

Durham E-Theses

Modelling rock slope behaviour and evolution with reference to Northern Spain and Southern Jordan

Nelis, Simon Brett

How to cite:

Nelis, Simon Brett (2004) Modelling rock slope behaviour and evolution with reference to Northern Spain and Southern Jordan, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/2206/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107 http://etheses.dur.ac.uk

MODELLING ROCK SLOPE BEHAVIOUR AND EVOLUTION WITH REFERENCE TO NORTHERN SPAIN AND SOUTHERN JORDAN

VOLUME 2

SIMON BRETT NELIS

A copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.

Ph.D. THESIS 2004

2 1 1015

Contents of Volume 2

List of Figures and Plates

The figures in this thesis include output from the UDEC computer simulation software and from the laboratory testing of rock. The output consists of two-dimensional block plots and filled contour block plots. The labelled notation (*10^1) indicates that the axes need to be multiplied by 10. On all UDEC plots, the horizontal and vertical axes are in meters. The plot legend includes an indication of the type of output plot, model cycle count, model time and also the contour intervals. In plots with displacement vectors, the scale presented is in meters. The notation 1 E 1 on the scale means that the scale is 1*10 m long. The values of displacement relate to actual displacements in the rock mass in meters. Where plots of unbalanced forces are presented, the x-axis is model time (s) and the y axis is force (kg m s⁻²).

Chapter 2

2.1	Geomorphological interactions between processes, landforms and	313
	materials (Allison, 1996).	
2.2	Basic failure mechanisms of rock masses under gravitational	314
	stress.	

4.1	Hypothetical slope scales and examples of natural slopes at these	315
	scales.	
4.2	Stress boundary conditions imposed on each model.	316
4.3	Stress-strain response of unjointed 1 m rock masses to simulate	317
	the behaviour of intact material.	
4.4	Stress-strain response of a 1 m sandstone rock mass with varying	318
	block sizes.	
4.5	Stress-strain response of a 1 m limestone rock mass with varying	319
	block sizes.	
4.6	Stress-strain response of a 1 m granite rock mass with varying	320
	block sizes.	

4.7	Comparative axial strain curves for 1 m rock masses composed of	321
	different block sizes.	
4.8	Joint normal closure magnitude for 1 m rock masses in limestone,	322
	sandstone and granite.	
4.9	Deformation moduli for 1 m rock masses in limestone, sandstone	323
	and granite.	
4.10a	Strain zone development in a 1 m limestone rock mass with 0.05 m	324
	block size	
4.10b	Strain zone development in a 1 m limestone rock mass with 0.1 m	325
	block size	
4.10c	Strain zone development in a 1 m limestone rock mass with 0.2 m	326
	block size.	
4.10d	Strain zone development in a 1 m limestone rock mass with 0.3 m	327
	block size	
4.10e	Strain zone development in a 1 m limestone rock mass with 0.4 m	328
	block size.	
4.10f	Strain zone development in a 1 m limestone rock mass with 0.5 m	329
	block size.	
4.11a	Strain zone development in a 1 m sandstone rock mass with	330
	0.05 m block size	
4.11b	Strain zone development in a 1 m sandstone rock mass with 0.1 m	331
	block size	
4.11c	Strain zone development in a 1 m sandstone rock mass with 0.2 m	332
	block size.	
4.11d	Strain zone development in a 1 m sandstone rock mass with 0.3 m	333
	block size.	
4.11e	Strain zone development in a 1 m sandstone rock mass with 0.4 m	334
	block size.	
4.11f	Strain zone development in a 1 m sandstone rock mass with 0.5 m	335
	block size.	
4.12a	Strain zone development in a 1 m granite rock mass with 0.05 m	336
	block size.	

ii

4.12b	Strain zone development in a 1 m granite rock mass with 0.1 m	337
	block size.	
4.12c	Strain zone development in a 1 m granite rock mass with 0.2 m	338
	block size.	
4.12d	Strain zone development in a 1 m granite rock mass with 0.3 m	339
	block size.	
4.12e	Strain zone development in a 1 m granite rock mass with 0.4 m	340
	block size.	
4.12f	Strain zone development in a 1 m granite rock mass with 0.5 m	341
	block size.	
4.13	Joint shear magnitude for 1 m rock masses in limestone, sandstone and granite	342
4.14	Displacement vector plots for a 1m limestone rock mass with 0.05	343
	and 0.1 m block edge length.	
4.15	Displacement vector plots for a 1m limestone rock mass with 0.2	344
	and 0.3 m block edge length.	
4.16	Displacement vector plots for a 1m limestone rock mass with 0.4	345
	and 0.5 m block edge length.	
4.17	Stress-strain response of a 1 m sandstone rock mass with varying	346
	block sizes.	
4.18	Stress-strain response of a 10 m sandstone rock mass with varying	347
	block sizes.	
4.19	Stress-strain response of a 10 m granite rock mass with varying	348
	block sizes.	
4.20	Deformation moduli during loading for 10 m limestone, sandstone	349
	and granite rock masses.	
4.21	Joint normal closure during loading for 10 m limestone, sandstone	350
	and granite rock masses.	
4.22a	Strain zone development in a 1 m limestone rock mass with 0.5 m	351
	block size.	
4.22b	Strain zone development in a 1 m limestone rock mass with 1 m	352
	block size.	

4.22c	Strain zone development in a 1 m limestone rock mass with 2 m	353
	block size.	
4.22d	Strain zone development in a 1 m limestone rock mass with 3 m	354
	block size.	
4.22e	Strain zone development in a 1 m limestone rock mass with 4 m	355
	block size.	
4.22f	Strain zone development in a 1 m limestone rock mass with 5 m	356
	block size.	
4.23a	Strain zone development in a 10 m sandstone rock mass with	357
	0.5 m block size.	
4.23b	Strain zone development in a 10 m sandstone rock mass with 1 m	358
	block size.	
4.23c	Strain zone development in a 10 m sandstone rock mass with 2 m	359
	block size.	
4.23d	Strain zone development in a 10 m sandstone rock mass with 3 m	360
	block size.	
4.23e	Strain zone development in a 10 m sandstone rock mass with 4 m	361
	block size	
4.23f	Strain zone development in a 10 m sandstone rock mass with 5 m	362
	block size.	
4.24a	Strain zone development in a 10 m granite rock mass with 0.5 m	363
	block size.	
4.24b	Strain zone development in a 10 m granite rock mass with 1 m	364
	block size.	
4.24c	Strain zone development in a 10 m granite rock mass with 2 m	365
	block size.	
4.24d	Strain zone development in a 10 m granite rock mass with 3 m	366
	block size.	
4.24e	Strain zone development in a 10 m granite rock mass with 4 m	367
	block size.	
4.24f	Strain zone development in a 10 m granite rock mass with 5 m	368
	block size.	

iv

4.25	Block rotation magnitude for 10 m limestone, sandstone and	369
	granite rock masses.	
4.26	Joint shear magnitude during loading for 10 m limestone,	370
	sandstone and granite rock masses.	
4.27	Stress-strain response of a 100 m limestone rock mass with	371
	varying block sizes.	
4.28	Stress-strain response of a 100 m sandstone rock mass with	372
	varying block sizes.	
4.29	Stress-strain response of a 100 m granite rock mass with varying	373
	block sizes.	
4.30	Deformation moduli during loading for 100 m limestone, sandstone	374
	and granite rock masses.	
4.31	Joint normal closure during loading for 100 m limestone, sandstone	375
	and granite rock masses.	
4.32	Joint shear magnitude during loading for 100 m limestone,	376
	sandstone and granite rock masses.	
4.33	Block rotation magnitude for 100 m limestone, sandstone and	377
	granite rock masses.	
4.34a	Strain zone development in a 100 m limestone rock mass with 5 m	378
	block size.	
4.34b	Strain zone development in a 100 m limestone rock mass with	379
	10 m block size.	
4.34c	Strain zone development in a 100 m limestone rock mass with	380
	20 m block size.	
4.34d	Strain zone development in a 100 m limestone rock mass with	381
	30 m block size.	
4.34e	Strain zone development in a 100 m limestone rock mass with	382
	40 m block size.	
4.34f	Strain zone development in a 100 m limestone rock mass with	383
	50 m block size.	
4.35a	Strain zone development in a 100 m sandstone rock mass with 5 m	384
	block size.	

v

4.35b	Strain zone development in a 100 m sandstone rock mass with	385
	10 m block size.	
4.35c	Strain zone development in a 100 m sandstone rock mass with	386
	20 m block size.	
4.35d	Strain zone development in a 100 m sandstone rock mass with	387
	30 m block size.	
4.35e	Strain zone development in a 100 m sandstone rock mass with	388
	40 m block size.	
4.35f	Strain zone development in a 100 m sandstone rock mass with	389
	50 m block size.	
4.36a	Strain zone development in a 100 m granite rock mass with 5 m	390
	block size.	
4.36b	Strain zone development in a 100 m granite rock mass with 10 m	391
	block size.	
4.36c	Strain zone development in a 100 m granite rock mass with 20 m	392
	block size.	
4.36d	Strain zone development in a 100 m granite rock mass with 30 m	393
	block size.	
4.36e	Strain zone development in a 100 m granite rock mass with 40 m	394
	block size.	
4.36f	Strain zone development in a 100 m granite rock mass with 50 m	395
	block size.	
4.37	Stress-strain response of a 1000 m limestone rock mass with	396
	varying block sizes.	
4.38	Stress-strain in response of a 1000 m sandstone rock mass with	397
	varying block sizes.	
4.39	Stress-strain in response of a 1000 m sandstone rock mass with	398
	varying block sizes.	
4.40	Deformation moduli for 1000 m limestone, sandstone and granite	399
	rock masses.	
4.41	Joint normal closure for 1000 m limestone, sandstone and granite	400
	rock masses.	

4.42	Joint shear displacement for 1000 m limestone, sandstone and	401
	granite rock masses.	
4.43	Block rotation magnitudes for 1000 m limestone, sandstone and	402
	granite rock masses.	
4.44a	Strain zone development in a 1000 m limestone rock mass with	403
	50 m block size.	
4.44b	Strain zone development in a 1000 m limestone rock mass with	404
	100 m block size.	
4.44c	Strain zone development in a 1000 m limestone rock mass with	405
	200 m block size.	
4.44d	Strain zone development in a 1000 m limestone rock mass with	406
	300 m block size.	
4.44e	Strain zone development in a 1000 m limestone rock mass with	407
	400 m block size.	
4.44f	Strain zone development in a 1000 m limestone rock mass with	408
	500 m block size.	
4.45a	Strain zone development in a 1000 m sandstone rock mass with	409
	50 m block size.	
4.45b	Strain zone development in a 1000 m sandstone rock mass with	410
	100 m block size.	
4.45c	Strain zone development in a 1000 m sandstone rock mass with	411
	50 m block size.	
4.45d	Strain zone development in a 1000 m sandstone rock mass with	412
	300 m block size.	
4.45e	Strain zone development in a 1000 m sandstone rock mass with	413
	400 m block size.	
4.45f	Strain zone development in a 1000 m sandstone rock mass with	414
	500 m block size.	
4.46a	Strain zone development in a 1000 m granite rock mass with 50 m	415
	block size.	
4.46b	Strain zone development in a 1000 m granite rock mass with	416
	100 m block size.	

4.46c	Strain zone development in a 1000 m granite rock mass with 200	417
	m block size.	
4.46d	Strain zone development in a 1000 m granite rock mass with 300	418
	m block size.	
4.46e	Strain zone development in a 1000 m granite rock mass with 400	419
	m block size.	
4.46f	Strain zone development in a 1000 m granite rock mass with	420
	500 m block size.	
4.47	The stress-strain response of a rock mass compared to that	421
	commonly seen for intact rock.	
4.48	Summary stress-strain response of the two failure mechanisms	422
	which develop due to block size effects in the simulated rock	
	masses.	
4.49	Comparison of joint shear magnitude for all scales and all	423
	lithologies (a). Block rotation magnitude for all scales and	
	lithologies (b).	
4.50	Link between theoretical modelling and slope form.	424
4.51	Comparison of joint normal closure and deformation modulus for all	425
	block sizes and lithologies at a range of outcrop scales.	
4.52	Comparison of deformation moduli for all scales and all lithologies	426
	(a) and comparison of joint normal closure magnitude for all scales	
	and lithologies (b).	

5.1	Topographic setting of the Picos de Europa, northern Spain.	427
	Adapted from Smart (1984).	
5.2	The main geological successions found in the Picos de Europa.	428
5.3	Geological setting of the Andara region of the Eastern Massif of the	429
	Picos de Europa.	
5.4	General geological setting of the Vega de Liordes.	430
5.5	Landscape component model depicting the most important	431
	landscape elements and linkages in the Picos de Europa	
	mountains.	

5.6	Contoured polar projection of the discontinuities at Torre Olavarría,	432
	Picos de Europa, northern Spain.	
5.7	Contoured polar projection for the discontinuities at Pico de la	433
	Padierna, Picos de Europa, northern Spain.	
5.8	Contoured polar projection of the discontinuities at Tiro Pedabejo,	434
	Picos de Europa, northern Spain.	
5.9	Contoured polar projections for the discontinuities at Canchorral de	435
	Hormas, Picos de Europa, northern Spain.	
5.10	Contoured polar projection of the discontinuities at Algobras,	436
	Allende, Picos de Europa, northern Spain.	
5.11	Contoured polar projection of the discontinuities at Los Montes,	437
	Picos de Europa, northern Spain.	
5.12	Histograms and quantile plots of joint spacing with a fitted	438
	exponential distribution.	
5.13	Histograms and quantile plots of joint spacing with compared with	439
	an ideal Weibull distribution.	
5.14	Aggregated joint spacing data from all sites in the Picos de Europa.	440
5.15	Cumulative probability distribution functions of joint spacing.	441
5.16a	First two L-moments for joint spacing in the Picos de Europa.	442
5.16b	Skewness and kurtosis L-moments for joint spacing in the Picos de	442
	Europa.	
5.17	Bedding spacing data compared with a lognormal distribution.	443
5.18a	Mohr's circles for Pico de la Padierna.	444
5.18b	Sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure	444
	envelope for Pico de la Padierna.	
5.19a	Mohr's circles for Tiro Pedabejo.	445
5.19b	Sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure	445
	envelope for Tiro Pedabejo.	
5.20a	Mohr's circles for Canchorral de Hormas.	446
5.20b	Sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure	446
	envelope for Canchorral de Hormas.	
5.21a	Mohr's circles for the Deva Gorge limestones.	447

5.21b	Sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure	447
	envelope for the Deva Gorge limestones.	
5.22	Axial, lateral and volumetric stress-strain curves for Pico de la	448
	Padierna.	
5.23	Axial, lateral and volumetric stress-strain curves for Tiro Pedabejo	449
	limestones.	
5.24	Axial, lateral and volumetric stress-strain curves for Canchorral de	450
	Hormas limestones.	
5.25	Axial, lateral and volumetric stress-strain curves for Deva Gorge	451
	limestones.	
5.26	Comparative axial strain curves for Pico de la Padierna and Tiro	452
	Pedabejo at 0, 10 and 15 Mpa confining pressures.	
5.27	Comparative axial strain curves Canchorral de Hormas and Deva	453
	Gorge limestones at 0 (UC), 10 and 15 MPa confining pressures.	
5.28	Axial strain plotted against Confining pressure, P'o (MPa).	454

6.1	Location of Al-Quwayra and Wadi Rum.	455
6.2	The broad geological setting of the Wadi Rum–Al-Quwayra area	456
6.3	Generalised geological section of the Wadi Rum-Al Quwayra	457
	region of southern Jordan.	
6.4	Extent of the sandstone inselbergs within the AI Quwayra Wadi	458
	Rum study area.	
6.5	Landscape component model showing the important geomorphic	459
	features in the Al Quwayra Wadi Rum study area.	
6.6	Contoured polar projection of the discontinuities at AL1, Wadi	460
	Rum, Jordan.	
6.7	Contoured polar projection of the discontinuities at AL2, Wadi	461
	Rum, Jordan.	
6.8	Contoured polar projection of the discontinuities at AL3, Wadi	462
	Rum, Jordan.	
6.9	Contoured polar projection of the discontinuities at AL4, Wadi	463
	Rum, Jordan.	

х

6.10	Contoured polar projection of the discontinuities at AL5, Wadi	464
	Rum, Jordan.	
6.11	Contoured polar projection of the discontinuities at AL6, Wadi	465
	Rum, Jordan.	
6.12	Contoured polar projection of the discontinuities at AL7, Wadi	466
	Rum, Jordan.	
6.13	Contoured polar projection of the discontinuities at AL8, Wadi	467
	Rum, Jordan.	
6.14	Contoured polar projection of the discontinuities at AL9, Wadi	468
	Rum, Jordan.	
6.15	Contoured polar projection of the discontinuities at AL10, Wadi	469
	Rum, Jordan.	
6.16	Contoured polar projection of the discontinuities at AL11, Wadi	470
	Rum, Jordan.	
6.17	Contoured polar projection of the discontinuities at AL12, Wadi	471
	Rum, Jordan.	
6.18	Contoured polar projection of the discontinuities at AL13, Wadi	472
	Rum, Jordan.	
6.19	Contoured polar projection of the discontinuities at AL14, Wadi	473
	Rum, Jordan.	
6.20	Contoured polar projection of the discontinuities at AL15, Wadi	474
	Rum, Jordan.	
6.21	Contoured polar projection of the discontinuities at AL16, Wadi	475
	Rum, Jordan.	
6.22	Contoured polar projection of the discontinuities at AL17, Wadi	476
	Rum, Jordan.	
6.23	Dotplots of lumped joint spacing data for all sites examined in the	477
	Al-Quwayra–Wadi Rum region of southern Jordan.	
6.24	Quantiles of joint spacing compared with an ideal exponential	478
	distribution.	
6.25	Log normal distributions of lumped discontinuity data for all sites in	479
	the Al-Quwayra and Wadi Rum areas of Jordan.	

6.26	Quantiles of joint spacing compared with fitted Weibull	480
	distributions.	
6.27	AL7 compared with randomly generated Weibull distributions given	481
	the same population mean.	
6.28	Quantiles of joint spacing compared with a gamma distribution.	482
6.29a	First two L-moments for joint spacing.	483
6.29b	Skewness and kurtosis L-moments for joint spacing.	483
6.30a	Mohr's circles for Red Ishrin sandstone.	484
6.30b	Sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure	484
	envelope for Red Ishrin sandstone.	
6.31a	Mohr's circles for Disi Sandstone.	485
6.31b	Sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure	485
	envelope for Disi sandstone.	
6.32a	Mohr's circles for Salib Arkosic sandstone.	486
6.32b	Sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure	486
	envelope for Salib Arkosic sandstone.	
6.33	Axial, lateral and volumetric stress-strain curves for Red Ishrin	487
	sandstones for specimens tested at 0 (UC), 10 and 15 MPa	
	confining pressures.	
6.34	Axial, lateral and volumetric stress-strain curves for Disi	488
	sandstones for specimens tested at 0 (UC), 10 and 15 MPa	
	confining pressures.	
6.35	Axial, lateral and volumetric stress-strain curves for Salib Arkosic	489
	sandstones for specimens tested at 0 (UC), 10 and 15 MPa	
	confining pressures.	
6.36	Axial strain plotted against Confining pressure, P'o (MPa) for the	490
	three sandstone types.	
Chapter 7		40.4
7.1	Figure 7.1 Block plot of the north section of the cirque wall of Torre	491
	de Salinas, Picos de Europa at equilibrium.	

7.2Figure 7.1 Block plot of the north section of the cirque wall of Torre492de Salinas, Picos de Europa at equilibrium.

7.3a	Displacement vectors for the north-south profile of the northern	493
	cirque wall of Torre de Salinas at 100 000 cycles.	
7.3b	Displacement vectors for the north-south profile of the northern	494
	cirque wall of Torre de Salinas at 200 000 cycles.	
7.3c	Displacement vectors for the north-south profile of the northern	495
	cirque wall of Torre de Salinas at 300 000 cycles.	
7.3d	3d Displacement vectors for the north-south profile of the northern	496
	cirque wall of Torre de Salinas at 600 000 cycles.	
7.4a	Horizontal displacement contours of the north section of the cirque	497
	wall of Torre de Salinas at equilibrium.	
7.4b	Horizontal displacement contours of the north section of the cirque	498
	wall of Torre de Salinas at 100 000 cycles.	
7.4c	Horizontal displacement contours of the north section of the cirque	499
	wall of Torre de Salinas at 200 000 cycles.	
7.4d	Horizontal displacement contours of the north section of the cirque	500
	wall of Torre de Salinas at 350 000 cycles.	
7.4e	Horizontal displacement contours of the north section of the cirque	501
	wall of Torre de Salinas at 600 000 cycles.	
7.5	Total unbalanced forces for the north-south profile of the northern	502
	cirque wall of Torre de Salinas at 600 000 cycles.	
7.6a	Block plot of the east-west profile of the central cirque headwall for	503
	Torre de Salinas, Picos de Europa, at equilibrium	
7.6b	Displacement vectors for the east-west profile of the central cirque	504
	wall of Torre de Salinas at 100 000 cycles.	
7.6c	Displacement vectors for the east-west profile of the central cirque	505
	wall of Torre de Salinas at 250 000 cycles.	
7.6d	Displacement vectors for the east-west profile of the central cirque	506
	wall of Torre de Salinas at 500 000 cycles.	
7.7a	Horizontal displacement contours for the east-west profile of the	507
	cirque headwall for Torre de Salinas at equilibrium.	
7.7b	Horizontal displacement contours for the east-west profile of the	508
	cirque headwall for Torre de Salinas 100 000 cycles.	

7.7c	Horizontal displacement contours for the east-west profile of the	509
	cirque headwall for Torre de Salinas 250 000 cycles.	
7.7d	Horizontal displacement contours for the east-west profile of the	510
	cirque headwall for Torre de Salinas 500 000 cycles.	
7.8	Total unbalanced forces for the east-west profile of the central	511
	cirque wall of Torre de Salinas at 500 000 cycles.	
7.9a	Block plot of the east-west profile of the southern cirque headwall	512
	for Torre de Salinas, Picos de Europa, at equilibrium.	
7.9b	Displacement vectors of the east-west profile of the southern	513
	cirque headwall for Torre de Salinas, Picos de Europa, at 200 000	
	cycles.	
7.9c	Displacement vectors of the east-west profile of the southern	514
	cirque headwall for Torre de Salinas, Picos de Europa, at 400 000	
	cycles.	
7.9d	Displacement vectors of the east-west profile of the southern	515
	cirque headwall for Torre de Salinas, Picos de Europa, at 800 000	
	cycles.	
7.10a	Horizontal displacement contours for the east-west profile of the	516
	southern cirque headwall for Torre de Salinas at equilibrium.	
7.10b	Horizontal displacement contours for the east-west profile of the	517
	southern cirque headwall for Torre de Salinas at 200 000 cycles.	
7.10c	Horizontal displacement contours for the east-west profile of the	518
	southern cirque headwall for Torre de Salinas at 400 000 cycles.	
7.11a	Block plot of the north-south profile of the far western section for	519
	the ridge of Pico de La Padierna at equilibrium.	
7.11b	Displacement vectors of the north-south profile of the far western	520
	section for the ridge of Pico de La Padierna at 530 000 cycles.	
7.12	Horizontal displacement contours for the north-south profile of the	521
	far western section of the ridge of Pico de La Padierna at 530 000	
	cycles.	
7.13a	Block plot of the north-south profile of the central ridge of Pico de	522
	La Padierna at equilibrium.	

7.13b	Displacement vectors for the north-south profile of the central	523
	ridge of Pico de La Padierna at 150 000 cycles.	
7.13c	Displacement vectors for the north-south profile of the central	524
	ridge of Pico de La Padierna at 550 000 cycles.	
7.14	Block plot of the north-south profile of the central ridge of Pico de	525
	La Padierna at 500 000 cycles.	
7.15a	Horizontal displacement contours for the north-south profile of the	526
	central ridge of Pico de La Padierna at equilibrium.	
7.15b	Horizontal displacement contours for the north-south profile of the	527
	central ridge of Pico de La Padierna at 150 000 cycles.	
7.15c	Horizontal displacement contours for the north-south profile of the	528
	central ridge of Pico de La Padierna at 550 000 cycles.	
7.16	Total unbalanced forces for the north-south profile of Pico de la	529
	Padierna at equilibrium.	
7.1 7 a	Block plot of the north-south profile of the far eastern section for	530
	the ridge of Pico de La Padierna at equilibrium.	
7.17b	Displacement vectors for the north-south profile of the far eastern	531
	section for the ridge of Pico de La Padierna at 500 000 cycles.	
7.18	Block plot of the north-south profile of the far eastern section for	532
	the ridge of Pico de La Padierna at 500 000 cycles.	
7.19	Total unbalanced forces for the north-south of the eastern section	533
	of Pico de la Padierna at 500 000 cycles.	
7.20a	Figure 7.20a Block plot of the north-south profile for Tiro	534
	Pedabejo, Picos de Europa, at equilibrium.	
7.20b	Displacement vectors for the north-south profile for Tiro Pedabejo,	535
	Picos de Europa, at 500 000 cycles.	
7.21	Total unbalanced forces for the north-south profile of Tiro Pedabejo	536
	at 500 000 cycles.	
7.22a	Horizontal displacement contours for the north-south profile of Tiro	537
	Pedabejo at equilibrium.	
7.22b	Horizontal displacement contours for the north-south profile of Tiro	538
	Pedabejo at 500 000 cycles.	

7.23a	Block plot of the east-west profile for Tiro Pedabejo, Picos de	539
	Europa, at equilibrium.	
7.23b	Displacement vectors for the north-south profile for Tiro Pedabejo,	540
	Picos de Europa, at 201 000 cycles.	
7.23c	Displacement vectors for the north-south profile for Tiro Pedabejo,	541
	Picos de Europa, at 351 000 cycles.	
7.23d	Displacement vectors for the north-south profile for Tiro Pedabejo,	542
	Picos de Europa, at 601 000 cycles.	
7.24a	Horizontal displacement contours for the east-west profile of Tiro	543
	Pedabejo at 201 000 cycles	
7.24b	Horizontal displacement contours for the east-west profile of Tiro	544
	Pedabejo at 351 000 cycles.	
7.24c	24c Horizontal displacement contours for the east-west profile of	545
	Tiro Pedabejo at 601 000 cycles.	
7.25	Total unbalanced forces for the north-south profile of Tiro Pedabejo	546
	at 601 000 cycles.	
7.26a	Block plot of the north-south profile of Canchorral de Hormas,	547
	Picos de Europa at equilibrium.	
7.26b	Displacement vectors of the north-south profile of Canchorral de	548
	Hormas at 100 000 cycles.	
7.26c	26c Displacement vectors of the north-south profile of Canchorral	549
	de Hormas at 250 000 cycles.	
7.26d	Block plot of the north-south profile of Canchorral de Hormas,	550
	Picos de Europa at 500 000 cycles.	
7.27a	Horizontal displacement contours for the north-south profile of	551
	Canchorral de Hormas at equilibrium	
7.27b	Horizontal displacement contours for the north-south profile of	552
	Canchorral de Hormas at 100 000 cycles.	
7.27c	Horizontal displacement contours for the north-south profile of	553
	Canchorral de Hormas at 500 000 cycles.	
7.28	Total unbalanced forces for the north-south profile of Canchorral	554
	de Hormas, Picos de Europa, at 500 000 cycles.	

7.29a	Block plot of the east-west profile of Canchorral de Hormas, Picos	555
	de Europa at equilibrium.	
7.29b	Displacement vectors for the east-west profile of Canchorral de	556
	Hormas, Picos de Europa at 100 000 cycles.	
7.29c	Displacement vectors for the east-west profile of Canchorral de	557
	Hormas, Picos de Europa at 200 000 cycles.	
7.29d	Displacement vectors for the east-west profile of Canchorral de	558
	Hormas, Picos de Europa at 500 000 cycles.	
7.30a	Horizontal displacement contours for the east-west profile of	559
	Canchorral de Hormas at equilibrium.	
7.30b	Horizontal displacement contours for the east-west profile of	560
	Canchorral de Hormas at 100 000 cycles.	
7.30c	Horizontal displacement contours for the east-west profile of	561
	Canchorral de Hormas at 200 000 cycles.	
7.31	Total unbalanced forces for the east-west profile of Canchorral de	562
	Hormas at 500 000 cycles.	
7.32a	Block plot of the east-west profile of Los Montes, Picos de Europa	563
	at equilibrium.	
7.32b	Displacement vector plot for the east-west profile of Los Montes,	564
	Picos de Europa at 300 000 cycles.	
7.33	Total unbalanced forces for the east-west profile of Los Montes at	565
	300 000 cycles.	
7.34	Horizontal displacement contours for the east-west profile of Los	566
	Montes at 300 000 cycles.	
7.35a	Block plot of the east-west profile of Los Montes, Picos de Europa	567
	with a simulated road cut at equilibrium.	
7.35b	Displacement vectors for the east-west profile of Los Montes,	568
	Picos de Europa at 100 000 cycles.	
7.35c	Displacement vectors for the east-west profile of Los Montes,	569
	Picos de Europa at 300 000 cycles.	
7.36a	Horizontal displacement contours for the east-west profile of Los	570
	Montes with simulated road cut at 100 000 cycles.	

7.36b	Horizontal displacement contours for the east-west profile of Los	571
	Montes with simulated road cut at 300 000 cycles	
7.37a	Block plot of the north-south profile of Los Montes, Picos de	572
	Europa at equilibrium.	
7.37b	Displacement vectors for the north-south profile of Los Montes,	573
	Picos de Europa at 100 000 cycles.	
7.37c	Displacement vectors for the north-south profile of Los Montes,	574
	Picos de Europa at 300 000 cycles.	
7.38a	Horizontal displacement contours for the north-south profile of Los	575
	Montes at 100 000 cycles.	
7.38b	Horizontal displacement contours for the north-south profile of Los	576
	Montes at 300 000 cycles.	
7.39a	Block plot of the east-west profile of Allende, Picos de Europa at	577
	equilibrium.	
7.39b	Displacement vectors for the east-west profile of Allende at	578
	100 000 cycles.	
7.39c	Displacement vectors for the east-west profile of Allende at	579
	250 000 cycles.	
7.39d	Displacement vectors for the east-west profile of Allende at	580
	500 000 cycles	
7.40a	Horizontal displacement contours for the east-west profile of	581
	Allende at 100 000 cycles.	
7.40b	Horizontal displacement contours for the east-west profile of	582
	Allende at 250 000 cycles.	
7.40c	Horizontal displacement contours for the east-west profile of	583
	Allende at 500 000 cycles.	
7.41	Total unbalanced forces for the east-west profile of Allende, Picos	584
	de Europa, at 500 000 cycles.	
7.42a	Block plot of the north-south profile of Allende, Picos de Europa at	585
	equilibrium.	
7.42b	Displacement vectors for the north-south profile of Allende, Picos	586
	de Europa at 100 000 cycles.	

7.42c	Displacement vectors for the north-south profile of Allende, Picos	587
	de Europa at 300 000 cycles.	
7.42d	Displacement vectors for the north-south profile of Allende, Picos	588
	de Europa at 401 040 cycles.	
7.43a	Horizontal displacement contours for the north-south profile of	589
	Allende at 100 000 cycles.	
7.43b	Horizontal displacement contours for the north-south profile of	590
	Allende at 300 000 cycles.	
7.46	Compariosn of the half-way time for all failures in the Picos de	591
	Europa models.	
7.47	Exponential asymptotic model (dashed line) applied to x-	592
	displacement data for the failures at Torre de Salinas.	
7.48	Exponential asymptotic model (dashed line) applied to x-	593
	displacement data for the failure on the north-south profile of Pico	
	de la Padierna.	
7.49	Exponential asymptotic model (dashed line) applied to x-	594
	displacement data for the failure on the north-south profile of Pico	
	de la Padierna.	
7.50	Exponential asymptotic model (dashed line) applied to x-	595
	displacement data for the failure on the north-south profile of Pico	
	de la Padierna.	
7.51	Exponential asymptotic model (dashed line) applied to x-	596
	displacement data for the failures at Los Montes.	
7.52	Exponential asymptotic model (dashed line) applied to x-	597
	displacement data for the failures at Allende.	
7.53	Summary of the two main patterns of failure in λ -t space	598
	associated with brittle, catastrophic failure and self-stabilising	
	flexural toppling failure.	
7.54	Results of erosion rate modelling on the samples selected for ³⁶ CL	599
	dating.	
7.55	Calculated ³⁶ Cl dates for rock slope failures in the Picos de Europa.	600

7.56	Exhaustion model for paraglacial rock slope failure in the Picos de	601
	Europa, compared with data from Cruden and Hu (1993) in the	
	Canadian Rockies.	

7.57 Proposed model of paraglacial rock slope evolution for the Picos 602 de Europa based on UDEC modelling, assessment of paraglacial exhaustion models and cosmogenic dating.

8.1	Block plot of the north-south profile of AL9 at equilibrium.	603
8.2	Total unbalanced forces for the north-south profile of AL9 at equilibrium.	604
8.3a	Displacement vectors for the north-south profile of AL9 at 15 000 cycles.	605
8.3b	Displacement vectors for the north-south profile of AL9 at 17 000 cycles.	606
8.3c	Displacement vectors for the north-south profile of AL9 at 40 000 cycles.	607
8.4	Total unbalanced forces for the north-south profile of AL9 at 40 000 cycles.	608
8.5a	Horizontal displacement contours for the north-south profile of AL9 at equilibrium.	609
8.5b	Horizontal displacement contours for the north-south profile of AL9 at 15 000 cycles.	610
8.5c	Horizontal displacement contours for the north-south profile of AL9 at 17 000 cycles.	611
8.5d	Horizontal displacement contours for the north-south profile of AL9 at 40 000 cycles.	612
8.6a	Block plot of the east-west profile of AL9 at equilibrium.	613
8.6b	Displacement vectors for the east-west profile of AL9 at 50 000 cycles.	614
8.7	Total unbalanced forces for the east-west profile of AL9 at 50 000 cycles.	615
8.8a	Block plot of the north-south profile of AL12 at equilibrium.	616

8.8b	Displacement vectors for the north-south profile of AL12 at 12 000	617
	cycles	
8.8c	Displacement vectors for the north-south profile of AL12 at 15 000	618
	cycles.	
8.8d	Displacement vectors for the north-south profile of AL12 at 25 000	619
	cycles.	
8.9	Total unbalanced forces for the north-south profile of AL12 at	620
	25 000 cycles	
8.10a	Horizontal displacement contours for the north-south profile of	621
	AL12 at 12 000 cycles.	
8.10b	Horizontal displacement contours for the north-south profile of	622
	AL12 at 15 000 cycles.	
8.10c	Horizontal displacement contours for the north-south profile of	623
	AL12 at 25 000 cycles.	
8.11a	Block plot of the east-west profile of AL12 at equilibrium.	624
8.11b	Displacement vectors for the east-west profile of AL12 at 100 000	625
	cycles.	
8.12	Horizontal displacement contours for the east-west profile of AL12	626
	at 100 000 cycles.	
8.13a	Block plot of the north-south profile of AL10 at equilibrium.	627
8.13b	Displacement vectors for the north-south profile of AL10 at 13 000	628
	cycles.	
8.13c	Displacement vectors for the north-south profile of AL10 at 15 000	629
	cycles.	
8.13d	Displacement vectors for the north-south profile of AL10 at 21 000	630
	cycles.	
8.14a	Horizontal displacement contours for the north-south profile of	631
	AL10 at 13 000 cycles.	
8.14b	Horizontal displacement contours for the north-south profile of	632
	AL10 at 15 000 cycles.	
8.14c	Horizontal displacement contours for the north-south profile of	633
	AL10 at 21 000 cycles.	

8.15	Total unbalanced forces for the north-south profile of AL10 at	634
	21 000 cycles.	
8.16a	Block plot of the east-west profile of AL10 at equilibrium.	635
8.16b	Displacement vectors for the east-west profile of AL10 at 100 000	636
0 17	Uprizental displacement contaurs for the east west profile of AL 10	607
0.17	at 100 000 cycles.	037
8.18a	Block plot of the north-south profile of AL11 at equilibrium.	638
8.18b	Displacement vectors for the north-south profile of AL11 at 100 000 cvcles.	639
8.19	Total unbalanced forces for the north-south profile of AL11 at 100 000 cycles.	640
8.20	Horizontal displacement contours for the east-west profile of Al 11	641
0.20	at 100 000 cycles.	041
8.21a	Block plot of the east-west profile of AL11 at equilibrium.	642
8.21b	Displacement vectors for the east-west profile of AL11 at 20 000	643
	cycles.	
8.21c	Displacement vectors for the east-west profile of AL11 at 40 000 cycles.	644
8.22a	Horizontal displacement contours for the east-west profile of AL11 at 20 000 cycles.	645
8.22b	Horizontal displacement contours for the east-west profile of AL11 at 40 000 cvcles.	646
8.23	Total unbalanced forces for the east-west profile of AL11 at 40 000 cvcles.	647
8.24a	Block plot of the north-south profile of AL3 at equilibrium	648
8.24b	Displacement vectors for the north-south profile of AL3 at 13 000	649
8 240	Displacement vectors for the north south profile of AL2 at 15,000	650
0.240	cycles.	030
8.24d	Displacement vectors for the north-south profile of AL3 at 20 000 cycles.	651

8.25a	Horizontal displacement contours for the north – south profile of	652
	AL3 at 13 000 cycles.	
8.25b	Horizontal displacement contours for the north – south profile of	653
	AL3 at 20 000 cycles.	
8.26a	Block plot of the east-west profile of AL3 at equilibrium.	654
8.26b	Displacement vectors for the east-west profile of AL3 at 20 000 cycles.	655
8.26c	Displacement vectors for the east-west profile of AL3 at 150 000 cycles.	656
8.27a	Horizontal displacement contours for the east-west profile of AL3 at 20 000 cycles.	657
8.27b	Horizontal displacement contours for the east-west profile of AL3 at 150 000 cycles.	658
8.28	Total unbalanced forces for the east-west profile of AL3 at 150 000 cycles.	659
8.29a	Block plot of the north-south profile of AL2 at equilibrium.	660
8.29b	Displacement vectors for the north-south profile of AL2 at 20 000 cycles.	661
8.29c	Displacement vectors for the north-south profile of AL2 at 68 502 cycles.	662
8.30a	Horizontal displacement contours for the north-south profile of AL2 at 20 000 cycles.	663
8.30b	Horizontal displacement contours for the north-south profile of AL2 at 68 502 cycles.	664
8.31	Total unbalanced forces for the north-south profile of AL2 at 68 502 cycles.	665
8.32a	Block plot of the east-west profile of AL2 at equilibrium.	666
8.32b	Displacement vectors for the east-west profile of AL2 at 100 000 cycles.	667
8.33	Horizontal displacement contours for the east-west profile of AL2 at 100 000 cycles.	668
8.34a	Block plot of the north-south profile of AL7 at equilibrium.	669

8.34b	Displacement vectors for the north-south profile of AL7 at 15 403	670
	cycles.	
8.34c	Displacement vectors for the north-south profile of AL7 at 17 403	671
	cycles.	
8.34d	Displacement vectors for the north-south profile of AL7 at 30 056	672
	cycles.	
8.35a	Horizontal displacement contours for the north-south profile of AL7	673
	at 15 403 cycles.	
8.35b	Horizontal displacement contours for the north-south profile of AL7	674
	at 30 403 cycles.	
8.36a	Block plot of the east-west profile of AL7 at equilibrium.	675
8.36b	Displacement vectors for the east-west profile of AL7 at 13 000	676
	cycles.	
8.36c	Displacement vectors for the east-west profile of AL7 at 20 000	677
	cycles.	
8.36d	Displacement vectors for the east-west profile of AL7 at 25 056	678
	cycles.	
8.37a	Horizontal displacement contours for the east-west profile of AL7 at	679
	13 000 cycles.	
8.37b	Horizontal displacement contours for the east-west profile of AL7 at	680
	20 000 cycles.	
8.37c	Horizontal displacement contours for the east-west profile of AL7 at	681
	25 056 cycles.	
8.38a	Block plot of the east-west profile of AL17 at equilibrium.	682
8.38b	Displacement vectors for the east-west profile of AL17 at 34 360	683
	cycles.	
8.38c	Displacement vectors for the east-west profile of AL17 at 334 360	684
	cycles.	
8.38d	Displacement vectors for the east-west profile of AL17 at 404 360	685
	cycles.	
8.39	Total unbalanced forces for the east-west profile of AL17 at	686
	404 360 cycles.	

8.40a	Horizontal displacement contours for the east-west profile of AL17	687
0.405	at 54 500 cycles.	600
8.400	Horizontal displacement contours for the east-west profile of AL17	688
	at 334 360 cycles.	
8.40c	Horizontal displacement contours for the east-west profile of AL17	689
	at 404 360 cycles.	
8.41	Out of balance forces with loess smoothing function applied to pick	690
	out the main trends in unbalanced forces.	
8.42	Comparison of failure mechanisms compared with the out of	691
	balance forces for models simulating the sandstone inselbergs of	
	the Wadi Rum region.	
8.43	Exponential asymptotic model (dashed line) applied to x-	692
	displacement data for the toppling failure on the north face of AL9.	
8.44	Exponential asymptotic model (dashed line) applied to x-	693
	displacement data for the toppling failure on the north face of	
	AL12.	
8.45	Exponential asymptotic model (dashed line) applied to x-	694
	displacement data for the toppling failure on the south face of	
	AL10.	
8.46	Exponential asymptotic model (dashed line) applied to x-	695
	displacement data for the toppling failure on the south face of	
	AL11.	
8.47	Exponential asymptotic model (dashed line) applied to x-	696
	displacement data for the failures on the east (a) and south (b)	
	faces.	
8.48	Exponential asymptotic model (dashed line) applied to x-	697
	displacement data for the failures on the east (a) and south (b)	
	faces.	
8.49	Exponential asymptotic model (dashed line) applied to x-	698
	displacement data for the failures on the east (a) and south (b)	
	faces.	

xxv

8.50 Exponential asymptotic model (dashed line) applied to x-699 displacement data for the failures on the east (a) and south (b) faces. 8.51 Results of erosion rate modelling on the samples selected for ¹⁰Be 700 dating. As the erosion rate increases, the applied erosion rate correction increases the ages of the boulder. ¹⁰Be ages estimates for selected rock slope failures in the Wadi 8.52 701 Rum region. 8.53 Smoothed total unbalanced forces for AL2. ¹⁰Be ages and σ_1 error 702 have been overlaid on the graph, based on one year representing 1.5 model cycles. Smoothed total unbalanced forces for AL7 10 Be ages and σ_1 error 8.54 703 have been overlaid on the graph, based on one model cycle representing 1.5 years. 8.55 Smoothed total unbalanced forces for AL10¹⁰Be ages and σ_1 error 704 have been overlaid on the graph, based on one model cycle

representing 2.3 years.

List of Plates

Chapter 5

5.1	Incision of the Cares Gorge has divided the Central and Western	706
	Picos in to two separate massifs.	
5.2	A relict rock glacier in the Vega de Liordes formed through the	707
	downslope transport of failed slope debris.	
5.3	Debris flow system in the bottom left of the picture with the	708
	Government guesthouse of Fuente De just above.	
5.4	The large debris flow system originating at Canchorral de Hormas.	709
5.5	The cirque headwalls of Torre de Salinas, viewed from the Vega	710
	de Liordes.	
5.6	The east-west trending face of Pico de la Padierna.	711
5.7	The north face of Tiro Pedabejo.	712
5.8	The large block field forming the deposition area for failed material	713
	from the headwalls of Canchorral de Hormas.	
5.9	The rock slope investigated at Los Montes in the Deva Gorge.	714
5.10	The rock slope investigated at the crags of Algobras, Allende in the	715
	Deva Gorge.	
5.11	Triaxial testing of rock cores in a Hoek Cell (inset) inserted in to a	716
	stiff loading frame (A). Confining pressure is applied with a hand	
	pump. Uniaxial testing of cores for defining the unconfined	
	compressive strength (B).	

Chapter 6

sandstones.

6.1	Tafoni weathering and case hardening on the sandstone	717
	inselbergs of Wadi Rum.	
6.2	Example of rockfall event on the sandstone inselbergs in Wadi	718
	Rum.	
6.2	A natural rock bridge formed through weathering of the	719

xxvii

6.4	Disi and Red Ishrin Sandstone inselbergs. The Red Ishrin	720
	Sandstone is much stronger than the Disi, supporting vertical	
	slopes and much higher inselbergs	
6.5	Rounded domes are characteristic of inselbergs developed in the	721
	Disi sandstones.	
6.6	Preferential weathering of 'master' joints leads to the development	722
	of columnar inselbergs.	
6.7	Example of tensile failure of sandstone caused by basal slope	723
	sapping.	

7.1	Torre de Salinas. The UDEC model meshes were designed to	724
	capture the main features of each of the cirque headwall features.	
7.2	Pico de la Padierna. (A) is a view of the whole ridge, (B) the	725
	central section, (C) the western portion and (D) the eastern end.	
7.3	(A) The north face of Tiro Pedabejo (B) the south-west face of	726
	Tiro Pedabejo from the Canal de Pedabejo. The full free face is	
	just off the picture.	
7.4	Canchorral de Hormas. (A) View of the boulder field (B) View of	727
	the site from the end of the Deva Gorge. The red circle marks its	
	location.	
7.5	Canchorral de Hormas. (A) View of the boulder field (B) View of	728
	the site from the end of the Deva Gorge. The red circle marks its	
	location.	
7.6	(A) General view of Allende from the south showing the west,	729
	south and east faces (B) View of the south face of Allende.	
7.7	The north face of Torre de Salinas from the Collado de Jermoso,	730
	Picos de Europa.	
7.8	View of Pena Remona.	731
7.9	Sampling for cosmogenic isotope analysis at Pico de la Padierna.	732

- 7.10 Sampling of boulders for cosmogenic isotope analysis at Tiro 733 Pedabejo. (A) General geomorphic setting of boulders of boulder 2, with an exposure age of 7459 \pm 214 (B) close up view of boulder 1, with a calculated exposure age of 7824 \pm 403 yrs BP.
- 7.11 Boulders selected for cosmogenic sampling at Allende. (A) 734 Geomorphic setting of boulder 1, with a calculated exposure age of 6540 ± 636 and (B) boulder 2, with a 36 Cl exposure age of 6575 ± 242 yrs BP.
- 7.12 Evidence that the south face of Pico de la Padierna still represents 735 an overdip slope and that future failures are likely.

8.1	Evidence that the south face of Pico de la Padierna still represents	736
	an overdip slope and that future failures are likely.	
8.2	Evidence that the south face of Pico de la Padierna still represents	737
	an overdip slope and that future failures are likely.	
8.3	North-south profile of AL10 from the west face (A) and the north-	738
	south profile showing a large failure on the south face from the	
	eastern end of the inselberg (B).	
8.4	North-south profile of AL10 from the west face (A) and the north-	739
	south profile showing a large failure on the south face from the	
	eastern end of the inselberg (B).	
8.5	East-west profile of AL3, taken from the south face (A). Close up	740
	view of the failure on the west face of the inselberg (B). The	
	inselberg is composed entirely of Salib Arkosic sandstone, pushed	
	up due to normal faulting.	
8.6	West face of AL2 (B) showing a small cap of Disi sandstone on the	741
	upper part of the inselberg. The north face of AL2 is shown in (B).	
8.7	South face of AL7 showing a large failure and preferential	742
	weathering of joints, producing the 'tower' morphology.	
8.8	The west face of AL17, in the Barra Canyon, showing evidence of	743
	large-scale slope collapse.	

- 8.9 View from the top of the rockfall debris on the west face of AL17, 744 with the Barra Canyon located in the centre of the picture.
- 8.10 Boulders being sampled for cosmogenic dating from failed rock 745 slopes in Wadi Rum, Jordan.

List of Appendices

All appendices are to be found on the disk which is attached to the back cover of Volume 2 of this thesis. The appendices are chapter ordered and the filename corresponds to the appendix number. For the UDEC input files, where the letter 'v' is used, values are varied for the different model runs.

Chapter 3

3.1 Basic program for calculating the angle of intersection between a joint plane and a UDEC mesh.

Chapter 4

- 4.1 A FISH function to calculate strain accumulation at gridpoints.
- 4.2 UDEC input file for a 1 m sandstone rock mass with variable joint spacing. A ' ν ' indicates that the block size parameter was varied.
- 4.3 UDEC input file for a 1 m limestone rock mass with variable joint spacing. A 'v' indicates that the block size parameter was varied.
- 4.4 UDEC input file for a 1 m granite rock mass with variable joint spacing. A 'v' indicates that the block size parameter was varied.
- 4.5 UDEC input file for a 10 m sandstone rock mass with variable joint spacing. A 'v' indicates that the block size parameter was varied.
- 4.6 UDEC input file for a 10 m limestone rock mass with variable joint spacing. A 'v' indicates that the block size parameter was varied.
- 4.7 UDEC input file for a 10 m granite rock mass with variable joint spacing. A ' ν ' indicates that the block size parameter was varied.
- 4.8 UDEC input file for a 100 m sandstone rock mass with variable joint spacing. A 'v' indicates that the block size parameter was varied.
- 4.9 UDEC input file for a 100 m limestone rock mass with variable joint spacing. A 'v' indicates that the block size parameter was varied.
- 4.10 UDEC input file for a 100 m granite rock mass with variable joint spacing. A 'v' indicates that the block size parameter was varied.
- 4.11 UDEC input file for a 1000 m sandstone rock mass with variable joint spacing. A 'v' indicates that the block size parameter was varied.

xxxi

- 4.12 UDEC input file for a 1000 m limestone rock mass with variable joint spacing. A 'v' indicates that the block size parameter was varied.
- 4.13 UDEC input file for a 1000 m granite rock mass with variable joint spacing. A 'v' indicates that the block size parameter was varied.

- 7.1 UDEC input command file used to simulate the northern cirque headwall at Torre de Salinas.
- 7.2 UDEC input command file used to simulate the central cirque headwall at Torre de Salinas.
- 7.3 UDEC input command file used to simulate the southern cirque headwall at Torre de Salinas.
- 7.4 UDEC input command file used to simulate the north-south profile of the western section of Pico de la Padierna.
- 7.5 UDEC input command file used to simulate the north-south profile of the central section of Pico de la Padierna.
- 7.6 UDEC input command file used to simulate the north-south profile of the eastern section of Pico de la Padierna.
- 7.7 UDEC input command file used to simulate the north-south profile of Tiro Pedabejo.
- 7.8 UDEC input command file used to simulate the east-west profile of Tiro Pedabejo.
- 7.9 UDEC input command file used to simulate the north-south profile of Canchorral de Hormas.
- 7.10 UDEC input command file used to simulate the east-west profile of Canchorral de Hormas.
- 7.11 UDEC input command file used to simulate the east-west profile of Los Montes with no simulated road-cut.
- 7.12 UDEC input command file used to simulate the east-west profile of Los Montes with simulated road-cut.
- 7.13 UDEC input command file used to simulate the north-south profile of Los Montes.
- 7.14 UDEC input command file used to simulate the north-south profile of Allende.
- 7.15 UDEC input command file used to simulate the east-west profile of Allende.

8.1	UDEC input command file used to simulate the north-south profile of AL9
8.2	UDEC input command file used to simulate the east-west profile of AL9.
8.3	UDEC input command file used to simulate the north-south profile of AL12.
8.4	UDEC input command file used to simulate the east-west profile of AL12.
8.5	UDEC input command file used to simulate the north-south profile of AL10.
8.6	UDEC input command file used to simulate the east-west profile of AI 10.
8.7	UDEC input command file used to simulate the north-south profile of Al 11
8.8	UDEC input command file used to simulate the east-west profile of
8.9	UDEC input command file used to simulate the north-south profile
8.10	UDEC input command file used to simulate the east-west profile of
8.11	UDEC input command file used to simulate the north-south profile
8.12	UDEC input command file used to simulate the east-west profile of
8.13	UDEC input command file used to simulate the north-south profile of AL7
8.14	UDEC input command file used to simulate the east-west profile of
8.15	UDEC input command file used to simulate the east-west profile of AL17.

Figures

Figure 2.1: Process-Form-Material interaction triangle (after Allison, 1996). The triangle shows where research methodologies lay in relation process, materials and form. An adequate understanding of geomorphological evolution of landforms can only be gained if reference is made to material properties, the shape of the landform and the processes responsible for the evolution of the landform. The current research is embedded in the centre of this relationship utilising geotechnical information, morphometric data and process rates in understanding landform evolution.

Hypothetical scales

(used for theoretical modelling)

Scales in the natural environment

Mt. Thor, Baffin Island. Note the steeply dipping bedding out of the free-face.

Troll Wall, Norway. The face was formed by a post-glacial rock avalanche.

Porru Bolu, Picos de Europa is formed from a large truncated pillar.

Sandstone inselberg, Wadi Rum, Jordan. Vertical joints control failure.

Great Close Scar, Yorkshire Dales, UK. Small cliff in limestone with block detachment.

Ingleborough summit cliffs in Yoredale mudstone, Yorkshire Dales.

Figure 4.1: Hypothetical slope scales and examples of natural slopes at these scales. The scale boundaries used are a hierarchical framework, with a continuum of slope scales between the boundaries defined here.

Figure 4.2: Stress boundary conditions imposed on each model. Arrows represent stress boundaries, while the circles / squares indicate a velocity boundary used to fix the model in space.

Figure 4.3: Stress-strain response of unjointed 1 m rock masses to simulate the behaviour of intact material.

Figure 4.4: Stress-strain response of a 1 m sandstone rock mass with varying block sizes.

318

Figure 4.5: Stress-strain response of a 1 m limestone rock mass with varying block sizes.

Figure 4.6: Stress-strain response of a 1 m granite rock mass with varying block sizes.

320

0.03 0.02

0.01

0

0

0.5

1

0.05 m

2

1.5

0.1 m - 0.2 m -

2.5

1m Sandstone

0.3 m -0.4 m -0.5 m

3

3.5

4

Figure 4.7: Comparative axial strain curves for 1 m rock masses composed of different block sizes.

Figure 4.8: Joint normal closure magnitude for 1 m rock masses in limestone, sandstone and granite.

Figure 4.9: Deformation moduli for 1 m rock masses in limestone, sandstone and granite.

Figure 4.10a: Strain zone development in a 1 m limestone rock mass with 0.05 m block size.

Figure 4.10b: Strain zone development in a 1 m limestone rock mass with 0.1 m block size.

Figure 4.10c: Strain zone development in a 1 m limestone rock mass with 0.2 m block size.

Figure 4.10d: Strain zone development in a 1 m limestone rock mass with 0.3 m block size.

Figure 4.10e: Strain zone development in a 1 m limestone rock mass with 0.4 m block size.

Figure 4.10f: Strain zone development in a 1 m limestone rock mass with 0.5 m block size.

10-

Figure 4.11a: Strain zone development in a 1 m sandstone rock mass with 0.05 m block size.

Figure 4.11b: Strain zone development in a 1 m sandstone rock mass with 0.1 m block size.

Figure 4.11c: Strain zone development in a 1 m sandstone rock mass with 0.2 m block size.

R.

Figure 4.11d: Strain zone development in a 1 m sandstone rock mass with 0.3 m block size.

Figure 4.11e: Strain zone development in a 1 m sandstone rock mass with 0.4 m block size.

Figure 4.11f: Strain zone development in a 1 m sandstone rock mass with 0.5 m block size.

Figure 4.12a: Strain zone development in a 1 m granite rock mass with 0.05 m block size.

Figure 4.12b: Strain zone development in a 1 m granite rock mass with 0.1 m block size.

Figure 4.12c: Strain zone development in a 1 m granite rock mass with 0.2 m block size.

Figure 4.12d: Strain zone development in a 1 m granite rock mass with 0.3 m block size.

Figure 4.12e: Strain zone development in a 1 m granite rock mass with 0.4 m block size.

Figure 4.12f: Strain zone development in a 1 m granite rock mass with 0.5 m block size.

ėī.

Figure 4.13: Joint shear magnitude for 1 m rock masses in limestone, sandstone and granite.

Figure 4.14: Displacement vector plots for a 1m limestone rock mass with 0.05 and 0.1 m block edge length.

6.....

Figure 4.15: Displacement vector plots for a 1m limestone rock mass with 0.2 and 0.3 m block edge length.

Figure 4.16: Displacement vector plots for a 1m limestone rock mass with 0.4 and 0.5 m block edge length.

Figure 4.17: Stress-strain in response of a 10 m limestone rock mass with varying block sizes.

Figure 4.18: Stress-strain response of a 10 m sandstone rock mass with varying block sizes.

Figure 4.19: Stress-strain response of a 10 m granite rock mass with varying block sizes.

348

Figure 4.20: Deformation moduli during loading for 10 m limestone, sandstone and granite rock masses.

Figure 4.21: Joint normal closure during loading for 10 m limestone, sandstone and granite rock masses.

Figure 4.22a: Strain zone development in a 1 m limestone rock mass with 0.5 m block size.

Figure 4.22b: Strain zone development in a 1 m limestone rock mass with 1 m block size.

Figure 4.22c: Strain zone development in a 1 m limestone rock mass with 2 m block size.

Figure 4.22d: Strain zone development in a 1 m limestone rock mass with 3 m block size.

Figure 4.22e: Strain zone development in a 1 m limestone rock mass with 4 m block size.

Figure 4.22f: Strain zone development in a 1 m limestone rock mass with 5 m block size.

Figure 4.23a: Strain zone development in a 10 m sandstone rock mass with 0.5 m block size.

Figure 4.23b: Strain zone development in a 10 m sandstone rock mass with 1 m block size.

-<u>h</u>

Figure 4.23c: Strain zone development in a 10 m sandstone rock mass with 2 m block size.

Figure 4.23d: Strain zone development in a 10 m sandstone rock mass with 3 m block size.

Figure 4.23e: Strain zone development in a 10 m sandstone rock mass with 4 m block size.

Figure 4.23f: Strain zone development in a 10 m sandstone rock mass with 5 m block size.

13-

Figure 4.24a: Strain zone development in a 10 m granite rock mass with 0.5 m block size.

Figure 4.24b: Strain zone development in a 10 m granite rock mass with 1 m block size.

Figure 4.24c: Strain zone development in a 10 m granite rock mass with 2 m block size.

ь.

Figure 4.24d: Strain zone development in a 10 m granite rock mass with 3 m block size.

Figure 4.24e: Strain zone development in a 10 m granite rock mass with 4 m block size.

Ŀ,

Figure 4.24f: Strain zone development in a 10 m granite rock mass with 5 m block size.

Figure 4.25: Block rotation magnitude for 10 m limestone, sandstone and granite rock masses.

Figure 4.26: Joint shear magnitude during loading for 10 m limestone, sandstone and granite rock masses.

sizes.

Figure 4.30: Deformation moduli during loading for 100 m limestone, sandstone and granite rock masses.

Figure 4.31: Joint normal closure during loading for 100 m limestone, sandstone and granite rock masses.

Figure 4.32: Joint shear magnitude during loading for 100 m limestone, sandstone and granite rock masses.

Figure 4.33: Block rotation magnitude for 100 m limestone, sandstone and granite rock masses.

Figure 4.34a: Strain zone development in a 100 m limestone rock mass with 5 m block size.

Figure 4.34b: Strain zone development in a 100 m limestone rock mass with 10 m block size.

Figure 4.34c: Strain zone development in a 100 m limestone rock mass with 20 m block size.

Figure 4.34d: Strain zone development in a 100 m limestone rock mass with 30 m block size.

Figure 4.34e: Strain zone development in a 100 m limestone rock mass with 40 m block size.

Figure 4.34f: Strain zone development in a 100 m limestone rock mass with 50 m block size.

Figure 4.35a: Strain zone development in a 100 m sandstone rock mass with 5 m block size.

ŀ

Figure 4.35b: Strain zone development in a 100 m sandstone rock mass with 10 m block size.

Figure 4.35c: Strain zone development in a 100 m sandstone rock mass with 20 m block size.

Figure 4.35d: Strain zone development in a 100 m sandstone rock mass with 30 m block size.

Figure 4.35e: Strain zone development in a 100 m sandstone rock mass with 40 m block size.

Figure 4.35f: Strain zone development in a 100 m sandstone rock mass with 50 m block size.

Figure 4.36a: Strain zone development in a 100 m granite rock mass with 5 m block size.

Figure 4.36b: Strain zone development in a 100 m granite rock mass with 10 m block size.

Figure 4.36c: Strain zone development in a 100 m granite rock mass with 20 m block size.

Figure 4.36d: Strain zone development in a 100 m granite rock mass with 30 m block size.

Figure 4.36e: Strain zone development in a 100 m granite rock mass with 40 m block size.

Figure 4.36f: Strain zone development in a 100 m granite rock mass with 50 m block size.

Figure 4.40: Deformation moduli for 1000 m limestone, sandstone and granite rock masses.

Figure 4.41: Joint normal closure for 1000 m limestone, sandstone and granite rock masses.

Figure 4.42: Joint shear displacement for 1000 m limestone, sandstone and granite rock masses.

Figure 4.43: Block rotation magnitudes for 1000 m limestone, sandstone and granite rock masses.

Figure 4.44a: Strain zone development in a 1000 m limestone rock mass with 50 m block size.

Figure 4.44b: Strain zone development in a 1000 m limestone rock mass with 100 m block size.

Figure 4.44c: Strain zone development in a 1000 m limestone rock mass with 200 m block size.

a will be a set of the set of the

Figure 4.44d: Strain zone development in a 1000 m limestone rock mass with 300 m block size.

Figure 4.44e: Strain zone development in a 1000 m limestone rock mass with 400 m block size.

Figure 4.44f: Strain zone development in a 1000 m limestone rock mass with 500 m block size.

Figure 4.45a: Strain zone development in a 1000 m sandstone rock mass with 50 m block size.

Figure 4.45b: Strain zone development in a 1000 m sandstone rock mass with 100 m block size.

Figure 4.45c: Strain zone development in a 1000 m sandstone rock mass with 50 m block size.

Figure 4.45d: Strain zone development in a 1000 m sandstone rock mass with 300 m block size.

Figure 4.45e: Strain zone development in a 1000 m sandstone rock mass with 400 m block size.

Figure 4.45f: Strain zone development in a 1000 m sandstone rock mass with 500 m block size.

Figure 4.46a: Strain zone development in a 1000 m granite rock mass with 50 m block size.

Figure 4.46b: Strain zone development in a 1000 m granite rock mass with 100 m block size.

Figure 4.46c: Strain zone development in a 1000 m granite rock mass with 200 m block size.

A DE LA DE L

Figure 4.46d: Strain zone development in a 1000 m granite rock mass with 300 m block size.

Figure 4.46e: Strain zone development in a 1000 m granite rock mass with 400 m block size.

Figure 4.46f: Strain zone development in a 1000 m granite rock mass with 500 m block size.

Figure 4.47: The stress-strain response of a rock mass compared to that commonly seen for intact rock.

Figure 4.48: Summary stress-strain response of the two failure mechanisms which develop due to block size effects in the simulated rock masses.

Figure 4.50: Link between theoretical modelling and slope form

Figure 4.51: Comparison of joint normal closure and deformation modulus for all block sizes and lithologies at a range of outcrop scales.

Figure 4.52: Comparison of deformation moduli for all scales and all lithologies (a) and comparison of joint normal closure magnitude for all scales and lithologies (b).

Figure 5.1: (A) Regional topographic and structural situation of the Picos de Europa and relation to the Elsa Nappe Unit (Earthetc, 2004). (B) Topography of the Picos de Europa, northern Spain (Adapted from Smart, 1986).

Figure 5.2: The main geological successions found in the Picos de Europa (Adapted from Smart, 1986).

Figure 5.3: Geological setting of the Andara region of the Eastern Massif of the Picos de Europa. This area encompasses the sites Canchorral de Hormas, Deva Gorge and Allende (Adapted from Smart, 1986).

Figure 5.4: General geological setting of the Vega de Liordes, which encompasses the sites Pico de la Padierna, Tiro Pedabejo and Torre de Salinas.

Figure elements and linkages in the Picos de Europa mountains (Source: Author). 0.0 Landscape component model depicting the most important landscape

Figure 5.12: Histograms and quantile plots of joint spacing with a fitted exponential distribution.

Figure 5.13: Histograms and quantile plots of joint spacing with compared with an ideal Weibull distribution.

Figure 5.14: Aggregated joint spacing data from all sites in the Picos de Europa show an approximately lognormal distribution. The solid line represents an ideal lognormal distribution and the symbols the actual joint spacing data. Bedding data is excluded.

Figure 5.15: Cumulative probability distribution functions of joint spacing for each site investigated in the Picos de Europa. Joint spacing is plotted

1 = Torre de Salinas, 2 = Pico de la Padierna, 3 = Tiro Pedabejo, 4 = Canchorral de Hormas, 5 = Los Montes (Deva Gorge) 6 = Allende.

Figure 5.18: Mohr's circles (A) and sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure envelope (B) for Pico de la Padierna, Picos de Europa.

Figure 5.19: Mohr's circles (A) and sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure envelope (B) for Tiro Pedabejo, Picos de Europa.

Figure 5.20: Mohr's circles (A) and sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure envelope (B) for Canchorral de Hormas, Picos de Europa.

Figure 5.21: Mohr's circles (A) and sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure envelope (B) for Deva Gorge limestones, Picos de Europa.

Figure 5.22: Axial (red line), lateral (green line) and volumetric (black line) stressstrain curves for Pico de la Padierna limestones for specimens tested at 0 (UC), 10 and MPa confining pressures. Lateral and axial strains for 15MPa confining pressure were unavailable due to strain gauge failure.

Figure 5.23: Axial (red line), lateral (green line) and volumetric (black line) stress-strain curves for Tiro Pedabejo limestones for specimens tested at 0 (UC), 10 and 15 MPa confining pressures.

0.1

0

-0.2

-0.1

% Lateral strain

0.2

% Axial strain

0.3

Figure 5.25: Axial, lateral and volumetric stress-strain curves for Deva Gorge limestones for specimens tested at 0 (UC), 10 and 15 MPa confining pressures.

Figure 5.26: Comparative axial strain curves for Pico de la Padierna and Tiro Pedabejo at 0 (UC), 10 and 15 MPa confining pressures.

Figure 5.27: Comparative axial strain curves Canchorral de Hormas and Deva Gorge limestones at 0 (UC), 10 and 15 MPa confining pressures.

Figure 5.28: (A) Axial strain plotted against Confining pressure, P'o (MPa) to help determine whether the limestones are deforming in a very brittle, brittle, transitional or ductile manner. (B) Idealised strain response of limestone under increasing P'o (After Donath *et al.*, 1971)

Figure 6.1: Location of Al-Quwayra and Wadi Rum, southern Jordan (Adapted from Bender, 1975).

Figure from Osborn, 1985). 6.2: Broad geological setting of the Wadi Rum-Al-Quwayra area (Adapted

Figure 6.4: (A) Earthsat/NASA mosaic of Wadi Rum (Earthetc, 2004) and (B) map showing the extent of the sandstone inselbergs and field sites within the Al Quwayra Wadi Rum study area (Adapted from Osborn and Duford, 1981). The red box shows the extent of map (B).

in the Al Quwayra Wadi Rum study area. Figure 6.5: Landscape component model showing the important geomorphic features

Figure 6.6: Contoured polar projection of the discontinuities at AL1, Wadi Rum, Jordan.

Figure 6.7: Contoured polar projection of the discontinuities at AL2, Wadi Rum, Jordan.

Figure 6.8: Contoured polar projection of the discontinuities at AL3, Wadi Rum, Jordan.

Figure 6.9: Contoured polar projection of the discontinuities at AL4, Wadi Rum, Jordan.

Figure 6.10: Contoured polar projection of the discontinuities at AL5, Wadi Rum, Jordan.

Figure 6.11: Contoured polar projection of the discontinuities at AL6, Wadi Rum, Jordan.

Figure 6.12: Contoured polar projection of the discontinuities at AL7, Wadi Rum, Jordan.

Figure 6.13: Contoured polar projection of the discontinuities at AL8, Wadi Rum, Jordan.

Figure 6.14: Contoured polar projection of the discontinuities at AL9, Wadi Rum, Jordan.

Figure 6.15: Contoured polar projection of the discontinuities at AL10, Wadi Rum, Jordan.

Figure 6.16: Contoured polar projection of the discontinuities at AL11, Wadi Rum, Jordan.

Figure 6.17: Contoured polar projection of the discontinuities at AL12, Wadi Rum, Jordan.

Figure 6.18: Contoured polar projection of the discontinuities at AL13, Wadi Rum, Jordan.

Figure 6.19: Contoured polar projection of the discontinuities at AL14, Wadi Rum, Jordan.

Figure 6.20: Contoured polar projection of the discontinuities at AL15, Wadi Rum, Jordan.

Figure 6.21: Contoured polar projection of the discontinuities at AL16, Wadi Rum, Jordan.

Figure 6.22: Contoured polar projection of the discontinuities at AL17, Wadi Rum, Jordan.

Figure 6.23: Dotplots of lumped joint spacing data for all sites examined in the Al-Quwayra–Wadi Rum region of southern Jordan. The upper bars through the plot represent the upper quartile, mid bars the median and lower bars the lower quartiles.

for all sites in the Al Quwayra-Wadi Rum region, Jordan. Figure 6.24: Quantiles of joint spacing compared with an ideal exponential distribution

Figure 6.25: Log normal distributions of lumped discontinuity data for all sites in the Al-Quwayra and Wadi Rum areas of Jordan. The solid line represents an ideal lognormal distribution, with a spread of data points around this.

sites in the Al Quwayra-Wadi Rum region, Jordan. Figure 6.26: Quantiles of joint spacing compared with fitted Weibull distributions for all

scatter exists in the tails of the distributions. same population mean. Note that although the parameters are randomly generated, Figure 6.27: AL7 compared with randomly generated Weibull distributions given the

Figure 6.28: Quantiles of joint spacing compared with a gamma distribution for all sites in the Al Quwayra-Wadi Rum region, Jordan.

Figure 6.29: Summary L-moments for aggregated joint spacing for all sites. The first two L-moments are shown in (a) and the second two in (b).

Figure 6.30: Mohr's circles (A) and sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure envelope (B) for Red Ishrin Sandstone, Jordan.

Figure 6.31: Mohr's circles (A) and sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure envelope (B) for Disi Sandstone, Jordan.

Figure 6.32: Mohr's circles (A) and sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure envelope (B) for Salib Arkosic Sandstone, Jordan.

Figure 6.33: Axial (red line), lateral (green line) and volumetric (black line) stress-strain curves for Red Ishrin sandstones for specimens tested at 0 (UC), 10 and 15 MPa confining pressures.

Figure 6.34: Axial (red line), lateral (green line) and volumetric (black line) stressstrain curves for Disi sandstones for specimens tested at 0 (UC), 10 and 15 MPa confining pressures.

Figure 6.35: Axial, lateral and volumetric stress-strain curves for Salib Arkosic sandstone for specimens tested at 0 (UC), 10 and 15 MPa confining pressures. The volumetric curve is not included on the 10 MPa graph as it is identical to the lateral strain curve, representing data error.

Figure 6.36: Axial strain plotted against Confining pressure, P'o (MPa) to help determine whether the sandstones are deforming in a very brittle, brittle, transitional or ductile manner.

de Europa at equilibrium. Figure 7.1: Block plot of the north section of the cirque wall of Torre de Salinas, Picos

wall of Torre de Salinas at equilibrium. Figure 7.2: Total unbalanced forces for the north-south profile of the northern cirque

wall of Torre de Salinas at 100 000 cycles Figure 7.3a: Displacement vectors for the north-south profile of the northern cirque

wall of Torre de Salinas at 600 000 cycles Figure 7.3d: Displacement vectors for the north-south profile of the northern cirque

of Torre de Salinas at 100 000 cycles. Figure 7.4b:

Torre de Salinas at 200 000 cycles. Figure 7.4c: Horizontal displacement contours of the north section of the cirque wall of

of Torre de Salinas at 350 000 cycles Figure 7.4d: Horizontal displacement contours of the north section of the cirque wall

Torre de Salinas at 600 000 cycles Figure 7.4e: Horizontal displacement contours of the north section of the cirque wall of

wall of Torre de Salinas at 600 000 cycles Figure 7.5: Total unbalanced forces for the north-south profile of the northern cirque

de Salinas, Picos de Europa, at equilibrium. Figure 7.6a: Block plot of the east-west profile of the central cirque headwall for Torre

Torre de Salinas at 100 000 cycles Figure 7.6b: Displacement vectors for the east-west profile of the central cirque wall of

Torre de Salinas at 250 000 cycles. Figure 7.6c: Displacement vectors for the east-west profile of the central cirque wall of

headwall for Torre de Salinas at equilibrium. Figure 7.7a: Horizontal displacement contours for the east-west profile of the cirque

headwall for Torre de Salinas 250 000 cycles

headwall for Torre de Salinas 500 000 cycles

of Torre de Salinas at 500 000 cycles Figure 7.8: Total unbalanced forces for the east-west profile of the central cirque wall

headwall for Torre de Salinas, Picos de Europa, at 200 000 cycles Figure 7.9b: Displacement vectors of the east-west profile of the southern cirque

headwall for Torre de Salinas, Picos de Europa, at 400 000 cycles Figure 7.9c: Displacement vectors of the east-west profile of the southern cirque

headwall for Torre de Salinas, Picos de Europa, at 800 000 cycles Figure 7.9d: Displacement vectors of the east-west profile of the southern cirque

southern cirque headwall for Torre de Salinas at equilibrium.

southern cirque headwall for Torre de Salinas at 200 000 cycles Figure 7.10b: Horizontal displacement contours for the east-west profile of the

southern cirque headwall for Torre de Salinas at 400 000 cycles Figure 7.10c: Horizontal displacement contours for the east-west profile of the

ridge of Pico de La Padierna at equilibrium. Figure 7.11a: Block plot of the north-south profile of the far western section for the

section for the ridge of Pico de La Padierna at 530 000 cycles.

western section of the ridge of Pico de La Padierna at 530 000 cycles Figure 7.12: Horizontal displacement contours for the north-south profile of the far

Padierna at equilibrium. Figure 7.13a: Block plot of the north-south profile of the central ridge of Pico de La

Pico de La Padierna at 150 000 cycles. the north-south profile of the central ridge of

Pico de La Padierna at 550 000 cycles. Figure 7.13c: Displacement vectors for the north-south profile of the central ridge of

Padierna at 500 000 cycles. Figure 7.14: Block plot of the north-south profile of the central ridge of Pico de La

central ridge of Pico de La Padierna at equilibrium. Figure 7.15a: Horizontal displacement contours for the north-south profile of the

central ridge of Pico de La Padierna at 150 000 cycles Figure 7.15b: Horizontal displacement contours for the north-south profile of the

Figure central ridge of Pico de La Padierna at 550 000 cycles. 7:15c: Horizontal displacement contours for the north-south profile of the

at equilibrium. Figure 7.16: Total unbalanced forces for the north-south profile of Pico de la Padierna

ridge of Pico de La Padierna at equilibrium. Figure 7.17a: Block plot of the north-south profile of the far eastern section for the

Figure section for the ridge of Pico de La Padierna at 500 000 cycles. 7.17b: Displacement vectors for the north-south profile of the far eastern

Figure eastern section for the ridge of Pico de La Padierna at 500 000 cycles. 7.18: Horizontal displacement contours of the north-south profile of the far

JOB TITLE : Total unbalanced forces for north-south profile of eastern section of Pico de la Padierna at 500 000 cycles. (e+08) UDEC (Version 3.10) 1.60 LEGEND 1.40 29-Mar-03 3:22 cycle 500000 history plot 1.20 0.00E+00<hist 1> 1.50E+08 Vs. 0.00E+00<time> 3.69E+02 1.00 0.80 0.60 0.40 0.20 0.00 0.00 0.50 1.00 1.50 2.00 2.50 Department of Geography University of Durham 3.00 3.50 4.00 (e+02)

de la Padierna at 500 000 cycles. Figure 7.19: Total unbalanced forces for the north-south of the eastern section of Pico

Picos de Europa, at 500 000 cycles Figure 7.20b: Displacement vectors for the north-south profile for Tiro Pedabejo,

500 000 cycles. Figure 7.21: Total unbalanced forces for the north-south profile of Tiro Pedabejo at

equilibrium. Figure 7.23a: Block plot of the east-west profile for Tiro Pedabejo, Picos de Europa, at

Picos de Europa, at 201 000 cycles. Figure 7.23b: Displacement vectors for the north-south profile for Tiro Pedabejo,

Picos de Europa, at 351 000 cycles. Figure 7.23c: Displacement vectors for the north-south profile for Tiro Pedabejo,

Figure Pedabejo at 201 000 cycles. 7.24a: Horizontal displacement contours for the east-west profile of Tiro

Pedabejo at 351 000 cycles. Figure 7.24b: Horizontal displacement contours for the east-west profile of Tiro

Pedabejo at 601 000 cycles. Figure 7.24c: Horizontal displacement contours for the east-west profile of Tiro

601 000 cycles. Figure 7.25: Total unbalanced forces for the north-south profile of Tiro Pedabejo at

Hormas at 250 000 cycles. Figure 7.26c: Displacement vectors of the north-south profile of Canchorral de

Europa at 500 000 cycles Figure 7.26d: Block plot of the north-south profile of Canchorral de Hormas, Picos de

Figure Canchorral de Hormas at equilibrium. 7.27a: Horizontal displacement contours for the north-south profile of

Figure Canchorral de Hormas at 100 000 cycles 7.27b: Horizontal displacement contours for the north-south profile of

Canchorral de Hormas at 500 000 cycles. Figure 7.27c: Horizontal displacement contours for the north-south profile of

Figure Hormas, Picos de Europa, at 500 000 cycles. 7.28: Total unbalanced forces for the north-south profile of Canchorral de

Europa at equilibrium.

Hormas, Picos de Europa at 200 000 cycles Figure 7.29c: Displacement vectors for the east-west profile <u>q</u> Canchorral de

Hormas, Picos de Europa at 500 000 cycles Figure 7.29d: Displacement vectors for the east-west profile oť Canchorral de

de Hormas at equilibrium.

de Hormas at 100 000 cycles Figure 7.30b: Horizontal displacement contours for the east-west profile of Canchorral

de Hormas at 200 000 cycles. Figure 7.30c: Horizontal displacement contours for the east-west profile of Canchorral

Hormas at 500 000 cycles. Figure 7.31: Total unbalanced forces for the east-west profile q, Canchorral de

equilibrium.

Europa at

300 000 cycles Figure 7.33: Total unbalanced forces for the east-west profile of Los Montes a

at 300 000 cycles. Figure 7.34: Horizontal displacement contours for the east-west profile of Los Montes

a simulated road cut at equilibrium. Figure 7.35a: Block plot of the east-west profile of Los Montes, Picos de Europa with

Europa at 100 000 cycles. Figure 7.35b: Displacement vectors for the east-west profile of Los Montes, Picos de

Europa at 300 000 cycles Figure 7.35c: Displacement vectors for the east-west profile of Los Montes, Picos de

Figure Montes with simulated road cut at 100 000 cycles Horizontal displacement contours for the east-west profile of Los

Figure Montes with simulated road cut at 300 000 cycles. 7.36b: Horizontal displacement contours for the east-west profile of Los

equilibrium. Figure 7.37a: Block plot of the north-south profile of Los Montes, Picos de Europa at

Figure Montes at 100 000 cycles 7.38a: Horizontal displacement contours for the north-south profile of Los

equilibrium.

cycles.

100 000 cycles

250 000 cycles

500 000 cycles

Europa, at 500 000 cycles. Figure 7.41: Total unbalanced forces for the east-west profile of Allende, Picos de

equilibrium. Europa at

Picos de

Europa at 300 000 cycles.

Europa at 401 040 cycles. Figure 7.42d: Displacement vectors for the north-south profile of Allende, Picos de

Figure 7.43a: Horizontal displacement contours for the north-south profile of Allende at 100 000 cycles.

at 300 000 cycles Figure 7.43b: Horizontal displacement contours for the north-south profile of Allende

Figure 7.46: Comparison of the half-way time for all failures in the Picos de Europa models.

Figure 7.47: Exponential asymptotic model (dashed line) applied to x-displacement data for the failures at Torre de Salinas.

Figure 7.48: Exponential asymptotic model (dashed line) applied to x-displacement data for the failure on the north-south profile of Pico de la Padierna.

Figure 7.49: Exponential asymptotic (dashed line) applied to x-displacement data (circles) for the east-west profile of Tiro Pedabejo.

Figure 7.50: Exponential asymptotic model (dashed line) applied to x-displacement data for the failures at Canchorral de Hormas.

Figure 7.51: Exponential asymptotic model (dashed line) applied to x-displacement data for the failures at Los Montes.

Figure 7.53: Summary of the two main patterns of failure in λ -*t* space associated with brittle, catastrophic failure and self-stabilising flexural toppling failure.

Figure 7.54: Results of erosion rate modelling on the samples selected for ³⁶CL dating. As the erosion rate increases, the applied erosion rate correction decreases the ages of the boulder.

Figure 7.55: Calculated ³⁶Cl dates for rock slope failures in the Picos de Europa. The dates indicate one failure event, with almost synchronous timing.

Figure 7.56: Exhaustion model for paraglacial rock slope failure in the Picos de Europa, compared with data from Cruden and Hu (1993) in the Canadian Rockies.

Figure 7.57: Proposed model of paraglacial rock slope evolution for the Picos de Europa based on UDEC modelling, assessment of paraglacial exhaustion models and cosmogenic dating.

Figure 8.2: Total unbalanced forces for the north-south profile of AL9 at equilibrium.

Figure 8.3b: Displacement vectors for the north-south profile of AL9 at 17 000 cycles.

cycles.

15 000 cycles Figure 8.5b: Horizontal displacement contours for the north-south profile of AL9 at

17 000 cycles. Horizontal displacement contours for the north-south profile of AL9 at

40 000 cycles Figure 8.5d: Horizontal displacement contours for the north-south profile of AL9 at

Figure 8.6a: Block plot of the east-west profile of AL9 at equilibrium.

cycles.

cycles. Figure 8.8c: Displacement vectors for the north-south profile of AL12 at 15 000

cycles.

at 25 000

cycles.

12 000 cycles

15 000 cycles Figure 8.10b: Horizontal displacement contours for the north-south profile of AL12 at

25 000 cycles.

cycles.

Figure 8.12: 100 000 cycles. Horizontal displacement contours for the east-west profile of AL12 at

cycles.

13 000 cycles

15 000 cycles.

Figure 8.15: Total unbalanced forces for the north-south profile of AL10 at 21 000

Figure 8.16b: Displacement vectors for the east-west profile of AL10 at 100 000

100 000 cycles

Figure 8.18a: Block plot of the north-south profile of AL11 at equilibrium.

cycles.

cycles. Figure 8.19: Total unbalanced forces for the north-south profile of AL11 at 100 000

100 000 cycles. Horizontal displacement contours for the east-west profile of AL11 at

cycles.

Figure 8.24d: Displacement vectors for the north-south profile of AL3 at 20 000 cycles.

13 000 cycles.

20 000 cycles

Figure 8.26a: Block plot of the east-west profile of AL3 at equilibrium.

Figure 8.26b: Displacement vectors for the east-west profile of AL3 at 20 000 cycles.

20 000 cycles

150 000 cycles Figure 8.27b: Horizontal displacement contours for the east-west profile of AL3 at

cycles. Figure 8.28: Total unbalanced forces for the east-west profile of AL3 at 150 000

J

Figure 8.29a: Block plot of the north-south profile of AL2 at equilibrium.

20 000 cycles Figure 8.30a: Horizontal displacement contours for the north-south profile of AL2 at

68 502 cycles

Figure 8.31: Total unbalanced forces for the north-south profile of AL2 at 68 502

cycles.

Figure 8.32b: Displacement vectors for the east-west profile of AL2 at 100 000 cycles.

Figure 8.33: 100 000 cycles. at

Figure 8.34a: Block plot of the north-south profile of AL7 at equilibrium.

Figure 8.34b: Displacement vectors for the north-south profile of AL7 at 15 403 cycles.

Figure 8.34c: Displacement vectors for the north-south profile of AL7 at 17 403 cycles.

Figure 8.34d: Displacement vectors for the north-south profile of AL7 at 30 056 cycles.

15 403 cycles.

30 403 cycles

13 000 cycles.

20 000 cycles at

25 056 cycles Horizontal displacement contours for the east-west profile of AL7 at

Figure 8.38b: Displacement vectors for the east-west profile of AL17 at 34 360 cycles.

34 360 cycles. Figure 8.40a: Horizontal displacement contours for the east-west profile of AL17 at

687

334 360 cycles Figure 8.40b: Horizontal displacement contours for the east-west profile of AL17 at

Figure 8.40c: 404 360 cycles Horizontal displacement contours for the east-west profile of AL17 at

.

.

Figure 8.42: Comparison of failure mechanisms compared with the out of balance forces for models simulating the sandstone inselbergs of the Wadi Rum region.

Figure 8.43: Exponential asymptotic model (dashed line) applied to x-displacement data for the toppling failure on the north face of AL9.

Figure 8.44: Exponential asymptotic model (dashed line) applied to x-displacement data for the failure on the south face of AL12.

Figure 8.45: Exponential asymptotic model (dashed line) applied to x-displacement data for the toppling failure on the south face of AL10.

Figure 8.46: Exponential asymptotic model (dashed line) applied to x-displacement data for the failures on the east of AL11.

Figure 8.47: Exponential asymptotic model (dashed line) applied to x-displacement data for the failures on the east (a) and south (b) faces.

Figure 8.48: Exponential asymptotic model (dashed line) applied to x-displacement data for the failures on the north and south faces of AL2.

Figure 8.49: Exponential asymptotic model (dashed line) applied to x-displacement data for the failures on the west and south faces of AL7.

Figure 8.50: Exponential asymptotic model (dashed line) applied to x-displacement data for the failures on the west of AL17.

Figure 8.51: Results of erosion rate modelling on the samples selected for ¹⁰Be dating. As the erosion rate increases, the applied erosion rate correction increases the ages of the boulder.

Figure 8.52: ¹⁰Be ages estimates for selected rock slope failures in the Wadi Rum region. Purple represents a wet climatic period between 35 000 and 20 000 years B.P., the yellow a wet period between 12 000 and 10 000 years B.P. and the blue the Neolithic wet period between 7000 and 4400 years B.P.

Figure 8.53: Smoothed total unbalanced forces for AL2. ¹⁰Be ages and σ_1 error have been overlaid on the graph, based on one year representing 1.5 model cycles.

Figure 8.54: Smoothed total unbalanced forces for AL7 10 Be ages and σ_1 error have been overlaid on the graph, based on one model cycle representing 1.5 years.

Figure 8.55: Smoothed total unbalanced forces for AL10¹⁰Be ages and σ_1 error have been overlaid on the graph, based on one model cycle representing 2.3 years.

Plates

Plate 5.1: Incision of the Cares Gorge has divided the Central and Western Picos in to two separate massifs. The peaks surrounding the gorge rise to 2000 m, while the floor is just 400 m above sea level.

Plate 5.2: A relict rock glacier in the Vega de Liordes formed through the downslope transport of failed slope debris. The glacier is largely relict, apart from the active accumulation of debris on the left hand side.

Plate 5.3: Debris flow system in the bottom left of the picture with the Government guesthouse of Fuente De just above. The fan consists of coarse alluvium and is incised in its lower channel. Note also that prominent slope deformation in the middle of the picture. Not a good place to stay during prolonged, heavy rain.

Plate 5.4: The large debris flow system originating at Canchorral de Hormas. The red line traces the approximate source area. Although not visible on the picture, the village of Cabañas is behind the hill at the bottom of the debris flow system.

Plate 5.5: The cirque headwalls of Torre de Salinas, viewed from the Vega de Liordes. Torre del Hoyo de Liordes, the cirque reaches a high point of 2474m to the west (left) of the picture.

Plate 5.6: The east-west trending face of Pico de la Padierna. The highest part of the slope occurs to the right of the picture and decreases in height towards the west (left). The red line traces the top of the slope as a bench separates the slope from the peak seen behind, which is some distance away.

Plate 5.7: The north face of Tiro Pedabejo. The north and west faces were the most easily accessible for the collection of discontinuity data. Numerous ploughing blocks occur on the lower slopes.

Plate 5.8: The large block field forming the deposition area for failed material from the headwalls of Canchorral de Hormas. This block field also provides the source area for the large debris flow system seen in plate 5.4.

Plate 5.9: The rock slope investigated at Los Montes in the Deva Gorge. Much remedial work has taken place at the toe of the slope. Plans to widen the highway in the Gorge require cutting back of the slope toe.

Plate 5.10: The rock slope investigated at the crags of Algobras, Allende in the Deva Gorge. The slope is bounded on the left by a large canal, providing access to high level grazing.

Plate 5.11: Triaxial testing of rock cores in a Hoek Cell (inset) inserted in to a stiff loading frame (A). Confining pressure is applied with a hand pump. Uniaxial testing of cores for defining the unconfined compressive strength (B).

Plate 6.1: Tafoni weathering and case hardening on the sandstone inselbergs of Wadi Rum.

Plate 6.2: Example of rockfall event on the sandstone inselbergs in Wadi Rum.

Figure 6.3: A natural rock bridge formed through weathering of the sandstones.

Plate 6.4: Disi and Red Ishrin Sandstone inselbergs. The Red Ishrin Sandstone is much stronger than the Disi, supporting vertical slopes and much higher inselbergs.

Plate 6.5: Rounded domes are characteristic of inselbergs developed in the Disi sandstones.

Plate 6.6: Preferential weathering of 'master' joints leads to the development of columnar inselbergs.

Plate 6.7: Example of tensile failure of sandstone caused by basal slope sapping.

Plate 7.1: Torre de Salinas. The UDEC model meshes were designed to capture the main features of each of the cirque headwall features.

Figure 7.2: Pico de la Padierna. (A) is a view of the whole ridge, (B) the central section, (C) the western portion and (D) the eastern end.

Plate 7.3: (A) The north face of Tiro Pedabejo (B) the south-west face of Tiro Pedabejo from the Canal de Pedabejo. The full free face is just off the picture.

Plate 7.4: Canchorral de Hormas. (A) View of the boulder field (B) View of the site from the end of the Deva Gorge. The red circle marks its location.

Plate 7.5: The east-west profile of Los Montes, Deva Gorge from the south face. The Rio Deva is just off to the right of the picture.

Plate 7.6: (A) General view of Allende from the south showing the west, south and east faces. (B) View of the south face of Allende.

Plate 7.7: The north face of Torre de Salinas from the Collado de Jermoso, Picos de Europa. Antiscarps formed by flexural toppling on the north face can be seen in the centre of the photograph.

Plate 7.8: View of Pena Remona. The back-tilted blocks are formed due to a combination of the nature of the bedding and small rotational movements occurring at the toe of the slope, leading to large-scale deformation.

Plate 7.9: Sampling for cosmogenic isotope analysis at Pico de la Padierna.

Plate 7.10: Sampling of boulders for cosmogenic isotope analysis at Tiro Pedabejo. (A) General geomorphic setting of boulders of boulder 2, with an exposure age of 7459 \pm 214. (B) close up view of boulder 1, with a calculated exposure age of 7824 \pm 403 yrs BP.

Plate 7.11: Boulders selected for cosmogenic sampling at Allende. (A) Geomorphic setting of boulder 1, with a calculated exposure age of 6540 \pm 636 and (B) boulder 2, with a ³⁶Cl exposure age of 6575 \pm 242 yrs BP.

Plate 7.12: Evidence that the south face of Pico de la Padierna still represents an overdip slope and that future failures are likely. The angle of the slope is much greater than the friction angle and cohesion of the intact material and discontinuities.

Plate 8.1: North-south profile of AL9 (A), with close up view of the failure on the south face (B).

Plate 8.2: North-south profile of AL12 (A) with east-west profile shown in (B). The inselberg is formed in Disi sandstone.

Plate 8.3: North-south profile of AL10 from the west face (A) and the north-south profile showing a large failure on the south face from the eastern end of the inselberg (B).

Plate 8.4: North-south profile of AL11, from the west face of the inselberg (A), with the east-west profile, taken from the northern end of the inselberg shown in (B).

Plate 8.5: East-west profile of AL3, taken from the south face (A). Close up view of the failure on the west face of the inselberg (B). The inselberg is composed entirely of Salib Arkosic sandstone, pushed up due to normal faulting.

Plate 8.6: West face of AL2 (B) showing a small cap of Disi sandstone on the upper part of the inselberg. The north face of AL2 is shown in (B).

Plate 8.7: South face of AL7 showing a large failure and preferential weathering of joints, producing the 'tower' morphology. The actual failure of the rock mass is controlled by joint sets which are much more closely spaced than the preferentially weathered joints. The prominent tower on the east face of the inselberg showed evidence of instability, in addition to the south face.

Plate 8.8: The west face of AL17, in the Barra Canyon, showing evidence of largescale slope collapse. The debris slope is approximately 150 m, indicating a large volume of failed material. The failure was probably initiated by steepening of the slope through fluvial incision during a wetter climatic period.

Plate 8.9: View from the top of the rockfall debris on the west face of AL17, with the Barra Canyon located in the centre of the picture. During a wetter climatic period, this canyon was a major fluvial valley.

Plate 8.10: Boulders being sampled for cosmogenic dating from failed rock slopes in Wadi Rum, Jordan. Evidence of iron staining can be seen. The surface of the boulders showed only minimal weathering.