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Abstract 

Two chemical properties of pesticides are thought to control their environmental 

fate. These are the adsorption coefficient koc and soil half-life tf7i. This study aims 

to demonstrate the use of Bayesian methods in exploring whether or not it is possible 

to discriminate between pesticides that leach from those that do not leach on the 

basis of their chemical properties, when the monitored values of these properties are 

uncertain, in the sense that there are a range of values reported for both koc and 

tfj~. The study was limited to 43 pesticides extracted from the UK Environment 

Agency (EA) where complete information was available regarding these pesticides. 

In addition, analysis of data from a separate study, known as "Gustafson's data", 

with a single value reported for koc and tf7i was used as prior information for the 

EA data. 

Bayesian methods to analyse the EA data are proposed in this thesis. These 

methods use logistic regression with random covariates and prior information de

rives from (i) available United States Department of Agriculture (USDA) data base 

values of koc and tf7i for the covariates and (ii) Gustafson's data for the regression 



iv 

parameters. They are analysed by means of Markov Chain Monte Carlo (MCMC) 

simulation techniques via the freely available WinBUGS software and R package. 

These methods have succeeded in providing a complete or a good separation between 

leaching and non-leaching pesticides. 
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Chapter 1 

Introduction 

This chapter describes the aims of the thesis and its objectives, data sources, re-

search methodology, the relevant literature, and includes an outline of the thesis. 

The chapter is structured as follows. Section 1.1 describes the general aims of the 

thesis and outlines its objectives. Section 1.2 describes the data, its sources and ob-

stacles. Section 1.3 provides a general description of the methodology used and its 

implementation. Section 1.4 documents the related literature. Section 1.5 outlines 

the structure of the thesis. Section 1.6 describes briefly which sections of this thesis 

are original and which are from literature. 

1.1 The aims and objectives of the thesis 

This study aims to demonstrate the use of Bayesian methods and modern statistical 

techniques for analysing contamination of grounclwater as a consequence of using 

pesticides. More specifically, the aim is to explore whether or not it is possible to 

achieve pesticide discrimination on the basis of their available chemical properties. 

1 
.. ·. 
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This will benefit the national authorities when implementing the registration and 

regulation of uses of pesticides in order to maintain the quality of groundwater. 

Being able to predict that a manufactured pesticide will leach into the soil and 

contaminate the groundwater will help to end the use of this pesticide and protect 

the groundwater from contamination. In fact, such pesticides not only contaminate 

the groundwater but also threaten human health, contributing to the causes of 

several diseases, such as cancer and infertility; see [1]. 

1.2 Data description 

The data used in this study comes from three sources. The main data set was 

collected by the UK Environment Agency and will be referred to throughout this 

thesis as the EA data. The second is from a United States Department of Agriculture 

(USDA) database consisting of a number of different values for certain chemical 

properties for more than 300 pesticides. The third data set, which we will refer 

to as Gustafson's data, was extracted from the California Department of Food and 

Agriculture (CDFA) database and analysed by Gustafson in [25] 

1.2.1 The EA data 

This data was described in [43] on which much of the following review is based. 

It consists of the levels of 112 different pesticides found in the UK groundwater. 

It was collected by sampling at a large number of sites across the UK between 

1992 and 1995. Pesticides with levels in the groundwater exceeding a threshold of 

0.1p,g1- 1 are considered as contamination pesticides which affect the quality of the 
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groundwater and hence are classified as leachers. The EA data suffers from obstacles 

which restrict its usefulness in predicting the propensity of a pesticide to pollute. 

These obstacles as listed in [43] are: 

1. The total number of samples taken differs for each pesticide. The compounds 

Atrazine and Chlorpyrifos are examples of this. In 1992, Atrazine was mon

itored as being above the threshold in 49 of 543 samples, while Chlorpyrifos 

was found not to be above the threshold in any of 20 samples. 

2. There is no link or relationship of any kind between the levels of pesticides 

found in the groundwater and other environmental factors such as climate or 

rainfall patterns. 

3. Not all of the pesticides were monitored in each year. For example, Chlorpyri

fos was monitored in 1992 and 1993 but not in 1994. 

4. Detection equipment may have caused errors in measuring the levels of pesti

cides in the groundwater. 

5. Two reasons for a lack of evidence of a pesticide in a sample may be: (a) the 

pesticide has not been used in that area, or (b) it has been used but only 

recently, and leaching may become detectable at a later date. 

Table 1.1 shows 43 compounds from the EA database, where complete information 

is available (as will be explained later), which are classified as leaching or non

leaching pesticides. These 43 are from a total of 112 different compounds which 

were monitored in several thousand groundwater samples taken in the period 1992-

1995 [43]. The table also shows the total number of samples taken in 1993 and the 
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number of samples in which the pesticide monitored as being above the threshold. 

1.2.2 USDA chemical properties database 

This database, published by the United States Department of Agriculture (USDA), 

contains information regarding chemical properties of each pesticide and other envi

ronmental factors such as soil types and climate patterns which have an effect on the 

tendency of a pesticide to leach and contaminate groundwater. Amongst the chem

ical properties, there are two believed to have the most influence on the leaching 

potential of a pesticide; see [25], [43] and [44]. The first, the adsorption coefficient 

( koc), is a measure of pesticide mobility through the soil. A pesticide with a high 

koc will be found in low levels in groundwater since it will be adsorbed into the soil 

as organic matter before it contaminates the groundwater. The second property 

is pesticide persistence in soil, measured by the estimated half-life of pesticide in 

the soil (tf1i), which is the time taken for the level of pesticide retained in the soil 

to decline by 50%. A high value of tfj~ tends to increase the leaching potential of 

pesticide into the groundwater. As stated in [43], measuring the koc and tf1i at the 

sampling site where the levels of pesticides are determined is prohibitively expen

sive. As an alternative, published measurements (in particular, koc and t~1i) from 

the United States and Europe were aggregated into a database of chemical proper

ties and are available from the USDA pesticide properties database. This database 

can be accessed via the Internet site http: /www. ars. usda. gov. 

The USDA database lists more than 300 pesticides together with several physical 

and chemical properties. As stated above, the adsorption coefficient koc and the soil 



1.2. Da"ta descripHon .5. 

C\J .,.... 

• leacher 

• non-leache 
0 .,.... 

CX) 

Q) • ~ 

I 
~ 

<0 • .t: • • ·s ... t~.\~1:': (/) V 
Cl 

.3 
C\J 

• 0 

• 
' C\J ' 

I 

0' 2 4 6 8 ~0 14 

Log koc 

Figure 1.1: Means of the koc and t~~~ of the EA data; see Worraq et al. (1998) . 

half-life t~~~ are believed to 'be priiiiarily responsible for. the leachi11g potential· of 

p_esticides into groundwater. Therefore, the _focus is on the published values of koc 

and t~1i from thi_s database~ The following should be noted whe11 scanning the 

USDA database. 

1. Several chemical and physical _properties are reported for each pest_icide. Amongst 

these are the molecular formula; molecuiar weight; physical state (liquid, gas, 

solid); boiling, melting and decomposition points; vapour press1..1re; water sbl-

ubility SH2Q (parts per million); org~nic solubility (parts per million) ; Hen-

rys law (P~ m3/mol); Octanol/water partitioning; adsorption coefficient koc 
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NO Pesticide Leacher samplcs.93 dctcctcd.93 koc.mean koc.sd shl.mean shl.sd 

I 2.'1.DCPA NO I 0 8.6!03 0.2739 3.6113 0. 7596 

2 2.'1.5 T NO 44 0 4.7194 0.6318 3.2441 0.6191 

3 Aldicarh NO 27 0 3.1848 0.6275 3.5701 0.7163 

4 Atrazinc YES 603 66 4.7408 0.499 4.1429 0.6835 

5 Azinphos.mcthyl NO 233 0 6.6692 0.6117 2.2668 0.4358 

6 Bcndiocarb NO 25 0 5.822 0.7406 2.0716 1.376 

7 Bcntazonc YES 34 5 3.5409 0.0205 2.9747 1.0485 

8 Carbaryl NO 27 0 5.414 0.7658 2.3844 0.6682 

9 Carbofuran NO 27 0 3.5056 0.7777 3.8208 0.5055 

10 Chlorothalonil NO 26 0 8.1611 0.8528 3.4708 0.8933 

11 Chlorpyrifos NO 39 0 9.1117 0.4655 3.3034 1.1482 

12 Chlorpyrifos.methyl NO 25 0 8.2866 0.3176 2.0557 1.2487 

13 Clopyralid YES 30 I 2.6876 1.267 3.1093 0.8988 

14 Cyfluthrin NO 3 0 9.6423 2.017 2.4537 1.1013 

15 Diazinon NO 336 0 7.2956 0.2645 2.9859 1.0461 

16 Dicamba NO 74 0 1.5486 1.1854 2.6458 0.5697 

17 Dichlobenil NO 96 0 5.1078 0.2708 3.5034 1.3279 

18 Oichlorvos NO Ill 0 4.0812 0.8641 -0.7818 1.438 

19 Endosulfan.a NO 242 0 8.7621 1.6142 3.4527 1.3828 

20 End .-in NO 292 0 9.4626 0.8719 6.889 2.0893 

21 EPTC NO 25 0 5.3874 0.2169 2. 7874 0.8416 

22 Ethofumesatc YES 31 I 5.3421 0.7535 4.0599 0.7428 

23 Fenthion NO 225 0 7.2146 0.2829 3.2413 0.7711 

24 F'onofos NO 25 0 6.7618 1.6884 3.4363 0.5807 

25 Heptachlor NO 233 0 10.8235 1.7524 5. 7443 1.0783 

26 Linuron YES 172 5 6.0577 0.6131 4.1642 0.7432 

27 Malathion NO 254 0 6.6883 1.2909 0.6931 2.4219 

28 Metalaxyl NO 25 0 4.5633 1.0256 3.9726 0.7931 

29 Mcthiocarb NO 27 0 6.2691 0.5364 2.1654 1.1018 

30 Mcthomyl NO 27 0 4.0421 1.1038 2.9894 0.9661 

31 Monolinuron NO 27 0 4.8115 0.8331 3.9985 0.1661 

32 Monuron NO 27 0 4.4153 0.6521 5.0278 0.3967 

33 Napropamidc NO 25 0 6.0355 0.5091 3.7024 0.7609 

34 Oxamyl NO 27 0 2.2303 0.6159 2.3412 0.7089 

35 Pcndimcthalin NO 26 0 9.343 0.6251 4.7603 1.3649 

36 Pentachlorophenol YES 78 3 9.5542 2.3354 3.2151 0.9375 

37 Phcnmcdipham NO 12 0 8.6011 0.981 3.4369 0.3966 

38 P ropyzam ide NO 25 0 6.3874 0.7349 3.5496 0.9537 

39 Simazine YES 603 12 4.8989 0.2206 4.3083 0.6646 

40 Tcrbutryn YES 134 3 7.5237 0.9237 3.9472 1.4639 

41 Triallatc NO 25 0 7.6399 0.3175 3.6996 0.96 

42 Triclopyr NO 29 0 3.4162 1.5004 3.5917 0.5807 

43 Trifluralin NO 241 0 8.7403 0.6133 4.1207 0.6786 

Table 1.1: The 43 pesticides extracted from the EA database are classified as leachers 

or non-leacher together with the means, standard deviations of log koc and log t~~~ 

from the USDA database. "samples.93" indicates the total number of samples taken 

m 1993 and "detected.93" indicates the number of samples m which the pesticide 

monitored as being_ above the threshold 
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(cm3 /gm); hydrolysis half-life t~j; (days) and soil half-life tfj~ (days). 

2. The published values of some physical properties, for example, koc, t~~~ and 

S H 2o are uncertain in the sense that for each pesticide there is a range of 

values published for each of them. These published values vary with soil type 

and climate, although this information is not always provided. However, the 

sources of the published values along with references are given; for example, 

whether the values came from a manufacturer, handbook, experiment or from 

specific calculations. All of the above explains why there is a range values and 

that the actual values are unknown. For instance, the pesticide Carbaryl has 

20 reported values for koc, 9 values for t~j~, 5 values for vapour pressure, 4 

values for SH2o, 6 values for water partitioning and 1 value for Henrys law. 

Also, the soil type is provided for some of these values. For example, some of 

the koc values are tested for sand, loamy sand, silt loam and sandy clay loam. 

Table 1.1 shows the means and standard deviations of log koc and log t~~~ for 

43 pesticides published by the USDA database; see 3 below 

3. Not all of the 112 different pesticides in the EA database have published values 

for both of koc and t~1J; for example, Chloridazon, has values for koc but not 

for t~1i. These pesticides were omitted from both the analysis in [43] and 

this study. In fact, only 43 pesticides from the EA database have published 

values for both koc and tf1i. The analysis in this study is restricted to these 

pesticides; see Table 1.1. 

4. The latest USDA database update for two of the pesticides was in May 2001, 
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the rest having been updated in May 1999. The updated values for both the 

koc and t~~~ are the same as those used in [43]. 

Figure 1.1 which shows the means of the available values of k and tsoil in oc 1/2) 

log-scale, for the 43 pesticides classified by the EA as leaching or non-leaching, 

demonstrates that discrimination based on these average values is poor. 

1.2.3 Gustafson's data 

This data was published by Gustafson in [25] and discussed in [44] from which most 

of the following is taken. The data was extracted from the the California Department 

of Food and Agriculture (CDFA) database, comprising of 44 pesticides, 22 of them 

which we will refer to as "Gustafson's data" and 7 as "transitional pesticides". Each 

pesticide from Gustafson's data was classified by CDFA as a leacher or non-leacher 

and single values for k0 c, tfji, SH2o and t~jg are given. 

The transitional pesticides have a single value for both koc and tf1i, but unlike 

Gustafson's data the leaching potential for these pesticides was either inconclusive 

or conflicting. 

The remaining 15 pesticides have some values reported for the above properties, 

but not for all, and so will be ignored in this study. 

The CDFA classifies the pesticides as leachers and non-leachers by establishing 

specific numerical values for k0 c, tf1i, S H 2o, t~/g and other properties. CDFA has 

classified pesticides with the following values as contaminants; see [42]: 

1. koc less than 512 cm3 /gm or SH2o greater than 7 parts per million, and 

2. t~jg greater than 13 days or tfji greater than 11 days. 
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NO Pesticide Leacher adsorption. rate(koc) soil half-life(t~/~1 ) 

Aldicarb Yes 2.8332 1.9459 

Atrazinc Yes 4.6728 4.3041 

3 Diuron Yes 5.9636 5.2364 

Mctolachlor Yes 4.5951 3.7842 

5 Oxamyl Yes 3.2581 2.0794 

6 Picloram Yes 3.2581 5.3279 

7 Prometryn Yes 6.42 4.5433 

8 Simazine Yes 4.9273 4.0254 

9 Chlordane No 9.8663 3.6109 

10 Chlorothalonil No 7.2298 4.2195 

11 Chlorpyrifos No 8.7136 3.989 

12 2,4-D No 3.9703 1.9459 

13 DDT No 12.2719 10.5506 

14 Dicamba No 6.2364 3.2189 

15 Endosulfan No 7.6207 4.7875 

16 Endrin No 9.3226 7.7142 

17 Heptachlor No 9.4978 4.6913 

18 Lindane No 7.4541 6.3439 

19 Phorate No 7.4146 3.6376 

20 Propachlor No 6.6771 1.3863 

21 Toxaphene No 11.4702 2.1972 

22 Trifturalin No 8.9809 4.4188 

23 Alachlor Transitional 5.081404 2.639057 

24 Carbaryl Transitional 6.047372 2.944439 

25 Carbofuran Transitional 4.007333 3.610918 

26 Dieldrin Transitional 9.400961 6.839476 

27 Dinoseb Transitional 8.682708 3.401197 

28 Ethoprop Transitional 3.258097 4.143135 

29 Fonofos Transitional 8.537976 3.218876 

Table 1.2: 29 pesticides extracted from the CDFA are classified as leachers, non-

leachers or transitional, together with their adsorption coefficients koc and soil half

life t~~~ in days, in log-scale. 



1.2. D_ata description 10 

C\1 .,.... 

• leacher • 0 :e non-leache .,.... 

CO • ~ • I c.o· ·-·(ij • • • 

.1:: 

'5 ,. ••• ,. en -.:t 
Ol • • • .3 

C\1 ... • • 
0 

C\1 
'I 

0 2 4 6 8 10 12 14 

Log koc 

F~gure 1.2: The 22 pesticides classified by the CDFA and known as Gustafson's 

data. 
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Gustafson's data and the transitional pesticides (a total of 29) are displayed in 

Table 1.2. Figure 1.2 plots the koc and t~~~ pairs for Gustafson's data, 22 pesticides, 

in a log-scale. It is apparent from this plot that these pesticides are separated into 

leacher and non-leacher groups according to their koc and t~~~ values. 

1.2.4 Remarks and assumptions on the data 

At this stage of the thesis, it is useful to summarise some remarks and considerations 

on the various types of the data. 

1. The UK Environment Agency (EA) classifies the pesticides as leachers and 

non-leachers according to whether their levels in the groundwater exceed a 

threshold of 0.1J.Lgl- 1 . 

2. The California Department of Food and Agriculture (CDFA) classifies pesti

cides as leachers and non-leachers by establishing specific numerical values for 

specific physical properties. 

3. From (1) and (2), each of EA and CDFA use a different classification basis. 

This means that we may need to account for uncertainty in the classification 

of leachers and non-leachers. However, in this thesis, we will use the CDFA as 

a source of prior information for analysing the EA data, assuming, as in [43], 

that the classification is secure and we will address the issue of accounting for 

any possible uncertainty in the classification in a future study; see Section 6.3. 

4. As discussed in Section 1.2.1, a lack of evidence of a pesticide in a sample may 

be because it has not been used in that area or it has been used but not yet 
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reached the groundwater in a detectable amount. This kind of uncertainty 

needs to be accounted for. For example, if a given pesticide has not been used 

in a locality, then the probability of its leachability is 0 given any covariates 

values, i.e. P[leacheslany covariate] = 0. However, in this thesis, as in [43], 

we will not account for such uncertainty and we will address this in a future 

study. 

1.3 The general methodology 

This section describes briefly the methodology that will be used throughout the 

thesis. The core task of this study is to develop Bayesian methods to discriminate 

pesticides (classify them as leachers or non-leachers) on the basis of their chemical 

properties; in particular, the adsorption coefficient koc and the soil half-life tf1i· 

Therefore, the proposed models will be formulated using only the two covariates koc 

and t~1i; see [25] and Chapter 3. Throughout the analysis, the values of these covari

ates will be transformed to log-scale and will be denoted by z1 and z2 respectively, 

i.e. Z1 = log koc and Z2 = log t~~~. 

Some of this thesis is an extension of work found in the literature, particularly 

in [43] and [44]. In the main, this study concentrates on the analysis of the EA 

database where the available values for the covariates koc and tf1i are uncertain. 

The first attempt to analyse the EA data was proposed in [43] using Bayes linear 

methods applied to a model linear in z1 and z2 , and where a part of the prior 

information was derived from an analysis of Gustafson's data. This work is extended 

and investigated here using a z2 term and an interaction term of z1 and z2 with the 
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same source of prior information as in [43]. 

Part of the Bayesian methodology proposed in [44] was concerned with predict

ing the leaching probability of a given pesticide. It combined data from lysimeter 

experiments with a prior knowledge of the leaching probability, which was derived 

from the analysis of Gustafson's data where a logistic regression model was used. 

Again, this approach is extended and investigated using a model with a z2 term and 

an interaction term of z1 and z2 with the same source of data and a similar method 

to derive the prior information as in [44]. 

A particular difficulty arises when trying to fit a logistic regression model with the 

interaction term. In this case, fitting a logistic regression model to Gustafson's data 

with non-overlapping groups of leachers and non-leachers, as appears in Figure 1.2, 

means that the maximum likelihood estimator (MLE) does not exist for a model 

with a z2 term and an interaction term of z1 and z2 , allowing for a curved discrim

inator that separates the leachers and non-leachers pesticides. This difficulty was 

tackled by firstly measuring the overlap in the logistic regression using the depth

based algorithm proposed in [7], which confirms that there is a complete separation 

in the covariate space of Gustafson's data as suggested by Figure 1.2. Secondly, 

alternative estimators such as the maximum estimated likelihood (MEL) and the 

weighted maximum likelihood estimator (WE MEL), which is robust against out

hers, completely eliminate the overlap problem. These alternative estimators were 

proposed in [8]. 

Besides investigating the effect of introducing an interaction term on methods 

proposed in the literature, several Bayesian methods are developed to analyse the 
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EA data. These methods use logistic regression models and different types of prior 

information. Most of these methods were implemented using Markov Chain Monte 

Carlo (MCMC) simulation techniques using the WinBUGS software [40] and the R 

package [35]. These methods are compared using certain types of comparison tools. 

Related concepts such as the convergence of MCMC simulated values to a stationary 

distribution are discussed. 

1.4 Literature review 

This section documents studies that have contributed to the analysis of environmen

tal fate, in particular the problem of groundwater contamination as a consequence 

of using pesticides. The review focuses on Bayesian methods which help in pre

dicting the potential of pesticides to leach into soil and pollute the groundwater. 

The problem of groundwater pollution caused by pesticides has received much at

tention by both pesticide scientists and statisticians in recent years. These efforts 

have concentrated on determining environmental factors and chemical and physi

cal properties which lie behind the tendency of pesticides to leach and contaminate 

groundwater. Several databases containing much information about pesticides have 

been published, such as those of the CDFA and the EA. Besides this, there have 

been attempts to develop methods to answer the question of whether it is possible to 

classify pesticides as leachers or non-leachers based on specified chemical properties. 

Gustafson's attempt in [25] to classify pesticides in accordance with their chem

ical properties followed other attempts such as those developed by Cohen et al. [9] 

and Jury et al. [28]. However, Gustafson's attempt can be seen as an articulated 
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Figure 1.3: The 22 pesticides classified by CDFA together with three curves represent 

GUS = 2.8 (blue), GUS = 1.8 (yellow) and GUS = 2.3 (black) . 

phase in this area. Starting from Figure 1.2, Gustafson noticed (a) that the leachers 

occupy the left and upper portions; i.e. NW corner, corresponding to pesticides with 

low koc and high t11J and (b) the curved nature of the leachers corner suggests that 

a hyperbolic function should discriminate between the leaching and non-leaching 

pesticides. He devised a groundwater ubiquity score (GUS) to discriminate between 

leacher~ and non-leachers based on koc and t11J· The score was derived using a 

functional combination of these two properties: 

(1.1) 

which can be written as 

(1.2) 

where z1 = log koc, z2 = log t~~~ , c = log10 e, and P was set to 4 for the data he 

considered. As with regression models, the estimated value of P will depend on the 
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data. 

Gustafson developed a method for estimating the parameter P which can be 

described briefly as follows. For a given value of P, GUS values for the leachers 

and non-leachers can be calculated and a value Q which separates the two groups is 

defined as 

1 
Q = 2 (Min GUSL,i + Max GUSN,j) (1.3) 

where GUSL,i and GUSN,j are the GUS values for the ith leacher and jth non-

leacher, respectively. A complete separation is achieved if all leachers have GUS 

values above Q and non-leachers have GUS values below Q. For example, given 

P = 4 in 1.1, then with Q = 2.3 we can achieve such separation. The penalty 

function f was defined as 

h,i = exp (5(Q- GUSL,i)/£h,N) (1.4) 

for leachers, and 

JN,j = exp (5(GUSN,j- Q)/flL,N) (1.5) 

for non-leachers, where aL,N is the estimate of the pooled within-class standard 

deviation. A combined penalty F, associated with a given estimate of P was defined 

as 

1 1 
F(P) = - """fL i +- """fN · n~'n~'1 

L i N j 
(1.6) 

A simple iterative procedure was used to select the value of P that minimizes F(P). 

Values in the range of 2 to 6 were examined and it was found that P = 3.84 minimizes 

F(P), and perfect separation between the leachers and non-leachers was achieved 



1.4. Literature review 17 

for P anywhere from 3.6 to 4.1. "Use of P = 4 can be justified as the simplest 

numerically, although a slightly lower value may be somewhat more optimal" [25]. 

Using this score, Gustafson defined three zones in which transition occurs from 

leachers to non-leachers. These zones were defined according to two values of the 

GUS score, 2.8 and 1.8. Figure 1.3 shows the values of the koc and t~~~ for the 

22 pesticides collected by the CDFA. It also shows three curves: the blue curve 

represents the function GU S = 2.8, the yellow curve represents the function GU S = 

1.8 and the black curve represents the function GU S = 2.3, the average of 1.8 and 

2.8. Gustafson argued that a pesticide with GU S > 2.8 can be considered as a 

leacher, GU S < 1.8 a non-leacher and 1.8 < GU S < 2.8 as a transitional. He 

concluded in [25] that for the 22 pesticides classified by the CDFA, soil mobility and 

soil persistence are enough to predict the potential of a pesticide to leach. Other 

properties such as water solubility, the water partition coefficient and volatility do 

not appear to "provide any additional discriminating power in separating leachers 

from non-leachers" [25]. The form of Gustafson's curve in 1.1 and 1.2, which suggests 

a model with a z2 term and an interaction term of z1z2 , will be investigated in 

this thesis. However, Gustafson's method is confined to cases where the values of 

covariates are known. It does not address a situation where the values of these 

covariates are uncertain. 

Worrall et al. in [44] proposed a Bayesian approach to discriminate pesticides as 

leachers or non-leachers and to predict the potential of pesticides to leach based on 

koc and t~ii. They provided a Bayesian approach to estimate the probability 7f that 

a pesticide with given chemical properties will leach and contaminate the ground-
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Figure 1.4: Classification for Gustafson's data using the logistic linear discriminant 

line proposed by Worrall et al. (1998). 

water. As in any Bayesian method, the proposed model combines prior knowledge 

about 1r with available data (in the form of likelihood) to generate posterior knowl-

edge about 1r . The data are from lysimeter experiments, see Section 3.3.1 , which 

were used to discover whether or not a pesticide is observed to leach relative to 

a specified threshold. This data was represented in the form of likelihood using a 

binomial distribution with specified parameters. Worrall et al. [44) proposed the use 

of logistic regression to· predict the binary outcome. Fitting this logistic regression 

to Gustafson 's data, as in Figure 1.4, provided a prior distribution to predict the 

potential of a new pesticide to leach into ground water given its values of kac and t~1J. 

This prior distribut ion was used in the Bayesian process proposed in this paper, in 

particular to generate the parameters of the assumed beta prior distribution for 1r. 

Combining the data from lysimeter experiments with the prior information leads to 

a beta posterior distributipn of the probability that a pesticide under study will leach 



1.4. Literature review 19 

and contaminate the groundwater. They found that this method is not efficient if 

the values of the covariates are uncertain and suggested the use of an interaction 

term in logistic regression to improve the fit of logistic regression to the Gustafson's 

data. This suggestion, which will be expressed and formulated in Chapter 4, forms 

a major part of this thesis. 

Wooff et al. in [43] developed a Bayes linear approach to discriminate pesticides 

as leachers and non-leachers based on koc and tf1i where the monitored values for 

these pesticides are uncertain. The analysis was restricted to those 43 pesticides 

from the EA database where "complete data" is available. The complete data in 

this context means that it is known whether or not a pesticide has leached and 

values of koc and tf1i can be extracted from the USDA database. They suggested 

the use of the available means and variances from the database to form the source of 

prior information for the uncertain values of transformed covariates, z1 = log koc and 

z2 = log tf1i. They also suggested prior information for the parameter coefficients, 

{3, based on results of a linear model analysis of Gustafson's data, Figure 1.5. This 

approach can be seen as a first attempt to analyse the EA data where the covariate 

values are uncertain. However, an error was noted while reviewing this study. The 

plot shown in [43], Figure 19.3(b), which is supposed to depict the Bayes linear 

prediction taking into account uncertainty in the covariates, is incorrect. After 

investigation, it was discovered that the error was caused by using inappropriate 

variances. As the analysis shows, the values for the prior variances of (30 , (31 and 

(32 are s6 = 0.048, s~ = 0.0010 and s~ = 0.0017, respectively. The incorrect plot 

shown here in Figure 1. 7 was plotted using s6 and s~ instead of s~ and s~, as 
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Figure 1.5: Linear discrim_ination based on Gustafson's data as analysed in [43] using 

least squares method. 
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Figure 1.7: Predicted vs observed as plotted in [43], using Bayes linear estimate, 

where an error was encountered, 

required to update the .model via Bayes linear estimation. The standard deviat_ions 

are approximately similar. They are range from 0.09 to 0.3.0. However,, the corrected 

Bayes linear e§timat~ still- gives better discrimination than the means, as CaJ:l 'be seen 

in the correct plot depicted in Figure 1.6. 

In addition to the Bayes ·linear analysis,, WorraU et al., in [45], proposed a prior 

contention that leaching pesticides (,those with high estimated leaching probabilities) 

are pestici<;les with, a low koc and high .t~/~, and· non-leaching pesticides (those witli 

low estimated leaching probabilities) are those with a high 'koc and low t~/i , as 

sugg~sted by· Gustafson 's data in Figure 1.2. According to this contention, leaching 

pesticides should appear in the NW corner and the !)On-leaching pesticides iil the 

SE corner. They fou_nd t_hat Gustafson's da:ta is consistent with this contentio~, 

but not the means of EA data. They explained that the inconsistency is due to the 

limitations reg¥ding the EA data; noted in [.43] and listed on page 3 of this thesis~ As 
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an alternative, they suggest choosing a combination from the USDA database which 

would give the best possible separation. More specifically, the covariate pair in the 

NW corner is chosen for a leaching pesticide and the covariate pair in the SE corner 

is chosen for a non-leaching pesticide. This choice leads to complete separation of 

the leaching and non-leaching pesticides. They fit a logistic regression to the choice, 

but do not mention which method was used to derive the estimates. However, the 

use of maximum likelihood estimation is inappropriate because there is complete 

separation in the space of the covariates, rendering the MLE non-existent; and an 

alternative estimator should be used. Figure 1.8 shows the chosen combinations for 

the EA data together with the discriminant line derived from fitting the logistic 

regression using weighted maximum estimated likelihood (WEMEL), which will be 

detailed in Chapter 2. 

The conclusion, in [45], was strengthened further by the multivariate runs test, 

described in Chapter 2, based on the total number of edges R that exist between the 

points in the leaching and non-leaching groups. R can be counted using a minimal 

spanning tree over all the points, as is shown in Figure 1.9. It is worth reporting 

that there is a missing edge (between cases 6 and 17) in the original figure in [45]. 

However, the analysis led to R = 1, indicating that the two groups are completely 

separated. The null hypothesis, whether the two groups are drawn from the same 

distribution, was tested using the Friedman and Rafsky (1979) statistic which is 

based on R. In particular, the expected value of R, 2mnj(m + n), and also the 

standard deviation of R, where m and n are the sample sizes of the two groups, 

were used to test the null hypothesis. In this example, R has expected value 13.02 
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Figure 1.8: Specific combination of the EA d~ta which support the prior contention 

that l~achers ~Qrrespond to (low koc, high tf1i) and non-leachers to (high koc, low. 

t~ji) together with logistic discrimination line esti_mat~d by WEMEL. 

and standard deviation of about 2.15, confirming that R = f is a small value, leading 

to a rejection of the null . hypothesis. 

They also tested ·whether it is possible to obtain a similar separatjon for· any 

eight of the 43 pesticides. The test w~ car_ried out by simulation as follows. 

1. Allocate at random 8 pesticides to .group A and• the remaining 35 to group B. 

2·. Apply the general methodology to separate the two· groups as far as possiple 

using the most supportive combination ·of the koc and_ tr/i. 

3. Calculate the minimal spanning tree for each random alloc_ation and count the 

number of eclges, R, between the two groups. 

The histogram of R for 5000 such random allocations is displayed in Figure '1.10. 

There are only 28 allocations with R = 1, indicating, as in [45), that the observed 



lA. Literature review 24 

Figure 1.9: Minimal spanning tree of a §pecific combination of the EA .data . 
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Figure 1.10: A simulated distribution of the number of ~dges between group A and 

B as. conduGted in [45] using 5000 siniulat ions. 
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separation is real. The importance of this method is that it is applied to the EA 

pesticides where the values of the covariates are uncertain. However, it was limited 

to the use of specific values of covariates, those choices from the database values 

which maximises separation for each of the 5000 simulations. 

Seheult [37], reviewed both classical and Bayesian discriminant rules. He used 

Gustafson's data to illustrate ideas. In particular, he used this data as an example 

in his discussion of Fisher's linear discriminant function and logistic discrimination. 

He used the logistic regression model proposed in [44] to fit Gustafson's data and 

also formulated for the first time a logistic model with an interaction term to fit 

Gustafson's data analogous to the GUS curve of Gustafson in [25]; see equation 1.2. 

This was done by formulating a model of the form: 

(1. 7) 

where z1 = log koc and z2 = log t~1i. He concluded that this model closely follows 

the model suggested by Gustafson in [25] and noted that it perfectly discriminates 

between leaching and non-leaching pesticides. However, there was no indication as 

to which method was used to derive the estimates of the regression parameters {30 , 

{31 and /32 . However, as we have noted previously, the use of maximum likelihood 

estimator is inappropriate since there is complete separation of leachers and non-

leachers in the space of the covariates z1 and z2 , rendering the MLE non-existent. 

The model 1. 7 will be fitted using the MEL and WEMEL schemes to be described 

in chapter 2. 
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1.5 Outline of the thesis 

The chapters are organized as follows. In Chapter 2, the statistical concepts and 

computational techniques used in the thesis will be described. This will include a 

description of logistic regression and Bayes linear methods, including development of 

a general result for the Bayes linear estimate of any linear predictor with uncertain 

covariates. F\1rthermore, some aspects of Bayesian statistics, such as simulation 

techniques to draw samples from a posterior distribution, are reviewed. 

In Chapter 3, the Bayesian method using logistic regression and lysimeter ex

periments proposed in [44] is both extended and modified. 

In Chapter 4, the Bayes linear approach proposed in [43] is extended to include an 

interaction model, Bayes linear diagnostic and resulting prior variance modification, 

producing improved prediction. 

In Chapter 5, alternative models are formulated to tackle the main research 

topic of the thesis, in particular, how to implement Bayesian analysis using MCMC 

simulation for a number of different prior specifications and number of models. 

Finally, Chapter 6 concludes the thesis, including a summary of the research 

findings and suggestions for future work. 

1. 6 Originality of the thesis 

This section describes briefly which sections of this thesis are original and which are 

from literature as follows. Most of Chapter 2 is a summary of relevant literature, 

except Sections 2.3.1 and 2.4.6 which are developed as parts of the thesis. 

Chapter 3 extends the Bayesian analysis of Gustafson's data proposed in [44] by 
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including an interaction term in the linear predictor. All the analyses in Section 3.2 

are original. This includes the stepwise procedures to select the covariates and the 

most import ant model terms to be included in the linear predictor, interpretation 

of regression parameters estimates and checking the adequacy of the fitted model. 

Sections 3.3 (excluded 3.3.1), 3.4, 3.5, 3.6 and 3. 7 are the same Bayesian components 

used in [44], but with appropriate modifications. The analysis in Section 3.8, which 

discusses an alternative Bayesian analysis, is original. 

Chapter 4 extends the Bayes linear analysis of EA data proposed in [43] by in

cluding an interaction term in the linear predictor. Section 4.2 includes a discussion 

about regression analysis, linear discriminant analysis (LDA) and quadratic discrim

inant analysis (QDA): all are summarised from literature, and how these tools can 

be used to analyse the Gustafson data. Section 4.3 discusses whether the analyses 

of Gustafson's data provide good prediction for the EA pesticides. Section 4.4 im

plements the Bayes linear estimate to analyse the EA data including specifying the 

prior information, updating the model, using Bayes linear diagnostics to analyse the 

observed adjustments and re-structuring some of prior beliefs. Section 4.5 includes 

further analysis of the linear discriminant proposed in [43]. It also includes Bayes 

linear diagnostics to analyse the observed adjustments and re-structuring some of 

prior beliefs. All of above analyses form original parts of the thesis. 

In Chapter 5, we develop alternative classical Bayesian models to analyse the 

EA data. All the sections in this chapter are original. 

Finally, Chapter 6 suggests some original future research topics. 
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1. 7 Con cl us ion 

This chapter gives an overview of the aims and objectives of this thesis and the 

sources of the data used. It has also highlighted the obstacles presented by the 

data and the general methodology adopted throughout the work. In addition, it 

has provided a brief summary of some important studies concerned with pesticide 

discrimination; in particular, the study by Gustafson in [25], the Bayesian model 

proposed by Worrall et al. in [44], the Bayes linear model proposed by Wooff et al. 

in [43] and the Bayesian approaches proposed by Worrall et al. in [45]. 

some errors were noted in the documentation of some of these studies. An 

error was noted in the Bayes linear predictor in [43]. FUrthermore, it is not clear 

how the estimates in [45] and [37] were achieved: the use of maximum likelihood 

estimator would be inappropriate since there is complete separation of leachers and 

non-leachers in the space of the covariates. Finally, an edge is missing from the plot 

of the minimal spanning tree for the most supportive combinations displayed in [45]. 



Chapter 2 

Statistical concepts and 

computational techniques 

2.1 Introduction 

This chapter reviews the statistical concepts and computational techniques used in 

the thesis. The review concentrates on (a) logistic regression models, (b) Bayes 

linear methods and (c) classical Bayesian methods. The review of logistic regression 

includes a discussion regarding one of the deficiencies of maximum likelihood and 

how to tackle it. The statistical packages used to implement these methods will be 

described. 

2. 2 Logistic regression models 

Logistic regression is widely used as a model for the analysis of binary data. Its 

importance stems from its straightforward implementation in studying and exploring 

29 
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many statistical concepts such as regression, classification and prediction. To set up 

this model, the following notation is needed. 

Let Y = (Y1, ... , Yn) denote an ( n x 1) vector of binary responses or outcome 

variables where 

{ 

1 if the ith outcome is a success 

Yi= 0 
if the ith outcome is a failure 

Associated with each Yj (i = 1, ... , n), there is a vector of model terms xi = 

(xi1, xi2 , ... , Xip) each of them a known function of q explanatory variables z1, z2 , ... , Zq, 

where the xi1 are fixed at 1 fori= 1, ... , n. Then, Yi is modelled to have a Bernoulli 

distribution with probability of success P(Yi = 1lxi) = 1ri· In general, xi is linked to 

the expectation ofYj which is 1ri by a link function g(1ri) = x[f3 such that g- 1(x[f3) 

takes values in the interval (0,1). One possible choice of link function is the logit 

function, the logarithm of the odds 1ri/(l- 1ri) such that 

. ( 1ri ) T log1t( 1ri} = log -- = xi {3 = 'fli 
1- 1ri 

(2.1) 

where {3 = (/31, ... , /3p)T is a vector of unknown parameters and "7i is called the linear 

predictor. This is equivalent to modelling the probability 1ri as 

(2.2) 

where the logistic function form on the right-hand side is the inverse of the logit 

function. Thu'S', the probability of success 1ri can be written as 

(2.3) 

The likelihood function of {3 = (/31, ... , (3p) is 

n 

z({3) =IT 7rfi(l- 1ri)1-y; (2.4) 
i=1 
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and the log-likelihood function is 

n 

L({3) = L [x{ ,Byi- log (1 + exp(x{ {3)) J (2.5) 
i=l 

To maximize L({3), the derivative with respect to {3 is needed: 

dL ~ ( T T ) d{3 = S({3) = L...t Yi - 7l'i)xi = X (y- 1r 

i=l 

(2.6) 

where xf is the i-th row of X and S({3) is called the score function. To estimate 

the parameters ,8, classically one uses the MLE, {3, the solution to the equation 

S(,B) = 0, provided S'(/3) is positive definite. 

While logistic regression has several advantages, the MLE may not exist and it 

is influenced by extreme values in the design space; i.e., it is not robust to outliers 

in x. The MLE does not exist for those data sets in which there is complete sepa-

ration of successes and failures in the space of covariates. Santner and Duffy in [36] 

showed that the MLE does not exist if the data set is completely or quasicompletely 

separated and is unique if the data set has an overlap. We consider separation here 

because it arises when applying logistic regression to discriminating between leaching 

and non-leaching pesticides. The meanings of complete separation, quasicomplete 

separation and overlap and how to measure it are given below. 

2.2.1 Measuring overlap 

As mentioned above, the MLE does not exist for binary data, modelled by logistic 

regression, when there is a complete separation of successes and failures. As defined 

in [36], a data set of the form Zn = {(xi1, Xi2, ... , Xip, Yi); i = 1, ... , n }, where xi1 = 1 

for all (i = 1, ... , n), is said to have complete separation if there exists a vector 
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xff3 > 0 

xf f3 < 0 

if Yi = 1 

if Yi = 0 

32 

for i = 1, ... , n. Zn, which does not have complete separation, is said to have a 

quasicomplete separation if there exists a vector {3 E JRP \ {0} such that: 

xf f3 2:: 0 

xf f3 :S 0 

if Yi = 1 

if Yi = 0 

for all i and if there exists some j E { 1, ... , n} such that x] f3 = 0. Zn is said to 

have an overlap if there is no complete separation and no quasicomplete separation. 

As shown in [2] and [36], the MLE of {3 exists if and only if the data set has an 

overlap. Consequently, in order to estimate {3, the amount of overlap needs to be 

measured. Christman et al. in [7], proposed an approach for measuring the amount 

of overlap using a depth-based algorithm. The proposed algorithm calculates the 

smallest number of observations whose removal destroys the overlap with the result 

that the MLE does not exist. 

If the MLE does not exist, then alternative estimators similar to those proposed 

in [16], [12] and [8] can be adopted. In the last reference, two estimators were pro

posed using a hidden logistic regression model. The first estimator is the maximum 

estimated likelihood estimator (MEL) and the second is the weighted maximum es

timated likelihood estimator (WEMEL). These two estimators have been used in 

the current study when complete separation arises. The MEL estimator helps to 

eliminate the overlap problem, but unlike the WEMEL estimator it is not robust 
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against outliers. The following details the basis and derivation of the MEL and 

WEMEL estimators. 

2.2.2 Maximum estimated likelihood (MEL) estimator 

This estimator is constructed using a hidden logistic regression model. As depicted 

in Figure 2.1, this model has two responses described as follows. The first is the true 

response T which is assumed to be an unobservable variable having two outcomes: 

success (s) and failure (f). The second response, denoted by Y, takes values 0 and 

1 and is assumed to be observable. The two responses are related as follows. If 

the true response is T = s, then the observed value will be Y = 1 with probability 

p [Y =liT= s] = ol and hence p [Y = OIT = s] = 1 - 01. Similarly, if the true 

response is T = f, then we observe Y = 1 with probability P [Y = liT = f] = 0"0 

and hence P [Y = OIT = f] = 1- 00 . The following restriction is assumed. 0 < 00 < 

~ < ol < 1. It is shown in [8] that the maximum likelihood estimator ofT, tM£, 

given (Y = y) is: 

TML(Y = 0) = f 

and hence the conditional probability that Y = 1 given TM L is: 

if y=O 
(2.7) 

if y=l 

Denoting 2.7 by Y, then Y can be written as: 
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y 
0 1 

1-8 0 81 

f s 

X x[1], x[2], 0 0 0 x[p-1] 

Figure 2.1: Hidden logistic regression model 
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and for the ith observation: 

(2.8) 

So the pseudo-observation, fli, is the result of a deterministic transformation of Yi· 

When 60 = 0 and 61 = 1, then Yi = Yi· To fit a logistic regression to Yi using 

likelihood, Yi was given a Bernoulli distribution. The estimated likelihood function 

n 

l(f3) = IT rrf; (1 - rri)l-ii; (2.9) 
i=l 

where 

exTf3 
1ri = ---=-

1 + exT/3 

is the success probability. This likelihood is called the estimated likelihood because 

the true likelihood n~=l rr:i (1 - 1ri)l-t;' which depends on the true observations 

t 1, ... , tn is unknown. It is known only when 60 = 0 and 61 = 1. The estimated 

log-likelihood is 

n 

L(f3) = L [Yi log rri + (1- Yi) log(1 - rri)] (2.10) 
i=l 

and hence, the estimated score function is 

n 

S(f3ifJl, ... 'Yn) = L (Yi- 7ri) Xi = xr(fJ- 7r). (2.11) 
i=l 

The value of {3 that maximizes equation 2.10 is called the maximum estimated likeli-

hood (MEL) estimate; that is, estimate is obtained by solving equation S({3jy1 , ... , fin) = 

0. 
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Choices of 00 and 0"1 

In the absence of subject matter choices for 00 and 61 , they are chosen in [8] to be 

and (2.12) 

where 

7f max (6, min (1- 6, 7r)) and 
1 n 

7r =- LYi 
n 

(2.13) 
i=1 

and 6 is a small positive number with default choice 6 = 0.01. 

2.2.3 Weighted maximum estimated likelihood (WEMEL) 

estimator 

The MEL estimator helps to eliminate the overlap problem, but it is not robust 

against outliers. In [8] a robustification for the MEL estimator was proposed by 

down-weighting leverage points. This technique led to the weighted maximum esti-

mated likelihood (WEMEL) estimator, which is defined as the solution /3 to 

n 

L (fli - ni) WiXi = 0 (2.14) 
i=1 

where the weight wi depends on how far away xi is from the bulk of the data. The 

following weights were proposed: 

(2.15) 

where xi = (xi2 , ... , Xip)T E JRP- 1, RD(xi) is its robust distance and M is the 75th 

percentile of all RD2 (xj), j = 1, ... , n. In other words, this is equivalent to giving 

a weight less than 1 to all of the 25% most extreme design points. The WEMEL 
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estimator can be computed in a straightforward manner using generalized linear 

model (GLM) algorithms (such as those in Rand S-plus) with prior weights wi· 

The S-plus codes, for MEL and WEMEL can be downloaded from: 

http://win-www.uia.ac.be/u/statis/Robustn.htm 

http://www.statistik.uni-dortmund.de/sfb475/berichte/rouschr2.zip. 

2.3 Bayes linear methods 

Bayes linear methods are used as a simple approach to combining the prior knowl

edge of uncertainty with observational data using expectations. In this section, we 

follow aspects of the development detailed in [24] and summarised in [23]. Prior 

knowledge is collected and organised in the form of means, variances and covari

ances and is then updated via linear fitting. The Bayes linear approach is suitable 

for analysing the EA data, as it may be prepared in the form of means and variance 

structures, but full distributions, as required by classical Bayes methods, may be 

more difficult to specify. 

Let y denote a vector of observed data and x denote an unobserved vector to be 

updated via y. Then the adjusted expectation for x given y, Ey(x), is given by 

Ey(x) = E(x) + Cov(x, y)Var(yt 1[y- E(y)] (2.16) 

where E(x), Var(x), Var(y), E(y) and Cov(x, y) are specified a priori. 

The adjusted version of x given y, Ay(x), is defined to be the residual vector 

(2.17) 
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Therefore, the vector x can be partitioned as the sum of two uncorrelated vectors 

(2.18) 

Hence, the variance matrix of x is partitioned into two variance components 

Var(x) = Var(Ey(x)) + Var(Ay(x)) (2.19) 

In 2.19, Var(Ey(x)) is called the resolved variance matrix for x by y, written 

RVary(x) = Var(Ey(x)), (2.20) 

and Var(Ay(x)) is called the adjusted variance matrix for x by y, written 

Vary(x) = Var(Ay(x)) (2.21) 

Vary ( x) is calculated as 

Vary(x) = Var(x)- Cov(x, y)Var(y)- 1Cov(y, x) (2.22) 

Thus, 

RVary(x) = Cov(x, y)Var(yt 1Cov(y, x) (2.23) 

The resolution transform matrix is defined as 

T:r::y (2.24) 

- Var(x)-1Cov(x, y)Var(y)- 1Cov(y, x) (2.25) 

The resolved uncertainty for x given adjustment by y is defined to be 

Tx 

RUy(x) = L/\ = trace{T:r::y} (2.26) 
i=l 
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where )11 , .-\ 2 , ... , Arx are the eigenvalues of T :c:y and r x is the rank of V ar ( x). 

The system resolution for x is defined as 

(2.27) 

Ry ( x) is used as a scale-free measure of the overall proportion of uncertainty ex-

plained by the model; see [43]. 

The size of the adjustment of x by y = y is defined as 

Sizey(x) = [Ey(x)- E(x)fVar(x)-1 [Ey(x)- E(x)] (2.28) 

Sizey ( x) represents the maximal change in adjusted expectation relative to prior 

variation. 

The size ratio for the adjustment of x by y is defined as 

Sizey(x) 
E(Sizey(x)) 

[Ey(x)- E(x)]T Var(x)- 1 [Ey(x)- E(x)] 

2::~:1 ).i 

(2.29) 

(2.30) 

where E(Sizey(x)) = 2::~,:: 1 ).i = trace {T:c:y} = RUy(x), and rr is the rank of 

the resolution transform matrix. Sr y ( x) has an expectation of unity. A size ratio 

far away from unity may warn of possible conflicts between prior specification and 

adjusted beliefs. A simple rule to suggest warning levels for the size ratio is the 

following interval 

(2.31) 

In the following section, a general formula for Bayes linear estimation applied to 

any linear model with uncertain covariates will be derived. A special version of the 

general result was derived in [43] and used as a linear discriminant. 
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2.3.1 Bayes linear estimation for linear models with uncer-

tain covariates 

The general linear model for a response y with q covariates z = (z1, . ... , zq)T may 

be written 
p 

y = ~ f1(z){31 + E 

j=l 

where the fJ are specified functions, (3 = ({31 , ... , {3p) T are parameters and E is a 

random error. 

The model can be written more compactly as 

where the x1 

predictor. 

p 

y = ~ X j {Jj + E = X T {3 = TJ + E 

j=l 

IJ(z) are model terms and TJ = 2::J=1 x1{31 is called the linear 

When there are n cases, the response Yi for casei will be written 

p 

Yi = ~ Xijf3j + Ei = xT f3 = 'r/i + Ei 

j=l 

where Xij = IJ(zi), corresponding to the covariate values zi = (zi1 , .... , ziq)T for 

case i and 'r/i = l::j=1 xi1{31 is the linear predictor associated with the values xi = 

(xi1 , ... , Xip)T of the model terms for casei. 

The model may be written in vector form as 

y=X(3+E=TJ+E 

where X = (xi1) is then x p model matrix. 

The statistical assumptions and specifications for the model are as follows: 

1. z, (3 and E are uncorrelated random vectors 
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2. x 1 , ... , Xn are uncorrelated 

4. E[,L3] = b, Var[,B] = EJJ 

5. E[e] = 0, Var[c:] = a 2 I 

Note that (a) the mean and variance structures for the xi will be derived from those 

specified for the zi, in particular, the x, ,f3 and e are uncorrelated random vectors; 

and (b) the mi, Ei, b, EJJ, and a 2 are specified from prior information. 

Our aim is to derive the Bayes linear estimate y = Ey[7J] of 1J and its adjusted 

variance Vary[7J]. 

Theorem The Bayes linear estimate of the linear predictor 1J is 

with adjusted variance a 2 A(I + A)- 1, /1.1 = E[X] and a 2 A = /1.1EJ3/I.;fT + D where 

D is a diagonal matrix with Dii = bTEi b + trace[EiEJJ]· 

Proof 

It is straightforward to show that E[17] = Mb, Cov[7J, y] = Var[7J] and Var[y] = 

a 2 I+ Var[7J], so we only need to evaluate Var[7J] to evaluate the adjusted expectation 

and adjusted variance to complete the proof. 

Cov[1Ji, 1J]] = Cov[xT ,L3, xJ .f3] = E[Cov[xT /3, xJ ,f3 I.L3]] + Cov[E[xT ,L3 I.L3], E[xj f31.f3]] 

As Xi and Xj are uncorrelated, the first term on the right is zero, unless i = j, in 

which case it becomes 
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The second term is 

Cov[mT (3, mj (3] = mTE/3 mj 

Thus 

Var[7Ji] = bTEi b + trace[EiE/3) + mTE/3 mi 

Hence, Var[1J] = CJ
2 A and we can now evaluate Ey[1J] and Vary[1J]. The adjusted 

expectation of 1J is 

Ey[1J] = E[17] + Cov[1J, y)Var[yt 1 [y- E[y]) = Mb + CJ
2 A(CJ2 (1 + A)t1 [y- Mb] 

which simplifies to give the required expression for y. 

The adjusted variance of 1J is 

which simplifies to give CJ
2 A(I + A)- 1

. Notice that Vary[1J] does not depend on y. 

Examples 

We evaluate iJ for two examples of linear models that we use to discriminate between 

non-leaching and leaching pesticides, with y = 0 or y = 1, respectively. In both 

examples, there are p = 3 terms which are known functions of q = 2 covariates 

z1 = log koc and z2 = log t~jiJ, which we take to be uncorrelated. 

For case i we have in both examples 
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bT"Eib = biVar[xi1] + 2b1b2Cov[xi1, xd + b~Var[xd 

trace["Ei"E,B] = aiVar[xil] + 2a12Cov[xi1, xi2J + a~Var[xi2] 

In example 1 

In example 2 

Var[xii] = Var[zi2] 

Var[xi2] = Var[zilzi2] = Var[zil]Var[zd + E[zil] 2Var[zi2] + E[zi2] 2Var[zil] 

43 

These are all the results necessary to calculate iJ and the adjusted variance in 

the two examples. To implement these results it is necessary to specify E[.B], E,B 

and E[zi1], Var[zi1], E[zi2] and Var[zi2] fori= 1, ... , n. 

2.4 Bayesian inference 

Bayesian statistical inference uses Bayes theorem to combine sample data (in the 

form of likelihood) with prior beliefs (in the form of a prior distribution) to arrive 

at posterior beliefs (in the form of a posterior distribution). 

Let {3 denote an unobservable vector of parameters of interest with prior distri

bution p(f3) and let y denote an observable vector of sampled data with sampling 
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distribution p(yl/3). Then, from Bayes' theorem, the posterior probability distribu-

tion of p(.BIY) can be expressed as: 

p(/3iy) = p(/3, y) = p(,L3)p(yi.L3) 
p(y) p(y) 

(2.32) 

where p(y) = J p(,L3)p(yi/3)d,L3 is called the prior predictive distribution of y. Since 

the term p(y) does not depend on /3, omitting it yields the unnormalized posterior 

distribution which can be expressed as 

p(.BIY) <X p(yif3)p(,L3) (2.33) 

The last equation shows that the data y affects the posterior distribution of .B only 

through p(yi/3), which, as a function of /3, is called the likelihood function. Hence, 

the last equation states that the posterior distribution of /3, p(.BIY), is proportional 

to the product of the likelihood function p(yif3) and the prior distribution p(/3). 

The posterior distribution p(.BIY) can be used to make inferences about .B or a 

future observations ii conditional on the observed data y. This inference is called 

"Bayesian predictive inference" and the distribution of ii is called the "posterior 

predictive distribution" which can be evaluated as 

p(fiiy) J p(fi, .BIY )d/3 

J p(fil/3, y)p(f3iy)d/3 

- J p(fiif3)p(f3iy)d,L3 

provided y and ii are conditionally independent, given /3 [18]. 

(2.34) 

Another important feature of Bayesian inferences is the choice of prior infor-

mation. In the absence of prior information, a "non-informative" prior or "vague" 

distribution can be used; see, for example, [18]. 
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As we will see, in our Bayes and Bayes linear analyses of the EA data, part of 

our prior beliefs about some parameters of interest, namely regression parametes, 

derives from Bayesian analysis of Gustafson's data with a non-informative prior. In 

the case of linear regression models, using non-informative prior information and 

normal errors, results in least squares analysis; see [5], pages 146 and 154-155. Also, 

in the case of generalized linear models, using non-informative prior information, 

results in maximum likelihood analysis; see [29], page 104. 

In practice, we may need to calculate the marginal posterior distributions of the 

parameters of interest. This computation may require a high dimensional integration 

which could be intractable analytically. In this case, simulation techniques such as 

the Markov Chain Monte Carlo method (MCMC) can be used to draw samples from 

the posterior distribution to approximate these marginal posterior distributions. As 

MCMC simulation is used extensively in this thesis, we give a brief description 

below. 

A useful tool in Bayesian methods employs graphical models to represent the 

dependence structure among variables in a probability distribution, making the 

Bayesian inference straightforward without the need for algebraic manipulation of 

multivariate distributions. Graphical models and how to implement them using the 

WinBUGS software package will be discussed. We also discuss model selection, a 

statistical tool used to compare different models. 
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2.4.1 Markov Chain Monte Carlo 

As mentioned above, Bayesian methods combine a prior distribution for unknowns 

with the study data represented in the form of likelihood. The result of this combi

nation is a posterior distribution on which inferences about the unknowns are based. 

The posterior distribution is proportional to the product of the likelihood function 

and the prior distribution. In order to inquire into the parameters of interest and 

draw inferences, it is necessary to evaluate the marginal posterior distributions of 

these parameters. Computation of these marginal distributions often require high 

dimensional integration that is not always available in a closed form, making the 

performance of such calculations analytically impossible. However, these difficul

ties can be overcome by adopting approximation or simulation methods. This work 

concentrates on the use of simulation methods, in particular the MCMC method. 

MCMC is the simulation technique most widely used to handle such complex com

putations that can not be performed analytically. The main purpose of MCMC 

is to explore the posterior distributions of the parameters of interest by drawing 

or generating samples from marginal posterior distributions which can be used to 

describe or obtain specific information about these parameters. There are several 

methods or algorithms for MCMC. The most widely used method is the Metropolis

Hastings algorithm: most of the others are specific modifications of this method, 

such as the Gibbs sampler. The main idea behind MCMC is the construction of a 

stationary distribution with limiting distribution converging to the target posterior 

distribution. 

As the Bayesian methods in this thesis are implemented via MCMC, a brief de-
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scription of the most general algorithm, Metropolis-Hastings, is given below, followed 

by a brief description of the Gibbs sampler used in the WinBUGS software [40]. 

2.4.2 Metropolis-Hasting algorithm 

The Metropolis-Hastings algorithm (M-H) is the most general approach used to 

draw samples from a posterior distribution. Let {) denote a parameter with posterior 

distribution p(()Jy) known up to a proportionality constant. The M-H algorithm can 

be implemented as follows; see, for example, [18] and [22). 

1. initialize {) by starting at some value ()(o). 

2. For the current state ()(t) at iteration t, where t 2: 1, generate a candidate 

value e· from a transition proposal distribution q({)*j()(t-1)). 

3. Calculate the following ratio of densities: 

(t-1) • - q(()(t-1)j()*)p(()*Jy) 
r( {) '{) ) - q( {)*j{)(t-1) )p( ()(t-1) Jy) (2.35) 

4. Calculate a= min {1, r(e<t- 1>, e·)} 

5. Generate a uniform random quantity U E [0, 1]. 

6. Set 

{ 
e· 

{)(t) -

()(t-1) 

if U <a 

otherwise 

The choice of the transition proposal distribution q(.) is arbitrary and can be chosen 

so that the convergence to the target distribution can be reached quickly. 
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A specific example of the M-H algorithm is the Metropolis algorithm, where the 

proposed distribution is chosen to be symmetric, i.e, q(B(t- 1)lc1') = q(B.IB(t-l)). In 

this case, the ratio of densities, expressed in step (3) above, simplifies to 

r(eCt-1) e·)= p(B.Iy) 
, p(BCt-l)iy) (2.36) 

For example, the candidate value e· can be generated from a normal distribution 

with the mean B(t- 1) and variance a 2 . In this case a 2 acts as a tuning parameter. 

Another example of the M-H algorithm is the Gibbs sampler algorithm which is 

the main algorithm used in the WinBUGS software. There follows a brief description 

of this algorithm. 

2.4.3 The Gibbs sampler 

Much of this is taken from [22] and [18]. Let (} = (01 , ... , Bp) denote a p length 

vector of parameters to be estimated, having a joint posterior density p( Oly). The 

Gibbs sampler is used to estimate posterior distributions by generating random 

samples from the full conditional distributions of each parameter given the rest of 

the parameters and the data. The general algorithm for this sampling method is as 

follows. Let eCt) = ( B~t), B~t), ... , B~t)) denote the current state of the chain or the 

sampled value of(} at iteration t. Now, the value of(} at iteration (t + 1), eCt+ 1), is 

obtained by drawing from the following conditional distributions: 
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d () (t+l) f (() l()(t) ()(t) ()(t) ) raw 1 · rom Pt 1 2 , 3 , ... , p , Y 

(t+l) ( I (t+l) (t) (t) ) draw ()2 from P2 ()2 ()1 , ()3 , · · · , ()P , Y 

() (t+1) ( 
1 

(t+l) e(t+1) (t+1) (t+1) e(t) ) draw i from Pi ()i ()1 , 2 , ... , ()i_ 1 , ()i+1 , ... , p , Y 

() (t+l) (e 
1

e(t+1) e(t+1) (t+l) ) draw p from Pp p 1 , 2 , ... , ()p-1 , Y 

Thus, each parameter is updated, conditional on the latest values of the other 

parameters. Hence, the new sampled values or the new state at iteration t is 

o(t+1) = (e~t+l), e~t+ 1 ), ... , e~t+ 1 >). Establishing that the Gibbs sampler algorithm 

is a special case of the M-H algorithm is straightforward and appears in many ref-

erences, such as [18]. 

There are several practical considerations and concepts regarding the implemen-

tation of MCMC methods. Amongst these issues are thinning the chain, the burn-in 

period, the starting points and convergence diagnostics. There follows a brief expla-

nation of these concepts. 

The burn-in period refers to the number of iterations before convergence of the 

chain is achieved: the burn-in values are discarded. 

Thinning means running the chain normally but recording only every kth value 

[40]. Thinning the chain is usually used to reduce the autocorrelation for a param-

eter. 

Starting points or initial values, as referred to in WinBUGS, are associated with 

convergence diagnostics especially when assessing convergence by running multiple 

chains from different initial values. 

Convergence tests refer to formal and informal tools used to assure that the chain 
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has reached its stationary or target distribution. There are several convergence 

diagnostics but the focus here is on those practical or graphical tests built in to 

WinBUGS that are similar to the modified Gelman-Rubin diagnostic proposed in 

[19], autocorrelation, history or trace of the chain and kernel density estimates of 

posterior distributions. The following is a brief discussion of these. 

Autocorrelation refers to the correlation between consecutive simulated realisa

tions for a single parameter. High autocorrelation may cause a slow convergence to 

the target distribution and this can be reduced by thinning the chain. This test is 

used informally. 

The history of the chain provides a visual assessment of convergence. It is simply 

obtained by plotting the sampled value, e<t), of the parameter against the iteration 

number t. Convergence may be informally assessed by looking at simulation trends 

and in case of running more than one chain, history plots should appear to mix 

rapidly and overlap when they are depicted in one plot. 

A diagnostic test to assess convergence efficiency, developed by Gelman and Ru

bin in [19] and modified by Brooks and Gelman in [6] is referred to in the WinBUGS 

manual [40] and here as the BGR diagnostic. This is a more formal test which has 

been reviewed and summarized in many books and papers, such as [22], on which 

much of the following discussion is based. The test uses within chain variance, 

pooled variance and their ratios. An understanding of how this test is constructed 

helps to define these concepts. BGR is set up by running several independent par

allel chains using widely dispersed initial values following the steps presented in [22] 

as follows. 



2.4. Bayesian inference 51 

1. Run m 2 2 chains of length 2n from widely dispersed initial values Bi~l), Bi~l), 

8roJ . 
.. . ' (m). 

t')[OJ t')[l] t')[2n-1] t')[2n] 
(1)' (1)' ... ' (1) ' (1) 

ll[O] ll[1] ll[2n-1] ll[2n] 
u (2)' u (2)' ... ' u (2) ' u (2) 

ll[O] ll[l] ll[2n-l] ll[2n] 
u(m)' u(m)' ... 'u(m) 'u(m) 

Now, discard the first n chain iterations for each of the m chains. 

2. For each parameter of interest calculate the following: 

• Within chain variance: 

1 
m n 2 

- ""' ""' ( [i] - ) 
W - m(n- 1) f=: 8 B(j) - B(j) 

where B(j) is the mean of the n values for the ;th chain. 

• Between chain variance: 

B 
n m - 2 

m - 1 I: (e(j) - 8) 
j=l 

where 7J is the grand mean (the mean of the means). 

• Estimated variance (pooled variance): 

-----Var(B) (1- 1/n) W + (1/n) B 

3. Evaluate the following ratio: 
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4. If the monitored values of .JR. are close to 1 so that vV is approximately equal 

to ~(B), then this indicates that convergence has been reached. 

As explained in the WinBUGS manual [40], the BGR diagnostic test can be 

displayed in a plot of three quantities (a) the normalized width of the central 80% 

interval of the pooled runs, coloured in green, (b) the normalized average width of 

the 80% intervals within the individual runs, coloured in blue and (c) their ratio 

test R=(poolecl/within), coloured in reel. To judge MCMC convergence, R should 

converge to 1 and the pooled and within interval widths should stabilise. 

The convergence diagnostic tests described above can be carried out using R 

packages such as CODA (Convergence Diagnostics Analysis) and BOA (Bayesian 

Output Analysis); see [35] for more details. 

The following section discusses graphical models and their use in Bayesian statis

tics. 

2.4.4 Graphical Models 

Graphical models can be used to represent the dependence structure among variables 

in a probability distribution and via them Bayesian inference becomes straightfor

ward without the need to carry out algebraic derivations. 

The graphical models used here are directed acyclic graphs (DAG), which are 

directed graphs where there is no path from a node to itself. A DAG is usually 

displayed using plates, ellipses, rectangles and arrows. Plates are used to represent 

the levels of the model, ellipses to represent observed and unobserved variables and 

rectangles to represent constants. There are two types of arrows: solid and hollow. 
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The solid arrows represent stochastic links and the hollow ones are used for logical 

links. 

The following definitions are important in Bayesian analysis and are needed here 

when a DAG is constructed to represent the joint posterior distribution for a logistic 

regression model with uncertain covariates to be described in the following section. 

These definitions are summarised from [13] 

Definition 2.1: A graph consists of a set of nodes V and a set of edges E where 

an edge in E may be directed or undirected. 

Definition 2.2: For a DAG, the parents (denoted by pa) of a node v E V are: 

pa(v) = {wE V: (w, v) E E}. 

Definition 2.3: In a DAG, the children (denoted by ch(v)) of v are: 

ch(v) ={wE V: (v,w) E E} 

and the non-descendants (denoted by nd( v)) of v are: 

nd(v) ={wE V: no path from v tow}. 

An important benefit of using a DAG is that the joint distribution of all variables 

V can be represented using the following factorization: 

f(V) = IT f (vlpa(v)) 
vEV 

Another important advantage is that it is easy to derive the full conditional distri-

bution (mainly required for the Gibbs sampler) of any variable v E V conditioning 

on the other variables (V\ v) using the following equation: 

f(viV\v) <X f(vlpa(v)) IT f (wipa(w)) 
wEch(v) 
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The following discussion focuses on the implementation of graphical models using 

the WinBUGS package. 

2.4.5 Implementation of Graphical Models Using WinBUGS 

The major steps needed to implement graphical models using WinBUGS are: 

1. Constructing the graphical model. 

2. Assigning a full probability distribution to all of the stochastic nodes. In fact, 

implementation of the Gibbs sampler as an MCMC simulation technique re

quires identifying the full conditional posterior distribution for each parameter 

of interest, which may not be easy, especially obtaining it in a closed form. 

Fortunately, the WinBUGS software performs this automatically without the 

need to derive the forms of the conditional posterior distribution. So, what is 

really needed is to assign a probability distribution to each of the stochastic 

nodes. 

3. Specifying the number of chains needed to run the Gibbs sampler, which is 

important in assessing convergence. 

4. Specifying different initial values for each chain. 

5. Checking convergence to the target distribution. 

6. Extracting the simulated values and looking at the desired statistics and esti-

mates. 
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2.4.6 Joint posterior distribution representation for logistic 

regression with uncertain covariates using a DAG 

Let y = (y1 , y2 , ... , Yn) be a data set of n independent and identically distributed 

binary observations. Assigning Yi a Bernoulli distribution with probability of success 

p(yi = llzi, ,B) = 1ri leads to the following likelihood for f3 and the zi 

n n 

i=l i=l 

where 

where the structure of Z, the xi and ,B is given in section 2.3.1. 

To derive a representation for the joint posterior distribution of Z and ,B, we 

assume, as in our application in this thesis, that Z and f3 are uncorrelated and also 

that the n rows of Z are independent; i.e. 

We will also assume, 

for all i = 1, 2, ... , n. Thus all nq components of Z are assumed to be a priori 

independent. 

As shown in the DAG display in Figure 2.2, the joint posterior distribution of Z 
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Figure 2.2: Directed acyclic graphs (DAG) for logistic regression with uB.certain 

covariates 
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and {3 given the data y can be expressed as 

p(Z, f31y) ex p(yiZ, {3)p(Z, {3) 

ex p(yiZ, {3)p(Z)p({3) 

n 

ex IT [p(yi lzil, Zi2, ... , Ziq, {3)p(zii)p( zi2) ... p(ziq)] p({3) 
i=l 

The next section, which discusses the multivariate runs test, uses some of the above 

assumptions. 

2.5 Multivariate runs test 

The aim of the multivariate runs test, proposed by Friedman and Rafsky in [17], is to 

test the null hypothesis of whether two groups are drawn from the same distribution. 

The multivariate runs test is used in this thesis as a tool (a) to strengthen the 

derived results by testing the degree of separation between leaching and non-leaching 

pesticides and (b) to compare different models. 

The following definitions are needed in order to describe this test. These defi-

nit ions can be found in many references, such as [26] and [17], from which many of 

the following are taken. 

Definition 2.4: A tree is a connected graph with no cycles. 

Definition 2.5: Let G be a graph. A spanning tree T is a connected subgraph of 

G with no cycles and contains all the vertices of G. The length ofT, R(T), is the 

total number of edges in T. 

Definition 2.6: A minimal spanning tree (A1 ST) is a spanning tree T with R(T) < 
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R(T') for all spanning trees T'. 

To describe the test, let Xm = (x1, x2, ... , Xm) and Yn = (y1, Y2, ... , Yn) be two 

independent samples from distributions Fx and Fy, respectively. Hence, a graph 

G(Xm, Y;1 ) can be formed using all of the vertices x1, x2, ... , Xm, y1, Y2, ... , Yn and 

edges between these vertices. A spanning tree T(Xm, Yn) is any connected subgraph 

of G(Xm, Yn), containing all of the above vertices, and it does not contain any cycle. 

Let R(Xm, Yn) denote the number of edges of T(Xm, Yn) which connect a point of 

Xm to a point of Yn. 

Now, the null hypothesis to be tested is 

against the general alternative hypothesis 

The Friedman and Rafsky test statistic Rm,n is given by 

They conjecture that 'small' values of Rm,n lead to a rejection of the null hypothesis. 

Thus, models with small values of Rm,n may reflect good separation between leaching 

and non-leaching pesticides than models with large values of Rm,n· 

A further important step is the assessment of model complexity and comparing 

different models, which is the focus of the next section. 
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2.6 Model selection 

There are several tools for comparing and assessing the fit of the different models. 

Among these are the Deviance Information Criterion (DIC), stepwise selection and 

the likelihood ratio statistic. What follows are brief descriptions of these tools. 

2.6.1 Deviance Information Criterion 

This tool as proposed in [39] and implemented in WinBUGS can be described briefly 

using the following definitions which are summarized from the WinBUGS manual 

[40]. DIC is defined as: 

D IC = D + P D = iJ + 2P D 

where D is the posterior mean of the deviance -2 * log(likelihood), iJ is the point 

estimate of the deviance obtained by substituting in the posterior means of parame

ters: thus iJ = -2 * logp(ylposterior means of parameters), and PD is the effective 

number of parameters calculated as P D = D - iJ. The values of DIC are impor

tant when comparing different models for the same problem, which is the case in 

this thesis. Models with small values of DIC indicate better fits. The program for 

calculating DIC in R is given in Appendix A.l.l. 

2.6.2 Stepwise selection 

The objective is to select the most relevant model terms which give best prediction. 

It can be implemented in three options: forward, backward and in both directions. 

In forward selection, we start by selecting a single model term which provides the 



2.6. Model selection 60 

best fit to the data according to a predictive criterion; see below. Then, each model 

term is examined to see if adding it will significantly improve the overall fit. In 

backward selection, we start with the full model which includes all of the model 

terms. Then, each model term is removed and tested to see whether its removal will 

significantly improve the overall fit. The option "both directions", allows inclusion 

of model terms using either forward or backward selection at each stage according 

to a significant improvement of including or deleting the current model term. 

The Akaike information criterion (AIC) is used judge the adequacy of the selected 

model in the stepwise procedure. The AIC is defined, see [34], to be 

AIC = -2l(j3) + 2p (2.37) 

where t(t3) is the log-likelihood maximum, t3 is MLE and p is the dimension of {3. 

The smaller the value of AIC, the better the model fits the data. The stepwise 

procedure is stopped if adding or eliminating a model term from the current sub

model will increase the value of AIC. 

2.6.3 Likelihood ratio statistic 

Much of following is summarised from [14] and [34]. The log likelihood ratio statistic 

or deviance is used to compare different models and to select the most adequate from 

available models. The model with the maximum number of parameters that can be 

estimated is called the saturated model. As in [14], let m be the number of such 

parameters and .Bmax be the parameter vector for the saturated model with bmax 

as the maximum likelihood estimator. Let .8 be the parameter vector for the model 

of interest with n parameters and b as the maximum likelihood estimator. Then, 
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the likelihood ratio (LR) is 

LR = l (bmax, y) 
l(b, y) 

where l() denotes the likelihood function. The logarithm of LR is 

log LR = L (bmax, y)- L(b, y) 

61 

(2.38) 

(2.39) 

where L() is the log-likelihood function. Large values of log LR, indicate poor fit of 

the model of interest to the data. 

The deviance (D) is 2log LR, i.e. 

D = 2 [L (bmax, y)- L(b, y)J (2.40) 

It can be shown, see, for example, [14], that D has an approximate chi-squared 

distribution with m - n degrees of freedom, i.e. 

(2.41) 

This result can be used to calibrate model adequacy. 

2. 7 Statistical packages 

Two statistical packages have been used to analyse the data and implement the mod-

els developed in this thesis, Rand BUGS. R, which provides an environment in which 

to perform the statistical analysis, is freely available at http: I lwww. r-pro j ect . or g. 

BUGS (Bayesian inference Using Gibbs Sampling) is used to analyse complex Bayesian 

models using MCMC simulation. WinBUGS, the Windows version of BUGS, used 

in this thesis is freely available at http: I lwww. mrc-bsu. cam. ac. uklbugs. In addi-

tion, packages such as CODA (Convergence Diagnostics Analysis), BOA(Bayesian 
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Output Analysis) and R2WinBUGS, which are available in R, were also used. The 

R2\\TinBUGS package was used to run WinBUGS from R; see [20]. 

2.8 Conclusion 

This chapter has provided discussions of the statistical concepts and techniques 

used throughout the thesis. It reviewed logistic regression models and the MLE 

of the parameters. In this regard, a discussion about one of the logistic regression 

deficiencies which arose during this research and how to tackle it is provided. This 

deficiency appears when fitting data with complete separation between successes 

and failures in the covariates space, where the MLE does not exist. Alternatives 

such as the MEL and WEMEL estimates can be used. 

Another important concept reviewed in this chapter is Bayes linear estimation. 

A general formula for computing the Bayes linear estimate for a general linear model 

with uncertain covariates is derived. 

Full Bayesian inference is discussed. The discussion includes MCMC simulation 

including its most general implementation via the Metropolis-Hastings algorithm. 

It also includes a brief description of graphical models and how they can be imple

mented using the WinBUGS software package. A general formula to represent the 

joint posterior distribution for logistic regression with uncertain covariates using a 

DAG is given. there is a brief discussion about the diagnostic tests used to assess 

convergence of MCMC algorithms. 

The Deviance Information Criterion (DIC), proposed in [39] and implemented 

in WinBUGS, stepwise selection procedures and the likelihood ratio statistic, which 
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will be used as comparison tools in this thesis, have been described. Finally, the 

statistical packages used in this study are referenced. 



Chapter 3 

Discrimination using a model with 

an interaction term 

3.1 Introduction 

This chapter investigates the Bayesian method proposed in reference [44] applied to 

a model with an interaction term. It was suggested in (44] that the use of logistic 

regression with a linear predictor non-linear in the covariates could serve to discrim-

inate between leaching and non-leaching pesticides. This idea is formulated here 

using an interaction term in the linear predictor. The investigation is straightfor-

ward except for one difficulty which has arisen in trying to fit logistic regression using 

maximum likelihood to the interaction model. Fitting the logistic regression model 

to Gustafson's data using an interaction model leads to non-overlapping groups of 

leachers and non-leachers so that the MLE does not exist. This problem is tack-

led here by firstly measuring the overlap using the depth-based algorithm proposed 

in [7], which showed that there is a complete separation in the covariate space of 

64 
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Gustafson's data. Secondly, the MEL estimator, which completely eliminates the 

overlap problem, and the WEMEL estimator, which is also robust against outliers, 

were used as alternative estimators. These alternative estimators were proposed 

in [8]. 

In addition, an alternative Bayesian analysis will be proposed here. The analysis 

benefits from 'direct' use of lysimeter experiments and logistic regression methods 

to predict the potential of a given pesticide to leach. 

3.2 Formulation of the discriminant model 

The idea of improving discrimination by using a non-linear predictor in logistic 

regression, such as a curve drawn to discriminate between leaching and non-leaching 

pesticides, was suggested in [44]. The model uses the same sources of data from 

lysimeter experiments, and hence the same likelihood, the same prior information 

and a similar method to generate the parameters of the prior distribution. The only 

difference is the logistic regression used to predict pesticide leachability. 

There are several specifications and considerations that should be taken into ac

count in formulating a statistical model. Among these are two questions that should 

be answered (a) which covariates are needed and (b) which model terms involving 

these covariates should be included. These questions should not be answered without 

taking into account other consideration, in particular the use to which the model 

will be put. In our application, the model will be used to discriminate between 

leaching and non-leaching pesticides, i.e. it is constructed for predictive purposes. 

As discussed in Chapter 1, certain chemical properties are believed to control 
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the potential for a given pesticide to leach into the soil and pollute the ground water. 

Among these properties are adsorption coefficient (kac), soil half-life (tfj~) and water 

solubility (SH2o). Now, we discuss the choice of a statistical model to be used for 

discrimination of pesticides as leachers or non-leachers on the basis of the above 

chemical properties .. 

The Gustafson data is used and a logistic regression model, as described m 

Chapter 2, is adopted with 

{ 

1 if ith pesticide is monitored as a leacher 

Yi = 0 if ith pesticide is monitored as a non-leacher. 

and the covariates are z1 = log k0 c, z2 = log t~~~ and z3 = logS H 2o 

The stepwise procedures, described in Chapter 2, are used to select the covariates 

and the most important model terms to be included in the linear predictor. We begin 

with a full model containing z1 , z2 , z3 and their interactions, i.e. the linear predictor 

7J is 

First of all, to fit this model, the amount of leacher /non-leacher overlap, as described 

in Section 2. 2.1, in covariates space needs to be measured. The use of the depth-

based algorithm in [7] shows that there is complete separation between leachers 

and non-leachers in the space of the covariates z1 , z2 , z3 , so that the MLE of the 

parameters in 3.1 does not exist. Therefore, we adopt an alternative estimator. The 

alternatives we consider are MEL, which resolves the separation problem, and its 

robust version WEMEL, which is robust against outliers. 

The objective now is to find the best model to predict the potential of a given 
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Model Df Deviance Change P-value 

Null 21 

Z1 20 

z2 19 

Z3 18 

z1 : z 2 17 

Z1 : Z3 16 

Z2 : Z3 15 

Z1 : Z2 : Z3 14 

21.847 

10.969 

5.990 

5.953 

1.826 

1.344 

1.036 

0.973 

10.878 

4.979 

0.037 

4.127 

0.482 

0.308 

0.063 

0.001 

0.026 

0.848 

0.042 

0.487 

0.579 

0.801 
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Table 3.1: Analysis of deviance where terms are added sequentially (first to last). 

pesticide to leach using the fewest number of terms. The stepwise selection procedure 

in "both directions", using, for example, the function step in R with AIC, leads to 

a final model with an intercept, z1, z2 and the interaction term z1z2 . This model has 

estimated logit 

estimated logit(1rlz1 , z2 ) = -22.762 + 0.664z1 + 17.610z2 - 2.045z1z2 (3.2) 

The estimated model and the analysis of deviance summarised in Table 3.1 suggest 

that the covariate z3 (logs of solubility) and its interaction terms with the other 

covariates are not useful discriminants, as including the model terms z3 , z1z3 , z2z3 

and z1z2z3 does not cause significant change in deviance. This conclusion is con

sistent with Gustafson's suggestion in [25] that water solubility is not relevant in 

discriminating leachers and non-leachers pesticides. 

The signs of the estimates of the coefficients of z1 and z2 are consistent with 

Gustafson's contention that leaching pesticides are those with low koc and high t1j~ 
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Effect Estimate Standard error z-value P-value 

Intercept -22.762 21.706 -1.049 0.294 

logkoc 0.664 3.127 0.212 0.832 

logt 17.610 12.882 1.367 0.172 

logkoc:logt -2.045 1.608 -1.272 0.203 

Table 3.2: Regression coefficients estimates for the model as selected via the stepwise 

procedure. 

values and non-leaching pesticides are those with low t~~~ and high koc values. This 

can be explained using either 'r/ or the estimated leacher /non-leacher odds 

odds= exp( -22.762) exp(0.664zi) exp(17.610z2 ) exp( -2.045z1z2 ) (3.3) 

For example, fixing the covariate z2 at a small value and letting the covariate z1 vary 

over its range decreases the odds and linear predictor 'rJ, and hence decreases the 

leaching probability as depicted in Figures 3.1 (a) and (b). This is consistent with 

Gustafson's contention that non-leaching pesticides are those with low t~/J and high 

koc values. Also, fixing the covariate z1 at a small value and letting the covariate 

z2 vary over its range increases the odds and linear predictor 'rJ, and hence increases 

the leaching probability as depicted in Figures 3.1 (c) and (d). These observations 

are consistent with Gustafson's contention that leaching pesticides are those with 

low koc and high t~/J values. 

Table 3.2, which displays some statistical summaries for the model in 3.2, shows 

that none of the model terms are significant. Moreover, the z1 main effect differs 

from zero by only 0.212 standard errors. Taking this into account and the form, 

equation 1.2, proposed by Gustafson in [25] for discrimination, we consider the 
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Figure 3.1: Plots of linear predictor TJ and leaching probability. In (a) and (b) the 

covariate z2 is fixed at a certain value and the covariate z1 varies over a range of 

values. In (c) and (d) the covariate z1 is fixed at a certain value and the covariate 

z2 varies over a range of values. 
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Effect Estimate Standard error z-value P-value 

Intercept -20.384 14.381 -1.417 0.156 

logt 17.380 11.593 1.499 0.134 

logkoc: logt -1.947 1.275 -1.527 0.127 

Table 3.3: Regression coefficients estimates after eliminating the term z1. 

further step of removing the term z1 from 3. 2. This leads to 

estimated logit(1rJz1 , z2 ) = -20.384 + 17.380z2 - 1.947z1z2 (3.4) 

Table 3.3 displays statistical summaries for the reduced model in 3.4. We will use 

this model rather than the model in 3.2, although it is not in general recommended 

to include the higher degree term z 1z2 without including both z 1 and z 2 ; see [15]. 

However, we justify our choice as follows. 

1. The objective of constructing the model is to use it to discriminate or predict 

the leachability of a given pesticide, not to select an optimal model to fit the 

data. 

2. It is apparent from both Tables 3.2 and 3.3 that none of the model terms are 

significant. 

3. It is apparent from Table 3.2 that the magnitude of coefficient estimate for z1 

is small relative to the other estimates and it is much smaller relative to its 

standard error. 

4. Omitting the term z1 from the model in 3.2 decreases the variances of regres

sion coefficient estimates of the other terms; see Table 3.3. 
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Figt!fe· 3.2: Scatter plot of z2 = log t~j~ against z1 = log koc together with discrimi-

nant curves using the logistic regression model. T.he black curve is the discriminant 

curve for Model 3.2 as selected via the stepwise procedure. The1 blue curve is dis-

criminant curve for Model 3.4 after eliminatfng the term z1. The two. curves give 

similar predictive results. 
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5. The model 3.4 is consistent with the form of Gustafson's GUS curve in 1.2. 

6. The discriminant curves 

-22.762 + 0.664z1 + 17.610z2 - 2.045z1z2 = 0 (3.5) 

and 

-20.384 + 17.380z2 - 1.947z1z2 = 0 (3.6) 

depicted in Figure 3.2 are almost similar. Furthermore, both models give 

almost equal estimated predictive probabilities. 

3.2.1 Model checking 

After selecting the model, there are still essential processes that should be performed. 

These are, checking the adequacy of the fitted model and studying robustness of the 

results. There are several techniques to check the fitted models such as residual 

patterns and to study robustness such as influence of observations. 

The residuals r can be plotted either against fitted values or covariates to detect 

any deficiency in the fitted model. The null pattern (random scatter) indicates 

that the fit is good and there is no relation between residuals and fitted values or 

covariates. 

Robustness can be assessed using measures of leverage and influence. A measure 

of leverage of observation i is given by the diagonal entry hi of the hat matrix 

(3.7) 

where X is the model matrix and Wis the prior weight matrix. An observation i 

with hi greater than two or three times pjn, where p is the length of the vector {3, 
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might be a potentially influential point, see [14] page 89. The standardized residual 

(3.8) 

where ~ is an estimate of the dispersion. An observation i with sri "greater in 

magnitude than 2 or 3 will suggest a possible outlier" [38]. 

Cook's distance di can be used to measure the influence of observation i where 

(3.9) 

where p is the length of the vector {3. Figure 3.3 plots the standardized residuals 

against the covariates, the fitted values and the quantiles of the standard normal 

distribution of Model 3.4. These figures indicate that 

1. The plot of the standardized residuals against the covariates z1 = log k0 c, 

z2 = log t~~~ and the fitted values have the null pattern indicating a good 

model fit. 

2. The q-q plot shows that the standardized residuals have, approximately, a 

standard normal distribution. 

However, such plots are "generally uninformative for binary data because all the 

points lie on one of two curves according as y = 0 or y = 1" [33]. 

Figure 3.4 plots leverage values, standardized residuals and Cook's distance. 

These figures show that 

1. The leverage plot suggests that observations 7, 12 and 18 are possibly poten-

tially influential points. 
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Figure 3·.3: For model 3.4, plots1 of (a) standardized residuals against z1 :--log koc, 

(b) standardized. r:e.§iduals against z2 = log t~7J :, (c) standardized residuals against 
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nor01at distribution_, 
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residuals,. and (c) Cook's distance. 
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2. All standardized residuals are less in magnitude than 1, except observation 12, 

which is slightly bigger, indicating that none of observations is an outlier. 

3. The Cook's distance plot suggests that observation 12 with d12 = 0.791 is 

possibly influential while observations 7 and 18 have small Cook's distance, 

d7 = 0.165 and d18 = 0.194. 

In addition to the above measures, the scatter plot of z2 = log t1/i against 

z1 =log k0 c, Figure 3.5, shows that observation 13 is far away from the bulk of data, 

so it might be considered as an outlier. However, the WEMEL estimator is robust 

against outliers. Instead of deleting outliers, WEMEL gives less weight to these 

points depending on how far away they are from the bulk of data. For example, 

in fitting Model 3.4, observation 13 was given weight of 0.043 while observation 19, 

for example, was given weight of 1. On the other hand, observations 12 and 18 are 

inconsistent with other observations from their group (non-leaching pesticides). The 

typical non-leachers are those with high koc and small t1/i values. But, observation 

12 has small koc value and observation 18 has high t1ji. This is true also for obser

vation 7 which has a relatively high koc value which makes it inconsistent with the 

leacher group which has small koc and high t1/i values. All three of these observa

tions, 7, 12 and 18, are close to the boundary of the discrimination curve, explaining 

why some of the above measures show that these observations are influential. 

In conclusion, the above measures show that observations 7, 12 and 18 are possi

bly influential points. These points are close to the boundary of the discrimination 

curve. Because of separation, their removal will change the curve substantially, see 

Figure 3.5 when we remove all three points, for example. However, for discrimi-
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Figure 3.5: Scatter plot of z2 ::;::: ~og t~1i against z1 = log koc. 'fhe blue curve is 

WEMEL fit for Model 3.4 where all observations are included. The black curve is 

WEMEL fit where observations 7, 12 and 18 are excluded. 
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nation purposes, we would not want to remove these points, because they are not 

outliers. However, while this residuals analysis can be understood, it is important 

to be careful when using residuals from binary data analysis; see, for example, [14] 

page 128 and [33] page 399. 

The following sections describe the main components of the model, which are 

similar to those in [44]. The examples given in [44] will be reanalysed here for 

comparison. 

3.3 Likelihood 

As in [44], the data are from lysimeter experiments (see below) which are used 

to discover whether or not a pesticide is observed to leach relative to a specified 

threshold. The data can be represented in the form of a likelihood function as 

follows. Let m denote the number of lysimeter experiments and r denote the number 

out of m where a given pesticide is observed to leach, so that s = m-r is the number 

of experiments where the pesticide is observed not to leach. In addition, we regard 

r as an observation on a Binomial random variable Y with distribution 

r = 0, ... ,m (3.10) 

where 1r is the leaching probability. For given r, 3.10 is the likelihood function of 

7r. 

3.3.1 What is a lysimeter? 

A lysimeter is "a device for measuring the percolation of water through soils and 

for determining the soluble constituents removed in the drainage" [1]. It has a use 
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Figure 3.6: A lysimeter diagram as appears in [1] 

in environmental site assessments to study contamination of groundwater. Simply, 

it can be constructed using a cylindrical device, a sample bottle and a vacuum. As 

described in [1], it works as follows; see Figure 3.6, 

1. Using-the pressure-vacuum pump, first apply vacuum to suck the moisture in. 

2 .. Then apply pressure to pump it up to the sample bottle. 

3.4 Prior knowledge 

As suggested in [44), a conjugate prior distribution in the form of a beta distribution 

is chosen to represent prior knowledge for 1r, i.e. 

(3.11) 
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where a and bare specified positive constants reflecting the current knowledge about 

1r prior to obtaining the relevant data m and r. The prior mean and standard 

deviation of 1r are a~b and (a+b) 2 (:+b+l), respectively. 

3.5 Updating the model 

In general, Bayesian analysis combines data y in the form of likelihood p(yl1r) with 

the prior distribution p(1r) to generate the posterior distribution p(1rly) for 1r as 

follows. 

This shows that the posterior distribution is also a beta distribution but with new 

parameters (a + r, b + s). The posterior mean and standard deviation of 1r are 

therefore 

respectively. 

a+r 
and 

a+b+m 

(ab) (b + s) 
(3.12) 

(a+b+m) 2 (a+b+m+ 1) 

3.6 Specifying parameters of the prior distribu-

tion 

Worrall et al. in [44] argued that the parameter a can be seen to play a role similar 

to that of r and b plays a role similar to that of s, hence a + b plays a role similar 
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to that of m where r, s and m are as described in Section 3.3. 

As in [44], we describe how the above methodology can be implemented to predict 

the potential of a given pesticide to leach and contaminate groundwater. 

3. 7 Pesticide discrimination 

In this section, the Bayesian analysis will be applied to predict the potential of 

a given pesticide to leach into groundwater on the basis of two of its chemical 

properties, koc and t~ji- In this regard, two steps are needed: (a) predicting pesticide 

leachability and (b) using this as prior knowledge to generate parameters for the beta 

prior distribution. 

3. 7.1 Predicting pesticide leachability 

As in [44], logistic regression will be used to predict the potential of a given pes-

ticide to leach and contaminate the ground water. This stage of the process is the 

main difference between the original method in [44] and this study. As discussed in 

Section 3.2, the logistic regression uses the explanatory variable z2 = log t~7i and an 

interaction term of z 1 = log koc and z2 = log t~7i to fit Gustafson's data to improve 

the discrimination power. The analysis in Section 3.2 led to the estimated logit of 

the probability 7!", given the values of z1 and z2 , using the MEL approach, 

so that the leaching probability 7r is estimated as 

e-17.145+14.728Z2-1.658ztZ2 

1l"MEL = 1 + e-17.145+14.728z2-1.658ztZ2 

(3.13) 

(3.14) 
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In the case of using the WEMEL approach: 

e -20.384+ 17.380Z2 -1.94 7 Z! Z2 

frwE!IJEL = 1 + e-20.384+17.380z2-1.947zlz2. 

82 

(3.15) 

Equations 3.14 and 3.15 can be used to predict the potential of a new pesticide 

to leach given its values of z1 and z2 . In addition, these equations will play an 

important role in the process of generating parameters a and b for the beta prior 

distribution. 

Figure 3. 7 shows log koc and log tfj~ with discriminant curves 

-17.145 + 14.728z2 -1.658z1z2 = 0 (3.16) 

and 

-20.384 + 17.380z2 - 1.947z1z2 = 0 (3.17) 

where the black curve is the discriminant curve corresponding to MEL and the blue 

curve corresponds to WEMEL. The two curves are indistinguishable, but we prefer 

to use WEMEL since it is robust against outliers. 

Table 3.4 shows three estimated leaching probabilities for Gustafson's data. 

irw arrall is the original estimate evaluated by MLE in [44]. ir M EL and irw EM EL 

are the predicted leaching probabilities calculated from the logistic regression model 

with an interaction term. A pesticide would be classified as a leacher if its esti-

mated leaching probability exceeded some threshold, such as ir > 0.5. According 

to this rule, all Gustafson's pesticides were classified accurately using the WEMEL 

analysis of the logistic regression model with an interaction term. Three pesticides 

were misclassified when using the model in [44]. The known leacher Prometryn 

was misclassified with estimated leaching probability irwarrall = 0.2005, but it has 



3. 7. Pesticide discrimination 83 

C\1 ,.... 

• • leacher 
• non-leache 0 . ,.... 

00 • Q) 
~ 

I (0 -ctS • .c. 

"5 ,. 
en -.::t 
Cl ' . 
0 

....J 

C\1 • • 
0 

C\1 
I 

0 2 4 6 8 10 12 14 

Log koc 

Figure 3. 7: Discriminant curves t1Si11g the logistic regression model with an interac'"' 

tion term. The blaek curve is a .discriminant curve using the MEL estimator and the 
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Pesticide Leacher Ads.rat(koc) soil half-life(t{/~1 ) 1f\Vorrall irMEL ii'\V El\1 EL 

Aldicarb Yes 17 7 0.9835 0.9148 0.9371 

Atrazine Yes 107 74 0.9854 0.99999 0.99999 

Diuron Yes 389 188 0.9035 0.9997 0.9999 

Mctolachlor Yes 99 44 0.9529 0.9999 0.99999 

Ox amyl Yes 26 8 0.9500 0.9045 0.9286 

Picloram Yes 26 206 0.9999 

Promctryn Yes 614 94 0.2005 0.8035 0.8567 

Simazinc Yes 138 56 0.9243 0.9999 0.99998 

Chlordane No 19269 37 7.32e-08 9.94c-11 1.90e-12 

Chlorothalonil No 1380 68 0.0053 0.0038 0.0016 

Chlorpyrifos No 6085 54 1.36e-05 1.09c-07 7.34c-09 

2,4-D No 53 7 0.5009 0.2150 0.1671 

DOT No 213600 38200 0.0051 6.44e-34 2.01c-39 

Dicamba No 511 25 0.0109 0.0465 0.0286 

Endosulfan No 2040 120 0.0066 0.0008 0.0003 

Endrin No 11188 2240 0.0595 1.29e-IO 3.66e-12 

Heptachlor No 13330 109 6.02e-06 3.00e-10 7.61e-12 

Lindane No 1727 569 0.5105 0.1075 0.09998 

Phoratc No 1660 38 5.29c-04 0.0003 6.28e-05 

Propachlor No 794 4 1.21e-05 5.70e-06 6.08e-07 

Toxaphene No 95816 9 4.05e-12 2.89c-12 2.64e-14 

Trifluralin No 7950 83 1.77e-05 I. 75e-08 8.79e-10 

Alachlor Transitional 161 14 0.1181 0.3750 0.3483 

Carbaryl Transitional 423 19 0.0098 0.0355 0.0203 

Carbofuran Transitional 55 37 0.9903 0.99999 0.99999 

Dieldrin Transitional 12100 934 0.0039 I.Oie-10 2.53e-12 

Dinoseb Transitional 5900 30 2.82e-06 1.11e-07 7.06e-09 

Ethoprop Transitional 26 63 0.9998 

Fonofos Transitional 5105 25 2.82c-06 2.26c-07 1.60c-08 

Table 3.4: The CDFA data together with adsorption coefficients koc and soil half-

life tsoil 
1/2 m days and three predicted leaching probabilities estimated using logistic 

regression without ( ftw arrall) and with ( 7T M EL and ftw EM EL) an interaction term. 
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irMEL = 0.8035 and irwEMEL = 0.8567, which is evidence that Prometryn should be 

classified as a leacher. Furthermore, the non-leaching pesticides 2,4-D and Lindane 

have irworrall = 0.5009 and irworrall = 0.5105 respectively, and were also misclassi

fied. By contrast, the predicted values irMEL and irwEMEL for each support their 

classification in the CDFA database as non-leachers; see Table 3.4. 

Table 3.4 also includes predicted leaching probabilities for transitional pesticides. 

Carbaryl, Dieldrin, Dinoseb and Fonofos all have estimated leaching probabilities 

which are close to zero providing strong evidence that they should be classified 

as non-leachers. Compounds like Carbofuran and Ethoprop have leaching prob

abilities close to one, which suggests they should be classified as leachers. The 

remaining transitional pesticide, Alachlor, has irworrall = 0.1181, irMEL = 0.3750 

and irw EM EL = 0.3483. These three leaching probabilities, especially the latter two, 

are relatively high and this adds some doubts about classifying Alachlor as a non

leacher. A pictorial view of these results are displayed in Figure 3.8 which shows 

the covariate values z1 and z2 of the transitional pesticides with discriminant curve 

expressed by equation 3.17 and the linear discriminant line derived from the MLE 

analysis in [44]. 

3. 7. 2 Generating parameters for a beta prior distribution 

For a given pesticide, equations 3.14 and 3.15 can be used to estimate the leach

ing probability ir for a particular pesticide given the values of koc and t~j~. The 

estimated leaching probability ir with information from lysimeter experiments can 

be used to generate the parameters a and b of the beta prior distribution. It was 



3. 7. Pesticide discrimination 87 

suggested in [44] that the value of the prior evidence should not exceed three lysime-

ter experiments. This led to the suggestion that the prior evidence corresponds to 

approximately m = 2 lysimeter experiments for a new compound. As in [44], the 

parameters a and b of the beta prior distribution can be derived from the relation-

ships 

a+b m (3.18) 

E(n) 
a ~ 

-- =7r 
a+b 

(3.19) 

This leads to a= mir and b = m(1- ir). Therefore, the prior mean and standard 

deviation of 1r are E(n) = ir and sd(n) = Vir~~~). Taking m = 2, as suggested 

previously, leads to 

a - 2ir (3.20) 

b 2(1-ir) (3.21) 

The next section describes how these results may be applied. 

Example 1 

This example can been seen as an extension of example 1 given in [44]. It illus-

trates how the above can be used to assess the environmental fate of the pesticide 

Thiclopyr. As in [44], the values of koc and tfj~ are 41 and 6, respectively. Also, the 

source of the data were from two lysimeter experiments, where it was found that 

the annual leachate concentrations were below 0.1J.Lg litre- 1 in both experiments. 

Thus, there were m= 2 observations, r = 0 leachers and s = 2 non-leachers. Using 
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equation 3.15, the predicted leaching probability is irwEAJEL = 0.100, which sug

gests that Triclopyr does not leach. F\trthermore, equations 3.20 and 3.21 lead to 

a = 0.20 and b = 1.80 for the parameters of the beta prior distribution. As in [44], 

statistical tables [32] can be used to find a highest density prior probability interval 

for the true leaching probability 1r. This leads to (0.027-0.602) as a 90% interval for 

1r for Triclopyr. Combining the data with the prior distribution leads to a posterior 

beta distribution with parameters a+ r = 0.20 and b + s = 3.80. This leads to a re

vised leaching probability of 0.050 with (0.008-0.416) as a 90% Bayesian confidence 

interval, which supports the classification of Triclopyr as a non-leacher. [The same 

analysis could be followed using ir M EL to generate the parameters of the prior beta 

distribution.] Table 3.5 displays results for the analysis of Triclopyr. It shows the 

prior and posterior leaching probabilities calculated for the original model in [44], 

where MLE was used, and in the case of the interaction model where WEMEL is 

used. The table shows that the interaction model gives better results in the following 

sense. The prior evidence using MLE suggests that Triclopyr leaches with predicted 

probability 0.619, contradicting the posterior estimate, 0.310. On the other hand, 

the evidence in the case of the interaction model shows that both the prior and 

posterior estimates suggest that Triclopyr should be classified as a non-leacher. 

Example 2 

This example is an extension of example 2 given in [44]. It concerns the pesticide 

Bentazone. As in [44], this pesticide has a range of values reported for both koc 

and tf/4. These values (log scale) are listed in Table 3.6 and also displayed in 

Figure 3.9 together with various prior discriminant curves and lines derived from 
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prior Prior posterior posterior 

GUS leaching probability leaching probability 

Method koc 1soil 
I /2 GUS classification probability 90% interval probability 90% interval 

MLE 41 6 1.86 transitional 0.619 0.214-0.882 0.310 0.043-0.504 

WEMEL 41 6 1.86 transitional 0.100 0.027-0.602 0.050 0.008-0.416 

Table 3.5: Prior screening and posterior probabilities for Triclopyr in case of using 

MLE, as in [44], or WEMEL to generate the parameters for the beta prior distribu-

tion. 

different analyses ofGustafson's data. The predicted leaching probabilities irwEMEL, 

calculated for each pair of koc and t~j~ values, are listed in Table 3.6. The data came 

from four lysimeter experiments, resulting in r = 0 leachers and s = 4 non-leachers. 

The results derived from analyses similar to those used in Example 1 are summarized 

in Table 3.6. For example, the analysis using the values of koc = 13.3 and tfj~ = 3 

leads to a prior leaching probability of 0.001 which leads to a = 0.002 and b = 1.998 

from which we obtain (0.000-0.537) as a 90% probability interval. Updating the 

model leads to a+ r = 0.002, b + s = 5.998 and a posterior leaching probability 

of 0.000 with (0.000-0.281) as a 90% Bayesian confidence interval, suggesting that 

Bentazone is not a leacher. 

It seems that there is a conflict between the data and prior leaching probability 

in three of the five pesticides. While the prior evidence strongly indicates that 

Bentazone leaches into groundwater, the evidence from the lysimeter experiments 

(r = 0 leachers from m= 4 experiments) is to the contrary. On the other hand, the 

posterior evidence in each of the five cases seems to support Bentazone as not being 

a leacher, more strongly reflecting the data rather than the prior evidence. Hence, 

the prior evidence is no longer helpful here. This may be because there is a range of 
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Prior Prior Posted or Posterior Posterior 

GUS leaching probability leaching probobility predictive 

koc 1soil 
1/2 GUS classification probability 90% interval probability 90% interval probability 

13.3 3 1.37 non-leacher 0.001 0.000-0.537 0.000 0.000-0.281 0.279 

13.3 21 3.80 leacher 1.000 0.464-1 0.333 0.108-0.632 0.646 

34.0 20 3.21 leacher !.000 0.464-1.000 0.333 0.108-0.632 0.629 

175.6 3 0.84 non-leacher 0.000 0.000-0.536 0.0000 0.000-0.280 0.006 

175.6 21 2.32 transitional 0.869 0.378-0.965 0.290 0.086-0.588 0.085 

Table 3.6: Prior screening and posterior probabilities for Bentazone where WEMEL 

is used to generate the parameters for the beta prior distribution. The last column is 

the posterior predictive probability calculated from the alternative Bayesian analysis 

proposed in section 3.8. 

prior Prior posterior posterior 

GUS leaching probability leaching probability 

koc 1soil 
1/2 GUS classification probability 90% interval probability 90% interval 

13.3 3 1.37 non-leacher 0.927 0.417-0.978 0.309 0.095-0.607 

13.3 21 3.80 leacher 0.999 0.464-1.000 0.333 0.108-0.632 

34.0 20 3.21 leacher 0.990 0.458-0.997 0.330 0.106-0.628 

175.6 3 0.84 non-leacher 0.0012 0.000-0.537 0.0004 0.000-0.281 

175.6 21 2.32 transitional 0.238 0.064-0.683 0.079 0.011-0.368 

Table 3. 7: Prior screening and posterior probabilities for Bentazone as analysed 

in [44] where MLE is used to generate the parameters for the beta prior distribution. 
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Figure 3.9: The available values of koc and t~1i in a log-scale for Bentazone together 

with various discriminant curves and lines derived from analyses of Gustafson's 

data. The dotted and dashed curves represent the discriminant curves GUS-2.8 

and GUS=l.8 as derived in [25]. The blue curve represents a logistic discriminant 

curve estimated by WEMEL. The black line is a logistic discriminant line estimated 

by MLE as in [44]. 
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values rather than a single value reported for each covariate. Pesticide discrimination 

in the case of uncertain covariates (the focus of this thesis) was addressed and tackled 

for the first time in [43] using Bayes linear methods. 

For comparison, Table 3. 7 shows prior screening and posterior probabilities for 

Bentazone as analysed in [44] where MLE was used. 

3.8 An alternative Bayesian analysis 

As discussed above, the focus in [44] was on Bayesian inferences about the prob

ability 1r that a given pesticide will leach. The likelihood function of 1r derives 

from modelling the results of lysimeter experiments as a Binomial variate. Then, 

a conjugate prior distribution, in the form of a beta distribution with a specified 

parameters, for 1r was chosen, so that the resulting posterior distribution is also a 

beta distribution. 

In this section, an alternative Bayesian analysis is proposed. It uses Gustafson's 

data, results from lysimeter experiments and logistic regression in a 'direct' approach 

as follows. 

The idea is to combine the 22 cases from Gustafson's data with the results from 

lysimeter experiments for a given pesticide in one data set, which we denote by 

y. This means that for a given pesticide with m lysimeter experiments, y is a 

(22 +m) x 1 vector with values 0 or 1, depends on whether the case is classified or 

monitored as a non-leacher or as a leacher, respectively. 

The method is implemented using "Bayesian predictive inference", as described 

in Chapter 2. This inference uses the posterior distribution p(,Bjy) of the regression 
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parameters {3 in a logistic model for the leaching probabilities to make inferences 

about the leaching status Ynew of a new pesticide conditional on the data y, which 

can be calculated (see Section 2.4) as: 

(3.22) 

provided y and Ynew are conditionally independent, given {3 [18], which we assume 

here. This posterior predictive probability, P(Ynew /y), requires a three dimensional 

integral for each value of Ynew· Alternatively, simulation techniques can be used to 

draw samples from P(Ynew/y). The simulation technique used here comprises the 

following steps: 

1. Simulate N values of {3 from the posterior distribution p(f3/y). This can be 

done using MCMC simulation using, for example, the function MCMClogi t in 

the R package. A non-informative prior distribution may be chosen for {3. 

2. For each simulated value {3. we calculate the leaching probability 

(3.23) 

3. Draw U from a uniform [0, 1] distribution. 

4. Set 

{ 

1 if U < 7r new 
Ynew = 

0 otherwise. 

5. P(Ynew/Y) is estimated as the proportion of 1 's in the MCMC sample. 
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Example 3 

This example illustrates how the above can be used to analyse the pesticide Tri

clopyr. As mentioned in Example 1, this pesticide has Znew,l = 41, Znew,2 = 6 and 

two lysimeter experiments, m = 2, were undertaken resulting in r = 0 leachers and 

s = 2 non-leachers. Hence, two cases will be added to the Gustafson data in which 

each case is classified as a non-leacher. This leads to new data, y, with 24 cases in 

which 8 are classified as leachers and 16 as non-leachers. Now, we wish to make in

ference about a future observation Ynew conditional on the data y. A MCMC sample 

of 10000 leads to the estimate P(Ynew = 1ly) = 0.2512 which supports the classifi

cation of Triclopyr as a non-leacher, a more convincing conclusion than that for the 

model in [44] which gives 0.310 as a posterior estimate of the leaching probability. 

Example 4 

This example concerns the pesticide Bentazone which has a range of values reported 

for both koc and tf/i. There are also m = 4 lysimeter experiments resulting in 

r = 0 leachers and s = 4 non-leachers. Thus, four non-leaching cases will be 

added to the Gustafson data. The last column in Table 3.6 shows the estimated 

posterior predictive probability P(Ynew = 1ly) of a future observation Ynew for each 

available pair of koc and tf/i- In cases 1, 4 and 5, the posterior predictive probability 

suggests that the Bentazone does not leach. In cases 2 and 3, the posterior predictive 

probability suggests that the Bentazone is a leacher. However, these two cases are 

located in the NW corner, as in Figure 3.9, which means that they are pairs with low 

koc and high tf/J, which is consistent with the conjecture proposed in [43] and [45] 
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that leaching pesticides are those with a low koc and high t~j~, and the non-leacher 

pesticides are those with high koc and low t~~~. 

3.9 Conclusion 

This chapter extends the Bayesian methods proposed in [44]. One extension incor

porates an interaction term in the linear predictor of the logistic regression model 

as follows for pesticide i 

i = 1, 2, ... , n 

where the leaching status Yi is regarded as a binary response having a Bernoulli 

distribution with probability of success p(Yi = 1) = 1ri = exp(17i)/(1 + exp(17i)). 

Here, a deficiency arises in fitting the logistic regression by maximum likelihood. 

The deficiency is that the MLE does not exist when there is a complete separation 

in the space of the explanatory variables relative to the model. This difficulty 

was resolved by first measuring the overlap in the logistic regression model via the 

depth-based algorithm proposed in [7], and then the alternative estimators MEL 

and WEMEL proposed in [8] were used. 

Stepwise procedures are used to select covariates and the most important model 

terms to be included in the linear predictor. These procedures show that koc and 

tfj~, but not S H 2o, are important in discriminating between the leaching and non

leaching pesticides. In addition, some model diagnostics, such as residual patterns 

and influence measures are used for checking model adequacy. 

The interaction model fitted Gustafson's data better than the main effects model 

proposed in [44], in the sense that none of the pesticides were misclassified, whereas 
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three pesticides were misclassified using the main effects model where there is an 

overlap. As in [44], the estimated leaching probabilities were used as a prior screening 

to assess the parameters for the beta prior distribution, and the same lysimeter data 

was used. 

An alternative Bayesian analysis was proposed which combines the results from 

lysimeter experiments and Gustafson's data. Then, Bayesian predictive inference 

is used to draw inferences about a future observation for any particular pesticide. 

These methods were illustrated with examples discussed in [44] and showed improved 

classification. 

A difficulty that arises in both the original study and here concerns analysis of 

a given pesticide with a range of covariate values for both koc and t~~~, that is, a 

pesticide with uncertain covariates. The first attempt to tackle discrimination with 

uncertain covariates was given in [43], where Bayes linear methods were used. These 

ideas will be extended in the next chapter to any linear model, including one with 

an interaction term. 



Chapter 4 

Bayes linear discrimination with 

uncertain covariates 

4.1 Introduction 

The use of Bayes linear estimation for the simple linear model proposed in [43] 

was the first attempt to discriminate pesticides as leachers or non-leachers based on 

two of their chemical properties where the published values of these properties are 

uncertain. This chapter applies the general Bayes linear estimate derived in Chapter 

2 to a model with an interaction term. 

The chapter is organised as follows. In Section 4.2, we discuss discriminant mod-

els. This includes a discussion about regression analysis, linear discriminant analysis 

(LDA) and quadratic discriminant analysis (QDA). In Section 4.3, we investigate 

whether the prior discriminant curve derived from analysis of Gustafson's data pro-

vides good prediction for the EA pesticides. In Section 4.4, we implement the Bayes 

linear approach to analyse the EA data. This includes specifying prior beliefs struc-

97 
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tures for the unknown quantities, adjusting these beliefs, analysing these adjusted 

beliefs and investigating whether re-structuring the prior beliefs will result in better 

prediction for the EA data. In Section 4.5, the linear model proposed in [43] will 

be subjected to further diagnostic analysis to improve it. Section 4.6 concludes the 

chapter. 

4.2 Formulation of the discriminant models 

Let y denote a vector of binary responses where Yi = 1 if the ith pesticide is moni-

tared as a leacher and Yi = 0 if it is a non-leacher. We consider a linear model with 

main effects terms z1 = log koc and z2 = log t~~~ and their interaction z1z2 , 

(4.1) 

We now discuss the relationship between fitting this model by least squares and 

discriminant analysis. 

Much of the following is taken from [27]. Linear Discriminant analysis (LOA) 

arises (in our case) from considering two classes, non-leachers (ITa) and leachers (ITI). 

Let fa(z) and fi(z) be the class-conditional density of z = (z1 , z2 ) in populations 

ITa and IT 1 , respectively, and let 7ra and 1r1 be the prior probabilities of populations 

ITa and IT 1 , respectively, with 7ra + 1r1 = 1. Now, we assume that each class density, 

fk(z), is modelled as multivariate Gaussian with mean vector J..tk and covariance 

matrix L:k 

(4.2) 

for k = 0, 1. Linear discriminant analysis (LOA) arises when we assume that the 
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classes have a common covariance matrix l:k = 2::.:: for k = 0 and 1. From 4.2, the 

discriminant functions 8k(z) derive from the log-ratio of the posterior probabilities 

of the two classes and are given by 

(4.3) 

Each 8k( z) is linear in z1 and z2 , where we see that the linear coefficients are functions 

of the parameters J-Lo, J-L1 and E of the Gaussian distributions and 1r0 and 1r1. In 

practice, these parameters are estimated as the corresponding moment estimates 

from the sets of sample values of (z1 , z2 ) from the two populations; see [27], for 

example. 

With two classes, there is a simple correspondence between linear discriminant 

analysis and classification by linear least squares; see, [27] and [43]. The LOA rule 

classifies to class 1 if 

TE-1 ( ~ ~ ) 1 ~ TE-1 ~ 1 ~ rt-1 ~ I (N, /N) 1 (N /N) z I-L1 - J-Lo > 2 J-L1 I-L1 - 2 J-Lo J-Lo + og o - og 1 (4.4) 

and class 0 otherwise, where Nk is the number of sample values from population 

k, and ftk and E are the moment estimates. [In particular, E is a pooled estimate 

of E0 and E1, the individual variance matrix estimates from the two samples.] As 

shown in [27], the coefficients vector from least squares is proportional to the LOA 

direction given in 4.4, but unless N0 = N1 , the intercepts are different. However, in 

practice, we can choose the intercept or cut-point that empirically minimizes error 

rates for a given dataset, see, [27], page 88, and Section 5.9 of this thesis. "Optimal 

scoring" can also be used to establish a correspondence between regression and LOA; 

see [27], page 88. 
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It turns out that the linear discriminant between non-leachers (y = 0) and leach-

ers (y = 1) can be derived by ordinary least squares fitting of the linear model 

(4.5) 

Quadratic Discriminant Analysis (QDA) arises under the same assumptions for 

LDA, except that the Ek in 4.2 are not assumed to be equal and 4.3 becomes 

(4.6) 

which is quadratic in z1 and z2 . 

Hastie et al. in (27] demonstrate that QDA is well approximated by least squares 

analysis of the appropriate quadratic model, in our case model 4.1, which is equiv-

alent to LDA for three discriminants x 1 = z1 , x2 = z2 and x 3 = z1z2 . This ap-

proximation is appropriate here, as our main purpose is to use the quadratic fit to 

Gustafson's data and estimated variance matrix as a source of prior information 

about f3 in the Bayes linear analysis of the 43 pesticides from the EA data base. 

By analogy with the logistic model in Chapter 3 and Gustafson's form in 1.2, 

model 4.1 will be reduced to 

(4.7) 

This simplified form can be further justified using similar procedures to those used 

in Chapter 3 for the logistic model. 

Approximating QDA by least squares analysis of the quadratic model 4. 7 leads 

to the fit 

(4.8) 
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Figure 4.1: The Gustafson data together with the discriminant curve 4.10, black. 

The blue curve is the discriminant curve 4.10, but with cut point of '0.4 instead of 

0.5. The blue curve results. in better discrimination, where only one pesticide is 

misclassified. 

and estimated variance-covariance matrix 

0.0562 -0.0195 0.001 

s
2
(GTGt

1 
= -0.0195 0~0096 -7 E - 4 (4.9) 

0.001 - 7 E - 4 lE - 4 

where s2 = 0.15 is the estimated error variance and G is the model matrix. 

Figure 4.1 shows the values of z1 = log koc and z2 = log t~ii of Gustafson's data 

and the discriminant curve (black) 

- 0.03 + 0.31z2- 0.03z1z2 = 0.5 ( 4.10) 

The curve shows good discrimination between leaching and non-leaching pesticides 

with misclassification of three pesticides. However, as mentioned above, this fit can 

be improved by choosing a different cut-point to minimise error rate. For example, 

.,;..,.- . 
. "j~":- \·-"'· -~-

. -' I .... ..... 
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the choice 0.4 instead of 0.5 in 4.10 leads to the blue curve in Figure 4.1, where only 

one pesticide is misclassified. 

In the following section, we investigate whether the non-linear discrimination 

based on Gustafson's data provides good prediction for the EA data. 

4.3 Prior discrimination for the EA data 

As discussed in Chapter 1, 43 pesticides were aggregated from the EA database. 

These 43 pesticides have complete information in the sense that for each pesticide the 

leachability status (whether or not it was monitored as a leacher in a specified year) 

and a range of reported values for both of the explanatory variables koc and tf1i are 

known. This information is displayed in Table 1.1. The covariate means are plotted 

in Figure 4.2 with the discriminator curve in 4.10. There is poor discrimination 

apparent in both Figure 4.2 and Figure 4.3 which shows the plot of iJ = Mb vs. 

y where M= (l,m2,m1m 2), bT = (-0.03,0.31, -0.03) and m 1 and m 2 are the 

vectors of the two covariate means, and m 1 m 2 stands for a component-wise product. 

As in [43], the poor prediction for the EA data using the prior non-linear discrim

inant can be improved by a Bayes linear estimate which accounts for uncertainty in 

the covariates. The solution begins by investigating whether the interaction model 

in 4. 7 relates the observed binary vector y for the 43 pesticides to their correspond

ing unobserved vectors z 1 and z 2 with suitable prior information on z 1 and z 2 . The 

43 pesticides will be considered as not inconsistent with the Gustafson's model if 

iJ = Ey(1J) is highly correlated with y, where 71 = X/3. This means that a large 
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Figure 4.2: Mean values .of log koc and log t!j!J for the EA data with the discriminant 

curve 4.10, black, obtained frofn Gustafson 's data. The blue curve is the discriminant 

curve. 4.10, but with cut point. of 0.4. Botl:t. prior ·discriminant curves result in ·poor 

discrimination. 
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percentage of the leachers (non-leachers) should have y-values greater (less) than 

some cut-off point such as 0.5. 

The next section discusses the steps needed to compute the Bayes linear estimate. 

4.4 Implementing the Bayes linear model 

Two steps are needed to implement a Bayes linear model: (a) choosing prior in

formation and organising them in form of means, variances and covariances, and 

(b) updating the prior information by combining them with observed data using 

adjusted expectation, as given in 2.16. 

4.4.1 Prior information for zh z2, {3 and E 

As mentioned earlier, the values of the covariates z1 for log koc and z2 for log tfj~ are 

uncertain in the sense that there is a range of values reported for each of them for 

each pesticide. The Bayes linear approach is based on using prior information on z1, 

z2 , {3 and E. First of all, the prior information on z1 and z2 are chosen in the forms 

of their USDA database means and variances. Let m 1 and m 2 denote the vector of 

means of the components of z1 and z2 , respectively. Also, let v 1 and v 2 denote the 

diagonal matrices of the variances of the components of z1 and z2 , respectively. We 

choose to specify the prior information for z 1 and z 2 as: 

E(zi) = m 1, Var(zi) = v1 

E(z2 ) = m 2 , Var(z2 ) = v 2 and Cov(z 1 , z 2 ) = 0 
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where the last equation represents the assumption that the covariates z 1 and z 2 are 

uncorrelated. 

The prior information on {3 and E are derived from the least-squares analysis of 

the interaction model in equation 4.7 applied to Gustafson's data. In particular, the 

following prior information is assumed. 

E(/3) = b, Var(,B) = Ef3 = s2 (GTG)- 1 

E(e) = 0, Var(e) = s2 I 

where b = ( -0.03, 0.31, -0.03), s2 = 0.15 (error variance), I is the identity matrix, 

G is the model matrix and EfJ is given in 4.9. 

Finally, z 1 , z 2 , {3 and e are assumed to be uncorrelated. 

4.4.2 Updating the model 

The Bayes linear estimate iJ = Ey(7J), where 7J = X{3, is used to update the model 

(4.11) 

where x1 = z2 and x2 = z1z2 . Using Theorem 1 and Example 2 in Section 2.3.1, the 

Bayes linear estimate can be computed as: 

(4.12) 

where M = E[X], a 2 A = MEfJ!v[T + D and D is a diagonal matrix with Dii = 

bT'Ei b + trace[EiEfJ], where Ei = Var[xi], the variance matrix of the i-th row of X, 

namely xf = (1, zi2 , zi 1zi2 ); see Example 2 in Section 2.3.1 for further detail. 

Note that iJ in 4.12 is of the form iJ = Ycustafson +a, where a are the adjustments 

to the prior values Ycustafson = Mb. 
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Figure 4.4, panel (a), where y is plotted against y, shows good posterior discrimi

nation between leachers and non-leachers in comparison with the poor discrimination 

for the unadjusted values Ycustafsan depicted in Figure 4.3. 

As discussed in [27], the cut-off point can be chosen in a way which minimizes 

the error rate. For example, a cut-off point such as 

0.5 * (max {adjusted values of non-leachers} + min {adjusted values of leachers}) 

is preferable to 0.5, when the adjusted values are separated. 

4.4.3 Diagnostic analysis for belief adjustment 

After adjusting our prior beliefs, we use Bayes linear diagnostics to analyse the 

observed adjustments. This will help us to examine any conflict between data and 

prior specification. In this regard, useful diagnostic tools are, for example, the 

system resolution and the size ratio diagnostics, described in Section 2.3. 

As in 2.24, the resolution transform matrix is 

T 71 ,y = Var("7)- 1RVary("7) 
( 4.13) 

Var("7)- 1Cov(7], y)Var(y)- 1Cov(y, 11) 

which can be computed as A (I+ A)-1
, where A is given below 4.12. 

As in 2.27, the system resolution for 7], Ry(11), or the overall proportion for un-

certainty explained by the model is the trace of T 11:y divided by 43, the rank of 

the matrix Var(7]). Here, the value of Ry("7) is 0.19, the proportion of uncertainty 

explained by the model, reflects the large degree of uncertainty about the values of 

koc and t~~~; see also [43]. 
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As in 2.29, the size ratio for the adjustment of TJ by the data y, Sry(TJ), is defined 

to be 

Sizey ( 71) 
E(Sizey ( 71)) 

[Eu (7J)-E(7J))TVar(7J)- 1 [Eu (7J)-E(7J)) 

I:;;~l -\; 

(4.14) 

where E(Sizey(TJ)) = 2:::~: 1 /\ = trace {T11:y} = RUy(TJ). Here, Sizey(TJ) = 9.961, 

E(Sizey(TJ)) = 8.180, and hence Sry(TJ) = 1.218 which is bigger than its expectation 

of unity. The lower and upper thresholds for Sry(TJ), as calculated by 2.31, are 0 

and 2.158, so that the value of Sry(TJ) is within this interval. [Note that the lower 

bound replaces the negative computed value.] 

Note also that the posterior standard deviations of the components of TJ, calcu-

lated from the posterior variance a 2A(I +A)- 1 (see Theorem 1 in Chapter 2), range 

from 0.09 to 0.26, compared to their prior standard deviations which range from 

0.12 to 0.41. 

However, the combination of (a) a value of Sry(x/3) greater than one, (b) the 

imperfect separation of leachers and non-leachers and (c) a concern that the prior 

variance matrix for /3, from the least squares analysis of Gustafson's data is overly 

precise, suggested investigating the effect of increasing the prior uncertainty for /3 

in various ways. 

4.4.4 Modifying prior beliefs about {3 

The applicability of using the Gustafson's data as a source of prior information for 

/3 to analyse the EA data may be limited, but still usable; see Section 5.3 for more 

details. We investigate whether down-weighting prior information will improve the 

Bayes linear prediction for the EA data. Down-weighting may be achieved by mod-
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ifying the prior variance-covariance matrix :0.8, the estimated variance-covariance 

matrix 4.9 from the least squares analysis of 4.7. For example, :0.8 can be modified 

to be of the form aE13 + bDr,fJ, where Dr,fJ is the diagonal of :013 and a and b are 

factors which can be chosen in different ways to reflect our uncertainty about prior 

information; see Section 5.3 for more details and a list of possible types of choice of 

a and b. The Bayes linear model is updated using the modified variance-covariance 

form aE13 + bDr,fJ for :0.8. Minimum values of a and b resulting in perfect discrimina

tion between leaching and non-leaching pesticides were determined experimentally 

as follows. 

1. If b = 0, then any real value of a ~ 7.7 results in complete separation between 

leaching and non-leaching pesticides. For example, Figure 4.4, panel (b), shows 

the results for a = 8. We believe that the smallest value of a that gives 

complete separation is the best choice so as to avoid any exaggeration of our 

prior uncertainty using larger values; see the analysis of the choice of a = 100, 

below, where there is complete separation but the size ratio is further from 

the ideal value of unity than for the choice a = 8. 

2. If a= 1, then any real value of b ~ 3.2 results in complete separation between 

leaching and non-leaching pesticides. For example, Figure 4.4, panel (c), shows 

the results for b = 4. 

3. If a = 0, then any real value of b ~ 4 results in complete separation between 

leaching and non-leaching pesticides. For example, Figure 4.4, panel (d), shows 

the results for b = 4. 
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Var(,l3) Ry(ry) Sry( 17) Size ratio interval 

E.a 0.190 1.218 (0, 2.158) 

8E.a 0.305 0.698 (0, 2.093) 

E.a + 4D-r;13 0.366 0.604 (0, 2.044) 

4D-r:13 
0.354 0.625 (0, 2.049) 

Table 4.1: Various structure types of variance-covariance matrix of ,l3 together with 

summaries of diagnostic analysis for belief adjustment for the quadratic model, 

namely the system resolution Ry(ry), the size ratio Sry(17) and the size ratio in

terval. D-r;
13 

denotes the diagonal of E13 . 

Furthermore, each of these choices for a and b resulted in an acceptable size ratio; 

see Table 4.1. 

Note also from Figure 4.4 that the results for (1), (2) and (3) (above) are almost 

identical; see also Table 4.1. 

Jointly choosing a and b to minimize the separation, or some form of Bayesian 

choice for a and b, is possible, but beyond the scope of this thesis. 

Table 4.1 displays the system resolution Ry(ry), the size ratio Sry(17) and the 

size ratio interval, where negative lower bounds are replaced by zero. We notice 

that the models with modified variance-covariance matrices have (a) larger system 

resolution values and hence larger proportions of uncertainty are explained by the 

models, (b) acceptable size ratios which fall within approximate 95% credible limits, 

and (c) complete separation between the leaching and non-leaching pesticides. 

It is worth to noting here that very large values for a and b were considered and 

resulted in complete separation between non-leachers and leachers, but some of the 
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Figure 4.4: Bayes linear prediCtions for the EA ·data using the i11teraction m0del 

taking into account uncertainty in the covariates, where in panel (a) the original 

prior: variance-covariahce matrix E,B for ~ is used,_ in panels (b), ·(c) and (d) the 

modified. prior variance-covariance matrices 8E13, E13 + 4DE13 and 4DE~J, respectively, 

·are ,used, where DE~J is the dia~onal, of E13. The cut-off points in panels (a), (b), · (c) 

and (d) are 0.5,, 0.41 , '0.43 and 0.44, respectively. 
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Figure 4.5: Bayes linear predictions for the EA data using the interattion model 

taking into account uncertainty in the covariates, where the prior variance-covariance . . 

matrix E13 is modified to lOOE13. The cut-off point is. 0.46. 

analyses of beliefs adjustment warn us of using such large values. As ari example, the 

form iOOE13 results in c0mplete separation, as depicted in Figure 4.5, with system 

resolution of 0. 708. However, the size of the adjustment is 7.911 with expected value 

of 30.435, so the size ratio is 0.260 which is distant from its· expectati0n of unity, 

but it is within its size ratio interval (0.066, 1.934)', which "suggests that we have 

exaggera,ted. pur prior uncertainty"; see [24]. 

4.5 Further analysis. of the linear discriminant 

4.5.1 Background 

The linear model', in 4.5, proposed in [43j, will be subjected here to further diagnostic 

analysis. As in :(43] and explained above, the linear regression analysis led to the 



4_.5. Ftu~ther analysis of the linear discriminant 112 

~ 

~ • 
"' 

~ 
I "' ;;; 
.r: 
·a .. <f 

8' 
-' 

"' • 
0 

"' I 
0 2 4 6 8 10 12 14 

Log kOc 

Figure 4.6: Linear discrimina:tions based on Gustafson's data, see [43]. The black 

discriminant line is plotted using cut-off point of 0.5. The blue· discriminant line .i!3 

plotted using the cut-off point 0.44, which results in better discrimination, where 

only one pesticide is misclassified. 

least squares fit 

y = 1.17- 0.157z1 + 0.064z2 

and estimated variance-covariance matrix 

0.0479 - 0.0044 -0.0029 

s2 (GTG)- 1 
= -0.00.44 0.0010 -'0.0006 

-0.0029 - O.OOOG 0._0017 

where s 2 = 0.116 is the estimated error varian<;e and G is the model matrix. 

(4.15) 

( 4.16) 

Figure 4.6 shows the· values of z1 = log koc and z2 = log t~~~ of Gustafson's data 

and the discriminant line (black) 

1.17- 0.157z1 + 0.064z2 = 0.5 ( 4.17) 
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Figure 4.8: Predkted vs. observed leaching state for the EA data based on prior 

analysis of Gustafson's data; see [43] . 
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The plot shows good discrimination between leaching and non-leaching pesticides 

with misclassification of two pesticides. However, as suggested in [27], this fit can be 

improved by choosing a different cut-point that minimizes error rate. For example, 

the choice 0.44 instead of 0.5 in 4.17 leads to a better discrimination as indicated 

by the blue line in Figure 4.6, where only one pesticide is misclassified. 

Figure 4. 7 shows the scatter plot of the means of koc and t~~~ for the 43 pes

ticides with the discriminator line in 4.17. There is poor discrimination appar

ent in Figure 4. 7 and Figure 4.8 which shows the plot of iJ = Mb vs y where 

M= (1,m1,m2), bT = (1.17,-0.157,0.064) and m 1 and m 2 are the vectors of 

covariate means. 

The poor discrimination was then tackled by means of Bayes linear estimation. 

The same prior specifications as in Section 4.4.1 were used with bT = (1.17, -0.157, 0.064) 

and ~.a in 4.16. 

Then, the Bayes linear estimate iJ = Ey( 1J) was used to update the model 

( 4.18) 

where x1 = z1 and x 2 = z2 . The Bayes linear estimate was computed as in 4.12 with 

xf = (1, zil, zi2 ); see Example 1 in Section 2.3.1 for more calculation details. 

The adjustment of 1J by y results in better discrimination, as depicted in Fig

ure 4.9, panel (a), in comparison with the poor discrimination for the unadjustecl 

values depicted in Figure 4.8. 

In the following, diagnostic analyses for belief adjustment will be carried out. 

These analyses indicate conflict between the data and prior specifications. Where 

conflict does occur, we may choose to re-consider our prior specifications. 
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4.5.2 Diagnostic analyses 

The same analyses used in Section 4.4.3 will be applied here, namely the system 

resolution and the size ratio diagnostics. 

The system resolution Ry(77) is 0.21, reflecting the large degree of uncertainty 

about the values of koc and tfj~. The system resolution was calculated in [43], but 

a different value was obtained due to an error there; see Section 1.4 for more detail. 

The size of the adjustment Sizey( 17) is 17.114 with an expected size E(Sizey( 17)) 

of 8.869, giving a size ratio Sry(77) of 1.930 which is bigger than its expectation of 

unity. The lower and upper thresholds for Sry(77) are 0 and 2.187, so that the value 

of Sr y( 17) is within its 95% limits. 

As in the quadratic model analysis above, a value of Sry(77) greater than one, 

the modest Bayes prediction shown in Figure 4.9, panel (a), and the limitation of 

Gustafson's data as a source of prior information, all support the view of possible 

conflict between the prior beliefs and the data. This leads us to re-structure our 

prior beliefs about {3 to improve the Bayes linear prediction. 

As in Section 4.4.4, the form aE13 + bDE
13 

can be used to re-structure our prior 

beliefs about E13 . Table 4.2, displays the best forms of prior beliefs together with 

results from the diagnostic analyses for belief adjustment. As seen from the table, 

the modifications of E13 help to increase slightly the system resolutions which means 

that the proportions of uncertainty explained by the models are slightly increased. 

Furthermore, the size ratios are close to their expectations of unity and are all within 

their lower and upper limits. Finally, the modifications of E13 result in better Bayes 

linear predictions as shown in Figure 4.9, panels (b), (c) and (d), where complete 
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Fi'gure 4.9: Bayes linear predictions for the EA data for the lil)e~ mo_del prqposed 

in (43} taking into account uncertainty in the .covafiates, where in panel (a) the 

original prior· variance-covariance matrix E,13 for {3 is used, in. paneJs (b) , (c) and 

(d)' the. modified prior variance-covari.ance matrices T'£.13, E,13 + 7 Dr:.{j and 8Dr:.{j , 

~:espectively, are used, where Dr.
13 

is the diagonal of E,13. The cut-off. points in panels, 

('a), (b) , (c) and (d) are 0.5, 0,3_7, 0.37 11nd 0.37, respectively: 
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Var(,/3) Ry(1J) Sry(1J) Size ratio interval 

~.a 0.206 1.930 (0, 2.187) 

7~.a 0.291 0.925 (0, 2.134) 

~.a + 7 DL.{J 0.303 0.932 (0, 2.126) 

8DL.{J 0.302 0.946 (0, 2.125) 

Table 4.2: Various structure types of variance-covariance matrix of f3 together with 

summaries of diagnostic analysis for belief adjustment for the linear model, namely 

the system resolution Ry(1J), the size ratio Sry(1J) and the size ratio interval, where 

the negative lower bound is replaced by zero. DL.tJ denotes the diagonal of ~13 . 

separation between the two groups of pesticides is achieved. 

4.6 Conclusion 

The primary aim of this chapter has been to investigate the Bayes linear approach 

suggested in [43] with an interaction term in the linear predictor. The Bayes linear 

approach combines prior knowledge of uncertainty with observational data using 

expectation. The general results developed in Chapter 2 were used to compute the 

Bayes linear estimate of the linear predictor. Based on misclassification statistics, 

the interaction model is slightly better than the original linear model proposed 

in [43]. A brief discussion on regression analysis, linear discriminant analysis (LOA) 

and quadratic discriminant analysis (QDA) was provided. 

The beliefs adjustments were analysed using certain Bayes linear diagnostic tools, 

such as system resolution and size ratio. This analysis suggests that the prior 
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beliefs can be reformulated to improve the belief adjustments. Furthermore, such a 

reformulation resulted in complete separation between the leaching and non-leaching 

pesticides. 

Finally, additional analyses were carried out for the linear model proposed in [43]. 

These analyses led also to complete separation between the two groups of the EA 

data. 



Chapter 5 

Full Bayes methods for analysing 

pesticide contamination 

5.1 Introduction 

The aim of this chapter is to demonstrate the use of classical Bayesian methods (as 

distinct from Bayes linear methods) in exploring whether or not it is possible to 

achieve discriminate between leachers and non-leachers on the basis of two of their 

chemical properties, the adsorption coefficient koc and soil half-life tfj~, when the 

monitored values of these properties are uncertain, in the sense that we only have a 

range of values reported for both koc and tf1~ for each pesticide. 

The Bayesian methods use logistic regression and prior information from (i) 

analysis of Gustafson's data (where a single value is reported for both koc and tf1i) 

for the model parameters and ( ii) the ranges of the chemical properties for these 

covariates from USDA database. The proposed models are analysed by means of 

Markov Chain Monte Carlo (MCMC) simulation techniques using the freely available 

119 
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WinBUGS software and R package. 

The chapter is organised as follows. Section 5.2 describes the methodology used 

and Section 5.3 provides a general description of the proposed models. Section 5.4 

discusses discrimination for Gustafson's data and whether or not this discrimina

tion provides a good prediction for the EA data. Section 5.5 describes the Bayesian 

methods developed to analyse the EA data. Sections 5.6 and 5. 7 explain how to 

implement the proposed models in the WinBUGS software and the R package. Sec

tion 5.8 assesses convergence of the MCMC algorithm and Section 5.9 discusses the 

results obtained from the MCMC analysis and how to strengthen these results using 

the multivariate runs test described in Chapter 2. 

5.2 Methodology 

The main purpose of this chapter is to develop Bayesian methods for logistic re

gression with uncertain covariates using MCMC simulation techniques. Classical 

Bayesian analysis (unlike Bayes linear methods) requires specifying a full probabil

ity model for the data to be used as a likelihood function and a prior distribution for 

all of the unknown parameters. The core of Bayesian statistics is the combination 

of the likelihood together with the prior distribution to produce a posterior distri

bution for the parameters of interest from which inferences can be drawn. However, 

calculating marginal posterior distributions requires high dimensional integrations 

which may not be available in a closed form. One suggestion for making this kind 

of calculation more tractable is to use MCMC simulation. MCMC is implemented 

here using the WinBUGS software and the R package. Graphical models, as de-
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scribed in sections 2.4.4 and 2.4.6, are used to provide a non-algebraic description 

of a proposed model. 

Logistic models with and without an interaction term will be investigated. An 

awkward additional feature of Bayesian analysis for the interaction model is the 

complete separation of leachers and non-leachers in Gustafson's data, a situation 

where MLE fails; see Chapter 2 for details. 

The study starts with discrimination for the Gustafson data. This includes a 

brief discussion of the method proposed by Worrall et al. in [44] using logistic 

regression with an interaction term to analyse this data. Then the study moves on to 

investigate whether the discriminant line proposed in [44] or the discriminant curves 

derived from Gustafson's data provide good prediction for the EA data. This leads 

to different Bayesian methods to analyse the EA database pesticides. The analysis 

starts by considering three main effects models ( Models 1, 2 and 3) and their 

corresponding extensions to include an interaction term ( Models 1 *, 2* and 3*). 

Each model uses the same sources of prior information. The models are compared 

using the Deviance Information Criterion (DIC) proposed in [39]. Finally, as in [45], 

the conclusions of the proposed models will be strengthened using the multivariate 

runs test proposed in [17] to test here the degree of separation between leaching and 

non-leaching pesticides. 

5.3 General descriptions of the proposed models 

The models are implemented in two stages as follows. 

Stage 1: Likelihood 
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In this stage the following logistic regression model is adopted. Let z1 = log k0 c, 

z2 = log t~j~ and 

1 if ith pesticide is monitored as a leacher 

0 if ith pesticide is monitored as a non-leacher. 

For the unstarred models Yi "'Bernoulli(1ri), where zi = (zi 1 , zi2 ) is linked to E(yi) = 

7ri by the logit function, 

(5.1) 

where 1ri is the probability that the ith pesticide will leach into the groundwater, 

{3 = ({30 , {31 , {32f is a vector of unknown parameters and 'r/i is the linear predictor. 

The starred models use a linear predictor with an interaction term, leading to 

a discrimination curve 1r = 0.5 in the (z1 , z2 ) plane. One suggestion for drawing 

this curve is to model the logit link function as an additive function of z2 and an 

interaction term of z1 and z2 , by analogy with the GUS curve of Gustafson in [25]. 

In this case, the linear predictor is 

A Bernoulli distribution for each component of y is common for all proposed models, 

except for models 3 and 3·, where each component is assigned a Binomial distribu-

tion. Moreover, for all models, the components of y are assumed to be conditionally 

independent given {3 and the values of koc and tfji, so that likelihood for {3, koc and 

tsoil can be written 
1/2 

n 

p(ylz1,Z2,{3) = IJP(Yilzil,Zi2,{3). 
i=l 

(5.3) 
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Stage 2: Prior distributions 

The prior information for all of the unknowns is chosen at this stage, namely for {3 

and the zi· The form of prior information will differ for each model. 

The prior information for the vector {3 is derived from Gustafson's data. How

ever, it is believed that there are differences between the local environments of Cali

fornia, where the Gustafson data was collected, and the United Kingdom, where the 

EA data was collected. For example, "California climate and soil types are relatively 

homogeneous compared with the general range of soils and types encountered across 

Europe and the United States" [43]. Hence, the applicability of using the Gustafson 

data as prior information to analyse the EA data may be limited, but still usable. 

The perfect separation of leachers and non-leachers for Gustafson's data, based on 

koc and tfji, see Figure 1. 2, suggests what might be expected from our analysis of 

the EA data. Also, we investigate whether down weighting the (limited) informa

tion derived from Gustafson data will lead to improved discrimination for the EA 

data. Down weighting information from previous studies because of limitations of 

applying that information to a current study is discussed in [11] and [5], for example. 

Down weighting prior information may be achieved in diffrent ways. For example, 

in the case of several unknowns, like here, a prior variance-covariance matrix, derived 

from a previous study, may be modified to down weight prior information. For 

example, in the present application, the prior variance-covariance matrix Ef3 can be 

modified to the form a'Ef3 + bDr:,
13

, where Dr:,
13 

is the diagonal of 'Ef3 and a and b are 

factors which can be chosen in different ways to reflect our uncertainty about prior 
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information. In this thesis, we consider three types of choice of a and b as follows. 

1. b = 0 with different choices of a, for example a = 4, 25,64 and 100. This 

choice, discussed in [11] and [5] for a scalar parameter, inflates the variances 

but the correlation structure is the same as for E13 . 

2. a = 1 with different choices of b, for example b = 0, 3, 24, 63 and 99. In this 

choice, only variances are inflated, but the magnitudes of correlations between 

the different f3 parameters will be reduced. Notice that b = 0 corresponds to 

no down-weighting. 

3. a = 0 with different choices of b, for example b = 4, 25,64 and 100. In this 

choice, the variances are inflated and covariances are omitted. 

We will investigate, experimentally, the above forms of variance-covariance mod

ification to determine a suitable choice of prior information. Choice will be based 

on issues such as discrimination power and MCMC convergence. 

As mentioned earlier, we start with Gustafson's data to see whether or not the 

discriminant there provides good prediction for the EA data. 

5.4 Predicting the EA data using Gustafson's data 

Figure 5.1 plots the values of koc and t~ji for the 22 pesticides from Gustafson 's 

data together with various discriminant lines and curves for discriminating between 

leaching and non-leaching pesticides. The dotted curve is from [25] representing 

GU S = 2.3, where GU S is the ground water ubiquity score described by equation 1.1. 

It gives good separation with two cases, case 1 with GU S = 2.334 and case 5 with 
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GU S = 2.327, located close to the boundary. The black line ilworrall = 0 is from [44], 

where 

ilworrall = 8.72- 3.59zl + 2.86z2 

It misclassifies 3 cases: the leacher Prometryn (case 7), the non-leacher 2, 4-D (case 

12) and the non-leacher Lindane (case 18). This discriminant line is improved in this 

thesis by fitting a logistic regression model with an interaction term, as described 

in Chapter 3. The coefficients were estimated using the WEMEL scheme [8]. The 

fitted linear predictor is 

f7wEMEL = -20.384 + 17.380zi2- 1.947zi1Zi2 

and the blue curve corresponds to ilw EM EL = 0. It gives complete separation 

between leaching and non-leaching pesticides. The red discriminant line 1.17 -

0.157z1 + 0.0642z2 = 0.5 is from [43], which was estimated by least squares. This 

model misclassifies two cases: the leacher Prometryn (case 7) and the non-leacher 

2, 4-D (case 12). The least squares fit to the interaction model gives the yellow 

discriminant curve -0.028 + 0.310z2 - 0.029z1z2 = 0.5. It misclassifies 3 cases: the 

leacher Aldicarb (case 1), the leacher Oxamyl (case 5) and the non-leacher Lindane 

(case 18). We see that the WEMEL fit to the interaction model is the best of these 

five discriminants with zero misclassification rate. 

Now, we move to explore the ability of the above discriminant lines and curves 

to discriminate the EA pesticides. As mentioned previously, each pesticide from the 

EA data has a range of values reported by the USDA for koc and t~~~. The plot 

of the koc and tfj~ means for the 43 EA pesticides in Figure 5.2 shows very poor 
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Figure 5.1: The various lines and curye~ used to discriminate Gustafson's ;data. The 

dotted curve is from [25) representing GUS = 2.3; the black line f!worrall = 0 is, 

from [44), the blue curve corresp9nds to T,wEMEL = 0, the red line 1. 17 - 0.157z1 + 

0.0642h = 0.5 is from [43), which was estimated by least squares and the yellow 

curve represents model 4.10; see ·Chapte.r 4. 
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Fi'gure 5.2: The EA data together with the various discriminant lines anc::l cq.rves 

derived from the analysis of Gustafson's data, depicted in Figure' 5.1. 
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discrimination for each of the discriminant lines or curves derived from Gustafson's 

data and hence poor prediction for the means of the EA data. This figure also 

demonstrates that the prior contention, that leachers appear in the NW corner and 

non-leachers in the SE corner, proposed in [43] and [45], is not the case for the EA 

data means. This inconsistency, which was referred to in [43] and [45], was discussed 

in Chapter 1. 

5.5 Bayesian methods for analysing the EA data 

The poor discrimination for the EA data has been addressed in two references. In 

[43], a Bayes linear method was developed where the available means and variances 

for koc and tf1i were chosen as prior information for these covariates. Also, a linear 

regression model was fitted to Gustafson's data (the red line in Figure 5.1). The 

parameter estimates and their standard errors derived from this linear regression 

were chosen to provide the prior information regarding the coefficient parameters. 

The posterior prediction, Figure 1.6, shows better discrimination for the EA data. 

An alternative simple data-analytic attempt to discriminate the pesticides of the 

EA data was proposed in [ 45]. A data combination was chosen to make the EA data 

most consistent with the prior contention that the leaching pesticides are found in 

the NW corner and the non-leaching pesticides are found in the SE corner of the 

koc and tf1i space. This contention was implemented by choosing for each leaching 

pesticide the combination with the lowest koc and the highest tfj~ and for non

leaching pesticide the highest koc with lowest t~1i. The method leads to a complete 

separation of the leaching and non-leaching pesticides; see Figure 1.8. 
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The Bayesian methods developed here tackle the problem of uncertain covari-

ates, and are implemented by means of MCMC simulation. A logistic regression 

model with a logit link is modelled either as an additive function of the explanatory 

variables koc and tfji as in equation 5.1 or by equation 5. 2. In both cases, there are 

two sources of uncertainty, namely (a) uncertainty in the model parameters {3 and 

(b) uncertainty in the values of zi 1 and zi2 for each pesticide. 

5.5.1 Model 1 

The crucial idea behind this model is to regard the linear predictor '17 described 

in equation 5.1 as an unknown random quantity. This leads to a choice of prior 

information for "7· A multivariate normal distribution is chosen to be the prior for 

TJ = ("71 , ... , 'l}43 ), where the means and covariances will be derived from those for 

z1 , z2 and {3. The two stages as follows. 

Stage 1: 

As described in Section 5.3, Yi is modeled as a Bernoulli random quantity with the 

leaching probability ni, such that 

(5.4) 

where the vector TJ = ("71 , 'l}2 , ... , "7n) (n = 43) is an unknown random quantity. 

Furthermore, '17 will be modeled as the additive function of z1 and z2 as follows: 

(5.5) 

Stage 2: 

As mentioned in Stage 1 above, '17 is an unknown random quantity, so that prior 
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information for rJ needs to be assessed. A multivariate normal distribution with a 

mean vector E('T]) and variance matrix Var("7) is chosen as the prior distribution for 

"1· Treating rJ as a bi-linear function of z1 , z2 and (3 in equation 5.5 requires a choice 

of prior information for {3, z1 and z2 in order to derive the parameters of multivariate 

normal prior distribution for "1· In the absence of full distributional assumptions 

for z1 and z2 , the same prior information suggested in [43] will be chosen here. In 

particular, prior information for z1 and z2 are chosen in the form of means and 

variances, i.e. 

where mi is the mean vector of zi and vi is the diagonal matrix of the variances of 

zi fori= 1, 2. 

Prior information for (3 is derived from the logistic regression model analysis of 

Gustafson's data, suggested in [44]. Specifically, 

[ 
1 ] -l 

E(f3) = b and Var({3) = - Dev" ((3) = Ef3 
2 {3=b 

where b is the MLE estimate /J of (3 and Dev is the deviance function. In particular, 

(5.6) 

and 

21.48 -7.75 5.64 

E!3 = -7.75 3.90 -3.43 (5.7) 

5.64 -3.43 3.28 
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By experiment it was found that the 'best', in the sense of best discrimination result, 

prior variance-covariance type of {3 is type (2), discussed in Section 5.3, with a= 1 

and b = 0. This means that E,o in 5.7 will be chosen. 

Hence, using Theorem 1 and Example 1 in Section 2.3.1 with x1 = z1 and x2 = z2 , 

the mean vector E( TJ) and the variance matrix Var( TJ) of the prior multivariate 

normal distribution for TJ can be derived using all the prior information as follows: 

E(TJ) 

Var(TJ) 

E(X/3) = Mb 

Var(X/3) = ME,oMT + D 

(5.8) 

(5.9) 

where M = E[X] and D is a diagonal matrix with Dii = bTEi b + trace[EiE,o], 

where Ei = Var[xi], the variance matrix of xf = (1, zi1 , zi2 ), the i-th row of X; see 

Example 1 in Section 2.3.1 for more calculation details. 

5.5.2 Model 1 * 

This model is a modification of Model 1 with an interaction term. As with Model 

1, there are two stages 

Stage 1: 

This stage is as in Model 1 with the exception that rJ is treated as an additive 

function of z2 and an interaction term of z1 and z2 as follows: 

Stage 2: 

This model uses the same sources of prior information used in Model 1 for the 

covariates z1 and z2 and {3. However, the difference is that the MLE estimator 
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for (3 for the Gustafson data does not exist due to complete separation of leachers 

and non-leachers in the space of the covariates z1 and z2 . As suggested in [7], this 

problem can be resolved by using MEL or the robust version, WEMEL. Adopting 

the latter estimator gives: 

bT = (/30 ,/31,/32) = (-20.384, 17.380, -1.947) (5.10) 

and 

206.81 -164.51 17.88 

E,a = -164.51 134.39 -14.75 (5.11) 

17.88 -14.75 1.63 

As in Model 1, by experiment, it was found that E,a in 5.11 is the best choice to 

express our prior beliefs about our uncertainty for (3. 

Using Theorem 1 and Example 2 in Section 2.3.1 with x1 = z2 and x2 = z1z2 , the 

vector mean and covariance matrix for the prior multivariate normal distribution of 

1J are 

E(17) - E(X(3) = Mb 

Var(7J) = Var(X(3) = ME,aMT + D 

where M = E[X] and D is a diagonal matrix with Dii = bTEi b + trace[EiE,a], 

where Ei = Var[xi], the variance matrix of xf = (1,zi2 ,zilzi2), the i-th row of X; 

see Example 2 in Section 2.3.1 for more calculation details. 

5.5.3 Model 2 

This model differs from Model 1 in the sense that each of the unknown random 

quantities z1 , z2 and (3 will be assigned a prior probability distribution. 
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The two stages are 

Stage 1: 

As before, Yi is modeled as a Bernoulli variate with the leaching probability 1ri and 

linear predictor 'f/ given by 

(5.12) 

where the zi1, zi2 and /3T = ((30, (31 , fJ2) are all unknown random quantities. 

Stage 2: 

Since the zi1 , zi2 and /3T = ((30 , (31 , (32 ) are all unknown, prior information should 

be chosen for each of them. In this regard, independent normal distributions are 

chosen to represent prior information for z 1 and z 2 and each of their components. 

The means and variances of z 1 and z 2 from the USDA data base are used as the 

means and variances for the prior normal distributions, i.e. zi1 will be assigned a 

normal distribution Normal(mi1 , vil) with mean mi1 and variance vi1 and zi2 will be 

assigned a normal distribution Normal(mi2 , vi2) with mean mi2 and variance vi2 . 

A multivariate normal distribution with a mean vector band a variance-covariance 

matrix V of the form a~13 + bDE
13 

is chosen to represent prior information for /3, 

where ~13 , a, b and DE
13 

are explained in Section 5.3. Both of b and ~/3 are derived 

from the logistic regression analysis of Gustafson's data, as suggested in [44]. The 

derived values are given in equations 5.6 and 5. 7 for Model 1. 

This model was investigated experimentally using the various types of prior 

variance-covariance matrices for /3, i.e. using the same choices of factors a and 

b as in Section 5.3. The 'best' choices of a and b are: 

1. If b = 0, then the best choice of a is 100, i.e. V = 100~13 
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2. If a = 1, then the best choice of b is 24, i.e. V = E,a + 24Dr;
13 

3. If a = 0, then the best choice of b is 4, i.e. V = 4Dr;13 

As mentioned in Section 5.3, these choices give the best discrimination between 

leaching and non-leaching pesticides and have the additional benefit of making the 

MCMC algorithm converge quickly to the target posterior distribution. 

All of the above best choices give very similar discriminant results. Hence, the 

second choice, a = 1 and b = 24, is chosen to illustrate this current model in detail. 

From now onward, the prior variance-covariance matrix of {3 in Model 2 is chosen 

to be: 

537 -8 6 

-8 98 -3 

6 -3 82 

The above prior distributions are summarised as follows: 

Zi2 "' Normal ( mi2, Vi2) 

f3 "' MVN (b, V) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

furthermore, we assume that the zi1 , zi2 and f3 are a priori independent. Then, as 

in section 2.4.6, the posterior distribution of z 1 , z 2 and {3 given the data y can be 

written as: 

(5.17) 

where p (yiz 1 , z 2 , {3) is the likelihood function and p(z 1 ), p(z2 ) and p(/3) are the 

prior distributions for z 1 , z 2 and /3, respectively. This posterior distribution can be 
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expressed as: 

ex: fln 1ry; (1 _ 7r·)l-y;. exp {-1. "'n (zo-mo) 2
} 

t=l t I 2 L .. n=l v; 1 

. exp { -! 2:~1 ( zi2~:i2) 2 } (5.18) 

· exp { -! ({3- b)T v-l ({3- b)} 
where n = 43 and 

5.5.4 Model 2* 

This is a modification of Model 2 with an interaction term. It uses the same prior 

distributions for both z1 and z2 as in Model 2. As in Model 2, a multivariate normal 

distribution with a mean vector b and variance matrix V is chosen as the prior 

information for (3, where V has the same form with the same choices of the factors 

a and b. However, the mean vector b and the variance-covariance matrix E.a are 

from the analysis of Gustafson's data using the WEMEL scheme. 

The two stages are 

Stage 1: 

This stage is as in stage 1 in Model 2, but with linear predictor given by 

(5.19) 

Stage 2: 

The covariates z1 and z2 are assigned the same prior distributions as in Model 2 

and (3 is assigned a multivariate normal prior distribution with a mean vector band 

variance-covariance matrix V of the form aE,a + bDEf3, where b and E,a, derived 
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from the WEMEL logistic regression analysis of Gustafson's data, are given in 5.10 

and 5.11. 

As in Model 2, this model was investigated experimentally using various choices 

of the factors a and b and the best were as in Model 2. F\1rthermore, as in Model 

2, all of these best choices give very similar discriminant results and the choice 

with a = 1 and b = 3 is chosen to illustrate the model in detail. Thus, the prior 

variance-covariance matrix of {3 is chosen to be: 

827 -165 18 

V = E,a + 3Dr:,13 -165 538 -15 (5.20) 

18 -15 7 

The posterior distribution of z1 , z2 and j3 has the same form as the posterior distri-

bution of Model 2, represented by equation 5.18, but with ni given as 

(5.21) 

5.5.5 Model 3 

In all of the previous models, the data Yi was treated as a dichotomous response 

and hence was assigned a Bernoulli distribution with the leaching probability ni 

modelled via a logit link function. This was clone by assigning Yi a value of 1 if the 

ith pesticide was observed in the groundwater with levels exceeding a threshold of 

0.1J.Lg1- 1 in at least one sample, and a value of 0 if the ith was not detected in any 

sample with levels exceeding the previous threshold. This means that all leaching 

and non-leaching pesticides are given the same weight without taking into account 

the number of samples that were tested or the number of times they were observed 
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in the groundwater with levels exceeding the threshold. For example, in the previous 

models, there was no distinction between the leaching pesticide Atrazine, which was 

detected with levels exceeding the threshold in 66 of 603 samples, and the leaching 

pesticide Terbutryn, which was detected with levels exceeding the same threshold 

in 3 of 134 samples. In this current model, the number of times Yi where the ith 

pesticide was observed with levels exceeding the threshold in ni samples will be 

taken into account. In this case, the appropriate model is to assign Yi a Binomial 

distribution with parameters ni (sample size) and 1ri (leaching probability). 

As with the previous models, this model will be implemented in two stages model 

as follows. 

Stage 1: 

As mentioned above, Yi rv Binomial(7ri, ni), where 'lri is given in 5.1. 

Stage 2: 

The prior information regarding z1 , z2 and {3 are chosen as in Model 2. Also, the 

best choices for the factors a and b in the prior variance-covariance matrix form, 

aL:13 + bDE
13

, are the same as Model 2 and the variance-covariance matrix V in 5.13, 

is chosen to illustrate the model in detail. 

Combining the data with the prior information leads to the following joint pos-

terior distribution regarding z1 , z2 and {3: 

p (z1, z2, f3iy) ex n~l G:)7rr; (1- 1ri)n,-y; 

. exp {-.! ""'n_ (zo-mo )2
} 

2 L.....t-1 O"z;l 

. exp {- ~ 2:::~==1 ( z;~~,7i2) 2} 
(5.22) 

· exp { -~ ({3- bf v-1 ({3- b)} 
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5.5.6 Model 3* 

This model investigates Model 3 with an interaction term. The two stages are 

Stage 1: 

This stage is as stage 1 in Model 3, but with the logit link function in 5.2 

Stage 2: 

138 

The prior information regarding z1 , z2 and {3 is chosen as in Model 2*. The prior 

variance-covariance matrix V in 5.20 will be used to illustrate the model since all 

the best choices of prior variance-covariance matrices give similar results. 

5.5. 7 Further models 

Two further models were investigated. These models suffer from some obstacles 

which need further analysis. These obstacles will be addressed as a future work. 

What follows is a description of these models, but their analysis will not be given. 

Predictive model 

This model differs from the previous models (especially Models 2 and 3) in the 

sense that the monitored values of z1 and z2 are considered as i.i.d observations 

from normal distributions with unknown means and variances. The crucial idea is 

to choose the posterior predictive distributions of z1 and z2 as prior information 

for these covariates. Analytically, as in [18] and [3], if z is a random sample of 

size n from a normal distribution with an unknown mean and variance (with the 

usual non-informative independent prior distributions), then the posterior predictive 

distribution of a future observation z, denoted by p(zlz), is a student-t distribution 
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with location z, scale (1 + ~) 112 
sand n- 1 degree of freedom, where z, s and n are 

the mean, standard deviation and the sample size of z respectively. The two stages 

required to implement this model are as follows: 

Stage 1: 

This stage is as stage 1 of model 2. 

Stage 2: 

As mentioned above, the posterior predictive distributions, in the form of student-t 

distributions, of covariates z1 and z2 are chosen as prior information regarding these 

covariates. This prior information can be summarised as follows: 

'" - st ( z", ( 1 + n:J 112 

s,~, n,1 - 1) 
z., - st ( z.,, ( 1 + :J 112 

s.,, n.,- 1) 
(5.23) 

(5.24) 

The model can be investigated using prior information for f3 of the form a'L.f3 + bDE~J, 

for example, the factor a and b can be chosen as in Model 3. Combining the data 

with this prior information leads to the following joint posterior distribution of z1 , z2 

and {3: 

Tin 1fYi ( 1 _ 1f·)l-y; 
t=l t 1 

[ 
2] -n;I/2 

. Tin- 1 + _1 (lli..::fu.) 
t-1 n; 1 Si! 

[ 
2] -n;2/2 , Tin- 1 + _1 (Zj2-Zj2) 

t-1 n;2 s;2 
(5.25) 

· exp { - ~ ({3 - b) T V -1 (!3 - b) } 

where n = 43. However, if a random variable 0 has a student-t distribution with 

location J.L, scale a > 0 and degree of freedom V > 0, i.e. e rv Student-t(J.L, a, v), 
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then (} has the following mean and variance: 

E(B) 

Var(B) 

tL, for V> 0 

_v_CJ2 for v > 2. 
V- 2 ' 
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(5.26) 

(5.27) 

So, for (} to have finite variance, the degrees of freedom v should exceed 2. Con-

sequently, WinBUGS provides a student-t distribution but with degrees of freedom 

greater than 2. Unfortunately, there are some pesticides that only have two moni-

tored values for one of the covariates, so the covariates for these pesticides will be 

assigned a student-t distribution with just one degree-of-freedom (a Cauchy distribu-

tion) which can not be implemented in the WinBUGS software. To try to avoid this 

difficulty, the model was implemented directly by MCMC simulation in R. However, 

there were convergence difficulties. These difficulties will be addressed in a future 

study. 

Discrete model 

This model differs from the previous models in the sense that the covariates z1 and 

z2 are assigned discrete prior distributions over their data-base values. Furthermore, 

this model is implemented using the Metropolis-Hastings algorithm with a "weighted 

uniform distribution" transition proposal distribution. It can be implemented in the 

R package in two stages as follows. 

Stage 1: 

This stage is as stage 1 for Model 2. 

Stage 2: 

Discrete uniform distributions are chosen to represent prior information for z1 and 
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z2 . These discrete uniform distributions are chosen over the available values of the 

covariates; i.e. if the ith pesticide has ni 1 and ni2 possible values for the covariates 

z 1 and z 2 , respectively, then the prior distributions for z 1 and z 2 are 

p( Zil) 
1 

nil 
(5.28) 

p(z12) 
1 

ni2 
(5.29) 

In addition, the model uses the same prior information for {3 as in Model 3. 

and {3 can be expressed as 

P (zl, Z2, {3jy) CX: Iln 1fYi (1- 1f·)l-y;. Iln _l . Iln _l 
i=l i 1 i=l n; 1 i=l n;2 

(5.30) 

· exp { -~ ({3- b)T Var- 1({3) ({3- b)} 

where 

exp(,Bo + .B1zi1 + .B2zi2) 

1 + exp(,Bo + ,81zi1 + .B2zi2) · 

Possible choice of the proposal distribution 

To describe our choice of proposal distribution, consider the ith pesticide and let 

(zil,l, zil,2, ... , zil,n; 1 ) and (zi2,1, zi2,2, ... , Zi2,n;2 ) be the possible values of the covari-

ates zi 1 and zi2 , respectively, sorted from the smallest to the largest values. We chose 

a discrete transition proposal distribution which gives more weight to combinations 

of the values of zi1 and zi2 located in the NW corner if this ith pesticide is a leacher 

and more weight to those combinations in the SE corner if the ith pesticide is a 

non-leacher. Different ways can be used to assign the weights; for example, if the 

ith pesticide is a leacher (non-leacher), then the first value of zi1 (zi2 ) can be chosen 

as a candidate value with prior weight p, the second with a reduced prior weight 
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~' the third with ~ and the last value will be assigned prior weight 2nR-r ( 2,;~-r ). 

Then, pis chosen such that the sum of all prior weights is 1, i.e. 

from which we obtain 

p p p 
p+-+-+ ... +--1 =1 

2 4 2n;1-

2n;1-l 

p = 2n;1 _ 1 (5.31) 

Also, if the ith pesticide is a leacher (non-leacher), then the first value of zi 2 ( zi 1 ) 

can be chosen with prior weight 2n;~-i ( 2,.;~- 1 ) and the last value with prior weight 

p, where again p is calculated using equation 5.31. 

However, some convergence difficulties in implementing this model arose. In 

particular, the simulated chains of z1 and z2 do not converge to their target dis-

tributions. This may due to our choice of proposal distributions. The weighted 

uniform proposal distributions make the sampler 'stick' to the most likely value, the 

value with the largest weight, as the chains run, and do not move to choose from 

the other possible values. This convergence difficulty will be addressed as a future 

study. 

After describing the different models above, further steps must be taken to com-

plete the Bayesian analysis, such as implementation using MCMC simulation with 

WinBUGS or R software, checking convergence, monitoring and summarising the 

simulated values and drawing inferential conclusions. A description on how to imple-

ment the proposed models in both WinBUGS and R will be given below. Results of 

diagnostic tests (to assess convergence) and comparison tools (to compare models) 

will be discussed. 
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5.6 Implementing Bayesian analysis using Win-

BUGS 

The focus of this section is on the implementation of Bayesian analysis of the models 

described in the previous section using WinBUGS. A number of steps are needed 

to implement any Bayesian analysis using WinBUGS. Among these steps are as

signing a full probability distribution to all of the stochastic nodes of the associated 

DAG, model diagnostics, assessing model complexity and comparing different mod

els. As regards assigning a full probability distribution, implementation of the Gibbs 

sampler as an MCMC simulation technique requires identifying the full conditional 

posterior distribution for each parameter of interest which may not be easy, espe

cially obtaining it in a closed form. Fortunately, the WinBUGS software performs 

this automatically without the need to derive the forms of the conditional posterior 

distribution. So, what is really needed is to assign a probability distribution to each 

of the stochastic nodes. 

Model diagnostics involve specifying the number of chains to run using the Gibbs 

sampler, specifying different initial values for each chain, and assessing convergence 

to the target distribution. The focus of this study is on those diagnostic tools built 

in WinBUGS, such as the tracing or history of the chains, autocorrelation plots 

and the modified Gelman-Rubin diagnostic (BGR). A further important step is the 

assessment of model complexity and the comparison of different models. There 

are several tools for comparing different models. The one used in this study is 

the Deviance Information Criterion (DIC), proposed in [39] and implemented in 

WinBUGS, and discussed in Chapter 3. 
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The code used to implement modell *,as an example, is given in Appendix A.2. 

It (as with other vVinBUGS codes) consists of three parts. The first expresses 

likelihood, the second is for specifying the prior distribution and the third is for 

including data. Also initial values must be specified, especially when running mul

tiple chains. The first code illustrates these specifications. In this example, Yi is 

assigned a Bernoulli distribution with the leaching probability 1ri using the command 

dbern ( 1ri), the symbol ,...., indicating that the node Yi is defined as a stochastic node. 

The command logi t (1ri) <- eta [i] represents the link function (logit) and the 

symbol ( <-) is used to indicate that 7ri is treated as a logical node. The command 

eta [i],...., dmnorm (mean [ ] , precision [ , ] ) represents the chosen prior informa

tion for TJ which is a multivariate normal with a mean vector mean [ ] and precision 

matrix precision [ , ] . (The mean vector and precision matrix were calculated 

using the R package.) Running the code requires specification of initial values for 

each chain, encoded under ini ts. Two different sets of initial values are used since 

two chains will be run. After the specifications have been encoded the model can 

be run and convergence assessed. 

5. 7 Implementing the proposed models using R 

This section aims to show how to implement Bayesian analysis of the proposed 

models using MCMC simulation in R. Because of its generality and simplicity, the 

Metropolis-Hastings algorithm (M-H) is chosen to draw samples from the joint pos

terior distribution. Another reason for using the M-H algorithm is that there is 

no requirement to derive the full conditional distributions for all the parameters of 
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interest as with the Gibbs sampler algorithm. Moreover, deriving full conditional 

distributions in closed form is intractable for the models considered. The follow-

ing discussion illustrates how the M-H algorithm is used to implement the proposed 

models. The R code for the discrete model (as an example) is given in Appendix A.l. 

The aim is to draw samples from the joint posterior distributions of z1 , z2 and {3 

given the data y described in 5.18. These posterior distributions are given up to 

proportionality without the normalizing constant, as the M-H algorithm can be im-

plemented in the absence of the normalizing constant. What follows are the general 

steps to perform the M-H algorithm: 

Step 1: 

Assign starting values for the Markov chain to each parameter: z~o), z~o) and {3(o). 

Step 2: 

Update each parameter in turn as follows. 

At timet: 

(a) Update z1: 

(1) Sample a candidate value z~ for the vector z 1 from a normal proposal distribu-

tion with mean z~(t- 1 ) and variance u;
1

• 

(2) Compute the Metropolis-Hastings ratio: 

r(z~) = ( I (t-1) (t-1) {3(t-l)) ( (t-1)) ( (t-1)) (f3(t-l)) p y zl 'z2 , . p zl . p z2 . p 

( I • (t-1) {3(t-l)) ( ·) ( (t-1)) (a(t-1)) p yzl,z2 , ·p z1 ·p z2 ·p fJ 

(5.32) 

(3) Calculate a(z~) = min { 1, r(z~)} 

(4) Draw the components of U independently from uniform [0, 1] distribution. 
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(5) Set 

otherwise. 

(b) Update z 2 : 

(1) Sample a candidate value z; for the vector z 2 from a normal proposal distribution 

. 1 • ( t-1) d . 2 w1t 1 mean z 2 an variance u z
2

• 

(2) Compute the Metropolis-Hastings ratio: 

• p (ylz~t),z;,,a<t-1)). p (z~t)). p (z;). p (,a<t-1)) 

r(z 2
) = p ( ylz~t), z~t-1), ,a<t-1)) . p ( z~t)) . p ( z~t-l)) 0 p (..a<t-1)) 

(5.33) 

(3) Calculate a(z;) = min { 1, r(z;)}. 

( 4) Draw the components of U independently from uniform [0, 1] distribution. 

(5) Set 

otherwise. 

(c) Update ,B: 

(1) Sample a candidate vector ,a· for ,B from a multivariate normal proposal distri-

bution with mean vector ,a•<t-l) and variance matrix :E13 . 

(2) Compute the Metropolis-Hastings ratio: 

• p(ylz~t),z~t),,a•)) op(z~t)) op(z~t)) op(,B•) 

r(/3 ) = p ( ylz~t), z~t), {3(t-l)) 0 p ( z~t)) 0 p ( z~t)) . p (,a<t-I)) 
(5.34) 

(3) Calculate a(,B.) = min {1,r(,B.)}. 

(4) Draw the components of U independently from uniform [0, 1] distribution. 

(5) Set 

if U < a(,B.) 

otherwise. 
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Note that the above Metropolis-Hastings ratios include distributions that ap-

pear in both the denominator and numerator and hence these distributions can be 

cancelled to simplify the ratios. 

The above algorithm can be used to draw samples from the posterior distribu-

tions for the discrete model taking into account the following considerations and 

modifications. 

1. In updating z 1 , the candidate values are sampled from a weighted uniform 

proposal distribution as described in Subsection 5.5. 7. 

2. The above transition proposal distribution is not symmetric, hence the Metropolis-

Hastings ratio is modified to be 

( 
<t-1)l •) ( I . <t-1) ~-~<t-1)) ( .) ( <t-1)) (~-~<t-1)) q z1 z1 p y z1, z2 'tJ . p z1 . p z2 . p tJ 

r(z ~) = ( .
1 

(t-1)) ( I (t-1) (t-1) f.l(t-1)) . ( (t-1)) ( (t-1)) . (1-1(t-1)) q zl zl p y z1 'z2 'tJ p z1 . p z2 p tJ 

By cancelling the distributions that appear in both the denominator and nu-

merator and noting that p(z~) = p(z~t-l)), which follows from assigning a 

uniform prior distribution for z 1 , the last ratio becomes 

( 
<t-1) I ·) ( I • <t-1) ~-~<t-1)) q zl zl p yz1,z2 ,tJ 

r(z~) = ( ) ( ) •

1 

<t-1) I <t-1) <t-1) ~-~<t- 1 ) 
q zl z1 p y z1 'z2 'tJ 

and the same modification is applied when updating z 2 . 

5.8 Assessing convergence and model selection 

Assessing convergence is a crucial part of simulation using MCMC methods. The 

focus will be on the use of those diagnostic tools built into WinBUGS, such as 

tracing the history of the chains, autocorrelation plots and the modified Gelman-

Rubin diagnostic (BGR). 
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There are 89 stochastic variables in the models that we consider ( 43 for each of 

z1 and z2 and the 3 regression coefficients {3). On the other hand, there are only 43 

data points all of them zeros or ones. In addition, the regression coefficients {30 , {31 , {32 

are a priori highly correlated. All of this leads to a need to process long MCMC runs 

with consequent increasing storage (memory) requirements. A possible resolution, 

to reduce the impact on the memory requirements of processing long runs, is to thin 

the chains. Two types of thinning, available in WinBUGS, are used. As in [40], the 

implementation of these steps in our simulation are as follows. 

1. In the first step of thinning, 1 st_thin, the samples from every k~h iteration 

are stored and the other samples are permanently discarding as the MCMC 

simulation runs, helping to reduce memory requirements. 

2. In the second step of thinning, 2nd_thin, the samples from every k~h iteration 

are selected from the already generated (and stored) posterior samples from 

the first thinning. Inferences will be based on these second thinned samples. 

The other samples from the 2nd_thin may be temporarily discarded, as we 

may wish to base our inferences on these discarded samples if we decide to 

change the chosen value of k2 . The best choice of k2 is the value that makes 

successive samples approximately independent, see for example [21 J. 

Two parallel chains were run from dispersed starting values for each model. Each 

model used (a) different initial iterations which were discarded (burn-in) after reach

ing convergence status, (b) different values of k for each step of thinning, (c) different 

size of posterior stored sample (after applying 1 st_thin), and (d) different size of the 

retained posterior samples (after discarding the initial iterations and applying the 
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Model s-samplc 1 st_thin 2 11 d-thin cl-sample r-samplc DIC Threshold ('1) CC-NL CC-L CR R 

I 12000 3 I 2000 20002 29.91 'I= 0 100 100 100 

I" 11000 3 I 2000 18002 17.01 7)=0 100 100 100 

2 81000 6 30 35000 3066 21.63 7)=0 100 100 100 5 

2" 101000 6 35 40000 3484 17.91 1} = 0 100 100 100 2 

3 121000 6 35 42000 4514 57.30 7) = -5 97.14 100 97.67 5 

3" 241000 6 50 40000 8040 48.52 7) = -5 97.14 100 97.67 7 

Table 5.1: Statistical summaries: s-sample (stored posterior sample size), 1st_thin 

(the first thinning step), 2nd_thin (the second thinning step), cl-sample (the dis

carded sample size), r-sample (the retained posterior sample size), DIC (Deviance 

Information Criterion), CC-NL (correctly classified non-leaching pesticides), CC-L 

(correctly classified leaching pesticides), CR (classification rate) and R, the number 

of edges of minimal spanning tree which connect points from different groups. 

2nd_thin). The inferences are based on these retained posterior samples. 

The size of posterior stored sample (s-sample), amount of thinning for the first 

(lst_thin) and second (2nd_thin) thinning, size of the discarded sample (cl-sample) 

and size of the retained posterior sample (r-sample) for each model are displayed in 

Table 5.1. For example, for Model 2, the size of the stored posterior sample is 81000 

(for each of the two chains) after applaying a first thinning with k1 = 6. The size of 

the retained posterior sample is 3066 (each chain has a size of 1533) after burn-in 

the first 35000 iterations (from each chain) and the second thinning with k2 = 30. 

The summary statistics are based on this retained posterior sample from the two 

chains (size of 3066). Models 1 and 1 * have 43 stochastic variables and each of the 

remaining models has 89 stochastic variables. Consequently, diagnostic tests will be 

illustrated for only some of these stochastic variables. 

A figure will be provided for each of Models 1 and 1 * showing diagnostic tests 
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Figure 5.3: Diagnostic tests for ry4 from MCMC analysis of Model1: (a) history plot 

of two superimposed. chains, (b) smoothed posterior density, (c) autocorrelation 

function, and (d) Gelman-Rubin test (BGR). 

for a selected stochastic variable. Three figures will be provided for each of the 

remaining models. The first two figures will illustrate the diagnostic tests for z1 and 

z2 for a selected pesticide. The third figure will show the diagnostic tests for one of 

regression parameters {30 , {31 and {32 . 

Figures 5.3 and 5.4 show history plots, posterior densities, autocorrelation func-

tions and the formal BGR tests for Models 1 and 1 * for ry4 and ry17, respectively. 

Figures 5.5 - 5. i6 show history plots, posterior densities, autocorrelation func-

tions and the formal BGR tests for Models 2, 2*, 3 and 3* for the variables z1 , z2 , 
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Figure 5.4: J)iagnostic tests for '11! 7 from M CM C analysis of Model 1 *: (a) history 

plot of two superimposed chains,, (b) smoothed posterior density, (c) autocorrelation 

function , and (d) Gelman-Rubin test (BGR) . 
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Figure 5.5: Diagnostic tests for z5,t from MCMC analysis of Model 2: (a) history 

plot of two S\}perimposed chains, ·(b) smoothed posterior density, (c) autocorrelati.on 

function, and (d) Gelman,.Rubi'n test (BGR). 
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Figure 5.6: Diagnostic tests for z5,2 from MCMC analysis of Model 2: (a) history 

plot of two sup·erimposed chains, (b) smoothed' posterior density, (c). autocorrelation 

function, and (d) Gelman-Rubin test (BGR). 
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Figure 5.7: Diagnostic tests for {30 from MCMC analysis of Model 2: (a)' his'tory 

plot' of two superimposed chains, (b) ·smoothed posterior density, (c) autocorrelation 

function, and (d) ·Gelman-Rubin test (BGR). 
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Figure 5.&: Diagnostic tests for z13,1 from MCMC analysis of Model 2~: (a) history 

plot of two superimposed chains, (b) smoothed posterior density, (c) autocorrelation 

function, and (d) Gelman-Rubin test (BGR). 
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Figure 5.9: Diagnostic tests for z13,2 from MCMC analysis ofModel 2*: (a) history 

plot of two superimposed chains, (b) smoothed posterior density, (c) auto~orrelation 

function, and (d) Gelman-Rubin test (BGR). 
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Figure ,5.10: Diagnostic tests for {31 from MCMC analysi13 of Model 2*: (a) history 

plot qf two· superimposed chains, (b) smoothed posterior density, (c) autocorrelation 

function, and (d) Gelman-Rubin test (BGR). 
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Figure 5.11: Diagnostic tests for z211 from MCMC analysis of Model 3: (a) history . ' 

plot of two superimposed ~hains, (b.) smoothed posterior density, (c) autocorrelation 

function , and (d) Gelman-Rubin test (BGR). 
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Figure 5.12: I?iagnostic tests, for z21 ,2' from MCMC analysis of Model 3: (a) history 

plot of two superimposed chains, ,(b) smoothed, posterior density, (c} autocorrelati'on 

function, and (d)1 GeLm~:~,n-Rubin test (BGR). 
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Figure 5.13: Diagnostic tests for {32 from MCMC analysis of Model 3: (a) history 

plot of two sup~r:i!Jlposed chains, (b) smoothed p9sterior density, (c) autocorrelation 

function, and (d) Gelman-Rubin test (BGR). 



5.8. Assessing convergence an,d m.odel selection 

z1(17) 

7.0 

6.0 . 

5.0 

4.0 

3.0 

a 

~r-----------,-~----------------~--------~ 
39999 100000 200000 

itera1ion 

b c 

~!!!"'" I 
I I 

z1[17) sample: 8040 

1.5 __}\_ 
1.0 

o.s 1 

0.0 Lr-----r-----r-----.-----.-J 
3.0 4.0 5.0 6.0 0 20 40 

lag. 

d 

161 

Figure 5.14: Diagnostic tests for, z17;1 .from MCMC analysis of Model3*: (a) history 

plot of two superimposed chains, (b) smoothed posterior density, (c) autocorrelation 

function , and (d) Gelman-Rubin test (B.GR). 
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Figure 5.15: Diagnostic tests for -?17,2 from. MCMC analysis of Model 3*: (a) history 

plot of two superimposed chains, (b) smoothed posterior density" (G) autocorrelation 

function, and (d) Gelman-R~bin test (BGR). 
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Figure •5·.16: Diagnostic tests for /30 from MCMC anafysis of M:odel 3*: (a) history 

plot of two superimposed chains, (b) smoothed posterior density, (c) autocorrel~tion 

function , and (d) Gelman-Rubin. test (BGR). 
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(30 , (31 and (32 . All of the history plots, see panels a, with two superimposed chains, 

show that the chains mixed and converged to the same estimated posterior distribu

tions, informally indicating that convergence had been reached. The autocorrelation 

plots, see panels c, clearly indicate that the within-chain correlations are negligible, 

so that sampled values are approximately independent suggesting that the sampler 

moves quickly around the posterior distributions. The formal BGR tests, see panel 

d, show that the monitored values of the ratio (coloured in red) converge to 1 and 

the values of both pooled and within interval widths (coloured in green and blue, 

respectively) converge, indicating that convergence had been reached. Convergence 

was similarly assessed and achieved for the other random quantities. 

Two comparison tools are used to compare models: DIC and misclassification 

statistics. Table 5.1 displays the DIC values and misclassification rates for all mod

els. As can be seen from this table, Models 1 * and 2* have the smallest values of 

DIC, 17.01 and 17.91, respectively, indicating that they provide the best descrip

tion. Also, we can notice, in general, that the starred models have smaller DIC 

values in comparison with unstarred models. This might be expected since model

ing Gustafson's data using the interaction term yields complete separation between 

leachers and non-leachers. 

5.9 Results 

After achieving convergence, the monitored values can be regarded as random draws 

from the desired posterior distributions. Using WinBUGS, these posterior distribu

tions, their means, standard deviations, percentiles, 95% posterior credible interval 
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(Cl) and other related statistics can be displayed. 

Since all of the proposed models use logistic regression, the linear predictor "1 

and the leaching probability 1r are important for predicting pesticide leachability. 

In particular, the posterior means of "7 and 1r for any of the 43 pesticides should be 

used as a basis for discrimination. The posterior distribution of 17 = X {3, where X 

is the model matrix for either starred or unstarred models, is estimated as follows. 

As discussed in Section 5.7, at iteration t, the vectors z 1 , z 2 and {3 are updated to 

z(t) z(t) and {3(t) respectively and n is updated to n(tl = X(t){3(t) using z(t) z(t) 
1 ' 2 ' ' ., ., ' 1 ' 2 

and {3(t). Similarly, the leaching probability 1r is updated to 1r(t), using 'IJ(t). For N 

iterations, the posterior mean, r,, of 1J is estimated by the average of the N values 

(5.35) 

Also, the posterior mean, ir, of 1r, in which discrimination is based on, is estimated 

by the average of the N values of 1r(t) 

(5.36) 

To predict pesticides leachabilities we use the posterior means of 1r, as calculated 

in 5.36. Of course, all of this applies to any of the models 1, 1 *, 2, 2*, 3 and 3*. 

Other posterior summaries, such as standard deviations, are calculated similarly. 

Beside the posterior means of 1r, we can also use the posterior probabilities of 

P[1ri > cp], where cp is an identified threshold, which might be more informative 

than the posterior means of 1r. 

Results are summarised using (a) scatter plots of the posterior means of z1 and 

z2 , (b) plots of posterior means of 17 vs y, (c) ranked boxplots for 17, and (cl) ranked 
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boxplots for 1r. The boxplots summarise the posterior distributions of components 

of 1J and 1r. As described in [40), the boxes represent inter-quartile ranges and the 

solid black line in each box is the posterior mean. The arms of each box cover the 

central 95% per cent of the distributions. The posterior distributions are ranked by 

the ranks of the posterior means. 

In addition to the figures, the results about 1r will be summarised in tables. 

Each table will include the posterior means of 1r as calculated using 5.36, posterior 

standard deviations, 95% posterior credible interval (Cl) and posterior probabilities 

of P[1ri > cp]. 

For each model, a posterior mean threshold of leaching probability 1r is identified. 

For example, we can identify a threshold for 1r of 0.5 such that any pesticide with a 

mean posterior leaching probability greater than 0.5, will be classified as a leacher, 

otherwise it will be classified as a non-leacher. 

Figures 5.17 and 5.19 show the posterior means of the predictor T} for Models 1 

and 1 *. It is apparent that T} = 0 splits the posterior means into two non-overlapping 

groups. Scanning posterior means of 1r for both models, see Tables 5.4 and 5.5, 

according to a threshold of 0.5, shows that all pesticides are correctly classified. The 

posterior distributions for 1r and TJ for both models are summarised using boxplots 

as in Figures 5.18 and 5.20. From the above tables and boxplot figures, we can 

observed that there is large uncertainty regarding the posterior distributions of 1r 

and TJ. For example, the non-leacher Napropamide, number 33, as analysed using 

Model 1, has posterior mean of 0.1106 with posterior standard deviation of 0.175, 

95% posterior credible interval (Cl) of (2e-04, 0.6719) and posterior probability 
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P[ni > 0.5] = 0.0551; see Table 5.4. 

For Models 2, 2*, 3 and 3*, we have to be careful using the posterior means of z1 , 

z2 and (J to predict leaching probability since this should be calculated using 5.36. 

Instead, we use the posterior means of n to assess leachability of a given pesticide. 

Figure 5.21 plots the posterior means of z2 against posterior means of z1 together 

with the discriminant line rt = 0 as analysed using Model 2. The discriminant line 

rt = 0 was plotted using the posterior means of z1 , z2 and (J; i.e. ;30 + ;31i 1 + ;32z2 = 0, 

while the posterior means, fJ, of rt and ft, of n should be calculated using 5.35 

and 5.36. For this reason, the leacher pesticide number 36, Pentachlorophenol, 

seems to be misclassified. However, this pesticide has a posterior mean of leach

ing probability of 0.6191 suggesting that it is correctly classified; see Table 5.6 and 

Figure 5.23. It has 95% posterior credible interval (Cl) for the posterior mean of 

(0.0191, 1) reflecting large uncertainty. This result is also confirmed using posterior 

probability which turned out to be P[ni > 0.5] = 0.6132. The same thing happens 

for the non-leacher pesticide number 32, Monuron. It seems to be misclassified, but 

it has posterior mean of leaching probability of 0.4766 with Cl of (7e-04, 0.9745), 

reflecting large uncertainty, and posterior probability P[ni > 0.5] = 0.4866, confirm

ing that it is correctly classified. The final conclusion is that this model results in 

complete separation between the leaching and non-leaching pesticides on the basis 

of posterior means of 1r; see Table 5.6. 

For Model 2*, Figure 5.24 plots the posterior means of z2 against posterior means 

of z1 together with the discriminant curve rt = 0. This model gives a complete 

separation between leaching and non-leaching pesticides based on posterior means 
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Figur~ 5.18: Above, the ra:dked' boxplot of 7r. with the discriminant line, rr = 0.5; 

below, the ranked boxplot of 'T1 with 'the discriminant line 'T1 = 0, using model 1. 
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Figure 5.20: Above, the ranked boxplot of 1r with the discriminant line 1r = ,0.5; 

bel0w, the ranked boxplot· of .TJ. with. the discriminant line TJ. = 0, U:siilg model 1 *. 
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below, the ranked boxplot of rJ with the discriminant line rJ = 0, using model 2. 
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using model 3. 

Figure 5:29: Above, the ranked boxplot o{ 1r with the discriminant line 1r = 0.016; 

below, the ranked boxplot of TJ with the discriminant. line TJ = -5, using wodel 3. 
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nant curve TJ = -5 using model' 3'!'. 



5.9. Results 177 

;! 

0 

~ ;! o, I 

I 

.. 
c: 
~ 0 • E N 

I 

0 
·c 

"' g 
~ I 
0.. 

0 

"f 

0 

"' I 

0.0 0.2 0.4 0.6 0.8 1.0. 

Non-leacher 0, leacher 1 

Figure 5.31·: The posterior means of TJ together with the discriminant line: TJ = -5 

using model 3 *. 
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below, the ranked boxplot of TJ with the discriminant line TJ = - 5, using model 3*. 
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of leaching probability 1r; see Figure 5.26 and Table 5. 7. However, notice that the 

non-leacher pesticide number 32 seems to be misclassified when it is displayed in the 

plane of posterior means of z1 and z2 . However, this pesticide has a posterior mean 

of leaching probability of 0.4198, suggesting that it is correctly classified as shown in 

Figure 5.26. The 95% Cl for the posterior mean is (3e-04, 0.9797), reflecting again 

large uncertainty. The posterior probability P[1ri > 0.5) = 0.4202, confirming that 

it is correctly classified as a non-leacher. The same explanation for this conflict as 

for Model 2 applies. 

Figure 5.27 plots the posterior means of z2 against those of z1 as simulated using 

Model 3. However, in this case, identifying 1r = 0.5 as a discriminant threshold 

leads to a poor discrimination. However, as discussed in [27), we can improve the 

discrimination by choosing a different cut-point that minimizes error rate. It was 

observed from scanning the posterior means of ry and 1r that identifying a threshold 

of -5 for ry (for example) and 0.016 for 1r, which is not the corresponding value 0.007 

of ry = -5, each of these two cut-off values leads to good discrimination between 

leaching and non-leaching pesticides, as shown in Figures 5.27 and 5.28, although 

we have to be careful using the discriminant line rJo + fh z]. + f]2 i 2 = -5 for the 

same reasons discussed in Model 2. According to the above specified threshold, only 

the non-leacher pesticide number 32, Monuron, is misclassified. It has posterior 

leaching probability mean of 0.0346 with 95% Cl of (0.0028, 0.1049) and posterior 

probability P[1ri > 0.016) = 0. 7337; see Table 5.8, confirming that it is misclassified 

as a non-leacher. Figure 5.29, summarise the posterior distributions for 1r and ry, 

where it is apparent that the model correctly classifies each pesticide except number 
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32, on the basis of the above cut-points. 

The same threshold identified for Model 3 applies for Model 3* as shown in 

Figures 5.30 and 5.31. As in Model 3, only the non-leacher pesticide number 32 is 

misclassified with posterior leaching probability of 0.0331 with 95% er of (0.0019, 

0.1088) and posterior probability P[rri > 0.016] = 0.6769; see Table 5.9, confirming 

that it is misclassified as a non-leacher. Figure 5.32, summarise the posterior dis

tributions for rr and TJ, where it is apparent that the model correctly classifies each 

pesticide except number 32, where the cut-points or the baselines are as in Model 

3. 

We notice that Models 3 and 3* misclassify the non-leacher pesticide number 

32, Monuron. One possible explanation for this misclassification is its prior mean is 

located in the extreme NW corner, the corner of the leachers; see Figure 5.2. 

The fact that that all of the leaching pesticides have posterior probability means 

of less than 0.5 in Models 3 and 3* should be expected from a probabilistic view for 

the following reasons. It is apparent from the EA data that all leaching pesticides 

are detected in the groundwater with levels exceeding the threshold in just a small 

proportion of samples. For instance, the pesticide Atrazine was detected above the 

threshold in 66 of 603 samples. This pesticide has 0.1081 as a posterior leaching 

probability mean, as analysed using Model3*, which is almost equal to the maximum 

likelihood estimate 66/603 = 0.1095. However, 0.1081 is a relatively high probability 

in comparison with the other non-leaching pesticides such as 2.4.DCPA, which has 

a posterior leaching probability mean of 5 x 10-4. The explanation for the small 

cut-off is because the posterior distribution is dominated by the likelihood function 
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Model f3o lh fh 

mean sd 95% Cl mean sd 95% Cl mean sd 95% Cl 

Model 2 -16.74 11.70 (-43.67, -0.756) -2.964 2.948 (-11.1, -0.073) 7.036 4.791 (0.540, 18.13) 

Model 3 -8.893 2.877 (-15.1, -3.954) -1.177 0.537 (-2.57, -0.434) 2.359 0.738 ( 1.24, 4.142) 

Table 5.2: Regression parameters estimates from analysis of models 2 and 3. 

Model f3o lh lh 

mean sd 95% Cl mean sd 95% Cl mean sd 95% Cl 

Model 2• -46.17 24.45 (-96.92, -5.807) 15.4 8.665 {1.798, 34.17) -0.963 0.737 (-2.789, -0.059) 

Model 3* -17.1 5.645 (-31.86, -9.662) 4.348 1.675 (2.177, 8.747) -0.29 0.135 (-0.632, -0.099) 

Table 5.3: Regression parameters estimates from analysis of models 2* and 3*. 

because the sample sizes are large. 

Tables 5.2 and 5.3 show the posterior means, posterior standard deviations and 

95% equitailed posterior credible intervals (Cl) of regression parameters (30 ,(31 and 

(32 for the different models. 

5.9.1 Gustafson's contention 

The signs of the estimates of the parameter coefficients of model terms are to be 

expected. As in Chapter 3, this can be explained using either TJ or odds. For example, 

for Model 2*, the odds can be estimated as 

odds= exp( -46.17 + 15.4z2 - 0.963z1z2 ) (5.37) 

Fixing the covariate z2 at a small value and letting the covariate z1 vary over its 

range decreases both the odds and the linear predictor TJ and hence decreases the 

leaching probability, as depicted in Figure 5.33 (a) and (b). This is consistent with 

Gustafson's contention that non-leaching pesticides are those with low tfj~ and high 

koc values. Similarly, fixing the covariate z1 at a small value and letting the covariate 
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Figure 5.33: Plots of linear predictor TJ and probability for Model 2*: In (a) and (b) 

the covariate z2 is fixed at a certain value and the covariate z1 varies over a range of 

values. In (c) and (d) the covariate z1 is fixed at a certain value and the covariate 

z2 varies over a range of values. 
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z2 vary over its range increases both the odds and the linear predictor 17 and hence 

increases the leaching probability, as depicted in Figure 5.33 (c) and (d). Again, 

this is consistent with Gustafson's contention that leaching pesticides are those with 

low koc and high tf/i values. 

5.9.2 Down-weighting prior information 

Finally, down-weighting prior information derived from the analysis of Gustafson's 

data allow this prior specifications to be more diffuse and so give a better chance 

for the posterior coordinate means of koc and tf1i to correspond to their leachability 

status. 

5.9.3 Strengthening the results 

The above conclusions can be supported using the multivariate runs test proposed 

by Friedman and Rafsky in [17] to test for the degree of separation between leaching 

and non-leaching pesticides in (z1 , z2)-plane. This test was designed to test the 

null hypothesis of whether two groups are drawn from the same distribution. As 

mentioned in Chapter 2, Friedman and Rafsky proposed a statistic test Rm,n based 

on the total number of edges, R, between the two groups which can be counted 

using a minimal spanning tree. As in [45], Friedman and Rafsky's statistic test R 

has expected value 2mn/(m + n), where m and n are the sample sizes of the two 

groups. In our case, the null hypothesis is whether the leaching (m = 8) and non

leaching (n = 35) pesticides are drawn from the same distribution. In this case, the 

expected value of R is 13.02 with standard deviation 2.15 as in [45]. For example, 
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Figure 5.34: Minimal spanning tree for Mod~l2*. 

Figure 5.3~ shows the ~inimal spanning tree for Model 2*, which is required to. 

calcula_te R. -Fr:om this figure, the total number o( edges R ·between the pesticides 

in the two groups is 2: Tabl~ 5.1 shows the total number of edges R for the various 

models. As can be seen from this table; Models 2, 2*, 3 and 3* have R = 5, R = 2, 

R = 5 and R = 7, respectively, which are all small in comparison with 13.02 the 

expect~d value of R and its standard deviation 2.15, suggesting that leachers .and 

non-leachers are indeed well-separated. 

5.10 Conclusion 

In this, chapter, Bayesian approaches . have been developed to analyse the problem. 

of discriminating pestiGides 1:!-'5 leachers and non-leachers on the basis of two of their 

chemica:i properties, the adsorption coefficient koc and soil half-life t17i where .the 

values of these covariates are uncertain. Prior information from two sources was 
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used. Prior information for the covariates was based on their USDA data base means 

and variances and prior information for the coefficients {3 was based on logistic 

analyses of Gustafson's data. Six models were analysed; models 1, 2 and 3 each 

with a main effect linear predictor and models 1 *, 2* and 3* with an interaction 

term in the linear predictor. MCMC simulation was used to draw samples from 

the posterior distributions using a Metropolis-Hastings algorithm implemented in 

the R package and the Gibbs sampler in WinBUGS. WinBUGS built-in tools were 

used to assess convergence of chains to their target distributions. The Deviance 

Information Criterion (DIC) was used to compare the proposed models. In brief, 

pesticides are correctly classified using these models, except that Models 3 and 3* 

misclassify pesticide number 32, Monuron. 

These conclusions are strengthened using the multivariate runs test proposed 

in (17]. 

These models have succeeded for the first time in providing a complete separation 

between leaching and non-leaching pesticides, a classified in the EA database, on 

the basis of their chemical properties, where the values of these properties must 

be regarded as uncertain. They give better results than the Bayes linear method 

proposed in (43], which misclassified six leaching pesticides. On the other hand, the 

results are consistent with the data-analytic method given in (45] which chooses the 

combinations of data base values which best support the leacher/non-leacher status 

of each pesticide; namely, Gustafson's contention that leaching pesticides are those 

with low koc and high t~1i values and non-leaching pesticides are those with low t~1i 

and high koc values. 
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Pesticide Posterior mean Posterior sd Cl Posterior probabilities P{7ri > 0.5) 

I 0.0248 0.0777 (0, 0.245) 0.0072 

2 0.1522 0.2119 (2c-04, 0.7797) 0.0915 

3 0.2614 0.273 (8c-04, 0.9162) 0.2057 

4 0.757 0.2559 (0.1296, 0.9987) 0.8201 

5 0.0343 0.0938 (0, 0.3166) 0.0109 

6 0.0606 0.1403 (0, 0.5356) 0.0303 

7 0.7631 0.2587 (0.1136, 0.9991) 0.8195 

8 0.0816 0.1646 (0, 0.6442) 0.043 

9 0.2547 0.2702 (8c-04, 0.906) 0.1984 

10 0.0437 0.1192 (0, 0.4598) 0.0204 

11 0.0271 0.0963 (0, 0.3175) 0.0134 

12 0.0205 0.0791 (0, 0.2458) 0.0079 

13 0.8682 0.213 (0.2101, I) 0.9119 

14 0.0255 0.0986 (0, 0.3261) 0.0132 

15 0.0448 0.1169 (0, 0.4294) 0.019 

16 0.2076 0.2619 (lc-04, 0.8888) 0.16 

17 0.1262 0.2067 (0, 0. 7814) 0.0804 

18 0.0458 0.1299 (0, 0.5058) 0.0259 

19 0.043 0.1289 (0, 0.4914) 0.0242 

20 0.0908 0.187 (0, 0. 7317) 0.0598 

21 0.0954 0.1567 (2e-04, 0.5841) 0.0401 

22 0.7558 0.2657 (0.1005, 0.9993) 0.8128 

23 0.0433 0.1045 (0, 0.3845) 0.0145 

24 0.0689 0.1632 (0, 0.6513) 0.0426 

25 0.0459 0.1336 (0, 0.5177) 0.0267 

26 0.6961 0.2863 (0.0689, 0.9982) 0.7476 

27 0.0389 0.1264 (0, 0.4831) 0.0233 

28 0.1603 0.2333 (0, 0.8423) 0.113 

29 0.0474 0.1164 (0, 0.4351) 0.0189 

30 0.1251 0.2129 (0, 0.7966) 0.0854 

31 0.1909 0.2396 (3c-04, 0.8474) 0.1326 

32 0.3309 0.2905 (0.0029, 0.9445) 0.2794 

33 0.1106 0.175 (2e-04, 0.6719) 0.0551 

34 0.251 0.2699 (7c-04, 0.9083) 0.1944 

35 0.051 0.1357 (0, 0.5374) 0.0282 

36 0.8549 0.24 (0.1263, I) 0.8884 

37 0.0342 0.1039 (0, 0.3778) 0.0144 

38 0.0884 0.1688 (0, 0.6584) 0.0454 

39 0.7065 0.2615 (0.1178, 0.9943) 0.7711 

40 0.79 0.2688 (0.0911, I) 0.8331 

41 0.0532 0.1258 (0, 0.481) 0.0233 

42 0.14 0.227 (0, 0.8368) 0.0991 

43 0.0396 0.1072 (0, 0.3949) 0.0156 

Table 5.4: Statistical summaries for Model 1 for the leaching probability 1r. 
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Pesticide Posterior mean Posterior sd Cl Posterior probabilities P!1ri > 0.5J 

I 0.0092 0.0402 (0, 0.0943) 0.001 

2 0.0994 0.2 (0, 0.7919) 0.0678 

3 0.0964 0.2035 (0, 0.7982) 0.0703 

4 0.9178 0.1841 (0.2727, I) 0.9428 

5 0.0446 0.1192 (0, 0.4492) 0.021 

6 0.0552 0.1494 (0, 0.5961) 0.0347 

7 0.9403 0.1599 (0.3656, I) 0.9604 

8 0.0702 0.1655 (0, 0.6504) 0.0439 

9 0.114 0.215 (0, 0.8118) 0.0833 

10 0.04 0.1261 (0, 0.4839) 0.024 

11 0.0151 0.0685 (0, 0.1668) 0.0061 

12 0.0123 0.0516 (0, 0.1288) 0.0023 

13 0.9521 0.1441 (0.4184, I) 0.9672 

14 0.0283 0.1094 (0, 0.3721) 0.0169 

15 0.0414 0.1151 (0, 0.4268) 0.0176 

16 0.0918 0.1969 (0, 0.7708) 0.0654 

17 0.0676 0.1724 (0, 0.6934) 0.0499 

18 0.0259 0.11 (0, 0.3639) 0.0176 

19 0.0366 0.124 (0, 0.4697) 0.022 

20 0.0289 0.1107 (0, 0.4054) 0.0187 

21 0.0855 0.1858 (0, 0.732) 0.057 

22 0.9126 0.1874 (0.2628, I) 0.9401 

23 0.045 0.1191 (0, 0.4408) 0.02 

24 0.0452 0.1401 (0, 0.5502) 0.0304 

25 0.0217 0.102 (0, 0.3044) 0.0159 

26 0.8812 0.2175 (0.1746, I) 0.915 

27 0.0349 0.122 (0, 0.4622) 0.0217 

28 0.0766 0.1822 (0, 0.7197) 0.0562 

29 0.0535 0.1424 (0, 0.5561) 0.0308 

30 0.063 0.164 (0, 0.6703) 0.0423 

31 0.1153 0.2157 (0, 0.8183) 0.0831 

32 0.1397 0.2343 (0, 0.8552) 0.1042 

33 0.0957 0.1911 (0, 0.7407) 0.0647 

34 0.0732 0.1759 (0, 0.7072) 0.051 

35 0.0252 0.0985 (0, 0.3197) 0.013 

36 0.9284 0.1803 (0.2746, 1) 0.9461 

37 0.0359 0.1195 (0, 0.4585) 0.0213 

38 0.0722 0.1719 (0, 0.6921) 0.0486 

39 0.9039 0.1904 (0.2671, I) 0.9359 

40 0.8798 0.2236 (0.1571, I) 0.9101 

41 0.0396 0.1097 (0, 0.4029) 0.0164 

42 0.0654 0.1674 (0, 0.672) 0.0434 

43 0.0291 0.1031 (0, 0.3576) 0.0153 

Table 5.5: Statistical summaries for Model 1 * for the leaching probability 1r. 
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Pesticide Posterior mean Posterior sd Cl Posterior probabilities P{7ti > 0.5] 

I 0.0181 0.061 (0, 0.1764} 0.0026 

2 0.0549 0.1116 (0, 0.3633) 0.0124 

3 0.1564 0.219 (0, 0. 7737) 0.0972 

4 0.7353 0.2895 (0.1246, I} 0.7541 

5 0.0074 0.0278 (0, 0.0942} 0 

6 0.0198 0.0691 (0, 0.2197} 0.0046 

7 0.7194 0.313 (0.0632, I} 0.7339 

8 0.0141 0.0407 (0, 0.1507) 0 

9 0.1956 0.2384 (0, 0.8456} 0.135 

10 0.0252 0.0764 (0, 0.2311} 0.0046 

11 0.0173 0.0636 (0, 0.1915} 0.0052 

12 0.0078 0.0351 (0, 0.0826) 7c-04 

13 0.7606 0.2954 (0.0892, I} 0.7815 

14 0.0067 0.0312 (0, 0.0768) 7c-04 

15 0.0223 0.076 (0, 0.2442) 0.0052 

16 0.1225 0.1995 (0, 0.7262} 0.0685 

17 0.0691 0.1549 (0, 0.6186} 0.0333 

18 0.0051 0.0318 (0, 0.053} 7e-04 

19 0.0281 0.0917 (0, 0.3162) 0.0091 

20 0.1079 0.2061 (0, 0.7701} 0.0724 

21 0.0251 0.0705 (0, 0.2237) 0.0046 

22 0.715 0.3015 (0.0827, I} 0.7339 

23 0.0186 0.0535 (0, 0.1812} 7e-04 

24 0.0302 0.0766 (0, 0.251} 0.0039 

25 0.0849 0.1762 (0, 0.6586} 0.0496 

26 0.6793 0.317 (0.0561, I} 0.6941 

27 0.0163 0.0761 (0, 0.2088) 0.0065 

28 0.1277 0.1947 (0, 0.6974} 0.0718 

29 0.0145 0.0516 (0, 0.1489) 0.002 

30 0.0658 0.1475 (0, 0.5385} 0.0313 

31 0.1474 0.1781 (0, 0.6483} 0.0574 

32 0.4766 0.3123 (7e-04, 0.9745} 0.4866 

33 0.0588 0.1251 (0, 0.4586) 0.0215 

34 0.0748 0.1562 (0, 0.6227} 0.0365 

35 0.052 0.1327 (0, 0.5015} 0.0261 

36 0.6191 0.3574 (0.0191, I} 0.6132 

37 0.0109 0.033 (0, 0.1183) 0 

38 0.0482 0.118 (0, 0.4333} 0.0176 

39 0.7307 0.2889 (0.1203, 1} 0.7593 

40 0.7712 0.3011 (0.0816, I) 0.7893 

41 0.0352 0.0984 (0, 0.3391} 0.0124 

42 0.1312 0.2006 (0, 0.7152} 0.0731 

43 0.0322 0.0871 (0, 0.2863} 0.0085 

Table 5.6: Statistical summaries for Model 2 for the leaching probability 1r. 
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Pesticide Posterior mean Posterior sd Cl Posterior probabilities 

PJ"; > 0.5J 

l 0.0079 0.0391 (0, 0.0854) 0.0011 

2 0.0311 0.0935 (0, 0.3096) 0.0103 

3 0.0924 0.1873 (0, 0.6978) 0.0608 

4 0.8333 0.2557 (0.1264, 1) 0.8634 

5 0.0024 0.0147 (0, 0.0274) 0 

6 0.0087 0.0531 (0, 0.1073) 0.0023 

7 0.8326 0.266 (0.1029, I) 0.8576 

8 0.0062 0.0338 (0, 0.0677) 0.0011 

9 0.1311 0.2151 (0, 0. 7902) 0.0867 

10 0.0109 0.0589 (0, 0.1118) 0.004 

11 0.0085 0.0559 (0, 0.0779) 0.0034 

12 0.0035 0.0244 (0, 0.0235) 0 

13 0.853 0.253 (0.135, 1) 0.8731 

14 0.0031 0.0278 (0, 0.0222) 6e-04 

15 0.0079 0.0376 (0, 0.1118) 6c-04 

16 0.0435 0.1296 (0, 0.4888) 0.0247 

17 0.0384 0.1179 (0, 0.438) 0.0195 

18 0.0012 0.0145 (0, 0.0017) 0 

19 0.0154 0.0742 (0, 0.1863) 0.0075 

20 0.0586 0.1588 (0, 0.6265) 0.039 

21 0.0132 0.0545 (0, 0.!656) 0.0029 

22 0.8232 0.2604 (0.1262, I) 0.8553 

23 0.009 0.0445 (0, 0.1054) 0.0011 

24 0.0173 0.0691 (0, 0.1943) 0.0063 

25 0.0413 0.1302 (0, 0.5134) 0.0276 

26 0.7752 0.2924 (0.0716, I) 0.8071 

27 0.0062 0.0413 (0, 0.0558) 0.0017 

28 0.0785 0.1677 (0, 0.6541) 0.0442 

29 0.0069 0.0423 (0, 0.0737) 0.0011 

30 0.0392 0.1259 (0, 0.4738) 0.0207 

31 0.1143 0.1823 (0, 0.659) 0.0551 

32 0.4198 0.334 (3e-04, 0.9797) 0.4202 

33 0.0354 0.1047 (0, 0.3654) 0.0161 

34 0.0257 0.0965 (0, 0.3096) 0.0126 

35 0.0283 0.0986 (0, 0.361) 0.0132 

36 0.7551 0.3226 (0.0242, I) 0.7732 

37 0.0047 0.0241 (0, 0.0543) 0 

38 0.0259 0.0881 (0, 0.2849) 0.0086 

39 0.8477 0.2343 (0.1724, I) 0.8915 

40 0.8387 0.2661 (0.0824, 1) 0.8617 

41 0.0187 0.0749 (0, 0.2008) 0.0063 

42 0.0856 0.1842 (0, 0.734) 0.0557 

43 0.0147 0.0606 (0, 0.1679) 0.0023 

Table 5. 7: Statistical summaries for Model 2* for the leaching probability 1r. 
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Pesticide Posterior mean Posterior sd Cl Posterior probabilities 

P[>r; > 0.016J 

I 5e-04 0.0024 (0, 0.0034) 0.0022 

2 0.003 0.0053 (0, 0.017) 0.0301 

3 0.0122 0.0164 (lc-04, 0.0609) 0.2362 

4 0.1081 0.0124 (0.085, 0.1327) I 

5 le-04 2c-04 (0, 6c-04) 0 

6 8c-04 0.0033 (0, 0.0077) 0.0106 

7 0.1266 0.0561 (0.0422, 0.259) 0.9991 

8 5e-04 0.0015 (0, 0.0036) 0.0013 

9 0.0145 0.0165 Pc-04, 0.0606) 0.3137 

10 6e-04 0.0024 (0, 0.0044) 0.0035 

11 3c-04 0.0016 (0, 0.0025) 0.0018 

12 1c-04 5e-04 (0, 9e-04) 0 

13 0.0294 0.029 (0.0011, 0.1072) 0.58 

14 2e-04 0.0014 (0, 0.0014) 0.0013 

15 2c-04 7c-04 (0, 0.0019) 0 

16 0.0056 0.0071 (0, 0.0259) 0.0793 

17 0.002 0.0039 (0, 0.0133) 0.0173 

18 lc-04 4c-04 (0, 5e-04) 0 

19 3c-04 9c-04 (0, 0.0025) 0 

20 8c-04 0.0015 (0, 0.0056) 0 

21 0.0012 0.0032 (0, 0.0085) 0.0093 

22 0.0213 0.0221 (0.001, 0.0778) 0.5906 

23 3c-04 8e-04 (0, 0.0026) 0 

24 0.0015 0.0041 (0, 0.0109) 0.0142 

25 8c-04 0.0017 (0, 0.0053) 9c-04 

26 0.0249 0.0114 (0.0084, 0.052) 0.7754 

27 1e-04 5e-04 (0, 0.0012) 0 

28 0.0086 0.0141 (0, 0.0487) 0.1586 

29 3c-04 0.0015 (0, 0.0029) 9c-04 

30 0.0044 0.0097 (0, 0.0298) 0.0696 

31 0.0081 0.009 (2c-04, 0.0328) 0.1232 

32 0.0346 0.0269 (0.0028, 0.1049) 0.7337 

33 0.0025 0.0046 (0, 0.016) 0.0257 

34 0.0059 0.011 (0, 0.0368) 0.0979 

35 0.0025 0.0079 (0, 0.0216) 0.0372 

36 0.0289 0.0183 (0.0044, 0.0751) 0.7333 

37 2e-04 4c-04 (0, 0.0013) 0 

38 0.0023 0.0067 (0, 0.0175) 0.0297 

39 0.0195 0.0055 (0.0102, 0.0318) 0. 7222 

40 0.0197 0.0117 (0.0036, 0.0488) 0.5534 

41 0.0012 0.0046 (0, 0.009) 0.012 

42 0.0096 0.0152 (0, 0.052) 0.1786 

43 5c-04 0.0011 (0, 0.0034) 4e-04 

Table 5.8: Statistical summaries for Model 3 for the leaching probability 1f. 
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Pesticide Posterior mean Posterior sd Cl Posterior probabilities 

P[.-, > 0.016] 

I 5e-04 0.0115 (0, 0.0023) 0.0015 

2 0.0024 0.0047 (0, 0.015) 0.0224 

3 0.0086 0.0144 (0, 0.0481) 0.1624 

4 0.1081 0.0125 (0.0848, 0.1339) I 

5 le-04 2e-04 (0, 8e-04) 0 

6 8e-04 0.0041 (0, 0.0071) 0.0097 

7 0.1308 0.0569 (0.0431' 0. 259) I 

8 4e-04 0.0014 (0, 0.0034) 0.001 

9 0.0118 0.016 (le-04, 0.056) 0.2336 

10 5c-04 0.0019 (0, 0.0041) 0.0027 

11 3e-04 0.0014 (0, 0.0022) 0.0015 

12 1e-04 9e-04 (0, 8e-04) 5e-04 

13 0.027 0.0279 (8e-04, 0.1037) 0.5388 

14 2e-04 0.0039 (0, 9e-04) 0.0012 

15 3c-04 6e-04 (0, 0.0017) 0 

16 0.0026 0.0048 (0, 0.017) 0.0281 

17 0.0017 0.0035 (0, 0.0116) 0.0117 

18 0 2e-04 (0, 2c-04) 0 

19 Je-04 8e-04 (0, 0.0021) 0 

20 7e-04 0.0014 (0, 0.0049) 0 

21 0.0011 0.003 (0, 0.0088) 0.0062 

22 0.0222 0.0231 (0.001' 0.0873) 0.5945 

23 3c-04 7c-04 (0, 0.0022) 0 

24 0.0013 0.0043 (0, 0.0094) 0.0119 

25 4e-04 0.0011 (0, 0.0037) 0 

26 0.025 0.0115 (0.0078, 0.0521) 0.7644 

27 le-04 5c-04 (0, 0.001) 0 

28 0.0077 0.014 (0, 0.0477) 0.141 

29 4e-04 0.002 (0, 0.0032) 0.0027 

30 0.0032 0.0087 (0, 0.0237) 0.0473 

31 0.0077 0.0096 (1e-04, 0.0353) 0.1211 

32 0.0331 0.0286 (0.0019, 0.1088) 0.6769 

33 0.0028 0.0064 (0, 0.0189) 0.0336 

34 0.0025 0.0071 (0, 0.02) 0.0351 

35 0.0014 0.0051 (0, 0.0123) 0.0177 

36 0.03 0.0192 (0.0048, 0.0781) 0.7527 

37 2c-04 4e-04 (0, 0.0014) 0 

38 0.002 0.0054 (0, 0.0146) 0.0197 

39 0.0198 0.0055 (0.0107, 0.0315) 0.7418 

40 0.0189 0.0114 (0.0035, 0.0474) 0.5294 

41 0.001 0.0033 (0, 0.0076) 0.0087 

42 0.007 0.012 (0, 0.0406) 0.1264 

43 4e·04 8e-04 (0, 0.0024) 2c-04 

Table 5.9: Statistical summaries for Model 3* for the leaching probability 1r. 



Chapter 6 

Conclusions and further studies 

6.1 Introduction 

The aim of this thesis has been to develop Bayesian methods to discriminate between 

leaching and non-leaching pesticides on the basis of two of their chemical properties: 

the adsorption coefficient koc and soil half-life t~1i- The problem was that these 

covariates (koc and t~j~) are uncertain in the sense that there are a range of values 

reported, in the USDA database, for both of them for each pesticide. The study was 

limited to 43 pesticides extracted from the UK Environment Agency (EA) where 

complete information was available regarding these pesticides. In addition, data 

from 22 pesticides, known as "Gustafson 's data", with a single value reported for 

koc and t~ji was analysed. The information derived from analysis of Gustafson's 

data together with the USDA database values was chosen as prior information in 

the analysis of the EA data. 

In Chapter 1, the aims of this thesis and its objectives are stated. In addition, 

a detailed description of the data and its sources and deficiencies have been given. 

191 
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Furthermore, there was discussion of related literature. The general methodology 

used throughout the thesis is outlined. 

Chapter 2 reviews the statistical concepts, methods and tools used in the thesis. 

In particular, a description has been given of the logistic regression model and one 

of its deficiencies arising from this research. Also, there is a brief outline of Bayes 

linear methods and application to the general linear model with random covariates. 

Furthermore, the chapter contains discussion of some aspects of Bayesian inference 

and implementation using MCMC simulation techniques. 

Chapters 3 and 4 extend the Bayesian method proposed in [44] and the Bayes 

linear approach proposed in [43], respectively. 

Three Bayesian models to analyse the EA data are proposed in Chapter 6. These 

models use logistic regression with random covariates and prior information derives 

from both available data base values of koc and t~~~ for the covariates and Gustafson's 

data for the regression parameters. Each model has two stages. In all three models, 

the first stage uses logistic regression model with a logit link, while in the sec

ond stage different prior information for the unknown quantities is chosen for the 

three models. For each of the proposed models, combining the data with the prior 

information yielded complex joint posterior distributions where high dimensional 

integrations would be required to calculate marginal posterior distributions analyti

cally. Consequently, MCMC simulation techniques were used to draw samples from 

the marginal posterior distributions. These techniques were implemented both via 

the WinBUGS software and the Metropolis-Hastings algorithm in R. Convergence of 

MCMC algorithms to their target distribution were assessed via various diagnostic 



6.1. Introduction 193 

tests such as tracing or the history of the chains, autocorrelation plots, posterior 

density plots and the modified Gelman-Rubin diagnostic test. 

Half of the models use a linear function of the two covariates in the linear predic

tor, leading to linear discrimination, whereas the other half include an interaction 

term between the two covariates, leading to non-linear discrimination analogous to 

that proposed by Gustafson in [25]. However, a deficiency arises when fitting the 

latter logistic regression model to Gustafson's data; namely, the maximum likelihood 

of the regression parameters estimates (MLE) do not exist since there is complete 

separation between leachers and non-leachers in the space of the covariates relative 

to this interaction model. To remedy this, maximum estimated likelihood (MEL) is 

used instead. 

For the Bayes linear models (Chapter 4) we used some Bayes linear diagnos

tics, such as the system resolution and the size ratio, for analysing the observed 

adjustments and examining any conflict between data and prior specification. 

For the Bayes models, in Chapter 5, two statistical tools, the Deviance Infor

mation Criterion (DIC) and misclassification statistics, were used to compare and 

measure the ability of the proposed models to discriminate between leaching and 

non-leaching pesticides. The conclusions from the proposed models were supported 

using the multivariate runs test proposed in [17] to test for the degree of separation 

between leaching and non-leaching pesticides in the plane of the covariates. The 

next section summarizes the findings of this thesis. 
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6.2 Findings of the thesis 

This study leads to satisfactory findings which can be summarized as follows. 

1. This thesis documents the literature studies which are concerned with devel

oping methods to help in predicting the potential of pesticides to leach into 

the soil and pollute the groundwater. 

2. In the review of the literature studies, in particular [43], an error was noted in 

the plotting of the posterior discriminant, which was caused by using inappro

priate covariates. The correct analysis suggests that the Bayes linear approach 

still gives good prediction. 

3. A general formula to represent joint posterior distribution for logistic regression 

with uncertain covariates using a DAG is provided; see Section 2.4.6. 

4. Formulae were derived to make Bayes linear computations for any general 

linear model with random covariates. These formulae were used in Chapter 4 

to improve the Bayes linear approach proposed in [43]. They were also used 

to derive the prior information regarding Models 1 and 1 * in Chapter 6. 

5. A USDA database published several chemical and physical properties for each 

pesticides. These published values vary with soil type and climate. However, as 

discussed in [25] and from the analyses in Chapter 3, the adsorption coefficient 

(koc) and the estimated half-life of pesticide in the soil (tfj~) appear to have 

the most influence on the leaching potential of a pesticide. 

6. The logistic regression model proposed in [44] to fit Gustafson's data was im

proved using logistic regression with an interaction term in the linear predictor. 
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The idea was suggested in [44], was formulated in [37] and implemented in this 

thesis using weighted maximum estimated likelihood as proposed in [8]. The 

WEMEL analysis led to perfect separation between leaching and non-leaching 

pesticides, while three pesticides are misclassified using logistic regression with 

the linear predictor proposed in [44). 

7. The Bayesian method proposed in [44] and the the Bayes linear approach 

proposed in [43] were improved by introducing an interaction term of koc and 

tf/i- This led to slightly better results than the original models. 

8. Three models were studied to analyse the EA data. These use logistic regres

sion and prior information derived from the available values of the koc and 

tfji and from Gustafson's data. These models were improved using logistic 

regression with an interaction term. MCMC simulation techniques were used 

to draw samples from posterior distributions. These techniques were imple

mented using the WinBUGS software and the R package. The ability of these 

models to predict the potential of pesticides to leach varied from model to 

model. However, it was apparent that logistic regression with an interaction 

term (starred models) were better in fitting the EA data than the original 

models, where the predictor is linear in the two covariates. 

9. The analyses of the Bayes and Bayes linear models led us to believe that the 

prior information derived from Gustafson's data should be down-weighted. A 

general form to down-weight prior information by modifying the prior variance

covariance matrix of regression parameters was analysed. The modification 

gives better results. 
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6.3 Suggestions for future work 

6.3.1 Accounting for other uncertainties 

We noticed in Chapter 1 that EA and CDFA use a different classification basis. 

In our analyses in this thesis, we assumed, as in [43], that the classification 

is secure. However, we believe that a further work is needed to investigate 

whether the classification is secure and account for any possible uncertainty 

in the classification in any future work. 

Also, further investigations are needed to study the reasons behind the ab

sence of a pesticide in a sample, whether this because it has not been used 

in that locality or it has been used but not yet reached the groundwater in 

a detectable amount, and account for any possible uncertainty in this regard; 

see the example given in Section 1.2.4. 

6.3.2 Predictive and discrete models 

The predictive and discrete models are fully described in Section 5.5. 7. How

ever, some convergence difficulties in implementing these models arose, and 

hence further work is needed to overcome these difficulties. 
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6.3.3 Leachability prediction for pesticides with uncer-

tain chemical properties 

In the USDA database there are an additional 17 pesticides with at least two 

values for each of koc and tfj~, but these pesticides are not part of the EA 

database. This raises the question of how we might predict the leachabil-

ity status of these 17 pesticides given the data for the 43 EA pesticides and 

Gustafson's data. 

6.3.4 Likelihood for hidden logistic regression 

A proper likelihood approach is available under the hidden logistic regres-

sion model, proposed by Christmann and Rousseeuw in [8] (discussed here in 

Chapter 2) instead of the maximum estimated likelihood (MEL) method they 

propose. The structure of the hidden logistic regression model is described in 

Section 2.2.2 and depicted in Figure 2.1. Consider a single Bernoulli observa-

tion y. Then it is straightforward to show 

p [y I ,B] = L p [y It] p [t I ,8] = BY(1- B)l-y y = 0,1 (6.1) 
t=O,l 

where y is related to t as described in Section 2.2.2 and 

(6.2) 

where P [t = 0 I ,8] = l~e'l and TJ = xT ,B. For n observations y = (Yl, Y2, ... , Yn), 6.1 

becomes 

n 

P [y 1 .Bl =IT ot(1- ei) 1
-Yi (6.3) 

i=l 
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where 

()i = boP [ti = 0 I ,B] + b1P [ti = 11 .B] 
(6.4) 

= bo +(<51 - bo) · 1 ~:,,i 

where 'f/i = xf ,B. Hence, provided the error probabilities <50 and <51 are spec-

ified (known values), we can maximize 6.3, with respect to ,B, to obtain the 

maximum likelihood estimate (MLE) of (3. 

Bayesian analysis for the above hidden logistic regression model is possible, 

provided prior distributions can be assessed for the ,B, <50 and <51. Since 0 < 

<50 < ~ < <51 < 1, we can put, for example, 0 < P0 = 2<50 < 1 and 0 < P1 = 

2<51 - 1 < 1 and then choose independent beta distributions for P0 and P1. 

This analysis can be implemented using, for example, MCMC simulation with 

the prior assessment and the likelihood function in 6.3. 

6.3.5 Bayes linear methods with likelihood 

The Bayes linear method proposed in [43] may be extended in conjunction with 

"likelihood" function as follows. Let 0 denote a vector of unknown parameters. 

Then, as in Chapter 2, the adjusted mean and the adjusted variance for 0 given 

the data y are given by 

Ey[OJ - E[OJ + Cov[O, y]Var[yt 1[y- E[y]J 

Var[OJ - Cov[O, y]Var[y]- 1Cov[y, 0] 

(6.5) 

(6.6) 
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where the terms Cov[O, y], Var[y] and E[y] can be calculated as follows. 

Cov[O, y] = Cov[O, E[y I OJJ (6.7) 

Var[y] = Var[E[y I 0]] + E[Var[y I 0]] (6.8) 

E[y] = E[E[y I 0]] (6.9) 

Hence, if we have expressions for E[y I 0] and Var[y I 0] for each 0, then the 

calculation can proceed, either exactly or approximately. 

Example 1 Let y rv Binomial(n, B), then E[y I B] =nO and Var[y I B] = n0(1-

B) and straightforward calculations give 

Cov[B, y] = n Var[B] (6.10) 

Var[y] = n(n- 1)Var[B] + nE[B] (1 - E[B]) (6.11) 

E[y] nE[B] (6.12) 

So, provided we can assess the prior mean E[B] and prior variance Var[B] of 0, the 

posterior expectation Ey[B] and the posterior variance Vary[B] are readily obtained. 

Note that we use exact expressions for E[y I B] and Var[y I B]. Generalization to a 

vector y = (y1, y2 , ... , Yn) with independent binomial components is straightforward. 

The above approach can be generalized to cases where exact expressions for 

E[y I 0] and Var[y I 0] are not available in closed form or are difficult to calculate. 

In such cases, we can derive simple approximations to these quantities using, for 

example, a Taylor series expansion for E[y I 0]. 
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First, put 

1-L( 0) = E[y I 0] (6.13) 

E( 0) = Var[y I 0] (6.14) 

The aim now is to find a simple linear approximation to ~-t(O). Let t = E[OJ and 

V = Var[OJ be the prior mean and prior variance of 0, respectively. A Taylor series 

expansion around t for J-L( 0) is 

1-L( 0) ~ ~-t(t) + 1-£1 (t) ( 0 - t) (6.15) 

where 0 is a p x 1 vector, ~-t(O) is ann x 1 vector and ~-t'(t) is the n x p matrix of 

partial derivatives [W] . Hence, 
] 8=t 

Cov[O, y] = Cov[O, ~-t(O)J ~ Cov[O, ~-t(t) + ~-t'(t)(O- t)J = V~-t'(tf 

Var[y] = Var[~-t(O)J + E[E(O)J 

~ ~-t'(t)V~-t'(t)T + E(t) 

E[y] = E[~-t(O)J 

~ E[~-t( t) + ~-t' ( t) ( 0 - t) J = J-L( t) 

(6.16) 

(6.17) 

(6.18) 

Therefore, the Bayes linear estimate and adjusted variance can be approximated 

using these expressions for Cov[O, y], Var[y] and E[y]. 

Example 2 Consider a logistic regression model with a single Bernoulli obser-

vation; i.e. n = 1, 0 = {3 and t = b. Then, 

a:T{3 e 
J.L({3) = E[y I {3] = 1 + e'3!1"f3 (6.19) 
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So, 

p' ({3) = p({3)(1 - J-L(f3) )xT (6.20) 

Hence, 

J-L(f3) = p(b) + p(b)(l- J.L(b))xT({3- b) (6.21) 

Extending this example ton independent observations is straightforward. 

Application of these ideas to logistic regression with random covariates, the prob

lem considered in this thesis, is presently under investigation. 
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Appendix A 

MCMC codes 

A.l Fun.Model6.int 

#This function is used to implement the discrete model, 

#as a general application, in R. 

function(num.iters,sigma.betaO,sigma.beta1,sigma.beta2, 

prec.beta0,prec.beta1,prec.beta2){ 

p11<-sort(c(4.99721227376411, 5.66296048013595, ... ))# 

Koc values of the first leacher pesticide, 

which is the 4-th pesticide in Table 1.1. 

p21<-sort(c(3.52636052461616, 3.55534806148941)) 

p91<-sort(c(8.77276520994979, 8.29404964010203, 8.76405326934776))# 

Koc values of the first non-leacher pesticide, 
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which is the 1st pesticide in Table 1.1. 

p431<-sort(c(8.89562962713648, 8.43381158247719, ... )) 

p12<-sort(c(5.15329159449778, 3.73766961828337, ... ))# 

Soil half-life values of the first leacher pesticide, 

which is the 4-th pesticide in Table 1.1. 

p22<-sort(c(2.30258509299405, 2.63905732961526, ... )) 

p92<-sort(c(3.40119738166216, 4.0943445622221, ... )) 

Soil half-life values of the first non-leacher pesticide, 

which is the 1st pesticide in Table 1.1. 

p432<-sort(c(4.0943445622221, 4.0943445622221, ... ) ) 

p1<-list(p11,p21, ... ,p431) 

p2<-list(p12,p22, ... ,p432) 

y<-c (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

x1.star<-x2.star<-matrix(NA,43,num.iters) 

beta0.star<-beta1.star<-beta2.star<-rep(NA,num.iters) 

prop1.star<-prop2.star<-matrix(NA,1,num.iters) 

x1.star[,1]<-koc.c.group.logs 

x2.star[,1]<-t.c.group.logs 

prop1.star[,1]<-0.5 

prop2.star[,1]<-0.5 

beta0.star[1]<-3 

beta1.star[1]<--1 

beta2.star[1]<-1 

u.x1.set<-runif(num.iters) 

u.x2.set<-runif(num.iters) 

u.betaO.set<-runif(num.iters) 

u.beta1.set<-runif(num.iters) 

u.beta2.set<-runif(num.iters) 

210 

counter.x1<-counter.x2<-counter.beta0<-counter.beta1<-counter.beta2<-0 

x1.cand<-matrix(NA,43,1) 

x2.cand<-matrix(NA,43,1) 

prop1.cand<-matrix(NA,43,1) 

prop2.cand<-matrix(NA,43,1) 

for(i in 2:num.iters){ 

for(j in 1: 8){ 
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x1.cand[j,]<-sample(p1[[j]] ,size=1,prob=c(2~((length(p1[[j]])-1):0))) 

} 

for(k in 9:43){ 

x1.cand[k,]<-sample(p1[[k]] ,size=1,prob=c(2~(0: (length(p1[[k]])-1)))) 

} 

for(l in 1:8){ 

x2.cand[l,]<-sample(p2[[l]] ,size=1,prob=c(2~(0:(length(p2[[l]])-1)))) 

} 

for(m in 9:43){ 

x2.cand[m,]<-sample(p2[[m]] ,size=1,prob=c(2~((length(p2[[m]])-1):0))) 

} 

for(n in 1:8){ 

prop1.cand[n,]<-2~((length(p1[[n]])-1):0) [which(p1[[n]] 

==x1.cand[n,]) [1]]/sum(2~((length(p1[[n]])-1):0)) 

prop2.cand[n,]<-2~(0:(length(p2[[n]])-1))[which(p2[[n]] 

==x2.cand[n,]) [1]]/sum(2~(0: (length(p2[[n]])-1))) 

} 

for(w in 9:43){ 

prop1.cand[w,]<-2~(0:(length(p1[[w]])-1)) [which(p1[[w]] 

==x1.cand[w,])[1]]/sum(2~(0:(length(p1[[w]])-1))) 

prop2.cand[w,]<-2~((length(p2[[w]])-1) :O)[which(p2[[w]] 

==x2.cand[w,])[1]]/sum(2~((length(p2[[w]])-1):0)) 

} 
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prop1.new<-sum(log(prop1.cand)) 

eta<-beta0.star[i-1]+beta1.star[i-1]*x2.star[,i-1] 

+beta2.star[i-1]*x1.cand*x2.star[,i-1] 

p.cand<-exp(eta)/(1+exp(eta)) 

f.cand<-sum(y*eta-log(1+exp(eta))) 

eta<-beta0.star[i-1]+beta1.star[i-1]*x2.star[,i-1] 

+beta2.star[i-1]*x1.star[,i-1]*x2.star[,i-1] 

p.old<-exp(eta)/(l+exp(eta)) 

f.old<-sum(y*eta-log(1+exp(eta))) 

x1.part<-prop1.star[,i-1]+f.cand-prop1.new-f.old 

if(log(u.x1.set[i])<min(O,x1.part)){ 

x1.star[,i]<-x1.cand 

prop1.star[,i]<-prop1.new 

counter.x1<-counter.x1+1 

}else{ 

x1.star[,i]<-x1.star[,i-1] 

prop1.star[,i]<-prop1.star[,i-1] 

} 

prop2.new<-sum(log(prop2.cand)) 

eta<-betaO.star[i-1]+beta1.star[i-1]*x2.cand 

+beta2.star[i-1]*x1.star[,i]*x2.cand 

p.cand<-exp(eta)/(1+exp(eta)) 
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f.cand<-sum(y*eta-log(1+exp(eta))) 

eta<-beta0.star[i-1]+beta1.star[i-1]*x2.star[,i-1] 

+beta2.star[i-1]*x1.star[,i]*x2.star[,i-1] 

p.old<-exp(eta)/(1+exp(eta)) 

f.old<-sum(y*eta-log(1+exp(eta))) 

x2.part<-prop2.star[,i-1]+f.cand-prop2.new-f.old 

if(log(u.x2.set[i])<min(O,x2.part)){ 

x2.star[,i]<-x2.cand 

prop2.star[,i]<-prop2.new 

counter.x2<-counter.x2+1 

}else{ 

x2.star[,i]<-x2.star[,i-1] 

prop2.star[,i]<-prop2.star[,i-1] 

} 

betaO.cand<-rnorm(l,betaO.star[i-1] ,sigma.betaO) 

eta<-betaO.cand+beta1.star[i-1]*x2.star[,i] 

+beta2.star[i-1]*x1.star[,i]*x2.star[,i] 

p.cand<-exp(eta)/(1+exp(eta)) 

f.cand<-sum(y*eta-log(1+exp(eta))) 

prior.cand<--0.5*prec.betaO*((betaO.cand+20.384)-2) 

eta<-beta0.star[i-1]+beta1.star[i-1]*x2.star[,i] 

+beta2.star[i-1]*x1.star[,i]*x2.star[,i] 
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p.old<-exp(eta)/(1+exp(eta)) 

f.old<-sum(y*eta-log(1+exp(eta))) 

prior.old<--O.S*prec.betaO*((betaO.star[i-1]+20.384)-2) 

betaO.part<-f.cand+prior.cand-f.old-prior.old 

if(log(u.betaO.set[i])<min(O,betaO.part)){ 

betaO.star[i]<-betaO.cand 

counter.beta0<-counter.beta0+1 

}else{ 

betaO.star[i]<-betaO.star[i-1] 

} 

beta1.cand<-rnorm(1,beta1.star[i-1] ,sigma.beta1) 

eta<-beta0.star[i]+beta1.cand*x2.star[,i] 

+beta2.star[i-1]*x1.star[,i]*x2.star[,i] 

p.cand<-exp(eta)/(1+exp(eta)) 

f.cand<-sum(y*eta-log(1+exp(eta))) 

prior.cand<--0.5*prec.beta1*((beta1.cand-17.380)-2) 

eta<-beta0.star[i]+beta1.star[i-1]*x2.star[,i] 

+beta2.star[i-1]*x1.star[,i]*x2.star[,i] 

p.old<-exp(eta)/(1+exp(eta)) 

f.old<-sum(y*eta-log(1+exp(eta))) 

prior.old<--0.5*prec.beta1*((beta1.star[i-1]-17.380)-2) 

beta1.part<-f.cand+prior.cand-f.old-prior.old 

if(log(u.beta1.set[i])<min(O,beta1.part)){ 
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betal.star[i]<-betal.cand 

counter.beta1<-counter.beta1+1 

}else{ 

betal.star[i]<-betal.star[i-1] 

} 

beta2.cand<-rnorm(1,beta2.star[i-1] ,sigma.beta2) 

eta<-beta0.star[i]+beta1.star[i]*x2.star[,i] 

+beta2.cand*x1.star[,i]*x2.star[,i] 

p.cand<-exp(eta)/(1+exp(eta)) 

f.cand<-sum(y*eta-log(l+exp(eta))) 

prior.cand<--0.5*prec.beta2*((beta2.cand+1.947)-2) 

eta<-betaO.star[i]+beta1.star[i]*x2.star[,i] 

+beta2.star[i-1]*x1.star[,i]*x2.star[,i] 

p.old<-exp(eta)/(1+exp(eta)) 

f.old<-sum(y*eta-log(l+exp(eta))) 

prior.old<--0.5*prec.beta2*((beta2.star[i-1]+1.947)-2) 

beta2.part<-f.cand+prior.cand-f.old-prior.old 

if(log(u.beta2.set[i])<min(O,beta2.part)){ 

beta2.star[i]<-beta2.cand 

counter.beta2<-counter.beta2+1 

}else{ 

beta2.star[i]<-beta2.star[i-1] 

} 
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} 

ac.rate.x1<-counter.x1/num.iters 

ac.rate.x2<-counter.x2/num.iters 

ac.rate.betaO<-counter.betaO/num.iters 

ac.rate.beta1<-counter.beta1/num.iters 

ac.rate.beta2<-counter.beta2/num.iters 

x1.sim<-apply(x1.star,1,mean) 

x2.sim<-apply(x2.star,1,mean) 

x1.sd<-apply(x1.star,1,sd) 

x2.sd<-apply(x2.star,1,sd) 

betaO.mean<-mean(betaO.star) 

beta1.mean<-mean(beta1.star) 

beta2.mean<-mean(beta2.star) 

betaO.sd<-sd(betaO.star) 

beta1.sd<-sd(beta1.star) 

beta2.sd<-sd(beta2.star) 

CI.x1<-matrix(NA,43,2) 

CI.x2<-matrix(NA,43,2) 

CI.beta<-matrix(NA,3,2) 

for(i in 1:43){ 

CI.x1[i,]<-quantile(x1.star[i,] ,probs=c(0.025,0.975)) 

CI.x2[i,]<-quantile(x2.star[i,] ,probs=c(0.025,0.975)) 

} 
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CI.beta[1,]<-quantile(beta0.star,probs=c(0.025,0.975)) 

CI.beta[2,]<-quantile(beta1.star,probs=c(0.025,0.975)) 

CI.beta[3,]<-quantile(beta2.star,probs=c(0.025,0.975)) 

DIC.STAT<-Dic.fun(num.iters,t(x1.star),t(x2.star), 

betaO.star,beta1.star,beta2.star) 

TABLE.X1<-cbind(x1.sim,x1.sd,x1.x2.mode[,1], 

CI.x1[,1] ,CI.x1[,2]) 

colnames(TABLE.X1)=c("mean", "sd", "mode", "lower", "upper") 

TABLE.X2<-cbind(x2.sim,x2.sd,x1.x2.mode[,2], 

CI.x2[,1] ,CI.x2[,2]) 

colnames(TABLE.X2)=c("mean", "sd", "mode", "lower", "upper") 

TABLE.betaO<-cbind(betaO.mean,betaO.sd, 

CI.beta[1,1] ,CI.beta[1,2]) 

colnames(TABLE.betaO)=c("mean","sd","lower","upper") 

TABLE.beta1<-cbind(beta1.mean,beta1.sd, 

CI.beta[2,1] ,CI.beta[2,2]) 

colnames(TABLE. beta1)=c("mean", "sd", "lower", "upper") 

TABLE.beta2<-cbind(beta2.mean,beta2.sd, 

CI.beta[3,1] ,CI.beta[3,2]) 

colnames(TABLE.beta2)=c("mean","sd","lower","upper") 

list(x1.star=x1.star,x2.star=x2.star,betaO.star=betaO.star, 

beta1.star=beta1.star,beta2.star=beta2.star,TABLE.X1=TABLE.X1, 

TABLE.X2=TABLE.X2,x1.x2.mode=x1.x2.mode,TABLE.beta0=TABLE.beta0, 
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TABLE.beta1=TABLE.beta1,TABLE.beta2=TABLE.beta2,DIC.STAT=DIC.STAT, 

betaO.mean=betaO.mean,beta1.mean=beta1.mean,beta2.mean=beta2.mean, 

plot(x1.sim,x2.sim,xlab= 11 Simulated values of xl=Log Koc 11
, 

ylab= 11 Simulated values of x2=Log soil half-life 11 ,cex=2, 

pch=as.numeric(y.cir.group),col=11 red 11
), 

text(x1.sim,x2.sim,1:43,cex=0.6,adj=0.5), 

curve(-beta0.mean/(beta1.mean+beta2.mean*x),add=TRUE) 

) 

A.l.l Dic.fun 

#This function is used in 11 Fun.Model6.int 11 to calculate the DIC 

statstics. 

function(N,x1,x2,betaO,beta1,beta2){ 

dbar<-matrix(NA,N,l) 

betaO.mean<-mean(betaO) 

beta1.mean<-mean(beta1) 

beta2.mean<-mean(beta2) 

X1.mean<-X2.mean<-matrix(NA,43,1) 

for(i in 1 :43){ 

Xl.mean[i,]<-mean(xl[,i]) 

X2.mean[i,]<-mean(x2[,i]) 

} 

Dhat<--2*Log.Lik(X1.mean,X2.mean,beta0.mean,beta1.mean,beta2.mean) 
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for (i in 1: N){ 

dbar[i,]<-Log.Lik(x1[i,] ,x2[i,] ,betaO[i] ,beta1[i] ,beta2[i]) 

} 

Dbar<--2*mean(dbar) 

pD=Dbar-Dhat 

DIC=Dbar+pD 

list(Dbar=Dbar,Dhat=Dhat,DIC=DIC,pD=pD) 

} 

A.1.2 Log.Lik 

#This function is used in 11 0ic.fun 11
• 

function(x1,x2,betaO,beta1,beta2) 

{ 

sum((beta0+beta1*x2+beta2*X1*x2)*y.group 

-log(1+exp(betaO+beta1*x2+beta2*x1*x2))) 

} 

A.2 WinBUGS code 

model{ 

for( i in 1 : 43 ) { 

y[i] - dbern(pi[i]) 

logit(pi[i])<-eta[i] 

} 
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eta[1:43]-dmnorm(mean[] ,precision[,]) 

} 

data 

list(y=c(O, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 1, 0, 0,1, 1, 0, 0, 0), 

mean=c(-18.1602550369174, 6.18955405790843, ... ), 

precision=structure(.Data=c(0.161852929395662, 0.000687084927984936, ... 

), .Dim=c(43,43))) 

inits; 

list(eta=c(-1.23692607507110, 1.16338457912207, ... )) 

list(eta=c(-9.29418446263298, 0.196954105049372, ... )) 

list(eta=c(-17.5244785845280, -4.65396864339709, ... )) 




