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Abstract 

Density functional theory (DFT) is a popular approach to solving the many-electron 

Schrodinger equation, in order to investigate the properties of matter from first prin­

ciples. While DFT can give the exact ground state electronic density of a system, 

in practice, an approximation is required for the many-body effects contained in the 

exchange-correlation functional. The accureicy of calculations performed using DFT 

is strongly related to the choice of approximation. In this thesis we will investigate 

and build upon a fully non-local approach to modeling exchange-correlation in the 

form of the weighted density approximation (WDA). Central to the WDA is the 

model function chosen for the coupling-constant averaged pair-correlation function 

(PCF). We show that a model PCF can be selected from a set to give excellent bulk 

properties for a particular system. However, this model is not necessarily transfer­

able to other systems and there is no method of selecting an appropriate model from 

this set a priori. We suggest that the model PCF can be improved systematically 

by satisfying known physical constraints. One such constraint is the Kimball cusp 

condition, which we include in our model and implement. We demonstrate that 

surfaces are systems that require a non-local treatment of exchange-correlation by 

applying the WDA to metal surfaces and investigate the dissociative adsorption of 

H2 on the Cu(lOO) surface. A new framework for a model PCF with spin resolution 

is developed, providing a route for more physical constraints to be satisfied within a 

weighted spin density approximation (WSDA). A simple model is suggested and im­

plemented and comparisons £ire made to the coupling-constant averaged PCF in the 

homogeneous electron gas. We then apply a selection of our new models to a number 

of materials and show that our model for the WSDA gives improved band gaps over 

the local density approximation. Application of the WSDA to spin polarised mate­

rials reveals shortcomings in our simple model. We then suggest further refinements 

to our implementation of the WSDA. It is expected that the inclusion of additional 

physical constraints will systematically improve results given in a weighted-density 

based approximation to exchange-correlation. 
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Chapter 1 

Introduction 

The rapid increase in computer processing power and use of parallel computing are 

allowing larger and more complex numerical simulations to be feasible. Simulation 

methods are being used to so much success that they are providing what can be seen 

as a "third way", after experimentation and theory, of exploring nature. As they can 

be based in theory and/or on empirical models, numerical simulations can provide 

a bridge between the interpretation of experimental data and theoretical models, 

while remaining complementary to both. This thesis will look at the application of 

numerical simulations to the calculation of electronic structure in condensed matter 

systems. 

Specifically, we will focus on density functional theory (DFT), one of the more 

popular approaches to solving the many-electron problem. We can use this method 

to investigate the physical properties of matter from first principles, providing accu­

rate simulations of matter without bias from expectations associated with knowledge 

of experimental results. It is a general method that can be applied to many con­

densed matter systems of interest. This includes, but is not limited to, semiconduc­

tors, magnetic materials, pharmeiceuticals and biological chemistry. An advantage 

of such simulations is that materials that may be prohibitively expensive to produce 

for experiment can be investigated computationally. This would be particularly 

useful in studies that, if done experimentally, would require much trial and error 

or in investigations of a large number of similar materials. Conditions that can not 

be produced in the laboratory can also be simulated, for example, the high pres-
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sures found in the centre of our and other planets can create structures we cannot 

produce experimentally. Physical properties of these structures, such as elastic con­

stants, can be predicted and used by seismologists to further knowledge of vibrations 

propagating through the Earth. 

1.1 Many-Body Quantum Mechanics 

Quantum mechanics has proven to be one of the most accurate theories in physics, 

providing a description of matter beyond the classical, to systems on the atomic 

scale. Mathematically, a system can be described by its wavefunction, which 

contains the probability amplitude for each configuration of the constituent particles. 

In condensed matter systems, this must account for all the nuclei and the associated 

electrons: 

* ( r i , r 2 , . . . , r y v , i l i , f i 2 , . . . , H / ) , (1.1) 

where time dependance is omitted, are positions (including spin information) 

for all TV electrons and Ri are positions for all / nuclei. The time evolution of a 

wavefunction is described by the Schrodinger equation (ignoring relativistic effects): 

i | * = H * , (1.2) 

where we abbreviate the many-body wavefunction as 4* and H is the many-body 

hamiltonian. Throughout this thesis we will use atomic units, unless specified oth­

erwise, where Planck's constant h, the electron charge e, the electron mass me, the 

Bohr radius OQ, Coulomb's constant l/(47reo) and the Hartree energy are all set to 

unity. The last two quantities are not independent of the first four and take a value 

of unity as a consequence of normalising the first four. 

The hamiltonian operator can be split into a sum of kinetic energy and potential 

operators, T and V, respectively. The many-body kinetic energy operator can be 
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expressed as: 

(1.3) 

where Mj are the masses of the nuclei and the Laplacian operator for electron N in 

Cartesian coordinates is: 

,2 
^N = ^ + ^ + ^ - (1-4) 

dxN oyN OZN 

The potential energy operator, neglecting any external fields, is made up of the 

Coulomb interactions between electrons and nuclei: 

^ l - ^ - ^ ^ l 2 , ^ , K - r M | 22^^\R,-Rj[ 

The three terms are the electron-nuclear, electron-electron and nuclear-nuclear in­

teractions, respectively. The factors of a half axe to account for double counting of 

the individual interactions and Zj are the nuclear charges. 

As the nuclei £ire much more massive than the electrons, we can assume the 

nuclei are stationary on the timescale of electronic releixation - this is the Born-

Oppenheimer approximation [1]. This allows the nuclear degrees of freedom to be 

separated from the electronic ones, thus: 

* (r i , r2 , . . . , r jv , i2 i , i l2 , . . - , i2 / ) = V'(ri,r2,.. . ,ryv)0 ( i l l , i ia,. • . , « ; ) , (1-6) 

where we represent the many-electron and nuclei wavefunctions as tp and 0, respec­

tively. The nuclear kinetic energy term can then be set to zero and the nuclear-

nuclear term can be considered a consteint. 
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Ideally, we can then use the many-body wavefunction to give a6 initio predictions 
for our chosen condensed matter systems. This means that we can get physical 
properties of matter without any prior bias, i.e. a first principles approa<;h that 
uses only the fundamental physical interactions of particles. The challenge we face 
is in finding a wavefunction that satisfies the Schrodinger equation, a task that is 
analytically impossible for all but the most trivial of systems. Even attempts to 
solve the problem numerically are unfeasible as we still have 3N electronic degrees 
of freedom to take into account. Here we turn to a popular approach to the problem, 
DFT. 

1.2 Density Functional Theory 

Density functional theory (DFT), in the Hohenberg-Kohn-Sham formulation [2, 3], 

has established itself as the what is probably the most popular of approaches for elec­

tronic structure calculations. Essentially, it takes the time independant Schrodinger 

equation for the electrons: 

HiP = ErP, (1.7) 

and recasts it in terms of the electron density, which can be determined from the 

electronic wavefunction: 

n(r) = N^ / dr2... / dr7v'0*(ri, r a , . . . ,rw)V'(ri, r j , . . . ,r;v), (1.8) 

where we include the sum over spin coordinate a. The system can then be treated 

£is N single particle equations, as we will see in the following discussion. It is then 

possible to determine, in principle, the exeict ground state of the system. At this 

point it should be pointed out that this discussion is by no means intended to be 

pedagogical. In-depth reviews of DFT can be found in references [4] and [5], and 

references therein. 
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1.2.1 The Hohenberg-Kohn Theorems 

The two Hohenberg-Kohn theorems [2] are the first step in constructing a successful 

DFT. We start by writing the hamiltonian for a general many-electron system in an 

external potential v ( r A r ) , as: 

where the external potential is for all effects external to the electrons, including the 

Coulomb potential from the stationary nuclei, but other fields could be applied also. 

Theorem 1: The external potential is a unique functional of the electron density 

in the ground state, and therefore the total energy is also a functional of the ground 

state electron density. A consequence of the first Hohenberg-Kohn theorem is that 

all properties of a system are determined from only the ground state electron density. 

Proof: We proceed by reductio ad absurdum, following reference [2]. We have a 

ground state electronic wavefunction ip that gives an electron density n{r) for an 

external potential i;(r). Assume we have a second external potential v'{r) that has a 

ground state ip', which gives the same density n(r). The corresponding hamiltonian 

and ground state energy for tp, ip' are H , H' and E, E', respectively. As ip' is not 

the ground state of H, we can say that: 

E = (0|H|^) < (V'lHlV') = {xP'\H'\i>') + {^P'\H - H'l^p') (1.10) 

= E'+ j [v{r)-v\r)]n{r)dr, (1.11) 

so we have: 

E <E' + J [v{r) - v'{r)] n{r)dr. (1.12) 
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If the unprimed and primed indices are reversed, we also have: 

E'<E +J[v'{r)-v{r)]n{r)dr. (1.13) 

Addition of equations 1.12 and 1.13 leads to the contradiction: 

E + E' <E' + E. (1.14) 

So, to within a constant, the external potential v{r) is a unique functional of the 

ground state electron density n(r), as was set out to be shown. 

Theorem 2: The total energy of a system, which is a functional of the ground 

state electron density through the first theorem, is minimised for the correct ground 

state energy. Hohenberg and Kohn defined a universal functional, that is valid for 

any system of electrons, regardless of the external potential. For a given external 

potential, v{r), we have the total energy functional E[n] as: 

E[n] = F[n] + j v{r)n{r)dr, (1.15) 

where we neglect the energy from the interaction of the nuclei. The universal func­

tional F[n\ includes all of the electronic energy: 

F[n] = T[n] + Vee[n], (1.16) 

where we have the kinetic energy functional T[n] and the potential energy functional 

Vee[n] from electron-electron interactions. 
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For a system with a ground state electron density n(r), the ground state energy 
E is equivalent to the total energy functional E[n], which is equal to the expectation 
value of the hamiltonian for the ground state wavefunction ip, thus: 

E = E[n] = {jp\H\^lj). (1.17) 

For a different density n'(r), with wavefunction ip', it follows from the variational 

principle that the energy corresponding to this state, E' is greater than the ground 

state energy: 

E={m\xP)<{xl;'\Hm = E'. (1.18) 

Therefore the total energy functional E[n] gives the exact ground state energy only 

for the exact ground state density. If the universal functional F[n] is known, then the 

total energy can be minimised with respect to n(r) and the exact ground state elec­

tron density and total energy would be found. Simple yet powerful as the Hohenberg-

Kohn theorems are, they do not provide a route to construct functional or a method 

to calculate the ground state density. 

1.2.2 The Kohn-Sham Formulation 

Almost exactly a year after the Hohenberg-Kohn theorems were published, Kohn and 

Sham published [3] an approach that makes DFT feasible. The Kohn-Sham ansatz 

is that the exact ground state density can be written as the ground state density of a 

fictitious system of noninteracting particles. This then gives us a set of independent 

particle equations that can be solved numerically. Through the Hohenberg-Kohn 

theorems, these independent particle equations have their own ground state energy 

functional. Kohn and Sham chose to write the total energy functional as: 

E[n] = J v{r)n{r)dr + \J J "^J'̂ ^^<^rdr^ + T,[n] + E^cH (1.19) 
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We have the external potential, i'(r), introduced earlier, the classical Coulomb in­

teraction energy for the electron density with itself (the Hartree energy), and the 

kinetic energy of the independent particles. Here, all the many-body effects of the 

electron-electron interactions are combined into a single entity called the exchange-

correlation energy functional. 

By definition, the exchange-correlation energy is the difference between the exact 

total energy and the other known quantities. Physically, it is the energy from 

Pauli exclusion and many-body Coulomb interactions, which must include a self 

interaction term required to cancel that in the Hartree energy. It also includes the 

difference between the many-body and single particle kinetic energies. In principle, 

the Kohn-Sham formulation can allow the exact ground state to be determined. 

However, the form of the exchange-correlation energy functional is not known. In 

practice approximations are made so that DFT can be used for physical systems. 

Discussion of these approximations will be postponed until Chapter 2. 

Kohn-Sham DFT gives a set of variational equations that are solved self consis­

tently. We have a set of Schrodinger like equations: 

H^sMr) = eiA{r), (1.20) 

for the independent particle Kohn-Sham orbitals tpiir) governed by an effective 

hamiltoniein H K S with eigenvalues Si. Note that we neglect spin indices for brevity. 

The Kohn-Sham orbitals are related to the electron density of iV electrons by: 

N 

nir) = J2\Mr)\\. (1.21) 
i 

and, in principle, this density is exact. The effective hamiltonian is given by: 

//Ks(r) = -^V2-Ht;Ks(r), (1.22) 
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where we have the effective Kohn-Sham potential: 

VKsir) = Vext(r) + VH{r) + v^c{r), (1.23) 

which is the sum of the external, Hartree and exchange-correlation potentials, re­

spectively. A self consistent iterative procedure would start from an initial electron 

density that can be used to calculate the Kohn-Sham potential. Then, through 

solution of equation 1.20, and use of the relation in equation 1.21 we can obtain a 

new electron density. If the initial and new densities are identical, then the ground 

state density has been found. Otherwise one must select a new trial density through 

minimisation of the total energy and continue to repeat the iterative procedure. 

In practice, such a self consistent calculation must be performed computationally, 

we will now discuss a popular approach to doing this - the plane wave pseudopo-

tential method. 

1.3 Plane Wave Pseudopotential Method 

One way of implementing the Kohn-Sham formulation of DFT is the plane wave 

pseudopotential method. As with the previous section, this discussion is not in­

tended to be pedagogical and the interested reader will find reviews in references [4] 

and [5], and references therein. 

1.3.1 Plane Waves as a Basis 

When studying the electronic structure of condensed matter systems, one is inves­

tigating the behaviour of a number of electrons in the order of ~ 10̂ ® per mole 

of atoms. Many extended systems are periodic in structure, corresponding to one 

of the Bravais lattices, so one can define an infinite periodic system and perform 

calculations for only the electrons in the periodic cell. 

Bloch's theorem shows that the wavefunction, Vn, of an electron in band n, for 

a periodic system can be expressed as a combination of a plane wave part and a 
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periodic cell part [6]: 

Mr) = u„(r)e"'^ (1.24) 

where the plane wave part has wave vector fc, which is confined to the first Brillouin 

zone. The periodic part has the same periodicity as the lattice, i.e. u„(r + R) ^ 

it„(r), where R is one of the lattice vectors. 

This leads us to choose a plane wave basis set to describe the wavefunction within 

the periodic cell. The periodic part of the wavefunction can then be written as: 

""(»•) = 5^ Cn.ce*''", (1.25) 
G 

where we have plane wave coefficients ĉ i.c and G are the reciprocal lattice vectors 

that satisfy the relation G R= 27rm, where m is an integer. If we combine equations 

1.24 and 1.25, the Kohn-Sham orbitals can therefore be written as an infinite sum 

of plane waves: 

^n(r) = J^c„,(fc+G)e•('=+^)•^ (1.26) 
G 

where Cn,k+G are the coefficients of the plane waves describing the wavefunction. 

Bloch's theorem allows us to take an infinite system but only calculate a finite 

number of electronic wavefunctions. However, this leaves an infinite number of k-

points as each electron occupies a definite k. In practice, we need only choose a 

sample of k-points as the wavefunction varies slowly over small regions of k-space. 

The electronic wavefunctions at k-points that are close will be nearly identical. 

Therefore a region of k-space can be represented by the wavefunction at a single 

k-point. Efficient k-point sampling schemes have been developed, such as the one 

given by Monkhorst and Pack [7]. The symmetry of the lattice can be used to 

reduce the number of k-points required. The Brillouin zone can be made irreducible 
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by applying the point group symmetries of the lattice, leaving no k-points related 
by symmetry. 

The sum over G vectors in equation 1.26 is infinite in order to fully describe the 

wavefunction, i.e. for the plane wave basis set to be complete. When devising a 

computational implementation one must choose a finite end to the sum. For most 

realistic wavefunctions, there will be a scale below which the wavefunction can be 

described as smoothly varying. This means that the coefficients Cn,k+G will become 

small for large |fc -}- G | . The cutoff point is referred to as the plane wave kinetic 

energy cutoff: 

E^t>\\k + G f , (1.27) 

i.e. it is greater than or equal to the highest kinetic energy of the plane waves used. 

This corresponds to a sphere in reciprocal space within which all the used |fc -H G | 

vectors lie. 

When performing calculations one must always be careful to select an appropriate 

sampling of k-points and plane wave cutoff energy. This is done by performing 

calculations at successively higher cutoff energies and finer grids of k-points until 

the queuitities of interest no longer change - a test of convergence. An example of 

this for the total energy of silicon in the diamond structure is shown in Figure 1.1. 

The use of plane waves as a basis set is advantageous in a number of ways. In 

terms of the accuracy required for the system in question, one can always improve 

the accuracy by increasing the plane wave cutoff energy and therefore tending to­

wards the complete basis set. Real space quantities, such as potentials, can be easily 

transformed to reciprocal space using standard numerical techniques, in order to ob­

tain the plane wave coefficients. Derivatives in real space become multiplications in 

reciprocal space, so quantities such as the kinetic energy of the Kohn-Sham orbitals 

can be easily evaluated. The use of plane waves treats all regions of space equally, so 

can be applied generally, even for non-periodic systems, if an appropriate periodic 

supercell is used. We make use of this in our investigation of surfaces in Chapter 3. 

A simple schematic of the supercell approximation is shown in Figure 1.2. However, 
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Figure 1.1: Graphs for the total energy per atom in silicon against plane wave cutoff 

energy and k-point grid size. 

this includes regions of vacuum, so there is an added memory and computational 

cost in such cases. A plane wave basis set also lends well to distribution of data 

and processing in a parallel computing environment. This allows larger and more 

compUcated systems to be simulated with higher accuracy. 

1.3.2 The Pseudopotential Approximation 

Electrons in the vicinity of the nuclei will be under the influence of a steep Coulomb 

potential and have rapidly varying wavefunctions in the nuclear regions. This re­

quires a correspondingly large number of plane waves to adequately describe the 

wavefunction and the nuclear potential. This expense is reduced by the pseudopo­

tential approximation [8, 9, 10], taking the number of plane waves required down by 

many orders of magnitude. 

We can consider the electrons in condensed matter to be of two categories -

core and valence. Core electrons are those that are localised in the vicinity of the 

nucleus, essentially those in closed shells. Valence electrons are those outside the core 

region and for most situations are responsible for the physical properties of a system. 

As the core electrons are left unchanged in most situations they can be replaced, 

along with the nuclear potential, to create a relatively weak pseudopotential. This 

pseudopotential acts on a set of pseudo wavefunctions that, outside of a specified 
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Figure 1.2: A schematic of the supercell approximation. Vacuum padding of the 

cell reduces the effect of the molecule "seeing" its own image in the next repeating 

unit. Here we have increased the size of the right hand cell by five times over the 

left hand cell. The same principle can be applied to defects in solids and to surfaces. 

core radius, are identical to the wavefunctions where all the electrons are taken 

into account. These pseudo wavefunctions have no nodes in the core region, and 

therefore greatly reduces the number of plane waves required for the calculation 

by many orders of magnitude. The memory required for the calculation is also 

reduced because there are fewer Kohn-Sham orbitals required, as the core electrons 

are not explicitly treated. An example of a pseudo wavefunction and pseudopotential 

compared to the all-electron counterparts are shown in Figure 1.3. 

There are a number of methods popularly used to construct pseudopotentials. 

The two most widely used methods are the norm-conserving approach of Kleinman 

and Bylander [11] and the ultrasoft approach of Vanderbilt [12]. Norm-conservation 

refers to the constraint that the charge within the core radius for the true system 

is equal to the charge within the core radius for the pseudo wavefunction. With 

ultrasoft pseudopotentials this constraint is relaxed and therefore a more slowly 

varying pseudopotential can be chosen, further reducing the number of plane waves 

required. Ultrasoft pseudopotentials also show better transferabiUty between dif-
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Figure 1.3: Left: The all-electron wavefunction (black) and pseudo wavefunction 

(red) for the 35 orbital in Si. Right: The all-electron potential (black) and the 

pseudopotential felt by the pseudised 3s state (red). 

ferent condensed matter systems [12]. In this thesis we will generally use ultrasoft 

pseudopotentials because of these benefits. 

1.3.3 Minimisation of the Total Energy 

The Kohn-Sham equations (equation 1.20) become a problem of matrix diagonali-

sation when expressed in terms of plane waves. However, numerical algorithms for 

matrix diagonalisation do not scale well with the size of the matrix in question. 

This both limits the number of plane waves and number of atoms in the periodic 

cell that can be practically used. Alternative methods involve direct minimisation 

of the Kohn-Sham total energy functional. This is done through variation of the 

plane wave coefficients of the Kohn-Sham orbitals while ensuring that each band is 

orthogonal to the others. 

Among those methods one of the most efficient is the conjugate gradients tech­

nique [13]. This proceeds by taking an initial search direction to be that with the 

steepest gradient for the function and variable in question. That line is then followed 

to find the minimum. Subsequent search directions are then chosen such that they 

are independent of any previous minimisation directions. This then guarantees the 
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minimum will be found in the same number of steps as there are dimensions in the 
system. In practice, each band is treated one at a time to save memory costs in 
computation, made possible by keeping the bands orthogonal. 

The minimisation procedure can be improved by using a preconditioning scheme 

[14, 15]. This is because the plane waves with high kinetic energy dominate the 

search directions even though the corresponding coefficients in the wavefunction are 

small. Preconditioning is generally performed through multiplying the hamiltonian 

by a diagonal matrix consisting of the inverse kinetic energy operator for the high 

kinetic energy plane waves £md a constant for the low kinetic energy plme waves. For 

the high kinetic energy plane waves, the energies will be dominated by the kinetic 

energy so any errors introduced by such an approximate preconditioning matrix will 

be small. In practice this allows convergence within tens of iterations for a basis set 

containing ~ 10̂  plane waves. 

1.4 The C A S T E P Code 

The calculations and methods developed in this thesis were performed using, and 

implemented in, C A S T E P [16, 17]. It is an implementation of the plane wave pseu­

dopotential approach to Kohn-Sham DFT using the methods summarised above. 

C A S T E P also provides a vast range of tools for obtaining meaningful physical quan­

tities from the ground state electronic wavefunction. The code is written in Fortran 

90 as a complete re-implementation of the original Fortran 77 CAmbridge Serial 

Total Energy Package, allowing for better maintaiinability and increased speed of 

development. It makes use of efficient implementations of linear algebra and fast 

Fourier transform libraries. It is also designed to run in parallel using data distri­

bution schemes that parallelise over G-vectors, k-points and, most recently, bands 

[18]. 

1.5 Summary and OutUne of Thesis 

In this chapter we have briefly introduced the many-body problem in quantum me­

chanics and the formally exact solution provided by the Kohn-Sham formulation of 
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density functional theory. The plane wave pseudopotential method of performing 
DFT calculations was discussed. One of the numerical methods used in minimising 
the total energy was mentioned. The implementation of the above in C A S T E P was 
introduced. Much of the remainder of this thesis will be dedicated to discussing 
approximations used for the exchange-correlation energy functional and, in particu­
lar, the development and implementation of a non-local description of exchange and 
correlation. The outline of the thesis is as follows: 

Chapter 2 

We begin by discussing a number of the popular and currently available approaches 

to approximating the exchfinge-correlation energy functional. We then introduce 

the fully non-local weighted density approximation (WDA) and derive the required 

parts for an implementation in the context of a plane wave basis set. A number 

of possible model pair-correlation functions for use in the WDA are described and 

extensively applied to calculate bulk properties of copper. Improving model pair-

correlation functions through including known physical constraints is suggested. One 

such constraint, the Kimball cusp condition, is incorporated into our model pair-

correlation functions, implemented, tested, and applied to bulk silicon. 

Chapter 3 

There are many condensed matter systems that require non-local interactions to 

be described accurately. Here we apply the WDA to surface systems. Specifically 

we demonstrate that the exchange-correlation hole for metallic surfaces is highly 

non-local. We then apply the WDA to obtain part of the potenti£il energy surface 

describing the dissociative adsorption of H2 on Cu(lOO). Comparisons are made 

between results obtained with the local density approximation (LDA) and the WDA. 

Chapter 4 

We derive a new framework for model pair-correlation functions in the WDA that 

includes spin resolution. This weighted spin density approximation (WSDA) pro-
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vides an avenue for refining the approximation by satisfying constraints on the spin 

resolved pair-correlation function as well as allowing spin polarised systems to be 

studied. An initial implementation of the WSDA is proposed. 

Chapter 5 

The homogeneous electron gas, while fictitious, is valuable in constructing asid test­

ing exchange-correlation energy functional. It provides a known physical limit that 

some would argue that all approximations to exchange-correlation should fulfill. We 

compare the spin resolved pair-correlation function for our implementation of the 

WSDA with quantum Monte-Carlo data for the pair-correlation function in the uni­

form electron gas. On-top values of the pair-correlation function are compared for 

a number of models. The importance of including a modified cusp condition when 

describing the coupling-constant averaged pair-correlation function is emphasised. 

An implementation of the modified cusp condition is then added to our WSDA. 

The coupling-constant averaged pair-correlation function in our WSDA model is 

compared to a first principles model at a number of uniform densities and spin 

polarisations. 

Chapter 6 

The WDA including the cusp condition from Chapter 2 is extended to include the 

modified cusp condition. The bulk properties and electronic band structure of silicon 

and germanium are calculated and compared for our new model functionals. Band 

gaps for a number of materials are calculated with our modified cusp WDA and 

WSDA to be compared with the LDA. The WSDA will then be applied to spin 

polarised systems in the form of iron and iron(II) oxide. 

Chapter 7 

Finally, we will summarise the conclusions of the previous chapters and discuss 

possibilities for refinement of the models in future work. 



Chapter 2 

Exchange-Correlation Functionals 

As discussed in the previous chapter, DFT allows us, in principle, to solve the many-

electron Schrodinger equation exactly. In practice approximations are made, and 

a (by no means exhaustive) discussion of these will make up the first part of this 

chapter. We will then describe in detail a non-local functional called the weighted 

density approximation (WDA). A discussion will follow on some of the functional 

forms that can be used within the WDA and trends within "families" of models. 

A possible improvement to the WDA in the form of imposing the Kimball cusp 

condition [19] will be implemented, tested, and appUed. 

2.1 Local, Semi-local and Beyond 

The simplest of all the available models in DFT is the local density approximation 

(LDA) (3, 20]. This takes the exchange-correlation energy density at each point 

in space to be the same as that for a homogeneous electron gas with the electron 

density for that point. The LDA can also be applied to spin polarised systems 

[21] and is often referred to as the LSDA (local spin-density approximation). The 

exchange-correlation energy in the L(S)DA can be expressed as: 

E^rin^n,] = J n{r)eT[n,ir),n^{r)\dr, (2.1) 

with the exchange-correlation energy per electron in a uniform gas with spin densities 

18 
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n^(r) and n^(r) given by: 

pLDA 

'•xc K('- ) .^(^)] = \ J n{r') [|r - r ' | ,n , (r ) ,n , (r) ] - l) dr', (2.2) 

where g**^ is the coupUng-constant averaged pair-correlation function in the ho­

mogeneous electron gas. The exchange energy density in the uniform limit can 

be determined analytically. However, the correlation energy density is only known 

numerically through quantum Monte Carlo calculations [22]. Parameterisations of 

this are available, for example, that by Perdew and Zunger [23] is widely used. In 

spite of its simplicity, the LDA has been and still is used to considerable success, 

particularly for solids, where the electron density can vary relatively slowly. This 

success is due to the overestimation in correlation energy being cancelled by the 

underestimation in that of exchange. The LDA performs less well for single atoms 

and molecules, as would be expected considering the highly inhomogeneous electron 

density in these systems. The LDA generally over binds, predicting shorter bond 

lengths than in experiment [24]. It also gives a non-zero contribution from correla­

tion in single electron systems and fails to counteract the Hartree self interaction in 

this limit. 

A natural extension beyond the LDA is to include the local density gradients 

V n , ( r ) and Vn^(r) [25, 26, 27]: 

^ c ' K . ^ j = / n ( r ) e - ^ [ n , ( r ) , n , ( r ) , Vn , (r) , Vn,(r)]dr. (2.3) 

There are many different generalised gradient approximation (GGA) functional 

forms available, both non-empirical and empirical. Arguably the best non-empirical 

GGA is that of Perdew, Burke and Ernzerhof (PBE) [26], which reverts to the LDA 

in the uniform limit, fulfills some exact constraints on the exchange and correlation 

holes, and also satisfies some exact constraints on the correlation energy. This fit­

ting to physical constraints makes PBE much more transferable than its empirical 

counterparts that are fitted to perform well for a favoured set of molecules [28 . 
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Continuing along these lines we arrive at the meta-GGA [29) that, in addition to 
the components in a GGA, also makes use of the Laplacians V^n^(r) and V^nj ( r ) 
of the electron density or the kinetic energy density T„: 

£ ^ r K , n J = (2.4) 

J n ( r ) e « « ^ K ( r ) , n , ( r ) , V n , ( r ) , V n , ( r ) , V \ ( r ) , V \ ( r ) , r , ( r ) , r , ( r ) ] d r , 

where the kinetic energy density for the occupied Kohn-Sham orbitals ipiair) are 

implicit functional of the electron density: 

1 

In the limit of slowly varying density the kinetic energy density contains the same 

information as the Laplacians. Because of this and the ability to fit more physical 

constraints, the exphcit dependance on the Laplacians can be neglected. A non-

empirical meta-GGA comes in the form given by that of Tao, Perdew, Staroverov 

and Scuseria (TPSS) [30]. Tests of this functional show improvements over PBE, 

particularly with atomisation and surface energies [31, 32, 33, 34]. This is likely to 

be because TPSS has no self interaction in the single electron limit, which is not 

satisfied at the LDA or GGA level. 

It is unclear whether including yet higher derivatives of the electron density 

would continue to provide improvements. In fact, there is no guarantee that an 

expansion of the exchange-correlation energy in this fashion is going to converge 

on the exact exchange-correlation functional. A popular direction is to use exact 

(Hartree-Fock) exchange in combination with local correlation - a so-called hybrid 

functional. A hybrid widely used in the chemistry community is B3LYP [35]. This 

functional consists of fractions of LDA exchange, Haxtree-Fock exchange, Becke's 

density greuiient correction to exchange [36], GGA correlation due to Lee, Yang and 
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Parr [37], and LDA correlation from the parameterisation of Vosko, Wilk and Nuseiir 
38]. The coefficients for these components are determined from three parameters, 

which are often fitted to molecular data. While very successful for certain sets of 
molecules, the B3LYP hybrid does not transfer well to all systems. It also fails to 
retain the known correlation energy in the uniform limit [39], and overestimates the 
exchange energy in this limit. 

A hybrid containing the TPSS meta-GGA has been shown to give some improve­

ments over "plain" TPSS, but contains one empirical parameter [31]. Inclusion of 

Hartree-Fock exchange does allow for more physical constraints to be satisfied, but it 

has been argued that a so-called hyper-GGA encompassing the meta-GGA and ex­

act exchange must contain at least one empirical parameter [40]. This suggests that 

even the "best" possible hyper-GGA could suffer from problems with transferabil­

ity. Beyond the hyper-GGA, it has been suggested that all occupied and unoccupied 

Kohn-Sham orbitals can be used to construct a generalised random phase approxi­

mation (RPA) [41, 42, 43, 44]. This addition of the unoccupied orbitals removes the 

need for empiricism that is unavoidable in a hyper-GGA [40, 45 . 

One can also perform a non-local treatment of exchange and correlation by 

screening the effect of Hartree-Fock exchange at long range [46, 47]. This mod­

els some of the effects of correlation by performing an exponential cutoff of the 

exchange energy. An LDA treatment of the local exchange-correlation energy is also 

included. The exact exchange (EXX) functioned [48, 49, 50] is not to be confused 

with Hartree-Fock exchange. The distinction comes from Hartree-Fock using a non­

local operator while EXX uses only a local potential. However, both methods do 

treat exchange exactly. Implementations of EXX often contain an LDA treatment 

of correlation ajid requires an implementation of the optimised effective potential 

(OEP) method [51, 52] in order to be applied self consistently. 

The weighted density approximation (WDA) [53, 54] takes a different approach 

in treating exchange and correlation non-locally. It starts from the definition of 

the exchange-correlation energy in terms of the Coulomb interaction between the 

electron density and its coupling-constant averaged exchange-correlation hole. Phys­

ically this can be pictured as the region in the vicinity of an electron that is depleted 
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of other electrons through the effects of Pauh exclusion and Coulomb repulsion. An 
approximation is then made in an attempt to model the shape of the exchange-
correlation hole (in fact, the approximation is made to the pair-correlation function, 
which is closely related to the exchange-correlation hole) such that for a given value 
of a parameter at each point in space, the weighted density, the sum rule for the 
exchange-correlation hole is satisfied. It is also constructed such that the LDA 
exchange-correlation energy is regained in the homogeneous limit. This is enforced 
by ensuring the weighted density becomes the electron density in the homogeneous 
electron gas. In the next section we will go into more detail in defining the WDA. 

2.2 Weighted Density Approxmination 

We start from an exact definition of the exchange-correlation energy, we have: 

E.c[n] = I J n{r)dr j "^y^dr', (2.6) 

which is the Coulomb interaction between the electron density n(r ) and the coupling-

constant averaged exchange-correlation hole n-^c{i'•,'"'')'• 

n x c ( r , r ' ) = f n'^,{ry)dX. (2.7) 
Jo 

The coupling constant A takes us from the non-interacting Kohn-Sham system at 

A = 0 to the full Coulomb interaction at A = 1, or A = if we were not using 

atomic units. We can relate the exchange-correlation hole to the pair probability 

density and pair-correlation function: 

n l i r y ) = - n(r ' ) = n { r ' U , { r y ) - 1], (2.8) 

where P ( r , r ' ) is the probability of finding electrons simultsmeously at positions r 
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and r'. Physically, Ti{r')g^^{r, r')dr' is the number of electrons expected at point 
r ' , per volume element dr\ given that an electron is present at point r . Thus we 
can state that g^ci '̂ xc ^̂ nd their coupling-constant averages must be non-negative. 
The coupling-constant averaged pair-correlation function has a similar relation as in 
equation 2.7 with substituted for 'n'. 

The WDA models the coupling-constant averaged pair-correlation function to 

approximate the coupling-constant averaged exchange-correlation hole [53, 54]: 

<c\r, r') = n(r ')G-' '^[r, r '; n(r)], (2.9) 

where we will refer to G^^" as the model pair-correlation function. The weighted 

density h{r) is a non-local parameter determined such that the sum rule is satisfied: 

n ; r r ( r , r ' ) d r ' = - L (2.10) 

W D A . Gunnarsson and Jones [55] proposed a simple form for G 

G - - [ r , r ' ; n ( r ) ] = C{n{r))f f , (2.11) 
VA(n(r ) ) / 

where / is an analytic function that varies from 1 at zero separation to zero at 

infinite separation. C and A are scalar fields that describe the weighted density and 

take values to simultaneously satisfy the sum rule and return the LDA energy in the 

homogeneous limit. 

2.2.1 WDA Exchange-Correlation Potential 

In order to construct a self consistent implementation of the WDA, the exchange-

correlation potential is required. It is the functional derivative of the exchange-
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correlation energy with respect to the electron density that gives us three terms: 

^ x T ( r ) = '-^^ = v,(r) + v,{r) + v,{r). (2.12) 

The first term, v i ( r ) , is equivalent to the WDA exchange-correlation energy density: 

, ( . , = 1 / 
1 fn{r')G^^^[ry-h{r)]._, .wo.. Mr) = ^ ^ ,„ ' "dr' = ( r ) . (2.13) 

The second term, V2{r), is very similar to the first and arises because the functional 

derivative 5n{r')/5n{r) = 5{r — r'), the Dirac delta function. One of the two 

integrals then becomes trivial and we obtain the same as 2.13 but with the weighted 

density taken at point r ' : 

^3(r) = i / • ' ^ " • ' ' 1 . . - . (2.14, 
|r - r ' l 

It should be noted that physically, the coupling-constant averaged pair-correlation 

function is symmetric under interchange of r and r ' , which means the second term 

would simply be V2{r) = £xc('')- However, a model pair-correlation function like 

that used in equation 2.11 does not have this symmetry. This results in the l£u:ge 

separation limit, \r — r'\ = r —^ oo, of the exchange-correlation potential being: 

^ l i m < - ( r ) = - l , (2.15) 

which is a factor of two from the correct — l / r limit. 

The third potential term V3{r) takes into account the implied dependence of the 

weighted density on the electron density: 
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Using the chain rule, we can rewrite the functional derivative of the model pair-

correlation function: 

^G"'>-[r^ r"; h{r')] dG^^^jr', r"; h{r')] 6h{r') 
Sn{r) dh{r') 5n{r)' ^ ' 

The derivative of the weighted density can be determined by taking the functional 

derivative of the sum rule, / n(r")G^°*[r', r"; n(r ')]dr" = - 1 , and rearranging: 

Snjr') ^ G-'-^[r,r'-Mr')] 
Sn{r) /n(r")aG*°Mr',r";n(r')]/dn(r')(ir"' ^ ' ' 

Taking equations 2.17 and 2.18 and substituting back into equation 2.16 we obtain 

a form for V3{r) in terms of quantities we can calculate: 

^3(r) = n ( r ' ) ^ G - - [ r , r ' ; n ( r ' ) ] d r ' , (2.19) 

where the terms hi and /12 are given by: 

n(r") dG^^^[r',r"-h{r')\,_„ dr", (2.20) 

From this starting point, we now recast the problem to be used in the context of a 

plane wave pseudopotential code. 

2.2.2 Implementation in Reciprocal Space 

To apply the WDA efficiently for periodic systems, it should be noted that each 

of the integrals above are in the form of convolutions. We can therefore use the 
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convolution theorem to perform the integrals as multiplications in reciprocal space, 
using efficient numerical FFTs as needed. If we denote ^ as the Fourier transform 
operator, the convolution theorem is: 

^ { f * 9 } = :F{f}J'{g}, (2.22) 

where / and g are functions and * represents a convolution: 

[f*g]{t)^ f f{T)g{t-r)dT. (2.23) 
Jo 

If we take the WDA exchange-correlation energy density as an example: 

= (2.24, 

we see that this is a convolution of the electron density n(r ') and the model pair-

correlation function over the particle separation. The electron density can be written 

as a sum of Fourier components: 

n(r) = ^ n ( G ) e ' ^ - , (2.25) 
G 

where G are our reciprocal lattice vectors. The Fourier coefficients n{G) are easily 

obtainable using an FFT. All the other functions to be transformed depend on the 

particle separation | r - r ' | , so we can use the three dimensional spherical Fourier 

transform: 

T{s{\r-T'\)) = S{\G\) = 47r j r " 5 ( | r - r 1 ) ! ^ i ^ i l ^ g | : ^ | r - r ' ] d | r - r ' | , (2.26) 
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where s is some radial function and 5 is its Fourier transform. 

If we take equation 2.2 and make the substitution u — \r — r ' | /A(n(r)) , our 

general model pair-correlation function can be written as: 

G-^^[u,n(r)] = C(n(r)) /(u) . (2.27) 

We can then rewrite our spherical Fourier transform in terms of u, from equation 

2.26: 

T/ r M A ^̂  r < ^sin(|G|A(n(r))l^) ^ r{s{u)} = 47rA^(n(r)) s{u) u du 

\h{r)) r s{ 
Jo 

= 47rA^(n(r)) / s{u)^^^^u du, (2.28) 

where we make the substitution q = A(n(r))|G|. 

Exchange-Correlation Energy Density 

Continuing with the exchange-correlation energy density as an example, we use the 

convolution theorem to rewrite equation 2.24 as: 

e r W = l i ; n ( « , e - x ^ { ^ M l } . ( . . . ) 

Using our relation for the spherical Fourier transform in terms of the veuriable u, 

equation 2.28, we have: 

^ I ^ I M ) ! } = 4 . A V ( r ) ) rcr'^luMr)\^^u. (2.30) 
I uX{n{r)) J Jo q 
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The exchange-correlation energy density, in an easily calculable form, becomes: 

£;rr (r) = 27rC(n(r))A2(n(r)) n{G)e^''-^F,{q), (2.31) 
G 

where Fi{q) is given by: 

^1(9) = - r f{u)sin{qu)du. (2.32) 
QJo 

and can be calculated and stored for a particular choice of model function f{u). 

Exchange-Correlation Hole Sum Rule 

The sum rule in equation 2.10 is also in the form of a convolution: 

J n(r')G*°^[r, r ' ; h{r)]dr' = - 1 , (2.33) 

and can be rewritten by using the convolution theorem: 

- 1 = ^ n ( G ) e * ^ - ' X jF{G^'^*[u,n(r)]}. (2.34) 

G 
The spherical Fourier transform of the model pair-correlation function is: 

JF{G^^"[u,n(r)]} = 47rA^(n(r)) G ^ ^ ^ f u , n ( r ) ] ^ ^ ^ ^ « du, (2.35) 
Jo Q 

so the sum rule in a calculable form is given by: 

- 1 = 47rC(n(r))A3(n(r))^n(G)e'<='-F2(9). (2.36) 



CHAPTER 2. EXCHANGE-CORRELATION FUNCTIONALS 29 

As for the exchange-correlation energy density, we have the function F2{q), which 

is: 

1 r°° 
F2{q) = - / f{u)sm{qu)u du, (2.37) 

Q Jo 

and, for a given model function f{u), can be pre-calculated to increase the efficiency 

of our implementation with only a small increase in memory use. 

Scalar Fields C and A 

The scalar fields C(n(r)) and A(n(r)) are determined to simultaneously satisfy the 

sum rule of equation 2.10 and to revert to the LDA energy in the uniform limit. For 

the homogeneous electron gas, the weighted density becomes the electron density 

and only the constant \G\ = q = 0 coefficients of the Fourier transforms contribute. 

Therefore the exchange-correlation energy density and the sum rule of equations 

2.31 and 2.36, respectively, become: 

sTin{r)) = ^n(r)C(n(r))A2(n(r))/„ (2.38) 

- 1 = h{r)C{h{r))X\n{r))l2. (2.39) 

The constants / i and I2 have to be calculated for a particular choice of model 

function f{u), and are given by: 

h = 47rFi(0) = 4n f uf{u) du, (2.40) 

r°° 
I2 = 47rF2(0) = 4n u^f{u) du, (2.41) 

Jo 
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where these relations are obtained by simply taking the q 0 limit of equations 

2.32 and 2.37. See appendix A for details on calculating the values of Ii and I2 in 

general for functions of the four types described later in this chapter. We can solve 

equations 2.38 and 2.39 simultaneously for C(n(r)) and A(n(r)) to get: 

The LDA exchange-correlation energy density for a given electron density is easily 

obtained using a standard LDA parameterisation. 

Exchange-Correlation Potential 

As discussed in section 2.2.1, the exchange-correlation potential in the WDA can 

be expressed as the sum of three terms, the first of which is simply the exchange-

correlation energy density. The second (equation 2.14) and third (equation 2.19 

terms are in the form of convolutions, so their Fourier components can be calculated 

and an FFT can be used to return the result to real speice. The Fourier coefficients 

V2{G) of the second term f2 ( r ) come from multiplying two Fourier transforms: 

If we use equations 2.30 and 2.32 from the exchange-correlation energy density, the 

coefficients are given by: 

V2iG) = m n(r ' )C(n(r ' ))A2(n(r ' ))e- '«- 'Fi(9) dr', (2.45) 

where is the volume of the periodic simulation cell. The equivalent equations for 



CHAPTER 2. EXCHANGE-CORRELATION FUNCTIONALS 31 

the third potential term also come from use of the convolution theorem, where we 
can write the Fourier coefficients V3{G) as the multiple of two Fourier transforms: 

MG) = - ^ ^ { n ( r ' ) ^ } ; ^ { G - - [ r , r ' ; n ( r ' ) ] } . (2.46) 

In analogy to the sum rule, we can use equations 2.35 and 2.37 to write: 

vz{G) = - f / n ( r ' ) ^C(n( r ' ) )A^(n ( r ' ) ) e -^^' - 'F2 (9 ) dr'. (2.47) 

The added complication in calculating the third potential term comes from the 

two functions and /12 themselves being integrals in the form of convolutions. Here 

we shall construct each as a function of r rather than r ' , for simplicity. Both of 

these functions include the derivative of the model pair-correlation function with 

respect to the weighted density. As we have our general form specified in terms of 

the scalar fields C and A (implicitly through u), we use the chain rule to obtain the 

derivative: 

dG^^-juMr)] _dG^^^[uMr)]dC{h{r)) dG^^^juMr)] du 
dh{r) dC{h{r)) dh{r) du dh{r)' ^ ' ' 

Because u is a function of A we shall apply the chain rule to the second term in the 

above equation, making use of the fact that u = \r - r ' | /A(n(r) ) du/dX{h{r)) = 

-\r - r ' | /A2(n(r)) = -u /A(n(r ) ) : 

aG^°^[u,n(r)] _ G^°^[ii,n(r)] dC{h{r)) _ u aG'^°^[u, n(r)] aA(n(r)) 
dn{r) ~ C(n(r)) dn{r) A(n(r)) du dh{r) ' 

(2.49) 
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We can then substitute this back into equations 2.20 and 2.21 for / i j and /12 to get: 

hM f G^-^[u,h{r)]dC{h{r))_,_, f Cjhir)) dfju) dX{h{r)) 
^ i (^ ) = J \r-r'\ C(n(r)) a ^ ' ^ " - J hHnir)) du dh{r) '^'^' 

(2.50) 

h2{r) - y n(r ) ^^^^ ^.^^^ dr J n(r ) ̂ ^.^^^^ u ^ . d r . 

(2.51) 

The first term in each of the above equations is proportional to the exchange-

correlation energy density in the case of hi, and the sum rule in the case of /i2. 

The second terms are convolutions and can be treated in analogous fashion to the 

sum rule eind excheuige-correlation energy density. We now have hi and /i2 in a 

calculable form: 

, , , 2£]??*(r) aC(n(r)) dX(h(r)) ^ i C r ^ / s 
= C(ft(r)) 3nir) " *-C(n(r))X[n(r))-±U>^n(G)e'-'FM), 

(2.52) 

(2.53) 

where Fz{q) and F^^q) are related to the spherical Fourier transform of the deriva­

tives of the model function df{u)/du: 

^3(9) = - r u^^sm{qu)du, (2.54) 
q Jo du 

F^{q) = I ru^^ip.sin{qu)du. (2.55) 
qJo du 
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All that remains for our implementation is to calculate the derivatives of the 

scalar fields C and A. Using the chain rule on equation 2.42 for A we have: 

dHnjr)) _ h (vT{n{r)) - e - - ( n ( r ) ) \ ^ .̂se) 

dh{r) 2n(r)/2 V 

where is the LDA exchange-correlation potential. This comes from considering 

the definition of the exchange-correlation potential and rearrajiging the following: 

dn{r) m y = W - ) ) + n(r) ^.^^^ = (n(r)). 

(2.57) 

The derivative of C comes easily from equation 2.43: 

dC{h{r)) 1 ( 1 , 3 dX{h{r))\ 
dn(r) n(r)A3(n(r))/2 \h{r) A(n(r)) dn{r) 

This completes the required components to implement the WDA in a plane wave 

pseudopotential code. 

2.2.3 Algorithm Details 

The time consuming step in performing WDA calculations is in determining the 

weighted density at all points in space. The implementation in C A S T E P uses a log­

arithmic lookup table over the weighted density so that only a limited number of 

G-vector sums are required. Even so, generating this lookup table is computation­

ally expensive in comparison to the calculations in semi-local approximations. This 

is balanced by the almost trivial parallelisation of the G-vector sums, which gives 

us excellent scaling with the number of processors used. The values for the sums 
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in equations 2.31, 2.36, 2.52 and 2.53 are stored for each weighted density in the 

logarithmic grid, to be used once an accurate value for the weighted density is deter­

mined. A simple search through the values of the sum rule is made and an accurate 

value for the weighted density is determined through a four point interpolation of 

the stored data. Armed with the weighted density at all points we can then inter­

polate our stored data for the exchange-correlation energy density, hi and /i2. The 

integrals for the Fourier coefficients of the second and third potential terms are then 

performed and the result transformed back to real space using an FFT. With the 

exchange-correlation energy and potential calculated, the existing C A S T E P code for 

self consistent total energy minimisation can be used. 

2.3 Model Pair-Correlation Functions 

The method presented in the previous section allows us great flexibility in the choice 

of a model function. Charlesworth [56] was one of the first to present a systematic 

study of model pair-correlation functions. Four different classes of model were used 

that each have a characteristic form of f{u): 

(i) Gaussian, 

f{u)=p{u)e-'^\ (2.59) 

where p{u) is a polynomial of order A'̂ , where N is a multiple of 2, of the form: 

p{u)= f: ^ - (2.60) 
n=0,even 2 ' 

(ii) Fourth order Gaussian, referred to as such to be consistent with reference [57], 

f{u)=p{u)e-^\ (2.61) 
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where p{u) is a polynomial of order 2iV, where 2N is a multiple of 4, of the 

form: 

P ( « ) = E (2-62) 
n=0,even 2' 

(iii) Lorentzian 

(iv) Gunnarsson and Jones 

/ (u) = l - e - i / " " , (2.64) 

where in each case, n is an integer. In Charlesworth's study, later repeated by 

Rushton [57], a total of twelve models were tested, three from each class. For the two 

Gaussian related forms, values of N/2 = 0,1 and 2 were taken. The remaining two 

forms took values of n = 4,5 and 6. It should be noted that both Chaxlesworth and 

Rushton used a form for the n = 2 fourth order Gaussian that was inconsistent with 

the general form. They used f{u) = {l+u'*+u^)e~^* when, if the trend was followed, 

one should use f{u) = (1 + ix'' + ^u^)e~^*. We show the difference graphically in 

Figure 2.1, illustrating the undesirable turning point in the Charlesworth form. For 

a comparison of the twelve functional forms in the homogeneous electron gas, see 

Figure 1 of reference [57]. 
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Figure 2.1: Model functions / ( u ) of the fourth order Gaussian type. The model 

used by Charesworth for n = 2 (dashed line) clearly stands out from the desired 

trend. 

2.3.1 Comparison of Models - Bulk Copper 

The previous study [57] of only three functions from each class showed relatively 

li t t le difference in the lattice parameter of sihcon within one class, particularly with 

the Gaussian based functions. In the next chapter we wi l l be presenting simula­

tions involving copper surfaces. As a preliminary to these surface calculations, we 

repeat and extend the investigation of model functionals to bulk copper. In Table 

2.1, we present the equilibrium lattice parameter, ao, of the face centered cubic cell, 

and bulk modulus, Bo, of Cu for a considerably larger range of model functionals 

than has been previously attempted. For comparison, we also provide results using 

the LDA and the PBE GGA. We use a cell that is the primitive of the face cen­

tred cubic structure (as shown in Figure 2.2) wi th the first lattice vector doubled. 
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This is so that we have two Cu atoms per cell and can treat the whole system as 
spin unpolarised. In all of these calculations we used LDA ultrasoft pseudopoten-
tials. Ideally, pseudopotentials constructed consistently wi th each approximation 
for exchange-correlation would be used. In practice we do not have a method for 
generating W D A pseudopotentials available. This is discussed further in Chapter 7. 
By using a single pseudopotential, i t could be considered that we are comparing the 
performance of each model for exchange-correlation for the same external potential. 
A plane wave cutoff energy of 400 eV and a sampling of the Brillouin zone using a 
Monkhorst-Pack grid of 3 x 6 x 6 k-points. This converges total energy differences 
to better than 10 meV per atom. 

Figure 2.2: The face centred cubic structure of copper (solid lines) wi th the primitive 

cell overlaid (dashed lines). 

To obtain the physical properties in Table 2.1, we performed total energy cal­

culations at a number of lattice parameter values. We then fitted the resulting 

energy-volume curves for each functional form to the Murnaghan equation of state 

58] and hence obtain the equilibrium lattice constant and the bulk modulus. The 

Gaussian based model pair-correlation functions go from overestimating the lattice 

parameter and underestimating the bulk modulus to the opposite, when moving 

from the simple Gaussian to a Gaussian in combination wi th an eighth order poly­

nomial. The crossing point for giving experimental values is between the Guassian 
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Table 2.1: Ekjuilibrium lattice parameters and bulk moduli for Cu using a range of 

model pair-correlation functions. Percentage error from experiment in parentheses. 

Pair Correlation Function do (A] Bo (GPa) 

3.709 (2.61) 112 (-20.0) 

(1-Hu2)e-"' 3.649 (0.93) 129 (-7.86) 

(l-hu2+1^4)6-"' 3.623 (0.22) 138 (-1.43) 

{l + u^ + ^u* + ^u«)e-"' 3.609 (-0.15) 143 (2.14) 

{1 + u"^ + ^u"" + ^u^ + ^u^)e--' 3.601 (-0.38) 147 (5.00) 

3.603 (-0.33) 146 (4.29) 

(1 + u'*)e-"' 3.587 (-0.78) 153 (9.29) 

(1 -1- u'* -1- |K^)e-"' 3.581 (-0.93) 155 (10.7) 

{1 + u'* + u^)e-''* 3.576 (-1.07) 158 (12.9) 

{1 + + ^u^ + ^u'^)e--* 3.579 (-1.00) 157 (12.1) 

1/(1-Ku^) unbound 

1/(1+ «') 4.188 (15.86) 28.7 (-79.5) 

1/(1-^ti«) 3.798 (5.06) 85.2 (-39.1) 

1/(1+ 3.692 (2.13) 114 (-18.6) 

l / { l + u^) 3.647 (0.88) 129 (-7.86) 

l / { l + u^) 3.622 (0.20) 138 (-1.43) 

1/(1-^u^°) 3.608 (-0.20) 144 (2.86) 

1/(1-hu") 3.598 (-0.46) 147 (5.00) 

1 - e-i/"' unbound 

1 - e->/"' 4.069 (12.55) 38.8 (-72.3) 

1 - e-i/"' 3.755 (3.88) 94.5 (-32.5) 

1 - e-i/"' 3.669 (1.49) 121 (-13.6) 

1 - e-i/"' 3.630 (0.41) 135 (-3.57) 

1 - e-i/"' 3.610 (-0.13) 142 (1.43) 

1 - e->/"'° 3.599 (-0.45) 147 (5.00) 

L D A 3.513 (-2.81) 185 (32.1) 

P B E 3.598 (-0.47) 146 (4.29) 

Expt. 3.615 140 
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combined with a fourth order and sixth order polynomial, where the sixth order 
gives a slightly better lattice parameter and the fourth order giving a slightly better 
bulk modulus. 

Model pair-correlation functions based on fourth order Gaussians start by un­

derestimating the lattice parameter and overestimating the bulk modulus. These 

misestimates only become worse as higher order polynomials are included. We in­

clude both the Chairlesworth version and our corrected version using an eighth order 

polynomial. The lattice paremieters in this case only differ by 0.005 A and the bulk 

modulus by only 3 GPa, suggesting that the turning point in the Charlesworth 

model has little effect on determining physical quantities. 

The first of the original three Lorentzian based functions (containing an exponent 

of 4) predicts that the lowest energy is for isolated atoms. The remainder of the 

functions initially under-bind, eventually over binding when an exponent of 10 or 

higher is used. A similar trend is present for the Gunnarsson-Jones-like functions, 

predicting over binding only when an exponent of 9 or more is used. Again, the 

first of the original three models of this class, containing an exponent of 4, predicts 

that the system is not bound. It is encouraging to note that for all four classes 

of model function, the closest lattice parameters simultaneously predict the closest 

bulk moduli to experiment. 

This study of functional trends shows that with the ability to tune the model 

ad infinitum, that one can find at least one model that matches experiment. How­

ever, this does not mean that any one model pair-correlation function transfers well 

between systems. There is also no way to select a model function of this type that 

compares well with experiment for a system a priori. Therefore we turn to improv­

ing our model pair-correlation functions by enforcing known physical constraints on 

the pair-correlation function. A possible approach is given in the next section. 

2.4 Kimbal l Cusp Condition 

In his PhD thesis, Rushton [59] suggested a new form of model functional that 

incorporates a constraint on the paur-correlation function called the Kimball cusp 
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condition [19]. This arises from correlation effects involving antiparallel spin pairs 
and relates the value Qxci'"','''') to its derivative with respect to pair separation, 
r = | r — r' l , in the limit of zero separation: 

dgxc{r, r') 
dr = 9 x c ( r , r ' ) | _ ^ . (2.65) 

For our model G^°*[r,n(r)] = 5xc"^(r,r') - 1, we have G*°*[0,n(r)] = C(n(r) ) and 

therefore require that 5G^°'^(r, h{r)]/dr = C(n(r ) ) + 1 as r ^ 0. One way of doing 

this is to build on the existing models by adding a second term: 

G'^^°^[r,r';n(r)] = G°[r, r'; n(r)] G'-fr, r'; n(r)], (2.66) 

where G"[r, r'; n(r)] is one of our previous functional forms and G''[r,r';h{r)] is 

used to alter the short range behaviour of the old model function. We use C W D A 

to label our cusp condition satisfying model. If we have the first term as one of our 

old model functions: 

G«[r, r'; n(r)] = G ( n ( r ) ) / f = C(n(r ) ) / (u ) , (2.67) 
\X{n{r))J 

then we can choose the second term to be of the form: 

G*[r,r';n(r)] = ( C ( n ( r ) ) - M ) | r - r'|/(j r — r 

= (C(n(r)) + l ) A ( n ( r ) ) u / ( ^ ) , (2.68) 

where K controls the range of the eilteration to the old model. This approach will 

work providing the derivative of the function f{u) with respect to u as u —• 0 
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is itself zero. The value of K can be chosen such that the physical constraint of 
0 < 9xc('*)T') < 0.5 is satisfied in the uniform limit, or at least satisfied as closely as 
possible. 

2.4.1 Reciprocal Space Implementation 

We can construct an efficient implementation of this new type of model pair-corr­

elation function by following section 2.2.2. For ease, we will write our model pair-

correlation function as: 

G^''^[K,n(r)] = C{nir))r{u) + (C(n(r)) + l)A(n(r))/''(ii), (2.69) 

where /"(u) is one of our original model f{u) functions and f''{u) = ii/"(u/«;). 

Exchange-Correlat ion Energy Density and S u m R u l e 

We follow from equation 2.24, rewriting it in reciprocal space using the convolution 

theorem to obtain an analogue of equation 2.31: 

£ $ r ( r ) = 27rC(n(r))A2(n(r)) J ]n (G)e '^ ' - i / i ( g ) . (2.70) 
G 

Where the function Hi{q) replaces Fi{q) in equation 2.31 and is given by: 

= F^{q) + f 1 p ^ ^ ) A(n(r))Ff(9), (2.71) 

where F^{q) and F''{q) are related to the spherical Fourier transform of each part 

of the model pair-correlation function: 

F^Q) = - r (2.72) 
Q Jo 
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Fiiq) = - r f'iu) sin{qu) du. (2.73) 
9 Jo 

Similarly, we can write the sum rule in reciprocal space using the convolution 

theorem with equation 2.10 and replacing F^^iq) with H2{q) in equation 2.36: 

- 1 = 47rC(n(r) )A3(n(r) )5^n(G)e^«- / /2 (9) , (2.74) 
G 

where H2{q) is given by: 

H2{q) = F^{q) + ( l + ; ^ 7 ^ ) mr))Ft{ql (2.75) 

and F2[q) and F2{q) are given by: 

^2 (?) = - r r{u) sm{qu)u du, (2.76) 
q Jo 

F^{q) = - [ f\u)sm{qu)u du. (2.77) 
qJo 

and are related to spherical Fourier transforms of the model functions. 

Scalar Fields C and A 

The extra term in the model pair-correlation function makes calculating the scalar 

fields C and A slightly more complicated. Our equations 2.70 and 2.74 for the 

exchange-correlation energy and the sum rule can be written in the homogeneous 

limit as: 
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eTinir)) = ! i ^ C ( n ( r ) ) A 2 ( n ( r ) ) + ( l - H A(n^^^ 

(2.78) 

- 1 = n ( r ) C ( n ( r ) ) A ^ ( n ( r ) ) ( / - - h ( l + ^ ^ ^ ) ^ 

(2.79) 

where / f , /f, / j and / j are constants depending on the model chosen: 

/ f = 47rFi"(0) = 47r / u / ° (u ) du, = 47rFi''(0) = 47r H uf\u) du, 
Jo Jo 

(2.80) 

/ j" = 47rF2''(0) = 47r H u^r{u) du, 4 = 4TrF^iO) = \-n H u''f\u) du. 
Jo Jo 

(2.81) 

See appendix A for details on calculating these values in general. We must then 

solve equations 2.78 and 2.79 simultaneously to obtain values for C and A at each 

point. Equation 2.79 can be rearranged to get C in terms of A: 

C(nfr ) ) - l+n(r)A-'(n(r))/,^ 
^("^^^^ - n(r)A3(n(r))(/,« -f A(n(r))/,^)' ^ '̂̂ ^^ 

which we then substitute back into equation 2.78 to obtain a quartic polynomial in 

A: 

a4A*(n(r)) -h a2A^(n(r)) + aiA(n(r)) + oo = 0, (2.83) 

where the coefficients are given by: 



U i l / i r i i i K 2. EXUMAl\UtJ-CUHnii:LAnUN FUNCnONALta 44 

a, = h{r){I^4-l'j^), (2.84) 

a2 = 2 £ r ( n ( r ) ) / * , (2.85) 

a, = 2e;j^^(n(r))/|-K/f, (2.86) 

ao = II (2.87) 

There are many methods available to obtain the roots of equation 2.83. We choose 

to construct a companion matrix: 

(° 0 0 —ao/a4 

1 0 0 

0 1 0 — 0 2 / 0 4 

0 1 0 

(2.88) 

the eigenvalues of which give us the possible values for A. A standard linear algebra 

library such as L A P A C K can be used to calculate these values efficiently. The roots 

of A are values that, for a fixed value of /t, that satisfy the mathematical constraints 

of the model. Physically, A controls the range of the model pair-correlation function, 

so a real, positive root must be chosen. This is also in order to keep C negative 

and therefore physical. A positive value of C would give an on-top value for the 

model pair-correlation function greater than 1, which is, of course, impossible for 

a probability. On the occasions that there are multiple real positive values for A, 

we select the smallest one by elimination of vsilues that give an unphysicaJly large 

range for the model pair-correlation function. 
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Excheuige-Correlation PotentieJ 

As before, the exchange-correlation potential can be written as a sum of three terms. 

The first of them is simply the exchange-correlation energy density, vi (r) = e^°'^(r). 

The second term is obtained in the same way as the original WDA (equation 2.45) 

and the Fourier coefficients can be written as: 

V2iG) = n(r')C(n(r'))A2(n(r'))e-'^'-'/ / i(9), (2.89) 

where we gave Hi{q) in equation 2.71. The third term can be obtained in analogy 

with equation 2.47, where H2{q) was given in equation 2.75: 

= /" ( ' • ' )^C(n(r ' ) )A^(n(r ' ) )e -^^' - ' / /2 ( (7 )dr ' . (2.90) 

The functions hi and /12 are more complicated in this case through our explicit 

A dependance in the model pair-correlation function, as given in equation 2.69. The 

derivative of the model pair-correlation function with respect to the weighted density 

therefore requires an extra term compared to equation 2.48: 

9G^^°^[u,n(r)] _ aG^°^[u, n(r)] aC(n(r ) ) aG^°^[u , n(r)] d\{h{r)) 
dfi{r) ~ dC{h{r)) dh{r) ^ aA(n(r)) dn{r) 

u aG^°^[u,n(r)]aA(n(r)) 
A(n(r)) du dh{r) ' 

(2.91) 

We then put this back into equation 2.20 for hx and recast the integrals in reciprocal 

space: 

/ i i (r) = 47rA(n(r))^n(G)e'<^ (^"(^^ + A(n(r))Ff(9)) 

(C(n(r)) l ) A ( n ( r ) ) M l F f ( , ) - C ( n ( r ) ) M l / / 3 ( . ) (2.92) 
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where we defined F"{q) and Fi{q) previously in equations 2.72 and 2.73, respectively. 

The function H3{q) is given by: 

H,{q) = F3-(9) + ( l c l ^ ) mr))F^{q), (2.93) 

where F3 (g) and ^3(9) are related to spherical Fourier transforms of the derivatives 

of /« (u) and /^(u): 

F,yq) = - T u ^ s M q u ) du, 
q Jo du 

(2.94) 

F^{q)^- T u ^ s m i q u ) du. 
q Jo du 

(2.95) 

To keep the implementation efficient, we can rewrite equation 2.92 as: 

/ i i (r) = 
2£^r^(r) dC{h{r)) 
C(n(r) ) dh{r) 

Gr 

(C(n(r)) + l)XHn{r))^^^F^{q) -
dh{r) 

X^h{r))dC{h{r)) 
C{h{r)) dn{r) 

dX{h{r)) 
Ff(g) - C{h{r))X{h{r)r-^^HM 

(2.96) 

This means we do not have to store F^{q) or interpolate for its value separately. We 

treat /12 similarly, substituting equation 2.91 back into equation 2.21 and writing 

the integrals in reciprocal space: 

/i2(r) = 47rA2(n(r))5^n(G)e*' 

+ {C{h{r)) + l)X{h{r)) 

Gr 

« ' < " ( ' - » F 3 ' ( , ) - C ( n ( r ) ) 

dh{r) 

dX{h{r)) 
n(r) dh{r) ^4(9) (2.97) 
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We gave F f ( ? ) and F2{q) previously in equations 2.76 and 2.77, and H^iq) is given 

by: 

= F-(9) + ( l + Mn{r))F^{q). (2.98) 

The spherical Fourier transforms of the derivatives of the model functions are given 

by F^{q) and F^{q): 

-{q) = 1 r u^^lM sin{qu) du, (2.99) 
q Jo du 

F^{q) = - r u 2 ^ L M sin(^„) ^„ (2.100) 
q Jo du 

As with hi we rewrite /12 in equation 2.97 to reduce the storage requirements in our 

implementation: 

C{n{r)) dn{r) ^ 

X (C(n(r ) ) + l ) A 3 ( n ( r ) ) ^ ^ ^ F 2 ^ 9 ) -

A-(n(r))aC(n(r)) p . - . . . , 2 . - . .^^A(n(r)) . 
C(n(r ) ) an(r) ^^^^^ " ^^^^^^^^ ( " ^ ^ ^ ^ - l ^ ^ ^ ^ ^ ^ . " 

(2.101) 

The derivatives of the scalar fields can be obtained from equations 2.82 and 2.83. 

Implicit differentiation of equation 2.83 gives us: 

aA(n(r)) _ {a,/h{r))X\h{r)) + 2A(n(r))(/2° + X{h{r))l'2){de'-^{h{r))ldh{r)) 
dn{r) 4o4A3(n(r)) + 2a2A(n(r))-|-ai 
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(2.102) 

where the derivative of the LDA exchange-correlation energy density is: 

a e r ( n ( r ) ) vTin{r)) - eT{n{r)) 
dh{r) n(r) 

(2.103) 

as can be shown from equation 2.57. The derivative of C comes from equation 2.82 

and using the sum rule: 

dC{h{r)) 1 dC{n{T))dmr)) 

dh{r) n2(r)A3(n(r))(/2" -\- \{h{r))I^) dX{n{r)) dh{r) ' ^ ' ' 

where the derivative of C with respect to A is: 

dC{h{r)) _ 3/2» + 4A(n(r))/2* - /2"/2*n(r)A''(n(r)) dX{h{r)) h{r)X\n{r)){I^ + X{h{r))ll)^ 
(2.105) 

To be used in self-consistent calculations on realistic systems we must test the 

exchange-correlation energy and potential in our implementation for consistency. 

We can do this by comparing the numerical forces on atoms with analytic forces 

obtained through the Hellmann-Feynman theorem [60]. Our test calculation placed 

a hydrogen (H2) molecule in a cell of dimensions 4 x 2 x 2 with a bond length 

of 0.7 A oriented along the long axis of the cell. A small shift in the bond length 

of 0.001 A in both directions gave us numerical forces that match analytic values to 

fractions of a percent. This is comparable to the same test applied on the original 

WDA implementation. We now discuss the selection of the K parameter and later 

apply the cusp modified WDA to obtain bulk properties of silicon. 
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2.4.2 Testing and Determining K 

To use our new model function incorporating the Kimball cusp condition we must 

determine a value for K for each specific function f{u) chosen. To do this, we 

will apply our model pair-correlation function in the homogeneous limit and select 

K to constrain the on-top value as close to physical limits as possible. Here we 

will use a simple Gaussian and fourth order Gaussian /"(u) = e~"̂  and e~"̂  and 

therefore have corresponding /*•(«) = ue""̂ /**̂  and ue~"''/''\ respectively. In Table 

2.2 we show the on-top vailues of the model pair correlation function for the model 

functions of Gaussian and fourth order Gaussian type along with their Kimball cusp 

condition corrected counterparts. For the Gaussian based model, the best value 

for our parameter is K = 0.88 £ind for the fourth order Gaussian based model the 

value is « = 0.95. Both values were chosen in an attempt to keep the on-top 

value of the model function within the range 0 < ^xc " ' ^ ( ^ i ^ O-̂ - The above 

values of K provide the best on-top values at both the high and low density limits 

simultaneously. Other values of K could be chosen that improve the low or high 

density limits individually, but this would be to the detriment of the respective 

opposite limits. Table 2.2 shows that in both cases, the modified models improve 

the on-top values over the originals. 

In Figure 2.3 we show the model pair-correlation functions for the simple Gaus­

sian based model and the cusp corrected counterpart in the homogeneous electron 

gas at a number of densities. As can be seen, the modifications have an effect 

only on the short range, leaving the long range untouched. At low (r^ > 8, where 

Tg = (3/47rn)^/^) densities, the on-top value goes negative and therefore unphysical. 

Because we enforce the cusp condition the gradient at zero separation must also be 

negative, producing a turning point that is also non-physical. 

For the fourth order Gaussian based model, the on-top value does not go negative 

in this density range. In Figure 2.4 we show a graphical comparison of the old model 

with the Kimball cusp condition satisfying model. Here, the long range part of the 

function is more greatly affected. This is because the value of K = 0.95 is sufficiently 

close to unity to have an effect beyond the short range part of the pair-correlation 

function. 
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Figure 2.3: Model pair-correlation functions in the homogeneous electron gas at a 

number of densities for the Gaussian based model both with (solid line) and without 

(dashed line) the cusp condition enforced. 
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Figure 2.4: Model pair-correlation functions in the homogeneous electron gas at a 

number of densities for the fourth order Gaussian based model both with (solid line) 

and without (dashed line) the cusp condition enforced. 
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Table 2.2: On-top values of the model pair-correlation functions for the Gaussian, 
fourth order Gaussian and their Kimball cusp condition modified counterparts. 

e (cusp) e (cusp) 

0.1 0.564 0.535 0.701 0.655 

0.2 0.541 0.488 0.685 0.601 

0.4 0.504 0.415 0.660 0.517 

0.6 0.473 0.360 0.638 0.453 

0.8 0.445 0.315 0.619 0.401 

1.0 0.419 0.277 0.601 0.360 

2.0 0.309 0.158 0.526 0.232 

4.0 0.155 0.056 0.420 0.126 

6.0 0.044 0.012 0.343 0.080 

8.0 -0.045 -0.010 0.283 0.054 

10.0 -0.118 -0.024 0.232 0.038 

2.4.3 Application of CWDA to Silicon 

Here we apply our Gaussian and fourth order Gaussian based Kimball cusp corrected 

model pair-correlation functions to bulk silicon. This is the first application of the 

WDA including the cusp condition to a condensed matter system, for a model 

pair-correlation function that is not a parameterisation of that in the homogeneous 

electron gas. Calculations have been done in the WDA with Perdew and Wang's 

[61] parameterisation for the uniform electron gas in, for example, reference [62 . 

We compare with the original WDA models, LDA and P B E G G A . Our simulation 

cell is for the primitive diamond structure, containing two Si atoms, as shown in 

Figure 2.5. In our calculations we use L D A ultrasoft pseudopotentials, even for the 

P B E G G A where consistent pseudopotentials are available, as we are interested in 

comparing the performance of each model for exchange-correlation. A plane wave 

kinetic energy cutoff of 400 eV was used. Sampling of the Brillouin zone was done 

using 6 x 6 x 6 Monkhorst-Pack grid of k-points. These criteria converge differences in 

the total energy to better than 1 meV per atom. For each approximation we calculate 
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Figure 2.5: The diamond structure of silicon wi th the primitive cell (dashed lines) 

overlaid on the face centred cubic ceU (solid lines). 

the total energy of the system at a number of values for the face centred cubic 

lattice parameter. The resulting energy-volume curves are fi t ted to the Murnaghan 

equation of state to obtain the equilibrium lattice parameter, ag, and the Bulk 

modulus, BQ. We also calculate the Kohn-Sham band structure at the equilibrium 

lattice parameter and at the experimental lattice parameter. 

In Table 2.3 we give, for a number of models, the equilibrium lattice parameter, 

bulk modulus and the indirect band gap at both the equilibrium and experimental 

lattice parameters. The original Gaussian model already gave a very good estimate 

for the equilibrium lattice parameter. This is likely because of the good agreement 

for the exchange-correlation hole between the simple Gaussian W D A and quantum 

Monte-Carlo data [57]. Our modified function satisfying the cusp condition does 

shift the estimate of the equilibrium lattice parameter and bulk modulus slightly 

away from experiment, but only by 0.01 A and 2 GPa, respectively. I t does, however, 

improve the value for the indirect band gap by 0.1 eV, but stil l underestimates 

experiment by a factor of two. For the fourth order Gaussian based model, the cusp 

condition modification also increases the value of ao, decreases BQ, and increases the 

band gap. 
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Table 2.3: As given by a number of models for excheinge-correlation - the equilibrium 
lattice parameter, oo, bulk modulus, Bo, and indirect band gap, Eg, for the Kohn-
Sham band structure at both the equilibrium and experimental lattice parameter, 
for silicon. 

Model ao(A) Bo(GPa) ^.(eV) Eg{e\f, exp. lattice) 

5.438 87.5 0.553 0.547 

e~"̂  (cusp) 5.449 85.7 0.643 0.627 

e-* 5.402 94.3 0.306 0.333 

e~"* (cusp) 5.433 88.8 0.540 0.539 

L D A 5.375 96.6 0.439 0.490 

P B E 5.374 92.9 0.624 0.678 

Exp. 5.431 98.8 1.17 1.17 

It is not clear from this small study if modifying our model pair-correlation func­

tions to satisfy the Kimball cusp condition in this way will provide improvements 

genereilly. It does appear that this brings predicted physical properties for Gaus­

sian and fourth order Gaussian models closer together, suggesting that satisfying 

constraints on the pair-correlation function could provide a systematic method for 

producing a definitive model for use in the WDA. 

2.5 Summsiry 

In this chapter we have given an overview of some of the available approximations for 

the exchange-correlation energy functional. For the fully non-local WDA we gave 

the derivation required to implement it efficiently in the context of a plane wave 

description of the wavefunction and electron density. Four classes of model pair-

correlation function were investigated and applied to bulk Cu. It was found that, 

with the exception of the fourth order Gaussian models, one could select a function 

that reproduces the experimental lattice parameter and bulk modulus. We conclude 

that it is not possible to select an appropriate model function for any one system 
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a priori. In an attempt to rectify this we implemented a new form of model p«iir-
correlation function that satisfies the Kimbeill cusp condition. For the two models 
investigated, we found that the on-top value of the pair-correlation function were 
improved over the previous WDA models. Application of these new models to bulk 
silicon provided slightly improved indirect band gaps over their original forms, but 
still differ fi-om experiment by a factor of approximately two. The bulk modulus 
became slightly worse compared to the original models as did the equilibrium lattice 
parameter in the modified Gaussian model. The modified fourth order Gaussian 
function gave an excellent prediction for the equilibrium lattice parameter. 

The approach of improving model pair-correlation functions for the WDA by 

satisfying further physical constraints is promising. Other available routes include 

satisfying constraints on the spin resolved pair-correlation function or treating ex­

change and correlation separately. A spin resolved WDA is derived in Chapter 

4. Perdew and Wang showed that the Kimball cusp condition is modified for the 

coupling-constant averaged pair-correlation function [61] that we are attempting 

to model. Therefore our Kimball cusp satisfying model needs further refinement. 

Modifications required to implement this are given in Chapter 5 for the WSDA and 

Chapter 6 for the C W D A discussed in this chapter. Applications of the models 

including the modified cusp condition are made in Chapter 6. 



Chapter 3 

WDA Applied to Surfaces 

In the previous chapter we introduced the WDA as a method of describing non­

local exchange-correlation effects. The considerable increase in computational effort 

required over semi-local approximations makes it important to concentrate on ap­

propriate applications. Of course, over time this will become less of an issue with 

the ever increasing efficiency of computer processors and increasing size of parallel 

computing facilities. 

The physical behaviour of interactions at surfaces is intrinsically non-local. For 

example, the process of a molecule undergoing dissociative adsorption on a surface 

does not occur at the surface itself, but starts at some distance above the surface 

[63, 64, 65, 66]. The LDA and various GGAs can only describe such a situation to a 

limited extent due to their semi-local nature. A measure of whether non-local effects 

are important can come from studying the behaviour of the exchange-correlation 

hole. 

In this chapter we will show the exchange-correlation hole as calculated with 

the WDA for metal surfaces, both model and realistic, for there is a wide range of 

theoretical and experimental data available [64, 67]. The importance of finite cell 

effects, particularly when using non-local approximations will be discussed. We will 

then present results obtained from applying the WDA to molecular dissociation of 

Ha on the Cu(lOO) surface. 

56 
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3.1 Finite Cell Effects on Bulk Systems 

In section 2.3.1 we investigated some physical properties of Cu using the WDA with 

a selection of model pair-correlation functions. In this case we used the primitive cell, 

doubled along one direction so that we had two atoms per cell and were therefore able 

to treat the system as spin unpolarised. However, we did not investigate finite cell 

eff̂ ects. Finite cell effects are not normally expected when using periodic boundary 

conditions. However, in a non-local approximation it is possible for the exchange-

correlation hole to be extended in some situations. We expect finite cell effects to 

be important for surfaces but not so significant for bulk properties. This is because 

the exchange-correlation hole in the bulk is effectively confined by the surrounding 

electron density. A quantitative study of finite cell effects will be useful in verifying 

this. 

As we expect the effects on the total energy per atom to be small, we will use a 

kinetic energy cutoff of 1050 eV. This gives us total energy per atom converged to 

better than 1.0 meV. For the same level of convergence, we choose a Monkhorst-Pack 

grid of k-points sampling the Brillouin zone with a spacing of 0.044 (equivalent 

to a grid of 12 x 12 x 12 k-points in the primitive cell). The same convergence tests 

were performed using both the LDA and WDA and, as expected, the results were 

comparable. Throughout this chapter we will use the simple Gaussian model pair-

correlation function as this was found to give favourable comparisons with quantum 

Monte Carlo data in bulk Si [57]. 

For each calculation within LDA and WDA, we use the equilibrium lattice pa­

rameter as calculated in Chapter 2 and shown in Table 2.1. We use cells containing 

2, 4, 8 and 16 atoms, corresponding to 2, 4, 8 and 16 of the primitive cells shown in 

Figure 2.2. We find that the total energy per atom, for each approximation, in all 

cases is unchanged to less than 1.0 meV. This is to be expected for the WDA in a 

system such as Cu where there are reasonably high electron densities that confine 

the exchange-correlation hole. In systems with extended regions of low density, we 

can expect delocalisation of the exchange-correlation hole and it is in situations such 

as these that one must be careful to use an appropriately sized super cell. We will 

now investigate the exchange-correlation hole for metal surfaces. 
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3.2 Exchange-Correlation Holes in Metal Surfaces 

The exchange-correlation hole is essentially the way in which a region of electron 

density would respond to the presence of another electron placed at any point in 

space [5]. Consider a test electron placed in otherwise free space in proximity to a 

surface; the exchange-correlation hole in this case will be within the surface, illus­

trating the effect the test electron has on the surface electron density. The more 

diffuse the exchange-correlation hole is, the more pronounced the non-local effect. 

The correct long range behaviour of the exchange-correlation potential is - 1 / r . In 

the LDA and GGAs this long range behaviour is an exponential decay [68]. The 

WDA gives — l / 2r in the asymptotic limit [68], the factor of 2 eirises from the failure 

of the WDA model pair-correlation function to be symmetric under exchange of 

particle positions. 

In our implementation, once the weighted density is determined, the exchange-

correlation hole, n^c^{r,r'), at chosen position(s), r , can be calculated at little 

further expense. We will now apply the WDA to calculate exchange-correlation 

holes in a near-infinite barrier model jellium surface and the Cu(lOO) surface. 

3.2.1 Jellium Surface 

Jellium is the prototype model for metals, simply being a homogeneous electron gas 

with a uniform positively charged background. As the exsict many-electron wave 

function for jellium can be solved computationally [22], it is a valuable tool for 

testing the behaviour of density functionals. This is particularly true for functionals 

in which transferability between many systems is desired. Here, we use a jellium 

surface in the near-infinite barrier model. This is where a step potential is used, of 

a height such that the density is zero, to numerical accuraicy (~ 10'^), beyond the 

discontinuity in potential. We note that, in real systems, the density often decays 

exponentially [69] into the vacuum. We stress that this model surface is used an 

an extreme to illustrate the non-local behaviour of the exchange-correlation hole. 

By showing that our implementation of the WDA can cater for such extreme and 

sudden chemges in electron density, we can be confident that it c«in be safely applied 
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to any realistic surface simulation. 

In our model jellium system [70], we used a tetragonal cell with one lattice vector 

six times the length of the others. We ensured that the cell used was sufficiently large 

to fully describe the exchange-correlation hole and prevent any periodic boundary 

effects. This, balanced with use of a high electron density in the jellium slab, 

confines the exchange-correlation hole so that its width is no larger than the smallest 

cell dimensions. The jellium slab was thick enough for density oscillations to be 

negligible in the central region of the slab - fluctuations within 0.5 A of the centre 

of the slab are no more than 1% of the central value. We used an electron density 

equivalent to = 0.86 A, averaged over the slab, which results from the combination 

of the number of electrons in the cell and the size of the cell chosen such that the 

calculation does not require excessive computational resources. In order to resolve 

the exchanege-correlation hole with high quality, we used a real space grid equivalent 

to a kinetic energy cutoff of 800 eV, which converges the total energy of this system 

to 1.0 meV. 

In Figure 3.1, we show constant density isosurface plots of the exchange-correlation 

hole for a test electron at various distances z from the surface. At all times the hole 

is confined within the jellium surface, as required. This is in contrast to the LDA 

hole that is always spherical and centred on the test electron. For large z the hole 

remains close to the surface, and while being relatively deep, is confined by the 

higher local density at the surface. This is due to Friedel oscillations [71], which 

are oscillations in the electronic wavefunction caused by an impurity, in this case 

the termination of our surface. As the test electron is moved towards the surfaice, 

the hole penetrates deeper into the jellium, becoming more diffuse in the region 

of uniform density, eventually forming a sphere centered on the test electron once 

sufficiently within the slab. This compares well with the work of Garci'a-Gonzalez 

et al. [72] 

By construction, the exchange-correlation hole in the LDA is spherical and cen­

tered on a test electron [73]. This is adequate for systems of nearly uniform electron 

density, but breaks down at surfaces where the density varies rapidly [69]. In fact, 

within the LDA, there is the unphysical result that the exchange-correlation hole is 
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Figure 3.1: Isosurface plots of the exchange-correlation hole in the infinite barrier 

model jellium surface are shown. For ease of comparison, the value at the isosurface 

is kept constant between plots. The horizontal line shows the termination of the 

jellium surface, with vacuum in the top section of the cell. The cross represents the 

position of the test electron, {&) z = 2 A above the surface, (h) z = 0 A, at the 

surface and (c) z = —2 A and (d) z = -4 A wi thin the jellium. 
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undefined in the vacuum region, in spite of being in proximity of an electron density. 
Gunnarsson and Lundqvist also state that to a local approximation, the exchange-
correlation energy is insensitive to the details of the hole. The exchange-correlation 
potential, however, is not guaranteed to have this insensitivity. In the WDA, the 
shape of the exchange-correlation hole is implicitly used when calculating the poten­
tial. Our findings for the jellium surface demonstrates that the exchange-correlation 
hole calculated in the WDA is qualitatively closer to that fi:om quantum Monte 
Carlo calculations of reference [69] while retaining the successful description given 
by the L D A in the uniform limit. 

3.2.2 Cu(lOO) Surface 

Next we turn to a more realistic model in the form of the Cu(lOO) surface. Here, 

we used a slab that is five atomic layers thick, comparable with other studies on the 

Cu(lOO) system, [64] while keeping the atoms fixed at the experimental value for the 

bulk Cu structure. Note that including the releixation of the surface layers would 

shift the atoms a small amount towards the slab centre and this would have only a 

small effect on the exchange-correlation hole. Particularly, the separation of the test 

charge and exchange-correlation hole centre would remain mostly unchanged. Again, 

a supercell large enough to describe the holes in the region of interest without any 

periodic boundary effects was used; we found that a unit cell of 5.11 x 5.11 x 21.69 

containing 14.46 A of vacuum was sufficient. Convergence tests for the total energy 

were performed on this cell using the L D A (as the form of the exchange-correlation 

functional would not significantly change these), finding that an 800 eV planewave 

cutoff energy £ind a 10 x 10 x 1 Monkhorst-Pack grid of k-points was adequate. An 

ultrasoft pseudopotential was used, which was generated using the LDA. We then 

used the electron density found using the L D A as a starting point for minimising the 

total energy with the WDA, rather than starting with a randomised wave function. 

This was done to significantly reduce the toteil computational time required. 

The surface energy for Cu(lOO) was calculated using both the L D A and WDA. 

In the LDA, we obtained a value of 2.2 J/m^, which is somewhat higher than the 

experimental value [74] of 1.77 J/m^. This is to be expected as relaxation of the 
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Figure 3.2: Schematic of the Cu(lOO) surface and marked points of symmetry; A, 

H and B are referred to as the atom, hollow and bridge-sites, respectively. The box 

marks the edges of the supercell used and the vertical planes show the orientation 

of the slices taken for the contour plots in Figures 3.3, 3.4 and 3.5. 

surface layers is not included. Using the W D A , we obtained a value of 1.13 J/m^, 

which is low, but can be explained by the underbinding for bulk Cu found when using 

the simple Gaussian form of the model pair-correlation function, as we established in 

section 2.3.1. The discrepancies for both approximations could also be accounted for 

by the fact that we are using the experimental lattice, rather than the equilibrium 

structure given by each level of approximation. 

We have calculated the exchange-correlation holes at various distances z from 

the surface above three points of symmetry. A, B and H , on the surface as shown 

in Figure 3.2. In each case, the test electron is positioned at a number of points, 

those at 2 = 2.89 A, 2 = 1.81 A, 2 = 0.72 A above and 2 = -0.14 A below the 

surface. Here we define the surface to be the the plane intersecting the Cu centres 
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Figure 3.3: Contour plots of the exchange-correlation hole at various points along 

the vertical line through the hollow site, H. The cross represents the position of the 

test electron and the stars the positions of the Cu atoms. The left and bottom axes 

are in fractional units of the slice taken bounded by the cell, and the right and top 

axes units are in A. See main text for more details. 



CHAPTER 3. WDA APPLIED TO SURFACES 64 

0.35 
7 

0.3 
6 

0.25 
5 

0.2 
4 

3 0.15 

2 0.1 

1 0.05 

0 0 

0.35 
7 

0.3 
6 

0.25 
5 

0.2 
4 

3 0.15 

2 0.1 

1 0.05 

0 0 

Figure 3.4: As for Figure 3.3 but for the line through the atom site, A. Note that 

the contours here are spaced exactly as in Fig. 3.3 to allow a direct comparison. 
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Figure 3.5: As for Figure 3.3 but for the bridge site, B. As there are no atom 

centres in this plane, the line shows the position of the top layer of atoms. 
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Figure 3.6: Plot showing the Unear relationship between test charge to hole centre 

separation and the height of the test charge above the surface. Error bars are due 

to the precision of the sampling in the plane. Shown here for the atom site, those 

for the hollow and bridge site are identical within sampling accuracy. 

of the uppermost layer. For each of the points of symmetry, we show the exchange-

correlation hole of the test electron in Figures 3.3-3.5. The equivalent figures for the 

L D A would simply have a sphere centred on the test electron. Each pair of contour 

lines has a spacing double that of the previous pair, illustrating the sharp increase 

in the depth of the exchange-correlation hole as the test electron is moved into the 

surface and regions of higher electron density. 

We find that the non-local effects are evident when looking at the distance be­

tween the test electron and the deepest point of the exchange-correlation hole. In 

each of the cases this distance takes values approximately 1.20, 0.72, 0.36, and 

0.02 A at the previously mentioned positions, respectively. It is found that there 

is a linear relationship between the separation and the height of the test electron 

above the surface, as shown in Figure 3.6. In the context of density functional calcu-
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lations with surfaces, for example, molecular adsorption and epitaxial growth, this 

demonstrates that there could be significamt errors in using semi-local functional. 

3.3 H 2 Dissociation on Cu(lOO) 

A number of theoretical studies of Cu surfaces agree that the reaction path for a 

H2 molecule starts within approximately 2.5 A of the surface [64, 65, 66, 75]. The 

exchange-correlation holes calculated using the WDA shown in the previous section 

demonstrate that there is a significant non-local effect in this region. Often used 

in such studies is a potential energy surface, essentially a multidimensional analysis 

of the total energy of the system while varying parameters such as the height of 

the molecule above the surface, bond length of the molecule and orientation of the 

molecule with respect to the surface. This potential energy surface can then be used 

to determine the classical reaction path and energy barriers. Critical features such 

as minima and saddle points can be very sensitive to the level of approximation used 

for exchange-correlation. 

In the case of a diatomic molecule, the potential energy surface is six dimensional. 

For an approximation as computationally expensive as the WDA, particularly where 

large simulation cells are involved, it is currently unfeasible to determine the full 

potential energy surface. Instead we will determine a two dimensional potential 

energy surface for the height of the molecule above the surfeice and the separation of 

the hydrogen atoms in the molecule. Based on the work of White and Bird, who used 

the LDA, we will orient the molecule parallel to the surface, with the bond centered 

above the bridge site (see Figure 3.2) and the bond aligned along neighbouring hole 

sites. 

For our calculations, we used a slab of Cu five layers thick in a cell of dimensions 

5.11 x5.11 x21.69 A^, which contains 14.46 A of vacuum to avoid interaction between 

either sides of the slab and has a total of twenty Cu atoms. To converge our total 

energy to better than 1 meV a plane wave cutoff energy of 1200 eV was used and 

k-point sampling of the Brillouin zone was done using a Monkhorst-Pack grid of 

points 8 X 8 X 1. Ultrasoft pseudopotentials were used that were generated using 
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the LDA. 

Figure 3.7 shows the two dimensional potential energy surface generated using 

the WDA. We calculated the total energy at 35 points and used a cubic interpolation 

scheme that we then contoured. The contour lines are spaced at 0.05 eV intervals. 

For each point we did an initial calculation with the L D A then used the electron 

density found here as the starting point for our self consistent WDA calculation. 

This reduces the number of self consistent cycles required so that there are fewer 

calculations of the weighted density, greatly reducing the overall calculation time. 

The WDA calculations each took 7-10 days running on 128 opteron processors with 

a clock speed of 2 GHz. 

Qualitatively, large differences can readily be seen between our potential energy 

surface and those done previously with the L D A [64] and G G A [65]. In those cases, 

the potential energy surface has a single saddle point at a height and bond length 

of 1.04 A and 1.28 A, respectively for the LDA and 1.09 A and 1.40 A, respectively 

for the PW91 G G A . Our calculations using the WDA, however, have two saddle 

points and a local minimum. The potential energy surface for our L D A calculation 

is shown in Figure 3.8. This differs also from previous studies, having a single saddle 

point and local minimum. This could be an indication that the previous studies used 

supercells that were of an inadequate size. White and Bird's L D A calculations used a 

cell 2.55 X 2.55 A^ in cross section while their G G A calculations used a cell 3.61 x 3.61 

A^ in cross section. The larger cross section in our simulations should be enough 

to eliminate periodic boundary effects. This was expected for the WDA given the 

exchange-correlation holes calculated in the previous section but not immediately 

so for the LDA. It should be noted that preliminary calculations we performed with 

the smaller 3.61 x 3.61 A^ cross section were comparable to those found in the above 

references, with the WDA also returning a potential energy surface with a single 

saddle point. 

The final adsorbed positions for the hydrogen atoms is found to be 0.352 A above 

the surface. This is in comparison with White and Bird's LDA value of 0.43 A £md 

our own L D A value of 0.349 A. The differences between our LDA calculation and 

White and Bird's calculation can be most likely be attributed to their use of norm 
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Figure 3.7: Potential energy surface for H2 on Cu(lOO), generated using the W D A . 
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Figure 3.8: Potential energy surface for H2 on Cu(lOO), generated using the LDA. 
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conserving pseudopotentials as opposed to the ultrasoft pseudopotentials used in 
our calculations. A combination of the larger supercell used, the higher kinetic 
energy cutoff and k-point sampling used in our calculations may also contribute. In 
both cases the hydrogen atoms sit above the hole sites in this final state. Our LDA 
calculation gives a local minimum at 1.01 A above the surface with a bond length 
of 1.17 A and a saddle point at a height of 0.82 A and a bond length of 1.44 A. 
The calculations performed using the Gaussian based WDA has a local minimum 
at 1.04 A above the surface and a bond length of 1.13 A. The two saddle points in 
this case are at heights and bond lengths of 1.77 A and 0.99 A, and 0.80 A and 1.47 
A, respectively. 

The classical reaction path can be determined by following the "valley" formed 

by the potential energy surface. We can then take the energy values along this path 

to observe the variations in the energy along the reaction path, which allows us to 

determine the height of energy barriers. In Figures 3.9 and 3.10 we show the energy 

relative to the final adsorbed state along the classical reaction path for the LDA 

and WDA, respectively. The minima in these graphs correspond to the minima in 

our two dimensional potential energy surface, while the maxima correspond to the 

saddle points. 

Our results using the LDA suggest that the process has no barrier to adsorption. 

This is at odds with experiment showing definitively that the process is activated 

and dissociative [76]. From our data, there is a small barrier of 0.143 eV to escape 

the local minimum. White and Bird [64] reported a barrier height of 0.30 eV, 

compared to a value of 0.5-0.7 eV inferred from experiment. White et al. later 

report a barrier of 0.06 eV using the LDA and 0.99 eV with a G G A [65]. Using the 

WDA, our results show that the process is activated, as it should be. The barrier 

height is higher than expected at approximately 1.2 eV. A second barrier, after a 

local minimum, is 0.277 eV in height. 

Calculations of dissociative adsorption of H2 on Cu(lOO) using the WDA pro­

vide significant differences over previous work using semi-local approximations for 

exchange-correlation. Some of these differences may be accounted for by the use 

of a larger cross section in our simulation cell as significant changes to the poten-
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Figure 3.9: Relative energy along the reaction path calculated using the LDA. We 

set our zero energy to be the final adsorbed state. 

tial energy surface calculated with the LDA were also seen. The incorrect image 

potential given by the WDA in this form could also be a factor. Our relatively 

coarse sampling of the two dimensional potential energy surface may have a small 

effect. However, a sample size of 35 points was adequate in previous studies. Cal­

culations with higher resolution sampling could be useful, particularly around the 

saddle points and local minima. We have not investigated the effect of using dif­

ferent model pair-correlation functions within the WDA. As was shown in section 

2.3.1, we can obtain results closer to experiment by selecting particular functional 

forms. There is, however, no way of choosing a model pair-correlation function in 

advance, and little would be gained from repeating our calculations with each of 

the many models available. Throughout the remainder of this thesis we discuss a 

number of different avenues for improving the WDA, including the possibility of a 

model pair-correlation function based purely on physical constraints. 
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Figure 3.10: Relative energy along the reaction path caJculated using the WDA. 

We set our zero energy to be the final adsorbed state. 

3.4 Summary 

In this chapter we have applied the WDA to metal surfaces. We have demonstrated 

that, as expected, finite cell errors are negligible for calculations of this type for bulk 

solids. However, in the case of surface modeling, finite cell effects are evident. This is 

emphasised by the spatial extent of the exchange-correlation hole as calculated using 

the WDA. Calculations of part of the potential energy surface for H2 dissociating on 

the Cu(lOO) surface show that finite cell errors may be present for work previously 

done using semi-local approximations. When applying the WDA to this system, 

significant differences were found to semi-local studies. Limitations on our ability to 

choose an appropriate model pair-correlation function cast doubt on the benefit of 

performing such large scale, computationally expensive, calculations with the WDA. 

A non-local approximation for exchange-correlation does appear to be required for 
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accurate density functional simulations of surfaces. We suggest that the models for 

the exchange-correlation hole in the WDA can be refined by including more physical 

constraints such as the Kimball cusp condition (see section 2.4) and constraints on 

the spin resolved pair-correlation function (chapter 4). Once a non-empiricaJ model 

pair-correlation can be used in the WDA, it will be of interest to return to these 

surface calculations. 



Chapter 4 

Weighted Spin Density 

Approximation 

Previous attempts have been made at constructing and implementing a spin po­

larised extension to the WDA [77, 78]. Although referred to as a weighted spin 

density approximation (WSDA), these implementations used a WDA treatment of 

exchange only. Such a method is relatively easy to implement as the form for the 

pair-correlation function for exchange in the homogeneous electron gas is known 

[79]. For correlation effects, the LSDA correlation energy was used, so non-local 

correlation cannot be described. While these showed improvements over LDA on 

its own, they are not true non-local approximations. Gunnarsson and Jones [55 

suggested that spin polarisation can be included by replacing the LDA energy den­

sity with the LSDA energy density. Although simple, this method of including spin 

polarisation can not reproduce the correct pair-correlation function in the partifil or 

fully polarised uniform limit because the model pair-correlation functions used do 

not have any dependance on the spin polarisation. In this chapter we will construct 

a framework for a fully non-local WSDA and show an efficient implementation that 

can be run in parallel within the C A S T E P code. Note that we do not intend to make 

thorough tests of model pair-correlation functions here, merely to demonstrate our 

method. 

75 
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4.1 Spin Resolved Pair-Correlation Function 

The basis for all approximations of the weighted density type is the pair-correlation 

function. For a spin polarised extension the pair-correlation function needs to be 

spin resolved. Prom Becke [80], the pair probability density, i.e. the probability of 

finding one electron at r given that there is another at r' , can be written to include 

spin orientation as: 

P ( r , r ' ) = ^ p - ' ' ' ( r , r ' ) = P^^r,r') + P^Hr,r') +P^^{r,r') + P^^{r,r% (4.1) 
<T,<T' 

where a and a' represent the spin orientation for the electron at r and r', respec­

tively. It is worth noting here that as the pair probability density is identical, as it 

should be, when interchanging r and r', therefore the two probabilities for antipar-

aJlel spins are identical. 

The spin resolved (coupling-constant averaged) exchange-correlation hole and 

pair-correlation function is related to the pair probability density by: 

P^^'iry) = n„{r)nZ'{ry) + n„(r)n„-(r') = n.(r)n.-(r')5^f (r, r ' ) , (4.2) 

where we have n„{r) the electron density with spin a, we introduce the spin resolved 

exchange-correlation hole n^c (»", r'), and also the spin resolved pair-correlation func­

tion ^xc ('')''')• The spin resolved exchange-correlation hole and pair-correlation 

function are related to each other by: 

Kcir, r') = nAr') ^ ' ( r , V) - l] . (4.3) 

Using the relation of the full pair probability density to the full pair-correlation 

function from equation 2.8 and equations 4.1 and 4.2 we obtain a spin resolved 



Cnj\riER 4. wEiGH'iEu aPii\ ut,i\birY ApyRuXlMAliUiS 77 

pair-correlation function: 

3-cir,r ) = ^ - ^ - ^ - ^ 5 x c {r,r), (4.4) 
£r,<T' 

and a spin resolved exchange correlation hole: 

= ; ; i T E " - ( ^ ) < c ' ( r , r ' ) , (4.5) 
^ ' <T,<T' 

which are exact relations. Ekjuation 4.4 is equivalent to the spin resolved pair-

correlation function given elsewhere (for example, in reference [81]), expressed in 

terms of spin polarisation, C = {n-^ir) - n^(r))/n(r): 

9.c{ry)^(^^y9'^,{ry)+(^^ (4.6) 

where 9xc(^>^') = ^xc('')''')- It should be noted that the parts for antiparallel spin 

pairs do not experience Pauli exclusion as they have different spin indices. Strictly, 

one should say that the contribution from antiparallel spin pgiirs is purely from 

correlation effects. 

Here we shall list some of the exact constraints on the exchange-correlation hole 

and the pair-correlation function. The spin resolved exchange-correlation hole obeys 

a sum rule, summarised as: 

J n - ' ( r , r ' ) d r ' = -5<,,.,, (4.7) 

where we use the Kronecker delta. The spin resolved pair-correlation function must 

also satisfy a number of properties in all cases, not just the homogeneous limit [82]: 

(i) Each part of the pair-correlation function must be positive at £J1 times, i.e. 

g - ' ( r , r ' ) > 0 . (4.8) 
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(ii) When r = r', we have for parallel spins, from the Pauli exclusion principle. 

(4.9) 

and for antiparallel spins, we have. 

5 x c ( r , r ) > 0 . (4.10) 

(iii) As r tends towards r' the derivatives of the pair-correlation function with re­

spect to the separation have the following relations for parallel spins. 

= 0, 

d\r - r f 

r-.r' 

r-.r' 

2 

3 d\r - r'|3 
7l3^xc(r,r') 

(4.11) 

(4.12) 
r—r' 

For antiparallel spins we have. 

d\r - r'\ 
= 9Z'{ry) 

r-.r' 
(4.13) 

These constraints are a result of Fermions interacting in a pairwise Coulomb 

interaction in three dimensions [82 . 

Other constraints are known for exchange and correlation separately, as well as 

relations to the exchange and correlation energy densities and potentials. The choice 
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of model paiir-correlation function will be discussed later. However, a good choice 
of model pair-correlation function should satisfy the above properties. 

Strictly speaJcing, we are considering the coupling-constant averaged pair-correla­

tion function, which is the integral of the pair-correlation function over the coupling 

constant for the Coulomb force from the noninteracting case to the fully interacting 

case. This leads to a set of modified cusp conditions [61] that should be taken into 

account. For now, we will follow the work of Rushton [59] and construct a model 

that does not include the modified cusp conditions. We will discuss the inclusion of 

the modified cusp condition in the next chapter. 

4.2 Exchange-Correlation Energy and Potential 

In analogy with the existing, non-polarised WDA, we will use G""' to represent our 

model pair-correlation function: 

G - ' [ r , r ' ; n , ( r ) , n , ( r ) ] = ^ - ' ( r , r ' ) - 1, (4.14) 

where n^(r) and n^(r) are the weighted spin density parameters. We can then 

write the exchange-correlation energy using the spin resolved model pair-correlation 

function: 

E:rKn,:n„n,] = \ J n , { r ) d r J " , ( r ' ) ° " ' p l ' ; " | ' ' ' " r f ' -

_ „ G " [ r , r ' ; n . ( r ) ] 

+ ^Jn,{r)drjn^{r) ^—-j^ dr. 

(4.15) 
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We will refer to each of the four parts such that: 

+ £;xc[n^,n^;n^,nj-I-Exc[npn^;n^,nJ. (4.16) 

We can also spin resolve the exchange-correlation energy density: 

The potential, including spin, is determined from the functional derivative of 

the exchange-correlation energy with respect to the electron density of a given spin 

orientation: 

5Exc{n{r) 
^xc{r) = f „ • (4.18) 

For parallel spins, the potential can be split into three terms, as with the non­

polarised WDA. For antiparallel spins, we get four terms, giving the spin resolved 

potential a total of seven terms: 

< c ( r ) = < ( r ) + v^,{r) + vUr) + < ( r ) + < ( r ) -f- < ( r ) + v^r), (4.19) 

where cr can be up ( t ) or down {[). The first three terms in the up (T) case come 

only from E^c, there are no contributions from E^^,: 
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"1 = U ^ A r - ^ ^ ^ ^ r : ( .20) 

= (4.21, 

Terms four through seven are two from E]i: 

27 K ~ 

. , ( r ) - -jn,{r)drj^^y-^^ — dr , (4.24) 

and two from Exc-

1 / •n , (r ')G^^[r,r ' ;n^(r ' ) ,n , (r ')]^ , 
dr\ (4.25) |r - r ' l 

= - 2 j ^ ^ - ) d ' J ] ^ l S^^^r^ (4.26) 

The relations for v^^ are exactly the same except for all references to up ( | ) being 

replaced with down ( i ) and vice versa. 

Our model pair-correlation functions have no explicit dependance on the electron 

density, only through the weighted up/down spin density parameters. Therefore, 

using the chain rule, we write: 

r"; n, (r')] _ dG''[r'y';h, ( r ^ j ^ 5h,{r') 
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with similar relations for the antiparallel model pair-correlation functions and deriva­

tives with respect to the down ( |) density. The functional derivative of the weighted 

up spin density with respect to the electron up spin density can be obtained by tak­

ing the functional derivative of the sum rule / n^(r")G"[r',r";n^(r')]dr" = - 1 : 

5h^{r') _ - G " [ r , r ' ; n , ( r ) ] 

5n^ (r) / ( r " ) a G " [r', r"; {r')]/dh^ {r')dr"' 

We can then rearrange the third potential term to be: 

>(r') 

where the h terms are given by: 

Similarly, we can rearrange the fifth and seventh terms to be: 

n 

where /ij is as above in equation 4.31 and: 

(4.28) 

vlir) = - \ J nir')^G''[ry;h,{r)]dr', (4.29) 

(4.30) 

. ; ( . ) = | „ ^ ( . o ? q ^ . . ' . (4.31) 

^5(r) = - i y " n , ( r ' ) ^ ^ G " [ r , r ' ; n , ( r ) ] d r ' , (4.32) 

vkr) = - ^ | n , ( r ' ) ^ G " [ r , r ' ; n , ( r ) ] d r ' , (4.33) 
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Once again, equations 4.27 through 4.35 can have all up (t) and down ( j ) references 

interchanged to give the relations required for u^c. Note that the rewritten forms 

of the fifth and seventh terms in equations 4.32 and 4.33 contain the model pair-

correlation function for like spins. This is because the weighted density, in our 

implementation, is determined from satisfying the sum rule for like spin pairs and 

therefore that sum rule must be used in calculating the functional derivative of the 

weighted density with respect to the electron density in all cases. 

4.3 Implementation 

As with the WD A, we use the sum rule to determine the weighted density and 

fit our model pair-correlation function such that the known exact energy in the 

homogeneous limit is obtained. The differences come in when obtaining the spin 

resolved weighted density. Our approach will be to determine the weighted up/down 

density from the sum rule for the parallel spin paxts of the exchange-correlation hole. 

This will be done in the same way as the WDA, as discussed in Chapter 2, generating 

a logarithmic lookup table for each of the up and down weighted densities, followed 

by a search through the table for a value that (nearly) fulfills the sum rule at each 

point in space. We then interpolate to find v£ilue that satisfies the sum rule to 

computational accuracy. These weighted spin density parameters will then be used 

in the model pair-correlation function for antiparallel spins, which will be fitted to 

return the LSD A energy in the homogeneous hmit. 

The equations for the exchange-correlation energy and potential in the previous 

section are in the form of convolutions. These can be evaluated with relative ease 

in reciprocal space, rather than performing expensive real space integrals. We will 

derive explicit forms for the integrals in reciprocal space below. 
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4.3.1 Parallel Spins 

First, we should choose a model pair-correlation function. A functional form that 

satisfies the cusp conditions in equations 4.9, 4.11 and 4.12 can be chosen in analogy 

to the cusp condition satisfying model derived in Chapter 2. Given the starting point 

of a Gaussian model pair-correlation function, a second term can be introduced to 

alter the short range behaviour of the function: 

G''''[r,r';n„(r)] = - e " ( f e ^ ) + '̂̂ ,̂,e"("<"'̂ <''-»̂ '"<'̂ '-<-») , (4.36) 
2A2(n^(r)) 

where A and K are determined from the sum rule and the spin resolved LSDA 

energy in the homogeneous limit. However, if this were followed through, a 15th 

order polynomial in A would have to be solved. The coefficients of this are badly 

conditioned to the point that numerical solutions are not feasible. For now we will 

relax the constraint of equation 4.12 while retaining those of equations 4.9 and 4.11 

so that a more simple model functional can be used: 

G'^'lr, r'; n,(r)] = - g - l ^ f e r ^ ) ' = -e""', (4.37) 

where u = | r — r' | /A and we will refer to the model pair-correlation function as 

a simple product of the form C7/(u), with C = - 1 and f{u) = e~"\ Here, we 

will determine A to satisfy the sum rule in the homogeneous limit and enforce the 

LSDA energy in the homogeneous limit by using the energy due to antiparallel spin 

pairs to make up the difference. This is not a unique method of calculating a value 

for A - one could also use the known spin resolved exchange-correlation energy in 

the uniform limit, but this would no longer give the correct sum rule in this limit. 

The use of this functional form is only intended as a first, proof of concept, test. 

Referring to a general f{u) allows us to use different model functions while using 

the same framework. We will discuss refinements to the model later. 

In real space, the exchange-correlation energy density for p£irallel spins, following 
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from equation 4.17, is: 

We can write this in an easily calculable form by inspection of equation 2.31: 

e^^(r) = 2nCX'{h,{r)) n.(G)e^^'-Fi(g), (4.39) 
G 

where G are the reciprocal lattice vectors, n^iG) is the Fourier transform of the 

electron density with spin a, and we have the spherical Fourier transform of the 

model pair-correlation function over the pair sepeiration: 

Fi{q) = - r f{u)sm{qu)du, (4.40) 
9 Jo 

and q = |G|A(n^(r)). 

The sum rule, from equation 4.7 is: 

- 1 = y"n,(r')G<"^[|r - r'\;h„{r)]dr'. (4.41) 

This can easily be rewritten from inspection of the sum rule in our originail WDA 

formulation, equation 2.36, giving: 

-1 = 47rC\\Mr))J^n„iG)e''''-F2{q), (4.42) 
G 

where we have F2{q), the spherical Fourier transform of the model pair-correlation 

function defined as: 

F2{q) = - r ufiu)sm{qu)du. (4.43) 
qJo 
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The parameter A can be determined by taking equation 4.42 in the homogeneous 

Umit, setting n to n, giving: 

- 1 = 47rC (A^(n.(r))) n.(r)F2(0), (4.44) 

where the weighted density becomes the electron density and g —> 0, so we have: 

F2(0)= ru^f{u)du= r u^e-^"du = ^ , (4.45) 
Jo Jo 4 

for our choice of a Gaussian model pair-correlation function. We can then rearrange 

equation 4.44 for A, remembering that C = - 1 , finally resulting in: 

A ( M r ) ) = • (4.46) 

For later reference, we will also give the homogeneous exchange-correlation energy 

density due to parallel spin electrons when using the Gaussian model pair-correlation 

function. Taking equation 4.39 in the uniform limit: 

n(r) "̂̂ '̂̂ ^ 
= 2 . C A ^ ( n . ( r ) ) | ^ F , ( 0 ) = (4.47) 

unif n(r) 

as the spherical Fourier transform of the model pair-correlation function over the 

separation, in the uniform limit is: 

F i ( 0 ) = ruf{u)du= / ° ° u e - " ' d u = ^. (4.48) 
Jo Jo 2 
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Our potential terms are rewritten in analogous fashion to the W D A. Once again, 

in the same way as the first potential term given in equation 2.13 in our original 

WDA formulation in Chapter 2, our first potential term reduces to the exchange-

correlation energy for parallel spins: 

vUr) = eZir). (4.49) 

The second and third potential terms are to be calculated in reciprocal space and 

Fourier transformed back to real space. The Fourier components, i)f (G?) of î fC**) 

axe obtained using the convolution theorem on equation 4.21: 

vtiG) = n.(r')A2(n.(r'))e-^^-'F,(g)dr', (4.50) 

where Q is the cell volume. Similarly, the Fourier components, v^{G) of f f (r) can 

be found using the convolution theorem on equation 4.29: 

vUG) = - f / n . ( r ' ) | | ^ A ^ ( n , ( r ' ) ) e - « - ' F 2 ( 9 ) d r ' . (4.51) 

The h terms firom equations 4.30 and 4.31 are also in the form of convolutions. 

First, we need to rewrite the derivative of the model pair-correlation function because 

there is no explicit dependance on the weighted density (or the A parameter): 

dC[u,h^{r)] _ du dG'"'[u,h^{r)]d\{h„{r)) 
dh„{r) dX{n„{r)) du dn„{r) 

(4.52) 

. . ^ g M ^ y f ) ) . (4.53) 
A(n„(r)) du dh„{r) " 

We can then write the h functions as: 
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= _ / M l l ^ C ^ ? ^ , , . , (4.54) 
J A2(n<,(r)) du dn„{r) 

= . / ^ C u ^ £ ^ , . , (4.55) 
J Hn„{r)) du dn„{r) ^ ' 

Using the convolution theorem we can write the above equations in an easily 

calculable form: 

Kir) = -47rCA(n.(r))^^^^5^n<.(G)e'^'-E3(9) , (4.56) 
G 

Kir) = -4nCXHMr))^^p^'£n.iG)e'<'-F,iq), (4.57) 

where we have functions that are related to spherical Fourier transforms of the 

derivative of the model pair-correlation function with respect to u: 

Uq) = - ru^^smiqu)du, (4.58) 
q Jo du 

F,iq) = - ru'^smiqu)du, (4.59) 
qJo du 

and we note that ^3(0) = - 1 and ^4(0) = - | \ / 7 r , when using our current model 

pair-correlation function / (u ) = e"̂ . In our potential term, we require the ratio 

/if (r) / / i2(r) . Much of equations 4.56 and 4.57 then ceuicel each other out so we C£in 

write: 

Kir) _ EGn,(G)e^^'-F3(9) 
Kir) \ih.ir))Y.Gn.iG)e^''--F,iqy ^ " 
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The derivative of the A pareimeter is required later in the calculations of the potential 

terms due to antiparallel spins: 

^A(n.(r)) I f 1 \ ^ 

4.3.2 Antipcirallel Spins 

For the case of antiparallel spins, we will use a model pair-correlation function similar 

to our cusp condition modified WDA from Chapter 2, equation 2.69. To recap, the 

model function is set up to have two parts, where the second part modifies the 

short range behaviour of the function to satisfy the cusp condition. Namely, that 

the on-top value of the pair-correlation function is equal in value to its derivative 

with respect to pair separation, evaluated at zero separation, equation 4.13. The 

difference in this case is that the sum rule for amtiparallel spins is zero. For this to 

be possible, our model pair correlation function must be greater than zero in some 

places so that the sum rule can be satisfied. A relatively simple way of doing this is 

to have a model function as follows: 

G [ r , r ' ; n ^ , n j = C ( n , , n j e 

+ ( C ( n „ n J - H l ) f | r - r ' K ^ ^ ) e - ( ^ r , 

(4.62) 

where we omit the explicit r dependance of the weighted density. The parameters C 

and A now depend on both the weighted up and down spin densities. The constant 

K is chosen to fit the on top value to the known homogeneous value at a range of 

electron densities, such as references (83, 84, 85, 86]. We will discuss in detail on-top 
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values in the homogeneous limit and the selection of K in Chapter 5. If we substitute 

u = | r - r'l /A we can rewrite this model function as: 

G^'[u;n^,nJ = C ( n ^ , n j e - " ' -h ( C ( n p n J + l)X{h^,h^){u + u'^)e-^. (4.63) 

To make the following framework more general, we can replace the u dependent 

parts with / functions: 

G'' [u; , n J = C ( n , , ) /« («) + (C(n, ,h^) + 1) A(n,, )/''(u), (4.64) 

where / " and can be replaced by appropriate functions. 

Following from equation 4.17, the exchange-correlation energy in real space for 

antiparaJlel spins is: 

^xcin = 2 y ) 1̂  _ . (4-65) 

and we also have: 

where we use the same model pair-correlation function whether we are looking at 

up-down or down-up spin pairs. These integrals are once again in the form of 

convolutions, a fact that we can use to rewrite them in an easily calculable form, 

thus: 

4 ^ ) = 2irC{h,,hJXHh^,h^)J2^,{G)e'*'-^Hl\q), (4.67) 
G 

4L(r) = 2^C{h,,h,)X\h,,h,)J2n,{G)e^''-^Hl'{q), (4.68) 
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where we introduce the term to simplify the spherical Fourier transforms of our 

model functions. Here q = |G|A(n^(r),n^(r)) and: 

Hl'iq) = F^{q) + ( l + } . ) A(n , ,nJFf (9 ) . (4.69) 

The F\ functions are related to the spherical Fourier transforms thus: 

= - / " r ( u ) sin(9K) du, (4.70) 

P\{<1) = - r f'{u)sm{qu)du. (4.71) 
Q Jo 

The sum rules in this case, from equation 4.7 are: 

0 = 47rC(n, ,nJA3(n, ,nj5]n, (G)e'^' - / /^^(g) , (4.72) 
G 

0 = 47rC(n , ,nJA^(n , ,nJ^n^(G)e '^ ' - / /^ ' (9 ) , (4.73) 

where we introduce H2 (which is similar to HI^): 

Hl\q) = F^{q) + ( \ + } , ) \(h,,h^)F\{q). (4.74) 

We also have the Fi functions that come from the spherical Fourier transform of the 

model pair-correlation function: 

F^{q) = - r ur(u)smiqu) du, (4.75) 

^1(9) = - r uf''{u)sm{qu) du. (4.76) 
Q Jo 
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If we tjike the sum rules in the uniform limit, we get: 

0 = C(n^,n^)A^(n^,nJn^ 

where = 47rF2"(0) and = 4TVF^{0). This leads to the same result for both sum 

rules, relating the C and A parameters, thus: 

(4.78) 

To determine A, we take the homogeneous limit of the exchange-correlation energy 

density due to antiparallel spin pairs from equation 4.17 and the uniform limit of 

equations 4.67 and 4.68: 

n(r) 
^ e i ; ( r ) ) = C ( n , , n J A ^ ( n , , n J ( ^ ) 7/^(0), (4.79) 

where i / i (0) can be written as: 

H , { 0 ) = I^+{1 + (4.80) 

and = 47rF{'(0) and = 47rFf(0). We then equate the uniform limit of the 

WSDA exchange-correlation energy density to the LSDA energy density: 

4 4 

^ r i n ^ n j = + C ( n „ n J A 2 ( n , , n J H I \ 0 ) , (4.81) 

where the exchange-correlation energy density due to parallel spins is used in the 
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case of using a Gaussian for the model pair correlation function, as given in equation 
4.47. We can then substitute back in for C from equation 4.78 and rearrange to get 
a cubic polynomial in A: 

a3A^(n^, n J -I- a, A(n^, n J -I- oo = 0, (4.82) 

where the coefficients are given by: 

« 3 = ^ M - W , (4.83) 

£ - - [ n „ n J + ^ L ± ^ j / ^ (4.84) 

/ 4 1 \ 
oo = e - - [ n ^ , n J + ^ L ± ^ (4.85) 

The roots of this equation can be found numerically using an appropriate method 

such as finding the eigenvalues of a companion matrix as described in section 2.4.1. 

Positive real roots of A should be chosen as it controls the range of the model pair-

correlation function and also in order to keep C in the allowed range for the on-top 

vailue of the pair-correlation function. 

The fourth potential term is simply related to the exchange-correlation energy 

density for antiparallel spin pairs, in analogy with equation 2.13, where vlir) — 

^xcir) and v^ir) = £xc(^)- The Fourier components of the sixth potential term 

come from using the convolution theorem on equation 4.25: 

vliG) = ' ^ 1 n,(rOC(n,(rO,n,(r'))A2(n,(r'),n,(r'))e-^*=-'H;\9)dr',(4.86) 

^6(G) = f /n^(rOC(n,(rO,n,(rO)A2(n,(rO,n,(rO)e-^«'- 'H;^(9)dr' . (4 .87) 



The Fourier coefficients of the fifth and seventh potential terms are determined by 

applying the convolution theorem to equations 4.32 and 4.33, giving: 

vl{G) = - | | n , ( r ' ) ^ C A ^ ( n , ( r ' ) ) e - ^ « - ' F 2 ( 9 , ) c i r ' , (4.88) 

^^^^^ = -|/r^y)^CX'{hy))e-'''-^F,iq,)dr', (4.89) 

vAG) = - ^ / n y ) ^ C X \ h , { r ' ) ) e - ^ ^ - ' F , { q ^ ) d r ' ^ (4.90) 

vAG) = - ^ | n , ( r ' ) ^ C A ^ ( n , ( r ' ) ) e - ^ ^ ' - ' F 2 ( 9 j d r ' . (4.91) 

Note that C and A in the four above equations are those used in the parallel spins 

calculation and ^2(9^) is the spherical Fourier transform of the the model pair-

correlation function for parallel spin pairs cr, where q„ = \G\X{n^{r)) indicates that 

we are using A from the parallel spins calculation. The /if functions are given in 

equation 4.57. 

The hi functions from equations 4.34 and 4.35 are also in the form of convo­

lutions. Again, we must use the chain rule to rewrite the derivative of the model 

pair-correlation function with respect to the weighted density: 

dG^^[u,h^,fi^] ^ dG^^[u,h^,h^] dC{h^{r),h^{r)) 
dh,{r) - dCih,{r),h,{r)) dh,{r) 

dG^^[u,h^,h^] dX{h^{r),h^{r)) 5G^^[u,n^,nJ du 
I r \ \ / ' - / \ ' - / \ \ r v — / \ I 

5A(n^(r),n^(r)) dh^{r) du dn^{r) 
(4.92) 

Using this and the convolution theorem, we can then write as: 
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h\'{r) = 4 7 r A ( n , , n j 5 ] n , ( G ) e ' « ' - x 
G 

A ( n „ n J ? ^ ^ ^ ^ {F^{q) + X{h^,hJF^{q)) 

+ ( C ( n , , n J + l ) A ( n , , n J ? ^ ^ F f ( , ) - C{n^ ,n^)?^^^^H,{q) 

(4.93) 

where we introduce which is similar to our previous H^^ functions (equations 

4.69 and 4.74): 

Hsiq) = F^{q) + (^1 + ^ ^ ^ ^ A ( n , , n J F | ( g ) . (4.94) 

We also have functions related to the spherical Fourier transform of the derivative 

of the model pair-correlation function with respect to it: 

^3(9) = - ru^^sm{qu)du, (4.95) 
q Jo du 

F^{q) = - r u^^sm{qu)du. (4.96) 
q JQ du 

Upon inspection of equation 4.93, we can rewrite it to use the already known 

exchange-correlation energy density for antiparallel spins, from equation 4.67: 
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h\'ir) = 
2e'^^ir) dCih,ir),h^ir)) 

C ( n , ( r ) , n , ( r ) ) dh^ir) 
+ 47r^n^iG)e' Gr 

(C(n , ( r ) ,n , ( r ) ) -Kl )A^(n , ( r ) ,n , ( r ) ) 
5A(n,(r),n^(r)) 

dn^ir) 

X\h,ir),h,ir))dCin,ir),h,ir)) 
C(n, (r ) ,n^(r) ) dh^ir) 

-C(n^(r),n^(r))A(n^(r),n^(r)) ^ 3 ( ? ) . (4.97) 

The first two terms in the square brackets cancel each other out if we take into 

account the relationship between C , A and their derivatives, which we will give 

later. We can therefore simplify /ij^ to be: 

h\\r) 
2e':^ir) dCih,ir),h,ir)) 

C ( n , ( r ) , n , ( r ) ) dn^ir) 
+ 4iTj2n,iG)e'' 

. . . . . / X - / ..9Xih ir),h ir)) n, ' 
-C(n^(r ) ,nJr ) )A(n , ( r ) ,n^(r ) ) ^ - - ^ (?) (4.98) 

In the same way, we can construct / i " in a similar simplified form, thus: 

h\\r) = 24;(r) a C ( n , ( r ) , n J r ) ) 
C(n,(r) ,n^(r)) dh^ir) 

+ 47:'£^,iG)e' Gr 

ni~ I \ - ( \\M~ I \ ~ I ^^9^(^Ar)^n^ir)) n, . - C ( n , ( r ) , ( r ) ) A ( n , ( r ) , ( r ) ) ^ 3 ( ? ) . (4.99) 

The counterparts for the potential for the down spin electrons, and are 

obtained from the above two equations by interchanging the up and down spin 

indices on the exchange-correlation energy density, the Fourier coefficients of the 

electron density and the weighted spin density in the partial derivatives. 
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The derivatives of the C parameter can be easily determined from equation 4.78: 

^ ^ ^ = § ? l 4 1 ( C ( n „ n J + l ) £ ^ , (4.100) 

where the derivative with respect to the weighted down density is a trivial inspection 

of the above. For the A parameter we perform implicit differentiation on equation 

4.82 to get: 

9 A ( n , , n J ^ i ^ ^ ^ ( " T . ^ ) i ^ A ( n , . ^ J + i ^ 
dh^ 3a3A2(n,,nJ + a, ^̂ '̂̂ ^̂ ^ 

The derivatives of the coefficients come from equations 4.83-4.85: 

S; = ,4.102) 

5a 1 doo r. b 

(4.103) 

(4.104) 

For derivatives with respect to the weighted down density, a simple exchange of up 

and down indices is required. 

Implementation in Spin Unpolarised Case 

The implementation of the WSDA performs a calculation of the weighted up and 

down densities, effectively doubling the calculation time over the original WDA. For 

spin degenerate cases, where we would like to apply our spin-resolved model pair-

correlation function, this is not required and simplifications can be made. A quick 

and easy way to do this is to perform the calculation for, say, parallel up spin pairs, 

determine the weighted up density, and contributions to the exchange-correlation 
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energy and potential. We can then duplicate this information for the parallel down 
spin pair contributions. Rather than create a simplified implementation for the 
antiparallel spin contributions we perform the calculation using the duplicated data. 
While this may not be the most efficient implementation possible, the overhead is 
negligible as the most expensive step of the calculation is determining the weighted 
density from the parallel spin contributions. 

4.4 Testing 

To test our implementation in C A S T E P we initially applied our code to the ho­

mogeneous electron gas at a number of electron densities. For both the exchange-

correlation energy and potential the results, within numerical accuracy, match those 

for the LDA. Tests were also applied for a fixed density with varying degrees of spin 

polarisation. Again, values for the exchange-correlation energy and potential agreed 

with the LSDA to good numerical accuracy. The values for the weighted spin den­

sities were also found to match the actual homogeneous values used, as expected. 

A more stringent test for inhomogeneous systems is to compare numerical and 

analytic values for interatomic forces using the Hellmann-Feynman theorem [60 . 

This demonstrates that the exchange-correlation energy is consistent with the po­

tential. We did this by placing a hydrogen (H2) molecule with a bond length of 

0.7 A in a cell of dimensions 4 x 2 x 2 with the molecule aligned along the long 

axis. A calculation was then performed using a well converged value of the kinetic 

energy cutoff to obtain a value for the analytic force. Total energy calculations were 

then repeated for displacement of one of the nuclei by 0.001 A in each direction. 

A finite difference calculation of the derivative of the energy with respect to the 

displacement can then be performed to obtain a numerical value for the force and 

compared to the analytic value. Our values matched to within less than one hun­

dredth of a percent, comparable, if not better than, the consistency obtained using 

the LDA. Satisfactory tests were also performed using an Hj ion in order to check 

the spin polarised consistency, which were, again, comparable to the same test using 

the LSDA. 
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4.5 Discussion of Functional Forms 

In a Chapter 2 we discussed use of some of the simple functional forms that can be 

used in the WDA. It was apparent that we could pick a model function to give us 

the best results for a particular system, but with no guarantee that this would work 

for other systems, i.e. transferability. There would appear to be no systematic way 

of picking a model pair-correlation function appropriate for each task. This "pick 

and choose" methodology is counter to the idea of ab initio calculations. We prefer 

to take the non-empirical approach of fitting to known physical constraints, rather 

than to sets of empirical data. 

Currently our constraints on the model functions have been to simply ensure 

that the sum rule for the exchange-correlation hole is satisfied and that the L(S)DA 

energy is returned in the homogeneous limit. In Chapter 2 we added the constraint 

of the Kimball cusp condition to some of our existing model functions. This made 

little change in predicted quantities using the simple Gaussian model applied to 

silicon, but did improve over the simple fourth order Gaussian model. We suggest 

that it is not enough to fit the on-top values of the pair-correlation function in the 

homogeneous limit along with the exchange-correlation energy, instead the entire 

model pair-correlation function should be exact in the homogeneous limit. However, 

by exact, we mean a fit to high quality quantum Monte-Carlo data and known short 

and long range limits. 

High qu£ility parameterisations of the coupling-consteint averaged pair-correlation 

function are available [81] that also satisfy the Kimball cusp conditions. These pa­

rameterisations cover both the spin unpolarised and polarised cases, but to this date 

spin resolution of the pair-correlation function is only available in the unpolarised 

case. Until these become available, we can base our model pair-correlation function 

on the spin unpolarised parameterisations, while noting that these models will likely 

perform poorly in calculations with partial spin polarisation. Our code is written in 

a general fashion such that when spin resolved data in the spin polarised electron 

gas becomes available, it will be straightforward to implement a new functional with 

this form. 

What is available to us is spin resolution of the correlation energy in the homoge-
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neous electron gas [87] and hence spin resolution of the exchange-correlation energy 

in the uniform limit. We can then use the WSDA formalism to fit the spin resolved 

model-pair correlation function to return the spin resolved exchange-correlation en­

ergy in the homogeneous limit. We regard the ability of the WSDA framework to 

enforce more stringent constraint satisfaction to be an important feature in extend­

ing the accuracy of the WDA in general. 

Another constraint available to us is the on top value of the spin resolved pair-

correlation function. We can use this constraint to fit another ab initio parameter 

in our model pair-correlation functions, as this would effectively fit the value of 

the C parameter in our models. First principles models are available, such as that 

obtained through ladder theory and the solution of the Bethe-Goldstone equation 

[83, 86] and through the use of two-electron wavefunctions [84, 85]. There are also 

values extrapolated from quantum Monte-Carlo data [87 . 

We can also use this framework to enhance the model pair-correlation functions 

used in the unpolarised case of the WDA. Although the exchange-correlation energy 

is a functional of the total electron density only, the interactions between the elec­

trons can still be broken down into those between parallel spin pairs and antiparallel 

spin pairs. We can then apply the constraints on the pair-correlation function to 

each individual component when constructing the full model functional. 

4.6 Summary 

A firamework for a fully non-local spin polarised weighted spin density approximation 

has been proposed. An implementation suitable for periodic boundary conditions 

and a plane wave basis set is derived, such that the required integrals are evaluated in 

reciprocal space. The ability to model each spin resolved part of the pair-correlation 

function separately can allow us, in principle, to enforce more physical constraints on 

the model functional than was previously possible with the WDA. This approach also 

gives us insight into implementing novel functional forms for the spin unpolarised 

case and provides a roadmap to systematic improvement of model pair-correlation 

functions by constraint fitting. In the next chapter we will investigate a simple 



CHAFTER 4. WEIGHTED SFIN DENSITY APPROXIMATION 101 

functional form in comparison to the best spin resolved pair-correlation functions 

that are currently available, which are parameterisations of high quality quantum 

Monte-Carlo data. We will also investigate the importance of the modified cusp 

condition and make comparisons with a model pair-correlation function constructed 

from first principles. 



Chapter 5 

Pair-correlation: the Uniform 

Electron Gas 

In the last chapter we constructed a weighted spin density approximation (WSDA) 

and demonstrated a practical implementation. We will now investigate our novel 

model pair-correlation functionals in the homogeneous electron gas and compare 

these with parameterisations of quantum Monte-Carlo data and constructions of 

pair-correlation functions from first principles. However, we do not have parame­

terisations available for the spin resolved pair-correlation function in the polarised 

electron gas upon which to base our model functions. We expect that our simple 

model will require further refinement. 

5.1 Model Pair-Correlation Functions in the Uni­

form Limit 

In Chapter 4, we gave a suggested model functional in the WSDA. For parallel spin 

pairs a simple Gaussian can be chosen as it is simple to implement and is a good 

qualitative comparison to the pair-correlation function for parallel spins, such as 

that given in reference [87]. For antiparallel spin pairs a more complicated model 

function is required in order to satisfy the cusp conditions of equations 4.10 and 

102 
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4.13, and the sum rule of equation 4.7: 

(5.1) 

We suggested that /"(u) be a simple Gaussian and that f''{u) be a product of a 

polynomial and a Gaussian such that the zero sum rule for anti parallel spin pairs 

can be satisfied: 

(5.2) 

where k is a constant. In order to fix a value of K we look at the on-top value of the 

antiparallel spin pair-correlation function in the homogeneous limit as the on-top 

value for parallel spin pairs is always zero, so only antiparaJlel pair contributions need 

be considered. The value we have determined for our parameter is k = 0.81. The 

on-top value for the antiparallel spin pair-correlation function has been determined 

for all densities using an approximation to ladder theory [86] and is given by: 

9 {r,r) = 
45(45 + 24a; - I - 4x^) 

2025 - I - 3105a: + 1512x2 + 256a;3 
(5.3) 

where x = 2ars/n with a = (4/97r)^/^. 

In Figure 5.1, we compare the pair-correlation function in the unpolarised ho­

mogeneous electron gas to that provided by our model. At high density the model 

function for parallel spins compares favourably with the Q M C parameterisation of 

Gori-Giorgi, Sacchetti and Bachelet (GSB) [87]. At low density the model function 

significantly underestimates the value at long range and overestimates in the mid to 

short range. For antiparallel spins the model function compares well only in a narrow 

range around r , = 4. At densities higher than this, the function overestimates the 

mid range and underestimates the short range value. In the case of lower densities, 

the short and long range value is overestimated while the mid range underestimates. 
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Considering the simplicity of our model, the qualitative comparison to the GSB 

parameterisation is good and suggests that fitting physical constraints even to the 

simplest of models can greatly improve the model pair-correlation function. 

5.1.1 On-top Values of the Pair-Correlation Function - A 

Compairison of Models 

Ladder theory is not the only method of determining the on-top value of the pair-

correlation function from first principles. Another approach is to construct the 

short-range pair-correlation function from two-electron wave functions following the 

Overhauser method [84]. This models two-particle correlations with a non-empirical 

screening of the Coulomb potential. The assumption is that the probability of finding 

three electrons within a radius of is zero. This is similar to the assumption in 

ladder theory that two-body interactions dominate the short range. In calculating 

the on-top value, these assumptions should be close to exact. 

A third method that can be used to model the pair-correlation function in the 

uniform electron gas by using a hypernetted-chain (HNC) expansion of the wave 

function and then minimising the correlation energy variationally [88]. Again, the 

approximation is made that three particle correlations are ignored for the short range 

limit. However, none of the above approaches agree with each other for values 

greater than ~ 1 and no values are available for the HNC below = 1. Neither 

the Overhauser or ladder theory models have what is believed to be the correct 

behaviour in the high density limit [85, 86] determined from first order perturbation 

theory [89, 90]. For values above ~ 1 there is a large range in the predicted values 

from each of the models. 

In Figure 5.2 we show a graphical comparison of the on-top value of the pair-

correlation function from a number of models. We have plotted, against r^, the on-

top value multiplied by r, , in order to illustrate the diff̂ erences between the models 

at low electron densities. The dashed line is that given by ladder theory [86] and 

the dash-dotted line is from the extended Overhauser model given by Gori-Giorgi 

and Perdew [85]. We also include the extrapolations to the on-top value for the 

QMC data of Ortiz, Harris and Ballone (OHB) [91] given by Gori-Giorgi, Sacchetti 
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Figure 5.1: The spin resolved pair-correlation function for the homogeneous gas at 

a selection of values. Solid lines are for our model functional, dashed lines for the 

GSB QMC parameterisation. 
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Figure 5.2: A comparison of on-top values of the pair-correlation function using 

a number of models. We plot the on-top value multiplied by to emphasise the 

differences at low electron density (large r^). 

and Bachelet (GSB) [87], shown by the dotted line. With a solid line, we give, for 

comparison, the values given by our model WSDA fucntional form in equation 5.2 

with K = 0.81. Note that the unphysical feature below w 0.45 is an artifact of 

the simple Gaussian model chosen for the parallel spins pair-correlation function. 

In this model the contribution to the exchange-correlation energy from parallel spin 

pairs approaches the total uniform (LDA) energy at = 0.426 and then passes the 

L D A value, requiring a positive contribution to the energy from antiparallel spin 

pairs. This then causes our model to give an on-top value greater than the physical 

maximum of 0.5. The HNC values are, for the most part, too large to appear on the 

scale of our graph. This is because the method gives only a minimum upper bound 

on the correlation energy and the pair-correlation function from the calculated wave 

function is not guaranteed to be accurate. 
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Gori-Giorgi £ind Perdew argue that their extended Overhauser model is the best 
estimate currently available [85]. They point out that the high density limit of the 
on-top value for antiparallel spins in their model (1 - 0.684rs) is closer than that 
given by ladder theory (1 - 0.663rg), in comparison to the known exact limit of 
1 - 0.7317ra. When comparing their model to the GSB extrapolation of QMC data 
they dismiss the discrepancies on the basis that the QMC data have large error bars 
at small particle separations. The relative closeness of Qian's solution using ladder 
theory to the QMC data could indicate that this opinion was overly optimistic. We 
conclude that there is still work to be done on determining reliable values for the 
on-top pair-correlation function, particularly at densities lower than = 1. Our fit 
to ladder theory can still be justified as in the region of metallic electron density 
(1 ~ ^ 3), our model underestimates the on-top value of both ladder theory, the 
Overhauser model, and QMC data - the value of K chosen maximises the on-top 
value. We note that our model is intended to be a trial of concept and expect further 
refinement to be necessary. Particularly once parameterisations are available for the 
spin resolved pair-correlation function in the polarised electron gas. 

5.2 Modified Cusp Condition 

Up to this point, we have been following the lead of Rushton [59] on constructing 

model pair-correlation functions incorporating the Kimball cusp condition. Perdew 

and Wang [61] point out that the coupling-constant averaged pair-correlation func­

tion, as used in calculating the exchange-correlation energy, in fact conforms to 

a modified cusp condition. This can be seen when applying the relationship be­

tween the pair-correlation function and its coupling-constant average to the cusp 

condition. We assume that the cusp condition for the coupling-constant averaged 

pair-correlation function (referred to here as g) is modified as: 

9 - U , 

r—r* 
= H g ' \ r y ) , (5.4) 

r—'r 

where H is a, function of the electron density parameter, r^. Taking the known 
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relation between and g^^ 

f { r , r ) = ^ r g''ir,r)dr:, (5.5) 
1~a Jo 

we can show that H must satisfy the differential equation: 

l ^ , ^ J L J , , i ; ^ \ H ^ , . (5.6) 

An approximate form for H is given by [61]: 

where 7 = 0.3393, 5 = 0.9, and e = 0.10161. When substituting this into equation 

5.6, the deviation of the left hand side from 1 is less than 0.1% for all r^. 

Clearly, this requires some alterations to our model pair-correlation function for 

antiparallel spins and the implementation of the WSDA. Equation 4.64 becomes: 

G^^[n;n,,nJ = C ( n ^ , n J / - ( u ) + H{C{h^,hJ + l)X{h^,h^)f\u). (5.8) 

In the WSDA, H is a function of the weighted density and r^, should be replaced with 

its "weighted" counterpart r,. This change propagates through the implementation 

but requires few other alterations. The prefactor of the F^{q) functions, where 

X = 1,2,3, in equations 4.69, 4.74 and 4.94, becomes H{1 + l/C)X, where we 

neglect the explicit dependance on the weighted density for C and A. The C{h^, ) 

parameter needs to be adjusted from equation 4.78: 
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We also need to modify the coefficients as (equation 4.83) and ai (equation 4.84) in 

the cubic equation 4.82 used to determine A(n^,nJ: 

as = H ^ (/-/̂ ^ - / f / - ) , (5.10) 

a, = H £ - - [ n , , n J - h ^ l 4 ^ (5.11) 

Because of cancellations due to the sum rule, the previous form of the potential 

terms remains unchanged. The remaining modifications are to the partial derivatives 

of C ( n ^ , n J , 03 and ai. Equation 4.100 becomes: 

(5.12) 

and the derivatives of the 03 and Oi coefficients are: 

das dH as as 03 
"H^ = - ^ 7 7 + T - , (5.13) 
an^ an^ H n 

da, _ dHa, daol^ 

where the partial derivative of ao is given in equation 4.103. As before, derivatives 

with respect to the weighted down density are obtained with a simple exchange of 

spin indices. The partial derivative of the modified cusp parameter H with respect 

to either weighted up or down density is: 

^ = - ^ f * ( ^ _ ( l + 7ra)(<5 + 2£f , ) ' 
a n , 9 '•V2 + <Jr,-K£r^ {2 + 5u + ef'iY ^^^ ^^ 
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These modifications were implemented as an extension of our existing WSDA code 

within CASTEP and have been tested on the homogeneous electron gas and had the 

exchange-correlation energy and potential checked using the force theorem, using 

the same method and to similar accuracy as that described in section 4.4. 

5.3 Comparisons of the Coupling-Constant Aver­

aged Pair-Correlation Function 

As before, we need to fit our model functional incorporating the modified cusp con­

dition to be a best approximation of the coupling-constant averaged pair-correlation 

function in the homogeneous limit. Here we will choose the pairameterisation of 

Gori-Giorgi and Perdew (GP) [81], which is determined using known exact limits 

and has good agreement with QMC data in the unpolarised gas without any fitting 

of free parameters. It is stable over all densities and extends to the partial and fully 

polarised electron gas. However, it should be kept in mind that the contribution of 

correlation in the fully polarised limit does not agree so well with QMC data. Spin 

resolution of the GP model is possible in principle but not trivial. At the time of 

writing, an analytic model of spin resolution is available only in the unpolarised limit 

87], and in the case of the G P model, does not accurately agree with QMC data. 

Therefore we will use the full coupling-constant averaged pair-correlation function 

in our comparisons. 

In fixing our K parameter we found that the same value of 0.81 gave the best fit 

to the available on-top values. We obtained on-top values for the coupling-constant 

averaged pair-correlation function from ladder theory through numerical integration 

of equation 5.3. For comparison, we also used the values from the extended Over­

hauser model, which is used for the short range part of the G P model. Plots of these 

two models, along with our simple model, are shown in Figure 5.3. As would be 

expected from the comparisons in Figure 5.2, there are significant differences in the 

values given by ladder theory (dashed line) and the Overhauser model (dash-dotted 

line), although here they are not accentuated by multiplying the on-top value by r^. 
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Figure 5.3: A comparison of on-top values of the coupling-constant averaged pair-

correlation function using a selection of models. 

The inclusion of the modified cusp condition in our model (solid line) greatly im­

proves the on-top value for the coupling-constant averaged pair-correlation function 

over the use of the unmodified cusp condition (dotted line). Of course, our model 

with the modified cusp condition still suffers from the unphysical on-top values over 

0.5 when going to densities higher than = 0.426. 

In Figure 5.4 we compare for the unpolarised electron gas, over a number of 

electron densities, the coupling-constant averaged pair-correlation function from the 

GP model (dashed line) to our models with (solid line) and without (dotted line) the 

modified cusp condition imposed. For our models, the inclusion of the modified cusp 

condition only alters the short range behaviour of the pair-correlation function. The 

long range part of the pair-correlation function compares well at metallic densities 

and is a reasonable approximation at other electron densities, albeit with a slight 

overestimation at separations greater than r/r^ = 2. In general there is a slight 
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undervaluing of of our models in the range 1 < r /r^ < 2. Apart from at the lowest 

densities the short range part of our model functions is somewhat below that given 

by the GP model. For the short range, our model including the modified cusp 

condition is a consistent improvement over the initiaJ model at all densities. This is 

to be expected from our investigation of the on-top values. 

As the G P model also provides pair-correlation functions in the partial and fully 

polarised electron gas, we can compare our models over a range of polarisation 

values, C = ( " T ~ '^i)/"- I " Figure 5.5 we plot comparisons from ( = 0.1 —> 1 at a 

metallic electron density of = 2. The long range part of the function compares 

excellently at all polarisations and only a slight underestimation in the range of 

particle separation 1 < r/r^ < 2 that is more pronounced at high polarisations. As 

was found in the unpolarised case, our model including the modified cusp condition 

provides consistent improvements over our initial model in the short range. In the 

fully polarised limit the correct on-top value is returned for both of our models 

because there is no contribution to the pair-correlation function from emtiparallel 

spin pairs. 

5.4 Summary 

We have compared the spin resolved pair-correlation function of our initial model 

WSDA functional with the GSB parameterisation of Q M C data. This has shown 

that our model comes closest to QMC data at metallic densities. An investigation 

into the on-top values of the pair-correlation function provided by first principles 

models (ladder theory and the Overhauser approximation) and extrapolation of 

QMC data illustrates that there is still no consensus on the best approach. The 

importance of including a modified cusp condition when modeling the coupling-

constant averaged pair-correlation function was established. Modifications to our 

initial approach were considered and implemented. Comparisons with a model con­

structed completely from first principles were made and it was demonstrated that 

inclusion of the modified cusp condition provided a systematic improvement over our 

initial model. This statement holds true over £J1 densities and polarisations of the 
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Figure 5.4: The coupling-constant averaged pair-correlation function for the unpo-

larised homogeneous gas at a selection of values. Solid lines are for our model 

functional with the modified cusp condition, dotted lines are for our model without 

the modified cusp condition, and dashed lines for the G P model. 
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Figure 5.5: The coupling-constant averaged pair-correlation function for the par­

tially and fully polarised homogeneous gas at = 2 values. Solid lines are for our 

model functional with the modified cusp condition, dotted lines are for our model 

without the modified cusp condition, and dashed lines for the G P model. 
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uniform electron gas. In the next chapter we will apply our models to real, inhomo-

geneous systems. Calculations on unpolarised systems will be presented. This will 

include detailed studies of the electronic and bulk properties of silicon and germa­

nium utilising our different models and an overview of a number of simple materials 

with the rock salt and zincblende structures. We will also present simulations of 

spin polarised systems, including iron and iron(II) oxide. 



Chapter 6 

Application of Novel WDA Model 

Functionals 

In Chapter 4 we established a novel method of applying the WDA with spin res­

olution of the pair-correlation function. In Chapter 5 we adapted our simple spin 

polarised model to account for the correct modified cusp condition found for the 

coupling-constant averaged pair-correlation function. We have also previously demon­

strated a model pair-correlation function in the unpolarised case that includes the 

Kimball cusp condition. In this chapter we will adapt the model from Chapter 2 to 

satisfy the modified cusp condition. 

We now have a number of new WDA functionals for both the unpolarised and 

polarised cases. We will apply these new functional forms to spin unpolarised sys­

tems, including our spin resolved model. Our applications will concentrate on simple 

semiconductors. Applications to spin polarised systems will also be made for iron 

and iron(II) oxide. 

6.1 Modified Cusp Condition - Unpolarised Case 

In the last chapter we showed that the coupling-constant averaged pair-correlation 

function modeled in the WDA is subject to a modified cusp condition. This also 

applies in the unpolarised case we derived in Chapter 2. To recap, the modified cusp 

116 
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condition is: 

^ 7T5(r,r') 
d\r - r'l 

= Hg{r,rX^^, (6.1) 

where g is the couphng-constant averaged pair-correlation function and H is a. pa­

rameter that depends on the electron density, n, via the parameter = (3/47rn)^/^. 

In the same way as was used for obtaining equation 5.6, it can be shown [61] that 

H must satisfy the differential equation: 

dr, V 9ir,r)J g{r,r) 

where g is the pair-correlation function. An approximate form for H is given in 

equation 5.7. 

The model pair-correlation function given in equation 2.69 , now becomes: 

G^°^[u, n(r)] = C ( n ( r ) ) r (tx) + H{C{h{r)) + l)X{h{r))f\u). (6.3) 

This modification requires a small number of alterations from the previous imple­

mentation. The prefactor of the F^{q) functions, where x = 1,2,3,4, in equations 

2.71, 2.75, 2.93 and 2.98 becomes H{1 + l /C(n(r) ) )A(n(r) ) . Working from the ho­

mogeneous limit of the modified equations 2.70 and 2.74, the C parameter is now 

given by: 

r(f,M^ - l + Hh{r)X\h{r))l', 
n(r)A3(n(r))( / | + //A(n(r))/,^)' '̂"̂ ^ 

where the constants / j and remain as given in equation 2.81 and A satisfies the 

qu£irtic equation 2.83. The coefficients of this quartic are now: 
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a, = Hn{r){llll-I\l^), (6.5) 

a2 = 2Hef^\h{r))ll (6.6) 

ai = 2ef^\h{r))I^^Hll (6.7) 

oo = II (6.8) 

where the coefficient 03 = 0 and the constants /" and l\ are unchanged from equation 

2.80. 

As the parameter H depends on the electron density, an extra term is required 

in the derivative of the model pair-correlation function: 

aG^^°^[u,n(r)] _ aG^^°^[u,n(r)] dC{h{r)) n(r)] d\{h{r)) 
dh{r) ~ dC{h{r)) dn(r) ^ dX{h{r)) dh{r) 

u aG'^°^[u,n(r)] d\[n{r)) ^ n(r)] dH 
A(n(r)) du dn{r) dH dh{rY 

(6.9) 

The derivative of H is similar to equation 5.15: 

dH 4 7 r , / 7 {\+if,){5 + 2su)\ 
dh 9 ' \ 2 + 5 f , + eP, (2 + + ef2)2 J' ^""'"^ 

and we have 7 = 0.3393, S = 0.9 and e = 0.10161 from reference [61] and f, = 

(3/4;rn)^/^. We substitute equation 6.9 back into equations 2.20 and 2.21 £ind rewrite 

in reciprocal space to get: 
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2e-r'{r)dC{h{r)) 
C(n(r) ) dh{r) 

iGr 

H(C(n(r ) ) + l ) A 2 ( n ( r ) ) ^ M ! j ) ) 

HA^(n(r)) dCjhjr)) • . . . . _ . . a A ( n ( r ) ) , 
- C ( n ( r ) ) A ( n ( r ) ) — — r - H 3 ( 9 ) + C(n(r ) ) an(r) an(r) 

(C(n(r)) + l ) A ^ ( n ( r ) ) ^ F f ( g ) (6.11) 

h2{r) = 
-1 aC(n(r) ) 

C(n(r) ) dh{r) 
- | -47r^n(G)e'^-^ 

H(C(n(r ) ) + i)A3(n(r))^^gi;;^F,^9) -

H\\h{r))dC{h{r)) 
C{h{r)) dh{r) 

dh{r) 

F^{q) - C{n{rmn{r)f^^^^''^^ 
dn{r) HM + 

(C(n(r)) + l ) A * ( n ( r ) ) ^ F 2 ' ' ( g ) (6.12) 

The remaining modifications are to the derivatives of the scalar fields C and A. From 

implicit differentiation of equation 2.83 we get: 

dX{nir)) ^,^\n{r)) + ^ A 2 ( n ( r ) ) + ^ 

dh{r) 4a4A3(n(r)) + 2a2A(n(r)) + aj ' 
(6.13) 

where the derivatives of the coefficients are: 
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^ 0 4 04 , 04 dH 
+ -iI^I7Z^^ (6-14) dh{r) n(r) H dh{ry 

da2 . . . , 6 ^ ^ ^ . "2 dH 
= 2 i / / 2 ^ ^ + T ^ ^ , (6.15) dh{r) ^dh{r) Hdh{ry 

5 « i . . . ^ ^ r , .6 dH 

dh{r) - ^^^m?)^^'dM^y (^-^^^ 

and the derivative of the LDA exchange-correlation energy density is given in equa­

tion 2.103. The derivative of the C parameter is: 

dC{h{r)) 1 
dh{r) n2(r)A3(n(r))(/| + HX{n{r))I^) 

dC{h{r))dX{h{r)) dC{h{r)) dH 
dX{h{r)) dn{r) ^ dH dh{ry ^""-"^ 

where the derivative with respect to A is: 

dC{h{r)) _ 3/f + 4 / /A(n(r) )4 - h{r)HI^I^X^{h{r)) 
dX{h{r)) n(r)A4(n(r))(/ | + HX{h{rMy 

and the derivative with respect to H is: 

dCihjr)) ^ /a - n(r)/f/2^A'^(n(r)) 
dH ~ n(r)A2(n(r))(/2° + i /A(n(r)) / | )" 

(6.18) 

(6.19) 

We have implemented these modifications and have run successful tests on the ho­

mogeneous electron gas and consistency of the exchange-correlation potential using 

numerical and analytically derived atomic forces. The method used is given at the 

end of section 2.4.1. Values for the analytic and numerical forces were found to be 

identical to fractions of a percent. 
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The parameter « takes the same values of 0.88 and 0.95 (determined in Chapter 
2) for the Gaussian and fourth order Gaussian based models, respectively. On-top 
values in the homogeneous limit fall between those given in Table 2.2. 

6.2 Application to Semiconductors 

Our spin polarised WDA (WSDA) provides a new class of a spin resolved model pair-

correlation function that can also be applied to situations where spin polarisation 

is disregarded. Although these systems are spin degenerate, the spin resolution of 

the pair-correlation function allows more physical constraints to be satisfied over 

the original WDA or cusp modified WDA. This is because even when the system is 

spin degenerate, the physical interactions can be spin resolved, i.e. parallel spin pair 

interactions are subject to both exchange and correlation effects whereas antiparallel 

spin pair interactions are purely Coulomb correlation as there is no Pauli exclusion 

in this case. It is of interest to see this new model applied in these situations as well 

as those with spin polarisation. 

6.2.1 Bulk Silicon 

In section 2.4.3 we applied the WDA to silicon and made comparisons between the 

simple Gaussian and fourth order Gaussian models used in the original WDA, the 

corresponding cusp condition satisfying models and the LDA, P B E G G A and ex­

periment. Here we will extend Table 2.3 to include the modified cusp condition, the 

simple spin resolved model suggested in Chapter 4 and the modified cusp condition 

for antiparallel spin pairs. The structure and simulation conditions are identical to 

those used in section 2.4.3. 

Our extended results are given in Table 6.1. For the spin unpolarised mod­

els of the Gaussian and fourth order Gaussian forms, the modified cusp condition 

gives values between those given by the original WDA models and the initial model 

attempting to £iccount for the Kimball cusp condition. The small differences be­

tween the original, cusp and modified cusp models suggest that the choice of WDA 

model is relatively insensitive to minor alterations of the on-top veilue of the model 
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Table 6.1: An extension of Table 2.3 for bulk properties of silicon. As given by a 
number of models for exchange-correlation - the equilibrium lattice pairameter, OQ, 
bulk modulus, Bo, and indirect band gap, Eg, for the Kohn-Sham band structure at 
both the equilibrium and experimental lattice pareimeter. 

Model ao(A) Bo(GPa) Eg{eV) Eg{eV, exp. lattice) 

5.438 87.5 0.553 0.547 

e~"^ (cusp) 5.449 85.7 0.643 0.627 

e~"̂  (modified cusp) 5.444 86.4 0.601 0.590 

5.402 94.3 0.306 0.333 

e~"* (cusp) 5.433 88.8 0.540 0.539 

e""* (modified cusp) 5.416 91.6 0.420 0.434 

WSDA 5.597 58.1 1.135 0.994 

WSDA (modified cusp) 5.607 57.7 1.115 0.964 

L D A 5.375 96.6 0.439 0.490 

P B E 5.374 92.9 0.624 0.678 

Exp. 5.431 98.8 1.17 1.17 

pair-correlation function. 

The spin resolved models provide a completely novel approach for the model 

pair-correlation function, determining the weighted density purely from contribu­

tions from parallel spin pairs. As with our spin degenerate models, there is little 

difference in results between the initial attempt to satisfy the Kimball cusp condition 

and the correct modified cusp condition. This reinforces the suggestion that these 

physical properties are insensitive to minor alterations of the short range model 

pair-correlation function. The predicted lattice parameter is larger than experiment 

by approximately 3 percent, and the bulk modulus is disappointingly low. This 

could be a result of inadequeicies in the spin resolution of the exchange-correlation 

energy, which we will discuss later. The indirect band gap, however, shows a signifi­

cant increase over all the other models presented, giving a value within 5 percent of 

the experimental value, while still underestimating the experimental value slightly. 
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There is no reason that the Kohn-Sham band structure should equal the exact band 
structure, even if there were an exact exchange-correlation functional [5]. The im­
provements in predicted values firom our WSDA model £ire, however, consistent with 
values given by other non-local functionals such as screened exchange-LDA [92 . 

6.2.2 Bulk Germanium 

The success of Gaussian based model pgiir-correlation functions applied to silicon 

could be a result of the favourable comparison of the WDA exchange-correlation hole 

with that determined by quantum Monte Ceirlo [57]. It should be useful therefore, 

to repeat the application of our models to a similar structure with different physical 

properties. This can be found in the diamond structure of germanium, which can 

be seen in Figure 2.5, if Ge is substituted for Si. Our simulation cell was the 

primitive one, containing two Ge atoms. A plane wave cutoff energy of 300 eV and 

a Monkhorst-Pack grid of 4 x 4 x 4 k-points was used to sample the Brillouin zone. 

This converges the total energy differences to less than 5 meV. We used ultrasoft 

pseudopotentials generated by the LDA in each of our cdculations. 

Table 6.2: As for Table 6.1, but for Germanium. 

Model ao(A) Bo(GPa) E,{eV) Eg{eV, exp. lattice) 

5.609 69.4 0.246 0.001 

e""̂  (cusp) 5.625 66.9 0.107 0.004 

e~"̂  (modified cusp) 5.618 68.0 0.202 0.003 

5.558 77.7 0.492 0.000 

e""" (cusp) 5.603 70.4 0.275 0.000 

e~"* (modified cusp) 5.578 74.2 0.404 0.000 

WSDA 5.847 34.7 0.000 0.024 

WSDA (modified cusp) 5.856 35.2 0.000 0.000 

L D A 5.544 78.3 0.631 0.037 

P B E 5.549 75.7 0.683 0.102 

Exp. 5.657 76.8 0.74 0.74 
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In Table 6.2 we show the equilibrium lattice parameter, bulk modulus, band gap 

at equilibrium and the band gap at the experimental value of the lattice parameter. 

The lattice parameter and bulk modulus was calculated by the usual method of 

calculating the total energy at a number of lattice parameter values and fitting the 

resulting energy volume curve to the Murnaghan equation of state. The spin unpo­

larised models all underestimate the lattice parameter somewhat, with the fourth 

order Gaussian based models having a larger difference. Including the cusp con­

dition reduces the underestimation to less than 1 percent for the Gaussian based 

model with the modified cusp condition. The bulk modulus is also underestimated 

except for the original fourth order Gaussian model that has a very slight overesti-

mation. The models including the cusp condition give an increased underestimation 

over the original models while the models with the modified cusp condition allevi­

ate this trend slightly. The direct band gaps at the experimental lattice parameter 

are negligible (for the Gaussian based models) or zero (for the fourth order Gaus­

sian models). At the equihbrium lattice parameter, the band gaps underestimate 

experiment and the LDA and P B E G G A values, which themselves underestimate 

experiment. As was the trend with the bulk modulus, the original WDA models 

are closest to the experimental value, whereas the cusp condition satisfying models 

increase the underestimation. The modified cusp condition gives values between the 

original WDA and initial cusp condition models. 

Our spin polarised models again show a relatively large overestimate in the values 

for the equilibrium lattice parameter, a difference of approximately 3 percent from 

experiment. Again, this could be a result of inadequacies in the spin resolution of 

the exchange-correlation energy, which we will discuss later. The calculated bulk 

modulus is proportionately even lower than those given for silicon, in comparison to 

experiment, giving values less than half of the experimental value. The band gap at 

the equilibrium lattice parameter is given as zero, as is the value for the modified 

cusp model at the experimental lattice parameter. Our initial WSDA model gives 

a very small direct gap with the experimental lattice parameter comparable, but 

smaller than that given by the LDA. We will discuss possible reasons for the failings 

of these models later. 
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6.2.3 Semiconductor Band Structures 

Calculation of the Kohn-Sham band structure can provide useful insight into the 

behaviour of the "true" band structure even though the Kohn-Sham eigenvalues axe 

not physically meaningful [5]. Band structures are a useful tool in deciding uses for 

any particular material as the electronic and optical properties can be inferred from 

them. We have previously calculated band gaps for silicon and germanium in the 

diamond structure but have not given a three dimensional band structure. This is 

done by calculating the Kohn-Sham eigenvalues at a number of k-points in the first 

Brillouin zone, following lines of symmetry, as shown in Figure 6.1 

Figure 6.1: The first Brillouin zone of the face centered cubic lattice with points of 

symmetry shown. By convention, Greek characters are used for points within the 

Brillouin zone and Roman characters for points on the surface. 

A full three dimensional band structure can be hard to present, so we will follow 

the conventional method of plotting the band structure along a one dimensional 

path that passes through points of symmetry, in this case, W —> F —> X —> W 

— L —*• F. In Figure 6.2 we show a 2D representation of the above path through 

the 3D band structure of silicon, comparing LDA and our Gaussian based WDA 
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that satisfies the modified cusp condition. Likewise for Figure 6.3 except wi th the 

comparison here made between the LDA and the WSDA model that satisfies the 

modified cusp condition. Figures 6.4 and 6.5 show the equivalent band structures 

for germanium. In each case we have shifted the band structures such that zero is at 

the valence band maximum. In each case the equilibrium lattice parameter is used, 

as given in Tables 6.1 and 6.2. 
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o 

X w 
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Figure 6.2: Kohn-Sham band structure for silicon using the L D A (dashed lines) and 

the Gaussian based modified cusp condition W D A . Black lines represent the valence 

bands, red line the conduction bands. 

The modified cusp condition model in the spin unpolarised case only shows minor 

differences in comparison to the LDA for silicon. For the valence bands in Si i t could 

be said that i t consistently, i f only slightly, lowers the bands in comparison to LDA. 

In the case of the WSDA, the differences from the LDA are substantial. The valence 

bands and lowest conduction bands are all raised, along wi th the increase in the 

indirect band gap that we reported earlier. I t could be of interest to note that the 

direct band gap for the WSDA is slightly smaller than for the LDA, namely 2.15 eV 

compared to 2.57 eV, respectively. This is because of a crossing of bands predicted 



UtlAt^TtJK 6. AFFLICATIUN OF NOVEL WDA MODEL FUNCTIONALS 127 

X W 
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Figure 6.3: Kohn-Sham band structure for silicon using the L D A (dashed lines) and 

WSDA satisfying the modified cusp condition. Black lines represent the valence 

bands, red lines the conduction bands. 

by our WSDA model that does not occur in the LDA or the modified cusp W D A . 

In the case of germanium, the modified cusp W D A shows l i t t le difference over 

the L D A other than a reduction in the direct band gap by a factor of approximately 

three. W i t h the WSDA, the changes in the band structure are substantial. Most 

notable is the complete closure of the band gap reported earlier. I t has been noted 

elsewhere [92] that germanium band structures are particularly sensitive to the pseu-

dopotential used. The ultrasoft pseudopotentials we used only treat the 45 and 4p 

electrons as valence. Treating the 3d electrons as valence also, could significantly 

change our band structures. 

We now present band gaps for a large list of materials wi th zincblende and rock 

salt crystal structures. The zincblende lattice is closely related to the diamond struc­

ture shown in Figure 2.5, where alternating atoms are of a different element. The 

rock salt lattice is also face centered cubic, but the offset of the second atom is frac­

tional coordinates of (0.5,0.5,0.5) in the primitive cell, rather than (0.25,0.25,0.25) 
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Figure 6.4: As for Figure 6.2, but for Germanium. 
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r 

Figure 6.5: As for Figure 6.3, but for Germanium. 
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in the case of diamond/zincblende. In each case the experimental lattice parameter 

was used and a Monkhorst-Pack grid of 6 x 6 x 6 was used to samiple the Brillouin 

zone for the self consistent calculation. LDA ultrasoft pseudopotentials were used 

and a plane wave cutoff energy was chosen according to the atoms in each cell. A 

list of the 20 rock salt and 36 zincblende crystals along with the kinetic energy cutoff 

and the lattice parameter used is shown in Table 6.3. 

Full band structures were generated along a k-point path of W L T ^ 

X —> W —• K. With such a large list of materials a graphical display of all 56 two 

dimensional representations of the band structures would achieve little. Even tabu­

lation of Kohn-Sham eigenvalues at the various points of symmetry would provide 

little insight into the performance of a particular functional with this volume of 

data. Instead we will plot the calculated band gaps against experimental values for 

each of the LDA, modified cusp Gaussian WDA, and modified cusp WSDA. This 

provides a simple graphical means of showing the performance of each functional in 

the calculation of band gaps - the closer the point to the y = x line, the better the 

comparison to experiment. This plot is shown in Figure 6.6 For completeness, we 

also tabulate the band gaps (in eV) in Table 6.4. 

The experimental values for the band gaps in Table 6.4 are from reference [93], 

with a few exceptions. The band gap for the rock salt form of MgS is from reference 

94]. A collation of experimental data for the alkali halide b£ind gaps can be found in 

reference [95]. Lithium iodide is missing from this summary. Reference [96] suggests 

the band gap may take a vEilue around 6 eV but that the optical data is sparse. 

C u F is chemically unstable and no reliable data is available [97]. AIN, InN and ZnO 

are found in the wurtzite structure and it would seem that there aie no reported 

experimental data on the zincblende structure. Vdues are given for 0 K, where 

available. 

From Table 6.4, it is apparent that our WSDA (blue triangles) is generally out­

performing the LDA (green crosses) and modified cusp corrected WDA (red squares). 

There are a few notable exceptions to this statement. For GaAs the LDA gives the 

closest value to experiment, followed by our WSDA and last the modified CWDA. 

However all three greatly underestimate the experimental value, by a factor of 5 or 
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Table 6.3: List of materials, crystal structure, lattice pajameter and cutoff energy. 

Material Struct. Ecut (eV) a (A) Material Struct. Ect (eV) a (A) 
AlAs zb 290 5.61 MgTe zb 340 6.37 

AIN zb 250 4.36 SiC zb 280 4.34 

AlP zb 160 5.45 SiSi zb 160 5.43 

AlSb zb 205 6.14 SnSn zb 250 6.47 

BAs zb 290 4.78 ZnO zb 340 4.51 

BeO zb 340 3.81 ZnS zb 310 5.41 

BeS zb 220 4.85 ZnSe zb 310 5.67 

BeSe zb 240 5.08 ZnTe zb 310 6.10 

BeTe zb 190 5.54 CaO rs 340 4.80 

BN zb 250 3.63 CdO rs 340 4.69 

BP zb 240 4.55 K B r rs 200 6.60 

C C zb 280 3.57 K C l rs 230 6.30 

CdS zb 260 5.82 K F rs 330 5.34 

CdSe zb 260 6.07 K I rs 210 7.06 

CdTe zb 260 6.49 LiBr rs 300 5.50 

CuCl zb 290 5.41 L i C l rs 300 5.14 

C u F zb 330 4.25 L i F rs 330 4.02 

GaAs zb 295 5.66 L i l rs 300 6.00 

GaN zb 295 4.48 MgO rs 340 4.21 

GaP zb 295 5.45 MgS rs 340 5.20 

GaSb zb 295 6.12 NaBr rs 370 5.98 

GeGe zb 180 5.66 NaCl rs 370 5.64 

InAs zb 310 6.05 NaF rs 370 4.64 

InN zb 310 4.96 Nal rs 370 6.48 

InP zb 310 5.86 RbBr rs 180 6.90 

InSb zb 310 6.47 RbCl rs 230 6.58 

MgS zb 340 5.66 RbF rs 330 5.64 

MgSe zb 340 5.91 Rbl rs 210 7.36 
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Table 6.4: List of band gaps (eV). See main text for details. 

Material LDA modified CWDA WSDA Experiment 

AlAs 1.272 1.383 1.840 2.23 

AIN 3.270 3.533 3.741 -

AlP 1.455 1.632 2.069 2.51 

AlSb 1.102 1.145 1.510 1.69 

BAs 1.097 1.189 1.536 1.46 

BeO 6.656 6.909 7.047 10.59 

BeS 2.945 3.131 3.554 >5.5 

BeSe 2.379 2.490 2.946 5.6 

BeTe 1.759 1.774 2.227 2.8 

BN 4.339 4.638 4.905 6.4 

BP 1.173 1.327 1.662 2.4 

CC 4.122 4.342 4.618 5.48 

CdS 0.964 0.936 1.160 2.56 

CdSe 0.358 0.269 0.511 1.85 

CdTe 0.524 0.349 0.560 1.61 

CuCl 0.265 0.314 0.388 3.40 

CuF -0.225 -0.207 -0.207 -

GaAs 0.290 0.132 0.184 1.52 

GaN 1.831 1.804 1.909 3.3 

GaP 1.407 1.432 1.534 2.34 

GaSb 0.000 0.000 0.000 0.81 

GeGe 0.020 0.001 0.000 0.74 

InAs 0.000 0.000 0.000 0.42 

InN 0.000 0.000 0.000 -

InP 0.522 0.426 0.538 1.42 

InSb 0.000 0.000 0.000 0.23 

MgS(zb) 3.274 3.116 3.435 4.87 

MgSe 2.483 2.269 2.614 4.05 

table continues.. 
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Table 6.4 continued. 

Material LDA modified CWDA WSDA Experiment 

MgTe 2.413 2.102 2.427 3.2 

SiC 1.332 1.578 1.902 2.42 

SiSi 0.499 0.602 0.977 1.17 

SnSn -0.076 -0.038 0.000 0.082 

ZnO 0.680 0.788 0.852 -

ZnS 1.936 1.891 2.092 3.84 

ZnSe 1.047 0.924 1.138 2.82 

ZnTe 1.074 0.855 1.022 2.39 

CaO 3.476 3.410 3.418 7.8 

CdO -0.510 -0.399 -0.354 0.84 

KBr 4.043 3.913 4.353 7.8 

KCl 4.754 4.580 4.947 8.5 

K F 5.857 5.619 5.778 10.9 

KI 3.619 3.419 3.918 6.2 

LiBr 4.659 4.644 4.892 7.6 

LiCl 5.965 5.903 6.075 9.4 

LiF 8.901 8.653 8.577 13.6 

Lil 4.076 3.931 4.208 -

MgO 4.729 4.617 4.739 7.9 

MgS(rs) 2.605 2.455 2.838 2.7 

NaBr 3.778 3.579 4.022 7.7 

NaCl 4.691 4.464 4.833 8.6 

NaF 5.933 5.630 5.759 11.7 

Nal 3.325 3.003 3.474 5.8 

IRbBr 3.906 3.772 4.202 7.7 

RbCl 4.550 4.379 4.738 8.2 

RbF 5.329 5.146 5.335 10.4 

Rbl 3.513 3.321 3.817 6.1 
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Figure 6.6: Comparison of band gaps. See main text for details. 
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more. The same holds for ZnTe and CaO, although the underestimation is closer to 
a factor of 2 in these cases. Diamond structure germanium was discussed earlier. All 
three models predict a zero gap for GaSb, InAs and InSb whereas experiment shows 
a gap is present in each of these materials. For the alkali metal fluorides, other than 
RbF, where values are almost identical, the LDA outperforms both other models. 
In LiF, the modified CWDA gives a value slightly better than the WSDA, the only 
material in our set in which this occurs. For a-tin only the WSDA gives a zero gap, 
whereas both the LDA and modified CWDA predict that it is a semimetal. All three 
models incorrectly predict that CdO is a semimetal. Although experimental data is 
not available for CuF, all three approximations predict that the material is metallic. 
When comparing only the LDA and modified CWDA, the LDA gives values closer 
to experiment for all the rock salt structures. For the zincblende structures perfor­
mance is split half and half between the two. Overeill, the differences in hand gaps 
between the LDA and CWDA are minor, with only small fractions of eV between 
them. We will discuss possible reasons for the performance differences of our models 
later in this chapter. 

6.3 WSDA Applied to Spin Polarised Systems 

We have shown that our spin resolved weighted density approximation can be suc­

cessfully applied to spin unpolarised systems. We now investigate how the WSDA 

behaves for some spin polarised situations. 

6.3.1 Bulk Fe 

Iron can be considered an obvious choice to start studying magnetic, and hence spin 

polarised systems. The LDA fails to determine the correct ground state structure 

of Fe [98]. In nature, Fe is found to be body centred cubic and ferromagnetic. 

According to the all-electron calculations of reference [98], the LDA gives the face 

centred cubic non-magnetic structure as the most stable and the PBE GGA predicts 

the correct structure. The body centred cubic (bcc) and face centered cubic (fee) 

structures are shown graphically in Figure 6.7. 
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Figure 6.7: Fe in the bcc structure (left) and fee structure (right). 

We repeat the LDA and PBE calculations using ultrasoft pseudopotentials con­

structed with the LDA. We also perform calculations using our WSDA model in­

cluding the modified cusp condition. To investigate the effect of using consistent 

pseudopotentials, we repeat the PBE calculations using PBE ultrasoft pseudopo­

tentials. For each model of exchange-correlation, the non-magnetic fee and bcc 

structures and the bcc ferromagnetic structures were used. In each of these cases 

the plane wave kinetic energy cutoff of 500 eV was used and a Monkhorst-Pack 

grid of dimensions 6 x 6 x 6 was used to sample the Brillouin zone. This converges 

total energy differences to better than 13 meV per atom for the fee structure and 

3 meV per atom for the bcc structure. The total energies obtained are then used to 

construct an energy volume curve fitted to the Murnaghan equation of state, which 

allows us to determine the equilibrium lattice parameter and bulk modulus. 

In Table 6.5 we show the equilibrium lattice parameter and bulk modulus for 

each of the structures and approximations used. For comparison, the experimental 

lattice parameter is 2.867 A and the bulk modulus is 172 GPa [99]. The lattice 

parameter for the ferromagnetic body centred cubic structure is overestimated in 

all cases and the bulk modulus is underestimated. For the WSDA the predicted 

lattice parameter is shghtly higher than for the other models and the bulk modulus 
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Figure 6.8: Total energy against volume for bulk Fe in a number of structures 

calculated using the LDA. 
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Figure 6.9: As for Figure 6.8 but for the PBE GGA with LDA pseudopotentiaJs. 
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Figure 6.10: As for Figure 6.8 but for the PBE GGA with PBE pseudopotentials. 
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Figure 6.11: As for Figure 6.8 but for our WSDA. 
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is massively underestimated. This comparison between the WSDA and the other 

(semi-)local approximations used holds true for the other phases used. 

Table 6.5: Equilibrium lattice parameter, OQ, and bulk modulus, Bo, of Fe for se­

lected structures and models. All models use LDA pseudopotentiaJs except where 

marked with *. 

Oo (A) Bo (GPa) 

Model bcc(FM) bcc(NM) fcc(NM) bcc(FM) bcc(NM) fcc(NM) 

LDA 3.05 2.66 3.34 145 340 378 

PBE 3.09 2.70 3.37 130 315 342 

PBE* 3.14 2.74 3.47 122 296 178 

WSDA 3.36 2.90 3.62 37.8 146 162 

The energy volume curves obtained are shown in Figures 6.8 - 6.11. For each 

of the (semi-)local approximations the correct order, as reported in reference [98], 

is shown. That the correct order is shown by the LDA is possibly a result of fixing 

the distribution of spin density in our calculations. The differences for the PBE 

GGA using LDA and PBE pseudopotentials are minor in this case. The exception 

is the factor of 2 change in the bulk modulus for the face centred cubic non-magnetic 

phase. Our implementation of the WSDA fails to predict the correct phase order, in 

fact, the body centred cubic ferromagnetic phase is predicted to be the least stable. 

This appears to be because of a redistribution of charge between atomic orbitals, 

specifically to an excess of charge in the 3d orbital of one of the atoms, leading to an 

excess spin on one atom and a depletion on the other. This is likely to be a result of 

errors introduced by the model pair-correlation function taking a unphysical on-top 

value in regions of high electron density. We will discuss this further in section 6.4. 

6.3.2 Band Structure of Fe(II) Oxide 

Iron(II) oxide is an antiferromagnetic insulator that is commonly found as a black 

powder, chemical formula FeO. This should not to be confused with rust, which is 

iron(III) oxide, chemical formula Fe203. Semi-loceJ functionals typically give FeO a 
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Figure 6.12: The iron(II) oxide structure used in our calculation. The direction of 

antiferromagnetic alignment is left-right in the plane of this diagram, parallel to 

the [111] direction in the cubic rock salt structure. Grey atoms represent Fe, red 

represent O atoms. 

zero band gap whereas non-local functionals, particularly those that cancel exactly 

the self interaction in the Hartree potential [100], can describe the splitting of the d 

orbitals and predict a gap. This should provide an interesting test for our WSDA. 

The crystal structure of FeO is face centered cubic rock salt. However, the 

antiferromagnetic alignment is along the [111] direction requiring a choice of cell that 

contains at least two unique Fe atoms in this direction. The rhombohedral centred 

hexagonal cell shown in Figure 6.12 is the smallest cell that satisfies this requirement. 

It has lattice parameters a = b = c = 5.260 with angles q = /? = 7 = 33.557. Fe 

atoms are placed at fractional coordinates (0,0,0) and (0.5,0.5,0.5), and O atoms are 

placed at (0.25,0.25,0.25) and (0.75,0.75,0.75). In our calculation we use a plane wave 

kinetic energy cutoff of 1050 eV, we sample the Brillouin zone with a Monkhorst-

Pack grid of 6 x 6 x 6 k-points. These criteria converge differences in the total 

energy to better than 5 meV per atom. We use optimised norm conserving GGA 

pseudopotentials generated using Opium [101 . 

The three dimensional band structure was generated along a k-point path of F 
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Figure 6.13: Two equivalent representations of the rhombohedral Brillouin zone. 

— > r - ^ Z — * - L ^ r . Two equivalent representations of the Brillouin zone (from 

reference [102]) are shown in Figure 6.13. As can be seen from Figure 6.14 the 

WSDA predicts that FeO is metallic, as is found with similar calculations with the 

LDA [103]. We will now discuss possible explanations for the faihngs of our WSDA. 

6.4 Discussion 

In this chapter we have applied the WDA and WSDA with model pair-correlation 

functions that satisfy the modified cusp condition for the coupling-constant averaged 

pair-correlation function, g. Although this is an added physical constraint to our 

models, the "exact" on-top value of g is not given in the homogeneous limit, as 

was shown in Chapter 5. Even if the correct on-top value was returned in the 

homogeneous limit, this would not be true in inhomogeneous systems when using 

the W(S)DA. Because the on-top value is ultimately short range, one expects the 

true on-top value to be related to the local electron density, however in the W(S)DA 

the on-top value is solely determined by the weighted density. A possible method 

for correcting this is given in the following chapter. 

There are some simplifying approximations in our implementation of the WSDA 
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k-Point Path 

Figure 6.14: Kohn-Sham band structure for FeO. Black lines represent valence 

bands, red lines represent conduction bands. The dotted line marks the Fermi 

energy. 

that could be the cause of the failings found in our results. First is the matter 

of the sum rule. In our implementation the weighted up and down densities are 

determined from the sum rule for parallel spin pairs. These values are then used for 

the model pair-correlation function used for antiparallel spin pairs. In the uniform 

limit the sum rule on the antiparallel spin contribution to the exchange-correlation 

hole is zero, as required. This does not necessarily hold true generally, which can be 

seen from inspection of equation 4.74. As the C and A parameters are determined 

from the homogeneous limit, the combination of Fj" and F^ in general is not zero. 

However, it is the sum over G-vectors that satisfies the sum rule, so some cancellation 

may occur. In practice we find that the sum over the full exchange-correlation hole 

is off from the required -1 by 10~̂  - 10~ .̂ Although this is small, it is unclear how 

much of an effect this may have on the accuracy of physical predictions with our 

model. 

Second, and possibly more concerning, is the failure of our WSDA to correctly 
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spin resolve the exchange-correlation energy. While the spin resolved pair-correlation 
function is reasonably approximated in the uniform limit, the energy is not. This is 
shown in the unphysical on-top values given by our model at (weighted) densities 
higher than r, w 0.4. To refresh the memory, this is because the simple Gaussian 
used for the parallel spin contribution to the model pair-correlation function over­
estimates the magnitude of the total exchange-correlation energy at high densities, 
forcing the antiparallel contribution to become positive and hence A becomes nega­
tive and C positive. As C determines the on-top value, a positive value of C gives 
a non-physical on-top value greater than 0.5. 

The problems caused by this are particularly evident in our calculations on fer­

romagnetic iron. The high up electron density in this case leads to an error in 

the exchange-correlation energy contribution for each combination of spin pairs. 

This means we have a non-physical value of the coupling-constant averaged pair-

correlation function at a significant proportion of the simulation space, in this case. 

We believe the WSDA will be improved by adding the additional constraint that 

the spin resolved exchange-correlation energy in the homogeneous limit is satisfied. 

6.5 Summary 

In this chapter we have extended the cusp condition satisfying model for the WDA 

introduced in Chapter 2 to include the modified cusp condition of Perdew and 

Wang [61]. This model, and the others introduced throughout this thesis were then 

applied to selected systems. A detailed study of the bulk properties of silicon and 

germanium showed that the modified cusp WDA made little difference over the 

corresponding original WDA model while the application of the spin resolved model 

pair-correlation function in our WSDA overestimated the lattice parameters and 

greatly underestimated the bulk moduli. The modified cusp WDA showed a small 

improvement over LDA for the indirect band gap in silicon but still underestimated 

by approximately a factor of two. Our WSDA, on the other hand, gave a value for 

the band gap very close to that found experimentally. All of our models severely 

underestimate or give a zero direct beind gap in germanium. This may be from 
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including the 3d electrons in the pseudopotentiail [92] or could be an artifact of 
model pair-correlation functions chosen. 

We applied the LDA, modified cusp WDA and modified cusp WSDA to calculate 

the band gaps for a number of materials in the rock salt and zincblende structures 

at their experimental lattice parameters. Overall the WSDA provided the best 

calculations of band gaps, with the differences between those calculated in the LDA 

and modified CWDA being minor. It is likely that the WSDA would overestimate 

the equilibrium lattice parameter for each of these materials. 

The WSDA was then applied to spin polarised systems of bulk iron and iron(II) 

oxide. Disappointingly, the WSDA failed to predict the correct phase order for Fe, 

giving the experimentally most stable ferromagnetic body centred cubic structure as 

the least stable. The electronic properties of FeO were predicted to be metallic by 

the WSDA whereas experiment finds the material to be insulating. These failures 

are most likely because of the breakdown of our model pair-correlation function at 

high electron densities find the incorrect spin resolution of the exchange-correlation 

energy. 

It would appear that the choice of model pair-correlation function for our initial 

implementation of the WSDA is too simplistic. However, the framework for describ­

ing a spin resolved pair-correlation function in a weighted density scheme is sound. 

More appropriate model pair-correlation functions based on the homogeneous elec­

tron gas would remove the issues of unphysical on-top values of the pair-correlation 

function and the spin resolution of the exchange-correlation energy. Further refine­

ments to the weighted density approach can be made in symmetrising the model 

pair-correlation function and controlling the on-top value of the pair-correlation 

function through the true electron density We will discuss these and other avenues 

for refinement in the next chapter. That improved band gaps £ire produced by even 

the simple WSDA model we use is promising nonetheless. 



Chapter 7 

Conclusions and Future Work 

Here we will summarise the conclusions of the previous chapters. We will outline 

issues yet to be resolved in WDA based models and address problems with our choice 

of model pair-correlation function in the WSDA. 

7.1 Summary of Conclusions 

Throughout this thesis we have concentrated on improving a non-local approxima­

tion to exchange and correlation in density functional theory. In Chapter 1 we 

discuss the uses of and difficulties in solving the many-electron Schrodinger equa­

tion. Density functional theory can be used to make the problem solvable exactly, 

in principle. The plane wave pseudopotential method for applying DFT is outlined. 

The formulation of DFT leaves an unknown in the form of the exchange-correlation 

energy functional. Approximations to exchange-correlation are discussed in Chap­

ter 2 where the WDA is discussed in detail as a non-local approach of modeling the 

exchange-correlation hole directly. Some of the possible models for the coupling-

constant averaged pair-correlation function are discussed. We show that given an 

appropriate choice of model, excellent results can be obtained for the bulk properties 

of copper. However there is no method of selecting the "correct" model a priori. 

The models that give good results for the properties of copper do not necessarily give 

good results for silicon [57] and vice versa. Therefore we look towards improving the 

model used by satisfying more physical constraints such as the Kimball cusp con-
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dition. A method of including the cusp condition is refined and implemented, then 

applied to determine bulk properties of silicon. These preliminary results suggest 

that existing WDA models can be improved by satisfying even one extra physical 

constraint. 

Surfaces are systems that one would intuitively think require a non-local treat­

ment of excheinge-correlation. In Chapter 3 we successfully demonstrate this by 

calculating the exchange-correlation hole using the WDA for metal surfaces. A 

good approximation to an image charge is shown and the importance of finite cell 

effects is discussed. The WDA is applied to determine a two dimensional section of 

the potential energy surface for H2 dissociation on Cu(lOO). When compared to the 

LDA, we show that a non-local approximation for exchange-correlation is required 

to adequately simulate surfaces using DFT. 

In Chapter 4 we derive a new framework for model pair-correlation functions 

in the WDA by including spin resolution. We refer to this as the weighted spin 

density approximation, WSDA, a fully non-local approach to treating spin polarised 

systems in the WDA. By spin resolving the model pair-correlation function, we allow 

for the possibility of a greater number of physical constraints to be satisfied when 

approximating the exchange-correlation hole. 

We compared the spin resolved pair-correlation function for our WSDA in the 

uniform limit with quantum Monte Carlo data for the homogeneous electron gas in 

Chapter 5. The on-top values of the pair-correlation function for the homogeneous 

electron gas were investigated and discussion was mewle comparing different first 

principles methods, concluding that definitive work in this £irea is still to be done. 

The importance of including the correct modified cusp condition for the coupling-

constant averaged pair-correlation function was raised. We amended the model 

constructed in Chapter 4 to include the modified cusp condition for antiparallel 

spin pairs. Comparison was made between the full coupling-constant averaged pair-

correlation function from our WSDA models and a high quality first principles model 

produced by Gori-Giorgi and Perdew [81]. This comparison was done at a number 

of densities and spin polarisations, finding that the long range part agreed well at 

metallic densities while the short range and on-top value for our model was closer 
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at lower densities. The correct on-top value of zero is obtained by our model in the 

fully polarised limit, as long as the electron density is not higher than r, w 0.4. 

We began Chapter 6 by extending the cusp condition satisfying model derived in 

Chapter 2 to include the modified cusp condition. These models were then applied 

for spin unpolarised and polarised systems. A detailed study of the bulk and elec­

tronic properties of silicon and germanium was performed. In silicon, the modified 

CWDA improved a little on the lattice parameter and indirect band gap from the 

LDA and did slightly worse for the bulk modulus. The WSDA showed a dramatic 

improvement for the band gap in silicon overestimating the lattice parameter by 

~ 3%. The bulk modulus, however, was found to be approximately half that of the 

experimental value. Similar statements for the CWDA used on germanium can be 

made, but with a slight worsening of the predicted band gap. The bulk germanium 

properties predicted by the WSDA were similar in differences to experiment as for 

the silicon calculation. However, the WSDA predicted a zero band gap for germa­

nium. The failures in predicting the electronic properties of germanium could be 

because the 3d electrons were included in the pseudopotential - the band structure 

has been found to be sensitive to whether the d electrons are treated as valence 

or not [92]. Band gaps for a number of materials in the rock salt and zincblende 

structures were calculated using the LDA, modified CWDA, and WSDA. Overall the 

WSDA provided the greatest improvements in calculating the band gap. Although 

not tested, it is likely that our WSDA would overestimate the lattice parameters for 

these materials. Calculations were also performed on spin polarised systems in the 

form of bulk iron and iron(II) oxide. In bulk iron, the total energy-volume curves 

for the non-magnetic body centred cubic and face centred cubic phases were com­

parable to those calculated with the LDA and PBE GGA. The ferromagnetic body 

centred cubic phase was predicted to be the least stable by the WSDA, as opposed 

to being the most stable as found in nature. The band structure in antiferromag­

netic iron(II) oxide was found to be metallic, in contrast to the insulating properties 

found in nature. Possibilities for explaining these failures were briefly discussed. 

Our implementation of the WSDA shows promise in improving the predicted 

band gap in a large number of materials. However there are failings in both the 
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model used and the implementation that we will now address. 

7.2 Implementation of WSDA 

We have shown in the previous chapter that the implementation and model pair-

correlation function used in our WSDA still requires improvement. However, the 

underlying framework developed in this thesis for a fully non-local WSDA remains 

valid. Furthermore, using a spin resolved model pair-correlation function allows 

for more physical constraints to be satisfied by the model. This is especially true 

in comparison to the suggestion by Gunnarsson and Jones [55] of neglecting spin 

polarisation completely from the model pair-correlation function (apart from its 

inclusion in the LSDA exchange-correlation energy density) when applying the WDA 

to spin polarised systems. 

The main problems in our WSDA are the choice of model pair-correlation func­

tion and the failure to satisfy the sum rule on the exchange-correlation hole. Prob­

lems with the choice of model can be resolved by using the spin resolved coupling-

constemt averaged pair-correlation function for the homogeneous electron gas. Al­

though explicit forms are not currently available, the parts required to do so are 

available through a combination of references [81] and [104 . 

Satisfying the sum rule for the exchange-correlation hole reduces to the way the 

weighted density is used. In general, if the weighted density is determined solely from 

the sum rule for parallel spin pairs, as it is in our implementation, then the zero sum 

rule for the axitiparallel spin pairs cannot be satisfied. However, there is no need for 

a single weighted (spin) density parameter, one can instead have separate weighted 

density parameters for parallel and antipaxallel spin contributions, respectively. This 

does cause an implementation problem for determining the weighted density for 

antiparallel spins, essentially a two dimensional logarithmic grid would have to be 

searched through to select the weighted spin densities that satisfy the sum rule and 

spin resolved exchange-correlation energy. Construction of this 2D grid would likely 

be prohibitively expensive. To avoid this issue, the model could be recast in terms 

of the spin polarisation parameter of the true electron density so that there is only 
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a single weighted density parameter for antiparallel spin pair contributions. 

7.3 A New Model Pair-Correlation Function 

It has been shown that the WDA shows promise, but still suffers from a number of 

problems that come back to fitting physical constraints. The WDA does not return 

correct on-top values for the coupling-constant averaged pair-correlation function. 

This applies even if one uses the coupling-constant averaged pair-correlation func­

tion from the homogeneous electron gas as the basis for the WDA. In this case the 

correct on-top value will only be returned in the slowly varying limit because of 

the model's dependence on the weighted density parameter. Burke, Perdew and 

Ernzerhof [105] have shown that the success of the L D A and other semi-local func-

tionals can be related to correct, or nearly correct on-top values being returned. 

Physically this follows from the on-top value being the test of correct short r£inge 

exchange-correlation interactions. 

Upon examining our framework for models used in the WDA, we can enforce the 

correct on-top value through the parameter C. Instead of depending on the weighted 

density, we can let it be determined from the electron density at each point in space. 

In order to retain the sum rule on the exchange-correlation hole and the energy in the 

uniform limit, we take K from the model incorporating the Kimball cusp condition 

and allow it to vary with the weighted density. For the model with the corrected 

modified cusp condition on the coupling-constant averaged pair-correlation function, 

we must treat the p£irameter H in the same way as C and have it depend on the 

local electron density. It should be pointed out that all the ingredients of this WDA 

based method are determined from physical constraints, so the method remains 

non-empirical. Below we will suggest a possible implementation within our existing 

framework for the modified cusp condition in the spin unpolarised case and using 

the Gaussian function as the base for the model psiir-correlation function. 

We follow from equation 6.3 for the model pair-correlation function satisfying 

the modified cusp condition: 
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G - - [ | r - r ' | ; n ( r ) , n ( r ) ] = C{n{r))f ( ^ ^ ^ (7.1) 

m ( C ( n ( . ) ) + l ) | . - . 1 / ( 3 ^ J ^ + 

Here, the function /(it) = e~"̂ , is the simple Gaussian model. The on-top value 

and the on-top derivative are determined solely through C and H, the latter can be 

determined from Perdew and Wang's [61] model or the more recent model of Gori-

Giorgi and Perdew [81]. To determine A and K we take the homogeneous Umit of 

the exchange-correlation energy and the sum rule for the exchange-correlation hole. 

In this case, with the simple Gaussian model, we obtain a ninth order polynomial 

in A. We have not tested if this polynomial is poorly conditioned for finding roots 

numerically. 

A more straightforward solution could be to use a model function based on the 

homogeneous pair-correlation function. This would then return the correct energy 

in the uniform limit while allowing us to control the on-top value from the electron 

density rather than the weighted density. An implementation of either or both of 

these methods is beyond the scope of this thesis. However, the general success of 

semi-local exchange-correlation functionals that give on-top values from the homoge­

nous electron gas [105] leads us to believe that this extension to the WDA should 

be investigated further. The same principles can be applied to the WSDA. 

7.4 Remaining WDA Problems 

There are other remaining problems with the WDA approach. Mazin and Singh [106 

demonstrate that simple WDA model functions do not give the correct exchange-

correlation dielectric response, i.e. the second derivative of the exchange-correlation 

energy, S^Exc/Sn{r)Sn{r'). This is a faihng for the L D A and GGAs also [106]. 

They provide a method of testing model pair-correlation functions for satisfying 

this criteria and suggest a method of altering existing models. 
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In general WDA implementations are vastly more computationally expensive 
than (semi-)local approximations. The single most time consuming step is in deter­
mining the weighted density. In our implementation this could be done more effi­
ciently by performing the sums over G-vectors within an irreducible wedge, rather 
than the entire simulation cell, when a system has some symmetry. Care would have 
to be taken in a parallel implementation of this scheme. 

Generating consistent WDA pseudopotentials is a subtle task. It is, however, 

quite desirable as mixing the exchange-correlation functional used for the self con­

sistent calculation with another approximation to construct the pseudopotentials 

can lead to some discrepancies [107, 108]. The range of the model pair-correlation 

function is comparable to the size of atoms, so the WDA would treat core electrons 

with as much importance as vdence electrons. A shell pgirtitioning scheme has been 

suggested [54, 62] in which the core electrons are treated with the LDA and the 

valence electrons with the WDA. If the exact pair-correlation function for a partic­

ular system was used the intershell interactions would be correctly described [109] 

and shell partitioning would not be required. This mixture of local and non-local 

approximations is, in our opinion, counter to the goal of attaining a purely ab ini­

tio approximation for exchange-correlation. Improved WDA model pair-correlation 

functions that fit more physical constraints could approximate the true exchange-

correlation hole accurately and remove the issue of shell partitioning. This could be 

investigated by using the WDA in all electron ceilculations. 

Finally we will discuss the problem of symmetry in the model pair-correlation 

function. As discussed previously, the true coupling-constant averaged pair-correla­

tion function is symmetric upon interchange of particle positions. The model pair-

correlation function used in the WDA is based on radial symmetry, but only a single 

weighted parameter, so the interchange symmetry does not hold. This leads to the 

asymptotic behaviour of the exchange-correlation potential differing from the correct 

limit by a factor of two. 

Suggestions based on symmetrising the model by replacing the A(n(r)) parameter 

with a combination of A(n(r)) and A(n(r')) have been made and shown to be unphys-

ical in reference [72]. Wu, Cohen and Singh suggest an edternative method of con-
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structing a symmetrised WDA [68], by simply replacing the model pair-correlation 
function with a sum of two model functions of the original type. One model func­
tion depends on the weighted density at r while the other depends on the weighted 
density at r': 

G^^^^(r,r') = 1 {G^''^[|r - r'|;n(r)] + C^^^[|r - r'|;n(r')]} . (7.2) 

This then requires a more complicated self consistent iteration scheme to deter­

mine the weighted density at all points. It is unclear how physical the resulting 

model symmetrised pair-correlation function and associated exchange-correlation 

hole would compare to, say, quantum Monte Carlo data for a real system. 

7.5 Closing Remarks 

In this thesis we have demonstrated that use of non-local functionals such as the 

WDA is promising, particularly in the case of surfaces, but still needs refinement 

in several areas. A new framework for modeling the coupling-constant averaged 

pair-correlation with spin resolution allows more physical constraints to be applied 

than with previous models. This can be further refined by resolving the parallel 

spin contributions into separate exchange and correlation parts. We feel that the 

approach of refining the model coupling-constant averaged pair-correlation function 

used in the WDA through satisfying physical constraints will lead to a definitive im­

plementation of the WDA. With improvements to the algorithms used and increased 

computational capability, such an implementation of the WDA could become an in­

valuable tool in the field of electronic structure calculations. Non-local functionals 

are a strong alternative to improving approximations of exch£inge-correlation over 

the popular "Jacob's ladder" [110] route. 



Appendix A 

Integrals Used in WDA 

Implementation 

In the implementation of the WDA that we use, we have a number of Fx{q) functions 

that are related to the spherical Fourier transform of the model pair-correlation 

function used and its derivatives. Here we will provide general forms for the q = 0 

limit of these functions for each of the four groups of model described in Chapter 2. 

These are then used to numerically construct the full Fx{q). 

In general, for a model pair-correlation function f{u), we have: 

Fi(0) = J\f{u)du, (A.l) 

F2{0) = ru''f{u)du, (A.2) 
Jo 

F,{0) = Hu'^du^ (A.3) 
^ 0 du 

The general form for each of the models is given in section 2.3. 
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A . l Gaussian 

For the Gaussian (and fourth order Gaussian) models we will make much use of the 

following standard integral: 

which is paraphrased from reference [111]. We include n for use in the cusp mod­

ifications that we will tackle later. For now, we take K = 1 and set p = 2 for the 

Gaussian. r{z) is, of course, the well known Gamma function. The general relations 

for the Fx{0) values are: 

n=0,eucn 2 

= I E (A.7) 
n=0,even 2 ' 

^3(0) = (A.8) 
2 • 

^4(0) = (A.9) 
2 • 

where A'̂  is the order of the polynomial that is multiplied with the Gaussian. 
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A.2 Fourth Order Gaussian 

The general forms for the fourth order Gaussian based models are similar: 

-1 N p (2n±2\ 

' ' •W = i E (A.IO) 
n=0,et;en 2 

^^<») = i E (A.n) 
n=0,even 2 

^3(0) = - - ( A . 1 2 ) 
2 • 

F4(0) = (A.13) 
2 • 

except that here, the order of the preceding polynomial is 2A .̂ 

A. 3 Lorentzian 

For the Lorentzian-like functions, we make use of a standard integral from reference 

[111]: 

r j ^ ! : ! . r f „ = ! [ c o s e c f ^ ) . (A.14) 

The general relations for the Fj;(0) values are: 
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Fi(0) = ^cosec(^^y (A.15) 

F,{0) = ^ c o s e c ( ^ ) , (A.16) 

F3(0) = 2Fi(0), (A.17) 

F4(0) = 3F2(0), (A.18) 

where n is the order of the Lorentzian-like function used. 

A.4 Gunnarsson-Jones 

For the Gunnarsson and Jones-like functions, we make use of a staindard integral 

from reference [111]: 

f . " - . ( l - e - « ' ) . „ = - l r Q . (A.19) 

The general relations for the Fi(0) values are: 

1 / 2 \ 
Fi(0) = —r - i , (A.20) 

n \ nj 

^3(0) = - 0 ) ! , (A.22) 

^4(0) = - ( ^ ) ! , (A.23) 

where n is the power in the exponential p£irt of the Gunnarsson and Jones-like 

function used. Of course, non-integer factorials can be evaluated by relating the 

Gamma function to the factorial, r(n -I- 1) = n!. 
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A.5 Cusp Condition Integrals 

In our implementation of a model pair-correlation function that satisfies the (modi­

fied) Kimball cusp condition, we introduce a second function / * ( « , /t) to the model. 

Here we will give the integrads for the simple Gaussian and fourth order Gaus­

sian functions introduced in Chapter 2. For the Gaussian based model, f''{u, K) = 

ue~"^^'^^. The corresponding F^(0) values are therefore: 

m = ( ^ ) = (A.24) 

F^iO) = y r ( 0 = ^ , (A.25) 

^ 3 ( 0 ) = Ff(0)-/c3r(^^) = F { ' ( 0 ) - K ^ ^ = - 2 F f ( 0 ) , (A.26) 

F',{0) = F^{0)-K'r(Jj=F^{0)-2K' = -^F^{0l (A.27) 

where K is set to a constant value for each model, as discussed in Chapter 2. Simi­

larly, for the fourth order Gaussian based model, where /''(u, K) = ue""*/"*, we have: 

Fi^O) = (A-28) 

F,^0) = ^'c^r(^) = ̂ , (A.29) 

F3^0) = F*(0) - K^r , (A.30) 

F » = F ^ ^ O ) - ^ ^ ^ ^ ) = F 2 ' ' ( 0 ) - K ^ = -^F2^0) , (A.31) 
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A.6 WSDA - Antiparallel Spin Pair Model 

Finally, we use a slightly different Gaussiem based model in the model pair-correlation 

function for antiparallel spin pairs within our implementation of the WSDA. We sug­

gested, in Chapter 4, that f''{u, K) = (u- |-«2)e-"'/' ' ' . The E*(0) values are therefore: 

Ff(0) = + (A.32) 

F | (0 ) = ^ + (A.33) 

^3^(0) = 4^ + /c^ (A.34) 

^^(0) . 3 ^ ^ ^ ^ . (^.35) 
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Advances in solid-stale N M R methodology and computat ional chemistry are applied to the 
" F N M R o f solid octafluoronaphthalene. I t is demonstrated experimentally, and confi rmed by 
density funct ional theory ( D F T ) calculations, that the spectral resolution in the magic-angle 
spinning spectrum is l imited by the anisotropy o f the bulk magnetic susceptibility ( A B M S ) . This 
leads to the unusual observation that the resolution improves as the sample is d i luted. D F T 
calculations provide assignments o f each o f the peaks in the " F spectrum, but the predictions are 
close to the l imits o f accuracy and correlat ion in fo rmat ion f r o m 2-D N M R is invaluable in 
conf i rming the assignments. The effects o f non-Gaussian lineshapes on the use o f 2-D N M R fo r 
mapping correlations o f spectral frequencies {e.g. due to the A B M S ) are also discussed. 

1. Introduction 

Octafluoronaphthalene (CioFg) [or perfluoronaphthalene] has 
been regularly used as a model system in the development o f 
" F solid-state N M R . M e h r i n g ei a/.' used multi-pulse R F 
decoupling on static (non-spinning) samples to resolve the two 
chemically distinct fluorine types (i.e. a and P), while Harris 
ei al} combined multi-pulse decoupling w i th slow magic 
angle-spinning ( C R A M P S , combined rota t ion and multi-pulse 
spectroscopy) to resolve the two resonances into pairs o f 
signals corresponding to the fou r crystallographically distinct 
fluorine sites in the crystal structure. Fig. l b . 

The structural chemistry o f octafluoronaphlhalene is i n t r i ­
guing, as the structure at r o o m temperature is not well-defined 
by current techniques. I t is thought to adopt the same struc­
ture as the normal naphthalene structure above 281.5 K , ' but 
the extent o f diffuse scattering in X-ray and neutron d i f f rac to-
grams, combined wi th the relatively poor quali ty o f the 
resulting fits (as measured by the statistical R factors), ind i ­
cates that considerable disorder (static or dynamic) is present. 
Based on a d rop in the w id th o f the static " F spectrum (as 
measured by its second moment) , previous N M R studies' 
suggest that this disorder is dynamic, w i t h the molecules re­
orient ing about the C2 axis perpendicular to the molecular 
plane. This is consistent w i t h the proposed X-ray structure. 
Fig. I b, in which fluorine sites related by the molecular centre 
o f inversion are identical. 

Fast magic-magic spinning is now used routinely to obtain 
resolved solid-state N M R spectra f r o m abundant nuclei such 
as ' H and " F which are broadened by the extensive dipolar 
couplings between the abundant spins." ' As shown in Fig. Ic, 

" Deparlmenl of Chemistry, University of Durham. South Road. 
Durham. UK DHI 3LE 

''Department of Physics. University of Durham. South Road. Durham, 
UK DHI 3LE 

t The H T M L version of this article has been enhanced with colour 
images. 

the fast M A S spectrum cleariy resolves the four sites into two 
pairs corresponding to a sites (attached to carbons I , 4, 5 and 
8) and p sites (attached to carbons 2, 3, 6 and 7). The a and P 
pairs are readily assigned, as shown, on the basis o f solution-
state shif t values.^ Unfor tuna te ly i t is not possible to assign the 
individual resonances to F sites in the crystal structure f r o m 
these N M R data alone. 

In this paper we revisit octafluoronaphthalene both to 
complete the assignment o f its " F sf>ectrum and to examine 
the factors that affect the " ' F spectral resolution. Unusually, 
the resolution is observed to depend on the sample concentra­
t ion, and this effect is shown to be a consequence o f the large 
anisotropy o f the bulk magnetic susceptibility ( A B M S ) o f this 
solid. Section 3 discusses the consequences o f this A B M S 
broadening fo r 2 -D N M R . 

In section 4, K o h n - S h a m density funct ional theory ( D F T ) 
is used to calculate the N M R chemical shifts o f octaf luoro­
naphthalene, using both structures as derived f r o m X-ray 
studies and f r o m D F T energy minimisat ion. The agreement 
between calculated and experimental shifts is not quantitative, 
but the combinat ion o f 2 -D N M R experiments and D F T 
finally permits the f u l l assignment o f the N M R spectrum, 
a l lowing each o f the peaks in the solid-state N M R spectrum to 
be identified w i t h specific sites in the crystal structure. 

2. * ^ resolution under fast magic-angle spinning 

Fast ro ta t ion o f solid samples about an axis inclined at the 
"magic angle" o f 54.7° wi th respect to the magnetic field axis 
effectively averages the dipolar couplings that are largely 
responsible fo r broadening the solid-state N M R spectra o f 
abundant nuclear spins such as ' H or, in this case, " F . 
Particulariy at high static magnetic fields (corresponding to 
' H N M R frequencies o f about 400 M H z or higher) useful ' H 
resolution can be obtained at spinning rates in excess o f about 
20 k H z . " We have recently analysed the factors that determine 
resolution in ' H M A S experiments and demonstrated that 
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Fig. 1 (a) Molecular structure of octafluoronaphthalene, (b) Ambient temperature crystal structure (reference code OFNAPHOl from the 
Cambridge Structural Database), (c) Ambient temperature " F MAS spectrum (MAS spin rate of 22 kHz and '^F Larmor frequency of 470 MHz), 
showing four clearly resolved sites. 

p ro ton linewidths can be understood in terms o f a "homo­
geneous" l inewidth that is determined by the strength and 
nature o f the dipolar coupl ing network relative to the sample 
spinning rate, and an "inhomogeneous" l inewidth which is 
independent o f sample spinning. ' 

As part o f a related study explor ing " F resolution in solid-
state N M R , we have revisited octafluoronaphthalene ( O F N ) 
as an example o f a system that was expected to exhibit 
substantial line-broadening in its " p spectrum due to the 
large magnetic susceptibility broadenings caused by aromatic 
r ing currents. Magic-angle spinning is effective at removing 
local isotropic variations o f the bu lk susceptibility, x . due to 
the presence o f interfaces etc. (which may help to explain why 
significantly better resolution was obtained in the multi-pulse 
decoupling experiments involv ing magic-angle spinning* com­
pared to those on static samples'). However, M A S is on ly 
part ial ly successful i f the x is anisotropic and so is t ime-
dependent under spinning.*^ This residual broadening is 
determined by A x — t h e anisotropy o f the bulk magnetic 
susceptibility ( A B M S ) o f the material . As the effect o f A / is 
only part ial ly averaged by magic-angle spinning, an individual 
crystallite experiences an average bu lk susceptibihty over the 
rota t ion period, ( A x ) , which w i l l depend on its or ientat ion 
(wi th respect to the ro ta t ion axis). Hence the lineshape o f a 
powder sample wi l l be broadened. 

As a result o f the packing in the naphthalene structure, we 
expect bo th CjoHg and CioFg to have relatively large values o f 
A x and so have broadened lines in their N M R spectra. This is 
conf i rmed by D F T calculations o f A x (see below for more 
details o f the calculations) which predict an anisotropy o f the 

(volume) magnetic susceptibihty o f A x s: 1.6 x 10~^ f o r 
octafluoronaphthalene. This can be compared to a prediction 
o f —2.7 X I 0 ~ * f o r an analogous D F T calculation on the P-
f o r m o f testosterone. Testosterone was used as a comparison 
since the " C l inewidths f o r typical crystalline steroids are 
generally very sharp, which is indicative o f l i t t le inhomoge­
neous broadening. These A x values are expressed (as is con­
ventional) in unrationalised cgs units and so we define an SI 
" A B M S linebroadening fac tor" , i47tAx , which corresponds to 
2.0 ppm fo r octafluoronaphthalene and 0.33 ppm fo r testos­
terone. The final effect o f A x depends non- t r iv ia l ly on the 
details o f crystallite morphology and sample packing and the 
effect o f averaging by the sample spinning." However, these 
values o f | 4 7 c A x l do coincide reasonably well w i th experimen­
tally observed l inewidths in the two systems, and other calcu­
lations on a number o f molecular crystals conf i rm this strong 
correlat ion between calculated A B M S factors and experimen­
tal l inewidths. This broadening could be removed by w o r k i n g 
wi th monocrystals, but i t is rarely practical to grow crystals o f 
suflScient size f o r N M R spectroscopy. Alternat ively, the effects 
o f A x can be weakened by d i lu t i ng the sample by a material 
w i th a much lower or zero A x . * 

Physical mixtures o f different relative composi t ion o f octa­
fluoronaphthalene and sodium chloride (zero A B M S ) were 
weighed out, g round together i n a pestle and mortar , and 
firmly packed in to 2.5 m m o. d. zirconia rotors. " F N M R 
M A S spectra were acquired on a Varian/Chemagnetics I n -
finityPlus spectrometer operat ing at 470 M H z f o r " F at a 
spinning rate o f 22 k H z . As the l inewidth is dominated by 
inhomogeneous factors, there was no useful improvement in 
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resolution at increasing spinning rates towards the maximum 
specified f o r the probe (30 kHz) . A lower spin rate was used 
throughout to avoid unnecessary sample heating (a typical 
increase o f 50 °C in sample temperature due to f r ic t iona l 
heating f r o m spinning close to the probe l imi t wou ld br ing 
octafluoronaphthalene uncomfor tab ly close to its melting 
point o f 87-88 °C). Chemical shifts were referenced to the 
fluorine peak in Tef lon which is at -123 .2 ppm relative to the 
primary reference o f C F C I 3 . Na tu ra l l inewidths were mea­
sured by fitting a 75% Gaussian/Lorentzian lineshape and the 
peak widths at half height o f the f o u r resonances determined. 

Spin-echo experiments were performed to estimate the 
"homogeneous" component o f the l inewidth . " F spectra were 
recorded as a func t ion o f the spin-echo delay, 2T , using ten 
increments up to a t ime o f 1.7 ms, and peak intensities 
extracted by fitting as above. The resulting decays (intensity 
vs. spin-echo delay) fitted well to single exponentials w i th 
effective "T2" values o f about 2.4 ms. I t is impor tant to stress 
that the magnetisation decay is largely determined by the 
dipolar coupl ing network and its interaction wi th magic-angle 
spinning rather than true relaxation. Th is decay time constant 
corresponds to a l inewidth cont r ibu t ion o f about 180 ± 1 0 Hz. 
As would be expected, the spin-echo decay rates were inde­
pendent o f the mixture composi t ion wi th in experimental 
error. 

Fig. 2 shows the natural ( f u l l w i d t h at hal f max imum) o f the 
four " F resonances as a func t ion o f composi t ion. The com­
position is expressed as a volume f rac t ion (using the known 
sample densities o f N a C l , 2.16 g c m " \ and O F N , 2.07 gc m"^ ) 
which is a more natural metric f o r expressing bulk suscept­
ibi l i ty effects on mixtures, al though i t does not account for the 
volume taken up by voids, which may have a measurable 
impact on bulk susceptibility broadenings. ' The linewidths 
for the different resonances are expected to be essentially 
identical, reflecting their very similar environments, and con­
tributions f r o m the bulk susceptibility w i l l be strictly identical 
across the unit cell. The var ia t ion in l inewidth between 
the resonances is most l ikely to result f r o m the d i f f icu l ty o f 
fitting overlapping lineshapes when the lineshape funct ion is 
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Fig. 2 Full-width-at-half-maximum linewidths for the " p resonances 
of octafluoronaphthalene as a function of sample composition. Filled 
symbols are used for the a sites and open symbols for the p fluorines. 

not well defined. The spread o f values is therefore useful 
as an indicator o f the error bar on the fitted peak widths 
rather than revealing any fundamental differences between the 
four resonances. 

Analogous effects o f composi t ion on linewidths have been 
observed previously fo r " C l inewidths by VanderHar t ei a/.,* 
w i th the effect o f adding a material w i t h a large A B M S 
(hexamethylbenzene, H M B ) on linewidths o f samples wi th a 
low A B M S (adamantane) being considered. In their example, 
the adamantane l inewidths were approximately doubled in a 
50: 50 mixture o f adaman tane /HMB in comparison to a pure 
adamantane sample, while the relative effect on the much 
broader H M B linewidths was considerably smaller. I n this 
case we are interested in the l ine-narrowing effect o f adding a 
material w i th a low A B M S to a system wi th large susceptibility 
broadenings. Here we find that even a 50 :50 d i lu t ion con­
siderably reduces the observed l inewidth , which reaches a 
m i n i m u m when the sample is d i lu ted to 10-20%. The line-
wid th appears to slightly increase in the l imi t o f very high 
d i lu t ion , but the lineshape fitting becomes increasingly unreli­
able as the signal to noise increases at these low di lut ions and 
so this effect is unlikely to be significant. 

The m i n i m u m l inewidth o f about 400 Hz is significantly sti l l 
larger than the l imi t o f about 180 Hz set by the homogeneous 
l inewidth , indicating that substantial inhomogeneous broad­
enings are present at a l l d i lut ions . A l though other sources o f 
inhomogeneous broadenings, such as chemical shift d is t r ibu­
tions caused by poor sample crystal l ini ty cannot be dismissed, 
it is l ikely that susceptibility effects are st i l l at work . As 
discussed in detail in ref. 6, an elliptically-shaped crystallite 
in a u n i f o r m external magnetic field {e.g. surrounded by a 
u n i f o r m material w i th zero A B M S ) w i l l show zero A B M S 
broadening under magic-angle spinning. Broadenings wi l l be 
observed, however, i f the crystallite deviates f r o m this ideal 
shape or i f its surroundings are not isotropic. The exact 
broadening w i l l depend on the interaction between these 
factors. Since deliberate d i l u t i o n o f samples is not a very 
practical route to improved resolution, we have not attempted 
to disentangle these factors. Moreover different behaviour has 
been observed in other cases where di lut ions o f less than 10% 
were required fo r significant l inewidth reductions.'** 

It is encouraging to note, however, that sample d i lu t ion can 
have favourable effects on the resolution (and hence sensitiv­
i ty) o f solid-state N M R spectra. The abi l i ty to detect low 
concentrations o f active ingredients in formula ted products, 
fo r instance, is o f great interest ." Fortunately typical excipient 
materials, such as lactose, do not exhibit significant suscept­
ib i l i ty broadenings (as observed in their " C N M R spectra) 
and so w i l l help to reduce overal l A B M S broadenings fo r 
active ingredients w i t h large values. 

3. 2-D Uneshapes in correlation spectra 

I t has recently been demonstrated that lineshapes in correla­
t ion spectra are of ten l imited by the homogeneous l inewidth 
alone (rather than the total l inewidth) , a l lowing considerably 
more in fo rma t ion to be obtained f r o m inhomogeneously 
broadened spectra than might be anticipated. '^ The frequency 
shifts due to A B M S at different sites in the same crystallite w i l l 
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be 100% correlated. This should be apparent in 2-D spectra as 
an elongation o f the peak shape along the diagonal o f the 
spectrum. 

Having conf i rmed that A B M S broadenings made a sub­
stantial con t r ibu t ion to the " F l inewidths, we then obtained 
homonuclear correlat ion spectra w i t h the double purpose o f 
assisting the assignment o f the " F spectrum and look ing fo r 
the characteristic peak shapes expected f r o m strongly corre­
lated inhomogeneous broadenings. 

2 - D " F homonuclear correlat ion spectra were obtained 
f r o m octafluoronaphthalene using the E X S Y / N O E S Y " pulse 
sequence and a short mix ing t ime o f 2.3 ms. The presence o f 
off-diagonal peaks in Fig . 3a indicates that magnetisation 
transfer has occurred between fluorine sites. The correlations 
observed between a and p resonances cannot be due to 
physical site exchange due to mot ion since this w i l l not mix 
chemically-distinct sites. Hence this transfer must be due to 
"spin d i f f u s i o n " via the d ipolar couplings between close spins. 
The couplings between adjacent a and P sites are significantly 
stronger than between more remote a and p pairings. This is 
true even when intermolecular couplings are included by using 
the X R D crystal structure to compute the root-sum-square 
coupling between a given spin and all its neighbours o f a given 
type. '^ As a result, the pattern o f of f -d iagonal peaks between a 
and P resonances allows a clear connection to be made 
between peaks at -147.8 and -152.8 ppm, and also the peaks 
a t -149.3 and -154.1 ppm. Hence the magnetisation exchange 
experiment establishes a relative assignment o f the fou r " F 
resonances. However i t does not provide a f u l l assignment 
since the two a/P pairs cannot be assigned to crystal sites using 
this N M R in fo rma t ion alone. Note that similar p rox imi ty 
relationships could be obtained, in principle, using other 2 - D 
N M R techniques. For instance, radio-frequency driven recou-
pl ing ( R F D R ) " has previously been used to study F - F 
prox imi ty in fluoropolymers.'*"'^ E X S Y / N O E S Y was used in 
this case as the absence o f R F pulses du r ing the mix ing t ime in 
this simple three-pulse sequence avoids any unwanted inter­
actions between R F i r radia t ion and the substantial molecular 
mot ion that was known to be present. 

The correlat ion between frequencies in f i and resulting 
f r o m the A B M S shifts is observable in Fig . 3a fo r the fou r 
diagonal peaks as a dist inct elongation o f the peak shape along 
the diagonal o f the spectrum. However, this shape is far f r o m 
clear fo r the off -d iagonal peaks, and could be mistakenly 
at t r ibuted to unequal scaling o f the two axes (care has been 
taken in the p lo t t ing o f the figures to ensure that the range fo r 
bo th axes is identical and that the aspect rat io is 1:1). More ­
over, the cross-peaks are t i l ted away f r o m the diagonal. As a 
result, the correlat ion o f the inhomogeneous broadenings 
could be overlooked. 

The poor qual i ty o f the correlat ion in fo rma t ion in Fig . 3a 
can be traced to two effects: the consequences o f Lorentzian-
like lineshapes and the effects o f t] ridges on weak cross-peaks. 
Fig . 4a and b illustrates the fo rmer effect using simulated 
magnetisation exchange spectra. The overall lineshapes f o r 
each peak are the convolu t ion o f the 2 - D homogeneous 
fundamental lineshapes and the lineshape due to the inhomo­
geneous d is t r ibu t ion o f frequencies. This is modelled here as a 
Gaussian func t i on aligned along f \ = corresponding to a 
100% correlat ion between inhomogeneous frequency shifts. 

I n F ig . 4a, the underlying homogeneous lineshape is L o r -
entzian. A 2 - D Lorentzian lineshape has a variable cross-
section and, depending on the contour level, typically has a 
distinct "star" shape." A s seen in Fig . 4a, this non-circular 
cross-section obscures the correlat ion o f the inhomogeneous 
line-broadenings since the overall shape is dominated by the 
2 - D Lorentzian "star". I n contrast, a 2 - D Gaussian func t ion 
has a circular cross-section and calculating the same spectra 
w i t h a 2 - D Gaussian func t i on o f the same wid th gives a 
spectrum in which the correlat ion o f the inhomogeneous 
broadenings is much clearer. F ig . 3b. Moreover the Gaussian 
lineshape also decays to the baseline more quickly than a 
Lorentzian, fu r ther improv ing the effective resolution. 

We can pe r fo rm the equivalent change o f lineshape on the 
experimental spectrum by a Lorentzian-to-Gaussian lineshape 
t ransformat ion p r io r to Fourier t ransformat ion . F ig . 3b is the 
result o f "subt rac t ing" 300 H z o f Lorentzian lineshape (mu l t i ­
p ly ing the t ime domain data by an appropriate rising 
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Fig. 3 " F N O E S Y / E X S Y spectra of octafluoronaphthalene using a short mixing time of 2.3 ms: (a) without lineshape transformation, (b) after 
Lorentzian-Gaussian transformation (subtracting 300 Hz of Lorentzian linewidth and adding 300 Hz of Gaussian line broadening). The 
experiments used a 4.5 jis 90° pulse for " F with 48 time steps in the indirect dimension and a spectral width of 14.66 kHz in the indirect dimension. 
The sample was spun at 22 kHz and the recycle delay was 16 s. 
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Fig. 4 Calculated 2-D magnetisation exchange line-shapes in which inhomogeneous broadenings between the two sites are perfectly correlated; 
(a) using a Gaussian lineshape with a width of 100 Hz to represent the inhomogeneous distribution of frequencies and a 30 Hz homogeneous 
(Lorentzian) fundamental line-shape, (b) as before, but with a 30 Hz Gaussian homogeneous lineshape. The peak shape now clearly reveals the 
underlying correlation between the inhomogeneous broadenings which is obscured by "star" profile of the homogeneous lineshape in (a). Insets 
show the respective 1-D Gaussian and Lorentzian lineshapes. 

exponential) and adding 300 Hz of Gaussian lineshape. Such a 
transformation is linear (and hence information-preserving) so 
there is no risk that such a transformation could introduce 
artifacts unless an excessively strong apodisation function is 
applied. This would result in clearly visible high-frequency 
oscillations ("sinc-wiggles"). Indeed, it can be argued that the 
original spectrum is a poor representation of the correlation 
between line frequencies since this "correlation map" is ob­
scured by the convolution with the natural lineshape. It is only 
when this lineshape is replaced by an "isotropic" function that 
the underlying correlation information is correctly displayed. 

Varying the added Gaussian Unewidth will determine 
whether the overall effect of the lineshape transformation is 
to smooth the data set (and improve signal-to-noise ratio) or 
"enhance" the resolution.'* However, the information-preser­
ving nature of the lineshape transformation means that accu­
rate estimations of homogeneous linesha()e are not important, 
and suitable values for the transformation can be determined 
by eye. 

The spectrum after Lorentzian-to-Gaussian lineshape trans­
formation. Fig. 3b, clearly shows a strong correlation between 
the inhomogeneous broadenings at different sites. The trans­
formation also significantly sharpens the peaks in anti-diag­
onal cross-section. This improvement is essentially cosmetic, 
however; poorly-resolved features will be easier to distinguish 
after "resolution enhancement", but it will not be possible to 
resolve features that are not distinct in the l - D spectrum. Note 
that ultra-fast magic-angle spinning will have a similar effect in 
so far as it suppresses the homogeneous component of the 
linewidth leaving a purely inhomogeneous lineshape. Unfor­
tunately the homogeneous linewidth only decreases as the 
reciprocal of the magic-angle spinning rate^ resulting in sig­
nificant homogeneous linewidths for strongly coupled abun­
dant spins such as " F and ' H even at the fastest available 
spinning rates. In this example, for instance, increasing the 

MAS rate from 22 to 30 kHz decreases the homogeneous 
linewidth by only 25% and the overall linewidth by a 
mere 8%. 

Comparing Fig. 3a and b, it is noticeable that the orienta­
tion of the cross-peaks between the a and P sites seems to have 
shifted, with the peaks in (b) now being aligned along the 
diagonal, as expected. Close inspection of a stack plot of the 
original data set. Fig. 3, shows this to be a consequence of i\ 
ridges." These are reduced, but not entirely eliminated, by 
adjusting the scaling of the first point prior to Fourier 
transformation of the direct acquired dimension. Sharpening 
the peaks by lineshape transformation increases the size of the 
off-diagonal peaks relative to the ridges, reducing the latter's 
distorting effects. This leads to the "correct" correlation 
pattern observed in Fig. 3b. 

4. Calculation of chemical shifts 

As the N M R experiments are unable to provide an absolute 
assignment of the individual resonances to the different fluor­
ine sites in the crystal structure, the shielding constants in solid 
octafluoronaphthalene were calculated by density functional 
theory using the first principles electronic structure package, 
CASTEP.^" 

The wavefunction of the system is expanded in a plane wave 
basis set to an energy cut-off of 1110 eV which converges total 
energy differences of the system to better than 1.0 meV cell"' . 
Brillouin zone integration is performed using a Monkhurst-
Pack ^-point set of a density of 0.05 A " ' . The total energy is 
then observed to converge to a similar level of accuracy. The 
optimised structures were determined by relaxed atomic posi­
tions within this symmetry group using ab initio forces, con­
sidering the calculation to have converged when the 
components of all forces are below 0.01 eV A " ' . We also 
simultaneously perform relaxation of the unit cell parameters 
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using ab initio stresses. Calculations of the N M R properties 
were performed using the methods described in ref. 21 and as 
implemented in the CASTEP code. 

Calculations were performed using the Perdew-Burke-Ern-
zerhof (PBE)" and Keal-Tozer-3 (KT3)^' generalised gradient 
approximation to the exchange-correlation interactions. The 
former (PRE) is a non-empirical approximation, which is 
widely used in solid-state physics and describes many physical 
properties of solid state systems accurately. The latter (KT3) is 
a semi-empirical approximation which was specifically de­
signed to provide improved quality absolute shielding con­
stants. Initial calculations were performed at the original 
X-ray structure from the Cambridge Structural Database 
(reference code OFNAPHOl). Calculated N M R parameters 
are known to be sensitive to atomic positions^* and since the 
^-factor for this X-ray structure is rather poor, additional 
calculations were performed at optimised structures, deter­
mined self-consistenily using the respective functional. 

As chemical shift referencing is difficult (not least due to 
bulk susceptibility effects), the calculated shielding values were 
compared to the experimental shift values after reversing the 
sign and adjusting the mean of the calculated values to match 
the experimental mean. The results are presented graphically 
in Fig. 5. 

PEE and KT3 give similar results. They correctly predict 
that the a resonances appear at higher (less negative) chemical 
shift than the P peaks, although the overall correlation with 
experimental values is disappointing. In particular, the calcu­
lations fail to make clear the a vs. P distinction that is observed 
experimentally, cf. Fig. Ic, and the spread of the values is 
consistently greater than expected. At the X-ray geometry, the 
F4-F1 chemical shift difference is substantially smaller than 

the F3-F2 difference, contrary to experiment. At optimised 
geometries, the differences are more equalised, but are still well 
above the experimental values. In line with previous observa­
tions, KT3^' absolute shielding constants (not presented) are 
uniformly above the PEE values. However, any improvement 
in absolute shieldings is cancelled when chemical shifts are 
determined due to the referencing which is invariably applied. 

Given the above deviations, it is interesting to make the 
comparison between solution-state N M R results and calcula­
tions for isolated (gas phase) molecules. In the solution-state, 
the a and P resonances are separated by about 9.1 ppm,^ which 
is larger than the complete spread of the shifts in the solid-state 
(6.4 ppm). This is shghtly counterintuitive since we might 
exp>ect differential packing effects to lead to a larger range in 
the solid. DFT calculations of the " F shifts for the isolated 
molecule were performed with the DALTON program,"^ 
using the Huzinaga I I I basis set,̂ * at cc-pVTZ^' optimised 
geometries. Geometry optimisation is essential here since the 
X-ray structure is not fully symmetrical. PEE and KT3 yield 
separations of 11.5 and 11.7 ppm, respectively, which are only 
marginally larger than the experimental value from solution-
state NMR. 

Although calculations from packages such as CASTEP are 
proving of great value in assigning N M R spectra from a wide 
variety of nuclei,''^'^' these results highlight inadequacies in 
DFT descriptions. This is consistent with previous studies that 
have demonstrated much larger errors in chemical shift pre­
dictions for electronegative atoms such as F." Despite 
their limitations, the calculations do successfully predict the 
correlation between the pairs of a vs. P peaks established from 
the 2-D correlation spectrum. This provides strong reassur­
ance that the quantum chemical calculations are correctly 
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Fig. S Comparison of experimental chemical shifts for octafluoronaphthalene with calculated chemical shifts using both optimised and un-
optimised geometries, and PBE or KT3 functionals. The mean of each set of calculated shifts has been adjusted to match the mean of the 
experimental values. Figures give the separations (in ppm) between shift values. 
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Table 1 Assignment of " F resonances to crystallogra-
phically distinct fluorine sites using the labelling scheme 
of Fig. lb 

Observed shift / ppm Site label 

-147.8 F4 
-149.3 F l 
-152.8 F3 
-154.1 F2 

predicting the order of the chemical shifts, even i f the shift 
values themselves may only be accurate to ±2 ppm. This leads 
us to propose the assignment summaiised in Table 1. 

Summary 

The " F N M R of octafluoronaphthaiene has been revisited in 
the light of new developments in the understanding and 
practice of solid-state N M R . The " F linewidth was found to 
be largely inhomogeneous in character i.e. most of the decay of 
the " F N M R signal is refocused by a spin-echo. This inho­
mogeneous linewidth could be largely attributed to the large 
anisotropy of the bulk magnetic susceptibility (ABMS) ex­
pected for this material (in turn, due to aromatic ring stack­
ing). As a consequence, the spectral resolution increased 
significantly on dilution in a material of low ABMS. This 
phenomenon has favourable implications for the observation 
of low concentrations of materials susceptible to ABMS 
broadenings in formulated products. Deliberate sample dilu­
tion is not a practical route to improved resolution, however, 
since the extent of the resolution improvement is difficult to 
predict a priori and unacceptably high degrees of dilution may 
be required for the effects to be noticeable. Quantum chemical 
computations have been shown to provide useful estimates of 
the magnitude of these effects. 

Technological and methodological developments, such as 
higher static magnetic fields, faster MAS rates, and improved 
decoupling techniques, mean that the inhomogeneous contri­
butions to linewidths are often larger than "homogeneous" 
contributions from dipolar couplings or motional effects. This 
distinction isoflimited significance in 1-D NMR, but in multi­
dimensional N M R the correlations between inhomogeneous 
broadenings can lead to well-resolved features and significant 
additional information. However, these correlations may be 
easily overlooked, or may be distorted by effects of i\ ridges. 
We have shown that appropriate processing of the 2-D spectra 
is important for weak correlations to be correctly charac­
terised. Applying a lineshape transformation that increases 
Gaussian character of the 2-D lineshapes improves the appar­
ent resolution and ensures that the correlation spectra more 
closely correspond to plots of the correlation between inho­
mogeneous broadenings. This will be important if 2-D maps 
are being used to provide structural information such as bond-
angle distributions. 

Finally, the combination of DFT calculations with correla­
tion information from multi-dimensional N M R is found to be 
invaluable in assigning " F N M R resonances. Comparison 
between experiment and calculation and between calculations 
show that individual shifts are predicted with accuracies of 
about 1% (2 ppm) of the typical " F shift range which is 

significantly poorer than typical experimental resolution. 
There are clear systematic discrepancies between calculated 
and experimental shifts which mean that the assignments 
cannot be made confidently on the basis of calculations alone. 
On the other hand, simple 2-D homonuclear correlation 
experiments readily identify sites in close spatial proximity, 
but are often insufficient in themselves to make a complete 
assignment to individual sites in the crystal structure. How­
ever, the combination of the correlation experiments with the 
calculated shifts has provided a convincing full assignment in 
this case and should be readily applicable to more complex 
cases. Co-workers have recently made other demonstrations of 
the effective combination of DFT calculation and connectivity 
(rather than proximity) relationships provided by the solid-
slate NMR variant of the INADEQUATE experiment."* 
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