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Abstract 

This thesis concentrates on four and five dimensional black holes and their associated 

geodesies. Some coordinate charts are presented, which are useful in the analysis of 

both static and rotating black holes, and their mathematical properties investigated 

before some methods of solving Einstein's vacuum field equations are examined. 

The Myers-Perry black hole metric is derived before going on to describe the Inverse 

Scattering Method of generating new vacuum solutions. The Inverse Scattering 

Method is used to generate the single and doubly spinning black ring metrics and 

then the physical properties of these solutions is explored in detail. 

The latter part of this thesis looks at different ways of visualising geodesies in 

various spacetimes and examines the pros and cons of each particular method, as 

well as looking at several examples of geodesies wi th different parameters. The 

geodesies of the singly spinning black ring are calculated and i t is shown that they 

cannot in general be analytically integrated. In light of this, some restricted analytic 

scenarios are investigated wi th the intention of gaining some insight into how the 

geodesies behave in the spacetime as a whole. 

Finally, a method is presented which allows string charges to be added to any 

vacuum solution to Einstein's eciuations. The properties of this new charged solution 

are then compared wi th the neutral starting solution. The doubly spinning black 

ring is used as a model to demonstrate how the method can be used to charge up 

a specific black hole solution and the resulting thermodynamic properties of this 

charged doubly spinning black ring are then examined. 
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Chapter 1 

Introduction 

Traditionally, black holes have been studied exclusively in only four dimensions, for 

the obvious reason that our everyday experience is of only three spatial dimensions 

and one time dimension. The first black hole solution was discovered by Schwarz-

schild [2] in 1916 and it was soon reahsed that this solution exhibited an interesting 

feature whereby test particles were restricted to only move toward the centre of the 

black hole after crossing a particular spacetime boundary. This spacetime boundary 

become known as the event horizon and, in the Schwarzsehild ease, its location is 

directly determined by the point-like mass at the centre of the space. 

The idea of a black hole was originally postulated by John Michell [1] (although 

not referred to as a black hole) in a letter he sent to Henry Cavendish, where he 

hypothesised that a very massive star would not emit any light because the escape 

velocity of any body would be greater than that of the speed of light. This was based 

on Newton's theory of gravity and was later promoted by Pierre-Simon Laplace in 

the first two editions of his book "Exposition du systme du Monde" (Paris, 1796). 

These so called "dark stars" were largely ignored since i t was then thought that 

light was exempt f rom the influence of gravity. 

Even after i t was observed that the Schwarzschild solution could exhibit a black 

hole, the notion of an event horizon was ini t ia l ly thought to be of purely academic 

interest, since i t was generally accepted that no physical system could be small 

enough to fit w i th in its event horizon [3]. However, further research into gravitational 

collapse indicated that this view was mistaken and research into what later came to 

1 
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be called black holes, progressed very quickly. The modern notion of a black hole, 

where light can't escape to inf ini ty f rom inside the event horizon, doesn't occur in 

the Newtonian theory of gravity, so the idea that they might be physically realisable 

caused a flurry of activity at the end of the 1950's [4-8] that led to a comprehensive 

understanding of the Schwarzschild black hole topology. 

Although the Schwarzschild metric was well understood by the beginning of the 

1960's, i t was expected that a more general solution to Einstein's equations existed, 

whereby the black hole also rotated. This is because i t was well known that most 

large stars have at least some angular momentum and if the inevitable consequence 

of their collapse was to form a black hole, the black hole would also have to rotate. 

Thus, it was timely that Kerr [9] discovered a .solution to Einstein's equation where 

the black hole rotated about the origin of the space. 

The addition of angular momentum to the black hole made the metric signifi­

cantly more complicated and thus made gaining an understanding of its properties 

significantly more diff icul t . Throughout the 1960's work that gave a much greater 

insight into the behaviour of the Kerr solution was carried out, such as [3,10-13], 

but the key insight was provided by Boyer and Lindquist [14] where they devised 

new coordinates which cast the Kerr metric in a fo rm where the symmetry between 

the axial and stationary Ki l l i ng vectors is explicit. These Boyer Lindquist coordi­

nates then allowed Carter [15] to show that the metric in this form has an extra 

conserved quantity related to the angular momentum about an ellipse [16], rather 

than a point. 

Having devised a black hole wi th angular momentum i t was shown that, disre­

garding the possibility of adding charge to the black hole, the Kerr metric is the 

only possible black hole in four dimensions^ This statement is known as black hole 

uniqueness and was proved for non-rotating black holes by Israel [17] in 1967 and was 

extended to include rotat ing black holes in a series of papers throughout the 1970's. 

The observation that made the extension of the uniqueness theorem to Kerr black 

holes possible, came in a paper by Carter [18] where he showed that the Einstein 

^The Kerr metric includes the Schwarzschild solution, since it will reduce to the static Schwarz­

schild metric in the limit as the angular momentum is reduced to zero. 
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equations reduce to a two dimensional boundary value problem when considering 

stationary and axisymmetric solutions. This ultimately culminated in an identity 

by Robinson [19], which he used to prove that the Kerr metric is the unique vacuum 

solution to the Einstein equations. This meant that all the solutions to the vacuum 

Einstein equations, for pure gravity, are contained within the Kerr metric and thus 

can be described using only two parameters: the mass and the angular momentum. 

Over the last two decades, the study of black holes in higher dimensions has 

gained much greater prominence, due primarily to the growing interest in string 

theory [20, 21] and other higher dimensional models, such as Brane worlds [22 . 

In these models, more than three spatial dimensions are a necessity, but higher 

dimensional bla,ck hole solutions are also useful in the study of theories such as 

the AdS/CFT correspondence [23], where the properties of an n dimensional black 

hole are related to a quantum field theory in r?. - 1 dimensions. There is also 

speculation that higher dimensional black holes may be produced in future particle 

collider experiments, in scenarios where the extra dimensions are accessible at the 

TeV scale [24;. 

Increasing the number of dimensions that are considered to more than the usual 

three spatial and one time dimension, instantly increases the sophistication of any 

desired solutions because the extra spatial dimensions increase the number of de­

grees of freedom that the solution can have and thus increases the complexity. In 

5D, for example, it is possible to have simultaneous rotation in two perpendicular 

planes, leading to black hole solutions that have more than one angular momentum 

parameter. The first higher dimensional solution was that of Myers and Perry [25], 

where they generahsed the 4D Kerr solution to A''-!- 1 dimensions, to give a spherical 

black hole with N/2 angular momentum parameters (or {N — l ) / 2 parameters if 

iV is odd.) This instantly increases the number of parameters that are required to 

specify the black hole, once n is increased above 4. 

The other factor, that allows for much greater variety in the behaviour of black 

holes in higher dimensions, is the competition between the centrifugal and gravita­

tional potentials. To get an idea of how this occurs, consider the Newtonian limit of 

a particular spacetime in n dimensions: the potential will vary as r'*"" but the cen-
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trifugal barrier in a particular direction only depends on the rotation in the plane, 

so will vary as r~'- in each of the planes of rotation. It is easy to see from this 

argument that the balance between the gravitational and centrifugal potentials will 

be significantly different as n is increased. 

It wasn't generally thought that there should exist any black holes with non-

spherical topology because of the uniqueness theorems of 4D black holes. Although 

some people suspected that a non-spherical black hole might exist, it wasn't until 

Emparan and Reall discovered a black hole with S' x 5^ topology [26] that attention 

was actively focussed on searching for more exotic black hole solutions to Einstein's 

equations. Since then, various higher dimensional black holes have been discov­

ered with the most notable solution being the more general doubly spinning black 

ring [27] which rotates in both of its mutually perpendicular planes. These black 

ring solutions also demonstrated black hole non-uniqueness and thus disproved the 

assumption that the 4D uniqueness theorems would automatically hold in higher 

dimensions. Further properties of the black ring solutions will be investigated in 

later chapters, along with those of other higher dimensional black hole solutions. 

In the following chapters both rotating and non-rotating black hole spacetimes 

are examined and some of their pertinent properties are discussed, along with the 

mathematical problems associated with some of these properties. Having gained an 

understanding of the different black holes' properties, the geodesies in these four 

and five dimensional black hole spacetimes are investigated and various methods of 

visualising their geodesies are considered. Some methods of solving the vacuum Ein­

stein equations are also presented, with the 5D black ring solutions being introduced 

and their properties explored. Finally, a generic method of adding string charges to 

black hole solutions is investigated, with the doubly spinning black ring used as an 

example of a charged black hole solution. The properties of this new solution are 

then explored. 

Chapter 2 introduces some useful coordinates charts that will be used in later 

chapters, as well as showing why it is not always possible to derive all the properties 

of a particular solution in a single coordinate system. The proceeding chapter then 

looks at some different techniques for solving Einstein's field equations and discusses 
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the applicability of the techniques in question, before going on to show how they 

are used to derive some black hole solutions. The solutions that are generated by 

the various techniques are not necessarily free of singularities, so there is also some 

discussion of the necessary constraints to ensure that the generated metric is free 

from unphysical conical and coordinate singularities where possible. 

Having derived the black ring solutions, chapter 4 investigates the physical prop­

erties of these metrics and contrasts them with the corresponding 5D Myers-Perry 

solution, as well as showing how they share many of the properties of the more 

familiar solutions in certain hmits. In general, the addition of an extra angular mo­

mentum parameter to the black ring makes ciuite a marked difference to its physical 

properties, so the singly and doubly spinning rings are described separately with the 

similarities as well as the differences being highlighted. 

The geodesies of various different spacetimes, when considered in 5D, are exam­

ined in section 5 with the geodesies in these spaces plotted on a Penrose diagram. 

This gives a greater insight into the behaviour of test particles undergoing geodesic 

motion because it is possible to relate the path that the particle takes with the global 

structure of the spacetime, which is usually only approximated by sketching possible 

causal paths. The geodesies in flat space, Schwarzschild space, and Kerr space are 

all examined with an alternate means of mapping Kerr space also investigated. The 

geodesies in the Kerr spacetime are generally more complicated than those in the 

static spacetimes by virtue of the Kerr black hole having angular momentum and 

thus causing a frame dragging effect. 

After investigating the motion of geodesies in some familiar spacetimes, the geo­

desies of the black ring solution are discussed in detail in chapter 6. Unfortunately, 

the geodesic equations of the black ring solution aren't separable so various differ­

ent sub-spaces of the black ring are examined, where the geodesic equations can be 

quantitatively analysed. Based on these results, some scenarios where the geodesies 

are unrestricted are also investigated by numerically integrating the equations of 

motion. 

The final chapter looks at black hole solutions more generally and adapts a 

pre-existing method of adding string charges to a vacuum black hole solution to 
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construct an algorithm for charging up a black hole solution without having to 

know the exact form of the metric. This then allows the physical properties of any 

black hole solution with string charges to be investigated and the effect of adding 

charge to a vacuum solution quantified. To give an example of how the method 

can be applied, fundamental string and momentum charges are added to the doubly 

spinning black hole solution and its new properties then examined. 

Overall, it is shown that the behaviour of the four and five dimensional versions 

of the black holes with spherical topology are cjualitatively similar but once the 

topology is varied both the black holes, and the test particles moving in the exterior 

of the black hole, behave in a markedly different manner. This can be thought of as 

a consequence of the non-uniqueness of 5D black holes, since the addition of an extra 

spatial dimension allows for the possibility of several different types of black hole to 

exist, even if the parameters of the different black holes are exactly the same. It is 

the aim of the following chapters to go some way toward classifying the behaviour of 

the various black hole spacetimes in order to better understand the physics behind 

the mathematical solutions. 



Chapter 2 

Coordinate Charts in the 

Schwarzschild and Kerr Metrics 

This chapter examines the Schwarzschild and Kerr metrics as examples of static and 

rotating spacetimes and the various coordinate systems that have been developed 

to investigate these spacetimes. These coordinate transformations will prove to be 

useful in the analysis of the black holes later on as they can be used to circumvent 

coordinate singularities that occur in some coordinate charts. Often, a coordinate 

system that is useful in finding a particular solution isn't particularly well adapted 

to the overall geometry of the solution. In light of this, it is often helpful to find 

a coordinate chart where the nature or existence of the singularities is much more 

obvious. 

Solutions to Einstein's equations often exhibit singularities of one type or an­

other, but just because a particular metric becomes singular at some point in space-

time does not necessarily mean that the solution breaks down at that point. Often a 

singularity is caused because the coordinate system of the metric is inappropriate to 

describe the space at that particular point. A simple example of this is the apparent 

singularity in the Scliwarzschild metric, given by 

d.^ = - f 1 - d.'̂  + f 1 _ ^ d.^ + .MO^ , (2.1) 
r ) 

where it appears that the grr coefficient blows up when r = 2GM. This has the 

consequence that, in these coordinates, it appears that an in-falling particle would 

7 
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take an infinite time to cross the event horizon. In fact, this is simply a property 
of the t and r coordinates that the metric is usually expressed in. As shown in 
the following section, a change of coordinates shows that this point in spacetime 
is actually well behaved and any in-falling particle would continue across the event 
horizon without incident. 

The apparent singularity in the Schwarzschild case is caused by the coordinate 

system breaking down at the horizon. This behaviour occurs at event horizons in 

many metrics, so the problem has been thoroughly investigated and many different 

techniques have been developed to generate coordinates which can be used to in­

vestigate regions of space where these coordinate singularities occur. In theory it 

is possible to investigate these coordinate singularities in a generic manner but this 

would be a very cumbersome way to go about it. The approach of this chapter is 

to look at some specific examples of coordinate systems for the Schwarzschild and 

Kerr metrics, since they are the most familiar static and rotating black holes and 

prove to be useful models of the problems encountered in more complicated metrics. 

2.1 Coordinate Charts in the Schwarzschild Met­

ric 

In general it is difficult to exhaustively identify all of the possible singularities in a 

metric just by looking at it. In light of this, only singularities that are caused by 

one of the metric coefficients blowing up at a particular point will be considered. In 

the case of the Schwarzschild metric, in the r and t coordinates 

V r J \ r J 

there are two possible points where there might be a problem with the metric coef­

ficients becoming infinite. These axe when r = 0 and when r = 2GM. Other than 

at these two points the metric appears to be well behaved. 

One way of checking whether a singularity is a consequence of the actual space-

time, or just a problem with the coordinate chart, is to calculate the curvature of 

the metric at that particular point. The curvature of the space is measured by 
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the Riemann tensor but, as a tensor, it is difficult to decide when exactly this is 
infinite. Fortunately, it is possible to construct various different scalars using the 
Riemann tensor, which are easy to check whether they are infinite or not at the 
point in question. The simplest scalar that can be constructed from the Riemann 
tensor is the Ricci scalar, which is formed by contracting the Ricci tensor, giving 
R = g'^^R^iu: but it is also possible to produce higher order scalars by constructing 
various other contractions. For example, it is possible to multiply the Ricci scalar 
with itself, giving R.^^R^^iy. or contracting over three occurrences of the Rieniann 
tensor R^^paRf'^^'^R\r^" and so on. This condition is sufficient to identify a physical 
singularity in the metric, rather than a singularity in the coordinate system, but it 
is not a necessary condition. 

To check whether the singularity at r = 0 is a physical singularity, form the 

scalar giving 

. . (2,3) 

Substituting r = 0 into this expression shows immediately that the curvature scalar 

blows up and thus that the singularity at this point is a physical singularity. Since 

this singularity is a consequence of the actual spacetime, rather than the coordinate 

system, it will appear no matter what coordinates are used to span the spacetime. 

The other possible singularity is when r = 2GM. After calculating aU the other 

curvature scalars it is possible to show that they are all finite at r = 2GM, which 

indicates that this particular singularity is not an inherent property of the spacetime, 

so may well be a coordinate singularity. Indeed, as will be seen, it is possible to find 

some new coordinates where this point is completely well behaved. 

2.1.1 Eddington-Finkelstein Coordinates 

To get an idea of what is happening when approaching r = 2GM, consider radial 

null curves for which 

dr- \ ^ / 

It is obvious that there is a problem with these coordinates because as r' —̂  2GM, 

dt/dr oo, which means that it would take an infinite time for a light ray to get 
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to this point but, from the calculations of the curvature, there doesn't appear to 
be anything special about r = 2GM. One way around this particular problem is to 
define a tortoise coordinate r* [30], so that 

In terms of this new coordinate the Schwarzschild metric becomes 

(2.6) 

where r is now a function of r*. The metric is now completely well behaved at 

r = 2GM but both gu and g-r-r- go to zero. Furthermore, the surface at /• = 2GM 

is now given by t* = —oo, which defeats the object of changing the coordinates in 

the first place. Clearly a slightly different coordinate transformation is required. 

In terms of the r* coordinate, the null radial geodesies are given by 

i = ± r * c o n s t a n t (2.7) 

so, to follow these geodesies, it is a good idea to define a new coordinate 

v = t + r* . (2.8) 

Now, the infaUing radial null geodesies are defined by constant values of v. If this 

coordinate is then used in place of t in (2.2) the metric becomes 

d.s'̂  = - ( l - d^ ' + 2di;dr + r'dQ'- . (2.9) 

This is exactly what is required as none of the metric coefficients blow up at r = 

2GM and although g^y —> 0, the determinant of the metric is non-zero, meaning 

that the inverse metric is also perfectly well defined. These ((;, r) coordinates are 

known as the Eddington-Finkelstein coordinates. 

2.1.2 Kruskal Coordinates 

In the derivation of the Eddington-Finkelstein coordinates, it was assumed that 

only ingoing geodesies were being considered. For outgoing geodesies, where t — 

r* + constant, the analogue of equation (2.4) in the {v, r) coordinates is 

dr \ r J • 
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which again blows up at r = 2GM. It is possible to define a version of the Eddington-
Finkelstein coordinates in terms of an outgoing null coordinate u = t - r* using the 
same method as above, but this will then breakdown when considering ingoing null 
geodesies. It is clearly desirable to have a coordinate system where both ingoing 
and outgoing geodesies can be considered simultaneously. This is where the Kruskal 
coordinates come in. 

To construct the Kruskal coordinates, start by defining two new null coordinates 

= g./4GA/̂  _ _^-u/AGM ^ ^2.11) 

where u and v are defined as before. In terms of these coordinates, the Schwarzschild 

metric becomes 
ds^ = -^^^9^e~^n-GM^^,^^ ^ ^2^^2 ^ (2.12) 

r 
where r is now defined implicitly in terms of u and v by 

^ ( ^ - ^ ) = r + 2 G M l n ( ^ - l ) . (2.13) 

A quick examination of this metric shows that all of the coefficients are well behaved 

at r = 2GM and, because both the null coordinates have been used, it is possible 

to follow both the infalling and outgoing geodesies across the surface at r = 20M. 

There is a slight problem with this metric, however, in that it no longer has a 

timelike coordinate - just two null coordinates. There is no reason why it should 

have a timelike coordinate but, from a conceptual point of view, it is easier to work 

with a metric that has the usual one timelike and three spacelike directions. 

Fortunately, it is possible to combine the null coordinates to produce a time-

hke coordinate and a radial coordinate, without compromising any of the desirable 

properties of the metric. To do this form 

T=^-iv' + u'), R=^-{v'-u'). (2.14) 

In terms of these coordinates the metric becomes 

r 

These (T, R) coordinates are the Kruskal coordinates and define r implicitly as 
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F i g u r e 2.1: Kruskal diagram with the curves of constant t plotted in green and the curves of constant 

r plotted in red. The past and future event horizons are given by the thick black lines, with the thin 

black lines indicating r = 0. 

Figure 2.1 plots the Kruskal coordinates for a range of different values of r and 

t. In the Kruskal coordinates, the null curves are given by 

T = ±R + constant , (2.17) 

where the past and future event horizons are defined by T = ±R. It is obvious from 

the Kruskal diagram in figure 2.1 that these event horizons separate the space up 

into four distinct sections: the right hand sector represents the starting space outside 

the horizon, the bottom and top sectors represent the white hole and the black hole 

respectively, and the left hand sector represents the parallel asymptotically flat space 

outside the horizon. The left hand sector can only be accessed by following spacelike 

geodesies through the event horizon, so is inaccessible to physical particles. 

The hyperbolas of constant r are plotted at constant intervals in r, so it can be 

seen that the space has been warped. It is stretched as it approaches tfie horizons 

with the hyperbolas asymptoting to the horizon with increasing t. Indeed, the 

surfaces of constant t are given by straight lines through the origin witf i equation 

t 
(2.18) 

so it can be seen that as t — » • C X D , the above equation becomes T = R, which is the 

same as the equation for the future event horizon. 
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The equation of the hyperbolas can be determined from (2.16), where r is con­
stant, so 

r - - i ? - = constant . (2.19) 

This can be used to calculate the limits on R and T, since B. and T can take every 

value outside of the curvature singularity at /• = 0. This gives the limits on R. and 

T as 

-oo < /? < oo, <R^ + l . (2.20) 

2.2 Coordinate Charts in the Kerr Metric 

The addition of angular momentum to the black hole makes the structure of the 

spacetime significantly more complex. The Kerr metric has two event horizons 

where there are coordinate singularities as well as having a curvature singularity 

that is no longer a point but a ring. These qualitative differences from the Schwarz­

schild solution mean that more coordinate systems have been developed in order to 

examine the different properties. Some of these coordinate systems are explored in 

the following sections. 

2.2.1 Kerr-Schild Form of the Metric 

This coordinate system was described in [28] to aid in the analysis of the Kerr metric, 

although the basic principle can be generalised to describe any spinning black holes. 

The idea of the Kerr-Schild coordinate transformations is to express the metric in 

the form 

- V^u + S{x")k^k, , (2.21) 

where is defined as a null vector with respect to the Minkowski metric and 

S(x") is a function that is to be determined. 

The Kerr-Schild form of the metric is particularly useful because the covector fc^ 

is also null with respect to the ful l metric g^^. To show that g^^^k^k" = 0 it is useful 

to invert (2.21) as follows 

g^''g^.u^9^^v^.. + S{Tng^^k^k, = 5t 



2.2. Coordinate Charts in the Kerr Metric 14 

g^" + S{x'')k^'q'"'k, = rf^ 

gXa ^ ^Xa _ s{x'')k^r}''''k, . (2.22) 

This can now be used to raise an index on the null vector k^ giving 

p = gt^'^k^ = rf'k,, - Sk^'n'^k^k^ • (2.23) 

Since k^ is null with respect to the Minkowski metric, the second term must go to 

zero, leaving 

P = Tŷ '̂ /ov . (2.24) 

It is now possible to show that A;̂  is null with respect to the full metric g^i., as 

follows 

gfifk^k = k^k^ 

= rrk.k^ 

= 0 , (2.25) 

where the fact that k^ is null with respect to rŷ ,̂ is again used in the last line. 

To show that the Kerr-Schild coordinate transformations give the metric in the 

form given in (2.21), consider the Kerr metric in Boyer-Lindquist coordinates 

ds^ = -dt- + {r- + a'-) sin- Odcj)^ + ^ d r ^ + Ed^^ + '^[dt- asin" Odcj)]' , (2.26) 

where 

A(r ) = - 2Mr + (2.27) 

E{r,9) =r^ + a^cos^e . (2.28) 

The event horizons, which only exist for a < M , are given by calculating when 

A = 0 and thus are given by 

r± = M ± V M 2 - a2 . (2 .29) 
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Now, the Kerr-Schild transformations can be given by 

{x + ly) = (r -h ia) sin 9 exp 

z = r cos 0 

t 

: / ( d , . £ * . ) 

7- + a- , 
di + dr 

To get to the Kerr-Schild metric, form 

rx + ay = (/'^ -I- a") sin 9 cos 4> + [ - rdr 
\ J ^ J 

ry — ax = {'r + a') sm9 sin (j) + -^dr 

These equations can then be used to solve for sin^ 9, giving 

s.n^9 = ^ . 
7-2 + a2 

Also, from (2.32), di is given by 

- , 2Mr , 
dt = dt + —— dr . 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

The transformations given in (2.30) and (2.31) allow dr to be given by 

rxdx + rydy 
dr = + (r-' + a ^ ) ^ d . 

It is possible to define d^ in a similar manner as 

, , 2 Mar , xdy - ydx 
(r2 + a2 )A^ ' ' {r^ + a'-)sm^9 ' 

Equation (2.31) is now used to give the other required transformation 

dz = cos ^dr — r sin ^d^ . 

.37) 

(2.38) 

[2.39) 

Combining these expressions gives 

E , 2MaVsin2^ , 2Mr , , , , 
— T dr + . , — dr H — d r + dt - a sm^ 9d(^ 
r^ + a^ A(r^ + a2) A 

r(.xd.x -I- ydy) — a(xdy — ydx) zdz 
5 5 1 1- dt 

J.2 + Q2 J . 

(2.40) 

The left hand side now gives the two terms in the square bracket in (2.26), along 

with some additional terms, but these will cancel out later. 
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Equations (2.37) and (2.38) can be used to get expressions for dx- and dx/, which 
can then be summed with the expressions for dz~ and — d^^, giving 

dx' + dy' + dz'-dP = - d e + ( l - ^ M ^ ] ^ ^ d r ' + {r'- + a'-)sm'edf^ 
\ ^ / + (I 

dh/fr 
+Ed^2 + (asin^ ed(f) - dt) dr . (2.41) 

Squaring (2.40) and then combining with (2.41), allows the metric given in (2.26) 

to be expressed in the Kerr-Schild form, given by 

= -dr-+dx'-+dy'+dz'+ 
r{xdx + ydy) — a{xdy — ydx) ^ zdz ^ ^-

r2 + 0,2 r 
(2.42) 

and it is now obvious that the metric is in the form 

g^. = V,. + S{x'')k,k, (2.43) 

1 ^ 7 1 ^ — ^ V ^ T r ^ - ^ T ' 1 ^ 2 ) . (2.45) 

where 
2Mr^ 
+ a' 

and 
(r.T -I- ay) {ry — ax) 
(r2 + 0,2) ' (r2 + a2) ' r" 

Given the metric in the Kerr-Schild form, it is simple to see that the spacetime 

approaches Minkowski space as M —>• 0. This is because the mass acts as a scale 

parameter for all the terms inside the square brackets so setting M = 0 makes the 

solution identical to the Minkowski metric, as expected. 

To check that k^ is null, form 

{rx -H ay) (ry — ax) z 
~ ' (r2 + a2) ' (r2 + a2) ' r 

(2.46) 

Multiplying by k^ and contracting the indices then gives 

Using (2.35) and (2.31) gives 

, „ . * - r = t ^ ± 5 ^ 5 ^ + c „ s = < ) - l = 0 (2̂ 48) 

Thus confirming that A:̂  is a null vector with respect to the Minkowski metric. 
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The Kerr-Schild form of the metric uses Cartesian coordinates which don't have 
a coordinate singularity when ^ = 0 i.e. on the axis of symmetry, like the polar 
coordinates do. They also allow easy analysis of the curvature singularity when 
E = 0. This is because E is defined to be the sum of two manifestly positive terms, 

and a'^ coŝ  9, so it can only be zero if r and ^ = 0. This corresponds to a ring, 

which is given by x'^ + y'^ = or and 2 = 0 in the Cartesian coordinates. 

2.2.2 Kerr Coordinates 

As previously mentioned, the Kerr metric when M'^ > a} has two coordinate singu­

larities at the two event horizons r±, where r± are the points where A = 0. To be 

able to analyse the Kerr black hole without having to worry about these coordinate 

singularities it is useful to introduce another set of coordinate transformations, so 

that none of the metric coefficients become infinite on either of the horizons. To 

find these transformations, consider two new coordinates, v and x- given by 

t = v- g{r) (P = X + h{''-) • (2-49) 

Using these to transform the Kerr metric gives 

ds'- = - ( l - ^ ) (d-^' + / 'dr'^ - 2g'dvdr) + |d r ' ^ + Ed '̂̂  

•(r2 + a2)E + 2Mra2 sin^ ^ 

E 
4Mrasin"6' (dvdx - g'dxdr + h'dvdr - g'h'dr^ 

sin- 6 [dx^ + h!'^dr- + 2h'dxdr) 

(2.50) 
S 

The idea of this coordinate transformation is to adapt the coordinates so that 

they are naturally suited to null geodesies and thus don't exhibit any coordinate 

singularities at the event horizon. In order to achieve this, choose (2.50) so that it 

satisfies grr = 0 and = 1, which corresponds to ingoing null geodesies. Applying 

these constraints then allows the functions g[r) and h{r) to be determined so that 

,2 
t = V + a / ^ ^ d r 0 = X - / ^ d r - (2.51) 

where the signs have been chosen to coincide with ingoing geodesies and a is deter­

mined so that A remains positive in the different regions of the space. This means 
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that a is given by 

- 1 ( r > r + ) 

cr = < -1-1 (r_ < r < r+) • 

- 1 ( r < r _ ) 

The metric in terms of the new coordinates is then given by 

( A - o W ^ , ^ _ , 4A//rasin^g^ 
ds = d?; -I-2dwdr dvdx + 2ld9 

[ (7~ + a 2 ) 2 - Aa^ sin-^1 , 
-2a sin- ^dxdr + ' - - ^ sin" 9d^^ . (2.52) 

2-; 

This new coordinate system is analogous to the Eddington-Finkelstein coordinate 

system for the Schwarzschild metric and behaves in the same way at the two horizons. 

It is easy to see, from this form of the metric, that none of the metric coefficients 

are singular when A = 0. 

2.2.3 Hay ward Coordinates 

Although the Kerr coordinates described in the previous section are very useful 

for foUowing geodesies falling into the Kerr black hole, since the coordinate sin­

gularity at the event horizon has been removed, they aren't particularly useful for 

constructing Penrose diagrams (discussed later). This is because the coordinates 

only describe future directed paths and have to be adapted in order to follow past 

directed paths. This is simple to achieve but having to use two different coordinate 

systems on the same diagram causes more problems than it solves. What is needed is 

a generalisation of the Kruskal coordinates, which are used to maximally extend the 

Schwarzschild spacetime, so that the different varieties of geodesies can be followed 

to all of the permissible connected spacetime regions. 

Fortunately, suitable coordinates that generalise Kruskal's coordinates for the 

Kerr metric are given in [29]. The transformations are detailed in two steps: the 

first step is to transform the ( i , r, 9, cp) coordinates such that 

t* = t-asin9, (2.53) 

/

d 2 
— d r , (2.54) 

= (j)-n+{t- asm9) (2.55) 
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and 9 remains unchanged. The constant Q.+ = ajlMv^ is the angular velocity of 
the outer event horizon and 

/?(r) = [(7-2 + a^f - a'A] = {r' + a V + 2Ma'ry/'' . (2.56) 

These coordinate transformations ensure that the combination r* ± t* is rmll and 

thus generates two nuh coordinates analogous to those used to define the Kruskal 

coordinates. 

The major difference between the generation of these coordinates and those of 

Kruskal is the introduction of the t* coordinate. This coordinate transformation 

removes the dependence of dr* on the 6 terms, leaving r* as a function of r alone. 

The •/•* function can then be integrated to give an explicit expression (although not a 

particularly succinct one) in terms of r. The new coordinate r* can then be thought 

of as the Kerr analogue of the well known Regge-Wheeler tortoise coordinate [30], 

which behaves so that r* —> —oo as r —> 

The transformation in the 0 direction is necessary so that if is normal to the 

horizon generating Kihing vector x = + ^+9^, for all radii. This contrasts with 

the coordinate transformation 

ip = (})-9.+t., (2.57) 

which is also normal to x near r•+ but is no longer spatial when r becomes large [29 . 

The original coordinate transformation, given in (2.55), can be thought of as the 

natural normal vector to x after allowing for the transformation in the t coordinate. 

The second step toward finding generalised Kruskal coordinates for Kerr, is sim­

ply to exponentiate the newly found normal vectors, giving 

x± = ±e<'-±'*) , (2.58) 

where K is the surface gravity on the event horizon. These two null coordinates 

now vary between 0 and ±oo for respectively, with the event horizon given when 

— 0. To generate well behaved timelike and spacelike "Kruskalesque" coordinates 

it is now simply a matter of combining the two null coordinates so that 

T = l ( x + + x - ) , R=\{x^-x-). (2.59) 
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These coordinates will now cover the spacetime region outside of the inner event 
horizon. In order to consider the regions of space inside the inner event horizon it 
is necessary to use a different coordinate patch. 

So far, it has been assumed that the region outside of the inner event horizon 

is being considered. To cover the region within the inner event horizon (up to the 

asymptotically flat region for r < 0) it isn't necessary to re-derive the coordinate 

transformations because the only differences are that the angular velocity of the 

outer horizon Q+ becomes that of the inner horizon given by Q_ = a/2Mr_, and the 

surface gravity K becomes that of the inner horizon K = -yjM"^ — a?-/2Mr_. This 

new coordinate patch will now cover the region inside the outer event horizon, right 

through the ring singularity at r = 0 to an asymptotically flat space parameterised 

by negative r. 

Having constructed some coordinates that replicate the Kruskal coordinates of 

the Schwarzschild metric, it is now possible to follow the causal paths of ingoing 

and outgoing test particles using the same coordinate system. This is a significant 

improvement on the original {t, r) coordinate system because it is now possible to 

easily investigate the causal behaviour of particles as they cross the event horizon 

- provided the correct coordinate transformations are used for the inner and outer 

horizons. The fact that the coordinate transformations differ shghtly when consid­

ering the two different event horizons is a shght drawback, but if only causal paths 

in the vicinity of one of the horizons are being considered then this doesn't cause a 

problem. 

If it is necessary to follow geodesies through both the inner and outer horizons 

then the Kerr coordinates are significantly simpler to use since the coordinate trans­

formations only change sign upon crossing a horizon. This means that it is a lot 

easier to match up the different coordinate patches than for the Hayward coordi­

nates, where the coordinates are dependent upon the angular velocity and surface 

gravity of the event horizon under consideration. The fact that the Kerr coordinate 

charts don't overlap at any point means that they are also a lot more straightfor­

ward to use than the Hayward coordinates, although they are limited in only being 

applicable to geodesies going in one direction. 



Chapter 3 

Generating Five Dimensional 

Black Hole Solutions 

In this chapter, some methods for generating higher dimensional black hole solutions 

are looked at, with the Myers Perry black hole, and the singly and doubly spinning 

black rings used as examples to show how the vacuum Einstein equations can be 

solved. A wide range of different methods to solve the Einstein eciuations exist, 

due mainly to the non-linear nature of the eciuations and the fact that many of the 

methods that have already been developed have a very limited range of applicability. 

In practice this means that the equations have to be simplified by making a number 

of assumptions. For example, just to derive the Schwarzschild metric, it is necessary 

to demand that the solution be Lorentzian, spherically symmetric, static, and that 

it reproduces Newtonian gravity in the weak-field limit. The Kerr solution [9] which 

uses similar assumptions, but only requires the solution to be stationary rather than 

static, took a further 47 years to discover after Schwarzschild [2] found the static 

solution to Einstein's equations. 

Many algorithms for solving the Einstein equations also rely on having a known 

solution as a starting point, so their applicability is often heavily dependent on the 

starting solution. In practice this means that the new solutions will share many 

of the properties of the seed solution. This statement is particularly true for the 

Inverse Scattering Method, but it has recently been successfully used to gain a great 

deal of insight into five dimensional black hole solutions, so it is examined in some 

21 
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detail in section 3.3. 

This chapter also includes a section on Generalised Weyl solutions. This work 

has been carried out over the last few years by a few different authors and is so 

called because it builds upon an early result in General Relativity showing that in 

4 D all of the possible axisymmetric solutions to Eiastein's vacuum equations can 

be expressed in a particular form that reduces the non-linear equations to a matter 

of considering infinitely thin rods acting like Newtonian potentials [33]. This result 

has been generalised to higher dimensions by Emparan and Reall originally [34 

and further extended by Harmark [35], so their results are examined in section 3.2 

as a precursor to the Inverse Scattering Method. The Inverse Scattering Method 

is useful for solving a wide range of differential problems, but it has been greatly 

refined over the last three decades as a method for solving axisymmetric solutions 

to the Einstein equations. In light of this, much of the formalism that is used for 

the Inverse Scattering algorithm comes from studying Weyl solutions. 

3.1 Myers Perry Black Hole Solution 

This section shows how the 4 D Kerr black hole [9] was generalised to higher dimen­

sions by Myers and Perry in [2.5]. Before Myers and Perry, the static Schwarzschild 

solution had been generalised to higher dimensions by Tangherlini in [32] but the 

higher dimensional analogues of the Kerr solution were considered of little physical 

interest and thus weren't investigated until the late eighties when the resurgence of 

String Theory prompted renewed interest in higher dimensional solutions. 

The Kerr solution to the Einstein vacuum equations can be written 

^ ^ ( 3 . 1 ) 

where A(p, ^) and ' I ' are defined as 

A ( a ^ ) = p^+a 'cos ' ^ (3 .2) 

and a is a constant which determines the angular momentum of the black hole. This 
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solution has only one plane of rotation, characterised by the cross terms involving 
the t and 0 coordinates, but in higher dimensions it is possible to have more than 
one orthogonal plane and thus more than one plane of rotation. This is the major 
departure of the Myers Perry solution from the Kerr metric. 

The Myers Perry solution is particularly useful in the study of black holes in 

higher dimensions by virtue of the fact that no matter what the topology of the 

solution, it should look like the Myers Perry solution at a large enough distance. 

This is because for a particular observer, any variations in the spacetime due to 

the geometry of the black hole will become more and more insignificant the further 

away from the black hole the observer is. If this is the case, then it is possible to 

ascertain many of the physical properties of non-spherical black holes by examining 

the properties of the Myers Perry metric at asymptotic infinity. 

Most of the time it is suitable to use a system where the basis vectors are defined 

by the coordinates in use for a particular metric. However, especially when finding a 

metric solution, it is often more expeditious to work in a general orthonormal basis. 

The derivation of the Myers Perry solution is a good example of this, as it relies 

heavily on non-coordinate bases. In view of this, Appendix A gives some details and 

notation used with general orthonormal bases. 

3.1.1 The N dimensional Myers Perry Solution 

The most general metric for an A'' -I- 1 spherical black hole is where the black hole 

is rotating in [ A / 2 J planes. This means that the most general Myers Perry black 

hole will have [A'/2J + 1 parameters characterising the mass and various angular 

momenta parameters corresponding to rotation in the respective planes. 

To derive the Myers Perry solution it is best to use Kerr-Schild coordinates so 

that the metric is written in the form 

Qf^u = 'n^lu + hk^k^ (3.4) 

where /ĉ j, is a null vector with respect to the Minkowski metric r/̂ ^ (and also (jf^y) 

and / i is a function of r, x', and y^. 

The fact that the number of rotation planes is dependent on the integer part of 
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N/2 means that the odd A'̂  and even N cases have to be considered separately. For 
even yV 

M x - = dt + f : ' ' ' - ' ^ - ' + ^ ' ^ ^ ' ' ^ ° f ' ^ ^ ' - ' ' ' ^ ^ ' ' (3.5) 

and 

where 

' - - f . ^ (3.6) 

7̂2 T, jv 

^ (r- + a r ) -
( . 'V- l ) / 2 

n = n P + (3-8) 

and /X is a constant given by 

" = (N - 1).4„_, • 

where G is Newton's gravitational constant, M is the black hole mass, and At^- is 

the surface area of a unit N-sphere. 

The coordinate r that appears in the above equations can be defined in terms of 

X* and by the fact that A;̂  is a null covector, i.e. 

'^'/^ ^ .2 , ,2^ 

The .x' and coordinates in (3.5)-(3.10) can be paired up because A'' is even, so the 

sets of coordinates can be given by x*-' = {x\ y*}. 

In the case where yV is odd, /ĉ^ is defined by 

r- -I- r 

and 

h = ^ (3.12, 

where H and F are the same as in (3.8) and (3.7), but the index i has to now take 

the values i = I , { N — l)/2 in {3.7). The definition of the radial coordinate r also 

changes, it is now defined by 

( i V - l ) / 2 2̂ , i2. 0 
V + ^ ) I ^ " - 1 3̂ 13) 



3.1. Myers Perry Black Hole Solution 25 

The definitions for the odd case are similar to the even case but have to be altered 
to take account of an extra unpaired coordinate which is denoted z. 

Having defined the associated expressions for suitable Kerr-Schild coordinates 

it is necessary to lay out some further formahsm in order to solve the Einstein 

equations. This is mainly taken from [25] which was in turn generalised from [28 . 

For the case where A'' is odd, consider the metric 

ds- = - d ^ - + dx'- + d./- + d^- + 2E (fĉ dx̂ )' (3.14) 

where H is a function to be determined and A;̂  is related to the null vector given in 

(3.11) by 

fc^dx^ = nA;̂ dx'̂  (3.15) 

where n is a normalisation factor given by 

(3.16) 

and the condition that A;̂  is null is given by (3.13). The normalisation of the null 

vector allows the introduction of two light-like coordinates in a simple form, given 

by 

\/2w = t + 2 \f2v = t - z . (3.17) 

Using these hght-like coordinates it is now possible to choose some simple basis 

forms 

= l^Ax^ = &VL-^ A^d.x^ ^]^{A^f&v (3.18) 

= dv-HE'' (3.19) 

E'' = dx'' + A''dv (3.20) 

where k takes the values so that x'̂ ' = {x\y^} with i = 1 , ( T V — l ) / 2 . The 

coefficients are defined as 

nB = (r+):)ir2+a,^i ^hcU X =y 
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The benefit of this choice of basis forms is that the metric takes a simple null form 

given by 

Vab 

V 

0 - 1 

- 1 0 

\ 

4/ / 

(3.22) 

Having defined a set of basis forms E'^ = e^dx^, it is now possible to calculate 

the dual basis vectors given by 

d id 1 , t -.0 d 
dx'' 2 

d 
da 

A = D,, = — + HD, 
ou 

(3.23) 

(3.24) 

(3.25) 

Note that with these basis vectors, DA^ = 0, which implies that the null vector field 

is geodesic. It is now possible to calculate the non-zero components of the Ricci 

tensor in the new basis 

= DDH + S^A^S^A^'H - 5^A^A^H - S^A^DH (3.26) 

6'6'H + 2H^A'AA^ - 2d'{HAA') - d^A^{A - HD)H (3.27) 

d^DH - DHAA'' - 2i/A/l'5'.4*-' 

+25'HS'A'' - 6^H5'A' + H{8'8'A^ - 5H'A') (3.28) 

-{DH - H5"'A'''){6^A^ + 8^A^) - 2Hd"'A^6"'A'' . (3.29) 

At this point H can be determined by considering any of the Ricci equations 

because = 0 for the vacuum Einstein equations. In practice it is simplest to 

consider (3.29) because it only involves first order derivatives in H. Re-writing this 

equation and setting it equal to zero gives 

DH s^^A^^ + ^-^^^^K^ = 0. (3.30) 

where neither / or k are summed. For this equation to have a solution for H the 

third term on the left hand side must be the same for all / and A:. Checking this 

shows that 
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which verifies that a solution for H exists. In order to find a solution for H, the 
second term also has to be calculated giving 

( / V - I ) / 2 

r 2 + a,2 • F = 2 - E ; T ^ . + ^ h (3-32) 

where F is given in (3.7) and Â3 is given by 

( /V- l ) / -2 .̂ 2 , ,2^ ( / V - l ) / 2 -2 

Now, to calculate H it is simply a matter of substituting (3.32) and (3.31) into 

(3.30). Doing this shows that H is 

Having found H it is now necessary to make sure that it also satisfies the other 

Einstein equations. 

Proving that and are satisfied for the function of H given in (3.34) is 

quite .straightforward. Using the Ricci equations it is possible to show that 

DH = H f ^"' A'" - (3.35) 

D5"' A"' = [D, 6"']A"' = d'"A'd'A"' (3.36) 

D - ^ = , ' . (3.37) 

Using these equations it is possible to show that 

DDH = DH I (5"'vl'" - ^ — + E ( S"'A^b^A"' - (3.38) 

and thus 

R\ = — ^ DH - S"'A"'H + - ^ H = 0 , (3.39) 
r + z \ r+z J 

which verifies that the and R'y Ricci equations are satisfied when R'k = 0. 

Checking that the and R'a components also goes to zero is a slightly lengthier 

process, but they can be shown to be zero by considering the Bianchi identities 

V^(R'^ — ^S^^R) = 0. Using the previous results, the Bianchi identity for the R'\-

component can be reduced to 

DR\ = f - - | - - A ^ - B ' ^ ) /?,", = 0 . (3.40) 
\ r oz oxi oy^ J 
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It is then possible to show that R"k = 0 by considering the possible solutions to this 
differential equation. 

The final remaining Ricci component can be shown to go to zero by consid­

ering the relevant Bianchi identity DR''u = 4 ' " T h e most general solution 

to this differential equation for is then given by 

= ^ « ^ . (3̂ 41) 
r a J 

where dimensional analysis has been used to determine the appearance of the spin 

coefficients a.j. It is now possible to show that in order for this equation to remain 

weU behaved, in the limit as all the spin coefficients go to zero (i.e. as the spinning 

black hole becomes static), f j = 0 otherwise a singularity would occur when any of 

0. 

The process for calculating the solution when A'' is even parallels that of the odd 

case but a few modifications are required to allow for the fact there there isn't 

an extra "odd" coordinate to use for forming light-like coordinates. In this case the 

last pair of x'-y' coordinates is chosen to stand in for the z coordinate. 

Firstly form two new coordinates z = x^l'^ and q = y^^~., along with the spin 

parameter at\'/2 = b. Now form a Kerr-Schild metric in the same manner as for 

equation (3.14) 

ds'- = -dt- + d.x'' + dy'- + 2H{k^dx^)- (3.42) 

where the various functions are the same as before but is multiplied by a new-

normalising factor k^dx^ = nk^dx^, where now 

„ . , ; f , . (3.43) 
r{r + z) + b{b + q) 

This then allows the light-like coordinates u and v to be defined in the same manner 

as before. The basis forms are also the same as those previously used but now the 

coordinate pairs x^ are chosen so that x*' = {x*,?/*} with z = 1 , ( A ' ' - 2)/2 and 

= q From then on, the process of solving Einstein's equations is very much 

the same as for odd N. 

Although, the metrics given in (3.14) and (3.42) solve the vacuum Einstein equa­

tions they are often used in a different form because the nature of the metric at 
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asymptotic infinity isn't easily manageable. However, this problem is easily solved 
by transforming to Boyer-Lindquist coordinates. Firstly, however, it is necessary to 
introduce some angular coordinates via the transformations 

x' = \ /r2 + a,2^i, cos {j), - tan"' )̂ (3.44) 

= \ / r - -I- ar;.i; sin - tan~^ —^ , (3.45) 

when A'̂  is even. In these transformations r is a radial coordinate and the /̂ t; functions 

are direction cosines which specify the direction of The 0, coordinates are angles 

in each .x'-;y' plane and so, along with the r and /./.,; coordinates, specify any point in 

the A'' dimensional space. 

Now, the transformations to Boyer-Lindquist coordinates can be made using 

di = dt- ,d7- (3.46) 
n - / /, r-

= d 0 + - y „ (3.47) 

which, when combined with the previous set of coordinate transformations, gives 

the Myers Perry metric as 

AV2 

ds- = - d P + J ] ( r ^ + a,^)(d/.i? + ^i2^02) 
i 

+ E n ^ ( d ^ " + « ' ^ ' d 0 ^ ) ' + • (3.48) 

If N is odd, then the transformation of the metric into the Boyer-Lindquist 

coordinates is slightly different because the odd z coordinate has to be taken into 

account. This requires the additional transformation z = ra, where —1 < a < 1, 

but other than that the angular transformations of (3.44) and (3.45) remain the 

same. 

The Boyer-Lindquist transformations for odd N are 

di = d i - — ^ d r (3.49) 
n — /ir 

d0, = del), + — " f ' . (3.50) 
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which yield the final metric for odd A'' as 
( / V - l ) / 2 

ds'2 = - d P + r W - f - ^ (r^ + a,2)(d/7| + t̂,2d0 )̂ 
i 

( / V - l ) / 2 

+ E W^(dt + a„p?d0,,)'^ + : / ^ d r ^ (3.51) 
• -̂̂  l l r 11 — pr 

Note that the range of i has now become i = I, ....{N - l ) / 2 . This metric for odd 

N bears a striking resemblance to that of the Kerr solution, given in (3.1), which is 

no coincidence since it reduces to the Kerr metric when N = 3. 

The solution that Myers and Perry managed to construct, which is applicable 

in any dimension, is quite remarkable. The fact that the Kerr solution can be gen­

eralised to arbitrary dimension is an indication that, in any dimension, stationary 

black holes can be constructed whose horizons share the property of spherical sym­

metry. This doesn't necessarily mean that the Myers-Perry solution is exhaustive 

for non-charged black holes because the uniqueness theorems that hold in 4D can't 

be extended to higher dimensions, indeed the black ring solution [26] is proof that 

spherical black holes are not the only black hole solution in 5D. 

3.2 Generalised Weyl Solutions 

At this point it is useful to stop and consider a special metric that is axisymmet­

ric and gives a general solution to the vacuum Einstein equations. As previously 

mentioned, it is very difficult to solve Einstein's equations without making some 

simplifying assumptions. If it is assumed that the desired metric is static and ax­

isymmetric then it is possible to show that all the possible solutions can be written 

in the form 

ds^ = -e'^dt' + {e'^ {dp' + dz^) + pM^^) (3.52) 

where U[p,z) is an arbitrary axisymmetric solution of Laplace's equation in three-

dimensional flat space with the metric given by' 

ds^ = d p ' + PW + (3.53) 

^The angular coordinate 7 is an unpliysical coordinate used to describe the solution U{p. z) and 

has period 27r. 
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and ^ satisfies 

d,^ = p[{d,U)'-{dMf] (3.54) 

d,^ = 2p{d,U){dM) . (3.55) 

This solution was originally found by Weyl [33] for four dimensional black holes. 

The form of this solution is particularly enticing because the non-linear Einstein 

equations have now been reduced to finding solutions to Laplace's equation in flat 

space, which has been studied in great detail. The function U{p, z) will be harmonic, 

so it is possible to consider it as a Newtonian potential sourcing an infinitesimally 

thin rod along the z axis with mass per unit length of 1/2 [34]. This "rod structure" 

approach for visualising axisymmetric solutions to Einstein's equations proves to be 

particularly useful as it is possible to ascertain many of the properties of a particular 

solution by examining it's rod structure [35 . 

Al l of the black hole solutions that are investigated in the remainder of the 

chapter share the property of axisymmetry, so it would be useful to generahse Weyl's 

solution to higher dimensions. Fortunately, this has already been done in [34] and 

35], with the latter paper further generalising to axisymmetric solutions of the 

vacuum Einstein equations with non-orthogonal Killing fields. The following analysis 

follows the derivation of [35] but concentrates on solutions with orthogonal Killing 

vectors, since this case is the most pertinent for the black hole solutions considered 

later on. 

3.2.1 The Canonical form of the metric 

The aim of this section is to determine a version of the Weyl solution when it is 

generahsed to D dimensions. Doing this will give the metric in the form 

D-2 

ds^ = G^Jdx'dx^ + e-"̂  (dp2 + dz^) . (3.56) 

Re-expressing an axisymmetric solution in the form given in (3.56) is known as giving 

the solution in "canonical form". This then allows the solution to be analysed by 

examining its rod structure. 
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The first step in deriving the canonical form of the metric is to consider a D-
dimensional space-time with D~2 orthogonal (and thus commuting) Killing vectors 
V(i) = di, where i = 1 , D - 2. This clearly implies that the metric components 
describing this space-time will only depend upon two coordinates and y'-. 

Having done this it is now possible to apply the following theorem 

Theorem 3.2.1 Let i = 1 , D - 2, be D - 2 commuting Kilhng vector fields 

such that 

1. The tensor V'/,"; V^f^... V (̂';f_:̂ ^ V "̂Vl̂ j vanishes at at least one point of the space-

time for a given i = 1,.... D — 2. 

2. The tensor V^I^RI^T)^^'^•••^0-2! = 0 1̂1 i = 1 , D - 2. 

Then the two-planes orthogonal to the Killing vector fields, V(i) for i = 1, ...,£) —2, 

are integrable. • 

This theorem is proved for four dimensions in [37] and generahsed to five dimen­

sions by Emparan and Reall in [34]. This theorem is particularly useful for the 

present purposes because the two conditions for it to hold are trivially satisfied. If 

the solutions under consideration are restricted to the vacuum Einstein equations, 

then R^iy = 0 at all points, so the second condition will be satisfied automatically. 

Furthermore, for solutions where one of the Killing vectors represents an angle, it 

is easy to see that the tensor in condition 1 will go to zero on the axis of rotation. 

Asymptotically flat solutions in four and five dimensions are a good example of this 

as they necessarily have angular Killing vectors. 

Since only solutions to Einstein's equations which satisfy theorem 3.2.1 will be 

considered, the two-planes orthogonal to the Killing vectors, given by V(j), will all 

be integrable. This property of the two-planes means that a two dimensional sub-

manifold that is always orthogonal to all of the Killing vectors can be constructed. 

It is then possible to generate coordinates, given by {y^,y^), on this two dimensional 

manifold by demanding that the coordinates follow the integral curves of the Killing 

vector fields. These new coordinates will be orthogonal to the coordinates of the 

space spanned by the Killing vectors at all points i.e. 9x< is orthogonal to dyn every-
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where, where x^ are the coordinates spanning the Killing vector space, i = 1 , D - 2 
and a = 1,2. Given this, it is now possible to express the metric in the form 

D-2 2 

ds- = ^ G,jdiMx^ + J2 dabd'if dy' (3.57) 
i j = l a.b=l 

where Gij and cjab only depend upon and y~. 

To proceed further define p{y\y'') as 

p = y|det(G',,)| (3.58) 

For the purposes of this analysis it is assumed that det(Gij) is non-constant, since 

this is applicable for all the solutions examined later. 

At this point it is helpful to examine the behaviour of detG^^ for a general d j . 

To do this note that the metric given by (3.57) can be expressed as 
D-2 

ds' = Cjdx'dx' + C{u, v) {du' + dv') (3.59) 

where Gij is a function of u and v. This is possible since any two dimensional metric 

is automatically conformally flat, so a conformal transformation can always be found 

to transform the metric into the form given above. 

Now, consider an arbitrary function 

/ = ^/\d^t{G~)\ (3.60) 

where / is obviously a function of u and v. This aUows the Ricci tensor to be 

computed for (3.59) as 

^ • 1 / d' d ' \ 

This sum has to be equal to zero because only Ricci flat solutions are being consid­

ered, meaning that 
d' & 

If a new complex variable u = u+iv is defined, along with the complex derivatives 

d = du + idy and 8 = du — idy, equation (3.62) imphes that dBf = 0. Therefore df is 

a holomorphic function and thus is identically zero or has isolated zeros (assuming 

that the set that / is defined on is simply connected). 

Given that d f — duf + i d y f , the implication is either 
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• f{u, v) is a constant function, or 

• {duf: d y f ) ^ (0, 0) except at isolated points. 

If only non-constant values of det{Gij) are to be considered, then the latter condition 

must be assumed. Bearing this in mind, and identifying {u.v) with [y^,y~), means 

that {^§y[, ^ j 7^ (0, 0). Armed with this knowledge it is now possible to diagonalise 

the 2D metric in the second term of (3.57), to give 

2 

^ gabdifdy' = e"" [dp' + Ad^^) (3.63) 
a,6=1 

where K{y\y'') and (^(y',:</^) are two new functions. The full metric is thus given 

by 
D-2 

ds- = Cjdx'dx^ + e-"̂  (dp- + Ad2-) (3.64) 

To get to the canonical form of the metric it is necessary to use the result of 

Appendix B 
D-2 . 

y G^'R,, = ^ . (3.65) 
•i .j=i 

This expression is identically equal to zero since R^^ = 0 for the vacuum Einstein 

equations, which from (3.65) implies that dp\ = 0. This means that A = A{z) 

and thus allows A{z) to be set to 1, since (3.64) is invariant under the coordinate 

transformation z —> z' = f{z). This method of setting A = 1 has the consequence 

of determining z up to transformations z ^ z + constant. Having done this, the 

final form for the canonical metric can now be written as 
D - 2 

ds' = ^ G,,d.x-M.x^ + e-"" (dp- + dz-) . (3.66) 

Having obtained the Weyl solution in a generalised form, the analogous results 

to equations (3.52)-(3.55) can be written as follows 

D-2 

ds' = -e'^^dt' + e'^^idx')' + e'^idp' + dz') , (3.67) 
2 = 2 

D-2 

5̂ C/2 = Iogp, (3.68) 
1=1 
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where now p is the radial coordinate in the D dimensional space, and t = . 
Furthermore, the functions Ui{p, z) solve the equations 

d] + -d, + U, = 0 (3.69) 

for i = 1 , D — 2. These equations are just Laplace's equations i n flat space as 

before but now there are D — 2 oi them. The function u{p,z) satisfies 

D-2 D-2 

dp^ = -Yp + ^ Y l [ (^p^^) ' - ( ^ ' - ^ ) ' ] ' ^^'^ = p ^ i d , u m u r ) ( 3 . 7 0 ) 

where the two equations are integrable, meaning that given any solution for Ui, i t is 

always possible to find u f rom (3.70). When this fact is combined w i t h the constraint 

(3.68), i t allows all the f/, to be found by only solving D — 3 of the free Laplace 

equations given in (3.69). 

3.2.2 The Einstein Equations for the Canonical Form of the 

Metric 

Having computed the form of the canonical metric in D dimensions, i t is now possible 

to check that the vacuum Einstein equations are fulf i l led, given the constraint (3.58). 

To do this, the Ricci tensor has to be calculated for (3.66). Using techniques similar 

to those in Appendix B, gives the non-zero components of the Ricci tensor as 

D-2 D-2 

1 1 1 ^ - 2 

1 

P ' i,j.kj=i 

1 1 ^"^ 

Rp. = - d z y - - G''G'''dpG,kd,G,i. (3.71) 

Considering the = 0 equations, gives the equations of motion for Gij 
, . D-2 D-2 

( -dl + - d , + dl G,, = Y G''d,G,,d,Gi, + G''d,G,,d,Gi, = 0 . (3.72) 
\ P / k,i=\ k,i=i 
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The equations for u can be obtained by considering Rpp — R^^ = 0 and Rp, = 0 to 
give 

D-2 D-2 

= - - + ^ ^ G'^G'^dpG,,dpG,^-^ J2 G'^G'^d,G,,d,G,i, 

D-2 

= ^ 5^ G'^G"dpG,,d,G,t. (3.73) 

These equations are sufficient to be able to calculate u and but i t is necessary 

to check that these equations are consistent. 

I f the equations given in (3.73) are to be integrable, they have to satisfy the 

condition d.dpi/ = dpd^u. This can be shown to be true by using (3.72) and differ­

entiating (3.73) w i th respect to z and p. Thus, having found a solution for Gij{p, z) 

f rom (3.72), i t is possible to calculate v{p,z) by integrating (3.73). 

The other necessary check on equations (3.72) and (3.73), is that the equation 

formed by adding Rpp and R^, goes to zero for all p and z. This equation is calculated 

f rom (3.71) and is given by 

D-2 D-2 

dlu + dlu = - - - G'^G'^'dpG.kdpG.i-- G''G^'d,Gikd,G,i. (3.74) 

This equation can be seen to hold for the ^{p, z) and Gij{p, z), calculated f rom (3.72) 

and (3.73), by differentiating the expressions given in (3.73) and then using (3.72). 

Having shown that all of the Einstein equations are satisfied i t now only necessary 

to consider (3.72) and (3.73) to obtain expressions for Gij{p,z) and u{p,z). These 

functions can then be substituted into (3.66) to give an axisymmetric solution of 

the vacuum Einstein equations. 

I f the D — 2 Ki l l ing vectors that span the space described by G j j are all orthogonal 

then i t is possible to set G n = — ê ^̂  and G^ = e^ '̂ for i = 2,... . D—2. Ident ifying 

w i t h t transforms the canonical fo rm of the metric given in (3.66) to the Generalised 

Weyl Form given in (3.67). The equation given in (3.68) is then just a consequence 

of the constraint that det Gij = —p^ and the Einstein ecjuations given in (3.72) and 

(3.73) reduce to the equations given by (3.69) and (3.70). 

Having shown that equations (3.72) and (3.73) solve the vacuum Einstein eciua-

tions, i t is helpful to rephrase them in a fo rm that is more conducive to algebraic 



3.2. General i sed W e y l Solutions 37 

manipulation. The essential insight is to view d j AS A D-2 x D-2 real symmetric 
matrix, w i th G^^ being its inverse. This immediately allows (3.72) to be re-written 
in a much more compact form as 

(^dj + -^dp + 5:^ C = [G-'dpG]- + {G-'d,G)- ., (3.75) 

wi th the constraint that detGij = —p- coming f rom (3.68) when Lorentzian metrics 

are being considered. In fact, this equation can be wri t ten even more succinctly once 

i t is noticed that the differential operators are equivalent to those of a 3D Euclidean 

space wi th metric 

ds' = dp' + p'dj' + dz'- . (3.76) 

In this metric, 7 is an unphysical coordinate w i t h period 2n that is introduced for 

notational convenience. 

Having made this observation i t is now a simple matter to re-write (3.75) in 

terms of the gradient operator V on the space described by (3.76), giving 

G - i V ' G = ( G - ^ V G ) ' . (3.77) 

This form of the equation of motion for Gij is extremely useful because now the 

problem of f inding axisymmetric solutions has been reduced to just f inding solu­

tions to a differential matrix equation in 3D flat Euclidean space, which obey the 

constraint d e t G — —p^. 

3.2.3 The Rod Structure of the GeneraHsed Weyl Solutions 

As has already been noted, i t is possible to consider the axisymmetric solutions, given 

in the Generalised Weyl form, as being a series of Newtonian potentials sourcing 

infinitesimally th in rods that lie along the z axis. For this approach to be valid 

i t is necessary for the solution G(p, z) to be continuous, which is satisfied by most 

physical solutions and certainly by all of the solutions considered here. The first 

step is to examine det G at p = 0. 

From equation (3.68), d e t G = -p~ for a Lorentzian metric, so the product of 

the eigenvalues of G must be zero when p = 0. This implies that at least one of the 

eigenvalues is zero for all points along the z axis. In fact, i t is argued in [35] that 
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for G{p, z) to be a regular solution, only one of the eigenvalues for G(0, z) is zero, 
except at isolated points. 

Harmark [35] argues that in order for the solution G{p, z) to be free f rom curva­

ture singularities i t is necessary for G(0, z) to only have one eigenvalue going to zero 

over a closed interval in z. To illustrate this, consider a metric of the form (3.66) 

w i t h the non-zero components of the matr ix G given by 

G ^ = p ' ^ G22 = p'-"' (3.78) 

and the function u defined by 

where 0 < a < 1. These expressions solve (3.72) and (3.73), so they form a valid 

solution of the vacuum Einstein equations. Calculating the curvature invariant in 

this case, gives 

R^.uXaR'"'"' = 16a2(l - a ) - ( l - a + a~)p-''-'-''+"'^ . (3.80) 

Examining this expression shows that there is generally a curvature singularity when 

p = 0, since (1 — a-l-a^) is positive definite for all permissible a. The only values of a 

where there is no curvature singularity are when a = 0 or a = 1, which corresponds 

to the solution only having one eigenvalue. This implies that having two eigenvalues 

going to zero w i l l lead to a curvature singularity. 

The more general case, where any possible solution to Einstein's vacuum equa­

tions has two eigenvalues going to zero is considered in detail by Harmark [35]. The 

basic outline of the argument is that for any z € [2:1,22] i t is possible to make a 

constant orthogonal transformation of G{r,z) so that Gii{0,z) = ^2/(0, 2) = 0 for 

i = 1 , 2 , D — 2 and thus reduce the equations of motion (3.72) and (3.73) to the 

example given above. Thus, i t is shown that i t is impossible to have two eigenvalues 

going to zero for a given value of z, except possibly at the endpoints of the interval. 

The more general argument, where more than two eigenvalues go to zero, can then 

be derived along the same lines. 

Given that there can only be isolated points where two eigenvalues go to zero, 

i t is now possible to split the 2-axis up into a number of different intervals wi th 
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the endpoints demarcated by the points where two eigenvalues go to zero. I f these 
points are labelled as a i , a o , a / v where Ci < 0,9 < ... < O-AT then the 2-axis has been 
divided up into A''-|- 1 intervals [—oo,ai], [01,0,2],..., [ayv-i,aAf], and [o;v,cx)], wi th 
the number of intervals being potentially infinite. These intervals are the "rods" of 
the solution. 

In order to deduce anything about the solution by examining its rod structure, 

i t is necessary to invoke a theorem proved in [35 

T h e o r e m 3.2.2 Consider a rod [ ^ i , 2-2] for a solution G(p, z). Then we can find an 

orthogonal matr ix A . such that the solution G{p. z) = A'f G(p, z)A^ has the property 

that G H ( 0 , 2) = 0 for i = 1 , D - 2 and 2 6 [21, 22]. • 

Using this theorem it is possible to make a constant coordinate transformation 

of the x' coordinates so that G(p, 2) can be put into a form where G]i(0, 2) = 0 for 

i = 1, . . . . D — 2 when 2 6 [2], 22]- Given G(p, 2) in this form, i t is now possible to 

express G(p, 2) as 

/ ±a(2)p'^ \ 
G ( p , 2 ) = (3.81) 

V (̂~̂ ) / 
to leading order for r —> 0, where 21 < 2 < 20 [35]. In this approximation, 0,(2) is a 

str ict ly positive function for 2 € ] 2 i , 22[ and ^ ( 2 ) is a 3 x 3 matrix, which is solely a 

function of 2. 

Examining this expression for the metric in the vicini ty of p = 0, G n ~ ±a (2 )p - . 

This can then be used to check that the eciuations of motion from (3.72) and (3.73) 

are st i l l satisfied. From (3.72), the left hand side gives V ^ G n = ± 4 a ( 2 ) + 0{p) and 

the right hand side becomes G^^{dpGn)' = ± 4 a ( 2 ) + 0{p), thus showing that the 

first equation is consistent. 

From (3.73), the first of the equations gives dpi^ ^ 0 for p ^ 0 because dpGu = 

±2a{z)p. Thus, in order to get an expression for u, the second equation for d-i^ has 

to be considered. This gives 

d.i^ = ^ + 0{p) . (3.82) 

Solving for u gives e-" = c^a{z), where c is a positive constant. 
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I t is now possible to give an expression for the canonical metric (3.66) in the 
l imi t as p —> 0 when z^ < z < Z2 

D-2 

ds' = Aij{z)dx'dx^ + a{z) [±r'{dx')- + c ' (dp ' + d - ' ) ] . (3.83) 
IJ =2 

This metric can then be used to deduce the behaviour of a canonical metric near a 

particular rod. For example, i f Gu/p^ is positive as r ^ 0 then the coordinate 

is spacelike and thus the rod is said to be spacelike. Similarly, i f G n / p - is negative 

then the x^ coordinate is timelike and the rod is said to be timelike. 

In order to agree w i t h the Generalised Weyl solution given in (3.67), the x^ 

coordinate w i l l henceforth be chosen to be timelike and denoted by t. Therefore, in 

this case, the metric in the vicini ty of the z axis wi l l look like 

D-2 

ds^ = Aij{z)dx'dx^ + a{z) [ - p ' d i ' + c\dp^ + dz^)] . (3.84) 
i,j=2 

In this case the t coordinate is always timelike, so i t is only necessary to determine 

the direction of the other rods x\, where i = 2 , D — 2. 

A more rigorous way to define the direction of a rod is given by defining N + I 

vectors V(^k) in R^~^, w i t h k = I , N + 1, 

G(0, z)v^k) = 0 for 2 G [ak-i,a^] , (3.85) 

where V(^k) 0 for ^^^l k. I n this case, the solution Gij{0, z) is split up into N + 1 

rods [afc_i,afc] w i t h the rods starting/ending at z values Oi < 02 < ... < a^-, where 

the values ao = —00 and a^'4.l = 00 are defined for notational convenience. Under 

this definition gives the direction of the respective rod [ak-i,ak . 

Using this definition for the direction of the rods i t is possible to find a vector 

for a specific rod such that 
D-2 

J2G,j{0,zy =0, (3.86) 
j=i 

which follows f rom Theorem 3.2.2. I t is now possible to define the direction of 

the rod by considering Gijv'-v^/p^ in the l imi t as p —> 0. The direction of the rod 

21,22] is then said to be timelike or spacelike depending on whether GijV'^v^/p~ is 

respectively negative or positive in the l imi t as p —> 0. 
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One further consideration is to ensure that the solution has no conical singular­
ities. This can be seen by examining the expression for the metric near the rods 
(3.83). Consider a spacelike rod, i f a new coordinate r/ is introduced as a linear 
combination of .x' where i = 1, . . . . D - 2, so that 

then the conical singularity at the rod can be removed by demanding that ?; have 

period 

An = 27T l im . / ^ . . (3.88) 

This implies that a spacelike rod necessarily corresponds to a compact direction. I f 

the rod is timelike, then via a similar analysis to the spacelike case, it is possible to 

do a Wick rotation and then f ind an associated temperature for the Wick rotated 

coordinate by eliminating the conical singularity. This then implies that there is an 

event horizon at this rod. 

The fixed points at the end of the rods, and the periodic identification of the 

respective coordinates, allows certain assumptions to be made about the solution. 

The space is asymptotically flat so, for spacelike coordinates, a rod that stretches 

to inf in i ty wiU indicate a fixed point in the asymptotically flat space. This then 

indicates that the coordinate under consideration is part of a rotational isometry 

and thus that there is an axis of rotation parameterised by that coordinate. 

For a finite spacelike rod, the fixed points at the end of the rod indicate that 

the coordinate is a periodically identified circle direction. I f there are no other rods 

which stretch out to infinity, then this rod has to correspond to a Kaluza Klein 

direction because i t is impossible to have an asymptotically flat spacetime wi th one 

of the coordinates identified as a circle. I f there is an additional semi-infinite rod, 

then the direction corresponds to a rotation axis for reasons given above, but the 

finite rod introduces a singularity wi th a conical defect. 

Other than the direction of the rod, the length of the rod has to be considered. 

In general, if the interval [ZI. Z2] for a particular rod is finite, then i t is known as a 

finite rod. I f either ZI or Z2, but not both, are infinite, then the rod is known as a 

semi-infinite rod and if ZI = —00 and 20 = 00 then the rod is known as an infinite 
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rod. 

Put t ing these definitions together, along wi th the direction of the rods, allows 

a number of conclusions about the properties of Gij to be made. These can be 

summarised as follows: [34,36 

• A finite timehke rod corresponds to an event horizon. 

• A finite spacelike rod corresponds to a Kaluza-Klein direction, provided there 

are no semi-infinite spacelike rods in the same direction. 

• Any semi-infinite or infinite spacelike rod corresponds to an axis of rotation 

w i t h the associated coordinate giving the rotat ion angle. 

• A semi-infinite timelike rod corresponds to an acceleration horizon because of 

the fixed point at infinity. 

The formalism of the Weyl solution gives a way to build up an intuit ive picture 

of the way different axisymmetric solutions are composed, but knowing the general 

form of an axisymmetric solution isn't enough to find a new solution. This is be­

cause the Weyl form can be used to generate the rod structure of a known solution 

but having a collection of rods and directions isn't enough to guarantee that the 

associated Weyl metric w i l l solve Einstein's equations i.e. the Weyl form can be 

used to restrict the possible number of solutions, but i t doesn't provide a method 

of generating solutions. To produce a new solution, the Weyl form must be used 

w i t h a solution generating algorithm. A n example of such an algorithm is explored 

in the next section. 

3.3 The Inverse Scattering Method 

The closest thing that we presently have to a systematic method of producing five 

dimensional solutions to Einstein's equations is the inverse scattering method (ISM). 

This was first proposed in the 1960s [38] as a method of solving the Korteweg-de-

Vries shallow water wave equations. These equations were of interest because certain 

solutions exhibited the first known examples of soliton waves. Solitons are special 
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because they behave in many respects like an extended particle: they have a finite 
and localised energy, a characteristic propagation velocity, and a structure that is 
resistant to dissipation [39]. I t wasn't long before solitonic solutions were found to 
other non-Unear equations, such as the sine-Gordon and the non-linear Schrodinger 
equations. 

A t the end of the 1970s, i t was shown that the ISM could be extended to solve 

the vacuum Einstein equations, provided the spacetimes allowed an orthogonally 

transitive two-parameter group of isometrics [40-42]. In practice this usuaUy means 

that the metric only depends on two coordinates. Metrics of this fo rm encompass 

a wide variety of physical situations but the most pertinent solutions, for the pur­

poses of this work, are the stationary axisymmetric solutions. These solutions have 

cylindrical symmetry and D - 2 commuting Ki l l ing vectors, so are ideal for use wi th 

the ISM. 

The basic idea behind the ISM when applied to gravitational situations, is to 

generate new solutions given a previously calculated one. The starting metric is 

known as the seed solution and is derived f rom a solution that has already been 

calculated using a different method. The new solutions, generated after applying 

the ISM, are known as soliton solutions of the gravitational field (often abbrevi­

ated to "gravitational solitons"). This name may be a l i t t le disingenuous because 

the gravitational solitons only share some, i f any, of the properties of conventional 

solitons. 

Although the ISM gives an explicit algorithm for generating new solutions i t 

isn't a panacea for generating all possible solutions to Einstein's equations. This is 

because the newly generated solutions depend heavily upon the starting seed metric, 

so new solutions tend to share many of the properties of the seed metric. Even given 

this l imitat ion, the ISM has been successfully used to generate many new solutions 

to Einstein's equations including the Black Saturn [43], the Bicycling Black Ring 

solution [44], and the doubly spinning black ring [27,45]. The ISM has also been 

used to re-derive solutions that were previously calculated using different methods, 

such as the singly spinning black ring [26,46], the di-ring [48], and the Ker r -NUT 

solution. 
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3.3.1 The ISM Algorithm 

The ISiM can be roughly broken down into two main steps. In the first step a group 

of linear differential ec^uations (known as spectral equations) are found, which are 

related to the non-linear differential ecjuation by means of the integrability conditions 

for the linear equations. The second step consists of integrating these spectral 

equations to find the cla.ss of soliton solutions. These gravitational solitons have the 

remarkable property that they can be expressed in analytic form and thus allow new 

solutions to be generated by adding and subtracting them from a seed solution. 

The first step toward generating new -SD solutions, is to express the seed solution 

in the form 

ds- = Gaftd.xMx'' + e-^idp^ + dz-) (3.89) 

where 1 < (a, 6) < 3 and all the metric components are solely functions of p and 

z. As previously discussed, i t is shown in [34] that this is always possible provided 

that there are D — 2 orthogonal Ki l l ing vectors, which is always the case for axially 

symmetric solutions. 

Util ising the diffeomorphism invariance of the seed metric (3.89), i t is possible 

to choose 

det G = -p~ (3.90) 

without any loss of generality. This is possible for axisymmetric solutions because 

det G < 0, whereas in the more general case det G could be positive or negative. 

Having chosen this form of the metric, i t is now possible to divide Einstein's 

equations into two separate groups. The equations corresponding to the 3 x 3 matr ix 

G are given by 

dpU + d,V = 0 (3.91) 

where 

U^p{dpG)G-' V = p{d,G)G-' (3.92) 

and the equation for ê "̂  is given by 

_ l + l T r ( [ / ^ - K ' ^ ) 
p Ap ^ 

(3.93) 

d,u = ^ T r ( C / K ) (3.94) 
4p 
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The integrability condition for these two equations is 

dpd.u = d.dpu (3.95) 

and is automatically satisfied if G satisfies (3.91). This can be seen by taking dp of 

(3.94) and d, of (3.93) to give 

1 _ / V 
dpd.y = — T r -Vd,V + Ud.V - U-

4p V ' P 

d.dpu = ^ T r {UdM - Vd,V) 

where (3.91) has been used to give {dpU) = —{d.V). A l i t t le further manipulation 

shows 

dM = dpV - ^ (3.96) 

which proves that equations (3.91)-(3.94) satisfy the integrability condition. This 

means that once a solution for G{p, z) is found from (3.91), v{p, z) can be found by 

direct integration. 

Since the idea behind the ISM is that the integrability condition of equations 

(3.90) and (3.91) is the non-linear equation that is to be solved, in this case Ein­

stein's equations, these two equations have to form a completely integrable system. 

Fortunately, i t was shown (see for example [49]) that this can be dealt w i th via 

a generalisation of the Zakharov-Shabat [50] form of the ISM. The procedure for 

doing this is to find some compatibil i ty conditions, for a more general system of 

eigenfunction equations, that are the same as (3.91) and the integrability condition 

for U and V f rom (3.92). This integrabihty condition is given by 

UV VU V 
d.U -dpV + - ^ + - = 0 (3.97) 

P P P 

Having done this i t is now theoretically possible to find a system of overdetermined 

eigenfunction matr ix equations which depend upon U,V, and A, where A is a com­

plex spectral parameter that parameterises the different eigenfunction equations. 

However, there is currently no systematic method for doing this in general, but i t 

was shown in [40] that there is a way to do this for the specific equations given by 

(3.90) and (3.91). 
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These spectral equations, known as an L-A pair, are given by 

where A is a complex parameter independent of p and z and '^{X. p.z) is a 3 x 3 

matr ix known as the generating matrix. The commuting differential operators 

and D2 are given by 

«. = a = - 3 ^ * . (3.99) 

To show that these equations are compatible, form [Di.Di]^ = D^Do^ — DoDi'^ 

where the left hand side goes to zero because £>i and D2 commute and the right 

hand side is evaluated using (3.98) and (3 .99) . Evaluating the right hand side shows 

that i t wi l l only go to zero if ec[uations ( 3 . 9 1 ) and (3.97) are satisfied. This result 

implies that these L-A equations wiU also give a solution to (3 .92) , when A = 0 

because eciuation (3 .97) is derived f rom (3.92) i.e. 

G(p,z) = ^ ( 0 , p , 2 ) (3.100) 

Having found two hnear equations (3 .98) that yield solutions to (3 .92) , i t is 

possible to generate new solutions given a known seed solution Go via the "dressing 

method". This simply involves mult iplying the known generating matr ix ^ 0 by a 

dressing matr ix x to obtain a new solution 

1' = X*o (3 .101 ) 

In this case x is found by generating UQ and VQ f rom (3.92) and then substituting 

( 3 . 1 0 1 ) into (3 .98) . This gives 

^pV -XU _ pVp - XUQ ^pU + XV _ pUo + XVQ 

A2 + p2 ^ ^ A2 + p2 A2 + p2 ^ ^ A2 + p2 

(3 .102) 

In principle, these equations can now be integrated to find x. but there are some 

constraints on x-

In order for G to be real, only solutions where ^ and x are real can be chosen. 

Furthermore, G must also be symmetric, which means that 

G = - ^ x ( A , P , 2 ) G o X ^ (3.103) 
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This introduces a further constraint because x (oo,p , 2) = / in order for this con­
straint to be compatible w i th (3.101). 

To find soliton solutions for G it is necessary to consider the pole singularities 

of the dressing matrix xi^^P-. -^); where the poles are only in the A plane because p 

and 2 are real by definition. In the general case there are n poles in the A plane, so 

the dressing matrix can be represented in the form 

'V = ^ + E Y ^ (3.104) 

where and f^i/^ are solely functions of p and 2. 

The pole trajectories pfc(p, 2) and the matrices Rk{p;Z) can now be completely 

determined by substituting (3.104) into (3.102). The functions pk are determined 

by demanding that the left hand side of the equations in (3.102) have no poles of 

second order at A = p^.. otherwise the solution wi l l become singular. This results in 

two differential equations for pk 

d j i , = - j ^ , dpp, = ^ ^ (3.105) 
P], + p2 PI + p-

which have solutions 

, = ±v'p-^ + ( 2 - a , ) ' ^ - ( 2 - a f c ) (3.106) Pk 

where are n arbitrary constants. In general ak is complex but this introduces the 

possibility of pk having discontinuities, therefore only poles on the real axis w i l l be 

considered, meaning ak w i l l be constrained to be real. The solution w i t h a positive 

square root is a soliton and w i l l be denoted pk whilst the solution w i t h a negative 

square root is an anti-soliton and wi l l be denoted p^. 

The Rk matrices are degenerate and can be expressed in the form 

( / ? . )a6 = n i ' ^ i " (3.107) 

where m'a ^ are calculated by requiring the above equation to be satisfied at the poles 

A = Pk when i t is substituted into (3.102). The vectors ni'^' can then be determined 

using the constraint given in (3.103). 
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I t is possible to express the mi''^ vectors in terms of the generating matr ix formed 
f rom the seed metric 'I'o. These vectors take the form 

Ak) 

6=0 

where m^^^ are the arbitrary components of "BZ vectors". Note that in the above 

equation, ^' is evaluated at A = p.^-

Having determined p and R, i t is now possible to express the new solution G 

in terms of the seed metric GQ. The new metric, determined via the n-soliton 

transformation, gives 

L'a/) = ['-^Olab — / ^ 
• ^ I I I I I I 

(3.109) 

where the repeated indices a, b,c,d = 1..3 are summed over. The symmetric matr ix 

r is defined as 

r.. = (3.110) 
p- + f^kl-k 

wi th F"^ being given by the inverse of this matrix. 

Having obtained the expression for the metric of the new solution, i t is necessary 

to ensure that the determinant of the new metric s t i l l satisfies (3.90). In general, 

the determinant of (3.109) is given by 

d e t G = ( - l ) V " ( Il/^fc' I det Go (3.11i; 

.2 which is clearly not always equal to —p-. The tradit ional way of rectifying this is 

to mul t ip ly G by a suitable factor of p and p~- to reduce (3.111) to d e t G = -p^. 

In practice this means that the renormalized solution G^̂ '*'-'̂ ^ is given by 

/ n \ 
(Jiphys) ^ (_i)n/3^-2.n,/3 -2/3 ^ ^3^^2) 

\k=l J 
This approach works well for 4D solutions, such as the Kerr-Nut solution, but 

causes problems when applied to 5D metrics because it typically leads to naked-

singularities. One way around this, as wi l l be seen for the singly spinning black ring 

solution, is to restrict the soliton transformations to a 2 x 2 block of the seed metric, 

and then perform the renormalization process on this sub-section of the new metric. 
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The obvious drawback of this procedure is that the newly generated solution can 
only have rotation in at most one plane. 

A more general procedure, for ensuring that the metric given in (3.109) has the 

desired determinant, was mooted in [51]. In this paper, Pomeransky notes that the 

factor mul t ip lying det Go is independent of any of the BZ vectors mg*'' and thus 

allows det G to be altered by varying the BZ parameters in the seed solution. The 

basic idea is to remove any solitons wi th t r iv ia l BZ parameters, being careful not 

to introduce any off-diagonal terms in G, and then add the same solitons back but 

this time wi th more generanl BZ parameters. These extra degrees of freedom can 

then be chosen to fine-tune (3.109) in such a way that d e t C = —p", even if the seed 

solution no longer has det Go = - p ^ . Another by-product of this construction is 

that the metric factor e'-*̂  can now be succinctly given as 

det T\,' 

where r'°' and F can be calculated f rom (3.110) by substituting GQ and G respec­

tively, where GQ appears. 

3.4 Generating Black Ring Solutions 

In this section, the power of the Inverse Scattering Method to produce new solutions 

is demonstrated by reproducing the singly spinning and doubly spinning black ring 

metrics. As shown in the previous section, new solutions can be simply generated 

through a series of algebraic manipulations but there is an art in choosing the correct 

seed metric to give the desired solution. As an example of this, the Minkowski metric 

has been used to generate the Myers-Perry metric in [52] and [53] but as w i l l be seen, 

i t is necessary to use a different seed solution to generate the singly spinning black 

ring. Seeing as the Myens-Perry metric is well known, the remainder of this section 

w i l l concentrate on the black ring solutions. 
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3.4.1 The Singly Spinning Black Ring 

To generate the singly spinning black ring i t is first necessary to come up with a 

suitable seed solution. A n appropriate choice for this starting metric is given in [54], 

although this can be considered as a specific case of a seed solution used in [55 . 

Seeing as i t is only necessary to determine the 3 x 3 matr ix G in order to generate 

the whole metric, the seed solution for the singly spinning black ring is given by 

d,s'̂  = - d t - + g2d(t)- + g^dip- (3.114) 

where 

_ {R-rj, - z - •>na){R^ - z + Ka) _ (i?_̂ ^ + z + •r]ia){Rr,^ - z + •/72£T) 
92 — ^ ; , g-i - 5 ; 

it,,.̂  - z + r]2a R^ - z + na 
(3.115) 

and (cr, K,, r / i , r^o) are constants. Also 

= ^ p 2 + (2 - bay . (3.116) 

This metric already satisfies det G = —p^ and reduces to the Minkowski metric when 

K = 7)2. 

I t is worth noting that the metric given in (3.114) is a diagonal metric, thus sim­

pl i fy ing the ISM transformations, because i t is possible to obtain diagonal solutions 

by setting some of the parameters to zero, e.g. mg^^ = mgo' = 0. This then allows 

the generating matr ix ^'o to be expressed as a diagonal matr ix ^'o = dia.g{ipi,tl^2, i^i)-. 

where 'ipi are functions depending on A, p, and z. Having expressed ^'o in this form, 

the partial differential equations given by (3.98) can be decoupled and allow the 

equations to be solved for each '0i independently. 

In the case of the singly spinning black ring, there is only angular momentum in 

one plane, so there wi l l only be off-diagonal terms involving the t and -ip coordinates, 

assuming that the rotation is in the -0 direction. This allows the mo3^ parameter to 

be set to zero and thus separates the metric into block diagonal form 

G = \ — ^ I (3.117) 
GAB 0 

0 (Go)33 
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where GAB is a 2 X 2 matrix, with A, B = 1..2, dependent only on m^'Qi and moV- If 

the coordinates are chosen such that x' £ then this can be interpreted as 

only adding solitons to the metric components involving t and (/'• 

Having expressed the matrix in block diagonal form, it is now possible to choose a 

normalisation that multiplies the components of the 2 x 2 matrix in such a way as to 

ensure that the overall determinant of the metric satisfies det G = —p'^. In practice, 

this means that the G33 component remains unchanged and the other components 

are scaled as 

Qiphys) ^ I \ " / I (3.118) ( n L i ^ ) GAB 0 

0 (^0)33 

Now, if the seed metric has detGo = —p', this normalisation will ensure that the 

resulting metric G also satisfies detG = - p ^ . Writing the metric components out 

explicitly gives 

•,{phys) 

P 
G 

{phys) 
* 0 

(3.119) 

To obtain the singly spinning black ring solution, it is necessary to add two 

solitons and set ai = —a2 = —o. After using the normalisation given in (3.119) the 

various metric coefficients become 

•y(phys) 9lt f.{phys) 

^(phys) _ Mphys) _ ^{phys) _ 

-.(phys) 

(3.120) 

9u (p- +1^0^12)-g2 

where the functions gu, gup, g^-ijj, and E are 

(^mJ,i'm[,5V2^2(Mi)) + ("1'^)?"^^)2V^l'02(P2)) 

- ("^m "^!)IV2(AM)V'2(M2)(MI - M2)p^) - (^n42'm[,Jp2Mi/-i2(A''i - ^2)^ 

-2m[)^,^m[,i^m|,2'm|,2\92V-'2(Mi)'02(Ai2)(P' + AM')(p' + P2")piM2 (3.121) 

.9^^ = (mJ)i^mSViiAi2(Mi - A*2)^2(Aii)^2(Ai2)) + (mJ)2'm[,J^2(AM - ^2)p") 

(m[,i'm[,2Vi'02(Aii)) + (mj,̂ !̂ 7711,2^x2(52 - M2)) (p- + /Ulp,2)''.(/2 

+2m|,i'mii'm!,ymg'52AiiAi2-02(Ai2)^2(^i)(p' + fJ-i')ip' + P2') (3.122) 
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-mJi^mJoVilAti - fJ'2)tp2{l-t2){p~ + / i2 ') (m[,V"'02(Mi)" - ^ - ^ ' ^ 2 ) (3.123) 

S = [V'2(Ail)"'02(M2)" +52'^] ( T T ^ V ^ ^ O V I - M2)p) 

|̂ mJ)Vm[)2V-'2(Ail)) + ("42'"^0l'''/'2(/^2)) + (p- + fJ.lp.2)-92 

-2m[,;^mS'miym[,Jg2^2(A*i)^2(M2)(p' + Mi ' )(p- + ^^2') (3.124) 

The functions g2 and are given in (3.115), and 

•0i(A) = - 1 (3.125) 

^.(A) = ^ - ^ - - " - ^ 7 ^ " - ^ ) ^ ^ - - ; + " " - ^ ^ (3.126) 

.^3(A) = { R - , . + z + Vi^ + >^){R,.-z + V2<r-X) 

- Z + KO - \ 

Although these functions are denoted ?/'i(A), they are actually functions of A, p, and 

z. The p and z dependence is suppressed to make the equations more compact. 

I t may be noted that the functions defined in (3.125)-(3.127) are similar 

to the metric coefficients defined in (3.115). In fact, this is no coincidence, since 

' I ' = diag(?/'i, 02,'03) is actually the generating matrix for the seed metric. Thus, 

the seed metric can be recovered by substituting the 01 functions into (3.100). 

The metric coefficients given in (3.120) give the raw results from the ISM, so they 

will be a solution to Einstein's equations but they take no account of the physical 

niceties that we would expect for the solution to be physically realisable. To ensure 

that the solution is asymptotically flat, it is necessary to apply the transformations 

i - > t ' = i - C i 0 , ^^'ip' = tp (3.128) 

This now allows the constant Ci to be chosen so that the solution is asymptotically 

flat and also ensures that the solution stifl satisfies det G = -p^. Applying these 

transformations to the metric coefficients gives 

^iphys) ^ ^(^pkys) ^ ^l^pkys) ^3^29) 

(^iphys) _^ Qiphys) ^ G%'''^ + CG^t''^ (3.130) 

Qiphys) _^ Qiphys) __ Q{phys) ^ 2Ci G + C^Q^^^^^^ (̂ 3 131) 
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Seeing as the desired black ring solution will only have angular momentum in 
one direction, it should be possible to parametrise it in terms of its mass and angular 
momentum. Examination of the functions given in (3.121)-(3.124) shows that there 
are far too many parameters to describe such a solution. To reduce the number of 
parameters it is necessary to make a number of identifications 

mJil^mS' = p (3.132) 

mg^mj,y = ^/a{n2-l) (3.133) 

^m^m = -y/^aP{Kv + l] (3.134) 

'^02'^4? = -(ya{Ki + 1){K2 - I) (3.135) 

and 

- ^ 

where C i is chosen to ensure that the metric is asymptotically flat. The functions 

Ki and K2 are given by 

, , ^ . , ( l - > c ) f a + l ) = (3.137) 
1-^2 " ??2 + 1 

Having apphed these identities there remain six parameters which have to be 

restricted further to produce the balanced black ring solution. To avoid the solution 

having closed timelike curves a and P have to be restricted as 

- = ^ l j ; - W T ^ y ^ = V 2 ( 1 + , . ) 

These conditions come from demanding that the orbit closes at (p, z) = (0, ±a). 

This reduces the number of free parameters to four, so two further restrictions are 

required to give the solution in terms of two parameters representing the mass and 

angular momentum. 

One further restriction is provided by demanding that the solution should be 

free from conical singularities. This gives an implicit function relating a and /? to 

K,r]i, and T/2 

1 + a/5 = { ^ 1 {1 + a P ' - ^ ) (3.139) 

Applying this restriction leaves the solution specified in terms of three free para­

meters, which is in-line with the conventional presentation of the black ring metric. 
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As will be seen later, a further restriction is needed to ensure that the metric is 

completely free from conical singularities, which then reduces the number of free 

parameters to two, as anticipated. 

It is now theoretically possible to give the metric for the black ring in terms of 

the remaining free parameters, but it is helpful to introduce some further constants 

to give the solution in a more compact form. These extra constants are defined in 

terms of the existing constants as 

[K + 1 + {K- l)aPf - - 1)(1 + apy-
b = 

Vi +V2 
2n + r]i - rjo 

-2 / ^ Vl - V2 , 
K = \ K-\ — I a 

^ Vi - m 
Z H cr 

(3.140) 

(3.141) 

(3.142) 

(3.143) 

where b and c are constrained to be in the range 

0 < c < 6 < 1 (3.144) 

In terms of these new parameters, the balanced black ring solution is given by 

ds- = gttdt^ + gt^dtdi; + g^^^&ip^ + g^^dcp^ + e'^idp^ + dz (3.145) 

where 

and 

4b(l - c^)k'' 
9tt = 

9<i><t> 

• = 

2Ck{l - c) Ri- Ri + {1 + c)~K? 

9tt9(p(p 9tt 

{R3 + z-k^){R2- z + ck^) 

Ri — z — ck"^ 

; 1 - C ) ^ l + (1 + C)^2 + 2 C ^ 3 

8(1 - c^yRiRoR-s 

(3.146) 

(3.147) 

(3.148) 

(3.149) 

(3.150) 

$ = (1 + 6)(1 - c)Ri + (1 - b){l + c)i?2 - 2(6 - c)i?3 + 26(1 - c^)^^ (3.151) 
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The constant C is defined as 

C = ^ / 2 6 ( 6 - c ) [ ^ (3.152) 

and 

^1 = + (? + ck-iy^, R2 = \ / p ' + ( i - ck^y, Rs = v/p2 + (? _ ~^2y. 

(3.153) 

Examination of (3.145) shows that the determinant of the 3 x 3 block G satisfies 

(3.90) and the g^^ component is the same as that of the seed metric given in (3.114). 

This verifies that the normalisation given in (3.119) is vahd. 

^ (1 ,^0) 

0 l l i l 
~ 2 , ~ 2 2 

Figure 3.1: This figure shows the rod structure of the singly spinning black ring, with the rod 

directions and end-points marked. The angular velocity of the black ring is denoted fi. 

Figure 3.1 shows the rod structure of the singly spinning ring. This allows the 

solution in the Weyl form to be interpreted pictorially. The fact that the t rod 

is finite means that there is an event horizon between —CK^ and ck'^ for p = 0. 

Moreover, the fact that the timelike rod is bookended by two rods in the ijj direction 

indicates that the horizon will have topology 5^ x 5^ with the z and ip coordinates 

parameterising the 5*̂  and the remaining (f) coordinate parameterising the 5^ 

To get from the metric given in (3.145) to the more familiar metric for the singly 

spinning ring, given in terms of toroidal coordinates, it is necessary to make some 

further transformations. These transformations are given in [54] and [35] as 

2^VE5M5M , k'{l-xy){2 + cx + cy) 

where G{^) is a structure function given by 

G ( 0 = ( l - e ' ) ( l + cO (3.155) 
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and the coordinates lie in the range 

- l < x < l , y<-l (3.156) 

Applying these transformations gives (3.145) in a considerably more compact form 

F{x) \ F{y) 
2k^F{ X dx' ^G{x) d-y2 G(y) 
[x-vY [G{x) F{x) " G{y) F{y) 

(3.157) 

where 

F(e) = l + 6̂  (3.158) 

and b and c are given by (3.140) and (3.141) respectively. 

The solutions given by (3.145) and (3.157) actually have an additional conical 

singularity at x = 1, which can be rectified by setting 

This then ensures that the 3^. and orbits close off smoothly at x = 1 and gives a 

balanced black ring solution in terms of the two parameters K and c. These variables 

can then be related to the mass and angular momentum of the ring. 

3.4.2 The Doubly Spinning Black Ring 

The method for deriving the doubly spinning black ring is similar in many respects 

to that of the singly spinning ring. The basic outline of the derivation can be split up 

into three steps. Firstly, the seed metric is generated by taking the singly spinning 

black ring given in [46] and removing two solitons from it . Then, two more solitons 

with more general rotation parameters are added to this seed solution using the 

Inverse Scattering Method. Thirdly, the ranges and values of the parameters are set 

so as to ensure that the metric remains real and of the correct signature, as well as 

removing any potential singularities or closed-timelike-curves. 

The idea behind finding a seed metric by removing sohtons was first suggested 

by Pomeransky in [51]. He noticed that it was possible to remove solitons from 

a solution that had been generated via the inverse scattering method by dividing 
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„2 certain metric coefficients by a simple function This technique works because 

multiplying a seed metric by a function commutes with adding solitons to a seed 

solution. In the case of the doubly spinning ring, this involves taking the Emparan-

Reall solution and removing two solitons from the t, 0, 0 sector. 

The next step toward obtaining the solution is to replace the solitons that have 

been removed with new solitons that have extra rotation parameters. The ISM 

guarantees that the new metric will still solve the Einstein equation, and so long as 

the solution isn't re-scaled at any point (or at least without being undone afterwards) 

it will tilso satisfy the condition that detG = —p .̂ The extra parameters aflow the 

ring to have angular momentum in more than one plane, but they also introduce 

more singular points into the solution which have to be dealt with. 

In the case of the doubly spinning black ring, there are four independent para­

meters that have to satisfy 0 < u < 1, < A < 1 -I-1/, A; > 0 and c < 6 < 1, where 

c is defined in terms of A, and u as 

c = ^ ^ (3 Am) 

Furthermore, if the ring is to be completely free from conical singularities then 

6 = ^ (3.161) 

(l,^^l,f^2) 

'0 

0 

(0,0,1) (0,0,1) 

(0,1,0) 

Figure 3.2: This figure shows the rod structure of the doubly spinning black ring, with the rod 

directions and end-points marked. 

Figure 3.2 shows the rod structure of the doubly spinning black ring solution. 

The rods all lie along the z axis, with the rod endpoints given by —ck~, cAr, and k-

along the horizontal axis on the plot. The vertical axis labels each of the directions, 

and the position of the rod in the vertical direction indicates the direction of the 

rod. All of the rods except the one between —ck'^ and ck'^ lie in only one direction. 
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The rod on the t line in figure 3.2 has direction vector ( t , f2 i , f i2) , so actually has 
components in three directions. 

The semi-infinite spacelike rod [—oo, —ck'^] and [cA"'-̂ , A;̂ ] have direction v = 

(0,0,1), which means that when p = 0, for -oo < z < —ck? and cA;̂  < z < A;-, 

.9a/3̂ ''̂  = 0. These rods indicate that the ip direction is an axis of rotation and in 

order to avoid conical singularities at the finite rod cA;- < ^ < A;̂ , the period of -0 

has to be restricted as 

AV' = lim27ri ' 

; - ( - ! + 6 ) ( - l + cy{ca + 6 ( - 2 ( l + cy + ca))'^ 
( l + 6)(l + c ) 2 ( c a - 6 ( 2 ( - l + c)2 + ca))2 ' 

where a is defined as 

^ _ 4(A + g)(A + 2 - g ) ( A - 2 - g ) 
( A - g ) ( A + 2 + g ) ( A - 2 + g) ^ ' - ^ ' ' ^ 

and q = -y/A- — Au. 

The semi-infinite rod —(X)<z< — cA;̂  imphes that the periodicity of the •ip 

variable should also be given by A^^ = 27r, which can only be reconciled with (3.162) 

if 

6 = - ^ , (3.164) 

or 

b = ± - = = ^ ^ = . (3.165) 
V4 - 8c2 + 4c4 + C2Q2 

Unfortunately, the choice of (3.165) leads to the metric becoming singular, which is 

why 6 has to be restricted as (3.161). 

The finite timehke rod —ck'^ < z < ck- corresponds to an event horizon because 

it is the only timelike rod. Also, the topology of the horizon has to be x 5^ 

because 5^ = 0 at both ends of the rod. The direction of the timelike rod is given 

by f = (1, Qi , fl2), where 

a 2 ^ ( l + 6 ) ( 6 - c ) [ 2 6 ( l - c ) ^ - ( l - 6 ) c a ] C 
' 2(1 - 6)6(1 - c)2 [26(1 + c)2 - (1 + 6)CQ] DA,-2 ^ • ^ 

^ 2 ^ (1 + 6)C(1 + cy [26(1 - c') - caf [26(1 - c)^ - (1 - b)caf 
~ a{\ - 6)£)c2 [462(1 - c^y - (1 - 62)C2Q2]2 
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where C = 26(1 - c )̂ - (1 - b)ca and D = 26(1 - c") - (1 + b)ca. These variables fii 

and ^2 represent the angular velocities of the horizon in the 8^ and directions 

respectively. 

The semi-infinite spacelike rod A;- < z < oo is in the direction of v = (0,1,0) 

and means that the (j) coordinate is an angular coordinate with period (p = In. This 

comes from calculating the periodicity that is required in 0 to eliminate any conical 

singularities i.e. 

= lim2nj ^ = 27r (3.168) 

The doubly spinning black ring in canonical coordinates is rather unwieldy so 

to express it in a more compact form, transform to the C-metric coordinates via 

Ak'G{x)G{:y) 

A:^(l - xy){2 + (x + y)A + 2xyu) 
' ~ {x-yY{\-u) 

This then gives the doubly spinning ring metric as 

H{:y.x){dt + nY _ F{x.,y)d^'^ _ 2J{x., y)d(l)dijj 
H{x.,y) H{y.x) H{y.x) 

F{y,x)d0^ k'^H{x,y) / dx'- dy^- \ 
H{y.x) {x-yY{l-vY\G{x)~G^)) 

(3.169) 

(3.170) 

(3.171) 

where 

VL = -
A;A^2(l + i/)2-2A2 

( l - a ; 2 ) y v ^ d 0 
H{y,x) 

{l+y)[\ + \ - u + x-yu{\ - \ + 2ux{l - y)] dip 
^ ( l - A + i.) 

G(x) = {1 - x^){l + Xx + lyx^) 

H{x,y) = l + Â  - i/2 + 2 A z / ( l - x ' ) y - f 2 x A ( l - y V ^ ) 

+ x V z / ( l - A^ -

J{x,y) = / o - ^ ( l - x 2 ) ( l - 7 / ) A ^ x 
1 + A2 - + 2(.x + y)Xu - xyu{\ - A^ - v^) 

{x-y){l-vY 

(3.172) 

(3.173) 

(3.174) 

(3.175) 

F{x.,y) = 
{ x - y f i l - v f 

G(x)( l - y"") {[(1 - uf - A ' ] ( l + !/) + yA[l - \-+ 2u - ?>u~\] 
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+G{y) {2A ' + xX[{l - u)'' + A^j + x^[{l - uf - \ \ l + u) 

+,;3A(I _ _ 3iy^ + 2u^) - .x"(l - u),^{X' + u"" - 1)} (3.176) 

Note that the constraint given in (3.161) has been applied to this metric, so that it 

is non-singular. 



Chapter 4 

Physical Properties of Black Ring 

Solutions 

In this chapter the physical properties of both the singly spinning and doubly spin­

ning black ring solutions to the vacuum Einstein equations will be examined and 

their thermodynamic properties calculated. The various properties are re-derived 

from results given in [26,27,44,46,61]. It is directly shown that the topology of the 

singly spinning ring solution is S" x and that it asymptotes to the Minkowski 

solution. The toroidal coordinate systems used in both solutions are also described, 

along with plots of the contours in the two different sets of coordinates. 

Although, the singly spinning ring is just a specific case of the doubly spinning 

ring when the angular momentum in the S'^ direction is zero, it is worth investigating 

in its own right. This is because the singly spinning solution provides a simplified 

model of the more general doubly spinning ring since a lot of the behaviour of 

the more general doubly spinning ring is duplicated when the ring is only spinning 

around the axis of the S^. Having said this, the causal structure of the spacetime is 

significantly different when angular momentum is added in the 0 direction because 

the ring gains an extra horizon. This has a major effect on the spacetime in the 

vicinity of the curvature singularity. 

61 
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4.1 Properties of the Singly Spinning Black Ring 

The notation for the singly spinning black ring solution has changed slightly since 

it was first discovered in [26]. The modern most compact notation, as presented 

in [46], gives the metric as 

{x-yy [G{x) F{x F{y) G{y) Fix) F{y) 

and 

F ( 0 = 1 + 

Also, C is given by 

G ( 0 = ( l - C ' ) ( l + ^ 0 -

1 + A 
1 - A 

The form of G(^) given above has three explicit roots, given by 

6 = 6 = + 1 , ^4 = - -

(4.1) 

(4.2) 

(4.3) 

(4.4) 

and the single root of F{E,) can be labelled analogously as 

1 
6 = A 

(4.5) 

Labelhng the roots in this manner allows the metric to be compared with the singly 

rotating ring solution given in [26], although the form of the structure functions are 

shghtly different. 

The black ring metric was originally derived from a Wick rotation of a metric 

in [47] and was given in the form [26 

X F{y) 

dip + 
1 

A'ix-yY 

G{x) F{x) 

where the structure functions were given by 

^ ( 0 = 1 - , 

,(4.6) 

^ ( 0 = 1 - + (4.7) 

In order for this metric to be free from singularities, the roots ^1-^3 all have to satisfy 

the conditions given for the derivation of the black ring in the previous section. The 
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modern labelhng of the roots given in (4.4) and (4.5) was devised in [26] after it 
was realised that the function G(^) could be factored into a linear and a quadratic 
part similar to that given in (4.2). Also, in (4.6), the parameter A represented an 
acceleration but it was later realised that it was more sensible to relate this to a 
radius parameter R, which occurs in (4.1). 

Going back to (4.1), the remaining parameters A and u are dimensionless, and R. 

has dimensions of length. The parameters v and A control the shape and rotation of 

the black ring. As u ^ 0, the solution describes a thinner and slower rotating black 

ring until it becomes infinitely thin and non-rotating when = 0. The other para­

meter A controls the nature of the horizon and, as shown later, has to be restricted 

to avoid the appearance of conical singularities in the solution. Examination of (4.1) 

shows that in order for the signature of the metric to remain Lorentzian, A and u 

have to be restricted so that 0 < u < X < 1. 

Examination of (4.1) shows straight away that there are three Killing directions 

given by di, d^, and 5^. This will prove useful when analysing the geodesies of 

the metric as there will be three conserved c|uantities associated with these Killing 

vectors. The metric also has two Killing horizons where dt and di -\- Qd^ become 

null. These Killing horizons correspond to the ergosurface at :</ = —1/A and the 

event horizon at y = —\/u respectively. Since the hypersurface y = —1/u is the 

event horizon, Q, will give the angular velocity of the event horizon, as calculated 

later. 

The X, y coordinates used in (4.1) are inherited from the original C-metric deriva­

tion of the Black Ring and are particularly suited to this solution, since they are 

toroidal coordinates. To get a better idea of how these toroidal coordinates foliate 

the space, it is useful to consider the transformations [46 

n = , = R ^ l ^ . (4.8) 
[x-y) ( x - y ) 

Applying these transformations to a manifestly flat metric given by 

dx4- = + ri2d02 + dr-s' + r s ' d ^ ' (4.9) 

re-casts the metric in the form 

R^ L o ,o dy^ dx^ 
dX4^ = 

(x - yY^ (4.10) 
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which, not coincideritally, bears a marked resemblance to the metric given in (4.1). 
Indeed, (4.10) is the zero mass limit of (4.1), which is obtained by taking the limit 
as X.u ^ 0. Furthermore, the transformations given in (4.8) give hmits on the {x, y) 
coordinates, as r i and have to remain real and non-negative. This implies limits 
on X and y as 

- 1 < . T < 1 , -oo<y<-l, (4.11) 

which ensures that the signature of the metric always remains Lorentzian. 

To understand how {x,y) span a constant il) cross-section it is useful to combine 

the two transformations given in (4.8) to get a set of transformations with a single 

radial coordinate and two angular coordinates. Doing this gives 

^ - X - y 

and 

These coordinates can now be used to span a three dimensional cross-section of 

constant •0, with rotation in the 0 direction providing the third degree of freedom. 

To check that these coordinates do actually reduce to the spherical polar coor­

dinates on flat space, consider the case where \ = u = Q. Transforming (4.1) using 

(4.12) and (4.13) and then dispensing of all of the terms involving A and u the metric 

becomes 

ds^ = -dt^ + dr^ + r~{de^ + sin^ ed^~ + cos" edcjr) , (4.14) 

which is familiar as the 5D metric for flat space, thus confirming that the new set 

of coordinates are just the familiar spherical polar coordinates in five dimensions. 

Figure 4.1 uses these coordinates to show the lines of constant y and x when 0 

and 0̂ are held constant. The ij) coordinate would define the plane coming out of the 

page, perpendicular to the vertical axis. As can be seen from the plot, the lines of 

constant y define circles (or spheres when the 0 coordinate is included) that foliate 

the space, with the x coordinate varying around the circle. The circles get bigger 

as y increases towards - 1 with y = — 1 defining the axis of rotation of the ring, and 

x = y = —\ being equivalent to r = oo in polar coordinates. It is worth pointing 



4.1. Propert ies of the Singly Spinning B l a c k R i n g 65 

Figure 4.1: A two dimensional cross-section of constant 0 and i.' (as well as the antipodal points 

1^-1-77 and 0 + n) of the (.x, y) coordinates. The red-turquoise circles (centred on the horizontal axis) 

are lines of constant y and the blue-orange circles (centred on the vertical axis) are lines of constant x. 

The horizontal axis on this plot corresponds to j / = -1 and the vertical axis corresponds to x = ± 1 , 

where ,r = -1-1 corresponds to the centre of the ring up to the inner edge, and x = - 1 corresponds to 

the region from the outer edge of the ring to infinity. 

out that the (x,y) coordinates only cover a semi-circle in one of the cjuadrants, 

depending on the values of 0 and 0- The contour lines plotted in figure 4.1 cover 

all four quadrants to emphasise how well adapted the coordinates are to the shape 

of the black ring. 

It is now possible to check that (4.1) is asymptotically fiat in the limit as x = 

y = —I. To do this it is necessary to consider slightly different transformations from 

(4.8), as given in [26]. These are 

c = 
{x - y) V = 

RVXTT 

- y) 

where 

R 
2R{1 - A) 

(4.15) 

(4.16) 

Substituting these coordinate transformations in shows that in the vicinity of x = 

y = -1 the metric takes the form 

ds^ = -de + R'ji - A) 
(X - ?/)2 

i - r ) ( i - ^ ) 

( l - A ) 
d t 

dy' 
; i - i . ) ( i - ? / 2 ) 
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dx^ ^ ( l - ^ - ) ( l - ^ ) , , 2 (4.17) 
' {l-x^~){l-u) • ( 1 - A ) 

To examine the region near x = y = -1, consider x = — 1 + e and y = —1+e, 

implying 

l _ . x . 2 = 2 e - e ^ l-y^ = 2e-e^. (4.18) 

In these expressions, e is defined to be small, so the e" terms can be ignored since 

they will be even smaller. Substituting into (4.17) now gives 

ds^ = -dt- + dC- + C'dt/; + dr + ifd4r . (4.19) 

Here '0 = ^ and ^ = ^ with A'0 and A(/) defined as in (4.27). It is now obvious, 

using these coordinates, that the metric is asymptotically flat with two pairs of 

radial and angular coordinates parameterising the space. 

To show that the event horizon of (4.1) is ring shaped it is necessary to use a 

further set of coordinate transformations given by 

r = - - , cos^ = .x, (4.20) 
y 

which gives the limits on r and 9 as 

0 < r < i ? , 0 < ^ < 7 r . (4.21) 

These transformations can then be used to transform the flat metric, given in (4.10), 

to a form which is easier to analyse 

1 
dX4^ = ( i - ^ ) + + r^- [de^ + sm-̂  ed^^) 

(4.22) 

In these coordinates it is easy to see that the surfaces of constant r describe an 

parameterised by 0 and 9, with the parameterised by IIJ. This form of the 

metric shows that the 5^ is metrically round but when the full black ring metric is 

considered, the S' surfaces are deformed away from a perfectly round sphere. 

The full black ring metric, given in terms of the coordinates in (4.20), is 

ds = —— dt — ro smh cr cosh cr A / ^ ;—Rdip 
q \ V i? - ro cosh"̂  a rf 
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9 

(1 + ^ ) 2 

(4.23) 
f 9 

where some extra functions have been defined as 

y - 1 _ ! ° y _ ^ _ ro_cosh2a 
r ' r ' 

g = l + ''4cose, g = l + ''-^^^^^cose^ (4.24) 
H. R 

and the parameters {iy.,X) have been redefined as 

^0 . rocosh^a 

This recasting of the metric shows why the 5 ' surfaces are no longer perfectly 

spherical because the ges and f?^^ terms have now acquired extra factors of g and g. 

To see that these surfaces sti l l have S~ topology consider the l imi t where 

r,7-o,rocosh-a < i? , (4.26) 

which implies that g,g ^ I and thus shows that the gge and coefficients pa-

rameterise a two-sphere in this l imi t . As g and g are increased f rom 1, the two 

spheres become increasingly deformed unt i l they are completely flattened into a 

disc perpendicular to the axis of rotation. 

Making a further redefinition, 'ip = z/R, puts the metric into the form of a 

boosted black string in the z direction, wi th a parameterising the boost. Also, for 

the metric to be free f rom conical singularities, i t is necessary for ip to have period 

2n, which means that z has to be compactified into a circle w i th radius R. This 

now allows the hmit given in (4.26) to be interpreted as taking the radius {R) of the 

black ring being much larger than the thickness of the ring ( T Q ) , and then looking 

at the region close to the horizon i.e. r ^ T Q . 

Having shown that the metric can be thought of as a boosted black string, under 

certain conditions, i t is now possible to interpret the parameters A and i/ physically. 

The redefinitions given in (4.25) indicate that measures the ratio between the 

radius of the 5" at the horizon T Q and the radius of the ring R. This means that 

smaller values of u correspond to th in rings where the radius of the r ing is larger 



4.1. Propert ies of the Singly Spinning B lack R i n g 68 

than the thickness of the ring. The definitions in (4.25) can also be combined to 
give an idea of the speed of rotation of the ring in terms of A and u, since the local 

boost velocity is given by v = t a n h a = y/l — (ly/X). 

Before going on to calculate the thermodynamical properties of the black ring, 

i t is necessary to consider the conical singularities of the metric. There are two sets 

of points in (4.1) where conical singularities occur. One set at [x, y) = ( - 1 , - 1 ) and 

one at x = + 1 . The singularity at x = - 1 can be avoided by restricting the (b and 

'0 coordinates so that 

The other possible conical singularity at y = - 1 and x = + 1 then forces 0 to satisfy 

- ^ ^ ^ ^ ^ ^ 
The only way that this restriction can simultaneously be enforced whilst s t i l l satis­

fying (4.27) is to restrict the value of A or u. I f A is fixed in terms of then it is 

given by 

A = ^ . (4.29) 

This ensures that A0 satisfies both (4.27) and (4.28) meaning that the singularities 

at X = ± 1 are both simultaneously removed. Since A and u control the speed 

of rotation of the ring, this method of restricting A is equivalent to balancing the 

centrifugal force on the r ing wi th the tension in the ring. Although the number of 

parameters has been reduced, the topology of the solution remains a ring w i t h x 

and 4> describing an 5^ surface and the surfaces of varying (y, ip) describing a circle. 

The other method of avoiding the singularity at x = + 1 is to make sure that 

5xx 7^ oo at x = — 1. This is easily achieved by setting 

A = 1 , (4.30) 

which makes QXX = 0 at X = - 1 , thus negating the need to impose (4.29). The conical 

singularity at x = + 1 st i l l exists, which necessitates -0 and 0 being restricted like in 

(4.28). Since A is now constant for all values of u the constant t and y cross-sections 

have an topology i.e. a three-sphere meaning that -0 and 0 are now independent 

angular coordinates of the sphere. 
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To calculate the thermodynamical properties of the singly spinning black ring i t 
is easiest to use the coordinates described in (4.12) and (4.13). These coordinates 
have the advantage of asymptotic inf ini ty being at surfaces of constant r = CXD, thus 
simpUfying the calculations. As described earlier, as ?• —> c)0 the black r ing metric 
approaches the 5D Myers Perry solution wi th angular momentum in one direction, 
so the thermodynamic properties of the black ring can be ascertained by comparing 
the metric coefficients in the weak field l imi t wi th the Myers Perry metric. 

To calculate the A D M mass, i t is only necessary to compare the asymptotic form 

of the black r ing metric w i t h the 5D Schwarzschild metric, as any terms contributing 

to the angular momentum of the ring should fall off as r oo. Bearing this in mind, 

the asymptotic black r ing metric should be in the form 

, . ^ . _ ( : _ ^ ) d , = , ( i _ ! ^ ) - ' d , . - . . . . . , ( 4 . 3 1 , 

\ STTT- / \ inr' J 

where M and P are constant functions independent of r and 6. The metric coeffi­

cients relating to the angular coordinates have been suppressed as they are redundant 

when calculating the A D M mass. 

To calculate the gu and grr coefficients for the black ring metric, transform to 

spherical polar coordinates and then take the Taylor expansion about r = oo. The 

first two terms of the Taylor expansion for ga and grr are then given by 

A - 1 2R- [A cos^ 9~Xiy snr 9 - u cos (2^)1 

^ ^ + {l^l^j^^ • ^'-'"''^ 

Usually, the mass can then be read off straight away by comparing the g^ coefficients 

between (4.32) and (4.31) but in this case, the g^r coefficient in (4.33) is not in the 

same form as (4.31). Taking the taylor expansion about r = oo of (4.31) gives 

, , ^ = _ ( l _ ^ ) d * ^ , ( l , ? £ f ) d . ^ ^ , . . . ( 4 . 3 4 ) 

showing that the coefficient of grr has to be in the form 1 + P / r - in order for the 

expressions in (4.32) and (4,33) to be used to obtain the A D M mass. Fortunately, 

this problem can be easily remedied by re-scaUng the T- coordinate so that 

i / - 1 
•'•' = M / X Z T ' ^4.35) 
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which then allows ^ to be factored out of (4.33) giving i t in the form of (4.34). 

Applying this transformation to (4.32) then gives 

5.. = - l + 7 T ^ ^ (4.36) (1 - z^)r^ 

which can now be compared w i t h (4.34) to obtain the A D M mass, 

37ri?2A 

where G is Newton's gravitational constant. 

The angular momentum of the singly spinning black r ing can be obtained in 

a similar manner by comparing the asymptotic expansion of the black ring metric 

w i t h the singly rotating 5D Myers Perry metric. From [25] the angular momentum 

is given by the gt^p coefficient, 

AGJsin^e 
.9(,-0 = ^ • (4.38 

This can then be compared wi th the Taylor expansion of the gt-^ coefficient f rom the 

black ring metric to obtain the angular momentum. 

Taking the Taylor expansion of gt-u, for the black ring metric gives 

2R^ sin^ e / A ( A - t / ) ( l + A) 
r2 V 1 - A 9t^ = o \ / . \ • (4-39) 

Comparing this w i th (4.38) would usually give the angular momentum straight away, 

but r has to be re-scaled in accordance w i t h (4.35) and a further re-scaling is required 

because the period of -0 is assumed to be 27r in (4.38) which isn't the case for the 

black ring metric, since -0 has to satisfy (4.27). Combining these two transformations 

means that the gttji coefficient of the black ring metric becomes 

2i?3 sm^eJ\{\-u){l + X) 

The angular momentum can then be read off, giving 

The entropy of a black hole is given by the area integral taken over the event 

horizon. In the case of the black ring, this means that the integral has to be taken 
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over a spacelike cross-section of constant y = —l/v. Wri t ten mathematically, this 
gives 

A = j ^\d(f)d7pdx (4.42) 

where 7 is the induced metric on the horizon. The induced metric is obtained by 

demanding that t and y remain constant, which is equivalent to removing the d^ and 

dy terms f rom the metric and then substituting y = -1/u. Doing this and taking 

the determinant gives 

( l + „ . x ) 2 ( A - l ) • l " - ^ ' 

Plugging this into (4.42) and integrating over the coordinate space given by (4.27) 

and X = — 1 ^ 1, gives the area 

, i / ^ / / / A ( l - A 2 ) 

To calculate the angular velocity of the black ring, consider a photon on a null 

t rajectory at the event horizon. The trajectory is chosen such that i t has no mo­

mentum components in the y, x, or 0 directions i.e. i t is restricted so that it stays in 

the plane of rotation of the black ring. Plugging all this into the geodesic equation 

and setting x = 0 gives the condition for the null trajectory 

( 4 . 4 5 , 

where ijj has been rescaled according to (4.27) to account for the conical singularities. 

This equation can now be solved for ^ to give the angular velocity of the black ring 

as 

The surface gravity (and hence the temperature) of any black hole is calculated 

by forming the Ki l l ing vector 

= dt" + Qd^^ . (4.47) 

The surface gra,vity is then given by 

^ = \ / - ^ ( V ; . X . ) ( V ^ X ' ' ) . (4.48) 
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I t is then just a matter of substituting for the various quantities. 

Substituting (4.46) into (4.47) and evaluating (4.48) gives the surface gravity of 

the black ring as 

( 1 + ^ / j I - a T 

The temperature of the black ring is then easily calculated since T = K / 2 T T . 

There is a curvature singularity in the black ring metric at y = — oo where 

RiiupaR'^"'^" blows up. This singularity is expected to be spacelike, since in falhng 

geodesies would only cross one event horizon and thus the singularity must be space­

like for all geodesies to terminate at that point. This conclusion, drawn by consid­

ering global phenomena, can also be checked by examining the local properties of 

the metric near the singularity. 

Considering the metric given in (4.1) when y is large and negative gives 

Xy / ^ C R ^ \ - , i ? V ( l + A.x)^^. , R\l + \ x ) . ^ 
ds- ~ , . dt - — d i A + 4 ^ d ^ - ^—-— ' -dy' 

[1 + \x) \ A J A vy'> 
/ ? 2 ( i + Ax) / dx^ (1 _ x 2 ) ( l + ;yx)^^2 

Now, since y is very large i t is only necessary to consider the terms of 0{y), which 

reduces the metric to 

d . ^ . ^ d e ^ _ 5 ! ( i ± M ^ ¥ ! . (4 .51) 

where combines the d^ and dip terms and is given by 

G R 
dE, = d t - — d ^ . (4.52) 

A 

Considering the metric for constant values of x = XQ and introducing the coordinate 

transformation Y = l / y gives 

as the metric in the vicinity of the singularity. 

The metric given in the fo rm of (4.53) is suggestive because i t looks very similar 

to the di-dr' part of the Schwarzschild metric near the horizon. Indeed, the non-

angular parts of the Schwarzschild metric, in the l imi t where r is small, is given 
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I t is now possible to compare i t w i th (4.53). I f ̂  is identified w i t h t and Y is identified 

w i t h r then the two metrics can be shown to be the same near the singularity (up 

to some constant factors), therefore the nature of the two singularities must be 

the same i.e. the black ring singularity must be spacelike as per the Schwarzschild 

singularity. 

4.2 Properties of the Doubly Spinning Black Ring 

The doubly spinning black r ing metric was first discovered by Pomeransky and 

Senkov in [27], where they give the metric for the balanced ring solution. The 

metric is given by 

H{y, x)idt + ny- F ( x , y)d^^ 2J(x, y)d0d^ 

where 

G{x) 

H{x,y) 

J{x,y) 

F{x,y) 

H{x,y) 

F{y,x)d(jr 

H{y,x) 

H{y,x) H{y,x) 

k^Hjx, y) f dx^ dy^ \ 
(4.55) 

A;Av/2(l + i/)2 - 2A2 
; i - x2)?/v^d0 

H{y,x) 

{l+y)[l + X - u + x'^yu{l - A - i/) + 2ux[\ - y)] d'0 
^ {l-X + v) 
(1 - x'^){l + Xx + ux"-) 

1 + A - - + 2Xu{l - x~)y + 2xA( l - y'^u^) 

W y ' v { \ - A ^ - v'-) 

A;-(l - 2 ;2 ) (1 - y 2 ) A v ^ x 

1 + A2 - + 2(x + y)Xv - xyv{\ - A ^ - v^) 

1-2 

{ x - y ) { l - u y 

X 

(4.56) 

(4.57) 

(4.58) 

(4.59) 

x - y ^ i l - u y 

G{x){l - y^) { [ ( 1 - uf - A2 ] (1 + V)+ yX[l -X^ + 2u- Zu'']] 

+G{y) { 2 A 2 + xX[{l - uf + A ^ ] + ^ ^ [ ( l - uf - X \ \ + u) 

+x^X{l - A ^ - 2,v^ + 2y^) - x \ l - u)u{X^ + - 1)} (4.60) 

The metric given in (4.55) is for the balanced doubly spinning black ring. A more 

general solution w i t h a conical singularity, analogous to the singly spinning r ing 
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(4.1), is given in [45]. Furthermore, since (4.55) is expressed in a form free of conical 
singularities, the coordinates 0 and 0 have the familiar period of 2n. 

The A and v parameters in (4.55) are slightly different f rom those of the singly 

spinning ring. Since the doubly spinning r ing has angular momentum in an extra 

plane, i t isn't surprising that the balanced solution depends on an extra parameter 

(unlike in the singly spinning ring case where A is fixed in terms of u). I n this case 

A and ly must satisfy 0 < ^ < 1 and 2-y/E' < A < 1 + i^ . The x and y coordinates 

satisfy the same limits as (4.11) and dt, and 5^ are all Ki lhng directions. 

The l imits on A and u are determined by demanding that both of the horizons 

exist iov y < — 1 , that the metric should always be real, and that the black ring 

has positive mass. The condition that the metric remains real is satisfied so long 

as ^ > 0 and the posit ivity of the black ring mass is satisfied for A > 0, as can be 

seen f rom (4.73). The constraint that A satisfies 2y/u < A < 1 is determined by 

demanding that the event horizons be at real values of ;y, which is calculated f rom 

(4.61). 

The doubly spinning ring solution given in (4.55) can be reduced to the singly 

spinning r ing metric, when the condition (4.29) has been applied, by setting u = 0. 

Doing this recovers (4.1) w i t h u replaced by A and the 0 and 0 coordinates rescaled 

so that A(p and f rom (4.27), are equal to 2TT. The ring radius parameter R is 

also replaced by k. 

The event horizons of the doubly spinning metric are given by the points where 

gvy _ Q j g ^Yie non-tr ivial roots of G{y). Solving G{y) = 0 gives the positions of 

the horizons as 
- A ± v/A2 -

v. = 1̂  . (4.61) 

where the positive solution gives the outer event horizon and the negative solution 

the inner Cauchy horizon. The ergosurface is calculated by considering the hyper-

surface where the vector dt becomes null . This surface is where H{y,x) = 0, which 

isn't a constant value of y as for the singly spinning ring. 

Although the l imits on the x and y coordinates are the same for the doubly and 

singly spinning ring, they don't cover the manifold i n the same manner. To get an 

idea of how the dual spinning ring coordinates span the space, obtain the flat space 
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metric by substituting A = 0 into (4.55). Having done this, the ring metric becomes 

•(l + j / ) ( l - f i / x V ) ds'' = -dt^+ ^~ 
{x-yr-{l-u) [I - X2)(l + 1̂ x2) •dx" + ( i - . x ' ) ( i + //:(/-)d0' 

( l + l / ) ( l + i..xV)...2 2 d y ' - {\ - y'){l + ux')d'ilj' (4.62) 
{I - y^){\ + yy^) 

Comparing this w i th the five dimensional flat space metric in polar coordinates 

ds"^ = -dt^ + drj + r^d0- + dr^ + r.2d-0- (4.63) 

allows the transformations between T I and r2 and x and y to be determined. These 

are 

V ( l - x 2 ) ( l + :̂jy2) k , / { y ^ - l ) { l + ux^) 

(x - y)Vl - V (x - y)y/l - V 

Theoretically these coordinate transformations can be used directly to plot lines of 

constant x and y. In practice i t is more useful to transform coordinates once again 

to get spherical polar coordinates where r and Q are given in terms of x and y. The 

Ti, 7-2 coordinates are related to the r, Q coordinates by 

' ( X - , ; ) ( ! - . ) 

7-1 ( 1 - x 2 ) ( l + iyy2) 

Having obtained these coordinate transformations i t is now possible to plot the 

contour lines for constant x and y. A sample plot io\ v = \ is given in figure 4.2. 

Unlike for the singly spinning ring, the contour lines of constant y are now 

elliptical, rather than circular. This is due to the factors of v that appear in the 

coordinate transformations. I f v is set to zero then the elhpses become circles, as one 

would expect since the ^ 0 l imi t of (4.55) gives the singly spinning ring metric. 

As V is increased f rom zero, the ellipses become more elongated and the contours of 

constant y become more widely spaced. 

To calculate the thermodynamic properties of the doubly spinning ring, i t is once 

again useful to transform to spherical polar coordinates using [44 

4A" 
X = - 1 + - r - a ^ c o s ^ ^ y = - \ ^ a ^ s i n ^ ^ (4.67) 

r -
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1-

- 1 

- 2 

F igure 4.2: A two dimensional cross-section of constant (t> and ip (as well as the antipodal points 

(p + IT and '0 + TT) of the {x, y) coordinates. The red through yellow lines show the lines of constant y 

from -5 through to -2 respectively and the black lines show the x contours. The vertical axis on this 

plot corresponds to asymptotic infinity at y = -1 and the horizontal axis corresponds to 2; = ± 1 . 

where 

a 
1 + X 

I - A 
(4.68) 

In these coordinates 0 < r < 00 and 0 < 6* < 27r and asymptotic infinity is ap­

proached as r ^ oc. 

The approach used to calculate the ADM mass is similar to that described in 

section 4.1, with the first order terms for gtt and p̂ r given by 

gtt = - 1 + 
1 + u - X){X -

(4.69) 

9rr = 
X - 1 3A2-8Ai/-f AV + l + ( l - z / ) ( l + i/)' 

+ 2(1/-1) {1 - X - - + 2Xuly^ - Xu^y 
cos (29) 

-4Xk' 
u — u'^ coŝ  9 — sin^ 6 

' \ - X - v - v ' ^ + 2 X v ^ v ^ - Aj/2)r2 

As before, g^ isn't of the form given in (4.34), so a rescaling is needed 

r = r 
A - 1 

Applying this to (4.69) gives 

gtt = - 1 + 
4Afc2 

(1 + £/ - A)r2 

(4.70) 

(4.71) 

(4.72) 
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which when compared wi th (4.34) gives 

The two angular momenta for the doubly spinning black ring are calculated 

in the same way as for the singly spinning ring, except now there is also angular 

momentum in the 0 direction. In this instance, the g^^ coefficient of the ring has to 

be compared w i t h the expansion of the corresponding metric coefficients f r o m the 

Myers Perry metric. The first term of the Taylor expansions for the gi^ and gt^, 

coefficients of the black ring are 

4Ar^A(l + A - 6t/ + At/ + iy'-)y/2[l + A + t/)(l + - A)s in-g 
•̂ '•'̂  ~ (i/3 + uX'--u- 2At/2 + 2A + 1/2 - A2 - 1)(1 - A)r2 ^ ' 

8 A A : V 2 t / ( l + A + t / ) ( l + t / ^ A ) c o s - g 
^'•^ ~ ( t / - ' - A t / + A - l ) ( l - A ) r 2 • ^ -̂̂ ^^ 

These expressions can then be re-scaled according to (4.71) and compared wi th 

(4.38) and 

gL<t> = —0 : (4.76) 
TTT-

to give 

TT\k^{\ + A - 6t/ + At/ + y'^)^J2{l + A + t/)(l + u - A) 

7rA/cV2t / ( l + A + t / ) ( l + t / - A ) 

= • G[i-uni + u-x)—• ^^-^^^ 
To calculate the area of the horizon, the integral 

^ = y" V\l\ = J \l9xx [g^^QM - 4*] (4-79) 

must be evaluated at the event horizon. The integral is taken for x = - 1 — 1 and 

-0, 0 = 0 ^ 27r and, after evaluating the integral, is given by 

_ 8v^7r^fc^A^,(l + A + t/) 

[ i - u n \ ~ y , Y • ^ • ^ 

The angular velocity of the horizon is determined in a similar manner as for the 

singly spinning ring, except in this case there are two different angular velocities VL^jj 

and Clif, representing the angular velocities in the -0 and 0 directions respectively. 

This complicates matters because the K i l l i ng vector that generates the event horizon 
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is now given by dt + r2^5^ + 0^5^. This Ki l l ing vector is nuU on the horizon, thus 
giving the equation 

gu + 2gt^n^ + 2gt^% + 2g^^n^n^ + g^^Ql + g^^^l = 0 . (4.81) 

This equation can't in principle be solved on its own because there are now two un­

knowns representing the angular velocities in the two different planes. Fortunately, 

a judicious selection of the point on the horizon at which the angular velocities are 

calculated allows some of the terms to be set to zero. In fact, selecting x = ± 1 

reduces the equation to 

9tt^^ + = 0 (4.82) 

This can now be used to calculate fi^^ on the horizon as in the previous section. 

Substituting in y = yt,, gives 

This then allows the angular velocity in the 0 direction to be calculated by substi­

tu t ing X = 0 and evaluating the fu l l expression given in (4.81). Doing this gives 

^ A ( l + W - ( l - ^ ) v / A ^ /T±ZE4 . (4.84) 
^ 2 A ; A ^ V l + i^ + A ^ 

The surface gravity of the doubly spinning r ing could in principle be calculated 

using (4.48) but i t is much quicker to use the Smarr formula, which is 

^M = TS + + J^n^ (4.85) 

where S is the entropy of the black hole and is defined as 5 = A/4G. Plugging in 

the values that have already been calculated gives the black ring temperature (and 

hence the surface gravity) 

r ^ f a " 7 ' ' " - - ) ^ ^ . (4.86) 
4 ^ 7 r i t A ( l + Z/ + A) 

The curvature singularity is st i l l located at y = —oo but the addition of angular 

momentum in the 0 direction has introduced an extra event horizon which means 

that the singularity has to be timelike. The consequence of this is that i t is now not 

inevitable that all t imel ike/nul l geodesies that fa l l through the horizon wi l l terminate 
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at the curvature singularity. I t is now possible to construct geodesic paths that go 
through both horizons to the interior of the black ring and then continue out to 
t imelike/nul l inf in i ty in a new asymptotic region. 



Chapter 5 

Graphical Representations of 

Spacetime 

This chapter considers the geodesies of various different solutions to Einstein's equa­

tions and then looks at two different methods of visualising the geodesies and the 

spacetimes. Af ter plot t ing some sample geodesies, i t is then possible to distinguish 

the essential features of any particular spacetime by observation, without having to 

consider the detailed mathematical properties of the metric. 

5.1 Conformal Diagrams 

The best known method for visualising a particular metric is the Penrose or Con-

formal diagram. The idea behind this is to transform the coordinates of the metric 

in such a way as to highlight the causal connection between the points in the space-

time, without necessarily giving a fa i th fu l representation of how the space varies 

f rom point to point. Emphasising the causal connection between the spacetime 

points, rather than demanding that the variation of the space or time directions be 

accurately reproduced, allows for much more flexibility in the way the spacetime is 

portrayed and thus allows the causal features to be depicted in a way that is very 

simple to interpret. Another advantage of Penrose diagrams is the abili ty to contain 

all of the (potentially infinite) spacetime wi th in a compact representation, meaning 

i t is then possible to examine what the spacetime w i l l look like an infinite distance 

8 0 
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away from the origin of the coordinate system. 

The causal structure of any spacetime is determined by considering the light 

cones at any particular point. Fortunately, conformal transformations leave light 

cones invariant, so they provide a perfect candidate for a diagram to illustrate the 

causal nature of a particular metric. To show that the light cones are invariant 

under conformal transformations, i t is necessary to consider a null curve a;''(A) w i t h 

respect to a metric wi th coefficients g^,„. I f .7;^(A) is null wi th respect to ^ .̂̂  then its 

tangent vector d.x'VdA satisfies 

dx^ dx'^ , , 

Conformal transformations are simply transformations that provide a local change 

of scale i.e. they rescale distances wi th the scaling changing f rom point to point so, 

seeing as the metric and its associated coefficients indicate how the distance varies 

f rom point to point, a conformal transformation can be expressed as 

fJu.^ = : (5.2) 

where u)- is a non-zero function of the coordinates x'\ 

Expressing (5.1) for the conformal frame and using the transformation in (5.2), 

gives 
, dx'^d.x'^ d x M x -

^ - d T d A = " - ^ - d 3 r d A ^'-^^ 

Seeing as u>'- is everywhere non-zero, this condition w i l l hold for null curves defined 

wi th respect to both and g^^,. 

Utilising the fact that the light cones w i l l remain invariant under conformal 

transformations, i t is now possible to construct new coordinates which have one 

timelike coordinate and one spacelike coordinate that always have radial light cones 

represented by a line at 45°. These conformal coordinates can then be compactified 

by a further suitable choice of coordinate transformation, e.g. the arctan function, 

to bring inf in i ty to a finite coordinate value. Combining these coordinate trans­

formations allows a Penrose diagram of a 2D cross-section to be drawn, where the 

lines at 45° represent the paths of null rays and the boundaries of the diagram rep­

resent infinity. Usually a 2D diagram is sufficient to characterise the space since 
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most physical solutions of Einstein's equations have some symmetry that can be ex­

ploited to negate the need to represent the extra dimensions. For example, each of 

the points on the Schwarzschild Penrose diagram can be thought of as representing 

a two-sphere, since the symmetry of the solution means that the 0 and 0 coordinates 

vary in the same way, no matter what values of t and r are chosen. 

Figure 5 .1 : Penrose diagram of flat space with the vertical axis representing the conformal time T 

and the horizontal axis representing the conformal radius R. 

The diagram shown in figure 5.1 shows the Penrose diagram for flat space, w i th 

the conformal time given by T and the conformal radius given by R. The vertical 

dotted line on the left hand side of the diagram represents /? = 0, the origin of 

the space, and the lower and upper 45° lines represent past and nul l infinity. The 

bot tom left corner corresponds to past timehke inf in i ty w i t h future timelike inf ini ty 

given by the top left corner of the triangle. The th i rd corner represents spacelike 

inf in i ty because only spacelike paths starting away f rom inf in i ty can reach this point. 

Timelike paths starting at past timelike inf in i ty w i l l always eventually terminate at 

future timelike inf in i ty and the lines of nul l inf in i ty delimit the spacetime. 

The red and green lines on the Penrose diagram of figure 5.1, represent lines 

of constant r and t. These lines of constant r and t are no longer straight as in a 

standard spacetime diagram of r and t, but i f a local light cone is drawn at any point 
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then the green hnes of constant t will always be within the light cone and the red 
hnes of constant r will always be outside the light cone. This is as expected since 
the lines of constant t and r represent timelike and spacelike paths respectively. The 
representation of flat space geodesies on the Penrose diagram is explored further in 
the following section. 

5.2 Flat Space Geodesies 

This section describes how to calculate the geodesies of 5D Minkowski space and 

then goes on to plot them on a Penrose diagram. Usually Penrose diagrams are only 

used as a means of visualising the global nature of a particular spacetirne without 

necessarily considering any causal paths on the diagram. The intuitive nature of 

the Penrose diagram often means that it is quite simple to sketch various tinielike 

or spacelike paths without much effort. The fact that, in the absence of the test 

particles having any angular momentum, all null rays are represented as 45° lines 

means that the path of timelike or spacelike particles can be predicted from point 

to point. However, it is not necessarily obvious which of the many possible causal 

routes across the Penrose diagram represents a geodesic and if the test particle has 

angular momentum the task is made much harder because the null lines are no 

longer at 45°. It is with this in mind that some example geodesies have been plotted 

in the following sections. 

The high level of symmetry of flat space means that the essential properties of 

the space can be illustrated by only considering the radial coordinate r. and the 

time coordinate t. The other coordinates describe the familiar three-sphere so each 

point on the Penrose diagram can be thought of as representing a three-sphere with 

the 6, ip and (p coordinates representing rotation in this sphere. 

5.2.1 Geodesic Equations 

Minkowski space has many Killing vectors which make the geodesies very simple to 

calculate. In five dimensions the Minkowski metric is given by 

ds^ = -dt^ + dr^ + 7-^de'^ + cos- Odip^ + sin" Odcf)^) . (5.4) 
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The geodesies of this metric ean then be found directly by forming the Lagrangian 
C = \{-i--\-f-+ T-e~ + 7-~ cos- ^VV' + r- sin' Oct)-) , (5.5) 

Li 

where the factor of 1/2 is conventional as it gives more convenient expressions for 

the geodesic ecjuations. The geodesic equations are calculated by plugging (5.5) into 

the Euler-Lagrange ecjuation given by 

where A is the geodesic parameter and the over-dot refers to differentiation with 

respect to this parameter. From here on, it will be assumed that the geodesic 

parameter is chosen so that it is afhne. 

Equation (5.4) has three obvious killing directions, which is reflected in the 

equations for t, and 0, giving three conserved cjuantities 

t = E (5.7) 

r^cos'^^-fi; = / (5.8) 

r" sin" 9(j) = m . (5.9) 

The constants E, /, and m refer to the conserved quantities corresponding to the 

energy, angular momentum in the 'ib direction, and the angular momentum in the 0 

direction respectively. In the following equations, / and m. will be set to zero for the 

sake of brevity since they correspond to symmetries of the metric. In hght of this, 

the 6 equation reduces to 

T'e = k (5.10) 

It is also possible to derive the r equation from the Lagrangian but it is more 

convenient to use the first integral of the geodesic equation given by 

-P + r'- + r^' = e (5.11) 

where e is a constant of motion that determines the nature of the geodesic. The 

geodesic parameter is chosen such that e determines the geodesic as 

— 1 timelike 

0 null (5.12) 

+ 1 spacelike 
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Substituting (5.7) into (5.11) and solving with (5.10) gives two differential equations 
for 9 and r 

r = ^ 5.13 
r 

e = ^ (5.14) 
7-

Solving these equations gives 

/A2(E2 + ,)2 + ,̂2 

' • ( ^ ) = ± V £ ^ T ^ ^^-^'^ 

I t is now possible to plot the geodesies as functions of A but, in practice, it is more 

convenient to use r as the parameter rather than A. This is achieved by combining 

the equations to give 

f = . ' ^ (5.17) 

which can easily be solved for r. A similar equation can be derived for t, giving 

dt Er , , 
(5,18) dr yr2(e + E2)-A,-2 ' 

5.2.2 Flat Space Penrose Diagrams 

The metric in the t and r coordinates already has null lines at 45° at all points 

in the spacetime so, technically, a conforrnal transformation is not required. How­

ever, to plot the geodesies on a Penrose diagram it is necessary to transform the t 

and r coordinates so that they cover a finite range. To do this construct two null 

coordinates v and u 

u = t - r v = t + r (5.19) 

These null coordinates can now be combined to give two new compactified coordi­

nates - one spacelike and one timelike. These are 

R = arctan w — arctan ^̂  (5.20) 

T = arctan y-I-arctan u , (5-21) 
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where i? is a radial spacelike coordinate and T is a timelike coordinate. The ranges 

of these coordinates are then given by 

0 < i? < TT , | T | + i ? < 7 r . (5.22) 

Figure 5 .2 : The zero angular momentum geodesies of 5D Minkowski spacetime. The timelike, null, 

and spacelike geodesies are plotted in red, green, and blue respectively. All the geodesies have E = i. 

Figure 5.2 shows the Penrose diagram for Minkowski space with three geodesies 

plotted on it . AU of the geodesies are plotted with the angular momentum in the 9 

direction set to zero i.e. k = 0. The red line is the timelike geodesic starting at past 

timelike infinity, going through the origin and then progressing to future timelike 

infinity. The green line shows the null geodesic starting at past null infinity, going 

through r = 0 and then progressing off to future null infinity. The blue line is 

the analogous spacelike geodesic starting and ending at spacelike infinity and going 

through r = 0. If the initial conditions were chosen so that the geodesies always had 

r > 0 then they wouldn't all intersect on the dotted hue and would instead follow 

paths more hke those shown in figure 5.1. 

If k is varied away from zero then the geodesies have some angular momentum in 

the 6 direction, which correspondingly alters the shape of the geodesies. Figure 5.3 

shows how the shape of the geodesies changes as the angular momentum is increased, 

with k increasing in each subsequent Penrose diagram from left to right. When the 
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Figure 5 .3 : The geodesies of the 5D Minkowski metric wi th the angular momentum chosen so tha t 

A: = 1, A: = 2, and k = 3 from left to right respectively. For all the geodesies the energy is chosen so 

that E = 3. The colour coding is as in figure 5.2. 

angular momentum is increased from zero, the geodesies no longer make it to the 

origin, as would be expected by considering a particle with angular momentum in 

Newtonian mechanics. If the particle has angular momentum about r = 0, then 

no matter what trajectory it is on, its radius will always be non-zero as long as its 

angular momentum remains constant. If its angular momentum is increased then 

it will orbit further and further away from the origin, as is shown in the various 

Penrose plots of figure 5.3. 

The transformations applied in (5.20) and (5.21) mean that the detail in the 

Penrose plots is biased toward smaller values of u and f, and hence smaller values of 

t and r. This is why the variation between the different geodesies is most pronounced 

in the middle of the plot near to the dotted line at r = 0. When the angular 

momentum is increased the geodesies necessarily take larger values of r at all times, 

so the variation between the different Penrose diagrams becomes less pronounced as 

k is increased. 

5.3 Schwarzschild Geodesies 

The Schwarzschild metric provides a shghtly more interesting space for the propaga­

tion of the geodesies. This is because it has an event horizon which acts to globally 



5.3. Schwarzschild Geodesies 88 

conceal the interior of the black hole from observers outside of i t . The addition of an 
event horizon also means that the Penrose diagram is divided into several sections 
where the past and future event horizons prevent null and timelike geodesies from 
passing from one sector to the other. The Schwarzschild metric also has a curvature 
singularity at r = 0 where null and timelike geodesies eventually terminate once 
they cross the event horizon. 

This section will concentrate on the 5D version of the Scliwarzschild metric, 

as it is useful in gaining an understanding of some of the properties of the black 

ring solutions that will be considered in the following chapters. The black ring 

solutions don't exist in four dimensions, so it is more informative to examine the 

5D Schwarzschild solution, since this can be derived as a particular Umit of the 

black ring metric. In any event, the properties of the four and five dimensional 

Schwarzschild black holes are qualitatively similar, so there is little to be gained by 

describing the 4D solution separately. 

5.3.1 Geodesic Equations 

The 5D Schwarzschild metric in spherical polar coordinates is given by 
/ y\//\ 7̂-2 

ds' = - 1 - — d i - + ^ + r^{de^ + cos- e&ib- + sin- ddc})-) (5.23) 
\ r J (1 - T^j 

and the event horizon is where g'"' = 0 i.e. where the hypersurface described by 

r = constant is everywhere null. This is a simple calculation for the Schwarzschild 

metric, and in this case is given by r = M. Unfortunately, this particular value of r 

also represents a singularity in the metric, since = cx) at 7- = \ / M - This, however, 

turns out to be a coordinate singularity, so changing to a different coordinate system 

removes the singularity and allows the geodesies to be followed all the way to the 

true curvature singularity at r = 0. 

As in the Minkowski case, the easiest way to calculate the geodesies is to form 

the Lagrangian from the metric 

1 
^ = 2 

M \ P 
(5.24) 

It is obvious from this that 3^, and are killing vectors so the angular momentum 

in these directions will once again be set to zero. This leaves three equations for t, 
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r, and 9 

f = (5.25) 

9 = (5.26) 

r'- = [ ^ - ~ ] [ ^ - 4 ] + E \ , (5.27) 

w"here I is a constant corresponding to the angular momentum in the 9 direction, E 

is the energy, and e is as previously defined. To solve these equations it is necessary 

to consider two cases: / = 0 (no angular momentum) and / ^ 0 (angular momentum 

in the 9 direction only). 

5.3.2 Zero Angular Momentum Geodesies 

After setting / to zero, only equations (5.25) and (5.27) remain. These can then be 

combined to give a differential ec[uation for ^ in terms of r. 

T = . (5.28) 
dr (r2 - M ) ^ ( £ 2 + e)7-2 - e A / 

This equation can then be directly integrated to give an analytic solution for t in 

terms of providing care is taken to consider the different values of e. The minus 

sign on the right hand side has been chosen so that the solution will give ingoing 

geodesies. For null geodesies (e = 0) the solution is given by 
. - 1 ' 

t = - r + V M t a n h - ' \ ' ^^'^^^ 

For the timelike and spacelike geodesies, the solution is given by 

5.3.3 Geodesies with Angular Momentum in the 6 direction 

Having obtained a solution for the geodesies with zero angular momentum it remains 

to find the solution for non-zero values of /. In this case the equations given by (5.25) 

- (5.27) are combined to give two differential equations with t and 9 in terms of r 

^'-^ (5.31) 

(5.32) 

dr (r2 _ M) sJr\E^- + e) - r^{Me + P) + MP ' 
d9 /2 

dr ^r\E'- + e) - r2(Me + P) + MP 
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These equations can be solved analytically but the solutions give complicated func­
tions of ehiptical integrals, which don't lend themselves to any intuitive understand­
ing of the behaviour of the geodesies. A better idea is to consider the simphfied case 
where E is chosen such that the expression in the square root of the denominator 
reduces to a perfect square. .A.s will be seen later, this corresponds to the situation 
where the geodesic has the same energy as the peak of the centrifugal barrier. 

To achieve this it is necessary to choose different energies for the different geo­

desies. The critical energy for the spacelike and timelike geodesies is given by 

and the critical energy for the null geodesies is given by 

E = — ^ . (5.34) 

Substituting these values for the energy into equations (5.31) and (5.32) and solving 

for e = ± 1 gives 

f M - l ^ y r- / r \ 
^ + ^0 = e 71 77 r - e V M t a n h — = 

+ 17 Trvm ) tanh (5.35) M \P + eMj y s/2MP 

0 = ^ tanh ' ' . 5.36 

The corresponding equations for the null geodesies are 

t + to = r + / M t a n h " ' f - ^ ^ -2v /2Mtanh"^ f ^ ^ ^ (5.37) 

6 = -lV2t-Anh-' . (5.38) 

Although this set of solutions, for very specific values of energy, limits the explo­

ration of how the geodesies change with energy, they do provide a useful basis for 

comparison because they represent the minimum energy limit where a "particle" on 

a geodesic can overcome the centrifugal barrier and progress to r = 0 i.e. cross the 

event horizon and approach the curvature singularity. 

In order to get some feeling for how different energy values will alter the path of 

the geodesies it is helpful to calculate the pseudo-potential function for the geodesies. 
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This is achieved very easily for the Schwarzschild metric because of the form of 
equation (5.27). The equation of motion for a particle of unit mass in a Newtonian 
potential well V{r) is given by 

1 / d r^ ' 
, + V{r) = £ , (5.39) 

where £ is the total energy of the particle and /• represents the particle's position in 

the potential. If (5.27) is re-written as 

1.., I f 1 

then by comparison with (5.39), it can be seen that £ = and 

n ' - ) = - ^ N - M 1 - ^ , (5.41) 

thus allowing the pseudo potential for the Schwaxzschild metric to be drawn. Figure 

5.4 shows the potential plotted for different values of I and e. Substituting / = 0 and 

e = 0 into (5.41) shows that the zero angular momentum potential for null geodesies 

is given by V(/-) = 0, so it is not plotted in figure 5.4. 

The potential plots in figure 5.4 clearly show the centrifugal barrier getting big­

ger, for all values of e, as I is increased. The only exception is for the spacelike 

geodesies, where the barrier becomes infinite for / = 0. This is a consequence of the 

spacelike geodesies being repelled by the spacelike singularity in the Schwarzschild 

spacetime but this is overcome as soon as the angular momentum is increased from 

zero, which is why the barrier only becomes infinitely large for / = 0. The energy for 

which a particular geodesic is able to cross the centrifugal barrier and continue to 

r = 0, is given by the value at the peak of the barrier. Using the expression given by 

(5.41) to calculate the energy for which the geodesic will cross the potential barrier, 

gives the expressions calculated in (5.33) and (5.34) as previously mentioned. It is 

worth pointing out, however, that the potentials shown in figure 5.4 are equivalent 

to E'^, so the values on the vertical axes don't directly correspond to the energy of 

the geodesies. 
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Figure 5 .4 : Potential plots for the timelike, null, and spacelike geodesies respectively 
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5.3.4 Schwarzschild Penrose Diagrams 

The Penrose diagram isn't as easy to construct as for the flat space case because 

of the coordinate singularity at r — y/M. To avoid this it is useful to transform 

to Kruskal coordinates. These coordinates allow the whole of the spacetime to be 

plotted without encountering any coordinate singularities. To derive the Kruskal 

coordinates it is necessary to from two null coordinates as foUows 

U = -e'*-', y = e'•'+^ (5.42) 

where r* is the tortoise coordinate and is given by 

This transformation ensures that r* becomes infinite as r approaches r = VM. This 

effectively "stretches out" the space as the event horizon is approached, meaning 

that the event horizon is only encountered when r* = — cxo and thus circumvents the 

problem of the singularity at r = \ / M . 

Having defined the null coordinates U and V they can now be combined into a 

timelike and a spacelike coordinate (with the other coordinates given by 6, ijj, and 

^) 

T = i ( V ' + f / ) , R = l ^ v - U ) . (5.44) 

These coordinates allow the geodesies to be integrated over the event horizon without 

any problems but they need to be compactified in order to plot the Penrose diagram. 

This is done by going back to the null coordinates given in (5.42) and bringing them 

to within a finite coordinate range using the arctan function 

U' = tan- i (-e^*-') , V = tan'^ {e'"+') . (5.45) 

These coordinates can now be combined to give a set of one timelike coordinate and 

four spaeelike coordinates (T', i?', ^, •0, 0), where the coordinates of interest for the 

Penrose diagram are (T', R') 

r = ^ [ t an - i ( e ' - *+ ' )+ t an - i ( - e ' - ' - ' ) ; , 

R' = I [tan-^ (e'-'+') - tan"' ( -e ' " - ' ) ] . (5.46) 
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With these coordinates it is now possible to transform the geodesies calculated 

in the [t, r) coordinates to a global coordinate system that doesn't breakdown in 

the vicinity of the event horizon. The {t,r) coordinates are well behaved so long 

as they are restricted to either inside the event horizon (r < v ^ ) or outside of it 

(r > y/M) but in order to follow geodesies through the event horizon to r = 0 it 

wiU be necessary to consider the coordinates inside and outside the event horizon 

at the same time. This can be done so long as the extra imaginary parts, that 

are introduced upon crossing the pole at the event horizon, are kept track of. The 

imaginary part from the coordinate singularity can be calculated by considering null 

radial geodesies. This means that (5.28) becomes 

dt 
d^ 7-2 - M ' 

which can then be integrated over the geodesic path from r to ro, giving 

(5.47) 

t = to + ^ t a n h - ^ 
r'=T 

(5.48) 

where (to, TQ) gives the initial time and position. This equation is vahd for r < \fM 

and T > S/M separately but breaks down when considering ro and r on opposite 

sides of the event horizon. To resolve this, consider 

' = v / M - £ 

to + Mtanh ^ 
r-=ro 

r ' - \fM tanh~^ 

(5.49) 

where e is a small distance, ro is outside the event horizon, and r is inside the event 

horizon. This expression will reduce to (5.48) as e —> 0. Evaluating this expression 

and considering the terms that involve e gives 

t a n h - M ^ ^ U t a n h - ^ ^ ^ ^ - ^ 
M M e - 2 \ / M ' ^ ' 

Thus, taking the hmit as e 0 and writing out the expression in full gives 

t = to -h ro - r - \fM tanh - 1 0̂ -h ypM tanh ^ (5.51) 
'M) \ y / M j 2 

This shows that if the time coordinate is complexified and split up into a real 

Lorentzian part and an imaginary Euclidean part, i.e. t = ti -\- HE, then is 
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incremented by ^^^^ as each event horizon is crossed. The imaginary part of the 

complexified time coordinate can be thought of as an extra Euclidean coordinate 

because when —df/^ is formed the sign of dtg^ is positive, so it can be thought of 

as an extra spatial coordinate. Armed with this knowledge it is now possible to 

follow geodesies anywhere in the Schwarzschild spacetime by solving the geodesic 

equations in the r-t coordinates and then transforming to the Kruskal coordinates. 

Figure 5 .5 : Penrose diagram of Schwarzschild spacetime showing zero angular momentum timelike 

geodesies wi th the green, blue, and red curves showing the energy increasing from E = 1.1 to E = 3.1 

respectively, wi th the energy incremented by 1 each time. 

Figure 5.5 shows the zero angular momentum tirnelike geodesies for the Schwarz­

schild metric in the Penrose diagram. The right hand diamond represents the as­

ymptotically flat space outside the event horizon; the top triangle is the interior of 

the black hole, with the singularity represented by the dotted line at the top; the 

left hand diamond is a parallel asymptotically flat spacetime that is only accessible 

by spacelike geodesies; and the bottom triangle represents a white hole, which is 

similar to the black hole except that timelike and null geodesies can only move away 

from the singularity. 

Al l of the geodesies in figure 5.5 start out at past timehke infinity and then 

proceed to cross the event horizon before falling into the singularity at r = 0. The 

gradient of timelike curves is restricted to be less than one, since particles on timelike 

geodesies are restricted to move slower than the speed of light. This is reflected in 
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the shape of each of the curves as they all curve in the same direction before crossing 

the event horizon, after which dt becomes spacelike and dr becomes timehke, so the 

gradient becomes negative and the geodesies curve in the opposite direction. 

Figure 5 .6 : Penrose plot of Schwarzschild spacetime wi th zero angular momentum spacelike geodesies 

. The green, blue, and red curves show spacelike geodesies wi th energy increasing from E = 1.1 to 

E = 3.1 respectively, where the energy is increased in increments of 1. 

Comparing the behaviour of the geodesies with different energy, it can be seen 

that the curves with higher energy are longer, indicating that they take a longer time 

to cross the event horizon. This is exactly the same behaviour as would be expected 

for a particle in a Newtonian potential. The timehke geodesies should also approach 

the path taken by null geodesies as the energy is increased. This is indicated in 

figure 5.5 because the timelike geodesies with higher energy get closer and closer to 

straight hnes at 45°, which would represent the paths that null geodesies follow. 

Figure 5.6 shows the spacelike geodesies with zero angular momentum. These 

plots demonstrate how the parallel asymptotically flat region can be reached by 

following spacelike geodesies. The geodesies start out at spacelike infinity on the 

right but as they cross the future event horizon they are repelled by the singularity 

at r = 0 and are thus free to exit across the mirror event horizon and proceed to 

spacelike infinity on the left hand side of the Penrose diagram. 

The spacelike geodesies show many similar properties to the timelike geodesies, 

except that the spacelike geodesies are always moving faster than the speed of light, 
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so the gradient at all points on the geodesic has to be larger than one. This causes 

the geodesies to curve in the opposite direction to their timelike counterparts and 

also explains why they don't reach the singularity. 

As the energy is increased the space­

like geodesies slow down and approach 

the straight lines indicative of the null 

geodesies. This causes the spacelike 

geodesies with higher energy to take 

longer to travel through the space-

time. The higher energy geodesies 

are also able to progress further into 

the black hole interior toward the sin­

gularity at r = 0. Indeed, the E = 

3.1 geodesic appears to "bounce off" 
, , . Figure 5 .7 : The right hand half of a Penrose diagram the smgularity, but closer mspection 

showing timelike, null, and spacelike geodesies wi th en-
shows that although it gets close to ^ 

^ ergy £ = 1.02, f ; = 0.60 and £ = 0.18, in green, blue, 

r = 0 it never reaches it. This con- g^d red respectively All geodesies have been plotted 

firms what would be expected by ex- w i th angular momentum / = 1.2. 

amining the spaeelike potential in figure 5.4 - it would require an infinite energy for 

a zero angular momentum spacelike geodesic to reach r = 0. 

Increasing the angular momentum from zero causes a qualitative change in the 

shape of the geodesies. Figure 5.7 shows the Penrose diagram for the geodesies 

calculated in (5.36) and (5.38). The timelike geodesies are similar to those with 

zero angular momentum but the null and spacelike geodesies are very different. The 

null geodesies are no longer represented by straight fines, as they were in the zero 

angular momentum ease, and the spacelike geodesic now reaches the singularity at 

r = 0. 

The reason that the spacelike geodesic appears to be discontinuous is because the 

energy of the geodesic is exactly equal to the height of the centrifugal barrier. This 

means that it takes an infinite amount of time for the geodesic to go from spacelike 

infinity to the top of the centrifugal barrier; this is represented in the diagram by the 
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line section going from spatial infinity to timelike infinity. The red curve starting 

from past timelike infinity represents the case where the geodesic starts inside the 

centrifugal barrier, and thus is free to proceed through the event horizon toward the 

singularity at r = 0. The spacelike geodesic doesn't actually become timelike, even 

though it appears to on the Penrose diagram. This is because the plot suppresses 

the angular motion of the geodesic. The geodesic takes an infinite amount of time to 

reach the peak of the centrifugal barrier so it's motion becomes increasingly circular 

as ^ approaches zero, making the curve appear to be timelike as the geodesic 

gets close to the centrifugal barrier. In reality the motion is channelled into the 6 

direction. This can be seen from (5.32), where the angular velocity ^ —> cx) at the 

centrifugal barrier. 

The null and timelike geodes­

ies should also be represented as 

two curves but the region beyond 

the centrifugal barrier is asymp­

totically flat so the curves would 

just look the same as for Minkowski 

space. This is why only the curves 

representing timelike and nuU geo­

desies starting slightly inside the 

centrifugal barrier have been plot­

ted on the Penrose diagram. If the 
. . , , . , Figure 5 .8 : Timelike geodesies wi th angular momentum 

geodesies started exactly at the peak 
varying between I = 1 and / = | , and energy varying 

of the centrifugal barrier then = ^ 4 r, ^, 
between E = ^ and E = ^. The redder the colour, the 

0 and they would orbit in circles higher the angular momentum, and the greener the colour 

around the black hole. the higher the energy. 

In order to plot the diagrams for more general values of E and I it is simplest to 

solve the geodesic equations numerically for different values of E and /, and then use 

the coordinate transformations given by (5.46) to plot the Penrose diagram. Figures 

5.8. 5.9, and 5.10 show the Penrose diagrams for timelike, null, and spacelike geo­

desies with varying values of angular momentum and energy. None of the geodesies 
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in these cases manage to cross into the mirror region represented by the left hand 

half of the Penrose diagram so only the right hand half of the Penrose diagrams 

have been plotted. 

Figure 5.8 shows how increas­

ing the energy and angular mo­

mentum of the geodesies affects the 

shape of the geodesic. I f the en­

ergy is increased, whilst keeping 

the angular momentum constant, 

the curves tend to bow out more, 

while increasing the angular mo­

mentum whilst keej)ing the energy 

constant causes the curves to stay 

closer to null inf in i ty before curv­

ing back over more sharply. The 

combination of the two effects seems 
F i g u r e 5.9: Null geodesies with angular momentum vary­

ing between / = 1 and I = | , and energy varying between 

to arrange the curves into different E = ^ and E = ^. The redder the colour, the higher the 

'•spectra" w i t h the "ground state"" ang^'a'' momentum, and the greener the colour the higher 

the energy. 

defined by the energy and the "ex­

citations" dictated by the angular momentum. Although altering E and / corre­

sponds to changing different physical attributes of the geodesic the effect on the 

Penrose plot is qualitatively the same because increasing E or I serves to increase 

the proper time it takes for the particle to go f rom one point to another i.e. the 

geodesic between two points becomes longer, so i t has to take a more circuitous path 

to go f rom one point in spacetime to another. 

Figure 5.9 looks very similar to the Penrose diagram for the timehke geodesies. 

This is because the null geodesies represent the hmi t that the tinielike geodesies 

approach as their energy is increased. The nul l geodesies are no longer straight lines 

because they are moving in an extra dimension described by 6*, meaning that they 

wiU travel further to go the same radial distance as a similar nul l geodesic wi th zero 

angular momentum does. For the null geodesies the energy and angular momenta 



5.4. K e r r Geodesies 100 

have no independent meaning since substituting e = 0 in (5.41) reduces / to the role 

of an overall scale factor, however, the plots for varying angular momentum have 

been included to allow for comparison w i t h the timelike and spacelike diagrams. 

The spacelike geodesies shown in 

figure 5.10 show how the spacelike 

geodesies change w i t h energy and an­

gular momentum. The geodesies share 

the same "spectraF' organisation that 

the timelike and nuU geodesies do, 

w i t h the spacing between the geo­

desies reducing as the energy is in­

creased. Unlike the spacelike geo­

desic in figure 5.7 all of these geodes­

ies have sufficient energy to overcome F i g u r e 5.10: Spacelike geodesies with angular mo 

mentum varying between / = 1 and I the centrifugal barrier so there is a 

complete curve going f rom spacelike 

infinity, through the event horizon, 

to the singularity at r = 0. 

ergy varying between E I and E 

| , and en-

The redder 

the colour, the higher the angular momentum, and the 

greener the colour the higher the energy 

5.4 Kerr Geodesies 

The Kerr metric describes a black hole w i t h S"^ topology, like the Schwarzschild met­

ric, but this time the black hole is no longer static but spinning in the 0 direction, 

w i t h angular momentum per uni t mass given by a. The addition of angular momen­

t u m in the 0 direction means that the spaeetime is no longer spherically symmetric 

i.e. the spacetime is foliated by oblate spheres rather than the perfect spheres of 

the Schwarzschild solution. This means that the spacetime varies w i t h varying 6, 

so i t is more diff icul t to visualise than the Schwarzschild black hole. Indeed, in 

order to fa i th fu l ly represent the motion of the Kerr geodesies i t would be necessary 

to incorporate the 6 coordinate in the diagram, but 3D cross sections of the Kerr 

solution aren't conformally flat, so the 9 coordinate can't be incorporated in the 
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same way as the t and r coordinates. Fortunately, most of the interesting features 
of this spacetime are described by the variation in t and r , so the 6 dependence can 
usually be ignored. 

5.4.1 Geodesic Equations 

The metric for the Kerr spacetime, in Boyer-Lindquist coordinates, is given by [56 

ds- = i : ( ^ + d9-] + ( r - + a^) sin^ 9df- - dt' + sin^ 9dcP - dt)^ . (5.52) 

where M is the A D M mass and 

S = r - + a^cos^^ , (5.53) 

A = - 2 M r + a" . (5.54) 

This space has two event horizons where the Ki l l ing vector = K'^ + Q.HR^ 

becomes nul l and K^^ = dt.., R*^ = 3^. and fi// is the angular velocity of the black 

hole. The radii where this occurs can be calculated by considering where g'''' = 0, 

and g" is given by 

/•^ = § • (5.55) 

Assuming that a < M gives two solutions 

r± = M ± v/M2 - a2 . (5.56) 

I n this metric the curvature singularity is no longer given by a constant r hy-

persurface because the singularity is where E = 0 and E is a function of both r 

and 0. Fortunately, E is the sum of two non-negative terms, and cos- 9, so the 

curvature singularity w i l l be where both terms go to zero. A cursory examination 

finds that this is when r = 0 and ^ = f • 

The increased complexity of the Kerr metric means that i t is easier to derive the 

geodesic equations using the Hamiltonian formulation. To derive the Hamiltonian, 

form the Lagrangian 

C = ^g,.x^x^ . (5.57) 
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Choosing r = mA normalises this equation so that the first integral of the geodesic 
equation is given by 

g^j^^x^x" = -m- , (5.58) 

where m is the mass of the test particle. Using (5.57) i t is now possible to calculate 

the conjugate momenta using 

= Ht.ui'" = ^ (5.59) 

and thus the Hamiltonian 

H = ^g^'p.Pu • (5.60) 

Since (5.52) has two Ki l l ing vectors di and 5<p the corresponding momenta must be 

constants of motion, giving 

Vi = -E., P<* = / . (5.61) 

This leaves only two momenta to calculate f rom the Lagrangian 

Pr = | r pe = ^e. (5.62) 

To obtain the equations of motion for the geodesies, use the Hamilton-Jacobi equa­

t ion 

g'"'p^p,. + 7n' = 0, (5.63) 

where p^ can be calculated using 

a sm 6 -

and 5 is the desired action. Calculating (5.63) for the Kerr metric gives 

(5.65) 

Af te r substituting for pt and p^, f rom (5.61), this equation can be separated into 

terms only involving r and terms only involving 9. Doing this gives two equations 

as follows 

Apf. + 7V - ^ [(r^ + a^)'^E~ + aH' - AMarEl] = -K , (5.66) 

p^ + - ^ + m2a-cos-^ + £ ; V s i n ' ^ = K . (5.67) 
sin 9 
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where K is the separation constant. 

Seeing as the Hamilton-Jacobi equation is separable i t is possible to express the 

action as 

S = j prdr + jped9 - Et + l(p + ^ m V , (5.68) 

where the constants of motion are given by m^, E, /v, I and the eciuations of motion 

can be derived by differentiating wi th respect to them. Following through this 

procedure gives the four equations of motion 

dt 1 
dr A E 
dr Apr 
d^ ^ ^ ' 
M _ PQ 
dr ~ E ' 
d<p 1 

'{r~ + a^)^E + 2MTa{aEsm^9-l)] , (5.69) 

(5.70) 

(5.71) 

•E/ + 2 M r ( a E s i n - ^ - / ) ] . (5.72) 
dr A E sin'-̂  9 

These equations can all be solved in their present form but for practical purposes i t 

is more convenient to remove the dependence on r by dividing each of the equations 

by (5.70). This gives three differential equations for t, 9, and (j) 

^ = -^\(r^+a-)EE + 2Mra{aEsm^9-l)] , (5.73) 
dr A^Pr 
d9 pe 
dr Apr ' 
d^ 1 

(5.74) 

'U + 2Mr{aEsm^9 - I)] . (5.75) 
dr A^pr sin^ 9 

These equations can all be solved analytically but the solutions aren't particularly 

concise. In practice the geodesies have to be solved numerically. 

To get some idea of how the geodesies w i l l behave i t is advantageous to construct 

a potential funct ion for the r and 9 directions. I n the r direction, this is carried out 

in much the same manner as for the Schwarzschild metric but there is a complication 

due to the non-trivial way in which the motion depends on 9. For the Schwarzschild 

metric a I D potential was constructed in the fo rm of 

1 /dr\~ 

- ( - ) + V M = £ (576) 

and then compared w i t h the radial geodesic equation to ascertain the potential. 
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0.5 

V(r)-^ 

F i g u r e 5.11: Radial potential for a timelike geodesic with ^ = 0, a = 0.6, K-a^, Af = 1, / = 0, and 

E = 1.2 

Constructing the analogous expression for the Kerr metric gives 

1 f dr \ A'̂ p2 (̂ 2 ^ ^^2)2^2 ^ ^2;2 _ ^2^2^ _ AMarEl - KA 

2 y d r ) 2E^ 
= £-V{r,9) . 

(5.77) 

There are two problems wi th this expression i f i t is to be used to derive an 

effective potential. Firstly, the energy dependence E is imphcit, since there are terms 

w i t h E"^ as well as E. The way to avoid this dilemma is to consider the difference 

between the energy and the potential, £ - V, rather than just the potential. This 

means that the energy of the geodesic is insufficient to cross the potential barrier 

when (5.77) goes to zero, rather than when the potential is equal to the energy of the 

geodesic. Considering the difference between the energy and the potential basically 

means that the potential plot has been translated vertically downwards by E. 

The second problem w i t h (5.77) is that the potential no longer solely depends 

on r. This would consequently require a 3D plot of the potential, showing how the 

potential varies w i t h r and 9. This wouldn't be very useful, however, as i t usually 

isn't obvious what value 9 w i l l take at a particular radius - i t would have to be 

calculated f rom (5.74). Not everything is lost though because where the energy of 

the geodesic is equal to the effective potential 8 — V = 0, which is only true when 

the numerator of (5.77) goes to zero, so is independent of 9. 

The potential given by (5.77) can be used to calculate the potentials exactly in 
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V ( ^ ) , 

0.02 

-3 -2 

F i g u r e 5.12: A graph of the pj potential for a timelike geodesic with a = 0.6, K=a'^, M = 1, I = 0, 

and E = 1.2 

the special case where ^ = 0. I n this case the 9 coordinate is always the same so 

can be substituted into (5.77) to show exactly how the potential varies. Figure 5.11 

gives an example of this for a timelike geodesic. The curve crosses the r axis at 

-0.081, so a massive particle fall ing into the black hole, w i t h its angular momentum 

chosen so that ^ = 0, would only have enough energy to reach r = —0.081 before 

i t reversed its direction and proceeded back through the event horizon. 

To analyse the motion in the 9 direction i t is less useful to plot the potential 

funct ion for the 9 coordinate because i t is also dependent on r, which has an over­

riding effect on the shape of the potential. However, as in the radial case, i t is s t i l l 

possible to calculate where ^ = 0 and thus where 9 changes direction by calculating 

where the potential funct ion goes to zero. For the 9 direction the potential funct ion 

is given by 

1 P 
8-V = K - n?a^ cos- 9 - E'^a^ sin^ 9 2„2 (5.78) 

2E2 V " sin^^ 

The r dependence is only in the denominator, so by considering where the nu­

merator goes to zero gives the value of 9 at which 9 changes direction. This potential 

can also be used to calculate values of 9 that w i l l produce quasi-radial curves i.e. 

where 9 remains constant for all values of r. The two conditions that have to be 

satisfied for this to occur are 

P^(^o) = 0 , (5.79) 
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= 0 , (5.80) 

where OQ is the ini t ia l value of 9 for which i t subsequently remains constant. This 

physically corresponds to a particle being at either the maximum or minimum of 

the potential and not having any energy to displace itself. This is easily seen by 

examining a plot of -pj i.e. V — £. 

The PI plot corresponding to the same geodesic as plotted in figure 5.11 is shown 

in figure 5.12. From this plot i t is obvious that 9 wiU remain constant if 9o = 0. 

Furthermore, since pj is linearly dependent on K, i t is easily seen that the quasi-

radial curves for K = f + E-a? w i l l be when 9Q = ± f . 

5.4.2 Illustrating Kerr Geodesies 

Once the geodesic equations for the Kerr metric have been solved it is possible 

to plot them so that their behaviour, as the parameters are varied, can be easily 

contrasted. In principle the Kerr geodesies can be plotted on a Penrose diagram, 

as the Schwarzschild geodesies were in the previous section, using the Hayward 

coordinates of section 2. These coordinates are basically a generalisation of the 

Kruskal coordinates to the case where the black hole is spinning in the 4> direction, 

so the (p coordinate has to be transformed even though it doesn't explicitly appear 

in the construction of the null coordinates. 

Wr i t ing out the new coordinates (that w i l l be used to construct the Penrose 

diagram) explicitly gives 

where 

t* = t~asm9 (5.82) 

and 

r = 

These coordinate transformations can then be used to draw the geodesies on the 

Kerr Penrose diagram, after solving (5.73) inside and outside of the event horizons. 
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Figure 5.13 shows a sample timelike geodesic when i t is plotted on the Penrose 
diagram for the Kerr metric. The Kerr metric has two horizons so the test particle 
on the timelike geodesic starts in the bot tom right hand diamond, crosses the outer 
horizon, passes through the middle diamond representing the space between the two 
horizons, and then proceeds to cross the inner event horizon before coming to rest 
at r = 0. In this case the particle stops at r = 0, rather than h i t t ing the singularity, 
because 6' = 7 r / 4 a t r = 0. 

I t is immediately obvious f rom the left hand plot of figure 5.13 that there is a 

problem w i t h the particular coordinate transformations used. Although the Hay-

ward coordinates are perfectly good for following particle trajectories across an 

individual event horizon they breakdown when the particle approaches the other 

horizon. This means that the geodesic has to be plotted on two dift'erent patches: 

one covering the region outside the inner horizon and one covering the region inside 

the outer horizon. In each ease K has to be chosen to ensure that the coordinates 

don't break down on the horizon wi th in each respective patch. 

This particular problem is exemplified in figure 5.13 because the two lines, repre­

senting the same geodesic, don't match up at all in the region between the two hori­

zons but both lines cross their respective event horizon without anything untoward 

happening. I t is possible to make the lines in the two patches jo in up by judicious 

selection of the constant of integration in the definition of r *. which amounts to 

shift ing the origin of the r* coordinate. Unfortunately, this doesn't ensure that the 

gradients of the two lines match up and there doesn't appear to be an obvious way 

to adapt the coordinate transformations so that they do. The only case when the 

gradients of the two lines w i l l match up is when = 1^2 i e. when the two horizons 

are degenerate. 

The right hand plot in figure 5.13 gives an approximation of the true geodesic to 

give an idea of how the geodesic would look i f the two coordinate patches could be 

made to match up completely. The two lines have been joined up by translating the 

coordinate patch across the inner horizon and then splicing the two fines together 

at about the half way point between the two horizons, where the patches overlap. 

Since the gradients of the two lines are never actually equal this has introduced a 
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F i g u r e 5.13: Both plots show a timelike geodesic with M = 1, a = V2/2, E = 1, I = Q, and 

K = 1/2. The left hand plot shows how the geodesic looks when plotted for the two different 

coordinate patches and the right hand plot gives an approximation of the Penrose diagram when the 

two patches are shifted so that they join up in the region where they overlap. 

slight kink into the plot of the geodesic, which can be seen at the half way point of 

the middle diamond. 

Although this method does give a fairly pleasing curve, and also allows the 

famihar Penrose diagrams to be used, it is clearly an unsatisfactory method for 

plot t ing the geodesies since the two curves have essentially been joined up using 

guesswork. Clearly a completely different method is required i f geodesies that cross 

both horizons are to be plotted. A better coordinate system would be one that 

allows any geodesic to be drawn on the same coordinate patch without constraint. 

This can be at least partially realised using a method devised by Klosch and Strobl. 

The basic idea of the Klosch Strobl approach is to describe any metric of the 

form 

d,s'̂  = h{r)dt' - 7 - - d r ' - r^dQ 
hir] 

(5.84) 

using a single global system of coordinates. There already exists a global coordinate 

system for the Schwarzschild metric, but this approach allows similar coordinate 

charts to be found for other metrics that are of the above form. This is achieved by 

considering the most general possible solution to the 2D gravity action, wi th in the 

restrictions of the gauge conditions, and then choosing the remaining functions so 

that the general solution locally reduces to the required metric (5.84). 
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The metric given in (5.84) is reduced to a 2D metric by concentrating on the 
non-kihing directions, namely the t and r' directions. This means that the metric 
can be re-written as 

ds' = g- r-dVt . (5.85) 

The 2D action is given by 

5[.g,0] = - 1 / 2 I d - x V - d e t p [ 0 i ? - V[(j))] , (5.86) 

'M 

where g is a Minkowski metric on a 2-manifold, R is the Levi-Civita curvature scalar, 

is a scalar function on the manifold, and V is a smooth potential. The 2D action 

can be re-written in an Einstein-Cartan formulation as 

S[e\u.,il}a..(p\ = J'tpaDe"+(i)duj-W{(P)e+Ae- , (5.87) 

M 

where (a 6 { + : — } ) is the zweibein, e^^cj is the spin connection, -tpa are the 

Lagrange multiplier fields, and the metric is given by g = 2e+e". 

Any local solution to (5.86) can be given by 

g = h{r)dt' - - f - d r 2 , (5.88) 
h{r) 

with V given by 

V = h'{r) . (5.89) 

This fixes the potential in (5.87) so that i t describes the required metric given by 

(5.84). Having fixed V{(p) there is s t i l l considerable gauge freedom, so i t is possible 

to choose a solution to (5.87) that gives the metric in light cone gauge 

ds- = 2dx°dx' + fc(.T°,x>)(dx^)2 . (5.90) 

A simple choice for the zweibein that brings (5.87) into this form is 

e+ = dx^ , e" = dx° + hdx' . (5.91) 

The function k is determined by the equations of motion of (5.87) in terms of two 

other functions F ( x ' ) and G ( x ' ) 

, 2 F V ) x ° + G-(x ' ) , M F ( x ^ ) x ° + G ( x ' ) ) 
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and also 

(f) = F{x^)x° + G{x^] . (5.93) 

The functions F ( x ' ) and G{x^) aren't completely unrestricted, the eciuations of 

motion give two constraint equations 

M G | f ( . x . ) = o ) = 0 (5.94) 

and 

F'{x') \ri:rA)=o= -^ViG |^(,.)=o) = - \ h ' i G |^(.,)=o) . (5.95) 

Remarkably these are the only constraints on the two functions, apart f rom requiring 

that they are smooth functions of x^. 

To show how k{x^,x^) relates to the starting metric (5.84), manipulate the re­

maining gauge freedom to make 

k{x°,x') = h{x^) (5.96) 

locally. This means that for each value of x^ the global metric can be reduced to 

the local metric given by (5.84). 

The metric given in (5.90) is unaffected i f an x^ dependent linear transformation 

is applied to the affine parameter x° and then compensated by a diff'eomorphism in 

the x^ variable i.e. 

x' = f i x ' ) . (5.97) 

Ultimately, i t is only necessary to be concerned wi th how the metric looks for a 

constant value of .x' since the desired metric (5.84) is only dependent upon a single 

variable. I f the transformations given by (5.97) are substituted into (5.93) they 

suggest the following transformations for F (x^) and G{x') 

^^^•^ ^ ^^W' " ^^""^ " ^^^^""^^ ^ n f i x M x ) . (5.98) 

A quick examination of (5.92) reveals that the simplest way to achieve the equiv­

alence given by (5.96) is to transform F ^ I and G —> 0. I f / ( .x) is chosen so that 

i t solves the differential eciuation / ' ( x ) = F { f { x ) ) then (5.98) indicates that F ^ 1. 
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The choice f { x ) = x thus fulf i l ls this requirement. Furthermore, combining f { x ) = x 
wi th l[x) = —G{x) gives G{x) —> 0. This also has the by-product of transforming 
0 x° . To recover the metric given by (5.84) a further diffeomorphism is required 

= x- + / ^ . (5.99) 

The obvious l imi ta t ion of the Klosch Strobl method is that i t can only deal w i th 

spacetimes that can be described by a 2D metric plus some other non-interacting 

part. To apply this technique to the Kerr metric (5.52), i t has to be reduced to a 

2D metric plus some symmetric part. This can be achieved by only considering the 

geodesies where ^ = 0. As previously described, geodesies that start at ^ = 0 don't 

deviate in the 9 direction, which greatly simplifies the metric to give 

, 2 r- + a' - 2Mr , ^ (r^ + a') 
ds ' = dt^ - — d r - . 5.100 

r~ + a- r^ + a? - 2Mr ^ ' 

This is already of the form given in (5.88) i f 

, r2 + a 2 - 2 M r 
h = ^ 5 , 5.101 

which has two simple zeros at 

r± = M ± - 0? . (5.102) 

To determine the functions F{x^) and G{x^) that satisfy the gauge conditions given 

by (5.94) and (5.95), label the zeros of F by = UTT (n G Z) and thus choose F[x}) 

to be of the form 

F(x^) = Q ( x i ) s i n x ^ (5.103) 

Having chosen this form for the zeros, the constraint equation given by (5.94) 

demands that G(x^) be of the form 

G{x') = ! ± ± I z - ! ± ^ c o s . x i 
2 2 

— 0? cos X . (5.104) 

The other constraint equation (5.95) now demands that Q(n7r) = | / i ' ( r _ ) = a_ for 

n even and ain-n) = ^/i'(r_,_) = q + for n odd. A simple choice for a is then given by 

a ( x i ) = C i + C 2 C o s x ^ (5.105) 
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where C ] = |Q;_ + and C2 = - a+ i.e. 

Having established the functions F(x^) and G(x^) that satisfy the equations of 

motion, A;(x°,x^) (and thus the metric in the global coordinate system) can be 

found by substituting into (5.92) and (5.90). 

To make contact with the Kerr metric given in (5.100), calculate the local trans­

formation that will convert the global coordinates (.x°,x') into the time and radial 

coordinates { t . r ) . For clarity it is useful to re-label the global coordinates so that 

x ' —> X and x° —> y. 

As before, to get from the global coordinate system to the local one, transform 

F(x) 1 and G{x) —^ 0. As shown previously, this automatically makes cf) ^ y 

which yields the first transformation 

.̂ o = 0 = F(x)y + G(x) . (5.107) 

The differential equation for the transformation F(x) 1 was given earlier by 

f'{x) = F ( / (x ) ) = (Ci +C2C0s(x))sin(x) , (5.108) 

where the second equality is given by (5.103) and (5.105). Solving this differential 

equation for / ( x ) gives 

Ci ln ( tan | )+C2ln(2Ci -F2C2Cosx) -C2ln(s in .x ) 

•̂ •̂̂ •̂  = ( C , ^ C 2 ) ( C . - C 2 ) • ^ ' - ' " ' ^ 

The transformation F ^ 1 is also satisfied by / ( x ' ) x' which implies 

, C ] l n ( t a n | ) + C o l n ( 2 C i + 2 C 9 C O S X ) - C 2 l n ( s i n x ) 
= ( c . + c 3 ) ( c . : c . ) ^ 

Note that x^ k x° are now local coordinates rather than the original global coordi­

nates. 

The transformations (5.99) are then used to recover the desired metric (5.100). 

These are explicitly given by 

r = .x°, (5.111) 

t = x^+.x° + Mln( .x° ' + a ' - 2 M . x ° ) 
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Unfortunately, because (5.110) cannot be inverted, there is no way to transform 
f rom the local coordinates to the global coordinates. This means that the geodesies 
of the global metric (5.90) have to be calculated in the {x,y) coordinates. In these 
coordinates, the first integral is given by 

where 0 = F{x)y + G{x) and e determines the nature of the geodesies as before. 

The other geodesic eciuation, required to solve for x and y, is 

A / / ( 0 2 - a 2 ) \ ± 

In order to construct a Penrose diagram for these coordinates i t is necessary to 

isolate the null directions in terms of the global coordinates (x, y). I t is obvious that 

x^ = constant is one null direction, due to the form of the metric, but the other null 

direction isn't .so simple to calculate. I t is given by the solution to 

f2d^(b hid)) \ 
2 y + - - ^ + - ^ 5.115 

\F{x) F{x)-J 

which cannot be separated because 4> is a funct ion of y as wefl as x. This means 

that the transformation into the form required to construct the Penrose diagram 

can't be wri t ten down explicitly. Furthermore, the geodesic equations (5.113) and 

(5.114) have to be solved numerically because there is no obvious way to separate 

them. 

The radial curves in the new coordinates are easy to calculate because they are 

given by the fines of constant 0. This can be seen f rom the transformations given by 

(5.107) and (5.111). The radial curves have been drawn in figure 5.14, w i t h the hue 

of the colours varying to indicate the diff^erent radii . The three dotted lines f rom 

left to right are: the outer event horizon, the inner event horizon, and the origin 

r = 0. The nature of the coordinate transformations means that there are an infinite 

number of repeating, causally separated coordinate patches, that stretch f rom -oo 

to -l-oo along the x axis. Figure 5.14 only shows the two patches that make up one 

cycle. 

Figure 5.15 shows a sample timelike geodesic in the {x.y) coordinates. The 

timehke geodesic is in red, wi th the blue, purple, and green fines showing the radial 



5.4. K e r r Geodesies 114 

F i g u r e 5.14: Radial curves in the Klosch Strobl coordinates. The colours get darker with increasing 

r and r ranges from 0.08 to 1.82 in increments of 0.25. 

3 

S __r :2___^ -1 

-1 

_2 

1 - 1 2 3 

F i g u r e 5.15: Timelike geodesic starting out at 2M and falling inward through both the event horizons 

and through the centre of the ring singularity at r = 0 
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curves corresponding to r = r^, r = r_, and 7 = 0 respectively. Tlie dotted lines 
are the null extremals given by x = constant. The timelike geodesic starts out 
at r = 2M and then falls through both the inner and outer event horizons before 
passing through r = 0. The radial curves help to illustrate the direction of motion 
of the timehke geodesic as well as indicating the causally accessible parts of the 
coordinate patch. 

Using the Klosch Strobl technique allows the on-axis Kerr geodesies to all be 

plotted on a single coordinate patch, and thus avoids the problems of the Penrose 

diagram approach. Unfortunately, it isn't immediately obvious how this approach 

could be generalised to include more general classes of geodesies. This would obvi­

ously require more work to find out whether this would be possible. 



Chapter 6 

Black Ring Geodesies 

Given all that is known about the geodesies of the Kerr black hole it seems logical to 

go on and investigate the corresponding situation for Black Rings to see whether any 

of the properties of the Kerr geodesies are shared by those of the Black Ring. The 

physical properties of the neutral rotating Black Ring solution have been extensively 

studied in papers such as [61] and [26] but very little is known about the geodesies 

associated with this metric. There has been some rudimentary work in some papers 

such as [62], [63] and [64], but the geodesic calculations are very much secondary 

to the other facets under consideration. The calculations in these papers were very 

restricted in their application, so one would expect more general classes of geodesies 

to be more complicated. The results given in this chapter are based on [65 . 

The Black Ring has horizon topology 5^ x S^, as opposed to the 5'̂  topology 

of the 5D Kerr horizon, giving greater scope for interesting classes of geodesies. 

This chapter explores these different situations as well as seeing whether any of the 

special classes of Kerr geodesies described above can be reproduced in the Black 

Ring metric. The toroidal nature of the Black Ring means that there won't be 

any spherical orbits, but the analogous situation, where the geodesic remains at a 

constant distance from the event horizon, will be examined. 

Some work has been done on the geodesies of the doubly spinning black ring 

metric in [66]. In this paper, Durkee mainly concentrates on the zero energy null 

geodesies in the ergoregion, as it is possible to separate the Hamilton-Jacobi equation 

of motion in this region to get two equations of motion for the evolution of the x 
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and y coordinates separately. He shows that these zero energy particles will bounce 
back and forth inside the ergoregion with the bounds of the motion determined by 
the angular momentum in the (p direction. 

Durkee also gives a brief exposition on the geodesies along the two rotational axes 

of the doubly spinning black ring. In this case, the geodesies along the -0 axis of 

rotation are analogous to the geodesies along the y = —1 hne of the singly spinning 

ring, explained in this chapter. It is also concluded that the geodesies corresponding 

to motion along the (j) axis of rotation do not exhibit any cjualitatively different 

behaviour to those on the ijj axis. 

This chapter, on the singly spinning ring, is divided into 5 main sections: sec­

tion 6.1 derives the geodesic equations for the Black Ring metric and presents the 

conserved quantities associated with the symmetries of the metric. The remain­

ing sections 6.2 through 6.5 investigate some specific classes of geodesies where the 

equations of motion become separable. Section 6.2 investigates the case where the 

geodesies are confined to the rotational axis of the ring, section 6.3 describes the 

geodesies that orbit at a constant radius in the equatorial plane of the ring, section 

6.4 looks at the case where the geodesies are restricted to move along circles of 

constant radius through the ring, and the final section calculates which classes of 

geodesies can perform "pseudo-radial" motion. These geodesies are the analogue of 

radial curves in, for example, the Schwarzschild spacetime, but in the Black Ring 

coordinates the rotation of the ring means that these "pseudo-radial" geodesies have 

to rotate in the same direction as the ring. 

6.1 Geodesic Equations and Conserved Quanti­

ties 

To obtain the geodesic equations of motion, the following lagrangian is formed 

C = 
R'Fjx) 

2{x - yf 
F{y) ( . CR{l+y) 

i — ' ( A 2F(.t) V F{y) 
(6.1) 

2 
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The conjugate momenta can then be calculated using 

Ptj. = Qnui" (6.2) 

It is obvious from the form of (4.1) that there are three Killing vectors given by 

dt^ d^p, and dtp. This means that the momenta in these directions will be conserved, 

giving 

R^F{x)x 
(6.6) 

_ R^F{x)y 

- G{y){x-yr ^^-'^ 

where E is the energy, and i and ^' are the constants associated with the angular 

momenta in the (/> and ip directions respectively. The momenta in the x and y 

direction have also been included for future reference. 

Unfortunately, these conserved ciuantities aren't sufficient to allow the equations 

of motion to be separated immediately. The easiest way to check whether the 

equations can be separated is to consider the Hamilton-Jacobi equation 

9''P^.P. = -m- (6.8) 

Calculating the inverse metric components from (4.1) and substituting into (6.8) 

gives 

K ( , ) . X W = ^ ( ^ - ™ = ) ,6,9) 
(x - yy V F{y) J 

where Y{y) and X{x) are given by 

Giy)\R F{y) ) ^'-'"^ 
f-F{x) G{X)PI 

^^"^ = W G W ) ^ ^ ^ 

The right hand side of equation (6.9) indicates that the Hamilton-Jacobi equation 

can't be separated for arbitrary values of the constants of motion but if £" = 0 and 
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m = 0 then the function on the right hand side will go to zero, allowing the equation 

to be separated out into terms involving only x and y. 

These particular values of E and m correspond to null geodesies that don't move 

relative to the space. In the case of the black ring, this means that the geodesies will 

rotate with the ring, but won't move in the x, y, or 0 directions. Null geodesies with 

E = 0 aren't physically realisable, but this does provide a way to check whether the 

numerical solutions to the equations of motion are consistent. 

Applying the variational principle to (6.1) gives three ecjuations of motion for 

the Killing directions as per equations (6.3)-(6.5). The remaining two equations of 

motion are calculated by varying with respect to x and y respectively 

f { x - yy-G'{x) 
H{x,y)-J{x) 

H{y,x)-J{y) 

2R^G{x)^ 
{x-yy'[ECR{l+y) + ^F{y)f 

RF{xr-G{y)F{y) 
G'{y)F{y) EC{\ - \) 

(6.12) 

where 

(c -

I 2RG{y) ECR{l+y) + yl>F{y) 

C G'iOC- [F{0 + F{y)]e 

(6.13) 

G(C) 2G(C)^ 2F(C)G(C)(C-r?) 

[F{x) + FiOH [F{0 + F{y)W 
+ 

'j^-y 
R^F{x) 

G(C)F(x)(C-r7) 2F(C)G(r;)(C-r?) 

[ECRjl +y) + <^F{y)f [F{y) + F(C) - \{x - C)] 
2F{x)F^y)G{y) 

(6.14) 

G{x) + 
E'~\ 

2F{y) 
(6.15) 

These two equations have been expressed in terms of the conserved ciuantities by 

substituting for 0, '0, and i from equations (6.3)-(6.5). In certain circumstances it 

is also useful to use the first integral of motion, which is given by 

R^F(x) 
{ x - y y yG{x) G{y)J 

e \ ^ e { x - y f E^F{x) 
R'-Gix) F{y) 
{x-yf[RE{\+y)C+<i!F{y)f 

F{x)F{y)R^~G{y) 
= e (6.16) 
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where e determines the nature of the geodesies as 

— 1 timelike 

e = < 0 null 

+1 spacelike 

As previously mentioned, equation (6.9) isn't separable in the general case, so 

the following four sections consider some special eases where either x or y remain 

constant throughout the geodesic's motion. These specific cases give the limiting 

behaviour of geodesies in different parts of the space with varying angular momenta 

and energy. They can then be used to give a good idea of how the geodesies behave 

when their initial conditions are similar to any of the eases examined in sections 

6.2-6.5. As the initial conditions are varied away from these Hmiting eases, the 

behaviour of the geodesies gradually breaks down until the motion is completely 

dissimilar. 

6.2 Geodesies Along the Rotational Axis of the 

Ring 

The geodesic equations, as they are presented in equations (6.3-6.13), are too com­

plicated to analyse straight away. In order to reduce the complexity of the problem, 

it is necessary to look for certain values of the initial conditions and conserved quan­

tities that simplify the equations. The most obvious way to do this is to look for 

initial values of y that solve G(j/o) = 0. The reasoning behind this is easiest to see 

by multiplying (6.16) by G{y) and then choosing y = j/o to be a root of G{y), so 

that G[y) —»• 0. The remaining terms are then given by 

R^F{x) {x-y,Y[RE{l+y,)C + ^F{y,)f _ 
{x-yo?^ F{x)Fiyo)W- ^^-'^^ 

From this equation it is obvious that the velocity in the y direction, given by y, will 

be zero if the second term is zero. G{y) is already a fully factored cubic function 

with three real roots, so the solutions of G{y) = 0 are given by: yo = ± 1 , — ̂ . The 

y coordinate is necessarily constrained such that — oo < j / < — 1, which reduces the 
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possible values for j/o to —1 or — ^. Fortunately, yo = —1 will cause the second 
term in (6.17) to go to zero, provided ^' = O'. The hne y = —1 represents the axis 
of rotation of the ring, so it is not surprising that the equations of motion become 
considerably simpler along this line. 

Ensuring that the initial value of y is zero will make sure that the geodesic 

doesn't move away from y = —I immediately but, for the geodesic to remain on the 

hne y = —I, y also has to be zero for all subsequent times. To check that y = 0, 

multiply (6.13) by G{y) and substitute y = 0. This gives 

jx-y) [RE{l+y)C + ^F{y)Y 
2R^F{x) 

F{y)G'{y){x-y) , , ' 
+ 2F{y) - X{x - y) 

R^F{yy-F{x)y ECjx - y^jl - X)[RE{1 + y)C + ^F{y)] 
WW) ^'-''^ 

At first glance it looks hke substituting y = —I and ' I ' = 0 will ensure that y = 0 

but the G{y) factor in the denominator of the first term causes problems because it 

doesn't cancel with all the terms in the numerator. More specifically, there will be 

a term of the form^ 

which wiU be indeterminate when y = - 1 , due to G{y) —> 0. To take the limit as 

y —I, \t is necessary to express G{y) explicitly as G{y) = (1 - y){l + :(y)(l + i^y)-

Expanding the numerator as well gives 

il + yy- 2{l + y)^F{y) ^^F(:;,)'^ 
{l-y)(l+y){l + uy) ' {l-y){l+y){l + uy) ' {I - y){l + y){l + i^y) 

It is now obvious that the first two terms will go to zero in the limit as — - 1 

but the only way to ensure that the third term doesn't blow up is to define ' I ' = 0. 

Since, y = —I corresponds to the axis of rotation of the ring, one would expect that 

^ would have to be zero because the angular momentum of the particle is zero when 

it is on the axis. This can be quickly verified by substituting y = —1 into (6.5). 

' I t also appears tha t ^ and E can be chosen to effect the same outcome for y = but , as 

w i l l be seen later, has to be set to zero i f G{y) = 0. 

•^The fo l lowing analysis is s l ight ly cavalier. A more detailed analysis of the singularities caused 

when y = - 1 is given i n Append ix C 
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Equation (6.20) also explains why y = can't be used as an initial condition 

because, from (6.17), y can't be made to go to zero while ' I ' = 0, unless y = -1. 

Furthermore, the line y = corresponds to the event horizon, so this possibility 

can be excluded on physical grounds. 

Having ensured that ij = 0 for all motion along the axis of rotation, it is now 

much simpler to calculate how the geodesic varies in the x direction. The x evolution 

is calculated by substituting y = 0 and y = —I into (6.12) and then integrating it 

numerically. Before doing that, it is helpful to calculate an effective potential for 

the motion along the axis to get some idea of the allowed motion. 

To calculate the effective potential substitute y = 0 and y = —I into (6.16). 

Rearranging and expressing in terms of pj. now gives 

G{xr- ( I + I P G W ( I + 1 P G ( X ) ( 1 - A ) * ' 

This form of the equation can be compared with the equation of motion for a classical 

particle, with unit mass, in a one dimensional potential i.e. 

+ V{x) -£ = 0 (6.22) 

where £ is the total energy of the particle. In this case the effective potential V{x) 

can be found by solving for S when = 0 i.e. when the total energy is the same as 

the effective potential. Equation (6.21) is not quite of this form, since the equation is 

quadratic in E, but it is possible to construct an effective potential in an analogous 

way by s e t t i n g = 0 and then solving for E to find two solutions V±{x). The motion 

of a particle in this potential is now possible only when E > V + (.x) ov E < VL(x). 

The effective potential for (6.21) can now be calculated, giving 

/ ^ ^ ( x + 1 ) ^ ( 1 - A ) e ( l - A ) 
''-^^^ = ^\l G{x)R^F[x) FixV ^'-''^ 

In the following it is assumed that > 0 so, in this case, the only relevant potential 

is V{x) = V+{x). Some example potential plots for timehke geodesies are given in 

figures 6.1 and 6.6. 

The position of the turning points in the potential is given by the solution to 

^ ^ = 0 (G.24) 
dx 
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The general form of this equation when R = 1 and A = Ac is 

Sx^ + Tx^ + Ux^ + Vx + W = 0 (6.25) 

w /'here 

S = 2tv^ (6.26) 

T = {A^i/ +Atu- - Aeu^) (6.27) 

U = {4e-iy^ + 3fu + C'^u^ + 2eu^ + 2eiy-8eu~) (6.28) 

V = {Aeu^+ Qt~u + 2i-u^-Atv-U-y-) (6.29) 

W = i2i-+ 2i^iy'^ - i^u^-3fiy + 2eu) (6.30) 

In general this is a ciuartie equation so it is best to solve it for specific values of u and 

i. It reduces to a cubic for e = 0 but the general solution is still too cumbersome to 

manipulate algebraically. Solving (6.25) gives the value of x for which a test particle 

will remain stationary. To calculate the minimum energy a particle can have, the 

solution to equation (6.25) has to be substituted back into (6.23). 

6.2.1 Timelike Geodesies on the Rotational Axis 

Having calculated the effective potential and its turning points, it is now simple to 

deduce the shape of the geodesies on the y = —1 axis. Substituting values for £ 

and 1/ into (6.23) gives the effective potentials shown in figure 6.1. These plots show 

that, in general 

• the geodesies with low angular momentum penetrate further toward the origin 

at X = 1. 

• the potential goes from being attractive at £ = 0 to wholly repulsive for large 

values of i. 

• the potential has a local minimum when i / is large. 

• there is a local maximum for certain values of u. 

• when ^ 7̂  0, the centrifugal barrier is infinite at x = 1. 
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V(x) 

F i g u r e 6 . 1 : The left hand plot shows the effective potential for timelike geodesies on the rotational 

axis with ^ = 0 ,1 , 2, 3,4, when v = 0.5. The lowest curve corresponds to f = 0 and ^ increases with each 

consecutive curve. The right hand plot show how the same potential varies for u = 0.1,0.3,0.5,0.7, 0.9, 

when ^ = 4. The lowest curve corresponds to = 0.9 and u decreases with each consecutive curve. 

jR = 1 in both of these plots. 

' -0.8-0.6 _O.4_O_2 

F i g u r e 6 .2 : 3D plots showing the variation of the timelike effective potential with i and x for v 

and V = \ respectively. In both of these plots i? = 1. 
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Figure 6.2 shows how the effective potential varies for timelike geodesies when 
the angular momentum is varied between 0 and 4 for two different values of ly. In 
the case of = \ and R = I, the potential is initially attractive for £ = 0 but 
as i is increased the centrifugal barrier at x = 1 becomes infinite and then widens 
toward x = —I. This also shifts the minimum toward x = — 1 and makes the 
well shallower. This process continues until the centrifugal barrier cancels out the 
potential well completely and the potential becomes repulsive for all values of x. 
Although the centrifugal barrier, on the right of the plots in figure 6.1, widens with 
i. V'( —1) = 1 for all values of £ and v. This means that the potential well can 
usually only trap particles with E < I but, as can be seen from the blue line in the 
right hand plot of figure 6.1, for some values of u there is a local maximum near 
X = - 1 . This maximum is more apparent in the right hand plot of figure 6.2 where 
a ridge appears at / ^ 3.5 and x ^ -0.9. This maximum only exists for certain 
values of u and /, which can be determined for balanced rings by analysing (6.23) 
when e = — 1, and A = Ac. 

The limits on i are in general dependent upon u, so the upper limit of £ is given 

by 

" 1 . e+ = R{r' + V2r + 2) i - u{r'+ ^/2T +1 2,2u + - 2iyT^ 

(-1/2) 

(6.31) -6v/2i/T^ + y/2{u- - I2u + 3 )T ' + ( i / ' - 8;̂  + 3 ) 7 ' - -iu - 1)= 
u 

where T"̂  = \/2{i' - . The lower hmit on ^ is given by 

^- ^ ^ (6,32) 

Both of these equations assume that ^ is positive but it is always possible for ^ to 

be negative, in which case the lower and upper limits swap over and both acquire 

an overall minus sign. 

Having found the limits on ^ it is necessary to consider the possible values of 

u that produce a local maximum in the potential. Considering the roots of (6.2.5) 

shows that the minimum value that u can take, for which there can be a local 

maximum in the potential, is given by i / = | . Below this value it is impossible to 

have a local maximum near x = - 1 and the potential will increase continuously 
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with increasing x. Plugging ^ = \ into (6.31) and (6.32) shows that there is only 

one possible value of f at this point given by i+ = i- = \/2. 

One other interesting feature of equation (6.31) is that the denominator becomes 

imaginary for v > 0.654. This indicates that the potential will always have a local 

maximum for all values of £, so all rings with u > 0.654 will be able to capture 

particles along the axis of rotation with Vmax > E > 1, no matter how large their 

angular momentum. For rings with u < 0.654, increasing i will eventually smooth 

out the potential well and cause the potential to be continuously increasing with 

increasing x. 

-1 -O.A -06 -04 -0.2 

E-V(x) 0 2 0 4 0 6 0 8 

T 

F i g u r e 6 .3: The plot on the left shows E - V{x) for a timelike geodesic with i = 0. u = 0.9 

and R = I. The right hand plot shows the evolution of x with r when the particles are started at 

xo = -0.900 with E = 2. The initial velocity is chosen so that x = 0.508. 

Figure 6.3 shows plots oi E — V{x) vs x and also x vs r, where r is the affine 

parameter, for a timeUke geodesic with ^ = 0. The left hand plot is now dependent 

on the energy and gives a better indication of how the velocity of the test particle 

changes as it moves along the path, particularly at x = +1. The allowed region of 

motion is now given by the area under the x axis, so the plot indicates that the 

test particle will approach x — I, pass through the origin, and then continue out to 

infinity at x = —I. This behaviour is confirmed by the numerical simulation shown 

in the right hand plot. 

The numerical simulation has a discontinuity at x = 1 i.e. at the origin. This is 

a consequence of the coordinate system, since there is a singularity in the equations 

of motion at x = 1 and y = —1. Naively substituting x = -t-1 into (6.12) causes 
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some problems because the terms which have G(x)^ in the denominator will blow up 
but, so long as i = 0, it can be shown that these terms are zero when transformed 
into polar coordinates. The fact that £ has to be zero for the particle to go through 
the origin is obvious when one considers that i measures the angular momentum 
around the axis perpendicular to y = — 1, so any point on this axis (including the 
origin) will automatically have zero angular momentum. 

Unfortunately, at the origin, the transformations to polar coordinates become 

undefined, meaning that the previous analysis isn't valid and a further coordinate 

transformation is required. To analyse the behaviour of the geodesies at the origin it 

is necessary to transform to Cartesian coordinates, for which the transformations are 

given in Appendix C. These transformations show that for Cartesian coordinates, 

given by (^O: ^ i ) , A 0 when x 0 at the origin. This means that the test particle 

is still moving, even though x appears to be zero, so the particle will pass through 

the origin and out into the other side of the ring. On the other side of the ring, the 

potential is exactly the same but the particle is moving in the opposite direction in 

the potential, so x becomes negative. 

Rearranging (6.12) to give x in terms of the other quantities and substituting 

X = 1, y = - 1 , £ = 0, and y = 0 leaves'' 

, • ( - + 1)̂ -̂  I [(1 + A) + (1 - A)].x^ 
Gil) + 4(1 + A ) ^^-^^^ 

Transforming to Cartesian coordinates and taking the appropriate limit, gives 

± 2 
= lim lim 

± 2 
(6.34) 

i ? 2 ( l + ^ G( i ) .;"'o [;;ro G(.T) 

The line 2 i = 0 corresponds to the rotational axis y = - 1 , where ZQ parameterises 

points along this line and ZQ = zi = 0 gives the origin. Transforming x into these 

coordinates and taking the hmit as 21 —> 0 gives 

•^Although y is technically zero at the or ig in , the t e rm in question is so s l ight ly more care 

has to be taken. I t is shown in Append ix C t h a t choosing = 0 is equivalent to ensuring tha t 

the part icle remains on the ro ta t ional axis. 
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It is obvious from this expression that a; —>• 0 as 0 but there is no requirement 
that io 0. This shows that even though x 0, it doesn't necessarily mean that 
the test particle is at rest. The fact that i = 0 when x = 1 is purely an artefact of 
the Black Ring's toroidal coordinate system. 

Using (6.34) and (6.35) to express (6.33) in Cartesian coordinates gives 

i = - ^ (6.36) 

where the .second term in (6.33) goes to zero because = 0 at the origin. This 

shows explicitly that the point at the origin is just a coordinate singularity and that 

the test particle passes through it without anything out of the ordinary happening. 

The centrifugal barrier exhibited in the potential plots of figure 6.1 shows that 

it is possible to have low energy geodesies that oscillate back and forth along the 

rotational axis. When the angular momentum ^ is non-zero, the geodesies never 

reach the origin at x = 1, meaning that the particles will orbit in the x-(f) plane, 

with the minimum and maximum distances away from the origin determined by the 

potential barriers on the right and left of the potential respectively. The ability of 

the geodesies to move in the 0 direction means that the geodesies still pass through 

the centre of the ring but don't reach the origin. This is because the rotational axis 

y = — 1 is actually a plane when the particles are allowed to move in the 0 direction, 

thus allowing the particles to pass through the ring without going through the origin 

where x = \. 

Figure 6.4 gives an example of this motion when low energy particles are placed 

within the potential well. The minimum of the potential is at Xmin = —0.096 and 

has value E — 0.642. The lower plot clearly exhibits periodic motion, but the period 

is dependent upon the amplitude. As the amplitude is increased the period is also 

increased. This is most easily seen by comparing the period of the green curve (with 

the largest amphtude) with that of the red one (with the smallest amphtude.) The 

top left hand plot indicates why this happens. The unsymnietrical shape of the 

potential is more marked further away from the minimum, so only the curves with 

the larger amplitude will show this effect. 

The potential is steeper on the right hand side of the minimum potential line 

than I t is on the left. This causes the maximum displacement to be greater to the left 
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V(x) 

0.2 0 4 0,6 0 8 1 

X 

Figure 6.4: These plots show the motion of a massive particle when it is started at different distances 

away from the minimum. The initial conditions were set up so that u = 0.8, £ = 4, and i? = 1. The 

top left hand plot shows the potential for the timelike geodesies. The top right plot shows the motion 

of massive particles when started at 0.1, 0.2, and 0.3 away from the minimum of the potential in red, 

blue, and green respectively, with the dotted black line indicating the position of the minimum. The 

lower graph gives a specimen polar plot showing how the distance from the origin varies with 0. The 

initial conditions are the same as for the green curve in the middle plot and T ranges from 0 to 5. In 

all cases . i = 0 and 0 = 0 initially. 
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than it is to the right, meaning that the particle spends longer on the left hand side 
of the minimum potential. This gives the ./; displacement plot a slightly "bottom-
heavy" appearance, with the maximum displacement being greater for negative x. 
The effect is most apparent for small displacements from the minimum, with the 
maximum displacement becoming more equal as the initial displacement is increased. 

When this is interpreted in terms of the physical motion of a test particle, it 

means that the particle orbits slowly when it is in the exterior of the ring and 

accelerates as it moves through the centre of the ring, before decelerating again on 

the other side. The acceleration is most marked when the geodesic passes close to 

the origin, so the particles with the highest energies will move very rapidly through 

the centre of the ring on a flat trajectory and those with lower energy will move 

through the ring on more of a curved orbit. 

The polar plot on the top right hand side of figure 6.4 shows how the particle, 

corresponding to the green plot, moves in the x-cj) plane, with the angle from the 

horizontal axis given by 0 and the distance from the origin calculated using (4.12). 

This gives a clearer picture of the unsyrnmetric nature of the potential as each orbit 

is oblate with the trace precessing anti-clockwise after every revolution. I f the trace 

is plotted over a longer time period then it does eventually return to its starting 

point. The polar plots corresponding to the red and blue curves (with smaller 

amphtudes) in the middle graph of figure 6.4 show qualitatively similar behaviour, 

but the precession of the orbits isn't as large, due to the potential becoming more 

asymmetric further away from the minimum point. 

Figure 6.5 gives a sample of the behaviour of a timelike geodesic when the angular 

momentum is large. In this case the potential is repulsive for all values of x, so a 

particle initially at rest will head off to infinity. I f the initial velocity is increased 

then the particle can pass through the ring, with the minimum approach to the 

origin dependent on the energy of the particle. The particle will then go off to 

infinity on the other side of the ring. 

The second plot in figure 6.5 shows how x varies with 0 i.e. the path of the test 

particle in the x-cp plane. In this case ^ is given by 

d(P e{l + x) 
d r R^{l-x){l + ux) 

(6.37) 
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V ( x ) 

-1 ^ol ^06 ^ 0 4 ^ 0 2 ^ 02 04 OS o l 

X 

F i g u r e 6 . 5 : T h e le f t hand p l o t shows t h e p o t e n t i a l for £ = 4, ly = ^ , a n d R = 1. T h e r i gh t hand 

shows t h e m o t i o n o f t h e t i m e l i k e pa r t i c le w h e n i t is s ta r ted f r o m rest a t j = 0.5 a n d d) = 0. 

This shows that 0 ini t ia l ly varies rapidly, when the particle is close to the origin, 

and then asymptotically approaches a constant as x ^ - 1 . This is reflected in the 

right hand plot of figure 6.5, where the curve levels off at (p ^ 2. Physically ^ ^ 0 

because the particle is approaching inf ini ty and thus travels further and further for 

each interval in 0. 

6.2.2 Nu l l Geodesies on the Rotational Axis 

The potential for null geodesies is shown in figure 6.6, w i t h the variation of the 

potential for different values of v plotted for permissible values of x. These graphs 

show most of the properties of the nul l geodesies, principally: 

• geodesies of low angular momentum have a closer minimum approach to the 

origin. 

• there is an infinite centrifugal barrier at x = 1. 

• only geodesies wi th i ~ 0 are able to pass through the origin. 

• the potential for geodesies w i t h large i is repulsive for all x. 

• the potential can have a local maximum near x = — 1 for large values of v. 

The variation of the potential w i t h u and x is shown in figure 6.7 for mi l l geo­

desies. I n this case the angular momentum (and indeed R) is purely a scale factor, 
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F i g u r e 6 . 6 : T h i s p l o t shows how t h e e f fec t i ve p o t e n t i a l fo r nul l geodesies var ies fo r v = 

0 . 1 , 0 . 3 , 0 . 5 , 0 . 7 , 0 . 9 , w h e n £ = 4 . T h e lowest cu rve co r responds to v = 0 .9 and v decreases w i t h 

each consecu t i ve curve , i ? = 1 in b o t h p lo ts . 

1.5 V ( x ) 

F i g u r e 6 . 7 : 3 D p lo t s h o w i n g how t h e e f fec t i ve p o t e n t i a l for a nul l geodesic var ies w i t h v and x. In 

t h i s p l o t £ = 4 and i? = 1 . 
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as can be seen by substituting e = 0 into (6.23), so the plot shown in figure 6.7 gives 
the variation of the potential w i t h i/ rather than i. This potential shares many of 
the same traits as that of the timelike geodesies, even exhibiting a local maximum 
near x = - I , as can be seen in figure 6.7 when is large. The surface near x = —1 
and u K 1 is where the difference between the local maximum and minimum is most 
pronounced, but the wid th of the peak is the smallest, so i t isn't very visible in 
figure 6.7. The maximum height of the peak is when u = 0.653, which explains why 
i t appears more marked at this point on the 3D plot. 

For the null geodesies, i and E have no independent meaning, since the test 

particles on null geodesies are massless, so i t is only the ratio j that is important. 

This is the reason why only one potential plot is given in figure 6.6. When ^ = 0 

the potential for the null geodesies is identically zero, so the null particles move as 

if in fiat space when they go directly through the centre of the ring. 

For the null geodesies, ^ has no bearing on whether the maximum exists (unless 

of course £ = 0), so the lower l imi t on u for a potential barrier to exist, is given by 

the solution to 

uJ - 2(iiyJ + 36iyJ - 54i/_ + 27 = 0 (6.38) 

This has four solutions but 0 < < 1 for the equilibrium ring, so the only pertinent 

solution is given by i / _ = 0.653. Values of less than w i l l give potentials w i t h 

no potential barrier, like the upper curves in the right hand plot of figure 6.6. For 

values of u greater than z/_ there w i l l always be a local maximum, w i t h the position 

of the peak given by the solution to (6.24). 

If ^ = 0 then the null geodesies pass through the origin of the ring wi th the 

motion being almost identical to that of the timelike geodesic shown in figure 6.3. 

The major difference between the null and timelike geodesies, in this case, is that 

the null geodesies can't oscillate back and for th through the ring as the low energy 

timelike geodesies do. These null geodesies, in the toroidal coordinates, have the 

same problem at the origin as the timelike geodesies but the coordinate singularity 

is resolved in a similar manner. 

Physically, nul l geodesies w i t h large E relative to i behave in a similar manner to 

the timelike geodesies w i t h large E. When the timelike geodesies have large energy 
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V ( x ) 

-1 -0,8 -0 .6 - 0 4 - 0 2 0 2 0 4 0 6 

X 

F i g u r e 6 . 8 : These p lo t s show t h e m o t i o n o f a nul l pa r t i c le w h e n i t is s t a r t ed a t d i f f e ren t d is tances 

away f r o m t h e m i n i m u m . T h e in i t i a l c o n d i t i o n s were set up so t h a t u = 0 .8 , I = 4 , and R = \ . T h e 

le f t hand p lo t shows t h e p o t e n t i a l f o r t h e nul l geodesies. T h e m idd le p l o t shows t h e m o t i o n o f nul l 

par t ic les w h e n s ta r ted a t 0 . 1 , 0.2, and 0.3 away f r o m t h e m i n i m u m o f t h e p o t e n t i a l in red, b lue, and 

green respect ively, w i t h t h e d o t t e d b lack l ine i n d i c a t i n g t h e pos i t i on o f t h e m i n i m u m . T h e r i g h t hand 

g r a p h gives a spec imen polar p l o t s h o w i n g how t h e d is tance f r o m t h e o r i g i n var ies w i t h 6. T h e in i t ia l 

c o n d i t i o n s are t h e same as fo r t h e green c u r v e in t h e m idd le p l o t and r ranges f r o m 0 t o 6. In al l cases 

i = 0 and 0 = 0 i n i t i a l l y 



6.2. Geodesies A long the Rotat iona l A x i s of the R i n g 135 

the difference between the nul l and timelike potentials is largely irrelevant, so high 

energy massive particles and the corresponding rnassless particles aren't affected by 

the black ring at large distances. As these particles approach the centre of the ring 

at X = 1. the centrifugal barrier comes into play, meaning that the distance of closest 

approach increases wi th as per spherical black holes. 

If the nul l geodesies have small E relative to i and u > 0.653, then the curvature 

of the space allows for the nul l geodesies to be captured. In this case there are two 

orbits at a constant distance f rom the ring. These are found by solving (6.24), the 

largest solution giving the position of the stable orbit and the next largest giving 

the position of the unstable orbit i.e. at the local maximum of the potential. 

The local minimum in the potential for v > 0.653 means that i t is also possible 

to have nuU geodesies that osciUate through the ring. The plots of the potential 

and some examples of test particle motion are given in figure 6.8. The motion in 

this case is similar to the timehke case but the potential is less symmetrical, so the 

differences in the period of the motion are more pronounced. The period of the 

oscillations is also longer for the null geodesies than for their timelike counterparts. 

V ( x ) 

-1 -0 8 -0 6 -0 4 -0 2 0 2 0.4 0.6 0 e 

X 

F i g u r e 6 . 9 : T h e le f t hand p l o t shows t h e p o t e n t i a l f o r £ = 4 , = i , a n d i ? = 1 . T h e r i g h t hand 

p l o t shows t h e m o t i o n o f t h e nu l l pa r t i c le w h e n i t is s t a r t ed a t x = 0.5 and (j) = 0, w i t h x = 0 in i t ia l ly . 

As £ is increased the potential well is gradually smoothed out unt i l the potential 

is always repulsive and takes the form given in figure 6.9. The plot shown in this 

figure shows the path of the nul l geodesic when i t is moving away f rom the centre of 

the ring. The null particles i n this potential behave in a similar way to the massive 
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particles shown in figure 6.5 but the null particles approach x = - 1 in a much 
shorter time. The null geodesies can pass through the centre of the ring but, as in 
the ^ = 0 case they w i l l then continue off to infinity. 

6.3 Planar Circular Geodesies 

To f ind circular orbits in the Black Ring metric i t is necessary to solve the equations 

of motion so that x and y are constant for all of the motion and thus form an orbit 

by rotating in the -0 and 0 directions. In practice, this means solving (6.12) and 

(6.13) so that X = y = 0. In general (6.12) and (6.13) are dependent on x, y, x, 

and y, so f inding ini t ia l values for these variables tha.t solve y = 0 f rom (6.13) won't 

guarantee that x = 0 when they are substituted in (6.12). I f x 7̂  0 then this w i l l 

cause X to vary, which w i l l in tu rn cause y to vary. This means that both equations 

have to be solved simultaneously to f ind values of x and y that w i l l give y = x = 0 

when X = y = 0 but at tempting to do this in general leads to intractable expressions 

that are of very high order. 

The simplest way to avoid this problem is to look for values of x which give x = 0 

when y = X = 0 for all values of y, thus negating the need to consider bo th of the 

geodesic equations simultaneously, and allowing the circular orbits to be found by 

solving (6.13) when y = y = 0. I t turns out that the only way to achieve this is to 

set X = ± 1 , therefore ensuring that x = x = 0, no matter what happens to y. This 

choice of X = ± 1 confines the geodesies to the plane perpendicular to the axis of 

rotat ion and also forces i to be zero, since the geodesies can't simultaneously remain 

on this plane and have angular momentum w i t h respect to i t . This equatorial plane 

is split into two sections w i t h x = — 1 being the region "outside" of the ring and 

X = + 1 being the region "inside" the ring. 

The constraints discussed above are equivalent to demanding that the test par­

ticle be at a stationary point on the effective potential, w i t h x = 0. The effective 

potentials for particles on the inner and outer equatorial planes are given in figure 

6.10, wi th the derivation of the effective potentials given in Appendix D. The po­

tentials plotted in figure 6.10 are in terms of a transformed coordinate z, which can 
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V+{z) 

F i g u r e 6 . 1 0 : These p lo t s show some samp le e f fec t i ve p o t e n t i a l s V+{z) for red t i m e l i k e and green nu l l 

geodesies t h a t are cons t ra i ned t o t h e equa to r i a l p lane. T h e le f t h a n d p l o t is t h e p o t e n t i a l f o r t h e o u t e r 

equa to r i a l p lane g iven by x = - 1 , w h e n * = 7. T h e r i g h t hand p l o t is fo r t h e inner p lane g iven by 

X = +1, w h e n = 0 . 1 . B o t h p lo ts are for t/ = i , and i ? = 1. 

be expressed in terms of y using 

z = — tanh ^ (6.39) 
y + \ 

This coordinate transformation is used to avoid the singularity caused when 

y ^ i.e. the ergosurface. due to the F{y) terms in the denominator of (6.16). 

In terms of z, the ergosurface is at z = 0, w i th z = oo corresponding to asymptotic 

inf in i ty when a: = — 1 or the rotational axis when x = 1. The event horizon is at 

z = tanh"^ and the curvature singularity is then reached at z = - t anh" ' A. 

Thus the range of z is given by 

- t a n h " ' A < 2 < oo (6.40) 

The example effective potentials shown in figure 6.10 plot Vj^{z) for the inner and 

outer equatorial planes, and are roughly indicative of all of the effective potentials. 

Varying the angular momentum for the a: = — 1 potential increases or decreases the 

height of the centrifugal barrier, as one would expect. I n this case, the only circular 

orbits w i l l be at the peak of the potential, and thus w i l l be unstable. I f the angular 

momentum, given by is decreased to zero then the centrifugal barrier disappears 

and the timelike potential is strictly decreasing as 2 ^ — t anh" ' A, whilst the nul l 

potential is identically zero for all values of z. This indicates that circular orbits can 

only exist when 5* 7̂  0. 
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The sample plot for the x = + 1 potential allows one to immediately deduce that 
the black ring won't support circular orbits in the inner ec[uatorial plane. When 
' I ' 7̂  0 both the null and timelike potentials increase w i t h increasing z and have a 
centrifugal barrier at 2 = oo i.e. as they approach the axis of rotation ?/ = - 1 . When 
^' = 0 the centrifugal barrier disappears, allowing both null and timelike geodesies 
to reach z = oo and thus go through the origin. In this case the null potential is 
everywhere zero and the timefike potential levels off at V+i^z) = ^. As the angular 
momentum is increased the centrifugal barrier dominates both the timelike and null 
potentials, w i th the two potential curves converging rapidly as z increases. This has 
the effect of making the null and timelike potentials look identical for large 4̂ . 

When ^ is negative, both the potentials for the inner and outer equatorial planes 

are qualitatively similar to those given in figure 6.10. The major difference is for 

the potential of the outer ecjuatorial plane, where the centrifugal barrier moves f rom 

being outside the ergosurface to being between the ergosurface and the event horizon. 

This is due to the frame dragging effect, whereby an incoming particle can make a 

closer approach to the event horizon if i t is moving in the opposite direction to the 

rotation of the black hole. 

Having chosen the values of x and x such that the geodesies are confined to the 

plane, i t is necessary to choose values of y that ensure that y = 0 and y = 0 i.e. 

the particle has to be on the peak of the centrifugal barrier. This ensures that the 

orbits wi l l close up after each rotation. To find the values of y that solve y = 0 i t is 

sufficient to consider the first integral equation given by (6.16). Substituting £ = 0, 

X = ± 1 and X = 0 into this ecjuation simplifies i t substantially. Af te r rearranging 

to isolate y and solving for y = 0, the equation becomes 

E'il±X)G{yo) , i±l-yor[RE{l+yo)C+^F{yo)f , 

n i ^ ) ^ {l±X)F{yo)R^ '^^^"^^ - ' ^'-''^ 

Solving this equation for gives values of yo that are on the effective potential 

line when x = ± 1 . Equation (6.41) is a cubic in yo due to the G{yo) coefficients, 

but for X = ± 1 a factor of {y ^ 1) can be removed. This reduces the equation to 

a quadratic making it much easier to analyse. Unfortunately, the coefficients of y 

are very complicated, so i t is easiest to choose particular values for the conserved 

quantities and then solve the equation. 
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To find the values of y for which the particle is at a turning point in the potential, 
i t is necessary to simultaneously solve (6.13) for y = y = x = I ^ 0. Substituting in 
X = ± 1 leaves 

{±l-yoy[RE{l + yo)C + <lfF{yo) 
2i?2(i ± A)G(yo) 

X{±l-yo)-2F{yo) F{yo)G'{yo) 

( ± 1 - yo) G{yo) 
E{±1 - yo)'C{l - A) [REjl + yo)C + ^Fjyo)] _ E'Xjl ± A) ^ 

R{l±X)G{yo) 2 ^ • ^ 

This is a quartic equation in y but, once again, i t is possible to factor out F{yo)'-, 

leaving a quadratic in y. Expanding the functions in (6.42) and re-writing in ful ly 

factored form gives 

(1 + Xyo)-{l - u){aiyi + P±yo + 7±) 
2 i ?2 ( i + ^2)2(A - 1)(1 + uyoni ± yo )^ (± l + A) 

= 0 (6.43) 

w here 

2uil + ufR-E'~ - 2u{l + u)-^2{l-u-')R<l!E 

+ v < i ! ^ { u - A u - I ) (6.44) 

2u{lu^ + i/2 + 1/ - \)R^E~ - 2u{\ + u){2>u - l ) v / 2 ( l - u'^)R<iiE -

W^^u - + Au - \) (6.45) 

/?+ = Au{\ + ufR'E'' - Au{l + u)~^j2[l - i^^)R^E 

-2iy<b\iy - + 3) (6.46) 

= 4u{iy^ + 7u^-iy + l)R-E--4u{l + u)-y/2{l^l^R<i/E 

-2iy^^{iy-l){iy^ + 3) (6.47) 

7+ = 2u{l + ufR^E^ - 2v{l + J/) V 2 ( l - y'^)R^E 

-^^{u-\){u^-^2u~-u^2) (6.48) 

7_ = 2v{-u^ + iy^ + 9u- \)R^E- - 2u{l + u){3 - u)^2{l - iy^~)R'^E + 

^^{u-l){u^ -2}y~ - u - 2 ) (6.49) 

I t is obvious f rom (6.43) that yo = - j is always going to be a solution to this 

equation, so the roots of the quadratic part wi l l give the non-trivial solutions to 

(6.42). The roots are given by 

yo = — (6.50) 
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A t this point i t is worth checking that these roots can become real for x = 1 and 
X = — 1 because the imaginary results are unphysical. The condition for the roots 
to be real is given by 

/ ? ± 2 _ 4 Q ± 7 ± > 0 (6.51) 

For R = I and .7; = + 1 this becomes 

- 8 * - ^ ( l + i / ) ' ^ ( i ^ - 1)̂  2(1 + u)E- - 2*^2(1 - iy^-)E + 1'2(1 - > 0 (6.52) 

The factor in front of the square brackets is always negative so, apart f rom the t r iv ia l 

solutions at 1/ ̂  ±1 and 5' = 0, there can only be real solutions when the term in 

the square brackets is negative. The coefficient of the E- term is always positive, so 

the term wi l l become negative for values of E between the two roots. Solving for E 

gives a repeated root at 

^72(1 -^^) 

= 2(1 + . ) ^ ' - ' ' ^ 

This means that the term in the square brackets wi l l never become negative and 

thus there wi l l only ever be a single real solution to (6.43) for y. Substituting E± 

into the quadratic part of (6.43) gives 

2{u - 1)-(1 + i /7 / )2*2 ^ Q 

which has only one solution at y = i.e. on the event horizon. Equation (6.41) 

can only be satisfied for nuU geodesies at this point, so i t is a t r iv ia l solution. The 

solution where ^' = 0 is equally t r iv ia l because (6.43) then reduces to 

2E'^v{\ + y f { l + y f = Q (6.55) 

This only has a solution at y = —1, which corresponds to asymptotic infinity. 

Therefore there are no non-trivial solutions for geodesies inside the ring at x = -1-1. 

This is in agreement wi th the conclusions drawn from the potential plot given in 

figure 6.10. 

When X = — 1 , (6.51) is quartic in E and thus has real solutions for various 

values of and u. These solutions are explored for timelike and null geodesies 

in the following two sub-sections. 
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6.3.1 Circular Orbits for Timelike Geodesies 

For timehke geodesies, one of the non-trivial solutions to (6.42) has to be discounted 

because i t is always less than y = meaning that this solution is always inside 

the event horizon for all values of u, E, and ^ . Geodesies starting at this point 

can't fo rm circular orbits because they are compelled to move toward the curvature 

singularity by virtue of the dt Ki lhng vector being spacelike. This leaves two possible 

solutions to (6.42) and (6.41) respectively. 

Af ter discounting the invalid solution curves, the circular orbits are given by the 

points where the solution curve for (6.41) intersects w i t h that of (6.42). This is 

equivalent to finding a point where both y and y are zero. Figure 6.11 shows how 

these solution curves vary w i t h u for some specific values of E and ^ . 

0.2 
p 

0.4 0.6 0.8 0.2 0,4 0.6 0.8 
0 

/ 

/ 

- 2 

- 3 

y 
-4 

-7 1 
F i g u r e 6 . 1 1 : T h e s e p lo ts show t h e s o l u t i o n curves fo r t h e o u t e r equa to r i a l p lane w h e n y = 0 in pu rp le 

and red and those w h e n ?/ = 0 in b lue. In t h i s ins tance t h e red l ine also ind ica tes t h e e rgosur face , since 

t h i s is also a so lu t i on t o ( 6 . 4 2 ) . T h e green l ine g ives t h e pos i t i on o f t h e even t ho r i zon a t a n d t h e 

b lack l ine shows a s y m p t o t i c i n f i n i t y a t y = - 1 . T h e le f t hand p l o t is f o r ^ ' = 2 .00 a n d t h e r i g h t hand 

p l o t is fo r = - 1 . 2 9 . B o t h these p lo ts use E = 1.20. 

The plots shown in figure 6.11 show that the blue curve, where y = 0, intersects 

the purple curve, where y = dX v = 0.11385. The values of ' I ' were chosen 

specifically so that the value of v where the curves intersect is the same for both of 

the plots. The purple curve corresponds to the non-trivial solution to (6.42), so the 

particular set of values used for this plot wiU form a circular orbit at y = —1.52508. 

The left hand plot indicates that there w i l l only be one circular orbit when ^' > 0 but 

when ^ is negative, i.e. when the particle is moving in the opposite direction to the 
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rotat ion of the ring, there can be two solutions, as indicated in the right hand plot. 
The.se solution are represented by the points where the blue curve intersects the 
purple and red curves. The blue and red curves can only intersect when the particle 
is rotat ing counter to the ring because the red curve represents the ergosurface, and 
at this point a circular orbit can only be formed if the particle is moving against 
the rotation of the ring, otherwise the frame dragging effect causes the particle to 
rotate too quickly. 

In general, the point where the blue curve intersects the piuple curve wi l l always 

be at the turning point i n the blue line. This point is where both of the roots of 

(6.41) converge. This can be understood by considering the plot shown in figure 

6.12. In this plot the points where the curves cross the horizontal axis is where 

y = 0 and the turning points of the curves are where ij = 0. In order for y = (/ = 0 

for the same value of y, the turning point has to be where the curve intersects the 

horizontal a.xis i.e. the curve must have a repeated root. The plot in figure 6.12 

gives some example curves for different values of u either side of the critical value. 

I t verifies that there is a curve w i t h a double root between 0.1125 and 0.1250, since 

the blue curve has it 's turning point just above the a.xis and the yellow curve doesn't 

quite reach the a.xis. This agrees w i t h the value of u indicated by the intersection 

of the two curves shown in figure 6.11. 

Armed w i t h this knowledge, the point where the curves intersect can be calcu­

lated by solely considering equation (6.41). Once the t r iv ia l solution at = - 1 is 

factored out the remaining equation is a quadratic, so the double root wi l l be where 

{u - 1)-<I'^ + 2R^{u - 1)[{E'^ + e){3i^'^ + 4iy + I) + 4iyE^~]^'^ 

+ l6R^Ei^y/2{l - u^){E- + e)( l + + [E\U^ - 2Av^ - l^u^ - 8t/ + 1) 

+2e ( l + u)[u^ - 13z/2 -bu + \)E- + £"(1 - u^'] = 0 (6.56) 

This is a quartic in ' I ' so w i l l technically have four solutions, but only the largest and 

smallest roots are pertinent since the intermediate solutions are always for positive 

values of y. Solving this for in terms of E and v. when e = — 1 gives 

«I/ = ± - 2Ey^ + y ( £ ; 2 ~l)(^3u + \± 2\/2y/u{\ + I/)) (1 + ^ ) ^ (6.57) 
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F i g u r e 6 . 1 2 : T h i s g r a p h p lo ts y aga ins t y fo r va lues o f t/ f r o m 0 . 1 , f o r t h e u p p e r m o s t cu rve , t o 0.15 

for t h e lowest cu rve , in 0 .0125 i nc remen ts . A l l t h e curves are p l o t t e d fo r E = 1.2 and * = 2 , so t h a t 

t hey co r respond t o t h e le f t hand p l o t o f f i gu re 6 . 1 1 . It ind ica tes how t h e p o i n t w h e r e t h e curves cross 

in f i gu re 6 .11 is whe re ( 6 . 4 1 ) has a d o u b l e r o o t . A s imi la r p lo t is f o r m e d i f t h e c o r r e s p o n d i n g negat ive 

va lue o f ^ is used. 

This equation shows how the angular momentum has to be varied for different ring 

geometries (different values of u) and different particle energies (given by E). The 

two solutions for ' I ' represent the circular orbits when the particle is rotating wi th 

and against the motion of the ring respectively. The positive ^ solution w i l l always 

be outside the ergosurface but for larger u the negative ^ solution can give a circular 

orbit wi th in the ergosurface. 

I n figure 6.11, the red curve represents the ergosurface, given by ?/o = —\ = 

— ^'^^ \ When the blue line intersects this fine the circular orbit is on the ergo­

surface. This circular orbit wi l l always exist for all values of E and unlike the 

solution given by (6.57), which is complex for E < 1. 

To find the value of ' I ' for which the circular orbit exists, substitute y — —\ into 

(6.41) for 6 = —1 and x = — 1. This allows ' I ' to be expressed in terms of E and u 

as 
R [j^2(i _ ^2) + 2 i / ( l - AE^) + 1 - 3E^ 

(6.58) 
2 ^ ^ 2 ( 1 - 1.2) 

Figure 6.13 gives some examples of the permissible values of the angular mo­

mentum about the rotational axis of the ring, as u varies for a range of different 

energies. In general increases w i t h the energy and also w i t h u. The sign of ^ 
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F i g u r e 6 . 1 3 : T h i s g r a p h shows how var ies w i t h v t o p roduce c i rcu la r o r b i t s on t h e ergosur face. 

T h e va lue o f * has been p l o t t e d for 5 d i f f e r e n t energies r a n g i n g f r o m E = I to E = 5. T h e g r a p h 

shows t h a t t h e c i r cu la r o r b i t s o f f a t t e r r ings, g iven by larger va lues o f ly, have t o have h igher angu la r 

m o m e n t u m in order t o p r o d u c e a c i rcu la r o r b i t . 

remains constant as u is varied, so the trace shown in figure 6.13 wiU never cross the 

axis. This confirms that the particle's angular momentum has to always be in the 

opposite direction to the rotat ion of the ring for circular orbits on the ergosurface. 

6.3.2 Circular Orbits for Nul l Geodesies 

The analysis of null geodesies is similar to the timelike case. The solutions to (6.41) 

and (6.42) st i l l give four vahd solution curves, two f rom each equation respectively, 

w i t h one of the non-tr ivial solutions to (6.42) giving unphysical positive y solutions. 

Figure 6.14 shows the equivalent plots to figure 6.11 for the nul l geodesies. 

In this figure i t is immediately obvious where the curves intersect and thus the 

points where y = y = 0 for the null geodesies. The values of E and ^' for these 

plots have been chosen so that the circular orbits exist for the black rings w i t h 

u = 0.11385, as in figure 6.11. This makes i t easy to compare the position of the 

circular orbits for the nul l geodesies w i t h the timelike ones. The main difference 

between the two figures is encapsulated by the blue curves in the various plots. The 
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F i g u r e 6 . 1 4 : In b o t h t h e le f t and r i g h t hand g raphs , t h e red and pu rp le l ines represent t he so l u t i on 

curves fo r j / = 0 and t h e b lue l ines represent t h e so lu t i on curves for y = 0. T h e p o i n t s where c i r cu la r 

o rb i t s ex is t are g iven by t h e p o i n t s o f i n te rsec t ion o f these l ines. T h e green l ine gives t h e pos i t ion o f t h e 

even t hor i zon and t h e b lack l ine shows a s y m p t o t i c i n f i n i t y a t y = — I . T h e le f t hand p l o t has ^ = 2 .92 

and t h e r i gh t hand p l o t has * = - 1 . 6 4 . T h e cons tan t s in b o t h p lo ts have been set t o i? = 1 and 

E = 1.20. 

red and purple curves are identical in general for nul l and timelike geodesies because 

they represent the second order geodesic equations. The reason that the red and 

purple lines are slightly different between figures 6.11 and 6.14 is because the two 

figures use different values for ^ , which does affect the second order equations and 

thus their solution curves. 

Figure 6.14 shows that the null circular orbits, that are off the ergosurface, are 

closer to the curvature singularity (at y = —oo) than the respective timelike orbits, 

as one might expect. The difference is particularly pronounced for the negative 

angular momentum plots, shown on the right of figures 6.11 and 6.14, where the 

circular orbit is outside the ergosurface for the timelike geodesies but inside for the 

nul l case. For any particular shape of black ring, given by fixing the value of the 

null circular orbits w i l l always be closer to the curvature singularity of the ring than 

the respective timelike orbits. 

The derivation for the relationship between the various conserved quantities is 

similar to that given for the timelike geodesies. For the nul l circular orbits, the 

critical value of 'if that allows the geodesies to fo rm a circular orbit , is found by 

substituting e = 0 into (6.56) and solving for To calculate the position of the 

circular orbit i t is then necessary to substitute this value of ^' into either (6.41) or 
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(6.42) and then solve for y. Solving (6.56) for null geodesies gives 
RE 

* = ±- 2 v ^ + ^(3u + \± 2^^2^/u{l + u)^ (1 +T) j (6.59) 

As in the analysis of the timelike case, the intermediate roots have been discarded 

as they are non-physical. The two remaining solutions represent the circular orbits 

when the null geodesic is orbit ing wi th and against the direction of rotation of the 

ring respectively. The positive ' I ' solution is always outside the ergosurface because 

of the frame dragging effect caused by the rotation of the ring. The negative solution 

can be either inside or outside the ergosurface, depending on the magnitude of ^ . 

The other null circular orbit is found where the blue curve in figure 6.14 intersects 

the red y = —j curve. This is easily calculated by substituting y = —\ into (6.41) 

and then solving for ' I ' in terms of E and y. Doing this gives 

(6.60) 
2 \ / 2 ( l - i ' 2 ) 

thus allowing the position of the second circular orbit to be calculated as above. 

As for the timelike geodesies, there wi l l always be a null circular orbit on the 

ergosurface but unlike the timelike circular orbits, there w i l l always be a second 

solution w i t h angular momentum given by (6.59). This means that for null geodesies 

on circular orbits there wi l l always be two possible circular orbits for particular 

values of E and i / . For the timelike case there w i l l sometimes only be one solution 

for particular values of E and u, specifically when E < \. 

There is one specific instance where the null geodesies can only form one circular 

orbit for given values of E and u. This is when the values of (6.60) and (6.59) are 

the same. For the nul l geodesies E and R are only scaling constants, so the angular 

momenta w i l l only be degenerate for a particular value of u. Equating (6.60) and 

(6.59) shows that a th in ring wi th v = 0.04042 wi l l have both of the null circular 

orbits on the ergosurface. 
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F i g u r e 6.15: These plots show the numerical integration of the equations of motion for a timelike 

geodesic started at x, x, y, y=-0.99000, 3.03072, -6.01041, 0 respectively, with £ = 2 and ^ = * = 0. 

The Black Ring has radius i? = 1 and u = 0.1. The left hand plot shows the orbit of the particle in the 

toroidal coordinates, with the right hand plot showing the orbit in polar coordinates. The green lines 

indicate the position of the event horizon. 

6.4 Geodesies Orbiting through the Ring 

For geodesies that orbit through the ring at constant </, equation (6.13) becomes 

R^F{yfF{x)y {x - yf [ECR{1 + y) + <i>F{y)] 
G{y){x-yY 2R^F{x)G{y) 

F{y)G'{y) 

G{y) 
+ A + 

tFijjf 
x - y 

E''F{x) [X{x - y) - 2F{y)] E{x - y f C j l - A) [RCEjl + y) + ^ F ( t / ) ] _ 

2{-r^ - y) RF{x)G{y) 
(6.6i ; 

where ?/ ^ 0 and x has been eliminated using (6.16). To find possible solutions to 

this equation i t is necessary to look for specific values of the constants , e, y, E 

that cause all of the terms not involving y to go to zero. In practice this means 

expanding all of the terms to give a polynomial in x, since x is free to vary while y 

is constrained to be a constant throughout all the motion. 

In order to get a feel for the equations without having to look for general solutions 

i t is helpful to look at the special case where [ECR{1 + y) + ^F{y)] = 0. This is 

possible in this case because y is being treated as a constant and all of the other 

terms are constants. This means that ^ can be chosen so that 

ECRil+y) 
^ = 

F{y) 
(6.62) 
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Applying this to (6.61) reduces the equation to 

R^F{yfF{x)y ^ eFjyf E^F{x) [\{x - y) - 2F(y)] 
G{y){x~yf x - y ^ 2{x - y) ^ ' ^ 

I t can be seen straight away that the only way that the terms on the right hand side 

can be set to zero is hy choosing E — e — 0, which is the same constraint as was 

imposed in order to separate the equations of motion in section 6.1. 

I f the constants aren't constrained in any way (other than the physical con­

straints) then (6.61) becomes an eighth order polynomial in x. This unfortunately 

doesn't have any solutions for physically applicable values for u, '^.,e.y, E. 

Figure 6.15 gives an example of a timelike geodesic in the exterior of the black 

ring, in a reference frame which is rotating in the ip direction w i t h the particle. The 

particle's in i t ia l angular momentum is carefully chosen so that i t doesn't fal l straight 

into the black hole, but i t does eventually spiral into the ring when the integration is 

continued. I t is possible to keep fine tuning the in i t ia l velocity, so that the particle 

stays out of the black ring longer but in the end, the particle wi l l either spiral into 

the event horizon, or escape to asymptotic inf in i ty at ^̂/ = - 1 . 

The right hand plot in figure 6.15 converts the orbit into polar coordinates, given 

in (4.12) and (4.13), and then plots i t using 

a = rcos6' (6.64) 

h = rsinO (6.65) 

This plot gives a more intuitive picture of what is happening to the particle. As one 

might expect, the particle ini t ia l ly appears to be in a stable orbit but, after approx­

imately two revolutions, the orbit starts to decay and then rapidly falls through the 

event horizon. I f the in i t ia l angular momentum is fine-tuned further, then i t is possi­

ble to have the particle orbit the ring for a significantly longer period w i t h the radius 

varying as i t orbits. Unfortunately, the orbit always seems to decay eventually. 

The orbit shown in the right hand plot of figure 6.15 appears to be circular but 

closer inspection shows that i t is slightly elliptical. The eccentricity of the orbit 

increases as the energy is reduced unt i l E ~ 0.8 where i t is no longer possible to f ind 

a bound orbit . I t would appear f rom the numerical simulations that bound orbits 

can be found for all values of E greater than 0.8 though. 
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F i g u r e 6.16: These plots show the numerical integration of the equations of motion for 

a timelike geodesic in the toroidal coordinates. The initial conditions are set to jy) = 

(-0.9900000.-5.0948494,0), with ^ = 4- = 0, for = 1 and f = 0.1. The other initial condi­

tions are {E,x) = (1,0.9085145). 

I f the starting value of y is fine tuned further, then the orbit of the particle looks 

something like that given in figure 6.16. The two plots in this figure show how y 

varies w i t h x and how y varies w i t h x. The left hand plot gives a more detailed view 

of the periodic motion as the particle orbits in a relatively stable ellipse. Apar t f rom 

the first revolution, before the particle falls into the stable orbit , i t would appear 

that the particle is moving back and for th along a line wi th y depending hnearly on 

X, although this isn't quite true, since the trace is slightly curved. 

The right hand plot gives the phase curve for the motion of the particle. The 

particle slows down at x = ± 1 , w i t h bo th y and x going to zero at these two points. 

The plot also shows how the motion is fair ly consistent w i t h the curves being well 

grouped, apart f rom at the beginning and near the end of the plotted motion, where 

the curve starts to diverge f rom the bow-tie shape. I t is tempting to conclude f rom 

this shape that the motion in the x and y directions is given by some trigonometric 

funct ion but this unfortunately doesn't appear to be so. The only solvable case 

(given by substituting = 0 and e = 0 into equation (6.16)) has solutions in terms 

of elliptic functions, so i t seems reasonable to assume that the solutions for the more 

complicated motion would also be in terms of these ehiptic functions. 
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6.5 Pseudo Radial Geodesies 

I t was mentioned at the beginning of the chapter that the Kerr metric has some 

"pseudo" radial geodesies, where the azimuthal angle remains constant throughout 

the motion, so that the geodesic only moves in the (r-, (p) plane. The analogue of 

this for the Black Ring metric would be to find geodesies that move along lines of 

constant x, as shown in figure 4.1. 

As in the Kerr metric, i t is impossible to have purely radial geodesies for the 

Black Ring because there is an analogous frame dragging effect in the Black Ring 

metric. Combining (6.5) and (6.3) gives an expression for •0 in terms of the constants 

of motion 

; (X - yflECRjl + y) - t F ( g ) | 
* = g F ( . ) G f a ) 

In order for •0 to be zero for all vakies of y 

ECB.{l+y) -<lfF{y) = 0 (6.67) 

Expanding this, and collecting in terms of y, gives 

ECR - 1/ + {ECR - * A ) y = 0 (6.68) 

In order for this to hold for all values of y, i t would require 

ECR = ^ (6.69) 

ECR = "fA (6.70) 

These two equations can only simultaneously be true i f A = 1, in which case the 

event horizon reduces to a three-sphere, which is a rather t r iv ia l solution. This 

indicates that there are no radial geodesies for the Black Ring metric, where -0 = 0. 

I f tp is allowed to vary throughout the motion, then the situation becomes the 

opposite of that investigated in the "Geodesies Orbi t ing through the Ring" section. 

In this case only x is held constant, which means that the equation of motion (6.12) 

reduces to 

- yf G'[x) A 
_ , . a i . , ^ ^ m m ± i M . , , , , , 

C(x) F(x)\ ' 2F (x )G(s ) 
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where (6.16) has been used to eliminate the ij dependence. 

Examining the solutions to equation (6.71) indicates that there are only phys­

ically consistent solutions for x = ± 1 . This class of solutions has already been 

examined in some detail in the Planar Circular Geodesies section. 



C h a p t e r 7 

G e n e r a t i n g S o l u t i o n s w i t h S t r i n g 

C h a r g e s 

Of all the solutions to general relativity that have thus far been discovered, asymp­

totically flat black hole solutions are possibly of the most interest since they are 

thought to be the most likely candidates to exist in the physical world - this natu­

rally means that more research has been carried out on solutions of this type. Of 

particular relevance to this chapter is the development of a microscopic interpre­

tation of the entropy of asymptotically fiat black holes solutions. Strominger and 

Vafa were the first to investigate this in [70], where they examined a class of super-

symmetric spherical 5D black holes w i th non-zero charge and showed that i t was 

possible to derive their entropy by counting the degeneracy of BPS states. Further 

work building on this has been done for black holes w i th bo th and S- x topol­

ogy in papers such as [44,61,71-74]. These papers examine a mixture of charged and 

neutral black hole solutions w i t h the charged solutions calculated for each specific 

metric. The procedure described in this chapter gives a five parameter metric which 

can be used to analyse the microscopic origin of the entropy for a much broader 

range of black hole solutions, since the only constraint on the uncharged starting 

metric is that i t has three Ki l l ing vectors. 

Although the method presented in this chapter [76] has already been used to find 

charged versions of the Myers-Perry and the singly spinning black r ing, i t hasn't yet 

been used to generate charged solutions for the doubly spinning black ring and other 

152 
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recently discovered multi-black hole solutions. Given that the procedure for adding 
string charges to a neutral metric is vir tual ly identical for all asymptotically flat 
metrics i t seems useful to give the solution in as general a form as possible. The 
first part of this chapter gives the necessary theory for adding charges to a generic 
metric w i th three Ki l l ing vectors before going on to apply the results to the specific 
case of the doubly spinning ring. 

Although a two charge solution hasn't previously been calculated for the doubly 

spinning ring, using the method presented here, a three charge solution to minimal 

supergravity has been calculated in [77]. Their method produces a three charge 

version of the doubly spinning black ring w i t h all of the charges being equal. This 

differs f rom the results presented in this chapter, as the method presented here 

allows the two charges to be set independently of one another. I t is possible in 

principle to add a th i rd charge through a further series of dualisations and boosts 

but the unavoidable by-product of adding the extra charge is the introduction of 

Dirac-Mei.sner string singularities (as is seen in [77]), so the three charge metric is 

not considered in this chapter. 

The first two sections of this chapter are concerned wi th developing the proce­

dure whereby string and momentum charges are added to a generic five dimensional 

metric. The basic idea is to l i f t the neutral metric to ten dimensions by adding five 

extra fiat dimensions, and then applying a series of boosts and T-duali ty transforma­

tions to the metric. The ten dimensional metric is then Kaluza-Klein reduced back 

down to five dimensions w i t h the boosts in the extra spatial dimensions appearing 

as fundamental string and momentum charges. The resulting charged metric is then 

presented, along wi th a derivation of the physical properties of this generic charged 

solution. 

The final section of this chapter looks at the physical properties of the two charge 

generic metric derived in section 7.2, using the dual rotat ing black ring as a specific 

example. The charged solution has two extra parameters relating to the two string 

charges, so the physical properties of the charged metric are compared w i t h those 

of the neutral starting metric for different values of these charges. The differences 

between the generic charged metric and the neutral metric are independent of the 
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form of the original metric coefficients so the analysis can be applied to any metric 
that is charged up in the manner described in section 7.1. 

7.1 Theory of Generating Charges 

Having obtained a solution to Einstein's field equations, i t is possible to generate a, 

new solution that has different charges corresponding to the different string sectors. 

The method presented here, which adds charges to a generic uncharged metric, is 

essentially the same as that presented in [78,79] and more pertinently applied to the 

singly spinning ring in [61]. The main idea is to l i f t the five dimensional metric to 

ten dimensions through the inclusion of five flat dimensions, which w i l l be labelled 

as {w,6,7,8,9}. The w dimension is singled out as this plays an important part in 

constructing the charges. The remaining four dimensions are compactified on a T"* 

and play a passive role in the generation of the various charges. Having constructed 

a ten dimensional metric, the application of a series of boosts and duality transfor­

mations wi l l then produce a new solution to the string ecjuations of motion. Once 

this is done, the ten dimensional solution can then be Kaluza-Klein compactified 

to reduce i t back down to the desired five dimensional metric w i th various string 

charges. 

Any solution to Einstein's equations wi l l automatically satisfy the equations of 

motion for low energy superstrings when l i f ted to ten dimensions, as long as the 

gauge fields are turned off. This can easily be seen by examining the action for the 

low energy NS-NS superstring, when compactified on T"* [61 

S, = ^ I d ^ x y f ^ ) e - ' " ' ( + 4 ( V $ ) ' - - H ^ ' A (7.1) 
2Kg J \ 12 y 

where $ is the scalar dilaton, Kg is related to the six dimensional Planck length, and 

is a 3-form f lux given by H^^^ = dB^^\ where 5'^) and F^* '̂ are 2-form fields 

that couple electrically to the dual rotat ing ring. The four extra flat dimensions have 

been suppressed here as they don't enter into any of the subsequent calculations. I f 

$ and B are set to zero then the action given by (7.1) reduces to the Einstein-Hilbert 

action for a six dimensional metric. 
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The charges are produced by Lorentz boosting the six dimensional metric in the 
w direction to produce a black-string or black-tube, depending on the topology of the 
starting solution. This is achieved via a coordinate transformation where a\ is the 
boost parameter. This gives the solution linear momentum in the w direction but in 
order to create a non-trivial charge a subsequent T-dualisation must be performed. 
The application of the T-duaUty transformation converts the type I I A solution^ wi th 
hnear momentum, to a type I I B solution wi th a fundamental string charge. The 
T-duali ty transformations are given by [80 

9a0 —* Qafi [ ) ^ - " ^ ^ ^^--l 

B,, -> B,, - 2 ^ ^ $ ^ $ - i log g.,:. 
aw 

Having T-dualised the metric, a second charge can be added by boosting again in 

the w direction, w i th parameter ao- This gives a black tube wi th linear momentum 

in the w direction and a fundamental charge F{ui). To obtain the five dimensional 

solution w i t h two charges i t is then simply a case of K K reducing this lOd metric 

along the w direction. 

In order to carry out the K K compactification, assume that the w direction forms 

a circle of radius /?^.. The Kaluza-Klein ansatz is then given by 

g^i^l^dx'^dx-^' = g^Ax'^dx'' + e^'idz + A'^^^dx^' (7.3) 

where the Greek indices cover and the La t in indices cover {x^.w}. Here, 

ê *̂  = gu;w and A^^^ is a 1-form field, induced by the compactification of the six 

dimensional metric, which sources the P{w) charge. 

Applying (7.3) to the 6d action (7.1), gives 

55 = A . / d ^ x V ^ e - - * + ^ ( + 4 (V$)2 - 4 V $ V a - —R-
IKU • \ 12 

_ l g 2 . ( ^ ( l ) ) 2 _ lg -2 . (^ (2 ) )2^ (7.4) 

'This is not a unique choice since the starting solution can equally be thought of as a type 

IIB solution. In which case, the T-duality transformation would produce a type IIA solution with 

fundamental charge. 
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where K\ = K\l{2-nR^u) and the superscript has been dropped where i t is obvious 
that the fields are now five dimensional. 

The reduction of the string action to five dimensions has created two new fields 

and F(2) where f\}^ = S ^ a L ' ' - d^A^^^ and F / i ^ = ^ ^ a L " - d,A^^\, wi th Af = 

bI^II. The three form H has now picked up a Chern-Simons term, so is now given 

by / / = d 5 - A ( i ) A F ' - ' . 

I t is possible to transform the string action into something more like the Einstein 

action by defining an eftective dilaton <tefj = $ - c r / 2 , thus allowing the string metric 

VlCi I.' ^ ^ 

the action in the Einstein frame becomes 

to be transformed into the Einstein frame via t?^, = e"3*=//g^,^. This means that 

S, = -1^ I d ^ . x v / ^ f i ? ' ^ ' + 4 ( V $ ) - - 4 V $ V a - ^ H ' 
2ixi J \ 12 

Ae'^F^'^f --^e--'%F^'^f^ (7.5) 

Note that all of the fields inside of the brackets have also changed w i t h the change 

of frame. 

7.2 Charging Up A Three Killing Field Metric 

7.2.1 The [F(w),P] Charged Metric 

Having established the formalism required to charge up a metric which solves Ein­

stein's field equations, i t is now possible to apply i t to a general metric wi th three 

Ki l l i ng vectors. Any metric w i t h three Ki l l i ng vectors given by (9,,, S^, and 8^, can 

be wr i t ten in the form 

ds^ = gudt^ + 2gi4,dtd(}) + g^4>d(p^ + 2gt^^dtd'ip + g^^d^j"^ + Ig^^dipdcf) + gppdp^ + g,,dz^ 

(7.6) 

where all of the metric functions g^,, are solely functions of p and z. The non-Kilhng 

directions p and z are inspired by the canonical coordinates used in the inverse 

scattering technique (although the form given in (7.6) differs in that gpp and g^^ are 

not necessarily equal), allowing any three Ki l l ing vector solution to be used. 
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It is now possible to charge up this general metric, using the technique of boosting 
and T-dualising described in the previous section, to give a solution to type I I B string 
theory w i t h fundamental and momentum charges in the w direction. Having done 
this, the new 6D charged metric is given by 

ds"^ = [gww cosh' ai + cjtt sinh^ ai] ' [{gww9tt cosh" Q2 + sinh" a2)dP 

+'^9tiij9ww cosh ai cosh a2didtp + 2gi^g.u:^^, cosh cosh aodtd^) 

+{gwwg^^ cosh- cvi + {gug^^ - gl^) sinh- a j d ' ^ ' ^ 

+'^{gugww + 1) cosh Q.2 sinh a2didw + 2gt-^g.^„^ cosh Q I sinh aod-ipdw 

+2(5'u.",<;.90<i cosh^ tti + {gttg^4, - gii,gt4) sinh- Qi)d'0d(^ 

Hgwwgu cosh^ a i + {gug^^ - gf^) sinh" a i ) d 0 -

+2gi^g,^,^„ cosh sinhaod^dii) -|-(cosh^ ao + gwwgu sinh" a2)dw^ 

+gppd~p-+ g^~A~z- (7.7) 

w i t h the auxiliary two form field given by 

R _ gt^sinha^ sinh0:2 
- 7 2 ; ~~r2— i ' - ° ) 

gy,,, cosh a i + gu smh «] 
^tai s i n h o i sinh a2 

g-iaw cosh" 0:1 + gtt sinh^ Q I 
yt^ ctl 011111 u;2 ,_ ^. 

= ~ . . , , . 2 _ , . 2 _ ('^•9) 
D (5;^^,.+ ^ft t)sinhaiCoshai 

gujyjcosh. a i + , g t £ s m h Q I 
sinh Q : I cosh Q2 

-̂ ,̂-0 = - T i : ~ r 2 — v ' - i i ) 
gu,u;Cosh. ai+gusmh ai 

gi^ sinh cosh 0 2 
^u;u;COSh Of] + Smh 

and the scalar dilaton given by 

e~"* = ^it;.^ cosh^ Qi -|-5((Sinh^ai (7-13) 

The metric given in (7.7) only has a fundamental charge in the w direction, so 

to create the P{w) charge the metric has to be Kaluza-Klein reduced back down to 

five dimensions. In practice, the supplementary w dimension is always added to the 

metric by setting 5?̂ ),,, = 1 so, for the sake of simplicity, this constraint has been 

applied in all of the following equations. Bearing this in mind, the compactified 
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F{w),P{w)] charged metric in the string frame is given by 

dsl = {h-iigu. cosh^ Q2 -I- sinh" a2)dP + 2/12 cosh a i cosh a2{gtTijdidil) 
h, 1 n,2 ^ 

+gt0did^) - sinh^ a2[(5f,/, + 1) cosh a^d^ -I- cosh aid '0 + gt^, cosh a id0]^ 

+E,j,^.d'^^ + 2E^ri,d'0d(^ + E^^d^-} + g^pdp' + g,Az^ (7.14) 

where 

hn = cosh^ an + gtt sinh" On 

E^u = ho [gfj.„ cosh^ a i + {gug^u - gifigiu) sinh" Q I 

and n G (-0, (p). 

The compactification of the six dimensional metric has introduced two 

form fields A ' ' ' and as well as the 2-form field B, and the scalar field $ 

1-form fields are given by 

sinh a 1 

sinh cvo 

(1 + gu) cosh Qid/! -I- (/t,/,. cosh QodV' -h t̂,,!, cosh Qod^ 

(1 + gu) cosh a2dt + gt^ cosh a i d 0 -I- g,,^ cosh a i d ^ 

(7.15) 

(7.16) 

new 1-

These 

(7.17) 

(7.18) 

w i t h the two form B being reduced to 

sinh a 1 s i n h a 2 

hi 
(7.19) 

The dilaton is unchanged by the compactification process so wi th gyj.uj = 1, i t is 

now given by 

e"^* = cosh'- ft] + gu sinh^ ai = hi (7.20) 

and the other scalar field, introduced by the compactification, is given by 

2^ _ cosh" 0:2 + gti sinh- 012 h2 

cosh" Qi + gu sinh" cti hi 
(7.21) 

7.2.2 Physical Properties of The Charged Metric 

The process of charging up the metric only affects the metric coefficients involving 

t, ijj, and 0, so any of the properties of the metric that depend upon the coefficients 

involving p and z are unchanged. In most cases this means that the position of the 
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event horizon is unchanged, since the coordinates of the neutral metric are usually 
chosen so that the event horizon is described by a hypersurface where one of the 
non-KiUing directions is held constant. This is exemplified by the dual rotating ring, 
described in the next section. Having said this, the addition of string charges to the 
neutral metric does alter the thermodynamic properties of the metric. 

I f the mass, angular momenta, and area of the neutral metric are given by M, 

J^, and A respectively, then it is possible to calculate how these wi l l change 

wi th the addition of extra charges. I t is assumed in the following that the metric 

given in (7.6) is asymptotically flat, which in tu rn implies that the charged metric 

(7.7) is also asymptotically flat. 

For an asymptotically flat metric, the A D M mass can be derived by examining 

the gu coefficient near asymptotic infini ty. This funct ion w i l l then fa l l off as 

8GA4 / 1 
3irr~ \ r 

9tt = -^ + ^ ^ + 0 { - ) (7.22) 

at infinity, so the Taylor expansion of the metric funct ion can then be compared to 

this and the mass M extracted. Since the charged metric is also asymptotically flat, 

its mass can be calculated in a similar manner. Expressing the g^{ coefficient of the 

charged metric in terms of the original metric gives 

I f i t is assumed that g^ takes the form given by (7.22), then the above equation 

becomes 
AGM(cosh 2a 1 + cosh 2^2) ^ ^ 

Comparing this w i t h (7.22), the charged metric mass M can be defined as 

M 
M = — (cosh2ai +co.sh2a2) (7.25) 

z 

The angular momenta in the 1I) and 4> directions can be calculated using a similar 

process, but this time comparing the different coefficients for gi^ and gt^ respectively. 

The necessary expressions for the charged metric coefficients are given by 

£^t^co.shQi co .sha2 

'-^i = h,h, ^'-''^ 
gt^ cosh Qi cosh Qa 
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In this case, the form of the gt-^ and gt4 coefficients at inf ini ty is 

where ^ 6 {'0, </>}• Bearing this in mind, the charged metric coefficients after sub­

st i tut ing for gtt f rom (7.22) become 

9l4> - ^ cosh ft] cosh Q2 + ... (7.29) 

dlih ~ coshai coshoo + ... (7.30) 

These ecjuations can then be compared wi th (7.28) to construct expressions for the 

charged metric angular momenta 

J4, = cosh Q ] cosh 0:2 (7.31) 

Jj; = J,/,, cosh a i cosh Q;2 (7.32) 

Unfortunately, the above method cannot be used to calculate how the area varies 

when string charges are added to the neutral metric, since the area is given by 

^ = I V I T I = y \/gzz [g^i-^gd,d, - g^i-c] (7.33) 

where 7 is the induced metric on the horizon, the integral is taken over the event 

horizon and i t is assumed that the horizon is a hypersurface of constant p. This 

integral is problematic because of the terms in the square root, which make i t diff icult 

to compare w i t h any corresponding expression derived by substituting in the charged 

metric coefficients. A more useful fo rm for the induced metric is derived in Appendix 

E. 

Re-writing the integral in terms of this new expression for the induced metric 

and transforming to the Einstein frame gives 

= y yA^\ = j — i ^ ' - ^ ' \J9i<p - g-t>4>9u + gt<pgl^ - g^^^gu) (7.34) 

Having re-expressed the area integrand in a more manageable form i t is now 

possible to substitute for the charged metric coefficients obtained by comparing 

(7.6) and (7.14). Af te r substituting for the various metric factors, the area of the 

charged metric becomes 

A^ = j cosh Of] cosh 0 2 = A ^ c o s h a i coshao (7.35) 
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I t was shown in [81] that the horizon entropy is invariant under duality transfor­
mations and thus invariant for all varieties of string charge. This implies that the 
expression for the horizon area is definitive for all two charge metrics. 

Having charged up the metric, i t is necessary to calculate the conserved charges 

associated wi th the two 1-form fields .4 ' ' ' and .4'-^ In general the gauge charges in 

five dimensions are given by 

Q^ = T^ f e-'*' * (7.36) 47r- .753 

where F = d / l ' ' ' and the e~-*' factors, obtained by inspection of the Kaluza Klein 

reduced action given in (7.4), are 

+ ! $ 2 = $ - y (7.37) 

The integral given in (7.36) has to be taken over a three sphere at infinity, so to 

simplify the algebra, i t is convenient to work in spherical polar coordinates where 

(p, 2 ) (r, 6') w i t h t, '0, and (j) remaining unchanged. This means that the only 

pertinent component is *Fq^^, since the integral has to be taken for a constant t 

and r cross-section. Furthermore, the components of +F''^ only need to be known at 

asymptotic infinity, so only the first order terms of the Taylor expansion at inf in i ty 

need to be considered. The ^F^^'^ component can immediately be reduced to the 

sum of three terms, by virtue of the metric having three Ki l l ing vectors and get = 0 

since there is assumed to be no rotation in the 9 direction. This gives 

*Fj;^^ = [geeg^i.94>4>^'"^'^Fn + geegtig^^,^"^'"^Fr^ + gorgt^g^c^^'''^'^Fet 

(7.38) 

where if^P"'' is the Levi-Civita tensor density and e*''̂ '̂ '̂  = 1. 

The leading order terms for the metric functions can be determined by consid­

ering the asymptotic expansion at inf in i ty of the general spherical five dimensional 

metric given in [25]. This series expansion indicates that the metric coefficients at 

inf ini ty are unchanged by the process of adding charges to (7.6), which allows (7.38) 

to be simplified further because i t is now evident that the g^t and gor coefficients 

are zero at infinity. Substituting the leading order terms for f/^,/,, g,̂ ,̂ goo, and g into 

(7.38) gives 

* ^ W = - ' - ' s i n ^ c o s ^ F j ; ' (7.39) 
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To obtain an expression for Frt = drAt — diAr at infinity, i t is necessary to 
substitute for gu f rom (7.22) to give 

A]'= T.— smhojcosha , —> - — - smh Ofj cosh a, (7.40) 
'• 37rr^ + 8 G M s i n h - a , 3 ^ r 2 . \ i 

This then allows K., to be calculated 

^rT = - ^ s i n h 2 a , (7.41) 
8 G M 
37r'r3 

Put t ing this together w i t h (7.39) gives 

= smh 2a, (7.42) 

The e"-*' factors wi l l both go to one by virtue of them being functions of hi, 

which go to one at infinity, as is easily verified by substituting for gu f rom (7.22) 

and taking the l imi t as ?• —» oo. This now allows the integral given in (7.36) to be 

evaluated, and the conserved charges to be calculated, as 

Q,,. = l ^ s i n h 2 a , (7.43) 
3/1 

7.3 The Two Charge Dual Rotating Ring Metric 

The f u l l lOD type I I B string solution for the dual rotat ing metric, after substituting 

in (7.7), is given by 

2 _ ''''^2{y;X) 2 -f/(?/, x) (cosha2di-I-sinhQ2d'u;)-

dV;-

mi{x,y) rni{x,y) 

H{y,x) (coshaod^ -I- sinha2dw + ficoshai)^ F{x,y) 

mi{x,ij) H{y,x)' 

+ '"-^^dw'^ + 2cosha2smha2[ i / ( | / , xO- i / (x ,y ) ]^^^^ 
mi{x,y) rni{x,y) 

where 

m„ (x, y) = H{y, x) sinh^ Q „ , - H{x, y) cosh^ Q „ (7.45) 

The four additional dimensions have been suppressed for brevity, but they are given 

by gtiu = where ii,u = 7, 8, 9. The additional fields, introduced through the 
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duality process are given by 

(6) v^A.-Ayv^sinhai s inha^x / l + X + - A + iy{x~ - 1) ,r\ 

= ^M^) 
^ ( 6 ) _ V2kX^/l + A + + y) [{X + u - l){yx^u - 1) + 2^(1 - x + xy) - 2] ^ 

'•^ mi{x.y)\/l - A + 1/ 
s inha i sinhoo (7.47) 

(6) s i n h a i c o s h o i -
^lu; = -f ^ 7.48 

mi{x.,y) 
^ ( 6 ) 

D(6) 

and 

_ \/2/i;A;(/v^sinhQ;i cosha2\/l + A + - A + - 1) 

rni{x./y) 

\/2kX{l + y)Vl + X + u[2 - {X + u - l){yx^u - 1) - 2 t / ( l - .x + x j / 
X 

coshQ2 sinh (7..50) 

In this metric, the canonical coordinates have been replaced wi th the toroidal (x, y) 

coordinates^ which may be concerning, since the derivation of the previous section 

was in terms of the (p, z) coordinates. Fortunately, all of the transformations used 

to charge up the generic metric were independent of these coordinates, so they can 

be transformed wi th impunity. 

I n order to calculate the various physical properties of the charged ring i t is nec­

essary to now reduce the metric back down to five dimensions. This has already been 

done in (7.14), so substituting for the various metric coefficients and transforming 

to the Einstein frame gives'' 

, 2 [{H{y,x) - H{x,y))cosha2smha2dt + H{y,x)smha2C0shaiQ]' 
n c 

{m,{x.,y)m2{x.,y)yl^H{x.,yyi^ 

^ ' ' (mo(;(/, x)de + H{y., x)Cl^ cosh' a, 
my{x,yyH{x,y) 

/ m , f x . v)mn(T n) \ r F(T. lA 
dtp +2H{y, X) cosh a, cosh a,f2dO ' '"^'^ ' '^ ' ' '"^ ' '^ ^ 

H{x.,y) [Hiy,x) 

9 J{x,y) , , , ^ F ( y , x ) ^ ,^ k''H{x.y) ( dx'^ dy^ \ 1 

-The transformations used can be found in [27] 
•^Inspection of the ft function shows that this metric is free from Dirac-Misner singularities. 
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The 1-form gauge fields are now given by 

1) _ [H{y, x) — H{x. y)] cosh a2 sinh 0:2 
m2{x,y) 

(1) _ kX^y2{l + - 2 A 2 ( 1 +y)[i + X-u + x V ( l - A - t/) + 2ux{l - y) 

(7.53) 

; i - A + iy)m2{x.,y) 
X s i n h a o c o s h a i 

.(1) _ A;Av/2(l + i/)'^ - 2A2(1 - x ^ j y v ^ s i n h a o coshoi 
A, — 

l(2) 

rn.2ix,y) 
H{y, x) - H{x, y)] cosh a i sinh Oi 

m i ( x , i ( / ) 

(7.54) 

(7.55) 

(7.56) 

4(2) _ _ s / 2 k \ { l + y ) ^ l + \ + u[{X + 1/ - l ) ( y x 2 i / - 1) + 2i /( l - x + xy) - 2 

X coshao sinh a i 
m,i{x.y)\/l - \-\- V 

A 
•2) _ \/2kXyy/vmA\ai c o s h Q 2 \ / l + A + v\/l - A + u{x^ - 1) 

mi(.x-,y) 

(7.57) 

(7.58) 

The 2-form field is given by 

\/2/i:A;(/v^sinhQi s i n h a 2 \ / l + A + u\/l — A + u{x~ — 1) 

'mi{x,y) 

^ ^ y2A:Av/l + A + /y(l + y) [{X + u- \){yx'^u - 1) + 2;y(l - x + x;y) - 2 

(7.59) 

Hi: 
mi{x, y)\Jl - X-\- u 

sinhQi sinh Q O 

— X 

(7.60) 

and the scalar functions are given by 

_2<i, ^ r77,i(x\?/) 

' " H{x,y) 
, 2 a ^ ^ 2 ( x , y ) 

mi{x,y) 
(7.61) 

7.4 Physical Properties of the Generic Charged 

Metric 

Having obtained the metric for the [F(w),P] charged black r ing (7.52) and the more 

general two charge metric (7.14), i t is now possible to work out some of the physical 

properties of these solutions. I n fact, most of the distinguishing features of the 

charged solutions are the same as for the neutral solution: the x, y (or p, z for 

the general solution), ip, and 0 coordinates vary over the same ranges, any physical 

constraints on the original neutral metric w i l l be unchanged e.g. the l imits on A and 
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u are exactly the same for the two charge black ring, and the horizons wi l l s t i l l be 

given by g^'' = 0 or in the case of the charged r ing (4.61). The reason that these 

properties are unchanged for the charged solution is because they all depend, to some 

extent, upon the Qpp and QZZ coefficients of the metric, which are unaffected by the 

boost and T-duality transformations. The addition of the charges does have some 

effect on the A D M mass, angular momenta, and the area but these have all been 

calculated in (7.25), (7.32), and (7.35) respectively. The conserved gauge charges 

for the charged metric have also been calculated in (7.43) and are explicitly given 

4G 4(7 
Q2 = 7—A/osinh2Q;2 

37r 
Q1 = ^ Afo sinh 2tt 1 Q 2 = ^ 0 sinh 2^2 (7.62) 

I t is worth noting that the charges are directly related to their respective boosts, 

which verifies the physical picture of the hnear momentum being exchanged for 

winding charges when the metric is T-dualised. 

08 

07 

06 

OS 

04 

03 

02 

01 02 1.3 

'4 
04 05 

F i g u r e 7 . 1 : This gives an example of how the a vs j ^ ^ plots change for the dual spinning black ring 

as the charge is increased, wi th Q I = Q2 = 1, | , i , ^ from the top right to the bot tom left respectively. 

To get an idea of how the behaviour of the charged solution differs f rom that 

of the neutral ring, i t is a good idea to plot some phase diagrams showing how 

the physical properties, like the angular momentum and horizon area, vary wi th 

the charge. To this end, the charged dual rotat ing ring solution given in (7.52) 
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wi l l be considered. The phase space of the dual rotating black ring has been fairly 
extensively studied in [44] and [69], so the following discussion wi l l concentrate on 
where the behaviour of the charged dual rotating ring (and hence the more general 
solution given by (7.14)) departs f rom that of the neutral ring. 

Before plot t ing the various physical properties, i t is beneficial to re-define them 

so they are scale independent. The obvious candidate for fixing the scale is the 

A D M mass, so expressing the angular momentum and horizon area in terms of this, 

along wi th the conventional normalisation, gives the following relations 

2 7 7 1 3 [3 A 

' = 3 2 G M ^ " ^ = I 6 V ^ ( G M ) ^ ^^"^^^ 

The square of the angular momentum is given above because i t is more convenient 

to plot in terms of / - , since i t is always positive. For the neutral ring, j.^ and .7© are 

constrained such that 

.u < \ :h: > I (7.64) 

This means that the angular momenta can never be equal and j ^ / j ^ . < 1/3 for all 

permissible values of u and A. The constraints on and are dependent on the 

form of the metric coefficients, w i th the constraints on the angular momenta for the 

dual rotating ring being a consequence of the restrictions on A and u. In general 

these restrictions wi l l always have to be calculated for each given metric. 

As can be seen by examining (7.32) and (7.35), the only difference between 

the angular momenta and area of the neutral metric and the charged metric is a 

factor of cosh a 1 cosh 0:2, which is the same for J^, J^, and A. When these are 

combined wi th the A D M mass to give the dimensionless quantities of (7.63), the 

relationship between the neutral metric physical properties and the charged metric 

physical properties is 

~ 2v/2 cosh Qi cosh as r . . . 7 

(cosh2ai + cosh20,)^ 

where the tilde denotes the charged angular momentum and area. Unfortunately, 

because the factors are all equal for the various quantities they all tend to cancel 

out, meaning that the physics of the charged metric is very similar to that of the 

neutral metric. This is exemplified by the fact that the maximum and minimum of 
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j is exactly the same as for the neutral metric, no matter how large the charges are. 
This is because the mult iplying factor varies between 0 and 1. 

The mult iplying factor in (7.65) encodes all of the differences between the prop­

erties of the charged metric and the neutral metric. The denominator of the mul­

t ip lying factor in (7.65) is larger than the terms in the numerator for all \ai\ > 0 

so this factor has a maximum of 1 for Q I = Q t = 0 and then exponentiahy decays 

toward 0 as the charges are increased. This means that the charged metric angular 

momenta and horizon area wi l l always be smaller than the corresponding neutral 

metric if only the charges are varied. I n the case of the dual rotating black ring, this 

agrees wi th the intuit ive interpretation of the ring being balanced by the charge as 

well as the angular momentum. The charge helps to balance the tension t rying to 

collapse the ring and thus allows a ring that would otherwise be unstable, i f only 

balanced by the centrifugal force, to remain in equilibrium. 

The form of the expressions for the angular momentum shows that for any given 

ring, as the charge is increased the angular momentum in the 0 and the ip plane wi l l 

have to decrease for the ring to remain in equilibrium, w i t h the speed of the rotation 

decreasing as the charge increases. Unfortunately, since the mult iplying factor in 

(7.65) only asymptotically approaches zero, there is no way that the ring can only 

be balanced by rotation in the (j) direction, or by the charge alone. In order for the 

angular momentum in either direction to reach zero, the charge would have to be 

infinite. 

Figure 7.1 shows how the r ing area a varies w i th for various different values of 

Q i and Q 2 . The curves are constrained so that = 1/500. The effect of increasing 

or decreasing Q I or a? is to move the phase curve closer or further away f rom the 

origin respectively. I t doesn't matter whether a i or Q2 is varied, since the factor in 

(7.65) is symmetrical under interchange of Q : I and 0:2- The basic effect of varying the 

charge is to replicate the phase curve of a neutral r ing wi th larger other than that, 

the phase curves are identical in shape to those of the neutral ring. This behaviour 

can be generalised to any other metric given by (7.14) but, obviously, the physical 

interpretation would depend upon the physics of the neutral metric (7.6). 

To find the point where the black r ing angular momentum in the ip direction is 
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minimized and the area maximized i t is necessary to deploy a Lagrange multiplier to 

fix whilst jjp is minimized. Doing this gives the value of A in terms of u where j^, 

and hence a are maximized. Unsurprisingly, this gives exactly the same expression 

as for the neutral ring, where 

A = ^ ( - 1 - 1/ + V ( 9 + //)(l + 9 J / ) ) (7.66) 

This is because the form of and is exactly the same, so any factors that are 

introduced by 7^ 0 cancel out completely. 
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F i g u r e 7 .2 : This plot shows how the minimum angular momentum along the S"̂  reduces as the 

charge is increased from Q I = Q2 = 1 through to a i = Q2 = 2 in increments of 0.2. The highest curve 

represents the smallest total charge and the lowest curve represents the largest total charge. 

Figure 7.2 gives some examples of how the r ing angular momentum j'^ decreases 

as ^ —*• 1 i.e. as the rings get fatter, and decreases for all 1/ as the charge is increased. 

Al though the minimum angular momentum curves for larger values of Q I and (12 

seem to be approaching = 0 rapidly, they w i l l only ever asymptotically approach 

i t . This means that even though the addition of a small charge w i l l significantly 

decrease the angular momentum needed for the ring to remain balanced, i t w i l l never 

sustain a balanced r ing wi thout angular momentum in at least the ip direction. The 

variation of the angular momentum w i t h the charge is similar for a generic metric 

but the form of the plots w i l l obviously vary. 
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Figure 7 .3 : This plot gives the lines delimit ing the phase space of the charged ring when the charges 

are equal for ai = 02 = 0,0.2,0.4,0.6,0.8 from top to bot tom respectively. 

Figure 7.3 shows the phase space of the charged black r ing for against 

for various values of a i and Q2 ranging f rom 0 to 0.8. For any given charge, the 

permissible values of j ^ . and are those that are enclosed by the curve and the 

axis. Values of and outside of this enclosed region are not physically 

permissible. As w i t h all the other plots, the increased charge has the effect of 

decreasing the angular momentum, so the larger the charge the smaller the range of 

the permissible angular momenta in the tp and (p directions. 

To analyse the extremal doubly spinning ring, i t is necessary to substitute A = 

2 y ^ . For this case, the analysis of the charged version proceeds in a similar manner 

to that of the non-extremal doubly spinning ring. The mass, angular momentum 

and horizon area are stih given by the expressions in (7.25), (7.32), and (7.35) which 

differ f rom the uncharged versions by functions only involving coshoi and cosh 0-2. 

Thus all of the physical properties, that depend upon the charge, w i l l vary in the 

same way as previously described. 



Chapter 8 

Conclusion 

The main body of this work was concerned w i t h investigating the geometrical and 

physical properties of black hole solutions in higher dimensions. The main tool 

that was used to examine the geometry of various 5D solutions was the plot t ing 

of geodesies on representative Penrose diagrams, as in chapter 5. By plot t ing the 

actual geodesies on the Penrose diagram it gave a much better idea of what was 

happening to the test particle since Penrose diagrams have inherent features which 

allow the reader to identify various regions of interest in the spacetime, such as the 

event horizon and any curvature singularities. 

Once the geodesies were plotted on the diagram it was possible to see at a glance 

what was happening to different test particles when the constants of motion were 

changed. In general, for all of the plots, increasing the energy or angular momentum 

of the test particle would increase the curvature of the geodesic and thus increase 

the proper time that the test particle experienced. Thus i t is possible to get an 

intuit ive feel for how a test particle wi l l react under different conditions in the 

various spacetimes. 

Another advantage of plot t ing the geodesies on the Penrose diagram was in the 

case where the test particle was given some angular momentum (or gained i t by 

virtue of the black hole spinning). In this instance i t is no longer obvious where 

the future and past light cones are at any particular point in space, but by plot t ing 

the null geodesies i t was possible to interpret how the light cones deformed as the 

angular momentum of the test particles was increased. Ideally the Penrose diagram 

170 
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should be extended to include the additional dimension when the test particle is 
given angular momentum in one of the compact directions but in practice i t is very 
diff icult to interpret a two dimensional image of a three dimensional phenomenon. 
Also, in a lot of the more interesting cases i t isn't even possible to extend the Penrose 
diagram to three dimensions because this would require at least a three dimensional 
cross section of the space time to be conformally fiat, which isn't the case for either 
the Kerr or black r ing solutions. 

A t the end of chapter 5 a different method of plot t ing the geodesies was examined 

to t ry and circumvent this problem. Unfortunately, the Klosch Strobl mapping 

also has some severe limitations - mainly due to the increased complexity of the 

coordinate transformations used. The major advantage of the method is that the 

coordinate transformations allow the whole of the spacetime to be covered w i t h only 

one coordinate patch and thus avoid the problems caused when several patches have 

to be considered, such as in the case of the Kerr geodesies. However, the fact that 

the coordinate transformations are so unrestricted makes it very difficult to derive 

any transformations that are practically useful. In the Kerr case, the geodesies had 

to be restricted to the axis of rotation in order to make the problem tractable. I t 

may be possible to adapt the method presented here so that i t is applicable to all 

of the Kerr geodesies but i t is far f rom obvious how this could be done. 

I n chapter 6, the equations of motion for the geodesies of the neutral rotating 

Black Ring metric were set up and numerically integrated for some special classes 

of solutions. The solutions can be broadly separated into those that are confined to 

the axis of rotation and those that gave circular orbits in the plane of the ring. I t 

was also shown that there are no circular geodesies that orbit through the ring or 

any "pseudo-radial" geodesies. Although it was shown that there aren't any circular 

orbits through the ring, some numerical evidence was presented that bound orbits 

of this form may exist. 

The effective potential for the on-axis solutions is very similar to that for a static 

black hole, w i th the potential being attractive for the geodesies wi th zero angular 

momentum. In this case both the nul l and timelike particles can pass through the 

origin of the ring and out to infinity, or in the case of the timelike geodesies, oscillate 
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back and for th . This agrees w i t h the analogous Newtonian case of a massive ring 
when a small test particle is placed on the axis of symmetry and then displaced 
slightly. 

Increasing the angular momentum of the geodesies causes a centrifugal barrier to 

appear which stops the geodesies f rom approaching the origin of the ring, as in the 

case of the Schwarzschild black hole. Even though timelike and null particles can't 

reach the origin i t is s t i l l possible for them to pass through the centre of the ring 

by virtue of the black ring being five dimensional, so the axis of rotation is actually 

a plane meaning that the particles can go f rom one side of the ring to the other 

without passing through y = — I and x = + 1 . The particle motion in the x-4' plane 

is similar to a small asteroid moving in the Sun's gravitational field. The particle 

can either be captured and orbit indefinitely, or i t can escape to infinity. 

The timelike potential has a local minimum, which allows for a rich array of 

geodesic motion because i t is possible to have a geodesic that is in a stable orbit 

in the x-0 plane near to the centre of the ring. The shape of the potential weh is 

unsymmetric so the orbit is always elliptical wi th the period of the orbit depending 

on the in i t ia l radius: the larger the radius, the longer the period of oscillation. 

The effective potential for the null geodesies is very similar to that for the time­

like ones when the angular momentum is zero, but once the angular momentum is 

increased the potential becomes total ly repulsive for small u. I f u is large enough 

then i t is possible to create a small local minimum for values of > 0.653. This 

potential is interesting, since i t means that i t is possible for the Black Ring to have 

light rays i n stable orbits circling through i t . I f v is decreased, then the nul l geodesic 

w i l l always go off to infinity, no matter what the angular momenta of the geodesic 

is. 

In the case of the planar circular orbits, the angular momentum in the (p direction 

has to be zero in order for them to remain on the plane through the centre of the ring. 

This means that the geodesies are confined to move in only one spatial dimension. 

For timelike geodesies i t is only possible to have a constant circular orbit on the 

ergosurface at y = —j. This requires the energy and angular momentum in the 

tp direction to be carefully chosen though. Also, this orbit only exists in the outer 
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equatorial plane. I t is impossible to have any circular orbits in the interior of the 
ring. 

For null geodesies there is always at least one solution for ?/; that wi l l give a 

circular orbit for all values of i/. I f the angular momentum in the -0 direction is 

chosen to go against the rotation of the ring, i t is also possible to have two static 

orbits for the same value of j / . These circular orbits do require a certain amount of 

tuning because for small values of ' I ' i t is impossible to have any circular orbits, no 

matter what the shape and size of the ring. 

The possibility of the Black Ring metric having geodesies that orbit through the 

ring at constant y and radial geodesies of constant x was also examined but i t was 

shown that these cannot occur, at least not for these particular toroidal coordinates, 

where orbits of constant y describe circles. The numerical evidence suggests that 

there may be elliptical orbits through the ring for at least one value of y. but the lack 

of separability of the equations of motion means that it is impossible to interpret 

these orbits quantitatively. I t would be interesting to investigate these orbits more 

thoroughly, to see if the motion of the geodesies reveals any underlying properties of 

the Black Ring metric that have been thus far overlooked. A more systematic way of 

doing this might be to look for regions of the space where the geodesies are bounded, 

by numerically integrating the fu l ly specified equations of motion for varying ini t ia l 

positions. The regions of space close to the x = ± 1 planes and the y = —1 axis 

have properties similar to the results presented here, so this may provide a way of 

estimating values for the conserved momenta that could give bounded geodesies at 

some points. 

The final chapter was principally concerned w i t h constructing a two charge su-

persymmetric string solution, in the low energy l imi t , given an in i t i a l solution to 

Einstein's field equations. I t then used the dual rotat ing black ring found by Pomer-

ansky and Sen'kov in [27] as an example of how the general method can be applied 

to obtain specific solutions. The generic charged metric and its physical properties 

were derived in section 7.2 and thus allowed the various physical properties of the 

charged metric to be examined using the dual spinning black ring as an example. 

The main aim of this chapter was to present a technique that would charge up 
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a generic three-Killing field metric. I t basically involved l i f t ing the metric to ten 
dimensions, boosting the metric, T-duahsing i t to obtain a fundamental charge, 
and then boosting again to produce a second charge. The resulting solution was 
then Kaluza-Klein compactified back down to five dimensions, so that the physical 
properties of the solution could be explored. The first part of section 7.2 defined 
a generic starting metric and then applied the above techniques to generate a new-
solution w i t h fundamental and momentum string charges. 

Having obtained a general expression for a charged metric, the physical properties 

of i t in terms of those of the neutral metric were derived. The analysis showed that 

the A D M mass, angular momentum, and the horizon area of the charged metric 

were directly proportional to the respective quantities for the neutral metric wi th 

the mult iplying factor being a function of the boost parameters used to generate the 

charged solution. The derivation of the conserved charges showed that the gauge 

charges were related to the boost parameters by a factor of sinh2Q, where a. is the 

boost parameter. This was elaborated on more at the end of the chapter. 

The addition of the string charges varied the physical properties of the generic 

black hole solution, and the dual rotating black r ing in particular. I t was found that 

the addition of the charges had l i t t le effect overall wi th the angular momenta and 

area being the only properties that were affected. In general the area and angular 

momenta were reduced as the charges were increased but the angular momentum 

could never be decreased to zero for finite charge. This is because the area and 

angular momenta of the charged solution only differed f rom those of the neutral 

solution by a mult iplying factor which was a function of the boost parameters. This 

mult iplying factor decayed exponentially f rom 1 when the charges were set to zero 

and asymptotically approached 0 for large values of the boost parameters. This 

resulted in the behaviour of the charged black ring being vir tual ly identical to that 

of the neutral ring, w i th the charge playing a similar role to that of the angular 

momentum in the neutral case. This was as expected but i t was shown that the 

charged ring must have non-zero angular momentum in the if} and 0 direction to 

remain balanced. As the charge is increased, the angular momentum required to 

keep the ring in equilibrium decreases exponentially but only ever asymptotically 
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approaches zero. 

Although the method here looked at adding fundamental string and momentum 

charges i t is theoretically possible to generate a [Dl, D5] charged solution by carrying 

out some further duality transformations. I t would be interesting to see whether 

i t would be possible to extend the methods used in this paper to charge up the 

generic metric, given at the beginning of section 7.2, so that a generic [D1,D5 

solution could be produced. I t is possible to do this when the specific form of the 

metric coefficients are known (such as in [61]) but this requires some of the 2-forms, 

generated f rom the original metric coefficients, to be differentiated and integrated. 

Given this requirement, i t is not immediately obvious whether this method could be 

applied to a generic metric solution. The [Dl, D5] solution would have exactly the 

same physical properties [81] as the solution presented here, but i t would provide 

a broader basis for the investigation of the microscopic entropy of the black hole 

solutions. 
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Appendix A 

Orthonormal Bases 

It is sometimes convenient to use a basis that isn't defined by the coordinates on 

the manifold. This section presents the notation used to describe the various non-

coordinate constructs that are required for more general orthonormal bases. The 

notation used wih follow [31], so that the general basis vectors will be given by e^a), 

where the Latin index is used to differentiate it from the vectors that describe the 

coordinate basis. The basis vectors are defined to be orthonormal, so 

5(e(a):e(b)) = 7?a6 : (A.0.1) 

where g{ , ) denotes taking the inner product with respect to a particular metric 

The relationship between the general basis and the coordinate basis is given by 

= (A.0.2) 

where the vielbein ê " is an n x n invertible matrix which describes the transfor­

mation between the coordinate and the general basis. The inverse of this matrix is 

denoted e'^a so that 

e ^ e / = Si: , e / e ^ = S'^ (A.0.3) 

In terms of these vielbiens, (A.0.1) becomes 

g^,ue^ae\ = Vab • (A.0.4) 
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This expression implies that the components of the metric, referring to the general 
orthonormal basis, are just those of the Minkowski metric r/,,̂ ,. This means that the 
Latin indices can be raised and lowered as normal using A / ^ i , and ry'̂ " e.g. 

e \ = Vahe'' (A.0.5) 

It is possible to construct expressions for one-forms e'°' in a similar way as above, 

so that 

Note that this construction implies that the expressions for the one-forms are com­

patible with those of the vectors, such that 

e^"'^e^,) = 51 . (A.0.7) 

These expressions for vectors and one-forms can now be combined to express a 

general tensor V ' ^ , in the coordinate basis, in terms of a general orthonormal basis 

V\ = e / e ^ V ^ (A.0.8) 

To define covariant differentiation for the general orthonormal basis, it is neces­

sary to introduce the spin connection to give the coordinate derivative as 

\/^X\ = d,X\ + u,\X\ - u;/feA'% , (A.0.9) 

where X'^^ is a general tensor. Demanding that this tensor expression is invariant 

upon switching between the two coordinate systems gives a relationship between the 

spin connection and the ordinary connection F^ ,̂ 

= ej'e\r;, - e \ d , e , ° . (A.0.10) 

This can be re-expressed in terms of the vanishing of the covariant derivative of the 

vielbein by forming 

y,.e," = a,e," - F^^eA" + u ^ \ e , / . (A.0.11) 

Now, demanding that this be zero gives 

V f t f i . " = r ; , e / - a,,e/ (A.0.12) 



Appendix A. Qrthonormal Bases 185 

which can be re-arranged to give the expression in (A.0.10). 

So far, the only constraint on the choice for a general basis is that it should 

be orthonormal i.e. it should satisfy equation (A.0.1). Under this constraint it is 

still possible to perform a local Lorentz transformation on the basis vectors without 

violating (A.0.1), this means that in general a transformation law is needed for the 

Latin indices: 

r"'fc. - A " ' , A V r % , (A.0.13) 

where A"'a is an n x n matrix encoding the Lorentz transformations. This transfor­

mation law can now be used to see how the spin connection transforms under local 

Lorentz transformations, giving 

t̂ M '̂fe' = A"'„A^.u;^% - A^6.a^A"'c . (A.0.14) 

Having defined the transformation law for the spin connection, it is now possible 

to define exterior derivatives that are invariant under local Lorentz transformations, 

as well as general coordinate transformations. The usual expression for the exterior 

derivative of a one form is given by 

(dX)^ ," = a ^ A V - a . A ' / , (A.0.15) 

which is a tensor under general coordinate transformations but not under local 

Lorentz transformations. This can be rectified by introducing a spin connection 

term as follows 

( d x ) ^ / + {uA x ) ^ / = a ^ x / - a,x^" + cj / fcX," - u.^x^". (A.O. i6) 

This expression will now transform as a tensor under both general coordinate trans­

formations and local Lorentz transformations. 

It is now possible to express the tensors for the torsion T"- and the curvature R'^b 

in terms of the spin connection. These are 

T" = de" + uj^b A , R^b = da;% + uj\ A u^b , (A.O. 17) 

where the Greek indices on the basis and spin-connection one-forms have been sup­

pressed so that 

e" = e/dx'^, iu\^u^\dx^. (A.O. 18) 
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The usual convention is to use torsion-free connections, which means that the first 
expression in (A.0.17) will be zero. 

The assumption of metric compatibility {S/^g^^ = 0) can be used to generate an 

important identity for u^Mb- In the general orthonormal basis, the metric is given 

by rjab: so the condition for metric compatibility can be written 

^lj:ilab = d^Vab - <^i/'aVcb " i^,j'^hVac 

-iO^ab - UJ^ba = 0 . (A.0.19) 

This therefore implies 

UJ^ah = -^/-Aa , (A.0.20) 

which can similarly be shown to hold for u'''"'''. The anti-symmetry condition of 

(A.0.20) can now be used with the torsion free condition to find the spin connection 

in terms of the vielbeins. 



Appendix B 

Ricci Tensor for the Canonical 

Form of the Metric 

In this appendix, part of the Ricci Tensor for the form of the metric given in (3.64) 

is calculated to show that 

Calculating the non-zero Christoffel symbols for the metric given in (3.64) gives 

k=l k=l 

r^, = - A a . z . - ^ a . A , r;^ = -jd,u. (B.0.2) 

Using the fact that p = ^ |det Gij \ , the following relations for Gij can be calculated 

D-2 ^ D-2 

J2 G'^dpG,, = - , J2 G''d,G,, = 0 . (B.0.3) 
i.i = l ^ i j = l 

These expression can then be used with the expressions for the Christoffel symbols 

that have already been calculated to give 

D -2 , D-2 D-2 ^ D-2 

(B.0.4) 
i j = l i,j=l 1=1 (=1 
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All these expressions can now be combined to calculate an expression for the Ricci 
tensor 

D-2 D-2 

+ J ] G*^'apG,,a,G,, + - ^ G^-'aG,,a,G,,. (B.0.5) 
k.l. = \ k,l=\ 

This expression can be simplified further by noting that 

D -2 D-2 ^ 

D -2 D - 2 

- G'^dlG,, + G''G'''d,Gkrd,Gi, = 0 , (B.0.6) 

along with the expressions in (B.0.3), can be substituted into (B.0.5) to give 



Appendix C 

Singular Terms in the Black Ring 

Geodesic Equations 

In certain situations the equations of motion given by (6.3) - (6.5) and (6.12) - (6.13) 

break down, such as when y = —1 is substituted into (6.13). In cases such as this, 

certain terms become indeterminate in the x.y coordinates. Once these terms are 

isolated, they can be analysed by transforming to spherical polar coordinates, as 

given in (4.12) and (4.13). In the case of (6.13) the singularities occur in 

In section 6.2 it was stated that so long as ' I ' = 0 the G(y) term would not blow up. 

This is more evident if G(;(/) is converted into spherical polar coordinates. Doing 

this gives 

where P = ^r^ + 2R^r^ cos 29+ R'^. 

The rotational axis, given by y = — 1 is equivalent to ^ = 0, so i t is obvious that 

G{y)~^ oo as ^ —> 0 because of the sin" ^ term. Fortunately, the term will 

cancel out the sin^ 6 term if it is initially chosen to be zero. 

Transforming the other problematic term into spherical polar coordinates gives 

r _ 4/?^[(r^ - R^)f sin 6 - (r^ + R^)re cos Of 
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Taking the hmit as ^ ^ 0 gives 

In this form it is obvious that this term is not singular, as is always positive and 

u <\. 

There are similar problems with equation (6.12) when the geodesies on the equa­

torial plane are to be considered. The terms in question are 

and ^ (C.0.5) 
G{x) G{x 

Using the same process as above the terms can be transformed as follows 

_ AR-[resm9{R^ - r^) - rcosejK^ + r-^)]-

G{^)~ P 3 [ P + ^(/?2 _ r 2 ) ] 

The equatorial plane corresponds to ^ = | , so taking the hmit gives 

(C.0.6) 

.̂2 4/?2j.2^2 

G O ^ = {R:^~r^ni^u) ^^-^-'^ 

This term is very similar to (C.0.4). In this case the denominator is always positive 

because the (/?- - r'-)- term is always positive. 

Transforming the other term in (C.0.5) gives 

G{x) 4/?2r2 cos2 9[P + u{R^ - r^)] ^ ' 

This will obviously blow up for (9 = | unless i = 0. In a similar manner to the 

geodesies on the rotational axis, i has to be zero for geodesies on the equatorial 

plane, since the (J) coordinate is measured with respect to the x = ±1 axis. 

Equation (C.0.6) also causes a problem when calculating geodesies that pass 

through the origin. In the toroidal coordinates, the origin corresponds to x = 1 

and ?/ = - ! , unfortunately the transformation given in (4.13) becomes undefined. 

This means that a different coordinate system will have to be used to remove the 

singularity at this point. A good candidate is Cartesian coordinates. 

The transformations between the Cartesian coordinates and the toroidal coordi­

nates are given by 
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where ZQ and Zi are the Cartesian coordinates on the {x,y) plane. In these 
nates 

coordi-

T 4R^zo[R^Zo + 2zoz,i, -1- ZQ-ZQ - Zi~Zo\ 
,L — 

'/ / — 
iRhilR'i.-lzoz.Zo -z.'z.+zo'z^ 

y — 

G{x) = 

G{y) = 

4R:'ZO- {UR^- - vzo" - iyz,' + Q) 

y — 

G{x) = 

G{y) = 
4R-zr{uR^ + iyzo- + uz,' - Q) 

y — 

G{x) = 

G{y) = 

(C.0.11) 

(0.0.12) 

(C.0.13) 

(C.0.14) 

where Q = \/[{zi - R)"^ + z^][{zi + R)'^ + z'^]. Expressing the terms that become 

singular at x = 1 and y = —1 in Cartesian coordinates gives 

9 . 0 . 10 

2o"2o - ^ r ^ o -
G(.x) 

4R''[R'zo + 2zoZii, + 
{uR^ - uzo' - vz,-' + Q) 

AI^[R^z,-2zoz,io-z^z,+z^z^ 

(C.0.15) 

G[y) ~ \uR^ + uzo' + uz,^-Q)Q^ ^^"^'^^^ 

In Cartesian coordinates the origin is at 20 = ^ 1 = 0, so substituting these values 

into the above equations gives 

lim hm 
:o-0 [-1-0 G(X-) 

lim 
20 — 0 

lim 
.0 G{y) 

i?2(i^ + l ) 

\z\ 
R \ u - \ ) 

(C.0.17) 

(C.0.18) 

It is now manifest that these terms are non-singular at the origin and are dependent 

on io and z\ respectively. 



Appendix D 

Effective Potential on the Black 

Ring Equatorial Plane 

For geodesies confined to the equatorial planes, given by x = ± 1 , if can be calculated 

from the first integral equation. Substituting .t = 0 and ^ = 0 in (6.16) gives 

P?F{^x)y'~ E-'-F{x) {x-yr-[RE{l + y)C^<i>F{y)f 
G^y){x-yY F[y) F{x)F{y)R:^G{y) ' ^ ' ' > 

In principle, the effective potential can now be calculated but there is a problem 

caused by the F{y) terms in the denominator. These terms become singular when 

y = — J so d coordinate transformation is required to make sure that the effective 

potential is continuous across the ergosurface. The transformation 

^ = - t a n h - f i ± ^ ' ) (D.0.2) 

is continuous when y ^ —j and approaches infinity as y - 1 . 

Expressing (D.0.1) in terms of z gives 

= KE^ + LE + M (D.0.3) 

where 

K = 
(—A — tanh z + u -\- uX tanh z){x\ + x tanh z + \ + \ tanh z)' 

i?2 tanh2(1 - A2)2(i - tanh^2) 
(xA + X tanh 2 + 1 + A tanh zfC'^iX - i f 

i?2 tanh zF{xY{\ - A2)3(i + tanh zY{\ + tanh z) 
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(D.0.4) 
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^ _ 2 ( . T A + X tanh ^ + 1 + A tanh zY^^CjX - 1)(1 - tanh(2)) 
i?3^(x)2(l - A 2 ) 2 ( l - t a n h 2 3)2(A + t a n h 2 ) ^ 

M = 
-A - tanh z + u + uX tanh z){x\ + x tanh 2 -t- 1 -f- A tanh z)-t 

(1 - A2)( l - tanh' -)(A + is.nhz)R^F{x) 
(xA + X tanh z + \ + \ tanh zf tanh z'l'^ 

(D.0.6) 
R^F{xY{l - A2)(l - tanh^2)2(A + t a n h 2 ) 

The effective potentials for these planar geodesies can be calculated in a similar way 

to those at the beginning of section 6.2, so solving (D.0.3) for E when i = 0 gives 

V. - - ^ ^ ^ ^ ^ ^ (D.0.7, 

Technically both effective potentials need to be considered, since the L term is not 

equal to zero, as was the case for the on axis geodesies considered in section 4, but 

in practice it is usually possible to consider only V+, since V'_ is usually negative for 

all values of 2. However, if ' I ' < 0, V'_ is positive for some values of z., in which case 

V+ and the portion of V_ that is positive wih be considered as the effective potential 

function. 



Appendix E 

The Induced Metric on the Event 

Horizon 

This appendix examines the form of the induced metric, on the event horizon, in 

terms of generic metric coefficients and derives some identities that prove useful 

when manipulating unspecified metric coefficients. The relationship between the 

area of a metric when string charges have been added and that of the neutral metric 

appears to be simple but substitution of the charged metric coefficients in terms of 

the neutral coefficients doesn't immediately give the desired relationship between 

the two horizon areas. Instead, consider the determinant of the neutral metric (7.6) 

9u gt^p §14, 0 0 

9iP4- 9ip4> 0 0 

.9t0 9,p4, g<i,4, 0 0 

0 0 0 0 

0 0 0 0 g,. 

[E.0.1) 

where A(p, z) is an arbitrary function depending on the metric coefficients. It is 

only a function of the variables p and z, since the other coordinates can't appear in 

the metric coefficients by virtue of their being Killing vectors. 

A little manipulation shows that the gpp and g.^ coefficients can be factored out 
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to give 

9u (Jtt 9t<p 

fjppgzz gu-

9c<!> 9t4> 9(t>4> 

This can tlien be rearranged to give 

(E.0.2) 

9u gi-t 9i<t> 

9il;i!; 9il,<p 

9t<!> g-ipip 9(t><b 

k{p.,z) _ g''f'K{p.,z) 

9pp9zz 9zz 
(E.0.3) 

where it is assumed that the event horizon is a hypersurface of constant p. In 

this case g''P = 0 so, after expanding the determinant, the above equation gives an 

identity relating some of the coefficients in the neutral metric. 

gu{gMg<b<p - 9ld>) - gl^g^ + '^gti^gtog^:^ - 9%g>p^ = o (E.0.4) 

The main difficulty in calculating the area in terms of the metric functions is 

due to the square root in the integral. The only non-trivial way to eliminate this is 

to express the determinant of the mduced metric in a manifestly squared form. To 

do this complete the square on the metric given in (7.6) 

ds^ = gu dt + 
gu 

k2 , „ J „ 2 
gu 

+ 2(/.00d'0d0 + g-^-fdip-

(E.0.5) 

Armed with this expression and the identity given in (E.0.4), it is now possible 

to express the determinant of the induced metric in a manifestly squared form 

7 = gzz {g,p^pg^<i> - gl^) 

\gLgtd> ' 
= gzz 

g'U fsf<t> 

gl gu \gu 
g<t><t> — 5 — r g<t><t> —-

g'u \gu J \gu 
g-ijiiij 

2 / 2 

9t<t> I 9iip 
gu \9u 

^ , , ^9t4.-gt4> (gt>pgi4> \ (gt^guf 
g^i' I + ^ — — — .9ii<?.J - y — g^'^' 

gu \ gu gu 

(E.0.6) 

Now consider 

5^ 
9u 

9<p<f> 
9u 

Stt \ f gt^^guf 
- f I giij<i> 

J \ gu 

I 2 X 9]-^g4>i> - '^gixpgupgtP'!' + gt,i>g^^P ,^ „ 

gu 
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which goes to zero by virtue of (E.0.4). It is also imphcitly assumed that the 
particular metric under consideration represents a rotating black hole, so that ^ " 7^ 
0 and hence -/^ 00. 

Simplifying and expanding the remaining terms for 7 gives 

7 = - % 
9u. 

[du-yJg'L - 9<b<t,9tt + gti,yjg1^ - g^-^gu ) (E.0.8) 

where (E.0.4) has been used again to give 

-g<Pi>9%gu - g4>4>gl^gu + g^gMgl = gl4,gl. - '^g^<t>gt^gi4>gu (E.o.9) 

This then implies 

71 = (gti'\Jgl4> ~ + gt4y/9t^ - gi^mt) (E.O.IO) 
gtt 

which is a much more useful form for comparing the neutral metric area with the 

charged metric area. 


