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Abstract 

I n this thesis we investigate thermal convection and wave motion in models of second 

sound such as the Cattaneo model, Green and Laws model, Batra model, and Green 

and Naghdi model. For the Green and Laws and Batra models we also investigate 

questions of stability and uniqueness. 

The term second sound means the transport of heat as a thermal wave. The 

models are all presented wi th in the framework of continuum mechanics. We use a 

mathematical technique involving an acceleration wave to solve some problems. Fur

thermore, i n one of the chapters we use a numerical method, namely a D"^ Chebyshev 

tau method to f ind eigenvalues of a thermal convection problem. This technique is 

a highly accurate method. 

In Chapter two we study thermal convection w i t h the Cattaneo model. The 

model is about thermal convection in a layer of f lu id heated f r o m below. We also 

employ Chebyshev tau method to obtain numerical results for the model. 

In Chapter three we study various properties such as instabili ty and uniqueness 

of the model of second sound which is derived by Green and Laws. We investigate 

the model of Green and Laws for which the generalized temperature (j) depends on 6 

and 6. We also show differences between the results when the boundary and in i t ia l 

conditions have been changed. 

In Chapter four we study uniqueness, instability and wave motion of a Batra 

model. I n Chapter five we investigate thermal waves i n a r igid heat conductor. This 

is a more recent model of heat transport in a r igid body, namely that derived by 
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Green and Naghdi. 

In the final chapter, Chapter six, we consider a generahzation of the theory of 

Chapter five, to include fluid mechanical behaviour. We adopt a special relation for 

the Helmholtz free energy in the model of Green and Naghdi. We analyse behaviour 

of an acceleration wave for the model. 
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Chapter 1 

Introduction 

I n this thesis we study several models for "second sound". The term second sound 

refers to the transport of heat as a thermal wave. I n particular, we study mod

els for second sound which have been derived using the principles of continuum 

thermodynamics. A lucid introduction to continuum mechanics may be found in 

pages 310-344 of the book by Fabrizio [46]. The mathematical techniques we use 

are based primari ly on two ideas. The first is to analyse problems of linear instabil

i ty in a hydrodynamics setting. This involves solving eigenvalue problems numeri

cally and to this end we employ a D^-Chebyshev tau method. The Chebyshev tau 

method is a highly accurate numerical method, which is described in Chapter 2. 

This technique has been very successful in yielding sharp results for hydrodynamic 

stability problems and suitable (mainly recent) references are Carr [17,18], Chang 

et al. [23], Dongarra et al. [41], H i l l [70,71], H i l l & Straughan [72-74], Orszag [125], 

Straughan [168-170], Straughan & Walker [174-176], Webber [188,189 . 

The second mathematical technique we employ is that of acceleration waves. This 

technique has been in employment for some time, see Chen [24], Fabrizio and Morro 

49], Ogden [124], Truesdell and Toupin [181], TVuesdell and NoU [180]. However, 

i t is s t i l l a very powerful technique which is much in current use. This is because 

i t yields a means of analysing a fu l ly nonlinear problem w i t h no approximation 

and then yields valuable results which allow one to test the validity of the physical 

theory. To indicate just how important this technique is in the recent literature we 

list the following references, all of which deal w i t h acceleration waves, or very similar 

1 



Chapter 1. Introduction 

analyses such as these involving other discontinuity waves, Chen [24], Christov et 

al. [27,28], Ciarletta & lesan [30], Ciarletta & Straughan [31-33], Ciarletta et al. 

34], Curro et al. [39], Eremeyev [45], Fabrizio & Morro [49], Fu & Scott [53-55], 

Gultop [66], lesan k Scalia [80], Jordan [83-88], Jordan & Christov [89], Jordan 

and Feuillade [90], Jordan & Puri [91,92], Jordan & Straughan [95], Kameyama & 

Sugiyama [100], L in & Szeri [103], Mariano & Sabatini [112], Marasco [110], Marasco 

& Romano [111], Mentrell i et al. [114], Ogden [124], Ostoja-Starzewski k Trebicki 

[126], Rai [156], Rajagopal & Truesdell [157], Ruggeri k Sugiyama [160], Sabatini 

k Augusti [161], Straughan [170,172], Sugiyama [179], Truesdell k Toupin [181], 

Truesdell k Nol l [180], Valenti et aJ. [186], Weingartner et al. [190,191], Whi tham 

192 . 

The topic of second sound is a very hot one in the current applied mathematical 

literature. There are many theories for heat propagation as a wave in r igid bodies, 

in fluids, in gases, in elastic bodies, and even in materials w i t h much more exotic 

structure. A thorough review of second sound theories, generalised heat conduction 

theories, and acceleration waves is contained in the book by Straughan [170] and 

in the forthcoming book by Straughan [171]. The material for this introduction 

and the cited references are taken f rom the books of Straughan [170,171]. To give 

an idea of the extent of interest we quote the following references, all of which are 

dealing wi th some aspect of second sound, Alvarez et al. [1], Alvarez et al. [2], Anile 

k Romano [6], Bargman k Steinmann [8-10], Bargmann et al. [11], Bargmann 

et al. [7], Brusov et al. [14], Buishvih et al. [15], Cai et al. [16], Cattaneo [19], 

Caviglia et al. [20], Chandrasekhariah [21,22], Chen k Gur t in [25], Christov k 

Jordan [26], Cimmelli k Prischmuth [35], Ciancio k Quintanilla [29], Coleman et 

al. [36,37], Coleman k Newman [38], De Cicco k Diaco [40], Dreyer k Struchtrup 

43], Duhamel [44], Fabrizio et ai. [48], Fabrizio et al. [47], Fichera [50], Franchi k 

Straughan [52], Green [57], Green k Laws [58], Green k Naghdi [60-65], Gur t in k 

Pipkin [67], Han et al. [68], Hetnarski k Ignaczak [69], Horgan k Quintanilla [75], 

lesan [76-78], lesan k Nappa [79], Jaisaardsuetrong k Straughan [81], Johnson et al. 

82], Jordan k Puri [94], Joseph k Preziosi [96,97], Jou et al. [98], Jou k Criado [99], 

Kaminski [101], Lindsay k Straughan [105,106], L in k Payne [102], Linton-Johnson 
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et al. [107], Loh et al. [108], Metzler & Compte [115], Meyer [116], M i t r a et al. [117], 

Morro et al. [118], Morro & Ruggeri [119,120], Payne & Song [130-136], Puri k 

Jordan [137-140], Puri & Kythe [141, 142], Quintanilla [143-145], Quintanilla k 

Racke [146-149], Quintanil la & Straughan [150-155], Roy et al. [158], Ruggeri [159], 

Saleh & A l - N i m r [162], Sanderson et al [163], Serdyukov [164], Serdyukov et al. [165], 

Shnaid [166], Straughan [169-171], Straughan & Pranchi [173], Su et al. [178], Su & 

Dai [177], Tzou [182,183], Vadasz [185], Vadasz et al. [184], Vedavarz et al. [187], 

Zhang & Zuazua [193 . 

1.1 Cattaneo theory 

To give a precise application of acceleration wave analysis we begin w i t h an example 

of heat propagation in a r igid solid. Straughan [170], pp. 349-360 describes these 

ideas in a porous medium when the heat flux laws are of Cattaneo type and then of 

dual phase lag type. We follow the presentation given there. The basic equations are 

those of an energy balance, and a constitutive equation for the heat flux q. Thus, let 

e be the internal energy of the body per unit mass and let 0{x, t) be the temperature. 

For simplicity, we here restrict attention to one space dimension and so ^ = 0{x,t), 

where wave propagation wi l l be in the x-direction. The energy balance law is in 

three-dimensions 
ds dqi 

or 

pi = (1.2) 

Throughout, standard indicial notation is employed w i t h a repeated index denoting 

summation over 1,2 or 1,2,3. 

In the one-dimensional case (1.1) becomes 

The general theory of acceleration waves and shock waves in nonlinear elastody-

namics is covered in detail in Chen [24] and in Fabrizio k Morro [49], pages 518-532 

for acceleration waves and pages 532-541 for shock waves. Truesdell k. Toupin [181 
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and Truesdell & Noll [180] cover many aspects of acceleration waves and singular 

surfaces, in general. 

To illustrate the basic concepts of acceleration wave analysis, we mostly restrict 

attention to a plane acceleration wave moving in the direction of the x—axis, wi th 

one-dimensional motion. The precise definition of an acceleration wave depends 

on the material comprising the body we are examining. However, i t wi l l involve a 

surface iS across which certain derivatives of the functions defining the problem wi l l 

have discontinuities. A precise definit ion of an acceleration wave w i l l be given in the 

context in which i t occurs. 

For a funct ion h{x, t) we define 

h'^{x,t) = lim h{x,t) f rom the right, 
x—^S 

h {x,t) = l i m h{x,t) f rom the left. 

In particular, /i+ is the value of / i at 5 approaching f rom the region which S is about 

to enter. The jump of h at 5, wr i t t en as [h], is, 

[h] = h--h+. (1.4) 

A key relation in acceleration wave analysis (or generally in any discontinu

i ty analysis) is the kinematic condition of compatibihty, sometimes known as the 

Hadamard relation, 
6^ 
6t 

where S/6t denotes the t ime derivative at the wave. (The Hadamard relation is 

discussed in detail in Chen [24], Appendix 1, and also in Truesdell & Toupin [181], 

Section 180.) 

From the definition of [h] we may prove the relation for the j ump of a product 

of functions g, h, 

gh] = g+ [h] + [g] + [g][h]. (1.6) 

We use this relation extensively throughout this thesis when calculating the wave 

amplitudes. 



1.1. Cattaneo theory 

When K = K{6) and e = e{0), equation (1.3) together w i t h the Cattaneo law, 

Cattaneo [19], present us w i t h the system of equations 

Tqt + q = -K{e)9, 

pseOt = -Qx, (1.7) 

where r is a relaxation time. 

Let us define an acceleration wave S for system (1.7) to be a surface across 

which 9t,9x,(}t, Qx their higher derivatives suffer a finite discontinuity, jump, but 

6, q e C ° ( R X (0,oo)). Then taking the j ump of (1.7) we see that 

(1.8) 

r[q^] = -K[dx] 

pee[9t] = -[QX]-

To progress beyond (1.8) we use the Hadamard relation to find 

[Qi] = -V[QX], [Ot] = -V[9xi 

and then (1.8) become 

-rVlqx] = -K[9x], 

-peeV[9x] = - [qx], 

or, wr i t ing in matr ix form, 

-TV ^ \ ( [̂ x] 
1 -psev) \ [9x] 

For a non-zero solution of this we require 

-TV K 

1 -peeV 

and so 

V 2 K{e+) 
pTeg{9+y 

where 9'^ denotes the temperature immediately ahead of the wave. 

(1.9) 

(1.10) 
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Equation (1.10) shows that in the r igid body a temperature wave moves to the 

right while an equivalent wave moves to the left w i th speed V, where 

We may analyse the solution behaviour at the wave in much greater detail than 

this. To do this define the wave amphtudes a and b by 

a{t) = [9,], b{t) = [q,] (1.12) 

and then differentiate each of (1.7) w i th respect to x, 

peeedtOx + pseOtx = -Qxx, (1-13) 

where K' = dK/dO. 

To simplify the analysis we suppose the region ahead of the wave is in thermal 

equilibrium, i.e. 9= constant. 

This means 

9^ = constant, 9+ = 9^ = 0. (1.14) 

We take the jumps of (1.13) and use the product relation (1.6), recalling (1.14) to 

deduce 

r[qtx] + [QX] = -K'[9^]^ - K%^\ 

psee[9t][9x]+pee[etx\ = -[Qa:x]- (1.15) 

Next, we use the Hadamard relation to see that 

f = M + V 1 , „ 1 , | = l»j + y l« j 

and employ these expressions in (1.15). In this manner one finds 

P^e{jl - y%x]^ - peeeVa'' = -[9̂ ]̂ (1.16) 
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Prom (1.9) we know that 

rVb = Ka, or b = —TJCL. 
TV 

Using this we may deduce a satisfies the equations (note V is constant since 9'^ — 

constant) 

pee^ - peeV[9^x] - peeeVa^ = - [ f c ] (1-17) 

Divid ing by K/V, where K/V y^O these yield 

5a T V \ , 1 K'V 2 ,,rz, 1 

| - m x ] - ^ V a ^ = - - M . (1.18) 
ot £e pee 

Now, add both equations to find 

2— - 9xx -[p + - ° + " F - ~ \ / a ' = 0. (1.19 
5t \ K pee J r \K EQ ) 

Thanks to the wavespeed relation (1.10), the coefficient of [^x^] is zero. This yields 

the following equation for the wave amplitude a, 

where the constant Q is given by 

1 / / T V _ eeeV\ 
^~ 2 \ K Be J 

= 1 / K{e+) fKe{9+) _ eee{n\ 
2y frree{9+)\K{e+) £ e ( ^ + ) / ^ ' ^ 

To solve (1.20) we put u= l/a and then find 

Using the integrating factor 

5t 2T ^ 

^ ( e - / ^ - ^ ) = Ce- /^^ 
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We integrate this to f ind after rearrangement 

exp (V2r ) + 2 r C { e x p ( V 2 r ) - l } a ( 0 ) ' ^ " ' 

When a(0) > 0 this shows a{t) —> 0 as i increases. However, i f a(0) < 0 we have 

|a(t)l blows up in a f ini te time. This is associated w i t h thermal shock formation, cf. 

the calculations in elasticity in Fu and Scott [55]. Prom (1-22) the blow-up t ime is 

when 

e'/2^ = |a(0)| 2TC exp(^/2T) - 1 (1.23) 
\ y 

and thus we f ind the blow-up t ime is 

T* = 2 r l o g f - M m ^ y (1.24) 

1.2 Outline of thesis 

I n Chapter 2 we study the problem of thermal convection in a layer of f lu id heated 

f rom below, but when the heat f lux law is one of Cattaneo type, as introduced in 

Section 1.1. Since we solve this problem for two r igid surfaces we are faced wi th the 

numerical solution of an eigenvalue problem for a system of differential equations. 

Thus, in Chapter 2 we also introduce the D'^ Chebyshev tau numerical method. 

Chapter 3 investigates various qualitative properties for a model for second sound 

derived by Green & Laws [58]. The model of Green & Laws introduces a generalized 

temperature 0 which depends on 6 and 9, where 9 is the usual temperature. We 

extend this work in Chapter 4 to a model of Batra [13] who generalizes the Green 

& Laws ideas by allowing 9, 9 and 9 to be variables in the constitutive theory. 

In Chapter 4 we investigate uniqueness, instability, and wave motion in the Batra 

theory. 

Chapter 5 studies a more recent model of heat transport in a rigid body, namely, 

the model of Green & Naghdi [60]. I n this chapter we give a detailed analysis of 

acceleration waves in the Green & Naghdi [60] theory. 

I n the final chapter. Chapter 6, we investigate an extension of the model in 

Chapter 5. This is to the case of the thermodynamics of Green & Naghdi [60], 

but when the theory is extended to cover an inviscid fluid. The extension is due 
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to Quintanilla k. Straughan [155]. We consider a different constitutive tfieory f rom 

Quintanil la & Straughan [155], and study the development of an acceleration wave. 



Chapter 2 

Thermal convection with the 

Cattaneo model 

Our goal in this section is to solve a thermal convection problem. Firstly, we intro

duce a numerical method. 

2.1 D'^ Chebyshev tau method 

To describe the Chebyshev tau technique we follow Dongarra et al. [41] and consider 

a simple example. Consider the equation and boundary conditions, 

Lu=u" + Xu = ^, x e ( - l , l ) , 

u ( - l ) = « ( l ) = 0, (2.1) 

where the differential operator L is defined as indicated. 

Now write l i as a f ini te series of Chebyshev polynomials 

N+2 

= ^ t t f e T f c ( x ) . (2.2) 
fc=0 

The idea is that (2.2) represent truncations of an infinite series. Due to the trun

cation, the tau method argues that rather than solving (2.1) one instead solves the 

equation 

Lu = TiTyv+i + T2TM+2 (2.3) 

10 
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where T I , T2 are tau coefficients which may be used to measure the error associated 
wi th the truncation of (2.1). 

To reduce (2.1) to a finite-dimensional problem the inner product w i th % is taken 

of (2.3) in the weighted L ^ ( - l , 1) space wi th inner product 

and associated norm ||-||. The Chebyshev polynomials are orthogonal in this space, 

and then f rom (2.3) we obtain (A^ + 1) equations 

{Lu,Ti) = 0 i = 0,l,...,N. (2.4) 

There are two further conditions which arise f rom (2.3), 

( L u , r ^ + , ) = r , | |T ;v+; | | ' , ; = 1,2, 

and these may effectively be used to calculate the r 's . The two remaining conditions 

are found f rom the boundary conditions, which since r „ ( ± l ) = ( ± 1 ) " , yield 

^ ( - l ) " w „ = 0, 5 ] ^ „ = 0. (2.5) 
n=0 n=0 

Equations (2.4) and (2.5) yield a linear system of (A^ + 3) equations for the (A'' + 3) 

unknowns Ui, i — 0,..., N + 2. 

The derivative of a Chebyshev polynomial is a Hnear combination of lower order 

Chebyshev polynomials, in fact 

n - l 

Tn' = 2 n ^ T k , neven, 
fc=i 
n-l 

Tn' = 2n^Tk + nTo, n odd. (2.6) 

Then (2.4) becomes 

w f ) + Aui = 0, 2 - 0 , . . . , i V , (2.7) 

where the coefficients ^ are given by 

p=N+2 

Ci 

p=N+2 

p=i+2 
p+i even 
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w i t h the numbers Ci being defined by CQ = 2, Cj = 1, i = 1, 2 , . . . . (Actually, (2.8) is 
really a truncation to the A'' - I - 2th polynomial of an infini te expansion.) Equations 
(2.7) and (2.5) represent a matr ix equation 

Ax = -XBx, (2.9) 

w i t h X = ( u o , . . . , UN+2Y• However, the B matr ix is inevitably singular due to the 

way the boundary condition rows are added to A. Indeed, the last two lines of B 

are composed of zeros, while the upper left ( A - I - 1) x ( A - I - 1) part is simply the 

identity. 

To clarify this point, we observe 

N+2 

5=0 
yv+2 ,N+2 

s=0 ^r=0 
N+2 ,N+2 V 

r=0 ^s=0 / 

and so we may make the identification 

^ + 2 

Similarly, 

and, therefore. 

s=0 

N + 2 . N + 2 V 

7^^ Kl^^ / 

u. 

r=0 ^ s=0 

N + 2 

s=0 

N+2 N+2 

= Y Dr,s Y ^s,kUk 

s=0 k=0 

N+2 N+2 

= ^ ^ Dr,sDs,kUk • 
s=0 k=Q 

This allows us to introduce the diiTerentiation matr ix D, and second differentiation 
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matrix which are shown to have components 

Do,2j-i = 2; - 1, > 1, 

A , i + 2 , - i = 2{i + 2j - 1), i> I, J > 1, 

Dl2j = \ m \ J > 1 , 

Dl^,j = {i + 2j)4j{i + j ) , i > l , j > l , (2.10) 

or 

D = 

0 1 0 3 0 5 0 7 0 9 

0 0 4 0 8 0 12 0 16 0 

0 0 0 6 0 10 0 14 0 18 

0 0 0 0 8 0 12 0 16 0 

0 0 0 0 0 10 0 14 0 18 

0 0 4 0 32 0 108 

0 0 0 24 0 120 0 

0 0 0 0 48 0 192 

7 
where we observe D"^ = D • D in the sense of matr ix mult ipl icat ion. These matrices 

are started at (0,0) and truncated at column N + 2. 

The A'^+l and N+2 rows of the matr ix A are replaced by the boundary conditions 

(2.5) while the same rows of B are replaced by zeros. 

The resulting matr ix eigenvalue problem is solved by using the QZ algorithm in 

the N A G library. 

2.2 Hydrodynamic stability eigenvalue problems. 

To begin our discussion of hydrodynamic stability eigenvalue problems we shall 

consider the Orr-Sommerfeld equation 

{D^-ay(i) = iaRe{U-c){D^-a^)(P-iaReU"<p, 2 G ( - 1 , 1 ) , (2.11) 
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see Drazin & Reid [42], equation (25.12), where D = d/dz, Re, a and c are Reynolds 

number, wavenumber, and eigenvalue (growth rate), respectively, and (I) is the am

plitude of the stream funct ion. For Poiseuille flow U — \ - z ^ , whereas for Couette 

flow U = z. Equation (2.11) is to be solved subject to the boundary conditions 

0 = D 0 - O , z = ±l. (2.12) 

In Poiseuille flow the basic flow is driven by a pressure gradient in the x-direction 

whereas Couette flow is driven by the upper boundary being sheared relative to the 

lower one. The latter is known as shear flow but the whole class of such flows is 

known as parallel flow. 

Equation (2.11) governs the two-dimensional stability problem for parallel flow 

where Squire's theorem is employed to reduce the three-dimensional problem to a 

two-dimensional one. This is standard knowledge in the fluid dynamics literature, 

cf. Drazin & Reid [42]. The function (p is related to the stream function ip by 

^ = 0(2)6^"^^-'=*). (2.13) 

System (2.11), (2.12) has an infinite number of eigenvalues and associated eigenfunc-

tions. Since the real part of the temporal growth rate in (2.13) is e'̂ '̂  c = Cr + ici, 

the eigenvalue which has largest imaginary part is the most dangerous in a l in

ear instability analysis. The component in (2.13) of the solution associated wi th an 

eigenvalue is referred to as a mode and the one wi th largest imaginary part is known 

as the dominant, or leading, mode (eigenvalue). 

2.3 D'^ Chebyshev tau method, Orr-Sommerfeld 

equation 

A D'^ method writes (2.11) as two equations 

L2[4>, x) = [D^ - ci^)x - iaRe{U - c)x + laReVcp = 0. (2.14) 
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We solve exactly the equations 

L2{(P,x) = r3Tr,+,+T,TM+2, (2-15) 

by wr i t ing 

, N+2 N+2 

i=0 i=0 

and then by mul t ip lying each of (2.15) in tu rn by Ti, i = 0,..., N. This yields 

2(N + 1) equations for the coeflficients </)i, x-i- The equations obtained by taking the 

inner product of (2.15) w i th T^r+i, yield equations for the tau coefficients. The 

diff icul ty w i t h the above approach, as pointed out by McFadden [113], p. 232, is 

that the boundary conditions are all on (pi and none are on Xi-

A D^-method for (2.11), (2.12) appropriate to Poiseuille flow eventually solves 

an equation hke (2.14) where 
X = ( 0 0 , . . . , (f>N+2, XO,---, XN+2)'^, 

w i t h 

- -I \ 
BCl 0 . . .0 

BC2 0 . . .0 

0 a^I 

BC3 0 . . .0 

BCA 0 . . .0 

/ 

A = 

0 

0 . . . 0 

0 . . . 0 

-2aReI 

0 . . . 0 

0 . . , 0 

0 

0 . . . 0 

0 . . . 0 

aRe{P - / ) 

0 . . . 0 

0 . . . 0 

and 
/ r 

Br = 0, Bi = -aRel 

0 . . . 0 

0 . . . 0 

where P is the Chebyshev matr ix representing z'^, A = Ar +iAi, and B = Br + iBi 

\ 

0 

V 

{P is the matr ix obtained by wr i t ing = | ( 1 + T2{z)), and then taking the inner 

product ( r , , 2^0).) 
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The rows BCl,..., B C 4 refer to the boundary conditions on (pn and for the 
Orr-Sommerfeld problem. The four discrete boundary conditions are obtained f rom 
the boundary conditions (2.12). Since r;(±l) = (± l ) "+ ln^ these are 

N+2 N+2 N+2 N+2 

^ ( - 1 ) > , = ^ 0. = ^ ( - l ) ^ + ' 2 V z = = 0. (2.16) 
i=0 i=0 t=0 i=0 

Due to the way the terms split in the discretization of (2.11) when i7 = 1 - i t is 

then better to write (2.16) as 

i = N + l i=N+2 i=N+2 i = N + l 

J2 ^^ = 0, ^ 0. = O, ^ z V z = 0, ^ ^ V ^ = 0. (2.17) 
i=0 i = l i = ] 2=2 

i even i odd t odd i even 

2.4 Thermal convection with the Cattaneo law 

We use the Cattaneo law as in Straughan & Pranchi [173]. The equations for f lu id 

motion consist of the balance of mass, balance of linear momentum, balance of 

energy, and the Cattaneo law [19]. These equations are found in Straughan & 

Franchi [173]. The balance of linear momentum is, 

Vi^t + '^j'^ij = —P,i + ocgkiT -\- uAvi (2-18) 

where Vi,p,T are the velocity, pressure and temperature fields, A denotes the 

Laplace operator in three - dimensions, p is the constant density, u is the kinematic 

viscosity, g is the gravity, k = (0, 0,1) and a is the thermal expansion coefficient. 

The balance of mass equation is, 

Vi,i = 0. (2.19) 

The balance of energy is, 

pCj,{Tt + v,Ti) - -Qi^i (2.20) 

where Qi is the heat flux and Cp is the specific heat at constant pressure. The invariant 

form of the Cattaneo law adopted by Straughan & Pranchi [173] is, 

r{qi,t + VjQij - ^QjVi^j + ^QjVj^i) = -Qi - KTi, (2.21) 

K being the thermal conductivity. 
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The fluid occupies the layer {x,y) e R ^ , 2 G {0,d) and equations (2.18) - (2.21) 

hold in the domain x ( 0 , r f ) x {t > 0 } . The boundary conditions are 

Vi = 0 on z — 0,d, 

T = T L , 2 = 0, T = Tu, z = d, 

wi th TL > Ty. The steady solution to (2.18) - (2.21) of interest is 

v, = 0, f=-pz + n, q = ( 0 , 0 , K / 3 ) , 

agPz' 
2 

+ agpTiZ + pq, where po is a reference pressure. 

Here P is the temperature gradient, 

TL-TU 

(2.22) 

(2.23) 

T=T.. 

T = T,, 

= d 

Lavers of fluid 

;= 0 

Figure 2.1: Diagram il lustrating fluid heated f rom below. 

Instabili ty of solution (2.23) is studied by introducing perturbations (u j , 6', T T , ^ j ) 

such that Vi = Vi + Ui, T = f + 9, p = p + n, Qi = Qi + Qi- Then, f rom equations (2.18) 

- (2.21) we derive the hnearized equations governing (wj, ^, T T , q-j) as, see Straughan 
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& Pranchi [173], 

Uit = — 7 r , j + agki9 + vAui, 
P 

= °' (2.24) 

r(9i ,t - ^Ui^zK'P + ^«/?^«,z) = -Qi - > 

where it; = U3. Equations (2.24) are non-dimensionalized as in Straughan & Pranchi 

173]. We need the Prandt l number, P r , Cattaneo number, C, and Rayleigh number, 

Ra = R^, which are 

(2.25) 

The non-dimensional linearized equations (2.24) are 

•Uj,t = —TT ĵ - I - Rki9 + A i i j , 

Ui,i = 0, 

Pr9t = Rw-

2CPrqi^t = -Qi + CR{ui^, - ^^;,^) - 9,i. 

To study instabili ty we seek an exponential t ime dependence like 

zxi(x, t) = e'^'uiix), 9ix, t) = e'^*^(x), gi(x, t) = e^'gi(x), 7r(x, t) = e '^V(x), 

Equations (2.25) yield 

aUi = —7r_j + RkiO + A u j , 

= 0, 
(2.26) 

oPr9 = — 

2aCPrqi = - g , + Ci?(wi,^ - t/;,i) - . 

Ehminate T T f rom (2.26)i and put Q = Qi^t, where " _ i " means derivative wi th 

respect to a;,. Thus we solve the equations 

a Aw = RA*9 + A^w 

aPr9 = Rw-Q (2.27) 

2aCPrQ =-Q - A9 - CRAw , 



2.4. T h e r m a l convection wi th the Cat taneo \aw 19 

where A* = d'^/dx'^ + d'^/dy'^ is the horizontal Laplacian. 

We now use the D'^ Chebyshev tau numerical method to solve equations (2.27). 

The fixed surface boundary conditions are 

w = w, = 9 = 0, z = 0,l. (2.28) 

Equation (2.27)i is four th order and hence we introduce the variable x by X = 

We let / be a plane t i l ing periodic function so that f^x + fyy = - a ^ / where a is a 

wavenumber. Next wri te it;, x, 9 and Q in the form 

w^W{z)f{x,y), x = x{z)f{x,y), 9 = e { z ) f { x , y ) , Q = Q{z)f{x,y). 

We now solve (2.27) as 

{D^ - a^)W - X = 0, 

{D' - a')x - Ra'e = ax, 
(2.29) 

(D^ - a^)Q + Q + CRx = -2aCPrQ, 

Q-RW = -aPrO. 

The functions W, x, © and Q are expanded in terms of Chebyshev polynomials, for 

yv odd, 
N N 

W{Z) = ^WnTniz), X{Z) = ^XnTn{z), 
n=0 n=0 
N N 

Q{Z) = J2QnTn{z), Q{Z) ^^QnTniz). 
n=0 n=0 

To use the boundary conditions (2.28) we note that 

7 ; ( ± 1 ) = ( ± 1 ) " , T ^ ( ± l ) = {±ir-'n\ 

Then the boundary conditions (2.28) become, 
i=N-l i=N 

^ Wi = 0, ^Wi = 0, (2.30) 
i=0 i = l 

i even i odd 

i=N-l i=N 

i^Wi = 0, ^^^i = 0' (2.31) 
1=2 i = l 
even i odd 

=N-l i=N 

5̂  0 , - 0 , ^ e , = 0. (2.32) 
i=0 1=1 

i even i odd 
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The Chebyshev tau method now reduces to solving the matr ix system A x = aBx. 

Here the (A^ + 1) x (A^ + 1) matrices A and B are given by 

A = 

BCl 

BC2 

0 

BC3 

BC\ 

0 

0 . . . 0 

0 . . . 0 

y -RI 

( 0 

0 . . . 0 

0 . . . 0 

0 

0 . . . 0 

0 . . . 0 B = 

0 

0 . . . 0 

0 . . . 0 

0 

- / 

0 . . . 0 

0 . . . 0 

4D^ - o?I 

0 . . . 0 

0 . . . 0 

CRI 

0 . . . 0 

0 . . . 0 

0 

0 

0 . . . 0 

0 . . . 0 

/ 

0 . . . 0 

0 . . . 0 

0 

0 . . . 0 

0 . . . 0 

0 

0 

0 . . . 0 

0 . . . 0 

-Ra?I 

0 . . . 0 

0 . . . 0 

4L>2 _ 

BC5 

BC6 

0 \ 

0 . . . 0 

0 . . . 0 

0 

0 . . . 0 

0 . . . 0 

/ 

0 . . . 0 

0 . . . 0 

0 

0 

0 . . . 0 

0 . . . 0 

0 

0 . . . 0 

0 . . . 0 

0 

0 . . . 0 

0 . . . 0 

-PrI 

0 \ 

0 . . . 0 

0 . . . 0 

0 

0 . . . 0 

0 . . . 0 

-2CPrl 

0 . . . 0 

0 . . . 0 

0 

where x = [WQ, . . . , IVAT, XO, • • •, X N , ©O, • • •, © N , <3O, • • •, QN)- The boundary condi

tions BCl,BC2, BC3,BCA, BC5,BC6 refer respectively to (2.30), (2.31), (2.32). 

The matr ix system is solved by the QZ algorithm used as given in the N A G library, 



2.5. N u m e r i c a l results 21 

cf. Dongarra et al. [41]. Note that in the last block row of A and B there are no 
boundary conditions. This is due to the fact that (2.29)^ is an identity and not a 
differential equation. 

2.5 Numerical results 

Straughan and FYanchi [173] found that for two free surfaces, the following asymp

totic formula, 

R a = ^ ( l + ^C7r' + 0{C') 
4 V 2 

We present numerical results for two fixed surfaces below. Again, we f ind Ra to be 

increasing in C. 

Table 2.1: Cri t ical Rayleigh numbers 

c i?a a 

0 1707.765 3.12 

10-^ 1711.180 3.12 

2 X 10" -4 1714.596 3.11 

4 X 10" -4 1721.475 3.11 

6 X 10" -4 1728.402 3.10 

8 X 10" -4 1735.369 3.10 

10-2 1742.393 3.09 

2 X 10" -3 1778.194 3.07 

4 X 10" -3 1853.544 3.03 

6 X 10" -3 1934.276 2.98 

8 X 10" -3 2020.868 2.94 

10-2 2113.893 2.89 
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The results in this table we found by fixing and solving for a. The numerical 
routine seeks that value of Ra for which Rea = 0. Then we find 

min Ra{a^). 
a? 

I t was found that a £ M throughout the table. Prom the table we see that Ra 

satisfies an approximately linear relationship in C. For small C values we have 

Ra ~ 1707.765 - I - 34150C (2.33) 

so the slope is approximately 3.5 bigger than that in the free surface case. 



Chapter 3 

Green and Laws model 

3.1 Derivation of the model 

I n this section we wi l l summarize the derivation of the model which appeared in 

Green and Laws [58 . 

In the article of Green & Laws [58], they proposed the entropy production in

equality for the whole body b and for the material volumes p, by employing the 

specific Helmholtz free energy and energy equation together w i t h other standard 

balance equations. Moreover, they make the constitutive assumptions that •0,77, (j), Qi 

are functions of 9,6,9^i. Furthermore, they treat both the external volume and sur

face supplies of entropy on an equal footing and retain a non-zero r . The balance 

laws for a single phase continuum that are used in Green &: Laws [58] are 

p + pvi^i = 0 (3.1) 

tki,k + pFi = pVi, (3.2) 

pr - Qi^i + tikdik - pi = 0, (3.3) 

where p,Vi,tki,Fi,r,qi and £, are, respectively the mass density, the velocity, the 

Cauchy stress tensor, the specific body force, the specific heat supply, the heat flux 

and the specific internal energy. The stress tensor Uk is symmetric, so tik — t^i, 

and dik is the symmetric part of the velocity gradient, dik = |(vi,fc + Vk^i). Also a 

superposed dot denotes material t ime differentiation. 

23 
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In 1967, MuUer [121] proposed an entropy production inequality of the fo rm 

4- I PVdv - / ^dv + [ kiUida > 0 (3.4) 

for every material volume p, T] is the specific entropy, 9 is the absolute temperature 

{9 > 0), ki is an entropy flux vector, and n j is the outward unit normal to the 

boundary surface, dp, of p. 

The equation of motion (3.2) and the energy equation (3.3) are balanced by suitable 

choices of body forces Fj and heat supply r. 

Green & Laws [59] suggest that since (3.4) holds for every material volume p, i t also 

holds for the whole body b, therefore they assume that the only external volume 

supply of entropy is defined in a particular way in terms of externally supplied rate 

of production of heat r , namely r/9. Similarly the only external supply of entropy 

over the boundary db of the continuum is that defined in the same way in terms of 

the rate of supply of heat. Then they suggest that the entropy flux vector in (3.4) 

be restricted by the condition 

kiUi = on db. (3.5) 
u 

Otherwise the external supply of entropy over db is of different character f rom the 

external volume supply of entropy. 

In 1971, Muller [123], [122] considered solutions of (3.1) to (3.3) when Fj = 0, r = 0. 

Green & Laws [58] assume that associated w i t h the heat supply r there is an entropy 

supply r / 0 where cj) > 0 and 0 = ^ in equihbrium. The function (p = 4>[9,9) is a 

generalised temperature. 

For the whole body 6, the entropy production inequality is 

f PVdv - f ^ d v + [ ^ d x > 0, (3.6) 
dt Jb Jb 4> Jdb <P 

and for all material volumes p, the entropy production inequality is 

^ Iprjdv - [^dv+ [ ^ d x > 0. (3.7) 
dt Jp Jp 4> J dp 0 

Green & Laws [58] deflne the Helmholtz free energy ip = e — 770, and consider a 

stationary rigid heat conductor. Moreover, they use the constitutive assumptions 
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that ijj,r],(t),qi are functions of 9,6,0^i, and exploit the Helmholtz free energy -tp 

together w i t h the constitutive assumptions into (3.7) to obtain 

= 0 (which yields (j) = (p{e, 6)), 

For a rigid sohd which conducts heat according to a Fourier law 

Qi = -iiij{9,9)9j, 

(3.8) 

(3.9) 

leads to Kij is symmetric. 

Define equilibrium to be when ^ = 0, 9^i = 0, and let (pls = 9, hence {0(p/09) \ ̂  = 

1. Then Green & Laws [58] show 

V\E = 

and -

09 

dqi 

d9,j 

n = 0, 

is a positive semi-definite tensor. (3.10) 

By employing (3.7) and the Helmholtz free energy: = e - rjcp, then the equation 

(3.3) becomes 

pr - Qi,, - p{tP + + (f>rj) = 0, (3.11) 

and the linearized version of (3.11) is 

pr 
Oqi 

09 

09 

Oqj 
09, 

9 

E \ C't'.i 
9i = 0. (3.12) 

Thus, (3.12) is capable of predicting a finite speed of heat propagation. We now 

study the properties of a solution to equation (3.12) in some detail. 

Throughout the remainder of the thesis Q w i l l denote a domain in M''. I f has 

a boundary this wi l l be denoted by P. 
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3.2 Uniqueness for the Green and Laws model 
with ki constant 

In this section C M"̂  is a bounded domain w i t h boundary F. Now, discuss equation 

(3.12) and take the specific heat supply r = 0 then this equation becomes, 

where the coefficients are 

(3.13) 

a = p\4> 

dqi 

dqi. 

89 

drj 

In this section a,/?,.^ifc and h are constants, we assume îfc to be symmetric, and 

equation (3.13) holds on the domain f2, t > 0. 

The boundary and ini t ia l conditions are 

Boundary Condition 

In i t ia l Conditions 

e = f[x,t)onT, (3.14) 

e{x, 0) = g{x), 9t{x, 0) = h{x), x e n. (3.15) 

Let P denote the boundary-init ial value problem given by (3.13)-(3.15). 

To prove that the solution is unique, assume that there are 2 solutions 9^ and ^2 

which satisfy the equation (3.13) and the boundary-init ial conditions (3.14) and 

(3.15). Then let w ^ 9i - 9^. Prom (3.13) we find w satisfies 

ail) -\- (3w -\- ^ikW^ki + hy^^i ~ 0, where x eVl, t > 0, 

wi th the boundary condition 

and the in i t ia l conditions 

w = 0 on r , 

(3.16) 

(3.17) 

w{x,0) = 0, xeQ, (3.18) 
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wt{x,0) = 0, xen. (3.19) 
To demonstrate uniqueness we mult iply (3.16) by lii and integrate over Q, to obtain 

a / wwdx + P w^dx + I ^ikW^ikwdx + / kiWiwdx = 0, (3.20) 
Jn Jn Jn ' Jn ' 

or equivalently in the form, 

a{w, w) + p{w, w) + i^ikw^ki, w) + {kiW^i, w) = 0, (3.21) 

where (•, •) denotes the inner product on L'^{Q). Note that 

a(w,iu) = a [ wwdx = ^ [ •^(w)^dx = ^-^Ww (3.22) 
JQ ^ Jn dt 2 at 

The second term of (3.21) is 

P{w, w) = P I w^dx = P\\wf, (3.23) 
Jn 

and for the ki term we have 

{kiW^i,w) = / kiW^iwdx 
Jn 

= I h-
Jn < 

d'^w 9w ^ 
' dxidt dt 

2 

= L2d^\-m) '''^"S the chain rule 

1 / 5 r f d w Y ] , . ^ . 
^ 2 J dx' \dt J ^^^^^ ^ constant vector 

= 2 y '^ihi-Q^f'ds.hy using the divergence theorem 

= 0. (3.24) 

For the term, 

(^ikW,ki,U!) = / ^ikW^kiWdx 
Jn 

= / ^ikw[^w^i)dx 
Jn oxk 

= Uk^ikWtW^ids - J ^ikW^iW^kidx, 
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where we have integrated by parts and used the divergence theorem. The first term 
is zero since u' = 0 on F, so that 

{^ik'w,ki,w) = - / ^ikW^iW^ktdx, 
Jo. 

= - ~ y iikW,iW^kdx. (3.25) 

Employing (3.22) to (3.25) in (3.21), equation (3.21) becomes 

a d 
2dr " - J j , k W , w , k d x = 0, (3.26) 

or 
a d 
2Jt 

f v?dx + P f w^dx - ~ [ iikW^iW^kdx = 0. (3.27) 

Integrate equation (3.26) f rom 0 to t, 

~ [ (aw'^-^^kWiWk^dx + P [ [w^dx = 0. (3.28) 
^ i n \ / Jo Jn 

We now require a > 0, /? > 0, ^ik to be a negative semi-definite tensor, i.e. 

^tkUk < 0, that is 

^i^k < 0, v^, . 
C ,̂fe E 

Then f rom equation (3.28) we obtain 

0 < - / aw - ^ikW^.w^k ]dx<Q, 
In 

and so 

0 <a w^dx - / S,ikW iW kdx < 0. 
Jn Jn 

Since a w'^dx > 0 and — ^ikW^iW^kdx > 0, then 

0<a I w^dx < 0. (3.29) 
Jn 

Therefore 

/ w^dx = 0, (3.30) 
i n 

so ti; = 0, this leads to = 0, hence 9i = 92 which yields uniqueness. 
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3.3 Uniqueness for Green and Laws model with 

Now we use equation (3.13) but allow fcj to depend on the spatial variable, i.e. 

ki = ki{x). Let 9i and ^2 be solutions to the boundary-init ial value problem defined 

by equations (3.13),(3.14) and (3.15), where 9i and 62 each satisfy (3.14) and (3.15) 

for the same data functions / , g and h. 

Let w = 9i — 92- Then from equations (3.13),(3.14) and (3.15) we find w sat

isfies the boundary-init ial value problem (3.16), (3.17) and (3.18). We now, prove 

uniqueness when A;, = ki{x). 

M u l t i p l y (3.16) by w and integrate over the domain Q. Thus 

a / wwdx + P / {'w)'^dx + / S,ik'w,kiwdx + I kiiii^iwdx = 0. (3.31) 
Jn Jn ' Jn ' 

As in section (2.2) we find 

a f wwdx = ^ - ^ I k l P , (3.32) 
Jn 2 dt 

and 

J iikWMUJdx = J E^ikW^iW^kdx (3.33) 

For the te rm in ki we note 

/ kiWiwdx= ! ^4-{^?dx (3.34) 
Jn ' Jn ^ Oxi 

and upon integration by parts 

f kiWiwdx=- f -^(kiW^)dx ~ [ ^w^dx 
JQ ' 2Jn0xi^ Ja 2 

= ^ / n^kiw'^ds-]- I kiiw'^dx 
2 Jv 2 ' 

= - \ ! ki^iw'dx, (3.35) 
^ Jn 

because ti; = 0 on F. 

Then, employing equation (3.32)-(3.35) in equation (3.31) we obtain 

1 d J ^ikW,iW,kdx^ ^ i i ('̂  ~ ^ ) '̂ ''̂ '̂  " °' ^̂ '̂ ^̂  
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We now require that 

/ 3 - ^ f c i , i ( x ) > 0, V X G Q . (3.37) 

Then we discard the /? - A:i,i/2 term in (3.36) to find 

| < 0 . (3.38) 

Integrate this f rom 0 to i to find 

^ l l ^ ^ f / iikw^^^kdx<^, (3.39) 
^ ^ Jo. 

since ii;(a;,0) = 0 and w{x, 0) = 0. Since iikii^k < 0 inequality (3.39) leads to 

0 < | | w ( i ) | | 2 < 0 (3.40) 

Therefore 

| | i i ; ( i ) | | = 0. (3.41) 

Thus 

10 = 0 i n Q , V t (3.42) 

and so 

w{x,t) = ^. (3.43) 

Hence the solution 9 to the boundary-initial value problem (3.13),(3.14) and (3.15) 

is unique. 

3.4 Continuous dependence of the thermal energy 

I n this section we suppose ki = ki{x). 

We now suppose 9 satisfies the boundary and ini t ia l conditions 

^ = 0 on r, 
^ ( x , 0 ) = 9o{x),xe Q, 

9{x,0) = 'po{x),x e Q. 

Then mul t ip ly equation (3.13) by 9 and integrate over Q, we obtain, 

a{9, B) + (5{9,9) + ( ^ - ^ . ^ i , 9) + {h{x)9^u 9) = 0. (3.44) 
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We note, 

{^rk9,ik.9) = I U&,ik9dx 
Jn 

= (3.45) 

as in Section (3.3) we find 

{h{x)9,J) = -\j^kJ^dx. (3.46) 

Employing (3.45) and (3.46) into (3.44), we obtain 

^ ± f e^dx + (5 [ 9 ' d x - ~ [ ^ik9Akdx-l [ k j ' d x . (3.47) 
2 dt Jn JQ dtz Jn 2. Jn 

Rearranging equation (3.47), we obtain 

Suppose now 

/? - ^ > /3o > 0. (3.49) 

Then f rom equation (3.48) we have 

It In " \^^>^^^^^'>) "̂ "̂  + ^° X ~ ° ' ^^'^^^ 

Integrate f rom 0 to i over f i , we obtain 
/ ^0'dx-\ ! ^ik9Akdx + Po f [ 9'dxdT) 

Jn Jn Jo Jn 
< ^ j j l d x - \ j j i k 9 ' , 9 % d x . (3.51) 

Suppose 

^ikriiTlk < 0, (3.52) 

then 

- / ^ik9,r9,kdx > 0. (3.53) 
Jn 

Therefore, f rom equality (3.51) we have 

^ / 9^dx + (3o f [ 9^dxdri < Do, (3.54) 
2 Jn Jo Jn 
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where DQ is the data term, 

Do = ^ [ ^Idx - \ I E,^k9''i9\dx + Po f ! ^o'dxdrj. (3.55) 
^ Jn Jn Jo Jn 

Define now 

F{t) = f f 9^dxdr], thus F'{t) = [ 9^dx. (3.56) 
Jo Jn Jn 

Then the equahty (3.54) may be rearranged as 

2 

or 

^F'it)+0oF{t)<Do, (3.57) 

F'{t) + ^ F ( 0 < -Do. (3.58) 
a a 

M u l t i p l y (3.58) by e x p ( ^ ) , then we have 

d Mm ^\ ^ 2 20ai 
e . F <-e.'D„. 

Then integrating 

^'F{t) - F (0) < / -Doe'^^ds 
Jo » 

rearranging to obtain. 

a J \2jJo 

e - ^ ' F ( i ) < F(0) + -r^ e ^ ' - \ 
Po 

So 

F ( t ) < | ( l - e - ^ ) (3.59) 

Inequality (3.59) shows continous dependence of 9 on the in i t ia l data in the F{t) 

measure. 

3.5 Uniqueness and continuous dependence for a 

related model 

A n equation very similar to (3.13) may be taken f rom the work of Payne & Song 

134]. These authors study a model for thermoelasticity which stems f rom the ther

modynamic treatment of Green &; Laws [58]. By fixing the displacement, Uj, in 
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equation (1.11) of Payne & Song [134] so that i t j j = 0, one arrives at the equation 
for the temperature field 9 of form 

h9 + de- biO^i - {bi9)^, = ikik9,k)4- (3-60) 

Clearly equation (3.60) is very like our equation (3.13) but has the extra term 

In this section we establish uniqueness and continuous dependence on the in i t ia l 

data for a solution to (3.60). Hence, let Q C M"* be a bounded domain wi th boundary 

r and suppose (3.60) is defined on the space-time domain x (0, T) for some T > 0. 

The boundary conditions are 

9{x,t) = f { x , t ) , x e r , (3.61) 

and the in i t ia l conditions are ' 

9{x,0) = g{x), 9t{x,0) = h{x), (3.62) 

where a; e 

The functions h,d may depend on x but h > 0,d > 0,bi = bi{x) and kij = kij{x), 

but kij^i^j > 0, V^. 

To estabhsh uniqueness and continuous dependence we let 9i and ^2 be solutions 

to (3.60) and (3.61) for the same data function / . Let 9i satisfy (3.62) for g = 

gi,h = hi and let ^2 satisfy (3.62) for g = g2,h = /i2- Define w = 9i - 92,G = 

Qi — g2, H = hi — h2, then f rom (3.60)-(3.62) we find w satisfies the boundary-initial 

value problem 

hw + dw - biW^i - {biib)^i = {kijWj)^i, in fl x (0, T ) , (3.63) 

w{x,t) = 0, x e r , (3.64) 

w{x, 0) = G{x), wt{x, 0) = H{x), x e n . (3.65) 

M u l t i p l y equation (3.63) by w and integrate over to find 

/ hw'^dx+ [ dw'^dx+^]- f kijW jdx 
dt 2 JQ JQ dt2 

= / biWWidx^- I {biw)iwdx, (3.66) 
Jn ' . Jn 
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where we have integrated by parts on the kij term and used the boundary condition. 
To handle the right hand side we use the chain rule and integrate by parts to see 
that 

/ biww^idx + / {hiw)^iwdx 
Jn ' Jn ' 

= - bi{w'^)^idx+ / biW^iwdx + / bi^iw'^dx 
2 Jn ' Jn ' Jn ' 

= [ bi{w'^) idx + I- I bi{w^)^idx+ [ bi^iW^dx 
2 Jn ' 2 i n ' JQ 

= / bi{'uP')^idx + I bi^iW^dx 
Jn ' Jn ' 

= J biUiW^dS = 0, (3.67) 

since l i ; = 0 on F. Thus, equation (3.66) becomes 

[ hw^dx + l f kijWiWjdx]+ [ dw^dx = 0. (3.68) 
dt\2 JQ 2 JQ ' ' / Jn 

Since rf > 0 we drop the last term to obtain 

^( [ hw^dx+ I kijWiWjdx] < 0. (3.69) 
dt\Jn Jn ' ' / 

This equation is integrated f rom 0 to i and we find 

! h[w{x,t)fdx+ I kijW^i{x,t)wj{x,t)dx < / hH^dx+ / kijG^iGjdx. (3.70) 
Jn Jn ' ' Jn Jn 

Inequality (3.70) yields continuous dependence on the in i t ia l data g and h in the 

measure 

E{t) = / h[w{x,t)]'^dx + / ki. jW^i{x,t)wj{x,t)dx. (3.71) 
Jn Jn ' ' 

I f we additionally know kij is positive-definite, i.e. 

hjUj > ^ o l ^ l ' , ko > 0, (3.72) 

then since h > 0 we may deduce f rom (3.70) w i th the aid of Poincare's inequality 

that 

koXi I [w{x,t)fdx< I hH^dx+ f kijG^iGjdx, (3.73) 
Jn Jn Jn ' 
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where Aj > 0 is the constant in Poincare's inequality. 

Inequality (3.73) demonstrates continuous dependence on the in i t ia l data g and 

h, in the L ^ ( f i ) measure of w, and hence 9. 

Uniqueness follows immediately f rom (3.73) when (3.72) holds, for in that case 

G = 0, / / = 0 and so f rom (3.73) 

0 < / w'^dx < 0 < / w^dx < 0 (3.74) 
Jn 

which shows to = 0 V ( x , t ) ' e 0. x (0, T ) . Thus 9i = ^2 and hence uniqueness. 

When kij is simply positive, i.e. fcjj^iCj > 0, then uniqueness follows f r o m (3.70). In 

that case we see 

0 < / hw^dx < 0 (3.75) 
Jn 

and since h > 0 we must have u; = 0 in Q x ( 0 , T ) . I t then follows w = 0 and so 

9i = 92 in Q X ( 0 , T ) , hence uniqueness. 

3.6 A n instability result for a solution to (3.13) 

We return now to equation (3.13) which we recollect together w i th the boundary 

and in i t ia l data as 

a9 + p9 + UO,ik + ki9,i = 0, in n X (0, oo), (3.76) 

9{x,t) = 0, x e r , (3.77) 

9{x, 0) = g{x), 9t{x, 0) = h{x), x e n. (3.78) 

In this case we assume o;, (3 are constants but allow fcj to depend on x. 

Our aim is to see whether the continuous dependence (stability) result of Section 

3.4 may be negated if ki is sufficiently large and ^ij is not negative. Thus, mult iply 

(3.76) by 9 and integrate over Q.. Af ter calculations like those of Section 3.4 we may 

show that 

si L'''' -IM-')^ 5̂  /„ 
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Suppose now that 

and 

We also assume that 

k^,^{x) >ki>0 (3.80) 

ki > 2p. (3.81) 

Under conditions (3.80)-(3.82) one now shows f rom (3.79) that 
I 

J eHx > £ J O'dxds + L i . (3.83) 

Put A = (fci - 2P)/a > 0. Define the function K{t) by 

K{t) = f [ 9^dxds, (3.84) 
Jo Jn 

where 

Li= f h^dx I ^ijg^iQjdx. (3.85) 
Jn <^ Jn 

Then inequality (3.83) is equivalent to 

K'>XK + Li. (3.86) 

Using an integrating factor one finds 

I {e-''K) > L,e-'' (3.87) 

and upon integration f rom 0 to ^ one obtains 

K{t)>^[e^' - \ ) (3.88) 

or 

j ' ^ j 9^{x,t)dxds> I h\x)dx-^ J ^ijg^iQjdx • (3-89) 

This inequality clearly shows 9'^dx grows exponentially fast in time if conditions 

(3.80) - (3.82) hold and J^ h?{x)dx > ^ j Q ^ i j g , i g , j d x . This in tu rn demonstrates 

instabili ty of a solution to (3.76)-(3.78). Thus, the conditions imposed in Sections 

3.3 and 3.4 are important in ensuring a well posed boundary ini t ia l value problem. 
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3.7 Uniqueness on an unbounded spatial domain 

In this section we let be a domain in exterior to a bounded set Ĵ o C R^. The 

interior boundary of f ] is Suppose wi thout loss of generality the origin 0 e QQ-

Define Q/j to be the domain BRXCIQ where Bn is the ball of radius R w i t h R so large 

that CIQ does not intersect BR. The boundary of 0,^, i.e. the spherical surface of 

radius R, is denoted by Ff l . The smallest R which intersects w i th dQ is denoted by 

Ro. 

Figure 3.1: Diagram il lustrating unbounded spatial domain 

We wish to estabhsh a uniqueness result for a solution to equation (3.13) but now 

on the unbounded domain Q. Our aim is to establish uniqueness by not assuming 

the solution 9 decays as —> oo. To achieve this we employ a method due to 

GraflS [56 . 

Let us recollect the boundary-initial value problem for (3.13), i.e. 

a9 + P9 + ki{x)9,i + {kij9,j),i = 0, in Q x (0, T), (3.90) 

9{x,t) = 9i{x)\ on dn, 

9{x,0) = g{x),9t{x,0) = hix), x e Q. 

(3.91) 

(3.92) 
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To establish uniqueness via the Graff i method we assume 9i and ^2 are solutions 

to (3.90)-(3.92) for the same data functions 9i,g and h. Let w = 9i - 6*2. Then w 

satisfies the boundary-init ial value problem, 

aw + Pw + ki{x)w,i + {kijWj),i = 0, x e te{0,T), (3.93) 

w{x,t) = 0, X e on, (3.94) 

w{x, 0) = 0, wtix, 0) = 0, x e n . (3.95) 

Mul t ip ly equation (3.93) by w and integrate over for R fixed. We find 

[ i ^w^ — iW j ] dx + f kijW iWUjdS 
dt JnR\2 2 ' ' J 

+ / pw-dx+ f '^iw^),idx = 0, (3.96) 
Jnn Jnn 2 

where we have integrated by parts on the % term. For the last term 

/ '^{w'),dx^ [ ^ w ' d S - [ ^w'dx. (3.97) 
JnR 2 J^^ z Jn^ z 

Combining (3.97) w i t h (3.96) we see that 

= - / (kijnjWWi+ " ^ w A dS. (3.98) 

Integrate equation (3.98) twice over the t ime region (0, T ) , 

/ [ (—w'^ - l - k i j W iW j \ dxdrj + [ [ f (P - w'^dxdp,dr] 
Jo Jna\2 2 ' ' J Jo Jo JnnK 2 J 

= - f I I (kijrijWWi + ^w^^dSdij^dr]. (3.99) 
Jo Jo JFRK ' 2 / 

We now require 

/ 3 - ^ . > 0 . (3.100) 

Then the term P — ^ may be dropped, hence we obtain 

Jo Jnn\2 2 J m ( kn- \ 

kijnjww,i + -^w^ dSdiidr]. (3.101) 
H V 2 J 
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We now suppose kij is a bounded, negative-definite tensor, so that 

-kijUj > ao\^\\ ao > 0. (3.102) 

By employing (3.102) in (3.101), we then obtain 

J J (^^'^^ + ^oiow^iW^^ dxdr] 

~~Io lo I (^^^^^'^^'^ + " ^ ^ ^ ) (3.103) 

Suppose \kij\ < K, \ki\ < ki, fci > 0, then we obtain 

^ / / ctow^iw^^^ dxdr) 

We then use the arithmetic-geometric mean inequality on the right to see that 

^ lo I (̂ ^̂  ocQW^iW^i^ dxdr] 

or, 

\ i I f ^ ^ ^ + oiQW^iW^^ dxdr} 
2 Jo JUR ^2 / 

< [ [ I ( ^ H ^ + l ^ ) < i 5 d ^ d , ^ (3.106) 

Hence, we obtain 

i f I {aw^ + aow,w,)dxdr, < i ^ ± A E T / {\w\'+ \Vwf) dSd^. 
2 Jo JQR 2 Jo Jvn 

(3.107) 

Let ai = min{Q;,Q!o}, then 

^ r f {w' + \^w\') dxdrj 
2 Jo JQR 

- \ f f i^'^^ + ao\Vw\^) dxdr] 
2 Jo JUR n {\wf + \Vw\^) dSdr], 

- R 

^ {K + ky)T 
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or 

a, / / {w^ + \Vw\^)dxdri<{K + k,)T [ f {\wf + \Vwf) dSdv- (3.108) 
Jo JUR JO JTR 

Define now 

F{R)= ! I [w'' + \Vw\^)dxdr}, (3.109) 
Jo JQR 

and put A = ai/{K + k-i)T. FYom inequality (3.108) one shows 

A F < ^ . (3.U0) 

Thus, 

^ [ F e x p ( - A / ? ) ] > 0 . 

Integrate this from 0 < i?o to /? to find 

F{R) > F(i?o) exp[A(i? - RQ)]. (3.111) 

Suppose now that our class of solutions is such that 

\w\, \Vw\ < e^'^ for some ^ > 0. (3.112) 

Then, since F{RQ) = FQ is a constant (3.111) shows that 

Foexp[A(/i: - i?o)] < F{R) < Ae^^'^, (3.113) 

some A> 0. If we pick T small enough then (3.113) yields a contradiction, i.e. for 

A > 2 ^ , 

or 
ai 

2aK + hy 
Thus, w = 0 onfl X (0, T) and uniqueness follows. 

However the bound (3.112) is independent of T and so we may repeat this argu

ment on (T, 2T), and so on to establish uniqueness on (0, T) . 

N.B. The original Graffi method, see Graffi [56], was developed for the Navier-

Stokes equations and for the equations of compressible flow. The extension of the 

Graffi method to hyperbolic equations of linear elasticity was due to Straughan [167 . 
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3.8 A non-standard problem for equation (3.13) 

Payne & Schaefer [127] began a study into non-standard problems for a class of 

partial differential equations. They argued that rather than prescribe initial condi

tions on the function, d, say, one prescribes a combination of the solution at i = 0 

and at f = r , for some time T > 0. Such a class of problem may be employed to 

obtain bounds for the solution when the problem is improperly posed. The class of 

non-standard problems studied by Payne k. Schaefer [127] has proved to be a very 

frui t fu l area of research as may be witnessed by the extensions of Ames & Payne [3], 

Payne et al. [128,129], Ames et al. [4,5], and Quintanilla & Straughan [153,154 . 

To state the class of non-standard problem we are interested in, suppose in (3.13) 

we change a to m, /? to d, ^tj to -ctij and for m,d> 0 but constant we have 

me + de + ki{x)9,i - {ocijej)^i = o. (3.114) 

Equation (3.114) holds in h x (0, T) where Q e is bounded. On the boundary 

of Q, r , we have 

e{x,t) = 0, x e r . (3.115) 

For constants a, /3, the "initial" conditions are replaced by 

a9{x,O) + 0{x,T)=g, 

p9t{x,0)-\-9t{x,T) = h, xen. (3.116) 

Our goal is to establish that a solution to (3.114)-(3.116) depends continuously 

in an appropriate manner on the data functions g and h. To achieve this we begin 

with a general estimate which follows by multiplying (3.114) by 9 and integrating 

over Q. After integration by parts and use of the boundary condition (3.115) we 

may arrive at 

r / ( d - ^ ) 9 ' d x d r j + l f a,,9,{t)9,{t)dx 
2 Jo Jn\ 2 y 2 

= y l l ^ ( 0 ) | | ' + ^ a . , ^ , ( 0 ) ^ , ( 0 ) d x , (3.117) 

where here and throughout this section we have suppressed the dependence on x in 

9. 
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Observe that (3.117) does not by itself yield a continuous dependence estimate for 
9{t) since the right hand side consists of unknown functions ^(0), V^(0). We do not 
know 6{x,0),0{x,0) we only know the data functions g{x) and h{x). 

We suppose throughout this section that 

d - ^ > 0 \fxeQ. 

\al\P\ > 1. 

We firstly consider the case |Q;|, \P\ > 1. Thus, we evaluate (3.117) for t = T and 

drop the second term on the left of (3.117). This yields 

m | | ^ ( T ) f + / a,je,,{T)e,{T)dx 
Jn 

<m| |^(0) | |2+ f aij9j{0)eii0)dx. (3.118) 

Now, use equation (3.116) in the left hand side of (3.118) to find 

m{h - Pd{0), h - pe{0)) + f aij[gj - aej{0)][g,i - a0,^iO)]dx 
Jn 

<m\\e{0)f+ [ aij9j{0)ei{0)dx, (3.119) 
JQ 

where (.,.) denotes the inner product on L^(Q). 

Note now that 

{h - petiO), h - P9t{0)) = \\hf + P'\mo)f - 2/3(/i, ^,(0)) 

> \\hr+p'\mQ)f - ^\mo)r - ewh^, (3.120) 

for e > 0, where we have used the arithmetic-geometric mean inequality. For £i > 0 

we similarly establish 

JQ 

= f cyijgjg,idx + I aij9ji0)9,i{0)dx - 2a I aijg^,9j{0)dx, 
Jn Jn Jn 

> [ (x,jg^igjdx + a' [ ai,-^,,(0)^,,(0)rfx 
Jn Jn 

- — I a , ,0i(O)0, ,(O)dx-£i [ aijg,ig,jdx. (3.121) 
^1 Jn Jn 
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Combining (3.120) and (3.121) in (3.119) we thus obtain 

m/?2 (l - -] 11̂ 4(0)11" + a ^ ( l - - ] [ ai^ei{0)9 jiO)dx 
\ \ £\J Ja 

+ m ( l - £)||/i||^ + (1 - £i) / Ciijg,ig,jdx 
Jn 

< m | | ^ t ( 0 ) | p + / aij9,i{0)9,j{0)dx. (3.122) 
Jn 

Since |/3| > 1, |Q;| > 1 we choose 

e = -z—- > 1 and £i = — - > 1. 

These choices in (3.122) yield the inequality 

m ( ^ ^ ) ll^t(0)|| ' + ( ^ ^ ) J ^ c . ^ A ^ m M d x 

^ ^ ll^ll + / (3-123) 

Put ^ = min{|a | , and then from (3.123) we may obtain 

m| |^t(0) |P+ [ aij^,i(0)^,^(0)dx 
Jn 

<h\\h\\^ + k2 I cxijg,ig,jdx, (3.124) 
Jn 

where 

^ . = ™ ( ^ ) ( ^ ) > o . * ^ = ( ^ ^ ) i ^ ; > o . 
Finally, employ the bound (3.124) in (3.117) to find 

< V I I ^ I I ' + T Y ^ij9,gjdx. (3.125) 

Inequality (3.125) holds for any t G [0,T] and thus yields our desired estimate of how 

the solution 9 depends continuously on changes in the data functions g{x) and h{x). 

The case \p\ < 1 

In this situation we follow the method of Payne &; Schaefer [127], p.88. 
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Let us define the bilinear form {A.,.) by 

{A9{t),9{t))= I aMt)9,{t)dx. (3.126) 
Jn 

Then we follow the procedure leading to (3.117) but now integrate from t to r(fixed) 

rather than from 0 to t 

Recall d - > 0. Then put 

E{t) = m\\9t{t)\\' + {A9{t),9{t)). (3.127) 

One obtains 

m\m)f + {A9it),9{t)) 

= j (2ĉ  - A;,,,)|^,|'dxd77 + m\\9t{T)f + {A9{T), 9{T)). (3.128) 

We cannot discard the 2d- ki^t term on the right of (3.128) since i t is non-negative. 

However, we suppose 

max[2d-A;,,i(x)] < a, (3.129) 

for a constant. Then, from (3.128) 

E{t) < a J ^ ^ \\9r,fdr] + E{T) (3.130) 

and since {Ax, x) is a positive form, 

E{t)<aJ^ E{ri)dri +E{T). (3.131) 

Now put 

P{t) = E{r])dT]. (3.132) 

Then (3.131) may be rewritten as 

-P'{t)<aPit) + E{T). (3.133) 

Since T is fixed E{T) is constant. Hence from (3.133) 

^ (e"'P) + e^'EiT) > 0. (3.134) 
ClZ 

Upon integration from t to T we find 

^^^^-(e"^-e"0 >e"*P(t). (3.135) 
a 
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Thus 

Now put this in (3.133) to obtain 

-P'it) < E(T) (e"(^-') - 1) + E(T) = £(T)e"(^- ' ) 

Now recall definition (3.132) so that P'{t) = -Bit), hence 

E{t) < E{T)e''^'^-'\ i G [ 0 , T ] . 

Evaluate this for t = 0, 

m\\dmr + {Ae{0),e{0)) < [m\\e,{T)f + {A6{T)MT))\e'^^. 

Using the data relations 

ae{d) + e{T)=g, pe,{0) + 9,{T) = h, 

we then find 

h et{T)f 
m a a J a a J 

< m||^t(r)||2e"^ {Ae{T), ^(r))e"^ 

The left hand side is expanded out to see that 

m 

+ ^{Ag, g) + ^ ( ^ ^ ( T ) , d{T)) - -JAg, e{T)) 
a' 

< m | | ^ t ( T ) | | V ^ + (^^(r),^(T))e"^. 

Next, use the arithmetic-geometric mean inequality to obtain 

-l(Ag,e(T)) > -k(Ae(T).e(T)) - 4rl^9.9l 

where 5i, ̂ 2 > 0 are constants. 

Upon insertion of (3.143), (3.144) into (3.142) and rearranging one finds 

m P' — e aT \\Oi{T)f + 
1-5, 

a' 
-e^A {Ae{T),e{T)) 

) 

(3.136) 

(3.137) 

(3.138) 

(3.139) 

(3.140) 

(3.141) 

(3.142) 

(3.143) 

(3.144) 

(3.145) 
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where we assume 0 < {61,62} < 1. Pick 61 = 62 = | . Then 

m 

< ' ^ ^ - M 9 , 9 y (3.146) 

Suppose now |Q!|, are such that 

1 

^ - e " ^ > M 2 > 0 . 
2a2 

This requires |Q:|, |/9| < e~°^/^/\/2 and is a restriction on the data coefficients a and 

p. Let 1̂ = minlni, fj,2] and then from (3.146) we find 

^ m ^ f f + (3147) 

Now, we use (3.147) in inequality (3.138) to find 

E{t)< + -^{Ag,g) e x p [ a ( r - i ) ] , (3.148) 

for 0 < i < T. 

Inequality (3.148) is our bound for 9{t) in terms of the data functions g and h and 

the data constants o: and p. Note, however, that o; and P must in the case of |Q:|, 

\P\ < 1 be restricted. 

When a > 1, /? < 1, or a < 1, /? > 1, Payne & Schaefer [127] show that non-

uniqueness or non-existence of a solution is possible for an equation with d = 0, 

ki = 0, i.e. m9 + ( ^ ^ j ) , i = 0. 

We expect similar undesirable behaviour for the more complicated equation 

(3.13). 



Chapter 4 

Batra Model 

4.1 Model and uniqueness? 

In 1975, Batra [13] studied heat conduction and wave propagation in non-simple 

rigid solids for which the constitutive quantities at a point depend upon the present 

value of temperature and of all its derivatives up to second order at that point. 

Batra's theory is also developed in Batra [12 . 

He considered the balance of the internal energy 

e-\-Qi^i - r = 0, (4.1) 

where e is the internal energy density, q is the heat flux measured per unit surface 

area and r is the supply density of the internal energy. In that paper he used / 

for the time derivative of a function / of x, t, / , i for the partial derivative of / 

with respect to Xj, where x is the position of a material particle in rectangular 

Cartesian coordinates. Moreover, he assumes that a material point x and at time t, 

the variables q, e, 77 and (p are smooth functions of 9,9, g, 9, g, G and he denotes the 

corresponding functions by a superimposed caret i.e. 

e{x,t) = i{9,9,g,9,g,G,x), (4.2) 

where 9 is the empirical temperature, and g, G denote the temperature gradient 

and second gradient, i.e. 

gi = 9^i and Gij=9,,j. (4.3) 
47 
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He notes that isotropic heat conductors, £, r), q and 4> are isotropic functions of their 

variables. Furthermore, he derives for the balance of the internal energy in the linear 

case when heat supply r = 0 as 

C,9 + C29 + 0^9 + (C4 + K,)9^i, = K,9^n, (4.4) 

where 

C3 = 

89 

89 

^ _de 

C 

E 

Ki — —QIIE, ^4 — QilE, J\ — Gii, (4.5) 

where Q\ and are the coefficients of Qi and gi in the expression for ^ j . 

He shows that the equation (4.4) gives C3 and have the same sign. Moreover, 

he assumes that 9, 9, g, 9, g, and G are continuous across a singular surface, from 

which it follows that the jumps [9], [9] and [9^i] across the wave vanish. He therefore 

obtains the solutions for the wavespeeds in the linear case as 

UiUi = 0, UiUi = ± K4 + C4 
C3 

(4.6) 

He also establishes a uniqueness theorem for (4.4) by assuming that 

Ci >Q,K^> 0, C2 < 0, C3 < 0, C4 + K4< 0, 

and the initial and boundary conditions are 

(4.7) 

9 = 9 = 9^0 on Clat t = 0, 
89 

9 = 0on8inx (0,T), ^ = 0 on x (0,T), 
an 

(4.8) 

where 

8n = 8iQu82n, 5 i f ) n a Q = 0, (4.9) 

Here fl is the region occupied by the body and dQ is its boundary. The proof of the 

uniqueness theorem in Batra [13] is wrong, as we now show. Recall the equation 

(4.4) with M = CA + K4 as 

Ci9 + C29 + C39 + MM = KiA9. (4.10) 
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To prove uniqueness, Batra multiplies (4.10) by 9 and integrates over Q, to obtain 

C,{9,9) + C2(9,9) + C^{9,9) + M{9, A9) = K,{A9,9). (4.11) 

Note that, 

{e,9) = / {9fdx=\\9\\\ (4.12) 
Jn 

For the second term on the left hand side we find 

( M ) = / ^ < ' < i x = i | / j . ) ^ . x = i ^ | M ^ (4.13) 

For the last term on the left hand side we find 

{9,M)= I 9 ^ ^ d x 
Jn /Q " dxidxi 

Jn dxi V dxij Jn \dxidxij 

= ~ ((\!efdx = - \ v e f . (4.14) 
Jn 

For the term on the right hand side one finds 

Jn axi \ dx, J JQ dxi dxi 

= f 9^n,ds - / V9V9dx 
JT dXi Jn 

Note, now that 

therefore 

f^{9,9) = i9,-9) + {9,9), 

{9:9) = f^ie,9)-{9,9) 

Id^ 
2dt^ 

2df^ 

[ {9fdx - [ (9fdx 
Jn Jn 

(4.16) 
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Therefore (4.11) becomes, 

+ y + f ^ I I ^ I P - CsWer - MWWer = - ^ | | | V ^ I P , (4.17) 

or 

I (fll^ll^ + + ^ y l l ^ l P = 3̂11̂ 11̂  + M l i v ^ f - c m ' - (4.18) 

Under the conditions of Batra's theorem, M < 0, C3 < 0, Ci > 0, so drop the 

right hand-side of (4.18), and integrate from 0 to t, to obtain 

Y N i ^ + ^ l W + | Y W < 0 . (4.19) 

Now suppose Ki > 0, then with K{t) = inequahty (4.19) yields 

C2K + Cjk < 0. (4.20) 

If C3 7̂  0, then inequahty (4.20) may be rewritten 

+ k>0. (4.21) 
C2K 

C3 
Define A = C2/C3, thus 

k + XK>0, (4.22) 

then multiply by the integrating factor e^*- and then one finds 

e^\k + \K) > 0, (4.23) 

or 
d ^ {e^'K) > 0. (4.24) 
dt 

Then integrate from 0 to t, to find 

e^'K{t) - K{0) > 0 

K{t) > e-^'K{0). (4.25) 

Uniqueness does not follow from inequality (4.25) as claimed by Batra [13]. 

We now investigate the Batra theory further. We are able to show that under 

certain conditions one achieves exponential growth in a suitable solution measure, 

or possibly even finite time blow-up. 
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4.2 Exponential growth 

Recall the Batra model of heat conduction in homogeneous, isotropic, non-simple 

rigid heat conduction, 

C,9 + C29 -H Ca'̂ ' + M9^u = Ky9,u- (4.26) 

The boundary and initial conditions are 

Boundary Condition 9{x,t)=0, x E T, (4.27) 

Initial Conditions 9{x,0) = 9 Q { X ) , 

39 

— {x,0)=vo{x), 

rP-9 
| ^ ( x , 0 ) = ao(x). (4.28) 

To estabUsh exponential growth of a solution, we multiply (4.26) by 9 and integrate 

over Q, then we obtain 

Ci{9,9) + C2{9,9) + C,{9, "9) + M{9,9^u) = K,{9,9,,). (4.29) 

Note now that 

For the term of M we have 

d_ 
n dxi 

9— dx- I ——dx 
oxi J dXi dxi 

f ^39 ^ f 39 39^ 
= / ni9—ds- / ——dx 

Jr 9xi Jn 3xi dx 
f d9_ 

Jn dxi 
39 39 ^ 

dx 
. 3x 

Id^ 
'2di 

j j y ^ f d x = -\j^\\V9f. (4.31) 
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For the term on the right hand side we obtain 

IQ 8xi8xi 
{9,9,,) = [ 9 j ^ d x 

Jn 

= f f i e f ) , . - f ^^i. 
Jn dxi V oxij Jn 8xi8xi 

= [ ni9^ds- [ dx 
Jr dxi JQ \8xiJ 

Now, put (4.30), (4.31) and (4.32) in (4.29) to obtain. 

\c^j^\m' + C,{9,9) + C,{9, -9) - f | l | V ^ f = - ^ i l l V ^ I I ^ (4.33) 

Define ^ = {9,9), thus 

d^ _ d 
~dt ~ Jt 

therefore 

/ 99dx= I ^{99)dx 
Jn Jn 

/ 9"9dx+ / Mdx 
Jn Jn 

{9,9) + i^^^) = M ) + ~ J ^ i ^ ) ' d x 

(^/6'') + ^ | l l ^ l P , (4.34) 

{9,9) = '~§-lf^ll9r. (4.35) 

Since ^ = {9,9), put (4.35) in (4.33), and we find 

I c ^ l l ^ f . C . ^ . C a f - ^^11^11= - f IllWlP ̂  M = 0̂  (4.36) 

Then, rearrange to obtain, 

C 3 ^ + C 2 ^ + ^ , (^im' - ^ m ' - + \\v9r = o. (4.37) 

dt dt \ A I I J 

Divide (4.37) by C 3 ̂  0, thus (4.37) becomes 
. C2 ^ , d f Ci , ,^,2 1,,A | ,2 M ^^^a\^2\ , - ^ i IIV7£)H2 

Put fj. = — C 2 / C 3 , then equation (4.38) may be rewritten, 
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where G(t) = + ^ | | V ^ f - ^ f ^ n ^ 

Let ^ = - g - , then (4.39) is 

Use an integrating factor 

di 

but 

then 

Put (4.43) in (4.41), therefore 

dt\ J V / 

and upon integration from 0 to t we find 

= e-'^'G 
0 Jo e->''i]xG + ̂ \\\/e\\^]ds, (4.45) 

or 

or, rearrangmg 

e"'̂ 'J? = e-^'G + f e-^' {]iG + ^\\^Qf\ ds + ^ ( 0 ) - G(0). 
Jo \ J 

Let now Q{t) = ]xG + ^|| V6'|p, then (4.47) may be wriiten 

e-^'^ = e-^'G + f e-^'Q{s)ds + ^.(0) - G(0). 
Jo 

Divide (4.48) by e'^^ to obtain 

^{t) = G{t) + f e^^'-'^Q{s)ds + e^\^{0) - G(0)). 
Jo 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

(4.44) 

e-^^^^ - ^ ( 0 ) = e-^'G - G(0) + / e'^' fxG + ^\\V9\\^ ds, (4.46) 
Jo \ J 

(4.47) 

(4.48) 

(4.49) 
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Now recall that 

= ^ 5 W I ^ - | * . (4.50) 

In addition we define 

K{0) = ^ ( 0 ) - G(0). (4.51) 

Next, employ (4.50) and (4.51) in (4.49) to see that 

- = G{t) + e^^'-^^Q{s)ds + e^'K{Q). (4.52) 

Define now F{t) = \\9\\'^, then from (4.52) we have 

I F " - \\9f = G{t) + f e^^'-'^Q{s)ds + e'^'KiO), (4.53) 
2 Jo 

or taking a term to the right hand side 

F" |2 
• — i i rz I 

2 
+ G{t)+ f e''^'-'^Q{s)ds-he^'K{0), (4.54) 

Jo 

and then multiplying by 2 we arrive at 

F" = 2\\9\\^ + 2G{t) + 2 f e^^'-'^Q{s)ds + 2e^'K{id). (4.55) 

Next, substitute for G{t) in (4.55), to obtain 

F" = 2\\9f + \\9\\^ + ^ l l ' v ^ l l ' - ^ l l ^ l l ' + 2 f e^^'-'^Q{s)ds + 2e^'K{<d), (4.56) 
(-̂ 3 (^3 7o 

or, 

F" = 3 1 1 ^ 1 1 ' + ^ I IV^I I" - %\9f + 2 f e>'^'-'^Q{s)ds + 2e^'i^(0). (4.57) 
C/3 (^3 Jo 

If M/C3 > 0, -C1/C3 > 0, Q{s) > 0, Vs > 0, thus (4.57) becomes 

F" > 2e'''K{0). (4.58) 

Recall Q{t) = iiG{t) + ^\\V9\\^ 

= f + f ^ l l V ^ I I ^ - ^\\e\\' + (4.59) 
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where ^ = - C 2 / C 3 and E, — -K^/C^. Thus, if we suppose ^ > 0 and ^ > 0, then 
Q{t) > 0, as required. 

Inequality (4.58) is the fundamental inequality from which exponential growth 

follows. 

Now, integrate inequality (4.58) from 0 to t, thus 

F'{s)\l>^-^{en\l (4.60) 

or 

F'(t)>'^^^{e^'-1) + F'{0). (4.61) 

Further, integrate (4.61) from 0 to t, to find 

F{t) - F(0) > J\e''' - l)ds + F'{0)ds 

\ f^J Jo 

= H ( 2 ) ( f ! ! _ , _ i ) + 2 ( , „ , , „ ) , (4.62) 

Rearrange inequality (4.62) to obtain 

F{t) > F(0) + ( — - t - - ] + 2{e, d)ot 

= F(o) + f 4(e'" - 1 ) - -1 ^ ( 0 ) + 2(^, e)ot 

= l l ^o f + (\{e>^' - 1) - - ) ( ^ ( 0 ) - G(0)) + 2(^, e)ot. 

Therefore 

> IM' + {-Ae^' - 1) - ( ^ ( 0 ) - G(0)) + 2{d, 9)ot, (4.63) 

Provided ,^{0) — G(0) > 0, since fx > 0, inequahty (4.63) leads to exponential 

growth of \\e{t)f. 

4.3 Explosive instability in a Batra model 

We now investigate a generalization of equation (4.26) for which we are able to 

establish that a solution ceases to exist in a finite time. A similar result for another 
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third order in time equation was established by Quintanilla and Straughan [151 . 

Recall that with M = K4 + C4 and K = A"i, equation (4.26) is 

Ci9 + C2d + C39 + MM = KA9. (4.64) 

We here suppose that K is a. function of temperature. This is realistic because in 

general the thermal conductivity does depend on temperature. Thus, we consider 

the following generalization to equation (4.64), 

C^'e + C26 + Ci6 + MM = V(X(0)V0) . (4.65) 

For our instability result we require either 

C 3 > 0, C 2 < 0, Ci < 0, M > 0 and X < 0, (4.66) 

or 

C 3 < 0, C 2 > 0, Ci > 0, M < 0 and K >0. (4.67) 

It is easy to see (4.66) and (4.67) are equivalent. Suppose now (4.66) holds. Then 

divide by C 3 and we find 9 satisfies the equation 

"9 -a9- a29 = -pA9 - \/{f{9)^9), (4.68) 

where 
C2 M 

a = , ^2 = (4.69) 

and we have chosen 

f{9) = -K{9) = l + a9', (4.70) 

for a, e positive constants. We could easily have f = ko + a9^ for ko > 0 and our 

proof will carry through. 

Suppose ^ > 0, an assumption which is realistic given 9 is temperature. Then 

9 satisfies equation (4.68) on the domain Q x (0, T) together with the boundary 

condition 

9{x,t) = 0, XET, (4.71) 

and the initial conditions 

89 
9{x,0) = 9o{x), —{x,0)^vo{x), 

— ( x , 0) = ao{x), xen. (4.72) 
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We define the functions G{t) and K{t) to be 

G{t) = m t ) f , m = \\e\\ (4.73) 

Then, we multiply equation (4.68) by 6 and integrate over fl to find 

(9, "e) - a{9,6) - a2i9,9) = -p{9, A9) - f 9S7{fVe)dx. (4.74) 
Jn 

Next, integrate by parts and use the boundary condition (4.71) to establish the 

following chain of results. 

d 1 1 ^ . (4.75) 

and 

and 

and 

-{9,A9) = {V9,V9) = j^l\m\', 

- ( ^ , V ( / V ^ ) ) = / f\V9\'dx = { f e ^ i , 9 , ) , 
Jn 

(4.76) 

(4.77) 

-{0,9) = --{9,9) + \\9r 

(4.78) 

and 

{9,e) = j ^ { 9 , 9 ) - { 9 , 9 ) 

- 1 
~ dt 

= 1 ^ 
~ 2dt^ 

= 2^ 

ld_ 
2dt 

3_d 
2dt 

(4.79) 

Using relations (4.75)-(4.79) we rewrite equation (4.74) as 

M\f + {f9,,9,). 
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We multiply by 2 and rearrange this equation to obtain 

G'" - aG" = 2>K' - 2aK + ^{a^G + l3\\Vdf) + 2(/^,i,^,0- (4.80) 
at 

Now, multiply by the integrating factor exp(—af) and write —2aK = —"iaK + aK, 

and then from (4.80) one sees that 

4[exp(-aO(:;"] = 3 ^ [ e x p ( - a O ^ ] + a^e- '^ '+ 4[e~"*(c^2G +/?||V^in] 
at at at 

+ a e x p ( - Q i ) ( a 2 G + (5\\Vef) + 2 e x p ( - a i ) ( / ^ , „ ^ J . (4.81) 

We integrate this equation from 0 to i and multiply the result by exp(Q:t) to arrive 

at 

G"{t) = ZK + a2G + (^WVeW 
+ a f e''^'-'\K + a^G + (5\\Vdf)ds 

Jo 

+ 2 f e''^'-'\fd^u9,i)ds + Koe''^ (4.82) 
Jo 

where the initial data term KQ given by 

= G"(0) - 37^(0) - a 2 G ( 0 ) - /?||V^o||'. (4.83) 

RecaUing the definitions of G and K in (4.73) and the initial data in (4.72), we find 

Ko = 2(^0, ao) - U\? - oc2m? - PW^Oof. (4.84) 

We henceforth require 
KQ > 0. (4.85) 

This condition can always be achieved and requires the initial temperature and 

temperature acceleration to be sufficiently different that (4.85) holds. 

Next, we return to (4.82). Since a2,P,a and KQ are all non-negative we may 

deduce from (4.82) that 

G" >2 f exp[a{t - s)](/^,i, e ^ i ) d s . (4.86) 
Jo 

Recall / = 1 + a r . Then 

(/^,i ,6 ' , i)= / \V9\^dx + a f O'd^iO^x 
Jo. Jn 

>a I O'e^iO^idx. (4.87) 
Jn 
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Now, define 

F{t)= [ G{s)ds. (4.88) 
Jo 

Combine (4.87) and (4.88) in inequality (4.86) to find 

F"'>2a Te^^'-^) / 9^9,^9^idxds. (4.89) 
Jo Jn ' ' 

To handle the right hand side of (4.89) we write 

Jn 

Xia 
(1 T7/2y 

where Ai > 0 is the constant in Poincare's inequality | |V0|p > Ai||(;/!)|p for functions 

0 which vanish on Q. Next, use Holder's inequality 

/ 9^dx < ( / dxY^'^i f 9^Pdxy/^, - + - = 1. (4.91) 
Jn Jn Jn P Q 

Pick 

p = —-— and then q = . 

Thus, with m denoting the volume of Q we find 

\ 2/(2+£) 

or rearrangmg, 
(2+e)/2 

9^+'dx>-^( 9^dx] = - ^ - | | ^ | | 2 + ^ (4.92) 

Thus, combining (4.92) and (4.90) one sees that 

Now use (4.93) in inequality (4.89) to find 

F'" > k f e""^'-'^\\9{s) f^'ds, (4.94) 
Jo 

where 



4.3. Explosive instability in a Batra model 60 

We must now estimate the right hand side of inequality (4.94) in terms of F. To 

do this we again employ Holder's inequality as follows, where ^ > 0 is a constant to 

be chosen. 

Jo Jo 

< 
1/9 / H 

Wer^d^ (4.96) 

Pick 
2+e , 2+e 

p - —-—, whence q = 

and from the inequality above one derives 

rt / ft 
/ ll^ll^ds < / exp 

Jo \Jo 

(r 
X / exp 

\Jo 
Now, choose ^ = 2/(2 + e), then 

Jo I Jo 

.Jo 

- a^t - s) 

Hit - s) 

(2 + £) 
6 

2 + e 

ds 
e/(2+£) 

2+e ds 
2/(2+£) 

(4.97) 

2/(2+£) / /.t 

/ 
JO 

exp a-{t - s) 

2/(2+e) / f t \ 

ds 

e/{2+e) 

e/(2+£) 

e 
2^ 

^/(2+£) 
1 — exp 

-2(xt e/[2+e) y ft x 2/(2+6) 

\Jo J 

We now bound the second term on the right by 1 to find 
e/[2+e ft / \ £/i^+£; r ft 2/{2+£) 

£/2 

Thus, rearranging (4.99) yields 

re"(*-)p(5)| |2-^^d5> {—] F(2+^)/2. 
Jo \ ^ J 

Finally, use of (4.100) in inequality (4.94) shows 

F'" > kF^+''\ where k = k{2a/ey''. 

(4.98) 

(4.99) 

(4.100) 

(4.101) 

To show (4.101) leads to global non existence of a solution suppose OQ ^ 0, then 

F'(0) = pQf > 0. Multiply (4.101) by F ' to show 

2k \ d 
{F'F'y > [F"f + 

A + e dt 
_p2+e/2 (4.102) 
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Integrate this inequality from 0 to t to obtain 

F'F" > F'(0)F"(0) + ( — ) F^+'/\ (4.103) 
\ 4 + £ / 

Now multiply this inequality by F', integrate from 0 to t and multiply the result by 

3. One finds 

{F'f > [F'{0)]' + 3F'(0)F"(0)F(i) + -fF^+'/\ (4.104) 

where the constant 7 is given by 

_ 12fc 
^ " (4 + e)(6 + e) • 

The proof now proceeds by contradiction. Suppose 6 exists for all time t > 0. 

Then 

F'>{a, + P,F + ^F'+^/Y^ 

a i = [F ' (0)f , /3i = 3F'(0)F"(0), and so 

The left hand side is bounded above by the analogous integral from F(0) to 00 and 

then 

t<n, (4.106) 

where 
/•°° dF 

^ " ^ i o ( a i + A F + 7 F ^ W 2 ) i / 3 ' (4.107) 

where we have noted F(0) = 0. 

Since < 00, inequality (4.105) shows t must be bounded which contradicts 

the fact that 9 exists for all time t > 0. In fact, 6 cannot exist globally beyond the 

value t — Tu-

The expected behaviour of 9 is that it blows-up in a finite time T > T^. 

4.4 Thermal discontinuity waves in the Batra the

ory 

Batra [13] found the wavespeed of a discontinuity wave in the linear version of his 

theory. We now analyse discontinuity waves in his model, but for the fully nonlinear 
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theory. A further study of thermal waves in a rigid heat conductor is contained in 
Chapter 5. 

Recall the complete equation of Batra [13], with the heat supply r = 0, 

In this section we restrict attention to a one-dimensional discontinuity wave. Thus, 

e and q are functions of the variables 

e, e, e, 0,, 4 , 0 , , (4.109) 

Using (4.109) in (4.108) and expanding we see that 

600 + Egd + Eg 9 + seX + ^ej^ + ^e.Jxx 

+ qe9x + + QeOx + Qejxx + Qejxx + Qe.Jxxx = 0. (4.110) 

A discontinuity wave for (4.110) is a singular surface, analogous to an acceleration 

wave, S, across which 9,9x,9xx and 9xxx possess a finite discontinuity. The higher 

derivatives may also be discontinuous across S. However, ^ G C" in both x and t. 

As stated in the introduction the jump of a quantity / is 

[/] = r-r 
where 

f^= Urn f{x,t). 
I—>s* 

Taking the jump of equation (4.110) and recaUing the regularity properties of S, we 

obtain 

^elO] + ^eM + ee,A9xx] + qg[9x] + <79.fex] + Qe.AOxxx] = 0. (4.111) 

The Hadamard relation is 

^-^ = [ft] + V[U (4.112) 

where 5/5t is the derivative of a function at the wave S, as seen by an observer on the 

wave, and V is the speed of the wave moving in the x-direction. Since ^ G C^(M x R) 

we find the chain of relations 

TM = 0={9]+V[9XI (4.113) 
dt 
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and 

Y^%] = 0=[9,] + V[9,,i (4.114) 

and 

^ W = 0 = [ 4 x ] + \^[^xxx]. (4.115) 

From (4.113)-(4.115) we derive 

[9] = -V[9:,] = V'[9,,] = -V'[9,,,l (4.116) 

[^x] = - V [ 4 x ] = (4.117) 

and 

[ 4 x ] = - l ^ [ ^ x x x ] - (4.118) 

Next, use (4.116)-(4.118) in equation (4.111) to find 

[9..A{-V'e^ + - V^0.J + [dr.r]{V'Qe - VQe. + <le..) = 0. (4.119) 

We require that [^m] ^ 0, otherwise we do not have a discontinuity wave, and then 

equation (4.119) yields the following equation for the wavespeed V, 

- V\e,^ + q^) + V{ee^^ + q j - qe^^ = 0. (4.120) 

This is thus a cubic equation for V. In general we shall find three solutions for V. 

To make a comparison with the work of Batra [13] (who only studied discontinuity 

waves in the hnear theory) we suppose the wave, 5, is moving into an equilibrium 

region for which 9'^ = constant and so 9^ = 0, 9^^ = 0,9^ = 0, 9+ = 0. In this case 

dq 
39 

= 0, 
E ^^x 39. 

= 0. (4.121) 
E 

Equations (4.121) follow since by the representation we must have for (jj and e in the 

three dimensional theory, terms Hke dqi/d9 will involve 9^i, etc, and so dqi/d9\E = 0 . 

For a wave moving into equilibrium, equation (4.120) reduces to 

V{s^V' + Ee^^+qeJ = 0. (4.122) 

Equation (4.122) has solution 

y = 0, \ / = ± J - ^ ^ ^ i ^ , (4.123) 
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Solutions (4.123) correspond to those of Batra [13], his equation (4.7) when we adopt 
a linear theory and the appropriate expressions for q and e. Of course, our equations 
(4.123) are valid for a general nonlinear theory. The only solutions of interest are 

y (4.124) 

Since physically we must have V'^ > 0, this imposes the restriction on the derivatives 

of q and £, in the sense that we must have 

'-hl±SL^O. (4.125) 

Equation (4.125) imposes a restriction on the possible forms of nonlinear functions 

e and q may have. 



Chapter 5 

Thermal waves in a rigid heat 

conductor 

This work is published in Jaisaardsuetrong and Straughan [81]. There has been a 

huge amount of interest in theories which allow heat to propagate as a wave. For 

example, extensive reviews of Chandrasekharaiah [22] and Hetnarsky & IgnaczaJt [69 

study several thermal wave theories coupled to the equations of elasticity. There 

are many theories which allow heat to propagate as a thermal wave and among 

these we quote the theories of Green & Laws [58] where a generalised temperature 

(p{T,t), T being absolute temperature, is introduced, the two temperature theory 

of Chen k Gurtin [25], the history-dependent theory of Gurtin k Pipkin [67], the 

dual phase lag theory of Tzou [183], the t theory of Cattaneo [19], and its extension 

to thermoelasticity by Lord & Shulman [109], and the internal variable theory used 

by Caviglia et al. [20]. We note that the theory of [9] in the linear case reduces to 

that of Lord & Shulman [109], as connectly observed by Chandrasekharaiah [22 . 

A more recent theory which allows heat to propagate as thermal wave is intro

duced by Green & Naghdi [60] whose thermodynamics employs an entropy balance 

equation, rather than an entropy inequality, and a thermal displacement variable 

a ( x , 0 = rr (x ,s )ds . (5.1) 
Jto 

In equation (5.1) the temperature field T is defined by Green & Naghdi [60] to be 

an empirical temperature. This temperature is, however, equivalent to the absolute 

65 



Chapter 5. Thermal waves in a rigid heat conductor 66 

temperature as shown by Green & Naghdi [ [64], pp. 338-340]. The theory of Green 
& Naghdi [60] has been extended to thermoelasticity and many applications are 
reviewed in [1] and [2], mainly in a linear setting. The theory of Green & Naghdi [60 
relies on a variable 9 which they call a temperature, although it is actually a function 
of a and T, so that 6 — 9{ct,T) = 9{a,a). While there may appear some formal 
similarity with the Green & Laws [58] theory where (p = (l){T, T) the two theories 
are very different. In fact, most applications to date of the Green h Naghdi [60 
theory assume a particular form and work with a rather than 9. In this work the 
goal is to analyse the ful l nonlinear theory of Green & Naghdi [60], the theory they 
refer to as type I I , for a rigid body, and we keep 9 = 9{a,T). We have not seen 
any study like this before. (It is worth pointing out that both type I and type I I I 
heat conduction in a rigid body lead to nonlinear theories, see Green & Naghdi [60], 
but wave motion in these theories is very different.) We maintain that which of the 
many heat propagation theories will be useful in a mundane situation will depend 
on an extensive and rigorous analysis of each theory and the aim in this chapter is 
in this fine. 

There are many recent applications of the various theories outlined above, to 

a variety of problems, mostly in a hnear context. While these are too numerous 

to list we do draw attention to the paper of Jordan & Puri [94] where they make 

a very useful comparison of the Lord & Shulman [109] model and the Green k 

Laws [58] model with that of classical Fourier theory. Christov &; Jordan [26] analyse 

the Cattaneo theory as do Pranchi & Straughan [51], who also dwell on the fact 

that a constant relaxation time r in the Cattaneo theory is not consistent with 

thermodynamics. Puri & Jordan [139] and Quintanilla & Straughan [152] study 

wave motion in thermoelastic bodies of type I I I . The Tzou [183] (third order) theory 

is studied from various angles by Quintanilla k Racke [147], Quintanilla [144] , Jou 

and Criado-Sancho[19], and Serdyukov[20], while Quintanilla & Straughan [151] 

show that finite time blow up is possible with third order theory when the thermal 

conductivity is a nonlinear function of temperature, as it often is in practice. Puri 

& Jordan [140] analyse the two temperature theory of Gurtin & Pipkin [25] in some 

depth. Many other recent references may be found in these chapter. 
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The goal is to perform a complete analysis of acceleration wave motion in a 
Green & Naghdi [60] rigid solid of type I I . By a rigid body we follow the definition 
of Green & Naghdi [ [60], p. 177] and such a body is one for which the distance 
between any two particles remains unchanged whatever the motion maybe. We keep 
the equations of [10] in their full generality, ful l nonlinearity, and we completely 
determine the wavespeed and the amplitude of the wave as a function of time. 
While the mathematics behind acceleration waves, cf. Chen [24], has been around 
for some time, the fact that its use reveals very useful understanding of the physics 
of a problem justifies its use. In this regard we cite the recent papers of Jordan 
& Puri [92,93], Jordan [86], Christov et al. [27], Pu & Scott [55], Quintanilla & 
Straughan [152] where acceleration waves are employed, and many other articles 
dealing with acceleration waves are cited there. 

5.1 Basic equations and thermodynamic restric

tions 

The fundamental equation of Green & Naghdi [60] is the balance of entropy, equation 

(7.20a), which is 

PV = P( + PS - Pi.i, (5-2) 

where rj, ^, s and Pi are, respectively, density, entropy, internal rate of production 

of entropy per unit mass, external rate of production of entropy per unit mass, and 

the entropy fiux vector. Standard notation is used throughout, so a superposed 

dot denotes d/dt, subscript comma i denotes d/dxi, and repeated indices denote 

summation from 1 to 3. 

Fundamental theory are a temperature function 9 = 9{T, a) such that ^ > 0 and 

d9/dT > 0. In addition. Green & Naghdi [ [60], pl85], show how the energy balance 

equation may be exploited to deduce restrictions on the thermodynamic variables 

which may be interpreted as defining 77, pi and ^ in terms of a Helmholtz free energy 

function ip — il>{9,Pi)- The relevant relations follow from Green & Naghdi [60], 
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equation (8.15), and are 

^ ~^W^df' ^^^^^ ^ ^ ^ ^ ^^"^^ 

f = 2 A V ' . ^ + ^ ( 5 ? | ^ - ^ . ) , (5.5) 

A = a,ai = AA, (5.6) 

and we write e.g. '0a = dip/dA. 

For our analysis there is no less in generality in setting the external supply of 

entropy to be zero and so we henceforth assume s = 0. Then, using (5.3)-(5.6), 

equation (5.2) may be written as 

where we have defined 

Aia,a,a,) = A='^ and / i i = (5.8) 

The above equations represent the general theory of heat flow in a type I I rigid 

body of Green k Naghdi [60]. However, we may wish to consider the following 

special cases, 

i^ = c[9- 9\n9) + ^AA (5.9) 

and 

= c{9 -9\xi9)^^(3i(3i, 9 = a + bT (5.10) 

c, k, a, b positive constants, where c and k denote the specific heat and heat con

ductivity. Case (5.10) is considered by Green k Naghdi [60]. Note that, in these 

cases the theory is still nonlinear. Moreover, from equation (8.15)4 of Green k 

Naghdi [60], for case (10), ^ = 0. 

While we concentrate on a rigid heat conductor of type I I , we point out that 

Green k Naghdi [ [60], pp.183-188] also define such a heat conductor in type I or 

type I I I cases. Very briefly,, the key difference is the list of independent constitutive 

variables. This list comprises T and Ti for type I ,T, o; and a,, for type I I , and 

T, Q:, T I and a,, for type I I I . Type I I leads to a very different equation to both type 

I and I I I , the latter types both containing substantial damping. 
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5.2 Acceleration waves 

Define an acceleration wave for the theory of section 5.1 to be a two-dimensional 

surface, E, in R^, across which Q:(x, t) ,a , j , and a,jj suffer a finite discontinuity, but 

a e everywhere. The jump, [ / ] , of a function / , across E is defined by 

[ f ] = r - r , (5.11) 

where - and + refer to the limits of / as E is approached from the region into which 

the wave is advancing, or through which it has just passed. The jump is assumed 

to be even along the wave surface, cf. Chen [24], so that [/] is a function only of t. 

By expanding (5.7) one may arrive at the following equation 

OA. dA dA.\ f d f i , di,i ^ 5 / . , \ 

After taking the jumps, and since a e everywhere, then o; = 0 and a,i = 0, 

moreover ^ is continuous then [^] = 0, hence 

or equivalently. 
dA dA dfii df^r 

Using equation (4.15) of Chen [24], then 

0 = Tila] = [a] + Vuildi], (5.15) dt 

Q = j-^[ai\ = [a^] + Vn,[aJ,], (5.16) 

from (5.16) one obtains 

d_i] = —Vnj[aji], (5-17) 

and from (5.15) one finds 

ci] = -Vmla^i]. (5.18) 

Now put (5.17) into (5.18) then 

a] = V^niUjlaji]. (5.19) 
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Recall that 

dm ^ d f 

dpj 9T • 

Use equation (4.14) in Chen [24], obtains 

(5.20) 

a^ij] = riinjlrin^a^rs], (5.21) 

then 

[ci,t] = —Vnjriinjln^n^a^rs. 

= -Vni[n'n'ars] (5.22) 

therefore, 

= ^n^nAn^n^arsl (5.23) 

By employing (5.17) and (5.21) in the second term on the left hand side of (5.14) 

we find 

- — a,i = -^Vukla^ki] = ^Vni[n''n^akj]- (5.24) 
dPi aPi oPi 

Put (5.19), (5.23) and (5.24) into (5.14), then (5.14) becomes 

dA 
- ArV^ln'ri^aji] + ni—V[n''n^a^rs, 

(jPi 

= -^Vn,[n^n^a,,] + | |n ,n , [n^n^a,p , ] . (5.25) 

Since we assume the amplitude is non-zero, therefore in (5.21) we have [mFn'^a^p,] ^ 0, 

and hence (5.25) becomes 

^ , ^ . _ ^ ( „ . | ; , „ , ^ ) ^ ^ „ , | i = 0̂  (5.26) 

We now wish to develop (5.26) and to do this we recall the form of A, ^ and A from 

(5.6) and (5.8); 

A = ^ , ^ , = | ^ , a n d A = A/?., 

then, 

9T 9' 
^ r = ^ - ^ . (5.27) 
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Therefore 

diii d f ^pA ^PiT ^Pi^TT , , di^ dA 

' ^ ' ^ 5 r = ( ' - ' ^ ^ 

Now we must calculate 'yl^, dA/dPi, djii/dT and dfii/dPj in terms of the 

Helmholtz free energy ip-

then derive the last term of (5.26) obtains 

din d d / 2 A ^ A \ _ 1 d 

dPj d p A e r ) dp A OT J erdP: 
{2PM 

2 /X / , /? / /o/Q ^̂  '^^ij'^A , iPiPji^AA 

therefore 

Finally, put (5.27), (5.28), (5.29) and (5.30) into (5.26), then the wavespeed 

equation is 

,2 f ^TT _ IPTOTT\ _ 2 n p ! ^^^^ - ^^^^^ 

+ ^ + 4 { f t n 0 ^ f ^ = 0. (5.31) 

This means there are wave moving in each direction w i t h speed V given by the roots 

of (5.31). 

For the special theory (5.9), we can f ind wavespeed as follows, since 

iP = c{9- e\ne) + ^kPiPi, 9 = 9{T, q) 

k 
i>A= 2 ^ ^ ^"^^ ^ ^ 

i;e = c[\ - \ n 9 - l ) =-dn9 ^00 = -^ 
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put these equations into (5.31), then the wavespeed equation reduces to 

rearrange to obtains 

^ - r ' " " - ' - - - ^ - 2 n A [ - l " ^ V ) ^ f - . (5.32) 

OT "T 

ox equivalently, 

^-^\kn.0f-^V^^ = ^^ (5.33) 
u Cj. 177 

For the case (5.10), as follows, 

^ = c{e -e\nd) + ^^i(3i, d = a + bT, 

equation (5.31) reduces further by 

Ox = b, 9TT — 0, 

then the wave speed theory for case (5.10) is 

f rom which i t is clearly seen there are waves moving in opposite directions w i t h 

speeds V = ±b-^y/ke/c. 

5.3 Homogeneous region 

We can calculate the wave amplitude 

a{t) = [a], (5.35) 

exactly, even in the general case studied in section 5.2. However, the key physics is 

perhaps easier to see by considering a wave moving into a homogeneous region for 

which 

a,i - A = 0. (5.36) 

We henceforth restrict attention to this situation. 
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For the wavespeed we find equation (5.31) reduces to 

^ ' = 2 V ' A / ( ^ - ' / ' T ^ ) - (5-37) 

Under the same conditions, equation (5.33) becomes 

while equation (5.34) remains the same. 

5.4 Amplitude behaviour 

To calculate the wave amplitude a{t) = [a] one expand (5.7), 

-{ATOC + A^a + A^A) = C(a, T, A ) + ^ d , , + ^ a , + |^/?,,. 

Then differentiate w i th respect to t, 

- ( ^ A A + K{AATa + A^aa + ^ I A A A } ) = ^ ^ d + ^ r d + CAA 

Recalling that 

A = PiPi = 

A = 2pi$i = 2a,id,i 

A = 2{Q! , id i + d , id , i} , 
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then (5.39) becomes, 

- {ATTOC'^ + AraCiOi + ATAa{2a^id^i) + Aroi) - {AarOia + AaaCxct + AaA2aa^id^i + Aad) 

- AAr(i(2a, i ( i , i ) + AAaa(2a,iCt,i) + /lAA(4a,iQ,ia,fcd,fc) + AA2{Q,ia i + Q,ia,i} 

= '^aa + '^Ta + ^ A ( 2 a i a i ) 

5/3^ aaa/5j '-̂  a r a / j j oPkdPj 

Take the jumps of the resulting equation w i t h take into account that the wave 

is moving into a homogeneous region, a^i = 0 and since ct G C \ then this becomes, 

- ( ^ r r M + >lTQ[ci]a + Arid]) - {Ac,Td[d] + Aa[d]) + 2AA[d^id^i 

a/?j dadaj dTdPj dPkdPj Recall 

^. = tiL = —IPJ^— = —2(3-
9T OT dPi OT 

Define denotes the homogeneous region, therefore in the homogeneous region 

we have 

lJiiaT\E = 2 ( 5 i { ^ = 0 , (5.40) 

also. 

Furthermore, 

^J'iTPj\E 
_d_ 

dp, 

I^^TT\E = 2a4'^) = 0 . (5.41) 

and so, 

2 4 « ( ^ ) ^ , (5-42) 

|^U = 2 f t ( | ) , = 0, (5^43) 
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similarly. 

and, 

Moreover, 

a y . 
a/5,a/?,-

Also, 

Hence the am 

= 4 ( ^ ) ^ ( A ^ , f e + M O - o . 

iplitude equation becomes, 

(5.44) 

(5.45) 

(5.46) 

- A r x [ d ] ^ - 2ATaT[6i\ - AT[oi] - Aa[Q\ - 2ylA[d,id,j 

= ^ r [ d ] + 2 — <̂  [a,id,i] + [aa^a] \ 

^ i r i ' t f ) l a , . ) + 2 ^ 1 6 . . ] ^ (5.47) 

The Hadamard relation or condition of kinematical compatibility, see Chen [24], is 

5 
5t [ f ] = [ft] + Vn,[f,i] (5.48) 

where 5/5t is the derivative of a function on the wave as seen by the observer on the 

wave. We now use (5.48) and the wave speed equation to remove the [d ] and [a^u 

terms, therefore 

(5.49) — [d] = [d ] + K[n 'd ; , ] , 

^ [ d , i ] = [ d j ] + Vnj[a\ij], (5.50) 
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0= ha] = [a] + V[n'dr], (5.51) 
ot 

0 = j-^[ar] = [ar] + V[n^arj], (5.52) 

then (5.51) is 

and 

then 

Therefore 

or 

Hence 

5t 

Seeking for the term [d'in^] in the equation (5.59) 

So use equation (4.15) of Chen [24] to obtains 

a] = -V[n'a,r] = V^[n^n^a,rj], (5.53) 

0 = ^ k i ] = k i ] + V'[nVffc]> (5.54) 

a,i] = -V[n''a^ik], (5.55) 

rijd^i] = —yniUjla^ij]. (5.56) 

a{t) = [a] = -V[n'd,i] (5.57) 

a = V'^niUjla^ij]. (5.58) 

^ = [Q] + y [ a y ] . (5.59) 

^ [ n j d j ] = [a,in'] + Vninj[Q\ij], (5.60) 

but f rom (5.57) we have [riid^i] — —a/V then 

- ^ ( ^ ) = [ a i ^ ' l + VniUjid^ij . 

Hence 

= - ^ ( ^ ) - Vriinj[a,j]. (5.61) 

Put (5.61) into (5.59), therefore 

^ = [ - l + v | ^ ( - - ) - V „ < n , [ c , . , ) | , (5.62) 
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smce 
\/-^ ( ^ \ — a SV 

6i \ v ) " ~~5t'^V~5t' 

then (5.62) becomes 

Therefore 

6a ...... 6a a 6a r . i /,-

T r 9 r 1 ^6a a 5V 
y n . n , M = - 2 - + [a ] + - -

l ' ' M = - 2 j ^ + l « l + ^ ^ . (5.64) 

Now, we can obtain the term [a^a] as follows 

Put (5.65) into the last term of the amphtude equation (5.47), therefore, 

- Arr[ci:]^ - 2ATaT[a] - Aria] - Aa[a] - 2AA[a^ia^i 

= ^r[ci] + 2 ( ^ ^ ) ^ | [ d , a i ] + [ a a , i ] | 

f ^ A \ r . -̂ A f 6a , , a6V] 

B y rearranging, 

- Arrlaf - 2ATaT[a] - A^[a] - 2AA[a,id,i] - Arl'a] - 2 - ^ [ a ] 
V ^Ut 

= eT[a] + 2 f ^ ) / [ a , d , ] + [ d a i i ] } + 2 T f ^ ) [a^,] 
/ L J \ 9 t J a 

, o V̂A f a 5 V \ 

or simplicity. 

- / lTT[ci ] ' - 2 X r a T [ f i ] - A^[a] - 2AA[a^a,,] + {-At - | ^ ) [ « ] 
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Recall that the wavespeed relation in homogeneous region (5.37) is 

T/2 o / I (i^rOxT , ^ = 2'ipA / ^ - ^ t t J . 

or V^At + 2 ^ ^ = 0, 

or At + 2 ^ = 0, (5.68) 

therefore this term has been vanished in (5.67), hence the amplitude equation be

comes 

- AtW - 2ATaTa - Aaa - 2AA[d^id^i] = + 2 ( ^ ) ^ + [<ia,u]^ 

+ 2 r ( | ) M + 2 ^ ( - 2 - + - - ) . (5.69) 

Since the formula for the jump of a product that has been discussed by Lindsay 

& Straughan [104]: [fg] = f~^[g] + g^[f] + [f][g], therefore 

d^id^i] = 2d,i"^[a,i] + [d,i][a",j] = [d,i][d,j] , (5.70) 

the term 2Q:+[Q;,i] of (5.70) vanished since the wave is moving ahead of the region, 

d / = 0. 

Prom (5.51) obtains 

then, 

rr -1 [<̂ ] ^ 

9 

i K i J 17 , hence [ a = ^7^ = F , i » i J , 
y ' L " , ' J L " , H y l 

and f rom (5.58) we have ^^[a^ii] = a, therefore [ot^u] = a/V^, moreover 

/ \ 2 

= [d][au] = {a)i^^j (5.71) 

Henceforth (5.69) can be reduced further as follows. 

- Atto^ - 2ATaTa - Aaa - 2 A A y 2 

- era + 4 ( - ) ^ ( - ) + - ( ^ - J ^ a + ^ ( ^ - ^ - 2 - j . (5.72) 
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Mul t ip ly both sides of (5.72) by V'^'BtI'^-^k, then obtains 

By rearranging (5.73) obtains, 

2 ^ + a / - l ? ^ _ ^ ' ^ ^ ^ ^ ^ ' ' ^ ' ^ ^ ^ ^ V-^^r^r T O r f ^ , 
'5t \ V 6t 2^A 2i/'A V^r 

• ' ' ' - ^ + ^ + 2 ^ ( | ^ ) , V ^ = 0 . (5.74) 
2^A ^ A ^^aOt^^J 

Now the Maxwell relation and the wave speed equation are employed to remove 

the [d] and [d^u] terms and we arrive at the amplitude equation 

2 ^ + u;a - Câ  = 0, (5.75) 

where S/5t is the derivative of funct ion on the wave as seen by an observer on the 

wave. 

The coefficients LU and C are given by 

V 5t ^ A KOrJTa 2^A V ^ T A V^T 

v e r i f y . , , frr.i^T0a\ fr.^, 
2 . A l V ^ ^ ^ ^ ^ J / r a . - l " f , . 

' V 5 t ~ ^ A [oTjTa SV'A 

V^erU^^_^) \ ( , 7 6 ) 
2^A IV OOt Jr V 0 /TJ 

We observe the effect of ^ is manifest in the last term of (5.76), the one involving 

the braces: 

= ^ r ^ J ^ " — tpa in equihbrium region. (5.78) 
6 \ Ot J 
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The general solution to (5.75) is easily found, cf. Chen [24] as follows. 

2— + w a - Ca = 0, 

+ aa — f5o? = 0, where a = ^ and /5 = ^ , 
ot 2 2 

— + aa = pa\ 

1 Sa a 
6t a 

Let / = - then 

^-^-af = -p. (5.79) 

Use integrating factor fj,{t) = e~-̂ o "('^)'^'^, therefore (5.79) becomes 

^ ( / / / ) = - p f i , 

MO/W = - f P{rMT)dT + f,{0)fiO), 

smce 

thus (5.80) becomes 

a{t) = 

a{ty 

smce 

therefore 

^(0) = e- /o"W' i^ = l , 

g-/o'a(r)<ir 

x(0) 

However, its interpretation is perhaps easier seen by considering the special theories 

(5.9) and (5.10). 

For (5.9), we have 

V; = c(^ - ein^) + ^ A , e^9{T,a), 
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then 

0A = 2 

i / , ^ = ^jj^Or = c ( l - \n9 - 1)9t = - c l n ^ • 9t. 

ipa = tPeOa = c{l-\n9- 1)9^ = -cln9 • 9^ 

Hence, in this case, 

and f rom (5.37) we have 

1/2 _ M l 
~ c9V 

so C for special case (5.9) is 

then. 

C = - — ( l n ^ ) r T - - 7 — = - 7 - U - ^ T ' 
t / j - (77- (7J' y (7 J J. UT 

9t n^TT C = y - 3 ^ . (5.81) 

and, 

u; = ^ ( - c l n ^ ) r a ^ ( - c l n ^ ) a 

k ^9t''^ k W99t)t \ 0 \ 9 
k9 1 

Put V'^ = — — t h e n the term u can be rewritten as 
c 9^ 

1 5V 2T^r k9 . ^ ^ c9t k9 T^Ta 
" = - V - — + - ^ 

- ^ ^ ^ 4 - 2 ^ ^ 1 n e i 4- % l n ^ l 

9Akf 9c.\ _^29 /^\n9 • 9^ 

c9T\99TJr 9 t \ 0 ;^ 

Since the wave is moving into the homogeneous region, a^i = 0, then 

16V 2T9^ , 0 9Ta 29 \n9.9 

The effect of is due to the last term of (5.82). 



5.4. Amplitude behaviour 82 

Finally, in case (5.10), we further assume T'^= constant, i.e. the temperature 
ahead of the wave is constant, thus 

e = a + bT, eT = b, BTT = 0 

kO 
then = — = constant, since 9 = a-\-bT = constant. 

hence 

so equation (5.75) becomes 

1 

u; = 0, C = — r ; ^ , (5-83) 
a + bl 

| 4 „ ^ = 0. (5.S4) 

+ 
a(t) • a i 5 ) = i i « ^ ) ' ' ^ _ 

Therefore solution is 

Since C > 0, we see that if a(0) > 0 then a{t) blows up in a finite time to, where to 

has derived f rom 

Jo 2 

b , 2 
-as = 

Jo a + bT^" a{0)' 
bt _ 2 

a + bT ~ a (0) ' 
2(a + bT+) 

Thus, to depends on T in the homogeneous region. In the last case we have = 0 and 

i t is interesting to note that this may always lead to the thermal shock formation. 

For a deeper discussion of how an acceleration wave may develop into a shock wave, 
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see Fu & Scott [55]. To interpret thermal shock formation we note that the aid of 
Hadamard relation, 

[a] = -V[a:,] = -V[T,]. (5.87) 

Since = constant we may deduce T + = 0 and hence [a] = —VT~. The con

di t ion a(0) > 0 then implies T~ < 0 and f rom (5.85) T~ increases in absolute 

value as time increases. Thus, as the wave moves right the temperature gradient 

increases(negatively) and blow-up is consistent w i t h the thermal shock formation, 

i.e. a j u m p in T (or 6*). 



Chapter 6 

Green-Naghdi theory for a fluid 

We now consider a generaUzation of the theory of chapter 5, that developed by 

Green and Naghdi [60 . 

Green and Naghdi [65] extended their theory of [60] to be applicable to a perfect 

fluid. They, however, adopted a special relation for the Helmholtz free energy of 

fo rm 

-0 = - m a , i a , i + / ( p , ^ ) , (6.1) 

where m is a constant. A general theory satisfying the laws of continuum ther

modynamics was constructed by Quintanilla and Straughan [155]. Quintanilla and 

Straughan [155] also developed a fu l ly nonlinear acceleration wave analysis w i t h a 

very general form for —' 'lp{p, 9, V a ) . 

In this section we derive the wavespeeds of an acceleration wave when the 

Helmholtz free energy is more general than (6.1), but less general than that proposed 

by Quintanil la and Straughan [155]. We assume that 

i; = ^m{p,9)\Va\' + F{p,9). (6.2) 

Here, m and F are allowed to be functions of p and 9. Note that again a is a 

temperature displacement function, 

a= f 9ds, (6.3) 
Jo 

while p is the density. 
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The equations of Quintanil la and Straughan [155] are those of continuity of mass, 
the momentum equation, and the energy balance law, namely, 

Pt + Vip^i + pvi^i = 0, (6.4) 

1 d 

p{vi^t + V j V i j ) = - - — {p{ipajOi,i + i p c i a j ) } , (6.5) 

-p{^e,t + Vitpe^i) = {pipa,i),i, (6.6) 

where the pressure p is given by 

We note that f rom (6.2), 

p = p 2 ^ , . (6.7) 

-ipe-\m0\Va\^ + Fg, (6.8) 

= ma , i , (6.9) 

1 
2 

m,\ya\' + F„ (6.10) 

i>ajOL,i + i>oi,i(^j = 2mQja , i . (6-11) 

Employing the above relations, equations (6.4)-(6.6) become 

Pt + Vip^i + pVi^i - 0, 

p{vi,t + VjVi^j) = - p , i - {pma^iaj)j, 

~'^{ Wt^^ " [pma^^^^. (6.12) 

We now analyse the behaviour of an acceleration wave 5 for equations (6.12). By 

an acceleration wave we here mean a surface <S across which a^, a^u, ^ i j , "i^i.t, P,t, P,i 

and higher derivatives posses a finite discontinuity, but a £ C^(M'^), Vi,p G C°(M'^). 

Equations (6.12) are expanded recalhng p = p'^ipp and •0 = tp{p,9,a^i) to find 

after taking the j ump [ . ] across S, 

Pt] + Vi[pA + p[viA = 0, (6.13) 

PiM + = -Pe[9,i] - PPIPA - PaA^Ji] - - P'>^p[P,j](^,i(^,j 

- pmg[9j]aja^i - pmaj{a^^j] - pma^a^jj], (6.14) 



Chapter 6. Green-Naghdi theory for a fluid. 86 

- Vipi^]^mee[0,i\a^rOc^r + ^mep[p,i]a,ra:,r + rneaj[aji\ + Fee[0,i\ + fflp[p,i]| 

= /9,i]ma,i + pa^^{mg[6^i] + mp[p^i]) + pm[a jj]. (6.15) 

We now analyse equations (6.13)-(6.15), but when the accelaration wave S is 

moving into an equilibrium region. A n equilibrium region is one for which 

p = Po, Vi = 0, 9 = 9o, a = ao-

Since in an equilibrium region a,j = 0, Vi = 0, equations (6.13)-(6.15) reduce to 

PM = -Pe\9,i] - Pp[p,i], (6.16) 

-pFgg[9t] - pFep[pt] = pm[a,ii], (6.17) 

[ p t ] + p K i ] = 0 . (6.18) 

Since p = p'^ipp we find 
2 

Pe = jrnpg\VQ\^ + p^Fpg 

Pp = | V a | 2 1 Y"^pp + "^pp} + P^^PP + 2pFp. 

In equilibrium, therefore, 

Pe = P^Fep, pp = p^Fpp + 2pFp. (6.19) 

Define now the wave amplitudes A\ B and C by 

A' = [rijVi^j], B = [nV,i], C = [n^n^a^ij . 

Use the compatibil i ty relations given in chapter 1 we see 

[Pt] = -VB, 

Vi^t] = -VAi, 

[PA = n^B, (6.20) 

. [OA = M = -VmC 

[9t] = [ocu] = VC, 

[a,n] = C. 
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Next, employ equations (6.20) in (6.16)-(6.18) and we derive the relations 

- pVAi = p^FepVuiC - {p^Fpp + 2pFp)niB, 

- pFeeVC + pFepVB = pmC. 

-VB + pA'n, = 0, 

(6.21) 

(6.22) 

(6.23) 

For equation (6.23) we see immediately that <S is a longitudinal wave, i.e. A' = An'' 

where A = [rurija^ij]. Equations (6.21)-(6.23) then reduce to a system of three 

simultaneous equations for the wave amplitudes A, B and C, namely 

-VA^ pFepVC - {pFpp + 2Fp)B 

- FeeV^C + FgpVB = mC 

VB-pA = Q 

To require non-zero wave amplitudes A, B, C we require non-vanishing of the deter

minant 

pFpp + 2Fp -pFepV 

0 VFep -{m + FeeV) = 0 . 

-p V 0 

Expanding this determinant we find 

-V'Fgg + V^p^FppFee - m - p'^F^ + 2pFeeFp) + mp''Fpp + 2mpFp = 0. (6.24) 

Equation (6.24) is a quadratic equation for V^. This, in general, allows for a 

slow wave, speed Vi, and a fast wave, speed V 2 . (Note < V^, where each fast 

and slow wave moves in the + and - directions.) 

To analyse (6.24) further we may consider a further simplification to the consti

tutive theory for •0, equation (6.2). Hence, we suppose 

Thus, we find 

i) = c{p){0 - e \ n 0 ) + ^m{p,e)a,ia^i. 

Fe = -c\ne 
c{p) 

(6.25) 

Fee e 
Fp = c'{p){e-e\ne). 
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The solution to the wavespeed equation (6.24) is then 

= - ^ I - [p^F^pFee - m - p-^F^ + 2pF,,F,) 

± [{p''FppFee - m - p'^F^ + 2pFegFp)- + AFee{mp''Fpp + 2mpFp)Y'''Y 
If c = constant, so that all the p dependence is in m{p, 6), then Fp = 0, 

1 TTl 

V' = --—{m±m] = 0 or - — . 

Thus, we find a standing wave, V = 0, and one with wavespeed given by 

6.1 Conclusions 

In this thesis we have analysed a variety of models in continuum mechanics which 

are capable of admitting temperature waves of finite speed (second sound). In 

particular, in Chapter 1 we saw how an acceleration wave evolves in a rigid body 

with a heat flux law of Cattaneo type. Chapter 2 investigated the problem of a 

layer of fluid heated from below when the Cattaneo law is involved. In Chapter 3 

we investigated uniqueness, stabihty and instability together with a class of non -

standard problems for a class of rigid bodies using thermodynamics of Green & Laws. 

Chapter 4 investigated an extension of the Green - Laws model due to Batra. Here 

we analysed uniqueness, exponential growth, finite time blow - up and discontinuity 

waves. 

In Chapters 5 and 6 we concentrated on a model for a rigid solid and then a fluid 

when the thermodynamics is based on more recent ideas due to Green and Naghdi. 

Al l of these theories have shown to yield desirable physical properties. Which 

model is preferable can only be decided by comparision with experimental results. 

There are still many open problems. In particular, the theory of type I I fluids 

studied in Chapter 6 is very new. There are many open questions concerning unique

ness, continuous dependence, and other stability issues. Such studies will form part 

of future work. 
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