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Abstract 

Previous studies which examined the relationship between working memory 

(WM) ability and children's mathematics performance typically measured 

mathematics ability as a general skill (e.g. Gathercole & Pickering, 2000a) or mental 

arithmetic ability (e.g. Adams & Hitch, 1997), used number- or digit-based W M 

assessments and did not control for individual differences in a child's general ability 

(e.g. intelligence). The aim of this thesis was to extend this research to investigate the 

associations between the components of the tripartite W M model (e.g. Baddeley, 

1986) and a range of mathematical skills in 7-/8- and 9-/10-year-olds using non-digit-

based W M assessments, controlling for a measure of general ability. 

The relationship between W M ability and children's curriculum-based 

mathematics performance was investigated using a correlational design in Chapters 3 

and 4. Assessments, developed in Chapter 2, were used to measure four mathematical 

skills outlined in the National Curriculum for England. The results indicated that 

central executive and visuo-spatial sketchpad, but not phonological loop, scores 

predicted unique variance in performance across all four mathematical skills, even 

when controlling for NVIQ. Furthermore, both W M abilities were found to predict 

Key Stage 2 mathematics achievement one year after initial testing (Chapter 8). 

The same methodology was used in Chapters 6 and 7 to explore the 

relationship between WM ability and children's performance-related mathematics 

abilities (see chapter 5). Al l three components of W M predicted unique variance in 

these mathematical skills, but a markedly distinct pattern of associations was revealed 

between the two age groups. In particular, the data implicated a stronger role for the 

visuo-spatial sketchpad in the younger children's mathematics. 
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The role of visuo-spatial WM in children's mathematics was explored further 
in Chapter 9 where a discrepancy definition was applied to identify children with poor 
mathematics or poor visuo-spatial abilities. The data provided an initial indication that 
normal visuo-spatial sketchpad development may be important for normal 
mathematics development. 

The overarching conclusion is that WM, and the central executive and visuo-

spatial sketchpad in particular, may support the development of early mathematical 

ability. The practical and theoretical implications of these findings are considered. 
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Chapter One 

Introduction 

Working memory is a limited capacity system responsible for the 

manipulation and storage of information during the performance of cognitive tasks 

(Baddeley, 1986). Since its conception, the multi-component model of working 

memory has been particularly valuable in advancing our understanding of how 

children learn. It has been implicated in general scholastic attainment at 7-

(Gathercole & Pickering, 2000a; 2000b), 11- (Jarvis & Gathercole, 2003) and 14-

years (Jarvis & Gathercole, 2003) and is thought to play an important role in the 

acquisition of language skills. In particular, the phonological loop is thought to 

support vocabulary acquisition in childhood (e.g. Gathercole & Baddeley, 1989), 

while the central executive is thought to be important for language and text 

comprehension (e.g. Leather & Henry, 1994; Yuill, Oakhill & Parkin, 1989). More 

recently, research has begun to define a role for working memory in children's 

mathematical development. Therefore, the aim of this thesis was to systematically 

examine the contributions of three different components of the working memory 

model (Baddeley, 1986) to a range of mathematical skills in children. 

To introduce this thesis, a review of the relevant literature is presented. 

Section 1.1 introduces the concept of working memory. Section 1.2 details the 

development of working memory throughout childhood. Section 1.3 outlines the 

major developmental changes that occur in mathematical cognition throughout the 

lifespan, while Section 1.4 provides an overview of the research that implicates a role 

for working memory in mathematics performance and mathematical development. 

Finally, the aims of this thesis are established in Section 1.5. 
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Section 1.1 

Working Memory 

This section will provide an overview of Baddeley and Hitch's (1974) concept 

of working memory and detail the major revisions that have been made to the original 

tripartite model over recent years. 

1.1.1 Working memory - an introduction 

Since its conception in the early 1970's, the multi-component model of 

working memory (Baddeley & Hitch, 1974) has become the focus of research in both 

theoretical and applied fields of cognitive psychology. It is a limited capacity system 

responsible for the manipulation and storage of information during the performance of 

cognitive tasks (Baddeley, 1986). Its origins lie in the early componential models of 

memory proposed by Broadbent (1958) and Atkinson and Shiffrin (1968). 

During the 1950's it became widely acknowledged that the human memory 

system was not unitary. In its simplest form distinctions could be made between long-

term and short-term memory processes (e.g. Broadbent, 1958; Brown, 1958; Peterson 

& Peterson, 1959). At this time, Broadbent (1958) introduced an information 

processing model of short-term memory. His theory assumed short-term memory 

consisted of two subcomponents; the first, a store to temporarily hold sensory 

information and feed into the second, a limited capacity system for processing 

information. Broadbent's (1958) model was the first to suggest an active, limited 

capacity short-term memory system capable of both processing and temporarily 

storing information. 
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Atkinson and Shiffrin (1968) proposed a similar model of human memory, 
which incorporated sensory stores that acted as an input system encoding information 
from different modalities. It also included a unitary, limited capacity short-term store 
(STS) and an enduring, unitary long-term store (LTS). This model was important to 
the development of the working memory model (Baddeley & Hitch, 1974) as it 
emphasised the function of the STS and the processes between the STS and the LTS. 
In essence, the STS was an active, working memory responsible for encoding, 
temporarily storing and processing information before transferring it to the LTS. It 
was assumed that information could be maintained in the STS through rehearsal 
processes or retrieved from the LTS through retrieval processes. Atkinson and 
Shiffrin's (1968) model was somewhat oversimplified. 

Consequently, researchers offered alternate models of memory that focussed 

on either the processes (e.g. Craik & Lockhart, 1972) or the structure and the 

processes of the human memory system (e.g. Baddeley & Hitch, 1974). The most 

significant of these was Baddeley and Hitch's (1974) model of working memory, 

which fractionated the once unitary, limited capacity STS of Atkinson and Shiffrin's 

model into three subcomponents. 

Over recent years researchers have become increasingly interested in the 

nature, structure and function of the working memory system. There are now a 

number of competing theoretical models available. In a comprehensive review, 

Miyake and Shah (1999) presented 10 theoretical models. Arguably the clearest 

distinction between the available models is between those that view working memory 

as a unitary, limited capacity system where processing and storage operations 

compete for a limited pool of resources (e.g. Case, Kurland & Goldberg, 1982), those 

that conceptualise working memory as a multi-component system comprised of 
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specialised subsystems (e.g. Baddeley & Hitch, 1974; Baddeley, 1986) and those that 
view working memory as part of a broader information processing framework or an 
activated subset of long-term memory closely related to attention (e.g. Engle, Kane & 
Tuholski's (1999) Controlled Attention framework or Cowan's (1988) Embedded 
Processes model). Other models presented in Shah and Miyake's review include; 
those that are based on computational architectures (e.g. Lovett, Reder & Lebiere's 
(Anderson & Lebiere, 1998) ACT-R model of working memory); those that propose a 
distributed framework (e.g. Barnard's ICS architecture (Barnard, 1985) and those that 
emphasise the neural basis of working memory (e.g. O'Reilly, Braver & Cohen's 
(1999) connectionist framework). 

Although a number of alternate models of working memory are available, a 

revision of the early working memory model (Baddeley, 1986) remains both 

prominent and widely acknowledged in contemporary literature and continues to 

generate a mass of empirical research, especially within the UK. Therefore, this thesis 

is guided by the Baddeley and Hitch (1974) model. 

1.1.2 Working Memory' - The Baddeley and Hitch model 

The original model, proposed by Baddeley and Hitch (1974), comprised of 

three components; the central executive, which acts as a control system, and two slave 

systems, the phonological loop and the visuo-spatial sketchpad, which temporarily 

maintain and process verbal and visual and/or spatial information. A number of 

revisions have since been made to this model, including a change to the original 

phonological loop (Baddeley, 1986) and the recent addition of a fourth component, 

the episodic buffer (Baddeley, 2000). A widely cited version of the model often used 

in empirical research is presented in figure 1.1. 
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Visuo-spatial Phonological 
sketchpad C e n t r a l E xecutive L o Q p 

Figure 1.1 

A simplified representation of the tripartite working memory model (Baddeley & 

Hitch, 1974) 

1.1.2.1 The Phonological Loop 

The phonological loop, in its current form, serves to hold and manipulate 

phonological / verbal information. It is comprised of two subcomponents; the first, a 

phonological store, which holds speech based information for approximately 2 

seconds, but that can be maintained by sub-vocal rehearsal in the second, an 

articulatory control process (Baddeley, 1986; 1990). 

In its earliest form (Baddeley & Hitch, 1974), the phonological loop was better 

known as the articulatory loop. It was assumed to be a single, limited capacity 

component responsible for speech (phonological) coding and maintenance within the 

short-term memory system. Early evidence for phonological coding in short-term 

memory comes from studies of the phonological similarity effect (e.g. Conrad, 1964; 

Conrad & Hull, 1964). That is, when more errors are made in the immediate recall of 

visually presented sequences of letters that are phonologically similar, compared to 

sequences of letters that are phonologically dissimilar (Conrad & Hull, 1964). It is 
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still thought that the articulatory loop, or phonological loop as it is now known, is 
responsible for phonological coding. 

Baddeley and Hitch (1974) proposed that the limited capacity of the 

articulatory loop was determined by temporal duration, rather than the number of 

chunks of items as had been previously suggested (Miller, 1956; Simon, 1974). This 

was demonstrated by the word length effect. The word length effect is best explained 

as the superior immediate serial recall for a list of short words over a list of long 

words where both lists contain the same number of words. Baddeley, Thomson & 

Buchanan (1975) demonstrated the word length effect where memory for a five-word 

sequence dropped from 90% with monosyllabic words to 50% with five syllable 

words. They suggested that it reflected a person's ability to sub-vocally articulate and 

subsequently proposed that immediate serial recall for words was determined by the 

spoken duration (rate of sub-vocal rehearsal) of the words. Any information that took 

longer than approximately 2 seconds to rehearse was lost through a process of 

temporal decay (Baddeley, 1986). 

The evolution of the phonological loop from the articulatory loop owes itself 

to studies of articulatory suppression (the process of repeatedly speaking aloud an 

irrelevant word, while concurrently performing an immediate serial recall task). 

Whilst investigating the word length effect, Baddeley et al. (1975), found that under 

conditions of concurrent articulatory suppression, the effect was eliminated for 

visually presented stimuli. Likewise, the phonological similarity effect was eliminated 

for visually presented stimuli with concurrent articulatory suppression (Estes 1973; 

Peterson & Johnson, 1971). Similarly, the irrelevant speech effect (which occurs 

when immediate serial recall for words is impaired by concurrent presentation of 

irrelevant spoken information) was eradicated for visually presented words (Salame & 
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Baddeley, 1982; 1983; 1987; 1989). Collectively these studies suggested that 
articulatory suppression prevented phonological encoding of visual stimuli, but that 
spoken information could be stored directly without articulation. A revised account of 
the phonological loop was proposed in light of these empirical findings. 

In the revised model (Baddeley, 1986), the phonological loop comprised of 

two subcomponents. A temporary storage system, which served to hold memory 

traces, and an articulatory control process, which maintained information and 

registered visual information within the store providing it could be phonologically 

recoded. It was assumed that verbal / auditory stimuli could directly access the 

phonological store, by-passing the articulatory control process, whereas visually 

presented material entered the store via the articulatory control process (Baddeley, 

1986). 

Neuropsychological evidence, from patients with lesions that have resulted in 

phonological loop deficits, and neuroimaging studies (e.g. Smith & Jonides, 1997) 

support the fractionation of the phonological loop into separate components for 

storage and subvocal rehearsal. In a review of the data from patients with 

phonological short-term memory deficits, Vallar and Papagno (2002) proposed that 

the neuroanatomy of the phonological loop incorporated separate storage and 

processing systems. They suggested that with auditory presentation speech streams 

fed directly into a phonological storage system in the inferior parietal lobe. Here the 

speech streams were coded into a phonological format before being fed into an 

articulatory control system in Broca's area-premotor cortex for rehearsal or direct 

recall. Indeed, neurpsychological studies suggest that different brain regions are 

associated with the two subcomponents. In particular, Brodmann's area has been 

associated with the phonological store, while Broca's area has been associated with 
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subvocal rehearsal (Vallar, Betta & Silveri, 1997). Anatomically, it is suggested that 
white matter tracts support the interaction between rehearsal and the phonological 
store. 

The revised model of the phonological loop (Baddeley, 1986), with minor 

revisions, has generated a mass of empirical research over recent years. Since the 

suggestion that it evolved to facilitate the acquisition of language (Baddeley, Papagno 

& Vallar, 1988), it has been particularly valuable in advancing our understanding of 

language learning. 

The phonological loop was first implicated in second language learning 

following a study of patient PV who had a pure phonological STM deficit. Patient PV 

was tested on her ability to acquire the vocabulary of a second language, in 

comparison to her ability to learn associate pairs of words in her native language. 

PV's ability to learn the native word pairs was comparable to normal control 

participants, but she failed to learn any of the new foreign words (Baddeley, Papagno 

& Vallar, 1988). As such, it was suggested that the phonological loop assisted the 

acquisition of new words. Supporting this, variables that disrupted performance on 

phonological loop tasks also disrupted the learning of new words. Specifically, 

articulatory suppression disrupted foreign but not native language learning in Italian 

and English participants (Papagno, Valentine & Baddeley, 1991). Furthermore, 

phonological similarity among the items, and increases in the length of the novel 

items to be learned, disrupted the acquisition of new words (Papagno & Vallar, 1992). 

Service (1992) reported similar results for children, where the acquisition of English 

as a second language was studied. She found that children with longer verbal short-

term memory spans were better at language learning than children with shorter 



11 

memory spans, concluding that the ability to represent unfamiliar phonological 
material in working memory supports foreign language vocabulary acquisition. 

The role of the phonological loop in language learning has been extended to 

native language acquisition. Initially the phonological loop was implicated in native 

language learning in children with specific language impairments (SLI). Gathercole 

and Baddeley (1989) compared the performance of 8 year-olds with SLI (who had a 

2-year delay in language development) to normal children matched for age and 

nonverbal intelligence, and younger children matched for language ability, on a test of 

nonword repetition. The nonword repetition measure, used as an index of 

phonological loop capacity, required the children to repeat unfamiliar sequences of 

phonemes. The SLI children performed significantly worse than both the age- and 

language-matched controls, which suggested they had a deficit in the phonological 

loop. Following this, significant associations were found between vocabulary scores 

and nonword repetition ability in groups of normal children when other variables, 

such as nonverbal intelligence, were controlled (Gathercole & Baddeley, 1990; 

Gathercole, Willis, Emslie & Baddeley, 1992). In one study, Gathercole et al. (1992) 

applied cross-lagged correlational analysis to longitudinal data collected from 80 

children across three testing sessions between 4- and 8-years-of-age. They found that 

nonword repetition was significantly associated with vocabulary scores one year later, 

but that vocabulary scores were not predictive of nonword scores one year later. 

Gathercole et al. (1992) suggested that this implied some direction to the relationship 

between vocabulary and nonword repetition; that the ability to repeat nonwords 

influences the learning of new words. These findings have been replicated with 

groups of children between the ages of 4- to 13-years (e.g. Baddeley, Gathercole & 

Papagno, 1998). For example, Gathercole, Hitch, Service and Martin (1997) reported 
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that phonological loop ability was related to the rate of learning word-nonword pairs, 
but not word pairs, after controlling for nonverbal intelligence in 5-year-olds. Michas 
and Henry (1994) reported similar findings when they conducted a similar study, 
which also controlled for spatial abilities. These studies demonstrate that the learning 
of new words is constrained by the capacity of the phonological loop. 

Baddeley et a l , (1998) proposed that nonword repetition provides a measure 

of the phonological store, not phonological rehearsal. The task typically requires the 

immediate repetition of an unfamiliar item within 1-second of presentation, which 

itself has a spoken duration of less than 1-second. The temporal capacity of the 

phonological store is estimated to be 2-seconds (Baddeley et al., 1975), meaning it is 

unlikely that rehearsal is contributes to nonword repetition. Furthermore, the 

phonological loop has been associated with vocabulary learning in children as young 

as 3-years (Gathercole & Adams, 1993), prior to the onset of subvocal rehearsal. It is 

therefore suggested that it is the phonological store, not the articulatory control 

process, which mediates vocabulary acquisition in the native language (Baddeley et 

al., 1998). However, it has been suggested that the rehearsal process plays a role in 

second language learning, as demonstrated by the disruptive effect of articulatory 

suppression (e.g. Papagno et al., 1991). 

Brown and Hulme (1996) have offered an alternate explanation for the 

involvement of phonological processes in vocabulary acquisition. While Gathercole 

and colleagues suggested that nonword repetition predicted vocabulary learning, 

Brown and Hulme (1996) suggested that vocabulary growth and the ability to repeat 

nonwords shared a reciprocal relationship. Their model did not specify a role for 

phonological short-term memory in vocabulary acquisition; rather it suggested that 

vocabulary growth was associated with other variables that involve both lexical and 
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phonological development. They suggested that phonological storage reflects deeper 
phonological processing (e.g. Snowling, Chiat & Hulme, 1991). While this issue 
remains a topic of debate, Gathercole and colleagues suggest their account provides a 
better understanding of the early stages of development as it can explain why some 
children develop vocabulary quicker than others in terms of the phonological store 
(Gathercole et al., 1992). 

Overall, few changes have been made to the model of the phonological loop 

proposed by Baddeley in 1986, possibly for the reason that it has proven to be 

particularly productive in advancing our knowledge of language learning. 

1.1.2.2 The Visuo-Spatial Sketchpad 

The visuo-spatial sketchpad is responsible for generating and manipulating 

visuo-spatial images. Like the phonological loop it has been subject to a number of 

revisions since its conception (e.g. Logie, 1986). 

Early distinctions between verbal and visual processing (e.g. Milner, 1971) 

influenced the development of separate verbal and visual slave systems within the 

working memory model (Baddeley & Hitch, 1974). Initially the visuo-spatial 

sketchpad (known then as the visuo-spatial scratchpad) was assumed to be a limited 

capacity system for the temporary storage of spatial information; the visual aspect of 

the visuo-spatial system did not receive much attention until Logie's work in the 

1980's. 

The development of an independent visuo-spatial system began through the 

work of Baddeley, Grant, Wight and Thomson (1975) who speculated that processing 

spatial information might require a specialised system. Baddeley et al. (1975) found 

that a concurrent spatial tracking task disrupted the serial recall of a visuo-spatial 
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sequence. Participants were asked to listen to and recall either visuo-spatial (easily 
visualised) or nonsense (difficult to visualise) sequences of digits in a matrix, in a 
similar fashion to the early memory span procedures employed by Brooks (1967). 
Half of the participants were required to undertake a concurrent tracking task, which 
involved tracking a light that moved along a circular track. The concurrent tracking 
task impaired recall of the visuo-spatial sequences, but had no effect on recall of the 
nonsense sequences. Unsure whether the decrement in performance was due to a 
disruption in visual perception or spatial coding, they conducted a second study. They 
found that the concurrent tracking task did not reduce the normal advantage for 
concrete/imageable word pairs over abstract word pairs in a paired-associate learning 
task. This led them to suggest that spatial coding, required for the recall of spatial 
locations in the matrix task, may involve a specialised system (the visuo-spatial 
sketchpad). However, they suggested that the concrete words in the latter task did not 
depend on such a system, as they contained characteristics that are directly accessible 
from long-term semantic memory. 

Baddeley and Lieberman (1980) investigated whether disruption to visual 

perception, rather than spatial coding, caused the impairment in immediate serial 

recall of visuo-spatial sequences in the earlier study (Baddeley et al., 1975). Initially 

they employed the matrix procedure, but refined the study by asking participants to 

complete one of two concurrent tasks. One was a spatial task with no visual 

component, in which participants, while blindfolded, were required to point to a 

moving pendulum that emitted a steady sound. The alternate was a visual task, with 

minimal spatial requirements, in which participants were asked to make a series of 

brightness judgements. The concurrent spatial task disrupted the recall of visuo-spatial 
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sequences, implying that they require spatial coding in a visuo-spatial sketchpad 
system. 

In subsequent studies Baddeley and Lieberman (1980) investigated the nature 

of spatial information processing within the visuo-spatial component. In the first of 

two peg-word studies, they demonstrated that the concurrent tracking task reduced the 

normal advantage for recalling words learned through an imagery mnemonic 

compared to rote rehearsal. Although significant, the effect was relatively small in 

comparison to previous results using the matrix task. They speculated that this 

occurred because the peg-word stimuli were less spatial in nature than the sequences 

in the matrix studies. Subsequently they replicated the study using a spatial 

mnemonic. Participants were required to learn ten peg-words, either using a location 

mnemonic whereby the words were associated with locations along a familiar walk or 

through rote rehearsal. As expected, when participants were asked to complete the 

concurrent tracking task, the normal advantage for learning words using a spatial 

mnemonic was lost. Baddeley and colleagues (1975; 1980) demonstrated that tasks 

with a spatial component could be disrupted by a concurrent tracking task. 

Collectively, they showed that the stronger the spatial component of the task, the 

easier it was to disrupt performance. This was taken as evidence that there was a 

specialised system for storing and processing spatial information. At this time visual 

processing was considered to be less dependent on such a system. 

The mid 1980's saw a revision of the visuo-spatial sketchpad. Prior to Logie's 

(1986) work, Phillips and Christie (1977a; 1977b) postulated that the short-term 

storage and manipulation of visual information may be part of a general processing 

system. In a series of studies, Logie (1986) investigated visual information processing 

using a dual-task methodology. In the first study, he found that a concurrent visual 
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task (a pattern-matching task) disrupted the recall of peg-words that were learned 
using a visual imagery mnemonic more so than words learned using rote rehearsal. 
These findings suggested that visual processing might demand a specialised system. 
However, the picture-matching task required participants to make decisions about a 
succession of patterns (whether the current pattern was the "same" or "different" to 
the previous pattern), which it was feared could recruit executive skills. Therefore, the 
decision-making component of the secondary task was dropped and the study was 
replicated using complex and simple, repetitive patterns. In both studies participants 
were instructed to try and ignore the patterns. Once more the concurrent visual task 
disrupted performance for words learned using the visual imagery mnemonic. Logie 
(1986) took this as evidence to show that visual information had direct access to a 
visual store within the visuo-spatial system. He suggested that visual information in 
the concurrent task was interfering with performance on visual memory tasks as it 
gained obligatory access to the store, even though it was unattended to. To further 
investigate this, Logie (1986) replicated the study, this time using unattended 
irrelevant pictures and unattended irrelevant speech as concurrent tasks. As expected, 
irrelevant pictures disrupted performance for words learned using the visual imagery 
mnemonic (the "irrelevant picture" effect) and irrelevant speech disrupted 
performance for words learned using rote rehearsal. 

The "irrelevant picture effect" was replicated in a number of ways in the 

1990's. Logie, Zucco and Baddeley (1990) demonstrated that irrelevant pictures 

disrupted recognition memory for visual matrix patterns, but not for letter span (which 

was disrupted by a concurrent verbal arithmetic task). Quinn and McConnell (1994; 

1996) reported similar findings using dynamic visual noise (DVN) as a concurrent 

visual interference task, which again disrupted the recall of words learned using a 



visual imagery mnemonic, but did not disrupt performance of words learned using 

rote rehearsal. 

The evidence thus far implied that there was a specialised visuo-spatial system 

within the working memory framework, independent of the verbal system, responsible 

for retaining visual information (Logie, 1986; Logie, et al., 1990; Quinn & 

McConnell, 1994; 1996) and manipulating spatial information (Baddeley, Grant et al., 

1975; Baddeley et al., 1980). In 1995, Logie reviewed the converging evidence for a 

specialised visuo-spatial system and speculated that the system may comprise of two 

sub-components; a temporary visual store and a temporary spatial store. The 

temporary visual store (or visual cache), presumed to store information about visual 

form and colour, was closely linked to the visual perceptual system, while the 

temporary spatial store (or inner scribe), presumed to store information about 

movement sequences, was closely linked to planning and movement. Logie (1995) 

proposed that the visual cache was subject to both decay and interference, but that the 

inner scribe could rehearse and maintain the contents of the visual cache and extract 

items from it. 

Evidence of double dissociations in neuropsychological patients and clinical 

populations (De Renzi & Nichelli, 1975; Luzzatti, Vecchi, Agazzi, Cesa-Bianchi & 

Vergani, 1998; Milner 1971) and of developmental fractionation (Logie & Pearson, 

1997) supports the fractionation of the visuo-spatial system. For example, Logie and 

Pearson (1997) found that visual and spatial memory abilities develop at different 

rates in childhood when they examined 5-year-olds, 8-year-olds and 11-year-olds 

recall and recognition performance on a Corsi blocks task (to measure spatial 

abilities) and a visual patterns task (to measure visual abilities). Although the 

distinction between the visual and spatial subsystems is widely accepted, some have 
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argued that the fractionation of visuo-spatial memory is better interpreted as separate 
subsystems for static and dynamic information (e.g. Pickering, Gathercole, Hall & 
Lloyd, 2001). This issue wil l be discussed in greater detail in Chapter 4. Whatever the 
interpretation, many researchers attempt to address separate subsystems when 
investigating the visuo-spatial sketchpad (e.g. in the development of the Working 
Memory Test Battery For Children, Pickering & Gathercole, 2001). 

The visuo-spatial sketchpad and the central executive are closely associated. 

At present there are two explanations for this. The first, offered by Shah and 

colleagues (Shah & Miyake, 1996; Miyake, Friedman, Shah, Rettinger & Hegarty, 

2001), suggests that the visuo-spatial subsystem does not mirror the phonological. 

They argue for a visuo-spatial system that is closely linked to the central executive 

system due to the nature of visuo-spatial functions. Shah and Miyake (1996) 

compared performance across a simple spatial span task (keeping track of spatial 

orientations) and a complex spatial span task (keeping track of spatial orientations 

while simultaneously performing mental rotation) to investigate how they predicted 

complex spatial cognitive abilities. They believed that this procedure mirrored the 

verbal, phonological loop domain where researchers have traditionally compared 

performance across simple verbal span tasks (i.e. word and digit span) and complex 

verbal span tasks (i.e. reading and operation span). These studies typically conclude 

that complex verbal span tasks are better predictors of complex verbal cognitive task 

performance (e.g. Daneman & Carpenter, 1980), therefore differentiating between the 

phonological loop and the central executive. In their study Shah and Miyake (1996) 

found that both complex and simple spatial tasks predicted complex spatial abilities 

equally in the visuo-spatial domain, implying that it is asymmetrical to the verbal 

domain. More recently, Miyake, et al., (2001), replicated this in a latent variable 
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analysis study. They examined performance on simple visuo-spatial span tasks (Dot 
Memory (Ichikawa, 1983) and Corsi blocks (Milner, 1971)), complex visuo-spatial 
span tasks (Letter Rotation (Shah & Miyake, 1996) and Dot Matrix (Law, Morrin & 
Pellegrino, 1995)), executive functioning tasks (Tower of Hanoi and Randon number 
Generation) and three spatial ability tasks. Once again they reported close links 
between the central executive and visuo-spatial components of working memory (as 
both the simple and complex spatial tasks equally implicated executive functioning) 
that were asymmetrical to the findings in the verbal domain. Shah, Miyake and 
colleagues conclude that this is not surprising given the idea that visuo-spatial 
working memory functions, such as maintaining mental representations of visual 
stimuli, are effortful and demanding of executive resources (Baddeley, Cocchini, 
Delia Salla, Logie & Spinnler, 1999). 

The second explanation for the links between the visuo-spatial sketchpad and 

the central executive relates to task demands. That is, although the structure of the 

visuo-spatial sketchpad may mirror the structure of the phonological loop, as Logie's 

model (1995) suggests, it is not shown empirically due to the complex nature of 

visuo-spatial working memory tasks, which place heavy demands upon the processing 

and storage resources of the central executive (Chuah & Maybery, 2000; Gathercole 

& Pickering, 2000a; Hamilton, Coates & Heffernan, 2003; Phillips & Christie, 1977a; 

Wilson, Scott & Power, 1987). Recently Hamilton et al. (2003) suggested that serial 

order demands in traditional spatial working memory tasks, such as Corsi blocks, and 

implicit spatial demands in traditional visual working memory tasks (e.g. spatial 

rehearsal) might draw upon central executive resources. They suggest that new tasks, 

tailored to the hypothetical characteristics of a componential visuo-spatial working 
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memory that are independent of executive involvement, would prove useful tools with 
which to resolve this debate. 

Despite the current disagreement about the structure of the visuo-spatial 

working memory system, many researchers follow a model close to that proposed by 

Logie (1995), with an awareness of the close links between the visuo-spatial and 

executive systems. 

1.1.2.3 The Central Executive 

The central executive is typically viewed as a domain general control system 

within the working memory framework. 

Until the 1980's the central executive had been an "area of residual ignorance" 

(Baddeley, 1986. pp. 225). At this time, Baddeley described the component as a 

supervisor, responsible for the integration of information and strategy selection, which 

was closely related to the control of attention. He suggested (1986; 1990) that it may 

resemble a component of Norman and Shallice's model of attentional control, the 

Supervisory Activating System (SAS) (Norman & Shallice, 1980; Shallice, 1982). 

According to the model of attentional control, schemata control actions. At 

any point, several schemata may be active. The schemata are controlled by two 

systems, an automatic conflict resolution process and the SAS, to prevent conflict 

between simultaneously activated schemas. The conflict resolution process selects the 

appropriate schemata, while the SAS acts as a controller, which overrides the 

resolution process to give priority to a schema based on external factors. Shallice 

(1982) described the SAS as a limited capacity system that was important for planning 

and decision making, trouble shooting in automatic processes, novel and poorly 

learned sequences, dangerous situations and when habitual responses were involved. 
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Baddeley (1986) likened the central executive to the SAS. There were two 
reasons for this. Firstly, it explained a pattern in random generation data that 
previously had no explanation. The data, collected in a series of experiments, showed 
a lawful pattern. When participants were asked to produce a random stream of letters 
or digits the degree of randomness decreased with the increased rate of production 
(Baddeley, 1966). Baddeley's (1986) explanation for this pattern was that the SAS 
was attempting to control a set of retrieval processes. That is, randomness was 
achieved by the SAS overriding the strong schemata for generating letter and number 
sequences, such as the alphabet. Baddeley proposed that the increased rate of 
production overloaded the capacity of the supervisor, which caused a decrease in 
randomness. Secondly, the SAS model explained the disruptive effect of a concurrent 
card-sorting task on randomness. Baddeley (1966) reported a decrease in randomness 
as the demands of the concurrent card-sorting task increased. 

In an attempt to better understand its control functions, Baddeley endeavoured 

to fractionate the central executive. He presented evidence for the involvement of four 

areas of executive function: the co-ordination of two concurrent tasks, attentional 

control / switching retrieval strategies, selective attention (filtering out irrelevant 

information) and activating, holding and manipulating areas of long-term memory 

(Baddeley, 1996). Following this relatively early attempt to fractionate the executive 

component of working memory, Baddeley (1996) concluded that he still thought of it 

as a unitary system. However, he did acknowledge that it might become an executive 

committee of control processes. 

Indeed, the idea of a unitary executive has been somewhat thwarted over the 

years. Although there is still a belief that there may be something unitary about the 

system, such as a common mechanism that characterises the deficits of frontal lobe 
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widely accepted that the central executive represents a fractionated system. Lehto 

(1996) explored the relationship between working memory capacity and three tests 

designed to measure executive function (Tower of Hanoi (TOH), Wisconsin Card Sort 

Task (WCST) and Goal Search Task) in young adults. He found that the WCST was 

the only executive function test correlated with working memory. Furthermore, he 

reported that there were no intercorrelations between the executive function tests. He 

suggested that this evidence supported the existence of separate executive functions 

rather than a unitary, limited capacity central executive. Similar findings have since 

been reported for elderly adults (Lowe & Rabbit, 1997) and brain-damaged patients 

(Shallice & Burgess, 1991). 

Arguably the most compelling evidence for a fractionated executive system 

comes from the work of Miyake and colleagues. They suggested that the low 

intercorrelations reported between executive tasks, and the separable factors alluded 

to, in previous studies could be due to the following: the nature of the processing of 

executive tasks (visuo-spatial versus language); the separate cognitive systems they 

operate upon; the low test re-test reliability and poorly established construct validities 

of executive measures; and the uncertainty about what the tasks are actually 

measuring (Miyake, Friedman, Emerson, Witzki, Howerter & Wager, 2000). They 

conducted a large-scale latent variable analysis in an attempt to clarify some of the 

issues. They explored the separability of three executive functions (shifting, updating 

and inhibition) and their role in five commonly used executive tasks (WCST, TOH, 

Random Number Generation (RNG), operation span and dual tasking). Their results 

suggested that although the three executive functions were correlated, they formed 

separable factors in confirmatory factor analyses (CFA). Furthermore, structural 
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equation modelling (SEM) showed they contributed differentially to performance on 
the executive tasks. In short, performance on the WCST was predicted by shifting, the 
TOH was predicted by inhibition, RNG was predicted by inhibition and updating, 
operation span was predicted by updating and dual tasking was predicted by inhibition 
and updating. 

In addition to fractionating executive functions, Miyake and colleagues 

suggested that there might be separable spatial and verbal working memory resources 

within the executive domain (Shah & Miyake, 1996). They explored the separability 

of working memory in spatial thinking and language comprehension using a reading 

span task to measure verbal processing and storage, and an analogous spatial span 

task to measure spatial processing and storage. Their results supported a separability 

hypothesis similar to that suggested by Jurden (1995). They found that spatial span 

correlated with other spatial measures and predicted performance on complex spatial 

thinking tasks, while reading span correlated with other verbal measures and predicted 

performance on complex language processing tasks. Furthermore, their factor analysis 

yielded a clear two-factor solution. Interpreting these results in terms of the working 

memory model, Shah and Miyake (1996) suggested that there might be distinct spatial 

and verbal aspects in working memory beyond the slave systems (which may only 

exist as relatively passive storage buffers). 

Although recent work has begun to adopt this approach (e.g. Jarvis & 

Gathercole, 2003), the separability of verbal and non-verbal domains within the 

executive remains questionable. For example, Kane, Hambrick, Tuholski, Wilhelm, 

Payne and Engle (2004) recently reported the results of a large scale latent variable 

study, which suggested verbal and visuo-spatial working memory span tasks reflected 



a domain general factor, while verbal and visuo-spatial short-term memory tasks were 

domain-specific. 

The central executive has often been associated with human intelligence, or 

Spearman's g. A number of studies suggest that working memory, and in particular 

the central executive, are related to reasoning, fluid intelligence or g. Kyllonen and 

Christal (1990) reported correlations as high as .8 between working memory and 

reasoning tasks. Carpenter, Just and Shell (1990) suggested that working memory 

capacity may be a main factor underpinning individual differences on the Raven's 

Progressive Matrices tests, a commonly used intelligence test. In a re-analysis of 

Kyllonen and Christal's (1990) data, Jurden (1995) derived 2 working memory 

factors, one verbal and non-verbal, but reported that both shared approximately two-

thirds of their variance with a second order factor, g. Furthermore, complex working 

memory has been reported to predict performance on tests of general intelligence 

(Engle et al., 1999; Kane et al., 2004). As such, the shared variance between the two 

components of working memory identified by Jurden (1995) is purported to 

demonstrate that working memory may underpin general intelligence. Indeed, more 

recent studies have acknowledged the close association between executive function 

and human intelligence (e.g. Miyake et al., 2001) and the results of one study suggest 

that working memory is almost perfectly predicted by g (Colom, Rebello, Palacios, 

Juan-Espinosa & Kyllonen, 2004). 

To summarise, the central executive lies at the heart of the working memory 

system (Baddeley, 1986). It is thought to command a number of functions (that may 

or may not be separable) including planning, switching attention, shifting, inhibition 

and updating (Baddeley, 1986, 1996; Baddeley & Logie, 1999; Miyake et al., 2000). 

The idea that it is a limited-capacity system has since been rejected in favour of the 
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view that it supports on-line processing, while the phonological loop (Baddeley & 
Logie, 1999) or the episodic buffer (Baddeley, 2000) support storage. 

1.1.2.4 The Episodic Buffer 

The recently added fourth subcomponent, the episodic buffer (Baddeley, 

2000), has been fractionated from the central executive. It is considered responsible 

for combining information from the slave systems and long-term memory into unitary 

episodes. It was first alluded to in Baddeley's (1992) Bartlett lecture, where he 

discussed the associations between the central executive and conscious awareness, 

and finally added to the original tripartite model in 2000. The revised working 

memory model is presented in Figure 1.2. 

Baddeley (2000) describes the episodic buffer as a limited-capacity temporary 

storage system, responsible for integrating information from a variety of sources into 

a multimodal code and retrieving information from long-term memory. He suggests 

that it is controlled by the central executive, which retrieves information from it in the 

form of conscious awareness and reflects upon on, modifies, manipulates and controls 

its contents by attending to a certain source of information. 

The episodic buffer was introduced to address some of the theoretical issues 

that could not be explained by the original model (Baddeley, 1986), namely the 

integration of information within the working memory system. 

The first problem it addressed related to the integration of information 

between the slave systems. Baddeley, Lewis and Vallar (1984) reported that 

participants were able to repeat back visually presented lists of words under 

conditions of articulatory suppression. According to the original model this should not 

have been possible, as articulatory suppression should have prevented subvocal 



26 

rehearsal. As such, Baddeley suggested that the items to be remembered were being 
stored in an alternative system, possibly a "back-up store" that integrated information 
from both slave systems, thus allowing the visuo-spatial sketchpad to support the 
retention of visually presented items under conditions of articulatory suppression. 

The second issue explained by the episodic buffer related to the integration of 

information between the slave systems and long-term memory. In a typical word span 

task participants can recall lists of 5/6 words when the words are unrelated. However, 

i f the words form a meaningful sentence, participants can recall up to 16 words 

(Baddeley, Vallar & Wilson, 1987). Baddeley (2000) suggested that this demonstrated 

the integration of information between the phonological loop and long- term memory, 

which may also occur in a "back-up" store. 

The third integration problem addressed related to the combination of 

information between all three subcomponents of working memory and long-term 

memory in consciousness. Baddeley and Andrade (2000) showed that the slave 

systems were involved in conscious awareness, and also found that the central 

executive and long-term memory played important roles. As such, Baddeley (2000) 

suggested that a component was needed to integrate information within the working 

memory system. 

Finally, the episodic buffer was introduced to explain the temporary 

activation, manipulation and maintenance of information from long-term memory in 

working memory. Amnesic patients typically perform poorly on tests of immediate 

recall. However, some are able to recall passages of prose immediately after 

presentation, which suggests that they have a normally functioning executive system. 

Although their performance was initially explained as the temporary activation of 

long-term memory, Baddeley (2000) suggested that the immediate recall of a passage 
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of prose could involve the manipulation and maintenance of information in addition to 
activation. Subsequently he speculated that their performance might be explained by 
attributing such a role to the episodic buffer. 

Central 
Executive 

Visuo-spatial 
Sketchpad 

Episodic 
Buffer 

Phonological 

Visual +• 
Semantics 

-> Episodic +-
LTM 

-> Language 

Figure 1.2 

A representation of the revised working memory model (Baddeley, 2000) 

The episodic buffer (Baddeley, 2000) is a useful hypothetical addition to the 

working memory framework, which resolves some inconsistencies in the original 

model. However, it was not incorporated within this thesis, as there were no 

standardized measures available to assess it at the beginning of this project. However, 

a recent study, has attempted to investigate the episodic buffer in children, developing 

a measure based upon the spoken recall of sentences (Alloway, Gathercole, Willis & 

Adams, 2004). The rationale was that repeating sentences involves the integration of 

information from different sources (namely the integration of information from 
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temporary memory systems to support the recall of the words and the products of the 
language processing system). Alloway et al.'s findings supported the usefulness of the 
task, as structural analyses revealed that the best fitting measurement model 
incorporated a construct corresponding to the episodic buffer (Alloway et al., 2004). 
However, the sentence recall task has not been standardized for use as a measure of 
the episodic buffer. Furthermore, there are no measures of reliability or validity to 
support its use as a measure of the capacity of the episodic buffer. 

Section Summary 

1. The notion of a "working" memory system was developed from early 

information processing models (e.g. Broadbent, 1958). 

2. Currently, a number of theoretical models of working memory are available. 

The primary distinction between the models is that some view working 

memory as a unitary, limited capacity system, while others conceptualise 

working memory as a multi-component system comprised of specialised 

subsystems. 

3. Baddeley and Hitch's (1974) multi-component model is arguably the most 

widely accepted model. In its original form their model comprised of three 

subcomponents: the central executive, the phonological loop and the visuo-

spatial sketchpad. A fourth component, the episodic buffer, is a recent addition 

to the model. 

4. The phonological loop is responsible for the temporary storage and 

manipulation of phonological information. In its earliest form it was a single, 

limited capacity system. It has since been revised to comprise two 

components', a phonological store which holds speech based information and 
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an articulatory control process, which maintains verbal information and 
recodes visually presented information. 

5. The visuo-spatial sketchpad is responsible for the temporary storage and 

manipulation of visuo-spatial information. Early evidence suggested that there 

might be a specialised system for storing and processing spatial information, 

but it was not until the 1980's that a similar specialised system was proposed 

for the processing of visual information. Logie (1995) defined these systems 

as a visual cache, which stores visual information, and an inner scribe, which 

stores information about movement sequences and maintains the contents of 

the visual store. The visuo-spatial sketchpad has been linked with the central 

executive. 

6. The central executive lies at the heart of the working memory system acting as 

a control. Once thought to be a limited capacity system, it is now thought to 

support on-line processing. It performs a number of functions, including 

planning, switching attention, shifting, inhibition and updating and is closely 

related to human intelligence. 

7. The episodic buffer was recently introduced to resolve some of the theoretical 

inconsistencies in the original tripartite model. Controlled by the central 

executive, it is responsible for combining information from the slave systems 

and long-term memory into unitary representations. At present it is somewhat 

under specified and there are no current standardized measures available to 

assess it. For this reason the original tripartite model guides this thesis. 
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Section 1.2 

The Development of Working Memory 

Performance on working memory tasks follows a broadly linear increase as a 

function of age (e.g. Gathercole, Pickering, Ambridge & Wearing, 2004). This 

development, seen throughout childhood, can be explored one of three ways. Firstly, 

the development of the entire processing and storage system can be considered. 

Secondly, developmental changes within each component of the model can be 

explored. Finally, changes to the structure of working memory throughout childhood 

can be examined. These three lines of research are discussed in turn in the subsequent 

sections. 

1.2.1 Development of the working memory processing and storage system 

The overall view of working memory is that it is a system responsible for the 

temporary storage and processing of information. Its capacity is typically assessed by 

tasks designed to measure concurrent processing and storage (e.g. complex span 

tasks). Performance on these tasks improves throughout childhood, demonstrating an 

increase in memory span. There are broadly two competing accounts of this 

developmental increase; the resource-sharing (trade-off) hypothesis and the resource-

switching hypothesis. The first account, provided by Case (1985), was based upon 

Piagetian principles and the work of Pascual-Leone (1970). Case's resource-sharing 

hypothesis suggested that processing space, or memory span, did not increase 

throughout childhood. Rather, he explained that processing space could be deployed 

as processing or storage, and over time processing efficiency increased, allowing 

more resources to be employed in storage. This was demonstrated in a series of 



31 

studies in which processing efficiency and storage were found to have a linear 
relationship (Case, et al., 1982). In the first study, 3- to 6-year-olds word span 
(storage) and word repetition speed (processing efficiency) increased with age in a 
linear fashion. These findings were replicated using a counting span task with 6- to 
12-year-olds and both a word span and counting span task with adult populations. 
Furthermore, Case et al. (1982) showed that when adults' processing efficiency was 
controlled, by manipulating the familiarity of the words presented, storage capacity 
decreased in a linear manner. These findings are consistent with the view that 
processing demands decrease with age, freeing up space for storage. 

The primary problem with Case's (1985) theory was that the findings (Case et 

al., 1982) could be accounted for by articulation rate in the phonological loop. That is, 

due to fixed decay in the phonological loop, the faster a child can articulate a 

word/number through subvocal rehearsal, the greater their memory span will be due to 

less items being lost through decay. For this reason, Towse and Hitch (1995) offered 

an alternate, resource-switching account of the developmental increase in children's 

memory span. Their hypothesis suggested that processing does not determine 

performance on complex span tasks, but rather that time-based forgetting does. That 

is, the time elapsed between the presentation of a stimuli and its subsequent retrieval 

determines memory span. 

Initially Towse and Hitch (1995) compared their memory decay hypothesis to 

Case's (1985) cognitive space hypothesis through an evaluation of the effect of time 

and processing difficulty on counting span performance in 6- to 11-year-olds. They 

incorporated a visual search paradigm within the counting phase of the task in order to 

impose the relevant manipulations. They varied processing difficulty by asking the 

children to perform either a single feature or a feature conjunction search. Asking the 



children to count single feature stimuli in one of two conditions varied processing 

time. In the first condition, the children had to count the target stimuli as in the single 

feature condition of the processing difficulty paradigm. In the second, "feature-slow", 

condition the number of target stimuli were increased so that they would take the 

same time to count as the feature conjunction targets in the processing difficulty 

paradigm. Case's hypothesis would predict lower performance for the conjunction 

feature condition than the single feature or feature-slow conditions, due to increased 

processing demands reducing the space for storage. Whereas Towse and Hitch's 

(1995) hypothesis would predict better performance on the single feature condition 

(due to shorter delay periods), with equivalent performance on the conjunction feature 

and feature-slow conditions, where interval times were matched. Their results 

supported the memory decay hypothesis, leading to the proposal of the resource-

switching hypothesis (Towse & Hitch, 1995), which suggested that at any one time 

children were either performing processing operations or remembering their products 

so that the more time spent processing (counting), the greater the time spent 

"switched-out" of remembering, thus resulting in greater decay for the memory traces. 

Subsequent experiments (Towse, Hitch & Hutton, 1998) extended this finding to other 

complex working memory span tasks (reading, operation and counting span tasks) in 

6-to 11 -year-olds, where span decreased as a function of increased retention intervals. 

One concern about this hypothesis in relation to the current review relates to a 

recent finding that it may not explain developmental differences in recall. An 

investigation of the time-based forgetting hypothesis in 8- to 17- year-olds revealed 

developmental differences in recall when the interval duration was held constant 

(Towse, Hitch & Hutton, 2002), suggesting that other factors may be influencing 

developmental change. As Towse et al., (2002) suggest, processing speed is the 
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obvious contender as increased processing speed, which occurs with age, reduces 
interval time meaning there is less time for decay. 

The resource-sharing versus resource-switching issue remains a topic of 

current debate. Recent attempts to resolve this debate typically conclude that no single 

factor constrains children's working memory span development. For example, both 

time and attentional resources have been found to constrain children's performance on 

working memory tasks (Barrouillet & Camos, 2001; Bayliss, Jarrold, Gunn & 

Baddeley, 2003). 

1.2.2 Development of the components of working memory 

Developmental changes occur throughout childhood within each component of 

the tripartite working memory model. The capacity of the phonological loop is 

thought to increase from 2-3 items at 4 years to 6 items at 12 years of age (Hulme, 

Thompson, Muir & Lawrence, 1984). This indicates that children are able to store 

increasing amounts of verbal information in the phonological store with age. The 

primary reason for this developmental increase is the onset of subvocal rehearsal. 

Auditory / verbal information has automatic access to the phonological store, but it is 

maintained via subvocal rehearsal, which does not develop until the age of 7 years 

(e.g.Gathercole & Hitch, 1993). Prior to this age recall is mediated by the 

phonological store, which is subject to rapid decay (see section 1.1.2.1). When 

rehearsal begins at 7 years, the retention of verbal information is maximised. 

Furthermore, as articulation rate increases, memory span continues to increase beyond 

7-years due to an increase the effectiveness of subvocal rehearsal (e.g. Gathercole, 

Adams & Hitch, 1994). Phonological loop capacity also increases when children 

begin to recode visual information into phonological codes. Visual information enters 
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the phonological store when it is recoded into a phonological form via subvocal 
rehearsal (Baddeley, et al., 1984). As such, it does not enter the phonological store 
until the onset of subvocal rehearsal at 7-years. Prior to this age, the visuo-spatial 
sketchpad supports the retention of visual stimuli (Hitch, Halliday, Schaafstal & 
Schraagen, 1988). Although visual information is recoded in a phonological code 
wherever possible after this age (Hitch & Halliday, 1983), it has been suggested that 
children progress through a period of dual visual-verbal coding before they begin to 
use the adult-like verbal recoding strategies (e.g. Palmer, 2000). Other factors have 
also been associated with a developmental increase in verbal short-term memory, 
which may influence the increase in phonological loop capacity. These include 
changes in the speed of memory scanning during retrieval (Cowan, Wood, Wood, 
Keller, Nugent & Keller, 1998), increases in the availability of phonological 
representations of words in long-term memory (Roodenrys, Hulme & Brown, 1993) 
and increases in knowledge about the structure of language (e.g. Gathercole, Frankish, 
Pickering & Peaker, 1999). 

The capacity of the visuo-spatial sketchpad is thought to follow a steady 

developmental increase. The visual aspect, as measured by the ability to recall a two 

dimensional pattern of squares, is thought to follow an increase from 4 blocks 

(squares) at 5-years to 14 blocks (squares) at 11-years (Wilson et al., 1987). Although 

this may represent a developmental increase in the visuo-spatial sketchpad per se, 

concurrent phonological loop and central executive tasks disrupted performance on 

this task, causing speculation that the development of the visuo-spatial sketchpad may 

be supported by the development of the other components. As previously discussed, 

visual information is phonologically recoded wherever possible with the onset of 

subvocal rehearsal, and as such it may support performance on visuo-spatial span 
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tasks. The spatial aspect of visuo-spatial working memory, as measured by a Corsi 
span, is also thought to follow a regular developmental increase between 7- and 15-
years (e.g. Isaacs & Varga-Khadem, 1989). It has been suggested that the visual and 
spatial aspects may reflect independent subsystems that follow independent 
developmental trajectories. One study that explored a dissociation between visual and 
spatial working memory in children suggested that the two subcomponents were 
fractionated (Logie & Pearson, 1997). Children aged 5-/6-, 8-/9- and 11-/12- years 
were given recall and recognition tests for visual patterns and sequences of 
movements. The results suggested that children had better memory for patterns than 
sequences of movements, and that this difference between visual and spatial memory 
was more pronounced in the older children. Logie and Pearson (1997) suggest that 
this supports the idea of a visual cache for storing visual information and an inner 
scribe for storing spatial information. They reported a more rapid developmental 
change in children's ability to retain visual information than spatial information, 
which they suggest may reflect the use of retention strategies (such as generating and 
retaining an image of stimulus) that may be more effective for visual than spatial 
stimuli (Logie & Pearson, 1997). Their interpretation is somewhat speculative, and 
more recent studies have suggested that there may be alternate, fractionated 
developmental trajectories within the visuo-spatial system (see section 1.1.2.2). At 
present it is not yet fully understood how the capacity of the visuo-spatial sketchpad 
increases for items that cannot be phonologically recoded. 

The capacity of the central executive is typically assessed using complex span 

tasks. It has been suggested that children show a regular increase in performance on 

such tasks, increasing from a span of 1.5 at 5-years to 6.5 at 16-years (Siegel, 1994). 

The reason for this developmental increase has been attributed to either an increase in 
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processing efficiency and use of cognitive resources (e.g. Case, 1985) or an increase 
in efficiency switching between processing and storage (e.g. Towse & Hitch, 1995). 
Both accounts have been discussed previously in relation to the development of the 
whole working memory system (see section 1.2.1). 

Another development within the central executive relates to the diversity of its 

functions. Miyake et al. (2000) suggested that executive functions are fractionated in 

adults. Using confirmatory factor analysis they identified three separate functions; 

shifting, updating and inhibition. When exploring the diversity of executive functions 

in children aged 6- to 8-years, Bull and Scerif (2001) suggested that the Miyake et al. 

(2000) model maybe usefully applied to children. Indeed, Lehto, Juujarvi, Koistra 

and Pulkkinen (2003) obtained three factors resembling those identified by Miyake et 

al. (2000) in 8- to 13-year-olds. However, when Jarvis and Gathercole (submitted) 

recently investigated this in 11- and 12-year-olds, using a battery of tasks analogous 

to those used by Miyake et al. (2000), they could only identify two separate functions; 

updating and inhibition. Jarvis and Gathercole (submitted) did not identify a separate 

shifting ability, which may reflect a fundamental difference in the organisation of 

executive functions between adults and children. Alternatively, the unity among some 

executive functions in their sample may be accounted for by inhibition. That is, it has 

been suggested that all executive functions involve inhibitory processes for proper 

operation. As Miyake et al. (2000) suggest, updating may involve ignoring previous 

and incoming irrelevant information and shifting may involve suppressing a 

redundant mental set to shift to a new set. In this context, where the unity and 

diversity of executive functions is debated (e.g. Miyake et al., 2000), further research 

is needed to understand the development of executive functions throughout childhood. 

For example, there are several diverse executive functions, which are dissociable from 
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inhibition in children (e.g. Espy, 1997), which highlights the need for this further 

research. 

1.2.3 Development of the structure of working memory 

A better understanding of the structure of working memory throughout 

childhood has been achieved with the increased use of latent variable techniques, such 

as factor analysis. Overall the evidence leans towards a fractionated working memory 

system. Early studies suggested that the phonological loop and the visuo-spatial 

sketchpad were independent of one another in 5- and 8-year-olds (Pickering, 

Gathercole & Peaker, 1998), and that the phonological loop and the central executive 

were separable but associated factors in 6- and 7-year-olds (Gathercole & Pickering, 

2000b). Recent work has replicated the dissociation between the phonological loop 

and the central executive in children as young as 4-/6-years (Alloway, et al., 2004). 

Initially there did not appear to be such a clear distinction between the central 

executive and visuo-spatial sketchpad in children. For example, Gathercole and 

Pickering (2000b) identified a two- factor solution in the design of the Working 

Memory Test Battery for Children (WMTB-C) , with visuo-spatial sketchpad 

measures loading on the executive factor. Although this appears to mirror the adult 

literature, where it has been suggested that the visuo-spatial sketchpad is dependent 

upon support from other resources such as the central executive (e.g. Phillips & 

Christie, 1977a), more recent studies have reported that an independent visuo-spatial 

sketchpad factor may in fact exist (e.g. Jarvis & Gathercole, 2003). Indeed, one recent 

study drew a parallel between the structure of children's working memory at 11- and 

14-years-of-age and a contemporary model of adult's working memory. Jarvis and 

Gathercole (2003) suggested that there are distinct verbal and visuo-spatial aspects in 



children for both complex and storage only systems, analogous to the adult model 

proposed by Shah and Miyake (1996). 

Gathercole and colleagues recently conducted one of the most comprehensive 

and informative investigations of the structure of working memory in children 

(Gathercole, Pickering, Ambridge et al., 2004). They administered a battery of tests 

designed to tap the three different components of the original tripartite model to over 

700 children aged between 4 and 15 years of age and explored the factor structure of 

working memory for both the group as a whole and for different age groups (6-/7-, 8-

19-, 10-/11-, 13-/15-year-olds). Their results suggested a model corresponding to the 

Baddeley and Hitch (1974) model, with three distinct but correlated factors, was the 

best fit to the data for all age groups. This indicates that the tripartite, adult -based 

model of working memory is in place by 6-years-of-age (Gathercole, Pickering, 

Ambridge et al., 2004). Although this study did not incorporate a measure of the 

recently added episodic buffer component, a recent study conducted by Alloway et al. 

(2004), which incorporated measures of the central executive, phonological loop and 

episodic buffer in a large scale study exploring the organisation of working memory 

and related cognitive abilities, suggested that there a distinct construct corresponding 

to the episodic buffer may be in place by 4-/6-years-of-age. 

In summary, there are two competing theoretical accounts of the development 

of working memory throughout childhood; the resource-sharing and the resource-

switching hypotheses. While the adult tripartite structure of working memory is 

proposed to be in place by 6-years-of-age (e.g. Gathercole, Pickering, Ambridge et al., 

2004), each component of the Baddeley and Hitch (1974) model appears to follow its 

own developmental trajectory. Typically, the capacity of each component increases 

between childhood and adolescence. 
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Section Summary 

1. Performance on working memory tasks follows a linear increase as a function 

of age. 

2. Both processing efficiency and storage capacity increase throughout 

childhood. Two accounts of this developmental increase are offered; a 

resource-sharing hypothesis (e.g. Case et al., 1982) and a resource-switching 

hypothesis (e.g. Towse & Hitch, 1995). At present it is thought that both time 

and cognitive resources are important factors in children's working memory 

development. 

3. Developmental changes occur within each component of the tripartite working 

memory model. 

4. The capacity of the phonological loop typically increases from 2-3 items at 4-

years to 6 items at 12-years. The onset of subvocal rehearsal and phonological 

recoding at about 7-years are thought to be the primary reasons for this 

developmental increase. 

5. The capacity of the visuo-spatial sketchpad increases from 4 items at 5-years 

to 14 items at 11-years. Little is known about its development, although some 

have speculated that it may be supported by the development of the 

phonological loop and the central executive and that the visual and spatial 

aspects may follow independent developmental trajectories. 

6. Typically the capacity of the central executive increases from 1.5 items at 5-

years to 6.5 items at 16-years. This increase may reflect the increased 

processing efficiency and storage capacity of the entire working memory 

system. It is unclear whether executive functions are distinct in childhood. 



Overall, latent variable studies suggest that the adult-like structure of working 

memory proposed by Baddeley and Hitch (1974), with three distinct but 

correlated factors, is in place by 6-years. 
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Section 1.3 

Mathematical Cognition 

This section will provide an overview of the development of mathematical 

cognition throughout the lifespan. Due to the vast literature on this topic, which 

extends across studies of normal adult (e.g. Ashcraft & Battaglia, 1978; LeFevre, 

Sadesky & Bisanz, 1996) and child populations (e.g. Siegler, 1987), brain-lesioned 

patients (e.g. Warrington, 1982), bilinguals (e.g. Geary, Cormier, Goggin, Estrada & 

Lunn, 1993; Jensen & Whang, 1994), mathematically gifted (e.g. Dark & Benbow, 

1991) and mathematically impaired populations (e.g. Geary, Bow-Thomas & Yao, 

1992) , this introduction offers an overview of the major changes that occur between 

preschool and adulthood. 

1.3.1 Preschool 

Piaget's (1952) early suggestion that children's abstract knowledge of 

arithmetic does not emerge until 4- or 5-years-of-age has since been contended. 

Evidence now suggests that children possess some numerical skills before formal 

schooling begins at around the age of 5-years. A number of studies have shown that 

children younger than 4-years have mastered less demanding, non-verbal versions of 

the tests of numerical conservation used by Piaget (Gelman & Gallistel, 1978; 

McGarrigle & Donaldson, 1974). Furthermore, it has been proposed that the 

emergence of visual number forms occurs during infancy, independent of formal 

number or calculation teaching (Seron, Pesenti, Noel, Deloche & Cornet, 1992). 

Wynn (1992; 2000) demonstrated, using the violation of expectation model, 

that preverbal infants as young as 4 days old could perform simple arithmetic 
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operations. She found that infants were able to discriminate visual numerosity, and 
suggested that these skills provide the foundation for later, complex mathematical 
abilities. Using the same paradigm with 2- and 3-year-olds, where language skills had 
begun to emerge, Houde (1997) reported that children's mathematical abilities for 
small numbers was comparable to that of preverbal infants (Wynn, 1992) and 
monkeys (Hauser, MacNeilage & Ware, 1996), demonstrating that early preverbal 
skills may indeed underpin later number development. Similar findings have been 
reported for auditory stimuli, where newborn babies have been shown to discriminate 
two- and three-syllable words (Bijeljac-Babic, Bertoncini & Mehler, 1991). 
Furthermore, infants, as young as 6 months, have been shown to perform cross-modal 
numerosity matching. When they hear two or three drumbeats, and are then shown 
visual displays of two or three objects, they spend longer looking at the slide with the 
numerosity that matches the number of sounds they hear (Starkey, Spelke & German, 
1983). More recently, it has been suggested infants' numerical abilities are reasonably 
sophisticated by 11 months. At this age babies are able to recognise different 
numerosities, and judge which of two numerosities is larger (Brannon, 2002). 

Studies such as Wynn's (1992; 2000) suggest that humans possess an innate 

capacity to perform simple arithmetical operations. Specifically, Wynn (1995) claims 

that infants understand the true numerical value of a set of objects, make distinctions 

between them based on numerosity, have a mechanism for non-verbal counting called 

the accumulator, and understand the ordinal relations between different collections. In 

line with Wynn (1992), Meek and Church (1983) proposed that animals represent 

numbers internally by means of an analogue accumulator. Gallistel and Gelman 

(1992) suggest that human infants may possess a similar accumulator, which could 

underpin the acquisition of a verbal number system. The notion of an analogue 
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number representation system is akin to Dehaene's (1992) notion of a "mental number 
line", which is discussed in section 1.4.2.2. 

However, an alternate interpretation suggests that infants' ability to make 

numerical comparisons is based on a perceptual process known as subitizing. 

Subitizing provides information about very small numerosities faster than counting, as 

items are processed simultaneously rather than in succession. Evidence suggests that 

infants' numerical discriminations were limited to the same, small numerical values of 

three versus four items (Strauss & Curtis, 1981), as subitizing is in older children and 

adults (e.g. Dehaene, 1992). Cooper (1984) demonstrated that infants up to the age of 

12 months were not able to detect changes in numerical relation. That is, they did not 

react when the numerical relation between successive collections switched between 

more-than and less-than relations. Contrary to the accumulator theory, which proposes 

that infants know the basic arithmetical relations among small numbers (such as one 

plus one makes two), this suggests that relational information is not inherent in 

infants' representation of numerical values. In a study which replicated Wynn's 

(1992) original work and extended it to incorporate subtraction, Wakeley, Rivera and 

Langer (2000a; 2000b), both failed to replicate the original findings with addition 

trials and, more importantly, found that infants' looking times were not significantly 

different for trials with correct and incorrect outcomes in the subtraction conditions. 

This finding further supports the idea that infants do not understand arithmetical 

relations. In summary, the numerical knowledge attributed to infants by this alternate 

interpretation is far less than suggested by Wynn and colleagues. 

Whether infants' ability to make numerical judgements reflects an innate 

understanding of arithmetical relations and the existence of a nonverbal counting 

mechanism (e.g. Wynn, 1992) or a more basic numerical ability such as subitizing 
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(e.g. Strauss & Curtis, 1981), the overriding conclusion is that humans possess some 
form of innate ability to process number. 

This notion is strongly supported by Dehaene, Dehaene-Lambertz and Cohen 

(1998) and Butterworth (1999). Dehaene et al. (1998) propose that we are born with 

an innate "number sense". That is, although higher-level arithmetic is culturally 

achieved, animals, young infants and adults possess a biologically determined, 

domain-specific representation of number and elementary arithmetic operations. They 

speculate that animal and human number processing reflect the operation of similar 

biological neural systems that are anatomically located in the parietal cortex, a visuo-

spatial area of the brain. They cite numerical distance effect and number size effect 

studies as support for this suggestion. To elaborate, the numerical distance effect, 

which refers to the notion that the ability to discriminate between two numbers 

improves as the numerical distance between them increases, has been found in 

animals (Gallistel & Gelman, 1992) and humans (e.g. Dehaene, Dupoux & Mehler, 

1990). Similarly, number size effects, which refer to the notion that the ability to 

discriminate between two numbers of equal numerical distance worsens as their 

numerical size increases, have been found in animals (Gallistel & Gelman, 1992) and 

humans (e.g. van Oeffelen & Vos, 1982). The association between animal and 

preverbal infants' innate ability to deal with numerosity has been extended through 

models of animal counting (e.g. Meek & Church, 1983). 

The idea that humans possess an innate ability to deal with number is one 

echoed by Butterworth's (1999) theory of the mathematical brain. He suggests that a 

"number module", which is genetically determined by the human genome, exists in 

the parietal lobe (Butterworth, 1999). He believes that this module is specialised for 

dealing with numerical representations and that it is responsible for categorising the 
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world in terms of numerosities. In particular, he suggests that three basic biological 
numerical capacities present in infants are embedded within the number module. 
These are the capacity to recognise numerosities, the capacity to detect changes in 
numerosity, and the capacity to order numbers by size (Butterworth, 1999). Although 
a specific gene is yet to be linked to the number module, Butterworth argues that 
infants' apparent innate abilities, such as those reported by Wynn (1992; 2000), the 
selective impairments caused to number abilities following neurological damage (e.g. 
the case of D R C reported in Warrington, 1982) and cases of developmental 
dyscalculia (e.g. Shalev & Gross-Tsur, 2001) support the idea of a genetically-
determined ability to deal with number. Additional support for the existence of a 
number module is taken from the animal literature. As Butterworth (1999) points out 
animals can, and do, use numerosity skills. For example, when foraging for food 
animals demonstrate that they can estimate and compare quantities as they will chose 
a patch with more food, and return to it more often than a patch with little food (e.g. 
Gallistel, 1990). Similarly, lions demonstrate the ability to judge numerosity when 
defending their territory. They will only attack intruders when the number of 
defenders is greater than the number of attackers (e.g. McComb, Packer & Pusey, 
1994). Butterworth (1999) speculates that animals with a greater capacity to deal with 
number may have an adaptive advantage, and as such, he reasons that an evolutionary 
theory for the existence of a number module in animals lends support to its existence 
in humans. 

By the time children begin school, it is argued that their innate numerical 

abilities have developed into an informal knowledge of simple arithmetic tasks when 

they are set in a familiar, concrete context (e.g. Hughes, 1986). Hughes (1986) found 

that pre-school children could more readily solve concrete problems (those that refer 
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to specific objects, people or events), than abstract problems that do not have a 
concrete referent. Likewise, Ginsburg (1989) proposed that children are intuitive 
mathematicians, who spontaneously and frequently engage in "everyday 
mathematics" (Ginsburg, Pappas & Seo, 2001). He suggested that by about 4- or 5-
years-of-age children are able to perform practical arithmetic, which is to say that they 
can deal informally with real world, concrete mathematical problems. It is argued that 
through building upon these concrete experiences with formal schooling children 
acquire conceptual principles necessary for abstract mathematics (e.g. Fuson, 1988). 

Contrary to this, Gelman and Gallistel (1978) argue for a "principles-before-

skills" hypothesis. They suggest that any functioning number system must have five 

implicit principles that guide learning (rather than principles being learned through 

concrete experiences). Three of these principles, known as the "how to count" 

principles, are thought to guide the acquisition of counting procedures. These include 

one-to-one correspondence (understanding that one word tag belongs to one number), 

stable order (understanding that word tags have a fixed sequence, e.g. one, two, three), 

and cardinality (understanding that a final word tag represents the size of a set). The 

other two principles, abstraction (understanding that any objects can be counted) and 

order irrelevance (understanding that objects can be counted in any order), govern 

counting. In a study designed to investigate how well children count, Gelman and 

Gallistel (1978) gave 2- to 5-year olds sets that varied in number from 2 to 19 and 

asked them to count them aloud. They observed that although the older children 

performed better than the younger children, children of all ages respected the five 

principles. From this Gelman and Gallistel (1978) claimed that children start with the 

right principles and develop the skills to apply them over time. In particular, they 

suggested that pre-school children understand the three "how to count" principles 
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before they have learned the correct counting sequence and long before they are 
formally taught mathematics. While there is evidence to support this (e.g. German & 
Meek, 1983; German, Meek & Merkin, 1986), critics suggest that children younger 
than 5-years often violate one counting principle to satisfy another (e.g. Wagner & 
Walters, 1982) and that they may be remembering lists that were presented to them 
(Fuson, Richards & Briars, 1982) rather than fulfilling the principles of counting. 
Despite this debate, it is clear that children enter formal schooling at about 5-years of 
age with at least some knowledge of how to count and solve everyday, concrete 
mathematical problems. 

In summary, it appears that children are born with some innate capacity to deal 

with numerosity (e.g. Dehaene et al., 1998; Butterworth, 1999), which is 

demonstrated by young infants' ability to perform simple mathematical operations 

(e.g. Wynn, 1992). Throughout the early preschool years these innate capacities 

develop into a basic, informal concrete understanding of number. At this age children 

are beginning to develop the skills to apply to mathematical principles (e.g. Gelman & 

Gallistel 1978). However, they may not yet fully understand the implications of these 

principles until formal schooling begins (e.g. Geary, 1994). 

1.3.2 The School Years 

The key developmental shift in children's mathematical cognition occurs 

during the school years, particularly during the primary school years (5-years to 11-

years in the U K ) . The general consensus is that children advance from using slow, 

procedural counting-based strategies for the solution to basic arithmetic problems, to 

more efficient retrieval-based strategies analogous to those used in adulthood (e.g. 

Hamann & Ashcraft, 1985; Kaye, 1986). 
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Typically young children begin solving mathematical problems using counting 
strategies, such as count-all. The most sophisticated counting strategy, the "min" 
model (Groen & Parkman, 1972), offers perhaps the most widely adopted account of 
children's counting procedures. In a comprehensive study designed to explore 
children's counting algorithms in 6-year-olds, Groen and Parkman (1972) compared 
children's solution times (reaction times) on all 55 single digit additions with a 
solution equal to, or less than 9, against five different counting models. Each model 
specified the existence of a mental counter. The "min" (for minimum addend) model 
provided the best fit to the data. According to this model, the mental counter is set to 
the larger of the two addends, and is then incremented by steps of one equal to the 
value of the smaller addend, ending at a position (number) equal to the solution to the 
problem. The time to set the counter to the larger addend is thought to be constant, 
meaning children's solution times are assumed to be the time taken for incrementing 
the counter. However, studies that have investigated numerical inequality suggest that 
the time taken to set the counter may not be constant given that the time taken to 
judge pairs of numbers differs. For example, Sekuler and Mierkiewicz (1977) reported 
that numbers of greater disparity (such as 1 and 9) were responded to faster than 
numbers of greater parity (such as 6 and 7). Although the "min" model has 
weaknesses, its principles remain widely accepted and its influence can be seen in 
many theories of mathematical cognition. For example, in Dehaene's (1992) 
suggestion of a "mental number line" (see section 1.4.2.2). 

Throughout the school years, children begin to adopt more adult, retrieval-

based solution strategies. Evidence for this developmental shift in children's choice of 

solution strategies can be drawn from studies of children with mathematical 

difficulties who do not successfully achieve this transition. Children with 
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mathematical difficulties (MD) are less likely to use direct memory retrieval to solve 
arithmetic questions (Bull & Johnston, 1997; Geary & Brown, 1991), and count more 
slowly and inaccurately than children with normal abilities (Bull & Johnston, 1997; 
Geary, et al., 1992). Furthermore MD children have weak, or incomplete, networks of 
number facts in long-term memory (Geary, Brown & Samanayake, 1991; Hitch & 
McAuley, 1991). This implies that poor counting skills impair the acquisition of 
number facts in early childhood, meaning incomplete networks of learned number 
facts are formed in long-term memory preventing the use of direct retrieval strategies. 

Siegler (1987) proposed that the developmental shift occurred through the 

systematic exposure to arithmetic facts in the classroom. He suggested that this 

fostered the development of a complete network of arithmetic facts, which 

subsequently encouraged the use of more efficient retrieval strategies over slower 

procedural strategies. Siegler and Shrager (1984) proposed a model of the 

development of arithmetic facts, which accounted for the frequency with which 

problems were presented at school. Children often derive correct and incorrect 

solutions to problems when using a counting procedure. According to the Distribution 

of Associations model, addition pairs and correct and incorrect solutions are stored in 

an interconnected network of number facts. With increased presentations of problems 

in the classroom, children become more efficient at using counting procedures, and 

reach the correct solution more often. This strengthens the problem-correct solution 

association to a point where the correct solution shows "peakedness" over the 

incorrect solutions. At this point a threshold, known as the confidence criterion, is 

reached and children begin to retrieve answers. The overall idea behind the model was 

that the probability of an answer being retrieved was based upon its associative 

strength with the correct solution, which was strengthened by frequent exposures to 



the problem. Supporting this, Ashcraft (1987) reported that children were more likely 

to retrieve answers to small problems than large problems following a higher 

frequency of exposure to the smaller problems. 

The shift from the use of procedural to retrieval strategies in childhood does 

not follow a smooth developmental curve, nor does it undergo a sudden upward shift 

as suggested by Case (1992). According to Case's staircase model of development, 

children's thinking remains at a certain level for an extended period of time (a tread 

on a staircase), then undergoes a sudden transition to a new, higher level of thinking 

(a riser). It has, however, been shown that children use a variety of strategies and 

levels of thinking at any given time during development. For example, Groen and 

Parkman's (1972) data suggested that children were using a mixture of retrieval and 

counting on procedures. They observed that children's reaction times were faster for 

ties (e.g. 1+1, 2+2, 3+3) than problems with the same minimum addend (e.g. 2+1,3 + 

2, 2 + 3 respectively), which led them to suggest that the children had memorised the 

correct responses to ties and were retrieving the answers rather than computing them. 

One of the earliest documentations of children's diverse strategy use came 

from Siegler (1987). He conducted a study to investigate the solution strategies used 

by 5 to 7 year olds to solve addition problems and found that although children's 

solution times followed the same linear function observed by Groen and Parkman 

(1972), suggesting they were using the min procedure, their verbal reports revealed 

they were using up to five different strategies. These included count-all, retrieval, 

decomposition, guessing and the min strategy. Siegler (1987) examined children's 

solution times and errors for different strategies and found that the min model 

accounted for 86% of the variance in trials where the children reported using the min 

strategy, and only 40% of the variance in trials where children reported using an 
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alternate strategy, which suggested that the children's verbal reports were reasonably 
accurate. It is now readily acknowledged that children adopt a variety of strategies to 
solve arithmetic problems (e.g. Chen & Siegler, 1999; Coyle & Bjorklund, 1997; 
Geary, Fan & Bow-Thomas, 1992). 

Siegler and Jenkins (1989) subsequently revised the Distribution of 

Associations model to take into account the number of strategies available to children. 

In brief, the new Strategy Choice model worked along the same principles as the 

original model, including associations between problems and answers, but also 

incorporated associations between specific problems and strategies, types of problems 

and strategies and classes of problems as a whole. These new associations were 

strengthened or weakened based upon information about the speed and accuracy of a 

strategy, and each strategy was assigned novelty points based upon how recently it 

was discovered. Although novelty points were lost with each use of a strategy, its 

effectiveness increased. Siegler and Jenkins' (1989) new model proposed that the 

solution process involved two phases; strategy choice followed by strategy execution. 

I f a particular strategy was chosen, but could not be executed an alternate back-up 

strategy would be chosen. In recent years this model has been adapted, and now the 

Overlapping Waves model (Siegler, 1999) is among the best contemporary depictions 

of children's strategical development. According to this model, which is again based 

on the observation that individual children use a variety of strategies to solve 

individual mathematical problems at all times, the relative frequency of each strategy 

changes with age and experience so that some strategies become less frequent, some 

become more frequent then less frequent, some never become very frequent, some 

become more frequent, some old ones cease to be used and some new ones are 

discovered. Chen and Siegler (2000) conceptualise this developmental trajectory in 



terms of five components: 1.child's acquisition of a new strategy 2. mapping the new 

strategy on to novel problems 3. strengthening the new strategy 4. refinement of 

choices among available strategies 5. successful executive of the new strategy. 

Shrager and Siegler (1998) modelled these ideas about children's strategy choice and 

discovery. Their model, known as SCADS (Strategy Choice And Discovery 

Simulation), combines metacognitive and associative mechanisms, where the 

associative processes lead to adaptive strategy choices and the metacognitive 

processes lead to the discovery of new strategies. This model accounts for all eight of 

the key characteristics of strategy development (see Shrager & Siegler, 1998), 

demonstrating that children's strategy choice is indeed variable. 

In summary, formal schooling fosters children's mathematical development, 

encouraging the use of adult-like retrieval solution strategies (e.g. Siegler, 1987). 

Although a general developmental shift occurs throughout the school years as children 

move away from the use of slow-procedural strategies and become more efficient in 

their use of retrieval strategies, individual children use a variety of strategies to solve 

individual mathematical problems, including retrieval, decomposition, count-all and 

min procedures. Furthermore, mathematical development involves changes in the use 

of different strategies and strategy choice is related to problem difficulty (Siegler, 

1999). 

A final point worthy of note is that since the early theories of mathematical 

development, the emergence of arithmetic skills has been the focus. Relatively little is 

known about the development of other mathematical processes, such as algebraic skill 

and geometric abilities, in comparison to what is known about the development of 

children's arithmetic abilities. One assumption, that is yet to be formally 

substantiated, is that the development of different mathematical skills follows a 



similar pattern to the development of arithmetic abilities. This is suggested because 

basic arithmetic computation skills have been related to broader mathematical 

problem solving abilities. For example, Siegler (1988) found that maths fact skills 

were predictive of more general problem-solving abilities in 6-year-olds. Kail and 

Hall (1999) reported a similar relationship between basic arithmetic measures and 

problem-solving skills in 8- to 12-year-olds. Furthermore, factor-analytic and 

structural-equation-modelling studies have shown that arithmetic skills and broader 

mathematical competencies are closely related. Widaman, Little, Geary and Cormier 

(1992) reported that addition efficiency was closely related to a mathematics 

achievement latent variable, which predicted computational, conceptual and 

application skills in mathematics, in 7- to 12-year-olds. Similar findings, that 

arithmetic production was related to mathematics achievement in Asian-American 

students aged 9- to 12-years, were reported by Whang and Hancock (1997). The 

notion that mathematical skills develop in a similar fashion to arithmetic skills is 

supported by children's varied strategy use for the solution to algebraic and geometric 

mathematics problems. For example, children will use one of three strategies to solve 

algebraic problems. They either move all the letters to one side and all the numbers to 

the other side of an equation (the isolation strategy, Mayer, 1982), replace variables 

with numbers in a trial-and-error fashion in an attempt to balance the equation (the 

substitution strategy, Sleeman, 1984) or clear the parentheses by carrying out the 

necessary operations (the reduce strategy, Mayer, 1982). It could be argued that this 

diverse strategy use mirrors the varied use of arithmetic solution strategies. Further 

support for this idea is that children begin to solve geometry problems using concrete 

solution strategies, then move on to using abstract solution strategies (e.g. Clements, 

Battista, Sarama, Swaminathan & McMillen, 1997). This developmental trend follows 



that suggested by Hughes (1986) for children's arithmetic development. Overall, the 

evidence supporting the idea that different mathematical skills follow similar 

developmental paths is limited at best, meaning any interpretation is merely 

speculative. Further research into the development of different mathematical skills in 

children is certainly needed. 

1.3.3 Through to Adulthood 

Although adults, like children, use a variety of strategies for the solution of 

mathematical problems (e.g. LeFevre, Sadesky & Bisanz, 1996), they predominantly 

rely on efficient retrieval-based strategies (e.g. Campbell & Graham, 1985). 

A number of models of adult fact retrieval have been suggested over the years, 

some of which also apply to children (e.g. Dehaene & Cohen. 1995). Ashcraft and 

Battaglia (1978) and Ashcraft (1982) offered one of the simplest accounts. According 

to the Network Retrieval Model, or the fact-retrieval model as it became (Ashcraft, 

1982), adults mentally represent number facts in an addition table form where 

augends (first numbers) head each column and addends (second numbers) head each 

row. In this table, the augends and addends increase sequentially along their 

respective axis. Retrieval is a search process along to the augend, then down to the 

addend, where the solution is located. As such, retrieval time is a function of the 

distance travelled, meaning the larger the addends the longer the solution time. 

Ashcraft (1982) reported that this model did not fi t young children's 

performance, but that it did fit older children's and adult's performance, 

demonstrating that while young children rely on min type procedures, older children 

and adults use the fact-retrieval model. Ashcraft and Fierman (1982) determined that 

performance shifts from counting to retrieval at around 8-/9-years (Grade 3). They 
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explored mental addition in Grade 3,4 and 5 children using a true/false verification 
task. Their results suggested Grade 3 children process mental addition problems in a 
different way to Grade 4 and Grade 5 children. Indeed, they reported that half of the 
Grade 3 children were using immature counting type strategies, whilst the other half 
were solving the problems more efficiently in a manner that resembled the Grade 4 
and 5 children's performance. The older children's performance was consistent with 
that of adults using retrieval-based strategies (e.g. Ashcraft & Battaglia, 1978), 
suggesting children begin to use retrieval strategies at about 8-/9-years. 

Stazyk, Ashcraft and Hamaan (1982) proposed a similar fact-retrieval model 

for the solution of multiplication problems. Although more complex models of fact-

retrieval have since been proposed, such as those that incorporate both incorrect and 

correct solutions in their networks (e.g. Campbell, 1994) and those that include 

information about numerical magnitude in their networks (e.g. Butterworth, Zorzi, 

Girelli & Jonckheere, 2001), a central theme to all models is the principle that 

associative networks of facts are formed and stored in long-term memory for the 

direct retrieval of answers to arithmetic problems in adulthood. 

Although adults predominantly retrieve answers from an associative network 

of arithmetic facts, they also use a variety of alternate strategies for the solution of 

mental arithmetic problems (e.g. Dowker, 1998), particularly for larger problems 

where procedural strategies are more effective (e.g. LeFevre, Sadesky & Bisanz, 

1996). Current models of numerical cognition differ as to whether the internal 

processing of numerical information during procedural and retrieval strategies 

involves one or many codes. According to McCloskey's abstract code model 

(McCloskey, 1992; McCloskey, Caramazza & Basili, 1985; McCloskey & Maracuso, 

1995) numerical input is translated into one internal abstract code, which reflects the 



basic quantities in a number and the power of ten associated with it. This code is used 

to perform the calculation, before the solution information is translated into an output 

code, which is either verbal or written based on the output modality. A key feature of 

this model is that number comprehension and number production are independent 

components of the number-processing system, each responsible for translating 

between the abstract code and the input/output codes. In addition, this model suggests 

that calculation requires three processes: 1. comprehension of operands and words 2. 

retrieval of arithmetic facts 3. execution of the calculation process. Contrasting this, 

Dehaene's (1992; Dehaene, 1997; Dehaene & Cohen, 1995) triple code model 

suggests that the internal code used to perform a calculation depends upon the 

processing task. According to this model, as the name suggests, three codes are used. 

A visual Arabic code, in which numbers are represented as strings of digits, is used 

for multi-digit operations and parity judgements. An analogue quantity or magnitude 

code, in which numbers are represented along a "mental line" (Dehaene, 1992), is 

used for semantic knowledge about quantities, proximities and larger-smaller 

relations. Finally, a verbal code, in which numbers are represented as words, is used 

for the retrieval of arithmetic facts. There are two routes for the solution of arithmetic 

problems; a direct and an indirect route. In the direct route, the operands of the 

problems are transcoded into a verbal representation, which then activates the 

completion of the word sequence via rote verbal memory (e.g. "2 x 6" is transcoded to 

"two times six" and completed as "twelve"). In the indirect semantic route, the 

operands are encoded as quantity representations upon which semantically meaningful 

manipulations are performed before the resulting quantity is named by the language 

network (e.g. "6-3" is mentally represented as a starting quantity of "6", which is then 

decremented three times to reach a quantity of "3", which is then named by the 



language system). Dehaene's model suggests that many calculations often involve the 

simultaneous operation of both routes (Dehaene & Cohen, 1995). Campbell's 

encoding complex model (Campbell, 1994; Campbell & Clark, 1992) is more 

elaborate again. According to this model, multiple internal codes are activated to 

varying degrees depending on the presentation format of the task under the 

assumption that Arabic and verbal inputs may independently access number fact 

representations. They suggest that visual number words (e.g. "seven") activate verbal 

codes, while Arabic - digits (e.g. "7") activate visual codes. This model hypothesises 

that Arabic-digit formats activate number-representations for retrieval more 

efficiently than number words, but that the two processes (number reading and 

number-fact retrieval) interact (Campbell & Clark, 1992). According to this account 

operand intrusion errors, which are usually arithmetically related incorrect answers, 

occur because multiple responses are activated in response to a problem due to the 

interaction of the two processes. The current view is more in line with the latter two 

accounts, which suggest that adults use a variety internal codes and processes for the 

solution of arithmetic problems. 

To summarise, adults predominantly rely on efficient retrieval strategies for 

the solution of arithmetic problems, but also rely on procedural strategies, which 

involve a variety of internal codes and processes, for the solution to more complex 

problems. As such, it could be argued that Siegler's Distribution of Association 

models (such as SCADS) (e.g. Siegler & Shrager, 1984; Siegler, 1999; Shrager & 

Siegler, 1998), where strategy choice is an integral part of the solution process, may 

provide the most comprehensive account of how older children and adults solve 

arithmetic problems. 
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Section Summary 

1. Preschoolers and infants demonstrate a basic capacity for number and 

numerosities. One suggestion is that we are born with some form of innate 

mathematical ability, which may be linked to the human genome. 

2. By the time children begin school they have an informal knowledge of simple 

arithmetic, and are beginning to display at least three of the five implicit 

principles proposed by Gelman and Gallistel (Gelman & Gallistel, 1978; 

Gallistel & Gelman, 1992). 

3. Formal schooling fosters children's mathematical development. During this 

time children advance from using slow, procedural counting-based solution 

strategies to more efficient adult-like retrieval-based solution strategies. 

4. Children's mathematical development does not follow a smooth 

developmental curve, nor does it undergo a sudden developmental shift. 

Rather, individual children use a variety of strategies to solve individual 

mathematical problems (e.g. Siegler's overlapping waves model, 1999). 

5. Our knowledge of the development of children's wider mathematical skills is 

rather limited to the development of arithmetic problem solving. 

6. Adults predominantly rely on retrieval-based solution strategies for the 

solution to arithmetic problems. They do, however, use a variety of alternate 

procedural strategies where retrieval strategies cannot be deployed. 

7. Models of numerical cognition suggest that adults and children use a number 

of internal codes and processes for the solution to arithmetic problems. 
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Section 1.4 

Working Memory and Mathematics 

The first part of this section defines a role for working memory in cognitive 

abilities as a precursor to the second part, where a review of the literature is presented 

that suggests a role for working memory in mathematics. 

1.4.1 Working Memory and Cognitive Abilities 

As previously noted the working memory system assumes responsibility for 

the temporary storage and processing of information during cognitive tasks. It 

therefore follows that performance on working memory tasks has been associated 

with a variety of cognitive abilities, including language and reading comprehension 

(Daneman & Carpenter, 1980; Siegel, 1994; Yuill, et al., 1989), vocabulary 

acquisition (Daneman & Green, 1986; Gathercole & Baddeley, 1990; Gathercole, et 

al., 1992), literacy (de Jong, 1998; Swanson, 1994) and arithmetic / mathematics 

(Adams & Hitch, 1997; Bull, Johnston & Roy, 1997; Bull & Scerif, 2001; Hitch, 

1978; Leather & Henry, 1994; Maybery & Do, 2003; Reukhala, 2001). 

Early studies that defined a role for working memory in cognitive abilities 

focussed on individual differences in working memory as a correlate of reading 

comprehension in adults. In a seminal study, Daneman and Carpenter (1980) 

administered participants with a reading span task, a word span task and three reading 

comprehension measures; answering fact questions, pronoun reference questions and 

the Verbal Scholastic Aptitude Test. They found that reading span performance, a 

working memory measure, was significantly related to reading comprehension, while 

word span performance, a simple span task designed to measure short-term memory 



capacity, was not. Turner and Engle (1989) reported similar findings using operation 

span as the complex span measure, emphasising the generality of working memory as 

a predictor of cognitive ability. Although these early studies suggested that the 

concurrent processing and storage demands of complex working memory tasks were 

important for predicting cognitive abilities, more recent research, which has worked 

within the tripartite framework, suggests that simple span measures designed to tap 

the slave systems are also important predictors of cognitive abilities, especially in 

children. 

Since Daneman and Carpenter's (1980) early work, numerous studies have 

explored the role of working memory in children's academic attainment. It has 

recently been associated with scholastic attainment, as measured by standardized tests 

of achievement, at 7- (Gathercole & Pickering, 2000a; 2000b), 11- (Jarvis & 

Gathercole, 2003) and 14-years (Jarvis & Gathercole, 2003). This wil l be discussed in 

more detail in Chapter 3. As already detailed in Section 1.1.2.1, it is thought that the 

concurrent processing and storage functions of the working memory system are 

important in supporting children's language development. In particular, the 

phonological loop is thought to play an integral part in vocabulary acquisition in 

childhood (e.g. Gathercole & Baddeley, 1989) and second language learning in both 

childhood and adulthood (e.g. Papagno et al., 1991). As previously discussed, it is 

thought that the phonological representation of an unfamiliar word is represented by 

the phonological store, which facilitates vocabulary acquisition in children, while the 

subvocal rehearsal process of maintaining the contents of the phonological store aids 

second language learning in adults (Baddeley, et al., 1998). Furthermore, 

phonological loop deficits have been reported in populations of children and adults 

with reading difficulties (Siegel, 1994), general learning disabilities (Henry, 2001) 



and syndromes associated with learning disabilities, such as Down's (Jarrold & 

Baddeley, 1997) and autism (Russell, Jarrold & Henry, 1996).The central executive is 

thought to be more important for language and text comprehension (Dixon, LeFevre, 

& Twilley, 1988; Hitch, Towse & Hutton, 2001; Leather & Henry, 1994; Yuill, et al., 

1989). 

Working memory has been implicated in mathematical competence in adults, 

but less is known about its possible role in children's mathematics. This topic, which 

is becoming an area of increased interest among contemporary researchers, is the 

focus of this thesis. A comprehensive review of the relevant literature is provided in 

the following section. 

1.4.2 Working Memory and Mathematics 

All three components of the tripartite model of working memory have been 

associated with mathematical abilities in adults and children. Evidence suggesting a 

link between each component and mathematics is presented in the following sections. 

1.4.2.1 The Phonological Loop and Mathematics 

The primary role of the phonological loop in mathematics is to encode and 

retain the verbal codes that children and adults use for counting (Nairne & Healy, 

1983; Healy & Nairne, 1985), exact arithmetic (Dehaene, Spelke, Pinel, Stanescu & 

Tsivikin, 1999) and mathematical algorithms, such as addition and subtraction 

(Siegler & Jenkins, 1989). 

Dual-task studies with adults have demonstrated that the phonological loop is 

responsible for maintaining interim results during addition (Heathcote, 1994; Lemaire, 

Abdi & Fayol, 1996; Logie, Gilhooly & Wynn, 1994; Seitz & Schumann-Hengsteler, 



2002), subtraction (Seyler, Kirk & Ashcraft, 2002) and multiplication (Seitz & 

Schumann-Hengsteler, 2000). Across these studies, counting accuracy and arithmetic 

performance was disrupted under conditions of articulatory suppression, indicating 

that the subvocal rehearsal process, which occurs in the phonological loop, is needed 

to maintain interim results during the calculation of both single-digit and multi-digit 

problems. 

Subvocal rehearsal is also important for the retention of problem information 

during calculation in both adults and children. Fiirst and Hitch (2000) reported that 

concurrent articulatory suppression disrupted the addition of pairs of three-digit 

numbers when the digits were presented for a brief period of time. When the numbers 

to be added remained visible throughout the calculation, adults' performance was not 

affected by articulatory suppression. Adams and Hitch (1997) reported similar results 

with children; that their mental addition spans were lower when the numbers to be 

totalled were not visible, implying that the two procedures (retaining the problem 

information and performing mental addition) were competing for the same cognitive 

resource, the articulatory loop. Supporting the idea that brief presentation of the 

problem information leads to phonological coding and maintenance of the information 

in the articulatory loop in adults, Noel, Desert, Auburn and Seron (2001) reported an 

interference effect of phonologically similar digits that were presented briefly in 

multi-digit addition, which was not found for visually similar digits. 

It has been suggested that the phonological loop is important for counting 

across different types of arithmetic in children and adults. For example, Ellis and 

Hennelley (1980) reported that arithmetic performance and digit span were poorer for 

bilingual children speaking Welsh than bilingual children speaking English. They 

attributed this phenomenon to the time taken to pronounce the digit words in each 



language. That is, the Welsh words took longer to pronounce, therefore they took 

longer to subvocalize and consequently placed heavier demands on the phonological 

loop in both tasks. Evidence for the involvement of the phonological loop in counting 

per se comes from a dual task study with adults where participants were required to 

count the total number of dots, or the total number of times a stimulus appeared, under 

conditions of concurrent articulatory suppression (Logie & Baddeley, 1987). As with 

previous findings, concurrent articulatory suppression disrupted counting accuracy, 

suggesting that subvocal rehearsal is important for keeping track during counting. 

The retrieval of number facts from long-term memory is based on a verbal 

code (Dehaene & Cohen, 1995), which implicates an additional role for the 

phonological loop in mathematics. Verifying this assumption, researchers have 

reported that the storage and retrieval of multiplication facts (LeFevre, Lei, Smith-

Chant & Mullins, 2001; LeFevre & Liu, 1997; Lee & Kang, 2002) and addition facts 

(Lemaire, et al., 1996), which rely upon phonological codes, can be disrupted by 

concurrent articulatory suppression in adults. However, the evidence for such a role is 

controversial as concurrent verbal central executive tasks (such as random letter 

generation) have a greater disruptive effect on the retrieval of number facts from long-

term memory (Seitz & Schumann-Hengsteler, 2000; 2002), implying that this process 

may involve executive skills, rather than being purely phonological. 

Evidence suggests that the phonological loop is important for children's 

mathematical development. Many studies report significant associations between 

children's mathematical abilities and their performance on measures of phonological 

loop functioning, such as digit, word or nonword recall span tasks (Dark & Benbow, 

1991; Dark & Benbow, 1994; Gathercole & Pickering, 2000a; Hitch & McAuley, 

1991; Jarvis & Gathercole, 2003; Maybery & Do, 2003; Passolunghi & Siegel, 2001; 



Towse & Houston-Price, 2001; Wilson & Swanson, 2001). Gathercole and colleagues 

reported significant associations between National Curriculum mathematics 

attainment and phonological loop abilities at Key Stage 1 (Gathercole & Pickering, 

2000a) and Key Stages 2 and 3 (Jarvis & Gathercole, 2003), implying that it supports 

mathematics throughout childhood. 

While the phonological loop may play a role in children's mathematics 

analogous to that played in adults mathematics (e.g. storing problem information 

Adams and Hitch (1997); supporting counting (Ellis & Hennelley, 1980)), it is 

particularly important for mathematics development as it supports the acquisition of 

number facts that are stored in long-term memory. It has been suggested that impaired 

verbal / phonological working memory abilities may impair counting. Counting 

provides an important source of feedback when learning numerical / arithmetical 

relationships (Siegler & Robinson, 1982), which is crucial to the formation of 

associations between problems and answers. These associations form the base of 

number facts in long-term memory for direct retrieval and other solution strategies, 

such as decomposition, later in life. Consequently, mathematical difficulties can arise 

when the acquisition of arithmetic facts is impaired and weak or poorly formed 

networks of number facts are stored in long-term memory (Geary et al., 1991; Hitch 

& McAuley, 1991). As discussed in section 1.3.2., children with mathematical 

difficulties (MD) count more slowly than children with normal abilities (e.g. Geary, et 

al., 1992), have weak, or incomplete, networks of number facts in long-term memory 

(e.g. Geary, 1990) and are less likely to use direct memory retrieval to solve 

arithmetic questions (e.g. Bull & Johnston, 1997). Crucially, these children perform 

poorly on measures of phonological loop ability such as the digit span task (Bull & 

Johnston, 1997; Hitch & McAuley, 1991; Passolunghi & Siegel, 2001; Siegel & 



Linder, 1984). As such, poor verbal working memory has been implicated as one of 

the many cognitive deficits underlying MD. 

Recently McKenzie, Bull and Gray (2003) demonstrated, using a dual task 

design, that younger children use visuo-spatial strategies in mental arithmetic, while 

older children use a mixture of phonological and visuo-spatial strategies. They 

suggest the phonological loop might be important in older children's mathematics 

where subvocal rehearsal occurs spontaneously. At this age, its function may mirror 

the role it plays in supporting adults' mathematics. 

To summarise thus far, the phonological loop has been associated with 

mathematical abilities in children and adults. It is thought to play a key role in the 

acquisition and retrieval of number facts, and is important for retaining interim results 

and problem information during calculation. Although this evidence seems 

compelling, three lines of evidence suggest that the phonological loop may not be 

crucial for mathematics. 

The first relates to the idea that the phonological loop is only associated with 

mathematics when other variables, such as processing speed and reading ability, are 

not included in the analysis. Hulme and Roodenrys (1995) point out that there is little 

evidence to suggest a direct causal link between short-term memory problems and 

cognitive impairments. They warn that any findings should be interpreted with 

caution as they are rarely considered in conjunction with other cognitive deficits. 

Indeed, one study, which included a comprehensive battery of cognitive assessments, 

reported that once reading ability had been controlled for, processing speed was the 

best predictor of mathematics ability, while phonological working memory 

contributed no further unique variance (Bull & Johnston, 1997). Previous studies have 

not typically included measures of processing speed and rarely account for a child's 



reading ability. As such, Bull and Johnston (1997) propose that other studies may 

have detected an association between general academic abilities (such as reading 

ability) and phonological short-term memory that is not specific to mathematics. 

A second line of argument against the involvement of the phonological loop in 

mathematics is that digit-based measures of phonological functioning, namely digit 

span, share a stronger association with mathematics than non-digit based measures 

(e.g. Dark & Benbow, 1990; Dark & Benbow, 1991; Passolunghi & Siegel, 2001; 

Siegel & Ryan, 1989). One explanation purported for this is that participants who are 

mathematically able may have stronger representations for digits, meaning they are 

identified more quickly, leading to an enhanced memory span (Dark & Benbow, 

1990; 1991). As such, performance on digit-based measures of phonological short-

term memory and mathematics may be related because the assessments of both 

involve either number processing or direct access to numerical information. 

The final line of argument against the involvement of the phonological loop in 

mathematics concerns the central executive. Evidence suggests that tasks designed to 

tap the two components, which are both typically verbal in nature, are somewhat co-

dependent. For example, it has been suggested that reading span is affected by the 

storage capacity of working memory as measured by digit span (Dixon et al., 1988) 

and studies that report non-significant associations between the phonological loop and 

cognitive abilities, but significant associations between the central executive and 

cognitive abilities, typically report strong associations between the tasks used to 

measure central executive and phonological abilities (e.g. Gathercole & Pickering, 

2000b). Two explanations for this co-dependence have been offered. Firstly, the 

central executive may play a role in relaying and retrieving information to and from 

the phonological loop, thus constraining performance on phonological loop measures. 



Secondly, due to the verbal nature of many central executive tasks they may recruit 

phonological loop resources for storage, meaning phonological loop capacity 

constrains performance on central executive tasks. Given the covariance of measures 

designed to assess the two components, it is suggested that the phonological loop may 

not predict unique variance in mathematics. Indeed, Leather and Henry (1994) report 

a study in which simple span tasks (phonological loop tasks) only predicted variance 

in reading accuracy, comprehension and arithmetic when they were entered first into 

the regression analyses, while complex span tasks (central executive tasks) shared 

unique variance with all three cognitive abilities. 

Overall, this evidence suggests that the shared variance between phonological 

loop abilities and mathematical competence may be accounted for by other variables 

such as reading ability, processing speed, fluency with numbers and numerical 

information or general verbal executive skills. 

1.4.2.2 The Visuo-Spatial Sketchpad and Mathematics 

Although much of the evidence implicating working memory in complex 

cognitive activities comes from studies in the verbal domain, where the tasks used 

depend heavily on verbal-phonological representations, it has been suggested that the 

visuo-spatial sketchpad may play a key role in planning movements (Baddeley & 

Lieberman, 1980; Logie & Marchetti, 1991) and learning spatial routes and faces 

(Hanley, Young & Pearson, 1991). Furthermore, the visuo-spatial sketchpad has been 

associated with general measures of scholastic attainment (Jarvis & Gathercole, 2003) 

and reading (Brooks, 1967) and visuo-spatial working memory deficits have been 

observed in children with learning disabilities (Cornoldi, Rigoni, Tressoldi & Vio, 

1999). 
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Individual differences in visual and spatial abilities have been related to 
individual differences in arithmetic reasoning (Geary, Saults, Liu & Hoard, 2000) and 
choice of advanced solution strategy (Luria, 1966; Geary & Burlingham-Dubree, 
1989) in adults. Furthermore, visuo-spatial working memory abilities have been 
associated with mathematics performance and evidence suggests that visuo-spatial 
skills support mathematical processing in children and adults. 

Research has suggested that we develop visuo-spatial codes for numbers, and 

represent them along a "mental number line" to assist in mathematical processing 

(Moyer & Landauer, 1967; Dehaene, 1992; Hayes, 1973). The notion of a "mental 

number line" suggests that we have a mental representation of numbers. In an early 

observation Moyer and Landauer (1967) reported that the time to judge differences 

between numerals (which was larger) decreased as the numerical distance between 

them increased. They suggested that this was analogous to comparisons of physical 

stimuli. Similarly, Dehaene et al. (1990) reported that numerical judgements were 

faster for numbers that were numerically closer, with no effect of decade boundaries. 

That is, when deciding which was larger of a pair of 2-digit numerals from the same 

and different decades (e.g. 51 and 56 from the same decade and 51 and 67 from 

different decades), participants' judgement time reflected the distance between the 

two numerals, rather than the time to compare the decades (e.g. the time to compare 5 

and 6). This led them to propose that we have a digital code for numbers, which is 

converted into an internal magnitude code known as the "mental number line". 

Dehaene and colleagues provided further evidence to substantiate the existence of the 

"mental number line" in experiments that demonstrated the SNARC effect (spatial-

numerical association of response codes). The results of these studies demonstrated 

that the "number line" extends from left to right; larger numbers were responded to 



faster with the right hand and smaller numbers were responded to faster with the left 

(Dehaene, Bossini & Giraux, 1993). 

It has been suggested that we use the "mental number line" for quantity 

manipulation and approximation (Dehaene & Cohen, 1995). This type of arithmetic, 

in which an analogue magnitude representation is used for subitizing and estimation, 

invokes the use of nonverbal visuo-spatial networks in the bilateral parietal lobes 

(Dehaene et al., 1999). Although this research has not been directly associated with 

the visuo-spatial sketchpad it does suggest that visuo-spatial abilities are important for 

mathematics. In particular, it reflects the idea that bilateral areas of the brain are 

invoked for one of the three modalities of mathematics described by Dehaene's triple-

code model of mathematics (see section 1.3.3). Indeed, considerable 

neuropsychological evidence implicates visuo-spatial areas of the brain in the 

representation, manipulation and processing of numbers (Dehaene et al., 1998; 

Dehaene et al., 1999; Pesenti, Zago, Crivello, Mellet, Samson, Duroux, Seron, 

Mazoyer & Tzourio-Mazoyer, 2001; Simon, 1997; Simon, 1998; Simon, 1999; Zago, 

Pesenti, Mellet, Crivello, Mazoyer & Tzourio-Mazoyer, 2001). 

Further evidence for the involvement of the visuo-spatial sketchpad in 

mathematics comes from studies of children and adults with mathematical difficulties. 

Developmental dyscalculia, or mathematical difficulty (MD), is defined as a 

discrepancy between specific mathematical abilities and general intelligence 

(Diagnostic and Statistical Manual of Mental Disorders, 4 t h Edition). Contrasting this, 

typically developing children who are at the lower end of a normal distribution may 

have comorbid disorders, such as reading difficulties, which represent part of a more 

general learning difficulty. Therefore, it could be argued that there are potential 

differences in the cognitive factors underlying poor mathematics ability in these two 
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groups. Geary (1993) defined a subtype of mathematical difficulty as characterised by 
visuo-spatial deficits. He reported that people with this type of mathematical difficulty 
often have problems with the spatial alignment of numerical information (Rourke & 
Finlayson, 1978), which affects their functional skills (such as the columnar alignment 
of numbers) and conceptual understanding of number representations (such as place 
value). Across the acquired and developmental dyscalculia literature subsets of adults 
and children are also described to have visuo-spatial deficits (Rourke, 1993; Rourke & 
Conway, 1997; Rourke & Finlayson, 1978; Strang & Rourke, 1985). Indeed, studies 
of children with specific mathematical difficulties have shown that they typically 
perform poorly on visuo-spatial sketchpad span measures (McLean & Hitch, 1999; 
White, Moffi t & Silva, 1992). 

Evidence, primarily from adult populations, suggests that the visuo-spatial 

sketchpad provides a "mental blackboard" (Heathcote, 1994) upon which visually 

presented mathematical problems are encoded, retained and manipulated. It is also 

thought to play a key role in the acquisition of mathematical skills in young children 

(Houde & Tzourio-Mazoyer, 2003). 

The visuo-spatial sketchpad has been implicated in adults' calculation. It is 

involved in encoding, retaining and transforming problem information (Heathcote, 

1994; Pesenti et al., 2001), retaining interim results for approximation (Dehaene et al., 

1999; Logie et al., 1994), counting procedures (Trbovich & LeFevre, 2003) and exact 

computation (Zago & Tzourio-Mazoyer, 2002). 

Evidence that the visuo-spatial sketchpad is involved in encoding problem 

information comes from studies that have compared adults' solution times and 

accuracy under alternate presentation formats. It has been reported that participants 

are slower and more erroneous when problem information is presented as number 



words compared to digits (Campbell & Fugelsang, 2001; Noel, Fias & Brysbaert, 

1997). The phonological code in the number word condition appears to cause an 

interference effect. This implies that solution times are faster and more accurate when 

an alternate, possibly visuo-spatial, code is used to encode problem information 

It has been reported that adults' response times and accuracy are faster for 

problems that are presented vertically compared to horizontally (Heathcote, 1994; 

Trbovich & LeFevre, 2002), which is consistent with the notion that digits are 

represented in columns on the visuo-spatial sketchpad during calculation (Hayes, 

1973; Heathcote, 1994). Concurrent phonological memory load disrupts performance 

for horizontally (Heathcote, 1994; Trbovich & LeFevre, 2003), but not vertically 

(Trbovich & LeFevre. 2003), presented problems, suggesting that the use of an 

alternate code (not phonological) promotes fast, accurate arithmetic solutions. It has 

been suggested that this code may be visuo-spatial given that performance on a 

concurrent visuo-spatial memory task was poorer when the mathematical problems to 

be solved were presented vertically compared to horizontally (Trbovich & LeFevre, 

2003). 

In addition to encoding and maintaining problem information, the visuo-

spatial sketchpad stores interim results during calculation. Dual task studies with 

adults have shown that although concurrent passive memory tasks (such as irrelevant 

pictures or visual noise) do not disrupt arithmetic performance (Logie et al., 1994; 

Quinn & McConnell, 1999), concurrent spatial or dynamic tasks (such as hand 

movement) disrupt performance on visually presented arithmetic problems where 

interim results (running totals) are to be maintained (Heathcote, 1994; Logie et al., 

1994). 



Whilst neuro-imaging studies report that visuo-spatial areas are recruited for 

magnitude representation in approximation (Dehaene et al., 1999), dual task studies 

suggest that the visuo-spatial sketchpad might be involved in counting in complex 

arithmetic where carry operations are required. Concurrent visuo-spatial memory 

tasks are reported to have facilitatory effect upon carry problems (Trbovich & 

LeFevre, 2003), but only for participant's with poor mathematical skills. It has been 

suggested that the concurrent visuo-spatial task may have prevented counting, thus 

forcing participants to retrieve the answer, which was likely to be incorrect for 

participants with poor mathematical knowledge. Supporting the involvement of the 

visuo-spatial sketchpad in exact computation, Zago and Tzourio-Mazoyer (2002), 

conducted a PET study to investigate the areas of the brain activated during arithmetic 

fact retrieval and computation. Arithmetic fact retrieval activated parietal areas 

associated with visuo-spatial working memory and a naming network located in the 

left anterior insular and right cerebellar cortex, while computation activated the 

bilateral parietofrontal network which is thought to hold numbers in visuo-spatial 

working memory. This suggests that a concurrent visuo-spatial task may disrupt 

counting (computation) as it recruits the same resources, but does not disrupt retrieval 

as this process recruits alternate areas of the brain. 

The visuo-spatial sketchpad has been associated with children's mathematics 

performance on standardized tests of achievement at 7-years (Gathercole & Pickering, 

2000a), 10-years (Maybery & Do, 2003), 11-years (Jarvis & Gathercole, 2003), 14-

years (Jarvis & Gathercole, 2003) and 15-/16-years (Reuhkala, 2001). While the 

phonological loop supports the construction of a network of number facts, the visuo-

spatial sketchpad may be important for the development of early mathematical skills, 

as discussed in the subsequent paragraphs. 



As discussed in section 1.3.1, Wynn (1992; 2000) suggests that humans 

possess a preverbal innate capacity to perform simple arithmetic operations, which 

provides the foundation for later mathematical abilities. This idea is captured by 

Dehaene's (1992) notion of an innate, preverbal "number sense" (see section 1.3.1). It 

has been suggested that the foundations of numerical processing are located in visuo-

spatial areas of the brain (Simon, 1999) and that the emergence of visual number 

forms during infancy occurs independent of formal number or calculation teaching 

(Seron et al., 1992). These preverbal foundations, anatomically located in the parietal 

cortex, a visuo-spatial area of the brain (Dehaene et al, 1999), may be specifically 

related to visuo-spatial working memory (Feeney, Adams, Webber & Ewbank, 2004). 

Houde (1997) reported that 2-/3-year-olds mathematical ability for small 

numbers was comparable to that of preverbal infants (Wynn, 1992) and monkeys 

(Hauser et al., 1996) (see section 1.3.1.) and subsequently offered a developmental 

account of the involvement of visuo-spatial abilities in early mathematics. He 

suggested that this demonstrates a shift from the early visuo-spatial arithmetic 

reported by Wynn (1992) to later symbolic-linguistic arithmetic (Houde, 1997). 

Supporting this, McKenzie et al. (2003) suggested that younger children use visuo-

spatial strategies in mental arithmetic, while older children use a mixture of 

phonological and visuo-spatial strategies. Although the precise role of the visuo-

spatial sketchpad in children's mathematical development is yet to be established, it 

appears to support early preverbal mathematics. 

To summarise so far, evidence suggests that visuo-spatial working memory is 

involved in encoding and retaining problem information and interim results during 

calculation in adults. Furthermore, very young infants and children perform visuo-

spatial arithmetic (Houde, 1997; Wynn, 1992) and visuo-spatial representations 
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underpin our number system (Dehaene, 1992) implicating a key role for visuo-spatial 
working memory in the development of early numeracy skills. 

Despite this evidence it has been suggested that the associations between 

visuo-spatial working memory and mathematics may reflect the role of the central 

executive in mathematics. Current literature suggests that the visuo-spatial sketchpad 

may not be separable from the central executive (e.g. Miyake et al., 2001; Shah & 

Miyake, 1996. See section 1.1.2.2) and there are concerns that tasks designed to tap 

the visuo-spatial sketchpad place heavy demands on the central executive (Phillips & 

Christie, 1977a; Wilson et al., 1987). However, it could be argued that i f the tasks 

used to assess visuo-spatial ability recruit executive resources they may actually be 

compromising the observation of contributions of the visuo-spatial sketchpad to 

mathematics. As Hamilton et al. (2003) purport, the development of new, or 

modification of existing, measures designed to tap a specific visuo-spatial working 

memory that are free of executive demands, may define a more pertinent role for 

visuo-spatial sketchpad in mathematics. A second line of defence for the involvement 

of visuo-spatial working memory in mathematics relates to the notion of a separable 

executive system. Studies have shown that verbal and spatial complex span tasks tap 

distinct resources (e.g. Jurden, 1995; Shah & Miyake, 1996), and as such Shah and 

Miyake (1996) suggested, in reference to the Baddeley's (1986) model of working 

memory, that the processing and storage component (the central executive) may be 

separable. I f this is so, the associations observed between the visuo-spatial sketchpad 

and mathematics in previous studies may in fact reflect a role for visuo-spatial/ non

verbal executive skills in mathematics. Indeed recent studies that have employed 

measures of non-verbal / visuo-spatial executive ability have reported significant 

associations with mathematical competence (Jarvis & Gathercole, 2003; Maybery & 
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Do, 2003) in addition to significant associations between traditional visuo-spatial 
sketchpad measures and mathematics (e.g. Jarvis & Gathercole, 2003; Maybery & Do, 
2003). 

To conclude, evidence suggests a role for the visuo-spatial sketchpad in 

children's early mathematics and in adults and children's complex mathematical 

processing. However, these findings need to be interpreted with caution given the 

close associations between the central executive and the visuo-spatial sketchpad. 

1.4.2.3 The Central Executive and Mathematics 

A body of empirical work implicates the central executive in a range of 

cognitive abilities predominantly related to language and text comprehension 

(Daneman & Carpenter, 1983; Daneman & Green, 1986; Hitch et al., 2001; Yuill et 

al., 1989). Measures of executive function (such as the Wisconsin Card Sort Task) 

and central executive ability (such as operation and listening span) have also been 

associated with children's and adults' mathematical competence (Ashcraft & Kirk, 

2001; Bull et al., 1999; Bull & Scerif, 2001; Gathercole & Pickering, 2000a; 

Gathercole & Pickering, 2000b; Geary, Hoard & Hamson, 1999; Hitch & McAuley, 

1991; Hitch, et al., 2001; Lehto, 1995; Passolunghi & Siegel, 2001; Towse & 

Houston-Price, 2001; Turner & Engle, 1989; Wilson & Swanson, 2001). More 

recently, in line with alternate theoretical models of working memory that suggest 

verbal and spatial modalities may be separable within the central executive (e.g. Shah 

& Miyake, 1996), studies have incorporated non-verbal executive measures and 

reported significant associations with children's mathematics (Jarvis & Gathercole, 

2003; Maybery & Do, 2003). 
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Studies that have explored the involvement of the slave systems in 
mathematics often implicate a role for the central executive. As discussed previously, 
these studies typically report covariance between visuo-spatial sketchpad or 
phonological loop measures and central executive measures (e.g. Dixon et al., 1988; 
Gathercole & Pickering, 2000b; Phillips & Christie, 1977a; Wilson et al., 1987). It has 
been suggested that the phonological loop and visuo-spatial sketchpad may not predict 
unique variance in mathematics, but instead reflect the contributions of the central 
executive. 

The central executive component of the working memory model performs a 

number of functions, including: dual-task performance; switching sets and strategies; 

inhibition; activation and retrieval from long-term memory and updating information 

in working memory (Baddeley, 1996; Miyake et al., 2000). Many of these functions, 

especially control, co-ordination, switching and inhibition, are important for 

mathematics. 

The central executive has been implicated in the control of attention during 

calculation (Kaye, de Winstanley, Chen & Bonnefil, 1989; Ashcraft & Kirk, 2001). 

Ashcraft and Kirk (2001) reported that participants with high levels of maths anxiety 

had significantly lower complex working memory spans than those with normal levels 

of anxiety. Furthermore, a smaller working memory capacity was related to slower 

and more erroneous answers to mental addition. They proposed that the high levels of 

anxiety specifically disrupted the central executive component of working memory, 

consuming attentional resources required for mathematics, which consequently 

disrupted mental addition. As such, their findings implicate a role for the central 

executive in controlling attention during mental arithmetic. 



The central executive is also thought to control the slave systems during 

mathematics. The recruitment of visuo-spatial or phonological resources for encoding, 

retaining and manipulating problem information depends upon the presentation format 

of the problem. In short, it has been proposed the phonological loop is recruited in 

adults and children when the problems are presented briefly or auditorily, and 

therefore need to be maintained (Adams & Hitch, 1997; Ftirst & Hitch, 2000; 

Heathcote, 1994; Logie et al., 1994), whereas the visuo-spatial sketchpad is recruited 

in adults when problems are presented visually (Logie et al., 1994). Logie et al. 

(1994) reported that a concurrent central executive task disrupted arithmetic 

performance regardless of modality, such that mental addition was disrupted when the 

problems were presented both auditorily and visually. Therefore, it has been 

suggested that the involvement of the central executive across modalities implicates a 

role for it in co-ordinating the recruitment of the slave systems. 

Dual-task studies implicate a role for the central executive in adults' 

calculation. Concurrent executive tasks (such as random letter or number generation) 

have been reported to disrupt single-digit addition (Ashcraft, Donley, Halas & Vakali, 

1992; DeRammelaere, Stuyven & Vandierendonck, 2001; Hecht, 2002; Lemaire et al., 

1996; Seitz & Schumann-Hengsteler, 2000; 2002) and single-digit multiplication 

(DeRammelaere et al. 2001;Hecht, 2002; Lemaire et al., 1996; Seitz & Schumann-

Hengsteler, 2000; 2002). The solution to single digit sums relies on direct fact 

retrieval in adults (Seitz & Schumann-Hengsteler, 2000). Consequently the disruptive 

effect of a concurrent central executive load suggests that the central executive 

accesses and retrieves solutions / numerical facts from long-term memory. Similar 

disruptive effects have been reported for multi-digit addition and multiplication 

problems (DeRammelarere et al., 2001; Lemaire et al., 1996; Seitz & Schumann-



Hengsteler, 2000; 2002). Hecht (2002) reported that a concurrent executive task had a 

greater disruptive effect on problems that required a procedural strategy, such as 

counting and decomposition, compared to those that could be solved via direct 

retrieval. Similarly, there is a greater demand for central executive resources in carry 

problems compared to no-carry problems, as demonstrated by the increased error rates 

on such problems under a concurrent executive memory load (Fiirst & Hitch, 2000; 

Seitz & Schumann-Hengsteler, 2000;2002). It has been suggested that complex 

mathematical problems that require carry operations or procedural strategies recruit 

central executive resources to co-ordinate the various stages of the solution process 

(DeStefano & LeFevre, 2004) and maintain interim results (Fiirst & Hitch, 2000; 

Logie et al., 1994). 

Performance on central executive measures has been related to general 

scholastic attainment in English (Gathercole & Pickering, 2000a), Maths and Science 

(Gathercole, Pickering, Knight & Stegman, 2004; Gathercole, Brown & Pickering, 

2003; Jarvis & Gathercole, 2003) and central executive deficits have been observed in 

children with general learning disabilities (Henry, 2001; Siegel & Ryan, 1989), 

reading disabilities (de Jong, 1998; Siegel, 1994) and specific language impairments 

(Archibald & Gathercole, submitted; Ellis Weismer, Evans & Hesketh, 1999; 

Montgomery, 2000). As such, it follows that associations have been found between 

the central executive and mathematical abilities in children. 

The central executive is important for mathematical development as its 

inhibitory function may be important for the acquisition of new solution strategies and 

for switching between learned solution strategies; two key skills that are important for 

mathematical proficiency (Lemaire & Siegler, 1995; Rourke, 1993). In a series of 

studies Bull and colleagues compared the executive functioning of children with 
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normal or high mathematical abilities to children with low mathematical abilities. 
Children of low mathematical abilities performed significantly worse on the 
Wisconsin Card Sort Task (WCST) and the Stroop task (Bull et al., 1999; Bull & 
Scerif, 2001). This suggests that deficits in executive functioning associated with the 
central executive (such as problems inhibiting learned strategies and switching to new 
ones) relate directly to poor mathematical abilities. Similarly, it has been proposed 
that the central executive may be important for evaluating, selecting and 
implementing the appropriate solution strategy (Bull & Scerif, 2001; Logie et al., 
1994). Studies of children with mathematical learning difficulties support this 
suggestion. These children typically show impairments on measures of central 
executive ability and / or executive function (Bull et al., 1999; Bull & Scerif, 2001; 
Gathercole & Pickering, 2000a). However, many of these children have a general 
learning disability, whereby mathematical difficulties are accompanied by a reading 
deficit. As reported by Bull et al. (1999), controlling for a reading deficit can 
eliminate associations between the central executive and mathematics. Despite this, 
children with specific arithmetic disabilities, where reading levels are normal, do 
exhibit central executive deficits (e.g. McLean & Hitch, 1999; Wilson and Swanson, 
2001). The types of executive deficits they typically exhibit include problems with 
inhibitory processes (Passolunghi & Siegel, 2001) and problems on novel, complex 
tasks that involve shifting psychological sets and planning actions (Rourke, 1993). 
These deficits can lead to problems in selecting the correct solution strategy and 
retrieving answers from long-term memory. 

To summarise, the central executive is associated with mathematics in both 

normal and mathematically disabled children and adults. It is thought to be involved 

in controlling processes, such as attention and strategies, co-ordinating both 



procedures and the slave systems and inhibiting the selection of inappropriate solution 

strategies. 

As with the slave systems, it has been suggested that the associations between 

the central executive and mathematics may reflect the contribution of an alternate 

factor. As discussed previously (section 1.1.2.3) the central executive is closely 

related to intelligence (e.g. Kyllonen & Christal, 1990; Jurden, 1995; Miyake et al, 

2001). Therefore, the associations between the central executive and mathematics 

may reflect the contributions of general intelligence to mathematical competence. 

However, studies that have controlled for IQ report that the associations between 

executive function and mathematics remain significant (e.g. Bull et al., 1999). A 

second line of argument against the involvement of the central executive mirrors one 

against the involvement of the phonological loop. That is, that there is a stronger 

association between digit-based measures of central executive ability, namely 

counting or operation span, than there is between non-digit based measures and 

mathematics because the assessments of both involve either number processing or 

direct access to numerical information. For example, Bull and Scerif (2001) reported 

that the numerical stroop task was related to mathematical ability, while the word 

stroop task was not. Furthermore, people with specific arithmetic learning difficulties 

are impaired on counting span tasks but not on sentence span tasks (Siegel & Ryan, 

1989) and children with arithmetical learning difficulties are impaired when retaining 

information i f the concurrent working memory task is numerical, but not i f it is word-

based (Hitch & McAuley, 1991). As such, the associations between the central 

executive and mathematics may reflect a proficiency in processing numerical 

information. Alternatively, as suggested in section 1.4.2.1, participants who are 

mathematically able may have stronger representations for digits, meaning they are 
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identified more quickly, leading to an enhanced memory span (Dark & Benbow, 
1990; 1991). 

In conclusion, considerable evidence implicates a role for the central executive 

in mathematics, but this literature should be interpreted with caution as the 

associations may reflect general intelligence or a general fluency with numerical 

information. 

Section Summary 

1. The phonological loop has been associated with children's and adults' 

mathematics. 

2. It supports the solution to mathematical problems as it retains problem 

information and interim results during calculation. Furthermore, it maintains 

accuracy as it keeps track during counting. 

3. The phonological loop, which is important for the retrieval of number facts 

from long-term memory, supports children's mathematical development. It is 

important for the formation of a complete network of arithmetic facts in long-

term memory. 

4. Recent evidence suggests that the phonological loop might be important in 

supporting children's mathematics following the onset of subvocal rehearsal. 

5. Evidence suggesting a role for the phonological loop in mathematics needs to 

be interpreted with caution as the shared variance between scores on 

phonological loop measures and mathematics performance may be accounted 

for by other variables (e.g. reading ability or processing speed). 

6. We use visuo-spatial codes for numbers and neuropsychological evidence 

suggests that visuo-spatial processing is involved in mathematics. 



7. The visuo-spatial sketchpad has been associated with mathematics 

performance in children and adults and people with MD often have visuo-

spatial deficits. 

8. The visuo-spatial sketchpad has been implicated in encoding, retaining and 

manipulating problem information and interim results during calculation. It 

also supports counting and approximation. 

9. The visuo-spatial sketchpad is important for mathematical development as it 

supports early, preverbal mathematics. It has been shown to be more important 

for younger children's than older children's mathematics. 

10. Current literature suggests that the visuo-spatial sketchpad is closely related to 

the central executive. As such, associations between visuo-spatial working 

memory scores and mathematics performance need to be interpreted with 

caution. 

11. The central executive has been related to a variety of cognitive abilities, 

including mathematics. 

12. It is thought that the central executive performs a number of functions in 

mathematics, including; controlling attention, co-ordination of the slave 

systems, co-ordination of the stages of the solution process during calculation, 

maintaining interim results and supporting direct retrieval from long-term 

memory. 

13. The central executive is important for mathematical development as it 

supports the acquisition of new solution strategies and helps switch between 

different solution strategies. 

14. Associations between the central executive and mathematics may reflect the 

contribution of other factors such as intelligence. 
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Section 1.5 

Aims 

Mathematical skills are essential for higher education and employment 

(Department for Education and Employment (DFEE), 1998), yet up to 6.5% of the 

school-age population (Gross-Tsur, Manor & Shalev, 1996) have developmental 

dyscalculia, or mathematical difficulties. A government-backed survey in the UK 

reported that 25% of adults had poor numeracy skills that made it difficult to complete 

everyday tasks successfully (Bynner & Parsons, 1997). Over recent years researchers 

have become increasingly interested in delineating the etiological factors in 

mathematical difficulties and mathematical attainment in children and adults. 

Considerable evidence suggests that working memory may support children's 

mathematics (e.g. Gathercole & Pickering, 2000a; McKenzie et al., 2003). From this 

basis, the overall aim of this thesis was to systematically assess the contributions of 

the different components of working memory to children's National Curriculum 

mathematical attainment. 

Different roles have been ascribed to the different components of working 

memory in literacy and language development. Therefore, one aim of this thesis was 

to assess the contribution of the different components of working memory to 

children's mathematics. For pragmatic reasons, the traditional tripartite model of 

working memory was adopted given that there were no current standardized measures 

available to assess the episodic buffer at the start of this project (see section 1.1.2.4). 

Hecht (2002) reported that different arithmetic solution strategies recruited 

different working memory resources, hence, it is suggested that different 

mathematical skills may place different demands on working memory. Children's 



working memory abilities have been associated with mental arithmetic (e.g. Adams & 

Hitch, 1998) or a general mathematical ability, as measured by a standardized 

assessment (e.g. Gathercole & Pickering, 2000a; 2000b). Relatively few studies have 

systematically examined the contributions of working memory to a range of 

mathematical skills. This is surprising given the diversity of children's mathematical 

abilities and range of solution strategies available to them (e.g. Siegler, 1999. See 

section 1.3.2). Therefore, a second aim of this thesis was to assess the contributions of 

the different components of working memory to a range of mathematical skills. 

Previous studies that report an association between working memory and 

children's mathematics typically incorporate digit- or number-based measures of 

working memory, such as digit or operation span. It has been suggested that number-

based working memory span measures are more strongly associated with mathematics 

than non-numerical span measures (e.g. Passolunghi & Siegel, 2001. See sections 

1.4.2.1 and 1.4.2.3). Therefore, one possibility is that working memory and 

mathematics are linked because the assessments of both involve either number 

processing or direct access to numerical information. One aim of this thesis was to 

explore the associations between working memory and children's mathematics using 

measures of working memory that did not contain numerical stimuli to explore the 

association between mathematics and working memory ability per se. 

It has been suggested that the association between working memory and 

mathematics may reflect the contribution of working memory to a higher order 

construct, such as general intelligence (e.g. Kyllonen & Christal, 1990. See section 

1.4.2.3). Therefore, a further consideration of this thesis was to explore the 

contribution of working memory to children's mathematics after controlling for a 

general ability (i.e. non-verbal intelligence (NVIQ). 
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Section Summary 

1. It has been suggested that working memory may be important for children's 

mathematics. 

2. The overarching aim of this thesis was to assess the contribution of the 

different components of working memory to a range of children's 

mathematical skills using non-digit based working memory assessments, 

taking into account a measure of children's general abilities. 



Chapter Two 

Developing Mathematics Assessments 

Aim 

Mathematics is comprised of different arithmetical components, such as 

number knowledge and memory for arithmetic facts (e.g. Dowker, 1998), and children 

are taught different mathematical skills at school (e.g. National Curriculum, n.d.). It 

has been suggested that different arithmetical components might have diverse 

cognitive correlates, such as working memory (e.g. Dowker, 1998). The aim of the 

present study was to develop mathematics assessments for children to measure 

distinct mathematical skills, using the National Curriculum for England as a guide. 

These assessments were developed for use in subsequent studies, where the 

contribution of working memory to a range of mathematical skills is investigated. 

Introduction 

Increasing evidence suggests that mathematics is comprised of a number of 

arithmetic components and that these components follow different developmental 

trajectories that invoke the use of diverse solution strategies and cognitive resources. 

Distinctions have been made between procedural, factual and conceptual 

arithmetic abilities. In normal populations, distinctions have been made between pre

schoolers understanding of basic number facts and counting principles (conceptual 

competence) and their ability to count accurately (procedural competence) (Greeno, 

Riley & Gelman, 1984). Similar distinctions have been reported for primary and 

secondary school aged children, where some children have a better conceptual than 

procedural knowledge (Baroody, 1987; Dowker, 1995; Russell & Ginsburg, 1984), 

while others are able to carry out procedures without understanding the concepts 



(Bryant, 1985). Double dissociations reported in studies of children with arithmetical 

learning difficulties mirror this distinction. For example, Temple (1991) describes two 

children with developmental dyscalculia; one who has intact factual knowledge and 

conceptual understanding but poor procedural skills, and one who shows the reverse 

pattern. These profiles can be related to two of Geary's (1994) subtypes of 

developmental dyscalculia; a "memory" subtype who, with a low frequency of 

arithmetic fact retrieval, demonstrate poor factual knowledge and a "procedural" 

subtype who, relying on immature procedures, demonstrate poor procedural 

knowledge. 

Studies of normal populations (e.g. Hitch, 1978) and acquired dyscalculics 

suggest that procedural, factual and conceptual abilities are also separable in adults. 

Dissociations between factual and procedural knowledge have been reported in both 

directions for adults with acquired dyscalculia. While some adults have impaired 

procedural / calculation skills and intact factual knowledge (e.g. McCloskey et al., 

1985), others have intact procedural knowledge and impaired factual knowledge (e.g. 

Warrington, 1982). 

Further evidence for the componential nature of arithmetic comes from studies 

where individual differences in performance have been observed for different 

components of arithmetic. Significant individual differences in written and spoken 

counting, and in transcoding between digits and written and spoken number words 

have been reported for adults (Deloche, Seron, Larroque, Magnien, Metz-Lotz et al., 

1994). Furthermore, double dissociations have been demonstrated between oral and 

written presentation modes in patients with acquired dyscalculia (e.g. Campbell, 

1994) and children with arithmetical difficulties have been reported to have specific 



difficulties either in solving word-problems (e.g. Russell & Ginsburg, 1984) or in 

reading and writing Arabic numbers (e.g. von Aster, 2000). 

Adults and children show significant individual differences in their strategy 

choice for addition (Geary & Wiley, 19991; Siegler & Robinson, 1982), subtraction 

(Siegler, 1987; 1989) and multiplication (LeFevre et al., 1996; Lemaire & Siegler, 

1995; Siegler, 1988). The nature and goals of a problem and the difficulty and novelty 

of a problem can influence this strategy choice. For example, children are more likely 

to use a "back-up" strategy for a difficult or novel problem (Siegler & Jenkins, 1989). 

Children use different strategies that are specific to different mathematical domains; 

for addition and subtraction they will use count-all, count-on, count-back, retrieval 

and decomposition (e.g. Carpenter & Moser, 1984), for multiplication they will use 

direct counting, repeated addition and multiplicative calculation (e.g. Mulligan & 

Mitchelmore, 1997), for fractions they will use a distribution strategy, a mark-all 

strategy, preserved-pieces strategy (e.g. Lamon, 1996), a parts strategy, component 

strategy, reference point strategy and a transform strategy (e.g. Smith, 1995) and for 

algebraic problems they will use the substitution strategy (Sleeman, 1984), the reduce 

strategy or the isolation strategy (Mayer, 1982). This evidence suggests that different 

mathematical problems invoke the use of different solution strategies, further 

demonstrating the varied nature of mathematics. 

In summary, converging theoretical and empirical evidence suggests that 

mathematics is not unitary. Dowker (1998) proposed that mathematics was comprised 

of a number of arithmetical components, including; basic number knowledge (the 

ability to recognise numbers in different forms, such as Arabic digits and number 

words and place them in order), memory for arithmetical facts (category-based factual 

knowledge), conceptual understanding (understanding properties of, and relationships 



between, arithmetical operations and being able to use them to derive unknown facts, 

including exact answers and approximate answers) and procedural understanding 

(remembering learned procedures and carrying out a sequence of procedures, 

including keeping track and the correct spatial alignment of numbers for written 

calculation). Indeed, when investigating individual differences in arithmetic 

performance in children aged 5-10 years, Dowker (1998) found children with marked 

discrepancies between different components of arithmetic, similar to those reported 

for adults in a previous study (Dowker, 1992). 

Different components of mathematics may have different cognitive correlates. 

For example, Hecht (2002) reported that different solution strategies recruited 

different working memory resources. Furthermore, studies of arithmetical learning 

disabilities imply that different cognitive deficits underlie different types of 

arithmetical difficulties. Geary (1993) defined one subtype of mathematical difficulty 

as characterised by visuo-spatial deficits, while another was characterised by deficits 

in fact-retrieval, which is based on a verbal code (Dehaene & Cohen, 1995). It is 

therefore important to acknowledge the componential nature of mathematics in 

cognitive research. 

The assessments were developed from the National Curriculum for England. 

There were two reasons for this; firstly, children's National Curriculum test 

performance has been previously associated with working memory abilities (e.g. 

Gathercole & Pickering, 2000b) and secondly because mathematics is taught and 

assessed in a componential manner in England. The National Curriculum, which was 

introduced in 1988, stipulates what must be studied in England and Wales by state 

school children up to the age of 16 across core subjects such as English, Mathematics 

and Science. Key Stages define National Curriculum learning for specific age groups. 
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Key Stage 1 covers 5- to 7-year-olds, Key Stage 2 covers 8- to 11- year-olds, Key 
Stage 3 covers 12- to 14-year-olds and Key Stages 4 and 5 cover 15- tol6- year-olds. 
The programme of work outlined in the mathematics National Curriculum for Key 
Stages 1 to 3 defines four mathematical abilities; Number and Algebra, Shape, Space 
and Measures, Handling Data and Mental Arithmetic. Children are taught these 
programmes of work, before taking Standardized Attainment Tests (SATs) at 7-, 11-
and 14-years. Children's performance on these tests is compared to standardized 
attainment targets across the different mathematics programmes, which are measured 
in Levels. The current assessments were developed from the Key Stage 2 mathematics 
National Curriculum guidelines and past SATs examination papers. Assessments were 
developed for two age groups within Key Stage 2 (Year 3, aged 7-/8-years and Year 
5, aged 9-/10-years). The reason for this was to provide a measure of children's 
mathematical competencies across Key Stage 2 to explore the associations with 
working memory ability, rather than focussing on mathematics ability at the end of 
the Key Stage as previous research has done (e.g. Jarvis & Gathercole, 2003). 

Method 

Participants 

The participants were 72 children (38 boys and 34 girls), who attended two 

primary schools in England. 34 children (17 Year 3 and 17 Year 5) attended a school 

in the North-East of England, 38 (16 Year 3 and 22 Year 5) children attended a school 

in the South-East of England. There were 33 Year 3 children (15 boys and 18 girls), 

mean age 8 years and 3 months (SD = 3.5 months, range 7 years 7 months to 8 years 6 

months) and 39 Year 5 children (23 boys and 16 girls), mean age 10 years and 1 

month (SD = 3.6 months, range 9 years 7 months to 10 years 6 months). 



The percentage of children achieving Level 4 attainment and above in English, 

Mathematics and Science was higher than the national average in one of the schools 

(97%, 85% and 97% respectively) and lower than the national average in the second 

school (57%, 47% and 72% respectively). 

Design and Procedure 

All children participated in a one-hour testing session. The children were 

administered age appropriate mathematics assessments under standardized test 

conditions within a classroom setting. The assessments were comprised of three 10-

minute written sections followed by one 10-minute mental arithmetic test, which was 

presented orally with written responses. 

Materials 

The mathematics assessments were developed from the framework of the 

National Curriculum for England and the Qualifications and Curriculum Authority 

(QCA) assessments. The National Curriculum specifies what is to be taught in 

mathematics across different Key Stages, while the QCA develop this curriculum and 

its associated assessments. The QCA are responsible for producing Standardized 

Attainment Tests (SATs) that every child takes at the end of Key Stages 1, 2 and 3. 

Using past Key Stage 2 mathematics tests (administered by the QCA) and the 

programme of study outlined by the National Curriculum, age appropriate 

assessments were developed for 1-18-year-olds (Year 3) and 9-110-year-olds (Year 

5). The tests were designed to assess the four mathematical skills outlined by the 

National Curriculum and tested by the QCA; Number and Algebra, Shape, Space and 

Measures, Handling Data and Mental Arithmetic (National Curriculum, n.d.). Three 
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of the tests were presented visually as written assessments. The fourth, Mental 
Arithmetic, was presented verbally. Examples of the Year 3 and Year 5 mathematics 
tests and criteria for scoring items are provided in Appendices I and II respectively. 
Standardized instructions, which are the same for both tests, are provided in Appendix 

m. 

Number and Algebra 

The Number and Algebra assessments are a test of number knowledge and 

counting. They are presented as a written test in word and digit format. Primarily the 

questions require children to demonstrate understanding of the four number 

operations (add, subtract, multiply and divide), recognise number patterns and 

sequences, deal with fractions and decimals and use the related vocabulary to solve 

problems. This section contains 15 questions. An example question is shown is Figure 

2.1. 

Sarah goes to the shop. She has £2.00. She spends 
£1.20 on a book. How much money has she got left 
from the £2.00? 

Figure 2.1 

Example question taken from the Number and Algebra assessments 



Shape, Space and Measures 

The Shape, Space and Measures assessments are a test of geometrical abilities. 

Both are presented as written tests in word and digit format. Primarily the questions 

ask the children to demonstrate their understanding of standard units of measurement 

and properties of shape, position and movement. This section contains 15 questions. 

An example question is shown in Figure 2.2. 

Find the area of the rectangle. 

7cm 

3cm 

= cm2 

Figure 2.2 

Example question taken from the Shape, Space and Measures assessments 

Handling Data 

The Handling Data assessment is a test of data processing, representation and 

interpretation. Primarily the questions require children to interpret and draw tables 

and graphs and understand measures of spread (e.g. range and mode). This section 

contains 15 questions. An example question is shown in Figure 2.3. 
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Read the table below: 

Boat Hire 
Rowing Boat Motor Boat 
£2 for 1 hour £1.50 for 10 minutes 

Which boat is more expensive to hire? 

Figure 2.3 

Example question taken from the Handling Data assessments 

Mental Arithmetic 

The Mental Arithmetic assessment tests the children's ability to solve 

mathematical problems without using written working out as an aid. The questions are 

spoken aloud and a set time period is given (5, 10 or 15 seconds depending upon the 

level of difficulty of the questions) for a written response. There are 10 questions 

within this section. An example question is presented in Figure 2.4. 

What is 88 take away 42? 

Figure 2.4 

Example question taken from Mental Arithmetic assessments 

Results 

Descriptive Statistics 

Descriptive statistics for children's mathematics test performance are 

presented in Tables 2.1 and 2.2. 



No significant differences in performance were found between boys and girls 

in Year 3 on the mathematics measures: Number and Algebra /(31)=1.39,p>.05; 

Shape, Space and Measures t(3l)=-.8\,p>.05\ Handling Data f(21.86)=-1.60,/».05; 

Mental Arithmetic *(31)=1.43,p>.05; and Total Mathematics Score <31)=.21,/».05. 

The only significant difference in Year 3 children's scores was between Number and 

Algebra and Mental Arithmetic scores (F(3,99)=3.71,/><.05). 

Table 2.1 

Descriptive Statistics of Year 3 Children's Mathematics Performance. (n=33). 

Mathematics Measure Girls («= =15) Boys (« =18) Total 

M SD M SD M SD 

Number and Algebra 37.54 25.16 51.56 33.38 43.73 29.45 

Shape, Space and 54.38 20.64 48.00 25.47 51.57 22.76 

Measures 

Handling Data 57.19 14.79 45.78 24.41 52.16 20.13 

Mental Arithmetic 52.63 30.15 66.00 22.61 58.53 27.54 

Total Mathematics 50.23 18.52 51.63 21.02 50.86 19.37 

Score 

Note. Scores shown are proportions correct. 

There were no significant differences between boys' and girls' performance in 

Year 5 on the following mathematics measures: Shape, Space and Measures f(37)=-

.49,/J>.05; Handling Data /(37)=.59,/».05; and Total Mathematics Score r(37)=.1.70, 

/?>.05. Year 5 boys performed significantly better than Year 5 girls on the Number 

and Algebra (f(37)=2.07,/?<.05) and Mental Arithmetic (/(37)=2.26,;?<.03) measures. 



There were no significant differences in Year 5 children's scores across the different 

mathematics measures CF(3,114)=.438,/?>.05. 

Table 2.2 

Descriptive Statistics of Year 5 Children's Mathematics Performance. (n=39). 

Mathematics Measure Girls (n-=23) Boys (« =16) Total 

M SD M SD M SD 

Number and Algebra 43.75 21.50 57.39 19.36 51.79 21.10 

Shape, Space and 50.83 15.37 53.33 15.95 52.31 15.57 

Measures 

Handling Data 51.67 16.42 55.36 21.03 53.85 19.13 

Mental Arithmetic 40.63 22.64 56.96 21.83 50.26 23.34 

Total Mathematics 26.00 8.24 30.61 8.44 52.21 15.57 

Score 

Note. Scores shown are proportions correct. 

Overall, there were no significant differences in performance between Year 3 

and Year 5 children across the mathematics measures: Number and Algebra 

f(58.90)=-1.33,/?>.05; Shape, Space and Measures /(57.14)=-.16,p>.05; Handling 

Data f(71)=-.37,/?>.05; Mental Arithmetic *(71)=1.39,/».05; and Total Mathematics 

Score /(71)=-.33,p>.05. 

Reliability Analyses 

The internal reliability of the mathematics measures was assessed using an 

item discrimination method known as the Kuder-Richardson (.0-20) method (Kuder 
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and Richardson, 1937). This method, used on nominal data where the item response is 
"yes/no", measures the inter-item consistency of a scale by averaging all possible 
split-half correlations for a set of items. It is equivalent to the Cronbach's Alpha 
coefficient, which is more commonly used for parametric data. The formula for this 
calculation is presented in Appendix IV. 

Reliability coefficients for the mathematics measures for both age groups are 

presented in Table 2.3. 

Table 2.3. 

Reliability Coefficients of Mathematics Measures. 

Mathematics Measure Year 3 Year 5 

Number and Algebra .88 .76 

Shape, Space and .82 .69 

Measures 

Handling Data .80 .81 

Mental Arithmetic .82 .68 

All KR-20 coefficients exceed .64 (Kuder & Richardson, 1937), demonstrating 

that the mathematics assessments for both age groups have acceptable internal 

reliability. 

Validity 

The assessments were designed to provide a measure of mathematics 

performance across different skills in children. Content validity was assured as the 

assessments were developed from the programme of work outlined by the National 



Curriculum for England. Furthermore, all areas were assessed as recommended by the 

QCA, who provide standardized attainment tests for children in England. Verbatim 

reports, obtained from Head Teachers and teaching staff involved in the 

administration of the tests, assured face validity. 

Power Analyses 

The statistical power of a test is the probability that a statistically significant 

result wi l l be found. It is the probability of not rejecting the null hypothesis given that 

it is false (the probability of making a Type 2 error in an experiment) (Muncer, 

Craigie & Holmes, 2003). The power of an experiment can be affected by sample 

size, effect size and significance level. It can be derived using computer packages 

such as G Power (Faul & Erdfelder, 1992). The acceptance criterion for statistical 

power is .8 or above (Cohen, 1992). I f the criterion is not equalled or exceeded, an A 

Priori or a Compromise Power Analysis can be used to inform the researcher how 

many participants wi l l be needed for the study to be statistically powerful to test for a 

desired effect size. 

Power analyses were conducted on the mathematics assessments for each age 

group and for the sample as a whole. For all analyses, the difference between male 

and female scores was used to provide a common metric so that the effect size could 

be derived (d). The effect size was derived using Cohen's (1977) effect size index (see 

Appendix V). Post-Hoc power analyses were conducted using G Power (Faul & 

Erdfelder, 1992), into which the effect sizes and sample sizes were input. Tables 2.4, 

2.5 and 2.6 show the results of the power analyses for the mathematics assessments. 
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Table 2.4 

Post-Hoc Power Analyses for Year 3 Mathematics Assessments. 

Mathematics Measure " l « 2 Effect Size (d) Actual Power 

Number and Algebra 19 15 .12 .10 

Shape, Space and 19 15 .28 .19 

Measures 

Handling Data 19 15 .37 .28 

Mental Arithmetic 19 15 .51 .42 

Total Mathematics Score 19 15 .08 .08 

None of the mathematics Year 3 mathematics assessments are adequately 

powered according to Cohen's .8 criterion (Cohen, 1988). This is probably due to the 

small sample and effect sizes. 

Table 2.5 

Post-Hoc Power Analyses for Year 5 Mathematics Assessments. 

Mathematics Measure "2 Effect Size (d) Actual Power 

Number and Algebra 16 23 .55 .51 

Shape, Space and 16 23 .17 .12 

Measures 

Handling Data 16 23 .19 .14 

Mental Arithmetic 16 23 .70 .69 

Total Mathematics Score 16 23 .54 .49 
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None of the mathematics Year 5 mathematics assessments are adequately 
powered according to Cohen's .8 criterion (Cohen, 1988). Again, this is probably due 
to the small sample and effect sizes. 

Table 2.6 

Post-Hoc Power Analyses for Mathematics Assessments (both year groups combined). 

Mathematics Measure " i n2 Effect Size (d) Actual Power 

Number and Algebra 35 38 .58 .79 

Shape, Space and 35 38 .08 .10 

Measures 

Handling Data 35 38 .17 .18 

Mental Arithmetic 35 38 .53 .72 

Total Mathematics Score 35 38 .30 .35 

According to Cohen's criterion (.8), none of the mathematics assessments are 

adequately powered when the two age groups are combined. However, the Number 

and Algebra and Mental Arithmetic measures are approaching the acceptance level. 

The Post-Hoc analyses suggest that the statistical power of the mathematics 

assessments is poor. According to Cohen's (1977) popular effect size conventions, the 

effect sizes were small for most of the assessments (0.2 and below), reaching medium 

at best (0.5 below). In addition, the sample sizes were small. Therefore, the 

assessments appear statistically underpowered. This is not devastating in this instance, 

as the mathematics assessments have not yet been used in a study. At this stage power 

analyses can be useful as A Priori analyses can be conducted to inform the researcher 

as to how many participants would be needed to give the study statistical power to 
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detect a medium or large effect size. A Priori analyses do not take into account 
pragmatic constraints of research, such as access to children and testing times, and 
often suggest that extremely large numbers of participants are recruited. It is therefore 
recommended that Erdfelder's (1984) Compromise Power Analyses should be 
conducted. For this, the maximum sample size possible, the desired effect size and the 
error probabilities are input. G Power then calculates the statistical power of a test 
with these parameters. For example, i f a maximum of 70 children could be tested and 
a medium effect size was needed, the input would be n\ =35 and « 2 = 35, effect size 
.5. The error probability is typically the beta (detecting a false negative result) / alpha 
(detecting a false positive) because both types of error are considered equally serious. 
With this information, G Power calculates the power of the study and would therefore 
inform the researcher i f she/he has enough participants. 

Compromise Power Analyses were conducted for the mathematics 

assessments. In subsequent studies the mathematics assessments wil l be administered 

to a minimum of 70 children per age group (n\ = 35, « 2 = 35 for Year 3 and Year 5) 

and 140 children overall («i=70, / i2 = 70). The results are presented in Table 2.7. 

Table 2.7 

Compromise Power Analyses for Mathematics Assessments. 

Sample Minimum n\ Minimum « 2 Power 

Year 3 children 35 35 JE~ 

Year 5 children 35 35 .85 

Al l children 70 70 .93 
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Al l of the mathematics assessments power values exceed Cohen's (1988) .8 
criterion, meaning they will be adequately powerful to test for significance, with a 
medium effect size, in subsequent studies. 

Discussion 

Overall, the results show that reliable, valid and statistically powerful 

mathematics assessments have been developed. There were no significant differences 

in performance between the two age groups, which suggests that the assessments are 

age-appropriate and pitched at a suitable level for use with 7-/8-year-olds and 9-/10-

year-olds. Furthermore, there were no significant differences in performance between 

boys and girls in Year 3, but there were significant sex differences on two of the 

mathematics measures in Year 5. This tentatively suggests that the assessments may 

be sensitive to developmental change, as they detect gender differences that emerge 

throughout the school years (e.g. Geary, 1996). Geary's (1996) review suggests that 

there are no sex differences in mathematical abilities in infancy and during the 

preschool years (e.g. Starkey, Spelke & Gelman, 1990), but that they emerge (in 

favour of boys) during the school years (e.g. Lummis & Stevenson, 1990) and become 

pronounced by adolescence (Hyde, Fennema & Lamon, 1990; Benbow, 1988). 

Although the present data appear consistent with this notion, they must be interpreted 

with caution due to the small sample sizes. 

The reliability, validity and statistical power of the Year 3 and Year 5 

mathematics tests were assessed. This was important, as no such reliability, validity or 

power statistics have been recently published for the existing National Curriculum 

Key Stage tests (SATs) from which the assessments were developed. In 1999, a report 

was produced that validated the Key Stage 2 test development procedures and 
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demonstrated that the test data was a reliable measure of pupil attainment (Rose, 
1999). This report, produced by an Independent Scrutiny Panel that was appointed by 
the Department for Education and Employment and chaired by Jim Rose (the then 
HMI Director of Inspection at OFSTED), also recommended that the test 
development and assessment arrangements be subject to periodic scrutiny. Since this 
report, the QC A have ensured that the setting of standards relies on empirical 
evidence and statistical methods (so that standards remain consistent), but they have 
not published reliability and validity statistics. Robust reliability (O-20>.64) 
coefficients were produced by both assessments in this study. Furthermore, the power 
analyses revealed that both assessments would be statistically powerful to test for 
medium effect sizes i f they are administered to a minimum sample size of 70 children 
per age group. These results demonstrate that the mathematics assessments developed 
in this study can be used confidently in subsequent studies as powerful scientific 
instruments. Arguably, they can be used with more confidence than Key Stage 2 
SATs data, for which the same statistics are not available. 

Each mathematics measure (Number and Algebra, Shape, Space and 

Measures, Handling Data and Mental Arithmetic) within each assessment produced a 

good reliability coefficient (A7?-20>.64). This is important as existing mathematics 

assessments, such as SATs, typically provide a global score as a measure of a child's 

ability. Relatively few mathematics tests provide a breakdown of children's 

performance across a range of mathematics skills. Uniquely, the assessments 

developed in this study provide reliable measures of the mathematics skills taught at 

Key Stage 2 of the National Curriculum. 

The mathematics assessments developed in this study may be valuable tools 

for use with children in both cognitive research and in the classroom. They provide 



reliable measures of different mathematical abilities, which not only reflect the 

componential nature of mathematics (e.g. Dowker, 1998), but also provide a sensitive 

measure of ability. They wi l l be useful for research, where it is considered important 

to measure different mathematical skills as they may have different cognitive 

correlates (e.g. Dowker, 1998), and for education, where it could be argued that more 

fine-grained measures of mathematics achievement are needed. Currently, children in 

England are tested at the end of each Key Stage (SATs), and provided with a Level of 

attainment. This Level refers to a target, which describes what children at a particular 

age should be able to do and know. Level 4 is the target for children at the end of Key 

Stage 2. Under the existing system, most children are awarded this Level, meaning 

there is little differentiation between children's scores. Furthermore, the Level 

awarded is for "mathematics"; it is not broken down into Levels for the different 

programmes of work that are taught under the National Curriculum. It is therefore 

suggested that tests analogous to those developed in the present study may be more 

informative for educators. They could provide a more sensitive measure of attainment 

and be used to depict individual strengths and weaknesses (e.g. poor performance on 

the mental arithmetic component). 

In summary, two reliable, valid and statistically powerful mathematics 

assessments, which measure the four mathematics skills defined by the National 

Curriculum for England, have been developed for use with children. The assessments 

will be important for use in subsequent studies, where the contribution of working 

memory to different mathematical skills wil l be explored. It is suggested that the 

mathematics tests may be of value to the wider academic community, in other areas of 

cognitive developmental research, and to educators where they may prove more 

informative than existing assessments. 
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Chapter Summary 

1. Mathematics is not unitary. It is comprised of a number of arithmetical 

components, such as procedural, factual and conceptual number abilities. 

Different strategies are used for the solution of different mathematical 

problems. 

2. It is important to acknowledge the componential nature of mathematics in 

research. Different mathematical abilities may draw upon different cognitive 

resources. 

3. The aim of the present study was to develop tests for use with children that 

assessed different mathematical abilities. These assessments were based upon 

the programme of work outlined by the National Curriculum for England and 

previous SATs examination papers. 

4. Two tests were developed, one for children aged 7-/8-years and one for 

children aged 9-/10-years. The assessments were piloted on a group of 

children. Analyses revealed that both assessments were reliable measures that 

would have statistical power to test for significant results in subsequent studies 

i f the sample size exceeds 70 children. 

5. Importantly, the tests provide reliable measures of different mathematical 

abilities. They will be central to the research conducted in this thesis and may 

be valuable tools for further cognitive developmental research and for 

educators. 



Chapter Three 

Working Memory and Children's Mathematical Skills 

Aim 

As noted in Chapter 1, few studies have examined the contributions of 

working memory to a range of children's mathematical skills. The first aim of the 

present study was to explore the contribution of the three components of working 

memory to a range of children's mathematical skills, using the mathematics 

assessments developed in Chapter 2 and measures from the Working Memory Test 

Battery for Children (WMTB-C) (Pickering & Gathercole, 2001). A second aim was 

to explore the effect of controlling for individual differences in non-verbal IQ on the 

relationship between working memory abilities and mathematics performance. 

Introduction 

Children's working memory abilities have been associated with performance 

on National Curriculum assessments in English, Science and Mathematics in the UK. 

They have also been related specifically to children's mathematical abilities as 

measured by National Curriculum tests and other standardized tests. 

Gathercole and Pickering (2000b) reported associations between working 

memory abilities and performance on standardized measures of scholastic attainment 

when validating the WMTB-C (Pickering & Gathercole, 2001). They administered the 

test battery, which was designed to tap the capacity of the 3 components of Baddeley 

and Hitch's (1974) working memory model, to 6- and 7-year-olds and obtained 

measures of achievement on standardized attainment tests in vocabulary, literacy and 

mathematics. Phonological loop scores were significantly associated with 

performance on all three measures of scholastic attainment at 7-years-of age, but only 
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with performance on the vocabulary measure at 8-years-of-age. After controlling for 
age and individual differences in central executive ability, phonological loop scores 
were only uniquely associated with vocabulary scores at 7- and 8-years. Conversely, 
central executive scores, which were also significantly related to all three measures of 
attainment at 7-years, were significantly related to literacy and arithmetic scores at 8-
years. These associations persisted after age and individual differences in 
phonological loop ability were controlled for. The associations between visuo-spatial 
sketchpad scores and attainment were not explored, as the higher-level factor structure 
of the visuo-spatial sketchpad measures was unclear. Overall, Gathercole and 
Pickering's (2000b) results suggested that working memory was related to 
performance on standardized measures of attainment. In particular, central executive 
scores uniquely predicted arithmetic scores at 8-years. 

In a subsequent study, Gathercole and Pickering (2000a) reported an 

association between working memory abilities and National Curriculum attainment at 

7-years-of-age. Children were assigned to normal and low achievement groups based 

on their Key Stage 1 National Curriculum test scores in English and Mathematics. 

Their working memory abilities were assessed using an early version of the WMTB-C 

(Pickering & Gathercole, 2001), which consisted of thirteen tests designed to tap the 

three components of working memory (Baddeley & Hitch, 1974). Overall, children 

who were judged to be failing to achieve normal levels of curriculum attainment 

showed marked impairments on tests of central executive and visuo-spatial working 

memory skills. In particular, children with low achievement specifically in 

Mathematics or in both curriculum areas exhibited stronger working memory deficits 

than children with low achievement in English. Additionally, scores on visuo-spatial 

sketchpad and central executive measures were used to identify children with at least 
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one area of low achievement. These results suggest that working memory (in 
particular the visuo-spatial sketchpad and central executive components) supports 
curricular progress at 7-years, particularly in mathematics (Gathercole & Pickering, 
2000a). More recently, Gathercole, Pickering, Knight et al., (2004) reported that 7-/8-
year-olds performance on National Curriculum assessments in English and 
Mathematics was significantly associated with phonological loop and central 
executive working memory scores. Using a similar methodology to the previous study 
children were split into groups based on their National Curriculum achievements. 
Gathercole, Pickering, Knight et al. (2004) found that children with high abilities in 
English and Mathematics scored significantly better on working memory measures 
than children of average or low abilities. Furthermore, working memory scores 
effectively discriminated children of low abilities, who were failing to achieve 
expected levels of attainment, from the rest of the group. 

Working memory abilities have also been associated with achievements on 

National Curriculum tests at 11-years (Key Stage 2) and 14-years (Key Stage 3). 

Jarvis and Gathercole (2003) explored the relationships between verbal and non

verbal working memory abilities and National Curriculum attainment in these age 

groups and reported significant associations between working memory scores and 

achievements in Mathematics, English and Science. They found particularly strong 

associations between central executive scores and Key Stage 2 achievements in all 

curriculum areas, with a strong association between visuo-spatial sketchpad scores 

and Science performance at this age. They reported similarly strong associations 

between Key Stage 3 achievements in all curriculum areas and central executive 

scores, with a strong association between visuo-spatial sketchpad scores and 

Mathematics performance. In subsequent analyses, Jarvis and Gathercole (2003) 
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explored the relationship between verbal (phonological loop and verbal central 
executive) and nonverbal (visuo-spatial sketchpad and nonverbal central executive) 
working memory skills and curriculum attainment. Their results suggested that verbal 
working memory ability was related to performance in English and Mathematics and 
that nonverbal working memory ability was related to performance in Mathematics 
and Science. Despite these distinctions, the results of their structural equation 
modelling suggested that separate verbal and nonverbal working memory constructs 
predicted a single National Curriculum attainment score, which was comprised of all 
three areas. They therefore concluded that working memory ability predicted National 
Curriculum attainment at 11- and 14-years. 

Gathercole, Pickering, Knight et al.'s (2004) recent study supports the idea 

that working memory ability predicts achievement across the three National 

Curriculum areas at 14-years. They found that attainment levels in Mathematics and 

Science were highly significantly related to scores on phonological loop and central 

executive tasks, while attainment levels in English were more moderately, but still 

significantly, related to working memory scores. As described earlier, children were 

split into three groups based on their attainment levels. There were significant 

differences in performance on the working memory tasks between children of low and 

average abilities, and between children of average and high abilities in Mathematics 

and Science, but there were no significant differences in performance of children with 

different attainment levels in English. These findings suggest that working memory 

abilities are related to different areas of curriculum attainment. 

In summary, converging evidence supports an association between working 

memory skill and performance on National Curriculum tests. Importantly, many of 

these studies report associations between working memory abilities and National 
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Curriculum mathematics achievement. Central executive scores have been related to 
National Curriculum mathematics attainment at 7- (Gathercole & Pickering, 2000a; 
2000b; Gathercole, Pickering, Knight et al., 2004), 11- (Jarvis & Gathercole, 2003) 
and 14-years (Jarvis & Gathercole, 2003; Gathercole, Pickering, Knight et al., 2004), 
visuo-spatial sketchpad scores have been related to National Curriculum mathematics 
attainment at 7- (Gathercole & Pickering, 2000a), 11- and 14-years (Jarvis & 
Gathercole, 2003) and phonological loop scores have been related to mathematics 
performance at 7- and 11-years (Gathercole, Pickering, Knight et al., 2004). 

Other studies that have explored the relationship between children's working 

memory abilities and their performance on standardized mathematics tests report 

similar associations. For example, Maybery and Do (2003) reported significant 

associations between simple and complex verbal and visuo-spatial span performance 

and mathematics ability in a sample of 10-year-old Australian children. They 

administered children with a curriculum-based mathematics test, which measured 

performance across number, space and measurement skills. Each child also completed 

four working memory tasks: an auditory-verbal fixed span task to measure 

phonological loop ability; a visual-spatial fixed span task to measure visuo-spatial 

sketchpad ability; an auditory-verbal running span task to measure verbal executive 

ability; and a visual-spatial running span task to measure nonverbal executive ability. 

Overall, they found significant associations between all working memory measures 

and mathematics performance, excluding the visual-spatial running span task. When 

controlling for individual differences in reading ability and performance on the other 

working memory tasks, they found that only the fixed auditory-verbal and fixed 

visual-spatial span tasks accounted for unique variance in performance on the 

mathematics tasks. These findings suggest that phonological loop and visuo-spatial 
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sketchpad abilities are related to children's mathematics. Reuhkala (2001) also 
reported significant associations between visuo-spatial sketchpad abilities and 
mathematics in a study of 15- and 16-year-olds mathematical skills. She found that 
scores on visuo-spatial tasks were significantly related to mathematics performance, 
even after individual differences in other working memory abilities were controlled 
for. Central executive and phonological loop scores were not related to mathematics 
ability in this study. However, other studies that have used the same correlational 
techniques have reported significant associations between central executive (e.g. 
Gathercole et al., 2003) and phonological loop (e.g. Dark & Benbow, 1991; 
Passolunghi & Siegel, 2001; Wilson & Swanson, 2001) abilities and mathematics. 

Overall, the evidence suggests that children's working memory skills are 

significantly related to their mathematics performance. Furthermore, each component 

of the working memory model (Baddeley & Hitch, 1974) has been ascribed a different 

role in supporting children's mathematics (see Chapter 1, Sections 1.4.2.1., 1.4.2.2. 

and 1.4.2.3.). However, relatively few of the studies supporting an association 

between working memory and mathematics have controlled for individual differences 

in other cognitive abilities. As Hulme and Roodenrys (1995) point out, they should 

therefore be interpreted with caution as these associations may be mediated by other 

cognitive abilities, such as IQ, processing speed or an ability to process numerical 

information. Indeed, Bull and Johnston (1997) have shown that processing speed may 

mediate the relationship between phonological loop ability and mathematics (see 

Chapter 1, section 1.4.2.1.). Furthermore, it has been shown that digit-based measures 

of working memory are more closely associated with mathematics proficiency than 

non-digit based measures of working memory (e.g. Passolunghi & Siegel, 2001), 

suggesting that working memory and mathematics may be linked as the assessments 
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of both involve either number processing or direct access to number representations. 
A final possibility is that IQ or nonverbal IQ (NVIQ) may mediate the association 
between working memory and mathematics (see Chapter 1, sections 1.4.2.3). 

Many of the studies, excluding Maybery and Do's (2003), that report an 

association between children's mathematical abilities and working memory skills 

have measured mathematics as a general ability, which is assessed by a standardized 

test to give a single score (e.g. Gathercole & Pickering, 2000b). Others have focussed 

on mental arithmetic (e.g. Adams & Hitch, 1998). Few studies have explored the 

associations between working memory abilities and different mathematical skills in 

children. 

The aim of the present study was to extend the work of Gathercole and 

colleagues, who have found an association between working memory abilities and 

National Curriculum test performance, to specifically explore the associations 

between working memory skills and National Curriculum mathematics performance 

in 7-/8-year-olds and 9-/10-year-olds. National Curriculum mathematics test 

performance was measured using the mathematics tests developed in Chapter 2 to 

provide an index of different mathematical competencies. Working memory abilities 

were assessed using non-digit based measures to eliminate the chance of detecting a 

general ability to process number or numerical information across the working 

memory and mathematics tasks. Finally, a measure of NVIQ was included to explore 

the effect of controlling for individual differences in NVIQ on the relationship 

between working memory abilities and mathematics performance. 
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Method 

Participants 

The participants were 148 primary school children (79 boys and 69 girls), who 

attended three schools in the North-East of England. These were 78 Year 3 children 

(46 boys and 32 girls), mean age 8 years and 1 month (SD = 5.6 months, range 7 years 

and 1 month to 8; years and 9 months), and 70 Year 5 children (33 boys and 37 girls), 

mean age 9 years and 10 months (SD = 5.7 months, range 9 years and 1 month to 10 

years and 9 months). 48 children (24 Year 3 and 24 Year 5) attended one school, 56 

children (31 Year 3 and 25 Year 5) attended a second school and 44 children (23 Year 

3 and 21 Year 5) attended a third school. 

The percentage of children achieving Level 4 attainment and above in English, 

Mathematics and Science was higher than the national average (75%, 72% and 85% 

respectively) in two of the schools (English 83% and 96%; Mathematics 90% and 

93%; Science 95% and 96%) and lower than the national average in the third school 

(55%, 48% and 65% respectively). 

Design and Procedure 

All children participated in three testing sessions. In the first session, each 

child was administered three working memory tasks in a counterbalanced order. Each 

child was tested individually in a quiet area of the school. In the second session, 

children were administered age appropriate mathematics assessments under 

standardized test conditions within a classroom setting. In the final session, children 

were administered the non-verbal IQ test, again under standardized test conditions in a 

classroom setting. 
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Materials 

Working Memory Tasks 

Due to the time constraints associated with working in schools, only one 

measure was used to assess each component of the working memory model. The 

three working memory tasks were taken from the Working Memory Test Battery for 

Children (WMTB-C, Pickering & Gathercole, 2001). The tasks were selected as non-

digit based measures of the components of working memory. 

Phonological loop task 

The Nonword List Recall task (Pickering & Gathercole, 2001) involved the 

spoken presentation of monosyllabic nonsense words for immediate serial recall. The 

nonwords were created using the phonemes of real words used a Word List Recall 

subtest (e.g. lotch was created from scotch, meek was created from peck, targ was 

created from target) (WMTB-C, Pickering & Gathercole, 2001). The nonsense words 

were presented at a rate of one per second. Participants were asked to recall the 

sequence of words in exactly the same order as they were presented. Testing began 

with a block of six trials, in which each sequence contains a single nonword. The 

sequence length increased at a rate of one nonword every block of six trials. I f 4 

correct responses were given within a block, the experimenter proceeded to the next 

block, giving credit for the omitted trials. Testing continued until 3 incorrect 

responses were given in a block. 

The score given was the Trials Correct score. Responses for each trial were 

scored as 0 or 1. The sum of the correct responses provided the Trials Correct score. 

The maximum score was 36. Test-retest reliability for this task was .43 for Year 5 and 

Year 6 children (Pickering & Gathercole, 2001). Coefficients for Year 3 children were 
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not available, although the test-retest for younger children (Year 1 and Year 2) was 

.68. 

Visuo-spatial sketchpad task 

The Mazes memory task (Pickering & Gathercole, 2001) involved the 

presentation of two-dimensional mazes. A route, presented in red, travelled from the 

middle of the maze to the outside. Each maze was presented for approximately 3 

seconds, in which time the experimenter traced the route with his/her finger. 

Immediately after the route was traced, the participant was asked to recall it by 

drawing in pencil in a response booklet that contained a blank maze. Participants were 

asked to recall the exact route that had been traced. Testing began with a block of six 

trials, in which each trial contained a simple, small maze with two walls. The 

complexity of the mazes increased every block of six trials: At this stage mazes 

increased in size by one wall and consequently became more complex. 

The testing and scoring procedures were identical to that of the Nonword List 

recall task. The maximum score was 42. Test-retest reliability for this task was .43 for 

Year 5 and Year 6 children (Pickering & Gathercole, 2001). Coefficients for Year 3 

children were not available, although the test-retest reliability for younger children 

(Year 1 and Year 2) was .68. 

Central Executive task 

The Listening Recall task (Pickering & Gathercole, 2001) involved the spoken 

presentation of short sentences, some of which were true and some that were false. 

The spoken duration of each sentence was approximately 1-2 seconds. Immediately 

after a sentence was presented, the participant was asked to judge whether the 
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statement was "true" or "false". Once all sentences within a trial had been presented, 
the participant was asked to recall the final word of each sentence in the exact order 
they heard them. Testing began with a block of six trials, in which each trial contained 
one sentence. The number of sentences then increased by one every block of six trials. 

The testing and scoring procedure was identical to that of the previous 

working memory tasks. The maximum score was 36. Test-retest reliability for this 

task was .38 for Year 5 and Year 6 children (Pickering & Gathercole, 2001). 

Coefficients for Year 3 children were not available, although the test-retest for 

younger children (Year 1 and Year 2) was .83. 

Mathematics Tasks 

The mathematics assessments administered were the age appropriate 

assessments previously developed by the author (see Chapter 2). They were designed 

to measure children's performance across four mathematical skills defined by the 

National Curriculum for England: Number and Algebra; Shape, Space and Measures; 

Handling Data; and Mental Arithmetic. 

Non-verbal IQ Task 

The Matrix Analogies Test Short Form (MAT-SF) (Naglieri, 1985) is a 

standardized test of non-verbal reasoning intended for group administration. It 

contains abstract items (in black, white, blue and yellow) in a matrix format similar to 

Raven's Progressive Matrices (1956) test. For each item, participants are required to 

look at a set of three pictures of shapes and chose a missing piece for each picture 

from four alternatives. They are required to look at the four missing pieces and then 

circle their answer. 



117 

The MAT-SF contains 34 items. The complexity of the items increases as the 
test progresses. Testing lasts 25 minutes and participants are asked to complete as 
many items as possible in this time. The score given was the raw score (because age 
was controlled for). This is the total number of correct answers across the 34 scorable 
items. Test-retest reliability for this task is .51 for Grade 2 children (Year 3 children 
in the UK) and .91 for Grade 4 children (Year 5 children in the UK). 

Results 

Power Analysis 

Erdfelder's (1984) compromise power analysis was conducted prior to further 

analyses to determine the statistical power of this study (refer to Chapter 2 for details 

on power analysis). The results of the power analyses, conducted using Faul and 

Erdfelder's (1992) G Power programme, are presented in Table 3.1. 

Table 3.1 

Compromise Power Analysis for Working Memory and Children's Curriculum-Based 

Mathematics Study. 

Effect Size «2 Power 

0.5 (medium) 78 70 .93 

The power of this study to test for significance with a medium effect size is 

.93. This exceeds Cohen's (1988) criterion of .8, meaning this study is statistically 

powerful. 
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Descriptive Statistics 

Descriptive statistics for working memory measures, mathematics test 

performance and NVIQ scores are presented in Table 3.2. 

Table 3.2 

Descriptive Statistics of Working Memory and Mathematics Measures for Year 3 

(maximum score for each measure shown in brackets), (n = 78). 

Measures Girls (n = 32) Boys (n = 46) Total 

M SD M SD M SD 

Working Memory Measures 

Phonological Loop (36) 14.15 2.34 13.86 2.57 13.97 2.47 

Visuo-Spatial Sketchpad (42) 8.14 4.86 9.86 6.33 9.20 5.82 

Central Executive (36) 10.25 3.21 8.53 3.73 9.20 3.61 

Mathematics Measures 

Number and Algebra 54.81 27.87 53.67 28.16 54.13 27.84 

Shape Space and Measures 59.25 27.13 52.83 29.13 55.42 28.31 

Handling Data 62.72 20.86 61.00 19.48 61.69 19.91 

Mental Arithmetic 65.92 30.54 63.25 30.41 64.94 30.41 

NVIQ (34) 16.51 6.07 14.85 6.19 15.55 6.16 

Note. Mathematics scores shown are proportions correct. 

There were no significant differences between Year 3 boys and Year 3 girls 

performance on either the working memory measures, mathematics assessments or the 

NVIQ measure (all p>.Q5). 
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Table 3.3 

Descriptive Statistics of Working Memory and Mathematics Measures for Year 5 

(maximum score for each measure shown in brackets), (n = 70). 

Measures Girls (n = 32) Boys (n = 46) Total 

M SD M SD M SD 

Working Memory Measures 

Phonological Loop (36) 17.15 2.54 17.10 2.68 17.12 2.58 

Visuo-Spatial Sketchpad (42) 16.87 5.98 17.30 8.25 16.94 7.45 

Central Executive (36) 12.93 2.78 13.41 3.41 13.01 3.06 

Mathematics Measures 

Number and Algebra 56.11 20.31 54.00 24.28 55.16 22.05 

Shape Space and Measures 61.11 13.28 57.22 17.39 58.88 15.36 

Handling Data 55.37 12.12 54.22 17.21 54.85 14.54 

Mental Arithmetic 65.38 20.66 66.33 23.14 65.78 22.18 

NVIQ (34) 21.94 6.01 22.93 5.96 22.39 5.97 

Note. Mathematics scores shown are proportions correct. 

Year 5 boys and Year 5 girls performance did not differ significantly on the 

working memory measures, mathematics assessments or the NVIQ measure (all 

p>.05). 

Overall, Year 5 performed significantly better than Year 3 on all three working 

memory measures (p<.05). Across both age groups, children performed better on the 

phonological loop measure than the other two working memory component measures. 

There was greater variability on the visuo-spatial sketchpad measure than the other 

two measures of working memory ability across both age groups. Children's 
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performance did not differ significantly across the mathematics assessments, but Year 
5 performed significantly better on the NVIQ measure than Year 3 children (p<.0\). 
These raw scores were consistent with the MAT-SF age norms (Naglieri, 1985). 
Across both age groups, there were no significant gender differences on any of the 
measures (p>.05). 

Correlation Analyses 

Associations between working memory measures and mathematical abilities 

are presented in the correlation matrix (Table 3.4). Simple correlations are displayed 

in the upper triangle; partial correlation coefficients controlling for age are displayed 

in the lower triangle. The data was collapsed across all children, as there were no 

significant differences in performance (p>.05) between the two age groups on the age 

appropriate mathematics assessments. 

Scores on the working memory measures were intercorrelated (all rs > .30, 

p<.05), even when the variance related to age was eliminated (all prs >.20, p<.05, 

except phonological loop and visuo-spatial sketchpad scorespr > .30, p>.05). 

Similarly performance on the mathematics assessments was intercorrelated, even 

when the variance related to age was eliminated (all rs >.30,/?<.01, all prs >.30, 

p<.01). 

Central executive scores were significantly related to mathematical abilities 

(all rs >.20,/?<.01) and remained so after age related variance was eliminated (all prs 

>.30,/?<.01). Visuo-spatial sketchpad scores were significantly related to mathematics 

performance (all rs >.20,/K.01) and remained significantly related to all 

mathematical abilities when age related variance was controlled for (all prs >.20, 



CO 

1 

R 

8 

R 

§: 

- R 

Si 

R 

o 

to 

8 

"a 
R 

5 

bo 

R 

Sk 

R 
O 

00 

•—k bo 
R a 

* !«•* 

•*»* 

I 

"a 

a 

oo 
T3 OS 

Q 

O 
a 
oo 
u 

00 

u 
a 
3 
z 

C U 
U 

2 
ca 
a, oo 
i 
o 
3 
t/3 

> 

o 
a 
o 
o G O 

CO 

* * 

S 2 
&0 

-4—» 

o 

-a 

o 

00 

a. o o 

CN 

5 

SO 

# 
* 
SO 
cN 

* * 
SO 
CN 

* * 
00 
CN 

* * 
CN 

* 

* 
00 
CN 

* * 

* 
SO 

* 
so 
CN 

* 
CN 

* 
# 
CN 
r--

* 
# 
o 
SO 

* * 
so 

* 
CN 

00 
CN 

O 

* 
o 
so 

* * 
SO 

* * 
00 

* * 
</-) 

I T ) 
# 
O 
SO 

* * 
SO 

* * 
SO 

* * 

* * * * 

CN 

* * 
00 
CN 

* 
CN 

O 0*\ >/~) 
^ O 

© 
V 

ca 

« 
00 

3 
a. 
oo 

00 

C/5 

3 

• 4 - t 
03 

Q 
oo 

I « 

I© 
V 

I * 
<u +-» 

i l 



122 

/K.05). Phonological loop scores were only related to Mental Arithmetic ability (r = .21, p<. 
01), but this was accounted for by age related variance (pr =.15,/j>.05). 

Associations between working memory scores and mathematical skills, controlling for 

NVIQ are presented in Table 3.5. Chronological age was controlled to eliminate age-related 

variance on the NVIQ measure. 

Central executive scores were significantly related to all mathematical abilities (all rs 

> .30,pr<.0\, except Number and Algebra r = .29,/>r<.05) when individual differences in 

NVIQ were controlled for. Visuo-spatial sketchpad and phonological loop scores were not 

significantly related to any mathematical abilities when NVIQ scores were controlled (all 

rs<.30,pr>.05). 

Table 3.5 

Correlation Matrix for Working Memory Measures and Mathematics Assessments, 

Controlling for Age and NVIQ Scores. (N = 148). 

Phonological Loop Visuo-spatial Central Executive 

Sketchpad 

03 A8 29* 

01 .16 .45** 

05 .16 .34** 

13 .14 .41** 

Number and 

Algebra 

Shape, Space and 

Measures 

Handling Data 

Mental Arithmetic 



Correlation Analyses Corrected for Attenuation 

Low reliability of the measures used in a study can cause underestimation of the 

correlation coefficients. This error can be corrected using a technique known as attenuation, 

which takes into account the reliability of the measures used. 

Due to the low test re-test reliability coefficients for the working memory measures, 

the correlation coefficients between working memory scores and mathematics performance 

controlling for age were corrected for attenuation. Correlation coefficients corrected for the 

reliability statistics of the younger groups' measures are presented in Table 3.6, with the 

corrections for the reliability statistics of the older age groups' measures presented in 

parentheses. 

Table 3.6 

Attenuated Correlation Matrix for Working Memory Measures and Mathematics 

Assessments, controlling for age. Corrections for reliability of Year 3 measures shown with 

corrections for reliability of Year 5 measures in parentheses. (N= 148). 

Phonological Loop Visuo-spatial Central Executive 

Sketchpad 

Number and .11 (.16) .36** (.44**) .49** (.78**) 

Algebra 

Shape, Space and .13 (.18) .32** (.39**) .61** (.98**) 

Measures 

HandlingData .11 (.13) .38** (.42**) .53** (.54**) 

Mental Arithmetic .19* (.27**) .27** (.34**) .56** (.89**) 



Central executive and visuo-spatial sketchpad scores were significantly associated 

with performance across all mathematical skills when the reliability of the measures was 

considered (all rs > .30,/?<.01), while phonological loop scores were only significantly 

related to mental arithmetic performance (rO0,/?<.05, corrected for Year 3 reliability and 

r<30,p<.0\, corrected for Year 5 reliability). 

Corrections for attenuation inflated the correlation coefficients between working 

memory scores and mathematics scores. It was feared that these inflations did not accurately 

reflect the data (e.g. a coefficient of .98 between Shape, Space and Measures scores and 

central executive scores seems unlikely). Therefore, no further corrections for attenuation 

were made. 

Regression Analyses 

A simple linear regression analysis revealed that the working memory measures 

predicted 27.7% of the variance in overall mathematics performance. Subsequently, a series 

of fixed-order unique variance regression analyses were used to assess the amount of unique 

variance in mathematics scores predicted by each of the measures. For each analysis the 

mathematics assessment was the regressor and the unique contribution (measured as r7) of 

each working memory measure was assessed as a predictor entered into the regression 

equation after the other predictors. The data was collapsed across all children, as there were 

no significant differences in performance (p>.05) between the two age groups on the age 

appropriate mathematics assessments. Age was entered as the first variable into each 

regression equation to control for age-related variance. See Table 3.7 (Appendix VI) for 

results. 



Models A j , A2, A3, A4 and A 5 show that phonological loop scores do not account for 

any unique variance in mathematics scores above and beyond that accounted for by age and 

the other two working memory constructs. 

Models Bi , B2, B 3 , B4 and B5 show the amount of unique variance in mathematics 

scores predicted by visuo-spatial sketchpad scores when the variance attributable to age and 

central executive and phonological loop scores is accounted for. These models indicate that 

visuo-spatial ability accounts for a small, but significant, amount of variance in overall 

mathematical ability (3%), Number and Algebra scores (3%), Shape, Space and Measures 

scores (1%), Handling Data scores (3%) and Mental Arithmetic scores (1%). 

Models C], C2, C3, C4 and C5 show that of the working memory measures central 

executive scores account for the greatest amount of unique variance in mathematics scores. 

After the variance contributed by age and visuo-spatial and phonological scores is accounted 

for central executive scores account for 23% of variance in overall mathematical ability, 12% 

of variance in Number and Algebra scores, 21% of variance in Shape, Space and Measures 

scores, 13% of variance in Handling Data scores and 18% of variance in Mental Arithmetic 

scores. 

A second series of fixed-order unique variance regression analyses were conducted to 

assess the amount of unique variance in mathematics scores predicted by each of the 

measures of working memory after the variance accounted for by NVIQ was considered. 

Again, for each analysis the mathematics assessment was the regressor and the unique 

contribution (measured as r2) of each working memory measure was assessed as a predictor 

entered into the regression equation after the other predictors, which included age, NVIQ and 

performance on the other working memory measures. As before, the data was collapsed 

across all children. The results are presented in Table 3.8 (Appendix VII) . 



Models Di, D2, D3, D 4 and D5 show the amount of unique variance in mathematics 

skills predicted by central executive ability when the variance predicted by age, non-verbal 

IQ and visuo-spatial and phonological abilities is accounted for. These models indicate that 

central executive ability predicts a significant amount of unique variance in overall 

mathematics ability (15%), Number and Algebra skills (6%), Shape, Space and Measures 

skills (17%), Handling Data skills (8%) and Mental Arithmetic ability (13%). 

Models Ei, E2, E 3 , E4 and E5 show the amount of unique variance in mathematics skills 

predicted by visuo-spatial ability when the variance predicted by age, non-verbal IQ and 

central executive and phonological abilities is accounted for. These models indicate that 

visuo-spatial ability predicts a significant amount of unique variance in overall mathematics 

ability (1%), Number and Algebra skills (2%), Shape, Space and Measures skills (1%) and 

Handling Data skills (1%). Visuo-spatial ability did not predict unique variance in Mental 

Arithmetic performance. 

Models Fi.Fa, F3, F 4 and F5 show that phonological loop ability contributes no unique 

variance to mathematics ability above and beyond that predicted by age, non-verbal IQ and 

visuo-spatial and central executive abilities. 

Exploratory Factor Analyses 

Principal components analyses were conducted to determine the higher-order factor 

structure underpinning variations in scores on all measures as a descriptive, summative 

method prior to conducting model-based techniques. 

Two factors emerged with eigenvalues in excess of 1.00 in the first analysis, which 

included all measures except the NVIQ measure. Factor loadings greater than .30 on the 

rotated component matrix are presented in Table 3.9. 



Table 3.9. 

Factor Loadings of Working Memory and Mathematics Measures, Excluding NVIQ, on 

Rotated Component Matrix. 

Factor 

Measure 1 2 

Working Memory measures 

Phonological Loop .81 

Visuo-Spatial Sketchpad .71 

Central Executive .44 .68 

Mathematics Measures 

Number and Algebra .87 

Shape, Space and Measures .78 

Handling Data .82 

Mental Arithmetic .79 

Note. Only loadings greater than .3 are shown. 

Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy = .83. 

Al l four measures of mathematics ability loaded on Factor 1, all with loadings in 

excess of .75. The three working memory measures loaded on Factor 2, which corresponds 

with the tripartite model of working memory proposed by Baddeley and Hitch (1974). The 

central executive loaded on both factors. A possible explanation for this may be the demands 

that both central executive and mathematics measures place upon general intelligence (e.g. 

Fry & Hale, 1996; Kyllonen & Christal, 1990). That is, both may share variance with general 

intelligence. Despite this, it should be noted that the weight of the loading on the working 

memory factor (Factor 2 = .68) was greater than the loading on the mathematics factor 
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(Factor 1 = .44), consistent with the notion that it is primarily a measure of working memory 
ability. 

Two factors with eigenvalues in excess of 1.00 emerged in the second analysis, where 

the NVIQ measure was included. Factor loadings greater than .30 on the rotated component 

matrix are presented in Table 3.10. 

Table 3.10 

Factor Loadings of Working Memory, Mathematics and NVIQ Measures on Rotated 

Component Matrix. 

Factor 

Measure 1 2 

Working Memory measures 

Phonological Loop .77 

Visuo-Spatial Sketchpad .72 

Central Executive .38 .70 

Mathematics Measures 

Number and Algebra .86 

Shape, Space and Measures .78 

Handling Data .81 

Mental Arithmetic .79 

NVIQ .70 

Note. Only loadings greater than .3 are shown. 

KMO measure of sampling adequacy = .85. 



The same factor structure emerged for the working memory measures and 

mathematics assessments. The NVIQ loaded on Factor 2, the working memory factor, 

suggesting the tasks may have similar demands or that both NVIQ and working memory 

share variance. 

Confirmatory Factor Analysis 

To further investigate the relationship between mathematical abilities and working 

memory and to test the higher order factor structure suggested by the principal components 

analysis, confirmatory factor analysis was conducted using EQS 6 (Bentler, 2001). The 

reason for this approach was to find the best theoretical account of the data through formally 

testing a number of competing theoretical models. For each model assessed, coefficients for 

the paths between latent constructs and variables were produced, indicating the strength of 

the relationships between them. A variety of fit statistics were produced to indicate the 

goodness of fi t of the model to the data. The most commonly used fit index chi squared (x2), 

was used alongside other fit indices including the Comparative Fit Index (CF7), Bollen's 

Incremental Fit Index (IFI), the Goodness of Fit Index {GFI), the standardized root mean 

square of the model residuals (SRMR) and the root mean square of approximation (RMSEA). 

These fit indices were compared across competing models to find the best theoretical model 

of the data. 

It is important to note that the confirmatory factor analysis was used as an exploratory 

procedure to show the relationship between the two constructs suggested by the principal 

components analysis. 

The first principal components analysis, which did not include the NVIQ measure, 

yielded a two-factor solution (Table 3.9.), but it did not indicate the correlation between the 

two latent constructs. Therefore, three two-factor models of the relationship between working 
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memory measures and mathematics were tested using confirmatory factor analysis. The input 
to the program was the raw data, from which the programme computed a covariance matrix 
for the analyses. For all models, the mathematics factor corresponded to the structure of the 
National Curriculum, comprising of four measures of mathematics ability; Number and 
Algebra, Shape, Space and Measures, Handling Data and Mental Arithmetic. The working 
memory factor differed across the models. The first model (CFA1) corresponded to the 
Baddeley and Hitch (1974) working memory model, with measures representing the 
phonological loop, visuo-spatial sketchpad and central executive components. The second 
(CFA2) model included only the verbal working memory measures (central executive and 
phonological loop). In the third model tested (CFA3), the working memory factor comprised 
of the visuo-spatial sketchpad and central executive measures, corresponding to the notion 
that visuo-spatial sketchpad measures share variance with central executive measures as they 
place heavy demands on the general processing and storage functions of the central executive 
(Gathercole & Pickering, 2000a; Miyake et al., 2001; Phillips & Christie, 1977a; Wilson et 
al.,). Fit statistics for the three models are presented in Table 3.11. 

A l l models yielded fit indices in excess of .95 (CF/and IFJ) and .9 (GFI) indicating 

good fit. However, the fit of models CFA2 and CFA3 was not ideal as the SRMR and RMSEA 

values were in excess of .08, indicating poor fit. Furthermore, both models yielded significant 

X2 values, meaning they differed significantly to the data. In addition, examination of the 

diagram for CFA2 revealed that the path between the central executive measure and factor 1 

(working memory) was 1.00. This indicates that Factor 1 accounted for all of the variance in 

the central executive measure. Therefore, its communality with the other variable loading on 

Factor 1 (phonological loop measure) is 1.00, meaning the other variable has no uniqueness 

(Loehlin, 1987). In short, the central executive measure shares a large amount of variance 

with the phonological measure, indicating that this diagram is probably not a good 
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Table 3.11 

Goodness of fit statistics for CFA models (working memory and curriculum-based 

mathematics). 

Model df X2 P CFI GFI IFI SRMR RMSEA 

CFA1 13 21.07 .071 .969 .946 .970 .058 .076 

CFA2 8 16.59 .035 .964 .949 .965 .053 .100 

CFA3 8 15.52 .049 .969 .954 .970 .043 .094 

Note. CFI= Bentler's Comparative Fit Index. GFI-Goodness of Fit Index. IFI= Bollen's 

Incremental Fit Index. SRMR = Standardized Root Mean Squared Residual. RMSEA = Root 

Mean Square Error of Approximation. 

description of the data. For these reasons, models CFA2 and CFA3 were discarded. Model 

CFA1, the traditional three-factor working memory model, provided the best fit to the data 

across all fit indices. In this model, all fit indices {CFI, GFI and IFI) were good, the %3 value 

for the model, with 13 degrees of freedom, was 21.01, p = .071, and the SRMR and RMSEA 

values were below .08 meaning the model did not differ significantly to the data. A 

significant path existed between the working memory construct and mathematics 

performance; the path covariance coefficient was .606,p<.05. A diagrammatic representation 

of this model is shown in figure 3.1. 
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Figure 3.1 

Diagrammatic Representation of the Best Fitting Factor Model (CFA1) for Working Memory 

and Curriculum-Based Mathematics 

The second principal components analysis, which included the NVIQ measure, also 

yielded a two-factor solution (Table 3.10). Again, various models of the relationship between 

the two factors were tested using confirmatory factor analysis. As before, the input to the 

programme was the raw data, from which the programme (EQS 6, Bentler, 2001) computed a 

covariance matrix for the analyses. As before, the mathematics factor corresponded to the 

structure of the National Curriculum. The working memory factor and the NVIQ variable 

varied across the different models tested. The first model (CFA4) corresponded to the results 

of the principal components analysis, where NVIQ loaded on the working memory factor, 

which itself corresponded to the Baddeley and Hitch (1974) tripartite model. The second 
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(CFA 5) and third (CFA 6) models included a factor corresponding to the tripartite working 
memory model, with NVIQ as an independent variable. In the second model (CFA 5) NVIQ 
shared variance with the working memory factor, and in the third (CFA 6) it shared variance 
with both the working memory and mathematics factors. Fit statistics for the three models are 
presented in Table 3.12. 

Table 3.12 

Goodness of fit statistics for CFA models (working memory, curriculum-based mathematics 

and NVIQ). 

Model df X2 P CFI GFI IFI SRMR RMSEA 

CFA4 19 28.03 .082 .968 .936 .969 .058 .069 

CFA5 19 46.91 .000 .902 .905 .905 .146 .121 

CFA6 18 4103.9 .000 .000 .046 .000 .273 1.507 

Note. CFI = Bentler's Comparative Fit Index. GFI= Goodness of Fit Index. IFI= Bollen's 

Incremental Fit Index. SRMR = Standardized Root Mean Squared Residual. RMSEA = Root 

Mean Square Error of Approximation. 

Models CFA 5 and CFA 6 yielded poor fit indices below .95 (CFI, GFI and IFI). 

Furthermore, both models yielded significant x1 values, meaning they differed significantly to 

the data. Model CFA 4, which comprised of two-factors as specified by the results of the 

principal components analysis (see Table 3.10), provided the best fit to the data across all fit 

indices. A l l fit indices were good (CFI, IFI and GFI) for this model. The %2 value for the 

model, with 19 degrees of freedom, was 28.03,/? = .08, and the SRMR and RMSEA values 

were below .08, meaning the model did not differ significantly to the data. A significant path 



existed between the working memory and NVIQ factor and the mathematics construct; the 

path covariance coefficient was .623,/?<.05. A diagrammatic representation of this model is 

shown in figure 3.2. 
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Figure 3.2 

Diagrammatic Representation of the Best Fitting Factor Model (CFA 4) for Working 

Memory, Curriculum-Based Mathematics and NVIQ 

There was no significant difference between the fit of two best fitting models from 

each of the confirmatory factor analyses (models CFA 1 and CFA 4, p>.05). Model CFA 1 

yielded marginally better fit indices (CFI, IFI and GFI), but model CFA 4 yielded better x3. 

SRMR and RMSEA values, meaning it was less different to the data set. Structurally these two 



models differed due to the inclusion of the NVIQ measure (see figures 3.1 and 3.2). 

Therefore, the results suggest that including the NVIQ measure did not significantly alter the 

results of the factor analyses. Inclusion of the NVIQ measure only increased the path 

covariance coefficient between the working memory and mathematics factors by .01. This 

indicates that working memory per se is associated with mathematics. 

Discussion 

Overall, the results show a significant association between children's working 

memory ability and their mathematics attainment. The results of the first confirmatory factor 

analysis revealed that a significant path existed between a working memory construct 

corresponding to the tripartite model (Baddeley & Hitch, 1974), and mathematics 

performance. Furthermore, a simple regression analysis revealed that the tripartite model of 

working memory (Baddeley & Hitch, 1974; Baddeley, 1986) predicted 27.7% of the variance 

in the children's mathematics scores, suggesting that it is a significant predictor of 

performance. Although this association may reflect the contribution of working memory to a 

higher order construct, such as general intelligence (Kyllonen & Christal, 1990), the findings 

support the notion that working memory is involved in children's mathematics (e.g. Adams & 

Hitch, 1997; 1998). 

The contributions of the different components of the working memory model to a 

range of children's mathematical skills were assessed using measures of working memory 

function from the WMTB-C. Importantly, these standardized measures did not involve 

numerical stimuli, thus controlling for potential interference from general number fluency. 

Initially the associations between working memory and curriculum-based mathematics skills 

were explored without consideration for the contribution of NVIQ. The effect of controlling 

for individual differences in NVIQ on the relationship between working memory abilities and 



mathematics performance was later explored. The relationship between National Curriculum 

mathematics performance and working memory abilities, and the subsequent impact of 

controlling for NVIQ wil l be discussed in turn. 

The results of this study found that working memory predicted National Curriculum-

based mathematical skills. This is consistent with previous findings that working memory 

predicts wider aspects of National Curriculum attainment (e.g. Gathercole & Pickering 

2000a; 2000b), and that working memory assessments may be useful as early predictors of 

scholastic attainment. Furthermore, it extends these findings to suggest that working memory 

supports different aspects of a particular curricula area (mathematics). Different components 

of the working memory model, namely the visuo-spatial sketchpad and the central executive, 

were found to predict all four areas of mathematics defined by the National Curriculum for 

England. However, there was little difference between the working memory demands of each 

mathematical skill (e.g. visuo-spatial sketchpad scores predicted between 1% and 3% of 

unique variance across all four skills before NVIQ was controlled, and between 1% and 2% 

across all four areas after NVIQ was controlled). Contrary to Maybery and Do (2003) this 

implies that different mathematical skills do not recruit different working memory resources. 

Detailed analyses indicated that both central executive and visuo-spatial sketchpad 

scores, but not phonological loop scores, predicted unique variance in children's National 

Curriculum mathematics skills. 

The results confirmed previous findings that the central executive is an important 

predictor of children's mathematics (e.g. Bull et al., 1999; Bull & Scerif, 2001). It predicted 

a significant amount of unique variance on all curriculum-based skills (12-22%). The 

proportion of unique variance predicted by the central executive was greater than that 

reported in previous findings. For example, Bull and Scerif (2001) report more conservative 

values of 2% and 3%. A possible explanation for this discrepancy relates to the assessment of 
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children's mathematics performance. In the current study mathematics ability was assessed 
using written tests, which involved the children reading the questions. The central executive 
is thought to be important for language and text comprehension (e.g. Yuill et al., 1989) and 
reading (e.g. Daneman & Carpenter, 1980). Therefore, it may have accounted for a large 
proportion of unique variance in the current study because it supported children's reading and 
understanding of the questions in addition to supporting their mathematics. 

The results of the first principal components analysis found that the central executive 

loaded on both the working memory and mathematics factors. This could be indicative that 

the central executive measure is related to a more general resource such as intelligence. 

Working memory, and in particular the central executive, have been associated with human 

intelligence (e.g. Colom, et al., 2004; Kyllonen & Christal, 1990). Furthermore, working 

memory abilities have been found to predict performance on tests of general intelligence (e.g. 

Engle et al., 1999) (see Chapter 1, section 1.1.2.3). The loading of the NVIQ measure on the 

working memory factor in the second principal components analysis supports the suggestion 

that working memory and intelligence are closely associated. Therefore, the significant 

associations between the central executive measure and a range of mathematical abilities may 

in part reflect the contribution of general intelligence to mathematical competence. 

Alternatively, as suggested by Bull and colleagues, the central executive may be important 

for supporting the acquisition and selections of appropriate solution strategies in children's 

mathematics (see Chapter 1, section 1.4.2.3). Alternatively, it may be involved in controlling 

and co-ordinating the solution to mathematical problems as has been suggested for adult 

populations (e.g. Seitz & Schumman-Hengsteler, 2002. See Chapter 1, Section 1.4.2.3). 

The visuo-spatial sketchpad predicted a small, but significant, amount of unique 

variance in children's curriculum-based mathematics scores (between 1% and 3%). This 

supports previous findings that visuo-spatial working memory is related to children's 
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National Curriculum mathematics attainment (e.g. Jarvis & Gathercole, 2003) and 
performance on other standardized mathematics tests (e.g. Maybery & Do, 2003). 
Furthermore, finding an independent role for the visuo-spatial sketchpad in children's 
mathematics supports neuropsychological evidence that suggests the nature of visuo-spatial 
cognition important for mathematical cognition specifically incorporates a visuo-spatial 
working memory system (e.g. Zago & Tzourio-Mazoyer, 2002). Previous studies have 
typically focussed on the associations between phonological loop (e.g. Adams & Hitch, 1997) 
and central executive (e.g. Bull et al., 1999) skills and children's mathematics. As such, the 
role of the visuo-spatial sketchpad in children's mathematics is somewhat undefined. It is 
tentatively suggested that it may act as "mental blackboard" for encoding, storing and 
manipulating problem information during calculation, as has been suggested with adult 
populations (e.g. Heathcote, 1994; Logie et al., 1994. See Chapter 1, section 1.4.2.2). 
Alternatively, it may support the use of a "mental number line" or be involved in 
approximation as suggested by Dehaene (1992) (see Chapter 1, section 1.4.2.2). 

Contrary to previous findings phonological loop scores did not predict unique 

variance in children's curriculum-based mathematics performance. Scores on the 

phonological loop measure were, however, significantly associated with mental arithmetic 

performance before the variance associated with age was controlled for. Of the four 

curriculum-based mathematics skills assessed, mental arithmetic was the only skill that 

involved auditory presentation of the problems. As such, the data may tentatively suggest that 

the children were able to use subvocal rehearsal processes to support the retention of problem 

information (e.g. Adams & Hitch, 1997) and the direct retrieval of arithmetic facts from long-

term memory, which is based on a verbal code (e.g. Dehaene & Cohen, 1995). An alternate 

explanation is that phonological loop scores did not explain any further variance in children's 

mathematics performance once the variance attributed to central executive abilities had been 
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controlled for due to the co-dependence of the tasks used to measure the two components (see 
Chapter 1, section 1.4.2.1). 

When controlling for individual differences in NVIQ, the amount of unique variance 

predicted in mathematics performance by central executive and visuo-spatial scores was 

reduced. Both, however, remained significant predictors of performance across all four 

mathematical skills. The results of the confirmatory factor analyses suggested that including 

NVIQ as a variable alongside the three working memory measures added little to the fit of the 

model, nor did it increase the covariance coefficient between the two latent constructs, 

working memory and mathematics. These results extend previous findings (e.g. Gathercole & 

Pickering, 2000b) to suggest that working memory ability predicts National Curriculum 

mathematics performance above and beyond what is predicted by NVIQ. This has 

implications for educational practice as it further supports the suggestion that working 

memory assessments may be useful predictors of later academic achievement (e.g. 

Gathercole & Pickering, 2000b), and that screening for impaired working memory in young 

children may help to identify those at risk of maths difficulties (Gathercole & Pickering, 

2001). 

Exploration of the higher-order factor structure suggested that the working memory 

measures and the NVIQ measure were closely related. A l l measures loaded on a single factor 

in the second principal components analysis. Furthermore, in the confirmatory factor analyses 

where NVIQ was included, the same four measures were grouped as a latent construct in the 

best-fitting factor model. One reason for this may be, as discussed earlier, that working 

memory and intelligence are closely related constructs (e.g. Colom, et al., 2004). The NVIQ 

measure may have grouped with the working memory measures in the factor analyses due to 

the similarity of the task demands. I f another measure of intelligence, such as a measure of 



verbal IQ, had been included the data may have yielded a separate factor corresponding to 

intelligence. 

In conclusion this study provides additional evidence for the involvement of working 

memory in children's mathematics and supports the usefulness of working memory 

assessments as predictors of National Curriculum test performance. In particular, it provides 

evidence to support the notion that children's mathematics may involve executive functions 

(e.g. Bull et al., 1999) and visuo-spatial cognition (e.g. Houde & Tzourio-Mazoyer, 2003; 

Maybery & Do, 2003). Due to time constraints only one measure of each component of 

working memory was administered, which rather limits the scope of this study. However, the 

suggestion that visuo-spatial working memory may play an important role in children's 

mathematics, which is a relatively new finding, certainly warrants further investigation. For 

example, future research might explore the potentially different roles of visual and spatial 

working memory in children's mathematics. One approach to this would be to adopt Logie's 

(1995) idea of separate cache and scribe processes within the visuo-spatial sketchpad. 

Chapter Summary 

1. Children's working memory abilities have been related to National Curriculum 

attainment across the three Key Stages. The aim of the present study was to extend 

these findings to explore the relationship between working memory abilities and 

mathematical skills defined by the National Curriculum at Key Stage 2. A further aim 

was to explore the effect of controlling for individual differences in NVIQ on these 

relationships. 

2. Phonological loop scores predicted unique variance in children's mental arithmetic 

scores, suggesting it may support the retention of problem information for auditorily 
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presented problems. However, this relationship did not persist once age-related 
variance had been removed. 

3. Both visuo-spatial and central executive scores predicted unique variance in 

children's mathematical skills beyond that predicted by NVIQ. 

4. It was suggested that the central executive may support the acquisition and selection 

of appropriate solution strategies in children's mathematics. 

5. Finding an independent role for the visuo-spatial sketchpad supports the suggestion 

that visuo-spatial cognition may be important for mathematics. As this is a relatively 

new finding the precise role of the visuo-spatial sketchpad is unclear. 

6. The association between visuo-spatial sketchpad scores and children's mathematics 

performance certainly warrants further investigation. 



Chapter Four 

Visuo-spatial working memory and children's mathematical abilities 

Aim 

An association was found between children's scores on a single visuo-spatial working 

memory measure and performance on tests of National Curriculum mathematical abilities in 

Chapter 3. The aim of the present study was to further investigate this finding by including 

several measures of visuo-spatial working memory ability. Based on the suggestion that the 

visuo-spatial working memory system may comprise of two subsystems (e.g. Logie, 1995) 

the tasks used were categorised into those that measured a child's ability to maintain visual 

information and those that measured a child's ability to maintain spatial information. A 

second aim of the present study was to explore the patterns of associations between these 

visual and spatial measures and children's mathematics performance. Related to this, a 

further aim was to explore the separability of visual and spatial subcomponents of working 

memory in children. As in Chapter 3, a measure of NVIQ was included to explore the effect 

of controlling for individual differences in NVIQ on the relationship between visuo-spatial 

working memory abilities and mathematics performance. 

Introduction 

Children's visuo-spatial working memory abilities have been associated with 

performance on National Curriculum assessments in English, Mathematics and Science in the 

UK. More recently, they have been associated specifically with children's mathematics 

competency across a range of skills. 

As discussed in Chapter 3, Gathercole and colleagues have conducted extensive 

investigations into the relationship between children's working memory abilities and their 

National Curriculum performance (e.g. Gathercole & Pickering, 2000b; Gathercole, 
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Pickering, Knight et al., 2004). Although several of their investigations did not incorporate 
measures of visuo-spatial ability (e.g. Gathercole, Pickering, Knight et al., 2004), studies 
where such measures were included suggested that visuo-spatial abilities were related to 
National Curriculum test performance in 7- (Gathercole & Pickering, 2000b), 11- and 14-
year-olds (Jarvis & Gathercole, 2003). Importantly, visuo-spatial sketchpad scores were 
significantly associated with National Curriculum mathematics performance across these age 
groups. 

Other studies that have explored the relationship between visuo-spatial working 

memory ability and mathematics performance in children report similar findings. For 

example, Maybery and Do (2003) reported significant associations between simple and 

complex visuo-spatial span performance and curriculum-based mathematics performance in 

10-year-old Australian children. Furthermore, Reuhkala (2001) reported significant 

associations between scores on visuo-spatial span tasks and mathematics performance in 15-

/l6-year-olds, even after individual differences in verbal working memory abilities were 

controlled for. 

Significant associations between visuo-spatial sketchpad scores and children's 

curriculum-based mathematics performance were reported in Chapter 3. Specifically, visuo-

spatial sketchpad scores predicted unique variance in performance across different 

mathematics skills, even after individual differences in NVIQ and other working memory 

abilities were controlled for. 

In summary, converging evidence suggests children's visuo-spatial sketchpad skills 

are related to their mathematics performance. Furthermore, it has been suggested that the 

visuo-spatial sketchpad may support mathematical processing in adults (e.g. Heathcote, 1994) 

and young children (e.g. McKenzie et al., 2003) (see Chapter 1, section 1.4.2.2). However, 

relatively few of the studies that report significant associations between children's visuo-
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spatial sketchpad scores and their mathematics performance have measured different 
mathematical skills (e.g. Gathercole & Pickering, 2000b). Furthermore, those that have 
measured different mathematical skills have typically included only one measure of visuo-
spatial sketchpad functioning (e.g. Maybery & Do, 2003; the author's previous study). This is 
surprising given that the visuo-spatial sketchpad may be comprised of two subsystems; one 
for maintaining spatial information and one for maintaining visual information (e.g. Logie, 
1995). 

Logie's (Logie, 1995; Reisberg & Logie, 1993; Salway & Logie, 1995) model of the 

visuo-spatial sketchpad system suggests that it is comprised of two subsystems; a temporary 

visual store (visual cache), presumed to store information about visual form and colour, and a 

temporary spatial store (inner scribe), presumed to store information about movement 

sequences (see Chapter 1, section 1.1.2.2). Studies with neurpsychological patients, adults 

and children and neuroanatomical studies support this fractionation. 

Experimental studies with adults support a dissociation between visual and spatial 

subcomponents within the visuo-spatial working memory framework. Many of these studies 

have used a selective interference paradigm to demonstrate that visual interference tasks only 

disrupt performance on primary tasks that are visual in nature, while spatial interference tasks 

cause selective interference in primary tasks that are spatial in nature (e.g. Logie & Marchetti, 

1991; Tresch, Sinnamon & Seaman, 1993). As discussed in Chapter 1 (section 1.1.2.2) Quinn 

and McConnell (1996; 2000) reported that visual noise disrupted performance on an 

immediate visual memory task, but did not affect performance on a spatial task. Similarly, 

Delia Sala, Gray, Baddeley, Allamano & Wilson (1999) reported that a visual interference 

task (viewing abstract pictures) caused a decrement in performance on an immediate visual 

memory, but not spatial memory, task. Smyth and colleagues reported the opposite pattern, 

where spatial interference tasks such as spatial tapping (Smyth & Pendleton, 1989) or 
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listening to tones in different locations (Smyth & Scholey, 1994) selectively disrupted 
performance on spatially loaded primary tasks, such as memory for spatial locations. In 
addition, other studies that have compared adults' performance on immediate memory tasks 
that are either spatial or visual in nature have reported that performance is unrelated. For 
example, Wilson, Brodie, Reinink, Wiedman and Brooks (1968) found that performance was 
unrelated on a visual memory task (Visual Patterns Task) and a spatial memory task (similar 
to a Corsi block task) in a sample of adults' with senile dementia. Similarly, Smyth and 
Scholey (1996) reported that while recall and recognition versions of the Corsi blocks tasks 
(spatial) and the Visual Patterns Test (visual) were related, performance on the Corsi blocks 
recognition task was less well correlated with the recognition version of the Visual Patterns 
Test than the recall and recognition versions of the Visual Patterns Test were with each other. 
This evidence suggests that there might be a dissociation between immediate memory for 
visual and spatial information in adults. 

Double dissociations in neuropsychological patients and clinical populations provide 

further support for a fractionated visuo-spatial system in adults. Delia Sala et al. (1999) 

identified two brain-damaged adults who were significantly impaired on a spatial memory 

task (Corsi blocks), but relatively unimpaired (performing above the median) on a visual 

memory task (Visual Patterns Task). A third adult showed the opposite pattern, 

demonstrating a double dissociation. Furthermore, when taken together case studies provide 

evidence of neurpsychological double dissociations in spatial and visual working memory 

(Luzzatti et al., 1998). Patient LH was reported to have impaired visual memory, but spared 

memory for spatial locations (Farah, Hammond, Levine & Calvanio, 1988). Conversely, 

patients EP (Luzzatti et al., 1998) and MV (Carlesimo, Perri, Turriziani, Tomaiuolo & 

Caltagirone, 2001) showed impairments in spatial, but not visual working memory. 
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Neuroanatomical findings suggest that different anatomical brain locations may 
underpin immediate memory for visual and spatial information. For example, De Renzi 
(1982) reported that patients with parietal occipital lesions experienced problems in 
processing spatial information, while patients with inferior temporal lesions showed deficits 
in visual processing. Furthermore, neuroimaging studies with normal adults support a 
distinction between visual and spatial working memory. That is, performance on a spatial 
working memory task activated an area of the right premotor cortex, while an object (visual) 
working memory task activated a region in the right dorsolateral prefrontal cortex (DLPFC) 
(Courtney, Ungerleider, Keil & Haxby, 1997). In a follow-up study, the DLPFC remained 
activated during a delay in the visual memory task, and the premotor cortex remained 
activated during a delay in the spatial memory task. These findings strengthen the argument 
that these brain areas mediate storage (Courtney, Petit, Maisog, Ungerleider & Haxby, 1998). 
Work with nonhuman primates provides evidence to support the notion that spatial and visual 
working memory have different neural bases (Wilson, O' Scalaidhe & Goldman-Rakic, 
1993). 

Converging neuropsychological, neuroanatomical and experimental evidence from 

adult populations suggests that two different components of the visuo-spatial sketchpad 

support the temporary retention of visual and spatial information. Evidence for a fractionated 

visuo-spatial system in children can be drawn from studies of developmental fractionation 

(Hitch, 1990). As discussed in Chapter 1 (section 1.2.2), Logie and Pearson (1997) found that 

visual and spatial working memory abilities develop at different rates in childhood when they 

examined 5-, 8- and 11-year-olds. Hamilton et al. (2003) replicated these findings in a study 

of 5- to 7-, 8- to 10-, 11- to 13- and 18- to 25-year-olds. The pattern of development evident 

in their data suggested that visual working memory developed relatively rapidly between 5-

years to adulthood, while spatial working memory showed a slower, steadier increase from 
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childhood to adulthood. These studies provide evidence for separate visual and spatial 
subsystems in children's visuo-spatial working memory, as they appear to follow different 
developmental trajectories. Pickering et al. (2001) conducted a similar study to Logie and 
Pearson's (1997) and Hamilton et al.'s (2003) with 5-, 8- and 10-year-old children. Again the 
results supported the idea of a fractionated visuo-spatial system, where memory for visual 
patterns and movement sequences are handled differently. However, Pickering et al. (2001) 
argued that the separable subsystems reflected a static/dynamic distinction rather than a 
visual/spatial one. 

In summary, converging evidence supports Logie's (1995) idea of a fractionated 

visuo-spatial working memory system in both adults and children. Based on the assumption 

of developmental fractionation within the visuo-spatial working memory system, it is 

suggested that the visual cache (visual temporary store) and the inner scribe (temporary 

spatial store) might be differentially related to children's mathematics performance. 

The aim of the present study was to further investigate the association between visuo-

spatial sketchpad scores and children's National Curriculum mathematics performance 

reported in Chapter 3. Importantly, several measures of visuo-spatial working memory were 

administered. The tasks were selected on the basis that they were presumed to measure the 

two subcomponents of visuo-spatial working memory. The Visual Patterns Test (Delia Sala, 

Gray, Baddeley & Wilson, 1997) was selected as a standardized measure of the visual 

subcomponent and the Block Recall (WMTB-C, Pickering & Gathercole, 2001), a version of 

the Corsi block task, was selected a standardized measure of the spatial subcomponent. These 

tasks have been used in previous studies where a dissociation between the two 

subcomponents has been found with children (e.g. Logie & Pearson, 1997). Furthermore, 

spatial interference tasks cause selective interference in performance on the Corsi task (e.g. 

Smyth & Pendleton, 1989) and visual interference tasks selectively disrupt performance on 



the Visual Patterns Test (Delia Sala et al., 1999), suggesting the two tasks tap distinct 

abilities. Two relatively new tasks, Blobby Spatial (Phillips & Hamilton, 2001) and Blobby 

Visual (Phillips & Hamilton, 2001), were included as additional measures of separate visual 

and spatial working memory abilities. These were included as they were designed to isolate 

visual and spatial components from one another and from verbal and executive working 

memory resources (Phillips & Hamilton, 2001). As discussed in Chapter 1 (section 1.4.2.2) it 

has been suggested that existing visuo-spatial sketchpad measures may recruit executive 

resources, and subsequently compromise the observation of the contribution of visuo-spatial 

working memory skills to mathematics performance. Therefore, it was important to measure 

visual and spatial abilities that were free from executive demands to measure the contribution 

of visuo-spatial working memory to mathematics per se. As Hamilton et al., (2003) suggest, 

using such measures may define a more pertinent role for visuo-spatial working memory in 

mathematics. A fif th visuo-spatial working memory task, Mazes Memory (Pickering & 

Gathercole, 2001), was included for two reasons. Firstly, because it was found to predict 

unique variance in children's mathematics performance in the previous study (Chapter 3) and 

secondly, because it is arguably both visual and spatial in nature. 

In summary, the aim of the present study was to further investigate the association 

between children's visuo-spatial working memory scores and their National Curriculum 

mathematics abilities using multiple measures of visuo-spatial working memory ability. A 

second aim was to explore the structure of visuo-spatial working memory in children, and 

subsequently explore the contributions of the subcomponents of visuo-spatial working 

memory to children's mathematics performance. As in Chapter 3, none of the working 

memory measures were digit-based so as to eliminate the chances of detecting a general 

ability to process number or numerical information across the working memory and 

mathematics tasks. As before, children's mathematics ability was assessed using the tests 
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developed in Chapter 2. A measure of NVIQ was also included to explore the effect of 

controlling for individual differences in NVIQ on the relationship between visuo-spatial 

working memory abilities and mathematics performance. 

Method 

Participants 

The participants were 107 children (55 boys and 52 girls), who attended a primary 

school in the North-East of England. There were 51 Year 3 children (28 boys and 23 girls), 

mean age 7 years and 7 months (SD = 3.7 months, range 7 years 1 month to 8 years 3 

months), and 56 Year 5 children (27 boys and 29 girls), mean age 9 years and 7 months (SD 

= 3.8 months, range 9 years 3 months to 10 years 3 months). No children were excluded due 

to any intellectual or behavioural difficulties. 

The percentage of children achieving Level 4 attainment and above in English, 

Mathematics and Science was 87%, 89% and 90% respectively. This was higher than the 

national average of 75% in English, 72% in Mathematics and 85% in Science. 

Design and Procedure 

All children participated in three testing sessions. In the first session, each child was 

administered five visuo-spatial sketchpad tasks in a counterbalanced order. Each child was 

tested individually in a quiet area of the school. In the second session, the children were 

administered age appropriate mathematics assessments under standardized test conditions 

within a classroom setting. In the final session, the NV IQ test was administered, again under 

standardized test conditions within a classroom setting. 
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Materials 

Visuo-spatial Sketchpad Tasks 

Five non-digit based visuo-spatial sketchpad tasks were used to assess the visual and 

spatial subcomponents of visuo-spatial working memory. The Visual Patterns Test (Delia 

Sala et al., 1997) and Blobby Visual (Phillips & Hamilton, 2001) were used as measures of 

the visual subcomponent. Block Recall (Pickering & Gathercole, 2001) and Blobby Spatial 

(Phillips & Hamilton, 2001) were used as measures of the spatial subcomponent. The Mazes 

Memory task (Pickering & Gathercole, 2001) was used as a measure of both visual and 

spatial working memory abilities. 

Visual Patterns Test 

The Visual Patterns Test (Delia Sala et al., 1997) involves the presentation of matrices 

in which some of the squares are filled black and some are unfilled. Each matrix is presented 

for 2 seconds. Participants are asked to look carefully at each matrix and try to remember 

where the black squares are. After a half-second delay participants are asked to recall the 

black squares in a blank matrix, which they f i l l in. Testing begins with a block of three trials, 

each of which is a 2 x 2 matrix in which two of the square cells are filled. The size of the 

matrix increases by 2 cells every three trials (or block), while the number of filled cells 

increases by one every three trials. I f one or more correct responses are given within a block 

of three trials, the experimenter proceeds to the next block. Credit is not given for incorrect 

trials. Testing continues until 3 incorrect responses are given in a block. 

The score given was the Trials Correct. Reponses for each trial are scored as 0 or 1. 

The sum of the correct responses provides the Trials Correct score. The maximum score is 

42. The test-retest reliability of this task with British adults is .75 for Version A and .73 for 

Version B. Coefficients are not available for children. 
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Mazes Memory 

See Chapter 3 for details of the Mazes Memory task (Pickering & Gathercole, 2001). 

Block Recall 

The Block Recall task (Pickering & Gathercole, 2001) involves the presentation of 

sequences tapped out on blocks on a board of 9 randomly distributed blocks for immediate 

serial recall. The blocks are tapped at a rate of one per second. Participants are asked to recall 

the tapped sequence in exactly the same order as it was presented. Testing begins with a 

block of six trials, in which each sequence contains only one tap on a single block. The 

sequence length increases at a rate of one block (or tap) every six trials. Within each trial any 

block is only tapped once. I f 4 correct responses are given within in a block, the experimenter 

proceeds to the next block, giving credit for any omitted trials. Testing continues until 3 

incorrect responses are given in a block. 

The score given was the Trials Correct score. Responses for each trial are scored as 0 

or 1. The sum of the correct responses provides the Trials Correct score. The maximum score 

is 54. Test-retest reliability for this task is .43 for Year 5 and Year 6 children (Pickering & 

Gathercole, 2001). Coefficients are not available for Year 3 children, although the test-retest 

reliability for younger children (Year 1 and Year 2) is .63 (Pickering & Gathercole, 2001). 

Blobby Visual 

The Blobby Visual task (Phillips & Hamilton, 2001) requires participants to 

remember the size of squares presented on a computer screen on the stomach of a Mr Blobby 

figure. Each square is presented for 2 seconds, followed by a delay of 4 seconds (to ensure no 

perceptual image remains), and then a second square is presented. Participants are asked to 

judge whether the second square was the same size or a different size to the first square 
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presented. Testing begins with a size step of 50% between the "different" squares and 
reduces every block of twenty trials to 40%, 30%, 20%, 10% and finally 5%. I f more than 10 
consecutive correct responses are given within a block, the experimenter proceeds to the next 
block of trials, giving credit for the omitted trials. Testing continues until 5 incorrect 
responses are given in a block. 

The score given was the Trials Correct score. The computer programme produced the 

number of errors within each block of twenty trials. The number of errors was subtracted 

from twenty to give the number of correct trials per block. The sum of the trials correct for 

each block provides the total Trials Correct score. The maximum score is 120 trials (6 blocks 

of twenty trials). The task is unstandardized meaning no reliability coefficients are available. 

Blobby Spatial 

The Blobby Spatial task (Phillips & Hamilton, 2001) requires participants to 

remember the movement trajectory of spots across a computer screen. A spot moved 

obliquely across a computer screen, then disappeared for 4 seconds behind a Mr. Blobby 

figure, then reappeared either moving along the same or a different trajectory. Participants are 

asked to judge whether the spot is moving along the same trajectory or a different trajectory. 

Testing begins with a change in trajectory direction of 27% and reduces every 20 trials to 

21%, 18%, 13%, 9% and finally 5%. I f more than 10 consecutive correct responses are given 

within a block, the experimenter proceeds to the next block of trials, giving credit for the 

omitted trials. Testing continues until 5 incorrect responses are given in a block. 

The score given was the Trials Correct score. The computer programme produced the 

number of errors within each block of twenty trials. The number of errors was subtracted 

from twenty to give the number of correct trials per block. The sum of the trials correct for 
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each block provides the total Trials Correct score. The maximum score is 120 trials (6 blocks 
of twenty trials). The task is unstandardized meaning no reliability coefficients are available. 

Mathematics Tasks 

See Chapter 2 for details of the age appropriate assessments used to measure the 

National Curriculum mathematical skills Number and Algebra, Shape, Space and Measures, 

Handling Data and Mental Arithmetic. 

NVIQ Task 

See Chapter 3 for details of the MAT-SF (Naglieri, 1985). 

Results 

Power Analysis 

Erdfelder's (1984) compromise power analysis was conducted to determine the 

statistical power of this study. The results of power analyses conducted using Faul and 

Erdfelder's (1992) G Power programme, are presented in Table 4.1. 

Table 4.1 

Compromise Power Analysis for Visuo-spatial Abilities and Curriculum-Based Mathematical 

Skills Study. 

Effect Size Hi "2 Power 

0.5 (medium) 51 56 .90 

The power of this study to test for significance with a medium effect size is .90. This 

exceeds Cohen's (1988) criterion of .8, meaning this study is statistically powerful. 
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Descriptive Statistics 

Descriptive statistics for visuo-spatial working memory measures, mathematics test 

performance and NVIQ scores are presented in Table 4.2. 

Table 4.2 

Descriptive Statistics of Visuo-Spatial Sketchpad and Mathematics Measures (maximum 

score for visuo-spatial measures shown in brackets). (N= 107). 

Measures Year 3 (n = 51) Year 5 (n = 56) 

M SD M SD 

Visuo-spatial Sketchpad 

Measures 

Visual Patterns Test (42) 9.00 2.75 11.27 3.60 

Mazes Memory (42) 9.52 4.10 14.00 6.58 

Block Recall (54) 23.28 4.19 25.38 2.97 

Blobby Visual (120) 47.06 25.47 58.14 23.50 

Blobby Spatial (120) 6.84 15.24 10.61 18.17 

Mathematics Measures 

Number and Algebra (15) 55.56 22.41 56.42 21.70 

Shape, Space and 57.78 19.53 58.52 12.19 

Measures (15) 

Handling Data (15) 60.39 17.55 57.53 14.55 

Mental Arithmetic (15) 61.37 24.33 67.03 20.88 

NVIQ (34) 15.50 5.16 20.33 5.15 

Note. Mathematics scores shown are proportions correct. 
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Year 5 performed significantly better than Year 3 on all visuo-spatial sketchpad 
measures (p<.05), except Blobby Spatial (p>.05). Al l children performed poorly on this 
measure, with most failing to pass Level 1 (20 trials correct), indicating a floor effect. Across 
both age groups, children performed better on the Block Recall task than the other three 
standardized visuo-spatial measures. There was greater variability on the unstandardized 
visuo-spatial measures than the standardized measures. Children's performance did not differ 
significantly across the mathematics assessments, but Year 5 performed significantly better 
on the NVIQ measure than Year 3 children (p<.01). Separate mean scores for boys and girls 
are not shown as there were no significant differences performance across the measures for 
either age group (p>.05). 

Correlation Analyses 

Associations between visuo-spatial sketchpad measures and mathematical abilities are 

presented in the correlation matrix (Table 4.3). Simple correlations are displayed in the upper 

triangle; partial correlation coefficients controlling for age are displayed in the lower triangle. 

The data was collapsed across all children, as there were no significant differences in 

performance (p<.05) between the two age groups on the age appropriate mathematics 

assessments. 

Scores on the standardized visuo-spatial sketchpad measures were intercorrelated (all 

rs > .30,p<.0\), even when the variance related to age was eliminated (allprs >.20,/?<.01). 

The unstandardized visual component measure (Blobby Visual) was significantly related to 

the standardized visuo-spatial sketchpad measure that was visual in nature (Visual Patterns 

Test) (r > .30,/?<.01), even when the variance related to age was eliminated (pr >.20,/?<.01). 

The unstandardized spatial component measure was significantly related to both the 
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standardized visuo-spatial measures that were visual (Visual Patterns Test) and spatial 
(Block Recall) in nature (all rs > .20, p<.05). However, these associations were 
accounted for by age-related variance (allprs < .30,/?>.05), meaning performance on 
the unstandardized spatial component measure was not related to performance on the 
other visuo-spatial sketchpad measures. Performance on the mathematics assessments 
was intercorrelated, even when the variance related to age was eliminated (all rs >.20, 
p<.05, allprs>.20,p<.01). 

Scores on all visuo-spatial sketchpad measures were significantly related to 

Number and Algebra abilities (Visual Patterns Test and Blobby Visual rs >.30, p<.01, 

Mazes Memory, Block Recall and Blobby Spatial rs >.20,/?<.05) and remained so 

after age-related variance was eliminated (Visual Patterns Test and Blobby Visual prs 

>.20, p<M, Block Recall and Blobby Spatial prs >.20,p<.05), excluding Mazes 

Memory (prs <.30,p>.05). 

Scores on all visuo-spatial sketchpad measures, excluding Mazes Memory, 

were significantly related to Mental Arithmetic abilities (Visual Patterns Test, Blobby 

Visual and Blobby Spatial rs >.20 , /K .01, Block Recall r >.20,/?<.05). However, only 

scores on the two unstandardized visuo-spatial working memory measures remained 

significantly associated with Mental Arithmetic ability after age-related variance was 

eliminated (Blobby Visual and Blobby Spatial prs >.20, p<.05). 

Shape, Space and Measures abilities were significantly related to Blobby 

Visual scores (r >.20,/?<.01) and remained so after the variance related to age was 

controlled for (pr >.20,p<.05). 

Handling Data abilities were significantly related to Blobby Spatial scores (r 

>.20,/?<.05), even when the variance related to age was eliminated (pr >.20,p<.05). 
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Visual Patterns Test scores were also significantly related to Handling Data abilities 
when age-related variance was controlled for (pr >.20,p<.05). 

Associations between visuo-spatial sketchpad scores and mathematical skills, 

controlling for NVIQ are presented in Table 4.4. Chronological age was controlled to 

eliminate age -related variance on the NVIQ measure. 

Table 4.4 

Correlation Matrix for Visuo-spatial Sketchpad Measures and Mathematics 

Assessments, Controlling for Age and NVIQ Scores. (N= 107). 

Visual Mazes Block Recall Visual Spatial 

Patterns Test Memory Blobby Blobby 

Number and A6 !08 Xl ^25* A7 

Algebra 

Shape, Space .00 -.05 -.07 .15 -.05 

and Measures 

Handling .11 -.00 -.09 .11 .18 

Data 

Mental .07 .07 .10 .18 .22* 

Arithmetic 

Scores on standardized visuo-spatial sketchpad measures were not 

significantly related to mathematical abilities when individual differences in NVIQ 

were controlled for (all prs <.30,p>.05). A possible explanation for this may be that 

the NVIQ task and the standardized visuo-spatial sketchpad tasks are both measuring 

non-verbal skills. Therefore, controlling for NVIQ may eliminate the variance 



159 

associated with non-verbal abilities, effectively eliminating the variance of interest 
associated with visuo-spatial sketchpad scores. 

Controlling for individual differences in NVIQ also eliminated many of the 

significant associations between scores on the unstandardized visuo-spatial sketchpad 

measures and mathematics performance. However, Visual Blobby was significantly 

related to Number and Algebra ability and Spatial Blobby was significantly related to 

Mental Arithmetic ability (both rs<30,pr<.05), supporting the notion that these 

measures may be executive-free (Phillips & Hamilton, 2001). 

Regression Analyses 

A simple linear regression analysis revealed that all visuo-spatial working 

memory measures predicted 17.4% of the variance in overall mathematics 

performance. Subsequently, a series of fixed-order unique variance regression 

analyses were used to assess the amount of unique variance in mathematics scores 

predicted by each of the measures. For each analysis the mathematics assessment was 

the regressor and the unique contribution (measured as r2) of each working memory 

measure was assessed as a predictor entered into the regression equation after the 

other predictors. The data was collapsed across all children. Age was entered as the 

first variable into each regression equation to control for age-related variance. See 

Table 4.5 (Appendix VHI) for results. 

Models A i , A2, A3, A4 and A5 show the amount of unique variance in 

mathematics scores predicted by scores on the Visual Patterns Test when the variance 

attributed to age and performance on the other visuo-spatial working memory scores 

is accounted for. These models indicate that performance on the Visual Patterns Test 

accounts for no unique variance in overall mathematical ability, Shape Space and 
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Measures or Mental Arithmetic scores (0%). However, it does account for a small, but 
significant, amount of variance in Number and Algebra scores (1%) and Handling 
Data scores (2%). 

Models Bi , B2, B3, B4 and B5 show the amount of unique variance in 

mathematics ability predicted by Mazes Memory scores when age-related variance 

and performance on the other visuo-spatial working memory measures is controlled 

for. These models indicate that Mazes Memory scores do not predict unique variance 

in any mathematical abilities (Number and Algebra, Shape, Space and Measures, 

Handling Data and overall mathematics performance) other than Mental Arithmetic 

scores (1%). 

Models Ci, C2, C3, C4 and C5 show the amount of unique variance in 

mathematics scores predicted by scores on the Block Recall task when the variance 

attributed to age and performance on the other visuo-spatial working memory scores 

is accounted for. These models indicate that Block Recall scores account for no 

unique variance in Shape, Space and Measures or Handling Data scores, but that they 

account for a significant, amount of variance in Number and Algebra scores (1%), 

Mental Arithmetic scores (1%) and overall mathematics ability (1%). 

Models Di, D2, D3, D4 and D 5 show that of the visuo-spatial working memory 

measures Blobby Visual scores account for the greatest amount of unique variance in 

mathematics scores. After the variance contributed by age and performance on the 

other visuo-spatial measures is accounted for Blobby Visual scores account for 7% of 

variance in overall mathematical ability, 6% of variance in Number and Algebra 

scores, 3% of variance in Shape, Space and Measures scores, 2% of variance in 

Handling Data scores and 3% of variance in Mental Arithmetic scores. 
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Models Ei, E2, E 3 , E 4 and E 5 show the amount of unique variance in 
mathematics skills predicted by Blobby Spatial scores when the variance predicted by 
age and performance on the other visuo-spatial sketchpad measures is controlled for. 
These models indicate that Blobby Spatial scores do not account for unique variance 
in Shape, Space and Measures abilities, but that they do account for unique variance 
in overall mathematical ability (3%), Number and Algebra scores (2%), Handling 
Data scores (4%) and Mental Arithmetic scores (5%). 

A second series of fixed-order unique variance regression analyses were 

conducted to assess the amount of unique variance in mathematics scores predicted by 

each of the visuo-spatial working memory measures after the variance accounted for 

by NVIQ was considered. Again, for each analysis the mathematics assessment was 

the regressor and the unique contribution (measured as r7) of each working memory 

measure was assessed as a predictor entered into the regression equation after the 

other predictors, which included age, NVIQ and performance on the other visuo-

spatial working memory measures. As before, the data was collapsed across all 

children. See Table 4.6 (Appendix EX) for results. 

Models Fi F 2 F3 F 4 F 5 (Visual Patterns Test) Gi G2 G 3 G 4 G5 (Mazes Memory) 

and H | H2 H 3 H4 H5 (Block Recall) show the amount of unique variance in 

mathematics skills predicted by each standardized measure of the visuo-spatial 

sketchpad after the variance attributed to age, individual differences in NVIQ and 

performance on the other visuo-spatial measures has been controlled for. Again, the 

standardized visuo-spatial sketchpad measures predict little (maximum 2%), i f any, 

unique variance in mathematics performance. Visual Patterns scores only account for 

1% of unique variance in Handling Data abilities, Mazes Memory scores only account 

for 1% of unique variance in Mental Arithmetic scores and Block Recall scores only 
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account for a small amount of unique variance in Shape, Space and Measures (1%), 
Handling Data (2%) and Mental Arithmetic abilities (1%). 

Models I | I213 Lt I5 show that even when individual differences in NVIQ, age 

and performance on the other visuo-spatial measures are controlled for, Blobby Visual 

scores account for the greatest amount of unique variance in mathematics abilities. 

These models indicate that Blobby Visual scores account for unique variance in 

overall mathematics ability (5%), Number and Algebra scores (5%), Shape, Space and 

Measures scores (2%), Handling Data scores (1%) and Mental Arithmetic scores 

(3%). 

Models Ji J2 J3 J4 J5 show the amount of unique variance in mathematics scores 

predicted by Blobby Spatial scores when the variance attributed to individual 

differences in NVIQ, age and performance on the other visuo-spatial measures is 

controlled for. These models indicate that Blobby Spatial scores account for 2% of 

variance in overall mathematical ability, 1% of variance in Number and Algebra 

scores, 3% of variance in Shape, Space and Measures scores, 3% of variance in 

Handling Data scores and 3% of variance in Mental Arithmetic scores. 

Overall, the regression analyses show that visuo-spatial sketchpad measures 

account for variance in mathematical performance. However, individual standardized 

visuo-spatial sketchpad measures do not predict much (maximum of 2%), i f any, 

unique variance in mathematics performance after the variance attributed to the other 

visuo-spatial measures and individual differences in NVIQ are controlled for. A 

possible reason for this is that controlling for performance on the other visuo-spatial 

measures and the NVIQ measure (that may be measuring the same visuo-spatial 

abilities) is eliminating the variance in visuo-spatial abilities from the regression 

equation before the final predictor (or visuo-spatial measure) is entered. This may 
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result in the final predictor accounting for little, or no further variance in performance. 
Conversely, each of the unstandardized visuo-spatial measures predicted unique 
variance in mathematics performance when performance on the other visuo-spatial 
measures and the NVIQ measure was controlled for. This suggests that they may 
account for additional variance in visuo-spatial abilities beyond that accounted for by 
existing standardized visuo-spatial sketchpad measures. Furthermore, when taken 
together these findings suggest that the unstandardized measures of visuo-spatial 
working memory may be measuring different abilities to the standardized visuo-
spatial measures (given that they predict unique variance in performance over and 
above that predicted by the standardized measure). The results of subsequent factor 
analyses will address this issue. 

Exploratory Factor Analyses 

As in Chapter 3, principal components analyses were conducted to determine 

the higher-order factor structure underpinning variations in scores on all measures as a 

descriptive, summative method prior to conducting model-based techniques. 

Three factors emerged with eigenvalues in excess of 1.00 in the first analysis, 

which included all measures. Factor loadings greater than .30 on the rotated 

component matrix are presented in Table 4.7. 

Al l four measures of mathematics ability loaded on Factor 1, all with similar 

loadings in excess of .60. The three standardized visuo-spatial sketchpad measures 

loaded on Factor 2, as did the NVIQ measure. This suggests that all four measures 

may be measuring the same ability, which probably corresponds to a visuo-spatial 

ability. 
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Table 4.7 

Factor Loadings of Visuo-spatial, Mathematics and NVIQ Measures on Rotated 

Component Matrix. 

Measure Factor 

Visuo-spatial Working Memory 

Measures 

Visual Patterns Test 

Mazes Memory 

Block Recall 

Blobby Visual 

Blobby Spatial 

Mathematics Measures 

Number and Algebra 

Shape, Space and Measures 

Handling Data 

Mental Arithmetic 

NVIQ 

.37 

.78 

.71 

.63 

.86 

.77 

.74 

.66 

.37 

.66 

-.40 

.82 

Only loadings greater than .30 are shown. 

KMO measure of sampling adequacy = .77. 

Blobby Visual loads on both the Mathematics Factor (Factor 1) and the 

Visuo-spatial Factor (Factor 2), suggesting that it is measuring both visuo-spatial and 

mathematics abilities. It is possible that it measures visual memory in a mathematical 

way. That is, because the task requires children to remember the size of different 
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visually presented squares, it is arguably requiring mathematical judgements (size 
judgements) to be made. 

Blobby Spatial loaded positively on a third unknown factor, but it did not load 

on either Factor 1 or Factor 2. As such, it is difficult to infer what it may be 

measuring. One possibility may be that it loads on a separate factor to the other visuo-

spatial measures due to a floor effect (see Table 4.2.). However, the Blobby Visual 

task, which did not show a floor effect, also loads on this third factor. An alternate 

explanation may be that both the Blobby Visual and Blobby Spatial tasks are tapping 

a different ability to the standardized visuo-spatial sketchpad tasks. It is unlikely that 

they are measuring separate visual and spatial memory abilities as, although the nature 

of the two tasks differs along this dimension, they both load on the same factor. One 

possibility is that they might be tapping a visuo-spatial memory ability that is free of 

executive demands (e.g. Phillips & Hamilton, 2001). Alternatively, they may have 

loaded on a separate factor because they were recognition, not recall, tasks. That is, 

the two Blobby tasks required participants to make "same / different" judgements, 

while the other visuo-spatial tasks required participants to recall stimuli. It is not 

possible to infer what these two tasks are measuring from the present data, as 

executive measures were not used. 

Two factors with eigenvalues in excess of 1.00 emerged in the second 

analysis, where the unstandardized visuo-spatial measures were not included. The two 

unstandardized measures were not included due to the problems defining what they 

were measuring in the first analysis. Factor loadings greater than .30 on the rotated 

component matrix are presented in Table 4.8. 
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Table 4.8 

Factor Loadings of Visuo-spatial, Mathematics and NVIQ Measures on Rotated 

Component Matrix, excluding Unstandardized Visuo-spatial Measures. 

Measure Factor 

Visuo-spatial Working Memory 

Measures 

Visual Patterns Test 

Mazes Memory 

Block Recall 

Mathematics Measures 

Number and Algebra 

Shape, Space and Measures 

Handling Data 

Mental Arithmetic 

NVIQ 

.78 

.72 

.64 

.87 

.76 

.75 

.69 

.67 

Only loadings greater than .30 are shown. 

KMO measure of sampling adequacy = .78. 

Again, all four measures of mathematics ability loaded on Factor 1, all with 

similar loadings in excess of .60. The three standardized visuo-spatial sketchpad 

measures loaded on Factor 2, as did the NVIQ measure. This again suggests that all 

four tasks may have similar demands or that both NVIQ and working memory share 

variance. It is probable that all measures are tapping a visuo-spatial ability. 
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Confirmatory Factor Analysis 

As in Chapter 3, confirmatory factor analysis was used as an exploratory 

procedure to show the relationship between the constructs suggested by the principal 

components analyses. Coefficients for the paths between latent constructs and 

variables were produced for each model assessed using EQS 6 (Bentler, 2001). The 

same fit statistics were produced to indicate the goodness of fi t of the models to the 

data (x2, CFI, IFI, GFI, SRMR and RMSEA). These fit indices were compared across 

competing models to find the best theoretical model of the data. 

The two unstandardized visuo-spatial sketchpad tasks were not included in 

further analyses as it was unclear what they were measuring. Simple regression 

analyses revealed that the three remaining visuo-spatial sketchpad tasks accounted for 

8% of variance in overall mathematics ability, 12% of variance in Number and 

Algebra scores, 1% of variance in Shape, Space and Measures scores, 4% of variance 

in Handling Data scores and 8% of variance in Mental Arithmetic scores. When the 

NVIQ task was included in the regression equation the amount of variance accounted 

for in each mathematical skill increased to 13%, 16%, 4%, 8% and 9% respectively. 

The second principal components analysis, which included the same measures (the 

NVIQ, standardized visuo-spatial sketchpad and mathematics tasks), yielded a two-

factor solution (see Table 4.8.), but it did not indicate the correlation between the two 

latent constructs. Four factor models were tested in a series of confirmatory factor 

analyses to further investigate the relationship between visuo-spatial skills and 

mathematics ability. 

The input to the programme was the raw data, from which a covariance matrix 

was computed for the analyses. For all models, the mathematics factor corresponded 

to the structure of the National Curriculum, comprising of four measures of 



mathematics ability; Number and Algebra, Shape, Space and Measures, Handling 

Data and Mental Arithmetic. The visuo-spatial factor differed across the models. The 

first model (CFA1) corresponded to visuo-spatial working memory, with only the 

standardized visuo-spatial measures included. The second model (CFA2) 

corresponded to a general visuo-spatial ability, with measures representing visuo-

spatial working memory (Visual Patterns Task, Mazes Memory and Block Recall) and 

non-verbal skills (NVIQ measure). In the third (CFA3) and fourth (CFA4) models 

tested the position of the NVIQ measure was manipulated. In the third model (CFA3) 

the NVIQ measure was included as an independent variable, free to share variance 

with a visuo-spatial working memory factor, which comprised of the three visuo-

spatial sketchpad tasks. In the fourth model (CFA4), the NVIQ measure was again an 

independent variable, but this time it was free to share variance with both the visuo-

spatial working memory and mathematics factors. Fit statistics for all four models are 

presented in Table 4.9. 

Model CFA3 yielded low fit indices (CFI, GFI and IFF) and differed 

significantly to the data (p<.05), indicating that it is a poor fit. Model CFA4 yielded 

perfect fit indices (CFI and IFI) and did not differ significantly to the data (p>.05, and 

SRMR and RMSEA <.08). However, examination of the diagram for CFA4 revealed 

that the paths between the Visual Patterns Test and Factor 1 and the Mental 

Arithmetic task and Factor 2 were not significant. This suggests that the model is not 

a good description of the data. 
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Table 4.9 

Goodness o f f i t statistics for CFA models (visuo-spatial working memory, 

Mathematics and NVIQ). 

Model Df x2 P CFI GFI IFI SRMR RMSEA 

CFA1 13 13.50 .41 .99 .96 .99 .05 .02 

CFA2 19 19.43 .43 .99 .95 .99 .06 .02 

CFA3 19 30.37 .04 .95 .93 .95 .13 .08 

CFA4 18 16.96 .52 1.00 .96 1.00 .05 .00 

Note. CFI= Bentler's Comparative Fit Index. GFI= Goodness of Fit Index. IFI = 

Bollen's Incremental Fit Index. SRMR = Standardized Root Mean Squared Residual. 

RMSEA = Root Mean Square Error of Approximation. 

Models CFA1 and CFA2 provided the best fit to the data. Both yielded fit 

indices in excess of .95 (CFI and IFI) and .9 (GFI) indicating good fit. Neither models 

differed significantly to the data, yielding RMSEA and SRMR values below .08. The 

X3 value for model CFA1, with 13 degrees of freedom, was 13.5,/? = .41. A 

significant path existed between the visuo-spatial working memory construct and 

mathematics performance; the path covariance coefficient was ,36,/?<.05. The x1 

value for model CFA2, with 19 degrees of freedom, was 19.43, p = .43. A significant 

path existed between the visuo-spatial ability construct and mathematics performance; 

the path covariance coefficient was ,44,/?<.05. Diagrammatic representations of the 

models are shown in Figure 4.1. and Figure 4.2. 
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Visuo-spatial 
Working 
Memory 

Visual Patterns Test 

.36 

Mathematics 

Mazes Memory 

Block Recall 

.79 jy Number and Algebra 

\ .56 \ .56 
Shape, Space and Measures Shape, Space and Measures 

.47 
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^ \ .94 

Mental Arithmetic 

.69 

.81 

.85 

.61 

.83 

.89 

.33 

Figure 4.1 

Diagrammatic Representation of the one of the Best Fitting Factor Model (CFA1) for 

Visuo-spatial Working Memory and Curriculum-Based Mathematics 

There was no significant difference between the fit of the two best fitting 

models (models CFA1 and CFA2,/?<.05). Structurally they differed due to the 

inclusion of the NVIQ measure (see Figures 4. Land 4.2.). Therefore, the results 

suggest that while the NVIQ and visuo-spatial sketchpad tasks share variance and 

load on the same factor, including the NVIQ measure does not significantly alter the 

fit of the model. Inclusion of the NVIQ measure only increased the path covariance 

coefficient between the two factors, visuo-spatial working memory and mathematics, 
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by .08. This indicates that visuo-spatial working memory is significantly associated 

with mathematics performance independent of NVIQ. 

Visuo-spatial 
ability 

.44 

Mathematics 

Number and Algebra 

.69 
NVIQ «— 

.69 

69 JT Visual Patterns Test «— 

k .55 
) * 
k .55 
) * Mazes Memory «— 

.54 

Block Recall «— 

Shape, Space and Measures 

Handling Data 

Mental Arithmetic 

.73 

.72 

.84 

.84 

.59 

.83 

.88 

.37 

Figure 4.2 

Diagrammatic Representation of the one of the Best Fitting Factor Model (CFA2) for 

Visuo-spatial Working Memory, Curriculum-Based Mathematics and NVIQ. 

Discussion 

The results provide further evidence for an association between children's 

visuo-spatial sketchpad ability and their mathematics attainment. A simple regression 

analysis revealed that the five measures of visuo-spatial ability used in the present 



study predicted 17.4% of the variance in children's mathematics scores. A further 

simple regression analysis suggested that the standardized visuo-spatial sketchpad 

measures alone predicted 8% of the variance in children's mathematics scores. In line 

with this, the results of the confirmatory factor analysis revealed that a significant 

path existed between a visuo-spatial sketchpad construct and mathematics 

performance. Although this relationship may reflect an association between visuo-

spatial cognition and mathematics (e.g. Dehaene et al., 1999), the findings support the 

notion that visuo-spatial working memory is involved in children's mathematics per 

se. 

The contribution of the visuo-spatial sketchpad component of Baddeley and 

Hitch's (1974) working memory model to a range of children's National Curriculum-

based mathematical skills was explored using five non-digit based measures of visuo-

spatial working memory. The results suggested that visuo-spatial working memory 

predicted children's mathematics performance. This is consistent with the suggestion 

that working memory assessments predict wider aspects of curriculum attainment 

(e.g. Gathercole & Pickering, 2000a; 2000b), and that working memory assessments 

may be useful as early indicators of scholastic attainment. Furthermore, it extends 

previous findings that visuo-spatial working memory assessments predict 

Mathematics curriculum attainment (e.g. Jarvis & Gathercole, 2003) to suggest that 

visuo-spatial sketchpad assessments could be used to predict attainment in different 

areas of the mathematics curriculum. Visuo-spatial sketchpad scores were found to 

predict all four areas of the mathematics curriculum defined by the National 

Curriculum for England. Consistent with Chapter 3, there was little difference 

between the working memory demands of each mathematical skill (e.g. Visual 

Patterns Test, Mazes Memory and Block Recall test scores predicted between 0% and 
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2% of unique variance across all mathematical skills). This provides further evidence 
to suggest that different mathematical skills do not recruit different working memory 
resources. 

Collectively the five measures of visuo-spatial sketchpad ability predicted 

children's mathematics performance. This supports previous findings that the visuo-

spatial sketchpad supports children's mathematics (e.g. McKenzie et al., 2003) and 

provides further evidence to support the suggestion from neuropsychological literature 

that the nature of visuo-spatial cognition important for mathematics incorporates a 

visuo-spatial working memory system (e.g. Zago & Tzourio-Mazoyer, 2002). 

However, detailed analyses revealed that each measure predicted little unique 

variance in mathematics performance after the variance attributed to age and 

performance on the other measures was controlled for. This was especially true for the 

standardized visuo-spatial sketchpad measures. A possible explanation for this is that 

controlling for performance on the other visuo-spatial measures (that are theoretically 

measuring the same ability) eliminated the variance in mathematics performance 

predicted by visuo-spatial ability before the final predictor (or measure) was entered 

into the regression equation. Indeed, the results of the exploratory factor analysis 

(Table 4.7) suggest that the standardized visuo-spatial sketchpad measures were 

measuring the same ability. It therefore follows that each measure predicted little or 

no unique variance in mathematics performance when entered after the other visuo-

spatial measures. 

One aim of the present study was to further investigate the role of the visuo-

spatial sketchpad in children's mathematics using multiple assessments of visuo-

spatial sketchpad functioning. Importantly, these measures were selected to measure 

the potentially distinct visual and spatial subcomponents of visuo-spatial working 



memory (Logie, 1995) to investigate whether one might be more important for 

supporting children's mathematics than the other. 

The results did not highlight a differential pattern of associations between 

children's visual and spatial working memory abilities and mathematics. For example, 

two standardized tasks that have been previously found to differentiate visual and 

spatial subcomponents of visuo-spatial working memory in children (Visual Patterns 

Test and a version of Block Recall, Logie & Pearson, 1997) were both significantly 

associated with the same two mathematical abilities (Number and Algebra and Mental 

Arithmetic) and both predicted a similar amount of unique variance in all mathematics 

abilities (between 0% and 2%). There are two possible explanations for this pattern of 

results. Firstly, it may be that the visuo-spatial sketchpad is not fractionated into 

visual and spatial subcomponents in children (e.g. Pickering et al., 2001). 

Alternatively, it may be that the tasks used may not have measured distinct visual and 

spatial memory abilities. These two explanations will be discussed in turn. 

Contrary to Logie and Pearson's (1997) finding of developmental 

fractionation, the present findings imply that the visuo-spatial sketchpad may not be 

fractionated into visual and spatial subcomponents in children. Both subcomponents 

defined by Logie (1995) shared similar patterns of associations with mathematics 

ability in children. One possibility is that the visuo-spatial sketchpad is fractionated 

into alternate static and dynamic (Pickering et al., 2001) or active and passive 

components (Vecchi, 1998; Vecchi & Comoldi, 1999; Vecchi & Girelli, 1998; 

Vecchi, Monticellai & Cornoldi, 1995). 

In a study investigating the fractionation of visual and spatial subcomponents 

in children, Pickering et al. (2001) reported a developmental dissociation in 

performance between static and dynamic versions of a matrices task. They compared 
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5-, 8- and 10-year-olds performance on the tasks and found that memory for static 
matrices was superior to memory for dynamic matrices and that this difference 
increased with age. The same partem emerged with a Mazes Memory task where 8-
and 10-year-olds performed better on static than dynamic versions of the task. 
Consequently, they suggested that children's visuo-spatial memory systems might be 
comprised of separate subsystems for dealing with static and dynamic visuo-spatial 
information. Related to this, Vecchi and colleagues have argued for a passive versus 
active distinction in visuo-spatial working memory. According to their suggestion 
passive memory (or processing) refers to the recall of information in the same format 
it was memorised (similar to traditional visuo-spatial sketchpad tasks) while active 
memory refers to the recall of information that has to modified, integrated or 
transformed (mental rotation or image subtraction tasks). They suggest that a passive-
active distinction better accounts for their data from blind and sighted adults and 
children than a visual-spatial one (Vecchi, 1998; Vecchi & Comoldi, 1999; Vecchi & 
Girelli, 1998; Vecchi et al., 1995). Comoldi, Rigoni, Venneri and Vecchi (2000) 
present two children, who together, show a double dissociation of active-passive 
visuo-spatial working memory. However, this distinction does not arguably map onto 
the Baddeley and Hitch (1974) tripartite model. Rather, the passive processes appear 
to reflect the visuo-spatial sketchpad system (e.g. Baddeley & Hitch, 1974), while the 
active processes seem to reflect non-verbal executive processes (e.g. Miyake et al., 
2001). 

These two accounts challenge the idea that the visuo-spatial sketchpad system 

is fractionated into visual and spatial subcomponents in children (e.g. Logie & 

Pearson, 1997). This may explain why a differential pattern of associations was not 

found between visual and spatial memory abilities and mathematics performance in 
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children in the present study. However, the tasks used in the present study did not load 
on to separate factors that would support an alternate cognitive fractionation (such as 
dynamic or static) within the visuo-spatial sketchpad component. Clearly a point for 
future investigation is to explore the potentially different patterns of associations 
between children's performance on static, dynamic, active, passive, visual and spatial 
visuo-spatial memory tasks to better understand the structure of visuo-spatial working 
memory in children. Within this, relations between performance on the visuo-spatial 
tasks and mathematics tests can be explored. This further investigation may elicit a 
greater understanding of the role of visuo-spatial working memory in children's 
mathematics. 

An alternate possibility is that the visual and spatial subcomponents of the 

visuo-spatial sketchpad are separable in children (Logie & Pearson, 1997), but that the 

tasks used in the present study did not measure distinct abilities. Three standardized 

visuo-spatial sketchpad tasks, which were either visual or spatial in nature, were 

administered. It was expected that they would load on different factors according to 

their visual or spatial characteristics. However, all three measures loaded on a single 

factor in the exploratory factor analysis. This suggests that they were not measuring 

separable visual or spatial memory abilities. It is probable that these tasks were 

measuring a general visuo-spatial working memory ability and that all loaded on a 

single factor because each task contained elements of the other tasks. For example, the 

standardized spatial task, Block Recall, was presented visually. Furthermore, it has 

been suggested that spatial rehearsal could be employed to maintain the patterns in the 

standardized visual task, the Visual Patterns Test. An alternate interpretation is that 

these tasks may have loaded on a single factor as each makes significant demands 

upon executive processes. It has been suggested that participants will be able to form 
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easily memorable representations, or "visually chunk", the patterns in the matrix task 
(e.g. Phillips & Hamilton, 2001; Pickering et al., 2001). This is probably also true for 
the routes traced in the Mazes Memory task. Furthermore, the requirement for 
sequential recall in the Block Recall task is believed to make significant demands 
upon executive processes (e.g. Smyth & Scholey, 1996). Indeed, Pickering and 
Gathercole (2001) reported that these three visuo-spatial tasks loaded on the same 
factor as the executive measures in the standardisation of the WMTB-C (2001). It is 
therefore suggested that the visuo-spatial sketchpad may be fractionated into visual 
and spatial subcomponents in children, but that the standardized tasks used in the 
present study were not "pure" enough measures to tap these subcomponents. 

Two unstandardized measures of the visuo-spatial sketchpad were included as 

"pure" measures of visual and spatial working memory abilities. They were designed 

to isolate visual and spatial components of visuo-spatial working memory from one 

another and from verbal and executive demands (Phillips & Hamilton, 2001). It was 

expected that these tasks might share variance with the other visuo-spatial measures, 

but that they would also load on independent factors relating to visual and spatial 

working memory abilities. However, both tasks loaded on a single factor indicating 

that they are not measuring distinct visual and spatial abilities. Furthermore, the visual 

subcomponent task loaded on both the mathematics and visuo-spatial factors, while 

the spatial subcomponent task did not load on any other factors. It was unclear from 

the present data what these two tasks were measuring. Therefore, it was not possible 

to infer anything about the structure of the visuo-spatial sketchpad in children from 

these tasks. 

Overall, the data provides additional evidence for an association between 

visuo-spatial working memory and mathematics in children. However, it does not add 
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to the current understanding of the role or nature of visuo-spatial working memory 
important for supporting children's mathematics. It was not possible to determine 
whether the visual or spatial subcomponent (Logie, 1995) was more important for two 
reasons. Firstly, it was unclear whether the two subcomponents were dissociable and 
secondly, there were problems with the specificity of the visuo-spatial sketchpad 
tasks. 

A final consideration of this study was to explore the effect of controlling for 

individual differences in NVIQ on the relationship between children's working 

memory abilities and their mathematics performance. When controlling for children's 

NVIQ scores, the unique variance predicted by the visuo-spatial measures in 

mathematics scores was reduced, and even eliminated for some measures. However, 

the results of the confirmatory factor analyses suggested that including NVIQ as a 

variable alongside the three standardized visuo-spatial sketchpad measures added little 

to the fit of the model, nor did it dramatically increase the covariance between the two 

latent constructs, visuo-spatial working memory and mathematics. These results 

suggest that visuo-spatial working memory is related to mathematics performance, but 

that the visuo-spatial sketchpad tasks and the NVIQ measure are also closely related. 

Indeed, exploration of the higher-order factor structure suggested that the NVIQ 

loaded on the same factor as the visuo-spatial working memory measures. As 

discussed in Chapter 3, this may reflect the close associations between working 

memory and intelligence (e.g. Colom et al., 2004). Alternatively, it is possible that the 

NVIQ task contained implicit visuo-spatial working memory demands. The task 

required participants to look at a set of pictures and choose a missing piece from a 

selection of four alternatives. This would have implicitly required participants to hold 

in mind (maintain) the visual image of the set of pictures. Furthermore, participants 



would have to spatially manipulate (possibly mentally rotate) the four missing pieces 

to choose the one that matched the original set. 

In conclusion, this study provides additional evidence for the involvement of 

working memory, and in particular the involvement of visuo-spatial working memory, 

in children's mathematics. It further supports the usefulness of working memory 

assessments as predictors of National Curriculum test performance (e.g. Gathercole & 

Pickering, 2000b). Subsets of children with dyscalculia are described as having visuo-

spatial deficits (e.g. Geary, 1993; Rourke & Conway, 1997) and studies of children 

with specific mathematics difficulties have shown that they typically perform poorly 

on visuo-spatial span measures. Importantly, the current data add to this literature and 

strengthen the argument that screening for impaired visuo-spatial working memory 

may help to identify those at risk of maths difficulties. It was not possible to 

determine the structure of visuo-spatial working memory in children, nor was it 

possible to identify the nature of visuo-spatial working memory important for 

supporting children's mathematics. Rather, the findings raised questions for future 

research relating to the measurement of visuo-spatial skills and the visual-spatial 

distinction in working memory. Importantly, the tasks used in this study did not 

appear to measure distinct visual, spatial and non-verbal intelligence abilities. This 

creates scope for a detailed investigation into the nature, specificity and processes 

involved in different tasks. One approach might be to conduct a factor analytic study 

of different visual, spatial, non-verbal executive and non-verbal intelligence measures 

on samples of children and adults. Another important issue arising from the current 

study is that although previous studies have reported dissociations between visual and 

spatial processes in children's visuo-spatial working memory (e.g. Logie & Pearson, 

1997), no such distinctions were observed in the present data. This highlights the fact 
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that, as yet, there is no single definitive description of the structure of visuo-spatial 
working memory. Other researchers (e.g. Pickering et al., 2001; Vecchi & colleagues) 
have offered alternative explanations, which clearly defines the need for future 
research. One approach to this might be to adopt a dual-task design and attempt to 
selectively interfere with different hypothetical subcomponents of visuo-spatial 
working memory. 

Chapter Summary 

1. An association was found between visuo-spatial sketchpad abilities and 

children's mathematics in Chapter 3. The aim of the present study was to 

further investigate this through an exploration of the relationships between the 

two subcomponents of the visuo-spatial sketchpad (e.g. Logie, 1995) and 

children's curriculum-based mathematical skills. As in Chapter 3, the effect of 

controlling for individual differences in NVIQ was also explored. 

2. Multiple measures of visuo-spatial working memory were administered; three 

standardized measures and two unstandardized measures. 

3. Overall the data further support an association between visuo-spatial working 

memory abilities and children's mathematics. Both visual subcomponent and 

spatial subcomponent scores predicted variance in children's mathematics 

performance. However, due to the similarity in the task demands of the 

measures used, each measure predicted little unique variance in mathematics 

scores after the variance attributed to performance on the other tasks had been 

eliminated. 

4. Similarly, visuo-spatial scores predicted little unique variance once individual 

differences in NVIQ had been controlled for. It is possible that visuo-spatial 
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working memory does not contribute to mathematics performance beyond 
NVIQ. Alternatively, it is possible that controlling for performance on the 
NVIQ measure eliminated the variance of interest. That is, the NVIQ task 
might have contained implicit visuo-spatial working memory demands. 

5. Unexpectedly there was not a differential pattern of associations between 

visual and spatial working memory abilities and mathematics. Two 

explanations were offered for this pattern of results: 1) the visuo-spatial 

sketchpad may not be fractionated into visual and spatial components in 

children 2) the tasks used to measure the two subcomponents of the visuo-

spatial sketchpad may have lacked specificity. 

6. These results highlight the need for further research into the measurement of 

and structure of the visuo-spatial sketchpad in children. 
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Chapter Five 

Mathematics: What is being measured? 

Aim 

One aim of this thesis was to investigate the potential contribution of the 

different components of working memory to performance across a range of 

mathematical skills in children. While different components of working memory have 

been found to predict unique variance in children's mathematics performance, there 

was little difference between the working memory demands of each mathematical 

skill. It is possible that the mathematics tests, which were developed from a 

curriculum that is not theoretically grounded, may not be measuring distinct 

mathematical skills. Therefore, the aim of this study was to explore the underlying 

factor structure of the mathematics tests. 

Introduction 

The results thus far suggest that both the central executive and visuo-spatial 

sketchpad, but not the phonological loop, components of working memory contribute 

unique variance to performance across four different mathematical skills defined by 

the National Curriculum for England. This provides evidence to support the notion 

that performing mathematical operations may involve executive functions (e.g. Bull, 

et al., 1999) and visuo-spatial cognition (e.g. Houde & Tzourio-Mazoyer, 2003). 

Notably, the contribution of the components of working memory to 

mathematics has been similar across the four skills in the studies (e.g. visuo-spatial 

sketchpad scores predicted between 1% and 3% of unique variance across all four 

mathematical skills in Chapters 3 and 4). Contrary to previous studies, this implies 
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that different mathematical skills do not recruit different working memory resources. 
In an investigation of the involvement of working memory in children's mathematical 
reasoning, Maybery and Do (2003) suggested that the different components of 
working memory contributed differentially to three areas of the West Australian 
mathematics curriculum (number, measurement and space). For example, they 
reported that fixed verbal span, measured by a letter recall span, was significantly 
associated with two of the three mathematical domains, number and space. 

One explanation for the discrepancy between the results found in this thesis 

and other similar studies may be that the skills measured in the present investigations 

are not separable, distinct skills. That is, the skills outlined by the National 

Curriculum may not be distinct mathematical domains. Examination of the 

mathematics tests revealed that there was considerable overlap in the demands of the 

questions across the four skills. Furthermore, the questions within each skill varied in 

difficulty and demand. As noted in an analytical study of the National Curriculum, 

questions labelled within one category differ greatly in character (Shorrocks-Taylor, 

Curry, Swinnerton & Nelson, 2003). For example, within the Number and Algebra 

domain questions can be further categorised as straightforward calculations, which 

typically include the instruction "calculate the following", rich number calculations, 

which involve calculation with a problem solving aspect and non-mathematical 

context calculations, which involve solving problems set in an everyday context (e.g. 

buying fruit). In addition, the structure of the curriculum was the same for both age 

groups (and is for Key Stages 1, 2 and 3). This meant that all children were assessed 

on the same skills, without regard for possible developmental changes in children's 

mathematical abilities (e.g. the development of strategy use). 
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Unlike in other countries, the National Curriculum for England is not based on 
developmental principles. Pegg (2002) has argued that worldwide there is an absence 
of theoretical underpinnings in outcome-based / standards-based syllabuses and 
assessments, such as SATs. He proposes that outcome-based assessments focus 
primarily on passing and failing children, and are only partially concerned with 
children's mathematics learning. He continues that many curricula are developed from 
"personal experiences of members of writing teams..." (Pegg, 2002, pp. 236). Indeed, 
Brown (2001, pp.35) refers to the current National Curriculum for England as being 
".. .dictated by "common sense" or "what works in practice" rather than being 
theoretically grounded. 

Developmental psychology has begun to influence the mathematics curricula 

in some countries, including America, Australia, New Zealand and Holland. In a 

review of teaching practice in America, Koehler and Grouws (1992) argued that there 

was a clear link between research principles and teaching. In particular, they 

suggested that teachers were influenced by constructivism, socio-cultural and feminist 

perspectives and that their instruction was cognitively guided. Feldman (2002) has 

more recently claimed that these research findings have begun to influence state 

curriculum frameworks in the United States. In New South Wales, Australia and New 

Zealand the mathematics curricula are more directly influenced by developmental 

approaches. For example, the early mathematics curriculum in New Zealand is 

directly derived from Steffe's (1983) account of the development of children's 

number understanding (Wright, Martland & Stafford, 2000). In New South Wales the 

assessment philosophy is referred to as DBA, which stands for Developmental-based 

Assessment and Instruction. The basic principle of this method is that children's 

answers are interpreted within a framework of cognitive growth, known as the 



Structure of the Observed Learning Outcome (SOLO) model proposed by Biggs and 

Collis (1982). SOLO, founded on the stage development ideas of Piaget, is a model 

for interpreting children's responses in terms of the quality of assimilation and 

accommodation of concepts. It is concerned with "how well" something is learned, 

not "how much" is learned. A child's understanding is classified as an outcome, 

which reflects the quality of their learning. This outcome, or SOLO level, indicates 

what a child knows, understands and can do (Pegg, 2002). As such, it allows teachers 

and educators an insight into where instruction should be directed. In short, this 

approach bases teaching and assessment upon a children's development. The 

influence of developmental psychology can also be seen in the development of 

teaching and assessment methods for mathematics in Holland. The main principle of 

the Dutch realistic mathematics education (RME) system is that formal knowledge 

can be developed from children's informal strategies (Treffers, 1991). As such, 

children contribute to their own teaching as much as possible as their own informal 

constructions influence their formal mathematics teaching. 

It is suggested that the lack of theoretical underpinnings for the National 

Curriculum for England may have resulted in the development of a curriculum and 

associated assessments that do not measure distinct mathematical abilities. 

Consequently, the mathematics tests developed from these assessments in Chapter 2 

may not be measuring distinct skills. This could explain the finding that different 

mathematical skills do not recruit different working memory resources. Therefore, the 

aim of this study was to statistically analyse children's performance on the 

mathematics tests to identify whether or not distinct mathematical abilities were being 

measured. 
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Method 

Participants 

The participants were 309 typically developing children (164 boys and 145 

girls), who attended six primary schools in England. One school was in the South-East 

of England, the other five were in the North-East of England. There were 150 Year 3 

children (86 boys and 64 girls), mean age 8 years and 1 month (SD - 4.4 months, 

range 7 years 3 months to 8 years 8 months) and 159 Year 5 children (78 boys and 81 

girls), mean age 10 years and 1 months (SD = 4.6 months, range 9 years 3 months to 

10 years 8 months). 

34 children attended School One (17 Year 3 and 17 Year 5), 43 children 

attended School Two (19 Year 3 and 24 Year 5), 46 children attended School Three 

(25 Year 3 and 21 Year 5), 107 children attended School Four (51 Year 3 and 56 Year 

5), 41 children attended School Five (22 Year 3 and 19 Year 5) and 38 children 

attended School Six (16 Year 3 and 22 Year 5). 

The percentage of children achieving Level 4 attainment and above in English, 

Mathematics and Science was higher than the national average in four of the schools 

(School One 97%, 85% and 97%; School Two 83%, 90% and 95%; School Three 

96%, 93% and 96%; School Four 87%, 89% and 90% respectively) and lower than 

the national average in two of the schools (School Five 55%, 48% and 65%; School 

Six 57%, 47% and 72% respectively). 

Design and Procedure 

All children participated in a one-hour testing session, which formed part of 

the previous studies. The children were administered age appropriate mathematics 

assessments under standardized conditions within a classroom setting. 
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Materials 

The mathematics assessments were comprised of three 10 minute written 

sections followed by one 10-minute mental arithmetic test, which was presented 

orally with written responses. See Chapter 2 for details. 

Results 

Descriptive Statistics 

Descriptive statistics for children's mathematics test performance are presented in 

Table 5.1. 

Table 5.1. 

Descriptive Statistics of Children's Mathematics Performance. (N = 309). 

Mathematics Measure Year 3 (n 

M 

=150) 

SD 

Year 5 («-

M 

=159) 

SD 

Number and Algebra 50.66 26.32 51.79 21.10 

Shape, Space and 55.86 23.63 53.30 15.56 

Measures 

Handling Data 60.17 18.21 58.34 19.12 

Mental Arithmetic 61.26 27.27 59.25 23.37 

Total Mathematics Score 56.61 19.22 54.21 15.56 

Note. Mathematics scores shown are proportions correct. 

Overall, there were no significant differences between Year 3 and Year 5 

children's scores across the mathematics measures (p>.05). However, Year 3 

children's scores were significantly lower on the Number and Algebra measure 



188 

compared to the other measures (F(3, 447=13.20, p<.0l). There were no significant 

differences in Year 5 children's scores across the mathematics measures (F(3, 

114=.44,/?>.05). There were no significant gender differences across the measures 

(p>.05). For this reason separate scores for boys and girls are not shown. 

Exploratory Factor Analysis 

Principal components analyses were conducted to determine the higher-order 

factor structure underpinning variations in scores on the different mathematics 

measures for both age groups. 

One factor emerged with eigenvalues in excess of 1.00 for both age groups, 

meaning the solutions could not be rotated. The unrotated factor solutions, showing 

factor loadings in excess of .30 on the component matrices are presented in Tables 5.2 

Factor Loadings of Mathematics Measures on Component Matrix Solutions for Year 

and 5.3. 

Table 5.2 

3 Data. 

Mathematics Measure Factor 1 

Number and Algebra .86 

Shape, Space and Measures .79 

Handling Data .72 

Mental Arithmetic .87 

Note. KMO measure of sampling adequacy = .68. 
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All four measures of mathematics ability loaded on Factor 1, with loadings in 
excess of .70, for the Year 3 data. 

Table 5.3 

Factor Loadings of Mathematics Measures on Component Matrix Solutions for Year 

5 Data. 

Mathematics Measure Factor 1 

Number and Algebra .79 

Shape, Space and Measures .79 

Handling Data .78 

Mental Arithmetic .84 

Note. KMO measure of sampling adequacy = .78. 

Similarly, all four measures of mathematics ability loaded on Factor 1, all with 

loadings in excess of .70, for the Year 5 data. This suggests that the mathematics 

assessments for both age groups are measuring the same construct, a general 

mathematics ability. 

Cluster Analysis 

Cluster analyses were conducted to explore the factor structure underpinning 

the mathematical skills defined by the National Curriculum. The reason for this 

approach was to ascertain which questions across the four mathematics skills 

contained aspects of the same underlying factor. Cluster analysis is a descriptive, 

multivariate statistical technique that aims to group variables or individuals that are 

close together in some way. It can be used to group individuals, e.g. those that share 



some of the same characteristics, or variables, e.g. those that are distributed similarly 

across individuals. The present analysis concerns grouping variables. Clusters are 

formed as distances between the cases are computed for each variable meaning 

different variables within the data are combined in a series of stages until all the 

variables have been grouped. Three methods of cluster analysis are commonly used; 

hierarchical (agglomerative or divisive), non-hierarchical or model-based. An 

agglomerative, hierarchical method was chosen for this analysis. A variety of 

techniques are available to measure the similarity among variables. The squared 

Euclidean distances measure was chosen for the present analysis because the data was 

binary and it is analogous to conducting a principal components analysis 

(Bartholomew, Steele, Moustaki, & Galbraith, 2002), which can be used to identify 

higher-order factor structures in interval/ratio data. Different clustering algorithms are 

available in cluster analysis. For the present analysis Ward's method was selected as it 

typically yields the clearest picture of clustering and can be used on data that is not 

metric to produce "meaningful" clusters (Bartholomew et al., 2002). 

To explore the possibility of a developmental trend in mathematical abilities, 

two cluster analyses were conducted, one for each age group. A two-cluster solution 

was generated for the Year 3 data. One cluster (Cluster A) contained 30 variables 

(54.55% of questions from the mathematic test). The other cluster (Cluster B) 

contained 25 variables (45.45% of questions). The percentage of questions from each 

curriculum-based mathematics skill grouped in each cluster is presented in Table 5.4 

(see Appendix X for the items comprising each cluster). A large percentage of the 

Number and Algebra and Mental Arithmetic questions grouped into Cluster A, while 

a larger portion of the Shape, Space and Measures and Handling Data questions 
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grouped into Cluster B. Cluster A could be argued to represent a pure mathematical 

skill. Cluster B may represent a more applied mathematical skill. 

Table 5.4 

Percentage of Mathematics Questions Grouping into Clusters for Year 3. 

Cluster 

Mathematics Skill Cluster A Cluster B 

Number and Algebra 93.33% 6.67% 

Shape, Space and Measures 33.33% 66.67% 

Handling Data 26.67% 73.33% 

Mental Arithmetic 70% 30% 

A two-cluster solution was also generated for the Year 5 data. One cluster 

(Cluster C) contained 37 variables (67.27% of the questions), while the other (Cluster 

D) contained 18 variables (32.73% of the questions). Table 5.5 presents the 

percentage of questions from each curriculum-based mathematics skill grouped in the 

two clusters (see Appendix X I for the items comprising each cluster). Cluster 

membership for the Year 5 data did not transpose from the original four mathematics 

skills with the clarity that was seen in the Year 3 data. Rather, questions from each 

mathematics skill were dispersed across the two clusters. The only distinction 

observed between the clusters was the level of difficulty of the questions (as observed 

by the difference between mean scores on each cluster in Table 5.6). Cluster C 

comprised of "easy" questions and Cluster D comprised of "difficult" questions. 
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Table 5.5 

Percentage of Mathematics Questions Grouping into Clusters for Year 5. 

Cluster 

Mathematics Skill Cluster C Cluster D 

Number and Algebra 60% 40%" 

Shape, Space and Measures 66.67% 33.33% 

Handling Data 73.33% 26.67% 

Mental Arithmetic 70% 30% 

Overall, the original curriculum-based mathematics assessments, which 

comprised of four mathematical skills defined by the National Curriculum, were re

defined for both age groups. For the purpose of clarity, the original mathematics skills 

will be referred to as the curriculum-based skills and the re-grouped mathematics 

abilities will be referred to as the performance-related skills from this point forward. 

Descriptive statistics for the performance-related mathematics skills for Year 3 and 

Year 5 children are presented in Table 5.6. Year 3 children performed significantly 

better on Cluster B (the more applied questions) than Cluster A (/(149)=-11.10, 

/K .01), while Year 5 children performed significantly better on Cluster C (the easier 

questions) than Cluster D (r(158)=36.63,/K.01). There was no evidence of a floor 

effect on Cluster D questions because children scored 27% on average (SD 18.04) 

(meaning the children were scoring over a quarter of the questions correct). The 

significant differences in performance across the performance-related mathematics 

skills lend support to the idea that distinct mathematical skills are being measured. 



Table 5.6 

Descriptive Statistics for Children's Performance-Related Mathematics Abilities. 

Mathematics Measure M SD 

Year 3 

Cluster A 48.51 25.77 

Cluster B 66.32 15.04 

Year 5 

Cluster C 72.65 15.76 

Cluster D 27.11 18.04 

Discussion 

Overall, the results suggest that the mathematics tests used to investigate the 

potentially different contributions of working memory to different mathematical skills 

were not measuring distinct, separable skills. Rather, it appears they were measuring 

children's general mathematical abilities. This may explain why, contrary to previous 

findings (e.g. Maybery & Do, 2003), the contributions of the central executive and 

visuo-spatial sketchpad to children's mathematics performance did not differ across 

the four National Curriculum-based skills in the two previous chapters. 

Descriptive statistics suggested that there was little variation in children's 

scores between the four mathematics skills defined by the National Curriculum, for 

both Year 3 and Year 5 children. Indeed, the higher-order factor structure of both 

mathematics assessments, explored using principal components analyses, confirmed 

this. The four measures (Number and Algebra, Shape, Space and Measures, Handling 

Data and Mental Arithmetic) within each age group's assessment loaded on a single 
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factor, which probably corresponded to a general mathematical ability. While it could 
be argued that this result strengthened the construct validity of the assessments 
(suggesting they are all measuring mathematics performance) it indicated that an 
alternate factor structure might underpin the tests. Indeed, in the subsequent cluster 
analyses a two-cluster solution was generated for both assessments. For the Year 3 
data, it was suggested that these clusters might correspond to a pure mathematical 
skill and an applied mathematical skill. Interestingly, the Year 3 children performed 
significantly better on the applied questions than the pure questions. This appears 
consistent with Hughes's (1986) suggestion that younger children can more readily 
solve concrete problems (those that refer to specific objects, people and events), than 
abstract problems that do not have a concrete referent. A different two-cluster solution 
was yielded for the Year 5 data. It was suggested that these clusters might correspond 
to the level of difficulty of the questions, as there was no discernible difference 
between them other than the difference between children's mean scores. Obviously, 
the interpretation of these mathematics clusters is subjective and alternative 
interpretations are possible. For example, Cluster A (for Year 3) predominantly 
incorporated questions that involved computation (e.g. addition, subtraction etc.), 
while Cluster B incorporated questions that involved reading and manipulating 
numbers in a less computational way (e.g. reading from charts and graphs). Future 
research might want to provide a reliable objective assessment of what the clusters 
represent through asking educators and children to classify the questions and provide 
descriptions of the skills they believe the different questions and groupings of 
questions are measuring. 

The results of this study suggest that the current QCA assessments (SATs) 

may not be measuring separable mathematical skills, and therefore, may not be 



assessing the skills defined by the National Curriculum for England. Furthermore, 

considering the different cluster solutions derived for the two age groups in the 

present study, which suggest that there may be a developmental trend in children's 

mathematical competencies, it could be argued that the existing structure of the 

mathematics curriculum may not be suitable for the wide age range at which it is 

aimed. While it may not be crucial that the curriculum teaches and assesses 

mathematical skills separately, only that it improves children's general mathematical 

performance, it is suggested that a more structured curriculum, tailored to specific 

stages in development, could facilitate and promote learning. 

Using cognitive-based developmental research to guide curriculum-

development could aid learning. The primary benefit of such a system would be that 

children could gain a deeper understanding of mathematics. Pegg (2002) suggests that 

this approach could provide teachers with a better understanding of the knowledge 

children have at certain ages. With this understanding, they could ensure that they 

were teaching skills at an appropriate time, thus avoiding the problems of teaching 

mathematics in a linear fashion (e.g. Munn, 2004). Furthermore, under a new system 

long-term understanding may be promoted, as there may be less pressure to raise 

standards, which at present can cause rote learning (Pegg, 2002). Arguably the benefit 

most relevant to the present research is that developing a curriculum from a 

developmental perspective could mean that content areas can be arranged in a 

developmentally justifiable way, where levels of attainment reflect phases in cognitive 

development. This would be beneficial for research, such as the present investigation, 

as it would allow a closer examination of the cognitive resources important for 

successful mathematical development. In due course, this research would hopefully 



feedback into the education system, and permit educators a better understanding of 

cognitive mechanisms involved in early mathematical development. 

Other countries, including Australia and Holland, have adopted this approach 

and built mathematics curricula around developmental theories. Although the English 

system is yet to encompass similar ideas, recent changes aimed at improving 

mathematics education, including the introduction of the National Numeracy Strategy 

(NNS) in 1999, have been made. When the NNS was launched, the Chief Inspector 

for Schools Chris Woodhead, claimed that it was not based on a model of learning, 

but on a model of teaching (Askew, 2004). Although this suggests that the English 

system still has some way to go before developmental ideas are incorporated, some 

Local Education Authorities in England (e.g. Cumbria) have introduced training for 

teachers in children's conceptual development (e.g. the Mathematics Recovery 

approach, Wright et al., 2000) (Willey, 2004). 

In light of the findings of this study, and current trends in other countries, it is 

suggested that the QCA review the existing Key Stage 2 mathematics curriculum to 

better reflect children's learning. They may want to take an analytic approach 

analogous to that conducted is this study to re-define areas of mathematics that 

directly reflect children's performance on existing measures, or re-define the 

curriculum in terms of children's number development, akin to the Australian or 

Dutch methods. 

For the present purpose, this study has re-grouped the mathematical skills 

defined by National Curriculum for England into distinct, measurable mathematical 

domains for Year 3 and Year 5 children. These new performance-related mathematics 

skills will aid further exploration of the potentially different contributions of the 
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components of working memory to performance across a range of mathematical 

abilities in children. 

Chapter Summary 

1. The aim of this thesis was to explore the potentially different contributions of 

working memory to different mathematical abilities. As a means of assessing 

different mathematical skills in children tests were developed from the 

National Curriculum guidelines. 

2. Contrary to previous studies, the relative contribution of the components of 

working memory to mathematics was similar across the four skills. It was 

therefore suggested that the skills defined by National Curriculum might not 

be distinct, separable mathematical abilities. 

3. The present study analysed children's performance on the mathematics tests. 

The results suggested that the tests developed from the National Curriculum 

guidelines were measuring one factor (general mathematics ability). Further 

analyses were conducted, which suggested that the mathematics tests had 

alternate higher-order factor structures that differed for the two age groups. 

4. The results of this study imply that the Key Stage 2 mathematics curriculum in 

England might not be teaching and assessing distinct mathematical skills. 

5. It was subsequently suggested that the QCA review the existing curriculum, 

and perhaps follow trends in other countries that have developed curricula 

from developmental perspectives to promote children's learning. 

6. In relation to the present research, this study has defined separate 

mathematical domains that will permit subsequent investigations into the 
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relative contributions of the components of working memory to different 
mathematical skills in children. 
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Chapter Six 

Working Memory and Children's Performance-related 

Mathematical Skills 

Aim 

A significant association was found between working memory ability and 

children's curriculum-based mathematics performance in Chapter 3. However, 

contrary to expectation, there was little difference between the working memory 

demands of the different curriculum-based mathematical skills. The aim of the present 

study was to re-analyse the data collected in Chapter 3 to explore the relationship 

between working memory ability and the performance-related mathematical skills 

derived in Chapter 5. More specifically, the aim was to explore potentially different 

working memory demands of the performance-related mathematical skills for each 

age group. 

Introduction 

One aim of Chapter 3 was to explore the contribution of the three components 

of the working memory model to performance across a range of mathematical skills 

defined by the National Curriculum for England. Hecht (2002) reported that different 

arithmetic solution strategies recruited different working memory resources. Hence, it 

was expected that the four mathematical skills defined by the National Curriculum 

(Number and Algebra, Shape, Space and Measures, Handling Data and Mental 

Arithmetic) would recruit different working memory resources. 

The results of this earlier study suggested that visuo-spatial sketchpad and 

central executive scores predicted unique variance in children's curriculum-based 

mathematics performance when both age-related variance and individual differences 
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in NVIQ were controlled for. However, rather unexpectedly the data suggested that 
the working memory demands were similar across all four skills. Phonological loop 
scores did not predict unique variance in any curriculum-based mathematical skills. 
Visuo-spatial sketchpad scores predicted a small but significant amount of unique 
variance in all four mathematical skills (between 1% and 3%) and central executive 
scores predicted a greatest amount of unique variance across all skills (between 12% 
and 22%). 

There were two possible reasons for this finding. The first possibility was that 

the mathematics assessments developed in Chapter 2 were not measuring distinct 

mathematical skills. Indeed, the results of Chapter 5 suggested that the four 

mathematics skills defined by the National Curriculum for England were not distinct 

skills. There was little variation in children's scores between the mathematics skills 

and the results of the principal components analyses suggested that all four measures 

loaded on a single factor. Possible reasons for this are discussed in Chapter 5. In short, 

it appeared that the assessments were measuring a general mathematics ability. 

Subsequent analyses generated alternate factor structures for the mathematics 

assessments. Based on children's test performance new distinct and separable 

mathematical skills were defined for each age group (see Chapter 5 for details). 

A second possible explanation for the finding that the working memory 

demands were similar across different mathematical skills may be that, although age-

related variance was controlled for, the data from the two age groups was collapsed to 

form one large data set. Developmental changes occur in children's mathematics 

abilities during the primary school years (between 5- and 11-years-of-age). During 

this time, children's mathematical development is characterised by changes in the use 

of different strategies (e.g. Siegler, 1999). Typically, they advance from using slow 



procedural counting-based solution strategies to more efficient retrieval-based 

strategies (e.g. Kaye, 1986) (see Chapter 1, section 1.3.2 for an overview of the 

developmental changes in mathematical cognition during the school years). This 

implies that children of different primary-school ages may be using different solution 

strategies based on their stage of mathematical development. As such, children of 

different ages may recruit different working memory resources for the solution to 

different mathematical problems. 

Potential differences in the relationship between working memory and 

mathematics between the two age groups (7-/8-year-olds and 9-/10-year-olds) were 

not explored in Chapter 3. This may have eliminated some of the variance in the 

working memory demands for each curriculum-based mathematical skill. Indeed, 

phonological loop scores were significantly associated with mental arithmetic 

performance before age-related variance was controlled for. Further analyses revealed 

that the phonological loop measure showed a stronger association with the older 

children's (9-/10-year-olds) mental arithmetic performance. This supports the idea 

that children from the two age groups may have recruited different working memory 

resources for the different areas of mathematics. Furthermore, children's 

performance-related mathematics skills differed between the two age groups (see 

Chapter 5). This suggests that there may be a developmental trend in children's 

mathematical competencies, which again may affect the working memory resources 

recruited. 

The present study attempted to resolve some of the inconsistencies in Chapter 

3. As in Chapter 3, the relationship between working memory ability and a range of 

mathematics skills was explored in children at Key Stage 2 of the National 

Curriculum. However, there were two important differences in the present study. 
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Firstly, the two age groups were considered separately to explore any potential 
developmental differences in the working memory demands of different mathematical 
abilities. Secondly, the mathematics skills assessed were the performance-related 
skills derived Chapter 5. These were used as the results of Chapter 5 indicated that 
they were separable abilities, unlike the mathematical skills defined by National 
Curriculum for England that were used in Chapter 3. 

Individual differences in NVIQ were controlled for in Chapter 3. However, the 

NVIQ measure loaded on the same factor as the working memory measures in the 

factor analyses, suggesting that the task demands of the measures are similar. 

Furthermore, including NVIQ did not effect the overall pattern of associations 

between working memory ability and mathematics performance in the correlation, 

regression or confirmatory factor analyses (see Chapter 3). Therefore, the NVIQ 

measure was not included in the present study. 

Method 

Participants 

The participants were the same 148 primary school children who participated 

in Chapter 3 (see Chapter 3 for details). 

Design and Procedure 

See Chapter 3. 
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Materials 

Working Memory Tasks 

The working memory tasks, taken from the WMTB-C (Pickering & 

Gathercole, 2001), were; Nonword List Recall, Mazes Memory and Listening Recall. 

(See Chapter 3 for details). 

Mathematics Tasks 

The mathematics assessments were the age appropriate tests administered in 

Chapter 3. Instead of scoring the tests according to performance across the four 

curriculum-based skills (see Chapter 3), children's mathematics abilities were 

measured according their performance on the performance-related skills derived in 

Chapter 5. This meant that two skills were assessed for each age group respectively. 

Year 3 Pure Mathematics 

The pure mathematics test items were those that grouped as Cluster A (see 

Chapter 5). These questions were predominantly from the original Number and 

Algebra and Mental Arithmetic curriculum areas. Primarily they require children to 

demonstrate their understanding of number and context-free mathematical operations. 

An example question is presented in Figure 6.1. 

Write in the missing numbers. 

42 + • 73 

Figure 6.1 

Example Question from the Year 3 Pure Mathematics 
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Year 3 Applied Mathematics 

The applied mathematics test consisted of items that grouped as Cluster B in 

Chapter 5. These questions were predominantly from the original Shape, Space and 

Measures and Handling Data curriculum areas. Primarily the questions require 

children to demonstrate their understanding of mathematical problems that are based 

around shapes, stories or pictures. An example question is presented in Figure 6.2. 

Class 3's Favourite Fruit 

p 10 
8 

O 6 

« 0) 

Apple Orange Pear Banana Apricot 

Fruit 

How many children chose oranges and pears? 

Figure 6.2 

Example Question from the Year 3 Applied Mathematics 

Year 5 Easy Mathematics 

The easy mathematics items were those that grouped as Cluster C in Chapter 

5. This group of questions had no discernible characteristics. However, the proportion 

correct score for Year 5 children on this cluster of questions was significantly higher 

than the proportion correct score for Cluster D questions. For this reason these 

questions were labelled "easy". An example question is presented in Figure 6.3. 
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Write in the missing numbers. 

35 + Q = 100 

Figure 6.3. 

Example Question from the Year 5 Easy Mathematics 

Year 5 Difficult Mathematics 

The difficult mathematics test consisted of items that grouped in Cluster D in 

Chapter 5. Again, this group of questions had no discernible characteristics. Given 

that the proportion correct score for Year 5 children on this cluster of questions was 

significantly lower than the proportion correct score on Cluster C questions, these 

questions were labelled "difficult". An example question is presented in Figure 6.4. 

"Calculate" 

152 8 - U 
Figure 6.4. 

Example Question from the Year 5 Difficult Mathematics 



Results 

Power Analysis 

Erdfelder's (1984) compromise power analyses were conducted to determine 

the statistical power of this study. The results of the power analyses, conducted using 

Faul and Erdfelder's (1992) G Power programme, are presented in Table 6.1. Power 

analyses were conducted for each age group, as the data from the two samples were 

analysed separately 

Table 6.1 

Compromise Power Analysis for Working Memory and Performance-Related 

Mathematics Study. 

Year Effect Size «i (boys) « 2 (girls) Power 

Year 3 0.5 (medium) 46 32 .86 

Year 5 0.5 (medium) 33 37 .85 

The power of this study to test for significance with a medium effect size is 

.86 for the Year 3 sample and .85 for the Year 5 sample. Both values exceeds Cohen's 

(1988) criterion of .8, meaning this study is statistically powerful. 

Descriptive Statistics 

Descriptive statistics for working memory measures and performance-related 

mathematics skills are presented in Table 6.2. 
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Table 6.2. 

Descriptive Statistics of Working Memory and Performance-Related Mathematics 

Measures. (Maximum scores for working memory measure shown in parentheses). 

(N=\4S). 

Measures Year 3. (« = 78). Year 5. (n = 70). 

M SD M SD 

Working Memory Measures 

Phonological Loop (36) 13.92 2.49 17.15 2.59 

Visuo-Spatial Sketchpad (42) 9.37 5.79 17.05 7.43 

Central Executive (36) 9.42 3.56 13.00 3.10 

Mathematics Measures 

Cluster A 53.49 26.79 

Cluster B 66.45 16.26 

Cluster C - - 71.33 13.03 

Cluster D - - 29.85 17.35 

Note. Mathematics scores shown are proportion correct. 

Year 3 children performed significantly better on Cluster B, the more applied 

questions, than on Cluster A, the purer mathematics questions (f(77)=-5.64, p<.05). 

Year 5 children performed significantly worse on Cluster D than Cluster C questions 

(/(69)=19.83,/?<.01). As mentioned previously this indicates that the questions 

comprising this cluster were more difficult. As in previous chapters, there were no 

significant gender differences in performance (p>.05). For this reason boys and girls 

mean scores are not presented. 
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Correlation Analyses 

Associations between working memory and performance-related mathematics 

skills are presented in the correlation matrix (Table 6.3). Coefficients for Year 3 are 

displayed in the upper triangle; coefficients for Year 5 are displayed in the lower 

triangle. 

Scores on the visuo-spatial sketchpad and central executive working memory 

measures were intercorrelated for both age groups (all rs>.2,p<.05). The 

phonological loop measure was not correlated with the other working memory 

measures for either age group. Performance on the mathematics abilities was 

intercorrelated across both age groups (all rs>.3,/><.05). 

For Year 3 children, visuo-spatial and central executive scores were 

significantly related to both of the performance-related mathematical abilities (all 

rs>.03,p<.0l). For Year 5 children, only central executive scores were significantly 

related to the performance-related mathematics abilities (all rs>.3,/?<.05). However, 

the associations between phonological loop scores and Cluster C mathematics 

performance approached significance, as did the associations between visuo-spatial 

scores and Cluster C and Cluster D mathematics scores. 

Regression Analyses 

Simple regression analyses revealed that the working memory measures 

predicted 45.6% of the variance in Year 3's overall mathematics performance and 

19.8% in Year 5's overall mathematics performance. Subsequently, a series of fixed-

order regression analyses were used to assess the amount of unique variance in the 

performance-related mathematics scores predicted by each of the measures of 

working memory for Year 3 (Table 6.4) and Year 5 (Table 6.5) children. 
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Table 6.4 

Fixed-order multiple regression analyses predicting unique variance in performance-

related mathematics performance for Year 3. (n=78). 

r , i 4 . Order of Mathematics p 

Predictor Ability Model T , 
Predicted „ 

Equation 

r r2 Adjusted r2 

Phonological Loop 

Cluster A A, l.CE .54 .30 .28 
2.VSSP .61 .37 .34 
3. PL .61 .37 .34 

Cluster B A 2 
1. CE .62 .38 .37 
2.VSSP .65 .43 .40 
3.PL .65 .43 .40 

Visuo-spatial Sketchpad 

Cluster A B, 1. CE .54 .30 .28 
2. PL .55 .30 .27 
3. VSSP .61 .37 .33 

Cluster B B 2 1. CE .62 .38 .37 
2. PL .62 .39 .36 
3. VSSP .65 .43 .39 

Central Executive 

Cluster A c, l . P L .15 .02 .00 
2. VSSP .42 .18 .14 
3.CE .61 .37 .33 

Cluster B c 2 l . P L .18 .03 .01 
2. VSSP .40 .16 .12 
3. CE .65 .43 .39 
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The mathematics measure was the regressor for each analysis and the unique 
contribution (measured as r2) of each working memory measure was assessed as a 
predictor entered into the equation after the other predictors. 

Models A| and A2 show that phonological loop scores do not account for any 

unique variance in mathematics scores in Year 3 beyond that predicted by the other 

working memory measures. Models Bi and B 2 show that visuo-spatial sketchpad 

scores predicted 7% of unique variance in Cluster A (pure) scores and 4% of unique 

variance in Cluster B (applied) scores in Year 3. Models Ci and C2 show that central 

executive scores accounted for the largest amount of unique variance in mathematics 

scores in Year 3; 19% of Cluster A (pure) and 27% of Cluster B (applied) scores. 

Working memory measures predicted less unique variance in mathematics 

performance in Year 5. Models Gi and G2 show that phonological loop scores 

predicted 2% of unique variance in Cluster C (easy) scores, but did not predict any 

unique variance in Cluster D (difficult) scores. Contrary to this, models Hi and H2 

show that visuo-spatial sketchpad scores predicted 3% of unique variance in Cluster D 

(difficult) scores, but no unique variance in Cluster C (easy) scores. As with Year 3, 

central executive scores predicted the largest amount of unique variance in 

mathematics scores in Year 5; 18% of Cluster C (easy) and 5% of Cluster D (difficult) 

scores (models Ii and I2). 
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Table 6.5 

Fixed-order multiple regression analyses predicting unique variance in performance-

related mathematics performance for Year 5. (n=10). 

Mathematics 
Predictor Ability 

Predicted 
Model 

Order of 
Entry 
Into 
Equation 

r r2 Adjusted r2 

Phonological Loop 

Cluster C G, l.CE .53 .28 .27 
2.VSSP .53 .28 .21 
3. PL .55 .30 .27 

Cluster D G 2 1. CE .30 .09 .07 
2.VSSP .34 .12 .08 
3.PL .34 .12 .08 

Visuo-spatial Sketchpad 

Cluster C H, 1. CE .53 .28 .27 
2. PL .55 .30 .27 
3. VSSP .55 .30 .27 

Cluster D H 2 
1. CE .30 .09 .07 
2. PL .30 .09 .07 
3.VSSP .34 .12 .07 

Central Executive 

Cluster C I . l . PL .26 .07 .05 
2. VSSP .35 .12 .09 
3. CE .55 .30 .26 

Cluster D h l . PL .08 .01 -.01 
2. VSSP .27 .07 .03 
3.CE .34 .12 .06 
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Discussion 

Overall, the results show a significant association between working memory 

ability and mathematics attainment in 7-/8-year-olds and 9-/10-year-olds. Simple 

regression analyses revealed that the tripartite model of working memory (Baddeley 

& Hitch, 1974; Baddeley, 1986) predicted 45.6% of the variance in Year 3 (7-/8-year-

old) children's mathematics scores and 19.8% of the variance in Year 5 (9-/10-year 

old) children's mathematics scores. This is consistent with previous findings that 

working memory assessments predict scholastic attainment (e.g. Gathercole & 

Pickering 2000a; 2000b), and provides additional evidence for the involvement of 

working memory in children's mathematics (e.g. Adams & Hitch, 1997; Bull et al., 

1999). Importantly, the findings suggest that the components of working memory 

involved in children's mathematics may change with age. 

The contributions of the different components of the working memory model 

to children's performance across a range of mathematical skills was assessed using 

non-digit based measures of working memory function from the WMTB-C (Pickering 

& Gathercole, 2001). Importantly, the mathematical skills assessed, which differed for 

each age group, were distinct abilities that were defined by children's performance 

(see Chapter 5). The results presented in Chapter 3 indicated that there was little 

difference between the working memory demands of curriculum-based mathematical 

skills. However, the present study revealed a developmental difference in the 

relationship between working memory ability and performance-related mathematical 

skills across the two age groups. 

Overall, working memory measures predicted less variance in the older 

children's mathematics scores (19.8%) than the younger children's (45.6%). This 

suggests that working memory may support mathematics development where children 
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are acquiring new solution strategies (e.g. Bull & Scerif, 2001) or learning 
mathematics facts via rote rehearsal (e.g. Hitch & McAuley, 1991). Furthermore, it 
suggests that young children may be more reliant upon working memory due to slow 
processing. Mathematics is less automatic in young children, who use slower 
procedural strategies for mathematics. Therefore, working memory may be important 
for supporting the retention of problem information during these processes (e.g. 
Adams & Hitch, 1998). 

More specifically, the data revealed a markedly distinct pattern of associations 

between the different components of the tripartite working memory model (Baddeley 

& Hitch, 1974) and performance-related mathematical skills across the two age 

groups. The contribution of each component of working memory to the performance-

related mathematical skills will be discussed in turn. 

Consistent with earlier findings (Chapter 3) the central executive predicted 

unique variance in all performance-related mathematical skills (5-27% across both 

age groups). As discussed in Chapter 3, this may in part reflect the contribution of a 

more general resource such as intelligence to mathematics competency (e.g. Kyllonen 

& Christal, 1990). However, central executive scores predicted a greater amount of 

unique variance in the younger children's mathematics scores (19%-27%) than the 

older children's (5%-18%). The apparent lesser involvement of the central executive 

in the older children's mathematics supports Bull and Scerif s (2001) suggestion that 

executive function may be less important at a higher level of skill acquisition. That is, 

once a skill such as the retrieval of appropriate solution strategies has become 

automatic, there may be less need to establish schema, which reduces the role of 

executive processes. 
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Phonological loop scores predicted unique variance in the older children's 
easy questions on the performance-related mathematical skills. This was the opposite 
pattern to that observed between visuo-spatial sketchpad scores and children's 
performance-derived mathematical skills. It is suggested that the greater involvement 
of the phonological loop in the older children's mathematics may reflect the mastery 
of symbolic-linguistic arithmetic (Houde, 1997) or mature solution strategies (such as 
direct retrieval) that rely on a verbal code (e.g. Dehaene & Cohen, 1995). Consistent 
with this notion, scores on the phonological loop measure were significantly 
associated with mental arithmetic performance before the variance associated with 
age was controlled for in Chapter 3. In other words, the phonological loop showed a 
stronger association with the older children's mental arithmetic performance. As such, 
the data may tentatively suggest that the older children were able to use subvocal 
rehearsal processes to support the retention of problem information (e.g. Adams & 
Hitch, 1997) and direct retrieval of arithmetic facts from long-term memory. 

Young children use verbal solution strategies, such as counting-on, for 

mathematics problems. It was therefore expected that phonological loop scores would 

predict young children's mathematics performance. There are two possible reasons 

why this was not so. Firstly, it is possible that central executive supports the use of 

verbal solution strategies. Supporting this suggestion, the central executive predicted 

greater variance in younger than older children's mathematics. Secondly, it is possible 

that phonological loop scores did not predict unique variance in young children's 

mathematics due to the high degree of association between phonological loop and 

central executive measures (e.g. Gathercole & Pickering, 2000a). However, central 

executive and phonological loop scores were not significantly associated in the 

present study, suggesting that the first explanation may be appropriate. 
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Consistent with previous findings (Chapter 3), visuo-spatial sketchpad scores 
predicted a small but significant amount of unique variance in children's mathematics 
performance (between 3% and 7% across both age groups). Further examination of 
the relationship between the visuo-spatial sketchpad and the children's performance-
related mathematics skills revealed a markedly distinct pattern of associations across 
age groups. Visuo-spatial sketchpad scores predicted unique variance in all of the 
younger children's performance-related mathematics skills (pure 7% and applied 4%), 
but only predicted unique variance in the older children's performance on the difficult 
questions (3%). This is consistent with the hypothesis that younger children have a 
greater dependence on the visuo-spatial sketchpad for the successful solution of 
mathematics problems, which may reflect the use of early visual encoding strategies 
(Palmer, 2000) or the use of an early visuo-spatial arithmetic (Houde, 1997). In line 
with this hypothesis, it is suggested that the involvement of the visuo-spatial 
sketchpad in the older children's performance on the difficult questions may reflect a 
dependence upon, or reversion to, early visuo-spatial strategies where symbolic-
linguistic arithmetic (Houdd, 1997) or direct retrieval strategies cannot be applied. As 
Siegler (1986) proposed, children resort to back-up strategies when the answer cannot 
be retrieved and it is suggested that this may be evident in the present data. In support 
of this, the phonological loop predicted unique variance in the older children's 
performance on the easy questions, where direct retrieval may have been possible. 

Although this interpretation is speculative, the data provides an initial 

indication that the working memory processes supporting children's mathematics 

change with age, and consequently it defines possible independent roles for the two 

slave systems. These different roles demonstrate a shift from early visuo-spatial 

strategies to mature, verbal solution strategies, such as direct retrieval. 
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At approximately 7-/8-years-of-age, children appear more reliant on the visuo-
spatial sketchpad to support their mathematics, which may reflect a dependence upon 
early visuo-spatial strategies to solve novel and complex problems where direct 
retrieval is not possible (e.g. McKenzie et al., 2003). Although the precise role of the 
visuo-spatial sketchpad is yet to be established, its involvement in young children's 
early numeracy development may provide a foundation for representing abstract 
problems in a concrete form. Hughes (1986) found that pre-school children could 
more readily solve concrete problems (those that refer to specific objects, people or 
events), than abstract problems that do not have a concrete referent. He contended that 
the source of children's difficulty with formally taught mathematics was the abstract, 
context-free nature of certain problems. Hughes proposed that when children begin 
school they have to leam the formal language of mathematics. As such, it is 
tentatively suggested that the visuo-spatial sketchpad may provide a workspace to 
support the development of links between informal concrete knowledge and the 
abstract language of mathematics necessary for children's mathematics (Tizard & 
Hughes, 1984). 

By 9-/10-years the children are beginning to rely on the phonological loop for 

the solution of easy mathematical problems, which may reflect the deployment of 

direct retrieval strategies that typically involve verbal codes (e.g. Dehaene & Cohen, 

1995). Importantly, the data reinforces the idea that the phonological loop is important 

for the effective use of retrieval strategies, possibly through aiding the acquisition and 

retrieval of number facts from long-term memory (e.g. Hitch & McAuley, 1991). 

The pattern of results observed in our data are consistent with McKenzie et al. 

(2003) who recently demonstrated, using a dual-task design, that younger children use 

visuo-spatial strategies in mental arithmetic, while older children use a mixture of 
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phonological and visuo-spatial strategies. As such, the suggestion that visuo-spatial 
working memory plays an important role in early mathematics certainly warrants 
further investigation. For example, future research might explore whether the 
assessment of visuo-spatial sketchpad skills at a young age could be used to identify 
children who may have later problems learning mathematics. Alternatively, it might 
explore the relative contributions of different aspects of visuo-spatial cognition (e.g. 
visuo-spatial working memory, visual attention or imagery) to early mathematics 
proficiency. 

In conclusion, this study provides further support for the involvement of 

working memory in children's mathematics. Importantly, it provides evidence for an 

independent role for the visuo-spatial sketchpad in early mathematics. This is 

important for both cognitive theory and educational practice. Theoretically, the 

developmental shift in the memory processes involved in children's mathematics 

between 7- and 10-years advances our understanding of how children learn 

mathematics. This understanding relates to educational practice on two levels. Firstly, 

the suggestion that young children use predominantly visuo-spatial strategies until 

they are competent and able to deploy verbal, abstract strategies is important for the 

teaching of mathematics. Secondly, the importance of the visuo-spatial sketchpad in 

early mathematics may further our understanding of the deficits experienced by 

children with mathematical learning difficulties such as developmental dyscalculia 

(Butterworth, 2003). Visuo-spatial deficits are characteristic among children and 

adults with mathematical learning difficulties (e.g. Geary, 1993). Understanding that 

these difficulties may be specifically related to visuo-spatial working memory deficits 

in young children provides scope for better early screening methods and opportunities 

for remediation. 
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Chapter Summary 

1. There was little difference in the working memory demands of the four 

mathematical skills defined by National Curriculum for England in Chapter 3. 

Therefore, the aim of the present study was to explore the associations 

between the three components of the working memory model and children's 

performance-related mathematical skills (as defined in Chapter 5). 

2. Overall working memory scores predicted greater variance in younger than 

older children's mathematics. Likewise, central executive scores predicted 

greater variance in younger than older children's mathematics. It was 

suggested that younger children may be more reliant upon working memory 

due to slower processing or that working memory resources may support 

mathematics development where young children are acquiring new solution 

strategies and learning arithmetic facts. 

3. A markedly distinct pattern of associations was revealed across the two age 

groups. The data indicated a stronger role for the visuo-spatial sketchpad in the 

younger children's mathematics performance, with phonological loop scores 

only predicting unique variance in the older children's performance on easy 

mathematics questions. 

4. This finding provides an initial indication that the working memory processes 

supporting children's mathematics change with age, and consequently it 

defines possible independent roles for the slave systems. 

5. These findings were discussed in terms of their implications for educational 

practice; for teaching practice and understanding the cognitive deficits in 

children with mathematical difficulties. 
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Chapter Seven 

Visuo-spatial Working Memory and Children's Performance-related 

Mathematical Skills 

Aim 

A significant association was found between visuo-spatial working memory 

ability and children's curriculum-based mathematics performance in Chapter 4. 

However, there was little difference between the visuo-spatial sketchpad demands of 

the different curriculum-based mathematical skills. This same pattern emerged in 

Chapter 3 when the relationship between working memory ability and curriculum-

based skills was explored. The data from Chapter 3 was subsequently re-analysed in 

Chapter 6 and a markedly distinct pattern of associations was found between the three 

components of the tripartite working memory model (Baddeley & Hitch, 1974) and 

the performance-related mathematics skills derived in Chapter 5. The aim of the 

present study was to replicate this procedure and re-analyse the data collected in 

Chapter 4 to explore the relationship between visuo-spatial working memory ability 

and performance-related mathematics abilities. Within this re-analysis, further aims 

were to explore both the structure of the visuo-spatial sketchpad and the potentially 

different visuo-spatial working memory demands of the performance-related 

mathematical skills for each age group. 

Introduction 

One aim of Chapter 4 was to explore the contribution of the visual and spatial 

subcomponents (e.g. Logie, 1995) of visuo-spatial working memory to a range of 

mathematical skills defined by the National Curriculum for England. It was expected 

that the four mathematical skills would recruit different visual or spatial memory 
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abilities, or that each measure of visuo-spatial sketchpad ability would account for a 
different amount of variance in each of the curriculum-based skills. 

The results of the earlier study (Chapter 4) suggested that visuo-spatial 

working memory, as measured by three standardized tasks, predicted children's 

curriculum-based mathematics performance when age-related variance was controlled 

for. However, it was not possible to determine whether the different mathematics 

abilities recruited different visual or spatial memory resources for two reasons. Firstly, 

it was unclear whether the visuo-spatial sketchpad could be fractionated into visual 

and spatial subcomponents in children. Secondly, there were potential problems with 

the tasks administered (Chapter 4). However, each of the three standardized visuo-

spatial sketchpad measures predicted a similar amount of unique variance in all 

mathematical skills (between 0% and 2%) suggesting that each skill defined by the 

curriculum recruited similar visuo-spatial sketchpad resources. 

The aim of the present study was to re-analyse the data collected in Chapter 4, 

following a similar method of re-analysis to that applied to the data collected in 

Chapter 3. The rationale behind this approach was that the re-analysis of data 

collected in Chapter 3 revealed a markedly different pattern of associations to that 

suggested by the initial analyses. It was therefore expected that the same might be true 

for the data collected in Chapter 4. 

As in Chapter 4 the relationship between visuo-spatial working memory and 

performance across a range of mathematical skills was explored in children who were 

at Key Stage 2 of the National Curriculum. As in Chapter 6, two important changes 

were made to the data collected in Chapter 4. Firstly, the two age groups were 

considered separately to explore any potential developmental differences in the visuo-

spatial working memory demands of different mathematical abilities. One reason for 

I 
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this was that previous findings have suggested that younger children might have a 
greater dependence on the visuo-spatial sketchpad for the successful solution to 
mathematical problems than older children (see Chapter 6). It was not possible to 
determine whether visual and spatial subcomponents were fractionated in children 
from the previous study where the two age groups were considered together. Logie 
and Pearson (1997) reported that the visual-spatial distinction was more pronounced 
in older than younger children. Therefore, a further aim was to explore the structure of 
the visuo-spatial sketchpad in the two age groups. Secondly, the mathematical skills 
assessed were the performance-related skills derived in Chapter 5. 

Individual differences in NVIQ were controlled for in the initial analysis 

(Chapter 4). However, the NVIQ task loaded on the same factor as the standardized 

visuo-spatial sketchpad tasks. This suggested they may be measuring the same 

cognitive ability or that the NVIQ task may contain implicit visuo-spatial memory 

demands. Furthermore, including the NVIQ measure alongside visuo-spatial working 

memory measures may have eliminated the variance of interest (see Chapter 4). For 

this reason, the NVIQ measure was not used in the present study. Two 

unstandardized measures of visuo-spatial working memory, Blobby Visual and 

Blobby Spatial, were administered in Chapter 4. Although both tasks predicted unique 

variance in children's mathematics performance, it was unclear what abilities they 

were measuring. For this reason, neither task was included in the present study. 

In summary, the aim of the present study was to re-analyse the data collected 

in Chapter 4 to further investigate the relationship between visuo-spatial working 

memory ability and children's mathematics performance. Visuo-spatial working 

memory ability was assessed using three non-digit based standardized visuo-spatial 

sketchpad measures. One task was visual in nature (Visual Patterns Test, Delia Sala et 
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al., 1999), one was spatial in nature (Block Recall, Pickering & Gathercole, 2001) and 
one was arguably both visual and spatial in nature (Mazes Memory, Pickering & 
Gathercole, 2001). Mathematics ability was assessed using the performance-related 
tests derived in Chapter 5. 

Method 

Participants 

The participants were the same 107 primary school children who participated 

in Chapter 4. 

Design and Procedure 

See Chapter 4. 

Materials 

Visuo-spatial Sketchpad Tasks 

The visuo-spatial sketchpad tasks were the standardized measures used 

administered in Chapter 4; Visual Patterns Test (Delia Sala et al., 1999), Mazes 

Memory and Block Recall (Pickering & Gathercole, 2001). 

Mathematics Tasks 

The mathematics assessments were the age appropriate tests administered in 

Chapter 4. Instead of scoring the tests according to performance across the four 

curriculum-based skills, children's mathematical abilities were measured according to 

their performance on the performance-related skills derived in Chapter 5. See Chapter 

6 for details of scoring procedures. 



224 

Results 

Power Analyses 

The results of the compromise power analyses (Erdfelder, 1984), conducted 

using Faul and Erdfelder's (1992) G Power programme, are presented in Table 7.1. 

Power analyses were conducted for each age group, as the data from the two samples 

were analysed separately. 

Table 7.1 

Compromise Power Analysis for Visuo-spatial Working Memory and Performance-

Related Mathematics Study. 

Year Effect Size «i (boys) »2 (girls) Power 

Year 3 0.5 (medium) 28 23 .81 

Year 5 0.5 (medium) 27 29 .82 

The power of this study to test for significance with a medium effect size is 

.81 for the Year 3 sample and .82 for the Year 5 sample. Both values exceeds Cohen's 

(1988) criterion of .8, meaning this study is statistically powerful. 

Descriptive Statistics 

Descriptive statistics for visuo-spatial sketchpad measures and performance-

related mathematics skills are presented in Table 7.2. 

Year 5 children performed better on the visuo-spatial sketchpad measures than 

Year 3 children. There was greater variability on the Mazes Memory task for both age 

groups, although Year 3 children also showed variability on the Block Recall task. 
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Year 3 children performed significantly better on Cluster B than Cluster A 
questions (t(50)= -8.83,/?<.05). Year 5 children's performance was significantly 
lower on the second cluster, Cluster D (f(55)=22.63,/K.01). This is consistent with the 
notion that the questions comprising this cluster were more difficult. 

There was no significant difference between boys and girls scores on any of 

the measures (p>.05). For this reason mean scores are not shown. 

Table 7.2. 

Descriptive Statistics of Visuo-spatial Sketchpad and Performance-Related 

Mathematics Measures. Maximum scores for visuo-spatial measures shown in 

brackets). (N=\Q1). 

Measures Year 3. (n = 51). Year 5. (n = 56). 

M SD M SD 

Visuo-spatial Sketchpad 

Measures 

Visual Patterns Test (42) 9.00 2.74 11.26 3.72 

Mazes Memory (42) 9.52 4.10 13.69 6.49 

Block Recall (54) 23.28 4.19 25.29 3.04 

Mathematics Measures 

Cluster A 47.16 21.41 

Cluster B 71.57 9.52 

Cluster C - - 75.51 13.81 

Cluster D - - 28.74 17.35 

Note. Mathematics scores shown are proportion correct. 
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Correlation Analyses 

Associations between visuo-spatial sketchpad scores and performance-related 

mathematics skills are presented in Table 7.3. Coefficients for Year 3 are displayed in 

the upper triangle; coefficients for Year 5 are displayed in the lower triangle. 

Scores on the Visual Patterns Test were significantly associated with scores on 

both the Mazes Memory (p<.05 for Year 3,/K.Ol for Year 5) and Block Recall (p<.01 

for Year 3, /K.05 for Year 5) measures for both age groups. Mazes Memory was not 

correlated with Block Recall for either age group (p>.05). Performance on the 

mathematics abilities was intercorrelated across both age groups (all rs>3,p<.0l). 

For Year 3 children, Visual Patterns Test and Block Recall scores were 

significantly related to Cluster A (the purer mathematics questions) performance-

related mathematical abilities (all rs>.3,p<.05). For Year 5 children, Visual Patterns 

Test scores were significantly related to Cluster C (the easy mathematics questions) 

performance-related mathematical abilities (p<.05). Mazes Memory scores were not 

related to children's mathematics test scores in either age group (p>.05). 

Regression Analyses 

Simple regression analyses revealed that visuo-spatial sketchpad measures 

predicted 10.8% of the variance in Year 3's overall mathematics performance and 

7.8% in Year 5's overall mathematics performance. Subsequently, a series of fixed-

order regression analyses were used to assess the amount of unique variance in the 

performance-related mathematics scores predicted by each of the visuo-spatial 

sketchpad measures for Year 3 (Table 7.4) and Year 5 (Table 7.5) children. The 

mathematics measure was the regressor for each analysis and the unique contribution 
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Table 7.4 

Fixed-order Multiple Regression Analyses: Visuo-spatial Scores Predicting Unique 

Variance in Performance-related Mathematics for Year 3. (n=5\). 

Predictor 
Mathematics 
Ability 
Predicted 

Model 

Order of 
Entry 
Into 
Equation 

Adjusted r2 

Visual Patterns Test 

Cluster A 1 .Mazes 
2. Block 
3. Visual 
Patterns 

.20 

.33 

.37 

.04 

.11 

.14 

.02 

.07 

.07 

Cluster B 

Mazes Memory 

Cluster A 

Cluster B 

B, 

B 2 

1. Mazes 
2. Block 
3. Visual 
Patterns 

1. Visual 
Patterns 
2. Block 
3. Mazes 

1. Visual 
Patterns 
2. Block 
3. Mazes 

.01 

.09 

.10 

.30 

.36 

.37 

.07 

.10 

.10 

.00 

.01 

.01 

.09 

.13 

.14 

.01 

.01 

.01 

.02 

.02 

.02 

.07 

.09 

.09 

-.02 

-.02 
-.02 

Block Recall 

Cluster A 

Cluster B 

1. Visual 
Patterns 
2. Mazes 
3. Block 

1. Visual 
Patterns 
2. Mazes 
3. Block 

.30 

.32 

.37 

.08 

.08 

.10 

.09 

.10 

.14 

.01 

.01 

.01 

.07 

.07 

.07 

-.02 

-.02 
-.02 
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(measured as r2) of each working memory measure was assessed as a predictor 

entered into the equation after the other predictors. 

Models Ai and B] and Ci show that each visuo-spatial sketchpad measure 

accounted for a small but significant amount of unique variance in Year 3 children's 

Cluster A (pure) mathematics scores (Visual Patterns Test scores accounted for 3%, 

Mazes Memory scores accounted for 1% and Block Recall scores accounted for 4% of 

unique variance). Models A2 and B2 and C2 show that each visuo-spatial sketchpad 

measure did not account for any unique variance in Year 3 children's Cluster B 

(applied) mathematics scores beyond that predicted by the other visuo-spatial 

sketchpad measures. Visuo-spatial sketchpad measures predicted less unique variance 

in Year 5's mathematics performance. Models Di and D2 show that Visual Patterns 

Test scores predicted 7% of unique variance in Year 5 children's Cluster C 

mathematics scores and 4% of unique variance in Cluster D mathematics scores. 

Neither Mazes Memory nor Block Recall scores predicted unique variance in Year 5 

children's performance-related mathematics scores. 
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Table 7.5 

Fixed-order Multiple Regression Analyses: Visuo-Spatial Scores Predicting Unique 

Variance in Performance-related Mathematics for Year 5. (n=56). 

Mathematics 
Predictor Ability Model 

Predicted 

Order of 
Entry 
Into 
Equation 

r r2 Adjusted r2 

Visual Patterns Test 

Cluster C Di 1 .Mazes .11 .01 -.01 
2.Block .11 .01 -.01 
3. Visual .29 .08 .02 
Patterns 

Cluster D D 2 1. Mazes .11 .01 -.01 
2. Block .12 .01 -.01 
3. Visual .21 .05 .03 
Patterns 

Mazes Memory 

Cluster C E| 1. Visual .28 .08 .06 
Patterns 
2. Block .29 .08 .06 
3. Mazes .29 .08 .06 

Cluster D E 2 1. Visual .19 .04 .02 
Patterns 
2. Block .21 .04 .02 
3. Mazes .21 .04 .02 

Block Recall 

Cluster C Fj 1. Visual .28 .08 .06 
Patterns 
2. Mazes .28 .08 .06 
3. Block .29 .08 .06 

Cluster D F 2 1. Visual .19 .04 .02 
Patterns 
2. Mazes .19 .04 .02 
3. Block .21 .04 .02 
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Exploratory Factor Analyses 

Principal components analyses were conducted on the data from each group to 

determine the higher-order factor structure underpinning variations in scores on all 

measures as a descriptive, sumrnative method. 

Table 7.6 

Factor Loadings of Visuo-spatial and Performance-related Mathematics Measures on 

Rotated Component Matrix for Year 3. 

Measure Factor 

1 2 

Visual Patterns Test .79 

Mazes Memory .70 

Block Recall .71 

Cluster A .33 .78 

Cluster B .90 

Note. Only loadings greater than .30 are shown. 

KMO measure of sampling adequacy — .73. 

Two factors emerged with eigenvalues in excess of 1.00 on the Year 3 data. 

Factor loadings greater than .30 on the rotated component matrix are presented in 

Table 7.6. Al l three visuo-spatial sketchpad measures loaded on a single factor (Factor 

1). Both mathematics measures loaded on a separate factor (Factor 2). Although 

Cluster A mathematics loaded on both factors, the weighting of the loading on the 

mathematics factor (Factor 2 = .78) was greater than the loading on the visuo-spatial 
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sketchpad factor (Factor 1 = .33), consistent with the notion that it is primarily a 

measure of mathematics ability. 

Table 7.7 

Factor Loadings of Visuo-spatial and Performance-related Mathematics Measures on 

Rotated Component Matrix for Year 5. 

Measure Factor 

1 2 

Visual Patterns Test .70 .33 

Mazes Memory .74 

Block Recall .74 

Cluster C .87 

Cluster D .86 

Note. Only loadings greater than .30 are shown. 

KMO measure of sampling adequacy = .76 

Two factors emerged with eigenvalues in excess of 1.00 in the second 

analysis, which was conducted on the Year 5 data. Factor loadings greater than .30 on 

the rotated component matrix are presented in Table 7.7. Again, all three visuo-spatial 

sketchpad measures loaded on a single factor (Factor 1), while both mathematics 

measures loaded on a separate factor (Factor 2). The Visual Patterns Test loaded on 

both factors. However, the weight of the loading on the visuo-spatial sketchpad factor 

(Factor 1 = .70) was greater than the loading on the mathematics factor (Factor 2 = 

.33) suggesting it is primarily a measure of visuo-spatial ability. 
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Discussion 

Overall, the results show a significant association between visuo-spatial 

sketchpad ability and mathematics attainment in 7-/8-year-olds and 9-/10-year-olds. 

Simple regression analyses revealed that visuo-spatial sketchpad scores predicted 11% 

of the variance in Year 3 children's mathematics scores and 8% of the variance in 

Year 5 children's mathematics scores. This provides additional evidence for the 

involvement of visuo-spatial working memory in children's mathematics (e.g. 

McKenzie et al., 2003) and further supports the suggestion that visuo-spatial working 

memory assessments may be useful predictors of mathematics attainment (e.g. Jarvis 

& Gathercole, 2003). Importantly, the findings support the notion that the role of 

visuo-spatial working memory in children's mathematics may change with age (see 

Chapter 6). 

The results presented in Chapter 4 suggested that there was little difference in 

the visuo-spatial sketchpad demands of different curriculum-based mathematical 

skills. However, consistent with the results of the Chapter 6, the present data revealed 

a developmental difference in the relationship between visuo-spatial working memory 

and performance-related mathematics for the two age groups. Overall, the three visuo-

spatial sketchpad measures predicted less variance in the older children's mathematics 

scores (8%) than the younger children's mathematics scores (11%). Furthermore, all 

three visuo-spatial sketchpad measures predicted unique variance in the younger 

children's performance-related mathematics attainment, whilst only one visuo-spatial 

sketchpad measure (Visual Patterns Test) predicted unique variance in the older 

children's performance-related mathematics attainment. 



Detailed analyses revealed that the three standardized visuo-spatial sketchpad 

measures predicted unique variance in the younger children's mathematics scores on 

the "pure" but not the "applied" mathematics questions. This supports the idea that 

young children may be relying on the visuo-spatial sketchpad to represent abstract 

mathematical problems that do not have concrete referents (see Chapter 6). 

Consistent with previous results (Chapter 6) visuo-spatial sketchpad scores 

predicted less variance in older children's performance-related mathematics 

performance. The results of the previous study suggested that older children might 

rely on, or revert to, the visuo-spatial sketchpad (or visuo-spatial strategies) for the 

solution to "difficult" problems where symbolic-linguistic arithmetic (Houde, 1997) 

or direct retrieval could not be applied. It was therefore expected that visuo-spatial 

sketchpad scores would predict greater variance in the difficult questions than the 

easy questions in the present study. However, scores on a visuo-spatial sketchpad 

measure (Visual Patterns Test) were found to predict older children's performance on 

both the easy and difficult mathematical questions. Dehaene and colleagues proposed 

that we develop visuo-spatial codes for numbers and represent them along an 

analogue "mental number line" to assist in mathematical processing (see Chapter 1, 

section 1.4.2.2.). Therefore, it is tentatively suggested that the involvement of the 

visuo-spatial sketchpad in children's mathematics may reflect the use of the "mental 

number line" (Dehaene, 1992). Clearly this requires further research. 

One possibility would be to investigate the relationship between the strength 

of the SNARC effect, visuo-spatial working memory ability and mathematics 

performance in children. Dehaene and colleagues substantiated the existence of the 

"mental number line" in experiments that demonstrated the SNARC effect (e.g. 

Dehaene et al., 1992). Therefore, it would be expected that children who showed a 
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large SNARC effect would perform significantly better on mathematics and visuo-
spatial sketchpad tests compared to children who did showed a smaller SNARC 
effect. Feeney et al. (2004) conducted such an investigation with adults. They asked 
participants to complete graphical reasoning, number judgement (SNARC effect) and 
non-verbal working memory tasks. Performance on the non-verbal working memory 
task was significantly associated with the use of analogical representations for the 
graph task. In turn, the tendency to use an analogue (spatial) representation for the 
graph task was associated with the tendency to use an analogue representation for the 
number judgement task. They propose that these results provide an initial indication 
that people may represent concepts by analogy to space; a domain-general ability. In 
relation to the current discussion, Feeney et al. (2004) provide evidence to suggest 
that performance on a mathematical task (a graphical reasoning task) is related to the 
size of the SNARC effect and non-verbal working memory ability in adults. A 
replication of this investigation with children may prove fruitful in light of the present 
findings. 

One aim of the present study was to explore the structure of the visuo-spatial 

sketchpad in children of different ages using three standardized measures visuo-

spatial sketchpad ability. Consistent with findings presented in Chapter 4 the present 

results imply that the visuo-spatial sketchpad may not be fractionated into visual and 

spatial subcomponents in children. Logie and Pearson (1997) reported that the 

distinction between the two subcomponents was more evident in older than younger 

children. However, the present study, in which the same two tasks used by Logie and 

Pearson (1997) were administered alongside a third task to similar aged children, 

suggested a different pattern of results. Al l three measures, the Visual Patterns Test, 

Mazes Memory and Block Recall, loaded on a single factor in Year 3 (7-/8-year-olds) 



236 

and Year 5 (9-/10-year-olds) factor analyses. This suggests that the visual and spatial 
subcomponents may not be distinct and that the structure of visuo-spatial sketchpad 
does not change with age. One possibility is that the visuo-spatial sketchpad is 
fractionated into alternate subcomponents (e.g. static and dynamic, Pickering et al., 
2001) that become more clearly fractionated with age. An alternate explanation, as 
discussed in Chapter 4, is that the tasks used did not measure distinct visual and 
spatial memory abilities. 

In conclusion, the data provides additional evidence for an association 

between visuo-spatial working memory and children's mathematics performance. 

This further supports the suggestion that visuo-spatial working memory assessments 

may be useful predictors of children's mathematics attainment (e.g. Jarvis & 

Gathercole, 2003). Importantly, this study provides evidence to support the notion that 

younger children may be more dependent on the visuo-spatial sketchpad for the 

solution to mathematical problems than older children. In particular, the present data 

support the idea that the visuo-spatial sketchpad may support links between concrete 

and abstract mathematical knowledge. With further research, this may enhance our 

understanding of the deficits experienced by children with mathematical learning 

difficulties, such as developmental dyscalculia (e.g. Butterworth, 2003). 

Finally, an important theoretical issue arising from the present study relates to 

the structure and assessment of the visuo-spatial sketchpad in children. Consistent 

with the results of Chapter 4 the standardized visuo-spatial sketchpad measures used 

did not differentiate separable visual and spatial memory skills. This further supports 

the need for research into the specific nature of visuo-spatial working memory tasks 

(see Chapter 4). 
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Chapter Summary 

1. The aim of the present study was to re-analyse the data collected in Chapter 4 

to explore the relationship between visuo-spatial working memory ability and 

children's performance-related mathematical skills (as defined in Chapter 5). 

Further aims were to explore the structure of the visuo-spatial sketchpad and 

the potentially different associations between visuo-spatial ability and 

mathematics performance separately for each age group. 

2. Overall, visuo-spatial working memory ability predicted variance in 7-/8-year-

olds and 9-/10-year-olds performance-related mathematical skills. 

3. Consistent with the results presented in Chapter 6, visuo-spatial sketchpad 

scores predicted less variance in older children's than younger children's 

mathematics performance. Furthermore, visuo-spatial working memory 

measures predicted greater variance in younger children's performance on 

pure questions than applied questions. These findings support the idea that the 

visuo-spatial sketchpad may provide a foundation upon which abstract 

problems can be represented in a concrete format, thus supporting young 

children's mathematical development. 

4. Visuo-spatial sketchpad scores predicted unique variance in the older 

children's performance on both easy and difficult mathematics questions. It 

was tentatively suggested that this may reflect the use of a "mental number 

line". However, further research is needed to substantiate this. 

5. In line with the results reported in Chapter 4, the results suggested that the 

visuo-spatial sketchpad may not be fractionated in children. Importantly, the 

present findings suggest that the structure of the visuo-spatial sketchpad does 
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not change with age. These results are discussed in terms of the need for 
further research into the nature of visuo-spatial working memory tasks. 
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Chapter Eight 

Working Memory as a Predictor of Children's Achievements on National 

Curriculum Mathematics Tests at 11-years-of-age 

Aim 

Significant associations between working memory ability and children's 

mathematics performance were reported in Chapters 3, 4, 6 and 7. Consistent with 

previous studies (e.g. Gathercole & Pickering, 2000b) this suggests that working 

memory assessments may be useful predictors of academic attainment. However, 

none of these studies demonstrate that working memory scores at Time 1 predict 

mathematics attainment at Time 2. Therefore, the aim of the present study was to 

examine whether the three components of the tripartite working memory model 

(Baddeley & Hitch, 1974) share unique predictive relationships with mathematics 

attainment as measured by Key Stage 2 SATs performance one year after initial 

testing. 

Introduction 

An overarching aim of this thesis was to extend the work of Gathercole and 

colleagues, who have reported significant associations between working memory 

ability and National Curriculum test performance at Key Stages 1 (7-years), 2(11-

tears) and 3 (14-years), to specifically explore the associations between working 

memory ability and mathematics performance in children at Key Stage 2 (7-/8-year-

olds and 9-/10-year olds). Thus far, the results suggest that working memory ability is 

significantly associated with mathematics performance when assessed concurrently. 

However, there is no evidence to suggest that working memory test scores predict 

mathematics attainment at a later date. 



Results of the previous studies show that children's working memory test 

scores, as measured by non-digit based assessments, are significantly related to their 

performance across a number of mathematical skills. Specifically, central executive 

and visuo-spatial sketchpad scores have been associated with children's curriculum-

based mathematical skills (Chapters 3 and 4) and phonological loop, visuo-spatial 

sketchpad and central executive scores have been associated with children's 

performance-related mathematical skills (Chapters 6 and 7). These findings are 

consistent with previous studies that report significant associations between working 

memory scores and attainment at Time 1 (e.g. Gathercole & Pickering, 2000b; Jarvis 

& Gathercole, 2003). 

In addition to finding significant associations between working memory test 

scores and attainment at Time 1, Gathercole and Pickering (2000b) found that 

working memory test performance at Time 1 predicted scholastic attainment one year 

later. They administered a battery of working memory assessments, designed to tap 

the three components of the tripartite working memory model (Baddeley & Hitch, 

1974), to 6- and 7-year-olds and obtained scores on standardized measures of 

scholastic attainment at the initial time of testing and one year later. Importantly, 

phonological loop scores at 6- / 7-years predicted performance on a vocabulary 

measure one year later and central executive scores at 6- / 7-years predicted 

performance on both a literacy and arithmetic measure one year later (see Chapter 3). 

Gathercole and Pickering's (2000b) findings suggest that associations between 

working memory ability and scholastic attainment persist one year after initial testing 

in children aged 7- / 8-years. These unique predictive relationships provide strong 

evidence to support the use of working memory assessments as early indicators of 

later academic achievement. 
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The studies presented in this thesis thus far have not included a longitudinal 
assessment. The aim of the present study was to address this weakness and explore the 
relationship between working memory ability at Time 1 and mathematics 
performance at Time 2. Working memory test scores were obtained at the initial time 
of testing for 9-/10-year-olds in Chapter 3. Key Stage 2 mathematics National 
Curriculum test performance was used as an index of mathematics attainment one 
year after initial testing. There were two reasons for this. Firstly, previous studies that 
have investigated the relationship between working memory ability and children's 
National Curriculum attainment at Key Stages 1 (Gathercole & Pickering, 2000a), 2 
and 3 (Jarvis & Gathercole, 2003; Gathercole, Pickering, Knight et al., 2004) have not 
used longitudinal methodologies. Therefore, this study would extend previous 
research to highlight the potential usefulness of working memory assessments as 
prospective indicators of National Curriculum achievement. Secondly, National 
Curriculum test performance was deemed a suitable indicator of children's scholastic 
attainment as it provides an ecologically valid measure of academic achievement. As 
in Chapter 3 a measure of children's NVIQ (taken at Time 1) was also included. 
Gathercole and Pickering (2000b) reported that working memory assessments at Time 
1 predicted academic attainment at Time 2, but they did not control for individual 
differences in general ability. Therefore, an index of children's NVIQ was included at 
the time of initial testing to explore whether working memory assessments at Time 1 
predicted National Curriculum mathematics performance over and above NVIQ 
scores one year later. 
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Method 

Participants 

The participants were the 70 Year 5 primary school children who participated 

in the study reported in Chapter 3. At Time 1 (the Easter and summer terms of Year 5) 

the group consisted of 33 boys and 37 girls, mean age 9 years and 10 months (SD = 

5.7 months, range 9 years and 1 month to 10 years and 9 months). See Chapter 3. At 

Time 2 (the summer of Year 6) the group consisted of the same 70 children, mean age 

10 years and 10 months. 

Design and Procedure 

All working memory assessments were administered to the children at Time 1 

(see Chapter 3). Schools supplied the mathematics test scores at Time 2. 

Materials 

Working Memory Tasks 

Three non-digit based working memory assessments were administered. See 

Chapter 3 for details. 

Non- Verbal IQ Task 

The Matrix Analogies Test Short Form (MAT-SF) (Naglieri, 1985) was 

administered. See Chapter 3 for details. 

Mathematics Measures 

The mathematics measures were children's attainment levels in the Key Stage 

2 Mathematics SATs taken in the summer term of Year 6 (11-years). At Key Stage 2 
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mathematics SAT scores incorporate two mathematics papers (which assess Number 
and Algebra, Shape, Space and Measures and Handling Data) and a mental arithmetic 
test. Each child is awarded an attainment level between 3 and 5. Level 4 indicates 
nationally expected standards. 

Results 

Power Analyses 

The power of this study to test for significance with a medium effect size is 

.85. This value exceeds Cohen's (1988) criterion of .8, meaning this study is 

statistically powerful (see Table 6.1, Chapter 6). 

Descriptive Statistics 

Descriptive statistics for working memory measures and NVIQ scores were 

obtained in Study 2 (see Table 3.2, Chapter 3). Overall, the children performed better 

on the phonological loop measure than the other two working memory component 

measures. There was greater variability on the visuo-spatial sketchpad measure than 

the other two measures of working memory ability. 

The mean Key Stage 2 Mathematics attainment level was 3.97, SD .99. The 

percentage of children achieving Level 4 and above in mathematics was 75.7%, with 

30% achieving Level 5. This was slightly higher than the national average where 73% 

of children achieved Level 4 and above in mathematics, with 29% achieving Level 5. 

Correlation Analyses 

A simple correlation analysis revealed that Maths Time 1 scores were highly 

significantly related to children's maths SATs one year later (r=.76,p<.001). 
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Therefore, Maths Time 1 scores were not entered into further correlation or regression 
analyses. 

Associations between working memory measures and Key Stage 2 

mathematics attainment are presented in Table 8.1. Simple correlations are displayed 

in the upper triangle; partial correlation coefficients controlling for NVIQ are 

displayed in the lower triangle. 

Table 8.1 

Correlation Matrix for Working Memory Test Scores and Key Stage 2 Mathematics 

Achievements. Simple coefficients are displayed in the upper triangle; partial 

coefficients are displayed in the lower triangle. (N-70). 

Maths Phonological Visuo-Spatial Central 

Achievement Loop Sketchpad Executive 

Maths - T3 .35** .45** 

Achievement 

Phonological .09 - .08 .26* 

Loop 

Visuo-Spatial .30* .05 - .21 

Sketchpad 

Central .35** .18 

Executive 

Phonological loop and central executive scores were intercorrelated before the 

variance attributed to NVIQ was controlled for (r < .30,/K.05). Scores on the other 

working memory measures were not intercorrelated (all rs < .30,p>.05). 
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Central executive and visuo-spatial sketchpad scores were significantly 
associated with Key Stage 2 mathematics achievement (both rs > ,30,/K.Ol) and 
remained so after the variance attributed to NVIQ scores was eliminated (visuo-spatial 
sketchpad r > .30,/?<.05, central executive r > .30,/?<.01). Phonological loop scores 
were not related to Key Stage 2 mathematics achievement (all rs < .30,p>.05). 

Regression Analyses 

Simple linear regression analyses revealed that working memory measures at 

Time 1 predicted 27.1% of the variance in Key Stage 2 mathematics performance at 

Time 2 and 16% of unique variance in Key Stage 2 mathematics attainment after the 

variance attributed to children's NVIQ scores had been accounted for. 

A series of fixed-order unique variance regression analyses (presented in 

Table 8.2) were used to assess the amount of unique variance in Key Stage 2 

mathematics achievement predicted by each of the working memory measures. For 
i 

each analysis the mathematics assessment was the regressor and the unique 

contribution (measured as r7) of each working memory measure was assessed as a 

predictor entered into the regression equation after the other predictors. 



Table 8.2 

Fixed-order Multiple Regression Analyses: Working Memory Measures Predicting 

Unique Variance in Key Stage 2 Mathematics Performance. («=70) 

Predictor 
Mathematics 
Ability 
Predicted 

Model 

Order of 
Entry 
Into 
Equation 

Adjusted r2 

Phonological Loop 

Key Stage 2 Ai l.VSSP .35 .12 .11 
Mathematics 2.CE .52 .27 .25 

3. PL .52 .27 .25 

Visuo-spatial Sketchpad 

Key Stage 2 B, l . PL .13 .02 .00 
Mathematics 2. CE .45 .20 .18 

3. VSSP .52 .27 .23 

Central Executive 

Key Stage 2 C, l . PL .13 .02 .00 
Mathematics 2. VSSP .36 .18 .10 

3.CE .52 .27 .23 

A second series of fixed-order unique variance regression analyses, presented 

in Table 8.3, were conducted to assess the amount of unique variance in Key Stage 2 

Mathematics scores predicted by each of the measures of working memory after the 

variance accounted for by NVIQ was considered. Again, for each analysis the 

mathematics assessment was the regressor and the unique contribution (measured as 

r2) of each working memory measure was assessed as a predictor entered into the 
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regression equation after the other predictors, which included NVIQ and performance 
on the other working memory measures. 

Table 8.3 

Fixed-order Multiple Regression Analyses: Working Memory Measures Predicting 

Unique Variance in Key Stage 2 Mathematics Performance, controlling for NVIQ. 

f/t=70). 

Mathematics 
Predictor Ability 

Predicted 
Model 

Order of 
Entry 
Into 
Equation 

r r2 Adjusted r2 

Phonological Loop 

Key Stage 2 D, l.NVIQ .34 .11 .09 
Mathematics 2.CE .47 .22 .19 

3.VSSP .52 .27 .23 
4. PL .52 .27 .23 

Visuo-spatial Sketchpad 

Key Stage 2 E, l.NVIQ .34 .11 .09 
Mathematics 2.CE .47 .22 .19 

3.PL .47 .22 .19 
4. VSSP .52 .27 .21 

Central Executive 

Key Stage 2 F, l.NVIQ .34 .11 .10 
Mathematics 2.PL .35 .12 .10 

3.VSSP .45 .20 .15 
4. CE .52 .27 .21 

Models Ai and Di show that phonological loop scores at the initial time of 

testing do not account for any unique variance in Key Stage 2 mathematics scores 

beyond that predicted by the other working memory measures one year later. 
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Both central executive and visuo-spatial sketchpad scores shared unique 
predictive relationships with Key Stage 2 mathematics achievement one year after 
initial testing. Models Bi and Ei show that visuo-spatial sketchpad scores predicted 
7% of unique variance in Key Stage 2 mathematics scores beyond that predicted by 
scores on the other working memory measures and 5% of unique variance in Key 
Stage 2 mathematics scores beyond that predicted by NVIQ scores and scores on the 
other working memory measures. Models Ci and F2 show that central executive scores 
accounted for the largest amount of unique variance in Key Stage 2 mathematics 
scores; 9% of unique variance beyond that predicted by scores on the other working 
memory measures and 7% of unique variance that predicted by NVIQ scores and 
scores on the other working memory measures. 

Discussion 

Overall, the results show a significant association between working memory 

scores at Time 1 and Key Stage 2 Mathematics performance one year later at Time 2. 

A simple regression analysis revealed that the tripartite working memory model 

(Baddeley & Hitch, 1974) predicted 27.1% of the variance in Key Stage 2 

mathematics scores, suggesting that it shares a predictive relationship with children's 

mathematics. 

The results of this study suggest that working memory ability is significantly 

associated with children's National Curriculum attainment. This further supports an 

association between working memory ability and wider aspects of curriculum 

attainment (e.g. Gathercole & Pickering, 2000a) and specifically supports the finding 

that working memory ability is related to children's Key Stage 2 Mathematics 

attainment (e.g. Jarvis & Gathercole, 2003). 



Importantly, the data extend previous findings to suggest that working 

memory scores at Time 1 predict later mathematics SATs attainment. Specifically, 

working memory scores at 9-/10-years predicted Key Stage 2 mathematics at 10-/11-

years. Gathercole and Pickering (2000b) reported similar results with children at Key 

Stage 1 of the National Curriculum, where working memory scores at 6-/7-years 

predicted academic attainment at 7-/8-years. Together these findings suggest that 

working memory supports curricular progress throughout the early Key Stages and 

provide further evidence that working memory assessments may be valuable methods 

for predicting curriculum achievements. 

Gathercole and Pickering (2000b) propose that working memory assessments 

may act as useful supplements to knowledge-based methods of baseline evaluation at 

school entry at 4 years-of-age. They suggest that working memory assessments may 

be useful because, unlike baseline assessments that measure a child's knowledge of a 

particular domain, they are relatively free from environmental and cultural experience 

(such as the quality and quantity of teaching in a particular domain) (Campbell, 

Dollaghan, Needleman & Janosky, 1997). Therefore, they may provide prospective 

indicators of curriculum performance independent of a child's learning experiences. 

Indeed, the current study supports the usefulness of working memory 

assessments as prospective indicators of National Curriculum achievements. 

Furthermore, it adds to the existing literature to suggest that working memory ability 

at Time 1 predicts unique variance in mathematics attainment at Time 2 after 

individual differences in NVIQ have been controlled for. A simple regression 

analyses revealed that working memory scores at 9-/10-years predicted 16% of unique 

variance in Key Stage 2 Mathematics attainment after the variance attributed to 

children's NVIQ scores had been accounted for. Current research suggests that many 



working memory assessments can be administered to children as young as 4-years 

(e.g. Pickering & Gathercole, 2001) and that these assessments are significantly 

related to academic achievement at 7-, 11- and 14-years-of-age. Together with 

Gathercole and Pickering's (2000b) observation this finding suggests that working 

memory assessments may be useful prospective indicators of curriculum performance 

independent of a child's learning experiences over and above intelligence measures. 

Clearly further research is needed to investigate whether these assessments are useful 

supplements to baseline assessments at school entry at 4-years-of-age. 

Detailed analyses revealed that visuo-spatial sketchpad and central executive 

scores, but not phonological loop scores, shared unique predictive relationships with 

children's curriculum-based mathematics performance. This consistent with previous 

results reported in Chapter 3 and further supports the suggestion that both the central 

executive (e.g. Bull et al., 1999) and visuo-spatial sketchpad (e.g. McKenzie et al., 

2003) may support children's mathematics (see Chapter 3). 

The failure to find an association between phonological loop scores and 

academic achievement replicates a result found by Gathercole and Pickering (2000a) 

in a study with 7-/8-year-olds. They offered two reasons why phonological loop 

scores were not related to scholastic attainment. Firstly, their group sizes were 

relatively small and secondly, they found a high degree of association between central 

executive and phonological loop measures. Therefore, they proposed that 

phonological loop scores were not related to academic achievement as they placed 

heavy demands on the central executive. Significant associations were found between 

the phonological loop and central executive measures in the present study, suggesting 

that Gathercole and Pickering's (2000a) latter explanation may be appropriate. 

Alternatively, phonological loop scores may only share significant associations with 
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children's performance-related mathematics (Chapter 6), not their curriculum-based 
mathematics (Chapter 3). 

In summary, this study provides additional evidence for the involvement of 

working memory, in particular the central executive and visuo-spatial sketchpad, in 

children's mathematics. It further supports an association between working memory 

ability and children's National Curriculum attainment and extends previous findings 

to suggest that working memory assessments may be useful prospective indicators of 

curriculum attainment above and beyond NVIQ measures. This has important 

implications for educational practice, where working memory assessments may be 

valuable tools for both predicting academic attainment in young children and 

screening children to identify those at risk of later academic difficulties (e.g. 

Gathercole & Pickering, 2000a). 

Chapter Summary 

1. Significant associations have been found between working memory ability and 

children's mathematical skills throughout this thesis. However, none of the 

studies conducted thus far have included a longitudinal phase. 

2. The aim of this study was to explore whether working memory assessments 

were useful prospective indicators of mathematics attainment one year later. 

3. Working memory ability at 9-/10-years predicted Key Stage 2 mathematics 

attainment at 10-/11 years. In particular, central executive and visuo-spatial 

scores, but not phonological loop scores, predicted later mathematics 

attainment. Furthermore, working memory scores at Time 1 predicted unique 

variance in mathematics attainment at Time 2 after individual differences in 

NVIQ had been controlled for. 
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These results extend previous cross-sectional findings to suggest that working 
memory assessments may be useful prospective indicators of National 
Curriculum test performance. It was suggested that working memory measures 
may prove to be useful supplements to baseline assessments, although further 
research is clearly needed to investigate this. 



253 

Chapter Nine 
Visuo-spatial Skills and Mathematical Difficulties 

Aim 

Visuo-spatial deficits are characteristic among children and adults with 

mathematical difficulties (MD) (e.g. Geary, 1993). Studies have shown that children 

with MD are impaired on tests of visuo-spatial working memory (e.g. McLean & 

Hitch, 1999), suggesting that these deficits may be specifically related to visuo-spatial 

working memory. As such, visuo-spatial working memory assessments might be 

useful tools for screening young children to identify those with, or at risk of 

developing, MD. The aim of the present study was to explore this idea through 

examination of the mathematical abilities of children with visuo-spatial working 

memory deficits and examination of the visuo-spatial working memory skills of 

children with MD. 

Introduction 

Children's mathematical attainment has been associated with visuo-spatial 

working memory ability (e.g. Gathercole & Pickering, 2000a; Jarvis & Gathercole, 

2003). Indeed, the results presented in this thesis support this association. Significant 

associations were found between visuo-spatial working memory abilities and 

children's mathematics performance in Chapters 3, 4, 6 and 7. Furthermore, visuo-

spatial sketchpad scores at Time 1 shared predictive relationships with children's Key 

Stage 2 mathematics scores at Time 2 (see Chapter 8). Together these findings 

suggest that visuo-spatial working memory assessments may be useful prospective 

indicators of children's mathematics performance. Subsequently, it is proposed that 

visuo-spatial working memory assessments might be useful tools for screening young 
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children who may be at risk of MD. To further investigate this, work must be 
conducted to investigate whether or not visuo-spatial working memory tasks 
discriminate between children with high or low mathematics abilities. 

Children experience mathematical difficulties for a number of reasons, 

including: social and emotional problems (i.e. mathematics anxiety, Ashcraft & Faust, 

1994) and cognitive, neuropsychological and cognitive neuropsychological deficits. In 

a review of experimental, cognitive, clinical and neuropsychological literature Geary 

(1993) defined three subtypes of MD. The first, mediated by a developmental delay in 

the acquisition of conceptual knowledge, manifests itself as procedural deficits in 

counting knowledge, computational skill and working memory (e.g. Geary, et al., 

1992). The second, a more persistent retrieval-based deficit, manifests as memory-

retrieval errors and fewer occurrences of direct fact retrieval from long term memory 

(e.g. Geary, 1990). The third MD subtype, characterised by visuo-spatial deficits, 

manifests as functional deficits (i.e. problems in the spatial alignment of numerical 

information) and conceptual deficits (i.e. understanding number representations such 

as place value) (e.g. Rourke & Finlayson, 1978). Al l three are identified in both the 

cognitive (e.g. Geary, 1990) and neuropsychological literatures (e.g. Temple, 1991). 

However, the third subtype characterised by visuo-spatial deficits, is less frequently 

identified in the cognitive literature because the visuo-spatial skills of MD children 

are not typically assessed (Geary, 1993). 

Cognitive research suggests that the visuo-spatial deficits experienced by 

children with MD may be specifically related to visuo-spatial working memory. 

Significant associations have been found between children's visuo-spatial working 

memory abilities and their mathematics attainment (e.g. Jarvis & Gathercole, 2003). 

Furthermore, adults and children with MD perform worse on visuo-spatial working 
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memory tasks than adults and children without MD (e.g. Wilson & Swanson, 2001). 
Specifically, Hitch & McLean (1999) reported that 9-year-old children with specific 
MD were impaired on spatial working memory tasks compared to age-matched 
controls, suggesting children with MD experience visuo-spatial working memory 
deficits. Related to this, developmental dyscalculia may be a visuo-spatial 
impairment. Evidence suggests that humans are born with an innate "number sense" 
(Dehaene, 1992) or "number module" (Butterworth, 1999), for dealing with numerical 
representations. Butterworth (1999) suggests that the underlying cause of dyscalculia 
is likely to be related to a dysfunction of this "module". Anatomically the "number 
module" is located in the parietal lobe (e.g. Butterworth, 1999), a brain region 
associated with visuo-spatial processing. Therefore, an impaired "number sense" or 
"number module" may be a visuo-spatial impairment. 

Children who are failing to achieve expected levels of attainment show 

impairments on working memory tasks. For example, as discussed in Chapter 3, 

Gathercole and colleagues found that children who were failing to achieve normal 

levels of curriculum attainment showed marked impairments on working memory 

assessments (e.g. Gathercole & Pickering, 2000a; Gathercole, Pickering, Knight et al., 

2004). More specifically, they found that children with low achievements in 

mathematics showed marked impairments on tests of visuo-spatial working memory 

(Gathercole & Pickering, 2000a). 

Working memory tasks have been used to identify children who are failing to 

achieve expected levels of attainment. Gathercole and Pickering (2000a) used a subset 

of working memory measures selected from the WMTB-C (Pickering & Gathercole, 

2001) to identify children who were failing to achieve expected attainment levels at 7-

/ 8-years. They explored the extent to which scores on individual working memory 
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measures could be used to predict children with at least one area of low achievement. 
Their results suggested that working memory assessments could be used to 
successfully classify 82.9% of the children (83.1% of children were correctly 
classified as normal achievers and 82.6% were correctly classified as low achievers). 
Gathercole, Pickering, Knight et al. (2004) reported similar results with 7-/8-year-olds 
and 14-/15-year-olds. Consistent with their previous findings, 82.5% of the younger 
children were correctly classified as normal or low achievers across English and 
Mathematics based on their working memory test scores. Importantly, all of the low 
achieving children were correctly classified. Similar values were obtained for the 
older children, where working memory scores were used to correctly classify 80.5% 
of low or normal achievers in Mathematics and 83% of low or normal achievers in 
Science. Working memory scores did not successfully discriminate the older 
children's English achievement groups. 

In summary, research suggests that visuo-spatial deficits are characteristic 

among a sub-group of children with MD. These deficits may be specifically related to 

visuo-spatial working memory. Working memory assessments have been used to 

correctly classify children with low levels of achievement and children with poor 

mathematics attainment typically perform poorly on working memory tests. It is 

therefore suggested that visuo-spatial working memory assessments may be useful 

tools with which to identify children at risk of Geary's (1993) visuo-spatial subtype of 

MD. Of course, visuo-spatial MD represents only a small sub-group of MD. 

Mathematics is a complex skill, involving language, space and quantity (Butterworth, 

2003) and a number of factors contribute to good mathematics attainment. Similarly, a 

number of factors contribute to poor mathematics attainment, or MD. These include 

genetic (e.g. Butterworth's number module), environmental (e.g. inappropriate 
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teaching methods, absence from school) and cognitive (e.g. poor working memory 
ability) factors. Furthermore, MD often co-occurs with other problems such as 
dyslexia, attention deficit hyperactivity disorder (ADHD) and specific language 
impairments (Butterworth, 2003). Therefore, problems arise in defining and 
diagnosing MD. For this reason, the present study focuses on a sub-group of MD. 

The overarching aim of the present study was to investigate whether 

performance on visuo-spatial working memory assessments discriminated between 

children of high and low mathematics ability. Specifically, the visuo-spatial working 

memory profiles of children with different mathematical abilities were explored. This 

also included an exploration of the mathematical abilities of children with different 

visuo-spatial working memory skills. Mathematics performance was determined by 

the children's total scores on the assessments developed in Chapter 2. Visuo-spatial 

working memory ability was assessed by performance on three standardized visuo-

spatial sketchpad tasks. This investigation was designed to provide an initial 

indication of the potential value of visuo-spatial working memory assessments as 

screening tools for educational practitioners. 

Method 

Participants 

107 primary school children aged 7-/8-years and 9-/10-years participated in 

this study. See Study 4 for details. 

Design and Procedure 

The age appropriate mathematics assessments and three standardized visuo-

spatial working memory tasks were administered. See Chapter 4 for details. 
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Materials 

Visuo-spatial Sketchpad Tasks 

The visuo-spatial sketchpad tasks were the standardized measures 

administered in Chapter 4; Visual Patterns Test (Delia Sala et al., 1999), Mazes 

Memory and Block Recall (Pickering & Gathercole, 2001). See Study 3. The scores 

given were Z scores. These were calculated from Trials Correct Scores on each 

measure. Z scores were calculated separately for each age group. A composite visuo-

spatial working memory score was also calculated for each child. Pickering and 

Gathercole (2001) suggested that summarising standardized scores across subtests 

designed to measure different components of working memory (to calculate 

component scores) provides a broad description of a child's working memory ability. 

Consistent with Pickering and Gathercole's (2001) methodology, composite visuo-

spatial working memory scores were derived as a sum of the standardized scores (Z 

scores) for each of the visuo-spatial working memory tasks. The three visuo-spatial 

tasks were grouped because they loaded on the same factor for Year 3 and Year 5, 

suggesting they are measuring the same component of working memory (see Tables 

7.6. and 7.7 for factor loadings). 

NVIQ Task 

The MAT-SF (Naglieri, 1985) was administered. See Chapter 3. 

Mathematics Tasks 

The mathematics assessments were the age appropriate tests developed in 

Chapter 2. The score given was the Proportion Correct Score. Responses for each 
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question were scored as 1 or 0. The sum of the responses divided by the total number 
of questions (55) multiplied by 100 provides the Proportion Correct Score. 

Results 

Power Analyses 

The power of this study to test for significance with a medium effect size is 

.81 for the Year 3 sample and .82 for the Year 5 sample. Both values exceeds Cohen's 

(1988) criterion of .8 (see Table 7.1, Chapter 7). 

Descriptive Statistics 

Descriptive statistics for visuo-spatial sketchpad measures and total 

mathematics scores are presented in Table 9.1. 

Year 3 and Year 5 children performed similarly on the age-appropriate 

mathematics assessments. Year 5 children performed significantly better on the visuo-

spatial sketchpad measures than Year 3 children (Visual Patterns Test J(105)=-3.61, 

p<.0l, Mazes Memory f(105)=-4.15,/K.01, Block Recall /(l05)=-2.99,p<.01). There 

was greater variability on the Mazes Memory task for both age groups, although Year 

3 children's performance also varied on the Block Recall task. 
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Table 9.1 

Descriptive Statistics of Visuo-spatial Sketchpad and Total Mathematics Scores 

(maximum score for visuo-spatial measures are shown in parentheses). (iV=107). 

Measures Year 3. (n = 51). Year 5. (n = 56). 

M SD M SD 

Visuo-spatial Sketchpad 

Measures 

Visual Patterns Test (42) 9.00 2.74 11.26 3.72 

Mazes Memory (42) 9.52 4.10 13.69 6.49 

Block Recall (54) 23.28 4.19 25.29 3.04 

Composite Visuo-spatial 0.00 2.24 0.00 2.21 

Working Memory 

Mathematics Measure 58.25 14.21 60.20 13.29 

Note. Mathematics scores shown are proportions correct. Visuo-spatial scores shown 

are Trials Correct Scores. 

Visuo-spatial Working Memory Profiles of Children with Different Mathematical 

Abilities 

Children were assigned to different mathematics ability groups to explore their 

visuo-spatial working memory profiles. They were assigned to high, average or low 

mathematics ability groups based on their Proportion Correct mathematics scores. 

Children assigned to the high ability groups were those scoring \SD and above the 

mean proportion correct, children assigned to the low ability groups were those 

scoring \SD below the mean proportion correct and children assigned to the average 

ability groups were those scoring within ISD of the mean. 



Year 3 children scoring below 44.04 were assigned to a low mathematics 

ability group. Those scoring above 72.46 were assigned to a high mathematics ability 

group. Those scoring between 44.04 and 72.46 were assigned to an average 

mathematics group. There were 9 children in the low ability group (mathematics 

M=37.\7, SD 4.9, composite visuo-spatial M=-.33, SD 1.48), 31 children in the 

average ability group (mathematics A/=58.18, SD 7.94, composite visuo-spatial 

M=.04, SD 2.33) and 11 children in the high ability group (mathematics M=75.70, SD 

3.38, composite visuo-spatial M=1.16, SD 2.11). 

For Year 5, children with Proportion Correct scores below 46.91 were 

assigned to a low mathematics ability group, children with scores above 73.49 were 

assigned to a high mathematics ability group and children scoring between 46.91 and 

73.49 were assigned to an average mathematics ability group. 8 children were 

assigned to the low ability group (mathematics M=37.95, SD 5.94, composite visuo-

spatial M= -.76, SD 1.88), 39 to the average ability group (mathematics M=60.78, SD 

7.58, composite visuo-spatial M=.02, SD 2.02) and 9 to the high ability group 

(mathematics M=77.78, SD 2.69, composite visuo-spatial M=.6\, SD 3.09). 

Mean visuo-spatial composite scores for the three mathematics ability groups 

for Year 3 and Year 5 are displayed in figure 9.1. 

An analysis of variance (one way ANOVA) revealed no significant differences 

in composite visuo-spatial sketchpad scores between the mathematics ability groups 

for Year 3 children (F(2, 48)=1.44,/?>.05) or Year 5 children (F(2, 53)=.82,p>.05). 
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Figure 9.1 

Mean Composite Visuo-spatial Scores for Children with Different Mathematical 

Abilities 

Although the differences in mean visuo-spatial composite scores were not 

significant, Figure 9.1 shows that visuo-spatial scores were higher for the average 

mathematics ability group than the low ability group and higher again for the high 

mathematics ability group over the average ability group. Non-significant differences 

may have been found due to the relatively small samples of the low and high ability 

groups. 

To further explore the visuo-spatial ability of children with different 

mathematics abilities and to increase the sample sizes of different ability groups, 

children were split into two equal sized mathematics ability groups based on a median 
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split. For Year 3 children, those scoring below 60 were assigned to a low-to-average 
(LA) mathematics ability group and those scoring above 60 were assigned to an 
average-to-high (AH) ability group. Children in the LA mathematics ability group had 
significantly lower visuo-spatial sketchpad scores than children in the AH group 
(f(36.51)=-2.07,p<.05, Levene's Test for Equality of Variance /K .05). The median 
split for Year 5 children was 60.9. Children in the LA mathematics ability group did 
not perform significantly worse on the visuo-spatial measures than the AH group 
(/(54)=-1.45,/».05). 

Underachievement in Mathematics 

One aim of this study was to investigate whether visuo-spatial working 

memory tasks could identify children with low mathematics attainment. Therefore, 

children were assigned to one of two mathematics ability groups using a discrepancy 

definition (Yule, Rutter, Berger & Thompson, 1974). This method is typically used to 

define underachievement by classifying children as having specific learning 

difficulties if their attainment (e.g. mathematics) is below the level predicted from 

their age and IQ. The regression equation used to predict expected mathematics 

attainment for Year 3 wasy = 17.70 + (.05) age + (.66) NVIQ. The regression 

equation used to predict expected mathematics attainment for Year 5 was_y = 8.81 + 

(.23) age + (.45) NVIQ. 

10 of the Year 3 children were classified as having MD, with actual 

mathematics scores 12.87 below their predicted mathematics scores (mathematics 

Af=39.63, SD 6.95, composite visuo-spatial A/=.24, SD 1.47). The remaining 41 

children were classified as AH achievers (mathematics M=63.99, SD 10.43, visuo-

spatial M=. 30, SD 2.33). 
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7 of the Year 5 children were classified as having MD with actual mathematics 
scores 12.84 below their predicted mathematics scores (mathematics M=39.22, SD 
9.08, visuo-spatial M—.45, SD .76). The AH group consisted of the remaining 49 
children (mathematics M=63.47, SD 10.61, visuo-spatial M=.5S, SD 2.04). 

Mean visuo-spatial composite scores for the AH and MD groups for Year 3 

and Year 5 are displayed in figure 9.2. There were no significant differences in visuo-

spatial scores between the MD and AH children in Year 3 (*(49)=-.08,/?>.05. Equal 

variances were assumed due to a non-significant Levene's test resultp>.05). Children 

with MD in Year 5 had significantly poorer visuo-spatial abilities than the AH 

children (/(23.15)—2.50,p<.05. Equal variances were not assumed due to a significant 

Levine's test resultp<.05). 

Figure 9.2 shows that AH mathematics ability children in Year 5 had better 

visuo-spatial working scores than AH mathematics ability children in Year 3. 

Between group comparisons revealed that this difference was not significant (/(88)=-

.57,/?>.05). Figure 9.2 shows that MD children in Year 5 had poorer visuo-spatial 

scores than MD children in Year 3. Again this difference was not significant 

(f(15)=1.15,p>.05). This may have been due to the small sample sizes of the MD 

groups. 
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Figure 9.2 

Mean Composite Visuo-spatial Scores for Underachieving (MD) and Normally 

Achieving (AH) Children. 

The visuo-spatial working memory profiles of the MD children are presented 

in Figure 9.3. The mean composite visuo-spatial scores for the Year 3 group and the 

Year 5 group were 0.00 as the scores were standardized. Therefore, Figure 9.3 shows 

that MD children in Year 3 have comparable or higher visuo-spatial scores to the Year 

3 group mean (Mazes Memory M=.00, Visual Patterns Test M=.15, Block Recall 

M=.10). Consistent with the pattern in Figure 9.2 this suggests that MD children in 

Year 3 do not have visuo-spatial deficits. MD children in Year 5 have lower Mazes 

Memory (M—.23) and Visual Patterns Test (M=-. 13) scores compared to the Year 5 
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group mean. Their Block Recall Scores are higher (M=2.06) than the Year 5 group 

mean. 
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Figure 9.3 

Visuo-spatial working memory profiles of children with MD 

The general pattern of results thus far suggests that children with different 

mathematical abilities have different visuo-spatial working memory skills. However, 

they do not indicate whether or not visuo-spatial working memory assessments 

successfully discriminate between children with different mathematical abilities. 

Therefore, subsequent analyses were conducted to explore the mathematics abilities of 

children with different visuo-spatial skills. 
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Mathematics Abilities of Children with Different Visuo-spatial skills 

To compare the mathematics abilities of children with different visuo-spatial 

working memory skills children were split into subgroups according to their 

performance on the three standardized visuo-spatial working memory tasks. 

Children were assigned to one of three visuo-spatial ability groups (high, 

average or low) according to their composite scores. As before, children scoring ISD 

and above the mean were assigned to a high ability group, children scoring ISD and 

below the mean were assigned to a low ability group, and children scoring within ISD 

of the mean were assigned to an average ability group. 

For Year 3, children with scores below -2.24 were assigned to a low visuo-

spatial ability group. 6 children were assigned to this group (visuo-spatial M—3.35, 

SD .68, maths M=56.36, SD 8.27). Year 3 children with scores above 2.24 were 

assigned to a high visuo-spatial ability group. 9 children were assigned to this group 

(visuo-spatial M=3.62, SD .81, maths M=69.09, SD 9.79). Year 3 children with scores 

between -2.24 and 2.24 were assigned to an average visuo-spatial ability group. The 

remaining 38 children were assigned to this ability group (visuo-spatial M—.35, SD 

1.21, maths M=55.70, SD 14.79). 

5 Year 5 children with scores below -2.21 were assigned to a low visuo-spatial 

ability group (visuo-spatial M=-3.85, SD .80, maths M-56.36, SD 11.99). 9 children 

in Year 5 scored above 2.21 and were assigned to a high ability group (visuo-spatial 

M=3.60, SD 1.04, maths Af=65-45, SD 11.92). The remaining 42 children who scored 

between -2.21 and 2.21 were assigned to an average visuo-spatial ability group 

(visuo-spatial M=-35, SD 1.07, maths M=59.47, SD 13.71). Mean mathematics scores 
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for the three visuo-spatial ability groups for Year 3 and Year 5 are displayed in figure 

9.4. 
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Figure 9.4 

Mean Mathematics Scores for Children with Different Visuo-spatial Abilities 

An analysis of variance (one way ANOVA) revealed significant differences in 

mathematics achievement between the visuo-spatial ability groups for Year 3 children 

CF(2)=3.46,/K.05). The three subgroups were homogeneous (Levene's test of 

homogeneity of variances p>.05). Post hoc Tukey's HSD tests confirmed significant 

differences in mathematics attainment between the average and high ability groups 

Qx.05). 

There were no significant differences in mathematics achievement between 

the visuo-spatial ability groups for Year 5 children (F(2)=97, p>.05). The three 
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subgroups were homogeneous (Levene's test of homogeneity of variances p>.05). 
However, Figure 9.4. shows that mean mathematics scores were higher for the 
average visuo-spatial ability group than the low ability group and higher again for the 
high visuo-spatial ability group than the average ability group. These differences may 
have been non-significant differences due to the relatively small samples of the low 
and high ability groups. 

Children were split into two equal sized visuo-spatial ability groups (based on 

a median split) to increase the sample sizes of different ability groups. Year 3 children 

scoring below -.31 were assigned to a LA visuo-spatial ability group. Those scoring 

above -.31 were assigned to an AH ability group. There were no significant 

differences in mathematics performance between the two groups (r(49)=-1.41,/?>.05). 

The median split for Year 5 children was -.51. Again, there were no significant 

differences between the mathematics scores of the two ability groups (t(54)~ 1.26, 

p>.05). 

Visuo-spatial working memory deficits 

Children were assigned to one of two visuo-spatial ability groups using the 

same discrepancy definition used to identify children with underachievement in 

mathematics (Yule, Rutter, Berger & Thompson, 1974). As before, a specific deficit 

in performance was defined as a discrepancy of at least 1 S.E. between actual and 

predicted scores (e.g. children's visuo-spatial working memory composite scores were 

below the level predicted from their age and IQ). The regression equations used to 

predict expected visuo-spatial composite scores werey = -13.33 + (.11) age + (.19) 

NVIQ and^ = -21.69 + (.15) age + (.19) NVIQ for Year 3 and Year 5 children 

respectively. 



3 Year 3 children with composite visuo-spatial scores at least 1.92 below their 

predicted scores (visuo-spatial M—3.41, SD .43, Mathematics M=60, SD 4.81) were 

classified in the visuo-spatial deficit group. The remaining 48 children were assigned 

to the AH visuo-spatial ability group (visuo-spatial ability M=.55, SD 1.98, 

Mathematics M=58.74, SD 14.65). 

Year 5 children classified in the visuo-spatial deficit group had composite 

visuo-spatial scores at least 1.99 below their predicted scores (visuo-spatial M— 3.27, 

SD 1.46, Mathematics A/=54.55, SD 14.49). 5 children were assigned to this group. 

The remaining 51 children were classified in the AH ability group (visuo-spatial 

M=.35, SD 1.98, Mathematics A/=60.81, SD 13.18). 
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Mathematics scores of children with and without visuo-spatial deficits 
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Mean mathematics scores for the AH ability and visuo-spatial deficit groups 
for Year 3 and Year 5 are displayed in Figure 9.5. There were no significant 
differences in the mathematics scores of the two ability groups for Year 3 (r(5.41— 
.35,/?>.05. Unequal variances were assumed due to a significant Levene's result) or 
Year 5 (r(54)=-1.00,/?>.05. Equal variances were assumed due to anon-significant 
Levene's result). However, Figure 9.5 shows that the Year 5 visuo-spatial deficit 
group had poorer mathematics scores than the AH ability group. This difference may 
have been non-significant due to the relatively small sample size of the low ability 
group. 

The mathematics profiles of the visuo-spatial deficit groups across different 

mathematical skills are displayed in Figures 9.6 and 9.7. 
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Performance-related mathematics skills of children with visuo-spatial deficits 
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Year 3 children with visuo-spatial deficits have comparable scores to the 
group mean on one of the performance-related skills (Cluster B M=78.66 compared to 
the group M=71.57). However, their scores on Cluster A were lower than the group 
mean (M=44.44 compared to the group M=47.16). 

Year 5 children with visuo-spatial deficits have lower scores on both 

performance-related skills compared to the group means (M=68.64 for Cluster C 

compared to the group M=75.52; M=25.56 for Cluster D compared to the group 

M=28.73). 
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Figure 9.7 

Curriculum-based mathematics skills of children with visuo-spatial deficits 



Year 3 children with visuo-spatial deficits have comparable, or higher, 

curriculum-based mathematics scores compared to the Year 3 group mean scores on 

three of the measures (Number and Algebra 48.8 compared to the group M=47.8; 

Shape, Space and Measures 66.66 compared to the group M=60.28; Mental 

Arithmetic 73.33 compared to the group M=62.77). Their Handling Data scores are 

slightly lower (A/=60) than the group mean scores (Af=62.76). 

Year 5 children with visuo-spatial deficits have comparable Shape, Space and 

Measures (M=59.23 compared to the group M=61.33) and Handling Data (M=58.67 

compared to the group M=58.46) scores to the Year 5 group means. However, those 

with a visuo-spatial deficit have poor Number and Algebra scores (M=38.67) and 

Mental Arithmetic scores (M=62) compared to the Year 5 group means (M=57.69 and 

M=68.27 respectively). 

Discussion 

This study provides cross-sectional evidence to further support a role for the 

visuo-spatial sketchpad in children's mathematics development. General patterns in 

the data provide further support for an association between visuo-spatial working 

memory and children's mathematics (e.g. Jarvis & Gathercole, 2003). Children who 

were more able in mathematics had better visuo-spatial scores than children with 

poorer mathematics abilities. Specifically, children with average mathematics abilities 

outperformed children with low mathematics abilities and children with high 

mathematics abilities outperformed children with average mathematics abilities across 

both age groups. Similarly, children with high visuo-spatial sketchpad scores 

outperformed children with low visuo-spatial sketchpad scores on the mathematics 

assessments. 



The overarching aim of this study was to explore whether visuo-spatial 

working memory tests could be used to identify children with low mathematics 

attainment. This was approached in two ways: (i) comparing the visuo-spatial skills of 

children with mathematical difficulties (MD) to children with A H mathematical 

abilities and (ii) comparing the mathematical abilities of children with visuo-spatial 

deficits to children with AH visuo-spatial skills. 

Contrary to expectation Year 3 children with MD did not have poorer visuo-

spatial skills than Year 3 children with AH mathematics abilities, nor did children 

with visuo-spatial deficits have poorer mathematics abilities than children with AH 

visuo-spatial skills. Rather, Year 3 children with above average visuo-spatial skills 

(defined as scores at least ISD above the group mean) had significantly better 

mathematical abilities than children with average visuo-spatial skills (scores within 

ISD of the group mean). This suggests that poor visuo-spatial skills do not 

significantly impair mathematics performance at Year 3. Instead, children with good 

visuo-spatial skills are boosted in mathematics at Year 3. In terms of the previous 

findings reported in this thesis (e.g. Chapters 3, 4, 6 and 7) the associations between 

visuo-spatial sketchpad scores and Year 3 children's mathematics performance may 

reflect this. 

Poor visuo-spatial skills might not significantly impair mathematics 

performance at Year 3 due to the limitations of the mathematics taught and assessed at 

this age. Formal mathematics teaching follows a linear curriculum, which means 

learning is an incremental process. The Key Stage 2 curriculum begins at Year 3, 

where children are taught basic skills that they develop throughout Years 4, 5 and 6. 

Therefore, Year 3 children who are just starting this curriculum have limited 

mathematics knowledge. Consequently, test performance may not expose children 
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who have MD. Arguably, the discrepancy between normally achieving and 
underachieving children is larger in older children who have experienced more years 
of formal teaching. As teaching progresses throughout their schooling children who 
are poor at mathematics fall further behind their normally achieving peers; hence the 
difference in ability becomes more apparent. Visuo-spatial resources might not 
support children's mathematics at Year 3 because the mathematics they are required 
to perform is relatively limited and simple. This would mean that a deficit in visuo-
spatial ability might not impair a child's performance at this age. 

Interestingly, the data suggested that children with good visuo-spatial skills 

have an advantage in mathematics at Year 3. Around this age children are beginning 

to solve abstract mathematical problems. It was suggested that the visuo-spatial 

sketchpad may support children's mathematics development by providing a 

foundation upon which abstract problems can be represented in a concrete format (see 

Chapters 6 and 7). As such, it is possible that Year 3 children with good visuo-spatial 

working memory skills are better able to forge the links between concrete and abstract 

knowledge than children with poorer visuo-spatial abilities. One possibility is that 

they have a greater meta-cognitive awareness of their visuo-spatial abilities and their 

application to mathematical problems. As discussed in the previous paragraph, Year 3 

children with poor visuo-spatial skills are not disadvantaged in mathematics. In line 

with the current suggestion, visuo-spatial resources might not support the day-to-day 

concrete mathematics performed by most Year 3 children. This means a deficit in 

visuo-spatial skill would not affect mathematics test performance. 

Year 3 children with visuo-spatial deficits did not have general impairments in 

mathematics performance (as measured by a composite score) or impairments across 

the curriculum-based mathematics skills. However, their scores were lower on one of 
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the performance-related mathematics skills (Cluster A) when compared to the Year 3 
group mean. Cluster A consisted of the more abstract mathematics problems (see 
Chapter 5), which suggests that Year 3 children with MD are impaired on "pure" but 
not "applied" questions. Consistent with ideas presented earlier in the thesis, this 
supports the idea that young children rely upon the visuo-spatial sketchpad to 
represent abstract mathematical problems that do not have a concrete referent (see 
Chapter 6). 

Overall, poor visuo-spatial skills do not impair mathematics performance at 

Year 3. This may be because visuo-spatial resources do not support the day-to-day 

concrete mathematics performed by children aged 7-/8-years. Good visuo-spatial 

skills do, however, give children an advantage in mathematics at Year 3. This may be 

because visuo-spatial resources support the development between concrete and 

abstract processing. As such, children with good visuo-spatial skills may be better 

able to solve more complex mathematical problems. Alternatively, children who are 

more mathematically able may be doing more advanced mathematics, which could 

provide them with the opportunity to use and again an advantage from high visuo-

spatial sketchpad abilities (e.g. Adams & Hitch, 1997). 

Year 5 children with MD performed significantly worse on the visuo-spatial 

tasks compared to children with AH mathematical abilities. Similarly, children with 

visuo-spatial deficits had poorer mathematical abilities compared to children with AH 

visuo-spatial abilities. This pattern of results is consistent with previous research, 

which suggests that 9-/10-year-old children with specific MD are impaired on visuo-

spatial working memory tasks (e.g. McLean & Hitch, 1999). 

Visuo-spatial resources may support Year 5 children's day-to-day 

mathematics. Although they might use predominantly verbal solution strategies to 



solve mathematical problems (see Chapter 6), they rely upon visuo-spatial strategies 

as a back-up when they cannot deploy verbal strategies (e.g. when they encounter 

complex or novel mathematical problems). As such, it is possible that children with 

visuo-spatial deficits are unable to make use of effective back-up strategies at Year 5. 

Consequently, this may lead to failure and underachievement in mathematics. Indeed, 

Year 5 children with visuo-spatial deficits had lower scores across both performance-

related mathematics skills (Cluster C and Cluster D) and two of the four curriculum-

based mathematics skills (Number and Algebra and Mental Arithmetic) in comparison 

to the Year 5 group mean scores. In relation to the Year 3 data, visuo-spatial deficits 

had a larger impact on Year 5 children's mathematics performance. This may be 

because older children's mathematics is more complex and abstract, meaning adept 

visuo-spatial skills are needed to support day-to-day mathematics performance. 

Year 5 children with MD had particularly low scores on both the Mazes 

Memory and Block Recall tasks in comparison to the Year 5 group scores. Both tasks 

contain a spatial element. Block Recall provides a measure of immediate spatial 

memory (e.g. Logie & Pearson, 1997), while Mazes Memory contains an explicit 

spatial component (tracing and remembering a route). Therefore, it is tentatively 

suggested that Year 5 children with MD may have impaired immediate spatial 

memory. I f this is so, they may experience problems with the spatial representation 

and manipulation of numbers (e.g. using a mental number line), which may impair 

their mathematics performance. Clearly this needs further research given the problems 

defining the structure and assessment of visuo-spatial working memory in children 

(see Chapters 4 and 7). 

Although this study was cross-sectional it provides an initial indication that 

normal visuo-spatial working memory development may be important for normal 



mathematics development. Logie and Pearson (1997), among others (e.g. Wilson, et 

al., 1987; Isaacs & Varga-Khadem, 1989), suggest that the visuo-spatial sketchpad 

follows a steady developmental increase between 5-years-of-age and 15-years-of-age. 

Between group comparisons revealed that visuo-spatial scores follow a normal 

developmental trajectory between Year 3 (7-/8-years-of-age) and Year 5 (9-/10-year-

of-age), for children with AH mathematical abilities. AH children in Year 5 had better 

visuo-spatial sketchpad scores than AH children in Year 3. However, Year 5 children 

with MD did not have better composite visuo-spatial sketchpad scores than Year 3 

children with MD. I f a longitudinal interpretation is applied to cross-sectional data, 

this suggests that visuo-spatial working memory follows a normal developmental 

trajectory in children with AH mathematics ability, but that visuo-spatial working 

memory may not follow a normal developmental trajectory in children with MD. 

It is tentatively suggested that impaired visuo-spatial working memory 

development between Year 3 and Year 5 may hinder normal mathematics 

development. As discussed earlier, visuo-spatial working memory scores of MD and 

A H mathematics ability children are comparable at Year 3. However, by Year 5 the 

visuo-spatial working memory scores of children with MD and children with AH 

mathematics are discrepant. It is possible that the lack of development in the visuo-

spatial working memory system between Year 3 and Year 5 has impaired normal 

mathematics development by Year 5. In terms of the ideas presented earlier; i f visuo-

spatial working memory facilitates mathematics development through supporting 

links between concrete and abstract knowledge, an impaired visuo-spatial working 

memory system would intuitively impede mathematics development. Clearly this 

interpretation is speculative due to the limitations of using a cross-sectional design to 
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provide an indication of the developmental trajectory between two age groups. 
Longitudinal research is needed to further investigate these ideas. 

It has been suggested that visuo-spatial deficits are characteristic among 

children with MD (e.g. Geary, 1993). Therefore, this study was designed to provide 

an initial indication of the potential value of visuo-spatial working memory 

assessments as screening tools for educational practitioners. Visuo-spatial working 

memory deficits were not indicative of MD at Year 3, suggesting that visuo-spatial 

working memory assessments may not be useful tools with which to identify children 

with MD at Year 3. However, visuo-spatial deficits were indicative of MD at Year 5, 

suggesting they may be of some value for use with 9-/10-year-olds. Importantly, the 

data suggested that normal visuo-spatial working memory development may be 

important for normal mathematical development. With this is in mind, visuo-spatial 

working memory assessments may be useful for screening children at risk of 

developing MD. Although screening children for visuo-spatial deficits at an early age 

may not identify those with MD, it might identify children who are at risk of poor 

visuo-spatial working memory development. Based on the current findings, these 

children may be at risk of developing MD as they progress through school. Again, this 

suggestion is tentative as it is based on evidence from cross-sectional data. Clearly a 

longitudinal study, which follows the development of children's mathematical and 

visuo-spatial skills between the ages of 7- and 10-years, is needed. 

In summary, this study provides further evidence for an association between 

visuo-spatial working memory ability and children's mathematics performance. 

Importantly, it provides an initial indication that normal visuo-spatial working 

memory development facilitates normal mathematics development, while impaired 

visuo-spatial working development might impede normal mathematics development. 
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This suggestion is of particular importance to educational practice and certainly 
warrants further investigation. I f longitudinal research yields similar results, there 
may be scope to provide children and teachers with opportunities for remediation. For 
example, training children's visuo-spatial skills or encouraging the use of visuo-
spatial working memory at an early age may foster normal mathematics development. 

Chapter Summary 

1. Visuo-spatial deficits are characteristic among a subgroup of children with 

MD (e.g. Geary, 1993). It has been suggested that these deficits may be 

specifically related to visuo-spatial working memory. The aim of this study 

was to explore this idea to provide an indication of the potential value of 

visuo-spatial working memory assessments to educational practitioners. 

2. The general pattern of results suggested that visuo-spatial working memory 

ability was related to children's mathematics. Overall, children with good 

visuo-spatial skills had good mathematics scores and vice versa. 

3. Contrary to expectation children with MD did not have poor visuo-spatial 

skills at Year 3. However, children with good visuo-spatial skills had an 

advantage in mathematics. It was suggested that visuo-spatial resources might 

not support day-to-day concrete mathematics at this age, meaning a visuo-

spatial deficit would not impair test performance. The visuo-spatial sketchpad 

may support links between children's concrete and abstract mathematics 

processing. As such, children with good visuo-spatial skills may be able to 

solve more advanced abstract mathematical problems giving them an 

advantage at this age. 
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4. Year 5 children with MD had poor visuo-spatial skills, suggesting visuo-
spatial working memory may support the development of children's complex 
mathematical skills. 

5. Between group comparisons suggested that visuo-spatial working memory did 

not follow a normal developmental trajectory in children with MD. This 

suggests that normal visuo-spatial working memory may support normal 

mathematics development, while impaired visuo-spatial working memory may 

impede normal mathematics development. 

6. These findings are discussed in terms of the value of visuo-spatial working 

memory assessments to educational practitioners. However, additional 

longitudinal research is required. 
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Chapter Ten 

General Discussion and Conclusions 

Previous studies which investigated the association between working memory 

ability and children's mathematics typically incorporated digit- or number-based 

working memory tasks and measured mathematics ability as a general skill (e.g. 

Gathercole & Pickering, 2000a) or performance on a mental arithmetic task (e.g. 

Adams & Hitch, 1998). The main aim of this thesis was to extend this work to explore 

the associations between the three components of the tripartite working memory 

model (e.g. Baddeley, 1986) and a range of mathematical skills in children using non-

digit based working memory assessments, taking into account a measure of children's 

general ability. 

Several studies were conducted with 7-/8-year-olds and 9-/10-year-olds. 

Overall, the results support an association between working memory ability and 

children's mathematics performance. The main findings and conclusions are 

presented in Section 10.1. These are followed by a discussion of the implications of 

this research for education in Section 10.2. Finally, the limitations of the current 

research and possible future directions are discussed in Sections 10.3.and 10.4 

respectively. 
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Section 10.1 
Conclusions 

The overarching conclusion emerging from this research is that working 

memory ability is related to children's attainment across a range of mathematical 

skills. Converging evidence presented in Chapters 3, 4, 6 and 7 suggests that scores on 

working memory assessments are related to mathematics performance. Furthermore, 

data presented in Chapter 8 suggests that working memory assessments may be useful 

prospective indicators of children's academic attainment. 

Overall, these findings support research conducted by Gathercole and 

colleagues, which suggests that working memory ability is significantly associated 

with National Curriculum attainment (e.g. Gathercole & Pickering, 2000a) and more 

specifically with Key Stage 2 Mathematics attainment (e.g. Jarvis & Gathercole, 

2003). Importantly, the current research extends these findings to suggest that 

working memory assessments predict National Curriculum mathematics performance 

above and beyond measures of general ability (e.g. NVIQ measures). Both central 

executive and visuo-spatial sketchpad scores predicted unique variance in children's 

mathematics performance beyond that predicted by individual differences in NVIQ in 

Chapters 3, 4 and 8. These results provide some evidence to suggest that working 

memory ability may support children's mathematics independent of the contribution 

of working memory to a higher order construct such as IQ (e.g. Kyllonen & Christal, 

1990). 

Contrary to expectation phonological loop scores did not predict unique 

variance in children's curriculum-based mathematical skills. Previous research 

suggests that the phonological loop may support the retention of verbally presented 

problem information (e.g. Adams & Hitch, 1997). The mathematics assessments 



284 

administered in the present research consisted of three written tests and one auditory 
test. Therefore it is tentatively suggested that phonological loop resources were not 
needed to support the retention of problem information for much of the mathematics 
tests. Consistent with this notion, scores on the phonological loop measure were 
significantly associated with mental arithmetic performance before the variance 
associated with age was controlled for. Of the four curriculum-based mathematics 
skills assessed, mental arithmetic was the only skill that involved auditory 
presentation of the problems. This suggests that the children were able to use subvocal 
rehearsal processes to support the retention of problem information (e.g. Adams & 
Hitch, 1997) and direct retrieval of arithmetic facts from LTM. 

Previous research suggested that number-based working memory measures 

were more strongly associated with mathematics performance than non-numerical 

measures (e.g. Passolunghi & Siegel, 2001). Therefore, the working memory 

measures used throughout this research did not contain numerical stimuli. 

Performance on a range of these tasks was significantly correlated with children's 

mathematics performance, suggesting that working memory and mathematics were 

not simply linked in previous research because the assessments of both involved 

number processing or access to numerical information. 

The current work further extends earlier research to suggest that working 

memory ability supports children's performance across a range of mathematical 

domains. Beyond predicting overall National Curriculum mathematics attainment 

(e.g. Jarvis & Gathercole, 2003), visuo-spatial sketchpad and central executive scores 

predicted children's performance across the four mathematical skills outlined by the 

National Curriculum (see Chapters 3 and 4). Although there was little difference in 

the working memory demands of each curriculum-based mathematical skill, the 
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evidence advocates a role for working memory in supporting different aspects of 
mathematics curricula. 

Evidence to support a developmental difference in the involvement of working 

memory in children's mathematics was reported in later chapters. Overall, working 

memory skill, and in particular central executive scores, predicted less variance in the 

older children's mathematics than the younger children's in Chapters 6 and 7. 

Consistent with previous research this implies that working memory resources may 

support mathematics development where children are learning mathematics facts (e.g. 

Hitch & McAuley, 1991) and acquiring new solution strategies (e.g. Bull & Scerif, 

2001). Furthermore, it supports the notion that younger children may be more 

sensitive to working memory limitations when developing their mathematical skills 

(e.g. Adams & Hitch, 1998). 

The working memory demands differed across the performance-related 

mathematical skills, suggesting there may be a developmental change in the working 

memory resources supporting children's mathematics. Consistent with McKenzie et 

al.'s (2003) findings, the younger children appeared to use visuo-spatial sketchpad 

resources for mathematics, while the older children appeared to use both phonological 

loop and visuo-spatial sketchpad resources (see Chapter 6). It was suggested that the 

involvement of the visuo-spatial sketchpad in the 7-/8-year-olds mathematics may 

reflect the use of an early visuo-spatial arithmetic (e.g. Houde, 1997), the use of early 

visual encoding strategies (e.g. Palmer, 2000) or that it may provide a foundation 

upon which abstract mathematical problems are represented. In line with this 

explanation, it was proposed that the involvement of the phonological loop in the 9-

/ 10-year-olds mathematics may reflect the deployment of more advanced solution 

strategies, such as direct retrieval. Although speculative, this interpretation provides 
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an initial indication that the working memory resources supporting children's 
mathematics may change with age. Moreover, it defines possible independent roles 
for the slave systems in children's mathematics, which may map on to the 
developmental shift in children's mathematical cognition; from the use of early visuo-
spatial solution strategies to the use of more mature verbal solution strategies. 

Finding an independent role for the visuo-spatial sketchpad in children's 

mathematics was a relatively novel result. Previous research has typically focussed on 

the associations found between phonological loop (e.g. Adams & Hitch, 1998) and 

central executive (e.g. Bull et al., 1999) abilities and children's mathematical 

attainment. Of those studies that do report significant associations between visuo-

spatial sketchpad scores and children's mathematics attainment (e.g. Jarvis & 

Gathercole, 2003), few have investigated the potential role it may play in supporting 

performance. The current research, however, provided evidence to suggest a role for 

the visuo-spatial sketchpad in children's mathematical development. 

Initially a significant association was found between performance on a single 

visuo-spatial sketchpad measure and children's curriculum-based mathematics 

performance in Chapter 3. This was further investigated in Chapter 4 where several 

visuo-spatial working memory measures were administered to explore the nature of 

visuo-spatial working memory supporting children's mathematics. The tasks were 

selected on the basis that they were presumed to measure the two subcomponents of 

the visuo-spatial sketchpad (e.g. Logie, 1995). Although the results did not highlight a 

differential pattern of associations between children's visual and spatial working 

memory abilities and mathematics, they provided further evidence for a significant 

association between visuo-spatial sketchpad scores and mathematics attainment. 

Contrary to expectation there was not a significant association between performance 



on the Mazes Memory task and children's mathematics performance in Chapter 4, as 

there had been in Chapter 3. This may reflect differences between the two samples of 

children used in each study. Alternatively, inconsistent results may have been found 

due to the relatively low test-retest reliability of the Mazes Memory task (.43, 

WMTB-C, Pickering & Gathercole, 2001). 

Paradoxically, the results of Chapter 9 suggested that 7-/8-year-olds with poor 

visuo-spatial skills were not disadvantaged in mathematics. Rather, children of this 

age with good visuo-spatial skills were more able in mathematics. At first this seems 

counter-intuitive as the visuo-spatial sketchpad appeared to support the younger 

children's mathematics in earlier chapters. However, a plausible explanation is that 

children with good visuo-spatial skills may be better able to forge the links between 

concrete and abstract processing and therefore solve more complex abstract 

mathematical problems, which in turn gives them an advantage. This relationship may 

be reciprocal. Children who are more mathematically able may be doing more 

advanced mathematics, which could provide them with the opportunity to use and 

gain an advantage from high visuo-spatial sketchpad abilities (e.g. Adams & Hitch, 

1997). 

An alternate explanation relates to the interaction between cognitive style and 

working memory in learning and attainment (Riding, Grimley, Dahraei & Banner, 

2003). An individual's cognitive style describes their preferred approach to organising 

and representing information (Riding, 2002). Cognitive style has two dimensions; 

wholist-analytic (whether people view the whole or see things in parts) and verbal-

imagery (whether people prefer to represent information verbally or as pictures and 

images). Broadly speaking, people's cognitive styles differ along these dimensions in 

various combinations (i.e. wholist-verbalisers, wholist-imagers etc.). 
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Children learn best when the information is congruent with their preferred 
representation mode (verbal-imagery). For example, initial reading performance in 7-
year-olds was superior in verbalisers (Riding & Anstey, 1982), while 7-, 11- and 12-
year-old imagers were better able to recall visually concrete information than abstract 
information (Riding & Taylor, 1976; Riding & Dyer, 1980; Riding & Calvey, 1981). 
It has been suggested that wholists initially learn faster than analytics as they are able 
to view the whole rather than focussing on small parts (e.g. Riding & Mathias, 1991). 
With this in mind, it could be argued that wholist-imagers may be at advantage when 
beginning to learn mathematics as concrete examples are often provided to aid 
understanding. Interestingly, younger children with better visuo-spatial working skills 
were found to have an advantage in mathematics in Chapter 9. It is possible that 
children with good visuo-spatial skills may be imagers, who prefer to think visually 
and tend to use the whole-view aspect of imagery (Riding, 2002). As such, the 
advantage they have when they first begin to learn mathematics may be due to the 
presentation of information matching their preferred style along the verbal-imagery 
domain. Further research is clearly needed to develop this idea beyond speculation. 

Although visuo-spatial sketchpad deficits did not impair the younger 

children's mathematics performance, older children with visuo-spatial deficits had 

poor mathematics abilities. It was suggested that these children may find it difficult to 

make use of effective back-up strategies, which leads to failure and underachievement 

(see Chapter 9). 

In terms of defining a role for the visuo-spatial sketchpad in children's 

mathematics the current research suggests that normal visuo-spatial working memory 

development may be important for normal mathematics development. Although a 

longitudinal interpretation must be applied to cross-sectional data in this instance, 
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there is some evidence to suggest that between the ages of 7-/8-years and 9-/10-years 
children who have poor visuo-spatial skills fall behind in mathematics. Clearly further 
research is needed to progress this hypothesis beyond speculation. 

The current research suggests that a variety of mathematical skills correlate 

with children's visuo-spatial sketchpad abilities. This could be because the visuo-

spatial sketchpad is used to represent visual number form (e.g. Hayes, 1973) and 

spatial representations of number (e.g. Dehaene, 1992) or because it acts as mental 

blackboard upon which mathematical problem information is represented and 

manipulated (e.g. Heathcote, 1994). It is possible that the function of visuo-spatial 

sketchpad differs for different mathematical tasks. For example, it may provide a 

foundation upon which abstract algebraic symbols are represented as concrete number 

forms for algebraic problems, whilst supporting the mental representation and spatial 

re-ordering of graphical information (e.g. Webber & Feeney, 2003) for Handling Data 

problems. Clearly delineating the functions of the visuo-spatial sketchpad in 

supporting different mathematical skills is a point for future research. It is suggested 

that dual task studies, where visuo-spatial sketchpad functioning is selectively 

disrupted, may elicit a greater understanding of the mathematical processes supported 

by visuo-spatial skills. 

A key component of this research was the development of assessments 

designed to measure four different mathematical skills outlined by the National 

Curriculum for England (see Chapter 2). However, subsequent analysis suggested that 

the existing curriculum structure may not be teaching and assessing separable 

mathematical abilities (see Chapter 5). This finding will be discussed in more detail in 

section 10.3. 



10.2 

Implications for Education 

Certain aspects of the data collected have implications for educational 

practice. Overall, two main findings may impact on the teaching and assessment of 

mathematics in schools. Firstly, there are implications relevant to the structure of the 

mathematics curriculum in England. Secondly, there are implications related to the 

use of working memory assessments as prospective indicators of academic attainment. 

These two themes will be discussed in turn. 

Developmental psychology is beginning to influence the structure of school 

mathematics curricula worldwide. The teaching and assessment of mathematics in 

countries such as America, Australia, New Zealand and Holland is theoretically 

grounded and reflects stages in children's number development (see Chapter 5). 

Conversely, the existing mathematics curriculum in England is dictated by common 

sense (Brown, 2001). The results presented in Chapter 5 suggest a revised approach to 

curriculum development and assessment in England may facilitate teaching, promote 

children's learning and provide a better indication of children's abilities. If the QCA 

were to develop a mathematics curriculum guided by cognitive-developmental ideas 

they could organise content areas in a developmentally justifiable way. This would 

enable teaching and assessment to be pitched at suitable levels for certain phases in 

cognitive development. Furthermore, this would benefit cognitive developmental 

research as it would enable better investigations into the cognitive resources 

supporting mathematical development. In time, this research would hopefully 

feedback into the education system and help teachers better understand mathematics 

development. Clearly there is an issue to be resolved in determining the cost and 

benefits of revising the mathematics National Curriculum. However, the current 



research indicates that a more structured curriculum, tailored to specific stages in 

development, may prove beneficial to researchers and educational practitioners. 

Following the introduction of Key Stage assessments at 7-, 11- and 14-years 

there has been increasing pressure on schools to raise standards. As such, it is 

becoming increasingly important for teachers to monitor children's academic 

progress, predict their Levels of attainment and identify those at risk of failure. In 

recent years research has shown that working memory assessments may be useful 

prospective indicators of children's National Curriculum attainment and that they may 

be useful tools with which to identify young children at risk of low achievement in 

mathematics (e.g. Gathercole & Pickering, 2000a). Working memory assessments are 

considered useful as they provide an early indicator of performance that is 

independent of knowledge acquired through school and home learning experiences. 

That is, they measure different underlying constructs to other indicators of 

performance, such as baseline assessments (e.g. Gathercole et al., 2003). Performance 

on working memory resources is constrained by cognitive resources rather than 

crystallised knowledge. Furthermore, unlike baseline assessments, working memory 

assessments are relatively independent of background factors such as pre-school 

education and socio-economic factors (e.g. Alloway et al., 2004). The current research 

adds to this to suggest that working memory assessments (central executive and 

visuo-spatial measures) may also be valuable prospective indicators of National 

Curriculum test performance over and above intelligence measures. As such, it is 

suggested that working memory assessments could be used in schools to help predict 

attainment and consequently raise standards. 

Intuitively, evidence for a significant association between working memory 

ability and mathematics performance implies that children with working memory 



deficits may be at risk of developing MD. Indeed, the results presented in Chapter 9 

suggest that children with poor visuo-spatial sketchpad abilities at 7-/8-years may be 

at risk of falling behind in mathematics by 9-/10-years. In relation to educational 

practice this suggests that visuo-spatial working memory assessments may hold some 

value as screening tools. 

Identifying children with poor working memory ability, who may be at risk of 

developing MD, at an early age may provide educators with opportunities for 

remediation. However, this is complicated as little is known about how low working 

memory capacity might constrain successful learning. Recently, Gathercole, Lamont 

and Alloway (in press) observed that children with poor working memory abilities 

failed in many routine classroom activities that required both memory storage and 

effortful processing. Such activities included carrying out numerical calculations that 

were embedded in everyday language, keeping their place during complex tasks and 

following tasks. They suggest that learning may be promoted for these children i f the 

processing activity of heavily working memory demanding activities is simplified. For 

example, complex tasks could be broken down into smaller steps or external memory 

aids could be provided to reduce working memory loads. 

Riding et al. (2003) suggested that working memory ability may interact with 

a child's cognitive style in learning and attainment and that poor working memory 

capacity reduced learning performance in analytics and verbalisers. They speculated 

that this may have been due to both styles demanding heavy processing of information 

during learning. Similar to Gathercole, Lamont et al.'s (in press) recommendation, 

Riding (2002) proposes that the processing load should be reduced for children with 

poor working memory ability, particularly i f they are analytic-verbalisers. He suggests 

processing load could be reduced in the classroom learning situation through various 
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methods including: providing external aids; using slow presentation, revision and 
sequence design when delivering material; increasing working memory capacity 
through reducing stress. Overall, alleviating working memory demands in the 
classroom may prove a useful method for improving learning and reducing the risk of 
failure in children with working memory impairments. 
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10.3 
Limitations 

An obvious limitation of the current research relates to the methodologies 

used. For the most part cross-sectional studies were conducted. While cross-sectional 

research provides information on different age groups (when independent groups are 

used) to highlight age-related changes and developmental trends within a shorter 

research time-frame than other developmental methodologies (i.e. longitudinal 

studies), they only provide a "snapshot" of ability at one moment in time. Thus the 

changes inferred may be confounded by variation between the groups (i.e. differences 

in education and socio-cultural factors). Furthermore, this approach does not bestow 

information on the development of individuals. The age-related differences observed 

between the working memory resources supporting children's mathematics at 7-/8-

years and 9-/10-years within the current research may therefore be confounded by 

these factors. Applebaum and McCall (1983) argue that "the longitudinal method is 

the lifeblood of developmental science. It is the only way researchers can study 

change within organisms over age" (Applebaum & McCall, 1983, pp.441). Indeed, 

longitudinal research affords many advantages such as the study of change in 

individuals over time, which is arguably a truer reflection of developmental change. 

Although a longitudinal study was conducted in Chapter 8 to strengthen the case for a 

causal relationship between working memory and children's mathematics 

performance, additional longitudinal research is needed to substantiate the 

developmental differences observed between the two age groups in Chapters 6, 7 and 

9. 

Another related potential weakness in the current research was that 

correlational designs were conducted for many studies. The use of this approach 



provided information to support a significant association between working memory 

test scores and children's mathematics performance. However, it did not provide 

information on causality, the direction of the association or the role that working 

memory might play in children's mathematics. Although multiple regression 

procedures allowed a better predictive combination of the variables, additional 

research will be required to identify the nature of the relationship between working 

memory and children's mathematics. Again, a longitudinal approach would help 

resolve some of the weaknesses in correlational designs. Alternatively, dual-task 

designs might help to identify the role of working memory in different mathematical 

processes. 

A general limitation of this research is the "neglect" of other important 

cognitive factors (e.g. verbal IQ and reading ability) and recent additions to the 

tripartite working memory model (e.g. the episodic buffer and non-verbal executive 

skills). Future research will need to focus on the recent theoretical developments to 

the working memory model (e.g. Baddeley, 2000) i f its role in children's mathematics 

is to be fully understood. Furthermore, controlling for other cognitive abilities (such 

as verbal IQ or reading ability) may help to identify the role of working in children's 

mathematics. Reading and language skills often correlate highly with mathematics 

ability and are also affected by working memory ability. In view of the use of written 

mathematics assessments in the current research, part of the association between 

working memory ability and mathematics performance may have been influenced by 

the relationship between reading ability and working memory (e.g. Bull & Johnston, 

1997). Controlling for reading ability in future studies would clarify this issue. 

A further limitation relates to the mathematics assessments. The mathematics 

tests were timed, which may not have allowed all children to show their range of 
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abilities as failure to complete or attempt a question resulted in an incorrect response. 
However, in each study less than 10 children failed to complete the tests, indicating 
that timed assessments did not pose a major problem. 

Other limitations in the present research related more directly to problems 

within particular studies. As these issues are raised within the relevant chapters, only a 

brief summary is provided here. The first of these issues concerns the measures used 

where two problems arose. Firstly, there were problems with the NVIQ measure 

grouping with the working memory measures in Chapters 3 and 4. This complicated 

the issue of isolating the unique contribution of working memory ability to 

mathematics performance. It was suggested that the measures may have grouped due 

to the similarity of the task demands or the fact that working memory and intelligence 

are closely related constructs (e.g. Colom et al., 2004). The inclusion of an additional 

verbal IQ measure may help separate working memory and intelligence factors in 

future research. The second problem related to the measurement of children's visuo-

spatial abilities. Several visuo-spatial sketchpad tasks were administered in Chapter 4 

in an attempt to isolate visual and spatial immediate memory from one another and 

from executive resources. However, there were problems with the nature and 

specificity of the tasks (see Chapter 4). Clearly future research is needed to investigate 

the cognitive processes supporting performance on such tasks. The second issue 

arising from the current research is related to the first. Not only were there problems 

with the assessment of visuo-spatial sketchpad abilities, there were also problems 

defining its structure. Contrary to expectation there was no evidence for a fractionated 

visuo-spatial sketchpad system from the data presented in Chapters 4 and 7. Rather, 

the data highlighted the fact that, as yet, there is no definitive description of the 
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structure of visuo-spatial working memory. These problems clearly limited the 
investigation into the role of the visuo-spatial sketchpad in children's mathematics. 



10.4 

Future Directions 

In the future it would be beneficial to educational practitioners and cognitive 

developmental researchers to replicate and extend the current investigation into the 

association between visuo-spatial sketchpad ability and mathematics performance 

using a longitudinal methodology. In particular, it would be interesting to track the 

development of visuo-spatial working memory and mathematics performance 

between the ages of 7-years and 10-years to further investigate i) whether normal 

increases in visuo-spatial working memory capacity support normal mathematics 

development between these ages ii) whether visuo-spatial working memory 

impairments at 7-years predict MD at 10-years and iii) whether the association 

between visuo-spatial working memory and children's mathematics decreases over 

time. 

In addition, it would be interesting to extend the current investigation to 

explore the associations between visuo-spatial sketchpad ability and mathematics 

performance in older children to see i f the developmental trends suggested in the 

current data extend to adolescence. Based upon current observations, it would be 

expected that the associations between visuo-spatial sketchpad ability and 

mathematics performance would decrease with age. Further research could also 

extend this investigation to include pre-school children and explore the investigation 

between visuo-spatial ability and early numeracy skills in pre-school children. This 

type of investigation could be achieved using cross-sectional or longitudinal 

methodologies. 

An alternate direction could be to further investigate the role of visuo-spatial 

working memory in children's mathematics. The current research provides additional 
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evidence for an association between the two skills, but it does not highlight which 
visuo-spatial processes are involved in mathematical problem solving. One approach 
would be to adopt a dual-task design to selectively disrupt visuo-spatial working 
memory during mathematical processing. 

A related avenue of research would be to explore the domain-general / 

domain-specific issue. Butterworth (1999) suggests that humans possess an innate 

"number module"; a domain-specific module for processing number. On the contrary, 

recent research provides evidence for a general resource related to visuo-spatial 

cognition and mathematical processing. For example, Feeney et al. (2004) suggest 

that people may represent concepts by analogy to space. Zago and Tzourio-Mazoyer 

(2002) report that similar cerebral networks are activated by mathematics and visuo-

spatial working memory tasks in adults and the current research suggests that visuo-

spatial working memory ability may constrain mathematics performance in children. 

Therefore, it would be interesting to investigate the associations between performance 

on visuo-spatial tasks (i.e. visual attention, imagery and visuo-spatial working 

memory tasks) and a range of mathematical tasks with children. 

Another line of further investigation would be to explore the cognitive 

structure of the visuo-spatial sketchpad in children. Although recent theoretical 

developments advocate separate visual and spatial subcomponents (e.g. Logie, 1995), 

there was no evidence to support this in the current research. It may be beneficial to 

conduct a large-scale factor analytic study, using a variety of visuo-spatial sketchpad, 

non-verbal intelligence, non-verbal executive, immediate visual memory and 

immediate spatial memory tasks, to explore the relationships between different visuo-

spatial skills. Within this type of investigation it would be possible to address the 

nature, specificity and processes involved in different visuo-spatial sketchpad tasks. 
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Theoretically, this type of investigation should underpin future work that aims to 
investigate the relationship between visuo-spatial skills and children's mathematics. A 
better understanding of the structure and functioning of children's visuo-spatial 
working memory might elicit a greater understanding of its importance in children's 
mathematics. 
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Appendix I 

Year 3 Mathematics Assessment 

Year Three 

NO C A L C U L A T O R A L L O W E D 

Section A 

Number and Algebra 

You should spend approximately 10 minutes on this section. 

1. Write in the missing numbers. 

a) 42 + 73 

b) 6 x 2 - = 10 

c) 9 x 5 = 

2. Put these numbers in order with the biggest first. 

410 267 384 

543 621 
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3. Sarah goes to the shop. She has £2.00. She spends £1.20 on a book. 

How much money has she got left from the £2.00? 

4. Finish these sentences. 

a) Lewis held his breath for 24 seconds, which is seconds 

rounded to the nearest 10 seconds. 

b) Michael opened a book on page 87, which is page rounded to 

the nearest 10 pages. 

c) Anita brushes her teeth in 12 seconds, which is I I seconds 

rounded to the nearest 10 seconds. 



5. Calculate 

a) 27 + 3 = 

b) 16-5-4 = 

6. Answer the following questions. 

a) One cat has four legs. How many legs would eight cats have? 

b) One egg box holds six eggs. How many eggs would there be in four 

egg boxes? 

c) A packet of pencils has eight pencils in. How many would there be in 

three packets? 



7. Fill in the gaps in these number sequences. 

a) -1 1 

b) 8 10 14 18 
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Year Three 
NO C A L C U L A T O R A L L O W E D 
Section B 

Shape, Space and Measures 

You should spend approximately JO minutes on this section. 

1. Draw the reflection of the shaded shape on the other side of the mirror 

line. 

You may use a mirror or tracing paper. 

Mirror Line 



347 

2. Draw two more straight lines to make a rectangle. 

Use a ruler. 

N 

a) Measure accurately the longest side of this shape. This is side N. 

Give your answer in millimetres. I 
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b) Measure accurately the shortest side of this shape. This is side P. 
Give your answer in millimetres. I 

4. Draw the correct time on the clocks, 

a) 25 minutes past 7 

12 11 1 

10 

8 

7 

b) 35 minutes past 3 



c) 5 minutes past 2 

12 11 1 

10 

8 

7 

5. Look at the clock below and answer the questions. 
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12 11 1 

10 

8 

a) What will the time be in 10 minutes? 

b) What will the time be in half an hour? 

6. Here are 5 shapes. 

A B 

\ 

\ 



E 

O 
a) Which shapes have four sides? 

b) Which shape is a semi circle? 

c) Which shape is an octagon? 

7. Mark the right angles in these shapes, 

a) 
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b) 

c) 

Year Three 

NO C A L C U L A T O R A L L O W E D 
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Section C 

Handling Data 

You should spend approximately 10 minutes on this section. 

1. This chart show the amount of money Jane spent in a toy shop in 

three months. 

September 

August 

July 

£0 £5 £10 £15 £20 £25 

a) How much money did Jane spend in August? 

b) How much more money did she spend in July than September? 

2. This chart shows some children's favourite sports. 
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Lynn Matthew Nicola James Sue 

Football 
N/ s/ 

Netball V V 
Tennis 

Hockey V 
Cricket V 
a) Whose favourite sport is tennis? 

b) How many children play more than one sport? 

3. Answer the questions by looking at the information that the bar 

chart provides. 
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Class 3's Favourite Fruit 

10 

® 8 

1 

Apple Orange Pear Banana Apricot 

Fruit 

a) How many children chose pears? 

b) How many children chose oranges and pears? 

c) What is the most popular fruit? 

d) How many children are there in Class 3 altogether? 

4. 

Boat Hire 



Rowing Boat Motor Boat 
£2 for 1 hour £1.50 for 10 minutes 

a) How much does it cost to hire a rowing boat for 2 hours? 

b) Which boat is more expensive to hire? 

5. Below is a table of the 1st and 2nd innings cricket scores of some 

children. 

Name 1st 2nd Total 
Andrew 33 20 53 
Katie 20 22 44 
Aman 41 46 87 
Emma 34 31 65 
Ian 60 53 113 
Sarah 12 27 39 

a) Which child has the highest total? 

b) Which child has the lowest total? 

c) What is Emma's total score? 

6. Answer the questions by looking at the information that the graph 

provides. 
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A hot liquid is left to cool in a science experiment. 

This graph shows how the temperature of the liquid changes as it 

cools. 

80 

70 

60 

50 

15 40 

a 
I 30 

20 

10 

0 10 20 30 40 50 60 70 

Time (minutes) 

Read from the graph how many minutes it takes for the temperature to 

reach 30° 

7. Class 3 did a survey on the musical instruments that they play. 

Draw the information below on the bar chart. 



Number of 
Instrument Children 

Drums 8 
Recorder 9 
Keyboard 5 
Trumpet 7 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 

Year Three 

Mental Arithmetic Test 

TEST QUESTIONS 
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For this group you have 5 seconds to work out each answer and write it down. 

1. How many £s is 300p? 

2. Multiply 4 by 5. 

3. Divide 440 by 10. 

For this group you have 10 seconds to work out each answer and write it down. 

4. What is a quarter of eight? 

5. What is 100 take away 60? 

6. My watch shows 2.20pm. What will the time show in half an hour? 

For this group you have 15 seconds to work out each answer and write it down. 

7. Add together 10 and 15 and 20. 

8. Look at your answer sheet. Put a ring around the smallest number. 

322 232 333 323 222 223 

9. What is 88 take away 42? 

10. Which sum has the largest total 5x5 or 3 x 9 ? 

Put down your pen / pencil. The test is now finished. 
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Year 3 
Criteria for Scoring Items 

All correct questions are scored as 1, all incorrect as 0. 

Section Question Correct or Accepted and score as correct 
Number and la 31 
Algebra 

lb 2 
lc 45 
2 621,543,410,384, 267 
3 80p or 80 or 80 pence 
4a 20 
4b 90 
4c 10 
5a 9 
5b 4 
6a 32 or 32 legs 
6b 24 or 24 eggs 
6c 24 or 24 pencils 
7a 0,3 
7b 12, 16 

Shape, Space 
and Measures 

1 If exact reflection is depicted through shading 
or crosses in boxes 

2 Shape is an exact rectangle or resembles a 
rectangle (i.e. wiggly lines are accepted!) 

3a 77 to 83 mm is acceptable 
3b 37 to 43 mm is acceptable 
4a Clock must show small hand to the 7 and big 

hand to the 25 (allow for degree of error, but 
score incorrect if hands point to wrong 
numbers) 

4b Clock must show small hand to the 3 and big 
hand to the 35 (allow for degree of error, but 
score incorrect if hands point to wrong 
numbers) 

4c Clock must show small hand to the 2 and big 
hand to the 5 (allow for degree of error, but 
score incorrect if hands point to wrong 
numbers) 

5a 8.20 or 20.20 or twenty minutes past eight (pm, 
am or neither is acceptable) 

5b 8.40 or 20.40 or twenty to nine (pm, am or 
neither is acceptable) 

6a B and D (both must be given) 
6b C 
6c A 
7a One right angle should be marked 
7b Six right angles should be marked 
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7c 3 right angles should be marked 
Section Question Correct or Accepted and score as correct 
Handling Data la 20 or £20 or 20 pounds 

lb 5 or £5 or 5 pounds 
2a Nicola 
2b 3 or 3 children or Lynn, Nicola and James 
3a 4 or four (children) 
3b 11 or eleven (children) 
3c Apple 
3d 30 or thirty (children) 
4a £4 or four pounds 
4b Motor or motor boat 
5a Ian 
5b Sarah 
5c 65 
6 10 or ten (minutes) 
7 Accept any pictorial representation of the 

correct information (bar or line chart or pictures 
representing instruments with correct number of 
pictures etc) 

Mental 1 3 or £3 or three 
Arithmetic 

2 20 
3 44 
4 2 
5 40 
6 2.50pm (accept if pm not written) 
7 45 
8 222 
9 46 
10 3x9 
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Appendix II 

Year 5 Mathematics Assessment 

Year Five 

NO C A L C U L A T O R A L L O W E D 

Section A 

Number and Algebra 

You should spend approximately 10 minutes on this section. 

1. Write in the missing numbers. 

c) 40 x 3 = 

2. Place these numbers in order with the largest first. 

a) 35 + = 110 

b) ( 6 x 3 ) - = 12 

0 -1 7 

-5 3 



3. Andrea went to the cinema. She bought cinema tickets for herself and 

six of her friends. In total she bought seven tickets for £4.00 each. How 

much change was given when £30.00 was handed to the attendant? 

o 

4. Use the clues to find the numbers. 

a) Find a number that is a factor of 16 but that is greater than 4. 

b) List the two multiples of 3 between 5 and 10. 

c) What is the first prime number after 45? 

5. Calculate 

a) 140 4 -6 = 

b) 152-5-8 = 
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6. Answer the following questions. 

a) Jane bought a bag of 12 oranges. When she got home she discovered 

that one third of the oranges were bad and threw them away. How many 

oranges did she have to throw away? 

b) One fif th of a class got all their spelling test correct. There were thirty 

children in the class. How many children got full marks? 

• 

c) Three boxes of six eggs were accidentally dropped on the floor. Two 

thirds of them were broken. How many eggs could still be used? 
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7. Fill in the gaps in these number sequences. 

a) -9 -7 -3 

b) -22 -12 28 
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Year Five 
NO C A L C U L A T O R A L L O W E D 
Section B 

Shape, Space and Measures 

You should spend approximately 10 minutes on this section. 

1. Draw the reflection of the shaded shape in the mirror line. 

You may use a mirror or tracing paper. 

Mirror Line 



2. Find the area of the rectangle. 

7cm 

3 cm 

cm' 

3. Look carefully at the shape below and answer the questions. 

2cm 

5cm 

4cm 
• 

7cm 

3 cm 

a) Find the area of the whole shape. cm" 

b) Find the perimeter of the whole shape. cm 



a) Name something you would measure in em's. 

b) Name something you would measure in grams. 

c) Name something you would measure in litres. 
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5. On this scale the arrow ( t ) shows the weight of this melon. 

0 1 1.5 

Weight = 1.4kg 

Here is a different scale. 

i 1 1 1 i I I l I I I I I [ I I I I I I [ 

0 1 2 3 4 

Mark with an arrow ( t ) the weight of the same melon. 



6. Draw the following shapes, 

a) A shape with four right angles. 

b) A shape with three acute angles. 

c) A shape with six obtuse angles. 

d) A shape with five angles. 



7. How many right angles can you find inside each shape 

a) 

= right angles 

b) I 1 

- right angles 

c) 

right angles 
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Year Five 

NO C A L C U L A T O R 

Section C 

Handling Data 

You should spend approximately 10 minutes on this section, 

1. This chart shows the amount of money spent on train fares for journeys 

to London from Newcastle in 3 months. 

= November 

October 

£0 £5,000 £10,000 £15,000 £20,000 £25,000 £30,000 

Money Spent 

a) How much money was spent in November? 

b) Julie says "In December there was twice as much money spent on train 

fares than in October." 

Is she correct? Yes / No 

Explain how you can tell from the chart. 
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2. This chart shows some children's favourite sports. 

Lynn Matthew Nicola James Sue 

Football s/ s / 

Netball s/ s/ 
Tennis s/ 
Hockey s/ s/ 
Cricket s/ 

a) How many people's favourite sport is netball? 

b) How many more people like hockey than football? 



3. Answer the questions by looking at the information that the graph 

provides. 

Graph showing the temperature in 

Spain over the summer 

100 

90 

80 

CO 70 
a> 

a> 60 
may june july august September October november 

M o n t h 

a) Which was the hottest month? 

b) Between which months was the temperature increasing? 

c) By how much did the temperature decrease between August and 

October? 

d) Simon likes to go on holiday when the temperature is between 70 and 

80 degrees. Suggest one month when it would be best for him to go on 

holiday to Spain. | • 
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4. Find the mode for each set of numbers. 

a) 7 4 9 7 5 2 2 4 3 7 

Mode 

b) 2 1 3 5 2 1 2 2 3 1 

Mode 

5. Below is a table of the goals scored by some children in two football 

matches. 

Number of Goals Scored 
Name Match 1 Match 2 Total 
Andrew 0 2 
Katie 0 1 
Aman 3 2 
Emma 4 0 
Ian 2 1 
Sarah 1 0 
Michael 0 3 
Sally 5 2 

a) Who scored the highest number of goals across the two matches? 

b) Who scored the lowest number of goals across the two matches? 
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c) What is the total number of goals scored by all the children across the 
two matches? 

6. Answer the question by looking at the information that the graph 

provides. 

A hot liquid is left to cool in a science experiment. 

This graph shows how the temperature of the liquid changes as it 

cools. 

& 
E 
• 40 

0 10 20 30 40 50 60 70 80 90 

Time (minutes) 

Read from the graph how many minutes it takes the temperature to reach 

40 degrees. 



7. Lucy wasn't feeling very well. Her temperature was taken every 

for a week. Draw the information below on the line graph. 

Lucy's Temperature 
Day Temperature 

Tuesday 37.5 
Wednesday 39 

Thursday 39.5 
Friday 38.5 

Saturday 38 
Sunday 37.5 
Monday 37 

40 
39 
38 
37 
36 
35 
34 
33 
32 

0 
Monday Tuesday Wednesday Thursday Friday 
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Year Five 

Mental Arithmetic Test 

TEST QUESTIONS 

For this group you have 5 seconds to work out each answer and write it down. 

1. How many fifty pences are there in £7.00? 

2. Multiply 5 x 8. 

3. Divide 580 by 10. 

For this group you have 10 seconds to work out each answer and write it down. 

4. What is half of 680? 

5. What is 68-27? 

6. My watch shows the time 2.45pm. What time will it show in 45minutes? 

For this group you have 15 seconds to work out each answer and write it down. 

7. Add together 13, 24 and 31. 

8. Look at your answer sheet. Put a ring around the number that is a multiple of 25. 

~380 36 120 100 47 260 

9. Calculate 10 take away 4.35. 

10. Look at your answer sheet. Put a ring around the smallest number. 

0.37 0.307 0.037 
3.07 3.7 

Read aloud the following: 

Put down your pen / pencil. The test is now finished. 



379 

Year 5 
Criteria for Scoring Items 

Al l correct questions are scored as 1, all incorrect as 0. 

Section Question Correct or Accepted and score as correct 
Number and la 75 
Algebra 

lb 6 
lc 120 
2 7,3,0,-1,-5 
3 £2 or two pounds or 2 or two 
4a 8 
4b 6 and 9 
4c 47 
5a 23.33 or 23 and a third 
5b 19 
6a 4 or 4 oranges 
6b 6 or 6 children 
6c 6 eggs or 6 or 1 box 
7a -5,0 
7b -2, 18 

Shape, Space 
and Measures 

1 I f exact reflection is depicted through shading 
or crosses in boxes 

2 21 
3a 23 
3b 21 
4a Anything you can sensibly measure in cms 

(typical answers include height or length or 
objects such as book, pencil) 

4b Anything you can sensibly measure in grams 
(typical answers include weight or things like 
flour) 

4c Anything you can sensibly measure in litres 
(typical answers include water, petrol) 

5a Arrow must point to the second increment after 
the 1 

6a Any shape with 4 right angles (rectangle or 
square - doesn't have to be exact) 

6b A triangle with 3 small angles (doesn't have to 
be exact) 

6c A hexagon or similar shape (doesn't have to be 
exact but must have 6 angles) 

6d A pentagon or similar shape (doesn't have to be 
exact but must have 5 angles) 

7a Eight right angles should be marked 
7b Eight right angles should be marked 
7c Eight right angles should be marked 
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Section Question Correct or Accepted and score as correct 
Handling Data la 20, 000 or £20, 000 or twenty thousand pounds 

lb No (explanation not needed for correct answer) 
2a 2 or 2 children 
2b 1 or 1 child 
3a August 
3b May and August (accept i f all months between 

are listed) 
3c 20 
3d Any of the following: May, June, October or 

November 
4a 7 
4b 2 
5a Sally 
5b Katie OR Sarah 
5c 26 
6 20 or twenty (minutes) 
7 Accept any pictorial representation of the 

correct information (bar or line chart or pictures 
representing information) Children may extend 
grid. This is ok. 

Mental 1 14 
Arithmetic 

2 40 
3 58 
4 340 
5 41 
6 3.30pm (accept i f pm not written) 
7 68 
8 100 
9 5.65 
10 .037 
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Appendix III 

Mathematics Tests: Standardized Instructions 

Maths Booklet 

Sections A, B, and C 

Administrator's Copy 

Instructions: 

1. Children should have pens or pencils, a maths booklet, a ruler, a mirror and tracing 

paper. They should not have any other mathematical equipment such as a calculator. 

They SHOULD NOT have access to paper for working out answers. 

2. Ensure that each child has an answer sheet and tell the children to write their name 

and school in the box on the front. 

3. Ensure that the children understand the following instructions on their sheets. 

1. Do the test on your own. Do not copy or talk to anyone else. 

2. Do not use a calculator. 

3. I f you want to change an answer put a cross through your first answer. 

4. Answer as many questions as you can. 

5. You cannot ask any questions once the test has started. 

6. You should spend approximately 10 minutes on each section. 

7. The mental arithmetic test will be run separately. 

4. Read out the following script, using exactly these words: 
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Do you have any questions? You will not be able to ask any questions once the test 
has begun. 

Read each question carefully and try to answer it. On your sheet there is an answer 

box for each question, where you should write the answer to the question. You can 

show your working out here too. 

If you make a mistake, cross out the wrong answer and write down the correct answer 

next to it. There are some easy questions and some harder questions, so don 7 be put 

off if you cannot answer a question.. 

5. Remind the children that you cannot answer any questions during the test. 

6. Tell the children to begin the test. 

7. After each ten minutes, remind the children that they should move on to the next 

section. 

8. At the end of the test, tell the children to put down their pens or pencils, then collect 

their answer sheets. 



383 

Mental Arithmetic Test 

Administrator's Copy 

Instructions: 

1. Children should have only pens or pencils and an answer sheet. They should not 

have rubbers, rulers, or any other mathematical equipment. They SHOULD NOT 

have access to paper for working out answers. 

2. Ensure that each child has an answer sheet and tell the children to write their name 

and school in the box at the top. 

3. Ensure that the children understand the following instructions on their sheets. 

1. Do the test on your own. Do not copy or talk to anyone else. 

2. Do not use a calculator or any other mathematical equipment. 

3. I f you want to change an answer put a cross through your first answer. 

4. Answer as many questions as you can. 

5. You cannot ask any questions once the test has started. 

4. Read out the following script, using exactly these words: 

Listen carefully to the instructions I am going to give you. When I have finished 

reading them, I will answer any questions. However, you will not be able to ask any 

questions once the test has begun. 

I will start by reading a practice question. Then I am going to ask you 10 questions 

for the test. On your sheet there is an answer box for each question, where you should 

write the answer to the question and nothing else. You should work out the answer to 
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each question in your head, but you may jot things down outside the answer box if this 
helps you. Do not try to write down your calculations because this will waste time and 
you may miss the next question. 

I will read out each question twice. Listen carefully both times. You will then have 

time to work out your answer. If you cannot work out an answer, put a cross in the 

answer box. If you make a mistake, cross out the wrong answer and write down the 

correct answer next to it. There are some easy questions and some harder questions, 

so don't be put off if you cannot answer a question. 

5. Stop and answer any questions that the children may have. 

6. Read out the following: 

Here is the practice question I want you to do: 
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Appendix IV 

Formula to calculate Kuder-Richardson Reliability Coefficient 

KR20= N x s2 - T pg 

N - l s2 

Where: N = number of items 

s = standard deviation 

p = % of yes or correct responses to an item 

q = % of no or incorrect responses to an item 
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Appendix V 

Cohen's (1977) Formula to Calculate Effect Sizes 

d = [mu^ - mibl 

sd of the control group 

Where :mui = mean in group 1 

mu2 - mean in group 2 

sd = standard deviation 
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Appendix VI 

Table 3.7 

Fixed-order multiple regression analyses. Working memory scores predicting unique 

variance in curriculum-based mathematics performance, controlling for age-related 

variance. (7V=148). 

Mathematics 
Predictor Ability 

Predicted 
Model 

Order of 
Entry 
Into 
Equation 

r r2 Adjusted r! 

Phonological Loop 

Number and A, 1. Age .09 .01 -.00 
Algebra 2. VSSP .29 .09 .07 

3. CE .46 .21 .19 
4. PL .46 .21 .19 

Shape Space A 2 1. Age .11 .01 .00 
and 2. VSSP .27 .07 .05 
Measures 3. CE .54 .29 .27 

4. PL .54 .29 .27 
Handling A 3 1. Age .2 .04 .03 
Data 2. VSSP .34 .11 .10 

3. CE .50 .25 .22 
4. PL .50 .25 .22 

Mental A, 1. Age .17 .03 .02 
Arithmetic 2. VSSP .27 .07 .05 

3.CE .52 .27 .25 
4. PL .52 .27 .25 

Total A 5 1. Age .07 .01 -.01 
Mathematics 2. VSSP .31 .09 .08 
Score 3.CE .57 .33 .31 

4. PL .57 .33 .31 

Visuo-spatial Sketchpad 

Number and B, 1. Age .09 .01 -.00 
Algebra 2. PL .12 .01 -.00 

3. CE .42 .18 .16 
4. VSSP .46 .21 .18 

Shape Space B 2 1. Age .11 .01 .00 
and 2. PL .15 .02 .00 
Measures 3. CE .52 .28 .25 

4. VSSP .54 .29 .26 
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Predictor 
Mathematics 
Ability 
Predicted 

Model 

Order of 
Entry 
Into 
Equation 

r r2 Adjusted r2 

Visuo- Handling B 3 
1. Age .20 .04 .03 

spatial Data 2. PL .22 .05 .03 
sketchpad 3. CE .46 .22 .20 

4. VSSP .50 .25 .22 
Mental B 4 1. Age .17 .03 .02 
Arithmetic 2. PL .23 .05 .03 

3. CE .51 .26 .24 
4. VSSP .52 .27 .24 

Total B 5 1. Age .07 .01 -.01 
Mathematics 2. PL .14 .02 .00 
Score 3. CE .55 .30 .28 

4. VSSP .57 .33 .30 

Central Executive 

Number and c, 1. Age .09 .01 -.00 
Algebra 2. PL .12 .02 -.00 

3. VSSP .30 .09 .06 
4. CE .46 .21 .18 

Shape Space c 2 1. Age .11 .01 .00 
and 2. PL .15 .02 .00 
Measures 3. VSSP .28 .08 .05 

4. CE .54 .29 .26 
Handling c 3 1- Age .20 .04 .03 
Data 2. PL .22 .05 .03 

3. VSSP .34 .12 .09 
4. CE .50 .25 .22 

Mental c 4 1- Age .17 .03 .02 
Arithmetic 2. PL .23 .05 .03 

3. VSSP .30 .09 .06 
4. CE .52 .27 .24 

Total c 5 1. Age .07 .01 -.01 
Mathematics 2. PL .14 .02 .00 
Score 3. VSSP .32 .10 .08 

4. CE .57 .33 .30 
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Appendix VII 

Table 3.8. 

Fixed-order multiple regression analyses predicting unique variance in curriculum-
based mathematics performance, controlling for age-related variance and NVIQ. 
(7V=148). 

Predictor Mathematics Model Order of R R 2 Adjusted R 2 

Ability 
Predicted 

Entry Into 
Regression 

CE Total D, 1. AGE .02 .00 .01 
Mathematics 2. NVIQ .46 .21 .20 
Score 3. VSSP .50 .25 .23 

4. PL .50 .26 .23 
5. CE .64 .41 .38 

CE Number and D 2 1. AGE .03 .00 .01 
Algebra 2. NVIQ .44 .19 .17 

3. VSSP .47 .22 .19 
4. PL .48 .23 .19 
5. CE .53 .29 .25 

CE Shape Space D 3 
1. AGE .09 .01 .00 

and 2. NVIQ .41 .17 .15 
Measures 3. VSSP .44 .20 .17 

4. PL .45 .20 .17 
5. CE .61 .37 .33 

CE Handling D 4 1. AGE .25 .06 .05 
Data 2. NVIQ .49 .23 .22 

3. VSSP .52 .27 .24 
4. PL .52 .27 .24 
5. CE .60 .35 .32 

CE Mental D 5 1. AGE .15 .02 .01 
Arithmetic 2. NVIQ .30 .09 .07 

3. VSSP .34 .11 .09 
4. PL .36 .13 .09 
5.CE .51 .26 .22 

VSSP Total E, 1. AGE .02 .00 .01 
Mathematics 2. NVIQ .46 .21 .20 
Score 3. CE .63 .40 .38 

4. PL .63 .40 .38 
5. VSSP .64 .41 .38 
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Predictor Mathematics Model Order of R R 2 Adjusted R 2 

Ability 
Predicted 

Entry Into 
Regression 

Number and E 2 
1. AGE .03 .00 .01 

Algebra 2.NVIQ .44 .19 .17 
3. CE .52 .27 .25 
4. PL .52 .27 .25 
5. VSSP .53 .29 .25 

VSSP Shape Space E 3 1. AGE .09 .01 .00 
and 2.NVIQ .41 .17 .15 
Measures 3. CE .60 .36 .34 

4. PL .60 .36 .34 
5. VSSP .61 .37 .34 

VSSP Handling E 4 1. AGE .25 .06 .05 
Data 2.NVIQ .48 .23 .22 

3. CE .58 .34 .32 
4. PL .59 .34 .32 
5. VSSP .60 .35 .32 

VSSP Mental E 5 
1. AGE .15 .02 .01 

Arithmetic 2.NVIQ .30 .09 .07 
3.CE .50 .25 .23 
4. PL .51 .26 .23 
5. VSSP .51 .26 .23 

PL Total Fi 1. AGE .02 .00 .01 
Mathematics 2.NVIQ .46 .21 .20 
Score 3. CE .63 .40 .38 

4. VSSP .64 .41 .38 
5. PL .64 .41 .38 

Number and F2 1. AGE .03 .00 .01 
Algebra 2.NVIQ .44 .19 .17 

3. CE .52 .27 .25 
4. VSSP .53 .29 .25 
5. PL .53 .29 .25 

Shape Space F 3 1. AGE .09 .01 .00 
and 2. NVIQ .41 .17 .15 
Measures 3.CE .60 .36 .34 

4. VSSP .61 .37 .34 
5. PL .61 .37 .34 
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Predictor Mathematics 
Ability 
Predicted 

Model Order of 
Entry Into 
Regression 

R R 2 Adjusted R 2 

PL Handling F 4 
1. AGE .25 .06 .05 

Data 2.NVIQ .48 .23 .22 
3. CE .58 .34 .32 
4. VSSP .59 .35 .33 
5. PL .60 .35 .33 

PL Mental F 5 
1. AGE .15 .02 .01 

Arithmetic 2.NVIQ .30 .09 .07 
3. CE .50 .25 .23 
4. VSSP .51 .26 .23 
5. PL .51 .26 .23 
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Appendix VIII 

Table 4.5 

Fixed-order multiple regression analyses. Visuo-spatial measures predicting unique 

variance in curriculum-based mathematics performance, controlling for age-related 

variance. (N=\01). 

Mathematics 
Predictor Ability 

Predicted 
Model 

Order of 
Entry Into 
Equation r r2 

Adjusted 
r2 

Visual Patterns Test 
Number and A, 1- Age .21 .04 .03 
Algebra 2. Mazes .25 .06 .04 

Memory 
3. Block .31 .09 .06 
Recall 
4. Blobby .42 .18 .14 
Visual 
5. Blobby .45 .20 .16 
Spatial 
6. Visual .46 .21 .16 
Patterns 

Shape Space A 2 1. Age .03 .00 .00 
and 2. Mazes .03 .00 .00 
Measures Memory 

3. Block .04 .00 .03 
Recall 
4. Blobby .22 .05 .03 
Visual 
5. Blobby .22 .05 .03 
Spatial 
6. Visual .23 .05 .03 
Patterns 

Handling A 3 1. Age .14 .02.02 .00 
Data 2. Mazes .15 .00 

Memory .02 
3. Block .15 .01 
Recall .06 
4. Blobby .24 .02 
Visual .10 
5. Blobby .32 .05 
Spatial .12 
6. Visual .35 .06 
Patterns 
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Predictor 

Visual 
Patterns 
Test 

Mathematics Order of Adjust 
r2 Ability Model Entry Into 

*• r2 

Adjust 
r2 

Predicted Equation f 1 1 

Mental A4 1. Age .15 .02 .01 
Arithmetic 2. Mazes 

Memory 
.19 .04 .02 

3. Block .25 .06 .03 
Recall 
4. Blobby .35 .12 .08 
Visual 
5. Blobby .41 .17 .12 
Spatial 
6. Visual .41 .17 .12 
Patterns 

Total A 5 1. Age .09 .01 .00 
Mathematics 2. Mazes .15 .02 .00 
Score Memory 

3. Block .20 .04 .01 
Recall 
4. Blobby .36 .13 .09 
Visual 
5. Blobby .41 .17 .12 
Spatial 
6. Visual .42 .17 .12 
Patterns 

Mazes Memory 
Number and 
Algebra 

B, 

Shape Space 
and 
Measures 

B 2 

1. Age 
2. Visual 
Patterns 
3. Block 
Recall 
4. Blobby 
Visual 
5. Blobby 
Spatial 
6. Mazes 
Memory 
1. Age 
2. Visual 
Patterns 
3. Block 
Recall 
4. Blobby 
Visual 
5. Blobby 
Spatial 
6. Mazes 
Memory 

.21 

.33 

.36 

.43 

.46 

.46 

.03 

.11 

.11 

.23 

.23 

.23 

.04 

.11 

.13 

.19 

.21 

.21 

.00 

.01 

.01 

.05 

.05 

.05 

.03 

.09 

.10 

.15 

.16 

.16 

.01 

.01 

.01 

.01 

.01 

.01 
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Predictor 
Mathematics 
Ability 
Predicted 

Model 
Order of 
Entry Into 
Equation 

Adjusted 

Mazes 
Memory 

Handling B3 
Data 

Mental 
Arithmetic 

B 4 

Total B 5 

Mathematics 
Score 

Block Recall 

Number and 
Algebra 

1. Age 
2. Visual 
Patterns 
3. Block 
Recall 
4. Blobby 
Visual 
5. Blobby 
Spatial 
6. Mazes 
Memory 
1- Age 
2. Visual 
Patterns 
3. Block 
Recall 
4. Blobby 
Visual 
5. Blobby 
Spatial 
6. Mazes 
Memory 
1. Age 
2. Visual 
Patterns 
3. Block 
Recall 
4. Blobby 
Visual 
5. Blobby 
Spatial 
6. Mazes 
Memory 

1. Age 
2. Visual 
Patterns 
3. Mazes 
Memory 
4. Blobby 
Visual 
5. Blobby 
Spatial 
6. Block 
Recall 

.14 

.26 

.26 

.29 

.35 

.35 

.15 

.23 

.27 

.36 

.41 

.41 

.09 

.27 

.28 

.38 

.42 

.42 

.21 

.33 

.33 

.42 

.45 

.46 

.02.07 

.07 

.08 

.12 

.12 

.02 

.05 

.07 

.12 

.16 

.17 

.01 

.07 

.08 

.15 

.18 

.18 

.04 

.11 

.12 

.18 

.20 

.21 

.01 

.05 

.05 

.05 

.07 

.07 

.01 

.03 

.04 

.08 

.12 

.12 

-.00 
.05 

.05 

.11 

.13 

.13 

.03 

.09 

.09 

.14 

.16 

.16 
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Predictor 

Block 
Recall 

Mathematics Order of 
Ability Model Entry Into r2 

Adjus 
r2 Predicted Equation r T 1 

Shape Space c 2 1. Age .03 .00 .01 
and 2. Visual .11 .01 .01 
Measures Patterns 

3. Mazes .12 .01 .01 
Memory 
4. Blobby .23 .05 .01 
Visual 
5. Blobby .23 .05 .01 
Spatial 
6. Block .23 .05 .01 
Recall 

Handling c 3 1. Age .14 .02.07 .01 
Data 2. Visual .26 .05 

Patterns .07 
3. Mazes .26 .05 
Memory .08 
4. Blobby .29 .05 
Visual .12 
5. Blobby .34 .07 
Spatial .12 
6.Block .35 .07 
Recall 

Mental c 4 1. Age .15 .02 .01 
Arithmetic 2. Visual .23 .05 .03 

Patterns 
3. Mazes .23 .06 .03 
Memory 
4. Blobby .32 .10 .07 
Visual 
5. Blobby .39 .16 .12 
Spatial 
6. Block .41 .17 .12 
Recall 

Total c 5 1. Age .09 .01 .00 
Mathematics 2. Visual .27 :07 .05 
Score Patterns 

3. Mazes .27 .07 .05 
Memory 
4. Blobby .38 .14 .10 
Visual 
5. Blobby .42 .17 .13 
Spatial 
6. Block .42 .18 .13 
Recall 
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Predictor 
Mathematics 
Ability 
Predicted 

Model 
Order of 
Entry Into 
Equation 

Adjusted 

Blobby Visual 

Number and 
Algebra 

D, 

Shape Space D2 
and 
Measures 

Handling 
Data 

D 3 

Mental 
Arithmetic 

D 4 

1. Age 
2. Visual 
Patterns 
3. Mazes 
Memory 
4. Block 
Recall 
5. Blobby 
Spatial 
6. Blobby 
Visual 
1. Age 
2. Visual 
Patterns 
3. Mazes 
Memory 
4. Block 
Recall 
5. Blobby 
Spatial 
6. Blobby 
Visual 
1. Age 
2. Visual 
Patterns 
3. Mazes 
Memory 
4. Block 
Recall 
5. Blobby 
Spatial 
6. Blobby 
Visual 
1. Age 
2. Visual 
Patterns 
3. Mazes 
Memory 
4. Block 
Recall 
5. Blobby 
Spatial 
6. Blobby 
Visual 

.21 

.33 

.34 

.36 

.39 

.46 

.03 

.11 

.12 

.12 

.12 

.23 

.14 

.26 

.26 

.26 

.32 

.35 

.15 

.23 

.24 

.27 

.34 

.41 

.04 

.11 

.12 

.13 

.15 

.21 

.00 

.01 

.01 

.01 

.02 

.05 

.02. 
07 

.07 

.07 

.10 

.12 

.02 

.05 

.06 

.07 

.12 

.17 

.03 

.09 

.09 

.09 

.10 

.16 

.01 

.01 

.01 

.01 

.01 

.04 

.01 

.05 

.05 

.05 

.06 

.06 

.01 

.03 

.03 

.03 

.07 

.11 
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Mathematics Order of . . . 
Predictor Ability Model Entry Into t* r2 

Adjust 
r2 Predicted Equation I 1 1 

Blobby Total D 5 1. Age .09 .01 .00 
Visual Mathematics 2. Visual .27 .07 .05 

Score Patterns 
3. Mazes .27 .07 .05 
Memory 
4. Block .28 .08 .05 
Recall 
5. Blobby .32 .11 .06 
Spatial 
6. Blobby .42 .18 .12 
Visual 

Blobby Spatial 

Number and E, 1. Age .21 .04 .03 
Algebra 2. Visual .33 .11 .09 

Patterns 
3. Mazes .34 .12 .09 
Memory 
4. Block .36 .13 .09 
Recall 
5. Blobby .44 .19 .15 
Visual 
6. Blobby .46 .21 .16 
Spatial 

Shape Space E 2 
1. Age .03 .00 .01 

and 2. Visual .11 .01 .01 
Measures Patterns 

3. Mazes .12 .01 .01 
Memory 
4. Block .12 .01 .01 
Recall 
5. Blobby .23 .05 .01 
Visual 
6. Blobby .23 .05 .01 
Spatial 

Handling E 3 
1. Age .14 .02. .01 

Data 2. Visual .26 07 .05 
Patterns 
3. Mazes .26 .07 .05 
Memory 
4. Block .26 .07 .05 
Recall 
5. Blobby .29 .08 .06 
Visual 
6. Blobby .35 .12 .06 
Spatial 
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Mathematics Order of Adjusted 
r2 Predictor Ability Model Entry Into y r2 

Adjusted 
r2 

Predicted Equation r I i 

Mental E 4 1. Age .15 .02 .01 
Arithmetic 2. Visual 

Patterns 
.23 .05 .03 

3. Mazes .24 .06 .03 
Memory 
4. Block .27 .07 .03 
Recall 
5. Blobby .35 .12 .07 
Visual 
6. Blobby .41 .17 .11 
Spatial 

Total E 5 1. Age .09 .01 -.00 
Mathematics 2. Visual .27 .07 .05 
Score Patterns 

3. Mazes .27 .07 .05 
Memory 
4. Block .28 .08 .05 
Recall 
5. Blobby .38 .15 .10 
Visual 
6. Blobby .42 .18 .12 
Spatial 
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Appendix IX 

Table 4.6. 

Fixed-order multiple regression analyses. Visuo-spatial scores predicting unique 

variance in curriculum-based mathematics performance, controlling for age-related 

variance andNVIQ. (N=\07). 

Mathematics Order of 
Predictor Ability Model Entry Into 

Predicted Equation 

Adjusted 
y.2 

Visual Patterns Test 

Number and Fj 
Algebra 

Shape Space F2 
and 
Measures 

1. Age .19 .04 .03 
2. NVIQ .35 .13 .11 
3. Mazes .36 .13 .11 
Memory 
4. Block .38 .14 .11 
Recall 
5. Blobby .44 .20 .15 
Visual 
6. Blobby .47 .22 .17 
Spatial 
7. Visual .47 .22 .17 
Patterns 
1. Age .05 .00 .00 
2.NVIQ .22 .05 .03 
3.Mazes .22 .05 .03 
Memory 
4. Block .23 .05 .03 
Recall 
5. Blobby .27 .07 .03 
Visual 
6. Blobby .28 .08 .03 
Spatial 
7. Visual .28 .08 .03 
Patterns 
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Predictor 
Mathematics 
Ability 
Predicted 

Model 
Order of 
Entry Into 
Equation r r2 

Adjusted 
r2 

Visual Handling F 3 
1. Age .15 .02.12 .01 

Patterns Data 2.NVIQ .35 .12 .10 
Test 3. Mazes .35 .10 

Memory .13 
4. Block .36 .10 
Recall .14 
5. Blobby .37 .10 
Visual .17 
6. Blobby .41 .11 
Spatial .18 
7. Visual .42 .11 
Patterns 

Mental F 4 1. Age .12 .02 .01 
Arithmetic 2.NVIQ .28 .08 .06 

3. Mazes .29 .09 .06 
Memory 
4. Block .30 .09 .06 
Recall 
5. Blobby .35 .12 .08 
Visual 
6. Blobby .41 .17 .11 
Spatial 
7. Visual .41 .17 .11 
Patterns 

Total F 5 1. Age 06 00 .00 
Mathematics 2.NVIQ .36 .13 .11 
Score 3. Mazes .36 .13 .11 

Memory 
4. Block .36 .13 .11 
Recall 
5. Blobby .42 .18 .14 
Visual 
6. Blobby .46 .21 .15 
Spatial 
7. Visual .46 .21 .15 
Patterns 
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Mathematics 
Predictor Ability 

Predicted 
Model 

Order of 
Entry Into 
Equation 

r r1 

Adjusted 
r2 

Mazes Memory 

Number and G, 1. Age .19 .04 .03 
Algebra 2. NVIQ .35 .13 .11 

3. Visual .39 .15 .12 
Patterns 
4. Block .39 .16 .12 
Recall 
5. Blobby .45 .20 .16 
Visual 
6. Blobby .47 .22 .17 
Spatial 
7. Mazes .47 .22 .17 
Memory 

Shape Space G 2 1. Age .05 .00 .01 
and 2.NVIQ .22 .05 .03 
Measures 3. Visual .22 .05 .03 

Patterns 
4. Block .23 .05 .03 
Recall 
5. Blobby .27 .07 .03 
Visual 
6. Blobby .27 .08 .03 
Spatial 
7. Mazes .28 .08 .03 
Memory 

Handling G 3 
1. Age .15 .02.12 .01 

Data 2.NVIQ .35 .13 .10 
3. Visual .36 .10 
Patterns .14 
4. Block .38 .10 
Recall .15 
5. Blobby .38 .10 
Visual .18 
6. Blobby .42 .12 
Spatial .18 
7.Mazes .42 .12 
Memory 
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Mathematics 
Predictor Ability 

Predicted 
Model 

Order of 
Entry Into 
Equation r r2 

Adjusted 
r2 

Mental G 4 1. Age .12 .02 .01 
Arithmetic 2.NVIQ .28 .08 .06 

3. Visual .29 .09 .06 
Patterns 
4. Block .30 .09 .06 
Recall 
5. Blobby .35 .12 .07 
Visual 
6. Blobby .40 .16 .11 
Spatial 
7. Mazes .41 .17 .11 
Memory 

Total G 5 1. Age .06 .00 .01 
Mathematics 2.NVIQ .36 .13.14 .11 
Score 3. Visual .38 .11 

Patterns .14 
4. Block .38 .11 
Recall .18 
5. Blobby .43 .14 
Visual .21 
6. Blobby .46 .16 
Spatial .21 
7. Mazes .46 .16 
Memory 

Block Recall 

Number and Hi 
Algebra 

1- Age .19 .04 .03 
2.NVIQ .35 .13 .11 
3. Visual .39 .15 .12 
Patterns 
4. Mazes .39 .15 .12 
Memory 
5. Blobby .44 .19 .15 
Visual 
6. Blobby .46 .22 .16 
Spatial 
7. Block .47 .22 .16 
Recall 



403 

Mathematics Order of Adjusted 
r2 Predictor Ability Model Entry Into y r2 

Adjusted 
r2 

Predicted Equation f f f 
Block Shape Space H 2 1. Age .05 .00 .01 
Recall and 2. NVIQ .22 .05 .03 

Measures 3. Visual 
Patterns 

.22 .05 .03 

4. Mazes .22 .05 .03 
Memory 
5. Blobby .27 .07 .03 
Visual 
6. Blobby .27 .07 .03 
Spatial 
7. Block .28 .08 .03 
Recall 

Handling H 3 1. Age .15 .02 .01 
Data 2.NVIQ .35 .12 .10 

3. Visual .36 .13 .10 
Patterns 
4. Mazes .36 .13 .10 
Memory 
5. Blobby .37 .14 .10 
Visual 
6. Blobby .40 .16 .11 
Spatial 
7.Block .42 .18 .11 
Recall 

Mental H4 1. Age .12 .02 .01 
Arithmetic 2.NVIQ .28 .08 .06 

3. Visual .29 .09 .06 
Patterns 
4. Mazes .30 .09 .06 
Memory 
5. Blobby .34 .12 .07 
Visual 
6. Blobby .41 .16 .11 
Spatial 
7. Block .41 .17 .11 
Recall 
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Mathematics 
Predictor Ability 

Predicted 
Model 

Order of 
Entry Into 
Equation r r2 

Adjusted 
r2 

Block Total H 5 
1. Age .06 .00 .01 

Recall Mathematics 2.NVIQ .36 .13 .11 
Score 3. Visual .38 .14 .11 

Patterns 
4. Mazes .38 .14 .11 
Memory 
5. Blobby .43 .18 .14 
Visual 
6. Blobby .46 .21 .16 
Spatial 
7. Block .46 .21 .16 
Recall 

Blobby Visual 

Number and Ii 1. Age .19 .04 .03 
Algebra 2.NVIQ .35 .13 .11 

3. Visual .39 .15 .12 
Patterns 
4. Mazes .39 .15 .12 
Memory 
5. Block .39 .16 .12 
Recall 
6. Blobby .42 .17 .12 
Spatial 
7. Blobby .47 .22 .16 
Visual 

Shape Space I 2 
1. Age .05 .00 .01 

and 2. NVIQ .22 .05 .03 
Measures 3. Visual .22 .05 .03 

Patterns 
4. Mazes .22 .05 .03 
Memory 
5. Block .23 .05 .03 
Recall 
6. Blobby .24 .06 .03 
Spatial 
7. Blobby .28 .08 .03 
Visual 
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Predictor 

Blobby 
Visual 

Mathematics 
Ability 
Predicted 

Model 
Order of 
Entry Into 
Equation r r2 

Adjusted 
r2 

Handling I3 1. Age .15 .02.12 .01 
Data 2.NVIQ .35 .13 .10 

3. Visual .36 .10 
Patterns .13 
4. Mazes .36 .10 
Memory .14 
5. Block .38 .10 
Recall .17 
6. Blobby .41 .12 
Spatial .18 
7. Blobby .42 .12 
Visual 

Mental L, 1. Age .12 .02 .01 
Arithmetic 2. NVIQ .28 .08 .06 

3. Visual .29 .09 .06 
Patterns 
4. Mazes .30 .09 .06 
Memory 
5. Block .31 .09 .06 
Recall 
6. Blobby .37 .13 .08 
Spatial 
7. Blobby .41 .17 .10 
Visual 

Total I 5 
1. Age .06 .00 .01 

Mathematics 2. NVIQ .36 .13 .11 
Score 3. Visual .38 .14 .11 

Patterns 
4. Mazes .38 .14 .11 
Memory 
5. Block .38 .14 .11 
Recall 
6. Blobby .41 .16 .11 
Spatial 
7. Blobby .46 .21 .15 
Visual 
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Mathematics 
Predictor Ability 

Predicted 
Model 

Order of 
Entry Into 
Equation r r2 

Adjusted 
r2 

Blobby Spatial 

Number and J. 1. Age .19 .04 .03 
Algebra 2. NVIQ .35 .13 .11 

3. Visual .38 .15 .12 
Patterns 
4. Mazes .39 .15 .12 
Memory 
5. Block .39 .16 .12 
Recall 
6. Blobby .45 .20 .15 
Visual 
7. Blobby .47 .22 .16 
Spatial 

Shape Space J2 1- Age .05 .00 .01 
and 2. NVIQ .22 .05 .03 
Measures 3. Visual .22 .05 .03 

Patterns 
4. Mazes .22 .05 .03 
Memory 
5. Block .23 .05 .03 
Recall 
6. Blobby .27 .07 .03 
Visual 
7. Blobby .28 .08 .03 
Spatial 

Handling J3 1. Age .15 .02.12 .01 
Data 2. NVIQ .35 .13 .10 

3. Visual .36 .10 
Patterns .13 
4. Mazes .36 .10 
Memory .14 
5. Block .38 .10 
Recall .15 
6. Blobby .38 .10 
Visual .18 
7. Blobby .42 .11 
Spatial 
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Predictor 
Mathematics Order of Adjusted 

r3 Ability Model Entry Into r2 

Adjusted 
r3 

Predicted Equation f I 

Mental J 4 
1. Age .12 .02 .01 

Arithmetic 2.NVIQ .28 .08 .06 
3. Visual .29 .09 .06 
Patterns 
4. Mazes .30 .09 .06 
Memory 
5. Block .31 .09 .06 
Recall 
6. Blobby .35 .12 .06 
Visual 
7. Blobby .41 .17 .10 
Spatial 

Total J 5 
1. Age .06 .00 .01 

Mathematics 2.NVIQ .36 .13 .11 
Score 3. Visual 

Patterns 
.38 .14 .11 

4. Mazes .38 .14 .11 
Memory 
5. Block .38 .14 .11 
Recall 
6. Blobby .43 .18 .13 
Visual 
7. Blobby .46 .21 .15 
Spatial 
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Appendix X 

Items from Year 3 Curriculum-Based Mathematics Assessments Comprising Clusters 

A and B (Performance-Related Mathematical Domains) 

Cluster A Cluster B 
Number and Algebra 1 a Number and Algebra 2 
Number and Algebra lb Shape, Space and Measures 1 
Number and Algebra 1 c Shape, Space and Measures 2 
Number and Algebra 3 Shape, Space and Measures 3a 
Number and Algebra 4a Shape, Space and Measures 3b 
Number and Algebra 4b Shape, Space and Measures 4a 
Number and Algebra 4c Shape, Space and Measures 4b 
Number and Algebra 5 a Shape, Space and Measures 4c 
Number and Algebra 5b Shape, Space and Measures 6a 
Number and Algebra 6a Shape, Space and Measures 6b 
Number and Algebra 6b Shape, Space and Measures 6c 
Number and Algebra 6c Handling Data la 
Number and Algebra 7a Handling Data lb 
Number and Algebra 7b Handling Data 2a 

Shape, Space and Measures 5 a Handling Data 2b 
Shape, Space and Measures 5b Handling Data 3a 
Shape, Space and Measures 7a Handling Data 3 c 
Shape, Space and Measures 7b Handling Data 4a 
Shape, Space and Measures 7c Handling Data 5 a 

Handling Data 3b Handling Data 5b 
Handling Data 3d Handling Data 5c 
Handling Data 4b Handling Data 7 
Handling Data 6 Mental Arithmetic 1 

Mental Arithmetic 2 Mental Arithmetic 8 
Mental Arithmetic 3 Mental Arithmetic 10 
Mental Arithmetic 4 
Mental Arithmetic 5 
Mental Arithmetic 6 
Mental Arithmetic 7 
Mental Arithmetic 9 
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Appendix XI 

Items from Year 5 Curriculum-Based Mathematics Assessments Comprising Clusters 

C and D (Performance-Related Mathematical Domains) 

Cluster C Cluster D 
Number and Algebra la 
Number and Algebra lb 
Number and Algebra 1 c 
Number and Algebra 2 
Number and Algebra 3 
Number and Algebra 4a 
Number and Algebra 4b 
Number and Algebra 7a 
Number and Algebra 7b 

Shape, Space and Measures 1 
Shape, Space and Measures 4a 
Shape, Space and Measures 4b 
Shape, Space and Measures 4c 
Shape, Space and Measures 6a 
Shape, Space and Measures 6b 
Shape, Space and Measures 6c 
Shape, Space and Measures 7a 
Shape, Space and Measures 7b 
Shape, Space and Measures 7c 

Handling Data 1 a 
Handling Data lb 
Handling Data 2a 
Handling Data 2b 
Handling Data 3a 
Handling Data 3c 
Handling Data 3d 
Handling Data 5 a 
Handling Data 5b 
Handling Data 6 
Handling Data 7 

Mental Arithmetic 1 
Mental Arithmetic 2 
Mental Arithmetic 3 
Mental Arithmetic 4 
Mental Arithmetic 5 
Mental Arithmetic 7 
Mental Arithmetic 8 

Number and Algebra 4c 
Number and Algebra 5 a 
Number and Algebra 5b 
Number and Algebra 6a 
Number and Algebra 6b 
Number and Algebra 6c 

Shape, Space and Measures 2 
Shape, Space and Measures 3a 
Shape, Space and Measures 3b 
Shape, Space and Measures 5 
Shape, Space and Measures 6d 

Handling Data 3b 
Handling Data 4a 
Handling Data 4b 
Handling Data 5c 

Mental Arithmetic 6 
Mental Arithmetic 9 

Mental Arithmetic 10 


