
Durham E-Theses

Interconnection networks for parallel and distributed

computing

Xiang, Yonghong

How to cite:

Xiang, Yonghong (2008) Interconnection networks for parallel and distributed computing, Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/2156/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/2156/
 http://etheses.dur.ac.uk/2156/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Interconnection Networks for 
Parallel and Distributed 

Computing 

Yonghong X I A N G 

Supervisor: Professor Iain Stewart and Professor Hajo Broersma 

The copyright of this thesis rests with the 
author or the university to which it was 
submitted. No quotation firom it, or 
information derived from it may be 
published without the prior written 
consent of the author or university, and 
any information derived from it should be 
acknowledged. 

A thesis presented for the degree of 

Doctor of Philosophy 

m 
Department of Computer Sciences 

University of Durham 
England 

August 2008 

1 9 DEC 2008 



Dedicated to 
My wife Yiinli LIU 



Interconnection Networks for Parallel and 
Distributed Computing 

Yonghong X I A N G 

Submitted for the degree of Doctor of Philosophy 

August 2008 

Abstract 

Parallel computers are generally either shared-memory machines or distributed-

memory machines. There are currently technological limitations on shared-memory 

architectures and so parallel computers utilizing a large number of processors tend to 

be distributed-memory machines. We are concerned solely with distributed-memory 

multiprocessors. In such machines, the dominant factor inhibiting faster global com

putations is inter-processor communication. Communication is dependent upon the 

topology of the interconnection network, the routing mechanism, the flow control 

policy, and the method of switching. We are concerned with issues relating to the 

topology of the interconnection network. 

The choice of how we connect processors in a distributed-memory multiprocessor 

is a fundamental design decision. There are numerous, often conflicting, consider

ations to bear in mind. However, there does not exist an interconnection network 

that is optimal on all counts and trade-offs have to be made. A multitude of inter

connection networks have been proposed with each of these networks having some 

good (topological) properties and some not so good. 

Existing noteworthy networks include trees, fat-trees, meshes, cube-connected 

cycles, butterflies, Mobius cubes, hypercubes, augmented cubes, A;-ary n-cubes, 

twisted cubes, n-star graphs, (n, /c)-star graphs, alternating group graphs, de Bruijn 

networks, and bubble-sort graphs, to name but a few. 

We will mainly focus on fc-ary n-cubes and (n, /c)-star graphs in this thesis. 

Meanwhile, we propose a new interconnection network called augmented k-ary n-



IV 

cubes. 

The following results are given in the thesis. 

1. Let A; > 4 be even and let n > 2. Consider a faulty k-aiy n-cube Q'^ in which 

the number of node faults /„ and the number of link faults / g are such that 

/ n + /e < 2n — 2. We prove that given any two healthy nodes s and e of (5̂ , 

there is a path from s to e of length at least A;" - 2 /n - 1 (resp. A;" - 2/^ - 2) if 

the nodes s and e have different (resp. the same) parities (the parity of a node 

in is the sum modulo 2 of the elements in the n-tuple over 0,1, • • • , A; — 1 

representing the node). Our result is optimal in the sense that there are pairs 

of nodes and fault configurations for which these bounds cannot be improved, 

and it answers questions recently posed by Yang, Tan and Hsu, and by Fu. 

Furthermore, we extend known results, obtained by Kim and Park, for the 

case when n = 2. 

2. We give precise solutions to problems posed by Wang, An, Pan, Wang and 

Qu and by Hsieh, Lin and Huang. In particular, we show that is bi-

panconnected and edge-bipancyclic, when A; > 3 and n > 2, and we also 

show that when A; is odd, is m-panconnected, for m = "(fe-^H^*'"^ ̂  

(A; - l)-pancyclic (these bounds are optimal). We introduce a path-shortening 

technique, called progressive shortening, and strengthen existing results, show

ing that when paths are formed using progressive shortening then these paths 

can be efficiently constructed and used to solve a problem relating to the dis

tributed simulation of linear arrays and cycles in a parallel machine whose 

interconnection network is Q^, even in the presence of a faulty processor. 

3. We define an interconnection network AQn,k which we call the augmented 

A;-ary n-cube by extending a A:-ary n-cube in a manner analogous to the exist

ing extension of an n-dimensional hypercube to an n-dimensional augmented 

cube. We prove that the augmented A;-ary n-cube AQn,k has a number of 

attractive properties (in the context of parallel computing). For example, we 

show that the augmented A;-ary n-cube AQn,k' is a Cayley graph (and so is 

vertex-symmetric); has connectivity 4n — 2, and is such that we can build a 



set of 4n - 2 mutually disjoint paths joining any two distinct vertices so that 

the path of maximal length has length at most m a x { ( n - l)k- (n-2) , /c + 7}; 

has diameter [ |J + f ^ l , when n - 2: and has diameter at most + 1), for 

n > 3 and k even, and at most | ( n + 1) + ^, for n > 3 and k odd. 

4. We present an algorithm which given a source node and a set of n — 1 target 

nodes in the (n,/c)-star graph 5„,/c, where all nodes are distinct, builds a col

lection of n — 1 node-disjoint paths, one from each target node to the source. 

The collection of paths output from the algorithm is such that each path has 

length at most 6A; — 7, and the algorithm has time complexity 0(/c'^n^). 

Keywords: interconnection network, fault-tolerance, embedding, node-disjoint 

paths, bipanconnectivity, bipancyclicity, hamiltonicity, fc-ary n-cube, augmented k-

ary n-cube, (n, fc)-star graph. 
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Chapter 1 

Introduction 

1.1 Parallel and distributed computers 

Parallel computers are generally either shared-memory machines or distributed-

memory machines. There are currently technological limitations on shared-memory 

architectures and so parallel computers utilizing a large number of processors tend to 

be distributed-memory machines. We are concerned solely with distributed-memory 

multiprocessors. In such machines, the dominant factor inhibiting faster global com

putations is inter-processor communication. Communication is dependent upon the 

topology of the interconnection network (how the processors are joined to one an

other), the routing mechanism (how the paths along which data is transmitted be

tween processors are determined), the flow control policy (how channels and buffers 

are allocated to packets as they travel along a path in the interconnection network), 

and the method of switching (the method by which a packet is moved in the inter

connection network). We are concerned with issues relating to the topology of the 

interconnection network. 

The choice of how we connect processors in a distributed-memory multiprocessor 

is a fundamental design decision. There are numerous, often conflicting, considera

tions to bear in mind. For instance, we would like our interconnection network to 

be symmetric (to make programming and analysis easier), have small diameter (to 

lessen message-passing latency), be recursively decomposable (to aid scalability), 

be highly connected (to improve fault-tolerance and reliability), be regular of low 

1 



1.2. Some popular interconnection networks 

degree (to lessen communication overheads and design complexity), support rapid 

and easy inter-processor communication, support the simulation of other machines 

based on other topologies, and so on (note that a small diameter is desirable even 

when using wormhole switching, as wormhole switching only comes to the fore when 

dealing with larger packets). These properties all give rise to improved computa

tional performance. However, there does not exist an interconnection network that 

is optimal on all counts and trade-offs have to be made. A multitude of intercon

nection networks have been proposed with each of these networks having some good 

(topological) properties and some not so good. 

Existing noteworthy networks include trees, fat-trees, meshes, cube-connected 

cycles, butterflies, Mobius cubes, hypercubes, augmented cubes, k-aiy n-cubes, 

twisted cubes, n-stars, (n,/o-)-stars, alternating group graphs, de Bruijn networks, 

and bubble-sort graphs, to name but a few. In the following section, we will intro

duce several popular networks. 

1.2 Some popular interconnection networks 

The architecture of an interconnection network is usually represented by a graph. We 

use graphs and networks interchangeably. A network is represented as an undirected 

graph in the thesis. 

Interconnection topologies can be classified as either single-stage or multi-stage 

networks. Multi-stage networks, such as the omega network [107], connect system 

resources through multiple intermediate stages of crossbar switching devices. The 

performance of multi-stage type networks has been extensively studied in the litera

ture [1-3,101,147]. Single-stage networks incorporate the processing devices within 

the network itself, allowing direct communication between processors. A single stage 

network has smaller average latency and is more fault tolerant in comparison with 

multi-stage networks of the same size [65]. As a result, single-stage networks are 

gaining in popularity and have been employed in many existing large scale comput

ing systems [65 . 

We are only interested in single-stage networks, and now we will briefly introduce 
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some popular interconnection network topologies including hypercubes, A:-ary n-

cubes, n-star graphs and (n, A;)-star graphs. 

1.2.1 k-ary n-cube: an alternative to hypercube 

Perhaps the most popular interconnection topology is the hypercube Qn, on account 

of its properties and its extremely elegant realization as a graph whose nodes are in

dexed with bit-strings of length n and whose edges join nodes of Hamming distance 

1 (such a realization immediately yields elementary yet optimal routing algorithms 

and key topological information). The hypercube has been used as the intercon

nection topology of a number of distributed-memory multiprocessors, such as the 

Cosmic Cube [141], the Ametek S/14 [15], the iPSC [48,49], the Ncube [26,49] and 

the CM-200 [27], and the properties of hypercubes relevant to parallel computing 

have been well studied. 

However, every node of Qn has degree n, and, consequently, as n increases so 

does the degree of every node, which is undesirable. Hence, given a collection of 

processors, if we wish to connect these processors in the topology of a hypercube then 

we have no choice as to the degree of the nodes of the resulting network. One method 

of circumventing this problem, so as to still retain a 'hypercube-like' interconnection 

network, is to build parallel computers so that the underlying topology is the A;-ary 

n-cube Q^- The A:-ary n-cube is similar in essence to the hypercube (the nodes being 

indexed by bit-strings of length n where there are k, as opposed to 2, different bits), 

but by a judicious choice of A; and n we can include a large number of nodes yet 

keep the degree of each node low. The A;-ary n-cube has not been investigated 

to the same extent as the hypercube, but it has still been well studied. Machines 

whose underlying topology is based on a A;-ary n-cube include the Mosaic [142], the 

iWARP [24], the J-machine [127], the Cray T3D [96], the Cray T3E [9], the SGI 

Origin and the IBM Blue Gene [64], and so on. 
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1.2.2 (n,/c)-star graph: an alternative to n-star graph 

The n-star graph [4] is an attractive alternative to the hypercube Qn, and has signif

icant advantages over Q n , such as a lower degree and a smaller diameter. However, 

a practical restriction is the number of nodes: n! for an n-star graph. Since there is 

a large gap between n! and (n -h 1)!, one may face the choice of either too few or too 

many available nodes. The (n, fc)-star graph preserves many attractive properties 

of the n-star graph such as node symmetry, hierarchical structure, maximal fault 

tolerance, and simple shortest routing. What 's more, the two parameters n and k 

can be tuned to make a suitable choice for the number of nodes in the network and 

for a degree/diameter trade-off. This allows more f lexibi l i ty in designing networks 

than star graphs offer. 

The definition and some basic properties of hypercubes, /c-ary n-cubes, n-star 

graphs and (n, /c)-star graphs w i l l be given in Chapter 2. 

1.3 Paths and cycles 

1.3.1 Paths and cycles in non-faulty interconnection net

works 

I t is important for an interconnection network to efficiently route data among nodes. 

Efficient routing can be achieved by using node-disjoint paths. In what follows, we 

w i l l use disjoint paths for node-disjoint paths. Routing by disjoint paths among 

nodes can not only avoid communication bottlenecks, and thus increase the efficiency 

of message transmission, but also provide alternative paths in case of node failures. 

There are three well-known paradigms for the study of disjoint paths in inter

connection networks. The node-to-node (one-to-one) disjoint paths that constructs 

the maximal number of disjoint paths in the network between two given nodes. The 

node-to-set (one-to-many or many-to-one) disjoint paths that constructs disjoint 

paths in the network f rom a given node to each of the nodes in a given set (it is 

true that k disjoint paths exist for the node-to-set disjoint paths problem in a k-

connected graph [123]). The fc-pairwise disjoint paths (set-to-set disjoint paths or 
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many-to-many disjoint paths) that constructs k disjoint paths between the given k 

node-pairs. 

Linear arrays (paths) and rings (cycles), which are two of the most fundamental 

networks for parallel and distributed computation, are suitable for designing simple 

algorithms w i t h low communication costs. Numerous efficient algorithms designed 

on linear arrays and rings for solving various algebraic problems and graph problems 

can be found in [7,128]. Linear arrays and rings can also be used eis control/data flow 

structures for distributed computation in arbitrary networks. For example, having 

a collection of processors connected in a ring means that all-to-all message passing 

can be undertaken by "daisy-chaining" messages around the ring. A n application of 

longest paths to a practical problem was encountered in the on-hne optimization of 

a complex Flexible Manufacturing System (see [10]). These applications motivate 

the embedding of paths and cycles in networks. 

One important property relevant to parallel computing is hamiltonicity, for the 

existence of hamiltonian cycles in networks is of crucial importance, given the ubiq

uity of such cycles as data structures in many distributed algorithms (they are 

primarily used to facilitate message-passing). Not only is the existence of hamil

tonian cycles of great importance but also the existence of hamiltonian paths, and 

more generally the existence of cycles and paths of different lengths. The existence 

of hamiltonian (or, at least, long) paths is extremely useful as we regularly need to 

simulate linear-array computations in distributed-memory multiprocessors; having 

a long path allows us to cater for such simulations where there are many differ

ent array lengths involved in the simulations. In addition, given the ubiquity of 

cycle-based computations and algorithms in parallel computations, not only is the 

simulation of linear-array-based computations important but so is the simulation of 

cycle-based computations (of varying lengths). 

Other hamiltonicity-based algorithms are also important in interconnection net

works, such as the existence of (almost-)hamiltonian path, hamiltonian connec

t ivi ty , almost-hamiltonian-connectivity, (m-)pancyclicity, (m-)panconnectivity, and 

hamiltonian-laceability. 
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1.3.2 Paths and cycles in faulty interconnection networks 

As more and more processors are incorporated into parallel machines, faults be

come more common, be i t faults in the processors themselves or faults on the inter-

processor connections. Given the significant cost of parallel machines, we would 

prefer to be able to tolerate small numbers of faults and sti l l be able to use our 

parallel machine. A key property we would like our ' faul ty ' machine to have is that 

a large number of the healthy processors should remain in a connected component 

and be able to undertake significant parallel computations. However, we prefer that 

the (non-faulty port ion of the) interconnection network remains connected. 

A number of different contexts have been studied w i t h respect to the existence of 

faults. For example, the existence of hamiltonian cycles, hamiltonian paths, cycles 

and paths of specific lengths, and so on, have been studied in a variety of intercon

nection networks where there are faulty nodes or links. I n addition, other aspects of 

fault-tolerance have been considered wi th regard to broadcasting algorithms, Euler 

tour algorithms, wormhole routing algorithms, and so on. 

Indeed, some parallel applications, such as those in image and signal processing, 

are originally designed for a cycle architecture, and i t is important to have effective 

cycle embeddings in a network. Faults can be static or dynamic, and there are 

possibilities of faul ty nodes, faulty links or both faulty nodes and links. 

When we consider how many faults we can tolerate in a given context, there 

are often pathological situations which immediately yield upper bounds. However, 

i t has been shown that for certain topologies and situations, the probability of 

such situations is extremely small and discounting them can yield a meaningful and 

improved analysis. For example, consider a fc-ary n-cube where we wish to determine 

the maximum number of faulty nodes so that regardless of the distr ibution of these 

faults, the healthy nodes remain connected. Immediately we see that there are 

configurations of 2n faulty nodes (where all faulty nodes are adjacent to some given 

node) which disconnect the network. However, if one assumes that the distribution 

of faults is such that all nodes are incident w i th at least 1 healthy node then a 

fc-ary n-cube can tolerate 4n — 3 faulty nodes such that the healthy nodes remain 

connected [44] (this result is optimal) . Similar results regarding the conditional fault 
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connectivity of other networks have been obtained, e.g., for hypercubes [36,52]; for 

cube-connected cycles, undirected de B r u i j n networks and Kautz networks [133]; 

and for twisted-cubes, crossed-cubes, Mobius cubes, star graphs, pancake graphs 

recursive circulant graphs, and /c-ary n-cubes [36]. Related studies of the diameter of 

faulty networks, under similar conditional fault assumptions, have been undertaken 

for hypercubes [104] and star graphs [138]. Conditional fault assumptions have also 

been made and studied in the context of hamiltonian cycles for hypercubes [28], 

crossed-cubes [91], star graphs [61] and so on. 

Some related work has also been done for meshes [165], torus networks [145], 

arrangement graphs [79], line digraph interconnection networks [161], multi-stage 

interconnection networks [160], pancake graphs [90], double loop networks [152], (bi

nary) wrapped but terf ly graphs [17], folded hypercubes [162], (n, A;)-star graphs [86], 

Josephus cubes [117], gamma interconnection networks [35], twisted cubes [59,89], 

recursive circulant graphs [130], flexible hypercubes [95], de Bru i jn networks [126], 

and so on. Note that the general problem of deciding whether a given hypercube or 

a fc-ary n-cube w i t h an arbitrary collection of faults has a hamiltonian cycle (where 

no conditional assumptions on the distr ibution or number of faults are made) is 

known to be NP-complete [14,28 . 

1.4 Organization of the thesis 

This thesis is focused on four aspects research of interconnection networks. 

In Chapter 2, some basic graph definitions wi l l be given. Then we wil l introduce 

several popular interconnection networks including the definitions and some of their 

basic properties. Also, some related results w i l l be given in this chapter. 

I n Chapter 3, we wi l l consider embedding long paths in a /c-ary n-cube wi th 

faulty nodes and links. We wi l l answer questions recently posed by Yang, Tan and 

Hsu [171], and by Fu [60]. Furthermore, we extend known results, obtained by K i m 

and Park [98], for the case when n = 2. 

I n Chapter 4, we wi l l investigate the hamiltonian, pancyclic, panconnected, bi-

pancyclic and bipanconnected properties of fc-ary n-cubes. Precise solutions wi l l be 



1.4. Organizat ion of the thesis 8 

given to problems posed by Wang, A n , Pan, Wang and Qu [163] and by Hsieh, L in 
and Huang [82]. A path-shortening technique, called progressive shortening, wi l l 
be introduced. We wi l l strengthen existing results, showing that when paths are 
formed using progressive shortening then these paths can be efficiently constructed 
and used to solve a problem relating to the distributed simulation of linear arrays 
and cycles in a parallel machine whose interconnection network is Q^, even in the 
presence of a faulty processor. 

In Chapter 5, we wi l l propose a new interconnection network called the aug

mented k-ary n-cuhe AQn,k- Some basic properties including degree, diameter, con

nectivity and one-to-one node-disjoint paths wi l l be given for AQn.k-

In Chapter 6, we wi l l present an algorithm which given a source node and a set 

of n — 1 target nodes in the (n, k)-stax graph Sn,ki where all nodes are distinct, builds 

a collection of n — 1 node-disjoint paths, one f rom each target node to the source. 

The collection of paths output f rom the algorithm is such that each path has length 

at most 6/c — 7, and the algorithm has time complexity 0(/c'^n''). 

Finally, Chapter 7 concludes the thesis and gives some future research topics. 

Based on the recursive structural properties of fc-ary n-cubes, augmented /c-ary 

n-cubes and (n, /c)-star graphs, we mainly use induction proof method in Chapter 

3, 4, 5 and 6. 



Chapter 2 

Basic Definitions and Basic 

Results 

In this chapter, we wi l l introduce .some basic graph definitions. Then we wil l intro

duce several popular interconnection networks and some of their basic properties. 

2.1 Some basic graph definitions 

Throughout the thesis, a network is represented as a loopless undirected graph. For 

graph theoretic definitions and notations, we follow [22 . 

G — [V, E) is a graph if K is a finite set and is a subset of {{u, v)\{u, v) is an 

unordered pair of V '} . We say that V is the vertex {node) set and E is the edge 

{link) set. Two vertices u and v are adjacent i f {u,v) E E. A graph H is called a 

subgraph of G i f V{H) C V{G) and E{H) C E{G). In graph G, the neighborhood 

of V, denoted by Nc{v), is the set {x\{v,x) 6 E}. I f i t is clear which graph is 

considered, we write A^(i;) instead; the same holds for other notations using graphs 

as a subscript. The degree of a vertex v, denoted by deg{v), is the number of vertices 

in N{v). A graph G is k-regular i f deg{v) — k for every vertex v e V. A graph 

G is vertex-symmetric (or node-symmetric) i f given any two distinct nodes v and v' 

of G, there is an automorphism of G mapping v to v'. A graph G = {VQUVI, E) 

is bipartite i f V{G) is the union of two disjoint sets VQ and Vi such that each edge 

consists of one vertex f rom each set; such a par t i t ion (VQI ^ i ) is called a bipartition 
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of the graph. Given vertices u and v, we say that u and v are in the same partite set 
if iL, V G Vi or in different partite sets if u G Vj and v G for i G { 0 , 1 } . A vertex 
cut of a graph G is a set 5 C V ( G ) such that G — S has more than one connected 
component. I t is known that only complete graphs do not have vertex cuts. The 
connectivity or vertex-connectivity of G , wri t ten K{G), is defined as the minimum 
size of a vertex cut if G is not a complete graph, and K.{G) = [^^(G)! — 1 otherwise. 
A graph G is called k-connected or k-vertex-connected i f its vertex connectivity is 
k or greater. A graph G wi th vertex connectivity K ( G ) can tolerate K{G) — 1 node 
failures. This measure of fault tolerance, however, gives a poor indication about the 
impact of faults on the interconnection network. A more appropriate metric, which 
is often used for measuring the fault tolerance of a graph, is the fault-diameter, which 
is defined as the maximum diameter of any graph obtained f rom G by removing at 
most K{G) — 1 nodes f rom G [100 . 

A path is a non-null sequence p = (wi, 6 2 , f 2 , £ 3 , t'a, • • •, et, Vk) whose terms 

are alternately vertices and edges, such that, for 2 < i < k, the ends of are V j - i 

and v-i, and in which all the vertices Vi, V2- . • Vk are distinct. For convenience, we 

also write the path as {vi, V2, v^, ..., v^) or ( v i , 62 , 6 3 , . . . , e ,̂ v^). We also write 

the path {vi, V2, vs, ..., Vk) as {vi, p', Vi, Vi+i, . . . , V j , p", Vt, . . . , v^), where p' is 

the path (wi, V2, U3 , . . . , Vi) and p" is the path {vj, vj+i, . . . , Vi). We use p~^ to 

denote the path {v^, f f c - i i • • •, On occasion we might refer to a link {x,y) as 

appearing on a path p{u,v), or equivalently the path p{u,v) as containing the l ink 

( X , y); when we do, the notation denotes that i f we traverse the path p(u, v) starting 

at node u then we shall reach node x immediately before we reach node y. I f p{u, v) 

is a path and x and y are nodes on this path then p(x, y) denotes the sub-path of 

p{u, v) starting at x and ending at y. The length of a path p is the number of the 

edges in p, denoted by \p\. We use disG{u,v) to denote the distance between u and 

V in graph G , that is the length of the shortest path joining u and v. The diameter 

of a graph G , denoted by dia{G). is the greatest distance between any two vertices. 

A path is a hamiltonian path i f its vertices are distinct and span V. A cycle is a 

path wi th at least three vertices such that the first vertex is the same as the last 

vertex. A cycle is a hamiltonian cycle i f i t traverses every vertex of G exactly once. 
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A graph is hamiltoman if i t has a hamiltonian cycle. 

We say that a graph is hamiltonian-connected if there is an hamiltonian path join

ing any two distinct nodes of the graph. Note that any (non-trivial) bipartite graph 

cannot be hamiltonian-connected, though there might exist almost-hamiltonian 

paths, i.e., paths joining pairs of distinct nodes upon which all but one of the nodes 

of the graph appear (a solitary node not appearing on an almost-hamiltonian path is 

called the residual node). Irrespective of whether a graph is bipartite or not, we say 

that a graph is almost-hamiltonian-connected i f there is a hamiltonian path of an 

almost-hamiltonian path joining any pair of distinct nodes. The concept of hamil

tonian connectivity does not apply to biparti te graphs because biparti te graphs are 

definitely not hamiltonian connected except for a few exceptions such as K2 or . 

As such a property is important, the concept of hamiltonian laceability on bipar

t i te graphs was introduced by Wong [164]. A biparti te graph G - {VQ {JVI,E} is 

hamiltonian laceable i f there is a hamiltonian path between any two vertices x and 

y which are in different partite sets. A hamiltonian laceable graph G is k-edge-fault-

tolerant hamiltonian laceable if G — E ' is hamiltonian laceable where E' is subset 

of E w i th \E'\ < k. On the condition of [Vol - Hsieh et al. [80] proposed the 

concept of strong hamiltonian laceability. G is strongly hamiltonian laceable i f i t is 

hamiltonian laceable and there is a path of length |Vo| + l ^ i l - 2 between any two 

vertices in the same parti te set. A strongly hamiltonian laceable graph G is k-edge-

fault-tolerant strongly hamiltoman laceable '\{G — E' is strongly hamiltonian laceable 

where £" is subset of E w i th \E'\ < k. Lewinter and Widulski [109] introduced an

other concept, hyper hamiltonian laceability. G is hyper hamiltonian laceable i f i t 

is hamiltonian laceable and for any vertex v e Vi, there is a hamiltonian path of 

G \ { y } between any two vertices in V i _ j . A hyper-hamiltonian laceable graph G 

is k-edge-fault-tolerant hyper-hamiltoman laceable if G — E' is hamiltonian laceable 

where E' is subset of E w i th \E'\ < k. So hyper hamiltonian laceability implies 

strong hamiltonian laceability. 

A k-container of G between ii and v, C{u,v), is a set of k internally disjoint 

paths between u and v. A ^-container C{u,v) of G is a k'-container i f i t contains 

all vertices of G. A graph G is k* -connected i f there exists a /c*-container between any 
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two distinct vertices. Obviously, a l*-connected graph (there is a path connecting 
any two nodes and covering all the nodes in the graph) is a hamiltonian connected 
graph, and a 2*-connected graph (there are two disjoint paths between any two 
nodes, and these two paths cover all nodes in the graph; thus they form a cycle, 
and all nodes are on the cycle.) is a hamiltonian graph. The spanning connectivity 
of a graph G, K*{G), is the largest integer A; such that G is w*-connected for all 
I < w < k. A graph G is super spanning connected i f K*{G) — K{G). 

The concept of pancyclicity was extended to vertex-pancyclicity by Hobbs [76 

and edge-pancyclicity by Alspach and Hare [8]. Let n = \ V{G)\. A graph G is called 

vertex-pancyclic i f for any vertex u, there exists a cycle of every length f rom 3 to n 

containing u , and edge-pancyclic i f for any edge e, there exists a cycle containing e of 

every length f rom 3 to n. I f we fix one edge (two linked vertices), there exist cycles of 

every length f rom 3 to n, then if we fix one of these vertices, the result wi l l s t i l l hold. 

So, every edge-pancyclic graph is vertex-pancyclic. The graph G is almost-pancyclic 

i f i t contains a cycle of every possible length between 4 and n, and bipancycHc if 

it contains a cycle of every possible even length between 4 and n (the definition of 

bipancyclicity is intended primarily for bipartite graphs but can be applied to any 

graph). A graph G is called edge-bipancyclic i f every edge e of G lies on a cycle of 

every even length between 4 and n , and vertex-bipancyclic i f every vertex t; of G lies 

on a cycle of every even length between 4 and n. A graph G is k-edge-fault-tolerant 

bipancyclic i f the resulting graph by deleting any k edges f rom G is bipancyclic. A 

graph G is k-edge-fault-tolerant edge-bipancyclic i f the resulting graph by deleting 

any k edges f rom G is edge-bipancyclic. The graph G is panconnected (resp. m-

panconnected) if for any pair of distinct vertices u and v, there is a path joining u 

and V of every length between dis{u,v) (resp. m > dis{u,v)) and n — 1. The graph 

G is bipanconnected i f for any pair of distinct vertices u and v, there is a path joining 

u and V of every length f rom {/ : / = dis{u, v) -1- 2i, where 0 < z < " " ' ^ " ^ " ' ^ ^ } . 

The Hamming distance between two vectors a and b is the number of different 

positions in which a and b differ, denoted by Dnia, b). Let a — o„a„_ i . . . a j be an 
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n-digit radix k vector. The Lee weight of a is defined as 

n 

Wi{a) = ^ {a^l, where |a j | = min(ai . A: — a,). 
i= l 

The Lee distance between two vectors a and b is denoted by Di{a, b) and is defined 

to be W[^{a — b). Tha t is, the Lee distance between two vectors is the Lee weight of 

their bitwise difference, mod k. 

For other graph theory definitions please refer to the bibliography 

2.2 Definitions and properties of some intercon

nection networks 

We wi l l define the mesh, torus, hypercube, fc-ary n-cube, n-star graph and (n, k)-stav 

graph and their basic properties in this section. 

2.2.1 Mesh, torus 

Definit ion 2.2.1 A n n-dimensional mesh system M ( s ) consists of S i x 52 x . . . x S n 

processors arranged in an n-dimensional grid. A processor in the grid is denoted by 

the coordinate { x i , X 2 , • . • ,Xn), where 0 < x.̂  < S i - 1. 

Specifically, we define a 2-dimensional mesh as follows. 

Definit ion 2.2.2 A n m x n (rectangular) mesh M{m,n) is a graph of m x n nodes 

arranged in m rows and n columns, where the node lying in the ith row and jth col

umn is identified w i t h an ordered pair ( i , j ) , and two nodes {i,j), {k,l) are adjacent 

i f and only i f either (a) i = k, \j - / | = 1, or (b) j = l,\i - k\ - 1. An m x n mesh 

is a bipartite graph wi th the bipart i t ion {UQ, UI), where 

^̂ 0 = {(hi) •• 0 < i < m - 1,0 < j < n - 1,1 + j is even}, 

j / i = { { i j ) ; 0 < 2 < m - 1,0 < j < n - l , z + j is odd} . 

A 2-dimensional mesh M{m,n) is also called a grid Grid{m,n). 



2.2. Definit ions and properties of some interconnection networks 14 

(0,0) 

(a) 4X4 mesh 
(3,3) 

(0,0) 

(6) 4X4 torus (3,3) 

Figure 2.1: Example: (a) 4 x 4 mesh, (b) 4 x 4 torus 

The 7i-dimensional mesh network is currently one of the most popular topologies 

for massively parallel computer systems [151]. Low dimensional mesh networks, due 

to their low node degree, are more popular than the high dimensional mesh networks. 

The two-dimensional mesh topology has been adopted by Symult 2010 [140], Intel 

Touchstone D E L T A [23] and Intel paragon [93]; the M I T J-machine [127] adopts 

three-dimensional mesh topology. 

Defini t ion 2.2.3 A torus T{m,n) is a mesh wi th wraparound edges in the rows 

and columns. A row-torus is a mesh wi th wraparound edges in the rows. The row-

torus rt{i,j) is the subgraph of T{m, n) induced by the nodes on rows i,i-\-l,... , j , 

i f i < j , or rows z, 2 -h 1 , . . . , m , 1 , . . . , j , if j < 2, but w i th all column hnks between 

nodes on row j and nodes on row i removed if i = j -\-1 or [i = 0 and j = k - 1). 

Fig. 2.1(a) is an example of a 4 x 4 mesh, and Fig. 2.1(b) is an example of a 

4 x 4 torus. 

A n m X n mesh wi th m , n > 4 is almost-hamiltonian-connected [92 . 

2.2.2 Hypercube 

Definit ion 2.2.4 The n-dimensional hypercube (n-cube) Qn, for n > 2, has 2" 

nodes indexed by { 0 , 1 } " , and there is a l ink {{un,Un-i,- •., u i ) , {vn,Vn-\,- • •,Vi)) if, 

and only if , there exists d G {1 ,2 , . . . ,n} such that \ud -Vd\ = 1, and = vi, for 

every z G { 1,2, . . . , n } \ {d}. 

Fig. 2.2(a), (b) and (c) depict (5 i ,Q2, and Qs respectively. The hypercube 

has been used as the interconnection topology of a number of distributed memory 
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Figure 2.2: Example of hypercubes: (a) Q i , (b) Q2, (c) Q 3 

multiprocessors, such as the Cosmic Cube [141], the Ametek S/14 [15], the iPSC 

48,49], the Ncube [26,49] and the CM-200 [27], and the properties of hypercubes 

relevant to parallel computing have been well studied. The n-cube is a connected 

graph of diameter n, and is regular of degree n [139]. The hypercube is a bipartite 

graph [108,139]. In n-cube, the minimum distance between the nodes u and v 

is equal to the number of bits that differ between u and v, i.e., to the Hamming 

distance DH{U,V) [139 . 

2.2.3 fc-ary n-cube 

The hypercube Qn is a very popular interconnection topology on account of its prop

erties and its extremely elegant realization as a graph. However, the node degree of 

Qn increases too fast, which is undesirable. Hence, a hypercube-like interconnection 

network k-avy n-cube was proposed, as in Q^, we can include a large number of 

nodes yet keep the degree of each node low by tuning k and n. 

Definit ion 2.2.5 The k-ary n-cube Q^, for A; > 1 and n > 1, has fc" nodes indexed 

by {0,l,...,k- 1 } " , and there is a l ink ( ( i i „ ,u„_ i , . . . , « i ) , (-u„,'t;„_i,.. .,vi)) if, and 

only if, there exists d e {1,2, ... , n } such that inm{\ud - Vd\, k - \ud-Vd\} = 1, and 

Ui = Vi, for every i e { 1 , 2 , . . . , n } \{d}, and we say this is an edge of dimension i. 

A n index d G { 1 , 2 , . . . , n } is often referred to as a dimension. We can partition 

Q'^ over dimension d by fixing the dth element of any node tuple at some value v, 

for every v G {0,1,... ,k — 1}. Such a part i t ion proves to be extremely useful (in 

proofs by induction, as we shall see for example in Chapter 3 and Chapter 4). 



2.2. Definit ions and properties of some interconnection networks 16 

The class of fc-ary n-cubes contains as special cases many topologies important 
to parallel processing, such as rings, hypercubes, and tori . Table 2.1 summarizes 
the special cases of fc-ary n-cubes [120]. Fig. 2.1(b) is a 4 x 4 torus, and is also a 
4-ary 2-cube. 

k 
n 

k 
1 2 > 3 

1 Point (cycle) Point (torus) Point 

2 Edge (hypercube/cycle) Square (hypercube/torus) Hypercube 

> 3 Ring Torus k-ary n-cube 

Table 2.1: Special k-ary n-cubes 

We now give some basic properties of k-ary n-cubes. A fc-ary n-cube is a regular 

graph. The degree of each node is n for A; = 2 and 2n for > 3. The number of edges 

in a A;-ary n-cube is nfc"-^ for k = 2 and n/c" for k>3 [120]. dia{Q^) = n [ | j [25 . 

In Q^, the length of a shortest path between any two nodes is equal to their Lee 

distance [25]. Q2 is bipanconnected, bipancyclic, almost-hamilton-connected, and 

if k is odd, Q2 is hamilton-connected, and is almost-hamilton-connected, and 

hamilton-connected i f k is odd [163]. is node-symmetric [98]. A k-ary n-cube 

contains k composite subcubes, each of which is a k-aiy ( n - l)-cube, and the number 

of edges w i t h endpoints in different composite subcubes is A;""^ for A; = 2 and /c" for 

k>3 [120 . 

2.2.4 n-star graph 

The n-star graph [4] is an attractive alternative to the n-cube, as i t has significant 

advantages over the n-cube, such as a lower degree and a smaller diameter. 

Definit ion 2.2.6 The n-star graph 5„ has node set V(S„ ) = {{ui, U2, . . . , Un) : 

each U i e { 1 , 2 , . . . , n } and Ui ^ Uj, for i ^ j ] , and there is an edge {{ui,U2, • • •, « n ) , 

{v\,V2, • • •, Vn)) if, and only if, u\ = Vi and Ui = V\, for some i € { 2 , 3 , . . . , n } , wi th 

Ui = vi, for all I e {2,3, ... , n } \{i}. 
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Fig. 2.3(a) shows a 3-star graph, (b) shows a 4-star graph. The n-star graph ^ n , 
has n! nodes, and edges. I t is regular of degree (n - 1) and has diameter 

dia{Sn) = ^^^Y^- Sn is node and edge symmetric and is (n - l)-connected [4,43 . 

The star graph, which belongs to the class of Cayley graphs [5], possesses many 

nice topological properties such as recursiveness, symmetry, maximal fault tolerance, 

sublogarithmic degree and diameter, and strong resilience [5], which are all desirable 

when we are designing the interconnection topology for a parallel and distributed 

system. Besides, the star graph can embed rings [135], meshes [137], trees [16], 

and hypercubes [125]. Many efficient algorithms [7] have been designed on the star 

graph. 

The star graph has been extensively studied. Its topological properties have been 

analyzed in [43,135,153]. Many efficient communication algorithms for shortest-

path routing [135], multiple-path routing [43], broadcasting [122], gossiping [18], 

and scattering [57] were proposed. Many efficient algorithms have been designed for 

sorting and merging [124], selection [135], Fourier transform [56], and computational 

geometry [6 . 

2.2.5 (n, A;)-star graph 

In order to avoid the significant jump f rom n! nodes in an n-star graph to (n - I - 1)! 

nodes in an (n-l-l)-star graph, (n, A;)-star graphs were devised, as 'generalized' n-star 

graphs. 

Definit ion 2.2.7 Let n> k > 1. The (n, k)-star graph, denoted Sn,k, has node set 

ViSnM) = {iui,U2, •••,Uk) •• each Ui € { 1 , 2 , . . . , n } and m ^ Uj, for i ^ j } , and 

there is an edge ( ( u i , U 2 , . . . ,Uk), {v\,V2, • • • ,Vk)) if, and only if, either: 

• Ui = Vi, (oT 2 < I < k, and W] ^ vi (a l-edge); 

• Ui = Vi and u, = Uj, for some i E {2,3,..., k}, wi th ui = vi, for all / G 

{ 2 , 3 , . . . , A;} \ {i} (an i-edge). 

In consequence, Sn.k has j:^^Zky nodes and ^ x edges. Note that S„,n- i 

is isomorphic to the n-star S n , and that S„, i is a clique on n nodes [39 . 
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Figure 2.3: Example of star graph: (a) 3-star, (b) 4-star and (c) (5,2)-star 

Fig. 2.3(c) shows a (5,2)-star graph. 

Since their introduction in [39], (n, fc)-star graphs have been well-studied and 

their basic topological and algorithmic properties are well-understood. For example: 

The diameter dia{Sn,k) of Sn,k is given by 

dia{Sn,k) = 
2k-I i f 1 < A; < [ f J , 

k + [ ^ \ if [ f J + 1 < A; < n - 1 

in [39]. The (n, A;)-star graphs form a hierarchical family of graphs, each of which is 

node-symmetric [39]; they can be recursively decomposed in a number of ways [39]; 

they have a simple shortest-path routing algorithm [39]; the node-connectivity of 

Sn,k is n — 1 [38]; and their fault-diameters are at most their fault-free-diameters 

plus 3 [38]. Let Sn~i,k-i{i) denote a subgraph of Sn,k induced by all the nodes 

w i t h the same last symbol i, for some 1 < z < n . Sn,k can be decomposed into n 

subgraphs S'„_i,fc_i(z), 1 < i < n, and each subgraph Sn-i,k--i{i) is isomorphic to 

'S'n-l.fc-l [39 . 

2.2.6 n-dimensional augmented cube 

Several variations of hypercubes have been proposed and investigated to improve 

the efficiency of hypercube networks. Like the twisted cube [30], folded cube [51] or 

crossed cube [29], the augmented cube is one of the variations of hypercubes, which 

is proposed in [41] by Choudum and Sunithda. 
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Figure 2.4: Three augmented cubes AQi,AQ2 and / IQ3 

Definit ion 2.2.8 Let n > 1 be an integer. The graph of the n-dimensional aug

mented cube, denoted by AQn has 2" vertices indexed by { 0 , 1 } " . AQ^ is the graph 

K2 w i th vertex set { 0 , 1 } . For n > 2, AQn can be recursively constructed by two 

copies of AQn-i, denoted by AQn-iiO) and AQn-iil) and by adding 2" edges be

tween AQn-\{0) and AQn-i{l) as follows: 

Let the first bi t of all nodes in AQn-iiO) (resp. in A Q n - i i l } ) be 0 (resp. 1). 

There is a link between node u = ( O u „ _ i U „ _ 2 . . - Ui) and v = {lVn-iVn-2 • • • Vi) i f 

and only i f either 

(i) Ui = Vi for 2 < z < n; in this case, {u,v) is called a hypercube edge and we set 

V = u^, or 

(ii) Ui = 1 — Vi for 2 < i < n; in this case,(u,v) is called a complement edge and 

we set V — u^. 

Examples of augmented cubes AQi, AQ2, and AQ^ are shown in Fig. 2.4(a), (b) 

and (c) respectively. 

The augmented cube of dimension n is a Cayley graph, ( 2 n - l)-regular, (2n — 1)-

connected, and has diameter [^|] [41]. I t admits optimal routing and broadcasting 

algorithms that are similar to those for hypercubes and have the same time com

plexity 0 ( n ) [41^. 

2.2.7 Section summary 

We give the following table to summarize this section, which is a comprehensive 

version of Subsection 2.2.1 to 2.2.6. 
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Table 2.2: Key properties of some important interconnection networks. 

Network N a m e Diameter Degree Nodes Edges Important Propert ies 

Mesh ( M ( m , n ) ) m + n 2, 3 or 4 m X n 27nn — m — n almost Hamilton-Connected 

Torus ( T ( m , n)) m a x { L f J , L f J } 4 m X n 2mn 

Hypercube ( Q n ) 71 n 2" n X 2 " - ' Bipartite; Dis{u,v) = DH{U,V) 

fc-ary n-cube (Q^) n if A; = 2 

2n \ik>2 

A:" nA;"-' i f A; = 2 

nA;'̂  i f A; > 3 

Q2 is bipartite 

Dis{u,v) = DL{U,V) 

Augmented Cube {AQn) 2n - 1 2" (2n - 1)2"- ' {2n — l)-connected 

n-star graph {Sn) 3(n-l 
2 n - 1 n! node- and edge-symmetric 

(77, — l)-connected 

{n, A;)-star graph 2A; - 1 if 1 < /c < [ f J n - 1 n! 
(j i -fc)! 

71—1 n! 
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2.3 Related results 

In this section, we w i l l mainly review the following two related topics in interconnec

tion networks: structures embedding in interconnection networks, and node-disjoint 

paths problems in interconnection networks. 

2.3.1 Structures embedding in interconnection networks 

In some popular interconnection networks, we wi l l consider the following properties: 

hamiltonicity, hamiltonian connectivity, ring/cycle embedding, (bi)panconnectivity, 

(bi)pancyclicity, and so on. 

If there are faults in interconnection networks, we wi l l only consider static faults. 

Definit ion 2.3.1 Conditional fault assumption (CFA): Each node is adjacent to at 

least two healthy (fault-free) nodes via healthy links. 

Let Fe denote the set of faulty edges (links) in the graph G, and let Fy denote 

the set of faulty nodes in the graph. Let /e and f y denote the number of faulty edges 

and nodes respectively, i.e., fe = \Fe\, and f y = \Fy . 

H y p e r c u b e Qn 

As the hypercube is a bipartite graph, there exist no odd cycles. 

• I f there are no faults, Qn is bipancyclic [139 . 

• I f there are faulty edges in Q n , the following results has been obtained. 

The Qn is hamiltonian, if < n - 2 [105], or under CFA and /e < 2n - 5 [28 . 

The Qn is bipancyclic [154] under CFA and < 2n - 5. 

The Qn is proved to be edge-bipancyclic if 

- n > 3, and /e < n - 2 by L i et al. [110], or 

- under CFA, n > 4 and /e < n - 1 by X u et al. [167], or 

- under CFA, n > 4 and /e < 2n - 5 by Shih et al. [146 . 

Note that the minimum cycle length in [167] and [146] is 6. 
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• I f there are node faults or both node and edge faults, the following results have 
been obtained. 

I t is proved that a longest cycle of length at least 2^ -2}^ can be embedded 

into Qn if 

- f v < n - 2 h y Yang et al. [172], or 

- /e < " - 4, < n - 1 and /e + < - 1 by Tseng [157], or 

~ / ) ; > 0, /e < n — 1 and A. + /e < n — 1 by Senguptal et al. [144], or 

- < 2n - 4 by Fu et al. [58 . 

Tsai [155] proved that every fault-free edge of Q n , for n >Z, lies on a fault-

free cycle of every even length f rom 4 to 2" - 2fy inclusive i f /e -h fv < n — 2. 

Furthermore, he proved that Q „ , for n > 5, contains a fault-free cycle of every 

even length f rom 4 to 2" - 2 i n c l u s i v e if /e < n - 2 and /e + A < 2n - 4. 

fc-ary n-cube 

The k-a.ry n-cube is proved to be hamiltonian under different conditions: 

• A; > 3 ,n > 2 and no faults [19,25]; or 

• under CPA and /e < 4n - 5 [14]; or 

• > 3 be an odd integer, and fe + /e < 2n — 2 [171 . 

Let /c > 3 be an odd integer, if -H /e < 2n - 3, then the wounded fc-ary n-cube 

is hamiltonian-connected [171 . 

n -star graphs S„ 

I f there are no faults in n-star graphs 5 „ , then Sn is hamiltonian, bipancyclic 

and a variety of two- and multi-dimensional grids can be embedded into 5„ [94 . 

Sn is hamiltonian i f < n - 3 [158] or under CFA and /e < 2n - 7, n > 4 [61 . 

Sn is proved to be bipancyclic [111] and edge-bipancyclic [169] if — 3 and 

n > 3, where the minimum cycle length is 6. The n-star graph is (n - 3)-edge 

fault tolerant hamiltonian laceable, (n — 3)-edge fault tolerant strongly hamiltonian 

laceable, and (n — 4)-edge fault tolerant hyper hamiltonian laceable [113]. Tseng et 
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al. [158] found a cycle of length at least n! - 4/.(,,, i f A, < n - 3. Hsieh et al. [81 
found a path of length n\ - 2fy - 2 (n! - 2 / ^ - 1 ) between two arbitrary vertices 
of even (odd) distance, if fv < n - 5. Since Sn is bipartite wi th two partite sets of 
equal size, the path is longest for the worst-case scenario. 

(n, A:)-star graphs Sn,k 

Chang and K i m [32] found a cycle of length n ! / ( n — k)\ — in an (n, A;)-star 

graph when < n — 3 and n — k = 2. 

Sn,k is hamiltonian i f /e + A < —3, hamiltonian-connected if fe + fv < n — 4: [86 . 

Sn^k is super spanning connected if n > 3 and {n — k) > 2 [87 . 

Chen et al. [37] showed that Sn,k is vertex-pancyclic when I < k < n — 4 and 

n > 6. Additionally, for n - 3 < /c < n - 2, Sn,k is also vertex-pancyclic wi th the 

minimum cycle length is 6. Moreover, each constructed cycle in Sn,k can be made 

to contain a desired 1-edge. 

2.3.2 Disjoint paths in interconnection networks 

I t is practically important to construct node-disjoint paths (disjoint paths for short) 

in networks, because they can be used to increase the transmission rate and enhance 

the transmission reliability. Besides, disjoint paths have applications in mult i -path 

routing (such as Rabin's information dispersal algorithm [136]), fault tolerance (see 

47,60]), and communication protocols (see [85]). 

We are only interested in disjoint paths problem in non-faulty interconnection 

networks. For more information about disjoint paths in faulty interconnection net

works, please refer to [67,70,73,119 . 

One-to-one disjoint paths 

Sets of one-to-one disjoint paths are also named containers. 

1988 [139]: In the n-cube, let u and v be any two nodes and assume that 

DH{U,V) < n. Then there are DH{U,V) disjoint paths of length DH{U,V). and 

n disjoint paths of length at most DM{U, V) + 2 between the nodes u and 

1997 [45]: Day and Al-Ayyoub constructed a set of n disjoint paths between 

any two nodes of a /c-ary n-cube Q^. Each path is of length zero, two, or four 
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plus the minimum length except for one path in a special case (when the Hamming 
distance between the two nodes is one) where the increase over the minimum length 
may attain eight. These results improve those obtained in [25] where the length of 
some of the paths has a variable increase (which can be arbitrari ly large) over the 
minimum length. 

2000 [150]: Su et al. showed that a set of d node disjoint paths is constructed 

between two arbitrary nodes of an incomplete WK-recursive network IK{d,t). The 

length is not greater than 2 times the diameter. 

2002 [62]: Fu et al. constructed n-l-1 disjoint paths between any two given nodes 

in n-dimensional Hierarchical Cubic Networks (HCS(n)) , whose lengths are at most 

n + + 3. This improves on the containers of [40] whose lengths are 2n -t- 6 at 

most. 

2005 [134]: Qiu and A k l gave an algorithm that finds n — 1 disjoint paths between 

any two nodes s and t in an n-star in optimal 0{ii^) time such that no path has 

length more than dis{s,t) + A. 

2007 [166]: Wu et al. found m + l disjoint paths between any two distinct nodes 

of an n-dimensional hierarchical hypercube network n-HHC network [n = 2"^ + m), 

whose lengths are not greater than max{ciza(n-HHC)-|-2m-hl, c/za(n-HHC)-Hm-l-4}, 

where dia{n-EKC) = T^+\ 

2008 [116]: L in et al. described an algorithm for constructing a container of 

wid th n - 1 between a pair of vertices in an (n, fc)-star graph w i t h 2 < < n - 2. 

The maximal path length is dia{Sn.k) 2 for 2 < < [ f J, or dia{Sn.k) plus a value 

between 1 and 2 for + l <k <n-2. The same problem for ( n , n - l)-star and 

(n, l)-star graphs has been investigated in [115], where the lengths of the paths are 

at most dis{Sn,n-\) + 2 and dis{Sn,i) + 1 respectively. 

One-to-many disjoint paths 

1997 [71]: Gu and Peng gave an 0{n'^) t ime algorithm, which finds n - 1 disjoint 

paths of length at most dia{Sn) + 2. (A lower bound on the length of the paths for 

the above problem in is dia{Sn) + !•) 

1998 [106]: La t i f i et al. computed the n vertex disjoint paths of length at most 

n -I-1 in a hypercube Qn of dimension n, given a source node and an arbitrary set of 
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at most n destination nodes; their algorithm is computationally simpler than that 
of [136 . 

Many- to -many disjoint paths 

1996 [69]: Gu and Peng presented an algorithm for finding A; disjoint paths where 

each path connects a pair of nodes f rom two given node sets in an 77-cube Q„ , where 

1 < A: < 77. The path length is at most TI-I- log A: -I- 2, and the time complexity is 

0(A;77log* k), where log* 77 = 0, if n < 1, and log* 77 = 1 + log* (log n ) , i f 77 > 1. 

1998 [72]: Gu and Peng gave an many-to-many algorithm, which finds the A; 

disjoint paths of length at most dia[Sn) -)- 5 in 0{v?) opt imal time. This improves 

the previous results of 4(77 - 2) (path length) and 0(77" log77) ( t ime), respectively 

in [46 . 

2000 [68]: Given A; = ("f ] pairs of distinct nodes { s x , U ) , . . . , {SkM) i n the n-cube 

Gu and Peng presented an algorithm finding the A; disjoint paths wi th length 

at most 77 -I- [log 77] -I- 1 in 0(77̂  log ' 77) time. 

Up to now, we have given some results related to paths and cycles in intercon

nection networks. There are more related problems in this area, for example, the 

pairwise shortest path routing problem [66]. However, we are only interested in the 

above stated problems. In the next chapter, we w i l l present an algorithm to show 

that there exists a long path in faulty A;-ary 77-cubes. 



Chapter 3 

Embedding long paths in k-ary 

n-cubes with faulty nodes and 

links 

3.1 Introduction 

In this chapter we study the existence of long paths and cycles in the presence of 

l imited numbers of node and link faults in fc-ary n-cubes. We are motivated by 

the work in four recent publications. In [98], K i m and Park study the existence of 

hamiltonian paths in two-dimensional tor i . They provide conditions when a two-

dimensional torus wi th at most 2 faul ty nodes is hamiltonian, hamiltonian-connected 

and bi-hamiltonian-connected. In [60], Pu proves that an n-dimensional hypercube 

w i t h f y < n - 2 is such that there is a path of length at least 2" - 2/^ - e between any 

two distinct, healthy nodes, where e = 1 if the two nodes have different parities and 

e = 2 otherwise. In [77], Hsieh and Chang show that under CFA, Fu's result holds 

even when fv <2n — 5. I n [171], Yang, Tan and Hsu prove that in a /c-ary n-cube 

where k is odd, if the number of faulty nodes and links is at most 2n — 3 then there 

is a hamiltonian cycle, and if the number of faulty nodes and links is at most 2n — 2 

then there is a hamiltonian path joining any two, distinct healthy nodes. Note that 

Yang, Tan and Hsu prove no results when k is even beyond remarking that when A; 

is even, the /c-ary n-cube is bipartite and so i f there is 1 faul ty node then there can 

26 
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be no hamiltonian cycle and there exists a pair of distinct, healthy nodes not joined 
by a hamiltonian path. 

Our main result is as follows. Let fc > 4 be even and let n > 2. I n a faulty fc-ary 

n-cube in which the number of node faults f y and the number of link faults fe 

are such that /.„ - I - /e < 2n — 2, given any two healthy nodes s and e of Q^, there is 

a path f rom s to e of length at least k"- - 2fy - I (resp. /c" - 2/^, - 2) i f the nodes 

s and e have different (resp. the same) parities. Our result: resolves the situation 

in [171] when k is even; answers questions posed by Yang, Tan and Hsu, and by Fu; 

and extends known results, obtained by K i m and Park, for the case when n = 2. 

The rest of this chapter is devoted to a proof by induction of our main theorem. 

Section 3.2 contains the basic definitions. In Section 3.3, we deal w i t h the base case 

of the induction, and in Section 3.4, we deal wi th the inductive step. We present 

our conclusions in Section 3.5. 

3.2 Basic definitions 

Many structural properties of A;-ary n-cubes are known, but of particular relevance 

for us is that a /c-ary n-cube is node-symmetric. Throughout, we assume that 

addition on tuple elements is modulo k. 

We can part i t ion Q'^ over dimension d. This results in k copies Qd,o,Qd,i, • • 

Qd,k-\ of Qn-i-, w i th corresponding nodes in (5̂ ,0, Qd,i, • • •, Qd,k-\ joined in a cycle 

of length k (in dimension d). 

The parity of a node v - (?/'„• ' ^ n - i , • • • , ^ i ) of (^n is defined to be ^ " ^ j u, modulo 2. 

We speak of a node as being odd or even according to whether its parity is odd or 

even. A pair of nodes is odd (resp. even) ii v and v' have different (resp. the 

same) parities. 

We write paths in as sequences of incident links, and when k is even, paths 

necessarily consist of links joining, alternatively, odd and even nodes. 

A fault in refers to a faulty node or a faulty link. I f a node is faulty then we 

imagine that the node and its incident links do not exist; if a link is faulty then we 

imagine that this link does not exist. When we refer to a path in a faulty Q^, we 
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mean that all nodes and links on the path should be non-faulty, i.e., healthy (unless 
otherwise stated). 

We repeatedly apply the following construction throughout. Suppose that we 

have partitioned a A;-ary 77-cube Q,̂  over some dimension d so as to obtain A;-ary 

(77 - l)-cubes Qd,o, Qd,i, • • •, Qd,k-i and that we have a path p{u, v) in of length 

/. Suppose also that {xi,yi) is a link of p{u,v), w i th Xj,7/i G Qd,i, and that we 

have another path p ' (x i+ i , j / j + i ) of length V which shares no nodes in common wi th 

p{u,v), where x^+i and T/j+i are the neighbours of and y^, respectively, in Qd,i+i-

We refer to the path obtained by removing the link {xi, yi) f r om p(u, v) and replacing 

i t w i th the path ( x i , X j + i ) , p ' (x i+ i , 7/j+i), (7/1+1,7/1), so as to obtain a new path from 

u to V of length I + I' + I, as the join of p{u,v) to p'{xi+i,yi^i) over (x,,7/,). We 

can equally well j o in two paths over a sub-path rather than a link; w i th the above 

notation, we would remove a sub-path p[xi,yi) f rom p[u,v) and replace i t w i th the 

path {xi,Xi+i), p'{Xi+\,yi^i), {yi+i,yi)- We have analogous constructions should we 

wish to jo in : a cycle and a path, to obtain a path; or two cycles, to obtain a cycle 

(when joining a cycle, we lose one edge f rom the cycle). 

3.3 The base case 

I n this section, we deal w i t h the base case of our forthcoming inductive proof of the 

main result, namely when we have a A;-ary 2-cube w i t h no more than 2 faults. 

We consider as a A; x A; grid w i t h wrap-around and we think of a node V j j as 

indexed by its row i and column j. Throughout, we assume that addition on row 

or column indices is modulo A;. 

We define the following paths in the row-torus rt{0,1) (of some ( 5 2 ) - The names 

of these paths are derived from the shape of their pictorial representations (see the 

figures coming up). Also, i f 7 = 0 then 7 = 1, and if z = 1 then i = 0. 

C^{Vi,j,Vi j) = {Vij,Vij + i), (7;ij + i ,7; , j+2) , . . • , ( f i , m - l , ^ i , m ) , ( U i , m , ^ , m ) ' ( ^ , m > 

^ , m - l ) > K m - l ' ' ^ , m - 2 ) . • • • > K j + l . ^ ^ j ) 

where 0 < z < 1, 0 < j < A; - 1, 0 < 777 < A; - 1 and 777 7̂  j . 
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^ , m + l ) > Km+1> ,̂m+2)> • • • > 
where 0 < ?; < 1,0 < j < - 1,0 < m < A.- - 1 and m 7̂  j . 

KJ+2. " f^j+a)- " y i j + a ) , (x;jj+3, 'yij+4), • • • , , W i , / ) 

where 0 < z < l , 0 < j 7 ^ j ' < / c — 1 and \j — j'\ is even. 

Kj-2-^^j-3)> (%-3'^M-3), Kj -3 ,^^ i j -4 ) , • • • , {Vij> + i,Vij>) 

where 0 < i < 1,0 < j ' 7̂  j < /c - 1 and ] j - / ] is even. 

i;,j+3), {v^,J+3, (^,j+3' • • • , ( ^ j ' / ^ z j ' ) 

where 0 < z < 1,1 < j 7̂  / < A: - 1 and \j - j'\ is even. 

Z~{v^^j,Vi^j,) = K J , ( V j j - i , Vjj_2), (Ujj_2, 'ytj-2), (̂ ^z,j-2, 

{Vi,i-'i,%j-z), K;-3''f^,i-4)> K i - 4 > ^ i j - 4 ) , • • • > iVlj'.'^ij') 

where 0 < z < 1,1 < j ' 7̂  j < A; - 1 and ] j - j'\ is even. 

In addition, we define C^{vij, t ^ j ) = C~{vij, t ^ ^ ) = ( f i . j , t^ , , ) . We also use 

the above notation to describe paths in other row-tori of the form rt{l, I + I) in Q j -

Furthermore, if we write, for example, N'^{vi,j,Vij+]), Z~{vij,Vij) or some other 

illegal node-pairing then we regard the path so denoted as being the empty path. 

We begin wi th two lemmas, the first concerning paths in a row-torus ri(0,1) 

in which there is a faulty node, and the second concerning paths in a row-torus 

rt{0,p — 1) in which there are no faults. These two lemmas are used repeatedly 

in the proofs of the subsequent propositions, each of which deals wi th a specific 

configuration of faults relating to the base case. 
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L e m m a 3.3.1 Let k > 4 be even and consider the row-torus r i ( 0 , 1 ) in Q2 where 

1 node of the row-torus is faulty. If the pair of distinct, healthy nodes {s , e} of the 

row-torus is odd {resp. even) then there is a path p(s,e) in the row-torus joining s 

and e of length at least 2k — 3 {resp. 2k — 4). 

Proof: By the symmetric properties of the row-torus rt{0,1), w.l.o.g. we may 

assume that the fault is the node VO,Q. 

Suppose that s and e are both odd. W.l.o.g. there are four cases. (Throughout, 

we proceed by a case-by-case analysis, eliminating some cases by applying automor

phisms of rt{0,1) such as "reflections in the vertical bisecting plane" or "toroidal 

rotations".) 

Case (a) s and e both lie on row 0 wi th s = VQ^^, e = VQJ and i < j. Consider the 

path 

Cy_i (wo , i ,wi , i ) , ^" (v i , i ,w i , i ) , (̂ 1̂,1,̂ 1̂,0), ivi,o,Vi,k--[), 

N-{vi^k-i,Vij), {vi^j,vo,j). 

This path has length 2k — 2 and is as depicted in 3.1(a). 

Case {b) s and e lie on different rows wi th s = wo,,; e = and i < -j. Consider the 

path 

Cf_^{VQ^^,Vl^^), Z-{v^^i,Vi^l), (̂ 1,1, t^l ,o), (̂ 1̂,0, i ) , i V " (^;i ,fc-1, 

This path has length 2k - 2 and is as depicted in Fig. 3.1(6). 

Case (c) s and e lie on different rows wi th s — uo.t and e = Ui,o- Consider the path 

C^_i(^o,i,^^i,;)> (^^i.i-'^i.o)-

This path has length 2k - 2 and is as depicted in Fig. 3.1(c). 

Case {d) s and e both lie on row 1 wi th s = v^, e = v^j and i < j. Consider the 

path 

WOj + 1) , iVoj + -i, Voj), C ^ i {voj,Vlj). 
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n Q f Q f 
{a) 

O 0 0 0 — o - ^ 0 

(b) 

0 — a 

Q Q (B -O 0 — 

0 0 Q 

Figure 3.1: Cases {a)-{d) when k = 8. 

This path has length 2k - 2 and is as depicted in Fig. 3.1(d). 

Suppose now that s and e are both even. W.l.o.g. there are three cases. 

Case (e) 5 and e both he on row 0 w i t h s = VQ-I, e = VQJ and i < j. Consider the 

path 

C^-l{VO,i,Vhi),Z {Vi,i,Vi,2), (Vl,2,'i^l,l), (t'l,l.^^l,o),(^^l,0,t^l,fc-l), 

iV (yi ./c-ia'lj+i), (u i , j+i , woj+i), {VQ,J+I,VOJ). 

This path has length 2k - 4 and is similar to the path depicted in Fig. 3.1(a). 

Case ( / ) s and e lie on different rows w i t h s = V04, e = Vi^j and i < j. Consider the 

path 

Ct , i ( tJo, i , t ' l , t ) ,2 ' ('Ul,i,Vl,2), {vi,2,Vl,l), ( f l , l ,U l ,o ) , [Vlfi, 

Vi^k-l),N (Wi.fc-l,^!,;). 

This path has length 2A; - 4 and is similar to the path depicted in Fig. 3.1(6). 

Case {g) s and e both lie on row 1 w i t h s = e = vij and i < j. Consider the 

path 

A^'"(t'l,,, yi,l), (yi,l, yi,o), (i'l,0,'t''l,A-l),iV~(^l,/t-l,'!-'l,j+2), (t'l,i + 2,t^0,j+2), 

{VOj+2, -̂ 0,7 +1), ( f 0,j +1, ^0 J ), 1 ( f o j , Vi J ). 

This path has length 2k - i and is similar to the path depicted in Fig. 3.1(d). 
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Figure 3.2: Cases ( / i ) - ( j ) when A; = 8. 

Suppose now that one of s and e is odd and one is even, and, further, that s and 

e lie on the same row. W.l.o.g. there are three cases. 

Case (h) s and e both lie on row 0 wi th s = Uo,, odd, e = VQJ even and i < j. 

Consider the path 

C / _ i ( 7 ; o , i , t ' i , i ) , Z - ( L ' i , , - , t ' i , i ) , ( t ' i , i , W i , o ) , ( f i , o , t ^ i , f c - i ) , 

i V - ( 7 ; i , f c - i , f i j + i ) , {vi,j+uVo,j+i), {vo,j+uVo,j)-

This path has length 2A; - 3 and is as depicted in 3.2(h). 

Case (7) s and e both lie on row 1 wi th 5 = t ' l , , odd, e = vij even and 0 ^ 7 < j . 

Consider the path 

C^-l{Vl,i,VQ.i),Z~{vo,i,Vo,2), {vo,2>Vo,l), (I'o.l, ^^l , l ) , (^^l,l, 

f i , o ) , {vi,o,vi^k-i), N~{vi^k-i,vi,j). 

This path has length 2A; - 3 and is as depicted in Fig. 3.2(7). 

Case { j ) s and e both lie on row 1 w i t h s — vi^ and e = vij even. Consider the 

path 

V0,j + l ) , (Vcj + l , WOj), C { { v o j , Vi^j). 

This path has length 2A; - 3 and is as depicted in Fig. 3 .2( j ) . 

Suppose now that one of s and e is odd and one is even, and, further, that s and 

e lie on different rows. W.l.o.g. there are five cases. 
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Figure 3.3: Cases (A;)-(o) when k = 8. 

Case (A;) s lies on row 0 and e lies on row 1 w i t h s = f o , i odd, e = Vij even and 

i < j . Consider the path 

C /_ i (uo , i , W l , i ) , Z ~ ( U i - i , f i . i ) , ( U l , l , t-l^o), (^'l.O, W l , f c - l ) , A''~(^^l ,A:-l, ^ ^ I j ) -

This path has length 2A; - 3 and is as depicted in Fig.3.3(A;). 

Case (l) s and e he on different rows wi th s — vo^i odd, e = vi^t even and i ^ 1. 

Consider the path 

-̂ "(̂ 0̂,1,1̂ 0,3), (̂ 0̂,3, 0̂,2), {V0,2,Vi^2), (t^l,2,^^l,l). (''̂ 1,1,̂ 1̂,0), 

(̂ 1,0, ^^l,fc-l), Â "(̂ 1̂,A:-1, ^ ^ I j ) -

This path has length 2k - 3 and is as depicted in Fig. 3.3(/). 

Case (m) s and e lie on different rows wi th s = Wo,i even, e = vi^i odd and i < j. 

Consider the path 

Cj'_i{vo4,vi,i),Z~{vi^i,vi^2), (̂ 1̂,2,̂ 1,1), {Vl,l,Vi^o), (^;i,o,l ' l ,fc-l), 

iV-(ui , fc_i , - y i j + i ) , ( u i j + i , v o j + i ) , {VQJ+I, UOJ), (UOJ, vij). 

This path has length 2fc — 3 and is as depicted in Fig. 3.3(m). 
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Case (n) s and e lie on different rows wi th s = vo^i even and e = fi ,o- Consider the 

path 

This path has length 2A; - 3 and is as depicted in Fig. 3.3(n). 

Case (o) 5 and e lie on different rows wi th s = wo,i even, e = vi,i odd. Consider the 

path 

Z~{Vo^i,VQ^2), {V0,2,V0,\), (̂ 0̂,1,-̂ 1,1), {Vl,uVi^o), (̂ 1̂,0, 

Vi,k-i),N~{vi^k-i,vi,j+\), iv^,j+i,vij). 

This path has length 2A; - 3 and is as depicted in Fig. 3.3(o). 

The result follows. • 

The following lemma proves to be useful throughout. 

L e m m a 3.3.2 Letk>A he even and consider the row-torus rt{0,p-l) in Q2 where 

2 < p < k. If the pair of distinct nodes { 5 , e} of the row-torus is odd {resp. even) 

then there is a path p{s, e) in the row-torus joining s and e of length pk - 1 {resp. 

pk-2). 

Proof: We proceed by induction on p. Suppose that p = 2 and consider the 

row-torus rt(0,1). W.l.o.g. we may assume that e = VQ^Q-

Suppose that s = uo,i is odd. The path 

Z~{vl^^,Vl^•^), (ui,1,-̂ 1,0), (^^i,o,e) 

has length 2A; — 1. 

Suppose that s = vo^i is even. The path 

has length 2A; - 2. 

Suppose that s = v-^^i is odd. The path 

C^-i{s,vo,i),Z~{vo,i,e) 

has length 2A; — 1. 
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Suppose that s = t;],, is even. The path 

C^_i(s,i;o,i), Z~{vo^^,Vo,•^), {vo,i,e) 

has length 2k - 2. So the result holds for p = 2. 

Suppose, as our induction hypothesis, that the result holds for all p such that 

1 < p < q, where 1 < g < A; — 1. Consider rt{0, q). 

Case (a) I t is not the case that s lies on row 0 and e lies on row q, and i t is not the 

case that s lies on row q and e lies on row 0. 

W.l.o.g. assume that s and e he in rt{0,q — 1). By the induction hypothesis, there 

is a path p{s, e) in r i ( 0 , g - 1) of length qk - I (resp. qk - 2) i f { 5 , e} is odd (resp. 

even). For a node r in row g - 1, i f i t is not linked w i t h its neighbor on the same 

row, then either r = s, or r = e, or i t is not on path p{s,e). As there is at most 

one node not in path p{s, e), there are at least J ̂  [ edges on row q - 1 which are 

also on the path p{s,e). Hence, the path p{s,e) must contain a link {vq--i^i,Vq-i^i+i) 

ly ing on row q — I. 

Consider the path 

p{s,Vq^l^i), {Vg^l^i,Vq^^), {Vg^„Vg^^-l), ( ' y 9 , z - l , % z - 2 ) , • • • , 

{Vq,^+2,Vq,i+l),{'"q,i+UVg-l,^+l),p{Vq-l^^+l,e). 

This path is as required (wi th reference to our construction as detailed at the begin

ning of this section, an alternative description of this path would be as that obtained 

by joining p{s, e) to the cycle 

(Vqfi^Vq^l), {Vq^l,Vqa), . . . , {Vq^k-2,Vq^k-l), (̂ J<,,fc-l, ^q,o) 

over the links {vq^l^^,Vq^l,^+l) and (u,,,, U g ^ j + i ) ) . 

Case (6) The node s lies on row 0 and the node e lies on row q. 

I f e = Vq^i then define e' = Vq-i-^-i. Note that e is odd if, and only if, e' is odd. 

By the induction hypothesis, there is a path p(s,e') in rt{0,q — 1) of length qk — 1 

(resp. qk — 2) i f { s , e } is odd (resp. even). The path 

p(s, e'), (e', Vq^,-i), {Vq^i-uVq,i-2), {Vq,i-2, Vq,i--s), • • • , (̂ 9̂,i+l, c) 



3.3. The base case 36 

is as required. 

The result follows by induction. • 

We now deal with first scenario in the base case. 

Proposition 3.3.1 Consider the k-ary 2-cube Q l where k > 6 ts even and where 

2 of the nodes are faulty. Let s and e be any two distinct, non-faulty nodes. There 

is a path of length at least /ĉ  — 5 {resp. k~ — 6) from s to e if {s,e} is odd [resp. 

even). 

Proof: VV.l.o.g. suppose that the two faulty nodes are /o = î o.o and / i = Vpy 

with p 7̂  0. We begin by partitioning Qo into 3 or 4 row-tori. I f p G {1,2,/c —2, /c- l} 

then: 

• i f p = l o r p = 2 then we partition Q2 into A - rt[k - 1, 0), B = rt{l, 2) and 

X = rt{3,k-2); 

• i f p = k-2 orp = k-1 then we partition into A = rt{0,1), X = rt{2,k-3) 

and B = rt{k - 2, A; - 1). 

If p ^ { 1 , 2 , / c - 2 , fc- 1} then: 

• if p 3 is odd then we partition Q2 into A - rt(0,1), X = r i (2,p - 2), 

B = rt{p- l ,p) and Y = rt{p+\,k - 1); 

• if p = 3 then we partition Q\ into A = rt{k - 1,0), X = r t ( l , 2), B = rt(3,4) 

and r = ri(5,A,--2); 

• if p is even then we partition Q\ into A = rt{0,1), X = rt{2,p - I), B = 

rt{p,p+ 1) and Y = rt{p + 2,k- 1). 

The outcome is that we have one of the two partitioned structures as in Fig.3.4, 

where consecutive row-tori are joined by column links. In particular, w.l.o.g. we 

may assume that: when the partition involves 3 row-tori, we have the situation as 

in Fig. 3.4(a), with /o = e A = rt{OA), X = rt{2,k - 3) and / , G S = 

rt{k — 2, k — \)\ and when the partition involves 4 row-tori, we have the situation as 

in Fig, 3.4(6), with /o = Vqq G A = rt(0,1), X = rt{2, q - 1), fi e B = rt{q, q + I) 

and Y — rt{q + 2,k - 1), for some even q where 4 < g < A; - 4. 
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Figure 3.4: Partitioned 's-

Throughout the proof, e = 1 i f {s, e} is odd, and e = 2 i f {s , e} is even. 

Case (a) Q2 is parti t ioned into 3 row-tori . 

Sub-case {i) The nodes s and e both he in A. 

By Lemma 3.3.1, there exists a path PA{S, e) in A of length at least 2k — 2 — e. A 

simple counting argument yields that there is at least one l ink of pA{s,e) lying on 

row 1; w.l.o.g. let (^1,2,^1,2+1) be such a l ink (the case when the l ink is (ui,j+i,Ui,i) 

is almost identical). By Lemma 3.3.2, there exists a path Px{v2,i,'^2,1+1) in X of 

length k{k — 4) — 1. Let p[s,e) be obtained by joining p/i(s,e) to Px(^^2,n'^2,2+1) 

over ( f i , i , f i , i + i ) . Again, a simple counting argument yields that there are at least 

two non-incident hnks of p{s,e) lying on row A; — 3; w.l.o.g. let (t'A:-3,j, Vfc-3,j+i) 

be such a l ink where Vk-2,j fi ^A;-2,;+I- By Lemma 3.3.1, there exists a path 

PBivk-2,j,'Vk-2,j+i) in B of length at least 2k — 3. The path obtained by joining 

p{s,e) to pB{vk-2j,Vk-2,j+i) over {vk-3j,Vk-3,j+i) has length at least k^ - A - e. 

Sub-case (ii) The node 5 is in / I and the node e is in X . 

Choose f i , i such that f i , , is odd if, and only if, s is even, and V2,i 7̂  e (such a node 

vi^i exists due to there are at least | > 2 nodes on row 1 that have different parity 

f rom node e). By Lemma 3.3.1, there exists a path PA{S, vi,,) in A of length at least 

2k — 3. By Lemma 3.3.2, there exists a path px{v2,i, e) in X of length k{k — 4) - e. 
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Let p(s, e) be the path 

A simple counting argument yields that p(s,e) contains at least two non-incident 

links on row k-3; w.l.o.g. let (ffc_3j, ti/j-aj+i) be a link oi p{s,e) such that f fc -2j 7̂  

f i 7̂  Vk-2,j+i- By Lemma 3.3.1, there exists a path pB{vk-2,j,Vk-2j+\) in B of 

length at least 2k - 3. The path obtained by joining p{s,e) to pB{vk-2,j,Vk-2,j+i) 

over {vk-3,j,vic-3j+]) has length at least A:̂  — 4 — e. 

Sub-case (tii) The node s is in 4̂ and the node e is in B. 

Choose Vi^i such that Vi^i is odd if, and only if, s is even, and V14 ^ s. By 

Lemma 3.3.1, there exists a path p_^{s,Vi^i) in A of length at least 2k - 3. Choose 

Vk-2,j such that Vk_2,j is odd if, and only if, e is even, and / i 7̂  t'fc-2j- By 

Lemma 3.3.1, there exists a path pB{vk-2,j,e) in B of length at least 2k - 3. By 

Lemma 3.3.2, there exists a path px{v2,i,Vk--3,j) in X of length k{k - 4) - e. The 

path 

P.4(5, Wl,,), , i;2,i), Px {v2,i,Vk-z,j), ('Ufc-3,j, •Ufc-2,j), PB(^fc-2J , e) 

has length at least /ĉ  - 4 - e. 

Sub-case (iv) The nodes s and e both lie in X. 

By Lemma 3.3.2, there exists a path PA'(S, e) in X of length k{k - 4) - e. A simple 

counting argument yields that px{s, e) always contains at least one link on row 2 and 

also that there are two non-incident links on row k - 3, unless we have the special 

situation where A; 6, s and e have a common neighbour on row A; — 3 with this 

neighbour not lying on px{s, e), and neither s nor e is adjacent on px{s, e) to a node 

on row A; — 3. Suppose that there are two non-incident links on row A- — 3. W.l.o.g. 

let {vk-3j,Vk-3,j+i) and {v2,i,V2,^+l) be links of px(5 ,e) where Vk-2,j 7̂  / i 7̂  ^^fc-2,i+i-

By Lemma 3.3.1, there exists a path pB{vk-2,j,Vk-2,j+\) (resp. P / \ ( u i , i , i n B 

(resp. A) of length at least 2A; - 3. W.l.o.g. suppose that the nodes Vk-3,j, Vk-3j+\, 

V24 and V2,i+\ come in that order as we move along the path px{s,e). The path 

Px{s,Vk-3,j)AVk-3J,Vk-2,j),pB{Vk-2,3,Vk-2,j + ^):{'^k-2,j+U 

Vk-3,j +1), PX {yk-3,j+1 > V2,i) , {V2,i ,Vi^i),pA {v^, f ] ) , 
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{vi,i+l,V2,i+l),Px{V2,i+l,e) 

has length at least k'^ - 4 - e. 

Alternatively, suppose that we are in the special situation described above (and so 

k = 6). W.l.o.g. suppose that s = ^3,0 and e = v^o; so, the path (f3,3,'L'3,4), (^3,4,'(^3,5) 

is a sub-path of pxis,e). If f i 7̂  V4^4 then we can find two links {v3j,v-ij+i) and 

(^2,1,^2,2+1) of px{s,e), as above, and so obtain our path as required. So, suppose 

that / i = ^4,4. Let Pb{v4;3,V4,5) be the path 

(̂ ^4,3, ^4,2), (^4,2, t^4,l), (^^4,1,-^4,0), (̂ ^4,0, -^4,5), 

and join px(s,e) to PB(^^4,3, ^^4,5) over (^3,3,^^3,4), (^'3,4,^^3,5) to obtain the path p(s,e) 

of length 16 — e. We can now join p(s, e) to the cycle induced by the nodes on row 5, 

over two appropriate hnks, and to an appropriate path p.4(w],i, ^1,^+1) in A of length 

at least 9, as we did above, to obtain our required path of length at least 32 - e 

(that is, /ĉ  — 4 — e). 

The remaining sub-cases are essentially identical to those already considered. 

Case (6) Q2 is partitioned into 4 row-tori. 

If s and e lie in A U X U 5 then by the analysis for Case (a), there is a path p(s, e) 

in AU X U B (and the connecting column links) of length at least k{q + 2) - A - e 

(note that all paths constructed in Case (a) actually lie in the row-torus induced by 

AuXuB). A simple counting argument yields that there is at least one Unk of p(s, e) 

on row g - f l or on row 0; w.l.o.g. suppose that i t is row q+l and let (?;^+i,j,'u,+ij+i) 

be such a link. By Lemma 3.3.2, there exists a path pY{vq+2j, Vg+2,j+i) in Y of length 

k { k - l - q - l ) - l . Joinp(s,e) to py(w,+2,j, w^+2,j+i) over (y<,+ i j , Wg+ij+i) to obtain 

a path of length at least /ĉ  - 4 - e. A similar argument holds should s and e lie in 

B u y U A. 

Necessarily, the only remaining case is when s lies in X and e lies in Y. Let Vq^ 

be such that s and e do not lie on column i and is odd if, and only if, e is odd. 

By Lemma 3.3.2, there exists a path py(wfe-i,i, e) in Y of length k{k - l - q - l ) -1. 

Let Vij be such that s does not lie on column j and Vij is odd if, and only if, s is 

odd. By Lemma 3.3.2, there exists a path px{s,V2,j) in X of length k{q - 2) - 1. 
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By Lemma 3.3.1, there exists a path pA{vi^j,vo^i) in A of length at least 2k - 2- e. 
Let p(s, e) be the path 

Px{s, V2j), (^^2,j, f 1 j ) , PA{v\j,Vo^i), (z;o,i, Vfc-i.t), py(ufc-i,i, e). 

Necessarily, there are at least two non-incident links of px{s,V2,j) on row q — 

1; w.l.o.g. let ivg^^^rn,Vq-i^m+\) be such a link with w,,^ fi '"q,m+i- By 

Lemma 3.3.1, there exists a path psivq, ) in B of length 2k - 3. The path 

obtained by joining p(s,e) to pB{vq,m,Vq,m+i) over (t><,_i,,„, i;<,_i,^+i) has length at 

least A;̂  - 4 - e. The result follows. • 

We deal with the case when A; = 4 later (as we do also for subsequent proposi

tions). 

The next proposition deals with the next scenario in the base case. 

Proposition 3.3.2 Consider the k-ary 2-cube where k > 6 ts even and where 1 

of the nodes is faulty. Let s and e be any two distinct, non-faulty nodes. There is a 

path of length at least A;̂  — 3 (resp. k'^ — 4) from s to e if (s, e} is odd {resp. even). 

Proof: The proof is a much simplified version of the proof of Proposition 3.3.1. 

Essentially, we partition Qj ii^^o 2 row-tori, A = rt{Q, 1) and X = rt{2, k — 1), and 

follow the constructions in Sub-cases (a.i), (a.vi) and (a.iv). The result follows. • 

We now consider when there are only faulty links in Q2, but first we construct 

some basic hamiltonian circuits on row-tori. Consider the row-torus rt{Q,p - 1) in 

Q2, for some even p where 2 < p < A; - 1. For every even z G { 0 , 1 , . . . ,p - 2}, build 

the following cycle d: 

{Vi,Q,Vi^l),{Vi^i,Vi^2), {Vz,k-2,Vi^k-\), {Vi.k-\,V^+-i^k-l), 

(u,+ l,fc_l,'Ui+l,fc_2), . . • , {Vi+l.-[,Vi+\fi), {v^+l ^0,^1.0) • 

Join the cycle Co to the cycle C2 over the links {vifi, vi^i) and (^2,0^ '̂ -'2,1), and denote 

the resulting cycle by Eq^. Now join Eq^q to the cycle C4 over the links ('t;3,o,•^3,1) 

and {v4fi,V4j), and denote the resulting cycle by Eq^ also. Proceed in this way to 

obtain the hamiltonian cycle £^0,0 of the row-torus rt{0,p - 1) rooted at V Q . O -

I f 3 < p < A ; — l i s odd then build the cycle Eq^ in the row-torus rt{0,p — 2) and 

join it to the cycle induced by the nodes on row p - 1, over the hnks (fp_2,o, ^p-2,1) 
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Figure 3.5: The hamiltonian cycle £'o,o in rt{0,6) in Ql-

and (fp-1,0, •?^p-i,i); denote the resulting cycle as the cycle £ 0 , 0 of ri(0,p— 1) rooted 

at fo.o- The hamiltonian cycle Eq^ in rt{0,6) in Ql can be visualised as in Fig.3.5. 

Note that we also have the hamiltonian cycles £0 .1 of r i (0,p - 1), for all p G 

{2, 3 , . . . , A;} and Z G { 1 , 2 , . . . , A ; - 1 } , obtained by starting the above process at the 

root-node vo,i as opposed to node vq^q. 

Proposition 3.3.3 Consider the k-ary 2-cube Q2 where k > 6 is even and where 

there is 1 faulty link. Let s and e be any two distinct nodes in the row-torus rt{0,p — 

I), where 2 < p < k. There is a path in rt{0,p - 1) from s to e of length pk - 1 

{resp. pk — 2) if {s,e] is odd {resp. even). 

Proof: By Lemma 3.3.2, we may assume that the faulty link lies in rt{0,p- 1). 

W.l.o.g. we may assume that the faulty link is either (t'o.o,'̂ ^a+i.o) or {va,Q,ya,i)^ 

where 0 < a < p - 2. As before, e = 1 if {s, e} is odd, and e = 2 if {s, e} is even. 

Case (a) a = 0, and the faulty link is (vo,o, ^̂ ho)-

Sub-case {i) s and e lie on row 0. 

If s = vo.i and e = vqj then w.l.o.g. we may assume that i < j and that it is not 

the case that both i = 0 and j = A; — 1. 

Suppose that it is not the case that i = 1 and j = A: — 1. Let po(s, e) be the path 

( S j - y o . i - i ) , ( ' t^o,i-i,%i-2), • • • , {voj+i,e). 



3.3. The base case 42 

• m t—9-^ n —f 
—I 

y—0—0—^ 
S — c ^ - c 

Figure 3.6: Joining po(s, e) to the amended cycle C. 

Note that the length of po(s, e) is odd if, and only if, {s, e} is odd; so, there are an 

even number of nodes on row 0 that are not on po(s, e) if, and only if, {s, e} is odd. 

Let C be the cycle induced by the nodes on row I. Iteratively join C to appropriate 

links (t'o,;, •t''o,/+i) over {vi^i,Vi^i+i) so that the nodes used on row 0 do not already 

appear on po(s, e). Links should be replaced (by paths) so that if {s, e} is odd (resp. 

even) then every node of rt{0,1) appears on the (amended) cycle C or on po(s,e) 

(resp. except one). Join po(s,e) to C over two corresponding links (this is always 

possible) and denote the new path by PA(S , e). The path PA{S, e) has length 2k — e. 

This construction can be visualised in Fig.3.6, where the dashed links show how 

Po(s,e) is joined to the amended C. 

Suppose that i = 1 and j = k — 1. Let po(s, e) be the path 

(s, ^0,2), (^0,2, % 3 ) , • • •, (yo,/c-2, e). 

Let C be the cycle induced by the nodes on row 1. Join po(s, e) to C over (^0,1- "̂ '0,2) 

and ( f i ,1,^1,2) , and denote the new path by pA{s,e). The path pA{s,e) has length 

2k-2. 

If p = 2 then we are done. If p > 3 then let D be the hamiltonian cycle £2,0 in 

the row-torus rt{2,p- 1), and if p = 3 then let D be the cycle induced by the nodes 

on row 2. Join pA{s,e) to D over two corresponding links, and the resulting path is 

as required. 

Sub-case {ii) s lies on row 0 and e lies on row 1. 

Let s = vo^i and e = Vij; w.l.o.g. we may assume that i k — 1. If z ^ 1 then let 

e' be a neighbour of s on row 0 that does not lie in the same column as e. If i = 1 

and i 7̂  2 then let e' = vo,2- Either way, let po(s, e') be a path on row 0 of length 

k - 1. If z = 1 and j = 2 then let e' = •uo,3 and let po(s, e') be a path on row 0 of 

length k -2. 
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Let s' be the neighbour of e' on row 1 and let pi{s', e) be a path on row 0 which 
contains the link ( f i , o , f i , i ) . Define the path p^is^e) as 

Po(s,e'), {e',s'),pi{s',e). 

Iteratively join p.4(-s,e) to appropriate links {vi^uVij+\) over {VQ_I,VO,I+\) SO that 

the nodes used on row 1 do not already appear on PA{S, e). Links should be replaced 

(by paths) so that if {s, e} is odd (resp. even) then every node of rt{0,1) appears 

on (the amended) ^^(s, e) (resp. except one). 

If p = 2 then we are done. If p > 3 then let D be the hamiltonian cycle Eo^ in 

the row-torus rt{2,p — 1), and if p = 3 then let D be the cycle induced by the nodes 

on row 2. Join PA{s,e) to D over the links (^1,0,^1,1) and {v2fi,V2,i)- The resulting 

path is as required. 

Note that if p = 2 then we have covered all cases, so henceforth we assume that 

p > 3. 

Sub-case {Hi) s lies on row 0 and e lies on rows 2,3, . . . ,p — 1. 

Suppose that s = uo,i. If i 7̂  1 then define e' = t'o,i-i) and if i = 1 then define 

e' = t'o,i+i- Define the path po(s. e') to be the path on row 0 of length k- I. Let e" 

be the neighbour of e' on row 1, and let e'" be a neighbour of e" on row 1 that does 

not he in the same column as e. Define the path pi(e",e"') as the path of length 

A; — 1 on row 1. Define the path pA{s,e"') as 

Po(5,e'),(e',e"),Pi(e",e"'). 

The path pA{s,e"') has length 2k - 1. 

Let s' be the neighbour of e'" on row 2. If p > 4 then by Lemma 3.3.2, there is 

a path px{s',e) in rt{2,p- 1) of length k{p - 2) - e, and the path 

PAis,e"'),{e"',s'),px{s\e) 

is as required. If p = 3 then define the path px{s', e) to be a path on row 2, and let 

p{s, e) be the path 

PA{s,e"'),ie"\s'),px{s',e). 
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Iteratively join p{s,e) to appropriate links {v2,i,V2,i+i) over (t>i,;, so that the 

nodes used on row 2 do not already appear on p(s, e). Links should be replaced (by 

paths) so that if {s,e} is odd (resp. even) then every node of row 2 appears on the 

amended path (resp. except one). The resulting path is as required. 

Sub-case {iv) s and e lie on row 1. 

Proceed as in Sub-case (z) to build a path (analogous to) p.4(s,e). The path p.4(s,e) 

is such that it contains a link on row 1. Join p^(5, e) to the cycle D, as constructed 

in Sub-case {i) and over corresponding links, to obtain a required path. 

Sub-case {v) s lies on rows 1,2,... ,p - I and e lies on rows 2,3, . . . ,p - 1. 

By Lemma 3.3.2, there exists a path p{s,e) in rt{l,p — 1) of length {p - l)k — e. 

There is at least one link of p(s,e) on row 1 that is not incident with v^^. Join 

p(s,e) to the cycle induced by the nodes on row 0 over two corresponding links to 

obtain a required path. 

Case {b) 0 ^ a ^ p - 2 and the faulty link is {vafl,Va+},o)-

Sub-case {i) s and e lie on rows 0 , 1 , . . . , a. 

By Lemma 3.3.2, there is a path pA{s,e) in rt(0,a) of length (a + 1)A; - e. Either: 

there exist 2 disjoint links of PA{S, e) on row a, and so we have a link of PA{S, e) on 

row a that is not incident with Vafl] or k — 6 and the nodes Va,2,Va,3, VaA constitute 5, 

e and a node not on PA{S, e). However, in this latter case, let £^0,0 be the hamiltonian 

cycle in rt{0,a) but with the sub-path from s to e involving (some of) the nodes 

î a,2, Wa,3) •'̂ a,4 removed (so, the length of this sub-path is 1, if {s,e} is odd, and 2, if 

{s,e} is even). Either way, we obtain a path, call it p.4(s,e), in rt{0,a) of length 

(a -I- 1)A; - e with the property that there is a link of p^(s, e) on row a that is not 

incident with Vafi. 

Join p^(s,e) to the hamiltonian cycle £̂ Q+I,O of rt{a + l.p — I), over some ap

propriate links, and the path obtained is as required. 

Sub-case {ii) s lies on rows 0 , 1 , . . . , a and e lies on rows a -I- 1, a -f- 2 , . . . ,p - 1. 

Suppose that we can choose e' on row a such that: Va^o 7̂  e' ^ s; e and e' are not 

adjacent; and {5,e'} = {s ,e}. If so then by Lemma 3.3.2, there is a path p^(5,e') 

in rt{0,a) of length (a -I- 1)A; — e so that e is not adjacent to e'. Define s' to be 
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the neighbour of e' on row a -1- 1. By Lemma 3.3.2, there is a path px{s',e) in 
rt{a + l , p - l ) of length (p - a - 1)A; - 1. The path 

PA{s,e'),{e',s'),px{s',e) 

is as required. 

Alternatively, suppose that e' does not exist. This only happens when A; = 6, 

and (s = Va,2 and e = Wa+1,4) or (s = Ua,4 and e = Ua+i,2)- Define e' = Va,3 and let 

Eofi be the hamiltonian cycle in rt{0,a) with the link (s.e') removed: call this path 

p^(s,e'). By Lemma 3.3.2, there is a path PX(^^Q+I,3, e) in rt{a - I - l . p - 1) of length 

(p - a - 1)A: - 1. The path 

PA{s,e'),{e',Va+i,3),Px{va+h3,e) 

is as required. 

Case (c) a = 0 and the faulty link is (uo,o, •^0,1)-

Sub-case (i) s and e lie on row 0. 

Let Po{s,e) be the path on row 0 which contains the faulty link (fo,0) "̂ 0̂,1), and let 

C be the cycle induced by the nodes on row 1. Join po{s,e) to C over the links 

(vofi^vo^i) and (f 1,0,•^i,1)1 and denote the resulting path by p(s,e). Iteratively join 

p(s,e) to appropriate links (tiQ,/,'J^cz+i) over (fi , ; ,ui, /+i) so that the nodes used on 

row 0 do not already appear on p(s, e). Links should be replaced (by paths) so that 

if {s, e] is odd (resp. even) then every node of row 0 appears on the amended path 

(resp. except one). Denote the amended path by p(s, e) also. 

If p > 3 then let D be the hamiltonian cycle £'9,0 in rt{2,p - 1), and if p = 3 

then let D be the cycle induced by the nodes of row 2. Joining p(s, e) to D over two 

corresponding links yields a path as required. 

Sub-case [ii) s lies on row 0 and e lies on row 1. 

Suppose that s — UQ.Z and e = t^i.j. W.l.o.g. we may assume that i is odd. 

If {s, e} is odd and I < j <i then define p(s, e) as 

Co+(s,Ui,i), Z " ( i ; i , i , U i j + 2 ) , ( u i j + 2 , ^ ^ i j + i ) , (vi , j+i , 'yoj+i) , 

(uo,j+i,^^Oj),<^r(^oj,e). 
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If {s, e} is odd and i < j < k - 1 then define p{s, e) as 

Cr(s , Vi^i), Z^{Vi^i, Vxj^2): {Vl,j-2, VlJ-l). ( ^ ^ I j - l , VQJ-I), 

{voj-uVoj),C^_^{vo^j,e). 

If {s, e} is odd and i = j then define p{s, e) as Co''(s, e), and if z 7̂  1 then define 

C as the cycle 

C f (vo,i-1, v i , i -1 ) , (t-i,i-1, vo,i-1). 

If {s, e} is even and 2 < j < i then define p{s, e) as 

Co+(s,'!;i,i),^~(Vl,z,Vl,j+3), ('i^l,j+3,^^lJ+2), (^^lj+2,f0,j+2), 

(̂ ^0j-i-2, ^^0j+1), (^0j+1, ^̂ 0J), CQ (wcj, e). 

If {s, e} is even and j = 0 then define p(5, e) as 

Cf(s , i ; i , i ) , Z+(1-1,^,^1,^-1), (t/'i,fe-i,e). 

If {s, e} is even and i < j < k - \ then define p(s, e) as 

Ci"(s, '{;i,i), Z+(^;i,i, 'yi,j-3), (^'ij-s, 'yi,j-2), (^^ij-2, 

^^ i , j - i ) , ('1^1,^-1,"yoj-i), {vQ,j-\,yQ,j),C^{vf),j,e). 

If p > 3 then let D be the hamiltonian cycle £^2,0 of r ^ ( 2 , p - 1), and if p = 3 then 

let D be the cycle induced by the nodes on row 2. If there is a cycle C then join C 

and D over two corresponding links and denote the new cycle by D also. Now join 

p(s, e) to the cycle D, and the path obtained is as required. 

Sub-case {iii) s lies on row 0 and e lies on rows 2, 3, . . . ,p - 1. 

Suppose that p > 3. If {s,e} is even then let the node e' on row 1 be such that e' 

and s have a common neighbour on row 0 and also such that e' does not lie on the 

same column as e. If {s, e} is odd then let e' be the neighbour of s on row 1. By the 

construction in Sub-case {li). there is a path p^(s, e') in rt(0,1) of length 2k - e. 

Let s' be the neighbour of e' on row 2 (note that s' 7̂  e and that {s', e} is odd). 

By Lemma 3.3.2, there is a path px{s',e) in r t ( 2 , p - 1) of length ( p - 2)A: - 1. The 

path 

p^(5,e'),(e',s')>PA'(5',e) 
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is as required. 

Suppose that p = 3. Let s' be a neighbour of e on row 2 so that s' does not 

lie on the same column as s, and let e' be the neighbour of s' on row 2. By the 

construction in Sub-case (M), there is a path pA{s,e') in rt(0,1) of length 2k — e. 

Let px{s', e) be the path on row 2 of length A; - 1. The path 

PA{s,e'),{e',s'),px{s',e) 

is as required. 

Sub-case (iv) s and e lie on row 1. 

Let s = vi^i and e = Vij; w.l.o.g. we may assume that i < j. Let pi(s, e) be the path 

on row 1 containing the link (wi,o,'f^i,i)- Join pi(s,e) to the cycle induced by the 

nodes on row 0 over the links {vi^o, Vi^i) and (fo,o, '^0,0, and denote the resulting path 

by p.4(s,e). Iteratively join p.4(s,e) to appropriate links ('U],;, Ui , i+ i ) over (uo,;, fo,;+i) 

so that the nodes used on row 1 do not already appear on p.4(5,e). Links should 

be replaced (by paths) so that if {s,e} is odd (resp. even) then every node of row 

1 appears on the amended path (resp. except one). Denote the amended path by 

p(s,e). 

If p > 4 then let D be the hamiltonian cycle Eo^i of rt{2,p - 1), and if p = 3 

then let D be the cycle induced by the nodes on row 2. Join p{s,e) to D over two 

corresponding links, and the resulting path is as required. 

Sub-case {v) s lies on row 1 and e lies on rows 2,3, . . . ,p — 1. 

Suppose that p > 4. Let e' be a neighbour of s on row 1 such that e does not lie on 

the same column as e'. We now define a path pyi(s,e') in rt{0,1). If s = and 

e' — Vifi then define p/i(s,e') as 

jV+(s,z;i,jt_i), {vi,k-i,vo.ic-i), {vo,k-i,vo^o): {vo,o,e'); 

if s = vifi and e' = Vi^ then define p/i(s,e') as 

N~{s,vi^2),{^^,2,Vo,2), ( t^o,2,%i), (vo,i,e'); 

otherwise, let pi(s,e') be the path on row 1 containing the link (•^1,0, •^1,1), and join 

Pi(s,e') to the cycle induced by the nodes on row 0 (which contains the faulty 
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link) over the links {vi^, vi^i) and (uo,o, ^0,1), denoting the resulting path by p.4(s, e') 
(joining as we do results in the path pA{s,e') being fault-free). 

Let s' be the neighbour of e' on row 2. By Lemma 3.3.2, there is a path px{s', e) 

in r t { 2 , p - 1) of length {p - 2)k - e. The path 

PA{s,e'),{e',s'),px{s',e) 

is as required. 

Suppose that p 3. Let e' be a node on row 1 such that s e' and e' is in a 

column adjacent to the column on which e lies. Clearly, {s,e} is odd if, and only if, 

{s,e') is odd (node e' and e have the same parity). We now build a path p^(s,e') 

in rt{0,1); w.l.o.g. we may assume that s = Vi^i, e' — Vij and i < j, with i ^ 0 

(as usual, we can apply automorphisms of rt{0,1) if necessary). If {s,e} is odd and 

i ^ 1 then define p/i(s,e') as 

Cr(5, uo.i), -^"^{vo,i, vo,j-\), ( '̂0J - 1 , VQJ). {voj, e')• 

If {s,e} is odd and i = 1 then define p^(5,e') as 

+ (s, J_ 1), (i;i j _ 1, VQJ_ 1), {voj-1, voj),C^{voj,e'). 

If {s, e} is even and s ^ 1 then define p^(s, e') as 

C{{s,vo^i), Z+(z;o,i,Uo,j_2), (^^0j -2 , i^0j - i ) , {vo,j-uVoj),C^{voj,e'). 

If {5 , e} is even and s = 1 then define pA{s,e') as 

A + ( s , U i , j - 2 ) , ( u i j _ 2 , f 0 j - 2 ) , {voj-2,Voj-i), {Voj-l,Voj),C^{voj,e'). 

Let s' be the neighbour of e' on row 2 and let px{s',e) be the path on row 2 of 

length A; - 1. The path 

p^(s,e'),(e',s'),Px(s',e) 

is as required. 

Sub-case (m) s and e lie on rows 2,3, . . . ,p - 1. 

Suppose that p > 4. By Lemma 3.3.2, there is a path px{s,e) in rt{2,p — 1) of 

length {p - 2)k - e. Let C be the cycle 

Cr('^i,o,^^o,o), {VQ,Q,VI,O)-
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Joining px{s,e) to C over two corresponding links yields a required path. 

Suppose that p = 3. If (s = V2,Q and e = V2^i) or (e = V2fi and s - f2 , i ) then let 

P x ( 5 , e) be the path on row 2 of length A; - 1; otherwise, let px{s, e) be the path on 

row 2 not containing the link (u2,o, v2,1). Join px{s, e) to C over two corresponding 

links and denote the resulting path by p{s, e). 

If (5 = V2fi and e = V2,\) or (e = ^2,0 and s — tio.i) then p{s,e) is as required. 

Otherwise, iteratively join p{s,e) to appropriate links (t'2,/, ^^2,/+i) over (uj i)],;+i) 

so that the nodes used on row 2 do not already appear on p{s,e). Links should 

be replaced (by paths) so that if { s , e} is odd (resp. even) then every node of row 

2 appears on the amended path (resp. except one). The path so obtained is as 

required. 

Case {d) The faulty hnk is {Va,o,Va+i,o)-, where 1 < a < p - 3. 

Sub-case (i) s and e lie on rows 0 , 1 , . . . , a -H 1. 

By Case (c), there is a path PA{S, e) in rt(0,a + l) of length {a + 2)k-e. If a 7̂  p - 3 

then let C be the hamiltonian cycle Ea+2,0 of rt{a + 2,p - 1), and if a = p - 3 then 

let C be the cycle induced by the nodes on row p - 1. Joining P / i (s ,e) and C over 

two corresponding links yields a path as required. 

Sub-case (ii) s lies on rows 0, 1 , . . . , a - I - 1 and e lies on rows a -\- 2,a -\- 3,... ,p - 1. 

Suppose that a p - 3. Let the node e' on row a -H 1 be such that s ^ e' and 

{ s , e } = {s,e'}. By Case (c), there is a path p{s,e') in rt{0,a - f 1) of length 

(a - I - 2)A; - e. Let s' be the node on row a -\- 2 adjacent to e'. By Lemma 3.3.2, 

there is a path p x ( s ' , e ) in rt{a -H 2,p - 1) of length (p - a - 2)A; - 1. The path 

p ^ ( s , e ' ) , ( e ' , s ' ) , p x ( s ' , e ) 

is as required. 

Suppose that a = p - 3. Let the node e' on row a + 1 be such that e' s and 

e' lies on a column adjacent to the column on which e lies. By Case (c), there is a 

path p(s, e') in rt{0,p - 2) of length (p - 1)A; - e. Let s' be the neighbour of e' on 

row p - 1 and let px{s', e) be the path of length A; - 1 on row p - 1. The path 

p ^ ( s , e ' ) , (e ' , s ' ) ,PA ' (5 ' , e ) 
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is as required. • 

Proposition 3.3.4 Consider the k-ary 2-cube Q2 where k > 6 is even and where 

2 of the links are faulty. Let s and e be any two distinct nodes. There is a path of 

length k'^ — 1 {resp. k"^ — 2) from s to e if {s,e} is odd {resp. even). 

Proof: W.l.o.g. we may assume that ( fo,Oi^i ,o) is a faulty link. Partition Q2 

into rt{k — 1,0) and rt{l, k — 2). As usual, e = 1 if {s, e} is odd, and e = 2 if {s, e} 

is even. 

Case (a) Both s and e lie in rt{k — 1,0). 

By Proposition 3.3.3, there is a path p^(s, e) in rt{k — 1, 0) of length 2k — e. Either 

there is a link of p^(5,e) on row k — \ that is not incident with any faulty link or 

there is a link of p.4(s,e) on row 0 that is not incident with any faulty link; w.l.o.g. 

suppose that {vi^_x^i,Vk-\^i+\) is a hnk of p>i(s, e) such that neither (ffe_i,i, Vk-2,i) nor 

{vk-\,i->r\,Vk-2A+\) is faulty (the alternative case is similar). By Proposition 3.3.3, 

there is a path Px{vk-2,i-.'^k-2,i^\) in rt{\,k - 2) of length {k - 2)k - 1. The path 

obtained by joining p^(s, e) to px(^^fc-2,t. "^^-2,1+1) over (u/c-ii, •yfc-1,1+1) is as required. 

Case (6) s lies in rt{k —1,0) and e lies in rt{\, k — 2). 

Let {vk-\,i,Vk-2,i) be a healthy link such that s ^ Vk-i.i, e 7̂  Vh-2,i and {s,Vk-iA] = 

{s,e]. By Proposition 3.3.3, there is a path pyi(s,'t;fc_i,j) in rt{k - 1,0) of length 

2k - e and there is a path Px{vk-2d, e) in rt{l, k - 2) of length {k -2)k - 1. The 

path 

PA{S, Vk--i,i), {vk-i,z,Vk-2,i),px{vk-2,i, e) 

is as required. • 

Finally, we deal with the case when there is one faulty node and one faulty link. 

Proposition 3.3.5 Consider the k-ary 2-cube Q2 where k > 6 is even and where 

there is a faulty node and a faulty link. Let s and e be any two distinct, non-faulty 

nodes. There is a path of length at least k"^ - 3 {resp. k"^ - 4) from s to e if {s, e} 

is odd {resp. even). 

Proof: W.l.o.g. we may assume that the faulty node is VQ^. Moreover, we 

may assume that either the faulty link does not lie in ri(0,1) or the faulty link is 
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(^0,0,^0,1) (again, by applying the usual automorphisms). However, if the faulty hnk 
is (fo,o,^^o,i) then we can assume that there are no faulty links as the fact that uo.o 
is a faulty node means that the link (wo,o,'yo,i) is never used. Thus, we can assume 
that the faulty link does not lie in rt{0,1). As usual, e = 1 if {s, e} is odd, and e = 2 
if {s, e} is even. 

Case (a) Both s and e lie in rt{0,1). 

By Lemma 3.3.1, there is a path pA{s,e) in rt{0,1) of length at least 2fc - 2 - e. 

Either there is a link of pA(s,e) on row 0 that is not incident with VQ^Q nor a faulty 

link, or there is a link of pA{s,e) on row 1 that is not incident with a faulty link. 

W.l.o.g. suppose that is a link of pA{s,e) that is not incident with a 

faulty link (the alternative case is similar). By Proposition 3.3.3, there is a path 

P.Y(^'2,i, ^^2,i+i) in rt{2, /c - 1) of length {k — 2)k — 1. The path obtained by joining 

pA{s,e) to px{v2,i,V2.i+\) over (vi,j, i;i,i+i) is as required. 

Case [h) s lies in ri(0,1) and e lies in rt{2,k — 1). 

Let vx^i be such that s ^ (fi,,;, t'2,i) is healthy and {s , t ' i , J = {s,e]. By 

Lemma 3.3.1, there is a path P/i(s,fi,i) in ri(0,1) of length at least 2k - 2 - e. 

By Proposition 3.3.3, there is a path px{v2,i, e) in rt{2, /c - 1) of length {k - 2)k - 1. 

The path 

pxis, vi^i), ('t;i,i, 'f;2,i), Px(^'2,i, e) 

is as required. • 

From Propositions 3.3.1, 3.3.2, 3.3.4 and 3.3.5, we obtain the base case for our 

main result so long as A; > 6. However, when /c = 4 a simple computer program 

(implementing an exhaustive search) verifies that Propositions 3.3.1, 3.3.2, 3.3.4 

and 3.3.5 all still hold (we leave this verification as an exercise). Hence, we have 

the following result. 

Theorem 3.3.3 Let k > A be even. In a faulty k-ary 2-cube Q2 in which the number 

of node faults fy and the number of link faults fe are such that fv + fe < 2, given 

any two healthy nodes s and e of Q2, there is a path from s to e of length at least 

k'^ — 2 f y — 1 ( resp . k- — 2 f y — 2) if the nodes s and e have different {resp. the same) 

parities. 
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3.4 The inductive step 

In this section, we complete the proof by induction of our main theorem. The 

following lemma simplifies the situation considerably. 

Lemma 3.4.1 Let Q'^ have 2n — 2 faulty nodes and links, where n > 4. There 

exists a dimension d such that when we partition over dimension d, the resulting 

k-ary (n - l)-cubes Qd,o,Qd,i, • • • ,Qd,k-\ each contain at most 2n - 4 faulty nodes 

and links. 

Proof: Suppose as our induction hypothesis that n > 5 and that the result 

holds for Q^_i (with 2n - 4 faults). Let have 2n - 2 faults. Partition over 

dimension 1; if the resulting /e-ary (n — l)-cubes Quo, Qi,i, • • •, Qi.k-\ are such that 

each contains at most 2n — 4 faults then we are done. So w.l.o.g. suppose that Qi^ 

contains 2n - 2 or 2n - 3 faults. 

Suppose that Qi,o contains 2n — 3 faults, and so there is exactly 1 fault not 

in Qifl. Temporarily regard some fault, w, say, of Q\fi as healthy and apply the 

induction hypothesis to Qi^ (note that w might be a node or a link). Thus, there 

is a dimension d such that when we partition Qi.o over dimension d, the resulting 

/c-ary (n — 2)-cubes each contain at most 2n — 6 faults. Consequently, when we 

partition over dimension d, each of the resulting k-ary {n — l)-cubes contains at 

most 2n — 4 faults (the 'temporarily healthy fault' w needs to be recast as faulty, 

and there is 1 other fault not in Qi.o to consider). 

Suppose that Qi,o contains 2n - 2 faults, and so there are no faults outside Qi,o-

Temporarily regard 2 faults, w and vu', say, of (5i,o as healthy and apply the induction 

hypothesis to Qi,o. Thus, there is a dimension d such that when we partition Qi o 

over dimension d, the resulting k-ary (n — 2)-cubes each contain at most 2n - 6 

faults. Consequently, when we partition over dimension d, each of the resulting 

fc-ary ( n - l)-cubes contains at most 2 n - 4 faults (the 2 'temporarily healthy faults' 

w and w' need to be recast as faulty). 

In order for the result to follow by induction, all we need to do is to verify the 

statement of the lemma for when n — A. Let the faults of Q'^ he Wi, iov i = 1,2,..., 6. 

Partition Q4 over dimension 1. Either each resulting /c-ary 3-cube contains at most 
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4 faults, and we are done, or the nodes involved in at least 5 of {wi : z = 1, 2 , . . . , 6} 
have identical fourth components (if Wi is a link then the nodes involved in Wi are 
the nodes of the link, and if Wi is a node then the node involved in Wi is the node 
itself). We may assume that it is the latter and that the 5 faults whose fourth 
components (of the nodes involved) are identical are Wi, W2, w-i, W4 and w^. 

Partition Q'^ over dimension 2. Either each resulting fc-ary 3-cube contains at 

most 4 faults, and we are done, or one of the resulting k-avy 3-cubes contains either 

5 or 6 faults. We may assume that the third components of wi, W2, w-s and are 

identical. 

Partition Q'l over dimension 3. Either each resulting A;-ary 3-cube contains at 

most 4 faults, and we are done, or one of the resulting k-avy 3-cubes contains either 

5 or 6 faults. We may assume that the second components of wi. W2 and are 

identical. 

Partition over dimension 4. Either each resulting k-ary 3-cube contains at 

most 4 faults, and we are done, or one of the resulting k-avy 3-cubes contains either 

5 or 6 faults. We may assume that the first components of Wi and W2 are identical. 

This yields a contradiction as either: Wi and W2 are nodes and Wi ^ W2\ or Wx or 

W2 is a link joining a node to itself. The result follows. • 

Let us reexamine the proof of Lemma 3.4.1. Ideally we would like Lemma 3.4.1 

to apply when n = 3 but the argument in the proof fails. However, we can classify 

exactly the fault configurations leading to failure. 

Suppose that Q\ has 4 faulty nodes. Following through the argument in the proof 

of Lemma 3.4.1 yields that, up to isomorphism, the situations where the argument 

fails is when the 4 faults are of the form (0,0,0), (a, 0,0), (0,6,0) and (0,0, c), for 

some a, h and c all different from 0. 

Suppose that Q\ has 3 faulty nodes and 1 faulty link. W.l.o.g. suppose that the 

faulty link lies in dimension 3. Following the argument in Lemma 3.4.1 yields that, 

up to isomorphism, the situations where the argument fails is when the 3 faulty 

nodes are of the form (0,0,0), (0,6,0) and (0,0,c), for some b and c different from 

0, and the faulty link is of the form ((a, 0, 0), (a -h 1, 0, 0)), for some a. 
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Suppose that Q3 has 2 faulty nodes and 2 faulty hnks. W.l.o.g. suppose that 
one of the faulty links lies in dimension 3 with the other in dimension 2 (the two 
links cannot lie in the same dimension as otherwise we could partition over this 
dimension and be done). Following the argument in Lemma 3.4.1 yields that, up to 
isomorphism, the situations where the argument fails is when the 2 faulty nodes are 
of the form (0,0,0) and (0,0, c), for some c different from 0, and the faulty links are 
of the form ((a, 0,0), (a + 1,0,0)) and ((0,6,0), (0,6 + 1,0)), for some a and b. 

Suppose that has 1 faulty node and 3 faulty links. W.l.o.g. suppose that 

one of the faulty links lies in dimension 1, one in dimension 2 and one in dimension 

3. Following the argument in Lemma 3.4.1 yields that, up to isomorphism, the 

situations where the argument fails is when the faulty node is of the form (0,0,0) 

and the faulty links are of the form ((a, 0,0), (a + 1,0,0)), ((0,6,0), (0,6+1,0)) and 

((0, 0, c), (0, 0, c + 1)), for some a, 6 and c. 

Suppose that Q3 has 4 faulty links. In this case, Lemma 3.4.1 holds as at least 

2 faulty links lie in the same dimension and we can partition over this dimension. 

We shall use these observations in the proof of the following theorem. 

Throughout the rest of the chapter, we adopt the following notation. Suppose 

that we partition Q'^ over some dimension d to get the /c-ary (n — l)-cubes Qd,Q, Qd,i, 

• • •, Qd,k-i- Let X be a node of Qd,i, say. Then we refer to the node in Qdj corre

sponding to X (that is, the node of Qdj whose name is identical to that of x except 

that its component on dimension d is j as opposed to i) as Xj. We also refer to the 

node X as Xi. 

Theorem 3.4.2 Let be a k-ary n-cube, for some n > 2 and some even k > A, 

with fy faulty nodes and /e faulty links, where 0 < + /e < 2n - 2. / / s and e are 

distinct healthy nodes and {s,e} is odd {resp. even) then there exists a path from s 

to e of length at least fc" - 2 / ^ , - 1 {resp. A,'" - 2 / ^ , - 2 ) . 

Proof: We proceed by induction on n. The base case of the induction is handled 

by Theorem 3.3.3. Suppose, as our induction hypothesis, that the result holds for 

Q^^, where n > 3 and for all m < n. Let be a k-aiy n-cube as in the statement 

of the theorem. Throughout, e = 1 if {s, e} is odd, and e = 2 if {s, e} is even. 
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Suppose that n > 4. By Lemma 3.4.1, we may assume that when we partition 
Q'^ over dimension 1, the resulting /c-ary (n - l)-cubes Qi.o, • •, Qi,fc-i each 
contain at most 2n - 4 faults. Suppose that the number of faulty nodes in Qi i is 

fori = 0,l,...,k-l. 

Case (Q) S and e lie in Qi^. 

By the induction hypothesis, there is a path po{s, e) in Qi,o of length at least A;""^ -

2/o — e. Let {WQ,ZQ) be a link of po{s,e) for which wi and zi are healthy nodes 

(of Qi.i) and {wo,w-i) and (20,21) are healthy links (a simple counting argument 

shows the existence of such a link; if otherwise, there is no such edge, i.e., for 

\/{wo, ZQ) G P O ( S , e), either {wi, Zi) or {WQ, Wi) or (20, 21) is faulty; then the number of 

faulty edges must be at least half of the path length; as there are at most 2n —2 faults 

in Qn,k and A; > 4,n > 3, we have a contradiction). By the induction hypothesis, 

there is a path pi(u;i,2i) in of length at least k"-~^ — 2/ i — L Let p(s, e) be 

the join of po{s,e) to pi{wi,Zi) over {WCZQ). The path p(s,e) has length at least 

2^""^ - 2(/o + / i ) - e. Proceeding similarly and iteratively with appropriate paths 

hi Qi,2, Qi,3, • • •, Q\,k-\ yields a path from s to e of the required length. 

Case (6) s lies in Qî o and e lies in Qi.a, for a 7̂  0. 

A simple counting argument yields that there exists a healthy node WQ 6 Qi,o \ {eo} 

such that: {5,it;o} is odd; w-j, is healthy, for all i = 0 , 1 , . . . , A; - 1; and all links 

of {{•Wi,'Wi+-i) : i = 0 , 1 , . . . , A; - 2} U {{wk-ijWo)} are healthy. By the induction 

hypothesis, there exists a path PQ{S,WO) in Qi_o of length at least k"~^ - 2/o - 1. 

Suppose that a ^ I. A simple counting argument yields that there exists a 

healthy node zi G Qi,i \ { c i } such that: {u ; i ,2 i} is odd; Zi is healthy, for all 

z = 0 , 1 , . . . , fc - 1; and all hnks of {(2^, 2̂ +1) : z = 0 , 1 , . . . , /c - 2} U {(2/e_i, 20)} are 

healthy. By the induction hypothesis, there exists a path p\['Wx, 21) in Qi.i of length 

at least A;""^ - 2 / i - 1. Denote the path 

Po(5,'a;o), [WQ,U}\).P\{WI,ZI) 

by p(s,2i). 
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Suppose that a ^ 2. By the induction hypothesis, there exists a path P2{z2,W2) 
in Qi,2 of length at least /c""^ - 2/2 - 1. Denote the path 

pis,Zi),{zi,Z2),p2{z2,W2) 

by p{s,W2). 

Proceeding iteratively in this way yields a path p{s, Za-\) or p{s, Wa-\), depending 

upon whether a - 1 is odd or even, respectively, of length at least a/c""' - 2(/o + 

/ ] + . . . + /a- i ) - L W.l.o.g., suppose that the path is p(s, 2a-i) (the other case is 

similar). The node Za is odd if, and only if, the node s is odd; hence, {s, e} = {za, e}. 

By the induction hypothesis, there exists a path Paiza,e) in Qi^a of length at 

least /c""' - 2/a - e. Denote the path 

p{s,Za-l),{Za-l,Za),paiZa,e) 

by p'(s, e). The path p'{s, e) has length at least [a + l)/c"-^ - 2(/o + fi +• • • +fa) - e. 

A simple counting argument yields that there is a link {xa,ya) of Pa{za,e) such 

that XQ+1 and y^+i are both healthy nodes and {Xa,Xa+i) and (ya,ya+i) are both 

healthy links (to see this, note that Pa{za,e) has length at least - 2/a - f > 

22n-2 _ 2(2n - 4) - 2 = 2^"-^ _ 4^ + and so there are at least 2^"-^ - 2n + 3 

mutually disjoint links on pa{za,e); as there are at most 2 n - 2 faulty links in our Q'^ 

and 2^""'̂  - 2n + 3 > 2n - 2, when n > 3, at least one such link ( X Q , ya) of Pai^a, e) 

must be as required). By the induction hypothesis, there is a path Pa+iiXa+i^Va+i) 

in Qi,a+i of length at least A;" - 2fa+i - I. Form the path obtained by joining p'{s, e) 

to pa+i{Xa+i,ya+i) over (XQ, J/Q) and denote this path by p"{s,e). The path p"{s,e) 

has length at least (o + 2)/c"~' -2 ( /o + / i + • •. + /a+i) - e . Proceeding similarly and 

iteratively in Q\,a+2, Qi,a+3^ • • •, Q\,k~i results in a path from s to e of the required 

length (the construction can be visualized as in Fig.3.7). 

Now suppose that n = 3 and suppose further that we have no faulty links 

(we deal with when there are faulty links later). From the observation following 

Lemma 3.4.1, we may assume that we have 4 faulty nodes and that these nodes 

are (0,0,0), (a, 0,0), (0,6,0) and (0,0,c), for some a, b and c all different from 0: 

otherwise the construction above in Cases (a) and (6) can be used to build our path. 
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IJ 

Figure 3.7: The construction in Case (6). 

Partition over dimension 1 to obtain the k-avy 2-cubes Qi^, • • •, Q\.k-i', note 

that (0,0,0), (a, 0,0) and (0,6,0) lie in Qi,o. 

Case (c) s and e lie in Qi.o-

Temporarily suppose that (0,0,0) is healthy. By Theorem 3.3.3, there is a path 

Po{s,e) in Qi.o of length at least A;̂  — 4 — e but upon which (0,0,0) may lie. If 

(0,0,0) lies on ^0(5, e) then choose yo — (0,0,0), otherwise choose yo to be any node 

of po{s,e) different from s and e. 

Let y^ and yQ be the nodes immediately before and after yo, respectively, on 

iOo(s,e). WM.o.g., we may suppose that y^_j and y^ are healthy nodes (and that 

(2/0 i2/fc-i) ^nd {yo,yt) •̂re healthy Unks; recall, there is 1 faulty node outside Qi^o)-

A simple counting argument yields that there exists a healthy node Wk-i G Qi,k~i \ 

{Vk-i} ^nch that {y'^_-^,Wk-i} is odd and Wi is healthy, for alH = 1, 2 , . . . , /c — 1 (and 

the links of {{wi, Wi+i) : i = 0,1,..., k — 2} are healthy; to see this, note that there 

are at least [(A;̂  - 1)/2J healthy nodes Wk-i for which lo^- i} is odd, and this 

number is greater than 0). By Theorem 3.3.3, there exists a path /9fc_i(y^_j, u;;c_i) 

in Qi,k-i of length at least k'^ - 2fk-\ - 1. 

A simple counting argument yields that there exists a healthy node Zk-2 S 

Qi,k-2 \ { y f c - 2 > s u c h that {'Wk-2,Zk-2} is odd and Zi is healthy, for all i = 

1, 2 , . . . , A; — 1 (and the links of {{zi, 2i+i) : i = 0,1, . . . , /c — 3} are healthy). By 

Theorem 3.3.3, there exists a path pk-2{u!k-2, Zk-2) in (5i,fc-2 of length at least 

e - 2A_2 - 1. 
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Figure 3.8: The construction in Case (c). 

Proceeding iteratively in this way yields a path p'{s, Zi) defined as 

p{s, Vo), (yo ' J/fc-i). Pfc-i(yfc_i - Wk-\). (u'fc_i, u;fc_2), 

pk-2{'Wk-2. 2fc_2), {Zk-2, Zk-3), (22, ^ l ) -

By Theorem 3.3.3, there is a path pi (z i ,y j ' " ) in Qi.i of length at least A;̂  - 2 / i - 2. 

Consider the path p"{s,e) defined as 

p'{s,zi),pi{zi,yt), (yr,2/^),po(j/^,e)-

The length of this path is k^ - 2 E f j / / , - 6 - 6 = ^ - 8 - 6 . Hence, the path p"{s, e) 

is as required (the construction can be visualized as in Fig.3.8). 

Case {d) s lies in Qi.o and e does not lie in Qi^. 

For the moment, regard the node XQ = (0, 0, 0) as healthy. By Theorem 3.3.3, there 

is a path po(s,a:o) in Qi o of length at least k'^ — 5, if {5,3:0} is odd, and k'^ — 6, if 

{s ,Xo} is even. Let WQ be the node of PQ{S,XQ) adjacent to XQ. W.l.o.g. we may 

assume wi and {wo,Wi) are healthy. There are two possibilities: either e G Qi.i or 

e e Qi.m, where 0 7̂  m 7̂  1. 

Suppose that e 6 and Wi = e. A simple counting argument yields that 

there exists a link (7/0, ZQ) of po{s, WQ) such that yo ^ VUQ ZQ and yi, zi, {yo, yi) and 

{ZQ.ZI) are healthy. By Theorem 3.3.3, there is a path p\{yi,Zx) in Qi.i that avoids 

e and is of length at least fc^ - 2 ( / i -h 1) - 1. Let p(s, e) be the path obtained by 

joining 

PQ{S,WQ), {wQ,e) 
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yo 

V 

Quo Q\. Quo Qu 

Figure 3.9: The constructions in Case {d) when e G 

to P i (y i ,2 i ) over the link {yo,zo)- As {s,xo} = {s,e}, the length of p{s,e) is at least 

2A;2 - 2 / i - 6 - e. 

Suppose that e G Qi . i and Wi 7̂  e. By Theorem 3.3.3, there is a path pi(ti;i,e) 

in of length at least A;̂  - 2 / i - 1, if {wi,e} is odd, and A;"""̂  - 2 / i - 2, if {wi,e} 

is even. Define the path p(s, e) as 

Po(s,'u;o),(^^o,^i^i),Pi(^i^i,e)-

If {s,e} is odd then {s,xo} = {s,Wi} 7̂  {u'o,e} and the length of p{s,e) is at least 

2A;̂  - 2/1 - 7. If {s,e} is even then {s,a:o} = {s,Wi} = {wo,e} and the length of 

p(s, e) is at least 2A;̂  - 2 / i - 8. 

Hence, if e G then we have a path p(s,e) in Qi,o U Q i . i of length at least 

2A;̂  — 2/1 — 6 — e (the constructions can be visualized as in Fig.3.9). 

A simple counting argument yields that there is a link (txi, Ui) of p(s, e) such that 

( M I , U 2 ) and {vi,V2) are both healthy. By Theorem 3.3.3, there is a path P2(w2, V2) in 

Qi,2 of length at least k'^ — 2/2 — L Join the path p(s, e) to the path P2(u2> '̂ 2) over 

the Unk ( u i , vi) and denote the resulting path by p(s, e) also. Proceeding iteratively 

in this way in Qi,3,Qi,4, •. • ,Q\,k-\ yields a path p(s,e) whose length is at least 

A;̂  - 2 E f j / / j - 6 - e = A ; ^ - 8 - e . Hence, the path p(s, e) is as required. 

Alternatively, suppose that e G Qi,™ where 0 7̂  m 7̂  1. Let yi G be such 

that: {s, yi} is odd; 7̂  e; and i/j is healthy, for z = 1, 2 , . . . , A; — 1 (and the Unks 

of {{yi, yt+i) : i = 1,2,..., k — 2} are healthy). By the construction above, there is 

a path p'{s, yi) in QI^Q U Q i . i of length 2A:̂  - 2 } \ - 7. 
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Suppose that m^2. Let 22 € Qi,2 be such that: {22,2/2} is odd; Za 7̂  e; and Zi 
is healthy, for i = 1,2,..., A; - 1 (and the links of {{z^, 2^+]) : z = 2, 3,..., /e - 2} are 
healthy). By Theorem 3.3.3, there is a path ^2(2/2, ̂ 2) in Q\,2 of length fc- - 2/2 - L 

Suppose that m ^ 3. By Theorem 3.3.3, there is a path p^iz-^, ys) in (5i,3 of length 

/ĉ  - 2 / 3 - 1. Proceeding in this way, we obtain paths P2{y2, ^2), Pi{z-i,y-i),..., and so 

on until p^_i(y,„_i, 2^_i), if m is odd, or pm-i{Zm-\,ym-\), if is even. Applying 

Theorem 3.3.3 again yields a path Pm[zm,e) or Pm{ym,e) in Qi^rn, depending upon 

whether m is odd or even, respectively. If m is odd (resp. even) then Pm(2m,e) 

(resp. pm{ym,e)) has length at least fc^ - 2fm - 1 if {2m,e} (resp. {ym^e}) is odd, 

and - 2fm - 2 if {2:^, e} (resp. {y^, e}) is even. 

If m is odd then let p{s, e) be defined as 

p'is, yi), (yi, ^2), P2(y2,22), (^2,23), ̂ 3(23, ys), • • •, ( 2m-1) 2m), Pm(2m, E ) , 

and if m is even then let p(s, e) be defined as 

p'{s,yi), (yi,y2), p2(y2,22), (22, 23), p3(23, ya), . . . , (ym-i,ym),Pm(ym, e). 

It can easily be verified that if m is odd then {s,e} = {2m, e}, and if m is even 

then {s,e} — {ym,e}. Thus, the length of the path p(s,e) is at least (m + l)k'^ -

2Si=i/t - 6 - e . m k - 1 then the path p(s, e) can be iteratively joined to a 

path in Qi.i of length A;̂  - 2/j - 1, for i = m + 1, m + 2,..., A; - 1, just as we did 

above, to obtain a path, also denoted p(s, e), of length at least A;'' - 2Sfr / / j - 6 - e . 

Hence, our path p(s, e) is as required. 

Case (e) s and e lie in Qhp and Qi.m, respectively, where m ^ 0 ^ p m. 

W.l.o.g. suppose that p > m. Let s' e Qi.o be such that s', s'̂ _j and (s^_i,s') are 

healthy and {s ' ,s} is odd. By the construction in Case (d), above, there is a path 

p'(s', e) in Qî o U U . . . U Qi.m of length at least (m + l)k'^ - 2E°=o/i - 7-

Let uip be a node of Qî p such that: {s,Wp} is odd; iwo 7̂  s'; and 1̂"̂  is healthy, 

for i = p,p + 1,..., A- - 1 (and the hnks of {{vJl,w^+•^) : i = p,p + I,.... k - 2} 

are healthy). By Theorem 3.3.3, there is a path pp{s,Wp) in Qî p of length at least 

- 2/p - L 

Let yp+i be a node of Q\,p+i such that: {u;p+i,yp+i} is odd; yo 7^ s'; and y, is 

healthy, for z = p + 1,p + 2..., A; - 1 (and the links of {(yz,yt+i) : 'i = p + l ,p + 
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2,... ,k - 2} are healthy). By Theorem 3.3.3, there is a path pp+i{wp+i,yp+x) in 
Q\,p+i of length at least Â  - 2/p+i - 1. 

Again, by Theorem 3.3.3, there are paths pp+2{yp+2,'Wp+2), pp+3{wp+3,yp+3), and 

so on, up to pk-2iyk-2,-Wk-2), if P is even, and Pk_2{Wk-2,yk-2), if P is odd, of 

lengths k^ - 2fp+2 - l,k^ - 2fp+3 - 1,... ,k^ - 2 / t_2 - 1, respectively; note that 

{s,e} = { u ; f c _ i , 5 ; _ i } , if p is odd (resp. { 5 , e} = {yfe_i ,s ;_i} , if p is even). Yet 

again, by Theorem 3.3.3, there is a path pk-\{wk-i, s'f._-^) (resp. pk-i{yk-i, s'k_i)) in 

Qi.fe-i of length at least — 2/fe_i — e, if p is even (resp. odd). Let p{s,e) be the 

path 

Pp{s,Wp), {wp,Wp+i),pp+i{wp+i,yp+i), {yp+i,yp+2), 

Pp+2{yp+2, Wp+2), , ( 4 - 1 ' P'{s', e). 

The path p{s, e) has length at least (A; - p + m - 1) :̂̂  _ 2E^o/t - SS-Jp/; - 2 - e. 

If p 7̂  m -I- 1 then the path p{s,e) can be iteratively joined to a path in Qi,i of 

length A;̂  — 2/ i — 1, for i = m -I- 1,m + 2 , . . . ,p — 1, just as we did in Case(ci), to 

obtain a path, also denoted p{s,e), of length at least A;'' - 2Ef r^ / i - 6 - e. Hence, 

our path p{s, e) is as required. 

Case (/) s and e lie in (5i,m where m 7̂  0. 

By Theorem 3.3.3, there is a path Pm{s,e) in Qi,m of length at least Â  - 2 /^ - e. 

There exists a link {wm,ym) of Pmis,e) such that Wm+i, ym+\, {wm,Wm+i) and 

(ym,2/Tn+i) are healthy. By Theorem 3.3.3, there exists a path pm+i{'Wm+i,ym+i) in 

Qi,m+i of length at least Â  - 2fm+i - 1- Join Pm{s,e) to pni+i{'Wm+\,yni+i) over 

{'Wm,ym) and denote this path by p{s,e) also. The path p{s,e) can be iteratively 

joined to a path in Qi_j of length Â  - 2/, - 1, for z = m -h 2, m -h 3 , . . . , m - 1 to 

obtain a path of length at least A;̂  — 8 — e as required. 

Now suppose that we have 1 faulty link. Partition over the dimension containing 

this faulty link and if each resulting A;-ary 2-cube Qi^, Qi,\, • • •, Qi,k-i contains at 

most 2 faults then apply the construction as in Cases (a) and (6) to build our 

path. Hence, we may assume that Qi.o contains 3 faulty nodes. However, if we 

follow exactly the constructions in each of Case (c), (d), (e) and ( / ) , then these 

constructions still apply and we obtain a path of the required length. Exactly the 
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same can be said of the scenarios when we have 2 and 3 faulty links. The result now 
follows. • 

We note that given Q^, where /c > 4 is even, and f^ and /e, where f v + f e < 2n-2 , 

there are configurations of fy faulty nodes, fe faulty links and pairs of distinct, 

healthy nodes so that the longest path joining the two nodes has length exactly 

k^ - 2 f y - I (resp. /c" - 2 / ^ , - 2 ) if the parities of the two nodes are different (resp. 

the same). Hence, in this sense our result can be viewed as optimal. 

Also, there are configurations of 2n - 1 faulty nodes in Q'^ and pairs of healthy 

nodes such that the longest path joining the two nodes has length 1; take healthy, 

adjacent nodes x and y where all other neighbours of x are faulty. Hence, the total 

number of faults in Theorem 3.4.2 cannot be increased. 

3.5 Conclusions 

Theorem 3.4.2, allied with the result in [171], fully resolves the situation as regards 

the existence of longest cycles in A;-ary n-cubes where the total number of faults 

(nodes and links) is at most 2n — 2 and where the faults are configured in a 'worst 

case' scenario with respect to the pair of nodes in question. 

Of course, there are configurations of, for example, 2n — 2 faulty nodes in 

where certain pairs of nodes have paths joining them of lengths strictly greater than 

the bounds stated in Theorem 3.4.2. It would be interesting to build longest paths 

joining pairs of nodes but taking into account the configuration of faults (though 

this would appear to be a demanding task). 

We expect that if we assume the conditional fault assumption then we should 

be able to tolerate more faults yet still prove a result analogous to Theorem 3.4.2. 

It would be worthwhile to investigate this scenario and we conjecture that the path 

lengths will be exactly as in Theorem 3.4.2. 

The existence of paths and cycles in (faulty) interconnection networks does not 

guarantee that we can efficiently construct these paths and cycles using a distributed 

algorithm implemented on the underlying topology (see [149] as regards the issues 

involved with the distributed embedding of a hamiltonian cycle in a faulty A;-ary 
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n-cube). The existence of an efficient distributed algorithm which 'implements' 
Theorem 3.4.2 should be investigated. 



Chapter 4 

Bipanconnectivity and bicyclicity 

of /c-ary n-cube 

4.1 Introduction 

Of interest to us in this chapter are the different paths and cycles embedded within 

A;-ary n-cubes. Particularly, we are interested in questions relating to hamiltonicity, 

pancyclicity, panconnectivity, bipancyclicity and bipanconnectivity. These proper

ties can be described as 'strong hamiltonicity' properties and their existence in an 

interconnection network enables a much higher degree of flexibility with regard to 

the simulation of linear arrays of processors or cycles of processors. 

The notions in the preceding paragraph have been investigated in the context of a 

number of interconnection networks: for example, in crossed cubes [54,170], Mobius 

cubes [78], augmented cubes [118], alternating group graphs [31], star graphs [169], 

bubble-sort graphs [97], and in hypercubes and hypercube-like networks [55,110, 

131,154,156,167,168]. As regards A;-ary n-cubes, these notions have been considered 

in [82,163]. In particular, it was proven in [163]: that Q2 is almost-hamiltonian con

nected, bipanconnected and bipancyclic; that is almost-hamiltonian connected, 

for any A;; and that is hamiltonian-connected, for odd A;. Recently, it has been 

proven in [82] that Ql is edge-pancyclic. It was posed as an open problem in [163 

as to whether their results on bipanconnectivity and bipancyclicity for could be 

extended to Q^, for arbitrary n, and it was posed as an open problem in [82] as to 

64 
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whether their results on panconnectivity and pancyclicity could be extended to Q'^, 
for arbitrary A;. In this chapter, we provide precise answers to both these questions. 
In addition, we show that when A; is odd, Q ;̂ is m-panconnected, for rn = ! ] i i*lzi l t2^. 
and (A; — l)-pancychc (these bounds are optimal). We also strengthen the results 
in [82, 163] by introducing a path-shortening technique, called progressive short
ening, and show that the construction of paths using this technique enables us to 
efficiently construct paths in a distributed fashion and so solve a problem relating 
to the distributed simulation of linear arrays and cycles in a parallel machine whose 
interconnection network is Q^, even in the presence of a faulty processor (even in 
Q2, the solution to this problem is not possible using the paths constructed in [163]). 

Many structural properties of A:-ary n-cubes are known, but of particular rele

vance for us is that a A-ary n-cube is vertex-symmetric Throughout, we assume 

that addition on tuple elements is modulo k. 

It is proven in [163] that Q2 is bipanconnected and (edge-) bipancyclic; however, 

as to whether Q^, for n > 3, is bipanconnected or bipancyclic was left as an open 

question. However, in relation to this question, it was proven in [82] that Ql is 

edge-pancyclic, for all n > 2. 

Let u and v be distinct vertices of Q'^ and let p be a path joining u to f of length 

m, where m — d{u,v) is even. Suppose that there are paths Pd.{u,v), Pd{u,v)+2, • • •, Pm = 

p such that: 

• the path pi joins u and v and is of length i, for each i = d{u, v),d[u, v)-\-2,... ,m 

• for each i = d{u, v), d{u, v) + 2,... ,m - 2, the path pi+2 is of the form 

U = U o , U i , . . . ,Ui+2 - V 

with Pi of the form 

U ^ Uo,Ui, . . . , Uj,Uj+3,Uj+4, • • • , Ui+2 = V, 

for some j G { 0 , 1 , . . . , i — 1}. 

Then we say that p can be progressively shortened to obtain paths of all lengths 

from {/ : / = d{u, v), d{u, v) + 2,... ,m}. As we shall see, it will be crucial that our 

paths can be progressively shortened. 
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In the next section, we improve the constructions from [163] in Section 3, 

we look at the general case when k is even, and in Section 4 when A; is odd. We 

outline our application in Section 5 before presenting our conclusions in Section 6. 

4.2 Existing bipanconnectivity results 

The result from [163] that Q2 is bipanconnected (irrespective of whether A; is odd 

or even) is important to our forthcoming results (as the base case of inductions). 

However, we need to refine the proof from [163] that Q2 is bipanconnected in order 

to obtain a stronger result, involving progressive shortening, and so that we can 

apply this stronger result later. We remark that it is also crucial that any residual 

vertex is as stated in Proposition 4.2.1. Our stronger result is as follows. 

Proposition 4.2.1 Let k >3 and let u and v he distinct vertices of 

1. If k + d{u, v) is odd then there exists a hamiltonian path joining u and v such 

that this path can be progressively shortened to obtain paths of all lengths from 

{diu,v) + 2i:0<i< ("'-^'f-^-))}. 

2. If k + d{u,v) is even then there exists an almost-hamiltonian path joining u 

and V such that the residual vertex is adjacent to v and such that this path can 

be progressively shortened to obtain paths of all lengths from {d{u, v)-\-2i : 0 < 
^ (fc^-2-d(u,v))-| 

In particular, is bipannconnected. 

Before we prove Proposition 4.2.1, let us illustrate why the proof from [163] that 

Q2 is panconnected will not suffice. Consider Case (a) of Fig. 2 in [163] (in this case, 

A: is even). We have reproduced this figure in Fig. 4.1(a). The authors claim (in 

a statement prior to Theorem 3) that the almost-hamiltonian path joining u and v 

can be shortened to a path of length d{u, v) so that paths of lengths d{u, v), d{u, v) + 

2,... ,k'^ - 2 are obtained, and this is indeed the case. However, regard the path 

from It to V as a curve on the plane and close this curve as shown in Fig. 4.1 with the 

dotted line. No matter how we progressively shorten the almost-hamiltonian path. 
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Figure 4.1: Case (a) of Fig. 2 of [163] and its correction. 

the residual vertex (shaded in grey) must lie inside the closed curve, and hence we 

cannot shorten the almost-hamiltonian path to a path of length d{u, v) (as any such 

path must lie within the top-left shaded grid). We have corrected this deficiency in 

Fig. 4.1(6). 

Similarly, the cases in Fig. 2(c) and Fig. 3{d) in [163] are deficient in the same 

way, and have been reproduced in Fig. 4.2(a,c). These deficiencies are corrected in 

Fig. 4.2(6,ci). Thus, Proposition 4.2.1 follows (as all other cases in [163] are such 

that the paths can be progressively shortened). 

4.3 The general case when k is even 

We begin by examining whether Q'^ is bipanconnected or not when k is even (we 

reiterate that Q'^ is bipartite when k is even). As remarked earlier, this question was 

posed as an open problem by Wang, An, Pan, Wang and Qu in [163]. We answer 

this question precisely. 

Theorem 4.3.1 Let k > 4 and n > 2, with k even, and let u and v be distinct 

vertices of Q'^. 

1. / / d{u,v) is odd then there exists a hamiltoman path joining u and v such 

that this path can be progressively shortened to obtain paths of all odd lengths 

between d{u,v) and fc" — 1, inclusive. 
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Figure 4.2: Other cases f rom [163] and their corrections. 

2. If d{u,v) is even then there exists an almost-hamiltonian path joining u and 

V such that the residual vertex is adjacent to v and such that this path can be 

progressively shortened to obtain paths of all even lengths between d{u, v) and 

fc" — 2, inclusive. 

In particular, Q'^ is bipannconnected. 

Proof: The vertex-symmetry of means that, w.l.o.g., we may suppose that 

u = ( 0 , 0 , . . . ,0) and v = {vn,Vn-i,Vn-2, • • • ,vi), where Vi < | , for ^ = 1, 2 , . . . , n , 

and where v ^ {vn, 0 , . . . , 0). For brevity, denote Vn as a. 

Let = (z, 0 , 0 , . . . , 0), for 0 < z < A ; - 1 ; hence, u = u° and v ^ u". Part i t ion Q'^^ 

over dimension n to obtain (5n(0), • • •, Qni^ ~ We proceed by induction 

on n. There are two cases: d{u°-,v) is odd; and d{u^,v) is even. 

Case (z) d{u",v) is odd. 

So, by the induction hypothesis applied to there exists a hamiltonian path 

Pa f rom u" to V in (5^(a) which can be progressively shortened to obtain paths of 



4.3. T h e general case when k is even 69 

all odd lengths between v) = d{u, v) - a and - 1, inclusive. Note that if 
the parity of v is even (resp. odd) then a is odd (resp. even). 

Denote the vertex (z, i ; „ _ 2 , . . . , ui) as v\ for z e { 0 , 1 , . . . , A; - 1}; so, u = f" . 

For each i e { 0 , 1 , . . . , /c - 1} \ { a } , let pi G Qni'') be obtained f rom pa by setting the 

first component of every vertex of Pa sX i. Note that corresponding vertices of the 

paths PQ,PI,. .. ,Pk-\ induce cycles of length k in Q^, e.g., 'u°,u\ ... ,u'^~^,u° is a 

cycle of length k, as is . . . ,v''~^,v°. In particular, the edges of these induced 

cycles and the edges of the paths pQ,p\,... ,Pk-\ yield a x fc""' grid, wi th rows 

1,2, . . . , A ; and columns 1,2, . . . , m , where m = /c"~^, w i t h 'wrap-around' column 

edges. Refer to the vertices by their row-column co-ordinates in this grid; so, for 

example, u is the vertex (1,1) and v is the vertex (a + l , m ) . 

Sub-c£Lse {i.a) Suppose that a is even (and so v lies on odd row a-I-1). Consider the 

path p f r om u to v defined as: 

( l , l ) , ( 2 , l ) , . . . , ( f c , l ) , ( A ; , 2 ) , ( A , - - l , 2 ) , . . . , ( l , 2 ) , ( l , 3 ) , ( 2 , 3 ) , . . . , ( f c , 3 ) , 

( A ; , 4 ) , ( A ; - l , 4 ) , . . . , ( l , 4 ) , . . . , ( l , m - 3 ) , ( 2 , m - 3 ) , . . . , ( / c , m - 3 ) , 

{k,m-2).,{k- l , m - 2 ) , . . . , ( l , m - 2 ) , ( l , r n - l ) , ( / c , m - l ) , { k - 1, 

m - I),... ,{a + 2,m- l),{a + 2,m),{a + 3,m),... ,{k - l,m), {k,m), 

( l , m ) , ( 2 , m ) , ( 2 , m - l ) , ( 3 , m - l ) , ( 3 , m ) , ( 4 , m ) , ( 4 , m - 1 ) , . . . , 

( a ,m) , ( a , m - 1), (a - f l , m - l),{a + l . m ) . 

The path p is hamiltonian and can be visualized as in Fig. 4.3(a). Furthermore, i t 

can t r iv ia l ly be progressively shortened to obtain paths of all odd lengths between 

^"•-1 - I j f . a and fc" - 1 (inclusive), and so that the path of length - 1 - I - a is 

the path po in Q^iO), f rom u to extended w i t h the path in column m of length a 

to vertex v. By above, the path p° can be progressively shortened to obtain paths 

of all odd lengths between d(u, t ;° ) = d{u,v) - a and /c"~^ - 1; the result follows. 

Sub-case {i.b) Suppose that a is odd (and so v lies on even row a-l-1 > 2). Consider 

the path p f rom u to v defined as: 

(1,1), ( 2 , 1 ) , . . . , {k, 1), {k,2), {k - 1 ,2 ) , . . . , (1,2), (1,3), ( 2 , 3 ) , . . . , (fc,3), 

( f c , 4 ) , ( A ; - l , 4 ) , . . . , ( l , 4 ) , . . . , ( l , m - 3 ) , ( 2 , m - 3 ) , . . . , ( / c , m - 3 ) , 
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Figure 4.3: The different cases when d{u'',v) is odd. 

{k,m- 2),{k~l,m-2),..., - 2), ( l , m - 1), {k,Tn- 1), 

(A.- - l , m - 1 ) , . . . , (a + 2 , m - 1), (a + 2 , 7 7 i ) , (a + 3 , m ) , . . . , (fc - l , m ) , 

{k, m ) , ( 1 , m ) , (2, m ) , (2, m - 1), (3, m - 1), (3, m ) , (4, m ) . (4, m - 1 ) , . . . , 

{a,m - 1), ( a ,m) , (a + l , m ) 

(note that the vertex (a + l , m - 1) does not appear on p). 

The path p is almost-hamiltonian and can be visuahzed as in Fig. 4.3(6). Fur

thermore, i t can t r iv ia l ly be progressively shortened to obtain paths of all even 

lengths between /c""' - 1 + a and /c" - 2, and so that the path of length - 1 + a 

is the path po in Qni^)-, f rom u to '(;°, extended w i t h the path in column m of length 

a f rom v^tov. By above, the path p° can be progressively shortened to obtain paths 

of all odd lengths between d{u,v°) and fc""^ — 1. As d{u,v) = d{u,v'^) + a and the 

vertex (a + 1, m — 1) is adjacent to v, we obtain the required result. 

Case (^^) d{u°-,v) is even. 

So, by the induction hypothesis applied to (3^(a), there exists an almost-hamiltonian 

path Pa f rom t i " to v in Q^ia) which can be progressively shortened to obtain paths 

of all even lengths between diu'^.v) = d{u,v) - a and /c"~^ - 2, and so that the 

residual vertex of the almost-hamiltonian path Pa is adjacent to v. Note that if the 

parity of v is even (resp. odd) then a is even (resp. odd). 

For each i E { 0 , 1 , . . . , A; — 1} \ { a } , let pi E Q^(^) be obtained f rom Pa by setting 

the first component of every vertex of pa at i. As was the case in Case (z), corre-
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spending vertices of the paths pQ,pi,..., Pfe_i induce cycles of length kinQ'^. In par
ticular, the edges of these induced cycles and the edges of the paths pQ,pi,... ,pk-i 
yield a fc x (A;"~^ — 1) grid, w i t h rows 1,2,... ,k and columns 1 ,2 , . . . , m — 1, where 
m = A;"~\ w i t h 'wrap-around' column edges. Furthermore, i f we denote the residual 
vertex of pi in Qni^) by then there is an edge {v\ r*) in Q'^, for i = 0 , 1 , . . . , /c - 1; 
moreover, r ° , r \ . . . , r ' ^ ~ \ r ° is a cycle (this is why we focus on the adjacency rela
tionship between the residual vertex and the vertex v, as in the statement of the 
result). Thus, we have a k x m grid w i t h 'wrap-around' column edges, just as we 
had in Case (z); as before, we refer to the vertices as row-column pairs. 
Sub-case {ii.a) Suppose that a is even (and so v lies on odd row a + 1 > 1 and on 
column m — 1). Consider the path p f rom u to v defined as: 

(1,1), (2,1) (fc, 1), (A:, 2), ( / c - 1 , 2 ) , , . . , (1,2), (1,3), ( 2 , 3 ) , . . . , 

( / c , 3 ) , ( f c , 4 ) , ( A , - - l , 4 ) , . . . , ( l , 4 ) , . . . , ( l , m - 3 ) , ( 2 , m - 3 ) , . . . , 

{k,m- 3), {k,m- 2), {k,m- 1), {k,m),{k - 1, m ) , . . . , (a-h 2, m) , 

(a 2 , m - 1), (a -h 3 ,m - 1 ) , . . . , (A; - l , m - 1), (/c - l , m - 2), 

( f c - 2 , m - 2 ) , . . . , ( l , m - 2 ) , ( l , m - l ) , ( l , m ) , ( 2 , m ) , ( 2 , m - 1), 

( 3 , m - l ) , ( 3 , m ) , ( 4 , m ) , ( 4 , m - 1 ) , . . . , (a, m ) , (a, m - 1), (a + l , m - 1) 

(note that the vertex (a -I - l , m ) does not appear on p). The path p is almost-

hamiltonian and can be visualized as in Fig. 4.4(a). Furthermore, i t can t r ivial ly be 

progressively shortened to obtain paths of all even lengths between k"-"^ - 2 +a and 

A;" - 2, and so that the path of length k"^'^ - 2 - f a is the path po in Q^{0), f rom u to 

v^, extended w i t h the path in column m - 1 of length a f rom v° to v. By above, the 

path p° can be progressively shortened to obtain paths of all even lengths between 

d{u, and - 2. As d{u, v) = d{u, v°) + a and the vertex (a - I - 1 , m) is adjacent 

to V, we obtain the required result. 

Sub-case {li.b) Suppose that a is odd (and so v lies on even row a -f- 1 > 2 and on 

column m - 1). Consider the path p f rom u to v defined as: 

( l , l ) , ( 2 , l ) , . . . , ( A ; , l ) , ( A : , 2 ) , ( f c - l , 2 ) , . . . , ( l , 2 ) , ( l , 3 ) , ( 2 , 3 ) , . . . , 

( / c , 3 ) , ( f c , 4 ) , ( A : - l , 4 ) , . . . , ( l , 4 ) , . . . , ( l , m - 3 ) , ( 2 , 7 7 i - 3 ) , . . . , 
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Figure 4.4: The different cases when d{u°',v) is even. 

{k,m-3),{k,m-2),{k- 1, m - 2 ) , . . . , ( 1 , m - 2), (1 , m - 1), 

( l , m ) , (2 ,m) , ( 2 ,m - 1), ( 3 , m - 1), (3 ,m) , (4 ,m) , ( 4 , m - 1 ) , . . . , 

( a , m - 1), (a, m ) , (a + l , m ) , (a + 2 , ?n ) , . . . , (A; - l , m ) , (/c,m), 

{k,m - l),{k - l , m - l ) , . . . , ( a + 2 , m - l ) , ( a + l , m - 1). 

The path p is hamiltonian and can be visualized as in Fig. 4.4(6). Furthermore, 

it can t r iv ia l ly be progressively shortened to obtain paths of all odd lengths between 

^ n - i _ 2 + a and A;" — 1, and so that the path of length A;"~^ — 2 + o is the path po in 

(5^(0), f rom u to v^, extended wi th the path in column m — 1 of length a f rom v° to 

V. By above, the path p° can be progressively shortened to obtain paths of all even 

lengths between d{u,v°) = d{u,v) — a and k'^"^ — 2; thus, we obtain the required 

result. 

A l l that remains is to deal wi th the base case of the induction. However, the 

base case is handled by Proposition 4.2.1. • 

The following is an immediate corollary of Theorem 4.3.1. 

Coro l lary 4.3.2 Let k > 4 and n > 2, with k even. Q^^ is edge-bipaiicyclic. 
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4.4 The general case when k is odd 

We now examine whether Q'^ is bipanconnected when A; is odd. As remarked earlier, 

this question was posed as an open problem by Wang, A n , Pan, Wang and Qu 

in [163]. We answer this question precisely; in fact, we prove even more as we shall 

see later. 

T h e o r e m 4.4.1 Let k > and n > 2, with k odd, and let u and v he distinct 

vertices of Q^. 

1. / / d{u,v) is even then there exists a hamiltoman path joining u and v such 

that this path can be progressively shortened to obtain paths of all even lengths 

between d{u,v) and A;" — 1, inclusive. 

2. / / d{u, v) is odd then there exists an almost-hamiltonian path joining u and v 

such that the residual vertex is adjacent to v and such that this path can be 

progressively shortened to obtain paths of all odd lengths between d{u, v) and 

A'" — 2, inclusive. 

In particular, is bipannconnected. 

Proof: The proof is very similar in structure to that of Theorem 4.3.1 and we 

adopt the exact same notation as in that proof. Again, we proceed by induction on 

n and there are two cases, according to whether d{u°', v) is odd or even. 

Case {i) d{u°',v) is even. 

So, by the induction hypothesis, there exists a hamiltonian path pa f rom u° to v 

in Qn{o) which can be progressively shortened to obtain paths of all even lengths 

between d{u'^,v) = d{u,v)-a and A:"~^ - 1 , inclusive. As in the proof Theorem 4.3.1, 

the paths p o , P i , . . . ,pk-\ yield a A; x A;""' grid, w i t h rows 1 ,2 , . . . , A; and columns 

1,2, . . . , m , where m = A;"" \ w i th 'wrap-around' column edges. 

Sub-case {i.a) Suppose that a is even (and so v lies on odd row a - I - 1 > 1 and on 

column m). Consider the path p f rom u to f defined as: 

( l , l ) , ( 2 , l ) , . . . , ( A ; , l ) , ( ^ ' , 2 ) , ( A - - l , 2 ) , . . . , ( l , 2 ) , ( l , 3 ) , ( 2 , 3 ) , . . . , ( A - , 3 ) , 

(^•,4), (fc - 1 ,4 ) , . . . , ( 1 , 4 ) , . . . , (A;,m - 3), [k - 1,m - 3 ) , . . . , ( l , m - 3), 
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(1 , m - 2), (2, m - 2 ) , . . . , {k, m - 2), {k,m- 1), {k,m), {k - 1, m ) , 

[k - l,m - I), {k -2,m - 1), {k - 2 , m ) , . . . , (a - I - 2 , m ) , (a -H 2 , m - 1), 

(a - I - 1, m - 1), ( a , m - 1 ) , . . . , (1 , m - 1), (1 , m ) , (2, m ) , . . . , (a + 1, m) . 

The path p is hamiltonian and can be visualized as in Fig. 4.5(a). Similarly to as 

in the proof of Theorem 4.3.1, p can be progressively shortened to obtain paths of 

all even lengths between d{u,v) and /c" — 1. 

Sub-case {i.b) Suppose that a is odd (and so v lies on even row a -t- 1 > 2 and on 

column m) . Consider the path p f rom u to v defined as: 

(1,1), ( 2 , 1 ) , . . . , {k, 1), {k, 2), (A; - 1, 2 ) , . . . , (1 , 2), ( 1 , 3), (2, 3 ) , . . . , {k, 3), 

(A; ,4) , (A;- l , 4 ) , . . . , ( l , 4 ) , . . . , ( / c , m - 3 ) , ( f c - l , m - 3 ) , . . . , ( l , m - 3 ) , 

( l , m - 2), ( 2 , m - 2 ) , . . . , {k,m- 2), {k,m - 1), (fc,m), {k - l , m ) , 

{ k - l , m - l ) , { k - 2 , m - l),{k - 2,m),{k - 3,m),{k - 3,m - 1 ) , . . . , 

(a 4- 2 , m - 1), (a -h l , m - 1), ( a ,m - 1), . . . , ( l , m - 1), ( l ,7n) , 

( 2 , m ) , . . . , ( a - t - l , m ) 

(note that the vertex (a - I - 2 ,m) does not appear on p). The path p is almost-

hamiltonian and can be visualized as in Fig. 4.5(6). Similarly to as in the proof of 

Theorem 4.3.1, p can be progressively shortened to obtain paths of all odd lengths 

between d{u, v) and /c" — 2. 
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Case {li) d{u°-,v) is odd. 

So, by the induction hypothesis, there exists an almost-hamiltonian path pa f rom 

•u" to V in Qn{o.) which can be progressively shortened to obtain paths of all odd 

lengths between ( i ( u " , f ) = d{u,v) - a and - 2, and so that the residual vertex 

of the almost-hamiltonian path Pa is adjacent to v. As in the proof Theorem 4.3.1, 

the paths p Q , p i , . . . , Pk-i and the residual vertices yield a A; x /c"~^ grid, w i th rows 

l , 2 , . . . , f c and columns l , 2 , . . . , 7 n , where m - w i t h 'wrap-around' column 

edges. 

Sub-case {ii.a) Suppose that a is odd (and so v lies on even row a + 1 > 2 and on 

column m — 1). Consider the path p f rom u to v defined as: 

(1,1) , ( 2 , 1 ) , . . . , (A;, 1), (A;, 2), ( A : - 1 , 2 ) , . . . , (1,2) , (1,3), (2, 3 ) , . . . , (/c, 3), 

( A , 4 ) , ( A ; - l , 4 ) , . . . , ( l , 4 ) , . . . , ( / c , T n - 3 ) , ( A , m - 2 ) , ( A ; - l , m - 2 ) , 

(A; - 1, m - 3 ) , . . . , (a - f 2, m - 3), (a + 2, m - 2), (a + 1, m - 2), 

(a + 1, m - 3), (a, m - 3), (a, m - 2 ) , . . . , (4, m - 2), (4, m - 3), 

( 3 , m - 3), ( 3 , m - 2), (2 ,m - 2), ( 2 ,m - 3), ( l , m - 3), ( l , m - 2), 

( l , m - l ) , ( A - , m - 1 ) , ( A - l , m - 1 ) , . . . , (a + 2, m - 1), (a + 2, m ) , 

(o + 3, m ) , . . . , (fc, m ) , (1 , m ) , (2, m), (2, m - 1), (3, m - 1), (3, m ) , 

(4 ,m) , ( 4 , m - 1 ) , . . . , ( a ,m - 1), (a, m ) , (a 4- l , m ) , (a - I - l , m - 1). 

The path p is hamiltonian and can be visualized as in Fig. 4.6(a). Similarly to as 

in the proof of Theorem 4.3.1, p can be progressively shortened to obtain paths of 

all even lengths between d{u,v) and A;" — 1. 

Sub-case {li.b) Suppose that a is even (and so v lies on odd row a -f- 1 > 1 and on 

column m - 1). Consider the path p f rom u to i ; defined as: 

(1,1), (2 ,1 ) , . . . , (fc, 1), (A;, 2), (^ - 1, 2 ) , . , . , (1 , 2), ( 1 , 3), ( 2 , 3 ) , . . . , (A:, 3), 

(A, 4), (fc - 1 ,4 ) , . . . , ( 1 , 4 ) , . . . , (A, m - 3), (A; - 1, m - 3 ) , . . . , (1 , m - 3), 

( l , m - 2), ( l , m - 1), ( l , m ) , (2 ,m) , ( 2 , m - 1), ( 2 ,m - 2), (3,7n - 2), 

( 3 , m - l ) , ( 3 , m ) , ( 4 , m ) , ( 4 , m - l ) , ( 4 , m - 2 ) , . . . , ( a , m ) , ( a , m - 1), 

(a, m - 2), (a + 1, m - 2), (a + 2, m - 2 ) , . . . , ((A:, rn - 2), /c, m - 1), 
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Figure 4.6: The different cases when d(u° , t ; ) is odd. 

( f c , m ) , ( A ; - l , m ) , ( / c - l , m - l ) , ( A ; - 2 , m - l ) , . . . , ( a + 2 ,m) , 

(a + 2 , m - l ) , ( a + l , m - 1) 

(note that the vertex (a + l , r n ) does not appear on p). The path p is almost-

hamiltonian and can be visualized as in Fig. 4.6(6). Similarly to as in the proof of 

Theorem 4.3.1, p can be progressively shortened to obtain paths of all odd lengths 

between d{u, v) and A;" — 2. 

However, the base case is handled by Proposition 4.2.1. • 

The following is an immediate corollary of Theorem 4.4.1. 

Coro l lary 4.4.2 Let k > 3 and n > 2, with k odd. is edge-bipancyclic. 

As remarked earlier, bipanconnectivity and bipancyclicity are concepts which 

make most sense in the context of bipartite graphs, such as the graphs Q^, for A; 

even. However, when k is odd, Qj; is not biparti te and i t is possible that odd cycles 

might exist, as well as odd and even length paths between vertices u and v. As we 

shall see, this is indeed the case but not universally. 

Henceforth, A; is odd. Consider the vertices u = ( 0 , 0 , . . . ,0) and v = {vn, f^n- i , 

. . . , u i ) of Q^, where (as usual) we assume w.l.o.g. that < for z = 1 ,2 , . . . , n . 

Consider any path f rom u to v that does not use any 'wrap-around' edge, i.e., an 

edge where the zth component of one incident vertex is A: - 1 and where the zth 

component of the other incident vertex is 0, for some z. Such a path must alternate 
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between odd parity and even parity vertices; thus, such paths are either all of even 
length or all of odd length (depending upon whether d{u, v) is even or odd). Suppose 
that d{u, v) is odd (and so all such paths are of odd length). Let i be such that Vi is 
maximal f rom amongst {vn, V n - i , • • • Any path f rom u to v of length at most 

Vn + ... -\- Vi+i + {k - Vi - I) + Vi^i - I - . . . - I - ui = d{u, v) + k - 2vi - I 

cannot use a wrap-around edge and so must be of odd length. Consequently, there 

are no even length paths f rom u to u of length less than d{u,v) + k — 2vi. Identical 

reasoning implies that if d{u, v) is even then there are no odd length paths f rom u 

to V of length less than d{u,v) + k — 2vi. Consequently, we have a lower bound on 

the length of a shortest path, joining u and v and of parity different f rom that of 

d{u, v). 

Choose the vertex v of to be such that = 1 and Vj = 0, for j = 1, 2 , . . . , n — 

1. Thus, there exists a vertex v such that d[u, v) is odd and there are no paths joining 

u and V of even length less than d{u, v) + k — 2. There clearly also exists a vertex 

v' such that d{u,v') is even and there are no paths joining u and v' of odd length 

less than d{u,v) + k - 2 (for example, choose v' = ( 1 , 1 , 0 , . . . , 0)). Consequently, as 

we are interested in general statements concerning all pairs of distinct vertices f rom 

Q n , we shall only look for even (resp. odd) length paths joining u and v of length 

at least d{u,v) + k - 2, when d{u,v) is odd (resp. even). 

T h e o r e m 4.4.3 Let k > 3 and n > 2, with k odd, and let u and v he distinct 

vertices of Q ^ . There are paths joining u and v of all lengths in {i : d{u, v) + k — 3 < 

i < k^ - 1}. Furthermore, this result is optimal m that there exist distinct vertices 

u and v of Q'^^ for which d{u,v) is odd {resp. even) and there are no even-length 

{resp. odd-length) paths joining u and v of length less than d{u, v) + k — 2. 

Proof: The proof is very similar in structure to that of Theorem 4.4.1 and we 

adopt the exact same notation as in that proof (and in the proof of Theorem 4.3.1). 

There are two cases, according to whether d{u°-,v) is odd or even. Given the earlier 

proofs, we are much briefer w i th our arguments here. 

Case {i) d{u°-,v) is even. 
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Figure 4.7: The different cases when d{u°-,v) is even. 

By Theorem 4.4.1, there exists a hamiltonian path Pa f rom to v in Q'^{a) which 

can be progressively shortened to obtain paths of all even lengths between d{u°,v) = 

d{u,v) — a and A,-""^ — 1, inclusive. As in the proofs of Theorems 4.3.1 and 4.4.1, 

the paths po,P\, • • • ,Pk-i yield a A; x A"~' grid, w i th rows 1 ,2 , . . . , A; and columns 

1, 2 , . . . , m , where m = k"'~^, w i t h 'wrap-around' column edges. 

Sub-case [i.a) Suppose that a is even (and so v lies on odd row a - I - 1 > 1 and on 

column m). Bui ld the path p as depicted in Fig. 4.7(a). I t is easy to see that p has 

length — 2 and can be progressively shortened to obtain paths of all odd lengths 

between (A; - 1) - I - d{u'',v) + a - I - 1 = d{u,v) + k and A;" - 2 (shorten so that the 

resulting sub-path of length A;""^ - 1 lies on row A;). 

Sub-case (i.b) Suppose that a is odd (and so v lies on even row a -H 1 > 2 and on 

column m ) . Bui ld the path p as depicted in Fig. 4.7(6). I t is easy to see that p has 

length A;" - 1 and can be progressively shortened to obtain paths of all even lengths 

between (A; - 1) -H diu"", v) + a + I = d{u, u) A and A:" - 1. 

Case ( n ) d{u°^,v) is odd. 

By Theorem 4.4.1, there exists an almost-hamiltonian path Pa f rom to v in Q^(a) 

which can be progressively shortened to obtain paths of all odd lengths between 

d(u°-,v) = d{u,v) — a and A;"~^ — 2, inclusive, and so that the residual vertex is 

adjacent to v. As before, the paths p o , P i , . . . , Pk-\ and the residual vertices yield a 

k X A;"~^ grid, w i th rows 1, 2 , . . . , A; and columns 1, 2 , . . . , m , where m = fc"~\ wi th 
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Figure 4.8: The different cases when d[u°-,v) is odd. 

'wrap-around' column edges. 

Sub-case {ii.a) Suppose that a is odd (and so v lies on even row a - I - 1 > 2 and on 

column m — 1). Bui ld the path p as depicted in Fig. 4.8(a). I t is easy to see that 

p has length A'" — 2 and can be progressively shortened to obtain paths of all odd 

lengths between {k - \) + d('u", v) + a+\= d{u, v) + k and A;" - 2. 

Sub-case (ii.b) Suppose that a is even (and so v lies on odd row a -f- 1 > 1 and on 

column m - 1 ) . Bui ld the path p as depicted in Fig. 4.8(6). I t is easy to see that 

p has length A;" — 1 and can be progressively shortened to obtain paths of all even 

lengths between (A; - 1) 4- ci(u", v) + a + I ^ d{u, v) + k and A;" - 1. 

In order to complete the construction of our paths, we deal w i t h some special 

cases. W.l.o.g., assume that f „ 7̂  0. There is t r iv ia l ly a path of length 

(A; - Vn) + Vn-i + .. • + vi - d{u, v) + k - 2vn < d{u, v) + k - 2 

joining u and v. We can easily lengthen this path to obtain a path of length d{u, v) + 

k — 2 jo ining any distinct vertices u and v. Hence, no matter which vertex v is, 

Theorem 4.4.1 yields paths as in the statement of the result. Opt imal i ty follows by 

the argument presented prior to the statement of the result. • 

Note that pu t t ing A = 3 in Theorem 4.4.3 yields the result f rom [82] that Ql is 

edge-pancyclic, and also resolves the question for arbitrary A', as was posed in [82 . 

The following corollary is immediate, given the fact that the diameter of Q^, when 

A; is odd, is 
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Coro l lary 4.4.4 Let k > 3 and n > 2, with k odd. The k-ary n-cube is m-
panconnected, for m = "(^-iH-^fc-e^ _ lypQ^icyclic. 

As remarked earlier, the bounds in Corollary 4.4.4 are optimal. 

4.5 An application 

We give here the outline of an application where we require our paths to be progres

sively shortened and where alternative shortening methods w i l l not suffice. 

Consider a parallel machine whose underlying interconnection network is a A;-ary 

n-cube, and where this machine is required to solve problems specifically designed 

for a cycle of processors (amongst other problems), w i t h the number of processors 

involved in the cycle being variable. Moreover, there is known to be a faulty pro

cessor in the machine and this faul ty processor cannot be used in any embedded 

cycle. Furthermore, the location of the fault is not known and any cycle must be 

constructed in a distributed fashion, through message-passing between processors. 

For simplicity, suppose that k is even and n = 2; consequently, any cycle we 

construct must have even length. We begin our construction by processor (0, 0) 

at tempting to construct a hamiltonian path to processor (0,1) according to the 

construction in Proposition 4.2.1. Actually, the path is constructed as in Case 1.3 

of Theorem 1 of [163]. I t is important to note that the constructions in Proposi

t ion 4.2.1 (and Theorems 1 and 3 of [163]) are of such a uniform nature that the 

processor at the head of the path constructed so far can calculate in constant t ime 

the name of the next processor on the path, and can send a message to this pro

cessor thus extending the path constructed so far. I f there were no faults then this 

construction would terminate w i t h a hamiltonian path f rom (0,0) to (0,1) laid out 

in the A-ary 2-cube. However, the construction wi l l halt when the faulty processor 

is encountered (we assume that the processor immediately before the fault on the 

constructed path can detect that the next processor is faul ty) . 

Let p be the processor that detects that the faulty processor is the next processor 

on the path, and suppose that this faulty processor is / = (z, j ) . The processor p 

sends a message to processor s = (z - I - 1, j ) (over at most 4 hops, w i th addition 
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modulo A;) that i t should use the construction of Proposition 4.2.1 to embark on 
the construction of a path of length A;̂  - 2 to the processor (z, j - 1). Note that 
the path, as shown in Fig. 4.2(6) (that is, the amended construction of a case 
f rom [163]), avoids the faul ty processor / . We reiterate that the uniform nature of 
the construction is such that the processor at the head of the path constructed so 
far can calculate in constant time the name of the next processor on the path, and 
can send a message to this processor thus extending the path constructed so far. 
Having reached the processor {i,j — 1), we actually truncate the path at processor 
t = {i l , j — I). Thus, we have a path of length A;̂  — 3 f rom processor s to t, 
avoiding processor {i,j — 1) and the faulty processor / . Moreover, this path can be 
progressively shortened so as to obtain any odd length path (of length at most A;̂  —3) 
joining s to s (and avoiding / ) . Furthermore, again because of the uniformity of the 
construction and also the uniformity of the progressive shortening, this progressive 
shortening can easily be completed by message-passing between the processors. In 
fact, message-passing can be used so that every processor q on the path computes 
a list of triples of the form {q'^,q~,i) detaihng that q appears on a path of length 
I f rom s to i so that that the processor q' (resp. g"*") is the next processor on this 
path moving towards s (resp. t). The existence of the edge (s, t) gives our embedded 
fault-avoiding cycles of varying lengths. 

The above construction can be generalized to an analogous construction of fault-

avoiding paths and cycles in where there is a faul ty processor. As we stated 

above, we have not presented the precise details of this generalization; what suffices 

is that the general principle has been presented and any interested reader could 

implement the construction if needs be. We envisage that there are many other 

applications of progressive shortening but we have chosen not to explore these ap

plications here. 

4.6 Conclusions 

In tandem wi th [82,163], we have resolved completely the main questions concerning 

panconnectivity, bipanconnectivity, pancyclicity and bipancyclicity for a A;-ary n-
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cube Q^, when A; > 3 and n > 2. In doing so, we have introduced the new concept 
of the progressive shortening of a path and shown how this concept can be used to 
solve a problem related to the embedding of linear arrays and cycles of processors 
in a distributed-memory multiprocessor whose interconnection network is a A:-ary 
n-cube and where there is one faulty processor. 

As directions for future research, we would like to see more applications of pro

gressive shortening (and feel that the concept wi l l prove to be more widely appli

cable). Also, we would like to see results on panconnectivity, pancyclicity, and so 

for th , extended to A;-ary n-cubes in which there may be (a l imited number of) faulty 

vertices or edges. 



Chapter 5 

Augmented /c-ary n-cube 

In this chapter, we define an interconnection network AQn,k which we call the aug

mented A-ary n-cube by extending a A:-ary n-cube in a manner analogous to the 

existing extension of an n-dimensional hypercube to an n-dimensional augmented 

cube. We prove that the augmented A;-ary n-cube AQn,k has a number of attractive 

properties (in the context of parallel computing). For example, we show that the 

augmented A;-ary n-cube AQn.k- is a Cayley graph (and so is vertex-symmetric); has 

connectivity 4n - 2, and is such that we can build a set of 4n — 2 mutually disjoint 

paths joining any two distinct vertices so that the path of maximal length has length 

at most m a x { ( n — 1)A; — (n - 2), A; - I - 7} ; has diameter [ | J -f- , when n = 2; and 

has diameter at most | ( n + 1), for n > 3 and k even, and at most f (n -f-1) 4- ^, for 

n > 3 and A; odd. 

5.1 Introduction 

Hypercubes are perhaps the most well known of all interconnection networks for 

parallel computing, given their basic simplicity, their generally desirable topolog

ical and algorithmic properties, and the extensive investigation they have under

gone (not just in the context of parallel computing but also in discrete mathemat

ics in general; see, for example, [139] for some essential properties of hypercubes). 

However, a mult i tude of different interconnection networks have been devised and 

developed in a continuing search for improved performance, wi th many of these 

83 
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networks having hypercubes at their roots. Amongst these generahsations of hy-
percubes are fc-ary n-cubes [42], augmented cubes [41], cube-connected cycles [132], 
twisted cubes [75], twisted n-cubes [53], crossed cubes [50], folded hypercubes [51], 
Mcubes [148], Mobius cubes [103], generalised twisted cubes [33], shuffle cubes [112], 
fc-skip enhanced cubes [159], twisted hypercubes [99], supercubes [143], and F i 
bonacci cubes [88 . 

Perhaps the most popular of these generalisations are the fc-ary n-cubes [42 . 

Another generalisation of hypercubes are augmented cubes, recently proposed by 

Choudum and Sunitha [41] as improvements over hypercubes. Hypercubes and 

augmented cubes (of the same dimensions) have the same sets of vertices. However, 

whereas the recursive construction of an n-dimensional hypercube is to take two 

copies of an (n - l)-dimensional hypercube and jo in corresponding pairs of vertices, 

the recursive construction of an n-dimensional augmented cube AQn is to take two 

copies of an ( n - l)-dimensional augmented cube and as well as joining corresponding 

pairs of vertices, pairs of vertices of Hamming distance n — 1 are also joined (that is, 

vertices that are different in every component). Choudum and Sunitha show that an 

n-dimensional augmented cube AQn- has 2" vertices and n2" edges; has diameter 

l^]; has connectivity 2n — 1; is a Cayley graph and so is vertex-symmetric; and has 

an 0 ( n ) time optimal routing algorithm. 

In this chapter, and inspired by [41], we extend a A;-ary n-cube in a manner 

analogous to the extension of an n-dimensional hypercube to an n-dimensional aug

mented cube. Our definition of an augmented k-ary n-cube AQn^k, in comparison 

w i t h that in [41], is not a straightforward generalisation; however, we believe that i t 

does reflect the essence of the extension in [41], and our structural results bear this 

out. We give two different definitions of an augmented fc-ary n-cube in Section 5.2 

and show that they yield the same interconnection network. In Section 5.3, we 

show that an augmented Ar-ary n-cube ^ is vertex-symmetric and, furthermore, 

a Cayley graph. I n Section 5.4, we show that an augmented fc-ary n-cube AQn^k 

has connectivity 4n - 2, and that we can build a set of 4n - 2 mutually disjoint 

paths joining any two distinct vertices so that the path of maximal length has length 

at most at most max{{n - l)k - {n - 2),k + 7} . In Section 5.5, we examine the 
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diameter of the augmented Ar-ary n-cube AQn,k and show that the diameter of the 
augmented /c-ary 2-cube AQ2,fc is [ | J + f ^ l - We also show that the diameter of 
the augmented A;-ary n-cube AQn,k is at most | ( n + 1), when n > 3 and k is even, 
and at most | ( n + 1) + | , when n > 3 and k is odd. Our conclusions are presented 
in Section 5.6. 

5.2 Basic definitions 

We assume throughout that addition on tuple elements is modulo k. Recall the 

definit ion of the k-ary n-cube Q^: the vertex set V{Q'^) is { ( o n , a n _ i , . . . , a i ) : 

0 < Oi < /c — 1}; and the edge set E{Q^) is {{u,v) : either Ui — Vi — I ox Ui = 

Vi + 1, for some i, and Uj = Vj, for all i ^ j } . Whils t we regard all graphs defined 

in this chapter as undirected, our definitions define all edges f rom the perspective 

of a given vertex. Thus, in our definition of we define the (undirected) edge 

{u,v) twice: once f rom the perspective of u, as the edge {u,v); and once f rom the 

perspective of t), as the edge {v.u). The reason we do this is that later we shall define 

paths in our graphs and an undirected edge w i l l be regarded differently depending 

upon the direction i t is being traversed in the path. The following definition adheres 

to this convention. 

Defini t ion 5.2.1 Let n > 1 and A; > 3 be integers. The augmented k-ary n-

cube AQn,k has /c" vertices, each labelled by an n-bit str ing ( a „ , a „ _ i , . . . , 0 ] ) , wi th 

0 < < k - 1, for 1 < i < n. There is an edge joining vertex u— (u„ , u „ _ i , . • . , 'Ui) 

to vertex v = {vn,Vn-\, • • • ,Vi) if , and only if: 

• Vi = Ui — I (resp. Vi = Ui + 1), for some I < i < n, and vj = uj, for all 

1 < j < j 7̂  i', call the edge {u,v) an {i, —l)-edge (resp. an ( i ,+l) -eci^e) ; or 

• for some 2 < i < n, Vi = Ui — l,Vi-i — ' l i j - i — = U] — 1 (resp. 

Vi = Ui + \,Vi-\ = Ui-\ + 1 , . . . , f i = '(ii + 1), = Uj, for all ] > i\ call the 

edge (u, v) a ( < i, —l)-edge (resp. a ( < z, -\-l)-edge). 

We emphasise that the graph AQn^k is undirected but that edges are labelled differ

ently, as an {i, -f-l)-edge or as an (z, - l ) -edge , for example, according to the perceived 
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orientation. 

The augmented A;-ary n-cube AQn^k can also be recursively defined as follows 

(the proof of this fact is a simple induction). 

Definit ion 5.2.2 Fix k > 2>. The augmented /c-ary 1-cube ^ Q i . t has vertex set 

{ 0 , 1 , . . . , fc - 1} and there is an edge joining vertex u to vertex v if, and only if, 

V — u + I ov V = u — I. Fix n > 2. Take k copies of an augmented /c-ary (n — 1)-

cube AQn-i^k and for the zth copy, add an extra number i as the n t h bit of each 

vertex (all vertices have the same n t h bit if they are in the same augmented /c-ary 

(n — l)-cube). Four more edges are added for each vertex, namely the (n, — 1)-

edge, the (n,-|-l)-edge, the ( < n , —l)-edge and the ( < n,-l-l)-edge (as defined in 

Definit ion 5.2.1). 

W i t h respect to the above definition, we refer to the subgraph of AQn^k induced 

by the vertices whose first component is i, for some fixed i G {0 ,1 , . . . ,A . -— 1}, as 

•^Qli-i k subgraph is clearly a copy of A Q n - i . k ) -

Clearly (from the definition of AQn.k)^ when n > 2, AQnM has vertices, 

(2n — l ) n ' ' edges, and every vertex has degree 4n — 2. 

We adopt the following notation wi th regard to identifying specific vertices rel

evant to a given vertex in AQn,k- Let v = (?;„, . . . , f i ) be some vertex of 

AQn,k- For each i e { 0 , 1 , . . . , /c - 1} and each j e {1 ,2 . . . , n } , we denote the 

vertex [vn,Vn-i, • . . , V j + i , i , V j _ i , . . . , ' i ; i ) by v^^ For j E { 1 , 2 , . . . , n } , we refer to the 

neighbour ( ? ; „ , . . . , vj+i, vj + l,Vj_i,... ,Vi) (resp. {vn, Vj+i,Vj - 1, V j - i , . . . , -Ui), 

{Vn, Vj + i ,Vj + l, -Uj - i -h 1, . . . , 'Ui + 1), {Vn, Vj+i, Vj - l,Vj_i - I, . . . ,Vi - 1)) aS 

V(j^+i) (resp. f^(<j,+i)) '"(<j-i))- can combine our notation as the following 

example shows: denotes the vertex obtained by taking the vertex and 

fixing its n t h component at 3 whilst leaving all other components as they were. 

Paths in graphs are given as sequences of vertices (on occasion, a path might 

consist of a solitary vertex). A path in AQn,k niight be specified by the source vertex 

and a sequence of labels detailing the edges to be traversed, e.g., the path in AQ^^^ 

detailed as having the source vertex (0,0,0) and then following the edges labelled 

( < 2, +1) , (3, - 1 ) , (1 , +1) is actually the path (0, 0, 0), (0 ,1,1) , (4 ,1,1) , (4 ,1 ,2) . 
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AQ2,5 

(0,0) r-

(1,0) r 

(4,1) (4,2) (4,3) (4,4)^ 

Figure 5.1: An augmented 5-ary 2-cube. 

The augmented 5-ary 2-cube is depicted in Fig. 5.1 where the edges of the 

underlying 5-ary 2-cube (that is, the (2,-t-l)-edges, the (2,- l ) -edges, the (1,-1-1)-

edges and the (1, - l )-edges) are drawn using narrow pen and the "augmented" edges 

(that is, the ( < 2, -|-l)-edges and the ( < 2, - l )-edges) are drawn using broad pen. 

5.3 Symmetry 

In this section, we examine AQn,k as to any symmetric properties i t might have. We 

begin wi th a useful lemma which wi l l be used to reduce case analyses in subsequent 

proofs, and the proof of which is t r iv ia l . 

L e m m a 5.3.1 (a) The following are automorphisms of AQn,k-

{i) the mapping taking the vertex (z ; „ , i ; „_ i , . . . ,vi) to {vn - a^, - a „ _ i , 

. . . , - a i ) , where ( a „ , a „ _ i , . . . , O i ) e { 0 , 1 , . . . , - 1 } " is fixed; 

( M ) the mapping taking the vertex {yn,Vn-\, • • • ,V\) to (ew„, e?;„-i, • • •, £"^1), 

where e e { + \, - 1 } is fixed. 

(6) For z, j G { 0 , 1 , . . . , / c - 1}, the mapping taking the vertex {i,Vn-\sVn-2-, • • •, f^i) 

to ( j , f „ _ i , v „ _ 2 , . . . ,^1) is an isomorphism of AQ\_^ t. to ^Q^ , , , / , . 

(c) The mapping taking the vertex {u, v) to the vertex (w, u) is an automorphism 

of AQ2,k-
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The property of a graph being vertex-symmetric is important when that graph 
is used as an interconnection network for parallel computing, for having a vertex-
symmetric interconnection network makes parallel algorithm design and topological 
analysis easier, as well as allowing flexibil i ty in, for example, linear array simulations. 

A n immediate corollary of Lemma 5.3.1 is the following. 

Coro l lary 5.3.2 The augmented k-ary n-cube / I Q n . t is vertex-symmetric. 

Proof: Given vertices u = ( u „ , u „ - i , . . . and v — ( t ; n , t ' n - i , . . . of AQn.k, 

by Lemma 5.3.1, the mapping taking an arbitrary vertex {wn, Wn-i, • • •, Wi) to {wn — 

{un — Vn),'Wn-\ — ( t tn - i — f n - i ) , • • • , — {ui — Vi)) IS an automorphism mapping u 

to V. • 

However, we can do better. Let F be a finite group and let 5 C F be a set 

of generators of F not containing the identity and closed under inversion; that is, 

G S whenever s G 5. The simple undirected graph G { r , S ) w i th vertex set F 

and where two vertices g and h are adjacent if, and only if, gh~^ G 5, is called 

the Cayley graph of F (wi th generating set S). Knowledge that an interconnection 

network is a Cayley graph not only immediately yields that the graph is vertex-

symmetric but also provides an algebraic description of the graph that wi l l be useful 

in, for example, developing routing algorithms. 

Let (Zfc)" denote the n-fold Cartesian product of the group (Z^, 0^ ) , where Zk = 

{ 0 , 1 , . . . , A; — 1} and where denotes addition modulo k. Let x = (x„, x„_ i , • • • ,Xi) 

G (Zfc)"; so x"^ = {k - Xn, k - ... ,k - Xi). 

Propos i t ion 5.3.1 For every n > 1, AQn,k = G { { Z k T , S ) , where S is the set 

{ ( 0 , . . . , 0,0, fc - 1, ^ - 1), ( 0 , . . . , 0,/c - 1,/c - 1,/c - 1) , . . . , 

(fc - 1 , . . . , - 1, - 1), ( 0 , . . . , 0 ,0 ,1 ,1) , ( 0 , . . . , 0 , 1 , 1 , 1 ) , . . . , ( 1 , . . . , 1,1), 

( f c - 1 , 0 , 0 , . . . , 0 ) , ( 0 , A ; - l , 0 , . . . , 0 ) , . . . , ( 0 , . . . , 0 , f c - 1), 

( 1 , 0 , 0 , . . . , 0 ) , ( 0 , 1 , 0 , . . . , 0 ) , . . . , ( 0 , . . . , 0 , 1 ) } . 

Proof: By definition, V{AQn^k) = Z^ x Zfc x . . . x Zfc (repeated n times). Let 

u = {un,Un-\, • • • , « ! ) and V = {vn,Vn-i,- •• , V i ) be vertices of AQn,k-
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Suppose that u and v are adjacent in AQn,k- So, for some i , one of the following 
holds: 

1. V= {Un,Un-U • • • , , ©fc l , U i - l , • • • ,Wl) 

2. V= {u„,Un-U • • •,Ui+uUi ©fc 1,^,-1 ®/c 1, • . • ,U l ©fc 1) 

3. t; = ( u „ , u „ _ i , . . . , U i + i , u , ©fc {k - l ) , U i _ i , . . . , U i ) 

4. w = ( u „ , u „ _ i , . . . ffifc (A; - l ) , U j _ i ©fc (/c - 1 ) , . . . , w i ©^ (k - 1)) 

Thus, we have (respectively): 

1- wffifc = (u„ ffifc (A; - u „ _ i ) , . . . ®fc (A: - U j + i ) , u , ©^ (A; - (ui + 1)), 

Ui+i ®k [k - Ui+i), ...,uo®k{k-uo)) 

= ( 0 , . . . , 0 , A ; - 1 , 0 , . . . , 0 ) G 5 

2. u®kv-^ = { 0 , . . . , 0 , k - l , . . . , k - l ) e S 

3. u©fc i ; -^ = ( 0 , . . . , 0,1,0, . . . , 0 ) e S 

4. u ® ^ w - i = ( 0 , . . , , 0 , 1 , . . . , 1 ) e 5. 

Hence, u ©^ 'f^"'' S 5. 

Conversely, suppose that u ©/ , . G 5. So, w ©^ is of the form ( 0 , . . . . 0,1,0, 

. . . , 0 ) or ( 0 , . . . , 0 , 1 , . . . , 1 ) or ( 0 , . . . , 0 , A ; - 1 , 0 , . . . , 0 ) or ( 0 , . . . , 0 , A ; - 1 , , . . , A : - 1 ) . 

Hence, for some i, one of the following holds: 

1. u = ( u „ , . . .,Ui+i,Ui ®k {k - l ) , u . i _ i , . . . , u i ) 

2. V=- {Un,.. .,U^+i,Ui ®k {k - l ) , U j _ i ©fe (/C - 1), . . . ,U] ©fc (A,' - 1)) 

3. V = (u„, . . . ©/c l , U j _ i , . . . , l i i ) 

4. t; = ( u „ , . . . ,u^+i,u,- ©jc l,Ui-i ®/c 1, • • • ,""1 ©fc ! ) • 

So u and v are adjacent in AQn^k- ^ 

As remarked earlier, (by definition) all Cayley graphs are vertex-symmetric and 

so we obtain an alternative proof of Corollary 5.3.2. 

5.4 Connectivity 

I n this section, we examine the connectivity of AQn,k- By Menger's Theorem (see, 

for example, [21]), a graph G = {V, E) has connectivity at least c if , and only if. 
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given any two distinct vertices of V, there are c vertex-disjoint paths joining them. 
Having a high connectivity is a desirable property of any interconnection network 
as i t provides fault-tolerance wi th regard to message routing, allows for hot-spots to 
be avoided, and allows large messages to be split up into smaller ones and routed in 
parallel along vertex-disjoint paths. 

We show that K{AQn,k) = 4n — 2, whenever n > 2 and k > 3. We begin by 

proving this result for AQ2,k and then for the general case using a proof by induction 

(on n) . 

5.4.1 The base case of our induction 

The base case of our forthcoming induction is provided by the following result. 

L e m m a 5.4.1 The connectivity of AQ2,k is 6; that is, n{AQ2.k) = 6. 

Proof: We prove our result by constructing 6 disjoint paths joining any two 

distinct vertices of AQ2^k- By Lemma 5.3.1, w.l.o.g. we may suppose that our two 

given vertices of AQ2.k are u = (0,0) and v - ( i j ) , where 0 < ' t < j < [ | J . For the 

case when fc = 3, Lemma 5.3.1 tells us that we need only consider the cases when v 

is (1,2) and (2,2). The 6 disjoint paths between (0,0) and (1,2) are as follows: 

1. (0,0), (2, 2), (1,2); 4. (0, 0), (0,1), (1 , 2); 

2. (0,0), (2,0), (1,2); 5. (0, 0), (1 , 0), (1 , 2); 

3. (0 ,0 ) , (0 ,2 ) , (1 ,2 ) ; 6. (0, 0), (1,1), (1 , 2). 

The 6 disjoint paths between (0, 0) and (2, 2) are as follows: 

1. (0,0), (2, 2); 4. (0,0), (2,0), (2, 2); 

2. (0,0), (1,1), (2,2); 5. (0, 0), (1 , 0), (2,1), (2, 2); 

3. (0,0), (0,2), (2, 2); 6. (0, 0), (0,1), (1 , 2), (2, 2). 

For /c > 3, we have 3 different cases to consider. Recall, 0 < i < j < [ | J < k-2. 

Case (i) 0 < i < J < Consider the following 6 paths: 
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(0.*-l 

( O j + I ) 

J*-! , / ) 

Figure 5.2: T h e 6 disjoint paths when 0 < z < j . 

a i : ^, (/c - 1, 0), (fc - 2 , 0 ) , . . . , (/c - J + z, 0), (/i- - J + 2 - 1, /c - 1), (fc - j + z - 2, -

2 ) , . . . , ( z + l , j + l ) , t ;; 

as: u , { k - \ , k - 1), (/̂  - 2, A: - 2 ) , . . . , ( j , j ) , ( j - { j - 2, j ) , + l , j ) , v ; 

as: u, (0 ,1) , ( 0 , 2 ) , . . . , (0, j - i ) , (1, j - i + 1), (2, j - z + 2 ) , . . . , (i - 1, j - l),v; 

a,: u.,{0,k-l),{0,k-2),...,{0..j + l ) , { 0 . . j ) , { l , j ) , { 2 , j ) , . . . , { j - l , j ) , v : , 

a^: u, (1 ,1) , (2, 2 ) , . . . , (z, z), (z,z + 1), (z,z + 2 ) , . . . , (z, j - 1), v; 

ag: u, (1, 0), (2, 0 ) , . . . , (z, 0) , (z, A; - 1), (z, fc - 2 ) , . . . , (z, j + 1), v. 

These paths can be visualized in Fig . 5.2 and are clearly mutually disjoint (as there 

are no common nodes between them). 

Case (zz) 0 < i = j < [ | J . Consider the following 6 paths: 

a i : u, {k - 1,0), [k - 2, A; - 1 ) , . . . , { j j + l),z;; 
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(/-I,/"-1) 

/ - I .O 

Figure 5.3: The 6 disjoint paths when 0 < i = j. 

as: u , { k - l , k - l ) , { k - 2 , k - 2 ) , . . . , { j + + l),v-

as: u , ( 0 , l ) , ( l , 2 ) , ( 2 , 3 ) . . . , ( j - l , j ) , w ; 

a^: u,{Q,k - l),{k - l,k - 2),{k -2,k - 2,),... , { j + l,j),v; 

a,: u , ( l , l ) , ( 2 , 2 ) , . . . , ( j - l , j - l ) , u ; 

ag: u,{l,0),{2,l),{3,2),...,{j,j-l),v. 

These paths can be visualized in Fig. 5.3 and are clearly mutually disjoint. 

Case {iii) i = 0 and 1 < j < [ | J . Consider the following 6 paths: 

Qi: u , ( / c - l , 0 ) , ( A ; - l , l ) , . . . , ( / o - - l , j - l ) , t ; ; 

Q2: u , { k - l , k - 1), { k - l , k - 2 ) , . . . , { k - l,j),v; 

03: u , ( 0 , l ) , ( 0 , 2 ) , . . . , ( 0 , j - l ) , y ; 
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a,: u , ( 0 , / c - l ) , ( 0 , / c - 2 ) , . . . , ( 0 , j + l) ,x;; 

as: u , ( l , l ) , ( l , 2 ) , . . . , ( l , j ) , ^ ; 

ae: u, (1 , 0), (1,/c - 1), (1,/c - 2 ) , . . . , (1 , j + 1), 

These paths can be visualized in Fig. 5.4 and are clearly mutually disjoint. The 

result follows. • 

By examining each of the diflFerent constructions in the proof of Lemma 5.4.1, 

we see that the maximal length path joining u — (0,0) and v = is k. 

Coro l lary 5.4.2 Given any two distinct vertices u and v of AQ2,k, there are 6 

disjoint paths joining u and v so that the longest of these paths has length at most 

k. 

5.4.2 The induction step 

We now prove our general connectivity result. 

T h e o r e m 5.4.3 K,{AQn,k) = 4n - 2, whenever k> 3 and n > 2, and given any two 

distinct vertices of AQn,k, there are in —2 mutually disjoint paths joining these two 

vertices so that the length of the longest of these paths is at most max{{n - l)k -

( n - 2 ) , A ; + 7 } . 

Proof: When n = 2 and k > 3, the result holds by Lemma 5.4.1. We proceed 

by induction on n . Our induction hypothesis is that any two distinct vertices of 

AQn-\,k are joined by a set of 4n - 6 mutually disjoint paths (the base case of the 

induction is covered by Lemma 5.4.1). 

We shall also calculate the length of a longest path as constructed according to 

this proof. Let dn{w, w') be the maximal length of any path as constructed according 

to this proof joining any two vertices w and w' of AQn^k, and let (5„ = max{dn{w, w') : 

w and w' are distinct vertices of AQn^k}- We shall obtain a recursive estimate of (5„. 

Fix k,n > 3. Given any two distinct vertices u and v of AQn^k, we shall construct 

4n - 2 disjoint paths joining them. By Lemma 5.3.1, w.l.o.g. we may assume that 

u = ( 0 , 0 , . . . ,0) and L I = ( z ; „ , w „ _ i , . . . ,Vi), w i th 0 < w„ < [ | . 
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0.*-l 

Figure 5.4: The 6 disjoint paths when i = 0. 

u. Case 1: v = ( v „ , 0 , 0 , . . . , 0 ) , where 1 < î n < LfJ i '̂ 1° = 

The vertex u has 4n—6 neighbours in ji-. For each of these neighbours w, apart 

f rom ( 0 , 1 , 1 , . . . , 1) and (0, A : - 1 , A ; - 1 , . . . , A ; - l ) , build the path f rom w by traversing 

(n, -|-l)-edges unt i l AQ^_-^ ^ is reached, before moving to v. This accounts for 4n - 8 

mutually disjoint paths f rom u to v. From the neighbour (0, A: — 1, A; — 1 , . . . , A; - 1), 

build the path by traversing (n,-|-1)-edges unt i l AQ^Jl\ is reached, before moving 

to V. From the neighbour ( 0 , 1 , 1 , . . . , 1), traverse (n , - l ) -edges unt i l AQ'^^^\ is 

reached, before moving to v. This accounts for another 2 paths f rom u to v that are 

mutually disjoint and disjoint f rom all the other paths constructed above. 

From the neighbour (A; - 1, A: - 1 , . . . , fc - 1) of -u, traverse (n , - l)-edges unt i l 

•'^Q'^-\,k is reached, before moving to v. From the neighbour ( 1 , ! , . . . , ! ) of u, 

traverse (n,-l-l)-edges unt i l AQ'^__^ f. is reached, before moving to i ' . Finally, two 

additional paths are obtained by traversing (n,+l)-edges f rom u un t i l v is reached, 

and by traversing (n, - l )-edges f rom u unt i l v is reached. A l l paths constructed are 

mutually disjoint and can be visualized as in Fig. 5.5. Note that the length of the 

longest constructed path is max{vn + 2,k — Vn + 1}] so, rf„(u, v) < k. 

Having dealt w i t h Case 1, let us henceforth assume that v\l^ ^ u. We now define 

some paths which we shall use throughout the subsequent cases. 

Our induction hypothesis is that there are 4n — 6 disjoint paths joining any two 

distinct vertices of AQn-i,k- So, by our induction hypothesis, there is a set FI of 

4n — 6 disjoint paths joining u and t>|° in AQl_j^ f, (by assumption u and ^1° are 
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(k-\,k-],k-],...,k 

(it-1,0,0 0) 

AQ„-i,* 
* - l k-\ (k-\,\,\,...A) 

(0,1,1,...,!) k-\ k-l 

(1,1,1 1) 

AQ„':;.* 

AQn?"!.* 

AQ,,?i , i 

Figure 5.5: The 4n - 2 disjoint paths in Case 1. 

distinct) . Let us denote 4 of these paths as follows: 

• TTi is the path passing through the neighbour U(<„_i,_i) of u: 

• is the path passing through the neighbour ii(<n_i,+i) of u: 

• TTa is the path passing through the neighbour z;(<„_i,_i) |° of vl'^^: 

• is the path passing through the neighbour t;(<„_i,+i)|° of 

Note that although T T I and 1^2 are always distinct, as are T T S and 7:4, i t may be 

the case that either T T I or 7T2 is identical to either 7T3 or 714 (note also that any 

one of the above paths may consist of a solitary edge). We examine each of these 

circumstances separately. Moreover, there are two distinct situations: when Vn = 0; 

and when Vn ^ 0. 



5.4. Connect iv i ty 96 

Note that every path TT in 11, f rom u to ?;|°, is such that there is a path T T ' in 
^Qn-i ,fc ' where Z G { 1 , 2 , . . . , A : - 1 } , f rom to f |^ obtained by taking the isomor
phic image of T T under the natural isomorphism (which takes ( 0 , a „ _ i , a „ _ 2 , . . • , a i ) 
to ( z , a „ _ i , a „ _ 2 , • • • , a i ) ; see Lemma 5.3.1). Throughout this proof, we extend this 
notation to arbitrary paths in AQ'^_^ ^. 

Consider the situation when f „ = 0 (and so = v). For each path Hj, where 

j G { 1 , 2 , 3 , 4 } , that is not the path u,v\1, truncate TTJ at the penultimate vertex 

(that is, the vertex of the path that is a neighbour of v\^) and also remove the first 

edge: denote this truncated path by pj (note that a path might be truncated so that 

i t consists of a solitary vertex). Do likewise wi th all isomorphic images of T T I , T T S , 773 

and (in AQ\_ij^, AQ'^_i ^, and so on). 

Suppose that pi ^ p^. I f neither pi nor ps is the path u,v then we construct 

additional paths u, p'l'^ ,v\'^~^ ,v and u,u\'^''^, p'^~\v through AQ^Z\^k- Pi = ' ^^ ' ^ 

then we have that v — {0.k—l,k — l,...,k — l). In this case, we construct additional 

paths u , u | ^ ~ ' , p 3 " \ u and u,v\^~^,v through AQ'^Z\^k- P3 = '^^'^ then we have that 

u = (0, Vn-i - 1, Un-2 " 1, • • •, 1̂ - 1), w i t h = f n - 2 = . • • = = 1 • In this case, 

we construct additional paths and u, p'l~\v\'^~^ ,v through AQ'^z\^k-

Suppose that pi — pz- We have that pi ^ P2. In this case, we construct additional 

paths u , p i ~ \ z ; and u,u\'^-\ P2~\v\^-\v through AQ^z\^k-

We proceed in an analogous fashion by considering p2 and p4 i n the same way, 

and constructing disjoint paths f rom u to v through AQl^_-^ |^. Consequently, we 

obtain 4n - 2 disjoint paths f rom u to u in AQn.fc- From the above construction, we 

clearly have that dn{u,v) = d „ _ i ( ( 0 , 0 , . . . ,0) , (v„_i ,Un -2 , • • • ,^^i)) + 2 < + 2. 

Henceforth, we shall assume that Vn 7̂  0. 

Case 2: u ^ ul^, u is not adjacent to and u and f d o not have a neighbour of 

'^Qn-i,k i ^ common. 

In particular, u, v is not a path in H. 

Sub-case 2.1: pi ^ and p2 7̂  P3. 

We begin by building 6 specific paths: 

^ • ni n*^"! I l l ' ^ - l 911*^-2 l l l ^ n + l 11-Q l . W,Pi , . . . , V |„ ,V, 
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a s : u , u | ^ - ^ P 4 " ^ ' l ; ( < „ , + ^ ) | ^ - ^ ^ ; ( < „ , + l ) | ^ ^ - ^ . . . , ' f ; (<„ ,+ i ) , t ; ; 
a s : u,u\l„u\l,...,u\:;;\p^2-,v; 

a 4 : U , U ( < „ , + i ) , U ( < „ , + i ) | ^ , U ( < „ , + i ) | ^ , . . . ,U(<n,+\)\n"~\P2",V; 

a s : i i , p 2 , ? ^ l n , w | ^ , , . . .,v\l^-\v] 

ae : u , pa, t ; (<n_i) |^, •!;(<„ . . . ,V(^<n-i),v. 

These paths can be visualized as in Fig. 5.6, and can easily be seen to be mutually 

disjoint. 

There are 4n — 8 paths in 11 apart f rom T T S and 713; let T T be any one of them. We 

truncate TT at the penultimate vertex, and then extend this path along (n, -l-l)-edges 

unt i l we reach AQ^_^ Finally, we extend the path by an edge to v. Again, i t is easy 

to see that the resulting set of 4n - 2 paths are mutually disjoint. Furthermore, we 

have that dn{u,v) = d n - i ( ( 0 , 0 , . . . ,0 ) , ( w „ _ i , u „ _ 2 , • . . ,vi)) + max{k -v^- l,Vn} < 

5n-i + k - 2 . 

Sub-case 2.2: pi = p4 and p2 ^ P 3 . 

Note that, by definition, p i , p2 and pa are distinct. Referring to Sub-case 2.1 (and 

Fig. 5.6), i f we can amend paths a i and 02 so that they remain disjoint and also 

disjoint f rom all of the other 4n —4 paths then we are done. Replace a i and a 2 wi th 

the paths a'j and a , defined as: 

a ; : u , P l ~ ^ • ^ ; ( < „ , + l ) | ^ 5 - ^ ^ ; ( < „ , + l ) | ^ - ^ . . . ,v^<n,+i),v: 

rv'• 11 7 ; l '^~ l n'^~^ i i l * ^ " ! i , | ' ^ n + l "2- " 1 " I n ) P2 1 ' ^ I n i ^ l n ^ • • • i t^-

Again, i t is easy to see that the resulting set of 4n — 2 paths are mutually disjoint. 

The amendments made can be visualized as in Fig. 5.7. Furthermore, we have that 

dn{u,v) = dn-\{{0,0, . . . ,0) , {Vn-uVn-2, • • • , ^ ^ l ) ) + rnax{k - Vn,Vn} < 5 n - \ + k - I. 

Sub-case 2.3: pi ^ p-i and p2 = P 3 . 

Note that, by definition, p i , p2 and p4 are distinct. Referring to Sub-case 2.1 (and 

Fig. 5.6), i f we can amend paths a^, a 4 , a s and ag so that they remain disjoint and 

also disjoint f rom all of the other 4n — 6 paths then we are done. Replace a s , a 4 , 

a s and a e w i t h the paths a 3 , a\, a'^ and ag defined as: 
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ik-\.^„.\-l,v„.2-\ 

(A-1 ,k.).k.\ k-l) ( * - I . V i + l - V 2 - H . - . ' i t l ) 

AQA.i.* 
l,l,l,..M) 

AQ 

AQ;?!.* 

Figure 5.6: The 6 disjoint paths in Sub-case 2.L 

( i - l . i ' „ . l - l .>V2-l v , - l ) 

AQS - i . i 

(k-Lk-lM k-U ( ^ - ' . V l ^ ' . ^ : " ' V ' l 

A-1,0,0 0) 

AQ»-|.« 
{O.v i - i .v : - !—"!- ! ) 

Figure 5.7: The amendments in Sub-case 2.2. 
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a'3: u,u\lu\l,...,u\l\p\'\v; 

a'^: U,U^<r^^+l),U^<n. + \)\l,U(<n, + l)\l, • • • , U^<n,+ l ) \ n ' ~ \ , V, 

a'^: • i / , p 2 , f ( < n , - i ) | ^ , U ( < n _ i ) | ^ , . . . , i ; ( < „ _ i ) , u ; 

a'^: u,pi,v\'^^,v\l,...,v\l^-\v. 

Again, i t is easy to see that the resulting set of 4n — 2 paths are mutually disjoint. 

The amendments made can be visualized as in Fig. 5.8. Furthermore, we have that 

dn{u,v) = d „ _ i ( ( 0 , 0 , . . . ,0) , {vn-i,Vn-2, • • • , Vi)) + max{k-Vn-l, Vn} < Sn-i + k-2. 

Sub-case 2.4: pi = and P2 = Ps-

By making the amendments in Sub-cases 2.2 and 2.3, we obtain a set of 4n - 2 mu

tually disjoint paths. Furthermore, we have that dn{u, v) = ( i„_i ( (0 , 0 , . . . , 0), ( f „ - i , 

• • • ,v\)) + max{k - < (5„_i -h A; - 1. 

Case 3: u ^ f |" and u and v\'^ are not adjacent, but u and have a neighbour of 

•^Qn-i k i ^ common. 

A l l the constructions in Sub-cases 2.1, 2.2, 2.3 and 2.4 work here unless {vn-i -

l,Vn-2 - 1, • • • ,"̂ 1 - 1) = (1 ,1 , • • • > 1), li-e-, unless v = ( v n , 2 , 2 , . . . ,2) . Thus, this is 

the only situation to deal w i th (note that A; > 4, as otherwise u and would be 

adjacent). 

One of the paths in the set U is the path u , ( 0 , 1 , 1 , . . . , 1), f , and let T T be the path 

passing through ( 0 , 3 , 3 , . . . , 3). Truncate T T at the penultimate vertex ( 0 , 3 , 3 , . . . , 3) 

and also remove the first edge: denote this truncated path by p (note that the 

path p might consist of the soUtary vertex ( 0 , 3 , 3 , . . . , 3)). Define the paths p\ for 

z e { 1 , 2 , . . . , A; - 1}, as we did earlier. 

Sub-case 3.1: Vn > 1-

We begin by building 6 specific paths: 

a i : u , p ' ' " ^ ^ ; ( < n , + l ) | ^ ^ ^ I r ^ ^ • • • ,V(<n,+i),v; 

Q2- U . ^ l n ! ^ ( < - n , - l ) n ^ ' ^ I n ' • • • > ̂ I n ' ^ ' 

Q3: u,u\i,u\l,... ( < „ , _ ! ) | ; ; " , u ; 
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( i - l , v „ . , - l , v „ . 2 - l V i - l ) 

2 - 1 l - i - l ) 

. ' • i -D 

A Q „ ' . ' | , * 

P " = P< 

A Q ; ; i . i 

Figure 5.8: The amendments in Sub-case 2.3. 
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(i-1,2,2 2) 
A Q „ . i . * 

(0,3,3 3) {0.k-\,k 

0.2,2 2) 

(0,1,1,...,:) 

(1,0,0 0) 

A Q „ c i ; 

Figure 5.9: The paths in Sub-case 3.1. 

U,Vf^<n-\)\i,V{<n-l)\l,V(<n-l)\l, • • • , t ^ ( < n , - l ) | 

Q 5 : u,p,'y(<„,+i)|^,i;(<„,+i)|^,... ,v^<n.+i)\l^,v\ 

ae: u,v^<n,-i)\n^v\n^v\\,.. .,v\';;'-\v. 

Vn-l 

These paths can be visualized as in Fig. 5.9, and can easily be seen to be disjoint. 

There are 4n —8 paths in H apart from TT and u, ( 0 , 1 , 1 , . . . , l ) , f ; let TT ' be any one 

of them. We truncate TT ' at the penultimate vertex, and then extend this path along 

(n, +l)-edges until we reach / I Q ^ I i fc- Finally, we extend the path by an edge to v. 

Again, it is easy to see that the resulting set of 4n — 2 paths are mutually disjoint. 

Furthermore, we have that dn{u,v) = d „ _ i ( ( 0 , 0 , . . . , 0), (2, 2 , . . . , 2 ) ) + m a x { / c - t i „ -

2,Vn} < Sn-\ + max{k - 4, [ | J } . 
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Sub-case 3.2: u„ = 1. 

We begin by building 6 specific paths: 

a i : ^i,p'="^-y(<„,+l)|^-^U(<„,+l)|^;"^ . . . ,t;(<„,+i),u; 

0:5: u,p,v\l,v; 

ae: u,V(<n-i),v. 

These paths can be visuahzed as in Fig. 5.10, and can easily be seen to be 

mutually disjoint. There are An - 8 paths in U apart from TT and u, ( 0 ,1 ,1 , . . . , 1), 

let TT' be any one of them. We truncate IT' at the penultimate vertex, and then extend 

this path along an (n, +l)-edge and then an edge to v. Again, it is easy to see that 

the resulting set of 4n - 2 paths are mutually disjoint. Furthermore, we have that 

d„.{u, v) = max{dn-i{iO, 0 , . . . , 0), (2 ,2 , . . . , 2)) + /c - 3, /c + 1} < 5n-i + k - 3. 

Case 4: u and u|° are adjacent. 

Sub-case 4.1: v\° ^ {(0, - 1, A; - 1 , . . . , - 1), ( 0 , 1 , 1 , . . . , 1), (0, 2, 2 , . . . , 2)}. 

Note that as (0, /c - 1, /c - 1 , . . . , /c - 1) 7^ u|° 7^ ( 0 , 1 , 1 , . . . , 1), none of the vertices 

(0,/c - l,k - l,...,k - 1), (0 ,1 ,1 , . . . , ! ) , {0,vn-, - l,v^-2 - l , . . . , ^ ! - 1) and 

( 0 , f n _ i -I- 1,^71-2 + 1,..., f i -h 1) is identical to either u or 7;|°. Note also that as u 

and f 1° are adjacent, so are {i, 1 ,1 , . . . . 1) and {i, Vn-\ + l, i'„_2 + l , • • •, vi + l) and also 

{'i,k-l,k-l,.. . , k - l ) and ('t, - 1, u„_2 - 1 , . . . ,Vi-l), for i e { 1 , 2 , . . .,k-l}. 

One of the paths in 11 is the edge (u,u|°) . For each path in H, apart from 

the edge and the path passing through (0,?;„-i — l,^^n-2 — 1, • • •,'L'l - 1), 

truncate this path at the penultimate vertex and extend it using (n, -l-l)-edges until 

^ Q n - i k reached before extending it further by an edge to v. As regards the 

path in 11 passing through (0,w„-i - l,w„_2 — 1 , . . . , — 1), truncate this path at 

(0, Vn-i - l,Vn-2 " 1, • • •, t ' l " l ) and extend it using (n, +l)-edges until AQ'^J-^^,. is 
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A Q „ - .* 

(1,0,0 0) 

A Q i - 1 . * 

(2,0,0 0) 

A Q „ . i , * 

Figure 5.10: The paths in Sub-case 3.2. 

reached before extending it further by an edge to v. Also, extend the edge 

using (n, -l-l)-edges to v. These 4n — 6 paths from u to v can be visualized as in 

Fig. 5.11. 

Form the following paths: 

cvi: u,U(<„,+i),U(<„,+i)|^,... ,U(<„,+i)|^""^\f(<„,+i), 

Q !2 : u,u\\,u\l,...,u\l",v-

a^: u,u|^ ^ • • • , - l n , 

Al l paths can be visualized in Fig. 5.11. It is easy to see that as ( 0 , 1 , 1 , . . . , 1) ^ 

(0, - \.Vn-2 - l , . . . , v i - 1), I.e., v\l 7̂  (0, 2, 2 , . . . , 2), the 4n - 6 paths, con

structed above, and the paths Q I , Q ; 2 , 0:3 and Q4 are all mutually disjoint. Further

more, we have that dn{u,v) — maa;{d„_i( (0 ,0 , . . . , 0), f „ _ 2 , . . . , f i ) ) + Vn,k-

Vn + 2,Vn + 2>} < + [ | J . 

Sub-case 4.2: v\l = ( 0 , 1 , 1 , . . . , 1). 
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: ( * - l , v „ . | - l , v , „ . 2 - l , . . . . V | - l ) 

A Q i - l . * 

A Q „ ? L * 

^Qn"-\.k 

Figure 5.11: The paths in Sub-case 4.1. 
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One of the paths in 11 is the edge {u,v\^). For each path in U, apart from the edge 
{u,v\1), truncate this path at the penultimate vertex and extend it using (n,+1)-
edges until AQn-i./c reached before extending it further by an edge to v. Extend 
the edge {u,v\^^) using (n, -l)-edges to v. 

Let the path p in AQ^Z\ ^ be defined as {k - l,k - l,k - I,... ,k - l),{k -

1.0, k - l,...,k - l),{k - l,l,k - l,...,k - l),{k - l,2,k - l,....,k - l),{k -

l , 2 , 0 , . . . , 0 ) , ( / c - l , 2 , l , . . . , l ) , ( A ; - l , 2 , 2 , . . . , 2 ) (unless {k - 1, k - 1, k - 1,..., k-

1) — {k — 1,2,2,... ,2) when p is just a solitary vertex). Note that p avoids (k — 

1, 0 ,0 , . . . , 0) and (fc - 1,1,1, • • •, 1)- Define the paths: 

Qi: u,p,i;(<„,+i) 1^-2,z;(<„,+i) 1^-3,... ,V(<n,+i),v; 

u,u\'^-\u\'^-^,...,u\';;^,v; 

Q 3 : u,u\\,u\l,... ,u\';i'-\v; 

0:4: u,v\l„v\l,... ,v\l^-\v. 

Our collection of 4n — 2 paths from u to v can be visualized as in Fig. 5.12, 

and from the above construction, they are clearly mutually disjoint. Furthermore, 

we have that dn{u,v) = m a x { 4 - i ( ( 0 , 0 , 0 , . . . , 0), ( 1 , 1 , . . . , 1)) +Vn,k - i;„ + 6} < 

max{6n-\ + LlJ ' ^ 

Sub-case 4.3: v\^^ = {0, k - 1, k - 1,..., k - 1). 

One of the paths in 11 is the edge {u,v\1). For each path in 11, apart from the edge 

(u, v\1) and the paths passing through ( 0 , 1 , 1 . . . , 1) and (0, fc - 2, fc - 2 , . . . , - 2, 

truncate this path at the penultimate vertex and extend it using (n, +l)-edges until 

^ ^ ' n - i k reached before extending it further by an edge to v. Extend the edge 

{u,v\1) using (n, 4-l)-edges to v, and extend the truncated path through (0,/c -

2, - 2 , . . . , A; - 2) using (n, +l)-edges to {vn - 1, k - 2, k - 2,..., k - 2) and then 

to V. This accounts for Aii — 7 mutually disjoint paths. 

Let the path p in ^Q^I'^^A. be defined as (y„ + l,k - 2,k - 2,... ,k - 2),{vn + 

l,k-l,k-2,.. .,k-2),{vn + l,0,k-2,..., fc - 2), + 1,1, k-2,..., k - 2),{vn + 

1.1, / c - l , . . . , A ; - l ) , ( ^ ; „ + l , l , 0 , . . . , 0 ) , ( t ; „ + l , l , l , . . . , l ) (unless {vn + l,k-2,k-
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(A-1,2,2 2) [k-].k-\ k-\ * - l ) 

( M , l , l 1 (*-I,0,0 0) 

A Q J - I , * 

(0,2,2 2) M k-\) 

A Q S . 1 , * 

(1,2.2,..„2) 

(1,0,0 0) 

A Q i - i , * 

AQ^^l ' ,* 

Figure 5.12: The paths in Sub-case 4.2. 
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(k-],0,0....,Q) 

ik-\k-2.k-2 
( 0 , 1 , 1 1) 

A O 2 . 1 * 
( 0 X - 2 , * - 2 

1.1,1 1 

( l , 0 . 0 , . . . . O ) ( 1 , * - 1 , A - - I , . . . > 1 ) 

A Q A - i * (.].k-2.k-2..\ 

{v„.k-l.k.\....,k-]) 

AQ^:- ! .* 

A Q „ ? | . * 

Figure 5.13: The paths in Sub-case 4.3. 

2 , . . . , A; — 2) = (f„ - I- 1 ,1 ,1 , . . . , 1) when p is just a solitary vertex). Note that p 

avoids {vn + 1, 0, 0 , . . . , 0) and {vn + 1, k - I, k - I,..., k - I). Define the paths; 

fc-l 
n U fc-2 

n 1 • 
, , | f n + l 

• ' " I n 

fc-1 
n V fc-2 

n ' • • • 1 ' ^ I n 

as: U , U ( < „ , + i ) , t i { < n , + l ) l n > ' " ( < n , + l ) l n > • • • ,U^<n, + l)\n'^'"'^ 

0^4. u , u \ \ , u \ l , . . . 

as: U , « ( < „ , + ! ) | ° , W ( < „ , + i ) | ^ \ U ( < „ , + 1 ) | ^ ^ ^,...,U^<n, + l)\l''^-,P,V^<n,-l)\n\ V. 

Our collection of 4n — 2 paths from u to u can be visualized as in Fig. 5.13, 

and they are clearly mutually disjoint. Furthermore, we have that dn{u,v) = 
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max{dn-i{{0,0,...,0),{k - l,k - 1,... ,k - 1)) + Vn,k - Vn + 8} < max{dn-i + 

ll\,k + 7}. 

Sub-case 4.4: v\° = (0, 2, 2 , . . . , 2). 

As u and are adjacent, we must have that A; = 3 and that v — (1, 2, 2 , . . . ,2). 

By Lemma 5.3.1, there exists an automorphism of AQn^k mapping (1, 2, 2 , . . . , 2) to 

( 2 , 1 , 1 , . . . , 1) and fixing u. Thus, this sub-case reduces to Sub-case 4.2. 

As regards the length of the longest path constructed, we have that 5„ < 

max{6n-i + k - 1,A; -I- 7} and §2 = k. Thus, 5„ < (n - l)k - [n - 2), unless: 

n = 3 and k = 3,4,5,6,7; n = 4 and /c = 3,4; or n = 5 and k = 3, when 5n < k + 7. 

The result follows by induction. • 

5.5 The diameter 

Obviously, the smaller the diameter of an interconnection network, the lower the 

communication latency (be this under store-and-forward or wormhole routing). In 

this section, we obtain the diameter of AQ2.k and an upper bound on the diameter 

of AQn,k when n > 3. 

We begin with some immediate observations as regards the order of edges in 

paths in AQn,k- Consider some path p from some vertex u of AQn,k to some ver

tex V of AQn^k within which there is an A-edge, where A e {{i,+l),{i,—l),{< 

^ , + l ) , ( < for some i, as the ath edge of the path, and a fi-edge, where 

G { ( j , + l ) , ( j , - 1 ) , (< j, +1), (< j, - 1 ) } , for some j, as the 6th edge of the path, 

where a ^ b. The path obtained from p by traversing a p-edge as the ath edge of 

the path and a A-edge as the 6th edge of the path, and leaving the labels of all other 

edges as they were, is still a path from u to v. Also, if p is a shortest path between 

u and V and there is a (z,-l-l)-edge (resp. (i ,- l)-edge, (< z,-fl)-edge, (< 

edge) in p, for some particular i, then there is no (i ,- l)-edge (resp. (z,+l)-edge, 

(< i,—l)-edge, (< z,-|-l)-edge) in p. We use these observations throughout the 

proof of the following result. 

Proposition 5.5.1 The diameter of AQ2^k is [ |J + f ^ l ) and for n > 3 the diam

eter of AQn,k is at most | ( n - I - 1), if k is even, and at most | ( n -1- 1) - I - ^, if /c is 
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odd. 

Proof: By Corollary 5.3.2, we may restrict our attention to the lengths of paths 

from an arbitrary vertex of AQn,k to the vertex u = (0, 0 , . . . , 0) of AQn,k when 

determining the diameter of AQn,k-

Let u = ( f 2 , wi) be a vertex of AQ2,k-

Case ji): k = 0 (mod 3). 

Sub-case (a): Vi,V2 ^ { | + 1, | + 2 , . . . , f - 1}. 

By traversing edges with labels from {{i, -1-1), (z, —1) : i = 1,2,..., n}, we can obtain 

a path of length at most y from v to u. 

Sub-case (6): exactly one of v-i and vo is in { | -h 1, | - f 2 , . . . , y — 1}. 

Suppose that e { | 1, | -h 2 , . . . , y - 1}. By traversing (1, -l-l)-edges or (1, - 1 ) -

edges, we can move from v to (t'2, V2), and by traversing (< 2, -l-l)-edges or (< 2, - 1 ) -

edges we can then move to u. This yields a path of length at most y - 1 from v to u. 

If V2 e + 1 + 2, • • •, y —1} then we proceed similarly except that we first traverse 

(2, -|-l)-edges or (2, -l)-edges to get to ( f i , u i ) , before traversing (< 2, -l-l)-edges or 

(< 2, -l)-edges to get to u. 

Sub-case (c): V i , ^ 2 e { | + 1, | + 2 , . . . , f - 1}. 

Proceeding similarly to as in Sub-case (b) results in a path from t; to u of length at 

most y - 1. 

In consequence, when k = 0 there is a path from v to u oi length at most 

f - L l J + r ¥ i -

Case (M): k = I (mod 3). 

We proceed similarly to as in Case (i) except that we consider the values of vi and 

V2 as to whether they lie in { [ | J -h 1, [|J -h 2 , . . . , [ |J + [ | ] - 1}. We thus obtain 

a path from to u of length at most [|J - I - [ | ] — 1. In consequence, when k = I 

(mod 3) there is a path from v to u oi length at most [|J - I - [1] - 1 = [|J + \ ^ . 

Case (m): k = 2 (mod 3). 

We proceed similarly to as in Case (i) except that we consider the values of Vi and 

V2 as to whether they lie in { [ 1 ] -1-1, [ | ] - I -2 , . . . , 2 [ | ] - 1}. We thus obtain a path 
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from to u of length at most [ |J + [ | ] . In consequence, when k = 2 there is a path 
from i ; to u of length at most [|J + [ | ] = [|J + . 

Whilst [ |J - I - is an upper bound on the diameter of AQ-2^k, it is also a lower 

bound as we now show. Suppose that A; = 0 (mod 3) and the length of a shortest 

path p from ( | , y ) to (0,0) is less than [|J - I - | " ^ ] = y . If the edges of p are 

all (z, -|-l)-edges or {i, -l)-edges then we immediately obtain a contradiction. Thus, 

there must be some (< 2, -l-l)-edges or (< 2, -l)-edges in p. By symmetry, we may 

suppose that there are (< 2, -l)-edges (and so, as p is a shortest path, there must 

be no (< 2,-M)-edges in p). Moreover, based on our observation, we may clearly 

assume that all these (< 2, -l)-edges appear as a prefix of p. 

Suppose that there are at most y - [ | ] (< 2, -l)-edges in p and that traversing 

these (< 2, -l)-edges takes us to {v'2,v\). For an arbitrary vertex {v2,Vi) of AQ2^k, 

define wt{v2,v\) = mm{v2,k — ^2} + min{ui,/c — f i } , i.e., the distance of (^2,1^1) 

from (0,0) in the k-axy 2-cube Q .̂ As ' i i ; t ( | , y ) = wt{v'2,v\) = y , this yields a 

contradiction (as any path from {v'2,v[) to (0,0) traversing only edges with labels 

from {(1,+1) , (1 , -1 ) , (2,+1), (2 , -1 )} has length at least wt{v'2,v\)). Thus there 

must be between y - [§1 + 1 and | (< 2, -l)-edges in p (clearly there cannot exist 

more than | such edges as otherwise we could obtain a shorter path than p). 

Suppose that there exist m - f - y - Tf] (< 2, -l)-edges in p, where 1 < m < 

f l ~ I ' ^^^^ traversing these edges takes us to the vertex {v2,v[). Then 

wt{v'2,v[) = ^ - 2 ( m - 1) - 1. Any path from (1̂ 2, "̂ '̂i) to (0,0) not using (< 2,-1-1)-

edges nor (< 2, -l)-edges has length at least y - 2(m - 1) - 1. Thus, the length 

of p is at least ( f - 2(m - 1) - 1) + (m + f - [§1) = f - m - M - [|1 > 

1^ ~ (Ff 1 ~ 3) + 1 - F2I ^ T ~ 2 [ f l + 1 = y , which yields a contradiction. 

Arguing in an analogous fashion with the vertex ( [ | J , [ | J -t- [§]) of AQ2M, when 

A; = 1 (mod 3), and with the vertex ( [ | 1 , 2 | ' | ] ) of AQ2,k, when A; = 2 (mod 3), yields 

that the diameter of AQ2,k is [ |J + irrespective of the value of k (mod 3). 

Let n > 3 and v = ( D „ , ? ; „ - I , • • • , ^ 1 ) be a vertex of AQn^^. 

Case ( i ) : A; is even. 

Define — Vi\ = a. Traversing | (< n, — l)-edges from v leads to a vertex 

v' = ( t ) ^ p f ^ _ j , . . . , i ! j ) such that EJLi niin{u-. A; - f - } - a, and so by traversing 
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(i,-fl)-edges and (z, —l)-edges, for various i, as appropriate, we obtain a path of 
length ^ + a from v to u. Alternatively, we could simply start from v and traverse 
(i,+l)-edges and ( i , — l)-edges, as appropriate, to obtain a path of length ^ - a 
from V to u. 

Suppose that | + a < ^ — a, i.e., 2a < | ( n - 1). So, there is a path of length 

at most I + | ( n - 1) = f (n + 1) from v to u. If 2a: > | ( n - 1) then there is a path 

of length less than ^ — f (n — 1) = | ( n -I-1) from v to u. Thus, when k is even there 

is a path of length at most | ( n + 1) from v to u. 

Case (M): A; is odd. 

We proceed similarly to as in Case {i) but the numerics are slightly messier. Define 

- Vi\ = a. Similarly to as in Case (x), we obtain a path from v to u oi 

length at most [|J + o and also one of length at most n [ | ] - a. 

Suppose that [ |J + a < n [ | ] - a, i.e., 2a < n [ | ] - L|J. So, there is a path of 

length at most [|J + f [§1 - ^ f j < f (n + 1) + f from v to u. If 2a > n [ | l - [|_ 

then there is a path of length less than n f H - ^ | " | ] i [ |J < k[n+ I) + ^. Thus, 

when k is odd there is a path of length at most | ( n + 1) + ^ from v to u. • 

Note that we only have an upper bound on the diameter of AQn,k, when n > 3. 

Ascertaining the exact value of the diameter appears to be combinatorially quite 

challenging. However, we conjecture that our upper bound is actually quite close to 

the true diameter. 

5.6 Conclusions 

In this chapter, we have defined a new class of graphs, the class of augmented fc-ary 

n-cubes, and we have examined these graphs in relation to some properties pertinent 

to their use as interconnection networks for parallel computing. Let us examine our 

findings by comparing and contrasting augmented fc-ary n-cubes with (the standard) 

fc-ary n-cubes from which they are derived. 

Both AQn,k and have fc" vertices, with the former having (n - l)fc" more 

edges than the latter, and both interconnection networks are Cayley graphs, and 

so vertex-symmetric. However, AQn,k has a much improved connectivity of 4n - 2 
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in comparison with the connectivity of which is 2n, although this comes at the 
expense of an increased vertex degree, which is 4n — 2 as opposed to 2n for the A;-ary 
n-cube (both AQn,k and Q'^ are 'maximally connected', in the sense that if disjoint 
paths are used to transmit messages from one vertex to another in either network 
then there are no unused neighbours of the source vertex). We have also shown an 
upper bound on the diameter of an augmented k-ary n-cube at roughly one half 
that of a k-ary n-cube. 

Recall that both the fc-ary n-cube and the augmented /c-ary n-cube come with 

two parameters which are both variable. Suppose that we have a fc-ary n-cube, 

which involves n*̂  vertices, and we wish to obtain an augmented A''-ary A '̂-cube of 

comparable size, but not necessarily by choosing the parameters N = n and K - k, 

so that the degrees of the two networks are also comparable. Choose 

iV = - and K 
2 1 - log(n) 

(we assume for simplicity that both Â  and K are integral). Thus, n''" = . 

Moreover, the degree of the fc-ary n-cube is 2n and the degree of the augmented 

AT-ary A'-cube AQ^^K is 2n - 2, with the diameter of Qf̂  being y in comparison to 

an upper bound of 

on the diameter of AQj^^^ (again, for notational simplicity, let us assume that k is 

even). It is easy to see that for any fixed k, as n increases the diameter of our aug

mented A'-ary A'-cube approaches one quarter of that of our /c-ary n-cube (indeed, 

the actual improvement in diameter could well be better than this, given that we 

have only given an upper bound as to the diameter of a AQK.N)- In consequence, 

we conclude that augmented A;-ary n-cubes can be regarded as improvements over 

/c-ary n-cubes. 

There are numerous directions for further research. One obvious one is an exact 

characterization of the diameter of an augmented /c-ary n-cube. However, even in the 

absence of this exact characterization, our upper bound results still yield a significant 

improvement. Moreover, the constructions used in the proof of Proposition 5.5.1 

yield a very simple routing algorithm of time complexity 0{nk) (albeit possibly 
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non-optimal). 

The lengths of the longest of the 4 n - 2 disjoint paths constructed in AQn,k in the 

proof of Theorem 5.4.3 is longer than the length of the 2n disjoint paths joining any 

two distinct vertices of constructed in [45]; for in [45], 2n disjoint paths, joining 

any two distinct nodes u and v Q^, were constructed so that the lengths of these 

paths are 0, 2, or 4 - f d(^Qk{u,v), except for one path in a special case (when the 

Hamming distance between the u and is 1) where the length of the path might be 

4 + dQk{u, v). This is possibly to be expected, given that we are constructing 4n — 2 

paths in AQn^k whereas only 2n paths were constructed in in [45]. Nevertheless, 

it would be interesting to try and improve upon our length bounds. 

Finally, there are numerous other aspects relating to augmented fc-ary n-cubes 

which are worthy of study: for example, the embedding of other networks in AQn,k 

{cf. [11,12,41]), the tolerance of faults within AQn,k [cf- [H^ l^ ] ) , and broadcasting 

and routing in AQn,k {cf- [13,41]). 



Chapter 6 

One-to-Many Node-Disjoint paths 

in (n, A:)-star graph 

6.1 Introduction 

Chiang and Chen [39] introduced (n, A;)-star graphs, S'n,*:, where n > A; > 1, as 

alternatives to n-star graphs, for which the 'jump' from n\ nodes in an n-star graph to 

(n-f-1)! nodes in an (n+l)-star graph is deemed excessive (n-star graphs were devised 

in [4] as rivals to hypercubes in that they can incorporate comparable numbers of 

nodes yet have smaller diameters and degrees). The two parameters, n and k, of 

(n, A;)-star graphs allow much more precision with regard to incorporating more 

nodes, and allow fine tuning with regard to a degree/diameter trade-off. 

As regards the node-connectivity of Sn,k, it was shown in [38] that there are 

n — 1 node-disjoint paths joining any two distinct nodes of Sn,k (with an implicit 

algorithm for construction) and that each of these paths has length at most the 

diameter, dia{Sn^k), of Sn,k plus 3. Furthermore, it was shown that the diameter 

dta{Sn,k) is 2A- - 1, if 1 < A; < [ f j , and A; + [ ^^ J , if [ f J + 1 < A; < n. Thus, 

the one-to-one node-disjoint paths problem for Sn,k has been pretty much resolved 

(note that as Sn^k is regular of degree n - 1, there is no scope for incorporating more 

node-disjoint paths between two nodes). In this chapter, we are concerned with the 

many-to-one node-disjoint paths problem for Sn,k', that is, we are given in 5„,fc, n — 1 

distinct target nodes, in the set T, and a source node / , different from any target 

114 
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node, and we wish to find n — 1 node disjoint paths, one from each target node of 
T, to I. 

The many-to-one node-disjoint paths problem is a fundamental problem in the 

design and implementation of parallel and distributed computing systems and it 

has been extensively studied for a variety of (families of) interconnection networks. 

Whilst Menger's Theorem [21] implies that, given a source node and n — 1 distinct 

target nodes (different from the source) in a graph of node-connectivity (n — 1), there 

exist n — 1 node-disjoint paths from each of the target nodes to the source, it is by 

no means easy to identify and actually construct the paths, especially if the paths 

are to be as short as possible. Indeed, given a source and a collection of target nodes 

in an arbitrary graph, the general problem of finding node-disjoint paths from each 

of the target nodes to the source with each path of shortest length is NP-hard [83 . 

However, in many interconnection networks, which almost always have 'uniformity' 

properties such as recursive decomposability, node-symmetry and degree regularity, 

the situation is much more acceptable (see, for example, [4,20,34,63,71,74,84,102, 

114,129,136]). We only highlight here two such studies of the many-to-one node-

disjoint paths problem: in hypercubes and in n-star graphs. In [136], Rabin studied 

the many-to-one node-disjoint paths problem in hypercubes where he showed that 

given a source node and n target nodes in an n-dimensional hypercube, there exist 

node-disjoint paths from each of the target nodes to the source such that each path 

has length at most 1 plus the diameter of the n-dimensional hypercube (that is, n). 

In [71], Gu and Peng showed that given a source and n - 1 target nodes in an n-star 

graph, there is an algorithm of time complexity O(n^) that builds n - 1 paths from 

each of the target nodes to the source such that the length of each path is at most 

the diameter of the n-star graph (that is, ['̂ "̂~^ Ĵ) plus 2. 

In this chapter, we prove the following theorem. 

Theorem 6.1.1 When T is a set of n — I distinct nodes in Sn,k, where n > k > 1, 

and when I is a node not in T, there is an algorithm which finds n — 1 node-disjoint 

paths in Sn,k from the nodes in T to the node I. Furthermore, all paths found by 

this algorithm have length at most 6/c — 7 and the time complexity of the algorithm 

is O ( f c V ) . 
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Compared to Chapter 3, 4 and 5, where structural results are given, in this chap
ter, we wi l l give an algorithmic result. Our algorithmic result contains a structural 
result. I t should be noted that the structural results f rom Chapters 3, 4 and 5 can 
be translated into algorithms. 

We present the basic definitions in Section 6.2 before dealing wi th the case when 

k = 2 in Section 6.3. In Section 6.4, we present the algorithm alluded to in Theo

rem 6.1.1 and its proof of correctness, and in Section 6.5 we consider the lengths of 

the paths constructed by our algorithm and also the time complexity of our algo

r i thm. Our conclusions are presented in Section 6.6. 

6.2 Bas ic definitions and lemmas 

I t is worthwhile beginning wi th an n-star graph in order that we might understand 

why (n, /c)-star graphs emerged. In order to avoid the significant jump f rom n! nodes 

in an n-star graph to {n + 1)! nodes in an (n-l- l)-star graph, (n, A;)-star graphs were 

devised, as 'generalized' n-star graphs. Sn,k has j^^j^ nodes and ^ x jj^zi^, edges. 

Note that 5„,„_i is isomorphic to the n-star 5 „ , and that S'n.i is a clique on n nodes. 

A n important property of Sn,k, which we make crucial use of, is that i t can be 

partitioned into n node-disjoint copies of Sn-i,k'} over one oi k - 1 dimensions. In 

more detail, let i G {2 , 3 , . . . , A;} and part i t ion the nodes of Sn,k by fixing the zth 

component of each node. Thus, define Sl^,,{j) = {{ui,U2, • • • ,Uk) G V{Sn.k) • i-H = 

j } , for each j G { 1 , 2 , . . . , n } . I t is t r iv ia l to see that the set of nodes S'^j^ij), for 

j G { 1 , 2 , . . . , n } , induces a copy of Sn-\,k~\- Note that there are A; - 1 dimensions 

over which we can so part i t ion Sn,k-

We adopt the following notation throughout this chapter. Let I — ( u i , ^2, • • •, Uk) 

be an arbitrary node of Sn,k- Note that there are /c - 1 neighbours of / that are 

joined to / via an z-edge, and n - A-; neighbours of / that are joined to / by a 1-edge; 

each neighbour is characterized by its first component. We denote the neighbour of 

/ whose first component is j by P. We shall denote paths in S„,fc by p{t, s) where t is 

the start node and s is the terminal node. Paths are wri t ten explicitly as sequences 

of nodes, such as [t, U2,U3,..., Um, s). We wri te x G Sn,k \ T, where T is a set of 



6.2. Basic definitions and lemmas 117 

nodes of Sn,k, to denote that x is a node of 5,1,^ different from any node in T . 

Our intention is to build an algorithm to f ind n — 1 node-disjoint paths f rom 

each of n — 1 distinct target nodes, held in T, to a given source node / of Sn,k [I 

is never a target node). Before we present our algorithm, we show that there are 

certain assumptions that we can make. 

Lemma 6.2.1 Let T he a set of n — \ target nodes in Sn,k, where k > 3. There 

exists a dimension i e (2 ,3 , such that each o/S'^^^(l), S'^_;^(2),..., 5^ ^.(n) 

contains at most n — 2 nodes o f T . 

Proof: Suppose that for every j e {2,3,... ,k}, when we part i t ion Sn,k over 

dimension j , we get that some S'^^.(^j) contains all the target nodes f rom T. Thus, 

all target nodes in T have the form {u,i2,i3,... ,ik), for some u. This yields a 

contradiction as there are only n — {k — I) such nodes. • 

Suppose that k > 3. By Lemma 6.2.1, we can choose a dimension, i, say (where 

i E {2,3,..., k}), so that when we part i t ion the (n, A;)-star Sn,k over dimension i to 

obtain the (n - l , k - l)-stars 5^ / , ( ! ) , 5^ ^ ( 2 ) , . . . , we can be sure that each 

^n,kU) contains at most n — 2 target nodes. Suppose that i k. The automorphism 

of Sn,k obtained by swapping the zth and /cth components of every node is such 

that Sl^f.{j) is mapped to S^i^{j). Suppose that / = {y\,y2, • • • ,yk) and let a 

be any permutation of { 1 , 2 , . . . , n } for which a{yj) = j, for j = 1,2,... ,k. The 

permutation a yields an automorphism of Sn,k by mapping each node {x\,X2,..., Xk) 

to {a{xi),o{x2), • • • ,cr(x/c)), so that each is mapped to 5^^.((T(j)). Thus, we 

may assume that our source node / is 4 = (1 , 2 , . . . , /c) and that when we part i t ion 

over dimension k, the resulting [n- l,k - l)-stars ^ ^ ^ ^ ( l ) , 5̂ " ̂ . ( 2 ) , . . . , S'^^ i^{n) each 

contains at most n — 2 target nodes. Note that when k = 2, we can assume that our 

source is Ik but not that part i t ioning over dimension k results in (n — 1, A; — l)-stars 

each containing at most n — 2 target nodes. Henceforth, for brevity, we denote 

'S'n,fc(0 by Si (wi th Si not to be confused w i t h the n-star graph of the same name). 

For i e {k + l,k + 2,... , n } , we define h = {k,2,3,..., k - € S^•, for 

ie{2,3,...,k-l},we define I, = {k,2,3,.. . ,i - lA,'i + 1,..., k - e S^•, and 

we define / i = {k,2,3,..., k — 1,1) G 5 ] . For i = 1,2,... ,n, we denote the set of 
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target nodes of T which he in Si, that is, T n Si, by T j . 

6.3 T h e case for k = 2 

I n this section, we devise an algorithm Disjoint_paths_when_fc=2 (S'n,2. T , I2, 

paths) which finds node-disjoint paths in Sn,2 f rom n - 1 target nodes in T to the 

source node I2 (which is not a target node); the paths are returned in paths. (Note 

that the many-to-one node-disjoint paths problem is t r iv ia l for 5„ , i , an n-clique.) 

As is the case throughout, i t is best to study the algorithm in conjunction wi th the 

subsequent description. 

1 Dis j oint _paths_when_A;=2 (S'n^g ,T ,I2, paths) 

2 for every node !{ ^ ^2 do 

3 add the path pil^^h) = (-̂ 2.-̂ 2) to paths; 

4 od 

5 set free := {5^ : j e { 1 , 3 , 4 , . . . , n } and = 0, 

and i f 1 then ^ T2} ; 

6 f or z = 1, 2 , . . . , n where z 7̂  2 and 7̂  0 do 

7 If i = l or I\^T2 then 

8 i f / , G Ti then 

9 add the path p{Ii, I2) ^ {h, h) (resp. p{Ii, h) = 

{IiJiJ2)) to paths i f z = 1 (resp. z 7̂  1 ) ; 

10 sortedJarget := U; 

11 e l s e 

12 choose some / / G Ti and add the path pillJo) = 

{IlhJ2) (resp. p ( / / , / 2 ) = ( / / , / „ / ^ , / 2 ) ) 

to paths i f 2 = 1 (resp. i ^ I); 

13 sortedJarget := / / ; 

14 f i 

15 e l s e 

16 sorteddarget := e; 

17 f i 
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18 i f sortedJarget e then 
19 l e t good.free C free be of s i z e | T i | - l ; 

20 e l s e 
21 l e t good-free C free be of s i z e | T j | ; 

22 f i 
23 free := free\ good-free; 

24 for every I j G Tj \ {sorted-target} do 

25 i f Sj e good-free then 

26 add the path pil^h) = ( / / , / { , A , / s ) (resp. p{li, I2) -

( / / , / ] , / „ / ^ , / 2 ) ) to paths if j = l (resp. j I): 

27 remove Sj from good.free; 

28 e l s e 
29 choose 0 for which Si G good-free; 

30 add the path p ( / / , / 2 ) = (//,//,/J,/i,/o) (resp. p ( / / , / 2 ) = 

(//,/,',//,/,, 4,/2)) to paf/is i f / = 1 (resp. / ^ 1 ) ; 

31 remove 5; from good-free; 

32 f i 

33 od 

34 od 

(We remark that w i th respect to line 5, and elsewhere throughout, when we say that, 

for example, S3 is in the set free, in any implementation we would simply hold the 

index 3 in free; we write i t as we do to make our algorithm more understandable.) 

The actions of Disjoint_paths_whenJi ;=2 can be described as follows. In lines 

2-4, we define paths f rom every target node in ^2 to l2- I n line 5, we define free to 

consist of those Sj's f rom { 5 i , ^ 2 , . . . , S„} \ {52} containing no target nodes and for 

which the node I2 0 T2 (if j 7̂  1): some of these 5j 's w i l l be used as collections of 

' transit ' nodes for paths f rom target nodes (in other Si's) to l2-

In lines 6-34, we deal wi th the Si's for which t 7̂  2 and 7̂  0 in turn. In lines 

7-17, we ensure that i f 0 T2, i.e., does not block a path f rom / j to I2 through 

or z = 1 then a path f rom one of the target nodes in T j through /.j to I2 is chosen. 

The target in Ti chosen is registered in sorted-tar get. 
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In lines 18-22, a subset good.free of free of size | T j | — 1 is chosen, if sortedJarget 

exists, and of size IT̂ I otherwise. We need to verify that such a subset exists. 

Suppose that X = {I : / = 1, 3, 4 , . . . , n , / < z,T/ / 0} w i th Y C X defined as 

Y = {I : I e X \ {1},I2 ^ T2}, i.e., X indexes the Si's that have so far been dealt 

w i t h in the for-loop in lines 6-34, and Y indexes those such 5;'s for which ^ blocks 

direct paths f rom /; to I2. On an iteration of the for-loop for some i where i 7̂  2 

and Ti 7̂  0, any 5/ f rom {Si,S2, • • •, 5„} \ {So, Si] fails to be in free for exactly one 

of six reasons: 

1. I G Y; 

2. 5( is used as a set of transit nodes for a path f rom some target in Sj where 

j e Y ; 

3. l e X \ Y ; 

4. Si is used as a set of transit nodes for a path f rom some target in Sj where 

j e X \ Y ; 

5. Z ^ X , / 7̂  1 and 4 G T2; and 

6. l ^ X , (4 ^ T2 or / = 1) and Ti 7̂  0. 

Some of the different cases are illustrated in Fig.6.1, where the target nodes are 

represented in black and where i = 18 (note that all Sj's are cliques even though 

they are not depicted as such). We can associate a target node w i t h any 5; in free 

by choosing: the target node I2 in case 1; the unique target node t upon whose path 

p{t, I2) the nodes of 5/ are used as transit nodes in cases 2 and 4; the target node 

t of Si for which the path p{t, I2) passes through // in case 3; the target node I2 

case 5; and any target node of Ti in case 6. A l l such target nodes are distinct and 

are diflFerent f rom the target nodes in T j . Thus, \ free\ > (n - 2) - ((n - 1) - |Tj | ) = 

ITjl - 1. Furthermore, if sortedJarget = e then I2 G T2 and i 7̂  1, and this 

target node is distinct f rom all target nodes which were associated above; hence, 

\free\ > (n - 2) - {{n - 1) - \T^\ - I) = \Ti\ and our claim holds. 
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case 3 

case I case 5 

case 5 

Figure 6.1: A n illustration of difTerent cases. 

I n line 23, we remove the copies of 5„_i,i that are in good.free f rom free. 

In lines 24-33, we deal w i t h the target nodes of Ti in tu rn and bui ld paths to 

l2- This is done as follows. I f / / G Tj \ [sorteddargei] and Sj G good-free 

then we simply take the path f rom / / through Sj and on to l2\ otherwise, if 

If G Ti \ [sortedjtarget] and Sj ^ good-free then we choose a neighbour /• of 

/ / in Si that is not a target and where Si G good-free (such a neighbour always 

exists because we have chosen good-free large enough and S„_i , i is a clique). Conse

quently, Disjoint_paths_when_/c=2 achieves its aims. Furthermore, all paths found 

by Disjoint_paths_when_A;=2 have length at most 5 and the time complexity of 

Disjoint_paths_when_/c=2 is O(n^). 

Theorem 6.3.1 When T is a set of n - \ distinct nodes m Sn,2 dn'd when I is 

a node not in T, the algorithm Disjoint.paths_whenJ;=2(5n ,2.T ' , / ,pai/ is) finds 

n — 1 node-disjoint paths from the nodes m T to the node I. Furthermore, all paths 

found have length at most 5 and the time complexity o/Disjoint_paths-whenJc=2 

isO{n^). . 

6.4 Bui lding node-disjoint paths 

We now detail a recursive algorithm D i s j o i n t .paths ( 5„ , f c ,T , / f c ,po f / i s ) to con

struct node-disjoint paths f rom n - l distinct target nodes in Sn,k, given by the set 

of nodes T, to a source node h (which is different form each target node). The n — 1 

paths wi l l be returned in paths. 
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6.4.1 The basic algorithm 

Roughly speaking, our algorithm Disjoint_paths proceeds as follows. First, we 

f ind disjoint paths f rom the target nodes in Sfc to 4 ( if any such target nodes exist); 

these paths are not changed throughout the subsequent execution of the algorithm. 

A neighbour II of 4 appearing on one of these paths cannot be used in another 

path f rom 4 and so 'blocks' Si; consequently, the set blocked consists of those Si's 

that are blocked by some neighbour of 4 in Ŝ . Next, we deal in turn wi th the Sj's 

for which Ti ^ 0. Once the paths f rom the target nodes of such an Si to 4 have 

been established, they do not change throughout the subsequent execution of the 

algorithm. Our basic algorithm is as follows. In the rest of this section, we detail 

the procedures in the algorithm and prove that our algorithm is correct. 

1 Disjoint_paths (S„, fc .T, / fc ,pat / i s ) 

2 ii k = 2 then 

3 c a l l Disjoint_paths_when_/c=2(S„,2,T,/2,pai/is); 

4 e l s e 

5 free := {S,- : j = 1, 2 , . . . , n,j + k, Tj = 0} ; 

6 some := {S, : j = 1,2,.. . ,n, j ^ k,Tj ^ 0}; 

7 paths := 0; 

8 blocked := 0; 

9 used := 0; 

10 i f Tk^D then 

11 c a l l P3ith.S-in-Sk(Sk,Tk,h,free,paths, blocked); 

12 f i 

13 i f there i s some Si^ e blocked Ci some then 

14 i f I^ G T, then 

15 c a l l Paths_in_some : target_cLnd_ 

blocked(Sjo,r io,4o, /ree, used,paths) ; 

16 e l s e 

17 c a l l Paths.in.some :not_target_aiid_blocked(SiQ ,Tio,/i(,, 

free,used,paths); 
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18 f i 

19 e l se 

20 io := k; 

21 f i 

22 f o r each Si G some \ {Si^} do 

23 c a l l Paths_in_some:not_blocked(5i, Ti, Ii, free,used,paths); 

24 od 

We have one remark concerning procedure calls in our algorithm (including the 

procedures to follow). As Lemma 6.2.1 shows, we can always assume that when 

deahng wi th Sn,k, our source is Ik and, for A; > 3, when we part i t ion over dimension 

k, none of the resulting copies of Sn-i,k-\ contains more than n — 2 target nodes. As 

can be seen f rom the above outline algorithm (in conjunction w i t h a closer look at 

the procedures to follow), we make a number of recursive calls to D i s j o i n t _ p a t h s . 

Even though we do not explicitly state this in the procedures to follow, we always 

assume that we have arranged things (using automorphisms as in Section 6.2) so 

that i f in some recursive call we are deahng wi th a copy of Sn'.k' then our source is 

Ik' and none of the copies of Sn'-\,k'-\ resulting from part i t ioning over dimension k' 

contains more than n' — 2 target nodes. From Lemma 6.2.1, we can decide which 

automorphisms (and their inverses) to apply and applying these automorphisms, 

and ensuring that we part i t ion over dimension k (in Sn,k, to get at most n - 2 target 

nodes in each resulting Si) by checking if all the target nodes in one subgraph for 

each dimension. There are at most k - I dimensions and n - 2 target nodes to 

be considered. To apply the automorphism (mapping) wi l l only take 0{n) time 

(suppose we choose a mapping function f{i) = j, we do not need to apply this on 

every node, but in the consequent processing, we wi l l run the mapping function to 

the corresponding node f irs t) . Hence, this can clearly be done in 0{kn) time. 

6.4.2 Paths in Sk 

We start w i t h Paths An.Sk(Sk ,Tk, Ik, free .blocked,paths), which returns a set 

free of SiS, a set paths of paths in Sk and a set blocked of Si's, where k > 3. 
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Pre-conditions assumed by this algorithm are that free = {Sj : j = 1,2,... ,n,j 7̂  
k, Tj = 0}, paths = 0, blocked = 0 and 0 < \Tk\ < n - 1. 

1 Paths-in-S'fe {Sk.Tk.h, free,paths, blocked) 

2 temp := 0; 

3 for each neighbour of Ik in 5^ \ T/,- do 

4 i f 5^ ^ free and \temp[jTk\ < n - 2 then 

5 add II to temp; 

6 f i 

7 od 

8 temp.so.far := temp; 

9 for each neighbour 7^ of /fc in Sk\{temp.so.far UT^) do 

10 i f | iempUTfc| < n - 2 then 

11 add Pf. to temp; 

12 f i 

13 od 

14 c a l l Disjoint jpa.thsiSk,temp UTk,Ik,P<^ths); 

15 for each neighbour ll of Ik i n Sk do 

16 i f ll G iemp then 

17 remove p{l{,Ik) from paths; 

18 e l s e 

19 add S'j to blocked; 

20 i f G / ree then 

21 remove Sj from free; 

22 f i 

23 f i 

24 od 

The actions of Paths.in.S'fc can be described as follows. Init ial ly, free consists 

of the Si's f rom { 5 i , 5 2 , . • • , 5 „ } \ {Sk} containing no target nodes; some of these 

Si's w i l l be used as collections of ' transit ' nodes for paths f rom target nodes (in 

other Sj's) to h- In line 2, temp is initialized as an empty set of nodes. In lines 
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3-13, some of the neighbours of h in Sfc are then set as temporary target nodes so 
that Sk has exactly n — 2 (the degree of 4 in Sk) target nodes and temporary target 
nodes. The order in which the neighbours of 4 are chosen to be temporary target 
nodes is important; those neighbours II for which Sj contains at least one target 
node are chosen first , before neighbours for which Sj' contains no target nodes 
are chosen (as to whether neighbours ll for which Sj' contains no target nodes are 
chosen depends upon the distr ibution of the target nodes). 

In line 14, node-disjoint paths are recursively constructed f rom these target nodes 

and temporary target nodes to Ik (note that there are n — 2 of these paths and that 

every neighbour of Ik in Sk lies on exactly one of these paths). In line 17, the paths 

involving temporary target nodes are then removed f rom paths (note that these 

paths are just solitary edges). The remaining paths, f rom target nodes in Ŝ  to 

Ik, w i l l end up being output by the algorithm, and in line 19 the Sj's for which II 

lies on one of these paths are registered in blocked (so, any node II of Sk for which 

Sj G blocked cannot be used on any path f rom the node I j in Sj to h)- Finally, 

those Sj's in blocked n free are removed f rom free as they can no longer be used 

as collections of transit nodes, since there is no path to h f rom Ij through II (or 

directly, if j = 1). Note that the total number of temporary target nodes chosen 

is (n - 2) - \Tk\ and that the tota l number of Sj's f rom {Si,S2,.. • ,Sn} \ [Sk} 

containing at least one target node is at most (n - 1) - |TA;|. Thus, after execution 

of Paths_in_Sfc there is at most one Sj for which Ŝ  G blocked and Sj G some {some 

is fixed throughout at those S;'s for which Tj 7̂  0). 

6.4.3 Paths in Si e blocked (1 some 

Suppose that S, is such that Si G blockednsome. Suppose further that h eTi. The 

procedure Paths-in_some: target _and-blocked (Si ,Ti,Ii, free, used, paths) finds 

paths to Ik f rom every target node in S,. Pre-conditions are that 4 G Ti, 0 < 

Til < — 1 and used = 0. 

1 Paths_in_some:target_ELnd_blocked(Si ,r i , / i , free,used,paths) 

2 choose some neighbour // of 4 in Si for 
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which // ^T, and 5^ G free; 

3 root-escape := // ; 

4 temp := {root.escape} ; 

5 for each neighbour // of 7j i n Si \ {{root-escape] U Ti) do 

6 i f Sj ^ free and \temp U {Ti \ {Ii})\ < n - 2 then 

7 add If to temp; 

8 f i 

9 od 

10 temp^so.far := temp; 

11 for each neighbour // of /; i n Si\ {tempso-far UT) do 

12 i f l^empU (T, \ { / , } ) ! < n - 2 then 

13 add 7/ to temp; 

14 f i 

15 od 

16 c a l l Dis joint-paths (S'i, (temp U T i ) \ { / J , / j , Si .paths); 

17 Si-paths-blocked := 0; 

18 for every neighbour // of / j in 5, do 

19 case of 

20 / / = root-escape : 

21 replace the path p{root-escape, U) in Si-paths 

with the path p{Ii, root-escape) = {I^, root-escape); 

22 set escape[p{Ii, root-escape)] := Sj; 

23 remove Sj from / ree and add Sj to t iseii ; 

24 / / G temp \ {root-escape] : 

25 remove the path p ( / / , / i ) from Si-paths; 

26 / / ^ iemp U : 

27 replace the path p{t, h) i n Si-paths 

upon which // l i e s with the sub-path p{t,I-); 

28 set escape[p{t, I f ) ] := Sj; 

29 remove Sj from free and add 5 j to used; 

30 G Ti and 5^ G / ree : 
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31 replace the path p ( / / , / j ) i n Si-paths 

with the path p{Il,Il) = {Il)-

32 set escape[p(// , / /)] := Sy, 

33 remove Sj from free and add 5^ to used; 

34 / / G and 5^ ^ free : 

35 remove the path p ( / / , / j ) from Si-paths and 

add the path p ( / / , / / ) = ( / / ) to Si-paths-blocked; 

36 esac; 

37 od 

38 while some path p{t,s) in Sijpaths contains a node whose 

f i r s t component j , say, i s such that 5-, G free do 

39 replace the path p{t,s) i n Sijpaths with i t ' s sub-path p{t,x) 

where x i s such that i t s f i r s t component j , say, i s such 

that Sj e free and where i f y ^ x i s any other node on p{t,x) 

then i t s f i r s t component j', say, i s such that Sji ^ free; 

40 remove escape[p{t, s)] from used and add escape[p{t, s)] to free; 

41 set escape[p{t,x)] := Sj; 

42 add Sj to used and remove Sj from / r ee ; 

43 od 

44 for every path p ( / / , / / ) e Si-paths.blocked do 

45 i f S'j G free then 

46 remove p ( / / , / / ) from Si-paths.blocked 

and add p ( / / , / / ) to S^-paths; 

47 set escape[p(//,/,/)] := S'j ; 

48 remove 5^ from / ree and add 5 j to used; 

49 f i 

50 od 

51 for every path p ( / / , / / ) E Si-paths-blocked do 

52 choose a neighbour (//)' of // i n Si for which 5/ G free; 

53 remove p{P^,If) from St-paths-blocked and 

add p{li,{liy) = {II,{liy) to S.,.paths; 
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54 set escape[/9(//, ( / / ) ' ) ] := Sr, 

55 remove Si from free and add Si to used; 

56 od 

57 for every path p{t,s) i n Si-paths do 

58 extend p{t, s) to a path p{t, Ik) through the nodes of 

Sj = escape[p{t, s)] to Ij and then on to 1^; 

59 remove p{t,s) from Si-paths and add p{t, Ik) to paths; 

60 od 

We explain below what Paths_in_some:target.and.blocked does, and prove 

that what the procedure claims to do is actually possible and that i t achieves its 

aims. 

We begin, in lines 2-3, by choosing a neighbour root.escape = If of / ; that is not 

a target node and through which a path f rom the target node / j wi l l pass on its way 

to Ik. We need to verify that there does indeed exist such a neighbour / / . Suppose 

that when we attempt to choose our neighbour root.escape of / j in Si, we find that 

every neighbour / / of in Si is such that Sj ^ free. The reason any Sj ^ free is 

that exactly one of the following holds: Sj G blocked; Sj G some\blocked. Whatever 

the reason, we can associate a target node wi th / / : if Sj G blocked then choose the 

target node of Tk on whose path in paths the (blocking) node ll lies; otherwise, 

if Sj G some \ blocked then choose some target node of T j (which is non-empty). 

Note that i t is never the case that two target nodes associated wi th two distinct 

neighbours of li in Si are identical. Thus we get a contradiction as we obtain n — 2 

distinct target nodes (corresponding to the n - 2 neighbours of li in Sj) and we have 

yet to consider the target node and the target node on whose path in S^ the node 

II lies. 

The neighbour root.esca,pe is set as a temporary target node in line 4. In lines 

5-15, more neighbours of U are set as temporary target nodes, making sure that 

neighbours / / for which Sj 0 free are chosen before neighbours If for which Sj G 

free. The process stops when ITil — 1 plus the number of temporary target nodes 

is exactly n - 2 . We claim that all neighbours / / of U that are not target nodes 

and for which Sj ^ free are chosen as temporary target nodes. Let us count the 
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number of 5['s, f rom 52 , . . . , 5„} \ {5^, S j } , that are not in free. As above, 
the reason any Si ^ free is that exactly one of the following holds: 5/ G blocked; 
Si G some \ blocked. Just as we did above, we can associate a target node wi th 
each such Si so that distinct Si's are associated wi th distinct target nodes. Thus, 
the number of Si's, f rom { 5 i , ^ 2 , . . . , 5„} \ {Sk, Si], that are not in free is at most 
the number of target nodes that potentially can be associated w i t h such an Si. This 
number is (n — 1) — | T j | — 1 (as, by definition of how we associate target nodes, no 
target node in Ti can be associated wi th such an Si, and nor can the target node 
on whose path in Sk the node 7̂ . lies). Thus, the number of temporary target nodes 
chosen, namely (n — 2) — ( |Ti | — 1) = (n — 1) — \Ti\, is greater than (n — 1) - |T j | — 1, 
which is no less than the number of Si's, f rom {Si, S2,..., Sn] \ {Sk, Si], that are 
not in free. Thus, all neighbours / / of li that are not target nodes and for which 
Sj ^ free are chosen as temporary target nodes, w i t h the consequence that any 
neighbour / / of li that is neither a target node nor a temporary target node is such 
that Sj G free. 

In line 16, we recursively find node-disjoint paths in 5, from every target node of 

Ti\{Ii] and every temporary target node to the node U. Note that all such paths 

f rom temporary target nodes to U necessarily consist of a single edge (as do such 

paths from target nodes that are neighbours of li) and that every neighbour of li in 

Si lies upon exactly one such path. The paths reside in Si.paths. 

I n line 17, we initialize Si-paths-blocked as empty. I n lines 18-37, we amend each 

path in Si-paths by working through the neighbours / / of / , in tu rn as follows. I f / / = 

root-escape then we amend the unique path containing / / to p{Ii, root-escape) = 

{li, root-escape) and register that the nodes of Sj are to be used as transit nodes to 

extend p{Ii, root-escape) to a path to 4 and so can no longer be used as such for 

any other path (the nodes of Sj are available for this by choice of root-escape). This 

registration is done wi th the array escape, indexed by our paths, and the set used. 

I f / / G temp\{root-escape] then we simply remove the path p{I-, li) f rom Si-paths. 

Otherwise, we truncate the unique path p{t, li) containing If by removing the final 

edge. Furthermore, if I'l ^ or Sj G free then we register that the nodes of 5̂ , 

are to be used as transit nodes for this (truncated) path (note that immediately 



6.4, Bu i ld ing node-disjoint paths 130 

after the recursive call, all neighbours If of 4 in Si that are not target nodes nor 
temporary target nodes are such that Sj G free), and i f / / G T^ and Sj ^ free 
then we move the path p{I-, / / ) to the set Si-paths-blocked. Consequently, we have 
essentially dealt w i th every target node in Si except possibly for some target nodes 
that are neighbours / / of li in Si where Sj ^ free (corresponding to the paths in 
Si-paths-blocked). 

In lines 38-43, we amend the paths of Si-paths (remember, these are the paths 

f rom target nodes in Si that can be t r iv ia l ly extended to paths to 4 , through sets 

of transit nodes). Suppose that some path p{t,s) in Si-paths is such that there is 

some node x of the form ( j , . . . ,i) lying upon i t so that Sj G free. We can replace 

the path p{t, s) in Si-paths w i t h the sub-path p{t, x), so long as we release the set of 

transit nodes escape[p{t, s)] (for possible future use) and register that the new set 

of transit nodes Sj is not to be used as a set of transit nodes for any other path. By 

iterating this process, we get to the situation where no path in Si-paths contains a 

node of the form { j , . . . ,i) so that Sj G free. 

In lines 44-50, we deal w i th some of the paths in S^jpathsMocked, each of which 

is of the form p ( / / , / / ) . The changes made in hnes 38-43 might mean that Sj is 

now in free, for such a path p ( / / , / / ) ; i f so then we move p ( / / , / / ) to S^-paths and 

register that the nodes of Sj are to be used as transit nodes to extend p ( / / , / / ) to a 

path to Ik and so can no longer be used as such for any other path. 

In hnes 51-56, we deal w i t h the remaining paths in Si-paths-blocked (of the 

form p ( / / , / / ) and where Sj 0 free). The situation can be visualized in Fig.6.2, 

where the target nodes are depicted in black, those paths p already established are 

depicted w i t h an arrow (to escape [p]), and the neighbours of / / in Si \ {/i} are 

shaded in grey. We claim that there exists a neighbour ( / / ) ' of / / in Si \ { / J such 

that Si G free. Let us count the number of S;'s, f rom {Si , S2,..., Sn} \ {Sfc, S J , 

for which Si ^ free. As we have seen already, any such S; can be associated w i t h 

a target node and all these associated target nodes are distinct. The maximum 

number of target nodes eligible to be associated wi th such an S/ is (n — 1) — a — 1, 

where a is the number of paths currently in Si-paths-blocked (remember, the target 

node on whose path in Sfc the node II lies is not eligible for association). Hence, 
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the number of Si's, f rom { ^ i , 52 , . . . , 5„} \ {Sk, Si}, for which 5/ G free is at least 
(n - 2) - ( (n - 1) - a - 1) = Q: > 1. Consider the neighbours of / / in SnX, these 
are It, a node in Sj (where, by definition, Sj ^ free) and n — 3 other neighbours. 
Consequently, f rom the n - 3 neighbours of / / different f rom / j and the neighbour 
in SJ, at least one, call i t ( / / ) ' , is joined to a node in Si where Si G free. We 
choose such a node ( / / ) ' in line 52, and in lines 53-55 we remove p ( / / , / / ) f rom 
Si-paths-blocked, add the path p ( / / , ( / / ) ' ) = (/./, ( / / ) ' ) to Si-paths and register that 
the nodes of Si are to be used as transit nodes to extend p ( / / , ( / / ) ' ) to a path to 4 
and so can no longer be used as such for any other path. Note that ( / / ) ' cannot lie 
on any path in Si-paths because of our manipulation in lines 38-43. Also, the new 
path p ( / / , ( / / ) ' ) does not contain a node of the form { j ' , . . . ,i) for which 5^ G free. 
We repeat the above for every path in St-paths-blocked. 

I n lines 57-60, we extend all paths in Si-paths ( in the natural way) so that they 

reach Ik and move the paths into paths. Thus, the procedure Paths_in_some: target 

_and_blocked achieves its aims. 

Consider the situation where 5̂  G blocked f l some and / , ^ Ti (recall, up unt i l 

now we have assumed that / , G Ti). In order to deal w i t h this situation we develop a 

new procedure Paths_in_some:not_target_and_blocked(5i,Tj,/ . , , /ree, 'use(i,pat/is). 

This procedure is very similar to Paths_in_some: target .and.blocked so we do 

not describe i t in detail nor wi th pseudo-code, but only highlight any differences 

and comment on any amended analysis. To obtain Paths _in_some : not-target _and 

-blocked, we omit lines 2-3 f rom Paths.in-some :target-and_blocked and amend 

line 4 so that temp is initialized as being empty. We omit lines 20-23 and amend line 

24 to / / G temp. The analysis of Paths-in_some: target_and-blocked is identical 

to that of Paths_in-Some :not-target-and-blocked. Our only comment is that in 

the analysis corresponding to lines 5-15 of Paths-in_some :target_and_blocked, we 

sti l l obtain that all neighbours 7/ of / , that are not target nodes and for which 

Sj ^ free are chosen as temporary target nodes (the number of temporary target 

nodes chosen is (n — 2) - \Ti\ and the number of 5/'s, f rom {Si, S2, • • •, Sn}\{Sk, Si}, 

that are not in free is at most (n — 1) — | T i | — 1). Furthermore, the analysis 

corresponding to line 52 of Paths_in-Some : target-and_blocked s t i l l holds. Hence, 
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rootescape 

Figure 6.2: Dealing with 'bad' target nodes. 

Paths_in_some :not_target_ai id_blocked achieves its aims. 

6.4.4 Paths in Si ^ blocked n some 

We are reduced to the situation where we have established some paths from target 

nodes in 5^ to Ik (if there are any) and established some paths from target nodes 

in Si to /fc, where Si G blocked (1 some (if such an Si exists). Thus, we have to deal 

with target nodes in other Sj's for which Sj E some \ blocked (recall that there is 

at most one Si in blocked Pi some). 

We deal with this situation with the procedure Paths_in_some ino t -b lockedC^ i , 

T i , I i , free,used, paths) (we have switched indices from j to i to make a compar

ison with Paths_in_some:target_and_blocked easier). This procedure differs from 

Paths_in_some : target_cm .d_blocked sufficiently for it to be worthwhile detailing us

ing pseudo-code. The line-numbering has been chosen so that Paths_in_some : not _ 

b locked can more eaisily be compared with Paths_in_some: t a r g e t .and-blocked. 

As ever, we assume that 0 < |T j | < n — 1. 

1 P a t h s _ i n _ s o m e : n o t _ b l o c k e d ( 5 i , r i , / j , / r e e , used,paths) 

4 temp := 0; 

5 f o r each neighbour / / of Jj i n Si \ Tj do 

6 i f Sj ^ free and \temp U (7;; \ { / i } ) | < n - 2 t hen 

7 add I j t o temp; 

8 f i 

9 od 
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10 temp-SO-far := temp; 

11 f o r each neighbour // of li i n S^\{temp.so.farUTi) do 
12 i f \tempU{Ti \ {Ii})\ < n - 2 then 
13 add // to temp; 

14 f i 
15 od 
16 c a l l Disjoint_paths ( 5 i , ( i e m p U T i ) \ Si-paths); 

17 Si-paths Mocked := 0; 

17.1 bad Jar get := e; 

17.2 bad-terminal := e; 

18 f o r every neighbour // of i n Si do 
19 case of 
24.1 / / e temp : 

25 remove the path p{I^, U) from Si-paths; 

26 / / ^ temp U T, : 

27 replace the path p{t,Ii) i n Si-paths 

upon which // l i e s with the sub-path p{t,I-); 

28.1 i f Sj e free then 
28 set escape[p{t, I- )] := Sj; 

29 remove 5^ from free and add 5^ to used; 

29.1 else 
29.2 bad Jar get := t; 

29.3 badJerminal : = /^^; 

29.4 f i 
30 G T^ and G / ree : 

31 replace the path i n Si.paths 

with the path p{li,li) = (/•); 

32 set escape[p(// , / /)] := S'j ; 

33 remove Sj from / ree and add Sj to usee?; 

34 li G T, and ^ / ree : 

35 remove the path p ( / / , / i ) from Si-paths and add the 
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path p{Il,P-)^{Il) to Si.paths.blocked; 

36 esac; 
37 od 
38 while some path p{t,s) i n Si-paths contains a node whose 

f i r s t component j , say, i s such that Sj 6 free do 

39 replace the path p{t,s) i n Si-paths with i t ' s sub-path 
p{t,x) where x i s such that i t s f i r s t component j , 

say, i s such that 5̂ - e free and where i f y x i s any 
other node on p{t,x) then i t s f i r s t component 
say, i s such that Sf 0 free; 

39.1 if t ^ bad.target or s ^ bad.terminal then 
40 remove escape[p{t, s)] from used and add 

escape[p{t, s)] to free; 

40.1 f i 
41 set escape[p{t,x)] := 5^; 

42 add Sj to used and remove Sj from free; 

43 od 
44 f o r every path p ( / / , / / ) G SijpathsMocked do 
45 i f 5 j G / ree then 
46 remove //) from S.,.paths Mocked 

and add p ( / / , / / ) to Sijpaths; 

47 set escape[p(// , / /)] := 5 j ; 

48 remove S'j from / ree and add Sj to used; 

49 f i 
50 od 
50.1 i f h e Ti then 
50.2 add the path = Cresp. p[h,h) = 

( / I , / A : ) ) to paf/i5 i f z ^ 1 (resp. z = 1 ) ; 

50.3 else 
50.4 i f bad-target ^ e and bad.terminal ^ e then 
50.5 i f p{bad.target, bad-terminal) e Si.paths then 
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50.6 remove p{had.taTget,hadJ,erminal) from Si-paths; 

50.7 else 
50.8 remove the path p{bad.target, s) from Si-paths; 

50.9 remove escape[p{badJ,arget, s)] from used aind add 
escape[p{hadJ,arget,s)] to free; 

50.a f i 
50.b extend p{had.tar get, had-terminal) through U to 4 

and c a l l t h i s path p{bad.target, Ik); 

50.c add p{had.target, Ik) to paths; 

50.d else 
50.e i f Si-paths-blocked ^ 0 then 
50.f choose some p{li, I j ) e Si-paths.blocked, 

remove i t from Si-pathsMocked and add the path 
p { I l I k ) ^ { I l h J l I k ) (resp. p ( / f , / , ) = ( / ^ / , , 4 ) ) 

to paths i f ? 7̂  1 (resp. i = 1); 
50.g else 
50.h remove some path p{t,s) from Si-paths; 

50.i remove escape[p{t, s)] from used and 
add escape[p(t, s)] to free; 

50.j define the path p{t,Ik) by extending the 
o r i g i n a l path p{t, //) of which p{t, s) i s a 
sub-path to /, and then on t o 1^; 

50.k add p{t, Ik) to paths; 

50.1 f i 
50.m f i 
50.n f i 
51 f o r every path p ( / / , / / ) G S^-paths-blocked do 
52 choose a neighbour (//)' of /,/ i n f o r which 5/ G free; 

53 remove //) from Si-paths-blocked and 

add p{liiliy)^m,{l!y) to S,_pai/is; 

54 set escape[p(//, ( / / ) ' ) ] := So 
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55 remove 5/ from free and add Si to used; 

56 od 

57 f o r every path p{t,s) i n Sj-paths do 

58 extend p{t,s) to a path p{t,Ik) through the nodes of 

Sj = escape[p{t, s)] to I j and then on to 1^; 

59 remove p{t,s) from Si-paths and add p{t,Ik) to paths; 

60 od 

We explain below what Paths_in_some:not_blocked does, and prove that what 

the procedure claims to do is actually possible and that i t achieves its aims. I t 

has some similarities wi th Paths_in.some: target-cind.blocked and so we are brief 

w i t h some of the analysis below when this analysis is identical to before wi th 

Paths_in_some: target_cLnd_blocked. We assume that (after possible calls to 

Paths_in_5fc and Paths_in_some: target_and_blocked), i t is the case that | / ree | = 

(n — 1) — |Tfc|, if there was no call to Paths_in_some:target_and_blocked, and 

| / ree | > (n - 2) - - 1) - 1T,J = (n - 1) - |Tfc| - |r,J, where S,, is the focus of 

the call to Paths.in_some:target_and_blocked. Thus, regardless, | / ree| is n - 1 

minus the total number of target nodes in the 5j's 'dealt w i t h ' so far. 

In lines 4-15, neighbours of U are set as temporary target nodes, making sure 

that neighbours / / for which Sj ^ free are chosen before neighbours / / for which 

Sj G free. The process stops when: |T i | - 1 plus the number of temporary target 

nodes is exactly n - 2, i f / j G Ti\ or when \Ti\ plus the number of temporary target 

nodes is exactly n - 2, i f / j ^ T,. We claim that: i f U G T j then all neighbours / / of 

li in S^ that are not target nodes and for which Sj ^ free are chosen as temporary 

target nodes; and that if U ^ Ti then all neighbours If of U in Si that are not target 

nodes and for which Sj ^ free are chosen as temporary target nodes except possibly 

for at most one such neighbour. We now verify this claim. 

Suppose that the call to Paths_in_some:target_aiid-blocked was made. Let us 

count the number of 5i ' s , f rom { 5 i , 5 2 , . . . , 5 „ } \ {Sfc , 5 jo ,S ,} , that are not in free. 

The reason any Si ^ free is that exactly one of the following holds: Si G blocked; 

Si G some \ blocked; and 5; G used \ blocked. We can associate a target node 

wi th each such Sc. if 5/ G blocked then choose the target node in Tk on whose 
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path in paths the (blocking) node lies; i f Si G some \ blocked then choose any 
target node in Si; and i f Si G used \ blocked then choose the unique target node in 
SiQ on whose path in paths the nodes of 5/ are used as transit nodes. Note that 
distinct Si's are associated w i t h distinct target nodes. Thus, the number of Si's, 
f rom {Si, S2, • • •, Sn} \ {Sk, SiQ, Si}, that are not in free is at most the number 
of target nodes that potentially can be associated wi th such an Si, and this is 
{\Tk\ - 1) + \TJ + Ej^k,ioATj\ = (n - 2) - |r,| (note that r° G ^ cannot be so 
associated). Thus, irrespective of whether li is in Ti or not, all neighbours / / of / j 
in Si that are not target nodes and for which Sj ^ free are chosen as temporary 
target nodes. 

Suppose that the call to Paths.in_some:target-and_blocked was not made. 

Let us count the number of Si's, f rom {S\,S2, • • • ,Sn} \ {Sk,Si}, that are not in 

free. As above, the number of such Si's is at most IT^I + Ej^k^i\Tj\ = (n — 1) — \Ti . 

Thus, if li G Ti then all neighbours / / of in 5 i that are not target nodes and for 

which Sj ^ free are chosen as temporary target nodes; however, if / j ^ T then 

there may be at most one such neighbour that is not chosen as a temporary target 

node. Hence, our claim holds. 

In line 16, we recursively find node-disjoint paths in Si f rom every target node 

of Ti \ { / ; } and every temporary target node to the node li, as we did before. In line 

17, Si-paths-blocked is initialized as an empty set of paths, and in lines 17.1-17.2, 

the nodes bad-target and bad-terminal are set as e, i.e., ' n i l ' . 

In lines 18-37, we amend each path in Si.paths by working through the neigh

bours if of li in Si in turn as follows. I f / / G temp then we remove the path p ( / / , 7 )̂ 

f rom Si-paths. I f If 0 temp U T then we truncate the path p{t, li) containing 

by removing the f inal edge. We also register that the nodes of Sj are to be used as 

transit nodes for this truncated path, but only if the path in question is such that 

Sj G free; otherwise, we set bad-target = t and bad-terminal — P- ( f rom above, 

there is at most one such path). I f / / G T then we truncate the path p ( / / , / j ) con

taining / / by removing the final edge. I f Sj G free then we register that the nodes 

of Sj are to be used as transit nodes for this truncated path; otherwise, we move 

the path p ( / / , / / ) f rom Si-paths to Si-paths.blocked. 
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In line 38-43, we amend the paths of Si-paths. Suppose that some path p{t, s) 

in Si-paths, where t ^ bad-target ov s ^ bad.terminal, is such that there is some 

node X of the fo rm ( j , . . . ,i) lying upon i t so that 5^ £ free. We can replace the 

path p{t,s) in Si-paths w i t h the sub-path p{t,x), so long as we release the set of 

transit nodes escape[p{t, s)] (for possible future use) and register that the new set 

of transit nodes Sj is not to be used as a set of transit nodes for any other path. I f 

the path p{bad-target, bad-terminal) is such that there is some node x of the form 

( j , . . . ,i) lying upon it so that Sj 6 free then we can simply replace i t in Si-paths 

with the path p{bad-target,x) and register that the new set of transit nodes 5 j is 

not to be used as a set of transit nodes for any other path (for if bad-termmal = /• 

then Si 0 free). By iterating this process, we get to the situation where no path in 

Si-paths contains a node of the form ( j , . . . ,i) so that Sj G free. 

In lines 44-50, we deal w i th some of the paths in Si-paths-blocked, each of which 

is of the form p ( / / , / / ) , as we did before. 

In lines 50.1-50.n, we ensure that exactly one path f rom a chosen target node 

in Si to Ik wi l l pass through the node (after construction, this path is placed 

in paths). I f li G Tj then our chosen target node is recall f rom earlier that 

when Jj G T j , there is no 'bad' path p{bad-tar get, bad-terminal) and so all other 

paths in Si-paths can be extended through transit nodes (as is done in lines 57-

60). Otherwise, i f the 'bad' path p{bad-target, bad-terminal) exists and still resides 

in Si-paths then we extend this path through / j to 4 ; alternatively, i f there is 

a path of the form p{bad.target, s) in Si-paths (where s bad-terminal) then we 

release the corresponding set of transit nodes for possible future use before replacing 

p{badJarget, s) w i t h the extension of the original path p{badJtarget, bad-terminal) 

through li to Ik- Suppose that U ^ and that no 'bad' path has ini t ial ly been 

registered. I f SiJpaths-blocked is non-empty then some path f rom Si-paths-blocked 

is chosen and extended through li to Ik- Alternatively, i f Si-paths.blocked is empty 

then some path p{t, s) f rom Si-paths is chosen and replaced wi th the original path 

p{t, i j ) of which p{t, s) is a sub-path; the path p{t. I f ) is extended through U to h 

and the set of transit nodes corresponding to p{t, s) is released for possible future use. 

Irrespective of which path is chosen to go through h, note that the corresponding 
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target node is not associated wi th any set of transit nodes. 

The subsequent execution of the algorithm is as before; however, we must verify 

that a node ( / / ) ' can be chosen as in line 52. We claim that there exists a neighbour 

( / / ) ' of / / in S^ \ such that Si e free. 

Suppose that the call to Paths_in_some: target_cLnd_blocked was made. Let us 

count the number of 5/'s, f rom . . . , 5 „ } \ {Sk, 5io, 5 i } , for which 5; ^ free. 

As we have seen already, any such Si can be associated wi th a target node and all 

these associated target nodes are distinct. The maximum number of target nodes 

eligible to be associated w i t h such an Si is {n — 1) — a — 2, where a is the number of 

paths currently in SijpathsMocked (remember, f rom the last line of the preceding 

paragraph, there is a target node of 5 j , but not one of the a target nodes, not 

associated w i t h any set of transit nodes; also, € is not so associated). Hence, 

the number of 5; 's, f rom {S\, S2, • • •, Sn] \ [Sk, Si^, Si], for which 5/ G free is at 

least ( n - 3 ) - ( ( n - l ) - Q - 2 ) = 0; > 1. Consider the neighbours of / / in Sn,k\ these 

are U, a node in Sj (where, by definition, Sj ^ free) and n — 3 other neighbours. 

Consequently, f rom the n - 3 neighbours of / / different f rom / j and the neighbour 

in Sj, at least one, caU i t ( / / ) ' , is joined to a node in Si where Si G free. 

Suppose that the call to Paths_in_some: target_and_blocked was not made. Let 

us count the number of 5/ 's, f rom 52 , • • . , 5 „ } \ {Sk,S^), for which 5 / ^ free. 

The maximum number of target nodes eligible to be associated wi th such an 5; is 

(n - 1) - cv - 1, where a is the number of paths currently in S^ jpaths.blocked (again, 

there is a target node of 5 i , but not one of the a target nodes, not associated wi th 

any set of transit nodes). Hence, the number of 5;'s,- f rom { 5 i , 5 2 , . . . , 5 n } \ { 5 / . , 5 , } , 

for which 5; G free is at least (n - 2) - ( (n - 1) - a - 1) = Q > 1. As above, the 

required node ( / / ) ' exists and our claim holds. 

I t can easily be verified that if we repeatedly apply the procedure Paths_in_ 

some :not_blocked then the analysis as presented above sti l l holds true (essentially 

because every time we apply Paths_in_some: not_blocked, one of the target nodes 

in the 5 i in question is always on a path through U to Ik and thus does not use 

any set of transit nodes). Consequently, the procedure Paths_in_some: not-blocked 

achieves its aims, as does our main algorithm Disjoint_paths. 
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6.5 Path lengths and complexity 

Having proved that our algorithm D i s j o i n t .paths finds a collection of node-disjoint 

paths i n Sn,k f rom n - 1 target nodes to a source node, we now turn to the lengths 

of the paths produced by the algorithm and the time complexity of the algorithm. 

We derive below an upper bound on the length of any path constructed by 

Disjoint_paths; in the first instance, this upper bound is in the form of a recur

rence relation. Let bk be an upper bound on the length of any path produced by 

the algorithm Dis joint.paths applied in 5„,fc, irrespective of n (at the moment, we 

have not shown that such an upper bound exists; however, we show, using induc

t ion, that i t does and derive an estimate of i t ) . By Theorem 6.3.1, 62 = 5. I n order 

to derive the recurrence relation, we consider each of the procedures Paths-in-S^, 

Paths_in_some : target _and_blocked, Paths_in_some: not-target-and_blocked 

and Paths_in_some:not_blocked in tu rn (when called f rom wi th in Disjoint_paths 

applied in Sn,k, where k is at least 3). As our induction hypothesis, we assume that 

bk-i exists. 

The following lemma proves useful. 

L e m m a 6.5.1 Let ( j , X 2 , . . . and {yi,y2, • • • ,yk-i,i) be nodes of Si in Sn,k, 

for some i,j G { 1 , 2 , . . . , n } \ {k}, with i 7̂  j , and let p[[j,X2,- • •:Xk-i,i), (2 / 1 , ^ / 2 , • • •, 

yk-\,i)) be a path in S^ of length t. Also, let (21 ,22 , • • • , 2 f c - i , j ) be the node of Sj 

such that for every I = 1,2,... ,k - 1, if yi ^ j then 2/ = yi, and if yi = j then 

Zi = I . 

[a) There is a path p{{i,X2, •. .,Xk-i,j), (21, 2 2 , . . . , Zk-uj)) Sj of length t. 

(b) If further, (2 / 1,2 / 2 , • • • , J/fc-i , 0 = then there is a path from (zi, 2 2 , . . . , Zk-\,j) 

to Ij in Sj of length at most 3. 

Proof: (a) This follows f rom a simple induction on the length of the path 

P( ( j , X2,.--, Xk-i,i), (21, 2 2 , . . . , Zk-i,i)). 

(6) There are a number of cases to consider. Denote (21, 22, • • • , •Zfc-i, j ) by Z. 

Case (z): Suppose that U = {k,2,... ,i - + 1,... ,k ~ \,i), where i G {2 , 3,. . . , 

k - 1} , and that Ij = (fc, 2 , . . . , j - 1,1, j + 1,...,/c - l , j ) , where j G {2 , 3 , . . . , -
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Thus, Z = {k,2,... , i - 1,1,1 + 1,... ,j - l , i , j + 1,... ,k ~ l , j ) and there is a path 
f rom Z to I J of length at most 3. 

Case {ii): Suppose that I^-{k,2,...,i-\,l,i + l , . . . , k - l , i ) , where i e { 2 , 3 , . . . , 

k - 1}, and that I j = {k,2,..., k - l , j ) , where j e {k + I, k + 2,... ,n}. 

Thus, Z — {k,2,... ,i — l,l,i + 1,... ,k — l , j ) and there is a path f rom Z to I j of 

length at most 3. 

Case {Hi): Suppose that = {k,2,... ,i — + I,..., k — l,i), where i G 

{2,3, . . . , k - 1}, and that j = 1 wi th h ^ {k,2,..., k - 1,1). 

Thus, Z = ( /c ,2 , . . . ,/c - 1,1) and Z = h. 

Case {iv): Suppose that U = {k,2,..., k - I, i), where i e {k + I, k + 2,... ,n}, and 

that I j = {k,2,...,j - l , l , j + l , . . . , k - l , j ) , where J G {2,3,..., k - 1}. 

Thus, Z = { k , 2 , . . . , j - l , i , j - \ - l , . . . , k - l , j ) and there is a path f rom Z to of 

length at most 3. 

Case (v): Suppose that U ^ {k,2,... ,k - l,i), where i e {k + l,k + 2,... ,n], and 

that Ij^{k,2,...,k- \ , j ) , where j G {fc + 1,/c + 2 , . . . , n } \ {i). 

Thus, Z = {k,2,...,k-\,j) and Z = / j . 

Case {vi): Suppose that li ^ {k,2,..., k - l,i), where i e {k + 1, k+ 2,... ,n}, and 

that J = 1 wi th Ji = (/c, 2 , . . . , /c - 1,1). 

Thus, Z = {k,2,...,k-l,l) and Z = / i . 

Case (vii): Suppose that i — 1 w i t h Ii = {k,2,..., k - 1,1) and that I j = {k,2,..., 

j - + 1,..., k - l , j), for some j e {2,3,... ,k - I}. 

Thus, Z = ( ^ ^ 2 , . . . , J - l , l , j - M , . . . , / : - L j ) and Z = 7^. 

Case ( W M ) : Suppose that i — 1 wi th 7i — {k,2,... ,k - \,\) and that 7j = 

( A ; , 2 , . . . , A; - 1, j ) , for some j G {A; 4-1,/c + 2 , . . . , n } . 

Thus, Z = {k,2,...,k-\,i) w i t h Z = 7 .̂ 

The result follows. • 

Trivially, every path produced by Paths.in-^fc has length b^-x- Consider the 

paths constructed by Paths-in.some: target_and_blocked. Each path begins as 
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a path of length at most bk~i produced by the recursive call to Disjoint.paths. 
Some paths are essentially constructed in lines 18-50 (except that they need to be 
extended through the appropriate Sj to Ij and then on to Ik); others are essentially 
constructed in lines 51-60. Consider a path p{t,Ik) constructed according to lines 
18-50. In general, this path: starts out as a path p[t,Ii) of length at most bk-\\ 
is progressively shortened so that some sub-path from some node X of p{t,I-) to 
/ / is removed; and the sub-path p{t, X) is extended through some Si to // and 
then on to h- By Lemma 6.5.1, the resulting (sub-)path from t to Ii has length 
at most bk-i + 4, and so the resulting path p{t,Ik) has length at most bk-i + 6. 
Consider a path p{t, Ik) constructed according to lines 51-60. Again by Lemma 6.5.1, 
this path has length at most 9. The same path-length analysis holds for both 
Paths_in_some :not_target-and_blocked and Paths_in_some:not_blocked. Thus, 
we have that bk exists and bk < bk-i +6 . Thus, by induction and as 62 = 5, we have 
that bk <6k-7-

As regards the time complexity of our algorithm, consider the execution of 

Disjoint.paths on Sn,k, with the set of target nodes T and with the source node / . 

This execution results in a tree r describing the procedure calls, with every node of 

the tree r corresponding to a call of the procedure Disjoint.paths, Paths.in-Sfc, 

Paths.in.some:target.and.blocked, Paths_in.some:not_target_and_blocked or 

Paths.in.some: not-blocked, as follows: a node corresponding to some procedure 

P has a child corresponding to some procedure Q if a call is made to procedure Q 

from within the call to procedure P- The structure of the tree r can be visualized 

as in Fig.6.3, where a node is labelled D (a D-node) if it corresponds to a call of 

the procedure Disjoint.paths and P (a P-node) if it corresponds to a call of one 

of the other 4 procedures. Note that it may be the case that a D-node has only 1 

child; however, every P-node has exactly one child. 

We can associate with each D-node of r a pair of integers [k, t) if the particular 

call involves S'n,̂ , the target nodes T and the source node / , and if there are t 

target nodes of T not adjacent to the source node / . Note that the pair of integers 

associated with the root of r is {k, t), for some t < n. If a D-node u has an associated 

pair (m, t) and d children then a simple consideration of the procedure calls detailed 
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Figure 6.3: The tree r of procedure calls. 

in the algorithm Disjoint_paths yields that the pair associated w i t h the unique 

D-chi ld of the ith. P-child of u must be of the form (m — l , i i ) and we must have 

that ti + t2 + • • • + td < t. 

Remove all P-nodes f rom r by inserting an edge joining the parent and the child 

of any P-node; denote the resulting tree by r ' . We claim that r ' has at most {k — 2)t^ 

edges, where the pair of integers associated wi th the root is ( fc , i ) , for some k >2, 

and we prove this claim by induction on k (the base case, when k = 2, t r ivial ly 

holds). Suppose that the root has d children and that the pair of integers associated 

w i t h the zth child is {k — l,ti); so, in particular, ti+t2 +.. • + td < t. By the induction 

hypothesis, the sub-tree rooted at the zth child of the root has at most {k — 3)t'j 

edges. Thus, the number of edges in r ' is at most {k — 3){t] +12 + • •. +1'^) + d edges, 

which in tu rn is at most {k — 2){t\ + t^ + . • • + td)'^ < {k — 2)i^. Hence, our claim 

holds. 

The upshot is that in any execution of D i s j o i n t .paths on Sn,k w i th a set of 

target nodes T of size ?z— 1, there are at most 2(A; —2)(n — 1)^ procedure calls. Given 

that bk < 6k — 7, i t is t r iv ia l to see that apart f rom a call to another procedure, 

all procedures take 0{k'^n^) time, as does the procedure Disjoint_paths_when_A:=2 

(by Theorem 6.3.1). Hence, Disjoint_paths on Sn,k w i th a set of target nodes T 

of size n - 1 has t ime complexity 0{k^n'^). 
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6.6 Conclusions 

In this chapter, we have derived a polynomial-time algorithm to find node-disjoint 

paths f rom each of n — 1 distinct target nodes in 5,1,^ to a source node (different f rom 

any target node). The length of any path constructed is at most 6A; — 7. This should 

be compared wi th the diameter of Sn,k which is at most 2k —I (see the Introduction 

for an exact formula for the diameter of Sn,k)-

Of course, we can apply our algorithm to S'„_i,„, i.e., the n-star. What results is 

an algorithm of time complexity 0 (n ' ' ) that finds node-disjoint paths, each of length 

at most 6 n - 1 3 . As might be expected, the algorithm f rom [34], designed specifically 

for n-stars, is better in that i t has time complexity O(n^) and results in node-disjoint 

paths each of length at most . Similarly, we can apply our algorithm to produce a 

(u, t>)-container, for distinct nodes u and v of Sn,k- Again, as expected, the resulting 

container is much worse than that produced by the (polynomial-time) algorithm 

in [115] (specifically designed for the purpose) where one of wide-diameter at most 

2A; -I-1 is produced. Nevertheless, our algorithm gives a polynomial-time alternative 

for constructing node-disjoint paths in n-stars and containers in Sn,k-



Chapter 7 

Conclusion and future work 

There are many studies on different aspects of interconnection networks for paral

lel and distributed computing; for example, the topological properties of different 

interconnection networks, routing and communication algorithms designed for inter

connection networks, and fault-tolerant properties of interconnection networks. In 

this thesis we considered several properties for k-avy n-cubes and (n, /c)-star graphs, 

and we proposed a new interconnection network, the augmented /c-ary n-cube. In 

detail, we obtained the following results: 

1. Let A; > 4 be even and let n > 2. Consider a faulty fc-ary n-cube Q'^^ in which 

the number of node faults fy and the number of link faults fe are such that 

fv + /e < 2n - 2. We prove that given any two healthy nodes s and e oi Q'^, 

there is a path from s to e of length at least A;" - 2/^ - 1 (resp. k^ - 2 f y - 2 ) if 

the nodes s and e have different (resp. the same) parities (the parity of a node 

in Q.̂  is the sum modulo 2 of the elements in the n-tuple over { 0 , 1 , . . . , A; - 1} 

representing the node). Our result is optimal in the sense that there are pairs 

of nodes and fault configurations for which these bounds cannot be improved, 

and it answers questions recently posed by Yang, Tan and Hsu, and by Fu. 

Furthermore, we extend known results, obtained by Kim and Park, for the 

case when n = 2. 

2. We give precise solutions to problems posed by Wang, An, Pan, Wang and 

Qu and by Hsieh, Lin and Huang. In particular, we show that is bi-

145 
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panconnected and edge-bipancyclic, when A; > 3 and n > 2, and we also 
show that when k is odd, Q'^ is m-panconnected, for m = "(^-0^+2^-6^ 
{k - l)-pancyclic (these bounds are optimal) . We introduce a path-shortening 
technique, called progressive shortening, and strengthen existing results, show
ing that when paths are formed using progressive shortening then these paths 
can be efficiently constructed and used to solve a problem relating to the dis
tr ibuted simulation of linear arrays and cycles in a parallel machine whose 
interconnection network is Q'^^, even in the presence of a faul ty processor. 

3. We define an interconnection network AQn^k which we call the augmented 

A;-ary n-cube by extending a fc-ary n-cube in a manner analogous to the exist

ing extension of an n-dimensional hypercube to an n-dimensional augmented 

cube. We prove that the augmented k-avy n-cube AQn^k has a number of 

attractive properties (in the context of parallel computing). For example, we 

show that the augmented k-avy n-cube AQnX- is a Cayley graph (and so is 

vertex-symmetric); has connectivity 4n — 2, and is such that we can build a 

set of 4n — 2 mutually disjoint paths joining any two distinct vertices so that 

the path of maximal length has length at most max{{n — l)k — {n — 2), k + 7}\ 

has diameter [ | J - f ["̂ 1, when n = 2; and has diameter at most | ( n - f 1), for 

n > 3 and k even, and at most | ( n -t- 1) - I - f , for n > 3 and k odd. 

4. We present an algorithm which given a source node and a set of n - 1 target 

nodes in the (n, k)-stav graph Sn,k, where all nodes are distinct, builds a col

lection of n — 1 node-disjoint paths, one f rom each target node to the source. 

The collection of paths output f rom the algorithm is such that each path has 

length at most Qk - 7, and the algorithm has time complexity 0{k^n'^). 

Our research plan in the near future may focus on the following topics: 

• Tolerating faults under conditional fault assumptions: to classify the fault-

tolerance of interconnections networks used wi th in parallel computing wi th 

respect to path- and cycle-based properties and under conditional fault as

sumptions. 
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• Tolerating faults in OTIS networks: to investigate further the topological and 
algorithmic properties of general OTIS networks (Optical Transpose Intercon
nect System network [121,173]), both in the absence and presence of faults. 

• The distributed construction of embedded structures: to investigate further 

the distributed construction of embedded structures wi th in faulty intercon

nection networks. 
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Appendix A 

Source code: verify the base case 

of Theorem 3.3.3 

' I n t h e f r o n t , the author would l i k e t o g i v e the f o l l o w i n g 

' d e c l a r a t i o n : The program i s s o l o l y coded by Mr. Yonghong Xicing 

'at Department of Computer Science Department, Durham U n i v e r s i t y 

'while he was doing h i s Ph.D study from 2005—2008 i n Durham. 

'The purpose of the program i s : t o check the base case i n pr o v i n g 

' t h a t one can f i n d a longest p o s s i b l e path i n k-ary n-cube. 

'That i s , f o r 2-ary 4-cube, t h e program proves the r e s u l t holds i n 

'the f o l l o w i n g aspects: 

'1) I f t h e r e are two f a u l t y nodes i n 2-ary 4-cube, t h e r e e x i s t 

'paths of l e n g t h at l e a s t 10 or 11 between any two given h e a l t h y 

'nodes. 

'2) I f t h e r e are one f a u l t y node i n 2-ary 4-cube, t h e r e e x i s t paths 

'of l e n g t h a t l e a s t 12 or 13 between any two given h e a l t h y nodes. 

'3) I f t h e r e are one f a u l t y node and one f a u l t y edge i n 2-ary 4-cube, 

'there e x i s t paths of l e n g t h a t l e a s t 12 or 13 between any two gi v e n 

'healthy nodes. 

'4) I f t h e r e are two f a u l t y edges i n 2-ary 4-cube, t h e r e e x i s t paths 

'of l e n g t h a t l e a s t 14 or 15 between any two given h e a l t h y nodes. 
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'The r e s u l t s of the program are saved as a . t x t f i l e i n C:\, which 
'shows from one s p e c i f i c node, t h e r e e x i s t path of s p e c i f i c l e n g t h t o 
' a l l other p o s s i b l e nodes. 

' I n the program, we d i d n ' t check a l l p o s s i b l e cases, but o n l y s e v e r a l 

'cases. That i s because by the symmetric p r o p e r t i e s of the 2-ary 

'4-cube, a l l o ther cases can be obtained from 

'the e x i s t i n g cases by some mapping f u n c t i o n . 

' I n the f o l l o w i n g codes, the paths are not p r i n t e d out. But the 

'author has put a l l t h e necessary codes t h e r e . 

'Once remove the corresponding comment symbol, one w i l l get them. 

'One might f u r t h e r improve the code by combining sub procedure 

'FindPath and FindPathEdgeFaulty w i t h one sub procedure. But, the 

'current v e r s i o n works. 

'Environment requirements: Windows XP, V i s u a l Basic 6.0. 

' I f you need any more i n f o r m a t i o n , please contact the author: 

'Mr Yonghong Xiang 

'e-mail: yh_xiajag@hotmail.com 

'Last update: 18-11-2008 

P r i v a t e Type nodeDef 

IndexN As I n t e g e r 

D i r e c t i o n As I n t e g e r 

B D i r e c t i o n ( 4 ) As Boolean ' t o i n d i c a t e whether t h i s edge i s f a u l t . 

'One f a u l t y edge means t h e r e are two nodes should set some boolean 

'value f a l s e . 

End Type 
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Dim Node(15) As nodeDef 

Const Rt = 1, Dn = 2, Lf = 3, Up = 4 

Dim Path(571200, 15) As I n t e g e r 

'remember a l l p o s s i b l e paths from one f i x e d node t o any other node. 

Dim PathEnds(15, 15) As I n t e g e r 

' t o remember the end nodes of each s t a r t node, 

' so t h a t we can conclude t h a t the theorem i s t r u e . 

' set i t s i n i t i a l value as - 1 . 

Dim t o t a l E n d s As I n t e g e r 

'remember the number of end nodes from one f i x e d node w i t h longest 

' l e n g t h . 

Dim PaNu As I n t e g e r 

Dim Addr As S t r i n g 

P r i v a t e Sub I n i t N o d e O 'to i n i t i a l i z e a l l nodes, ready f o r use. 

Dim j As I n t e g e r , i As I n t e g e r 

For j = 0 To 15 

Node(j).IndexN = j 

N o d e ( j ) . D i r e c t i o n = 0 

For i = 0 To 4 

N o d e ( j ) . B D i r e c t i o n ( i ) = True 

Next i 

Next j 

End Sub 

P r i v a t e Sub FindPath(startNode As nodeDef, PLen As I n t e g e r ) 

Dim s t r ( 1 5 ) As I n t e g e r 'remember the index of the c u r r e n t path 

Dim ss As S t r i n g 'used t o p r i n t i n f o r m a t i o n t o f i l e 

Dim i As I n t e g e r , j As I n t e g e r 
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Dim lenP As I n t e g e r 'remember the c u r r e n t c o n s i d e r i n g path's l e n g t h 
Dim D i e t As I n t e g e r 

'remember t h e d i r e c t i o n of the c u r r e n t c o n s i d e r i n g node 

Dim PathNum As I n t e g e r 'remember the number of paths 

Dim saveStartNode As I n t e g e r 'remember the source node 

Dim NN As I n t e g e r 'remember t h e being considered Next Neighbor's 

'indexN 

Dim NP(15) As I n t e g e r 'Number of paths, remember the number of 

'paths respect t o the same end node as t h e index. 

Dim EndNodedS) As I n t e g e r 'Corresponding t o NP(15), remember the 

'end of the path, d u p l i c a t e ends w i l l only count once. 

PathNum = 0 'set the number of path as 0 

For i = 0 To 15 'set a l l elememts of the c u r r e n t path as -1 

s t r ( i ) = -1 

NP(i) = 0 

EndNode(i) = -1 

Next i 

saveStartNode = startNode.IndexN 'remember the s t a r t node's indexN 

lenP = 0 'set the c u r r e n t path's l e n g t h as 0 

s t r ( l e n P ) = startNode.IndexN 

'set the f i r s t node indexN as the s t a r t node 

Node(startNode.IndexN).Direction = 1 

Di e t = Node(startNode.IndexN).Direction 'set the d i r e c t i o n of the 

'current node as the s t a r t node's d i r e c t i o n 

While Node(saveStartNode).Direction < 5 ' a f t e r a l l of the s t a r t 

'node's d i r e c t i o n s have been considered, the program end 

For i = Diet To 4 'there are at most 4 d i r e c t i o n s f o r each node 
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NN = NextNeibCstartNode.IndexN, i ) 

'computing t h e c u r r e n t node's i t h neighbor 

I f Node(NN).Direction = 0 And lenP < PLen Then ' I f i t ' s 

'neighbor i s OK, then add the node t o the path and go on. 

lenP = lenP + 1 'remember the l e n g t h of the path 

s t r ( l e n P ) = Node(NN).IndexN 'add the node t o the path 

Node(startNode.IndexN).Direction = i 

'remember the d i r e c t i o n f o r i t s f a t h e r 

startNode.IndexN = NN 

'set i t as the s t a r t node f o r the next step 

S t a r t N o d e . D i r e c t i o n = 0 

'set the c u r r e n t node's d i r e c t i o n as 0 

D i e t = 1 'to be computing from i t s f i r s t d i r e c t i o n 

E x i t For 'continue t o consider i t s neighbor 

E l s e l f i = 4 Or lenP = PLen Then ' i f a l l of the c u r r e n t node's 

' d i r e c t i o n s has been considered or the l e n g t h i s r i g h t 

I f lenP = PLen Then 

'the l e n g t h i s r i g h t , then p r i n t t h e path t o the gi v e n a r r a y 

For j = 0 To lenP 'record the c u r r e n t path. 

Path(PathNum, j ) = s t r ( j ) 

Next j 

PathNum = PathNum + 1 'number of paths increase 1 

N P ( s t r ( l e n P ) ) = N P ( s t r ( l e n P ) ) + 1 

'corresponding end node's path number increase 1 

EndNode(str(lenP)) = startNode.IndexN 

End I f 

I f lenP > 0 Then ' i f i t i s not the s t a r t node, then u n t r e a t 

'again, otherwise, change the s t a r t node's d i r e c t i o n we need 

'to go back and t r y another d i r e c t i o n , u n t i l we have t r i e d 

' a l l d i r e c t i o n s , so as t o o b t a i n every p o s s i b l e path. 

N o d e ( s t r ( l e n P ) ) . D i r e c t i o n = 0 
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'change i t s d i r e c t i o n back t o 0 

s t r ( l e n P ) = -1 

lenP = lenP - 1 'no l i v e neighbor, u n t r e a t one step 

startNode.IndexN = s t r ( l e n P ) 

s t a r t N o d e . D i r e c t i o n = N o d e ( s t r ( l e n P ) ) . D i r e c t i o n 

While S t a r t N o d e . D i r e c t i o n = 4 And lenP > 0 ' I f i t u n t r e a t 

'to the f i r s t node, then we should stop i t . 

N o d e ( s t r ( l e n P ) ) . D i r e c t i o n = 0 

s t r ( l e n P ) = -1 

lenP = lenP - 1 

StartNode.IndexN = s t r ( l e n P ) 

S t a r t N o d e . D i r e c t i o n = N o d e ( s t r ( l e n P ) ) . D i r e c t i o n 

Wend 

D i e t = S t a r t N o d e . D i r e c t i o n + 1 'next t i m e , we can't t r y the 

' d i r e c t i o n t h a t has already t r i e d . So, change the d i r e c t i o n 

'now. 

End I f 

I f lenP = 0 Then 'otherwise,change the s t a r t node's d i r e c t i o n 

Node(saveStartNode).Direction =_ 

Node(saveStartNode).Direction + 1 

Di e t = Node(saveStartNode).Direction 

End I f 

E x i t For 

End I f 

Next i 

Wend 

' P r i n t #1, "End nodes are: " 

to t a l E n d s = 0 
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While PathEndsCsaveStartNode, t o t a l E n d s ) <> -1 'to avoid o v e r w r i t e 

'the pervious saved ends ( d i f f e r e n t p ath l e n g t h ) 

t o t a l E n d s = to t a l E n d s + 1 

Wend 

For i = 0 To 15 

I f NP(i) > 0 Then 

P r i n t #1, i , NP(i) 

P r i n t #1, i , 

PathEndsCsaveStartNode, t o t a l E n d s ) = i 

tot a l E n d s = to t a l E n d s + 1 

End I f 

Next i 

' P r i n t # 1, 

' P r i n t #1, " " 

' P r i n t #1, " T o t a l : ", t o t a l E n d s 

' P r i n t # 1, 

PaNu = PathNum 

The f o l l o w i n g code w r i t i n g each path t o t h e f i l e 

For i = 0 To PathNum - 1 

ss = "" 

For j = 0 To PLen 

ss = ss & PathCi, j ) & " " 

Next j 

ss = i & " " & ss 

P r i n t #1, ss 

Next i 

End Sub 



A. Source code: verify the base case of Theorem 3.3.3 172 

P r i v a t e Sub FindPathEdgeFaulty(startNode As nodeDef, PLen As I n t e g e r ) 
Dim s t r ( 1 5 ) As I n t e g e r 'remember the index of the c u r r e n t path 
Dim ss As S t r i n g 'used t o p r i n t i n f o r m a t i o n t o f i l e 

Dim i As I n t e g e r , j As I n t e g e r 

Dim lenP As I n t e g e r 'remember the c u r r e n t c o n s i d e r i n g path's l e n g t h 

Dim D i e t As I n t e g e r 'remember the d i r e c t i o n of the c u r r e n t 

'considering node 

Dim PathNum As I n t e g e r 'remember the number of paths 

Dim saveStartNode As I n t e g e r 'remember the source node 

Dim NN As I n t e g e r 

'remember the being considered Next Neighbor's indexN 

Dim NP(15) As I n t e g e r 

'Number of paths, remember the number of paths respect t o the same 

'end node as the index. 

Dim EndNode(15) As I n t e g e r 'Corresponding t o NP(15), remember the 

'end of the path, d u p l i c a t e ends w i l l only count once. 

PathNum = 0 'set the number of path as 0 

For i = 0 To 15 'set a l l elememts of the c u r r e n t path as -1 

s t r ( i ) = -1 

NP(i) = 0 

EndNode(i) = -1 

Next i 

saveStartNode = startNode.IndexN 'remember the s t a r t node's indexN 

lenP = 0 'set the c u r r e n t path's l e n g t h as 0 

s t r ( l e n P ) = startNode.IndexN 

'set the f i r s t node indexN as the s t a r t node 

Node(startNode.IndexN).Direction = 1 

Di e t = Node(startNode.IndexN).Direction 'set the d i r e c t i o n of the 
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'current node as the s t a r t node's d i r e c t i o n 

While Node(saveStartNode).Direction < 5 ' a f t e r a l l of the s t a r t 

'node's d i r e c t i o n s have been considered, the program end 

I f Node(saveStartNode).BDirection(Node(saveStartNode).Direction), 

Then 'the edge t o i t ' s neighbor should be a v a i l a b l e 

For i = Di e t To 4 'there are at most 4 d i r e c t i o n s f o r each node 

NN = NextNeib(startNode.IndexN, i ) 

'computing the c u r r e n t node's i t h neighbor 

I f Node(NN).BDirection(i) And Node(NN).Direction = 0 And_ 

lenP < PLen Then ' I f i t ' s neighbor i s OK, then add the 

' node t o the path eind go on. 

lenP = lenP + 1 'remember the l e n g t h of the path has been add 

s t r ( l e n P ) = Node(NN).IndexN 'add the node t o the path 

Node(startNode.IndexN).Direction = i 

'remember the d i r e c t i o n f o r i t s f a t h e r 

StartNode.IndexN = NN 

'set i t as t h e s t a r t node f o r the next step 

S t a r t N o d e . D i r e c t i o n = 0 'set the c u r r e n t node's d i r e c t i o n as 0 

Diet = 1 'to be computing from i t s f i r s t d i r e c t i o n 

E x i t For 'continue t o consider i t s neighbor 

E l s e l f i = 4 Or lenP = PLen Then ' i f a l l of t h e c u r r e n t node's 

' d i r e c t i o n s has been considered or t h e l e n g t h i s r i g h t 

I f lenP = PLen Then 'the l e n g t h i s r i g h t , then p r i n t the path 

'to the given a r r a y 

For j = 0 To lenP 'record the c u r r e n t path. 

Path(PathNum, j ) = s t r ( j ) 

Next j 

PathNum = PathNum + 1 'number of paths increase 1 

N P ( s t r ( l e n P ) ) = N P ( s t r ( l e n P ) ) + 1 
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'corresponding end node's path number increase 1 

End I f 

I f lenP > 0 Then ' i f i t i s not the s t a r t node, then u n t r e a t 

'again, otherwise, change the s t a r t node's d i r e c t i o n we need 

'to go back and t r y another d i r e c t i o n , u n t i l we have t r i e d 

' a l l d i r e c t i o n s , so as t o o b t a i n every p o s s i b l e path. 

N o d e ( s t r ( l e n P ) ) . D i r e c t i o n = 0 

'cheuige i t s d i r e c t i o n back t o 0 

s t r ( l e n P ) = -1 

lenP = lenP - 1 'no l i v e neighbor, u n t r e a t one step 

StartNode.IndexN = s t r ( l e n P ) 

S t a r t N o d e . D i r e c t i o n = N o d e ( s t r ( l e n P ) ) . D i r e c t i o n 

While S t a r t N o d e . D i r e c t i o n = 4 And lenP > 0 

' I f i t u n t r e a t t o the f i r s t node, then we should stop i t . 

N o d e ( s t r ( l e n P ) ) . D i r e c t i o n = 0 

s t r ( l e n P ) = -1 

lenP = lenP - 1 

StartNode.IndexN = s t r ( l e n P ) 

S t a r t N o d e . D i r e c t i o n = N o d e ( s t r ( l e n P ) ) . D i r e c t i o n 

Wend 

Diet = St a r t N o d e . D i r e c t i o n + 1 

'next t i m e , we can't t r y the d i r e c t i o n t h a t has already 

' t r i e d . So, change the d i r e c t i o n now. 

End I f 

I f lenP = 0 Then 'otherwise,change the s t a r t node's d i r e c t i o n 

Node(saveStartNode).Direction =_ 

Node(saveStartNode).Direction + 1 

Di e t = Node(saveStartNode).Direction 

End I f 

E x i t For 

End I f 
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Next i 
Else 

Node(saveStartNode).Direction = Node(saveStartNode).Direction + 1 

End I f 

Wend 

' P r i n t #1, "End nodes are: " 

to t a l E n d s = 0 

While PathEndsCsaveStartNode, t o t a l E n d s ) <> -1 

'to a v o i d o v e r w r i t e the pervious saved ends C d i f f e r e n t path l e n g t h ) 

t o t a l E n d s = to t a l E n d s + 1 

Wend 

For i = 0 To 15 

I f NPCi) > 0 Then 

P r i n t #1, i , NPCi) 

P r i n t #1, i , 

PathEndsCsaveStartNode, t o t a l E n d s ) = i 

to t a l E n d s = to t a l E n d s + 1 

End I f 

Next i 

' P r i n t # 1, 

' P r i n t #1, " " 

' P r i n t #1, " T o t a l : ", to t a l E n d s 

' P r i n t #1, 

PaNu = PathNum 

'The f o l l o w i n g code w r i t i n g each path t o the f i l e 

' For i = 0 To PathNum - 1 
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ss = "" 

For j = 0 To PLen 

ss = ss & P a t h ( i , j ) & " " 

Next j 

ss = i & " " & ss 

P r i n t #1, ss 

Next i 

End Sub 

P r i v a t e Sub SortPathEndsO ' s o r t the ends i n i n c r e a s i n g order 

Dim i As I n t e g e r , j As I n t e g e r , k As I n t e g e r , h As I n t e g e r 

Dim remLast As I n t e g e r , remCur As I n t e g e r 

i = 0 

j = 0 
k = 0 
h = 0 

For i = 0 To 15 

I f PathEndsd, 0) <> -1 Then 

remCur = 0 

remLast = PathEnds(i, 0) 

For j = 0 To 15 

I f remCur = -1 Or remLast = -1 Then 

j = 16 
Else 

remCur = PathEnds(i, j ) 

k = j - 1 

While remCur < remLast And remCur <> -1 

PathEnds(i, k + 1) = remLast 
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PathEnds(i, k) = remCur 
k = k - 1 
I f k < 0 Then 

remLast = -1 

Else 

remLast = PathEnds(i, k) 

End I f 

Wend 

remLast = PathEndsd, j ) 

End I f 

Next j 

End I f 

Next i 

End Sub 

P r i v a t e Sub Commandl_Click() 

MsgBox "Please contact Mr Yonghong Xiang f o r more i n f o r m a t i o n : 

& vbCrLf & " E-Mail: yh.xiangOhotmail.com"_ 

& vbCrLf & " 2008-11-18." 

End Sub 

P r i v a t e Sub Command24_Click() 

Unload Me 

End Sub 

P r i v a t e Sub Form_Load() 

Addr = "C:\" 

End Sub 

P r i v a t e Sub FVOneFEZero_Click() 

Dim i As I n t e g e r , j As I n t e g e r , t As I n t e g e r 
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Dim StartNode As nodeDef 

Dim PathLengthTwelve As I n t e g e r , PathLengthThirteen As I n t e g e r 

For i = 0 To 15 ' i n i t i a l i z e PathEnds a r r a y . 

For j = 0 To 15 

PathEnds(i, j ) = -1 

Next j 

Next i 

t o t a l E n d s = 0 ' I n i t i a l i z e t o t a l E n d s 

'we w i l l o n l y check two path l e n g t h which i s enough t o prove our 

'theorem. 

PathLengthTwelve = 1 2 

PathLengthThirteen = 13 

Me.MousePointer = vbHourglass 

Open Addr & "FVOneZero.txt" For Append As #1 

'to w r i t e the r e s u l t i n a f i l e . 

For i = 0 To 15 ' i n i t i a l i z e PathEnds a r r a y . 

For j = 0 To 15 

PathEnds(i, j ) = -1 

Next j 

Next i 

to t a l E n d s = 0 

ex p l = "Faulty nodes: 0. Path l e n g t h : " & PathLengthTwelve & " and "_ 

& PathLengthThirteen & "." 

P r i n t #1, e x p l 
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InitNode 

NodeCO).Direction = 5 

For i = 1 To 15 

startNode.IndexN = i 

s t a r t N o d e . D i r e c t i o n = 1 

I f N o deCi).Direction = 0 Then 

' expl = " S t a r t node: " & startNode.IndexN 

P r i n t #1, expl 

FindPath startNode, PathLengthTwelve 

InitNode 

NodeCO).Direction = 5 

End I f 

Next i 

'expl = "Faulty nodes: 0 and 1. Path l e n g t h : " & PathLengthElev k "." 

' P r i n t #1, e x p l 

InitNode 

NodeCO).Direction = 5 

For i = 1 To 15 

StartNode.IndexN = i 

S t a r t N o d e . D i r e c t i o n = 1 

I f N o deCi).Direction = 0 Then 

' expl = " S t a r t node: " & startNode.IndexN 

P r i n t #1, e x p l 

FindPath startNode, PathLengthThirteen 

InitNode 

NodeCO).Direction = 5 
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End I f 
Next i 

SortPathEnds ' sort a l l the end nodes increasingly 

For i = 0 To 15 

' to p r i n t out a l l ends that has reached from one node on length 10 
'and 11. 

expl = "Start node: " & i & " has end nodes: " 
For j = 0 To 15 

I f PathEndsCi, j ) = -1 Then 
Exit For 

Else 
expl = expl & PathEndsCi, j ) & "; " 

End I f 
Next j 
Prin t #1, expl & " Total: " & j 

Next i 

Prin t #1, 
Close #1 

MsgBox "Congratulation! Case: 1 f a u l t y node, and path length "_ 
& PathLengthTwelve & " and " & PathLengthThirteen 

Me.MousePointer = 1 
End Sub 

Private Sub FVZero.ClickO 

Dim i As Integer, j As Integer, k As Integer, t As Integer 
Dim NN As Integer 
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Dim startNode As nodeDef 

Dim PathLengthFourteen As Integer, PathLengthFifteen As Integer 
Dim FE1L(12) As Integer, FE1R(12) As Integer 
dim FEOL As Integer, FEOR As Integer 

PathLengthFourteen = 14 
PathLengthFifteen = 15 

Me.MousePointer = vbHourglass 
Open Addr & "FVZero.txt" For Append As #1 
'to write the re s u l t i n a f i l e . 

FEOL = 0:FEOR = 1 
FEIL(O) = 0:FE1R(0) = 3 
FElL(l) = 0:FE1R(1) = 4 
FE1L(2) = 2:FE1R(2) = 3 
FE1L(3) = 3:FE1R(3) = 7 
FE1L(4) = 4:FE1R(4) = 5 
FE1L(5) = 4:FE1R(5) = 8 
FE1L(6) = 5:FE1R(6) = 6 
FE1L(7) = 6:FE1R(7) = 7 
FE1L(8) = 7:FE1R(8) = 11 
FEILO) = 8:FE1R(9) = 9 
FEIL(IO) = 8:FE1R(10) = 11 
F E l L ( l l ) = 10:FE1R(11) = 11 

For t = 0 To 11 

InitNode ' set back a l l nodes to i t s o r i g i n a l value. 
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For i = 1 To 4 

'set f a u l t y edges, so that when we c a l l the function FindPath, 
'we can decide whether to go on some d i r e c t i o n by i t s d i r e c t i o n 
'booleein value. 

NN = NextNeib(FElL(t), i ) 
I f FElR(t) = NN Then 

I f i = 1 Or i = 3 Then ' horizental d i r e c t i o n 
Node(FElL(t)).BDirection(i) = False 
Node(FElR(t)).BDirection(4 - i ) = False 

Elself i = 2 Or i = 4 Then ' v e r t i c a l d i r e c t i o n 
Node(FElL(t)).BDirection(i) = False 
Node(FElR(t)).BDirection(6 - i ) = False 

End I f 
End I f 

Next i 
Node(O).BDirection(l) = False 
Node(l) .BDirectionO) = False 

For i = 0 To 15 ' i n i t i a l i z e PathEnds array. 
For j = 0 To 15 

PathEnds(i, j ) = -1 
Next j 

Next i 

totalEnds = 0 

expl = "Faulty edge: (0, 1) and (" & FElL(t) & " & FElR(t)_ 
& " ) . Path length: " & PathLengthFourteen & " and "_ 
& PathLengthFifteen & "." 

Print #1, expl 
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For i = 0 To 15 
startNode.IndexN = i 
startNode.Direction = 1 
I f Node(i).Direction = 0 Then 

' expl = "Start node: " & startNode.IndexN 
Prin t #1, expl 

FindPathEdgeFaulty startNode, PathLengthFourteen 

InitNode ' set back a l l nodes to i t s o r i g i n a l value. 
For k = 1 To 4 'set f a u l t y edges, so that when we c a l l the 

'function FindPath, we can decide whether to go on some 
'direction by i t s d i r e c t i o n boolean value. 

NN = NextNeib(FElL(t), k) 
I f FElR(t) = NN Then 

I f k = 1 Or k = 3 Then ' horizental d i r e c t i o n 
Node(FElL(t)).BDirection(k) = False 
Node(FElR(t)).BDirection(4 - k) = False 

Els e l f k = 2 Or k = 4 Then ' v e r t i c a l d i r e c t i o n 
Node(FElL(t)).BDirection(k) = False 
Node(FElR(t)).BDirection(6 - k) = False 

End I f 
End I f 

Next k 
Node(O).BDirection(l) = False 
Node(l) .BDirectionO) = False 

End I f 
Next i 

InitNode ' set back a l l nodes to i t s o r i g i n a l value. 
For k = 1 To 4 
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'set f a u l t y edges, so that when we c a l l the function FindPath, 
'we can decide whether to go on some d i r e c t i o n by i t s d i r e c t i o n 
'boolean value. 

NN = NextNeib(FElL(t), k) 
I f FElR(t) = NN Then 

I f k = 1 Or k = 3 Then ' horizental d i r e c t i o n 
Node(FElL(t)).BDirection(k) = False 
Node(FElR(t)).BDirection(4 - k) = False 

Els e l f k = 2 Or k = 4 Then ' v e r t i c a l d i r e c t i o n 
Node(FElL(t)).BDirection(k) = False 
Node(FElR(t)).BDirection(6 - k) = False 

End I f 
End I f 

Next k 
Node(O).BDirection(l) = False 
Node(l) .BDirectionO) = False 

For i = 0 To 15 
startNode.IndexN = i 
startNode.Direction = 1 
I f Node(i).Direction = 0 Then 

' expl = "Start node: " & startNode.IndexN 
Prin t #1, expl 

FindPathEdgeFaulty startNode, PathLengthFifteen 

InitNode ' set back a l l nodes to i t s o r i g i n a l value. 
For k = 1 To 4 'set f a u l t y edges, so that when we c a l l the 

'function FindPath, we can decide whether to go on some 
'direction by i t s d i r e c t i o n boolean value. 

NN = NextNeib(FElL(t), k) 
I f FElR(t) = NN Then 
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I f k = 1 Or k = 3 Then ' horizental d i r e c t i o n 
Node(FElL(t)).BDirection(k) = False 
Node(FElR(t)).BDirection(4 - k) = False 

Elself k = 2 Or k = 4 Then ' v e r t i c a l d i r e c t i o n 
Node(FElL(t)).BDirection(k) = False 
Node(FElR(t)).BDirection(6 - k) = False 

End I f 
End I f 

Next k 

Node(O).BDirection(l) = False 
Node(l).BDirection(3) = False 

End I f 
Next i 

SortPathEnds ' sort a l l the end nodes increasingly 

For i = 0 To 15 'to p r i n t out a l l ends that has reached from one node 
'on length 10 and 11. 

expl = "Start node: " & i & " has end nodes: " 
For j = 0 To 15 

I f PathEnds(i, j ) = -1 Then 
Exit For 

Else 
expl = expl & PathEnds(i, j ) & "; " 

End I f 
Next j 
Print #1, expl & " Total: " & j 

Next i 

Print #1, 
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Next t 
Close #1 

MsgBox "Congratulation! Case: two f a u l t y edges, and path length "_ 
& PathLengthFourteen & " and " & PathLengthFifteen 

Me.MousePointer = 1 
End Sub 

Private Sub FVOne_Click() 

Dim i As Integer, j As Integer, k As Integer, t As Integer 

Dim StartNode As nodeDef 

Dim PathLengthTwelve As Integer, PathLengthThirteen As Integer 
Dim FEL(5) As Integer, FER(5) As Integer 

PathLengthTwelve = 12 
PathLengthThirteen = 13 

Me.MousePointer = vbHourglass 
Open Addr & "FVOne.txt" For Append As #1 
'to write the r e s u l t i n a f i l e . 

FEL(O) = 1:FER(0) = 2 
FEL(l) = 1:FER(1) = 5 
FEL(2) = 2:FER(2) = 6 
FEL(3) = 5:FER(3) = 6 
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FEL(4) = 6:FER(4) = 10 

For t = 0 To 4 'consider the above f i v e cases 

InitNode ' set back a l l nodes to i t s o r i g i n a l value. 
For i = 1 To 4 
'set f a u l t y edges, so that when we c a l l the function FindPath, we can 
'decide whether to go on some d i r e c t i o n by i t s d i r e c t i o n boolean 
'value. 

NN = NextNeib(FEL(t), i ) 
I f FER(t) = NN Then 

I f i = 1 Or i = 3 Then ' horizental d i r e c t i o n 
Node(FEL(t)).BDirection(i) = False 
Node(FER(t)).BDirection(4 - i ) = False 

Elself i = 2 Or i = 4 Then ' v e r t i c a l d i r e c t i o n 
Node(FEL(t)).BDirection(i) = False 
Node(FER(t)).BDirection(6 - i ) = False 

End I f 
End I f 

Next i 
Node(O).Direction = 5 

For i = 0 To 15 ' i n i t i a l i z e PathEnds array. 
For j = 0 To 15 

PathEnds(i, j ) = -1 
Next j 

Next i 

totalEnds = 0 

expl = "Faulty nodes: 0. Faulty edge: (" & FEL(t) & ", " & FER(t)_ 
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& " ) . Path length: " & PathLengthTwelve & " and "_ 
& PathLengthThirteen & "." 

Print #1, expl 

For i = 1 To 15 
StartNode.IndexN = i 
StartNode.Direction = 1 
I f Node(i).Direction = 0 Then 

' expl = "Start node: " & startNode.IndexN 
Pri n t #1, expl 

FindPathEdgeFaulty startNode, PathLengthTwelve 

InitNode ' set back a l l nodes to i t s o r i g i n a l value. 
For k = 1 To 4 'set f a u l t y edges, so that when we c a l l the 

'function FindPath, we cam decide whether to go on some 
'direc t i o n by i t s d i r e c t i o n boolean value. 

NN = NextNeib(FEL(t), k) 
I f FER(t) = NN Then 

I f k = 1 Or k = 3 Then ' horizental d i r e c t i o n 
Node(FEL(t)).BDirection(k) = False 
Node(FER(t)).BDirection(4 - k) = False 

Elself k = 2 Or k = 4 Then ' v e r t i c a l d i r e c t i o n 
Node(FEL(t)).BDirection(k) = False 
Node(FER(t)).BDirection(6 - k) = False 

End I f 
End I f 

Next k 

Node(O).Direction = 5 

End I f 
Next i 
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InitNode ' set back a l l nodes to i t s o r i g i n a l value. 
For k = 1 To 4 'set f a u l t y edges, so that when we c a l l the function 

'FindPath, we can decide whether to go on some d i r e c t i o n by i t s 

'dir e c t i o n boolean value. 
NN = NextNeib(FEL(t), k) 
I f FER(t) = NN Then 

I f k = 1 Or k = 3 Then ' horizental d i r e c t i o n 
Node(FEL(t)).BDirection(k) = False 
Node(FER(t)).BDirection(4 - k) = False 

Elself k = 2 Or k = 4 Then ' v e r t i c a l d i r e c t i o n 
Node(FEL(t)).BDirection(k) = False 
Node(FER(t)).BDirection(6 - k) = False 

End I f 
End I f 

Next k 
Node(O).Direction = 5 

For i = 1 To 15 
StartNode.IndexN = i 
StartNode.Direction = 1 
I f Node(i).Direction = 0 Then 

' expl = "Start node: " & startNode.IndexN 
Pri n t #1, expl 

FindPathEdgeFaulty startNode, PathLengthThirteen 

InitNode ' set back a l l nodes to i t s o r i g i n a l value. 
For k = 1 To 4 ' set f a u l t y edges, so that when we c a l l the 

' function FindPath,we can decide whether to go on some 
' d i r e c t i o n by i t s d i r e c t i o n boolean value. 

NN = NextNeib(FEL(t), k) 
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I f FER(t) = NN Then 
I f k = 1 Or k = 3 Then ' horizental d i r e c t i o n 

Node(FEL(t)).BDirection(k) = False 
Node(FER(t)).BDirection(4 - k) = False 

El s e l f k = 2 Or k = 4 Then ' v e r t i c a l d i r e c t i o n 
Node(FEL(t)).BDirection(k) = False 
Node(FER(t)).BDirection(6 - k) = False 

End I f 
End I f 

Next k 
Node(O).Direction = 5 

End I f 
Next i 

SortPathEnds ' sort a l l the end nodes increasingly 

For i = 0 To 15 'to p r i n t out a l l ends that has reached from one node 
'on length 10 and 11. 

expl = "Start node: " & i & " has end nodes: " 
For j = 0 To 15 

I f PathEnds(i, j ) = -1 Then 
Exit For 

Else 
expl = expl & PathEnds(i, j ) & "; " 

End I f 
Next j 
Print #1, expl & " Total: " & j 

Next i 

Print #1, 
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Next t 
Close #1 

MsgBox "Congratulation! Case: 1 f a u l t y node and one f a u l t y edge,"_ 
& " and path length " k PathLengthTwelve & " and "_ 
k PathLengthThirteen 

Me.MousePointer = 1 

End Sub 

Private Sub FVTwo.ClickO 
'there are only 4 cases to consider by the symmetric of Q_{2,k} 
'they are: (0, 1), (0, 2), (0,5), (0,10) 
'We suppose node 0 i s f a u l t y , i f there i s at least one f a u l t y node. 

Dim i As Integer, j As Integer, t As Integer 
Dim StartNode As nodeDef 

Dim F2(15) As Integer 'remember the second f a u l t y node's index 

Dim PathLengthElev As Integer, PathLengthTen As Integer 

For i = 0 To 15 ' i n i t i a l i z e PathEnds array. 

For j = 0 To 15 
PathEndsd, j ) = -1 

Next j 
Next i 
totalEnds = 0 ' I n i t i a l i z e totalEnds 
'we w i l l only check two path length which i s enough to prove our 
'theorem. 
PathLengthElev = 1 1 



A. Source code: verify the base case of Theorem 3.3.3 192 

PathLengthTen =10 

Me.MousePointer = vbHourglass 
Open Addr & "FVTwo.txt" For Append As #1 
'to write the r e s u l t i n a f i l e . 

F2(0) = 1:F2(1) = 2 
F2(2) = 5:F2(3) = 6 
F2(4) = 10 

For t = 0 To 4 

For i = 0 To 15 ' i n i t i a l i z e PathEnds array. 
For j = 0 To 15 

PathEnds(i, j ) = -1 
Next j 

Next i 

totalEnds = 0 

expl = "Faulty nodes: 0 and " & F2(t) & ". Path length: "_ 
& PathLengthTen & " and " & PathLengthElev & "." 

Pri n t #1, expl 

InitNode 
Node(O).Direction = 5 
Node(F2(t)).Direction = 5 

For i = 1 To 15 
I f i <> F2(t) Then 

startNode.IndexN = i 
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StartNode.Direction = 1 
I f Node(i).Direction = 0 Then 

' expl = "Start node: " & startNode.IndexN 

P r i n t #1, expl 
FindPath startNode, PathLengthTen 
InitNode 
Node(O).Direction = 5 
Node(F2(t)).Direction = 5 

End I f 
End I f 

Next i 

'expl = "Faulty nodes: 0 and 1. Path length: " & PathLengthElev & "." 
'Print #1, expl 

InitNode 
Node(O).Direction = 5 
Node(F2(t)).Direction = 5 

For i = 1 To 15 
I f i <> F2(t) Then 

StartNode.IndexN = i 
StartNode.Direction = 1 
I f Node(i).Direction = 0 Then 

' expl = "Start node: " & startNode.IndexN 
P r i n t #1, expl 

FindPath startNode, PathLengthElev 
InitNode 
Node(O).Direction = 5 
Node(F2(t)).Direction = 5 

End I f 
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End I f 
Next i 

SortPathEnds ' sort a l l the end nodes increasingly 

For i = 0 To 15 'to p r i n t out a l l ends that has reached from one node 
'on length 10 and 11. 

expl = "Start node: " & i & " has end nodes: " 
For j = 0 To 15 

I f PathEndsCi, j ) = -1 Then 
Exit For 

Else 
expl = expl & PathEndsCi, j ) & "; " 

End I f 
Next j 
Print #1, expl & " Total: " & j 

Next i 

Pri n t #1, 

Next t 

Close #1 

MsgBox "Congratulation! We have done f o r case: 2 f a u l t y nodes,". 
k " and path length " & PathLengthTen & " and " & PathLengthElev 

Me.MousePointer = 1 

End Sub 

Private Function NextNeibCNodeNum As Integer, D i r t As Integer) 
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I f D i r t = Rt Then 
I f NodeNum Mod 4 = 3 Then 

NextNeib = NodeNum - 3 
Else 

NextNeib = NodeNum + 1 
End I f 

El s e l f D i r t = Lf Then 
I f NodeNum Mod 4 = 0 Then 

NextNeib = NodeNum + 3 
Else 

NextNeib = NodeNum - 1 
End I f 

Elself D i r t = Dn Then 
NextNeib = (NodeNum + 4) Mod 16 

Else 
NextNeib = (16 + NodeNum - 4) Mod 16 

End I f 
End Function 
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