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Abstract 

This thesis is concerned with providing further statistical development in the area 

of space-time modelling with particular application to disease data. We briefly con­

sider the non-Bayesian approaches of empirical mode decomposition and generalised 

linear modelling for analysing space-time data, but our main focus is on the increas­

ingly popular Bayesian hierarchical approach and topics surrounding that. We begin 

by introducing the hierarchical Poisson regression model of Mugglin et al. [36] and a 

data set provided by NHS Direct which will be used to illustrate our results through­

out the remainder of the thesis. We provide details of how a Bayesian analysis can 

be performed using Markov chain Monte Carlo (MCMC) via the software LinBUGS 

then go on to consider two particular issues associated with such analyses. Firstly, 

a problem with the efficiency of MCMC for the Poisson regression model is likely to 

be due to the presence of non-standard conditional distributions. We develop and 

test the 'improved auxiliary mixture sampling' method which introduces auxiliary 

variables to the conditional distribution in such a way that it becomes multivari­

ate Normal and an efficient block Gibbs sampling scheme can be used to simulate 

from it. Secondly, since MCMC allows modelling of such complexity, inputs such 

as priors can only be elicited in a casual way thereby increasing the need to check 

how sensitive our output is to changes to the prior. We therefore develop and test 

the 'marginal sensitivity' method which, using only one MCMC output sample, 

quantifies how sensitive the marginal posterior distributions are to changes to prior 

parameters. 
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Chapter 1 

Introduction 

1.1 Space-time disease modelling 

Infectious diseases are frequently dominating news headlines and there is an increas­

ing need to understand their epidemic behaviour. Statistical analyses have many 

uses, for example providing a descriptive picture of the epidemic, identifying areas of 

particular risk or looking at the impact of interventions such as vaccination. Gaining 

further insight into these things is extremely useful in health planning and allocat­

ing of resources to combat such diseases. Spatial-temporal statistical modelling of 

both infectious and non-infectious diseases is an active research area, in both human 

health and veterinary medicine. There is a substantial literature which is reviewed 

in Lawson [29] and Ashby [1] and the following examples highlight important aspects 

of this literature. 

Lung cancer is an example of a non-infectious disease in human health for which 

one space-time data set in particular has been extensively studied, namely rates 

in the 88 counties of Ohio during the period 1968-88. The following authors have 

used this dataset to help further develop spatial-temporal models. Wailer et al. [50] 

extend existing spatial models to account for temporal effects and spatio-temporal 

interactions. However, time is essentially treated as exchangeable so there is less em­

phasis on modelling the temporal development of the disease risk. Also, by their own 

admission, their results are difficult to interpret since they don't take into account 

some important factors such a.'i smoking prevalence. Knorr-Held and Besag [25] 

1 



1.1. Space-time disease modelling 2 

also note that their results are not ideal due to the absence of direct information 

on smoking and other important county effects, but they describe approaches that 

adjust for these unmeasured covariates. Their model combines existing models for 

longitudinal and spatial data in a hierarchical Bayesian framework with particular 

emphasis on the role of space- and time- varying coefficients. However they combine 

temporal and spatial main effects additively, they do not allow for spacextime in­

teractions. Knorr-Held [26] extends this work and compares four models that have 

different space x time interaction terms. A simple measure of urbanisation is also in­

corporated as a surrogate for cigarette consumption and other risk factors associated 

with urban areas. 

Turning our attention to infectious disease.<; now, we first mnsider advances in 

veterinary medicine. Lawson and Zhou [30] discuss various issues around modelling 

foot and mouth disease and apply a descriptive space-time model to UK data from 

the 2001 epidemic. This is essentially a binomial model with various random effect 

terms which estimates well certain patterns of the disease. However, they note 

that additional terms could be included which would further mimic the infectious 

behaviour. This, along with many existing models, is mainly concerned with the 

disease behaviour on a large scale, such as country level. However, the very recent 

paper by Picado et al. [37] explores the use of a space-time interaction tool as an 

indicator of local behaviour. It therefore provides useful insight for future model 

developments. 

While there is definite interest in space-time modelling of infectious diseases 

within veterinary medicine, there has been considerably more within the human 

health field. Examples include work by Mugglin et al. [36] who develop a space-time 

model which they use to analyse an influenza data set. Their model incorporates 

the Bayesian hierarchical technology previously used for modelling non-infectious 

diseases (for example by [25, 50] for modelling lung cancer). This work provides a 

smoothed and interpretable description of what happened during the epidemic and 

the approach is well suited to non-sparse infectious disease data where there are 

clearly distinguishable epidemic curves. Knorr-Held and Richardson [27] present a 

similar model which is suitable for sparse data with small increases and apply it to a 
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meningococcal disease data set. With this particular disease, there is evidence that it 

has short term increases superimposed from time to time onto the overall epidemic, 

which are known as hyperendemic states. These are of particular public health 

interest therefore a central feature of this model is the possibility to calculate, for 

each region and time point, the probability of being in one of these states. Another 

recent development in this area is work by Chiogna and Gaetan [6] who develop a 

descriptive space-time model for the behaviour of a measles epidemic. They adopt 

a formulation based on the Kriged Kalman Filter model of Mardia et al. [33] which 

is extended to deal with count data. The approach is quite general and can easily 

be refined so is likely to be useful for the study of other infectious diseases. 

We have named just a few examples but there has been a continual development 

of statistical methodology in this field over recent years. This has been due to its 

usefulness in health planning, disease surveillance and intervention, and allocating 

health funding. The availability of data with which to develop such statistical models 

can often pose a problem in human health due to reasons of confidentiality. One 

way around this is for the data to be presented as counts aggregated in space and 

time so no individual can be identified. Count data ha.<> therefore become one of the 

most widely used data types in disease modelling. 

Focussing now on applications to human infectious diseases, there are a num­

ber of different directions for studies. A few examples arc relative risk assessment, 

cluster detection and surveillance. In relative risk a.<>sessment we are interested in 

finding regions and/or times of excess risk of the disease. Usually the data will 

reflect a population background effect as well a..;; the excess risk and this back­

ground effect is often represented by an expected number of cases within a region 

and time period. Frequently used models for assessing relative risk are of the form 

Yit "' Poisson(EitOit) for infinite populations or a Binomial equivalent for finite pop­

ulations. Here, Yit is the disease count, Eit is the expected number of cases and (}it 

is the relative risk associated with region i and time period t. Mugglin et al. [36] 

is an example of this type of study. They use a Bayesian approach and interpret 

the posterior relative risks for an influenza data set. Another direction for study is 

that of cluster detection which is a topic of great public health interest and involves 
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assessing where and when clusters of disease occur. Clusters are usually thought 

of as an unusual aggregation of excess risk in local areas of a geographic region. 

There are a range of cluster detection methods available and a number of reviews of 

them exist such as Diggle [12] and Lawson and Kulldorff [28]. Many studies either 

focus on purely spatial cluster models or on modelling spatial-temporal patterns of 

diseases without directly modelling spatial-temporal clustering. A recent paper by 

Yan and Clayton [51] attempts to fill the gap. They extend a purely spatial clus­

ter model to accommodate space-time clustering using a Bayesian framework. One 

further direction for study is surveillance. Surveillance systems collect and monitor 

data for disease trends and outbreaks which is of considerable public health interest. 

The object of statistical surveillance is to detect a change in a disease process accu­

rately and quickly as new observations are added. Rodeiro and Lawson [41] discuss 

methodological issues in developing a quick response in surveillance systems. They 

consider some exploratory statistical methods as well as more sophisticated ones 

based on hierarchical space-time models. 

As well as a range of directions for studies, there are also range of approaches 

to modelling the data. One approach is to use a descriptive model which doesn't 

include any information about transmission or incubation for the disease but gener­

ally provides a smoothed and interpretable description of what happened during the 

epidemic. Examples of these types of models can be found in Mugglin et al. [36] and 

Knorr-Held and llichardson [27] which we have already discussed. An alternative 

type of model includes some form of transmission dynamic and generally splits the 

population into groups such as susceptible, exposed, infective and removed. One ex­

ample is the model of Le Menach et al. [31]. They focus on foot and mouth disease 

and build a stochastic model at farm level where initially each farm is classified as 

susceptible, then moves through various stages until the animals are culled and the 

farm becomes 'removed'. 

We have already mentioned a few articles that use a Bayesian hierarchical ap­

proach to modelling, namely [25, 27, 36, 50]. This approach has become increasingly 

popular over recent years due to its very flexible framework which allows extremely 

complicated models to be built out of a succession of relatively simple components. 
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Observable outcomes are modelled conditionally on certain parameters which them­

selves are given a probabilistic specification in terms of further parameters, known 

as hyperparameters. If need be, these hyperparameters can then be given further 

probabilistic specifications, and so on. A non-hierarchical approach can be inap­

propriate for some data. For example, models involving few parameters generally 

cannot fit large data sets accurately, but if they involve many parameters they tend 

to fit the existing data well but lead to bad predictions for new data {known as 

overfitting). Conversely, a hierarchical model can have enough parameters to fit the 

data well and the population distribution can structure some dependence into the 

parameters thereby avoiding problems of overfitting. These models can be evalu­

ated using Markov chain Monte Carlo (MCMC) methods which have attracted much 

attention over recent years. 

This thesis is concerned with count data of infectious diseases within the human 

health field. We concentrate on descriptive modelling and focus mainly on topics 

surrounding the Bayesian hierarchical approach using MCMC, although some non­

Bayesian approaches to modelling are also briefly considered. 

1.2 Markov chain Monte Carlo 

MCMC methods are a class of algorithms for sampling from multidimensional proba­

bility distributions that are difficult to sample from directly. They are generally used 

to sample from the posterior distribution of a complex Bayesian model. Brooks [4] 

provides a comprehensive review of some of the most common areas of research in 

this field and Gilks et al. [20] provides numerous examples on the use of MCMC 

methods. The algorithms are based on constructing a Markov chain which has the 

desired posterior distribution as its stationary distribution. Examples of MCMC 

methods include Gibbs sampling and Metropolis-Hastings algorithms. 

Gibbs sampling involves building a Markov chain whose dependence on the pre­

decessor is controlled by the conditional distributions. It involves simulation from 

the distribution of each parameter in turn conditional on the most recent values of all 

other parameters available. A common approach to this is to group the parameters 
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into a number of blocks and simulate from the joint conditional distribution of each 

block of parameters given the most recent values of all other parameters available. 

This can be very beneficial computationally especially when parameters are highly 

correlated and is of most benefit when the blocks are large. Gibbs sampling is a 

very popular method as it doesn't require any tuning (i.e. preliminary MCMC runs 

in order to establish reliable values for certain parameters) however it does require 

that all conditional distributions are of standard form. It can often be difficult to 

implement if the required conditional distributions assume awkward forms. In such 

cases we may turn to the Metropolis-Hastings algorithm. 

Metropolis-Hastings has the advantage of being able to provide a solution when 

the conditional distributions are complex. It involves proposing a candidate value 

randomly and then deciding whether or not to keep it as the next value in the 

Markov chain. It can be quite difficult to propose good candidate values and can 

involve high computational effort but works well once it is tuned properly. 

1.2.1 Efficiency 

There are a number of issues to consider when using MCMC methods, one being 

the efficiency of the method. Since MCMC allows modelling of extremely complex 

models, it could take a long time to run and therefore can only produce a relatively 

small sample from the posterior. In cases such as this we would need to consider 

ways of improving the computational efficiency. There has been much interest in this 

issue over recent years, particularly in finding ways to generate from 'non-standard' 

conditional distributions using a Gibbs sampling approach. 

Damien et al. [11] discuss an approach which, after the introduction of auxiliary 

variables, results in a Gibbs sampler having a set of easily sampled standard full 

conditionals. Suppose that we have a density f(x) IX l(x)'rr(x) where l(x) is some 

non-negative function and rr(x) is a density. Suppose also that f(x) is not possible 

to sample from directly. Then the general idea is to introduce a latent variable u and 

an extra full conditional for u in such a way that all but one of the full conditionals 

are uniform densities and the remaining one is a truncated version of rr. This idea 

is applied in the context of Bayesian non-conjugate and hierarchical models. It has 
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the advantage of being easy to code since it requires only standard random variate 

generation routines. However, Damien et al. don't claim to improve efficiency in 

every case and note that a Metropolis-Hastings algorithm may well be preferable in 

some cases. 

An alternative approach for tackling such problems is known as auxiliary mixture 

sampling and has been an active research area over recent years. The most current 

version of the method is described in detail in section 4.5, but the approach basically 

involves introducing two sequences of auxiliary variables in such a way that a Gibbs 

sampling scheme can be used on models which otherwise would require an alterna­

tive. Friihwirth-Schnatter and Wagner [17] show how a Poisson regression model 

can be transformed into an approximate Normal linear model using these auxiliary 

variables. They introduce the first sequence as the unobserved inter-arrival times of 

the Poisson process. This eliminates the non-linearity in the observation equation 

but the error term is still non-Normal. They then approximate the error term by a 

mixture of Normal densities and introduce the second sequence of auxiliary variables 

as the component indicators of the mixture. A Gibbs sampling scheme for unknown 

quantities is then described which only requires random draws from standard distri­

butions. Gschlo,Bl and Czado [21] extend this approach to spatial Poisson regression 

models and also compare the Gibbs sampling scheme with a Metropolis-Hastings 

approach. They conclude that the Metropolis-Hastings method requires more com­

putational effort but the Gibbs sampling scheme needs to be run for considerably 

longer in order to obtain the same precision of the parameters. Friihwirth-Schnatter 

and Friihwirth [15] move away from Poisson regression and show that the method is 

feasible for models involving other discrete-valued observations such as binary and 

multinomial data. The second data augmentation step is essentially the same as 

that of the Poisson model but the first is different. The first step introduces the 

utility of choosing category 1 as auxiliary variables for binary data and the utilities 

of choosing categories 1 to m for multinomial data. However, a disadvantage of each 

of the above approaches is that the number of auxiliary variables introduced via the 

first sequence can be very high. For example, Yi + 1 latent variables are needed for 

each observation Yi in the Poisson model case. This means that the method is only 
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really useful for data with small counts. Friihwirth-Schnatter et al. [16] propose 

an improved version of auxiliary mixture sampling for count data, binomial data 

and multinomial data which involves a reduced number of latent variables. They 

introduce at most two auxiliary variables for each observation instead of Yi + 1 for 

the Poisson model, one instead of the number of repetitions Ni for binomial data 

and m- 1 instead of (m- 1) Ni for multinomial data. They present two case studies 

in which the method allows them to approach large hierarchical models using block 

Gibbs sampling. However, the question arises as to whether the method can be 

improved to only introduce one sequence of auxiliary variables. This is considered 

further in chapter 4 of this thesis. 

1.2.2 Prior Sensitivity 

One further issue to consider is that since MCMC allows modelling of such com­

plexity, inputs such as priors can only be elicited in a very casual way. This means 

that there is an increasing need to consider the sensitivity of output to changes in 

the model inputs. This is part of the wider issue of robust Bayesian analysis and 

a comprehensive overview of the main topics in this area is provided in Rios Insua 

and Ruggeri [40]. It begins with a review of the approach by Berger et al. [3] then 

goes on to deal with many issues surrounding the topic, including a number of case 

studies. It aims to give both researchers and practitioners an opportunity to become 

quickly and thoroughly acquainted with this field. 

There has been much work focussing on local sensitivity where small changes to 

the prior are studied. One such example is Millar [35] who quantifies local sensi­

tivity using derivatives and suggests a method for automating this during Bayesian 

model fitting in WinBUGS. However, attention here is restricted to estimating the 

derivatives of a summary measure E(g( 0) I y) where g( 0) denotes a function of the 

unknown parameters values. A further example is McCulloch [34] who develops 

a general method for assessing the influence of model assumptions in a Bayesian 

analysis. In particular he looks at the effect of changing the hyperparameter away 

from the initial choice and uses relative entropy to measure the difference between 

the posteriors resulting from different choices of hyperparameter. However, this 
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approach requires us to know the resulting posterior distributions which is not al­

ways possible. In the case where MCMC methods are used, we do not know the 

posterior distribution exactly but instead have only a sample from it. Clarke and 

Gustafson [7] (whose work extends the idea of McCulloch [34]) suggest how this 

method could be applied in the case where MCMC methods are used, but they 

do not pursue this. A drawback of the suggestion is that it doesn't allow us to 

see exactly which parts of the posterior are affected by the changes to the prior, 

which would be both interesting and useful to know. Gustafson [22] does address 

the issue of which parts of the posterior are affected. He considers how sensitive the 

marginal posterior distributions are to changes in various parts of the prior and uses 

derivative norms as measures of sensitivity. However, the focus here is on assessing 

the sensitivity of posterior expectations rather than the distribution as a whole. It 

seems what is needed is a method to bridge the gap. Using a metric such as rela­

tive entropy to measure the discrepancy between two marginal distributions would 

take into account other aspects of posterior distribution, not just the mean. This is 

considered further in chapter 5 of this thesis. 

1.3 Thesis outline 

This thesis is concerned with providing further statistical developments in the area 

of space-time modelling with particular application to disease data. While we do 

consider some non-Bayesian methods, the main focus is on the increasingly popular 

Bayesian hierarchical approach using MCMC. Chapters 2 and 3 are concerned with 

analysing two space-time data sets using both Bayesian and non-Bayesian methods, 

whereas the later chapters are concerned with providing statistical developments for 

use in the Bayesian context. Throughout this thesis we make use of the software R1 

which is a free environment for statistical computing and graphics. R also has a set 

of downloadable packages2 written by many different authors, which we make use 

1 available from http: I 1\TVW. stats. bris. ac. ukiRI 
2available from http: I ICRAN .R-project. orgl 
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of. We also use OpenBUGS3 (Bayesian inference Using Gibbs Sampling) which is a 

piece of computer software for the Bayesian analysis of complex statistical models 

using MCMC methods. It has been developing over the years and the latest version 

can run on Windows (known as WinBUGS [32]) and Linux (known as LinBUGS). 

We begin chapter 2 with the analysis of a space-time data set on the number of 

cases of dengue haemorrhagic fever (DHF) in Thailand. We do not adopt the popular 

Bayesian approach to analysis here, but instead look more closely at a recent method 

adopted by Cummings et al. [10] using empirical mode decomposition (EMD) and 

also investigate the data further using generalised linear modelling (GLM). EMD is 

based on the idea that a complicated time series can essentially be thought of as 

a number of waves rirling on top of each other. The method identifiac; these waves 

and decomposes the data into a finite number of intrinsic mode functions (IMFs) 

each representing a different characteristic timescale. EMD is very complex and not 

very clearly defined whereas GLM is easy to fit, clearly specified and we found it to 

recover much of the same information as EMD. This leads us to conclude that it is 

probably better to use one of the standard statistical models rather than EMD to 

analyse such data. 

Chapter 3 is concerned with the analysis of a space-time data set provided by 

NHS Direct. It comprises the number of calls made to the north east site about 

the symptom cough. Here, we do adopt a Bayesian approach and analyse the data 

using the space-time hierarchical model of Mugglin et al. [36]. In the context of this 

example, we give details of how to implement a Bayesian analysis using the software 

LinBUGS and the R package CODA. 

In chapter 4 we look at the issue of improving the efficiency of MCMC for Poisson 

regression models such as the one introduced in chapter 3. Such models involve at 

least one non-standard conditional distribution and our goal in this chapter is to 

find a way to make them take a standard form by augmentation and then present 

an efficient block Gibbs sampling scheme for sampling from them. We consider the 

possibility of using the methods introduced in section 1.2.1 to achieve this, the first 

3 available from http: I /mathstat. helsinki. f i/ openbugs/ 
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being the auxiliary variable method of Damien et al. [11]. We describe the approach 

in more detail and show how it doesn't appear to be a feasible option for our problem. 

We then consider the auxiliary mixture sampling method of Friihwirth-Schnatter et 

al. [16]. We first describe the method in more detail and then present an improved 

version of it which only involves one sequence of auxiliary variables. We illustrate 

this using a simplified version of the model and data introduced in chapter 3 and 

also examine how well the method works. 

Chapter 5 is concerned with the prior sensitivity issue mentioned in section 1.2.2. 

We focus on the situation where we have one set of output from MCMC with which 

to analyse the sensitivity and restrict attention to where the prior distribution is 

the only model input to be changed. We first consider in more detail the method 

presented in Clarke and Gustafson [7] highlighting the drawback of the approach in 

that it doesn't allow us to see exactly which parts of the posterior are affected by 

the changes to the prior. We then develop the marginal sensitivity method which 

uses a similar approach to quantify how sensitive the posterior distribution of each 

parameter is to changes in the prior. We also examine how well the method works 

and consider how particular adaptations to it affect the rf'.sults. We again illustrate 

this new method using the model and data introduced in chapter 3 and finish by 

explaining how we could go about producing a general piece of software for the 

marginal sensitivity analysis of BUGS output resulting from any model. 

1.4 New contributions 

The novel contributions of this thesis are as follows 

• a Bayesian analysis of new NHS Direct space-time data found in chapter 3 

• the 'improved auxiliary sampling' method introduced in chapter 4 

• the 'marginal sensitivity' method introduced in chapter 5 



Chapter 2 

Analysis of a space-time DHF 

data set 

Dengue fever is a disease found in the tropics which is transmitted to humans 

by a particular type of mosquito. Some of the cases can occur as the severe, 

life-threatening form of the disease known as dengue haemorrhagic fever (DHF). 

Cummings et al. [10] examine the spatial-temporal dynamics of DHF incidence in 

Thailand using the method of empirical mode decomposition (EMD) introduced by 

Huang et al. [23]. They observe a three-year periodic travelling wave which origi­

nates in the capital, Bangkok and moves radially. A map of Thailand is shown in 

Figure 2.1 with the position Bangkok highlighted in orange. 

Two common alternatives to EMD for analysing time series data are Fourier 

analysis and wavelets. EMD has the advantage over these methods of being able 

to handle both nonlinear and non-stationary signals. Furthermore, both Fourier 

analysis and wavelet methods use an underlying function which is fixed and does 

not necessarily match the varying nature of the signal, whereas EMD uses the signal 

itself with no underlying function. However, a disadvantage of EMD over these 

methods is that it is lacking a theoretical foundation and involves a number of ad 

hoc judgements when implementing it. 

In this chapter we consider in more depth what is involved in the method of 

EMD and how it has been implemented for a particular DHF data set. We recreate 

the results presented in [10] and develop some of the thoughts further. We also use 

12 
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Figure 2.1: Map of Thailand 

a different method, namely generalised linear modelling, to gain further insight into 

the behaviour of DHF. We begin by introducing the data. 

2.1 DHF data set 

Numbers of DHF cases are routinely collected by the Ministry of Health in Thailand 

and this is available for the years 1983 to 1997 on the John Hopkins Centre for 

Immunisation Research website1
. The data set is presented as the monthly number 

of cases of DHF per 1000 population for each of the 72 provinces of Thailand. Data 

for 5 provinces and the first 13 months are shown in Table 2.1. 

1http://www.jhsph.edu/cir/dengue.html 
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Table 2.1: DHF incidence data 
MaeHongSon ChiangMai ChiangRai Lamphun Lam pang 

1983 0 0 0 0 0.01 

1983.08 0 0 0 0 0.02 

1983.17 0 0 0 0 0.02 

1983.25 0 0 0 0 0 

1983.33 0 0 0 0 0.01 

1983.42 0 0.03 0.02 0.08 0.04 

1983.5 0 0.19 0.18 0.35 0.09 

1983.58 0.01 0.3 0.19 0.56 0.21 

1983.67 0 0.12 0.16 0.56 0.3 

1983.75 0.02 0.01 0.02 0.03 0.14 

1983.83 0.02 0 0.01 0 0.03 

1983.92 0.01 0 0.01 0 0.01 

1984 0 0 0 0 0 

Cummings et al. [10] present log-transformed and normalised monthly incidence 

data for all years and all provinces. The command image . plot () from the R package 

fields was used to recreate their image which is shown in Figure 2.2. The provinces 

are arranged from the most southerly to the most northerly from bottom to top and 

the scale of the legend to the right of the image is the logarithm of cases per 100,000 

people per month. The vertical lines evident in the image suggest that peaks in 

incidence occur at roughly the same time across all the provinces. 

2.1.1 Spatial representation of the data 

In order to get a further idea of what this data looks like, the R package RArclnfo 

was used to produce the following spatial representations. Figure 2.3 shows the 

average incidence rates of DHF per 1000 population each year and Figure 2.4 shows 

the same for each calendar month. 

It is difficult to see any obvious pattern as we move from one year to the next 

in 2.3. It may be that a further breakdown into months is necessary for this to be 
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Figure 2.2: Monthly DHF incidence for all provinces 
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the case. However, it is clear which of the years experience high rates of incidence 

(shown in red/orange) and that the rates do vary between years. 

It is clear from Figure 2.4 that the summer months have higher incidence rates 

than the others and that rates are very low in most provinces for the months Novem­

ber through to April. Also, it seems to be the provinces nearest to the northern 

border of Thailand that experience the highest incidence rates. It is interesting to 

note that Bangkok and the provinces around it don't seem to reach any of the high 

incidence rates, even in the summer months. This will be considered further in 

section 2.3.3. For now we turn our attention to the analysis of this data presented 

by [10] and first introduce the method of EMD. 
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Figure 2.3: DHF incidence rates for each year 
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Figure 2.4: DHF incidence rates for each month 
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2.2 Empirical Mode Decomposition 

EMD was introduced by Huang et al. [23] as a new method for analysing nonlinear 

and nonstationary time series data. Time series data can be complicated and this 

can be seen in the first series in Figure 2.5, the signal. Interlaced local extrema 

and zero crossings can be seen as well as negative local maxima and positive local 

minima. This suggests that the series involves a number of waves riding on top of 

each other. Each wave defines a characteristic timescale of the data and is intrinsic 

to the process. The characteristic timescale is defined by the time lapse between 

successive extrema. The method of EMD identifies these waves empirically and then 

decomposes the data accordingly into a finite number of intrinsic mode functions 

(IMFs). The middle three series in Figure 2.5 are the IMFs which were extracted 

from the signal by EMD. The characteristic timescales of all three of these can be 

seen in the original complicated signal. The original series is the sum of the IMFs 

extracted plus a residue. This is the series that remains once all the IMFs have been 

extracted and it should be either the mean trend of the data or a constant. The 

final series in Figure 2.5 is the residue. 

2.2.1 The sifting process 

EMD decomposes the time series into IMFs by means of a sifting process which is 

described as follows: 

1. Identify the local maxima and local minima of a raw time series, x(t). 

2. Fit 2 cubic splines, one connecting the maxima and one connecting the minima, 

to form upper and lower envelopes with all the data between them, emax(t) 

and emin(t). 

3. Calculate the mean of the 2 envelopes, m(t) = emax(t)iemin(t). 

4. Find the difference between the raw and the mean time series, h(t) = x(t) -

m(t). 

5. Find out if h(t) satisfies the following two conditions: 
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Figure 2.5: Example of EMD taken from llilling et al. [39} 

• The number of extrema and the number of zero crossings of h(t) must not 

differ by more than 1. This will ensure that all local minima are negative 

and all local maxima are positive. 

• The mean series connecting the cubic splines of the extrema of h(t) must 

be zero at all times. 

6. If h(t) does not satisfy the above criteria then the algorithm is repeated using 

h(t) as the raw series. 

7. If h(t) does satisfy the above criteria then it is the first IMF. It should then be 

subtracted from the raw series and the algorithm repeated on this difference 

to identify subsequent IMFs. 

8. The sifting process is ended when no more IMFs can be extracted, i.e. no 

more than one local maxima or minima remains. 

Figure 2.6 shows an illustration of this sifting process. 
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Figure 2.6: Example of the sifting process taken from Huang et al. [23] 

(a) shows the raw time series, x(t). 

20 

(b) shows the raw time series in the thin solid line, the upper and lower envelopes, 

emax(t) and emin(t) , in the dashed lines and the mean, m(t) , in the thick solid 

line. 

(c) shows h(t), the difference between the data and the mean. This is the result 

after one sifting but it is not an IMF as negative local maxima and positive 

local minima can be seen suggesting riding waves. The algorithm will then 

need to be repeated using this h(t) as the raw series. 

Previous work using EMD has highlighted a number of issues to take into con­

sideration when using the method, one being how to best fit the cubic spline of the 

extrema near the ends and another being when to stop the sifting algorithm. Rilling 

et al. [39] addressed both of these matters. They wrote m-function files for MATLAB 

and gave reference to a website2 from which they could be downloaded. Here we use 

2http://perso.ens-lyon.fr/patrick.flandrin/software.html 
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one such file, namely emd. m, which computes EMD according to Huang et al. [23] 

and incorporates the variations reported in Rilling et al. [39]. By looking in detail at 

the MATLAB commands used in this file, we are able to gain a better understanding 

of how exactly these two issues have been addressed. 

Before fitting the cubic spline, the signal is extended at both ends by mirroring 

the extrema. This is achieved by fitting an imaginary line of symmetry vertically 

through the the first and the last extrema and mirroring two maxima and two 

minima at either end. This means that the signal is extended by eight extrema, four 

at either end. 

In emd. m, the sifting process is kept going until one of the following is true: 

• the number of extrema is less than 3, i.e. the series is just a constant trend 

since each end point is an extrema; 

• 2000 iterations have been performed. 

Rilling et al. [39] also introduced new stopping criteria for the process based on 

2 thresholds, ()1 and 02 . Their aim was to guarantee globally small fluctuations in 

the mean while taking into account locally large excursions. They introduced the 

mode amplitude 

( ) 
emax(t)- emin(t) 

a t = --:......:....----'--'-
2 

and the evaluation function 

I 
m(t)l 

n(t) = a(t) . 

The idea here is that the sifting is iterated until n(t) < 01 for some fraction, (1- o:) 

of the total duration, while a( t) < ()2 for the remaining fraction. In emd. m the 

following default values are set: a= 0.05, ()1 = 0.05 and ()2 = 0.5. This means that 

for 95% of the time, the evaluation function a.(t) is restricted to values less than 0.05 

but for 5% of the time it can take values of up to 0.5. This is making allowances for 

a small number of deviations from the wave. 
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2.3 Analysis of DHF data using EMD 

In this section we look more closely at the results presented in [10]. They first 

performed EMD on the logarithm of the incidence data for each of the provinces 

which we illustrate in section 2.3.1 for the province of Bangkok. They then chose 

to focus on the 3-year periodic IMF because they find that it accounts for 44% of 

the interannual variability in dengue incidence. We present these 3-year IMFs for 

each province in Figure 2.8. Since they have reason to believe that Bangkok may 

have a central role to play in the dynamics of DHF in Thailand, they then look 

at the cross-correlation functions (CCFs) between the 3-year IMF for Bangkok and 

each of the other provinces. We again recreate these findings and present them in 

Figure 2.11. 

2.3.1 EMD of Bangkok incidence data 

Here we use emd. m in MATLAB to decompose the incidence data for the province of 

Bangkok using the sifting process. Figure 2. 7 shows the time series of the monthly 

incidence as well as the first three IMFs extracted. 

(a) shows the monthly incidence of DHF cases in the province of Bangkok for the 

years 1983-1997 in which the complexity of the series is clear. The overall shape has 

peaks which have local maxima and minima evident within them (known as riding 

waves), the years 1987 and 1989 for example. These local extrema represent another 

characteristic timescale which is apparent in the first IMF extracted, shown in (b). 

As well as eliminating such riding waves, the sifting process also serves the purpose 

of making the wave profiles more symmetric. (c) shows the seasonal IMF and (d) 

shows the 3-yr periodic IMF both of which are obscured in the raw incidence data 

by the presence of many periodic components. 

2.3.2 3-year periodic IMFs 

Here we use emd. m to decompose the incidence data for each province and extract the 

3-year periodic IMF. These are then shown in Figure 2.8 for each province arranged 

from the most southerly to the most northerly from bottom to top. 
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Figure 2.7: EMD of Bangkok time series data 
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Two patterns are clear in the image, one for the most southerly provinces (ranked 

1 to 14) and a second for the remaining provinces. We can see from the map on 

page 13 that the 14 most southerly provinces could be thought of as a peninsula 

coming from the main body of Thailand which may account for why they have a 

slightly different pattern. Although Cummings et al. [10] didn't make any reference 

to a difference in DHF incidence or spread between southern and northern provinces, 

Figure 2.8 suggests there may be a distinction. To investigate this idea further we 

separate this into 3-yr periodic IMFs for the northern provinces and 3-yr periodic 

IMFs for the southern ones. These are shown in Figures 2.9 and 2.10 respectively. 

Considering Figure 2.9 first, three vertical lines representing high rates of DHF 

incidence can be seen and the one at 1987 shows peaks across most of these northern 

provinces. Although this line can be seen to some extent in Figure 2.10, the three 

main vertical lines representing high rates start roughly at the same time as the last 

one in Figure 2.9 ends. This suggests that peaks in DHF incidence occur later in 

the southern provinces than they do in the rest. 
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Figure 2.8: 3rd IMF for all provinces 
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Figure 2.9: 3rd IMF for northern provinces 
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Figure 2.10: 3rd IMF for southern provinces 
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2.3.3 Role of Bangkok in DHF dynamics 

Due to the size of Bangkok's population and its central role in the commerce of 

the country, Cummings et al. [10] examined its role in this 3-year travelling wave. 

To repeat their results we calculate the CCFs between the 3-year IMF for Bangkok 

and each of the other provinces using Pearson correlation coefficients. Figure 2.11 

shows these for lags of -20 to 20 months with the provinces ordered from bottom to 

top with increasing distance from Bangkok. The negative numbers are for the case 

where Bangkok lags behind the province and the positive are for the province 
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Figure 2.11: CCFs between 3-yr IMF of Bangkok and all other provinces 
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lagging behind Bangkok. 

A vertical band of red can be seen in Figure 2.11, just to the right of the cen-

tre. This represents a strong positive correlation between the 3-yr periodic IMF of 

Bangkok and the same mode of each of the other provinces when the provinces lag 

behind Bangkok by between 0 and 8 months. It is evident in the image that while a 

vertical band is present overall, a strong correlation is not present within this band 

for all provinces. For example, provinces ranked 19, 20, 62, 63 and from 65 upwards 

are shown to have a CCF of around zero. The question arises as to whether these 

zero correlations may be between Bangkok and the southern provinces leaving the 

strong correlations to be between Bangkok and northern provinces. To see if this 

is the case, we reproduce the image but this time omitting the CCFs for the 14 

most southern provinces. The result is shown in Figure 2.12. Although the overall 

pattern looks the same in the two images, it is clear that there is a reduction in the 

number of provinces with zero correlation in Figure 2.12. This further confirms our 

suspicion that there may be a distinction between patterns in DHF behaviour for 

northern and for southern provinces. 

Cummings et al. [10] claim that this red band slants off to the right representing 

a greater lag with distance from Bangkok and therefore conclude that the 3-year 

periodic travelling wave emanates from Bangkok. However, this doesn't seem to 

be very clear in either of the two images. We now investigate the role of Bangkok 

further. 

Recall that the spatial representations of the DHF data set in section 2.1.1 show 

that Bangkok and the areas around it don't seem to reach any of the high incidence 

rates. Since Bangkok has a large population and is thought of as essentially urban, 

the question arises as to whether there could be any link between DHF incidence 

and the percentage of a province's population living in urban areas. Figure 2.13 

shows these percentages which were calculated using population data available from 

the College of Population Studies, Chulalongkorn University website3 . 

3http://vvw.chula.ac.th/college/cps/thaidata/thailand_data.html 
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Figure 2.13: Percentage of the population living in an urban area 
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This shows that the provinces which have the greatest percentage of people living 

in urban parts include Bangkok and those surrounding it as well as on the southern 

border of Thailand. Those provinces on the northern border, which showed high 

rates of incidence in Figures 2.3 and 2.4, have a low percentage of urban population. 

This indicates that there may be a negative relationship between the percentage of 

urban population and DHF disease incidence. 

2.4 Generalised Linear Modelling of DHF data 

An alternative way to investigate this space-time DHF data set is via a generalised 

linear model (GLM) which we do using the glm() function in R. GLMs are defined 

in terms of three components: 
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1. a distribution function: this is the distribution that the observations Y take 

and must be a member of the exponential family 

2. a linear predictor: this is a linear combination of unknown parameters {3 with 

covariates x a.<; their coefficients 

3. a link function: this relates the mean of each Yi to the linear predictor 

2.4.1 DHF data frame 

We begin by changing the form of the data from that shown in Table 2.1 to the data 

frame shown in Table 2.2. 

Table 2.2: DHF Data frame used for generalised linear modelling 

Time Rates Prov Year Region Month Pop Counts Countslnt 

860 12 0.03075 5 1983 s Dec 930123 28.60287 29 

861 12 0.00860 4 1983 s Dec 467621 4.0254 4 

862 12 0.03914 2 1983 s Dec 291166 11.39795 11 

863 12 0.00000 44 1983 N Dec 1683798 0.00000 0 

864 12 0.00406 48 1983 N Dec 475068 1.93117 2 

865 13 0.00000 71 1984 N Jan 148282 0.00000 0 

866 13 0.00000 69 1984 N Jan 1252241 0.00000 0 

867 13 0.00204 72 1984 N Jan 976634 1.99720 2 

868 13 0.00000 68 1984 N Jan 410484 0.00000 0 

869 13 0.00000 67 1984 N Jan 392588 0.00000 0 

870 13 0.00379 66 1984 N Jan 730057 2.76886 3 

The columns of interest to us here are : 

• Countslnt which is the actual number of DHF cases (obtained by multiplying 

the rate with the population size/1000) rounded to the nearest integer. These 

will form the observations Yst for our model. 

• Prov, Month and Year which give the province index, month and year asso-

ciated with each count respectively. They will form the covariates x for our 

model. 
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• Pop which gives the population of the province in the year concerned. This 

will form an offset term in our model. 

2.4.2 Model 1 

The first model we consider is 

Yst '"V Poisson(PsAst) 

log(PsAst) - f3sXs + f3tXt 

fors= 1, ... , 72 and t = 1, . .. , 12 where Yst is the number of DHF cases in province 

sand month t. Ps is the population of provinces. X 8 is the province covariate, Xt 

is the month covariate and {38 and f3t are the unknown parameters to be estimated 

from the data. 

Figure 2.14: Residuals of Model 1 
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Residuals can be used to explore the adequacy of fit of a model. After fitting 

our model we look at the residuals which are plotted in Figure 2.14 against year. 
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They were calculated using the R command res id 0 which has the usual deviance 

residuals for GLM as its default. It seems from this that there may be a repeating 

pattern evident, increasing to a peak and then decreasing again every few years. 

We now adapt our model to include a year effect and in particular look for whether 

the parameter associated with it shows a 3-year repeating cycle as suggested by 

Cummings et al. [10]. 

2.4.3 Model 2 

Now suppose that 

Poisson( PsuAstu) 

f-JsXs + f-Jt:T:t + f3uxu 

fors= 1, ... , 72, t = 1, ... , 12 and u = 1, ... , 15 (representing years 1983, ... , 1997). 

Using the glmO function in R we estimate the parameters f3s, f3t and f3u for all s, t 

and u. These are shown for province, month and year respectively in Figures 2.15, 

2.16 and 2.17 along with their upper and lower error bounds. The upper and lower 

bounds consist of the coefficient estimate plus or minus twice the standard error. 

Since the model has signs of over-dispersion, these standard errors have been scaled 

up using the estimate of dispersion. These scaled standard errors for each set of 

coefficients are also summarised in Table 2.3. 

Table 2.3: Summary of standard errors for month, province and year coefficients 

Month Province Year 

Min. 0.0220 0.0394 0.0017 

1st Qu. 0.0264 0.0684 0.0288 

Median 0.0382 0.0848 0.0321 

Mean 0.0410 0.0970 0.0325 

3rd Qu. 0.0541 0.1169 0.0387 

Max. 0.0665 0.2698 0.0475 

These plots provide us with further insight into the data and therefore DHF 

dynamics. It is clear from Figure 2.15 that there is a seasonal effect evident which 
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peaks in the summer months. This is consistent with the peak in incidence evident 

in Figure 2.4. Figure 2.16 shows clustering at the north-western border, around 

Bangkok and at the southern border. This could be thought of as consistent with 

the clustering of high percentage of urban population shown in Figure 2.13. It is 

difficult to see a clear pattern in Figure 2.17. There doesn't seem to be a definite 

3-year repeated cycle here although the pattern evident for the 3-year periods 1983 

to 1986 and 1988 to 1991 do look to be similar. 

When we look at the residuals of Model 2, which are shown in Figure 2.18, we 

see that there is still some structure visible. We now consider a third model which 

adds in second order interactions to see if this structure in the residuals is removed. 

2.4.4 Model 3 

Now suppose that 

fors= l, ... , 72, t = 1, ... , 12 and u = 1, ... , 15 (representing years 1983, ... , 1997). 

Using the glmO function in R we estimate all of the fJ coefficients for all s, t and 
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Model: Countslnt- Prov +Month+ Year+ offset(log(Pop)) 

Figure 2.16: Spatial effect 

u. Figure 2.19 gives the residuals for this model with the year boundaries shown in 

red. We can see that they look much better than those of Model 2 but there is still 

some strange behaviour for 1987 and also 1990 to a lesser extent. If we look again at 

Figure 2.2 on page 15 which shows the monthly incidence rates for the data broken 

down by year, we see that there are peaks in the disease rate across all provinces 

during 1987 and in the southern provinces during 1990. It therefore seems that this 

model doesn't cope well with high peaks in disease rate. The Analysis of Deviance 

for this model is shown in Table 2.4 and we can see that the most significant amount 

of variation is coming from the Month term. 

The disadvantage of GLM is that it is a simple type of statistical model and a 

more complex model may be necessary to more accurately fit some types of data. 

However GLM is more appropriate for our data than EMD for a number of reasons. 
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Table 2.4: Analysis of deviance for Model 3 

Df Deviance Resid. Df Resid. 

NULL 12095 

factor(Prov) 71 90751 12024 

factor(Year) 13 204080 12011 

factor(Month) 11 564665 12000 

factor(Prov) :factor(Year) 923 264172 11077 

factor(Prov) :factor(Month) 781 128707 10296 

factor(Year):factor(Month) 143 111942 10153 
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Dev 

1468526 

1377775 

1173695 

609030 

344858 

216151 

104209 

EMD is not a statistical model but is purely descriptive and therefore doesn 't have 

any uncertainty associated with it. Furthermore, it isn't clear exactly how it works. 

A number of people have produced different computer code for it and each of the 

methods differ slightly. Two particular issues people differ on are how to best fit 

the cubic splines near the ends and when to stop the sifting algorithm. These were 

discussed in more detail in section 2.2.1. In contrast, GLM is a widely used statistical 

model and therefore the estimates come with standard errors, residuals and formal 



2.4. Generalised Linear Modelling of DHF data 

C) 
(0 

C) 
"<t 

(ij C) 

::J N 
"'C ·u; 
Cl) 

0::: 
C) 

C) 
N 
I 

C) 
"<t 
I 

1983 

Figure 2.18: Residuals of Model 2 

Plot of years against residuals 

1985 1987 1989 1991 1993 

Year 

1995 

Model: Countslnt- factor(Prov) +Month+ factor(Year)+offset(log(Pop)) 

35 

statistical prodedures for comparing models. We can progressively increase the 

complexity of the model and check for improvement in fit, which is not possible 

with EMD. A model for the travelling wave idea considered in this chapter could be 

incorporated into GLM and checked for fit, whereas EMD is only able to take the 

data apart and explore the idea in an ad hoc way. 
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Chapter 3 

Bayesian analysis of NHS Direct 

data using LinBUGS 

One basic type of data that arise in space-time epidemiology is that of count data. 

This is where cases of disease are accumulated and the count is associated with a 

region (e.g. postcodes, electoral wards, counties) and a time period (e.g. day, week, 

month). For reasons of confidentiality this is one of the most common types of data 

available. In this chapter we explore count data provided by the NHS Direct north 

east site to see if there is any spatial structure in the spread of infection in the North 

East area. 

NHS Direct is a national telephone helpline for health advice. A computerised 

database stores information about each call received and data extracted from this 

database will provide a timely snapshot of symptoms occurring in the community. 

In the United Kingdom there is a national syndromic surveillance system, operated 

jointly by the Health Protection Agency (HPA) and NHS Direct, which examines 

symptoms reported to NHS Direct. Data is analysed by the HPA and weekly bul­

letins are produced summarising NHS Direct call activity. Much of the published 

literature involves evaluating how good the surveillance system is at meeting its 

various aims (for example, Cooper et al [9], Baker et al [2], Doroshenko et al. [13]) 

and there are very few publications analysing NHS Direct data itself, for example 

using statistical models. Furthermore Smith et al. [48] suggest the need for work 

on space-time analysis of the data when they list integrating it into the surveillance 
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system as one of the future challenges. 

One recent approach to modelling space-time count data is to use a descriptive 

Bayesian hierarchical model such as those of Mugglin et al. [36] and Knorr-Held and 

llichardson [27]. With complex Bayesian models such as these, the posterior is often 

difficult to evaluate and MCMC methods must be used. As noted in section 1.3, we 

can use the software OpenBUGS to implement this. Although WinBUGS (the Windows 

version) is probably best known, we found LinBUGS to be quicker for our model. 

The analysis of the output from LinBUGS can be performed through the R package 

CODA. 

In this chapter we explore count data provided by the NHS Direct north east 

site using the space-time model of Mugglin et al. [36]. In sections 3.1 and 3.2 we 

describe the NHS data available to us and introduce the model. In section 3.3 we 

apply the model to the dataset using LinBUGS and in section 3.4 we interpret the 

results using the posterior distribution. 

3.1 NHS Direct data 

3.1.1 Data collection 

One of the roles of NHS Direct is to provide confidential health care advice. If 

you, or a member of your family, are feeling ill you can call the helpline and NHS 

Direct nurses will use their skills and experience, together with a comprehensive 

computer system, to advise you on the most appropriate course of action to take. 

The computer system involves algorithms consisting of a series of questions about the 

caller's symptoms. Computerised call records are held which include the patient's 

details, date and time of the call and which algorithms were used (this usually refers 

to the caller's main symptom). Information from the call records held at the NHS 

Direct north east site is what is available to us. 
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3.1.2 Exploring the data 

The data set considered in this chapter covers a 45 week period from 1st November 

2004 until 11th September 2005 and contains for each call: the date it was made, 

the Primary Care Trust (PCT) area of the caller, the age of the caller and the 

symptom they are calling about. The PCTs covered by the data set are Darlington, 

Derwentside, Durham and Chester Le Street, Durham Dales, Easington, Gateshead, 

North Tyneside, Newcastle, Northumberland, South Tyneside, Sedgefield and Sun­

derland, the locations of which are shown in Figure 3.2. The symptoms covered 

are Abdominal Pain, Cough, Colds and Flu, Diarrhoea, Earache, Fever, Fatigue, 

Headache, Sore Throat, Vomiting. To get an idea of what this data looks like, Fig­

ure 3.1 shows a plot of the number of calls received over the time period for each 

symptom. 

We now decide to restrict attention to the symptom cough since it has an inter­

esting temporal structure. The time series for this symptom shows an 'epidemic-like' 

pattern with the number of calls increasing from when we join the data set in Novem­

ber, peaking in the last week of December and then decreasing again following the 

peak. The number of calls reaches the highest peak (251 calls in one week) for the 

symptom cough and there are no weeks with no calls about a cough. Furthermore, 

all PCT areas are covered by the cough data set. The original data for this is given 

in the Appendix starting on page 164. Figure 3.2 shows us what this cough data 

set looks like spatially. It shows the total number of calls reported from each PCT 

during the whole 45 week period. We can see that there is a general pattern that 

the most southern areas have the least number of calls and increasing as we move 

towards the north. However, this representation of the data could be potentially 

misleading since it doesn't take into account the population of the areas. For ex­

ample, Northumberland PCT is much larger than all of the others in area and also 

has the largest population so we would expect it to have a higher number of calls. 

When we model the data using the Bayesian model we adjust for the population 

(as described in section 3.3.3) so Figure 3.3 could be thought of as a more accurate 

spatial representation of the data. It shows the number of cough calls received from 
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Figure 3.1: Number of calls by symptom 
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Figure 3.3 shows that a north-south divide is not as clear now although the small­

est rate of calls do appear to be in the south. Northumberland no longer shows 

the greatest number of calls, instead Derwentside does. This is because although 

Derwentside had one of the smallest number of calls in the raw dataset , it also had 

the smallest population available to make the calls. However, one potential disad­

vantage with the data set still stands in that the areas are geographically quite large. 

It could be that further levels of aggregation (such as postcode level) are necessary 

to draw any meaningful results about the spatial spread of the infection. 
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3.2 The model 

Mugglin et al. [36] develop a hierarchical statistical model to be fitted to aggregated 

infectious disease data. The model attempts to capture both instantaneous spatial 

dependence as well as diffusion and growth in space and time. 

Adopting this model, we let the number of calls Yit from PCT i ( = 1, ... , 12) 

during week t ( = 1, ... , 45) be defined as 

where Zit is the logarithm of the relative risk and Ei is the number of calls expected 

to occur in PCT i in any one week under non-epidemic conditions. The way we 

calculate Ei by adjusting for age and population is described in section 3.3.3. 

Covariates are used in the model to stratify the expected incidence but the main 

interest is in the space-time dynamics. If we had spatially or temporally varying 

explanatory variables they could be incorporated into the model by combining them 

into a vector X.:t via 

where a is a vector of regression coefficients. However, we choose not to include 

covariates and simply let Zit = Sit· 

For t = 1 we define s 1 "' MV N(O, ( 2 E) where ( 2 > 1 is chosen to reflect 

additional uncertainty about s 1 . For t = 2, ... , 45 we use the multivariate Gaussian 

autoregressive process to define 

St = Hst-l +et (3.1) 

where His an 12 x 12 autoregressive coefficient matrix and et is the epidemic forcing 

term which is assumed to be a realisation from a Gaussian Markov random field. 

Specifically, 

(3.2) 

where E is the variance-covariance matrix and p( t) = 0, 1 or 2 indicating stage of 
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disease at time t as given by 

{Jp(t) = 

{30 if t < t0 , for stability 

{31 if to ~ t < t1, for growth 

{32 if t1 ~ t < t2 , for intermediate decline 

f3o if t ~ t2 , for final decline to stability 
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I: is from the conditional autoregressive (CAR) class of models and is defined by 

(3.3) 

M is a diagonal matrix with entries Ei-1 on the diagonal and C;.j 

site j is a neighbour of site i and 0 otherwise. a 2 is the variance related to spatial 

association and l/J E ( l/Jmin, cPmax) is the spatial dependence parameter where l/Jmin 

and l/Jmax are determined from the eigenvalues of C such that M -l (I - ifJC) is 

positive definite. Spatial dependence is also indnded in the structure of H which is 

parametrised by 'f/o, 'f/1 and 'f/2 as follows 

'f/o if j = i 

'f/1 if j E Ni, that is, j is neighbour of i 

'f/2 if j E NF), that is, j is second-order neighbour of i 

0 otherwise 

'f/o can be interpreted as a global measure of how much any site is affected by itself 

at one previous time lag while 'f/1 and 'f/2 are global measures of the impact of the 

first and second order neighbours, respectively, at one previous time lag. Instead 

of assigning a prior distribution directly to the 'f/t (f. = 0, 1, 2) they are transformed 

using Be = log[(l + rJe)/(1 - rJe)] and a prior is assigned to the Bt. The model is 

completed by specifying the following priors 

f3t 

Be rv 

a2 rv 

c/J 

Normal (J.Lf3t, Tfi 1), 

Narmal(J.Lot, Ti1), 

lnverseGamma(a, b) 

Uniform( cPmin, cPmax) 

f.= 0,1,2 

f.= 0, 1,2 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
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3.3 Using LinBUGS 

To run an MCMC simulation in LinBUGS, four files are needed. One containing the 

actual script commands, one with the BUGS language representation of the model, 

one containip.g the data and one containing the initial values. LinBUGS is an 'expert 

system' which attempts to use the most appropriate sampling scheme for each pa­

rameter. It has a hierarchy of methods and a particular sampling scheme is used if no 

previous method in the hierarchy is appropriate. It starts with direct sampling using 

standard algorithms, then if that is not appropriate it uses derivative-free adaptive 

rejection sampling, then slice sampling, and so on. Further details of the hierarchy 

can be found in the WinBUGS manual 1
. When a Metropolis MCMC algorithm is 

used, it is based on a symmetric normal proposal distribution whose standard de­

viation is tuned over the first 4000 iterations in order to get an acceptance rate of 

between 20% and 40%. 

3.3.1 The script file 

The first commands needed in the script file are 

modelCheck("model.txt") 

modelData("data. txt") 

modelCompile 0 

modellnits("inits.txt",l) 

which first checks that the model description fully defines a probability model and 

reports any syntax errors. Next, the data is loaded and the model is compiled. 

This sets up the internal data structures needed to carry out the MCMC sampling 

and chooses the specific MCMC updating algorithms to be used for this particular 

model. The model is also checked for completeness and consistency with the data. 

Once the model has been successfully compiled, the MCMC sampler must be given 

some initial values for each stochastic node and the number of chains to simulate is 

chosen (one in this case). Checks on the initial values are then carried out to ensure 

1http:/ /www.mrc-bsu.cam.ac.uk/bugsjwinbugsjmanuall4.pdf 
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they are of the correct form and are consistent with any previously loaded data. 

Any syntax errors or inconsistencies are displayed. The next commands we use are 

mode1Update(1000,1) 

samplesSet(betaO) 

mode1Update(10000,130) 

samplesCoda(betaO, 11 beta0") 

which first performs 1000 burn in updates which are to be discarded and then sets 

the monitors to start recording the values sampled for the parameter betaO. The 

simulation is then run again, this time thinning every 130 iterations, until a total 

of 10000 values are recorded. The final command is asking LinBUGS to produce the 

MCMC output for betaO in CODA format which allows it to be read into R. 

3.3.2 Specifying the model 

The model can be specified using the text-based BUGS language which allows it 

to be expressed concisely. The "' symbol denotes stochastic relationships and < -

denotes deterministic ones. The model specification also allows arrays, loops, nested 

indexing and has a range of integrated functions. We also make use of the add-on 

module GeoBUGS which allows us to create and manipulate matrices necessary for 

conditional autoregressive models. In particular, we rewrite equations (3.1) and 

(3.2) as 

Bt "-' MV N({3p(t)l + HBt-1, r.) 

and use the car. proper function to specify it. The Mugglin et al. (36] model can 

be represented in this BUGS language as follows: 

model { 

for (i in 1:1) { 

for (t in 1:T) { 

} 

Y[t,i] ""'dpois(lambda[t,i]) 

lambda[t,i] <- E[i]*exp(s[t,i]) 

for (t in 2:T) { 

hs [t, i] <-inprod(h [, i] , s [t-1,]) 
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} 

} 

for (tin 2:(t0-1)) { 

mu. sO[t, i] <-hs [t, i] +betaO 

} 

for (tin tO:(t1-1)) { 

mu.sO[t,i]<-hs[t,i]+beta1 

} 

for (tin t1:(t2-1)) { 

mu.sO[t,i]<-hs[t,i]+beta2 

} 

for (t in t2:T) { 

mu.sO[t,i]<-hs[t,i]+betaO 

} 

for (j in 1: I) { 

} 

h [i, j] <-(equals(H[i, j] , 9)•eta0) 

+(equals(H[i,j],l)*eta1) 

+(equals(H[i,j],2)•eta2) 

mu. s [i] <-mu. t1 

for (t in 2:T) { 

} 

s[t,1:I] ....., car.proper(mu.sO[t,] ,C[] ,adj(] ,num[] ,H(], 

invsigma.sqd,phi) 

s [1,1: I] ....., car. proper(mu. s [] ,C [] , adj [] ,num[] ,H[] , tau. s ,phi) 

phi ....., dunif (phi.min,phi.max) 

phi.min<-min. bound(C [] ,adj [] ,num[] ,H[]) 

phi.max<-max. bound(C[] ,adj [] ,num[] ,H[]) 

invsigma.sqd ....., dgamma(a,b) 

sigma.sqd<-1/invsigma.sqd 

tau.s<-invsigma.sqd•(1/xi.sqd) 
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} 

eta0<-(exp(theta0)-1)/(exp(theta0)+1) 

eta1<-(exp(theta1)-1)/(exp(theta1)+1) 

eta2 <-(exp(theta2)-1)/(exp(theta2)+1) 

thetaO ~ dnorm(mu.thetaO,tau.thetaO) 

theta1 ~ dnorm (mu. theta1 , tau. theta1) 

theta2 dnorm(mu.theta2,tau.theta2) 

betaO dnorm(mu.betaO,tau.betaO) 

beta1 ~ dnorm(mu.beta1,tau.beta1) 

beta2 dnorm(mu.beta2,tau.beta2) 

3.3.3 Specifying the data 

The data file is where we enter the count data Yit as well as the value of hyper­

parameters and other constants in the model. This file can be represented using R 

object notation and values are given in a single structure headed by the key-word 

'list' as follows 

list( T = 45, !=12, 

) 

E=c(10.698476, 7.848950, ... , 3.960951, 3.601294), 

mu.thetaO=O, tau.theta0=0.25, mu.theta1=0, tau.theta1=0.25, 

mu.theta2=0, tau.theta2=0.25, mu.betaO=O, tau.beta0=0.25, 

mu.beta1=0, tau.beta1=0.25, mu.beta2=0, tau.beta2=0.25, 

a=0.25, b=2.5, mu.t1=0, xi.sqd=4, t0=4, t1=10, t2=15, 

M=c(0.093471, ... , 0.277677), C= c(0.770000, ... , 1.048746), 

num=c(2,4, ... ,4,4), adj=c(4,10, ... ,6,11), 

H=structure(.Data=c(9, 2, 2, 1, ... , 2, 1, 9), 

.Dim= c(12, 12)), 

Y=structure(.Data=c(3, 3, 9, 0, ... , 2, 0, 0, 1), 

.Dim= c(45, 12)), 
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We now explain our choice of data values a bit further. The first details we need 

to include are the total number of PCTs and weeks which we do via I = 12 and 

T=45. 

The expected number of calls Ei for each PCT in any one week under 'non-epidemic' 

conditions were calculated using the method of Mugglin et al. (36J who adjust for 

demographic effects. We divide the calls into 19 strata based on age (~4, 5-9, ... , 

85-89, 90+) and obtained the population for each PCT and each age bracket from 

the 2001 census. We then calculated 

19 

Ei = L~kqk 
k=1 

where ~k is the population in PCT i and stratum k and qk is the proportion in 

stratum k expected to become a case estimated by 

~ l:t r::: 1 Yikt 
qk = 12 

l:t r:i=1 ~kt 
where Yikt is the observed number of calls in PCT i in the kth stratum during week 

t. We assume that the population doesn't change over the time period so R;.kt is 

constant. The resulting expected number of calls per week range from 3.44 for 

Newcastle PCT to 12.23 for Gateshead PCT. 

Next we choose the same prior values as used in [36J namely 

f3t Normal(O, 4), i = 0, 1, 2 

Ot N ormal(O, 4), f = 0, 1, 2 

r72 InverseGamma(0.25, 0.4) 

and include these via the 'mu. thetaO=O, tau. theta0=0.25, ... , a=0.25, b=2.5' 

commands. 

The mu. t 1 and xi . sqd just represent the mean and ( 2 values in the specification 

s 1 ,...., MV N(O, eE) which were chosen to be the same as those used in (36]. 

The values for t0 , t 1 and t2 were obtained from a more detailed version of the time 

series plot shown in Figure 3.1. We find that the 'epidemic' is stable tmtil week 4, 

growing until week 10 and undergoing intermediate decline until week 15 when it 

begins a final decline to stability. 
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The car. proper command requires data to be added about the between-area covari­

ance matrix E. Recall from equation (3.3) that E can be written as (7
2(/- cj>C)-1 M 

where M is a diagonal matrix with entries Ei-1 on the diagonal and Cij = (E1j Ei) 112 

if site j is a neighbour of site i and 0 otherwise. We therefore need to include C 

and M in the data file as well as information about the neighbourhood structure in 

the form of two vectors 'num' and 'adj' (num gives the number of neighbours each 

area has and adj lists the ID numbers of each adjacent area). C takes the form of a 

vector the same length as adj giving the weights associated with each pair of areas 

and M is just the vector ( i
1

, •.. , E~ 2 ) • 

Another piece of information we need to include is the value of the autoregressive 

coefficient matrix H. Recall from section 3.2 that each hij takes one of the values 77o, 

771 , 7J2 or 0 depending on the neighbourhood structure. This is included in the data 

file via the 'structure' function where 9 corresponds to a value of 7Jo, 1 to a value of 

771 and 2 to a value of T/2· This reads the string of numbers specified as '.Data' into 

a 12 x 12 dimensional array. 

Finally, the count data is included in the file again using the structure function. 

This time it reads the values specified in '.Data' into a 12 x 45 dimensional array. 

3.3.4 Initial values 

It is necessary to choose some initial values for each stochastic node. Although 

BUGS has an option to generate you some initial values, choosing your own gives 

you more control. BUGS generates values using the prior distributions but when the 

priors are vague, initial values generated may be at the extremes of the distributions, 

producing an error message when the model is run. Different sets of initial values 

were tried and we decide to use the following set 

Oo = 0.01, Ot = 0.01, 82 = 0.01, f3o = 0.01, (31 = 0.01,132 = 0.01, 

(7-
2 = 5, 4> = 0.1, sit= 0.01 for all i and t 

which are chosen to be close to the centre of their prior distributions. We know these 

initial values are not inappropriate as convergence is relatively fast. Convergence 

refers to the idea that the MCMC technique used will eventually reach a stationary 
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Figure 3.4: Traceplots resulting when two different sets of initial values are used 

distribution. A traceplot is a diagnostic tool which plots the parameter value at time 

t against the iteration number. If the model has converged then the traceplot will 

snake around close to the mode of the distribution whereas a sign of non-convergence 

would be some sort of trending pattern. Figure 3.4 shows traceplots for one of the 

model variables, namely ry1. The top plot results when the above initial values 

are used and the bottom one results when a changed set of initial values are used. 

This second set changes Oo, 01 , 82, f3o, {31 and {32 from 0.01 to 100. We can see that 

convergence is obtained more quickly for the original set of initial values. 

3.3.5 Output 

Once the model is successfully compiled and initialised we do a short pilot run of 

the chain in order to check convergence and decide how many updates need dis­

carding to allow for burn-in. This is because we want to be sure that the chain 

has reached the stationary distribution and has 'forgotten' the starting values be­

fore we start any summarising of the target distribution. After obtaining MCMC 
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Figure 3.5: Traceplots used as an informal check of convergence 

output from LinBUGS for each monitored variable, we then read it into R using the 

read. openbugs () command in the CODA package. Next we do an informal check of 

convergence using traceplots as described in section 3.3.4. Figure 3.5 shows examples 

of traceplots for some of the variables of interest and we can see that convergence 

appears to occur by about 1000 updates for all of the variables shown. A more 

formal way of determining the number of initial iterations to discard is to use a 

diagnostic such as that of Raftery and Lewis [38]. The raftery. diag () function 

is included in the CODA package and provides a way for us to easily calculate the 

suggested burn-in for each of the variables of interest using a short pilot run of a 

Markov chain. The diagnostic is based on a criterion of accuracy of estimation of the 

quantile q. The number of iterations required to estimate the quantile q to within 

an accuracy of ±r with probability pis calculated. In the CODA package the default 

values q = 0.025, r = 0.005 and p = 0.95 are used and separate calculations are 

performed for each variable within each chain. Using this diagnostic, the variable 

which we find to need the highest number of iterations discarded is T/o which needs 

1897. We therefore choose to discard 2000 initial iterations as burn-in. 
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Figure 3.6: Autocorrelation functions before thinning 

After allowing for burn-in, we set the monitors to start recording the values 

sampled for each parameter. We then do another short run to look at the autocor­

relation for each variable. Autocorrelation refers to a pattern in the chain where 

sequential draws of a parameter from the conditional distribution are correlated. 

High autocorrelation would result in the Gibbs sampler being slow to explore the 

entire posterior distribution. This would mean that larger sample sizes would be 

necessary to make credible Bayesian inferences therefore increasing computational 

effort. Figure 3.6 shows plots of the autocorrelation functions for all variables of 

interest apart from the relative risks. (Note that autocorrelation functions for each 

sit were checked separately and found to be lower than those shown in Figure 3.6). 

Typically plots of autocorrelation functions will decline with an increasing number 

of lags but ideally we would like it to be near zero for all lags. We can see from 

these plots that the autocorrelations for some variables still seem to be relatively 

high out to a lag of around 30 to 40. Autocorrelation can be addressed by 'thinning' 

the Markov chain. Thinning an MCMC chain means that not all samples are stored 

but are recorded periodically at a rate that can be specified. In our case we choose 
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Figure 3.7: Autocorrelation functions after thinning 

to run the sampler again, this time recording every 50th sample only until we have 

a sample size of 10000. We then redo the autocorrelation plots which are shown in 

Figure 3. 7 and they show us that correlation for each parameter has decreased to an 

acceptable level. It then remains for us to interpret the results using the posterior 

distribution. 

3.4 Interpreting the results 

3.4.1 Variables of interest 

Recall from section 3.2 that we have the following variables of interest: 

• 77o is the parameter which shows the lag-1 influence of an area on itself which 

we would expect to be > 0. 771 and 772 show how much an area is affected 

by its first-order and second-order neighbour's value from the previous week, 

respectively. 771 and TJ2 will give us an idea of whether there is any spatial 

structure over time. A value of zero will indicate that there is no spatial 
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structure. 

• f3o, /31 and f32 represent the size of the epidemic in different stages: stabil­

ity, growth and decline respectively. We would therefore expect the posterior 

densities to show that /31 > f3o >{h. 

• 4J is the spatial dependence parameter which can be interpreted as the partial 

correlation squared between two areas within any week, i.e. corr2
{ Eit, f;t I 

rest of ft}· We can therefore get an idea of how spatially dependent any two 

areas are within time. If 4J = 0 then this would indicate no spatial dependence . 

• rr controls the overall variability of the epidemic forcing term ft. 

• Sit is the logarithm of the relative risk associated with area i at time t. 

3.4.2 Posterior densities 

We first note that the posterior credible intervals are much tighter than those of the 

priors, for example see Table 3.1 which shows the prior and posterior summaries for 

the /3i, 1Ji, 4J and u parameters. This means that there is substantial information in 

the dataset to infer about the parameters. 

Prior Posterior 

0.025 0.500 0.975 0.025 0.500 0.975 

f3o -3.920 0.000 3.920 -0.114 -0.048 0.012 

/31 -3.920 0.000 3.920 0.003 0.108 0.207 

132 -3.920 0.000 3.920 -0.335 -0.219 -0.104 

71o -0.961 0.000 0.961 0.939 0.967 0.991 

T/1 -0.961 0.000 0.961 -0.004 0.005 0.014 

T/2 -0.961 0.000 0.961 -0.001 0.011 0.023 

4J -0.325 -0.075 0.163 0.064 0.160 0.198 

rr 1.456 57.243 9.5 X 106 0.235 0.325 0.446 

Table 3.1: Prior and posterior quantiles 
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Figure 3.8: Posterior densities 
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Figure 3.8 shows plots of the posterior densities for the variables of interest 

although only one of the Sit are shown. We were particularly interested in whether 

there is any spatial structure in the spread of infection in the North East area. We 

can see that there does seem to be some degree of spatial structure: TJo is shown to 

be definitely positive and TJ1 and m also seem likely to be positive, although they are 

small in relation to TJo. It is strange that m is larger than TJ1 since they correspond 

to second order neighbours and first order respectively. A possible explanation is 

the small number of regions we have available for our data set. For example, if we 

look at Figure 3.3 on page 42 we can see that the layout of the 12 regions means 

that practically every region is either a first order or second order neighbour of every 

other region. However, the positive value of the TJS do suggest that there is some 

structure present over time. FUrthermore, cp has a median of 0.16 and 95% Bayes 

credible interval of [0.064,0.198] so this is positive indicating there is some spatial 

correlation within time. 

3.4.3 Representations of the posterior relative risk 

The posterior relative risks, e8't, represent smoothed values of the raw standardised 

morbidity ratios, Yit/ Ei, and therefore give us a smoothed picture of what is going 

on with the 'epidemic'. Figure 3.9 shows the average logarithm of these posterior 

relative risks over 5 week periods. One thing that we notice from each of the pictures 

is that the more southern PCTs tend to have a lower relative risk than the northern 

ones, this is consistent with the observations we made about the raw count data in 

section 3.1. 

Figure 3.10 shows the pattern of the Sit over time broken down to show each 

PCT separately. The question arises as to whether any of these time series differ 

from each other and if so, is there any spatial structure in the differences? From 

first glance it appears that some are higher in general, for example Newcastle, North 

Tyneside, Northumberland and Sunderland. It is also clear that some start from 

lower and increase steadily to a peak, for example North Tyneside, whereas others 

start with a dip before increasing by a smaller amount to the peak, for example 

Sedgefield. 
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Figure 3.9: Average Sit for grouped time periods 
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It appears that these differences could be between those PCTs in the north and 

those in the south of our study region. Figure 3.11 shows the temporal patterns 

grouped separately for northern and southern areas as well as their averages. The 

six most northern PCTs can be seen to have an average Sit which is generally higher 

than that of the southern ones and also starts with a steady incline rather than a 

dip. In order to picture this, Figure 3.12 separates the PCTs into red or yellow 

depending on whether the initial behaviour of the relative risk shows a dip or an 

incline as defined by eye using 3.10. 

3.4.4 Is the NHS Direct data reliable? 

There is some question as to whether NHS Direct data is useful for telling us about 

the spread of infection in the north east area. Smith et al. (48] point out one disad­

vantage which is that the NHS call rate is low when compared to the consultation 

rate for GPs so it only captures a small proportion of illness reported to primary 

care. It has also been suggested by Cooper et al. (8] that factors such as deprivation 

and age are likely to affect the uptake of the service meaning that it may not reflect 

the health of all sections of the population. There is also the fact that during peak 

times or times of staff training, calls are rerouted to other call centres so there may 

be calls made from patients in the 12 PCTs that wouldn't have been included in 

the data we received from the NHS Direct north east site. Furthermore, it could be 

said that the PCT area is too large to be able to draw any meaningful conclusions 

about spatial structure and aggregations such as postcode would have been better. 

However, this was not possible due to reasons of confidentiality. 

3.5 Model Assessment 

A range of methods exist to assess our model. One such technique is to use a 

posterior predictive distribution and examine the extent to which the replicated 

values from this distribution match the original data. One could also perform a 

residual analysis and look for outliers but this can be quite complex to compute 

for our type of model. We could also check overall model fit by fitting models of 
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varying complexity and comparing them. In our case we could make the model 

simpler by removing the spatial term altogether or more complex by including a 

more complicated neighbourhood structure. The classical way to compare models is 

to use Bayes factors but these can be difficult to calculate for our type of model and 

in recent years the deviance information criterion (DIC) has become more popular 

since it can be computed easily from MCMC output. However it's properties for 

more complex models are not as well understood. A further method of assessment 

is to do a prior sensitivity analysis which we have considered in detail for this model 

in chapter 5. 



Chapter 4 

Improving the efficiency of MCMC 

In this chapter we consider ways of improving the efficiency of MCMC for Pois­

son regression models such as that of Mugglin et al. {36] described in chapter 3. 

By efficiency we mean the speed and ease with which a simulated sample can be 

obtained. 

4.1 Motivation 

Although the NHS Direct data set modelled in chapter 3 was relatively quick to 

run in LinBUGS, we found this not to be the case for a larger data set. Data with 

95 spatial areas and 52 time points took approximately 100 hours to get a sample 

of size 1 using the same set up. The problem may be due to a slow sampling 

scheme being used for some of the parameters. LinBUGS is an 'expert system' that 

attempts to use the most appropriate sampling scheme for each parameter. We know 

from section 1.2 that using Gibbs sampling can be quite fast but requires that each 

conditional distribution has a recognised distributional form. However when we look 

more closely at the set up of the Poisson regression model, we see that the conditional 

distribution of each parameter (or block of parameters) does not have a standard 

form and would therefore require LinBUGS to choose an alternative sampling scheme 

such as Metropolis-Hastings. In particular, for the model considered in chapter 3, 

we discover that p(s I rest) is not of standard form. It involves generating from a 

multivariate Normal density multiplied by product of Poisson densities where the 
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rate involves an exponential. More formally, 

I T 

p(s I rest) ex p(s I f3o,{J~,{h.,CJ2 ,</>,Bo,Ot,02) IIIIP(Yit I Sit) (4.1) 
i=l t=l 

s "' MV N (1-t, E) 

Although Metropolis-Hastings can work well, we mentioned in section 1.2 that it 

can be difficult to propose good candidate values for complex models such as this 

and that it requires tuning. It may therefore improve the efficiency if we could 

make this non-standard conditional distribution into a standard one and then use 

block Gibbs sampling. Our overall goal in this chapter is to make (4.1) take the 

form of a multivariate Normal distribution by augmentation in such a way that the 

basic structure of its precision matrix remains the same even when the augmenting 

variables and other parameters change. We also want it to be easy to sample the 

augmenting variables given s. Furthermore, for the sampling scheme to be efficient 

we need to ensure that when the other parameters change, we can obtain a sample 

of s using only a relatively small number of alternating s and augmenting variable 

block Gibbs steps. We begin by simplifying our problem to a univariate case. 

4.1.1 Simplified example 

Suppose that we want to use Gibbs sampling to generate from 

where 

X 

YIX 

N(p., CJ2) 

Poisson(ex) 

(4.2) 

for known J.L, a and y. Our problem is to find a way to make (4.2) take the form of 

a Normal distribution by augmentation. 
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4.2 Current research in this area 

As we mentioned in section 1.2.1, a similar problem has been addressed by Damien 

et al. [11] who introduce auxiliary variables to enable the sampling of non-standard 

densities using the Gibbs sampler in the context of Bayesian non-conjugate and 

hierarchical models. Adopting their approach in our case would result in a trun­

cated Normal distribution. While this would provide the solution for the univariate 

example, it would not be useful for the multivariate case since generating from a 

truncated multivariate Normal distribution is not trivial. While it could be achieved 

using single variable Gibbs sampling as in Rodriguez-Yam et al [42], our aim is to 

use block Gibbs sampling with large blocks in order to improve the efficiency In 

section 4.3 we generalise the idea presented in (11] and in section 4.4 we look at pos­

sible ways of adapting it to work for our example. However, we are unable to make 

the adaptations work in such a way that improves the efficiency of the sampler. 

An alternative approach for tackling such problems is known as auxiliary mix­

ture sampling and has been an active research area over recent years. It was in­

troduced in Shephard (47] for stochastic volatility models and has been applied in 

this context by Kim et al. (24] and Chib et al. (5], among others. Recently, the 

method has been extended to more general hierarchical models for non-Gaussian 

data. Friihwirth-Schnatter and Wagner (17] present the method for Poisson regres­

sion models, Gschlo,Bl and Czado (21] extend this to spatial Poisson regression mod­

els and Friihwirth-Schnatter and Friihwirth [15] show that the method is feasible for 

models involving other discrete-valued observations such as binary and multinomial 

data. The method involves introducing two sequences of latent variables through 

data augmentation. The first sequence serves to eliminate the non-linearity from 

the regression analysis but the non-normality of the error term remains. The error 

term can then be approximated by a mixture of Normal distributions to remove the 

non-normality. The component indicator of this mixture forms the second sequence 

of latent variables. However, a disadvantage of this method is that the number of la­

tent variables introduced via the first sequence can be very high. For example, Yi + 1 

latent variables are needed for each observation Yi in the Poisson model case. This 

means that the method is only really useful for data with small counts. Friihwirth-
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Schnatter et al. [16] propose an improved version of auxiliary mixture sampling for 

count data, binomial data and multinomial data which involves a reduced number 

of latent variables. For example, at most two latent variables are introduced for 

each observation instead of Yi + 1 for the Poisson model. 

Much work in the area of latent Gaussian models has been carried out by Rue, 

for example see [43], [44] and (45]. One of the most well known methods for tackling 

the problem outlined in this chapter is found in Rue et al. (45]. They propose using 

a Gaussian approximation to the Poisson regression model. However, when the 

observed counts are small the Poisson term is no longer approximated well by a 

Gaussian term so the method runs into problems. 

In section 4.5 we develop a further improvement on the auxiliary mixture sam­

pling method for the Poisson regression model. It further reduces the number of 

latent variables in the sense that it only requires one sequence of them, namely the 

component indicator variables for the mixture. We begin the section by explain­

ing the method of Friihwirth-Schnatter et al. [16] in more detail highlighting how 

it differs from our method. We then proceed to present the method first for the 

univariate example of section 4.1.1 and then show that it can be extended to the 

multivariate case. 

4.3 Generalisation of the auxiliary variable method 

Suppose that we write our non-standard density as 

p(x I y) oc f(x)h(x) 

where f(x) is thought of as 'nice' and h(x) is thought of as the 'nuisance' part 

forcing p(x I y) have a non-standard form. Suppose now that we introduce an 

auxiliary variable u such that 

p(x I u, y) oc f(x)h(x)q(u I x) (4.3) 

Now our problem becomes finding q(u I x) which in some sense 'removes' the h(x) 

making p(x I u, y) have a recognised distributional form, that of a Normal distribu­

tion in our case. 
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A possible way to approach this is to choose a density t/J( u) which is easy to 

generate from and then either scale it by some function g(x) or shift its location 

by some g(x) to give us q(u I x). We can find specific examples of both of these 

approaches in [11] which are described in sections 4.3.1 and 4.3.2 respectively. 

4.3.1 Scaling 

Suppose 

q(u I x) = lg(~) 11/J(g~)) (4.4) 

for some density 1/J(·). Putting this into equation (4.3) gives 

h(x) ( u ) 
p(x I u, y) oc J(x) g(x) t/J g(x) (4.5) 

and our problem is now to find a 1/J(-) and a g(x) which makes p(x I u, y) take 

a recognised distributional form. More specifically we want to find a g(x) which 

cancels out the 'nuisance' part of h(x). 

Example 

Suppose we take t/J(·) to be a Uniform(0,1) density and let g(x) = h(x) which leads 

to 

and 

1 { 1 if0<u/h(x)<1 
q(u I x) =-

h( x) 0 otherwise 

( I ) f() 
{ 

1 ifu E (O,h(x)) 
p X U, y CX: X 

0 otherwise 

i.e. p(x I u,y) is a truncated version of f(x) restricted to the set {x: h(x) 2:: u}. 

4.3.2 Location shift 

An alternative way to specify q( u I x) is 

q(u I x) = t/l(u- g(x)) 

for some density 'l/J( ·) and putting this into equation ( 4.3) gives 

p(x I u,y) ex: f(x)h(x)'l/;(u- g(x)) 
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Example 

Suppose we want to generate from 

p(x) oc f(x)h(x) 

where f(x) is a density of known form and h(x) = e-e"'. Suppose now we use an 

Exponential density with mean 1 for 1/J(·) and set g(x) =ex. It follows that 

and therefore 

{ 

e-u+e"' if u > ex 
q(u I x) = -

0 otherwise 

{ 

f(x) if x ~ log(u) 
p(x I u, y) oc 

0 otherwise 

i.e. p(x I u,y) is a truncated version of f(x) restricted to the set {x: x ~ log(u)}. 

4.4 Adapting the auxiliary variable method 

We now turn our attention to the scale construction of q(x I u) given in (4.4) and 

consider whether there are alternative combinations of 1/J(·) and a g(x) which would 

not result in truncation. We can also note here that the method of this section can 

be applied to other latent Gaussian models, not just the Poisson case. 

4.4.1 Requirements for 1/;(·) and g(x) 

We can rewrite our problem defined in ( 4.2) as wanting to make 

(4.6) 

take the form of a Normal distribution for some k E lR where J.L• = J.L + a2(y- k). 

We introduce k here simply because we can choose its value freely which may help 

in finding an efficient sampling scheme. Using equation ( 4.5) it follows that 

{ 
1 2 } ekxe-e"' ( u ) 

p(x I u, y) oc exp - 2a 2 (x- J.L.) g(x) 1/J g(x) . (4.7) 
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One option would be to choose g(x) and t/J(·) in such a way that p(x I u, y) takes the 

form of a Normal density. We now restrict our attention to this case which means 

that we require 

and 

t/J (_3!__) ex eQ(z) 
g(x) 

kx -e"' 
e e Q(x} 

g(x) ex e 

(4.8) 

(4.9) 

where Q(x) is any quadratic in x for which the coefficient of x2 is negative. Both of 

these parts could then be absorbed into the Normal density. We can also note that 

since p(x I y) involves a Normal density, there will be some values of x far away from 

the peak for which it will have virtually no probability. It would not be necessary 

for equations ( 4.8) and ( 4.9) to hold for such values of x. 

In section 4.4.2 we define what this necessary range of x is and in section 4.4.3 

we consider possible combinations of density t/J(·) and function g(x) which would 

ensure equations ( 4.8) and ( 4.9) hold for this range. 

4.4.2 The plausible range of x values 

In this section we want to find the values of x far away from the peak of p( x I y) 

which have virtually no probability. We begin by looking at a sketch of p(x I y) for 

some chosen values of p., 0', y and k which is shown in Figure 4.1. The x-axis shows 

x which is the value of x that maximises p(x I y) as well as x- r0 and x + r 1 which 

mark the boundaries beyond which x has virtually no probability. We let this 'small 

probability' area take the maximum value oft:~ 0 and more specifically t::/2 in each 

of the tails. Our problem now is to find the values of x, r 0 > 0 and r 1 > 0. 

Finding x 

To find x we use the Newton-Raphson method which is an algorithm for finding 

an approximate solution to the equation l'(x) = 0. Suppose we have some current 

approximation Xn, then we can find a better one Xn+l using 

I'(Xn) 
Xn+l = Xn- -(-)' 

')'
1 

Xn 
(4.10) 
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\ P(>< I y) 

--- E!'.C -----5'2-

l<.hat- rO x.hat x.hat + r1 

Figure 4.1: Illustrating the plausible range of x 

This will then converge to the solution provided the initial guess x0 was good. To 

find x we want to find the maximum of p( x I y), which will also be the maximum of 

log p( x I y). We therefore define 

d 
1(x) dx logp(x I y) 

- _.!!._ { - -
1
- (x - J.L.) 2 + kx - ex} 

dx 2a2 

_..::.._ + J.L• + k- ex 
a2 a2 

and this gives r'(x) = -~ -ex. We then choose initial value Xo = J.L* and proceed 

to find x using the iterative formula (4.10). 

Finding r0 and r 1: overview 

We begin by writing the information in Figure 4.1 more formally as 

where 

t: 1:ro p(x I y) dx < to=-
2 

t: 100 

p(x I y) dx < tOt=-
2 x+rt 

7J(x) 
p(x I y) = J 7J(x)dx 

{4.11) 

{4.12) 

( 4.13) 
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and 

ry(x) = exp{ - 2~2 (x - J.L.)2 }ekxe-e"'. 

Our aim is then to find the upper bounds Eo and E1 in terms of To and T1 respectively 

and set each one equal to E/2 to determine the T-values. However, the presence of 

J ry(x)dx in (4.13) makes it difficult to find the upper bounds directly. To proceed, 

we eliminate J ry(x)dx by dividing by p(x I y) as follows 

1x-ro p(x I y) 

-oo p(x I y) dx 
< • Eo 

loo p(~ I y) dx 
x+r1 p(x I Y) 

< Ei 

and find the upper bounds Eo and Ei which are easier to compute. We can then 

rewrite (4.11) and (4.12) as 

1-:ro p(x I y) dx < 

1x:
1 

p(x I y) dx < • -(~I ) E 
El p X y = 2 (4.14) 

where p(x I y) is the upper bound for p(x I y) which is also easy to compute. This 

procedure is very similar whether we are finding To or T1 so we now explain it in 

more detail for only one of them, namely T1 , but will explain where it differs for T0 . 

Finding To and T1 : details 

We begin by writing 

p(x 1 y) ry(x) exp{- ~(x- J.L.)
2 + kx- ex} 

p(x I y) = ry(x) = exp{- ~(x- J.L.) 2 + kx- eX} 

and since ~ > 0 for all x we know that an upper bound can be given by 

p( X I y) { 1 (~ ) 2 k~ X} { 1 ( ) 2 k } p(x I Y) :S; exp 2u2 x - J.L. - x + e exp - 2u 2 x - J.L• + x . 

Note now that 

where J.Lu = J.L + u2y which gives us 

:~~: ~~ :S; exp{ 2~2 (x- J.L.)
2

- kx+ex }exp{- 2~2 (x- J.L •• )
2 
+ kJ.L+ u

2
ky- ~u2k2 } 
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and so we can write 

(4.15) 

Note that if we were finding r 0 then the limits on the above integrals would be -oo 

and x- r0 . Suppose now that X"' N(p.u, o-2 ) where the corresponding probability 

density function and cumulative distribution functions are as follows 

cj>(x) 

<I> ll•. ,a (X) 

and note that 

1- <I>Il•••a(x) - 100 

cp(u)du 

<l> IL•• ,a (X) <l> (X -O"p.**) . 

where <I>(·) is that c.d.f. for the standard Normal distribution. We now use the 

above to rewrite ( 4.15) as 

foo p(: I y) dx < exp{ 2~2 (x- p..) 2
- kx +ex+ kp. + o-2ky- ~o-2k2 } 

lx+r1 p(x I Y) -

(4.16) 

Note that for calculating t:0 the contents of the square bracket would be changed to 

<I> ( x-roa-,. .. ). The next step is to find p(x I y), the upper bound for p(x I y). This 

can be written as 
_ ~ Tl(x) 
p(x I y) = J !J.(x)dx 

where '!f.(x) is a lower bound for Tl(x). Since we know that 

it is clear that a lower bound for 7J( x) can be obtained by finding an upper bound 

for ex. One such upper bound for ex is highlighted in Figure 4.2. It is obtained by 
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Figure 4.2: Illustrating an upper bound for ex 

upper bound 

x.hat x.hat+m 

fitting a quadratic {shown in red) above the ~ curve touching it at x. We define 

this quadratic as ~(x) = ax2 + bx + c for some a, b, c E JR. This means that at x, the 

curves are equal 

( 4.17) 

the first derivatives are equal 

( 4.18) 

and the second derivative of ~(x) is greater than the second derivative of ex 

~"(x) = 2a >ex. (4.19) 

We can then use (4.17) to (4.19) to find band c in terms of a and x so that a is the 

only unknown. More formally, 

where a> ~ex. We can also see from Figure 4.2 that there will come a point, namely 

x +m, at which ~(x) crosses ex meaning that ~(x) is no longer the upper bound. 
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This is true for whichever value of a we choose. Also, since ~(x +m) = t!+m we 

know that 
(-m- 1 + em)ex 1 x 

a= m2 > 2e 
and our value of a can be obtained from whatever value of m > 0 we choose. We 

can now define our lower bound of TJ( x) as 

{ 

exp{- 2!2 (x- J.L.)
2 + kx- ~(x)} 

ry(x) = 
- 0 

for X S x+ m 

for X> x+m. 

Since we can write 

1 ( )2 1 ( -)2 -
2

0"2 x- Jl• + kx- ~(x) = -
2

0:2 x- J.L + C 

where 

- ,.+~(y-eZ+2xa) 
J.L = 1+2aa2 

(i2- q2 
- 1+2au2' 

c = ~ ( (~r- (; r- u 2(y- k?) - (y- k)J.L- ex(l- x)- x 2
a 

then the lower bound can be written as 

{ 

exp{- 2~2 (x- ii) 2 + c} for X s X+ m 
ry(x) = 
- 0 for x > x + m. 

We can therefore write the integral of this lower bound as 

J !J.(x)dx = exp{C} 1:m exp{- 2~2 (x- ii) 2
}dx 

= exp{ C} a~ 4> ( x + ; - it) 
where 4>( ·) is that c.d.f. for the standard Normal distribution. It therefore follows 

that 

:p(x 1 y) 

= 

TJ(x) 
J !J.(x)dx 

exp{ - -b(x- J.L*) 2 + kx- ex} 

exp{ C} 0:,;2; 4> ( x+r;-i') 
(4.20) 

Note that there are still some unknown constants, namely m and k, which we are 

free to choose in order to minimise r 1 (and r0 ) thereby reducing the range for which 

equations (4.8) and (4.9) must hold. 
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From equations (4.16) and (4.20), we now know t:i (in terms of ri) and p(x I y) 

so, for any given value oft:, we can find r 1 using the right-hand side of the inequality 

in equation ( 4.14). More specifically, 

-
2 

t:ip(x I y) 

= 
exp{ kp + tJ2ky- ~tJ2 k2 - C }fJ [1- ct>(x+r~-y .. )] 

a cl> ( x+r;-A) 

which leads to 

where 
t:aci> ( x+r;-A) 

gives us 

We can also note here that ci>-1(1- p) = -4>-1(p) meaning that we can calculate r0 

from r 1 as follows 

ro = rl - 2(p .. - x). 

Since we need r 0 to be greater than 0 then we must choose m and k in such a way 

that r 1 is greater than the maximum of 0 and 2(p •• - x). Once we have calculated 

x, ro and r1, it follows that the plausible range of x values is 

4.4.3 Choosing 1/J(·) and g(x) 

We first consider defining '1/J(·) and g(x) such that equation (4.8) holds. Recall 

that for x E 0 we require 'I/J( 9~)) ex eQ(x) for some quadratic Q(x) with negative 

coefficient of x2
• We begin by noting some restrictions on the domain of '1/J( ·). 
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Domain of '1/J( ·) 

Suppose that we take '1/J to be a Beta( a, b) density such that 

f(a +b) a-1( )b-1 [ ] '1/J(t) = f(a)f(b) t 1 - t , t E 0, 1 

then to ensure equation (4.8) holds we must set b = 1 and g(x) = eQ+(x)_ However, 

the definition of '1/J(·) means that 
9
(x) E [0, 1] which would lead to a truncation in 

generating from p(x I u, y) and, as we have already discussed, generating from a 

truncated multivariate Normal distribution is difficult. We can generalise this to 

say that when defining '1/J(t), the domain oft must be lR or JR+ to prevent it from 

resulting in a truncated distribution for p(x I u, y). 

Ensuring equation ( 4.8) holds 

Suppose that 

'1/J(t) ex: exp{-t11n}, tEJR+,nEJR+ 

w(g~)) ex: exp{- (g~))
11

n} 
and we can note that if n = 1, then '1/JO takes the form of an Exponential density 

with mean 1. To ensure that equation (4.8) holds we must set g(x) = [Q1(x)r 

where Q+(x) is any positive quadratic in x. It is therefore relatively straightforward 

to ensure that '1/J ( 
9
(x)) ex: eQ(x) but now we need to further define g( x) to ensure 

that equation ( 4. 9) holds which is a more difficult task. 

Ensuring equation ( 4.9) holds 

Recall that we want to find k E lR and g(x) = [Q+(x)rn such that ek;(~·"' ex: eQ(x) 

for all x En. Suppose that we now let Q+(x) = ax2 + {Jx + cS and rewrite equation 

(4.9) as 
de/ 2 <f>(x) = kx- ex+ nlog(ax + {Jx + cS) ex: Q(x). 

We proceed by finding the value of x which maximises </>(x) and fit a quadratic ((x) 

through this point. We then quantify how close ((x) and </>(x) are using 

I= In I </>(x)- ((x) I dx 

and useR function optimO to find the values of o, {J, cS and n which minimise/. 
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Numerical example 

Suppose that JL = log(2), er = 1 and y = 3 such that 

f(x) = exp{- ~(x -log(2))
2

} 

h(x) = (ez)3e-e"'. 

and equation ( 4. 7) becomes 

{ 
1 2}ekze-e"' ( u ) 

p(x I u, y) <X exp - 2 (x- [log(2) + (3- k)]) g(x) 1/J g(x) 

77 

We first find n, the plausible range of x values, using the method described in 

section 4.4.2. Using the R function optimO to find the values of m and k which 

minimise this range we obtain 

n = [-6.734657,8.721104]. 

If we take '1/J(t) <X exp{-t11n} then we must let g(x) = [Q+(x)]-n to guarantee (4.8) 

holds. Using the above method for ensuring (4.9) holds, we find g(x) and ((x) to be 

g(x) - (2.183364x2 + 0.8487513x + 1.440820)-2
·
656443 

((x) - -0.1107425x2
- 1.101230x + 2.293468 

which lead to a minimum value of I = 6266.303. We therefore conclude that the 

quadratic ((x) is a poor approximation for <f>(x) and it doesn't seem possible to find 

a <f>(x) <X Q(x) using the method described in this section. 

4.4.4 The problem with the method 

The difficulty arises because e-e"' has an awkward asymmetrical shape shown in 

Figure 4.3(a) which makes it hard to find a g(x) to 'cancel' it out. We know that we 

would like g(x)-1 to take the form [Q+(x)]n which has a symmetrical shape. Fig­

ure 4.3(b) shows g(x)-1 for n = 1 and some Q+(x). Figure 4.3(c) shows e-e"' g(x)-1 

and Figure 4.3(d) shows the same thing on log-scale. On first glance it could appear 

that (c) shows the tail of a Normal density curve but when we look on log scale it 

is clear that (d) is not part of a quadratic as it would need to be for this approach 

to work. 
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Figure 4.3: Illustrating the problem with the method 
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Does adding another auxiliary variable improve things? 

It is possible to introduce another auxiliary variable w which changes the prob­

lem in such a way that g( x) has a symmetrical shape to cancel out instead of the 

asymmetrical one, which we hope could improve things. Suppose 

w Poissan(e-x) 

p(w I x) ex: e-wxe-e-" 
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and this leads to 

p(x I u, y, w) oc p(x I u, y)p(w I x) 

{ 
1 2 } ekxe-(e"'+e-"') ( u ) 

oc exp - 2u2 (x- Jl.) - wx g(x) 1/J g(x) 

{ 
1 _ 2} e-(e"'+e-"') ( u ) 

oc exp - 2u2 (x- Jl•) g(x) 1/J g(x) 

for some constant ji. depending on k, wand y. Note that cosh(x) =!(ex+ e-x) so 

our problem now becomes finding 

and 

1/J (~) oc eQ(x) 
g(x) 

e-2cosh(x) 
---:---,:-- ()( eQ(x) 

g(x) 

If we take 1/J(t) oc exp{ -t11n} as we have discussed previously, then we require 

g(x) = [Q+(x)]-n which is symmetric. Although g(x) now has something symmet­

ric to cancel out, the main problem is that e-2cosh(x) goes to zero too quickly for 

g(x) to be [Q+(x)]-n. To illustrate this we look at the behaviour of the logarithms 

of e-2cosh(x) and [Q+(x}]-n. Firstly we note that -2cosh(x), by definition, tends to 

-oo exponentially fast as it moves away from 0. We now consider -nlog[Q+(x)] 

which, for large x, behaves like -nlog(ax2) for some a E JR. We can therefore 

think of the behaviour of -nlog[Q+(x)] as essentially the same as the behaviour of 

-nlog(a) - 2nlog(x). Now, although -log(x) does tend towards -oo as it moves 

away from 0, it does so very slowly in comparison to cosh(x). This is illustrated 

in Figure 4.4. This means that setting g(x) = [Q+(x)]-n wouldn't be sufficient to 

compensate for the awkward behaviour of e-2cosh(x). 

Our options now are to try to fix the problem by making a better choice for 

1/J( ·) or by using an approach other than scale construction when introducing the 

auxiliary variable. However, intuition says that this might not be possible. In the 

overall set up of the problem, recall that we have 
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Figure 4.4: Illustrating the behaviour of -log(x) and -cosh(x) 
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and we introduce the auxiliary variable u as follows 

(4.21) 

such that we want p(x I y, u) to take the form of a Normal density. We therefore 

need 
1 

p(u I x) = <5(x) exp{ a(u)x2 + b(u)x + c(u)} 

where a, band care some functions of u and <5(x) is the normalising constant which 

needs to 'cancel out' the nuisance part of p( x I y). This means that we would require 

5(x) to behave similarly to e-e"' (or e-2cosh(x) if we introduce the extra auxiliary 

variable to make things symmetric). The question now becomes whether or not we 

can choose a, band c for this to be the case. Note that 

<5(x) = jexp{a(u)x2 +b(u)x+c(u)}du 

and we now look at the basic behaviour of 6(x) and first consider the case for which 

x > 0. Suppose we let A0 be some interval of positive length on which a(u) and 
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b( u) are bounded below and let a 0 be the infimum of {a(·), b( ·)} on that interval. 

We then have that 

J exp{ a(u)x2 + b(u)x + c(u) }du > io exp{ a(u)x2 + b(u)x + c(u) }du 

> [ exp{ aox2 + aox + c(u) }du 
}Ao 

- exp{ a 0 (x2 + x)} JAo exp{ c(u) }du 

so we know that 6(x) can't go to 0 faster than exp{ ao(x2 + x)} as x--+ oo. Suppose 

now that x < 0 and we let A1 be some interval of positive length on which a(u) and 

-b(u) are bounded below. Furthermore, we let a 1 be the infimum of {a(·), -b(·)} 

on that interval. We then have 

j exp{ a(u)x2 + b(u)x + c(u) }du > f exp{a(u)x2
- b(u)x + c(u)}du 

JA, 
> f exp{ a 1x 2 + a 1x + c(u) }du JA, 

exp{ a 1 (x2 + x)} f exp{ c( u) }du JA, 
so we know that 6(x) can't go to 0 faster than exp{ a 1 (x2 + x)} as x--+ -oo. We 

then let a = min{a0 , at} and are able to conclude that 6(x) can't go to 0 faster 

than exp{ a(x2 + lxl)} as lxl --+ oo which means that 6(x) can't behave similarly to 

exp{ - exp{ x}}. Firstly, if a > 0 it follows that exp{ a( x2 + lxl)} tends to oo as 

lxl --+ oo rather than the 0 we require. If a < 0 then although exp{ a(x2 + lxl)} 

does tend to 0, it does so much slower than exp{ - exp{ x}}. In other words, 

a(x2 +lxl) goes to -oo much slower than -exp{x} which is illustrated in Figure 4.5 

for a= -1, -50 and -100. 

This suggests that it is not possible to find an a, band c such that 6(x) behaves 

similarly to e-ez or e-2cosh(x). It therefore seems that introducing p( u I x) as in 

(4.21) is not possible, irrespective of our choice of 1/J(·) or whether or not we use 

scale construction in defining p(x I u). We now turn our attention to a different 

method of solving the problem, namely that of auxiliary mixture sampling which 

was introduced in section 4.2. 
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Figure 4.5: Illustrating the behaviour of -exp{x} and a(x2 + x) 
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4.5 Auxiliary mixture approximation 

10 

82 

We begin by describing the method of Friihwirth-Schnatter et al. [16] which is a 

recent approach to this type of problem. We do so in the context of the univariate 

example outlined in section 4.1.1. Recall that 

Y Poisson(>.) 

X N(JL, c?) 

and we want to make the posterior distribution p(x I y) take the form of a Normal 

distribution by introducing augmenting variables. The approach begins by letting y 

be the number of jumps of an unobserved Poisson process with intensity >., having 

occurred in the time interval 0 ~ t ~ 1. They then define T2 to be the arrival time 

of the last jump before t = 1 and Tj to be the interarrival time between the last 
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jump before and the first jump after t = 1. It then follows that for y > 0, 

. {I 
Tl >.' 

6 rv Exp(1) 

• 6 
T2 - -:.\"' 

6 rv Gamma(y, 1) 

and note that for y = 0 we are only dealing with the equation involving Ti. It is 

here that the first of the latent variables are introduced: 

We have now eliminated the non-linearity of the observation equation but the error 

term is still non-Normal. More specifically, 

-logT; - log>.+ t:1 , where t: 1 = -log{I 

where t:2 = -log{2. 

so t: 1 is the negative logarithm of an Exponential random variable with rate 1 and t: 1 

is the negative logarithm of a Gamma random variable with shape y and unit scale. 

This is where the second set of latent variables comes in. Friihwirth-Schnatter et 

al. [16] describe how the densities of both t: 1 and t:2 can be approximated by Normal 

mixtures 

R1 

p(t:l) ::.:::: L WrJ(t:t;m.-l's;1) 
r1=l 

R2 

p(t:2) :=.:::: L Wr2/(t:2; Tnr2, B;2) 
r2=l 

where 
R1 R2 

L Wrl = L Wr2 = 1 
r1=l r2=l 

and/(-; mr, s;) is a Normal density with mean m,. and standard deviation sr for the 

r-th component. The second set of latent variables are the component indicators for 

these mixtures such that 

(r1,r2) ify>O 

T1 if y = 0. 
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The conditional posterior distribution p(x I y, r, r) then takes a Normal distribution 

as follows 

and the conditional distributions p(r I y,x,r) and p(r I y,x,r) are also easy to 

generate from. The method we are about to introduce differs from this one in the 

sense that the first set of auxiliary variables T are not necessary but is similar in 

the sense that it uses one of the Normal mixture approximations. The elimination 

of the first set is of particular benefit when we consider the multivariate version of 

the problem. The current method requires a T to be introduced for each observation 

meaning that for a large data set, a large number of latent variables are needed. 

Our method begins by rearranging the posterior distribution p(x I y) to comprise a 

Normal density multiplied by something which can be approximated by a mixture of 

Normals. We now introduce the method in more detail, initially for the univariate 

example. 

4.5.1 Univariate case 

In this section we show that it is possible to find a very good approximation to 

p(x I y) which takes the form of a Normal density. We begin by using (4.6) with 

k = 1 to express 

(4.22) 

where Jl• = J1 + f72(y- 1). We proceed by noting that exp{x- ex} can be approxi­

mated sufficiently closely by a mixture of Normal distributions. 

Normal mixture approximation 

Suppose that 

(4.23) 

which can be approximated, as shown by Friihwirth-Schnatter and Wagner [17], by 

a normal mixture of R components 
R 

~(x) = L Wrf(x; mr, s;) 
r=l 
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where f(·; m,., s;) is a Normal density with mean m,. and standard deviation sr for 

the r-th component. Friihwirth-Schnatter and Friihwirth [15] use distance-based 

measures to fit the mixture to exp{ x - e"} and evaluate the approximation. They 

find that the best performing approximation is for 10-components and is based on 

minimising the relative entropy between ~(x) and tP(x). The parameters (wr, m,., s;) 

for R = 10 are given in Table 4.1. 

Table 4.1: Parameter values for the 10-component Normal mixture approximation 

r 1 2 3 4 5 6 7 8 

Wr 0.004 0.040 0.168 0.147 0.125 0.101 0.104 0.116 

m,. -5.09 -3.29 -1.82 -1.24 -0.764 -0.391 -0.043 0.306 

s2 
r 4.5 2.02 1.1 0.422 0.198 0.107 0.078 0.077 

Introducing the auxiliary variable 

We can now introduce the auxiliary variable r to (4.22) as follows 

p(x, r I y) ~ exp{ - 2~2 (x- J.£.)2 }wrf(x; m,., s~) 

9 

0.107 

0.673 

0.095 

ex: exp{ - _1_(x- J.£.)2} Wr exp{ - _1_ (x- m,.)2} 
2a2 s 2s2 

r r 

and summing over r then gives us 
10 

p(x I y) ~ exp{- 2~2 (x- J.£.)
2
} 8:: exp{- 2~; (x- mr) 2

}. 

Given one particular value of r, this leads to 

p(x I y, r) ~ exp{ - 2~2 (x- J.L.)
2
}exp{ - 2~~ (x- mr )

2
} 

ex: exp{ - 2~2 (x- Ji)2} 

where 
2 2 

~ J.L•Sr + mrO" 
J.L -

s; + o-2 

(j2 s2a2 r -
s; + o-2 · 

10 

0.088 

1.06 

0.146 

(4.24) 

We note here that this can be thought of as a sequential Normal update where the 

mixture summaries mr and sr 2 can be considered as 'data' used to update the prior 

(J.L., o-2) to the posterior. 
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Generating the sample 

To use a Gibbs sampling approach, we first generate a value of r (given an initial 

value for x) from discrete probability distribution wi, ... , wi0 where 

• w3j(x; rn3, s]) 
wj = 10 . 2 

I:j=l w3j(x, rn3, s3) 

is the probability of obtaining a value r = j. We then use this value of r to obtain 

Ji and a2 and generate x from a Normal distribution with these parameters. We 

then use this most current value of x to generate another value of r which we use to 

generate another value of x, and so on. 

How good is the approximation? 

In order to see how well this auxiliary mixture approximation works for the univari­

ate example given in section 4.1.1, we generate one sample using this method and 

one sample using LinBUGS (as described in section 3.3) then compare the two. We 

use the initial value x = 1, data y = 3 and parameter values J.L = log(2) and a= 1 

and obtain samples of size 10,000. Figure 4.6 shows the posterior density obtained 

using a sample from LinBUGS in blue and from sampling using the improved auxil­

iary mixture approximation in red. We can see that they appear to be quite close 

to each other. Their summary values (shown in table 4.2) also confirm this since 

their means, standard deviations and quantiles are very close. 

Table 4.2: Summary values for the univariate example 

mean sd 2.5% 25 % 50 % 75 % 97.5 % 

BUGS 0.899106 0.534976 -0.2433 0.5646 0.9274 1.2770 1.8460 

Approx 0.889919 0.536570 -0.2244 0.5373 0.9286 1.2683 1.8502 

We can also quantify the 'difference' between the two samples using relative en­

tropy, as described in section 5.1.2. For our example, this is 0.00251 which can be 

thought of as a very small difference. Figure 4.6 also shows the true posterior den­

sity for the example which is close to the densities obtained using MCMC. We can 

therefore conclude that, for this example at least, our auxiliary mixture approxima­

tion not only works as well as LinBUGS but also produces an accurate estimate of 
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Figure 4.6: Univariate example showing accuracy of the approximation 
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the true posterior density. We can also note that it still works as well when different 

values of initial x, f..L and a are used. However, this is not the case as we increase 

they value. 

Auxiliary mixture approximation for large y 

If we keep the same initial value x = 1 and parameter values JL = log(2) and a = 1 

but change the data to be y = 10 then a problem occurs with our auxiliary mixture 

approxi_mation method, but not with the LinBUGS method. Figure 4. 7 illustrates 

this. 

The reason for the problem is due to the normal mixture not being a very good 

approximation for exp{x- ex} when x is large. The first plot in Figure 4.8 shows 

the true exp{ x - ex} in black and the approximation to it in red for x between -10 

and 10. On first glance the approximation appears to be very good. However, when 

we look at the same thing on log-scale (shown in the second plot) it is clear that the 

approximation begins to break down when x ~ 10. 

A large value of y would increase the mean of p( x I y , r) given by ( 4. 24) thereby 
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Figure 4.7: Breakdown of the auxiliary mixture approximation for large y 
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Figure 4.8: exp{ x - ex} and its Normal mixture approximation 
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pushing the values of x generated more towards this area where the approximation 

breaks down. One solution to this problem is to find a way of shifting the area 

where the approximation is applied back into the region where it works. This is the 



4.5. Auxiliary mixture approximation 89 

problem we now consider. 

Improved auxiliary mixture approximation 

In this section we present a way of shifting the area where the approximation is 

applied by introducing a second normal mixture distribution. First we note that 

our original problem defined in ( 4.2) can be expressed as 

p(x I y) ex: exp{ - 2~2 (x- /-Lu) 2 }exp{ x -log(2)- ex-log(2
)} 

X exp{ x- log(2) - ex-log(2)} 

ex: exp{ - 2~2 (x- /-Ln)2 }1P1 ( x- log(2) )1P2 ( x -log(2)) 

where /-L** = J.L+CJ2(y- 2) and IPi(·) fori= 1,2 is as defined in (4.23). Now we have 

10 10 

p(x I y) ~ exp{- 2~2 (x- 1-L**?} L wrJ(x; m;1 , s~J L Wr2/(x; m~, S~2 ) 
r1=l r2=l 

where m;;= mr; +log(2) fori= 1, 2 and J(-) is as defined in section 4.5.1. It follows 

that 

p(x I y,r1,r2 ) ~ exp{- 2~2 (x- J.L**)
2 }exp{- 2~;1 (x- m;J

2
} 

x exp{ - 2~2 (x- m;2 )
2

} 
r2 

ex: exp{ - 2~2 (x- /-L ... )
2 
}exp{ - 2~ (x- m)

2
} 

ex: exp{ - 2~2 (x- J:i)
2

} 

where 

* 2 + • 2 
~ mrl 8r2 mr2 8 rl 
m -

2 + 2 8rl 8 r2 
2 2 

~ 
8 rl 8r2 -
2 + 2 

srl 8r2 
/-LnSl + mCJ2 

/-L - 82 + (J2 

(;2 
SJ-(J2 

82 + (J2 

Again note that this can be thought of as a sequential Normal update where we 

update s1 using s2 , then /-L-.. using both. We then use an initial value for x to 
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generate r 1 and r2 , both from the same discrete probability distribution wi*, ... , wi0 
where 

.. wif(x; mi + log(2), s]) 
wi = "'to !( . l (2) 2) 

L-j=l wi x, mi + og , si 

is the probability of obtaining a value ri = j for i = 1, 2. These values of r 1 

and r2 are then used to generate x from p(x I y, Tt, r 2 ) in the same way outlined in 

section 4.5.1. Once we have obtained a sample using this improved auxiliary mixture 

sampling method, we can compare the density produced once again with the true 

density and the density resulting from using LinBUGS. This is shown in Figure 4.9 

which is a vast improvement on Figure 4. 7 where the approximation was produced 

using the original method. 
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Figure 4.9: Improved auxiliary mixture approximation for large y 

Note that we could take this further and include more mixture distributions to 

make the method possible for any value of y but this would increase the computa­

tional cost and therefore may not be any improvement on using another sampling 

scheme such as Metropolis-Hastings to solve our problem. Recall that our overall 

goal is to make the multivariate distribution given in equation ( 4.1) take a standard 
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distributional form. We now generalise our method to a multivariate case and illus­

trate that our goal is possible using a simplified version of ( 4.1) for one time point. 

We apply the NHS Direct data analysed in chapter 3 to do this for which a total of 

two mixture distributions is sufficient. 

4.5.2 Multivariate case 

Suppose that we now consider the following p-dimensional case 

where JL, E, y and E1 , ... , Ep are known and we want to use Gibbs sampling to 

generate from 

We begin by noting that 

exp{ YiXi - elogE,+x•} ex: e(y;-2)x•exp{ log( Ed2) +Xi - elog(E;/2)+x;} 

X exp{ log(Ei/2) +xi - e1og(Ed2)+x;} 

which leads to 

p 

p(x I y) ex: exp{- ~(x- JL.)'E- 1(x -~-&.)}IT 'Pl·i(log(Ed2) + xi)'P2·i(tog(Ed2) +xi) 
i=l 

where JL. = JL + E(y- 2) and IPj·i(·) fori= 1, ... ,p and j = 1,2 is as defined in 

( 4.23). Now we have 

(4.25) 
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where m;h = 'mr;.; -log(Ed2) for j = 1, 2 and i = 1, ... ,p and/(-) is as defined in 

section 4.5.1. If we let ri = (ri·l> ... , ri. 12) for j = 1, 2 it follows that 

p(xjy,r1,r2) ~ exp{ -~(x-IL.)TE-1 (x-IL.)} 

where 

x ITP exp{- -
1

- (xi- m* .) 2 }exp{- - 1
- (xi- m• .) 2

} 2s2 rl·• 2s2 r2·• 
i=l rl·i r2.i 

p 

ex exp{ - ~(x -IL.)TE-1(x- IL.)} IT exp{ - 2~ (xi- ~)2 } 
i=l t 

ex exp{ - ~(x- iJ,fE-1(x- jl,)} 

s 

(fih, ... , m12) 

s2 s2 
rt·i r2·i 

s~l-i + 8~2.; 

diag(!, ... , ~ ) 
si S12 

((IL;E-1 +mTS)E]T 

(E-l+ s) -1 

We then use initial value x to generate each ri·i I xi for i = 1, ... , p and j = 1, 2 

from discrete probability distribution w;. 1 , ... , wi. 10 where 

is the probability of obtaining a value Tj·i = k. These values of r 1 and r 2 are then 

used to generate x from p(x I y,r1,r2) in the same way outlined in section 4.5.1. 

Example 

We now return our attention to the model of Mugglin et al. [36} described in chap­

ter 3 and illustrate results for the particular problem outlined in equation (4.1). 

Restricting attention to t = 1, our problem is simply the multivariate example of 

this section where p = 12. We first use our known values for /L, E, y, E1 , ... , E12 

and chosen initial x to obtain a sample of size 10000 using the method described in 



4.6. Properties of the multivariate auxiliary approximation method 93 

this section. We then use the same p., E, y, E1, ... , £ 12 and initial x and obtain an 

equivalent sample using LinBUGS. Both sets of densities obtained are compared in 

Figure 4.10 and the relative entropy for each pair of densities is shown below each 

plot. The densities look to be very close and this is confirmed by the small relative 

entropys between them. 

We also want to verify that the joint distributional structure of the posterior 

distributions are similar whether samples are obtained using our auxiliary mixture 

approximation method or using LinBUGS. Using the R package CODA we find the 

cross correlations between each of the pairs of variables for both of the posterior 

samples and then find the difference between the two. Table 4.3 shows these dif­

ferences for the first 6 variables. We can see that they are all relatively small and 

continuing for all 12 variables produces a maximum difference of 0.086 which is still 

sufficiently small to deduce that the joint distributional structures are similar. 

Table 4.3: Differences in cross-correlations obtained using the two approaches 

X1 X2 X3 X4 X5 X6 

X! 0.000 0.023 0.030 0.015 0.004 0.012 

X2 0.000 0.012 0.001 0.016 0.037 

X3 0.000 0.024 0.014 0.019 

X4 0.000 0.022 0.007 

x5 0.000 0.002 

X6 0.000 

We can therefore conclude that the auxiliary mixture approximation method 

works as well as LinBUGS for the multivariate case. 

4.6 Properties of the multivariate auxiliary 

approximation method 

In this section we explore further the statistical properties of the multivariate auxil­

iary mixture approximation method. Ideally we would like to compare the samples 
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obtained using this method with the true posterior distribution as we did for the 

univariate case (for example in Figure 4.9) but computation of the true posterior in 

this case is very difficult. Instead, we use many simulated examples (described fur­

ther in section 4.6.1) and present three methods of analysis which provide valuable 

insight into the properties and performance of our method. 

4.6.1 Simulated examples 

Suppose that we continue using 12 dimensions as we did in the example of sec­

tion 4.5.2 so we have 

N12(J.L, E) 

Poisson( Eiexi) 

where E is kept the same as in the example and E~, ... , E12 = 1. We consider this 

example for three different data sizes and obtain a sample of size 10000 from the 

posterior for each. The three different cases we consider are as follows 

1. where the data have small counts. More specifically, we let J.Li = log(1) for 

i = 1, ... , 12 to allow each E[Yi I Xi] = 1. 

2. where the data have slightly larger counts. This time we let J.Li = log(4) for 

i = 1, ... , 12 to allow each E[Yi I Xi] = 4. 

3. where the data have large counts. Here we let J.Li = log(30) for i = 1, ... , 12 

to allow each E[Yi I Xi] = 30. 

For each case we simulate an initial value x = Xo from the true distribution 

N12 (J.L, E) then use this value to simulate y from the distribution Poisson(Eiexi). 

We then use the method of section 4.5.2 to obtain a sample x 1, ... , x 10000 from the 

posterior. This is then repeated 100 times giving us 100 sets of 10000 samples for 

each of the three cases. 

4.6.2 Checking that posterior contains true value 

We begin by checking that our posterior sample does actually contain our 'true' 

value of x. We do this univariately to start with and consider where XOi lies in 
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xli, ... , x10000i. We find what proportion of the sample is ~ xOi and call this value 

Pi· For each of the three cases we obtain 100 values of Pi· Since the distribution of 

Pi tends to Uniform(0,1) as the sample size tends to infinity, we use a Chi-squared 

test to test each of the three groups of PiS for Uniformity. Before we do this however, 

we first present a proof of the claim that the distribution of Pi is Uniform. 

Consider the following algorithm: 

1. Generate Xo from the distribution of X 

2. Generate y 0 from the distribution of Y I X= Xo 

3. Generate a sample Xi, ... , xj., from the distribution x· I y where x· I y = 
X I Y if the algorithm works 

4. Find what proportion of xii, ... , xj.,i are ::; XOi and call this Pi 

Claim 

If the above algorithm works then ~ ~ Unif(O, 1) as N --too 

Proof 

We know that 

Suppose that the algroithm works. Then 

so it follows that 
~ 

~::::; ~ = Fx;IY(Xo;IYo). 

Since Xo, y are sampled from the joint distribution of (X, Y) it means that 

d Xo I Y = Yo = X I Y = Yo· 

We know that for any continuous univariate distribution we have 

Fw(W),...., Uniform(O, 1), 
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so this implies that 

?.. I Y = Yo "' Unifarm(O, 1) 

for all y0 , which means that 

?._"' Unifarm(O, 1). 

Note that if X* I Y =J. X I Y, then Pi = Fx;IY(xOi I y) will not have a uniform 

distribution for all Yo, unless for some reason Fx;IY = Fx,JY· 

Results 

For each of the three data cases and fori= 1, ... , 12 we have 100 values of Pi· We 

then use the Chi-squared test on each of these 100 values to test for uniformity. 

Table 4.4 shows the p-values resulting from the test for each data case and each 

value of i. 

p when J.li = log(1) p when J.li = log(4) p when J.li = log(30) 

1 0.15 0.80 0.15 

2 0.44 0.32 0.26 

3 0.83 0.21 0.19 

4 0.20 0.85 0.12 

5 0.87 0.14 0.09 

6 0.42 0.32 0.82 

7 0.09 0.92 0.03 

8 0.47 0.44 0.99 

9 0.24 0.60 0.85 

10 0.78 0.53 0.62 

11 0.62 0.72 0.15 

12 0.83 0.91 0.74 

Table 4.4: p-values resulting from the Chi-squared test for uniformity 

In general these p-values are high enough not to reject the claim that the values 

of Pi we have could be uniform distributed. 
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4.6.3 Mahalanobis distance 

Mahalanobis distance is a useful way of determining similarity between two groups 

of values. It differs from Euclidean distance in that it takes correlations into account. 

Suppose we wanted to find the similarity between a set of values x and another set of 

values with mean m and covariance matrix C then the Mahalanobis distance would 

be 

d = (x- m)' c-1(x- m). 

To see how Mahalanobis distance works we use our true set of values Xo for x along 

with prior mean J.L and covariance matrix E for m and C. For any multivariate 

Normal distribution X with given mean vector and variance matrix, the Mahalanobis 

distance has exactly a Chi-squared distribution with the degrees of freedom equal 

to the rank of the variance matrix. We found this distance for each of the 100 Xo 

values we have for each of the three data cases. The summaries of these distances 

are shown in Table 4.5 separately for each data case and each one could be said to 

follow the xi2 distribution. One indication of this is that each of the summaries are 

consistent with the xi2 distribution which has a mean of 12, a standard deviation 

of 4.90 and a median of approximately 11.33. 

d when J.Li = log(l) d when J.Li = log(4) d when J.Li = log(30) 

Min. 5.14 4.84 4.72 

1st Qu. 9.51 9.44 9.38 

Median 10.95 10.80 11.21 

Mean 12.24 10.74 11.54 

3rd Qu. 13.26 12.91 13.80 

Max. 25.85 15.47 17.75 

Table 4.5: Mahalanobis distance between true values and prior 

We now use Mahalanobis distance to consider the similarity between our true 

value Xo and the sample x 1 , ... , x 10000 for which we have mean X: and covariance 

matrix C. We obtain 100 values of this distance do for each of the three data cases. 

Table 4.6 shows summaries of these 100 values for each of the data cases separately. 
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do when J.ti = log(1) do when J.ti = log(4) do when J.Li = log(30) 

Min. 2.09 1.90 953.2 

1st Qu. 8.14 9.19 3073.0 

Median 11.16 11.79 4433.0 

Mean 11.89 18.17 5245.0 

3rd Qu. 14.42 16.38 6992.0 

Max. 27.47 370.20 14030.0 

Table 4.6: Mahalanobis distance between true values and samples 

The distances in the first column of Table 4.6 seem fine and we can assume 

that the posterior contains the true value. Although the second column is fine on 

the whole, it does include some large distances which indicate that there may be 

some break down in our method for that data case. By the time we get to the third 

column we see evidence of a definite problem with our method when the data counts 

are large. 

We can also use Mahalanobis distance to find the similarity between each sample 

Xj and another set of values which have the sample mean :X and sample covariance 

matrix C. Suppose we call these distances d3 where j = 1, ... , 10000. We can then 

find where the distance do lies in d1 , ... , d10000 for each of the 100 simulations and 

each of the three data cases. The summaries of these quantiles are given in Table 4. 7. 

J.ti = log(1) J.Li = log( 4) J.ti = log(30) 

Min. 0.001 0.001 1 

1st Qu. 0.223 0.315 1 

Median 0.482 0.538 1 

Mean 0.489 0.534 1 

3rd Qu. 0.729 0.827 1 

Max. 0.994 1.000 1 

Table 4. 7: Quantiles of do in d1, ... , d1oooo 

The median and mean tell us that the quantiles for the first two data cases are 

most around 0.5 , which is what we would expect. However for the large data case 
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we see that the true value is always larger than the posterior, which again indicates 

there is a problem. 

4.6.4 Variance decomposition 

In this section we consider a well known property of variance to give us further 

insight into how our method is working. Since we know that 

Var[X] = Var[E[X I Yl] + E[Var[X I Yl], (4.26) 

it should be the case that, for each of the three data cases, the original E should be 

approximately equal to the expectation of the variance of the samples added to the 

variance of the expectation of the samples. For each of the three data cases we do 

the following 

1. Find E[X I Y]: for each of the 100 simulations we find the mean of the sample 

values x 1, ... , x 10000 as follows 

10000 

mi = L Xji for i = 1, ... , 12 
j=l 

so we have 12 mean vectors I"Di each of length 100. 

2. Find Var[E[X I Yl]: we find the covariance matrix for the 12 mean vectors. 

3. Find Var[X I Y]: for each of the 100 simulations we find the covariance matrix 

for the mean vectors x1 , ... , x12 where 

~ = (xli, ... , x 10000i) fori= 1, ... , 12 

so we have 100 12 by 12 covariance matrices. 

4. Find E [V ar[X I Yl]: we average the 100 covariance matrices to obtain one 

12 by 12 matrix. 

5. Add E[Var[X I Yl] to Var[E[X I Y]] and compare with Var[X] = E 

For the first case, where the data have small counts, we find that there is little 

difference between the two matrices obtained at step 5. Comparing element by 
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element of the matrices we find the largest difference between the elements to be 

0.026 and the mean difference to be 0.004 which is very small. For the second data 

case, the two matrices could still be thought of as similar. The mean difference 

between comparible elements is 0.124 and the maximum difference is 1.350 which is 

still relatively small. However, by the time we reach the third data case the matrices 

are quite different. The mean difference between individual elements is 14.828 and 

the maximum reaches 90.511. 

We then convert the prior covariance matrix E into the correlation matrix by 

scaling by standard deviation and use the same rescaling on the right hand side of 

equation ( 4.26). For each of the three data cases we let 

'\" 

V 
-'...J 

scale 

VI 
Var(E[X I Yl] 

scale 

v2 = E[Var[X I Yl] 
scale 

and then look at the element by element differences between V and (V1 + V2 ). Note 

here that it is possible for matrices vl and v2 to have values greater than 1 since we 

are using the same scaling that we use to convert the E into a correlation matrix. 

However any such values would definitely indicate a break down of the method. 

Tables 4.8 to 4.11 show matrices V, VI> \12 and V- (VI+ V2 ) for the first data case. 

Table 4.11 has the maximum absolute value of 0.06 meaning that our method 

works well for the first data case. However for the second data case, the maximum 

absolute difference between V and (V1 + V2 ) is 3.55 which indicates a break down of 

our method. Furthermore, the third data case has maximum absolute difference of 

232.471 which means that our method is definitely failing. 

4.6.5 The role of the y values 

In order to investigate this problem further we look at the values of y produced 

during our simulations. Table 4.12 shows a summary of these broken down by data 

case. 

In section 4.5.1 starting from page 87 we consider how well the univariate version 
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Table 4.8: V for data case when J.Li = 1 

1.00 0.04 0.04 0.16 0.01 0.02 0.01 0.01 0.04 0.03 0.01 0.01 

0.04 1.00 0.26 0.25 0.07 0.26 0.10 0.07 0.25 0.09 0.08 0.10 

0.04 0.26 1.00 0.26 0.23 0.27 0.09 0.05 0.14 0.24 0.10 0.25 

0.16 0.25 0.26 1.00 0.08 0.14 0.07 0.05 0.22 0.21 0.05 0.08 

0.01 0.07 0.23 0.08 1.00 0.09 0.03 0.02 0.05 0.20 0.05 0.21 

0.02 0.26 0.27 0.14 0.09 1.00 0.25 0.12 0.27 0.08 0.25 0.25 

0.01 0.10 0.09 0.07 0.03 0.25 1.00 0.23 0.24 0.03 0.24 0.09 

0.01 0.07 0.05 0.05 0.02 0.12 0.23 1.00 0.21 0.02 0.21 0.06 

0.04 0.25 0.14 0.22 0.05 0.27 0.24 0.21 1.00 0.06 0.12 0.09 

0.03 0.09 0.24 0.21 0.20 0.08 0.03 0.02 0.06 1.00 0.03 0.09 

0.01 0.08 0.10 0.05 0.05 0.25 0.24 0.21 0.12 0.03 1.00 0.21 

0.01 0.10 0.25 0.08 0.21 0.25 0.09 0.06 0.09 0.09 0.21 1.00 

Table 4.9: V1 for data case when J.ti = 1 

0.09 0.02 0.00 0.04 0.01 0.01 0.01 0.02 0.02 0.03 0.01 0.03 

0.02 0.19 0.11 0.11 0.03 0.11 0.05 0.06 0.12 0.06 0.06 0.04 

0.00 0.11 0.24 0.13 0.09 0.13 0.06 0.07 0.10 0.11 0.08 0.13 

0.04 0.11 0.13 0.22 0.06 0.07 0.01 0.05 0.11 0.10 0.02 0.04 

0.01 0.03 0.09 0.06 0.11 0.05 0.04 0.03 0.04 0.07 0.04 0.08 

0.01 0.11 0.13 0.07 0.05 0.22 0.16 0.08 0.16 0.08 0.12 0.12 

0.01 0.05 0.06 0.01 0.04 0.16 0.41 0.17 0.17 0.03 0.15 0.05 

0.02 0.06 0.07 0.05 0.03 0.08 0.17 0.36 0.17 0.04 0.12 0.04 

0.02 0.12 0.10 0.11 0.04 0.16 0.17 0.17 0.39 0.07 0.10 0.08 

0.03 0.06 0.11 0.10 0.07 0.08 0.03 0.04 0.07 0.18 0.02 0.04 

0.01 0.06 0.08 0.02 0.04 0.12 0.15 0.12 0.10 0.02 0.31 0.13 

0.03 0.04 0.13 0.04 0.08 0.12 0.05 0.04 0.08 0.04 0.13 0.34 

of our method works for large y. In particular we consider when y = 10 and conclude 

that it works well in that case (see Figure 4.9 for example). We also noted that 

it would be possible to make the method work for any value of y by adding more 

mixture distributions but that doing so would increase the computational cost. This 



4.6. Properties of the multivariate auxiliary approximation method 102 

Table 4.10: \.'2 for data case when 1-Li = 1 

0.88 0.02 0.02 0.11 0.00 0.01 0.00 0.00 0.01 0.02 0.00 0.00 

0.02 0.80 0.15 0.14 0.03 0.15 0.04 0.02 0.12 0.04 0.03 0.04 

0.02 0.15 0.78 0.15 0.15 0.16 0.03 0.01 0.05 0.14 0.04 0.13 

0.11 0.14 0.15 0.77 0.04 0.06 0.02 0.02 0.11 0.12 0.02 0.03 

0.00 0.03 0.15 0.04 0.87 0.05 0.01 0.01 0.01 0.13 0.02 0.12 

0.01 0.15 0.16 0.06 0.05 0.81 0.12 0.04 0.13 0.03 0.13 0.13 

0.00 0.04 0.03 0.02 0.01 0.12 0.66 0.10 0.10 0.01 0.10 0.03 

0.00 0.02 0.01 0.02 0.01 0.04 0.10 0.71 0.09 0.01 0.10 0.02 

0.01 0.12 0.05 0.11 0.01 0.13 0.10 0.09 0.64 0.02 0.04 0.03 

0.02 0.04 0.14 0.12 0.13 0.03 0.01 0.01 0.02 0.78 0.01 0.04 

0.00 0.03 0.04 0.02 0.02 0.13 0.10 0.10 0.04 0.01 0.69 0.09 

0.00 0.04 0.13 0.03 0.12 0.13 0.03 0.02 0.03 0.04 0.09 0.67 

Table 4.11: V- (V1 + V2) for data case when /-£i = 1 

0.03 0.00 0.02 0.01 0.00 0.00 -0.01 -0.02 0.00 -0.02 0.00 -0.02 

0.00 0.01 -0.01 -0.01 0.00 0.00 0.01 -0.01 0.01 -0.01 -0.01 0.02 

0.02 -0.01 -0.03 -0.02 0.00 -0.02 0.00 -0.03 -0.01 -0.02 -0.02 -0.01 

0.01 -0.01 -0.02 0.01 -0.02 0.01 0.04 -0.01 0.01 -0.02 0.02 0.01 

0.00 0.00 0.00 -0.02 0.02 0.00 -0.01 -0.02 0.00 0.00 -0.01 0.01 

0.00 0.00 -0.02 0.01 0.00 -0.03 -0.03 0.00 -0.02 -0.03 0.00 0.01 

-0.01 0.01 0.00 0.04 -0.01 -0.03 -0.06 -0.04 -0.02 -0.01 -0.01 0.02 

-0.02 -0.01 -0.03 -0.01 -0.02 0.00 -0.04 -0.07 -0.05 -0.03 -0.01 0.01 

0.00 0.01 -0.01 0.01 0.00 -0.02 -0.02 -0.05 -0.03 -0.03 -0.01 -0.02 

-0.02 -0.01 -0.02 -0.02 0.00 -0.03 -0.01 -0.03 -0.03 0.04 0.00 0.01 

0.00 -0.01 -0.02 0.02 -0.01 0.00 -0.01 -0.01 -0.01 0.00 0.01 -0.01 

-0.02 0.02 -0.01 0.01 0.01 0.01 0.02 0.01 -0.02 0.01 -0.01 -0.01 

is the same for the multivariate case which we are considering here. From Table 4.12 

we can see that the y values in the first data case all fall within the boundaries that 

we know the method works for. For the second data case we can see that they 

mostly fall within these boundaries but do contain at least one very large value for 
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Yi when E[Yi I Xi] = 1 Yi when E[Yi I Xi] = 4 Yi when E[Yi I Xi] = 30 

Min. 0.0 0.0 4.0 

1st Qu. 0.0 2.0 21.0 

Median 1.0 4.0 31.0 

Mean 1.2 4.6 34.8 

3rd Qu. 2.0 6.0 43.0 

Max. 10.0 31.0 183.0 

Table 4.12: Summary of y values 

which our method may not work. By the time we reach the third case we can see 

that the majority of the y values simulated don't fit within these boundaries and 

therefore are likely to be the cause of the break down of our method. To fix this we 

would alter equation (4.25) to include more r.ps for example, 

p 

p(x I y) ex: exp{- ~(x -~-&.n::- 1 (x -~-&.)} 11 'PI·i(log(Ed4) +xi) 
i=l 

x 'P2·i (log( Ed 4) + Xi) 'P3·i (log( Ed 4) + Xi) 'P4·i (log( Ed 4) + Xi) . 

However, as we have already stated, this would increase the computational cost of 

the method. 

We noted in section 4.2 that one of the most well known methods for addressing 

the problem in this chapter is presented in Rue et al. (45] which uses a Gaussian 

approximation to p(x I y). Recall that when the observed counts are small, the 

Poisson term is no longer approximated well by a Gaussian term so their method 

runs into problems. In contrast, our method does work well when the counts are 

small and can be improved to also work well for large counts. 
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Figure 4.10: Accuracy of the approximation for the multivariate case 



Chapter 5 

Prior sensitivity analysis of 

MCMC output 

5.1 Background 

The introduction of Markov chain Monte Carlo (MCMC) computational methods 

has had a dramatic effect on assessing prior sensitivity. MCMC allows modelling of 

such complexity that inputs such as priors can only be elicited in a very casual way 

thereby increasing the need for sensitivity considerations. (Berger et al. [3]). 

Recall from section 1.2.2 that there has been much work focussing on local sen­

sitivity where small changes to the prior are studied. As we mentioned, one such 

example is McCulloch [34] who develops a general method for assessing the influence 

of model assumptions in a Bayesian analysis. He looks at the effect of changing the 

hyperparameter away from the initial choice and uses relative entropy to measure the 

difference between the posteriors resulting from different choices of hyperparameter. 

However, this approach requires us to know the resulting posterior distributions, 

which is not always possible. In the case where MCMC methods are used, we do 

not know the posterior distribution exactly but instead have only a sample from it. 

Clarke and Gustafson [7], whose work extends the idea of McCulloch [34], suggest 

how this method could be applied in the case where MCMC methods are used but 

they do not pursue this. In considering this idea further we discover a drawback of 

this approach. It doesn't allow us to see exactly which parts of the posterior are 

105 
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affected by the changes to the prior, which would be both interesting and useful to 

know. We explain this further in section 5.1.1. 

As well as not knowing the exact posterior distribution, another problem encoun­

tered when using MCMC is computational time. It can be very time consuming to 

run an initial model using MCMC, obtain a sample, change the prior parameter 

values and then re-run it to obtain another sample. Smith and Gelfand (49] present 

one solution to this in that once they obtain a sample from one posterior, they use 

importance sampling to obtain a sample from the posterior resulting from a 'close' 

prior. 

In this chapter we develop a practical way to see how sensitive each parameter 

in the model is to specified prior changes. Using just one MCMC run we obtain a 

sample from the posterior distribution of each parameter in the model and estimate 

the densities using kernel density estimation. Using the same sample and by incor­

porating the idea of importance sampling we also estimate the densities of marginal 

posterior distributions resulting from a different prior. We then quantify sensitiv­

ity for each parameter by finding the relative entropy between the corresponding 

marginal density from the first set of densities we estimated and that from the sec­

ond. This is something that doesn't seem to have been covered in previous Bayesian 

prior sensitivity work. 

In the remainder of this section we look in more depth at a sensitivity approach 

currently in the literature and also explore relative entropy in more detail. In sec­

tion 5.2 we develop the new marginal sensitivity method described above and in 

section 5.3 consider how well it works. In section 5.4 we see how changing the met­

ric from relative entropy to Kolmogorov distance affects the results and in section 5.5 

we apply the method to the model and data of chapter 3. 

5.1.1 A current sensitivity method 

Clarke and Gustafson [7] propose a method to quantify the local sensitivity of 

the posterior to simultaneous changes in the three inputs - the prior, the model 

and the data. For simplicity they restrict attention to conjugate priors and de­

scribe their method in the context of an example where X ,...., Gamma(>., Of>.), 
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f) ,....., I nver seGamma( a.1 , o 2) and 8 I X ,....., I nver seGamma( 01 + nA, o2 + n.Xx). 

They define the baseline set of inputs w = (a, A, z) and a nearby set of inputs 

w = (a, A, z). The discrepancy between the two posteriors arising from the two 

sets of inputs is measured using relative entropy 

d,s(w,w) = D(p(fJ I z;w)llp(fJ I z;w)) (5.1) 

where D(p(x)ijq(x)) = J p(x)log(p(x)jq(x))dx for densities p and q. The second 

order Taylor expansions of (5.1) about w is approximately 

dj,8 (w,w) = ~(w- wf Aps(w)(w- w) (5.2) 

where Aps(w) is the second derivative of dps(w,w) with respect tow evaluated at 

w = w. This Aps(w) can be thought of as the Fisher information matrix for the 

InverseGamma(o1 + nA, a.2 + n.Xx) family of distributions. 

For situations where we do not know the posterior distribution exactly but instead 

have only an MCMC sample from it, the Fisher information matrix Aps(w) can be 

expressed as 

[Aps(w) ti = Cov(a~, [logp(t9; w) + logL(t9; w)], a~i [logp(t9; w) + logL(t9; w)J) 

(5.3) 

where p( iJ; w) is the prior density and L( '19; w) is the likelihood. This can be esti­

mated using the sample covariance. 

Suppose now that we are only considering changes to the prior distribution so 

that w comprises only prior parameters. In this case the likelihood does not depend 

on w so a~i [logL(t9; w)] = 0 and equation (5.3) can be rewritten as 

[Aps(w)ti = Cov(a~/ogp(t9;w), a~/ogp(iJ;w)) 
To illustrate a drawback of this approach we consider a prior distribution comprising 

n parameters p( iJ; w) = p( iJ1; wi)P( iJ2; w2) · · · p( '!9n; wn) with 

logp('19;w) = logp('I?I;wl) + logp('l?2;w2) + ... + logp('19n;wn) 

It is easy to see from this that a~/ogp('l?;w) =a~ilogp('l91 ;wi) and therefore only 

involves the '!9i parameter. Similarly a~ _logp( '19; w) only involves the '19i parameter 
J 
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and it follows that for i # j 

[Aps(w)Lj = cov(a~/ogp(iJ;w), a~/ogp(iJ;w)) = o 

It is therefore impossible to use this method to see the effect that changing the prior 

of one parameter has on another. 

5.1.2 Relative entropy 

Relative entropy (or the K ullback-Leibler divergence) is defined by 

(5.4) 

and can be thought of as a general measure of the difference between two distri­

butions P and Q with densities p(x) and q(x) respectively. It assumes values in 

(0, oo) and has some of the characteristics of a distance, namely D(P 11 Q) > 0 and 

D(P 11 P) = 0 but also has the property that D(P 11 Q) # D(Q 11 P) unlike a 

distance. A better interpretation of D(P 11 Q) would possibly be the cost of using 

distribution Q when Pis the correct one. 

To get an idea of how relative entropy behaves we consider changes to the Normal 

and Gamma distributions. Suppose P0 has a Normal distribution with mean J.to and 

variance 1/To and we change the parameters to produce another Normal distribution 

H with mean J.L1 and variance 1/T1 . The 'difference' between P0 and P1 is measured 

by 

(5.5) 

Suppose P0 has parameter values J.to = 0 and To = 1 and we change only one 

parameter at a time. Figure 5.1 (a) shows the relative entropy calculated for various 

values of J.LI where T1 is kept at 1 and (c) shows the relative entropy calculated for 

various values of T1 where J.L1 is kept at 0. They also highlight some values of J.L1 

and T1 that produce a relative entropy of sizes 0.5, 1 and 1.5. For example, the blue 

lines in (a) tell us that setting J.L1 ~ 1.8 produces a relative entropy between P0 and 

P1 of 1.5. Figure 5.1 (b) and (d) show the original distribution P0 in grey and three 
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different changed distributions g in red, green and blue corresponding to changes of 

size 0.5, 1 and 1.5. Continuing the above example, the blue line in (b) corresponds 

to the distribution g "'N(1.8, 1). 
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Figure 5.1: Changes to the Normal distribution measured by relative entropy 

Suppose now that P0 has a Gamma distribution with shape parameter ao and rate 

parameter bo and we change the parameters to produce another Gamma distribution 

P1 with shape a 1 and rate b1 . One specification1 for the 'difference' between P0 and 

His given by 

D(Poi!Pl) = (ao- a1) ( 1/J(ao) + log(bo)) + ao(~ - 1) + logG~:~i:D (5.6) 

where 1/l(z) = fz log f(z) is the digamma function. Figure 5.2 gives us more of an 

idea of what this looks like for different values of a1 and b1 where ao = b0 = 1. 

1used inhttp://en.wikipedia.org/wiki/Gamma_distribution 
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Figure 5.2: Changes to the Gamma distribution measured by relative entropy 

5.2 Marginal sensitivity method 

In this section we present a new method which enables us to specify a single change 

to the prior distribution and obtain a numerical value for how sensitive each of the 

model parameters are to this change. To begin with we assume that we have per­

formed an MCMC simulation using a baseline prior distribution and have obtained 

a sample from the resulting posterior. We proceed by describing the method in the 

context of an example for which we need to specify some notation. 

5.2.1 Notation 

• The model has n prior parameters 81 , ... , Bn 

• depending on hyperparameters Wt, ... ,wn where w = (w1,w2, ... ,wn) 

• The baseline prior distribution is given by 
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• The baseline marginal posterior distributions are given by 

p(03 I x,w) for j = 1, ... ,n. 

• from which we have MCMC sample 

oyl, ... , o;NJ for j = 1, ... , n. 

Suppose for this example that we make changes to the prior of 01 only such that w1 

becomes w1 but all other hyperparameters remain the same, i.e. w = (w1,w2, ... ,wn)-

• The changed prior distribution is given by 

• and resulting marginal posterior distributions given by 

p(03 I x,w) for j = 1, ... ,n. 

Suppose also for this example that we want to quantify how sensitive parameter 03 

is to the specified change to the prior of 01. 

5.2.2 Relative entropy of marginal posteriors 

We begin by adopting a similar approach to Clarke and Gustafson (7J who used 

relative entropy to measure the difference between the two posterior distributions 

resulting from two different sets of inputs as in equation (5.1). However, we are inter­

ested in the relative entropy between two marginal posterior distributions resulting 

from two different sets of prior hyperparameters. More formally, 

( -) J (p( ()3 I X, w)) 
D p(03 I x,w) 11 p(03 I x,w) = p(03I x,w)log p(0

3
I x,w) d03. (5.7) 

The main complication is that we do not know the exact distributions p( ()3 I x, w) or 

p( 03 I x, w). Instead we have a sample 0~11 , ... , ()~NJ from only one of them, namely 

p( 03 I x, w). To proceed we need to estimate these two densities which we do using 

Kernel density estimation methods. 
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5.2.3 Kernel density estimation 

We can obtain an estimate of the baseline posterior p( 03 I x, w) very easily using the 

sample orl, ... , o1Nl and the density() function in R. The theory is that if we have 

a sample XI, ... , Xn from a distribution D, then we can estimate its density using 

~ 1~1 (t-x·) [1 (t-X)] d(t)=~LhK T :::::Ed hK T (5.8) 
i=I 

where K is the Kernel function and h is the bandwidth. An area of interest in the 

published literature has been how to find the optimal bandwidth for kernel density 

estimation an example of which is Sheather and Jones [46]. We use the R default 

value for the bandwidth which is calculated to be the standard deviation of the 

smoothing kernel. 

Estimating the density of the 'changed' posterior p(03 I X, w) is slightly less straight­

forward than this as we do not have a sample directly from it. This is where impor­

tance sampling is useful. 

5.2.4 Importance sampling 

Importance sampling is a method of estimating an expectation with respect to one 

distribution using a sample from another distribution. Suppose that we are in­

terested in estimating E[r(X)] with respect to f(x) but we only have a sample 

xi, ... , Xn from g(x). We can rewrite the expectation as follows 

EJ[r(X)] = J r(x)f(x)dx = J r(:~~jx) g(x)dx = E9 [r(:l{~X)] (5.9) 

We can then use the sample from g(x) to estimate 

1 ~ f(xi) 
EJ[r(X)] ::::: ~ f:: r(xi) g(xi) (5.10) 

For our example, we need to find an expectation with respect to p(03 I x, w) but we 

only have the sample from p(B3 I x,w). We can use equations (5.8)-(5.10) to write 

p(B3 I x,w) ::::: Ep(B3 1x,w) [~K(03 ~ 83
)] 

E [.!. K ( Oj - 83 ) p( 83 I x, w)] 
p(BJix,w) h h p(831 x,w) 

::::: _!_ ~ .!_K(Bj- o~1 )p(B1~1 1 x,w) 
N f:: h h p(O~ll x,w) (5.11) 
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where 03 is a particular value of 03 and we can now proceed using the sample we 

have. This is now in the form of weighted kernel density estimation equation. 

5.2.5 Weighted Kernel density estimation 

The Kernel density estimation equation given in (5.8) can be extended to include 

weights as follows. If we have a sample Xt, ... , Xn from a distribution D, then we 

can estimate its density using 

~ 1 Ln 1 (t- X·) [ 1 (t- X)] d(t) =- w*-K --' ::::::: Ed w~-K --
n 'h h 'h h 

i=l 

(5.12) 

where w; are normalised weights. It is clear that equation (5.11) is of this form with 

weights 

(5.13) 

where C is an unknown constant. In order to ensure that JP( 83 I x, w) d03 ::::::: 1 

we must normalise the weights which also serves the purpose of eliminating the 

unknown C. Since the priors are known, we can proceed by using the density() 

function in R and normalised weights 

• p(O~i]; Wt) jp(O~i]; Wt) 
wi = N [i] - [i] 

Ei=I p(01 ; wt)jp(01 ; Wt) 
(5.14) 

to calculate P( 83 I x, w). 

5.2.6 Numerical integration 

We currently have an estimate of the densities P( 03 I x, w) and P( 03 I x, w) in the 

form of two sets of n coordinates which were output from R. In order to evaluate 

the right hand side of the relative entropy equation (5. 7) we need to find 

J q(03) d03 (5.15) 

where 

(5.16) 

We can use the coordinates output from R to obtain a new set of n + 1 coordinates 
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and estimate integral (5.15) using composite Simpson's rule 

b !!-I !! 1 q(03) d83 ~ ~ [ Qo + 2 t Q{2i} + 4 t Q{2j-I} + q..,. J. 
a j=l j=l 

where Qi = q( {03 },;), {03 },; =a+ ik and k = (b- a)jn fori= 0, ... , n. We choose a 

and b such that q(03 ) ~ 0 for 03 outside [a, b]. 

5.2. 7 Summary 

So far we have obtained a numerical value for how sensitive 03 is to a single change 

to a parameter in the prior of 01. This is essentially an estimate of the relative 

entropy between the baseline and 'changed' posteriors for 03 . All that the method 

requires is knowledge of the baseline and changed prior densities for 01 and a single 

sample from each of the baseline posteriors 01 and 03 . 

Note that we have described the method in the context of this example but it is 

easy to generalise to obtain a numerical value for how sensitive any parameter (}k is 

to a change in the prior of any parameter (}i· 

5.2.8 Graphical representation of sensitivity 

In this section we consider the meaning of the numerical value for sensitivity that we 

have obtained. Since the quantity is essentially a measure of the 'difference' between 

the baseline and changed posterior, we compare it with a measure of the 'difference' 

between the baseline and changed prior in order to give us more of an insight into 

the relative size of the sensitivity value. We measure the difference between the 

priors again using the relative entropy metric to make the changes comparable. 

Figure 5.3 provides a way of picturing this. Suppose again that we change the prior 

of parameter (}1 so that it becomes p(OI; wt) rather than p(OI; WI)· The x-axis shows 

the prior change 
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and the y-axis shows 

D(p(fh I x, w) 11 p(Oz I X, w)) 

D(p(Oal x,w) 11 p(Oal x,w)) 

and D(p(04 I X, w) 11 p(04 I X, w)) 
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in the colours black, red and green respectively. As we increase the 'difference' 

between p(01 ; wt) and p(01 ; wt) we see that each of the 'differences' between the 

marginal posteriors also increase. We can also see that 02 is the most sensitive to 

the prior change and is the only one for which the resulting posterior change is larger 

than the change made to the prior. 
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Figure 5.3: Prior change against marginal posterior change 

5.3 How well does this method work? 

In this section we consider how well the method works. In particular we want to 

know how accurately it estimates the true relative entropy between the baseline 
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and 'changed' marginal posteriors. In order to answer this question we simplify 

the problem to a situation where we are no longer thinking about the difference 

between two unknown posterior densities. Instead, we use the method to estimate 

the relative entropy between two standard distributions for which we know the true 

relative entropy. We will then be able to compare the estimates with the true relative 

entropy to draw meaningful conclusions about the accuracy of the method. We do 

this for two different sets of standard distributions: firstly measuring the relative 

entropy between two Normal densities and then between two Gamma densities. A 

second question of interest we bear in mind throughout this section is whether or 

not there is a prior change which is 'too big' for the method to work and causes it 

to break down. We will also look at how well importance sampling works in general, 

but since it is included in our method, we pay particular attention to the impact it 

has on the accuracy of the relative entropy estimate and also whether it can shed 

any light on the 'too big prior change' question. Again, we use a simplified version of 

our problem where we use importance sampling to estimate the density of a known 

Normal distribution using a sample from another known Normal distribution. 

5.3.1 True and estimated relative entropy for a Normal 

distribution 

Suppose we have two distributions Po rv N(O, 1) and pl rv N(J.L, T-l) where J.L is the 

mean and T is the precision such that 

Po(x) - [fexp{ - ~x2 } 
PI(x) = {i;exp{- ~r(x- J.L)2

}. 

From equation ( 5.5) on page 108 we know that the true relative entropy is 

(5.17) 

Suppose now that we take a sample x1 , ... , Xn from P0 and use the method described 

in section 5.2 to obtain an estimate of D(Poi!PI). First we use the density() 
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function in R to obtain a set of (x,~(x)) coordinates. We then use weights 

PI (xi)/ Po (xi) 
Wi = -N~:........:.-'---'--'---

Li=I PI(xi)/Po(Xi) 
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together with the density() function to obtain a set of corresponding coordinates 

(x, Pl.(x)). Both sets of coordinates are then used to estimate D(PoiiPI) using Simp­

son's rule as in section 5.2.6. 

We consider four different situations 

• P0 ,...., N(O, 1) and PI ,...., N(p, 2: 0, 1) 

• P0 ,...., N(O, 1) and Pt ,...., N(p, $ 0, 1) 

• P0 ,...., N(O, 1) and PI ,...., N(O, r 2: 1) 

• P0 ,...., N(O, 1) and Pt,...., N(O,r $ 1) 

and for each one we choose a value of the unknown p, or r then find the true relative 

entropy using equation (5.17), along with 100 estimates of it using the method 

described in section 5.3.1. This is repeated for a number of different p, or r values 

chosen to produce true relative entropys covering the range 0 to 5. The results are 

shown in Figure 5.4. 

We can see from Figure 5.4 (a) and {b) that when only the mean between P0 and 

H differs, the estimate is very accurate up to a relative entropy of 1 and still fairly 

accurate up to a relative entropy of 5. This value of 5 corresponds to a difference in 

the means of approximately 3.2 which, in the context of changes to the prior, can 

be thought of as quite a big difference. 

When it is the precision that differs between the two distributions, the method 

does not appear to perform so well. In (c) and (d) we see that things are only 

working well up to a relative entropy of around 0.5. We discuss in more detail 

in sections 5.3.3 and 5.3.4 why this might be the case but here we observe that a 

relative entropy of 0.5 could still be thought of as a sizeable change, for example see 

the red line in Figure 5.1{d). 

So far we have only considered making changes to the prior of a Normal distri­

bution but would the method still perform as well for another distribution? We now 

turn our attention to the Gamma distribution. 
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Figure 5.4: True versus estimated relative entropy for Normal distribution 

5.3.2 True and estimated relative entropy for a Gamma 

distribution 
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Suppose now that we redefine P0 and g to have Gamma(! , 1) and Gamma( a, b) 

distributions respectively, where a is the shape parameter and b is the rate such that 

Po(x) 

PI(x) 
r(a) 

Using equation (5.6) we know that the true relative entropy between P0 and g is 

(5.18) 

and we consider the four situations 

• Po ""Gamma(! , 1) and PI rv Gamma(a;::: 1, 1) 

• Po ""Gamma(!, 1) and PI ""Gamma(a $ 1, 1) 

• P0 ""Gamma(!, 1) and g ""Gamma(!, b;::: 1) 
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• P0 ,...., Gamma(l, 1) and P1 ,...., Gamma(!, b :$ 1) 

For each one we choose a number of values of the unknowns a or b then find the 

true relative entropy and 100 estimates of it for each value. The results are shown 

in Figure 5.5. We can see that the method doesn't seem to work as well for the 

d0-Ganaa(1,1) d1~a,1) llncrl 

--O(d01d1) 
(100--

--O(d01d1) 
(100~ 

(a) 

I< 
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' I 

/~ 
j?~- ~) 
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(100 &flmPIN) 

Figure 5.5: True versus estimated relative entropy for Gamma distribution 

Gamma distribution as it does for the Normal distribution. The estimates all seem 

to underestimate the true relative entropy value. Having said that, they do seem to 

work quite well up to a relative entropy change of between 0.5 and 1 which could 

still be thought of as a sizeable change when we look at the red line in Figure 5.2. 

5.3.3 How well does importance sampling work? 

Recall from section 5.2.4 that we are interested in estimating E [r(X)] with respect 

to f(x) but we only have a sample x1 , ... , Xn from g(x). Using equation (5.10) we 

can write 

(5.19) 
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where 

are the importance weights. 

Much of the literature on analysing the method of importance sampling is con­

cerned with how well it works assuming that it does work. However, the question 

still remains as to whether or not importance sampling works in the first place. 

In particular, are there any criteria that cause it to fail? Geweke [18] notes that 

for importance sampling to work g(x) should closely mimic f(x) and in particular 

that the tails of g(x) should not decay faster than the tails of f(x). Recall from 

section 5.2.4 that our method involves estimating an expectation with respect to 

one posterior (resulting from a changed prior) using only a sample from another 

posterior (resulting from a baseline prior). Intuition says that at some point there 

might be a prior change that is 'too big' in the sense that it produces a 'changed' 

posterior which no longer closely mimics the original and therefore would lead to 

a failure of importance sampling. However, so far we do not have a concrete way 

of showing whether or not this happens and if it does, at what sized prior change. 

One possible way of achieving this is to use the diagnostic described by Evans and 

Swartz [14] which is based on the weights and indicates whether or not importance 

sampling is working. 

5.3.4 Importance sampling diagnostics 

Evans and Swartz diagnostic 

Suppose that I= E1[r(x)] and that f is the approximation to this calculated using 

equation (5.19). Evans and Swartz [14] suggest that f is a good approximation for 

I when n is large and that a good diagnostic for the failure of importance sampling 

is based on the coefficient of variation of f. They note that 

(5.20) 

where 
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~ 

is a measure of the significance of Xi in terms of its effect on I. They also note that 

since (5.20} is 2: 0, it follows that 

Furthermore L~=l w.(xi}2 = 1 if and only if one of the w.(xi} = 1 and the rest are 0. 

Therefore, they propose that a sensible diagnostic would be to compute '2:~ 1 w.(xi}2 

and see if it is close to 1 as that would indicate a few large weights and therefore 

failure of importance sampling. Geweke [18] also endorsed this when he noted that 

bad behaviour exhibited by the estimated expectation can be as a result of large 

weights that turn up occasionally. 

Simplified problem 

In order to analyse the performance of the importance sampling part of our method, 

we consider a simplified version of our problem. We want to use importance sampling 

to estimate a density f ( x) using a sample x1 , ... , Xn from density g( x). Suppose for 

the purposes of this section that we know the true densities f and g. 

Using equations (5.8) and (5.9} we can write 

f(x*} ;:;:; Et [r(X)] = E9 [r(X}w(X)] 

where 

r(X) = ~K(x* ~X) and (X) = /(X) 
w g(X) 

and the Evans and Swartz diagnostic is 

Since r( x) depends on x*, it follows that we get a different value of DES for each 

value in the support of f(x). Figure 5.6 shows two examples of importance sampling, 

one where it can be thought of as working well and the other where it doesn't work 

so welL 

The plots show the true densities g(x) and f(x) via the black and blue lines 

respectively. The dashed blue line shows f(x) obtained by importance sampling 
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Figure 5.6: Importance sampling examples using the 2:~1 w.(xi)2 diagnostic 

using the sample from g(x). g(x) is a Normal(O,l) density for both plots whereas 

f(x) is a Normal(l,l) density for the first plot and Normal(5,1) for the second. 

The red line shows the diagnostic DEs for values of x E ( -8,8). According to the 

diagnostic, importance sampling seems to fail for values of x that are out in the 

tails of g(x). This suggests that if the majority of f(x) is between the upper and 

lower tails of g(x) then importance sampling will work. This is highlighted in the 

first plot_ However, if the majority of f(x) is beyond the tails of g(x) as shown in 

the second plot, then importance sampling will fail. This is because for the second 

situation to work it would require importance sampling to sample values from g(x) 

which aren't there. This example suggests that there is a prior change that would 

be 'too big' for the importance sampling part of the method to work. But it still 

remains to find out how big is 'too big'? To help provide further insight into this 

we consider another diagnostic. 

Alternative diagnostic 

Another importance sampling diagnostic could be 
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where a value close to 1 would indicate failure of importance sampling. This is 

because for w(xi) = ~~::? we have 

and therefore 
2:::~ 1 w(xi) _ 

1 as n- oo. 
n 

Suppose now that g(x) is the baseline prior and f(x) is the changed prior such that 

the weights are w(xi) = ~~=:~. We also assume here that g(x) is a Normal(O,l) 

density. Figure 5. 7 shows the value of this diagnostic D A for different prior chap.ges 

as measured by relative entropy covering the range 0 to 50. 

g-N(O,t) Hl(mu,tau) 

~ O_A..,1 

"1 
---- -----------·------~·· 

~----------~----

"' 0 

<, 
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"' 0 

" 0 

~ 
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0 
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Figure 5. 7: True relative entropy versus the I Ei-tnw(x;) - 1 I diagnostic 

The red line shows what happens if we keep the mean 0 and we increase the 

precision such that f(x) is Normal(O, T 2: 1). As T increases, the true relative 

entropy between g and f also increases. The green line shows the same but for 

decreasing T such that f(x) is Normal(O, T::; 1). The black line shows what happens 
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if we keep the precision as 1 but shift the location either to the left or to the right, 

say for example that f(x) is Normal(J.t? 0, 1). 

Ideally, for importance sampling to be working well, D A should be close to 0. 

We can see that importance sampling seems to be working well up to a relative 

entropy of 50 when we increase the precision. This is because f(x) is always within 

the tails of g(x) so importance sampling is sampling values of g(x) that are present, 

it is simply ignoring some. However in the reverse case, where we are decreasing the 

precision, we are forcing f(x) to go beyond the tails of g(x) and therefore requiring 

importance sampling to choose values from g(x) which aren't there. We can see from 

the green line that the diagnostic is moving away from 0 towards 1 quite steeply 

almost immediately as we begin to increase the relative entropy. In this case a prior 

change of around 2 produces D A ::;::: 0.5 which could be thought of as 'too big'. In the 

case where we change the mean, D A again moves away from 0 relatively quickly as 

we increase the relative entropy. Here, a prior change of around 5 may be thought 

of as 'too big'. 

5.3.5 Effect of importance sampling on the relative entropy 

estimate 

So far we have considered what causes importance sampling to fail and also what 

size prior change may be thought of as 'too big' for the case where the prior in 

question is Normal. It would also be relatively easy to extend this to produce a 

plot like Figure 5. 7 for other standard prior distributions. We now consider how the 

success or failure of importance sampling affects the relative entropy calculation. 

We can note from section 5.2.6 that calculating the relative entropy estimate 

involves summing up a number of functions 

q(x) = g(x)log(~(x)) 
f(x) 

(5.21) 

which have been calculated for different values of x. In this section we have noted 

that our estimate of [(x) is not good for values of x in the tails of g(x). However it 

is clear from (5.21) that every time i(x) appears in the relative entropy calculation, 

it is multiplied by g(x). Since g(x)::;::: 0 for values of x in the tails of g(x), the values 
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of l{x) which are not good are cancelled out. This means that it is possible for the 

importance sampling part of our method to fail but the relative entropy estimation 

still to be accurate. 

5.3.6 Further exploration of statistical properties 

In this section we consider how our method is affected by MCMC sample size as 

well as data size and mean. First we introduce a simple example. Suppose we have 

two prior distributions for fJ 

Po ""' N(O, 1) 

pl ""' N(p,, T- 1) 

and the corresponding posteriors for (} given data x 1 , ... , Xn are 

Po(O I x~, ... ,xn) ""' N(1 n_: n' 1 ~ n) 

Pt(O I XI, ... , Xn) ""' N (rp, + nx, _1_). 
r+n r+n 

Using equation (5.5) on page 108 we know that the true relative entropy between 

the two priors is 

and between the two posteriors is 

1 [ (rp, + nx nx )2 r + n ( 1 + n) J Dpost = -
2 

( r + n) - -- + -- + log -- - 1 . 
r+n 1+n 1+n r+n 

If we take a sample 0~, ... , ON from P0 (fJ I x~, ... , Xn) we can then use the method 

of section 5.2 to obtain an estimate Dpost of the true posterior. 

In order to see how the MCMC sample size affects the performance of our method 

we change the value of N and to see how the data affects it we change its size n and 

its mean x. When data is introduced, the posterior will become less like the prior 

so it is interesting to see what effect this has on the performance of the method. We 

consider twelve different combinations of N,n and x (which are shown in Table 5.1) 

and for each we look at the effect of increasing or decreasing p, in the prior as well 

as increasing or decreasing r. We obtain 100 of the estimates DfJOSt for each case 

and plot a summary of these against Dprior· 
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N n x 

1 50 0 0 

2 500 0 0 

3 3000 0 0 

4 3000 2 0 

5 3000 30 0 

6 3000 1000 0 

7 3000 2 1 

8 3000 30 1 

9 3000 1000 1 

10 3000 2 2 

11 3000 30 2 

12 3000 1000 2 

Table 5.1: Twelve combinations of N, n and x 

MCMC sample size 

The first three cases in Table 5.1 are looking at the effect of the MCMC size only. 

Since n = 0 it means that we have no data and the posteriors P0 and g are just 

the same as the priors. Note that we have already considered one example of this in 

section 5.3.1 on page 116 which uses sample size N = 1000. The plots for the first 

three cases are shown in Figures 5.8 to 5.10. As the sample size N increases we can 

see that the mean estimate line is getting closer to the true value and the upper and 

lower bounds are getting tighter around it. By the time we reach MCMC size of 

3000 our method is working very well up to a prior change of around 3 for 11- being 

changed but only up to a prior change of around 0.5 when T is being changed. For 

further discussion of issues surrounding this, see the example in section 5.3.1. 

Data size 

For the next three combinations, we keep the sample size N = 3000 and data mean 

x = 0 but change the data size. The plots for cases 4 to 6 are shown in Figures 5.11 

to 5.13 respectively. We can see that there is an improvement in the accuracy of our 
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method for all of the prior changes as we move from no data to a small amount of 

data. For the changing J.L cases, the upper and lower bounds become tighter around 

the mean and for the T cases the mean line goes from being quite different from the 

true line to following it relatively closely. As we increase the data size from 2 to 30 

another improvement in the method's performance is evident. For each of the prior 

change cases, the mean lines move closer to their true line and the bounds become 

tighter around them. However as we then increase the data size again to 1000, there 

doesn't appear to be any obvious change in the performance from that of then= 30 

case. 

Data mean 

We now consider moving the mean of the data away from the centre of the prior so 

that x = 1 and then x = 2 and again look at the effect these changes have on the 

method's performance. In particular we want to know if the performance is better 

or worse as x increases and does allowing x > 0 have any effect on the increasing 

n behaviour we observed for x = 0? We therefore introduce combinations 7 to 

12 in Table 5.1 for which the summary plots can be seen in Figures 5.14 to 5.19 

respectively. 

We first consider the performance of the method as x increases. Looking at 

Figures 5.11, 5.14 and 5.17 we see, for n = 2, the effect of increasing x from 0 to 

1 and then to 2. There is no obvious difference between them meaning that x has 

little effect for this data size. If we do the same for n = 30 (using Figures 5.12, 5.15 

and 5.18) we see that there is little difference in the J.LS and, although the bounds 

change slightly for the TS, the mean line follows the true line just as closely in each of 

the three figures. This is also true for the n = 1000 case although there could be said 

to be a slight improvement in the performance of our method for the increasing T 

case when x = 1 or 2 than when x = 0 (see the bottom left plot of Figures 5.13, 5.16 

and 5.19). 

We now consider the issue of whether introducing x > 0 has any effect on the 

changing n behaviour we observed for cases 4 to 6. We see from Figures 5.14 to 5.19 

that the pattern we observed is still the same when x = 1. Increasing n from 
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30 to 1000 made no obvious difference when x = 0 but when x = 2 there is an 

improvement for n = 1000 in that the bounds in the increasing T plot are tighter, 

but this is only slight. 

Summary 

Changing the MCMC sample size and the data size affects the performance of our 

method, but there is no obvious difference in performance as the data mean is 

changed. Increasing the MCMC sample size leads to a definite improvement in 

how well our method works for all prior changes. Introducing data brings further 

improvement, the most notable being when T is changed in the prior. When there 

is no data it can only said to be working well up to a prior change of 0.5 but by the 

time the data size reaches 30 this changes to a prior change of 5. 

5.3. 7 Method as a screening measure 

Since the method cannot be said to be accurate for any sized prior change, it may 

be better to think of the method as a good screening measure to indicate where 

there is a parameter which is sensitive to the change rather than saying exactly how 

sensitive it is. The method would still reduce the time needed to check sensitivity to 

the prior distribution as there would be no need to run the MCMC simulation again 

for each change to the prior. Instead, the method could be used as an indication 

of where sensitivity may be and then the simulation could be rerun for only the 

necessary changes if higher accuracy is required. 
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Figure 5.8: N = 50,n = O,x = 0 
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Figure 5.9: N = 500, n = 0, x = 0 
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Figure 5.10: N = 3000, n = 0, x = 0 
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Figure 5.11: N = 3000, n = 2, x = 0 
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Figure 5.12: N = 3000, n = 30, x = 0 
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Figure 5.13: N = 3000, n = 1000, x = 0 
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Figure 5.14: N = 3000, n = 2, x = 1 
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Figure 5.15: N = 3000,n = 30,x = 1 

~ 
increasing mu ,., decreasing mu 

Q. 
0 g ::. 

"' -mean // "' c: c: // .. 
ci - upper& 1.-- bounds / ' CD .. estimated= 11\Je ~ // .. ci p ~ .2 

/~ '" 0 /- ·// ~ 
0 ~ ~ d/ ~ ,/~ ,/ 

0 ci 0 ci 
/ /_,";// 

1: /0/ 1: 
.! 

"' .~ .! 
"' 

.4-~ ., ID 

8. 0 8. 0 
ci ci 

~ j 
'" 0 ~ 0 
E 0 0 

"'; ci = ci .. .. 0 2 3 4 5 " 0 2 3 4 5 

~or relative en~y 
(100 s. N=3000, n=30, Xbar-1) 

true prior relative entropy 

,., increasing tau >- decreasing tau 
Q. Q. 
0 g ::. 

j "' -: 
c: c: 

~ 
.. ~ .. ;; .. 1 ci .2 
]i .5 0 

r 
! ~ /~ ! ;; 
0 0 0 
1: 1: s s "' .. 

"' 8.~ 8. 0 
j "i 0 

~ 0 ~ 
0 
0 

ci 0 = = 0 ID : .. 0 2 3 4 5 0 2 3 4 5 

true prior relative entropy true prior relative entropy 



5.3. How well does this method work? 133 

Figure 5.16: N = 3000,n = IOOO,x = 1 
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Figure 5.17: N = 3000, n = 2, x = 2 
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Figure 5.18: N = 3000, n = 30, x = 2 
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Figure 5.19: N = 3000,n = lOOO,x = 2 
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5.4 Replacing relative entropy with Kolmogorov 

distance 

In this section we consider whether or not the method would perform any better if we 

used another metric instead of relative entropy to mea..<>ure the difference between 

distributions. Although relative entropy is one of the most widely used metrics 

for such purposes, the tails of the distributions have a big influence on it. The 

Kolmogorov distance metric behaves differently to relative entropy in that the tails of 

the distributions involved are of less importance. Instead it measures the maximum 

distance between two distribution functions which can occur at any part of the 

distribution, not just in the tails. More formally, 

n(PIIQ) = s~p I P(x)- Q(x) I, X E IR 

which assumes values in [0, 1]. We can get an idea of how the Kolmogorov measure 

behaves for Normal and Gamma distributions from Figures 5.20 and 5.21 respec­

tively. The changes highlighted in red, green and blue are comparable with those 
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Figure 5.21: Changes to the Gamma distribution measured by Kolmogorov distance 

highlighted in Figures 5.1 and 5.2 when we looked at the behaviour of relative en­

tropy. 

Figure 5.22 shows the relationship between relative entropy and the Kolrnogorov 

distance. Although they all have the same curved shape, the scales are slightly 

different depending on the distribution and parameter change made. 

5.4.1 Implementing the method 

We saw in sections 5.2.3 to 5.2.5 how to obtain an estimate for p(Oa I x,w) and 

p(()3 I x , w) in the form of two sets of coordinates. We now want to find an estimate 

of 

For any value of t E IR, we can estimate the above integral using these sets of co­

ordinates and the numerical integration method outlined in section 5.2.6. However, 

in this case q(03 ) defined in (5.16) becomes fi(83 I x,w)- fi(83 I x,w) and b is taken 
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to be equal to t. We then repeat this process for a number of different values oft 

and take the maximum of these to be our Kolmogorov distance measure. 

5.4.2 How the method performs 

In section 5.3 we looked at how well the relative entropy method performed for Nor­

mal and Gamma distributions. Here, we repeat this analysis but for the Kolmogorov 

distance method. In other words, we will compare the estimated Kolmogorov dis­

tance with the true one for the two different sets of distributions. Figures 5.23 and 

5.24 show the true measure against the maximum, minimum and mean estimated 

values from 100 samples. These are for the Normal and Gamma distributions re­

spectively. The x-axes cover the same parameter values that produced a relative 

entropy of 0 to 5 to make the plots comparable to those in Figures 5.4 and 5.5 of 

section 5.3. 

In general, the method involving the Kolmogorov distance estimates the true 

distance better than the method involving relative entropy estimates the true relative 
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Figure 5.23: True versus estimated Kolmogorov d_istai_lce for Normal distribution 
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entropy. 

5.4.3 Other metrics 

Other metrics we could also consider include the Hellinger distance and the x2
-

distance. AB noted by Gibbs and Su [19], they are regularly used along with relative 

entropy to quantify the distance between densities p(x) and q(x) from the same 

family indexed by different parameters. The Hellinger distance assumes values in 

[0, v'2] and is given by 

D(P 11 Q) = [/ ( J1Tx)- JQWr dxr
12

. 

The x2-distance assumes values in [0, oo] and is given by 

D(P 11 Q) = f (p(x)p{x~(x))' d:x. 

However, it is likely that these metrics wouldn't work well for our method. This is 

because our method would involve estimating q(x) using only a sample from p(x) by 

importance sampling. AB we noted in sections 5.3.3 and 5.3.4, importance sampling 

would fail for any q(x) whose tails extended beyond those of p(x). We noted in 

section 5.3.5 that this didn't become a probelm for relative entropy because every 

time ii(x) appeared, it was multiplied by P(x) ~ 0 thus cancelling out the poor 

estimate ii(x ). However in the case of the above metrics, it seems that poor estimates 

for q(x) wouldn't be cancelled out and therefore would negatively affect the result. 

5.5 Application 

In this section we apply the marginal sensitivity method described in section 5.2 to 

the complex Bayesian model of Mugglin et al. [36) using the space-time count data 

provided by NHS Direct. See sections 3.2 and 3.1 for details of the model and data 

respectively. 

5.5.1 MCMC sample from baseline prior 

Recall that the prior parameters and hyperparameters for the model are given by 

equations (3.4) to (3.7) on page 44. Since cl>min and f/>'JTW.X are determined from the 
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eigenvalues of C we do not need to choose values for them. The hyperparameters 

we need to decide on are 

(5.22) 

We use the hyperparameter values suggested by Mugglin et al. [36] for the baseline 

prior. Specifically, 

f3t Normal(O, T = 0.25), f = 0, 1, 2 

flt Normal(O, T = 0.25), f = 0, 1, 2 

a-2 
'""" Gamma(0.25, 2.5) 

and fit the model to the data provided by NHS Direct using LinBUGS as described 

in section 3.3. We then obtain an MCMC sample of size 10000 from the posterior 

distribution of each of the parameters. 

5.5.2 Marginal sensitivity 

Here we change each of the hyperparameters in (5.22) in turn and consider which 

of the parameters a-2 , f3t and Ot (for f = 0, 1, 2) are most sensitive to the change. 

Figures 5.25 to 5.31 show the results for each change individually including separate 

plots for whether the hyperparameter has been increased or decreased. 

To explain one of them more fully, the top left plot in 5.25 shows what happens 

when the hyperparameter a is increased away from its baseline value. The x-axis 

and y-axis are equivalent to those in Figure 5.3. Each parameter being influenced 

is shown in a different colour. 

When looking at each of the plots in Figures 5.25 to 5.31, we can see a single 

parameter which is clearly most influenced by the change. As we would expect, it 

is that parameter whose prior is being changed. However, in some of the cases even 

the posterior changes of the most influenced parameter are quite small. It would 

therefore be useful to compare the plots with each other in order to see which prior 

changes actually have a significant impact on the marginal posteriors. 

Figure 5.32 shows a summary of the information in these plots for one particular 

sized prior change, namely 0.2. The x-axis shows each of the hyperparameters that 
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are changed and they-axis shows the marginal posterior changes as in Figures 5.25 

to 5.31. Above the zero line corresponds to when the hyperparameters are increased, 

and below to when they are decreased. The posterior change for each parameter is 

shown in a different colour. 

We can see from this summary that the posterior is most sensitive to both in­

creasing and decreasing the hyperparameter b, followed by T90 and the other changes 

have relatively little effect. We can therefore limit our attention to the detailed plots 

for these two hyperparameters only. In practise, producing a summary plot such as 

this first would be a good idea as it reduces the number of detailed plots we need. 

Suppose now that we focus again on the method involving the Kolmogorov dis­

tance measure in place of relative entropy. Then instead of Figure 5.32, we get 

Figure 5.33. Although it is difficult to compare the two plots exactly due to differ­

ent scales, it is still clear that they both agree that the posterior is most sensitive 

to changing the hyperparameter b, followed by changing T80 . It is also interesting 

to note that Figure 5.33 suggests that changing p,80 has an impact on the posterior 

too, albeit relatively small compared to the effect of the other two. 

5.5.3 Sensitivity of the full posterior 

In this section we show that our marginal sensitivity method produces results that 

are consistent with the Clarke and Gustafson [7) 'full sensitivity' method (described 

in section 5.1.1) but that our results are more informative. Figure 5.34 shows a sim­

ilar summary plot to 5.32, but this time showing the sensitivity of the full posterior 

distribution to the prior change using the method of Clarke and Gustafson [7). In 

this case we want to find the relative entropy between two full posteriors p( iJ I x; w) 

and p(iJ 1 x; w) given by 

D(p(iJ I x; w)jjp(iJ I x; w)) = ~(w- w)T Aps(w)(w- w) (5.23) 

where 

(0, 0.25, 0, 0.25, 0, 0.25, 0, 0.25, 0, 0.25, 0, 0.25, 0.25, 2.5) 



5.5. Application 

& 
c: .. 
.c: 
" 5 

-.:: s .. 
0 

0.. 

"'~­X b() th1 
~ b1 ... th2 
.. b2 lss 
' thO 

"' c:i --
0 

--"' c:i 

I ! 
~ I J 

Prior parameter changed 

)( ., 

146 

Figure 5.33: Summary of marginal sensitivity for prior change of 0.2 (using Kol­

mogorov distance) 
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Figure 5.34: 'Full sensitivity' for prior change of 0.2 
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and w is as w but with one of the hyperparameters changed by a relative entropy 

of 0.2. For example 

(0.6326, 0.25, 0, 0.25, 0, 0.25, 0, 0.25, 0, 0.25, 0, 0.25, 0.25, 2.5) 

We know from section 5.1.1 that 

Var( ~;logp(d; w)) if i = j 

0 if if j 

where p( d; w) is the full prior, although since we are differentiating by Wi we only 

need to concentrate on the part of the prior involving wi. Since all of the prior parts 

follow either a Normal or Gamma distribution, wi is one of the following: 

1. The mean J.L of a Normal distribution such that 

2. The precision T of a Normal distribution such that 

3. The shape a of a Gamma distribution such that 

4. The rate b of a Gamma distribution such that 

These results, along with equation (5.23), can then be used to find the relative 

entropy for different w depending on which prior hyperparameter is changed. These 

values are shown in Figure 5.34 where the axes are equivalent to those described 

for Figure 5.32. Again this plot indicates that the posterior is most sensitive to 

changing b and Te
0 

but does not tell us exactly which parts of the posterior are most 

affected as 5.32 does. 
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5.6 Marginal sensitivity analysis of BUGS output 

So far we have seen the marginal sensitivity method being implemented for one set 

of BUGS output from one particular model. In this section we consider how easy it 

would be to produce a general piece of software for the marginal sensitivity analysis 

of BUGS output resulting from any model. We are not suggesting that the marginal 

sensitivity analysis be carried out in BUGS, but instead we consider what additional 

information we would need to know about the model given that we have some output 

from BUGS to analyse. We specifically look at how to pick this information out from 

a BUGS programmatic description of the model. 

5.6.1 Necessary information 

In order to implement our method as a general procedure we need to know the 

following information 

• which parameters constitute the prior 

• how the prior is specified for each parameter 

• what should be changed in analysing sensitivity 

Unfortunately the distinction between the prior and the likelihood is not always 

clear cut. One simple view of what constitutes the prior is that it is the distribution 

of nodes in the Directed Acyclic Graph (DAG) which have no parents. Assuming 

this is the case there are infinitely many ways to change the prior distributions but 

the most basic method is to change the prior-parameters while keeping the family 

the same. It is therefore possible to automate this process providing we can work 

out the DAG structure from the BUGS input file. 

We now introduce programmatic descriptions for two of the models given in the 

WinBUGS examples2 in order to illustrate how to extract the necessary information. 

2available from http: I /mathstat. helsinki. fi/openbugs/data/Examples/Volumei. html 
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5.6.2 WinBUGS power plant pumps example 

The BUGS language for the pumps example is as follows 

model { 

} 

for (i in 1 : N) { 

} 

theta[i] ~ dgamma(alpha, beta) 

lambda [i] < - theta [i] * t [i] 

x [i] ~ dpois (lambda [i]) 

alpha ~ dexp(l) 

beta~ dgamma(0.1, 1.0) 

Figure 5.35: pumps DAG 
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and the corresponding DAG is given in Figure 5.35. We can see that the nodes 

which have no parents are alpha and beta and therefore constitute the prior. We 

can see from the model programmatic description that alpha ~ dexp(1) and beta 

"" dgamma(O. 1, 1. 0) and therefore obtain the following information to be used in 

our sensitivity analysis 

• the parameters are {J = (alpha, beta) 
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• alpha has an Exponential distribution with mean m and beta has a Gamma 

distribution with shape a and rate b 

• the prior-parameters to be changed are w =(m, a, b) with corresponding base­

line values of (1,0.1, 1) 

We note here that it is possible to steer the marginal senstivity analysis by the 

way in which the prior is specified. For example, if the Gamma parameter beta was 

parameterised using mean and shape instead of the shape and rate then we could 

amend the BUGS file to read beta ""' dgamma(shape, shape/mean). It would mean 

working a little harder to ensure that the distribution on beta was still a prior (with 

no random ancestors) but would naturally vary the shape and mean in the marginal 

sensitivity analysis. We now consider a second example to further illustrate how to 

extract the necessary information. 

5.6.3 WinBUGS rats example 

The BUGS language for the rats example is as follows 

model { 

for (i in 1 : N) { 

} 

for (i in 1 : N) { 

Y [i, j] ""' dnorm(mu [i, j] , tau. c) 

mu[i,j] <- alpha[i]+beta[j]•(x[j]-xbar) 

} 

alpha[i] ""' dnorm(alpha.c,alpha.tau) 

beta[i] ""' dnorm(beta.c,beta.tau) 

tau.c ""' dgamma(0.001,0.001) 

sigma <- 1 I sqrt(tau.c) 

alpha.c ~ dnorm(0.0,1.0E-6) 

alpha.tau ""' dgamma(0.001,0.001) 

beta.c ""' dnorm(O.O,l.OE-6) 

beta. tau ""' dgamma(O. 001,0. 001) 
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alphaO <- alpha.c - xbar * beta.c 

} 

and the corresponding DAG is shown in Figure 5.36. The nodes which have no par­

ents are alpha. tau, alpha. c, beta. c, beta. tau and tau. c and therefore constitute 

the prior. Using the model programmatic description we can obtain the following 

information to input into our sensitivity analysis 

• the parameters are tJ = (alpha. tau, alpha. c, beta. c, beta. tau, tau. c) 

• alpha. tau, beta. tau and tau. c have Gamma distributions with shapes a0 , af3, a7 

and rates b0 , b13 , b7 respectively. Furthermore, alpha. c and beta. c have Nor­

mal distributions with means 1-lon 11-13 and precisions T0 , Tf3 respectively. 

• the prior-parameters to be changed are 

with corresponding baseline values of 

(0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0, 0, l.OE- 6, l.OE- 6). 

Figure 5.36: rats DAG 



5.6. Marginal sensitivity analysis of BUGS output 152 

5.6.4 Summary 

It is possible to produce a general piece of software to perform the marginal sen­

sitivity analysis for any model which has BUGS output available. In order to do so 

it is necessary to know two things: the DAG structure of the model and it's BUGS 

programmatic description. Using the DAG we can pick out the prior by finding the 

nodes which have no parents. We then use the BUGS programmatic description to 

find out the details of the prior specification. More specifically we find out the dis­

tribution family of the prior and the baseline values for each prior-parameter which 

is to be changed. Any general piece of software produced would require some way 

of inputting this information. 



Chapter 6 

Conclusion 

This thesis has been concerned with providing further statistical development in the 

area of space-time modelling with particular application to disease data. The first 

three chapters are essentially descriptive but chapter 3 does include the analysis 

of NHS data which has not been studied before. Chapters 4 and 5 introduce two 

methods which are new contributions to this area of research. 

6.1 Analysis of DHF data 

In chapter 2 we considered the method of empirical mode decomposition (EMD) as 

well as generalised linear modelling (GLM) to analyse the same data set consisting 

of cases of dengue haemorrhagic fever (DHF) in Thailand. EMD is not a statistical 

model but is purely descriptive. It isn't clear exactly how it works in that a number 

of people have produced different computer code for it and each of the methods 

differ slightly. In contrast, GLM is a widely used statistical model and therefore the 

estimates come with standard errors, residuals and formal statistical prodedures for 

comparing models. We can progressively increase the complexity of the model and 

check for improvement in fit, which is not possible with EMD. However, GLM is a 

simple type of statistical model and the most complex model we fitted still didn't 

eliminate all structure in the residuals. 
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6.2 Bayesian analysis of NHS data 

In chapter 3 we analysed a space-time data set provided by NHS Direct which com­

prises the number of calls made to the north east site about the symptom cough. 

We adopted a Bayesian approach and analysed the data using the space-time hier­

archical model of Mugglin et al. [36]. We found there to be a small degree of spatial 

structure in the spread of infection as well as a difference in the temporal patterns 

of relative risk between northern and southern regions. Those areas which were in 

the north of our study region generally had higher relative risk than those in the 

south. 

However, a big question remains over how useful the data is and therefore how 

meaningful our conclusions actually are. The data only really captures a small 

proportion of the illness, for example the call rates were found to be low compared 

to GP consultation rates. In addition, due to reasons of confidentiality, the smallest 

level of spatial aggregation available to us was PCT. This was really too large to 

draw any meaningful conclusions about spatial structure. One example highlighting 

the problem is to do with neighbourhood structure in that almost every area ended 

up being classed as either a first- or second-order neighbour of every other area and 

this could negatively affect the results. If this data was going to be made more 

useful in future it should possibly be provided at postcode level. 

6.3 Improved auxiliary sampling method 

In chapter 4 we looked at improving the efficiency of MCMC for Poisson regression 

models. Such models involve at least one non-standard conditional distribution 

and in this chapter we provide a way to make it take the form of a multivariate 

Normal distribution by augmentation. It involves rearranging p(x I y) to comprise 

a multivariate Normal part and another part which can be approximated by one or 

more Normal mixture distributions. A sequence of latent variables is then introduced 

as the component indicators for these mixtures. This is then rearranged into another 

multivariate Normal distribution and is sampled from using an efficient block Gibbs 

sampling scheme. 
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This method improves upon recent work in this area. Applying the idea of 

Damien et al. [11] leads to a truncated version of the multivariate Normal distri­

bution and generating from this is very difficult in comparison to generating from 

the distribution that our method produces. Friihwirth-Schnatter et al. [16] propose 

an auxiliary mixture sampling method which involves introducing two sequences of 

latent variables through data augmentation. Our method improves upon this by 

only requiring one sequence of latent variables. Further work in this area is by 

Rue et al. [45] who use a Gaussian approximation to the Poisson regression model. 

However, when the observed counts are small, the Poisson term is no longer approx­

imated well by a Gaussian term so the method runs into problems. In contrast, our 

method does work well for small counts. 

When comparing the posterior distribution obtained using auxiliary mixture 

sampling with that obtained from BUGS, they were seen to be very similar. Our 

method was tested further using many simulated data sets and the conclusion was 

reached that it works well for small counts but would need further mixture distri­

butions to be added to make it work well for large counts. 

Although our method is capable of producing a sample from the posterior equiv­

alent to BUGS output, this chapter is essentially a proof of concept and noR package 

or other software has been developed for implementing it. This could be an area in 

which future research may be fruitful. 

6.4 Marginal sensitivity method 

The marginal sensitivity method is developed and tested in chapter 5. The method 

provides a way of quantifying how sensitive the posterior distribution of each pa­

rameter is to changes in the prior using just one set of MCMC output. It adds to 

current work in this area by adapting the idea of McCulloch [34] to work for MCMC 

output and also by allowing us to see exactly how changing each prior parameter 

affects the marginal posterior rather than the posterior as a whole. 

The marginal sensitivity method involves using MCMC output and kernel den­

sity estimation to obtain the original posterior. It then uses the same MCMC output 
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along with a weighted form of kernel density estimation to obtain the posterior re­

sulting from a changed prior. Simpson's rule is then used to estimate the relative 

entropy between these posteriors. The posterior changes can then be plotted allow­

ing us to clearly see the effect that the prior change has on each of the marginal 

parameters. 

The method was tested by running a number of different simulated examples 

and comparing the estimates to the true relative entropy. We first assumed that the 

prior was Normal with no data and looked at changing one of the parameters at a 

time. We found that when the mean was changed, the method worked well up to a 

prior change of 5 which can be thought of as a sizeable change. When the precision 

is changed, the method only works well up to a prior change of around 0.5. This is 

due to a failure in the importance sampling weights that were used in the weighted 

kernel density estimate. When the prior is Gamma with shape and rate parameters 

being changed one at a time, we find that the method works well to a prior change 

of 1 for all changes, which may still be thought of as a sizable change. 

We also found that increasing the MCMC sample size and data size improves 

the performance of the method. When the MCMC size is 3000 and data size is 30, 

the method works well up to a prior change of 5 for both the mean and precision 

changes. 

We then considered making an adaptation to the method so that the Kolmogorov 

distance measure was used in place of relative entropy. In general it appears that this 

estimates the true Kolmogorov distance slightly more accurately than the relative 

entropy method estimates the true relative entropy. 

Since the method cannot be said to be accurate for any sized prior change, it 

may be better to think of it as a good screening measure to indicate where there is a 

parameter which is sensitive to the change rather than saying exactly how sensitive 

it is. 

The final section of this chapter lays some ground work in what extra information 

we would need to know in order to produce a general piece of software to perform 

the marginal sensitivity analysis given any set of BUGS output. However, no software 

for the implementation of it has been produced as yet and future research would be 
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fruitful in this area. In addition to this, one could take this work further by studying 

the effect of changing more than one prior parameter at a time. 
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Appendix A 

NHS Direct Data 

Table A.1: Number of cough calls in each PCT per week 

PCT 

Week 1 2 3 4 5 6 7 8 9 10 11 12 

1 3 3 9 0 2 2 4 6 10 4 6 11 

2 4 4 11 0 7 4 10 11 15 2 5 13 

3 4 5 5 3 5 4 13 9 20 3 8 12 

4 7 7 8 0 5 6 15 8 10 2 9 15 

5 6 8 12 3 7 12 21 16 21 3 8 28 

6 8 10 4 3 11 5 16 12 15 2 9 19 

7 5 9 8 3 11 17 31 26 28 5 17 20 

8 8 18 21 3 11 13 24 26 41 9 13 38 

9 7 25 18 5 6 20 33 23 53 5 20 36 

10 6 8 12 4 6 14 24 21 20 4 13 30 

11 8 9 5 1 1 11 20 78 20 1 11 18 

12 8 9 5 3 5 14 20 14 22 4 4 15 

13 5 4 5 4 5 4 23 18 24 5 6 17 

14 2 8 8 2 2 10 13 9 19 3 4 19 

15 7 9 6 1 1 8 12 10 17 1 7 12 

16 3 7 8 1 2 3 9 10 16 1 8 6 

17 7 7 6 4 4 9 11 8 7 2 8 12 
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Table A.l - continued from previous page 

PCT 

Week 1 2 3 4 5 6 7 8 9 10 11 12 

18 4 1 4 0 1 10 12 5 9 2 5 7 

19 3 2 10 2 0 8 9 10 17 2 5 18 

20 1 10 4 1 4 7 11 11 9 2 7 16 

21 5 4 6 1 5 11 13 16 17 1 3 20 

22 3 8 4 3 3 9 16 11 23 6 6 14 

23 2 9 7 1 3 5 11 10 18 1 4 9 

24 2 3 5 0 3 5 9 5 9 4 3 13 

25 5 1 1 0 1 8 7 2 9 2 7 9 

26 1 5 5 2 3 6 12 9 8 1 3 10 

27 1 6 4 1 6 8 15 8 11 2 9 6 

28 1 3 5 1 3 2 3 2 9 0 2 8 

29 3 0 8 0 4 6 10 10 10 0 6 7 

30 0 0 5 0 1 5 7 4 10 1 3 13 

31 3 2 5 0 0 2 9 3 14 1 5 8 

32 2 3 1 1 1 3 10 7 10 0 4 7 

33 1 2 1 1 1 2 5 4 1 2 0 5 

34 3 3 2 4 1 4 6 4 7 3 1 5 

35 3 2 2 1 0 3 4 5 3 2 2 6 

36 0 4 3 1 0 5 7 1 6 1 2 2 

37 1 2 2 0 1 5 6 4 3 1 1 9 

38 1 4 1 0 2 2 3 4 5 0 4 5 

39 3 3 3 2 0 1 6 3 6 1 4 1 

40 1 1 4 1 0 2 3 1 4 2 3 0 

41 1 4 1 1 0 2 5 5 3 0 1 7 

42 1 2 4 0 0 1 7 4 11 0 1 5 

43 1 0 3 0 0 2 5 4 5 0 6 11 

44 2 2 4 0 2 3 2 1 5 1 4 4 

45 1 0 1 0 1 1 0 2 2 0 0 1 
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Note that anyone wishing to use this data for publication should contact NHS Direct 

North East for permission. 


