Modelling rock slope behaviour and evolution with reference to Northern Spain and Southern Jordan

Nelis, Simon Brett

How to cite:

Use policy
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source
• a link is made to the metadata record in Durham E-Theses
• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.
MODELLING ROCK SLOPE BEHAVIOUR AND EVOLUTION WITH REFERENCE TO NORTHERN SPAIN AND SOUTHERN JORDAN

VOLUME 2

SIMON BRETT NELIS

A copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.

Ph.D. THESIS 2004
Contents of Volume 2

List of Figures and Plates

The figures in this thesis include output from the UDEC computer simulation software and from the laboratory testing of rock. The output consists of two-dimensional block plots and filled contour block plots. The labelled notation (*10^1) indicates that the axes need to be multiplied by 10. On all UDEC plots, the horizontal and vertical axes are in meters. The plot legend includes an indication of the type of output plot, model cycle count, model time and also the contour intervals. In plots with displacement vectors, the scale presented is in meters. The notation 1 E 1 on the scale means that the scale is 1*10 m long. The values of displacement relate to actual displacements in the rock mass in meters. Where plots of unbalanced forces are presented, the x-axis is model time (s) and the y axis is force (kg m s^{-2}).

Chapter 2

2.1 Geomorphological interactions between processes, landforms and materials (Allison, 1996).

2.2 Basic failure mechanisms of rock masses under gravitational stress.

Chapter 4

4.1 Hypothetical slope scales and examples of natural slopes at these scales.

4.2 Stress boundary conditions imposed on each model.

4.3 Stress-strain response of unjointed 1 m rock masses to simulate the behaviour of intact material.

4.4 Stress-strain response of a 1 m sandstone rock mass with varying block sizes.

4.5 Stress-strain response of a 1 m limestone rock mass with varying block sizes.

4.6 Stress-strain response of a 1 m granite rock mass with varying block sizes.
Comparative axial strain curves for 1 m rock masses composed of different block sizes.

Joint normal closure magnitude for 1 m rock masses in limestone, sandstone and granite.

Deformation moduli for 1 m rock masses in limestone, sandstone and granite.

Strain zone development in a 1 m limestone rock mass with 0.05 m block size.

Strain zone development in a 1 m limestone rock mass with 0.1 m block size.

Strain zone development in a 1 m limestone rock mass with 0.2 m block size.

Strain zone development in a 1 m limestone rock mass with 0.3 m block size.

Strain zone development in a 1 m limestone rock mass with 0.4 m block size.

Strain zone development in a 1 m limestone rock mass with 0.5 m block size.

Strain zone development in a 1 m sandstone rock mass with 0.05 m block size.

Strain zone development in a 1 m sandstone rock mass with 0.1 m block size.

Strain zone development in a 1 m sandstone rock mass with 0.2 m block size.

Strain zone development in a 1 m sandstone rock mass with 0.3 m block size.

Strain zone development in a 1 m sandstone rock mass with 0.4 m block size.

Strain zone development in a 1 m sandstone rock mass with 0.5 m block size.

Strain zone development in a 1 m granite rock mass with 0.05 m block size.
4.12b Strain zone development in a 1 m granite rock mass with 0.1 m block size.
4.12c Strain zone development in a 1 m granite rock mass with 0.2 m block size.
4.12d Strain zone development in a 1 m granite rock mass with 0.3 m block size.
4.12e Strain zone development in a 1 m granite rock mass with 0.4 m block size.
4.12f Strain zone development in a 1 m granite rock mass with 0.5 m block size.
4.13 Joint shear magnitude for 1 m rock masses in limestone, sandstone and granite
4.14 Displacement vector plots for a 1m limestone rock mass with 0.05 and 0.1 m block edge length.
4.15 Displacement vector plots for a 1m limestone rock mass with 0.2 and 0.3 m block edge length.
4.16 Displacement vector plots for a 1m limestone rock mass with 0.4 and 0.5 m block edge length.
4.17 Stress-strain response of a 1 m sandstone rock mass with varying block sizes.
4.18 Stress-strain response of a 10 m sandstone rock mass with varying block sizes.
4.19 Stress-strain response of a 10 m granite rock mass with varying block sizes.
4.20 Deformation moduli during loading for 10 m limestone, sandstone and granite rock masses.
4.21 Joint normal closure during loading for 10 m limestone, sandstone and granite rock masses.
4.22a Strain zone development in a 1 m limestone rock mass with 0.5 m block size.
4.22b Strain zone development in a 1 m limestone rock mass with 1 m block size.
4.22c Strain zone development in a 1 m limestone rock mass with 2 m block size.
4.22d Strain zone development in a 1 m limestone rock mass with 3 m block size.
4.22e Strain zone development in a 1 m limestone rock mass with 4 m block size.
4.22f Strain zone development in a 1 m limestone rock mass with 5 m block size.
4.23a Strain zone development in a 10 m sandstone rock mass with 0.5 m block size.
4.23b Strain zone development in a 10 m sandstone rock mass with 1 m block size.
4.23c Strain zone development in a 10 m sandstone rock mass with 2 m block size.
4.23d Strain zone development in a 10 m sandstone rock mass with 3 m block size.
4.23e Strain zone development in a 10 m sandstone rock mass with 4 m block size.
4.23f Strain zone development in a 10 m sandstone rock mass with 5 m block size.
4.24a Strain zone development in a 10 m granite rock mass with 0.5 m block size.
4.24b Strain zone development in a 10 m granite rock mass with 1 m block size.
4.24c Strain zone development in a 10 m granite rock mass with 2 m block size.
4.24d Strain zone development in a 10 m granite rock mass with 3 m block size.
4.24e Strain zone development in a 10 m granite rock mass with 4 m block size.
4.24f Strain zone development in a 10 m granite rock mass with 5 m block size.
4.25 Block rotation magnitude for 10 m limestone, sandstone and granite rock masses.
4.26 Joint shear magnitude during loading for 10 m limestone, sandstone and granite rock masses.
4.27 Stress-strain response of a 100 m limestone rock mass with varying block sizes.
4.28 Stress-strain response of a 100 m sandstone rock mass with varying block sizes.
4.29 Stress-strain response of a 100 m granite rock mass with varying block sizes.
4.30 Deformation moduli during loading for 100 m limestone, sandstone and granite rock masses.
4.31 Joint normal closure during loading for 100 m limestone, sandstone and granite rock masses.
4.32 Joint shear magnitude during loading for 100 m limestone, sandstone and granite rock masses.
4.33 Block rotation magnitude for 100 m limestone, sandstone and granite rock masses.
4.34a Strain zone development in a 100 m limestone rock mass with 5 m block size.
4.34b Strain zone development in a 100 m limestone rock mass with 10 m block size.
4.34c Strain zone development in a 100 m limestone rock mass with 20 m block size.
4.34d Strain zone development in a 100 m limestone rock mass with 30 m block size.
4.34e Strain zone development in a 100 m limestone rock mass with 40 m block size.
4.34f Strain zone development in a 100 m limestone rock mass with 50 m block size.
4.35a Strain zone development in a 100 m sandstone rock mass with 5 m block size.
4.35b Strain zone development in a 100 m sandstone rock mass with 10 m block size. 385
4.35c Strain zone development in a 100 m sandstone rock mass with 20 m block size. 386
4.35d Strain zone development in a 100 m sandstone rock mass with 30 m block size. 387
4.35e Strain zone development in a 100 m sandstone rock mass with 40 m block size. 388
4.35f Strain zone development in a 100 m sandstone rock mass with 50 m block size. 389
4.36a Strain zone development in a 100 m granite rock mass with 5 m block size. 390
4.36b Strain zone development in a 100 m granite rock mass with 10 m block size. 391
4.36c Strain zone development in a 100 m granite rock mass with 20 m block size. 392
4.36d Strain zone development in a 100 m granite rock mass with 30 m block size. 393
4.36e Strain zone development in a 100 m granite rock mass with 40 m block size. 394
4.36f Strain zone development in a 100 m granite rock mass with 50 m block size. 395
4.37 Stress-strain response of a 1000 m limestone rock mass with varying block sizes. 396
4.38 Stress-strain in response of a 1000 m sandstone rock mass with varying block sizes. 397
4.39 Stress-strain in response of a 1000 m sandstone rock mass with varying block sizes. 398
4.40 Deformation moduli for 1000 m limestone, sandstone and granite rock masses. 399
4.41 Joint normal closure for 1000 m limestone, sandstone and granite rock masses. 400
4.42 Joint shear displacement for 1000 m limestone, sandstone and granite rock masses.

4.43 Block rotation magnitudes for 1000 m limestone, sandstone and granite rock masses.

4.44a Strain zone development in a 1000 m limestone rock mass with 50 m block size.

4.44b Strain zone development in a 1000 m limestone rock mass with 100 m block size.

4.44c Strain zone development in a 1000 m limestone rock mass with 200 m block size.

4.44d Strain zone development in a 1000 m limestone rock mass with 300 m block size.

4.44e Strain zone development in a 1000 m limestone rock mass with 400 m block size.

4.44f Strain zone development in a 1000 m limestone rock mass with 500 m block size.

4.45a Strain zone development in a 1000 m sandstone rock mass with 50 m block size.

4.45b Strain zone development in a 1000 m sandstone rock mass with 100 m block size.

4.45c Strain zone development in a 1000 m sandstone rock mass with 50 m block size.

4.45d Strain zone development in a 1000 m sandstone rock mass with 300 m block size.

4.45e Strain zone development in a 1000 m sandstone rock mass with 400 m block size.

4.45f Strain zone development in a 1000 m sandstone rock mass with 500 m block size.

4.46a Strain zone development in a 1000 m granite rock mass with 50 m block size.

4.46b Strain zone development in a 1000 m granite rock mass with 100 m block size.
4.46c Strain zone development in a 1000 m granite rock mass with 200 m block size.

4.46d Strain zone development in a 1000 m granite rock mass with 300 m block size.

4.46e Strain zone development in a 1000 m granite rock mass with 400 m block size.

4.46f Strain zone development in a 1000 m granite rock mass with 500 m block size.

4.47 The stress-strain response of a rock mass compared to that commonly seen for intact rock.

4.48 Summary stress-strain response of the two failure mechanisms which develop due to block size effects in the simulated rock masses.

4.49 Comparison of joint shear magnitude for all scales and all lithologies (a). Block rotation magnitude for all scales and lithologies (b).

4.50 Link between theoretical modelling and slope form.

4.51 Comparison of joint normal closure and deformation modulus for all block sizes and lithologies at a range of outcrop scales.

4.52 Comparison of deformation moduli for all scales and all lithologies (a) and comparison of joint normal closure magnitude for all scales and lithologies (b).

Chapter 5

5.1 Topographic setting of the Picos de Europa, northern Spain. Adapted from Smart (1984).

5.2 The main geological successions found in the Picos de Europa.

5.3 Geological setting of the Andara region of the Eastern Massif of the Picos de Europa.

5.4 General geological setting of the Vega de Liordes.

5.5 Landscape component model depicting the most important landscape elements and linkages in the Picos de Europa mountains.
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>Contoured polar projection of the discontinuities at Torre Olavarría, Picos de Europa, northern Spain.</td>
</tr>
<tr>
<td>5.7</td>
<td>Contoured polar projection for the discontinuities at Pico de la Padierna, Picos de Europa, northern Spain.</td>
</tr>
<tr>
<td>5.8</td>
<td>Contoured polar projection of the discontinuities at Tiro Pedabejo, Picos de Europa, northern Spain.</td>
</tr>
<tr>
<td>5.9</td>
<td>Contoured polar projections for the discontinuities at Canchorral de Hormas, Picos de Europa, northern Spain.</td>
</tr>
<tr>
<td>5.10</td>
<td>Contoured polar projection of the discontinuities at Alglobra, Allende, Picos de Europa, northern Spain.</td>
</tr>
<tr>
<td>5.11</td>
<td>Contoured polar projection of the discontinuities at Los Montes, Picos de Europa, northern Spain.</td>
</tr>
<tr>
<td>5.12</td>
<td>Histograms and quantile plots of joint spacing with a fitted exponential distribution.</td>
</tr>
<tr>
<td>5.13</td>
<td>Histograms and quantile plots of joint spacing with compared with an ideal Weibull distribution.</td>
</tr>
<tr>
<td>5.14</td>
<td>Aggregated joint spacing data from all sites in the Picos de Europa.</td>
</tr>
<tr>
<td>5.15</td>
<td>Cumulative probability distribution functions of joint spacing.</td>
</tr>
<tr>
<td>5.16a</td>
<td>First two L-moments for joint spacing in the Picos de Europa.</td>
</tr>
<tr>
<td>5.16b</td>
<td>Skewness and kurtosis L-moments for joint spacing in the Picos de Europa.</td>
</tr>
<tr>
<td>5.17</td>
<td>Bedding spacing data compared with a lognormal distribution.</td>
</tr>
<tr>
<td>5.18a</td>
<td>Mohr's circles for Pico de la Padierna.</td>
</tr>
<tr>
<td>5.18b</td>
<td>Sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure envelope for Pico de la Padierna.</td>
</tr>
<tr>
<td>5.19a</td>
<td>Mohr's circles for Tiro Pedabejo.</td>
</tr>
<tr>
<td>5.19b</td>
<td>Sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure envelope for Tiro Pedabejo.</td>
</tr>
<tr>
<td>5.20a</td>
<td>Mohr's circles for Canchorral de Hormas.</td>
</tr>
<tr>
<td>5.20b</td>
<td>Sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure envelope for Canchorral de Hormas.</td>
</tr>
<tr>
<td>5.21a</td>
<td>Mohr's circles for the Deva Gorge limestones.</td>
</tr>
</tbody>
</table>
5.21b Sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure envelope for the Deva Gorge limestones.

5.22 Axial, lateral and volumetric stress-strain curves for Pico de la Padierna.

5.23 Axial, lateral and volumetric stress-strain curves for Tiro Pedabejo limestones.

5.24 Axial, lateral and volumetric stress-strain curves for Canchorral de Hormas limestones.

5.25 Axial, lateral and volumetric stress-strain curves for Deva Gorge limestones.

5.26 Comparative axial strain curves for Pico de la Padierna and Tiro Pedabejo at 0, 10 and 15 Mpa confining pressures.

5.27 Comparative axial strain curves Canchorral de Hormas and Deva Gorge limestones at 0 (UC), 10 and 15 MPa confining pressures.

5.28 Axial strain plotted against Confining pressure, P'o (MPa).

Chapter 6

6.1 Location of Al-Quwayra and Wadi Rum.

6.2 The broad geological setting of the Wadi Rum–Al-Quwayra area.

6.3 Generalised geological section of the Wadi Rum-Al Quwayra region of southern Jordan.

6.4 Extent of the sandstone inselbergs within the Al Quwayra Wadi Rum study area.

6.5 Landscape component model showing the important geomorphic features in the Al Quwayra Wadi Rum study area.

6.6 Contoured polar projection of the discontinuities at AL1, Wadi Rum, Jordan.

6.7 Contoured polar projection of the discontinuities at AL2, Wadi Rum, Jordan.

6.8 Contoured polar projection of the discontinuities at AL3, Wadi Rum, Jordan.

6.9 Contoured polar projection of the discontinuities at AL4, Wadi Rum, Jordan.
6.10 Contoured polar projection of the discontinuities at AL5, Wadi Rum, Jordan.
6.11 Contoured polar projection of the discontinuities at AL6, Wadi Rum, Jordan.
6.12 Contoured polar projection of the discontinuities at AL7, Wadi Rum, Jordan.
6.13 Contoured polar projection of the discontinuities at AL8, Wadi Rum, Jordan.
6.14 Contoured polar projection of the discontinuities at AL9, Wadi Rum, Jordan.
6.15 Contoured polar projection of the discontinuities at AL10, Wadi Rum, Jordan.
6.16 Contoured polar projection of the discontinuities at AL11, Wadi Rum, Jordan.
6.17 Contoured polar projection of the discontinuities at AL12, Wadi Rum, Jordan.
6.18 Contoured polar projection of the discontinuities at AL13, Wadi Rum, Jordan.
6.19 Contoured polar projection of the discontinuities at AL14, Wadi Rum, Jordan.
6.20 Contoured polar projection of the discontinuities at AL15, Wadi Rum, Jordan.
6.21 Contoured polar projection of the discontinuities at AL16, Wadi Rum, Jordan.
6.22 Contoured polar projection of the discontinuities at AL17, Wadi Rum, Jordan.
6.23 Dotplots of lumped joint spacing data for all sites examined in the Al-Quwayra–Wadi Rum region of southern Jordan.
6.24 Quantiles of joint spacing compared with an ideal exponential distribution.
6.25 Log normal distributions of lumped discontinuity data for all sites in the Al-Quwayra and Wadi Rum areas of Jordan.
Quantiles of joint spacing compared with fitted Weibull distributions.

AL7 compared with randomly generated Weibull distributions given the same population mean.

Quantiles of joint spacing compared with a gamma distribution.

First two L-moments for joint spacing.

Skewness and kurtosis L-moments for joint spacing.

Mohr's circles for Red Ishrin sandstone.

Sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure envelope for Red Ishrin sandstone.

Mohr's circles for Disi Sandstone.

Sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure envelope for Disi sandstone.

Mohr's circles for Salib Arkosic sandstone.

Sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure envelope for Salib Arkosic sandstone.

Axial, lateral and volumetric stress-strain curves for Red Ishrin sandstones for specimens tested at 0 (UC), 10 and 15 MPa confining pressures.

Axial, lateral and volumetric stress-strain curves for Disi sandstones for specimens tested at 0 (UC), 10 and 15 MPa confining pressures.

Axial, lateral and volumetric stress-strain curves for Salib Arkosic sandstones for specimens tested at 0 (UC), 10 and 15 MPa confining pressures.

Axial strain plotted against Confining pressure, P'o (MPa) for the three sandstone types.

Chapter 7

Figure 7.1 Block plot of the north section of the cirque wall of Torre de Salinas, Picos de Europa at equilibrium.

Figure 7.1 Block plot of the north section of the cirque wall of Torre de Salinas, Picos de Europa at equilibrium.
7.3a Displacement vectors for the north-south profile of the northern cirque wall of Torre de Salinas at 100 000 cycles.

7.3b Displacement vectors for the north-south profile of the northern cirque wall of Torre de Salinas at 200 000 cycles.

7.3c Displacement vectors for the north-south profile of the northern cirque wall of Torre de Salinas at 300 000 cycles.

7.3d 3d Displacement vectors for the north-south profile of the northern cirque wall of Torre de Salinas at 600 000 cycles.

7.4a Horizontal displacement contours of the north section of the cirque wall of Torre de Salinas at equilibrium.

7.4b Horizontal displacement contours of the north section of the cirque wall of Torre de Salinas at 100 000 cycles.

7.4c Horizontal displacement contours of the north section of the cirque wall of Torre de Salinas at 200 000 cycles.

7.4d Horizontal displacement contours of the north section of the cirque wall of Torre de Salinas at 350 000 cycles.

7.4e Horizontal displacement contours of the north section of the cirque wall of Torre de Salinas at 600 000 cycles.

7.5 Total unbalanced forces for the north-south profile of the northern cirque wall of Torre de Salinas at 600 000 cycles.

7.6a Block plot of the east-west profile of the central cirque headwall for Torre de Salinas, Picos de Europa, at equilibrium

7.6b Displacement vectors for the east-west profile of the central cirque wall of Torre de Salinas at 100 000 cycles.

7.6c Displacement vectors for the east-west profile of the central cirque wall of Torre de Salinas at 250 000 cycles.

7.6d Displacement vectors for the east-west profile of the central cirque wall of Torre de Salinas at 500 000 cycles.

7.7a Horizontal displacement contours for the east-west profile of the cirque headwall for Torre de Salinas at equilibrium.

7.7b Horizontal displacement contours for the east-west profile of the cirque headwall for Torre de Salinas 100 000 cycles.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7c</td>
<td>Horizontal displacement contours for the east-west profile of the cirque headwall for Torre de Salinas 250 000 cycles.</td>
</tr>
<tr>
<td>7.7d</td>
<td>Horizontal displacement contours for the east-west profile of the cirque headwall for Torre de Salinas 500 000 cycles.</td>
</tr>
<tr>
<td>7.8</td>
<td>Total unbalanced forces for the east-west profile of the central cirque wall of Torre de Salinas at 500 000 cycles.</td>
</tr>
<tr>
<td>7.9a</td>
<td>Block plot of the east-west profile of the southern cirque headwall for Torre de Salinas, Picos de Europa, at equilibrium.</td>
</tr>
<tr>
<td>7.9b</td>
<td>Displacement vectors of the east-west profile of the southern cirque headwall for Torre de Salinas, Picos de Europa, at 200 000 cycles.</td>
</tr>
<tr>
<td>7.9c</td>
<td>Displacement vectors of the east-west profile of the southern cirque headwall for Torre de Salinas, Picos de Europa, at 400 000 cycles.</td>
</tr>
<tr>
<td>7.9d</td>
<td>Displacement vectors of the east-west profile of the southern cirque headwall for Torre de Salinas, Picos de Europa, at 800 000 cycles.</td>
</tr>
<tr>
<td>7.10a</td>
<td>Horizontal displacement contours for the east-west profile of the southern cirque headwall for Torre de Salinas at equilibrium.</td>
</tr>
<tr>
<td>7.10b</td>
<td>Horizontal displacement contours for the east-west profile of the southern cirque headwall for Torre de Salinas at 200 000 cycles.</td>
</tr>
<tr>
<td>7.10c</td>
<td>Horizontal displacement contours for the east-west profile of the southern cirque headwall for Torre de Salinas at 400 000 cycles.</td>
</tr>
<tr>
<td>7.11a</td>
<td>Block plot of the north-south profile of the far western section for the ridge of Pico de La Padierna at equilibrium.</td>
</tr>
<tr>
<td>7.11b</td>
<td>Displacement vectors of the north-south profile of the far western section for the ridge of Pico de La Padierna at 530 000 cycles.</td>
</tr>
<tr>
<td>7.12</td>
<td>Horizontal displacement contours for the north-south profile of the far western section of the ridge of Pico de La Padierna at 530 000 cycles.</td>
</tr>
<tr>
<td>7.13a</td>
<td>Block plot of the north-south profile of the central ridge of Pico de La Padierna at equilibrium.</td>
</tr>
<tr>
<td>Number</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>7.13b</td>
<td>Displacement vectors for the north-south profile of the central ridge of Pico de La Padierna at 150 000 cycles.</td>
</tr>
<tr>
<td>7.13c</td>
<td>Displacement vectors for the north-south profile of the central ridge of Pico de La Padierna at 550 000 cycles.</td>
</tr>
<tr>
<td>7.14</td>
<td>Block plot of the north-south profile of the central ridge of Pico de La Padierna at 500 000 cycles.</td>
</tr>
<tr>
<td>7.15a</td>
<td>Horizontal displacement contours for the north-south profile of the central ridge of Pico de La Padierna at equilibrium.</td>
</tr>
<tr>
<td>7.15b</td>
<td>Horizontal displacement contours for the north-south profile of the central ridge of Pico de La Padierna at 150 000 cycles.</td>
</tr>
<tr>
<td>7.15c</td>
<td>Horizontal displacement contours for the north-south profile of the central ridge of Pico de La Padierna at 550 000 cycles.</td>
</tr>
<tr>
<td>7.16</td>
<td>Total unbalanced forces for the north-south profile of Pico de la Padierna at equilibrium.</td>
</tr>
<tr>
<td>7.17a</td>
<td>Block plot of the north-south profile of the far eastern section for the ridge of Pico de La Padierna at equilibrium.</td>
</tr>
<tr>
<td>7.17b</td>
<td>Displacement vectors for the north-south profile of the far eastern section for the ridge of Pico de La Padierna at 500 000 cycles.</td>
</tr>
<tr>
<td>7.18</td>
<td>Block plot of the north-south profile of the far eastern section for the ridge of Pico de La Padierna at 500 000 cycles.</td>
</tr>
<tr>
<td>7.19</td>
<td>Total unbalanced forces for the north-south of the eastern section of Pico de la Padierna at 500 000 cycles.</td>
</tr>
<tr>
<td>7.20a</td>
<td>Figure 7.20a Block plot of the north-south profile for Tiro Pedabejo, Picos de Europa, at equilibrium.</td>
</tr>
<tr>
<td>7.20b</td>
<td>Displacement vectors for the north-south profile for Tiro Pedabejo, Picos de Europa, at 500 000 cycles.</td>
</tr>
<tr>
<td>7.21</td>
<td>Total unbalanced forces for the north-south profile of Tiro Pedabejo at 500 000 cycles.</td>
</tr>
<tr>
<td>7.22a</td>
<td>Horizontal displacement contours for the north-south profile of Tiro Pedabejo at equilibrium.</td>
</tr>
<tr>
<td>7.22b</td>
<td>Horizontal displacement contours for the north-south profile of Tiro Pedabejo at 500 000 cycles.</td>
</tr>
</tbody>
</table>
7.23a Block plot of the east-west profile for Tiro Pedabejo, Picos de Europa, at equilibrium.

7.23b Displacement vectors for the north-south profile for Tiro Pedabejo, Picos de Europa, at 201,000 cycles.

7.23c Displacement vectors for the north-south profile for Tiro Pedabejo, Picos de Europa, at 351,000 cycles.

7.23d Displacement vectors for the north-south profile for Tiro Pedabejo, Picos de Europa, at 601,000 cycles.

7.24a Horizontal displacement contours for the east-west profile of Tiro Pedabejo at 201,000 cycles.

7.24b Horizontal displacement contours for the east-west profile of Tiro Pedabejo at 351,000 cycles.

7.24c 24c Horizontal displacement contours for the east-west profile of Tiro Pedabejo at 601,000 cycles.

7.25 Total unbalanced forces for the north-south profile of Tiro Pedabejo at 601,000 cycles.

7.26a Block plot of the north-south profile of Canchorral de Hormas, Picos de Europa at equilibrium.

7.26b Displacement vectors of the north-south profile of Canchorral de Hormas at 100,000 cycles.

7.26c 26c Displacement vectors of the north-south profile of Canchorral de Hormas at 250,000 cycles.

7.26d Block plot of the north-south profile of Canchorral de Hormas, Picos de Europa at 500,000 cycles.

7.27a Horizontal displacement contours for the north-south profile of Canchorral de Hormas at equilibrium.

7.27b Horizontal displacement contours for the north-south profile of Canchorral de Hormas at 100,000 cycles.

7.27c Horizontal displacement contours for the north-south profile of Canchorral de Hormas at 500,000 cycles.

7.28 Total unbalanced forces for the north-south profile of Canchorral de Hormas, Picos de Europa, at 500,000 cycles.
7.29a Block plot of the east-west profile of Canchorral de Hormas, Picos de Europa at equilibrium. 555
7.29b Displacement vectors for the east-west profile of Canchorral de Hormas, Picos de Europa at 100 000 cycles. 556
7.29c Displacement vectors for the east-west profile of Canchorral de Hormas, Picos de Europa at 200 000 cycles. 557
7.29d Displacement vectors for the east-west profile of Canchorral de Hormas, Picos de Europa at 500 000 cycles. 558
7.30a Horizontal displacement contours for the east-west profile of Canchorral de Hormas at equilibrium. 559
7.30b Horizontal displacement contours for the east-west profile of Canchorral de Hormas at 100 000 cycles. 560
7.30c Horizontal displacement contours for the east-west profile of Canchorral de Hormas at 200 000 cycles. 561
7.31 Total unbalanced forces for the east-west profile of Canchorral de Hormas at 500 000 cycles. 562
7.32a Block plot of the east-west profile of Los Montes, Picos de Europa at equilibrium. 563
7.32b Displacement vector plot for the east-west profile of Los Montes, Picos de Europa at 300 000 cycles. 564
7.33 Total unbalanced forces for the east-west profile of Los Montes at 300 000 cycles. 565
7.34 Horizontal displacement contours for the east-west profile of Los Montes at 300 000 cycles. 566
7.35a Block plot of the east-west profile of Los Montes, Picos de Europa with a simulated road cut at equilibrium. 567
7.35b Displacement vectors for the east-west profile of Los Montes, Picos de Europa at 100 000 cycles. 568
7.35c Displacement vectors for the east-west profile of Los Montes, Picos de Europa at 300 000 cycles. 569
7.36a Horizontal displacement contours for the east-west profile of Los Montes with simulated road cut at 100 000 cycles. 570
7.36b Horizontal displacement contours for the east-west profile of Los Montes with simulated road cut at 300 000 cycles 571
7.37a Block plot of the north-south profile of Los Montes, Picos de Europa at equilibrium. 572
7.37b Displacement vectors for the north-south profile of Los Montes, Picos de Europa at 100 000 cycles. 573
7.37c Displacement vectors for the north-south profile of Los Montes, Picos de Europa at 300 000 cycles. 574
7.38a Horizontal displacement contours for the north-south profile of Los Montes at 100 000 cycles. 575
7.38b Horizontal displacement contours for the north-south profile of Los Montes at 300 000 cycles. 576
7.39a Block plot of the east-west profile of Allende, Picos de Europa at equilibrium. 577
7.39b Displacement vectors for the east-west profile of Allende at 100 000 cycles. 578
7.39c Displacement vectors for the east-west profile of Allende at 250 000 cycles. 579
7.39d Displacement vectors for the east-west profile of Allende at 500 000 cycles. 580
7.40a Horizontal displacement contours for the east-west profile of Allende at 100 000 cycles. 581
7.40b Horizontal displacement contours for the east-west profile of Allende at 250 000 cycles. 582
7.40c Horizontal displacement contours for the east-west profile of Allende at 500 000 cycles. 583
7.41 Total unbalanced forces for the east-west profile of Allende, Picos de Europa, at 500 000 cycles. 584
7.42a Block plot of the north-south profile of Allende, Picos de Europa at equilibrium. 585
7.42b Displacement vectors for the north-south profile of Allende, Picos de Europa at 100 000 cycles. 586
7.42c Displacement vectors for the north-south profile of Allende, Picos de Europa at 300 000 cycles.
7.42d Displacement vectors for the north-south profile of Allende, Picos de Europa at 401 040 cycles.
7.43a Horizontal displacement contours for the north-south profile of Allende at 100 000 cycles.
7.43b Horizontal displacement contours for the north-south profile of Allende at 300 000 cycles.
7.46 Comparison of the half-way time for all failures in the Picos de Europa models.
7.47 Exponential asymptotic model (dashed line) applied to x-displacement data for the failures at Torre de Salinas.
7.48 Exponential asymptotic model (dashed line) applied to x-displacement data for the failure on the north-south profile of Pica de la Padierna.
7.49 Exponential asymptotic model (dashed line) applied to x-displacement data for the failure on the north-south profile of Pico de la Padierna.
7.50 Exponential asymptotic model (dashed line) applied to x-displacement data for the failure on the north-south profile of Pico de la Padierna.
7.51 Exponential asymptotic model (dashed line) applied to x-displacement data for the failures at Los Montes.
7.52 Exponential asymptotic model (dashed line) applied to x-displacement data for the failures at Allende.
7.53 Summary of the two main patterns of failure in λ-t space associated with brittle, catastrophic failure and self-stabilising flexural toppling failure.
7.54 Results of erosion rate modelling on the samples selected for 36Cl dating.
7.55 Calculated 36Cl dates for rock slope failures in the Picos de Europa.
Chapter 8

8.1 Block plot of the north-south profile of AL9 at equilibrium. 603
8.2 Total unbalanced forces for the north-south profile of AL9 at equilibrium. 604
8.3a Displacement vectors for the north-south profile of AL9 at 15 000 cycles. 605
8.3b Displacement vectors for the north-south profile of AL9 at 17 000 cycles. 606
8.3c Displacement vectors for the north-south profile of AL9 at 40 000 cycles. 607
8.4 Total unbalanced forces for the north-south profile of AL9 at 40 000 cycles. 608
8.5a Horizontal displacement contours for the north-south profile of AL9 at equilibrium. 609
8.5b Horizontal displacement contours for the north-south profile of AL9 at 15 000 cycles. 610
8.5c Horizontal displacement contours for the north-south profile of AL9 at 17 000 cycles. 611
8.5d Horizontal displacement contours for the north-south profile of AL9 at 40 000 cycles. 612
8.6a Block plot of the east-west profile of AL9 at equilibrium. 613
8.6b Displacement vectors for the east-west profile of AL9 at 50 000 cycles. 614
8.7 Total unbalanced forces for the east-west profile of AL9 at 50 000 cycles. 615
8.8a Block plot of the north-south profile of AL12 at equilibrium. 616
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8b</td>
<td>Displacement vectors for the north-south profile of AL12 at 12,000 cycles</td>
</tr>
<tr>
<td>8.8c</td>
<td>Displacement vectors for the north-south profile of AL12 at 15,000 cycles.</td>
</tr>
<tr>
<td>8.8d</td>
<td>Displacement vectors for the north-south profile of AL12 at 25,000 cycles.</td>
</tr>
<tr>
<td>8.9</td>
<td>Total unbalanced forces for the north-south profile of AL12 at 25,000 cycles</td>
</tr>
<tr>
<td>8.10a</td>
<td>Horizontal displacement contours for the north-south profile of AL12 at 12,000 cycles.</td>
</tr>
<tr>
<td>8.10b</td>
<td>Horizontal displacement contours for the north-south profile of AL12 at 15,000 cycles.</td>
</tr>
<tr>
<td>8.10c</td>
<td>Horizontal displacement contours for the north-south profile of AL12 at 25,000 cycles.</td>
</tr>
<tr>
<td>8.11a</td>
<td>Block plot of the east-west profile of AL12 at equilibrium.</td>
</tr>
<tr>
<td>8.11b</td>
<td>Displacement vectors for the east-west profile of AL12 at 100,000 cycles.</td>
</tr>
<tr>
<td>8.12</td>
<td>Horizontal displacement contours for the east-west profile of AL12 at 100,000 cycles.</td>
</tr>
<tr>
<td>8.13a</td>
<td>Block plot of the north-south profile of AL10 at equilibrium.</td>
</tr>
<tr>
<td>8.13b</td>
<td>Displacement vectors for the north-south profile of AL10 at 13,000 cycles.</td>
</tr>
<tr>
<td>8.13c</td>
<td>Displacement vectors for the north-south profile of AL10 at 15,000 cycles.</td>
</tr>
<tr>
<td>8.13d</td>
<td>Displacement vectors for the north-south profile of AL10 at 21,000 cycles.</td>
</tr>
<tr>
<td>8.14a</td>
<td>Horizontal displacement contours for the north-south profile of AL10 at 13,000 cycles.</td>
</tr>
<tr>
<td>8.14b</td>
<td>Horizontal displacement contours for the north-south profile of AL10 at 15,000 cycles.</td>
</tr>
<tr>
<td>8.14c</td>
<td>Horizontal displacement contours for the north-south profile of AL10 at 21,000 cycles.</td>
</tr>
</tbody>
</table>
8.15 Total unbalanced forces for the north-south profile of AL10 at 21,000 cycles.
8.16a Block plot of the east-west profile of AL10 at equilibrium.
8.16b Displacement vectors for the east-west profile of AL10 at 100,000 cycles.
8.17 Horizontal displacement contours for the east-west profile of AL10 at 100,000 cycles.
8.18a Block plot of the north-south profile of AL11 at equilibrium.
8.18b Displacement vectors for the north-south profile of AL11 at 100,000 cycles.
8.19 Total unbalanced forces for the north-south profile of AL11 at 100,000 cycles.
8.20 Horizontal displacement contours for the east-west profile of AL11 at 100,000 cycles.
8.21a Block plot of the east-west profile of AL11 at equilibrium.
8.21b Displacement vectors for the east-west profile of AL11 at 20,000 cycles.
8.21c Displacement vectors for the east-west profile of AL11 at 40,000 cycles.
8.22a Horizontal displacement contours for the east-west profile of AL11 at 20,000 cycles.
8.22b Horizontal displacement contours for the east-west profile of AL11 at 40,000 cycles.
8.23 Total unbalanced forces for the east-west profile of AL11 at 40,000 cycles.
8.24a Block plot of the north-south profile of AL3 at equilibrium.
8.24b Displacement vectors for the north-south profile of AL3 at 13,000 cycles.
8.24c Displacement vectors for the north-south profile of AL3 at 15,000 cycles.
8.24d Displacement vectors for the north-south profile of AL3 at 20,000 cycles.
8.25a Horizontal displacement contours for the north – south profile of AL3 at 13 000 cycles.

8.25b Horizontal displacement contours for the north – south profile of AL3 at 20 000 cycles.

8.26a Block plot of the east-west profile of AL3 at equilibrium.

8.26b Displacement vectors for the east-west profile of AL3 at 20 000 cycles.

8.26c Displacement vectors for the east-west profile of AL3 at 150 000 cycles.

8.27a Horizontal displacement contours for the east-west profile of AL3 at 20 000 cycles.

8.27b Horizontal displacement contours for the east-west profile of AL3 at 150 000 cycles.

8.28 Total unbalanced forces for the east-west profile of AL3 at 150 000 cycles.

8.29a Block plot of the north-south profile of AL2 at equilibrium.

8.29b Displacement vectors for the north-south profile of AL2 at 20 000 cycles.

8.29c Displacement vectors for the north-south profile of AL2 at 68 502 cycles.

8.30a Horizontal displacement contours for the north-south profile of AL2 at 20 000 cycles.

8.30b Horizontal displacement contours for the north-south profile of AL2 at 68 502 cycles.

8.31 Total unbalanced forces for the north-south profile of AL2 at 68 502 cycles.

8.32a Block plot of the east-west profile of AL2 at equilibrium.

8.32b Displacement vectors for the east-west profile of AL2 at 100 000 cycles.

8.33 Horizontal displacement contours for the east-west profile of AL2 at 100 000 cycles.

8.34a Block plot of the north-south profile of AL7 at equilibrium.
Displacement vectors for the north-south profile of AL7 at 15 403 cycles.

Displacement vectors for the north-south profile of AL7 at 17 403 cycles.

Displacement vectors for the north-south profile of AL7 at 30 056 cycles.

Horizontal displacement contours for the north-south profile of AL7 at 15 403 cycles.

Horizontal displacement contours for the north-south profile of AL7 at 30 403 cycles.

Block plot of the east-west profile of AL7 at equilibrium.

Displacement vectors for the east-west profile of AL7 at 13 000 cycles.

Displacement vectors for the east-west profile of AL7 at 20 000 cycles.

Displacement vectors for the east-west profile of AL7 at 25 056 cycles.

Horizontal displacement contours for the east-west profile of AL7 at 13 000 cycles.

Horizontal displacement contours for the east-west profile of AL7 at 20 000 cycles.

Horizontal displacement contours for the east-west profile of AL7 at 25 056 cycles.

Block plot of the east-west profile of AL17 at equilibrium.

Displacement vectors for the east-west profile of AL17 at 34 360 cycles.

Displacement vectors for the east-west profile of AL17 at 334 360 cycles.

Displacement vectors for the east-west profile of AL17 at 404 360 cycles.

Total unbalanced forces for the east-west profile of AL17 at 404 360 cycles.
8.40a Horizontal displacement contours for the east-west profile of AL17 at 34 360 cycles.
8.40b Horizontal displacement contours for the east-west profile of AL17 at 334 360 cycles.
8.40c Horizontal displacement contours for the east-west profile of AL17 at 404 360 cycles.
8.41 Out of balance forces with loess smoothing function applied to pick out the main trends in unbalanced forces.
8.42 Comparison of failure mechanisms compared with the out of balance forces for models simulating the sandstone inselbergs of the Wadi Rum region.
8.43 Exponential asymptotic model (dashed line) applied to x-displacement data for the toppling failure on the north face of AL9.
8.44 Exponential asymptotic model (dashed line) applied to x-displacement data for the toppling failure on the north face of AL12.
8.45 Exponential asymptotic model (dashed line) applied to x-displacement data for the toppling failure on the south face of AL10.
8.46 Exponential asymptotic model (dashed line) applied to x-displacement data for the toppling failure on the south face of AL11.
8.47 Exponential asymptotic model (dashed line) applied to x-displacement data for the failures on the east (a) and south (b) faces.
8.48 Exponential asymptotic model (dashed line) applied to x-displacement data for the failures on the east (a) and south (b) faces.
8.49 Exponential asymptotic model (dashed line) applied to x-displacement data for the failures on the east (a) and south (b) faces.
Exponential asymptotic model (dashed line) applied to x-displacement data for the failures on the east (a) and south (b) faces.

Results of erosion rate modelling on the samples selected for 10Be dating. As the erosion rate increases, the applied erosion rate correction increases the ages of the boulder.

10Be ages estimates for selected rock slope failures in the Wadi Rum region.

Smoothed total unbalanced forces for AL2. 10Be ages and σ_1 error have been overlaid on the graph, based on one year representing 1.5 model cycles.

Smoothed total unbalanced forces for AL7 10Be ages and σ_1 error have been overlaid on the graph, based on one model cycle representing 1.5 years.

Smoothed total unbalanced forces for AL10 10Be ages and σ_1 error have been overlaid on the graph, based on one model cycle representing 2.3 years.
List of Plates

Chapter 5

5.1 Incision of the Cares Gorge has divided the Central and Western Picos in to two separate massifs. 706
5.2 A relict rock glacier in the Vega de Liordes formed through the downslope transport of failed slope debris. 707
5.3 Debris flow system in the bottom left of the picture with the Government guesthouse of Fuente De just above. 708
5.4 The large debris flow system originating at Canchorral de Hormas. 709
5.5 The cirque headwalls of Torre de Salinas, viewed from the Vega de Liordes. 710
5.6 The east-west trending face of Pico de la Padierna. 711
5.7 The north face of Tiro Pedabejo. 712
5.8 The large block field forming the deposition area for failed material from the headwalls of Canchorral de Hormas. 713
5.9 The rock slope investigated at Los Montes in the Deva Gorge. 714
5.10 The rock slope investigated at the crags of Algebras, Allende in the Deva Gorge. 715
5.11 Triaxial testing of rock cores in a Hoek Cell (inset) inserted in to a stiff loading frame (A). Confining pressure is applied with a hand pump. Uniaxial testing of cores for defining the unconfined compressive strength (B). 716

Chapter 6

6.1 Tafoni weathering and case hardening on the sandstone inselbergs of Wadi Rum. 717
6.2 Example of rockfall event on the sandstone inselbergs in Wadi Rum. 718
6.2 A natural rock bridge formed through weathering of the sandstones. 719
6.4 Disi and Red Ishrin Sandstone inselbergs. The Red Ishrin Sandstone is much stronger than the Disi, supporting vertical slopes and much higher inselbergs.

6.5 Rounded domes are characteristic of inselbergs developed in the Disi sandstones.

6.6 Preferential weathering of ‘master’ joints leads to the development of columnar inselbergs.

6.7 Example of tensile failure of sandstone caused by basal slope sapping.

Chapter 7

7.1 Torre de Salinas. The UDEC model meshes were designed to capture the main features of each of the cirque headwall features.

7.2 Pico de la Padierna. (A) is a view of the whole ridge, (B) the central section, (C) the western portion and (D) the eastern end.

7.3 (A) The north face of Tiro Pedabejo (B) the south-west face of Tiro Pedabejo from the Canal de Pedabejo. The full free face is just off the picture.

7.4 Canchorral de Hormas. (A) View of the boulder field (B) View of the site from the end of the Deva Gorge. The red circle marks its location.

7.5 Canchorral de Hormas. (A) View of the boulder field (B) View of the site from the end of the Deva Gorge. The red circle marks its location.

7.6 (A) General view of Allende from the south showing the west, south and east faces (B) View of the south face of Allende.

7.7 The north face of Torre de Salinas from the Collado de Jermoso, Picos de Europa.

7.8 View of Pena Remona.

7.9 Sampling for cosmogenic isotope analysis at Pico de la Padierna.
Chapter 8

8.1 Evidence that the south face of Pico de la Padierna still represents an overdip slope and that future failures are likely.

8.2 Evidence that the south face of Pico de la Padierna still represents an overdip slope and that future failures are likely.

8.3 North-south profile of AL10 from the west face (A) and the north-south profile showing a large failure on the south face from the eastern end of the inselberg (B).

8.4 North-south profile of AL10 from the west face (A) and the north-south profile showing a large failure on the south face from the eastern end of the inselberg (B).

8.5 East-west profile of AL3, taken from the south face (A). Close up view of the failure on the west face of the inselberg (B). The inselberg is composed entirely of Salib Arkosic sandstone, pushed up due to normal faulting.

8.6 West face of AL2 (B) showing a small cap of Disi sandstone on the upper part of the inselberg. The north face of AL2 is shown in (B).

8.7 South face of AL7 showing a large failure and preferential weathering of joints, producing the 'tower' morphology.

8.8 The west face of AL17, in the Barra Canyon, showing evidence of large-scale slope collapse.
8.9 View from the top of the rockfall debris on the west face of AL17, with the Barra Canyon located in the centre of the picture.

8.10 Boulders being sampled for cosmogenic dating from failed rock slopes in Wadi Rum, Jordan.
List of Appendices

All appendices are to be found on the disk which is attached to the back cover of Volume 2 of this thesis. The appendices are chapter ordered and the filename corresponds to the appendix number. For the UDEC input files, where the letter 'v' is used, values are varied for the different model runs.

Chapter 3
3.1 Basic program for calculating the angle of intersection between a joint plane and a UDEC mesh.

Chapter 4
4.1 A FISH function to calculate strain accumulation at gridpoints.
4.2 UDEC input file for a 1 m sandstone rock mass with variable joint spacing. A 'v' indicates that the block size parameter was varied.
4.3 UDEC input file for a 1 m limestone rock mass with variable joint spacing. A 'v' indicates that the block size parameter was varied.
4.4 UDEC input file for a 1 m granite rock mass with variable joint spacing. A 'v' indicates that the block size parameter was varied.
4.5 UDEC input file for a 10 m sandstone rock mass with variable joint spacing. A 'v' indicates that the block size parameter was varied.
4.6 UDEC input file for a 10 m limestone rock mass with variable joint spacing. A 'v' indicates that the block size parameter was varied.
4.7 UDEC input file for a 10 m granite rock mass with variable joint spacing. A 'v' indicates that the block size parameter was varied.
4.8 UDEC input file for a 100 m sandstone rock mass with variable joint spacing. A 'v' indicates that the block size parameter was varied.
4.9 UDEC input file for a 100 m limestone rock mass with variable joint spacing. A 'v' indicates that the block size parameter was varied.
4.10 UDEC input file for a 100 m granite rock mass with variable joint spacing. A 'v' indicates that the block size parameter was varied.
4.11 UDEC input file for a 1000 m sandstone rock mass with variable joint spacing. A 'v' indicates that the block size parameter was varied.
4.12 UDEC input file for a 1000 m limestone rock mass with variable joint spacing. A ‘v’ indicates that the block size parameter was varied.

4.13 UDEC input file for a 1000 m granite rock mass with variable joint spacing. A ‘v’ indicates that the block size parameter was varied.

Chapter 7

7.1 UDEC input command file used to simulate the northern cirque headwall at Torre de Salinas.

7.2 UDEC input command file used to simulate the central cirque headwall at Torre de Salinas.

7.3 UDEC input command file used to simulate the southern cirque headwall at Torre de Salinas.

7.4 UDEC input command file used to simulate the north-south profile of the western section of Pico de la Padierna.

7.5 UDEC input command file used to simulate the north-south profile of the central section of Pico de la Padierna.

7.6 UDEC input command file used to simulate the north-south profile of the eastern section of Pico de la Padierna.

7.7 UDEC input command file used to simulate the north-south profile of Tiro Pedabejo.

7.8 UDEC input command file used to simulate the east-west profile of Tiro Pedabejo.

7.9 UDEC input command file used to simulate the north-south profile of Canchorral de Hormas.

7.10 UDEC input command file used to simulate the east-west profile of Canchorral de Hormas.

7.11 UDEC input command file used to simulate the east-west profile of Los Montes with no simulated road-cut.

7.12 UDEC input command file used to simulate the east-west profile of Los Montes with simulated road-cut.

7.13 UDEC input command file used to simulate the north-south profile of Los Montes.

7.14 UDEC input command file used to simulate the north-south profile of Allende.

7.15 UDEC input command file used to simulate the east-west profile of Allende.
Chapter 8

8.1 UDEC input command file used to simulate the north-south profile of AL9.

8.2 UDEC input command file used to simulate the east-west profile of AL9.

8.3 UDEC input command file used to simulate the north-south profile of AL12.

8.4 UDEC input command file used to simulate the east-west profile of AL12.

8.5 UDEC input command file used to simulate the north-south profile of AL10.

8.6 UDEC input command file used to simulate the east-west profile of AL10.

8.7 UDEC input command file used to simulate the north-south profile of AL11.

8.8 UDEC input command file used to simulate the east-west profile of AL11.

8.9 UDEC input command file used to simulate the north-south profile of AL3.

8.10 UDEC input command file used to simulate the east-west profile of AL3.

8.11 UDEC input command file used to simulate the north-south profile of AL2.

8.12 UDEC input command file used to simulate the east-west profile of AL2.

8.13 UDEC input command file used to simulate the north-south profile of AL7.

8.14 UDEC input command file used to simulate the east-west profile of AL7.

8.15 UDEC input command file used to simulate the east-west profile of AL17.
Figure 2.1: Process-Form-Material interaction triangle (after Allison, 1996). The triangle shows where research methodologies lay in relation process, materials and form. An adequate understanding of geomorphological evolution of landforms can only be gained if reference is made to material properties, the shape of the landform and the processes responsible for the evolution of the landform. The current research is embedded in the centre of this relationship utilising geotechnical information, morphometric data and process rates in understanding landform evolution.
Figure 2.2: Basic failure mechanisms of rock masses under gravitational stress.
Figure 4.1: Hypothetical slope scales and examples of natural slopes at these scales. The scale boundaries used are a hierarchical framework, with a continuum of slope scales between the boundaries defined here.
Figure 4.2: Stress boundary conditions imposed on each model. Arrows represent stress boundaries, while the circles / squares indicate a velocity boundary used to fix the model in space.
Figure 4.3: Stress-strain response of unjointed 1 m rock masses to simulate the behaviour of intact material.
Figure 4.4: Stress-strain response of a 1 m sandstone rock mass with varying block sizes.
Figure 4.5: Stress-strain response of a 1 m limestone rock mass with varying block sizes.
Figure 4.6: Stress-strain response of a 1 m granite rock mass with varying block sizes.
Figure 4.7: Comparative axial strain curves for 1 m rock masses composed of different block sizes.
Figure 4.8: Joint normal closure magnitude for 1 m rock masses in limestone, sandstone and granite.
Figure 4.9: Deformation moduli for 1 m rock masses in limestone, sandstone and granite.
Figure 4.10a: Strain zone development in a 1 m limestone rock mass with 0.05 m block size.
Figure 4.10b: Strain zone development in a 1 m limestone rock mass with 0.1 m block size.
Figure 4.10c: Strain zone development in a 1 m limestone rock mass with 0.2 m block size.
Figure 4.10d: Strain zone development in a 1 m limestone rock mass with 0.3 m block size.
Figure 4.10e: Strain zone development in a 1 m limestone rock mass with 0.4 m joint spacing.
Figure 4.10f: Strain zone development in a 1 m limestone rock mass with 0.5 m block size.
Figure 4.11a: Strain zone development in a 1 m sandstone rock mass with 0.05 m block size.
Figure 4.11b: Strain zone development in a 1 m sandstone rock mass with 0.1 m block size.
Figure 4.11c: Strain zone development in a 1 m sandstone rock mass with 0.2 m block size.
Figure 4.11d: Strain zone development in a 1 m sandstone rock mass with 0.3 m block size.
Figure 4.11e: Strain zone development in a 1 m sandstone rock mass with 0.4 m block size.
Figure 4.11f: Strain zone development in a 1 m sandstone rock mass with 0.5 m block size.
Figure 4.12a: Strain zone development in a 1 m granite rock mass with 0.05 m block size.
Figure 4.12b: Strain zone development in a 1 m granite rock mass with 0.1 m block size.
Figure 4.12c: Strain zone development in a 1 m granite rock mass with 0.2 m block size.
Figure 4.12d: Strain zone development in a 1 m granite rock mass with 0.3 m block size.
Figure 4.12e: Strain zone development in a 1 m granite rock mass with 0.4 m block size.
Figure 4.12f: Strain zone development in a 1 m granite rock mass with 0.5 m block size.
Figure 4.13: Joint shear magnitude for 1 m rock masses in limestone, sandstone and granite.
Figure 4.14: Displacement vector plots for a 1m limestone rock mass with 0.05 and 0.1 m block edge length.
Figure 4.15: Displacement vector plots for a 1m limestone rock mass with 0.2 and 0.3 m block edge length.
Figure 4.16: Displacement vector plots for a 1m limestone rock mass with 0.4 and 0.5 m block edge length.
Figure 4.17: Stress-strain in response of a 10 m limestone rock mass with varying block sizes.
Figure 4.18: Stress-strain response of a 10 m sandstone rock mass with varying block sizes.
Figure 4.19: Stress-strain response of a 10 m granite rock mass with varying block sizes.
Figure 4.20: Deformation moduli during loading for 10 m limestone, sandstone and granite rock masses.
Figure 4.21: Joint normal closure during loading for 10 m limestone, sandstone and granite rock masses.
Figure 4.22a: Strain zone development in a 1 m limestone rock mass with 0.5 m block size.
Figure 4.22b: Strain zone development in a 1 m limestone rock mass with 1 m block size.
Figure 4.22c: Strain zone development in a 1 m limestone rock mass with 2 m block size.
Figure 4.22d: Strain zone development in a 1 m limestone rock mass with 3 m block size.
Figure 4.22e: Strain zone development in a 1 m limestone rock mass with 4 m block size.
Figure 4.22f: Strain zone development in a 1 m limestone rock mass with 5 m block size.
Figure 4.23a: Strain zone development in a 10 m sandstone rock mass with 0.5 m block size.
Figure 4.23b: Strain zone development in a 10 m sandstone rock mass with 1 m block size.
Figure 4.23c: Strain zone development in a 10 m sandstone rock mass with 2 m block size.
Figure 4.23d: Strain zone development in a 10 m sandstone rock mass with 3 m block size.
Figure 4.23e: Strain zone development in a 10 m sandstone rock mass with 4 m block size.
Figure 4.23f: Strain zone development in a 10 m sandstone rock mass with 5 m block size.
Figure 4.24a: Strain zone development in a 10 m granite rock mass with 0.5 m block size.
Figure 4.24b: Strain zone development in a 10 m granite rock mass with 1 m block size.
Figure 4.24c: Strain zone development in a 10 m granite rock mass with 2 m block size.
Figure 4.24d: Strain zone development in a 10 m granite rock mass with 3 m block size.
Figure 4.24e: Strain zone development in a 10 m granite rock mass with 4 m block size.
Figure 4.24f: Strain zone development in a 10 m granite rock mass with 5 m block size.
Figure 4.25: Block rotation magnitude for 10 m limestone, sandstone and granite rock masses.
Figure 4.26: Joint shear magnitude during loading for 10 m limestone, sandstone and granite rock masses.
Figure 4.27: Stress-strain response of a 100 m limestone rock mass with varying block sizes.
Figure 4.28: Stress-strain response of a 100 m sandstone rock mass with varying block sizes.
Figure 4.23: Stress-strain response of a 100 m granite rock mass with varying block sizes.
Figure 4.30: Deformation moduli during loading for 100 m limestone, sandstone and granite rock masses.
Figure 4.31: Joint normal closure during loading for 100 m limestone, sandstone and granite rock masses.
Figure 4.32: Joint shear magnitude during loading for 100 m limestone, sandstone and granite rock masses.
Figure 4.33: Block rotation magnitude for 100 m limestone, sandstone and granite rock masses.
Figure 4.34a: Strain zone development in a 100 m limestone rock mass with 5 m block size.
Figure 4.34b: Strain zone development in a 100 m limestone rock mass with 10 m block size.
Figure 4.34c: Strain zone development in a 100 m limestone rock mass with 20 m block size.
Figure 4.34d: Strain zone development in a 100 m limestone rock mass with 30 m block size.
Figure 4.34e: Strain zone development in a 100 m limestone rock mass with 40 m block size.
Figure 4.34f: Strain zone development in a 100 m limestone rock mass with 50 m block size.
Figure 4.35a: Strain zone development in a 100 m sandstone rock mass with 5 m block size.
Figure 4.35b: Strain zone development in a 100 m sandstone rock mass with 10 m block size.
Figure 4.35c: Strain zone development in a 100 m sandstone rock mass with 20 m block size.
Figure 4.35d: Strain zone development in a 100 m sandstone rock mass with 30 m block size.
Figure 4.35e: Strain zone development in a 100 m sandstone rock mass with 40 m block size.
Figure 4.35f: Strain zone development in a 100 m sandstone rock mass with 50 m block size.
Figure 4.36a: Strain zone development in a 100 m granite rock mass with 5 m block size.
Figure 4.36b: Strain zone development in a 100 m granite rock mass with 10 m block size.
Figure 4.36c: Strain zone development in a 100 m granite rock mass with 20 m block size.
Figure 4.36d: Strain zone development in a 100 m granite rock mass with 30 m block size.
Figure 4.36e: Strain zone development in a 100 m granite rock mass with 40 m block size.
Figure 4.36f: Strain zone development in a 100 m granite rock mass with 50 m block size.
Figure 4.37: Stress-strain response of a 1000 m limestone rock mass with varying block sizes.

Deviatoric stress (MPa) vs. % lateral strain and % axial strain for 50 m, 100 m, 200 m, 300 m, 400 m, and 500 m block sizes.
Figure 4.38: Stress-strain response of a 1000 m sandstone rock mass with varying block sizes.

- **50 m**
- **100 m**
- **200 m**
- **300 m**
- **400 m**
- **500 m**
Figure 4.38: Stress-strain response of a 1000 m granite rock mass with varying block sizes.

- 50 m
- 100 m
- 200 m
- 300 m
- 400 m
- 500 m

Deviatoric stress (MPa)

% lateral strain % Axial strain
Figure 4.40: Deformation moduli for 1000 m limestone, sandstone and granite rock masses.
Figure 4.41: Joint normal closure for 1000 m limestone, sandstone and granite rock masses.
Figure 4.42: Joint shear displacement for 1000 m limestone, sandstone and granite rock masses.
Figure 4.43: Block rotation magnitudes for 1000 m limestone, sandstone and granite rock masses.
Figure 4.44a: Strain zone development in a 1000 m limestone rock mass with 50 m block size.
Figure 4.44b: Strain zone development in a 1000 m limestone rock mass with 100 m block size.
Figure 4.44c: Strain zone development in a 1000 m limestone rock mass with 200 m block size.
Figure 4.44d: Strain zone development in a 1000 m limestone rock mass with 300 m block size.
Figure 4.44e: Strain zone development in a 1000 m limestone rock mass with 400 m block size.
Figure 4.44f: Strain zone development in a 1000 m limestone rock mass with 500 m block size.
Figure 4.45a: Strain zone development in a 1000 m sandstone rock mass with 50 m block size.
Figure 4.45b: Strain zone development in a 1000 m sandstone rock mass with 100 m block size.
Figure 4.45c: Strain zone development in a 1000 m sandstone rock mass with 50 m block size.
Figure 4.45d: Strain zone development in a 1000 m sandstone rock mass with 300 m block size.
Figure 4.45e: Strain zone development in a 1000 m sandstone rock mass with 400 m block size.
Figure 4.45f: Strain zone development in a 1000 m sandstone rock mass with 500 m block size.
Figure 4.46a: Strain zone development in a 1000 m granite rock mass with 50 m block size.
Figure 4.46b: Strain zone development in a 1000 m granite rock mass with 100 m block size.
Figure 4.46c: Strain zone development in a 1000 m granite rock mass with 200 m block size.
Figure 4.46d: Strain zone development in a 1000 m granite rock mass with 300 m block size.
Figure 4.46e: Strain zone development in a 1000 m granite rock mass with 400 m block size.
Figure 4.46f: Strain zone development in a 1000 m granite rock mass with 500 m block size.
Figure 4.47: The stress-strain response of a rock mass compared to that commonly seen for intact rock.
Figure 4.48: Summary stress-strain response of the two failure mechanisms which develop due to block size effects in the simulated rock masses.
Figure 4.49: Comparison of joint shear magnitude for all scales and all lithologies (a). Block rotation magnitude for all scales and lithologies (b).
<table>
<thead>
<tr>
<th>Simulated rock mass</th>
<th>Proposed slope form</th>
<th>Deformation / failure mode</th>
<th>Identifying characteristics</th>
<th>Rock mass characteristics</th>
<th>Failure mode</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Translational shear</td>
<td>High vertical cliffs enhanced by brittle failure.</td>
<td>Widely spaced joints, minimal joint normal closure, high stiffness, low shear strength.</td>
<td>Shear failure along persistent shear surfaces. Wide joint spacing limits depth of deformation</td>
<td>The Vaiont Dam failure, 1963. Large planar / translational slide.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rotation and gradual deformation of slope with minimal shear</td>
<td>Relatively low angle slope profile with concave-convex profile</td>
<td>Closely spaced joints, high degree of joint normal closure, low stiffness, but high shear strength limits shear failure.</td>
<td>Rotation and ductile, time-dependent deformation of the rock mass. Deep-seated deformation pattern.</td>
<td>Ben Lomond, Tasmania (Caine, 1980).</td>
</tr>
</tbody>
</table>
Figure 4.51: Comparison of joint normal closure and deformation modulus for all block sizes and lithologies at a range of outcrop scales.
Figure 4.52: Comparison of deformation moduli for all scales and all lithologies (a) and comparison of joint normal closure magnitude for all scales and lithologies (b).
Figure 5.1: (A) Regional topographic and structural situation of the Picos de Europa and relation to the Elsa Nappe Unit (Earthetc, 2004). (B) Topography of the Picos de Europa, northern Spain (Adapted from Smart, 1986).
Figure 5.2: The main geological successions found in the Picos de Europa (Adapted from Smart, 1986).
Figure 5.3: Geological setting of the Andara region of the Eastern Massif of the Picos de Europa. This area encompasses the sites Canchorral de Hormas, Deva Gorge and Allende (Adapted from Smart, 1986).
Figure 5.4: General geological setting of the Vega de Liordes, which encompasses the sites Pico de la Padierna, Tiro Pedabejo and Torre de Salinas.
Figure 6.5: Landscape component model depicting the most important landscape elements and linkages in the Picos de Europa mountain range (Source: Author).
Figure 5.6: Contoured polar projection of the discontinuities at Torre Olavarría, Picos de Europa, northern Spain.
Figure 5.7: Contoured polar projection for the discontinuities at Pico de la Padierna, Picos de Europa, northern Spain.
Figure 5.8: Contoured polar projection of the discontinuities at Tiro Pedabejo, Picos de Europa, northern Spain.
Figure 5.9: Contoured polar projections for the discontinuities at Canchorral de Hormas, Picos de Europa, northern Spain.
Figure 5.10: Contoured polar projection of the discontinuities at Algobras, Allende, Picos de Europa, northern Spain.
Figure 5.11: Contoured polar projection of the discontinuities at Los Montes, Picos de Europa, northern Spain.
Figure 5.12: Histograms and quantile plots of joint spacing with a fitted exponential distribution.
Figure 5.13: Histograms and quantile plots of joint spacing with compared with an ideal Weibull distribution.
Figure 5.14: Aggregated joint spacing data from all sites in the Picos de Europa show an approximately lognormal distribution. The solid line represents an ideal lognormal distribution and the symbols the actual joint spacing data. Bedding data is excluded.
Figure 5.15: Cumulative probability distribution functions of joint spacing for each site investigated in the Picos de Europa. Joint spacing is plotted...
Figure 5.16: L-moments for joint spacing for sites in the Picos de Europa. Figure 5.16a plots the first two L-moments and Figure 5.16b plots measure of skewness and kurtosis. The key to the graph is given as:

1 = Torre de Salinas, 2 = Pico de la Padierna, 3 = Tiro Pedabejo, 4 = Canchorral de Hormas, 5 = Los Montes (Deva Gorge) 6 = Allende.
Figure 5.17: Bedding spacing data compared with a lognormal distribution. Most sites show a bimodal data spread.
Figure 5.18: Mohr’s circles (A) and sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure envelope (B) for Pico de la Padierna, Picos de Europa.
Figure 5.19: Mohr's circles (A) and sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure envelope (B) for Tiro Pedabejo, Picos de Europa.
Figure 5.20: Mohr's circles (A) and sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure envelope (B) for Canchorral de Hormas, Picos de Europa.
Figure 5.21: Mohr's circles (A) and sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure envelope (B) for Deva Gorge limestones, Picos de Europa.
Figure 5.22: Axial (red line), lateral (green line) and volumetric (black line) stress-strain curves for Pico de la Padierna limestones for specimens tested at 0 (UC), 10 and 15 MPa confining pressures. Lateral and axial strains for 15 MPa confining pressure were unavailable due to strain gauge failure.
Figure 5.23: Axial (red line), lateral (green line) and volumetric (black line) stress-strain curves for Tiro Pedabejo limestones for specimens tested at 0 (UC), 10 and 15 MPa confining pressures.
Figure 5.24: Axial (red line), lateral (green line) and volumetric (black line) stress-strain curves for Canchorral de Hormas limestones for specimens tested at 0 (UC), 10 and 15 MPa confining pressures. Lateral strain for 10 MPa confining pressure was unavailable due to strain gauge failure.
Figure 5.25: Axial, lateral and volumetric stress-strain curves for Deva Gorge limestones for specimens tested at 0 (UC), 10 and 15 MPa confining pressures.
Figure 5.26: Comparative axial strain curves for Pico de la Padierna and Tiro Pedabejo at 0 (UC), 10 and 15 MPa confining pressures.
Figure 5.27: Comparative axial strain curves Canchorral de Hormas and Deva Gorge limestones at 0 (UC), 10 and 15 MPa confining pressures.
Figure 5.28: (A) Axial strain plotted against Confining pressure, $P'o$ (MPa) to help determine whether the limestones are deforming in a very brittle, brittle, transitional or ductile manner. (B) Idealised strain response of limestone under increasing $P'o$ (After Donath et al., 1971)
Figure 6.1: Location of Al-Quwayra and Wadi Rum, southern Jordan (Adapted from Bender, 1975).
FIGURE 6.2: Broad geological setting of the Wadi Rum-Al-Quwayrah area (adapted from Osborn, 1985).
Figure 6.3: Generalised geological section of the Wadi Rum-Al Quwayra region of southern Jordan (After Bender, 1975)
Figure 6.4: (A) Earthsat/NASA mosaic of Wadi Rum (Earthetic, 2004) and (B) map showing the extent of the sandstone inselbergs and field sites within the Al Quwayra Wadi Rum study area (Adapted from Osborn and Duford, 1981). The red box shows the extent of map (B).
Figure 6.6: Landscape component model showing the important geomorphic features in the Al Quwayra Wadi Rum study area.

- 1. Ras el Naqab escarpment
- 2. Slopes in sandstone
- 3. Slopes in granite
- 4. Sandy plains
- 5. Dune systems
- 6. Alluvial fans
- 7. Inselbergs
- 8. Wadi beds
- 9. Escarpment plateau (?)
- 10. Playa
- 11. Rockfalls

Legend:
- + Aqaba granite complex
- Sandstones - Arkosic / Ismrin
- Sandstones - Disi
- Sandstones - Umm Samm
Figure 6.6: Contoured polar projection of the discontinuities at AL1, Wadi Rum, Jordan.
Figure 6.7: Contoured polar projection of the discontinuities at AL2, Wadi Rum, Jordan.
Figure 6.8: Contoured polar projection of the discontinuities at AL3, Wadi Rum, Jordan.
Figure 6.9: Contoured polar projection of the discontinuities at AL4, Wadi Rum, Jordan.
Figure 6.10: Contoured polar projection of the discontinuities at AL5, Wadi Rum, Jordan.
Figure 6.11: Contoured polar projection of the discontinuities at AL6, Wadi Rum, Jordan.
Figure 6.12: Contoured polar projection of the discontinuities at AL7, Wadi Rum, Jordan.
Figure 6.13: Contoured polar projection of the discontinuities at AL8, Wadi Rum, Jordan.
Figure 6.14: Contoured polar projection of the discontinuities at AL9, Wadi Rum, Jordan.
Figure 6.15: Contoured polar projection of the discontinuities at AL10, Wadi Rum, Jordan.
Figure 6.16: Contoured polar projection of the discontinuities at AL11, Wadi Rum, Jordan.
Figure 6.17: Contoured polar projection of the discontinuities at AL12, Wadi Rum, Jordan.
Figure 6.18: Contoured polar projection of the discontinuities at AL13, Wadi Rum, Jordan.
Figure 6.19: Contoured polar projection of the discontinuities at AL14, Wadi Rum, Jordan.
Figure 6.20: Contoured polar projection of the discontinuities at AL15, Wadi Rum, Jordan.
Figure 6.21: Contoured polar projection of the discontinuities at AL16, Wadi Rum, Jordan.
Figure 6.22: Contoured polar projection of the discontinuities at AL17, Wadi Rum, Jordan.
Figure 6.23: Dotplots of lumped joint spacing data for all sites examined in the Al-Quwayra–Wadi Rum region of southern Jordan. The upper bars through the plot represent the upper quartile, mid bars the median and lower bars the lower quartiles.
Figure 6.24: Quantities of joint spacing compared with an ideal exponential distribution for all sites in the Al Quwayra-Wadi Rum region, Jordan.
Figure 6.25: Log normal distributions of lumped discontinuity data for all sites in the Al-Quwayra and Wadi Rum areas of Jordan. The solid line represents an ideal lognormal distribution, with a spread of data points around this.
Figure 6.26: Quantities of joint spacing compared with fitted Weibull distributions for all sites in the Al Quwayya-Wadi Rum region, Jordan.
Figure 6.27: AL7 compared with randomly generated Weibull distributions given the same population mean. Note that although the parameters are randomly generated, scatter exists in the tails of the distributions.
Figure 6.28: Quantiles of joint spacing compared with a gamma distribution for all sites in the Al Quwayra-Wadi Rum region, Jordan.
Figure 6.29: Summary L-moments for aggregated joint spacing for all sites. The first two L-moments are shown in (a) and the second two in (b).
Figure 6.30: Mohr's circles (A) and sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure envelope (B) for Red Idrin Sandstone, Jordan.
Figure 6.31: Mohr’s circles (A) and sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure envelope (B) for Disi Sandstone, Jordan.
Figure 6.32: Mohr’s circles (A) and sigma 1 / sigma 3 stress space with fitted Mohr-Coulomb failure envelope (B) for Salib Arkosic Sandstone, Jordan.
Figure 6.33: Axial (red line), lateral (green line) and volumetric (black line) stress-strain curves for Red Ishrin sandstones for specimens tested at 0 (UC), 10 and 15 MPa confining pressures.
Figure 6.34: Axial (red line), lateral (green line) and volumetric (black line) stress-strain curves for Disi sandstones for specimens tested at 0 (UC), 10 and 15 MPa confining pressures.
Figure 6.35: Axial, lateral and volumetric stress-strain curves for Salib Arkosic sandstone for specimens tested at 0 (UC), 10 and 15 MPa confining pressures. The volumetric curve is not included on the 10 MPa graph as it is identical to the lateral strain curve, representing data error.
Figure 6.36: Axial strain plotted against Confining pressure, P'o (MPa) to help determine whether the sandstones are deforming in a very brittle, brittle, transitional or ductile manner.
Figure 7.1: Block plot of north section of the cirque wall of Torre de Salinas at equilibrium.

UDEC (Version 3.10)

LEGEND

17-Mar-03 19:11
cycle 10000
block plot

Department of Geography
University of Durham
JOB TITLE: Total unbalanced forces for north-south profile of north cirque wall of Torre de Salinas at equilibrium.

UDEC (Version 3.10)

<table>
<thead>
<tr>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-Mar-03 19:11</td>
</tr>
<tr>
<td>cycle 10000</td>
</tr>
<tr>
<td>history plot</td>
</tr>
<tr>
<td>0.00E+00<hist 1> 1.61E+07</td>
</tr>
<tr>
<td>Vs.</td>
</tr>
<tr>
<td>0.00E+00<time> 6.80E+00</td>
</tr>
</tbody>
</table>

Department of Geography
University of Durham
JOE TITLE: Displacement vectors for north-south profile of north cirque wall of Torre de Salinas at 100 000 cycles.

UDEC (Version 3.10)

LEGEND

17-Mar-03 20:13
cycle 100000
block plot
displacement vectors
maximum = 4.295E+01
0 2E 2

Department of Geography
University of Durham
Figure 7.2b: Displacement vectors for the north-south profile of the northern cirque wall of Torre de Salinas at 200,000 cycles.

JOB TITLE: Displacement vectors for north-south profile of north cirque wall of Torre de Salinas at 200,000 cycles.

UDEC (Version 3.10)

LEGEND

- 17-Mar-03 21:21
- cycle 200000
- block plot
- displacement vectors
- maximum = 8.758E+01

Department of Geography
University of Durham
Displacement vectors for north-south profile of north cirque wall of Torre de Salinas at 350,000 cycles.

UDEC (Version 3.10)*

LEGEND

- 17-Mar-03 23:02
- cycle 350000
- block plot
- displacement vectors
 - maximum = 1.558E+02
- 0 5E 2

Department of Geography
University of Durham
Figure 7.3d: Displacement vectors for north-south profile of north cirque wall of Torre de Salinas at 600,000 cycles.

JOB TITLE: Displacement vectors for north-south profile of north cirque wall of Torre de Salinas at 600,000 cycles.

UDEC (Version 3.10)

LEGEND

- 18-Mar-03 10:51 cycle 600000 block plot displacement vectors maximum = 2.269E+02

Department of Geography
University of Durham
Figure 7.4a: Horizontal displacement contours of north section of the cirque wall of Torre de Salinas at equilibrium.

JOB TITLE: Horizontal displacement contours of north section of the cirque wall of Torre de Salinas at equilibrium.

UDEC (Version 3.10)

LEGEND

17-Mar-03 19:11
cycle 10000
block plot
X displacement contours
contour interval= 5.000E-02
-5.000E-02 to 1.500E-01

Department of Geography
University of Durham
Figure 7.4b: Horizontal displacement contours of the north section of the cirque wall of Torre de Salinas at 100,000 cycles.
Figure 7.4c: Horizontal displacement contours of the north section of the cirque wall of Torre de Salinas at 200,000 cycles.

UDEC (Version 3.10)

LEGEND

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Cycle</th>
<th>Block plot</th>
<th>X displacement contours</th>
<th>Contour interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-Mar-03</td>
<td>21:21</td>
<td>200000</td>
<td>block plot</td>
<td>X displacement contours</td>
<td>1.000E+01 to 2.000E+01</td>
</tr>
</tbody>
</table>

Department of Geography
University of Durham
Figure 7.4d: Horizontal displacement contours of the north section of Torre de Salinas wall at 350,000 cycles.

JOB TITLE: Horizontal displacement contours of north section of the cirque wall of Torre de Salinas at 350,000 cycles.

UDEC (Version 3.10)

LEGEND
- 17-Mar-03 23:02 cycle 350000 block plot
- X displacement contours contour interval = 2.000E+01 -6.000E+01 to 2.000E+01
- 0.000E+00
- 2.000E+01

Department of Geography
University of Durham
JOBTITLE: Horizontal displacement contours of north section of the cirque wall of Torre de Salinas at 600,000 cycles.

UDEC (Version 3.10)

LEGEND

18-Mar-03 10:51
cycle 600000
block plot
X displacement contours
contour interval= 2.000E+01
-1.400E+02 to 2.000E+01

-1.400E+02
-1.200E+02
-1.000E+02
-8.000E+01
-6.000E+01
-4.000E+01
-2.000E+01
0.000E+00
2.000E+01

Department of Geography
University of Durham
Figure 7.5: Total unbalanced forces for north-south profile of north cirque wall of Torre de Salinas at 600,000 cycles.

JOB TITLE: Total unbalanced forces for north-south profile of north cirque wall of Torre de Salinas at 600,000 cycles.

UDEC (Version 3.10)

LEGEND

18-Mar-03 10:51

cycle 600000

history plot

0.00E+00<hist 1> 2.21E+08

Vs.

0.00E+00<time> 4.07E+02

Department of Geography
University of Durham
Figure 7.6a: Block plot of the east-west profile of the central cirque headwall for Torre de Salinas, at equilibrium.

LEGEND
18-Mar-03 12:32
cycle 10000
block plot

Department of Geography
University of Durham

JOB TITLE: Block plot of east-west profile of central cirque wall for Torre de Salinas at equilibrium.

UDEC (Version 3.10)

```plaintext
0.500 1.500 2.500 (10^-2) 3.500
3.500 2.500
0.500 0.500 0.500
```
Figure 7.6(b): Displacement vectors for the east-west profile of the central cirque wall of Torre de Salinas at 100,000 cycles.

UDEC (Version 3.10)

LEGEND

18-Mar-03 13:54

cycle 100000

block plot

displacement vectors

maximum = 1.767E+01

Department of Geography
University of Durham
Figure 7.6c: Displacement vectors for east-west profile of central cirque wall of Torre de Salinas at 250,000 cycles.

UDEC (Version 3.10)

LEGEND
18-Mar-03 16:12
cycle 250000
block plot
displacement vectors
maximum = 5.129E+01

Department of Geography
University of Durham
Displacement vectors for east-west profile of central cirque wall of Torre de Salinas at 500,000 cycles.

UDEC (Version 3.10)

Legend
- 18-Mar-03 19:54 cycle 500000
- Block plot
- Displacement vectors
 - Maximum = 5.286E+01

Department of Geography
University of Durham
Headwall for Torre de Salinas at Equilibrium.

Figure 7.1a: Horizontal displacement contours for the east-west profile of the cirque wall for Torre de Salinas at equilibrium.

Legend:
- 0.000E+00
- 1.000E-01
- 3.000E-01
- 5.000E-01
- 7.000E-01
- 9.000E-01

Department of Geography
University of Durham
Figure 7.7b: Horizontal displacement contours for the east-west profile of the cirque headwall for Torre de Salinas at 100,000 cycles.

JOB TITLE: Horizontal displacement contours for east-west profile of central cirque wall for Torre de Salinas at 100,000 cycles.

UDEC (Version 3.10)

LEGEND

- 18-Mar-03 13:54
- cycle 100000
- block plot
- X displacement contours
- contour interval: $2.000E+00$
- $-2.000E+00$ to $1.600E+01$

Department of Geography
University of Durham
Figure 7.7c: Horizontal displacement contours for the east-west profile of the cirque wall for Torre de Salinas at 250,000 cycles.

JOB TITLE: Horizontal displacement contours for east-west profile of central cirque wall for Torre de Salinas at 250,000 cycles.

UDEC (Version 3.10)

LEGEND

18-Mar-03 16:12

cycle 250000

block plot

X displacement contours

countour interval = 1.000E+01

0.000E+00 to 4.000E+01

- 0.000E+00
- 1.000E+01
- 2.000E+01
- 3.000E+01
- 4.000E+01

Department of Geography
University of Durham
Figure 7.7d: Horizontal displacement contours for east-west profile of central cirque wall for Torre de Salinas at 500,000 cycles.

UDEC (Version 3.10)

LEGEND

- 18-Mar-03 19:54 cycle 500,000
- Block plot
- X displacement contours
- Contour interval = 1.000E+01
- 0.000E+00 to 4.000E+01

Department of Geography
University of Durham
JOB TITLE: Total unbalanced forces for east-west profile of central cirque wall of Torre de Salinas at 500,000 cycles.

UDEC (Version 3.10)

LEGEND
18-Mar-03 19:54
cycle 500000
history plot
0.00E+00<hist 1> 4.76E+08
Vs.
0.00E+00<time> 3.34E+02

Department of Geography
University of Durham
Figure 7.9a: Block plot of the east-west profile of the southern cirque headwall for Torre de Salinas, Picos de Europa, at equilibrium.
Figure 7.9b: Displacement vectors of the east-west profile of the southern cirque headwall for Torre de Salinas, Picos de Europa, at 200,000 cycles.

JOB TITLE: Displacement vectors of east-west profile of southern cirque wall for Torre de Salinas at 200,000 cycles.

UDEC (Version 3.10)

LEGEND

- 19-Mar-03 13:28 cycle 200000
- block plot
- displacement vectors
 - maximum = 2.140E+01

Department of Geography
University of Durham
Figure 7.9c: Displacement vectors of east-west profile of southern cirque wall for Torre de Salinas at 400,000 cycles.

LEGEND

- 19-Mar-03 16:50
- cycle 400,000
- block plot
- displacement vectors
- maximum = 4.344E+01

UDEC (Version 3.10)

Department of Geography
University of Durham
Headwall for Torre de Salinas, Picos de Europa, at 800,000 cycles.

Figure 7.9.d: Displacement vectors of the east-west profile of the southern circle wall for Torre de Salinas at 800,000 cycles.
JOE TITLE: Horizontal displacement contours for east-west profile of southern cirque wall for Torre de Salinas at equilibrium.

UDEC (Version 3.10)

LEGEND

19-Mar-03 10:11
cycle 10000
block plot
X displacement contours
contour interval= 1.000E-01
-2.000E-01 to 4.000E-01
-2.000E-01
-1.000E-01
0.000E+00
1.000E-01
2.000E-01
3.000E-01
4.000E-01

Department of Geography
University of Durham
Figure 7.10b: Horizontal displacement contours for the east-west profile of the southern cirque headwall for Torre de Salinas at 200,000 cycles.

JOB TITLE: Horizontal displacement contours for east-west profile of southern cirque wall for Torre de Salinas at 200,000 cycles.

UDEC (Version 3.10)

LEGEND
- 19-Mar-03 13:26
- cycle 200,000
- block plot
- X displacement contours
- contour interval = 2.000E+00
- -1.400E+01 to 0.000E+00
- -4.000E+00
- -2.000E+00
- -1.000E+00
- -8.000E+00
- -6.000E+00
- -4.000E+00
- -2.000E+00
- 0.000E+00

Department of Geography
University of Durham
Figure 7.10c: Horizontal displacement contours for east-west profile of southern cirque wall for Torre de Salinas at 400,000 cycles.

UDEC (Version 3.10)

LEGEND

19-Mar-03 16:50
block plot
X displacement contours
contour interval = 5.000E+00
-3.500E+01 to 0.000E+00

Department of Geography
University of Durham
Figure 7.11a: Block plot of the north-south profile of the far western ridge of Pico de La Padierna at equilibrium.

JOB TITLE: Block plot of north-south profile of the far western ridge of Pico de La Padierna at equilibrium.

UDEC (Version 3.10)

LEGEND

29-Mar-03 20:21
cycle 10000
block plot

Department of Geography
University of Durham
JOB TITLE: Displacement vectors of north-south profile of the far western ridge of Pico de La Padierna at 530,000 cycles.

UDEC (Version 3.10)

LEGEND

30-Mar-03 2:03 cycle 530,000 block plot displacement vectors maximum = 2.038E+00

0 1E 1

Department of Geography
University of Durham
western section of the ridge of Pico de la Padrema at 530 000 cycles.

Figure 7.12: Horizontal displacement contours for the north-south profile of the ridge
Figure 7.13a: Block plot of the north-south profile of the central ridge of Pico de La Padierna at equilibrium.

JOB TITLE: Block plot of north-south profile of the central ridge of Pico de La Padierna at equilibrium.

UDEC (Version 3.10)

LEGEND:
- Date: 31-Mar-03 19:09
- Cycle: 10000
- Block plot

Department of Geography
University of Durham
Figure 7.13b: Displacement vectors for the north-south profile of the central ridge of Pico de la Pedrera at 150,000 cycles.
Figure 7.13c: Displacement vectors for the north-south profile of the central ridge of Pico de La Paderma at 550 000 cycles.
Figure 7.14: Block plot of the north-south profile of the central ridge of Pico de La Padierna at 500,000 cycles.

UDEC (Version 3.10)

LEGEND

1-Apr-03 8:10 cycle 550000 block plot

Department of Geography
University of Durham
Figure 7.15a: Horizontal displacement contours for north-south profile of the central ridge of Pico de La Padierna at equilibrium.

JOB TITLE: Horizontal displacement contours for north-south profile of the central ridge of Pico de La Padierna at equilibrium.

UDEC (Version 3.10)

LEGEND

31-Mar-03 19:09

- X displacement contours
- contour interval = 5.000E-01
- block plot
- -2.500E+00 to 1.000E+00
- -2.500E+00
- -2.000E+00
- -1.500E+00
- -1.000E+00
- -5.000E-01
- 0.000E+00
- 5.000E-01
- 1.000E+00

Department of Geography
University of Durham
Figure 7.15b: Horizontal displacement contours for north-south profile of the central ridge of Pico de La Padierna at 150,000 cycles.

LEGEND
- 3.500E+01
- -2.500E+01
- -1.500E+01
- -1.000E+01
- -5.000E+00
- 0.000E+00

Department of Geography
University of Durham
Central ridge of Pico de La Paderma at 550,000 cycles.

Figure 7.15c: Horizontal displacement contours for the north-south profile of the central ridge of Pico de La Paderma at 550,000 cycles.

Department of Geography
University of Durham

Job Title: Horizontal displacement contours for north-south profile of the central ridge of Pico de La Paderma at 550,000 cycles.

UDEC (Version 3.10)

Legend

-1.200E+02
-1.000E+02
-8.000E+01
-6.000E+01
-4.000E+01
-2.000E+01
0.000E+00
2.000E+01
4.000E+01
6.000E+01
8.000E+01
1.000E+02
1.200E+02

X-displacement contour interval = 2,000E+01

Department of Geography
University of Durham
Figure 7.16: Total unbalanced forces for north-south profile of central ridge of Pico de la Padierna at equilibrium.

UDEC (Version 3.10)

LEGEND
- 30-Mar-03 2:03 cycle 530000 history plot
- $0.00E+00<$hist 1> $8.33E+08$ Vs
- $0.00E+00<$time$>$ $3.50E+02$

Department of Geography
University of Durham
JOB TITLE: Block plot of north-south profile of the far eastern ridge of Pico de La Padrena at equilibrium.

UDEC (Version 3.10)

LEGEND

28-Mar-03 18:02
cycle 10000
block plot

Department of Geography
University of Durham

Figure 7.17a: Block plot of the north-south profile of the far eastern section for the ridge of Pico de La Padrena at equilibrium.
Figure 7.17b: Displacement vectors for the north-south profile of the far eastern ridge of Pico de La Padierna at 500 000 cycles.

UDEC (Version 3.10)

LEGEND

- 29-Mar-03 3:22
- cycle 500000
- block plot
- displacement vectors
- maximum = 2.623E+00

Department of Geography
University of Durham
JOB TITLE: Horizontal displacement contours for north-south profile of eastern ridge of Pico de La Padierna at 500 000 cycles.

UDEC (Version 3.10)

LEGEND

- 29-Mar-03 3.22 cycle 500000
- block plot
- X displacement contours
- contour interval: 4.000E-01
- -1.200E+00 to 4.000E-01

Department of Geography
University of Durham
Figure 7.19: Total unbalanced forces for north-south profile of eastern section of Pico de la Padierna at 500 000 cycles.

UDEC (Version 3.10)

LEGEND

29-Mar-03 3:22
cycle 500000
history plot
0.00E+00<hist 1> 1.50E+08
Vs.
0.00E+00<time> 3.69E+02

Department of Geography
University of Durham
Figure 7.20a: Block plot of north-south profile for Tiro Pedabejo at equilibrium.

JOB TITLE: Block plot of north-south profile for Tiro Pedabejo at equilibrium.

UDEC (Version 3.10)

LEGEND

25-Mar-03 21:44
cycle 10000
block plot

Department of Geography
University of Durham
JOB TITLE: Displacement vectors for north-south profile for Tiro Pedabeio at 500 000 cycles.

UDEC (Version 3.10)

LEGEND

26-Mar-03 0:31
cycle 500000
block plot
displacement vectors
maximum = 5.134E+00
0 2E 1

Department of Geography
University of Durham
Figure 7.21: Total unbalanced forces for north-south profile of Tiro Pedabejo at 500 000 cycles.

LEGEND

26-Mar-03 0:31

- cycle 500000
- history plot
- 0.00E+00 < hist 1 > 1.56E+09
- Vs.
- 0.00E+00 < time > 5.89E+02

Department of Geography
University of Durham
Figure 7.22: Horizontal displacement contours for the north-south profile of Tiro Pedabejo at equilibrium.

JOB TITLE: Horizontal displacement contours for north-south profile of Tiro Pedabejo at equilibrium.

UDEC (Version 3.10)

LEGEND
- 25-Mar-03 21:44
- cycle 10000
- block plot
- X displacement contours
- contour interval= 1.000E-02 to 3.000E-02
- -6.000E-02
- -5.000E-02
- -4.000E-02
- -3.000E-02
- -2.000E-02
- -1.000E-02
- 0.000E+00
- 1.000E-02
- 2.000E-02
- 3.000E-02
- 4.000E-02
- 5.000E+00

Department of Geography
University of Durham
Figure 7.22b: Horizontal displacement contours for north-south profile of Tiro Pedabejo at 500 000 cycles.

UDEC (Version 3.10)

LEGEND

- 26-Mar-03 0:31 cycle 500 000
- black plot
- x displacement contours
- contour interval= 5.000E-01
- -1.500E+00 to 2.500E+00

Department of Geography
University of Durham
Figure 7.23a: Block plot of east-west profile for Tiro Pedabejo at equilibrium.

UDEC (Version 3.10)

LEGEND

30-Jun-03 17:05
cycle 11000
block plot

Department of Geography
University of Durham
Figure 7.23b: Displacement vectors for the north-south profile for Tiro Pedabejo, at 201000 cycles.

JOB TITLE: Displacement vectors for east-west profile for Tiro Pedabejo at 201000 cycles.

UDEC (Version 3.10)

LEGEND
- 30-Jun-03 18:51 cycle 201000
- block plot displacement vectors
- maximum = 3.017E+01
- 0 1E 2

Department of Geography
University of Durham
Figure 7.33c: Displacement vectors for the north-south profile for Tiro Pedabejo, Picos de Europa, at 351,000 cycles.

JOB TITLE: Displacement vectors for east-west profile for Tiro Pedabejo at 351,000 cycles.

UDEC (Version 3.10)

LEGEND

- 30-Jun-03 20:18
- cycle 351000
- block plot
- displacement vectors
 - maximum = 1.293E+02

Department of Geography
University of Durham
Figure 7.23d: Displacement vectors for the north-south profile for Tiro Pedabejo, at 601000 cycles.

Department of Geography
University of Durham
Figure 7.24a: Horizontal displacement contours for east-west profile of Tiro Pedabejo at 201 000 cycles.

UDEC (Version 3.10)

LEGEND

30-Jun-03 18:51
cycle 201000
block plot
X displacement contours
contour interval = 4.000E+00
-2.000E+01 to 0.000E+00

Department of Geography
University of Durham
Figure 7.24b: Horizontal displacement contours for east-west profile of Tiro Pedabejo at 351000 cycles.

UDEC (Version 3.10)

LEGEND

- 30-Jun-03 20:18
- cycle 351000
- block plot
- X displacement contours
- contour interval = 1.000E+01
- -5.000E+01 to 0.000E+00
- -5.000E+01
- -4.000E+01
- -3.000E+01
- -2.000E+01
- -1.000E+01
- 0.000E+00

Department of Geography
University of Durham
Figure 7.24c: Horizontal displacement contours for east-west profile of Tiro Pedabejo at 601 000 cycles.

UDEC (Version 3.10)

LEGEND

- 30-Jun-03 22:46
- cycle 601000
- block plot
- X displacement contours
- contour interval = 2.000E+01
- -1.00E+02 to 0.000E+00

Department of Geography
University of Durham
JOB TITLE: Total unbalanced forces for east-west profile of Tiro Pedabejo at 601000 cycles.

UDEC (Version 3.10)

Legend
- 30-Jun-03 22:46
- Cycle 601000
- History plot
- 0.00E+00 < hist 1 > 1.37E+09
 - Vs.
- 0.00E+00 < time > 7.51E+02

Department of Geography
University of Durham

Figure 7.25: Total unbalanced forces for the north-south profile of Tiro Pedabejo at 601000 cycles.
Figure 7.26a: Block plot of north-south profile for Canchorrall de Hormas at equilibrium.

LEGEND

2-Apr-03 10:34
cycle 10000
block plot

Department of Geography
University of Durham
Figure 7.28b: Displacement vectors of the north-south profile of Canchorral de Hormas at 100,000 cycles.

JOB TITLE: Displacement vectors of north-south profile of Canchorral de Hormas at 100,000 cycles.

UDEC (Version 3.10)

LEGEND

- 2-Apr-03 11:41
- Cycle 100,000
- Block plot
- Displacement vectors
 - Maximum = 5.475E+00

Department of Geography
University of Durham
Figure 7.26c: Displacement vectors of north-south profile of Canchorral de Hormas at 250,000 cycles.

UDEC (Version 3.10)

JOB TITLE: Displacement vectors of north-south profile of Canchorral de Hormas at 250,000 cycles.

LEGEND
- 2-Apr-03 13:32
- cycle 250000
- block plot
- displacement vectors
- maximum = 2.895E+01
- 0-1E 2

Department of Geography
University of Durham
Figure 7.26d: Block plot of the north-south profile of Canchorral de Hormas at 500,000 cycles.

JOB TITLE: Block plot of north-south profile for Canchorral de Hormas at 500,000 cycles.

UDEC (Version 3.10)

LEGEND

2-Apr-03 16:34
cycle 500000
block plot

Department of Geography
University of Durham
Figure 7.27a: Horizontal displacement contours for north-south profile of Canchoral de Hormas at equilibrium.

JOB TITLE: Horizontal displacement contours for north-south profile of Canchoral de Hormas at equilibrium.

UDEC (Version 3.10)

LEGEND

2-Apr-03 10:34
Cycle 10000
Block plot
X displacement contours
Contour interval = 5.000E-02
-2.500E-01 to 1.000E-01

-2.500E-01
-2.000E-01
-1.500E-01
-1.000E-01
-5.000E-02
0.000E+00
5.000E-02
1.000E-01

Department of Geography
University of Durham
Figure 7.27b: Horizontal displacement contours for north-south profile of Canchorral de Hormas at 100,000 cycles.

JOB TITLE: Horizontal displacement contours for north-south profile of Canchorral de Hormas at 100,000 cycles.

UDEC (Version 3.10)

LEGEND:
- 2-Apr-03 11:41 cycle 100000 block plot
- X displacement contours
- contour interval = 5.000E-01
- -4.000E+00 to 5.000E-01

Department of Geography
University of Durham
Figure 7.2.7c: Horizontal displacement contours for north-south profile of Canchorral de Hormas at 500,000 cycles.

LEGEND

- 2-Apr-03 16:34 cycle 500000
- block plot
- horizontal displacement contours
- contour interval = $5.000E+00$
- $-4.000E+01$ to $0.000E+00$

Department of Geography
University of Durham
Figure 7.28: Total unbalanced forces for the north-south profile of Canchorral de Hormas at 500 000 cycles.

UDEC (Version 3.10)

LEGEND

- 2-Apr-03 16:34
- cycle 500000
- history plot
- 0.00E+00<hist 1> 1.14E+09
- Vs.
- 0.00E+00<time> 3.05E+02

Department of Geography
University of Durham
Figure 7.29a: Block plot of the east-west profile of Canchorral de Hormas at equilibrium.

UDEC (Version 3.10)

JOBTITLE: Block plot of east-west profile for Canchorral de Hormas at equilibrium.

LEGEND

1-Apr-03 19:10

Department of Geography
University of Durham
Figure 7.29b: Displacement vectors for the east-west profile of Canchorral de Hormas at 100 000 cycles.

UDEC (Version 3.10)

LEGEND

- 1-Apr-03 20:29 cycle 100000 block plot
- Displacement vectors
 - Maximum = 9.213E+00

Department of Geography
University of Durham
Figure 7.28c: Displacement vectors for the east-west profile of Canchorrail de Hormas at 200000 cycles.

UDEC (Version 3.10)

LEGEND

1-Apr-03 22:00

cycle 200000

block plot

displacement vectors

maximum = 3.721E+01

0 2E 2

Department of Geography
University of Durham
Figure 7.29d: Displacement vectors for the east-west profile of Canchorral de Hormas, Picos de Europa at 500 000 cycles.

UDEC (Version 3.10)

LEGEND

- 2-Apr-03 2:27 cycle 500000 block plot displacement vectors maximum = 7.139E+01

Department of Geography
University of Durham
Figure 7.30: Horizontal displacement contours for east-west profile of Canchorral de Hormas at equilibrium.

JOB TITLE: Horizontal displacement contours for east-west profile of Canchorral de Hormas at equilibrium.

UDEC (Version 3.10)

LEGEND

- 1-Apr-03 19:10
- cycle 10000
- block plot
- X displacement contours
- contour interval = 2.000E-01
- -6.000E-01 to 4.000E-01

Department of Geography
University of Durham
Figure 7.30b: Horizontal displacement contours for east-west profile of Canchorral de Hormas at 100 000 cycles.

UDEC (Version 3.10)

LEGEND

- 1-Apr-03 20:29
- cycle 100000
- block plot
- X displacement contours
- contour interval= 1.000E+00
- -7.000E+00 to 0.000E+00

- -7.000E+00
- -6.000E+00
- -5.000E+00
- -4.000E+00
- -3.000E+00
- -2.000E+00
- -1.000E+00
- 0.000E+00

Department of Geography
University of Durham
Figure 7.30c: Horizontal displacement contours for east-west profile of Canchorral de Hormas at 200,000 cycles.

UDEC (Version 3.10)

Legend

1-Apr-03 22:00
cycle 200000
block plot
X displacement contours
contour interval= 5.000E+00
-2.500E+01 to 0.000E+00

Department of Geography
University of Durham
Figure 7.31: Total unbalanced forces for east-west profile of Canchorral de Hormas at 500,000 cycles.

UDEC (Version 3.10)

<table>
<thead>
<tr>
<th>JOB TITLE</th>
<th>Total unbalanced forces for east-west profile of Canchorral de Hormas at 500,000 cycles.</th>
</tr>
</thead>
</table>

CONCLUSION

2-Apr-03 2:27

| cycle 500000 |
| history plot |
| 0.00E+00<hist 1: 1.93E+08 Vs. 0.00E+00<time> 3.10E+02 |

Department of Geography
University of Durham
Figure 7.32a: Block plot of the east-west profile of Los Montes at equilibrium.

LEGEND

- 7-Apr-03 11:07
- cycle 10000
- block plot

Department of Geography
University of Durham
Figure 7.32b: Displacement vector plot for the east-west profile of Los Montes, Picos de Europa at 300,000 cycles.

UDEC (Version 3.10)

LEGEND

- 7-Apr-03 16:24
- cycle 300000
- block plot
- displacement vectors
- maximum = 1.112E+02
- 0 5E 2

Department of Geography
University of Durham
Figure 7.3: Total unbalanced forces for east-west profile of Los Montes at 300,000 cycles.

UDEC (Version 3.10)

LEGEND

7-Apr-03 16:24
cycle 300000
history plot
0.00E+00<hist 1> 2.96E+08
Vs
0.00E+00<time> 2.75E+02

Department of Geography
University of Durham
Figure 7.34: Horizontal displacement contours for the east-west profile of Los Montes at 300,000 cycles.

JOB TITLE: Horizontal displacement contours for east-west profile of Los Montes at 300,000 cycles.

UDEC (Version 3.10)

LEGEND

7-Apr-03 16:24
cycle 300000
block plot
X displacement contours
contour interval= 1.000E+01
-5.000E+01 to 3.000E+01

-5.000E+01
-4.000E+01
-3.000E+01
-2.000E+01
-1.000E+01
0.000E+00
1.000E+01
2.000E+01
3.000E+01

Department of Geography
University of Durham
Figure 7.35a: Block plot of the east-west profile of Los Montes. Picos de Europa with a simulated road cut at equilibrium.

JOB TITLE: Block plot of east-west profile for Los Montes with simulated road cut at equilibrium.

UDEC (Version 3.10)

LEGEND

8-Apr-03 10:11
Cycle 10000
Block plot

Department of Geography
University of Durham
Figure 7.35b: Displacement vectors for east-west profile for Los Montes with simulated road-cut at 100 000 cycles.

UDEC (Version 3.10)

LEGEND

- 8-Apr-03 11:29
- cycle 100000
- block plot
- displacement vectors
 - maximum = 1.199E+02

Department of Geography
University of Durham
JOB TITLE: Displacement vectors for east-west profile for Los Montes with simulated road-cut at 300 000 cycles.

UDEC (Version 3.10)

LEGEND

8-Apr-03 14:45
cycle 300000
block plot
displacement vectors
maximum = 2.581E+02

0 1E 3

Department of Geography
University of Durham
Figure 7.36a: Horizontal displacement contours for the east-west profile of Los Montes with simulated road cut at 100,000 cycles.

JOB TITLE: Horizontal displacement contours for east-west profile of Los Montes with simulated road cut at 100,000 cycles.

UDEC (Version 3.10)

LEGEND

- 6-Apr-03 11:29
- cycle 100,000
- block plot
- X displacement contours
- contour interval = 1.00E+01
- -2.00E+01 to 6.00E+01
- 2.00E+01
- 1.00E+01
- 0.00E+00
- 3.00E+01
- 4.00E+01
- 5.00E+01
- 6.00E+01

Department of Geography
University of Durham
Figure 7.36b: Horizontal displacement contours for the east-west profile of Los Montes with simulated road cut at 300,000 cycles.

UDEC (Version 3.10)

LEGEND

- 8-Apr-03 14:45
- cycle 300000
- block plot
- X displacement contours
- contour interval = 2.000E+01
- -2.000E+01 to 1.200E+02

- -2.000E+01
- 0.000E+00
- 2.000E+01
- 4.000E+01
- 6.000E+01
- 8.000E+01
- 1.000E+02
- 1.200E+02

Department of Geography
University of Durham
Figure 7.37a: Block plot of the north-south profile of Los Montes, Picos de Europa at equilibrium.

JOB TITLE: Block plot of north-south profile for Los Montes at equilibrium.

UDEC (Version 3.10)

LEGEND

11-Apr-03 19:08
cycle 10000
block plot

Department of Geography
University of Durham
Figure 7.37b: Displacement vectors for north-south profile for Los Montes at 100,000 cycles.

UDEC (Version 3.10)

LEGEND

- 11-Apr-03 20:43
- cycle 100000
- block plot
- displacement vectors
- maximum = 1.829E+01

Department of Geography
University of Durham
Figure 7.37c: Displacement vectors for north-south profile for Los Montes at 300,000 cycles.

UDEC (Version 3.10)

LEGEND

- 12-Apr-03 0:16
- cycle 300000
- block plot
- displacement vectors
- maximum = 6.502E+01
- 0 2E 2

Department of Geography
University of Durham
Figure 7.38a: Horizontal displacement contours for north-south profile of Los Montes at 100,000 cycles.

UDEC (Version 3.10)

LEGEND

11-Apr-03 20:43
cycle 100000
block plot
X displacement contours
contour interval = 2.000E+00
0.000E+00 to 1.600E+01

- 0.000E+00
- 2.000E+00
- 4.000E+00
- 6.000E+00
- 8.000E+00
- 1.000E+01
- 1.200E+01
- 1.400E+01
- 1.600E+01

Department of Geography
University of Durham
Figure 7.38: Horizontal displacement contours for north-south profile of Los Montes at 300,000 cycles.

UDEC (Version 3.10)

LEGEND

- 12-Apr-03 0:16 cycle 300,000
- block plot
- X displacement contours
- contour interval: 1.000E+01
- 0.000E+00 to 5.000E+01

Department of Geography
University of Durham
Figure 7.39a: Block plot of east-west profile for Allende at equilibrium.

LEGEND

4-Apr-03 17:17
cycle 10000
block plot

Department of Geography
University of Durham
JOB TITLE: Displacement vectors for east-west profile of Allende at 100 000 cycles.

UDEC (Version 3.10)

LEGEND:
4-Apr-03 18:48
cycle 100000
block plot
displacement vectors
maximum = 3.733E+01
0 2E 2

Department of Geography
University of Durham
Displacement vectors for east-west profile of Allende at 250,000 cycles.

UDEC (Version 3.10)

LEGEND

- 4-Apr-03 21:17
- cycle 250000
- block plot
- displacement vectors
 - maximum = 7.810E+01
 - 0 2E 2

Department of Geography
University of Durham
Figure 7.39d: Displacement vectors for the east-west profile of Allende at 500,000 cycles.

JOB TITLE: Displacement vectors for east-west profile of Allende at 500,000 cycles.

UDEC (Version 3.10)

LEGEND

- 5-Apr-03 1:22
- cycle 500,000
- block plot
- displacement vectors
- maximum = 1.332E+02

Department of Geography
University of Durham
JOB TITLE: Horizontal displacement contours for east-west profile of Allende at 100,000 cycles.

UDEC (Version 3.10)

LEGEND

4-Apr-03 18:48
cycle 100000
block plot
X displacement contours
contour interval = 5.000E+00
-2.000E+01 to 2.500E+01

Department of Geography
University of Durham
Figure 7.40b: Horizontal displacement contours for the east-west profile of Allende at 250,000 cycles.

JOB TITLE: Horizontal displacement contours for east-west profile of Allende at 250,000 cycles.

UDEC (Version 3.10)

LEGEND

4-Apr-03 21:17
cycle 250000
block plot
X displacement contours
contour interval= 1.000E+01
-5.000E+01 to 3.000E+01

Department of Geography
University of Durham
Figure 7.40c: Horizontal displacement contours for the east-west profile of Allende at 500,000 cycles.

UDEC (Version 3.10)

LEGEND

-1.00E+02
-8.00E+01
-6.00E+01
-4.00E+01
-2.00E+01
0.00E+00
2.00E+01

Department of Geography
University of Durham
Figure 7.4.1: Total unbalanced forces for east-west profile of Allende at 500,000 cycles.

UDEC (Version 3.10)

LEGEND

5-Apr-03 1:22
500000 cycles
history plot
0.00E+00<hist 1> 6.20E+08
Vs.
0.00E+00<time> 4.81E+02

Department of Geography
University of Durham
Figure 7.42a: Block plot of north-south profile for Allende at equilibrium.

JOB TITLE: Block plot of north-south profile for Allende at equilibrium.

UDEC (Version 3.10)

LEGEND

3-Apr-03 18:07
cycle 10000
block plot

Department of Geography
University of Durham

0.500 1.500
2.500 3.500 4.500 5.500 6.500
(-10^2)
5.000 4.000 3.000 2.000 1.000 0.000 -1.000
(-10^2)
Displacement vectors for the north-south profile of Allende, Picos de Europa at 100,000 cycles.

JOB TITLE: Displacement vectors for N-S profile of Allende at 100,000 cycles

UDEC (Version 3.10)

LEGEND:
- 3-Apr-03 18:39
- cycle: 100,000
- block plot
- displacement vectors
- maximum = 4.606E+01
- 0 2E 2

Department of Geography
University of Durham
Figure 7.42c: Displacement vectors for the north-south profile of Allende at 300 000 cycles.

UDEC (Version 3.10)

LEGEND

- 3-Apr-03 19:47
- cycle 300000
- block plot
- displacement vectors
- maximum = 1.339E+02

Department of Geography
University of Durham
Figure 7.42d: Displacement vectors for the north-south profile of Allende, Picos de Europa at 401 040 cycles.

JOB TITLE: Displacement vectors for north-south profile for Allende at 401 040 cycles.

UDEC (Version 3.10)

LEGEND

- 4-Apr-03 11:26
cycle 401040
block plot
displacement vectors
maximum = 3.629E+02

Department of Geography
University of Durham
Figure 7.43a: Horizontal displacement contours for the north-south profile of Allende at 100,000 cycles.

JOB TITLE: Horizontal displacement contours for north-south profile of Allende at 100,000 cycles.

UDEC (Version 3.10)

LEGEND

3-Apr-03 18:39
cycle 100000
block plot
X displacement contours
contour interval = 5.000E+00
-2.000E+01 to 1.500E+01

Legend:
-2.000E+01
-1.500E+01
-1.000E+01
-5.000E+00
0.000E+00
5.000E+00
1.000E+01
1.500E+01

Department of Geography
University of Durham
JOB TITLE: Horizontal displacement contours for north-south profile of Allende at 300 000 cycles.

UDEC (Version 3.10)

LEGEND

3-Apr-03 19:47
cycle 300000
block plot
X displacement contours
contour interval= 1.000E+01
-7.000E+01 to 2.000E+01

Department of Geography
University of Durham
Figure 7.46: Comparison of the half-way time for all failures in the Picos de Europa models.
Figure 7.47: Exponential asymptotic model (dashed line) applied to x-displacement data for the failures at Torre de Salinas.
Figure 7.48: Exponential asymptotic model (dashed line) applied to x-displacement data for the failure on the north-south profile of Pico de la Padierna.
Figure 7.49: Exponential asymptotic (dashed line) applied to x-displacement data (circles) for the east-west profile of Tiro Pedabejo.
Figure 7.50: Exponential asymptotic model (dashed line) applied to x-displacement data for the failures at Canchorral de Hormas.
Figure 7.51: Exponential asymptotic model (dashed line) applied to x-displacement data for the failures at Los Montes.
Figure 7.52: Exponential asymptotic model (dashed line) applied to x-displacement data for the failures at Allende.
Figure 7.53: Summary of the two main patterns of failure in λ-t space associated with brittle, catastrophic failure and self-stabilising flexural toppling failure.
Figure 7.54: Results of erosion rate modelling on the samples selected for 36Cl dating. As the erosion rate increases, the applied erosion rate correction decreases the ages of the boulder.
Figure 7.55: Calculated 36Cl dates for rock slope failures in the Picos de Europa. The dates indicate one failure event, with almost synchronous timing.
Figure 7.56: Exhaustion model for paraglacial rock slope failure in the Picos de Europa, compared with data from Cruden and Hu (1993) in the Canadian Rockies.
Figure 7.57: Proposed model of paraglacial rock slope evolution for the Picos de Europa based on UDEC modelling, assessment of paraglacial exhaustion models and cosmogenic dating.
Figure 8.1: Block plot of north-south profile of AL9 at equilibrium.

JOB TITLE: Block plot of north-south profile of AL9 at equilibrium.

UDEC (Version 3.10)

LEGEND

30-May-03 10:59
cycle 10000
block plot

Department of Geography
University of Durham
Figure 8.2: Total unbalanced forces for the north-south profile of AL9 at equilibrium.

Department of Geography
University of Durham

UDEC (Version 3.10)

LEGEND

CQ: 1.20

C: 0.80

C: 0.60

C: 0.40

C: 0.20

E: 0.00

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60

0.00 0.20 0.40 0.60 0.80

0.00 0.20 0.40 0.60

0.00 0.20 0.40 0.60

0.00 0.20 0.40 0.60
Figure 8.3a: Displacement vectors for north-south profile of AL9 at 15,000 cycles.

JOBS TITLE: Displacement vectors for north-south profile of AL9 at 15,000 cycles.

UDEC (Version 3.10)

<table>
<thead>
<tr>
<th>JOB TITLE</th>
<th>Displacement vectors for north-south profile of AL9 at 15,000 cycles.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEGEND</td>
<td>30-May-03 10:59 cycle 15000 block plot displacement vectors maximum = 4.20E+00</td>
</tr>
<tr>
<td>0</td>
<td>2E 1</td>
</tr>
</tbody>
</table>

Department of Geography
University of Durham

Figure 8.3a: Displacement vectors for the north-south profile of AL9 at 15,000 cycles.
Figure 8.3b: Displacement vectors for the north-south profile of AL9 at 17000 cycles.

Department of Geography
University of Durham
Figure 8.3c: Displacement vectors for the north-south profile of AL9 at 40,000 cycles.

JOB TITLE: Displacement vectors for north-south profile of AL9 at 40,000 cycles.

UDEC (Version 3.10)

LEGEND
- 30-May-03 11:00
- cycle 40,000
- block plot
- displacement vectors
- maximum = 3.242E+01
- 0 1E 2

Department of Geography
University of Durham
Figure 8.4: Total unbalanced forces for north-south profile of AL9 at 40,000 cycles.

JOB TITLE: Total unbalanced forces for north-south profile of AL9 at 40,000 cycles.

UDEC (Version 3.10)

LEGEND

30-May-03 11:00
cycle 40000
history plot
0.00E+00<hist 1> 2.72E+06
Vs.
0.00E+00<time> 6.33E+01

Department of Geography
University of Durham
Figure 8.5a: Horizontal displacement contours for the north-south profile of AL9 at equilibrium.

UDEC (Version 3.10)

LEGEND

30-May-03 10:59
cycle 10000
block plot
X displacement contours
contour interval = 5.000E-03
-1.000E-02 to 2.000E-02

-1.000E-02
-5.000E-03
0.000E+00
5.000E-03
1.000E-02
1.500E-02
2.000E-02

Department of Geography
University of Durham
Figure 8.5b: Horizontal displacement contours for the north-south profile of AL9 at 15,000 cycles.

UDEC (Version 3.10)

LEGEND

30-May-03 10:59
Cycle 15000
Block plot
X displacement contours
Contour interval = 5.000E-01
-4.000E+00 to 5.000E-01

Department of Geography
University of Durham
Figure 8.5c: Horizontal displacement contours for the north-south profile of AL9 at 17 000 cycles.

UDEC (Version 3.10)

LEGEND

30-May-03 10:59
cycle 17000
block plot
X displacement contours
contour interval= 2.000E+00
-1.000E+01 to 0.000E+00

0.100 0.300 0.500 0.700 0.900

Department of Geography
University of Durham
JOB TITLE: Horizontal displacement contours for north-south profile of AL9 at 40,000 cycles.

UDEC (Version 3.10)

LEGEND

30-May-03 11:00
cycle 40000
block plot
X displacement contours
contour interval = 4.000E+00
-2.000E+01 to 0.000E+00

Department of Geography
University of Durham
Figure 8.6a: Block plot of the east-west profile of AL9 at equilibrium.

JOB TITLE: Block plot of east-west profile of AL9 at equilibrium.

UDEC (Version 3.10)

LEGEND

30-May-03 14:52
cycle 10000
block plot

Department of Geography
University of Durham
Figure 8.6b: Displacement vectors for the east-west profile of AL9 at 50,000 cycles.
Figure 8.7: Total unbalanced forces for the east-west profile of AL9 at 50,000 cycles.

LEGEND
- 30-May-03 14:58
- Cycle 50000
- History plot
- 0.00E+00<hist 1> 2.10E+06
- Vs.
- 0.00E+00<time> 7.90E+01

Department of Geography
University of Durham
JOB TITLE: Block plot of north-south profile of AL12 at equilibrium.

UDEC (Version 3.10)

LEGEND

10-Jun-03 10:34

cycle 10000
block plot

Department of Geography
University of Durham
JOB TITLE: Displacement vectors for north-south profile of AL12 at 12 000 cycles.

UDEC (Version 3.10)

LEGEND

10-Jun-03 10:34
cycle 12000
block plot
displacement vectors
maximum = $4.734E+00$

Department of Geography
University of Durham
Figure 8.8c: Displacement vectors for north-south profile of AL12 at 15,000 cycles.

JOB TITLE: Displacement vectors for north-south profile of AL12 at 15,000 cycles.

UDEC (Version 3.10)

LEGEND
- 10-Jun-03 10:34 cycle 15000 block plot displacement vectors
- maximum = 1.078E+01

Department of Geography
University of Durham

Department of Geography
University of Durham
Figure 8.8d: Displacement vectors for the north-south profile of AL12 at 25,000 cycles.
Figure 8.9:
Total unbalanced forces for north-south profile of AL12 at 25 000 cycles.

UDEC (Version 3.10)

LEGEND
10-Jun-03 10:34
cycle 25000
history plot
0.00E+00< hist 1 > 1.82E+06
Vs.
0.00E+00< time > 8.33E+01

Department of Geography
University of Durham
JOB TITLE: Horizontal displacement contours for north-south profile of AL12 at 12 000 cycles.

UDEC (Version 3.10)

LEGEND

10-Jun-03 10:34
cycle 12000
block plot
X displacement contours
contour interval= 4.000E-01
0.000E+00 to 2.000E+00

Department of Geography
University of Durham
Figure 8.10b: Horizontal displacement contours for the north-south profile of AL 12 at 15,000 cycles.

JOB TITLE: Horizontal displacement contours for north-south profile of AL 12 at 15,000 cycles.

UDEC (Version 3.10)

LEGEND
- 10-Jun-03 10:34 cycle 15000
- Block plot X displacement contours
- Contour interval: $1.000E+00$
- $0.000E+00$ to $8.000E+00$

Department of Geography
University of Durham
Figure 8.10c: Horizontal displacement contours for north-south profile of AL12 at 25 000 cycles.

JOB TITLE: Horizontal displacement contours for north-south profile of AL12 at 25 000 cycles.

UDEC (Version 3.10)

LEGEND

- 10-Jun-03 10:34
- cycle 25000
- block plot
- X displacement contours
- contour interval = 4.00E+00
- 0.000E+00 to 2.000E+01

Department of Geography
University of Durham
JOB TITLE: Block plot of east-west profile of AL12 at equilibrium.

UDEC (Version 3.10)

Legend:
10-Jun-03 11:19
Cycle 10000
Block plot

Department of Geography
University of Durham
Figure 8.11b: Displacement vectors for the east-west profile of AL12 at 100 000 cycles.

JOB TITLE: Displacement vectors for east-west profile of AL12 at 100 000 cycles.

UDEC (Version 3.10)

LEGEND

10-Jun-03 11:23
cycle 100000
block plot
displacement vectors
maximum = 3.103E-01
0 1E 0

Department of Geography
University of Durham
Horizontal displacement contours for the east-west profile of AL12 at 100,000 cycles.

LEGEND

- Cycle: 100,000
- X-displacement contours
- Contour interval: 2.000E-02
- Minimum: -4.000E-02
- Maximum: 4.000E-02

Department of Geography
University of Durham
Figure 8.13a: Block plot of north-south profile of AL10 at equilibrium.

JOB TITLE: Block plot of north-south profile of AL10 at equilibrium.

UDEC (Version 3.10)

LEGEND

9-Jun-03 12:59
cycle 10000
block plot

Department of Geography
University of Durham
Figure 6.13b: Displacement vectors for the north-south profile of AL10 at 13,000 cycles.

JOB TITLE: Displacement vectors for north-south profile of AL10 at 13,000 cycles.

UDEC (Version 3.10)

LEGEND

9-Jun-03 13:00
cycle 13000
block plot
displacement vectors
maximum = 1.656E+01

Department of Geography
University of Durham
Figure 8.13c: Displacement vectors for north-south profile of AL10 at 15,000 cycles.

JOB TITLE: Displacement vectors for north-south profile of AL10 at 15,000 cycles.

UDEC (Version 3.10)

LEGEND

9-Jun-03 13:01

cycle 15000

block plot

displacement vectors

maximum = 3.399E+01

0 2E 2

Department of Geography
University of Durham
Figure 8.13d: Displacement vectors for the north-south profile of AL10 at 21000 cycles.

JOB TITLE: Displacement vectors for north-south profile of AL10 at 21000 cycles.

UDEC (Version 3.10)

LEGEND
- 9-Jun-03 13:08
- cycle 21000
- block plot
- displacement vectors
- maximum = 6.941E+01
- 0 2E 2

Department of Geography
University of Durham
JOB TITLE: Horizontal displacement contours for north-south profile of AL10 at 13 000 cycles.

UDEC (Version 3.10)

LEGEND

9-Jun-03 13:00
cycle 13000
block plot
X displacement contours
contour interval= 5.000E+00
-1.000E+01 to 1.000E+01

Department of Geography
University of Durham
Figure 8.14b: Horizontal displacement contours for the north-south profile of AL10 at 15 000 cycles.

JOB TITLE: Horizontal displacement contours for north-south profile of AL10 at 15 000 cycles.

UDEC (Version 3.10)

LEGEND

- 9-Jun-03 13:01
- cycle 15000
- block plot
- X displacement contours
- contour interval = 1.000E+01 to 2.000E+01

Department of Geography
University of Durham
Horizontal displacement contours for the north-south profile of AL10 at 21,000 cycles.

UDEC (Version 3.10)

LEGEND

- X displacement contours
 - contour interval: 1.000E+01
 - -5.000E+01 to 4.000E+01

Department of Geography
University of Durham
Figure 8.15: Total unbalanced forces for north-south profile of AL10 at 21,000 cycles.

JOB TITLE: Total unbalanced forces for north-south profile of AL10 at 21,000 cycles.

UDEC (Version 3.10)

LEGEND

9-Jun-03 13:08
cycle 21000
history plot
0.00E+00<hist 1> 8.70E+06
Vs.
0.00E+00<time> 4.03E+01

Department of Geography
University of Durham
Figure 8.16a: Block plot of the east-west profile of AL10 at equilibrium.

JOB TITLE: Block plot of east-west profile of AL10 at equilibrium.

UDEC (Version 3.10)

LEGEND

9-Jun-03 9:25
cyCLE 10000
block plot

Department of Geography
University of Durham
Figure 8.16b: Displacement vectors for east-west profile of AL10 at 100 000 cycles.

JOB TITLE: Displacement vectors for east-west profile of AL10 at 100 000 cycles.

UDEC (Version 3.10)

LEGEND

- 9-Jun-03 10:11
- cycle 100000
- block plot
- displacement vectors
 - maximum = 2.398E+00
 - 0 to 1E1

Department of Geography
University of Durham

-0.250 -0.750 -1.250

0.250 0.750 1.250 1.750 2.250 2.750 3.250 3.750 (10^2)

-0.250 -0.750 -1.250

0.250 0.750 1.250 1.750 2.250 2.750 3.250 3.750 (10^2)
JOB TITLE: Horizontal displacement contours for east-west profile of AL10 at 100 000 cycles.

UDEC (Version 3.10)

LEGEND

9-Jun-03 10:11
cycle 100000
block plot
X displacement contours
contour interval= 2.000E-01
-1.400E+00 to 2.000E-01

Department of Geography
University of Durham
Figure 8.18a: Block plot of the north-south profile of AL11 at equilibrium.

JOB TITLE: Block plot of north-south profile of AL11 at equilibrium.

UDEC (Version 3.10)

LEGEND

10-Jun-03 8:45
Cycle 10000
Block plot

Department of Geography
University of Durham
Figure 6.18b: Displacement vectors for north-south profile of AL11 at 100 000 cycles.

JOB TITLE: Displacement vectors for north-south profile of AL11 at 100 000 cycles.

UDEC (Version 3.10)

LEGEND

10-Jun-03 9:12
cycle 100000
block plot
displacement vectors
maximum = 2.392E+01

Department of Geography
University of Durham
Figure 8.19: Total unbalanced forces for north-south profile of AL11 at 100 000 cycles.

UDEC (Version 3.10)

LEGEND

10-Jun-03 9:12
cycle 100000
history plot
0.00E+00<hist 1> 5.59E+06
Vs.
0.00E+00<time> 2.07E+02

Department of Geography
University of Durham
JOB TITLE: Horizontal displacement contours for north-south profile of AL11 at 100 000 cycles.

UDEC (Version 3.10)

LEGEND

10-Jun-03 9:12
cycle 100000
block plot
X displacement contours
contour interval= 2.000E+00
-4.000E+00 to 4.000E+00
-4.000E+00
-2.000E+00
0.000E+00
2.000E+00
4.000E+00

Department of Geography
University of Durham
Figure 8.21a: Block plot of the east-west profile of AL11 at equilibrium.

JOB TITLE: Block plot of east-west profile of AL11 at equilibrium.

UDEC (Version 3.10)

LEGEND

9-Jun-03 13:56
cycle 10000
block plot

Department of Geography
University of Durham

0.500 1.500 2.500 3.500 (10^2)

0.000 1.000 2.000 3.000

-1.000 -2.000
JOB TITLE: Displacement vectors for east-west profile of AL11 at 20 000 cycles.

UDEC (Version 3.10)

LEGEND

9-Jun-03 14:12
cycle 20000
block plot
displacement vectors
maximum = 3.954E+01

Department of Geography
University of Durham
Figure 8.21c: Displacement vectors for the east-west profile of AL11 at 40 000 cycles.

JOB TITLE: Displacement vectors for east-west profile of AL11 at 40 000 cycles.

UDEC (Version 3.10)

LEGEND

9-Jun-03 14:31

cycle 40000

block plot
displacement vectors

maximum = 5.897E+01

0 2E 2
Figure 8.22a: Horizontal displacement contours for the east-west profile of AL11 at 20,000 cycles.

JOBTITLE: Horizontal displacement contours for east-west profile of AL11 at 20,000 cycles.

UDEC (Version 3.10)

LEGEND

9-Jun-03 14:12
cycle 20000
block plot
X displacement contours
contour interval = 5.000E+00
0.000E+00 to 3.000E+01

Department of Geography
University of Durham
Figure 8.22b: Horizontal displacement contours for the east-west profile of AL 11 at 40,000 cycles.
Figure 8.22: Total unbalanced forces for the east-west profile of AL11 at 40,000 cycles.

UDEC (Version 3.10)

LEGEND

9-Jun-03 14:31
cycle 40000
history plot
0.00E+00<hist 1> 6.08E+06
Vs.
0.00E+00<time> 8.73E+01

Department of Geography
University of Durham
JOB TITLE: Block plot of north-south profile of AL3 at equilibrium.

UDEC (Version 3.10)

LEGEND

15-May-03 18:21
cycle 10000
block plot

Department of Geography
University of Durham
Figure 8.24b: Displacement vectors for the north-south profile of AL3 at 13000 cycles.
Figure 8.24c: Displacement vectors for the north-south profile of AL3 at 15,000 cycles.

UDEC (Version 3.10)

LEGEND
- 15-May-03 18:25
- cycle 15000
- block plot
- displacement vectors
- maximum = 7.286E+01
- 0 2E 2

Department of Geography
University of Durham
Figure 8.24d: Displacement vectors for the north-south profile of AL3 at 20,000 cycles.

JOE TITLE: Displacement vectors for north-south profile of AL3 at 20,000 cycles.

UDEC (Version 3.10)

LEGEND

15-May-03 18:31
cycle 20000
block plot
displacement vectors
maximum = 1.268E+02

Department of Geography
University of Durham
Figure 25a: Horizontal displacement contours for north-south profile of AL3 at 13 000 cycles.

UDEC (Version 3.10)

LEGEND

15-May-03 18.23 cycle 13000 block plot
X displacement contours contour interval= 1.000E+01 -2.000E+01 to 3.000E+01

-2.000E+01
-1.000E+01
0.000E+00
1.000E+01
2.000E+01
3.000E+01

Department of Geography
University of Durham
Figure 8.25b: Horizontal displacement contours for north-south profile of AL3 at 20,000 cycles.

JOB TITLE: Horizontal displacement contours for north-south profile of AL3 at 20,000 cycles.

UDEC (Version 3.10)

LEGEND

15-May-03 18:31
cycle 20000
block plot
X displacement contours
contour interval=2.000E+01
-6.000E+01 to 8.000E+01
-6.000E+01
-4.000E+01
-2.000E+01
0.000E+00
2.000E+01
4.000E+01
6.000E+01
8.000E+01

Department of Geography
University of Durham
Figure B.26a: Block plot of the east-west profile of AL3 at equilibrium.

UDEC (Version 3.10)

LEGEND

13-May-03 18:26
cycle 10000
block plot

Department of Geography
University of Durham

JOB TITLE: Block plot of east-west profile of AL3 at equilibrium.
Figure 2.26b: Displacement vectors for AL3a at 20,000 cycles.

JOB TITLE: Displacement vectors for AL3a at 20,000 cycles

UDEC (Version 3.10)

LEGEND

13-May-03 18:56

- cycle 20000
- block plot
- displacement vectors
 - maximum = 4.958E+01
 - 0 2E 2

Department of Geography
University of Durham
Figure 8.26c: Displacement vectors for the east-west profile of AL3 at 150,000 cycles.

JOB TITLE: Displacement vectors for east-west profile of AL3 at 150,000 cycles.

UDEC (Version 3.10)

LEGEND

14-May-03 16:23

Cycle 150000

Block plot

Displacement vectors

Maximum = 4.471E+01

Department of Geography

University of Durham
Figure 8.27a: Horizontal displacement contours for east-west profile of AL3 at 20 000 cycles.

UDEC (Version 3.10)

LEGEND

13-May-03 18:56
cycle 20000
block plot
X displacement contours
contour interval= 5.000E+00
-5.000E+00 to 4.000E+01

Department of Geography
University of Durham
Figure 8.27b: Horizontal displacement contours for east-west profile of AL3 at 150,000 cycles.

LEGEND
14-May-03 16:23
cycle 150000
block plot
X displacement contours
contour interval= 1.000E+01
0.000E+00 to 4.000E+01

Department of Geography
University of Durham
Figure 8.28: Total unbalanced forces for the east-west profile of AL3 at 150 000 cycles.

JOB TITLE: Total unbalanced forces for east-west profile of AL3 at 150 000 cycles.

UDEC (Version 3.10)

LEGEND

14-May-03 16:23
cycle 150000
history plot
0.00E+00<hist 1> 3.25E+07
Vs.
0.00E+00<time> 4.40E+02

Department of Geography
University of Durham
JOB TITLE: Block plot of north-south profile of AL2 at equilibrium.

UDEC (Version 3.10)

LEGEND

12-May-03 18:19
cycle 10000
block plot

Department of Geography
University of Durham
Figure 8.29b: Displacement vectors for the north-south profile of AL2 at 20,000 cycles.

JOB TITLE: Displacement vectors for north-south profile of AL2 at 20,000 cycles.

UDEC (Version 3.10)

LEGEND

- 12-May-03 18:38
- cycle 20000
- block plot
- displacement vectors
- maximum = 1.322E+02

Department of Geography
University of Durham
JOB TITLE: Displacement vectors for north-south profile of AL2 at 68,502 cycles.

UDEC (Version 3.10)

LEGEND

13-May-03 12:32

cycle 68502
block plot
displacement vectors
maximum = 2.223E+02

Department of Geography
University of Durham
20 000 cycles. Figure 8.30a: Horizontal displacement contours for the north-south profile of AL2 at 20 000 cycles.
68 502 cycles

Figure 8.30b: Horizontal displacement contours for north-south profile of AL2 at 68 502 cycles.

JOE TITLE: Horizontal displacement contours for north-south profile of AL2 at 68 502 cycles.

UDEC (Version 3.10)

LEGEND

13-May-03 12:32
1 cycle 68502
block plot
X displacement contours
contour interval= 5.000E+01
-1.500E+02 to 1.000E+02

-1.500E+02
-1.000E+02
-5.000E+01
0.000E+00
5.000E+01
1.000E+02

Department of Geography
University of Durham
Figure 8.31: Total unbalanced forces for north-south profile of AL2 at 68,502 cycles.

UDEC (Version 3.10)

LEGEND

- 13-May-03 12:32 cycle 68502 history plot
- 0.00E+00<hist 1> 9.05E+07 Vs.
- 0.00E+00<time> 1.43E+02

Department of Geography
University of Durham
Figure 8.32a: Block plot of the east-west profile of AL2 at equilibrium.

JOB TITLE: Block plot of east-west profile of AL2 at equilibrium.

UDEC (Version 3.10)

LEGEND

13-May-03 15:21

- cycle 10000
- block plot

Department of Geography
University of Durham
Figure 8.32b: Displacement vectors for the east-west profile of AL2 at 100 000 cycles.

JOB TITLE: Displacement vectors for east-west profile of AL2 at 100 000 cycles.

UDEC (Version 3.10)

LEGEND

13-May-03 16:11
cycle 100000
block plot
displacement vectors
maximum = 2.718E+00
0 1E 1

Department of Geography
University of Durham
JOB TITLE: Horizontal displacement contours for east-west profile of AL2 at 100 000 cycles.

UDEC (Version 3.10)

LEGEND

13-May-03 16:11
cycle 100000
block plot
X displacement contours
contour interval= 2.000E-01
-1.000E+00 to 4.000E-01

Department of Geography
University of Durham
Figure 8.34a: Block plot of north-south profile of AL7 at equilibrium.

JOB TITLE: Block plot of north-south profile of AL7 at equilibrium.

UDEC (Version 3.10)

LEGEND

20-May-03 10:25
cycle 10000
block plot

Department of Geography
University of Durham
Figure 8.34b: Displacement vectors for north-south profile of AL7 at 15403 cycles.

UDEC (Version 3.10)

<table>
<thead>
<tr>
<th>JOB TITLE</th>
<th>Displacement vectors for north-south profile of AL7 at 15403 cycles.</th>
</tr>
</thead>
</table>

LEGEND

- 20-May-03 14:28
- cycle 15403
- block plot
- displacement vectors
- maximum = 6.192E+01

Department of Geography
University of Durham
Figure 8.34c: Displacement vectors for the north-south profile of AL7 at 17403 cycles.

UDEC (Version 3.10)

JOB TITLE: Displacement vectors for north-south profile of AL7 at 17403 cycles.

LEGEND:
- 20-May-03 14:47 cycle 17403 block plot displacement vectors maximum = 7.697E+01
- 0 2E 2

Department of Geography
University of Durham
Figure 8.34d: Displacement vectors for the north-south profile of AL7 at 30 403 cycles.

JOB TITLE: Displacement vectors for north-south profile of AL7 at 30 403 cycles.

UDEC (Version 3.10)

LEGEND

- 20-May-03 15:56
- Cycle: 30403
- Block plot
- Displacement vectors
- Maximum: 2.029E+02

Department of Geography
University of Durham
Figure 8.35a: Horizontal displacement contours for the north-south profile of AL7 at 15,403 cycles.

JOB TITLE: Horizontal displacement contours for north-south profile of AL7 at 15,403 cycles.

UDEC (Version 3.10)

LEGEND

20-May-03 14:28
cycle 15403
block plot
X displacement contours
contour interval= 1.000E+01
-3.000E+01 to 3.000E+01

-3.000E+01
-2.000E+01
-1.000E+01
0.000E+00
1.000E+01
2.000E+01
3.000E+01

Department of Geography
University of Durham
Figure 8.35b: Horizontal displacement contours for north-south profile of AL7 at 30,403 cycles.

JOB TITLE: Horizontal displacement contours for north-south profile of AL7 at 30,403 cycles.

UDEC (Version 3.10)

LEGEND

- 20-May-03 15:56
- cycle 30403
- block plot
- X displacement contours
- contour interval = 2.000E+01
- -8.000E+01 to 6.000E+01
- -8.000E+01
- -6.000E+01
- -4.000E+01
- -2.000E+01
- 0.000E+00
- 2.000E+01
- 4.000E+01
- 6.000E+01

Department of Geography
University of Durham
JOB TITLE: Block plot of east-west profile of AL7 at equilibrium.

UDEC (Version 3.10)

LEGEND
19-May-03 10:27
cycle 10000
block plot

Department of Geography
University of Durham
Figure 8.36b: Displacement vectors for the east-west profile of AL7 at 13 000 cycles.

** Legend **
- 19-May-03 10:31
- cycle 13000
- block plot
- displacement vectors
- maximum = 2.452E+01

Department of Geography
University of Durham
Figure 8.36c: Displacement vectors for east-west profile of AL7 at 20 000 cycles.

UDEC (Version 3.10)

LEGEND
- 19-May-03 10:54
- cycle 20000
- block plot
- displacement vectors
- maximum = 9.926E+01

Department of Geography
University of Durham
JOB TITLE: Displacement vectors for east-west profile of AL7 at 25 056 cycles.

UDEC (Version 3.10)

LEGEND

19-May-03 12:24
cycle 25056
block plot
displacement vectors
maximum = 1.652E+02

Department of Geography
University of Durham
JOB TITLE: Horizontal displacement contours for east-west profile of AL7 at 13000 cycles.

UDEC (Version 3.10)

LEGEND
19-May-03 10:31
cycle 13000
block plot
X displacement contours
contour interval = 5.000E+00
-5.000E+00 to 1.500E+01

-5.00E+00
0.00E+00
5.00E+00
1.00E+01
1.50E+01

Department of Geography
University of Durham
Figure 8.37b: Horizontal displacement contours for east-west profile of AL7 at 20 000 cycles.

UDEC (Version 3.10)

LEGEND

- 19-May-03 10:54
- cycle 20000
- block plot
- X displacement contours
- contour interval = 1.000E+01
- -1.000E+01 to 6.000E+01

Department of Geography
University of Durham
Department of Geography
University of Durham

Figure 8.37c: Horizontal displacement contours for the east-west profile of AL7 at 25,056 cycles.

JOB TITLE: Horizontal displacement contours for east-west profile of AL7 at 25,056 cycles.

UDEC (Version 3.10)

LEGEND

19-May-03 12:24

cycle 25056
block plot
X displacement contours
contour interval= 2.000E+01
-2.000E+01 to 8.000E+01

-2.000E+01
0.000E+00
2.000E+01
4.000E+01
6.000E+01
8.000E+01
Figure 8.38a: Block plot of east-west profile of AL17 at equilibrium.

JOB TITLE: Block plot of east-west profile of AL17 at equilibrium.

UDEC (Version 3.10)

LEGEND

12-Jun-03 13:21
cycle 10000
block plot

Department of Geography
University of Durham
Figure 8.38b: Displacement vectors for the east-west profile of AL17 at 34 360 cycles.
Figure 6.38c: Displacement vectors for east-west profile of AL17 at 334 360 cycles.

JOB TITLE: Displacement vectors for east-west profile of AL17 at 334 360

UDEC (Version 3.10)

LEGEND

13-Jun-03 12:02
cycle 334360
block plot
displacement vectors
maximum = 1.204E+02

Department of Geography
University of Durham
JOB TITLE: Displacement vectors for east-west profile of AL17 at 404 360 cycles.

UDEC (Version 3.10)

LEGEND

13-Jun-03 12:55
cycle 404360
block plot
displacement vectors
maximum = 1.823E+02

Department of Geography
University of Durham
JOB TITLE: Total unbalanced forces for east-west profile of AL17 at 404 360 cycles.

UDEC (Version 3.10)

LEGEND
- 13-Jun-03 12:55
- cycle 404360
- history plot
 - 0.00E+00<hist 1> 2.65E+09
 - Vs.
 - 0.00E+00<time> 1.14E+03

Department of Geography
University of Durham
Figure 8.40a: Horizontal displacement contours for east-west profile of AL17 at 34 360 cycles.

UDEC (Version 3.10)

LEGEND

- 12-Jun-03 13:55 cycle 34360 block plot
- X displacement contours
- Contour interval = 2.000E+01 -2.000E+01 to 8.000E+01

-2.000E+01
0.000E+00
2.000E+01
4.000E+01
6.000E+01
8.000E+01

Department of Geography
University of Durham
Figure 8.49b: Horizontal displacement contours for east-west profile of AL17 at 334 360 cycles.

UDEC (Version 3.10)

LEGEND

13-Jun-03 12:02
Cycle 334360
Block plot
X displacement contours
Contour interval= 2.000E+01
-2.000E+01 to 1.000E+02

-2.000E+01
0.000E+00
2.000E+01
4.000E+01
6.000E+01
8.000E+01
1.000E+02

Department of Geography
University of Durham
404 360 cycles.

Figure 8.40c: Horizontal displacement contours for the east-west profile of AL17 at 404 360 cycles.

JOB TITLE: Horizontal displacement contours for east-west profile of AL17 at 404 360 cycles.

UDEC (Version 3.10)

LEGEND

13-Jun-03 12:55
cycle 404360
block plot
X displacement contours
contour interval= 4.000E+01
-4.000E+01 to 1.600E+02

Department of Geography
University of Durham
Figure 8.41: Out of balance forces with loess smoothing function applied to pick out the main trends in unbalanced forces.
Figure 8.42: Comparison of failure mechanisms compared with the out of balance forces for models simulating the sandstone inselbergs of the Wadi Rum region.
Figure 8.43: Exponential asymptotic model (dashed line) applied to x-displacement data for the toppling failure on the north face of AL9.
Figure 8.44: Exponential asymptotic model (dashed line) applied to x-displacement data for the failure on the south face of AL12.
Figure 8.45: Exponential asymptotic model (dashed line) applied to x-displacement data for the toppling failure on the south face of AL10.
Figure 8.46: Exponential asymptotic model (dashed line) applied to x-displacement data for the failures on the east of AL11.
Figure 8.47: Exponential asymptotic model (dashed line) applied to x-displacement data for the failures on the east (a) and south (b) faces.
Figure 8.48: Exponential asymptotic model (dashed line) applied to x-displacement data for the failures on the north and south faces of AL2.
Figure 8.48: Exponential asymptotic model (dashed line) applied to x-displacement data for the failures on the west and south faces of AL7.
Figure 8.50: Exponential asymptotic model (dashed line) applied to x-displacement data for the failures on the west of AL17.
Figure 8.51: Results of erosion rate modelling on the samples selected for 10Be dating. As the erosion rate increases, the applied erosion rate correction increases the ages of the boulder.
Figure 8.52: 10Be ages estimates for selected rock slope failures in the Wadi Rum region. Purple represents a wet climatic period between 35,000 and 20,000 years B.P., the yellow a wet period between 12,000 and 10,000 years B.P. and the blue the Neolithic wet period between 7000 and 4400 years B.P.
Figure 8.53: Smoothed total unbalanced forces for AL2. 10Be ages and σ_1 error have been overlaid on the graph, based on one year representing 1.5 model cycles.
Figure 8.54: Smoothed total unbalanced forces for AL7 10Be ages and σ_1 error have been overlaid on the graph, based on one model cycle representing 1.5 years.
Figure 8.55: Smoothed total unbalanced forces for $\text{AL}_{10} \text{Be}$ ages and σ_1 error have been overlaid on the graph, based on one model cycle representing 2.3 years.
Plates
Plate 5.1: Incision of the Cares Gorge has divided the Central and Western Picos in to two separate massifs. The peaks surrounding the gorge rise to 2000 m, while the floor is just 400 m above sea level.
Plate 5.2: A relict rock glacier in the Vega de Liordes formed through the downslope transport of failed slope debris. The glacier is largely relict, apart from the active accumulation of debris on the left hand side.
Plate 5.3: Debris flow system in the bottom left of the picture with the Government guesthouse of Fuente De just above. The fan consists of coarse alluvium and is incised in its lower channel. Note also that prominent slope deformation in the middle of the picture. Not a good place to stay during prolonged, heavy rain.
Plate 5.4: The large debris flow system originating at Canchorral de Hormas. The red line traces the approximate source area. Although not visible on the picture, the village of Cabañas is behind the hill at the bottom of the debris flow system.
Plate 5.5: The cirque headwalls of Torre de Salinas, viewed from the Vega de Liordes. Torre del Hoyo de Liordes, the cirque reaches a high point of 2474m to the west (left) of the picture.
Plate 5.6: The east-west trending face of Pico de la Padierna. The highest part of the slope occurs to the right of the picture and decreases in height towards the west (left). The red line traces the top of the slope as a bench separates the slope from the peak seen behind, which is some distance away.
Plate 5.7: The north face of Tiro Pedabejo. The north and west faces were the most easily accessible for the collection of discontinuity data. Numerous ploughing blocks occur on the lower slopes.
Plate 5.8: The large block field forming the deposition area for failed material from the headwalls of Canchorral de Hormas. This block field also provides the source area for the large debris flow system seen in plate 5.4.
Plate 5.9: The rock slope investigated at Los Montes in the Deva Gorge. Much remedial work has taken place at the toe of the slope. Plans to widen the highway in the Gorge require cutting back of the slope toe.
Plate 5.10: The rock slope investigated at the crags of Algobras, Allende in the Deva Gorge. The slope is bounded on the left by a large canal, providing access to high level grazing.
Plate 5.11: Triaxial testing of rock cores in a Hoek Cell (inset) inserted into a stiff loading frame (A). Confining pressure is applied with a hand pump. Uniaxial testing of cores for defining the unconfined compressive strength (B).
Plate 6.1: Tafoni weathering and case hardening on the sandstone inselbergs of Wadi Rum.
Plate 6.2: Example of rockfall event on the sandstone inselbergs in Wadi Rum.
Figure 6.3: A natural rock bridge formed through weathering of the sandstones.
Plate 6.4: Disi and Red Ishrin Sandstone inselbergs. The Red Ishrin Sandstone is much stronger than the Disi, supporting vertical slopes and much higher inselbergs.
Plate 6.5: Rounded domes are characteristic of inselbergs developed in the Disi sandstones.
Plate 6.6: Preferential weathering of 'master' joints leads to the development of columnar inselbergs.
Plate 6.7: Example of tensile failure of sandstone caused by basal slope sapping.
Plate 7.1: Torre de Salinas. The UDEC model meshes were designed to capture the main features of each of the cirque headwall features.
Figure 7.2: Pico de la Padierna. (A) is a view of the whole ridge, (B) the central section, (C) the western portion and (D) the eastern end.
Plate 7.3: (A) The north face of Tiro Pedabejo (B) the south-west face of Tiro Pedabejo from the Canal de Pedabejo. The full free face is just off the picture.
Plate 7.4: Canchorral de Hormas. (A) View of the boulder field (B) View of the site from the end of the Deva Gorge. The red circle marks its location.
Plate 7.5: The east-west profile of Los Montes, Deva Gorge from the south face. The Rio Deva is just off to the right of the picture.
Plate 7.6: (A) General view of Allende from the south showing the west, south and east faces. (B) View of the south face of Allende.
Plate 7.7: The north face of Torre de Salinas from the Collado de Jermoso, Picos de Europa. Antiscars formed by flexural toppling on the north face can be seen in the centre of the photograph.
Plate 7.8: View of Pena Remona. The back-tilted blocks are formed due to a combination of the nature of the bedding and small rotational movements occurring at the toe of the slope, leading to large-scale deformation.
Plate 7.9: Sampling for cosmogenic isotope analysis at Pico de la Padierna.
Plate 7.10: Sampling of boulders for cosmogenic isotope analysis at Tiro Pedabejo. (A) General geomorphic setting of boulders of boulder 2, with an exposure age of 7459 ± 214. (B) Close up view of boulder 1, with a calculated exposure age of 7824 ± 403 yrs BP.
Plate 7.11: Boulders selected for cosmogenic sampling at Allende. (A) Geomorphic setting of boulder 1, with a calculated exposure age of 6540 ± 636 and (B) boulder 2, with a 36Cl exposure age of 6575 ± 242 yrs BP.
Plate 7.12: Evidence that the south face of Pico de la Padierna still represents an over-dip slope and that future failures are likely. The angle of the slope is much greater than the friction angle and cohesion of the intact material and discontinuities.
Plate 8.1: North-south profile of AL9 (A), with close up view of the failure on the south face (B).
Plate 8.2: North-south profile of AL12 (A) with east-west profile shown in (B). The inselberg is formed in Disi sandstone.
Plate 8.3: North-south profile of AL10 from the west face (A) and the north-south profile showing a large failure on the south face from the eastern end of the inselberg (B).
Plate 8.4: North-south profile of AL11, from the west face of the inselberg (A), with the east-west profile, taken from the northern end of the inselberg shown in (B).
Plate 8.5: East-west profile of AL3, taken from the south face (A). Close up view of the failure on the west face of the inselberg (B). The inselberg is composed entirely of Salib Arkosic sandstone, pushed up due to normal faulting.
Plate 8.6: West face of AL2 (B) showing a small cap of Disi sandstone on the upper part of the inselberg. The north face of AL2 is shown in (B).
Plate 8.7: South face of AL7 showing a large failure and preferential weathering of joints, producing the 'tower' morphology. The actual failure of the rock mass is controlled by joint sets which are much more closely spaced than the preferentially weathered joints. The prominent tower on the east face of the inselberg showed evidence of instability, in addition to the south face.
Plate 8.8: The west face of AL17, in the Barra Canyon, showing evidence of large-scale slope collapse. The debris slope is approximately 150 m, indicating a large volume of failed material. The failure was probably initiated by steepening of the slope through fluvial incision during a wetter climatic period.
Plate 8.9: View from the top of the rockfall debris on the west face of AL17, with the Barra Canyon located in the centre of the picture. During a wetter climatic period, this canyon was a major fluvial valley.
Plate 8.10: Boulders being sampled for cosmogenic dating from failed rock slopes in Wadi Rum, Jordan. Evidence of iron staining can be seen. The surface of the boulders showed only minimal weathering.