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Abstract 
Energy levels of Rydberg Rubidium atoms in an external electric field are cal­
culated by Hamiltonian-diagonalization and Coulomb approximation. The 
results are in agreement with previous studies and with the expected scaling 
laws. Comparing to electromagnetically induced transparency(EIT) experi­
ments of Rubidium vapour in 90 MHz rf electric field and room temperature 
of Durham University, we can observe the effect of the presence of ions and 
oscillating electric field. The BIT experimental results also show larger eff'ec-
tive field than theoretical results by a factor of 1.35. 
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Chapter 1 

Introduction 

1.1 Why this work? 

The label Rydberg refers to atoms which are excited to a high principal quan­

tum number ii. In the case of alkali atoms, the orbital radius of the valence 

electron is correspondingly large and loosely bound. This makes Rydberg 

atoms have some unique properties like high sensitivity to external electric 

fields. Together with development in laser cooling, there are several possible 

mechanisms where Rydberg atoms in electric field could be introduced into 

quantum information processing (QIP)- One of those is transferring quantum 

information between Rydberg atoms. I t was proposed by Mourachko et a l . [ l 

and Anderson et al.[2] that Rydberg atoms in a constant electric field can 

transfer their excitations to adjacent atoms if atoms are excited into energy 

levels that corresponds to energy transfer resonances of other states. This is 

explained schematically in figure 1.1 and 1.2. In the figure 1.2, the transition 

energy of 23p3/2 245i/2 of Cesium atoms has the same as the transition 

energy of 23p3/2 —> 23si/2 in electric field « 80 V /cm. Accordingly, if two 

Rubidium atoms (atoms A and B in figure 1.2) in state 23p3/2 wi th small 

separation, the collision and the productions of 235i/2 and 24si/2 (denoted by 

s and s') can occur following the energy transfers from 23p3/2 24si/2 tran­

sition to 23p3/2 —> 23si/2 transition and afterwards both atoms eventually 

transfer these states to adjacent atoms (atoms C and D) at an appropriate 

separation. 
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Figure 1.1: Energy levels of Cs in electric field, which there are some ranges of 

electric field strength that the energy transition of 23p3/2 —̂  24si/2 equals to 

the energy transition of 23si/2 23p3/2, and can lead to excitation exchange 

between two atoms initially in the 23p3/2 state[l]. 

After the study of this resonant dipole-dipole energy transfer, there was fur­

ther study on effects of orientation of individual dipoles and spatial structure 

on the interaction transfer by Carroll et al.[3]. This lead to the study of one 

dimension energy transfer and possibility to transfer quantum information 

linearly through this energy transfer[4]. 

Rydberg atoms in electric fields is a possible candidate to form fast quan­

tum phase gate according to their strong dipole interaction. There was first 

proposed by Jaksch[5]. The dipole-dipole interaction between two trapped 

neutral Rydberg atoms in a constant electric field can perform a quantum 

gate operation without entanglement with the motional states. The dipole-

dipole interaction[6] between two atoms with the separation vector R is the 

first-order interaction and can be given as 

di.d2-Kdi.R){d2.R) 

/?3 
(1.1) 

where di and d2 are electric dipole matrix elements. There are three states 

of atoms involved in the gate process. The first two states |e) and \g) of each 
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Figure 1.2: A schematic of excitation transfer in process corresponding to 

energy level in figure 1.1. Two Cs atoms (A and B)at 23p3/2 collide to 

produce 23s 1/2 and 24s 1/2 states and eventually transfer these s and s' states 

to the adjacent atoms(C and D) . 

atom following energy level scheme in figure 1.3 are served as the storage 

states of coherence time. The gate operation of the storage states is apphed 

through exciting them to more loosely bound state | r) where the gate opera­

tion occurs by interaction wi th another atom. The phase gate transformation 

of two states |e) and |gf) in figure 1.3 is defined [7] by 

|a)|6)->e"-"*^'«*'''»|a)|6), (1.2) 

where |a) and \b) are |e) or \g), 6a,g,5a,g are Kronecker symbols and is 

the phase shift of the entangle state. The phase shift is introduced into the 

two-atom operation by exciting the atoms in state \g) to Rydberg state | r ) 

and drive back to \g) wi th subsequently phase shift tp, which can be con­

trolled in the function of energy shift § from the Rydberg state as a result 

of dipole-dipole interaction between atoms[5],[8]. However, the problem of 

implementation of a phase gate proposed by [5] is difficulty to control single 

atoms. More recently, Lukin et al.[9] proposed a quantum logic gate per­

formed by collective excitation in a mesoscopic atomic ensembles using the 

idea of dipole blockade. Dipole blockade is the suppression of the excitation 

of a second atom arising from sufficient number and density of excited atoms. 

I t is the result of energy perturbation of Rydberg atoms by adjacent atoms 

which shifts the energy level outside the wavelength of the coupling laser. 

Since the dipole-dipole interaction depends on the orientation of the dipoles, 

in order to increase the competence of the dipole blockade, the second-order 

interaction —Ce/R^ called van der Waals interaction is exploited instead[10]. 

Cq is a coefficient proportional to n^^ for two np a toms[ l l ] . 
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Figure 1.3: Schematic explanation of performing phase gate on single atoms 

with dipole-dipole interaction 6 of two neutral atoms[5 . 

However, before further study on the interaction between Rubidium Rydberg 

atoms for quantum information can be completed, their behaviour in electric 

field has to be investigated in order to select which Rydberg state. Consider­

ing selection rule of atomic transitions, | r ) state in the experiment is 77s or 7/.d 

following using 55 i / 2 (F = 2) and bP^/iiF = 3) as |e) and | ^ ) , respectively. 

The principal quantum number ii is considered by available laser systems. 

The calculation in this study will concentrate on d-states only. Moreover, 

this energy level profile is supposed to improve Rydberg atoms detection. 

The current study in Rydberg atoms by electromagnetically induced trans-

parency(EIT) is used to study relation between experimental results and 

theoretical prediction[35]. Rydberg EIT is interesting as i t offers a non de­

structive probe of Rydberg states. 

In this project the energy levels in electric field of Rubidium atoms are in­

vestigated by the diagonalization-Hamiltonian method. Section 1.2 is basic 

description of Rydberg atoms. After this Rydberg atoms introduction the 

detail of diagonalization-Hamiltonian method and involving calculation wil l 

be explained in Chapter 2. The calculation methods using in Chapter 2 are 

subsequently tested by earlier studies both experimental and theoretical in 

Chapter 3. In this chapter we also present simplified Stark shift scaling laws. 
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Finally, the calculated Stark shifts are compared study with experimental 

spectra by E I T in Chapter 4. 

1.2 Rydberg atoms 

Historically, Rydberg atoms appeared in Physics for the first time in 1885 

when Balmer found the formula, 

1 \ / 1 1 
4bJ\4 77,2/' (1-3) 

where v is wave number of the observed spectrum lines from a higher energy 

level to n=2 , and the constant 6=3645.6 A. Unti l 1890 Rydberg tried to 

classify other spectra of alkali atoms into three series, sharp(s), principal(p) 

and diffuse(d) using the equation 

Ry Ry Ry 
( n - ( 5 , ) 2 " ( n - ( 5 p ) 2 [n - SdY 

where I / Q O S , Voop, ^ood are the hmit of series s, p, and d, respectively , 6s, 6p, 

and 6d are quantum defect, and Ry, the Rydberg constant. The value of 

Rydberg constant discovered by Rydberg is 109721.6 c m " ^ 

In 1913 Bohr proposed a model where obtains energy levels field and orbital 

radius in the terms of principal quantum number n, 

- - ^ ( ; ^ ) . 
and 

respectively. As a result of (1.5) the Rydberg constant could be related to 

Bohr model by the formula, 

Ry = ^ • ( i ' 7 ) 

Accordingly, Bohr's model implied two distinctive properties of Rydberg 

atoms. Firstly, according to dependence on in equation(2.1), i t implied 

large orbit of valence electron at large n.. Secondly, considering loosely bind­

ing energy of electron at high n in Coulomb field which depends on n"^. Fur­

thermore, other properties of Rydberg atoms are also able to be described by 
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Table 1.1: Properties of Rydberg atoms. 
Property n dependence 

Binding Energy n -2 

Orbital radius n2 

Geometric cross section(7rr^) n'' 

Energy between adjacent states n -3 

Dipole moment n2 

Polarizability 

Radiative lifetime 

Fine-structure interval 

Dipole-dipole interaction 

van der Waals interaction n i l 

dependence on the principal quantum number as showed in table 1.1. Using 

equation(1.5), we obtain the energy separation between adjacent states or 

fine structure interval 

En+An - En = Ry 
1 1 2RyAn 

(1.8) 
(7(. + A7(.)2 

The dipole moment which is defined by expectation value of er is determined 

by 71^" dependence property of expectation value of r'^ for cr > 1 analytically 

calculated by Bethe and Salpeter[14]. Since the polarizability a of state ni 

depends on dipole moment and energy separation following the equation 

I ( m | r cos 6̂ 1̂ )12 

Em-Ei 
(1.9) 

we can evaluate the polarizability a in proportional to which explains 

the high sensitivity of Rydberg atoms to the electric fields. This exaggerate 

property of Rydberg atoms makes their energy levels easy to be controlled 

by electric fields, for instance, the energy levels requires for energy transfer 

previously introduced in figure 1.1 and 1.2 are controlled by a modest electric 

field of only ~ 80V/cm. 
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Theory 

Generally, the term Stark shift refers to a shift or splitting of an energy level 

as a function of an applied electric field. In this study we employ diagonaliza-

tion of a Haniiltonian matrix for Rubidium atoms in external electric field to 

calculate Stark shifts including fine structure. This calculation in detail need 

calculation of energy levels without electric field by quantum defect theory 

and radial integral, which calculated by the Coulomb approximation method 

in this work. 

2.1 The Hydrogen Atom 

In order to study theoretical predictions for Rydberg atoms, we need to study 

the wave function, and the Hydrogen wave function is the simplest one to 

start with a provides a good model of many of the properties of Rydberg 

atoms. 

Starting with Schrodinger equation of Hydrogen atom in atomic unit, which 

is 

— - - j - 0 = EVA (2.1) 

where E is energy of electron is defined in Spherical coordinate as 

+ ^ 5,. + ^2 sin e de y de) 7-2 sin 0 d<p^' ^ ^ ^ 
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Quantity Atomic unit Value 

Mass Electron Mass m,. 9.1 X10-28 g 

Charge Electron charge e 1.6 xlO-i' ' C 
Length Radius of, the first Bohr orbit ao 0.529 A 
Energy Twice the ionization potential of hydrogen Eh 27.2 eV 
Velocity Velocity of the first Bohr orbit aoEh/h 2.19 xlO^ cm/s 
Electric field Field at the first Bohr orbit Eh/ea^ 5.14x109 V/cm 

Atomic units are defined in table 2.1. 

Assume that xjj can be separated into a product of two functions, i.e. 

i) = Y[e,<l>)R{r) (2.3) 

Consequently, the Schrodinger equation of Hydrogen atoms becomes two 

separate equations which are 

r 
'R 

2 ra^i? 2dR „ 1 , 
+ - — + 2 W + - R 

1 
Y 

1 d f . BY\ 1 a^r 
s m ^ — + r2 sin e do de J r2 sin e 

(2.4) 
where A is positive integer. If A = the solution of the angular function 
is 

^'-"^^''^ + ^ P n c o s ^ ) e - ^ (2.5) 
(/ + m)! 47r 

where Pi^{x) is associated Legendre polynomials, / is zero or a positive inte 

ger, and m is any integer from - / to /. 

The radial equation with A = /(/+1) can be expressed as 

2 /(/ + 1) d^R 2dR 
Qj.2 J. Qj. 2E + R = 0. (2.6) 

By using simphfied radial wave function R{r) = p{r)/r substituted into (2.6) 

5r2 + 
2 E + ^ _ / ( i + i ) p = 0. (2.7) 

If we analyze equation (2.7) asymptotically, it reduces to 

cJr 
+ 2E (2.8) 

= A, 
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which has the solution 

p = e-^^. (2.9) 

This asymptotic behavior imphes the form 

p = f{r)e-^^. (2.10) 

Using a power series to solve 2.7 by substituting (2.10) by / ( r ) = r'"*" ĝ(r) and 

= 5Zfclo'̂ Jt̂ '̂ jWhen CQ ^ 0. The final solution of g{r) is the polynomial 

called associated Laguerre polynomial. That is 

= L ^ ' i ' w = E ' ( - i ) - - ( „ . , _ j ' ! : X , , , ) , , , (2 .U) 

where u is related to i? by (1.5), which liy ^ 0.5 au. Finally, the radial wave 

function can be written as 

Rni{r) = /V„,e-'-/"r'L2';/(r), (2.12) 

where 

2 y { n - l - l ) \ 
1/2 

,nj 2n[(n + /)!]3j ' ^ '̂̂ ^^ 

is the normalized constant of wave function of the hydrogen. Seeing that 

asymptotic property of valence electrons of alkali Rydberg atoms and the 

total Coulomb charge is approximated to be unity and considered as a point 

charge comparing to large electronic radius, their asymptotic wave functions 

have the same form as Hydrogen wave function. Under these circumstances, 

the Hamiltonian equations of alkali Rydberg atoms differ from an equation 

describing Hydrogen at potential term using V{r) which converges to - 1 / r 

asymptotically. However, this implies the possibility to calculate the asymp­

totic wave function of other alkali Rydberg atoms by developing the Hydrogen 

wave function. Some experimental results were employed since V{r) cannot 

be calculated analytically. They subsequently provided and introduced the 

crucial constants for Rydberg atomic study called quantum defect[32][12 . 

2.2 Quantum defect 

The quantum defect (6) was described in early spectroscopic experiments 

as small difference between the spectrum of alkali atoms and hydrogen. It 
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appears as the distortion in principal quantum number n of hydrogen as it 

can be described by energy level of hydrogenic atoms in the equation 

-1 -1 
2{n - Sf 2n .2 • 

(2.14) 

It is showed by later experimental results that quantum defect depends on 

n,l, and j. In theoretical treatment of the quantum defect it is described as 

perturbation of core electron distribution and the nucleus on energy levels. 

Considering the large distance between the valence electron and the nucleus 

together with the core electrons of alkah Rydberg atoms, the behaviom of 

alkali valence electrons is very similar to the behaviour of the electrons of 

hydrogen. It follows that the radial Schrodinger equation of alkali atoms can 

be written as 

+ 2E + V{r) - 0, (2.15) 

where V'(r) is the potential of nuclear charge and the spherically average 

charge distribution of the core electrons [15], which asymptotically converges 

to - 1 / r . Using the potential of Rubidium calculated by Klapisch[18], the 

asymptotically convergence of ^(r) is showed by figure 2.1. 

Figure 2.1: Comparison between Coulomb potential of Hydrogen (solid line) 

and the effective potential for one valence electron of Rubidium (broken line) 

introduced by Klapisch[18] in atomic unit. 

Using Hartree's solution[16], Burgess and Seaton [17] calculated the radial 
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wave function with the quantum defect for large r as 

R{r) = {2TrE)-'/^cos{d)sm{0 + {2TrE)-'^^smi^)cos{(:), (2.16) 

= {2nE)-'/^smi^ + 0, (2.17) 

where 

C = {2E)'/^r -'^ + 1 ln(£; /2) ' /V + arg r ( / + 1 - i/k). (2.18) 

and R(;r) = p{r)/r. The solution in equation (2.17) shows one obvious in­

fluence of the quantum defect on the wave function namely as the phase 

shift. 

2.3 Stark Hamiltonian 

The Hamiltonian used to describe single active electron for atoms in a static 

electric field is simply a sum of the electric field interaction potentials. It is 

written in atomic units as 

Vp = Fz, (2.19) 

where F is the electric field lying along the z axis with the electric field 

independent Hamiltonian of the atom HQ. The term z is known as the dipole 

operator. Therefore, the total Hamiltonian can be expressed in atomic unit 

^ 2 
H = HO + VF = - ^ - - + FZ, (2.20) 

Z r 
when Z is an asymptotic charge in the Coulomb term of the Hamiltonian 

equation. As a result of considering core electrons and nucleus of alkali 

Rydberg atoms as an ionic core, the value of Z of alkali Rydberg atoms is 

one. 

Although parabolic coordinate treatment to describe Hydrogen Rydberg 

atoms is sufficient to describe behaviour of Stark shift and appearance shape 

of atoms, it cannot be used to calculate the explicit Stark shift in alkali Ry­

dberg atoms. One of those reasons is the significant size of the alkali ionic 

core and its inexplicit form of V{r) for which the wave function is not an­

alytically separable into parabolic coordinates [12]. Therefore the Spherical 

presentation of wave function is used in the calculation of Rubidium Rydberg 
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states in an electric field. However the patterns of the shifts in high / states 
are still able to be equivalently described by parabolic coordinate. More­
over, calculations using diagonalization where the energy eigenvalue of each 
state is calculated by direct diagonalizing the Hamiltonian matrix formed 
by coupling all spherical basis states to the Hamiltonian equation [26] is 
appropriate. To calculate Stark shifts but in low electric field strength cal­
culation using the perturbation theory can be possibly used [31], because of 
its converge expansion in low electric field. 

Generally, diagonalization method uses all of energy states to form the Hamil­

tonian matrix, which is defined by 

/ {1\H\1) {1\H\2) ••• {1\H\N) \ 

(2|/-/|1) (2|/-/|2) ••• (2|// |/V) 
// = (2.21) 

\^ {N\H\1) {N\H\2) ••• {N\H\N) j 

where A'̂  is number of all states. However, some states have negligible im­

pact and need not to be included in the Hamiltonian matrix. According to 

Hamiltonian equation of this system, the calculated Hamiltonian matrix can 

be separated into two terms which are diagonal and oflF-diagonal. The diag­

onal term is obviously calculated by the HQ term and the oft-diagonal term 

is calculated by the Vp term of the Hamiltonian equation. We can regard 

the off-diagonal term as the field dependence term of the Hamiltonian ma­

trix.The diagonal elements of the Hamilton matrix is calculated in the basis 

of \njinj) where j is total angular momentum quantum number and m.j is 

secondary total angular momentum quantum number. They are calculated 

by the Rydberg formula[12 

{n,3,m,\H,\n.,j,m,) = _ ^^^^^^ = (2.22) 

where R^j, = 109 735.605 cm"^ is Rydberg constant for Rubidium atoms, n* 

is quantum number with quantum defect 5nij which depends on /, and j. 

The quantum defect is calculated by the equation 

^nii = &o + 62/[n-5^f. (2.23) 

6o and 2̂ are the constants from the recent experiments on quantum defect 
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using cold rubidium atoms with n > 20, and / < 3, and experiment results 

in [12] for / = 3.The values of 6Q and 2̂ are shown in table 2.2. 

Table 2.2: Rb quantum defect constant(numbers between bracket are uncer­

tainties of last digits) 

Series 5o ^2 

7tSi/2[32] 3.131 180 4(10) 0.178 4 

npi/2[32] 2.654 884 9(10) 0.2900(6) 

7ip3/2[32] 2.641 673 7(10) 0.2950(7) 

nd3/2[32] 1.348 091 71(40) -0.602 86(26) 

7td5/2[32] 1.346 465 72(30) -0.586 00(18) 

"/5/2,n/7/2[l2] 0.016312 0.064007 

In the case that the series of I is higher than three, quantum defects are 

approximated to be zero. The dipole matrix elements are obtained by 

{njmj\z\n' j'm'j) = {nl\r\n'l') ^ {l,s = l/2,m.i,ms\j,mj) 

x ( / ' , 5 ' = l /2 ,7n; ,m;| / ,m;.)( / ,rn. , |cos^|r , / /T;) , (2.24) 

26] where the first and second terms in sinnmation are Clebscli-Gordan coef­

ficients transforming the \n,j,mj) basis to the \n,l,vij,s,ma) basis in order 

to couple the states with cos^ which depends on / and m-i, and r which de­

pends on n and / .The last term in the summation is elementary algebra of 

spherical harmonics, which can be expressed in the term of Clebsch-Gordan 

coefficients, 

(/, 77̂ ,1 cos e\l\ m\) = y ^ ± i l (/', 0,1,0|/, 0) (/', -777;, 1,0|/, m,). (2.25) 

This equation implies the selection rule mi — m'^ and /' = / ± 1. In addition, 

(2.24) can be further derived in the form of products of three Clebsch-Gordan 

coefficients, which implies the selection rules of m'^ = irij and j' = j ± \ [33]. 

In addition, the radial matrix elements (rz/|r|77,7') are calculated with the 

Coulomb approximation which is introduced in section 2.3. In figure 2.2, 
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which is representing the dipole matrix elements of Rb with n — 20, we 
can see the result of the selection rule by looking at non zero terms of the 
matrix elements, and also when the states in different principal quantum 
number n are used to form the matrix in figure 2.3. The strength of dipole 
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Figure 2.2: The non-zero elements (represented by dots) of dipole matrix 
formed by (2.24) and energy states | n , w h e r e n — 20, that are \n — 
20,/ = 0,j = 0.5), 120,1,0.5), 120,1,1.5), |20,19,18.5),and |20,19,19.5) . 
The white area of the graph represents zero matrix elements, i and k are row 
and column of the matrix, respectively. Obviously, the non-zero elements are 
only the horizontal and vertical adjacent elements of the subdiagonal and the 
superdiagonal. These dots also Ue in two diagonal Unes following increasing 
/ or /'. 

matrix elements corresponding to figure 2.3 is showed in the figure 2.4. In 
each group of matrix elements defined as dipole matrix elements between the 
group with same principal quantum number n and another group with same 
principal quantum number n' can be divided into two subgroups following 
continuous dipole matrix elements in the term of /. For example the group 
of dipole matrix elements coupUng the states with n = 20 and n' — 21, 
there is one subgroup of / > 3 states which the strength of matrix elements 
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change continuously in the term of I and the another subgroup with I < 3 
states which discontinuous matrix elements in the term of /. Considering the 
continuous strength matrix elements subgroups, the continuous pattern can 
be described by hydrogen like behavior of their energy levels since there is 
no effect of quantum defect. This makes radial term of equation (2.24) can 
be described by function of n and /: 

(n*/-l |r |n-Z) = y (71^-/2)5, (2.26) 

which is the same equation described radial matrix elements {nl — l|r|n/) of 

hydrogen. However, this part of the matrix element influences on permanent 

dipole moment pattern of states / > 3 in an electric field. 

n=20 60 

n=21 100 

0 20 40 60 80 100 120 

Figure 2.3: The non-zero elements (represented by dots) of dipole matrix 
formed by (2.24) and energy states \nj,j) of three manifolds of n 19, 
n = 20, and n = 21,i and k are row and column of the matrix, respectively. 
There are 9 block matrices denoted by the principal quantum number n of 
the horizontal basis states and n' of the vertical basis states are the clear 
resemblances to the dipole matrix in figure 2.2. 

After we obtained the Hamiltonian matrix, each calculation is done by diag-
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onalizing the Hamiltonian matrix at fixed F and rrij, which is written as 

/ E, FVn • • • F V i ^ \ 

diagonalize H diagonalize 21 E, 

V FVNI FV, N2 

I E[{F) 0 

0 E'^{F) 

\ 0 0 

• FV^N 

• EN j 
0 \ 

0 
(2.27) 

where for i,j = 1,2,3,...N is a product of angular and radial matrix 

elements {i,j). To form the hne of Stark shift in the term of F, calculations 

are done by calculating F + jdF in very small interval dF in figure 2.5. 

2.4 Radial Integral 

Generally, radial transition in Atomic Physics can be written into Dirac no­

tation and equivalent integral form as 

{nl.\r''\n'l') = T drr^/?; , (r ) /?„ , , , ( r )r ' ' . (2.28) 
Jo 

According to the solution of Schrodinger equation (2.7) in Chapter 2, the 

radial transition for hydrogen is obtained explicitly by solution of equation 

(2.7) which W is substituted by -l/2n^ and integrated in equation (2.28) 

by Gordon[20] in the series of a Gaussian hypergeometric function 2F1 [19]. 

2.4.1 Coulomb approximation 

Since there are similarity behaviours between hydrogen and hydrogenic Ry­

dberg atoms, which in this study particularly focus on Rubidium Rydberg 

atoms, the calculation of radial integration has similar process. The value of 

W substituted in (2.7) uses energy level of Rydberg atom including quantum 

defect, which is 

= : T 7 - ^ ^ = (2-29) 2(n 2n 



Chapter 2. Theory 17 

where the constant two appears in equation (2.29) is the approximated Ry­
dberg constant of any atoms in atomic unit. 

Since the quantum defects are not integer, the effects of quantum defects on 

analytical solution of Rni are forbid expression in Laguerre polynomial which 

is summation of integer of ti — / — 1. Whittaker[19] proposed the solution of 

the differential equation 

"2 l{l + l ) 1 d^R 2 OR 
+ + r2 71*2 R = 0, (2.30) 

where n* is not integer with boundary condition, 

Rn,i^Q as r ^ oo, (2.31) 

which satisfies the property of Rydberg atoms. This condition was applied 

to evaluate equation (2.28) by Bates and Damgaard[21] is called in the term 

of Coulomb approximation. The solution of 2.30 is 

_ ( 2 r / 7 0 " > - / " - A , f > a t \ 

t=i 

where 

ai = y W + 1) - n\n* - 1)] , (2.33) 

and 

at = at_i 1^ [/(/ + 1) - {n* - t){n* - i -f 1 ) ] | . (2.34) 

By rearranging equation (2.32), the equation (2.28) where s = 1 can be 

written in the gamma function form 

r drKj{r)R^.,rir)r = f 2 T H d r c t i r i \ l ) c t i 7 i * \ i y ^ - - - ' ^ ' ' , 

E ct{v* A)c,{u*\l') ^ ^ t f ) r(7/.* + n*' + 102.35) 
/=n f'=n \ n 77 / (=0 f'=0 

where 

= I [/(' + 1) - (n* - t){n* - t + \)\. (2.36) 

Considering radial integral in the form of asymptotic expansion, the term 

with 71* -I- 7i*' - ^ - > 1 can be ignored. 
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Finally, Bates and Damgaard proposed the result of 

( n * / - l | r | n * / ) = ^ ( n * 2 - / 2 ) i , (2.37) 

and tables of calculated values in the term of r?* -n*' with intervals of 0.1 and 

n* with intervals of 0.5 which leads to possibiHty to interpolate ( n * / - l | r | n * ' / ) 

for closer interval of n* and n*' in further study. 

2.4.2 Numerical Modified Coulomb approximation 

This section is developed method of Coulomb approximation of Bates and 

Damgaard in order to modify numerical method for any 7i*,n*',l, and /' in 

equation (2.28) for q=l by Edmonds et al.[28]. This work begin by using 

extrapolation considered by Picart et al. [27] which extrapolated the tables 

calculated by Bates and Dangaard introduced in section 2.4.1. They proposed 

the function 

<P{n\l,n*',n = {n*,l\r\n*',l')/{^nl 
:1 1/2 ^ 

where 

and 

Ic = max{l, I') 

(2.38) 

(2.39) 

1 1 
— + — n* n* (2.40) 

1 _ 1 
~ 2 

The denominator in (2.38) is in the same form of (nc,/|rl7tc,/') calculated 

by Bates and Damgaard's Coulomb approximation. Therefore, the function 

(2.38) can be considered as a ratio of {JI*, l\r\n*', I') and (r j -c / | r |7 ( .c ,which 

obviously converges to unity if n* ^ n*'. Using Maclaurin series expansion for 

0 in the term of 7 = lc{l'-l)/nc and application of Naccache's study[29] which 

calculated (n, / | r | n ' , / ' ) , for n and n' are integer, sufficient small s = ( n * - n * ' ) , 

Picart et al. obtained 

del) 
+ 

7̂  5 V 
9717=0 2! 972 7=0 + 

p=0 
(2.41) 
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where /p(s) can be written in Bessel function: 

Us) = f2{s) = 
3s 

(J,+l(s) - J , _ i ( 5 ) ) 

fy{s) = ^ ^ ( J . + l (5) + J . _ i ( 5 ) ) 

Ms) = | / o ( 5 ) + / l ( 5 ) . (2.42) 

In later study, Edmonds et. al.[28] used Edmonds-Kelly method to modify 

(2.38) in order to calculate (n*,/|r|n*',/') which available for s is non-integer 

and obtained equation 

<^(n*,/,n*',/') = <̂ k=o + 7 ^ 
d(t> 

+ 
7̂  

97 1̂ =0 2! 972 7=0 
+ ... 

= J2^^9p{s), 
p=0 

(2.43) 

where the values of Qp for p =0, 1, 2, and 3 are showed in the table 4 of [28 

and figure 2.7, which are available for s between -4.0 and 4.0. In the case that 

the value of s is intermediate values in the interval of 0.05, Qp is evaluated 

by four-point interpolation [30] recommended by Edmonds et al.[28]: 

a ( a - l ) ( a - 2 ) g ( 5 - i ) , {a'- l){a - 2)g{so) 
.9(50 + fia) ~ + 

a(a + l)(a - 2)g{si) _^ a{a^ - 1)9(52) 
(2.44) 

2 6 

where h is the interval of s and 5_i = SQ - h,si — so + h, and, S2 = SQ + 2/i, 

following figure 2.6 are values of s in the table 4 of [28], and SQ + ha is 

intermediate point between SQ and si . The function gp{s) is taken to be zero 

for p > 3. 

After 4>{n* ,1,11*' ,1') is evaluated, we obtain 

,-, 1/2 • 

{7i\l\r\7i*',l') = < rri 2 1 -
n. 

| E 7 % ( 5 ) , 
J P=0 

(2.45) 

where -4.0 < s < 4.0, following [28 . 
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2.4.3 Alternative methods of Radial Integral Calcula­
tion 

Generally, there are two treatments of calculate radial integral, one is 

Coulomb approximation which has already been introduced in earlier sub­

section of this chapter. In additions to improved coulomb approximation of 

Bates and Damgaard by Whittaker equation and Edmonds and Kelly's ex­

trapolation, there are some other calculations with different rearrangements 

of Whittaker equation[23]. For example, calculation using contour integral 

representation of Whittaker equation by Hylleraas[24] and calculation em­

ploying orbital quantum defect substituted into Whittaker equation done 

by Klarsfeld[23]. However, since these methods initially used Coulomb ap­

proximation idea, they eventually provided the same calculation accuracy. 

Anotlier calculation method entirely differs from Coulomb approximation. 

It is proposed by Davydkin and Zon[37] using W K B approximation and clas­

sically considering electron as moving particle beyond Kepler's law. The 

method is recommended by Davydkin and Zon themselves that can be used 

sufficiently in high principal quantum numbers. The results proposed by 

Davydkin and Zon can be written as 

/ * ,1 I *' A "* fsiuTrA 
A ( l - £ ) i F 

Z A \dx 
^ J A { - X ) T ^ ^ ^ ^ J A ( - X - ) } , (2 .46) 

where 

7i* = V7i*7i*', (2.47) 

A = 7 i* ' -n* , (2.49) 

X = eA, (2.50) 

J^{x) is Anger function 

1 r 
J^{x) = - cos{ls9-xsm9)de. (2.51) 

In accuracy test by Kishimoto[38], equation(2.46) is recommended to be used 

high sufficiently for radial integral with n > 100. 
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n = 20 

n=20 

n=21 
n = 19 

n=20 n=21 

Figure 2.4: The bar graph shows strength of dipole matrix elements cor­
responding to the matrix in figure 2.3. Non-zero elements in each block 
matrices (n,n') resembhng the dipole matrix in figure 2.2 can be divided 
into two subgroups by continuous of the strength of dipole matrix elements 
as a function of / which is clearly seen in the block matrices with n = n' and 
n = n' The continuous subgroups are the set of coupling states with / 
and I' > 3. 
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EjF+dF) E^rF+JdF) 

E/F+dF) 
E^(F+jdF} 

E,(F+dFj 
E,(F+JdFj 

E,(F+dFj 
E,(F+JdFj 

Figure 2.5: Calculation forming Stark shifts by diagonalization using N states 

as basis of Hamiltonian matrix. Calculation is done by diagonalizing the 

Hamiltonian matrix which depends on electric field F. Subsequently, we 

obtain a set of dots represent energy states in constant electric field F , 

then do further calculation of constant electric field F + jdF in small interval 

dF until dots form as the shift or splitting lines. 

SQ+ ha 
J L 

^-1 ^0 S , 

Figure 2.6: Four-point interpolation of the value of g{so + ha) by equation 

(2.44). 
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Figure 2.7: Graph o( go{s),g\{s),g2{s), and 53(5) extracted from table 4 of 

[27]. 



Chapter 3 

Numerical tests 

The first numerical test is the comparison results of non-relativistic Stark 

shifts between calculation using Coulomb approximation and exact calcula­

tion using Klapisch analytic potential [18]. Although Klapisch potential can 

provide high precision results in non-relativistic calculation, i t is unable to be 

modified for fine splitting Stark shifts. Accordingly, these tests performed in 

order to understand precision of Coulomb approximation for non relativistic 

calculation which wil l be applied for fine splitting case. The second test is an 

examination whether the limitation of Coulomb approximation is adequate 

for Stark shifts calculation by testing the convergence of the states added 

to the calculated system. In the following section. Stark shifts wi th fine 

splitting calculations are tested in order to verify precision of Coulomb ap­

proximation comparing to another entirely dift'erent radial integral calculated 

by Davydkin and Zon[37]. After, since the diagonalization can be system­

atically anticipated some difficulties in higher ii calculation, we lastly test 

possibility of using the scaling law to simplify Stark shifts wi th very high n 

and low field strength calculation. 

3.1 Radial integral test 

Due to the reason that each numerical calculation of radial integral is par­

ticularly sufficient in various regions of principal quantum number[22], the 

accuracy of applied radial integral method has to be checked in considered 

24 
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states of Rydberg atoms. In this test the non-relativistic Stark shifts of two 
different calculations are compared. The first calculation is a diagonaliza-
tion calculation using radial integral by Coulomb approximation in chapter 
2. The non-relativistic dipole matrix element (z) reduces to n j , and m-i 
dependence in equation (2.24), which is 

{nl7ni\z\n'l'm[) = {nl\r\n'l') x {I, mi\cose\l', 7n'i). (3.1) 

Using equation (3.1), we obtain the non-relativistic Stark shift wi th mi = 0 

showed by figure 3.1. For / > 3 in the manifold, graphs show behaviour of 

hydrogen-like, by the result of negligible quantum defect. 

Without evaluation of quantum defect directly, the energy level in equation 

(2.22) is calculated by Klapisch potential 

V{r) =-^{1 +Ae""'-+ Bre-'^') , (3.2) 

where A = 36 a.u., D = 6.43527 a.u., a = 3.33355 a.u. and /? = 1.3698 

a.u.[18] as a screened Coulomb potential of Rubidium in the Hamiltonian: 

H = - ^ + V{r). (3.3) 

The results of the calculation are showed in figure 3.1. After obtaining the 

calculation results, the comparison calculation using program developed by 

Potvliege[25] is performed. The calculation in this program uses Sturmian 

wave function as radial wave function with high accuracy non-relativistic 

radial integral. Since using Klapisch potential as a screened Coulomb poten­

tial , this program is incapable to calculate systems wi th fine structure which 

have no analytical Hamiltonian function. Therefore, this comparison test is 

done in order to check the precision of the radial integral using Edmonds-

Kelly method wi th is capable to be modified to calculate Stark shifts wi th 

fine structure. The comparison results are showed in figure (3.2). The graph 

shows agreement in low electric field strength and slightly difference in suf­

ficient high strength field. 

3.2 Convergence with number of states 

Since Stark shifts calculated by diagonalization use all of the energy states 

as basis states of Hamiltonian matrix elements, the more states used for 
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calculation, the more accuracy calculation obtained. Nevertheless, diagonal-
ization of very large matrix elements spends vast time to calculate. In order 
to calculate sufficiently and simply, the proper number and selection of basis 
states have to be considered. Fortunately, Edmonds-Kelly Coulomb approx­
imation has l imit condition for \n'* — n*\ < 4 to terminate other unnecessary 
states to calculate the matrix elements. This termination is more reasonable 
when we look into the strength of dipole transition in the dipole matrix. In 
figure 2.4 considering the dipole transition between manifolds, the strength 
of dipole transition decreases as the difference of n. In figure 3.3, considering 
20d states there are two sets of states in p state and f state which both set 
are the set of nearest energy states wi th 20d. The highest n of each set is the 
nearest one. This graph explains that the nearer energy the higher strength 
of dipole transition. The magnitude of dipole transition of the first p and f 
states in this graph are small enough to be negligible. 

In addition, to understand the numerical influence of this termination on 

precision of Stark shifts, we do numerical test of the convergence of Stark 

shifts corresponding to the states added into the Hamiltonian matrix. The 

first test in figure 3.4 considering effect in the addition of the state 36p, 37p, 

35p, and 38p, respectively, on the calculation of 35d state in an electric field. 

Using p-states as a convergence testing is selected on the basis of concen­

trating on Stark shifts of d-states in this project. The order of added states 

in this convergence testing follows the order of ascending different occupied 

energy between 35d state and each p-state, considering difference in quan­

tum number dependence of the dipole transition. The blue line is the init ial 

line which is the calculation using all states except p-states corresponding 

to the condition \n'* - n*\ < 4. The red line is the calculation with addi­

tion of the 36p state in to the calculation of the blue line. After adding 

37p, 35p, and 38p states, respectively, the shift converges to the black hne. 

These results show the sufficient effect of two nearest added states, the upper 

and lower ones. Dealing wi th the effect of f-states on d-states in an electric 

field, the same test is done in similar way to the previous test wi th p-states. 

The f-states in this test are 34f, 33f, 35f, and 32f are added to Hamiltonian 

which consists of all states except f-states corresponding to the condition 

\ti'* - n*\ < 4, respectively. The results showed in figure 3.5, where the blue 
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line is the calculation without f-states in the Hamiltonian matrix. The red 
line is the calculation when the 34f state is added in the Hamiltonian matrix 
in the calculation of the blue line. Finally, after the 33f state was added into 
calculation, the result graph converges to black line, which is the same as 
when 35f and 32f are added respectively to calculation. These results are 
relevant to the results of p-states test that using two nearest states included 
the in Hamiltonian matrix is adequate to calculate precision Stark shifts of 
d-states. 

3.3 Comparison with calculation using other 
radial integral method 

Comparing this calculation to the earlier studies, the first comparison be­

tween figure 3.6 which is a calculation with fine splitting with |7nj| = 1/2 

using Edmonds-Kelly method, and figure 3.7[31] is the calculation using 

Coulomb approximation of Zon and Davydkin[37]. This Coulomb approx­

imation is described in section 2.4.3 as an alternative method to calculate 

radial integral. The results from both calculations are exactly the same in 

the order of the interval energy as shown in the graphs. They explain the 

identical behavior of calculation by diagonalization and the accuracy between 

both Coulomb approximation methods. 

In order to compare the precision of the dipole matrix elements, we compare 

second-order coefficients of several //.p-states in table 3.1 which is defined by 

the summation in the first term of an equation describing Stark shift {SE) 

of state |m) in perturbation theory treatment[31] written as 

^ (•n?.|rcos6'|i)(i|rcos6'|r7i) 2 (77i|rcos6^|<)(i|rcos6/|/c) h—— ^,h..—— 
(/c|rcos%)(p|rcos6>|m) ^ 4 

{Em - E,){E^ - E,) •^'•'^ 

where \k) and \p) are states involving Stark shift calculation of state |m). 

The precision of both theoretical results are close to each other and calcu­

lations using Edmonds-Kelly method are shghtly better for 7i=46, 53 and 
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n Order P l / 2 , | W j l = 1/2 P 3 / 2 , | T O J | = 1/2 P 3 / 2 , \mj 1 = 3/2 

the." the.'' exp." the." the.'' exp." the." the.'' exp." 

46 10-3 -2.721 -2.873 -2.77(6) -3.190 -3.239 -3.30(7) -2.723 -2.713 -2.77(6) 

53 10-3 -7.66 -8.107 -7.95(21) -8.99 -9.133 -9.27(21) -7.69 -7.67 -7.82(18) 

59 10-2 -1.672 -1770 -1.67(5) -1.963 -1.993 -1.98(5) -1.681 -1.676 -1.65(6) 

70 10-2 -5.76 -6.107 -5.98(21) -6.77 -6.87 -7.10(22) -5.81 -5.79 -5.90(19) 

81 10-1 -1.647 -1.747 -1.86(15) 1.936 -1.966 -2.18(11) -1.663 -1.660 -1.87(11) 

Table 3.1: Comparison between calculated and experimental results of 

second-order coefficient defined by equation(3.4) studied by Haseyama et 

al.(a)[31] and calculations by using Edmonds-Kelly method calculated radial 

matrix elements(b) of pi/2 for \rnj = l /2 | ,p3 /2 for |m j = 1/2| and P3/2 for 

| m j = 3/2|.The numbers between bracket of experimental results are uncer­

tainties of last digits. 

59. 

3.4 Scaling laws 

Although diagonalization is one of the sufficient methods to calculate Ru­

bidium Rydberg atoms in an electric field as can be seen in some earlier 

tests, vast calculations, computing memory and time consumption are major 

problems of concerns since the number of matrix elements depend on num­

ber of included basis states in the power of 2. We have found that these 

vast calculations can be avoided when the calculations concentrating on low 

electric field regime are calculated by perturbation theory. The equation of 

perturbation theory treatment is expressed at equation (3.4) in the previous 

section. We consider only first term of equation (3.4) because low electric 

fields are considered for regime which F'^ is small enough for the second term 

to be neglected. The basis used in the calculation are only the states with 

following the selection rule / ' = / ± 1 of azimuthal quantum number / of the 

calculating states. In the example of the 41d state calculation, the number of 

the states dramatically decreases from 318 states or 101124 matrix elements 

to 17 states or 289 matrix elements or ~350 times faster. The example 

calculations of 50d states is showed in figure 3.8 which explains capability 
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of perturbation approach in the low-field regime. However, using table 1.1 
and eqnation(3.4), the difference between adjacent Stark .shift,s (A£^) can be 
written as a scaling function by n* of F[31] as 

AEn''' = F^an"° + F^0n*^\ (3.5) 

where « n ' ' ° and /"in*^" are the differences between the second-order coeffi­

cients and fourth-order coefficients of two adjacent states defined by equation 

(3.4) written as functions of n*. The power of 10, 20 and 3 of the equation 

are derived by n*^ dependence of dipole moments and n''^ dependence of two 

adjacent states and substitute into equation (3.4). Using (3.6), we ai-e also 

able to defined low field regime by inequality 

« ^ n - ^ " . (3.6) 

Finally, the shifts in the relationship between very low electric field and the 

energy difference between difference rrij shifts can be simplified by the scale 

transformation F*^ = 7i*'̂ F^. The equation of this scaling can be written as 

A F = aF' ' ' . (3.7) 

The scaled graph is showed in figure 3.9, where (i) for A F — |F(n, / = 

2, j = 3/2, = 1/2) - E{nJ. = 2 , j = 3/2, = 3/2)i calculations ,(ii) for 

A F = \E{n,l - 2 , j = 5 / 2 , = 1/2) - F(n , / = 2J = 5 / 2 , = 3/2)| 

calculations and (iii) for A F = |F(n, / = 2 , j = 5/2, = 3/2) - F(n , / = 

2,_7 — 5/2, mj = 5/2)1 calculations. 

We obtain w 3.06 x IQ-^^MHzV-"^.cm?, an w 1.28 x IQ-^^MHz.V-^.cm'^ 
and am ^ 2.56 x 10~^^MHz.V~^.crn^ which are constant of scaling relations. 

These constants are less precise for lower Rydberg states and the shifts even­

tually converge to them following increasing n since s in equation (2.38) 

converges to zero. However, although the scaling law can show possible high 

efficiency results simpHfying Stark shifts in high n, the exact field region and 

its accuracy evaluation are still crucial in practical uses. The figure 3.9 is a 

good example of this point owing to the distinguishable scattering of each 

state calculation with different n as a result of individual low field regimes or 

individual low a/0 for each calculation following the definition by inequality 

(3.6). 
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Figure 3.1: non-relativistic Stark shifts of Rubidium calculation by radial 
integral Eklmonds-Kelly method. 
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Figure 3.2: Comparison of non-relativistic Stark shifts of Rubidium at 

35d, 37s and 36p between calculation by radial integral Edmonds-Kelly 

method(soIid line) and the calculation by Sturmian wave function(+) in the 

region of electric field strength lower than field ionized regime with mi = 0. 
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2^ ^ ^« 

Figure 3.3: The bar graph shows the strength of dipole matrix elements 

formed by the nearest energy states p,f around 20d including 19d and 18d. 

-96 5 

F(V.cm-') 

Figure 3.4: The graph illustrates convergence of Stark shifts of 35d as a 

result of addition 36p, 37p, 35p, and 38p states, respectively, into basis set 

of calculation. Where the blue Une is calculated by using s-states, d-statcs, 

f-states and all states with Z > 3, the red Une is calculation including 36p 

state, and black line is calculation including 36p and 37p states. In addition, 

the results including other p-states are the black line. 
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Figure 3.5: Convergence of Stark shift of 35d influenced by f-states. The 

calculation using all states with / 3 is showed by the blue line. Calculation 

with addition of the nearest f-state(34f) into calculation of the blue line is 

showed by the red line, and the black Hne shows calculation by including 

other f-states into calculation of the red line. 
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Figure 3.6: Electric field dependent energy levels around 45d state for \mj\ 

= 0.5 calculated by diagonalization. 
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Figure 3.7: Electric field dependent energy levels around 45d state for \mj\ 
= 0.5 calculated in [31]. 
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Figure 3.8: A demonstration of the Stark shifts of 50d states calculated 

using f-states and p-states by perturbation theory approaches(black) and 

diagonalization method(blue). 
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Figure 3.9: Scaled Stark shifts using scale transformation F*'^ = n*'̂ F^ of 

ii)\E(n,l = 2, j = 3/2,771; = 1/2) - Ein,l = 2,j = 3 / 2 , = 3/2)|(solid 

lines) , (ii)\E{n,l = 2,j = 5 / 2 , • 1/2) - Ein,l = 2,j = 5/2,m, = 3/2)| 

(dash lines), (m) |E(n, / = 2,j = 5/2,mj = 3/2) - E{n,l = 2,j = 5 / 2 , = 

5/2)1 (dash-dot lines), which n=100(red), 90 (blue), 80(cyan), 70(green). 



Chapter 4 

Stark splitting comparison with 
experiment 

In this chapter we verify the results of our numerical calculation by com­

paring the calculated Stark shifts with real experimental results obtain in 

Stuttgart[36] which investigated Stark splitting of cold Rubidium atoms us­

ing laser excitation and field ionization. Subsequently, we compare the cal­

culated spectra with experimented spectra using thermal atoms in vapour 

cell in Durham[35]. We show that the Durham results are more difficult to 

interpret due to the presence of ion in the vapour cell. 

4.1 Comparison with Stuttgart experiments 

In Stuttgart experiment [36], an applied field is applied to Rubidium atoms 

in a magneto optical trap (MOT). Then, the Rubidium atoms are excited by 

two lasers. Firstly, they are excited from 55i/2(F = 2) to 5P3/2(F — 3) by a 

red laser with wave length 780.248 nm. Secondly, the atoms in 5F3/2(F = 3) 

are excited to Rydberg state by blue laser with wave length 480.6 nm. In 

this experiment, the blue laser can be adjusted for the Rubidium transition 

from 5P3/2(F = 3) to Rydberg states by accusto-optical modulator (AOM). 

Because of the master-slave laser system, the red laser is used as master 

laser and stabilized in resonance cavity to make the blue laser stable and 

adjustable in the order of 1 MHz. Consequently, the high resolution spec-

38 
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troscopy is obtained from this system and the Rubidium atoms are excited 

to Rydberg states more accurately. Based on field ionization, the Rydberg 

atoms is detected by applymg pulsed electric field. Additionally, the aniomit 

of emerging ions is counted by micro channel plate (MCP). As shown in figure 

4.1, the calculated results strongly agree with experimental results. Never­

theless, this comparison is emphasized on the rehability of diagonalization 

and Coulomb approximation. 
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Figure 4.1: Comparison of electric field dependence energy levels of 41d3/2 
and 41d5/2 between the Stuttgart experiment[36] (dot) and theoretical cal­

culation (sohd lines) with | m j | = 0.5, 1.5 and 2.5. 
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4.2 The Durham Electromagnetically Induced 
Transparency(EIT) experiment 

The E I T experiment is done by using two laser beams transmit through room 

temperature vapor chamber of Rubidium as be showed by figure 4.3 and 4.2. 

The first propagated laser called probe beam is fixed at 780 nni following 

transitions of 5s^Si/2{F = 3) —> bp^Pz/i- The second beam called coupling 

beam is transmitted in the opposite direction to probe beam. The coupling 

beam is varied from 479 to 484 nm. This range of frequency can cover the 

transitions of 5p^P3/2 nd?Dz/2,bi2 for n = 26 - 124. A photodiode is 

applied to measure the probe transmission measurement of the probe laser. 

As in figure 4.4, the result from transmission measurement of probe laser 

is is a function of coupling laser detuning. As shown in this figure, the 

transmission is a function of detuning of 44£>5/2. The 44D5/2 and 44D3/2 

states are evidently depicted in the region of the scanned coupling frequency 

on this graph. 

In order to investigate the influence of the external electric field to spectrum 

of Rubidium, the vapour chamber is placed between two electrodes which 

apply an electric field controlled by rectifier with frequency 90 MHz (figure 

4.6b). The experiment is done by varying the applied rf voltage which we 

obtain expected amplitude of rf electric field of the vapour chamber since the 

separation between electrodes is 3 cm. in table 4.2. Oscillating electric field 

is applied to the vapour following the presence of ions in the vapour cell. 

The cause of ions production could be photoionization by the apphed laser 

fields[41]. Furthermore, by the reason that this experiment is done in room 

temperature, ions could be possibly produced by ionization in a thermal field 

which can raise collision rate and radiative transition[43][44]. It was found 

that this black body ionization depends on temperature and the large dipole 

transitions of Rydberg atoms[42]. The ions are also slightly produced by 

interactions between atoms which the production rate depends on density 

of the vapour by Li et al.[40]. Nevertheless, Li et al. have reported the 

significance ionization by atomic interaction in laser cooling trapped atoms 

which much denser than thermal atoms. 
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Table 4.1: Peak-to-peak voltages(Vp) applied to electrodes in E I T spec­

troscopy experiment[35] and corresponding peak-to-peak amplitudes of ex­

ternal electric field(F(p)). The time dependent function of external electric 

field is described by function /^eit(0 = (Fp/2) sin(co'f), which w is angular 

frequency of applied voltage. 
Vp{mV) Fp(V.cm-i) 

480 0.080 

760 0.127 

1080 0.180 

1480 0.247 

1900 0.317 

2380 0.397 

2840 0.473 

3340 0.557 

As a result of the occurrence of ions in the vapour cell, ionic distribution is 

expected to compensate the external dc electric fields exactly, whereas the 

ions are harder to responds this compensation rapidly enough for the external 

ac electric fields. 

4.3 Comparison results and results analysis. 

After investigating experimental data in each peak-to-peak voltage in table 

4.2, and by the ideal situation that the electric field seen by vapor Rubidium 

atoms is described by function Fe/j = Fext = (Fp/2) sin(u;f), where Fext is 

peak-to-peak external electric field we obtain comparison results between 

experiments and theoretical prediction in figure 4.5. The results in figure4.5 

show inconsistency between the presumption of F^ff = Fext calculated and 

experimental results. The atoms see stronger field than external electric field 

considering from the slower shifts of the calculated results. However, since 

ions production in the vapour chambers was reported in Li et al.[40] and 

Potvliege and Adams[41] by various reasons, we have another expectation 
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including the influence of ionic dynamics in sufficient high electric fields. 
This presumption can be described by figure 4.G, where F^ax = If 
very low frequency oscillating voltage is applied to the chamber, ionic charge 
distribution can be expected following compensation of the applied electric 
field. This certainly causes electric field cancellation in the chamber. Since 
frequency of oscillator in this experiment is designed in order to avoid this 
cancellated field by using efficient high frequency (90MHz), the eventually 
effect by ions with long relaxation time could be seen by this comparison 
results. 

Referring to figure 4.6, if it is assumed that the initial charge distribution 

corresponds to the external electric field as figure 4 .6batf = i i = 0 a s can­

cellation in figure 4.6a, the eventually charge distribution will change slightly 

at I = t2 = T, where T is period of oscillation according to long relaxation 

time of the ions. We are able anticipate the subsequent cancellation and at 

ti and addition at t2 in figure 4.6c and equation 

F F 
Feff = Fint + Fext = y + y Sm{ujt) 

= ^ + ^sm{27rt/T), (4.1) 

where Fint is electric field produced by screened charges. Independent to the 

form of equation (4.1), the calculation using equation (2.20) need only the 

maximum external field of equation (4.1) which is Fp and Fe/f is expected 

to be Feff exactly. 

On the contrary, the more calculations are done in order to find the best 

fitting comparison by changing proportion of the effective field to the exter­

nal field amplitude and we can observe higher effective field than the last 

assumption. The best fitting result is the calculation using Feff — 1.35Fext 

wliich can be seen by figure 4.7. 

In conclusion, we can evaluate the maxinmm effective electric field relating 

to peak-to-peak of oscillating electric field by a scale of 1/1.35 using best 

fitting calculated results into experimental results, whereas it is expected to 

be one regarding ideal slowly response charge. 

At the same time we have done other theoretical predictions which can ex­

plain some model of the effective field corresponding to the comparison re-
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suits. Because of the time dependent external field, the transmission as de­
tuning in the experiments is the average transmission following the function 
of the external field. 

Since each peak in the relation between transmission and detuning is the 

spontaneous emission from each energy level with significant life time (r) , 

using time dependent perturbation theory and A'̂  photons emitted from the 

energy states as a differential equation 

= ( 4 . ) 

the expected transmission(/) as a function of detuning(u;') is described by a 

proportion of the Lorentzian function[13][39 

The Lorentzian shape is showed in figure 4.8. Considering experimental re­

sults, not all peaks are symmetry and consistent with Lorentzian shape. This 

is found as an effect of the time dependent electric field on the photodiode 

detector. Using Lorentzian equation and calculated Stark shifts, we model 

the Stark shifts of 'nd states detected by E I T experiment without the influ­

ence of the oscillating electric field in figure 4.9. The blue lines corresponds 

to calculated Stark shifts in the black lines which separate from calculating 

when the oscillating field affects on the results in figure 4.10,4.11 modelled 

by Feff = {Fp/2)sin{iut) and Fefj = (Fp/4)(1 -h sin(u;t)), respectively. 

Likewise, the modelling including time dependent is calculated by averaging 

transmission of the electric field described by a function of Fe/f —» Fe//(Fp, t), 

which is written as 

S' (F„ . ' ) = . / ."" 'SC^./f . . ' ) . -^ ') '" , (4.4) 
/o 

where S is the transmission without the influence of time dependent electric 

fields as a function of the electric field and detuning at time t and 5" is the 

transmission under the influence of time dependent electric fields. On the 

other hand, modelling of figure 4.9 which F = Fp and is time-independence 

uses the function 

S{F,u') = Y,miF)^'^'), (4.5) 
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rMiFW) = - — ( 4 . 6 ) 

which 
V4_ 

(a ; ' -u ;KF ) f+ r - V 4 ' 
where i and are index and detuning of each Stark shift, respectively. 

Since is unable to be calculated analytically as a function of F and Fe/j in 

equation (4.4) can be considered as a periodic function with period T and T 

is divided into small interval dt , the modeUing by equation(4.4) is changed 

to discrete form 

1 ^ 
S'{F„u;') = -X ;5 (Fe /^ (Fp , i ) , u ; ' ) , (4-7) 

t=i 

where N = T/dt. The resonances observed in the experiment are clearly nar­

rower tlian the resonance prediction by the sinusoidal modulation of the field 

which implies that the effect of the ions is to sharpen the switches time of the 

field. It follows that one of the distinctive separations between graphs on the 

basis of time dependent field influence is the shape and moderately distortion 

of peaks. The directions of the distortions in figure 4.9 depend on gradients 

of changing position of the peaks in figure 4.10 following increasing electric 

field oppositely, seeing that the transmission of the lower Fp have significant 

values to affect average transmission of the higher Fp. This modelling could 

also be taken advantage for comparison results between calculation and ex­

periment as a criterion for crossing positions of calculated graph on the peaks 

of E I T experiments. 

Besides, there are the addition peaks appears and constantly locate at the 

detuning energy of 44^3/2 and 44^5/2 in the zero field. One explanation of 

these appearances is the high intensity at both states in zero electric field 

and the more time the electric field spends in low field regime. The influence 

of time the electric field spends in low field region can be seen clearly from 

different strength between those inconsistent peaks with Stark shifts of figure 

4.10 and 4.11, since the electric field in equation (4.1) spends more time in 

low field regime than the field F^ff = {Fp/2) sm{ujt) as can be seen by figure 

4.6b and 4.6c. 

On the contrary, the inconsistent peaks are not visible in actual experimental 

results. This explains small time duration in low field regime. Accordingly, 

we improve a model of the effective electric field by criteria that ion distribu-
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tion renders addition electric fields. The ions are assumed to partly behave as 
the screened charges compensate the applied field. As a result, the equation 
of the effective electric field is described by 

Faff = Fmax [l + M'^t) - A s\n[ujt)], (4.8) 

where y4 is a phenomenological ratio of the screened field to the applied field 

which causes different shapes and time spending in low eflPective field (see 

figure 4.12). Subsequently, we model using A = 0.9 and 0.75 in figure 4.13 

and 4.14, which the amount of screened responding to external electric field 

ions renders on shape and appearance of peaks. The appearance of peaks 

indicates time duration in the maximum and minimum electric fields which 

can be seen in the figure 4.12. For instance, there are two peaks obviously 

appear on both lines of dj with |m., | = j. The lower peaks are consistent with 

all previous models owing to expending time at the maximum field. Simi­

larly, the mininmm field in the figure 4.12 causes the upper peak indicated 

by correspondence to the positions of peaks at the minimum field before 

averaging inasmuch as equal duration in the maximum field. However, the 

ffuctuation of the electric field still represents as shaping the peaks asymmet­

ric. Comparing to the experiments using Fp = 0.397,0.473, and 0.557, we 

can see the two splitting peaks similar to the last model in state 44^3/2 with 

\mj\ — 3/2 and it seem likely that the lower peaks rise, whereas the upper 

peaks reduce corresponding to the increasing electric field. The imbalance 

rising between the upper and lower peaks explain more phenomena cause 

this imbalance and the ratio A as a, function of Fp which is unexplainable in 

this point. Comparing the figure 4.7, 4.13, and 4.14, we also found that the 

appearance of double peak in the experiment which the separation between 

peaks is short can be related to the model with low A which has shorter 

distance between peaks than the model with high A. 

It seems like we come closer to the influence of actual ions dynamics. How­

ever, the last model suggests the lower F^ff since a larger A leads to Feff 

converges toward Fp/2 or Fexi/2. Together with no partly screened charge 

compensated the applied field {A = 0) model, the range of the effective field 

is expected in between Fp/2 and Fp which is less than comparison results 

in figure 4.7 {Feff = 1.35Fp). This means there are other addition fields 

cause addition F^ax as a result of time dependence charge distribution. One 
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possible factor left is diflFerent motivities and cross sections between positive 
charges and negative which positive ions individually consists in nucleus and 
core electrons which are indoubtably heavier than negative charges which 
are sole ionized electrons. We can expect this heavier mass decelerates the 
positive charge movement and leads to more complex charge dynamics and 
unpredictable effective electric field. 
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Figure 4.2: Experimental set-up of EIT by Mohapatra et al[35].The prop­

agation of the probe laser and the coupling beam laser are set in opposite 

direction transmit through Rubidium vapor cell. The effect of coupUng beam 

detuning between 479-484 nm on transmission of the probe beam is detected 

by photodiode and two parallel electrodes are introduced to the experimen­

tal set up in order to investigate influence of an electric field on Rubidium 

atoms. 
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Figure 4.3: Diagram of energy level used by Mohapatra et al. [35]. 

Probe beam wavelength is set constantly at 780nm, which corresponds 

to 5s^Si/2iF = 3) —> 5p^P3/2 transition(red), by the effect of effective 

wavelength of atoms with random velocity. Coupling beam wavelength is 

varies between 479-484 nm corresponding to 5p^P3/2 —> ncP 03/2,5/2 where 

n = 26 - 124(blue). 

-200 -100 0 
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Figure 4.4: Transmission of probe laser as a function of detuning of cou­

pling laser in the region of wavelength corresponding 5p^P3/2 —> 44^^^3/2,5/2 

without applied external electric field. 
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Figure 4.5: Stark shifts of 44d3/2 and 44d5/2 observed by EIT experi­

ments (blue) and calculated results predicting effective electric field as func­

tions of external electric field (Fext) in black fines. 
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Figure 4.6: (a)Dynamics of Rubidium ions between electrodes corresponding 

to (b) sinusoidal external electric field with high frequency and (c) total 

electric field eventually affected by charge distribution of Rubidium ions. 
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Figure 4.7: Stark shifts of 44d3/2 and 44d5/2 observed by E I T experi­

ments (blue) and calculation results predicting effective electric field as func­

tions of external electric field by using Fe/f = 1.35 Fext (black). 
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Figure 4.8: Lorenzian shape of transmission as a function of detuning de­
scribed by equation (4.3). 
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Figure 4.9: Modelling of Stark shifts of nd states by EIT experiments results 
without the influence of the oscillating electric field (blue) corresponding to 
calculated Stark shifts (black). 
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Figure 4.10: Modelling of Stark shifts of 44d states by EIT experiments 

results with the influence of the oscillating electric field(blue) Fg// = Fext = 

(Fp/2) 8in(w«) corresponding to calculated Stark shifts(black). 
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Figure 4.11: Modelling of Stark shifts of 44d states by BIT experiments re­

sults with the influence of the oscillating electric field(blue) Fg/f = (Fp/4)(1+ 

sm{ujt)) corresponding to calculated Stark shifts (black). 
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Figure 4.12: Effective field in different values of the ratio of the screened field 

by external field responsive ions to the applied field. 
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Figure 4.13: Modelling of Stark shifts of nd states by BIT experiments 
results with the influence of the oscillating electric field (blue) Fejf = 
Fmax [1 + sin(wi) - A sin(u;i)] with A = 0.9 corresponding to calculated Stark 
shifts(black). 
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Figure 4.14: Modelling of Stark shifts of 44d states by EIT experiments 
results with the influence of the oscillating electric field (blue) Fe/j = 
Fmax [1 + sin(a;0 - A sm(u;t)] with A = 0.75 corresponding to calculated 
Stark shifts(black). 



Chapter 5 

Conclusion 

In summary, the conclusion is roughly divided into two parts,the spectra 

prediction in the electric field using diagonalization and comparison study 

with EIT experiments. 

Following the numerical tests and comparison with Stark shifts detection 

done in Stuttgart, both nou-relativistic and hyperfine splitting Stark shifts 

can be predicted efficiently using diagonalization together with radial integral 

calculated by Coulomb approximation. Along with diagonalization calcula­

tion. Stark shifts calculation of very high n can be generalized by scaling law 

of in very low electric fields. 

In the part of comparison wi th E IT experiments, i t is found that because 

of representation of ions in the vapour chamber the time average spectrum 

is sensitive to a dc effect of the applied field. I t is possible that this offset 

may depend on the amplitude of all applied field and may even depend 

on the previous history of applied fields making exact spectra difficult to 

reproduce by EIT . Further experimental work is require to produce an exact 

quantitative comparison wi th theoretical spectra. 
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