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Abstract 

We study the isospectral deformations of the Eguchi-Hanson spaces along a, torus 

isometric action in the noncompact noncommutative geometry. We concentrate on 

locality, smoothness and summability conditions of the nonunital spectral triples, 

and relate them to some geometric conditions to be noncommutative spin manifolds. 
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Chapter 1 

Introduction 

A fundamental theorem given by Gelfand and Naimark [1] of C*-algebras shows the 

equivalence between the category of commutative C*-algebras with *-homomorphisms 

and the category of Hausdorff locally compact spaces with base-point preserving con­

tinuous maps. Under this correspondence, a locally compact Hausdorff topological 

space X is mapped to the C*-algebra Co(A^) of continuous complex valued functions 

of X vanishing at infinity. Conversely, a commutative C*-algebra A is mapped to 

the space of characters M{A) consisting of algebra homomorphisms from A to C. 

M{A) is endowed with a Hausdorff topology defined by the supremum norm. This 

correspondence motivates the idea to study topological spaces through the theory 

of C*-algebra. 

Around the 80's, Alain Connes started to generalise this idea to study Rieman-

nian manifolds through algebraic data. By further allowing noncommutativity of 

the algebra, he laid the foundation of noncommutative differential geometry. Before 

a noncommutative geometry can be obtained, the key is to rewrite a Riemannian 

geometry algebraically. The main issue in doing this is to first find the algebraic 

descriptions of coordinate charts so that a differentiate manifold is obtained and 

secondly the description of a Riemannian metric. This fundamental problem of re­

construction Riemannian manifolds in noncommutative geometry was announced 

by Connes in 1996 [2], where compact and spin or spin'̂  Riemannian manifolds are 

considered as a first attempt. 

From a compact Rienianian spin manifold M of metric g and spinor bundle S, one 

1 



Chapter 1. Introduction 

can extract algebraic information as follows: (1) the algebra A = C°°{M) of smooth 

complex-valued functions of M ; (2) the space T°°{A4,S) of smooth sections of the 

spinor bundle S. which is a finitely generated projective Amodule by the Serre-

Swan theorem [3]; (3) the Dirac operator D as a first order differential operator 

acting on the Hilbert space completion H of r°°(M, >S) under the usual L--norm. 

The algebraic data {A.H., D), where A is represented as operators on H., is called 

the spectral triple associated to M. From the geometrical properties of M, one may 

deduce the set of algebraic properties X = { X i , . . . , Xi,...} of the spectral triple 

{A,n,D). 

The reverse of this procedure can be considered as the reconstruction of Rieman-

nian spin manifolds: finding a finite set of geometric conditions from the set X of 

all the algebraic properties of any given commutative spectral triple {A, H. V) so as 

to reconstruct a compact Riemannian spin manifold. Here the commutativity of 

the spectral triple means the commutativity of the operator algebra A. 

The idea is that once such a set of geometric conditions is found for commutative 

spectral triples, they can be modified for noncommutativite spectral triples. The 

resulting set of geometric conditions (or axioms, if the independence of the condi­

tions is shown) can be regarded as the definition of noncommutative Riemannian 

manifolds. To anticipate a bit more, characterisations of these noncommutative 

spectral triples can lead us to fundamental problems in describing the standard 

model coupled with gravity as explored in [4 . 

Let H be a Hilbert space, ^ be a unital involutive commutative algebra repre­

sented on H and I? be a self-adjoint operator on 7i. The following are the geometric 

conditions of the spectral triple {A. H, V) proposed by Connes [2] for a compact 

commutative Riemannian spin manifold. 

1. (Metric dimension.) The operator is an infinitesimal of order 1/p, for a 

given positive integer p. 

This means that /x„,(P"') = 0(m~^/p) where //^(P"^) is the decreasing se­

quence of eigenvalues of \T>~^\. 

2. (First order.) [\D, f].,g] = 0 for any f.g E A. 
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3. (Regularity.) For any a e A both a and [V.a] belong to the domain 0 /5™ for 

any integer m. 

6- is the derivation on the space of linear operators of 7i given by • . 

4. (Orientabihty.) For p even, there exists a Hochschild cycle c € Zp{A,A) and 

an operator x such that 7r©(c) = x satisfying 

For p odd, 7rxj(c) = 1 for some p-dimensional Hochschild cycle c 6 Zp{A.,A). 

The representation -K-p of Hochschild cycle in Zp{A, A) is defined by the formula 

7ri,(a° ® ® • • • ® a") := a°[V, a ]̂ • • • [D, a";. 

5. (Fmiteness and ahsnhde continuity.) The space Hoc '•= ^mDom{T>™) is a 

finite projective (left) A-module. Moreover, the following equality defines a 

hermitian structure (•, •) on the module by 

/ is the Dixmier trace of measurable operators. The measurability of a|P|~P 

for a G ^ can be implied by the orientability condition and Connes' character 

theorem [5 . 

6. (Pomcare duality.) The intersection form, h\{A) x K^{A) Z of K-groups 

of A is invertible. 

7. (Reality.) There exists an antilmear isom,etry J : H H such that JaJ~^ = 

a* for a e A and J- = e, JV = e'VJ, and Jx = e"xJ, where e. e', e" G 

{ — 1, +1} are given by the following table from, the value of p modulo 8. 

How exactly these geometric conditions can be deduced from a compact Rieman-

nian spin manifold is given as Theorem 11.1 in [6]. The converse is the reconstruction 

problem, which takes the following form [2] [6 . 
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p 0 1 2 3 4 5 6 7 

e 1 1 -1 -1 -1 -1 1 1 

e' 1 -1 1 1 1 -1 1 1 

e" 1 -1 1 -1 

Theorem 1.0.1 Let H be a Hilbert space. A he a umtal involutive algebra repre­

sented on Ti. and V be a self-adjoint operator on H. 

(a) Let TT be any unitary representation of A and V on the Hilbert space H sat­

isfying the above seven geometric conditions, then the spectrum of A defines 

a differentiable m,anifold M, such that C°°{M) = A. There is a unique Rie-

mannian metric g of M such that the geodesic distance between any two points 

x,y E M is given by 

d{x.,y) = sup{|a(x) - a(y)| : a E A., 7r(a)]|| < 1}. (1.1] 

(b) The metric g depends only on the unitary equivalence class [TT] O / T T . There is 

a finite collection of affine spaces of unitary equivalence classes {A„} in which 

each equivalence class gives rise to the metric g as described in (a). The finite 

collection of affine spaces is parametrised by the spin structures a on [M.g). 

(c) The action functional j • is a positive quadratic form on each affine 

space Aa with a unique minimum n^. 

(d) The minimum TT^ is the representation of A and V on L'^{h4,Sa) such that 

A is represented as multiplication of operators, while V is represented as the 

Dirac operator D operating on the sections of spinor bundle with respect to 

the spin structure a. 

(e) The value of § on Tr„ is given by the Einstem-Hilbert action. 

•X, c„ = . . : ^ r f ? + i ) " 2 W ^ i 
12(47r)p/2 V2 

The formulation and the proof of the theorem, as well as the phrasing of the 

geometric conditions themselves are considered extensively since then by [7] [6] [8] [9 . 
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In [6] (Theorem 11.2), a simpler version of the above theorem is considered: the 

algebra A is assumed to be the space of smooth functions of some compact manifold 

to start with. This assumption is nontrivial and its proof is rather technically 

involved as the rest of the above references show. 

Assuming the validity of the reconstruction theorem, Connes also provides the 

modification of the above geometric conditions in adapting to noncommutative spec­

tral triples [2], where only the first order, Poincare duality and orientability condi­

tions require modification. 

As a generalisation of the compact case, the noncompact noncommutative ge­

ometry is the study of nonunital spectral triples [10] [11] [12]. Geometric conditions 

for nonunital spectral triples are conjectured by [13] and [12] for the noncommu­

tative case directly, which we will present in chapter 9. The credibility of these 

conditions to serve as the definition of noncommutative noncompact manifolds will 

be determined by a reconstruction theorem for noncompact commutative manifolds 

assuming the commutative version of the conjectured conditions. It is however still 

too soon to make any conclusion along this line. At the moment, we may look 

at nonunital examples, commutative or not, and see how the nonunital geometric 

conditions fit examples. 

There are various nonunital examples [13] [14] [12] [15]. In this dissertation, 

we follow the construction of [14] to find nonunital spectral triples as isospectral 

deformations of Eguchi-Hanson (EH-) spaces [16], which are geodesically complete 

noncompact Riemannian spin manifolds. 

The Eguchi-Hanson spaces are of interest in both Riemannian geometry and 

physics. Geometrically, they are the simplest asymptotic locally Euclidean (ALE) 

spaces, for which a complete classification is provided by Kronheimer through the 

method of hyper-Kahler quotients [17]. This construction reahses the family of EH-

spaces as a resolution of a singular conifold. In physics, where they first appeared, 

EH-spaces are known as gravitational instantons. Due to their hyper-Kahler struc­

tures, the ADHM construction [18] of Yang-Mills instantons, is generalised on the 

EH-spaces in an elegant way [19] [20]. The nonunital spectral triples from isospectral 

deformations of Eguchi-Hanson spaces may thus link various perspectives. 
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Isospectral deformation is a simple method to deform a commutative spectral 

triple. It traces back to the Moyal type of deformation from quantum mechanics. 

Rieffel's insight is to consider Lie group actions on function spaces and hence explain 

the Moyal product between functions by oscillatory integrals over the group actions 

21]. Apart from the well-known Moyal planes and noncommutative tori [22], this 

scheme allows more general deformations. Connes and Landi in [23] deform spheres 

and more general compact spin manifold with isometry group containing a two-

torus. Connes and Dubois-Violette in [14] observe that this works equally well for 

noncompact spin manifolds. We will obtain the isospectral deformation of EH-spaces 

in this way. 

As in the appendix of [10], it is possible to realise such noncompact examples 

in the nonunital framework there. Closely assocatied to the geometric conditions 

of nonunital spectral triples, there are some analytical and homological properties: 

locality, smoothness and summability [10] [11]. Our aim is to concentrate on these 

properties of the deformed spectral triples of the EH-spaces and further see how 

the modified geometric conditions follows. We will however leave out an important 

condition from the point of view of the reconstruction problem, namely the Poincare 

duality, for future work. 

The organisation of the rest of the dissertation is as follows. Chapter two to five 

serve as preUminary material. They describe operator algebras, noncommutative 

integration, C*-modules and spin geometry. The main results are contained in 

chapters six onwards. In chapter six, we describe Eguchi-Hanson spaces in spin 

geometry. In chapter seven, we consider algebras of functions over EH-spaces, the 

deformation quantization of algebras, and representations of algebras as operators 

on the Hilbert space of spinors. We also obtain the projective module description of 

the spinor bundle of the EH-space. In chapter eight, we define spectral triples of the 

deformed EH-spaces and study their summability properties. In chapter nine, we 

examine how the spectral triple fits into the modified nonunital geometric conditions. 

In chapter ten, we draw conclusions. 



Chapter 2 

Operator algebras 

The first two sections of this chapter are on Frechet spaces and some examples. The 

references are [24] [25]. The rest of the chapter is on C*-algebras, where we refer 

to [26] [27] [28] [6] for references. 

2.1 Frechet spaces 

A topological vector space is a vector space endowed with a topology in such a way 

that the scalar multiplication and addition of the vector space is continuous with 

respect to the underlying topology. 

A seminorm on a vector space V is a map q : V [Q. oo) such that q{x + y) < 

q{x) + q{y) and q{ax) = \(y\q(x) for a G C, for all . T , y E V. A family of seminorms 

{ 9 m } m e M is said to separate points if gm('i-') = 0 for all m G M implies x = 0. 

A locally convex space is a vector space X (over C say) with a family of semi-

norms {(?m}me.4 separating points. The natural topology on a locally convex space 

(A', {qm}m£A) I S the weakest topology in which all the seminorms g„,"s are continu­

ous and the operation of addition is continuous. The condition of separating points 

implies further that the induced topology is Hausdorff. 

Two families of seminorms, say {qm}meM ^^'^ {dnjn^N- are said to be equivalent 

if they induce the same natural topology on a vector space yY. There is the following 

fact. 
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Proposition 2.1.1 The families of seminorms {gmjme.w and {dn}n€N on the vec­

tor space X are equivalent if and only if for each m £ M. there are ..... E N 

and C > 0 so that for all x E X Qmix) < C{dn.^{x) -t- • • • -t- d„^,(x)) and conversely 

for each n 6 A'', there are m\,...,mj G h4 and D > 0 so that for all x £ X, 

dn{x) < Diq,n,{x) + ••• + g,„,,(x)). 

There is a particular class of locally convex spaces, whose topology can be gener­

ated by a metric, they are called metrisable. The fact is that a locally convex space X 

is metrisable if and only if the topology on X is generated by some countable family 

of seminorms {qm}m=i.2,...- In fact, such family defines a metric d : X x X —> [0, oo) 

by 

"i^^yy-t^^ii^^y (2.1) 
The natural topology induced by the metric d is the same as the topology generated 

by the family of seminorms {qm}m=i,2....-

Given a locally convex space A' with the natural topology defined by the family 

of seminorms {qm}meM separating points, a net {xp} in X is called Cauchy if and 

only if for any £ > 0 and each seminorm q^, there is a PQ so that qmi^p^ — xp^) < e 

when /?],/32 > /?o- A net {xp} converges to x G A , denoted as xp —> x, if and only 

if qm[xp — x) ^ 0, for any m £ A. The locally convex space X is called complete if 

every Cauchy net converges. 

In the case of metrisable locally convex space X, a net [xp] is called Cauchy with 

respect to the metric if and only if for any c > 0, there is a /3o so that d{xp.^, xp^) < E, 

when /?i,/?2 > Po- A net {xp} converges to x E X, denoted as xp —> x, if and only 

if d{xp,x) —> 0. The metrisable locally convex space X is called complete if every 

Cauchy net converges. The fact is that a metrisable locally convex space X is 

complete as a metric space if and only if it is complete as a locally convex space. 

Definition 2.1.1 A Frechet space is a topological vector space which is locally 

convex, m,etrisahle and complete. 
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2.2 Examples 

Let X be a locally compact differentiable manifold of dimension n. We consider 

the following spaces of complex-valued functions on X. Let C^(A') be the space 

of smooth functions on X of compact support. Let C^{X) be the space of smooth 

functions on X vanishing at infinity. That is, / G C^{X) if and only if for any 

e > 0, there is a compact set K C A' such that | / ( . T ) | < s when x G A \ A ' . 

Let C^{X) be the space of smooth functions / whose derivatives are bounded 

to all degrees. That is, for any local coordinate charts U := {Ua, (pa • Ua ~^ R"}ag^ 

of X with a partition of unity {hajaeA subordinate to it so that supp{h„) C Ua, 

then f e C ^ i X ) if 

|Ml" ' ( /°0a" ' )(0a(x)) | < oo, V.X- € a G A 

where a = ( c i i , . . . , Q„) are any multi-indices of length \a\ := Xl"=i '^n and (9'"' : = 

J2 • • • d^" where 5̂  for z = 1,..., 77, is the partial derivative with respect to the 

'i-th coordinates in The definition of C^{X) is independent of the choice of U. 

We can topologise vector spaces C^{X)., C^{X) and C^iX) by a family of 

countable seminorms, so that each of them becomes metrisable, locally convex topo­

logical vector spaces. Furthermore, we will show that both C^{X) and C^{X) are 

complete and hence Frechet spaces. 

With respect to a choice of local coordinate charts and a corresponding partition 

of unity, say U = {Ua-, (pa-, ha}a€A: we may define the following seminorms : 

C - ( A ) ^ [ 0 , o o ) b y 

:= E f \ha{xWifix))\) , m = 0 , 1 , . . .. (2.2 

for any / G C^{X). 

Prom definitions, the family of the seminorms {g^,}7n=o.],2,... separating points. 

Similarly for their restriction on the subalgebras C^(A') , C^(A' ) . Therefore 

Lemma 2.2.1 Under the natural topology induced by the family of seminorms 

{ g ^ } , each of the spaces C^{X), C^{X) and C^(A') is metrisable and locally 

convex topological space. 
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L e m m a 2.2.2 Two families of semmorms defined by (2.2) from, different choices 
of local coordinate charts are equivalent fam/ilies sem,inorm,s on the space C^{X). 
Similarly, this is also true for spaces C^{X) and C^{X). 

Proof: Suppose there are two local coordinate charts on X w i th their corresponding 

part i t ion of unity, U = {Ua.. (pa] Kja^A-, and W = {Wh.tpb, gb}b€B- W i t h respect to 

each of the open covering, we can define two families of seminorms {(^}m=o.i.... and 

{q^}n=o.i,...- By Proposition 2 .1 .1 , i t suffices to show that for each m = 0 , 1 , . . . , 

there are rii,... ,ni = 0,1,... and a constant C > 0 such that for any / € C^{X), 

9 ! ^ ( / ) < ^ ^ ( C ( / ) + ••• + < ( / ) ) ; (2-3) 

and conversely, for each n = 0 , 1 , . . . , there are m j , . . . , = 0 , 1 , . . . and a constant 

D > 0 such that for any / e C^{X), q ^ { f ) < D{ql^{f) + - .• + ql^{f)). By 

the symmetry of the two families of the seminorms, i t suffices to show (2.3) . For 

/ G C^[X) and any fixed m = 0 , 1 , 2 , . . . , 

QIU) = E ^̂ P̂ \ha{x)d^{f{x))\. (2 .4) 

Then for each coordinate chart [/„, 

sup | / , ,„(x)(°)a"(/( .x)) | = sup | / x , (x ) ( " ' a " / (x ) | 

< ^^P \ha[xt^d\f{x)\, (2 .5) 

where we write ^"^9" instead of to indicate that i t is w i th respect to the coordinate 

chart Ua-

Since the function / is bounded to all degrees, we may find a constant C^f^ such 

that the transition satisfies 

\K{xt^d'^f{x)\ < c:,K{xf^dy{x)\ < c , | ( ' ' ) a " / ( . x ) | , v.x- G [/„ n w>,. (2 .6) 

Since A and B are finite set, we may define the positive constant by C ° : = 

1̂ 1 max{C^j,; a G A, b e B}, where the factor \A\ is the number of open cover in U. 
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Thus (2.4), (2.5) and (2.6) imply that 

i f ) < ( E ^̂ ^P ^ i " " a v ( . x ) i 

^ Z ] ' ^ " P E ^"P -rrM^y'^dyix)] 
aeA l ° l<' '" V i e s ^ e t / a n w , | / l y 

< \A\ sup ^ s u p — | p , ( x ) ( ' ' ) 5 " / ( x ) | 

< C„, J ] sup sup \9>,{xf^dy{x)\ = 
|a|<mi6H'6 

where Cm •= max{C'^ : |a| < m,} is a positive constant. In the second inequality, 

we redefine C° to take care of the mult ipl icat ion of gh i f necessary. Therefore (2.3) 

is satisfied. The same procedure works for subalgebras C^{X) and C^{X). This 

completes the proof. • 

The topology induced by the countable family of seminorms (2.2) is called the 

topology of uniform convergence of all derivatives. Under the respective topology 

of uniform convergence of all derivatives, the spaces C^{X). C^'iX) and C^iX) 

are all metrisable, locally convex spaces. In the following we wi l l further see that 

C^{X) and C^{X) are both complete and hence Frechet spaces. 

L e m m a 2.2.3 For X a locally compact differentiable manifold, the space C^{X) 

of bounded functions to all degrees is a Frechet space with respect to the topology of 

uniform convergence of all derivatives. 

Proof: To show that C^{X) is complete w i th respect to the family of seminorms 

{(^n}m=OA,..., let { f g } be a Cauchy sequence in C^{X) w i th respect to each of the 

seminorms {(^}m=OA,... in (2.4). That is, for any e > 0, there exists such that 

Qnrifp. - f p . ) < ^-^ as /3i , /32>/?o- (2.7) 

This implies that for any fixed a e A. a. and fixed point x G 

| /^a(3 .-)5°(/0, - f.3,){x)\ - 0, as P,.,,d2 - oo. (2.8) 
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In other words, for any fixed a £ A, a and x e Ua-. there is a Cauchy sequence 
in the complex plane C, 

{K{x)d%f0){x)]0. (2.9) 

Since C is complete, the Cauchy sequence (2.9) converges to a complex number, 

say ha{x)^"^g'^. That is, 

c>"//3('c) -'"^^7?: as,/?-^oo. (2.10) 

Thus for any fixed a £ A and a, we can define a map '"^g" : [ / „ — > C by 

(<^)g"(.x) := ("^^^ as given in (2.10) for any point x e t/„. 

Observe that the map is a continuous map since i t is the uniform l imi t of 

continuous functions d'^ f0 : (7a C as /? —> oo. A second observation is as follows. 

I f X E Ua n Ua' for a, a' G A, then the corresponding functions defined by 

^-^g"\u^ := hm '"^a"/,!^,: ' " ' ^ ^ I . ; , := Jim ^"'^dy^lu^ 

agree on x e UaDUa'- For the simple reason that for any /?, ("^^"/^(.x) = ^"'^d'^fgix)., 

for X e UaD Ua' • 

W i t h the two observations, we can define a global continuous function g"' : X ^ 

C given by g°'{x) : = '"^^"(.x) for x G Ua- The independence of choices of Ua con­

taining X is stated in the second observation while the contirmity of the function is 

stated by the first observation. 

We make another observation, which is crucial in the later proof. For any Ua-, 

(2.11) 

In fact, for any x E Ua, 

("',g"(x) * Um ^"^d^fpix) = ("^a° ( l im fp{x)] = ( " ' ^ "^" (x ) . 

jS—oo oo J 

What is left is to show the following: (i) c^^ifp - g^) —> 0, as —> cx), for any 

m = 0 , l , . . . : (n) g^eC^{X). 

To show (z), we assume that P > Po where PQ is defined in (2.7), so that Q^{fi3 — 
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fg,) < s ior P,(3' > Po- We have 

- .9") = E ^ '̂P \ha{x)d^fp{x) - ^ . , ( . x ) a V ( : r ) | 

^ T sup sup |/7,„(x)a°7^(.T) - ha.{x) l im (("^a^/J ') . I 

< sup sup sup \ha{x)d''{f0 - / sO i l 
,a'>0O ̂  \a\<rnxeUa 

= sup - /^O < ^: 

since both P and are greater than PQ. Hence (i) is shown. 

To prove ( i i ) . I t suffices to show that the Hmit g° of the Cauchy sequence { f p } 

in C^iX) satisfies 

E sup | / 7 « ( x ) a V ( ^ ) l < 0 0 , Va. (2.12) 
a.G.4 - e ^ " 

We have 

V s u p | / i „ ( x ) a V ( x ) | = V s u p | / i „ ( x ) ( " ) , 9 " ( x ) | 

= V sup \ha{x) lim a ° / a ( x ) | 

= X ] ^^P | / i a (3 : )5" /^ (x ) | . 

Note that each f p satisfies that J2a&A ^^PxeUa \^a{x)d"fp{x)\ < 00 by the assumption 

that /g e C ^ ( A ' ) . Therefore, the hmi t at p ^ CXD is also finite and we have 

J2aeA^^PxeUa \^'a{x^)d°'g°{x)\ < 00, which gives that € C^{X). This completes 

the proof that C^{X) is Prechet. • 

L e m m a 2.2.4 For X a locally compact differentiable manifold, the space C^iX) of 

smooth functions vanishing at infinity is a Frechet space with respect to the topology 

of uniform, convergence of all derivatives. 

Proof: The first part of the proof is obtained by replacing the algebra C'^{X) by 

C ^ ( A ' ) everywhere in the proof of Lemma 2.2.3 unt i l the claim ( i i ) . 

The second part of the proof is as follows. We claim that ( i i ) ' I f the Cauchy 

seciuence { /a} is in the algebra C'^{X), then the l imi t is also in C^{X). 
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The smoothness of g^ is can be shown easily since i t is in C^{X). Thus, i t 
suffices to show that for any e > 0, there exists a compact set K C X such that 
\g°{x)\ < £., for X e X\K. 

We assume on the contrary that there exists /; > 0 such that |(/°(.x)| > rj when 

X e X\K for any compact set K C A'. Then since { f ^ } converges to g° pointwisely, 

for any fixed x E X and e < r] there exists B such that \g^{x) - ff){x)\ < e when 

P > B. The pointwise inequality 

Mx)\ > | 5° (x) | - |5«(x) - fs{x)\ > \g'ix)\ - e, 

together w i t h the assumption imply that \fp{x)\ > t] — e for x G X\K for any 

compact set K C X when (3 > B. This contradicts to the fact that each fp is a 

function vanishing at infinity. Hence G C^{X) and the space C^{X) is Frechet. 

• 

Definit ion 2.2.5 An algebra is a Frechet algebra if it is a Frechet space and fur­

thermore each seminorm of the fam,ily of seminorms {qm} is submultiphcative, i.e. 

qmifg) < qM)Qrn{9)-

Both C ^ ( X ) and C^[X) of the topology of uniform convergence of all derivatives 

are examples of Frechet algebras. 

2.3 C*-algebras and Gelfand transform 

A norm || • || on an algebra A is submultiplicative i f ||a6|| < ||a|| for a, 5 G A. 

The pair (.4, || • ||) is called a normed algebra. A complete normed algebra is called 

a Banach algebra. A n algebra A is unital i f i t has a unit I.4 such that al.4 = l ^ a 

for aeA. 

A Banach algebra A can be unitized as A^ := / I x C, where the multiplication 

(a, A) [b, j j ) := [ah + A6 + ^,a, A/.i) for (a. A), (6, /./,) G and the norm ||(a, A)||.4+ : = 

sup{||a6 + A6|| : < 1}. The unit of A'^ is IA+ := (0,1). A'^ is a unital Banach 

algebra. 

We write A^ as the set of all invertible elements in a unital Banach algebra A. 

The spectrum of an element a. in A is (7,4(0,) : = {A G C : a - Al,4 ^ .4 '*}. The spectral 
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radius of a in A is the supremum r^ia) := sup{|A| : A G ^ 4 ( 0 ) } . The spectral radius 
formula says that r^ (a) = h m „ _ o o When the algebra A is nonunital, we 

obtain the corresponding definitions in its unitization A'^. 

A n algebra A is called a ^-algebra or mvolutive algebra i f i t is endowed wi th an 

involution * : a ^ a"' such that a"* = a and (0,6)* = b*a* for a,b E A. A Banach 

^-algebra is a Banach algebra, {A, || • ||) endowed wi th an involution * and satisfying 

that ||a*|| = ||a|| for a E A. A n (abstract) C*-algebra is a Banach *-algebra which 

satisfies the C*-identity 

\\a*a\\ = Va G A. 

I f is a C*-algebra, then its unitization A'^ is also a C*-algebra. 

A n algebra homomorphism of *-a]gebras (j) : A —'^ B is & *-homomorphism i f 

(j){a*) = (p{a)* for a e A. A homomorphism is a *-homomorphism if and only if 

i t maps self-adjoint elements to self-adjoint elements. A bijective *-homomorphism 

is a *-isomorphism. A *-homomorphism between unital *-algebras is called unital 

*-homomorphism i f i t preserve the units. 

A useful property of *-homomorphism of C*-algebras is as follows 

Proposi t ion 2.3.1 If a : A B is a *-homomorphism between C*-algebras A 

and B. then \\a\\ < 1. In particular, if a is a *-isomorphism, then it is isometric. 

Proof: Replacing A and B by their unitizations A'^ and 5 + if necessary, we assume 

that both A and B are unital C*-algebra. We need to show that 

| |Q(a) | | < ||a||, \/aeA. (2.13) 

Taking the square of (2.13) and applying the C*-identity, we obtain ||Q;(a*a)|| < 

||a*a||. Since a*a is self-adjoint for any a E A, i t suffices to show (2.13) for any 

self-adjoint element b E A. Such an element b is in particular normal, i.e. b*b = bb*. 

Together wi th the C*-identity, b satisfies that = Indeed, 

116̂ 11'̂  = ||(62)*62|| = ||(6*6)*(6*6)|| = ||6*6||^ = | | 6 | r . 

Thus = firn„_oc | | ^ ' " i r / " = rA{b). Similarly, | | o (6) | | = r B ( Q ( 6 ) ) , since a{b) 

is self-adjont and hence is a normal element in B. The simple observation that 
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aB{a{b)) C aA{b) implies that r s ( a ( 6 ) ) < 7:4(6) and hence \\a{b)\\ < \\b\\. This 
completes the proof. • 

The dual of a commutative Banach algebra A is the set M{A) of non-zero, 
continuous algebra homomorphisms a : A ^ C The continuity is w i t h respect to 
the respective norm topology on A and C. A4{A) is a locally compact Hausdorff 
space in the topology of pointwise convergence. We denote by Co{M{A)) the algebra 
of continuous complex-valued functions on A4{A) vanishing at infinity. Equipped 
w i t h the supremum norm || • ||oo, Co{M{A)) is a Banach *-algebra. The Gelfand 
transform A —> Co{M{A)) is given by a 1-^ a such that 

a{a) = a{a), Va G A4{A). 

A simple result of Gelfand asserts that 

L e m m a 2.3.1 When A is a unital Banach algebra, (T^(a) = (JC{M(A)){O,). In par­

ticular, r^ia) = rc(M{A)){a)-

Proof: This is implied by that fact that a E A \s invertible i f and only i f its Gelfand 

transform d G C{M{A)) is invertible. • 

Let A he A unital Banach *-algebra. Endowed wi th the involution defined by the 

complex conjugation, C{M{A)) is a *-algebra. A n element a. in C{M{A)) is self-

adjoint if and only i f i t has real spectrum. By Lemma 2.3.1, the Gelfand transform 

of a *-algebra A is a *-homomorphism if and only i f all the self-adjoint elements in 

A have real spectrum. 

The following theorems of Gelfand and Naimark link commutative C*-algebras 

to topological spaces. 

T h e o r e m 2.3.2 If A is a commutative C*-algebra, then the Gelfand transform is 

an isom.etric isomorphism from A onto Co{M{A)). 

Proof: I f A is nonunital, the Gelfand transform of A is defined as that of A'^. Thus 

we may assume A is unital . Every element a of the commutative C*-algebra A is 

normal, and hence ||a|| = r^i^a). 

On the other hand, one can show that for any d G CQ[M{A)), \\a\\^ = rc(M(/i))(d). 

Lemma 2.3.1 further implies that ||d||oc. = T A { C L ) . Therefore ||d||oo = for a G ^ 
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and hence the Gelfand transform is an isometry. 

We use the fact that self-adjoint elements of a C*-algebra have real spectra to 

conclude that the Gelfand transform of a C*-algebra is a *-homomorphism. I t is 

easy to check the inject ivi ty of the Gelfand transform and the surjectivity follows 

f rom the Stone-Weierstrass theorem. • 

A t the level of categories, there is the following celebrated theorem. 

T h e o r e m 2.3.3 

1. The category of commutative, unital C* -algebras and unital *-homomorphism,s 

is equivalent to the opposite category of compact Hausdorff spaces and contin­

uous maps. 

2. The category of nonunital commutative C*-algebras and *-homomorphisms is 

equivalent to the opposite category of locally compact Hausdorff spaces and 

base-point preserving continuous maps. 

Proof: We consider the uni tal case first. For any unital *-homomorphism F : A —>• 

B of commutative C*-algebras A and B, we induce M{F) : M{B) M{A) by 

M{F){P){a) = ^ ( F ( a ) ) , V a e ^ for /? e M{B). Conversely, for any continuous map 

F : B ^ A between compact Hausdorff topological spaces B and A, we induce 

a *-homomorphism C{F) : C{A) C{B) by C{F){a){p) = a{F{p))yp e B for 

a G C{A). I t is not hard to show that the functors thus defined yield the equivalence 

between the categories. 

For the nonunital case, i f A is a locally compact Hausdorff space and \i A : = 

Co{A) then A'^ = C{A'^) where A'^ is the one-point compactification of A. Simi­

larly a locally compact Hausdorff space B defines B := Co{B) w i t h the one-point 

compactification B~^. 

A *-homoiTiorphism of the nonunital C*-algebras A ^ B induce a unital *-

homomorphism f rom A"*" B + . By the proof for the unital case, i t induces a 

base-point preserving continuous map f rom fi+ to I f we define the category of 

locally compact Hausdorff spaces in such a way that the morphisms f rom B to A are 

the base-point preserving maps f rom 5 + to A~^, then i t is equivalent to the category 

of nonunital C*-algebras wi th *-homomorphisms. • 
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We end this section by giving the notion of posit ivity of elements in a C*-algebra. 
A self-adjoint element a of a C*-algebra is positive, wri t ten as a > 0, i f its spectrum 
a^(a) is non-negative. A n element a in A is positive if and only if a = b*b for some 
b E A. Positivity induces a partial order < on / I by o < 6 if and only if 6 — a > 0 
for a, b e A. A useful property for a C*-algebra A is that 

0 < 6 < a = ^ < ||a||, Va, b G A. (2.14) 

2.4 Representation of C*-algebras 

A concrete C*-algebra A is a Banach *-algebra which is isometrically *-isomorphic to 

a norm-closed *-subalgebra of the algebra of bounded linear operators -B(7i) for some 

Hilbert space Ti.. The algebra of Hilbert space operators satisfies the C*-identity 

automatically. This implies that any concrete C*-aJgebra is an a,b,stra,ct C'*-a,lgebra. 

The GNS (Gelfand-Naimark-Segal) construction on the other hand imphes that each 

abstract C*-algebra admits a representation on some Hilbert space, which further 

reafises i t as a concrete C*-algebra. 

A *-representation of an abstract C'-algebra A is a *-homomorphism TT : .4 —> 

B{'H). The ^-representation is called faithful if TT is injective. Two representations 

Ti : A ^ B{T-C) and T T ' : A —»• B{'H') are unitarily equivalent i f there exists a unitary 

operator U : n ^ H' such that Un{a)U* = n'{a) for all a e A. 

An important fact is that the spectrum of an element a in a C*-algebra A is 

the same as the spectrum of a as an operator in a fa i thfu l *-representation on some 

Hilbert space Ti., that is 

aA{a) = aB{n){a). (2.15) 

Recall that a a bounded self-adjoint operator T on a Hilbert space Ti. of inner 

product (•, •) is positive (wri t ten as T > 0) if and only if the spectrum of T is non-

negative; if and only if T is of the form S*S for some bounded operators S; i f and 

only if TO > 0, for any ^eTC. 

Now (2.15) in particular implies that a is positive as an element in a C*-algebra 

A i f and only if 7r(a) is a positive operator on a Hilbert space through a fa i th fu l 

representation. 
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A state on a uni ta l C*-algebra A is a. positive linear functional (p : A ^ C such 
that 0(1.4) = 1. We w i l l restrict to the case when A is unital , while referring to [6 
for the nonunital case. 

T h e o r e m 2.4.1 ( G N S construct ion) Let ( f ) be a state on a umtal C*-algebra A. 

There is a representation on a Hilbert space Ti., n : A ^ ^0^) o,nd a unit vector 

E, E H such that 4>{a) = ( ^ , " ^ ( 0 ) ^ ) for all a e A, and such that the subspace 7T{A)^ 

IS dense in H. The pair ( T T , ^ ) is unique up to unitary equivalence. 

Proof: The idea is to construct a Hilbert space from the vector space underlying 

A and hence define the required representation. 

The state 0 induces a sesquilinear Hermitian form {-, •) : A x A ^ Chy 

(a, 6) ^ {a, b) := 0(a*6), V(a, b) e A x A. 

I f (•, •) were further positive definite, then i t would be an inner product of A. How­

ever, the set N := {a e A : {a, a) = 0} is not the nuh set. Nonetheless, the Cauchy-

Schwarz inequality |(a, 5)P < (a, a) (6, 6), Va,6 £ A, together w i t h the hnearity of 

the Hermitian form implies that N is a vector subspace of A. Thus we obtain the 

quotient space A/N on which the restriction of (•, •) is positive definite and hence an 

inner product. Specifically, the inner product (•, •)A/N '• A/A^ x A/N C is defined 

by 

(a + A , 6 A) .4 /A, : = (a, b), for a + A , 6 + A G A / N . 

We thus obtain a Hilbert space H by the completion of the vector space A/N under 

the inner product (•, •).4/Af-

To obtain a representation of A on H, we observe that A/N is a left ideal in 

A by using the inequality {ab,ab) < \\a\\'^{b,b), for a, 6 G A. Thus, for any a G A 

we may define an operator 7r(a) on A/N by 7r(a)(6 -t- A ) : = ab - I - A . 7r(a) extends 

by continuity to a bounded operator on Ti. In this way, we obtain a representation 

n : A - ^ Bin). 

Furthermore, we define the unit vector ^ : = lyi - I - A G 7^, then 

(C, ^(a)0-4/yv = {lA + N,a + N)A/.W = (1.4, a) = 0(a), Va G A 

as required. This completes the existence part of the proof. 
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To show the uniqueness, suppose that vr' : .4 —> B{H') is another representation 
w i t h the unit vector ^ ' such that (i^', 7r'(a)^')^/jV' = 0 (a ) . Then the map n{a)^ i -^ 
7r '(a)^' defines an isometry f rom the dense subspace TT{A)^ C H to H'. Indeed, 

hiaMn = {^,7l{aa)0A/.^' = <p{a*a) = {^\7T'{a*o)0.A/N' = \\7r'{a)^'fn,., Va G A. 

Since 7r'{A)^' is dense in H'. then the isometry extends to a unitary isomorphism 

U : n ^ n' such that f /7r(a) t /* = 7r'(a) and = C- That is U defines the 

unitary equivalence between representations {TT,E,) and {TT',^') and hence uniqueness 

is shown. • 

The following Gelfand-Naimark representation theorem clarifies the equivalence 

between the definitions of an abstract C*-algebra and a concrete C*-algebra. 

T h e o r e m 2.4.2 Every abstract C*-algebra A is isom,etrically ^-isomorphic to a 

C*-subalgebra o / B ( ? i ) . for som,e Hilbert space H. 

Proof: I f A is a nonunital C*-algebra, then its unitization A'^ is a C*-algebra. Thus, 

we restrict to the case when A is a unital C'-algebra. For each a G ^ , let (?!)Q be a state 

such that 0a(a*a) = ||a*a||, whose existence can be shown by Hahn-Banach theorem. 

Let TTa : A ^ B{l-Ca) be the representation f rom the GNS construction. We may 

define the representation n : A —> H by direct sum representation TT : = ®aeA''^a on 

the direct sum of Hilbert spaces H : = © a e / i ' ^ o -

Since for any b e A ||7r(6*6)|| = sup(jg4 ||7rQ(fe*6)||. Then, 

Mb)f = \\7vib*b)\\ = sup > WMrni - Mb*b) = \\b*b\\ = \ \ b f . 
ae.4 

The other direction ||7r(6)|p < is by Proposition 2.3.1. Thus n is an isometric 

*-homomorphism from A to B{Ti). • 

2.5 Holomorphic functional calculus and pre-C*-

algebras 

Since commutative C*-algebras are equivalent to locally compact Hausdorff topo­

logical spaces, noncommutative C*-algebras are considered as noncommutative topo-
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logical spaces. This is the foundation of noncommutative geometry. To study dif-
ferentiabiUty in noncommutative geometry, C*-algebras are too large. Thus one 
may consider differentiable dense subalgebras instead. On the other hand, such 
subalgebras are required to preserve certain topological properties of the original 
C*-algebras, for example K-theories. See Section 3.8 of [6]. The pre-C*-algebras 
are such candidates. We wi l l define the holomorphic functional calculus of Banach 
algebras [27] and then define pre-C*-algebras and some of their properties. 

Assume that ( ^ , || • ||) is a Banach space and that f / C C is an open subset. A 

mapping f : U ^ ^ is said to be holomorphic on U when i t is diflFerentiable at each 

point 2o of U. That is, the hmit 

\\fizo + Az)-f{zo)\\ 

exists in the norm topology of A. In this case, we denote the l imi t by f'{zo) E A. 

For / holomorphic and p : / I —> C a bounded linear functional, the composition 

p o f : U —> C is a holomorphic function in the usual sense. 

One defines the line integral of A-valued functions over complex plane as follows: 

let / : C —> A be a continuous function and C : [a, 6] —> C that maps t to z{t) be a 

smooth curve in the complex plane. That is, z{t) is a differentiable complex-valued 

function on [a, b]. We may define the fine integral 

j j { z ) d z = jj{z{t))z'{t)dt 

as the norm l imi t of Riemann sums of the form Yl'j=i fi^i^'j)) ~ ^i^j-i)] where 

a = to < t-[ < • • • < tn = b, tj-i < t'j < t j , for j = 0 , . . . , n . The hmit is taken as 

m a x { | t j - : J = 1 , . . . , n } tends to 0. 

Suppose that f : U ^ A is holomorphic and p : A ^ C is -A bounded linear 

functional, one can show that p [J^ f{z)dz) = J^. p{f{z))dz. This identity together 

w i t h the usual Cauchy theorem imphes that J^, f{z)dz = 0, where C is a contour in 

the complex plane. This can be seen as a generalised Cauchy theorem for ^-valued 

holomorphic functions. 

We are ready to introduce the holomorphic functional calculus. 
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L e m m a 2.5.1 Let A he a unital Banach algebra, then 

1 
a" = — — I z'^ia- zl^)-^dz. (2.16) 

27r?, Jc 

where n is a non-negative integer, a G A and C is a smooth closed curve whose 

interior contains ( 7 / i ( a ) . 

Proof: Using the fact that 2 (a - 21 .4 ) "^ is holomorphic on the open subset 

U := C \a^(a) , the map / : 2 —»• z"{a — 2 I . 4 ) " ' is also holomorphic on U. Let C be 

a large circle centered at the origin and of radius greater than | |a | | (> r^ (a ) ) so that 

/ is holomorphic on C". By the generalised Cauchy theorem, the following integrals 

agree 

- 2 S I = - S i / , / " ' " - ^ ^ ^ ' " " - ' ^ 

Therefore, i t suffices to show (2.16) w i t h C replaced by C'. 

Since any 2 G C" satisfies that | 2 | > ||a||, then the Neumann series of ( a - 2 l ^ ) ~ ' 

is defined. I.e., (a - 2 U ) - i = - ^ ^ ^ 0 0 ^ 2 " ' ' - ' , 2 G C . Thus 

- - ^ / 2"(a - zuy'dz = - L y / ."a'z-'-'dz = a". 

since z'-dz = 0 for any integer I ^ —\ and j^, z~^dz = 27rz. This completes the 

proof. • 

Lemma 2.16 implies immediately that 

f{o) = l^f{z){a - zlA)-'dz (2.17) 

for each / in the polynomial ring of complex coefficients C[2] over a smooth curve 

C whose interior contains a 4 ( a ) . The integral (2.17) is called the Dunford integral. 

The map / ^ / ( a ) defines an algebra homomorphism f rom C[2] —> A{n), where 

A{a) denotes the closed subalgebra of A generated by a. In the case when / I is a 

Banach algebra, one can at best replace the algebra € [ 2 ] by the algebra of holo­

morphic functions over C\cr.4(a). Specifically, let / / (a ) be the set of holomorphic 

functions in some open .set in C containing a^(a). Applying definitions, one can 

prove that the mapping f ^ f (o) of the Dunford integral defines an algebra homo­

morphism H{a) —t A{a). This is the holomorphic functional calculus. When the 
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Banach algebra A is nonunital, the holomorphic functional calculus is defined for its 
unitization A'^ and restricted on holomorphic functions vanishing at 0. 

A subalgebra B of a unital Banach algebra A is stable under the holomorphic 

functional calculus oi A if (i) B is complete under some locally convex topology finer 

than the topology of A; (ii) f{b) defined by the holomorphic functional calculus of A 

is an element of B for all b E B. When A is nonunital, we require / to vanish at 0. B 

is stable under the holomorphic functional calculus of A i f and only if B^ = A^ HB. 

Definit ion 2.5.2 A pre-C*-algebra is a subalgebra of a C*-algebra that is stable 

under the holomorphic functional calculus. 

Very often a pre-C*-algebra is Frechet. The importance of these conditions lies in 

the following property (Theorem 3.44 [6]): 

T h e o r e m 2.5.3 If A is Frechet pre-C*-algebra with C*-completion A, the inclusion 

I : A induces an isomorphism. Ko{i) : Ko{A) —> Ko{A). 

To study K-theories of algebras, there is no loss in replacing a C*-algebra by a dense 

subalgebra which is both a pre-C*-algebra and Frechet. Such subalgebra is a smooth 

algebra [10]: 

Defini t ion 2.5.4 A ^-algebra A is smooth if it is Frechet and ^-isomorphic to a 

proper dense subalgebra i{A) of a C*-algebra A which is stable under the holomorphic 

functional calculus. 

E x a m p l e 2.5.1 Let X be a locally compact Hausdorff topological space, Lemma 

2.2.3 implies that C^{X) is Frechet under the topology of uniform convergence of 

all derivatives. The zero-th seminorm in the family of seminorms is the supremum 

norm || • ||oo which is a C*-norm. The C*-completion of C^{X) under || • ||oo is 

the C*-algebra Cb{X) of continuous complex valued functions on X. C^{X) is a 

pre-C*-algebra. Indeed, any / G C^{X) is invertible in Cb{X) if and only if i t does 

not vanish on X, and then its inverse 1 / / is also a smooth function in C ^ ( A ' ) . This 

imphes that C^{X) is closed under the holomorphic calculus of Cb{X). Therefore 

C^{X) is a smooth algebra. 
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Using Lemma 2.2.4 and a similar argument to the above, the algebra, C^(A^) 
is also a smooth algebra whose C*-completion is the algebra Co{X) of continuous 
functions on X vanishing at infinity. 



Chapter 3 

Noncommutative integration 

We give some background on noncommutative integration in noncommutative ge­

ometry. For details on this topic we refer to [5] [6] [29 . 

3.1 Compact operators 

We consider the space of compact operators IC{7i) on a separable and infinite di­

mensional Hilbert space H, whose orthonormal basis is countably infinite. Recall 

that an operator is compact i f i t is a norm l imi t of a family of finite-rank operators, 

whose ranges are finite dimensional. 

Let T be a positive compact operator on 7i, then the spectrum as(n) {T) of T con­

sists of countably many non-negative eigenvalues of finite mult ipl ic i ty {SQ, S i , . . . } . 

We may choose an orthonormal basis {uk} of Ti by assembling eigenvectors so that 

T has the expansion 

L e m m a 3.1.1 

T = J2s,\u,}{u,\., (3.1) 
A:>0 

where the ketbra notation means | r ) (s | : v >—>• r{s,v)-n.yr, s.v G H. 

Proof: To see the convergence of the series, we may rearrange the eigenvalues in a 

decreasing sequence {SQ. S i , . . . } such that Sk ^ 0 as A; ̂  oo. Thus for any £ > 0, 

there exists an integer A'' := N{£) such that SQ, . . . , S A - - I are the only eigenvalues 
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greater than e. In this way. 

T - ^Sk\uk)i(u.k\ 
k=0 

<£'^\\\uk){uk\\\ = e. 
k>N 

Sk\uk){uk\ 
k>N 

Hence the series converges to T. • 

I f T G /C(H) is any compact operator, then |T | : = [T*Ty^- is a compact positive 

operator, admit t ing an expansion as (3.1) |T | = ^ ^ . > o w h e r e Uk's are 

eigenvectors of |T | and form an orthonormal basis of the closure of the graph T{'H). 

The polar decomposition T = U\T\ is defined by U{\T\Q := for ^ 6 

and UT) := 0 for 77 G Ker{T). This imphes that U is a partial isometry uniquely 

determined by T. Now let Vk •= Uuk, then 

T = U\T\ = = J ] * f c k ) K - | . (3.2) 
fc>0 fc>0 

This is the canonical expansion of the compact operator T and eigenvalues s '̂s of 

T\ are called singular values of T. Singular values are fixed under unitary transfor­

mation. That is, Sk{UiTU2) = S A : ( ^ ) for any unitary operators U\.U2 in B{'H). 

3.2 Ideals of compact operators 

A n operator T e B{7i) is an infinitesimal if for each e > 0, there exists a finite 

dimensional vector subspace E of H, such that Ur i^ j iH < e. I t turns out that the 

set of infinitesimals is the set of compact operators. 

Several subclasses of infinitesimals may be determined by imposing suitable con­

ditions on the singular values. 

Definit ion 3.2.1 For 1 < p < 00, we may define the Schatten-p-class ^^{H) m 

JCiTi.) by requiring that T 6 0'{H) if and only ifYlk>0'^l ^ "^here [sk] are 

singular values ofT. 

For each 1 < p < 00, the Schatten-p-class C^{7i) is an ideal of K{'H). The function 

II • lip : D^iU) ^ R given by ||T||p : = (Efc>o5fc)'^'' defines a norm on £^{71). One 

can further show that D'{'H) is a Banach space. I t is also true that | |ATB| |p = 

||>1|| | |T | |p | |5 | | for any T € D^iH) and A., B e B{n), which makes || • ||p a symmetric 

norm on CP{H). Each Banach space CP{7i) is thus a symmetrically normed ideal. [6 
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The first Schatten class C^{7i) is called the trace class, for the reason that the 
trace of T exists i f and only if T G C^{H). The second Schatten class C-{H) is called 
the Hilbert-Schmidt class. 

For any infinitesimal T, we may rearrange its singular values as a decreasing 

non-negative sequence { S Q , S ] , . . . } . We say that T is an infinitesimal of order a i f 

the sequence {sv,,} decays like nr°' as n —> oo. By definition, elements in the trace 

class C^[l-L) are infinitesimals of order 0. Such a class turns out to be too small, i t is 

the class of infinitesimals of order 1 which is relavent in noncommutative integration. 

We may consider the partial sums of the sequence of singular values associated to 

T, <7n{T) := SQ-\ \- Sn- Notc that if T is of order one, then Sn —> C ( l / n ) and the 

series a „ ( r ) grows logarithmically, i.e. fT„,(T) C'(log(n)). Then the supremum 

sup„ exists. Note that although the sequence is bounded, i t need not to 

be convergent. 

We can define a norm on K,{H) by 

l i r ikoo : = s u p - ^ 
n>e log[n) 

whose domain is exactly the space of infinitesimals of order one, denoted as C'^^'°°\H). 

That is to say T e L^^'°^^n) i f and only i f ||r| |i,oo < oo. can be shown 

as an ideal of }C{7i) and is called the Dixmier trace ideal. 

For any 1 < p < CXD , we consider infinitesimals of order 1/p. The (p, oo)-norm 

can be defined similarly as 

|r||p,oo : = sup ^" 
n>e n 

for T e KL[H) and the generalised Schatten-p-class £^^ °°'(7Y) can be defined by 

requiring that T G C^'P'°°\7i) i f and only i f ||T||p^oo < oo. We have the useful property 

of generalised Schatten classes, 

L e m m a 3.2.2 If 1 < p < oc and T e C^'P-°°\n) is positive, then G C^^^°°\n). 

The following lemma, relates Schatten classes and generalised Schatten classes. 

L e m m a 3.2.3 For 1 < p < s, £ P ( H ) C C^P-°°\n) C C'CH). 
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3.3 Dixmier traces and measurability 

To obtain a trace functional whose domain is the Dixmier trace ideal we 

consider the partial sum (7„(T) of T in the Dixmier trace ideal. Each CTJ, is a norm 

on C''^-°°\H). I t can be characterised by 

( 7 „ ( r ) = inf{ | | i? . | | i + n | |5 | | -.KSe /C(H), R + S = T). 

One can then extend the sequence of norms {a„ } parametrised by n e N of the 

Dixmier trace ideal to a family of norms {ox\ parametrised by A G [0, CXD) by defining 

ax{T) •= mi{\\Rh + A| |5 | | . K S e /C(H), R + S = T). 

A n important property of these norms is that 

ox{A + B ) < ax{A) + ax{B) < GoxiA + B), AG [0, oo), 

for any positive operators A, B ^ £ ^ ' ^ ( 7 i ) . This imphes that for large A, ox{A + B) 

almost equals a2\[A + B) and hence ax[A + B) almost equals (7x{A) + CF\{B). I.e., 

ax/\ogX is almost additive and defines a trace functional on the cone of positive 

operators in 0 Since this is not exactly the case, we need to obtain a trace 

functional by taking averaging of the norm T OX{T)/\og\ on A £ [3, oo) as 

follows. The Cesa.ro mean of the function A h-> aA(T) / l ogA is defined by 

logAJg logu u 

Connes and Moscovici [30] show the "asymptotic addi t ivi ty" property of r^, 

rx[A + B) = Tx{A) + Tx{B) + O (^^^^Y A - oo. 

\ log A / 

Note that the function A T\{A) is in the C* algebra Cb([3,oo]) and also note 

that (loglog A ) / l o g A is in the C*-subalgebra Co([3,cx))). One defines the quotient 

C*-algebra by 

B o o : = a ( [ 3 , o o ] ) / C o ( [ 3 , o o ) ) 

and let r{A) e Boc be the equivalence class defined by A i-^- TX[A) in Cb{[^, oo)). I n 

this way r is positive homogeneous and additive, i.e., 

T[CA) = CT{A), C > 0 
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T{A + B) = T{A) + T{B), \fA,B G C''^{n). 

One can further show that T{AB) = T{BA) for all A, B e C^ °°{n). 

To define a trace formula w i t h domain £^'°°(?i) , we need to further compose the 

map T : C^'°°{7i) —> B^o w i th a state of the C*-algebra u : B^c C. 

Definit ion 3.3.1 To each state u of the commutative C*-algebra B^c.. there corre­

sponds a Dixmier trace 

T r ^ T ) •.= UJ{T{T))., 

whose domain is C'-^-°°\H). 

Definit ion 3.3.2 An operator T e £^^'°°'(7i) is measurable if the function A 

Tx{T) converges as \ oo. In and only in that case, the Dixmier traces T r ^ ( T ) = 

hm>,_,oo r;̂  (T) is independent of uj. We denote the Dixmier trace of a measurable 

operator T by 

Tr+{T) := Tr,^{T)., Vw. 

I f the sequence { ^ ^ ^ } n converges, then any Dixmier trace takes the value of 

its l imi t . This imphes that T is measurable. Furthermore, when T is positive the 

existence of the l imi t of the sequence is equivalent to the existence of the l imi t of 

hm (s - l)C(s) 

where C(s) : = r race( |T |*) s is a complex number such that it'e(s) > 1 (see page 306 

of [5]). This can be seen as a measurability criterion in the unital case and we w i l l 

get to its nonunital version in Section 8.3. 



Chapter 4 

C*-modules 

Modules of algebras are basic objects in K-theory. We wi l l first give the definitions 

of modules over unital rings in general and then give the notion of C*-modules 

over unital C*-algebras, and finally give the notion of finitely generated projective 

modules, which is an equivalent description of spaces of sections of vector bundles. 

We refer for the details to references [6] [31 . 

4.1 Modules over unital rings 

We start wi th some terminology on modules over uni ta l rings. Let A be a unital 

ring w i t h unit 1^, a right A-module is an additive abehan group E together w i th a 

(scalar) multiphcation E x A ^ E which maps (s, a) sa satisfying 

{s + t) a = s a + t a, 

s {a -\- b) = sa + sb. 

s (ab) = {s a) b, 

sl.4 = s, Va, 6 e A.,s.,t e E. 

An right A-hnea.r map f : E F between two right y4-modules E and F 

is a homomorphism of the additive groups that satisfies / ( s a ) = f[s)a for any 

a G A and s G E. We can similarly define left /l-modules and left v4-linear maps 

of them. A n A-isom.orphism. between two right (left) /I-modules is a right (left) 

.4-homomorphism wi th an inverse right (left) A-homomorphism. An .4-linear map 
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f rom a right (left) /1-module E to itself is called an endomorphism of E. 

Let E and F be both right (left) A-modules. The set of all right (left) A-

linear maps f rom £^ to F is denoted as HomA{E, F) and the set of all right (left) 

endomorphisms of E is denoted as EndA{E). 

Let A he a uni tal r ing and E be a right A-module. The set of elements S := 

{ s j , . . . , Sm} C E is a. set of generators of E i f any element m E E can is an A-linear 

combination of elements of S. That is, m = si Q I + • • • svn for ai,..., a„, G A. We 

say that E is finitely generated i f i t has a finite set of generators. A set of generators 

S of M is an A-basis i f i t is A-linearly independent. That is, Si a j H 1- s„, = 0 

for 0 , 1 , . . . , in ^ implies that Oi = • • • = = 0 . A right A-module E is free i f 

i t has an ^-basis. A free module is finitely generated i f and only i f i t has a finite 

A-basis. Similar definitions can be obtained for left A-modules. 

E x a m p l e 4.1.1 Suppose that A is a nontrivial unital r ing and ???, is a positive 

integer, then the ?n-fold direct sum A ' " := A ® • • • ® A is the standard free right 

A-module w i t h an A-basis { e i , . . . , 6^} where Cj = ( 0 , . . . , 0 , 1 ^ , 0 , . . . , 0)* w i t h the 

j - t h component the unit of A for j = 1 , . . . , m. (•) ' means taking transpose of a row 

vector to a column vector. The right A-module action on any s = 6̂ 0,; G A ' " is 

given by 

( a i , . . . , a „ , ) ' 6 = { a i b , . . . , a m b ) \ V6 G A. 

This is called the standard one because any finitely generated free right A-module 

F is A-isomorphic to A™ for some integer m by matching basis. 

E x a m p l e 4.1.2 We denote ' " A : = A © • • • © A as the free left A-module w i t h A-

basis { / i , • . . , fm} where f j = ( 0 , . . . , 0,1.4, 0 , . . . , 0) w i t h the j - t h component the 

unit of A for j = 1 , . . . , m. The left A-module action on any 5 = a i f i G " ' A is 

given by 

6(0 ,1 , . . . ,a,„,) = ( 6 a i , . . . , 6 a , „ ) , V6 G A. 

Let A and B be two arbitrary unital rings. I f E is both a right A-module and a 

left B-module, such that b{sa) = (6 s) a for any o G A, 6 G 5 and s G E. then E is 

called a 5-A-bimodule. When A = B , F is called an A-bimodule. 
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For A a unital ring, we may define the tensor product E®AF of a right ^-module 
E and a left ^-module F as the abelian group generated by simple tensors s ® /. 
with s e E and t e F, subjecting to the relations 

Si(g)t + S2®t = {si+ S2) ® t, Vs'i ,S2e E , t e F, 

S ® t i + S ® t 2 = S ® { t i + t2).. V5 e E , ti.,t2^ F., 

sa®t = s®at, "ia e A. s e E, t e F. 

In particular, i f both E and F are .4-bimodules, then E(^A F is also an y4-bimodule. 

4.2 C*-modules 

Let A be a unital C*-algebra, a right pre-C* -(A-)module is a right A-module E 

equipped w i t h an A-valued inner product {•,•): E x E ^ A satisfying the following 

conditions 

{s,ti + is) = {s,ti) + (5,^2), V s , t i , i 2 e E, 

{s,ta.) = {s,t)a, ^s.,t e E, a e A, 

( r , s ) = (s ,r)*, yr.,seE, 

( r , r ) > 0 ; (r, r ) = 0 ^ r = 0, W E E. 

The last condition is the property of positive definitness. Positivity refers to self-

adjoint elements in the C*-a]gebra. The self-adjointness of (r, r ) follows f rom the 

th i rd condition. 

The C*-norm || • || of A together w i t h the /l-valued inner product induce a norm 

II • 11^ on the right pre-C*-module E as 

\\S\\E:=\\{S,S)\\'/\, V s e F . (4.1) 

To see that (4.1) is a norm, we first show the general Cauchy-Schwarz inequality. 

L e m m a 4.2.1 If E is a right pre-C*-A-module. then | | ( r , . s ) | | < H r ' H ^ | | . s | | £ ; , for 

r, s e E. 
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Proof: By the fact that a*ca < ||c||a*a for any positive c E A and a E A, we have 
a*{r,r)a < ||r|||.a*a for a.ny r € E. Thus 

0 < (r a - .s, r a — s) 

= a*{r, r)a, + (s, s) — a'{r, s) — {s, r)a 

< a*||7-|||a-I- \\s\\\ — a'{r,s) - {s,r)a. 

By taking a = ||7i|£~(r, s), and using the fact that 0 < a < 6 = ^ ||a|| < ||6|| for 

a.b e A by (2.14), we obtain the recjuired inequality. • 

The triangle inequality for \\ • \\E follows immediately. Since 

k + s l l l = ||(r, r ) - h (s, s ) ( ? - , s)-h (.s,r-)|| 

< IK^N 0 1 1 + 1 1 ( 5 , s)|| + | | ( r , s ) | | + | | ( s , r ) | | 

< l l ' ' - | l l + l | 5 | | | + |k| |E| |6i |E + | | s | | £ | | r | U 

= {\\r\\E+\\s\\E?., r,seE^ 

then ||r + s||£; < ||r| |£; -f- ||s||£; and || • \\E is a norm. 

Furthermore, the Banach module condition holds, i.e. H'raHe < ||r||E||a||, for 

r e E,a e A. One can complete E in this norm and the resulting Banach space is 

called a right C*-A-module, or simply a C*-module i f the underlying C*-algebra A 

is understood. One can similarly define a left C*-module. 

E x a m p l e 4.2.1 Any C*-algebra [A, || • ||) is a right C*-module over itself. We may 

define the .4-valued inner product as (a, b) := a*b for a,b E A and the induced norm 

is the same as the C*-norm. Indeed, ||a||^ = | |(a,a)| | = ||a*a|| = ||a||^, where the 

C*-identity is applied, and hence ||a||.4 = ||a| . 

E x a m p l e 4.2.2 We consider the right y^-module as in Example 4.1.1 and define 

a standard A-valued inner product (•, •).4.-. : A'" x A'" Ahy 

{s.t)A"' •= s\ti H s*,i,„, 

where s = ( . s j , . . . , s,,,)'', t = {ti,. .., i„,)'- 6 A '" . And the induced norm is thus 

1/2 

II5-II.4-. : = | | ( . s , . s ) . 4" . | | ' / ' = Y^slsk , V.S-6A". 
k=i 

The completion of A"' by the above norm gives us a right C*-module. 
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Actually, 

L e m m a 4.2.2 A"^ is complete with respect to the norm || • ||.4m and hence has a 

right C* -module structure. 

Proof: We define the coefficient map Qk • A^ —> A by 

Qk{ai,. . . .,am..y flfc, / c = l , . . . , m . 

First we see that Qk is norm decreasing. The norm on A" ' gives | | ( a i , . . . , a,„)' | |^m = 

II a/*a;|| while the norm square of its image under Qk is WakW^ = ||a^.a^.||. Since 

a\ai H + a^_jafc_i + al_^_iak+i H h 0^0,71 > 0 

for any fixed k, then X^J^^ a*a( > alak- As implied by (2.14), we can take norm 

and obtain |EJ^ia(*ai | | > ||aj^afc||, for each k = l,...,m. This shows that Qk is 

norm-decreasing. 

In this way, any Cauchy sequence {s'^^^ : = ( a [ ^ ' , . . . , am')'}/? in A ' " defines m 

Cauchy sequences {Qfc(s^^')}/3 where k = I , . . . ,m'm A. Since A is complete the hmit 

ak •= hma_cx)<3A-.(5^''') is an element of A for each k. Furthermore, ( a ] , . . . ,a,„,) ' G 

.4'" is the l imi t of the Cauchy sequence { s ' ^ ' } . Thus A"^ is complete. • 

Before the next example of a C*-module, we give the following lemmas f rom [6 . 

L e m m a 4.2.3 If A is a C*-algebra, then so is the matrix algebra MmiA) for any 

positive integer m. 

Proof: I f A is a C*-algebra, then i t is isometrically *-isomorphic to a C*-subalgebra 

of operators on a Hilbert space Ti. I n other words, there is a fa i th fu l *-representation 

TT : A ^ B{n). We may induce a representation T T * " ' ^ : Mm{A) Z3(C'" ® H) by 

n 
(7r('")(a)7/), : = ^ 7 r ( a , , ) 7 7 „ i = h . . . .n, 

where a = (a^) G Mrn{A) and rj = ( 7 7 1 , . . . , 77m) G C"' (g) 7 i . This representation 

further realises MmiA) as a C*-algebra. • 

L e m m a 4.2.4 An element a = (a,;j) G M,„,(A) as a C*-algebra in Lemma ^.2.3 

is positive if and only if it is a sum of matrices of the form (a^- = a*aj) with 

ai, . .. ,a„ , G A. 
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Proof: For a matr ix a of the form {aij = a*aj) w i th C i , . . . , a„ 6 A, we may define 
a matr ix b = (6^) G M,n{A) such that b^j := aj for j = l , . . . , m and bij : = 0 
for i = 2,...,m, then a*aj is the ( z , j ) - t h entry of the matrix b*b, i.e., a = b*b, 
which is positive in the C*-algebra Mm{A). Conversely, if a is a positive element in 
Mm{A), then there exists a matrix c such that a = c'c, i.e., a^j = Yl^=i ^li'^i^j- That 
is, a = 6' + • • • + 6"' where the matr ix 6( '̂' = {b\f) is defined by fej*"' := cl^Ckj for 
k = 1 , . . . , m . This completes the proof. • 

Another useful fact is (Proposition 1.20 [6]) 

L e m m a 4.2.5 An element a = (uij) in the C*-algebra Mr„,{A) is positive if and 

only if X2r j= i '^i'^ij'^j •̂̂  positive in A for all Ci, ...€„, E A. 

E x a m p l e 4.2.3 Consider the left ^-module "'.4 defined in Example 4.1.2 and notice 

that i t is also a right Af,„(.4)-module. We define an A4rn{A)-valued inner product 

(•,•) : ' " A X " M ^ Mrn{A) by {s,t) •= [s'tj] G M„,{A), where s = ( s j , . . . , s^), i = 

( i i , . . . , t„i) G '"-4. To see that i t is positive definite, i t suffices to check that 

is positive in A by Lemma 4.2.5. Therefore " / l is a right C*-Mm(/l)-module. 

4.3 Finitely generated projective modules 

Assuming that A is a unital C*-algebra, an ^-module E is called projective when it 

is a direct summand of some free A-module. E is a finitely generated projective right 

(left) /l-module if and only i f E is isomorphic as modules to a direct summand in 

the right (left) A-module A '" ("' A) for some integer rn. Furthermore, every finitely 

generated projective A-module can be endowed wi th the structure of a C"-module 

over A. 

We consider the finitely generated projective right A-module pA'" for some pro­

jection p = [pij) G Mrn{A). That is, p- = p = p*. A basis of pA'" can be generated 

by the standard basis { c ] , . . . ,e„,} of A '" in Example 4.1.1 as follows. Any element 

E, G pA"' is wri t ten as ^ = pt for some t G A '" . In this basis, we may write an 



4.3. F in i t e ly generated project ive modules 36 

element in A'" as e\^\ + •••e,„^,n, for G A and t ranges f rom 1 to rn. Thus, 
C = P{e\ 6 + • • • em^m) = f i t i + -- - + frntm: whcrc / , : = pc, = Y^jPiif^j: ^h lch is 
the i - th column {p^, • • • ,Pmif' of the matr ix p. { / i , . . . , / , „} is a basis of the pro­
jective module pA'" , under which any element ^ = fi^i G pA"' has coordinates 
( ^ 1 , . . . , U ) satisfying = J2j Pij^i-

The right A-action on ^ G pA ' " is simply 

{^i,---,UYb={^ib,...,Ub)\ V i G A . 

We may define the standard A-valued inner product on the right projective 

module pA'" , ( - , • ) : pA '" x pA '" -> A by 

( C , ^ ) : = E ^ ^ * ^ " (4.2) 
i 

where ^ = ( 6 , . . . , . ^ m ) ' w i th E,i = Y^jPijii and similarly ?? = {v\ •, • • •, Vm)'' wi th 

Vr = JljPijVj-

To see that the inner product (4.2) is positive definite, we note that for any 

C G pA™, 
m 

Implied by Lemma 4.2.5, we can conclude that ( ^ , 0 is positive in A i f p = (pij) 

is positive in Mm,(A). Now since p is a projection so that p^ = p = p* and the 

(z, j )- the entry of p is i n the form of pij = J2Zi=iPikPkj = Y^u.=\PliPk]- I n other 

words, py = E f c L i P i j ' . P!f •= PliPkj- Thus, p = (p^j) = EI'LibSj^) is positive by 

Lemma 4.2.4. Indeed, since p is linear combination of matrices (pj^^) whose (z, j ) - t h 

component is in the form of pliPkj for p ^ i , . . . .pkm G A. Thus we conclude that 

(^,'^).4 > 0 in A for all ^ G pA™. 

We end this section w i t h an analogue of Lemma 4.2.2, 

L e m m a 4.3.1 The finitely generated projective right A-module pA'" is complete 

and hence a C*-module. 

Proof: Note that each element s G pA"' can be wri t ten as = YlT=i f A = 

E Z U i PkiGk-iz = E Z L i Pki^iGk- We define the coefficient map Qk • pA'" A by 

QkiO = Qk Yl Pf^^^i^k •= ^Pki^i: = 1 , . . . , m. 
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We now show that is norm decreasing. The norm square of QkiO is 

i=l 
Y.'^P^k^O*{P^J^J) A— 1. m. 

The norm square of ^ is given by 

ll^ll 

m 

k.i.,j=i 

\k=i 

Lemma 4.2.4 implies that for each fixed k, the sum ^J'j^iiPki^i)*{Pkjij) is positive 

in A, thus 

?n m 

i j = l i.j,A:=l 

By (2.14), we can take norm and obtain 

"^iPk.^rYiPkj^j) < 
i..j.k=l 

k = l . . m. 

In other words, ||(5fc(C)|| < ||^||p/i"' for any ^ E pA'". This shows that Qk is norm 

decreasing. 

Now any Cauchy sequence {^^'^'i = Z]u-= i ^'fcj^l^'^fc}/^ P"^"' defines m Cauchy 

sequences { X ^ i ^ i Pki^l^^}i3 where A; = 1 , . . . . m . A is complete so that the l imi t 

2=1 i=l ^ ^ i=l 

satisfies that 6,i E A for each A:. The element 

, 2 = 1 2=1 / 

in pA"" is the hmit of the Cauchy sequence Thus pA'^ is complete and hence 

is endowed wi th a C*-module structure. • 

The projective module discussed above is for a uni tal C*-algebra A. In general 

for a unital *-algebra A, we can define the projective right A-module by pA"'^ for 

some p E Mm{A) satisfying p- = p = p* for some positive integer m. The left 

modules can also be defined directly. We wi l l further discuss the notion of smooth 

module [10] in Chapter 7. 



Chapter 5 

Spin geometry 

We wi l l give a summary of the relevant facts in spin geometry necessary for formu­

lating noncommutative geometry. We w i l l give the definition of Clifford algebras, 

Cl i f ford actions and spinor bundles over Riemannian spin manifolds. References on 

spin geometry are [32] [33] [34 . 

5.1 Clifford algebras 

Let V be a n-dimensional vector space over the commutative field k of characteristic 

7̂  2 (e.g. k = R OY k = C) w i th a nondegenerate quadratic form q. We let 

T{V) := ^^T^{V), where T ^ ( V ) := V ® - • •®\ / ( r cop ie s of V, be the tensor algebra 

of V and Xg be the ideal in the tensor algebra generated by all the elements of the 

form v®v-\-q{v)l for v G V. The Clifford algebra is defined as the quotient algebra 

Cl{V.,q) : = T ( l / ) / J , . 

The equivalence class vi ® -yo • • • ® Vp -\- Tq{V) is denoted as • V2 - • • Vp G Cl{V, q). 

The induced multiplication on the Clifford algebra is denoted by •, called the Clifford 

multiplication. 

Equivalently, the Chfford algebra (C/(V, <?),-) is defined to be the algebra gen­

erated by elements of the vector space V C Cl{V,q) and an identity element 1 

subject to the relation v - v = —q{v)l, \/v G V. This is equivalent to v •w-\-w - v = 

—2q{v, w)\. \/v, w G V, where the symmetric bilinear form 2q{v, w) := q{v -h lu) — 

q{v) — q{w) is the polarization of q. 
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There is a natural filtration of the tensor algebra T{V) as J^{V) C ^^(V) C 

• • • C P-{V) C---CT{V) satisfying P{V) ® P{V) C P+'{V), where 

s<r 

For each r G N , we define T''{V) : = Tiq{J^{V)) where iiq denotes the restriction of 

the quotient map of T{V) to Cl{V, q) by Tq{V). Then this gives a natural filtration 

of the Cl i f ford algebra, J^[V) C T \ V ) C • • • C r { V ) C • • • C Cl{V.,q) satisfying 

J^{V)-T'[V) C J^+'{V). Thus the Chfford mult ipl icat ion desends to a map ^ ' " (V) x 

gs{y) ^ gr+s ^^-^^^^ gr^y^^ ._ j r - ( V ) / j r r - i ( ^ ^ for r G N . g*{V) := ®r>oQ'{V) is 

the associated graded algebra. This algebra is isomorphic to the exterior algebra as 

a graded algebra. 

Suppose that {V.,q) are as before. We may write Cl{V,q) as Cl{V) i f q can be 

deduced f rom the content. The following is the defining property of the Cl i f ford 

algebra Cl{V, q). I f cv : 1/ —»• A is a hnear map into an associative /c-algebra (A, - . 4 ) 

wi th unit 1^ such that a{v) -,4 a{v) = —q{v)lA; G V, then a extends uniquely 

to a /c-algebra homomorphism a : Cl{V) A such that a = a o i where i is the 

inclusion of V into Cl{V). Furthermore, Cl{V) is the unique associative A>algebra 

wi th this property. 

By the defining property of a Cl i f ford algebra, the linear map a : V —>• V such 

that a{v) = —V can be uniquely extended to an automorphism a : Cl{V,q) —*• 

Cl{V, q), called the canonical automorphism of the Clifford algebra satisfying = 1. 

The Clifford algebra is thus split into even part and odd part defined by the -1-1 and 

— 1-eigenspaces of a respectively 

Cl{V) = Cl{Vf®Cl{Vy. (5.1) 

There are several important subgroups contained in the Clifford algebra Cl{V,q). 

The multiplicative group C/^(V, g) consists of invertible elements in the Cl i f ford 

algebra Cl{V,q). The Pm group is the subgroup of Cl^{V,q) generated by unit 

vectors in V . That is, 

Pvn{V\ q) := {u G ( K (?) : u = • • • u,- w i th u.j G V., q{uj) = ± 1 , j = 1, . . . , r } . 
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The Spin group is defined to be the even part of the Pin group. That is Spin{V, q) = 
Pin{V,q)nCl{Vf. 

There is an important representation of Cl^{V,q) on V. We define the twisted 

adjoint representation Ad : Cl^{V,q) —>• Aut{Cl{V,q)) by 

M M •= Ad{w){v) := a{w)-v w'K, w G C/^(V,7) ,^ ; G Cl[V,q)., 

where a is the canonical automorphism of Cl i f ford algebras defined above. In the 

case w eV such that q{v) 7̂  0 and w G 1/ C Cl{V), the map A d . ^ = w- ^^gy^. 

This is the refiection Pw{v) of v w i t h respect to the hyperplane w-^ of normal direction 

to in V . Note that both w and —w give the same reflection. More generally, when 

w is in Pin{V, q) or Spin{V, q) the geometric pictures are stil l available. 

For instance, when the map Ad is restricted on the subgroup Spin[V,q). I f 

we further restrict the respesentation on the space V considered as a subspace 

of Cl{V,q), we obtain the surjective map Ad : Spin{V,q) —> SO{V) such that 

Ad{vi • • • Vr) = Pv^ o • • • o p.^^ in the form of composition of even number of reflec­

tions. When the field k = R the kernel of Ad is {I,-1} = Z2. Thus we have the 

following short exact sequence 

0 — > Z2 —> Spin{n) 5 0 ( n ) —> 1, 

where 1̂ 0 := M. This thus gives a double covering of SO{n). When n > 3, SO{n) 

is connected and Spin{n) is simply connected so that 

0̂ : Spin{n) —> SO{n) (5.2) 

is the universal covering of SO{n). 

Consider the vector space V = W w i th its usual inner product as the symmetric 

bilinear fo rm and let { e j } j = i ,„ be an oriented orthonormal basis of V. The Cl i f ford 

algebra Cl{n) : = CZ(]R") is generated by { e i , . . . , e„} subject to the relation • -\-

Cj • Ci = —26ijl. 

We define the chirality operator acting on the Chfford algebra to itself by the 

Chfford multiplication of 

X : = e i - - - e „ , (5.3) 
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in C/(n) . Note that this definit ion is independent of choices of the basis, x satisfies 
. n ( n + l ) 

x - x = ( - i ) 2 • 

In the complex case, we consider C" and suppose the quadratic form qc — 

(7 0 C of C" is obtained f rom the complexification of a quadratic form q of K" . 

We denote its associated Cl i f ford algebra as CZ(n) : = CZ(C", qc)- This is simply the 

complexification of the real Cl i f ford algebra C/(M") . That is, C/(n) = C/(R" , q)®^Z. 

In C/(n) , we can also define a corresponding complex chirality operator 

Xc ••= ^ ' ' ^ ' x , (5.4) 

where x is defined in (5.3). For I n particular when n = 4, 

Xc = • • • G4. Again xc is independent of choices of the orthonormal oriented 

basis Ej of M " . One can also show that Xc — 1- The corresponding ± l - e igenspace 

decomposition of xc gives 

0(n) = a(n)+ ©0(n)" 

where Clin)"^ : = (1 ± xc)Cl{n). This is known as the self-dual (SD) and antiself 

dual (ASD) decomposition. This can further be restricted to the even part of the 

Cl i f ford algebra CZ(n)° as in (5.1) U{nf = Cl{nf-+ © C/(n)°^- , where U{nf-^ : = 

{vECl{nf •. Xc-v = ±v}. 

5.2 Clifford actions and Clifford modules 

Let y be a vector space over a field k w i th a quadratic form q. Let K D A; be a field 

containing k. Then a K-representation of the Clif ford algebra Cl{V. q) is a /c-algebra 

homomorphism 

p : Cl{V, q) Hom.K{W, W) (5.5) 

into the algebra of linear transformations of a finite dimensional vector space W over 

K. The space W is called a CI{V, q)-module over K. We call the representation 

p{v){w) = V • w for V G Cl{V, q) and iv G W the Clifford multiplication by v. 

A A'-representation as (5.5) is said to be reducible i f the vector space W can be 

wri t ten as a direct sum over K. That is, W = W-^ ® W2 such that p{v){Wj) C Wj 
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for j = 1,2 and v G Cl{V,q). I n that case we can write p = P\ ® P2 where 

pj{v) := p[v)\\v. for j = 1,2. A representation is called irreducible i f i t is not 

reducible. A A^-representation of p of a Cl i f ford algebra Cl{V, q) can always be 

decomposed into direct sum of irreducible representations. 

Two representations pj : Cl{V,q) —> Hom,n{Wj,Wj) for j = 1,2 are said to 

be equivalent i f there exists a A-hnear isomorphism F : W-^ —>• 14̂ 2 such that 

F o o = p2{v) for all v G q). 

Let p : Cl{n) —Hom^{W, W) be an irreducible real representation w^here n = 

4m, and consider the spli t t ing 

w = ®w-

where = (1 ± p{x))W, where cj is the chirality operator of R". Then each 

of the subspaces W'^ and W~ is invariant under the even subalgebra C / (n ) ° . The 

analogous statements are true in the complex case C/(n) wi th n even. 

Recall that the Cl i f ford algebra has a Z2-graded algebra w i t h respect to the 

canonical automorphism. We concentrate on actions of Clifford algebra on modules 

over R or C which are also Z2-graded. That is, we consider the module E = E^®E^, 

such that the Cli f ford action Cl{V) —> End{E) is even wi th respect to the grading 

on the Cl i f ford algebra: 

c / ( y ) ° ( £ ; ° / i ) c CliVfiE""') c E'"". 

Such a module is called the Clifford module. 

One example of a Cl i f ford module is the exterior algebra A(V') . We define the 

representation c : V —> End{K{V)) by 

c{v){u):=E,{u)-h{u)., V n e A ( V ) , 

where E„ : A(V') ^ K{V) is defined by E„{u) = vAu., Vu G K{V) and h : K{V) 

h{V) is defined by requiring that {v Au.w) = {u,Iyw), Vu.w G A ( V ) . The inner 

product (•, •) on A{V) is induced f rom q oi V. The action c of V can be uniquely 

extended to the action c of the Chfford algebra Cl{V) on A{V). A{V) is a Cl i f ford 

module wi th respect to its Z2-grading given by the parity of its exterior degree 

A ( y ) = A ( y ) ° © A ( y ) i . 
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By evaluating the action c on the identity element of A{V), we obtain the symbol 
map between the Cl i f ford algebra and the exterior algebra, a : Cl{V) AV as 
cr(a) = c (a ) ( l ) where 1 is the identity element of AV. The symbol map has an 
inverse. Let ej be an orthonormal basis of V, and denote ej as Ci when considered in 
Cl(V), then c : AV Cl{V) defined by c(ei, A • • • A ê ^̂ ) = c^j • • • c .̂ is the inverse 
and we call c the quantization map. 

5.3 Spinor representation 

We assume that V = R". The Clif ford algebra Cl{n) w i t h the Lie bracket defined 

by [v,w] := V • w — w • V for w € Cl{n) is a Lie algebra. 

The subspace c{A^V) is a Lie subalgebra of Cl{n). One can show that i t is 

isomorphic to the Lie algebra so(n) under the map r : c (A^V) —> so(n) defined by 

T{a){v) = [a,v], (5.6) 

where T(a) act on w G = c{A^V). This implies that a matr ix a G so{V) corre­

sponds to the Cli f ford element T~^(a) = 1/2 X^j<j(aei , e^jcj • Cj. I f we identify a e 

5o{V) w i t h an element of A'^V by the isomorphism that maps a to I ^ j < j ( a e j , ej)eiAej, 

then c(a) = X] ,<j (ae j , ej)cj • Cj. The Lie group obtained as the image of the expo­

nential map of the Lie subalgebra c ( A - V ) is exactly the Spin group 5pzn(R" , q). We 

w i l l denote i t as Spin{n). 

The map r in (5.6) between Lie algebras is then exponentiated to a map between 

Lie groups, f : Spin{n) —> SO{n), such that 

i{g){v) = f{exp{a)){v) = exp(r(a))( i ;) = gvg~\, 

for any g = exp(a) 6 Spin{n) and v e V. f is a double covering if rt > 1. This is the 

adjoint representation m,ap of Spin{n), which we can compare i t w i t h the twisted 

adjoint representation defined previously. 

The importance of the Spin group in a Cl i f ford algebra is that any Clifford 

module restricts to a representation of the Spin group. 

We wi l l now construct the spinor representation of a Clifford algebra Cl{V,q). 

Recall that the chirality operator xc in (5.4 ) satisfies Xc = 1- Furthermore, for 
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V e Cl{n), Xc • V = -V • Xc i f n is even and xc • "̂^ = 'f̂  • Xc if is odd. I t also 
decomposes Ci(V')° to SD and ASD parts. 

Let E be a Cl i f ford module (possibly over the field C) wi th Cl i f ford action c : 

C/(V') —> End{E). We can define a Z2-grading on E w i t h respect to the chirality 

operator xc £ Cl{V ®C,qc) by 

:= {v e E : c{j)v = ±v}. 

We call the decomposition as SD/ASD decoTr),position of the Cl i f ford module E. 

R e m a r k : I n the case when n = 4m for integer m , xc actually belongs to the 

real Cl i f ford algebra Cl{V). 

We quote the following results f rom Proposition 3.19 of [34 . 

Propos i t ion 5.3.1 If V is an oriented vector space with even dimension n, then 

there exists a unique Zo-graded irreducible Clifford module § = §+©§", called the 

spinor m.odule, such that C / ( K ® C . gigiC) = E7id{S). In particular. dim,c{S) = 2"/-

and dimc{S+) = dim,c{S-) = 2 " / 2 - i . 

A n explicit example of such spinor module § is given by the exterior algebra of 

a polarization of V C. Start w i t h the even dimensional vector space [V.q), and 

denote its complexification as {V ® C, qc)- A polarization of the complexified space 

V (gi C is a subspace satisfying qc{w, w) = 0 for all w e P and V ®C = P © P. 

The polarization is oriented when there is an oriented orthonormal basis {e ,} oi V 

such that P is spanned by the vectors {e2j-i — ie2j '• I < j < " 7 2 } . Under such 

an oriented polarization P, we may take § as the exterior algebra A P of P. The 

explicit Cl i f ford action of elements in Cl{V ® C, qc) on § is as follows: 

c{w) • s = 2^I-E,,{s).. \fw e P C P®P =V Cl{V ®C,qc).. 

c{w) • s = -2"'^I^{s)., VwePc Cl.{V ® C, qc). 

This action can be further shown to satisfy Cl{V ® C.qc) = End{S). 

Note that for such oriented polarization P, the operator c{x) on § = A P is equal 

to ( - ! )*• on A*^P, so that 

§+ = A P ^ § - = A P ^ 
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This can be shown by rewrit ing xc = 2~"f'^{ui{w-i —wiWi)... (wn/i'^nfi — Wn/2iUn/2)•. 

where Wj : = 2~^^-{e2j-\ — ie2j)-

Since Spin{V) C C / ( V ) ° C Cl{V ® C,gc), the restriction of the representation 

p : Spm{V) End{S) is called the spinor representation. 

5.4 Clifford bundles and spinor bundles 

We generalise the action of Cl i f ford algebras on Clif ford modules to actions of bun­

dles of Cl i f ford algebras, constructed from dual tangent bundles of Riemannian 

manifolds. 

Consider a Riemannian manifold M of metric g. The tangent space Tj-{M) at 

a point X G M is a Euclidean vector space, w i t h the quadratic form defined by the 

pointwise evaluation of metric tensor (/a... We can thus construct a Cl i f ford algebra 

CI{TJ:{M), g^) over each point x. The Cl i f ford bundle can be defined f rom the 

tangent bundle by the procedure of associative bundle construction; 

Given a principal G-bundle n : Pc, M over a space M and F be a vector 

space wi th the group of homomorphisms Hom.eo{F) endowed wi th the compact-open 

topology, each continuous morphism p : G ^ Homeo{F) defines a fibre bundle over 

M w i t h fibre F as follows. Consider the free left action of G on the product Pc x F 

given by (l>g{pj) = {pg-'.. p{g)f).. for g e G and { p j ) G Pa x F Define PG X , F 

to be the quotient space of this action. Hence the projection PQ x F Pc M 

descends to a mapping TTp : F G X p F —*• which is the fibre bundle over M w i th 

fibre F . I t is called the bundle associated to PG by p. 

Let M be an oriented Riemannian manifold and let Pso(n){M) be the principal 

50(n)-bundle of positively oriented orthonormal frames. Let p„ : SO{n) SO[W) 

be the fundamental representation of the space of n x n matrices over M over space 

of n-vectors over M. 

To obtain the Cl i f ford bundle, we first note that there is a representation cl(p„) 

SO[n) Aut{Cl{n)) f rom the fact that each orthogonal transformation on R" in­

duces an orthogonal transformation of Cl{n). The Clifford bundle of rank n oriented 
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vector bundle E M is the bundle 

Cl{E) : = P s O ( n ) ( £ ^ ) Xe / ( , „ )C / (77 , ) . 

The fibrewise mult ipl icat ion on Cl{E) gives an algebra structure to the space of 

sections of Cl{E). 

Notions intrinsic to Cl i f ford algebras carry over to Cli f ford bundles. For example 

there is a decomposition wi th respect to parity: Cl{E) = Cl{E)^ ® Cl{Ey. When 

E = T*{M) we denote the corresponding Chfford bundle as Cl{M) and i t is the 

Clifford bundle of M. 

As we have seen f rom Proposition 5.3.1, for an even /?. dimensional vector space 

[V, q) there always exists an irreducible representation S of Cl{V ® C) . We consider 

globally the representation of the Clifford bundle Cl{E®C). One may ask whether 

there exists a spinor module S as a globally defined vector bundle over M. The ex­

istence of such bundle is equivalent to the existence of spin structures for the bundle 

E. A n d further the existence of a spin structure is determined by the vanishing of 

the second Stiefel-Whitney class of the oriented bundle E. [32 

Suppose n > 3, then a spin structure on £• is a principal 57J277,(n)-bundle Pspin{E) 

over X together w i t h a two sheeted covering 

C : PsME) ^ F s o ( ^ ) 

such that ^{pg) = ^{p)^o{9) for all p 6 Pspin{E) and all g E Spin{'R"). where 

^0 is the double covering given by the twisted adjoint representation as in (5.2). 

Fibrewise Pspin{E)x —> Pso{E)x for any z G X is nothing but the double covering 

map ^0 •• Spin{n) ^ SO{n). 

U E = TM, the tangent bundle of M , has spin structure, then we call M a 

5pm manifold. We omit n indicating the dimension of the structure groups in the 

principal bundles. For a principal bundle of spin structure ^, there is an associated 

spinor bundle. The pointwise restriction of such spinor bundle is the spinor repre­

sentation. We wi l l consider the a specific construction of the spinor bundle over the 

Eguchi-Hanson space in Chapter 6. 



Chapter 6 

Spin geometry of Eguchi-Hanson 

spaces 

In this chapter, we first describe the metric and the Levi-Civita connection of the 

Eguchi-Hanson space, and then introduce its spinor bundle, the spin connection 

and the Dirac operator. Finally, we wri te down the torus action through parallel 

propagators on the spinor bundle. 

6.1 Metrics, connections and torus isometric ac­

tions 

The Eguchi-Hanson (EH-) spaces, which are Riemannian manifold of dimension 

four, were originally constructed as gravitational instantons [16]. Generahzed by 

Gibbons and Hawking, they fal l into a new category of solutions of the Einstein's 

equation, known as the multicenter solutions [35]. I n local coordinates, the metric 

is 

ds^ = A - V r ^ + r'- [{al + a j ) + A a^] , (6.1) 
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where A : = A ( r ) : = 1 — /r'^ and [oj^.Oy.aS) is the standard Cartan basis for the 
3-sphere, 

= ^ (— COS '0 dB — sin 9 sin ib dcp), 

(Ty = (sin ih dO — sin 6 cos ip d(j)). 

a. = '^{—dil} — cos9d(j)), 

wi th r > a, 0 < ^ < TT, 0 < 0 < 2?!, 0 < -0 < 27r. 

R e m a r k : The convention that the period of 0 is 2T\ rather than 47r as in the 

original construction is suggested in [35] to remove the singularity at r = a, so that 

the manifold becomes geodesically complete. 

The EH-space is diffeomorphic to the tangent bundle of a 2-sphere r ( S ^ ) . Modulo 

a distortion of the metric, the base as a unit two sphere is parametrised by 

parameters 0 and 6, wi th ^ = 0 as the south pole and ^ = 77 as the north pole. 

The angle (j) parametrises the circle defined by a constant 9. Over each point, say 

{9.(1)) on the 2-sphere, the tangent plane is parametrised by (r, 0 ) . The number r 

parametrises the radial direction wi th r = a at the origin of the plane. Circles of 

constant radius r are parametrised by ip. The identification of -tl) = ijj + 2-K is the 

identification the antipodal points on the circle of constant radius. Together w i th 

the metric, this implies that the space at large enough r is asymptotic to M ^ / Z T , so 

that i t is an A L E space. 

The parameter a in the metric (6.1) is a non-negative real number parametrising 

a family of EH-spaces. When a = 0, the metric degenerates to the conifold R'^/Zo 

and the rest of the family is a resolution of the conifold. This appears as the simplest 

case in Kronheimer's classification of A L E spaces [17]. We w i l l only concentrate on 

the smooth case so that a is assumed to be positive. 

Choose the local coordinates { . X i } w i th x\ = r, = 9, X3 = (p. X4 = 'ijj. We 

w i l l write the coordinates (r, ^, 0, •0) and ( x j , X2, X3, X4) interchangeably throughout 

the content, because the former give a clear geometric picture while the latter are 

convenient in tensorial expressions. The corresponding basis on the tangent space 

Tx[EH) of any point x G EH axe ^ | , and the dual basis on the cotangent 

space T*\EH) are [dx^]. The corresponding metric tensor gij{x)dx' 0 dx^ can be 
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wri t ten as entries of the matr ix G = {gtj) as 

0 0 0 \ 

1 0 r2 0 0 

4 0 0 p A cos 0 

[ 0 0 r- A cos 6 7-- A J 

(6.2) 

where p : = p{r,6) := ('/-̂  — a^cos'^^)/y^. We always assume Einstein's summation 

convention. 

In the same coordinate chart, the Christoffel symbols of the Levi-Civita connec­

t ion of (6.1) , defined by Vidj = T^jdk, are explicitly, 

A p + 
i 11 -

A ' _ r A 
A ^ 4 
r A + A cos 61 

i 3.3 - 4 r 

34 1 44 — 
A + A 

^ 12 -

^ 13 — 

p4 _ 
^ 13 -

r - -
^ 33 -

23 ~ 

sin 20 
2 ^ ' 

cot 6 A + 
^ 34 -

i 24 — 

A sin 0 
2 

A 
2 sin e • 

2a'^ cos 9 
r(r4 - a 4 ) ' 

p4 _ 
^ 14 — 

A + 
r A ' 

p4 _ 
*• 23 ~ 2 7-2 s i n ^ ' r ^ . = (6.3) 

where 

A + : = A + ( r ) : = 1 + A ' : = ^ , p^:=p-{r..e): = 
r'^ + a'^ cos^ 9 

The identity F^ .̂ = r [ . j , implied by the torsion free property of the connection, 

generates another set of symbols and all the rest of the Christoffel symbols vanish. 

The isometry group of the metric (6.1) is U{\) x SU{2). The Ki l l ing vector 3^; 

generates the group L' ' ( l ) . Another Ki l l ing vector is d^. Its action on the restriction 

of the space at 7- = a is analogous to one of the three typical generators of the Lie 

algebra of the Lie group SU{2) on a standard two-sphere. These are the two Ki l l ing 

vectors which define a torus action a on the Eguchi-Hanson space. 

Supoose that { £ 3 , 6 4 } is a basis of the Lie algebra 11(1) x i l ( l ) of the Lie group 

U{1) X U{1). Elements in U ( l ) x 11(1) are wr i t ten as 

V = VcC-i + ^464 = {V:i, V4), 0 < V3, V,] < 2-n. 
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Elements in U{1) x [ / ( I ) are images of the exponential map of the Lie algebra 
exp : U ( l ) X i i ( l ) ^ [ / ( I ) X [ / ( I ) as 

expenses + ^464) = (e™^,e^^'') G U{1) x [ / ( I ) , v^e^ + v^e^ G x H ( l ) . 

We define the Lie algebra isometric action 

Sigma : 11(1) x 11(1) Aut{EH) by matching the basis { 6 3 , 6 4 } w i t h the KiUing 

vectors {8^, 9^} as follows. For any element v = v^e^ + v^e^ £ 11(1) x 1^(1) 

a,:=a{v):{r,9,(j),^l^)^{r.d,(j) + v^,i^ + v,), \f{r,9,4>,iP) e EH. (6.4) 

The corresponding Lie group isometric action a : L' '(l) x U{1) —>• Aut{EH) is 

defined by 

a{e'''',e''") -.^ay, 0<V3,V4<2-n 

where v = {v-^, 1/4) G U ( l ) x 11(1) is the pre-image of (e'^\ e*̂ -') under the exponential 

map. The isometric torus action w i l l determine the isospectral deformation later. 

6.2 The stereographic projection and orthonor­

mal basis 

We choose an orthonormal basis to trivialize the cotangent bundle of the EH-space 

and obtain the corresponding transition functions. Since the EH-space is locally 

the same as T ( § - ) , we may obtain another set of coordinates by taking the stere­

ographic projection of the §^ part, while keeping the coordinates on the tangent 

space unchanged. 

The EH-space (6.1) can be covered by two open neighbourhoods [/^• and Us, 

where Uj\j covers the whole space except at ^ = vr and Us covers the whole space 

except at ^ = 0. We may define the map • U^ —> C x by taking a stereo­

graphic projection of the base two sphere to C. I.e., fN{<i),0,r,ip) = {z.r.^ijj). For 

the coordinate chart Us-, we similarly define the projection map f s : Ns —> C x R^, 

by fs{(t>,d;'r,ip) = {w,r,'ip), where 

9 9 
z := cot - e'"^. w; : = tan-e'' '^. 

2 2 
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For any point x £ f / ,v n Us, the transition function f rom the coordinate charts 

Us to UN is 

{w,r,'tp) = ( ^ , r , ' 0 ) , 

and the transition function f rom Ujsj to Us is {z.r.ij;) = ( ^ , r , •;/'). 

The restriction of metric (6.1) to the U^ chart w i t h coordinates {z.r,ijj) is. 

"2 r'A 

{1 + zz) 
-dzdz + 

zz — 1 i ,dz dz^ 

To obtain a local orthonormal basis of T*{EH)y^ we may simply define 

-dz. m := — - ^ d r + 
dz dz\ 1- zz 

— = + 2i dijj 
^/2{l + zzf'"' '"" s/2 ^' ' 4^/2 [\ z z J I + zz 

wi th their complex conjugates /, m so that the metric tensor over U/^r is ds- = 

I ®1, +1 ® I + m ®m + rn.(S> m. 

A real orthonormal frame {t5'°} of T*{EH)u^ is thus defined by 

: = - ! = ( / + I ) , d ' : = - ^ j l - l ) , i)^:=-^[m-m).^ ^4 ^= _ ! ( „ , + 

such that the metric on f/^f is diagonalized as ds"^ = Sap'd"' ® i)^. The coordinate 

transformations = hfdx^ are determined by the matr ix H = {h^ 

« = 2 

0 —7'cos0 —r sin^ s in0 0 

0 r sine/) —rsm6cos(j) 0 

0 0 r A i / ^ c o s ^ 

0 0 

whose inverse H ^ = (/i;^) f rom dx^ = hp-d'^ is 

/ 

= 2 

0 

(6.5) 

0 0 
COS(p sin 0 

r r 

sin d> cos(ji 
r sin 6 r sin 0 

cos S sin (A cos 6 cos (i 
r sin S r sin 9 

0 A ' / 2 \ 
2 

0 0 

0 0 

1 
r 0. j 

(6.6) 

The above construction on the Ui\r chart can be carried out the same way on the 

Us coordinates. We denote orthonormal frames over Us by adding "s to /, m. xj 

and etc. 
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Local frames {•d"] on [/AT define a local triviahzation of the cotangent bundle, 

Fyv : T*{EH)u^ [/^- x R ' ' by FN{X; a^{}^+ • • •+ a.4'd^) := ( x ; a i , . . . , 0 4 ) , where a^'s 

are real-valued functions over U^. In a similar way, the choice of local frames {-(9'"} 

on Us defines a local triviahzation of the cotangent bundle, F 5 : T*{EH)us —*• 

[/yv X 

The transition functions / f ' s such that d'^ = f^-d" are elements of the matr ix 

FsN := Fyv o F^^ as 

FsN — 

( _ l !±±! 

. -2 ,2 

2zz 
0 

V 0 

. -2 ,2 
-l "r, - 0 0 

2 zz 
0 0 

^2+^2 
0 0 

2 zz 
0 0 

0 1 0 

0 0 1 

^ ^ - c o s 20 sin 20 0 0 ^ 

.sin20 - c o s 2 0 0 0 

0 0 1 0 

0 0 0 1 V 

(6.7) 

The inverse transition function is given by the inverse of the matr ix F 5 7 V ; F^;s '• = 

Fs o P,v^ = F^y^. The cotangent bundle is thus 

T*{EH) = {UN X M ^ ) U {Us X R')/ ~, (6.8) 

where (x: O i , . . . , 04) G Usr x R'' and {x':a\,. .. ,a'^) G Us x R'̂  are defined to be 

equivalent if and only i f .x = x' and F / v5 ( a i , . . . , 04)* = ( a , , . . . , a^)'. 

6.3 Spin structures and spinor bundles 

Following a standard procedure f rom [32], we obtain the spinor bundle of the EH-

space. In coordinate charts {Uiw.Us}, the frame bundle F50(4) of the EH-space is 

the 50(4)-pr incipal bundle wi th transition functions F/v5 in (6.7) and its inverse 

Recall that the covering map of groups. 

^0 : Spin{4) —> 5 0 ( 4 ) , 

is defined by the twisted adjoint representation Ad of Spin{4) as 

^o{w)x = Ad^,{x) = a{w) • x • w'^yx G R^(C Cl{A)), 

(6.9) 
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where w = Vi • • • Vm. G Spin{4), rn is even and 6 for z = 1,..., 771. Geometri­
cally (as we discussed in Section 5.1), i^o('"'') = p('^i) o • • • o p(f„,.), where p[vi) is the 
reflection of the space wi th respect to the hyperplane w i t h normal vector Vi. 

Locally, the upper left block of the transition matrix (6.7) is a rotation in the 

plane spanned by {d^,d-] through an angle 20-1- TT. Such a rotation can be decom­

posed into two reflections say p{v2) o p{vi), with. 

Vi:='d^, t'Q := — sin^T^^-h cos07?^. 

R e m a r k : As a result of the double covering map, another choice is p{—V2) o p{vi), 

which gives the same rotat ion as an element of 50(2) . 

V2 • vi e Spin{4) is a l i f t i ng of p{v2) o p{vi) e 50(4) under the covering map 

(6.9). Thus, in the local coordinate chart UN, PSW : = 1^2 • in Spin{4) defines a 

l i f t i ng of the action F^s £ 50(4) as in (6.7) under the double covering (6.9). 

To obtain a global l i f t i ng of the frame bundle, we consistently define the transi­

t ion matr ix P/vs as a l i f t i ng in the group Spin{'\) over x' e Us by PA^S = -v'2 • v[, 

where 

v[:=d'\ := sin(/)79'^-f-cos(/)79'-. 

The following confirms the consistency of the lift ings on two coordinate charts. 

L e m m a 6.3.1 Transition functions {F^s, FSN} satisfy the cocycle condition, Fi^s° 

PsN — FSN ° PNS = 1-

Proof: Applying the transformation f rom 7?"'s to i5'^'s by (6.7), we have i)'^ • d'- = 

• d^. Thus, 

FNS ° FSN = -^2 • v[ •V2-v\ 

= -(sin01?'^ + cos019''^) -75'^ • (-sin079^ +cos( / )7 i ' - ) -7?^ 

= s i n V - sin(/> cos0(79^ • d'^ + d'^ • d^) - cos^ (j)•-d^ • • = 1, 

by using identities 7?^ • T?'̂  = - 1 and 7?° • T?'̂  + (9^ • 7^° = 0 for a ^ of elements of 

the orthonormal bases 7!^°'s and those of T^'^'S. Similarly, P^^v ° P ^ ' 5 = 1- n 

Therefore, the principal 5pz77.(4)-bundle can be defined by 

Psprn(4) ••= {UN X Spvn{4:) U Us X Spin{4))/ ~ . (6.10) 
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where {x. g) e UN x S'pin{4) and (x', g') e Us x Spin[A) are defined to be equivalent 

i f and only i f x = x ' and g' = F^s 9-

The double covering of bundles (6.10) over the EH-space defines a spin structure 

on i t . We w i l l always assume this choice of spin structure. 

The spinor bundle can be defined as an associative bundle of typical fibre C 

of the principal Spin{4)-hundle (6.10), by specifying a representation of Spin{4) on 

GLc{4). We know that locally, for any x G EH, there exists a unique irreducible 

representation space A of complex dimension 4 of the Chfford algebra Cl{T*{EH)) 

through the Clif ford action c : Cl{T*{EH)) End{A). We define the representa­

t ion of Spin{4) in End{A){= GLc(4) ) simply by the restriction of c f rom the Cl i f ford 

algebra, and obtain the spinor bundle S of typical fibre A, w i th transition functions 

{C{FNS):C{FSN)} in the coordinate charts { ^ 7 ^ , Us}-

W i t h respect to the orthonormal basis, say {"0°) of T*{EH)u^, there exists 

a unitary frame { f ^ } of the representation space A = C*, such that the Cl i f ford 

representations := c('(?"(.x)) for a = 1, . . . ,4 can be represented as constant 

matrices. 

7 

I) 0 

0 0 

1 0 

0 - 1 

- 1 o^ 

0 1 

0 0 

0 OJ 

7 

7'^ 

0 0 0 

0 0 - 1 

0 1 0 

1 0 0 

- 1 

0 

0 

0 

7 

J 

0 0 —i 0 

0 0 0 —I 

—i 0 0 0 

0 —i 0 0 

/ o 0 0 - A 

0 0 i 0 

0 i 0 0 

0 0 

(6.11) 

The fact is that there exist a frame { / ^ } on the coordinate chart Us so that the 

representation of c(i9'^)'s are also the constant matrices 7^'s as above. 

Under the chosen frames { f a } and {f'p}., we may represent the transition func­

tions of the spinor bundle as follows. Define maps P.Q : U^ C^Us —> GLc(4) 

by 

P : = c(Fsyv) = - sm<l>-/'j' + cos07 '7 ' = diag{-^, f ^ , f ^ , - f ^ ) , (6.12) 
I Z I Z I I z, 
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^ / \ - , 1 1 , 2 1 7 / ^ ' ^ iw iw. . . 
(y := c ( F / v 5 j = - sm07 7 - cos(pj j = diag{-,——r,--^—r, i — r ) . (6.13) 

\w\ \w\ \w\ \w\ 

diag{a, b, c, d) stands for the diagonal matr ix wi th diagonal elements a, b, c, d. 

The spinor bundle S is thus, 

S : = (UN X C " U f / 5 X C^) / ~ , (6.14) 

where (x; S i , • • • , 64) G /̂yv x and (x'; s[, - • • , s'^) G f / 5 x are defined to be 

equivalent if and only i f x = x' and (5'^, • • • , s'^Y = Q{s-[, • • • , S4) ' . One can easily 

see that the cocycle condition of the transition functions PoQ = QoP=l holds. 

The chirality operator is defined by 

X := c{^') c{d') c{i^') c{^') = 1' r 7 ' 7 ' = diag{-l, - 1 , 1 , 1 ) , (6.15) 

such that x^ = 1- The representation space A = A"*" ® A~ is decomposed as ± 1 -

eigenspaces of the operator x , w i t h dim.c A"*" = dim^ A~ = 2. This fibrewise sphtting 

extends to the global decomposition of spinor bundle as subbundles over the EH-

space, S = ® S~, w i t h each of the complex subbundles and S~ of rank 2. 

Therefore, any element s G 5 can be decomposed as s = (s" ' " ,s~) ' . The charge 

conjugate operator on the spinor bundle J : 5 —»• 5 is defined by 

j . (6.16) 

6.4 Spin connections and Dirac operators of spinor 

bundles 

Following the general procedure in [6], we can induce the spin connection V*^ of the 

spinor bundle S f rom the Levi-Civita connection of the EH-space. 

We w i l l only work on the UN coordinate chart and the construction on Us is 

similar. In the orthonormal frame {'0°'}, the corresponding Levi-Civita connection on 

the dual tangent bundle, T*{EH)uj,: can be expressed as V^'^"d^ = - f f ^ dx'^^". 

The metric compatibil i ty of the Levi-Civita connection imphes that Ff^ = -Ff^ . 

We may represent Ff^ '̂s in terms of the Christoffel symbols Ff^'s of V in the dx^s 

(6.3) by 

ri=hi{hir^j~d.h^), (6.17) 



6.5. Torus actions on the spinor bundle 56 

where hf's and hp's are the matr ix entries of H in (6.5) and in (6.6), respectively. 
Modulo the anti-symmetric condition between a and /? indices, al l the nonvanishing 
Christoffel symbols are 

f l , = ^-A'/'-smc!>, r^4 = - ^ A ^ / 2 c o s < ^ , 

f ig = A^/^ s in^ cos(/>, = A^/^ s in^ sin ĉ , 

= - 1 - ^ A+ cos^, r^2 = - ^ ^ 1 / 2 ^-^0 gij^^ 

= \ A^/^ gij^ ^ (,^3 r^3 = - ^ A+ cos e 

r l 2 = ^ A , r^3 = - ^ A + . (6.18) 

We define ja '•= 1°", then the spin connection V"^ : S ^ S ® Q}{EH) is 

: = d - ^ r f , d x ' ' ® 7 " 7 ^ . (6.19) 

The covariant derivative V f := W^{di), for i = 1 , . . . , 4, equals V f = 5, — Ui. 

where LOi = | r f ^ 7 ° 7 ^ . The Dirac operator V : T{S] r ( 5 ) can be defined by 

V{iP) := -17^' v f 0, V'0 G r ( 5 ) , (6.20) 

where 7-̂  : = c{dx^) = ^ ^ 7 ^ . We note that the compatibihty of the spin connection 

wi th respect to the spin structure implies commutat ivi ty between the Dirac operator 

and the charge conjugate operator, i.e. [D, J] = 0. 

6.5 Torus actions on the spinor bundle 

A torus action on the spinor bvmdle S can be induced f rom the torus isometric action 

on a general Riemannian manifold [23], [14]. In this section, we w i l l represent such 

torus action (6.4) through parallel transporting spinors along geodesies. 

Recall that the isometric action a is generated by the two Ki l l i ng vectors ^3 = 5^ 

and dn = djp. Let : R ^ EH be the geodesies obtained as integral curves of the 

Ki l l ing vector field for /c = 3, 4. 
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The equation of parallel transport wi th respect to the spin connection along any 

curve c{t) is V^,^^^^ = 0, where c'{t) := dc{t)/d.t, for 0 e r (cS) . Substituting (6.19), 

we obtain 

^ - A{c{t)) 7/; = 0, A{c{t)) := -^T^ dx\c^{t)) ® 7 > . 

When the curve is C 3 ( ^ ) , the corresponding matr ix A{c3{t)) is 

(6.21) 

(' 
0 0 0 \ 

1 0 — 7 0 0 

2 0 0 -?;(1 + A + c o s ^ ) - A ' / 2 sin^e"^ 

0 A^ /^s in^e - ' ^ 7 ( 1 + A + C O S ^ ) , y 

(6.22) 

where r,9 and <?!) are understood as components of coordinates on the curve cs{t). 

When the curve is C4{t), the corresponding matr ix A{c4{t)) is 

a' a' 
-4 (C4 (0 ) = - d 7 a g ( - - , - , - l , l ) . (6.23) 

where r is understood as one of the components of coordinates on the curve Ci{t). 

The corresponding parallel propagator is a map Pc{i.){toAi) : r ( 5 ) r{S) de­

fined by parallel transporting any section -0 along the curve c{t) w i th t e [to-, ti]. In 

a chosen frame of the local tr ivialization of the vector bundle, i t is a matrix-valued 

function evaluated at c{ti). I f xp{c{tQ)) is of coordinate ('0i, • •. ..IPA)^., then the vec­

tor at c{ti) of coordinate {il>[,... .I/J'^)'- := Pc(t)(io, ^i)('0i, • • •,'04)' is the image of 

ip{c{to)) through the parallel transport along the curve c{t). to < t <ti. I f the curve 

c{t) passes two distinct local trivializations of the bundle, then w-e can track the 

transportation by using transition functions of the bundle. 

The propagator can be represented by an iterated integration of the equation 

(6.21) [36]. For geodesies Ck{t), k. = 3, 4, the corresponding matrix is formally solved 

as 

Pc,{t){to:ti) = Pexp Ak{t)d,t , (6.24) 

where V is the path-ordering operator. 

We can write down the torus action of the spinor bundle specifically. We define 

the Lie algebra action V : H ( l ) x 11(1) End{S) as follows. For any fixed v = 
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{v3, V4) in the Lie algebra and any point x = (r, 6, 0, -0) G EH, we write 

x i = cr(o-«3)(2:) = (r ,6 ' , 0 - v^^'tp), XQ = a(_y^,_„^){x) = {i\9.,(f)- ^3,-0 - -^4). 

Let C4 : [0,114] —> EH be the integral curve of starting at XQ and ending at Xi. 

Let Ci : [0, U3] —*• EH be the integral curve of d<p starting at .Xi and ending at x. 

Let P4(.Xi) be the matr ix of parallel transport of vectors f rom XQ to 2:1 along 

C4 and F3(x) be the matr ix of parallel transport of vectors from X] to x along C 3 . 

Both ^4(3:1) and Piix) can be formally wri t ten down in the form of (6.24). Their 

composition gives a matr ix P34{x) evaluated at x. We define the Lie algebra action 

K, V{v) of w = (7;3, ;̂4) e U ( l ) X i l ( l ) by 

V M { x ) := F34(x)'0(cT_,(x)), 6 r{S)., x e EH. (6.25) 

Let Ti. be the Hilbert space completion wi th respect to the L^-inner product on 

the space of L^-integrable sections of the spinor bundle S. The action V extends to 

V : 11(1) X U ( l ) C{7i). Since the spin connection is compatible wi th the metric of 

the EH-space, the pointwise inner product of the images of any two sections under 

parallel transport along the geodesies Cf^{t) remains unchanged. This further implies 

that their L--integrations remain the same. That is 

\\Km\L^ = \mL^: y ^ e n . 

Note that the adjoint operator V* = V_y so that ||Vy*(V^)||f^2 = H T / ^ H ^ ? . This implies 

that Vy is a unitary operator on Ti. for any Lie algebra element v. 

R e m a r k : In general, a double cover of the torus is required to define an action 

on the spinor bundle [14]. The reason is as follows. When a loop on the base 

space is crossing two trivializations of the spinor bundle, the parallel transport of 

spinors along the loop may flip between the two sheets (depending on the transition 

functions). As a result, after one loop the vector say 'tp{x) could be ±'(/'(x). However, 

i f instead of winding once on the loop, we wind twice, then the image w i l l always 

be ip{x). In our case ŵ e do not need to consider a double cover of the torus action, 

since the trajectory of the torus action of any point in the EH-space remains in the 

same local tr ivialization of the spinor bundle. 



Chapter 7 

Deformation quantization and 

smooth modules 

I n this chapter, we first consider various algebras of difi^erentiable functions over the 

Eguchi-Hanson spaces and their deformations as differential algebras. We secondly 

obtain representations of the deformed differentiable algebras as operators on the 

Hilbert space of spinors and in particular obtain C*-norms by operator norm. By 

completion of the deformed Prechet algebra under C*-norms we obtain the deforma­

tion quantization of C*-algebras. We finally find the projective module description 

of the spinor bundle and see that i t is a smooth module [10 . 

7.1 Algebras of difFerentiable functions 

The notions of smooth algebras [10] and examples given in Chapter 2 can apply to 

the case when X is the Eguchi-Hanson space. For the EH-space, we may use the 

coordinate charts U = {UN-.US} defined i n Section 6.2, w i t h a par t i t ion of uni ty 

{hjs!, hs} subordinated to them. The family of seminorms (2.2) can be wri t ten as 

= sup sup | /7 ,yv(x-)a"/(x) |+ sup sup \hs{x')d'''f{x')\. (7.1) 
\Q\<m.x€UN \a'\<mx'€Us 

Algebras C^{EH) and C^{EH) are both Frechet in the topology of uniform con­

vergence of all derivatives and furthermore they are both smooth algebras. The 

algebra C^{X) is not complete in the topology of uniform convergence of all deriva-

59 
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tives. However, i t is complete in the topology of inductive limit as the inductive 
l imi t of the topology obtained by restriction on a family of algebras C^{K„), where 
{A'„,}„gM is an increasing family of compact subsets in EH. The algebra C^{EH) 
is dense in the Frechet algebra C^{EH). 

Apart f rom algebras of functions which can be represented as operators, there 

are algebras of functions which may define projective modules as representation 

spaces. Decay conditions at inf in i ty and integrability conditions of functions become 

important when considering noncompact spaces. We consider the following algebras 

of integrable functions. 

The {k,p)-th Sobolev norm of a funct ion / , say in C^{EH), is given as 

ll/ll//r=E / I V ^ / I W o / , (7.2) 

where A; is a non-negative integer and p is a positive integer. (We w i l l not consider 

the case where p is a real number). We define subspaces in C^{EH) which contain 

functions w i t h finite Sobolev norm, 

CliEH) := { / G C r ( £ ; / / ) : 1 1 / 1 1 / , , . < o o } . 

Let Hl[EH) be the Banach space obtained by the completion of the algebra C^{EH) 

w i t h respect to the Sobolev norm. In particular, H'^{EH) D • • • D Hl{EH) D 

Hl^,{EH):,... . 

R e m a r k : Notice that the algebra C^{EH) is contained in Hl{EH) for any 

e N . The completion of C^{EH) w i t h respect to || • ||//p gives us the Banach 

space, HI^Q{EH) such that Hl^{EH) C Hl{EH). The equality does not hold in 

general. However, in the circumstances of a complete Riemannian manifold w i t h 

Ricci curvature bounded up to degree k — 2, and positive injective radius (which is 

satisfied by the EiZ-space), Hl^{EH) = Hl{EH) when k > 2 [37 . 

L e m m a 7.1.1 For a fixed non-negative integer p. the intersection defined as 

C^{EH) := n.HliEH] 

is a Frechet algebra in the topology defined by the family of norms {| | • ||//p}fceN-
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Proof: The topology is easily seen to be locally convex and metrisable. To show 
that i t is complete, let { f p } be any Cauchy sequence in C^{EH), then there exists 
a l imi t of { f ^ } under the norm || • i n Hl{EH) for each k G N . For any 
two indices k\,k2 such that k\ < k2, the norm || • W^" is stronger than the norm 
II • Wfjp . The Cauchy sequence { / g } w i t h the l imi t /^^ in the norm || • H ^ p is also 
a Cauchy sequence wi th the l imi t f^^ in the norm || • \\ffP . Uniqueness of the l imi t 
implies that /^^ = f^^. Since ki, k2 are arbitrary, the l imits for any k E N agree. 
We denote the hmit as / so that the Cauchy sequence converges to f e C^{EH) 
w i t h respect to any of the norms. Thus the topology is complete and C^{EH) is a 
Frechet algebra. • 

When p = 2, the Frechet algebra C^{EH) belongs to the chain of continuous 
inclusions, 

C^{EH) C^{EH) C^{EH), (7.3) 

w i t h respect to their aforementioned topologies. 

7.2 Deformation quantization of differentiable al­

gebras 

Rieffel's deformation quantization of a differentiable Frechet algebra in [21] (Chapter 

1, 2) can be summarized as follows. Let ^ be a Frechet algebra whose topology is 

defined by a family of seminorms {qm}- We assume that there there is an isometric 

action a of the vector space \ / : = R*̂  considered as a d-dimensional Lie algebra 

acting on A. We also assume that the algebra is smooth wi th respect to the action 

Q, i.e. A = A°° in the notation of the reference. 

Under the choice of a basis {Xi,.... Xa} of the Lie algebra, the action Q X , of 

Xi defines a partial differentiation on A. One can define a new family of seminorms 

f rom Qm. by taking into account the action of a. For any / G A, 

" i<j , IA'I<''' 

where fi are the multi-indices {fix,..., /u.̂ ) and = a*^^ ... a^^^. I t is a fact that 

i f each of the seminorm in the family of seminorms {g„,} is submultiplicative then 
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each of the seminorm in the family of seminorms { | | • is submultiplicative. The 
deformation quantization of the algebra A can be carried out in three steps; 

Step 1. Let Cb{V x V.A) be the space of bounded continuous functions 

f rom V X V to A. One can induce the family of seminorms {| | • jj^^.} on the space 

Cb{V X v., A) by 

l l ^ l & : = sup | |F(T.) | | , , , , (7.5) 
w;e V X V 

for F in Cb{V x V,A) and || • on A as in (7.4). 

Let T be an action of V x V on the space Cb{V x V\A) defined by translation. 

That is, T^^{F){w) = F{w + 7Vo) for any wo, w e V x V and F e Cb{V x V.,A). 

The action r is an isometry action w i t h respect to the seminorms (7.5). We define 

B^{V X V) to be the maximal subalgebra such that r is strongly continuous and 

whose elements are aU smooth wi th respect to the action of r . 

In the same way as one induces f rom the family of seminorms {^m} and obtains 

the seminorms || • of A in (7.4), one may induce the family of seminorms on 

B^{V X V) f rom (7.5) by taking into account of the action of r . For any F E 

B-^{V X V), let 

( ' . ' " )< ( j , f c ) iH</ 

where i/ are the multi-indices and S"^ denotes the partial diff'erentiation operator 

associated to r of V" x K. 

Step 2. The following is the fundamental result of the deformation quantization 

of a differentiable algebra. See Proposition 1.6 in [21]. One can define an ^-valued 

oscillatory integral over V x V of F e B^{V x V) by 

L 
F{u,v)e{u • v) dudv, (7.7) 

'VxV 

where e{t) := e'̂ ) for i € M and • is the natural inner product on V. 

The integral is shown to be convergent in the family of seminorms {| | • \\j,k} on 

A so that i t is ^-valued. Specifically, for large enough /, there exists a constant C; 

such that 

F{u, v)e{u • v) dudv 
V X V 

where the seminorm || • ||^^,., is defined in (7.6). 

< C, \\F\\l, < c^, 
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Step 3. Any two functions f , g e A define an element F^'^ e B-^{V x V) by 

F ^ - 9 ( M , V) := aju{f)a^{g) G A, V(«, G K x K (7.8) 

for any invertible matr ix J acting on V. The deform.ed product f Xjg is thus defined 

by the integral (7.7) of Ff'^{u,v) as, 

f ^ j g - = / a j „ ( / ) a^ (5 ) e (u - ' y ) c?udz ; . (7.9) 
Jv Jv 

The algebra A w i t h its deformed product x,/, together w i t h its undeformed 

seminorms {| | • Wj^k}-, defines the deformed Frechet algebra Aj. This is called the 

deformation of the algebra A (in the direction of J ) as a differentiable Frechet 

algebra. 

In the following, we obtain deformation quantizations of various algebras of func­

tions on EH-spaces. We induce the torus action Q on the algebra C^{EH) where 

C^{EH) stands for C^{EH)., C^{EH) or C^{EH) f rom the isometric action a 

(6.4) as follows. For any v G i l ( l ) x 11(1) its action through a : U ( l ) x U ( l ) 

Aut{C^{EH)) is defined by 

a , ( / ) ( x ) : = a{v){f){x) = / ( ( T _ , ( X ) ) , V, / G C^{EH)X G EH. 

In coordinates, i f z; = {v3,V4) then ay{f){r,6, (p^tjj) = f{r,9,(p - v^.tp - v^) where 

( r , ^ , 0 , V ' ) G F H . 

Under the choice of the covering {UN.US}, the orbit of any point x G EH lies in 

the same coordinate chart as x. We assume that the par t i t ion of unity and hg 

only depend on the coordinate 9 so that they are invariant under the torus action 

a. 

One can easily show that the torus action a is isometric w i th respect to the fam­

ily of seminorms (7.1). We also note that each of the Frechet algebras C^{EH) and 

C^{EH) is already smooth w i t h respect to the action a. Thus, each of C^{EH) 

and C^[EH). w i th the isometric action a, regarded as a periodic action oiV = R^, 

appears exactly as the starting point as (.4, [qm]) of Rieffel's deformation quantiza­

tion. We can carry out step 1 to step 3 and obtain the product X j on the respective 

algebras, 

f ^ j g - = / aju{f)cty{g)e{u-v)dudv, (7.10) 
./IR2 J R 2 
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where the inner product u • v is the one on and J is a skew-symmetric linear 
operator on R-. In the following we assume J := , for some 9 £ R \ { 0 } . 

and denote X j as x^. 

The algebra C^{EH) w i th its deformed product x^, together w i t h its unde-

formed family of seminorms (7.1) defines the deformed Frechet algebra C^{EH)e 

as the deformation quantization of C^{EH). Similarly, C^{EH)e is the deforma­

t ion quantization of the algebra C^{EH). 

For the Frechet algebra C^{EH), the torus action a is isometric wi th respect to 

the family of norms { | | • ||//2}fcgpj, because i t is isometric w i th respect to the Rieman­

nian metric. We can similarly obtain the Frechet algebra C^{EH)g as deformation 

quantization of the algebra C^{EH). 

R e m a r k : For any of the algebras in our example, the family of seminorms || • H ĵt 

induced f rom (7,„'s as in Step 1 is equivalent to the original family of seminorms. 

Indeed, the torus action is defined by the normal differentiation w i t h respect to 

coordinates. 

There follows some immediate observations. 

L e m m a 7.2.1 The algebra C^{EH)g is an ideal of the algebra C^{EH)g. 

Proof: Let / € C^{EH) and g G C^{EH). Considered as elements of the algebra 

C^{EH), they define Ff'^ e ^^6°°(£^^)(e2 ^ ^^2) ^j gy ^i^-^ ^^^^ pf,g ^-^^ 

jgCf={EH)^^2 ^ ]^2^ j|.g oscillatory integral, or product of f Xgg by definition, 

w i l l be finite in the family of seminorms on C^{EH) and hence C?^{EH)-valued. 

I n fact, 

/ \F^''{u,v){x)\''dVol{x) = [ \fiJu + x)g{v + x)\^d.Vol{x) 
JEH JEH 

< sup \g{x)\^ f \f{Ju + x)\^dVol{x) 
x€EH JEH 

= sup\g{x)\^f \fix)fdVol{x) <oo. 
xeEH JEH 

The last ecjuality follows f rom the invariance of the volume form of the integration 

w i t h respect to the torus isometric action. The finiteness is because g is a bounded 

function und f e C^{EH). 
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Higher orders can be shown as follows. For any non-negative integer k, we may 
expand V ' ' ( / ( J u + x)g{v + x)) by the Leibniz rule to a summation of terms in 
the form of V ' / ( J ' u + x)V"'g{v + x) w i t h I + m = k. By the assumption that 
V ^ 7 is L^-integrable for any k and V ' p is bounded for any I, each term in the 
summation is L--integrable. Thus V''{f{Ju + x)g{v + x)) is L^-integrable for any k 
and Ff-^{u.v) € C^{EH) for any [u,v) e x ^ result, the product f Xeg 

is C^{EH)-wA\vied and C^{EH)e is an ideal. • 

Restriction of the product (7.10) of the algebra C^{EH)o to the algebra C^{EH) 

gives the deformed algebra C^{EH)g. We see that i t is closed as an algebra as fol­

lows. For any / , .9 G C f { E H ) , the integral (7.10) vanishes outside the compact set 

Orb{supp{f))nOrb{supp{g)), where Orb{U) := {aj2{x) : x e U C EH}. Therefore, 

f Xg g is of compact support and C^{EH)o is thus closed. We assign the topology 

of inductive l imi t on C^{EH)e f rom that of C^{EH). Using definitions, we have 

L e m m a 7.2.2 C^{EH)g is an ideal of the algebras C^{EH)e and C^{EH)e. 

Proof: For / £ C^[EH)e and g e C^{EH)g., the integral (7.10) vanishes outside 

the compact set Orb{supp{f)). Hence / x^ g is C^°°(i; i /)-valued, so that C^{EH)g 

is an ideal of the algebras C^{EH)e. The proof for the algebra C^{EH)g is the 

same. • 

The torus action Q as a compact action defines a spectral decomposition of a 

function / in the algebra C^{EH) or C^{EH)., by 

/ = E / - / , , (x) = e - "^^e -^ ' ^ / . , ( r , ^ ) . 
s 

72 where s = (53,64) G Z-, fs satisfies Q^/^ = e{s • v)fs.yv G i l ( l ) x 11(1), and the 

series converges in the topology of uniform convergence of all derivatives. Under 

the decomposition, the product of (7.10) takes a simple form (Chapter 2, [21]). Let 

/ = fr and g = J2s 9s: in their respective decompositions, be both in the algebra 

C^{EH) (or C^{EH)), then 

f xgg = ^a{r,s)f.rgs. (7.11) 

r.s 

where cr(r, s) := e{-s • Jr) = e((9(r4S3 - r3.S4)) and r = (r3,'r4),s = (5-3, 54) G Z". 

The expression (7.11) can also be restricted to the algebra C^{EH)g. 
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e 
+ 2' 

L e m m a 7.2.3 C^{EH)g is an ideal ofC^{EH)e. 

Proof: For any / G C^{EH)e and g e C^{EH)g., i t suffices to show that f Xeg e 

C^{EH)g. For g being zero, this is t r iv ia l . We thus assume that g is nonzero. The 

convergence of the series (7.11) implies that for any e/2 > 0, there exists an integer 

N such that 

\fxeg{x)\< E (^{r..s)fr{x)g,{x) 
\T\:\S\<N 

for any x G EH, where | r | := jraj + [r^l and |.s| := jsaj -|- |s4|. 

Since fr G C^{EH), for each | r | < A^, there exists a compact set A ' ( / r ) C EH 

such that 

| / . ( x ) | < ^ , Vx G F / / \ A ( / . ) , 

for any fixed constant C. 

Therefore, for any £• > 0, we may choose A'' and K{fr) as above and define 

the union of finitely many compact sets as K := [J\r\<i\iK(fr)., so that x G EH\K 

implies that 

/ xeg{x)\ < E (7{r:S)fr{x)gs{x) 
\r\,\s\<N 

where A^i is a finite non-negative integer counting numbers of indices r and s sat­

isfying |r | , |s| < N. I f we fix the constant C = sup^.^^^ \(T{r,s)g{x)\AN, then the 

above ineciualities give ] / x^ g{x)\ < e, whenever x G EH\K. Therefore, f Xg g is 

C^{EH)-valned, and C^[EH)e is an ideal of C^{EH)e. • 

We wi l l end this section by introducing local algebras. 

Definit ion 7.2.4 [10] An algebra Ac has local units if for every finite subset of 

elements {a j }"^j C Ac-, there exists (p E Ac such that for each i. 0 a, = a, 0 = a^. 

Let A be a Frechet algebra such that Ac C A is a dense ideal with local units, 

then A is called a local algebra. 

Proposi t ion 7.2.1 The algebra C^{EH)g has local units and the algebra C^{EH)g 

IS a local *-algebra. 
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Proof: For any finite set of elements C C^{EH)g, there exists a compact 

set K large enough to contain the union of supports \Jpsupp{ffi). Let 0 be a function 

equal to 1 on A' and decaying only w i t h respect to the r-variable to zero outside K. 

Thus defined (j) satisfies 0 = 0(ô o) in the spectral decomposition so that 0 x ^ 7 ^ = 

f p xg(j) = f p for all p. Thus, {C^{EH), Xg) is an algebra wi th units. 

The fact that C^{EH) is dense in C^{EH) w i t h respect to the topology of 

uniform convergence of all derivatives implies that C^{EH)g is dense in C^{EH)g, 

since the family of seminorms is not deformed. C'^{EH)e is an ideal in C^{EH)g 

by Lemma 7.2.2. 

The involution * of C^{EH)g is simply defined by the complex conjugation. 

Thus C^{EH)g is a local *-algebra. • 

Lemma 3 of [10] says that there exists a local approximate unit {0n}n>i for 

a local algebra {Ac C)A. In this example, we choose a family of compact sets 

KQ C Ki C ... in the EH-spsiCe, increasing in the r-direction. For instance, 

Kn:= {x e EH :r < n}, V n G N. 

Let {0n}neN be a family of functions wi th compact support Kn C supp{(f).n) C 

such that (pn is constant 1 on A „ and decays only w i t h respect to r to zero on Kn+i-

This gives a local approximate unit . I t is not hard to see that each 0 j actually 

commutes w i t h functions in the algebra C^{EH)g. Furthermore, the union of the 

algebras U„ef^[C^(£ ' i / ) e ]„ , , where 

[C^{EH)gU : = { / e C^iEH)g •.4>nXgf = f Xg 0„ = / } , 

is the algebra C^{EH)e. 

7.3 Algebras of operators, deformation quantiza­

tion of C*-algebras 

Let C^{EH)g stand for the algebras C^{EH)g, C^{EH)g or C^{EH)g. Following 

the construction of [23] [14], we may obtain representations of these differentiable 

algebras on the Hilbert space H of spinors by the torus isometric action. 
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The operator representation of C^{EH)e on the Hilbert space H is defined by 

Ly.= Y^A4j,.V:, (7.12) 

where Mj^ is the normal mult ipl icat ion by fr and is defined to be the unitary 

operator Vy (6.25), evaluated at ?; = {v3,V4) : = [Or^.—Orj,). 

R e m a r k : Geometrically, = V^Q-r^.-erj,) is the action of parallel transporting 

any section by —Or-i along the ip direction followed by a parallel transporting by dr^ 

along the (j) direction. 

W i t h the involution on C^{EH)e defined by the complex conjugation of func­

tions, we can use the property {f*)r = {f-rY and V^^hg = hsVfa{r, .s) for any simple 

component hs f rom /i,s: to show that the representation (7.12) is a fa i th fu l *-

representation of C^{EH)e. 

We may define the C*-norm of C°°{EH)g by the operator norm || • ||op of the 

representation on H. The series of operators (7.12) converges uniformly in the 

operator norm. We denote the C*-completion of the algebra C^{EH)o by Cb{EH)e-

I t is a deformation of Cb[EH) as a C*-algebra. 

As a Banach algebra, Cb{EH)e satisfies holomorphic functional calculus. We see 

that the subalgebra C^{EH)e is stable under the holomorphic functional calculus 

of Cb{EH)e. Indeed, for any invertible / G C^[EH)g of inverse f~^ as an element 

in Cb{EH)e.. we apply derivatives to / XQ = 1. By the Leibniz rule and the 

boundedness of derivatives of / to all degrees, we conclude that f~^ is bounded 

of all derivatives and hence an element in C^{EH)0. As we wi l l see that the C*-

norm is weaker than the family of seminorms which define the Frechet topology on 

C^[EH)e.. C^{EH)e is a smooth algebra f rom Definit ion 2.5.4. 

The C'-completion Co{EH)e of the algebra C^{EH)o defines a deformation of 

CQ{EH) as a C*-algebra. C^'{EH)e is also stable under the holomorphic func­

tional calculus of CQ[EH)0 and hence a pre-C*-algebra. Endowed wi th the Frechet 

topology, C^'{EH)e is also a smooth algebra. 

In the commutative case, one can show that || • ||op is bounded by the zero-th 

seminorm go in the family of seminorms (2.2). Hence the C*-norm is weaker than the 

family of seminorms (2.2). To see that the same holds in the deformed case, we note 
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that in Rieffel's construction, the deformed Frechet algebras can be represented 
on the space of Schwarz functions associated w i t h a natural inner product (page 
23 [21]) and completed to C*-algebras. Furthermore, the correspondent C*-norm 
is shown to be weaker than the family of seminorms defining the Frechet topology 
(Proposition 4.10 [21]). We may induce a *-homomorphism f rom the C*-algebra 
representing on H to the C*-algebra. representing on the space of Schwarz functions 
by the identity map of functions. Since any *-homomorphism between C*-algebras is 
norm-decreasing by Proposition 2.3.1, we conclude that the C*-norm on C^{EH)g 
represented on Ti is also weaker than the family of seminorms (2.2) defining the 
topology of uniform convergence of all derivatives. 

7.4 Nonunital Serre-Swan theorem 

The link between vector bundles over compact space and projective modules is the 

Serre-Swan theorem [3]. I t is generalised for vector bundles of finite type, of which 

there exists a finite number of open sets in the open cover of the base manifold such 

that the bundle is triviahzed on each open set [38]. The smooth version of the result 

is as follows. 

T h e o r e m 7.4.1 The category of spaces of .smooth sections of complex vector bun­

dles of finite type over any differentiable manifold X is equivalent to the category of 

finitely generated projective C^{X)-modules. 

R e m a r k : There exists an alternative version of the generalised Serre-Swan the­

orem [10] for vector bundles over noncompact manifolds, proved by using certain 

compactification of the base manifolds. Since the simplest one-point compactifica-

t ion of the Eguchi-Hanson space gives an orbifold due to the Z2-identification, it is 

not straightforward to apply the construction there. 

In the following, we wi l l use Theorem 7.4.1 to find the projective module as­

sociated to the spinor bundle <S of the EH-space as defined in Section 6.3. In the 

coordinate charts U,w and Us of the EH-space, we may choose a part i t ion of unity 
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{h^^hs} by 
0 0 

hN{x) := cos^ - , hs{x) := sin^ - , x G EH. (7.13) 

Recall that in the unitary basis {/„} of Sufj and {f'g} of Sug., the transition 

functions P^'s and Qp's. such that = P^/^ and f'p = Q'^fa-. are matr ix entries of 

P in (6.12) and Q in (6.13), respectively. 

The idea is to extend the basis { f a } on across the "north pole" N and { / Q } on 

Us across the "south pole" S so that one can take the summation of both extended 

global sections to obtain a generating set of the space of smooth bounded sections 

of the spinor bundle r ^ ( 5 ) . 

To extend { f a } across A , we may rescale i t by the function hf,i, 

(7.14) 

so that Fa's now decay to zero smoothly at A'. Similarly, we may rescale the basis 

{ f a } t>y the function /).5 by defining 

f' hs on Us 
n = { • (7.15) 

0 at 5 

Note that on the intersection U,\ (1 Us-, the transition function satisfies Pphi^; 0 

whenever HJM —>• 0, and similarly Qghs —> 0 whenever hs ^ 0. 

L e m m a 7.4.2 The set of global sections { F ^ , F ^ } , where a = 1 , . . . ,4 . are the 

generating set of the space of bounded .smooth sections of the spinor bundle r ^ ( i S ) . 

Proof: The restriction {FOIUN} where a = 1 , . . . ,4 is a basis for Su^^,. Indeed, any 

section tp G T^{S) can be wri t ten as 'iplu^ = il)^fa = a°'fah^ = a'^Falu^, where 

= 'il}°'/hi^. Similarly, the restriction {Fa\us} gives a basis for Sus-. since any 

section 4; can be wri t ten as 'iplus = ^"^fa = b^'fah-s = b^'F^los: where 6" = ^'"/hg. 

On the intersection. 

Falu^nUs = hN Pa F'jS ^'5^ ^^QIC/NHC/S = hs Qa h 1 
A' • 

Let {k^, ks} be a new part i t ion of unity such that the supp{kj\!) C t/^- and supp{ks) C 

Us- Furthermore, A-.v {ks, respectively) is required to decay faster than around 
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{hs around S. respectively). We may choose for instance,^ 

k^ix) := cos^ ( | sin^ ^ ) , ks{x) := sin^(^ sin^ x G EH. 

Therefore, â A-;̂ ^ —> 0 on UN, whenever /?,/v —> 0, and b'^ks —̂  0 on Us, whenever 

hs —>• 0. Thus, we can extend the coefficient functions a'̂ 's and b°''s by zero, 

a°'k!\r on Ui^ b"ks on Us 
A° := ( , := <^ 

0 at N 0 at 5 

so that = A ^ F ^ + 5"F^ . In fact, 

^"A;,v/a + ^/' '"As/; on U^ D Us 

A^F^ + = <^ 
lb" fa on UN 

V / " A s / ; at ./V = <J (7.16) 
on US 

' ^ " ^ A ' / Q at 5 

which is the section ip in r ^ (»S) . Therefore, {Fa, F^} wi th a = 1 , . . . , 4 is a gener­

ating set of F ^ (5). • 

By construction, we may obtain a projection in Ms{C^{EH)) corresponding 

to the spinor bundle S. Under the standard basis of the free C ^ ( F / / ) - m o d u l e 

C ^ { E H f , we define the matr ix, 

k\i 1 ki\j P 
(7.17) 

\ks Q ks 1 J 

where P and Q are 4 x 4 complex matrices f rom (6.12) and (6.13) and 1 is the four 

by four identity matrix. 

Proposi t ion 7.4.1 r ^ ( 5 ) is a finitely generated projective right (EH)-module, 

pC^iEHf = r^{S). (7.18) 

Proof: I t is easy to check that p^ = p = p*. To show that (7.18) is an isomor­

phism, any section can be represented as an element in pC^{EH)^ by construction. 

Conversely, the matr ix p maps any element [t],... .t^. t'^,... ,t'^Y of C'^{EH)^ to 

{{t, + P%) A,v, (^2 + P^.t'p) k,y.. ih + P%) A;,v, {t, + P%) Ayv-, 

'These functions are kindlv .siigge.sted bv Derek Harland. 
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{t[ + Q^t^) ks, (//2 + Q^/5) ks.. « 3 + Q%) ks: {t'4 + Q%) ksY. 

Let = ( P + P%)kN and 5 " = [t'" + Q^tp)ks, for cv = 1, • • • , 4, then the image 

gives a section in r ^ ( 5 ) in the form of (7.16). Therefore, (7.18) is an isomorphism. 

• 

Columns of the matrix p = (p^) give a generating set of r ^ ( i S ) . We may define 

Pk •= {Pi, • • • -.PsY for /c = 1 , . . . , 8, then any element ^ G pC^{EHY can be wr i t ten 

as ^ = Z P A for functions a. e C^{EH). 

7.5 Smooth modules of the spinor bundle 

I n addition to the description of a vector bundle as a finitely generated projective 

module, the integrability conditions of the sections become vital when the base 

manifold is noncompact. The notion of smooth module [10] is proposed to integrate 

the two aspects. We wil l give the relevant background from the reference. 

Let AQ be an ideal in a smooth unital algebra Ab- Suppose that AQ is further a 

local algebra containing a dense subalgebra of local units Ac- Assuming the topology 

on Ao is the one making it local and the topology on Ab is the one making it smooth, 

i f the inclusion i : Ao Ab is continuous, then ^ 0 is a local ideal. I t is further 

called essential if ^ 0 ̂  = { 0 } for some b E Ab implies b = 0. 

Let ^ 0 be a closed essential local ideal in a smooth uni tal algebra Ab and p G 

.AdmlAb) be a projection. By pulling back the projective modules £b defined by pA]^' 

through inclusion maps i : Ac ^ Ab.. one can define the Ab-finite projective .4c-

module £c by pA^. Similarly, one can define the .46-finite projective ^lo-module SQ 

by pA"^. 

By using the Hermitian form on the projective modules (^,77) : = J^^iVi as the 

convention given in Section 4.3. One may obtain the topology on £c induced f rom the 

topology of the inductive l imi t on Ac-, the Frechet topology on £0 induced f rom the 

Frechet topology on ^ 0 and the Frechet topology on £b induced f rom the Frechet 

topology on Ab. Hence one has the following continuous inclusions of projective 

modules, £c ^ £0 ^ £b-

Definit ion 7.5.1 A smooth Ab-module £0 is a Frechet space with a continuous 
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action of Ab such that 

^ <̂ 2 £ 0 , 

as linear spaces, where the inclusions are all continuous. 

Returning to our example, we may choose Ac as C'^{EH)e., AQ as C^{EH)0, 

A2 as C^{EH)e and A as the unital smooth algebra C^{EH)0. 

Proposi t ion 7.5.1 Assuming that C^{EH)e is the algebra of units, the algebras 

C^{EH)e, Cf[EH)e andC^{EH)e are all essential local ideals ofC^{EH)e under 

the topology of uTiifoimn convergence of all derivatives. 

Proof: C^{EH)e is an ideal of C^{EH)e by Lemma 7.2.3. Since the topology 

on C^{EH)e and C^{EH)0 are both the topology of uniform convergence of all 

derivatives, the inclusion C^{EH)g ^ C^[EH)e is continuous. 

To show that the ideal C^{EH)o is essential, we suppose that / G C^{EH)g 

satisfies p Xg / = 0 for all g G Co{EH)e. Taking g = 1 /r, g xg f = g x f = 0. This 

implies that / = 0, since 1/r is nowhere zero. Thus, C^{EH)g is an essential ideal. 

C^{EH)e is an ideal of C^{EH)g by Lemma 7.2.1. Similar to the proof for 

C^[EH)e, Cf{EH)e is further an essential ideal. 

C^{EH)e is an ideal of C^{EH)g by Lemma 7.2.2. C^{EH)g carrying the 

topology of inductive l imi t is a local essential ideal, as is implied by Corollary 7 

of [10] directly. • 

W i t h the differential topologies the same as their commutative restriction, there 

is a chain of continuous inclusions, 

C^[EH)e ^ C^{EH)e ^ C^{EH)e C^{EH)e. (7.19) 

One may define the following projective modules PC^{EH)Q, pC^{EH)l and 

PC^{EH)Q by the projection p in the form of (7.17) while considered as an element 

in Mg,iC^{EH)e). I t is not hard to see that p^ = p = p* s t i l l holds in this deformed 

case. 

The family of seminorms, say {Q,„) ' s , on the projective modules is induced 

f rom the family of seminorms on the algebra, say [qm] '^: by composing wi th the 

Hermitian form (-, •) on the projective modules as QmiO '•— Iviiii-.O) for any in 
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the projective module. The topologies on the projective modules are defined by the 

induced family of seminorms. In this way, the chain of algebras (7.19) induces the 

chain of projective modules, 

Note that the action of C^{EH)e onpC^{EH)l is continuous. Indeed, if a sequence 

of elements (^^} in pC^{EH)l satisfies that Qmi^p) 0 as fJ ^ oo, then for any 

/ G C^{EH)e.. 

where Qm stands for || • \\H^ defined in (7.2). Therefore, pC^{EH)g is a smooth 

module. 



Chapter 8 

Nonunital spectral triples and 

summability 

In this chapter, we define nonunital spectral triples and consider their summabil-

ity. We also consider the regularity and measurabihty of the spectral triples of the 

isospectral deformations of EH-spaces. 

Rennie (Theorem 12, [11]) provides a measurability criterion of operators f rom 

local nonunital spectral triples. W i t h i n the locality framework, a generalised Connes 

trace theorem over a commutative geodesically complete Riemannian manifold is 

also given (Proposition 15, [ H ] ) - The Dixmier trace of such measurable operator 

agrees w i t h the Wodzicki residue of the operator [39]. 

Gayral and his coworkers [40] carry out a detailed study on summability of the 

nonunital spectral triples f rom isospectral deformations. Their results are also of a 

local kind. 

8.1 Nonunital spectral triples and the local (p, oo)-

summability 

Definit ion 8.1.1 [10] A nonunital spectral triple ( ^ , 7 i , P ) is given by 

1. A representation TT : A —> ^("H) of a local *-algebra A, containing some 

algebra Ac of local units as a dense ideal, on the Hilbert space H. A admits a 

75 
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suitable unitization Ai,. 

2. A self-adjoint (unbounded, densely defined) operator V : domV —> H such 

that [D, a] extends to a bounded operator on H for all a E Ab and a{V — \)~^ 

is compact for A ^ M and all a e A. This is the compact resolvent condition 

for nonunital triples. 

We omit TT if no ambiguity arises. The spectral triple is even i f there exists an 

operator x = X* such that x" = 1, [Xi«] = 0 for all a e ^ and xT^ + T^X = 0-

Otherwise, i t is odd. 

To obtain the nonunital spectral triple of the isospectral deformation of the EH-

space, let A be the local ^-algebra C^(EH)e (Proposition 7.2.1) which contains the 

algebra of local units C'^{EH)e as a dense ideal. The unitization Ab is chosen as 

C^{EH)e. The representation TT is defined by the representation : C'^{EH)e 

B['H) f r om (7.12). The boundedness of where / = fr can be seen as follows, 

l-^/llop 
lop r r r 

where the summations are over 7?. The second inequahty is implied by the fact 

that is unitary. 

Let V be the extension of the Dirac operator of the spinor bundle to the Hilbert 

space Ti. Since the Eguchi-Hanson space is geodesically complete, the extended 

operator is self-adjoint. We wi l l see in the next subsection that the operator [D, 

is of degree 0 as a pseudodifferential operator and hence bounded. 

The operator x is chosen to be the chirality operator defined in (6.15), such that 

X = X* s-̂ d̂ x^ = \. Since x can be realised as a fibrewise constant matr ix operating 

on the spinor bundle, its commutat ivi ty w i t h respect to any L^- = Mj^Vf holds. 

The identity x^^ + T^X = 0 can be deduced f rom spin geometry [32 . 

The data {C^{EH)e, H, V) w i l l be a nonunital spectral triple once the compact 

resolvent condition is shown. Before that, we consider the following proposition. 

Propos i t ion 8.1.1 For any f € C^{EH)e, 

L]{V-\)'' eC'-°^{n)., V A ^ R . (8.1) 
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Proof: The proof is a straightforward generahsation of Proposition 15 of [11] and 
references therein. 

W i t h respect to the local trivializations {f/./v, Us} of the spinor bundle S coming 

from the stereographic projection as before, we may show the summability of the 

operator (8.1) by showing the summability of the restrictions of the operator on 

each trivialization. Indeed, for any / G C^{EH)o, the operator = J^r^^^fr^r is 

defined by summations of normal multiplications by fr following parallel transport­

ing in the (f) and ip directions, so that i t is well-defined when restricted on either 

[//V or Us- We may choose some part i t ion of unity so that each function / can be 

decomposed as f = + f s w i t h 6 C^iU^) and f s G C^{Us). I t suffices to 

show that 

L j ( P - A ) - i G C''^{L\Su,)).. V / G C^{U^), (8.2) 

and similarly for Us-

For any fixed / G C^{Uj^-)e, we can find a positive constant R > a big enough, 

and a constant 0 > 0 small enough such that the compact region defined by 

WH,e := {x e UN •• r < K 9 > e} C t/yv, 

contains the compact support of / . Notice that w i t h the restricted metric f rom the 

EH-space, the region W^ Q is a compact manifold wi th a boundary OWR Q defined 

by r = R and ^ = O. We w i l l f ix R and 0 f rom now on, and write W instead of 

Wji Q and denote the restriction of the spinor bundle S on W^^Q by Sw- Because 

the integral curve starting through any point in W along the (p or t/j direction sti l l 

hes wi th in W, the action of can be restricted on sections of the subbundle Sw-

To prove (8.2), i t suffices to prove that 

L j ( P - A ) - ^ G £ ' ^ ° ° ( r ^ ( 5 i v ) ) . 

Let W :— W \Jdw { — W) be the mvertible double [41] of the compact manifold 

W w i th boundary dW, and let the corresponding spinor bundle he S W and the 

corresponding Dirac operator be Vj. Applying the Weyl's lemma [42] on S ^ W as 

a vector bundle over a compact manifold without boundary, we obtain (P / - A)~^ G 

C^'°^{L^{S)), for A ^ R. That is, 

\\{V, - Xr'W^^^ < oc., V A ^ M , (8.3) 
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where the norm is the (4, oo)-Schatten norm and we indicate the domain and image 
of operators as superscript on the norms. 

As to the action of we may extend the function / e C^{W) to a function 

/ € C^{W) by zero. Correspondingly, we may extend the operator : L'^{W, S) 

L^-{W,S) to 

L'j : L-{W,S) ^ L~{W,S). 

Using the resolvent identity [L^-, (I?/ - A ) " ' ] = {V, - X)-^[V/., L^j\{Vi - X)'\, we 

have 

L j - ( P / - A ) - ' = {V, - \ ) - \ V , L] - L]Vi){Vi - X)-' + {Vj - A ) " ' (8.4) 

By composing L^- w i t h the restriction of sections of L'^{W, S ) to L''^{W, 5 ) , we obtain 

an operator in the same notation, L^- mapping f rom L-{\'V,S) to L'^{W,S). Let 

/. : W ^ W be the inclusion map, the composition of L w i th the identity (8.4) then 

gives, 

L'jiVj - X)-'i = {V - XY\V L^j - L'jV,){V, - X)-' i + {V ~ X)-' L] i, (8.5) 

as operators maps from L~{W,S) to itself. 

Applying (8.5), we obtain 

\\L]{V-XV\\l-^'-

= \\L){V, - X)-\.\\X-'' 

= \\{V- A ) - i L)i + {V - XY\V L) - L)V,){Vj - A ) " ' 

< \ \ { V - A ) - ' L)L\\1~'" + \\{V - xr\V L) - L ) V , ) { V , - A ) " ' .H^; 1 . I I I V — I V 
.oo 

We consider the two terms in the last line separately. Since the inclusion /, is an 

isometry, the first term is bounded as 

i i ( ^ - A ) - ^ L ) . i i r r ^ - < \\{v-x)-n)\\: 

7110P 

where ||I/^-||"p < cx) is because L^- is the t r iv ia l extension of the bounded operator 

L j f rom L'^{W,S) to itseh and the finiteness of IK^y - A ) " ' \\f~^ is by (8.3). The 
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second term is bounded as 

-1 ,\\W~W 
,oo 

-1 iiW-^W 
:.00 

\\{V - A ) - ^ ( P L j - - L}Vf)iVr - A)"^ . | | ,^ 

< \\{V - \)-\V L) - L]Vi){Vi - A ) - l J : 

< | | ( P - A ) - C - ^ | | P L j - - L j P , C - ^ | | ( P ; - A ) - | | f - ^ (8.7) 

Indeed, the finiteness of IK'C'- A ) " ^ | | ^ ~ ^ is by the fact that {D — \)~^ is a bounded 

operator on S ^ W as the restriction of the bounded operator on iF'iS). For the 

finiteness of [ j P L j - - L j - P / H ^ ^ ^ , we have 

\\VL)-L)Vj\S-^ = | | [ P , L 5 ] | | - - - < \\[V.L%%"-^" < oo, 

since / extends / by zero and the boundedness of [D, L^] w i l l be shown in the next 

section. The the finiteness of | | (P/ — A)~^||4'|'3^'^ is again by (8.3). 

Summation of the inequalities (8.6) and (8.7) implies that 

I l 4 ( ^ - ^ ) " ' l l " ' < ~ - (8-8) 

The proof for the coordinate patch Us is the same. • 

As pointed out by Rennie, Proposition 8.1.1 implies the compact resolvent con­

dit ion. 

L e m m a 8.1.2 For any f e C^{EH)e, L] {V - \)-^ G JC{n) with A ^ R. 

Proof: Let { /g} is be a sequence of functions in Cf{EH)e, which converges to 

the function / 6 C^{EH)g in the topology of uniform convergence, then {L^f^} 

converges to L j in the C*-operator norm, for the norm-topology is weaker than the 

topology of uniform convergence. This further implies that the sequence of operators 

{L^j^ [V — A)~^} converges uniformly to {V — A)"^ in the operator norm. The 

(4, c>o)-summabihty of each L^j^ ( D — A ) " ' by (8.8) imphes that they are all compact 

operators. As the uniform Umit of a seciuence of compact operators, {V — A)~^ 

is also compact. • 

In summary, 

Proposi t ion 8.1.2 The spectral data {C^{EH)e,'H.,V) of the isospectral defor­

mations of the Eguchi-Hanson spaces are even nonunital spectral triples. 
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Def ini t ion 8.1.3 [11] A (nonumtal) spectral triple {A, H., V) is called local, if there 
exists a local approximate unit {0„,} C Ac for A satisfying 

where 0,T)iA) is the algebra of operators on H generated by A and [D,A\ and 

^v{A)n : = G Q.v{A) : = cucpn = w } . 

Forp > 1, the local spectral triple is called local [p. oo)-summable if a {V — X)~^ G 

CP'°°{'H), X^R, for any a e A -

Local (p, oo)-summabihty implies that (Proposition 10 [11]) 

T ( l + V-)-' e C^P/'^^{n), 1 < Re{2s) < p, (8.9) 

for any T G B{n) such that Td) = (pT = T for some cj) G A - I f Re{2s) > p, the 

operator is of trace class. 

In considering the (local) summability of the spectral triples, we restrict ourselves 

on the spectral tr iple {C^{EH)e,n,V). 

L e m m a 8.1.4 The spectral triple {C^{EH)e., H. V) is local (4, oo)-summable. 

Proof: First we show that the spectral tr iple is local. We may choose the local 

approximate unit {0„} as defined in Section 7.2 so that each of 0„ remains commu­

tative. As operators, they act only by normal multiplication M^^ on spinors. 

Define [C'^{EH)Q\n to be the subalgebra of C'^{EH)e consisting of elements 

such that L) = L] = L], then C^{EH)g = Une4C^{EH)e]n- Thus 

nj,{C^{EH)e) = ^v{UnMCT{EH)e]n) = UneNnv{[C^{EH)e]n). 

We claim that this equals {Jr,eN['^v{C^{EH)e]n, where 

[nv{C^{EH)e]n := {LU G ^v{C^{EH)e) : u M^^ = M^^u = u}. 

By the fact that the orbit of the torus action of any point x G Kn remains in 

Kn, M^^ L^j = L^j whenever supp{f) C / \ „ . That the Dirac operator preserves 

support implies 

M ^ „ [ P , L j ] = [P,Lj]Mrf,„ = [V,L 
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This further gives that Unen^v{[C^{EH)e]n) C UnM^v{C^{EH)0]n. The other 
direction is obvious. Therefore, Q.x>{C'^{EH)e) = \Jnen[^v{C'^{EH)0]n, and the 
spectral triple is local. 

The local (4, cx))-summability of the spectral triple {C^{EH)g,T>,H) is imphed 

by Proposition 8.1.1. • 

8.2 Regularity of spectral triples 

For a given spectral triple {A, V, H), we can define a derivation 5 on the space C{'H) 

of linear operators on the Hilbert space by 

5{T) := [\VIT]., \JTeC{n). 

A linear operator T is in the domain of the derivation dom5 C C{H) if G 

domdV]) implies T{IIJ) G dom.{\V\) for ip E H. For any positive integer k, T is 

in the domain of the fc-th derivation domd^ C C{l-L) i f 6^~^{T) G domS. where 

(5'=-i(T) = [\V\,[\V\,...,[\V\,T]...]], w i t h (fc- 1) brackets. 

The intersection of domains of 6 w i th all possible degree dom°°5 := Hk^^domS'^ 

is the smooth domain of the derivation 5. When /c = 0, dam 5° is simply the space 

of bounded operator B['H). Therefore, an operator T G domd'^ i f S''{T) is a bounded 

operator. 

Defini t ion 8.2.1 A spectral triple {A,H,T>) is regular if Q-^i-^) C dom°°5. 

The regularity condition is crucial in considering differential functional calcu­

lus associated to a spectral triple {A,H,V). For T G ^ we define the family of 

seminorms by 

g„,;(r):=||(5"(r)d'(r)||, n>0 , z = 0,l, 

where d{T) := [D, T]. The natural topology of A induced by this family of seminorms 

is called the 6-topology. Let As be the completion of A under the S-topology. A n 

important observation in [10] (Lemma 16) says that i f {A, H, V) is a regular spectral 

triple, then [As-, Ti, V) is also a regular spectral triple. Furthermore, the algebra As 

is a smooth algebra. This allows one to consider the spectral triple {As-H.V) 
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instead. The completeness of As allows the C°° functional calculus to hold by 
Proposition 22 of [10]. We also remark that these are the techniques necessary in 
the reconstruction theorem to obtain coordinate charts and differentiable structures 
8] [9-

Before considering the regularity of the spectral triple {Co{EH)0,H,'D), we col­

lect some related properties of operators and V as pseudodifferential operators. 

We refer to [43] for background on pseudodifferential operators on noncompact man­

ifolds. The Dirac operator V on the spinor bundle S is a first order differential 

operator w i t h a principal symbol cr^(x,^) = c{E,jdx^), where ^ as a section in the 

cotangent bundle T*{EH) is of coordinates ( • f i , - - . , ^ 4 ) w i th respect to the basis 

{dx^} defined in the beginning of Section 6.1 and c is the Cli f ford action. 

The operator P - is a second-order differential operator w i t h a principal symbol 

cy''\x.,0=g{^.,E,)U.. (8.10) 

where g is the induced metric tensor on the cotangent bundle f rom that on the 

tangent bundle (6.2). 

L e m m a 8.2.2 The principal symbol of the pseudodifferential operator Mj is 

a^'f{x.,0 = Mj{x) = dtag,{f{x)), (8.11) 

where diagr{g) denotes the r xr diagonal m,atrix of g on the diagonal. The principal 

symbol of the pseudodifferential operator is 

a ^ / ( x , 0 = Yl Mj^[x)P'{x)e{e{r,i,-r,e,^)). (8.12) 

r=(r3,ri) 

where the matrix-valued function P^{x) = PM{X) defined by (6.25) with [v^-.v^] • = 

{er^.-dr:,). 

Proof ; Applying Mf where / = fr on the inverse Fourier transformation of a 

spinor -tp, 

(jTT^ I ^ ' " ' ^ ( 0 ^ ^ ) = ( h r j dtag,{f{x))e^^^{Odt, 

we see that Mf is an order zero classical pseudodifferential operator w i t h principal 

symbol (8.11). 
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The pointwise evaluation of the operator is 

L j ' 0 ( . x ) = Yl ^'^friP^ ° ^4)(V^(.x- + (0, 0, -9r,., 9r,)))., (8.13) 
7' 

where C4 is the integral curve of the Ki l l ing field d-^ starting at {xi,X2, X3 — 9r4, .X4 + 

9r:i) and ending (.X], X2, .X3 -^7-4, X4) , and P4 is assumed to be the parallel propagator 

w i t h respect to the spin connection along the C4. I t is evaluated at the point 

(xi,X2,X3 — ^r4,X4) as a four by four matrix. Similarly, C3 is the integral curve of 

the Ki l l ing field 5^ starting at ( .xi, .xo, .X3 - 9r4, X4) and ending at ( x i , Xo, X3, X4) . P3 

is assumed to be the parallel propagator wi th respect to the spin connection along 

the C3 as defined by (6.24). In (8.13), their composition is evaluated at the point 

( x i , X2, X3, X4) as a four by four matrix. 

Applying on the inverse Fourier transformation of ijj. 

one obtains the symbol of L ^ . W i t h respect to the ^ variable, the complete symbol 

is bounded by a constant and hence is of degree 0 and i t can be chosen to be its 

principal symbol, which takes the form of (8.12). • 

Proposi t ion 8.2.1 The spectral triple {C'^{EH)e,'H,V) is regular. 

Proof: We write by / for notational simplicity here. As indicated in the proof 

of Proposition 20 in [10], / , [D, f ] G dom°°5 for any / G C^{EH)g if and only i f 

/ , [T>, / ] G domf,,j>oL^'R'^: where 

L ( / ) := {l+V'')-'^'[V\f], R { f ) := [ P ^ / ] ( 1 + P^)" ' / " , 

for the reason that |P | — (1 -I - V^Y^- is bounded. The rest of the proof is a direct 

generalisation of the standard method in the unital case, see for instance [6]. Denote 

ad(r>2)™(.) = [X)^_... ^ [p2^.]... ]^ w i th m brackets, so that 

L ' i f ) = (1 + V')-''-/'-ad{V'-)'{f), R^if) = ad{V')'{f){l + V'r'^'., 

where k.l ^N. Their composition is 

L'R'if) = {I + V')-'/'ad{V'-)'+^{f){l +V~)-'/''. 
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The operator ad{V-){f) — \V^,f] is of order at most 1, since the commuta­
tor of the principal symbols (8.10) and (8.12) vanishes. Similarly, the operator 
ad{V'^Y'^'-{f) is of order at most k + I. This implies that the operator L*^i?'(/) is 
of order at most zero and hence a bounded pseudodifferential operator on H. This 
holds for any k and / in N . Hence / G domkj>oL^R\ for any / G C'^{EHe). 

Since [D, h4f\ is a bounded operator of degree 0 and is of degree 0, seen 

from (8.12), \D. L^j is also a bounded operator of degree 0. The above proof holds 

i f / is replaced by [V,L]]. Thus \V,L]] G domu>oL''., for any / G C^{EH)g. 

Since L''R^{T) G domLPR^ = B{H) for any kA where T G BiH) is equivalent to 

T G domk,i>oL^R^ for any k.L. we obtain Q-j){C^{EH)e) C dom°^S. Hence the 

spectral triple is regular. • 

The regularity of the spectral triple {Co{EH)g,7i., D] allows us to define a new 

regular spectral triple by replacing Co{EH)e by its completion under the (5-topology 

if required. 

8.3 Measurability in the nonunital case 

The following is the measurability criterion of operators f rom a local nonunital 

spectral triple [11] as a generalisation of the criterion given by Connes in the unital 

case [5] (page 306), which we mentioned in the end of Chapter 3. 

T h e o r e m 8.3.1 Let {A-.H-.V) be a regular, local {p,oo)-summable .spectral triple 

with p > 1. Suppose that T G B{H) such that ipT = T ip = T for some ip > 0 m 

Ac- If the limit 

hm (s - ^) Trace {T{1 + V')-') (8.14) 

exists, then the operator T {I -\-V~)~^/^ is measurable and its Dixmier trace equals 

the limit up to a factor of2/p, 

T r + ( r ( l + p2)-f/2) = 2 ^.^^ _ m ^^^^^ ̂ ^^^ ^ 2̂̂ _,̂  ^g^^^ 

Implied by [40], the operators L^ ( l -h2?^ ) "^ for / G C^{EH)e f rom the spectral 

triple {C^{EH)g,V,'H) satisfy the measurabihty criterion (8.14) and hence the 

Dixmier trace can be uniquely defined. We w i l l show this in the following. 
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We have seen that the operator L ^ ( l - t -P - ) " - for / G C^iEH)g arising f rom the 
spectral triple {C'^\EH)e.. H, V) is in the Di.xmier trace ideal £^ °°(?Y). We consider 
the measurability of such an operator. Note that since / is of compact support, we 
can always find a function (p of value one on the support of / and decaying to zero 
only wi th respect to the r variable so that = A /̂̂  and hence L^jM^ = M ^ L ^ = 
holds. By t ak ings = 4, Theorem 8.3.1 implies that the measurabihty of L^( l - | -P^ )~^ 
is the same as the existence of the l imi t 

l im (s - 2) Trace (1^(1 + V~)-') . (8.16) 

Before finding the l imi t , we want to consider Schwartz kernels of operators in­

volved. The operator Mj can be represented as an integral operator on H as 

A4f{^jj){x)= f KM^{x.,x')xl){x')dVol{x'), VV̂  G 7^, (8.17) 

J EH 

where the Schwartz kernel KM^ : U X U ^ C and U is the local coordinate chart 

around the point x. 

L e m m a 8.3.2 The Schwartz kernel of Mj is 

KM,{X.,X')= Y1 MJXXWAX')., (8.18) 
r=(7-3,r4) 

where 5^(.x') is defined by requiring that 

^{x) = I 6',{x')^{x')dVol{x'), VV; G H. (8.19) 
.'EH 

Proof; Applying (8.19), we have 

A4j^P{x) = Mf{x) [ SUx')^{x')dVol{x') = [ M}{x)8l{x')^b[x')dVol{x') 
J EH J EH 

Comparing wi th (8.17), we obtain (8.18). • 

Using the property (8.9), the local (4, (X))-summability of the spectral triple 

{C^{EH)e,n,V) implies that 

L e m m a 8.3.3 The operators 1/^(1 + V'^)~^ is of trace class for s > 2. Similarly, 

the operators Mf{l +V'^)~^ is of trace class for s > 2. 

As Corollary 3.10 of [40], we have the following 



8.3. Measurabi l i ty in the nonunital case 86 

L e m m a 8.3.4 Trace{L^j{l + V')-') = Trace[Mf{l + P-)"^) for s > 2. 
Proof: We wri te h{T>) := (1 +T>'^)~^ for convenience. 

Trace{L]h[V)) = ^TraceUMiV^)h{V)) 
r 

= J^Trace{V,MfV_X^h{V)), V2 € U ( l ) x a ( l ) 
r 

= J2'^race{M^,_u,)V,'hm 
r 

= ^ e(r • z)Trace{MfX^h{V)), 
r 

using a ~ [ f r ) = e(r • z ) f r . The identity 

J2 Trace{Mfyfh{V)) = ^ e(r • z)Trace{MjV.^h{V)), Wz G U ( l ) x U ( l ) 
r r 

imphes that r = 0 in the summations and the sum takes the value TracelMf^QhiV)), 

which is nothing but Trace{Mfh{T>)). Therefore, we obtain Trace{L^jh{V)) = 

Trace{Mjh{V)). • 

Proposi t ion 8.3.1 The lim.it 

l im (,5 - 2)Trace{L]{\ + V^)-'). V / G C^{EH)e 
s—2+ •' 

exists and hence the operator L ^ ( l + V')'^ is measurable, whose Dixmier trace is 

rr+(L;(l+I?2)-2) = - ^ / f{x)dVol{x) (8.20) 
^ (27r)^ JEH 

Proof: We adopt the proof used in [40] and references therein. By Lemma 8.3.3 

and Lemma 8.3.4, T r a c e ( I ^ ( l + V^)-') exists and equals Trace{Mj{l+V^)-') for 

s > 2. Thus it suffices to show the existence of the hmit , 

l im ( s - 2 ) r r a c e ( M ; ( l + P ' ) - ^ ' ) , Vf E C^{EH). (8.21) 
.s—2+ 

We w i l l show this by representing the Trace of the operator M / ( l - I - P^)"*' by its 

kernel, which can further be wri t ten as the composition of the kernel of Mf and 
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that of (1 + V'^Y^. The former is simple, we estimate the later by heat kernel 
methods [40]. For s > 2, 

Trace{Mj{\+V')-') 

I KMf(i+v^)-^{x.x)dVol{x) 
.1 EH 

= 1 1 KMj{x.,x')R\^+T,2)-s{x'.,x)dVol{x')d.Vol{x) 
J EH J EH 

'*=^' / ti'M4 y2 diag{fr{x))4 K^l+-o2)-.{x,x)dVol{x) 

= 4 / / (x )A( i+ i ,2 ) - , ( .x , .x )dVo/ ( .x ) 
J EH 

We compute the kernel / v ( i+i52) - s (x, x) by Laplacian transformation, 

K\i+v2)-s{x,x) = —- / f-^e-'Kt{x.x)dt, (8.22) 

where Kt{x,x') is the kernel of the heat operator e~'^^ Here Kt{x,x') is a smooth 

strictly positive funct ion on EH x EH. For any constant 0 < e < 1, we may rewrite 

the integration (8.22) as 

2 /-oo -[̂  r rt poo 

—r t'-'e-'Kt{x,x)dt=—- f-'e-'Kt{x.,x)dt+ t'-'e-'Kt{x,x)dt . 
^ [^) Jo ^ i * j Uo Je 

We consider the two integrations separately. For the first integration, we use the 

asymptotic approximation of the heat kernel on the diagonal [42] (Lemma 4.14) as 

follows, 

Kt.{x,x) = 2̂ (477 t)-2 + c>(r'), a s i ^ O 

so that 

l im / f-^e-'Kt[x.x)dt = hm / t'-^e-H2~{AT^ t)--)dt 

= (27r)-- hm r f-~-'e-'dt. 
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For the second integration, i t is dominated by the factor so that we may replace 
Kt{x.,x) by 22(47ri)~-. Therefore, 

1 

r(s) e - 0 + 
^ t'-^e-'Kt{x., x)dt + t'-^e-'Kt{x, x)dt 

^ ( 2 7 r ) - - ^ r'f-^-'e-'dt 
is) Jo 

Vis) 

Substitute back to (8.21), 

^ {27r)-'r{s-2) 

lim (.s - 2)Trace{Mf (1 + V^)-') 

= A ! / ( x ) d \ / o / ( 5 ) ( 2 7 r ) - M i m ( 5 - 2 ) r ( s - 2 ) - i -

JEH -̂2+ r(sO 
= 4 / / (x )d I /o / (5 ) (27 r ) -Min . r ( . - 2 + l ) - i -

-IEH r(5j 'EH 
4 / f{x)dVol{g) < 00. 

J EH {^-^r.JEH 
since the pole of the Gamma function at s = 2 cancels w i t h the zero {s — 2). Thus 

the hmit hms^2+{s-2)Trace(Lj {l + V-)~^) also exists. By applying Theorem 8.3.1, 

both of the operators Mf (1 + V^)~- and (1 - I - T>^)~- are measurable. Theorem 

8.3.1 also implies also that (8.20). • 

We end this part by computing the Wodzicki residue of the operator Mf{l+V-)~-

and comparing i t w i th its Dixmier trace (8.20). 

The principal symbol of the classical pseudodifferential operator (1 +V'^)~^ is 

a ( '+^ '^ - ' (x , 0 = (5(e, 0 ) r ' I 4 , Vx G EH. (8.23) 

We obtain the principal symbol of M ; ( l + T>'^)~- by those of A4f and ( l - h P - ) " - by 

symbol calculus, 

a'''f^'^^'^-\x.,0 = a^'^/(.T,0^^^^^''(x-,0 = / ( x - ) 5 ( C . 0 - " / ' l . . 

The Wodzicki density of Mf {I + T>-)~~ at any point x G EH is given by the 

integration over the cosphere tangent space S*{M) at x 

wres^Mfil + V ' r ' ) = f tr^^io (a"'f^'^^'^-\x,o) d^ dx 

= 4 / ( x ) / g{^,i)-''didx 

= Af{x)n^dVol{x) 
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where ^4 = 2(27r)2. 

The Wodzicki residue of the operator Mf ( l - f - D ^ ) " " / ^ is given by the integration 

of the Wodzicki density 

Wres ( M ; (1 + V')-^) = S{2n)- f f { x ) dVol{x), f G C^{EH) (8.24) 
J EH 

Recall that the Connes trace theorem for the unital case (Theorem 7.18 [6]) 

implies that for a spectral triple {A,'H,V), 

Tr+ {a{l+ V')-^'-) = Wres{a (1 + V^)-^^'), (8.25) 

where V is the Dirac operator of some ^^-dimensional spin manifold, a (1 - I - D 2 ) - P / 2 

is considered as a elliptic pseudodifferential operator on the complex spinor bundle. 

Despite a f u l l understanding of (8.25) in the noncommutative nonunital case, 

the above Wodzicki residue computation (8.24) of M j ( l + X'2)i/2 f ^ j . j ^ C^(EH) 

compared wi th (8.20) satisfies the formula (8.25) for a = / and p = 4. This also 

serves as an example of Proposition 15 in [11] where a geodesically complete manifold 

is considered. 



Chapter 9 

Geometric conditions 

In this chapter, we see how the spectral triples of the isospectral deformations of the 

EH-spaces fit into the proposed geometric conditions of noncompact noncommuta-

tive spin manifolds [13], [12 . 

For a nonunital spectral triples {A.Ti^V) as in Definition 8.1.1, the geometric 

conditions (except the Poincare duality) are as follows, 

1. (Metric dimension.) There is a unique non-negative integer p, the metric di­

mension, for which a ( l + belongs to the generalised Schatten ideal 

jy~^[n) for ae A. Moreover, Tr+(a (1 + V-y'P/^) is defined and not identi­

cally zero. This p is even if and only if the spectral triple is even. 

2. (Regularity.) Bounded operators a and [T>,a\, for a 6 A, lie in the smooth 

domain of the derivation S- = [{Vl, •] on C{H). 

3. (Finiteness.) The algebra A and its preferred unitization Ab are pre-C*-

algebras. There exists an ideal A2 of Ab with the same C*-completion as A. 

such that the subspace of sm.ooth vectors in H 

nrr^^^domiV"") 

is an Ab finitely generated projective A2-Tnodule. 

Furthermore, the noncommutative integration defines a Hermitian form on the 

projective module Hao through the identity 

7?a) = r r+((^ ,77) a (1 + p 2 ) - p / 2 ) ^ y^ , 'nen^ . . o . e Ao.. (9.1) 
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where (•, •) is the inner product on Hoc restricted from that ofH. 

We are using the convention that is a right ^o-module instead of the 

original version discussed in the introduction. 

4. (Reality.) There is an antiunitary operator J on H, such that 

a.,Jb*J~^] = 0., Va.beAb. 

Thus the map b Jb*J~^ is a commuting representation on H of the opposite 

algebra Al- Moreover, for the metric dimension p = 4, 

J^ = - L JV^VJ., Jx = xJ-

For other dimensions, we refer to the table in chapter one. 

5. (Fii^st order.) The bounded operator [D.a] commutes with the opposite algebra 

representation: [[V, a ] , J6* J~'] = 0 for all a.b e Ab-

6. (Orientability.) There is a Hochschild p-cycle c on Ab, with values in Ab^Al-

The p-cycle is a finite sum. of terms like ( a fg) 6°) ® O] ® • • • ® and its natural 

representation 7rp(c) on H is defined by 

7 r p ( ( a o ® 6o) ® a i ® • • • ® Op) : = ao J^q J " ' [ P , a j ] • • • [V,ak . 

The volume form -nvic) solves the equation 7rx,(c) = x ^he even case and 

TTv{c) = 1 in the odd case. 

9.1 Metric dimensions 

One might show p = 4 for the triples {C^[EH)e,'H.V) by considering the mea-

surabihty of the operator L^j{l + V')''^ for / e C^{EH)g. However, the algebra 

C^{EH)e is not integrable, which is necessary for the computation of the Wodz-

icki residue [39] of the operator L^^{1 + P^)-^. Thus L^l + P-)"- may not be 

measurable. Nonetheless, Proposition 8.3.1 imphes that operators L ^ ( l +2)^)"^ for 

/ € C^{EH)g are measurable. The Dixmier trace is evaluated as 

Tr+(L?( l + D^)-^) = ^ I fdVol, 
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which is finite and nonzero. We do not know whether this remains true for some 
general integrable algebras, for instance C?^{EH)e, lying between C^{EH)e and 

9.2 Regularity 

The regularity condition is imphed by Proposition 8.2.1. 

9.3 Finiteness 

By the construction of the ideal Cf{EH) in Section 7.1, we see that the C^{EH) 

projective C|°(E/ / ) -module pC^{EHY, with p as in (7.17), is the smooth domain 

of the Dirac operator in Ti.. In the deformed case, we recall that pC^{EH)g is a 

C^{EH)e projective C^{EH)e-mod\x\e. 

By matching generators, we have the isomorphism between the finitely generated 

projective modules pC^{EH)l =pC^{EHf. Therefore, 

n^^pC^{EH)l. 

The Frechet algebra C^{EH)e is of the same C*-completion CQ{EH)Q as that of 

the algebra C^{EH)e. 

For the second part of the finiteness condition, we may obtain the Hermitian 

form on the projective module by the standard one (4.2) as follows. Let ^ = 

(0 : - • • iCs)' S "̂ oo where the coordinates satisfying = Y^jPij Xe and similarly 

for 77 = ( ? 7 i , . . . , rjsY e Ti^. The Hermitian inner product on Hoo is defined by 

( e , ^ ) : = ^ C x ^ ' ' 7 . , ^-.V&n^- (9.2) 
i 

By restriction, we obtain a Hermitian inner product in the form of (9.2) of pro­

jective module pC^{EH)g. As an application of a general construction considering 

smooth projective modules in [10], we may define a C-valued inner product on the 

projective module. Since the Hermitian form on the projective module pC^{EH)g 

is C^(£'i/)5)-valued, composing with the Dixmier trace, one may define an inner 
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product on pC^{EH)l by 

r(^,7?a) := Tr+ + P-)"-) , V^.r; G pC^{EH)l a G C^{EH)e. (9.3) 

Lemma 8.3.4 implies that 

where the element (^,77) x^a = X ^ z ^ ' ^e^i x^a G C^{EH)e on the right hand side 

is considered as a function in C^{EH). The identity (8.20) implies that 

Tr+ (M(^,,),,„(l + p 2 ) - 2 ) = ^ / ( ^ . ^ / ) x.adKoZ, 

where we recognise that the right hand side is in the form of the usual inner product 

on the Hilbert space Ti. In particular for the commutative case, the completion 

of pC^{EHY under the inner product r gives us exactly the usual Hilbert space 

?{ = L''{EH,S). 

Notice that the inner product (9.3) can be defined because of the measurabihty 

of the operator L ^ ( l + V^)''^ for / G C^{EH)o as we have seen in Proposition 

8.3.1. If the above construction holds when the module pC'^{EH)l is replaced 

by pC^{EH)l, then the finiteness condition will hold completely. The validity of 

the generalisation is decided by the measurability of the operator Ly-(1 + P-)~^ for 

/ G C^{EH)e, which we do not know yet. This is the same problem that arises in 

considering the condition of metric dimensions. 

9.4 Reality 

The proof of the reahty condition is based on the lecture notes [44]. With respect 

to the decomposition of spinor bundle S = ® S~ as in Section 6.3, we have the 

corresponding Hilbert space completions under the inner product coming from the 

L^-norms, and their sum is the Hilbert space completion oi S.H = Ti.~^ ® Ti.~. Any 

element ip e H can thus be decomposed as -0 = {''P'^-.'iJ^'Y• The operator J defined 

on the spinor bundle (6.16) can be extended to the Hilbert space as an antiunitary 

operator J : Ti H hy 
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satisfying = — 1. 

We define the representation of the opposite algebra Al of Ab = C^{EH)g on Ti.. 

Ri-Al^ B{H) by Rl := J Ll*J-\ Specifically, for h = the representation 

is 

s s 

The commutativity of operators and R^ where f = J2r fr is seen as follows, 

[L'f.R',] = J2f^^rhsV^,-h,V^JrVf 
r.s 

= 5] A hsair., s) Vf Vl, - fM-s., r)V'_, 
T.S 

= J^[fr,hs]a{r.,s)Vl,^0, (9.4) 

where identities cr(r, 5 ) = cr(-s,r) and VfV^^ = V^^V^ = are applied. 

As in the commutative case, V J = JV and Jx = xJ where x is the chirahty 

operator (6.15). 

9.5 First order 

The proof of the first order condition is again from [44]. For any / = Ylr ^i^d 

h = kg in C^{EH)e, the first order property [[D, / r ] , /is] = 0 in the commutative 

case implies that, 

[[D, L% Ri] = fr] Vf: hs V^,] = 5^[[P, A ] , K]a{r: s) K'-, = 0. 
r,s r.s 

9.6 Orientability 

In Riemannian geometry, the volume form determines the orientation of a mani­

fold. Translated to the spectral triple language, the volume form is replaced by a, 

Hochschild cycle c which can be represented on H such that rtoic) = x in the even 

case. For background on Hochschild homology we refer to Loday [45] and for a 

discussion on the orientability condition we refer to [6 . 

We may obtain a Hochschild 4-cycle of the spectral triple from the classical vol­

ume form of the Eguchi-Hanson space. We will only give the construction on the 
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coordinate chart UN. that for the other chart Us is similar and the global construc­
tion can be obtained by a partition of unity. We will consider the commutative case 
first and then the deformed case. 

Define a new set of coordinates by U] = xi, U2 = xo, = e"^, U4 = e*̂% so 

that the transition of differential forms dx^ — Vjdu^ is given by the diagonal matrix 

V = [v]) := diag{lA,-^.,-^J. Composing with the = hfdx' where hf are 

components of the matrix H in (6.5), the transition of differential forms 1 ? " = kfdu^ 

is given by the matrix K = (/cf) := HV. In components, 

k'^ = h",. = h^, k^ = h^—, kt = h^—, a = 1, • • • , 4. (9.5) 
U 3 U4 

Similarly, the transition du^ = vjdx^ is given by the inverse matrix = {vj) 

of V. Composing with dx^ = h-'^'d^ where / i ^ are elements of the inverse matrix 

H'^ in (6.6) , we obtain du^ = kp'd^ with k^ as the elements of the inverse matrix 

= V~^H~^. In components, 

~kl = h^., kl = h% kl = IU3 h% k^ = z U 4 /? = 1, • • • , 4. 

To avoid ambiguity, if the u-coordinates and x-coordinates appear in the same for­

mula, we will distinguish them by adding ' to indices of the u-coordinates. By tensor 

transformations, we may obtain the Dirac operator satisfying I?(s) = -ij^'X/^s in 

the coordinates {u[}'s from (6.20) in the coordinates { x j ' s as, 

V = -t hi; r (^dr - \riri0^ -1 h'; Y {d,> - \ f i r - f , ^ 

V 4 U 3 ' / ' \ 4U4' J 

where Pf̂ 's are from (6.18) and ja = l°''s are from (6.11). 

The volume form of the Eguchi-Hanson space can be represented in the orthonor-

mal basis on as 

A'd^ A Ad^ = k]j'u}' A k^du'^ A k^du'^ A k^du'' 

= kl kl kl k^ du'' A du'' A dv!' A d.u'". (9.6) 

We may define a Hochschild 4-chain CQ in C^iAb, Ab®Al)., with Ab = C^{EH) and 
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Al as the opposite algebra of Ab-, by 

Co := A Yi-'^ViK^'^ ® ® HiK^'^ ® ® 1°) 
" 4 1 ^ ^ ^ ' .7 (4) ^ Ja( .T) ^ « ^ ( 2 ) ^ ' ' ^ ' a ( l ) ^ ^ 

®w'̂ <') ® u'-f^' ® ® •i/><-'), ( 9 . 7 ) 

where a is an element in the permutation group 5̂  and ( — 1)'̂  indicates the sign 

of the permutation. Thus defined Hochschild 4-chain, which we will see below ac­

tually a Hochschild cycle, is antisymmetrised. It is however considered as an open 

problem whether antisymmetry of the cycle is required in the orientability condition 

concerning the reconstruction of manifolds as in [9 ] . On the >lfc-bimodule Ab 0 Al, 

Ab acts as a'{a ® 6°)a" := a'aa" ® b°, for a ® 6° G A ® Al and a', a" G A -

Lemma 9.6.1 The Hochschild 4-chain (9.7) defines a Hochschild cycle. That is, 

b{co) = 0, where b is the boundary operator of a Hochschild chain. 

Proof: Recall that the Hochschild boundary operator b acts on a simple n-chain 

a = (ao ® 60) ® ® • • • ® (^n in Cn{Ab, Ab ® Al) by 

6(a) = (ao ® 6o)ai ® 02 ® • • • ® a.„ 
n- l 

+ ^ ( - l ) - ' ' ( a o ® 60) ® ® • • • ® «j + l ® • • • ® On 
j = l 

+ (-l)"a.„(ao ® 60) ® ® • • • ® «n - i - ( 9 . 8 ) 

Elements of 6(co) are of three types. 

The first type corresponds to the second hne in ( 9 . 8 ) , 

®u>"> ® • • • ® ' t / > < J ' u > ' J + " ® • • • ® u'"*-". 

In the summation of all a e S4, each such term can be cancelled by a term from 

another a' which obtain from the composition of a by a transition between a{j) and 

a ( j + 1), as 

(-1)1" l ( - l ) ' ( ^ z " ® 1°)(^', ' ' ® " ® llik- ® 1°) 

®U^''<i' ® • • • ® '(i'<'(J + " ' ( / " < J ' ® • • • ® 'u'"<-''. 
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Indeed, since ( - l ) ' ^ = - ( -1 ) ' ' ^ ' and the elements in the first term from the bimodule 
are commuting, the summation of such pairs is 

( - i ) " ( - i ) ^ ( C 0 r)(A:r(^; ® nik^^^l ® mk^^^l ® n 

It vanishes since u;̂ ,̂ ., ifz,,^^,) = ^•i<T(j+i) '"'<t(;) elements in A -

The second type corresponds to the first hne in (9.8). After the Ab-himodule 

action from the right, it is in the following form. 

The third type of component corresponds to the third line in (9.8). After the Ab-

himodule action from the left, it is in the following form, 

VV "i^l " ( 3 ) " ' ( 2 ) / 

By commutativity of Ab-. the summation of all a of the second type and the third 

type cancel exactly when the permutation a' differs from a by a transition between 

(cT(l),a(2),(7(3),(T(4)) to (a(4),(T(l),(T(2),a(3)). Indeed, such a and a' are of op­

posite sign. Therefore, all three types cancel in the summation of a G ^4, and 

6(co) = 0. This shows that CQ is a Hochschild 4-cycle. • 

We define the representation TTp of the Hochschild cycle CQ on the Hilbert space 

by 7rx,(ao ® 6° ® ci ® • • • ® 04) := Ma,Mb,[D., Ma,][V., M,^][D, Ma,][D., M„,;. 

Proposition 9.6.1 The operator ITj){c°) = X-

Proof: 

4!7r2,(Co) = ^ ( - 1 ) ^ M ^ . . ( 4 ) Af^a(3) )M^a(2 ) M^. . ( l ) 
'"(•'> ' ' ' ( 3 ) ' " ( 2 ) ' ' ' ( 1 ) 

c^dii^o') c(du'<'i^>) c(c/u><3))c(du'''(-") 

= V ( - 1 ) ' ' M ^ „ , ( 4 ) M ^ . ( 3 ) ) M ^ . ( 2 ) M ^ a ( l ) 
„ , c . ' " ( ' ' ) '<^(3) V ( 2 ) V ( l ) 

pad) ai pom a2 pod) ai 7 > ( 4 ) 0 4 

C T S S 4 

i7e.S4 



9.6. Orientability 98 

Thus 7r7,(co) = X- D 
Now we consider the noncommutative case. Let Ab.e be C^{EH)e and AIQ be 

the opposite algebra. On the ^b,0-bimodule Abfi ® AI Q, Ab.e acts as a'{a ® 6°)a" := 

{a' xeaxe a.") ® 6°, for a®b° e Ab,e <® Alg and a', a" e Ab.e-

The antisymmetric Hochschild 4-chain in C4{Ab.e, Ab,B ® •^b,e) is defined by 

4 1 ^ ' ^ o ( i ) V ( 3 ) '•<7(2) ^ ^ ^ - V y 

where /v/ is the corresponding element of kl in the bimodule Abfi ® Al g. They are 

chosen as. 

A t := A ( u i ) - i / 2 ® l ° , Kl.= -{^®r)>c{u^), KI:={^®V)Q{U^), 

Kl := ( - ^ s i n u 2 ® l ° ) ^ ( ^ 3 ) ® 1°) ' 

^2 := (-'^ smu2 ® 1°) x{us) (— ® 1°) , 

:= f ^ A(ui)i /2 cosuo ®r](—® r ] . 
\ 2 / V U 3 y 

ti4 

where 

Aiu,) := 1 - a'/ul x{us) : = ^ ( ( T . ^ / ' ® ( ^ f ) ° + ^ x f ® ( ^ ^ 3 ^ ' ) ° ) ) , 

^ ( ^ 3 ) := ^ ( ( u f ® ( n f ) ° - ® i u f ) i 

Remark: The choices of K-''s are based on the following observation. If e""*̂  e 

Abfi is of spectral homogeneous degree —r, then e*̂ ''̂  ® (e*i''^)° as an element in the 

.46^0-bimodule is of the bimodule action satisfying 

e"^(e^§^ ® {e'^fy) = (e'i* ® (e'i*)°)e'*'^, 

for any e''^ of homogeneous degree — s in the algebra Abfi. The same holds when cj) 

and xp swap. In this way, all the ^ 3 appearing in the matrix H oi K = HV can be 

"commutatised". 
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Lemma 9.6.2 The Hochschild 4-chain (9.9) defines a Hochschild cycle in Zi{Ab.e; A. ( 
AIQ). I.e., 6(c) = 0, where b is the boundary operator of a Hochschild chain. 

Proof: As in the commutative case, elements of 6(c) are of three types. The first 

type is. 

®w>(i) ® • • • ® u'^fJ) Xe u>(̂  + '> ® • • • ® '(/"i-". (9.10) 

Firstly, from Remark 9.6, we may observe that the noncommutative part of any 

Kl has only contributions from terms like ^ •, for < = 3,4. Secondly, any term 

containing the product ^ X e ~ contains the product Xgu.i and their product is, 

XQ Xg m Xg U3 = e~'̂  c'^ U4U3 = - I . 
U3 U4 U 3 U4 

This also holds when 3 and 4 swap. These observations imply that the noncom-

mutativity factor coming from the first line of (9.10) always cancels with the non-

commutativity factor coming from the second line. Therefore, it reduces to the 

commutative case. By the same matching of cr's in the proof Lemma 9.6.1 for terms 

of the first type, summation of all the terms of first type is zero. 

The second type is 

f A f ^ ^ XgK^^'^ XgKf^ XgKfAu^ 

Notice that /Cf^'' commutes with The third type is 

,,,, ( A T ' / ^ ' X, K f ^ Xg Xg K'f^^A ® U^^' 

Notice that Ui „ ^ commutes with . As in the commutative case, we may pair 
' ° ' ( 4 ) 2 „ ' ( 4 ) • ^ 

a and a' which are related by a'{l) = a(4),a'(2) = cj(l),a'(3) = a(2),c7'(4) = a(3) 

so that they are canceled through the summation of a. Three cases altogether give 

us 6(c) = 0, and hence the proof. • 

We represent the Hochschild cycle c on the Hilbert space H by 

7rp(ao ® 6° ® ai ® • • • ® 04) := L^RliV, L^JV, L'J[V, L^JV, L ^ J , 

for ao ® 60 ® ai ® • • • ® 0,4 G Z4{Ab.g, Ab.g ® Alg). A straightforward fact follows, 
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Lemma 9.6.3 T T ^ (>!r(u3)) = M^osd, and [Q{UJ,)) = Msin^,-

Proposition 9.6.2 The operator Ti'p{c) = X-

Proof: By using the commutativity between the Dirac operator and V/, we can 

write down the formula for the commutators: 

[V, Ll] = c{d.u^).. \V., Ll] = c{du,)V^_,,,y, [v., Ll] = c ( r f . i , ) \ / (^ , , 

where z = 1,2. By Lemma 9.6.3, all the nonvanishing representation of coefficients 

in the bimodule of the Hochschild cycle c are 

The representation nj){c) is thus 

n.io = i E ( - i ) ' - - ( < : ! ) - - ( < : ; ) - - ( < ; : ) - - ( < ' , : ) 

c(ciu'-<")V/ c{du'^i'^)Vf c(du'^^'^)Vf c(dw^-(^')V;^ 

where Vf^^^,^ •= ^deg{ui )• fixed component in the summation we may 

compare the expression of nxiiKj) and [D, L^J. The result is that whenever there 

is a noncommutative factor generated by some T^vi^l) as V (̂feg(i/u ) there is a cor­

responding noncommutative factor generated by [P, L ^ J as V^^^^^^y Furthermore, 

these paired noncommutative factors cancel consistently. Thus, each component 

in the summation is simply the same as that in the commutative case. Applying 

Proposition 9.6.1, the summation gives x again and this completes the proof of the 

orientability condition, 7T'p{c) = x- • 



Chapter 10 

Conclusion 

We have obtained the nonunital spectral triples of the isospectral deformations of the 

Eguchi-Hanson spaces along torus isometric actions and studied analytical properties 

of the triple. We have also tested the proposed geometric conditions of a noncompact 

noncommutative geometry on this example. 

There are possible generahsations in the following directions. Firstly, we may 

further consider the Poincare duality of nonunital spectral triples [46]. Secondly, we 

may take the conical singularity hmit of EH-spaces and consider the spectral triple 

of the conifold. Thirdly, we may realise the spectral triple as a complex noncommu­

tative geometry defined by [47]. Finally, we may deform the EH-spaces, and possibly 

for more general ALE-spaces, by using the hyper-Kahler quotient structures. 
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