
Durham E-Theses

Interconnection networks for parallel and distributed

computing

Xiang, Yonghong

How to cite:

Xiang, Yonghong (2008) Interconnection networks for parallel and distributed computing, Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/2156/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/2156/
 http://etheses.dur.ac.uk/2156/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Interconnection Networks for
Parallel and Distributed

Computing

Yonghong X I A N G

Supervisor: Professor Iain Stewart and Professor Hajo Broersma

The copyright of this thesis rests with the
author or the university to which it was
submitted. No quotation firom it, or
information derived from it may be
published without the prior written
consent of the author or university, and
any information derived from it should be
acknowledged.

A thesis presented for the degree of

Doctor of Philosophy

m
Department of Computer Sciences

University of Durham
England

August 2008

1 9 DEC 2008

Dedicated to
My wife Yiinli LIU

Interconnection Networks for Parallel and
Distributed Computing

Yonghong X I A N G

Submitted for the degree of Doctor of Philosophy

August 2008

Abstract

Parallel computers are generally either shared-memory machines or distributed-

memory machines. There are currently technological limitations on shared-memory

architectures and so parallel computers utilizing a large number of processors tend to

be distributed-memory machines. We are concerned solely with distributed-memory

multiprocessors. In such machines, the dominant factor inhibiting faster global com­

putations is inter-processor communication. Communication is dependent upon the

topology of the interconnection network, the routing mechanism, the flow control

policy, and the method of switching. We are concerned with issues relating to the

topology of the interconnection network.

The choice of how we connect processors in a distributed-memory multiprocessor

is a fundamental design decision. There are numerous, often conflicting, consider­

ations to bear in mind. However, there does not exist an interconnection network

that is optimal on all counts and trade-offs have to be made. A multitude of inter­

connection networks have been proposed with each of these networks having some

good (topological) properties and some not so good.

Existing noteworthy networks include trees, fat-trees, meshes, cube-connected

cycles, butterflies, Mobius cubes, hypercubes, augmented cubes, A;-ary n-cubes,

twisted cubes, n-star graphs, (n, /c)-star graphs, alternating group graphs, de Bruijn

networks, and bubble-sort graphs, to name but a few.

We will mainly focus on fc-ary n-cubes and (n, /c)-star graphs in this thesis.

Meanwhile, we propose a new interconnection network called augmented k-ary n-

IV

cubes.

The following results are given in the thesis.

1. Let A; > 4 be even and let n > 2. Consider a faulty k-aiy n-cube Q'^ in which

the number of node faults /„ and the number of link faults / g are such that

/ n + /e < 2n — 2. We prove that given any two healthy nodes s and e of (5̂ ,

there is a path from s to e of length at least A;" - 2 /n - 1 (resp. A;" - 2/^ - 2) if

the nodes s and e have different (resp. the same) parities (the parity of a node

in is the sum modulo 2 of the elements in the n-tuple over 0,1, • • • , A; — 1

representing the node). Our result is optimal in the sense that there are pairs

of nodes and fault configurations for which these bounds cannot be improved,

and it answers questions recently posed by Yang, Tan and Hsu, and by Fu.

Furthermore, we extend known results, obtained by Kim and Park, for the

case when n = 2.

2. We give precise solutions to problems posed by Wang, An, Pan, Wang and

Qu and by Hsieh, Lin and Huang. In particular, we show that is bi-

panconnected and edge-bipancyclic, when A; > 3 and n > 2, and we also

show that when A; is odd, is m-panconnected, for m = "(fe-^H^*'"^ ̂

(A; - l)-pancyclic (these bounds are optimal). We introduce a path-shortening

technique, called progressive shortening, and strengthen existing results, show­

ing that when paths are formed using progressive shortening then these paths

can be efficiently constructed and used to solve a problem relating to the dis­

tributed simulation of linear arrays and cycles in a parallel machine whose

interconnection network is Q^, even in the presence of a faulty processor.

3. We define an interconnection network AQn,k which we call the augmented

A;-ary n-cube by extending a A:-ary n-cube in a manner analogous to the exist­

ing extension of an n-dimensional hypercube to an n-dimensional augmented

cube. We prove that the augmented A;-ary n-cube AQn,k has a number of

attractive properties (in the context of parallel computing). For example, we

show that the augmented A;-ary n-cube AQn,k' is a Cayley graph (and so is

vertex-symmetric); has connectivity 4n — 2, and is such that we can build a

set of 4n - 2 mutually disjoint paths joining any two distinct vertices so that

the path of maximal length has length at most m a x { (n - l)k- (n-2) , /c + 7};

has diameter [|J + f ^ l , when n - 2: and has diameter at most + 1), for

n > 3 and k even, and at most | (n + 1) + ^, for n > 3 and k odd.

4. We present an algorithm which given a source node and a set of n — 1 target

nodes in the (n,/c)-star graph 5„,/c, where all nodes are distinct, builds a col­

lection of n — 1 node-disjoint paths, one from each target node to the source.

The collection of paths output from the algorithm is such that each path has

length at most 6A; — 7, and the algorithm has time complexity 0(/c'^n^).

Keywords: interconnection network, fault-tolerance, embedding, node-disjoint

paths, bipanconnectivity, bipancyclicity, hamiltonicity, fc-ary n-cube, augmented k-

ary n-cube, (n, fc)-star graph.

Declaration

The work in this thesis is based on research carried out at the Department of Com­

puter Sciences, Durham University, England. No part of this thesis has been sub­

mitted elsewhere for any other degree or qualification and it's all the author's work

unless referenced to the contrary in the text.

This research has been documented, in part, within the following publications:

• Iain A. Stewart and Yonghong Xiang, Bipanconnectivity and bipancyclicity

in fc-ary n-cubes, IEEE TYansactions on Parallel and Distributed Systems, 11

Mar 2008. IEEE Computer Society Digital Library. IEEE Computer Society,

22 July 2008 <http://doi.ieeecomputersociety.org/10.1109/TPDS.2008.45>

• Iain A. Stewart and Yonghong Xiang, Embedding long paths in k-avy n-cubes

with faulty nodes and links, IEEE Transactions on Parallel and Distributed

Systems, vol. 19, no. 8, pp. 1071-1085, Aug., 2008.

Copyright © 2008 by Yonghong X I A N G .

"The copyright of this thesis rests with the author. No quotations from it should be

published without the author's prior written consent and information derived from

it should be acknowledged".

V I

Acknowledgements

Many thanks to my primary supervisor Professor Iain Stewart for all his patience,

encouragement, and guidance during my Ph.D study. Thanks to my second su­

pervisor Professor Hajo Broersma for every aspect of help and support during my

study.

Thanks to all of my friends in or outside of the UK. Especially to Dr. Tong Li ,

who helped me like an elder brother in many aspects; Dr. Florent Madelaine, who

helped with my research since early 2005; Dr. John Bailey, who helped with my

study and my English. I enjoyed my stay in Durham and will miss the time with

Dr. Keith Gallagher, Dr. Shengchao Qin, Miss. Barbara Kroner, Mr. Minjie Sun,

Mr. Xiaofeng Du, Mr. Qingzheng Zheng, and many other colleagues.

Thanks to my family for their continuous support my study in the UK. Especially

to my wife, who gave up her nice job in China and joins me in the UK to support

my Ph.D study. Special thanks to my mom, who came to the UK and helped us to

look after my son Liang (Alexander) Xiang for half a year.

Thanks to EPSRC, ORSAS and the Department of Computer Science, Durham

University for their financial support during my Ph.D study.

vn

Contents

Abstract iii

Declaration vi

Acknowledgements vii

1 Introduction 1

1.1 Parallel and distributed computers 1

1.2 Some popular interconnection networks 2

1.2.1 fc-ary n-cube: an alternative to hypercube 3

1.2.2 (n, A;)-star graph: an alternative to n-star graph 4

1.3 Paths and cycles 4

1.3.1 Paths and cycles in non-faulty interconnection networks 4

1.3.2 Paths and cycles in faulty interconnection networks 6

1.4 Organization of the thesis 7

2 Basic Definitions and Basic Results 9

2.1 Some basic graph definitions 9

2.2 Definitions and properties of some interconnection networks 13

2.2.1 Mesh, torus 13

2.2.2 Hypercube 14

2.2.3 k-ary n-cube 15

2.2.4 n-star graph 16

2.2.5 (n, A;)-star graph 17

2.2.6 n-dimensional augmented cube 18

viii

Contents ix

2.2.7 Section summary 19

2.3 Related results 21

2.3.1 Structures embedding in interconnection networks 21

2.3.2 Disjoint paths in interconnection networks 23

3 Embedding long paths in A;-ary n-cubes with faulty nodes and links 26

3.1 Introduction 26

3.2 Basic definitions 27

3.3 The base case 28

3.4 The inductive step 52

3.5 Conclusions 62

4 Bipanconnectivity and bicyclicity of k-ary n-cube 64

4.1 Introduction 64

4.2 Existing bipanconnectivity results 66

4.3 The general case when k is even 67

4.4 The general case when k is odd 73

4.5 An application 80

4.6 Conclusions 81

5 Augmented k-ary n-cube 83

5.1 Introduction 83

5.2 Basic definitions 85

5.3 Symmetry 87

5.4 Connectivity 89

5.4.1 The base case of our induction 90

5.4.2 The induction step 93

5.5 The diameter 108

5.6 Conclusions I l l

6 One-to-Many Node-Disjoint paths in (n,/o)-star graph 114

6.1 Introduction 114

6.2 Basic definitions and lemmas 116

Contents x

6.3 The case for /c = 2 118

6.4 Building node-disjoint paths 121

6.4.1 The basic algorithm 122

6.4.2 Paths in 5^ 123

6.4.3 Paths in 5̂ e blocked n some 125

6.4.4 Paths in 5, ^ blocked n some 132

6.5 Path lengths and complexity 140

6.6 Conclusions 144

7 Conclusion and future work 145

A Source code: verify the base case of Theorem 3.3.3 165

List of Figures

2.1 Example: (a) 4 x 4 mesh, (b) 4 x 4 torus 14

2.2 Example of hypercubes: (a) Qi, (b) Q2, (c) Qa 15

2.3 Example of star graph: (a) 3-star, (b) 4-star and (c) (5,2)-star 18

2.4 Three augmented cubes y4(51, ^ (^ 2 and ylQa 19

3.1 Cases {a)-(d) when k = 8 31

3.2 Cases ih)-{j) when k = 8 32

3.3 Cases (A;)-(o) when A; = 8 33

3.4 Partitioned Q '̂s 37

3.5 The hamiltonian cycle £'0,0 in rt{0,6) in Ql 41

3.6 Joining po(5, e) to the amended cycle C 42

3.7 The construction in Case {b) 57

3.8 The construction in Case (c) 58

3.9 The constructions in Case {d) when e e 59

4.1 Case (a) of Fig. 2 of [163] and its correction 67

4.2 Other cases from [163] and their corrections 68

4.3 The different cases when d{u'^,v) is odd 70

4.4 The different cases when (i(w",y) is even 72

4.5 The different cases when d{u"'.v) is even 74

4.6 The different cases when d{u'^,v) is odd 76

4.7 The different cases when d{u°-,v) is even 78

4.8 The different cases when d(u", v) is odd 79

5.1 An augmented 5-ary 2-cube 87

X I

List of Figures xii

5.2 The 6 disjoint paths when 0 < i < j 91

5.3 The 6 disjoint paths when 0 < z = j 92

5.4 The 6 disjoint paths when 2 = 0 94

5.5 The 4n - 2 disjoint paths in Case 1 95

5.6 The 6 disjoint paths in Sub-case 2.1 98

5.7 The amendments in Sub-case 2.2 98

5.8 The amendments in Sub-case 2.3 100

5.9 The paths in Sub-case 3.1 101

5.10 The paths in Sub-case 3.2 103

5.11 The paths in Sub-case 4.1 104

5.12 The paths in Sub-case 4.2 106

5.13 The paths in Sub-case 4.3 107

6.1 An illustration of different cases 121

6.2 Dealing with 'bad' target nodes 132

6.3 The tree r of procedure calls 143

List of Tables

2.1 Special /c-ary n-cubes 16

2.2 Key properties of some important interconnection networks 20

x n i

Chapter 1

Introduction

1.1 Parallel and distributed computers

Parallel computers are generally either shared-memory machines or distributed-

memory machines. There are currently technological limitations on shared-memory

architectures and so parallel computers utilizing a large number of processors tend to

be distributed-memory machines. We are concerned solely with distributed-memory

multiprocessors. In such machines, the dominant factor inhibiting faster global com­

putations is inter-processor communication. Communication is dependent upon the

topology of the interconnection network (how the processors are joined to one an­

other), the routing mechanism (how the paths along which data is transmitted be­

tween processors are determined), the flow control policy (how channels and buffers

are allocated to packets as they travel along a path in the interconnection network),

and the method of switching (the method by which a packet is moved in the inter­

connection network). We are concerned with issues relating to the topology of the

interconnection network.

The choice of how we connect processors in a distributed-memory multiprocessor

is a fundamental design decision. There are numerous, often conflicting, considera­

tions to bear in mind. For instance, we would like our interconnection network to

be symmetric (to make programming and analysis easier), have small diameter (to

lessen message-passing latency), be recursively decomposable (to aid scalability),

be highly connected (to improve fault-tolerance and reliability), be regular of low

1

1.2. Some popular interconnection networks

degree (to lessen communication overheads and design complexity), support rapid

and easy inter-processor communication, support the simulation of other machines

based on other topologies, and so on (note that a small diameter is desirable even

when using wormhole switching, as wormhole switching only comes to the fore when

dealing with larger packets). These properties all give rise to improved computa­

tional performance. However, there does not exist an interconnection network that

is optimal on all counts and trade-offs have to be made. A multitude of intercon­

nection networks have been proposed with each of these networks having some good

(topological) properties and some not so good.

Existing noteworthy networks include trees, fat-trees, meshes, cube-connected

cycles, butterflies, Mobius cubes, hypercubes, augmented cubes, k-aiy n-cubes,

twisted cubes, n-stars, (n,/o-)-stars, alternating group graphs, de Bruijn networks,

and bubble-sort graphs, to name but a few. In the following section, we will intro­

duce several popular networks.

1.2 Some popular interconnection networks

The architecture of an interconnection network is usually represented by a graph. We

use graphs and networks interchangeably. A network is represented as an undirected

graph in the thesis.

Interconnection topologies can be classified as either single-stage or multi-stage

networks. Multi-stage networks, such as the omega network [107], connect system

resources through multiple intermediate stages of crossbar switching devices. The

performance of multi-stage type networks has been extensively studied in the litera­

ture [1-3,101,147]. Single-stage networks incorporate the processing devices within

the network itself, allowing direct communication between processors. A single stage

network has smaller average latency and is more fault tolerant in comparison with

multi-stage networks of the same size [65]. As a result, single-stage networks are

gaining in popularity and have been employed in many existing large scale comput­

ing systems [65 .

We are only interested in single-stage networks, and now we will briefly introduce

1.2. Some popular interconnection networks

some popular interconnection network topologies including hypercubes, A:-ary n-

cubes, n-star graphs and (n, A;)-star graphs.

1.2.1 k-ary n-cube: an alternative to hypercube

Perhaps the most popular interconnection topology is the hypercube Qn, on account

of its properties and its extremely elegant realization as a graph whose nodes are in­

dexed with bit-strings of length n and whose edges join nodes of Hamming distance

1 (such a realization immediately yields elementary yet optimal routing algorithms

and key topological information). The hypercube has been used as the intercon­

nection topology of a number of distributed-memory multiprocessors, such as the

Cosmic Cube [141], the Ametek S/14 [15], the iPSC [48,49], the Ncube [26,49] and

the CM-200 [27], and the properties of hypercubes relevant to parallel computing

have been well studied.

However, every node of Qn has degree n, and, consequently, as n increases so

does the degree of every node, which is undesirable. Hence, given a collection of

processors, if we wish to connect these processors in the topology of a hypercube then

we have no choice as to the degree of the nodes of the resulting network. One method

of circumventing this problem, so as to still retain a 'hypercube-like' interconnection

network, is to build parallel computers so that the underlying topology is the A;-ary

n-cube Q^- The A:-ary n-cube is similar in essence to the hypercube (the nodes being

indexed by bit-strings of length n where there are k, as opposed to 2, different bits),

but by a judicious choice of A; and n we can include a large number of nodes yet

keep the degree of each node low. The A;-ary n-cube has not been investigated

to the same extent as the hypercube, but it has still been well studied. Machines

whose underlying topology is based on a A;-ary n-cube include the Mosaic [142], the

iWARP [24], the J-machine [127], the Cray T3D [96], the Cray T3E [9], the SGI

Origin and the IBM Blue Gene [64], and so on.

1.3. P a t h s and cycles

1.2.2 (n,/c)-star graph: an alternative to n-star graph

The n-star graph [4] is an attractive alternative to the hypercube Qn, and has signif­

icant advantages over Q n , such as a lower degree and a smaller diameter. However,

a practical restriction is the number of nodes: n! for an n-star graph. Since there is

a large gap between n! and (n -h 1)!, one may face the choice of either too few or too

many available nodes. The (n, fc)-star graph preserves many attractive properties

of the n-star graph such as node symmetry, hierarchical structure, maximal fault

tolerance, and simple shortest routing. What 's more, the two parameters n and k

can be tuned to make a suitable choice for the number of nodes in the network and

for a degree/diameter trade-off. This allows more f lexibi l i ty in designing networks

than star graphs offer.

The definition and some basic properties of hypercubes, /c-ary n-cubes, n-star

graphs and (n, /c)-star graphs w i l l be given in Chapter 2.

1.3 Paths and cycles

1.3.1 Paths and cycles in non-faulty interconnection net­

works

I t is important for an interconnection network to efficiently route data among nodes.

Efficient routing can be achieved by using node-disjoint paths. In what follows, we

w i l l use disjoint paths for node-disjoint paths. Routing by disjoint paths among

nodes can not only avoid communication bottlenecks, and thus increase the efficiency

of message transmission, but also provide alternative paths in case of node failures.

There are three well-known paradigms for the study of disjoint paths in inter­

connection networks. The node-to-node (one-to-one) disjoint paths that constructs

the maximal number of disjoint paths in the network between two given nodes. The

node-to-set (one-to-many or many-to-one) disjoint paths that constructs disjoint

paths in the network f rom a given node to each of the nodes in a given set (it is

true that k disjoint paths exist for the node-to-set disjoint paths problem in a k-

connected graph [123]). The fc-pairwise disjoint paths (set-to-set disjoint paths or

1.3. Paths and cycles

many-to-many disjoint paths) that constructs k disjoint paths between the given k

node-pairs.

Linear arrays (paths) and rings (cycles), which are two of the most fundamental

networks for parallel and distributed computation, are suitable for designing simple

algorithms w i t h low communication costs. Numerous efficient algorithms designed

on linear arrays and rings for solving various algebraic problems and graph problems

can be found in [7,128]. Linear arrays and rings can also be used eis control/data flow

structures for distributed computation in arbitrary networks. For example, having

a collection of processors connected in a ring means that all-to-all message passing

can be undertaken by "daisy-chaining" messages around the ring. A n application of

longest paths to a practical problem was encountered in the on-hne optimization of

a complex Flexible Manufacturing System (see [10]). These applications motivate

the embedding of paths and cycles in networks.

One important property relevant to parallel computing is hamiltonicity, for the

existence of hamiltonian cycles in networks is of crucial importance, given the ubiq­

uity of such cycles as data structures in many distributed algorithms (they are

primarily used to facilitate message-passing). Not only is the existence of hamil­

tonian cycles of great importance but also the existence of hamiltonian paths, and

more generally the existence of cycles and paths of different lengths. The existence

of hamiltonian (or, at least, long) paths is extremely useful as we regularly need to

simulate linear-array computations in distributed-memory multiprocessors; having

a long path allows us to cater for such simulations where there are many differ­

ent array lengths involved in the simulations. In addition, given the ubiquity of

cycle-based computations and algorithms in parallel computations, not only is the

simulation of linear-array-based computations important but so is the simulation of

cycle-based computations (of varying lengths).

Other hamiltonicity-based algorithms are also important in interconnection net­

works, such as the existence of (almost-)hamiltonian path, hamiltonian connec­

t ivi ty , almost-hamiltonian-connectivity, (m-)pancyclicity, (m-)panconnectivity, and

hamiltonian-laceability.

1.3. P a t h s and cycles

1.3.2 Paths and cycles in faulty interconnection networks

As more and more processors are incorporated into parallel machines, faults be­

come more common, be i t faults in the processors themselves or faults on the inter-

processor connections. Given the significant cost of parallel machines, we would

prefer to be able to tolerate small numbers of faults and sti l l be able to use our

parallel machine. A key property we would like our ' faul ty ' machine to have is that

a large number of the healthy processors should remain in a connected component

and be able to undertake significant parallel computations. However, we prefer that

the (non-faulty port ion of the) interconnection network remains connected.

A number of different contexts have been studied w i t h respect to the existence of

faults. For example, the existence of hamiltonian cycles, hamiltonian paths, cycles

and paths of specific lengths, and so on, have been studied in a variety of intercon­

nection networks where there are faulty nodes or links. I n addition, other aspects of

fault-tolerance have been considered wi th regard to broadcasting algorithms, Euler

tour algorithms, wormhole routing algorithms, and so on.

Indeed, some parallel applications, such as those in image and signal processing,

are originally designed for a cycle architecture, and i t is important to have effective

cycle embeddings in a network. Faults can be static or dynamic, and there are

possibilities of faul ty nodes, faulty links or both faulty nodes and links.

When we consider how many faults we can tolerate in a given context, there

are often pathological situations which immediately yield upper bounds. However,

i t has been shown that for certain topologies and situations, the probability of

such situations is extremely small and discounting them can yield a meaningful and

improved analysis. For example, consider a fc-ary n-cube where we wish to determine

the maximum number of faulty nodes so that regardless of the distr ibution of these

faults, the healthy nodes remain connected. Immediately we see that there are

configurations of 2n faulty nodes (where all faulty nodes are adjacent to some given

node) which disconnect the network. However, if one assumes that the distribution

of faults is such that all nodes are incident w i th at least 1 healthy node then a

fc-ary n-cube can tolerate 4n — 3 faulty nodes such that the healthy nodes remain

connected [44] (this result is optimal) . Similar results regarding the conditional fault

1.4. Organizat ion of the thesis

connectivity of other networks have been obtained, e.g., for hypercubes [36,52]; for

cube-connected cycles, undirected de B r u i j n networks and Kautz networks [133];

and for twisted-cubes, crossed-cubes, Mobius cubes, star graphs, pancake graphs

recursive circulant graphs, and /c-ary n-cubes [36]. Related studies of the diameter of

faulty networks, under similar conditional fault assumptions, have been undertaken

for hypercubes [104] and star graphs [138]. Conditional fault assumptions have also

been made and studied in the context of hamiltonian cycles for hypercubes [28],

crossed-cubes [91], star graphs [61] and so on.

Some related work has also been done for meshes [165], torus networks [145],

arrangement graphs [79], line digraph interconnection networks [161], multi-stage

interconnection networks [160], pancake graphs [90], double loop networks [152], (bi­

nary) wrapped but terf ly graphs [17], folded hypercubes [162], (n, A;)-star graphs [86],

Josephus cubes [117], gamma interconnection networks [35], twisted cubes [59,89],

recursive circulant graphs [130], flexible hypercubes [95], de Bru i jn networks [126],

and so on. Note that the general problem of deciding whether a given hypercube or

a fc-ary n-cube w i t h an arbitrary collection of faults has a hamiltonian cycle (where

no conditional assumptions on the distr ibution or number of faults are made) is

known to be NP-complete [14,28 .

1.4 Organization of the thesis

This thesis is focused on four aspects research of interconnection networks.

In Chapter 2, some basic graph definitions wi l l be given. Then we wil l introduce

several popular interconnection networks including the definitions and some of their

basic properties. Also, some related results w i l l be given in this chapter.

I n Chapter 3, we wi l l consider embedding long paths in a /c-ary n-cube wi th

faulty nodes and links. We wi l l answer questions recently posed by Yang, Tan and

Hsu [171], and by Fu [60]. Furthermore, we extend known results, obtained by K i m

and Park [98], for the case when n = 2.

I n Chapter 4, we wi l l investigate the hamiltonian, pancyclic, panconnected, bi-

pancyclic and bipanconnected properties of fc-ary n-cubes. Precise solutions wi l l be

1.4. Organizat ion of the thesis 8

given to problems posed by Wang, A n , Pan, Wang and Qu [163] and by Hsieh, L in
and Huang [82]. A path-shortening technique, called progressive shortening, wi l l
be introduced. We wi l l strengthen existing results, showing that when paths are
formed using progressive shortening then these paths can be efficiently constructed
and used to solve a problem relating to the distributed simulation of linear arrays
and cycles in a parallel machine whose interconnection network is Q^, even in the
presence of a faulty processor.

In Chapter 5, we wi l l propose a new interconnection network called the aug­

mented k-ary n-cuhe AQn,k- Some basic properties including degree, diameter, con­

nectivity and one-to-one node-disjoint paths wi l l be given for AQn.k-

In Chapter 6, we wi l l present an algorithm which given a source node and a set

of n — 1 target nodes in the (n, k)-stax graph Sn,ki where all nodes are distinct, builds

a collection of n — 1 node-disjoint paths, one f rom each target node to the source.

The collection of paths output f rom the algorithm is such that each path has length

at most 6/c — 7, and the algorithm has time complexity 0(/c'^n'').

Finally, Chapter 7 concludes the thesis and gives some future research topics.

Based on the recursive structural properties of fc-ary n-cubes, augmented /c-ary

n-cubes and (n, /c)-star graphs, we mainly use induction proof method in Chapter

3, 4, 5 and 6.

Chapter 2

Basic Definitions and Basic

Results

In this chapter, we wi l l introduce .some basic graph definitions. Then we wil l intro­

duce several popular interconnection networks and some of their basic properties.

2.1 Some basic graph definitions

Throughout the thesis, a network is represented as a loopless undirected graph. For

graph theoretic definitions and notations, we follow [22 .

G — [V, E) is a graph if K is a finite set and is a subset of {{u, v)\{u, v) is an

unordered pair of V '} . We say that V is the vertex {node) set and E is the edge

{link) set. Two vertices u and v are adjacent i f {u,v) E E. A graph H is called a

subgraph of G i f V{H) C V{G) and E{H) C E{G). In graph G, the neighborhood

of V, denoted by Nc{v), is the set {x\{v,x) 6 E}. I f i t is clear which graph is

considered, we write A^(i;) instead; the same holds for other notations using graphs

as a subscript. The degree of a vertex v, denoted by deg{v), is the number of vertices

in N{v). A graph G is k-regular i f deg{v) — k for every vertex v e V. A graph

G is vertex-symmetric (or node-symmetric) i f given any two distinct nodes v and v'

of G, there is an automorphism of G mapping v to v'. A graph G = {VQUVI, E)

is bipartite i f V{G) is the union of two disjoint sets VQ and Vi such that each edge

consists of one vertex f rom each set; such a par t i t ion (VQI ^ i) is called a bipartition

2.1. Some basic graph definitions 10

of the graph. Given vertices u and v, we say that u and v are in the same partite set
if iL, V G Vi or in different partite sets if u G Vj and v G for i G { 0 , 1 } . A vertex
cut of a graph G is a set 5 C V (G) such that G — S has more than one connected
component. I t is known that only complete graphs do not have vertex cuts. The
connectivity or vertex-connectivity of G , wri t ten K{G), is defined as the minimum
size of a vertex cut if G is not a complete graph, and K.{G) = [^^(G)! — 1 otherwise.
A graph G is called k-connected or k-vertex-connected i f its vertex connectivity is
k or greater. A graph G wi th vertex connectivity K (G) can tolerate K{G) — 1 node
failures. This measure of fault tolerance, however, gives a poor indication about the
impact of faults on the interconnection network. A more appropriate metric, which
is often used for measuring the fault tolerance of a graph, is the fault-diameter, which
is defined as the maximum diameter of any graph obtained f rom G by removing at
most K{G) — 1 nodes f rom G [100 .

A path is a non-null sequence p = (wi, 6 2 , f 2 , £ 3 , t'a, • • •, et, Vk) whose terms

are alternately vertices and edges, such that, for 2 < i < k, the ends of are V j - i

and v-i, and in which all the vertices Vi, V2- . • Vk are distinct. For convenience, we

also write the path as {vi, V2, v^, ..., v^) or (v i , 62 , 6 3 , . . . , e ,̂ v^). We also write

the path {vi, V2, vs, ..., Vk) as {vi, p', Vi, Vi+i, . . . , V j , p", Vt, . . . , v^), where p' is

the path (wi, V2, U3 , . . . , Vi) and p" is the path {vj, vj+i, . . . , Vi). We use p~^ to

denote the path {v^, f f c - i i • • •, On occasion we might refer to a link {x,y) as

appearing on a path p{u,v), or equivalently the path p{u,v) as containing the l ink

(X , y); when we do, the notation denotes that i f we traverse the path p(u, v) starting

at node u then we shall reach node x immediately before we reach node y. I f p{u, v)

is a path and x and y are nodes on this path then p(x, y) denotes the sub-path of

p{u, v) starting at x and ending at y. The length of a path p is the number of the

edges in p, denoted by \p\. We use disG{u,v) to denote the distance between u and

V in graph G , that is the length of the shortest path joining u and v. The diameter

of a graph G , denoted by dia{G). is the greatest distance between any two vertices.

A path is a hamiltonian path i f its vertices are distinct and span V. A cycle is a

path wi th at least three vertices such that the first vertex is the same as the last

vertex. A cycle is a hamiltonian cycle i f i t traverses every vertex of G exactly once.

2.1. Some basic graph definitions 11

A graph is hamiltoman if i t has a hamiltonian cycle.

We say that a graph is hamiltonian-connected if there is an hamiltonian path join­

ing any two distinct nodes of the graph. Note that any (non-trivial) bipartite graph

cannot be hamiltonian-connected, though there might exist almost-hamiltonian

paths, i.e., paths joining pairs of distinct nodes upon which all but one of the nodes

of the graph appear (a solitary node not appearing on an almost-hamiltonian path is

called the residual node). Irrespective of whether a graph is bipartite or not, we say

that a graph is almost-hamiltonian-connected i f there is a hamiltonian path of an

almost-hamiltonian path joining any pair of distinct nodes. The concept of hamil­

tonian connectivity does not apply to biparti te graphs because biparti te graphs are

definitely not hamiltonian connected except for a few exceptions such as K2 or .

As such a property is important, the concept of hamiltonian laceability on bipar­

t i te graphs was introduced by Wong [164]. A biparti te graph G - {VQ {JVI,E} is

hamiltonian laceable i f there is a hamiltonian path between any two vertices x and

y which are in different partite sets. A hamiltonian laceable graph G is k-edge-fault-

tolerant hamiltonian laceable if G — E ' is hamiltonian laceable where E' is subset

of E w i th \E'\ < k. On the condition of [Vol - Hsieh et al. [80] proposed the

concept of strong hamiltonian laceability. G is strongly hamiltonian laceable i f i t is

hamiltonian laceable and there is a path of length |Vo| + l ^ i l - 2 between any two

vertices in the same parti te set. A strongly hamiltonian laceable graph G is k-edge-

fault-tolerant strongly hamiltoman laceable '\{G — E' is strongly hamiltonian laceable

where £" is subset of E w i th \E'\ < k. Lewinter and Widulski [109] introduced an­

other concept, hyper hamiltonian laceability. G is hyper hamiltonian laceable i f i t

is hamiltonian laceable and for any vertex v e Vi, there is a hamiltonian path of

G \ { y } between any two vertices in V i _ j . A hyper-hamiltonian laceable graph G

is k-edge-fault-tolerant hyper-hamiltoman laceable if G — E' is hamiltonian laceable

where E' is subset of E w i th \E'\ < k. So hyper hamiltonian laceability implies

strong hamiltonian laceability.

A k-container of G between ii and v, C{u,v), is a set of k internally disjoint

paths between u and v. A ^-container C{u,v) of G is a k'-container i f i t contains

all vertices of G. A graph G is k* -connected i f there exists a /c*-container between any

2.1. Some basic graph definitions 12

two distinct vertices. Obviously, a l*-connected graph (there is a path connecting
any two nodes and covering all the nodes in the graph) is a hamiltonian connected
graph, and a 2*-connected graph (there are two disjoint paths between any two
nodes, and these two paths cover all nodes in the graph; thus they form a cycle,
and all nodes are on the cycle.) is a hamiltonian graph. The spanning connectivity
of a graph G, K*{G), is the largest integer A; such that G is w*-connected for all
I < w < k. A graph G is super spanning connected i f K*{G) — K{G).

The concept of pancyclicity was extended to vertex-pancyclicity by Hobbs [76

and edge-pancyclicity by Alspach and Hare [8]. Let n = \ V{G)\. A graph G is called

vertex-pancyclic i f for any vertex u, there exists a cycle of every length f rom 3 to n

containing u , and edge-pancyclic i f for any edge e, there exists a cycle containing e of

every length f rom 3 to n. I f we fix one edge (two linked vertices), there exist cycles of

every length f rom 3 to n, then if we fix one of these vertices, the result wi l l s t i l l hold.

So, every edge-pancyclic graph is vertex-pancyclic. The graph G is almost-pancyclic

i f i t contains a cycle of every possible length between 4 and n, and bipancycHc if

it contains a cycle of every possible even length between 4 and n (the definition of

bipancyclicity is intended primarily for bipartite graphs but can be applied to any

graph). A graph G is called edge-bipancyclic i f every edge e of G lies on a cycle of

every even length between 4 and n , and vertex-bipancyclic i f every vertex t; of G lies

on a cycle of every even length between 4 and n. A graph G is k-edge-fault-tolerant

bipancyclic i f the resulting graph by deleting any k edges f rom G is bipancyclic. A

graph G is k-edge-fault-tolerant edge-bipancyclic i f the resulting graph by deleting

any k edges f rom G is edge-bipancyclic. The graph G is panconnected (resp. m-

panconnected) if for any pair of distinct vertices u and v, there is a path joining u

and V of every length between dis{u,v) (resp. m > dis{u,v)) and n — 1. The graph

G is bipanconnected i f for any pair of distinct vertices u and v, there is a path joining

u and V of every length f rom {/ : / = dis{u, v) -1- 2i, where 0 < z < " " ' ^ " ^ " ' ^ ^ } .

The Hamming distance between two vectors a and b is the number of different

positions in which a and b differ, denoted by Dnia, b). Let a — o„a„_ i . . . a j be an

2.2. Definit ions and properties of some interconnection networks 13

n-digit radix k vector. The Lee weight of a is defined as

n

Wi{a) = ^ {a^l, where |a j | = min(ai . A: — a,).
i= l

The Lee distance between two vectors a and b is denoted by Di{a, b) and is defined

to be W[^{a — b). Tha t is, the Lee distance between two vectors is the Lee weight of

their bitwise difference, mod k.

For other graph theory definitions please refer to the bibliography

2.2 Definitions and properties of some intercon­

nection networks

We wi l l define the mesh, torus, hypercube, fc-ary n-cube, n-star graph and (n, k)-stav

graph and their basic properties in this section.

2.2.1 Mesh, torus

Definit ion 2.2.1 A n n-dimensional mesh system M (s) consists of S i x 52 x . . . x S n

processors arranged in an n-dimensional grid. A processor in the grid is denoted by

the coordinate { x i , X 2 , • . • ,Xn), where 0 < x.̂ < S i - 1.

Specifically, we define a 2-dimensional mesh as follows.

Definit ion 2.2.2 A n m x n (rectangular) mesh M{m,n) is a graph of m x n nodes

arranged in m rows and n columns, where the node lying in the ith row and jth col­

umn is identified w i t h an ordered pair (i , j) , and two nodes {i,j), {k,l) are adjacent

i f and only i f either (a) i = k, \j - / | = 1, or (b) j = l,\i - k\ - 1. An m x n mesh

is a bipartite graph wi th the bipart i t ion {UQ, UI), where

^̂ 0 = {(hi) •• 0 < i < m - 1,0 < j < n - 1,1 + j is even},

j / i = { { i j) ; 0 < 2 < m - 1,0 < j < n - l , z + j is odd} .

A 2-dimensional mesh M{m,n) is also called a grid Grid{m,n).

2.2. Definit ions and properties of some interconnection networks 14

(0,0)

(a) 4X4 mesh
(3,3)

(0,0)

(6) 4X4 torus (3,3)

Figure 2.1: Example: (a) 4 x 4 mesh, (b) 4 x 4 torus

The 7i-dimensional mesh network is currently one of the most popular topologies

for massively parallel computer systems [151]. Low dimensional mesh networks, due

to their low node degree, are more popular than the high dimensional mesh networks.

The two-dimensional mesh topology has been adopted by Symult 2010 [140], Intel

Touchstone D E L T A [23] and Intel paragon [93]; the M I T J-machine [127] adopts

three-dimensional mesh topology.

Defini t ion 2.2.3 A torus T{m,n) is a mesh wi th wraparound edges in the rows

and columns. A row-torus is a mesh wi th wraparound edges in the rows. The row-

torus rt{i,j) is the subgraph of T{m, n) induced by the nodes on rows i,i-\-l,... , j ,

i f i < j , or rows z, 2 -h 1 , . . . , m , 1 , . . . , j , if j < 2, but w i th all column hnks between

nodes on row j and nodes on row i removed if i = j -\-1 or [i = 0 and j = k - 1).

Fig. 2.1(a) is an example of a 4 x 4 mesh, and Fig. 2.1(b) is an example of a

4 x 4 torus.

A n m X n mesh wi th m , n > 4 is almost-hamiltonian-connected [92 .

2.2.2 Hypercube

Definit ion 2.2.4 The n-dimensional hypercube (n-cube) Qn, for n > 2, has 2"

nodes indexed by { 0 , 1 } " , and there is a l ink {{un,Un-i,- •., u i) , {vn,Vn-\,- • •,Vi)) if,

and only if , there exists d G {1 ,2 , . . . ,n} such that \ud -Vd\ = 1, and = vi, for

every z G { 1,2, . . . , n } \ {d}.

Fig. 2.2(a), (b) and (c) depict (5 i ,Q2, and Qs respectively. The hypercube

has been used as the interconnection topology of a number of distributed memory

2.2. Definit ions and properties of some interconnection networks 15

1 00

100 110

10 000 ,

(b)

/ / 101

1 o n

(f)

Figure 2.2: Example of hypercubes: (a) Q i , (b) Q2, (c) Q 3

multiprocessors, such as the Cosmic Cube [141], the Ametek S/14 [15], the iPSC

48,49], the Ncube [26,49] and the CM-200 [27], and the properties of hypercubes

relevant to parallel computing have been well studied. The n-cube is a connected

graph of diameter n, and is regular of degree n [139]. The hypercube is a bipartite

graph [108,139]. In n-cube, the minimum distance between the nodes u and v

is equal to the number of bits that differ between u and v, i.e., to the Hamming

distance DH{U,V) [139 .

2.2.3 fc-ary n-cube

The hypercube Qn is a very popular interconnection topology on account of its prop­

erties and its extremely elegant realization as a graph. However, the node degree of

Qn increases too fast, which is undesirable. Hence, a hypercube-like interconnection

network k-avy n-cube was proposed, as in Q^, we can include a large number of

nodes yet keep the degree of each node low by tuning k and n.

Definit ion 2.2.5 The k-ary n-cube Q^, for A; > 1 and n > 1, has fc" nodes indexed

by {0,l,...,k- 1 } " , and there is a l ink ((i i „ ,u„_ i , . . . , « i) , (-u„,'t;„_i,.. .,vi)) if, and

only if, there exists d e {1,2, ... , n } such that inm{\ud - Vd\, k - \ud-Vd\} = 1, and

Ui = Vi, for every i e { 1 , 2 , . . . , n } \{d}, and we say this is an edge of dimension i.

A n index d G { 1 , 2 , . . . , n } is often referred to as a dimension. We can partition

Q'^ over dimension d by fixing the dth element of any node tuple at some value v,

for every v G {0,1,... ,k — 1}. Such a part i t ion proves to be extremely useful (in

proofs by induction, as we shall see for example in Chapter 3 and Chapter 4).

2.2. Definit ions and properties of some interconnection networks 16

The class of fc-ary n-cubes contains as special cases many topologies important
to parallel processing, such as rings, hypercubes, and tori . Table 2.1 summarizes
the special cases of fc-ary n-cubes [120]. Fig. 2.1(b) is a 4 x 4 torus, and is also a
4-ary 2-cube.

k
n

k
1 2 > 3

1 Point (cycle) Point (torus) Point

2 Edge (hypercube/cycle) Square (hypercube/torus) Hypercube

> 3 Ring Torus k-ary n-cube

Table 2.1: Special k-ary n-cubes

We now give some basic properties of k-ary n-cubes. A fc-ary n-cube is a regular

graph. The degree of each node is n for A; = 2 and 2n for > 3. The number of edges

in a A;-ary n-cube is nfc"-^ for k = 2 and n/c" for k>3 [120]. dia{Q^) = n [| j [25 .

In Q^, the length of a shortest path between any two nodes is equal to their Lee

distance [25]. Q2 is bipanconnected, bipancyclic, almost-hamilton-connected, and

if k is odd, Q2 is hamilton-connected, and is almost-hamilton-connected, and

hamilton-connected i f k is odd [163]. is node-symmetric [98]. A k-ary n-cube

contains k composite subcubes, each of which is a k-aiy (n - l)-cube, and the number

of edges w i t h endpoints in different composite subcubes is A;""^ for A; = 2 and /c" for

k>3 [120 .

2.2.4 n-star graph

The n-star graph [4] is an attractive alternative to the n-cube, as i t has significant

advantages over the n-cube, such as a lower degree and a smaller diameter.

Definit ion 2.2.6 The n-star graph 5„ has node set V(S„) = {{ui, U2, . . . , Un) :

each U i e { 1 , 2 , . . . , n } and Ui ^ Uj, for i ^ j] , and there is an edge {{ui,U2, • • •, « n) ,

{v\,V2, • • •, Vn)) if, and only if, u\ = Vi and Ui = V\, for some i € { 2 , 3 , . . . , n } , wi th

Ui = vi, for all I e {2,3, ... , n } \{i}.

2.2. Definit ions and properties of some interconnection networks 17

Fig. 2.3(a) shows a 3-star graph, (b) shows a 4-star graph. The n-star graph ^ n ,
has n! nodes, and edges. I t is regular of degree (n - 1) and has diameter

dia{Sn) = ^^^Y^- Sn is node and edge symmetric and is (n - l)-connected [4,43 .

The star graph, which belongs to the class of Cayley graphs [5], possesses many

nice topological properties such as recursiveness, symmetry, maximal fault tolerance,

sublogarithmic degree and diameter, and strong resilience [5], which are all desirable

when we are designing the interconnection topology for a parallel and distributed

system. Besides, the star graph can embed rings [135], meshes [137], trees [16],

and hypercubes [125]. Many efficient algorithms [7] have been designed on the star

graph.

The star graph has been extensively studied. Its topological properties have been

analyzed in [43,135,153]. Many efficient communication algorithms for shortest-

path routing [135], multiple-path routing [43], broadcasting [122], gossiping [18],

and scattering [57] were proposed. Many efficient algorithms have been designed for

sorting and merging [124], selection [135], Fourier transform [56], and computational

geometry [6 .

2.2.5 (n, A;)-star graph

In order to avoid the significant jump f rom n! nodes in an n-star graph to (n - I - 1)!

nodes in an (n-l-l)-star graph, (n, A;)-star graphs were devised, as 'generalized' n-star

graphs.

Definit ion 2.2.7 Let n> k > 1. The (n, k)-star graph, denoted Sn,k, has node set

ViSnM) = {iui,U2, •••,Uk) •• each Ui € { 1 , 2 , . . . , n } and m ^ Uj, for i ^ j } , and

there is an edge ((u i , U 2 , . . . ,Uk), {v\,V2, • • • ,Vk)) if, and only if, either:

• Ui = Vi, (oT 2 < I < k, and W] ^ vi (a l-edge);

• Ui = Vi and u, = Uj, for some i E {2,3,..., k}, wi th ui = vi, for all / G

{ 2 , 3 , . . . , A;} \ {i} (an i-edge).

In consequence, Sn.k has j:^^Zky nodes and ^ x edges. Note that S„,n- i

is isomorphic to the n-star S n , and that S„, i is a clique on n nodes [39 .

2.2. Definit ions and properties of some interconnection networks 18

21 31

K 4321

321 213>

231 312i 1342

Figure 2.3: Example of star graph: (a) 3-star, (b) 4-star and (c) (5,2)-star

Fig. 2.3(c) shows a (5,2)-star graph.

Since their introduction in [39], (n, fc)-star graphs have been well-studied and

their basic topological and algorithmic properties are well-understood. For example:

The diameter dia{Sn,k) of Sn,k is given by

dia{Sn,k) =
2k-I i f 1 < A; < [f J ,

k + [^ \ if [f J + 1 < A; < n - 1

in [39]. The (n, A;)-star graphs form a hierarchical family of graphs, each of which is

node-symmetric [39]; they can be recursively decomposed in a number of ways [39];

they have a simple shortest-path routing algorithm [39]; the node-connectivity of

Sn,k is n — 1 [38]; and their fault-diameters are at most their fault-free-diameters

plus 3 [38]. Let Sn~i,k-i{i) denote a subgraph of Sn,k induced by all the nodes

w i t h the same last symbol i, for some 1 < z < n . Sn,k can be decomposed into n

subgraphs S'„_i,fc_i(z), 1 < i < n, and each subgraph Sn-i,k--i{i) is isomorphic to

'S'n-l.fc-l [39 .

2.2.6 n-dimensional augmented cube

Several variations of hypercubes have been proposed and investigated to improve

the efficiency of hypercube networks. Like the twisted cube [30], folded cube [51] or

crossed cube [29], the augmented cube is one of the variations of hypercubes, which

is proposed in [41] by Choudum and Sunithda.

2.2. Definit ions and properties of some interconnection networks 19

1 00 10 000

0 01

(a) {b)

11 001

Figure 2.4: Three augmented cubes AQi,AQ2 and / IQ3

Definit ion 2.2.8 Let n > 1 be an integer. The graph of the n-dimensional aug­

mented cube, denoted by AQn has 2" vertices indexed by { 0 , 1 } " . AQ^ is the graph

K2 w i th vertex set { 0 , 1 } . For n > 2, AQn can be recursively constructed by two

copies of AQn-i, denoted by AQn-iiO) and AQn-iil) and by adding 2" edges be­

tween AQn-\{0) and AQn-i{l) as follows:

Let the first bi t of all nodes in AQn-iiO) (resp. in A Q n - i i l }) be 0 (resp. 1).

There is a link between node u = (O u „ _ i U „ _ 2 . . - Ui) and v = {lVn-iVn-2 • • • Vi) i f

and only i f either

(i) Ui = Vi for 2 < z < n; in this case, {u,v) is called a hypercube edge and we set

V = u^, or

(ii) Ui = 1 — Vi for 2 < i < n; in this case,(u,v) is called a complement edge and

we set V — u^.

Examples of augmented cubes AQi, AQ2, and AQ^ are shown in Fig. 2.4(a), (b)

and (c) respectively.

The augmented cube of dimension n is a Cayley graph, (2 n - l)-regular, (2n — 1)-

connected, and has diameter [^|] [41]. I t admits optimal routing and broadcasting

algorithms that are similar to those for hypercubes and have the same time com­

plexity 0 (n) [41^.

2.2.7 Section summary

We give the following table to summarize this section, which is a comprehensive

version of Subsection 2.2.1 to 2.2.6.

jo

D

t3

Table 2.2: Key properties of some important interconnection networks.

Network N a m e Diameter Degree Nodes Edges Important Propert ies

Mesh (M (m , n)) m + n 2, 3 or 4 m X n 27nn — m — n almost Hamilton-Connected

Torus (T (m , n)) m a x { L f J , L f J } 4 m X n 2mn

Hypercube (Q n) 71 n 2" n X 2 " - ' Bipartite; Dis{u,v) = DH{U,V)

fc-ary n-cube (Q^) n if A; = 2

2n \ik>2

A:" nA;"-' i f A; = 2

nA;'̂ i f A; > 3

Q2 is bipartite

Dis{u,v) = DL{U,V)

Augmented Cube {AQn) 2n - 1 2" (2n - 1)2"- ' {2n — l)-connected

n-star graph {Sn) 3(n-l
2 n - 1 n! node- and edge-symmetric

(77, — l)-connected

{n, A;)-star graph 2A; - 1 if 1 < /c < [f J n - 1 n!
(j i -fc)!

71—1 n!
2 (n-fc)!) S„,i is a clique; S'„,„_i = S'n

k + [^ J otherwise Sn,k is {n — l)-connected

o
13
on
S5
P

a

| |
(Tt-
(C
o

o
3

CD
I-!
O
O
P

(T)

n
rt-
o'

o

I
•-s
?r

to
o

2.3. Re la t ed results 21

2.3 Related results

In this section, we w i l l mainly review the following two related topics in interconnec­

tion networks: structures embedding in interconnection networks, and node-disjoint

paths problems in interconnection networks.

2.3.1 Structures embedding in interconnection networks

In some popular interconnection networks, we wi l l consider the following properties:

hamiltonicity, hamiltonian connectivity, ring/cycle embedding, (bi)panconnectivity,

(bi)pancyclicity, and so on.

If there are faults in interconnection networks, we wi l l only consider static faults.

Definit ion 2.3.1 Conditional fault assumption (CFA): Each node is adjacent to at

least two healthy (fault-free) nodes via healthy links.

Let Fe denote the set of faulty edges (links) in the graph G, and let Fy denote

the set of faulty nodes in the graph. Let /e and f y denote the number of faulty edges

and nodes respectively, i.e., fe = \Fe\, and f y = \Fy .

H y p e r c u b e Qn

As the hypercube is a bipartite graph, there exist no odd cycles.

• I f there are no faults, Qn is bipancyclic [139 .

• I f there are faulty edges in Q n , the following results has been obtained.

The Qn is hamiltonian, if < n - 2 [105], or under CFA and /e < 2n - 5 [28 .

The Qn is bipancyclic [154] under CFA and < 2n - 5.

The Qn is proved to be edge-bipancyclic if

- n > 3, and /e < n - 2 by L i et al. [110], or

- under CFA, n > 4 and /e < n - 1 by X u et al. [167], or

- under CFA, n > 4 and /e < 2n - 5 by Shih et al. [146 .

Note that the minimum cycle length in [167] and [146] is 6.

2.3. Re la t ed results 22

• I f there are node faults or both node and edge faults, the following results have
been obtained.

I t is proved that a longest cycle of length at least 2^ -2}^ can be embedded

into Qn if

- f v < n - 2 h y Yang et al. [172], or

- /e < " - 4, < n - 1 and /e + < - 1 by Tseng [157], or

~ /) ; > 0, /e < n — 1 and A. + /e < n — 1 by Senguptal et al. [144], or

- < 2n - 4 by Fu et al. [58 .

Tsai [155] proved that every fault-free edge of Q n , for n >Z, lies on a fault-

free cycle of every even length f rom 4 to 2" - 2fy inclusive i f /e -h fv < n — 2.

Furthermore, he proved that Q „ , for n > 5, contains a fault-free cycle of every

even length f rom 4 to 2" - 2 i n c l u s i v e if /e < n - 2 and /e + A < 2n - 4.

fc-ary n-cube

The k-a.ry n-cube is proved to be hamiltonian under different conditions:

• A; > 3 ,n > 2 and no faults [19,25]; or

• under CPA and /e < 4n - 5 [14]; or

• > 3 be an odd integer, and fe + /e < 2n — 2 [171 .

Let /c > 3 be an odd integer, if -H /e < 2n - 3, then the wounded fc-ary n-cube

is hamiltonian-connected [171 .

n -star graphs S„

I f there are no faults in n-star graphs 5 „ , then Sn is hamiltonian, bipancyclic

and a variety of two- and multi-dimensional grids can be embedded into 5„ [94 .

Sn is hamiltonian i f < n - 3 [158] or under CFA and /e < 2n - 7, n > 4 [61 .

Sn is proved to be bipancyclic [111] and edge-bipancyclic [169] if — 3 and

n > 3, where the minimum cycle length is 6. The n-star graph is (n - 3)-edge

fault tolerant hamiltonian laceable, (n — 3)-edge fault tolerant strongly hamiltonian

laceable, and (n — 4)-edge fault tolerant hyper hamiltonian laceable [113]. Tseng et

2.3. Re la t ed results 23

al. [158] found a cycle of length at least n! - 4/.(,,, i f A, < n - 3. Hsieh et al. [81
found a path of length n\ - 2fy - 2 (n! - 2 / ^ - 1) between two arbitrary vertices
of even (odd) distance, if fv < n - 5. Since Sn is bipartite wi th two partite sets of
equal size, the path is longest for the worst-case scenario.

(n, A:)-star graphs Sn,k

Chang and K i m [32] found a cycle of length n ! / (n — k)\ — in an (n, A;)-star

graph when < n — 3 and n — k = 2.

Sn,k is hamiltonian i f /e + A < —3, hamiltonian-connected if fe + fv < n — 4: [86 .

Sn^k is super spanning connected if n > 3 and {n — k) > 2 [87 .

Chen et al. [37] showed that Sn,k is vertex-pancyclic when I < k < n — 4 and

n > 6. Additionally, for n - 3 < /c < n - 2, Sn,k is also vertex-pancyclic wi th the

minimum cycle length is 6. Moreover, each constructed cycle in Sn,k can be made

to contain a desired 1-edge.

2.3.2 Disjoint paths in interconnection networks

I t is practically important to construct node-disjoint paths (disjoint paths for short)

in networks, because they can be used to increase the transmission rate and enhance

the transmission reliability. Besides, disjoint paths have applications in mult i -path

routing (such as Rabin's information dispersal algorithm [136]), fault tolerance (see

47,60]), and communication protocols (see [85]).

We are only interested in disjoint paths problem in non-faulty interconnection

networks. For more information about disjoint paths in faulty interconnection net­

works, please refer to [67,70,73,119 .

One-to-one disjoint paths

Sets of one-to-one disjoint paths are also named containers.

1988 [139]: In the n-cube, let u and v be any two nodes and assume that

DH{U,V) < n. Then there are DH{U,V) disjoint paths of length DH{U,V). and

n disjoint paths of length at most DM{U, V) + 2 between the nodes u and

1997 [45]: Day and Al-Ayyoub constructed a set of n disjoint paths between

any two nodes of a /c-ary n-cube Q^. Each path is of length zero, two, or four

2.3. R e l a t e d results 24

plus the minimum length except for one path in a special case (when the Hamming
distance between the two nodes is one) where the increase over the minimum length
may attain eight. These results improve those obtained in [25] where the length of
some of the paths has a variable increase (which can be arbitrari ly large) over the
minimum length.

2000 [150]: Su et al. showed that a set of d node disjoint paths is constructed

between two arbitrary nodes of an incomplete WK-recursive network IK{d,t). The

length is not greater than 2 times the diameter.

2002 [62]: Fu et al. constructed n-l-1 disjoint paths between any two given nodes

in n-dimensional Hierarchical Cubic Networks (HCS(n)) , whose lengths are at most

n + + 3. This improves on the containers of [40] whose lengths are 2n -t- 6 at

most.

2005 [134]: Qiu and A k l gave an algorithm that finds n — 1 disjoint paths between

any two nodes s and t in an n-star in optimal 0{ii^) time such that no path has

length more than dis{s,t) + A.

2007 [166]: Wu et al. found m + l disjoint paths between any two distinct nodes

of an n-dimensional hierarchical hypercube network n-HHC network [n = 2"^ + m),

whose lengths are not greater than max{ciza(n-HHC)-|-2m-hl, c/za(n-HHC)-Hm-l-4},

where dia{n-EKC) = T^+\

2008 [116]: L in et al. described an algorithm for constructing a container of

wid th n - 1 between a pair of vertices in an (n, fc)-star graph w i t h 2 < < n - 2.

The maximal path length is dia{Sn.k) 2 for 2 < < [f J, or dia{Sn.k) plus a value

between 1 and 2 for + l <k <n-2. The same problem for (n , n - l)-star and

(n, l)-star graphs has been investigated in [115], where the lengths of the paths are

at most dis{Sn,n-\) + 2 and dis{Sn,i) + 1 respectively.

One-to-many disjoint paths

1997 [71]: Gu and Peng gave an 0{n'^) t ime algorithm, which finds n - 1 disjoint

paths of length at most dia{Sn) + 2. (A lower bound on the length of the paths for

the above problem in is dia{Sn) + !•)

1998 [106]: La t i f i et al. computed the n vertex disjoint paths of length at most

n -I-1 in a hypercube Qn of dimension n, given a source node and an arbitrary set of

2.3. R e l a t e d results 25

at most n destination nodes; their algorithm is computationally simpler than that
of [136 .

Many- to -many disjoint paths

1996 [69]: Gu and Peng presented an algorithm for finding A; disjoint paths where

each path connects a pair of nodes f rom two given node sets in an 77-cube Q„ , where

1 < A: < 77. The path length is at most TI-I- log A: -I- 2, and the time complexity is

0(A;77log* k), where log* 77 = 0, if n < 1, and log* 77 = 1 + log* (log n) , i f 77 > 1.

1998 [72]: Gu and Peng gave an many-to-many algorithm, which finds the A;

disjoint paths of length at most dia[Sn) -)- 5 in 0{v?) opt imal time. This improves

the previous results of 4(77 - 2) (path length) and 0(77" log77) (t ime), respectively

in [46 .

2000 [68]: Given A; = ("f] pairs of distinct nodes { s x , U) , . . . , {SkM) i n the n-cube

Gu and Peng presented an algorithm finding the A; disjoint paths wi th length

at most 77 -I- [log 77] -I- 1 in 0(77̂ log ' 77) time.

Up to now, we have given some results related to paths and cycles in intercon­

nection networks. There are more related problems in this area, for example, the

pairwise shortest path routing problem [66]. However, we are only interested in the

above stated problems. In the next chapter, we w i l l present an algorithm to show

that there exists a long path in faulty A;-ary 77-cubes.

Chapter 3

Embedding long paths in k-ary

n-cubes with faulty nodes and

links

3.1 Introduction

In this chapter we study the existence of long paths and cycles in the presence of

l imited numbers of node and link faults in fc-ary n-cubes. We are motivated by

the work in four recent publications. In [98], K i m and Park study the existence of

hamiltonian paths in two-dimensional tor i . They provide conditions when a two-

dimensional torus wi th at most 2 faul ty nodes is hamiltonian, hamiltonian-connected

and bi-hamiltonian-connected. In [60], Pu proves that an n-dimensional hypercube

w i t h f y < n - 2 is such that there is a path of length at least 2" - 2/^ - e between any

two distinct, healthy nodes, where e = 1 if the two nodes have different parities and

e = 2 otherwise. In [77], Hsieh and Chang show that under CFA, Fu's result holds

even when fv <2n — 5. I n [171], Yang, Tan and Hsu prove that in a /c-ary n-cube

where k is odd, if the number of faulty nodes and links is at most 2n — 3 then there

is a hamiltonian cycle, and if the number of faulty nodes and links is at most 2n — 2

then there is a hamiltonian path joining any two, distinct healthy nodes. Note that

Yang, Tan and Hsu prove no results when k is even beyond remarking that when A;

is even, the /c-ary n-cube is bipartite and so i f there is 1 faul ty node then there can

26

3.2. B a s i c definitions 27

be no hamiltonian cycle and there exists a pair of distinct, healthy nodes not joined
by a hamiltonian path.

Our main result is as follows. Let fc > 4 be even and let n > 2. I n a faulty fc-ary

n-cube in which the number of node faults f y and the number of link faults fe

are such that /.„ - I - /e < 2n — 2, given any two healthy nodes s and e of Q^, there is

a path f rom s to e of length at least k"- - 2fy - I (resp. /c" - 2/^, - 2) i f the nodes

s and e have different (resp. the same) parities. Our result: resolves the situation

in [171] when k is even; answers questions posed by Yang, Tan and Hsu, and by Fu;

and extends known results, obtained by K i m and Park, for the case when n = 2.

The rest of this chapter is devoted to a proof by induction of our main theorem.

Section 3.2 contains the basic definitions. In Section 3.3, we deal w i t h the base case

of the induction, and in Section 3.4, we deal wi th the inductive step. We present

our conclusions in Section 3.5.

3.2 Basic definitions

Many structural properties of A;-ary n-cubes are known, but of particular relevance

for us is that a /c-ary n-cube is node-symmetric. Throughout, we assume that

addition on tuple elements is modulo k.

We can part i t ion Q'^ over dimension d. This results in k copies Qd,o,Qd,i, • •

Qd,k-\ of Qn-i-, w i th corresponding nodes in (5̂ ,0, Qd,i, • • •, Qd,k-\ joined in a cycle

of length k (in dimension d).

The parity of a node v - (?/'„• ' ^ n - i , • • • , ^ i) of (^n is defined to be ^ " ^ j u, modulo 2.

We speak of a node as being odd or even according to whether its parity is odd or

even. A pair of nodes is odd (resp. even) ii v and v' have different (resp. the

same) parities.

We write paths in as sequences of incident links, and when k is even, paths

necessarily consist of links joining, alternatively, odd and even nodes.

A fault in refers to a faulty node or a faulty link. I f a node is faulty then we

imagine that the node and its incident links do not exist; if a link is faulty then we

imagine that this link does not exist. When we refer to a path in a faulty Q^, we

3.3. T h e base case 28

mean that all nodes and links on the path should be non-faulty, i.e., healthy (unless
otherwise stated).

We repeatedly apply the following construction throughout. Suppose that we

have partitioned a A;-ary 77-cube Q,̂ over some dimension d so as to obtain A;-ary

(77 - l)-cubes Qd,o, Qd,i, • • •, Qd,k-i and that we have a path p{u, v) in of length

/. Suppose also that {xi,yi) is a link of p{u,v), w i th Xj,7/i G Qd,i, and that we

have another path p ' (x i+ i , j / j + i) of length V which shares no nodes in common wi th

p{u,v), where x^+i and T/j+i are the neighbours of and y^, respectively, in Qd,i+i-

We refer to the path obtained by removing the link {xi, yi) f r om p(u, v) and replacing

i t w i th the path (x i , X j + i) , p ' (x i+ i , 7/j+i), (7/1+1,7/1), so as to obtain a new path from

u to V of length I + I' + I, as the join of p{u,v) to p'{xi+i,yi^i) over (x,,7/,). We

can equally well j o in two paths over a sub-path rather than a link; w i th the above

notation, we would remove a sub-path p[xi,yi) f rom p[u,v) and replace i t w i th the

path {xi,Xi+i), p'{Xi+\,yi^i), {yi+i,yi)- We have analogous constructions should we

wish to jo in : a cycle and a path, to obtain a path; or two cycles, to obtain a cycle

(when joining a cycle, we lose one edge f rom the cycle).

3.3 The base case

I n this section, we deal w i t h the base case of our forthcoming inductive proof of the

main result, namely when we have a A;-ary 2-cube w i t h no more than 2 faults.

We consider as a A; x A; grid w i t h wrap-around and we think of a node V j j as

indexed by its row i and column j. Throughout, we assume that addition on row

or column indices is modulo A;.

We define the following paths in the row-torus rt{0,1) (of some (5 2) - The names

of these paths are derived from the shape of their pictorial representations (see the

figures coming up). Also, i f 7 = 0 then 7 = 1, and if z = 1 then i = 0.

C^{Vi,j,Vi j) = {Vij,Vij + i), (7;ij + i ,7; , j+2) , . . • , (f i , m - l , ^ i , m) , (U i , m , ^ , m) ' (^ , m >

^ , m - l) > K m - l ' ' ^ , m - 2) . • • • > K j + l . ^ ^ j)

where 0 < z < 1, 0 < j < A; - 1, 0 < 777 < A; - 1 and 777 7̂ j .

3.3. T h e base case 29

^ , m + l) > Km+1> ,̂m+2)> • • • >
where 0 < ?; < 1,0 < j < - 1,0 < m < A.- - 1 and m 7̂ j .

KJ+2. " f^j+a)- " y i j + a) , (x;jj+3, 'yij+4), • • • , , W i , /)

where 0 < z < l , 0 < j 7 ^ j ' < / c — 1 and \j — j'\ is even.

Kj-2-^^j-3)> (%-3'^M-3), Kj -3 ,^^ i j -4) , • • • , {Vij> + i,Vij>)

where 0 < i < 1,0 < j ' 7̂ j < /c - 1 and] j - /] is even.

i;,j+3), {v^,J+3, (^,j+3' • • • , (^ j ' / ^ z j ')

where 0 < z < 1,1 < j 7̂ / < A: - 1 and \j - j'\ is even.

Z~{v^^j,Vi^j,) = K J , (V j j - i , Vjj_2), (Ujj_2, 'ytj-2), (̂ ^z,j-2,

{Vi,i-'i,%j-z), K;-3''f^,i-4)> K i - 4 > ^ i j - 4) , • • • > iVlj'.'^ij')

where 0 < z < 1,1 < j ' 7̂ j < A; - 1 and] j - j'\ is even.

In addition, we define C^{vij, t ^ j) = C~{vij, t ^ ^) = (f i . j , t^ , ,) . We also use

the above notation to describe paths in other row-tori of the form rt{l, I + I) in Q j -

Furthermore, if we write, for example, N'^{vi,j,Vij+]), Z~{vij,Vij) or some other

illegal node-pairing then we regard the path so denoted as being the empty path.

We begin wi th two lemmas, the first concerning paths in a row-torus ri(0,1)

in which there is a faulty node, and the second concerning paths in a row-torus

rt{0,p — 1) in which there are no faults. These two lemmas are used repeatedly

in the proofs of the subsequent propositions, each of which deals wi th a specific

configuration of faults relating to the base case.

3.3. T h e base case 30

L e m m a 3.3.1 Let k > 4 be even and consider the row-torus r i (0 , 1) in Q2 where

1 node of the row-torus is faulty. If the pair of distinct, healthy nodes {s , e} of the

row-torus is odd {resp. even) then there is a path p(s,e) in the row-torus joining s

and e of length at least 2k — 3 {resp. 2k — 4).

Proof: By the symmetric properties of the row-torus rt{0,1), w.l.o.g. we may

assume that the fault is the node VO,Q.

Suppose that s and e are both odd. W.l.o.g. there are four cases. (Throughout,

we proceed by a case-by-case analysis, eliminating some cases by applying automor­

phisms of rt{0,1) such as "reflections in the vertical bisecting plane" or "toroidal

rotations".)

Case (a) s and e both lie on row 0 wi th s = VQ^^, e = VQJ and i < j. Consider the

path

Cy_i (wo , i ,wi , i) , ^" (v i , i ,w i , i) , (̂ 1̂,1,̂ 1̂,0), ivi,o,Vi,k--[),

N-{vi^k-i,Vij), {vi^j,vo,j).

This path has length 2k — 2 and is as depicted in 3.1(a).

Case {b) s and e lie on different rows wi th s = wo,,; e = and i < -j. Consider the

path

Cf_^{VQ^^,Vl^^), Z-{v^^i,Vi^l), (̂ 1,1, t^l ,o), (̂ 1̂,0, i) , i V " (^;i ,fc-1,

This path has length 2k - 2 and is as depicted in Fig. 3.1(6).

Case (c) s and e lie on different rows wi th s — uo.t and e = Ui,o- Consider the path

C^_i(^o,i,^^i,;)> (^^i.i-'^i.o)-

This path has length 2k - 2 and is as depicted in Fig. 3.1(c).

Case {d) s and e both lie on row 1 wi th s = v^, e = v^j and i < j. Consider the

path

WOj + 1) , iVoj + -i, Voj), C ^ i {voj,Vlj).

3.3. T h e base case 31

n Q f Q f
{a)

O 0 0 0 — o - ^ 0

(b)

0 — a

Q Q (B -O 0 —

0 0 Q

Figure 3.1: Cases {a)-{d) when k = 8.

This path has length 2k - 2 and is as depicted in Fig. 3.1(d).

Suppose now that s and e are both even. W.l.o.g. there are three cases.

Case (e) 5 and e both he on row 0 w i t h s = VQ-I, e = VQJ and i < j. Consider the

path

C^-l{VO,i,Vhi),Z {Vi,i,Vi,2), (Vl,2,'i^l,l), (t'l,l.^^l,o),(^^l,0,t^l,fc-l),

iV (yi ./c-ia'lj+i), (u i , j+i , woj+i), {VQ,J+I,VOJ).

This path has length 2k - 4 and is similar to the path depicted in Fig. 3.1(a).

Case (/) s and e lie on different rows w i t h s = V04, e = Vi^j and i < j. Consider the

path

Ct , i (tJo, i , t ' l , t) ,2 ' ('Ul,i,Vl,2), {vi,2,Vl,l), (f l , l ,U l ,o) , [Vlfi,

Vi^k-l),N (Wi.fc-l,^!,;).

This path has length 2A; - 4 and is similar to the path depicted in Fig. 3.1(6).

Case {g) s and e both lie on row 1 w i t h s = e = vij and i < j. Consider the

path

A^'"(t'l,,, yi,l), (yi,l, yi,o), (i'l,0,'t''l,A-l),iV~(^l,/t-l,'!-'l,j+2), (t'l,i + 2,t^0,j+2),

{VOj+2, -̂ 0,7 +1), (f 0,j +1, ^0 J), 1 (f o j , Vi J).

This path has length 2k - i and is similar to the path depicted in Fig. 3.1(d).

3.3. T h e base case 32

>—<
S—d

p—i i—c
s

!)—^

p—c
)—I

)—i

)—(^ — i

(h)

(0

(/•)
0 — 6

Figure 3.2: Cases (/ i) - (j) when A; = 8.

Suppose now that one of s and e is odd and one is even, and, further, that s and

e lie on the same row. W.l.o.g. there are three cases.

Case (h) s and e both lie on row 0 wi th s = Uo,, odd, e = VQJ even and i < j.

Consider the path

C / _ i (7 ; o , i , t ' i , i) , Z - (L ' i , , - , t ' i , i) , (t ' i , i , W i , o) , (f i , o , t ^ i , f c - i) ,

i V - (7 ; i , f c - i , f i j + i) , {vi,j+uVo,j+i), {vo,j+uVo,j)-

This path has length 2A; - 3 and is as depicted in 3.2(h).

Case (7) s and e both lie on row 1 wi th 5 = t ' l , , odd, e = vij even and 0 ^ 7 < j .

Consider the path

C^-l{Vl,i,VQ.i),Z~{vo,i,Vo,2), {vo,2>Vo,l), (I'o.l, ^^l , l) , (^^l,l,

f i , o) , {vi,o,vi^k-i), N~{vi^k-i,vi,j).

This path has length 2A; - 3 and is as depicted in Fig. 3.2(7).

Case { j) s and e both lie on row 1 w i t h s — vi^ and e = vij even. Consider the

path

V0,j + l) , (Vcj + l , WOj), C { { v o j , Vi^j).

This path has length 2A; - 3 and is as depicted in Fig. 3 .2(j) .

Suppose now that one of s and e is odd and one is even, and, further, that s and

e lie on different rows. W.l.o.g. there are five cases.

3.3. T h e base case 33

Q—Q • ^—Q—r>_:^

(0

(n)

(o)

C)—0—C>

0 0 0 0 0 # 0 Q

-o—0 » c^^ :^—o—0

e

) 1 1—c
s

>—c >—< p—c
\—I

?—V

t — ^

!)—c
)—c
>—c) —

j) — c ?—^
) — <

p — ^
.?

e

Figure 3.3: Cases (A;)-(o) when k = 8.

Case (A;) s lies on row 0 and e lies on row 1 w i t h s = f o , i odd, e = Vij even and

i < j . Consider the path

C /_ i (uo , i , W l , i) , Z ~ (U i - i , f i . i) , (U l , l , t-l^o), (^'l.O, W l , f c - l) , A''~(^^l ,A:-l, ^ ^ I j) -

This path has length 2A; - 3 and is as depicted in Fig.3.3(A;).

Case (l) s and e he on different rows wi th s — vo^i odd, e = vi^t even and i ^ 1.

Consider the path

-̂ "(̂ 0̂,1,1̂ 0,3), (̂ 0̂,3, 0̂,2), {V0,2,Vi^2), (t^l,2,^^l,l). (''̂ 1,1,̂ 1̂,0),

(̂ 1,0, ^^l,fc-l), Â "(̂ 1̂,A:-1, ^ ^ I j) -

This path has length 2k - 3 and is as depicted in Fig. 3.3(/).

Case (m) s and e lie on different rows wi th s = Wo,i even, e = vi^i odd and i < j.

Consider the path

Cj'_i{vo4,vi,i),Z~{vi^i,vi^2), (̂ 1̂,2,̂ 1,1), {Vl,l,Vi^o), (^;i,o,l ' l ,fc-l),

iV-(ui , fc_i , - y i j + i) , (u i j + i , v o j + i) , {VQJ+I, UOJ), (UOJ, vij).

This path has length 2fc — 3 and is as depicted in Fig. 3.3(m).

3.3. T h e base case 34

Case (n) s and e lie on different rows wi th s = vo^i even and e = fi ,o- Consider the

path

This path has length 2A; - 3 and is as depicted in Fig. 3.3(n).

Case (o) 5 and e lie on different rows wi th s = wo,i even, e = vi,i odd. Consider the

path

Z~{Vo^i,VQ^2), {V0,2,V0,\), (̂ 0̂,1,-̂ 1,1), {Vl,uVi^o), (̂ 1̂,0,

Vi,k-i),N~{vi^k-i,vi,j+\), iv^,j+i,vij).

This path has length 2A; - 3 and is as depicted in Fig. 3.3(o).

The result follows. •

The following lemma proves to be useful throughout.

L e m m a 3.3.2 Letk>A he even and consider the row-torus rt{0,p-l) in Q2 where

2 < p < k. If the pair of distinct nodes { 5 , e} of the row-torus is odd {resp. even)

then there is a path p{s, e) in the row-torus joining s and e of length pk - 1 {resp.

pk-2).

Proof: We proceed by induction on p. Suppose that p = 2 and consider the

row-torus rt(0,1). W.l.o.g. we may assume that e = VQ^Q-

Suppose that s = uo,i is odd. The path

Z~{vl^^,Vl^•^), (ui,1,-̂ 1,0), (^^i,o,e)

has length 2A; — 1.

Suppose that s = vo^i is even. The path

has length 2A; - 2.

Suppose that s = v-^^i is odd. The path

C^-i{s,vo,i),Z~{vo,i,e)

has length 2A; — 1.

3.3. T h e base case 35

Suppose that s = t;],, is even. The path

C^_i(s,i;o,i), Z~{vo^^,Vo,•^), {vo,i,e)

has length 2k - 2. So the result holds for p = 2.

Suppose, as our induction hypothesis, that the result holds for all p such that

1 < p < q, where 1 < g < A; — 1. Consider rt{0, q).

Case (a) I t is not the case that s lies on row 0 and e lies on row q, and i t is not the

case that s lies on row q and e lies on row 0.

W.l.o.g. assume that s and e he in rt{0,q — 1). By the induction hypothesis, there

is a path p{s, e) in r i (0 , g - 1) of length qk - I (resp. qk - 2) i f { 5 , e} is odd (resp.

even). For a node r in row g - 1, i f i t is not linked w i t h its neighbor on the same

row, then either r = s, or r = e, or i t is not on path p{s,e). As there is at most

one node not in path p{s, e), there are at least J ̂ [edges on row q - 1 which are

also on the path p{s,e). Hence, the path p{s,e) must contain a link {vq--i^i,Vq-i^i+i)

ly ing on row q — I.

Consider the path

p{s,Vq^l^i), {Vg^l^i,Vq^^), {Vg^„Vg^^-l), (' y 9 , z - l , % z - 2) , • • • ,

{Vq,^+2,Vq,i+l),{'"q,i+UVg-l,^+l),p{Vq-l^^+l,e).

This path is as required (wi th reference to our construction as detailed at the begin­

ning of this section, an alternative description of this path would be as that obtained

by joining p{s, e) to the cycle

(Vqfi^Vq^l), {Vq^l,Vqa), . . . , {Vq^k-2,Vq^k-l), (̂ J<,,fc-l, ^q,o)

over the links {vq^l^^,Vq^l,^+l) and (u,,,, U g ^ j + i)) .

Case (6) The node s lies on row 0 and the node e lies on row q.

I f e = Vq^i then define e' = Vq-i-^-i. Note that e is odd if, and only if, e' is odd.

By the induction hypothesis, there is a path p(s,e') in rt{0,q — 1) of length qk — 1

(resp. qk — 2) i f { s , e } is odd (resp. even). The path

p(s, e'), (e', Vq^,-i), {Vq^i-uVq,i-2), {Vq,i-2, Vq,i--s), • • • , (̂ 9̂,i+l, c)

3.3. The base case 36

is as required.

The result follows by induction. •

We now deal with first scenario in the base case.

Proposition 3.3.1 Consider the k-ary 2-cube Q l where k > 6 ts even and where

2 of the nodes are faulty. Let s and e be any two distinct, non-faulty nodes. There

is a path of length at least /ĉ — 5 {resp. k~ — 6) from s to e if {s,e} is odd [resp.

even).

Proof: VV.l.o.g. suppose that the two faulty nodes are /o = î o.o and / i = Vpy

with p 7̂ 0. We begin by partitioning Qo into 3 or 4 row-tori. I f p G {1,2,/c —2, /c- l}

then:

• i f p = l o r p = 2 then we partition Q2 into A - rt[k - 1, 0), B = rt{l, 2) and

X = rt{3,k-2);

• i f p = k-2 orp = k-1 then we partition into A = rt{0,1), X = rt{2,k-3)

and B = rt{k - 2, A; - 1).

If p ^ { 1 , 2 , / c - 2 , fc- 1} then:

• if p 3 is odd then we partition Q2 into A - rt(0,1), X = r i (2,p - 2),

B = rt{p- l ,p) and Y = rt{p+\,k - 1);

• if p = 3 then we partition Q\ into A = rt{k - 1,0), X = r t (l , 2), B = rt(3,4)

and r = ri(5,A,--2);

• if p is even then we partition Q\ into A = rt{0,1), X = rt{2,p - I), B =

rt{p,p+ 1) and Y = rt{p + 2,k- 1).

The outcome is that we have one of the two partitioned structures as in Fig.3.4,

where consecutive row-tori are joined by column links. In particular, w.l.o.g. we

may assume that: when the partition involves 3 row-tori, we have the situation as

in Fig. 3.4(a), with /o = e A = rt{OA), X = rt{2,k - 3) and / , G S =

rt{k — 2, k — \)\ and when the partition involves 4 row-tori, we have the situation as

in Fig, 3.4(6), with /o = Vqq G A = rt(0,1), X = rt{2, q - 1), fi e B = rt{q, q + I)

and Y — rt{q + 2,k - 1), for some even q where 4 < g < A; - 4.

3.3, The base case 37

Figure 3.4: Partitioned 's-

Throughout the proof, e = 1 i f {s, e} is odd, and e = 2 i f {s , e} is even.

Case (a) Q2 is parti t ioned into 3 row-tori .

Sub-case {i) The nodes s and e both he in A.

By Lemma 3.3.1, there exists a path PA{S, e) in A of length at least 2k — 2 — e. A

simple counting argument yields that there is at least one l ink of pA{s,e) lying on

row 1; w.l.o.g. let (^1,2,^1,2+1) be such a l ink (the case when the l ink is (ui,j+i,Ui,i)

is almost identical). By Lemma 3.3.2, there exists a path Px{v2,i,'^2,1+1) in X of

length k{k — 4) — 1. Let p[s,e) be obtained by joining p/i(s,e) to Px(^^2,n'^2,2+1)

over (f i , i , f i , i + i) . Again, a simple counting argument yields that there are at least

two non-incident hnks of p{s,e) lying on row A; — 3; w.l.o.g. let (t'A:-3,j, Vfc-3,j+i)

be such a l ink where Vk-2,j fi ^A;-2,;+I- By Lemma 3.3.1, there exists a path

PBivk-2,j,'Vk-2,j+i) in B of length at least 2k — 3. The path obtained by joining

p{s,e) to pB{vk-2j,Vk-2,j+i) over {vk-3j,Vk-3,j+i) has length at least k^ - A - e.

Sub-case (ii) The node 5 is in / I and the node e is in X .

Choose f i , i such that f i , , is odd if, and only if, s is even, and V2,i 7̂ e (such a node

vi^i exists due to there are at least | > 2 nodes on row 1 that have different parity

f rom node e). By Lemma 3.3.1, there exists a path PA{S, vi,,) in A of length at least

2k — 3. By Lemma 3.3.2, there exists a path px{v2,i, e) in X of length k{k — 4) - e.

3.3. The base case 38

Let p(s, e) be the path

A simple counting argument yields that p(s,e) contains at least two non-incident

links on row k-3; w.l.o.g. let (ffc_3j, ti/j-aj+i) be a link oi p{s,e) such that f fc -2j 7̂

f i 7̂ Vk-2,j+i- By Lemma 3.3.1, there exists a path pB{vk-2,j,Vk-2j+\) in B of

length at least 2k - 3. The path obtained by joining p{s,e) to pB{vk-2,j,Vk-2,j+i)

over {vk-3,j,vic-3j+]) has length at least A:̂ — 4 — e.

Sub-case (tii) The node s is in 4̂ and the node e is in B.

Choose Vi^i such that Vi^i is odd if, and only if, s is even, and V14 ^ s. By

Lemma 3.3.1, there exists a path p_^{s,Vi^i) in A of length at least 2k - 3. Choose

Vk-2,j such that Vk_2,j is odd if, and only if, e is even, and / i 7̂ t'fc-2j- By

Lemma 3.3.1, there exists a path pB{vk-2,j,e) in B of length at least 2k - 3. By

Lemma 3.3.2, there exists a path px{v2,i,Vk--3,j) in X of length k{k - 4) - e. The

path

P.4(5, Wl,,), , i;2,i), Px {v2,i,Vk-z,j), ('Ufc-3,j, •Ufc-2,j), PB(^fc-2J , e)

has length at least /ĉ - 4 - e.

Sub-case (iv) The nodes s and e both lie in X.

By Lemma 3.3.2, there exists a path PA'(S, e) in X of length k{k - 4) - e. A simple

counting argument yields that px{s, e) always contains at least one link on row 2 and

also that there are two non-incident links on row k - 3, unless we have the special

situation where A; 6, s and e have a common neighbour on row A; — 3 with this

neighbour not lying on px{s, e), and neither s nor e is adjacent on px{s, e) to a node

on row A; — 3. Suppose that there are two non-incident links on row A- — 3. W.l.o.g.

let {vk-3j,Vk-3,j+i) and {v2,i,V2,^+l) be links of px(5 ,e) where Vk-2,j 7̂ / i 7̂ ^^fc-2,i+i-

By Lemma 3.3.1, there exists a path pB{vk-2,j,Vk-2,j+\) (resp. P / \ (u i , i , i n B

(resp. A) of length at least 2A; - 3. W.l.o.g. suppose that the nodes Vk-3,j, Vk-3j+\,

V24 and V2,i+\ come in that order as we move along the path px{s,e). The path

Px{s,Vk-3,j)AVk-3J,Vk-2,j),pB{Vk-2,3,Vk-2,j + ^):{'^k-2,j+U

Vk-3,j +1), PX {yk-3,j+1 > V2,i) , {V2,i ,Vi^i),pA {v^, f]) ,

3.3. The base case 39

{vi,i+l,V2,i+l),Px{V2,i+l,e)

has length at least k'^ - 4 - e.

Alternatively, suppose that we are in the special situation described above (and so

k = 6). W.l.o.g. suppose that s = ^3,0 and e = v^o; so, the path (f3,3,'L'3,4), (^3,4,'(^3,5)

is a sub-path of pxis,e). If f i 7̂ V4^4 then we can find two links {v3j,v-ij+i) and

(^2,1,^2,2+1) of px{s,e), as above, and so obtain our path as required. So, suppose

that / i = ^4,4. Let Pb{v4;3,V4,5) be the path

(̂ ^4,3, ^4,2), (^4,2, t^4,l), (^^4,1,-^4,0), (̂ ^4,0, -^4,5),

and join px(s,e) to PB(^^4,3, ^^4,5) over (^3,3,^^3,4), (^'3,4,^^3,5) to obtain the path p(s,e)

of length 16 — e. We can now join p(s, e) to the cycle induced by the nodes on row 5,

over two appropriate hnks, and to an appropriate path p.4(w],i, ^1,^+1) in A of length

at least 9, as we did above, to obtain our required path of length at least 32 - e

(that is, /ĉ — 4 — e).

The remaining sub-cases are essentially identical to those already considered.

Case (6) Q2 is partitioned into 4 row-tori.

If s and e lie in A U X U 5 then by the analysis for Case (a), there is a path p(s, e)

in AU X U B (and the connecting column links) of length at least k{q + 2) - A - e

(note that all paths constructed in Case (a) actually lie in the row-torus induced by

AuXuB). A simple counting argument yields that there is at least one Unk of p(s, e)

on row g - f l or on row 0; w.l.o.g. suppose that i t is row q+l and let (?;^+i,j,'u,+ij+i)

be such a link. By Lemma 3.3.2, there exists a path pY{vq+2j, Vg+2,j+i) in Y of length

k { k - l - q - l) - l . Joinp(s,e) to py(w,+2,j, w^+2,j+i) over (y<,+ i j , Wg+ij+i) to obtain

a path of length at least /ĉ - 4 - e. A similar argument holds should s and e lie in

B u y U A.

Necessarily, the only remaining case is when s lies in X and e lies in Y. Let Vq^

be such that s and e do not lie on column i and is odd if, and only if, e is odd.

By Lemma 3.3.2, there exists a path py(wfe-i,i, e) in Y of length k{k - l - q - l) -1.

Let Vij be such that s does not lie on column j and Vij is odd if, and only if, s is

odd. By Lemma 3.3.2, there exists a path px{s,V2,j) in X of length k{q - 2) - 1.

3.3. The base case 40

By Lemma 3.3.1, there exists a path pA{vi^j,vo^i) in A of length at least 2k - 2- e.
Let p(s, e) be the path

Px{s, V2j), (^^2,j, f 1 j) , PA{v\j,Vo^i), (z;o,i, Vfc-i.t), py(ufc-i,i, e).

Necessarily, there are at least two non-incident links of px{s,V2,j) on row q —

1; w.l.o.g. let ivg^^^rn,Vq-i^m+\) be such a link with w,,^ fi '"q,m+i- By

Lemma 3.3.1, there exists a path psivq,) in B of length 2k - 3. The path

obtained by joining p(s,e) to pB{vq,m,Vq,m+i) over (t><,_i,,„, i;<,_i,^+i) has length at

least A;̂ - 4 - e. The result follows. •

We deal with the case when A; = 4 later (as we do also for subsequent proposi­

tions).

The next proposition deals with the next scenario in the base case.

Proposition 3.3.2 Consider the k-ary 2-cube where k > 6 ts even and where 1

of the nodes is faulty. Let s and e be any two distinct, non-faulty nodes. There is a

path of length at least A;̂ — 3 (resp. k'^ — 4) from s to e if (s, e} is odd {resp. even).

Proof: The proof is a much simplified version of the proof of Proposition 3.3.1.

Essentially, we partition Qj ii^^o 2 row-tori, A = rt{Q, 1) and X = rt{2, k — 1), and

follow the constructions in Sub-cases (a.i), (a.vi) and (a.iv). The result follows. •

We now consider when there are only faulty links in Q2, but first we construct

some basic hamiltonian circuits on row-tori. Consider the row-torus rt{Q,p - 1) in

Q2, for some even p where 2 < p < A; - 1. For every even z G { 0 , 1 , . . . ,p - 2}, build

the following cycle d:

{Vi,Q,Vi^l),{Vi^i,Vi^2), {Vz,k-2,Vi^k-\), {Vi.k-\,V^+-i^k-l),

(u,+ l,fc_l,'Ui+l,fc_2), . . • , {Vi+l.-[,Vi+\fi), {v^+l ^0,^1.0) •

Join the cycle Co to the cycle C2 over the links {vifi, vi^i) and (^2,0^ '̂ -'2,1), and denote

the resulting cycle by Eq^. Now join Eq^q to the cycle C4 over the links ('t;3,o,•^3,1)

and {v4fi,V4j), and denote the resulting cycle by Eq^ also. Proceed in this way to

obtain the hamiltonian cycle £^0,0 of the row-torus rt{0,p - 1) rooted at V Q . O -

I f 3 < p < A ; — l i s odd then build the cycle Eq^ in the row-torus rt{0,p — 2) and

join it to the cycle induced by the nodes on row p - 1, over the hnks (fp_2,o, ^p-2,1)

3.3. The base case 41

—9

O :5

- o — Q

9 = ^

o

Figure 3.5: The hamiltonian cycle £'o,o in rt{0,6) in Ql-

and (fp-1,0, •?^p-i,i); denote the resulting cycle as the cycle £ 0 , 0 of ri(0,p— 1) rooted

at fo.o- The hamiltonian cycle Eq^ in rt{0,6) in Ql can be visualised as in Fig.3.5.

Note that we also have the hamiltonian cycles £0 .1 of r i (0,p - 1), for all p G

{2, 3 , . . . , A;} and Z G { 1 , 2 , . . . , A ; - 1 } , obtained by starting the above process at the

root-node vo,i as opposed to node vq^q.

Proposition 3.3.3 Consider the k-ary 2-cube Q2 where k > 6 is even and where

there is 1 faulty link. Let s and e be any two distinct nodes in the row-torus rt{0,p —

I), where 2 < p < k. There is a path in rt{0,p - 1) from s to e of length pk - 1

{resp. pk — 2) if {s,e] is odd {resp. even).

Proof: By Lemma 3.3.2, we may assume that the faulty link lies in rt{0,p- 1).

W.l.o.g. we may assume that the faulty link is either (t'o.o,'̂ ^a+i.o) or {va,Q,ya,i)^

where 0 < a < p - 2. As before, e = 1 if {s, e} is odd, and e = 2 if {s, e} is even.

Case (a) a = 0, and the faulty link is (vo,o, ^̂ ho)-

Sub-case {i) s and e lie on row 0.

If s = vo.i and e = vqj then w.l.o.g. we may assume that i < j and that it is not

the case that both i = 0 and j = A; — 1.

Suppose that it is not the case that i = 1 and j = A: — 1. Let po(s, e) be the path

(S j - y o . i - i) , (' t^o,i-i,%i-2), • • • , {voj+i,e).

3.3. The base case 42

• m t—9-^ n —f
—I

y—0—0—^
S — c ^ - c

Figure 3.6: Joining po(s, e) to the amended cycle C.

Note that the length of po(s, e) is odd if, and only if, {s, e} is odd; so, there are an

even number of nodes on row 0 that are not on po(s, e) if, and only if, {s, e} is odd.

Let C be the cycle induced by the nodes on row I. Iteratively join C to appropriate

links (t'o,;, •t''o,/+i) over {vi^i,Vi^i+i) so that the nodes used on row 0 do not already

appear on po(s, e). Links should be replaced (by paths) so that if {s, e} is odd (resp.

even) then every node of rt{0,1) appears on the (amended) cycle C or on po(s,e)

(resp. except one). Join po(s,e) to C over two corresponding links (this is always

possible) and denote the new path by PA(S , e). The path PA{S, e) has length 2k — e.

This construction can be visualised in Fig.3.6, where the dashed links show how

Po(s,e) is joined to the amended C.

Suppose that i = 1 and j = k — 1. Let po(s, e) be the path

(s, ^0,2), (^0,2, % 3) , • • •, (yo,/c-2, e).

Let C be the cycle induced by the nodes on row 1. Join po(s, e) to C over (^0,1- "̂ '0,2)

and (f i ,1,^1,2) , and denote the new path by pA{s,e). The path pA{s,e) has length

2k-2.

If p = 2 then we are done. If p > 3 then let D be the hamiltonian cycle £2,0 in

the row-torus rt{2,p- 1), and if p = 3 then let D be the cycle induced by the nodes

on row 2. Join pA{s,e) to D over two corresponding links, and the resulting path is

as required.

Sub-case {ii) s lies on row 0 and e lies on row 1.

Let s = vo^i and e = Vij; w.l.o.g. we may assume that i k — 1. If z ^ 1 then let

e' be a neighbour of s on row 0 that does not lie in the same column as e. If i = 1

and i 7̂ 2 then let e' = vo,2- Either way, let po(s, e') be a path on row 0 of length

k - 1. If z = 1 and j = 2 then let e' = •uo,3 and let po(s, e') be a path on row 0 of

length k -2.

3.3. The base case 43

Let s' be the neighbour of e' on row 1 and let pi{s', e) be a path on row 0 which
contains the link (f i , o , f i , i) . Define the path p^is^e) as

Po(s,e'), {e',s'),pi{s',e).

Iteratively join p.4(-s,e) to appropriate links {vi^uVij+\) over {VQ_I,VO,I+\) SO that

the nodes used on row 1 do not already appear on PA{S, e). Links should be replaced

(by paths) so that if {s, e} is odd (resp. even) then every node of rt{0,1) appears

on (the amended) ^^(s, e) (resp. except one).

If p = 2 then we are done. If p > 3 then let D be the hamiltonian cycle Eo^ in

the row-torus rt{2,p — 1), and if p = 3 then let D be the cycle induced by the nodes

on row 2. Join PA{s,e) to D over the links (^1,0,^1,1) and {v2fi,V2,i)- The resulting

path is as required.

Note that if p = 2 then we have covered all cases, so henceforth we assume that

p > 3.

Sub-case {Hi) s lies on row 0 and e lies on rows 2,3, . . . ,p — 1.

Suppose that s = uo,i. If i 7̂ 1 then define e' = t'o,i-i) and if i = 1 then define

e' = t'o,i+i- Define the path po(s. e') to be the path on row 0 of length k- I. Let e"

be the neighbour of e' on row 1, and let e'" be a neighbour of e" on row 1 that does

not he in the same column as e. Define the path pi(e",e"') as the path of length

A; — 1 on row 1. Define the path pA{s,e"') as

Po(5,e'),(e',e"),Pi(e",e"').

The path pA{s,e"') has length 2k - 1.

Let s' be the neighbour of e'" on row 2. If p > 4 then by Lemma 3.3.2, there is

a path px{s',e) in rt{2,p- 1) of length k{p - 2) - e, and the path

PAis,e"'),{e"',s'),px{s\e)

is as required. If p = 3 then define the path px{s', e) to be a path on row 2, and let

p{s, e) be the path

PA{s,e"'),ie"\s'),px{s',e).

3.3. The base case 44

Iteratively join p{s,e) to appropriate links {v2,i,V2,i+i) over (t>i,;, so that the

nodes used on row 2 do not already appear on p(s, e). Links should be replaced (by

paths) so that if {s,e} is odd (resp. even) then every node of row 2 appears on the

amended path (resp. except one). The resulting path is as required.

Sub-case {iv) s and e lie on row 1.

Proceed as in Sub-case (z) to build a path (analogous to) p.4(s,e). The path p.4(s,e)

is such that it contains a link on row 1. Join p^(5, e) to the cycle D, as constructed

in Sub-case {i) and over corresponding links, to obtain a required path.

Sub-case {v) s lies on rows 1,2,... ,p - I and e lies on rows 2,3, . . . ,p - 1.

By Lemma 3.3.2, there exists a path p{s,e) in rt{l,p — 1) of length {p - l)k — e.

There is at least one link of p(s,e) on row 1 that is not incident with v^^. Join

p(s,e) to the cycle induced by the nodes on row 0 over two corresponding links to

obtain a required path.

Case {b) 0 ^ a ^ p - 2 and the faulty link is {vafl,Va+},o)-

Sub-case {i) s and e lie on rows 0 , 1 , . . . , a.

By Lemma 3.3.2, there is a path pA{s,e) in rt(0,a) of length (a + 1)A; - e. Either:

there exist 2 disjoint links of PA{S, e) on row a, and so we have a link of PA{S, e) on

row a that is not incident with Vafl] or k — 6 and the nodes Va,2,Va,3, VaA constitute 5,

e and a node not on PA{S, e). However, in this latter case, let £^0,0 be the hamiltonian

cycle in rt{0,a) but with the sub-path from s to e involving (some of) the nodes

î a,2, Wa,3) •'̂ a,4 removed (so, the length of this sub-path is 1, if {s,e} is odd, and 2, if

{s,e} is even). Either way, we obtain a path, call it p.4(s,e), in rt{0,a) of length

(a -I- 1)A; - e with the property that there is a link of p^(s, e) on row a that is not

incident with Vafi.

Join p^(s,e) to the hamiltonian cycle £̂ Q+I,O of rt{a + l.p — I), over some ap­

propriate links, and the path obtained is as required.

Sub-case {ii) s lies on rows 0 , 1 , . . . , a and e lies on rows a -I- 1, a -f- 2 , . . . ,p - 1.

Suppose that we can choose e' on row a such that: Va^o 7̂ e' ^ s; e and e' are not

adjacent; and {5,e'} = {s ,e}. If so then by Lemma 3.3.2, there is a path p^(5,e')

in rt{0,a) of length (a -I- 1)A; — e so that e is not adjacent to e'. Define s' to be

3.3. The base case 45

the neighbour of e' on row a -1- 1. By Lemma 3.3.2, there is a path px{s',e) in
rt{a + l , p - l) of length (p - a - 1)A; - 1. The path

PA{s,e'),{e',s'),px{s',e)

is as required.

Alternatively, suppose that e' does not exist. This only happens when A; = 6,

and (s = Va,2 and e = Wa+1,4) or (s = Ua,4 and e = Ua+i,2)- Define e' = Va,3 and let

Eofi be the hamiltonian cycle in rt{0,a) with the link (s.e') removed: call this path

p^(s,e'). By Lemma 3.3.2, there is a path PX(^^Q+I,3, e) in rt{a - I - l . p - 1) of length

(p - a - 1)A: - 1. The path

PA{s,e'),{e',Va+i,3),Px{va+h3,e)

is as required.

Case (c) a = 0 and the faulty link is (uo,o, •^0,1)-

Sub-case (i) s and e lie on row 0.

Let Po{s,e) be the path on row 0 which contains the faulty link (fo,0) "̂ 0̂,1), and let

C be the cycle induced by the nodes on row 1. Join po{s,e) to C over the links

(vofi^vo^i) and (f 1,0,•^i,1)1 and denote the resulting path by p(s,e). Iteratively join

p(s,e) to appropriate links (tiQ,/,'J^cz+i) over (fi , ; ,ui, /+i) so that the nodes used on

row 0 do not already appear on p(s, e). Links should be replaced (by paths) so that

if {s, e] is odd (resp. even) then every node of row 0 appears on the amended path

(resp. except one). Denote the amended path by p(s, e) also.

If p > 3 then let D be the hamiltonian cycle £'9,0 in rt{2,p - 1), and if p = 3

then let D be the cycle induced by the nodes of row 2. Joining p(s, e) to D over two

corresponding links yields a path as required.

Sub-case [ii) s lies on row 0 and e lies on row 1.

Suppose that s — UQ.Z and e = t^i.j. W.l.o.g. we may assume that i is odd.

If {s, e} is odd and I < j <i then define p(s, e) as

Co+(s,Ui,i), Z " (i ; i , i , U i j + 2) , (u i j + 2 , ^ ^ i j + i) , (vi , j+i , 'yoj+i) ,

(uo,j+i,^^Oj),<^r(^oj,e).

3.3. The base case 46

If {s, e} is odd and i < j < k - 1 then define p{s, e) as

Cr(s , Vi^i), Z^{Vi^i, Vxj^2): {Vl,j-2, VlJ-l). (^ ^ I j - l , VQJ-I),

{voj-uVoj),C^_^{vo^j,e).

If {s, e} is odd and i = j then define p{s, e) as Co''(s, e), and if z 7̂ 1 then define

C as the cycle

C f (vo,i-1, v i , i -1) , (t-i,i-1, vo,i-1).

If {s, e} is even and 2 < j < i then define p{s, e) as

Co+(s,'!;i,i),^~(Vl,z,Vl,j+3), ('i^l,j+3,^^lJ+2), (^^lj+2,f0,j+2),

(̂ ^0j-i-2, ^^0j+1), (^0j+1, ^̂ 0J), CQ (wcj, e).

If {s, e} is even and j = 0 then define p(5, e) as

Cf(s , i ; i , i) , Z+(1-1,^,^1,^-1), (t/'i,fe-i,e).

If {s, e} is even and i < j < k - \ then define p(s, e) as

Ci"(s, '{;i,i), Z+(^;i,i, 'yi,j-3), (^'ij-s, 'yi,j-2), (^^ij-2,

^^ i , j - i) , ('1^1,^-1,"yoj-i), {vQ,j-\,yQ,j),C^{vf),j,e).

If p > 3 then let D be the hamiltonian cycle £^2,0 of r ^ (2 , p - 1), and if p = 3 then

let D be the cycle induced by the nodes on row 2. If there is a cycle C then join C

and D over two corresponding links and denote the new cycle by D also. Now join

p(s, e) to the cycle D, and the path obtained is as required.

Sub-case {iii) s lies on row 0 and e lies on rows 2, 3, . . . ,p - 1.

Suppose that p > 3. If {s,e} is even then let the node e' on row 1 be such that e'

and s have a common neighbour on row 0 and also such that e' does not lie on the

same column as e. If {s, e} is odd then let e' be the neighbour of s on row 1. By the

construction in Sub-case {li). there is a path p^(s, e') in rt(0,1) of length 2k - e.

Let s' be the neighbour of e' on row 2 (note that s' 7̂ e and that {s', e} is odd).

By Lemma 3.3.2, there is a path px{s',e) in r t (2 , p - 1) of length (p - 2)A: - 1. The

path

p^(5,e'),(e',s')>PA'(5',e)

3.3. The base case 47

is as required.

Suppose that p = 3. Let s' be a neighbour of e on row 2 so that s' does not

lie on the same column as s, and let e' be the neighbour of s' on row 2. By the

construction in Sub-case (M), there is a path pA{s,e') in rt(0,1) of length 2k — e.

Let px{s', e) be the path on row 2 of length A; - 1. The path

PA{s,e'),{e',s'),px{s',e)

is as required.

Sub-case (iv) s and e lie on row 1.

Let s = vi^i and e = Vij; w.l.o.g. we may assume that i < j. Let pi(s, e) be the path

on row 1 containing the link (wi,o,'f^i,i)- Join pi(s,e) to the cycle induced by the

nodes on row 0 over the links {vi^o, Vi^i) and (fo,o, '^0,0, and denote the resulting path

by p.4(s,e). Iteratively join p.4(s,e) to appropriate links ('U],;, Ui , i+ i) over (uo,;, fo,;+i)

so that the nodes used on row 1 do not already appear on p.4(5,e). Links should

be replaced (by paths) so that if {s,e} is odd (resp. even) then every node of row

1 appears on the amended path (resp. except one). Denote the amended path by

p(s,e).

If p > 4 then let D be the hamiltonian cycle Eo^i of rt{2,p - 1), and if p = 3

then let D be the cycle induced by the nodes on row 2. Join p{s,e) to D over two

corresponding links, and the resulting path is as required.

Sub-case {v) s lies on row 1 and e lies on rows 2,3, . . . ,p — 1.

Suppose that p > 4. Let e' be a neighbour of s on row 1 such that e does not lie on

the same column as e'. We now define a path pyi(s,e') in rt{0,1). If s = and

e' — Vifi then define p/i(s,e') as

jV+(s,z;i,jt_i), {vi,k-i,vo.ic-i), {vo,k-i,vo^o): {vo,o,e');

if s = vifi and e' = Vi^ then define p/i(s,e') as

N~{s,vi^2),{^^,2,Vo,2), (t^o,2,%i), (vo,i,e');

otherwise, let pi(s,e') be the path on row 1 containing the link (•^1,0, •^1,1), and join

Pi(s,e') to the cycle induced by the nodes on row 0 (which contains the faulty

3.3. The base case 48

link) over the links {vi^, vi^i) and (uo,o, ^0,1), denoting the resulting path by p.4(s, e')
(joining as we do results in the path pA{s,e') being fault-free).

Let s' be the neighbour of e' on row 2. By Lemma 3.3.2, there is a path px{s', e)

in r t { 2 , p - 1) of length {p - 2)k - e. The path

PA{s,e'),{e',s'),px{s',e)

is as required.

Suppose that p 3. Let e' be a node on row 1 such that s e' and e' is in a

column adjacent to the column on which e lies. Clearly, {s,e} is odd if, and only if,

{s,e') is odd (node e' and e have the same parity). We now build a path p^(s,e')

in rt{0,1); w.l.o.g. we may assume that s = Vi^i, e' — Vij and i < j, with i ^ 0

(as usual, we can apply automorphisms of rt{0,1) if necessary). If {s,e} is odd and

i ^ 1 then define p/i(s,e') as

Cr(5, uo.i), -^"^{vo,i, vo,j-\), ('̂0J - 1 , VQJ). {voj, e')•

If {s,e} is odd and i = 1 then define p^(5,e') as

+ (s, J_ 1), (i;i j _ 1, VQJ_ 1), {voj-1, voj),C^{voj,e').

If {s, e} is even and s ^ 1 then define p^(s, e') as

C{{s,vo^i), Z+(z;o,i,Uo,j_2), (^^0j -2 , i^0j - i) , {vo,j-uVoj),C^{voj,e').

If {5 , e} is even and s = 1 then define pA{s,e') as

A + (s , U i , j - 2) , (u i j _ 2 , f 0 j - 2) , {voj-2,Voj-i), {Voj-l,Voj),C^{voj,e').

Let s' be the neighbour of e' on row 2 and let px{s',e) be the path on row 2 of

length A; - 1. The path

p^(s,e'),(e',s'),Px(s',e)

is as required.

Sub-case (m) s and e lie on rows 2,3, . . . ,p - 1.

Suppose that p > 4. By Lemma 3.3.2, there is a path px{s,e) in rt{2,p — 1) of

length {p - 2)k - e. Let C be the cycle

Cr('^i,o,^^o,o), {VQ,Q,VI,O)-

3.3. The base case 49

Joining px{s,e) to C over two corresponding links yields a required path.

Suppose that p = 3. If (s = V2,Q and e = V2^i) or (e = V2fi and s - f2 , i) then let

P x (5 , e) be the path on row 2 of length A; - 1; otherwise, let px{s, e) be the path on

row 2 not containing the link (u2,o, v2,1). Join px{s, e) to C over two corresponding

links and denote the resulting path by p{s, e).

If (5 = V2fi and e = V2,\) or (e = ^2,0 and s — tio.i) then p{s,e) is as required.

Otherwise, iteratively join p{s,e) to appropriate links (t'2,/, ^^2,/+i) over (uj i)],;+i)

so that the nodes used on row 2 do not already appear on p{s,e). Links should

be replaced (by paths) so that if { s , e} is odd (resp. even) then every node of row

2 appears on the amended path (resp. except one). The path so obtained is as

required.

Case {d) The faulty hnk is {Va,o,Va+i,o)-, where 1 < a < p - 3.

Sub-case (i) s and e lie on rows 0 , 1 , . . . , a -H 1.

By Case (c), there is a path PA{S, e) in rt(0,a + l) of length {a + 2)k-e. If a 7̂ p - 3

then let C be the hamiltonian cycle Ea+2,0 of rt{a + 2,p - 1), and if a = p - 3 then

let C be the cycle induced by the nodes on row p - 1. Joining P / i (s ,e) and C over

two corresponding links yields a path as required.

Sub-case (ii) s lies on rows 0, 1 , . . . , a - I - 1 and e lies on rows a -\- 2,a -\- 3,... ,p - 1.

Suppose that a p - 3. Let the node e' on row a -H 1 be such that s ^ e' and

{ s , e } = {s,e'}. By Case (c), there is a path p{s,e') in rt{0,a - f 1) of length

(a - I - 2)A; - e. Let s' be the node on row a -\- 2 adjacent to e'. By Lemma 3.3.2,

there is a path p x (s ' , e) in rt{a -H 2,p - 1) of length (p - a - 2)A; - 1. The path

p ^ (s , e ') , (e ' , s ') , p x (s ' , e)

is as required.

Suppose that a = p - 3. Let the node e' on row a + 1 be such that e' s and

e' lies on a column adjacent to the column on which e lies. By Case (c), there is a

path p(s, e') in rt{0,p - 2) of length (p - 1)A; - e. Let s' be the neighbour of e' on

row p - 1 and let px{s', e) be the path of length A; - 1 on row p - 1. The path

p ^ (s , e ') , (e ' , s ') ,PA ' (5 ' , e)

3.3. The base case 50

is as required. •

Proposition 3.3.4 Consider the k-ary 2-cube Q2 where k > 6 is even and where

2 of the links are faulty. Let s and e be any two distinct nodes. There is a path of

length k'^ — 1 {resp. k"^ — 2) from s to e if {s,e} is odd {resp. even).

Proof: W.l.o.g. we may assume that (fo,Oi^i ,o) is a faulty link. Partition Q2

into rt{k — 1,0) and rt{l, k — 2). As usual, e = 1 if {s, e} is odd, and e = 2 if {s, e}

is even.

Case (a) Both s and e lie in rt{k — 1,0).

By Proposition 3.3.3, there is a path p^(s, e) in rt{k — 1, 0) of length 2k — e. Either

there is a link of p^(5,e) on row k — \ that is not incident with any faulty link or

there is a link of p.4(s,e) on row 0 that is not incident with any faulty link; w.l.o.g.

suppose that {vi^_x^i,Vk-\^i+\) is a hnk of p>i(s, e) such that neither (ffe_i,i, Vk-2,i) nor

{vk-\,i->r\,Vk-2A+\) is faulty (the alternative case is similar). By Proposition 3.3.3,

there is a path Px{vk-2,i-.'^k-2,i^\) in rt{\,k - 2) of length {k - 2)k - 1. The path

obtained by joining p^(s, e) to px(^^fc-2,t. "^^-2,1+1) over (u/c-ii, •yfc-1,1+1) is as required.

Case (6) s lies in rt{k —1,0) and e lies in rt{\, k — 2).

Let {vk-\,i,Vk-2,i) be a healthy link such that s ^ Vk-i.i, e 7̂ Vh-2,i and {s,Vk-iA] =

{s,e]. By Proposition 3.3.3, there is a path pyi(s,'t;fc_i,j) in rt{k - 1,0) of length

2k - e and there is a path Px{vk-2d, e) in rt{l, k - 2) of length {k -2)k - 1. The

path

PA{S, Vk--i,i), {vk-i,z,Vk-2,i),px{vk-2,i, e)

is as required. •

Finally, we deal with the case when there is one faulty node and one faulty link.

Proposition 3.3.5 Consider the k-ary 2-cube Q2 where k > 6 is even and where

there is a faulty node and a faulty link. Let s and e be any two distinct, non-faulty

nodes. There is a path of length at least k"^ - 3 {resp. k"^ - 4) from s to e if {s, e}

is odd {resp. even).

Proof: W.l.o.g. we may assume that the faulty node is VQ^. Moreover, we

may assume that either the faulty link does not lie in ri(0,1) or the faulty link is

3.3. The base case 51

(^0,0,^0,1) (again, by applying the usual automorphisms). However, if the faulty hnk
is (fo,o,^^o,i) then we can assume that there are no faulty links as the fact that uo.o
is a faulty node means that the link (wo,o,'yo,i) is never used. Thus, we can assume
that the faulty link does not lie in rt{0,1). As usual, e = 1 if {s, e} is odd, and e = 2
if {s, e} is even.

Case (a) Both s and e lie in rt{0,1).

By Lemma 3.3.1, there is a path pA{s,e) in rt{0,1) of length at least 2fc - 2 - e.

Either there is a link of pA(s,e) on row 0 that is not incident with VQ^Q nor a faulty

link, or there is a link of pA{s,e) on row 1 that is not incident with a faulty link.

W.l.o.g. suppose that is a link of pA{s,e) that is not incident with a

faulty link (the alternative case is similar). By Proposition 3.3.3, there is a path

P.Y(^'2,i, ^^2,i+i) in rt{2, /c - 1) of length {k — 2)k — 1. The path obtained by joining

pA{s,e) to px{v2,i,V2.i+\) over (vi,j, i;i,i+i) is as required.

Case [h) s lies in ri(0,1) and e lies in rt{2,k — 1).

Let vx^i be such that s ^ (fi,,;, t'2,i) is healthy and {s , t ' i , J = {s,e]. By

Lemma 3.3.1, there is a path P/i(s,fi,i) in ri(0,1) of length at least 2k - 2 - e.

By Proposition 3.3.3, there is a path px{v2,i, e) in rt{2, /c - 1) of length {k - 2)k - 1.

The path

pxis, vi^i), ('t;i,i, 'f;2,i), Px(^'2,i, e)

is as required. •

From Propositions 3.3.1, 3.3.2, 3.3.4 and 3.3.5, we obtain the base case for our

main result so long as A; > 6. However, when /c = 4 a simple computer program

(implementing an exhaustive search) verifies that Propositions 3.3.1, 3.3.2, 3.3.4

and 3.3.5 all still hold (we leave this verification as an exercise). Hence, we have

the following result.

Theorem 3.3.3 Let k > A be even. In a faulty k-ary 2-cube Q2 in which the number

of node faults fy and the number of link faults fe are such that fv + fe < 2, given

any two healthy nodes s and e of Q2, there is a path from s to e of length at least

k'^ — 2 f y — 1 (resp . k- — 2 f y — 2) if the nodes s and e have different {resp. the same)

parities.

3.4. The inductive step 52

3.4 The inductive step

In this section, we complete the proof by induction of our main theorem. The

following lemma simplifies the situation considerably.

Lemma 3.4.1 Let Q'^ have 2n — 2 faulty nodes and links, where n > 4. There

exists a dimension d such that when we partition over dimension d, the resulting

k-ary (n - l)-cubes Qd,o,Qd,i, • • • ,Qd,k-\ each contain at most 2n - 4 faulty nodes

and links.

Proof: Suppose as our induction hypothesis that n > 5 and that the result

holds for Q^_i (with 2n - 4 faults). Let have 2n - 2 faults. Partition over

dimension 1; if the resulting /e-ary (n — l)-cubes Quo, Qi,i, • • •, Qi.k-\ are such that

each contains at most 2n — 4 faults then we are done. So w.l.o.g. suppose that Qi^

contains 2n - 2 or 2n - 3 faults.

Suppose that Qi,o contains 2n — 3 faults, and so there is exactly 1 fault not

in Qifl. Temporarily regard some fault, w, say, of Q\fi as healthy and apply the

induction hypothesis to Qi^ (note that w might be a node or a link). Thus, there

is a dimension d such that when we partition Qi.o over dimension d, the resulting

/c-ary (n — 2)-cubes each contain at most 2n — 6 faults. Consequently, when we

partition over dimension d, each of the resulting k-ary {n — l)-cubes contains at

most 2n — 4 faults (the 'temporarily healthy fault' w needs to be recast as faulty,

and there is 1 other fault not in Qi.o to consider).

Suppose that Qi,o contains 2n - 2 faults, and so there are no faults outside Qi,o-

Temporarily regard 2 faults, w and vu', say, of (5i,o as healthy and apply the induction

hypothesis to Qi,o. Thus, there is a dimension d such that when we partition Qi o

over dimension d, the resulting k-ary (n — 2)-cubes each contain at most 2n - 6

faults. Consequently, when we partition over dimension d, each of the resulting

fc-ary (n - l)-cubes contains at most 2 n - 4 faults (the 2 'temporarily healthy faults'

w and w' need to be recast as faulty).

In order for the result to follow by induction, all we need to do is to verify the

statement of the lemma for when n — A. Let the faults of Q'^ he Wi, iov i = 1,2,..., 6.

Partition Q4 over dimension 1. Either each resulting /c-ary 3-cube contains at most

3.4. The inductive step 53

4 faults, and we are done, or the nodes involved in at least 5 of {wi : z = 1, 2 , . . . , 6}
have identical fourth components (if Wi is a link then the nodes involved in Wi are
the nodes of the link, and if Wi is a node then the node involved in Wi is the node
itself). We may assume that it is the latter and that the 5 faults whose fourth
components (of the nodes involved) are identical are Wi, W2, w-i, W4 and w^.

Partition Q'^ over dimension 2. Either each resulting fc-ary 3-cube contains at

most 4 faults, and we are done, or one of the resulting k-avy 3-cubes contains either

5 or 6 faults. We may assume that the third components of wi, W2, w-s and are

identical.

Partition Q'l over dimension 3. Either each resulting A;-ary 3-cube contains at

most 4 faults, and we are done, or one of the resulting k-avy 3-cubes contains either

5 or 6 faults. We may assume that the second components of wi. W2 and are

identical.

Partition over dimension 4. Either each resulting k-ary 3-cube contains at

most 4 faults, and we are done, or one of the resulting k-avy 3-cubes contains either

5 or 6 faults. We may assume that the first components of Wi and W2 are identical.

This yields a contradiction as either: Wi and W2 are nodes and Wi ^ W2\ or Wx or

W2 is a link joining a node to itself. The result follows. •

Let us reexamine the proof of Lemma 3.4.1. Ideally we would like Lemma 3.4.1

to apply when n = 3 but the argument in the proof fails. However, we can classify

exactly the fault configurations leading to failure.

Suppose that Q\ has 4 faulty nodes. Following through the argument in the proof

of Lemma 3.4.1 yields that, up to isomorphism, the situations where the argument

fails is when the 4 faults are of the form (0,0,0), (a, 0,0), (0,6,0) and (0,0, c), for

some a, h and c all different from 0.

Suppose that Q\ has 3 faulty nodes and 1 faulty link. W.l.o.g. suppose that the

faulty link lies in dimension 3. Following the argument in Lemma 3.4.1 yields that,

up to isomorphism, the situations where the argument fails is when the 3 faulty

nodes are of the form (0,0,0), (0,6,0) and (0,0,c), for some b and c different from

0, and the faulty link is of the form ((a, 0, 0), (a -h 1, 0, 0)), for some a.

3.4. The inductive step 54

Suppose that Q3 has 2 faulty nodes and 2 faulty hnks. W.l.o.g. suppose that
one of the faulty links lies in dimension 3 with the other in dimension 2 (the two
links cannot lie in the same dimension as otherwise we could partition over this
dimension and be done). Following the argument in Lemma 3.4.1 yields that, up to
isomorphism, the situations where the argument fails is when the 2 faulty nodes are
of the form (0,0,0) and (0,0, c), for some c different from 0, and the faulty links are
of the form ((a, 0,0), (a + 1,0,0)) and ((0,6,0), (0,6 + 1,0)), for some a and b.

Suppose that has 1 faulty node and 3 faulty links. W.l.o.g. suppose that

one of the faulty links lies in dimension 1, one in dimension 2 and one in dimension

3. Following the argument in Lemma 3.4.1 yields that, up to isomorphism, the

situations where the argument fails is when the faulty node is of the form (0,0,0)

and the faulty links are of the form ((a, 0,0), (a + 1,0,0)), ((0,6,0), (0,6+1,0)) and

((0, 0, c), (0, 0, c + 1)), for some a, 6 and c.

Suppose that Q3 has 4 faulty links. In this case, Lemma 3.4.1 holds as at least

2 faulty links lie in the same dimension and we can partition over this dimension.

We shall use these observations in the proof of the following theorem.

Throughout the rest of the chapter, we adopt the following notation. Suppose

that we partition Q'^ over some dimension d to get the /c-ary (n — l)-cubes Qd,Q, Qd,i,

• • •, Qd,k-i- Let X be a node of Qd,i, say. Then we refer to the node in Qdj corre­

sponding to X (that is, the node of Qdj whose name is identical to that of x except

that its component on dimension d is j as opposed to i) as Xj. We also refer to the

node X as Xi.

Theorem 3.4.2 Let be a k-ary n-cube, for some n > 2 and some even k > A,

with fy faulty nodes and /e faulty links, where 0 < + /e < 2n - 2. / / s and e are

distinct healthy nodes and {s,e} is odd {resp. even) then there exists a path from s

to e of length at least fc" - 2 / ^ , - 1 {resp. A,'" - 2 / ^ , - 2) .

Proof: We proceed by induction on n. The base case of the induction is handled

by Theorem 3.3.3. Suppose, as our induction hypothesis, that the result holds for

Q^^, where n > 3 and for all m < n. Let be a k-aiy n-cube as in the statement

of the theorem. Throughout, e = 1 if {s, e} is odd, and e = 2 if {s, e} is even.

3.4. The inductive step 55

Suppose that n > 4. By Lemma 3.4.1, we may assume that when we partition
Q'^ over dimension 1, the resulting /c-ary (n - l)-cubes Qi.o, • •, Qi,fc-i each
contain at most 2n - 4 faults. Suppose that the number of faulty nodes in Qi i is

fori = 0,l,...,k-l.

Case (Q) S and e lie in Qi^.

By the induction hypothesis, there is a path po{s, e) in Qi,o of length at least A;""^ -

2/o — e. Let {WQ,ZQ) be a link of po{s,e) for which wi and zi are healthy nodes

(of Qi.i) and {wo,w-i) and (20,21) are healthy links (a simple counting argument

shows the existence of such a link; if otherwise, there is no such edge, i.e., for

\/{wo, ZQ) G P O (S , e), either {wi, Zi) or {WQ, Wi) or (20, 21) is faulty; then the number of

faulty edges must be at least half of the path length; as there are at most 2n —2 faults

in Qn,k and A; > 4,n > 3, we have a contradiction). By the induction hypothesis,

there is a path pi(u;i,2i) in of length at least k"-~^ — 2/ i — L Let p(s, e) be

the join of po{s,e) to pi{wi,Zi) over {WCZQ). The path p(s,e) has length at least

2^""^ - 2(/o + / i) - e. Proceeding similarly and iteratively with appropriate paths

hi Qi,2, Qi,3, • • •, Q\,k-\ yields a path from s to e of the required length.

Case (6) s lies in Qî o and e lies in Qi.a, for a 7̂ 0.

A simple counting argument yields that there exists a healthy node WQ 6 Qi,o \ {eo}

such that: {5,it;o} is odd; w-j, is healthy, for all i = 0 , 1 , . . . , A; - 1; and all links

of {{•Wi,'Wi+-i) : i = 0 , 1 , . . . , A; - 2} U {{wk-ijWo)} are healthy. By the induction

hypothesis, there exists a path PQ{S,WO) in Qi_o of length at least k"~^ - 2/o - 1.

Suppose that a ^ I. A simple counting argument yields that there exists a

healthy node zi G Qi,i \ { c i } such that: {u ; i ,2 i} is odd; Zi is healthy, for all

z = 0 , 1 , . . . , fc - 1; and all hnks of {(2^, 2̂ +1) : z = 0 , 1 , . . . , /c - 2} U {(2/e_i, 20)} are

healthy. By the induction hypothesis, there exists a path p\['Wx, 21) in Qi.i of length

at least A;""^ - 2 / i - 1. Denote the path

Po(5,'a;o), [WQ,U}\).P\{WI,ZI)

by p(s,2i).

3.4. The inductive step 56

Suppose that a ^ 2. By the induction hypothesis, there exists a path P2{z2,W2)
in Qi,2 of length at least /c""^ - 2/2 - 1. Denote the path

pis,Zi),{zi,Z2),p2{z2,W2)

by p{s,W2).

Proceeding iteratively in this way yields a path p{s, Za-\) or p{s, Wa-\), depending

upon whether a - 1 is odd or even, respectively, of length at least a/c""' - 2(/o +

/] + . . . + /a- i) - L W.l.o.g., suppose that the path is p(s, 2a-i) (the other case is

similar). The node Za is odd if, and only if, the node s is odd; hence, {s, e} = {za, e}.

By the induction hypothesis, there exists a path Paiza,e) in Qi^a of length at

least /c""' - 2/a - e. Denote the path

p{s,Za-l),{Za-l,Za),paiZa,e)

by p'(s, e). The path p'{s, e) has length at least [a + l)/c"-^ - 2(/o + fi +• • • +fa) - e.

A simple counting argument yields that there is a link {xa,ya) of Pa{za,e) such

that XQ+1 and y^+i are both healthy nodes and {Xa,Xa+i) and (ya,ya+i) are both

healthy links (to see this, note that Pa{za,e) has length at least - 2/a - f >

22n-2 _ 2(2n - 4) - 2 = 2^"-^ _ 4^ + and so there are at least 2^"-^ - 2n + 3

mutually disjoint links on pa{za,e); as there are at most 2 n - 2 faulty links in our Q'^

and 2^""'̂ - 2n + 3 > 2n - 2, when n > 3, at least one such link (X Q , ya) of Pai^a, e)

must be as required). By the induction hypothesis, there is a path Pa+iiXa+i^Va+i)

in Qi,a+i of length at least A;" - 2fa+i - I. Form the path obtained by joining p'{s, e)

to pa+i{Xa+i,ya+i) over (XQ, J/Q) and denote this path by p"{s,e). The path p"{s,e)

has length at least (o + 2)/c"~' -2 (/o + / i + • •. + /a+i) - e . Proceeding similarly and

iteratively in Q\,a+2, Qi,a+3^ • • •, Q\,k~i results in a path from s to e of the required

length (the construction can be visualized as in Fig.3.7).

Now suppose that n = 3 and suppose further that we have no faulty links

(we deal with when there are faulty links later). From the observation following

Lemma 3.4.1, we may assume that we have 4 faulty nodes and that these nodes

are (0,0,0), (a, 0,0), (0,6,0) and (0,0,c), for some a, b and c all different from 0:

otherwise the construction above in Cases (a) and (6) can be used to build our path.

3.4. The inductive step 57

IJ

Figure 3.7: The construction in Case (6).

Partition over dimension 1 to obtain the k-avy 2-cubes Qi^, • • •, Q\.k-i', note

that (0,0,0), (a, 0,0) and (0,6,0) lie in Qi,o.

Case (c) s and e lie in Qi.o-

Temporarily suppose that (0,0,0) is healthy. By Theorem 3.3.3, there is a path

Po{s,e) in Qi.o of length at least A;̂ — 4 — e but upon which (0,0,0) may lie. If

(0,0,0) lies on ^0(5, e) then choose yo — (0,0,0), otherwise choose yo to be any node

of po{s,e) different from s and e.

Let y^ and yQ be the nodes immediately before and after yo, respectively, on

iOo(s,e). WM.o.g., we may suppose that y^_j and y^ are healthy nodes (and that

(2/0 i2/fc-i) ^nd {yo,yt) •̂re healthy Unks; recall, there is 1 faulty node outside Qi^o)-

A simple counting argument yields that there exists a healthy node Wk-i G Qi,k~i \

{Vk-i} ^nch that {y'^_-^,Wk-i} is odd and Wi is healthy, for alH = 1, 2 , . . . , /c — 1 (and

the links of {{wi, Wi+i) : i = 0,1,..., k — 2} are healthy; to see this, note that there

are at least [(A;̂ - 1)/2J healthy nodes Wk-i for which lo^- i} is odd, and this

number is greater than 0). By Theorem 3.3.3, there exists a path /9fc_i(y^_j, u;;c_i)

in Qi,k-i of length at least k'^ - 2fk-\ - 1.

A simple counting argument yields that there exists a healthy node Zk-2 S

Qi,k-2 \ { y f c - 2 > s u c h that {'Wk-2,Zk-2} is odd and Zi is healthy, for all i =

1, 2 , . . . , A; — 1 (and the links of {{zi, 2i+i) : i = 0,1, . . . , /c — 3} are healthy). By

Theorem 3.3.3, there exists a path pk-2{u!k-2, Zk-2) in (5i,fc-2 of length at least

e - 2A_2 - 1.

3.4. The inductive step 58

Figure 3.8: The construction in Case (c).

Proceeding iteratively in this way yields a path p'{s, Zi) defined as

p{s, Vo), (yo ' J/fc-i). Pfc-i(yfc_i - Wk-\). (u'fc_i, u;fc_2),

pk-2{'Wk-2. 2fc_2), {Zk-2, Zk-3), (22, ^ l) -

By Theorem 3.3.3, there is a path pi (z i ,y j ' ") in Qi.i of length at least A;̂ - 2 / i - 2.

Consider the path p"{s,e) defined as

p'{s,zi),pi{zi,yt), (yr,2/^),po(j/^,e)-

The length of this path is k^ - 2 E f j / / , - 6 - 6 = ^ - 8 - 6 . Hence, the path p"{s, e)

is as required (the construction can be visualized as in Fig.3.8).

Case {d) s lies in Qi.o and e does not lie in Qi^.

For the moment, regard the node XQ = (0, 0, 0) as healthy. By Theorem 3.3.3, there

is a path po(s,a:o) in Qi o of length at least k'^ — 5, if {5,3:0} is odd, and k'^ — 6, if

{s ,Xo} is even. Let WQ be the node of PQ{S,XQ) adjacent to XQ. W.l.o.g. we may

assume wi and {wo,Wi) are healthy. There are two possibilities: either e G Qi.i or

e e Qi.m, where 0 7̂ m 7̂ 1.

Suppose that e 6 and Wi = e. A simple counting argument yields that

there exists a link (7/0, ZQ) of po{s, WQ) such that yo ^ VUQ ZQ and yi, zi, {yo, yi) and

{ZQ.ZI) are healthy. By Theorem 3.3.3, there is a path p\{yi,Zx) in Qi.i that avoids

e and is of length at least fc^ - 2 (/ i -h 1) - 1. Let p(s, e) be the path obtained by

joining

PQ{S,WQ), {wQ,e)

3.4. The inductive step 59

yo

V

Quo Q\. Quo Qu

Figure 3.9: The constructions in Case {d) when e G

to P i (y i ,2 i) over the link {yo,zo)- As {s,xo} = {s,e}, the length of p{s,e) is at least

2A;2 - 2 / i - 6 - e.

Suppose that e G Qi . i and Wi 7̂ e. By Theorem 3.3.3, there is a path pi(ti;i,e)

in of length at least A;̂ - 2 / i - 1, if {wi,e} is odd, and A;"""̂ - 2 / i - 2, if {wi,e}

is even. Define the path p(s, e) as

Po(s,'u;o),(^^o,^i^i),Pi(^i^i,e)-

If {s,e} is odd then {s,xo} = {s,Wi} 7̂ {u'o,e} and the length of p{s,e) is at least

2A;̂ - 2/1 - 7. If {s,e} is even then {s,a:o} = {s,Wi} = {wo,e} and the length of

p(s, e) is at least 2A;̂ - 2 / i - 8.

Hence, if e G then we have a path p(s,e) in Qi,o U Q i . i of length at least

2A;̂ — 2/1 — 6 — e (the constructions can be visualized as in Fig.3.9).

A simple counting argument yields that there is a link (txi, Ui) of p(s, e) such that

(M I , U 2) and {vi,V2) are both healthy. By Theorem 3.3.3, there is a path P2(w2, V2) in

Qi,2 of length at least k'^ — 2/2 — L Join the path p(s, e) to the path P2(u2> '̂ 2) over

the Unk (u i , vi) and denote the resulting path by p(s, e) also. Proceeding iteratively

in this way in Qi,3,Qi,4, •. • ,Q\,k-\ yields a path p(s,e) whose length is at least

A;̂ - 2 E f j / / j - 6 - e = A ; ^ - 8 - e . Hence, the path p(s, e) is as required.

Alternatively, suppose that e G Qi,™ where 0 7̂ m 7̂ 1. Let yi G be such

that: {s, yi} is odd; 7̂ e; and i/j is healthy, for z = 1, 2 , . . . , A; — 1 (and the Unks

of {{yi, yt+i) : i = 1,2,..., k — 2} are healthy). By the construction above, there is

a path p'{s, yi) in QI^Q U Q i . i of length 2A:̂ - 2 } \ - 7.

3.4. The inductive step 60

Suppose that m^2. Let 22 € Qi,2 be such that: {22,2/2} is odd; Za 7̂ e; and Zi
is healthy, for i = 1,2,..., A; - 1 (and the links of {{z^, 2^+]) : z = 2, 3,..., /e - 2} are
healthy). By Theorem 3.3.3, there is a path ^2(2/2, ̂ 2) in Q\,2 of length fc- - 2/2 - L

Suppose that m ^ 3. By Theorem 3.3.3, there is a path p^iz-^, ys) in (5i,3 of length

/ĉ - 2 / 3 - 1. Proceeding in this way, we obtain paths P2{y2, ^2), Pi{z-i,y-i),..., and so

on until p^_i(y,„_i, 2^_i), if m is odd, or pm-i{Zm-\,ym-\), if is even. Applying

Theorem 3.3.3 again yields a path Pm[zm,e) or Pm{ym,e) in Qi^rn, depending upon

whether m is odd or even, respectively. If m is odd (resp. even) then Pm(2m,e)

(resp. pm{ym,e)) has length at least fc^ - 2fm - 1 if {2m,e} (resp. {ym^e}) is odd,

and - 2fm - 2 if {2:^, e} (resp. {y^, e}) is even.

If m is odd then let p{s, e) be defined as

p'is, yi), (yi, ^2), P2(y2,22), (^2,23), ̂ 3(23, ys), • • •, (2m-1) 2m), Pm(2m, E) ,

and if m is even then let p(s, e) be defined as

p'{s,yi), (yi,y2), p2(y2,22), (22, 23), p3(23, ya), . . . , (ym-i,ym),Pm(ym, e).

It can easily be verified that if m is odd then {s,e} = {2m, e}, and if m is even

then {s,e} — {ym,e}. Thus, the length of the path p(s,e) is at least (m + l)k'^ -

2Si=i/t - 6 - e . m k - 1 then the path p(s, e) can be iteratively joined to a

path in Qi.i of length A;̂ - 2/j - 1, for i = m + 1, m + 2,..., A; - 1, just as we did

above, to obtain a path, also denoted p(s, e), of length at least A;'' - 2Sfr / / j - 6 - e .

Hence, our path p(s, e) is as required.

Case (e) s and e lie in Qhp and Qi.m, respectively, where m ^ 0 ^ p m.

W.l.o.g. suppose that p > m. Let s' e Qi.o be such that s', s'̂ _j and (s^_i,s') are

healthy and {s ' ,s} is odd. By the construction in Case (d), above, there is a path

p'(s', e) in Qî o U U . . . U Qi.m of length at least (m + l)k'^ - 2E°=o/i - 7-

Let uip be a node of Qî p such that: {s,Wp} is odd; iwo 7̂ s'; and 1̂"̂ is healthy,

for i = p,p + 1,..., A- - 1 (and the hnks of {{vJl,w^+•^) : i = p,p + I,.... k - 2}

are healthy). By Theorem 3.3.3, there is a path pp{s,Wp) in Qî p of length at least

- 2/p - L

Let yp+i be a node of Q\,p+i such that: {u;p+i,yp+i} is odd; yo 7^ s'; and y, is

healthy, for z = p + 1,p + 2..., A; - 1 (and the links of {(yz,yt+i) : 'i = p + l ,p +

3.4. The inductive step 61

2,... ,k - 2} are healthy). By Theorem 3.3.3, there is a path pp+i{wp+i,yp+x) in
Q\,p+i of length at least Â - 2/p+i - 1.

Again, by Theorem 3.3.3, there are paths pp+2{yp+2,'Wp+2), pp+3{wp+3,yp+3), and

so on, up to pk-2iyk-2,-Wk-2), if P is even, and Pk_2{Wk-2,yk-2), if P is odd, of

lengths k^ - 2fp+2 - l,k^ - 2fp+3 - 1,... ,k^ - 2 / t_2 - 1, respectively; note that

{s,e} = { u ; f c _ i , 5 ; _ i } , if p is odd (resp. { 5 , e} = {yfe_i ,s ;_i} , if p is even). Yet

again, by Theorem 3.3.3, there is a path pk-\{wk-i, s'f._-^) (resp. pk-i{yk-i, s'k_i)) in

Qi.fe-i of length at least — 2/fe_i — e, if p is even (resp. odd). Let p{s,e) be the

path

Pp{s,Wp), {wp,Wp+i),pp+i{wp+i,yp+i), {yp+i,yp+2),

Pp+2{yp+2, Wp+2), , (4 - 1 ' P'{s', e).

The path p{s, e) has length at least (A; - p + m - 1) :̂̂ _ 2E^o/t - SS-Jp/; - 2 - e.

If p 7̂ m -I- 1 then the path p{s,e) can be iteratively joined to a path in Qi,i of

length A;̂ — 2/ i — 1, for i = m -I- 1,m + 2 , . . . ,p — 1, just as we did in Case(ci), to

obtain a path, also denoted p{s,e), of length at least A;'' - 2Ef r^ / i - 6 - e. Hence,

our path p{s, e) is as required.

Case (/) s and e lie in (5i,m where m 7̂ 0.

By Theorem 3.3.3, there is a path Pm{s,e) in Qi,m of length at least Â - 2 /^ - e.

There exists a link {wm,ym) of Pmis,e) such that Wm+i, ym+\, {wm,Wm+i) and

(ym,2/Tn+i) are healthy. By Theorem 3.3.3, there exists a path pm+i{'Wm+i,ym+i) in

Qi,m+i of length at least Â - 2fm+i - 1- Join Pm{s,e) to pni+i{'Wm+\,yni+i) over

{'Wm,ym) and denote this path by p{s,e) also. The path p{s,e) can be iteratively

joined to a path in Qi_j of length Â - 2/, - 1, for z = m -h 2, m -h 3 , . . . , m - 1 to

obtain a path of length at least A;̂ — 8 — e as required.

Now suppose that we have 1 faulty link. Partition over the dimension containing

this faulty link and if each resulting A;-ary 2-cube Qi^, Qi,\, • • •, Qi,k-i contains at

most 2 faults then apply the construction as in Cases (a) and (6) to build our

path. Hence, we may assume that Qi.o contains 3 faulty nodes. However, if we

follow exactly the constructions in each of Case (c), (d), (e) and (/) , then these

constructions still apply and we obtain a path of the required length. Exactly the

3.5. Conclusions 62

same can be said of the scenarios when we have 2 and 3 faulty links. The result now
follows. •

We note that given Q^, where /c > 4 is even, and f^ and /e, where f v + f e < 2n-2 ,

there are configurations of fy faulty nodes, fe faulty links and pairs of distinct,

healthy nodes so that the longest path joining the two nodes has length exactly

k^ - 2 f y - I (resp. /c" - 2 / ^ , - 2) if the parities of the two nodes are different (resp.

the same). Hence, in this sense our result can be viewed as optimal.

Also, there are configurations of 2n - 1 faulty nodes in Q'^ and pairs of healthy

nodes such that the longest path joining the two nodes has length 1; take healthy,

adjacent nodes x and y where all other neighbours of x are faulty. Hence, the total

number of faults in Theorem 3.4.2 cannot be increased.

3.5 Conclusions

Theorem 3.4.2, allied with the result in [171], fully resolves the situation as regards

the existence of longest cycles in A;-ary n-cubes where the total number of faults

(nodes and links) is at most 2n — 2 and where the faults are configured in a 'worst

case' scenario with respect to the pair of nodes in question.

Of course, there are configurations of, for example, 2n — 2 faulty nodes in

where certain pairs of nodes have paths joining them of lengths strictly greater than

the bounds stated in Theorem 3.4.2. It would be interesting to build longest paths

joining pairs of nodes but taking into account the configuration of faults (though

this would appear to be a demanding task).

We expect that if we assume the conditional fault assumption then we should

be able to tolerate more faults yet still prove a result analogous to Theorem 3.4.2.

It would be worthwhile to investigate this scenario and we conjecture that the path

lengths will be exactly as in Theorem 3.4.2.

The existence of paths and cycles in (faulty) interconnection networks does not

guarantee that we can efficiently construct these paths and cycles using a distributed

algorithm implemented on the underlying topology (see [149] as regards the issues

involved with the distributed embedding of a hamiltonian cycle in a faulty A;-ary

3.5. Conclusions 63

n-cube). The existence of an efficient distributed algorithm which 'implements'
Theorem 3.4.2 should be investigated.

Chapter 4

Bipanconnectivity and bicyclicity

of /c-ary n-cube

4.1 Introduction

Of interest to us in this chapter are the different paths and cycles embedded within

A;-ary n-cubes. Particularly, we are interested in questions relating to hamiltonicity,

pancyclicity, panconnectivity, bipancyclicity and bipanconnectivity. These proper­

ties can be described as 'strong hamiltonicity' properties and their existence in an

interconnection network enables a much higher degree of flexibility with regard to

the simulation of linear arrays of processors or cycles of processors.

The notions in the preceding paragraph have been investigated in the context of a

number of interconnection networks: for example, in crossed cubes [54,170], Mobius

cubes [78], augmented cubes [118], alternating group graphs [31], star graphs [169],

bubble-sort graphs [97], and in hypercubes and hypercube-like networks [55,110,

131,154,156,167,168]. As regards A;-ary n-cubes, these notions have been considered

in [82,163]. In particular, it was proven in [163]: that Q2 is almost-hamiltonian con­

nected, bipanconnected and bipancyclic; that is almost-hamiltonian connected,

for any A;; and that is hamiltonian-connected, for odd A;. Recently, it has been

proven in [82] that Ql is edge-pancyclic. It was posed as an open problem in [163

as to whether their results on bipanconnectivity and bipancyclicity for could be

extended to Q^, for arbitrary n, and it was posed as an open problem in [82] as to

64

4.1. Introduction 65

whether their results on panconnectivity and pancyclicity could be extended to Q'^,
for arbitrary A;. In this chapter, we provide precise answers to both these questions.
In addition, we show that when A; is odd, Q ;̂ is m-panconnected, for rn = !] i i*lzi l t2^.
and (A; — l)-pancychc (these bounds are optimal). We also strengthen the results
in [82, 163] by introducing a path-shortening technique, called progressive short­
ening, and show that the construction of paths using this technique enables us to
efficiently construct paths in a distributed fashion and so solve a problem relating
to the distributed simulation of linear arrays and cycles in a parallel machine whose
interconnection network is Q^, even in the presence of a faulty processor (even in
Q2, the solution to this problem is not possible using the paths constructed in [163]).

Many structural properties of A:-ary n-cubes are known, but of particular rele­

vance for us is that a A-ary n-cube is vertex-symmetric Throughout, we assume

that addition on tuple elements is modulo k.

It is proven in [163] that Q2 is bipanconnected and (edge-) bipancyclic; however,

as to whether Q^, for n > 3, is bipanconnected or bipancyclic was left as an open

question. However, in relation to this question, it was proven in [82] that Ql is

edge-pancyclic, for all n > 2.

Let u and v be distinct vertices of Q'^ and let p be a path joining u to f of length

m, where m — d{u,v) is even. Suppose that there are paths Pd.{u,v), Pd{u,v)+2, • • •, Pm =

p such that:

• the path pi joins u and v and is of length i, for each i = d{u, v),d[u, v)-\-2,... ,m

• for each i = d{u, v), d{u, v) + 2,... ,m - 2, the path pi+2 is of the form

U = U o , U i , . . . ,Ui+2 - V

with Pi of the form

U ^ Uo,Ui, . . . , Uj,Uj+3,Uj+4, • • • , Ui+2 = V,

for some j G { 0 , 1 , . . . , i — 1}.

Then we say that p can be progressively shortened to obtain paths of all lengths

from {/ : / = d{u, v), d{u, v) + 2,... ,m}. As we shall see, it will be crucial that our

paths can be progressively shortened.

4.2. Existing bipanconnectivity results 66

In the next section, we improve the constructions from [163] in Section 3,

we look at the general case when k is even, and in Section 4 when A; is odd. We

outline our application in Section 5 before presenting our conclusions in Section 6.

4.2 Existing bipanconnectivity results

The result from [163] that Q2 is bipanconnected (irrespective of whether A; is odd

or even) is important to our forthcoming results (as the base case of inductions).

However, we need to refine the proof from [163] that Q2 is bipanconnected in order

to obtain a stronger result, involving progressive shortening, and so that we can

apply this stronger result later. We remark that it is also crucial that any residual

vertex is as stated in Proposition 4.2.1. Our stronger result is as follows.

Proposition 4.2.1 Let k >3 and let u and v he distinct vertices of

1. If k + d{u, v) is odd then there exists a hamiltonian path joining u and v such

that this path can be progressively shortened to obtain paths of all lengths from

{diu,v) + 2i:0<i< ("'-^'f-^-))}.

2. If k + d{u,v) is even then there exists an almost-hamiltonian path joining u

and V such that the residual vertex is adjacent to v and such that this path can

be progressively shortened to obtain paths of all lengths from {d{u, v)-\-2i : 0 <
^ (fc^-2-d(u,v))-|

In particular, is bipannconnected.

Before we prove Proposition 4.2.1, let us illustrate why the proof from [163] that

Q2 is panconnected will not suffice. Consider Case (a) of Fig. 2 in [163] (in this case,

A: is even). We have reproduced this figure in Fig. 4.1(a). The authors claim (in

a statement prior to Theorem 3) that the almost-hamiltonian path joining u and v

can be shortened to a path of length d{u, v) so that paths of lengths d{u, v), d{u, v) +

2,... ,k'^ - 2 are obtained, and this is indeed the case. However, regard the path

from It to V as a curve on the plane and close this curve as shown in Fig. 4.1 with the

dotted line. No matter how we progressively shorten the almost-hamiltonian path.

4.3. The general case when k is even 67

u

i •

1 • ^
f "V

n

V

Figure 4.1: Case (a) of Fig. 2 of [163] and its correction.

the residual vertex (shaded in grey) must lie inside the closed curve, and hence we

cannot shorten the almost-hamiltonian path to a path of length d{u, v) (as any such

path must lie within the top-left shaded grid). We have corrected this deficiency in

Fig. 4.1(6).

Similarly, the cases in Fig. 2(c) and Fig. 3{d) in [163] are deficient in the same

way, and have been reproduced in Fig. 4.2(a,c). These deficiencies are corrected in

Fig. 4.2(6,ci). Thus, Proposition 4.2.1 follows (as all other cases in [163] are such

that the paths can be progressively shortened).

4.3 The general case when k is even

We begin by examining whether Q'^ is bipanconnected or not when k is even (we

reiterate that Q'^ is bipartite when k is even). As remarked earlier, this question was

posed as an open problem by Wang, An, Pan, Wang and Qu in [163]. We answer

this question precisely.

Theorem 4.3.1 Let k > 4 and n > 2, with k even, and let u and v be distinct

vertices of Q'^.

1. / / d{u,v) is odd then there exists a hamiltoman path joining u and v such

that this path can be progressively shortened to obtain paths of all odd lengths

between d{u,v) and fc" — 1, inclusive.

4.3. T h e general case when k is even 68

u

r S

V

(a)

V

(A)

u

V

ic) (d)

Figure 4.2: Other cases f rom [163] and their corrections.

2. If d{u,v) is even then there exists an almost-hamiltonian path joining u and

V such that the residual vertex is adjacent to v and such that this path can be

progressively shortened to obtain paths of all even lengths between d{u, v) and

fc" — 2, inclusive.

In particular, Q'^ is bipannconnected.

Proof: The vertex-symmetry of means that, w.l.o.g., we may suppose that

u = (0 , 0 , . . . ,0) and v = {vn,Vn-i,Vn-2, • • • ,vi), where Vi < | , for ^ = 1, 2 , . . . , n ,

and where v ^ {vn, 0 , . . . , 0). For brevity, denote Vn as a.

Let = (z, 0 , 0 , . . . , 0), for 0 < z < A ; - 1 ; hence, u = u° and v ^ u". Part i t ion Q'^^

over dimension n to obtain (5n(0), • • •, Qni^ ~ We proceed by induction

on n. There are two cases: d{u°-,v) is odd; and d{u^,v) is even.

Case (z) d{u",v) is odd.

So, by the induction hypothesis applied to there exists a hamiltonian path

Pa f rom u" to V in (5^(a) which can be progressively shortened to obtain paths of

4.3. T h e general case when k is even 69

all odd lengths between v) = d{u, v) - a and - 1, inclusive. Note that if
the parity of v is even (resp. odd) then a is odd (resp. even).

Denote the vertex (z, i ; „ _ 2 , . . . , ui) as v\ for z e { 0 , 1 , . . . , A; - 1}; so, u = f" .

For each i e { 0 , 1 , . . . , /c - 1} \ { a } , let pi G Qni'') be obtained f rom pa by setting the

first component of every vertex of Pa sX i. Note that corresponding vertices of the

paths PQ,PI,. .. ,Pk-\ induce cycles of length k in Q^, e.g., 'u°,u\ ... ,u'^~^,u° is a

cycle of length k, as is . . . ,v''~^,v°. In particular, the edges of these induced

cycles and the edges of the paths pQ,p\,... ,Pk-\ yield a x fc""' grid, wi th rows

1,2, . . . , A ; and columns 1,2, . . . , m , where m = /c"~^, w i t h 'wrap-around' column

edges. Refer to the vertices by their row-column co-ordinates in this grid; so, for

example, u is the vertex (1,1) and v is the vertex (a + l , m) .

Sub-c£Lse {i.a) Suppose that a is even (and so v lies on odd row a-I-1). Consider the

path p f r om u to v defined as:

(l , l) , (2 , l) , . . . , (f c , l) , (A ; , 2) , (A , - - l , 2) , . . . , (l , 2) , (l , 3) , (2 , 3) , . . . , (f c , 3) ,

(A ; , 4) , (A ; - l , 4) , . . . , (l , 4) , . . . , (l , m - 3) , (2 , m - 3) , . . . , (/ c , m - 3) ,

{k,m-2).,{k- l , m - 2) , . . . , (l , m - 2) , (l , r n - l) , (/ c , m - l) , { k - 1,

m - I),... ,{a + 2,m- l),{a + 2,m),{a + 3,m),... ,{k - l,m), {k,m),

(l , m) , (2 , m) , (2 , m - l) , (3 , m - l) , (3 , m) , (4 , m) , (4 , m - 1) , . . . ,

(a ,m) , (a , m - 1), (a - f l , m - l),{a + l . m) .

The path p is hamiltonian and can be visualized as in Fig. 4.3(a). Furthermore, i t

can t r iv ia l ly be progressively shortened to obtain paths of all odd lengths between

^"•-1 - I j f . a and fc" - 1 (inclusive), and so that the path of length - 1 - I - a is

the path po in Q^iO), f rom u to extended w i t h the path in column m of length a

to vertex v. By above, the path p° can be progressively shortened to obtain paths

of all odd lengths between d(u, t ;°) = d{u,v) - a and /c"~^ - 1; the result follows.

Sub-case {i.b) Suppose that a is odd (and so v lies on even row a-l-1 > 2). Consider

the path p f rom u to v defined as:

(1,1), (2 , 1) , . . . , {k, 1), {k,2), {k - 1 ,2) , . . . , (1,2), (1,3), (2 , 3) , . . . , (fc,3),

(f c , 4) , (A ; - l , 4) , . . . , (l , 4) , . . . , (l , m - 3) , (2 , m - 3) , . . . , (/ c , m - 3) ,

4.3. T h e general case when k is even 70

odd length

1 r
2 : ^ m -3 m

' 1

2
u

3

4 4
1

odd length

1 2 3 4 m-3 m-2
m-l m

2

3
even
length 4

u

m -3 m-2 .

1
odd

length

a

0+2

k-\

k

m 0+1

0+2
• ... " " " " . . . - - odd ... - - ... even

l±tt tffl'rrtitt
(a) (b)

Figure 4.3: The different cases when d{u'',v) is odd.

{k,m- 2),{k~l,m-2),..., - 2), (l , m - 1), {k,Tn- 1),

(A.- - l , m - 1) , . . . , (a + 2 , m - 1), (a + 2 , 7 7 i) , (a + 3 , m) , . . . , (fc - l , m) ,

{k, m) , (1 , m) , (2, m) , (2, m - 1), (3, m - 1), (3, m) , (4, m) . (4, m - 1) , . . . ,

{a,m - 1), (a ,m) , (a + l , m)

(note that the vertex (a + l , m - 1) does not appear on p).

The path p is almost-hamiltonian and can be visuahzed as in Fig. 4.3(6). Fur­

thermore, i t can t r iv ia l ly be progressively shortened to obtain paths of all even

lengths between /c""' - 1 + a and /c" - 2, and so that the path of length - 1 + a

is the path po in Qni^)-, f rom u to '(;°, extended w i t h the path in column m of length

a f rom v^tov. By above, the path p° can be progressively shortened to obtain paths

of all odd lengths between d{u,v°) and fc""^ — 1. As d{u,v) = d{u,v'^) + a and the

vertex (a + 1, m — 1) is adjacent to v, we obtain the required result.

Case (^^) d{u°-,v) is even.

So, by the induction hypothesis applied to (3^(a), there exists an almost-hamiltonian

path Pa f rom t i " to v in Q^ia) which can be progressively shortened to obtain paths

of all even lengths between diu'^.v) = d{u,v) - a and /c"~^ - 2, and so that the

residual vertex of the almost-hamiltonian path Pa is adjacent to v. Note that if the

parity of v is even (resp. odd) then a is even (resp. odd).

For each i E { 0 , 1 , . . . , A; — 1} \ { a } , let pi E Q^(^) be obtained f rom Pa by setting

the first component of every vertex of pa at i. As was the case in Case (z), corre-

4.3. T h e general case when k is even 71

spending vertices of the paths pQ,pi,..., Pfe_i induce cycles of length kinQ'^. In par­
ticular, the edges of these induced cycles and the edges of the paths pQ,pi,... ,pk-i
yield a fc x (A;"~^ — 1) grid, w i t h rows 1,2,... ,k and columns 1 ,2 , . . . , m — 1, where
m = A;"~\ w i t h 'wrap-around' column edges. Furthermore, i f we denote the residual
vertex of pi in Qni^) by then there is an edge {v\ r*) in Q'^, for i = 0 , 1 , . . . , /c - 1;
moreover, r ° , r \ . . . , r ' ^ ~ \ r ° is a cycle (this is why we focus on the adjacency rela­
tionship between the residual vertex and the vertex v, as in the statement of the
result). Thus, we have a k x m grid w i t h 'wrap-around' column edges, just as we
had in Case (z); as before, we refer to the vertices as row-column pairs.
Sub-case {ii.a) Suppose that a is even (and so v lies on odd row a + 1 > 1 and on
column m — 1). Consider the path p f rom u to v defined as:

(1,1), (2,1) (fc, 1), (A:, 2), (/ c - 1 , 2) , , . . , (1,2), (1,3), (2 , 3) , . . . ,

(/ c , 3) , (f c , 4) , (A , - - l , 4) , . . . , (l , 4) , . . . , (l , m - 3) , (2 , m - 3) , . . . ,

{k,m- 3), {k,m- 2), {k,m- 1), {k,m),{k - 1, m) , . . . , (a-h 2, m) ,

(a 2 , m - 1), (a -h 3 ,m - 1) , . . . , (A; - l , m - 1), (/c - l , m - 2),

(f c - 2 , m - 2) , . . . , (l , m - 2) , (l , m - l) , (l , m) , (2 , m) , (2 , m - 1),

(3 , m - l) , (3 , m) , (4 , m) , (4 , m - 1) , . . . , (a, m) , (a, m - 1), (a + l , m - 1)

(note that the vertex (a -I - l , m) does not appear on p). The path p is almost-

hamiltonian and can be visualized as in Fig. 4.4(a). Furthermore, i t can t r ivial ly be

progressively shortened to obtain paths of all even lengths between k"-"^ - 2 +a and

A;" - 2, and so that the path of length k"^'^ - 2 - f a is the path po in Q^{0), f rom u to

v^, extended w i t h the path in column m - 1 of length a f rom v° to v. By above, the

path p° can be progressively shortened to obtain paths of all even lengths between

d{u, and - 2. As d{u, v) = d{u, v°) + a and the vertex (a - I - 1 , m) is adjacent

to V, we obtain the required result.

Sub-case {li.b) Suppose that a is odd (and so v lies on even row a -f- 1 > 2 and on

column m - 1). Consider the path p f rom u to v defined as:

(l , l) , (2 , l) , . . . , (A ; , l) , (A : , 2) , (f c - l , 2) , . . . , (l , 2) , (l , 3) , (2 , 3) , . . . ,

(/ c , 3) , (f c , 4) , (A : - l , 4) , . . . , (l , 4) , . . . , (l , m - 3) , (2 , 7 7 i - 3) , . . . ,

4.3. T h e general case when k is even 72

odd length

1 2 3 4 m-2 m-2 m-l m
1 o -

odd length

2

3

4

a

a+l

a+2

k-]

1
- f

1 2 3 4 m-3 m-2 m-l
1 O -

2

3
even

t length 4 —
odd

length

odd
I length

a

a+l

a+2

^̂^̂^̂^̂^̂^̂^̂^ ^^^^^^^^^^^ ĵ i^ i ig i i i ^̂^̂^̂^̂^̂^̂ ^^^^^^^^^^^j ICll

even
length

Figure 4.4: The different cases when d{u°',v) is even.

{k,m-3),{k,m-2),{k- 1, m - 2) , . . . , (1 , m - 2), (1 , m - 1),

(l , m) , (2 ,m) , (2 ,m - 1), (3 , m - 1), (3 ,m) , (4 ,m) , (4 , m - 1) , . . . ,

(a , m - 1), (a, m) , (a + l , m) , (a + 2 , ?n) , . . . , (A; - l , m) , (/c,m),

{k,m - l),{k - l , m - l) , . . . , (a + 2 , m - l) , (a + l , m - 1).

The path p is hamiltonian and can be visualized as in Fig. 4.4(6). Furthermore,

it can t r iv ia l ly be progressively shortened to obtain paths of all odd lengths between

^ n - i _ 2 + a and A;" — 1, and so that the path of length A;"~^ — 2 + o is the path po in

(5^(0), f rom u to v^, extended wi th the path in column m — 1 of length a f rom v° to

V. By above, the path p° can be progressively shortened to obtain paths of all even

lengths between d{u,v°) = d{u,v) — a and k'^"^ — 2; thus, we obtain the required

result.

A l l that remains is to deal wi th the base case of the induction. However, the

base case is handled by Proposition 4.2.1. •

The following is an immediate corollary of Theorem 4.3.1.

Coro l lary 4.3.2 Let k > 4 and n > 2, with k even. Q^^ is edge-bipaiicyclic.

4.4. T h e general case when k is odd 73

4.4 The general case when k is odd

We now examine whether Q'^ is bipanconnected when A; is odd. As remarked earlier,

this question was posed as an open problem by Wang, A n , Pan, Wang and Qu

in [163]. We answer this question precisely; in fact, we prove even more as we shall

see later.

T h e o r e m 4.4.1 Let k > and n > 2, with k odd, and let u and v he distinct

vertices of Q^.

1. / / d{u,v) is even then there exists a hamiltoman path joining u and v such

that this path can be progressively shortened to obtain paths of all even lengths

between d{u,v) and A;" — 1, inclusive.

2. / / d{u, v) is odd then there exists an almost-hamiltonian path joining u and v

such that the residual vertex is adjacent to v and such that this path can be

progressively shortened to obtain paths of all odd lengths between d{u, v) and

A'" — 2, inclusive.

In particular, is bipannconnected.

Proof: The proof is very similar in structure to that of Theorem 4.3.1 and we

adopt the exact same notation as in that proof. Again, we proceed by induction on

n and there are two cases, according to whether d{u°', v) is odd or even.

Case {i) d{u°',v) is even.

So, by the induction hypothesis, there exists a hamiltonian path pa f rom u° to v

in Qn{o) which can be progressively shortened to obtain paths of all even lengths

between d{u'^,v) = d{u,v)-a and A:"~^ - 1 , inclusive. As in the proof Theorem 4.3.1,

the paths p o , P i , . . . ,pk-\ yield a A; x A;""' grid, w i t h rows 1 ,2 , . . . , A; and columns

1,2, . . . , m , where m = A;"" \ w i th 'wrap-around' column edges.

Sub-case {i.a) Suppose that a is even (and so v lies on odd row a - I - 1 > 1 and on

column m). Consider the path p f rom u to f defined as:

(l , l) , (2 , l) , . . . , (A ; , l) , (^ ' , 2) , (A - - l , 2) , . . . , (l , 2) , (l , 3) , (2 , 3) , . . . , (A - , 3) ,

(^•,4), (fc - 1 ,4) , . . . , (1 , 4) , . . . , (A;,m - 3), [k - 1,m - 3) , . . . , (l , m - 3),

4.4. T h e general case when k is odd 74

even length .
1 2 3 4 m-3 m-2 m-l m

1 0-

even length .

2

3

4

a

ff+l

fl+2

k-\

1 2 3 4 m-3 m-2 m-l m
I O-

2

3
even
length 4

o+l

odd
length

a+2
even
length

I I I 1 lengtn | I I 1 I I I I

1 1 I T 1 k I 1 I I- I I I I ^

odd
length

(a) (A)

Figure 4.5: The different cases when d{u'^,v) is even.

(1 , m - 2), (2, m - 2) , . . . , {k, m - 2), {k,m- 1), {k,m), {k - 1, m) ,

[k - l,m - I), {k -2,m - 1), {k - 2 , m) , . . . , (a - I - 2 , m) , (a -H 2 , m - 1),

(a - I - 1, m - 1), (a , m - 1) , . . . , (1 , m - 1), (1 , m) , (2, m) , . . . , (a + 1, m) .

The path p is hamiltonian and can be visualized as in Fig. 4.5(a). Similarly to as

in the proof of Theorem 4.3.1, p can be progressively shortened to obtain paths of

all even lengths between d{u,v) and /c" — 1.

Sub-case {i.b) Suppose that a is odd (and so v lies on even row a -t- 1 > 2 and on

column m) . Consider the path p f rom u to v defined as:

(1,1), (2 , 1) , . . . , {k, 1), {k, 2), (A; - 1, 2) , . . . , (1 , 2), (1 , 3), (2, 3) , . . . , {k, 3),

(A; ,4) , (A;- l , 4) , . . . , (l , 4) , . . . , (/ c , m - 3) , (f c - l , m - 3) , . . . , (l , m - 3) ,

(l , m - 2), (2 , m - 2) , . . . , {k,m- 2), {k,m - 1), (fc,m), {k - l , m) ,

{ k - l , m - l) , { k - 2 , m - l),{k - 2,m),{k - 3,m),{k - 3,m - 1) , . . . ,

(a 4- 2 , m - 1), (a -h l , m - 1), (a ,m - 1), . . . , (l , m - 1), (l ,7n) ,

(2 , m) , . . . , (a - t - l , m)

(note that the vertex (a - I - 2 ,m) does not appear on p). The path p is almost-

hamiltonian and can be visualized as in Fig. 4.5(6). Similarly to as in the proof of

Theorem 4.3.1, p can be progressively shortened to obtain paths of all odd lengths

between d{u, v) and /c" — 2.

4.4. T h e general case when k is odd 75

Case {li) d{u°-,v) is odd.

So, by the induction hypothesis, there exists an almost-hamiltonian path pa f rom

•u" to V in Qn{o.) which can be progressively shortened to obtain paths of all odd

lengths between (i (u " , f) = d{u,v) - a and - 2, and so that the residual vertex

of the almost-hamiltonian path Pa is adjacent to v. As in the proof Theorem 4.3.1,

the paths p Q , p i , . . . , Pk-i and the residual vertices yield a A; x /c"~^ grid, w i th rows

l , 2 , . . . , f c and columns l , 2 , . . . , 7 n , where m - w i t h 'wrap-around' column

edges.

Sub-case {ii.a) Suppose that a is odd (and so v lies on even row a + 1 > 2 and on

column m — 1). Consider the path p f rom u to v defined as:

(1,1) , (2 , 1) , . . . , (A;, 1), (A;, 2), (A : - 1 , 2) , . . . , (1,2) , (1,3), (2, 3) , . . . , (/c, 3),

(A , 4) , (A ; - l , 4) , . . . , (l , 4) , . . . , (/ c , T n - 3) , (A , m - 2) , (A ; - l , m - 2) ,

(A; - 1, m - 3) , . . . , (a - f 2, m - 3), (a + 2, m - 2), (a + 1, m - 2),

(a + 1, m - 3), (a, m - 3), (a, m - 2) , . . . , (4, m - 2), (4, m - 3),

(3 , m - 3), (3 , m - 2), (2 ,m - 2), (2 ,m - 3), (l , m - 3), (l , m - 2),

(l , m - l) , (A - , m - 1) , (A - l , m - 1) , . . . , (a + 2, m - 1), (a + 2, m) ,

(o + 3, m) , . . . , (fc, m) , (1 , m) , (2, m), (2, m - 1), (3, m - 1), (3, m) ,

(4 ,m) , (4 , m - 1) , . . . , (a ,m - 1), (a, m) , (a 4- l , m) , (a - I - l , m - 1).

The path p is hamiltonian and can be visualized as in Fig. 4.6(a). Similarly to as

in the proof of Theorem 4.3.1, p can be progressively shortened to obtain paths of

all even lengths between d{u,v) and A;" — 1.

Sub-case {li.b) Suppose that a is even (and so v lies on odd row a -f- 1 > 1 and on

column m - 1). Consider the path p f rom u to i ; defined as:

(1,1), (2 ,1) , . . . , (fc, 1), (A;, 2), (^ - 1, 2) , . , . , (1 , 2), (1 , 3), (2 , 3) , . . . , (A:, 3),

(A, 4), (fc - 1 ,4) , . . . , (1 , 4) , . . . , (A, m - 3), (A; - 1, m - 3) , . . . , (1 , m - 3),

(l , m - 2), (l , m - 1), (l , m) , (2 ,m) , (2 , m - 1), (2 ,m - 2), (3,7n - 2),

(3 , m - l) , (3 , m) , (4 , m) , (4 , m - l) , (4 , m - 2) , . . . , (a , m) , (a , m - 1),

(a, m - 2), (a + 1, m - 2), (a + 2, m - 2) , . . . , ((A:, rn - 2), /c, m - 1),

4.4. T h e general case when k is odd 76

even length . even length .

1 2 3 ^ \ m -3 m ^ m-l m

2
u

3 — ••• —

4 1 1 H H r - f
a 1 I 1 L-1 H 1

+ 1

+2

— ••• — 1 V

1 2 3 4 m-3 m-2 m-l m
I O-

2

3
odd

length 4

a

o+l

a+2

i - l

odd
length

i 1—1 1- i i k-\ I—1—i—i-
I I i I * k 1 I

even
length

even
length

Figure 4.6: The different cases when d(u° , t ;) is odd.

(f c , m) , (A ; - l , m) , (/ c - l , m - l) , (A ; - 2 , m - l) , . . . , (a + 2 ,m) ,

(a + 2 , m - l) , (a + l , m - 1)

(note that the vertex (a + l , r n) does not appear on p). The path p is almost-

hamiltonian and can be visualized as in Fig. 4.6(6). Similarly to as in the proof of

Theorem 4.3.1, p can be progressively shortened to obtain paths of all odd lengths

between d{u, v) and A;" — 2.

However, the base case is handled by Proposition 4.2.1. •

The following is an immediate corollary of Theorem 4.4.1.

Coro l lary 4.4.2 Let k > 3 and n > 2, with k odd. is edge-bipancyclic.

As remarked earlier, bipanconnectivity and bipancyclicity are concepts which

make most sense in the context of bipartite graphs, such as the graphs Q^, for A;

even. However, when k is odd, Qj; is not biparti te and i t is possible that odd cycles

might exist, as well as odd and even length paths between vertices u and v. As we

shall see, this is indeed the case but not universally.

Henceforth, A; is odd. Consider the vertices u = (0 , 0 , . . . ,0) and v = {vn, f^n- i ,

. . . , u i) of Q^, where (as usual) we assume w.l.o.g. that < for z = 1 ,2 , . . . , n .

Consider any path f rom u to v that does not use any 'wrap-around' edge, i.e., an

edge where the zth component of one incident vertex is A: - 1 and where the zth

component of the other incident vertex is 0, for some z. Such a path must alternate

4.4. T h e general case when A: is odd 77

between odd parity and even parity vertices; thus, such paths are either all of even
length or all of odd length (depending upon whether d{u, v) is even or odd). Suppose
that d{u, v) is odd (and so all such paths are of odd length). Let i be such that Vi is
maximal f rom amongst {vn, V n - i , • • • Any path f rom u to v of length at most

Vn + ... -\- Vi+i + {k - Vi - I) + Vi^i - I - . . . - I - ui = d{u, v) + k - 2vi - I

cannot use a wrap-around edge and so must be of odd length. Consequently, there

are no even length paths f rom u to u of length less than d{u,v) + k — 2vi. Identical

reasoning implies that if d{u, v) is even then there are no odd length paths f rom u

to V of length less than d{u,v) + k — 2vi. Consequently, we have a lower bound on

the length of a shortest path, joining u and v and of parity different f rom that of

d{u, v).

Choose the vertex v of to be such that = 1 and Vj = 0, for j = 1, 2 , . . . , n —

1. Thus, there exists a vertex v such that d[u, v) is odd and there are no paths joining

u and V of even length less than d{u, v) + k — 2. There clearly also exists a vertex

v' such that d{u,v') is even and there are no paths joining u and v' of odd length

less than d{u,v) + k - 2 (for example, choose v' = (1 , 1 , 0 , . . . , 0)). Consequently, as

we are interested in general statements concerning all pairs of distinct vertices f rom

Q n , we shall only look for even (resp. odd) length paths joining u and v of length

at least d{u,v) + k - 2, when d{u,v) is odd (resp. even).

T h e o r e m 4.4.3 Let k > 3 and n > 2, with k odd, and let u and v he distinct

vertices of Q ^ . There are paths joining u and v of all lengths in {i : d{u, v) + k — 3 <

i < k^ - 1}. Furthermore, this result is optimal m that there exist distinct vertices

u and v of Q'^^ for which d{u,v) is odd {resp. even) and there are no even-length

{resp. odd-length) paths joining u and v of length less than d{u, v) + k — 2.

Proof: The proof is very similar in structure to that of Theorem 4.4.1 and we

adopt the exact same notation as in that proof (and in the proof of Theorem 4.3.1).

There are two cases, according to whether d{u°-,v) is odd or even. Given the earlier

proofs, we are much briefer w i th our arguments here.

Case {i) d{u°-,v) is even.

4.4. T h e general case when k is odd 78

even length . even length .

•

i
fl+l

fl+2

A-1

k

m
u

1
odd

length

o+l

0+2
• I I I I I I I even i i i • i • • • od
• . . • • • • I length • • • len tttt ttfli :tt±± ttfli

(a) (A)

odd
length

Figure 4.7: The different cases when d{u°-,v) is even.

By Theorem 4.4.1, there exists a hamiltonian path Pa f rom to v in Q'^{a) which

can be progressively shortened to obtain paths of all even lengths between d{u°,v) =

d{u,v) — a and A,-""^ — 1, inclusive. As in the proofs of Theorems 4.3.1 and 4.4.1,

the paths po,P\, • • • ,Pk-i yield a A; x A"~' grid, w i th rows 1 ,2 , . . . , A; and columns

1, 2 , . . . , m , where m = k"'~^, w i t h 'wrap-around' column edges.

Sub-case [i.a) Suppose that a is even (and so v lies on odd row a - I - 1 > 1 and on

column m). Bui ld the path p as depicted in Fig. 4.7(a). I t is easy to see that p has

length — 2 and can be progressively shortened to obtain paths of all odd lengths

between (A; - 1) - I - d{u'',v) + a - I - 1 = d{u,v) + k and A;" - 2 (shorten so that the

resulting sub-path of length A;""^ - 1 lies on row A;).

Sub-case (i.b) Suppose that a is odd (and so v lies on even row a -H 1 > 2 and on

column m) . Bui ld the path p as depicted in Fig. 4.7(6). I t is easy to see that p has

length A;" - 1 and can be progressively shortened to obtain paths of all even lengths

between (A; - 1) -H diu"", v) + a + I = d{u, u) A and A:" - 1.

Case (n) d{u°^,v) is odd.

By Theorem 4.4.1, there exists an almost-hamiltonian path Pa f rom to v in Q^(a)

which can be progressively shortened to obtain paths of all odd lengths between

d(u°-,v) = d{u,v) — a and A;"~^ — 2, inclusive, and so that the residual vertex is

adjacent to v. As before, the paths p o , P i , . . . , Pk-\ and the residual vertices yield a

k X A;"~^ grid, w i th rows 1, 2 , . . . , A; and columns 1, 2 , . . . , m , where m = fc"~\ wi th

4.4. T h e general case when A; is odd 79

even length . even length .

1 2 3 4 m-3 m-2 m-1
1 O -

0+2

1 2 3 4 m-3 m-2 m-1
1 O -

odd
length 4 m a+2

even
length

I I I I I I I I odd I • I 1 1 1 1 ! even

(a) (b)

Figure 4.8: The different cases when d[u°-,v) is odd.

'wrap-around' column edges.

Sub-case {ii.a) Suppose that a is odd (and so v lies on even row a - I - 1 > 2 and on

column m — 1). Bui ld the path p as depicted in Fig. 4.8(a). I t is easy to see that

p has length A'" — 2 and can be progressively shortened to obtain paths of all odd

lengths between {k - \) + d('u", v) + a+\= d{u, v) + k and A;" - 2.

Sub-case (ii.b) Suppose that a is even (and so v lies on odd row a -f- 1 > 1 and on

column m - 1) . Bui ld the path p as depicted in Fig. 4.8(6). I t is easy to see that

p has length A;" — 1 and can be progressively shortened to obtain paths of all even

lengths between (A; - 1) 4- ci(u", v) + a + I ^ d{u, v) + k and A;" - 1.

In order to complete the construction of our paths, we deal w i t h some special

cases. W.l.o.g., assume that f „ 7̂ 0. There is t r iv ia l ly a path of length

(A; - Vn) + Vn-i + .. • + vi - d{u, v) + k - 2vn < d{u, v) + k - 2

joining u and v. We can easily lengthen this path to obtain a path of length d{u, v) +

k — 2 jo ining any distinct vertices u and v. Hence, no matter which vertex v is,

Theorem 4.4.1 yields paths as in the statement of the result. Opt imal i ty follows by

the argument presented prior to the statement of the result. •

Note that pu t t ing A = 3 in Theorem 4.4.3 yields the result f rom [82] that Ql is

edge-pancyclic, and also resolves the question for arbitrary A', as was posed in [82 .

The following corollary is immediate, given the fact that the diameter of Q^, when

A; is odd, is

4.5. A n appl icat ion 80

Coro l lary 4.4.4 Let k > 3 and n > 2, with k odd. The k-ary n-cube is m-
panconnected, for m = "(^-iH-^fc-e^ _ lypQ^icyclic.

As remarked earlier, the bounds in Corollary 4.4.4 are optimal.

4.5 An application

We give here the outline of an application where we require our paths to be progres­

sively shortened and where alternative shortening methods w i l l not suffice.

Consider a parallel machine whose underlying interconnection network is a A;-ary

n-cube, and where this machine is required to solve problems specifically designed

for a cycle of processors (amongst other problems), w i t h the number of processors

involved in the cycle being variable. Moreover, there is known to be a faulty pro­

cessor in the machine and this faul ty processor cannot be used in any embedded

cycle. Furthermore, the location of the fault is not known and any cycle must be

constructed in a distributed fashion, through message-passing between processors.

For simplicity, suppose that k is even and n = 2; consequently, any cycle we

construct must have even length. We begin our construction by processor (0, 0)

at tempting to construct a hamiltonian path to processor (0,1) according to the

construction in Proposition 4.2.1. Actually, the path is constructed as in Case 1.3

of Theorem 1 of [163]. I t is important to note that the constructions in Proposi­

t ion 4.2.1 (and Theorems 1 and 3 of [163]) are of such a uniform nature that the

processor at the head of the path constructed so far can calculate in constant t ime

the name of the next processor on the path, and can send a message to this pro­

cessor thus extending the path constructed so far. I f there were no faults then this

construction would terminate w i t h a hamiltonian path f rom (0,0) to (0,1) laid out

in the A-ary 2-cube. However, the construction wi l l halt when the faulty processor

is encountered (we assume that the processor immediately before the fault on the

constructed path can detect that the next processor is faul ty) .

Let p be the processor that detects that the faulty processor is the next processor

on the path, and suppose that this faulty processor is / = (z, j) . The processor p

sends a message to processor s = (z - I - 1, j) (over at most 4 hops, w i th addition

4.6. Conclus ions 81

modulo A;) that i t should use the construction of Proposition 4.2.1 to embark on
the construction of a path of length A;̂ - 2 to the processor (z, j - 1). Note that
the path, as shown in Fig. 4.2(6) (that is, the amended construction of a case
f rom [163]), avoids the faul ty processor / . We reiterate that the uniform nature of
the construction is such that the processor at the head of the path constructed so
far can calculate in constant time the name of the next processor on the path, and
can send a message to this processor thus extending the path constructed so far.
Having reached the processor {i,j — 1), we actually truncate the path at processor
t = {i l , j — I). Thus, we have a path of length A;̂ — 3 f rom processor s to t,
avoiding processor {i,j — 1) and the faulty processor / . Moreover, this path can be
progressively shortened so as to obtain any odd length path (of length at most A;̂ —3)
joining s to s (and avoiding /) . Furthermore, again because of the uniformity of the
construction and also the uniformity of the progressive shortening, this progressive
shortening can easily be completed by message-passing between the processors. In
fact, message-passing can be used so that every processor q on the path computes
a list of triples of the form {q'^,q~,i) detaihng that q appears on a path of length
I f rom s to i so that that the processor q' (resp. g"*") is the next processor on this
path moving towards s (resp. t). The existence of the edge (s, t) gives our embedded
fault-avoiding cycles of varying lengths.

The above construction can be generalized to an analogous construction of fault-

avoiding paths and cycles in where there is a faul ty processor. As we stated

above, we have not presented the precise details of this generalization; what suffices

is that the general principle has been presented and any interested reader could

implement the construction if needs be. We envisage that there are many other

applications of progressive shortening but we have chosen not to explore these ap­

plications here.

4.6 Conclusions

In tandem wi th [82,163], we have resolved completely the main questions concerning

panconnectivity, bipanconnectivity, pancyclicity and bipancyclicity for a A;-ary n-

4.6. Conclus ions 82

cube Q^, when A; > 3 and n > 2. In doing so, we have introduced the new concept
of the progressive shortening of a path and shown how this concept can be used to
solve a problem related to the embedding of linear arrays and cycles of processors
in a distributed-memory multiprocessor whose interconnection network is a A:-ary
n-cube and where there is one faulty processor.

As directions for future research, we would like to see more applications of pro­

gressive shortening (and feel that the concept wi l l prove to be more widely appli­

cable). Also, we would like to see results on panconnectivity, pancyclicity, and so

for th , extended to A;-ary n-cubes in which there may be (a l imited number of) faulty

vertices or edges.

Chapter 5

Augmented /c-ary n-cube

In this chapter, we define an interconnection network AQn,k which we call the aug­

mented A-ary n-cube by extending a A:-ary n-cube in a manner analogous to the

existing extension of an n-dimensional hypercube to an n-dimensional augmented

cube. We prove that the augmented A;-ary n-cube AQn,k has a number of attractive

properties (in the context of parallel computing). For example, we show that the

augmented A;-ary n-cube AQn.k- is a Cayley graph (and so is vertex-symmetric); has

connectivity 4n - 2, and is such that we can build a set of 4n — 2 mutually disjoint

paths joining any two distinct vertices so that the path of maximal length has length

at most m a x { (n — 1)A; — (n - 2), A; - I - 7} ; has diameter [| J -f- , when n = 2; and

has diameter at most | (n + 1), for n > 3 and k even, and at most f (n -f-1) 4- ^, for

n > 3 and A; odd.

5.1 Introduction

Hypercubes are perhaps the most well known of all interconnection networks for

parallel computing, given their basic simplicity, their generally desirable topolog­

ical and algorithmic properties, and the extensive investigation they have under­

gone (not just in the context of parallel computing but also in discrete mathemat­

ics in general; see, for example, [139] for some essential properties of hypercubes).

However, a mult i tude of different interconnection networks have been devised and

developed in a continuing search for improved performance, wi th many of these

83

5.1. Introduct ion 84

networks having hypercubes at their roots. Amongst these generahsations of hy-
percubes are fc-ary n-cubes [42], augmented cubes [41], cube-connected cycles [132],
twisted cubes [75], twisted n-cubes [53], crossed cubes [50], folded hypercubes [51],
Mcubes [148], Mobius cubes [103], generalised twisted cubes [33], shuffle cubes [112],
fc-skip enhanced cubes [159], twisted hypercubes [99], supercubes [143], and F i ­
bonacci cubes [88 .

Perhaps the most popular of these generalisations are the fc-ary n-cubes [42 .

Another generalisation of hypercubes are augmented cubes, recently proposed by

Choudum and Sunitha [41] as improvements over hypercubes. Hypercubes and

augmented cubes (of the same dimensions) have the same sets of vertices. However,

whereas the recursive construction of an n-dimensional hypercube is to take two

copies of an (n - l)-dimensional hypercube and jo in corresponding pairs of vertices,

the recursive construction of an n-dimensional augmented cube AQn is to take two

copies of an (n - l)-dimensional augmented cube and as well as joining corresponding

pairs of vertices, pairs of vertices of Hamming distance n — 1 are also joined (that is,

vertices that are different in every component). Choudum and Sunitha show that an

n-dimensional augmented cube AQn- has 2" vertices and n2" edges; has diameter

l^]; has connectivity 2n — 1; is a Cayley graph and so is vertex-symmetric; and has

an 0 (n) time optimal routing algorithm.

In this chapter, and inspired by [41], we extend a A;-ary n-cube in a manner

analogous to the extension of an n-dimensional hypercube to an n-dimensional aug­

mented cube. Our definition of an augmented k-ary n-cube AQn^k, in comparison

w i t h that in [41], is not a straightforward generalisation; however, we believe that i t

does reflect the essence of the extension in [41], and our structural results bear this

out. We give two different definitions of an augmented fc-ary n-cube in Section 5.2

and show that they yield the same interconnection network. In Section 5.3, we

show that an augmented Ar-ary n-cube ^ is vertex-symmetric and, furthermore,

a Cayley graph. I n Section 5.4, we show that an augmented fc-ary n-cube AQn^k

has connectivity 4n - 2, and that we can build a set of 4n - 2 mutually disjoint

paths joining any two distinct vertices so that the path of maximal length has length

at most at most max{{n - l)k - {n - 2),k + 7} . In Section 5.5, we examine the

5.2. B a s i c definitions 85

diameter of the augmented Ar-ary n-cube AQn,k and show that the diameter of the
augmented /c-ary 2-cube AQ2,fc is [| J + f ^ l - We also show that the diameter of
the augmented A;-ary n-cube AQn,k is at most | (n + 1), when n > 3 and k is even,
and at most | (n + 1) + | , when n > 3 and k is odd. Our conclusions are presented
in Section 5.6.

5.2 Basic definitions

We assume throughout that addition on tuple elements is modulo k. Recall the

definit ion of the k-ary n-cube Q^: the vertex set V{Q'^) is { (o n , a n _ i , . . . , a i) :

0 < Oi < /c — 1}; and the edge set E{Q^) is {{u,v) : either Ui — Vi — I ox Ui =

Vi + 1, for some i, and Uj = Vj, for all i ^ j } . Whils t we regard all graphs defined

in this chapter as undirected, our definitions define all edges f rom the perspective

of a given vertex. Thus, in our definition of we define the (undirected) edge

{u,v) twice: once f rom the perspective of u, as the edge {u,v); and once f rom the

perspective of t), as the edge {v.u). The reason we do this is that later we shall define

paths in our graphs and an undirected edge w i l l be regarded differently depending

upon the direction i t is being traversed in the path. The following definition adheres

to this convention.

Defini t ion 5.2.1 Let n > 1 and A; > 3 be integers. The augmented k-ary n-

cube AQn,k has /c" vertices, each labelled by an n-bit str ing (a „ , a „ _ i , . . . , 0]) , wi th

0 < < k - 1, for 1 < i < n. There is an edge joining vertex u— (u„ , u „ _ i , . • . , 'Ui)

to vertex v = {vn,Vn-\, • • • ,Vi) if , and only if:

• Vi = Ui — I (resp. Vi = Ui + 1), for some I < i < n, and vj = uj, for all

1 < j < j 7̂ i', call the edge {u,v) an {i, —l)-edge (resp. an (i ,+l) -eci^e) ; or

• for some 2 < i < n, Vi = Ui — l,Vi-i — ' l i j - i — = U] — 1 (resp.

Vi = Ui + \,Vi-\ = Ui-\ + 1 , . . . , f i = '(ii + 1), = Uj, for all] > i\ call the

edge (u, v) a (< i, —l)-edge (resp. a (< z, -\-l)-edge).

We emphasise that the graph AQn^k is undirected but that edges are labelled differ­

ently, as an {i, -f-l)-edge or as an (z, - l) -edge , for example, according to the perceived

5.2. B a s i c definitions 86

orientation.

The augmented A;-ary n-cube AQn^k can also be recursively defined as follows

(the proof of this fact is a simple induction).

Definit ion 5.2.2 Fix k > 2>. The augmented /c-ary 1-cube ^ Q i . t has vertex set

{ 0 , 1 , . . . , fc - 1} and there is an edge joining vertex u to vertex v if, and only if,

V — u + I ov V = u — I. Fix n > 2. Take k copies of an augmented /c-ary (n — 1)-

cube AQn-i^k and for the zth copy, add an extra number i as the n t h bit of each

vertex (all vertices have the same n t h bit if they are in the same augmented /c-ary

(n — l)-cube). Four more edges are added for each vertex, namely the (n, — 1)-

edge, the (n,-|-l)-edge, the (< n , —l)-edge and the (< n,-l-l)-edge (as defined in

Definit ion 5.2.1).

W i t h respect to the above definition, we refer to the subgraph of AQn^k induced

by the vertices whose first component is i, for some fixed i G {0 ,1 , . . . ,A . -— 1}, as

•^Qli-i k subgraph is clearly a copy of A Q n - i . k) -

Clearly (from the definition of AQn.k)^ when n > 2, AQnM has vertices,

(2n — l) n ' ' edges, and every vertex has degree 4n — 2.

We adopt the following notation wi th regard to identifying specific vertices rel­

evant to a given vertex in AQn,k- Let v = (?;„, . . . , f i) be some vertex of

AQn,k- For each i e { 0 , 1 , . . . , /c - 1} and each j e {1 ,2 . . . , n } , we denote the

vertex [vn,Vn-i, • . . , V j + i , i , V j _ i , . . . , ' i ; i) by v^^ For j E { 1 , 2 , . . . , n } , we refer to the

neighbour (? ; „ , . . . , vj+i, vj + l,Vj_i,... ,Vi) (resp. {vn, Vj+i,Vj - 1, V j - i , . . . , -Ui),

{Vn, Vj + i ,Vj + l, -Uj - i -h 1, . . . , 'Ui + 1), {Vn, Vj+i, Vj - l,Vj_i - I, . . . ,Vi - 1)) aS

V(j^+i) (resp. f^(<j,+i)) '"(<j-i))- can combine our notation as the following

example shows: denotes the vertex obtained by taking the vertex and

fixing its n t h component at 3 whilst leaving all other components as they were.

Paths in graphs are given as sequences of vertices (on occasion, a path might

consist of a solitary vertex). A path in AQn,k niight be specified by the source vertex

and a sequence of labels detailing the edges to be traversed, e.g., the path in AQ^^^

detailed as having the source vertex (0,0,0) and then following the edges labelled

(< 2, +1) , (3, - 1) , (1 , +1) is actually the path (0, 0, 0), (0 ,1,1) , (4 ,1,1) , (4 ,1 ,2) .

5.3. S y m m e t r y 87

AQ2,5

(0,0) r-

(1,0) r

(4,1) (4,2) (4,3) (4,4)^

Figure 5.1: An augmented 5-ary 2-cube.

The augmented 5-ary 2-cube is depicted in Fig. 5.1 where the edges of the

underlying 5-ary 2-cube (that is, the (2,-t-l)-edges, the (2,- l) -edges, the (1,-1-1)-

edges and the (1, - l)-edges) are drawn using narrow pen and the "augmented" edges

(that is, the (< 2, -|-l)-edges and the (< 2, - l)-edges) are drawn using broad pen.

5.3 Symmetry

In this section, we examine AQn,k as to any symmetric properties i t might have. We

begin wi th a useful lemma which wi l l be used to reduce case analyses in subsequent

proofs, and the proof of which is t r iv ia l .

L e m m a 5.3.1 (a) The following are automorphisms of AQn,k-

{i) the mapping taking the vertex (z ; „ , i ; „_ i , . . . ,vi) to {vn - a^, - a „ _ i ,

. . . , - a i) , where (a „ , a „ _ i , . . . , O i) e { 0 , 1 , . . . , - 1 } " is fixed;

(M) the mapping taking the vertex {yn,Vn-\, • • • ,V\) to (ew„, e?;„-i, • • •, £"^1),

where e e { + \, - 1 } is fixed.

(6) For z, j G { 0 , 1 , . . . , / c - 1}, the mapping taking the vertex {i,Vn-\sVn-2-, • • •, f^i)

to (j , f „ _ i , v „ _ 2 , . . . ,^1) is an isomorphism of AQ_^ t. to ^Q^ , , , / , .

(c) The mapping taking the vertex {u, v) to the vertex (w, u) is an automorphism

of AQ2,k-

5.3. S y m m e t r y 88

The property of a graph being vertex-symmetric is important when that graph
is used as an interconnection network for parallel computing, for having a vertex-
symmetric interconnection network makes parallel algorithm design and topological
analysis easier, as well as allowing flexibil i ty in, for example, linear array simulations.

A n immediate corollary of Lemma 5.3.1 is the following.

Coro l lary 5.3.2 The augmented k-ary n-cube / I Q n . t is vertex-symmetric.

Proof: Given vertices u = (u „ , u „ - i , . . . and v — (t ; n , t ' n - i , . . . of AQn.k,

by Lemma 5.3.1, the mapping taking an arbitrary vertex {wn, Wn-i, • • •, Wi) to {wn —

{un — Vn),'Wn-\ — (t tn - i — f n - i) , • • • , — {ui — Vi)) IS an automorphism mapping u

to V. •

However, we can do better. Let F be a finite group and let 5 C F be a set

of generators of F not containing the identity and closed under inversion; that is,

G S whenever s G 5. The simple undirected graph G { r , S) w i th vertex set F

and where two vertices g and h are adjacent if, and only if, gh~^ G 5, is called

the Cayley graph of F (wi th generating set S). Knowledge that an interconnection

network is a Cayley graph not only immediately yields that the graph is vertex-

symmetric but also provides an algebraic description of the graph that wi l l be useful

in, for example, developing routing algorithms.

Let (Zfc)" denote the n-fold Cartesian product of the group (Z^, 0^) , where Zk =

{ 0 , 1 , . . . , A; — 1} and where denotes addition modulo k. Let x = (x„, x„_ i , • • • ,Xi)

G (Zfc)"; so x"^ = {k - Xn, k - ... ,k - Xi).

Propos i t ion 5.3.1 For every n > 1, AQn,k = G { { Z k T , S) , where S is the set

{ (0 , . . . , 0,0, fc - 1, ^ - 1), (0 , . . . , 0,/c - 1,/c - 1,/c - 1) , . . . ,

(fc - 1 , . . . , - 1, - 1), (0 , . . . , 0 ,0 ,1 ,1) , (0 , . . . , 0 , 1 , 1 , 1) , . . . , (1 , . . . , 1,1),

(f c - 1 , 0 , 0 , . . . , 0) , (0 , A ; - l , 0 , . . . , 0) , . . . , (0 , . . . , 0 , f c - 1),

(1 , 0 , 0 , . . . , 0) , (0 , 1 , 0 , . . . , 0) , . . . , (0 , . . . , 0 , 1) } .

Proof: By definition, V{AQn^k) = Z^ x Zfc x . . . x Zfc (repeated n times). Let

u = {un,Un-\, • • • , « !) and V = {vn,Vn-i,- •• , V i) be vertices of AQn,k-

5.4. Connect iv i ty 89

Suppose that u and v are adjacent in AQn,k- So, for some i , one of the following
holds:

1. V= {Un,Un-U • • • , , ©fc l , U i - l , • • • ,Wl)

2. V= {u„,Un-U • • •,Ui+uUi ©fc 1,^,-1 ®/c 1, • . • ,U l ©fc 1)

3. t; = (u „ , u „ _ i , . . . , U i + i , u , ©fc {k - l) , U i _ i , . . . , U i)

4. w = (u „ , u „ _ i , . . . ffifc (A; - l) , U j _ i ©fc (/c - 1) , . . . , w i ©^ (k - 1))

Thus, we have (respectively):

1- wffifc = (u„ ffifc (A; - u „ _ i) , . . . ®fc (A: - U j + i) , u , ©^ (A; - (ui + 1)),

Ui+i ®k [k - Ui+i), ...,uo®k{k-uo))

= (0 , . . . , 0 , A ; - 1 , 0 , . . . , 0) G 5

2. u®kv-^ = { 0 , . . . , 0 , k - l , . . . , k - l) e S

3. u©fc i ; -^ = (0 , . . . , 0,1,0, . . . , 0) e S

4. u ® ^ w - i = (0 , . . , , 0 , 1 , . . . , 1) e 5.

Hence, u ©^ 'f^"'' S 5.

Conversely, suppose that u ©/ , . G 5. So, w ©^ is of the form (0 , 0,1,0,

. . . , 0) or (0 , . . . , 0 , 1 , . . . , 1) or (0 , . . . , 0 , A ; - 1 , 0 , . . . , 0) or (0 , . . . , 0 , A ; - 1 , , . . , A : - 1) .

Hence, for some i, one of the following holds:

1. u = (u „ , . . .,Ui+i,Ui ®k {k - l) , u . i _ i , . . . , u i)

2. V=- {Un,.. .,U^+i,Ui ®k {k - l) , U j _ i ©fe (/C - 1), . . . ,U] ©fc (A,' - 1))

3. V = (u„, . . . ©/c l , U j _ i , . . . , l i i)

4. t; = (u „ , . . . ,u^+i,u,- ©jc l,Ui-i ®/c 1, • • • ,""1 ©fc !) •

So u and v are adjacent in AQn^k- ^

As remarked earlier, (by definition) all Cayley graphs are vertex-symmetric and

so we obtain an alternative proof of Corollary 5.3.2.

5.4 Connectivity

I n this section, we examine the connectivity of AQn,k- By Menger's Theorem (see,

for example, [21]), a graph G = {V, E) has connectivity at least c if , and only if.

5.4. Connect iv i ty 90

given any two distinct vertices of V, there are c vertex-disjoint paths joining them.
Having a high connectivity is a desirable property of any interconnection network
as i t provides fault-tolerance wi th regard to message routing, allows for hot-spots to
be avoided, and allows large messages to be split up into smaller ones and routed in
parallel along vertex-disjoint paths.

We show that K{AQn,k) = 4n — 2, whenever n > 2 and k > 3. We begin by

proving this result for AQ2,k and then for the general case using a proof by induction

(on n) .

5.4.1 The base case of our induction

The base case of our forthcoming induction is provided by the following result.

L e m m a 5.4.1 The connectivity of AQ2,k is 6; that is, n{AQ2.k) = 6.

Proof: We prove our result by constructing 6 disjoint paths joining any two

distinct vertices of AQ2^k- By Lemma 5.3.1, w.l.o.g. we may suppose that our two

given vertices of AQ2.k are u = (0,0) and v - (i j) , where 0 < ' t < j < [| J . For the

case when fc = 3, Lemma 5.3.1 tells us that we need only consider the cases when v

is (1,2) and (2,2). The 6 disjoint paths between (0,0) and (1,2) are as follows:

1. (0,0), (2, 2), (1,2); 4. (0, 0), (0,1), (1 , 2);

2. (0,0), (2,0), (1,2); 5. (0, 0), (1 , 0), (1 , 2);

3. (0 ,0) , (0 ,2) , (1 ,2) ; 6. (0, 0), (1,1), (1 , 2).

The 6 disjoint paths between (0, 0) and (2, 2) are as follows:

1. (0,0), (2, 2); 4. (0,0), (2,0), (2, 2);

2. (0,0), (1,1), (2,2); 5. (0, 0), (1 , 0), (2,1), (2, 2);

3. (0,0), (0,2), (2, 2); 6. (0, 0), (0,1), (1 , 2), (2, 2).

For /c > 3, we have 3 different cases to consider. Recall, 0 < i < j < [| J < k-2.

Case (i) 0 < i < J < Consider the following 6 paths:

5.4. Connect iv i ty 91

(0.*-l

(O j + I)

J*-! , /)

Figure 5.2: T h e 6 disjoint paths when 0 < z < j .

a i : ^, (/c - 1, 0), (fc - 2 , 0) , . . . , (/c - J + z, 0), (/i- - J + 2 - 1, /c - 1), (fc - j + z - 2, -

2) , . . . , (z + l , j + l) , t ;;

as: u , { k - \ , k - 1), (/̂ - 2, A: - 2) , . . . , (j , j) , (j - { j - 2, j) , + l , j) , v ;

as: u, (0 ,1) , (0 , 2) , . . . , (0, j - i) , (1, j - i + 1), (2, j - z + 2) , . . . , (i - 1, j - l),v;

a,: u.,{0,k-l),{0,k-2),...,{0..j + l) , { 0 . . j) , { l , j) , { 2 , j) , . . . , { j - l , j) , v : ,

a^: u, (1 ,1) , (2, 2) , . . . , (z, z), (z,z + 1), (z,z + 2) , . . . , (z, j - 1), v;

ag: u, (1, 0), (2, 0) , . . . , (z, 0) , (z, A; - 1), (z, fc - 2) , . . . , (z, j + 1), v.

These paths can be visualized in Fig . 5.2 and are clearly mutually disjoint (as there

are no common nodes between them).

Case (zz) 0 < i = j < [| J . Consider the following 6 paths:

a i : u, {k - 1,0), [k - 2, A; - 1) , . . . , { j j + l),z;;

5.4. Connect iv i ty 92

(/-I,/"-1)

/ - I .O

Figure 5.3: The 6 disjoint paths when 0 < i = j.

as: u , { k - l , k - l) , { k - 2 , k - 2) , . . . , { j + + l),v-

as: u , (0 , l) , (l , 2) , (2 , 3) . . . , (j - l , j) , w ;

a^: u,{Q,k - l),{k - l,k - 2),{k -2,k - 2,),... , { j + l,j),v;

a,: u , (l , l) , (2 , 2) , . . . , (j - l , j - l) , u ;

ag: u,{l,0),{2,l),{3,2),...,{j,j-l),v.

These paths can be visualized in Fig. 5.3 and are clearly mutually disjoint.

Case {iii) i = 0 and 1 < j < [| J . Consider the following 6 paths:

Qi: u , (/ c - l , 0) , (A ; - l , l) , . . . , (/ o - - l , j - l) , t ; ;

Q2: u , { k - l , k - 1), { k - l , k - 2) , . . . , { k - l,j),v;

03: u , (0 , l) , (0 , 2) , . . . , (0 , j - l) , y ;

5.4. Connect iv i ty 93

a,: u , (0 , / c - l) , (0 , / c - 2) , . . . , (0 , j + l) ,x;;

as: u , (l , l) , (l , 2) , . . . , (l , j) , ^ ;

ae: u, (1 , 0), (1,/c - 1), (1,/c - 2) , . . . , (1 , j + 1),

These paths can be visualized in Fig. 5.4 and are clearly mutually disjoint. The

result follows. •

By examining each of the diflFerent constructions in the proof of Lemma 5.4.1,

we see that the maximal length path joining u — (0,0) and v = is k.

Coro l lary 5.4.2 Given any two distinct vertices u and v of AQ2,k, there are 6

disjoint paths joining u and v so that the longest of these paths has length at most

k.

5.4.2 The induction step

We now prove our general connectivity result.

T h e o r e m 5.4.3 K,{AQn,k) = 4n - 2, whenever k> 3 and n > 2, and given any two

distinct vertices of AQn,k, there are in —2 mutually disjoint paths joining these two

vertices so that the length of the longest of these paths is at most max{{n - l)k -

(n - 2) , A ; + 7 } .

Proof: When n = 2 and k > 3, the result holds by Lemma 5.4.1. We proceed

by induction on n . Our induction hypothesis is that any two distinct vertices of

AQn-\,k are joined by a set of 4n - 6 mutually disjoint paths (the base case of the

induction is covered by Lemma 5.4.1).

We shall also calculate the length of a longest path as constructed according to

this proof. Let dn{w, w') be the maximal length of any path as constructed according

to this proof joining any two vertices w and w' of AQn^k, and let (5„ = max{dn{w, w') :

w and w' are distinct vertices of AQn^k}- We shall obtain a recursive estimate of (5„.

Fix k,n > 3. Given any two distinct vertices u and v of AQn^k, we shall construct

4n - 2 disjoint paths joining them. By Lemma 5.3.1, w.l.o.g. we may assume that

u = (0 , 0 , . . . ,0) and L I = (z ; „ , w „ _ i , . . . ,Vi), w i th 0 < w„ < [| .

5.4. Connect iv i ty 94

0.*-l

Figure 5.4: The 6 disjoint paths when i = 0.

u. Case 1: v = (v „ , 0 , 0 , . . . , 0) , where 1 < î n < LfJ i '̂ 1° =

The vertex u has 4n—6 neighbours in ji-. For each of these neighbours w, apart

f rom (0 , 1 , 1 , . . . , 1) and (0, A : - 1 , A ; - 1 , . . . , A ; - l) , build the path f rom w by traversing

(n, -|-l)-edges unt i l AQ^_-^ ^ is reached, before moving to v. This accounts for 4n - 8

mutually disjoint paths f rom u to v. From the neighbour (0, A: — 1, A; — 1 , . . . , A; - 1),

build the path by traversing (n,-|-1)-edges unt i l AQ^Jl\ is reached, before moving

to V. From the neighbour (0 , 1 , 1 , . . . , 1), traverse (n , - l) -edges unt i l AQ'^^^\ is

reached, before moving to v. This accounts for another 2 paths f rom u to v that are

mutually disjoint and disjoint f rom all the other paths constructed above.

From the neighbour (A; - 1, A: - 1 , . . . , fc - 1) of -u, traverse (n , - l)-edges unt i l

•'^Q'^-\,k is reached, before moving to v. From the neighbour (1 , ! , . . . , !) of u,

traverse (n,-l-l)-edges unt i l AQ'^__^ f. is reached, before moving to i ' . Finally, two

additional paths are obtained by traversing (n,+l)-edges f rom u un t i l v is reached,

and by traversing (n, - l)-edges f rom u unt i l v is reached. A l l paths constructed are

mutually disjoint and can be visualized as in Fig. 5.5. Note that the length of the

longest constructed path is max{vn + 2,k — Vn + 1}] so, rf„(u, v) < k.

Having dealt w i t h Case 1, let us henceforth assume that v\l^ ^ u. We now define

some paths which we shall use throughout the subsequent cases.

Our induction hypothesis is that there are 4n — 6 disjoint paths joining any two

distinct vertices of AQn-i,k- So, by our induction hypothesis, there is a set FI of

4n — 6 disjoint paths joining u and t>|° in AQl_j^ f, (by assumption u and ^1° are

5.4. Connec t iv i ty 95

(k-\,k-],k-],...,k

(it-1,0,0 0)

AQ„-i,*
* - l k-\ (k-\,\,\,...A)

(0,1,1,...,!) k-\ k-l

(1,1,1 1)

AQ„':;.*

AQn?"!.*

AQ,,?i , i

Figure 5.5: The 4n - 2 disjoint paths in Case 1.

distinct) . Let us denote 4 of these paths as follows:

• TTi is the path passing through the neighbour U(<„_i,_i) of u:

• is the path passing through the neighbour ii(<n_i,+i) of u:

• TTa is the path passing through the neighbour z;(<„_i,_i) |° of vl'^^:

• is the path passing through the neighbour t;(<„_i,+i)|° of

Note that although T T I and 1^2 are always distinct, as are T T S and 7:4, i t may be

the case that either T T I or 7T2 is identical to either 7T3 or 714 (note also that any

one of the above paths may consist of a solitary edge). We examine each of these

circumstances separately. Moreover, there are two distinct situations: when Vn = 0;

and when Vn ^ 0.

5.4. Connect iv i ty 96

Note that every path TT in 11, f rom u to ?;|°, is such that there is a path T T ' in
^Qn-i ,fc ' where Z G { 1 , 2 , . . . , A : - 1 } , f rom to f |^ obtained by taking the isomor­
phic image of T T under the natural isomorphism (which takes (0 , a „ _ i , a „ _ 2 , . . • , a i)
to (z , a „ _ i , a „ _ 2 , • • • , a i) ; see Lemma 5.3.1). Throughout this proof, we extend this
notation to arbitrary paths in AQ'^_^ ^.

Consider the situation when f „ = 0 (and so = v). For each path Hj, where

j G { 1 , 2 , 3 , 4 } , that is not the path u,v\1, truncate TTJ at the penultimate vertex

(that is, the vertex of the path that is a neighbour of v\^) and also remove the first

edge: denote this truncated path by pj (note that a path might be truncated so that

i t consists of a solitary vertex). Do likewise wi th all isomorphic images of T T I , T T S , 773

and (in AQ_ij^, AQ'^_i ^, and so on).

Suppose that pi ^ p^. I f neither pi nor ps is the path u,v then we construct

additional paths u, p'l'^ ,v\'^~^ ,v and u,u\'^''^, p'^~\v through AQ^Z\^k- Pi = ' ^^ ' ^

then we have that v — {0.k—l,k — l,...,k — l). In this case, we construct additional

paths u , u | ^ ~ ' , p 3 " \ u and u,v\^~^,v through AQ'^Z\^k- P3 = '^^'^ then we have that

u = (0, Vn-i - 1, Un-2 " 1, • • •, 1̂ - 1), w i t h = f n - 2 = . • • = = 1 • In this case,

we construct additional paths and u, p'l~\v\'^~^ ,v through AQ'^z\^k-

Suppose that pi — pz- We have that pi ^ P2. In this case, we construct additional

paths u , p i ~ \ z ; and u,u\'^-\ P2~\v\^-\v through AQ^z\^k-

We proceed in an analogous fashion by considering p2 and p4 i n the same way,

and constructing disjoint paths f rom u to v through AQl^_-^ |^. Consequently, we

obtain 4n - 2 disjoint paths f rom u to u in AQn.fc- From the above construction, we

clearly have that dn{u,v) = d „ _ i ((0 , 0 , . . . ,0) , (v„_i ,Un -2 , • • • ,^^i)) + 2 < + 2.

Henceforth, we shall assume that Vn 7̂ 0.

Case 2: u ^ ul^, u is not adjacent to and u and f d o not have a neighbour of

'^Qn-i,k i ^ common.

In particular, u, v is not a path in H.

Sub-case 2.1: pi ^ and p2 7̂ P3.

We begin by building 6 specific paths:

^ • ni n*^"! I l l ' ^ - l 911*^-2 l l l ^ n + l 11-Q l . W,Pi , . . . , V |„ ,V,

5.4. Connect iv i ty 97

a s : u , u | ^ - ^ P 4 " ^ ' l ; (< „ , + ^) | ^ - ^ ^ ; (< „ , + l) | ^ ^ - ^ . . . , ' f ; (<„ ,+ i) , t ; ;
a s : u,u\l„u\l,...,u\:;;\p^2-,v;

a 4 : U , U (< „ , + i) , U (< „ , + i) | ^ , U (< „ , + i) | ^ , . . . ,U(<n,+\)\n"~\P2",V;

a s : i i , p 2 , ? ^ l n , w | ^ , , . . .,v\l^-\v]

ae : u , pa, t ; (<n_i) |^, •!;(<„ . . . ,V(^<n-i),v.

These paths can be visualized as in Fig. 5.6, and can easily be seen to be mutually

disjoint.

There are 4n — 8 paths in 11 apart f rom T T S and 713; let T T be any one of them. We

truncate TT at the penultimate vertex, and then extend this path along (n, -l-l)-edges

unt i l we reach AQ^_^ Finally, we extend the path by an edge to v. Again, i t is easy

to see that the resulting set of 4n - 2 paths are mutually disjoint. Furthermore, we

have that dn{u,v) = d n - i ((0 , 0 , . . . ,0) , (w „ _ i , u „ _ 2 , • . . ,vi)) + max{k -v^- l,Vn} <

5n-i + k - 2 .

Sub-case 2.2: pi = p4 and p2 ^ P 3 .

Note that, by definition, p i , p2 and pa are distinct. Referring to Sub-case 2.1 (and

Fig. 5.6), i f we can amend paths a i and 02 so that they remain disjoint and also

disjoint f rom all of the other 4n —4 paths then we are done. Replace a i and a 2 wi th

the paths a'j and a , defined as:

a ; : u , P l ~ ^ • ^ ; (< „ , + l) | ^ 5 - ^ ^ ; (< „ , + l) | ^ - ^ . . . ,v^<n,+i),v:

rv'• 11 7 ; l '^~ l n'^~^ i i l * ^ " ! i , | ' ^ n + l "2- " 1 " I n) P2 1 ' ^ I n i ^ l n ^ • • • i t^-

Again, i t is easy to see that the resulting set of 4n — 2 paths are mutually disjoint.

The amendments made can be visualized as in Fig. 5.7. Furthermore, we have that

dn{u,v) = dn-\{{0,0, . . . ,0) , {Vn-uVn-2, • • • , ^ ^ l)) + rnax{k - Vn,Vn} < 5 n - \ + k - I.

Sub-case 2.3: pi ^ p-i and p2 = P 3 .

Note that, by definition, p i , p2 and p4 are distinct. Referring to Sub-case 2.1 (and

Fig. 5.6), i f we can amend paths a^, a 4 , a s and ag so that they remain disjoint and

also disjoint f rom all of the other 4n — 6 paths then we are done. Replace a s , a 4 ,

a s and a e w i t h the paths a 3 , a\, a'^ and ag defined as:

5.4. Connect iv i ty 98

ik-\.^„.\-l,v„.2-\

(A-1 ,k.).k.\ k-l) (* - I . V i + l - V 2 - H . - . ' i t l)

AQA.i.*
l,l,l,..M)

AQ

AQ;?!.*

Figure 5.6: The 6 disjoint paths in Sub-case 2.L

(i - l . i ' „ . l - l .>V2-l v , - l)

AQS - i . i

(k-Lk-lM k-U (^ - ' . V l ^ ' . ^ : " ' V ' l

A-1,0,0 0)

AQ»-|.«
{O.v i - i .v : - !—"!- !)

Figure 5.7: The amendments in Sub-case 2.2.

5.4. Connect iv i ty 99

a'3: u,u\lu\l,...,u\l\p\'\v;

a'^: U,U^<r^^+l),U^<n. + \)\l,U(<n, + l)\l, • • • , U^<n,+ l) \ n ' ~ \ , V,

a'^: • i / , p 2 , f (< n , - i) | ^ , U (< n _ i) | ^ , . . . , i ; (< „ _ i) , u ;

a'^: u,pi,v\'^^,v\l,...,v\l^-\v.

Again, i t is easy to see that the resulting set of 4n — 2 paths are mutually disjoint.

The amendments made can be visualized as in Fig. 5.8. Furthermore, we have that

dn{u,v) = d „ _ i ((0 , 0 , . . . ,0) , {vn-i,Vn-2, • • • , Vi)) + max{k-Vn-l, Vn} < Sn-i + k-2.

Sub-case 2.4: pi = and P2 = Ps-

By making the amendments in Sub-cases 2.2 and 2.3, we obtain a set of 4n - 2 mu­

tually disjoint paths. Furthermore, we have that dn{u, v) = (i„_i ((0 , 0 , . . . , 0), (f „ - i ,

• • • ,v\)) + max{k - < (5„_i -h A; - 1.

Case 3: u ^ f |" and u and v\'^ are not adjacent, but u and have a neighbour of

•^Qn-i k i ^ common.

A l l the constructions in Sub-cases 2.1, 2.2, 2.3 and 2.4 work here unless {vn-i -

l,Vn-2 - 1, • • • ,"̂ 1 - 1) = (1 ,1 , • • • > 1), li-e-, unless v = (v n , 2 , 2 , . . . ,2) . Thus, this is

the only situation to deal w i th (note that A; > 4, as otherwise u and would be

adjacent).

One of the paths in the set U is the path u , (0 , 1 , 1 , . . . , 1), f , and let T T be the path

passing through (0 , 3 , 3 , . . . , 3). Truncate T T at the penultimate vertex (0 , 3 , 3 , . . . , 3)

and also remove the first edge: denote this truncated path by p (note that the

path p might consist of the soUtary vertex (0 , 3 , 3 , . . . , 3)). Define the paths p\ for

z e { 1 , 2 , . . . , A; - 1}, as we did earlier.

Sub-case 3.1: Vn > 1-

We begin by building 6 specific paths:

a i : u , p ' ' " ^ ^ ; (< n , + l) | ^ ^ ^ I r ^ ^ • • • ,V(<n,+i),v;

Q2- U . ^ l n ! ^ (< - n , - l) n ^ ' ^ I n ' • • • > ̂ I n ' ^ '

Q3: u,u\i,u\l,... (< „ , _ !) | ; ; " , u ;

5.4. Connectivity 100

(i - l , v „ . , - l , v „ . 2 - l V i - l)

2 - 1 l - i - l)

. ' • i -D

A Q „ ' . ' | , *

P " = P<

A Q ; ; i . i

Figure 5.8: The amendments in Sub-case 2.3.

5.4. Connectivity 101

(i-1,2,2 2)
A Q „ . i . *

(0,3,3 3) {0.k-\,k

0.2,2 2)

(0,1,1,...,:)

(1,0,0 0)

A Q „ c i ;

Figure 5.9: The paths in Sub-case 3.1.

U,Vf^<n-\)\i,V{<n-l)\l,V(<n-l)\l, • • • , t ^ (< n , - l) |

Q 5 : u,p,'y(<„,+i)|^,i;(<„,+i)|^,... ,v^<n.+i)\l^,v\

ae: u,v^<n,-i)\n^v\n^v\\,.. .,v\';;'-\v.

Vn-l

These paths can be visualized as in Fig. 5.9, and can easily be seen to be disjoint.

There are 4n —8 paths in H apart from TT and u, (0 , 1 , 1 , . . . , l) , f ; let TT ' be any one

of them. We truncate TT ' at the penultimate vertex, and then extend this path along

(n, +l)-edges until we reach / I Q ^ I i fc- Finally, we extend the path by an edge to v.

Again, it is easy to see that the resulting set of 4n — 2 paths are mutually disjoint.

Furthermore, we have that dn{u,v) = d „ _ i ((0 , 0 , . . . , 0), (2, 2 , . . . , 2)) + m a x { / c - t i „ -

2,Vn} < Sn-\ + max{k - 4, [| J } .

5.4. Connectivity 102

Sub-case 3.2: u„ = 1.

We begin by building 6 specific paths:

a i : ^i,p'="^-y(<„,+l)|^-^U(<„,+l)|^;"^ . . . ,t;(<„,+i),u;

0:5: u,p,v\l,v;

ae: u,V(<n-i),v.

These paths can be visuahzed as in Fig. 5.10, and can easily be seen to be

mutually disjoint. There are An - 8 paths in U apart from TT and u, (0 ,1 ,1 , . . . , 1),

let TT' be any one of them. We truncate IT' at the penultimate vertex, and then extend

this path along an (n, +l)-edge and then an edge to v. Again, it is easy to see that

the resulting set of 4n - 2 paths are mutually disjoint. Furthermore, we have that

d„.{u, v) = max{dn-i{iO, 0 , . . . , 0), (2 ,2 , . . . , 2)) + /c - 3, /c + 1} < 5n-i + k - 3.

Case 4: u and u|° are adjacent.

Sub-case 4.1: v\° ^ {(0, - 1, A; - 1 , . . . , - 1), (0 , 1 , 1 , . . . , 1), (0, 2, 2 , . . . , 2)}.

Note that as (0, /c - 1, /c - 1 , . . . , /c - 1) 7^ u|° 7^ (0 , 1 , 1 , . . . , 1), none of the vertices

(0,/c - l,k - l,...,k - 1), (0 ,1 ,1 , . . . , !) , {0,vn-, - l,v^-2 - l , . . . , ^ ! - 1) and

(0 , f n _ i -I- 1,^71-2 + 1,..., f i -h 1) is identical to either u or 7;|°. Note also that as u

and f 1° are adjacent, so are {i, 1 ,1 , 1) and {i, Vn-\ + l, i'„_2 + l , • • •, vi + l) and also

{'i,k-l,k-l,.. . , k - l) and ('t, - 1, u„_2 - 1 , . . . ,Vi-l), for i e { 1 , 2 , . . .,k-l}.

One of the paths in 11 is the edge (u,u|°) . For each path in H, apart from

the edge and the path passing through (0,?;„-i — l,^^n-2 — 1, • • •,'L'l - 1),

truncate this path at the penultimate vertex and extend it using (n, -l-l)-edges until

^ Q n - i k reached before extending it further by an edge to v. As regards the

path in 11 passing through (0,w„-i - l,w„_2 — 1 , . . . , — 1), truncate this path at

(0, Vn-i - l,Vn-2 " 1, • • •, t ' l " l) and extend it using (n, +l)-edges until AQ'^J-^^,. is

5.4. Connectivity 103

A Q „ - .*

(1,0,0 0)

A Q i - 1 . *

(2,0,0 0)

A Q „ . i , *

Figure 5.10: The paths in Sub-case 3.2.

reached before extending it further by an edge to v. Also, extend the edge

using (n, -l-l)-edges to v. These 4n — 6 paths from u to v can be visualized as in

Fig. 5.11.

Form the following paths:

cvi: u,U(<„,+i),U(<„,+i)|^,... ,U(<„,+i)|^""^\f(<„,+i),

Q !2 : u,u\\,u\l,...,u\l",v-

a^: u,u|^ ^ • • • , - l n ,

Al l paths can be visualized in Fig. 5.11. It is easy to see that as (0 , 1 , 1 , . . . , 1) ^

(0, - \.Vn-2 - l , . . . , v i - 1), I.e., v\l 7̂ (0, 2, 2 , . . . , 2), the 4n - 6 paths, con­

structed above, and the paths Q I , Q ; 2 , 0:3 and Q4 are all mutually disjoint. Further­

more, we have that dn{u,v) — maa;{d„_i((0 ,0 , . . . , 0), f „ _ 2 , . . . , f i)) + Vn,k-

Vn + 2,Vn + 2>} < + [| J .

Sub-case 4.2: v\l = (0 , 1 , 1 , . . . , 1).

5.4. Connectivity 104

: (* - l , v „ . | - l , v , „ . 2 - l , V | - l)

A Q i - l . *

A Q „ ? L *

^Qn"-\.k

Figure 5.11: The paths in Sub-case 4.1.

5.4. Connectivity 105

One of the paths in 11 is the edge {u,v\^). For each path in U, apart from the edge
{u,v\1), truncate this path at the penultimate vertex and extend it using (n,+1)-
edges until AQn-i./c reached before extending it further by an edge to v. Extend
the edge {u,v\^^) using (n, -l)-edges to v.

Let the path p in AQ^Z\ ^ be defined as {k - l,k - l,k - I,... ,k - l),{k -

1.0, k - l,...,k - l),{k - l,l,k - l,...,k - l),{k - l,2,k - l,....,k - l),{k -

l , 2 , 0 , . . . , 0) , (/ c - l , 2 , l , . . . , l) , (A ; - l , 2 , 2 , . . . , 2) (unless {k - 1, k - 1, k - 1,..., k-

1) — {k — 1,2,2,... ,2) when p is just a solitary vertex). Note that p avoids (k —

1, 0 ,0 , . . . , 0) and (fc - 1,1,1, • • •, 1)- Define the paths:

Qi: u,p,i;(<„,+i) 1^-2,z;(<„,+i) 1^-3,... ,V(<n,+i),v;

u,u\'^-\u\'^-^,...,u\';;^,v;

Q 3 : u,u\\,u\l,... ,u\';i'-\v;

0:4: u,v\l„v\l,... ,v\l^-\v.

Our collection of 4n — 2 paths from u to v can be visualized as in Fig. 5.12,

and from the above construction, they are clearly mutually disjoint. Furthermore,

we have that dn{u,v) = m a x { 4 - i ((0 , 0 , 0 , . . . , 0), (1 , 1 , . . . , 1)) +Vn,k - i;„ + 6} <

max{6n-\ + LlJ ' ^

Sub-case 4.3: v\^^ = {0, k - 1, k - 1,..., k - 1).

One of the paths in 11 is the edge {u,v\1). For each path in 11, apart from the edge

(u, v\1) and the paths passing through (0 , 1 , 1 . . . , 1) and (0, fc - 2, fc - 2 , . . . , - 2,

truncate this path at the penultimate vertex and extend it using (n, +l)-edges until

^ ^ ' n - i k reached before extending it further by an edge to v. Extend the edge

{u,v\1) using (n, 4-l)-edges to v, and extend the truncated path through (0,/c -

2, - 2 , . . . , A; - 2) using (n, +l)-edges to {vn - 1, k - 2, k - 2,..., k - 2) and then

to V. This accounts for Aii — 7 mutually disjoint paths.

Let the path p in ^Q^I'^^A. be defined as (y„ + l,k - 2,k - 2,... ,k - 2),{vn +

l,k-l,k-2,.. .,k-2),{vn + l,0,k-2,..., fc - 2), + 1,1, k-2,..., k - 2),{vn +

1.1, / c - l , . . . , A ; - l) , (^ ; „ + l , l , 0 , . . . , 0) , (t ; „ + l , l , l , . . . , l) (unless {vn + l,k-2,k-

5.4. Connectivity 106

(A-1,2,2 2) [k-].k-\ k-\ * - l)

(M , l , l 1 (*-I,0,0 0)

A Q J - I , *

(0,2,2 2) M k-\)

A Q S . 1 , *

(1,2.2,..„2)

(1,0,0 0)

A Q i - i , *

AQ^^l ' ,*

Figure 5.12: The paths in Sub-case 4.2.

5.4. Connectivity 107

(k-],0,0....,Q)

ik-\k-2.k-2
(0 , 1 , 1 1)

A O 2 . 1 *
(0 X - 2 , * - 2

1.1,1 1

(l , 0 . 0 , O) (1 , * - 1 , A - - I , . . . > 1)

A Q A - i * (.].k-2.k-2..\

{v„.k-l.k.\....,k-])

AQ^:- ! .*

A Q „ ? | . *

Figure 5.13: The paths in Sub-case 4.3.

2 , . . . , A; — 2) = (f„ - I- 1 ,1 ,1 , . . . , 1) when p is just a solitary vertex). Note that p

avoids {vn + 1, 0, 0 , . . . , 0) and {vn + 1, k - I, k - I,..., k - I). Define the paths;

fc-l
n U fc-2

n 1 •
, , | f n + l

• ' " I n

fc-1
n V fc-2

n ' • • • 1 ' ^ I n

as: U , U (< „ , + i) , t i { < n , + l) l n > ' " (< n , + l) l n > • • • ,U^<n, + l)\n'^'"'^

0^4. u , u \ \ , u \ l , . . .

as: U , « (< „ , + !) | ° , W (< „ , + i) | ^ \ U (< „ , + 1) | ^ ^ ^,...,U^<n, + l)\l''^-,P,V^<n,-l)\n\ V.

Our collection of 4n — 2 paths from u to u can be visualized as in Fig. 5.13,

and they are clearly mutually disjoint. Furthermore, we have that dn{u,v) =

5.5. The diameter 108

max{dn-i{{0,0,...,0),{k - l,k - 1,... ,k - 1)) + Vn,k - Vn + 8} < max{dn-i +

ll\,k + 7}.

Sub-case 4.4: v\° = (0, 2, 2 , . . . , 2).

As u and are adjacent, we must have that A; = 3 and that v — (1, 2, 2 , . . . ,2).

By Lemma 5.3.1, there exists an automorphism of AQn^k mapping (1, 2, 2 , . . . , 2) to

(2 , 1 , 1 , . . . , 1) and fixing u. Thus, this sub-case reduces to Sub-case 4.2.

As regards the length of the longest path constructed, we have that 5„ <

max{6n-i + k - 1,A; -I- 7} and §2 = k. Thus, 5„ < (n - l)k - [n - 2), unless:

n = 3 and k = 3,4,5,6,7; n = 4 and /c = 3,4; or n = 5 and k = 3, when 5n < k + 7.

The result follows by induction. •

5.5 The diameter

Obviously, the smaller the diameter of an interconnection network, the lower the

communication latency (be this under store-and-forward or wormhole routing). In

this section, we obtain the diameter of AQ2.k and an upper bound on the diameter

of AQn,k when n > 3.

We begin with some immediate observations as regards the order of edges in

paths in AQn,k- Consider some path p from some vertex u of AQn,k to some ver­

tex V of AQn^k within which there is an A-edge, where A e {{i,+l),{i,—l),{<

^ , + l) , (< for some i, as the ath edge of the path, and a fi-edge, where

G { (j , + l) , (j , - 1) , (< j, +1), (< j, - 1) } , for some j, as the 6th edge of the path,

where a ^ b. The path obtained from p by traversing a p-edge as the ath edge of

the path and a A-edge as the 6th edge of the path, and leaving the labels of all other

edges as they were, is still a path from u to v. Also, if p is a shortest path between

u and V and there is a (z,-l-l)-edge (resp. (i ,- l)-edge, (< z,-fl)-edge, (<

edge) in p, for some particular i, then there is no (i ,- l)-edge (resp. (z,+l)-edge,

(< i,—l)-edge, (< z,-|-l)-edge) in p. We use these observations throughout the

proof of the following result.

Proposition 5.5.1 The diameter of AQ2^k is [|J + f ^ l) and for n > 3 the diam­

eter of AQn,k is at most | (n - I - 1), if k is even, and at most | (n -1- 1) - I - ^, if /c is

5.5. The diameter 109

odd.

Proof: By Corollary 5.3.2, we may restrict our attention to the lengths of paths

from an arbitrary vertex of AQn,k to the vertex u = (0, 0 , . . . , 0) of AQn,k when

determining the diameter of AQn,k-

Let u = (f 2 , wi) be a vertex of AQ2,k-

Case ji): k = 0 (mod 3).

Sub-case (a): Vi,V2 ^ { | + 1, | + 2 , . . . , f - 1}.

By traversing edges with labels from {{i, -1-1), (z, —1) : i = 1,2,..., n}, we can obtain

a path of length at most y from v to u.

Sub-case (6): exactly one of v-i and vo is in { | -h 1, | - f 2 , . . . , y — 1}.

Suppose that e { | 1, | -h 2 , . . . , y - 1}. By traversing (1, -l-l)-edges or (1, - 1) -

edges, we can move from v to (t'2, V2), and by traversing (< 2, -l-l)-edges or (< 2, - 1) -

edges we can then move to u. This yields a path of length at most y - 1 from v to u.

If V2 e + 1 + 2, • • •, y —1} then we proceed similarly except that we first traverse

(2, -|-l)-edges or (2, -l)-edges to get to (f i , u i) , before traversing (< 2, -l-l)-edges or

(< 2, -l)-edges to get to u.

Sub-case (c): V i , ^ 2 e { | + 1, | + 2 , . . . , f - 1}.

Proceeding similarly to as in Sub-case (b) results in a path from t; to u of length at

most y - 1.

In consequence, when k = 0 there is a path from v to u oi length at most

f - L l J + r ¥ i -

Case (M): k = I (mod 3).

We proceed similarly to as in Case (i) except that we consider the values of vi and

V2 as to whether they lie in { [| J -h 1, [|J -h 2 , . . . , [|J + [|] - 1}. We thus obtain

a path from to u of length at most [|J - I - [|] — 1. In consequence, when k = I

(mod 3) there is a path from v to u oi length at most [|J - I - [1] - 1 = [|J + \ ^ .

Case (m): k = 2 (mod 3).

We proceed similarly to as in Case (i) except that we consider the values of Vi and

V2 as to whether they lie in { [1] -1-1, [|] - I -2 , . . . , 2 [|] - 1}. We thus obtain a path

5.5. The diameter 110

from to u of length at most [|J + [|] . In consequence, when k = 2 there is a path
from i ; to u of length at most [|J + [|] = [|J + .

Whilst [|J - I - is an upper bound on the diameter of AQ-2^k, it is also a lower

bound as we now show. Suppose that A; = 0 (mod 3) and the length of a shortest

path p from (| , y) to (0,0) is less than [|J - I - | " ^] = y . If the edges of p are

all (z, -|-l)-edges or {i, -l)-edges then we immediately obtain a contradiction. Thus,

there must be some (< 2, -l-l)-edges or (< 2, -l)-edges in p. By symmetry, we may

suppose that there are (< 2, -l)-edges (and so, as p is a shortest path, there must

be no (< 2,-M)-edges in p). Moreover, based on our observation, we may clearly

assume that all these (< 2, -l)-edges appear as a prefix of p.

Suppose that there are at most y - [|] (< 2, -l)-edges in p and that traversing

these (< 2, -l)-edges takes us to {v'2,v\). For an arbitrary vertex {v2,Vi) of AQ2^k,

define wt{v2,v\) = mm{v2,k — ^2} + min{ui,/c — f i } , i.e., the distance of (^2,1^1)

from (0,0) in the k-axy 2-cube Q .̂ As ' i i ; t (| , y) = wt{v'2,v\) = y , this yields a

contradiction (as any path from {v'2,v[) to (0,0) traversing only edges with labels

from {(1,+1) , (1 , -1) , (2,+1), (2 , -1)} has length at least wt{v'2,v\)). Thus there

must be between y - [§1 + 1 and | (< 2, -l)-edges in p (clearly there cannot exist

more than | such edges as otherwise we could obtain a shorter path than p).

Suppose that there exist m - f - y - Tf] (< 2, -l)-edges in p, where 1 < m <

f l ~ I ' ^^^^ traversing these edges takes us to the vertex {v2,v[). Then

wt{v'2,v[) = ^ - 2 (m - 1) - 1. Any path from (1̂ 2, "̂ '̂i) to (0,0) not using (< 2,-1-1)-

edges nor (< 2, -l)-edges has length at least y - 2(m - 1) - 1. Thus, the length

of p is at least (f - 2(m - 1) - 1) + (m + f - [§1) = f - m - M - [|1 >

1^ ~ (Ff 1 ~ 3) + 1 - F2I ^ T ~ 2 [f l + 1 = y , which yields a contradiction.

Arguing in an analogous fashion with the vertex ([| J , [| J -t- [§]) of AQ2M, when

A; = 1 (mod 3), and with the vertex ([| 1 , 2 | ' |]) of AQ2,k, when A; = 2 (mod 3), yields

that the diameter of AQ2,k is [|J + irrespective of the value of k (mod 3).

Let n > 3 and v = (D „ , ? ; „ - I , • • • , ^ 1) be a vertex of AQn^^.

Case (i) : A; is even.

Define — Vi\ = a. Traversing | (< n, — l)-edges from v leads to a vertex

v' = (t) ^ p f ^ _ j , . . . , i ! j) such that EJLi niin{u-. A; - f - } - a, and so by traversing

5.6. Conclusions 111

(i,-fl)-edges and (z, —l)-edges, for various i, as appropriate, we obtain a path of
length ^ + a from v to u. Alternatively, we could simply start from v and traverse
(i,+l)-edges and (i , — l)-edges, as appropriate, to obtain a path of length ^ - a
from V to u.

Suppose that | + a < ^ — a, i.e., 2a < | (n - 1). So, there is a path of length

at most I + | (n - 1) = f (n + 1) from v to u. If 2a: > | (n - 1) then there is a path

of length less than ^ — f (n — 1) = | (n -I-1) from v to u. Thus, when k is even there

is a path of length at most | (n + 1) from v to u.

Case (M): A; is odd.

We proceed similarly to as in Case {i) but the numerics are slightly messier. Define

- Vi\ = a. Similarly to as in Case (x), we obtain a path from v to u oi

length at most [|J + o and also one of length at most n [|] - a.

Suppose that [|J + a < n [|] - a, i.e., 2a < n [|] - L|J. So, there is a path of

length at most [|J + f [§1 - ^ f j < f (n + 1) + f from v to u. If 2a > n [| l - [|_

then there is a path of length less than n f H - ^ | " |] i [|J < k[n+ I) + ^. Thus,

when k is odd there is a path of length at most | (n + 1) + ^ from v to u. •

Note that we only have an upper bound on the diameter of AQn,k, when n > 3.

Ascertaining the exact value of the diameter appears to be combinatorially quite

challenging. However, we conjecture that our upper bound is actually quite close to

the true diameter.

5.6 Conclusions

In this chapter, we have defined a new class of graphs, the class of augmented fc-ary

n-cubes, and we have examined these graphs in relation to some properties pertinent

to their use as interconnection networks for parallel computing. Let us examine our

findings by comparing and contrasting augmented fc-ary n-cubes with (the standard)

fc-ary n-cubes from which they are derived.

Both AQn,k and have fc" vertices, with the former having (n - l)fc" more

edges than the latter, and both interconnection networks are Cayley graphs, and

so vertex-symmetric. However, AQn,k has a much improved connectivity of 4n - 2

5.6. Conclusions 112

in comparison with the connectivity of which is 2n, although this comes at the
expense of an increased vertex degree, which is 4n — 2 as opposed to 2n for the A;-ary
n-cube (both AQn,k and Q'^ are 'maximally connected', in the sense that if disjoint
paths are used to transmit messages from one vertex to another in either network
then there are no unused neighbours of the source vertex). We have also shown an
upper bound on the diameter of an augmented k-ary n-cube at roughly one half
that of a k-ary n-cube.

Recall that both the fc-ary n-cube and the augmented /c-ary n-cube come with

two parameters which are both variable. Suppose that we have a fc-ary n-cube,

which involves n*̂ vertices, and we wish to obtain an augmented A''-ary A '̂-cube of

comparable size, but not necessarily by choosing the parameters N = n and K - k,

so that the degrees of the two networks are also comparable. Choose

iV = - and K
2 1 - log(n)

(we assume for simplicity that both Â and K are integral). Thus, n''" = .

Moreover, the degree of the fc-ary n-cube is 2n and the degree of the augmented

AT-ary A'-cube AQ^^K is 2n - 2, with the diameter of Qf̂ being y in comparison to

an upper bound of

on the diameter of AQj^^^ (again, for notational simplicity, let us assume that k is

even). It is easy to see that for any fixed k, as n increases the diameter of our aug­

mented A'-ary A'-cube approaches one quarter of that of our /c-ary n-cube (indeed,

the actual improvement in diameter could well be better than this, given that we

have only given an upper bound as to the diameter of a AQK.N)- In consequence,

we conclude that augmented A;-ary n-cubes can be regarded as improvements over

/c-ary n-cubes.

There are numerous directions for further research. One obvious one is an exact

characterization of the diameter of an augmented /c-ary n-cube. However, even in the

absence of this exact characterization, our upper bound results still yield a significant

improvement. Moreover, the constructions used in the proof of Proposition 5.5.1

yield a very simple routing algorithm of time complexity 0{nk) (albeit possibly

5.6. Conclusions 113

non-optimal).

The lengths of the longest of the 4 n - 2 disjoint paths constructed in AQn,k in the

proof of Theorem 5.4.3 is longer than the length of the 2n disjoint paths joining any

two distinct vertices of constructed in [45]; for in [45], 2n disjoint paths, joining

any two distinct nodes u and v Q^, were constructed so that the lengths of these

paths are 0, 2, or 4 - f d(^Qk{u,v), except for one path in a special case (when the

Hamming distance between the u and is 1) where the length of the path might be

4 + dQk{u, v). This is possibly to be expected, given that we are constructing 4n — 2

paths in AQn^k whereas only 2n paths were constructed in in [45]. Nevertheless,

it would be interesting to try and improve upon our length bounds.

Finally, there are numerous other aspects relating to augmented fc-ary n-cubes

which are worthy of study: for example, the embedding of other networks in AQn,k

{cf. [11,12,41]), the tolerance of faults within AQn,k [cf- [H^ l^]) , and broadcasting

and routing in AQn,k {cf- [13,41]).

Chapter 6

One-to-Many Node-Disjoint paths

in (n, A:)-star graph

6.1 Introduction

Chiang and Chen [39] introduced (n, A;)-star graphs, S'n,*:, where n > A; > 1, as

alternatives to n-star graphs, for which the 'jump' from n\ nodes in an n-star graph to

(n-f-1)! nodes in an (n+l)-star graph is deemed excessive (n-star graphs were devised

in [4] as rivals to hypercubes in that they can incorporate comparable numbers of

nodes yet have smaller diameters and degrees). The two parameters, n and k, of

(n, A;)-star graphs allow much more precision with regard to incorporating more

nodes, and allow fine tuning with regard to a degree/diameter trade-off.

As regards the node-connectivity of Sn,k, it was shown in [38] that there are

n — 1 node-disjoint paths joining any two distinct nodes of Sn,k (with an implicit

algorithm for construction) and that each of these paths has length at most the

diameter, dia{Sn^k), of Sn,k plus 3. Furthermore, it was shown that the diameter

dta{Sn,k) is 2A- - 1, if 1 < A; < [f j , and A; + [^^ J , if [f J + 1 < A; < n. Thus,

the one-to-one node-disjoint paths problem for Sn,k has been pretty much resolved

(note that as Sn^k is regular of degree n - 1, there is no scope for incorporating more

node-disjoint paths between two nodes). In this chapter, we are concerned with the

many-to-one node-disjoint paths problem for Sn,k', that is, we are given in 5„,fc, n — 1

distinct target nodes, in the set T, and a source node / , different from any target

114

6.1. Introduction 115

node, and we wish to find n — 1 node disjoint paths, one from each target node of
T, to I.

The many-to-one node-disjoint paths problem is a fundamental problem in the

design and implementation of parallel and distributed computing systems and it

has been extensively studied for a variety of (families of) interconnection networks.

Whilst Menger's Theorem [21] implies that, given a source node and n — 1 distinct

target nodes (different from the source) in a graph of node-connectivity (n — 1), there

exist n — 1 node-disjoint paths from each of the target nodes to the source, it is by

no means easy to identify and actually construct the paths, especially if the paths

are to be as short as possible. Indeed, given a source and a collection of target nodes

in an arbitrary graph, the general problem of finding node-disjoint paths from each

of the target nodes to the source with each path of shortest length is NP-hard [83 .

However, in many interconnection networks, which almost always have 'uniformity'

properties such as recursive decomposability, node-symmetry and degree regularity,

the situation is much more acceptable (see, for example, [4,20,34,63,71,74,84,102,

114,129,136]). We only highlight here two such studies of the many-to-one node-

disjoint paths problem: in hypercubes and in n-star graphs. In [136], Rabin studied

the many-to-one node-disjoint paths problem in hypercubes where he showed that

given a source node and n target nodes in an n-dimensional hypercube, there exist

node-disjoint paths from each of the target nodes to the source such that each path

has length at most 1 plus the diameter of the n-dimensional hypercube (that is, n).

In [71], Gu and Peng showed that given a source and n - 1 target nodes in an n-star

graph, there is an algorithm of time complexity O(n^) that builds n - 1 paths from

each of the target nodes to the source such that the length of each path is at most

the diameter of the n-star graph (that is, ['̂ "̂~^ Ĵ) plus 2.

In this chapter, we prove the following theorem.

Theorem 6.1.1 When T is a set of n — I distinct nodes in Sn,k, where n > k > 1,

and when I is a node not in T, there is an algorithm which finds n — 1 node-disjoint

paths in Sn,k from the nodes in T to the node I. Furthermore, all paths found by

this algorithm have length at most 6/c — 7 and the time complexity of the algorithm

is O (f c V) .

6.2. Basic definitions and lemmas 116

Compared to Chapter 3, 4 and 5, where structural results are given, in this chap­
ter, we wi l l give an algorithmic result. Our algorithmic result contains a structural
result. I t should be noted that the structural results f rom Chapters 3, 4 and 5 can
be translated into algorithms.

We present the basic definitions in Section 6.2 before dealing wi th the case when

k = 2 in Section 6.3. In Section 6.4, we present the algorithm alluded to in Theo­

rem 6.1.1 and its proof of correctness, and in Section 6.5 we consider the lengths of

the paths constructed by our algorithm and also the time complexity of our algo­

r i thm. Our conclusions are presented in Section 6.6.

6.2 Bas ic definitions and lemmas

I t is worthwhile beginning wi th an n-star graph in order that we might understand

why (n, /c)-star graphs emerged. In order to avoid the significant jump f rom n! nodes

in an n-star graph to {n + 1)! nodes in an (n-l- l)-star graph, (n, A;)-star graphs were

devised, as 'generalized' n-star graphs. Sn,k has j^^j^ nodes and ^ x jj^zi^, edges.

Note that 5„,„_i is isomorphic to the n-star 5 „ , and that S'n.i is a clique on n nodes.

A n important property of Sn,k, which we make crucial use of, is that i t can be

partitioned into n node-disjoint copies of Sn-i,k'} over one oi k - 1 dimensions. In

more detail, let i G {2 , 3 , . . . , A;} and part i t ion the nodes of Sn,k by fixing the zth

component of each node. Thus, define Sl^,,{j) = {{ui,U2, • • • ,Uk) G V{Sn.k) • i-H =

j } , for each j G { 1 , 2 , . . . , n } . I t is t r iv ia l to see that the set of nodes S'^j^ij), for

j G { 1 , 2 , . . . , n } , induces a copy of Sn-\,k~\- Note that there are A; - 1 dimensions

over which we can so part i t ion Sn,k-

We adopt the following notation throughout this chapter. Let I — (u i , ^2, • • •, Uk)

be an arbitrary node of Sn,k- Note that there are /c - 1 neighbours of / that are

joined to / via an z-edge, and n - A-; neighbours of / that are joined to / by a 1-edge;

each neighbour is characterized by its first component. We denote the neighbour of

/ whose first component is j by P. We shall denote paths in S„,fc by p{t, s) where t is

the start node and s is the terminal node. Paths are wri t ten explicitly as sequences

of nodes, such as [t, U2,U3,..., Um, s). We wri te x G Sn,k \ T, where T is a set of

6.2. Basic definitions and lemmas 117

nodes of Sn,k, to denote that x is a node of 5,1,^ different from any node in T .

Our intention is to build an algorithm to f ind n — 1 node-disjoint paths f rom

each of n — 1 distinct target nodes, held in T, to a given source node / of Sn,k [I

is never a target node). Before we present our algorithm, we show that there are

certain assumptions that we can make.

Lemma 6.2.1 Let T he a set of n — \ target nodes in Sn,k, where k > 3. There

exists a dimension i e (2 ,3 , such that each o/S'^^^(l), S'^_;^(2),..., 5^ ^.(n)

contains at most n — 2 nodes o f T .

Proof: Suppose that for every j e {2,3,... ,k}, when we part i t ion Sn,k over

dimension j , we get that some S'^^.(^j) contains all the target nodes f rom T. Thus,

all target nodes in T have the form {u,i2,i3,... ,ik), for some u. This yields a

contradiction as there are only n — {k — I) such nodes. •

Suppose that k > 3. By Lemma 6.2.1, we can choose a dimension, i, say (where

i E {2,3,..., k}), so that when we part i t ion the (n, A;)-star Sn,k over dimension i to

obtain the (n - l , k - l)-stars 5^ / , (!) , 5^ ^ (2) , . . . , we can be sure that each

^n,kU) contains at most n — 2 target nodes. Suppose that i k. The automorphism

of Sn,k obtained by swapping the zth and /cth components of every node is such

that Sl^f.{j) is mapped to S^i^{j). Suppose that / = {y\,y2, • • • ,yk) and let a

be any permutation of { 1 , 2 , . . . , n } for which a{yj) = j, for j = 1,2,... ,k. The

permutation a yields an automorphism of Sn,k by mapping each node {x\,X2,..., Xk)

to {a{xi),o{x2), • • • ,cr(x/c)), so that each is mapped to 5^^.((T(j)). Thus, we

may assume that our source node / is 4 = (1 , 2 , . . . , /c) and that when we part i t ion

over dimension k, the resulting [n- l,k - l)-stars ^ ^ ^ ^ (l) , 5̂ " ̂ . (2) , . . . , S'^^ i^{n) each

contains at most n — 2 target nodes. Note that when k = 2, we can assume that our

source is Ik but not that part i t ioning over dimension k results in (n — 1, A; — l)-stars

each containing at most n — 2 target nodes. Henceforth, for brevity, we denote

'S'n,fc(0 by Si (wi th Si not to be confused w i t h the n-star graph of the same name).

For i e {k + l,k + 2,... , n } , we define h = {k,2,3,..., k - € S^•, for

ie{2,3,...,k-l},we define I, = {k,2,3,.. . ,i - lA,'i + 1,..., k - e S^•, and

we define / i = {k,2,3,..., k — 1,1) G 5] . For i = 1,2,... ,n, we denote the set of

6.3. The case for fc = 2 118

target nodes of T which he in Si, that is, T n Si, by T j .

6.3 T h e case for k = 2

I n this section, we devise an algorithm Disjoint_paths_when_fc=2 (S'n,2. T , I2,

paths) which finds node-disjoint paths in Sn,2 f rom n - 1 target nodes in T to the

source node I2 (which is not a target node); the paths are returned in paths. (Note

that the many-to-one node-disjoint paths problem is t r iv ia l for 5„ , i , an n-clique.)

As is the case throughout, i t is best to study the algorithm in conjunction wi th the

subsequent description.

1 Dis j oint _paths_when_A;=2 (S'n^g ,T ,I2, paths)

2 for every node !{ ^ ^2 do

3 add the path pil^^h) = (-̂ 2.-̂ 2) to paths;

4 od

5 set free := {5^ : j e { 1 , 3 , 4 , . . . , n } and = 0,

and i f 1 then ^ T2} ;

6 f or z = 1, 2 , . . . , n where z 7̂ 2 and 7̂ 0 do

7 If i = l or I\^T2 then

8 i f / , G Ti then

9 add the path p{Ii, I2) ^ {h, h) (resp. p{Ii, h) =

{IiJiJ2)) to paths i f z = 1 (resp. z 7̂ 1) ;

10 sortedJarget := U;

11 e l s e

12 choose some / / G Ti and add the path pillJo) =

{IlhJ2) (resp. p (/ / , / 2) = (/ / , / „ / ^ , / 2))

to paths i f 2 = 1 (resp. i ^ I);

13 sortedJarget := / / ;

14 f i

15 e l s e

16 sorteddarget := e;

17 f i

6.3. The case for A: = 2 119

18 i f sortedJarget e then
19 l e t good.free C free be of s i z e | T i | - l ;

20 e l s e
21 l e t good-free C free be of s i z e | T j | ;

22 f i
23 free := free\ good-free;

24 for every I j G Tj \ {sorted-target} do

25 i f Sj e good-free then

26 add the path pil^h) = (/ / , / { , A , / s) (resp. p{li, I2) -

(/ / , /] , / „ / ^ , / 2)) to paths if j = l (resp. j I):

27 remove Sj from good.free;

28 e l s e
29 choose 0 for which Si G good-free;

30 add the path p (/ / , / 2) = (//,//,/J,/i,/o) (resp. p (/ / , / 2) =

(//,/,',//,/,, 4,/2)) to paf/is i f / = 1 (resp. / ^ 1) ;

31 remove 5; from good-free;

32 f i

33 od

34 od

(We remark that w i th respect to line 5, and elsewhere throughout, when we say that,

for example, S3 is in the set free, in any implementation we would simply hold the

index 3 in free; we write i t as we do to make our algorithm more understandable.)

The actions of Disjoint_paths_whenJi ;=2 can be described as follows. In lines

2-4, we define paths f rom every target node in ^2 to l2- I n line 5, we define free to

consist of those Sj's f rom { 5 i , ^ 2 , . . . , S„} \ {52} containing no target nodes and for

which the node I2 0 T2 (if j 7̂ 1): some of these 5j 's w i l l be used as collections of

' transit ' nodes for paths f rom target nodes (in other Si's) to l2-

In lines 6-34, we deal wi th the Si's for which t 7̂ 2 and 7̂ 0 in turn. In lines

7-17, we ensure that i f 0 T2, i.e., does not block a path f rom / j to I2 through

or z = 1 then a path f rom one of the target nodes in T j through /.j to I2 is chosen.

The target in Ti chosen is registered in sorted-tar get.

6.3. T h e case for ^ 2 120

In lines 18-22, a subset good.free of free of size | T j | — 1 is chosen, if sortedJarget

exists, and of size IT̂ I otherwise. We need to verify that such a subset exists.

Suppose that X = {I : / = 1, 3, 4 , . . . , n , / < z,T/ / 0} w i th Y C X defined as

Y = {I : I e X \ {1},I2 ^ T2}, i.e., X indexes the Si's that have so far been dealt

w i t h in the for-loop in lines 6-34, and Y indexes those such 5;'s for which ^ blocks

direct paths f rom /; to I2. On an iteration of the for-loop for some i where i 7̂ 2

and Ti 7̂ 0, any 5/ f rom {Si,S2, • • •, 5„} \ {So, Si] fails to be in free for exactly one

of six reasons:

1. I G Y;

2. 5(is used as a set of transit nodes for a path f rom some target in Sj where

j e Y ;

3. l e X \ Y ;

4. Si is used as a set of transit nodes for a path f rom some target in Sj where

j e X \ Y ;

5. Z ^ X , / 7̂ 1 and 4 G T2; and

6. l ^ X , (4 ^ T2 or / = 1) and Ti 7̂ 0.

Some of the different cases are illustrated in Fig.6.1, where the target nodes are

represented in black and where i = 18 (note that all Sj's are cliques even though

they are not depicted as such). We can associate a target node w i t h any 5; in free

by choosing: the target node I2 in case 1; the unique target node t upon whose path

p{t, I2) the nodes of 5/ are used as transit nodes in cases 2 and 4; the target node

t of Si for which the path p{t, I2) passes through // in case 3; the target node I2

case 5; and any target node of Ti in case 6. A l l such target nodes are distinct and

are diflFerent f rom the target nodes in T j . Thus, \ free\ > (n - 2) - ((n - 1) - |Tj |) =

ITjl - 1. Furthermore, if sortedJarget = e then I2 G T2 and i 7̂ 1, and this

target node is distinct f rom all target nodes which were associated above; hence,

\free\ > (n - 2) - {{n - 1) - \T^\ - I) = \Ti\ and our claim holds.

6.4. Building node-disjoint paths 121

case 3

case I case 5

case 5

Figure 6.1: A n illustration of difTerent cases.

I n line 23, we remove the copies of 5„_i,i that are in good.free f rom free.

In lines 24-33, we deal w i t h the target nodes of Ti in tu rn and bui ld paths to

l2- This is done as follows. I f / / G Tj \ [sorteddargei] and Sj G good-free

then we simply take the path f rom / / through Sj and on to l2\ otherwise, if

If G Ti \ [sortedjtarget] and Sj ^ good-free then we choose a neighbour /• of

/ / in Si that is not a target and where Si G good-free (such a neighbour always

exists because we have chosen good-free large enough and S„_i , i is a clique). Conse­

quently, Disjoint_paths_when_/c=2 achieves its aims. Furthermore, all paths found

by Disjoint_paths_when_A;=2 have length at most 5 and the time complexity of

Disjoint_paths_when_/c=2 is O(n^).

Theorem 6.3.1 When T is a set of n - \ distinct nodes m Sn,2 dn'd when I is

a node not in T, the algorithm Disjoint.paths_whenJ;=2(5n ,2.T ' , / ,pai/ is) finds

n — 1 node-disjoint paths from the nodes m T to the node I. Furthermore, all paths

found have length at most 5 and the time complexity o/Disjoint_paths-whenJc=2

isO{n^). .

6.4 Bui lding node-disjoint paths

We now detail a recursive algorithm D i s j o i n t .paths (5„ , f c ,T , / f c ,po f / i s) to con­

struct node-disjoint paths f rom n - l distinct target nodes in Sn,k, given by the set

of nodes T, to a source node h (which is different form each target node). The n — 1

paths wi l l be returned in paths.

6.4. B u i l d i n g node-disjoint paths 122

6.4.1 The basic algorithm

Roughly speaking, our algorithm Disjoint_paths proceeds as follows. First, we

f ind disjoint paths f rom the target nodes in Sfc to 4 (if any such target nodes exist);

these paths are not changed throughout the subsequent execution of the algorithm.

A neighbour II of 4 appearing on one of these paths cannot be used in another

path f rom 4 and so 'blocks' Si; consequently, the set blocked consists of those Si's

that are blocked by some neighbour of 4 in Ŝ . Next, we deal in turn wi th the Sj's

for which Ti ^ 0. Once the paths f rom the target nodes of such an Si to 4 have

been established, they do not change throughout the subsequent execution of the

algorithm. Our basic algorithm is as follows. In the rest of this section, we detail

the procedures in the algorithm and prove that our algorithm is correct.

1 Disjoint_paths (S„, fc .T, / fc ,pat / i s)

2 ii k = 2 then

3 c a l l Disjoint_paths_when_/c=2(S„,2,T,/2,pai/is);

4 e l s e

5 free := {S,- : j = 1, 2 , . . . , n,j + k, Tj = 0} ;

6 some := {S, : j = 1,2,.. . ,n, j ^ k,Tj ^ 0};

7 paths := 0;

8 blocked := 0;

9 used := 0;

10 i f Tk^D then

11 c a l l P3ith.S-in-Sk(Sk,Tk,h,free,paths, blocked);

12 f i

13 i f there i s some Si^ e blocked Ci some then

14 i f I^ G T, then

15 c a l l Paths_in_some : target_cLnd_

blocked(Sjo,r io,4o, /ree, used,paths) ;

16 e l s e

17 c a l l Paths.in.some :not_target_aiid_blocked(SiQ ,Tio,/i(,,

free,used,paths);

6.4. Bu i ld ing node-disjoint paths 123

18 f i

19 e l se

20 io := k;

21 f i

22 f o r each Si G some \ {Si^} do

23 c a l l Paths_in_some:not_blocked(5i, Ti, Ii, free,used,paths);

24 od

We have one remark concerning procedure calls in our algorithm (including the

procedures to follow). As Lemma 6.2.1 shows, we can always assume that when

deahng wi th Sn,k, our source is Ik and, for A; > 3, when we part i t ion over dimension

k, none of the resulting copies of Sn-i,k-\ contains more than n — 2 target nodes. As

can be seen f rom the above outline algorithm (in conjunction w i t h a closer look at

the procedures to follow), we make a number of recursive calls to D i s j o i n t _ p a t h s .

Even though we do not explicitly state this in the procedures to follow, we always

assume that we have arranged things (using automorphisms as in Section 6.2) so

that i f in some recursive call we are deahng wi th a copy of Sn'.k' then our source is

Ik' and none of the copies of Sn'-\,k'-\ resulting from part i t ioning over dimension k'

contains more than n' — 2 target nodes. From Lemma 6.2.1, we can decide which

automorphisms (and their inverses) to apply and applying these automorphisms,

and ensuring that we part i t ion over dimension k (in Sn,k, to get at most n - 2 target

nodes in each resulting Si) by checking if all the target nodes in one subgraph for

each dimension. There are at most k - I dimensions and n - 2 target nodes to

be considered. To apply the automorphism (mapping) wi l l only take 0{n) time

(suppose we choose a mapping function f{i) = j, we do not need to apply this on

every node, but in the consequent processing, we wi l l run the mapping function to

the corresponding node f irs t) . Hence, this can clearly be done in 0{kn) time.

6.4.2 Paths in Sk

We start w i t h Paths An.Sk(Sk ,Tk, Ik, free .blocked,paths), which returns a set

free of SiS, a set paths of paths in Sk and a set blocked of Si's, where k > 3.

6.4. B u i l d i n g node-disjoint paths 124

Pre-conditions assumed by this algorithm are that free = {Sj : j = 1,2,... ,n,j 7̂
k, Tj = 0}, paths = 0, blocked = 0 and 0 < \Tk\ < n - 1.

1 Paths-in-S'fe {Sk.Tk.h, free,paths, blocked)

2 temp := 0;

3 for each neighbour of Ik in 5^ \ T/,- do

4 i f 5^ ^ free and \temp[jTk\ < n - 2 then

5 add II to temp;

6 f i

7 od

8 temp.so.far := temp;

9 for each neighbour 7^ of /fc in Sk\{temp.so.far UT^) do

10 i f | iempUTfc| < n - 2 then

11 add Pf. to temp;

12 f i

13 od

14 c a l l Disjoint jpa.thsiSk,temp UTk,Ik,P<^ths);

15 for each neighbour ll of Ik i n Sk do

16 i f ll G iemp then

17 remove p{l{,Ik) from paths;

18 e l s e

19 add S'j to blocked;

20 i f G / ree then

21 remove Sj from free;

22 f i

23 f i

24 od

The actions of Paths.in.S'fc can be described as follows. Init ial ly, free consists

of the Si's f rom { 5 i , 5 2 , . • • , 5 „ } \ {Sk} containing no target nodes; some of these

Si's w i l l be used as collections of ' transit ' nodes for paths f rom target nodes (in

other Sj's) to h- In line 2, temp is initialized as an empty set of nodes. In lines

6.4. Bu i ld ing node-disjoint paths 125

3-13, some of the neighbours of h in Sfc are then set as temporary target nodes so
that Sk has exactly n — 2 (the degree of 4 in Sk) target nodes and temporary target
nodes. The order in which the neighbours of 4 are chosen to be temporary target
nodes is important; those neighbours II for which Sj contains at least one target
node are chosen first , before neighbours for which Sj' contains no target nodes
are chosen (as to whether neighbours ll for which Sj' contains no target nodes are
chosen depends upon the distr ibution of the target nodes).

In line 14, node-disjoint paths are recursively constructed f rom these target nodes

and temporary target nodes to Ik (note that there are n — 2 of these paths and that

every neighbour of Ik in Sk lies on exactly one of these paths). In line 17, the paths

involving temporary target nodes are then removed f rom paths (note that these

paths are just solitary edges). The remaining paths, f rom target nodes in Ŝ to

Ik, w i l l end up being output by the algorithm, and in line 19 the Sj's for which II

lies on one of these paths are registered in blocked (so, any node II of Sk for which

Sj G blocked cannot be used on any path f rom the node I j in Sj to h)- Finally,

those Sj's in blocked n free are removed f rom free as they can no longer be used

as collections of transit nodes, since there is no path to h f rom Ij through II (or

directly, if j = 1). Note that the total number of temporary target nodes chosen

is (n - 2) - \Tk\ and that the tota l number of Sj's f rom {Si,S2,.. • ,Sn} \ [Sk}

containing at least one target node is at most (n - 1) - |TA;|. Thus, after execution

of Paths_in_Sfc there is at most one Sj for which Ŝ G blocked and Sj G some {some

is fixed throughout at those S;'s for which Tj 7̂ 0).

6.4.3 Paths in Si e blocked (1 some

Suppose that S, is such that Si G blockednsome. Suppose further that h eTi. The

procedure Paths-in_some: target _and-blocked (Si ,Ti,Ii, free, used, paths) finds

paths to Ik f rom every target node in S,. Pre-conditions are that 4 G Ti, 0 <

Til < — 1 and used = 0.

1 Paths_in_some:target_ELnd_blocked(Si ,r i , / i , free,used,paths)

2 choose some neighbour // of 4 in Si for

6.4. B u i l d i n g node-disjoint paths 126

which // ^T, and 5^ G free;

3 root-escape := // ;

4 temp := {root.escape} ;

5 for each neighbour // of 7j i n Si \ {{root-escape] U Ti) do

6 i f Sj ^ free and \temp U {Ti \ {Ii})\ < n - 2 then

7 add If to temp;

8 f i

9 od

10 temp^so.far := temp;

11 for each neighbour // of /; i n Si\ {tempso-far UT) do

12 i f l^empU (T, \ { / , }) ! < n - 2 then

13 add 7/ to temp;

14 f i

15 od

16 c a l l Dis joint-paths (S'i, (temp U T i) \ { / J , / j , Si .paths);

17 Si-paths-blocked := 0;

18 for every neighbour // of / j in 5, do

19 case of

20 / / = root-escape :

21 replace the path p{root-escape, U) in Si-paths

with the path p{Ii, root-escape) = {I^, root-escape);

22 set escape[p{Ii, root-escape)] := Sj;

23 remove Sj from / ree and add Sj to t iseii ;

24 / / G temp \ {root-escape] :

25 remove the path p (/ / , / i) from Si-paths;

26 / / ^ iemp U :

27 replace the path p{t, h) i n Si-paths

upon which // l i e s with the sub-path p{t,I-);

28 set escape[p{t, I f)] := Sj;

29 remove Sj from free and add 5 j to used;

30 G Ti and 5^ G / ree :

6.4. B u i l d i n g node-disjoint paths 127

31 replace the path p (/ / , / j) i n Si-paths

with the path p{Il,Il) = {Il)-

32 set escape[p(// , / /)] := Sy,

33 remove Sj from free and add 5^ to used;

34 / / G and 5^ ^ free :

35 remove the path p (/ / , / j) from Si-paths and

add the path p (/ / , / /) = (/ /) to Si-paths-blocked;

36 esac;

37 od

38 while some path p{t,s) in Sijpaths contains a node whose

f i r s t component j , say, i s such that 5-, G free do

39 replace the path p{t,s) i n Sijpaths with i t ' s sub-path p{t,x)

where x i s such that i t s f i r s t component j , say, i s such

that Sj e free and where i f y ^ x i s any other node on p{t,x)

then i t s f i r s t component j', say, i s such that Sji ^ free;

40 remove escape[p{t, s)] from used and add escape[p{t, s)] to free;

41 set escape[p{t,x)] := Sj;

42 add Sj to used and remove Sj from / r ee ;

43 od

44 for every path p (/ / , / /) e Si-paths.blocked do

45 i f S'j G free then

46 remove p (/ / , / /) from Si-paths.blocked

and add p (/ / , / /) to S^-paths;

47 set escape[p(//,/,/)] := S'j ;

48 remove 5^ from / ree and add 5 j to used;

49 f i

50 od

51 for every path p (/ / , / /) E Si-paths-blocked do

52 choose a neighbour (//)' of // i n Si for which 5/ G free;

53 remove p{P^,If) from St-paths-blocked and

add p{li,{liy) = {II,{liy) to S.,.paths;

6.4. Bu i ld ing node-disjoint paths 128

54 set escape[/9(//, (/ /) ')] := Sr,

55 remove Si from free and add Si to used;

56 od

57 for every path p{t,s) i n Si-paths do

58 extend p{t, s) to a path p{t, Ik) through the nodes of

Sj = escape[p{t, s)] to Ij and then on to 1^;

59 remove p{t,s) from Si-paths and add p{t, Ik) to paths;

60 od

We explain below what Paths_in_some:target.and.blocked does, and prove

that what the procedure claims to do is actually possible and that i t achieves its

aims.

We begin, in lines 2-3, by choosing a neighbour root.escape = If of / ; that is not

a target node and through which a path f rom the target node / j wi l l pass on its way

to Ik. We need to verify that there does indeed exist such a neighbour / / . Suppose

that when we attempt to choose our neighbour root.escape of / j in Si, we find that

every neighbour / / of in Si is such that Sj ^ free. The reason any Sj ^ free is

that exactly one of the following holds: Sj G blocked; Sj G some\blocked. Whatever

the reason, we can associate a target node wi th / / : if Sj G blocked then choose the

target node of Tk on whose path in paths the (blocking) node ll lies; otherwise,

if Sj G some \ blocked then choose some target node of T j (which is non-empty).

Note that i t is never the case that two target nodes associated wi th two distinct

neighbours of li in Si are identical. Thus we get a contradiction as we obtain n — 2

distinct target nodes (corresponding to the n - 2 neighbours of li in Sj) and we have

yet to consider the target node and the target node on whose path in S^ the node

II lies.

The neighbour root.esca,pe is set as a temporary target node in line 4. In lines

5-15, more neighbours of U are set as temporary target nodes, making sure that

neighbours / / for which Sj 0 free are chosen before neighbours If for which Sj G

free. The process stops when ITil — 1 plus the number of temporary target nodes

is exactly n - 2 . We claim that all neighbours / / of U that are not target nodes

and for which Sj ^ free are chosen as temporary target nodes. Let us count the

6.4. Bu i ld ing node-disjoint paths 129

number of 5['s, f rom 52 , . . . , 5„} \ {5^, S j } , that are not in free. As above,
the reason any Si ^ free is that exactly one of the following holds: 5/ G blocked;
Si G some \ blocked. Just as we did above, we can associate a target node wi th
each such Si so that distinct Si's are associated wi th distinct target nodes. Thus,
the number of Si's, f rom { 5 i , ^ 2 , . . . , 5„} \ {Sk, Si], that are not in free is at most
the number of target nodes that potentially can be associated w i t h such an Si. This
number is (n — 1) — | T j | — 1 (as, by definition of how we associate target nodes, no
target node in Ti can be associated wi th such an Si, and nor can the target node
on whose path in Sk the node 7̂ . lies). Thus, the number of temporary target nodes
chosen, namely (n — 2) — (|Ti | — 1) = (n — 1) — \Ti\, is greater than (n — 1) - |T j | — 1,
which is no less than the number of Si's, f rom {Si, S2,..., Sn] \ {Sk, Si], that are
not in free. Thus, all neighbours / / of li that are not target nodes and for which
Sj ^ free are chosen as temporary target nodes, w i t h the consequence that any
neighbour / / of li that is neither a target node nor a temporary target node is such
that Sj G free.

In line 16, we recursively find node-disjoint paths in 5, from every target node of

Ti\{Ii] and every temporary target node to the node U. Note that all such paths

f rom temporary target nodes to U necessarily consist of a single edge (as do such

paths from target nodes that are neighbours of li) and that every neighbour of li in

Si lies upon exactly one such path. The paths reside in Si.paths.

I n line 17, we initialize Si-paths-blocked as empty. I n lines 18-37, we amend each

path in Si-paths by working through the neighbours / / of / , in tu rn as follows. I f / / =

root-escape then we amend the unique path containing / / to p{Ii, root-escape) =

{li, root-escape) and register that the nodes of Sj are to be used as transit nodes to

extend p{Ii, root-escape) to a path to 4 and so can no longer be used as such for

any other path (the nodes of Sj are available for this by choice of root-escape). This

registration is done wi th the array escape, indexed by our paths, and the set used.

I f / / G temp\{root-escape] then we simply remove the path p{I-, li) f rom Si-paths.

Otherwise, we truncate the unique path p{t, li) containing If by removing the final

edge. Furthermore, if I'l ^ or Sj G free then we register that the nodes of 5̂ ,

are to be used as transit nodes for this (truncated) path (note that immediately

6.4, Bu i ld ing node-disjoint paths 130

after the recursive call, all neighbours If of 4 in Si that are not target nodes nor
temporary target nodes are such that Sj G free), and i f / / G T^ and Sj ^ free
then we move the path p{I-, / /) to the set Si-paths-blocked. Consequently, we have
essentially dealt w i th every target node in Si except possibly for some target nodes
that are neighbours / / of li in Si where Sj ^ free (corresponding to the paths in
Si-paths-blocked).

In lines 38-43, we amend the paths of Si-paths (remember, these are the paths

f rom target nodes in Si that can be t r iv ia l ly extended to paths to 4 , through sets

of transit nodes). Suppose that some path p{t,s) in Si-paths is such that there is

some node x of the form (j , . . . ,i) lying upon i t so that Sj G free. We can replace

the path p{t, s) in Si-paths w i t h the sub-path p{t, x), so long as we release the set of

transit nodes escape[p{t, s)] (for possible future use) and register that the new set

of transit nodes Sj is not to be used as a set of transit nodes for any other path. By

iterating this process, we get to the situation where no path in Si-paths contains a

node of the form { j , . . . ,i) so that Sj G free.

In lines 44-50, we deal w i th some of the paths in S^jpathsMocked, each of which

is of the form p (/ / , / /) . The changes made in hnes 38-43 might mean that Sj is

now in free, for such a path p (/ / , / /) ; i f so then we move p (/ / , / /) to S^-paths and

register that the nodes of Sj are to be used as transit nodes to extend p (/ / , / /) to a

path to Ik and so can no longer be used as such for any other path.

In hnes 51-56, we deal w i t h the remaining paths in Si-paths-blocked (of the

form p (/ / , / /) and where Sj 0 free). The situation can be visualized in Fig.6.2,

where the target nodes are depicted in black, those paths p already established are

depicted w i t h an arrow (to escape [p]), and the neighbours of / / in Si \ {/i} are

shaded in grey. We claim that there exists a neighbour (/ /) ' of / / in Si \ { / J such

that Si G free. Let us count the number of S;'s, f rom {Si , S2,..., Sn} \ {Sfc, S J ,

for which Si ^ free. As we have seen already, any such S; can be associated w i t h

a target node and all these associated target nodes are distinct. The maximum

number of target nodes eligible to be associated wi th such an S/ is (n — 1) — a — 1,

where a is the number of paths currently in Si-paths-blocked (remember, the target

node on whose path in Sfc the node II lies is not eligible for association). Hence,

6.4. Bu i ld ing node-disjoint paths 131

the number of Si's, f rom { ^ i , 52 , . . . , 5„} \ {Sk, Si}, for which 5/ G free is at least
(n - 2) - ((n - 1) - a - 1) = Q: > 1. Consider the neighbours of / / in SnX, these
are It, a node in Sj (where, by definition, Sj ^ free) and n — 3 other neighbours.
Consequently, f rom the n - 3 neighbours of / / different f rom / j and the neighbour
in SJ, at least one, call i t (/ /) ' , is joined to a node in Si where Si G free. We
choose such a node (/ /) ' in line 52, and in lines 53-55 we remove p (/ / , / /) f rom
Si-paths-blocked, add the path p (/ / , (/ /) ') = (/./, (/ /) ') to Si-paths and register that
the nodes of Si are to be used as transit nodes to extend p (/ / , (/ /) ') to a path to 4
and so can no longer be used as such for any other path. Note that (/ /) ' cannot lie
on any path in Si-paths because of our manipulation in lines 38-43. Also, the new
path p (/ / , (/ /) ') does not contain a node of the form { j ' , . . . ,i) for which 5^ G free.
We repeat the above for every path in St-paths-blocked.

I n lines 57-60, we extend all paths in Si-paths (in the natural way) so that they

reach Ik and move the paths into paths. Thus, the procedure Paths_in_some: target

_and_blocked achieves its aims.

Consider the situation where 5̂ G blocked f l some and / , ^ Ti (recall, up unt i l

now we have assumed that / , G Ti). In order to deal w i t h this situation we develop a

new procedure Paths_in_some:not_target_and_blocked(5i,Tj,/ . , , /ree, 'use(i,pat/is).

This procedure is very similar to Paths_in_some: target .and.blocked so we do

not describe i t in detail nor wi th pseudo-code, but only highlight any differences

and comment on any amended analysis. To obtain Paths _in_some : not-target _and

-blocked, we omit lines 2-3 f rom Paths.in-some :target-and_blocked and amend

line 4 so that temp is initialized as being empty. We omit lines 20-23 and amend line

24 to / / G temp. The analysis of Paths-in_some: target_and-blocked is identical

to that of Paths_in-Some :not-target-and-blocked. Our only comment is that in

the analysis corresponding to lines 5-15 of Paths-in_some :target_and_blocked, we

sti l l obtain that all neighbours 7/ of / , that are not target nodes and for which

Sj ^ free are chosen as temporary target nodes (the number of temporary target

nodes chosen is (n — 2) - \Ti\ and the number of 5/'s, f rom {Si, S2, • • •, Sn}\{Sk, Si},

that are not in free is at most (n — 1) — | T i | — 1). Furthermore, the analysis

corresponding to line 52 of Paths_in-Some : target-and_blocked s t i l l holds. Hence,

6.4. Bu i ld ing node-disjoint paths 132

rootescape

Figure 6.2: Dealing with 'bad' target nodes.

Paths_in_some :not_target_ai id_blocked achieves its aims.

6.4.4 Paths in Si ^ blocked n some

We are reduced to the situation where we have established some paths from target

nodes in 5^ to Ik (if there are any) and established some paths from target nodes

in Si to /fc, where Si G blocked (1 some (if such an Si exists). Thus, we have to deal

with target nodes in other Sj's for which Sj E some \ blocked (recall that there is

at most one Si in blocked Pi some).

We deal with this situation with the procedure Paths_in_some ino t -b lockedC^ i ,

T i , I i , free,used, paths) (we have switched indices from j to i to make a compar­

ison with Paths_in_some:target_and_blocked easier). This procedure differs from

Paths_in_some : target_cm .d_blocked sufficiently for it to be worthwhile detailing us­

ing pseudo-code. The line-numbering has been chosen so that Paths_in_some : not _

b locked can more eaisily be compared with Paths_in_some: t a r g e t .and-blocked.

As ever, we assume that 0 < |T j | < n — 1.

1 P a t h s _ i n _ s o m e : n o t _ b l o c k e d (5 i , r i , / j , / r e e , used,paths)

4 temp := 0;

5 f o r each neighbour / / of Jj i n Si \ Tj do

6 i f Sj ^ free and \temp U (7;; \ { / i }) | < n - 2 t hen

7 add I j t o temp;

8 f i

9 od

6.4. Bu i ld ing node-disjoint paths 133

10 temp-SO-far := temp;

11 f o r each neighbour // of li i n S^\{temp.so.farUTi) do
12 i f \tempU{Ti \ {Ii})\ < n - 2 then
13 add // to temp;

14 f i
15 od
16 c a l l Disjoint_paths (5 i , (i e m p U T i) \ Si-paths);

17 Si-paths Mocked := 0;

17.1 bad Jar get := e;

17.2 bad-terminal := e;

18 f o r every neighbour // of i n Si do
19 case of
24.1 / / e temp :

25 remove the path p{I^, U) from Si-paths;

26 / / ^ temp U T, :

27 replace the path p{t,Ii) i n Si-paths

upon which // l i e s with the sub-path p{t,I-);

28.1 i f Sj e free then
28 set escape[p{t, I-)] := Sj;

29 remove 5^ from free and add 5^ to used;

29.1 else
29.2 bad Jar get := t;

29.3 badJerminal : = /^^;

29.4 f i
30 G T^ and G / ree :

31 replace the path i n Si.paths

with the path p{li,li) = (/•);

32 set escape[p(// , / /)] := S'j ;

33 remove Sj from / ree and add Sj to usee?;

34 li G T, and ^ / ree :

35 remove the path p (/ / , / i) from Si-paths and add the

6.4. Bu i ld ing node-disjoint paths 134

path p{Il,P-)^{Il) to Si.paths.blocked;

36 esac;
37 od
38 while some path p{t,s) i n Si-paths contains a node whose

f i r s t component j , say, i s such that Sj 6 free do

39 replace the path p{t,s) i n Si-paths with i t ' s sub-path
p{t,x) where x i s such that i t s f i r s t component j ,

say, i s such that 5̂ - e free and where i f y x i s any
other node on p{t,x) then i t s f i r s t component
say, i s such that Sf 0 free;

39.1 if t ^ bad.target or s ^ bad.terminal then
40 remove escape[p{t, s)] from used and add

escape[p{t, s)] to free;

40.1 f i
41 set escape[p{t,x)] := 5^;

42 add Sj to used and remove Sj from free;

43 od
44 f o r every path p (/ / , / /) G SijpathsMocked do
45 i f 5 j G / ree then
46 remove //) from S.,.paths Mocked

and add p (/ / , / /) to Sijpaths;

47 set escape[p(// , / /)] := 5 j ;

48 remove S'j from / ree and add Sj to used;

49 f i
50 od
50.1 i f h e Ti then
50.2 add the path = Cresp. p[h,h) =

(/ I , / A :)) to paf/i5 i f z ^ 1 (resp. z = 1) ;

50.3 else
50.4 i f bad-target ^ e and bad.terminal ^ e then
50.5 i f p{bad.target, bad-terminal) e Si.paths then

6.4. Bu i ld ing node-disjoint paths 135

50.6 remove p{had.taTget,hadJ,erminal) from Si-paths;

50.7 else
50.8 remove the path p{bad.target, s) from Si-paths;

50.9 remove escape[p{badJ,arget, s)] from used aind add
escape[p{hadJ,arget,s)] to free;

50.a f i
50.b extend p{had.tar get, had-terminal) through U to 4

and c a l l t h i s path p{bad.target, Ik);

50.c add p{had.target, Ik) to paths;

50.d else
50.e i f Si-paths-blocked ^ 0 then
50.f choose some p{li, I j) e Si-paths.blocked,

remove i t from Si-pathsMocked and add the path
p { I l I k) ^ { I l h J l I k) (resp. p (/ f , / ,) = (/ ^ / , , 4))

to paths i f ? 7̂ 1 (resp. i = 1);
50.g else
50.h remove some path p{t,s) from Si-paths;

50.i remove escape[p{t, s)] from used and
add escape[p(t, s)] to free;

50.j define the path p{t,Ik) by extending the
o r i g i n a l path p{t, //) of which p{t, s) i s a
sub-path to /, and then on t o 1^;

50.k add p{t, Ik) to paths;

50.1 f i
50.m f i
50.n f i
51 f o r every path p (/ / , / /) G S^-paths-blocked do
52 choose a neighbour (//)' of /,/ i n f o r which 5/ G free;

53 remove //) from Si-paths-blocked and

add p{liiliy)^m,{l!y) to S,_pai/is;

54 set escape[p(//, (/ /) ')] := So

6.4. Bu i ld ing node-disjoint paths 136

55 remove 5/ from free and add Si to used;

56 od

57 f o r every path p{t,s) i n Sj-paths do

58 extend p{t,s) to a path p{t,Ik) through the nodes of

Sj = escape[p{t, s)] to I j and then on to 1^;

59 remove p{t,s) from Si-paths and add p{t,Ik) to paths;

60 od

We explain below what Paths_in_some:not_blocked does, and prove that what

the procedure claims to do is actually possible and that i t achieves its aims. I t

has some similarities wi th Paths_in.some: target-cind.blocked and so we are brief

w i t h some of the analysis below when this analysis is identical to before wi th

Paths_in_some: target_cLnd_blocked. We assume that (after possible calls to

Paths_in_5fc and Paths_in_some: target_and_blocked), i t is the case that | / ree | =

(n — 1) — |Tfc|, if there was no call to Paths_in_some:target_and_blocked, and

| / ree | > (n - 2) - - 1) - 1T,J = (n - 1) - |Tfc| - |r,J, where S,, is the focus of

the call to Paths.in_some:target_and_blocked. Thus, regardless, | / ree| is n - 1

minus the total number of target nodes in the 5j's 'dealt w i t h ' so far.

In lines 4-15, neighbours of U are set as temporary target nodes, making sure

that neighbours / / for which Sj ^ free are chosen before neighbours / / for which

Sj G free. The process stops when: |T i | - 1 plus the number of temporary target

nodes is exactly n - 2, i f / j G Ti\ or when \Ti\ plus the number of temporary target

nodes is exactly n - 2, i f / j ^ T,. We claim that: i f U G T j then all neighbours / / of

li in S^ that are not target nodes and for which Sj ^ free are chosen as temporary

target nodes; and that if U ^ Ti then all neighbours If of U in Si that are not target

nodes and for which Sj ^ free are chosen as temporary target nodes except possibly

for at most one such neighbour. We now verify this claim.

Suppose that the call to Paths_in_some:target_aiid-blocked was made. Let us

count the number of 5i ' s , f rom { 5 i , 5 2 , . . . , 5 „ } \ {Sfc , 5 jo ,S ,} , that are not in free.

The reason any Si ^ free is that exactly one of the following holds: Si G blocked;

Si G some \ blocked; and 5; G used \ blocked. We can associate a target node

wi th each such Sc. if 5/ G blocked then choose the target node in Tk on whose

6.4. Bu i ld ing node-disjoint paths 137

path in paths the (blocking) node lies; i f Si G some \ blocked then choose any
target node in Si; and i f Si G used \ blocked then choose the unique target node in
SiQ on whose path in paths the nodes of 5/ are used as transit nodes. Note that
distinct Si's are associated w i t h distinct target nodes. Thus, the number of Si's,
f rom {Si, S2, • • •, Sn} \ {Sk, SiQ, Si}, that are not in free is at most the number
of target nodes that potentially can be associated wi th such an Si, and this is
{\Tk\ - 1) + \TJ + Ej^k,ioATj\ = (n - 2) - |r,| (note that r° G ^ cannot be so
associated). Thus, irrespective of whether li is in Ti or not, all neighbours / / of / j
in Si that are not target nodes and for which Sj ^ free are chosen as temporary
target nodes.

Suppose that the call to Paths.in_some:target-and_blocked was not made.

Let us count the number of Si's, f rom {S\,S2, • • • ,Sn} \ {Sk,Si}, that are not in

free. As above, the number of such Si's is at most IT^I + Ej^k^i\Tj\ = (n — 1) — \Ti .

Thus, if li G Ti then all neighbours / / of in 5 i that are not target nodes and for

which Sj ^ free are chosen as temporary target nodes; however, if / j ^ T then

there may be at most one such neighbour that is not chosen as a temporary target

node. Hence, our claim holds.

In line 16, we recursively find node-disjoint paths in Si f rom every target node

of Ti \ { / ; } and every temporary target node to the node li, as we did before. In line

17, Si-paths-blocked is initialized as an empty set of paths, and in lines 17.1-17.2,

the nodes bad-target and bad-terminal are set as e, i.e., ' n i l ' .

In lines 18-37, we amend each path in Si.paths by working through the neigh­

bours if of li in Si in turn as follows. I f / / G temp then we remove the path p (/ / , 7)̂

f rom Si-paths. I f If 0 temp U T then we truncate the path p{t, li) containing

by removing the f inal edge. We also register that the nodes of Sj are to be used as

transit nodes for this truncated path, but only if the path in question is such that

Sj G free; otherwise, we set bad-target = t and bad-terminal — P- (f rom above,

there is at most one such path). I f / / G T then we truncate the path p (/ / , / j) con­

taining / / by removing the final edge. I f Sj G free then we register that the nodes

of Sj are to be used as transit nodes for this truncated path; otherwise, we move

the path p (/ / , / /) f rom Si-paths to Si-paths.blocked.

6.4. Bu i ld ing node-disjoint paths 138

In line 38-43, we amend the paths of Si-paths. Suppose that some path p{t, s)

in Si-paths, where t ^ bad-target ov s ^ bad.terminal, is such that there is some

node X of the fo rm (j , . . . ,i) lying upon i t so that 5^ £ free. We can replace the

path p{t,s) in Si-paths w i t h the sub-path p{t,x), so long as we release the set of

transit nodes escape[p{t, s)] (for possible future use) and register that the new set

of transit nodes Sj is not to be used as a set of transit nodes for any other path. I f

the path p{bad-target, bad-terminal) is such that there is some node x of the form

(j , . . . ,i) lying upon it so that Sj 6 free then we can simply replace i t in Si-paths

with the path p{bad-target,x) and register that the new set of transit nodes 5 j is

not to be used as a set of transit nodes for any other path (for if bad-termmal = /•

then Si 0 free). By iterating this process, we get to the situation where no path in

Si-paths contains a node of the form (j , . . . ,i) so that Sj G free.

In lines 44-50, we deal w i th some of the paths in Si-paths-blocked, each of which

is of the form p (/ / , / /) , as we did before.

In lines 50.1-50.n, we ensure that exactly one path f rom a chosen target node

in Si to Ik wi l l pass through the node (after construction, this path is placed

in paths). I f li G Tj then our chosen target node is recall f rom earlier that

when Jj G T j , there is no 'bad' path p{bad-tar get, bad-terminal) and so all other

paths in Si-paths can be extended through transit nodes (as is done in lines 57-

60). Otherwise, i f the 'bad' path p{bad-target, bad-terminal) exists and still resides

in Si-paths then we extend this path through / j to 4 ; alternatively, i f there is

a path of the form p{bad.target, s) in Si-paths (where s bad-terminal) then we

release the corresponding set of transit nodes for possible future use before replacing

p{badJarget, s) w i t h the extension of the original path p{badJtarget, bad-terminal)

through li to Ik- Suppose that U ^ and that no 'bad' path has ini t ial ly been

registered. I f SiJpaths-blocked is non-empty then some path f rom Si-paths-blocked

is chosen and extended through li to Ik- Alternatively, i f Si-paths.blocked is empty

then some path p{t, s) f rom Si-paths is chosen and replaced wi th the original path

p{t, i j) of which p{t, s) is a sub-path; the path p{t. I f) is extended through U to h

and the set of transit nodes corresponding to p{t, s) is released for possible future use.

Irrespective of which path is chosen to go through h, note that the corresponding

6.4. Bu i ld ing node-disjoint paths 139

target node is not associated wi th any set of transit nodes.

The subsequent execution of the algorithm is as before; however, we must verify

that a node (/ /) ' can be chosen as in line 52. We claim that there exists a neighbour

(/ /) ' of / / in S^ \ such that Si e free.

Suppose that the call to Paths_in_some: target_cLnd_blocked was made. Let us

count the number of 5/'s, f rom . . . , 5 „ } \ {Sk, 5io, 5 i } , for which 5; ^ free.

As we have seen already, any such Si can be associated wi th a target node and all

these associated target nodes are distinct. The maximum number of target nodes

eligible to be associated w i t h such an Si is {n — 1) — a — 2, where a is the number of

paths currently in SijpathsMocked (remember, f rom the last line of the preceding

paragraph, there is a target node of 5 j , but not one of the a target nodes, not

associated w i t h any set of transit nodes; also, € is not so associated). Hence,

the number of 5; 's, f rom {S\, S2, • • •, Sn] \ [Sk, Si^, Si], for which 5/ G free is at

least (n - 3) - ((n - l) - Q - 2) = 0; > 1. Consider the neighbours of / / in Sn,k\ these

are U, a node in Sj (where, by definition, Sj ^ free) and n — 3 other neighbours.

Consequently, f rom the n - 3 neighbours of / / different f rom / j and the neighbour

in Sj, at least one, caU i t (/ /) ' , is joined to a node in Si where Si G free.

Suppose that the call to Paths_in_some: target_and_blocked was not made. Let

us count the number of 5/ 's, f rom 52 , • • . , 5 „ } \ {Sk,S^), for which 5 / ^ free.

The maximum number of target nodes eligible to be associated wi th such an 5; is

(n - 1) - cv - 1, where a is the number of paths currently in S^ jpaths.blocked (again,

there is a target node of 5 i , but not one of the a target nodes, not associated wi th

any set of transit nodes). Hence, the number of 5;'s,- f rom { 5 i , 5 2 , . . . , 5 n } \ { 5 / . , 5 , } ,

for which 5; G free is at least (n - 2) - ((n - 1) - a - 1) = Q > 1. As above, the

required node (/ /) ' exists and our claim holds.

I t can easily be verified that if we repeatedly apply the procedure Paths_in_

some :not_blocked then the analysis as presented above sti l l holds true (essentially

because every time we apply Paths_in_some: not_blocked, one of the target nodes

in the 5 i in question is always on a path through U to Ik and thus does not use

any set of transit nodes). Consequently, the procedure Paths_in_some: not-blocked

achieves its aims, as does our main algorithm Disjoint_paths.

6.5. P a t h lengths and complexity 140

6.5 Path lengths and complexity

Having proved that our algorithm D i s j o i n t .paths finds a collection of node-disjoint

paths i n Sn,k f rom n - 1 target nodes to a source node, we now turn to the lengths

of the paths produced by the algorithm and the time complexity of the algorithm.

We derive below an upper bound on the length of any path constructed by

Disjoint_paths; in the first instance, this upper bound is in the form of a recur­

rence relation. Let bk be an upper bound on the length of any path produced by

the algorithm Dis joint.paths applied in 5„,fc, irrespective of n (at the moment, we

have not shown that such an upper bound exists; however, we show, using induc­

t ion, that i t does and derive an estimate of i t) . By Theorem 6.3.1, 62 = 5. I n order

to derive the recurrence relation, we consider each of the procedures Paths-in-S^,

Paths_in_some : target _and_blocked, Paths_in_some: not-target-and_blocked

and Paths_in_some:not_blocked in tu rn (when called f rom wi th in Disjoint_paths

applied in Sn,k, where k is at least 3). As our induction hypothesis, we assume that

bk-i exists.

The following lemma proves useful.

L e m m a 6.5.1 Let (j , X 2 , . . . and {yi,y2, • • • ,yk-i,i) be nodes of Si in Sn,k,

for some i,j G { 1 , 2 , . . . , n } \ {k}, with i 7̂ j , and let p[[j,X2,- • •:Xk-i,i), (2 / 1 , ^ / 2 , • • •,

yk-\,i)) be a path in S^ of length t. Also, let (21 ,22 , • • • , 2 f c - i , j) be the node of Sj

such that for every I = 1,2,... ,k - 1, if yi ^ j then 2/ = yi, and if yi = j then

Zi = I .

[a) There is a path p{{i,X2, •. .,Xk-i,j), (21, 2 2 , . . . , Zk-uj)) Sj of length t.

(b) If further, (2 / 1,2 / 2 , • • • , J/fc-i , 0 = then there is a path from (zi, 2 2 , . . . , Zk-\,j)

to Ij in Sj of length at most 3.

Proof: (a) This follows f rom a simple induction on the length of the path

P((j , X2,.--, Xk-i,i), (21, 2 2 , . . . , Zk-i,i)).

(6) There are a number of cases to consider. Denote (21, 22, • • • , •Zfc-i, j) by Z.

Case (z): Suppose that U = {k,2,... ,i - + 1,... ,k ~ \,i), where i G {2 , 3,. . . ,

k - 1} , and that Ij = (fc, 2 , . . . , j - 1,1, j + 1,...,/c - l , j) , where j G {2 , 3 , . . . , -

6.5. P a t h lengths and complexity 141

Thus, Z = {k,2,... , i - 1,1,1 + 1,... ,j - l , i , j + 1,... ,k ~ l , j) and there is a path
f rom Z to I J of length at most 3.

Case {ii): Suppose that I^-{k,2,...,i-\,l,i + l , . . . , k - l , i) , where i e { 2 , 3 , . . . ,

k - 1}, and that I j = {k,2,..., k - l , j) , where j e {k + I, k + 2,... ,n}.

Thus, Z — {k,2,... ,i — l,l,i + 1,... ,k — l , j) and there is a path f rom Z to I j of

length at most 3.

Case {Hi): Suppose that = {k,2,... ,i — + I,..., k — l,i), where i G

{2,3, . . . , k - 1}, and that j = 1 wi th h ^ {k,2,..., k - 1,1).

Thus, Z = (/c ,2 , . . . ,/c - 1,1) and Z = h.

Case {iv): Suppose that U = {k,2,..., k - I, i), where i e {k + I, k + 2,... ,n}, and

that I j = {k,2,...,j - l , l , j + l , . . . , k - l , j) , where J G {2,3,..., k - 1}.

Thus, Z = { k , 2 , . . . , j - l , i , j - \ - l , . . . , k - l , j) and there is a path f rom Z to of

length at most 3.

Case (v): Suppose that U ^ {k,2,... ,k - l,i), where i e {k + l,k + 2,... ,n], and

that Ij^{k,2,...,k- \ , j) , where j G {fc + 1,/c + 2 , . . . , n } \ {i).

Thus, Z = {k,2,...,k-\,j) and Z = / j .

Case {vi): Suppose that li ^ {k,2,..., k - l,i), where i e {k + 1, k+ 2,... ,n}, and

that J = 1 wi th Ji = (/c, 2 , . . . , /c - 1,1).

Thus, Z = {k,2,...,k-l,l) and Z = / i .

Case (vii): Suppose that i — 1 w i t h Ii = {k,2,..., k - 1,1) and that I j = {k,2,...,

j - + 1,..., k - l , j), for some j e {2,3,... ,k - I}.

Thus, Z = (^ ^ 2 , . . . , J - l , l , j - M , . . . , / : - L j) and Z = 7^.

Case (W M) : Suppose that i — 1 wi th 7i — {k,2,... ,k - \,\) and that 7j =

(A ; , 2 , . . . , A; - 1, j) , for some j G {A; 4-1,/c + 2 , . . . , n } .

Thus, Z = {k,2,...,k-\,i) w i t h Z = 7 .̂

The result follows. •

Trivially, every path produced by Paths.in-^fc has length b^-x- Consider the

paths constructed by Paths-in.some: target_and_blocked. Each path begins as

6.5. P a t h lengths and complexity 142

a path of length at most bk~i produced by the recursive call to Disjoint.paths.
Some paths are essentially constructed in lines 18-50 (except that they need to be
extended through the appropriate Sj to Ij and then on to Ik); others are essentially
constructed in lines 51-60. Consider a path p{t,Ik) constructed according to lines
18-50. In general, this path: starts out as a path p[t,Ii) of length at most bk-\\
is progressively shortened so that some sub-path from some node X of p{t,I-) to
/ / is removed; and the sub-path p{t, X) is extended through some Si to // and
then on to h- By Lemma 6.5.1, the resulting (sub-)path from t to Ii has length
at most bk-i + 4, and so the resulting path p{t,Ik) has length at most bk-i + 6.
Consider a path p{t, Ik) constructed according to lines 51-60. Again by Lemma 6.5.1,
this path has length at most 9. The same path-length analysis holds for both
Paths_in_some :not_target-and_blocked and Paths_in_some:not_blocked. Thus,
we have that bk exists and bk < bk-i +6 . Thus, by induction and as 62 = 5, we have
that bk <6k-7-

As regards the time complexity of our algorithm, consider the execution of

Disjoint.paths on Sn,k, with the set of target nodes T and with the source node / .

This execution results in a tree r describing the procedure calls, with every node of

the tree r corresponding to a call of the procedure Disjoint.paths, Paths.in-Sfc,

Paths.in.some:target.and.blocked, Paths_in.some:not_target_and_blocked or

Paths.in.some: not-blocked, as follows: a node corresponding to some procedure

P has a child corresponding to some procedure Q if a call is made to procedure Q

from within the call to procedure P- The structure of the tree r can be visualized

as in Fig.6.3, where a node is labelled D (a D-node) if it corresponds to a call of

the procedure Disjoint.paths and P (a P-node) if it corresponds to a call of one

of the other 4 procedures. Note that it may be the case that a D-node has only 1

child; however, every P-node has exactly one child.

We can associate with each D-node of r a pair of integers [k, t) if the particular

call involves S'n,̂ , the target nodes T and the source node / , and if there are t

target nodes of T not adjacent to the source node / . Note that the pair of integers

associated with the root of r is {k, t), for some t < n. If a D-node u has an associated

pair (m, t) and d children then a simple consideration of the procedure calls detailed

6.5. P a t h lengths and complexity 143

Figure 6.3: The tree r of procedure calls.

in the algorithm Disjoint_paths yields that the pair associated w i t h the unique

D-chi ld of the ith. P-child of u must be of the form (m — l , i i) and we must have

that ti + t2 + • • • + td < t.

Remove all P-nodes f rom r by inserting an edge joining the parent and the child

of any P-node; denote the resulting tree by r ' . We claim that r ' has at most {k — 2)t^

edges, where the pair of integers associated wi th the root is (fc , i) , for some k >2,

and we prove this claim by induction on k (the base case, when k = 2, t r ivial ly

holds). Suppose that the root has d children and that the pair of integers associated

w i t h the zth child is {k — l,ti); so, in particular, ti+t2 +.. • + td < t. By the induction

hypothesis, the sub-tree rooted at the zth child of the root has at most {k — 3)t'j

edges. Thus, the number of edges in r ' is at most {k — 3){t] +12 + • •. +1'^) + d edges,

which in tu rn is at most {k — 2){t\ + t^ + . • • + td)'^ < {k — 2)i^. Hence, our claim

holds.

The upshot is that in any execution of D i s j o i n t .paths on Sn,k w i th a set of

target nodes T of size ?z— 1, there are at most 2(A; —2)(n — 1)^ procedure calls. Given

that bk < 6k — 7, i t is t r iv ia l to see that apart f rom a call to another procedure,

all procedures take 0{k'^n^) time, as does the procedure Disjoint_paths_when_A:=2

(by Theorem 6.3.1). Hence, Disjoint_paths on Sn,k w i th a set of target nodes T

of size n - 1 has t ime complexity 0{k^n'^).

6.6. Conclus ions 144

6.6 Conclusions

In this chapter, we have derived a polynomial-time algorithm to find node-disjoint

paths f rom each of n — 1 distinct target nodes in 5,1,^ to a source node (different f rom

any target node). The length of any path constructed is at most 6A; — 7. This should

be compared wi th the diameter of Sn,k which is at most 2k —I (see the Introduction

for an exact formula for the diameter of Sn,k)-

Of course, we can apply our algorithm to S'„_i,„, i.e., the n-star. What results is

an algorithm of time complexity 0 (n ' ') that finds node-disjoint paths, each of length

at most 6 n - 1 3 . As might be expected, the algorithm f rom [34], designed specifically

for n-stars, is better in that i t has time complexity O(n^) and results in node-disjoint

paths each of length at most . Similarly, we can apply our algorithm to produce a

(u, t>)-container, for distinct nodes u and v of Sn,k- Again, as expected, the resulting

container is much worse than that produced by the (polynomial-time) algorithm

in [115] (specifically designed for the purpose) where one of wide-diameter at most

2A; -I-1 is produced. Nevertheless, our algorithm gives a polynomial-time alternative

for constructing node-disjoint paths in n-stars and containers in Sn,k-

Chapter 7

Conclusion and future work

There are many studies on different aspects of interconnection networks for paral­

lel and distributed computing; for example, the topological properties of different

interconnection networks, routing and communication algorithms designed for inter­

connection networks, and fault-tolerant properties of interconnection networks. In

this thesis we considered several properties for k-avy n-cubes and (n, /c)-star graphs,

and we proposed a new interconnection network, the augmented /c-ary n-cube. In

detail, we obtained the following results:

1. Let A; > 4 be even and let n > 2. Consider a faulty fc-ary n-cube Q'^^ in which

the number of node faults fy and the number of link faults fe are such that

fv + /e < 2n - 2. We prove that given any two healthy nodes s and e oi Q'^,

there is a path from s to e of length at least A;" - 2/^ - 1 (resp. k^ - 2 f y - 2) if

the nodes s and e have different (resp. the same) parities (the parity of a node

in Q.̂ is the sum modulo 2 of the elements in the n-tuple over { 0 , 1 , . . . , A; - 1}

representing the node). Our result is optimal in the sense that there are pairs

of nodes and fault configurations for which these bounds cannot be improved,

and it answers questions recently posed by Yang, Tan and Hsu, and by Fu.

Furthermore, we extend known results, obtained by Kim and Park, for the

case when n = 2.

2. We give precise solutions to problems posed by Wang, An, Pan, Wang and

Qu and by Hsieh, Lin and Huang. In particular, we show that is bi-

145

7. Conc lus ion and future work 146

panconnected and edge-bipancyclic, when A; > 3 and n > 2, and we also
show that when k is odd, Q'^ is m-panconnected, for m = "(^-0^+2^-6^
{k - l)-pancyclic (these bounds are optimal) . We introduce a path-shortening
technique, called progressive shortening, and strengthen existing results, show­
ing that when paths are formed using progressive shortening then these paths
can be efficiently constructed and used to solve a problem relating to the dis­
tr ibuted simulation of linear arrays and cycles in a parallel machine whose
interconnection network is Q'^^, even in the presence of a faul ty processor.

3. We define an interconnection network AQn^k which we call the augmented

A;-ary n-cube by extending a fc-ary n-cube in a manner analogous to the exist­

ing extension of an n-dimensional hypercube to an n-dimensional augmented

cube. We prove that the augmented k-avy n-cube AQn^k has a number of

attractive properties (in the context of parallel computing). For example, we

show that the augmented k-avy n-cube AQnX- is a Cayley graph (and so is

vertex-symmetric); has connectivity 4n — 2, and is such that we can build a

set of 4n — 2 mutually disjoint paths joining any two distinct vertices so that

the path of maximal length has length at most max{{n — l)k — {n — 2), k + 7}\

has diameter [| J - f ["̂ 1, when n = 2; and has diameter at most | (n - f 1), for

n > 3 and k even, and at most | (n -t- 1) - I - f , for n > 3 and k odd.

4. We present an algorithm which given a source node and a set of n - 1 target

nodes in the (n, k)-stav graph Sn,k, where all nodes are distinct, builds a col­

lection of n — 1 node-disjoint paths, one f rom each target node to the source.

The collection of paths output f rom the algorithm is such that each path has

length at most Qk - 7, and the algorithm has time complexity 0{k^n'^).

Our research plan in the near future may focus on the following topics:

• Tolerating faults under conditional fault assumptions: to classify the fault-

tolerance of interconnections networks used wi th in parallel computing wi th

respect to path- and cycle-based properties and under conditional fault as­

sumptions.

7. Conclus ion and future work 147

• Tolerating faults in OTIS networks: to investigate further the topological and
algorithmic properties of general OTIS networks (Optical Transpose Intercon­
nect System network [121,173]), both in the absence and presence of faults.

• The distributed construction of embedded structures: to investigate further

the distributed construction of embedded structures wi th in faulty intercon­

nection networks.

Bibliography

1] Seth Abraham and Krishnan Padmanabhan. Performance of multicomputer

networks under pin-out constraints. J. Parallel Distnb. Comput., 12(3):237-

248, 1991.

2] V. S. Adve and M. K. Vernon. Performance analysis of mesh interconnec­

tion networks with deterministic routing. IEEE Trans. Parallel Distrib. Syst.,

5(3):225-246, 1994.

3] A. Agarwal. Limits on interconnection network performance. IEEE Trans.

Parallel Distrih. Syst, 2(4):398-412, 1991.

4] S. B. Akers, D. Harel, and B. Krisnamurthy. The star graph: An attractive

alternative to the n-cube. In Proc. Int. Con/. Parallel Processing, pages 393-

400, 1987.

5] S. B. Akers and B. Krishnamurthy. A group-theoretic model for symmetric

interconnection networks. IEEE Trans. Comput., 38(4):555-566, 1989.

6] Akl, Qiu, and Stojmenovic. Data communication and computational geometry

on the star and pancake interconnection networks. In SPDP: 3rd IEEE Sym­

posium on Parallel and Distributed Processing, pages 415-422. ACM Special

Interest Group on Computer Architecture (SICARCH), and IEEE Computer

Society, 1991.

7] Selim G. Akl. Parallel Computation: Models and Methods. Prentice Hall, first

edition, 1996.

148

Bibliography 149

8] B. Alspach and D. Hare. Edge-pancyclic block-intersection graphs. Discrete
Math., 97; 17-24, 1991.

9] Ed Anderson, Jeff Brooks, Charles Grassl, and Steve Scott. Performance of

the Cray t3e multiprocessor. In Supercomputing '97: Proceedings of the 1997

ACM/IEEE conference on Supercomputing (CDROM), pages 1-17, New York,

NY, USA, 1997. ACM.

10] Norbert Asheuer. Hamiltonian path problems in the on-line optimization

of flexible manufactring systems. In Ph.D thesis, University of Technology,

BerUn, Germany, 1995.

11] Yaagoub Ashir and Iain A. Stewart. Embeddings of cycles, meshes and tori

in faulty /c-ary n-cubes. In ICPADS'97: Proceedings of the 1997 International

Conference on Parallel and Distributed Systems, pages 429-435, Washington,

DC, USA, 1997. IEEE Computer Society.

12] Yaagoub Ashir and Iain A. Stewart. On embedding cycles in /c-ary n-cubes.

Parallel Processing Letters, 7(l):49-55, 1997.

13] Yaagoub Ashir, Iain A. Stewart, and Aqeel Ahmed. Communication algo­

rithms in fc-ary n-cube interconnection networks. Inf. Process. Lett., 61(1):43-

48, 1997.

14] Yaagoub A. Ashir and Iain A. Stewart. Fault-tolerant embeddings of hamil­

tonian circuits in /c-ary n-cubes. SI AM Journal on Discrete Mathematics,

15(3):317-328, 2002.

[15] W.C. Athas and C.L. Seitz. Multicomputers: message-passing concurrent

computers. Computer, pages 273-290, 1988.

16] Nader Bagherzadeh, Martin Dowd, and Nayla Nassif. Embedding an arbitrary

binary tree into the star graph. IEEE Trans. Comput, 45(4):475-481, 1996.

17] J.-C. Bermond, E. Darrot, 0 . Delmas, and S. Perennes. Hamilton circuits in

the directed wrapped butterfly network. Discrete Appl. Math., 84(l-3):21-42,

1998.

Bibliography 150

18] Pascal Berthome, Afonso Ferreira, and Stephane Perennes. Optimal infor­
mation dissemination in star and pancake networks. IEEE Trans. Parallel
Distrib. Syst, 7(12): 1292-1300, 1996.

19] S. Bettayeb. On the fc-ary hypercube. Theoret. Comput Sci., 140:333-339,

1995.

20] L. N. Bhuyan and D. P. Agrawal. Generalized hypercube and hyperbus struc­

tures for a computer network. IEEE Trans. Comput., 33(4):323-333, 1984.

21] Bela BoUobas. Extremal Graph Theory. Dover Publications, Incorporated,

2004.

22] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. North-

Holland, New York, first edition, 1980.

23] Rajesh Bordawekar, Alok Choudhary, and Juan Miguel Dei Rosario. An exper­

imental performance evaluation of Touchstone Delta Concurrent File System.

In Proceedings of the 7th ACM International Conference on Supercomputing,

pages 367-376. ACM Press, 1993.

24] S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H.T. Kung, M. Lam,

B. Moore, C. Peterson, J. Pieper, L. Rankin, P.S. Tseng, J. Sutton, J. Ur-

banski, and J. Webb, iwarp: an integrated solution to high-speed parallel

computing. In Supercomputing '88: Proceedings of the 1988 ACM/IEEE con­

ference on Supercomputing, pages 330-339, Los Alamitos, CA, USA, 1988.

IEEE Computer Society Press.

25] B. Bose, B. Broeg, Y. Kwon, and Y. Ashir. Lee distance and topological

properties oi k-oxy n-cubes. IEEE Trans. Comput., 33:1021-1030, 1995.

26] J. Bruck, R. Cypher, and C.-T. Ho. Efficient fault-tolerant mesh and hy­

percube architectures. In Fault-Tolerant Computing, 1992. FTCS-22. Digest

of Papers., Twenty-Second International Symposium on, pages 162-169, IBM

Almaden Res. Center, San Jose, CA, 1992. IEEE.

Bibliography 151

27] Jean-Philippe Brunet and S. Lennart Johnsson. All-to-all broadcast and appli­
cations on the connection machine. International Journal of High Performance
Computing Applications, 6(3):241-256, 1992.

28] Mee Yee Chan and Shiang-Jen Lee. On the existence of hamiltonian circuits

in faulty hypercubes. SIAM J. Discret. Math., 4(4):511-527, 1991.

29] CP. Chang, T.Y. Sung, and L.H. Hsu. Edge congestion and topological prop­

erties of crossed cubes. IEEE Trans. Parall. Distr., 11:64-80, 2000.

30] CP. Chang, J.N. Wang, and L.H. Hsu. Topological properties of twisted cube.

Inform Sci., 113:147-167, 1999.

31] Jou-Ming Chang, Jinn-Shyong Yang, Yue-Li Wang, and Yuwen Cheng. Pan-

connectivity, fault-tolerant hamiltonicity and hamiltonian-connectivity in al­

ternating group graphs. Netw., 44(4):302-310, 2004.

32] Jung-Hwan Chang and Jinsoo Kim. Ring embedding in faulty (n, A;)-star

graphs. In ICPADS '01: Proceedings of the Eighth International Conference

on Parallel and Distributed Systems, pages 99-106, Washington, DC, USA,

2001. IEEE Computer Society

33] Fouad B. Chedid and Riad B. Chedid. A new variation on hypercubes with

smaller diameter. Inf Process. Lett, 46(6):275-280, 1993.

34] Chi-Chang Chen and Jianer Chen. Nearly optimal one-to-many parallel rout­

ing in star networks. IEEE Trans. Parallel Distrih. Syst, 8(12): 1196-1202,

1997.

35] Ching-Wen Chen and Chung-Ping Chung. Fault-tolerant gamma interconnec­

tion network without backtracking. J. Syst. Softw., 58(1):23-31, 2001.

36] Y-Chuang Chen and Jimmy J.M. Tan. Restricted connectivity for three fam­

ilies of interconnection networks. Applied Mathematics and Computation,

188(2):1848-1855, 2007.

Bibliography 152

37] Ying-You Chen, Dyi-Rong Duh, Tai-Ling Ye, and Jung-Sheng Fu. Weak-
vertex-pancyclicity of (n, A;)-star graphs. Theoretical Computer Sciencein
Press, Corrected Proof, pages 1848-1855, Available online 3 February 2008.

38] W. K. Chiang and R. J. Chen. Topological properties of (n, /c)-star graph. In­

ternational Journal of Foundations of Computer Science, 9(2);235-248, 1998.

39] Wei-Kuo Chiang and Rong-Jaye Chen. The (n, /c)-star graph: a generalized

star graph. Inf. Process. Lett, 56(5):259-264, 1995.

40] Wei-Kuo Chiang and Rong-Jaye Chen. Topological properties of hierarchical

cubic networks. J. Syst. Archil, 42(4):289-307, 1996.

41] S. A. Choudum and V. Sunitha. Augmented cubes. Networks, 40(2):71-84,

2002.

42] William J. Dally. Performance analysis of fc-ary n-cube interconnection net­

works. IEEE Trans. Comput., 39[6]-.775-785, 1990.

43] K. Day and A. Tripathi. A comparative study of topological properties of

hypercubes and star graphs. IEEE Trans. Parallel Distnb. Syst., 5(l):31-38,

1994.

44] Khaled Day. The conditional node connectivity of the A;-ary n-cube. Journal

of Interconnection Networks, 5(l):13-26, 2004.

45] Khaled Day and Abdel-Elah Al-Ayyoub. Fault diameter of k-avy n-cube net­

works. IEEE Trans. Parallel Distrib. Syst., 8(9):903-907, 1997.

46] M. Dietzfelbinger, S. Madhavapeddy, and I.H. Sudborough. Three disjoint

path paradigms in star networks. In Proceedings of the Third IEEE Symposium

on Parallel and Distributed Processing, pages 400-406, 1991.

47] Dyi-Rong Duh and Gen-Huey Chen. Topological properties of ti;fc-recursive

networks. J. Parallel Distrib. Comput., 23(3):468-474, 1994.

[48] Ralph Duncan. A survey of parallel computer architectures. Computer,

23(2):5-16, 1990.

Bibliography 153

49] T.H. Dunigan. Performance of the Intel ipsc/860 and ncube 6400 hypercubes.
Parallel Computing, 17(10-11):1285-1302, 1991.

50] Kemal Efe. A variation on the hypercube with lower diameter. IEEE Trans.

Comput., 40(11):1312-1316, 1991.

51] A. El-Amawy and S. Latifi. Properties and performance of folded hypercubes.

IEEE Trans. Parallel Distnb. Syst., 2(l):31-42, 1991.

52] A.-H. Esfahanian. Generalized measures of fault tolerance with application to

n-cube networks. IEEE Trans. Comput., 38(11): 1586-1591, 1989.

53] Abdol-Hossein Esfahanian, Lionel M. Ni, and Bruce E. Sagan. The twisted n-

cube with application to multiprocessing. IEEE Trans. Comput., 40(l):88-93,

1991.

54] J. Fan, X. Lin, and X. Jia. Node-pancyclic and edge-pancyclic of crossed

cubes. Inform. Process. Lett, 93:133-138, 2005.

55] Jywe-Fei Fang. The bipanconnectivity and m-panconnectivity of the folded

hypercube. Theor. Comput. Sci., 385(l-3):286-300, 2007.

56] P. Fragopoulou and S. G. Akl. A parallel algorithm for computing fourier

transforms on the star graph. IEEE Trans. Parallel Distrib. Syst., 5(5):525-

531, 1994.

57] Paraskevi Fragopoulou and Selim G. Akl. Optimal communication algorithms

on star graphs using spanning tree constructions. J. Parallel Distrib. Comput.,

24(1):55-71, 1995.

58] Jung-Sheng Fu. Fault-tolerant cycle embedding in the hypercube. Parallel

Comput., 29(6):821-832, 2003.

59] Jung-Sheng Fu. Conditional fault-tolerant hamiltonicity of twisted cubes. In

PDCAT '06: Proceedings of the Seventh International Conference on Par­

allel and Distributed Computing, Applications and Technologies, pages 5-10,

Washington, DC, USA, 2006. IEEE Computer Society

Bibliography 154

60] Jung-Sheng Fu. Longest fault-free paths in hypercubes with vertex faults. Inf
Sci, 176(7):759-771, 2006.

61] Jung-Sheng Fu. Conditional fault-tolerant hamiltonicity of star graphs. Par­

allel Comput., 33(7-8):488-496, 2007.

62] Jung-Sheng Fu, Gen-Huey Chen, and Dyi-Rong Duh. Node-disjoint paths

and related problems on hierarchical cubic networks. Networks, 40(3)-.142-

154, 2002.

63] Shuhong Gao, Beth Novick, and Ke Qiu. From hall's matching theorem to

optimal routing on hypercubes. J. Comb. Theory Ser. B, 74(2):291-301, 1998.

64] A. Gara, M. A. Blumrich, et al. Overview of the blue gene/1 system architec­

ture. IBM Journal of Research and Development, 49:195-212, 2005.

65] S.A. Ghozati and H.C. Wasserman. The /c-ary n-cube network: modeling,

topological properties and routing strategies. Computers and Electrical Engi­

neering, 25:155-168(14), May 1999.

66] Teofilo F. Gonzalez and David Serena. Complexity of pairwise shortest path

routing in the grid. Theor. Comput. Sci., 326(1-3):155-185, 2004.

67] Teofilo F. Gonzalez and David Serena, n-cube network: node disjoint shortest

paths for maximal distance pairs of vertices. Parallel Computing, 30(8):973-

998, August 2004.

68] Q-P. Gu and S. Peng. An efficient algorithm for the /c-pairwise disjoint

paths problem in hypercubes. Journal of Parallel and Distributed Comput­

ing, 60:764-774(11), June 2000.

69] Qian-Ping Gu and Shietung Peng. An efficient algorithm for set-to-set node-

disjoint paths problem in hypercubes. In ICPADS '96: Proceedings of the

1996 International Conference on Parallel and Distributed Systems, page 98,

Washington, DC, USA, 1996. IEEE Computer Society.

Bibliography ^ 155

70] Qian-Ping Gu and Shietung Peng, /c-pairwise cluster fault tolerant routing in
hypercubes. IEEE Trans. Comput, 46(9):1042-1049, 1997.

71] Qian-Ping Gu and Shietung Peng. Node-to-set disjoint paths problem in star

graphs. Inf Process. Lett., 62(4):201-207, 1997.

72] Qian-Ping Gu and Shietung Peng. An efficient algorithm for fc-pairwise disjoint

paths in star graphs. Inf Process. Lett, 67(6):283-287, 1998.

73] Qian-Ping Gu and Shietung Peng. Node-to-set and set-to-set cluster fault

tolerant routing in hypercubes. Parallel Comput., 24(9): 1245-1261, 1998.

74] Q.P. Gu and S. Peng. Efficient algorithms for disjoint paths in star graphs. In

Proc. of 6th Transputer/Occam International Con/., pages 53-65, 1994.

75] Peter A. J. Hilbers, Marion R. J. Koopman, and Jan L. A. van de Snepscheut.

The twisted cube. In Proceedings of the Parallel Architectures and Languages

Europe, Volume I: Parallel Architectures PARLE, pages 152-159, London, UK,

1987. Springer-Verlag.

76] A. Hobbs. The square of a block is vertex pancyclic. J. Combin. Theory B,

20:1-4, 1976.

77] Sun-Yuan Hsieh. Fault-tolerant cycle embedding in the hypercube with more

both faulty vertices and faulty edges. Parallel Comput., 32(1):84-91, 2006.

78] Sun-Yuan Hsieh and Chun-Hua Chen. Pancyclicity on mobius cubes with

maximal edge faults. Parallel Comput, 30(3):407-421, 2004.

79] Sun-Yuan Hsieh, Gen-Huey Chen, and Chin-Wen Ho. Fault-free hamilto­

nian cycles in faulty arrangement graphs. IEEE Trans. Parallel Distrib. Syst,

10(3):223-237, 1999.

80] Sun-Yuan Hsieh, Gen-Huey Chen, and Chin-Wen Ho. Hamiltonian-laceability

of star graphs. Networks, 36:225-232, 2000.

81] Sun-Yuan Hsieh, Gen-Huey Chen, and Chin-Wen Ho. Longest fault-free paths

in star graphs with vertex faults. Theor. Comput Set., 262(1-2):215-227, 2001.

Bibliography 156

82] Sun-Yuan Hsieh, Tsong-Jie Lin, and Hui-Ling Huang. Panconnectivity and
edge-pancyclicity of 3-ary n-cubes. J. Supercomput., 42(2):225-233, 2007.

83] D.F. Hsu. Interconnection networks and algorithms. Networks, Special issue,

1993.

84] D.F. Hsu and Y.D. Lyuu. A graph-theoretical study of transmission delay and

fault tolerance. Internat. Journal of Mini and Microcomputers, pages 35-42,

1994.

85] D.Frank HSU. On container width and length in graphs, groups, and net­

works. TIEICE: lEICE Transactions on Communications/Electronics/Infor-

mation and Systems, l.E77-A(4):668-680, 1994.

86] Hong-Chun Hsu, Yi-Lin Hsieh, Jimmy J. M. Tan, and Lih-Hsing Hsu. Fault

hamiltonicity and fault hamiltonian connectivity of the (n, A;)-star graphs. Net­

works, 42(4): 189-201, 2003.

87] Hong-Chun Hsu, Cheng-Kuan Lin, Hua-Min Hung, and Lih-Hsing Hsu. The

spanning connectivity of the (n, /c)-star graphs. International Journal of Foun­

dations of Computer Science, 17(2):415-434, 2006.

88] W. J. Hsu. Fibonacci cubes-a new interconnection technology. IEEE Trans.

Parallel Distrib. Syst., 4(1):3-12, 1993.

89] W. Huang, J. Tan, et al. Fault-tolerant hamiltonicity of twisted cubes. J Paral

Distnb Comput, 62:591-604, 2002.

90] Chun-Nan Hung, Hong-Chun Hsu, Kao-Yung Liang, and Lih-Hsing Hsu. Ring

embedding in faulty pancake graphs. Inf. Process. Lett., 86(5):271-275, 2003.

91] Hao-Shun Hung, Jung-Sheng Fu, and Gen-Huey Chen. Fault-free hamiltonian

cycles in crossed cubes with conditional link faults. Inf. Sci., 177(24):5664-

5674, 2007.

92] Alon Itai, Christos H. Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton

paths in grid graphs. SIAM Journal on Computing, ll(4):676-686, 1982.

Bibliography 157

93] Forschungszentrum J, Ulich Gmbh, Interner Bericht, R Udiger Esser, Rudolf
Berrendorf, Rudolf Berrendorf, Heribert C. Burg, Heribert C Burg, Ulrich
Detert, Ulrich Detert, Rudiger Esser, Michael Gerndt, Michael Gerndt, Re-
nate Knecht, and Renate Knecht. Intel paragon xp/s- architecture, software
environment, and performance, 1994.

94] Jung-Sing Jwo, S. Lakshmivarahan, and Sudarshan K. Dhall. Embedding of

cycles and grids in star graphs. Journal of Circuits, Systems, and Computers

(JCSC), pages 43-74, 1991.

95] Huan-Chao Keh and Jen-Chih Lin. On fault-tolerant embedding of hamilto-

nian cycles, linear arrays and rings in a flexible hypercube. Parallel Comput.,

26(6):769-781, 2000.

96] R.E. Kessler and J.L. Schwarzmeier. Cray t3d: a new dimension for cray

research. In Compcon Spring apos;93. Digest of Papers, pages 176-182, San

Francisco, CA, USA, 1993. IEEE.

97] Yosuke Kikuchi and Torn Araki. Edge-bipancyclicity and edge-fault-tolerant

bipancyclicity of bubble-sort graphs. Information Processing Letters, 100:52-

59, 2006.

98] Hee-Chul Kim and Jung-Heum Park. Fault hamiltonicity of two-dimensional

torus networks. In Proc. 5th Japan-Korea Joint Workshop on Algorithms and

Computation, WAAC'OO, pages 110-117, Tokyo, Japan, 2000.

99] Jong Kim and Kang G. Shin. Operationally enhanced folded hypercubes.

IEEE Trans. Parallel Distrib. Syst., 5(12):1310-1316, 1994.

100] M. S. Krishnamoorthy and b. Krishnamurthy. Fault diameter of interconnec­

tion networks. Comput. Math. Appl, 13(5-6):577-582, 1987.

101] C. P. Kruskal and M. Snir. The performance of multistage interconnection

networks for multiprocessors. IEEE Trans. Comput., 32(12):1091-1098, 1983.

Bibliography 158

102] Cheng-Nan Lai, Gen-Huey Chen, and Dyi-Rong Duh. Constructing one-to-
many disjoint paths in folded hypercubes. IEEE Trans. Comput., 51(l):33-45,
2002.

103] Shawn M. Larson and Paul Cull. The mobius cubes. IEEE Trans. Comput.,

44(5):647-659, 1995.

104] S. Latifi. Combinatorial analysis of the fault-diameter of the n-cube. IEEE

Trans. Comput., 42(l):27-33, 1993.

105] S. Latifi, S.Q. Zheng, and N. Bagherzadeh. Optimal ring embedding in hy­

percubes with faulty links. In FTCS-22: Fault-Tolerant Computing, 1992. Di­

gest of Papers. Twenty-Second International Symposium on, pages 178-184,

Boston, MA, USA, 1992.

106] Shahram Latifi, Hyosun Ko, and Pradip K Srimani. Node-to-set vertex disjoint

paths in hypercube networks, unknown, 1998.

[107] D.H. Lawrie. Access and alignment of data in an array processor. IEEE

Transactions on Computers, C-24(12):1145-1155, Dec. 1975.

108] F. Thomson Leighton. Introduction to parallel algorithms and architectures:

array, trees, hypercubes. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 1992.

109] M. Lewinter and W. Widulski. Hyper-hamilton laceable and caterpillar-

spannable product graphs. Comput. Math. Appl., pages 99-104, 1997.

110] T.K. Li et al. Bipanconnectivity and edge-fault-tolerant bipancyclicity of hy­

percubes. Information Processing Letters, 87:107-110, 2003.

I l l] Tseng-Kuei Li . Cycle embedding in star graphs with edge faults. Applied

Mathematics and Computation, (2):891-900, 2005.

112] Tseng-Kuei Li , Jimmy J. M. Tan, Lih-Hsing Hsu, and Ting-Yi Sung. The

shuffle-cubes and their generalization. Inf. Process. Lett., 77(1):35-41, 2001.

Bibliography 159

113] TsengKuei Li , Jimmy J.M. Tan, and LihHsing Hsu. Hyper hamiltonian lace-
ability on edge fault star graph. Information Sciences, 165:59-71, 2004.

114] Sheng-Chyang Liaw, Gerald J. Chang, Feng Cao, and D. Frank Hsu. Fault-

tolerant routing in circulant networks and cycle prefix networks. Annals of

Combinatorics, 2(2):165-172, 1998.

115] T .C Lin, D.R. Duh, and H.C Cheng. Wide diameter of (n, A;)-star networks.

In Proceedings of the International Conference on Computing, Communica­

tions and Control Technologies, volume 5, pages 160-165, 2004.

116] Tsung-Chi Lin and Dyi-Rong Duh. Constructing vertex-disjoint paths in

(n, A;)-star graphs. Inf Sci., 178(3):788-801, 2008.

117] Peter K. K. Loh, W. J. Hsu, and Amos Omondi. Embedding of fault-tolerant

trees in the josephus cube. Aust. Comput. Sci. Corrimun., 24(3):17-27, 2002.

118] Meijie Ma, Guizhen Liu, and JunMing Xu. Panconnectivity and edge-fault-

tolerant pancyclicity of augmented cubes. Parallel Computing, 33:36-42, 2007.

119] S. Madhavapeddy and I.H. Sudborough. A topological property of hypercubes:

node disjoint paths. In Proceedings of the Second IEEE Symposium on Parallel

and Distributed Processing, pages 532-539, Dallas, TX, USA, 1990.

120] Weizhen Mao and David M. Nicol. On /c-ary n-cubes: theory and applications.

Discrete Appl. Math., 129(1):171-193, 2003.

121] G. C. Marsden, P. J. Marchand, P. Harvey, and S. C. Esener. Optical transpose

interconnection system architectures. Opt. Lett., 18:1083-1085, 1993.

122] V. E. Mendia and D. Sarkar. Optimal broadcasting on the star graph. IEEE

Trans. Parallel Distrib. Syst, 3(4):389-396, 1992.

[123] K. Menger. Zur allgemeinen kurventheorie. Fund. Math., 10:96-115, 1927.

124] Menn and Somani. An efficient sorting algorithm for the star graph intercon­

nection network. In ICPP: 19th International Conference on Parallel Process­

ing, 1990.

Bibliography 160

125] Z. Miller, D. Pritikin, and I . H. Sudborough. Near embeddings of hypercubes

into cayley graphs on the symmetric group. IEEE Trans. Comput., 43(1):13-

22, 1994.

126] Ngoc Chi Nguyen, Nhat Minh Dinh Vo, and Sungyoung Lee. Fault tolerant

routing and broadcasting in de bruijn networks. In AINA '05: Proceedings

of the 19th International Conference on Advanced Information Networking

and Applications, pages 35-40, Washington, DC, USA, 2005. IEEE Computer

Society.

127] Michael D. Noakes, Deborah A. Wallach, and William J. Dally The j -

machine multicomputer: an architectural evaluation. SIC ARCH Comput.

Archit. News, 21(2):224-235, 1993.

128] Behrooz Parhami. Introduction to Parallel Processing: Algorithms and Archi­

tectures. Kluwer Academic Publishers, Norwell, MA, USA, 1999.

129] Jung-Heum Park. One-to-many disjoint path covers in a graph with faulty

elements. In Kyung-Yong Chwa and J. Ian Munro, editors, COCOON: Com­

puting and Combinatorics, 10th Annual International Conference, COCOON

2004, Jeju Island, Korea, August 17-20, 2004, Proceedings, volume 3106 of

Lecture Notes in Computer Science, pages 392-401. Springer, 2004.

130] Jung-Heum Park. Panconnectivity and edge-pancyclicity of faulty recursive

circulant g(2m,4). Theor. Comput. Sci., 390(l):70-80, 2008.

131] Jung-Heum Park, Hyeong-Seok Lim, and Hee-Chul Kim. Panconnectivity and

pancyclicity of hypercube-like interconnection networks with faulty elements.

Theor. Comput. Sci., 377(1-3):170-180, 2007.

132] Franco P. Preparata and Jean Vuillemin. The cube-connected cycles: a versa­

tile network for parallel computation. Commun. ACM, 24(5):300-309, 1981.

133] L. Qiao and Z. Y i . Restricted connectivity and restricted fault diameter of

some interconnection networks. DIM ACS Series in Discrete Mathematics and

Theoretical Computer Science, 21:267-274, 1995.

Bibliography 161

134] Ke Qiu and Sehm G. Akl. On node-to-node disjoint paths in the star intercon­
nection network. In S. Q. Zheng, editor. International Conference on Parallel
and Distributed Computing Systems (PDCS'05), pages 731-735, Phoenix, AZ,
USA, November 2005. lASTED/ACTA Press 2005.

135] Ke Qiu, Selim G. Akl, and Henk Meijer. On some properties and algorithms for

the star and pancake interconnection networks. J. Parallel Distrib. Comput.,

22(l):16-25, 1994.

136] Michael 0 . Rabin. Efficient dispersal of information for security, load balanc­

ing, and fault tolerance. J. ACM, 36(2):335-348, 1989.

137] Sanjay Ranka, Jhychun Wang, and Nangkang Yeh. Embedding meshes on

the star graph. In Supercomputing '90: Proceedings of the 1990 ACM/IEEE

conference on Supercomputing, pages 476-485, Washington, DC, USA, 1990.

IEEE Computer Society.

138] Yordan Rouskov, Shahram Latifi, and Pradip K. Srimani. Conditional fault

diameter of star graph networks. J. Parallel Distrib. Comput., 33(l):91-97,

1996.

139] Youcef Saad and Martin H. Schultz. Topological properties of hypercubes.

IEEE Trans. Comput., 37(7):867-872, 1988.

140] C. L. Seitz, W. C. Athas, C. M. Flaig, A. J. Martin, J. Seizovic, C. S. Steele,

and W-K. Su. The architecture and programming of the ametek series 2010

multicomputer. In Proceedings of the third conference on Hypercube concurrent

computers and applications, pages 33-37, New York, NY, USA, 1988. ACM.

141] Charles L. Seitz. The cosmic cube. Commun. ACM, 28(l):22-33, 1985.

142] Charles L. Seitz. Submicron systems architecture project: Semiannual techni­

cal report. Technical report, Pasadena, CA, USA, 1989.

143] A. Sen. Supercube: An optimally fault tolerant network architecture. Acta

Inf., 26(9):741-748, 1989.

Bibliography 162

144] Adhijit Sengupta. On ring embedding in hypercubes with faulty nodes and
links. Inf Process. Lett, 68(4):207-214, 1998.

145] Jau-Der Shih. A fault-tolerant wormhole routing scheme for torus networks

with nonconvex faults. Inf Process. Lett, 88(6)-.271-278, 2003.

146] Lun-Min Shih, Jimmy J. M. Tan, and Lih-Hsing Hsu. Edge-bipancyclicity of

conditional faulty hypercubes. Inf. Process. Lett., 105(l):20-25, 2007.

147] H.J. Siegel. Interconnection networks for simd machines. Computer, 12(6):57-

65, June 1979.

148] Nitin K. Singhvi and Kanad Ghose. The mcube: a symmetrical cube based

network with twisted links. In Proceedings of IPPS '95, the 9th international

Symposium on Parallel Processing (April 25 - 28, 1995), pages 11-16, Santa

Barbara, California, USA, 1995. IEEE Computer Society.

149] Iain A. Stewart. Distributed algorithms for building hamiltonian cycles in k-

ary n-cubes and hypercubes with faulty links. In ICPADS '06: Proceedings of

the 12th International Conference on Parallel and Distributed Systems, pages

308-318, Washington, DC, USA, 2006. IEEE Computer Society.

150] Ming-Yang Su, Hui-Ling Huang, Gen-Huey Chen, and Dyi-Rong Duh. Node-

disjoint paths in incomplete lu/c-recursive networks. Parallel Comput., 26(13-

14):1925-1944, 2000.

151] Pao-Hwa Sui and Sheng-De Wang. A fault-tolerant routing algorithm for

wormhole routed meshes. Parallel Comput., 26(4):455-465, 2000.

152] Ting-Yi Sung, Chun-Yuan Lin, Yen-Chu Chuang, and Lih-Hsing Hsu. Fault

tolerant token ring embedding in double loop networks. Inf. Process. Lett.,

66(4):201-207, 1998.

153] Sumit Sur and Pradip K. Srimani. Topological properties of star graphs.

CAN DM: An International Journal: Computers & Mathematics, with Appli­

cations, 25, 1993.

Bibliography 163

154] Chang-Hsiung Tsai. Linear array and ring embeddings in conditional faulty
hypercubes. Theor. Comput Sci., 314(3):431-443, 2004.

155] Chang-Hsiung Tsai. Fault-tolerant cycles embedded in hypercubes with mixed

link and node failures. Applied Mathematics Lettersin Press, Corrected Proof

2007.

156] Chang-Hsiung Tsai and Shu-Yun Jiang. Path bipancyclicity of hypercubes.

Inf Process. Lett, 101(3):93-97, 2007.

157] Yu-Chee Tseng. Embedding a ring in a hypercube with both faulty links and

faulty nodes. Inf Process. Lett, 59(4):217-222, 1996.

158] Yu-Chee Tseng, Shu-Hui Chang, and Jang-Ping Sheu. Fault-tolerant ring

embedding in a star graph with both link and node failures. IEEE Trans.

Parallel Distrib. Syst, 8(12):1185-1195, 1997.

159] Nian-Feng Tzeng and Sizheng Wei. Enhanced hypercubes. IEEE Trans. Com­

put, 40(3):284-294, 1991.

160] Anujan Varma and C. S. Raghavendra. Fault-tolerant routing in multistage

interconnection networks. Interconnection networks for high-performance par­

allel computers, pages 688-696, 1994.

161] Suresh Viswanathan, Eva Czabarka, and Abhijit Sengupta. On fault-tolerant

embedding of hamiltonian circuits in line digraph interconnection networks.

Inf Process. Lett, 57(5);265-271, 1996.

162] Dajin Wang. Embedding hamiltonian cycles into folded hypercubes with faulty

hnks. J. Parallel Distnb. Comput, 61(4):545-564, 2001.

163] Deqiang Wang, Tong An, et al. Hamiltonian-like properties of /c-ary n-cubes.

Proceedings of the sixth international conference on parallel and distributed

computing and application and technologies(PDCAT'05), pages 1002-1007,

2005.

Bibliography 164

164] S.A. Wong. Hamiltonian cycles and paths in butterfly graphs. Networks,
26:145-150, 1995.

[165] Jie Wu. A fault-tolerant and deadlock-free routing protocol in 2d meshes based

on odd-even turn model. IEEE Trans. Comput, 52(9):1154-1169, 2003.

166] Ruei-Yu Wu, Gen-Huey Chen, Yu-Liang Kuo, and Gerard J. Chang. Node-

disjoint paths in hierarchical hypercube networks. Inf. Sci., 177(19).4200-

4207, 2007.

167] Jun-Ming Xu, Zheng-Zhong Du, and Min Xu. Edge-fault-tolerant edge-

bipancyclicity of hypercubes. Inf. Process. Lett., 96(4);146-150, 2005.

168] Jun-Ming Xu and Meijie Ma. Cycles in folded hypercubes. Appl. Math. Lett,

19(2):140-145, 2006.

169] M. Xu, XiaoDong Hu, and Qiang Zhu. Edge-bipancyclicity of star graphs

under edge-fault tolerant. Applied Mathematics and Computation, 183:972-

979, 2006.

170] Ming-Chien Yang, Tseng-Kuei L i , Jimmy J. M. Tan, and Lih-Hsing Hsu.

Fault-tolerant cycle-embedding of crossed cubes. Inf. Process. Lei^., 88(4): 149-

154, 2003.

171] Ming-Chien Yang, Jimmy J. M. Tan, and Lih-Hsing Hsu. Hamiltonian cir­

cuit and linear array embeddings in faulty /c-ary n-cubes. J. Parallel Distrib.

Comput., 67(4):362-368, 2007.

172] Pei-Ji Yang, Sing-Ban Tien, and C. S Raghavendra. Embedding of rings and

meshes onto faulty hypercubes using free dimensions. IEEE Trans. Comput.,

43(5):608-613, 1994.

173] Francis Zane, Philippe Marchand, Ramamohan Paturi, and Sadik Esener.

Scalable network architectures using the optical transpose interconnection sys­

tem (otis). J. Parallel Distnb. Comput., 60(5):521-538, 2000.

Appendix A

Source code: verify the base case

of Theorem 3.3.3

' I n t h e f r o n t , the author would l i k e t o g i v e the f o l l o w i n g

' d e c l a r a t i o n : The program i s s o l o l y coded by Mr. Yonghong Xicing

'at Department of Computer Science Department, Durham U n i v e r s i t y

'while he was doing h i s Ph.D study from 2005—2008 i n Durham.

'The purpose of the program i s : t o check the base case i n pr o v i n g

' t h a t one can f i n d a longest p o s s i b l e path i n k-ary n-cube.

'That i s , f o r 2-ary 4-cube, t h e program proves the r e s u l t holds i n

'the f o l l o w i n g aspects:

'1) I f t h e r e are two f a u l t y nodes i n 2-ary 4-cube, t h e r e e x i s t

'paths of l e n g t h at l e a s t 10 or 11 between any two given h e a l t h y

'nodes.

'2) I f t h e r e are one f a u l t y node i n 2-ary 4-cube, t h e r e e x i s t paths

'of l e n g t h a t l e a s t 12 or 13 between any two given h e a l t h y nodes.

'3) I f t h e r e are one f a u l t y node and one f a u l t y edge i n 2-ary 4-cube,

'there e x i s t paths of l e n g t h a t l e a s t 12 or 13 between any two gi v e n

'healthy nodes.

'4) I f t h e r e are two f a u l t y edges i n 2-ary 4-cube, t h e r e e x i s t paths

'of l e n g t h a t l e a s t 14 or 15 between any two given h e a l t h y nodes.

165

A. Source code: verify the base case of Theorem 3.3.3 166

'The r e s u l t s of the program are saved as a . t x t f i l e i n C:\, which
'shows from one s p e c i f i c node, t h e r e e x i s t path of s p e c i f i c l e n g t h t o
' a l l other p o s s i b l e nodes.

' I n the program, we d i d n ' t check a l l p o s s i b l e cases, but o n l y s e v e r a l

'cases. That i s because by the symmetric p r o p e r t i e s of the 2-ary

'4-cube, a l l o ther cases can be obtained from

'the e x i s t i n g cases by some mapping f u n c t i o n .

' I n the f o l l o w i n g codes, the paths are not p r i n t e d out. But the

'author has put a l l t h e necessary codes t h e r e .

'Once remove the corresponding comment symbol, one w i l l get them.

'One might f u r t h e r improve the code by combining sub procedure

'FindPath and FindPathEdgeFaulty w i t h one sub procedure. But, the

'current v e r s i o n works.

'Environment requirements: Windows XP, V i s u a l Basic 6.0.

' I f you need any more i n f o r m a t i o n , please contact the author:

'Mr Yonghong Xiang

'e-mail: yh_xiajag@hotmail.com

'Last update: 18-11-2008

P r i v a t e Type nodeDef

IndexN As I n t e g e r

D i r e c t i o n As I n t e g e r

B D i r e c t i o n (4) As Boolean ' t o i n d i c a t e whether t h i s edge i s f a u l t .

'One f a u l t y edge means t h e r e are two nodes should set some boolean

'value f a l s e .

End Type

A. Source code: verify the base case of Theorem 3.3.3 167

Dim Node(15) As nodeDef

Const Rt = 1, Dn = 2, Lf = 3, Up = 4

Dim Path(571200, 15) As I n t e g e r

'remember a l l p o s s i b l e paths from one f i x e d node t o any other node.

Dim PathEnds(15, 15) As I n t e g e r

' t o remember the end nodes of each s t a r t node,

' so t h a t we can conclude t h a t the theorem i s t r u e .

' set i t s i n i t i a l value as - 1 .

Dim t o t a l E n d s As I n t e g e r

'remember the number of end nodes from one f i x e d node w i t h longest

' l e n g t h .

Dim PaNu As I n t e g e r

Dim Addr As S t r i n g

P r i v a t e Sub I n i t N o d e O 'to i n i t i a l i z e a l l nodes, ready f o r use.

Dim j As I n t e g e r , i As I n t e g e r

For j = 0 To 15

Node(j).IndexN = j

N o d e (j) . D i r e c t i o n = 0

For i = 0 To 4

N o d e (j) . B D i r e c t i o n (i) = True

Next i

Next j

End Sub

P r i v a t e Sub FindPath(startNode As nodeDef, PLen As I n t e g e r)

Dim s t r (1 5) As I n t e g e r 'remember the index of the c u r r e n t path

Dim ss As S t r i n g 'used t o p r i n t i n f o r m a t i o n t o f i l e

Dim i As I n t e g e r , j As I n t e g e r

A. Source code: verify the base case of Theorem 3.3.3 168

Dim lenP As I n t e g e r 'remember the c u r r e n t c o n s i d e r i n g path's l e n g t h
Dim D i e t As I n t e g e r

'remember t h e d i r e c t i o n of the c u r r e n t c o n s i d e r i n g node

Dim PathNum As I n t e g e r 'remember the number of paths

Dim saveStartNode As I n t e g e r 'remember the source node

Dim NN As I n t e g e r 'remember t h e being considered Next Neighbor's

'indexN

Dim NP(15) As I n t e g e r 'Number of paths, remember the number of

'paths respect t o the same end node as t h e index.

Dim EndNodedS) As I n t e g e r 'Corresponding t o NP(15), remember the

'end of the path, d u p l i c a t e ends w i l l only count once.

PathNum = 0 'set the number of path as 0

For i = 0 To 15 'set a l l elememts of the c u r r e n t path as -1

s t r (i) = -1

NP(i) = 0

EndNode(i) = -1

Next i

saveStartNode = startNode.IndexN 'remember the s t a r t node's indexN

lenP = 0 'set the c u r r e n t path's l e n g t h as 0

s t r (l e n P) = startNode.IndexN

'set the f i r s t node indexN as the s t a r t node

Node(startNode.IndexN).Direction = 1

Di e t = Node(startNode.IndexN).Direction 'set the d i r e c t i o n of the

'current node as the s t a r t node's d i r e c t i o n

While Node(saveStartNode).Direction < 5 ' a f t e r a l l of the s t a r t

'node's d i r e c t i o n s have been considered, the program end

For i = Diet To 4 'there are at most 4 d i r e c t i o n s f o r each node

A. Source code: verify the base case of Theorem 3.3.3 169

NN = NextNeibCstartNode.IndexN, i)

'computing t h e c u r r e n t node's i t h neighbor

I f Node(NN).Direction = 0 And lenP < PLen Then ' I f i t ' s

'neighbor i s OK, then add the node t o the path and go on.

lenP = lenP + 1 'remember the l e n g t h of the path

s t r (l e n P) = Node(NN).IndexN 'add the node t o the path

Node(startNode.IndexN).Direction = i

'remember the d i r e c t i o n f o r i t s f a t h e r

startNode.IndexN = NN

'set i t as the s t a r t node f o r the next step

S t a r t N o d e . D i r e c t i o n = 0

'set the c u r r e n t node's d i r e c t i o n as 0

D i e t = 1 'to be computing from i t s f i r s t d i r e c t i o n

E x i t For 'continue t o consider i t s neighbor

E l s e l f i = 4 Or lenP = PLen Then ' i f a l l of the c u r r e n t node's

' d i r e c t i o n s has been considered or the l e n g t h i s r i g h t

I f lenP = PLen Then

'the l e n g t h i s r i g h t , then p r i n t t h e path t o the gi v e n a r r a y

For j = 0 To lenP 'record the c u r r e n t path.

Path(PathNum, j) = s t r (j)

Next j

PathNum = PathNum + 1 'number of paths increase 1

N P (s t r (l e n P)) = N P (s t r (l e n P)) + 1

'corresponding end node's path number increase 1

EndNode(str(lenP)) = startNode.IndexN

End I f

I f lenP > 0 Then ' i f i t i s not the s t a r t node, then u n t r e a t

'again, otherwise, change the s t a r t node's d i r e c t i o n we need

'to go back and t r y another d i r e c t i o n , u n t i l we have t r i e d

' a l l d i r e c t i o n s , so as t o o b t a i n every p o s s i b l e path.

N o d e (s t r (l e n P)) . D i r e c t i o n = 0

A. Source code: verify the base case of Theorem 3.3.3 170

'change i t s d i r e c t i o n back t o 0

s t r (l e n P) = -1

lenP = lenP - 1 'no l i v e neighbor, u n t r e a t one step

startNode.IndexN = s t r (l e n P)

s t a r t N o d e . D i r e c t i o n = N o d e (s t r (l e n P)) . D i r e c t i o n

While S t a r t N o d e . D i r e c t i o n = 4 And lenP > 0 ' I f i t u n t r e a t

'to the f i r s t node, then we should stop i t .

N o d e (s t r (l e n P)) . D i r e c t i o n = 0

s t r (l e n P) = -1

lenP = lenP - 1

StartNode.IndexN = s t r (l e n P)

S t a r t N o d e . D i r e c t i o n = N o d e (s t r (l e n P)) . D i r e c t i o n

Wend

D i e t = S t a r t N o d e . D i r e c t i o n + 1 'next t i m e , we can't t r y the

' d i r e c t i o n t h a t has already t r i e d . So, change the d i r e c t i o n

'now.

End I f

I f lenP = 0 Then 'otherwise,change the s t a r t node's d i r e c t i o n

Node(saveStartNode).Direction =_

Node(saveStartNode).Direction + 1

Di e t = Node(saveStartNode).Direction

End I f

E x i t For

End I f

Next i

Wend

' P r i n t #1, "End nodes are: "

to t a l E n d s = 0

A. Source code: verify the base case of Theorem 3.3.3 171

While PathEndsCsaveStartNode, t o t a l E n d s) <> -1 'to avoid o v e r w r i t e

'the pervious saved ends (d i f f e r e n t p ath l e n g t h)

t o t a l E n d s = to t a l E n d s + 1

Wend

For i = 0 To 15

I f NP(i) > 0 Then

P r i n t #1, i , NP(i)

P r i n t #1, i ,

PathEndsCsaveStartNode, t o t a l E n d s) = i

tot a l E n d s = to t a l E n d s + 1

End I f

Next i

' P r i n t # 1,

' P r i n t #1, " "

' P r i n t #1, " T o t a l : ", t o t a l E n d s

' P r i n t # 1,

PaNu = PathNum

The f o l l o w i n g code w r i t i n g each path t o t h e f i l e

For i = 0 To PathNum - 1

ss = ""

For j = 0 To PLen

ss = ss & PathCi, j) & " "

Next j

ss = i & " " & ss

P r i n t #1, ss

Next i

End Sub

A. Source code: verify the base case of Theorem 3.3.3 172

P r i v a t e Sub FindPathEdgeFaulty(startNode As nodeDef, PLen As I n t e g e r)
Dim s t r (1 5) As I n t e g e r 'remember the index of the c u r r e n t path
Dim ss As S t r i n g 'used t o p r i n t i n f o r m a t i o n t o f i l e

Dim i As I n t e g e r , j As I n t e g e r

Dim lenP As I n t e g e r 'remember the c u r r e n t c o n s i d e r i n g path's l e n g t h

Dim D i e t As I n t e g e r 'remember the d i r e c t i o n of the c u r r e n t

'considering node

Dim PathNum As I n t e g e r 'remember the number of paths

Dim saveStartNode As I n t e g e r 'remember the source node

Dim NN As I n t e g e r

'remember the being considered Next Neighbor's indexN

Dim NP(15) As I n t e g e r

'Number of paths, remember the number of paths respect t o the same

'end node as the index.

Dim EndNode(15) As I n t e g e r 'Corresponding t o NP(15), remember the

'end of the path, d u p l i c a t e ends w i l l only count once.

PathNum = 0 'set the number of path as 0

For i = 0 To 15 'set a l l elememts of the c u r r e n t path as -1

s t r (i) = -1

NP(i) = 0

EndNode(i) = -1

Next i

saveStartNode = startNode.IndexN 'remember the s t a r t node's indexN

lenP = 0 'set the c u r r e n t path's l e n g t h as 0

s t r (l e n P) = startNode.IndexN

'set the f i r s t node indexN as the s t a r t node

Node(startNode.IndexN).Direction = 1

Di e t = Node(startNode.IndexN).Direction 'set the d i r e c t i o n of the

A. Source code: verify the base case of Theorem 3.3.3 173

'current node as the s t a r t node's d i r e c t i o n

While Node(saveStartNode).Direction < 5 ' a f t e r a l l of the s t a r t

'node's d i r e c t i o n s have been considered, the program end

I f Node(saveStartNode).BDirection(Node(saveStartNode).Direction),

Then 'the edge t o i t ' s neighbor should be a v a i l a b l e

For i = Di e t To 4 'there are at most 4 d i r e c t i o n s f o r each node

NN = NextNeib(startNode.IndexN, i)

'computing the c u r r e n t node's i t h neighbor

I f Node(NN).BDirection(i) And Node(NN).Direction = 0 And_

lenP < PLen Then ' I f i t ' s neighbor i s OK, then add the

' node t o the path eind go on.

lenP = lenP + 1 'remember the l e n g t h of the path has been add

s t r (l e n P) = Node(NN).IndexN 'add the node t o the path

Node(startNode.IndexN).Direction = i

'remember the d i r e c t i o n f o r i t s f a t h e r

StartNode.IndexN = NN

'set i t as t h e s t a r t node f o r the next step

S t a r t N o d e . D i r e c t i o n = 0 'set the c u r r e n t node's d i r e c t i o n as 0

Diet = 1 'to be computing from i t s f i r s t d i r e c t i o n

E x i t For 'continue t o consider i t s neighbor

E l s e l f i = 4 Or lenP = PLen Then ' i f a l l of t h e c u r r e n t node's

' d i r e c t i o n s has been considered or t h e l e n g t h i s r i g h t

I f lenP = PLen Then 'the l e n g t h i s r i g h t , then p r i n t the path

'to the given a r r a y

For j = 0 To lenP 'record the c u r r e n t path.

Path(PathNum, j) = s t r (j)

Next j

PathNum = PathNum + 1 'number of paths increase 1

N P (s t r (l e n P)) = N P (s t r (l e n P)) + 1

A. Source code: verify the base case of Theorem 3.3.3 174

'corresponding end node's path number increase 1

End I f

I f lenP > 0 Then ' i f i t i s not the s t a r t node, then u n t r e a t

'again, otherwise, change the s t a r t node's d i r e c t i o n we need

'to go back and t r y another d i r e c t i o n , u n t i l we have t r i e d

' a l l d i r e c t i o n s , so as t o o b t a i n every p o s s i b l e path.

N o d e (s t r (l e n P)) . D i r e c t i o n = 0

'cheuige i t s d i r e c t i o n back t o 0

s t r (l e n P) = -1

lenP = lenP - 1 'no l i v e neighbor, u n t r e a t one step

StartNode.IndexN = s t r (l e n P)

S t a r t N o d e . D i r e c t i o n = N o d e (s t r (l e n P)) . D i r e c t i o n

While S t a r t N o d e . D i r e c t i o n = 4 And lenP > 0

' I f i t u n t r e a t t o the f i r s t node, then we should stop i t .

N o d e (s t r (l e n P)) . D i r e c t i o n = 0

s t r (l e n P) = -1

lenP = lenP - 1

StartNode.IndexN = s t r (l e n P)

S t a r t N o d e . D i r e c t i o n = N o d e (s t r (l e n P)) . D i r e c t i o n

Wend

Diet = St a r t N o d e . D i r e c t i o n + 1

'next t i m e , we can't t r y the d i r e c t i o n t h a t has already

' t r i e d . So, change the d i r e c t i o n now.

End I f

I f lenP = 0 Then 'otherwise,change the s t a r t node's d i r e c t i o n

Node(saveStartNode).Direction =_

Node(saveStartNode).Direction + 1

Di e t = Node(saveStartNode).Direction

End I f

E x i t For

End I f

A. Source code: verify the base case of Theorem 3.3.3 175

Next i
Else

Node(saveStartNode).Direction = Node(saveStartNode).Direction + 1

End I f

Wend

' P r i n t #1, "End nodes are: "

to t a l E n d s = 0

While PathEndsCsaveStartNode, t o t a l E n d s) <> -1

'to a v o i d o v e r w r i t e the pervious saved ends C d i f f e r e n t path l e n g t h)

t o t a l E n d s = to t a l E n d s + 1

Wend

For i = 0 To 15

I f NPCi) > 0 Then

P r i n t #1, i , NPCi)

P r i n t #1, i ,

PathEndsCsaveStartNode, t o t a l E n d s) = i

to t a l E n d s = to t a l E n d s + 1

End I f

Next i

' P r i n t # 1,

' P r i n t #1, " "

' P r i n t #1, " T o t a l : ", to t a l E n d s

' P r i n t #1,

PaNu = PathNum

'The f o l l o w i n g code w r i t i n g each path t o the f i l e

' For i = 0 To PathNum - 1

A. Source code: verify the base case of Theorem 3.3.3 176

ss = ""

For j = 0 To PLen

ss = ss & P a t h (i , j) & " "

Next j

ss = i & " " & ss

P r i n t #1, ss

Next i

End Sub

P r i v a t e Sub SortPathEndsO ' s o r t the ends i n i n c r e a s i n g order

Dim i As I n t e g e r , j As I n t e g e r , k As I n t e g e r , h As I n t e g e r

Dim remLast As I n t e g e r , remCur As I n t e g e r

i = 0

j = 0
k = 0
h = 0

For i = 0 To 15

I f PathEndsd, 0) <> -1 Then

remCur = 0

remLast = PathEnds(i, 0)

For j = 0 To 15

I f remCur = -1 Or remLast = -1 Then

j = 16
Else

remCur = PathEnds(i, j)

k = j - 1

While remCur < remLast And remCur <> -1

PathEnds(i, k + 1) = remLast

A. Source code: verify the base case of Theorem 3.3.3 177

PathEnds(i, k) = remCur
k = k - 1
I f k < 0 Then

remLast = -1

Else

remLast = PathEnds(i, k)

End I f

Wend

remLast = PathEndsd, j)

End I f

Next j

End I f

Next i

End Sub

P r i v a t e Sub Commandl_Click()

MsgBox "Please contact Mr Yonghong Xiang f o r more i n f o r m a t i o n :

& vbCrLf & " E-Mail: yh.xiangOhotmail.com"_

& vbCrLf & " 2008-11-18."

End Sub

P r i v a t e Sub Command24_Click()

Unload Me

End Sub

P r i v a t e Sub Form_Load()

Addr = "C:\"

End Sub

P r i v a t e Sub FVOneFEZero_Click()

Dim i As I n t e g e r , j As I n t e g e r , t As I n t e g e r

A. Source code: v e r i f y t h e base case o f T h e o r e m 3.3.3 178

Dim StartNode As nodeDef

Dim PathLengthTwelve As I n t e g e r , PathLengthThirteen As I n t e g e r

For i = 0 To 15 ' i n i t i a l i z e PathEnds a r r a y .

For j = 0 To 15

PathEnds(i, j) = -1

Next j

Next i

t o t a l E n d s = 0 ' I n i t i a l i z e t o t a l E n d s

'we w i l l o n l y check two path l e n g t h which i s enough t o prove our

'theorem.

PathLengthTwelve = 1 2

PathLengthThirteen = 13

Me.MousePointer = vbHourglass

Open Addr & "FVOneZero.txt" For Append As #1

'to w r i t e the r e s u l t i n a f i l e .

For i = 0 To 15 ' i n i t i a l i z e PathEnds a r r a y .

For j = 0 To 15

PathEnds(i, j) = -1

Next j

Next i

to t a l E n d s = 0

ex p l = "Faulty nodes: 0. Path l e n g t h : " & PathLengthTwelve & " and "_

& PathLengthThirteen & "."

P r i n t #1, e x p l

A. Source code: verify the base case of Theorem 3.3.3 179

InitNode

NodeCO).Direction = 5

For i = 1 To 15

startNode.IndexN = i

s t a r t N o d e . D i r e c t i o n = 1

I f N o deCi).Direction = 0 Then

' expl = " S t a r t node: " & startNode.IndexN

P r i n t #1, expl

FindPath startNode, PathLengthTwelve

InitNode

NodeCO).Direction = 5

End I f

Next i

'expl = "Faulty nodes: 0 and 1. Path l e n g t h : " & PathLengthElev k "."

' P r i n t #1, e x p l

InitNode

NodeCO).Direction = 5

For i = 1 To 15

StartNode.IndexN = i

S t a r t N o d e . D i r e c t i o n = 1

I f N o deCi).Direction = 0 Then

' expl = " S t a r t node: " & startNode.IndexN

P r i n t #1, e x p l

FindPath startNode, PathLengthThirteen

InitNode

NodeCO).Direction = 5

A. Source code: verify the base case of Theorem 3.3.3 180

End I f
Next i

SortPathEnds ' sort a l l the end nodes increasingly

For i = 0 To 15

' to p r i n t out a l l ends that has reached from one node on length 10
'and 11.

expl = "Start node: " & i & " has end nodes: "
For j = 0 To 15

I f PathEndsCi, j) = -1 Then
Exit For

Else
expl = expl & PathEndsCi, j) & "; "

End I f
Next j
Prin t #1, expl & " Total: " & j

Next i

Prin t #1,
Close #1

MsgBox "Congratulation! Case: 1 f a u l t y node, and path length "_
& PathLengthTwelve & " and " & PathLengthThirteen

Me.MousePointer = 1
End Sub

Private Sub FVZero.ClickO

Dim i As Integer, j As Integer, k As Integer, t As Integer
Dim NN As Integer

A. Source code: verify the base case of Theorem 3.3.3 181

Dim startNode As nodeDef

Dim PathLengthFourteen As Integer, PathLengthFifteen As Integer
Dim FE1L(12) As Integer, FE1R(12) As Integer
dim FEOL As Integer, FEOR As Integer

PathLengthFourteen = 14
PathLengthFifteen = 15

Me.MousePointer = vbHourglass
Open Addr & "FVZero.txt" For Append As #1
'to write the re s u l t i n a f i l e .

FEOL = 0:FEOR = 1
FEIL(O) = 0:FE1R(0) = 3
FElL(l) = 0:FE1R(1) = 4
FE1L(2) = 2:FE1R(2) = 3
FE1L(3) = 3:FE1R(3) = 7
FE1L(4) = 4:FE1R(4) = 5
FE1L(5) = 4:FE1R(5) = 8
FE1L(6) = 5:FE1R(6) = 6
FE1L(7) = 6:FE1R(7) = 7
FE1L(8) = 7:FE1R(8) = 11
FEILO) = 8:FE1R(9) = 9
FEIL(IO) = 8:FE1R(10) = 11
F E l L (l l) = 10:FE1R(11) = 11

For t = 0 To 11

InitNode ' set back a l l nodes to i t s o r i g i n a l value.

A. Source code: verify the base case of Theorem 3.3.3 182

For i = 1 To 4

'set f a u l t y edges, so that when we c a l l the function FindPath,
'we can decide whether to go on some d i r e c t i o n by i t s d i r e c t i o n
'booleein value.

NN = NextNeib(FElL(t), i)
I f FElR(t) = NN Then

I f i = 1 Or i = 3 Then ' horizental d i r e c t i o n
Node(FElL(t)).BDirection(i) = False
Node(FElR(t)).BDirection(4 - i) = False

Elself i = 2 Or i = 4 Then ' v e r t i c a l d i r e c t i o n
Node(FElL(t)).BDirection(i) = False
Node(FElR(t)).BDirection(6 - i) = False

End I f
End I f

Next i
Node(O).BDirection(l) = False
Node(l) .BDirectionO) = False

For i = 0 To 15 ' i n i t i a l i z e PathEnds array.
For j = 0 To 15

PathEnds(i, j) = -1
Next j

Next i

totalEnds = 0

expl = "Faulty edge: (0, 1) and (" & FElL(t) & " & FElR(t)_
& ") . Path length: " & PathLengthFourteen & " and "_
& PathLengthFifteen & "."

Print #1, expl

A. Source code: verify the base case of Theorem 3.3.3 183

For i = 0 To 15
startNode.IndexN = i
startNode.Direction = 1
I f Node(i).Direction = 0 Then

' expl = "Start node: " & startNode.IndexN
Prin t #1, expl

FindPathEdgeFaulty startNode, PathLengthFourteen

InitNode ' set back a l l nodes to i t s o r i g i n a l value.
For k = 1 To 4 'set f a u l t y edges, so that when we c a l l the

'function FindPath, we can decide whether to go on some
'direction by i t s d i r e c t i o n boolean value.

NN = NextNeib(FElL(t), k)
I f FElR(t) = NN Then

I f k = 1 Or k = 3 Then ' horizental d i r e c t i o n
Node(FElL(t)).BDirection(k) = False
Node(FElR(t)).BDirection(4 - k) = False

Els e l f k = 2 Or k = 4 Then ' v e r t i c a l d i r e c t i o n
Node(FElL(t)).BDirection(k) = False
Node(FElR(t)).BDirection(6 - k) = False

End I f
End I f

Next k
Node(O).BDirection(l) = False
Node(l) .BDirectionO) = False

End I f
Next i

InitNode ' set back a l l nodes to i t s o r i g i n a l value.
For k = 1 To 4

A. Source code: verify the base case of Theorem 3.3.3 184

'set f a u l t y edges, so that when we c a l l the function FindPath,
'we can decide whether to go on some d i r e c t i o n by i t s d i r e c t i o n
'boolean value.

NN = NextNeib(FElL(t), k)
I f FElR(t) = NN Then

I f k = 1 Or k = 3 Then ' horizental d i r e c t i o n
Node(FElL(t)).BDirection(k) = False
Node(FElR(t)).BDirection(4 - k) = False

Els e l f k = 2 Or k = 4 Then ' v e r t i c a l d i r e c t i o n
Node(FElL(t)).BDirection(k) = False
Node(FElR(t)).BDirection(6 - k) = False

End I f
End I f

Next k
Node(O).BDirection(l) = False
Node(l) .BDirectionO) = False

For i = 0 To 15
startNode.IndexN = i
startNode.Direction = 1
I f Node(i).Direction = 0 Then

' expl = "Start node: " & startNode.IndexN
Prin t #1, expl

FindPathEdgeFaulty startNode, PathLengthFifteen

InitNode ' set back a l l nodes to i t s o r i g i n a l value.
For k = 1 To 4 'set f a u l t y edges, so that when we c a l l the

'function FindPath, we can decide whether to go on some
'direction by i t s d i r e c t i o n boolean value.

NN = NextNeib(FElL(t), k)
I f FElR(t) = NN Then

A. Source code: verify the base case of Theorem 3.3.3 185

I f k = 1 Or k = 3 Then ' horizental d i r e c t i o n
Node(FElL(t)).BDirection(k) = False
Node(FElR(t)).BDirection(4 - k) = False

Elself k = 2 Or k = 4 Then ' v e r t i c a l d i r e c t i o n
Node(FElL(t)).BDirection(k) = False
Node(FElR(t)).BDirection(6 - k) = False

End I f
End I f

Next k

Node(O).BDirection(l) = False
Node(l).BDirection(3) = False

End I f
Next i

SortPathEnds ' sort a l l the end nodes increasingly

For i = 0 To 15 'to p r i n t out a l l ends that has reached from one node
'on length 10 and 11.

expl = "Start node: " & i & " has end nodes: "
For j = 0 To 15

I f PathEnds(i, j) = -1 Then
Exit For

Else
expl = expl & PathEnds(i, j) & "; "

End I f
Next j
Print #1, expl & " Total: " & j

Next i

Print #1,

A. Source code: verify the base case of Theorem 3.3.3 186

Next t
Close #1

MsgBox "Congratulation! Case: two f a u l t y edges, and path length "_
& PathLengthFourteen & " and " & PathLengthFifteen

Me.MousePointer = 1
End Sub

Private Sub FVOne_Click()

Dim i As Integer, j As Integer, k As Integer, t As Integer

Dim StartNode As nodeDef

Dim PathLengthTwelve As Integer, PathLengthThirteen As Integer
Dim FEL(5) As Integer, FER(5) As Integer

PathLengthTwelve = 12
PathLengthThirteen = 13

Me.MousePointer = vbHourglass
Open Addr & "FVOne.txt" For Append As #1
'to write the r e s u l t i n a f i l e .

FEL(O) = 1:FER(0) = 2
FEL(l) = 1:FER(1) = 5
FEL(2) = 2:FER(2) = 6
FEL(3) = 5:FER(3) = 6

A. Source code: verify the base case of Theorem 3.3.3 187

FEL(4) = 6:FER(4) = 10

For t = 0 To 4 'consider the above f i v e cases

InitNode ' set back a l l nodes to i t s o r i g i n a l value.
For i = 1 To 4
'set f a u l t y edges, so that when we c a l l the function FindPath, we can
'decide whether to go on some d i r e c t i o n by i t s d i r e c t i o n boolean
'value.

NN = NextNeib(FEL(t), i)
I f FER(t) = NN Then

I f i = 1 Or i = 3 Then ' horizental d i r e c t i o n
Node(FEL(t)).BDirection(i) = False
Node(FER(t)).BDirection(4 - i) = False

Elself i = 2 Or i = 4 Then ' v e r t i c a l d i r e c t i o n
Node(FEL(t)).BDirection(i) = False
Node(FER(t)).BDirection(6 - i) = False

End I f
End I f

Next i
Node(O).Direction = 5

For i = 0 To 15 ' i n i t i a l i z e PathEnds array.
For j = 0 To 15

PathEnds(i, j) = -1
Next j

Next i

totalEnds = 0

expl = "Faulty nodes: 0. Faulty edge: (" & FEL(t) & ", " & FER(t)_

A. Source code: verify the base case of Theorem 3.3.3 188

& ") . Path length: " & PathLengthTwelve & " and "_
& PathLengthThirteen & "."

Print #1, expl

For i = 1 To 15
StartNode.IndexN = i
StartNode.Direction = 1
I f Node(i).Direction = 0 Then

' expl = "Start node: " & startNode.IndexN
Pri n t #1, expl

FindPathEdgeFaulty startNode, PathLengthTwelve

InitNode ' set back a l l nodes to i t s o r i g i n a l value.
For k = 1 To 4 'set f a u l t y edges, so that when we c a l l the

'function FindPath, we cam decide whether to go on some
'direc t i o n by i t s d i r e c t i o n boolean value.

NN = NextNeib(FEL(t), k)
I f FER(t) = NN Then

I f k = 1 Or k = 3 Then ' horizental d i r e c t i o n
Node(FEL(t)).BDirection(k) = False
Node(FER(t)).BDirection(4 - k) = False

Elself k = 2 Or k = 4 Then ' v e r t i c a l d i r e c t i o n
Node(FEL(t)).BDirection(k) = False
Node(FER(t)).BDirection(6 - k) = False

End I f
End I f

Next k

Node(O).Direction = 5

End I f
Next i

A. Source code: verify the base case of Theorem 3.3.3 189

InitNode ' set back a l l nodes to i t s o r i g i n a l value.
For k = 1 To 4 'set f a u l t y edges, so that when we c a l l the function

'FindPath, we can decide whether to go on some d i r e c t i o n by i t s

'dir e c t i o n boolean value.
NN = NextNeib(FEL(t), k)
I f FER(t) = NN Then

I f k = 1 Or k = 3 Then ' horizental d i r e c t i o n
Node(FEL(t)).BDirection(k) = False
Node(FER(t)).BDirection(4 - k) = False

Elself k = 2 Or k = 4 Then ' v e r t i c a l d i r e c t i o n
Node(FEL(t)).BDirection(k) = False
Node(FER(t)).BDirection(6 - k) = False

End I f
End I f

Next k
Node(O).Direction = 5

For i = 1 To 15
StartNode.IndexN = i
StartNode.Direction = 1
I f Node(i).Direction = 0 Then

' expl = "Start node: " & startNode.IndexN
Pri n t #1, expl

FindPathEdgeFaulty startNode, PathLengthThirteen

InitNode ' set back a l l nodes to i t s o r i g i n a l value.
For k = 1 To 4 ' set f a u l t y edges, so that when we c a l l the

' function FindPath,we can decide whether to go on some
' d i r e c t i o n by i t s d i r e c t i o n boolean value.

NN = NextNeib(FEL(t), k)

A. Source code: verify the base case of Theorem 3.3.3 190

I f FER(t) = NN Then
I f k = 1 Or k = 3 Then ' horizental d i r e c t i o n

Node(FEL(t)).BDirection(k) = False
Node(FER(t)).BDirection(4 - k) = False

El s e l f k = 2 Or k = 4 Then ' v e r t i c a l d i r e c t i o n
Node(FEL(t)).BDirection(k) = False
Node(FER(t)).BDirection(6 - k) = False

End I f
End I f

Next k
Node(O).Direction = 5

End I f
Next i

SortPathEnds ' sort a l l the end nodes increasingly

For i = 0 To 15 'to p r i n t out a l l ends that has reached from one node
'on length 10 and 11.

expl = "Start node: " & i & " has end nodes: "
For j = 0 To 15

I f PathEnds(i, j) = -1 Then
Exit For

Else
expl = expl & PathEnds(i, j) & "; "

End I f
Next j
Print #1, expl & " Total: " & j

Next i

Print #1,

A. Source code: verify the base case of Theorem 3.3.3 191

Next t
Close #1

MsgBox "Congratulation! Case: 1 f a u l t y node and one f a u l t y edge,"_
& " and path length " k PathLengthTwelve & " and "_
k PathLengthThirteen

Me.MousePointer = 1

End Sub

Private Sub FVTwo.ClickO
'there are only 4 cases to consider by the symmetric of Q_{2,k}
'they are: (0, 1), (0, 2), (0,5), (0,10)
'We suppose node 0 i s f a u l t y , i f there i s at least one f a u l t y node.

Dim i As Integer, j As Integer, t As Integer
Dim StartNode As nodeDef

Dim F2(15) As Integer 'remember the second f a u l t y node's index

Dim PathLengthElev As Integer, PathLengthTen As Integer

For i = 0 To 15 ' i n i t i a l i z e PathEnds array.

For j = 0 To 15
PathEndsd, j) = -1

Next j
Next i
totalEnds = 0 ' I n i t i a l i z e totalEnds
'we w i l l only check two path length which i s enough to prove our
'theorem.
PathLengthElev = 1 1

A. Source code: verify the base case of Theorem 3.3.3 192

PathLengthTen =10

Me.MousePointer = vbHourglass
Open Addr & "FVTwo.txt" For Append As #1
'to write the r e s u l t i n a f i l e .

F2(0) = 1:F2(1) = 2
F2(2) = 5:F2(3) = 6
F2(4) = 10

For t = 0 To 4

For i = 0 To 15 ' i n i t i a l i z e PathEnds array.
For j = 0 To 15

PathEnds(i, j) = -1
Next j

Next i

totalEnds = 0

expl = "Faulty nodes: 0 and " & F2(t) & ". Path length: "_
& PathLengthTen & " and " & PathLengthElev & "."

Pri n t #1, expl

InitNode
Node(O).Direction = 5
Node(F2(t)).Direction = 5

For i = 1 To 15
I f i <> F2(t) Then

startNode.IndexN = i

A. Source code: verify the base case of Theorem 3.3.3 193

StartNode.Direction = 1
I f Node(i).Direction = 0 Then

' expl = "Start node: " & startNode.IndexN

P r i n t #1, expl
FindPath startNode, PathLengthTen
InitNode
Node(O).Direction = 5
Node(F2(t)).Direction = 5

End I f
End I f

Next i

'expl = "Faulty nodes: 0 and 1. Path length: " & PathLengthElev & "."
'Print #1, expl

InitNode
Node(O).Direction = 5
Node(F2(t)).Direction = 5

For i = 1 To 15
I f i <> F2(t) Then

StartNode.IndexN = i
StartNode.Direction = 1
I f Node(i).Direction = 0 Then

' expl = "Start node: " & startNode.IndexN
P r i n t #1, expl

FindPath startNode, PathLengthElev
InitNode
Node(O).Direction = 5
Node(F2(t)).Direction = 5

End I f

A. Source code: verify the base case of Theorem 3.3.3 194

End I f
Next i

SortPathEnds ' sort a l l the end nodes increasingly

For i = 0 To 15 'to p r i n t out a l l ends that has reached from one node
'on length 10 and 11.

expl = "Start node: " & i & " has end nodes: "
For j = 0 To 15

I f PathEndsCi, j) = -1 Then
Exit For

Else
expl = expl & PathEndsCi, j) & "; "

End I f
Next j
Print #1, expl & " Total: " & j

Next i

Pri n t #1,

Next t

Close #1

MsgBox "Congratulation! We have done f o r case: 2 f a u l t y nodes,".
k " and path length " & PathLengthTen & " and " & PathLengthElev

Me.MousePointer = 1

End Sub

Private Function NextNeibCNodeNum As Integer, D i r t As Integer)

A. Source code: verify the base case of Theorem 3.3.3 195

I f D i r t = Rt Then
I f NodeNum Mod 4 = 3 Then

NextNeib = NodeNum - 3
Else

NextNeib = NodeNum + 1
End I f

El s e l f D i r t = Lf Then
I f NodeNum Mod 4 = 0 Then

NextNeib = NodeNum + 3
Else

NextNeib = NodeNum - 1
End I f

Elself D i r t = Dn Then
NextNeib = (NodeNum + 4) Mod 16

Else
NextNeib = (16 + NodeNum - 4) Mod 16

End I f
End Function

Index

(n,/c)-star graph, 17, 114

1-edge, 17

z-edge, 17

D-node, 142

P-node, 142

/c-ary n-cube, 15, 26, 64, 85

fc-connected, 10

/c-container, 11

/c-edge-fault-tolerant bipancyclic, 12

/c-edge-fault-tolerant edge-bipancyclic,

12

/c-edge-fault-tolerant hamiltonian lace-

able, 11

/c-edge-fault-tolerant strongly hamilto­

nian laceable, 11

/c-pairwise disjoint paths, 4

/c-regular, 9

/c-vertex-connected, 10

/c*-connected, 11

/c*-container, 11

m-panconnected, 12

n-dimensional augmented cube, 18

complement edge, 19

hypercube edge, 19

n-star graph, 16

/c-edge-fault-tolerant hyper-hamiltonian

laceable, 11

adjacent, 9

almost-hamiltonian, 11

almost-hamiltonian-connected, 11

almost-pancyclic, 12

augmented /c-ary n-cube, 83-85

(< i ,- l)-edge, 85

(< z,+l)-edge, 85

Ci,+l)-edge, 85

(z,-l)-edge, 85

bipanconnected, 12

bipancyclic, 12

bipartite, 9

bipartition, 9

Cay ley graph, 88

column, 28

conditional fault assumption (CFA), 21

connectivity, 10

containers, 23

cycle, 10

degree, 9

diameter, 10

dimension, 15

196

I N D E X 197

distance, 10

edge, 9

edge-bipancyclic, 12

edge-pancyclic, 12

fault, 27

graph, 9

grid, 13

harniltonian, 11

hamiltonian cycle, 10

hamiltonian laceable, 11

hamiltonian path, 10

hamiltonian-connected, 11

Hamming distance, 12

healthy, 28

hyper hamiltonian laceable, 11

hypercube, 3, 14, 15

join, 28

Lee distance, 13

Lee weight, 13

length, 10

link, 9

many-to-many disjoint paths, 5, 25

many-to-one disjoint paths, 4

mesh, 13

neighborhood, 9

node, 9

node-symmetric, 9

node-to-node disjoint paths, 4

node-to-set disjoint paths, 4

one-to-many disjoint paths, 4, 24

one-to-one disjoint paths, 4, 23

panconnected, 12

parity, 27

even, 27

odd,27

partition, 15

path, 10

progressively shortened, 65

residual node, 11

row, 28

set-to-set disjoint paths, 4

spanning connectivity, 12

strongly hamiltonian laceable, 11

subgraph, 9

super spanning connected, 12

torus, 14

row-torus, 14

vertex, 9

vertex cut, 10

vertex-bipancychc, 12

vertex-connectivity, 10

vertex-pancyclic, 12

vertex-symmetric, 9, 65

