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Abstract 

Haemorrhage is a leading cause of death in both the military and civilian environs and 

blood loss from sites which are not easily accessible or do not lend themselves to 

direct physical compression to reduce blood loss contribute hugely to the haemorrhage 

mortality rate, particularly in the face of delay before surgical intervention. 

A number of agents aimed at controlling non-compressible haemorrhage are currently 

under evaluation, including activated recombinant factor Vi la (rFVIIa), a drug injected 

intravenously. rFVIIa is an attractive option to control blood loss in this population of 

patients since the drug can be injected at any site, the effects of rFVIIa targeted to 

where they are required. 

A number of clinical case reports and case series have demonstrated a beneficial effect 

of rFVIIa in trauma victims, when used as a last resort. These anecdotal reports are 

yet to be corroborated by adequately powered clinical trials. Animal studies have 

yielded conflicting results, some demonstrating a clear effect of rFVIIa on survival 

and others finding no benefit, or effect only on parameters such as blood product 

usage. Further research is required to firmly establish the efficacy of rFVIIa in trauma 

patients. 

The in vivo animal study from which blood samples for the present study were 

obtained provided a model of haemorrhage followed by progressive haemodilution 

associated with intravenous fluid resuscitation. The main aim of the in vitro study 

that forms the experimental work for this thesis was to compare the ability of rFVIIa 



with placebo to enhance clotting under the effects of progressive haemodiltion. A 

further aim was to establish whether a second dose of rFVIIa under these conditions 

had any effect. The study utilised an established technique called 

thromboelastography (TEG) to compaie clotting in blood samples treated in vitro with 

rFVIIa and placebo. 
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BACKGROUND & PURPOSE 

Trauma is the leading cause of death both on the battlefield and in those under the age 

of 40 in the civilian environment.'"'* Exsanguination is the second leading cause of 

death in all civilian trauma victims and is the leading cause of death in those found 

dead at the scene and those who succumb within 48 hours of injury (acute deaths).'' ^ 

In civilian trauma victims, blood loss is non-compressible in 92% of those who die 

from exanguination and occurs from severe isolated or combined injuries of the liver, 

heart and major vessels.^ In the military, haemorrhage is the leading cause of death in 

trauma victims on the battlefield,''' ^ with the proportional mortality rate increasing 

with delayed evacuation.^ Hence, uncontrolled, non-compressible haemorrhage is a 

leading cause of death in both civilian and military trauma victims and is therefore a 

significant cause of mortality. 

Surgery remains the only definitive treatment for non-compressible haemorrhage in 

both civilian and military environs. Therefore, it is important to minimise delay to 

surgical facilities and to attempt to preserve the physiology of these casualties to 

enable transfer. In addition to the absolute requirement for the casualty's physiology 

to be maintained to support life until surgical intervention, it is recognised that in 

those patients which do survive to reach a surgical capability, the outcome is more 

favourable i f the development of the "lethal triad" of hypothermia, acidosis and 

coagulopathy has been avoided throughout the delay to evacuation.^ The optimum 

method of preserving the physiology of trauma victims in order to avoid the 

development of the "lethal triad" is therefore, continuingly being sought. 



Clearly the delay in evacuation to a surgical facility may be protracted in hostile 

military arenas, depending on the nature and location of the conflict. For example, in 

Vietnam, the average time for evacuation to a surgical capability was just 25 

minutes,^ compared to anything from one to five hours in the current Iraq conflict^"" 

and up to five hours in Afghanistan.'* The potential delay in evacuation to a surgical 

capability in the combat environment serves to make even more urgent the 

requirement for effective non-surgical haemostasis. 

While civilian practice is generally considered to involve rapid evacuation, so-called 

"scoop and run",'^ prolonged evacuation times can be hugely problematic in civilian 

disasters, such as terrorist attacks, motor vehicle accidents and earthquakes. In these 

situations, the generation of mass casualty numbers is likely to overwhelm the 

medical services and it is inevitable that there wi l l be delays in access to definitive 

medical care for some victims under these circumstances. In addition, the current 

tactical targets for terrorists, primarily enclosed spaces such as buildings and public 

transport systems, mean that entrapment is a likely complication,''' potentially leading 

to considerable delays to evacuation to hospital. As a result, as in the military combat 

setting, there may be significant delay to surgical arrest of blood loss in these 

situations. 

Considerable research efforts are focused, both in the UK and abroad, on developing 

novel methods of non-surgical haemostasis. These methods are intended not as 

definitive treatments or alternatives to surgery, but as methods of prolonging the 

survival of casualties to enable them to reach a surgical capability. A hierarchy of 

haemostatic efforts exists, beginning with direct pressure and the application of 



tourniquets through to the use of novel haemostatic agents. One such haemostatic 

agent is QuikClot®, which has received much attention in the United States of 

America. While reportedly efficacious,'^"'^ Quikclot®, along with tourniquets and 

other haemostatic dressings, require access to the point of bleeding in order to exert 

an effect. They may therefore offer significant benefit for use in uncontrolled 

haemorrhage from accessible regions (e.g. extremities) but are of limited 

effectiveness in truncal haemorrhage. 

Research in the United Kingdom has therefore focussed on an intravenous drug, 

activated recombinant factor V I I (rFVIIa or NovoSeven®). rFVIIa is injected into 

the bloodstream, with its action directed to the site of injury. As discussed in this 

thesis, the action of rFVIIa is, in theory, directed specifically to the site of injury 

because of the physiology underlying coagulation mechanisms. Originally developed 

to induce haemostasis in severe life or limb threatening bleeding in haemophilia 

patients,'^' '̂ ^ rFVIIa has since been used in a variety of clinical situations where 

intractable bleeding could not be arrested by other means, including platelet disorders 

(such as thrombocytopenia),^' intracerebral haemorrhage^' and liver disease^''. The 

first case of the use of rFVIIa in a trauma victim occurred in 1999 in the form of an 

anecdotal case report."'' rFVIIa was administered as a last resort to attempt to save 

the life of a young Israeli soldier who received a high velocity rifle gunshot wound 

causing major damage to the liver and inferior vena cava. Administration of rFVIIa 

resulted in a cessation of haemorrhage and his ultimate survival. 

Our group at the Defence Science and Technology Laboratory (Dstl) Porton Down 

has recently completed a definitive study which shows that rFVIIa significantly 



increases survival and reduces blood loss during uncontrolled haemorrhage in 

terminally anaesthetised s w i n e . I n the group of animals treated with placebo none 

survived for 1.5 hours after the onset of uncontrolled haemorrhage, while 

approximately 50% of those treated with rFVIIa survived for 6 hours. We have 

therefore firmly established the 'proof of principle' that rFVIIa can increase survival 

when administered early after the onset of uncontrolled haemorrhage. 

Subsequent issues of clinical importance relate to the effectiveness of a second dose 

of rFVIIa in cases where bleeding has initially been arrested but subsequently restarts 

and also to the development of the "lethal triad" of acidosis, haemodilution and 

hypothermia which occur as a result of prolonged administration of resuscitation 

fluids prior to surgery. Specifically, correction acidosis and haemodilution are 

considered essential to the action of rFVIIa and feature in recently published 

guidelines as preconditions for the administration of rFVIIa."^ 

The risk of re-bleeding and the deterioration of physiology increases with the delay to 

definitive treatment therefore these are especially important concerns in situations 

where there may be considerable delay in evacuating the casualty to a surgical 

facility. Such delays are conceivable in both the military and civilian scenarios 

already discussed here. 

The aim of the present study was to determine whether it was possible in vitro to 

measure the effect of rFVIIa on coagulation. A further aim was then to assess the 

ability of a second dose of rFVIIa (versus placebo) administered in vitro, to enhance 

clotting during the combined effects of progressive acidosis and haemodilution that 



accompany hypotensive resuscitation, during uncontrolled haemorrhage after 

treatment in vivo with a single dose of rFVIIa (or placebo). The study utilised the 

established technique of thromboelastography (TEG) to compare clotting in blood 

samples treated in vitro with a second dose of rFVIIa or placebo at various times post 

injury in vivo. These blood samples were taken from ongoing in vivo studies where 

the aim was to investigate resuscitation strategies in terminally anaesthetised pigs. In 

this way it was possible to study the effects of rFVIIa when added to blood samples 

taken serially during the evolution of an acidotic, haemodiluted state during a 

standardised, clinically relevant resuscitation regimen. 

The results of this study will contribute to the development of guidelines determining 

when rFVIIa may be used to best effect to reduce blood loss and mortality in trauma 

victims where there is delay in achieving surgical haemostasis. In addition, it may be 

possible to determine whether the administration of a second dose of rFVIIa could 

have any therapeutic potential in terms of improved haemostasis. 



CHAPTER 1 

INTRODUCTION 

This section wi l l provide the reader with an overview of the processes involved in 

responding to disruptions to the vasculature which lead to decreased circulating 

volume. The role of the vessel itself as well as blood components (platelets and 

coagulation factors) are considered. Once the various aspects of the system have been 

discussed, current understanding of the coagulation system wi l l be discussed in detail, 

beginning with initial principles and early understanding through to the currently 

accepted model and cellular control over the whole system. An understanding of the 

innate systems which exist to respond to blood loss is an essential basis for 

understanding the mechanism of action of rFVIIa and therefore form a core 

component of this thesis. 



1.1 Haemostasis 

Haemostasis is a complex process, which defines the host's ability to cope with 

mechanically and disease induced blood loss as well as dysfunctions in the coagulation 

system. Essentially, haemostasis is the arrest of blood loss from the circulation 

through the formation of a thrombus. Impairment of haemostasis leads to prolonged 

bleeding, while excessive stimulation of haemostasis can cause inappropriate 

thrombus formation, resulting in the clinical condition of thrombosis. The process of 

the formation of a thrombus is termed thrombogenesis and the factors which influence 

the process of thrombogenesis were defined in 1856 by Virchow and are today known 

as Virchow's T r i a d . V i r c h o w ' s Triad is represented schematically in Figure 1. 

Vessel Wall Blood 
(endothelium) 

Blood Flow 

Figure 1 A schematic representation of Virchow's Triad 

According to Virchow's Triad, the condition of the vessel wall, the haemodynamics of 

blood flow and the levels of various blood constituents together form a triad which 

directly influences the formation, both physiological and pathogenic, of a thrombus. 

The following text wi l l refer back to this triad as each of the three members of the 

triad are considered. 



1.1.1 Blood Vessel Wall 

In the normal, healthy vasculature, the vascular endothelial lining is potently anti-

thrombogenic,^*' ~̂  expressing proteins that include heparin sulphate, which is a 

cofactor for antithrombin I I I (AT-III) and tissue factor pathway inhibitor (TFPI), both 

of which serve to inhibit aspects of the coagulation process."** In addition the normal 

endothelium secretes prostacyclin (prostaglandin I2; PGI2), nitric oxide and tissue 

plasminogen activator (tPA)."^ The latter has a fibrinolytic function, while the two 

former decrease platelet aggregation as well as mediating vasodilation.^** As wi l l 

become clear throughout this chapter, each of these functions is anti-thrombogenic, 

which in the healthy vasculature is essential to prevent inappropriate platelet 

aggregation or activation of coagulation proteins. Were such events to occur 

inappropriately, thrombi may be formed which, i f occurring in an artery, may occlude 

the vessel, leading to oxygen starvation of tissues served by these vessels. It is 

therefore essential that the healthy vasculature prevents thrombus formation, while 

maintaining a capability to support thrombus formation when required. 

Damage to the vasculature, whether due to disease or mechanical trauma, initiates the 

processes involved in haemostasis and thrombogenesis. The primary, immediate, 

response of the vasculature to damage is vasoconstriction. This is a contractile 

response of the smooth muscle in the tunica media, resulting in a narrowing of the 

vessel and hence decreased blood flow to the damaged area, reducing the volume of 

blood loss. A simplified diagrammatic representation of the histological layers of the 

blood vessel wall is presented in Figure 2. 



Lumen 

Figure 2 The histological layers of an arterial wall. 

Note the presence and arrangement of smooth muscle cells in the media. This helical arrangement of 

smooth muscle cells enables the wall of the artery to contract and the vessel to thus constrict. 

Image reproduced from http://content.answers. com/main/content/wp/en/thumh/4/4e/350p.x-

Anatomy artery.pns (site accessed 31.08.08) 
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1.1.2 Blood Flow 

The next aspect of Virchow's Triad to be considered is blood flow. A reduction in 

blood flow caused by vasoconstriction significantly improves the conditions for the 

formation of a primary plug across the hole in the vessel. Essentially, decreased blood 

flow provides less shear forces for dislodgement of forming haemostatic plugs. 

1.1.3 Blood Constituents 

Vasoconstriction is the initial step in the response of the endothelium and haemostatic 

system to vascular damage but is alone insufficient to bring about and maintain 

haemostasis. Two processes therefore follow vasoconstriction: platelet 

adhesion/activation, and blood coagulation. Together these phenomena lead to the 

formation of an insoluble thrombus, effectively plugging the hole in the vessel. 

The primary plug formed during thrombogenesis consists principally of aggregated 

platelets (which are discussed in the following section). The result may be the 

formation of either a red or a white thrombus. A white thrombus forms in arteries and 

is based on adherence of platelets to exposed collagen. The growing thrombus 

restricts blood flow and the regional stasis of circulation then triggers fibrin formation 

(again harking back to Virchow's Triad, where decreased blood flow facilitates 

thrombogenesis). The result is a central, white thrombus, composed principally of 

platelets, that is then surrounded by a red thrombus. Red thrombi may be formed 

around a white thrombus, as detailed above, or in veins, which are lower pressure. As 

10 



blood flows at a lower pressure in veins than arteries, there is a lesser likelihood of 

dislodgement of the clot by the flow of blood and hence a red thrombus (composed of 

fibrin and trapped red cells) may be formed without requiring the initial white 

thrombus to slow the flow of blood.^° 

A more detailed view of the roles of platelets and an in depth study of the blood 

coagulation cascade (the "blood constituents" in Virchow's Triad) in delivering and 

maintaining effective and appropriate haemostasis are considered in some detail in 

Sections 1.2 and 1.3 respectively. 
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1.2 Platelets 

Platelets play an integral role in haemostasis and as such receive considerable 

attention throughout this thesis. This section provides the reader with an overview 

of platelet biology. 

1.2.1 Platelet Biology 

Platelets are non-nucleated cells, produced from megakaryocytes, within the bone 

marrow.'" They have a short life span, 7-10 days,'" with up to approximately one third 

stored in the spleen.Ultrastructurally, at their simplest, platelets contain in addition 

to mitochondria and support structures, two forms of granules that are integral to their 

pro-coagulant function. A granules contain platelet derived growth factor (PDGF), 

thromboglobulins, fibrinogen and clotting factors V, V I I I and X I . The second form of 

granules, termed 'dense granules', contain the metabolic energy molecules ADP and 

ATP in addition to 5-hydroxytryptamine (5-HT) and calcium."' 

1.2.2 Platelet Function and Activation: Role of the Endothelium 

Despite its role in maintaining an anti-thrombogenic surface during normostasis, the 

vascular endothelium also plays an essential thrombogenic role in response to vascular 

damage. The endothelium synthesises and stores von Willebrand factor (vWF) to 

promote platelet adhesion; tissue factor (TF, factor I I I , tissue thromboplastin), 

promoting coagulation and plasminogen activator inhibitor 1, which reduces thrombus 

degradation.'* 

12 



Damage to the wall of a blood vessel leads to the exposure of collagen from the 

subendothelia! iayer.'̂ ^ The exposed collagen interacts with specific glycoprotein 

(Gpla-lia and GPVI) receptors on the platelet membrane, causing adhesion of platelets 

to the damaged vessel.^' This is possible since the anti-thrombogenic endothelium is 

no longer present, revealing thrombogenic mediators in underlying layers of the vessel 

wall. This adherence is strengthened by von Willebrand factor (vWF), which binds 

glycoprotein receptor Gplb, located on the platelet.^^ vWF secreted from the damaged 

endothelium and released from activated platelets acts to bridge gaps between platelet 

glycoprotein receptors and subendothelial collagen and stimulates further platelet 

aggregation. 

The adhesion of platelets to the damaged vessel wall leads to their partial activation 

and the formation of a weak platelet plug. Central to this process are the interactions 

of thrombin with the Gplb receptor family, and cleavage of the platelet activated 

receptor 1 (PAR-1) on the platelet surface,^^ leading to complete activation of platelets 

and the platelet release reaction. 

During the platelet release reaction, intracellular microtubules contract, conferring a 

shape change in the platelet.^' This shape change results in exposure of negatively 

charged phospholipids and glycoprotein GpIIb/IIla receptors on the activated platelet 

surface.^' Some of the negatively charged phospholipids exposed during this release 

reaction are metabolised, resulting in the release of arachidonic acid''^ which is in turn 

catabolised to thromboxane,^'' one effect of which is to further stimulate platelet 

activation and thrombogenesis.'''* The mechanisms by which prostaglandins are 

13 



synthesised and their relevance to the haemostatic processes are considered in more 

detail in Section 1.3. 

The GpIIb/IIIa receptors exposed during platelet activation are the means by which 

platelet aggregation o c c u r s . I n a similar manner to the interactions of Gpla-Iia and 

Gp-Ib receptors with the vessel wall and vWF, adjacent platelets aggregate through 

interactions between their GpIIb-IIIa receptors. 

The platelet release reaction also involves the release of the contents of the a and 

dense granules from within the p l a t e l e t s . T h e released contents of the granules act 

on specific parts of the processes involved in achieving haemostasis. For example, 5-

HT stimulates further platelet aggregation and increased vasoconstriction^''; fibrinogen 

is the precursor to fibrin and is involved in platelet aggregation^' while the clotting 

factors and calcium ions are required for amplification of the procoagulant signal, 

initiated through the coagulation cascade. 

The resultant mass of aggregated platelets serves as a plug to provide temporary 

haemostasis, effective as an immediate measure to arrest blood loss from a damaged 

vessel. However, the platelet plug alone cannot withstand disruption from the flow of 

blood within the vessel, over the longer term. Long-term stability of the clot is 

conferred by incorporation of insoluble fibrin, which is produced by a series of 

reactions which comprise the coagulation cascade (covered in detail in the following 

section). 

14 



1.3 The Coagulation Cascade 

1.3.1 Overview of the Coagulation Cascade 

The platelet plug, generated through mechanisms detailed in the preceding sections, 

requires incorporation of insoluble fibrin in order to remain stable and support 

haemostasis. Fibrin is the ultimate product of a series of reactions which comprise the 

coagulation cascade.'̂ ''''*' 

The components of the cascade are called factors which are represented by the Roman 

numerals I to X I I I and with some notable exceptions (principally factors I & III) are 

present in the blood as inactive precursors, termed zymogens, which are activated by 

proteolysis."*"' The Roman numerals are suffixed with a lowercase letter 'a' to 

indicate an activated form of the particular factor. The pivotal step in the coagulation 

cascade is the thrombin (factor lia) mediated conversion of fibrinogen (factor I) to 

fibrin (factor la). Fibrinogen is a soluble subunit of fibrin, rather than an inactive 

cofactor."*^ The fibrin monomers are polymerised to yield insoluble fibrin under the 

control of factor X l l l a (FXIIIa),''^ activated from factor X I I I by thrombin.'*'* Thrombin 

is produced by proteolysis from the zymogen prothrombin by the prothrombinase 

(Va/Xa) complex.'*^' These reactions comprise the final common pathway of the 

coagulation cascade,"*"' "*'' '*̂  the point at which the traditionally viewed two-limbed 

cascade system merges. The steps involved in the final common pathway are 

summarised in Figure 3. 
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Factor X 

Factor V Factor Va Factor V Factor Va 

THROMBIN 

Fibrinogen Fibrinogen 

^ Factor Xa 

C a " 
Phospholipid 

Protiirombin 

Factor XIII 

Factor Xllla 

H Fibrin monomer Fibrin polymer 

Red boxes represent factors that are part of the classic common pathway and yellow boxes signify co-

factors required at specific stages. 

Figure 3 The final common pathway of the coagulation cascade 

The Fva/Xa mediated activation of prothrombin to thrombin results in the release of 

platelet ADP, a potent activator of platelet aggregation"*^ while interactions of 

thrombin with specific protease-activated receptors (PAR) and receptors of the Gplb 

family lead to initiation of cellular responses leading to platelet aggregation and 

augmentation of inflammatory pathways. 

Further to these roles, thrombin produced in the coagulation cascade stimulates the 

metabolism of arachidonic acid in the platelet membrane,^^ leading to the production 

of a series of prostaglandins."*' The key, relevant, mediators include thromboxane A2 

(TXA2) and PGI2. While both are products of arachidonic acid metabolism, the 

former has the effect of stimulating thrombogenesis and vasoconstriction,^"' while 

the latter inhibits t h r o m b o g e n e s i s . I n keeping with their opposing physiological 

roles, these two arachidonic acid metabolites each dominate under specific conditions. 

TXA2 is secreted both from dense granules within the platelet^'' on initiation of the 

platelet release reaction and from endothelial cells in response to changes in pressure 

16 



and shear s t ress .Normal laminar blood flow, maintains shear stress and pressure 

which acts upon endothelial cells, downregulafing release of TXA2 and stimulating 

antithromobgenic modulators such as PG^.^^ When shear stress and pressure reduce, 

as in the case of reduced blood volume due to haemorrhage, the inhibition of TXA2 

release is lifted^^ and increased levels of TXA2 serve to amplify the activation of 

platelets through a positive feedback loop whereby further TXA2 is released as more 

platelets aggregate and undergo the platelet release reaction.^' Combined with 

mediation of vasoconstriction,^*' this effect of TXA2 serves to support the initial 

generation of a platelet plug at a site of vascular injury.^' Conversely PGI2, which is 

synthesised in and released from endothelial cells under normal physiological 

conditions, is a potent vasodilator and inhibitor of platelet aggregation.^'' It has 

been reported that much lower concentrations of PGI2 are required to inhibit platelet-

platelet aggregation than are required to inhibit platelet binding to collagen.^'* Thus, it 

is believed that the PGI2 produced by endothelial cells prevents inappropriate 

thrombus formation in the healthy vasculature but does not strongly inhibit platelet 

binding at sites of collagen exposure,^'' i.e. sites of vascular damage. An increased 

ratio of TXA2:PGl2 around the site of vascular damage and hence lower shear and 

pressure would serve to provide a procoagulant environment, while the lower 

TXA2:PGl2 ratio around unaffected endothelial cells peripheral to the site of injury 

likely prevents the spread of the thrombus, localising thrombogenesis to the 

appropriate site.^^' 
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1.3.2 The Intrinsic and Extrinsic Pathways of the Coagulation Cascade 

Historically, the coagulation cascade has been viewed as consisting of two pathways 

which may be initiated either via exposure of collagen from the vessel walls, or 

through exposure of tissue factor at sites of tissue damage.^^ These two initiating 

mechanisms formed the basis for the conventional representation of the coagulation 

cascade as two distinct pathways that converge at a common point and are classically 

referred to as the intrinsic and extrinsic pathways, respectively.'*^''"'" They were so 

named as the latter requires the participation of substances extrinsic to the blood 

(namely, tissue factor which is found in layers of subendothelium and on certain other 

cell types), whilst the former was viewed to be completely dependent upon internal 

elements of the blood.^° '" 

The extrinsic pathway, also termed the in vivo pathway, was viewed to be activated in 

response to tissue damage.^* Tissue damage leads to exposure of tissue factor (TF), a 

protein which is not normally present in significant concentrations in the blood. 

Tissue factor is usually buried deep in the vessel wall, specifically in the adventitia 

and tunica media,^^ becoming exposed to the blood following damage to the blood 

vessel. The interaction of the tissue factor protein with factor Vi la (FVIla) leads to the 

formation of a FVIIa/TF complex.^'^ The intrinsic pathway, or contact pathway, was 

viewed to be initiated by the contact of blood with a negatively charged surface. 

Typically, in vitro this would be glassware, while in vivo the initiator of the intrinsic 

pathway was believed to be collagen.^' The intrinsic pathway was initially viewed as 

being responsible ultimately for the generation of factor V i l l a (FVIIIa)'*°' and later 



was determined to be responsible in fact for the generation of the FVIIIa/Ixa tenase 

complex.^* 

As discussed in the next section, a view of the coagulation cascade as being defined by 

two distinct pathways converging at one common point is now largely obsolete, 

however the role of the FVIIIa/Ixa and FVIIa/TF complexes remain central to the 

generation of thrombin. Both complexes interact with factor X on the specific cell 

membranes leading to its activation to Fxa. The events involved in the activation of 

factor X, which goes on to activate factor I I , are summarised in Figure 4. 

19 



Factor IX 

Factor IXa 

Factor VIII Factor Villa 
Factor Vllla/IXa 

complex 

Factor Vlla/TF 
complex 

Factor X 

Phospholipid 

t\ Factor Xa 

Orange boxes represent those factors classically referred to as intrinsic factors, green boxes represent 

extrinsic factors, red boxes represent factors that arc part of the common pathway and yellow boxes 

signify co-factors required at specific stages. 

Figure 4 Activation of factor X requires the presence of F V I I a and/or 

FVIIIa/Ixa/phospholipid complex 

Figure 5, which follows, illustrates schematically the two pathways involved in the 

coagulation cascade as proposed in 1964,'*°''" with refinements. This simplified 

representation of the traditional complex cascade wi l l be used as a basis for the 

overview of the pathways, forming the remainder of this section. 

The extrinsic pathway wi l l be considered first, depicted on the right of Figure 5. 

Under normal physiological conditions, a small amount of FVI I (approximately 

4ng/ml)^^ circulates as the activated form, FVIIa. On exposure to TF (factor I I I ) , this 

small amount of FVIIa binds to form a FVIIa/TF complex, which leads to further 

activation of FVII and the formation of more FVIIa/TF complexes which go on to 

activate factor X. 
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Figure 5 Schematic representation of the traditional view of the coagulation cascade. 
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The traditional view of the intrinsic pathway has been that factor X I I becomes 

activated to FXIIa on interaction with exposed collagen (or other negatively charged 

surface) in the presence of cofactors. FXIIa then goes on to activate FXI to FXla, 

which further activates FIX to FIXa. FIXa, in complex with FVIIIa, goes on to 

activate FX. As discussed in the next section, the activation of the intrinsic pathway is 

now viewed to be somewhat different to that depicted here and on the left of Figure 5. 

The traditional cascade model has been superseded by a cell-based theory,""*^ which 

involves additional interactions and "cross-talk" between the intrinsic and extrinsic 

pathways. 

1.3.3 An integrated coagulation mechanism 

A key feature of the original coagulation cascade, as detailed in the preceding sections, 

was the existence of two distinct pathways which independently led to the activation 

of factor X and a final common pathway. The intrinsic and extrinsic pathways in this 

model did not interact before the activation of factor X, and being activated 

independently of one another; essentially provided two alternatives for initiation of 

fibrin clot generation. 

Doubt as to the mutually exclusive, independent, nature of the two hmbs of the 

coagulation cascade developed partly as a result of anecdotal evidence that VIIa/TF 

initiated factor IX activafion as well as directly activating factor X. This posed a 

potential alternate mechanism for activation of FIX, independent of FXIa and the 

higher levels of the intrinsic limb. Activation of factor IX by the VIIa/TF complex 

was conclusively proven in 1977.*' This finding was inconsistent with some aspects 
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of the coagulation cascade models proposed in 1964 which specified two distinct 

limbs that did not combine until the activation of factor X"" ' ' " and clearly questioned 

the importance of the roles of the contact factors (FXII and cofactors). 

Furthermore, the original cascade model prescribed that the activation of the intrinsic 

pathway relied on activation of FXII to FXIIa on interaction of blood with a negatively 

charged surface. However, while traditional coagulation assays such as APTT are 

affected by deficiencies of F X I I and/or its cofactors, H M W K and Kallikrein,^-' they do 

not result in a clinical bleeding diathesis.^''' ^ '̂̂ ^ 

The integrity of the cascade model was further weakened on consideration of the 

clinical presentation of patients with FXI deficiency. Some factor X I deficient 

patients display no or minor bleeding disorders, while others suffer from more severe 

bleeding susceptibility; though still less so than patients with deficiencies of factors 

Vi l l a or Ixa.^'' Were the cascade model correct one would expect that 

deficiencies of factors higher in the cascade would have equivalent or more significant 

effects than those lower in the cascade, as the lower (downstream) steps, reliant on the 

factors upstream, would also be unable to occur. Therefore, it should be expected that 

FXII or FXI deficiency would consistently produce at least as severe bleeding 

tendency as deficiencies of factors V I I I and IX. Clinically, however, factor V I I I and 

IX deficiencies (the haemophilias) are by far the more severe.^'' ^ '̂ The disparity 

between theoretical and clinical severity of bleeding diathesis therefore significantly 

questioned the accuracy and clinical significance of the traditional activation steps at 

the head of the intrinsic pathway. Clinical correlations, combined with the finding that 

the factor Vlla/TF complex was able to directly activate factor IX, have lead to a 
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general consensus in scientific community that factor VIIa/TF is in fact the major 

physiological initiator of haemostasis.^^' With the FVIIa/TF complex being 

capable of activating FIXa and the resultant formation of the VUa/Ixa tenase complex, 

the physiological relevance of FXIIa and FXIa for haemostasis in vivo was left 

questionable. 

Following these revelations, it is now recognised that there are two key flaws in the 

original cascade model. One is the separation of the coagulation system into two 

distinct, intrinsic and extrinsic, pathways.̂ **' The second is the total focus upon 

the coagulation proteins themselves, with no regard for the physiological surfaces 

involved.''^ The modem, cell-based theory redresses these flaws, providing a more 

clinically relevant model of the coagulation system. 

The intrinsic and extrinsic pathways are not mutually exclusive, as illustrated by the 

inability of one pathway to naturally compensate for deficiencies in the other.^^ Were 

the two pathways truly independent of one another, the bleeding tendency seen in 

haemophiliacs would not occur. Haemophilia A and B patients are deficient in 

specific factors from the intrinsic pathway. Were the cascade proposal correct, the 

extrinsic pathway would be unaffected and able to lead to activation of factor X and 

mediate effective haemostasis,*^ making the intrinsic pathway superfluous. Were this 

the case, deficiencies in "intrinsic" factors would not lead to the bleeding tendency 

seen. However, haemophiliacs do experience severe bleeding, leading to the oft posed 

question of "Why do haemophiliacs bleed?".^' 
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Rather than occurring as a result of two independent pathways, the cell-based model^^" 

offers a view of the coagulation process in which proteins from both the extrinsic 

and intrinsic pathways are required to interact at levels higher in the traditional 

cascade than activation of factor X and that these interactions serve to guide the entire 

coagulation process, which absolutely requires components from both limbs of the 

traditional model to successfully lead to effective thrombogenesis. 

The second flaw of the original coagulation cascade, the almost exclusive focus on the 

coagulation proteins, is also redressed in the cell-based model.^^"^^ The original 

cascade model implicitly suggests that the coagulation proteins drive and control the 

process of coagulation, requiring a generic phospolipid source as a surface at specific 

stages. The cell-based model of the coagulation system recognises that the 

coagulation protein interactions do not simply occur in the blood, but are targeted to 

specific cellular surfaces, namely platelets and TF bearing cells, which guide the entire 

process and localise procoagulant activity to appropriate sites, preventing widespread 

thrombosis while ensuring effective haemostasis. 

1.3.4 Cellular control of the coagulation system 

In 1991, Davie et al published an insightful review of advances in understanding of 

the mechanisms underlying the coagulation cascade. Assimilating evidence from the 

previous 25 years' literature, the group presented a refined version of the traditional 

coagulation cascade . In the 1991 model the extrinsic pathway was reported to be the 

primary initiating mechanism with the intrinsic pathway providing amplification of the 

procoagulant signal. It bore some similarity to the traditional cascade though also 
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featured several significant modifications and provides a useful stepping stone to the 

modem model which wil l form the basis of much of this review. 

With the recognition that the cascade is initiated by FVIIa/TF and the knowledge that 

FXI may be activated by thrombin,^^ the 1991 model accounted well for the lack of 

requirement for FXlIa and made provision for cross talk between the extrinsic and 

intrinsic limbs. However one important shortcoming, as was the case with the 1964 

models,'*"'was its failure to recognise the pivotal role of cell surfaces in directing 

coagulation; continuing to suggest that the extrinsic pathway alone should be capable 

of generating sufficient thrombin to support stable clot formation. 

Based on the advances in understanding of coagulation since 1964, Hoffman and 

colleagues proposed the modem cell-based model of coagulation in 1996.̂ ^ Focusing 

on the role of cell surfaces in directing the coagulation process, Hoffman et al 

redefined the stages previously covered by the cascade model into three overlapping 

phases: initiation, amplification and propagation.^^ 

1.3.4.1 Initiation phase of the cell-based model 

The initiation phase of the cell-based model covers the early stages of the 

procoagulant response, from the exposure of tissue factor at the site of damage to the 

blood vessel, through to the activation of factors IX and X and the generation of the 

initial thrombin. 
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Using a novel cell-based model of TF-iniliated coagulation, comprising unactivated 

platelets, monocytes (as a cellular source of TF), zymogen coagulation factors I I , V, 

V I I I , IX & X, the inhibitors TFPI and AT- I I I and a catalytic amount of FVIIa, Monroe 

et al were able to provide evidence for the sequence in which platelets and coagulation 

proteins interact in the initiation of clotting^^ In this cell-based model, initiation of 

the coagulation system is viewed to commence with the interaction of FVIIa and TF. 

In vivo, TF is exposed upon damage to the vasculature,^^' essentially triggering the 

initiation phase. In the cell-based model, in line with the traditional extrinsic limb of 

the cascade model, the TF/FVIIa complex which results is then able to activate FX to 

Fxa. However, in the cell-based model, the Fxa which is generated on the surface of 

the TF bearing cell is restricted to that surface as inhibitors such as antithrombin I I I 

(AT-III) rapidly inactivate any free circulating Fxa in the b l o o d . T h e Fxa expressed 

on the TF bearing ceil is able, through interaction with Fva and formation of the 

prothrombinase complex, to activate small amounts of thrombin. Since the TF-

bearing cell, as compared to the activated platelet surface, is not well suited to 

supporting large scale thrombin generation, there is insufficient thrombin generated 

through this TF/FVIIa mediated pathway to lead to generation of a viable fibrin clot.^^ 

The duration of the initiation phase is limited principally by TFPI, which is activated 

by Fxa formed by the FVIIa/TF complex. TFPI is a Kunitz type inhibitor which binds 

and forms a complex with Fxa and the FVIIa/TF complex, inhibiting the catalytic 

activities of both enzymes.^^ "̂̂^ Through the activation and actions of TFPI, the 

initiation phase of coagulation in the modem model is therefore self-limiting. 
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The extrinsic pathway as proposed by the cascade model of coagulation correctly 

illustrated that interaction of FVIla with TF leads to activation of FX, in turn leading 

to thrombin generation. However, due to its failure to recognise the importance of 

physiological surfaces in the process, the cascade model misleadingly suggests that the 

extrinsic pathway alone is capable of generating sufficient thrombin to form a stable 

fibrin clot.'° " 

The cascade model also omits a second, vital stage of the initiation phase - that is the 

activation by the FVIIa/TF complex of FIX to FlXa.^' The FIXa produced on the TF 

bearing cell is able to diffuse through the blood, relatively unaffected by A T - I I I and 

not at all affected by TFPI,^' to bind with the FVIIIa expressed on the surface of the 

activated platelets, forming the FVIIIa/Ixa tenase complex. The cell-based model 

again justifies the apparent lack of requirement for FXIIa and FXIa, as FIXa is initially 

activated by the TF/FVlIa complex in the cell-based model, rather than being reliant 

on FXIa activation.^'" ^" 

Figure 6 schematically illustrates the events which comprise "initiation" in the 

modem cell-based model of coagulation. 
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Figure 6 Schematic representation of the " ini t ia t ion" phase of the modern 

cellular coagulation model 
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1.3.4.2 Amplification phase of the cell-based model 

The amplification phase of the cell-based model deals with the actions of the small 
amount of thrombin generated during the initiation phase, leading to the complete 
activation and "priming" of platelets for the subsequent propagation phase. 

In 1996, Monroe et al demonstrated that in order to support clot formation, a cell must 

not only express tissue factor, but also is required to be capable of supporting the 

assembly of the prothrombinase complex on its surface.''^ This finding supported the 

view that the procoagulant signal generated on the surface of the TF-bearing cell was 

transmitted to the partially acfivated platelet via small amounts of thrombin generated 

on the TF-bearing cell.^^' The binding of the small amount of thrombin generated in 

the initiation phase to PAR-1 on the surface of the partially activated platelet leads to 

degranualtion of a-granules and release and activation of FV as previously detailed in 

this manuscript.^^' Thrombin generated during the inifiation phase also cleaves 

FVIIIa from vWF^^ on the activated platelet, an essential role as FVIIIa is required for 

the assembly of the tenase complex and the free vWF strengthens platelet 

aggregation.^^ 

From their earlier work in 1994,^* Monroe et al were able to demonstrate that platelet 

activation by thrombin must occur prior to binding of activated coagulation factors to 

the platelet membrane. They further established that coagulation factor binding occurs 

in a defined sequence, commencing with binding of Fva and FVIIIa which then serve 

78 as binding sites for Fxa and FlXa, respectively. 
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A third occurrence during the amplification phase is the thrombin mediated activation 

of FXI,*' which is bound to the surface of the activated platelet. Generation of FXIa in 

this way is entirely independent of FXIIa.*" 

Therefore, although insufficient to initiate the formation of a viable fibrin clot, the 

thrombin which is produced on the surface of the TF-bearing cell during the initiation 

phase is able, in the amplification phase, to activate nearby partially activated 

platelets, leading to the generation of Fva, essential for the assembly of the 

prothrombinase complex. In addition, the thrombin from the initiation phase leads to 

the cleavage of FVIIIa from the FVIII /vWF complex and the activation of platelet 

bound FXI . Presentation of activated forms of FV, FVI I I and FXI , mediated by the 

small amount of thrombin from the initiation phase results in a primed platelet, 

optimised for propagation of the procoagulant signal. 

The events which collectively form the "amplification" phase of coagulation in the 

cell-based model are illustrated schematically in Figure 7. 
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Figure 7 Schematic representation of the "amplification" phase of the 

modern cellular coagulation model 
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1.3.4.3 Propagation phase of the cell-based model 

The propagation phase of the cell-based model covers the events occurring on the 
surface of the activated platelet, from the amplification phase through to the 
generation of large amounts of thrombin and ultimately the deposition of fibrin. 

The binding of FIXa to FVIIIa on the surface of the activated platelet, primed in the 

amplification phase, leads into the propagation phase of the cell-based model. 

Assembly of the FIXa/VIIIa tenase complex on the activated platelet surface generates 

a positive feedback loop in which additional FIX is activated on the platelet surface, 

through the action of FXIa*^ which became expressed on the surface of the activated 

platelet during the amplification phase due to its activation by thrombin, generated in 

the initiation phase. The role of FXIa in amplifying the amount of FLXa appears to 

explain the clinical presentation of patients with FXIa deficiency and their less severe 

bleeding tendency compared to haemophiliacs since FXIa is required for continued 

generation of FIXa but not for initial formation of the tenase complex.^'*' 

The FVIIIa/Ixa tenase complex on the activated platelet surface goes on to activate 

large amounts of FX. As the Fxa is expressed on the platelet surface there is no 

requirement for diffusion through the blood, therefore A T - I I I is unable to inhibit Fxa 

which in turn goes on to form the prothrombinase complex with Fva, also present on 

the surface of the activated platelet.^^ The platelet prothrombinase complex is capable 

of generating much larger amounts of thrombin than that on the TF-bearing cell 

surface, as the platelet provides the most efficient surface for thrombin generation, 

resulting in the required thrombin burst. At this prime location, sufficient thrombin is 

33 



generated to cleave fibrinogen to fibrin and ultimately lead to the formation of a stable 

clot at the site of vascular damage.^''' 

Figure 8 illustrates schematically the events which form the "propagation" phase, 

leading to the thrombin burst. 
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Figure 8 Schematic representation of the "propagation" phase of the 

modern cellular coagulation model 
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1.3.4.4 Summary of the cell-based model 

The two principal products of the initiation phase, FIXa and Fxa were confirmed by 
Hoffman and colleagues in 1995 to have distinct roles. '̂̂  The group used a then novel 
in vitro model system, described here previously. Through varying the included 
components of the model system, they were able to comprehensively demonstrate that 
Fxa is required for the activation of platelets, but is relatively weak in terms of ability 
to promote thrombin generation. Conversely, FLXa was found to be far less effective 
in activating platelets but was a highly potent promoter of thrombin generation. From 
these data, the group proposed the now accepted view that the main role of Fxa 
produced from the TF/FVIIa complex is local activation of platelets while the role of 
the FIXa, as part of the FVIIIa/Ixa tenase complex, is to generate large amounts of 
thrombin on the activated platelets. These findings were strengthened by a further, 
later study from the same research group.^^ 

Figure 9 summarises the modem view of coagulation, highlighting the importance of 

the role of specific cell surfaces (platelets and TF-bearing cells) in the control and 

regulation of coagulation. 
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Figure 9 Schematic representation of the modern day view of coagulation. 
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In addition to catalysing the conversion of fibrinogen to fibrin, the thrombin produced 

during the platelet thrombin burst is essential for stabilisation of the developing clot.""' 

For example, polymerisation of the fibrin monomers formed occurs under the 

control of FXIIIa, which is activated from FXII I by thrombin."'' Furthermore, the high 

levels of thrombin produced on the platelet surface are capable of, and essential for, 

activation of TAFI (thrombin-activatable fibrinolysis inhibitor).*^ TAFI is activated as 

a result of thrombin mediated activation of FXI on the platelet surface. 

As implied in the name, TAFI serves to prevent fibrinolysis, therefore preserving the 

stmcture and stability of the clot as it forms. TAFI functions through removal of 

terminal lysine residues of fibrin, thus removing binding sites for fibrinolytic 

proteases.As TAFI requires greater levels of thrombin for activation than are 

required for fibrin generation,*^' ^° it has been suggested that the haemophiliac 

tendency to re-bleed following initial haemostasis may be due not solely to weak clot 

formation, but as insufficient thrombin is produced to activate TAFI , the already weak 

clot would be particularly prone to fibrinolysis.^" 

To summarise, the key consideration to yield from the modem view of coagulation is 

that the Fxa produced on the TF-bearing cell is not equivalent to that expressed on the 

surface of an activated platelet. In the cell-based model of coagulation, the cellular 

location of the Fxa determines its physiological function and ensures appropriate and 

effective thrombin generation. The inability of the extrinsic pathway alone to generate 

a viable, stable fibrin clot, based on the low levels of thrombin generated in that phase, 

provides a feasible answer to the question "why do haemophiliacs bleed?". While the 

extrinsic pathway is intact and functional in these individuals and despite thrombin 
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therefore being produced as usual on the surface of TF-bearing cells, there is 

insufficient thrombin produced to support the formation of a durable clot. The 

thrombin produced is capable, as normal, of activating platelets, however beyond this 

point, the 'normal' coagulation system is blocked in haemophiliacs. Haemophilia A 

patients lack factor V I I I , while haemophilia B patients lack factor IX. In both cases, 

formation of the FVIIIa/Ixa tenase complex on the platelet surface is impaired and 

hence the required platelet thrombin burst does not occur. The result is a slowly, 

poorly formed clot which is not resistant to fibrinolysis, hence the haemophiliac 

bleeding tendency. The cell-based model effectively illustrates why the deficient 

intrinsic factors cannot be bypassed, as Fxa produced on the TF-bearing cell is 

insufficient and expressed on the wrong cell surface to lead to an adequate thrombin 

burst. 

The cell-based model proposed by Hoffman, Monroe and colleagues provides 

explanations for a number of discrepancies noted from the traditional cascade model. 

While the overall pattem of successive zymogen activation steps resulting in activated 

coagulation proteases still holds tme in the modem model, there is a much greater 

emphasis on cellular influences. The consideration of the coagulation system as a 

whole; comprising cell surfaces, coagulation proteins, cofactors and inhibitors, has 

enabled a more clinically relevant model be developed. The cell-based model 

facilitates rational reasoning as to the pathophysiology underlying the haemophilias 

and the failure of the "extrinsic" system to compensate. Further, it addresses the lack 

of requirement for F'XIIa, while enabling involvement of FXIa in the system as 

indicated from clinical observations. The cellular focus emphasises the inbuilt 

mechanisms in the system which ensure appropriate localisation of the procoagulant 
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signal; the involvement of specific cell types with subsequent activation as a result of 

indirect communication between cells, the coordinated role of inhibitors and 

recognition of differing levels of activity being driven by the formation of complexes. 

We will return to the cell-based model of coagulation in the next chapter as the 

mechanism of action of high dose recombinant FVIIa is considered. 
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1.4 A delicate balance 

While it is essential that effective haemostatic processes occur when required, it is 

equally imperative that such processes occur only when appropriate and that they 

remain localised. Failure to limit haemostasis in this way may lead to thrombosis. In 

order to prevent this eventuality, the process of clot breakdown, fibrinolysis, is closely 

related to the procoagulant pathways already discussed. In addition, there are a 

number of inhibitory mechanisms built into the coagulation system which serve to 

prevent inappropriate fibrin deposition, primarily through acting upon thrombin. 

1.4,1 Fibrinolysis 

As essential as the appropriate formation of thrombi are to the control of haemorrhage 

and maintenance of haemostasis is the timely dissolution of inappropriately formed or 

no longer required clots. The process of destruction of a formed thrombus is termed 

fibrinolysis and is essentially mediated by the protease plasmin. Similar to the 

coagulation proteins which are cleaved when required from inactive zymogens present 

in the plasma, plasmin is derived from it's inactive precursor plasminogen. 

Conversion of plasminogen to plasmin is directed by tissue plasminogen activator 

(tPA) or urokinase (uPA). The principal stimulus for tPA and uPA activation during 

the coagulation process is thrombin, already shown to be a powerful procoagulant, an 

important anticoagulant role of thrombin is hence illustrated here too. 
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The process of fibrinolysis, once activated, is subject to powerful positive feedback as 

plasmin generation further activates tPA and uPA, while the plasmin substrate fibrin 

binds both tPA and plasminogen, hence localising further plasmin generation. 

The action of plasmin on fibrin results in the generation of soluble degradation 

products through cleavage. Again this process is self-propagating; plasmin 

degradation of fibrin leads to exposure of terminal lysine residues, which serve as 

binding sites for further plasminogen and tPA and ultimately increased plasmin 

formation. This process can be inhibited in vivo by TAFI , which cleaves the lysine 

residues, preventing further binding. TAFI . generated by thrombin in the procoagulant 

process, therefore serves as a vital link between coagulation and fibrinolysis. 

The process of fibrinolysis is of course more complex than the brief outline provided 

here, with additional co-factors and inhibitors involved, however for the purposes of 

this thesis, the essential information is provided here. Clearly, the generation of 

thrombin and the presence of fibrin serve not only a procoagulant role but also, 

paradoxically, are essential initiators and mediators of thrombolysis. Importantly, 

high thrombin concentrations are also associated with the activation of TAFI , which 

serves to inhibit the fibrinolytic pathway, thrombin therefore fulf i l l ing a procoagulant 

role once again. These apparently antagonistic actions of thrombin provide an 

essential mechanism for control over the interdependent systems of coagulation and 

fibrinolysis, with the thrombin concentration determining which process prevails. 

The process of fibrinolysis is the subject of an excellent review by Cesarman-Maus & 

Hajjar.^^ 
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1.4.2 Prevention of inappropriate thrombosis 

In addition to a number of stages in the coagulation system which are self-regulating, 

thus preventing excessive thrombin and fibrin generation, several plasma proteases 

and endothelial bound proteins specifically serve regulatory roles. As already 

mentioned, the intact endothelium is potently anti-thrombogenic, by virtue of the 

expression of specific proteins on the surface of endothelial cells. One such protein is 

thrombomodulin I . ^ ^ On interaction with T M . the specificity of thrombin is altered in 

favour of activating Protein C, at the expense of thrombogenic, platelet activating and 

fibrinogen cleaving properties.^' Once activated, Protein C can form a complex with 

Protein S (also expressed on the surface of the endothelium) which can diffuse to the 

platelet, where it leads to the deactivation of any factor Va^^' expressed on that 

surface. In addition, activated Protein C is able to deactivate membrane bound factor 

Vllla,^^' thus preventing assembly of the prothrombinase and tenase complexes on 

the platelet surface. As such, interaction of thrombin with T M sees the role of 

thrombin changed from pro-coagulant to anti-thrombotic.^^ 

In addition to endothelial surface expression of inhibitory proteins and the actions of 

thrombomodulin/protein C, there are two main plasma protease inhibitors; AT-UI and 

TFPI, both of which have been considered earlier in this section. A T - I I I serves to 

inactivate circulating thrombin, while TFPI serves to "switch o f f the initiation phase 

of the coagulation system. Importantly, the intact vascular endothelium also enhances 

the activity of A T - I I I through expression of the cofactor, heparan sulphate.'^ 
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As wi l l now be clear, the processes of coagulation, haemostasis and thrombosis are 

closely linked and in delicate balance. Not only do cell surfaces and coagulation 

proteins play vital roles but the various plasma and cell bound inhibitors are essential 

in maintaining control of the system. Failure of the inhibitors can lead to loss of the 

balance and thus conditions such as disseminated intravascular coagulation (DIC). 
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CHAPTER 2 

L I T E R A T U R E REVIEW 

2.1 Disturbance of haemostasis 

Inherited disorders, acquired disease and mechanical trauma may all lead to 

disturbance of haemostasis and resultantly excessive, severe bleeding. 

Inherited disorders can affect any component of the clotting system and generally 

effect specific parts of the coagulation cascade, though multiple clotting factor 

deficiencies also occur. The most common of the inherited disorders are von 

Willebrand disease (vWD) and Haemophilia A & B.'^ vWD is caused by irregularities 

in the quantity or action of the von Willebrand factor. Deficiencies of factor V I I I 

leads to haemophilia A while Haemophilia B is caused by defective factor IX. 

Deficiencies of other factors cU'e extremely rare (factor V I I or X deficiencies 1:500 

000, factor V deficiency 1:1 million).'^ The inherited disorders in many instances do 

not have significant impact on everyday life, becoming problematic only in cases of 

bleeding, such as injury or surgery. In addition to inherited disorders, a number of 

common diseases such as heart disease and cancer, are associated with impaired 

haemostasis. 

Trauma is a major cause of mortality and morbidity, both in the military and civilian 

arena. The mechanical damage caused by trauma can lead to damage to blood vessels 

and tissue and hence blood loss. This frequently occurs at sites which are not readily 

accessible for compression.^ Failure to apply direct pressure may lead to prolonged 
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blood loss which in turn can lead to physiological derangement (such as acidosis and 

hypothermia) and the initiation of a downward spiral of coagulopathy. The 

coagulopathy resulting from the combined effects of physical damage to the 

vasculature and impaired ability of the coagulation system can result in severely 

impaired haemostasis and potentially abelled ations. 

2.1.1 Trauma induced disturbance of haemostasis 

Haemorrhage is a broad term covering loss of small amounts of blood from vessels 

resulting in the formation of petechiae through to severe haemorrhage of significant 

blood volumes. While the formation of petechiae or ecchymoses, through the escape 

of small volumes of blood from the vasculature, may be indicative of an underlying 

pathology, in themselves they pose no appreciable risk of hypovolemia. 

Common understanding of the term haemorrhage includes either profuse visible blood 

loss from the body, for example following penetrating trauma, or internal bleeding 

requiring surgical correction. Either of these phenomena can lead rapidly to severe 

and life threatening hypovolaemia and it is this form of severe haemorrhage which is 

of grave concern to both civilian and military trauma clinicicuis, and forms the focus 

for this thesis. 

2.1.2 Hypovolaemic shock 

The hypovolaemia which by definition results from significant blood loss can lead to 

the clinical condition of shock. At its simplest, shock may be defined^^ as: 
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"the response of the body to inadequate tissue perfusion and oxygenation". 

Hypovolaemic shock is the most commonly encountered form of shock in the trauma 

victim,^^ which may be subdivided, according to the volume of blood lost. A loss of 

less than 15% of circulating blood volume (CBV) is graded as Class I hypovolaemic 

shock, loss of 15-30% of CBV is Class I I , 30-40% CBV loss is Class I I I and over 40% 

CBV loss is graded as Class IV hypovolaemic shock. 

Prolonged starvation of the tissues of oxygen cannot support life therefore untreated 

shock wi l l inevitably lead to cell death, followed by organ failure and ultimately death. 

The detection and control of haemorrhage is therefore vital in preventing or reducing 

the development of shock in battlefield casualties and civilian trauma victims. 

A number of papers have highlighted the overwhelming contribution of haemorrhage 

to acute combat death. In a landmark paper, Bellamy^ produced a hypothetical model 

population of combat casualties from existing military casualty statistics from World 

War I I and the Korean War. He convincingly makes the point that haemorrhage is 

indeed the single greatest threat to life on the battlefield. He went on further to assert 

that without adequate control of severe haemorrhage, other resuscitation methods are 

likely to be futile. In 2003, Champion acknowledged that the profile battlefield death 

had not changed over the years and that it was still dominated by haemorrhage, which 

accounts for around 50% of all deaths.^ The Battlefield Advanced Trauma Life 

Support Manual further emphasises the point that "restoration of adequate circulating 

volume [i.e. administration of intravenous (IV) fluid resuscitation] is not a substitute 
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for definitive treatment" and that it is therefore crucial, i f possible, to stop the 

bleeding 4^ 

2.1.3 All bleeding is not the same 

While the ultimate result of prolonged uncontrolled bleeding without intervention (i.e. 

abelled ations) would be inevitable, the aetiology and resultant requirements for 

management of bleeding can be wide ranging. There are two principal overarching 

causes, illustrated in Figure 10, below. 

Vascular Damage Coagulopathy 

Bleeding 

Diffcult to resolve. 
Often not amenable 

to surgical 
intervention and 

lead to 
exsangumation 

Generally "easy" 
surgical repair 

Figure 10 Diagrammatic representation of the two principal overarching 

causes of bleeding and their typical results. 

Mechanical damage to blood vessels as can be directly caused by physical trauma is 

often repairable by surgical intervention, with resultant restoration of haemostasis. By 

contrast, coagulopathic bleeding results from impaired thrombin generation^^ and is 

therefore not surgically correctable. 
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The causes of impaired thrombin generation leading to coagulopathy can be 

multifactorial and include: 

• Consumption of platelets and clotting factors as the coagulation system makes 

futile attempts to restore haemostasis thus depleting reserves of blood 

Q7 QS 

constituents. ' 

• Hypothermia and acidosis can both contribute significantly to the development 

of coagulopathy.*^' Deteriorating coagulopathy, acidosis and hypothermia 

serve to exacerbate one another in an often "lethal triad" or "vicious cycle".'*'' 
101 

• Dilution of blood coagulation proteins and platelets is a major concern due to 

intravenous fluid resuscitation.^^ 

• Dysfunction of already depleted supplies of platelets and coagulation factors 

can be encountered as a result of ongoing coagulopathy.*^ 

• Inappropriate activation of the fibrinolytic system can further exacerbate the 

coagulopathy and lead to further consumption of blood constituents and may 

see the patient deteriorate into the clinical condition of DIC.** 

In the haemorrhaging trauma victim, coagulopathy develops rapidly, as the 

coagulation system is strongly activated in an attempt to restore haemostasis. A recent 

study demonstrated that coagulopathy was present in a significant proportion of 

severely injured patients on time of admission to the Emergency department and prior 

to significant intravenous fluid adminis t ra t ionand that early coagulopathy is a 

predictor of mortality."'^ In cases of massive haemorrhage where surgical control of 

the bleeding wi l l ultimately be required to repair the damaged vessel, the futile action 

of the coagulation system in attempting to restore haemostasis quickly depletes 
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reserves of platelets and coagulation factors. Should the patient survive to reach a 

surgical capability, the underlying consumptive coagulopathy can result in continued 

diffuse blood loss despite surgical control of the primary site of injury. Ongoing 

bleeding and seeping may occur due to the impaired ability of blood to form viable 

clots due to lack of the vital procoagulant constituents. I f the underlying coagulopathy 

is not corrected, then the patient may exsanguinate, despite surgical control. 

Further complications may be encountered in the trauma patient as the development of 

shock can lead to worsening hypothermia and acidosis which have each been shown to 

adversely affect coagulation capabilities. Starvation of oxygen to tissues, due to a 

decreased circulating volume, is a major cause of acidosis in the haemorrhaging 

trauma patient. Intravenous f luid administration is advocated in the haemorrhaging 

patient where no surgical correction is possible in the short term, in order to increase 

circulating volume in an attempt to avoid or limit the development of tissue hypoxia 

and shock. However, as the majority of intravenous fluids, such as normal saline, add 

volume but not platelets or coagulation factors, they cause haemodilution, diluting 

further the already sparse blood constituents in clear fluid'°'*"'°* This reduction in 

concentration of coagulation factors and platelets causes impaired coagulation in itself, 

however f luid administration also increases the risk of development of hypothermia. 

Administration of inadequately warmed fluids can decrease the core body temperature 

to levels at which coagulation enzymes cannot function thereby further exacerbating 

the coagulopathy. 

Current clinical management of coagulopathy centres around blood component 

replacement therapy. While this can prove effective, in order for it to be effective it is 
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necessary to identify the deficient part(s) of the coagulation system to ensure that 

appropriate product(s) are administered. In addition, blood component replacement 

therapy is dependent upon availability of blood products. While this may seem 

obvious, such products can be relatively expensive and are considered scarce 

resources. Particularly in the military scenario, such products often may simply be 

unavailable. Despite these logistical considerations, a recent review has suggested that 

for serious injured, coagulopathic trauma patients who are in shock, plasma products 

should be considered the optimal resuscitation fluid currently available.^ 
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2.2 A military and civilian problem 

In civilian practice, abelled ations is the most common cause of death in trauma 

victims found dead at the scene and in over half of those who succumb within 48 

hours of injury.^ Haemorrhage is also the leading cause of mortality on the battlefield, 

accounting for around 50% of all deaths, around 80% of which are due to 

uncompressible haemorrhage.^ While severe haemorrhage is approximately equally 

deadly in both military and civilian environs, there are some significant differences 

between combat deaths and those in the civilian environment. Firstly, due to the 

protracted timescales to evacuation which are frequently encountered in the military, 

compared to those generally encountered in civilian arenas in both the U K and USA, 

there are likely to be proportionally more patients which exsanguinate prior to 

evacuation to hospital.^' ^ Secondly, the mechanism of wounding is very different in 

the military, compared to civilian setting, particularly in the UK. Clearly, the vast 

majority of cases of severe haemorrhage in the military are due to penetrating trauma,* 

while in UK civilian practice, blunt trauma such as that often suffered by victims of 

road traffic collisions is far more prevalent. "̂ ^ There is perhaps less disparity between 

civilian and military arenas in the USA, where gun crime, and resultantly penetrating 

trauma, accounts for a far greater proportion of trauma cases and deaths in American 

society than in the UK.^' '""̂  

Trunkey presented data in 1983 indicating that, in the urban civilian environment, 

trauma deaths follow a trimodal distribution."* This may be considered to represent 

Immediate deaths, which are non-salvagable (e.g. decapitation), Early deaths, some of 

which are potentially salvageable (e.g. severe haemorrhage) and Late deaths. 
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generally caused by sepsis and multiple organ failure. Figure 11 is adapted from this 

paper and illustrates the timescale over which each of these peaks of death occurs. 
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Figure 11 The trimodal distribution of deaths following trauma. 

Adapted from Trunkey, 1983 

Given the delayed evacuation times frequently encountered in the military, the 

trimodal distribution proposed by Trunkey"* may shift to bimodal, with a slurring of 

peaks one and two (immediate and early d e a t h s ) . I n the hostile military 

environment, or indeed following a major disaster in the civilian arena, due to delayed 

access to adequate medical care, injuries which under normal conditions are 

potentially salvageable, may be fatal. Essentially this would increase the number of 

deaths seen in the first few hours following injury. 

In addition, it has been reported that in geographically diverse civilian areas, a shift 

from the classic trimodal distribution of trauma deaths to bimodal may also be 

a n t i c i p a t e d . ' ' ° Meislin et a/'°* reported a peak of deaths at 0-60 minutes, 

corresponding to "immediate" deaths and a peak of deaths 24-48 hours following 
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injury. In this paper, in contrast to Trunkey, the second peak contained by far the 

highest number of deaths, with fewer deaths in the first 60 minutes. The second peak 

appears to represent a prolonging of "early deaths", defined by Trunkey as occurring 

around 2 hours after injury. The authors of the paper suggest that these changes may 

in some part be due to delayed access to medical treatment due to increased distances 

to hospital and also to the type of trauma encountered. Previous papers which had 

supported the trimodal distribution of trauma deaths'*' ̂  saw approximately equal 

incidence of penetrating and blunt trauma while this paper saw a significantly greater 

frequency of blunt trauma.'*^ The study catchment area used by Meislin et al was 

Pima county in Arizona, USA which consists of both suburban and rural regions, 

much like the UK. The bimodal distribution of trauma deaths reported by 

Demetriades et a / ' ' ° was similar to that of Meislin et al, except that the second peak 

occurred earlier, more akin to the times quoted by Trunkey. The catchment area used 

by Demetriades et al was Lx)s Angeles County Southern California. USA, a largely 

urban area. A higher proportion of penetrating trauma was seen in this study 

compared to that seen by Meislin et al possibly accounting for the more rapid 

occurrence of the second peak, and perhaps making the data less representative of 

rural areas of the UK where penetrating trauma is uncommon and evacuation time to a 

surgical facility may be prolonged. 

It should be noted that this bimodal distribution of trauma deaths is different from that 

reported in the military in which it is the first and second peaks which are reported to 

merge. These conflicting models of trauma deaths effectively illustrate the point, 

regardless of the model used, the differences between which are likely due to resource 

availability and regional conditions, that there are a group of patients who are 
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potentially salvageable, should adequate and timely medical care be available. These 

patients are represented by the second peaks of the trimodal model and civilian 

bimodal models. While the military model appears to indicate that such an 

intermediate group does not exist, it is likely that improvements in acute medical care 

may see the slurring of early deaths into the "non-salvageable" peak reversed, with 

more patients surviving to reach definitive care. 

The early deaths are therefore a dynamic group, which may survive up to 48 hours, or 

slip virtually into immediate deaths in the absence of timely treatment, but also may be 

salvaged i f effective control measures were available to prolong the window of 

opportunity to evacuate such casualties to a medical facility. Much research, including 

the subject of this thesis, is focussed upon minimising the early deaths, through 

seeking methods which serve to prolong the time over which a subject may remain 

viable prior to reaching definitive medical care. 
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2.3 Managing haemorrhage 

The obvious response to haemorrhage to anyone trained in basic first aid would be 

application of direct pressure on the wound, to reduce blood loss. This method of 

control is often sufficient to prevent loss of considerable blood volume from, for 

example, an extremity injury. Such cases are termed compressible haemorrhage and 

bleeding from such sites should be controllable, even in the battlefield scenario, and 

haemorrhagic shock avoided by appropriate and timely application of direct pressure 

to arrest blood loss. 

Where haemorrhage cannot be controlled through application of pressure and/or 

conventional wound dressings, the term non-compressible haemorrhage is used. In 

these cases it may be beneficial to utilise a tourniquet to stem the flow of blood 

upstream from the point of haemorrhage. This wi l l reduce blood flow to the damaged 

blood vessel and therefore decrease blood loss. While their use is often advocated, 

tourniquets have been associated with a myriad of risks including nerve injury and 

development of tissue necrosis in tissues downstream of the tourniquet.'"' 

Tourniquets are also limited in their use to points at which they can be applied 

upstream of the injury. In general, tourniquets can therefore only be used in (severe) 

limb injuries. 

Non-compressible truncal haemorrhage is far more difficult to manage, since it is not 

possible to arrest the bleeding by application of pressure or mechanical reduction of 

blood flow through the use of tourniquets. Examples of non-compressible 

haemorrhage would include abdominal, thoracic or junctional/truncal (i.e. at the joints 
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of the limbs and the neck with the trunk) bleeding. Perhaps unsurprisingly then, some 

92% of cases which exsanguinate do so as a result of non-compressible haemorrhage.^ 

Severe non-compressible haemorrhage overwhelms the innate haemostatic processes 

detailed previously, with potentially lethal consequences i f unresolved. Where 

application of pressure, conventional dressings and tourniquets is not feasible, there is 

currently no effective method of achieving haemostasis in these cases, until surgical 

facilities are available to definitively arrest the blood loss. As such, the key to 

successful treatment and survival of severe uncontrollable haemorrhage is currently 

the timely transfer of the patient to a surgical capability, hi the urban civilian 

environment this is often achievable however in isolated rural areas and particularly 

on the battlefield, rapid transfer/evacuation is not always possible. The same is true 

of major incidents involving the public, such as a terrorist attack or train crash, where 

limited emergency services are overwhelmed by the number of casualties. 

In the face of non-compressible haemorrhage where transfer to a surgical facility is not 

possible in the immediate term, IV fluid resuscitation is at present the only realistic 

acute measure available to attempt to limit deterioration of hypovolemic shock. 

While administration of IV fluids can be life saving, there has been much debate 

concerning the risks involved in its use and which fluids are the best to use; leading to 

the ongoing crystalloids versus colloids and hypotensive versus hypertensive 

resuscitation debates. 
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2.3.1 The gold standard: intravenous fluid resuscitation 

There is a wealth of literature on the cost-benefit ratio of isotonic intravenous fluid 

resuscitation and while it is outside the remit of this thesis to cover the debate in any 

great detail, there are a number of salient points which should be noted, particularly 

from the military point of view, but true also in the civilian pre-hospital arena to some 

degree. 

Considering briefly the potential problems of f luid resuscitation in the mihtary 

environment specifically; in order to adequately administer appropriate volumes of 

standard infusion products (typically normal saline or Hartman's solution), the 

Combat Medical Technician (CMT) is required to carry large volumes that may be 

quickly depleted when treating severe haemorrhage. In addition to the logistical issues 

of carrying sufficient f luid without severely adversely affecting performance of 

personnel, there exists the potential to (unintentionally) cause or worsen a developing 

coagulopathy in the casualty. 

While an increase in blood pressure is desired in order to facilitate increased perfusion 

of tissues and thus avoid deterioration to shock, a number of papers have indicated that 

a rapid increase mean arterial pressure (MAP) is associated with higher mortality 

rates."•'""^ This is not a recent concept, and indeed in 1918 Cannon et a/"^ warned 

"Hemorrhage in a case of shock may not have occurred to a marked degree because 

the blood pressure has been too low and the flow too scant to overcome the obstacle 

offered by the clot. I f the pressure is raised before the surgeon is ready to check any 

bleeding that may take place, blood that is sorely needed may be lost". This warning 

58 



was echoed in 1965 by Shaftan and associates' '"̂  who demonstrated in a canine arterial 

haemorrhage model that hypotensive resuscitation produced a more favourable 

outcome than normotensive, stating that in the normotensively resuscitated group "The 

still-hquid contents [of the clot] could be seen to enlarge, pulsate and finally break 

through at one comer to produce rebleeding". The authors went on to state that 

haemostasis is dependent not only on the formation of an initial clot across the 

damaged area of the blood vessel, but also upon secondary blood pressure depression 

and that the clot may be dislodged whenever the blood pressure was increased. 

A more recent paper which addressed this issue was that of Bickell and colleagues"^ 

in 1991. Anaesthetised swine were subjected to aortotomy and subsequently either 

normotensively resuscitated with lactated Ringers solution (to MAP SOmmHg) or not 

resuscitated. The volume of haemorrhage and mortality were both significantly 

increased in the group of animals which were resuscitated with lactated Ringers 

solution, compared to the unresuscitated controls. Indeed, resuscitation to MAP 

SOmmHg was associated with 100% mortality while all animals in the control group 

survived. The model was specifically designed to be potentially survivable, to enable 

establishment of the proof of principle that aggressive fluid resuscitation to 

normotensive pressures could be associated with a deleterious effect on survival and 

volume of haemorrhage. Bickell and associates showed that the infusion of lactated 

Ringers solution actually re-initiated bleeding which had already stopped and 

suggested the causality for this may be three-fold. Firstly, the authors suggested that 

the rapid infusion of f luid was likely to have mechanically disrupted a recently formed 

thrombus, facilitating re-bleeding. Secondly, the addition of clear f luid to the 

circulation caused a profound haemodilution which through decreasing the viscosity of 
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the circulating volume, according to the Bernoulli equation, would increase the 

velocity of the flow of the blood, further destabilising any formed thrombus. In 

addition to direct effects on the integrity of the thrombus, haemodilution causes a 

decrease in the oxygen carrying capacity of the blood, leading to impaired cellular 

function. 

Kowalenko et al built on the work of Bickell and associates in 1992."^ Again, 

anaesthetised swine were haemorrhaged then subjected to a resuscitation regimen, 

however in this study, the haemorrhagic insult was designed specifically to be fatal in 

the majority of untreated cases. Animals were randomised to be resuscitated to MAP 

SOmmHg, 40mmHg, or non-resuscitated. Survival was not significantly different 

between those animals in the SOmmHg group and the non-resuscitated group, however 

survival was significantly higher in the hypotensively resuscitated (MAP 40mmHg) 

group, compared to no resuscitation and normotensive resuscitation. Survival rates in 

the hypotensivley resuscitated group demonstrate that the model was potentially 

survivable, with treatment. Despite being a potentially survivable injury, in this severe 

haemorrhage model, normotensive resuscitation conferred no detectable decrease in 

mortality. Kowalenko and colleagues suggested two potential mechanisms which may 

account for the failure of normotensive resuscitation to improve survival; one being an 

increased volume of intraperitoneal haemorrhage and the other being haemodilution 

and resultant decreased oxygen carrying capacity of the circulating volume. The 

authors suggested that the increase in intraperitoneal haemorrhage may be partly due 

to an increase in transmural pressure caused, according to LaPlace's Law, by an 

increase in vessel size due to the infused fluid. Also suggested to contribute to the 

increase blood loss seen with normotensive resuscitation was an increase in flow 
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across the damaged vessel surface (Poiseuille's Law). Both of these factors, as 

suggested by Bickel et a/,"^ may lead to disruption of a thrombus. 

A rat study conducted by Capone and associates' ' "* provided further evidence that 

attempts to restore normal blood pressure prior to achievement of surgical control in a 

severe tail haemorrhage model led to increased blood loss, haemodilution and 

mortality. The authors of this study noted that animals which were resuscitated to a 

mean arterial blood pressure (MAP) of SOmmHg had profound haemodilution and 

transient hypervolaemia, compared to animals which resuscitated to MAP 40mmHg, 

or control animals which received no resuscitation. Again, the authors attributed the 

increased mortality rate in the normolensively resuscitated group to disruption of the 

clot, caused by a combination of decreased blood viscosity, increased blood pressure 

and increased pulse pressure."^ The potential role of the increase in pulse pressure 

was initially hypothesised by Stem and associates"^ in a study which had utilised a 

near-fatal model of aortic haemorrhage in swine which were resuscitated to MAP 40, 

60 or 80 mmHg. Survival was found to be significantly lower in the group 

resuscitated to 80 mmHg compared to either of the other groups, while volume of 

intraperitoneal haemorrhage was significandy higher in this group. 

In addition to the potential for dislodgement of a clot by infusion of IV fluids to 

restore normal blood pressure, i f adequate temporary haemostasis had not been 

established prior to administration of IV fluids, then they would likely have little long 

term beneficial effect, simply increasing the volume and rate of fluid loss from the site 

of injury. Furthermore, IV fluids carried by 'far-forward' medical personnel wi l l 

simply provide volume expansion of the circulating intravascular fluid, offering 
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neither increased oxygen carrying capacity nor procoagulant capability, indeed 

diluting the precious limited remaining platelets and coagulation factors. 

In the military arena, i f immediate evacuation of a casualty with uncompressible 

haemorrhage is possible, then fluid administration should not delay transfer. However 

i f there is a delay in evacuation, administration of IV fluids is sanctioned.^^ The delay 

to evacuation often encountered on the battlefield compounds the limitations of IV 

fluid resuscitation, potentially leading to the loss of more potentially salvageable 

injuries over a protracted timescale. 

The civilian situation is similar, with recommendations of the National Institute for 

Clinical Excellence (NICE) stating that pre-hospital initiation of fluid replacement 

therapy is generally not advocated and that in cases where it is deemed necessary it 

should only be used en route to hospital and not delay arrival 

2.3.2 Hypertonic Saline Dextran (HSD) 

As a means to address the logistical issues involved in carrying sufficient volumes of 

traditional fluid resuscitations, hypertonic volume expanders such as HSD have 

received much attention from the military medical community as a small volume 

alternative. 

The rationale behind the use of hypertonic plasma volume expanders lies in the high 

salt concentration of such solutions, drawing water from the cells of the body through 

osmosis. The result is an increase in the extracellular fluid volume through 
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redistribution of intracellular fluid. Theoretically, therefore, effective restoration of an 

adequate circulating volume may be attained from just a small volume infusion. 

In 1984, Nakayama et a/'^' published preliminary results from experiments in which 

sheep were bled to a MAP of SOmmHg, then resuscitated using either normal saline 

(around 1600 ml) or hypertonic saline (around 200 ml). They demonstrated that, 

despite its' small volume, hypertonic saline had increased MAP to levels comparable 

to those achieved using the higher volume of normal saline. Plasma volume had also 

been significantly increased in those animals receiving hypertonic saline, by around 

twice the volume infused suggesting there had indeed been redistribution of 

intracellular fluid to the vasculature. 

HSD is the volume expander currently receiving the most attention, based on 

encouraging results from a number of studies. HSD is composed of 7.5% saline and 

6% dextran 70. It is administered as a small volume as required to maintain a MAP of 

SOmmHg, with a maximum infusion of 250ml. The BATLS resuscitation protocol is 

then followed once the course of HSD has been administered. 
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2.4 Adjuncts to improve haemostasis 

While standard intravenous fluid resuscitation remains the gold standard for the 

shocked casualty in the absence of a surgical capability,^*' '"'̂  there are severe 

limitations to its use and alternatives are actively being sought. Improved acute term 

care of casualties suffering from severe haemorrhage could significantly reduce the 

number of early deaths and prevent potentially salvageable injuries - such as a severe 

haemorrhage - from becoming inevitable deaths. Given the incidence of severe 

haemorrhage and hypovolemic shock as cause of death both on the battlefield and in 

acute civilian care, there has been much emphasis on research into methods of 

improving haemorrhage control. 

Several adjuncts to haemorrhage control have been considered and continue to be 

assessed. The most prominent of these are briefly considered in this section. 

2.4.1 Specialist Blood Products 

In the face of continued blood loss in theatre, despite 'damage control' surgery having 

taken place, the principal tools available to the surgeon are specialist blood products. 

Three main products are available - fresh frozen plasma (FFP), cryoprecipitate and 

platelets. Fresh frozen plasma and cyoprecipitate are preparations derived from whole 

blood donations. They provide a mechanism through which coagulation factors can be 

administered as part of the volume expansion, thereby increasing the circulating 

volume while avoiding dilutional coagulopathy. Considering the overview of 
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coagulation, discussed in the introduction of this thesis, it should be clear why the 

administration of platelets and/or coagulation factors may improve the ability of the 

body to generate an effective thrombus and therefore mediate haemostasis. 

While such products can effectively restore haemostasis in a number of cases, it is not 

always clear which product should be used and whether their use wi l l actually help. 

With every transfusion there remains, an albeit small, risk of infection in addition to 

the relatively more frequently encountered complications of transfusion such as 

adverse anaphylactic or allergic reactions and blood group antibody-antigen 

reactions.'^^ 

Furthermore, particularly in the field in the military arena, these specialist blood 

products may simply be unavailable and even in the civilian environment should be 

considered scarce, valuable, resources. As they are tools of the surgeon, they are 

invariably available only once the casualty reaches a surgical facility. As already 

discussed, there are instances, particularly in the hostile military environment, when 

methods of controlling haemorrhage are required much sooner than a surgeon can tend 

to the casualty. 

2.4.2 Haemostatic dressings and topical agents 

To provide an alternative to tourniquets for controlling blood loss in cases of severe 

non-compressible haemorrhage and to improve the efficacy of fluid resuscitation, 

through preventing any further circulating volume loss, a range of novel haemostatic 

dressings and topical agents have been the focus of intense research over recent years, 
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featuring in a number of reviews.'^^"'^^ One of the main focuses of the reviews is 

Quikclot (mineral zeolite), a novel haemostatic agent, developed and marketed by Z-

Medica (Wallingford. Connecticut, USA) and approved by the FDA for external use in 

May 2002. It is composed of zeolite granules, a derivative of volcanic rock, which is 

porous and strongly hydrophilic. The product is a powder (described recently in the 

media as 'sand'),'"^ which is poured directly onto a wound and since the mineral 

structure is hydrophilic, fluid is adsorbed. The result is a highly concentrated 

population of platelets and coagulation factors at the wound site and therefore, 

theoretically, increased clotting kinetics. 

In a swine model of severe mixed arterial and venous haemorrhage,'^ Quikclot 

produced a statistically significant improvement in both volume of blood loss and 

survival, decreasing mortality from 83% in the untreated group to 0% in the Quikclot 

group. These findings were supported in a further study in 2004*^ in which Quikclot 

was shown to be more effective in improving survival and reducing volume of blood 

loss in a swine model of Grade V liver injury, compared to a standard gauze dressing. 

The first in vivo use of Quikclot in humans was reported in 2004.'^ A 22 year-old 

male suffering multiple gunshot wounds continued to suffer considerable haemorrhage 

which was not responsive to the surgical measures employed. As coagulopathy 

developed, the decision was taken to use Quikclot as a "last resort" to attempt to save 

life. Bleeding ceased at each wound site to which Quikclot was applied and the 

patient went on to make a fu l l recovery. This study demonstrated the apparent ability 

of Quikclot to establish haemostasis in a severe bleeding episode in a coagulopathic 

patient. 
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While this is an encouraging report, it must be remembered that the Quikclot was 

administered in the operating theatre, as an adjunct to surgery. Administration of 

Quikclot to internal injuries such as those reported by Wright et al" would simply not 

be feasible on the battlefield or in the civilian prehospital scenario. A further 

limitation to the use of Quikclot, which has prevented it's more widespread use in the 

trauma field, is that the absorption of water results in the release of a large amount of 

heat from the substance itself This exothermic reaction, which has been shown to 

reach temperatures over 90 degrees Celsius,'^' '̂  has been reported to cause bum 

injuries in humans,'^^ however the incidence of such iatrogenic injuries has been 

relatively low and must be considered in context, as the product manufacturer claimed 

in Apri l 2006 that Quikclot "is credited with saving at least 200 lives during the Iraqi 

war and Afghanistan operations".'^ 

Further haemostatic dressings which received much attention in the recent reviews 

were the poly-N-acetyl glucosmaine (p-GlcNAc) based chitosan and chitin dressings. 

Chitin is a fully acetylated form of p-GlcNAc, while chitosan is the deactyated form of 

p-GlcNAc. '" 

The chitin dressing. Rapid Deployment Hemostat (RDH) has undergone various 

modifications along the process of development, with three different versions reported 

in the literature. The current version has been shown to be efficacious in some recent 

animal studies but is yet to be tested alongside the other dressings discussed here and 

is not yet available commercially.'"^ As a result, it has not been used in theatre in Iraq 

or Afghanistan, and wil l not be discussed in further detail here. 
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The chitosan dressing HemCon"^ (HemCon Medical Technologies Inc, Portland, 

Oregon) has been shown in a number of animal studies to be e f f i c a c i o u s . I n a 

swine model of severe liver injury, the dressing was shown to improve survival from 

29% in the control (standard gauze dressing treated) group to SS%.'"^ In a swine 

model of severe aortic haemorrhage, HemCon™ initially stopped arterial bleeding in 

71 % of cases, compared to 0% with the standard dressing.'^^ However, rebleeding 

occurred resulting in abelled ations after a mean time of less than 1 hour, with all 

animals having died within 102 minutes. In the same study, the fibrin sealant dressing 

(discussed in more detail shortly) performed more favourably. 

In 2004, a study was published which directly compared the efficacy of HemCon™ 

and Quikclot® in a large animal model of severe haemor rhage . In concordance 

with the 2003 study by Alam et a/,'^ Quikclot® was shown to be associated with 

100% survival, compared to 0% in the "no dressing" group and 43% in the standard 

field dressing group. Again, the use of Quikclot® was associated with an increased 

wound temperature in this study. HemCon™ showed mixed results in this study, 

proving either very effective, or completely failing due to lack of adherence. The 

authors stated that each of the HemCon™ dressings looked identical with no obvious 

imperfections and were all derived from the same batch. They suggest that this is 

likely a quality control/manufacturing issue which they claim should be easy to 

resolve; though they acknowledge that in a pilot study for this experiment, the entire 

batch of HemCon™ failed to adhere. The overall survival rate for the HemCon™ 

group in this study was 71%. 
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Recent data published on the use of the HemCon™ bandage in Afghanistan and Iraq 

reported a success rate of 97% in 64 cases where the dressing was used in an attempt 

to achieve cessation of bleeding or improvement in haemostasis. 

A third haemostatic dressing, the fibrin sealant dressing, has also been the focus of 

much research effort. The efficacy of this dressing was compared with that of 

HemCon™ in a study conducted by Kheirabadi and associates.'^' Using an aortic 

injury in a swine model, the fibin sealant dressing was shown to be 100% effective in 

achieving initial haemostasis (compared to 71 % with HemCon™) and while 

rebleeding occurred in all cases treated with HemCon™ resulting in a mean survival 

time of less than 1 hour, all but one of the six animals treated with the fibrin sealant 

dressing survived the ful l study duration of 96 hours, with a mean survival time of 

over 80 hours. 

In a further study, the fibrin sealant dressing was compared with Quikclot®, 

HemCon™ and a standard gauze dressing in a swine model of severe arterial 

haemorrhage.'^" Contrary to previously discussed papers, neither Quikclot® nor 

HemCon™ were found to confer haemostatic benefit in this study, with no animals 

surviving in either group. The fibrin sealant dressing was associated with 67% 

survival. The authors noted that, though not reaching significance, the HemCon™ 

dressing appeared to decrease the bleeding rate and increase the time to 

abelled ations by 20 minutes with no adverse effects, compared to Quikclot® 

which conferred no benefit whatsoever and was again noted to be associated with an 

intense exothermic reaction. This study was limited through the fact that the dressings 

were applied within 45 seconds of injury and free bleeding, a timescale clearly not 
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applicable to the vast number of cases in either military or indeed civilian environs. 

Furthermore, the dressings were applied through a surgical access point, directly to the 

wound. Again, it is highly unlikely that direct access to the point of vessel damage 

would be available in the trauma setting. Therefore, particularly in the case of the 

HemCon™ and fibrin sealant dressings, as agents which require direct access to the 

point of bleeding, as compared to Quikclot which could conceivably be poured into a 

wound site, the relevance of these findings to the trauma setting must be questioned. 

The timescale is clearly not realistic and the requirement for access to the point of 

injury means that these dressings are unlikely to be applicable in a number of cases of 

non-compressible haemorrhage. This point is made clear by Pusateri who stated that 

the dressings tested were only likely to be useful in cases where the bleeding sites 

were accessible to buddy aid.'^^ 

Both HemCon™ and Quikclot® have been granted FDA approval and both have been 

deployed by the U.S. military in the ongoing conflicts in Iraq and Afghanistan. The 

fibrin sealant dressing, though having shown promise in studies such as those 

described here, requires testing in chnical trials in order to obtain FDA approval.'^^ 

There are also availability issues, and it is considerably more expensive than the other 

dressings (up to $1000 per dressing, compared to $10 for Quikclot® and $100 for 

HemCon™).'-^ 

It is evident from reviewing the published literature on the range of haemostatic 

dressings that there is no single ideal option. Efficacy, cost, availability and safety 

issues mean that the risk-benefit as well as cost-benefit ratios must be weighed up. 

Quikclot® has proven effective in the majority of studies, is cheap, readily available 
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and does not appear to vary in efficacy between batches. However, Quikclot® is the 

only agent to have been shown to have any adverse effect. HemCon™, while having 

no adverse effects and being commercially available and relatively cheap, appears to 

vary in efficacy between batches, though has been shown to be effective in clinical use 

in current military operations. The fibrin sealant dressing has proven effective in 

comparafive studies with the other dressings, but lacks FDA approval, is not readily 

available and carries a large unit cost. A further significant limitation of all of these 

advanced haemostatic dressings is that they require a degree of access to a point of 

bleeding, which is often difficult or simply not feasible in the trauma patient. A 

requirement therefore exists for an agent which is capable of mediating effective 

haemostasis when the site of haemorrhage is inaccessible. An intravenous agent which 

was directed to the site of vascular damage would seem a promising candidate and one 

such agent, activated recombinant factor V I I , is discussed in detailed in the following 

section. 
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2.5 Activated factor VII 

2.5.1 Activated factor VII and the haemopliilias 

Clotting factor V I I is an integral part of the coagulation system. Minute amounts of 

activated factor V I I , FVIIa, circulate in the bloodstream of physiologically normal 

individuals. Interaction of FVII(a) with tissue factor, exposed at the site of injury, 

leads to the activation of factor X and the initiation of the final common pathway 

through the traditionally viewed "extrinsic" pathway, as discussed previously. The 

notation FVII(a) is used here as there is much debate in the literature as to whether 

FVII is activated on interaction with TF or i f only true FVIIa is able to form an active 

complex with the protein. Possible activators of FVI I in vivo are suggested by 

different groups to include not only tissue factor, but also factor Vll-activating 

protease (FSAP) factor Xa, factor Ixa, the FVIIa/TF complex and t h r o m b i n . ' ^ ^ 

While there is no clear consensus on the definitive activator of FVII in vitro, the key 

concept from the point of view of this thesis remains that the FVlIa/TF complex leads 

to initiation of coagulation. 

Over the last few decades, preparations of FVIIa have been used increasingly to treat 

bleeding disorders; initially primarily the haemophilias. Haemophiliacs are deficient 

in, or have alloanfibodies (inhibitors) to, either factor V I I I or factor IX (haemophilia A 

and B respectively). Haemophiliacs with deficiencies of these factors can be treated 

effecfively through administration of the deficient factor concentrate. However, in 

patients with inhibitors to factors V I I I or IX, replacement therapy is often ineffective 

as the inhibitors also act on the infused factor. Such patients require treatment which 
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circumvents the inhibited step of the "intrinsic" pathway and initial approaches to 

treatment in these cases involved administration of prothrombin complex 

concentrates.'^* Such treatment had mixed success and a safer, more efficacious 

option was sought. 

In 1979, it was shown that clotting factor concentrates contained high concentrations 

of FVUa'''^ and it was hypothesised that this may be the primary active agent. Since it 

was viewed to be the intrinsic system which was blocked in haemophilia patients with 

inhibitors, attention turned to the possibility of utilising the extrinsic pathway, 

specifically FVIIa, to mediate clotting. FVIIa was considered a potentially ideal 

choice as it was understood to require interaction with tissue factor, exclusively at the 

site of injury, to activate factor X and therefore iatrogenic systemic thrombosis should 

not be a concern. 

The first use of human FVIIa as a treatment in haemophiliacs with inhibitors appeared 

in the peer reviewed literature in 1983,'^ though there had been an earlier 

unsubstantiated use reported in 1981.'^^ In the landmark 1983 paper, two haemophilia 

A patients with inhibitors to factor V I I I were administered human FVIIa concentrate 

to control bleeding. Both patients responded to the treatment with no i l l effect noted. 

While the mechanism of action of FVIIa in these and subsequent cases was not clear, 

the effectiveness was remarkable, proving FVIIa to be an effective treatment for 

haemophiliacs with inhibitors to factors V I I I or IX. 
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2.5.2 Activated recombinant factor VII, rFVIIa 

Human factor V I I was first isolated in the early eighties'^^' and was subsequently 

produced by recombinant technology.'"" Initial studies provided evidence to suggest 

that rFVIIa produced from baby hamster kidney cells is safe and very similar to 

plasma-derived human FVIIa.'''^ These findings made rFVIIa an attractive candidate 

as an alternative source for FVIIa; as plasma contains only trace amounts of FVIIa, 

making it difficult to collect adequate amounts and there are inherent risks of viral 

transmission in the use of any proteins derived from human plasma. 

The first reported clinical use of rFVIIa was pubhshed in 1988.^° A haemophilia A 

patient with inhibitors to factor V I I I successfully underwent surgery with minimal 

perioperative blood loss, no post operative bleeding and no thrombotic events in a 

protocol where rFVIIa was used to provide cover. This paper provided the first 

anecdotal evidence for rFVIIa as a safe, effective treatment in the control of bleeding. 

Following this initial report, there have been a multitude of papers endorsing the use 

of rFVIIa in the treatment of haemophila patients with inhibitors to factors V I I I or 

j^47,143-146 ĵ ĵ g j j . j jg jj, established treatment for such patients.'"*^ 

Hedner coined the phrase "universal haemostatic agent" in 1998, referring to multiple 

reports of successful use of the drug not only in haemophiliacs but also in patients 

with a range of bleeding disorders including Glanzmann's Thrombasthenia, 

thrombocytopenia and factor V I I deficiency.*^ 
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Recombinant factor Vi la is currently manufactured by NovoNordisk, marketed as 

NovoSeven®. NovoSeven® is licensed in the USA for the treatment of congenital 

haemophilia with inhibitors to factors V I I I or IX. In the EU it is additionally licensed 

for use in cases of acquired haemophilia, factor V I I deficiency and Glanzmann's 

thrombasthenia. In addition to these licensed uses, NovoSeven® has in recent years 

seen a number of cases of 'off-label' emergency usage. 

2.5.3 Mechanism of action of rFVIIa 

An earlier section outlined why haemophiliacs bleed. This section wi l l now consider 

how infused FVIIa is able to stop bleeding in haemophiliacs. 

Based on the interaction of FVIIa with TP, it was not clccû  how, through addition of an 

excess of FVIIa, there could be an increased procoagulant signal, as it is viewed that 

TP, and not PVIIa, is the limiting agent in vivo.^^^ This was particularly perplexing as 

high doses of PVIIa (far higher than the dose required to saturate TP binding sites) had 

been required to elicit a response in haemophilia patients; yet once all TP binding sites 

were occupied, it was not clear how the infused high-dose FVIIa could be acting.'""^ 

The mechanism of action of rPVIIa was far from clear when it was first used in the 

1980's'^'"° and still remains a point of contention. 

In 1990, Rao & Rapaport published a paper which attempted to elucidate the 

mechanism of action of infused PVIIa in haemophiliacs, proposing that infused PVIIa 

may be acting through a non-physiological, TP-independent mechanism.''*'' They 

demonstrated that exogenous FVIIa was capable of shortening the clotting time of 

haemophiliac plasma and that this effect could not be blocked by anti-tissue factor 
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antibodies; indicating that FVIIa was acting through a non-TF dependent mechanism. 

This was confirmed using an assay system containing only FVIIa, FX, calcium and 

phospholipid, with no TF source. Despite the lack of TF, FVIIa proved capable of 

activation of FX in this system. Removal of phospholipid from the assay system, 

however, prevented activation of FX by FVIIa. On addition of TF to the 

phospholipid-containing system, there was no reported difference between levels of 

FX activation with or without TF. In the same paper, Rao & Rapaport also noted that 

the enzymatic efficiency of the FVIIa/phospholipid complex was significantly lower 

than that achieved through FVIIa/TF complex formation. This finding provided 

compelling evidence to potentially explain the requirement for high doses of FVIIa. It 

was interpreted from these findings that the mechanism of acfivation of FX by high-

dose FVIIa was phospholipid-dependent but TF-independent. 

The conclusion of Rao & Rapaport'''^ was supported by a later study from Hoffman et 

a/'^° in which it was clearly demonstrated that human monocytes were able to support 

the generation of Fxa on their surface, independent of the presence of TF. 

Interestingly, they reported in the same paper that endothelial cells could not support 

Fxa generation, demonstrating that a generic phospholipid source is not sufficient to 

support initiation of coagulation, implying instead that specific cell surface 

characteristics may be required. 

Consistent with and adding to the earlier work and hypotheses of Rao & Rapaport'''^ 

and indeed their own work,'^'' Monroe et al provided evidence in 1997 that high dose 

FVIIa was able to directly act upon activated platelets independently of tissue 

f a c t o r . U s i n g the cell-based model described previously, Monroe et al 
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demonstrated that FVIIa was able to bind to activated, but not unactivated, platelets. 

This binding was found to be entirely independent of TF. Although the affinity of 

FVIIa for activated platelets was found to be lower than that for TF, the 

FVIIa/activated platelet interaction nonetheless formed an active complex which was 

able, ultimately, to mediate thrombin generation directly on the surface of the 

activated platelet. 

In later studies,'^^ Monroe and associates demonstrated that the amount of Fxa 

generated on the surface of activated platelet in the absence of TF, FVII I and FIX but 

in the presence of rFVIIa was significantly less than that when the intrinsic factors 

were present, however at high doses of rFVIIa (resulting in plasma FVIIa 

concentrations which approximate to those found in haemophiliac patients treated with 

rFVIIa), thrombin generation approached normal levels seen in the cell-based model 

of coagu la t ion . ' ^^ The ability of rFVIIa to facilitate even limited Fxa generation in 

the absence of FVII I or FIX allows understanding of how pharmacological doses of 

rFVIIa are able to compensate for the deficiency of the intrinsic factors in 

haemophiliacs. At high doses, rFVIIa was able to act directly on the activated platelet, 

leading to the expression of Fxa on the surface of the activated platelet - the correct 

surface to generate the required thrombin burst. 

The findings of Monroe et al in 1997'^'' explained both the requirement for high 

doses of rFVIIa and the localisation of effect, avoiding systemic thrombosis. As 

activated platelets are found specifically at the site of injury, the matter of localisation 

was addressed while the lower enzymatic activity of FVIIa with platelets (compared to 

TF-bearing cells) also accounted for the higher dose dependency. This proposal also 

77 



offers a rational explanation for the efficacy of rFVIIa in thrombocytopenic patients, 

as high levels of rFVIIa have been shown to significantly increase the amount of 

thrombin generated on a given number of platelets,'"^ thereby maximising thrombin 

generation from a limited platelet population. Notably, contrary to the proposals of 

Monroe and colleagues, a TF-dependent model was able to account for the localisation 

effect but, for reasons already discussed, could not explain the high doses necessary, 

while the proposal by Rao & Rapaport,''** of interaction of fVIIa with generic 

phospholipid, explained the high dose requirement but not the localisation effect. 

Despite the mounting evidence for a TF-independent mechanism provided by these 

authors,'''^' work published in 1993 provided directly opposing evidence, 

suggesting that the mode of action of rFVIIa was very much dependent on TF.'^^ 

Following injection of high dose (50ug/kg) rFVIIa into healthy chimpanzees, ten Cate 

et al had measured a considerable increase in plasma levels of FIXa and Fxa as well as 

prothrombin activation fragments. Crucially, injection of monoclonal antibodies to TF 

in one group of chimpanzees had resulted in loss of effect of subsequently 

administered rFVIIa, indicating that the drug indeed requires TF to function. 

Aside from the clear conflict with other published reports, it is alarming that 

administration of rFVIIa to healthy animals resulted in generafion of factors Ixa and 

Xa, indicating potential inappropriate activation of coagulation. As these animals 

were uninjured, there should theoretically have been no significant exposure of TF nor 

should there have been upregulated expression of phospholipid as there was no 

requirement for activation of the coagulation system in these healthy animals. Ten 

Cate et al suggested that, since their results suggested that TF was essential for rFVIIa 
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activity, in their model at least, physiologically expressed TP must be interacting with 

rPVIIa and that this interaction may represent competitive binding of rFVIIa and 

zymogen FVII . The authors ultimately concluded that the rPVIIa in these experiments 

was acting upon TP to increase basal coagulation (often termed "idling" of the 

coagulation system). It is possible, therefore, that the mode of action of rFVIIa in 

these uninjured animals may well be TP dependent, in so far as the action of the drug 

is limited and not comparable to that seen when administered to the bleeding patient 

who may express increased levels of phospholipid source as a trigger for coagulation, 

with which rPVIIa may interact. Nevertheless, in 1996 Rao & Rapaport, who had 

been early advocates of a TP-independent mechanism, reported that they were 

sufficiently satisfied by this data to shift position, convinced that the mode of action of 

rPVIIa in haemophiliacs was TP-dependent, involving competition between zymogen 

F V I I and rFVIIa.'^^ 

The TP-dependent mechanism was further championed in 2000, as van't Veer et al 

reported the outcome from an in vitro model which indicated that rPVIIa acted by 

overcoming inhibition of TP binding by unactivated FVII. '^^ They found that the lag 

time to initiation of coagulation was increased in their model on addition of plasma 

levels of zymogen FVII and that this lag time shortened on addition of rFVIIa. Van't 

Veer et al had used a model system in which in which relipidated TP-containing 

synthetic phospholipid vesicles were used in place of platelets; a system which was 

criticised by Hoffman & Monroe in their response to this hypothesis.'^^ Hoffman & 

Monroe found no effect of zymogen FVI I in extending the lag period in their 

previously described cell-based model, suggesting that this discrepancy may be an 

artefact of the model system used by van't Veer et al. Hoffman & Monroe used cell-
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associated TF in their in vitro model while van't Veer and associates used synthetic 

phospholipid vesicles; leading Hoffman & Monroe to question the validity of model 

systems utilising synthetic sources of TF. Notably, van't Veer and colleagues made 

the observation that the inhibitory effect of zymogen F V I I was evident only in the 

presence of low concentrations of tissue factor (less than or equal to 20pmol/L), a 

concentrafion far lower than that likely to be encountered in patients with damage to 

the endothelium. This means that the inhibitory effect of zymogen FVII , i f extant, 

may be largely irrelevant in the trauma patient, and therefore for the subject of this 

thesis. 

In 2001 Friedrich et al reported the results of a study looking at the potential of rFVIIa 

to overcome excessive inhibition of the TF/FVIIa pathway by novel anticoagulants in 

the form of inhibitors to the TF/FVIIa complex.'" Healthy human subjects were pre-

treated with the inhibitor in the presence of either rFVIIa or placebo in a double-blind 

randomised study. Those subjects which received the inhibitor and placebo were 

found to have various impaired coagulation parameters (including prolonged 

prothrombin time and reduced thrombin generation). These were largely overcome in 

subjects which received the inhibitor in combination with rFVIIa rather than placebo, 

demonstrating that rFVIIa was effective even in the absence of TF. A further phase of 

the study involved subjects being treated with rFVIIa alone (no TF inhibitor). From 

comparison of coagulation parameters between those receiving rFVIIa alone and those 

receiving rFVIIa and the TF inhibitor, the authors were able to determine that rFVIIa 

thrombin generation potential was decreased by around 25% in the presence of the TF 

inhibitor. This clearly suggests that the mode of action of rFVIIa is in part dependent 

on TF. but importantly that up to 75% of its activity appears to be TF-independent. 
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Unfortunately, the authors were unable to confirm that all TF sites had been blocked 

by the inhibitor, weakening the strength of this evidence somewhat. 

In 2003, Butenas et al published results of a study from which they concluded that 

rFVIIa acted through a TF-dependent mechanism.'^^ Using an in vitro model system 

with non-activated platelets and additional phospholipid, the authors noted no notable 

effect of rFVIIa on thrombin generation unless TF was added. It is somewhat 

confusing that the authors concluded from this that the mode of action of rFVIIa was 

TF dependent. One could argue that this study has shown only that initiation of 

coagulation requires TF - an already well-documented fact. Nowhere in the reviewed 

literature has it been suggested that rFVIIa is capable of activating an uninitiated 

system in the absence of TF. Indeed were this the case, then systemic thrombosis 

would be a grave and likely effect of rFVIIa administration in vivo. However, Butenas 

and colleagues cite this evidence as their rationale for concluding that rFVIIa acts to 

restore haemostasis in a TF-dependent reaction. While this statement is true insomuch 

as that TF is required to initiate coagulation (with or without exogenous rFVIIa), it is a 

misleading interpretation of their data to suggest that the mode of action of rFVIIa is 

TF dependent. One would be forgiven for concluding that this work provides little 

new informafion, simply supporting the already accepted fact that rFVIIa is unable to 

exen an effect on unactivated platelets and that the increase in thrombin generation 

seen on addition of TF to the assay is most likely a result of TF-mediated initiation of 

the system, with rFVIIa exerting its therapeutic effect largely on the resultantly 

activated platelets. The authors of the paper suggest that the presence of generic 

phospholipids in the assay system should have been capable of supporting rFVIIa 

mediated thrombin generation i f the action of the drug was TF-independent. 



In their response to this paper, Monroe and Robens'^^ again challenged the use of 

phospholipids as a replacement for platelets and suggested that it is inappropriate to 

extrapolate these in vitro findings on the lack of effect of rFVIIa on phospholipids to 

any potential lack of in vivo effect on platelets. In a subsequent response to this 

cha l l enge ,Mann & Butenas vehemently stood by their model, emphasising that it 

included platelets and that it was therefore physiological. Again, one should challenge 

this astounding statement. Mann & Butenas note in this response, that the whole 

blood was "minimally altered" suggesting that the platelets were not activated and no 

detail on the state (or indeed presence) of platelets in the synthetic model was 

provided. The presence of unactivated platelets and the absence of tissue factor does 

not make this a physiological system representative of the procoagulant state, as 

already discussed here. In this response, Mann & Butenas seem to suggest that the 

fact that rFVIIa cannot activate unactivated platelets in a resting system somehow 

proves that the therapeutic mechanism of action of rFVIIa is TF dependent. 

In another paper published in the same year, Butenas and colleagues again presented 

results which they asserted were proof that the mode of action of rFVIIa was TF-

d e p e n d e n t . A n important point of difference between this and their earlier report is 

that in this paper it is emphasised that, in the absence of TF, pharmacological doses of 

rFVIIa were unable to generate detectable levels of thrombin generation on the surface 

of activated platelets. This finding clearly adds some weight to their claim of a 

requirement for TF in the mechanism of action of pharmacological doses of rFVIIa; 

but is in direct contrast to evidence provided by other researchers.'^' Commenting on 

this paper, Lisraan & de Groot'^^ suggested that the failure of rFVIIa to mediate 
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thrombin generation on the surface of the activated platelets may be a result of the 

non-physiological method of activation employed by Butenas et al. 

Weighing up the evidence from the published literature, and considering the clinical 

efficacy of rFVIIa in haemophiliac and other patients with impaired thrombin 

generation, a TP-independent mechanism of rPVIIa action seems the most plausible. 

This is not to say that TP is not important, indeed vital for the initiation of coagulation. 

However, once the first thrombin is generated and platelets become activated, it would 

a seem reasonable that TP would cease to be principally influential - having served its 

role in both initiating and localising the subsequent thrombin burst on the recruited 

activated platelets. Combined with the knowledge that pharmacological doses of 

rFVIIa are able, independently of TP, to mediate thrombin generation directly on the 

surface of activated platelets,'^' it seems wholly reasonable that beyond the initiation 

phase, high-dose rFVIIa may act in a primarily TP-independent manner. 

A recent review'*^ indicates that the prevailing view of the mechanism of action of 

high dose rFVIIa does favour a principally TP-independent role, which essentially 

overrides the propagation phase. Rather than focussing on interaction of rPVIIa with 

TP, current evidence indicates that rFVIIa acts directly on the activated platelet, via 

low-affinity non-physiological binding.'^^ This concept is based on assessment of the 

body of evidence presented here, and specifically on the ability of high-dose rPVIIa to 

mediate thrombin generation directly on the surface of the activated platelet, even in 

the absence of the tenase (FVIIIa/Ixa) complex.''*'' '̂ ^ 
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In 2001, a study was published which demonstrated that high-dose rPVIIa was capable 

of increasing the initial rate (but not maximal) of thrombin generation and decreasing 

the lag time for platelet activation.'^ These findings are in accordance with the 

reported beneficial role of rPVIIa in thrombocytopenic patients, as their limited 

platelets therefore would be activated more quickly due to the rapid thrombin 

generation. Initial studies by Wolberg and associates in 1999 suggested that the initial 

rate, rather than the total amount or maximal level, of thrombin generation may be the 

most important determinant of the structure and integrity of the resultant fibrin clot.'^^ 

The evidence provided by Kjalke et al that rPVIIa appears to increase the initial rate of 

thrombin formation'^ is therefore very encouraging in terms of the potential for stable 

clot formation. The apparent ability of rFVIIa to increase the amount of thrombin 

generated in the initial minutes may be vital in facilitating the timely development of a 

haemostatic plug in a range of bleeding situations, including trauma induced 

haemorrhage. Importantly, this study provides evidence that rPVIIa may be expected 

to be efficacious even in the presence of thrombocytopenia, a likely complication of 

traumatic haemorthage due to the development of dilutional coagulopathy. Clearly, 

early adminstration of rPVIIa would be expected to reduce the amount of blood loss 

and hence development of coagulopathy, as a clot would be formed earlier. The 

findings of this thesis, and published data'^^ which are discussed in more detail later, 

support the theory that early adminstration of rFVIIa may confer considerable benefit 

over late administration. 

Further support for the generation of more stable clots in the presence of rPVIIa was 

provided by Lisman and colleagues in 2002 as it was demonstrated that clots formed 
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in the presence of rFVIIa were more resistant to fibrinolysis.'*^ Lisman et al used an 

in vitro model system involving plasma from haemophilia A patients. They 

demonstrated that rFVIIa led to a significant prolongation of clot lysis times of plasma 

from haemophilia A patients and that this effect was completely reversed by addition 

of an inhibitor to TAFI . In addition, this study demonstrated that rFVIIa consistently 

produced a significant reduction in clot formation time, which is attributed to 

competitive binding overruling the inhibitory effect of zymogen FVII . 

The authors concluded that rFVIIa brings about haemostasis in haemophilia by 

facilitating an increased speed of clot formation and, through activation of TAFI , the 

formed are better protected from fibrinolysis. An important note from this study is 

that the effect of rFVIIa on downregulation of fibrinolysis was found to be dependent 

on the concentration of TF and the authors therefore suggested that the role of rFVIIa 

in activating TAFI may be particularly significant in situations where there is a large 

expression of TF, such as in the case of severe vascular injury. 

In 2003, a study was published which specifically assessed the permeability of fibrin 

clots formed from FVI I I or FIX deficient plasmas and the effect of rFVIIa on 

permeability in these situations.'** They found that clot permeability increased as the 

concentration of FVII I or FIX decreased and also importantly that therapeutic levels of 

rFVIIa were able to completely normalise clot permeability. They therefore proposed 

that a complete fibrin burst, not seen in the haemophilias in the absence of rFVIIa, is 

required for the formation of an effective fibrin clot, with a tighter fibrin network, 

which may be more resistant to fibrinolysis. These findings lend further support to the 

concept that rFVIIa leads to the formation of more stable fibrin clot structures. 
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A detailed study of the effects of rFVIIa on the structure of the fibrin clot was 

published in 2005.'^' The authors employed an in vitro coagulation model of the 

haemophilia B condition, known to have a delayed onset and rate of clot formation 

and impaired clot structure and stability. The results clearly demonstrated that rFVIIa 

was able to decrease the lag to onset, and increase the rate, of clot formation. The 

study also found both a significant decrease in the delay to onset of thrombin 

generation and a significant, dose-dependent, increase in the rate of thrombin 

generation when rFVIIa was added to FIX deficient plasma. Through assessment of 

clot turbidity, the authors of this study suggested that haemophilia B conditions led to 

the formation of abnormal, deficient, fibrin clots while addition of rFVIIa was credited 

with generation of more normal, improved structured, clots. Scanning electron 

microscopy (SEM) was enlisted to confirm these observations. SEM of clots derived 

from FIX deficient plasma allowed visualisafion of an altered clot structure with 

notably thicker fibres than found in a normal clot. SEM of clots produced in FIX 

deficient plasma in the presence of rFVIIa found the structure to be similar to that 

found in normal clots, with thinner fibres than seen in the FIX deficient plasma. The 

authors cited a previous study in which it was shown that clots containing thicker 

fibres were more suscepuble to fibrinolysis. To determine whether clots formed in the 

presence of rFVIIa really were more resistant to fibrinolysis than those formed in FIX 

deficient plasma in the absence of rFVIIa, susceptibility of the clot to fibrinolytic 

enzymes was assessed. rFVIIa was found to produce clots more resistant to 

fibrinolysis, compared to haemophilic plasma. Notably, TAFI was shown to have no 

effect on the generation or lysis of clots in this model system, which the authors 

suggest may be due to differences in the model systems used by different research 
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groups and acknowledge that activation of TAFi is likely to be another aspect to the 

haemostatic role of rFVIIa. 

The authors of this study noted that rFVIIa had far more pronounced dose-related 

effects on thrombin generation than on fibrin clot formation, suggesting therefore that 

the factors governing clot formation are more complex that simply the onset and rate 

of thrombin generation. The differences seen in clot structure in the presence and 

absence of rFVIIa suggests that a fu l l thrombin burst, present in rFVIIa treated 

haemophilia B plasma, plays an essential role in determining the structure and 

integrity of the clot. 

A further potential mechanism by which rFVUa may serve to explain the therapeutic 

effects of rFVIIa in patients with both normal and low platelet counts was suggested 

by Lisman et al in 2005. Using a flow model, the authors were able to effectively 

illustrate that rFVIIa was associated with an increase in both platelet adhesion and 

activation.'™ 

In reality, it is likely that rFVIIa acts both in a TF-dependent manner, assisting in and 

possibly augmenting the initiation of coagulation; and a TF-independent manner, 

directly on the platelet surface. Based on the published data, it would appear that, 

provided endogenous FVII(a) is able to bind TF, coagulation wi l l be initiated and 

platelets activated. The main effect of pharmacological doses of rFVIIa under these 

conditions would be directly on the surface of activated platelets, independent of TF. 

The published literature that has supported a TF-dependent role has generally 

employed blockade or inhibition of TF or the TF/FVIIa complex. ' " ' ' " ' '̂ ^ 

Considering our current understanding of the coagulation system, with an absolute 
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requirement for TF/FVIIa for initiation in vivo, the blockade of this complex shows 

nothing of the mechanism of action of pharmacological doses rFVIIa. With the 

initiation phase blocked, rFVIIa would not be able to exert any effects which usually 

occurred subsequently to initiation, since the required activated platelets would not 

have been generated in the initiation phase. Conversely, when endogenous levels of 

FVIIa, in complex with TF, initiate coagulation, platelets are activated and the 

required substrate for exogenous rFVIIa is therefore provided. The result is a huge 

thrombin burst on the platelet surface. As a result of the increased thrombin 

generation in the presence of rFVIIa, a well-structured clot with tight fibres results, 

which is more resistant to fibrinolysis.'^** In addition to the innate fibrinolytic 

resistance of the clot conferred by the enhanced structure, the increased thrombin 

generation in turn leads to maximal expression of TAFI and FXII I , which serve to 

further limit fibrinolytic potential.'^' The result is a strong clot, formed in a timely 

manner, which is resistant to fibrinolysis.'^^ 

In 2003, Meng and colleagues produced an important paper looking at the effects of 

acidosis and hypothermia on the efficacy of pharmacological doses of r F V I I a . A s 

already discussed, these are both commonly encountered complications in the trauma 

victim and therefore an understanding of their likely effects on rFVIIa efficacy is 

particularly important. Using in vitro models, the authors were able to provide 

evidence that hypothermia had little overall effect on the efficacy of rFVIIa. 

Conversely, a decrease in pH from 7.4 to 7.0 resulted in over 90% reduced efficacy of 

rFVIIa in one model system, representing the TF-independent system, and a 60% 

reduction in the other model, representing the TF-dependent system. The authors 

concluded that, based on this limited in vitro data, one may expect rFVIIa to be 



effective in hypothermic cases, but that efficacy may be reduced by increasing levels 

of acidosis. 

To illustrate the importance of the effect of acidosis on haemostasis, the European 

recommendations on the use of rFVUa state that acidosis should be corrected before 

treating with rFVIIa.'^^ 

2.5.4 r F V I I a in trauma and surgery 

Generally, the developing coagulopathy in trauma is threefold. One aspect of what is 

essentially a vicious cycle is that there is a lack of procoagulant signalling, due to 

consumptive and dilutional coagulopathy. A further component of the cycle is that, 

due again to dilution and consumption of platelets, a thrombocytopenic state develops. 

Completing the cycle, there is an increase in activity of the fibrinolytic system, due to 

release of high concentrations of various proteolytic enzymes which lyse the forming 

fibrin thrombus.^^ 

rFVIIa is able, to some extent, to compensate for each of these contributing factors.'^^ 

Through direct action upon the activated platelet, rFVIIa is able overcome a lack of 

coagulation proteins FVII , FVII I , FIX and FXI,'"*^' '̂ ^ supplies of which may have 

been exhausted either through dilution, leakage or consumption. A low platelet count, 

with similar aetiology, may be overcome as rFVIIa has been shown in 

thrombocytopenic patients to not only increase thrombin generation on the activated 

platelet surface but also to increase the rate of activation of platelets, thus essentially 
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increasing the concentration of activated platelets in the affected area.'^ The increase 

in fibrinolysis may be overcome, as already detailed, through activation of TAFI.^° 

Since its introduction in 1988, rFVIIa has seen a multitude of uses beyond its initially 

envisioned role. It is beyond the scope of this thesis to provide a detailed review of 

the range of clinical uses of the drug, therefore the remainder wi l l focus on the 

reported uses of rFVIIa in controlling major haemorrhage in surgical and trauma 

patients. 

In 1999, Kenet et al presented the first reported off-label use of NovoSeven® in a 

trauma patient.̂ "* The subject of the report was 19 year-old Israeli soldier who had 

sustained a high-velocity rifle wound which had perforated the inferior vena cava. 

Surgical intervention and repeated packing of the site failed to control the bleeding 

which was confounded by worsening coagulopathy and hypothermia. With a rate of 

blood loss of 500ml/min, the outcome was considered to be inevitably fatal. Given the 

dire prognosis, a decision was made to attempt a final, potentially life saving, measure 

and a single 60 ug/kg dose of rFVIIa was administered. Within 10 minutes of 

injection, coagulation parameters were markedly improved and blood loss fell to just 

10-15ml/min, though oozing from wound surfaces continued. A second 60ug/kg dose 

of rFVIIa was administered one hour after the first. Following this second dose, 

oozing completely stopped and coagulation parameters returned to normal ranges. 

There was no incidence of re-bleeding in this patient. 

Also in 1999, White et al reported successful use of recombinant factor Vi la in two 

patients suffering intractable intra-abdominal haemorrhage following surgery.'^" In 
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both cases, patients experienced persistent heavy bleeding following abdominal 

surgery and in one case showed no response to treatments such as tranexamic acid and 

desmopressin. Both patients received a total of 2 90ug/kg doses of recombinant factor 

Vi la in final attempts at controlling the bleeding. There was an immediate cessation 

of bleeding and decrease of PT measurements in both patients. Neither patient 

required any further blood product treatment and one made a fu l l recovery. The other 

died from multiple organ failure that was unlikely to have been attributable to 

administration of recombinant FVIIa. 

In 2000 Vlot et al reported the successful use of rFVlIa in a post-surgical bleeding 

patient.'^^ The patient, a 59 year-old male, underwent three instances of surgical 

intervention and was administered tranexamic acid and octoreotide, yet the bleeding 

persisted. Despite no pre-existing coagulopathy, rFVIIa was administered. Dosage in 

this case was again 90ug/kg every two hours, however this patient received doses in 

this time frame up to 21 hours. The patient's requirement for blood product fell 

dramatically in the 16 hours post administration of the first dose of rFVIIa and, 

following eventual embolisation of the vessel, no re-bleeding occurred. As the patient 

in this case received doses of both tranexamic acid and octreotide relatively closely to 

administration of rFVIIa the authors were unable to exclude the possibility that these 

drugs contributed to the noted cessation of bleeding. It is also notable that on 

transportation of the patient, prior to embolisation of the vessel, rFVIIa administration 

was stopped and re-bleeding occurred. It is unfortunate that it is not possible to 

discern whether this re-bleeding was due to transportation or withdrawal of the drug. 

Further encouraging outcomes following administration of rFVIIa in patients with 

surgical complications were reported in 2000.'^^' '̂ ^ Laffan & Cummins'^^ reported 
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that two patients were recovered from persistent surgical bleeding by administration of 

80-90 ug/kg of rFVIIa followed by a background infusion containing low dose rFVIIa 

following arrest of blood loss. Blood loss dramatically reduced in both patients soon 

after administration of the drug, allowing their discharge from the intensive care unit. 

Al Douri et a/,'̂ ^ reported the successful use of a 30ug/kg dose of rFVIIa in patients 

suffering excessive uncontrollable bleeding or oozing during or after undergoing heart 

valve replacement surgery. Similar to the previously described cases, A l Douri and 

colleagues reported marked decreases in blood loss in the period following rFVIIa 

administration, without any adverse effects. 

2.5.5 Preclinical trauma studies of r F V I I a 

As a result of the initial anecdotal reports of successful use of rFVIIa in trauma and 

intractable surgical bleeding, combined with a considered appreciation of the 

understood mode of action of the drug, the first prospective, blinded, controlled animal 

study involving rFVIIa in trauma was undertaken and presented in 2001 .'^^ The study 

involved 10 crossbred swine, which were subjected to an isovolaemic, hypothermic 

haemodilution; representative of the coagulopathic state commonly encountered in 

trauma patients. Once this imposed coagulopathy was established, animals were 

subjected to liver trauma, equivalent to a grade V liver injury, which carries a 50% 

survival rate in humans. The liver injury was induced by cutting through the liver with 

a modified surgical tool and allowing the animal to bleed freely for 30 seconds. The 

blood lost during this time was collected by suction and in pre-weighed sponges. 

Measurement of the amount of blood collected was recorded. Depending on their 

treatment group, animals received either a 180ug/kg dose of rFVIIa or placebo (saline 
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control) after the 30 second free bleeding phase. Packing was used in both groups and 

experimenters were blinded to the treatment groups. After a further five minutes, 

intravenous fluid resuscitation was initiated, with the goal of achieving pre-injury 

mean arterial blood pressure. The endpoint of the study was survival to 60 minutes 

post injury, or death, whichever occurred first. 

Martinowitz et al reported that all animals in both groups survived the fu l l 60 minute 

post injury period, though this was most likely due to the rapid and considerable gauze 

packing deployed 30 seconds after the injury in both groups. This packaging was 

deemed necessary to prevent 100% fatality from the model, however it had the effect 

of meaning that neither group were truly 'untreated controls' and therefore any effect 

seen in the rFVIIa group cannot be considered to be solely due to the drug, limiting 

any conclusions to the use of drug as an adjunct to packing. Furthermore, as it 

transpired that 100% of animals in both groups survived, this liver packing may have 

prevented the detection of any potential effect of rFVIIa on survival. Statistical 

analysis of the results revealed that there was significantly (46%) less blood loss in the 

group treated with rFVIIa than in the group that did not receive the drug. There was 

not found to be any difference in the volume of resuscitation fluid required between 

the two groups. In terms of laboratory tests, the rFVIIa treated group were found to 

have a significantly shortened prothrombin time compared to the group which did not 

receive the drug, indicating that coagulation was occurring more quickly in the 

presence of rFVIIa. Interestingly, there was no detected effect of rFVIIa treatment on 

thromboelastography (TEG) parameters. 
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Taking the lack of effect seen on TEG parameters with the lack of any change in other 

measures of systemic activation of coagulation in the rFVIIa treated group, 

Martinowitz and colleagues stated that "there was no identifiable laboratory evidence 

of systemic activation of the clotting cascade by rFVIIa". This statement is 

misleading, suggesting to the reader that i f alterations in TEG parameters had been 

found, this would have indicated widespread clotting. This is not the case. TEG 

measures the potential of the blood to clot, but localisation in vivo is determined by 

local expression of tissue factor and/or activated platelets. The presence of changes in 

TEG would have indicated that, i f TF was expressed (i.e. i f vascular damage had 

occurred) or i f activated platelets had accumulated, increased clotting kinetics would 

likely have been seen at that site. The failure of Martinowitz and colleagues to detect 

any significant change in TEG parameters would indicate that rFVIIa had not in fact 

increased the coagulant potential of the blood at all. More likely is that there may 

have been some kind of flaw in TEG protocol, which is not described in detail at any 

point in the paper. Selection of a particularly potent activator of coagulation (e.g. 

Celite or Kaolin) may have excessively activated the TEG reaction so that no rFVIIa-

mediated increases in activity were detectable. There is no reference to the delay in 

analysis of the TEG samples or the method of sampling or storage. A l l of these 

factors may have led to artefactual activation of coagulation within the samples, 

masking any differences between groups. As the paper does not provide any of the 

detail required, it is unfortunately not possible to determine whether there was or was 

not an effect of rFVIIa and what i f anything was masking this effect. 

Despite the uncertainties regarding the effect of rFVIIa in the laboratory tests and the 

obvious limitations imposed by having only 60 minute post injury period, this paper 
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clearly showed a significant effect of rFVIIa, despite hypothermia and haemodilution, 

as an adjunct to gauze liver packing in decreasing the volume of blood loss, when both 

rFVIIa and gauze packing are applied early. 

A further animal study utilising anaesthetised swine to assess the efficacy of rFVIla 

following severe liver injury was published in abstract form in 2001 and later in 

ful l . '^^ Unlike the study from Martinowitz et al,™ in which coagulopathy was 

induced prior to generation of a grade V liver injury, this work involved 

noncoagulopathic pigs. The drug (either 150ug/kg rFVIIa or buffer) was administered 

30 seconds after induction of liver injury but, unlike the study discussed above, this 

was the only haemostatic therapy administered throughout the study, with no 

simultaneous packing of the liver. Following administration of the drug, animals were 

resuscitated to their baseline MAP, which was maintained with repeated infusions of 

lactated Ringer's solution for up to 2 hours after injury, beyond which point animals 

were humanely killed. No rationale was provided by the authors for their selection of 

a timescale of 2 hours for this study, though it may have been selected to be relevant to 

anticipated civilian evacuation times, or may be attributable to the anticipated high 

mortality rate from a severe liver injury with rFVIIa as sole therapy. Despite the 

apparent severity of the model, all animals survived in both the rFVIIa and control 

groups, thus it was not possible to discern any effect of rFVIIa on survival. Notably, 

there were found to be no significant differences between treated and untreated 

animals in terms of mean arterial pressure over the time course of the study, volume of 

blood lost or volume of lactated Ringer's solution required to maintain the baseline 

blood pressure. 
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Clearly, these findings are quite different from those of Martionowitz et al, in which 

rFVIIa was shown to have a significant beneficial effect in terms of reducing the 

volume of blood loss. It is likely that the stark difference in results of the two research 

groups would have been caused by the significant differences in the studies. Most 

prominent were the use by Schreiber et al™ of rFVIIa as sole therapy, compared to 

adjunctive therapy with liver packing, in noncoagulopathic, as opposed to 

coagulopathic pigs, in the case of Martinowitz et al. It is also perhaps worthwhile to 

note that the dose of rFVIIa used by Schreiber and colleagues was lower than that used 

in the study by Martinowitz and associates, potentially indicating a dose reliance 

response. Schreiber et al suggest a further possible cause of the difference in results 

may be that animals in the study by Martinowitz et al were severely hypotensive at the 

time of liver injury, thereby reducing blood flow in the liver and thus potentially 

reducing the overall effect that rFVIIa would be required to have compared to that in 

normotensive conditions. 

Several of the differences between the studies of Martinowitz et al™ and Schreiber et 

al™ were addressed in a further paper published by Schreiber et al, in 2002.'^° In this 

study, a grade V liver injury was induced in hypothermic, coagulopathic, anaesthetised 

swine as an adjunct to liver packing. The study design was therefore very similar to 

that which had been used by Martinowitz et al in 2001, in an attempt to investigate the 

potential causes of the differences between this study and the earlier paper by 

Schreiber et al. In addition to using coagulopathic animals and adjunctive therapy, 

this study also looked at the potential of a dose response on rFVIIa efficacy, splitting 

animals into three treatment groups wherein animals were randomised to receive either 
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buffer or rFVIIa (180ug/kg or 720ug/kg). Drug administration and packing of the 

liver took place 30 seconds after the injury. 

Since the study design used in this study was closer to that of Matinowitz et aL the 

results obtained were far more comparable too. Groups which received rFVIIa (both 

doses) had a significantly higher MAP and significantly lower volume of blood loss 

than those that received buffer control. There was also a decreased volume of fluid 

resuscitation (almost half) required in treated groups compared to controls, though this 

was not significant due to large variations within the groups. Neither overall survival 

nor survival time differed significantly between the three groups. This is particularly 

important as no groups achieved 100% survival in this study, with 60, 70 and 80% 

survival in the control, 180ug/kg rFVIIa and 720ug/kg rFVIIa groups respectively. 

Therefore, in this study the opportunity did exist for rFVIIa to have exerted an effect 

on overall survival or survival time. 

There were no significant differences between the two rFVIIa treated groups in any of 

the outcome measures, indicating that the drug does not respond with greater efficacy 

to doses higher than 180ug/kg, in this model. There was however a significantly 

higher measured factor V I I clotting activity in the group treated with the higher dose 

of rFVIIa. Schreiber and associates suggested that the lack of effect of the increased 

dose, despite increased factor V I I activity, may be due to saturation of 'the system'. 

Based on current understanding of the mode of action of high dose rFVIIa, the lack of 

exposed tissue factor would be unlikely to prevent increased efficacy of rFVIIa as the 

drug is known to primarily act directly on activated platelets, through a tissue-factor 

independent mechanism. Therefore, either the rFVIIa binding sites on the platelets 
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must be saturated, or some/all of the zymogen factors I I , V, V I I I , IX, X must have 

been depleted, preventing further assembly of coagulation apparatus. This is in 

keeping with the finding in the same paper that there was no evidence of additional 

thrombin generation (through thrombin-antithrombin complex assay) in the higher 

dose treatment group. This level of detail on the mechanisms underlying dose 

response of rFVIIa is not addressed in the paper. 

The overall conclusion from the study corroborates the findings of Martinowitz et al in 

2001, that I80ug/kg rFVIIa as an adjunct to liver packing is able to significantly 

reduce the volume of blood loss and increase MAP following grade V liver injury in 

coagulopathic swine. 

The paper suffers slightly from the fact that a number of variables were changed in 

this model compared to the initial studies from this group' ' ' and Martinowitz et al"^ 

including the use of coagulopathic animals, the use of gauze packing as an adjunct to 

rFVIIa and 180ug/kg and 720ug/kg doses of rFVIIa as opposed to 150ug/kg rFVIIa. 

While these limitations do not detract from the overall conclusion from this valid 

study, the fact that such a number of variables were changed simultaneously makes it 

impossible to definitively determine which parameter(s) were primary influences on 

the differences noted in their studies on non-coagulopathic swine compared to this 

paper and the findings of Martinowitz et al. 

A further two prospective, randomised controlled trials involving anaethetised swine 

were reported in 2002,'*'' '̂ ^ both from the same research group as the initial 

controlled animal study.''^' In both trials, animals received Grade IV liver injuries, 

wherein haemorrhage was initiated by avulsion of the left median lobe of the liver. 
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The application of a Grade IV, rather than Grade V, liver injury enabled one of the 

limitations of the initial study to be overcome, removing the requirement for gauze 

packing of the liver and thus making rFVIIa the sole treatment. Both studies 

compared the effectiveness of a single rFVIIa dose of 180 ug/kg compared to placebo, 

while the paper from Jeroukhimov et a/'̂ ^ also reported on a higher dose of rFVIIa 

(720 ug/kg). In both studies, a 10% decrease in mean arterial blood pressure 

(equivalent to Grade I I I haemorrhagic shock) was the trigger point for administration 

of the drug. The time elapsed from injury to this trigger point was 30 seconds or less 

in both studies. Lynn et a/'*' continued the study for just one hour following injury 

while in the study reported by Jeroukhimov et al, animals were allowed to survive for 

up to two hours. 

Lynn et al saw a significant decrease in MAP in the placebo group following 

haemorrhage and also in placebo compared to rFVIIa treated groups at each time point 

tested following administration of the drug. Prothrombin time was found to be 

significantly shortened in those subjects which had received rFVIIa, compared to 

placebo controls. A decrease in volume of blood loss in the rFVIIa treated group and 

an apparent decreased mortality was noted, with none of the rFVIIa treated animals 

dying in the hour study period, while 43% of the placebo treated animals died within 

this time. However, neither the differences in volume of blood loss nor mortality were 

found to be statistically significant. This is possibly due to the small number of 

animals used in the groups and the short duration of the study. 

Within the first hour of the study reported Jeroukhimov and associates, mortality stood 

at 50% in the placebo group, 25% in the 180ug/kg rFVIIa dose group and 0% in the 
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720ug/kg rFVIIa dose group. In the second hour, one further animal died and this was 

from the 720 ug/kg rFVIIa dose group. Survival in the 720ug/kg rFVIIa group was 

significantly higher than placebo at both the one hour and two hour stages. There was 

no statistically significant difference between survival in placebo and lower 

(180ug/kg) rFVIIa groups. Similarly, volume of blood loss in the higher dose rFVIIa 

(720ug/kg) group was significantly lower than that in those receiving placebo, while 

there was no statistical significance in the differences between placebo and 180ug/kg 

dose rFVIIa groups. Prothrombin time was significantly shortened in both groups 

which received rFVIIa, compared to placebo controls. 

Sondeen and colleagues published the results of a further model of severe 

haemorrhage in anaesthetised swine in 2004.'^^ This study differed from all previous 

studies in that it involved a pure arterial insult, (rather than combined liver injury), 

which was achieved through creation of a 2.0mm aortotomy. The aim of the study 

was to determine whether rFVIIa was able to increase the blood pressure at which 

rebleeding occurred in a high-pressure arterial haemorrhage, an important feature in 

many trauma patients. Designed to establish proof of principle, this study was not 

designed to be clinically representative and as such animals were pre-treated with 

rFVIIa (180ug/kg or 720ug/kg) or placebo, 5 minutes before arteriotomy. 5 minutes 

after the haemorrhage resuscitation was undertaken with lactated Ringer's solution at a 

set rate. The blood pressure was monitored and the MAP at which re-bleeding 

occurred was noted. The study showed that rFVIIa significantly increased the MAP at 

which re-bleeding occurred compared to animals which received placebo and this 

effect did not appear to be dose-dependent. The authors also reported a decreased 

haemorrhage volume in the rFVIIa treated animals. While the decrease in 
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haemorrhage volume did not reach statistical significance, there was a significant 

increase in an adverse metabolic consequence (elevated lactate) in the control group, 

and a trend toward lower base excess in this group. The study was not designed to 

detect effect on survival and as such there was no statistical significance, but there was 

a trend towards an increase in survival time and in number of animals surviving, 

which may be dose-dependent. An important conclusion which can be drawn from 

this study is that pre-treatment with rFVIIa in non-coagulopathic swine permits 

resuscitation at a higher blood pressure, by increasing the stability of the clots. The 

risk of re-bleeding and the volume of re-bleed haemorrhage is therefore reduced. 

These findings are supported by the work of He et a/'̂ * and Lisman et a/,'̂ ^ who 

demonstrated the formation of a stronger clot, more resistant to fibrinolysis in the 

presence of rFVIIa in in vitro studies. 

A further swine model of severe haemorrhage designed to test the efficacy of rFVIIa 

in non-coagulopathic swine was published in 2005.'̂ "* Part of the study was an ex vivo 

dose-escalation investigation, in which animals were uninjured. This aspect of the 

study is discussed elsewhere in the thesis. The dose of in vivo rFVIIa was increased 

gradually to 720ug/kg after which, the injury phase commenced. In the injury phase, 

animals, which had been effectively pre-treated with 720ug/kg rFVIIa (or placebo), 

were subjected to severe haemorrhage, created by laceration of the liver. No packing 

of the liver or resuscitation was administered and animals were monitored for a 

maximum of 60 minutes post-injury. rFVIIa was found to have no significant effect 

on volume of blood loss, survival time or overall number of survivors, with 33% of 

animals surviving 60 minutes in the rFVIIa treated group compared to 0% in the 

control group. rFVIIa was found to significantly increase 30 minute post-injury MAP 
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compared to placebo. This finding is complimentary to that of Sondeen and 

colleagues,'^"' and supports the theory that rFVIIa may promote the formation of 

stronger, more resistant clots. In their discussion of this study and suggesting why 

rFVIIa may not have reduced blood loss, Pusateri et a/'*" suggested that rFVIIa may 

be efficacious in improving haemostasis only in the presence of coagulopathy; noting 

differences in outcome from the various animal models discussed in the literature. 

While this is an interesting concept, it is in stark contrast to the general pattern of 

response seen in clinical studies, described shortly. 

In 2005, Klemcke and colleagues published the results of a further swine model of 

liver injury,'*^ in an attempt to efficiently evaluate the efficacy of rFVIIa, given the 

conflicting results obtained from the previous studies. They suggested that their use of 

a longer observation period of 4 hours and larger group sizes of 18 animals per group 

would enable more definitive interpretation of the data. Essentially reproducing the 

initial study by Martinowitz and colleagues,'^^ this study used a grade V liver injury 

preceded by the artificial creation of coagulopathy through haemodilution and 

induction of hypothermia in this model. Similar to previous studies, rFVIIa (180ug/kg 

or 720ug/kg) or placebo was administered 30 seconds after liver injury as an adjunct to 

packing. The study found no effect of rFVIIa on survival time, percent survival or 

blood loss; while laboratory measures of coagulation were significantly improved in 

the presence of the drug. While only data on survival time to 4 hours were reported, 

the authors claimed that significance similarly was not reached when analysed at 1,2, 

or 3 hours. The authors concluded that in this model, at the doses used, rFVIIa was 

ineffective and expressed some concern that in vitro measures of coagulation were 

indicative of efficacy given the lack of in vivo efficacy. An interesting finding from 
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this study was that, while not all animals became acidotic during the study, those that 

did were not found to respond any less well than those which were not acidotic. This 

suggests that, at least to pH 7.1, rFVIIa may retain efficacy. This finding is in contrast 

to the in vitro evidence provided by Meng and colleagues,''' previously discussed, 

which suggested that efficacy of rFVIIa may be expected to decrease with increasing 

acidosis. 

A further study looking specifically at the efficacy of rFVIIa in reducing blood loss in 

non-coagulopathic swine was published in 2007.'*'^ Animals were subjected to a 

multiple injuries, including laceration of the liver and, 15 minutes post-injury, received 

120ug/kg rFVIIa as a single dose, or placebo. Animals received intravenous fluid 

resuscitation and were observed for 2 hours. The study demonstrated a significant 

decrease in volume of blood loss in animals treated with rFVIIa, compared to controls, 

importantly demonstrating that rFVIIa has the capacity to act in the absence of 

imposed pre-existing coagulopathy. Notably, there was a longer (15 minute) delay to 

administration of rFVIIa than that used in previous studies, meaning that a 

coagulopathic state may have developed in response to the trauma to a greater extent 

in this study than in the other non-coagulopathic models discussed here. Due to the 

small group sizes, no effect on survival was noted. 

Recognising the reported clinical efficacy of rFVIIa from case reports in the literature 

but acknowledging the absence of convincing evidence for improving survival in 

randomised controlled trials, our group at Dstl Porton Down conducted a study in 

swine, which was published in 2007.^^ The aim was to determine whether, in a large 

animal model of severe incompressible arterial haemorrhage (previously described by 
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Sondeen et a/),'^'' treatment with rF^IIa (at a single dose of 180ug/kg) could improve 

survival and reduce volume of blood loss. This study used the longest observation 

period yet reported, monitoring animals for up to 6 hours post-injury. This duration 

was selected as it represented a realistic timeline over which rFVIIa may be relied on 

prior to evacuation in the military environment. A further aspect of this study was to 

determine the effects of hypotensive versus normotensive resuscitation on the efficacy 

of rFVIIa in this model. Survival time was found to be significantly prolonged overall 

with rFVIIa, and specifically in hypotensively resuscitated animals which received 

rFVIIa compared to similarly resuscitated animals which received placebo. No 

significant effect of rFVIIa compared to placebo was found on survival in animals 

which were normotensively resuscitated when analysed separately. In addition to 

demonstrating improved survival times, this study found an increase in number of 

animals surviving to both 2 and 6 hours in those treated with rFVIIa, compared to 

controls. A significant decrease in volume of blood loss was also noted in animals 

treated with rFVIIa (regardless of resuscitation strategy) compared to controls. 

This study clearly demonstrated efficacy of rFVIIa, alongside hypotensive 

resuscitation, in improving survival and decreasing blood loss in a severe arterial 

haemorrhage model, over a clinically relevant timeline. This was the first study which 

directly considered and tested the effects of resuscitation regimen on efficacy of 

rFVIIa, arguably providing a more clinically relevant model than those which involve 

immediate liver packing, or absence of any form of resuscitation. The main limitation 

of the study comes from the arguable pre-treatment of subjects with rFVIIa (the drug 

was administered midway through the haemorrhage protocol), clearly detracting from 

the claim of clinical relevance. It was necessary in this initial proof-of-principle study 
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to "pre-treat" due to the lack of experience with this model and the use of two different 

resuscitation regimes. Based on the results of this initial study, further work is 

currently underway focussing on the efficacy of rFVIla and hypotensive resuscitation 

in a similar aortic injury model, with rFVIIa administration 5 minutes after injury. 

The results of this study wil l provide more firm evidence on the efficacy of rFVIIa and 

hypotensive resuscitation in a truly clinically relevant model. 

It is apparent in reviewing the ten published animal studies of rFVIIa in traumatic 

haemorrhage that there exists some contradictory outcomes. Some studies have shown 

a significant beneficial effect of rFVIIa on survival,^^' '̂ ^ while the majority have 

j ^ Q j 178-181,183-186 ^ higher proportion of studies found a significantly decreased 

volume of blood loss in rFVIIa treated animals,"^' '^^ but again this was not 

consistentlyreported.'^^'^'''^^-'^^ 

While the varied results of the pre-clinical animal studies, all of which have been 

conducted in anaesthetised swine, may appear disheartening, consideration of possible 

explanations for the differences permits a more positive outlook. Considering the 

apparent lack of effect on survival first, it should be noted that a number of studies 

used very small group s izes , ' '^^ and/or were not designed to consider survival as a 

primary outcome. '̂ ^ In other studies, there was no or limited scope for a 

beneficial effect of rFVIIa to be demonstrated as there was high survival in the control 

group.'^^''^'^ The two studies in which r W I I a was shown to improve survival"^' '̂ ^ 

were in clinically relevant models, where there was no artificially induced 

coagulopathy, while the one remaining study where rFVIIa was found to be ineffective 

was conducted on swine in which coagulopathy had been artificially imposed prior to 
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drug administration.'^^ It is notable that in previous incarnations of this model, high 

survival had been noted in the control g r o u p s , ' ^ ^ while survival was considerably 

lower across all groups in this study. The reasons for this difference are not clear but 

may be due to the extended observation period. Over the 4 hour study period, the 

imposed coagulopathy may have had considerable deleterious effects on the general 

physiology of the animals. 

When considering the overall findings of the studies in non-coagulopathic animals in 

this way, it is reasonable to state that there is mounting evidence the rFVIIa is able to 

significantly increase survival times and number of animals surviving to at least 6 

hours. The situation is less clear in coagulopathic animal studies, where the 

confounding factor of more general adverse physiological effects of the imposed 

coagulopathy on the experimental animal is difficult to mitigate. 

When considering the efficacy of rFVIIa in terms of reducing the volume of blood 

loss, it is necessary to exclude some studies in which this was not a primary outcome 

m e a s u r e . T h e main rationale for exclusion was that in both studies, animals 

were pre-treated with rFVIIa. This could be viewed as a bias toward efficacy and 

inclusion in the analysis alongside those studies where rFVIIa was administered after 

injury would result in a combination of significantly heterogenous studies, weakening 

the observations. 

The majority of the remaining studies, including two of the three with coagulopathic 

subjects,'^*' did demonstrate a decreased volume of blood loss in animls treated 

with rFVIIa compared to controls. One of the studies which did not find a significant 
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effect of rFVIIa on volume of blood loss'*' (but did note a trend toward significance) 

was perhaps too severe a model as rFVIIa was used as the sole haemostatic 

intervention, with no resuscitation administered. Only one other paper, which came 

from the same research group, used such a model'^^ and while rFVIIa was found to 

have a significant effect on volume of blood loss in this study, significance was only 

seen with a higher dose of rFVIIa than used by Lynn et al (and a number of the other 

studies detailed here). The reasons for the failure of rFVIIa to decrease the volume of 

blood loss in the two remaining studies'^*' '̂ ^ are less clear; however the fact remains 

that in the majority of studies, rFVIIa has been shown to be effective in reducing the 

volume of haemorrhage compared to placebo. 

Other considerations from the ten published animal studies, which it is beyond the 

remit of this thesis to discuss in detail, include the variabiUty in evidence for a dose-

response relationship and the clear message from all ten studies that there has been no 

apparent increased risk of systemic thrombosis. 

2.5.6 Clinical experience with rFVIIa in trauma 

Following the report by Kenet et al^'^ of the young Israeli soldier and based on the 

results of the first controlled animal trial, outlined above, the Ethical Committee of the 

Israeli Ministry of Heath approved the use of rFVIIa in patients suffering massive, 

life-threatening haemorrhage as a result of trauma or surgery. Under this approval, six 

further patients (in addition to the Israeli soldier) received rFVIIa in Israel and 

Denmark between June 1999 and January 2001. Martinowitz et al presented the 

outcomes of this cohort of trauma patients treated with rFVIIa.'^^ The group 

comprised three males, all of whom had suffered penetrating injuries and three 

107 



females, all of whom had sustained blunt injuries. Their ages ranged from 17-45. In 

their analysis, Martinowitz and colleagues included the case of the 19 year-old Israeli 

soldier previously reported by Kenet et al?"^ bringing the study cohort to seven. None 

of the patients had responded to surgical intervention or replacement therapy and all 

became coagulopathic. Patients received their first dose of rFVIIa between 4 hours 

and 30 days of time of injury. Initial doses ranged from 40-120ug/kg; four patients 

were given a second dose (range 60-80 ug/kg) and two of these received a third dose 

(60 or 80 ug/kg). No information was provided in the paper as to the timing of 

subsequent doses, however the author states that diffuse bleeding ceased "within 5 to 

15 minutes after administration of one to three doses". Requirement for blood 

products dropped markedly in all patients, from a mean of 36.5 packed cell units to 

just 2 units. Similarly. PT and APTT measurements shortened toward normal 

following administration of rF^IIa. Four of the seven patients survived, one died at 

the end of surgery and two died four weeks after rFVIIa administration. The patient 

who died during surgery had been severely coagulopathic, hypothermic and acidotic 

for 14 hours prior to administration of rFVIIa while the other two deaths were due to 

sepsis and liver failure. 

A perceived risk of thromboembolic complications, due to potential widespread TF 

exposure, in trauma patients has led to the use of rFVIIa being contraindicated in 

trauma. Given the lack of evidence of thromboembolic complications in the clinical 

case reports and the animal studies, and the better understanding of the mechanism of 

rFVIIa, Martinowitz et a/'*^ argues that this exclusion criteria appears now to be 

misguided and should be reviewed. Martinowitz and colleagues go on to recognise 

that an important obstacle to overcome in the use of rFVIIa in trauma patients is the 
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development of a dosing regime. There were a range of doses used in the seven 

patients in the paper; the determining factor presumably being the integrity of the 

coagulation system at time of administration. Importantly in one case included in this 

paper, the efficacy of the first dose was probably hampered by a critically low platelet 

count, while Martinowitz et al noted that the second dose, given after additional blood 

components, proved more effective. This finding is in keeping with the modem view 

of the coagulation cascade, with the coagulation proteins requiring adequate 

concentrations of activated surfaces on which their reactions may occur. Further 

clarification is also required on administration and timing of second and subsequent 

doses of rFVIIa. 

In 2002, Martinowitz added a further 12 critically i l l haemorrhaging trauma patients to 

the cohort, making a total of 19, all treated with rFVIIa to control intractable 

bleeding.'^^ Given the wide-ranging aeitiology of traumatic injuries, the group was 

highly heterogeneous, comprising members of both sex, with an age range of 25+17 

and a mixture of blunt and penetrating injuries. A l l had been treated using all 

available conventional methods of haemorrhage control prior to use of rFVIIa. 

Patients were haemodiluted, acidotic and hypothermic at the time of rFVIIa 

administration. The initial dose was 129±89ug/kg, with up to a further two doses 

required in some pafients. The overall total dose required was 195+113ug/kg. A 

marked decrease in blood loss was achieved within 20 minutes of administration of the 

drug in 79% of patients. Four patients did not respond to rFVIIa and exsanguinated 

within 24 hours. A l l but two of the responders ultimately survived, with the two 

deaths occurring as a result of multiple organ failure and sepsis after 1 week, placing 

overall survival at 68% for the series. As a retrospective, uncontrolled analytical study 
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it is obviously not possible to state which of these patients would have survived had 

rFVIIa not been used, however a survival rate of 68% in severely injured, 

coagulopathic trauma patients may be indicative that rFVIIa treatment has been 

beneficial in some of these patients. The authors noted that the use of other 

haemostatic treatments had failed to yield haemostasis prior to administration of 

rFVIIa, however were noted to become effective following drug administration, 

leading to the proposal that rFVIIa may be suited as an adjunct to other methods of 

haemostatic control. 

A further clinical case was presented in 2002, as O'Neill et al reported the first off-

label use of recombinant factor Vi la in a trauma patient in the USA.'^^ Their case was 

that of a 24 year-old female, suffering from severe haemorrhage from multiple stab 

wounds including a grade I I I liver injury and a vascular extremity injury. Despite 

multiple attempts at surgery and emobolisation, the patient continued to rebleed from 

the liver and developed the "lethal triad" - acidosis, hypothermia and coagulopathy. 

On subsequent surgical exploration, there was no evidence of missed injury or arterial 

bleeding; indicating coagulopathic bleeding. At 45 hours post injury, the patient had 

exhausted local blood product supplies and there was little scope for further surgical 

intervention. A decision was taken following consultation between surgeons, the 

haematologist and the transfusion medicine team, to administer a single dose of 

recombinant factor Vi la in a final attempt to save life. O'Neill et al report that almost 

immediately after the single dose of 90ug/kg, all external signs of bleeding ceased. 

Subsequent monitoring of haemostatic parameters and blood chemistry revealed vital 

parameters returning back toward normal, with complete resolution of the prothrombin 

time. Most significantly, there were no further episodes of recunrent haemorrhage. 3 

110 



days after administration of rFVIIa, an abdominal washout was performed and it was 

discovered that the surgical field remained dry, with no re-bleeding on removal of the 

liver packing. Although the patient ultimately died as a result of septic shock, this was 

attributed to multiple postoperative infections and there were reported to be no adverse 

events occurring as a result of administration of rFVIIa. 

A further retrospective analysis of a cohort of patients with life-threatening 

haemorrhage was reported in 2003. In this series, all non-haemophiliac Australian 

patients who received rFVIIa to control major haemorrhage prior to August 2002 were 

included. The study consisted of 21 patients, again of heterogeneous nature in terms 

of patient and injury characteristics. Al l were administered rFVIIa as a last resort in 

the control of life-threatening bleeding and persistent coagulopathy, only once 

conventional transfusion and surgical options were exhausted. Given the retrospective 

nature of the study, there were a range of doses (30-180ug/kg; median lOOug/kg) and 

delays to administration (4.35-168 hours; median 12 hours) across the study group. 18 

of the 21 patients responded to rFVIIa, with a marked cessation of bleeding, with an 

overall study survival rate at 30 days of 76%. Transfusion requirements significantly 

reduced in the 24 hours following administration of rFVIIa. As there were no control 

groups in the study, again it is not possible to determine whether rFVIIa definitively 

improved survival however, as was the case in the cohort reported by Martinowitz et 

a/,'̂ ^ the high survival rate in these extreme, apparently moribund, clinical cases and 

significantly decreased reliance on transfusion fluids provides strong indicative 

evidence that rFVIIa may provide an improved survival profile. 
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The first report on use of rFVIIa in the management of uncontrolled haemorrhage 

from UK centres was published in 2003 as a retrospective analysis of 40 patients from 

the NovoSeven extended-use data collection system.'^' At the time of publication this 

represented the largest group of patients to have been treated with rFVIIa for major 

haemorrhage. The patients included in the report were treated at one of thirteen 

hospitals each of which had submitted data on all non-haemophilia patients that had 

been treated with rFVIIa between February 1999 and December 2003. The main 

findings of the report were that bleeding stopped or decreased in 80% of patients and 

there was a significant decrease in blood product requirement following administration 

of rFVIIa. However while rFVIIa was found to be effective in stopping or decreasing 

blood loss, there was a notably high mortality rate of 57.5% across the study. The 

majority of these deaths occurred more than 24 hours after rFVIIa was administered 

and were attributed to sepsis and/or multiple organ failure (MOF), though rFVIIa did 

decrease or stop blood loss in those who died as a result of sepsis or MOF. There 

were seven acute deaths, caused by continued bleeding, suggesting rFVIIa had no 

efficacy in these patients. As a retrospective analysis, the study suffers from drawing 

on a wide variability between patients and there was wide degree of variation in 

dosage of rFVIIa, ranging from as little as I5ug/kg up to I80ug/kg. Interestingly 

O'Connell et al found no dose response relationship to efficacy or thromboembolic 

complications. In addition to the varied injuries and dosing regimes, some patients 

also received one or more of various antifibrinolytic agents, clotting factor 

concentrates and surgical interventions. The influences of these variables on outcome 

cannot be discerned from effects of rFVIIa. 
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In 2003, Dutton ei al presented case reports of five trauma patients who received 

rFVIIa in their hospital in 2001 .'^^ Again, as a retrospective analysis, there were a 

range of injuries and severity of bleeding, delays to administration of rFVIIa, dosage 

and confounding factors across the cases. Three of the patients responded well to 

rFVIIa (doses 144, 80 & 100 ug/kg) with prompt cessation of bleeding. These patients 

ultimately recovered and represent the survivors in the series. The other two patients 

did not respond well, with a slowing of bleeding in one case and a minimal effect in 

the other. These determinations of clinical effect of rFVIIa on bleeding were clearly 

subjective. Both of these non-survivors were severely acidotic with highly negative 

base excess (-28.3 & -18) and had significantly elevated serum lactate levels (27.6 & 

14.6) at the time of administration of rFVIIa. In the three patients that responded well 

these biochemical parameters were less deranged and particularly, the patients were 

less acidotic. 

Dutton et al suggest that the underlying acidosis may have been the cause of failure of 

action of rFVIIa, though it is also acknowledged that both patients had sustained 

essentially lethal initial injuries, indicating there was little hope of salvage with or 

without haemostatic agents. Dutton and colleagues stressed that was that there was an 

important need for research into levels of acidosis beyond which rFVIIa may be 

ineffective. 

Dutton et al added a further 76 cases to these initial 5 in 2004,'^^ all treated at their 

centre between 2001-2003. The resultant case series of 81 coagulopathic trauma 

patients was the largest to have been reported at that time. rFVIIa recipients were 

matched with trauma patients who did not receive the drug. As a retrospective 
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analysis, there were a number of confounders in the data, not least a wide-ranging 

trauma aeitiology. Other variations occurred in terms of dose of rFVUa administered 

as well as delay to administration of the drug (maximum 37 days from admission). 

Despite the confounders, rFVIIa was effective in reversing coagulopathy in 75% of 

patients and there was an overall survival to discharge rate of 42%. The authors 

additionally report that some reduction of the rate and volume of haemorrhage was 

observed in all patients on administration of rFVIIa, with visible new clot formation. 

The rFVIIa group had a higher overall mortality rate than controls; though the authors 

found group sizes too small to acceptably match the control to rFVIIa subjects, leading 

one to question how meaningful this finding was. Overall, rFVIIa did lead to a 

reduction in coagulopathic haemorrhage in the majority of cases. 

rFVIIa was indicated only in the presence of persistent coagulopathic bleeding, after 

receipt of 10 units of RBC, 8 units of plasma and a phresis unit of platelets, without 

clinical effect. In those patients with haemorrhagic shock, a dose of lOOug/kg was 

employed and a dose of 50ug/kg for other causes. A second dose of rFVIIa was given 

in some cases. 

20 patients did not respond to rFVIIa and died within a few days of admission due to 

irreversible haemorrhagic shock. 34 of the remaining 61 patients (56%) survived to 

hospital discharge. Of the remaining 27 patients that died despite responding to 

rFVIIa, traumatic brain injury accounted for 17 cases and multiple organ dysfunction 

syndrome for the other 10. The authors found that PT improved in all patients, 
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regardless of whether they went on to respond to rFVIIa or not and therefore 

questioned the clinical relevance of this measure in assessing the efficacy of rFVIIa. 

The case series was confounded by the inclusion of specific factor deficiencies and 

traumatic brain injury patients in the overall analysis. However, the authors did 

provide some data specifically for those patients in haemorrhagic shock and there was 

no appreciable difference in survival in this subset of patients compared to the overall 

rate. The authors suggested that the majority of the patients in this subset who did not 

respond to rFVIIa were already in irreversible haemorrhagic shock before 

administration of the drug and that efforts should be made to identify markers of futile 

administration in such patients. The potential effects of acidosis, hypothermia and 

haemodilution are discussed in this paper but were considered in more detail in a 

dedicated paper the following year,'^'' which is reviewed shortly. 

The authors noted an increased requirement for a second dose of rFVIIa in patients 

receiving the drug for acute haemorrhagic shock, compared to patients receiving 

rFVIIa for other indications. Dutton and colleagues suggested that this may be due to 

the timing of administration, relative to achievement of surgical control of the 

haemorrhage. Acknowledging that there is some evidence that rFVIIa may be 

efficacious even when given before surgical control, is achieved, they note that it is 

possible that administration during active fluid resuscitation may result in a rapid 

washout of rFVIIa. This would necessitate repeated dosage in order to maintain 

plasma levels and hence efficacy. 
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A further cohort of 13 patients who received rFVIIa for the control of acute, 

uncontrolled life-threatening bleeding were reported by Mayo et al in 2004.'^^ Al l 

were treated at the Tel Aviv Medical Center in Israel and received rFVIIa (90-

I20ug/kg) only once all other means to stop bleeding were exhausted. 9 of the 13 

patients lived to at least 15 days after rFVIIa administration and bleeding significantly 

reduced (subjectively) or stopped in 8 of the 13 cases. The authors noted a reduced 

use of blood products following use of rFVIIa, but although this was evident, 

statistical significance was not reached due to the wide range of values and small 

number of cases. Of particular interest from this study was the observation that those 

patients which responded to rFVIIa were far less severely coagulopathic than the non-

responders. Survival was found to be significantly higher in those patients which 

responded to rFVIIa compared to the non-responders, and therefore this may be 

extrapolated to state that survival was increased when coagulopathy at time of 

administration of rFVIIa was minimised. This finding led the authors to recommend 

that in order to optimise the effect of rFVIIa, it is necessary to correct coagulopathy 

with transfusion of blood products prior to administration and warn that, based on 

evidence from this study, that when coagulopathy is severe, rFVIIa may be rendered 

ineffective. The requirement for replacement of platelets and coagulation factors in 

order to attain rFVIIa efficacy is in keeping with the proposed mechanism of action of 

high-dose rFVIIa. 

Contrary to the growing number of encouraging case reports and case series 

supporting the life-saving potential of rFVIIa in severe bleeding in trauma patients, 

Clark et al produced a damning report in 2004 asserting that "last-ditch" use of rFVIIa 

in patients with massive haemorrhage is ineffective.'^^ They retrospectively analysed 
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the outcome of 50 patients with intractable bleeding who were transfused with more 

than 10 units of packed RBC within a 24-hour period (therefore meeting their 

definition of massive haemorrhage) during 2002. 10 of these patients had received 

rFVIIa (90ug/kg, repeated every 2 hours i f clinical effect was seen), having received at 

least 15 units of packed RBC with continued haemorrhage despite conventional 

interventions, with no foreseeable cessation of bleeding prior to drug administration. 

There was an overall mortality rate of 20% at 24 hours and 34% at 7 days. The 

authors noted that rFVIIa had initially ceased or reduced bleeding in 60% of cases but 

the mortality rate in the rFVIIa treated group was higher than the controls, standing at 

40% at 24 hours and 70% at 7 days. Severe coagulopathy was present in 70% of cases 

of rFVIIa use, compared to 42% overall across both study groups. The four cases 

which showed no response to rFVIIa had severe coagulopathy and died within 6 hours 

of rFVIIa administration. A l l of the patients which responded to rFVIIa 

administration survived for several days. 

The usual limitations of a retrospective analysis applied in this case series. 

Specifically, the cause of acute blood loss was wide ranging, with only 7 of the 50 

cases being due to traumatic injury (stabbing). Use of blood products prior to rFVIIa 

administration varied as did the severity of coagulopathy. The authors found that 

severe coagulopathy was associated with a significant increase in mortality at 7 days, 

with a trend toward significance evident at 24 hours, compared to less coagulopathic 

cases. It is therefore important to note that 70% of patients that received rFVIIa were 

severely coagulopathic, compared to only 35% of patients who did not receive rFVIIa. 

rFVIIa was truly used as a "last-ditch" effort in these cases which were, by the authors 

117 



definition, less likely to survive than the untreated "controls". It may seem that 

efficacy of rFVIIa was unfairly measured in this paper, however i f one considers only 

the severely coagulopathic patients, 7 of which received rFVIIa and 14 of which did 

not, survival rates at both 24 hours and 7 days were far higher in untreated patients 

than those which received rFVIIa. This said, the six patients which did respond to 

rFVIIa, survived for at least 3 days after administration of the drug. It would therefore 

seem reasonable to suggest that those patients which did not respond to rFVIIa were 

simply unsalvageable, with too severe a coagulopathy in place. 

It is interesting that rFVIIa was able to bring about cessation or reduction of bleeding 

in 60% of cases, indicating that clot formation was initially mediated. However, the 

authors report that this effect was not sustained, presumably necessitating a further 

dose of rFVIIa. A likely explanation for the failure of prolonged haemostasis may be 

severe haemodilution, with levels of platelets and factors too low to enable a ful l 

thrombin burst. This may have had adverse effects on clot structure'^*' '̂ ^ and 

resistance to fibrinolysis through failure of TAFI activation.'^^ Rapid washout, as 

suggested by Dutton et a/,'̂ ^ may have also contributed to the requirement for 

additional doses of rFVIIa. The authors suggest that higher doses or shorter intervals 

between doses of rFVIIa may have demonstrated more evidence of efficacy, though it 

would seem likely that administration of the first dose of rFVIIa earlier, before the 

patient was so severely coagulopathic, may offer the greatest opportunity to see 

efficacy. 

A case series published in 2006 also failed to demonstrate a favourable effect of 

rFVIIa in trauma patients,'^^ with the authors concluding that rFVIIa "was not helpful 
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in controlling bleeding in trauma patients". There were only three trauma cases 

included as part of a larger review of rFVIIa use and there was no detail provided on 

the clinical condition of the patients prior to drug administration, therefore it is not 

possible to determine whether these cases were also unsalvageable cases, with rFVIIa 

being used as a "last-ditch" attempt. By contrast, two case series presented during the 

same period reported a favourable outcome of rFVIIa use in trauma patients in what 

could be considered "last-ditch" use.''**' '̂ ^ A number of chart reviews have been 

published since 2005, reporting positive outcomes of rFVIIa use in institutions 

throughout Europe, the United States of America and Canada."°''""°^ 

Benharash and colleagues"*^ reported the outcome of 15 patients who received rFVIIa 

between November 2003 and December 2004 at the Harbor-UCLA Medical Center, 

California following development of severe life-threatening haemorrhage. rFVIIa was 

reported to have been used only when it was considered that the patient was at risk of 

death from abelled ations, essentially as a "last-ditch" effort. A single dose 

(ranging from 90-120ug/kg) of rFVIIa was administered, followed by a second dose 

(ranging from 60-90ug/kg) i f a transient response had been noted. 80% of patients 

were reported to have responded to the drug, with partial or complete haemostatic 

response. Those patients which did not respond to the drug died within 48 hours. It is 

claimed that the expected mortality rate for all patients was 100%, therefore the 

authors assert that rFVIIa was shown to have a significant effect on survival, despite 

the lack of a control group (the authors of this paper, similar to Dutton et al, had been 

unable to adequately match the rFVIIa subject to untreated controls). There was found 

to be a significant decrease in the number of blood products administered following 

rFVIIa administration and there was a significant improvement in laboratory 
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coagulation parameters. This study demanded that rFVIIa was administered only in 

the presence of haemorrhagic shock, leading the authors to suggest that an even 

greater efficacy may have been noted had the drug been administered earlier, before 

development of hypothermia and acidosis. 

McMull in el al reported a resolution of coagulopathic bleeding in 94% of patients and 

a significant decrease in transfusion requirements following administration of the 

drug.̂ *^̂  Rizoli and colleagues'^^ produced a review of some 242 trauma patients, 38 

of which received rFVIIa. This was the first retrospective study from which it was 

possible to draw conclusions regarding effect of rFVIIa on survival from the data. 

Despite rFVIIa recipients being more acidotic than controls who did not receive the 

drug, in multivariate analysis rFVIIa was shown to improve 24-hour survival and there 

was a strong trend toward an increase in overall survival in the rFVIIa recipients, 

compared to those patients who did not receive the drug. 

Thus, a range of clinical experiences with rFVIIa in trauma have been reported over 

the last several years, some showing efficacy in terms of survival, others in terms of 

transfusion requirements and yet others showing no beneficial effect of the drug in 

trauma patients. It has been suggested that there may be a sub-population of trauma 

victims in whom rFVIIa wi l l not be effective, due to overwhelmingly deranged 

underlying physiology. 

In 2005, Stein et a/'̂ ^ published a paper which seeked to define potential markers of 

futili ty of administration of rFVIIa. Using the 81 clinical cases published by Dutton et 

al in 2004, Stein and colleagues attempted to establish determinants of futility of 

rFVIIa administration, with a view to producing guidelines on appropriate use of 
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rFVIIa. From the total of 81 cases, the authors looked specifically at the cohort of 46 

of these patients who had suffered acute haemorrhagic shock. 26 of these cases 

responded to rFVIIa ("responders") while the remaining 20 either transiently 

responded or did not respond ("non-responders"). Stein et al compared the 

characteristics of responders to non-responders, using both Student's t-test and 

stepwise logical regression. Both statistical analyses found serum lactate, prothrombin 

time and revised trauma score to differ significantly between the two groups. The 

authors then went on to use binary recursive partitioning to exhaustively search all 

possible methods of subdividing independent variables in order to determine which of 

the variables were independent predictors of futility of rFVIIa use. This analysis 

resulted in the generation of a classification and regression tree (CART), which 

showed revised trauma score and prothrombin time to be independent predictors. A 

prothrombin time at administration of rFVIIa of more than or equal to 17.6 seconds 

was placed at the top of the CART. In patients with a promthrombin time of less than 

17.6, a revised trauma score of over 4.09 was found to be the next more significant 

predictor of futihty of use of rFVIIa. These recommendations, along with the negative 

predictor of serum lactate levels greater than 13mg/dl, had already been reported in a 

review from the same group which was published before this analysis.''^'' The degree 

of increase in serum lactate is a marker of a developing acidosis, which was shown by 

Meng et a/'^' to be associated with potential loss of efficacy of rFVIIa. 

The findings from this study, which showed elevated serum lactate to be a predictor of 

futili ty of rFVIIa administration, adds further evidence to that provided by Meng et 

a/'^' on the negative effects of acidosis on the action of rFVIIa. Stein and colleagues 

also noted that there was a trend toward an increase in efficacy of rFVIIa in patients 
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who had received more platelets prior to rFVIIa administration. This finding therefore 

supports the proposed TF-independent action of high dose rPVIIa directly on activated 

platelets. 

The authors concluded that the predictive nature of prothrombin time, revised trauma 

score and serum lactate suggests that there are some patients with metabolic 

derangements too severe to reverse, even i f the bleeding can be attenuated; making the 

use of rFVIIa in such patients futile. The work of Clark et a/'̂ ^ in 2004 supports this 

theory, since "last-ditch" use of rFVIIa was shown to be ineffective. The overall 

recommendation of Stein and colleagues was that, while not contraindications, 

profound haemorrhagic shock or profound metabolic acidosis should provide a guide 

to rational therapy, aiding in the identification of a sub-population of patients who do 

not appear responsive to rFVIIa. 

Martinowitz and colleagues built on the work of Stein er al, publishing in 2005 a set of 

comprehensive guidelines for use of rFVIIa in uncontrolled bleeding."^ The authors 

were clear that these were intended as suggestive guidelines only, until more definitive 

advice could be produced based on evidence from much needed randomised controlled 

trials. The guidelines were developed based on analysis of published animal studies, 

clinical case reports and series and 36 cases from the authors' own hospital. The first 

part of the paper presents the data from these 36 cases with a cessation of bleeding 

being achieved in 72% patients and a survival rate of 61 %. Compared to expected 

outcome the authors' described this as favourable. Similar to the findings of Stein et 

a/'̂ '* and Meng et a/,'^' this study reported that acidosis had a significant deleterious 

effect on the efficacy of rFVIIa while hypothermia had no significant effect. It is 
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interesting to note that 9 of the 10 patients who did not respond to rFVIla died of 

abelled ations within 15 hours, further supporting the suggestion that rFVIla had 

maricedly improved survival among those in which it had any effect. Of those patients 

that did respond to rFVIIa there were only 4 deaths all of which occurred after 6 days 

or more due to sepsis or multiple organ dysfunction syndrome. There was a 

significant decrease in blood product requirement in responders compared to none 

responders. There was also a significant normalisation of laboratory parameters in 

responders. 

The remainder of the paper was given over to the presentation of the authors' 

recommended guidelines for the use of rFVIIa in uncontrolled haemorrhage. They 

suggest that rFVIIa is indicated in any salvageable patient suffering from massive 

uncontrolled haemorrhage that has failed to respond to appropriate conventional 

measures. The use of the drug is absolutely contraindicated in unsalvageable patients 

while recent history of thromboembolic events is suggested as a relative 

contraindication. Based on the proposed mechanism of action of pharmacological 

doses of rFVIIa it is advised that 8-10 units of packed red blood cells should be given 

in conjunction with the drug to maximise the potential efficacy. 

Perhaps the most important recommendations outlined in the guidelines are the 

conditions that should be met prior to administration of the drug. In keeping with the 

proposed mechanism of action of the drug and experience both clinically and from the 

animal studies it is advised that blood component therapy should have been employed 

to establish fibrinogen levels of at least 50 mg/dl and platelet levels of at least 50 000 

X 10^/1. Furthermore, based on data from the cases presented in their paper and 
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supported from data published elsewhere,^°^ the authors suggest correction of the pH 

to at least 7.2 prior to drug administration and, although normal body temperature 

should be restored wherever possible, rFVIIa retains its activity in the presence of 

hypothermia which therefore should not limit its use. A dose of approximately 

120ug/kg is recommended, with a range of 100-140ug/kg quoted. 

Over the last two years, numerous other groups have attempted to produce guidelines 

or determine methods of predicting the response of bleeding in non-hemophiliac 

patients to rFVIIa (though not specifically in trauma), and the role of clinical scoring 

systems has received considerable interest."^^' One such paper suggested a poor 

SOFA (sequential organ failure assessment) score and failure to respond to the first 

dose of rFVIIa are predictors of futility of administration of r F V I I a . T h e data used 

to arrive at this conclusion were derived from 18 patients treated with rFVIIa at 

Addenbrooke's Hospital, where the drug was found to have a poor efficacy with a 

mortality rate of 66.6% and active bleeding at the time of death in 8 of these 12 cases. 

The authors found no evidence that additional doses of rFVIIa, in the absence of 

clinical response to the first dose, conferred any significant benefit. These apparently 

disheartening results should be considered alongside the fact that 11 of the 12 patients 

which died had organ failure at the time of rFVIIa administration, with a very poor 

prognosis and, presumably, significant physiological and metabolic derangements. 

The other patient who died had severe thrombocytopenia at the time of rFVIIa 

administration. Therefore, although survival was poor and repeated doses of rFVIIa 

were generally ineffective in the patients included in this series, it is perhaps unfair to 

extrapolate this finding to trauma patients generally, as it is hoped that rFVIIa 

administration would be considered prior to development of organ failure. It is 
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acknowledged that this paper confirms the potential futility of rFVIIa administration in 

moribund patients with established organ failure; however one must conclude that it is 

not reasonable to draw any further general conclusions from the effect (or lack thereof) 

of rFVIIa in these particularly i l l patients. It is acknowledged by many authors that 

determination of predictors of response or futility of rFVIIa in trauma patients is an 

area which requires more research attention.'^'*' ""̂  

In 2005, a consensus guideline on the off-label use of rFVIIa was published in the 

United States of America,"'° based on review of the published literature by a panel of 

experts. The conclusion regarding the use of rFVIIa in trauma was far less detailed 

than that provided by Martinowitz et al, with rFVIIa being deemed "appropriate" for 

use in severe multiple trauma, where there is ongoing bleeding and coagulopathy 

despite surgical intervention and at least 10 units of blood in a six hour period. 

Despite these loose guidelines, they are to date the only published advice from the 

United States of America. European guidelines were published in 2006 and wil l be 

discussed in due course.'^^ 

The first two, and to date only, randomised clinical trials on the use of rFVIIa in 

trauma patients were published in a single paper in 2005.^" The studies were 

essentially identical, except that one was concerned with blunt trauma while the other 

looked at penetrating trauma. Both were multi-centre international trials involving 

patients from 32 different hospitals in 8 different countries. Severely traumatised 

patients became eligible and were enrolled in the trials after receiving a 6"̂  unit of red 

blood cells within a four hour period. Enrolled patients were randomised to receive 

either 3 injections of rFVIIa or placebo. The first injection of rFVIIa was given, at a 
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dose of 200ug/kg, immediately after transfusion of the S'*' unit of red blood cells. The 

second and third injections, both lOOug/kg doses, followed at 1 and 3 hours after the 

first dose. The main outcome measure for both studies was the number of red blood 

cell units transfused during the 48 hours following the first dose of rFVIIa. In order to 

measure this outcome without adding bias from early deaths, pafients were included in 

the analysis only i f they survived a minimum of 48 hours. In blunt trauma patients 

who survived for a minimum of 48 hours. rFVIIa significantly reduced the number of 

red blood cell units required and the need for massive transfusions. No significant 

effects of rFVIIa on transfusion requirements were found in the penetrating trauma 

series. The authors suggest that the main reason for the lack of significance in the 

penetrating trauma trial was that these patients required only approximately half as 

many red blood cell units as the blunt trauma patients and that the penetrating injury 

study therefore had a lower power for detection of a reduction in transfusion 

requirement. 

Whilst no significant effect of rFVIIa on survival or length of stay in intensive care 

were found in the blunt or penetrating trauma trials, positive trends in favour of rFVIIa 

were observed for these endpoints. The authors stressed that the lack of statistical 

significance for these outcome measures was to be expected as the studies were not 

powered for the endpoints. The authors noted that rFVIIa was efficacious despite the 

hypothermia present across the series. Little can be determined regarding the effects 

of severe acidosis as none of the groups has pH less than 7.2. 

In 2006, further post-hoc analysis of data presented by Boffard et al was published, 

focussing specifically on coagulopathic patients.^'^ This paper ultimately adds little to 
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the findings from the original publication and was hkely triggered by criticism which 

was levelled at the authors' interpretation of the analyses in that study.^'^ In the 

absence of a consensus definition of coagulopathy, for the purposes of this paper 

patients were considered to be coagulopathic i f they had "an ongoing bleeding that 

required the use of transfusion with FFP and RBC units at a ratio of 1 or more units of 

FFP for every 4 units of RBCs, and/or the use of FFP with whole blood, and/or 

transfusion of platelets, and/or the transfusion of cryoprecipitate". Due to the obvious 

resultant reduction in cohort size, patients from the penetrating and blunt trials were 

pooled together in this analysis. Based on this definition, 136 patients were included 

in the analysis, 60 of which had been treated with rFVIIa. 

rFVIIa was found to reduce 48-hour transfusion requirements, irrespective of whether 

the analysis included all patients or just those that survived at least 48-hours. This is 

likely to have been the desired outcome from this post-hoc reanalysis of the trial data, 

as the restriction in the original paper of this finding to those patients which survived 

at least 48 hours had been commented upon.'^'^ This reanalysis of the data also 

enabled the authors to demonstrate a significant decrease in the risk of developing 

MOF or ARDS in the rFVIIa treated patients, compared to placebo controls. The 

authors concluded that coagulopathic patients appeared to be a group particularly 

likely to benefit from rFVIIa therapy. This suggestion appears to be at loggerheads 

with the suggestion by Clark et a/'̂ ^ and Stein ei a/'̂ "* that efficacy of rFVIIa may be 

limited in severely coagulopathic patients. It is likely that the resolution of this 

conflict lies in defining how profound a coagulopathy is being referred to; it is 

reasonable to assume that to some (unknown) point, the more coagulopathic a patient, 
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the more potential rFVIIa has to improve the situation, but beyond this unknown 

threshold, the patient is too sick to be able to respond to the rFVIIa. 

The findings from the RCT"" were supported in 2005 as 101 trauma patients, 29 of 

which received rFVIIa, were presented."'"* The dose used in this study was lower than 

that reported by other groups, just 40ug/kg. Nevertheless the rFVIIa group had a 

significantly lower transfusion requirement than the control group. The authors again 

reported no significant effect of rFVIIa on survival. It is interesting to note however 

that patients who received rFVIIa survived at a significantly lower pH than those in 

the control group. The authors therefore challenged the findings of Meng et a/'^' and, 

though not directly, the recommendations of Martinowitz et al,^^ stating that acidosis 

by itself should not preclude the use of rFVIIa. Pusateri & Park published a review of 

rFVIIa use in trauma in 2005"'^ in which they stated that rFVIIa increased total 

circulating FVIIa levels 100-fold, highlighting the fact that it is therefore difficult to 

suggest at what point acidosis may inhibit the beneficial action of rFVIIa to a 

clinically relevant degree. They further suggest that, bearing in mind the difference in 

degree of effect of acidosis noted in the two models employed by Meng et al, the 

apparently disparate effects of acidosis on efficacy of rFVIIa may be dependent to 

some degree on which mechanism, that is TF-dependent or TF-independent, of action 

of rFVIIa predominates in the given situation. 

An analysis of outcomes reported to the rFVIIa extended-use database was presented 

m 2006.-'^ The main inclusion criteria were nonhemophiliac patients who had 

experienced a massive bleed (defined as at least 14 units of packed RBCs within 4 

hours) and subsequently received rFVIIa. 45 patients met the inclusion criteria, and 
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both trauma and surgical cases were included. rFVIIa was reported to be effective in 

stopping or markedly reducing blood loss in 93% of cases. A significant decrease in 

both transfusion requirement and rate of blood loss was noted following 

administration of rFVIIa, There was no control group to which survival rates could be 

compared in this analysis, therefore effect on survival was determined through 

comparison of observed mortality to predicted mortality, derived from clinically 

employed scoring systems. rFVIIa was found to significantly increase survival 

compared to predicted rates in trauma patients, but not in surgical patients. The 

authors of this study suggest that the apparent increased efficacy of rFVIIa compared 

to that found in the randomised controlled triaP" may be due to differences in the 

patient characteristics between the two studies. rFVIIa was given in the randomised 

controlled trial after the 8'̂  unit of packed RBCs, regardless of whether surgical 

control had been achieved, while patients reported in this study were not given rFVIIa 

until at least 14 units of packed RBCs had been given and surgical control had been 

achieved. 

The study suffered from a number of limitations, inherent in retrospective analyses. 

Not least were the variable doses of rFVIIa used as well as the number of doses given. 

In addition, the causes of blood loss were multifactorial in a vastly heterogenous 

population. The use of predicted mortality rates, as opposed to a control group, means 

that the apparent improvement in survival seen in this study cannot be ratified. 

Following the publication of the results of the first two randomised controlled clinical 

trials of rFVIIa in trauma,^" and the publication of guidelines on use of rFVIIa by the 

Israeli Multidisciplinary rFVIIa Taskforce"* in 2005, a set of European guidelines 
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were published in 2006.'^^ The guidelines rank evidence according to standard critical 

appraisal criteria, therefore any evidence drawn from the randomised controlled trial is 

considered in preference to case series. As a result, the main focus of the guidelines is 

upon blunt trauma. As the RCT found no statistically significant beneficial effect of 

rFVIIa in penetrating trauma, it is stated that use of the drug in cases of penetrating 

trauma cannot be recommended. General recommendations made state that every 

attempt should be made to control bleeding by conventional means before resorting to 

rFVIIa use, which wil l be effective only once sources of major bleeding from damaged 

vessels have been stopped. This statement could be challenged by a number of the 

published animal and human cases in which rFVIIa has been used successfully as a 

sole haemostatic agent, with other methods of haemostatic control either having been 

apphed, or been effective."' While the Israeli guidelines 

laid down a series of preconditions which should be met before considering rFVIIa 

use, the European guidelines suggest only that "efforts should be made to achieve" 

similar parameters to those already detailed from the Israeli guidance. In addition to 

targets for fibrinogen, platelets and pH, the European guidelines also quote a target 

haematocrit of more than 24%. 

A significant departure from the Israeli guidelines can be seen in the rFVIIa dose 

recommended in the European guidance. Here, 200ug/kg of rFVIIa, followed by two 

doses of lOOug/kg, as used in the RCT, are advised. The reason for this difference is 

due to the fact that the European guidance is based on the RCT, details of which were 

not available when the Israeli guidelines were composed. The authors of the European 

guidelines note that the possibility remains that lower doses may be as effective and 

emphasise that the second and third doses should only be used i f clinically indicated. 
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Further advice on the appropriate use of rFVIIa in trauma was published in 2007,^'^ as 

part of the European guideline on management of bleeding following major trauma. 

In this advice, rFVIIa is indicated only in blunt trauma patients, with no avocation of 

use in penetrating trauma. The advice from the previously discussed 2006 guideline, 

pertaining to use only when other options have failed, as well as dosage advice, is 

unchanged. Again, while it is recommended to correct pH and restore fibrinogen and 

platelet levels, there is no instruction that this is a precondition which must be met 

before using rFVIIa. 

rFVIIa has been used successfully for control of blood loss in a number of intra and 

post operative bleeding patients, which have been the subject of numerous 

comprehensive r e v i e w s . " ' ^ A number of other case reports on the use of rFVIIa in 

trauma patients have appeared in the literature since the early part of this decade, 

including use in pulmonary bleeding'^° and case reports of life-saving efficacy in 

unusual situations, such as prolonged coagulopathic bleeding following traumatic 

injury in a Jehovah's Witness.""' 

Although considerable progress has been made in understanding the mechanism of 

rFVIIa, and use of this knowledge to begin to develop guidelines for the most 

appropriate use of the drug, a number of points still require clarification. These were 

summarised succinctly by Mohr et al}^^ and include determination of appropriate 

timing of administration and dosage, how many blood products should be transfused 

prior to administration, development of tighter indications and contraindications and 

determinants of futili ty of use. In addition, conclusive beneficial effect on survival 

remains to be demonstrated in a randomised clinical trial, and data needs to be 
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continually collected and assessed for evidence of the safety or dangers of rFVIIa in 

trauma. 

If one thing is clear from the vast amount of literature published on the use of rFVIIa 

in trauma over the last eight years, it is that further research is needed; specifically, 

randomised controlled trials sufficiently powered to detect effects on mortality. Two 

such RCTs are reported to be currently underway,^^^ and the results are awaited with 

anticipation. 
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C H A P T E R 3 

M E T H O D S 

3.1 The in vivo study 

The study which forms the experimental work for this thesis was conducted in vitro, 

using blood samples obtained from an in vivo study which ran simultaneously. The in 

vivo study was conducted on Large White pigs, and the salient points are described 

here. 

Following induction of surgical anaesthesia, the left carotid artery, both internal 

jugular veins, femoral arteries, and veins were cannulated. Blood samples for the in 

vitro study were drawn from the cannula placed in the left femoral artery. The bladder 

was cannulated and the spleen removed to prevent autotransfusion. A wire was then 

surgically placed in the aorta and the abdomen was closed. Animals were maintained 

on intravenous anaesthesia throughout the surgical period and for the duration of the 

study. Physiological parameters were measured using the PowerLab (AD Instruments, 

Australia) system. 

Once surgically prepared, the experimental phase was entered, with animals 

randomised to receive either rFVIIa (at a dose of 180ug/kg) or placebo. A l l members 

of the team conducting the experiment were blinded to the randomisation to prevent 

experimenter bias. After a stabilisation phase, a controlled haemorrhage of 30% blood 

volume was initiated by a computerised pump, which drew blood from the femoral 

veins. At the end of the controlled haemorrhage, the wire placed in the aorta was 

pulled, creating an aortotomy (4-5mm) and uncontrolled haemorrhage. After a five-
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minute shock phase, animals received either rFVIIa or placebo and intravenous fluid 

resuscitation was commenced in all animals. IV fluid resuscitation was continued 

until a systolic blood pressure of 80mmHg was reached, and was re-initiated when 

systolic blood pressure fell below this level. 

The primary end point of this study was survival time, and number of animals 

surviving to six hours. Animals that survived six hours were killed without recovery 

from anaesthesia by an overdose of sodium pentobarbitone (80mg/kg Euthatal, Meriel, 

Princes Risborough, UK). 
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3.2 Blood Sampling 

At defined time points throughout the study arterial blood samples were obtained from 

the indwelling cannula placed in the left femoral artery. Before each blood sample 

was taken, approximately 10ml of 'waste' blood was drawn from the cannula to clear 

the dead space. In excess of 3ml of arterial blood was then drawn from this line into a 

fresh syringe, to undergo in vitro analysis. 

Blood samples were collected at the following time points: 

1. Baseline - drawn at the end of the surgical phase 

2. Pre Haemorrhage - drawn immediately prior to initiation of haemorrhage 

3. Post Haemorrhage - drawn after the haemorrhage, before administration of 

rFVIIa or placebo 

4. Post Drug - drawn immediately following administration of rFVIIa or placebo 

5. 10 minutes - drawn 10 minutes after the administration of rFVIIa or placebo 

and the start of IV fluid resuscitation 

6. 20 minutes* - drawn 20 minutes after the administration of rFVIIa or placebo 

and the start of IV fluid resuscitation 

*innovin activated samples only 

The timing of blood sampling through the in vivo study is shown in Figure 12 which 

schemiatically illustrates the experimental protocol. 
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Figure 12 Schematic representation of the experimental protocol, illustrating 

the t iming of blood sampling 
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3.3 The in vitro study 

The subject of this thesis is the in vitro clotting analysis, specifically 

thromboelastography (TEG®), performed on blood samples taken during the animal 

study described above. TEG® is a real-time method of assessing the kinetics of clot 

formation in whole blood. Paired blood samples were taken at each time point, one 

being treated in vitro with a (potentially second) dose of rFVIIa and the other being 

used as a control, treated only with placebo to maintain equivalent volume. 

3.3.1 The T E G ® apparatus 

The TEG® System was first developed in 1947, by Professor Helmut Hartert. Since 

then it has undergone several modifications to reach its current form, manufactured 

today by Haemoscope Corporation, Illinois, USA. There follows a brief overview of 

the theory behind TEG®. 

The TEG® apparatus comprises the TEG® abelled (Haemoscope Corporation, 

Ilhnois, USA), which consists of two channels that operate independently of one 

another, and TEG® analytical software (TAS™ Version 4; Haemoscope Corporation, 

Illinois, USA). A blood sample is added to a pre-warmed TEG® cup in each channel; 

the temperature of each channel can be individually controlled and for the present 

study were fixed at 37°C. A channel consists of a torsion wire, connected to a static 

pin and a cup holder with heating element. The TEG® system is illustrated in Figure 

13. 
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sensor & controller 

Image reproduced from http://www.haemoscope.com/technolosy/teB analyzer.html (site accessed 

31.08.08} 

Figure 13 Diagrammatic representation of one channel of the TEG system. 

The pin becomes immersed in the blood as the cup is raised and at this point the 

analysis software is started. The cup oscillates through an arc of 4°45' with 10 

seconds duration. As the blood in the cup begins to clot, the fibrin produced binds to 

the pin causing the pin to oscillate with the clot. The movement of the pin is 

transmitted through the torsion wire to the TEG® software which produces a graphical 

representation of the pin's movement. An example of this representation is shown in 

Figure 14 and an explanation of the abelled parameters follows. 

MA 
(Maximum 
amplitude of 
the trace) 

Figure 14 A n example of the graphical output of the T E G ® software 
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The flat line at the beginning of the trace in Figure 14 represents the stationary phase 

of the pin, prior to clot formation and fibrin production. The parameter abelled R 

represents the duration of this stationary phase up until the point at which the first 

fibrin forms and binds to the pin. Graphically, binding of fibrin to the pin is shown by 

the splitting of the flat line, as the pin begins to oscillate with the clot. The point at 

which the initial fibrin forms is illustrated in Figure 14 by a vertical green line. 

The gradient of the split lines represents acceleration of the pin as more fibrin binds 

and the clot develops further. The kinetics of clot formation is represented by the 

parameters K and Angle. K is a measure of the time taken to reach a given level of 

clot strength (amplitude of 20mm),"^'' this point is represented in Figure 14 by the 

vertical blue line. Angle provides an indication of how quickly fibrin is produced and 

therefore is a measure of how quickly the clot becomes stabilised. It is derived as the 

angle of the centre of the trace (dashed line) and the tangent of the line originating at R 

(dotted line). 

The influence of the rotating cup is seen on the TEG only once the clot is sufficiently 

developed to cause the pin to be bound with the walls of the cup. At this stage the 

torque of the cup then affects the movement of the pin; the stronger the clot the more 

closely aligned the speed of cup and pin rotation. The maximum amplitude (MA) of 

the trace represents this relationship and therefore reflects the ultimate peak strength of 

the clot. 

Considering the main aim of the thesis, to determine the effect of in vitro rFVIIa on 

the coagulation process, specific TEG parameters were selected for analysis. It has 

already been explained that rFVIIa is understood to act by augmenting the initiation of 
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coagulation. R-time, defined as the time until the initial fibrin formation, has been 

selected as one parameter which may therefore be likely to demonstrate an effect, 

should rFVIIa exert one. Both K-time and Angle are measures of the kinetics of clot 

formation, from R-fime onwards. Angle is influenced by fibrin build up and is cited as 

a measure of clot strengthening and therefore fibrinogen level, whereas K-time is a 

measure of the speed at which the clot reaches a defined level of strength and reflects a 

more generic level of clot kinetics. It has therefore been determined that K-time is 

likely to be more representative of changes in kinetics ameliorated by rFVIIa and this 

parameter wi l l be analysed rather than Angle. Finally, since there have been claims in 

the literature that rFVIIa may lead to the formation of increased strength "superclots", 

the parameter M A , which is a measure of the ultimate peak strength of the fibrin clot, 

wi l l be analysed to determine whether rFVIIa has any effect on the strength of the clot 

ultimately formed. 

3.3.2 Preparation of T E G apparatus 

Before each trial, prior to any analyses being carried out, the TEG analysers were 

checked for balance and baselines, in accordance with manufacturer's guidelines. 

Quality control samples were also processed at regular intervals to ensure there was no 

drift on the machines. Shortly before each sample was due, plastic TEG cups were 

placed in the columns to be used. The cups were then automatically heated to 37°C 

and maintained at that temperature throughout. 
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3.3.3 Preparation of T E G reagents 

TEG buffer was produced as outlined in Table 1, below. 

20mM Hepes 4,76 g (Sigma H3375) 
140mm NaCl 8,18g (MERCK 6404) 
2% BSA 20g (SIGMA 7906) 

Hepes and NaCl dissolved in approximately 750 ml ion exchanged water 
1 pH adjusted to 7.4 using HCl 

The volume is made up to I L with ion exchanged water 
• 2%BSA is added (lOOg/ml) 

Table 1 The composition of 1L TEG Buffer 

Once produced, buffer was decanted in 10ml measures and stored at -80°C until 

required. Buffer was used as the in vitro placebo treatment and also as vehicle for the 

rFVIIa. rFVIIa was provided by Novo Nordisk, Denmark at a concentration of 

600ug/ml in 10 ul measures. rFVIIa vials were also stored at -SO-'C until required. 

Shortly before use the buffer and rFVIIa were defrosted. The rFVIIa vial was diluted 

with 57ul of buffer. 

Two activators were used throughout this study. Tissue Factor (Innovin) was the main 

reagent used, selected for sensitivity. Innovin is a source of recombinant human tissue 

factor and as such acts upon the extrinsic system, leading to a physiological activation 

of coagulation. The other activator used in this study was Kaolin (Haemoscope, 

Chicago, Illinois, USA; marketed by Medicell Ltd, London, UK). This reagent works 

on the intrinsic system and as such initiates coagulation through the non-physiological 

contact pathway. 
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Innovin stock (Dade Behring; marketed by Sysmex UK Ltd, Milton Keynes, UK) was 

frozen at -80°C until required, at which point it was defrosted and diluted 1:100 (5 ul 

Innovin stock in 495 ul of buffer). The 1:100 solution of Innovin, stored on ice, was 

stable for the duration of the experiment. Shortly before the arrival of the blood 

sample, the 1:100 solution was further diluted (40 ul in a further 432 ul of buffer). 

This solution was designated X and stored on ice, where it remained stable for 2 hours. 

Kaolin (Haemoscope, Chicago, Illinois, USA; marketed by Medicell Ltd, London, 

UK) was provided in a ready for use formulation, while it was necessary to create 

premix vials of Innovin. 

At each time point, two premix vials of Innovin were prepared. The first contained 

29ul of rFVIIa and 29ul of X; the other contained 29ul of buffer, again mixed with 

29ul of X, as a control. A l l reagents were added to their respective premix vials 

immediately prior to the addition of blood. 

3.3.4 Running the T E G 

At each time point, one Kaolin vial and the two Innovin premix vials, prepared as 

detailed in the previous section, were used. Innovin activated blood samples were 

used throughout the study to assess the efficacy of rFVIIa versus placebo, while kaolin 

samples were included in one aspect of the study to allow comparison of the two 

activators. Samples activated with Kaolin were not treated in vitro with rFVIIa or 

buffer. The analysis of samples is illustrated in Figure 15. 
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Figure 15 Schematic representation of thromboelastographic analysis at each 

time point 

Once drawn, the syringe of blood was gentiy agitated while being transferred to the 

TEG suite, to prevent stasis of the blood. The time taken to reach the TEG suite was 

less than one minute. 

On arrival in the TEG suite, 1 ml of blood was added to each of the vials, which were 

gentiy inverted a number of times to ensure complete mixing of blood and vial 

contents. Immediately following the inversions, 360 ul of the activated blood was 

pipetted into the relevant TEG channel. The cup was raised to meet the pin and the 

TEG analyser was started. 

Each TEG channel was allowed to run at least until MA was reached and for a 

maximum of 120 minutes. 

143 



3.3.5 Analysis of T E G parameters 

The three TEG parameters discussed earlier in this section, R-fime, K-time and M A , 

were each measured in order to answer a series of five questions, which form the 

subsections of the Results section. 

1. What is the effect of in vitro rFVIIa on normal porcine blood? 

2. Does haemorrhage modify the effect of rFVIIa in porcine blood? 

3. What is the effect of intravenous fluid resuscitation on the efficacy of in vitro 

rFVIIa in porcine blood? 

4. Is TEG sensitive to the effect of rFVIIa administered in vivol 

5. What is the effect of a second dose of rFVIIa in porcine blood? 

Due to the nature of the questions being asked, different data sets were used for 

different questions. The number of animals included in each analysis is quoted for 

each question, along with the reasoning for selection of the data set. 

3.3.5.1 Statistical Analysis 

A l l data were analysed using a 2 way analysis of variance (2 way ANOVA, SPSS 

vlO), unless indicated otherwise. Where appropriate (indicated in the text) a log-

transformation of the data was performed before analysis. A value of P<0.05 was 

considered statistically significant. A l l data are reported as mean±SEM unless 

indicated otherwise. The use of SEM is a standard form of expressing data spread 

and is frequently employed in scientific peer review journals. It is thus appropriate for 
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this thesis. Each statistical tool employed is appropriate for the analysis of the data 

studied and it is clearly stated in the text which analysis is performed for each data set. 
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C H A P T E R 4 

R E S U L T S 

4,1 The effect of in vitro r F V I I a on normal porcine blood 

The complete data set (a total of 50 animals) was used in analysis of R-time and M A 

in this section. Due to technical failure of the TEG software, K-time was not recorded 

for six animals, making a total of 44 animals included in K-time analysis in this 

section. The blood used in this section was withdrawn from the animal before the 

onset of haemorrhage (see Methods section, Figure 12) and was activated with innovin 

(see Methods section. Figure 15). 

rFVIIa added in vitro to normal porcine blood resulted in a significantly lower R-time 

compared to that found after the addition of the same volume of buffer to paired 

samples of blood (Figure 16, P<0.001, paired t test). rFVIIa also reduced K-time 

significantly (Figure 17, P<0.001, paired t test) but had no significant effect on M A 

(Figure 18, P=0.43, paired t lest) in the same samples. 
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Figure 16 The effect of in vitro rFVIIa compared to placebo on R-time in 

baseline blood samples. Mean value +SEM. 
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Figure 17 The effect of in vitro rFVIIa compared to placebo on K-time in 

baseline blood samples. Mean value +SEM. 
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Figure 18 The effect of in vitro rFVIIa compared to placebo on MA in 

baseline blood samples. Mean value +SEM. 
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4.2 The effect of haemorrhage on the response to in vitro r F V I I a in porcine 

blood 

Two animals from the complete data set did not survive to the Post Haemorrhage 

timepoint and a further four were excluded since they had been given interventions 

that were outwith the protocol of the current study. A total of 44 animals were 

therefore included in the analysis of R-time and M A in this section. Again, due to 

failure of the TEG software K-time was not recorded in some cases resulting in 38 

animals being included for K-time analysis in this section. 

The blood used in this section was withdrawn from the animal before the onset of 

haemorrhage (Pre Haemorrhage) and immediately after haemorrhage, prior to 

administration of rFVIIa or placebo in vivo (Post Haemorrhage) (see Methods section. 

Figure 12). Blood samples were activated with innovin (see Methods section. Figure 

15). 

Both haemorrhage and rFVIIa produced significant reductions in R-time (Figure 19, 

P<0.001 in each case). Although the reduction in R-time induced by rFVIIa 

(compared to buffer) appears smaller after haemorrhage than before (Figure 19), this 

difference was not statistically significant (P=0.384). Thus, rFVIIa produced a 

significant reduction in R-time at both timepoints and the absolute value of R-time 

was lowest in the presence of rFVIIa after haemorrhage. 

A similar effect was seen on K-time, which was also significantly reduced by both 

haemorrhage and rFVIIa (Figure 20, P<0.001 in each case). Again, the reduction in 
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K-time induced by rFVIIa appeared less after haemorrhage, compared to pre-

haemorrhage (Figure 20) and tiiis difference was statistically significant (P=0.001). A 

further post hoc test (Tukey) indicated that rFVIIa did indeed significantiy reduce K-

time both before and after haemorrhage. Consequentiy, as was seen with R-time, the 

absolute value of K-time was smallest in the presence of rFVIIa after haemorrhage. 

Neither haemorrhage nor rFVIIa had significant effect on MA in the same samples 

(Figure 21, P=0.0584 & P=0.742 respectively). 
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Figure 19 The effect of haemorrhage on the efficacy of in vitro rFVIIa 

compared to placebo on R-time. Mean value +SEM. 
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Figure 20 The effect of haemorrhage on the efficacy of in vitro rFVIIa 

compared to placebo on K-time. Mean value +SEM. 
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Figure 21 The effect of haemorrhage on the efficacy of in vitro rFVIIa 

compared to placebo on MA. Mean value +SEM. 
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4.3 The effect of intravenous fluid resuscitation on the efficacy of in vitro 

r F V I I a in porcine blood 

Only animals which received placebo in vivo were included in this analysis (see 

Section 3.1). Limiting the analysis to only this group of animals, and further to those 

surviving 20 minutes of resuscitation resulted in a total of seven animals being 

included in the analysis for this section. 

The blood used in this section was withdrawn from the animal immediately after 

haemorrhage, prior to administration of placebo in vivo (Post Haemorrhage) and after 

20 minutes of intravenous fluid resuscitation (20 mins resusc.) (see Methods section. 

Figure 12). Blood samples were activated with innovin (see Methods section, Figure 

15). 

Due to the significantly increased variance of the data at longer R and K-times during 

resuscitation (compared to pre-resuscitation) statistical analysis was conducted on log-

transformed data. 

20 minutes of IV fluid resuscitation produced significant increases in R-time (Figure 

22, P=0.005) and K-time (Figure 23, P=0.015) and reduction in M A (Figure 24, 

p=0.044). In vitro rFVIIa significantly decreased the K time (Figure 23, P=0.033) and 

there was no significant difference in the pattern of response to in vitro rFVIIa 

between the two timepoints (Figure 23, P=0.085); thus in vitro rFVIIa (compared to 

buffer) significantly decreased K-time both before and after resuscitation. 
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Conversely, in vitro rFVIIa had no significant effect on R-time (Figure 22, P=0.138). 

This finding may be a result of the small number of animals included in this analysis, 

as R-time was found to be significantly affected by in vitro rFVIIa in the previous 

section, where the number of subjects was larger. 

rFVIIa had no significant effect on M A (Figure 24, P=0.9I7). 
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Figure 22 The effect of haemorrhage and 20 minutes of IV fluid resuscitation 

on the efficacy of in vitro r F V I I a compared to placebo on R-time. 

Mean value +SEM. 
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Figure 23 The effect of haemorrhage and 20 minutes of I V fluid resuscitation 

on the efllcacy of in vitro r F V I I a compared to placebo on K-time. 

Mean value +SEM. 
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Figure 24 The effect of haemorrhage and 20 minutes of I V fluid resuscitation 

on the efficacy of in vitro r F V I I a compared to placebo on MA. 

Mean value +SEM. 
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4.4 Sensitivity of T E G to the effect of r F V I I a administered in vivo 

Inclusion criteria for animals in this section required survival 10 minutes of 

resuscitation and continuous fluid infusion over that 10 minute period. As a result, 

four animals were included in the in vivo placebo group and seven in the in vivo 

rFVIIa group. Due to the very small number of animals included, reliable values for 

M A could not be obtained for this section, and the parameter has therefore not been 

reported. 

The blood used in this section was withdrawn from the animal immediately after 

haemorrhage, prior to administration of placebo in vivo (Post Haemorrhage) and after 

10 minutes of intravenous fluid resuscitation (10 mins resusc.) (see Methods section, 

Figure 12). 

As an additional limb to this question, two activators - innovin and kaolin - were 

studied simultaneously (see Methods section. Figure 15). The results are considered 

firstly for innovin, followed by kaolin activated samples. 

4.4.1 Innovin activated samples 

Resuscitation led to a significant increase in R-time (Figure 25, P=0.016). After 10 

min of resuscitation R-time appears shorter in the group given rFVIIa intravenously 

immediately before resuscitation compared to those given placebo (Figure 25). 

However the effects of in vivo rFVIIa did not attain statistical significance (P=0.125,). 

A similar pattern was seen in K-time (Figure 27), although in this case neither the 
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effects of resuscitation nor drug treatment attained statistical significance (P=0.073 

and P=0.175 respectively). It is possible that the lack of significance could be due to 

the very small number of animals used here. 

4.4.2 Kaolin activated samples 

The results obtained with kaolin activated blood samples were similar to those seen 

with innovin activation. Resuscitation led to a significant increase in R-time (Figure 

26, P=0.011) and although there appears to be a trend for R-time to be lowered in the 

presence of rFVIIa after 10 minutes of resuscitation (Figure 26), in vivo rFVIIa had no 

significant effect on R-time (Figure 26, P=0.548). 

Unlike the pattern seen with innovin activation, kaolin activated samples showed that 

there was a significant effect of resuscitation on K-time (Figure 28, P=0.001). No 

significant effect of in vivo rFVIIa was seen on K-time (Figure 28, P=0.115). 
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Figure 25 R-time of innovin activated blood samples taken following 

haemorrhage in animals prior to in vivo treatment and after 10 

minutes of resuscitation following in vivo administration of r F V I I a 

or placebo. Mean value +SEM. 
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Figure 26 R-time of kaolin activated blood samples taken following 

haemorrhage in animals prior to in vivo treatment and after 10 

minutes of resuscitation following in vivo administration of r F V I I a 

or placebo. Mean value +SEM. 
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Figure 27 K-time of innovin activated blood samples taken following 

haemorrhage in animals prior to in vivo treatment and after 10 

minutes of resuscitation following in vivo administration of r F V I I a 

or placebo. Mean value +SEM. 
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Figure 28 K-time of kaolin activated blood samples taken following 

haemorrhage in animals prior to in vivo treatment and after 10 

minutes of resuscitation following in vivo administration of r F V I I a 

or placebo. Mean value +SEM. 
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4.5 The effect of a second dose of r F V I I a in porcine blood 

Inclusion criteria for animals in this section required survival to at least 10 minutes of 

resuscitation and continuous fluid infusion over that 10 minute period. As a result, 

four animals were included in the in vivo placebo group and seven in the in vivo 

rFVIIa group. Due to the very small number of animals included, reliable values for 

M A could not be obtained for this section, and the parameter has therefore not been 

reported. It is also acknowledged that due to the small numbers of samples involved 

there are serious limitations to the interpretation of the statistical data, which should 

therefore be taken Tor indicative purposes' only. 

The blood used in this section was withdrawn from the animal immediately after 

haemorrhage, prior to in vivo administration of intravenous drug (Post Haemorrhage) 

and after 10 minutes of intravenous fluid resuscitation following intravenous drug 

administration (10 mins resusc.) (see Methods section. Figure 12). Blood samples 

were activated with innovin (see Methods section. Figure 15). 

Figures 29 & 30 illustrate the effects of in vitro rFVIIa or placebo on R-time. The 

intended treatment groups in Figure 29 should be identical, as no in vivo drug had been 

given at that timepoint. Figure 29 suggests that in vitro treatment of blood samples 

with rFVIIa leads to a reduction in R-time in both intended treatment groups. 

Figure 30 illustrates that R-time increased in both in vivo groups following 

haemorrhage and 10 minutes of resuscitation, compared to their absolute values 

immediately after haemorrhage (Figure 29). Figure 30 also illustrates that in vivo 
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administration of rFVIIa lead to a shortening of R-time, compared to in vivo 

administration of placebo. 

Figure 30 would appear to show that in vitro treatment of blood samples with rFVIIa 

was associated with a reduction in R-time in those animals that received placebo in 

vivo. However, in animals that received in vivo rFVIIa, this effect was lost, with no 

apparent effect of in vitro rFVIIa in this group. This may be because the rFVIIa 

administered in vivo had maximally reduced R-time, however the effects of in vivo 

rFVIIa did not reach statistical significance (P=0.149). 

Figures 31 & 32 illustrate the effects of in vitro rFVIIa or placebo on K-time. The 

intended treatment groups in Figure 31 should be identical, as no in vivo drug had been 

given at that timepoint. Figure 31 suggests that in vitro treatment of blood samples 

with rFVIIa leads to a reduction in K-time in both intended treatment groups. 

Figure 32 illustrates that K-time increased in both in vivo groups following 

haemorrhage and 10 minutes of resuscitation, compared to their absolute values 

immediately after haemorrhage (Figure 31). Figure 32 also illustrates that in vivo 

administration of rFVIIa lead to a shortening of K-time, compared to in vivo 

administration of placebo. 

Figure 32 would appear to show that in vitro treatment of blood samples with rFVIIa 

was associated with a reduction in K-time in those animals that received placebo in 

vivo. As was the case widi R-time, this effect was lost in those animals that received 

in vivo rFVIIa. Unlike the case of R-time, the relative effect of in vitro rFVIIa 
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compared to placebo on K-time, was significantly affected by in vivo rFVIIa 

(P=0.040). 

In order to further investigate the apparent lack of significant effect of a second dose 

of rFVIIa, the effect of in vitro rFVIIa on the absolute values of R-time and K-time 

was compared to the effect of in vitro placebo. In vivo drug had no significant effect 

on either R-time (P=0.129) or K-time (P=0.517), while resuscitation significantly 

affected the effect of in vitro rFVIIa on both R-time (P=0.001) and K-time (P=0.019). 
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Figure 29 The effect on R-time of in vitro r F V I I a and placebo following 

haemorrhage in animals to be treated in vivo with r F V I I a or 

placebo. Mean value ±SEM. 
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Figure 30 The effect on R-time of in vitro r F V I I a and placebo following 

haemorrhage and 10 minutes of intravenous fluid resuscitation in 

animals treated in vivo with r F V I I a or placebo. Mean value +SEM. 
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Figure 31 The effect on K-time of in vitro r F V I I a and placebo following 

haemorrhage in animals to be treated in vivo with r F V I I a or 

placebo. Mean value +SEM. 
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Figure 32 The effect on K-time of in vitro r F V I I a and placebo following 

haemorrhage and 10 minutes of intravenous fluid resuscitation in 

animals treated in vivo with r F V I I a or placebo. Mean value ±SEM. 
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C H A P T E R 5 

DISCUSSION 

1.1 The effect of in vitro r F V I I a on normal porcine blood 

The present study demonstrated the efficacy of rFVIIa in increasing the coagulation 

kinetics in normal porcine blood. Significant decreases were noted in both R-time and 

K-time, indicating the rFVIIa shortened the time to initial fibrin formation, and 

increased the rate at which clot formation occurred once coagulation had been 

initiated. The lack of any effect on M A (maximum amplitude of the clot) suggests 

that, in normal blood samples, there is no difference in the strength of the clot formed 

in the presence of rFVIIa, compared to untreated samples. 

In plain terms, rFVIIa appeared to facilitate faster clot formation but there was no 

difference in the ultimate strength of the clot in the presence of rFVIIa, compared to 

placebo. 

While some research groups'^^' '̂ ^ have found a more stable clot to be formed in 

the presence of rFVIIa, this is purported to be largely due to resistance to fibrinolysis. 

The fact that in the present study, no beneficial effect of rFVIIa on clot strength was 

found does not disagree with these previous studies, since M A is a measure of ultimate 

clot strength, rather than strength in the sense of resistance to fibrinolysis. 
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1.2 The effect of haemorrhage in vivo on the response to in vitro r F V I I a on 

porcine blood 

Following the haemorrhage phase of the in vivo study, thromboelastographic analysis 

of blood samples taken during the shock phase demonstrated that haemorrhage itself 

reduced the time to initial fibrin formation (shortened R-time) and increased the speed 

of clot formation once coagulation had commenced (shortened K-time). Despite the 

apparent pro-coagulant effect of haemorrhage itself seen in this study, addition of 

rFVIIa was found to further significantly reduce both R-time and K-time. 

Furthermore, the absolute values of both R-time and K-time were lowest in those post 

haemorrhage samples that had been treated in vitro with rFVIIa. These findings 

indicate that early administration of rFVIIa may therefore confer significant benefit in 

haemorrhage control. 

Neither haemorrhage or in vitro rFVIIa had any significant effect on the M A , 

indicating that the maximum clot strength was unaffected by either influence. 
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1.3 The effect of intravenous fluid resuscitation on the efficacy of in vitro r F V I I a 

in porcine blood 

Following 20 minutes of continuous intravenous fluid administration in the in vivo 

study, both R-time and K-time were significantly increased meaning that the velocity 

of initial fibrin formation, and the kinetics of clot formation thereafter, were impaired. 

This finding is in keeping with current haemodynamic theory, which cites 

haemodilution due to intravenous fluid resuscitation as a major, contributory cause of 

coagulopathy.^* 

Following fluid resuscitation, in vitro treatment of blood samples with rFVIIa had no 

significant effect on R-time, while in vitro rFVIIa did lead to a significant decrease in 

K-time. The decrease in K-time after 20 minutes of intravenous fluid resuscitation 

illustrates that rFVIIa was still able to increase coagulation kinetics, despite 

haemodilution and physiological derangement. As the pattern of effect on K-time 

both prior to and after fluid administration was not significandy different it can be 

stated that, at least insofar as it is assessed by K-time, the procoagulant efficacy of 

rFVIIa was not significantly impeded by early fluid resuscitation. This preservation of 

efficacy may have significant implications in supporting the early use of the drug in 

trauma victims. Although R-time was not significantly reduced in the presence of in 

vitro rFVIIa following 20 minutes of f luid resuscitation, the absolute value of R-time 

at this timepoint was lower in the presence of in vitro rFVIIa, compared to placebo. 

The lack of effect of in vitro rFVIIa on R-time may be due to the small number of 

animals and resultant impact of biological variation, since the preservation of efficacy 

in reduction of K-time does suggest that rFVIIa has the potential to confer some 
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procoagulant effect, even in this severe model of haemorrhage, shock and 

haemodilution. The apparent reduction in efficacy of in vitro rFVIIa on R-time 

following intravenous fluid resuscitation may alternatively be due to a number of 

influences, including the diluting effect of clear fluids, which increase volume but 

effectively serve to wash out clotting factors and platelets already in scant supply. A 

further possible cause of the reduction in efficacy of in vitro rFVIIa after intravenous 

fluid resuscitation may be the clinical condition of the subject, and particularly 

developing acidosis.'^'' It is unlikely, however, that in the present series acidosis 

was a major contributor to the development of coagulopathy unresponsive to rFVIIa. 

Due to the severity of the model and the limited number of animals per group, it was 

necessary to perform this analysis after only 20 minutes of fluid resuscitation (only 25 

minutes post haemorrhage). As such, it is highly unlikely that a significant acidotic 

state could have developed and exerted such an effect on coagulation within this time 

frame. This point is a major limitation of the present study, and future studies in this 

area would benefit significantly from selection of a less severe model in which 

acidosis may develop prior to the occurrence of a significant number of deaths. 

Other studies have investigated the effects of haemodilution on coagulation 

parameters, some utilising TEG as a method of measuring these effects. One such 

paper found that progressive haemodilution was indeed associated with impaired 

coagulation as measured by thromboelastography.""^ This study however employed a 

method of artificially diluting blood samples from healthy volunteers, meaning that the 

derived response to dilution may not have been representative of the physiological 

response to in vivo haemodilution. The present study has the obvious advantage of 

utilising a physiologically relevant in vivo method of achieving haemodilution. The 
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limitation, on the other hand, is that this physiological response would be influenced 

by a potentially wide range of other factors, such as inflammatory response and the 

effects of acidosis and hypothermia, as well as other systemic events. As such, in the 

present study, it is not possible to state with any certainty whether the effects on 

coagulation seen after 20 minutes of intravenous fluid resuscitation were due to 

haemodilution alone, or a combination of other effects. 

One study published in 2007'^^ found that early administration of rFVIIa was 

associated with a significant reduction in transfusion requirement compared to that 

seen following late administration of rFVIIa. In this retrospective study, "early" was 

defined as administration of rFVIIa before transfusion of more than 8 units of blood, 

while "late" was defined as administration of rFVIIa after more than 8 units of blood 

had been transfused. Transfusion requirements were used as a proxy measure of the 

clinical condition of the patient, though the study found no significant difference in 

actual mortality rates between early and late recipients of rFVIIa. The lack of 

significant effect on survival however is unsurprising, as the number of patients 

included in both groups was small and within the early and late administration groups 

there was a considerable range of time delays before which rFVIIa administration 

occurred. In addition, the nature of retrospective series such as this means that there 

was inevitably a heterogeneous range of injury severities included in each group. 

These confounders mean that reaching statistical significance on such an absolute 

variable as survival was not to be expected. Further research into the effect of early 

versus late administration of rFVIIa on mortality is very much needed, and the 

findings from the present in vitro study may provide some useful scope from which to 

base future research directions. 
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Haemorrhage and 20 minutes of intravenous fluid resuscitation significantly 

decreased the M A in the placebo, but not rFVlIa, treated samples. However, due to 

the small animal numbers and biological variation, the effect of rFVIIa compared to 

placebo at this time point did not reach statistical significance. The fact that there 

was no significant decrease in M A in those samples treated with rFVIIa suggests 

that, under the pathophysiological conditions (haemorrhage, shock and 

haemodilution) which were developing in the in vivo model, rFVIIa may have some 

protective role in improving clot strength. Thromboelastographic analysis is unable 

to provide any information on what this protective role may be, however it would 

seem reasonable to suggest that the previously discussed anti-fibrinolytic effect of 

rFVIIa, essentially making a clot less permeable and thus more resistant to 

dislodgement, could be a factor in this finding. 
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1.4 Sensitivity of T E G to r F V I I a administered in vivo 

In order to determine the sensitivity of TEG to rFVIIa administered in vivo, standard 

TEG analysis, with no in vitro administration of rFVIIa was undertaken. Paired blood 

samples were drawn, one activated with innovin and the other with kaolin. Innovin 

and kaolin are two commonly used TEG activators and are discussed more fully in 

Section 5.6. 

With innovin activation R-time was significantly increased following 10 minutes of 

intravenous fluid resuscitation, supporting the hypothesis that in this model, fluid 

resuscitation impairs coagulation by increasing the time taken to initiate clotting. No 

significant effect of in vivo rFVIIa on R-time was detected, though there was a clear 

trend for R-time to be decreased in those animals that had received rFVIIa in vivo. 

The lack of statistical significance is highly likely to be due to the very small number 

of animals included (n=4 in placebo group), and it is notable that the absolute value for 

R-time after 10 minutes of intravenous fluid resuscitation was lowest in the rFVIIa 

treated animals. 

A similar pattern was seen with K-time, except that for this parameter, neither in vivo 

rFVIIa nor time were found to have a significant effect, though again there was a clear 

trend toward a reduction in K-time in the animals which had received rFVIIa in vivo. 

Very similar findings were made in those samples activated with kaolin. In terms of 

R-time, identical patterns were found with in vivo drug having no effect while there 

was a significant increase in R-time by 10 minutes of fluid resuscitation. Again there 
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was a non-significant trend for R-time to be lowered at the 10 minutes of resuscitation 

timepoint in those animals that had received in vivo rFVIIa. 

K-time was not significantly affected by in vivo drug, though with kaolin activation 

the effect of 10 minutes intravenous fluid resuscitation was found to significantly 

increase K-time. Again, there was a trend toward a decrease in K-time in those 

animals that received rFVIIa in vivo, though it is notable that this trend appeared to be 

more discrete with kaolin activation than that seen with innovin activation in paired 

samples. 

In the present study therefore, it appears that innovin and kaolin activation of blood 

samples yielded broadly similar patterns of results. It should be noted however that 

the absolute values derived for each parameter was much lower in the presence of 

kaolin, compared to innovin. As such the difference between any two values appears 

less in the presence of kaolin, as the scale of values is essentially compacted. For 

example, looking at the absolute values of R-time after 10 minutes of intravenous fluid 

resuscitation, the difference between intravenous placebo and intravenous rFVIIa is 

688 seconds in innovin activated samples (Figure 25) and 303 seconds in kaolin 

activated samples (Figure 26). While this does not affect the overall pattern of results 

in this series, it is possible that the compression of the scale seen with kaolin activation 

may mean that in some situations, discrete differences between groups may be 

masked. 

Since the overall pattern seen with both activators matched in the current series, and 

given the more physiologically relevant method of activation being attributed to 
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innovin, as well as the issues of scale (discussed above), the sole use of innovin 

activation throughout the other sections of the present study is justified. 

A reasonable conclusion to draw from this aspect of the study would be that, 

regardless of which activator was used, it is not possible to state whether any effect of 

in vivo rFVIIa could be detected. This is due to the small number of animals included 

in the in vivo groups, the necessity of which has already been detailed. Based on 

current understanding of coagulation and the mechanism of action of rFVIIa, as well 

as findings from the in vitro studies and trends seen following in vivo administration of 

rFVIIa, it is likely that there would be a detectable effect of in vivo rFVIIa and that i f 

animal numbers were increased statistical significance could be reached. 
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1.5 The effect of a second dose of r F V I I a 

There are a number of conceivable instances, in both civilian and particularly military 

environs, where there may be considerable delay to definitive surgical haemostasis 

being reached. In such instances, even i f rFVIIa had been administered early, 

achieving initial haemostatic control, the possibility exists that the clot may be 

dislodged and rebleeding may occur. This would be of particular concern i f the 

patient was moved, or intravenous fluid resuscitation is undertaken. In such situations, 

the temptation may exist to utilise a second dose of rFVIIa to regain or strengthen 

temporary haemostatic control. 

The efficacy of a second dose of rFVIIa was tested in vitro in the present study. 

Animals were split according to their in vivo treatment group (rFVIIa or placebo) and 

paired samples were then treated in vitro with rFVIIa and placebo. In those animals 

that had received rFVIIa in vivo, the rFVIIa treated blood sample represented a second 

dose of rFVIIa. 

In order to assess whether a second dose of rFVIIa had any effect on coagulation, it 

was necessary to determine whether the change produced by in vitro rFVIIa was any 

different prior to in vivo rFVIIa compared to after in vivo rFVIIa. In order to answer 

this question, the difference between the effect of in vitro placebo and in vitro rFVIIa 

was measured and compared as follows: 

the effect of in vivo rFVIIa was measured through comparison of the two in 

vivo groups 
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the effect of resuscitation was assessed through comparison across 

timepoints 

Following haemorrhage, but prior to in vivo administration of either placebo or rFVIIa, 

samples treated in vitro with rFVIIa had shorter R-time and K-time than those treated 

in vitro with placebo. The increase in R-time and K-time seen following 10 minutes 

of continuous fluid resuscitation is in accordance with earlier aspects of this study, 

which found that fluid resuscitation was associated with a worsening of coagulation 

parameters. 

The in vitro treatment of blood samples with rFVIIa had no significant effect on R-

time, suggesting that, under the conditions in this model, a second dose of rFVIIa had 

no beneficial effect on coagulation as assessed by R-time. Unlike R-time, in vivo drug 

did significantly affect the response of K-time to in vitro rFVIIa. 

The lack of a statistically significant of either resuscitation or in vivo drug on the effect 

of in vitro rFVIIa on R-time may be due to the very small number of animals included 

in this part of the study, or may be a true reflection (i.e. there may actually be no effect 

to be detected). It is not possible from this study to determine which of these possible 

explanations is correct, and further research is required to assess fully the efficacy of a 

second dose of rFVIIa. Repeating the present in vitro study, alongside an in vivo study 

with a lower early mortality rate would be one method of assessing the effect of a 

second dose. 
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In order to attempt to confirm whether the apparent lack of efficacy of a second dose 

of rFVIIa is a genuine finding (i.e. that the rFVIIa administered in vivo has improved 

coagulation to maximal effect so no further improvement could be made) or is an 

artefactual finding, due to the small number of animals available for inclusion in this 

analysis, the results were reanalysed in another way. In the reanalysis, the absolute 

values of R-time and K-time in the presence of in vitro rFVIIa were compared across 

the two timepoints. 

When the data were analysed in this way, 10 minutes of intravenous fluid resuscitation 

after intravenous drug administration was found to significantly affect both R-time and 

K-time, reflecting the fact that both parameters were significantly increased following 

intravenous fluid resuscitation. This finding is in agreement with earlier findings in 

the present study. 

Neither R-time nor K-time were significantly affected by in vivo treatment group, 

suggesting that in vitro rFVIIa appeared to be exerting no significant effect. 

Nevertheless, it is notable that the absolute values of both R-time and K-time were 

lowest in those samples which were treated in vitro with rFVIIa taken from animals 

which had received in vivo rFVIIa. Further research is required to determine whether 

this observation would reach statistical significance with a larger group size. 

In addition to the requirement for a larger group size, it would be beneficial i f a larger 

study employed an in vivo model that would allow a larger delay before administration 

of the second dose of rFVIIa. In the present study it was necessary to select a short 

time window since it was essential that all animals included in the analysis had 
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received fluids continuously up to the point of measurement. At later time points, a 

significant number of animals had ceased to receive intravenous fluid resuscitation 

therefore would have had to be excluded from this analysis. The in vivo model also 

had a high level of early mortality, particularly in the in vivo placebo group, meaning 

that attempting the second dose analysis at a later timepoint would have reduced 

animal numbers to a level which was too low to facilitate any meaningful comparative 

analysis. While a delay of only 10 minutes between doses of rFVIIa may be 

unreaslitic in real terms, it was therefore necessary in this model system. A direct 

consequence of this may be that the coagulation status of the animals at this time 

following injury was not sufficiently deranged to enable any significant effect of 

rFVIIa be indicated. As discussed above, it is not possible to discern whether the lack 

of efficacy of a second dose of rFVIIa may be due to physiological factors such as 

this, or be artefactual, due to variation as a result of small animal numbers. 
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1.6 T E G Activators 

Thromboelastographic analysis may use either native or artificially activated blood 

samples. In the absence of an activator, fresh whole blood samples are placed in 

TEG cups and analysed. Use of fresh blood samples may appear attractive since no 

exogenous agents are added, thus minimising the potential for human error and 

artefactual effects; however fresh blood samples take a considerable time to clot and 

suffer a considerable degree of variation between duplicates.^"' For these reasons, it 

is common practice for activators to be used to initiate coagulation in TEG analysis. 

There are a number of different activators which are employed, such as collagen, 

celite, kaolin and innovin, each of which exert different effects upon blood samples. 

Activators such as kaolin, celite and collagen are highly potent, acting upon the 
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contact pathway of coagulation. As such, the initiation of coagulation in their 

presence is far more rapid than that seen with native blood, or indeed with 

activators such as innovin, which act upon the tissue factor pathway. Given our 

current understanding of the underlying mechanisms of coagulation, with the tissue 

factor pathway being responsible for initiation of the system, innovin is generally 

considered to represent a more physiological activation than, for example kaolin.^" 

It is for this reason that innovin was used as the main activator throughout this 

thesis. The difference between innovin and kaolin activation on paired blood 

samples was investigated in Section 4.4. 

Over recent years, a number of studies have been published in which TEG has been 

used specifically to study the efficacy of rFVIIa in restoration of haemostasis. One 
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such study was conducted by Pusateri and colleagues and published in 2005,'^ 

involving a parallel in vivo study which has been discussed previously in this thesis. 

In the in vitro aspect of the study, the investigators used two different activators, 

collagen and porcine thromboplastin (tissue factor), in order to assess the efficacy of 

increasing doses of rFVIIa on normal porcine blood. Both activators showed that R-

time and K-time were shortened and M A was increased in the presence of rFVIIa. In 

addition, the maximum velocity of clot formation was increased with rFVIIa dosing 

when porcine thromboplastin, but not collagen, was used to initiate the reaction. 

These findings are contrary to those of Martinowitz and colleagues, who found no 

effect of rFVIIa on TEG parameters in their s t u d y . T h e y also worked with porcine 

blood, however the TEG activator was not defined in this paper therefore it is feasible 

that an inappropriate method of activation may have been employed, effectively 

masking any effect that there may have been. No details were provided of the TEG 

protocol employed, therefore it is also possible that there may have been a 

fundamental error in their analysis. 

The relevance of this distinction between TEG activators is that contact activators such 

as kaolin and collagen produce a marked activation of blood compared to 

"physiological" activation by tissue factor. As a result, coaguation tests activated by 

contact activators are less sensitive to discrete changes and may mask, for example, 

the procoagulant effect of rFVIIa. 
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1.7 Coagulopathy and monitoring 

The potential severity of coagulopathy in trauma victims, and the contribution of the 

triad of acidosis, haemodilution and hypothermia to its development, was considered 

in the literature review. While coagulopathy may be recognised on visual examination 

through non-surgical bleeding and oozing from wounds and the vasculature, selection 

of effective management strategies is rarely straightforward. The relative 

contributions of the constituent members of the triad to the developing coagulopathy 

are notoriously difficult to discern and thus the replacement of the deficient blood 

component must often be performed blind; a costly and arguably inefficient process. 

Traditional laboratory assays used to assess coagulopathy, principally prothrombin 

time (PT) and activated partial thromboplastin time (APTT), for many decades have 

been the primary tools used to guide management of non-surgical bleeding. These 

tests however utilise platelet poor plasma, and thus do not consider the cellular 

interactions underlying the haemostatic process. As such, they may not provide the 

complete picture of the mechanism of derangement in the coagulopathic patient. A 

further limitation of traditional laboratory assays such as PT and APTT is the time 

delay encountered between the drawing of a sample to yielding a result. As the 

clinical condition of a haemorrhaging patient is dynamic, in a constant state of flux, 

the result obtained from a sample drawn and analysed with some delay may bear little 

resemblance to the actual condition of the patient by the time the result is obtained. 

An alternative means of assessing the haemostatic status of a coagulopathic patient is 

available in the form of thromboelastogaphy (TEG). The theory of TEG was 
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discussed in the methods section. Briefly, TEG overcomes the limitations of the 

traditional laboratory assay, producing a real-time result, which is dependent on all of 

the components of the coagulation system. The principal parameters reported by TEG 

(R-time, K-time and M A ) are each affected to a greater or lesser extent by specific 

constituents of the coagulation system. The R-time, representing the time to initial 

fibrin formation, is largely sensitive to availability of activated clotting factors. K-

time, a surrogate marker of coagulation kinetics, is affected mainly by fibrinogen 

levels and function, and to a lesser extent platelets; while M A is a measure of ultimate 

clot strength, and is most significantly affected by platelets, with fibrinogen having a 

lesser effect. 
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5.8 T E G Successes & Limitations 

In addition to monitoring coagulation in trauma patients, there are an abundance of 

reports in the literature of other clinical scenarios in which TEG has proved 

invaluable. TEG is now often included in routine use during cardiac and hepatic 

surgery^'^' "'^ where it has repeatedly been found effective in guiding blood product 

selection through real time monitoring of the coagulation status of the patient.'^""^''" A 

further clinical area in which TEG is gaining in popularity is obstetric anaesthesia.^^' 

Despite these encouraging reports, TEG has not yet become a standard method of 

assessment of coagulation status in the wider clinical setting. Aside from the lack of 

published clinical trials and the lack of robust quality assurance data, a major 

limitation of the technique is that i f fresh blood samples were to be run, this would 

necessitate a number of TEG machines to be available in a number of locations 

throughout a standard hospital; an expensive prospect, as well as a labour intensive 

one as the machines must be calibrated before use. Logistically, the use of native 

blood samples is made still more problematic by the fact that native blood samples 

must be run within a few minutes of being d r a w n . C l e a r l y , in some clinical as 

well as experimental scenarios, such a tight time constraint may be simply unfeasible. 

An alternative approach is to use citrated blood samples, however a period of 

stabilisation of the sample must then be allowed, and calcium must be artificially 

replaced when the sample is to be run. In addition a number of investigators have 

suggested that citrate storage of TEG samples may not be an entirely reliable method, 

as it has been associated with the generation of erroneous r e s u l t s . W h e t h e r 
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citrate storage does affect TEG analysis of blood samples is yet to be conclusively 

determined, although several groups have demonstrated that citrated samples require a 

stabilisation period of 30 minutes prior to being recalcified.""^' "̂ ^ Another group 

however reported erroneous results associated with citrate storage up to 60 minutes. 

Furthermore, the duration of citrate storage over which the sample may be stable after 

the initial period of instability remains to be defined, with different research groups 

reporting development of hypercoagulability after different periods of prolonged 

citrate storage of blood samples.^^^"^^^ A number of advocators of the use of 

citrated blood samples have suggested that the process may be used successfully, 

provided clear operating procedures are defined to minimise the scope for artefacts to 

be introduced.^"*' '^^ Others have recommended that citrated blood is inappropriate for 

use in trials on in vitro h a e m o d i l u t i o n . T o date, there have been no formal 

recommendations in terms of development of a standard protocol for citrate storage of 

thromboelastography samples, with different groups employing different stabilisation 

periods and durations of storage. 

Al l of the published studies that have compared citrated samples to native blood have 

been concerned with the stability of the sample in citrate storage, all acknowledging 

that the results obtained from citrated blood samples are numerically different from 

those obtained with fresh blood samples.̂ ^ '̂̂ ''̂ ' The difference between TEG 

parameters for citrated and fresh blood for a given sample may or may not have any 

impact on the pattern of results obtained, however it does clearly demonstrate that the 

process of citrate storage itself has an effect on the blood sample. Two groups of 

investigators have demonstrated that the overall effect of citrate storage is a trend 

towards hypercoagulability, compared to fresh blood s a m p l e s . I t is therefore 
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conceivable that, as was the case with contact activators, citrate storage may mask 

discrete changes in TEG parameters that could otherwise have been measured. 

In order to remove the opportunity for artefacts of storage to confound the results of 

the present study, and to maximise the chance of detecting any changes should they 

exist, fresh blood samples were used throughout all TEG analyses reported in this 

thesis. 
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5.9 Other applications of r F V I I a 

rFVIla has been shown to be a safe and effective treatment in haemophiha patients 

with inhibitors, with efficacy rates of up to around 90% r e p o r t e d . E a r l y 

experience with rFVIIa in haemophiliacs, and a description of its mechanism of action 

in such patients, has already been discussed (Section 2.5) and the drug is now well 

established as a conventional part of treatment of this group of patients.'"*^ 

rFVIIa has increasingly seen use in the management of other causes of impaired 

thrombin generation, including platelet disorders such as Glanzmann's 

thrombasthenia"^^'and thrombocytopenia.'^'" It has been shown that rFVIIa 

increases the initial rate of, though not total, thrombin generation.'^ It is thought that 

the resultantly increased platelet aggregation and activation mediated by rFVIIa 

explains the efficacy of rFVIIa in the presence of lowered levels of platelets. 

Essentially, rFVIIa appears to maximise the output of the limited number of functional 

platelets in conditions where platelet number or function is impaired, compensating for 

the deficiency to some extent. 

Some studies have shown potential efficacy of rFVIIa in the treatment of liver disease 

and associated impaired synthesis of vitamin-K dependent coagulation factors.^'^^ The 

haemostatic effect in such patients is likely largely attributable to the rFVIIa mediated 

upregulation of TAFI , an inhbitor of fibrinolysis.'^'' rFVIIa has been used successfully 

operatively and perioperatively to reduce transfusion requirements in various types of 

surgery, including not only liver transplantation,^"^' but also during obstetric''*^' '̂̂ ^ 

and cardiac '̂'̂ ''̂ ''̂  procedures. The encouraging case reports of rFVIIa efficacy as a 
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last resort method of arresting uncontrolled bleeding in surgical patients led the 

authors of the European guidelines on the use of rFVIla as an adjunctive treatment for 

massive bleeding to include the recommendation that rFVIIa be considered for 

massively bleeding surgical patients where other treatments have proven ineffective.'^' 

Similar recommendations were made regarding the use of rFVIIa in the treatment of 

life-threatening post-partum haemorrhage.'^'^ Randomised, placebo-controlled trials to 

assess the efficacy of rFVIIa in these areas are however required before its use can be 

routinely recommended in such cases. 

In addition to being used increasingly to control overt bleeding in scenarios typified by 

those discussed above, the potential prophylactic role of rFVIIa in preventing bleeding 

in elective surgery has also been addressed. One randomised, double-blind placebo-

controlled trial found rFVIIa to significantly reduce perioperative blood loss in 

patients undergoing retropubic prostatectomy.^^" The role of rFVIIa in prevention of 

bleeding in the non-bleeding patient warrants further investigation. 

A further clinical area in which rFVIIa is currently being investigated is the 

management of intracerebral haemorrhage. rFVIIa was found to limit haematoma 

growth and decrease mortality in a double-blind placebo-controlled t r i a l . I t is 

however necessary to note that rFVIIa use in that study was associated with a 

significantly increased incidence of arterial thromboembolic events (principally 

myocardial ischemic events and cerebral infarction). The frequency of all serious 

thromboembolic events was not significantly increased in the rFVIIa treated group. 

The safety of rFVIIa specifically in trauma is considered in the next section. 
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1.8 Safety and cost effectiveness of r F V I I a in trauma 

While the published clinical experience with rFVIIa in trauma is encouraging in that a 

signal of increased thromboembolic risk has not been noted, the data are insufficient to 

state that there is no risk. In addition to further clinical studies to determine the 

efficacy of rFVIIa in trauma patients, prospective controlled studies to assess fully the 

safety of the drug for this indication are also urgently required. A review of the safety 

of FVIIa in all published and unpublished clinical reports up to 2004 was recently 

published, which concluded that overall the drug appeared to be relatively safe, with a 

1-2% incidence of thrombotic complications.^^' An earlier review on the safety of 

rFVIIa quantified the risk of serious adverse events associated with rFVIIa therapy to 

be less than 1 % and suggested that the majority of cases may be due to underlying 

pathology, rather than the rFVIIa itself 

In addition to safety considerations, a further contentious issue influencing the 

likelihood of more widespread use of rFVIIa is the cost of the product (currently a 

1.2mg vial costs £634.81 plus tax in the UK).^^^ A recent study examined the lifetime 

cost-effectiveness of rFVIIa for the control of bleeding specifically in blunt trauma 

victims.^^'' Based on their model, the authors concluded that for this indication, rFVIIa 

may be a cost-efffective option for the UK National Health Service. Further evidence, 

in terms of efficacy, safety and cost-effectiveness wi l l however be required before 

rFVIIa becomes accepted as a standard part of the arsenal available to clinicians in the 

management of traumatic bleeding. 
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1,9 Future Research Directions 

1.10 Resuscitation Fluids 

Returning briefly to the effects of haemodilution, there have been considerable 

research efforts examining the relative effects of different resuscitation fluids on 

coagulation. The ultimate goal of such studies would be to determine which (if any) 

of the available products, including crystalloids, colloids and hetastarches, are 

associated with less negative effects on coagulation. One such study concluded that 

there may be some benefit to utilising balanced electrolyte solutions, such as Ringer's, 

compared to saline,"^^ though much more research is required before f i rm 

recommendations may be drawn from studies of this type. 

1.11 Future directions for r F V I I a (superactive variants) 

Despite the relatively recent launch of rFVIIa, work is already well underway in the 

development of so-called superactive variants.'̂ ^^ A novel analogue of rFVIIa 

(VI58D/E296V/M298Q-rFVIIa, NN1731) has undergone development in recent years 

and has shown promising results in a study published in 2007.^^^ Blood samples were 

taken from patients with severe haemophilia A and were then treated with either 

NN1731, rFVIIa or buffer as a control prior to TEG analysis. The authors reported 

that NN1731 was associated with more rapid coagulation as measured by TEG than 

that seen with rFVIIa. Evidence was also presented which suggested that NN1731 

increased not only the kinetics of clot formation but also the stability of the formed 

clot. A further study, also published in 2007, followed a similar protocol, utilising an 

alternative system for the measurement of the effect on clot structure and platelet 
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function."^^ This study is reported to have found greater platelet function and clot 

structure in the presence of NN1731, compared to either rFVIIa or buffer. In addition, 

the authors reported less variability in response with NN1731 than that seen with 

rFVIIa, with nine compared to four of ten patients having normalised coagulation 

parameters, respectively. The development of novel, superactive, rFVIIa analogues 

may further increase the scope for the use of these products in the management of 

severe acute bleeding in trauma victims. Further research, particularly in an in vivo 

model, is required and anticipated in order to assess the potential and efficacy of novel 

rFVIIa superactive variants, such as NN1731. 
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1.12 Conclusions 

This study showed that rFVIIa significantly enhanced coagulation kinetics, compared 

to placebo, when added in vitro to normal porcine blood samples. The early effect of 

haemorrhage was also a significantly increased rate of clot formation. rFVIIa added in 

vitro to this blood further enhanced coagulation. 

20 minutes of intravenous fluid resuscitation significantly impaired coagulation. The 

impairment of coagulation kinetics (but not initial velocity of clot formation) could be 

reversed by in vitro treatment of blood samples with rFVIIa. These findings suggest 

that early administration of rFVIIa may confer haemostatic benefit, even following 

severe haemorrhage and intravenous fluid resuscitation. While the SEM demonstrates 

a wide spread of data around the sample mean in a number of figures, the data still 

displays a clear trend which is appropriate for analysis and interpretation. Further 

studies should aim to decrease the variation. 

Trends toward improved coagulation kinetics were noted in those animals which had 

received rFVIIa in vivo, however due to small group sizes, significance was not 

reached. In assessment of the effects of a second dose of rFVIIa (the second dose 

being administered in vitro following an in vivo first dose), some parameters showed 

enhanced clotting while other showed impairted clotting. These changes were not 

statistically signigicant and the implications cannot be evaluated without increasing 

the numbers of animals to establish which changes are significant. 
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Future research directions should include larger animal numbers and/or an alternative 

model, with a lower early mortality rate (i.e. matched resuscible patients) to allow 

evaluation of rFVIIa over a longer time period. Any new analogues of rFVIIa should 

be similarly assessed to see whether any confer particular advantages. 
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