.7)
0.9, 0.9, 0.9)
0.3, 0.9,-0.7)
-0.9, 0.1,-0.9)
-0.9, 0.9, 0.9)
0.9, 0.2, 0.9)
-0.8,-0.3, 0.3)

o — pr— p— p— p—

( 0.9,-0.9,-0.9)
(-0.9,-0.9, 0.9)

(-0.9,-0.9, 0.9)

(-0.4,-0.5,-0.9)
(-0.9, 0.9,-0.1)
(10.9,-0.9,-0.1)
(-0.5,-0.9, 0.9)

( 0.9,-0.9, 0.9)
(0.9, 0.9,-0.1)

(0.9,-0.9, 0.4)
( 0.9,-0.3,-0.9)
(-0.3,-0.9,-0.5)
(-0.9,-0.9,-0.8)
(-0.7, 0.9,-0.9)
(0.0, 0.6, 0.1)
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Chapter 5

Looking For Nothing

As mentioned in Chapter 1, one of the more common problems when we are consid-
ering computer experiments modelling complicated processes is that of matching the
output of the model to the real observed data, by adjusting the model parameters, for
example the flame dynamics model of Sacks et al[1989a]. In the papers mentioned in
Chapter 2 that cover this topic of calibration, the methods used all consist of finding
an approximation to the function, and then finding points where this approximation
matches the observed data.

Here, we would like to explicitly build into our approximation information about
the model that is relevant to finding a solution to this problem, which we can express

as

y(x) = yo (5.1)

where y, is the observed data. We can w.l.o.g. replace this with the simpler problem
of solving y(x) = 0, by rewriting y(z) as y(x) — yo,. We would like to include prior
knowledge about the location of the zero, that is our prior prevision (expectation),
and a measure of uncertainty (variance). Other information could be included, for
example the slope of the function near the zero.

In the next few sections, we will consider the simplest case of this problem where
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the response function y(-) and the parameter = are both univariate. This is a typical

problem considered by numerical analysts, and so there is a plethora of numerical

methods already in existence; for example

Bisection: for a function on an interval [a,b], whose values at the two end points
are of opposite sign. To home in on the zero, we repeatedly halve the interval,
keeping the half in which the function values at the end points have opposite
sign, and hence contains the zero.

Secant: for functions of the same type as for the bisection method. The interval is
split at the point where the straight line through the function evaluations at the
two end points cuts the axis, and again we keep the half in which the function
values at the end points have opposite sign.

Newton Raphson: for differentiable functions. Given a starting value zo, we replace
it by the point where the tangent line to the function at zo crosses the axis, and
repeat this until we converge on a solution.

Inverse Interpolation: for any function. The function is approximated by some means,

and then we solve (the easier) problem of finding the roots of the approximant.

5.1 Modelling the problem - the univariate case

To further simplify this problem, we will make an additional initial assumption that
the function has just one zero in the region of interest. Some of the methods to
be produced will identify multiple zeros (even under the assumption that there is
just one). A much harder problem of estimating the number of zeros the interval is
omitted, if this was possible, we could build this information into the model.

We first consider the construction of the model of the function. As we are consid-
ering a function with a zero, we choose to explicitly include this in the model. If we

let X denote the location of the zero, the model must have the following property

Y(Xo) =0 (5.2)
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As most functions we will consider are continuous then we should assume that our
model of the response is also continuous.

The first property (5.2) can be modelled in two ways;

i) We can assume Y(z) has (z — Xj) as a divisor i.e.

Y(z) = B(z)(z — Xo) (5.3)

where B(z) is a continuous function, see figure 5.1 B(Xo) represents the slope

of the function at its zero.

4
4

“slope B(x)

Figure 5.1: ¢ — Xy factor model for Y (z)

i1) In general we can write Y(2) in the following form

Y(z) = G(z) — G(Xo) (5.4)

where G(x) is again continuous, and so when we model G(x) where we do not

need to put additional constraints on G(Xo). We will look at this model again
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in section 5.6.

The continuity assumption can be modelled by assuming that the prevision of Y (z)
as a function of z is continuous, and that the correlation between two values of Y'(z)

is also continuous. We will expand on this in the next section.

5.2 The univariate model

In this and the next few sections, we will assume the model is as in equation (5.3),
and model the “slope” process B(:). As we have already stated B(z) should be a
continuous function of z. For this to happen its prevision should be continuous, and
that the correlation between the “slope” B(-) at any two points z and z, should also
be a continuous function of & and z..

We assume for simplicity that the “slope” process B(-) is stationary, so that the

prevision of B(xz) does not depend on z and therefore we have

P(B(z)) = b, (5.5)

for all z in the region of interest. Our prior specification for b is based on our prior
knowledge about the slope at the zero.

We assume that the correlation of the “slope” B(:) is a continuous monotonically
decreasing function of the distance between two points. If we believe y(-) to be a
continuously differentiable function we would also like the correlation function to

~0& (py(+) from

be continuously differentiable. In what follows we will use p(d) = e
Chapter 2) as the correlation function, where d is the distance between the two points.
This condition is not essential, and we will look at some other correlation functions
later for which this does not hold. We base our prior belief about the variance of

B(z), of, on the variation of the slope at the “zero”.

Finally we specify our beliefs about X, its location P(Xp) = po and uncertainty
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Var(Xo) = 02. These assumptions and prior beliefs imply beliefs about the Y(-)s,

P(Y(z)) = b(z — o) (5.6)
Cov(Y(2),Y(2.)) = (02+(z—po)(z.—po)) oZp(z — z.)+b%0f  (5.7)
Cov(Xo,Y(z)) = -—bo? (5.8)
Cov(Y(z), B(z.)) = of(x — po)p(z — ) (5.9)

These seem natural, the variance of Y () grows quadratically as we move away
from the location of the zero, which is what we would expect if we were considering
a linear model; the sign in (5.8), highlights that if we observe a value higher than
expected then (with a positive slope) the zero is more likely to be to the left of the
original guess; the correlation in the function evaluations tends to 0 as the distance
between them increases.

We can look at plots of the correlation (figures 5.2 and 5.3) and covariance (figure
5.4) of the Y(-)s for various values of b, and @, under this model (using p(-)), and
po =0, 02 =1 and o = 1 (we can use changes of scale and location to transform the
variables so that pg, 02 and o} are replaced by 0, 1 and 1 respectively). These give
us further insight into the structure we have implied.

We can also produce sample realizations of the random processes with these first
and second order structures (We extend our prior beliefs about the B(:)s to a full
prior distribution, by assuming they are multivariate normal), to give us some idea
of functions which match our model precisely.

If we let Y;,...,Y, be the unknown function values at z;,...,z, we can adjust
our beliefs for each of the quantities of interest Xy, B(z) and Y(z). We will first

define some notations to be used throughout the rest of this chapter.

z = (21,...,2,)

Y = (Yy,...,Y,)















5.2. THE UNIVARIATE MODEL 80

Py (Y(2.)) = blz. — Py (Xo)]|4+c CTHY — bz — Py (Xo)1])  (5.12)

and their adjusted variances and covariances are

Var[Xo/Y] = ab2+0301TbC‘11b2 (5.13)
Cov([Xo/Y],[Y(2.)/Y]) = —b(1=1C 'c)Var[Xo/Y] (5.14)

Cov([B(.)/Y),[B(3.)/Y]) = of (p(z. —3.)—d C7'd) +
d C'11'C'dVar[ X,/ Y |H* (5.15)
Cov([Y (2.)/YL[Y(2)/Y]) = of (5 + (w. = po) (&= po) Jp(w. — &) =€ C'E) +
(1-1'C7'&)(1—c C'1)Var[Xo/Y |0 (5.16)
ot (2= po)p(z.—i.)— d C &)
d' C'1(1"C~'é—1)Var[ X,/ Y]’ (5.17)

Cov([B(2.)/Y), [¥ (3.)/Y))

We can now make some observations about these results;

The posterior estimate for X, is a weighted average of the prior estimate and
an estimate based on the data (of the form.

The posterior estimates for both B(2) and Y'(z) both include (z — Py (X)) in
them, as opposed to © — pg in the prior estimate, and the covariances include
Var[Xo/Y].

The adjusted covariances between the B(-)s and Y(-) are all linear combinations
of o and Var[X,/Y ]b°.

(C-1¢); = &;; at the design point z;.

Before we go on to look at the question of design, we will examine the predictors
for fixed designs. We will use designs with one, three, five and nine points equally
spaced in the interval [—1,1], with 09 = 0, = b = 0 = 1, and o = 0. As a test
function we use sin(a/2 — 0.1), which has a zero at z = 0.2. With these designs, we
obtain the adjusted previsions and variances for Xy listed in Table 5.1. We can also

examine our adjusted previsions and covariances for B(-) and Y(+), this is most easily
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performed graphically, see Figures 5.6 (prevision) and 5.7 (covariance). Examining
these we see that: although the covariances of the Y(+) is reduces by a factor of about
90% for every additional function evaluation we make, the covariances of the B(-)
only decrease by at most 20% for each evaluation — the same is true for the posterior
variance of Xo; the correlation between Y (z) either side of a design point is negative,
which is as we would expect; and although the covariance between two Y(-)s drops

to zero near the design points this is not the case for the covariance of the B(:)s.

Design Py (Xo) Var[X,/Y]

{0} 0.0499167 0.5
{-1,0,1} 0.0556568  0.406155
{-1,-1,0,11} 0.555152  0.405009
{—1,-2, -1 —10 112 71}]0.0552358  0.392670

Table 5.1: Posterior mean and variance of Xy given function evaluations

5.3 The design of the experiment

Our model is a basis for predicting y(-) at any value of z, using the posterior prevision
of Y(-) as our estimate of it. The design problem now is how to choose the values
of z at which to evaluate Y (-) so that we can estimate X as efliciently as possible.
If the function we are trying to approximate is cheap then we have no real limits on
how many evaluations we can make, so the design question is not as important as
when the function is expensive.
We have considered three main design approaches:

a completely pre-determined “optimal” design, choosing all the points before

we make any function evaluations;

a sequential one-step-ahead approach,;

and a mixture of the two, constituting an initial “optimal” pre-determined block

design followed by a sequential refinement (in which new sets of points are added

to the design, not necessarily one at a time.)
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[Cov(Y(x¥Y],[Y(x*)/Y]) for 1 point design.

Cov([B(x)YY1[B(x*)/Y)) for 1 point design.
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Figure 5.7: Adjusted covariances of B(-) and Y(+)
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The pre-determined designs have the advantage that most of the difficult calcu-
lations can be computed in advance to a very high degree of accuracy, especially the
inverse of the correlation matrix. However in some situations these fixed designs are
too rigid and do not take into account any extra information that becomes available
every time the function is evaluated. For cheap functions though these designs can be
useful, because any complicated arithmetic that we might have to compute to get the
“best” estimator for a set of function evaluations must take less computer time and
power than a simpler approach which might take more function evaluations. Another
downside to these designs is the large amount of computing power required to com-
pute them initially, with the sequential designs all the optimization required has the
same dimensionality as @ (in this case 1), but with fixed designs it is multiplied by
the number of design points and soon the problem of finding these “optimal” designs
becomes more difficult to solve than the original problem. If we have a fixed design we
can consider the sub-problem of choosing the order of the design points, as we need
not randomize the ordering to remove “time dependent” biases as none can appear.

“One-step-ahead” sequential designs have the obvious advantages that, after each
function evaluation, our beliefs about the function are modified, and so we modify
the design to take this information into account. Again with cheap functions we
need to keep sequential designs simple to be as efficient as more naive methods that
require more function evaluations. On the other hand, when the function we are
approximating is expensive, we can in general spend more time choosing the next
design point, for if we can reduce the total number of function evaluations great
savings of time and money may be possible.

We can construct a compromise between these two design extremes, by having
and initial block followed by either a sequence of additional design points, or addi-
tional points. The first of these combine the advantages of the two previous design
types, the ability to compute part of the inverse of the variance matrix before, and
then the simplicity of the “one-step-ahead” sequential process. On the other hand

“block-sequential” designs are not as good, as they are generally more complicated
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to compute, and also suffer from the problem of making “redundant” function eval-
uations.

We are mainly concerned with the expensive function, so we will only consider the
sequential approach. For this we need a design criterion or criteria to decide which is

the best point to choose next. Good criteria should:
1) Use as much information from the data received to choose the next point
2) Quickly home in on the zero.

3) Initially explore a sufficiently large area of the design space to make sure it does

not miss the zero.

5.3.1 Test functions

To compare various methods we shall include some simple test problems, obviously
these are cheap functions, but they can be treated as expensive ones. They are as

follows

filz) = sin (:L - 0.2)

fo(z) = (2-02)" +(0.7)".

o

fi(+) is a simple near straight line with a zero at 0.2, whereas f;(-) is a more
difficult function for many of zero solvers as the gradient changes greatly throughout
the interval, being approximately 0 over a large part of the design - for example
Newton-Raphson starting at @ = 0 takes nearly one hundred function evaluations
to loacate the zero. It has a zero at —0.5. Figure 5.8 shows graphs of these two

functions.

5.3.2 The naive estimate

Using a sequential approach we can re-write our equation for Py, (Xo) after n + 1

function evaluations Y;,...,Y,,Y, at xy,...,2,,2., in terms of our beliefs after n
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(a) (b)
1

0.5

0.5

Figure 5.8: (a) - fi(2¢) = sin (“"_;)'2), (b) - fa(z) = (z + 0.5) — (0.2)"

observations,

[03(08 + (2. — 110)?) — € C;'e]Py (Xo)—
b(1 — 1°Ce)Var[Xo/Y (Y. — bz. — ¢ CTUY — bz))

02(08 + (2. — 110)?) — ¢'Cole + 2(1 — 1°C1e)?Var( X,/ Y|
(5.18)

PY,Y.(XO) =

Therefore we no longer have to invert the variance matrix when adding the next
design point if we already have the inverse for n points. We can sequentially calculate

the inverse as well,

1 colec o _ cilc
C—] — n c(:c.,x.)—CTC,','IC c(:l:.,:v.)—CTC;lC
n+1 _ CTC;] 1
e(zee)-CCTIC c(zeze)-C O C

A criterion to compliment this is to choose the design minimizing the adjusted vari-

ance of Xy, which from Section 5.2 is

22
)

VarlXo/ Y] = e

which is the same as maximizing 1'C~'1. In the sequential design problem, given
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function evaluations at n previous points, we can choose the next point z, to maximize

-1

Ch c 1
re;ia = (| ]
c oz, z.) 1

T o
(1-1C;'¢e)
c(za,z.) — ¢ Cle

= 1'Cc]'1+ (5.19)

Which only requires maximizing the second term, since the first term is only
dependent on the first n design points. Note that this criterion depends only on our
beliefs about the correlation structure of B(-), not the mean and variance of its value
at any .

This criterion is also independent of the previous function evaluations and so
contravenes the first of the above criteria for a good design - using all available
information — as it does not use any information about the function evaluations when
it chooses the next design point. It also contravenes the second, the design eventually
covers the whole of the design space, with new points being spread further and further
out and does not converge on the zero. If we limit the design space to a large but finite
interval of the real line then the criterion wants to repeatedly choose points near the
boundary. Using the simple function f;(-) as a test function, and 6? = o2 =b=0=1
and pto = 0 as our prior beliefs we obtain the design in Figure 5.2. We observe that
the prevision of Xy and the design points do not converge to any point, and so this

criterion is virtually useless.

5.3.3 The blinkered methods

Like a horse with blinkers on, we could also charge down the path of choosing the
most likely place for the zero, by using our current estimate of the zero as a next
design point. We could choose the next design point to be the linear estimate of Xo;
a “Newtonian” estimate of Xp; or a point where the estimate of Y'(z) is equal to
zero, replacing the zero finding problem of the expensive function with that of the

approximant - “inverse interpolation”.
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0.0000 -0.0998  0.0499
-1.3625 -0.7042 -0.0448
1.3317 0.5361  0.0538
3.0000 0.9854  0.1197
-3.0000 -0.9996 0.0515
-0.7805 -0.4708  0.0494
0.5436  0.1709  0.0527
-1.7480 -0.8272  0.0482
1.9441 0.7657  0.0519
10 | 3.0000 0.9854  0.0573
11| 2.9947 0.9850  2.8868
12 | -0.0000 -0.0998 1.4591
13 [ -1.9334 -0.8756  2.9544
14 | -1.7480 -0.8272  2.5902
15| -0.7805 -0.4708  2.7546

© 00 3O U W N =

Table 5.2: Sequential design, using naive criterion for fi(-)

The first one again behaves poorly, as should be expected, we are trying to fit a
linear estimate to a very non-linear quantity - if we think of a straight-forward linear
regression, the location of zero is the ratio of the slope and the intercept. If we look
at Table 5.3, we see that this time the design does converge, but not to the zero of the
function, but to a value that is a compromise between the zero and our prior belief
about Xjg.

In equation (5.3) we model Y(z) by (z — Xo)B(z), manipulating this equation
gives us Xo = & — Y (a)/B(2) for each z. Which has a similar form to the Newton
Raphson equation z,41 = @, — y(z,)/y'(z,). This “Newtonian” estimate, requires
us to estimate Y(z)/B(x) for some @, we would like to use our posterior prevision
Py (Y (z)/B(z)), but under the Bayes linear framework we do not have this. Instead
we can approximate it, assuming all the posterior moments exist for Y (z) and B(z),
and that neither of their expectations are zero, we use a bivariate Taylor series ex-

pansions of the prevision about (Py (Y (z)),Py (B(z))). The first order expansion
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z Y, Py (Xo)
0.0000 -0.0998  0.0499
0.0499 -0.0750  0.0541
0.0541 -0.0729  0.0601
0.0601 -0.0699  0.0598
0.0598 -0.0700  0.0598
0.0598 -0.0700  0.0598
0.0598 -0.0700  0.0598
0.0598 -0.0700  0.0596
0.0596 -0.0702  0.0601
10 { 0.0601 -0.0699  0.0598
11|0.0598 -0.0701  0.0597
12 | 0.0597 -0.0701  0.0598
13| 0.0598 -0.0701  0.0598
14 | 0.0598 -0.0701  0.0598
15| 0.0598 -0.0701  0.0598

O 00~ O OV b WY ==

Table 5.3: Blinkered design, using posterior prevision of Xg as the design criterion.

leads to

Y(z)\ _ Py(Y(z)
'y (B(rv)) ~ Py (B(@)) (5:20)

We can improve on this by using our knowledge about the second-order structure to

obtain

(zu) . Py (¥(2)) (HVal-[B(m)/Y] _ Cov([B()/ YL, (@)/Y)) ) )
Bz)) ~ Py(B(x) ' Py (B())  Py(B@)Py((x)) )"

So we can now obtain two estimates for Xo, which we will denote by X;(z) and X,(z),

O PY(Y(-T))

Xi(z) = 'L—m (5.22)
o\ Py(Y(@) (|, ValBa)/Y] Cov([B(z)/¥],[¥(z)/Y])
%) = 25 (B (” PL(B() Py (B@)Py(¥(x) )(5'23)

These both simplify if we assume z to be one of the points at which we have evaluated

the function, as Y(z) is then a fixed quantity. It is easy to check that the prior
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prevision for both these estimates is po. We can also estimate their variances in a
similar way, if we look at the prevision of the second order power series expansion of

the ratio,

Cov(Xa(2), Xa(z7)) =~ PY(Y(T; y (Y(=")) (Cov([Y(:v)/Y] [Y(=*)/Y1])

)P
(B(z)) Py (B(z*)) \ Py (Y(2))Py (Y (2*))
Cov([B(2)/Y],[Y(=")/Y]) _Cov([Y(2)/Y],[B(z")/Y])

Py (B(z))Py (¥ (z*) Py (Y(2)Py (BG"))
Cov([B(x)/Y], [B(z")/Y])
Py (B(z))Py (B(z*)) ) (5.24)

whose prior value is o3(1 + %;), which is larger than our prior variance for Xj if we do
not have precise information about B, and increases as b gets nearer to zero (as would
be expected as the tangent line gets flatter, so a small increase in the y-direction leads
to a large increase in the z-direction).

The simple way to use these methods is to mimic Newton-Raphson, we evaluate
one of the approximants at our current estimate of Xy, and then use the result as
our new estimate of Xy. Here we used these methods on fi(-), and produced designs

listed in Tables 5.4 and 5.5, X, converges much quicker on the zero that Xi.

Iy X](:E,') Xz(l‘,')

?

1 | 0.0000 0.0998 0.1997
2 10.0998 0.1601 0.2183
3 10.1601 0.1842 0.2075
4 |0.1842 0.1938 0.2030
5 1 0.1938 0.1975 0.2012
6 |0.1975 0.1990 0.2005
7 101990 0.1996 0.2002
8 10.1996 0.1998 0.2001
9 {0.1998 0.1999 0.2000
10 |1 0.1999 0.2000 0.2000

Table 5.4: Design for fi(-), using Xi(x;) as the next design point.

The way these two approximants behave depends on the function we are approx-
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o Xl(-'L‘i) Xz(-'”i)
0.0000 0.0998 0.1997
0.1997 0.1999 0.2002
0.2002 0.2000 0.2000
0.2000 0.2000 0.2000

D DD | .

Table 5.5: Design for fi(:), using X;(z;) as the next design point.

imating, X,(-) works well if the function “behaves” i.e. fits our model, whereas X; (-)
works (slowly) for most functions we have tried. We can obtain further insight about
these predictors by plotting them as a function of X, along with their variances: Fig-
ures 5.9 and 5.10 plot the predictor Py (Y(z)), X1(z) and X,(z) for the first five
points of each of the above designs (the latter two with £1SD lines); and Figures 5.11
and 5.12 plot the covariance between the X;(z)s.

A less naive way would be to combine together the estimates at various values of

z, for example, by taking a weighted average of the predictors at m points z;,...,2;m

%

X = > aiX(z)
i=1

with 37, a; = 1. The estimate of this with minimum posterior variance has coefh-

cients a = (ay, ... ,am)T given by

(5.25)

where B;; = Cov(X(zi), X(z;)).

The third method is to use the adjusted prevision Py (Y (z)) as an approxima-
tion to the function, and then find values of z which solve the simpler problem
Py (Y(z)) = 0. This has the advantage that the approximation is no longer linear,
but uses all the detail of the approximant. It has at least two disadvantages, firstly we
still have to solve the possibly complicated numerical inverse interpolation problem,

which is further complicated by the second, that there might be many zeros, several
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of which are caused by oscillations in the interpolant.
We will again apply this method to our simple example fi(-), this locates the zero
in just five function evaluations, summarised in Table 5.6 and Figure 5.13 below. In

this case the approximant has just one zero.

) z; Y (z;) Zero of Py (Y(-)) Y(.) at ‘zero’ /Var[Y(.)/Y] at ‘zero’
1| 0.000000 -0.099833 0.099343 -0.050307 0.171645
2 (0.099343 -0.050307 0.195665 -0.002168 0.039596
3 | 0.195665 -0.002168 0.199912 -0.000044 0.000155
410.199912 -0.000044 0.200000 0.000000 0.000000
5 0.200000 0.000000 0.200000 0.000000 0.000000

Table 5.6: “Inverse Interpolation” design for fi(-), with model parameters § = b =
2

ol=o0l=1and o =0

All these methods have two main disadvantages, firstly they can be lead down,
the proverbial, garden path — if the function dips sharply but does not cross the axis
at th minimum, the design will tend to cluster around this minimum, and not be able
to escape. Secondly the methods also always cluster the points together even when
not converging on a “false zero”, and so the columns of the correlation matrix become

very similar, and hence it becomes ill-conditioned (see Section 5.12).

5.3.4 Variance modified criteria

Instead of looking for values of x which solve the inverse interpolation problem
Py (Y(z)) = 0, we could look for values of » which minimize its squared previ-
sion. In the linear framework we are unable to get a true estimate of this, but we can

use the adjusted variance estimates to get an approximation to it

Ci(z) € Py (Y (2)?) ~ P} (Y(2)) + Var[Y (2)/Y] (5.26)
We then find values of z to minimize C;(-). We can also use modifications of this
criterion, which give more weight to points where the squared prevision is small in

comparison to our uncertainty about its value there. We can do this by dividing
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Figure 5.13: “Inverse Interpolation” design for fi(-), its approximant and errors using
function evaluations at z; = 0, @2 = 0.099343, 23 = 0.195665 and z4 = 0.199912,
with model parameters 0 =b=02 =0 =1and p =0
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through by our prior or adjusted variance to obtain,

A Py(Y(@)?) Py (Y(2) + VarlY(2)/Y]
C) = Y@y = Var(Y (2)) (5.27)
w Py(Y@?) | Py(Y()

Var[Y(z)/Y] ~ Var[Y(z)/Y]

Cs(z) (5.28)

The last criteria is equivalent to the “inverse interpolation” method of Section 5.3.3.
Minimizing C; and C; appear to work well, often producing very similar sequential
designs, because the prior variance does not change much over the region where the
zero is. If the function has multiple zeros the design may flip between two points, so
highlighting this fact.

.To optimize C; and C3; we assume that the criterion is unimodal between the
design points, and use the “Golden-Section search” algorithm to locate the unique
local minimum in each interval, choosing the least of these as the global minimum.
For every function we have examined this appears to be the case, although we have
no analytic proof of this fact.

We now try these methods out on functions f;(-) and f2(-), with our standard prior
beliefs 02 = 62 = 8 = b =1 and po = 0. The designs generated are listed in Tables
5.7 to 5.10. We observe that there is very little difference in the number of steps
needed to find the zero in either case. (The odd design point (0.1215) in Table 5.9 is

probably due to numerical errors in the inversion of the covariance matrix)

x; Y:
0.0000 -0.0998
0.0250 -0.0874
0.1358 -0.0321
0.1964 -0.0018
0.2000 -0.0000

[ B O N o

Table 5.7: Design generated by criterion Cy for function fi(-) with 62 = 0} =0 =
b=1and po =0

The small amount of extra work with this method in comparison to the “inverse
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z; Y;
0.0000 -0.0998
0.0250 -0.0874
0.1360 -0.0320
0.1968 -0.0018
0.2000 -0.0000

V™ W N |

Table 5.8: Design generated by criterion C, for function fi(-) with 2 = 02 = 0 =
b=1and po=0

Ty Y
0.0000 0.0198
-0.0197 0.0198
-0.2804  0.0195
-0.4077  0.0156
-0.5803 -0.0455
-0.4866  0.0038
-0.4995 0.0001
0.1215 0.0198
-0.5000 0.0000

O OO0 O Ut W W N | =

Table 5.9: Design generated by criterion C; for function f3(-) with a2 = 0 = 6 =
b=1and po =0

z; Y
0.0000 0.0198
-0.0049 0.0198
-0.0172  0.0198
-0.1757 0.0198
-0.2872 0.0194
-0.5195 -0.0070
-0.4943 0.0170
-0.5000 -0.0000

00 1 O O & W N ==

Table 5.10: Design generated by criterion C, for function f(-) with 02 = o2 =0 =
b=1and pp=0
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interpolation” methods above pays dividends, as it has some advantages. Firstly it
is less inclined to move a long way away from previous function evaluations to areas
of the function we are unsure about. If the function being approximated does not
behave well or some of the parameters have been mis-specified, the approximant can
oscillate wildly, cutting the axis in many places generally away from previous design
points. These criteria C) and C; try to ignore these. Secondly, it usually produces
a unique global minimum, whereas the “inverse interpolation” often finds multiple

Zero.

5.3.5 Modifying the first order structure

If we look at the form of equation (5.18), we note that the predictor contains Py (Xo)
as an estimate of Xy in it, but there is not an updated estimate for b, it appears as
b. We could therefore make an ad hoc modification to this predictor, by replacing b
by an estimate of the slope — one possibility is to replace b by Py (-) for our current
estimate of Xo, ie Py (B(Py (X¢))). We can then use this modification in a similar

way to the methods in Section 5.3.3.

5.3.6 Trying to modify the second order structure

As we only specify the first and second order structure of the function we have no way
to estimate the variance of the predictor from the data using Bayes linear method-
ology. We can again use ad hoc methods to estimate the product of o} and o, we

cannot get at the two separately, if we put s? = g2o?

Y e Y .. @foi@-X oy
2 @—F —p1)C7 N e — 3 — 1) — oo (5.29)
5= b*(n — 1) '

where 1 = lT(:c — %)/n. We then define 67 and 62 so their product is 32, and there
ratio is the same as our adjusted variances for Var[X,/Y| and Var[B(X,)/Y].

This method seems contrived, and in general their is no real improvement on the
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rate at which the method finds the zero.

5.3.7 Initial exploration designs

It would be desirable to have a criterion like that in Schagen[1984], which is a com-
promise between exploring the region and looking for the zero of the function. We
have examined the second part above. One possibility for an exploratory criterion,
is to choose the design point to minimize the average (or maximum) variance of the
approximant over the design space. Another possibility is to minimize the average
(or maximum) ratio of posterior to prior variances, Goldstien’s D(Y) defined in Sec-
tion 3.5. We will look at another similar criterion in the next section.

If we have two criteria, scaled so they are of a similar magnitude, a zero-finding
one Cy(-) and an exploratory one Cg(-), we can combine the two to form a composite
criterion

C(:) = WC(-) + (1 - W)C&(")

where initially W is near 0 and the criterion selects a mainly exploratory design, and

W eventually increases to be near 1 and the design then homes in on the zero.

5.3.8 Belief grid criteria

We can use a criteria similar to that in Chapter 4 to explore the region, the criteria
chooses points (or a point) from a grid to minimize the trace of the belief transform.
Because we are using a grid based design, we can, after each stage, easily modify
our grid to reflect where we think the zero is. This achieves the objectives of the
previous section: initially we have very vague knowledge where the zero is and so the
grid is spread out, but as our knowledge of the function increases, and we have more
information about the location of the zero, then we can refine the grid to include
more points near where we think the zero is at the moment.

We can use this method to produce small pre-determined initial designs. For

example, if we are looking for a three point initial design, we would lay down a grid,

DU

~N

S &
'

g@ :
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for example {—1,—0.9,...,0.9,1}, and our prior beliefs and compute the transform.
In this case (with our standard prior beliefs § = b= of = 03 = 1, po = 0) we have the
optimal three point design, {—0.3,0,0.3}. On the same grid the optimal two point
design is +£{-0.2,0.3}.

5.4 Choosing the smoothness parameter

An important question that so far has not been addressed is the value of 6, the
correlation parameter in the model that controls the smoothness of Y(-). We can
elicit an initial value for § using ideas put forward in Section 5.7, but we would like
some way of estimating it, not necessarily using Bayes linear methods.

We can use cross validation (a non-Bayesian method) to choose a “best” value of
0, as follows. For all the design points x; used so far, we compute an estimate y; for
y(z;), based on the other design points and then compare this estimate with the true

function value. We define the Cross Validation Mean Square Error as

n

CVMSE(9) = L > (@i — y(z4))?

n =1

which is an average measure of this deviation. We then choose the value of 6 that
minimizes this.

For example, if we were approximating fy(-) by function evaluations at —0.5, 0 and
0.5, we can plot the CVMSE as a function of 0, in Figure 5.14, using our standard
prior beliefs 62 = 0f = b = 1, pp = 0, the optimal value of 8 is 0.00283. This will
quite often be an underestimate of #, as when there are only a handful of points,
we can always fit a much smoother curve through them. If we extend the design
to include two extra points at +£0.25, we can re plot the CVMSE curve, due to
rounding errors — which creep in because the covariance matrix is very ill-conditioned
for small values of 6 —the function no-longer has a unique minimum, but if we look
at the bottom curve of Figure 5.15, we can see that the CVMSE is now minimized

by 6 ~ 0.0145, which is five times greater than the value we got for the three point



5.5. AN EXTENSION TO THE MODEL 103

problem, suggesting the curve we are now fitting is less smooth, as would be expected.
The problem of numerical rounding errors is even more accentuated when we apply
this method to some of the optimal designs examined in the previous section, as they
tend to place points closer together, and so smoother functions can be generally be

fitted through them, and so the optimal § value is often very small.

5.5 An extension to the model

We can extend the previous model by assuming that the average of the slope process
is an unknown quantity B, with a given mean and variance. We therefore modify the

assumptions we made in the previous section as follows

Ps(B(z)) = B (5.30)
Cov([B(x)/B), [B(z.)/B)) = oin(z - =.) (5.31)

where this additional variance term is independent of B, and where

P(B) = b (5.32)
Var(B) = o (5.33)

These two additional assumptions give us the following second order structure for

B(-):

P(B(z)) = P(Pp(B()))
= P(B)=b (5.34)
Cov(B(z), B(z.)) = P(B(z)B(z.)) — P(B(2))P(B(z,))
= P((B(z) — B)(B(z.) — B) + P(B?) — P(B)?

= oip(z —z.) + 0k (5.35)
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Figure 5.14: Plot of CVMSE against 6, with the design {-0.5,0,0.5}
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Figure 5.15: Plot of CVMSE against 6, with the design {—0.5,-0.25,0,0.25,0.5}
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This can be written in the same form as the model in the Section 5.2, i.e. 6p(z —
x.), with 62 = o} + 0%, and p(a — 2.) = a—“%—r'— and so no further algebraic
work has to be done to work out the estimates.

We can now plead “ignorance” for the value of the slope parameter B, by letting
its prior variance o, tend to infinity, and obtain posterior estimates for the prevision
and variance of B, B(-) and Y(-). In this limiting case, the posterior estimates for the
mean and variance for Xy are the same as their prior values — we can learn nothing
about the position of the zero from the data, due to the infinite variance about B.

If we take observations Y;,..., Y, at 2(,...,r, we can write down the covariance

madtrices.

Var(Y,Y) = oi(z—pol)(e —;Lol)T + (b + 012”)03111- + o}
Cov(Y(2.),Y) = o} (z.— 1) (= piol)” + (b2 + aﬁ,)ang +olc

Cov(Y(i.),Y) = oi(. — po)(z— ;L01)T +(6® + 03)0l1 + o2& (5.36)

Cov(B(z.),Y) = aﬁ,,(a:—/tol) +ab
Cov(B(.),Y) = oh(z—pol) +o7d
Cov(B,Y) = o (x—ol) (5.37)

where ¢, ¢, C, d and d are defined exactly as in Section 5.2.
When we let o3, tend to infinity, even though the prior covariance structure is
infinite, the posterior structure is finite and so we are able to compute our posterior

previsions of Y(z.), B(z.) and B. We will first introduce additional notation, F' =
(Le), f=(2), f=01a)

FC'F  FC'Y
CCTF-f JCY
_1F|
= fa+cCYY - Fa) (5.38)

Py(Y(:L'.)) =
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F'C'F FCcly
dC1'F—(01) dC-'Y

Py (B(z.)) = FC1F]
= a+dC (Y - Fa) (5.39)
Fc'(1 v )|
Py(B) = |[F"C—F|
= a (5.40)

where a = (F'C~'F)~1F'C~Y is the weighted least squares estimate in the linear

regression with error covariances given by ¢(+,-), and their adjusted covariances

Cov([Y(2.)/Y],[Y(2.)/Y])
F'Cc'F  FCle-f
CCF—f  cCclé ,
FC'F
= o} (c(za, @) + (€ CTVF = fYF CTIF) N (FC'e = f) — c Ce)
Cov([B(z.)/Y],[B(2.)/Y])

— 2 2

(5.41)

T

0 1)

~—~

F'CF Fc'd -
dC-1F—(01) dc-
[FFC-1F|

=%

= opp(z. —2.) - o

of (p(."c. —T.) — dC'd+
[dC'F—(0D)(FC'F) M [Fetd—(01)]) (5.42)
Cov([B(2.)/ Y], [Y(7.)/Y])

dCc-'F-(01) dC'¢
|[FTC-1F|

FeiF Fee-§ l

= 0y(@. — po)p(r. — 2.) — 0

= of (& — mo)p(z. — &) —d C7'e+
(d'CT'F— (0 ))FCTF) T (FC™e - f)) (5.43)
Var[B/Y]
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L |rem|
B U”[f—‘rc——lq
= of -:z:TC_lz: - (ﬁ%—illll)?l_ (5.44)
L
Cov([B/Y],[Y(2.)/Y])
_ g|F'c1 Fcle— )
B |[FTC-1F|
= (0 1) (FC'FY\(Fcle-§) (5.45)

We can then use these estimates in a similar way to those found in Section 5.3, by
using the variance modified criteria, or the “Newtonian” estimation method. We need
an initial two point design, and we will use {—0.3,0.3}, as this is a near-optimal, two
point, symmetric design using the grid based design criteria from Section 5.3.8. For
example, for fi(-), using the variance modified criterion C;, we have the design listed
in Table 5.11; using C,, we have Table 5.12; and using the “inverse interpolation”

method, we have Table 5.13.

T Y
-0.3000 -0.2474
0.3000 0.4998
0.2847 0.0423
0.2062 0.0031
0.2000  0.0000

Tt W N = =

Table 5.11: Design generated by criterion C; for function fi(-) with o2 =0 =0=1
and po = 0, using the extendend model.

For fa(-), using Cy, we have Table 5.14; using C,, we have Table 5.15; and using
the “inverse interpolation” method, we have Table 5.16 - this latter is an example of

multiple “phantom” zeros and so does not converge.
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1'c|
= 062——
|FC-1F|
T -1
= of Jc-la:-—(“;%_lllﬂ (5.44)
Cov([B/Y],[Y(£.)/Y])
_q¢ FTc-fl Fcle - ‘f)]
- |F"C-1F
= (0 W)YFCI'F)YY(FCé-§) (5.45)

We can then use these estimates in a similar way to those found in Section 5.3, by
using the variance modified criteria, or the “Newtonian” estimation method. We need
an initial two point design, and we will use {—0.3,0.3}, as this is a near-optimal, two
point, symmetric design using the grid based design criteria from Section 5.3.8. For
example, for fi(+), using the variance modified criterion C;, we have the design listed
in Table 5.11; using C,, we have Table 5.12; and using the “inverse interpolation”

method, we have Table 5.13.

T Y;
-0.3000 -0.2474
0.3000 0.4998
0.2847 0.0423
0.2062 0.0031
0.2000 0.0000

(S VI VS

Table 5.11: Design generated by criterion C; for function f1(-) with o2 =02 =0 =1
and po = 0, using the extended model. '

For f3(-), using Cy, we have Table 5.14; using C3, we have Table 5.15; and using
the “inverse interpolation” method, we have Table 5.16 - this latter is an example of

multiple “phantom” zeros and so does not converge.
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1 X Y

11]-0.3000 -0.2474
21 0.3000 0.4998
31 0.2850 0.0425
4 | 0.2063 0.0032
51 0.2000 0.0000

Table 5.12: Design generated by criterion C, for function fi(-) witho2 =o2=0=1
and g = 0, using the extended model.

1 T Yi

11-0.3000 -0.2474
21 0.3000 0.4998
3] 0.1992 -0.0004
4 0.2000 0.0000

Table 5.13: “Inverse interpolation” design
and po = 0, using the extended model.

for function fy(-) with 03 =2 =0 =1

x;

Yi

W o ==

~

1

o -3 Gy O

-0.3000
0.3000
-0.3000
-0.3375
-0.4989
-0.5002
-0.1604
-0.5000

0.0193
0.0198
0.0193
0.0187
0.0004
-0.0001
0.0198
0.0000

Table 5.14: Design generated by criterion C; for function fp(+) with 02 =0 =0 =1
and po = 0, using the extended model.
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Ty Y
-0.3000 0.0193
0.3000 0.0198
-0.3001  0.0193
-0.3424  0.0186
-0.5026 -0.0008
-0.4996 0.0001
-0.5000 0.0000

~1 O U W BN |

Table 5.15: Design generated by criterion C; for function fo(-) with g =0 =0 =1
and o = 0, using the extended model.

F Y:
-0.3000 0.0193
0.3000 0.0198
-3.0000 -360287
-0.3000 0.0193
-0.2993 0.0193
-0.2989 0.0193
-0.3122  0.0191
-0.3198 0.0190
-0.3401 0.0186
-0.3505 0.0183
-0.3827 0.0171
-0.4244  0.0141
-0.2655 0.0196
-0.2104 0.0197
-0.4487 0.0112

[ T e )
TR RN LS ®© WO U W |-

Table 5.16: “Inverse interpolation” design for function f>(-) with o2 = o2 =0 =1
and po = 0, using the extended model.
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5.6 Other models

. . . . . 2
So far we have just considered one basic correlation function p(z — z.) = e~%(==2)"

but we could use the other correlation functions from Chapter 2 to repeat the com-
putations for either model. The approximations to the function are still continuous
and differentiable everywhere except at the design points. To try and compare these
different models, it would be useful to match “like with like” — the 8 parameter in
each class of models is different. In pi(-) and ps(-), the smaller the value of 6 the
higher the correlation between observations, but in the other two the opposite is true.
One such way of comparing these parameters is to look at the “average” correlation
between any two slopes (as this is zero) we will look at the correlation integrated
over all separations. We see for p,(-) this integral is \/EW/()); for p1(+), 2/06; for p1i (),
0; and for pc4(-), 30. For the § parameters we examined in Section 5.2 we have the

equivalences tabulated in Table 5.17. We can use these equivalences to examine the

0in po(c) [0in pa(1) Oinpiy () Oin pey ()
0.1 0.36 5.60 7.47
1.0 1.13 1.77 2.36
10.0 3.57 0.56 0.75

Table 5.17: Table of equivalent 0s for alternative “slope” correlation functions

correlation and covariance surfaces for these in a similar way to those for the case
of pa(+), see Figures 5.16 to 5.24, and traces of functions that fit the model, see Fig-
ures 5.25 to 5.27 for various values of . We see that the use of different correlation
structures do not make much difference to the correlation structure, especially the
difference between py(-) and p.4(-). It appears that the question of which correlation
function should be used, might only be of importance in the computational side of
the matrix inversion — p.4(-) and p;4+(-) have advantages here as the elements of C
for different zs sufficiently far apart are 0 and not very small. We can also compare
designs and predictors produced for the different covariance structures but, as you

can guess from the similarities in the correlation functions, these are little different
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Y(’L’,) = B(’B,)(:L, — Xo) + E; (549)

This is easy to implement in a Linear Bayes framework. All we need to do is
alter the second-order structure. We can however use this approach even when the

simulation is truly deterministic. We assume we evaluate the function with a small

2

error (with variance o2

) — which in general will be the case, for example if we use a
differential equation solver there will always be some numerical error. This now gives
us a non-interpolatory approximation, which numerical analysts know as smoothing.
This has one major advantage over the exact methods in the previous section, the
variance matrix R is replaced by R + o?I. This reduces the condition number of the
variance matrix, making it easier to invert, and making the approximant more stable
when there is a large number of observations.

The model in equation (5.49) can be extended further to have non-independent
errors, for example, we might assume the error process is stationary, with a simi-

lar correlation structure to that of the B(:)’s, but with a much larger smoothness

parameter n > 0, i.e.

Cov(E(z), E(z.)) = o2 =2 (5.50)

We can consider this new term as a systematic departure of the computer model

“real-world” phenomena it is modelling as in Blight and Ott[1975], see

from the
Section 2.6. This is also similar to Schagen’s approach of long and short range trends

also reviewed in Chapter 2.

5.9 Including the derivative

We may have other information about the function as well as its actual value. For
example, if the problem we are solving involves differential equations we may also

obtain information about the derivative of the function at the design points. We
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would like to include this additional information into our methods.
Assuming we keep the same model as before, we can get this information, by taking
derivatives of the correlation function, because as both prevision and differentiation

are bounded linear operators we can interchange them. So we have

Y'(z) = B(z)+ (2 - Xo)B(x)

P(B'(z)) = 0

P(Y'(z)) = b
Cov(B'(z), B(z*)) = —20(z —2™)ofe ==V
Cov(B'(z), B'(z*)) = —20(20(z — 2")? — 1)oZe ="

Cov(Y(z), B'(z%)) = 20(z — po)(z — z*)e~0===")
Cov(Y'(x), Xo) = 0
Cov(Y'(z), B(z")) = (1 —20(z — po)(x — x*))e~ ===
(%) = 20[(z — 27) = (z — po)(1 — 20(x — *)?)]oge~===")"
Cov(Y'(z),Y(2*)) = [(a" — po) — 20(x — &*)(0% + (2 — po)(z" — po))]oge™"t==")"
(%))

= (1= 200 ~ 2V)[1 + 20003 + (= = po)(&" = p)Jofe~

We note that in these equations @ appears outside the exponential term, and so,
as we mentioned in Section5.7, we can use this to estimate 6.

If the we take function (Y),...,Y,) and derivative (Y/,...,Y)) evaluations at

Vo Y\ _[ Cww Co
Y’ Cyry Cyryr

It should be noted that we do not necessarily have to have pairs of function and

Ti,...,2Zn and defining

derivative evaluations, but can use function evaluations and derivatives for different

values of z.
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We can get adjusted previsions and covariances for random quantities that are

correlated to the function or its derivative. In general if we were to adjust G by

Yi,..., Y and Y/,... Y., where our prior beliefs are
P(G) = g
Var(G) = o}

Cov(G,Y) = ¢
Cov(G,Y') = ¢

we get
Pyyi(9) = go+cCilY — bz +buol) + (¢ — CyCile) (5.51)
(Cy'y' - C\")’C;)I,CY)")—I(Y, - bl - Cy’yC;;(Y - bm + b/.tol))
Var([g/YY']) = o?—¢cCile— (5.52)

(¢' = CynCihe) (Cynr — CryCryCyyr) ™ (€' = Cyy Cile)

So we can use this extra information to gain knowledge about the function and its
zero. It can be seen that this extra information is in the form of an adjustment to
the adjustments made by the function evaluations only.

If we use our simple example fi(-), with our standard beliefs o3 = o2 = b =
9 =1 and po = 0, to test this predictor, and for a design criteria choose our next
point to be the location of the zero of the interpolant, we find the zero in just three
function/derivative evaluation pairs 7 = 0, z2 = 0.190236 and z3 = 0.200000. We
can easily see the extra information we receive from the data by comparing the graphs
of the error bounds, which are at least two orders of magnitude smaller near the design

points than in the case of function evaluations only. See Figures 5.29 and 5.30.
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Predictor given both y and y’, and one SD error lines Predictor given justy, and one SD error lintes
2

1.5

N‘/z u,/ﬁ

*, and one SD error lines Brror given just y, and one SD error lines

2
1

1 2 2 1 1 2
25 1
0.5 2
0.75 3

Sin(.5x-.1)
0.75

0.5

0.25

Figure 5.29: Plots of fi(-), and its approximants, given one observation at 0, with
model parameters 0 = b=02 =0 =1and p =0
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Predictor given both y and y’, and one SD ervor lines Predictor given just y, and one SD error lines
2

1.5

Error given justy, and one SD error lines
0.6
04

.2

[

04

0.6

Sin(.5x-.1)
0.75

0.5

0.25

Figure 5.30: Plots of fi(-), and its approximants, given two observation at 0 and
0.190236, with model parameters 0 = b = o2 = of=1land p=0
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5.10 The multi-variate response problem

We now consider the case when each observation Y (z) is a m-vector of responses,
we can still use a variant of the approach we used when it was univariate. Here we

modify the model as follows,
Y (2) = B(z)(z — Xo) (5.53)

We can now write down our beliefs about the B(:)s. For any particular B;(-) we

have similar beliefs to those in the univariate model, i.e.

P(Bi(z)) = b (5.54)
Cov(Bi(z), Bi(z.)) = olp(z — z.) (5.55)

We also model our beliefs between two parts of the response for a given z,
Cov(Bi(z), Bj(z)) = gio;7i; (5.56)

Finally the correlation between two parts of two separate responses is the product of
these, i.e.

Cov(Bi(2), Bj(z.)) = giojrijp(z — z.) (5.57)

In many applications, the vector of responses Y (-) can be thought of as a finite
collection of observations from a continuous time series Y = (Y(t1),...,Y(tn)).

Therefore, the equations can be re-written as

P(B(z,t)) = b(t) (5.58)
Cov(B(z,t), B(z.,t)) = o(t)’p(z — =.) (5.59)
Cov(B(z,t), B(z,t.)) = o(t)o(t.)r(t —t.) (5.60)

Cov(B(z,t), B(z.,t.)) = o(t)o(t.)r(t — t.)p(z — z.) (5.61)
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We now derive our implied beliefs about Y (+) from our beliefs about Xy and B(-)
as we did for the univariate response. This gives us:

(in the case when we are considering discrete observations)

P(Yi(z.))

bi(T — po)

Cov(Xo, Yi(z)) = —olb;
Cov(Bi(z),Yj(z.)) = aiojrijp(z — z.)(2« — po)
Cov(Yi(z),Yj(z.)) = aigjrijp(z — x.)(0g + (z — o) (z. — o)) + 05b:b;(5.65)

(5.62)
(5.63)
(5.64)
(

(in the case when we are considering observations from a continuous time series.)

P(Y(x,) = b(t)(z — o) (5.66)
Cov(Xo,Y(z,1)) = —oZb(t) (5.67)
Cov(B(z,t), Y(2ayt) = o(t)o(t)r(t — t)p(z — z)(w. — po) (5.68)

Cov(Y (2,1),Y(2.,8) = o(t)o(t)r(t —t.)p(z — 2.)(03 + (= — po)(2. — po))
+olb(t)b(t.) (5.69)

It should be noted that all these equations consist of terms of the form f(z,x.) x
g(t,t.) or f(z,z.) X gi;, and so the matrix equations have a Kronecker product form.
This seems natural, as we are using a grid and there is an “independency” between
the  and the t; and desireable, as Kronecker product matrices have nice properties
which we would like to be able to use.

If weobserve Y,..., Y, at 2,...,2,, then we can derive posterior estimates for

quantities of interest similar to those in the univariate case. First we will need to
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define some additional notation.

B; = (Bi(zi),...,Bm(z:)) in the discrete case
= (B(a:.,tl) o B(xi, tm)) in the continuous case
b = (by,.. ) in the discrete case
= (b (tl), b(t ) in the continuous case (5.70)
Yy = oo in the discrete case
= o(t)o(t;)r(ti — t;) in the continuous case
T T

Y = (Y,...,Y.)
So ¥ = Var(B;). Our Bayes linear estimates for Xy, B(-) and Y (-) are
2(1'C' @b L)Y +021"C~'zb b

14+021°"C-11b'£-1b
Py (B(z.)) = (1-d C =Py (X)1)b+(dC' @ )Y (5.72)

Py (Xo) = 2= (5.71)

Py (Y(2.) = (¢C7' @Y +([w.—Py (Xo)]—¢ C [z =Py (Xo)1])b (5.73)

where all notation is the same as in Section 5.2. The adjusted variances and

covariances are

2

a,
Var{X,/Y ]| = 9 5.74
Xo/¥] 14+021°C-116'5-1b (5.74)

Cov([B(z.)/Y ) [B(z.)/Y]) = p(a—#.)5—d C1dE+
d C7'11'C~'dVar[X,/Y )bb' (5.75)

Cov([B(z.)/Y}[Y(2.)/Y)) = (3. — po)p(2.—2.)—d CT'eD+

dC'1(1'C~'é — 1)Var[Xo/Y]bb  (5.76)
Cov([Y(2.)/Y)[Y(3.)/Y]) = c(z.,.)p(z—3.)E—c CTreT+

(¢ C™'1 - 1)(1"C~'& — 1)Var[Xo/Y |bb (5.77)

In the continuous case we can also predict the outcome for any ¢ as we have the

correlation between Y'(¢) and Y (t.) for all t and ¢t..
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These results are analogous to the univariate case, and can be used in a similar
way. We note that the adjusted covariances above are all linear combinations of ¥

and Var[Xo/Y|bb"

5.11 The full problem

The model can be extended further to consider the case when x is also multivariate
(a ¢ x 1 vector). We build our model in a similar way to before. We again modify the
model of the response Y (-) to allow for this, and we think of it as a sum of processes
in each direction. We will consider only the case of discrete observations from a time

series as the notation is easier to follow
Y(a:,t) = Z B,-(:z:,t)(a:; — Xoi) (578)

where B(-,-) the slope process in the direction of z;. We assume that these B;(-,-)
processes are independent, and that each one has a similar structure to those in the

previous section, i.e.

P(Bi(z,t)) = b(t) (5.79)
Cov(Bi(z,t), Bj(z.,t.)) = bijoi(t)oi(t)pi(x — z.)ri(t — L) (5.80)

We complete the model by assuming that X o has prevision gy and variance £y. We

can again calculate our implied beliefs about the response.

P(Y(z,1))

zj: ¢ — /io, (581)
COV(Y(-'l3 £),Y(2*,1")) = b(t) Sob(t") +

za. (Dou(t.)pil — @ )rilt — 1) (s — poi) (2 — poi) + Do) (5.82)

Given that our design is {z,..., 2.} ® {t1,...,tm}, and we have observation
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{Yi1,...,Y,}, where Y; = (Y(xi,t1),...,Y(xi,tm)), we have

P(Y;) = B(zi— p) (5.83)
Cov(Y;,Y;) = BEOBT+Xq:Ekﬂk(wi—wj)[(wik—ﬂOk)(wjk—ﬂo:c)+chk] (5.84)
k=1
where
bi = (bilt),-.. biltm))
Ly = (ow(t)or(t)re(ti = t))icij<m

B = (bl,...,bq)

T T

Putting @ = (:v:, ez )T, Y=(Y,..., Yn)T and Cyx = (pr(xi—2;)[(zix— peor) (26—

n

pror) + Eork])1<ij<n We have,

P(Y) = (BQI)(z—p,®1) (5.85)
Var(Y) = (B®1)(EO®I)(B®1)T+Zq:Ek®Ck (5.86)

k=1

It should be noted that the nice algebraic results of the previous section where
the covariance matrices factor into Kronecker products no longer hold. Therefore
no nice algebraic results can be obtained — unless we assume that either the 3; or
Cy are the same for all £ — we have to work with the matrix as a whole unit, and
cannot factorise it into & and ¢ parts. The numerical problems associated with this
grow in size as the matrix gets larger, i.e, as the dimension Y (-) and the number of

observations increases, this leads us onto the next section.

5.12 Computational difficulties

As has been repeatedly mentioned, the covariance matrices that arise in these prob-
lems are often ill-conditioned; i.e., if we try to solve Az = y, the maximum error in @

is very large in comparison to the error in y. This can lead to unstable solutions, in
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fact quite often the error can be many orders of magnitude larger, than their values.
These are most apparent when computed variances are very large and negative!

It was noted in Section 5.8 that if we add a random error term to the problem,
then the condition number decreases. We can use this device (adding a very small
error term to reduce the condition number) even when we are not considering models
with random error; compare this with ridge regression in normal error analyses. We
do not need to restrict ourselves to independent errors, but can use very short range
correlated errors, as in Schagen[1980a]. In many cases the actual computer model
does not match the actual physical world precisely, so we can consider this additional
error term as a systematic departure of the computer model (either in the stage of

modelling nature or implementing it on the computer) from nature, as in Blight and

Ott[1975].

5.13 The full Bayes model

For completeness we include a full Bayes model for the simplest case, when Y(:) is a
univariate function of a single variable z.

We extend our second order beliefs to full prior distribution assumptions by adding
that B(:) has a multivariate normal distribution, and Xy has a normal distribution,
and we now assume that B(z) and X, are independent, not just uncorrelated.

Then

1 - Ly (zo—p0)?
e 200

mxo(To) = (5.87)
/2ol
1 - (b-b1)" R~1(b-b1)
(b)) = ————=e *% (5.88)
(2raf)"| R
Hyl|b,x0) = H&(y,-—bi(m,-—zo)) (5.89)

i=1

where R;; = p(|z; — «;|) and é(-) is the Dirac-delta function. We can combine (5.88)
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and (5.89) together to obtain the likelihood of y given o,

1 — A (z-b1)" R-1(Z-b1)
U(ylzo) = ———=e , (5.90)
(2maf)|R|

where z; = ¥~

ri—xo "

We now calculate our posterior distributions Xy given n and n + 1 observations,

the n + 1° being at z*,

1 1
—;—2(.1;0 — po)* — F(z — bl)TR'l(z —01)
Ta(Zoly) o e =90 % (5.91)
1 (b R (2~ b))
7rn+1(.7;0|y.y(.7:")) x 7r11($0|y)6 203 - T*TR_IT* (592)

where z* = &) and rT = p(|lz; —2*|). Thus, to update the relative posterior density

*—z0’

at any point is relatively easily, needing only to solve one set of linear equations for

each 2%, Rs* = r*. When we add a new design point 2~ to the grid, we note that the

1

inverse of the new covariance matrix R£°~' can also be easily updated using s~,

R+ ks's” —ks*

T

—ks* k

R:—l —

where k = (1 — s* 7)1,

We can also compute the predictive distribution for Y (2*) given the previous
observations.
1 (z=b—7"R(z — b1))?

1 ~52 Tho1o-
p(y(2")wo, y) = — e 2 L—rh™ir
\ﬂ%m’ﬁ)(l —r* R-1p*)

then integrating this with respect to m,(xo|y) gives us

p(y(2")|y)


http://cova.ria.nce
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1 1 r 1 (2"=b—r" R(z—b1))?
+oo To— o)’ ——(z—b1 Y(z—b1)—
/ (l:[;oe 20_02(70 /"0) QUg(z ) R (Z ) 20_3 1—T’TR_17‘*

2 1 T
— ——(z=01) R (z-b1

(5.93)

These posterior distributions are not analytically integrable, even if p(:,-) has a
“nice” form, and so have to be done computationally. The posterior distribution for
Xo is multi-modal, with zeros at the design points, often climbing very steeply (if
one of the design points has just missed a zero), so the numerical integration requires
many ordinates in these regions to obtain accurate predictions. Even the now popular
Gibbs sampler can not be used in this example without modification, as it can not
cope with distributions where there are zeros (especially in this example as the zero
regions can be very wide and flat), as it can get trapped in one of the spikes with no
chance of escape.

To avoid the problems of integration we can use the mode of the posterior distri-
bution of xp as our new estimate. We will use this method with our first example
f1(:), with the model parameters yo = 0 and 0 = 02 = b = 6 = 1, at each stage
adding the mode of the distribution, see figure 5.31. The design points used were
0.000000, 0.098876, 0.206302, 0.200128 and 0.200000 (The last one is the zero we are
looking for). Once we have taken four function evaluations the posterior distribution
of 2o around 0.2 becomes very spiked (as you can see the plotting program failed to
find it after three points), with the spike width being less then 107¢. This means we
have to be very careful when we are searching for the mode that we have not missed
out the spike. If we can work out the posterior distribution exactly (up to a scale
factor) this should not pose any problem, as the posterior is unimodal between design
points, and we can use the “Golden-ratio” search algorithm. However, if we have even
a very small numerical error in the posterior calculations then this fluctuation will

cause the above methods to fail.
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Figure 5.31: (Un-normalised) posterior probability densities of Xy, after each point
has been added, (after 3 and 4 points the spike near the zero is included separately,
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This method is nearly impossible to peform, even for small designs, as the com-
putational problems far out-weigh any advantages that might be achieved by this

method.

5.14 Conclusion

In this chapter we have developed various models and associated criteria for locating
the zero of a deterministic function. We have found three methods which appear
to work well, the “Inverse Interpolation” method, the variance modified methods,
and the “Newtonian” estimates. Although the first two converge the quickest in
most examples they do have a more complicated design criteria to choose the next
point (either the solution of a non-linear equation or the optimization of a function),
whereas the “Newtonian” method is simpler. These two different types of criteria can
therefore be used for different jobs: the first for more expensive functions — where the
added work in choosing would not be two costly; and the second for relatively cheap

functions — where the added costs out-weigh the benefits.



Chapter 6

Conclusions and Further Avenues

of Research

We have seen throughout this document how we can use statistical methods to de-
velop numerical procedures to solve deterministic problems. In Chapter 2 we saw
that sometimes this has produced tried and tested numerical procedures, for exam-
ple linear interpolation and the “Mid-point rule” from the Brownian motion prior
in Section 2.2.2, although new designs for different criteria were produced. How-
ever, in general they produce completely new methods. One such example is de-
rived from the use of stationary stochastic processes to model the function (see
Sacks et al[1989a, 1989b], Schagen[1979, 1980a, 1980b, 1984, O’Hagan[1978, 1990]
and Currin et al{1991]). In light of this in Chapter 4, we used the Bayes linear meth-
ods of Goldstein[1981, 1986, 1987, 1988b, 1991] (reviewed in Chapter 3) to arrive
at a criterion for producing designs for this model which, with some simple algebra,
greatly simplified the calculations required to find optimal designs, especially in higher
dimensions when a lattice design region and a factorisable correlation structure was
chosen.

In relation to our problem, we have tried to develop new (Bayesian) methods
to find the zero of a deterministic function, mainly trying to use the Bayes linear

methodology. Due to computational difficulties we have only be able to fully explore
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these methods in the case of a single valued function of a single variable, which is a

much simpler problem than the full problem. We developed a statistical model of the

function which explicitly includes our beliefs about the location of the zero. We then
used this statistical model to make predictions about aspects of the real function. To
locate the zero, we developed different search strategies, using various estimators of
the zero of the function: the Bayes linear estimate Py (Xo); the zero of the predictor;
the minimum of the squared expectation of the predictor; a “Newtonian” estimator,
based on our revised beliefs about the slope of the function; and the mode of the
posterior distribution in a full Bayes analysis. Of these by far and away the poorest
was the naive linear estimator, the rest performing much better. The “Newtonian”
estimates were just behind the others in convergence speed (in number of observa-
tions), but we had an explicit equation for the location of the zero. So we need to
consider the ease of obtaining the next point in the design, with the “Newtonian” we
required no optimization or zero finding, whereas with the others much time had to
be spent finding the maxima or the zero. This problem is amplified when we increase
the number of dimensions and design points . In the first case we can no longer rely on
the criterion being unimodal in certain intervals — this is an important assumption as
often the peaks can be quite narrow and can be missed by more general search algo-
rithms. In the second case rounding error makes the computed criterion multimodal
even when it is truely unimodal.

In light of these conclusions we see ther are still many loose ends which we would
like to tie up. Some of the most important of these are:

The full problem At present the methods for the full problem are only in their infancy,
and need to be developed further when a suitable test problem appears. The
search for alternative models is ongoing, and as the functions we are considering
are very expensive, it might prove cheaper to develop individual models based
on the “scientists” actual beliefs.

Varying the covariance structure We need to examine further the differences and sim-

ilarities between different covariance structures and the subsequent designs -
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this question can only really be answered again when we have real problems to
work on.

The choice of & The choice of § is an important question, we have noted some ways
of eliciting prior beliefs about it, and estimating it using CVMSE estimation
- but this method does not work satisfactorily for the small number of data
points we are considering, and we would like some way of indicating that the
prior beliefs are mis-specified.

Diagnostics In the simple case we can often see just by looking at graphs of the pre-
dictor that certain of our beliefs have been mis-specified, but when we consider
the full problem with multi-dimensional input and output, we cannot easily

observe these mis-specifications, and we need some diagnostic tools to help.



Appendix A

Additional Linear Bayes Results

and Examples

This appendix completes the notes on the Bayes linear methods of Chapter 3.

A.1 Trajectories

The bearing Y* produces an overall summary for the updating. This adjustment
often comes from various aspects of the data, so it would be useful to break down the
bearing into a series of smaller components, to see how these aspects give information.
For example how the individual items of information complement or contradict each
other.

Let us suppose the data we have contains two separate pieces of information, which
we will label these J and K. If we revise our beliefs after observing both J and K, we
can obtain the bearing (which we shall label Y5 ). We could also write this revision
as occurring in two stages, observing J first and then observing K. After the first
stage we have bearing Y, and after the second stage we have bearing Y 5, which

is equal to Y plus the change in bearing obtained by observing K after observing J,

143




A.l. TRAJECTORIES 144

which we write as Y{x,s. If we look at the lengths of these bearings we have
L?I+I\" = L3 + L[ZK/_]] + 2(YJ, YEI\"/J])

So in adding the extra evidence K, Lk, expresses the size of the extra adjustment
in belief having already observed J, and (Y}, Y{x/s) shows the degree of conflict or
support between the two pieces of evidence. If the latter term is large and positive,
the two pieces of data are complementary, but if it is large but negative then they
are contradictory.

This notion can be extended to subdividing the data into m sections so we obtain
a sequence of m belief revisions. (Alternatively we could consider updating our beliefs
at m time points, for example this can be compared to the way horse-racing odds
change up to the time of the race.) We therefore have a sequence of sets of previsions
P(-),Pu(-),.. ., Pmy(-), where P*(:) = Ppmy(-). Then for each Pp;j(-) we can construct
the bearing Y};}, and for each pair 2, j we can compute the change in bearing between

stage ¢ and stage j.

Defn. A.1 We call the difference Y[;;) = Y{;) — Y}y the bearing for P(; adjusted for

We then obtain the following results.

Corollary A.1 For every X in L, and for each 1 < 7,
P (X) = Ppp(X) = (X, Yy74)

Corollary A.2 For every X in L, and for each i < j, |Py(X) — Pu(X)|/+/ Var(X)

has the mazimum value of ||Y;/ill.

Of particular interest to us is the set of one step revisions ¥;/;_1) which we shall

write in short hand as Y};;;. Then

Defn. A.2 A sequence of adjusted bearings Yy, Yzy), - - -, Ymy) is a trajectory over C.



A.1. TRAJECTORIES 145

We have noticed that the length (which is the root of its variance) of each bearing
is linked to the magnitude of change of belief, and the inner product (or covariance)
of two bearings is a measure of the conflict/support between them we can define the
following quantities to summarise the trajectory; let V[i] = ||Yi3ll%, V{i/] = l|Yunll®
and C[i] = (Yji-1}, Yfiy1), then for each j

Yo=Y+ Yo+ + Yy

SO

V=Vl +VI2/1+-+Vli/1+2(CR2l + - + C[5))

So to examine how the individual effects of each stage of the revision, we must
look at (a) the individual adjusted bearings Y};;; (those with large lengths, identify
stages where there is a large revision) and (b) the way the raw bearing (not adjusted)
for the (¢ — 1)** stage interacts with the adjusted bearing for the :*h stage (this is
summarised by the magnitude of C[z]). A useful summary of the trajectory is given

by the pairs (V[i/], C[i]). Therefore we make the following definition

Defn. A.3 Putting Cr[i] = Corr(Yjip, Yii-y)) = ﬁ%, we define the route of

the trajectory to be the set of pairs (V[i/],Cr[t]).

Now we can combine the ideas of a trajectory with the notions of belief structure
adjustment by projection in Sections 3.5 and 3.6. If, between time ¢t and t*,we observe
a set of data, {Xj,...,X,} and use it as the base for a belief structure D, we can
choose P*(-) = Pq(-), the value Pp(-) takes when we observe D = d. We can then
compute the data bearing related to this adjustment, which we label Y;. This belief
structure can be partitioned as {D[1],..., D[m]}, and we can produce a trajectory

by adjusting B by D[1], D[1] + D[2], ....

Defn. A.4 [f we adjust our beliefs by projection on a data set, by progressively pro-
jecting on larger and larger subsets of the data then the resulting trajectory is termed

a data trajectory.
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For our regression example we obtain data trajectories summarised
in Table A.1, whose routes are summarised in Table A.2. Looking at
these we see some anomalies: the very large value of V[4/] for data set
3 ~ which highlights the outlier; the large value of V[5/] for data set 4
— which highlights one of the outliers; the large value of V1], followed
by small values for all the V[i/]s for data set 6 — shows that the prior
specifications of =5 and 5 for a and b are not reflected in the data, but

that it is approximately a straight line.

We can compute the expected length of the bearings and adjusted bearings using

the cumulative traces of the transforms, as in Section 3.8.

In our example we have the cumulative traces listed in Table A.3, in
this we see that in data sets 1-6 the cumulative trace grows at a steady
rate as the data is spread evenly across the area, whereas in data sets seven
and eight, the individual regions show up, where the transform suddenly
jumps, in set 7 after the sixth data point and in set 8 after the tenth data

point.

A.2 Raw and pure trajectories

As well as the data trajectory, another trajectory of interest can be constructed by

partitioning the data, and then finding the bearing of each set of data individually.

Defn. A.5 If we take the partition of D, {D[1],..., D[t]}, we can compute the set
of bearings {Y(1y,..., Yy} by adjusting our beliefs by D[i]). This set of bearings is

termed a raw trajectory.

It would be useful if we could choose the Dli]s so that the raw trajectory was also a
trajectory (as defined in Section A.1), an automatic way to choose such trajectories

1s
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Data set 1

Data set 2

Data set 3

O 00~ O O i W N = e

—
—O

—~0.4550-0.0260A4+0.06508
0.1087+40.1304A+0.1087B
0.1744-0.2267A-0.2616 B

—0.3593+0.2723A4+0.34428
0.4340—0.26284—-0.3496 B
0.1602-0.08324-0.1152B

—0.1797+0.08194+0.1178B
0.0097—0.0039A4-0.0058 B

-0.0244+-0.0087A+0.0136B
0.1698-0.05374-0.08768

—0.1629+40.0454A+0.07798

0.3063+0.0175A-0.0438 B
0.107140.12854+0.1071 8
0.1846-0.2399A—-0.2768B
—0.3425+0.2596 A+0.3281B
0.4575-0.2770A—-0.36858
0.1768—-0.09184A-0.1271B
—0.1693+0.07714+40.11108
0.0160—0.0065A4—-0.0097B
—0.0177+40.0063.4+40.00998
0.1736-0.0549A—-0.0896 B
—0.1587+0.0442A+0.0759B

—0.4550-0.0260A+0.06508
0.1087+0.1304A+-0.10878B
0.1744-0.2267A—-0.2616 B

—0.5809+0.4402A4+0.5564B
0.5683—0.3441A-0.45778
0.2420-0.1256 A—0.1740B

—0.1364+0.06214+0.08948B
0.0308—-0.0124A—-0.01868

—0.0151+0.0054A+0.00848
0.1729-0.0547A-0.08928

—0.1630+0.0454A+0.07808

Data set 4

Data set 5

Data set 6

WO W =1 O OV LN e,

0.3063+0.0175A—-0.0438B
0.107140.1285A+0.10718
0.1846-0.23994—-0.27685
—0.3425+0.2596 A+0.3281 B
0.6010-0.3639A-0.4841B
0.1006—-0.0522A4—-0.07248
—0.2138+0.0974A+0.14028B
—0.0090+0.0036 A+0.0054 B
—0.1974+40.0705A4+0.1100B

0.0875+0.0050A—-0.01258
0.0542+0.0650A+0.05428B
0.2447-0.31814-0.3670B
—0.3765+0.28544+0.36078
0.4046-0.2450A-0.32598
0.1143-0.05934—-0.0821B
—0.2469+0.1125A+0.1619B
—0.0695+0.02804+0.04198
—0.1161+0.04154+40.06478

2.4938+0.1425A4—-0.35638
—0.0371-0.0445A-0.03718
0.0717-0.0931A-0.10758
—0.0330+0.02504+0.0316 8
0.1023—-0.0619A4—-0.0824B
0.0203-0.01064-0.0146 8B
—0.0573+0.02614+0.0376 B
0.1128—-0.0455A—0.0680B
0.0891-0.0318A4-0.04978
—0.0012+0.00044+40.00068
—0.1223+0.0341 A+0.05858

10 | 0.2270-0.07184-0.11718B 0.0714—-0.0226A—0.0368B

11 | —0.1223+0.03414A+0.0585B —0.2674+0.07454+0.12798
Data set 7 Data set 8

0 0.0987+0.0066A4—0.01328

O 00 =1 O O Q0N .

—
-

—-0.1000-0.0067A+0.01338B
0.0710-0.01224-0.02648
0.0251+40.0097.4+40.00478B
0.0074-0.01064A—-0.0120B
0.0155-0.0223A4—-0.02548
0.0177-0.0095A-0.01308
0.0173-0.00904-0.01258
0.0381-0.01994-0.0275 8
0.0020-0.0010A—-0.0014B
0.0219-0.01074—-0.01508

—0.0487—-0.0032A4+0.0065B
0.0002+4-0.0000A—-0.0000B
—-0.0502—-0.00334+0.0067B
—0.0605—0.00404+0.00808B
—0.1352+0.04184+0.0688 5B
0.0022—-0.0007A—-0.0011B
0.0292-0.0261A—-0.0319B
—0.0356+0.03174+0.0388B
—0.0020+0.00184+0.0022B
0.0947-0.05134-0.0702B

Table A.1: Trajectories for data sets
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) Data set 1 Data set 2 Data set 3

140 V(i/] Crli] 140 V[i/] Crli] 140 V[i/] Crli]
1 10.1325 0.0600 0.1325
2 10.4398 0.4610 -0.3110 | 0.6096 0.4477 0.3110 | 0.4398 0.4610 -0.3110
3 10.4043 1.5221 -0.9519 | 0.5657 1.7045 -0.8576 | 0.4043 1.5221 -0.9519
4 10.9381 2.3158 -0.9208 | 0.7426 2.1044 -0.8833 | 3.3755 6.0518 -0.9208
5 10.3446 2.2364 -0.9769 | 0.7993 2.4851 -0.8938 | 0.0332 3.8344 -0.9961
6 {1.0972 0.2314 0.9229 [ 1.9507 0.2818 0.9162 | 0.6613 0.5281 0.3774
7 (03518 0.2318 -0.9689 | 0.9218 0.2057 -0.9745 | 0.2178 0.1336 -0.9709
8 10.3768 0.0005 0.8841 | 0.9944 0.0015 0.9556 | 0.2854 0.0055 0.8942
9 10.3223 0.0028 -0.8754 | 0.9211 0.0015 -0.9685 | 0.2545 0.0011 -0.9057
10 | 0.7544 0.1138 0.8313 | 1.6855 0.1189 0.9754 | 0.6756 0.1179 0.8751
11 1 0.3737 0.0864 -0.9148 | 1.0293 0.0820 -0.9928 | 0.3071 0.0865 -0.9410
) Data set 4 Data set 5 Data set 6

V(] VIi/] Crli] V(] VIi/) Crli] V] Vl0i/] Crli]
1 | 0.0600 0.0049 3.9800
2 |1 0.6096 0.4477 0.3110 | 0.1342 0.1145 0.3110 | 3.7462 0.0537 -0.3110
3 |10.5657 1.7045 -0.8576 | 1.9718 2.9953 -0.9131 | 4.0722 0.2569 0.0352
4 |1 0.7426 2.1044 -0.8833 | 0.0385 2.5429 -0.9995 | 3.8909 0.0195 -0.3562
5 | 1.8408 4.2882 -0.8938 | 1.4550 1.9436 -0.9640 | 4.4804 0.1241 0.3348
6 | 2.7255 0.0913 -0.9679 | 2.4005 0.1178 1.0000 | 4.6157 0.0037 0.5087
7 | 1.1909 0.3283 -0.9847 | 0.7888 0.4377 -1.0000 | 4.2715 0.0236 -0.5571
8 | 1.1452 0.0005 -0.9729 | 0.5196 0.0282 -0.9969 | 4.9465 0.0742 0.5336
9 | 04261 0.1865 -0.9797 | 0.2211 0.0646 -0.9911 | 5.5450 0.0380 0.6462
10 | 1.1925 0.2033 0.9566 | 0.3075 0.0201 0.9701 | 5.5367 0.0000 -0.7210
11 |1 0.7633 0.0487 -0.9914 | 0.0317 0.2329 -0.9731 | 5.6515 0.0010 0.7502
1 Data set 7 Data set 8

V(] VIi/) Crli] V(i) V(i/] Crli]
1 | 0.0000 0.0064
2 | 0.0066 0.0066 0.0000 | 0.0016 0.0016 -1.0000
3 [ 0.0096 0.0088 -0.3778 | 0.0017 0.0000 1.0000
4 10.0023 0.0027 -0.9877 | 0.0000 0.0017 -1.0000
5 1 0.0109 0.0033 0.9863 | 0.0024 0.0024 0.0000
6 | 0.0508 0.0146 0.9972 | 0.0762 0.0696 0.1623
7 10.0779 0.0030 0.9819 | 0.0739 0.0000 -0.9845
8 10.1095 0.0027 0.9873 | 0.0235 0.0208 -0.9076
9 10.1982 0.0133 0.9909 | 0.0903 0.0000 0.6684
10 { 0.2034 0.0000 0.9932 | 0.0960 0.0001 0.9251
11 [ 0.2630 0.0038 0.9934 | 0.0075 0.0872 -0.9603

Table A.2: Routes for data sets
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) Data sets 1-6 Data sets 7 Data set 8
Py(Vii) Py (Vi/) | Py(VE) Py (Vi) | Py(VE) Py (Vi)

1 0.9800 0.9737 0.9737

2 1.0613 0.0813 0.9867 0.0130 0.9867 0.0130
3 1.2557 0.1943 1.0196 0.0329 0.9911 0.0044
4 1.5000 0.2443 1.0254 0.0058 0.9933 0.0022
5 1.6960 0.1960 1.0781 0.0526 0.9946 0.0013
6 1.8194 0.1234 1.1121 0.0341 1.0314 0.0367
7 1.8902 0.0708 1.9076 0.7955 1.0550 0.0237
8 1.9302 0.0400 1.9519 0.0442 1.1105 0.0555
9 1.9532 0.0229 1.9663 0.0145 1.1510 0.0404
10 1.9667 0.0135 1.9741 0.0078 1.1818 0.0308
11 1.9748 0.0081 1.9786 0.0044 1.9196 0.7379

Table A.3: Traces of transforms

Defn. A.6 For any two belief structures, B and D, we can construct the twin maps
M(B) and M(D). Any raw trajectory based on a partition {M[1],... ,M[t]} of M(D)
is called a pure trajectory {Yi13,..., Yy}

We summarise properties of the pure trajectory in the following theorem

Theorem A.3 A pure trajectory salisfies
(a) For any observed set of outcomes the data and raw trajectories are equivalent.
(b) The bearings are uncorrelated, and the squared length of the bearing corre-
sponding to the subset M[i;] + -+ + M) of M(D) is equal to the sum of the
squared lengths of the bearings of M[i,],..., M[i].
(c) The expected squared length of Yy is equal to the sum of the eigenvalues of

Tp whose eigenvectors are in Mi].

This can then be used to construct useful trajectories, by first splitting the eigen-
structure of the transform into useful subsets, and examining the bearing of these

subsets.
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A.3 Generalised belief transforms

Finally before I go onto some examples it should be pointed out that the idea of
belief transform in the previous sections does not need to be restricted to adjustment
of previsions by data. If we have a belief structures B, with two inner products
(-,+) and (-,-)* we can obtain a bounded positive symmetric functional S such that
(X,Y)* = (X,S(Y)), and we call S a generalised belief transform. Compare this with
Property 3.15 of belief transforms from Section 3.8. It does not have all the properties
of the belief transform, its eigenvalues are no longer bounded above by one.

As well as S we can define the inverse transform S, by (X,Y) = (X, S~ !1(Y))*
providing we restrict it to the strictly positive part of (-,-)*. The eigenvectors of S~!
(with strictly positive eigenvalues) are the same as those of S, and the corresponding
eigenvalue of S~} is the reciprocal of the eigenvalue of S.

This notion can then be used to compare belief structures for such topics as
hypothesis testing, experimental design and sensitivity analysis where we want to

compare different stochastic models of the quantities.

A.4 Some more simple examples

A.4.1 Example 1

We would like to refine our estimate of a quantity X, by making repeated observations
{X1,...,X.}. A priori, we express our prevision of X as p and our prevision of X2
as u? + o?. We assume that each observation can be represented by X; = X + Z;,
where the Z;s are uncorrelated with zero mean and variance €2, and are independent

of X. Hence

P(Xi) = P(X)+P(Z)
= p,for1<2<n

P(X:X) = P(X?)+P(XZ)
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= 4o} for1<i<n
P(X?) = P(X?) +2P(XZ)+P(Z})
= u2+02+62, forl1 <:<n
P(XiX;) = P(X?)+P(XZ)+P(XZ;)+P(Z:Z)

= 4o’ for1<i#j5<n
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We therefore construct two belief structures, B with base {1, X}, and D with base

{1, X1,...,X.}. Pp(X) can be computed ~ using equation (3.4) — as
Pp(X)=p+01" (6?11 + X)X — p1)
and the adjusted variance

Var([X/D]) = 0 — cr21T(0'211T +e*N) o1

(A1)

(A.2)

and then inverting the variance matrix using the identity (Q+ LL")"'L= Q 'L(I +

L'Q='L)"! to obtain

; no?X +e*p
Po(X) €2+ no?
o’e?
Var([X/D]) = P

where X is the sample mean n™! ", X;. We note that the prevision is a weighted

average of the sample and prior means. The matrices representing Pg and Pp are

1 oty
2 p)
PD - e“4no
0 2,1

e24no?
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and the corresponding belief transforms are

62
1 e24no 1 )
Ty = i

\ 0 =211
52
Tp = (1 E’+nai)

0 no?
e24no?

The eigenanalysis of Tp is straight forward, the eigenvalues being Ao = 1 and Ay =

%, with eigenvectors £y = 1 and F; = A—;ﬁ Then by using Lemma 3.4 T can
be shown to have eigenvalues A\ = 1, A\; = —2”—22, A== A, =0with Fy; =1 and
g e“+no

F = —\/?—/'_f;— The eigenspace corresponding to the zero eigenvalues is spanned by
2 /nto,

the residuals X; — X. We can write down the bearing of the data,

o X—p X—upu
\/62/71—{-02 \/62/n+02 4
X - u

- e?/n + 02(/\ —#)

Y. =

To construct the data trajectory we compute the bearings

Xi—p
o= Gy o n
(l\’,' - [L)62 + (1 - 1)(X, — 7{_1)0'2
Yoy = , , X —
/1 (e + i02)(e? + (i — 1)0?) (X =p)

where X; = i7? Z;ﬂ X is the cumulative sample mean. The variance V[i] and V|[i/]

and correlations Cr[i] can be computed,

V[i] = {——"(7‘ —#) }2

e?fi 4 o?

{MrwW+U—MM—7HW?Zz
(e2 +20?)(e? + (2 — 1)o?)

VI{i/]

Crlil { +1 where X; — g and Py, . x.(X) — Px, .. .x._,(X) have the same sign
rli] =

—1 where X; — pr and Py, . x.(X) — Px,...x,_,(X) have different signs
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to produce the data-trajectory. We therefore see that all the data perfectly comple-

ments or completely contradicts the previous data. We can compare V[i] with the

trace of the transforms trace(Tpp)+.+ppi) — 1 = 52";’%, and V[i/] with the difference

ag2e?
(e24(i-1)0?)

between successive traces trace(Tppj+..+D[i]) —trace(Tppj+..+Dfi-1]) = @7
to look for any irregularities in the data.

If for example we elicit that g = 0, €2 = 25 and o = 1, the prevision of the squared
lengths are i/(2+25), and the prevision of the adjusted lengths are 25/(25+1¢)(24 +1).
So if we observe the following data set, d = {3,7,-3,8,—4,-20,3,-7,2,—-2}, we
obtain the trajectory summarised in table A.4. The possibly anomalous result of dg =
—20 is highlighted by a large value of V[6/] which is of an order of magnitude greater

than any of the other V[i/] values, and sixteen times greater than its expectation.

i [& [ VEL__VE/_CrEl [P(VED P(VE/D
113 0.013 - - 0.038 -
217 0.137 0.065 1.0 0.074 0.046
31-3 10063 0.014 -1.0 0.107 0.033
4 |8 0.2684 0.071 1.0 0.138 0.031
5 | -4 0.13¢ 0.023 -1.0 | 0.167 0.029
6 | -20 ] 0.084 0.432 -1.0 0.194 0.027
713 0.035 0.011 -1.0 0.219 0.025
8 | -7 10.155 0.043 1.0 0.242 0.024
912 0.105 0.005 -1.0 | 0.265 0.022
10| 2 0.138 0.002 1.0 0.286 0.021

Table A.4: Trajectory for example 1

A.4.2 Example 2 — Poincaré’s problem.

We have an unknown function Y (2) which we wish to approximate in some way. To

do this we assume that Y (x) can be written as a convergent power series,

Y(z)= Ao+ Az + Az + .
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We then specify our beliefs about the As; for simplicity we believe that they are
uncorrelated, and have zero prevision, the latter assumption is made because we have

no knowledge of the sign of the A;. We summarize of our previsions:

P(A;)) = 0,for 0 <4
P(AiAj) = azggé,-j,f01' 0< 1,
P(Y(z)) = P(Ao)+P(A)z+P(A)z*+---=0

P(A)Y(z)) = iP(AiAj)xj = o’g;x',for 0 < i
P(Y(z2)Y(w)) = iipm Azt = ZU gi(zw)*

where the g;s are chosen to express our beliefs. Then if we put g(t) = 52, ¢:t', we
can write P(Y ()Y (w)) = ¢g(aw).

We them obtain our estimates for A;, and Y(z.), if we observe y1,...,y, at

T1y...,Tn
Pp(A:) = gx:G7ly
Pp(Y(z*)) = ¢G7'y
where @; = (zi,...,2'), Gij = g(ziz;) and g = (g(z12*),...,9(za2"))’. We can

now construct two belief structures, B consisting of the unit constant 1 and the
coeflicients of the approximation A; and D consisting of 1 and Y; = Y (z;) observations
of the unknown function at a series of design points {zi,...,z,}. As there is no
error, knowing all the coefficients means we know the exact function, so T the belief
transform obtained by adjusting D by B is the identity transform, so has n + 1
eigenvalues all equal to 1, with eigenvectors Fy = 1, F; = (o%g(2?))~/?Y;. Then
using Lemma 3.4 the non-zero eigenvalues of Tp are n + 1 ones, with eigenvectors

Eo =1, E; = (02g(22))71/? %2, Azl
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A.4.3 Example 3 — exchangeable belief structures.

We have a collection of beliefs about quantities { Xy, ..., X,} which we wish to modify
by making some observations. We have s observables {Y{y),...,Y(s)}, which we can
make repeated These observations are to be made in groups {Y;1,...,Yi} for ¢ in

1,...,n. These sets of observations are exchangeable, i.e.

P(Y;;) = m; v i
P(Y,] ,,J) = mymy + vy \4 1,7,J
P(Y;;Yy) = mymy 4y, v 1#£ 1,5,J

and they are coexchangeable with {X,,...,X,}, i.e.
P(‘X’kY,’j) = prmj + Ckj A4 i,j, k
whose second order structure is

P(Xk) = Mk A4 k

P(XkXr) = mpr + owr v k, K

We now define the two Dbelief structures B and D with bases
{X1,..., X} and {Y11,...,Y1is,..., Yau1,..., Yos} respectively. We can then compute
Pg and Pp (Notation W =V —U)

Py o B! 1T®£m“'—pT2-lc)

L 1" ®(27'C)

[ 1 ;f—(f@mT) (11T®U+I®W)_1(1®CT)
PD = T -1 T

K (1eU+1ew) (18C")
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[ 1 w —nm' ([I/V‘l —nWU (nU + I/V)_l] C'T)
0 1@ ([W—aW U (U + W)™ C")

( 1 g —nm (n=0U+V)'C"
|0 19 [([n-1U+ V) (]

(1 1'®@ (m[I—n(n-1U+V)" C"zC])
Tg =

o [11] ® [([n = 1JU + V)™ C"5-1C]

(1 W1 -2 (- U + V) O
Tp =

|0 nE'C(In—-1U + V) C"

Using these results we make the following observations:

Observation A.1 The heart of the transform (the sufficient statistics) is made up
of linear combinations of the averages of the observations (averaging over the is), i.e.

. — g1 n .
Y-J =n"" 3, Y;J

Proof
The eigenvectors of T are given in Lemma 3.4 by Pg(E;) where the E;s are the

eigenvectors ol Tp, and so have the form 1 @ f = Y7, f; L, Yi;.

Observation A.2 The number of non-zero eigenvalues is less than the minimum of

r+1and s+ 1.

Observation A.3 If e = (€1,...,e,) is an  eigenvector  of

S1C ([n - 1)U + V)™ C" corresponding to the eigenvalue ), then

T

E=(—eips— - —erpiryer,...,6) =e(Xi—p1)+ -+ e( Xy — pr)

is an eigenvector of Tp corresponding to the eigenvalue n\.
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Observation A4 If f = (fl,...,fs)T is an  eigenvector
([n = 1)U + V)1 C"S-1C corresponding to the eigenvalue ), then

F o= (=n(fimi4- 4 o), fireeos foreo s f1y e fo)
= fl(Z}/,-l—n177.1)+"'+fs(zxs_nms)

i=1 i=1

s an eigenvector of Tg corresponding to the eigenvalue n.

Observation A.5 For «all g = (91,---,9s) tm R°, and for

a=(ar,...,a,) nR"st Y ,0;,=0

0

a®g

15 an eigenvectors of Tg with eigenvalue 0.

0 0
Moreover, if G = and H = then
a®g b®h

(G, H) = (a®g) (11 ® (mm +U)+I1®[V-U)) (b h)
= a'11'bg (mm' + U)h + a'bg' [V — U]k
= (a'b)(g [V - U)h)

157

all

These observations mean we can work out the eigenstructure of the transforms

more easily. (Observations A.3 and A.4 show how to find the meaningful eigenvectors,

and A.5 shows how to find the residuals). If we assume that the number of replicates

n is large, then we can see that

[ w —mU-1C"
PD o~ T
0 1QU-'C
. 1 p'(I-xtcUu-1ch)
D =
0 utlelimled
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You will note that the intra-group covariance disappears and the result just depends
on the inter-group covariance. This asymptotic result is useful as it means that we
do not have to work out the transforms each time we receive a new piece of data.
This model is useful if we are looking at properties of an object which we can
take repeated observations on some object or class of objects, for example a car, the
Xis being average speed, maximum speed, petrol consumption etc, and the Y;;s the

distances travelled in various times,.. ., for various cars of the same type.



Appendix B

Omitted Algebra From Chapter 5

o~

B.1 The univariate model — Section 5.2

Py (Xo)

Var[Xo/Y]

Py (B(z.))

pto — bo21 (b20211" + 62C) ™ H(Y — bz + buol)
bo21"C (Y — b + buol)

oF(1+ ZR1°C11)
oo — a21'C~YY — ba)b

Ho —

B.1
ot + o21"C 1142 (B.1)
o — bol1 (V20211 + o2C) boll
\ poil’c1
%0~ b2 T v g
2.2
o (B.2)

o} +a31"C110?

b+ old (V6211 + 62C) (Y — ba + buol)

T
- opd CTH(Y —ba + buol)

2
O
UEdTC‘11b2a§lTC_1(Y — bz + bpol)
oi(1 + £5217C-11)
b
b+dC Y —bx) +

159
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d C~11(bu(o? + 021"C~116?) — b2621°C~Y(Y — ba + buol)
o+ 031°C-114?
ch—lw(a,,# — a21"C~Y(Y — ba)b)
of + o21°C-114?
b+d CUY - blz — Py (Xo)1]) (B.3)

b+dC (Y — bx) +

Cov([B(2.)/Y],[B(2.)/Y])

op(z, — & )—abd(b2 211" + 62C) '02d
5 i dC-'d dC1ai1'C1d

o p(ze —T.) — 0
oo = 2) = ol = S )
b

angc-luTc-lEzbZ)

(B.4)

~ T -1 7
UZ (p(.’l). - ﬂ.:‘) - d C 1d + o_g + UngC_11b2

b(z, — po) + (V*021 + ofc) (b20(2,11T + o2CY (Y — bz + buol)
o2 CYY — be + buol)

blz. — Py (Xo)] + :

Oy

o2c C'10%021'C~ 1Y — ba + buol)
o (1 + %%alTC‘ll)
blz. — Py (Xo)] + ¢ C7I(Y — ba) +
¢ C 11 (bpo(o + b2021"C11) — B2021' C~Y(Y — bx + buol))
o} + o21'C-11h?
blx. — Py (Xo)] + ¢ C7HY — blz — Py (Xo)1]) (B.5)

Cov([Y(z.)/Y],[Y(2.)/Y])

a3 + 0y (05 + (@ = ft0) (&4 — po))p(xe — &4) ~
(B2021 + o2c) (V20211 + 02C) " (b2021 + o2E)

agb? + 03 (05 + (ve = po)(&. — po))p(es — ) =
W2o2(b2021°C~ 11 + 621'C~1é + okc C~11)
o¥(1 + £517C-11)
b
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T . T ~_ T ~_1~
ope C'e  ole CN1bM* 021 C e

o} oi(1 + £%817C-11)
L]

= o? (02 + (2. — o) (&x — po))p(zs — &) — € C1&+
(1 -1°C'e)b?e2(1 — €' C11)
ot +0d1"C114?

(B.6)
Cov([B(z.)/Y],[Y(2.)/Y])

= (& - po)oip(z. — &.) — ofd (B0311" + 02C) 7 (b0dl + 0fé)
o2d' Clo2e  otd C1182021"C 1028

= (& - po)opp(z. — &) — + -
: o} oi(1 + Z5817C-11)
b

olb*eldC11
o}(1+ £217C-11)
b

14 12,2(1T =12 _
= o ((.i‘—;to)/)(.’v,—.’l‘.)—dTC_lé+dTC Woo(1C-'e 1))(13.7)

of + 021"C-11b?

B.2 Determinant results

Lemma B.1
| M || M 13| = | M; || M5 7] — | M; 3|1 M51], i# jandl #£J

where Mar—m 5w 15 the matriz M with the aq,...,am columns and ¢y, ..., cn rows

removed.

Proof
If we divide the RHS by the LHS we get

_ Mz
|M|

Mzl |M:,7|/|Mrj,n|
M55 M| | M5

/

by swapping columns and rows we can w.l.o.g. assumet =1 =1and j =J =2 so

we have

_ M55l (Ml Mgl /lMﬁvﬁ
M| " | M5 M| " M35

1
2,2
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T
i1 C12 @
Writing M = | ¢ ¢2 a, | we have
b, b, D
1 C12 alT 10 alT 0 Ci12 alT 01 alT
0 Cy9 agT 01 azT -1 C22 agT —110 G,zT
0 b, D 00 D 0 b, D 00 D
Q= T / T T T / T”
11 C12 1 0 ay c11 C12 4y cn 1 aq
T T T T
C21 C22 Q2 cn 1 a C21 C22 Q3 —|ca 0 a
by b, D b, 0 D b b, D b 0 D

and applying Cramers rule

Q
_ (011—alT.D—]bl)(ng—agTD_lbz)
" (ec1—a"D71by)(ca2—az D=1by) — (12— a1" D1by)(cay —ay’ D-1by)
(612—a1TD_1b2)(C21_a".’TD—lbl)
(C]l—alTD—]b[)(ng—agTD_lbg)—-(Clg—alT_D_lbg)(Czl—G,QTD-lbl)
=1

So LHS = RHS )

Theorem B.2

B. M~ 'A,, B, Mg
f M4, fMlg
B, M Ap|

lim (M + kiaib+ -+ knanbn ) 7'g =

ky,.o.ny ky— 00

where A, = [a,,...,a,] and By = [by,...,by]

Proof
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By induction on m.

_kfM'abM™'g
1+ kb M-a
fMlab Mg
- b M-la
bM-la bM-g
fM7a fMg
|bTM-1a|

Jim f(M+kab)'g = lim f Mg

= fMg

So true for m = 1, assume true for m = p;

im  F(M+kab; + + kpprapribysr ) 'g

K1 yeeoskip pg1 —00
_ FMayb0 Mg
bp+1TA/[:1ap+1
BM~'A, B,M™'g
fFM A, fMlg
|B, M~ 4,|

= Mg

BM7'A, B.M™a,. || B,M™'A, B,Mg
FM7 A, fM7ap || by MT'A, by M7'g
B,M™'A, B,M™'A,

BM™'A, B,Ma,n
bp+1Tﬂl_l Ap b,,+1T./W‘1ap+1
T -1 )
|B, M1 4,

B,M™'A, B,M7a,, BMg
byt M7'A, bypy M~apy; by M~'g
FMA, by Mla,,, fMg

BIM™T'A,  BM 'a,pn
bpot M7YA, bypy M~y
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By M 'A, By Mg

p+1
FM7 A Mg
T -
| B M Ay

true for m = p + 1. So by inductive argument true for all m. 0

Theorem B.3

. r . e, |BuMTAny B Mg
kl,...l,lkr:,]—ooc{CMbm(A{[ + L‘qa] b] +- kmambm)— g = ’B"I"nM_lAml ]

Proof

Bm kb (M + kyarby + -+ + knambm)~'g

= lim knbm (M. + km@mbn )'g

km—o0

k2b, MI'anb, M
= lim kmmeM:lg - . aT -9
ky—o0 ]- + kmbm Mt—lanl
kmbm Mg

m T ]
km—oo ] + kmbm A/f:—la’m

b Mg
b, M 'an,

‘ B, M~'A,_., B, Mg ‘
B M A, |

.....
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Theorem B.4
B, _,M~'A,_,
. . . b M~ Ay
llm kmb-m(M + k]a]b] + 4 kma'm.brn)_lam—lkm—] = T
K1 yereslm 00 |Bm1\l'1Am|

Proof

liln kmme(Al + klalblT + -+ kmamme)—lam—l km—l

kl ,...,km—>CO

= lim kmme(Alt + km—l am—lbm—lT + kmamme)_lam—l km—l

km_l,km—ooo
me(Al* + km—l am—lbm-—lT)_lam—lkm—l
km—y—00 me(M,. + km—]am—lbm—lT)_lam
B, ,M~'A,_,
b, M~'A,,_,
B, _M™'A,_,
|13an—‘Am|
B, M An,_

B, _M™A,_,
b, M~'A,_,
B, M™" A,

where M, = limh km_g—»oo(j\/f + klalblT +---+ km—2am—2bm—2T) o

.....

Theorem B.5

B M™A,._ |
1 — K T / [~ T . - Ty-1 -+ — | m—l m-1
o, iy = Kb (M 4 kr@iby oo @b ) o = By M7 A

Proof
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lim k- b bo(M + k1@yby + <« + km@mbo) " @k

= llm km - ernme(A/[# + kmamme)—lam

km—o00
k3 (b, M lan,)?
_ lim km _ kimef\l-—lam _ m( T,. a )
km—oo 1 + kb M '@,
. ko
lim T
km—oo l + kmbm ]\J:Iam
_
b M '@,
Tn—'l AI_IA"‘_] ‘

B
B, M7'A,,

T) 0

.....

B.3 Results for “ignorance prior” — Section 5.5

Py (Y (z.))
: 2 T 2 24247 2 T
= b(z. — po) + GILH—T'IOO (ch(:c* — wo)(e—pol) + (b° 4+ ogpr)ogl + oc )

(o2 (@—ro1)(@—pol) + (8 + 030211 + 62C) ™ (¥ —b(w—piol))

-1

1T C_l
= b(z.— po — T — o
( f )+ ( (:c—,ugl)T) Ug ( 1 ( f 1) )
1 Cc-1
(2. — o) T — (1 (Y —=b(z—pol )
( / ((a:—uol) ) o2 ( (z—pol)) l
1T

+{| (2=po1) 7;;(1 (z—pol) (Y —b(z—pol)) )

2 T
olc
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(z—pol) \ C-1
'( T '—2( (x—pol) (Y —b(x—pol)) )

1 Op
FT
. |CT(F Y)
olc

Fe'(1 v )‘ — bz — o) |[F'CF|

= \FT0-1F|“ (b(:c_ — o) |[F'CF| + ;%

+Ho

FC =z Y )[ +(z. — pto)

Fe' (1 v )D

FC'F  FC'Y

cCF—f cCY
|F'c'F|

= cCY —(cC'F - fYFC'F)'Fcly (B.8)

Cov([Y (2.)/ Y], [Y(2.)/Y])
= lim_ o} (2. — po)(&. — po) + (U + aiy)og + ofe(z., 2.) —
(oks(2. = po)(m—pto1)" + (0* + 03)od1” + oic’)
(034 (2 —po1)(z = pal) + (87 + 02)o211" + 07C) ™

(o1 (2- = po)l@—pol) + (8* + o})od1 + o}2)

- azc(w.,m.)—l( ' )C—;(l (2 —po1) )

(z—pol) | %
1T
C-1
(2 —pol) 7( 1 (z—pol) ofé)
b
otc
Tc—l -1
—(z. — pto)(T—piol) 71 — (e — o)1 —-(x—po1)
b b
) C-1 -1
+(x. — po)(Z. — ,uo)lT?l + (2 —pol) —5 (2 —pol)
b T
1" C-!
—(z. = po) | =3 (1 of¢)
(—pi01) T
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\ 1 7
[ x 0 -1

-\ ( :‘Tl) ) — ((x—pol) 1 ))
K a'bc b

FC'‘F  FCle-f
SCF - f cClé
|FCF|

oic(z., x.) — 0}

of (c(wu,2.) + (€ CT'F — FfUFCF) (FCé—-f)—cCle

Py (B)

. 2 T
b+ a}{lﬂ]oo ox(T—10l)

(o3 (z—pol)(m—pol)" + (42 + o)og11 + agc)'1 (Y = b(x— o))

v gj( 1 (Y =0 1)) )
(€ —pol) of . el
b+

1 !
T _T( 1 (x—pol )
l( (@ —piol) ) o} (—pol)
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(B.9)
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FTC_]( 1Y )‘ |FT0-1F|

= 0+ e \FFC1F]
)F’C—’( 1Y )‘
T T |FCTF
= (0 1 ) FCF)yY(FCy) (B.10)
Var[B/Y]
= U}li_n}maﬁ,,—aﬁ,(m—uolf
(o3 (2= o) (@—pol ) + (B + 03)0211" + 62C) " o2 (m—pol)
+C1
- |1 —03—1|
1 Cc-1
S @—nn))
(& —pol) %
_ ofr’'c 11|
|FT"C-1F)|
T -1
T (¢ C7'1)?
= 0'b2 |:$B C IQE—WI— (Bll)

Cov([B/Y), [¥(&.)/Y))

= lim o%/(%. — po) — a,{,(:c—,uol)T
0 M —00

-1
(‘712\4(2’—ﬂ01)(93—lt01)T + (B + 020211 + o2 )

(02(2x — po)(@—pod) + (82 + 0% )0l + 07¢)

1 C-1 o
= l( (w_ﬂol)T ) a_f( 1 (z—pol) )

) c- c! r c- .
((-T- - /to)|1T71| - |(“3—/L01)T-U—21| - }( ) ey (1 UZC)

b b (:v—;zol)T o
_ (|FTC“(1 &)l . V|1Tc—11\7 B |:1:TC"11|)
"\ |FreF| TTEemE| e
of|[F'c-'1 F'cle-§)|
|F'C-1F|
= (0 I)FCI'FYyY FcCcle-f) (B.12)
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Py (B(z.))
= b+ ULiLnoo(a'ﬁ,,(z—pol) + abd)T
(o3(@—po1)(@—pol)" + (B + 03)o211" + 62C) ™ (Y —b(2—po1))

FC' (1Y)
|Fm%-31F|

L+

T

1
r | C7!
(2 —#o1) a_g( 1 (x—pol) (Y —b(z—pol)))

2 ;T

oid
( ! ) C—_zl( 1 (z—pl) )

(z—pol) | 9

FT
( T)C“( FY)
chd

|[FFC-1F|
F'CF F'cy
dC'F-(01) dCY
|FFC-1F|
= dC'Y —(dC'F - (0 1))(FC'F)'FCc'Y (B.13)
Cov([B(2.)/Y],[B(4.)/Y])

T

F

(1 Y)|+;‘—5

= lim o}y + a}p(z. — &) = (oh(@—pol) + 0sd)
(ai,(:c—;tol)(a:—uol)T + (b* + 012{4)0'311T + JZC)_l

(o3 (z—pol) + o} d)

-1

(x—pol) | b

. arc11 1 C-!
= oip(z. — %)+ %l - ’( ) — (1 (z=pol))
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1 1
C- -
(2 —pol)' a_f(l (—pol) o2d)
ord

. T . _ _ +C1 +C1 ~
= otola—2) + PP (A - 1P (1 sl

1 -1 F'\ ¢ .

[ — - 2
O'ng 0‘3 F O'ZdT Ul? ( F Ubd )
T T ~ 0

F'C1F Fc—ld—( )

1

dC-'F—(01) dC-'d

|[F"C-1F|

(1))
F'cld - (B.14)
1

R - ~ o T
= lim_o%(#. — o) + o2& — po)p(es — 52) — (0% (2 — pol) + 1)

TpM —0O

1
ai

= opp(e. —T.) — o}

= of (p(z. — #.) —d C7'd+

[dC™'F— (0 D))(FCF)?

Cov([B(z.)/Y],[Y(<.)/Y]))
(aﬁ,,(a:—;tol)(a:—pol)T + (0 + 020211 + aEC)_l
(Uzzw(-i‘* — o)(®—pol) + (b + ojy)ogl + 035)

( ' )C—?u(w—uol))

(&—pol) | 9%

17\ ot

-1

= }(d. — po)p(e. — 4) =

rC71
((-77* = #0)[1 —5-1] = (2. = o)
b
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T

1 1
C—
(33—#01)1‘ O'Z ( 1 (Ql—,uol) O'Z&)
ord

= o¥(Z. — po)p(z. — &) — [F C7'F|7!

((¢n = po)lo?T'C1| — of|="C 1| + ofpo| 1" C 1| -

lT
.| cF
oid
v C'F
otd

| dCciF—(01) dCe

IFFC™Y(1 o2 )| — (% — o)

T
T
. | CTF
otd
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Appendix C

C Sources For Programs

C.1 +trace.c

This routine produces the example traces of the functions shown in Figures 5.5, 5.25,
5.26 and 5.27. The assymetry of these graphs comes from rounding errors in this
program, which develop assymetrically, as the choleski decompostion starts at the

left.

#include <math.h>

#include <stdio.h>

#define X_range 2.0

#define Bo_of_points 11

8define Array_size Ho_of_points+1

8define Delta_x 2#X_range/(No_of_points-1)

8define Ho_of_traces 10

#define Pi2 6.28318530717958647692528676655900576839433879875
#define Pi 3.14159266358979323846264338327950288419716939938

FILE *fopen(),soutfile;
long int seed=1003;
double m[Array_size] [Array_size] ,ulArray_size][Array_size];

/“‘##‘““..."t““““‘t‘.....ti‘t“ti"‘..‘ttttttttt“"#“.tt.#tt‘t#““t‘.#t‘/

/* Generate a uniform [0,x] random variable */
P T T T T Ty T T T P P Y Y YY)

double uniform(double x)

{
seed=(75+sead*1741)%65537;
return(xsseed/65537);

}

/‘.“““‘.‘t.‘...."t.““..““.t.t.‘.‘t‘tt"t‘#t‘t‘“.“.t“‘#.t#‘##‘.‘.t.t‘t‘.t/

/* Using a Uniform[0,1] and a Uniform[2pi] generate a Normal(0,1) random variable %/
Iy L L
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double normal()

{
return(sqrt(-2.0+log(uniform(1.0)))*cos(uniform(Pi2)));

}

/‘.‘O“‘.“‘.“....l...‘...“..‘..‘.t‘tt‘ttt.‘.t..tt‘.t“‘t“...“.‘..0.."....“.‘/

/* Generate a vector of independent Hormal(0,1) random varjables ./
T T T T T P Y

generate(double vec[Array_size])
{
int 11;
for(11=1;11<=Ho_of_points;11++)
vec{1l]l=normal();
return;

/.“"..“.'....“i“........“#“‘t‘t.l.i.."tt.tt‘...“#‘t#‘tt!““‘“t‘.‘.‘#.“‘/

/* Map theta to its "area” equivalent to get compable traces s/
P T T T T L T Y]

double thetaa(double theta,int rho_no)

{
switch(rho_no)

{
case 1 : return(theta);
case 2 : return(2e*sqrt(theta/Pi));
case 3 : return(sqrt(Pi/theta));
case 4 : return(4+sqrt(Pi/theta)/3);
}

}

/.‘....“0‘..#t#“‘......t““‘......iit....t...#‘#.““.t‘ttttt‘tt“‘.....t.‘.““/

/* Output a vector of Hormal(0,U) random variables a/
FAT T R T T T T L T P L Y YY)

output (double vec[Array_size],double lam)
{
double t;
int 11,1;
for(11l=1;11<=Ho_of_points;1ll++)
{
telams (-X_range+(11-1)*Delta_x) ;
for(1=11+1;1<=Array_size;1++)
t+a(ul11]) [1) *vec[1]);
fprintf(outfilae,"%20.10f ", t);
}
fprintf(outfile,"\n");
return;

}

/.‘.".'“‘-“..‘.“‘.....t“t“i‘tttt-.t‘lttt‘t“‘.t‘.t‘#‘#“‘ttttit.“““.t.t“t/

/* Choleski decompose A, into upper triangular matrix B */
L T T T T e T e R R L Iy L R PP P Y

choleski(double a[Array_size] (Array_size],double b[Array_size] [Array_size])
{

int i,j,k;

double t;

b[1) [1]=sqrt(al11[1]);
for(j=2; j<=Ho_of_points; j++)
b[11[j1=al1]1[31/b[11[1];
for(i=2;i<Ho_of_points;i++)

{


http://rho.no

C.1. TRACE.C

t=alil[i];
for(k=1;k<i;k++)
t-=(b[k] [11eb[k][i]);
if£(£>0)
b[i][i)=sqrt(t);
else
bli] [i]=0;
for(j=1+1; j<=Ho_of_points; j++)
{
t=alil[j];
for (k=1 ;k<i; ki+)
t-=(b(k] [i]sb (k] (j]);
if(b[i]1(i]!=0)
b[i)[jI=t/b (1] [1);
else
b[i]1[j]=0;
}
}
t=alBo_of_points] [Ho_of_points];
for(k=1;k<Ho_of_points;k++)
t-=(b[k] [No_of _points]lsb[k] [Ho_of_points]);
b(HBo_of_points] [Fo_of_points]=sqrt(t);
return;

/.‘..#‘...t““".#t“.“‘t“t‘..““"#‘.‘..‘#““t‘tt-"#".tt#‘.."‘i“.‘!‘.““/

/* Raise 10 to the power n ./
/."‘...“‘..“........“‘....‘i...“..““".““‘“‘“l‘..“".“."..“‘.‘...‘../

double ten(int n)

{

return(exp(log(10.0)#*n));
}
/““““‘.““.“...‘...““.....".‘..."“‘...“.".‘.“.“.““‘"“‘.““““./
/% Calculate the covariance between Y(x) and Y(y), b=lam, sO=sb=1, mu0=0 /
/+ for ‘‘slope’’ covariance p2 -- n=1; pl -~ n=2; pl+ -- n=3; pc+ -- n=4. ./

/“t“.““.‘.‘.‘....‘t...‘.tt.“.‘."..‘#‘t"““t‘t‘t'.....“‘.‘..’..‘.".#."tt./

double cov(double x,double y,double th,double lam,int n)
{
switch(n)
{
case 1:return( lamelam+(1+xsy)*exp(-ths(x-y)*(x-y)) );
case 2:return( lamslam+(1+x*y)saxp(-thsfabs(x-y)) );
case 3:
if(fabs(x-y)<th)
return( lamslam+(1+xsy)s(1-fabs(x-y)/th) );
else
return( lamelam);
case 4:
if(fabs(x-y)<(th/2))
return( lamslam+(1+xsy)*(1-6¢(x-y)*(x-y)*(1-fabs{(x~y)/th)/th/th) );
else
{
if(fabs(x-y)<th)

return( lam#lam+(1+xsy)+2+(1-fabs(x-y)/th)«(1-fabs(x-y)/th)*(1-fabs(x-y)/th) );

else
return( lam*lam );

}

/““..‘"...“‘.....‘.‘..‘.“...‘."#..‘...‘.‘.t‘t“““.“."“..“‘“.““‘...../
/+ Main block, produce tables of traces of Y(x), for all four covariance */
/* structures and for lam=0.1,1,10, and th=0.1,1,10 *«/
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/‘#i“‘..““..“.“..‘.‘....‘.‘“.‘.‘..ttt“‘..tt#t"‘t“.“#t“t‘i#‘.“ttt..‘l#.‘/

main(int argc,char eargv(])
{
int logth,loglam,nnn;
int loopi,loop2,loop3d;
double y[Array_size];
double th,lam;
double temp;

if (argc<=1)
{
fprintf(stderr,"NOT EBOUGH FILES\n"); exit(2);
}
else
if((outfile=fopen(s++argv,"w"))==§ULL)
{
fprintf(stderr,”OUTPUT FILE ERROR\n");
exit(2);
}
for(nnn=1;nnn<b ;nnn++)
for(logth=-1;logth<2;logth++)
for(loglam=-1;loglam<2;loglam++)
{
th=ten( logth) ;lam=ten(loglam);
for(loopl=1;loopi<=Ho_of_points;loopl++)
for(loop2=1;loop2<=Ho_of_points;loop2++)

176

m[loop1] [1oop2]=cov(~X_range+loopi+Delta_x,~-X_range+loop2¢Delta_x,thetaa(th,nnn),lam,nnn);

printf("%2d %2d %2d ",logth,loglam,nnn);
choleski(m,u);
for(loopi=1l;loopi<=Ho_of_traces;loopi++)
{
generate(y);
output(y,lam);
fprintf(outfile,\n");
}
printf("\n");

C.2 eqn.c

This program, was the original program developed to generate optimal designs, and

is a direct translation of the original FORTRANTT source,

#include <stdio.h>
#include <math.h>
#define MAX_SIZE 16
#define PREC 0.00000000001
8define END_CONDITION 0.000001
8define J_ABS(X) ) »>o0 72 (X)) . =(X) )
#define J_MAX(X,Y) (> 72 : (Y))
8define GOLDEH_RATIO 0.61803398874989484820458683436563854
#define GOLDEN_RATIO_C 0.38196601125010615179541316563436146
double c[MAX_SIZE] [MAX_SIZE],ca[MAX_SIZE][MAX_SIZE],
cm[MAX_SIZE] (MAX_SIZE] ,y [MAX_SIZE],x[MAX_SIZE],xx[MAX_SIZE],
c_inv_1[MAX_SIZE) ,mu,si_O,b,si_b,th,lam,t,si_0_0,s8i_b_O0,mu_star;
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int cp[MAX_SIZE] ,n,crit_no,mu_no,var_no,fun_no;
FILE sfopen(),*file_y,sfile_crit;
int out_count,count_out,y_flag,crit_flag;

F T T YT YTy
/* Protect against errors produced */
/% by taking the square root of a »/
/* negative real 'Y
T Y Y T T T P TY Y

double sqroot(val)

doublae val;

{

if(val>=0)

return(sqrt(val));

else

{

printf("SQRT Error %f\n",val);
return(sqrt(-val));

}
}

/t““‘..‘0..'t‘t"..“.‘.‘.t““...t/

/* Function to be approximated */
AL Ty P e T T P P T Ty

double f(double val)

{
switch(fun_no)

{
case 1 : return(sin(val/2-.1));
case 2 : return((val-0.2)s(val-0.2)*(val-0.2)*(val-0.2)*(val-0.2)*
(val-0.2)%(val-0.2)#(val-0.2)#(val-0.2)*(val-0.2)*(val-0.2)+0.01977326743) ;
case 3 : return((val<0)?1:((val>2)?~-1:1-val));
case 4 : return((val-.5)¢(val-.5)%exp(val));
case 5 : return((val-.5)¢(val-.5)sexp(val)+.1);
case 6 : return((val-.5)¢(val-.5)%exp(val)-.1);
}

}

A T Ty R T T YR Y YY)
/% Predictor of Y at x_2 «/
A Ty LYY e Y YT YT YY)

double yyyyy(double x_2)
{

int 11;

double p_y_y,c_star_c_inv_1,c_star[MAX_SIZE] ,c_inv_c_star[HAX_SIZE],tv[MAX_SIZE];

for(li=1;11<=n;11++)
c_star[11]=(1+(x_2-mu)*(x[11]-mu)/si_0)+*
axp(-the(x_2-x[11])*(x_2-x(11]));

if(n==1)

c_inv_c_star[1)=c_star(1]/c{1][1];

else

solve_y(n,ca,cm,cp,c_star,c_inv_c_star);

P-¥-y=0;

c.star_c_inv_1=1;
for(li=1;11<=n;11++)

{

pP.y.y*+=c_inv_1[11]s(tv[11])=y[11]-b*(x[11]-mu));

c_star_c_inv_1-=c_inv_c_star[11];

}

p-y-ySp_y.y*c_star_c_inv_1¢lam/(1+lam*t)+b*(x_2-mu);

for(11=1;11<=n;11++)
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}

p-y_y+=c_inv_c_star[11]+«tv[11];

return(p_y_y);

L T P P T PRy
/* Criterion for choosing new point #/
crit_no=0 Var[X_.0/Y]/Var(X_0) »/
=1 (Py(Y)~2+Var(Y/Y])/Var(Y) s/
=2 Py(Y)~2/Var[Y/Y] ./
=3 (Py(Y)~2+Var(Y/Y]) */
T T PR T YY)

/*
/*
/*
/*

double criterion(double x_2)

{

int 11;
double p._y.y,var_y_.y,var_y,c.star_c_inv_1,

c_star[MAX_SIZE] ,c_inv_c_star[MAX_SIZE],tv[MAX_SIZE]

for(11=1;11<=n;11++)
c_star[11]=(1+(x_2-mu) *(x[11)~mu) /8i_0)*
exp(~the(x_2-x[11])»(x_2-x[111));
if (n==1)
c_inv_c_star[1]=c_star([11/c[1]1[1];

else

solve_y(n,ca,cm,cp,c_star,c_inv_c_star);

if(crit_no==0)

{

c.star_c_inv_1=1;
pP.y-y=1+(x_2-mu)*(x_2~mu);
for(1l1=1;11<=n;11++)

{

p.y.y-=c_inv_c_star[11]+c_star({11];
c_star_c_inv_1-=c_inv_c_star[1l1];

3

if (p_y.y<0.0000000000000000000000000001)
return(0);

else

{

1se

return(c_star_c_inv_1sc_star_c_inv_1/p_y_y);

p-y-y=0;

c_star_c_inv_1=1;
for(li=1;11<=n;11++)

{

p-y-y+=c_inv_1[11]*(tv[11)=y[11]-b*(x[11]-mu));

c_star_c_inv_1-=c_inv_c_star[11];

}

pP_Y.y=p.y_y*c_star_c_inv_1*lam/(1+lam*t)+b*(x_2-mu);

for(li=1;11<=n;114+)
p-y-y+=c_inv_c_star[11)*tv[11];

var_y_y=(var_y=si_O+si_be* (14+(x_2-mu)*(x_2-mu)/si_O+lam))-si_O*si_b*

(lam+c_star_c_inv_1sc_star_c_inv_1/(1+lam*t));
for(11=1;11<=n;11++)

var_y_y-=si_O%si_bsc_star[l1])sc_inv_c_star[11];

if (var_y_y<0.000000000000000000000000000000001 )
var_y_y=0.000000000000000000000000000000001 ;

switch(crit_no)
{
case 1 : return(-(p_y_ys*p.y_y+var_y_y)/var_y);
case 2 : return(-p_y_y*p_y_y);
case 3 : return(-(p_y_y*p.y_ytvar_y_y));
}

178


http://crit.no

C.2. EQN.C

/4650624444005 00 582808000 EENRSs/
/% Finds the maximum value of ./
/# criterion from the set »/

/% {xs+prec,xs+2prec,...,xf-prac} &/
/4282540050400 46 480200008280 00000/

double golden(double x_start,double x_finish,double precision)
{

double max_x,max_y,ptr_y,ptr.x;

int 11,total;

doudble x1,x2,x3,x4,y1,y2,y3,y4;

if (fabs(x_start-x_finish)<s=precision)
raturn(-999999);
x1=x_start;
x4=x_finish;
x3=GOLDEN_RATIO*x_finish+GOLDEN_RATIO_C*x_start;
x2=GOLDEN_RATID_Cex_finish+GOLDEN_RATIO*x_start;
y2=criterion(x2);
y3=criterion(x3);
yl=criterion(x1);
y4=criterion(x4);
do
{
ifC J_MAX(y1,y2)>J_MAX(y3,y4) )
{x4=x3;y4=y3;x3=x2,;y3=y2;
x2=QGOLDEN_RATIO_C#*x4+GOLDEN_RATIO*x1;y2=criterion(x2);}
else
{x1=x2;y13y2;x2=x3;y2=y3;
x3=GOLDEHN_RATIO#*x4+GOLDEN_RATIO_C*x1;y3=criterion(x3);}
}
wvhile((x4-x1)>precision);
if(y1>=y2 && y1>=y3 2& y1>=y4)
return(x1);
if(y2>=y12& y2>=y3 8& y2>=y4)

return(x2);
if(y3>=y2 2% y3>=y1 28 y3>=yd)
return(x3);
if(y4>=y2 &8 yd>=y3 2k y4>=y1)
return(x4);
}
/“‘....‘..““‘.“‘.“..'.‘.‘.““‘./
/* Finds the maximum value of ./
/* criterion from the set ./
/* {8x,sx+prec,...,xf-prec,xf}\ ./
/* {x_1,...,x_n} 'Y}

P T Y T Y Y

double maximize_x(double start_x,double finish_x,double precision)
{

double x_max,y_max,x_ptr,y_ptr;

int 11;

x_max=golden(start_x,xx[1] ,precision);
if(x_max<-10)
y_max=-99999999;

else
y-max=criterion(x_max);
if(n>1)
for(l1=1;11<=n-1;11++)
{

x_ptr=golden(xx[11],xx[11+1] ,precision);
if(x_ptr<~10)

y-_ptr=-99999999;
else
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y_ptr=criterion(x_ptr);
if(y_ptr>y_max)

y.maxsy_ptr;
x_maxax_ptr;
}

}
x_ptragolden(xx[n],finish_x,precision);
if (x_ptr<-10)

y-ptr=-99999999;
alse
y-ptr=criterion(x_ptr);
if (y_ptr>y_max)
x_max=x_ptr;
return(x_max) ;

}

AL L T T YY)
/% Read in the parameter values and */
/* initialize variables ./
/.“““.“.....'....‘...‘.".‘...‘#./

setup()
{
n=1;
scanf("id %d %d %d %le %le %le ¥le %le",
&crit_no,&mu_no,&var_no,&fun_no,
&mu,2s8i_0,2b,&s8i_b,&th);
lam=b#*b/si_b;
si_b_0=8i_b;
8i_0_0=8i_0;
c[11[1])=c_inv_1[1]=t=1;
y[1)=f(xx[1)=x[1]=mu) ;

return;

}

/......."‘.“'.‘.‘..‘.“..““....‘./
/* Compute Py(X_0) */
/* update mu_O =/
/* mu_no=1 put mu_0 = Py(X_0) */
/¢ =2 put mu_0 = arg min Crit(x) =/
/+ =something else = do nothing */
/* update b */
/* mu_no=0 do nothing «/
/#+ !'=0 put b = Py(B(mu_0)) */
/* update Si_0 and Si_b */
/* var_no=0 do nothing */
/+ =1 put Si_0 = Var[X_0/Y] «/
/* Si_b = Var([b/Y] */

/* =2 put Si_O and Si_b in same */
/* ratio but so that Si_0Si_ b=35 +/
AL R P T T T L T Ty

int compute_mean()
{
double temp,tvl[MAX_SIZE],tv2[MAX_SIZE],ratio_O,ratio_b,
d[MAX_SIZE),c_inv_d[MAX_SIZE],si_0O_si_b;
int 11,12;

temp=mu_star=mu;
for(11=1;11<=n;11++)
mu_star-=c_inv_1[11]*lam*(y[11]/b-x[11]);
mu_star/=(1+lam%t);
switch(mu_no)
{
case 2 : {mu=maximize_x(-3.0,3.0,PREC);break;}
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case 1 : {mu=mu_star;break;}
default : {printf("%10.5f \n" mu_star);break;}
}
if (mu_no!=0)
{
for(l1=21;11<=n;11++)
tvi{11]=y[11]-be(x{21])-mu_star);
if(n=a1)
tv2{1]=tvi[1];
else
solve_y(n,ca,cm,cp,tvl,tv2);
for(lim1;11<=n;11++)
b+=(x[11]-temp) waxp(-the(x[11]-mu)*(x[11]-mu) ) +tv2[11]/8i_0;
lam=b#*b/si_b;
for(li=1;11<=n;11++)
for(tvi[11]=21221;12<an;12++)
cf11]{12]=(1+(x{11]-mu) *(x[12]-mu)/8i_0)
saxp(-ths(x[11]-x[12])*#(x[11]-x[12]));
if(solve_0(c,n,ca,cm,cp))
return(1);
else
{
solve_y(n,ca,cm,cp,tvl,c_inv_1);
t=0;
for(11=1;11<=n;11++)
t+sc_inv_1[11]);
}
}
if(var_no>0)
{
ratio_0=1/(1+lamet);
ratio_b={;
temp=0;
for(l1=1;11<=n;11++)
d[11]=(x[11]-mu)sexp(-th*(x[11]-mu)*(x[11]-mu))/sqroot(si_0);
solve_y(n,ca,cm,cp,d,c_inv_d);
for(li=1;11<=n;11++)
{
ratio_b-=d[11]ec_inv_d[11];
temp+=c_inv_d[11];
}
ratio_b+slamstemp¢tempe¢ratio_0;
if(var_no==1)
{
8i_b=gi_b_Osratio_b;
8i_0=8i_0_Osratio O;
}
else
{
if(n<2)
8i_0_si_b=81i_0%si_b;
alse
{
8i_0_si_b=temp=0;
for(11=1;11<an;11++)
temp+=x[11])-y[11]1/b;
temp/=n;
for(11=1;11<on;11++)
tvi[11)=(x[11]-y[11])/b-temp);
solve_y(n,ca,cm,cp,tvl,tv2);
for(li=1;11<=n;11++)
8i_0_si_b+=tvi[11)#c_inv_1[11];
8l_O_si_be=-8i_0_si_b/t;
for(11=1;11<=n;11++)
8i_0_si_b+=tv2[11]+tvi[11];
8i_0_si_b/=(bsbe(n-1));
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}
8i_bmsqroot(si_O_si_beratio_b/ratio_O*si_b_0/8i_0_0);
if(si_b==0)

8i_0_si_bo(si_0=8i_0_0)+(si_b=s8i_b_0);
8i_0=J_ABS(si_O_si_b/si_b);
}
lam=bsb/si_b;
for(11=1;11<=n;11++)
for(tvi[11]=12=1;12<=n;12++)
c(11112])=(1+(x[11]) -mu) * (x[12] -mu) /8i_0)
soxp(-the(x[11])-x[12))+(x[11]-x[12]));
if(solve_0(c,n,ca,cm,cp))
raturn(1);
else
{
solve_y(n,ca,cm,cp,tvl,c.inv_1);
t=0;
for(li=1;11<=n;11++)
t+=c_inv_1[11];

}
}
return(0);
}
/.‘.‘.“.“.“‘.“...‘.‘...‘...‘.“.‘/
/* Add x_2 to the design and s/
/* evaluate f(x_2) */

A T Y Y Y T V)

int add_x(double x_2)

{
int ptr,11,12,error_flag;
double tv[MAX_SIZE];

if(x_2>xx[n])

xx[n+1)=x_2;
else

{

ptr=n;

for(ptr=n; (ptr>0 &8 x_2<xx[ptrl);ptr--)
xx[ptr+1]=xx[ptrl;

xx[ptr+1)=x_2;

}
n+s;
for(11=1;11<=n-1;11++)

c[n)[11)=c[11] [n)=(1+(x_2-mu)*(x[11]-mu)/si_0)

saxp(-th*(x_2-x{11])e(x_2-x[11]));
cn] [n)=1+(x_2-mu)*(x_2-mu)/si_0;
x[n]l=x_2;
y{nl=f(x_2);
for(11=1;11<=n;11++)

tv[11]=1;
if(!(error_flag=solve_0(c,n,ca,cm,cp)))

{

solve_y{(n,ca,cm,cp,tv,c_inv_1);

t=0;

for(1l1=1;11<=n;11++)
t+=c_inv_1[11];

}
return(error_flag);

}

A T T P T YTy YY)
/* Matrix inversion routines .74
/* preliminary routine -- solve_0 ./
/* solve for vector -- solve_y ¢/
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[RS4SR ERARERCEESAR00 80000tk ]

int solve_O(mat,mat_size,mat_a,mat_m,mat_p)
double mat [MAX_SIZE] (MAX_SIZE], mat_a[MAX_SIZE][MAX_SIZE], mat_m[MAX_SIZE] (MAX_SIZE];

int mat_size, mat_p[MAX_SIZE];

{
double s[MAX_SIZE],d_ptr,d_star;
int 11,12,13,ptr,temp_1i,rous{HAX_SIZE] ,error_flag=0;

for(11=1; l1<=mat_size; 11++)

s[(rows[11]=11)]=fabs(mat_a(11] (1]=mat[11][1]);
for(12=2; 12<=mat_size; 12++)
if(fabs(mat_al11] [12)=mat[11])[12])>s[11])
8[11]1=J_ABS(mat[11][12]);
if(s{11]==0)
{
error_flag=1;
break;
}
}
if(error_flag)
return(error_flag);
for(11=1; 1l1<=mat_size-1; 11++)
{
d_ptr=fabs(mat_a[rows[(ptr=11)]]1[11))/s(rows[11]];
for(12=11+1; 12<=mat_size; 12++)
if((d_star=fabs(mat_alrows[12]11[11]))/s[rows([12]]1)>d_ptr)
{
d_ptr=d_star;
ptr=l2;

}
if(mat_a[rows[ptr]][11)==0)

{
error_flag=1;
break;

}

if((mat_p[11]=ptr)!=11)

{
temp_i=rows{11];
rows[11)=rous(ptr];
rovs[ptrl=temp_i;

}

for(12s11+1; 12<=mat_size; 12++)

{
mat_mlrows[12]J[11)=mat_alrows[12]]1[11]/mat_a[rows[11]3][11];
for(13=11+1; 13<cmat_size; 13++)

mat_a(rows[12]] [13)-=(mat_m[rows{12]]1[11)*mat_alrows(11]][13]1);

}

}
if(error_flag)

return(error_flag);
return(mat_alrovs[mat_size]][mat_size]==0);

}

solve_y(mat_size,mat_a,mat_m,mat_p,rhs,solution)
double mat_a(][(MAX_SIZE], mat_m(] [MAX_SIZE], rhs[], solution([];
int mat_size, mat_p[];

{
double rhs_a[MAX_SIZE];
int temp_i,11,12,ptr,rows[MAX_SIZE];

for(li=1; 11<=mat_size; 11++)
rhs_al(rows[11)=11))=rhs[11];
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for(l1=1; 11<=mat_gize-1; 11++)
{
if((ptr=mat_p[11])!=11)
{
temp_i=rows[11];
rovs[11]=rows[ptr];
rovws[ptr]l=temp_i;
}
for(12=11+1; 12<=mat_size; 12++)
rhe_a[rows[12]]-=mat _m[rows[12]][11]*rhs_a[rows([11]];
}
solution[mat_sizel=rhs_al[rows[mat_sizel]/mat_alrows[mat_size]]l[mat_size];
for(li=mat_size-1; 11>=1; 11--)
{
solution[11])=rhs_a[rows[11]1];
for(12=11+41; 12<cmat_size; 12++)
solution[11]-=mat_a[rows[11]][12)*solution[12];
solution[11]/=mat_a[rows[11]1][11];
}
return;

}

/..'.‘..‘““..“.."‘....“....““‘/
/* print value to FILE *fp, in rows */

/* of five, for readability ./
[eeeskressssinsisrsdstssbbsssbbnis/

file_print_f(FILE #fp,double value)

{
fprintf(fp,"%16.7f ", value);
if ((++out_count)==5)
{
fprintf(£fp,”\n");
out_count=0;
}
}

AT I e e P R L L Y T N T Ty
/% header routine to link altogethere/
/...‘..‘.‘.‘...“....‘..‘..‘...“"../
main({argc,argv)

int argc;

char *argvl[]l;

int loop,finish,error;

double x_loop;

char runf;

if (argc == 1)
y_flag=crit_flag=0;

else
{
switch((s++argv) [0])
{
case 'y’ : (y_flag=1;crit_flag=0;break;}
case 'c’ : {y_flag=0;crit_flag=1;break;}
case 'b’ : {y_flag=crit_flag=1;break;}
default : {y_flag=crit_flag=0;break;}
}
}
--argc;
if (y_flag==1)
{
if (1 (~--argc) || (file_y = fopen(s++argv,"w")) == HULL)
{

fprintf(stderr,"OUTPUT FILE CREATION ERROR: %d\n",argc);
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exit(2);
}
}
if (crit_flag==1)
{
if(?(--arge) || (file_crit = fopen(s++argv,"w")) == FULL)
{
fprintf(stderr,”OUTPUT FILE CREATION ERROR : %d\n",argc);
exit(2);
}
}
do
{
setup();
if(crit_no>=0)
{
printf(“Criterion_no: ¥d Hean_adj_no: ¥d Var_adj_no: ¥d Function_no: ¥%d\n",
crit_no, mu_no, var_no, fun_no);
printf("Mu : %6.3f 8i_0: %6.3f b: %6.3f Si_b: %6.3f Theta: %6.3f\n",mu,si_0,b,si_b,th);
printf(" X_n Y_n Nu_0 b $i_0 Si_b\n");
if(y_flag)
{

count_out=out_count=0;
for(x_loop=-3;x_loop<=3.001;x_loop+=.02)
file_print_f(file_y,x_loop);
fprintf(file_y,"\n");
count_out=out_count=0;
for(x_loop=-3;x_loop<=3.001;x_loop+=.02)
file_print_f(file_y,f(x_loop));
fprintf(file_y,"\n");
}
if(crit_flag)
{
count_out=out_count=0;
for(x_loop=-3;x_loop<=3.001;x_loop+=.02)
file_print_f(file_crit,x_loop);
fprintf(fila_crit,"\n");
}
for(loop=1;loop<=MAX_SIZE-2;loop++)
{
if(error=compute_mean())
break;
else
{
printf("%2d %12.7f %12.7f %12.7f %12.7f %12.7f ¥12.7f\n",
n,x[n),y[n],mu,b,s8i_0,8i_b);
if(y_flag)

count _out=out_count=0;
for(x_loop=-3;x_loop<=3.001;x_loop+=.02)
file_print_f(file_y,yyyyy(x_.loop));
fprintf(file_y,"\n");
}
if(crit_flag)
{
count_out=out_count=0;
for(x_loop=-3;x_loop<=3.001;x_loop+=.02)
file_print_f(file_crit,criterion(x_loop));
fprintf(file_crit,"\n");
}
1f(finish=(J_ABS(y[n])<END_COEDITION))
break;
else
{
if(crit_no==6)
error=99+add_x(mu_star);
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else
{
if(mu_no==2)
error=2sadd_x(mu) ;
else
error=3+add_x(maximize_x(-3.0,3.0,PREC));
}
}
if(error)
break;
}
}
if(error)
printf("Stopped due to singularity error\n");
else
{
if('finish)
{
if(error=4+compute_mean())
break;
else
printf("%2d %12.7f %12.7f %12.7f %12.7f %12.7f %12.7f \n",
n,x[n),y[n],mu,b,8i_0,si_b);
if(y_flag)
{
count_out=out_count=0;
for(x_loop=-3;x_loop<=3.001;x_loop+=.02)
file_print_f(file_y,yyyyy(x_loop));
fprintf(file_y,"\n");
}
if(crit_flag)
{
count_out=out_count=0;
for(x_loop=-3;x_loop<=3.001;x_loop+=.02)
file_print_f(file_crit,criterion(x_loop));
fprintf(file_crit,"\n");
}
}
}
}
if(error)
{
printf("Error code : %d\n",error);
break;
}
}
while(crit_no>=0);

}

C.3 Newer C sources

The C source is now split into a series of individual blocks which perform various

different tasks
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C.3.1 prob.h

General include file for new code

#include <stdio.h>
#include <math.h>
#define MAX_SIZE 16
#define SIZE_MAX 40
#define PREC 0.00000000001
#define END_CONDITION 0.000001
#define J_ABS(X) (xX)y>0 ?72(x):-(X))
#define J_MAX(X,Y) CX > 7 : ()
#define GOLDEN_RATIO 0.61803398874989484820458683436563854
#define GOLDEN_RATIO_C 0.38196601125010516179541316563436146
#define PI 3.14169265635897932384626433832795028
#define SQRT2PI 0.39894228040143267793994605993438163
typedef double MATRIX[MAX_SIZE] [NAX_SIZE];
typedef double VECA[MAX_SIZE];
typedef double VECD[SIZE_MAX];
typedef double MATD[SIZE_NAX](SIZE_MAX];
typedef int VECi[MAX_SIZE];
typedef struct matrix
{
MATRIX m;
int rows;
int columns;
} MAT;
typedef struct inv
{
MATRIX a;
MATRIX d;
VECi p;
}
INV;
typedef struct mat_inv
{
MAT m;
IRV i;
}
MAT_INV;

double rho(double,double);

void setup(int#,int*, ints, ints);

int add_x(double,int);

void file_print(FILE#,double,ints);

void file_print_x(FILE#);

void file_print_f(FILEs,int);

void file_print_crit(FILEe,int);

void file_print_y(FILE#+);

double f(double,int);

double P_Y(double);

double Cov_XO_Y(double);

double Cov_B_B(double,double);

double Cov_B_Y(double,double);

double Cov_Y_Y(double,double);

void PY_XO(double*,doubles);

void PY_B(double,double,double* ,double+);

void PY_Y(double,double,double*,doubles*);

void PY(double,double,double,
double#*,doubles,
doubles,doubles,
double* ,double* ,doublex,
double* ,double* ,doubles,
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double* ,double® ,double*,doubles*,
double# ,double*,double*);
void PYV(VECD,int,double,VECD,VECD,MATD,NATD,MATD,VECD,VECD,NATD) ;
void display(MATs);
int solve_O(NAT_IEVs);
void solve_y(MAT_IEVs VECd,VECd);
void solve_m(MAT_IHVe MATe MATe);
double criterion(double,int);
double golden(double,double,doudble,int);
double maximize_x(double,double,double,int);
void compute_mean();

int n;

double th,mu,s0,b,sb;
MAT_IEV v;

VECd x,xx,y;

VECd c1;

double t,mumu,mu_t,8080_t;

FILE #fopen(),*file_y,*file_crit;

C.3.2 mat2.c

Routines to display a matrix, display(M);invert a square matrix, solve_0(M); solve
the set of linear equation M2 = y, solve_y(M,y,x); and solve the set of linear
equation MA = B, solve.m(M,B,A). The matrix and vector types are defined in

prob.h,

8include "prob.h"

void display(MAT m)

{
int 11,12;

for(ll=1;l1<=m->rows;1l1++)
{
for(12=1;12<=m->columns ;12++)
printf(" %14.2f" ,m->m[11](12));
printf("\n");
}
}

int solve_O(MAT_IEY #m)
{
double s{MAX_SIZE] ,d_ptr,d_star;
int 11,12,13,ptr,temp_i,rows[MAX_SIZE] ,error_flag=0;

if (m->m.rows==1) return(!m->m.m[1][1]);
for(1l1=1; 1li<=m->m.rous; 11++)
{
s[(rows[11])=11)]=fabs(m=->i.a(11][1)=m->m.m[11][1]);
for(12=2; 12<=m~>m.rows; 12++)
if (fabs(m->1.a(11](12)=m->m.m[11][12])>8(11])
s[11]=fabs(m->m.m[111[12]);
if(s[11]==0)
{
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error_flag=1;
break;
}
}
if(error_flag)
{
display(&(m=->m));
return(error_flag);
}
for(11=1; 11<=m->m.rows-1; 1l1++)
{

d_ptr=fabs(m->i.alrows[(ptr=11)11[11])/s[rows[11]];

for(12=11+1; 12<=m=->m.rous; 12++)

if((d_star=fabs(m->i.alrows[12]1]1(11))/8[rows[12]])>d_ptr)

{
d_ptr=d_star;
ptrel2;
}
if(m->i.alrows[ptr])[11]==0)
{
error_flag=i;
break;
}
if((m->i.p[11])=ptr)!=11)
{

temp_i=rows[11];
rows[11)=rous[ptrl;
rows[ptrl=temp_i;
}
for(12=11+41; 12<=m->m.rous; 12++)

{

m->i.d[rows[12]][11)=m->i.alrows{121]1(11]/m->i.a[rows[11]1[11];
for(13=11+1; 13<sm=->m.rows; 13++)
m->i.alrows[12]]1{13]-=(m->i.d[rows[12]] [11]*m->i.alrows[11]][13])

}
}
if(error_flag)
{

display(&(m->m));
return(error_flag);

}

error_flag=(m->i.a[rows[m->m.rovs)] [m->m.rows]==0);

if(error_flag)
display(&(m->m));
raeturn(error_flag) ;

}

void solve_y(MAT_IBV sm,VECd rhs,VECd solution)

{
VECd rhs_a;
int temp_i,11,12,ptr,rows[MAX_SIZE];

if(m->m.rows==1)
solution{1]=rhs[1]/w->m.m(1][1];
else
{
for(li=1; li<=m->m.rows; 1ll++)
rhe_al[(rows{11]=11)]=rhs[11];
for(11=1; 11<=m->m.rows=1; 11++)

{
if((ptr=m->i.p(11])!=11)
{
temp_i=rows[11];
rows[11)=rous[ptr];

rows{ptr]stemp_1;
}
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for(12=11+1; 12<=m=->m.rows; 12++)
rhs_al[rows[12])-=m->i.d[rows[12]]1(11]*rhs_al[rows{11]];
}
solution[m->m.rows)=rhe_alrows[m->m.rows])/m->i.alrows[m->m.rows]] [m->m.rows];
for(li=m->m.rows~1; 11>=1; 1i--)

{
solution[11]orhs_a[rows(11]];
for(12=11+1; 12<em->m.rows; 12++)

solution[11)-=m~>i.a[rows[11])[12]*solution[12];

solution[11]/=m->1.alrows(11]1]J(11];

}

}
return;

}

void solve_m(MAT_IBV sm, HAT erhs, MAT *solution)
{
int temp_i,11,12,13,ptr,rows[MAX_SIZE];
double rhs_m_a[MAX_SIZE] [MAX_SIZE];
if(m->m.rows=sl)
for(li=1;1l1<=rhs->columns;l1++)
golution->m(1]{11)=rhs->m[1][11)/m->m.m[1] [1];
else
{
for(li=1; 1li<=m->m.rows; 11++)
{
rows([11]=11;
for(12=1; 12<=rhs~>columns; 12++)
rhs_m_af{111[12)=rhs->m[11][12];
}
for(li=1; 11<=m->m.rows=-1; 11++)
{
if((ptr=m->i.p[11]) !=11)
{
temp_i=rows[11];
rows[11])=rouws{ptr];
rous[ptrl=temp_i;
}
for(12=11+41; 12<=m->m.rous; 12++)
for(13=1; 13<=rhg->columns; 13++)
rha_m_alrows[12]](13])-=(m->i.d[rows[12)] [11])*rhs_m_alrows[11]][13]);
}
for(13=1; 13<=rhs->columns; 13++)
solution->m[m->m.rows] [13)=rhs_m_a[rows[m->m.rows]] [13]
/m->i.alrows[m->m.rows]] [m->m.rows);
for(13=1; 13<=rhs->columns; 13++)
for(li=m->m.rows~1; 11>=1; 11-=)
{
solution->m[11][13]=rhs_m_a[rows[11]](13];
for(12=11+1; 12<=m->m.rows; 12++)
solution->m[11J[13]-=(m->i.alrows[11]][12] *solution->m[12][13]);
solution->m[11)[13)/=m->i.a(rows[111]1[11];
}
}
solution->rowssrhs->rows;
solution->columns=rhs->columns;
return;

}
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C.3.3 rhol.c, rho2.c, rho3.¢c, rhod4.c and covl.c

C sources for the “slope” correlation function p(-) - rhoi.c,...,rhol.c; and the
% P

process covarince — covl.c.

rhol.c — pa(x)

#include "prob.h”

double rho(double xa,double xb)
{

return(exp(-th*(xa-xb)*(xa-xb)));
}

rho2.c — pi(x)

#include "prob.h"

double rho(double xa,double xb)
{

double xabs;
xabs=(xad>xb?(xa=-xb): (xb-xa))
return(exp(-thexabs));

}

rho3.c — p4(z)

#include "prob.h"

double rho(double xa,double xb)
{

double xabs;
xabs=(xa>xb?(xa-xb): (xb~xa))/th;
if(xabs>1) return(0)

else return(i-xabs);

rho4d.c — p.4(z)

#include "prob.h"

double rho(double xa,double xb)

{
double xabs;
xabs=(xa>xb?(xa-xb): (xb-xa))/th;
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if (xabs>1) return(0)
else if(xabg<.b) return(1-6¢xabs*xabs*(1~xabs));
else return(2+(i-xabs)*(1-xabs)e(1-xabs));

}

covl.c

#include "prob.h"

double P_Y(double xxx)

{
return(b*(xxx-mu));
}
double Cov_X0_Y(double xxx)
{
return(~b#g0#+s0) ;
}
double Cov_B_B(double xxx,double xxs)
{
return(rho(xxx,xxs)*sb*sb) ;
}
double Cov_B_Y(double xxx,double xxs)
{
return((xxx-mu)*rho(xxx,xxs)*sbesb);
}
double Cov_Y_Y(double xxx,double xxs)
{
roeturn((s0ss80+(xxx-mu)*(xxs-mu))*rho(xxx,xxs)*sbssb+s0*s0*b*b) ;
}

C.3.4 golden.c

Routines to find the maxima of a function which is unimodal golden; or multimodal,

but where we know points between which it is unimodal maximize x.

#include "prob.h"

double golden(double x_start,double x_finish,double precision,int crit_no)
{

double max_x,max_y,ptr_y,ptr_x;

int 11,total;

double x1,x2,x3,x4,y1,y2,y3,y4;

if(fabs(x_start-x_finish)<=precision)
return(-999999) ;

x1=x_start;

x4=x_finish;

x3=GOLDEN_RATIO*x_finish+GOLDEN_RATIO_Cex_start;

x2=GOLDEN_RATIO_C*x_finish+GOLDEN_RATIO*x_start;

y2=criterion(x2,crit_no);
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y3=criterion(x3,crit_no);
yi=criterion(x1,crit_no);
y4=criterion(x4,crit_no);
do
{
AfC J_MAX(y1,y2)>J_MAX(y3,y4) )
{x4=x3;y4=y3;x35x2;y3=y2;

x2sGOLDEN_RATIO_C#x4+GOLDEN_RATIO#x1;y2=criterion(x2,crit_no);}

else
{x1=x2;y1=y2;x20x3;y2=y3;

x3a00LDEN_RATIO®x4+GOLDEN_RATIO_C#x1;y3=criterion(x3,crit_no);}

}
vhile((x4-x1)>precision);
if(y1>=y2 &8 y1>=y3 k& y1>sy4)

return(xi);
if(y2>=yikk y2>=y3 &k y2>=y4)
return(x2);
if(y3>oy2 &k y3>=y1 k2 y3I>=y4)
return(x3);
if(y4>=y2 g8 ya>=y3 &8 y4>=y1)
return(x4);
}
A2 Y T I AT Y ¥4
/* Finds the maximum value of */
/* criterion from the set */
/* {sx,sx+prec,...,xf-prec,xf}\ *«/
/* {x_1,...,x_n} */

/.‘.‘.‘i.‘.t“.#‘.“‘.....‘.‘..‘i.l../

double maximize_x(double start_x,double finish_x,double precision,int crit_no)

{
double x_max,y_max,x_ptr,y_ptr;
int 11;

x_max=golden(start_x,xx[1],precision,crit_no};

if(x_max<-10)
y_max=-99999999;
else
y-maxacriterion(x_max,crit_no);
if(n>1)
for(li=1;11<=n~1;11++)
{

x_ptregolden(xx[11],xx[11+1] ,precision,crit_no);

if(x_ptr<-10)
y-ptr=-99999999;
else

y_ptrecriterion(x_ptr,crit_no);

if(y_ptr>y_max)
{

y.max=y_ptr;
x_max=x_ptr;
}
}

x.ptragolden(xx[n] ,finish_x,precision,crit_no);

if(x_ptr<-10)
y_ptr=-99999999;
elge
y.ptr=criterion(x_ptr,crit_no);
if(y_ptr>y_max)
X_max3x_ptr;
return(x_max) ;
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C.3.5 wupdatel.c, update2.c, update3.c and update4d.c

Routines to compute the new estimates of Xy, B(-), Y(-), and there variances.

updatel.c — Extended model

g8include "prob.h"

void PY_XO(double *mean, double svar)
{

*mean=mu;

svarss0es0;

return;

)

double det3(double all, double a21, double a3l,
double al2, double a22, double a32,
double a13, double a23, double a33)
{
return(ali1+a22+a33+a21+a32¢al3+a31%al2+a23~
allsa32+a23-a21%a12+a33-a31#a22#%ai13);
}

void PY_B(double xxx, double xxs, double *mean, double scov)
{

VECd v1,v2,v3,v4;

int i;

double det?2;

double m1i,m12,m22,m31,m32,p13,p23,p33,v13,v23,v33;

for(ist;i<=n;i++)

{
vil[ilat;
v3[i)=x[i];

}

solve_y(&v,vl,v2);
solve_y(&v,v3,v4);
mi1=m12=m22=p13=p23=0;
for(i=1;ican;i++)

{
mii+ev2[i]);
m12+=v4[i];
m22+=(v4[i)ev3[i]);
p13+=(v2[i]ey[i]);
p23+=(valil»y(il);

}

det2=mli*m22-m12*m12;
for(i=1;i<=n;i++)

{
vi[il=(xxx-mu)srho(xxx,xxs);
v3[i)l=(xxs-mu) *rho(xxx,xxs);

}

solve_y(&v,vl,6v2);
solve_y(&v,v3,vq);
m31=v13=p33=v33=0;m32=v23=-1;
for(i=1;i<=n;i++)

{
m31+=v2[i];
vi3+=vq[i];
m32+=(v2[i]+x[i]);
v23+=(v4[i]*x[i]);
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p33+=(v2[il*ylil);
v33+=(v2[i]*v3[i]);

}
(#cov)=gbegberho(xxx,xxs)~-det3(mi1,m12,v1i3,m12,m22,v23,m31,m32,v33)/det2;
(*mean)=det3(mil,m12,p13,m12,m22,p23,m31,m32,p33) /dat?2;
return;

}

void PY_Y(double xxx, double xxs, double *mean, double #cov)
{
VECd vi1,v2,v3,v4;
int i;
double det?2;
double mil,m12,m22,m31,m32,p13,p23,p33,v13,v23,v33;

for(i=1;i<=n;i++)
{
viil=t;
v3[iJ=x[i);
}
solve_y(&v,vl,v2);
solve_y(&v,v3,vd);
ml1=m12=m22=2p13=p23=0;
for(i=1;i<=n;i++)
{
mi1+=v2[i];
m12+=v4[i];
m22+=(v4[1)*v3[i]);
p13+=(v2[ilsy[i]);
p23+=(v4a[ilsy[i]);
}
det2=mil*m22-m12*m12;
for(i=1;i<an;i++)
{
v1[i)=(80*30+(xxx~mu)*(x[i]-mu) )*rho (xxx,x[i));
v3[i)=(80*30+(xxs8-mu)*(x[i]-mu))#*rho(xxs,x[i));
}
solve_y(&v,vl,v2);
solve_y(8v,v3,v4);
m31ev13=-1;p33av33=0;m328-xxx ; v23=-xx8;
for(i=1;i<=n;i++)
{
m31+=v2([i];
v13+sva(i];
m32¢=(v2[i]*x{i]);
v23+=(v4a[i]ex[i]);
p33+=(v2[i]*y[i]);
v33+a(v2[i)ev3[i));
}
(*cov)=sbssb*(80*80+ (xxx-mu)* (xx8-mu) ) *rho (xxx,xxs)
-det3(mi1,m12,v13,m12,m22,v23,m31,m32,v33)/det?2;
(*mean)=det3(mi1,mi2,p13,m12,m22,p23,m31,m32,p33)/det2;
return;

}

update2.c — Standard model

#include "prob.h"

void PY_XO(double *mean, double #var)

{
VECd vi,v2;
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}

void PY_B(double xxx, double xx8, double #*mean, double ®cov)

{

}

void PY_Y(double xxx, double xxs, double *mean, double =cov)

{

int i;

for(i=1;i<an;i++)
vi[il)=1;
solve_y(&v,vl,v2);
(#var)=1/(80+80);
for(i=1;i<an;i++)
(evar)+o(bebev2[i)/ab/sdb);
(svar)=1/(svar);
(*mean)=mu/(80*s0) ;
for(i=1;i<en;i++)
(*mean)~=(v2[i)e(y[i]-b*x[i])*b/sb/sb);
(*mean)s*=(wvar);
return;

VECd v1,v2,v3,v4;
int i;
double t1,t2;

for(i=1;i<=n;i++)
{
vi[i]=(xxx-mu)*rho(xxx,xxs);
v3[i]=(xxs-mu)*rho(xxx,xxs);
}
solve_y(&v,vl,v2);
solve_y(&v,v3,vd);
(#cov)=sbesberho(xxx,xxs);
t2=t1=0;
for(i=1;i<=n;i++)
{
(scov)-=(sbasbesvi[i]eva[i]);
ti+=v2[i];
t2+=v4[i];
}
(scov)+=(t1+t2¢8080_tsbeb);
(*mean)=b;
for(i=1;i<an;i++)
(smean)+=(v2[i)e(y[i)-bs (x[i]-mu_t)));

VECd v1,v2,v3,v4;
int i;
double t1,t2;
for(i=1;i<on;i++)
{
vi[i]=(80¢80+(xxx~mu)*(x[i]-mu) ) erho(xxx,x[il);
v3[i]=(80%80+(xx8-mu)*(x[i]-mu) )erho(xxs,x[i]);
}
solve_y(&v,v1,v2);
solve_y(&kv,v3,v4);
(*cov)={gb¥gbe(80¢80+(xxx-mu)¢(xxs-mu))*rho(xxx,xxs));
t1=1;t2=1;
for(i=1;i<=n;i++)
{
(*cov)~=(sbesbsvi[i)ev4[i));
t1-=v2[i];
t2-=v4[i]);
}
(ncov)+=(t14t248080_tebeb);
(*mean)=b* (xxx-mu_t);
for(i=1;i<=n;i++)

196
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(*mean)+=(v2[ile(y[i)-b*(x[i]-mu_t)));

update3.c — Standard model — Newtonian estimates

#include "prob.h"”

void PY_XO(double #mean, double svar)
{

int i;

svarssOss0ssbesb/t;
*mean=mu*sb#sb;
for(i=1;i<=n;i++)
*mean-=(s80+s30+bsci [i)+(y[i]-b*x[i]));
*mean/=t;

}

void PYV(VECD xxx, int len, double MU,
VECD Bx, VECD Yx,
MATD BBx, MATD YYx, MATD BYx,
VECD X1x, VECD X2x, MATD XXx)

MATD vc,vd;

MATD vcx,vdx;
VECd vt;

VECD vcil,vdl;
double texp;

VECd templ,temp2;
int 1,j,j1,j2;

for(j=0;j<len;j++)
{

vei[jl=1;vd1[jl=0;

}
for(i=1;i<=n;i++)
{
vt[il=y[i]-bex[i]+beNU;
for(j=0; j<len; j++)
vel[j1-=(
(
vc[j1[i)=(80280+ (xxx[jI-mu)*(x[i]-mu))=
rho(xxx[j],x(il)
)
sci1[i));
vd1[j)+=((vd[jI[il=(x[i)-mu)erho (xxx[j]),x[i)))*c1[i]);
}
}

for(j=0;j<len;j++)

for(i=1;i<=n;i++)
temp1lil=vcl[jllil;
solve_y(&v,templ,temp2) ;
for(j1=1; j1<=n;j1++)
for(isl;id=n;i++)
{
vex[j10i)=temp2[i];
tempt [i1=vd(j1(il:
}
solve_y(&v,templ, temp2);
for(i=1;i<=n;i++)
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vdx(j1[il=temp2(il;
¥x[j1=(Bx[j1=b)*(xxx[j]-NU);
for(iz1;i<an;iv+)
{
Bx[j}+=(vdx[jI[i)evt[i]);
Yx[j)+=(vex[j1[i1eve(i]);
}
}

for(j1=0; jiclen; j1++)
{
for(j2=0;j2<len; j2++)
{
taxp=rho(xxx[j1],xxx[j21);
BBx[j1]1[j2)=texp+s0ss0+bebsvdi[j1]+vd1[j2]/t;
YYx[j1] [§2]=texpe(80e80+(xxx[j1])-mu)* (xxx[j2]-mu))+80*a0¢bsbevci[j1]*vci[j2]/¢;
BYx[j1] [§2])=(xxx[§2] -mu) *texp+s0+50+bsbevd1 [j1]evc1[j2]/¢;
for(i=1;i<=n;i++)
{
BBx[j11[j2)-=(vd[j2] [i)+vdx[j1]1[id);
YYx[j11[j2)-=(vc[j2] [i]#vex(j11(i1);
BYx[j1][j2)-=(ve (2] [iJ»vdx[j11[i]);

BBx[j1] [j2]+=(sbesb);
YYx(j1][j2]e=(8bssb);
BYx[j11[j2]e=(sbesb);
}
Xix[j1]=xxx[j11-Yx(j11/Bx[j1];
X2x[j1)=xxx[j1]-(¥Yx[j1)#Bx[j1)+Bx[j1]}+Yx[j11+BBx[31][j1]-Bx[j1]+BYx[j11(j1])/Bx[j1]1/Bx[j1]/Bx[j1];
}
for(j1=0; ji<len; j1++)
for(j2=0;j2<1en; j2++)
XXx[j1][§2)=CYYx[j1) [j2)+Bx[j11#Bx[j2]+BBx[j1]1[j2]1+Yx[j13+¥x[j2]
-BYx{j11[§2]#Yx[j1]1#Bx[j2]1-BYx(j21[j11#Bx[j1]s¥x[j2])
/Bx[j11/Bx[j1]/Bx[j2])/Bx[j2];

return;

}

update4.c — Extended model — Newtonian estimates

#include “prob.h"

void PY_X0(double *mean, double *var)
{

int i;

*var=s0%g0;
*mean=mu;

}

double det3(double all, double a21, double a31l,
double al12, double a22, double a32,
double a13, double a23, double a33)
{
return(all+a22+a33+a21%a32¢al3+a31%al2+4a23-
allsa32+a23-a21+a12+a33-a31¢a224a13);
}

void PYV(VECD xxx, int len, double MU,
VECD Bx, VECD Yx,
MATD BBx, MATD YYx, MATD BYx,
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VECD Xix, VECD X2x, MATD XXx)

VECd cx,cy;

MATD cd,cc;

MATD ve,vd;

VECD ccl,ccx,dcl ,dcx,ccy,dcy;
MATD ccc,ccd,dcd;

double tdet,texp;

VECd templ ,temp?2;

int 1,j,31,j2;

double tii,tix,txx,tly,txy;

solve_ y(&v,x,cx);
solve_y(&v,y,cy);

ti1=tix=txxotly=txy=0;
for(i=1;i<=n;i++)
{
tii+=c1[i);
tix+=cx[i];
tiy+=(c1[iley[il);
txx+=(cx[i)*x[i]);
txy+=(cx[i)sy[i]);
}

tdet=tlletxx-tixetix;
for(j=0;j<len;j++)

cc1ljl=dc1jl=ccx[jl=dcx[j]=0;
}
for(j=0; j<len;j++)
{

for(i=1;i<=n;i++)
{
cci[j1+=(

(
tempi[i)=vclj][i)=
(80%80+(xxx[jI-mu)s(x[iJ-mu))*
rho(xxx[jl,x[i])

)

«c1[i]);
cex[j1+=(vclj1[i)*cx[il);
ceyljl+=(vc(jl[1]ecyli]);

}
solve_y(&v,templ,temp2);
for(i=1;i<=n;i++)
{
cc[jl[i)=temp2[i];
de1[j1+=(

(
temp1[il=vd[j][i]=
(x[i)-mu)erho(xxx[j],x[i])
)

eci1[i]);

dex[j1+=(vd[jI[idecx[i]);
dcy[j1+=(vd[jI[i]ecy[i]);
}
solve_y(&v,tempi,temp2);
for(iml;ican;it+)
cd(j] [i)=temp2[i];

for(j1=0; ji<len; ji++)
for(j2=0; j2<len; j2++)
{
cec[j1][j2)=ced[j11[j2)=dcd[j1]1[j2]=0;

199
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for(i=1;i<=n;it++)
{
ccc[j11(j2)+=Ccc[j11[1]»ve[j2]1 [1]);
ced[j1]1[32)+=(cc(j11[ilevd[j2]1 [i]);
dcd[§1)[§2)+=(cd[j1][i]evd[j21[id);
}
}
b=(tiistxy-tixetly)/tdet;
for(ji=0; jic<len; j1++)

{
Yx(j1]l=det3(ti11,t1x,t1y,tix,txx,txy,cci[j1)-1,ccx[j1]-xxx[§1] ,ccy[j1])/tdet;
Bx(j1]=det3(t11,t1x,t1y,t1x,txx,txy,dc1[j1],dex(j1]-1,dcy[j1])/tdet;
for(j2=0; j2<len; j2++)

toxp=exp(-the(xxx[j1]-xxx[j2])*(xxx[j1]-xxx[j2]));
YYx[j1]1[j2)=sbesbstexp*(s0+s0+ (xxx[j1]-mu)+ (xxx[j2]-mu))-
sbesbedet3(t11,t1x,cc1[j2]-1,t1x,txx,ccx[j2]-xxx[j2),cc1[j1]-1,cex[j1]-xxx[31] ,ccc[j11[j2])/tdet;
BBx[j1] [j2]usbssbstaxp-
sbegbedat3(t1l,tix,dci(j2],t1x,txx,dcx[j2]-1,dc1[j1],dcx(j1]-1,dcd[j1]1(j2])/tdet;
BYx[j1][j2])=sbesbetexp*(xxx[j2])-mu)-
sbesbedet3(til,t1x,cc1[j2])-1,t1x,txx,cex[j2]-xxx[j2],dc1[j1],dex[j1]-1,ccd[j2][j1])/tdet;
}
}
for(j1=0;ji<len; jl++)
{

Xix{j1]=xxx[j11-¥x[j11/Bx[j1];
X2x[j1)=xxx[j1)-(Yx[j1)#Bx[j1)+Bx(j1)+Yx[j1]+BBx[j1]1[j1)-Bx{j1]«BYx([j11[j11)/Bx[j1]1/Bx[j1]1/Bx[j1];
for(j2=0; j2<len; j2++)
XXx(j1]1 [32)=(YYx[j1] [j2]*Bx[j1]+Bx[j21+BBx[j1] [j2]*Yx[j1])*¥x[j2]
-BYx[j1)(j2)s¥x[j1]eBx[j2]-BYx{j2] [j1]+Bx[j11*Yx[j2])
/Bx{j11/Bx[j1]/Bx[j2]1/Bx[j2];
}
return;

}

C.3.6 crit.c

Returns the value of the criterion, crit no=1is C,, crit no=3is C}, crit no=5 gives

the “inverse interpolation” method.

#include "prob.h"

double criterion(double xxx,int crit_no)
{
double t1,t2;
switch(crit_no)
{
case 1: PY_Y(xxx,xxx,8t1,8t2);
return(-(tiet1+t2)/Cov_Y_Y(xxx,xxx));
case 2: PY_Y(xxx,xxx,&t1,8t2);
raturn(-tist1/t2);
case 3: PY_Y(xxx,xxx,&tl,6&t2);
return(-tisti-t2);
case 4: PY_Y(xxx,xxx,atl1,8t2);
return(-t1sti/t2-log(t2));
case 5: PY_Y(xxx, xxx,&t1,8t2);
return(-tistl);
default: PY_XO(&t1,8t2);
return(t2/s80/80);
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C.3.7 setup2.c, setup3.c and add_point2.c.

setup2.c and setup3.c read in the parameter values (th-0, b-b, mu-pg, sb-o, s0-
00), the criteria to be used crit_no, the test function fun_no, and the first and second
order modification methods mu_no and var_no. setup2.c is for the standard model,
and adds one point, whereas setup3.c is for the extended model, and adds two points
at po = b (note that b is not needed in its true sense). add_point2.c adds the next

point to the design grid and updates the variance matrix.

setup2.c — Standard model

#include "prob.h"

void setup(int scrit_no,int emu_no, int svar_no, int *fun_no)
{
n=1;
scanf("%d %d %d %d %le %le %le %le %le",
crit_no,mu_no,var_no,fun_no,

&mu ,&80,82b ,&s8b,&th);
v.m.m[1][1]=80+80;
v.m.rous=v.m.columns=i;
t=sb¥sb+s0¢s0sbsb*(c1[1]1=1/v.m.m[1]1[1]);
y[11=f(xx{1]=x[1])=mu,*fun_no) ;
return;

setup3.c — Extended model

#include "prob.h"

void setup(int scrit_no,int smu_no, int ¢var_no, int sfun_no)
{
int ttt;
VECd temp;
n=2;
scanf("%d %d %d %d %le %le %le %le %le",
crit_nmo,mu_no,var_no,fun_no,
&mu,&s0,8b,8sb,&th);

y[1)=£f(xx[1)=x[1]=mu-b,*fun_no);
y[2)=f(xx[2)=x({2]=mu+b, *fun_no);
v.m.m[1][1])=v.m.m[2] [2]=80#50+bsb;
v.m.m[1][2])=v.m.m[2] (1])=rho(-b,b)*(80480-bs*b) ;
vV.m.rows=v.m.columns=2;
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ttt=solve_0(Rv);
temp[1)=temp[2]=1;
solve_y(&v,temp,cl);
t=c1[1]+c1([2];
return;

add_point2.c

#include "prob.h"

int add_x(double xxx,int fun_no)
{

int ptr,11;

int ttt;

VECd temp;

if (xxx>xx[n])
xx[n+1]=xxx;
else
{
for(ptr=n;(ptr>0 && xxx<xx[ptr]);ptr--)
xx[ptr+1]=xx(ptr];
xx[ptr+1]=xxx;

v.m.rows=v.m.columngs++n;
x{n}=xxx;
y[n)=f (xxx,fun_no) ;
for(li=1;11<n;11++)
v.m.m[n][11)=v.m.m[11] [n]=(80¢s0+(xxx-mu) * (x(11] -mu) ) *rho(xxx,x[11]);
v.m.m[n] [n]=80%80+ (xxx-mu) * (xxx~mu) ;
for(li=1;11<an;11++)
temp[l1]=1;
ttt=solve_0(&v);
solve_y(&v,temp,cl);
if(fttt)
{
t=0;
for(11=1;11<=n;11++)
t+=c1[11];
t=8b*sb+bebeg0eg0et;
}

return(ttt);

C.3.8 file_printl.c and file print2.c

These routines output the results to a file in rows of 5 for readability. file print2.c

just contains the routine file print() which is also in file_printil.c.

#include "prob.h"

void file_print(FILE *fp,double value,int *out_count)

{
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fprintf(fp,”%15.7f " ,value);
if ((++eout_count)=sb) {tprintf(fp,"\n");%out_count=0;}
}

void file_print_x(FILE ¢fp)
{

double x_loop;

int out_count;

out_count=0;
for(x_loop=-3;x_loop<=3.001;x_loop+=.02)
file_print(fp,x_loop,&out_count);
fprintf(fp,"\n");
}

void file_print_f(FILE sfp,int fun_no)
{

double x_loop;

int out_count;

out_count=0;
for(x_loop=-3;x_loop<=3.001;x_loop+=.02)
file_print (fp,f(x_loop,fun_no) ,2out_count);
fprintf(fp,"\n");
}

void file_print_crit(FILE fp,int crit_no)

{
double x_loop;
int out_count;

out_count=0;
for(x_loop=-3;x_loop<=3.001;x_loop+=.02)
file_print(fp,criterion(x_loop,crit_no),&out_count);
fprintf(fp,”\n");
}

void file_print_y(FILE *fp)
{

double x_loop,ti,t2;

int out_count;

out_count=0;
for(x_loop=-3;x_1loop<=3.001;x_loop+=.02)
{
PY_Y(x_loop,-9999 ,&t1,8t2);
file_print(fp,t1,Bout_count);

}
fprintf(fp,"\n");

C.3.9 computel.c

This short routine computes the predictor of Xy, and if muno is non zero updates b

by replacing it with its prevision at the current estimate of Xp.

#include “prob.h"
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int compute_mean(int mu_no,int var_no,int crit_no)
{

double t1,t2;

int i,j;

PY_XO(&mumu,&ti);
mu_t=mumu;s8080_t=t1;
switch(mu_no)

{
case 2 : {musmaximize_x(-3.0,3.0,PREC,crit_no);break;}
case 1 : {mu=mumu;break;}
default : {printf("%10.5f \n'" ,mumu) ;break;}
}
if (mu_no!=0)
{
PY_B(mu,mu,atl &t2);
b=t1;
for(i=1;i<=n;i++)
for(j=1;j<=n; j++)
v.m.m{i] [§1=(30%80+(x[i)-mu)*(x[j]l-mu))¢rho(x[i],x[j1);
return(solve_0(2v));
PY_XO(&mu_t ,&s080_t) ;
}
return(0);

}

C.3.10 mainl.c, main2.c, main3.c and main4d.c

These are the main routines which tie all the other routines together, maini.c is
for the extended model with variance modified criteria is, main2.c is for the stan-
dard model with variance modified criteria, main3.c is for the standard model using
“Newtonian” estimates and main4.c is for the extended model using “Newtonian”

estimates.

mainil.c — extended model

#include "prob.h"

main(int arge,char #argv(])
{
int loop,finish,error;
double t1,t2,t3;
int y_flag,crit_flag,mu_no,crit_no,fun_no,var_no;

if (argc == 1)
y-flag=crit_flag=0;
else
{
switch((s++argv) [0])
{
case ’y’ : y_flag=1l;crit_flag=0;break;
case ’'c’ : y_flag=0;crit_flag=1;break;
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case 'b’ : y_flagscrit_flag=1;break;
default : y_flag=scrit_flag=0;

}
}
--argc;
if (y_flagesl)
{
if(t(--arge) || (file_y = fopen(#++argv,"w")) == HULL)
{
fprintf(stderr,"OUTPUT FILE CREATION ERROR: %d\n",argc);
exit(2);
}
}
if (crit_flag==1)
{
if (! (--argc) || (file_crit = fopen(#++argv,"w")) == HULL)
{
fprintf(stderr,"OUTPUT FILE CREATION ERROR : ¥%d\n*,argc);
exit(2);
}
}
do
{
setup(&crit_no,8mu_no,&var_no,&fun_no);
if(crit_no>=0)
{
printf(“Criterion_no: %d Mean_adj_no: %d Var_adj_no: %d Function_no: %d\n",
crit_no, mu_no, var_no, fun_no) ;
printf(“Hu : %6.3f Si_0: %6.3f b: %6.3f Si_b: %6.3f Theta: %6.3f\n",mu,80,b,sb,th);
printf (" X_n Y_n Hu_O b Si_0 Si_b\n");
if(y_flag)
{
file_print_x(file_y);
file_print_f(file_y,fun_no);
}
if(crit_flag)

file_print_x(file_crit);
for(loop=2;loop<=MAX_SIZE-2;loop++)
{
if (error=compute_mean(mu_no,var_no,crit_no))
break;
printf("%2d %12.7f %12.7f %12.7f %12.7f 412.7f %12.7f\n",
n,x[nl,yln],mu,b,s0,8b);
if(y_flag)
file_print_y(file_y);
if(crit_flag)
file_print_crit(file_crit,crit_no);
if(finish=(J_ABS(y[n])<END_CONDITIOR))
break;
else
{
if(mu_no==2)
error=2+add_x(mu,fun_no);
alse
errors3sadd_x(maximize_x(~3.0,3.0,PREC,crit_no),fun_no);
}
if(error)
break;
}
if(error)
printf(“Stopped due to singularity error\n");
else
{
if('finish)
{

if (error=4¢«compute_mean(mu_no,var_no,crit_no))
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break;
printf("%2d %12.7f %12.7f %12.7f %12.7f %12.7f %12.7f \n",
n,x[n]),y(n] ,mu,b,s0,sb);
if(y_flag)
file_print_y(file_y);
if(crit_flag)
file_print_crit(file_crit,crit_no);

}
}
if(error)
{
printf(“Error code : ¥d\n",error);
break;
}
}
while(crit_no>=0);
}

main?2.c — standard model

#include "prob.h"

main(int argc,char »argv(])
{
int loop,finish,error;
int y_flag,crit_flag,mu_no,crit_no,fun_no,var_no;

if (argec == 1)
y_flag=crit_flag=0;

else
{
switch((s++argv) (0])
{
case 'y’ : y_flag=l;crit_flag=0;break;
case 'c’ : y_flag=0;crit_flag=t;break;
case 'b’ : y_flag=crit_flag=l;break;
default : y_flagecrit_flag=0;
}
}
--argc;
if (y_flag=s=1)
{
if (' (--arge) || (file_y = fopen(#*++argv,”w")) == BULL)
{
fprintf(stderr,"OUTPUT FILE CREATION ERROR: %d\n',argc);
exit(2);
}
}
if (crit_flags==1)
{
if(t(-~arge) || (file_crit = fopen(s++argv,”w")) == BULL)
{
fprintf(stdarr,”O0UTPUT FILE CREATION ERROR : %d\n",argc);
exit(2);
}
}
do
{
setup(&crit_no,&mu_no,&var_no,&fun_no);
if(crit_no>=0)

{
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printf("Criterion_no: %d Mean_adj_no: %d Var_adj_no: %d Function_no: %d\n",

crit_no, mu_no, var_no, fun_no);
printf(“Mu : %6.3f Si_0: %6.3f b: %6.3f Si_b: %6.3f Theta: %6.3f\n",mu,s0,b,sb,th);
printf (" X.n Y_n Mu_O b Si_0 Si_b\n");
if(y_flag)
{
file_print_x(file._y);
file_print_f(file_y,fun_no);
}
if(crit_flag)

file_print_x(file_crit);
for(loop=1;loop<=MAX_SIZE-2;loop++)
{
if(error=acompute_mean(mu_no,var_no,crit_no))
break;
printf(“%2d %12.7f %12.7f %12.7f %12.7f %12.7f %12.7f\n",
n,x[n],y[n],mu,b,s0,sb);
if(y_flag)
file_print_y(file_y);
if(crit_flag)
file_print_crit(file_crit,crit_no);
if(finish=(J_ABS(y[n])<ESD_COEDITIOK))
break;
else
{
if (mu_no==2)
errors2sadd_x(mu,fun_no);
else
error=3*add_x(maximize_x(-3.0,3.0,PREC,crit_no),fun_no);

}
if(error)
break;
}
if(error)
printf(“Stopped due to singularity error\n");
else
{
if('finish)
{
if(error=4+compute_mean(mu_no,var_no,crit_no))
break;
printf("¥%2d %12.7f %12.7f %12.7f %12.7f %12.7f %12.7f \n",
n,x[n],y{n),mu,b,s0,sb);
if(y_flag)
file_print_y(file_y);
if(crit_flag)
file_print_crit(file_crit,crit_no);
}
}
}
if(error)
{
printf(“Error code : %d\n",error);
break;
}
}
while(crit_no>=0);

}

main3.c — standard model — Newtonian estimates

#include "prob.h"
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FILE sfpred, *fcov;
main(int argc,char sargv[])

{

int 11,12;

int out_count;

int loop,finish,error,pos;

double mustar,sOstar,temp;

int y_flag,crit_flag,mu_no,crit_no,fun_no,var_no;
VECD xxxx,Bxx,¥xx,X1xx,X2xx;

MATD BBxx,YY¥xx ,BYxx,XXxx;

if (argc<3)
{
fprintf(stderr,"IBRSUFFICIENT FILES\n");
exit(2);
}
if((fpred = fopen(e++argv,“e")) == HULL)
{
fprintf(stderr,”OUTPUT FILE CREATION ERROR: %d\n",argc);
exit(2);
}
if((fcov= fopen(s++argv,"u")) == NULL)
{
fprintf(stderr,"OUTPUT FILE CREATION ERROR : %d\n",argc);
exit(2);
}
do
{

for(11=0;11<31;114+)
xxxx[11]=11¢0.2~3;
setup(&crit_no,&mu_no,&var_no,&fun_no);
pos=mu*5,0+15.5;
printf("%10.5f %10.6f\n",mu,xxxx[pos]);
xxxx[pos)=mu;
if(crit_no>=0)
{
printf("%12.7f %12.7f\n" ,mu,s0%80);
out_count=0;
for(11=0;11<31;11++)
file_print(fpred,xxxx[11] ,20ut_count);
out_count=0;
for(11=0;11<31;11++)
file_print(fpred,f(xxxx[11],fun_no),&out_count);
out_count=0;
for(11=20;11<31;11++)
file_print(fpred, (xxxx[11]-mu)*b,&out_count);
out_count=0;
for(11=0;11<31;11++)
file_print(fpred,b,Rout_count);
out_count=0;
for(11s0;11<31;11++)
for(12=0;12<31;12++)
file_print(fcov,Cov_B_B(xxxx[11] ,xxxx{12]),2out_count);
out_count=0;
for(11=0;11¢31;11++)
for(12=0;12<31;12++)
file_print(fcov,Cov_B_Y(xxxx[11],xxxx(12]) ,&out_count);
out_count=0;
for(11=0;11<31;11++)
for(12=20;12<31;12++)
file_print(fcov,Cov_Y_Y(xxxx[11],xxxx[12]),&0ut_count);

for{(loop=0;1l0o0p<10;loop++)
{
PY_XO(&mustar,&sOstar) ;
PYV(xxxx,31,mustar ,Bxx,Yxx ,BBxx,Y¥xx,BYxx,X1xx,X2xx ,XXxx);
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}

main4.c — extended model — Newtonian estimates

}
}

printf("%12.7f %12.7f %12.7f %12.7f %12.7f %12.7f\n",
mustar,sOstar ,xxxx[pos],X1xx[pos] ,X2xx[pos],sqrt(XXxx[pos] [pos]));

out_count=0;

for(11=0;11<31;11++4)
file_print(fpred,Yxx[11],2out_count);

out_count=0;

for(11=0;11<31;11++)
file_print(fpred,Bxx[11] ,2out_count);

out_count=0;

for(11=20;11<31;11++)
file_print(fpred,X1xx[11],&out_count);

out_count=0;

for(1120;11<31;11++)
file_print(fpred,X2xx[11],20ut_count);

out_count=(;

for(1120;11<31;11++)

file_print(fpred,sqrt (XXxx[11][11]) ,&out_count);

out_count=0;
for(11=0;11<31;11++)
for(12=0;12<¢31;12++)

file_print(fcov,BBxx[11][12],20ut_count);

out_count=0;
for(11=0;11<31;11++)
for(12=0;12<31;12++)

file_print(fcov,BYxx[11]1[12],R20ut_count);

out_count=0;
for(1l1=0;11<31;11++)
for(12=0;12<¢31;12++)

file_print(fcov,Y¥xx[11][12] ,&0ut_count);

out_count=0;
for(11=20;11<31;11++)
for(12=0;12<31;12++)

file_print(fcov,XXxx[11][12] ,&o0ut_count);

if(crit_no==1)
add_x((temp=Xixx[pos)),fun_no);
else
add_x((temp=X2xx[pos]),fun_no);
pos=temp*5.0+15.5;
xxxx[pos)=temp;

while(crit_no>=0);

#include "prob.h"
FILE *fpred, *fcov;
main(int argc,char *argv[])

{

int 11,12;

int out_count;

int loop,finish,error,pos;
double mustar,sOstar,temp;

int y_flag,crit_flag,mu_no,crit_no,fun_no,var_no;

VECD xxxx,Bxx,Yxx,Xixx,X2xx;
MATD BBxx,YYxx ,BYxx,XXxx;

if (argc<3)
{

fprintf(stderr,”INSUFFICIEET FILES\n");
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if

if

do

exit(2);

}

((fpred = fopen(s++argv,"v")) == HULL)

{
fprintf(stderr,"OUTPUT FILE CREATIOB ERROR: %d\n",argc);
exit(2);

}

((fcov= fopen(»++argv,”v")) == BULL)

{
fprintf(stderr,"OUTPUT FILE CREATIOH ERROR : ¥%d\n",argc);
exit(2);

}

{

setup(&crit_no,&mu_no,avar_no,&fun_no);
for(11=0;11<31;11++)
xxxx[11]=11#0.2-3;
pos=x[1]+10.0+15.5;
xxxx[pos]=x[1];
pos=x{2]«10.0+15.5;
xxxx[pos)=x[2];
if(crit_no>=0)
{
for(loop=0;loop<10;loop++)
{
PY_XO(&mustar,&s0Ostar);
PYV(xxxx,31,mustar ,Bxx,Yxx,BBxx,YYxx,BYxx,X1xx ,X2xx ,XXxx) ;
printf("%10.7f %10.7f %10.7f %10.7f %10.7f %10.7f %10.7f\n",
mustar,s0star,b,xxxx[pos] ,X1xx[pos] ,X2xx[pes],sqrt (XXxx[pos] [pos]));
out_count=0;
for(11=0;11<31;11++)
file_print(fpred,Yxx[11] ,8out_count);
out_count=0;
for(11=0;11<31;11++)
file_print(fpred,Bxx[11],80ut_count);
out_count=0;
for(1120;11<31;11++)
file_print(fpred ,Xixx[11], gout_count);
out_count=0;
for(11=0;11<31;11++)
file_print(fpred,X2xx[11],&out_count);
out_count=0;
for(11=0;11<31;11++)
file_print(fpred,sqrt (XXxx[11][11]) ,&out_count);
out_count=0;
for(11=0;11<31;11++)
for(12=0;12<31;12++)
file_print(fcov,BBxx{11](12],80ut_count);
out_count=0;
for(11=0;11<31;11++)
for(12=0;12<31;12++)
file_print(fcov,BYxx[11][12],80ut_count);
out_counts=0;
for(11=0;11¢31;11++)
for(12=0;12<31;12++)
file_print(fcov,YYxx[11][12],&0ut_count);
out_count=0;
for(11=0;11<31;11++)
for(12=0;12<31;12++)
file_print(fcov,XXxx[11][12],&out_count);
if(crit_no==1)
add_x((temp=X1xx[pos]),fun_no);
else
add_x((temp=X2xx[pos]),fun_no);
pos=tempeb5.0+15.5;
xxxx [pos]=temp;
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}
}
while(crit_no>=0);
}

C.3.11 makefile

As a final subsection, we include the makefile which links all these subroutines to-

gether.

MAIN1_OBJECTS=file_printl.o funl.o mat2.0 covli.o updatel.o setup3.o add_point2.o rhol.o criti.o
golden.o computel.o maini.c
MAIN2_OBJECTS=file_printi.o funi.o mat2.0 covl.o update2.o setup2.o0 add_point2.o rhol.o critl.o
golden.o computel.o main2.c
MAIB3_OBJECTS=file_print2.o funl.o mat2.0 covl.o update3.o setup2.o add_point2.0 rhol.o main3.c
MAIN4_OBJECTS=file_print2.o funli.o mat2.o0 covl.o updated4.o setup3.o add_point2.o rhol.o main4.c
ALL_OBJECTS=add_point2.0 computel.o covli.o critl.o file_printl.o file_print2.o funl.o golden.o mat2.o
rhol.o rho2.o rho3.0 rho4.o setup2.0 setup3.o0 updatel.o update2.o update3.o updated.o
ALL_SOURCES=maini.c main2.c main3.c maind.c
FLAGS=-0 -W
IEC=prob.h
all: main4 main3 main2 maini
S22BLLBRLBLLLISTACHRLDRILTTBTLIDIBROBUONRBIDDLIRRRRRBBBORZRRIB AR 22BN L82
# maind4 is the main file for the ‘Hewtonian’ estimate on extended model &
SOSLLREURRERERSASEBESRESRERRRGLORRDRLBLILRLRRORABOBBLOOBBOOLRRBDBLRBBYBET
maing: $(MAIN4_DBJECTS) $(IHC)

gcc $(FLAGS) $(MAIN4_DBJECTS) -o maind -lm
SBR0CDLOBLEBERBBRLLSBEBBBBOSLIBBBOBEL IR ROB2ORIRBOBLBBICRBBBBBRBGLR
¢ main3 is the main file for the ‘Hewtonian’® estimate on standard model &
sgocescoeRIRENRRBLIL LSRRG BRLLLRRQBLORBRBBIBRABRIZEROBBRBLRBRBREBBLOLD
main3: $(MAIN3_0BJECTS) $(IHC)

gec $(FLAGS) $(MAIN3_OBJECTS) -o main3 -lm
BURBRRIVILBLRBL0LRBLDBIRTERRDRDBBILBLOIRINRRBLBITLRLBBBRBBI RO BBRIVLEE
# main2 is the main file for the 2nd order mod crit on standard model &
SASLRGVIODDTRSEIORRILESIREORBHRORURORRBRBORLBABOLLRFRANEBIRB BB ROIBRBRBLLN
main2: $(MAIN2_DBJECTS) $(1BC)

gecc $(FLAGS) $(MAIN2_OBJECTS) -o main2 -1lm
$RCLLRUROBLBBCLSLORIRTSRDUDELBRSVITLOILRIBRLBBLEVLZLSLLERUOREBBBLBNVORAS
# mainl is the main file for the 2nd order mod crit on extended model 8
SLCR0SRRSTERCRBLERIOSRRGCRBLIRCDBDOBBLBBIRRBBRBLLRBREORDRBBROGORIRRBRLODT
maini: $(MAIN1_DBJECTS) $(1HC)

gcc $(FLAGS) $(MAIN1_OBJECTS) -o mainl -lm

add_point2.0: add_point2.c $(IBC)
gcc $(FLAGS) -c add_point2.c -o add_point2.0

computel.o: computel.c $(IBC)

gcc $(FLAGS) -c computel.c -o computel.o
covi.o: covl.c $(IHC)

gcc $(FLAGS) ~c covi.c -0 covl.o
criti.o: critl.c $(IBC)

gec $(FLAGS) -c¢ critl.c -o critl.o
file_printl.o: file_printi.c $(IEC)

gec $(FLAGS) -c file_printi.c ~o file_printi.o
file_print2.0: file_print2.c $(IHEC)

gcc 3(FLAGS) -c file_print2.c -o file_print2.o
funi.o: funl.c $(IBC)

gcc $(FLAGS) -c funl.c -o funl.o
golden.o: golden.c $(IEC)
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mat2.0:
rhol.o:
rho2.o0:
rho3.o0:
rho4.o0:
setup2.o:
setup3.o:
updatel.o:
update2.o:
update3.o:

updated.o:

gcc $(FLAGS)
mat2.c $(IBC)

gcc $(FLAGS)
rhol.c $(IRC)

gec $(FLAGS)
rho2.c $(IRC)

gee $(FLAGS)
rho3.c $(INC)

gec $(FLAGS)
rhod.c $(IEC)

gcc $(FLAGS)
setup2.c $(1¥C)

gec $(FLAGS)
satup3.c $(IHC)

gece $(FLAGS)
updatel.c $(IEC)

gce $(FLAGS)
update2.c $(IHC)

gce $(FLAGS)
update3.c $(INC)

gee $(FLAGS)
updated.c $(IBC)

gcc $(FLAGS)

-C

-C

=-C

=C

golden.c -o golden.o
mat2.c -o mat2.o
rhol.c ~o rhol.o
rho2.c -0 rho2.0
rho3.c -o rho3.o
rhod.c -o rho4.o
setup2.c -o setup2.o
setup3.c -o setup3.o
updatel.c -o updatel.
update2.c -o update2.
update3.c -o update3.

updated4.c ~o updated.
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