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Abstract 

In recent years, we have seen a diverse range of crises and controversies concerning 

food safety, animal health and environmental risks including foot and mouth disease, 

dioxins in seafood, GM crops and more recently the safety of Irish pork. This has 

led to the recognition that the handling of uncertainty in risk assessments needs 

to be more rigorous and transparent. This would mean that decision makers and 

the public could be better informed on the limitations of scientific advice. The 

expression of the uncertainty may be qualitative or quantitative but it must be well 

documented. Various approaches to quantifying uncertainty exist, but none are 

yet generally accepted amongst mathematicians, statisticians, natural scientists and 

regulatory authorities. 

In this thesis we discuss the current risk assessment guidelines which describe the 

deterministic methods that are mainly used for risk assessments. However, proba­

bilistic methods have many advantages, and we review some probabilistic methods 

that have been proposed for risk assessment. We then develop our own methods 

to overcome some problems with the current methods. We consider including var­

ious uncertainties and looking at robustness to the prior distribution for Bayesian 

methods. We compare nonparametric methods with parametric methods and we 

combine a nonparametric method with a Bayesian method to investigate the effect 

of using different assumptions for different random quantities in a model. These 

new methods provide alternatives for risk analysts to use in the future. 
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Chapter 1 

Introduction 

This chapter offers an explanation of the motivation for this thesis and introduces 

the particular areas of risk assessment that are discussed later in the thesis. It 

also provides an outline of the focus of subsequent chapters and introduces the 

collaborators for the project. 

Recent years have seen a diverse range of crises and controversies concerning food 

safety, animal health and environmental risks, e.g. the safety of Irish pork, dioxins in 

seafood, foot and mouth disease and GM crops. These crises have led to increased 

recognition of the need for improvement in risk assessment, risk management and 

risk communication. It is important to improve the handling of uncertainty in 

risk assessment, so that decision makers and the public are better informed on the 

limitations of scientific advice. Codex, which is the international forum for food 

safety issues, annually adopts new working principles for risk analysis. These in­

clude, ''Constraints, uncertainties and assumptions having an impact on the risk 

assessment should be explicitly considered at each step in the risk assessment and 

documented in a transparent manner. Expression of uncertainty or variability in risk 

estimates may be qualitative or quantitative, but should be quantified to the extent 

that is scientifically achievable." (Codex, 2007). Various approaches to quantifying 

uncertainty exist, but none of them are yet generally accepted amongst mathemati-

1.1 Motivation 

1 



1.1. Motivation 2 

cians, statisticians, natural scientists and regulatory authorities. 

In this thesis we introduce new methods for two specific areas of risk assessment. 

One is ecotoxicological risk assessment (e.g. protection of ecosystems from pesti­

cides) and the other is food safety risk assessment (e.g. protection of humans from 

food additives and contaminants). We discuss current guidelines for risk assessment 

for ecosystems and for human dietary exposure. Both are based on deterministic 

approaches in which a conservative exposure estimate is compared with a threshold 

value. Deterministic methods are methods where point values are used to represent 

random quantities, rather than probabilistic methods which assume a distribution 

for each random quantity. The difficulty with probabilistic methods is that decision 

makers may not fully understand the results and the effect of assumptions made in 

the methods may not be clear. Probabilistic methods present results as a distribu­

tion or as bounds on distributions. They may produce results where the majority of 

the distribution or the bounds on the distribution fall below a safe threshold. This 

can make it difficult to determine if the chemical is safe enough to be licensed. There 

are also many uncertainties in risk assessments that are ignored because it is not 

easy to include them in an analysis, for example, because appropriate methodology 

has not yet been developed or because there is not enough information available to 

choose distributions. 

There are many agencies working in the area of pesticides and food safety risk 

assessment. These include regulatory bodies and research agencies who consider 

which methods should be used and how reliable current methods are. As we are in 

the UK, we focus on the EU legislation and on the guidance provided by the UK 

Chemicals Regulation Directorate (CRD). On behalf of the UK government, the 

CRD of the Health and Safety Executive (HSE) implements European and National 

schemes to assess the risks associated with biocides. pesticides and plant protec­

tion products. These schemes are used to ensure that potential risks to people 

and the environment from these substances are properly controlled. The CRD are 

the UK Competent Authority (CA) regulating chemicals, pesticides, biocides and 

detergents and are authorised to act on behalf of ministers. As the CA for the 

UK, they are authorised to carry out work under programmes such as the Biocidal 
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Products Directive (BPD) 1. the REACH (Registration. Evaluation. Authorisation 

and Restriction of Chemicals) regulation and Plant Protection Products directives 

and regulations. They also have ongoing regulatory responsibilities under the UK 

Control of Pesticides Regulations (CoPR). Each European Union Member State has 

the responsibility of establishing their own CA and is responsible for implement­

ing the Directives into their national legislation. In UK law this is through the 

Biocidal Products Regulations 2001 (BPR) 2 and the Biocidal Products Regulations 

(Northern Ireland) 2001:< and corresponding legislation for pesticides. The CR.D is 

responsible for representing the UK and making recommendations at the Commis­

sion of the European Communities (CEC:s) and Standing Committee on Biocides 

(SCB) and the Standing Committee on Plant Health (SCPH) as well as examin­

ing the recommendations proposed by other EU Member States. The CR.D works 

closely with the Department of the Environment. Food and Rural Affairs (Defra). 

Defra is responsible for strategic policy for pesticides, chemicals and detergents. 

Further information can be found on the CRD website (www.pesticides.gov.uk) or 

the biocides area of the HSE website (http://w-ww.hse.gov.uk/biocides/about.htin). 

There are also advisory groups such as the European Food Safety Agency (EFSA). 

They work in collaboration with national authorities and stakeholders to provide ob­

jective and independent scientific advice and clear communication on various risks 

based on the most up-to-date scientific information and knowledge available. EFSA 

was set up in January 2002, following a series of food crises in the late 1990s. to 

provide an independent source of scientific advice and communication for risks in 

several areas including food safety, animal health and welfare and plant protection. 

Their aim is to improve EU food safety, to ensure that consumers are protected 

and to try to restore and then maintain confidence in the EU food supply. EFSA 

is responsible for producing scientific opinions and advice to direct EU policies and 

legislation and to support the European Commission, European Parliament and EU 

member states in taking effective risk management decisions. 

1 http://eurlex.europa.eu/LcxUriServ/LexUriServ.do?uri=CELEX:31998L0008:EN:NOT 
2liU,p://www.opsi.gov.uk/si/si2001/20010880.htm 
3hlt,p://www.opsi.gov.iik/sr/sr2001/200i0422.htai 

http://www.pesticides.gov.uk
http://w-ww.hse.gov.uk/biocides/about.htin
http://eurlex.europa.eu/LcxUriServ/LexUriServ.do?uri=CELEX:31998L0008:EN:NOT
http://www.opsi.gov.uk/si/si2001/20010880.htm
http://www.opsi.gov.iik/sr/sr2001/200i0422.htai
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Currently the deterministic methods used in risk assessment use safety or uncer­

tainty factors to include uncertainty in the risk assessment. Frequently these factors 

are used for various uncertain extrapolation steps and it is often difficult to assess 

which factor is used for which extrapolation. For example, when using rat data to 

predict toxicity for humans, the current method would divide the toxicity value by 

an overall factor of 1000 which should account for several extrapolation steps, e.g. 

species-to-species extrapolation, within species extrapolation and short-term expo­

sure to long-term exposure. Often the overall extrapolation factor is interpreted as 

the product of these three extrapolation steps, hence the assumption that a factor 

of 10 is used for each of them. However, this assumption cannot be justified based 

on the literature. Other factors may be applied if there are other uncertainties, 

for example, lab-to-field extrapolation. Unfortunately it is not clear whether these 

factors of 10 are too conservative or not conservative enough. A discussion of the 

deterministic method is given by Renwick (2002). The factors are not transparent in 

the sense that it is not clear which uncertainties they represent and the uncertainties 

included vary between assessments. Probabilistic methods that take variability and 

uncertainty (explained in Section 2.6.1) into account will provide more information 

on the distribution of risk. Therefore they can be a better representation of the risk 

distribution than the point estimate from a deterministic risk assessment. 

The aim of this research is to provide new methods which quantify uncertainty 

to provide decision makers with a more transparent and realistic description of the 

risks to individuals or populations. To do this, we consider a new method that can 

include various uncertainties, Bayesian probability boxes (p-boxes), and a method 

that does not require strong distributional assumptions, nonparametric predictive 

inference (NPI). We also provide a method that allows analysts to mix Bayesian 

methods with NPI. 

Bayesian probability boxes, presented in Chapter 3, were developed because of 

the advantages of the probability bounds analysis framework. These advantages 

include easily interpreted output, methodology that allows us to assume nothing 

about dependence between random quantities and methodology for sensitivity anal­

ysis. Currently p-boxes for distributions with more than one parameter fail to 
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take parameter dependence into account. Therefore we developed a Bayesian p-box 

method because Bayesian methods can include parameter dependence. 

In Chapter 4, we look at nonparametric predictive inference (NPI) as this method 

has not been implemented in exposure risk assessment before. It has useful charac­

teristics, such as only making Hill's assumption and not having to assume a distri­

bution. In contrast, Bayesian methods require the choice of a prior distribution and 

a distribution for the data. 

. In Chapter 5, we present a new hybrid method that allows us to combine random 

quantities modelled by NPI with random quantities modelled by Bayesian methods. 

This is useful when we have different levels of information about each random quan­

tity in the model. We show that NPI can be combined with the Bayesian posterior 

predictive distribution and Bayesian two-dimensional Monte Carlo Simulation (2D 

MCS). 

In this thesis we make several contributions to knowledge. These include de­

veloping the Bayesian p-box to represent variability and uncertainty for random 

quantities for ecotoxicological risk assessment. Bayesian p-boxes are useful as they 

can use tools from the general probability bounds framework. These tools include 

combining random quantities without making assumptions about dependence and 

sensitivity analysis by pinching p-boxes to a single distribution and seeing how this 

affects the output. We illustrate how NPI can be used for exposure assessment for 

food safety risk assessment as it has not been implemented in this field before and it 

has the advantage of not having to assume a parametric distribution. We propose a 

method that combines Bayesian methods with NPI as they have not been combined 

in a model before. This allows analysts to make different levels of assumptions about 

random quantities in the model. For example, analysts may only be prepared to 

assume Hill's assumption, A(n), which is weaker than a parametric distributional as­

sumption. These methods have been developed or implemented specifically for the 

ecotoxicological or food safety risk assessments. However they may be applicable 

in many other types of risk assessment. For example, p-boxes are currently used in 

the fields of reliability and engineering and NPI has applications in areas such as 

survival analysis. 
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1.2 Outline of Thesis 

In this thesis we aim to add to the methods available for risk assessment. We be­

gin in Chapter 2 by discussing the current state of risk assessment and the various 

uncertainties that need to be considered, when appropriate, in risk assessment. We 

explain why methods that model variability and uncertainty separately are used 

when answering questions about population risk. We provide an overview of several 

methods that are currently available. We look both at methods that model variabil­

ity and uncertainty separately and those that do not. We explain the advantages 

and disadvantages of several of the methods and provide a simple exposure model 

(Section 2.2) which we focus on throughout the thesis. The use of this model allows 

us to illustrate methods clearly. 

One of our main contributions to the literature is a new method called Bayesian 

p-boxes, which models variability and uncertainty separately to look at the risk to 

populations including parameter uncertainty. We present this in Chapter 3, and pro­

vide an illustration of how it works for two different distributions. We look at two 

different classes of prior distributions to include robustness to the prior distribution 

in the analysis and show how fixed measurement uncertainty can be incorporated 

in the analysis. We compare Bayesian p-boxes to other methods and show that a 

Bayesian p-box produces bounds that take parameter uncertainty and the depen­

dence between parameters into account. We also illustrate the results of combining 

Bayesian p-boxes using the method by Williamson and Downs (1990), which allows 

us to make no assumptions about dependence between random quantities. The 

majority of this research will appear as Montgomery et al. (In press). 

In Chapter 4, we illustrate how nonparametric predictive inference (NPI) can 

be used for exposure assessment by forming NPI lower and upper cumulative dis­

tribution functions (cdfs) for exposure. NPI can incorporate left-censored data in 

the analysis which is useful because left-censoring is a common occurrence with 

concentration data sets. We investigate how NPI lower and upper cdfs are affected 

by strongly and weakly correlated data sets and how known measurement uncer­

tainty can be included in an NPI analysis. We compare NPI with another predic­

tive method, the Bayesian posterior predictive distribution, where NPI compares 
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favourably because it includes interval uncertainty and makes no distributional as­

sumptions. Then we consider an ad hoc method to form robust NPI lower and upper 

cdfs. 

In Chapter 5 we develop a hybrid method that allows us to combine random 

quantities modelled by NPI and random quantities modelled by Bayesian posterior 

predictive distributions. We illustrate this method and investigate the effect of 

sampling variation and sample size using a simple exposure model. A robust hybrid 

method is presented where we include robustness for each random quantity in the 

model. We also illustrate a method of combining 2D Monte Carlo Simulation with 

NPI . Papers based on Chapters 4 and 5 and aimed at both the risk assessment and 

statistics literatures are in preparation. 

In Chapter 6 we sum up the results of this thesis and the contribution we have 

made to the area of risk assessment. We also suggest some areas that we think would 

be useful for future research, including combining random quantities using uncertain 

correlations, forming Bayesian p-boxes for other distributions, and developing the 

methods we have considered for more realistic models. 

Appendix A contains the specific parameterisations for all the distributions used 

in this thesis. A l l computations were performed using Matlab (Release 2006b. The 

Mathworks). 

1.3 Collaborators 

This thesis is the result of a collaboration between Durham University and the Risk 

Analysis team at Central Science Laboratory in York. Central Science Laboratoiy 

is a government agency that is dedicated to applying science for food safety and 

environmental health. The Risk Analysis team specialises in quantitative risk as­

sessment for environment, agriculture and food safety. Their main work is to develop 

and implement probabilistic approaches for risk assessment. They also undertake 

consultancy work and contribute to international expert committees. 



Chapter 2 

Statistical methods for risk 

assessment 

2.1 Introduction 

In this chapter we introduce two different types of risk assessment, food safety and 

ecotoxicological (pesticide) risk assessment and statistical methods that are cur­

rently used for different parts of a risk assessment. We have investigated these due 

to the recognised need, by policy makers and analysts, that the handling of uncer­

tainty in risk assessment must be improved. This is a consequence of previous health 

scares (e.g. dioxins in seafood. GM crops, etc). I t is also important to communicate 

the limitations of scientific advice to decision makers and the public in a transparent 

way. There are difficulties with terminology in risk assessment, as users and analysts 

often interchange the use of the terms 'random quantities', 'variables' and 'parame­

ters' and frequentist confidence intervals are often interpreted as Bayesian credible 

intervals. Therefore i t is important to communicate exactly what the results from a 

particular approach show and which uncertainties have been taken into account to 

arrive at those results. 

We begin by explaining the different parts of a risk assessment for chemicals 

(Section 2.2) and introduce a specific exposure model that we will use throughout 

the thesis to illustrate various methods. In Section 2.3, we discuss the current EU 

guidance for plant protection products and food safety risk assessment and describe 

8 
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some of the data sets that are available for effects assessment and exposure as­

sessment (both assessments are explained in Section 2.2). In exposure assessment, 

there is the added difficulty of left-censored data sets for concentration, which is dis­

cussed in Section 2.4. For the effects assessment for ecotoxicological risk assessment, 

we consider species sensitivity distributions (Section 2.5) to describe the variation 

between different species' sensitivities to various chemicals. 

When a risk manager wants to make a decision about a population, an important 

concept is the separate modelling of variability and uncertainty (both defined in 

Section 2.6.1). A population is defined as the group of individuals or entities to 

which a distribution refers. We discuss some important types of uncertainty and 

provide an example that explains why analysts and risk managers want to model 

variability and uncertainty separately when considering a population. 

In Sections 2.7 - 2.12, several methods for risk assessment are briefly explained, 

all of which are implemented in the thesis. These include Bayesian methods, non-

parametric predictive inference (NPI), probability bounds analysis and methods for 

dealing with dependence between random quantities. Some of these methods model 

variability and uncertainty separately and would thus be useful for questions about 

populations, while others, e.g. NPI and the Bayesian posterior predictive distri­

bution, do not model variability and uncertainty separately. These methods are 

important for decision making if the interest is in an individual randomly selected 

from the population. In Section 2.13, we also look at some alternative methods 

which have been used in risk assessment but not in the research reported in this 

thesis. 

2.2 Risk assessment of chemicals 

Chemicals are tested to assess their risk to a population or to an individual. I f risk 

managers deem the risk to be small enough, the chemical wi l l be licensed and can 

be used. Risk assessments are performed in different ways depending on their in­

tended purpose and other factors such as available data and resources. Van Leeuwen 

and Hermens (1995) define risk assessment as a process which entails the following 
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elements: hazard identification, effects assessment, exposure assessment and risk 

characterisation. 

Hazard identification is the process of determining if a substance can cause 

adverse health effects in organisms. I t also includes investigating what those effects 

might be. I t involves evaluating data on the types of possible health effects and 

looking at how much exposure will lead to environmental damage or diseases. Data 

may be available from laboratory or field studies. 

Effects Assessment is the determination of the relationship between the mag­

nitude of exposure to a substance and the severity or frequency of occurrence, or 

both, of associated adverse health effects. One chemical may produce more than 

one type of dose-response relationship, for example, a high dose over a short time 

period may be fatal, but a low dose over a long time period may lead to effects such 

as cancer. The data available are usually laboratory data. Extrapolation factors 

are sometimes used when only surrogate data sets are available, e.g. if we want to 

look at the effect of a particular exposure on humans but we only have data for 

tests done on rats. In human risk assessment, the variations in exposure routes (e.g. 

dermal absorption, inhalation or ingestion) and variation in the sensitivity of differ­

ent individuals to substances may be considered. A discussion of species-to-species 

extrapolation and other research needs in environmental health risk assessment is 

provided by Aitio (2008). 

Exposure Assessment is the evaluation of the likely intake of substances. 

I t involves the prediction of concentrations or doses of substances to which the 

population of interest may be exposed. Exposure can be assessed by considering 

the possible exposure pathways and the rate of movement and degradation of a 

substance. A simple exposure model that we consider throughout the thesis is: 

where exposure is measured in / ig/kg bw/day, concentration in /itg/kg, intake in 

Exposure = 
Concentration x Intake 

2.1) 
Body weight 
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kg/day and body weight, in kg. As stated by Crocker (2005), in the context of birds' 

exposure to pesticides, if we assume that the only exposure pathway is through food, 

the simplest estimated theoretical exposure is the food intake rate multiplied by con­

centration of the pesticide and divided by the bodyweight of the bird. There are 

several other factors affecting birds, such as the proportion of food items obtained 

from a field that has been sprayed with pesticide, and these can be incorporated to 

make a more detailed model. Similarly for human risk assessment there are com­

plicated exposure models available, where analysts are trying to combine different, 

exposure pathways, for an example see Brand et al. (2007). However, as our aim in 

this thesis is to explore different methodologies, we restrict attention to the simple 

model (2.1), where we only consider the exposure pathway from food or drink via 

the random quantity Intake. From here on we wil l refer to model (2.1) as the Ex­

posure Model. 

R i s k Characterisation is the assessment of the probability of occurrence of 

known or potential adverse health effects in a population, together wi th their ef­

fects, due to an actual or predicted exposure to a substance. I t is based on hazard 

identification, effects assessment and exposure assessment and aims to include vari­

ability and uncertainty. 

2.3 Current E U guidance 

The above steps for risk assessment for chemicals have been implemented at the EU 

level. Currently under EU legislation, risk assessments for plant protection prod­

ucts are mainly deterministic. Probabilistic methods are mentioned as a refinement 

option in the current EU guidance documents on assessing environmental risks of 

pesticides (European Commission, 2002a,c). These documents recognise the poten­

tial usefulness of probabilistic methods, but they also express reservations about the 

lack of reliable information for specifying distributions of random quantities, about 

the validity of assumptions, and about the lack of officially endorsed statistical 

methods. 
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In deterministic modelling for exposure assessment, point estimates, either mean 

values or worst-case values chosen by experts, are used for each different random 

quantity in an exposure model. The resulting point estimate is assumed to be a 

conservative estimate of exposure. The endpoint of the risk assessment for birds, 

wild mammals, aquatic organisms and earthworms is the Toxicity-Exposure-Ratio 

(TER.), which is the ratio of the measure of effects and an exposure value. The 

measure of effects is the toxicity value that is relevant for the assessment. This may, 

for example, be an L D 5 0 , which is the concentration at which a chemical kills 50% 

of the individuals in the tested population. Alternatively i t may be a no-effect level, 

which is the highest concentration at which the chemical causes no toxicological 

effects. The exposure value is the value calculated using the deterministic values 

mentioned previously. The risk is considered acceptable if the TER is greater than a 

chosen threshold value. I f this is not the case, the pesticide is not acceptable unless 

i t can be shown by higher tier risk assessment, e.g. probabilistic risk assessment or 

field studies, that the substance is likely to have a low risk. 

For food safety risk assessment a similar framework is used where a conserva­

tive deterministic exposure assessment is carried out and compared to a threshold 

toxicity value. However approaches used in the EU to assess exposure vary in de­

tail between different types of chemicals and foods which are controlled by different 

parts of legislation. An overview of the approaches used in different areas is given 

by EFSA (2005). 

For exposure assessments in both types of risk assessment, i t is common to 

use conservative point estimates as inputs to an exposure model, as the aim is to 

protect the whole population including the individuals most at risk. However, when 

conservative assumptions are made for several random quantities, the compounding 

effect is frequently not quantitatively understood (Frey. 1993). These assumptions 

may lead to so-called hyperconservativism. where several conservative assumptions 

are made and compound each other to create a level of conservatism that is extreme 

(Ferson, 2002). 
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2.4 Data sets for risk assessment 

In ecotoxicological effects assessment, we may be faced with data sets containing 

as few as one or two observations for toxicity, or there may only be surrogate data 

available. When modelling these data, the small sample size leads to several of the 

uncertainties that wil l be discussed in Subsection 2.6.2. These uncertainties include 

uncertainty about the distribution that the data have come from, extrapolation 

uncertainty and measurement uncertainty. 

One of the main databases of toxicity data is the ECOTOX database1, provided 

by the US environmental protection agency (USEPA). Another is the e-toxbase2, 

provided by the Netherlands National Institute of Public Health and the Environ­

ment (RIVM) . These provide chemical toxicity information for both aquatic and 

terrestrial species. They contain toxicity values for test endpoints, which include 

the concentration at which half of the tested population experiences an effect such 

as behavioural changes, effects on growth, mortality etc. and the highest measured 

concentration at which no effects are observed (NOEC). The records contain specific 

information such as the chemical name, toxic mode of action, species name and test 

endpoint. There are generally very few observations available for new chemicals that 

are tested in order to be licensed and there are generally more data available for 

aquatic species than for terrestrial species. 

Consider the number of observations available in the AQUIRE database (the 

aquatic section of the ECOTOX database) for various chemicals for aquatic species. 

There are 4127 chemicals, of which 1742 have only been tested on one species, 185 

have been tested on more than 25 species, and of these, 71 have been tested on more 

than 50 species. 

In food safety risk assessment there tends to be more data available as data 

are collected for every day of a short (e.g. between 1 and 4 days) or long (e.g. 

around 7 days) survey on the intake of food for hundreds or thousands of people. 

However, there are often problems with the data including measurement uncertainty 

1 h 1t p: / / c f p u b. e pa., gov / eco t ox / 
•http://www.e-tiOxbase.com/default.aspx 

http://%e2%96%a0http://www.e-tiOxbase.com/default.aspx
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and missing values, where e.g. some intakes of food are not recorded. The relatively 

short length of the food surveys leads to issues with extrapolation for predictions for 

individuals over longer time spans. An example of a dietary database is the UK Data 

Archive Study No. 3481 — National Diet, Nutri t ion and Dental Survey of Children 

Aged 1.5 - 4.5 years, 1992 - 19933. This is a 4 day survey for 1717 individuals 

giving information such as their age, sex, weight, height and their consumption of 

different types of food and drink. 

For the exposure assessment for a food safety risk assessment there is concentra­

tion data available about chemicals in different food types. A problem that often 

occurs wi th concentration data is that there are observations that are only recorded 

as less than a specific l imit . When the concentration of a chemical is measured, 

there is often a positive limit of detection (LOD) below which the equipment can­

not measure. The measured concentrations of the chemical which fall below the 

LOD wil l be recorded as less than the LOD. Some methods can easily incorporate 

left-censored data including Bayesian methods (Section 2.7), NPI (Section 2.9) and 

bootstrap methods (Subsection 2.13.1). 

2.5 Species sensitivity distributions 

Species sensitivity distributions (SSDs) are used in effects assessment to describe 

the distribution of the variation in toxicity of a compound between species. There 

are biological differences between living organisms and these mean that different 

species wil l respond in different ways to compounds at varying concentrations. We 

can model these differences using an SSD. The SSD is formed from a sample of tox­

icity data for different species, for example, the No Observed Effect Concentrations 

(NOEC). An SSD is often represented by the cumulative distribution function (cdf) 

of a distribution that is fi t ted to the data. This may be a parametric distribution 

or the empirical distribution function for the data. For a detailed account of the 

theory and application of SSDs, see Posthuma et al. (2002). 

As toxicity data sets tend to be small there is a lot of uncertainty about the 

•Jhttp://www.esds.ac.uk/findingdata/snDescription.asp?sn=3481&;key=cocliiig 

http://www.esds.ac.uk/findingdata/snDescription.asp?sn=3481&;key=cocliiig
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distribution that is fitted to the data. However, in some cases other information may­

be available to suggest a particular distribution. When parametric distributions are 

fit ted to the data sample, there may also be uncertainty about the parameters of 

the SSD. In practice, uncertainty about the parameters of the chosen distribution 

can be included in the analysis to provide lower and upper bounds on the SSD. To 

include parameter uncertainty, the SSD may be formed in many ways including the 

use of a Bayesian p-box (Chapter 3), the Bayesian pointwise method (Subsection 

2.7.7) or a nonparametric p-box (Subsection 2.10.1). 

2.6 Variability and uncertainty 

In this section variability and uncertainty that may be present in a risk assessment 

are explained and discussed. In Subsection 2.6.4, we illustrate with an example, why-

variability and uncertainty need to be modelled separately when the population is 

of interest. 

2.6.1 Description of variability and uncertainty 

The definitions below are taken from Burmaster and Wilson (1996). 

Variabil ity represents heterogeneity or diversity in a well-characterised popu­

lation which is usually not reducible through further measurement or study. For 

example, different people in a population have different body weights, no matter 

how carefully we weigh them. 

Uncertainty represents ignorance about a poorly characterised phenomenon 

which is sometimes reducible through further measurement or study. For example, 

the analyst may be able to reduce his or her uncertainty about the volume of wine 

consumed in a week by different people through a survey of the population. 
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I t is possible to reduce variability in some situations. For example, if government 

advice is to eat 500g of fish a week and people follow that advice, the variability in 

the amount of fish consumed in a week may reduce. 

2.6.2 Types of uncertainty 

There are many uncertainties that may need to be accounted for in a risk assess­

ment. A selection of uncertainties relevant to the problems addressed in this thesis 

is explained here. 

Parameter uncertainty refers to the uncertainty about parameters of input 

distributions for a model. For every random quantity in the model for which we 

assume a parametric distribution, we must choose values or a distribution for the 

parameter(s). Common statistical methods for fitting distributions to data include 

the maximum likelihood method or the method of moments (Rice, 1995). However, 

these choose a single parameter value for the distribution and ignore any uncertainty 

about that value. Bayesian methods (Section 2.7) and parametric p-boxes (Subsec­

tion 2.10.2) can be used to express parameter uncertainty. 

Uncertainty about dependence may refer to dependence between observable 

random quantities or dependence between parameters of a distribution. In many 

risk analyses there is no information available about the relationships between all 

the random quantities in the model and therefore many analyses assume indepen­

dence between random quantities, e.g. Fan et al. (2005): Havelaar et al. (2000). This 

assumption may lead to some uncertainty not being captured in the results of the 

analysis. This is discussed and illustrated in Section 3.7. I f analysts have enough 

information about dependence, they can incorporate i t into the analysis using meth­

ods such as copulas (Subsection 2.11.1). Dependence between the parameters of a 

distribution can be included in a Bayesian framework whereas it is not included 

in methods such as parametric p-boxes. The importance of including dependence 

between parameters is discussed in Section 3.6. 
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D a t a uncertainty can arise from measurement errors, censoring (see Section 

2.4) or extrapolation uncertainty (explained in Effects Assessment in Section 2.2). 

or all three. Measurement errors include human error and inaccuracy of measuring 

equipment and may be presented as an interval within which the datapoint falls. 

We consider measurement errors in Subsection 3.5.5 and Section 4.7. 

Model uncertainty refers to the fact that the models that we use to analyse 

phenomena do not fully describe the real world. Two different models may explain 

observed behaviour equally well, yet may produce significantly different predictions. 

The performance of models can be tested by comparing the results with observa­

tions from laboratory experiments or field studies. Model uncertainty may refer to 

choosing the distribution of a random quantity. This can be difficult, because if the 

data set is small, almost any distribution wil l f i t , and if the data set is large, often no 

standard distributions, such as the Normal, Gamma or Exponential distributions, 

wi l l f i t . 

2.6.3 Modelling variability and uncertainty 

In the literature i t is stated that variability and uncertainty should be considered 

separately (Burmaster and Wilson, 1996; Frey, 1993; Vose, 2001). The motivation 

for this appears to be that decision makers and analysts want to see which has more 

influence on the results. Also, they may find i t more useful to have estimates of the 

proportion or number of people that wil l be affected, together wi th a measure of the 

uncertainty of that estimate, rather than an estimate of the probability that a ran­

dom individual is affected. Modelling variability and uncertainty separately provides 

a clearer picture of how much uncertainty surrounds the output for a population. 

These methods, which we refer to as 2D methods, can be used to identify important 

random quantities with large uncertainty or variability or both, which may have a 

large effect on the overall risk. A case study providing motivation for modelling 

variability and uncertainty separately in exposure risk assessments is given by Frey 

(1993). Modelling variability and uncertainty separately helps to identify further 

data collection needs, as uncertainty can usually be reduced by more data collection 
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whereas variability cannot. However, gathering more information may be useful 

in quantifying the variability correctly. The separate modelling of variability and 

uncertainty helps the risk manager in deciding whether i t is better to collect more 

data on the risk or act immediately to reduce i t . 

Modelling variability and uncertainty separately is important when risk managers 

want to make a decision about a population. When dealing with a population, if 

variability and uncertainty are not modelled separately i t can lead to assessments 

where sensitive individuals may be put at risk. We illustrate this in the next section 

by implementing a one-dimensional method which mixes variability and uncertainty 

and comparing it to a two-dimensional method that models variability and uncer­

tainty separately. 

2.6.4 Example 

We explore the use of two Bayesian methods, one which mixes variability and uncer­

tainty, which we call method A, and one which models variability and uncertainty 

separately, which we call method B. These methods allow us to illustrate the need 

to model variability and uncertainty separately for a population. 

Assume that we have the following data {1.1,1 ,2 .3 ,4 .5 ,5 ,10. 23} in /Jg/kg for 

concentration of benzene in different cans of soft drink. We assume that the con­

centrations follow a Lognormal distribution. We use the same non-informative 

p(lj,,a) = ^ prior for both method A and method B, where \i and a are the pa­

rameters for the Normal distribution assumed for the logio of the data. 

Using method A we can predict a concentration value for a random can from 

the population of cans by integrating over the posterior distribution. This leads to 

a Student i-distribution with location parameter y, scale parameter ( l + ^ ) 2 s and 

n— 1 degrees of freedom (Gelman et al., 1995). We can plot the cdf for this Student 

^-distribution after transforming the values back to the original scale. This is shown 

in red in Figure 2.1. 

In method B we first need to look at what is variable and what is uncertain. 

Each can of drink has a different concentration of benzene in i t due to the natural 

variability in the concentration of benzene between cans. We do not know the 
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parameters of the Lognormal distribution, so these are treated as uncertain. We 

model this parameter uncertainty by sampling 1,000 values for the parameters a 

and /x|cr, so we have (/x*.ai).i = 1 , 1 , 0 0 0 . The cdfs for each (/x;, at) pair can be 

plotted. Then if we want e.g. 95% limits on the concentration, we calculate 2.5th 

and 97.5th percentiles pointwise at 1,000 values between 0 and 1 (i.e. by taking 

horizontal slices through the 1,000 cdfs). This then provides the 95% pointwise 

bounds shown in Figure 2.1. 

F igure 2 .1 : Method A (red) and 95% pointwise bounds from method B (black) 

! 
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As indicated by the arrows in Figure 2.1, we can see that the 90th percentile 

when using method A is 14.97 /xg/kg, whereas for method B the 90th percentile 

is between 1.00 and 74.22 /xg/kg with 95% probability. So method B shows that 

the concentration in the can of drink can be as high as 74.22 /xg/kg at the 90th 

percentile given the 95% limits on the 90th percentile. A concentration of 14.97 

/xg/kg may be relatively safe, leading a risk manager to declare the cans of drink 

safe for consumption without being aware that the 90th percentile could be as high 

as 74.22 /xg/kg, which may be high enough to be of concern. Therefore, to make 

sure that we are protecting a population and in particular, the sensitive individuals 

in the population, i t is important to model variability and uncertainty separately. 

We consider the 90th percentile and the 95% level of credibility for method B. The 

choice of percentile to consider, i.e. the level of protection required, and the level of 

confidence or credibility about that percentile are risk management decisions. 
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These decisions may involve social, economic, ethical, political and legal considera­

tions that are outside the scope of the scientific estimation of risk. 

2.7 Bayesian methods 

In this section we discuss Bayesian methods and introduce some concepts that are 

important for later chapters in this thesis. A basic introduction to Bayesian statistics 

is given by Lee (2004). while a guide to Bayesian data analysis is given by Gelman 

et al. (1995). Bayesian methods are very versatile and can be used in many ap­

plications, such as in meat quality analysis (Blasco, 2005) and cost-effectiveness 

analysis from clinical trial data (O'Hagan and Stevens. 2001). An overview of 

Bayesian methodology and applications is presented by Berger (2000) and O'Hagan 

and Forster (2004). Two case studies illustrating Bayesian inference in practice are 

given by O'Hagan and Forster (2004) and many applications of Bayesian statistics 

are illustrated by Congdon (2001). 

Bayesian methods involve choosing a parametric model. M(X\8), where M rep­

resents the model. X is the random quantity of interest and 6 represents the pa­

rameters. Then a prior distribution. p(0), needs to be selected for each parameter. 

The likelihood function, L(9\x), is p(x\6) where p{x\6) is a function of 6 for given 

X. We then use Bayes Theorem to multiply the prior distribution(s) with the like­

lihood function for the chosen model to give a posterior distribution. This allows 

any prior information that we have about a random quantity to be included in the 

analysis via the prior distribution. I t also naturally models the joint distribution of 

the parameters. An advantage of Bayesian methods is that additional observations 

can be used to update the output. Once a joint probability distribution for all ob­

servable and unobservable quantities has been chosen, posterior distributions and 

Bayesian posterior predictive distributions (see Subsection 2.7.4) can be calculated. 

The Bayesian posterior predictive distributions for Normal and Lognormal distribu­

tions are well known for specific priors (Gelman et al., 1995). When distributions 

do not have closed-form solutions, Markov Chain Monte Carlo (MCMC) methods 
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can be implemented using software like WinBUGS (1990). so we can make inferences 

by sampling from the posterior distribution. 

2.7.1 Credible or posterior intervals and regions 

A 100(1 — a)% Bayesian credible or posterior interval for a random quantity A' is the 

interval that has the posterior probability (1 — a) that X lies in the interval (Gehnan 

et al.. 1995). There are different types of credible interval, including a central interval 

of posterior probability which for a 100(1—a)% interval is the range of values between 

the % and percentiles. Another way of summarising the posterior distribution 

is by considering the highest posterior density (hpd) interval (or hpd region in 

higher dimensions). This set contains 100(1 — a)% of the posterior probability, and 

the posterior density within the interval is never lower than the density outside the 

interval. The central posterior interval is identical to the hpd interval if the posterior 

distribution is unimodal and symmetric. I f the posterior distribution is multimodal, 

the central posterior interval may contain areas of low pdf values whereas the hpd 

region wi l l consist of several intervals. When the posterior distribution is integrated 

over these intervals, they will contain 100(1 — a)% of the probability. Therefore 

the hpd intervals provide more information about the posterior distribution than 

the credible interval as they indicate that the posterior distribution is multimodal 

which the credible interval does not. I f 0 represents multiple parameters, then the 

hpd space is a subset of the joint posterior parameter space for all parameters in 0 . 

Next we show an example of an hpd region for the Normal distribution. 

2.7.2 Example of hpd region for the Normal distribution 

To find the hpd region for a Normal distribution with parameters //, and a we 

can follow the steps by Box and Tiao (1973). We start with the non-informative 

prior, p(/./,,cr) = and find the posterior distribution for /j. and a. Each contour 

p(fi, a|data) = c is a curve in the (/./,, a) plane, where c > 0 is a suitable constant. 
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The density contour is given by 

_ ( n + 1 ) l n ( f f ) _ ( ( n - i y + n ^ - y ) ' ) = ( ] ^ 
2a-

where n is the sample size, y is the sample mean, .s is the sample standard deviation 

and d is a function of c. The posterior probability contained in this contour can be 

calculated by integrating the posterior pdf over the contour. An example of an hpd 

region for the Lognormal distribution is illustrated in Subsection 3.3.3. For large 

samples a x2 approximation can be used to approximate the hpd region (see Box 

and Tiao (1973) for more details). This approximation is needed to form Bayesian 

p-boxes for large n, as discussed in Section 3.6.2. 

2.7.3 Prior distributions 

Bayesian analyses are often criticised because a prior distribution has to be chosen 

and may lead to biased posterior distributions that do not produce results consistent 

with the data. I f information is available about the random quantity of interest then 

it is useful to try and incorporate this into the prior distribution. However, i t is often 

the case that analysts assume a non-informative prior to try and avoid biasing the 

analysis. 

One choice of prior distribution is a conjugate prior distribution. These have 

the advantage that they lead to a posterior distribution with the same distribution 

family as the prior distribution. For example, the Normal distribution is conjugate 

to itself for //, when a2 is known, so combining a Normal prior distribution with 

the Normal likelihood function leads to a Normal posterior distribution. Similarly 

the Gamma distribution is the conjugate prior for one parameterisation of the Ex­

ponential distribution (see Appendix A) . The advantages of conjugate families are 

discussed by Gelman et al. (1995). These advantages include that they can often 

be put in analytic form and they simplify computations. There are infinitely many 

subjective prior distributions and a selection are discussed by O'Hagan and Forster 

(2004). Distributions that integrate to 1 are called proper distributions whereas 

those that do not are called improper distributions. However if the data dominates 
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the analysis, i t is possible that an improper prior can lead to a proper posterior 

distribution (Gehnan et al., 1995). 

There are also objective priors such as reference priors and Jeffrey's prior which 

are discussed by O'Hagan and Forster (2004). A review of methods for constructing 

'default' priors is given by Kass and Wasserman (1996). Default priors are intended 

to make the prior choice as automatic as possible. Box and Tiao (1973) discuss 

non-informative priors and how to check if prior distributions are non-informative 

in different scenarios. 

I t is also possible to choose a prior distribution using expert elicitation. There is 

much discussion about how best to elicit distributions from experts and the pitfalls 

that face analysts trying to get such information (O'Hagan. 1998; Kadane and Wolf-

son. 1998). Difficulties may arise when experts disagree and their opinions need to 

be combined in some way. Some applications of expert elicitation in risk assessment 

are given by Krayer von Krauss et al. (2004), Walker et al. (2001) and Walker et al. 

(2003). 

2.7.4 Bayesian posterior predictive distribution 

The Bayesian posterior predictive distribution for a future observation y is given by: 

p(y|data) = / p(y|0.data)p(61data) d,0 

(2.3) 

where 9 represents the parameters of the distribution and the data are assumed to be 

independent and identically distributed. For the Normal distribution, with a non-

informative prior. p(fi,a) = the Bayesian posterior predictive distribution can 

be shown to be a Student f-distribution with location parameter y, scale parameter 

( l + s and 77. — 1 degrees of freedom (Gelnian et al.. 1995). Therefore we can 

sample from this distribution to produce predictions for a random individual in a 

population. The posterior predictive distribution can also be used to predict for any 

number of future observations. 
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The Bayesian posterior predictive distribution can also be used to cheek that the 

chosen distribution for the data set is a plausible model. We can do this by taking 

a sample from the Bayesian posterior predictive distribution and comparing it with 

the observed data. set. I f the sample does not resemble the observed data then we 

would know that the model (here, choice of distribution) or the prior distribution is 

not appropriate (Gelman et al.. 1995). We would then need to investigate why this 

was the case, for example, i t may be due to some surprising features of the data or 

due to a lack of knowledge about the random quantity. 

2.7.5 Robustness to the prior distribution 

Robustness to the prior distribution can be achieved by using classes of prior distri­

butions to see how sensitive the results of an analysis are to the prior distributions 

that are used. There are several classes of prior distributions available and some 

are discussed by Berger (1990). These include the conjugate class, classes with 

approximately specified moments, neighbourhood classes and density ratio classes. 

The class of all distributions is not useful because this produces vacuous posterior 

distributions. Berger (1985) introduces the e-contamination class and Berger and 

Berliner (1986) recommend using this class when investigating posterior robustness 

for several reasons. Firstly, i t is natural to specify an initial prior and then adjust i t 

by t after more thought or discovering new information. Therefore we should include 

the priors that differ by e in the analysis. Secondly, this class is easy to work with 

and flexible through the choice of the class of contaminations (Berger and Berliner. 

1986). Robust Bayesian analysis involves minimising and maximising over the class 

of prior distributions. As explained by Berger (1990). often we need to find a low 

dimensional subclass of prior distributions which contains the minimising or max­

imising prior distribution. Optimisation can then be carried out numerically over 

this smaller subclass. Examples for different criteria are given by Berger (1990). 

Robust Bayesian analysis has been conducted in many areas, such as on the 

linear regression model by Chaturvcdi (1996). In this model an f-contamination 

class of priors is used, where the starting prior is a ry-prior distribution with specific-

parameters. The <7-prior distribution is a form of conjugate prior distribution for 
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the parameters in a linear regression model developed by Zellner (1986). Bayesian 

robustness of mixture classes of priors was investigated by Bose (1994). Clearly, 

robust Bayesian analysis can be useful in risk assessment as i t would provide an 

indication of how sensitive the output is to the prior distributions and therefore 

may show how robust a decision based on the results can be. Robustness and 

choices for the class of prior distributions are also discussed by O'Hagan and Forster 

(2004). 

2.7.6 Bayesian methods for left-censored data 

In a Bayesian framework censored data can be accounted for via the likelihood 

function. Where this is a closed form solution, we can sample from the relevant 

distribution. However if this is not the case or we want to model variability and 

uncertainty separately, censoring can be dealt with using data augmentation (Tanner 

and Wong, 1987). To use the method for a Lognonnal distribution, we take the log of 

the data and then assume initial values for the parameters of a Normal distribution. 

There are two steps. First we sample k values from the tail below the LOD, where 

k is the number of censored values. Secondly, we sample a value for //. and a value 

for a from the joint posterior distribution based on the original data above the LOD 

and the data we sampled in the hist step. Both these steps can be repeated several 

times to obtain samples of the posterior distribution of the parameters. 

2.7.7 Bayesian pointwise method 

Aldenberg and Jaworska (2000) devised a method for dealing with uncertainty 

about specific percentiles of a (Log)Normal distribution, we wil l refer to this as 

the Bayesian pointwise method. The Bayesian pointwise method is used to describe 

posterior uncertainty around percentiles of a (Log)Normal distribution and uses 

pointwise bounds on cdfs to represent uncertainty. The width of the bounds at each 

percentile depends only on the shape of a non-central i-distribution with (??. - 1) de­

grees of freedom scaled by ^ (Aldenberg and Jaworska, 2000). When n is small this 

distribution is very skewed, so wide intervals are observed at high and low percentiles. 
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At the median, there are narrower credible intervals. As n increases, the skewness 

in the non-central ^-distribution quickly reduces, producing narrower bounds. This 

method can only be used for (Log)Normal distributions. For more complex models 

with several random quantities, distributions other than (Log)Normal distributions 

and non closed-form posterior distributions, two-dimensional Monte Carlo Simula­

tion (see Subsection 2.12.2) could be used. Aldenberg and Jaworska (2000) also 

display the median distribution which is found by calculating the 50th percentile 

of the possible cdfs horizontally at several percentiles. An example of the Bayesian 

pointwise output with the median distribution and credible intervals for each per­

centile is given in Section 3.6. 

2.8 Frequentist confidence methods 

The frequentist alternative to a p% credible region is a p% confidence region. This 

has the interpretation that in a large number of repeated trials m. (in —> oo), the true 

values of the parameters would fall in the p% confidence region times. As with 

the Bayesian methods, visualising and plotting confidence regions is difficult when 

working with more then three parameters. In Burinaster and Thompson (1998), 

maximum likelihood estimation is used to f i t parametric distributions to data. Point 

estimates of parameters are obtained and used to produce joint confidence regions 

using standard methods (e.g. Mood et al. (1974): Cox and Snell (1989)). Both a \ 2 

approximation and the standard Taylor series approximation are used to illustrate 

approximate confidence regions. The confidence regions differ depending on which 

approximation is used but as 7?, —» oo, where n is the sample size, the confidence 

regions wil l converge. This is similar to the Bayesian credible region which wil l 

differ depending on the prior distribution that is chosen for the parameters. As 

n —r oo. generally the likelihood function of the data will dominate and the prior 

distribution will have less influence. The maximum likelihood method is illustrated 

for both the Normal and Beta distributions in Burmaster and Thompson (1998) and 

an assumption that the parameters of both the Normal distribution and the Beta 

distribution are distributed according to a Multivariate Normal distribution is made. 
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The Bayesian framework allows the choice of other distributions for the parameters 

via the prior distribution and the likelihood function. There are other methods 

available such as given by Bryan et al. (2007), who construct confidence regions 

of expected optimal size, and Evans et al. (2003) who consider a hybrid Bayesian-

frequentist confidence region with the frequentist coverage properties. The Bayesian 

framework allows more flexibility as i t can include prior information using the prior 

distribution which the frequentist methods cannot. The frequentist method however 

has the advantage that there is no need to choose a prior distribution if there is 

no information available a priori. In this thesis, for illustration, we use Bayesian 

credible regions and thus illustrate the Bayesian p-box. However different p-boxes 

could be constructed in the same way as for the Bayesian p-box by using different 

regions such as the ones illustrated by Burmaster and Thompson (1998), Evans et al. 

(2003) and Bryan et al. (2007). These would produce frequentist p-boxes with the 

interpretation that p% of the time, where p is some chosen confidence level, the true 

distribution would fall within the p-box. 

2.9 Nonparametric Predictive Inference (NPI) 

Nonparametric Predictive Inference (NPI) is a method that provides lower and up­

per probabilities for the predicted value(s) of one or more future observation(s) of 

random quantities. NPI is based on Hill's assumption A(n). explained in Subsection 

2.9.1, and uses interval probability to quantify uncertainty (Coolen, 2006). It, is 

an alternative to robust Bayes-like imprecise probability methods (Walley, 1991). 

NPI has been presented for many applications including comparison of proportions 

(Coolen and Coolen-Schrijner, 2007), adaptive age replacement strategies (Coolen-

Schrijner et al., 2006) and right-censored data (Coolen and Yan, 2004). Due to its 

use of A(n) in deriving the lower and upper probabilities, NPI fits into a frequentist 

framework of statistics, but can also be interpreted from a Bayesian perspective 

(Hill , 1988: 1993). Other advantages of NPI include that it is consistent within in­

terval probability theory (Augustin and Coolen, 2004), in agreement with empirical 

probabilities, exactly calibrated in the sense of Lawless and Fredette (2005), and it 
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allows the analyst to study the effect of distribution assumptions in other methods. 

NPI makes only few assumptions, one of which is that the data are exchangeable, 

so inferences do not depend on the ordering of the data. There, is also an underlying 

assumption that there is a uniform distribution of the intervals between the data 

points but without further specification on how the probabilities are distributed 

within these intervals. NPI has never been implemented before in the area of expo­

sure assessment but as i t can provide predictive probability bounds for the exposure 

of an individual without making an assumption about the distribution that the data 

have come from, i t seems useful to implement i t . Therefore we present an NPI anal­

ysis for exposure assessment on the simple Exposure Model (Section 2.2) in Chapter 

4, to explain how it can be implemented and to illustrate the advantages of using a 

nonparametric method. 

2.9.1 Hill's A{n) 

Nonparametric Predictive Inference (Section 2.9) is based on the assumption A(n), 

proposed by Hil l (1968) for prediction when there is very vague prior knowledge 

about the form of the underlying distribution of a random quantity. Let • • • , - T ( n ) 

be the order statistics of data Xi,....xn, and let be the corresponding random 

quantities prior to obtaining the data, so that the data consist of the realised values 

Xi = Xi. i = 1,... , ??,. Then the assumption .4(Ti) is defined as follows (Hil l , 1993): 

1. The observable random quantities X u ... , Xn are exchangeable. 

2. Ties have probability 0, so p(.7;, = X j ) = 0, V i ^ j 

3. Given data Xi,i = 1, ...n, the probability that the next observation, Xn+\ falls 

in the open interval I j = ( x ( j - i ) , X j ) is ^ - j - , for each j = 1,.... n + 1, where we 

define .x-(0) = — co and X ( n + \ ) = oo 

For nonnegative random quantities, we define x^) = 0 instead and similarly if 

other bounds for the values are known. Hill's A(n) can be adjusted to include ties 

(Hil l . 1988) by assigning the probability to the tied data point, where c is the 

number of times the value is present in the data set and n is the sample size. In the 
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NPI framework, a repeated value can be regarded as a l imiting situation where the 

interval between the repeated observations is infinitesimally small, but can still be 

considered as an interval to which we can assign the probability 

2.9.2 Lower and Upper probabilities 

As explained in Augustin and Coolen (2004), we can find lower and upper bounds 

for the probability of X n + ] € B given the intervals .... 7 n + ] and the assumption 

A(n), where B is an element of SB and SB is the Borel er-field over M. The Borel 

cr-field is the set consisting of all sets of intervals on the real line. The lower bound 

is then L(Xn+] G B) = • Ij Q B}\ and the upper bound is U(Xn+i € B) = 

: I j n B 7 ^ 0 } | , where | • | denote absolute values. The lower bound only 

takes into account the probability mass that must be in B, which only occurs with 

probability mass ^ - j - per interval I j when the interval I j is completely contained 

within B. The upper bound takes into account any probability mass that could be 

in B, which occurs with probability mass per interval I j i f the intersection of 

the interval I j and B is nonempty. The NPI lower and upper cdfs for Xn+\ can then 

be calculated by taking B = (—oo, z] , where x € {x(o), x ( n + \ ) ) - Subsection 4.2.3 

explains how we can form NPI lower and upper cdfs for left-censored data. 

2.9.3 M function 

One useful tool for representing the probability mass on intervals for NPI is an M 

function which is a Dempster-Shafer structure. A Dempster-Shafer structure can 

represent the partial specification of a probability distribution on intervals wi th no 

restrictions as to where the probability mass falls in the interval. For example, 

instead of a discrete probability mass function over the real-line with probabilities 

for each point, a Dempster-Shafer structure might give a probability mass that 

corresponds to an interval rather than a point value (Ferson et al.. 2004). The 

masses must sum to one and the sets containing non-zero mass are called focal 

elements. This structure can be represented using the notation of the M function 

for a random quantity, say X. The probability mass assigned for a random quantity 
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X to an interval (a.b) can be denoted by M_\(a,b). I t is important to note that the 

intervals to which positive M function values are assigned can overlap. 

2.10 Probability Boxes (p-boxes) 

In ecotoxicological risk assessment there is often a lack of information available to 

quantify random quantities and the uncertainty around them. Probability bounds 

analysis incorporates established results on bounding distributions and random 

quantities by. e.g. Chebyshev (1874) and Markov (1886), with modern computa­

tional methods to solve two common problems: (1) not knowing the exact input 

distributions, and (2) not knowing dependencies between the inputs. The idea of 

p-boxes is that the output p-box will contain all possible output distributions that 

could result from the input distributions, assuming the distributions of the random 

quantities actually lie in their respective p-boxes (Ferson and Tucker. 2003). They 

may be nonparametric or parametric as discussed next. 

2.10.1 Nonparametric p-boxes 

Some p-boxes do not need a large amount of information, for example some types can 

be constructed based on the minimum, maximum, mean or variance of the data or a 

combination of these. Nonparametric p-boxes may have confidence levels associated 

with them, such as the 95% Kolmogorov-Smirnov (KS) confidence limits introduced 

below, or they may be formed assuming 100% confidence. For more information on 

nonparametric p-boxes see Ferson et al. (2003). 

Methods based on the maximum and minimum values do not model sampling 

uncertainty separately, where sampling uncertainty is the uncertainty that arises 

from only having one small sample from a larger population. For example, if a 

second sample was taken the empirical distribution for the first sample would not 

be the same as for the second sample. I t is similar to parameter uncertainty (see 

Subsection 2.6.2), but i t is termed sampling uncertainty here because we have no 

specific distribution and no parameters. Kolmogorov-Smirnov (KS) confidence limits 

(Kolmogorov, 1941: Sniirnov, 1939), can be used to include sampling uncertainty. 
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These bounds rely on the calculation of the one-sample Kohnogorov-Smirnov critical 

statistic D(a% n) for confidence level 100(1 — a)% and sample size n. Kolmogorov 

proved that these confidence limits can be used for entire distributions and Smirnov 

produced a formula to calculate D(a.n). KS confidence limits are distribution-free 

bounds for the empirical cdf, so they are bounds on a probability distribution as a 

whole. Miller (1956) improved the formulation for D(a.,n) and provided extensive 

tables of D(a ,n ) values. The KS confidence limits are frequentist bounds that 

have the interpretation that they wil l totally enclose the true empirical distribution 

function in 95% of a given number of trials. An example to illustrate KS confidence 

limits for a random sample including and excluding measurement uncertainty is 

given by Person et al. (2003). In theory, the left tails of the KS limits continue to 

negative infinity and the right tails of the KS limits continue to positive infinity. In 

practice these may be truncated at reasonable values that depend on the data or 

any other available information. 

An example of KS confidence limits is shown in Section 3.6. The advantage of 

KS confidence limits is that no distribution has to be assumed. A disadvantage of 

the KS confidence limits, which i t shares with other nonparametric methods, is that 

for small n. the bounds are often too wide to be of practical use. However if there 

is no other information available then these infinite tails are useful because they 

express this lack of knowledge to risk managers. 

2.10.2 Parametric p-boxes 

For parametric models where the distribution is specified, but the parameter esti­

mates are only described by intervals, probability bounds can be calculated (Ferson 

et al., 2003). This works well for single parameter distributions, assuming there is 

some justification for the choice of interval for the parameter. However for distribu­

tions with more than one parameter, the method proposed by Ferson et al. (2003) 

does not include the dependence between the parameters. For example, if we as­

sume that a random quantity A" has a Normal distribution, to create a parametric 

p-box for X we need to choose intervals for //, and a. Assume we choose the intervals 

fj, € [fJ.i,fMi] and a € [<7t,a t J], then the Normal p-box is constructed by taking the 
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envelope of the four Normal distributions. o f ) , N (/././, of,). N(fj»u,o'f), N(f.iu, o'l). 

This leads to a Normal p-box as shown in Figure 2.2. 

Figure 2.2: Normal p-box 
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In Section 3.6 we use 95% frequentist confidence intervals to form the Normal 

p-box as is done by Aughenbaugh and Paredis (2006). Therefore we wil l call this the 

frequentist Normal p-box to distinguish between the Bayesian p-boxes introduced 

in Chapter 3 and this type of p-box that is formed using frequentist confidence 

intervals. As a consequence of ignoring the dependency between parameters, the 

frequentist parametric p-boxes may lead to wider or narrower bounds than necessary 

at some percentiles, although this depends on how the intervals for the parameters 

are chosen. This is discussed in Subsection 3.6.1 where we compare the Bayesian 

Normal p-box. developed in Chapter 3, which does include parameter dependence 

with the frequentist Normal p-box. In Subsection 3.6.1 we briefly mention some 

frequentist approximations which could be used to improve the frequentist Normal 

p-box by including parameter dependence. 

2.10.3 Discussion 

There are some problems with both nonparametric and frequentist parametric p-

boxes, such as where to truncate the p-box and not knowing the probability of any of 

the distributions within the p-box. Advantages of p-boxes are that there is a method 

for combining p-boxes for different random quantities without assuming anything 

about the dependence between random quantities (explained in Section 2.11) and 

they are useful tools for sensitivity analysis as explained further by Ferson and 



2.11. Dependence between random quantities 33 

Tucker (2006), who consider pinching the p-boxes for each random quantity in the 

model to single distributions and then looking at the effect on the output. They also 

compare combining the p-boxes for the random quantities assuming independence 

with p-boxes based on no assumptions about dependence. Numerical examples 

of the use of p-boxes for ecotoxicological risk assessment, effects assessments, and 

discussion of issues such as truncation, are given by Ferson (2002) and Ferson and 

Tucker (2003). P-boxes have been used for species sensitivity distributions (Dixon, 

2007a) and for uncertainty propagation for salinity risk models (Dixon, 2007b). 

2.11 Dependence between random quantities 

In this section we discuss dependence between random quantities and how this can 

be included in a risk assessment. We first look at copulas which are used to include 

known correlations between random quantities and we then look at the case where 

we make no assumption about dependence. I t is common in risk assessments to 

assume independence between random quantities, e.g. Fan et al. (2005): Havelaar 

et al. (2000) and Chow et al. (2005). We include the explanation of copulas to aid 

the understanding of Frechet bounds which are important for the method developed 

by Williamson and Downs (1990). This method enables the derivation of bounds 

for the combination of random quantities whilst making no assumptions about the 

dependence between them. I t is useful to consider these bounds and then compare 

them with the bounds formed under the assumption of independence, to see how 

much the assumption of independence influences the results. Ferson et al. (2004) 

discuss dependence in probabilistic modelling including copulas, Frechet bounds and 

the method developed by Williamson and Downs. We briefly explain these methods 

here. 

2.11.1 Copulas 

Copulas are used as a general way of representing various types of dependence in 

models. For an introduction to copulas see Nelsen (2002), while an introduction to 

copulas in risk assessment is given by Haas (1999). Sklar's Theorem (Sklar, 1959) 
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underlies most applications of copulas. The theorem states that if we have a joint 

distribution function F for n random quantities then there exists a copula C which 

joins the marginal distributions of the random quantities to form the joint distri­

bution function. For example, for any bivariate distribution, F(x,y), let G(x) and 

H(y) be the marginal probability distributions. Then there exists a copula C such 

that F(z,y) = C(G(x). H(y)). Also, if the marginal distributions are continuous, 

the copula function is unique. 

There are many families of copulas available, such as Normal (Gaussian) copulas 

which are derived from the bivariate Normal distribution using Sklars Theorem 

and can cover the entire range of correlation from -1 to 1. The family of bivariate 

Gaussian copulas is parameterised by the linear correlation matrix ( ] / [ ) , where p is 

the rank correlation. As we only use the Gaussian copula in this thesis, we do not 

elaborate on the other families here. 

2.11.2 Dependency bounds 

When we have very li t t le or no information about dependencies between the random 

quantities in a model, i t may be useful to compute bounds on the results of an 

analysis without making an assumption about any of the dependencies. If we have 

two marginal cdfs, F and G with finite positive variances and we have the set I I = 

Yl(F.G) of all cdfs H on I f 2 , then contained within I I are two cdfs that correspond 

to the maximum and minimum correlation (Whi t t , 1976). This was discovered by 

Frechet (1951) and Hoeffding (1940) who showed that the lower bound for all copulas 

is W(u,v) = raax(u + v — 1.0) for two random quantities U and V and the upper 

bound for all copulas for two random quantities is min(?/,, v). These are often referred 

to as Frechet bounds or Frechet-Hoeffding limits. 

Williamson and Downs (1990) explain how Frechet bounds can be used to com­

bine probability boxes with no assumption about dependence. Ferson et al. (2004) 

state that if the p-box for a random quantity X is [ F A - . F . y ] and the p-box for a 

random quantity Y is [FY,FY], where F represents the lower cdf and F represents 

the upper cdf, then the p-box for X+Y, without any assumptions about dependence 

between X and Y, can be written as: 
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'••.v.v(--> = sup max(F Y(:/;) + FY(y) - 1 , 0 ) 
z=x+y 

F x + Y ( z ) = inf m i n ( F Y ( . T ) + FY(y), 1) 
z=x+y 

There are similar formulas for subtraction, multiplication and division, given by 

Ferson et al. (2004). Williamson and Downs (1990) provide algorithms for efficient 

calculation of these limits. This method can be used for any type of p-box and is 

implemented in Section 3.7 to combine Bayesian p-boxes with no assumptions about 

dependence. I t can also be used to combine other types of bounds, such as those 

produced in the Bayesian pointwise method or in a 2D Monte Carlo Simulation 

(Section 2.12.2). This allows a comparison between making no assumption about 

dependence and assuming independence which may provide useful information to 

decision makers. However, they contain all possible dependencies and cannot exclude 

dependencies so they may not be useful if, for example, it is known that there is no 

negative correlation between the two random quantities. 

Ferson et al. (2004) show the Frechet bounds on conjunctions of events. For 

example, using the Frechet inequality, max(0,a + 6—1) < P(.4 n B) < nhn(a,/;). 

where a = P(.4) and b = P(B). we can calculate the interval of probability that A 

and B occur. This can be generalised to the multivariate case, giving max(0,o.| + 

o,2 + ... + a„ - {n — 1)) < P(-4, (~1 A-2 D ... n .4 3) < min(ai , a 2, ...an). We use this result 

to combine p-boxes in Section 3.7. 

2.12 Monte Carlo Simulation 

Monte Carlo simulation (MCS) is one of several techniques currently employed to 

carry out risk assessments. In the 1940s MCS, originated at Los Alamos from the 

work of Ulam, von Neumann and Fermi, as a random sampling technique for solving 

difficult deterministic equations (Ulam, 1976; Cullen and Frey, 1999). An overview 

of the history of Monte Carlo Simulation is given by Rugen and Callahan (1996). 

Since then Monte Carlo methods have continued to evolve and due to advances in 
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computing they can now be used in many applications. Two-dimensional Monte 

Carlo simulation (2D MCS) is used in a wide range of applications including human 

health risk assessment, (Burmaster and Wilson, 1996: Glorennec, 2006; Pouillot 

et al., 2007), avian risk assessment, (Hart et al., 2007). environmental flood risk 

assessment, (Lindenschmidt et al., 2008) and microbial risk assessment (Miconnet 

et al., 2005: Vicari et al., 2007). 

2.12.1 One-Dimensional Monte Carlo Simulation 

One-Dimensional Monte Carlo simulation ( I D MCS) is a method which provides 

predictive results for a random individual from a population. There are different 

implementations of one-dimensional Monte Carlo Simulation ( I D MCS) of which one 

is given by Frey (1993), who states that each input random quantity is assigned a 

distribution based on observed data values. Assigning a distribution is usually done 

by using maximum likelihood methods or the method of moments. The model is then 

run for many iterations using sampled values from the input distributions for each 

random quantity. Typically anything from 100 to 10,000 iterations are made giving 

a set of sample values for a random quantity of interest. The number of iterations 

used is generally determined by the analyst using tr ial and error by looking at the 

output after each run and checking i t is consistent wi th all the previous runs. I f i t 

is, then the number of iterations is considered sufficient. The number of iterations 

required wil l depend on the complexity of the model and the sampling technique 

used. 

2.12.2 Two-Dimensional Monte Carlo Simulation 

Two-dimensional Monte Carlo simulation (2D MCS) is an extension of Monte Carlo 

simulation. In 2D MCS there are two loops (as opposed to just one in MCS) allowing 

variability and uncertainty to be modelled separately. The variability is modelled in 

the inner loop and the uncertainty in the outer loop. An introduction to modelling 

variability and uncertainty separately and for setting up a 2D MCS in a classical 
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framework is given by Bunnaster and Wilson (1996). 

2D MCS can be implemented in a Bayesian framework because it assumes that 

the distribution parameters are uncertain. However, the advantage of a Bayesian 

2D MCS has not always been recognised and non-Bayesian versions have been im­

plemented. In these non-Bayesian versions, distributions for the parameters are 

selected by analysts and dependencies between the parameters are often ignored. 

In the Bayesian framework, prior distributions are assigned for parameters of the 

random quantities and then updated using the data. This accounts for parame­

ter uncertainty and the dependencies between parameters, so we only describe a 

Bayesian 2D MCS in this thesis. 

Bayesian 2D MCS can produce bounds on the output of a particular model at 

any credible level and it takes into account parameter uncertainty for each random 

quantity in the model. Some advantages of Monte Carlo methods are listed by Vose 

(2001). These include the availability of software to implement the procedure and 

that it can be used as a sensitivity analysis by making adjustments to the model 

and then comparing the results from each adjustment to see the effect of changes. 

Model uncertainty (Subsection 2.6.2) can also be included by setting up different 

models and comparing or enveloping the results from each of them. Also, 2D MCS 

can be implemented with copulas (explained in Subsection 2.11.1) to take account of 

any known correlations between the random quantities in the model. Problems with 

2D MCS have been described by Ferson (1996), including difficulties wi th assigning 

input distributions and dealing with unknown correlations. 

2.13 Alternative methods 

In this section we provide a brief overview of some methods that have been used for 

risk assessment but are not used further in this thesis. 

2.13.1 Bootstrapping 

Introductions to bootstrapping are presented by Davison and Hinkley (1997), Efron 

and Tibshirani (1993), Vose (2001) and many others. Bootstrapping is a compu-
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tationally intensive approach to statistical inference. I t is commonly used to find 

confidence intervals for particular parameters, such as the mean, when sampling 

from an approximate distribution such as the commonly used empirical distribution 

of the data set. Generally one can sample man)' times with replacement from the 

observed data set to get new data sets of the same size and then calculate the statis­

tic of interest for each sample. We can sample with or without replacement and we 

can sample smaller or larger size data sets from the whole data set if desired. 

Bootstrapping is a useful alternative to parametric methods which require strong 

assumptions about the distribution of the data. However, in exposure risk assess­

ment we are often interested in the tails of distributions and resampling from the 

data set that we have can never provide information on more extreme values than 

those observed. To deal with this, a parametric model can be fitted to the data and 

then random samples can be drawn from this distribution, but this does not account 

for uncertainty about the parameter values themselves. Bootstrap methods can also 

be used to deal with censored data as illustrated by Zhao and Frey (2004). 

Bootstrapping has also been used for species sensitivity distributions (SSDs) 

(Section 2.5) as illustrated by Grist et al. (2002) and Verdonck et al. (2001). Grist 

et al. (2002) illustrate their method of a bootstrap regression for estimation of SSDs 

for the aquatic environment. They use the empirical distribution function (edf) 

so each observation has a probability of They point out that wi th their choice 

of edf, at least n = 20 is necessary for a 5th percentile to exist as the minimum 

percentile of the edf is ™ . Therefore, with data sets less than 20, which is a common 

situation for toxicity in birds and mammals, no 5th percentile can be calculated. 

Even with a sample of 20, bootstrapping may not capture the 5th percentile in 

the confidence limits. Therefore, i t appears that bootstrapping should not be used 

on small samples. However the coverage of bootstrap confidence intervals can be 

improved by using a bias corrected or bias corrected accelerated confidence interval, 

explained by Efron and Tibshirani (1993), Grist et al. (2002) and Vose (2001). 
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2.13.2 Worst-case analysis 

One approach for ecotoxicological risk assessment is worst-case analysis, which works 

by recognising there is uncertainty about the values of random quantities but does 

not model this uncertainty explicitly. The uncertainty is accounted for by selecting 

values in such a way that it is believed that the overall risk estimate will be conser­

vative. The EU guidance for birds and mammals (European Commission, 2002b) 

contains an example where worst-case analysis is used for part of the model. The 

approach has been criticised by Frey (1993) because the compounding effect of using 

several conservative estimates is often not understood. Ferson (2002) asserts that 

another problem is that the conservatism is unquantified and inconsistent among 

different assessments. As the levels of conservatism for different analyses are un­

known, they cannot be compared for decision making purposes. Worst-case analysis 

can be used as a screening assessment to see if further refinement is required. A com­

parison of worst-case analysis and a probabilistic assessment is given by Vermeire 

et al. (2001). 

2.13.3 Interval analysis 

This method uses intervals to describe the possible values that a random quantity can 

take. These intervals can then be manipulated using the rules of interval arithmetic. 

Ferson et al. (2007) discuss data with interval uncertainty including descriptions of 

the basic operations, addition, subtraction, division and multiplication. I t is possible 

to compute bounds on all elementary mathematical operations. I f a random quantity-

is repeated in the analysis, the uncertainty for the random quantity is added for each 

repetition leading to suboptimal bounds, where the optimal bounds are the tightest 

possible bounds given the inputs. When there are no repeated random quantities 

in the model, interval analysis is guaranteed to yield the optimal bounds given the 

inputs (Moore, 1966). Therefore if possible, it is better to manipulate the model so 

random quantities only occur once. 

The advantage of interval analysis is that i t can deal with any kind of uncertainty 

and provide bounds given the data. I f the input random quantities lie within their 
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intervals and we combine the intervals in the correct way i t can be guaranteed 

that the true result will lie in the output interval. Unfortunately the intervals 

become more conservative as more mathematical operations axe performed and as 

they become wider they give less information on the result. So this method suffers 

from hyperconservatism. There is also no indication of which values are more or 

less likely in the interval so if the decision is based on a threshold value, interval 

analysis would only indicate which decision to make if the threshold value does 

not lie in the interval. Interval analysis for risk assessments can be performed in 

RiskCalc software 4. Details of methodology with examples of applications are given 

by Ferson et al. (2007). Applications of interval analysis in engineering are given by 

Moller and Beer (2008). 

2.13.4 Fuzzy arithmetic 

Fuzzy numbers are a generalisation of interval analysis where we have an interval 

and we have a membership function which describes our beliefs about the interval 

in which the value of the random quantity falls. Arithmetic operations can be 

performed on fuzzy numbers by using interval arithmetic for each possibility level 

between 0 and 1. Details of a comparison between a frequentist 2D MCS and fuzzy 

2D MCS are given by Kentel and Aral (2005). In the 2D fuzzy Monte Carlo, they 

assign membership functions for the mean and standard deviation. The membership 

functions must be chosen by an analyst or expert and the dependencies between 

parameters are not taken into account by the fuzzy method. A posterior distribution 

automatically takes into account the dependence between parameters and therefore 

it appears that 2D MCS in a Bayesian framework is preferable to the 2D fuzzy MCS. 

2.13.5 Sensitivity analysis 

A sensitivity analysis is often considered the most straightforward approach to deter­

mine which random quantities in the model have the most influence on the output. 

I t also provides an indication of the range of possible outputs. The main criticism of 

4 http://www.ramas.com/riskcalc.htm 

http://www.ramas.com/riskcalc
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this method is that as the number of random quantities increases the complexity of 

considering all possible scenarios becomes cumbersome and computationally inten­

sive. A good overview of techniques for sensitivity analysis is presented by Saltelli 

et al. (2000). There are methods that vary correlation coefficients, e.g. Ma (2002). 

but Ferson and Hajagos (2006) show that varying correlation coefficicents is not 

sufficient to include all possible dependencies in the sensitivity analysis. Sensitivity 

analysis for p-boxes has been explored by Ferson and Tucker (2006). They show 

how p-boxes can be pinched to a precise distribution to see what effect this has on 

the output. 

2.14 Conclusion 

This chapter has provided an insight into some of the methods that are currently 

being used for risk assessment, as well as some important definitions and explana­

tions required for Chapters 3, 4 and 5. I t also provided motivation for the methods 

developed and implemented later in the thesis. 



Chapter 3 

Bayesian Probability Boxes 

3.1 Introduction 

In this chapter we introduce Bayesian probability boxes (p-boxes) which can be used 

to express variability and uncertainty in risk assessment. As explained in Subsec­

tion 2.10.2, frequentist parametric p-boxes are useful as they can include different 

types of uncertainty, but unfortunately the way that they are constructed ignores 

dependence between parameters. Bayesian methods can easily deal with dependence 

between parameters and therefore i t is natural to look at a Bayesian way of forming 

a p-box. The Bayesian p-box can also easily be displayed together with the modal 

distribution. The modal distribution is the distribution with the mode of the pos­

terior distribution as its parameters. For example, for the Normal distribution with 

non-informative priors for /v, and a, the posterior is a unimodal distribution. The 

mode ( f j , m - < J m ) is the peak of this unimodal distribution and therefore the modal 

distribution is N(/j,m,afri). Bayesian methods also have the advantages that they 

can deal wi th censored data, be updated if more data are obtained and incorporate 

expert opinion or other evidence through prior distributions. 

The proposed Bayesian method takes a distribution-wise approach, as opposed 

to the Aldenberg and Jaworska (2000) pointwise method that was explained in Sub­

section 2.7.7. In ecotoxicological risk assessment, when the risk manager is making 

decisions on questions about a population, i t is generally agreed that variability 

and uncertainty need to be modelled separately to ensure the whole population is 

42 
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considered (Subsection 2.6.3). The. Bayesian posterior predictive distribution does 

not do this so we illustrate the Bayesian posterior predictive distribution in this 

chapter, together wi th the Bayesian p-box, to show the difference between the two 

methods. Bayesian methods all require distributions to be chosen and therefore i t 

is interesting to compare the results with nonparametric p-boxes which do not re­

quire a distribution to be chosen. One such nonparametric p-box is formed using 

the Kolmogorov-Smirnov confidence limits (Subsection 2.10.1) and is illustrated as 

a comparison to the other methods which assume a particular distribution. 

In Section 3.2 we introduce the Bayesian p-box method, apply i t to the basic 

case of the Exponential distribution and consider robustness of the output to the 

chosen prior distribution. Section 3.3 considers the more complicated case of the 

Normal and Lognormal distributions while Section 3.5 looks at including robust­

ness with respect to the prior distribution(s) and how to deal wi th imprecise data 

sets. In Section 3.6. five methods, namely the Bayesian p-box, the frequentist p-

box, Kolmogorov-Smirnov confidence limits, a Bayesian pointwise method and the 

Bayesian posterior predictive distribution, will be illustrated and compared for two 

different sample sizes. In Section 3.7 we look at combining Bayesian p-boxes in a 

basic Exposure Model (Section 2.2) and investigate the effect of the frequently used 

assumption of independence between random quantities by comparing it to a case 

where no assumption is made about dependence. In Section 3.8 we discuss all the 

methods previously mentioned and their usefulness in risk assessment. 

Any credibility level can be chosen and evaluated, although throughout this 

chapter the focus wil l be on the 95% credibility level. In ecotoxicological risk assess­

ment the percentile of interest is frequently the 5th percentile, whereas in human 

exposure risk assessment the analysts tend to choose their own percentile (e.g. the 

97.5th, 99th or 99.9th percentile). For illustrative purposes we will focus on the 5th 

percentile for ecotoxicological risk assessment and look at several percentiles (50th. 

90th and 99th) for human exposure risk assessment in this chapter. 
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3.2 Bayesian p-box method 

In this section the proposed Bayesian p-box will be introduced. Several of its impor­

tant properties wil l be explained and a procedure to compute the Bayesian p-box 

is provided. Then we illustrate the Bayesian p-box with a basic example using the 

Exponential distribution. In Section 3.3 the focus wil l be on the practically im­

portant Normal and Lognormal distributions. The method can also be used for 

other distributions, both discrete and continuous. In principle the method could 

be implemented for multivariate random quantities, but this may be difficult i f the 

parameter space involves multiple dimensions. Also, the output may be difficult 

to represent in an understandable way. Hence, we restrict attention to univariate 

random quantities. 

3.2.1 Forming a Bayesian p-box 

To form a Bayesian p-box we take X to be an observable random quantity. We then 

assume a parametric model X\8 ~ fg, where / is a distribution with parameter(s) 

0 (6 £ 0 , where 0 may be multi-dimensional) and take F(X\6) to be the cdf of 

A'. We then need to choose a prior distribution for 6 and combine i t with the 

likelihood function so by Bayes Theorem we form a posterior distribution p(#|data). 

For practical risk assessments, which involve communication between statisticians 

and risk managers, i t is often easiest to focus on the observable X. Instead of using 

the Bayesian posterior predictive distribution, we instead consider bounds on the 

distributions whose parameters fall in a particular region of interest. To achieve 

such bounds, we select a subset, 0 s ( a ) , of 0 , such that 1 - a < P(9 G 0 s ( a ) | data), 

with 0 s ( Q : ) in some suitable sense 'of minimal size', and find optimal bounds for 

{F(x\8),8 € ©.,(«)}. For example, we could take a = 0.05 and choose 0 5(a:) to 

be the highest posterior density region. This would mean that the Bayesian p-box 

would then contain the distributions that have parameters that lie in the 95% hpd 

region for 9 given the data, 
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3.2.2 Choosing 6 s (a ) 

For the purposes of this chapter, the highest posterior density (hpd) interval or 

region (Subsection 2.7.1) for the paranieter(s) of the distribution is used as 0.,(o'). 

I f the parametric distribution is not symmetric and unimodal, then the hpd interval 

displays more important features of the posterior distribution than a credible interval 

(Chen et al., 2001). I f the posterior density is continuous and unimodal then the 

hpd interval or region is a compact set as it is closed and bounded. As shown in Box 

and Tiao (1973), it may occur that the 100(1 —a)% credible region is identical to the 

100(1 — a)% confidence region in frequentist statistics, although the interpretation 

is different. This is, for example, the case for some specific non-informative prior 

distributions if the same sufficient statistic is used in both classical and Bayesian 

approaches (Turkkan and Pham-Gia. 1997). There has been some discussion as to 

whether the hpd region is appropriate, as i t is not invariant under reparanieterisation 

(Bernardo and Smith, 1994). Other regions, such as Bernardo's lowest posterior loss 

region (Bernardo, 2005), which is invariant under reparameterisation, could be used 

instead. In fact any subset of the parameter space O that is closed and bounded and 

has a specific posterior probability could be used to construct Bayesian p-boxes. 

3.2.3 Example: Exponential Distribution 

Suppose that components of a machine are stress-tested, their lifetimes are measured 

in days and that these lifetimes follow an Exponential distribution with parameter 

A, where A is the distribution mean. Assume that a sample, X\,X2, . . . ,:r„, of n = 30 

such lifetimes is available, with sample mean 16.72 days and standard deviation 17.21 

days. Consider the case a = 0.05 and find 9 5 (0.05), here the 95% hpd interval for 

A. If A G [c^c-i], then 0^(0.05) is derived by calculating values of C\ and c? such 

that the integral of the posterior distribution between C] and c> is equal to (1 — a) 

and the value of the posterior probability density function is equal at C\ and c-2-
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We define the prior probability density function to be: 

p(X\a,b) oc A ( Q - 1 ) e x p ( - A 6 ) (3-1) 

and multiply this by the likelihood function for the Exponential distribution to find 

the corresponding posterior probability density function: 

0,(0.05) for A ( C l = 0.0392 and c 2 = 0.0816) is illustrated in Figure 3.0.1 where 

we use a non-informative Gamma prior distribution wi th shape parameter a = 0.001 

and inverse scale parameter b = 1000. p(X\x, a, b) represents the posterior probability 

density given the shape and inverse scale parameters, a and 6, and the data x. 

Maximising and minimising the Exponential distribution over O s(0.05) is equivalent 

to plotting the Exponential distributions wi th A equal to the endpoints of 0S(O.O5) 

due to the monotonicity of the Exponential cdf wi th respect to A. This leads to the 

Exponential Bayesian p-box shown in Figure 3.0.2. 

i ( ) 
&) oc A ( Q + O T M e x p - A \ b + V p(X\ X\ , . . .xn, a. X ! (3.2) 

F igure 3.1: Example for the Exponential distribution 
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The Exponential Bayesian p-box clearly displays uncertainty about the distribu­

tion parameter by the width of the bounds. Looking at specific percentiles shows 

that the 90th percentile of the random component life is between 28.2 days and 58.7 

days and that the probability that the component lasts longer than 25 days, given 

A is contained in 0S(O.O5), is between 0.13 and 0.38. 

3.2.4 Different credibility levels 

As decision makers may not want to choose a value for a before the risk assessment 

is carried out, i t may be attractive to produce Bayesian p-boxes for different values 

of q . From these they can consider the change in uncertainty at different values of 

a. Figure 3.1 shows the nested Exponential Bayesian p-boxes for the example above 

for three values of a. The 90th percentiles for each a are shown in Table 3.1. 

Figure 3 .1 : Exponential Bayesian p-box for a = 0.5 (black), a = 0.05 (red) and 
q = 0.01 (blue) 
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Table 3.1: Upper and lower bounds on the 90th percentile for each value of a 

a 
90th Percentile 

a Lower Upper 
0.5 35.219 45.282 

0.05 28.227 58.725 
0.01 25.538 67.055 

As expected the interval for the 90th percentile widens as the credibility level in-
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creases. Nested Bayesian p-boxes are useful to consider how much the uncertainty 

increases as the credibility level increases. 

3.2.5 Robustness to the prior distribution 

A common criticism of Bayesian methods is that the prior distribution may influence 

the posterior results of an analysis. We illustrated the use of a non-informative 

prior distribution in Subsection 3.2.3. One can also consider using a class of prior 

distributions to study robustness with respect to the prior distribution. To do this 

for the Exponential case, we need to choose bounds for a and b. The posterior 

distribution is a Gamma distribution with parameters a + n and b + YH=\ xi- ^ ' o w 

suppose a priori that i t is believed that the expected value of the random quantity 

of interest is approximately E. Then we could, for example, choose a class of prior 

distributions by taking s small, o G ( l + e..s + l ) , where e = le —15 and b £ (^-, oo). 

Then as A has a Gamma distribution, j has an Inverse-Gamma distribution, wi th 

parameters a and 9 = and thus 9 G (0, 2Es). The expected value of j is j^zj]- So 

when a, = l + e, the expected value of j is in the interval (0, ^ p ) and when a = l + .s, 

the expected value of | is in the interval (0, 2E) which both seem reasonable as j 

is the mean of the Exponential distribution. 

Let us consider two examples in which we use the same robustness criteria as 

described above (a G (1 + e, s + 1) and b G oo)) , and the same value of .s, but 

wi th two different sample sizes. 

1. Choose .s = 2, E = 30 and randomly generate a sample of size 10 from an 

Exponential distribution with A = ^ . This yields 51 " = 1 i ' ,: = 273.11. 

2. Choose s = 2, E = 30 and randomly generate a sample of size 100 from an 

Exponential distribution with A = ^ . This yields 5ZI'=i x* = 2034.99. 

We split a into 20 equally spaced values including the endpoints and b into 20 

equally spaced values including the endpoints. Taking the envelope of the possible 

distributions, by using the endpoints of ©, s(0.05), we find the 95% robust Exponen­

tial Bayesian p-boxes for these two examples. The 95%; robust Exponential Bayesian 
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p-boxes are compared wi th 95% Exponential Bayesian p-boxes formed using a non-

informative gamma prior distribution with a = 0.001 and b = 1000 as before, in 

Figures 3.2.1 and 3.2.2. 

Figure 3.3: Comparison of Robust 95% Exponential Bayesian p-box (red) and 95% 
Exponential Bayesian p-box (blue) 
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I t is clear that the inferences from a smaller data set are more influenced by the 

choice of prior distribution resulting in wider bounds. Additional data lead to a more 

peaked likelihood function which has a stronger influence on the inferences leading to 

narrower bounds. The Exponential Bayesian p-box, formed using a non-informative 

prior distribution, is enclosed within the Exponential p-box using the class of prior 

distributions in both cases. The endpoints of the hpd intervals, c\ and C 2 , for the 

non-informative prior distribution are enclosed within the interval of c^r and C 2 ' / ' , 

where e%r and c 2 r are the endpoints of the robust hpd interval, in both cases. As 

the Exponential Bayesian p-box is formed using these endpoints, the robust cases 

wi l l enclose the non-informative Exponential Bayesian p-boxes for these examples. 

Including robustness to the prior distribution describes a lit t le more uncertainty 

which is indicated by the width of the bounds. As the sample size increases, both 

uncertainty about A and the influence of the prior distribution decrease. Thus, there 

is not a large difference between the width of the bounds using the robust class of 

prior distributions or the non-informative conjugate prior distribution for n = 100. 

For these data sets which were randomly generated we used 30 as an estimate of E. 

In practice, this value would need to be chosen by an expert or based on information 
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available about the random quantity prior to data collection. 

In this section we have introduced the procedure to form a Bayesian p-box and 

illustrated i t for the Exponential distribution. We have shown the possible benefit 

of producing Exponential p-boxes for different credibility levels and that the method 

can include robustness to the prior distributions. In the next section we consider how-

to form a Bayesian p-box for the more complicated case of the Normal distribution. 

3.3 Normal and Lognormal distributions 

In this section the derivation of a Bayesian p-box for the Normal and Lognormal 

distributions is discussed. The Lognormal distribution is frequently used in risk as­

sessments, in particular for assessment of the magnitude of effects by estimating the 

proportion of species for which exposure to a chemical exceeds some threshold level 

(e.g. LD50 or NOEC). To describe the variation in these threshold levels between 

species, a species sensitivity distribution (see Section 2.5) is often used. As this is 

frequently assumed to be Lognormal (EFSA, 2005), the illustrative example shown 

in Subsection 3.3.3 is for the Lognormal distribution. 

3.3.1 Bayesian P-boxes for the Normal distribution 

We assume that a random quantity X has a Normal distribution with parameters 

jj, and a. Box and Tiao (1973) present the equation of the joint hpd region for 

parameters jj, and a assuming locally uniform prior distributions for /v, and ln(cr). 

In this case Qs(a) is the hpd region containing the (/v,,cr) pairs with 100(1 — a)% 

posterior probability. We find the hpd region by evaluating the double integral: 

p(fj,, cr|data) dfi da (3.3) 

where the region R is given by: h(fj,, a) = — (n+l)ln(cr) — ^[(n—1 ) .S 2 +J?-(/J,—y) 2 ] > d, 

where y is the sample mean, s is the sample standard deviation and d, is a constant. 

To do this, we integrate numerically over R at different values of d until we find 

the region, 0, s (Q : ) , that contains 100(1 — a)% probability. Then we find the {js.a) 

L 
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pairs from 0 s ( a ) that optimise the Normal cdf, and use these to find bounds on 

the distribution of the random quantity X. So we need to calculate the (/./., cr) pairs 

that optimise the function g = <f> where <!>(•) is the standard Normal cdf. I t 

is clear that the Normal cdf is maximised (minimised) by maximising (minimising) 

( ^ ) ; wi th fixed x e K. // G R and a > 0. 

If X ~ N{jji,o2), then 0 s (cr) is a strictly convex set defined by g(f.i, a) > d, 

where d is a fixed constant, and i t is closed and bounded. Therefore the gradient 

of the boundary of the set. that we call the contour, is continuous and constantly 

changing everywhere. The (/i ,a) pairs found by tracing the contour, where 0 s ( a ) = 

d, maximise and minimise the cdf of A" for all x, justification is given in Subsection 

3.3.2. We can then form the Bayesian p-box by plotting the value of the cdf at each 

re given the values of each optimal {n,a) pair from the contour. 

The parameters \i and a are location and scale parameters respectively and 

this result generalises to other location-scale distributions, such as the Student t-

distribution and the Cauchy distribution, as long as the derived region. 0.,(o:). is 

closed and bounded. This result allows the use of an efficient algorithm for the 

computations involved in the derivation of such Bayesian p-boxes. Suppose that 

( f j , \ . ( T i ) maximises the cdf (over 0. s (Q : ) . and hence this point is on its boundary) at 

a particular value of x. say X j . To find the maximum of the cdf at a point close to 

X], we only need to search the values of (/J., a) on the boundary of 0 s ( a ) that are 

close to (//i,<7)). Alternatively to speed up computation we can split the contour 

into several (/i ;er) pairs to give an approximate Bayesian p-box. 

3.3.2 Justification 

We first show that the values of \i, and a that maximise (minimise) / = are 

on the contour. To maximise / , one needs to minimise a. The smallest values of 

a possible in 0 s ( a ) at any //, will fall on the contour. Similarly to minimise / . one 

needs to maximise a and the maximum a values possible at any //, wil l fall on the 

contour. 

Consider the contour h(/j,.a) = d. An example of a possible contour and the 

resulting Bayesian p-box is shown in Figures 3.3.1 and 3.3.2 to aid understanding. 
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The blue half of the contour corresponds to the resulting blue maximum bound for 

the Bayesian p-box and similarly the red half corresponds to the resulting minimum 

bound. This is a closed strictly convex set and therefore the gradient of the contour 

is different at all points, changes continuously and takes all directions. 

Figure 3.3: Example of a possible contour and the resulting Bayesian p-box 

0.8 
1 5 

' -

0) 0.5 

O 0.1 

il 
0 4 C R : 1 2 0.2 

Loq, A Concentration (|ig / kg) 10 
3.3.1 Possible contour 3.3.2 95% Normal Bayesian p-box with 

modal distribution (black) 

Standard optimisation theory states that the gradient of the function / must be 

a negative multiple of the gradient of the contour where the contour optimises the 

function e.g. Boas (1983). Consider optimising the function / = 2365 with respect 

to the contour h(fx.a) = d. Then V ( / ) = — AV/i( jU, a), where A is a constant and 

/ (p-x) \ 

V ( / ) = ^ (3-4) 

The first term of the vector is a continuous function of x. For % £ R, i t is clear from 

Vk{pi, 0) = W that: 

—oo 
x - » - o o : Vh(fi.a) H» ( | (3.5) 

x-U :Vhfate}->\ j (3-6) 

./• • -x : Vhi/i.a) • | ° ° | (3.7) 
ACT 
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so the gradient changes continuously with The gradient of the function h that 

optimises / must follow the above pattern as x increases. Therefore i t is clear 

that the contour optimises / . To see which half of the contour is maximising / we 

consider the contour / / ( / . / . . < J ) < d — e. where e is a small positive constant. This 

contour will be larger as it contains more probability. Again we consider the edge 

of the contour at h(^j.,a) = d. — f . As we move from the contour /?(/./. a) = d to the 

contour h{j.i..a) = d — e. we find that the values of //. increase for the upper half of 

the contour and decrease at the lower half of the contour for given a. This leads to 

an increase in / = for the lower half of the contour and a decrease in / for the 

upper half of the contour. Therefore the upper half of the contour is minimising / 

and the lower half of the contour is maximising / . 

3.3.3 Example: Lognormal distribution with small n 

To illustrate the Bayesian p-box method, consider the No Observed Effect Concen­

tration (NOEC) of Cadmium (̂ /,g Cd/g) of seven soil organisms data (Table 3.2) 

from Van Straalen and Denneman (1989). also used by Aldenberg and Jaworska 

(2000). 

Table 3.2: NOEC for toxicity of Cadmium (/j,g Cd/g) of soil organisms. 

Species 1 2 3 4 5 6 7 
NOEC values 0.97 3.33 3.63 13.50 13.80 18.70 154.00 
log.o (NOEC) -0.013 0.522 0.560 1.130 1.140 1.272 2.188 

Assuming that the data come from a Lognormal distribution, Log i 0 (data) follows 

a Normal distribution. Let us consider using the non-informative prior, p(fj,.cr) = 

and take a = 0.05. 6 A(0.05), the 95% hpd region, is found by numerical integration, 

and is shown in Figure 3.4.1. where the mode of the posterior distribution is also 

indicated. Maximising and minimising the Normal cdf over 0,S(O.O5) leads to the 

95% Normal Bayesian p-box shown in Figure 3.4.2. The uncertainty about the 

variability is indicated by the width of the bounds. The modal distribution, i.e. the 

distribution with the mode of the posterior distribution as its parameters, is also 

shown. 
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Figure 3.4: Example of 04.(O.O5) and the Normal Bayesian p-box for the 
logio(NOEC) values given in Table 3.2 
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In effects assessments, it is assumed that i f at least 95% of the species are not 

affected, an ecosystem is protected. Therefore, the 5th percentile of an SSD is of 

interest as i t is the concentration of a chemical that wil l affect 5% of the species. 

Here the 95% bounds on the 5th percentile on the l og ] 0 scale are (-1.924, 0.663) fig 

Cd/g, shown in black in Figure 3.4.2. Transformed back from the log i 0 scale the 

95%> bounds on the 5th percentile of the Bayesian p-box are (0.012, 4.602) fig Cd/g. 

Therefore the concentration that wi l l affect 5% of the species, given the (//.a) pairs 

contained in 0S(O.O5) and thus constrained by 95% probability, can be considered 

to be between these bounds. 

3.4 Validating Bayesian p-boxes 

As (Log)Normal distributions are important in risk assessment we test the Bayesian 

p-box for a Normal distribution with various means and standard deviations. We 

begin wi th // = 30 and a = 3 and take samples of different sizes (n = 2,10,50 and 

100 ). We then form the Bayesian 95% hpd region for this Normal distribution and 

check if the (//, a) pair (30.3) fall in the hpd region. We repeat this process 100 

times for each sample size and count how many times (30,3) falls in the Bayesian 

hpd region. To see if there is any dependence on the ft and a used we vary them one 

at a time and repeat the process wi th new ji or a values. For simplicity we test how 
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often the true //, and a values fall in the hpd region, as then the true distribution 

wil l fall in the 95% Bayesian p-box. The results from 100 simulations for various /./ 

and a values are shown in Table 3.3. 

Table 3.3: Results for 100 simulations 

A* a n Success out of 100 
9 98 

3 
10 98 

3 
50 97 
100 98 
2 96 
10 99 

5 50 99 
30 100 99 

2 96 

7 
10 98 

7 
50 98 
100 99 
2 95 

9 
10 98 

9 
50 99 
100 98 
2 95 

20 3 
10 97 

20 3 
50 98 
100 98 
2 95 

40 3 
10 99 

40 3 
50 99 
100 99 
2 98 

50 3 
10 97 

50 3 
50 98 
100 100 
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I t is clear that there is some sampling variation so some samples lead to hpd 

regions where the parameters of the true distribution are not included. However 

generally the Bayesian p-box includes the true distribution in most of the simu­

lations, even for n as small as 2 and therefore seems a reasonably robust method 

to use. The method is not affected by the change of fi and a as we would expect 

because the method takes the sample mean and standard deviation into account. 

For small samples the size of the hpd region increases, resulting in a wide Bayesian 

p-box, which leads to the n = 2 case producing good results. 

3.5 Generalisations 

Two topics which are of practical interest are robustness with respect to the prior 

distribution and imprecision in the data. In effects assessments, sample sizes may 

be as small as 2, so any prior distribution can have a large influence on the posterior 

distribution. Therefore i t is useful to consider robustness wi th respect to the influ­

ence of the prior distribution. Robustness for the Normal distribution with respect 

to the prior distribution(s) for n and a is considered in Subsections 3.5.1 and 3.5.3. 

For a detailed introduction to robust Bayesian analysis we refer to Berger (1990). 

In practice, data sets may be given as interval data, for example when an indication 

of measurement uncertainty is given. A straightforward method for including such 

imprecision in data in the analysis is presented in Subsection 3.5.5. 

3.5.1 Robustness to the prior distribution for fi 

To investigate robustness with respect to the prior distribution for /./,, we consider 

a class of Normal prior distributions for f.i given values of a. We wil l call this the 

interval class of prior distributions. The resulting Bayesian p-box wil l be called the 

'robust Normal Bayesian p-box :. Keeping the non-informative prior distribution for 

a. p(a) = K a Normal class of prior distributions for /J.|CT is chosen: 

a € [c, v] P\l-i-,a) • Pil-h a) ~ N [ a, 1 71 
(3.8) 
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and the prior interval for the mean, a, is chosen to be between constants c and v. 

Calculating the posterior distribution, and repeating the previous steps, as in Box 

and Tiao (1973) and Subsection 2.7.2. leads to the equation of a density contour: 

- ( n + 2)ln(a) - ^ ^ ( n - l)s2 + £(.r - a)2 + 2n (V - = d (3-9) 

To find O s(0.05), integrate the posterior distribution over different regions to 

find the region enclosing 95% probability. To perform the integration, values for c 

and v must be chosen. Here c and v are the prior limits on the mean of fj, that 

should be chosen by an expert or based on available evidence. 

3.5.2 Example: A robust Normal Bayesian p-box 

We have a small data set (n = 3) sampled from a Normal distribution wi th mean 

100 and standard deviation 15. The sample statistics are x = 96.83 and s = 8.58 

and we take the interval a G [66,116]. We split this interval by taking 20 equally 

spaced values, a,,/' = 1.....20, including the endpoints for illustrative purposes and 

this produces the regions 0 S ( n )(O.O5). Figure 3.5.1 shows these regions and the 

variation in their shape as the range of a changes at different values of a. As the 

interval for a is longer below x there wi l l be larger contours at lower (j, values than 

there wi l l be at higher fj, values. This can clearly be seen in Figure 3.5.1. This is 

because, as the prior value that we specify for the mean moves further away from 

the sample mean, the values for \i in the posterior wil l be lower. Therefore a has to 

increase for the sample to be able to come from a distribution wi th such a low value 

for / i . The larger a values wil l contribute mostly to the lower tail of the maximum 

(left) bound, but also slightly to the upper tail of the minimum (right) bound of 

the robust Normal Bayesian p-box. I f the interval had been longer above x, then 

the larger contours that we see at lower \i values would have instead been at higher 

/ j values. These larger a values would mostly contribute to the upper tail of the 

minimum (right) bound but also slightly to the lower tail of the maximum (left) 

bound of the robust Normal Bayesian p-box. 
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We also look at a larger sample (?? = 50) from a Normal distribution with mean 

100 and standard deviation 15. The sample statistics are x = 96.48 and $ = 13.54 

and we take the interval a € [66,116]. Figure 3.5.2 shows the regions QS{a ,(0.05) for 

this data set where the interval a is again split by taking 20 equally spaced values 

including the endpoints. 

Figure 3.5: Examples of © S ( a . , (0.05) for both data sets 
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To approximate the robust Normal Bayesian p-box for both data sets, we can 

take many values of a (20 equally spaced values including the endpoints in this 

example), maximise and minimise over the 100(1 — a)% contours by taking 100 

(//,<T) pairs from the boundary of each contour, and plot the envelope of all these 

distributions. Figure 3.6.1 shows the 95% robust Normal Bayesian p-box and the 

95% Normal Bayesian p-box, using a non-informative prior, p( / i . a) = -, for the 

r? = 3 example. Figure 3.6.2 shows the 95% robust Normal Bayesian p-box and the 

95% Normal Bayesian p-box for the n = 50 example. 
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Figure 3.6: Robust 
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3.6.1 Robust 95% Normal Bayesian p-box 
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3.6.2 Robust 95% Normal Bayesian p-box 
for n = 50, x = 96.48 and s = 13.54 (blue) 
w i th 95% Normal Bayesian p-box (red) and 
modal dis t r ibut ion (dashed) 

We can see here that the larger data set leads to more certainty about the 

parameters and therefore a narrower p-box. I t is helpful that the graphical display 

of any type of p-box allows an intuitive assessment, of the uncertainty based on 

the width of the bounds. In Figures 3.7.1 and 3.7.2, we show the contour for each 

data set using the same non-informative prior as we used previously, p(fi,a) = -, 

alongside the contours for the robust 95% Normal Bayesian p-boxes. 

Figure 3.7: B S ; o ,(0.05) for the robust cases and using a non-informative prior 
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These regions show that the 95% Bayesian p-box should be contained within 

both robust 95% Normal Bayesian p-boxes. We can see this is true in Figures 3.6.1 

and 3.6.2. Also, Figure 3.6.1 shows that for the n = 3 case, the larger contours at 

lower LL values lead to the extra width at the bottom of the maximum (left) bound 

and the top of the minimum (right) bound of the robust 95% Normal Bayesian p-

box. The narrower range of a values for larger n leads to the narrower limits on the 

robust 95% Normal Bayesian p-box in Figure 3.6.2. 

3.5.3 Robustness to the prior distribution for fj, and a 

To study robustness wi th respect to the prior distribution for LI and a together, we 

choose a set of prior distributions for both parameters. We wil l call the result the 

'robust (fj,,a) Normal Bayesian p-box'. Consider an interval on a and a class of 

Normal prior distributions on LI given values of a. So the joint prior distribution is 

as follows: 

where ji.u. o\ and au are the chosen prior limits for LL and a respectively. Calcu­

lating the posterior distribution, and repeating the steps as in Box and Tiao (1973) 

and Subsection 2.7.2 for this new posterior distribution, leads to density contour: 

To find 6 S ( a ) , integrate over the posterior distribution to find the region enclos­

ing 100(1 — a)% probability. Values for Lit, LLU. O\ and au must be chosen by an 

expert based on available evidence. 

For the numerical integration i t is necessary to calculate the normalising constant 

k. Unfortunately this can only be derived numerically so the following results are 

again approximations. The lack of an exact normalising constant causes problems 

with numerical integration so the standard Matlab function, contour, is used to 

obtain numerical approximations to the contours. Contour allows the user to specify 

a grid of values for two random quantities (here [i and a) and plot corresponding 

(j 
E { f j . i , L i v } , a x e {cTi,au} pU.o) ~ N a, a, 

n 
(3.10) 

- l n ( a x ) - nln(a) - —(LI, - a)2 - {{n - l)s2 + n [x - ^i,)2) = d 
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contours at different heights (here at different heights of the posterior distribution). 

3.5.4 Example: A robust (//. a) Normal Bayesian p-box 

We consider a data set of size 10 (n = 10), randomly sampled from a Normal 

distribution wi th mean 100 and standard deviation 15. The sample statistics are 

x = 98.40 and s = 9.51. Now consider the intervals from //; = 94 to / / u = 102, and 

from ai = 8 to au = 11. We need to find all the contours for each prior combination 

of n and a. 

An example is shown in Figure 3.8.1, where the prior interval ax is split into four 

equal parts and the prior interval a is split into three equal parts, both including 

the endpoints, so the contours can be seen more clearly. We denote the different 

combinations of ax and a by r,, i = 1 , 1 2 , as there are 12 combinations of a and 

ax. Figure 3.8.2 shows the resulting O s . r , (0.05) where the prior interval for er is 

split into five equal parts and the prior interval for / i is split into ten equal parts 

(For this case, i = 1, ...,50). 

Figure 3.8: Examples of 0 a (0.05) for n=10, x = 98.40 and s = 9.51 
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We see that the range for o is wider for the contours where a is close to the 

mean of the data than for the contours where a moves away from the mean. For 

larger values of a the range for a wi l l increase again. To see this, consider the 95% 

highest posterior regions for ax = 8, with a = 98.5, 99.5,100.5,101.5 and 104, shown 

in Figure 3.9. 

Figure 3.9: 95% hpd regions for ax = 8 and a = 98.5 (blue), 99.5 (green), 100.5 
(red), 101.5 (yellow) and 104 (black) 
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Figure 3.9 shows that the lowest contour (where a = 98.5) has the second largest 

range of o values. This is because there is agreement between the prior value for 

p (i.e. a) and the data mean (x) which leads to the posterior values for ji being 

close to the mean value of the data. Therefore there is low probability at higher and 

lower values of jm as both the likelihood function and the prior distribution suggest 

that p should be around the mean. For the other contours the value of a leads to a 

conflict between the prior value of [i and the mean of the data. The conflict leads 

to more p, values having higher posterior probabilities and therefore being included 

in the hpd region. This leads to a posterior distribution that is not symmetrical 

about the mean. As a increases, the hpd region becomes less and less symmetrical 

about the mean, leading to narrower ranges of a. However, eventually the range of 

a starts to increase again. Figure 3.9 shows the highest contour (where a = 104) 

has the largest range of a values. This is because the mean of the data and the 

prior value a assigned for /i are far apart and therefore the posterior distribution 
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is a natter distribution with a large variance to compensate for this difference. For 

example, with the prior value of a = 1 0 4 for p, the data could only have come from 

the distribution with //, = a i f a is large. 

Figure 3.10 shows the robust 95% (pi.cr) Normal Bayesian p-box resulting from 

the regions shown in Figure 3.8.2. 

Figure 3.10: Robust 95% (//, a) Normal Bayesian p-box for n = 10. x = 98.40 and 
s = 9.51 (blue), 95% Normal Bayesian p-box (red) and the modal distribution for 
the non robust case (grey dashed) 
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The robust (//, a) Normal Bayesian p-box is contained within the Normal Bayesian 

p-box produced with a non-informative prior distribution, (p(/i. a) = -I), The 

non-informative prior distribution allows a large range of different fj, and a val­

ues, whereas the set of prior distributions used for robustness leads to the exclusion 

of some values and thus the range of / i and a values in 6^(0.05) is narrower. There­

fore the distributions that are included in the robust Normal Bayesian p-box have 

a narrower range than those found using a non-informative prior distribution. This 

robust Normal Bayesian p-box is approximated because the integration constant 

must be evaluated numerically. 

3.5.5 Imprecise data 

There are many practical situations where interval data may arise, some exam­

ples are given by Ferson et al. (2007). These include cases where engineers and 
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other scientists report the uncertainty associated with calibration of their measur­

ing equipment with an interval, gross ignorance where we have no data about a 

random quantity so we assign theoretical limits, and when numbers are rounded to 

significant digits. Here we consider the case where data have been provided with an 

indication of the measurement uncertainty surrounding the values. 

Suppose that a data set, X\,x-2, . . . ,:r„, has a particular measurement uncertainty 

stated, {—e.+d}, for e,8 > 0. This means that the actual value corresponding to a 

reported measurement .c,; is only known to be in the interval [.?;, — e, Xi + 8} and all 

values have the same measurement error. To find the 'lowest' Normal distribution 

(i.e. shifted furthest to the left.) that could describe the data, we can take all the 

values xj — f, and to find the highest Normal distribution that could describe the 

data we would take all the values x, + 6. This follows Manski (2003), where it is 

stated that if y is observed to lie in [y_, y+], then the distribution P(y+) is a feasible 

value of P(y) and stochastically dominates all other feasible values of P(y). This 

means that the cdf of P{y+) is less than or equal to the cdf of P(y) at any value 

y. This is the case as P{y+) has the same shape as P(y) but it is moved further to 

the right. Similarly the distribution P(y~) is stochastically dominated by all other 

feasible values of P(y) , as the cdf of P(y) is less than or equal to the cdf of P(y-) 

because the cdf of P(y_) is the cdf of P(y) shifted to the left. 

3.5.6 Example: Normal Bayesian p-boxes for imprecise data 

A random sample of size n = 40 is taken from a Normal distribution with mean 

100 and standard deviation 15. The sample statistics are x = 102.31 and s = 13.90. 

Consider very substantial data imprecision specified by 6 = e = 10. The procedure 

presented in Subsection 3.3.1 can be used to form a contour using numerical inte­

gration for each extreme case of values (i.e. taking all values Xi — e or .r, + S) and 

the original data set. These are presented in Figure 3.11.1. We adjust the values 

by either adding 6 to all the values or subtracting e from all the values so that 

the sample standard deviation, s. remains the same. Therefore the contours are all 

the same shape and only the location of the data set is adjusted by e or 5. So i t 

is only necessary to calculate the contour for the original data set and maximise 
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and minimise over this contour to find lower and upper bounds. Then translate the 

lower bound by — e and the upper bound by 5 along the x-axis to form the Normal 

Bayesian p-box including known measurement uncertainty. The resulting Normal 

Bayesian p-box is shown in Figure 3.11.2 alongside the Normal Bayesian p-box that 

would have been obtained if data imprecision was ignored. 

Figure 3.11: Examples for imprecise data 
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3.11.1 6 S (0 .05) regions for 6 = 10 (dashed 3.11.2 95% Normal Bayesian p-box includ-
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The interval uncertainty may be caused by, for example, known measurement 

(in)accuracy or rounding of data. I f this information is available or can be assessed, 

then it is easy to incorporate in the analysis. For more complicated cases of data 

imprecision, for example where the measurement uncertainty is not known exactly, 

a different approach may be required. 

The methods in Subsections 3.5.1 or 3.5.3 could be combined in an analysis wi th 

the methods in this section to include both robustness and measurement uncertainty. 

3.6 Comparison of different methods 

This section compares a parametric Normal frequentist p-box, KS confidence lim­

its, the pointwise Bayesian approach, the Bayesian posterior predictive distribution 

(all explained in Chapter 2), and the Normal Bayesian p-box approach. Here we 

construct the frequentist parametric p-box for the Normal distribution using 95% 
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frequentist confidence intervals for / i and a (Aughenbaugh and Paredis, 2006). 

3.6.1 Example: Comparing methods for small n 

For small n, consider a typical data set for avian risk assessment for pesticides. In 

the European Council Directive 91/414/EEC, i t is stated that the acute oral toxicity 

of an active substance must be determined for either a quail species or the mallard 

duck. There are typically two species available and the same two are generally 

used. Suppose that for a certain pesticide, toxicity tests were conducted on these 

species resulting in median lethal doses (LD50 in mg/kg bw) of 400 (quail) and 

2000 (mallard). I t is assumed that these two data points come from a Lognormal 

distribution. The bounds from each method at the 5th percentile are shown in Table 

3.4. Figures 3.12.1 and 3.12.2 present the results of the different methods with 95% 

confidence or credibility levels. In Figure 3.12.2. the modal distribution is omitted so 

that the median can be clearly seen. The Bayesian posterior predictive distribution 

gives a 5th percentile of 1.971 mg/kg bw on the l og ] 0 scale. In the current legislation 

for birds. European Commission (2002b), the toxicity-exposure ratio (TER) is found 

by taking the lowest data point and dividing by an exposure value. This is then 

compared with a threshold level of 10. So when the TER > 10, the chemical is 

considered safe. Rearranging the equation shows us that the chemical is considered 

to be safe if exposure is less than 40 mg/kg bw. On the logio scale this equates to 

1.6 mg/kg bw. This suggests that the current approach is not conservative when 

compared to the results for the probabilistic methods shown in Table 3.4, because it 

is not below their lower limits. However i t is more conservative than the posterior 

predictive distribution on the log j 0 scale (1.971 mg/kg bw). However the approaches 

shown in Table 3.4 all envelope the current method which indicates that a safe level 

could be much lower than implied by the current approach. 
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Table 3.4: Comparison of bounds on 5th percentile in l o g 1 0 (mg/kg bw) 

Lower Upper 
95% parametric Normal frequentist p-box -27.43 7.03 
95%) Normal Bayesian p-box approach -14.99 3.95 
95% KS confidence limits - oo 3.3010 
95% pointwise Bayesian approach -23.03 2.82 

Figure 3.12: Examples for a small sample size 
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The values in Table 3.4 appear to be similar because they are given on a logio 

scale, but there are actually large differences between the methods. The Normal 

frequentist p-box method gives wider bounds than the other methods at high and 

low percentiles. This may be due to the fact that the subspace of 0 in the Normal 

frequentist p-box method is a rectangle between the smallest and largest /< and a 

pairs, whereas in the Normal Bayesian p-box method it is a strictly convex set, 

here oval-shaped, where the dependence of pi, and a is taken into account. This 

indicates that ignoring the dependence between parameters leads to wider bounds 

at the higher and lower percentiles than when dependence is taken into account. I f 

narrower confidence intervals for pi, and a had been chosen, so the rectangular sub-

space of 0 was enclosed in the Bayesian oval, the Normal frequentist p-box would 

fall wi thin the Normal Bayesian p-box. A t the 50th percentile, i t is clear that the 

Normal frequentist p-box is narrower than the other methods because of the way 

i t is constructed, ignoring dependence between pi, and a. I f the frequentist Normal 
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p-box was constructed using, for example, a joint confidence region for //, and a. as 

described in Burmaster and Thompson (1998), i t may provide bounds closer to the 

Bayesian p-box bounds as the joint confidence region is designed to take dependen­

cies between n and a into account. However both confidence regions described in 

Burmaster and Thompson (1998) use approximations. One uses a x2 approximation 

which may not be appropriate for small n, the other uses a Taylor series approxi­

mation and i t is not clear what effect these approximations wil l have on the output. 

The KS confidence limits are based on no assumptions about distribution shape and 

are very wide to include the large sampling uncertainty due to the small sample size. 

The lower l imit is — oo, although there may be practical reasons to bound this at a 

particular value. 

The lower and upper bounds according to the Bayesian pointwise method are 

lower, at the 5th percentile, than those based on the Normal Bayesian p-box. This 

is because in the former method the uncertainty is estimated about the percentile, 

irrespective of the rest of the distribution, and a scaled non-central ^-distribution 

is used to calculate the bounds. The Normal Bayesian p-box takes the whole dis­

tribution into account when finding the bounds as i t takes the (/i , a) pairs from 

the 100(1 — a)% hpd region, whereas the pointwise method finds the | and ^ ~ q ) -

percentiles of the scaled non-central ^distribution at each percentile. 

The 5th percentile of the Bayesian posterior predictive distribution is a predic­

tion for a random individual and produces a single line rather than upper and lower 

bounds. The Bayesian posterior predictive distribution would be appropriate when 

a random species is of interest, or it can be used for checking the underlying as­

sumptions of the model (Lee, 2004). This can be done by simulating samples from 

the Bayesian posterior predictive distribution and comparing these samples with the 

observed data set. I f there are large differences between them this may indicate that 

the chosen model is not appropriate (Gelman et al., 1995). 

Clearly which method should be used depends on whether the specific percentile 

or the whole distribution is of interest. In practice, i t wil l often be useful to present 

methods together to get a better picture of the uncertainty and variability involved. 
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However, the results and the differences between the methods would need to be 

clearly communicated to risk managers to avoid confusion. 

3.6.2 Example: Comparing methods for larger n 

We consider a larger data set (n = 50) sampled from a Normal distribution with 

mean 200 and standard deviation 20. The sample statistics are x = 194.71 and 

s = 18.75. For this a., an approximate Normal Bayesian p-box may be formed by 

finding 0 s ( a ) using a \ 2 approximation, and maximising and minimising over this. 

The results from all the methods (assuming a = 0.05) are shown in Figures 3.13.1 

and 3.13.2. 

Figure 3.13: Examples for n = 50 
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The Normal frequentist p-box is slightly wider than the Bayesian methods at 

lower and higher percentiles and narrower at the median, although there is not a large 

difference. The \ 2 approximation results are close to the Normal Bayesian p-box. As 

n increases to infinity the bounds wi l l converge to the true distribution (assuming 

the true distribution was Normal). The Bayesian pointwise method bounds are 

now enclosed within the Normal Bayesian p-box. These narrower pointwise bounds 

are due to the shape of the scaled non-central f-distribution with s — 1 degrees 

of freedom. This becomes more peaked and less skewed as n increases and so the 

percentiles enclosing 95% become narrower. KS confidence limits are particularly 
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useful when there is no reason to assume any specific distribution, as they provide 

limits on the empirical distribution function. The Bayesian posterior predictive 

distribution indicates a prediction for a random individual and is contained within 

all the other p-boxes shown here. To illustrate the uncertainties involved it is again 

useful to represent the results from several methods. I f a decision is to be made 

about a population, then methods that form bounds on variability should be used. 

I f a decision is about a random individual from a population then predictive methods 

should be implemented. 

The computation of frequentist parametric p-boxes is not affected by large n. as 

it only requires intervals for the input parameters. A large n does not cause prob­

lems with computation of KS confidence limits because it is a simple calculation 

based on 11 and a. The Bayesian posterior predictive distribution is not affected by 

large /? as it uses the sufficient sample statistics. The Bayesian pointwise method 

becomes slower as 77 increases and as the number of percentiles evaluated increases. 

However, even for n = 1000. finding the bounds on 1000 percentiles using the point-

wise Bayesian method only takes around 45 seconds on a computer with a l.OGhz 

Intel Pentium processor with 1 Gb of R A M . For large samples (say n > 300) the 

time taken to calculate the Normal Bayesian p-box using numerical integration can 

become prohibitive and the normalising constant becomes large, which complicates 

the calculations. In such cases, 6 5 ( a ) can be easily formed using a \- 2 approxi­

mation, as shown by Box and Tiao (1973), and this can then be used to form an 

approximate Normal Bayesian p-box. 

3.7 Dependence 

The use of Bayesian p-boxes for more complex models with multiple random quan­

tities is not straightforward. In principle the Bayesian p-box could be used for any 

random quantity or model, but practically it may be difficult to implement. To cal­

culate Bayesian p-boxes for a more complex model, for example the simple Exposure 

Model (Section 2.2). requires the calculation of a multi-dimensional posterior distri­

bution and derivation of the corresponding 0 s ( a ) . I f the posterior distribution has 
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more than three dimensions, we would need to find a mode and integrate outwards 

equally in all directions to find the 100(1 — o ) % hpd space. 

A useful tool in probability bounds analysis is the possible combination of differ­

ent p-boxes using Frechet bounds, which are computed using a method by Williamson 

and Downs (1990). This method enables the analyst to combine bounds, such as 

the pointwise bounds, Bayesian p-boxes. frequentist parametric p-boxes and KS 

confidence limits when nothing is assumed about dependence between the random 

quantities. As sometimes lit t le is known about the dependence between random 

quantities, i t is useful to visualise these bounds and compare them to the bounds 

produced under the assumption of independence, which is often used by default. In 

many risk assessments the assumption of independence is used, for example by Fan 

et al. (2005). Chow et al. (2005) and Havelaar et al. (2000), because of a lack of 

methods that can deal with unknown dependence. In the following example we i l ­

lustrate the Williamson and Downs method by combining Bayesian p-boxes without 

making any assumption about dependence. This method may be a way forward for 

applying Bayesian p-boxes in more complicated models. However, this will provide 

no information on the modal distribution and only provides a range of values for the 

probability contained within the final Bayesian p-box, as explained and illustrated 

in the example below. 

3.7.1 Example: Combining random quantities 

This example compares the Bayesian p-box formed for the Exposure Model assuming 

independence between the random quantities, with the Bayesian p-box formed using 

the Williamson and Downs method (1990). We consider the exposure of young 

children between 1.5 and 4 years old to benzene in soft drinks wi th simulated data 

sets. We take a sample of size 100 from a Normal distribution with mean 20 kg 

and standard deviation 2 kg for their body weight and with mean 1 kg/day and 

standard deviation 0.2 kg/day for their intake. A sample of size 100 is taken from 

a Lognormal distribution with mean 4.48 / ig/kg and standard deviation 5.87 /zg/kg 

for concentration. The sufficient sample statistics for bodyweight are: x = 20.16 kg. 

.s = 2.01 kg; intake: x = 0.49 kg/day. s = 0.10 kg/day: and Logio(concentration): 
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x = 0.42 M g / k g , 6- = 0.40 //g/kg. 

The methods described previously are used to calculate the Normal Bayesian p-

boxes for each random quantity. Here we calculate 98.3% Normal Bayesian p-boxes 

so that when we assume independence the final probability within the Bayesian 

p-box wi l l be 0.9833 ~ 0.95. Then these Bayesian p-boxes are combined both by 

assuming independence (which we call the Bj p-box) and by using Frechet bounds 

in the method by Williamson and Downs (which we call the Bp p-box). The results 

are shown in Figures 3.14.1 and 3.14.2. Figure 3.14.2 is on a logi 0 scale to show the 

differences between the methods more clearly. 

Figure 3.14: 95% B, p-box (red) and between 94.91 and 98.3%. BF p-box (blue) 
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The probability within the Bp p-box is between 94.91% and 98.3%. These 

values are calculated using Frechet bounds on the probability. The lower and upper 

bounds for P{Ai & A2 & A3) (where & indicates the conjunction of events) are [max 

(0, at + a,2+ o,3 — 2), min(a l , a2, a3)] for three events as explained in Subsection 

2.11.2, where a l , a,2, a,3 are the probabilities for the events. In this example the 

probabilities are the credible levels of the random quantities (e.g. 0.95 for 95%). 

The 10th, 50th and 90th upper and lower percentiles for both Bayesian p-boxes are 

given in Table 3.5. 
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Table 3.5: Upper and lower percentiles for both Bayesian p-boxes (on the linear 
scale) 

50th 90th 99th 
Output Percentile Percentile Percentile 

Lower Upper Lower Upper Lower Upper 
95% B, p-box 0.0861 0.1874 0.2812 0.7282 0.6623 2.5334 

94.91%) - 98.3% Bp p-box 0.0380 0.3872 0.1050 1.6470 0.1651 6.4228 

I t is clear that assuming independence makes a large difference to the results, 

although part of the difference is due to the Bp p-box potentially enclosing more 

probability. The bounds for the Bp p-box wil l always be at least as wide as those 

for the B\ p-box. because independence is one of the dependencies that is included 

in the Bp p-box. Decision makers and risk managers may find it useful to consider 

both these Bayesian p-boxes so they can see the effect of assuming independence 

on the inferences. Unfortunately, a modal distribution cannot be found easily when 

the Bayesian p-boxes have been combined using the Williamson and Downs method. 

To find the modal distribution, the multi-dimensional posterior probability density 

function would have to be calculated. The parameter values which combine to 

provide the highest posterior probability density value would be the mode and the 

modal distribution would then be the distribution formed with these parameter 

values. 

3.8 Conclusion 

There is no best method for the kind of risk assessment discussed in this chapter, i t 

clearly depends on the specific problem considered by the analyst. I f a risk manager 

is interested in the population as a whole, and thus in the entire distribution, it 

is useful to consider the Bayesian p-box as introduced in this chapter. Nested 

Bayesian p-boxes can give an analyst or risk manager a clear indication of the 

changes at different credibility levels. However, if the interest is only in a single 

percentile, e.g. the 90th percentile exposure, then the pointwise Bayesian method is 

more appropriate than the Bayesian p-box. This is because the Bayesian pointwise 

method finds bounds on the uncertainty about percentiles themselves, whereas the 
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Bayesian p-box takes the parameter values from the 100(1 — a)% hpd region and 

then produces bounds based on the distributions with these parameters. 

There are many uncertainties that need to be accounted for in risk analyses 

including choice of distribution, parameter uncertainty and assumptions on depen­

dence between random quantities. Bayesian p-boxes can deal with the uncertainty 

of distribution shape by forming separate p-boxes for each possible input distribu­

tion. The envelope of all the Bayesian p-boxes can then be taken. The Normal 

Bayesian p-box includes parameter dependence and parameter uncertainty in the 

bounds. Robustness can, in principle, be included, but computations may be cum­

bersome for many distributions. Also the modal distribution can be displayed, as 

illustrated in examples in this chapter. To account for uncertainty about the depen­

dence between random quantities, the Williamson and Downs method, as mentioned 

in Section 3.7, can be used on any type of p-box to compare the effect of dependence 

assumptions. The Bayesian p-box method is versatile in that it can use any strictly 

convex bounded region of the posterior parameter space to form a Bayesian p-box, 

using the procedures described in this chapter. A disadvantage of Bayesian methods 

is that a distributional assumption has to be made. 

The KS confidence limits bound the empirical distribution function and make no 

assumption about distribution shape. Using these limits or other nonparametric p-

boxes (Subsection 2.10.1) would be useful in situations where an analyst prefers not 

to assume a particular distribution. However for small sample sizes these usually lead 

to wide bounds. The Normal frequentist p-box neglects parameter dependence, and 

therefore i t does not seem reasonable to use these bounds except when alternatives 

cannot be used because no data are available. A disadvantage of both the Normal 

frequentist p-box and the KS confidence limits is that they give no indication of how-

likely any of the distributions within the bounds are. 

The Bayesian p-boxes introduced in this chapter provide a means of character­

ising variability and uncertainty in risk assessment, while avoiding simplistic and 

often invalid assumptions of independence between parameters. Bayesian p-boxes 

can contribute to addressing the need for information about the degree of variabil­

ity and uncertainty in risk estimates (Codex, 2007; Madelin, 2004). This allows risk 
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managers to take account of the range of possible outcomes in decision-making. In 

particular, this is useful for support of risk managers in judging when the degree 

of uncertainty is sufficient to justify precautionary action (European Commission, 

2000). 



Chapter 4 

Nonparametric predictive 

assessment of exposure risk 

4.1 Introduction 

Nonparametric Predictive Inference (NPI) is a method that provides lower and up­

per probabilities for the predicted value(s) of one or more future observation(s) of 

random quantities. NPI is introduced with references to applications of NPI in 

Section 2.9. In this chapter we present NPI lower and upper cdfs for the simple 

Exposure Model that was introduced in Section 2.2. This is the first use of NPI for 

this type of risk assessment. Currently many of the methods used in exposure risk 

assessment use parametric probability distributions. Here we consider the applica­

tion of NPI to assess the exposure of a random individual to a chemical without 

making any distributional assumptions. 

In Section 4.2 we explain how to calculate NPI lower and upper cdfs for random 

quantities and briefly consider NPI for censored data sets. We explore calculating-

exposure values for a random individual using the simple Exposure Model for a case 

study in Section 4.3. Section 4.4 explores how strongly and weakly correlated data 

affect, the NPI lower and upper cdfs by using simulations. We discuss difficulties in 

computation in Section 4.5 and the effect of different sample sizes in Section 4.6. 

76 
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We show how to include known measurement uncertainty in an analysis in Section 

4.7. Section 4.8 compares NPI with the Bayesian posterior predictive distribution 

and in Section 4.9 we propose an ad hoc method for robust NPI. 

4.2 Nonparametric Predictive Inference 

As discussed in Section 2.9. NPI is based on the assumption, -4(„), proposed by Hill 

(1968) for making predictions when there is very vague a priori knowledge about the 

form of the underlying distribution of a random quantity. The NPI framework is 

particularly useful because i t provides a probability that the predicted value of the 

next observation of a random quantity will fall in various intervals. NPI also has 

the advantage that it does not require any further assumptions to be added. NPI 

includes uncertainty by using interval probability and does not use any information 

other than that provided by the data. Therefore i t gives the best possible bounds 

without making any assumptions other than A(n) for each random quantity. 

In risk assessments for food safety, risk managers could be interested in the 

distribution for a random individual's exposure to a chemical or the exposure dis­

tribution of a population to a chemical. As introduced in Section 2.2, a simple way 

to calculate exposure is by the Exposure Model: 

Intake x Concentration 
Exposure = — 

Bodyweight 

NPI provides predictive probabilities for an individual. Although we do not 

consider i t further in this thesis, NPI could be used if individuals would like to 

predict their own exposure. This can be done by taking their own intakes of a 

food type, their own bodyweight and a data set of concentrations for a particular 

chemical in the food type. The NPI lower and upper probabilities based on their own 

data can then be formed following the procedure presented in Subsection 4.2.2. The 

probability in the intervals between the calculated exposure values for one person 

wil l then be [(n c. + l)(??..;+ l)(??,f„,; + l ) ] ~ ' , where nc is the size of the concentration data 

set, ??., is the size of the intake data set and ?7.(,u; is the size of the bodyweight data 

set (which is 1), assuming there are no ties in any of the data sets and no ties in the 
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exposure values that are calculated. Combining these lower and upper probabilities 

leads to NPI lower and upper cdfs for the individual's exposure. This could easily be 

extended to take concentrations of a chemical in multiple food types into account. 

Next we look at an example of calculating NPI for one random quantity and then 

an example for calculating N P I lower and upper cdfs for Exposure. 

4.2.1 Example: NPI for a single random quantity 

To calculate the tightest lower and upper bounds on the cumulative distribution 

function (cdf) of a random quantity corresponding to the assumption A^ni, we form 

lower and upper cdfs (F_ and F respectively) for the probability that the next value 

wi l l fall in the intervals formed by the observed values. As a brief example, suppose 

we have an ordered data set {2 ,2 ,4 ,5 ,6} for positive random quantities X j , % = 1, ..5. 

Following j4(5), the lower and upper cdfs can be calculated as explained in Subsection 

2.9.2 where the set B is (—oo, x]. where x € (0, oo). The M function for X6 is: 

M x 6 ( 0 , 2) = 1/6 A / X e ( 4 , 5) = 1/6 
M X e (2) = 1/6 M * 6 ( 5 , 6) = 1/6 
MXe(2, 4) = 1/6 MX6(Q, oc) = 1/6 

The lower and upper cdfs for Xq can be plotted as shown in Figure 4.1. The 

final value of the lower cdf for Xq, FXe(x), is | . for x > x5. 

Figure 4.1: NPI lower and upper cdfs 
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As 77, tends to oo, the NP1 lower and upper edfs converge to the empirical distri­

bution function of the data. The cdf of the empirical distribution function. Fc, will 

always lie in [Fx , (x), Fxv+l (x)} for all x. where n is the number of observations. 

4.2.2 Example: NPI for the Exposure Model 

Now we look at calculating NPI lower and upper cdfs for the Exposure Model that 

was described in Section 2.2. Assume we have ordered observations x^.x^. for the 

random quantities X\ and X2 respectively. Then nx = 2 is the total number of 

observations and we have intervals (O.x'i). (x-\,X2), (-Co-.oo). Assuming .4(2), the 

probability that the next observation falls in any of these intervals is — T T = 7-

Assume we also have ordered observations 7 / 1 ; 1/2,1/3 for random quantities V1 , y 2 , 

and Yi respectively and ny = 3 is the total number of observations. This leads to 

intervals (O.y,), (y}.y2). {y2,V3): ( 2 / 3 : ° ° ) a » d assuming .4(3), the probability that the 

next observation falls in any of these intervals is ^ - ^ j - = | . Taking the product 

of the intervals for the random quantities X:i and Y4. leads to 12 intervals each 

with probability ^ , assuming there are no ties, for the random quantity that we 

call XYnew. We combine the intervals by multiplying the minimum values of each 

interval for X 3 with the minimum values of each interval for Y4 and the maximum 

values of each interval for X3 wi th the maximum values of each interval for Y4. For 

example to multiply (X1.X2) wi th (7 /1 ,7/2) ; w e multiply x\ with 7/1 and x2 with 7/0 

to form the interval (x'i?/i. X2U2)- Notice that this is the widest the interval can be. 

as combining the other endpoints. e.g. 7/0 with x\ wil l always produce values that 

fall in this interval due to their ordering. Now assume we have ordered observations 

Z\,z2 for random quantities Z\ and Z2 respectively. Assuming -4 ( 2), the probability 

that the next observation falls in any of the intervals (0. 2 1 ) , {z\.z2), ( 2 2 ! o o ) is \ . 

Combining the random quantities X:i, Y\ and ZA in the Exposure Model leads to 

36 intervals each with probability ^ assuming there are no ties. The M function 

for the predicted value of the next observation, is shown below, where expj 

represents the j t h ordered value that forms the intervals for • and j = 1,... . 34. 



4.2. Nonparametric Predictive Inference 80 

MXY (0, exp,) = 1/36 
Mxv_ (exp..-. exp - , , ) — 1/36 
MXY (exp 3 5 . oo) = 1/36 

The NPI lower and upper cdfs are formed as explained in Subsection 2.9.2. 

4.2.3 NPI for left-censored data 

The distribution of probability mass for a data set with left-censored values (ex­

plained in Section 2.4) can also be represented using M functions. I t is often the 

case with concentration data that there is a limit of detection (LOD) below which 

concentration of chemicals cannot be measured. This leads to left-censored data 

where some values are reported as < LOD. The censoring wil l be between 0 and the 

LOD because concentration cannot be negative. 

Example: N P I lower and upper cdfs for left-censored data 

Assume that the LOD is 1 and we have an ordered data set {x].x2.xA.x,\} for 

concentration and xt is a censored value that is between 0 and 1. The uncertainty 

about the value of x\ can be represented by overlapping intervals in the M function, 

which takes into account that the censored value may be 0, or any value between 

0 and 1. So the partial description of probability mass for a new observation X 5 , 

based on A^). can be represented as below: 

M.Y 5(0 , 1) = 1/5 M . Y 5 ( . T 3 , . T 4 ) = 1/5 
M v , ( 0 , x2) = 1/5 M X 5 ( x 4 , oo) = 1/5 
Mv 5(.x- 2, r , ) = 1/5 

The NPI lower and upper cdfs calculated from this M function will describe the 

tightest possible bounds given the information we have available and ,4 ( 4 ). Figure 

4.2 shows the NPI lower and upper cdfs for this example. 
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Figure 4.2: NPI lower and upper cdfs for X5 

1 0 
CO 

-Q 
O N 

CD 

| c 
E -
O 

0.2 

— NPI upper cdf 
— NPI lower cdf 

There is a problem that if, for example, the censored value happened to be 0.2, 

then the intervals (0,0.2) and (0.2, x2) should each have probability mass | rather 

than the probability masses assigned to the intervals in the previous M function. 

However, without knowing anything more than the censored value is less than 1, 

the tightest bounds given A^i and the censoring are represented by the M function 

given previously. The bounds wil l enclose the possible lower and upper cdfs that 

would correspond to all possible values of x\. 

We are interested in the exposure of individuals to a particular chemical. A l ­

though it is informative to see how much uncertainty in the exposure is caused by 

the censored concentration values, often the risk associated with exposure is based 

on upper tai l exposures. This is because higher exposures to chemicals are generally 

more harmful than low exposures. Since the left-censored concentration values only 

contribute to the lower tail of the exposure distribution, they are generally consid­

ered to be less important in risk assessments. However if the LOD is large, or the 

safe exposure level is very low, the censoring may contribute substantially making 

it useful to be able to form such lower and upper cdfs for a random individual. 
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4.3 Case Study: Benzene Exposure 

In this section we show how to calculate NPI lower and upper cdfs for the Exposure 

Model where we have data for the exposure of young children to benzene in soft 

drinks. We have data for each of the three non-negative random quantities, concen­

tration, intake and bodyweight. A description of the data sets that we wil l use for 

the analysis is given in Subsection 4.3.1. We calculate the NPI lower and upper cdfs 

for exposure for a random individual, for two different cases and then we compare 

them. First we consider the case where we calculate NPI lower and upper cdfs for 

exposure for a random individual, for the three random quantities separately. Then, 

for the second case, we combine each individual's bodyweight with their average 

intake and treat this as one random quantity which we call IR. We then calculate 

the NPI lower and upper cdfs for exposure for a random individual, using the two 

random quantities, concentration and IR. 

4.3.1 The data 

Concentration data for benzene in soft drinks were obtained from the Food Stan­

dards Agency Survey from March 20061. Out of 150 samples, 109 were below the 

Limit Of Detection (LOD) of 1 / ig/kg. Assuming ^4(i5o), the probability of the next 

observation of benzene concentration falling in the interval (0,1) is Usually the 

probability of X ] 5 1 falling in the interval (0,1) would be | f f but here the lowest 

measured datum that is not censored is equal to the LOD. Therefore there is a 

probability of that X 1 5 ] falls in the interval (0,1). The concentration data is 

given in Table 4.1. 

1 http://www.food.gov.uk/science/surveillance/fsisbranch2006/fsis0606 

http://www.food
http://gov.uk/science/surveillance/fsisbranch2006/fsis0606
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Table 4.1: Concentration data 
Data value Frequency Data value Frequency 

< 1 109 7 4 
1 13 8 1 
2 13 9 1 
3 3 10 1 
4 3 23 1 
5 1 

Intake and bodyweight, data were obtained from the UK Data Archive Study No. 

3481. National Diet, Nutri t ion and Dental Survey of Children Aged 1.5 - 4.5 years 

(1992 - 1993)2. I t is a 4 day survey of 1717 children giving information about their 

weight, food and drink intake and other covariates such as age. height, region and 

social class. Only individuals with no missing values (i.e. individuals with intake 

values for every day of the survey and a recorded bodyweight) were used in the 

analysis. We excluded 23 individuals, whose bodyweights were not recorded, leaving 

us wi th data for 1694 individuals. Omitt ing these individuals from the analysis may 

lead to bias, particularly if they all had large or small bodyweights. Also, if they 

were heavy consumers of soft drinks then their exposure may be higher than the 

exposure of the general population. However their average intakes of drink were 

between 0.025 kg/day and 0.418 kg/day compared with the minimum of 0 kg/day 

and maximum of 1.239 kg/day for all the other individuals, so i t is unlikely that 

they would lead to higher exposures than individuals that are included unless they 

have very small bodyweights. 

As an illustration of the use of NPI in risk assessment we include non-consumers 

in the analysis and consider the average intake over the 4 days of the survey. We can 

only make inferences about the random quantities that we have data for. Therefore 

the conclusions reached can only be predictions for the average exposure for a ran­

dom individual on the particular four days of the survey. They cannot provide any 

information about the exposure of an individual for the rest of the year. 

As we have bodyweight and average intake values for each individual it is possible 

to treat bodyweight and average intake as separate random quantities and generate 

2http://\vww.esds.ac.uk/findingdata/snDes(:ription.asp?sn=:}481&key=coding 

http:///vww.esds.ac.uk/findingdata/snDes(:ription.asp?sn=:%7d481&key=coding
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NPI lower and upper cdfs based on this assumption. This is presented in the next 

section. However, it is generally believed that bodyweight and average intake are 

dependent on each other. Therefore we also consider using IR. as a random quantity. 

This loses some information as we no longer separate the random quantities, average 

intake and bodyweight, but it does naturally include dependencies between these 

random quantities. The differences caused by using IR are discussed in Subsection 

4.3.2. We use the average intake over the 4 days of the survey throughout this 

chapter so for ease of presentation we will henceforth refer to this as 'intake'. 

4.3.2 NPI lower and upper cdfs 

In this example we derive NPI lower and upper cdfs for exposure for a random 

individual using the data sets that were described in the previous section. We 

compare the results of treating all three random quantities separately, which we 

wil l call the 'independent case', and using the IR.. which we will call the 'dependent 

case'. I t is interesting to look at both cases, although using IR. has the advantage 

that it takes dependencies between intake and bodyweight into account. For the 

situation where all the random quantities are assumed to be independent, we first 

calculate the NPI lower and upper cdfs for the exposure as described in Subsection 

4.2.2. In the second situation we calculate the IR and then calculate the NPI lower 

and upper cdfs on the product of concentration and IR. 

To calculate the NPI lower and upper cdfs for exposure for a random individual, 

we first add a minimum and a maximum to each data set. For concentration and 

intake, zero and oc are appropriate. However for bodyweight we use le-15 and oo 

as we cannot divide by zero. 

For the independent case, we have ties at 135 bodyweight values and 1194 intake 

values, both from an original sample size of 1694. The tied values from the original 

data set and their frequency of occurrence are stored and the correct probability is 

assigned to the tied values themselves or to the intervals if the value is not tied. 

Working with the tied values speeds up computation and avoids problems with 

computer memory (computational issues are discussed in Section 4.5). First we 

look at a scatterplot of bodyweight and intake to see if there appears to be any 
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correlation between them. The scatterplot is shown in Figure 4.3. 

Figure 4.3: Scatterplot of Intake versus Bodyweight 

1.4r 

1.2 

1 • 

0 SJ 

• 

0 10 20 30 40 50 
Bodyweight (kg) 

The scatterplot does not show any obvious correlation between bodyweight and 

intake. To check the strength of correlation we consider Spearman's rank correlation 

coefficient which ranges between -1 and 1, wrhere -1 indicates a very strong negative 

correlation and 1 indicates a very strong positive correlation. Around zero indicates 

very weak correlation. Spearman's rank correlation coefficient is -0.0071, indicating 

a weak negative correlation between bodyweight and intake. The weak correlation 

suggests that there is no strong dependence between the random quantities. 

Figure 4.4.1 shows the NPI lower and upper cdfs for exposure for a random 

individual for both cases. Part of the upper tail is displayed in more detail in Figure 

4.4.2 to show the differences between the two cases. I t is clear that the dependent 

case resembles a step function more closely than the independent case. This is due 

to the smaller number of exposure values generated in the dependent case which 

leads to fewer steps with larger jumps at many values. The independent case has 

many more exposure values so i t appears to be much smoother, but i t is still a step 

function, wi th small jumps at several values. 
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Figure 4.4: NPI lower and 
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4.4.2 A close up of part of the NPI lower 
and upper cdfs for the independent case 
(blue line) and the dependent case (red 
line) 

There is not much difference between the results from the independent and de­

pendent cases. There are small differences at some exposure values and neither set of 

NPI lower and upper cdfs is enclosed within the other. One observable difference is 

that the final value of the lower cdf for independence (0.9922) is lower than the final 

value of the lower cdf for the dependent case (0.9928). The difference in the final 

value of the lower cdfs might be informative for an individual and may be useful for 

risk managers to see how much dependence is influencing the results. The difference 

is due to the larger number of data values combined in the independent case where 

bodyweight and intake are combined separately. In the dependent case intake is 

divided by bodyweight and then the resulting values combined with concentration 

values leading to fewer exposure values. Therefore in the M function for exposure 

for a random individual, Afexp, there is a larger probability mass in A/(ij^p(exp/y. oo) 

(where Mexp( e x PjV) ° ° ) represents the M function value for the interval between the 

highest exposure value and oo for exposure for a random individual, calculated using 

i random quantities) than in M^^(expN, oo). 
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For the case where we use IR the final value of the lower cdf is given by 

1 -
( n c + 1 + n,R) = 0.9928 (4.1) 

( n c + l)(n/R + 1) 

2 as M exp (expA,,oo) 
("c + l ) ( " / R + l ) 

{nc+\+n,R) where nc is the concentration sample size (here 

150) and UJR is the IR sample size (here 1694). Similarly in the independent case 

M g D ( e x P y v . oo) = ( ( » c + i + ^ ) n t M + ( n c + i ) ( ^ , , t + i ) ) s o t h fina] v a l u e f t h ! d f i 

where n^, is the bodyweight sample size (here 1694) and nini is the intake sample 

size (here 1694) and as before nc is the concentration sample size (here 150). 

4.4 Exploring dependence for NPI by simulation 

We keep X (in /ig / kg) as a fixed sample from a Lognormal distribution with 

mean. \ix = 1.5 and standard deviation, ax — 2.8. We consider the effect of varying 

the correlation between Y (in kg /day), which we assume to have a Lognormal 

distribution with mean, \iy = 1.27 and standard deviation, ay — 1.03 and Z (in kg), 

which we assume to have a Normal distribution wi th mean, \iz = 30, and standard 

deviation, az = 3. We consider 1000 simulations for two values of n (50 and 100) and 

we vary p between -1 and 1. The exposure percentiles are estimated by taking very-

large samples (1,000,000) from the relevant distributions and combining them as in 

the simple Exposure Model. Then we take the 10th, 50th and 90th percentiles for 

comparison purposes and call them the true exposure percentiles. We compare the 

10th, 50th and 90th percentiles from the independent and dependent NPI methods 

with the true exposure percentiles. We count how many times the true exposure 

percentiles fall in the intervals generated by the dependent and independent NPI . 

this case is 

( ( n c + 1 + nint)nbw + (nc + l)(nint + 1)) 
0.9922 

(nc + l ) ( n i n t + l)(nbw + 1) 
(4.2) 
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We also consider whether the NPI methods over- or underestimate the true exposure 

percentile. 

4.4.1 Varying n 

In this section we consider two different values of n and then compare how well NPI 

predicts for 1000 samples for each of these n. The results for n = 50 are shown in 

Table 4.2. The results for n = 100 are shown in Table 4.3. 

Table 4.2: Results from 1000 simulations when n = 50 

p Method 
Percentile 

p Method 
10th 50th 90th 

Success 719 351 350 
1 Dependent Underestimates 233 256 1 

Overestimates 48 393 649 
Success 651 348 360 

0.5 Dependent Underestimates 273 246 9 
Overestimates 76 406 631 

Success 654 365 380 
0 Dependent Underestimates 278 218 8 

Overestimates 68 417 612 
Success 655 375 404 

-0.5 Dependent Underestimates 287 220 8 
Overestimates 58 405 588 

Success 582 308 396 
-1 Dependent Underestimates 336 258 26 

Overestimates 82 434 578 
Success 478 571 172 

1 Independent Underestimates 522 138 0 
Overestimates 0 291 828 

Success 617 560 278 
0.5 Independent Underestimates 383 151 0 

Overestimates 0 289 722 
Success 759 549 422 

0 Independent Underestimates 240 144 0 
Overestimates 1 307 578 

Success 871 567 592 
-0.5 Independent Underestimates 126 144 0 

Overestimates 3 289 408 
Success 857 461 679 

-1 Independent Underestimates 130 195 6 
Overestimates 13 344 315 
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Table 4.3: Results from 1000 simulations when n = 1 0 0 

p Method 
Percentile 

p Method 
10th 50th 90th 

Success 687 351 269 
1 Dependent Underestimates 206 221 4 

Overestimates 107 428 727' 
Success 673 337 280 

0.5 Dependent Underestimates 225 217 6 
Overestimates 102 446 714 

Success 653 352 284 
0 Dependent Underestimates 244 189 4 

Overestimates 103 459 712 
Success 629 340 283 

-0.5 Dependent Underestimates 271 208 6 
Overestimates 100 452 711 

Success 546 273 329 
-1 Dependent Underestimates 339 241 28 

Overestimates 115 486 643 
Success 348 498 49 

1 Independent Underestimates 652 126 0 
Overestimates 0 376 951 

Success 626 489 156 
0.5 Independent Underestimates 372 129 0 

Overestimates 2 382 844 
Success 777 488 310 

0 Independent Underestimates 212 120 1 
Overestimates 11 392 689 

Success 865 487 541 
-0.5 Independent Underestimates 97 146 3 

Overestimates 38 367 456 
Success 784 394 653 

-1 Independent Underestimates 98 187 30 
Overestimates 118 419 317 

Generally the 10th percentile is captured best by both methods regardless of 

n. The general trend for the dependent case is that as p decreases from 1 to - 1 , 

the dependent method captures the 10th percentile less often. The trend is less 

clear in the independent case as the 10th percentile is captured more often as p 

decreases from 1 to 0 but increases for p = —0.5 and decreases again for p = —I. 

As n increases the percentage of times that the 10th percentile is captured, by both 

methods, decreases slightly. This is probably due to the narrowing of the intervals 
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in the NPI lower and upper cdfs because of the larger data samples used. Both 

methods appear to underestimate the 10th percentile more than they overestimate 

i t . for both n. except for the independent case where p = — 1 and n = 100. Here the 

overestimates are slightly higher than the underestimates. This is probably due to 

the gradient of the exposure distribution when p is negative as discussed later. 

The 50th percentile is captured between 27.3 and 37.5% of the time for the 

dependent method and between 39.4 and 57.1% of the time for the independent 

method. There is the same general trend as wi th the 10th percentile, that as n 

increases the percentage of times that the 50th percentile is captured decreases 

slightly. There is a general trend in the independent case that as p decreases from 1 

to - 1 . the 50th percentile is captured fewer times, although again p = —0.5 performs 

better than p = — 1. For the dependent case the results are similar for different 

values of p although p = — 1 leads to the lowest percentage of times that the 50th 

percentile is captured. Again this is probably due to the gradient of the exposure 

distribution at different values of p. Generally the 50th percentile is overestimated 

more than it is underestimated. 

The 90th percentile is captured between 26.9 and 40.4% of the time for the 

dependent case whereas it is captured between 4.9 and 67.9% of the time by the 

independent case. For the dependent case there is a general trend that the 90th 

percentile is captured more often as p decreases from 1 to - 1 , regardless of 77.. However 

for 77. = 50 there is a decrease from 40.4% for p = —0.5 to 39.6% for p = — 1. 

This decrease does not occur when n = 100 so i t is probably due to sampling 

variation. Both the dependent and independent methods generally overestimate the 

90th percentile, particularly the independent case which does not underestimate 

the 90th percentile for most of the results in this example. The cases where the 

independent method does underestimate the 90th percentile are generally at negative 

rank correlations. This is explained by the gradient of the exposure distribution for 

negative values of p as discussed below. 

When p = 1. the gradient of the exposure distribution at low percentiles is lower 

than the gradient of the exposure distribution when p = — 1. At higher percentiles 

this is reversed and the gradient of the exposure distribution when p = 1 is higher 
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than the gradient when p = — 1. This means that the exposure distribution when 

p = — 1 is much flatter and spread out than the exposure distribution for p = I. The 

exposure distributions for each value of p are shown in Figure 4.5.1 on a log scale. 

Figure 4.5.2 shows a close up of the lower half of the distributions. The independent 

NPI tends to underestimate the 10th percentile and overestimate the 90th percentile. 

This is because it allows every combination of values for X , Y and Z ignoring any 

dependency between them. Therefore the smallest values are divided by the largest 

values and the largest values are divided by the smallest values regardless of the 

specified rank correlation. This leads to a flat distribution where the values are 

spread out. 

In the dependent case this does not happen because, for example, if p = 1. then 

the smallest value of Y will be divided by the smallest value of Z and the largest 

value of y will be divided by the largest value of Z. Similarly for p = — 1 , the 

smallest value of Y will be divided by the largest value of Z etc. Therefore there 

are fewer values in the dependent case and there are less extreme values compared 

to the independent case. The independent case appears to perform better on the 

negative correlation than the positive correlation. This is probably because the lower 

predictions for the 10th percentile and higher predictions for the 90th percentile 

mean the NPI upper and lower cdfs do not increase steeply. Therefore the cdf more 

closely resembles that of the cdf when p = — 1 than the cdf when p = 1. 

The dependent case appears to be an improvement on the independent case for 

positive correlations, but not for the zero rank correlation. As the dependent case 

is taking the rank correlation into account, we would expect the dependent case to 

be better than the independent case for correlated data but not for uncorrected 

data (i.e. when p = 0). However we would also expect the dependent case to 

perform better for the negative correlations which i t does not appear to do. The 

dependent case considers fewer values as i t only uses the data for A' and ^ , whereas 

the independent case uses all the data for X, Y and Z separately. Therefore the 

dependent case not performing as well as the independent case may be due to the 

independent case having cdfs that more closely resemble the cdf of the case with 

negative correlation. The dependent case has less values with higher probability and 
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grows more steeply, which is closer to the positive correlation case. 

Figure 4.5: Exposure distributions with various values for p 
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4.5.1 Exposure distribution with vary­
ing P 

4.5.2 Close-up of exposure distribution 
with varying p 

4.4.2 Varying p,z and az 

In this section we only consider samples of size 50 and we take p = 1 and p = — 1. 

We vary cr, first while keeping p~ fixed and then we consider the case where we fix 

C T - and vary p2. 

Varying az 

We begin by keeping p, fixed at 30, while taking az to be 5 and 7. The results for 

p = 1 are shown in Table 4.4 and the results for p = — 1 are shown in Table 4.5. We 

re-use the results from Table 4.2 above where az = 3. 
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Table 4.4: Results from 1000 simulations with az = 3, 5 and 7 and p = 1 

Method 
Percentile 

U £ Method 
10th 50th 90th 

Success 719 351 350 
3 Dependent Underestimates 233 256 1 

Overestimates 48 393 649 
Success 787 389 342 

5 Dependent Underestimates 180 237 0 
Overestimates 33 374 658 

Success 546 397 228 
7 Dependent Underestimates 450 280 1 

Overestimates 4 323 771 
Success 478 571 172 

3 Independent Underestimates 522 138 0 
Overestimates 0 291 828 

Success 232 630 41 
5 Independent Underestimates 768 83 0 

Overestimates 0 287 959 
Success 95 618 20 

7 Independent Underestimates 905 128 0 
Overestimates 0 254 980 

For p = 1 we can see that increasing az from 5 to 7 leads to lower success rates 

for the 10th and 90th percentiles for the dependent case. The 50th percentile for 

both cases was fairly consistent because the 50th percentile does not depend on er­

as much as the tails of the distribution do. The independent case shows a very clear 

decrease in success rates for the 10th and 90th percentiles as oz varies from 3 to 7. 

Also the 10th percentile is always underestimated and the 90th percentile is always 

overestimated (in this example). This is expected because as we saw earlier the NPI 

independent case combines every possible combination of all the data values. As 

oz increases, the spread of exposure values increases leading to flatter NPI lower 

and upper cdfs. At the same time, as oz increases, the true exposure distribution 

becomes a steeper distribution. Therefore we would expect that the independent 

case performs better for smaller oz. The dependent case performs better than the 

independent case. This is probably because it takes the rank correlation into account 

so the NPI lower and upper cdfs do not become as flat as in the independent case. 
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Table 4.5: Results from 1000 simulations with az = 3,5 and 7 and p = — 1 

Method 
Percentile 

Method 
10th 50th 90th 

Success 582 308 396 
3 Dependent Underestimates 336 258 26 

Overestimates 82 434 578 
Success 566 276 367 

5 Dependent Underestimates 319 252 47 
Overestimates 115 472 586 

Success 600 303 550 
7 Dependent Underestimates 241 297 143 

Overestimates 159 400 307 
Success 857 461 679 

3 Independent Underestimates 130 195 6 
Overestimates 13 344 315 

Success 879 419 747 
5 Independent Underestimates 75 191 20 

Overestimates 46 390 233 
Success 886 445 827 

7 Independent Underestimates 40 226 101 
Overestimates 74 329 72 

For p = — 1 , we see the reverse situation from p=\, where the success rates for 

the 10th and 90th percentiles improve as az increases, although the difference is not 

as large as i t was for the independent case for p = 1. The independent case improves 

slightly as az increases. This is again because the independent case produces a 

flatter distribution due to the larger spread of exposure values for increased az. As 

az increases, the true exposure distribution becomes flatter. Therefore we would 

expect that the independent case performs better for larger az. 

Varying pz 

Here we keep n = 50, p = 1 and p = — 1, we fix a, to be 3 and take p,z to be 20 and 

40. The results are shown in Table 4.6 for p = 1 and in Table 4.7 for p = — 1 . We 

re-use the results from Table 4.2 where pz = 30 and az = 3. 
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Table 4.6: Results from 1000 simulations with /./,- = 20, 30 and 40 and p = 1 

I'z Method 
Percentile 

I'z Method 
10th 50th 90th 

Success 745 367 338 
20 Dependent Underestimates 228 248 4 

Overestimates 27 385 658 
Success 719 351 350 

30 Dependent Underestimates 233 256 1 
Overestimates 48 393 649 

Success 666 341 360 
40 Dependent Underestimates 295 231 6 

Overestimates 39 428 634 
Success 255 608 75 

20 Independent Underestimates 745 102 0 
Overestimates 0 290 925 

Success 478 571 172 
30 Independent Underestimates 522 138 0 

Overestimates 0 291 828 
Success 529 545 246 

40 Independent Underestimates 471 143 0 
Overestimates 0 312 754 

Table 4.7: Results from 1000 simulations with \iz = 20, 30 and 40 and p = - 1 

Method 
Percentile 

Method 
10th 50th 90th 

Success 559 298 396 
20 Dependent Underestimates 341 276 39 

Overestimates 100 426 565 
Success 582 308 396 

30 Dependent Underestimates 336 258 26 
Overestimates 82 434 578 

Success 581 293 375 
40 Dependent Underestimates 328 263 23 

Overestimates 91 444 602 
Success 891 434 753 

20 Independent Underestimates 80 212 19 
Overestimates 29 354 228 

Success 857 461 679 
30 Independent Underestimates 130 195 6 

Overestimates 13 344 315 
Success 838 468 615 

40 Independent Underestimates 156 180 2 
Overestimates 6 352 383 
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We would not expect that increasing would have a large influence on the 

results because increasing /is only affects the location of the exposure distribution. 

This is particularly true for the dependent case because there is li t t le variance in 

the results as //, increases for both values of p. I t is also the case for the independent 

case when p = — 1 . where there are only small differences in the number of successes 

for each percentile at different values of p.. The results for the independent case 

are better for p = —I than for p = 1, whereas for the dependent case the results 

are better for p = 1. This was expected given the results discussed previously. 

For p — I. the success rate of the 10th and 90th percentiles for the independent 

case improves as p.z increases. This is probably due to the NPI lower and upper 

cdfs becoming steeper and therefore closer to the true exposure distribution as / / ; 

increases. 

4.4.3 Discussion 

In this example, i.e. for a division, we have seen that the dependent case appears to 

perform better for positive rank correlations, whereas the independent case appears 

to perform better for negative correlations and correlations equal to zero. Varying 

az and varying pz also affected the results in the ways described above. We have 

counted how many intervals overestimated or underestimated the true percentiles 

but not, given an indication of how much they over- or underestimate by. Generally, 

the independent case underestimated the 10th percentile, or overestimated the 90th 

percentile by more than the dependent case. This is because the independent case 

does not account for the specified correlation so i t produces flatter distributions. 

We would not expect predictive methods to produce exact predictions based 

on samples such as those used in these examples. I f we used different predictive 

methods, e.g. the Bayesian posterior predictive distribution, the results would be 

dependent on distributional assumptions and how well the sample represents the 

distribution that it. has been sampled from. As seen in Chapter 5, both NPI and the 

Bayesian posterior predictive distribution can produce good predictions and poor 

predictions depending on the samples and the distributions that are sampled from. 
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Here we used 1.000 simulations to try and allow for sampling variation. Sampling 

variation will strongly affect the NPI results for small samples because it only uses 

the samples and an assumption of A(n) for the analysis. For larger samples there 

will be less effect from sampling variation (as illustrated in Chapter 5), but the 

NPI intervals become narrower. Therefore the NPI lower and upper cdfs for smaller 

samples may perform better (as we saw in our example) because the intervals are 

wider and include more uncertainty about the exposure percentiles so it is more 

likely that they wil l enclose the true percentiles. 

4.5 Computational issues 

In this section we briefly discuss some computational problems that arise when 

modelling NPI with large data sets. The large number of values in the intake and 

body weight data sets described in Subsection 4.3.1 led to problems with computer 

memory as we needed to store all the possible combinations of all the values of all 

three data sets. As the data sets were nc = 150. ??,,•„/ = 1694 and = 1694 in 

length (and adding a minimum or maximum depending on which cdf we consider) 

this leads to (nc + l)(nint + l)(n-(,u, + 1) = 433.826. 775 values for each cdf. These 

need to be stored along with the cumulative probabilities for each interval so that 

we can plot the NPI lower and upper cdfs. One way in which we solved this problem 

was by looking for repeated values in the data sets. Fortunately there were only 135 

tied bodyweight values which made it possible to calculate NPI lower and upper 

cdfs for exposure for a random individual in the way explained below. 

When there are repeated values in the data sets we can speed up the calculation 

by counting the number of tied values and then only using one in the calculation. 

This means that instead of having (nc + l)(n„,/ + l ) (n^ , ; + 1) values to consider for 

each cdf we only have to calculate (Tc. 4- \){Tint + l)(Tbw + 1) where Tc, Tinl and 

Tbw are the number of tied values in the data sets for concentration, intake and 

bodyweight respectively. Eliminating repeated values can be done at each stage so 

the calculation is only done with the minimum possible number of values. 
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The probabilities for each interval are calculated based on the number of repeated 

values that occur in the data sets. 

If i t is the case that even after checking for repeated values, the data sets are still 

too large, it is still possible to calculate NPI lower and upper cdfs. I t can be done 

by calculating all the values and counting how many are less than various threshold 

values. This eliminates problems with storing many values but it only becomes 

accurate by using a large number of threshold values. Several threshold values are 

needed because the smaller the interval between the threshold values, the closer to 

the actual lower and upper cdfs the results will be. However, as we would only use 

this method when there are very large data sets, it gives a good approximation fol­

lower numbers of threshold values. Using many threshold values makes the method 

slow, but when the data sets are so large that there is no other method available, i t 

gives a useful approximation. A relatively quick approximation can be made using 

the histc function in Matlab, which counts the number of values in each interval 

between threshold values. However i t is only fast for smaller numbers of threshold 

values (e.g. for 1000 threshold values for the data sets in the case study (Section 

4.3), i t took approximately 3.5 minutes on a computer with a l.GGhz Intel Pentium 

processor with 1 Gb of R A M ) . 

4.6 The effect of different sample sizes 

In this section we look at how taking different sample sizes affects the NPI lower and 

upper cdfs. For simplicity we consider a case without censoring in the concentration 

data set and look at the effect of sample size on the NPI lower and upper cdfs for 

exposure for a random individual, again using the Exposure Model. For comparison 

we keep the size of the concentration data set at nc — 100 and sample different 

size data sets for intake and bodyweight. The concentration data set is sampled 

from a Lognormal distribution with mean 9.02 //.g/kg and standard deviation 66.07 

/ ig/kg. We sample intake from a Lognormal distribution with mean 1.13 kg/day and 

standard deviation 0.60 kg/day and sample bodyweight from a Normal distribution 

with mean 30 kg and standard deviation 3 kg. Again these distributions are chosen 
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so the samples resemble the data sets that we have for young children. We consider 

samples of size 10, 30, 50 and 100. The results are shown on the linear scale in Figure 

4.6.1 and on the log scale in Figure 4.6.2. 

Figure 4.6: NPI lower and upper cdfs using different sample sizes 
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Figures 4.6.1 and 4.6.2 show that, as the sample size increases, the uncertainty 

reduces so the NPI lower and upper cdfs get narrower. This is to be expected because 

including more observations in NPI leads to less uncertainty about variability and 

therefore narrower bounds. The general shape remains the same for the values of 

r? shown here. The NPI lower and upper cdfs for the smaller values of n do not 

entirely enclose the NPI lower and upper cdfs for other sample sizes. This is due to 

variation between samples. We briefly investigate the effect of sampling variation 

for a sample of size 10 and a sample of size 100 below. For each sample size we take 

5 different samples and plot the NPI lower and upper cdfs on a logio scale in Figures 

4.7.1 and 4.7.2 respectively. 
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Figure 4.7: NPI lower and upper cdfs for 5 different samples from each sample size 
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4.7.1 n = 10 4.7.2 v = 100 

As we expected Figures 4.7.1 and 4.7.2 show that there is more sampling variation 

when we consider a sample of size 10 than there is for a sample of size 100. This 

can be seen as the distance between the NPI lower and upper cdfs for the sample 

size of 10 is larger than the distance between the NPI lower and upper cdfs for the 

sample size of 100. 

4.7 Imprecise data 

In practice, data sets may be given as interval data, such as when an indication 

of measurement uncertainty is given as discussed in Subsection 3.5.5. An example 

of how to calculate NPI lower and upper cdfs wi th measurement uncertainty is 

presented here. 

Suppose that the maximum measurement error of some apparatus used to mea­

sure the concentration of benzene in soft drinks is known. There may of course also 

be human error but we ignore that here. Assume that the maximum measurement 

error is r5 = 0.3. Then we can form NPI lower and upper cdfs on the concentration 

data (the benzene data used in Subsection 4.3.1) by considering the values = Xi+S 

and Zj, = %i — 5. Let X(\),Z(2). ...,#(„) be the order statistics of data x\, m% . . . ,£„ and 

let Xi be the corresponding pre-data random quantities so the data consist of the 

realized values Xi = Xi,i = 1 n. Let and Zj be observable random quanti­

ties with observations j / j and Zj respectively. The cdf for the next random quantity 

Y n + i , is the NPI lower cdf because we find the NPI lower cdf by taking the envelope 
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of the M functions for Xn+\. Y n + ] and Z,,+ [. The M function for Y „ + 1 describes 

probability mass at higher concentration values than either of the M functions for 

Xn+i and Zn+\. Therefore the NPI lower cdf for Y n + i becomes the NPI lower cdf for 

J\TT(+i including measurement uncertainty. Similarly the upper cdf for Z n + l forms 

the NPI upper cdf as the M function for Z n + i describes probability mass at lower 

concentrations than the M functions for X n + i and Y n + \ . 

The maximum value that the censored values can take is 1, so we take the 

censored point including measurement uncertainty to be 1 + 8. One could argue 

that we should take the limit to be 1, as if it is above 1 then we assume that the 

concentration is high enough to be detected. However if the apparatus can measure 

inaccurately up to ±8, then it is possible that some values recorded as 1 are actually 

lower than the l imit of detection, and some values recorded as < 1 are actually higher 

than 1 so we take 1 + 8 to be the maximum value that censored values can take. 

The NPI lower and upper cdfs including fixed measurement uncertainty (8 = 0.3) 

for the concentration data (see Subsection 4.3.1) are shown with the NPI lower and 

upper cdfs for the original concentration data set in Figure 4.8. 

Figure 4.8: NPI lower and upper cdfs with fixed measurement, uncertainty (red) 
and for the original data set (blue) 
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Including the measurement uncertainty leads to NPI lower and upper cdfs that 

increase at different values of concentration. We can see from Figure 4.8 that the 

measurement uncertainty leads to more uncertainty around the original data values, 
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but for the values that are not within ±5 of an observed data value the lower and 

upper probabilities remain the same. 

If information on measurement uncertainty is provided with data as a constant, 

i t is easy to incorporate into the NPI lower and upper cdfs as shown here. We can 

combine such NPI lower and upper cdfs that incorporate measurement uncertainty 

with other NPI lower and upper cdfs for other random quantities. This is illustrated 

next wi th the original data sets (see Subsection 4.3.1) for bodyweight, intake and 

concentration. We form two sets of NPI lower and upper cdfs for exposure for a 

random individual, one set with no measurement uncertainty and one set wi th fixed 

measurement uncertainty (S = 0.3) for the concentration data set. These NPI lower 

and upper cdfs are shown in Figure 4.9. 

Figure 4.9: NPI lower and upper cdfs wi th fixed measurement uncertainty (red) 
and no measurement uncertainty (blue) 

As shown in Figure 4.9, the NPI lower and upper cdfs including measurement 

uncertainty enclose the NPI lower and upper cdfs for the original data set. The 

difference in the width of NPI lower and upper cdfs is simply due to the size of <5. 

4.8 Comparison to Bayesian methods 

NPI focuses on predicting a future observation for a random quantitiy or a com­

bination of random quantities. We therefore begin by comparing it to a Bayesian 
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posterior predictive distribution, where a prediction is obtained for a random indi­

vidual. To calculate the Bayesian posterior predictive distribution, i t is necessary 

to choose a prior distribution and a likelihood function. Independence is assumed 

between random quantities in many analyses because i t is difficult to choose a joint 

distribution that describes the (unknown) dependence accurately. We calculate the 

Bayesian posterior predictive distributions for the random quantities concentration 

and IR, where we assume that both random quantities have a Lognormal distribu­

tion. Then we take 10,000 random samples from their Bayesian posterior predictive 

distributions and calculate the product. We calculate the NPI lower and upper cdfs 

on the product of concentration and IR. The results from both methods are shown 

in Figures 4.10.1 and 4.10.2. 

Figure 4.10: Comparison of the Bayesian posterior predictive distribution (black 
dots) and NPI lower and upper cdfs (red lines) 

The results of the Bayesian posterior predictive distributions are above the NPI 

lower and upper cdfs at around 0.1 ^/.g/kg bw/day, leading to a less conservative in­

dication of exposure than the NPI cdfs. I t is less conservative in the sense that the 

Bayesian bounds indicate that, for example, the 99th percentile exposure is lower 

than indicated by NPI . The differences between the NPI and Bayesian results are 

due to the distributional assumptions made for the Bayesian posterior predictive 

distribution. The Bayesian method makes the assumptions that the IR and the 

concentration data are Lognormally distributed. The censored values in the concen­

tration data set were dealt wi th using data augmentation (see Section 2.7.6) for the 
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Figures 4.10.1 and 4.10.2 show that distributional assumptions have an effect on 

the final exposure distribution, and may lead to overestimates or underestimates of 

exposure for different percentiles, depending on the distributional assumption used. 

NPI is nonparametric and therefore does not share this problem of the influence of 

a distributional assumption. This is useful, particularly as there are many problems 

with f i t t ing distributions to data sets, e.g. if the data set is small almost any dis­

tribution wil l f i t , and if the data set is large, often no standard distributions such 

as Normal or Lognormal distributions wil l f i t . NPI performs best on medium to 

large data sets. For small data sets there is often li t t le information available which 

leads to large uncertainty, as indicated by the width between the lower and upper 

cdfs. The NPI lower and upper cdfs are very far apart at zero and low exposure 

values, due to the censoring included in the concentration and the presence of non-

consumers who have an intake of zero. At larger exposure values the bounds get 

closer together again as the censored values only contribute to the lower tail . I t is 

not surprising that the NPI lower and upper cdfs and the Bayesian posterior pre­

dictive methods differ as they are quite extreme cases; one assumes a specific, fully 

specified distribution and the other only assumes A^NY 

We briefly consider the situation where we assume independence between all 

three random quantities. For the Bayesian method we assume Lognormal distri­

butions for bodyweight, intake and concentration and combine them by randomly 

sampling 10.000 values for each random quantity from their Bayesian posterior pre­

dictive distribution. We then combine the values as in the Exposure Model to 

produce predictions for exposure. We find NPI lower and upper cdfs as previously 

described. The results for these methods are shown in Figures 4.11.1 and 4.11.2. 
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Figure 4.11: Comparison of the Bayesian posterior predictive distribution (black 
dots) and NPI lower and upper cdfs (blue lines) 
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The NPI lower and upper cdfs for the three separate random quantities are 

smoother than the NPI lower and upper cdfs for the product of concentration and 

IB because of the larger number of exposure values calculated. The small changes 

in the Bayesian predictions are due to the new assumptions about the distributions 

of the input random quantities which lead to the Bayesian predictions now lying 

between the NPI lower and upper cdfs. There is still the large difference that we 

saw before in the NPI lower and upper cdfs near zero due to the censored values 

and non-consumers in the analysis. 

4.9 Robust NPI 

In this section we consider an ad hoc method for which the theoretical foundation 

requires further investigation. We call this method robust NPI and illustrate an 

example here. We wil l explore the use of the method as part of a robust model in 

Chapter 5. 

4.9.1 Example: Robust NPI lower and upper cdfs 

In a Bayesian analysis we include robustness by considering different parameter 

values for distributions. As we have no parameters for NPI , one option we have is to 

assign the probability to the intervals as before, but spread the - i j probability 

over the intervals on either side of every interval. This is an ad hoc method which 
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seems attractive to make NPI more robust to problems such as sampling variation. 

We illustrate robust NPI with an example for random quantity Xn+i where we 

have observations x, = 1,2,3,4,5. The M function for X$ wi th robustness is: 

M Y 6 ( 0 , x2) = | 

M X e ( 0 , x3) = § 

M Y 6 ( ^ i , X4) = § 

M X 6 ( X 2 , X 5 ) = I 

M Y 6 ( . r 3 , oo) = § 

Mxjfa, oo) = | 

The NPI lower and upper cdfs for XQ wi th robustness are shown in Figure 4.12 

with the NPI lower and upper cdfs for X6 without robustness for comparison. 

Figure 4.12: NPI lower and upper cdfs for X$ wi th robustness (red) and without 
robustness (blue) 
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Notice that the upper cdf including robustness is the same upper cdf as without 

robustness but the probability that was at .r, is now at JCj_j. Similarly the lower cdf 

including robustness is the same lower cdf as without robustness but the probability 

that was at Xj is now at Xjz\. 

I f we use the robust NPI approach for two positive random quantities Xnx+i 

and YTly~\.. the intervals in the M function for X\\nx^\)(ny.. i) wi l l be similar to the 
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M function for a standard NPI analysis except the intervals wil l be wider. For 

example, the interval that would be (xy\,xyo) in standard NPI will now be (O.xy^) 

and the interval that was (xy2.xy^) wi l l now be (xy:,xy,\) etc, where xy^. is the k\h 

ordered value for XY. Similarly for three random quantities, as we have in the 

Exposure Model, the intervals will be wider when using robust NPI than when we 

use standard NPI . To incorporate more robustness for any of the random quantities 

we could assign -^j probability over two intervals either side of every interval etc. 

This may be appropriate for small sample sizes. 

Any theoretical properties for the robust method used for NPI need investigation 

but i t seems a sensible approach to indicate the uncertainty about the predicted value 

of the next observation. As n increases, these robust NPI lower and upper cdfs will 

converge to the empirical distribution, as the NPI lower and upper cdfs do. However 

the convergence will be slower. Also we can see that robust NPI makes sense when 

we have one observation as i t produces the output that the next observation has a 

probability between 0 and 1 of falling in the interval ( — 0 0 , 0 0 ) . This statement is 

true given our current state of information and is more cautious about predictions 

than the NPI method. 

4.10 Conclusion 

In this chapter we have shown how NPI can be implemented for an exposure risk 

assessment including censored data. An example with real data sets has been pre­

sented and we have explored the effect of correlations on the NPI bounds. We briefly 

discussed how to solve the computational challenges with implementing NPI either 

by only using one of each tied value in the sample or by using a threshold approach. 

We looked at the effect of different sample sizes and saw that larger sample sizes 

lead to less uncertainty about the next observation and therefore the NPI lower and 

upper cdfs are closer together. Fixed measurement uncertainty can be included in 

the NPI lower and upper cdfs. 

We compared the results from an NPI analysis with the Bayesian posterior pre­

dictive distribution, where i t compares favourably due to the fact that no .assumption 
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is needed about, the distribution and that NPI includes interval uncertainty due to 

the assumption A(V). We saw that the assumptions necessary in the Bayesian frame­

work led to differing results, whereas the NPI results were similar for both two and 

three random quantities in the exposure model. The main difference was the final 

probability of the NPI lower cdf due to the sample sizes, as discussed in Subsection 

4.3.2. We introduced an ad hoc method where we included robustness for NPI . This 

helps to make NPI more robust to sampling variation and may be useful for small 

sample sizes because it introduces more uncertainty about the predicted value of the 

next observation. So in this chapter we have shown that NPI can be applied in the 

field of exposure risk assessment even when there is censored data. I t is also useful 

when we want to avoid making distributional assumptions and has the potential to 

be made robust for smaller sample sizes. 



Chapter 5 

Combining N P I and Bayesian 

methods 

5.1 Introduction 

In this chapter we present a hybrid method that can be used to combine nonpara-

metric predictive inference (NPI) with Bayesian methods. This hybrid method, 

which we wil l call the NPI-Bayes hybrid method, wil l be useful in practice when 

we want to combine random quantities for which we make different assumptions 

based on the level of information available. I f we do not have enough information to 

justify the assumption of a particular distribution, we can implement NPI for that 

random quantity and combine i t wi th other random quantities for which we have 

enough evidence available to make distributional assumptions. As the majority of 

methods used in probabilistic risk assessments require distributional assumptions, 

i t is interesting to compare nonparametric methods such as NPI with distributional 

methods, such as the Bayesian posterior predictive distribution. The NPI-Bayes 

hybrid method allows us to combine and compare these methods. 

In Section 5.2 we explain how the NPI-Bayes hybrid method works and illustrate 

it with an example. We implement the NPI-Bayes hybrid method for the simple 

Exposure Model (Section 2.2) with different assumptions made about each random 

quantity in the model in Section 5.3. We consider the case where all the random 

quantities are modelled by NPI and another case where all the random quantities 
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arc modelled by Bayesian posterior predictive distributions. We also consider all the 

other possible combinations (e.g. one random quantity represented by NPI and two 

by Bayesian posterior predictive distributions, etc.) using the NPI-Baycs hybrid 

method. For the simple Exposure Model we use simulated data sets to describe 

the exposure of young children to benzene from soft drinks. We then compare the 

results for all the different combinations of NPI and the Bayesian posterior pre­

dictive distribution for the random quantities using the NTT-Bayes hybrid method. 

Throughout this chapter we assume (Log)Normality for the random quantities that 

are described using the Bayesian posterior predictive distribution. However i t would 

be possible to implement the NPI-Bayes hybrid method when assuming other distri­

butions by sampling from the corresponding posterior predictive distributions. Wc 

also consider how sampling variation and sample size affect the results by simulating 

multiple samples, of two different sizes, for each random quantity in the Exposure 

Model and comparing the results. 

In Section 5.4 we show how the NPI-Bayes hybrid method can be adapted to 

include robustness to the prior distribution for the random quantities for which 

we use a Bayesian posterior predictive distribution. For these random quantities, 

robustness to the prior distribution is implemented for two different classes of prior 

distributions and compared with the Bayesian method when we use a non-infomative 

prior distribution. Next we provide an algorithm for incorporating robustness in 

the NPI-Bayes hybrid method. In Section 5.5 we present two examples including 

robustness for the Exposure Model, one where robust Bayesian methods are used 

for all the random quantities and one where robust NPI is used for all the random 

quantities. Then all the different possible combinations are compared by looking 

at their 10th. 50th and 90th percentiles. In Section 5.6 we show that NPI can be 

combined with two-dimensional Monte Carlo simulation (2D MCS) using an example 

with the Exposure Model. 
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5.2 The NPI-Bayes hybrid method 

In this section we explain the NPI-Bayes hybrid method for combining NPI and a 

Bayesian posterior predictive distribution. Assume that we have nx observations .r,;. 

where i = 1. ...,nx, for random quantities Xi and that these observations come from 

a Normal distribution. We also have ny observations j = 1,•/?.,,, for positive 

random quantities. V}. As we have no further information about the Yj we choose to 

use NPI for Y n +\. To apply the NPI-Bayes hybrid method we assume independence 

between the Xj and Yj. 

The Bayesian posterior predictive distribution for the Xi with a non-informative 

prior. p((j,,<72) = 4j-, is a scaled Student ^-distribution wi th (nx — 1) degrees of 

freedom, location parameter x and scale parameter ) J + i^~)s^: where x is the 

sample mean, sx is the sample standard deviation and nx is the number of ob­

servations of X (Gelman et al., 1995). We invert the cdf at np percentiles of the 

Student i-distribution between 0 and 1 and assign each value probability p?: = 

By inverting the cdf we capture the range of values for the AV 

We want to find bounds on the prediction for the next observation, XYnew. To 

do this we use the following algorithm. 

1. Take np values, which we denote Vi, i = \,....np, by inverting the Student 

^-distribution with nx — 1 degrees of freedom, location parameter x and scale 

2. Take the set of ordered observed values for Yj, j = \....,nv, and add oo so 

we have ny + 1 values, call this set L (this leads to the values that form the 

intervals for the lower cdf for xynew). 

3. Take the set of ordered observed values for Yj and add 0 so we have ny + 1 

values, call this set U (this wi l l lead to the values that form the intervals for 

the upper cdf for xynew). 

4. Find all the intervals between the ordered values (vjyj)k for F A - v by 

multiplying the values v.-L from the Student ^-distribution, with the set L, where 

k = 1, ...,np(ny + 1). i = 1, ...,np and .7 = 1, 

parameter 1 + ( T M s ' x ) at Hp percentiles. 
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•5. Similarly find all the intervals between the ordered values (?;,• for F.\ y iH u. (xy) 

by multiplying the values with the set U. with i.j and k as before. 

6. The probability on the intervals between each value is —. 1 , , . 
' " "*J ")>("!/+ I ) 

7. Plot £.vv„.,..(-'7,) and Fyy,,.,,(.,:?/) 

The combinations of (ivi/ j) for the lower and upper cdfs will be the same, apart 

from the infinities generated for the lower cdf and the zeroes generated for the upper 

cdf. Therefore it is only necessary to combine the values from the scaled Student 

^-distribution with the observed values for Yj once. We can describe the resulting 

probabilities using an M function. We order all the values Vj,yj and call them b and 

use the index v to denote their place in the ordering. 

•V/.vv,...,, «>./,,) = ! / " > , , + 1) 

A(VV„C„.(5,J,-+1) = 1/^(77,^ + 1) 

M \ T „ , , ( t ( , l p ( n » + i ) - i ) , o ° ) = l/nv{ny + l) 

for 7-= l,....(/7 p(77, + 1) - 2 ) . 

We now illustrate the NPI-Bayes hybrid method using an example where we use 

the NPI approach for one random quantity and use the Bayesian posterior predictive 

distribution for the other random quantity. 

Take Y > 0 and assume that we have observations [1,2,3] for the Y}, j = 1. ...,3. 

We assume .4(;{) for Ki and therefore the M function is as follows: 

My 4 (0 , 1) = 1/4 

M Y A ( 1 . 2) = 1/4 

A /k , (2 , 3) = 1/4 

My, (3, oo) = 1/4 

Generally we would only recommend using NPI for medium to large samples, but 

for illustrative purposes we use it for small n here. We take a sample of 20 values, 

Xj.i = L . . . .20 for the %, from a Normal distribution with mean 5 and standard 
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deviation 0.2. The sample mean, x = 5.00 and the sample standard deviation, sx 

i i . 17 Then we invert the cdf of the Student ^-distribution at 5000 percentiles. We 

can see that the probability for each interval wi l l be 4 ( 5 q 0 0 ) as each of the 5000 v{ 

values for the A", have probability which is and each K j value has probability 

| of falling in each of the intervals shown in the M function. We then proceed as 

wi th a NPI analysis to find the lower and upper cdfs. An example is shown in Figure 

5.1. 

Figure 5.1: Example of NPI-Bayes hybrid method 
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/ ^ 0,6 

1. 

10 15 2 0 

XY 

The influence of the Yj is very clear in the four different parts of the lower and 

upper cdfs obtained. This is because of the small sample size that was used in this 

example. The final value of the lower cdf wil l be | because the probability that 

the random quantity falls in an interval between the largest finite value for XYnew 

and oc wil l be • ~ . I f we instead had 50 observations, and thus Y,. i = 1. ...,50. 

(sampled from a Normal distribution with mean 2 and standard deviation 0.2) and 

we again use NPI for the Y) and model the X , as before, we would get results as 

shown in Figure 5.2. The final value of the lower cdf wil l now be | | , 
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Figure 5.2: Combining NPI and Bayesian posterior predictive distribution for a 
larger sample size for Y 

i 

CO 

O 

10 15 

XY 

So we have shown that the NPI-Bayes hybrid method allows us to combine NPI 

and the Bayesian posterior predictive distribution for different random quantities. 

Our example is for the Normal distribution and can be used when an analyst assumes 

a Normal or Lognormal distribution. However the Bayesian posterior predictive 

distribution for any distribution could be combined with NPI in a similar way i f i t is 

possible to sample from the Bayesian posterior predictive distribution. In the next 

section we show how we can apply the NPI-Bayes hybrid method to the Exposure 

Model. 

5.3 Predicting exposure using the NPI-Bayes hy­

brid method 

We consider the simple Exposure Model described in Section 2.2: 

X x Y 
Exposure = — - — (5.1) 

/ j 

where X is concentration, Y is intake and Z is bodyweight. We begin by simulating 
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a sample from a (Log)Normal distribution for each random quantity. We look 

at how well NPI and the Bayesian posterior predictive distribution describe the 

(Log)Normal distributions that we have taken the samples from. Then we calculate 

exposure by combining NPI for some random quantities and the Bayesian posterior 

predictive distribution for other random quantities. We compare the results for each 

of these combinations. We wil l use the following notation for the different possible 

combinations: NX indicates that the NPI approach was used for the random quan­

tities Xj and BX that the Bayesian posterior predictive distribution was used for 

the random quantities X , . Similarly we use NY. BY. NZ and BZ. 

5.3.1 Data sets 

To illustrate the NPI-Bayes hybrid method for calculating exposure, we need to 

have a sample for each random quantity in the model. In this example we choose 

distributions for each random quantity so that the data sets resemble those from 

Section 4.3 which described young children's exposure to benzene in soft drinks. 

We simulate 20 concentration (x) values from a Lognormal distribution with mean 

1.4993 //g/kg and standard deviation 1.6749 y^g/kg, 20 intake (y) values from a 

Lognormal distribution with mean 1.2776 kg/day and standard deviation 1.0159 

kg/day and 20 bodyweight (z) values from a Normal distribution with mean 30 kg 

and standard deviation 3 kg. The ordered samples are: 

X 0.1703 0.1828 0.3059 0.4278 0.4439 0.4994 0.5459 0.6037, 

0.6118 0.8656 0.8700 0.9074 1.175 1.471 1.472 1.569, 

2.346 2.663 4.036 12.12 

Y 0.2758 0.3199 0.4195 0.4397 0.4815 0.5377 0.6922 0.6997, 

0.7477 0.7675 0.8732 0.9954 1.130 1.174 1.348 1.403, 

1.629 1.632 1.653 2.769 

Z 25.86 25.93 26.58 26.65 26.93 28.61 28.83 28.98, 

29.37 30.95 31.11 31.51 32.12 32.18 33.11 33.57, 

34.66 35.59 35.87 36.34 

Figures 5.3.1, 5.3.2 and 5.3.3 show the NPI lower and upper cdfs, the cdf of the 
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Bayesian posterior predictive distribution given the assumption of (Log)Normality, 

the cdf of the distribution that each data set was sampled from and t he empirical cdf 

for each random quantity. We display the distributions from which the data were 

sampled so we can see how closely the results from the different methods resemble 

these distributions. However, in a real-life risk assessment i t is unlikely that we 

would know which distributions the data were sampled from and the data probably 

would not have come from a random sampling process. 

Figure 5.3: NPI lower and upper cdfs (blue lines), Bayesian posterior predictive 
distribution (red line), empirical cdf of the data (green) and distribution that the 
data were sampled from (black line) for each random quantity 
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Figure 5.3.1 shows that for this sample of concentration values, the Bayesian 

posterior predictive cdf overestimates the concentration at high percentiles (above 

about the 80th percentile) but i t is very close to the cdf of the distribution that the 

data were sampled from at lower percentiles. The NPI lower and upper cdfs are 

generally close to the cdf of the distribution that the data were sampled from except 

at very high percentiles. Figure 5.3.2 shows that the Bayesian posterior predictive 
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cdf underestimates intake for most percentiles of the cdf of the distribution that the 

data were sampled from. The NPI lower and upper cdfs are close to or enclose the 

cdf of the distribution from which the data were sampled for most percentiles. The 

large intervals in the upper tail of the NPI lower and upper cdfs for concentration 

and intake, are due to fewer data points being sampled from the tails than from 

the middle of the distributions that the data were sampled from. Figure 5.3.3 

shows that the Bayesian posterior predictive cdf overestimates the bodyweight for 

low percentiles and is close to the upper tail of the cdf of the distribution from 

which the data were sampled. The NPI lower and upper cdfs enclose the cdf of the 

distribution from which the data were sampled in the lower and upper tails and 

predicts values that are higher for the middle percentiles. Generally we tend to 

be more interested in the lower tail because people with smaller bodyweights are 

potentially more at risk from exposure to a chemical. 

The Bayesian posterior predictive distribution is determined by the mean and 

standard deviation of the sample and by the shape of the Student /^-distribution 

imposed on it because of the Normality assumption. NPI also depends on the values 

in the sample but does not make distributional assumptions and the NPI lower and 

upper cdfs wi l l always enclose the empirical cdf of the data. Therefore different 

samples lead to different results so we explore the effect of sampling variation in 

Subsection 5.3.3. 

5.3.2 Calculating exposure 

We consider all different combinations of random quantities, using the NPI approach 

for some random quantities and the Bayesian posterior predictive distribution for 

the other random quantities, in the Exposure Model. For ease of presentation, 

we display the results of each combination by the 10th, 50th, and 90th percentiles. 

These percentiles are either intervals, if they use the NPI approach for some random 

quantities, or point values if they only use the Bayesian posterior predictive distri­

bution for all the random quantities. We represent these by plotting the intervals for 

each percentile in Figure 5.4 as horizontal lines. We combine the distributions that 

the data were sampled from assuming independence between the random quantities 
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and call this the approximate exposure distribution. We show the percentiles of the 

approximate exposure distribution as vertical grey lines, so it is clear which inter­

vals include the percentiles of the approximate exposure distribution. Although it 

cannot be seen in Figure 5.4, the lower bound for the 10th percentile for the case 

(NX, NY, NZ) extends down to 0. and the upper bound for the 90th percentile for 

(NX,NY,NZ) extends to oo. 

Figure 5.4: Percentiles for Exposure for combinations of Bayes and NPI 
10th percentile 50th percentile 90th percentile 
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BX, BY, NZ 

BX, NY, BZ 

NX, BY, BZ 
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As can be seen from Figure 5.4, the 10th and 50th percentiles of the approximate 

exposure distribut ion do not lie within the corresponding lower and upper cdfs of any 

of the cases. However the 90th percentile of the approximate exposure distribution 

lies within the lower and upper cdfs of all the cases except (BX, BY, BZ). The lower 

and upper cdfs on the 10th and 50th percentiles are all lower than the percentiles of 

the approximate exposure distribution. This is due to the combination of the higher 

and lower predictions for each random quantity (See Figures 5.3.1, 5.3.2 and 5.3.3). 

The higher predictions for bodyweight for middle and low percentiles and the lower 

predictions for intake would lead to lower exposure values in general. However when 

combined with the higher predictions for upper percentiles for concentration, the 

values for the upper percentiles of exposure are larger. This explains why the 90th 

percentile of the approximate exposure distribution lies within the lower and upper 
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rcifs of all the cases except ( B X ; B Y , B Z ) . 

The combinations where the N P I approach is used for more random quantit ies 

lead to the widest intervals. Therefore i f we were uncertain about the d i s t r ibu t ion 

tha t the data were sampled f r o m , we would recommend combining a l l the random 

quanti t ies using N P I because we are more l ikely to capture the percentiles of the 

approximate exposure d i s t r i bu t ion . 

5.3.3 Sampling variation 

I n this section we explore sampl ing var ia t ion by comparing the differences in results 

for each of the eight cases. ( N X , N Y . N Z ) , ( N X , N Y . B Z ) , etc., when we use different 

samples for each random quan t i ty in the model . 

We simulate 10 samples of size 20 f r o m the Lognormal d is t r ibut ions tha t we 

assigned for concentrat ion and intake and 10 samples of size 20 f r o m the Normal 

d i s t r ibu t ion tha t we assumed for body weight (see Subsection 5.3.1). We combine 

these samples to produce 10 dif ferent lower and upper cdfs for the 10th, 50th and 

90th percentiles of exposure for each of the eight, different combinations of random 

quanti t ies ( N X , N Y , N Z ) , etc. We then compare how the 10th, 50th and 90th 

percentiles dif fer for each case and compare the results between cases. We plot the 

results w i t h the percentiles of the approximate exposure d i s t r i bu t ion (vert ical grey 

lines) for comparison. The 10th. 50th and 90th percentiles obtained by using the 

NPI-Bayes hyb r id method for each of the 10 different sets of samples are shown in 

Figures 5.5.1 - 5.5.6 and Figures 5.6.1 - 5.6.2. We denote each set of three samples 

by Sample 1 t o 10 for s impl ic i ty in the Figures. 
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F i g u r e 5 .5: Percentiles for different samples for each combinat ion 
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F i g u r e 5 .6: Percentiles for different samples for each combina t ion 
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We can see f r o m Figures 5.5.1 - 5.5.6 and Figures 5.6.1 - 5.6.2 tha t the intervals 

for al l the percentiles become narrower as we use the N P I approach for fewer ran­

d o m quantit ies. The intervals for the 50th percentile t end to be narrower than the 

intervals for the 10th and 90 th percentiles. Th i s is due to the lack of data describing 

the tails of the d i s t r i bu t ion , so there is more uncer ta in ty about the higher and lower 

percentiles than about the 50th percentile. For the ( N X , N Y , N Z ) case the lower 

l i m i t of the 10th percentile for a l l the samples is 0, and the upper l i m i t for the 90th 

percentile for al l the samples is oo. The intervals for this case overlap for different 

samples. Therefore using the N P I approach for random quanti t ies is more robust to 

sampling var ia t ion than the Bayesian method which on ly produces poin t estimates 

which underestimate or overestimate the percentiles. However, even using the N P I 

approach for al l the random quanti t ies in the Exposure Mode l does not lead t o the 

percentiles of the approximate exposure d i s t r i bu t ion l y i n g w i t h i n the lower and up­

per cdfs. Th i s may be due t o the smal l sample size tha t we used. I n the next section 

we look at the difference when we use a larger sample size. 

5.3.4 Larger sample sizes 

I n this section we explore the effect of sample size on the percentiles for exposure and 

again compare the difference i n results for each of the eight cases ( N X , N Y , N Z ) , etc. 

As before we simulate 10 samples f r o m the Lognormal d i s t r ibu t ions tha t we assigned 

for concentrat ion and intake and 10 samples f r o m the N o r m a l d i s t r i bu t ion tha t we 
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assumed for body weight. However, here we take samples of size 100. We combine 

these samples for each of the eight different combinat ions of random quantit ies to 

produce 10 dif ferent lower and upper cdfs for the 10th, 50 th and 90th percentiles 

of exposure. We plo t the results w i t h the percentiles of the approximate exposure 

d i s t r i bu t ion (vert ical grey lines) for comparison. The 10th, 50th and 90th percentiles 

obtained by using the NPI-Bayes hyb r id me thod for each of the 10 different sets of 

samples are shown in Figures 5.7.1 - 5.7.4 and Figures 5.8.1 - 5.8.4. We compare 

these results w i t h those given in Figures 5.5.1 - 5.5.6 and Figures 5.6.1 - 5.6.2 for 

samples of size 20. 
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F i g u r e 5 .8: Percentiles for different samples of size 100 
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The main difference in results between the appl icat ion w i t h a small sample size 

and w i t h a larger sample size is tha t the intervals for the percentiles are much 

narrower. These narrower intervals for N P I are due to the larger sample size which 

provides more in fo rmat ion about the d i s t r ibu t ion . Generally the percentiles of the 

approximate exposure d i s t r i bu t ion lie in more intervals, par t icu lar ly for the ( N X . 

N Y . NZ) case and the cases where the N P I approach is used for two of the random 

quanti t ies. The intervals for the 50th percentile s t i l l tend to be narrower than those 

at the 10th and 90th percentile, a l though the difference in w i d t h is smaller t han i t 

was for the small sample size. The Bayesian posterior predictive d i s t r ibu t ion does 

not capture uncerta inty about the estimates for the percentiles and thus can lead 

to incorrect results. N P I captures more uncerta inty than the Bayesian method due 

to NPFs inclusion of interval uncertainty. 

As the sample size increases, the performance of N P I w i l l improve because i t 

only uses in fo rma t ion f r o m the data and d i s t r ibu t iona l assumptions for the da ta are 

not needed. This makes N P I par t icu la r ly useful i f the d i s t r i bu t ion is unknown or 

the data do not fol low a standard parametric d i s t r i bu t ion (e.g. Norma l . Lognormal , 

etc.) . The estimates given by the Bayesian posterior predictive d i s t r i bu t ion may not 

improve as n increases i f an incorrect d i s t r ibu t iona l assumption is made. However i f 

the assumed d i s t r i bu t ion is the correct d i s t r i bu t ion , then as n —> oo. the Bayesian 

estimates w i l l be closer to the d i s t r i bu t ion tha t the data were sampled f r o m . As 

we have seen, even w i t h a sample size of 100 there is var ia t ion in the results and 

the percentiles for the approximate exposure d i s t r i bu t i on do not always lie w i t h i n 

the lower and upper bounds. Therefore i f we are interested in the tails and the 

uncer ta inty about the tails, predict ive methods may not be the most appropriate 

choice. One solut ion to include more uncer ta inty about the tails i n the analysis is to 

include robustness. I n the next section we discuss how to include robustness to the 

pr ior d i s t r ibu t ion when we use a Bayesian approach for a random quant i ty and how 

to include robustness in the NPI-Bayes hyb r id me thod for the Exposure Mode l . 
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5.4 Robustness 

5.4.1 Robustness for the Normal distribution 

I n this section we explain how our proposed h y b r i d method can be combined w i t h 

robustness when we use the Bayesian approach for random quantit ies. We begin 

by explaining two different classes of pr ior d is t r ibut ions , a class of interval p r ior 

d i s t r ibu t ions for //, t ha t we used i n Subsection 3.5.1 and a class of Norma l -Gamma 

prior d is t r ibut ions . We then explain the a lgo r i thm used to include robustness i n the 

NPI-Bayes hyb r id method for the Exposure Mode l . 

R o b u s t n e s s to t h e p r i o r for //, 

To include robustness to the pr ior for ji, we consider the class of Normal pr ior 

d i s t r ibu t ions on /J,|CT used in Subsection 3.5.1. The corresponding Bayesian posterior 

predict ive d i s t r i bu t ion is a Student ^-d is t r ibut ion w i t h n — 1 degrees of f reedom. 

/ , - N I (2n+\)((n--lW-+"(*-a)2) 

locat ion parameter and scale parameter y v — : — , where x is 

the sample mean, 77, is the sample size and 5 is the sample standard deviat ion. W h e n 

we use this class of pr ior d is t r ibut ions , we w i l l call the resul t ing bounds the ; robus t 

interval posterior predictive box : . 

R o b u s t n e s s to p r i o r d i s t r i b u t i o n for (//. a) 

Anothe r possible class of pr ior d i s t r ibu t ions can be obtained by using a conjugate 

Norma l -Gamma pr ior . I f we assume this p r ior d i s t r i bu t ion 

1 " 
p{fj-a) cx — exp a2 

c 2 b 
• — /J, - 777. - — 
2cH a1 

—00 < \i < 00 , a2 > 0 

the Bayesian posterior predictive d i s t r i bu t ion for the Xj given this conjugate pr ior 

d i s t r i bu t ion can be shown by basic exercise to be a Student t -d i s t r ibu t ion w i t h 2a*—3 

degrees of freedom, locat ion parameter 777* and scale parameter < / / ^ i 1 ^ . , ^ , where 

a + §, b* = b + 2 ^ 1 1 + ^rAx - m)2, c* = c + 77., m* = W h e n we use 

( c * ( 2 0 * - 3 ) ) ' 

!v _ \ 2 r.* _ r . _ L , N .,-,,* — cm± 
2(n+c) [ 

this class of Norma l -Gamma prior d is t r ibut ions , we w i l l call the result ing bounds 

the ' robust Normal -Gamma posterior predict ive box'. 
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We now illustrate, the a lgor i thm for inc lud ing robustness in the NPI-Bayes h y b r i d 

method. I t is most easily represented w i t h a diagram. I n this a lgor i thm we assume 

tha t we want to include robustness for every random quant i ty . I f this is not the case, 

an approach combining this a lgor i thm and the a lgor i thm for the original NPI-Bayes 

hvb r id method can be used instead. 

5.4.2 Diagram showing how to include robustness for the 

Exposure Model 
Choose robust NPI or Bayesian method for each of the three random quantities, X, Y and Z 

Robust NPI Robust Bayesian method 

Use robust NPI as 
explained in Section 

4.9 

Choose class of prior distributions 

Normal-Gamma Class Interval Class 

Choose interval for m and 
split interval into k values 

Choose interval for p and 
split interval into J values 

Find the parameters for 
the k scaled studenl-t 
distributions and invert 

each cdf at np 

percentiles. Call these 
xPik ypik ° r z p « ' ° r ' = 

Find the parameters for 
the j scaled sludenl-t 

distributions and invert 
each cdf at np 

percentiles. Call these 
xpyypy or zp,, for / = 

1 nn 

Count how many random quantities are modelled using robust NPI and call this number r 

If r = 3 

Combine all the 
values xpfr yp^ 

and zp^, / = 
1 np This 

produces np values 
for exposure. 
Repeat this 

process for all 
combinations of j 

or k for each 
random quantity. 

Combine two sets of values 
(e.g. yp^ and zp^) as in the 
Exposure Model to produce 

np values. For X we use 
robust NPI and multiply the 
intervals with the np values. 

The intervals have 
probability 1/np(nr+1). 

Repeat this process for all 
combinations of) or k for Y 

and Z 

Combine e.g. X a n d 
Y a s in Section 4.9. 

Combine the 
resulting NPI 

intervals with the 
zplg so each interval 
has a probability of 

1/np(ng+1)(ny+1). 
Repeat this process 
for all combinations 

of j or k for Z 

Combine all three 
random quantities , X, 
V and Z using robust 
NPI as explained in 

Section 4.9 

where g represents j if the interval 
class was chosen and k if the Normal 

Gamma class was chosen. 

Take the envelope of the cdfs for the sets of exposure values to form the robust posterior predictive box 
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5.5 Examples: NPI-Bayes robust hybrid method 

I n this section we look at the results of incorpora t ing robustness in to the h y b r i d 

method for the Exposure Mode l . We compare the results for assuming each of 

the previously described classes of pr ior d is t r ibut ions for the case ( B X . B Y . BZ) 

w i t h each other and w i t h the results when we assume a non-robust, non- informat ive 

pr ior . p(iJ.,o) = ^ for a l l three random quantit ies. We then show the results for 

the ( N X . N Y . NZ) case where we use robust N P I for all the random quantities. 

We compare this w i t h the case where we use N P I w i t h o u t robustness for all three 

random quantit ies. These examples allow us to i l lus t ra te the proposed NPI-Bayes 

robust hybr id method for the two most extreme cases. We i l lus t ra te the approximate 

exposure d i s t r ibu t ion to show how close the combinations are to the percentiles of 

the approximate exposure d i s t r i bu t ion . In the model, we can combine robust and 

non-robust random quantit ies, bu t for i l lus t ra t ion of the method here we concentrate 

on the case where we include robustness for a l l the random quantit ies. We show the 

percentiles for all the other possible combinations of random quanti t ies inc luding 

robustness for each random quant i ty . We use r to denote tha t we are inc luding 

robustness, e.g. BX, . indicates tha t we are using robust Bayesian methods for random 

quan t i ty A^. 

5.5.1 Case (BX r , B Y r , BZ 7 ) 

We consider the case where body weight, the log of concentrat ion and the log of 

intake are modelled by the robust Bayesian posterior predict ive d i s t r i bu t ion w i t h 

the assumption of Normal i ty . We again use the data sets introduced in Subsection 

5.3.1. We compare the results f r o m assuming a non- informat ive pr ior for al l three 

random quantit ies, assuming an interval class of prior d is t r ibut ions for all three 

random quanti t ies and assuming a class of Norma l -Gamma prior d is t r ibut ions for 

all three random quantit ies. Combinat ions of different classes of pr ior d is t r ibut ions 

could be considered i f desired. 

Let /!(,„., and \iCOnc be the intervals for the mean of the pr ior d i s t r i bu t ion 

for bodyweight , intake and concentrat ion respectively for the interval class of pr ior 
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dis t r ibut ions . Also, let a » d »c«*e he the intervals for the mean of the pr ior 

d i s t r i bu t ion for body weight, intake and concentrat ion respectively for the Normal -

G a m m a class of prior d is t r ibut ions . Take ^ w and m ^ , to be 10 equally spaced values 

between 25 kg and 35 kg, / / ! T ) ( and mint to be 10 equally spaced values between 

0.5 k g / d a y and 1.2 kg /day and f i c o n c and mconc to be 10 equally spaced values 

between 0.3 / / g / k g and 3 / i g / k g . For the Norma l -Gamma prior we use parameters 

a = c = 10,6 = 0.01 for al l the random quanti t ies. Figure 5.9 shows the results 

for the non- informat ive prior , the two different classes of pr ior d i s t r i bu t ion and the 

approximate exposure d i s t r i bu t i on for comparison. 

F i g u r e 5.9: Non- informat ive posterior predict ive d i s t r i bu t ion (black l ine) , robust 
in terval posterior predict ive box (red l ine) , robust Norma l -Gamma posterior predic­
t ive box (blue line) and approximate exposure d i s t r i bu t ion (green line) 

i I :, B 

1 0 J 10"3 10"2 10"1 10° 1CT 

Exposure (ug / kg bw / day) 

I n Figure 5.9 we see tha t the robust Norma l -Gamma posterior predict ive box 

follows the shape of the approximate exposure d i s t r i bu t i on for lower percentiles 

and encloses the approximate exposure d i s t r i bu t ion . The robust interval poste­

rior predict ive box nearly encloses the approximate exposure d i s t r ibu t ion , a l though 

i t s l ight ly underestimates the lower percentiles of exposure. The non- informat ive 

posterior predictive d i s t r i bu t i on is only a single l ine here and underestimates the 

approximate exposure d i s t r i bu t i on for most percentiles u n t i l i t reaches very h igh per­

centiles. This is probably due to the shape constraints of the Student ^-distributions 

used to f o r m the non- informat ive posterior predict ive d i s t r i bu t ion and the lack of 

uncerta inty included by the pr ior d i s t r i bu t ion . 



5.5. E x a m p l e s : N P I - B a y e s r o b u s t h y b r i d m e t h o d 129 

5.5.2 Case (NX r , NY. r, NZ,.) 

I n this section we use robust N P I for a l l three random quantit ies. We combine them 

as described i n Section 4.9 t o find the robust N P I lower and upper cdfs for exposure. 

T h e results are shown in Figure 5.10 w i t h the approximate exposure d i s t r i bu t ion for 

comparison. A n advantage of N P I is t ha t we do not need to assume any dis t r ibut ions 

or choose any pr ior d is t r ibut ions or values for the pr ior d is t r ibut ions for the random 

quanti t ies. 

F i g u r e 5.10: Robust N P I lower and upper cdfs for exposure (blue lines), N P I lower 
and upper cdfs w i t h o u t robustness (red lines) and approximate exposure d i s t r i bu t ion 
(green line) 
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The or iginal N P I lower and upper cdfs d i d not enclose the approximate exposure 

d i s t r i b u t i o n whi le the robust N P I lower and upper cdfs do enclose the approximate 

exposure d i s t r i bu t ion . Therefore we can see tha t adding robustness to the analysis 

results i n bounds conta in ing the d i s t r i b u t i o n tha t we are t r y i n g to predict . We 

compare the 10th, 50 th and 90th percentiles of this case and ( B X , B Y , B Z ) w i t h al l 

the other cases i n the next subsection. 

5.5.3 Comparing all the cases 

I n this section we consider a l l the cases ( N X , N Y , N Z ) etc. inc lud ing robustness 

for each random quant i ty . For i l l u s t r a t ion we use the Norma l -Gamma class of pr ior 

d i s t r ibu t ions when we use Bayesian methods for the random quanti t ies, as i t per-
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formed well in the ( B X . B Y , B Z ) case. We take?77 ???.,•„, and rnconc as before. The 

10th, 50th and 90th percentiles are shown in Table 5.1. 

T a b l e 5.1: Percentiles for all cases inc lud ing robustness 

Case 

10th 

Percentile 

50th 

Percentile 

90th 

Percentile Case 

Lower Upper Lower Upper Lower Upper 

(NX,. , NY,. , N Z , ) 0 0.0087 0.0130 0.0435 0.0655 oo 

(BX,. , NY,. , N Z r ) 0 0.0112 0.0121 0.0537 0.0548 oo 

( N X r , B Y r , NZ,.) 0 0.0095 0.0137 0.0377 0.0595 oo 

( N X r , NY,. , BZ,.) 0 0.0089 0.0147 0.0384 0.0655 oo 

( N X r , BY, . , BZ,.) 0.0016 0.0095 0.0151 0.0344 0.0603 0.7663 

( B X , , N Y , , B Z r ) 0.0009 0.0115 0.0136 0.0497 0.0570 0.7610 

( B X , , B Y , , N Z , ) 0.0009 0.0118 0.0121 0.0490 0.0527 0.6789 

( B X , , B Y , , B Z , ) 0.0036 0.0118 0.0139 0.0446 0.0515 0.1760 

The 10th, 50th and 90th percentiles for the approximate exposure d i s t r i bu t ion 

are 0.0077, 0.0335 and 0.1455 f-ig/kg b w / d a y respectively. We can see tha t the 10th, 

50 th and 90th percentiles of the approximate exposure d i s t r i bu t ion all lie in the 

lower and upper bounds for the 10th, 50th and 90th percentiles for al l the cases. 

Therefore adding robustness to all the random quantities, leads to results t ha t again 

enclose the 10th, 50 th and 90th percentiles of the approximate exposure d i s t r i bu t ion . 

I n this section we have seen tha t i t is possible t o include robustness when we 

use Bayesian methods for random quanti t ies and when we use N P I for random 

quanti t ies. We have compared the different cases of combining the random quantit ies 

w i t h the dif ferent robust methods. Inc lud ing robustness is useful as i t resulted in a l l 

the cases enclosing the 10th, 50th and 90th percentiles of the approximate exposure 

d i s t r i bu t ion . For the Bayesian case dif ferent classes of prior d is t r ibut ions could 

be chosen to reflect pr ior beliefs about the random quanti t ies. For the N P I case 

different levels of robustness could be incorporated. For small samples, we could 

perhaps assign the p robab i l i ty ^ to two intervals on either side of every interval . 
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This would include more robustness to represent the increased uncerta inty about 

the d i s t r i bu t ion tha t the data were sampled f r o m for a small sample. 

5.6 Combining NPI with Bayesian 2D M C S 

We have i l lus t ra ted combining N P I w i t h the Bayesian posterior predictive d i s t r ibu­

t i o n i n this chapter. However i t may be the case tha t we want to combine a predictive 

method w i t h a Bayesian 2D method (one tha t separates var iab i l i ty and uncer ta in ty) . 

We i l lus t ra te a N P I - 2 D Bayes hybr id method w i t h the Exposure Mode l . Suppose we 

want to calculate exposure based on predictions of the body weight of a young chi ld . 

Usual ly to combine a Bayesian posterior predict ive d i s t r i bu t ion w i t h a Bayesian 

2D M C S . we would sample f r o m the Bayesian posterior predict ive d i s t r ibu t ion for 

bodyweight in the outer loop of a 2D M C S . We would then combine the predicted 

value w i t h the values calculated in the inner loop of the 2D M C S . 

Here we do not want to choose a d i s t r i bu t ion for bodyweight so we predict the 

bodyweights using N P I . We again use the data sets provided i n Subsection 5.3.1. We 

use a Bayesian 2D M C S for concentration and intake assuming tha t bo th random 

quanti t ies are Lognormal ly d i s t r ibu ted . We combine concentrat ion and intake in a 

2D M C S w i t h 1000 inner loops and 1000 outer loops to include uncertainty about 

the d i s t r i bu t ion parameters. Then we f i nd N P I lower and upper cdfs for the product 

of intake and concentrat ion inc luding parameter uncerta inty by using the values tha t 

f o r m the envelope of the 2D M C S ou tpu t . These N P I lower and upper cdfs can then 

be combined w i t h the N P I lower and upper cdfs for bodyweight as done previously 

in Section 4.3 to f i nd bounds on exposure. The result ing lower and upper N P I cdfs 

are shown in Figure 5.11. 
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F i g u r e 5.11: N P I lower and upper cdfs for exposure 
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So here we have combined the N P I predictions for the next bodyweight obser­

vat ion w i t h the 2D M C S results to include parameter uncerta inty for concentrat ion 

and intake. 

5.7 Conclusions 

I n this chapter we have shown tha t we can combine N P I and the Bayesian posterior 

predict ive d i s t r i bu t ion by using the NPI-Bayes h y b r i d method and the NPI-Bayes 

robust hyb r id method . We have also shown tha t i t is possible to combine N P I w i t h 

2D Bayesian methods such as 2D M C S . The NPI-Bayes hyb r id method is useful 

where there are different levels of i n f o r m a t i o n available for random quantit ies. N P I 

can be used for random quanti t ies for which we do not have enough i n f o r m a t i o n 

available to assume a d i s t r i bu t ion and the Bayesian posterior predictive d i s t r i bu t ion 

or 2D Bayesian M C S can be used for random quanti t ies about which we have more 

i n f o r m a t i o n . I t is common in practice tha t this s i tua t ion , where we have lots of i n ­

f o r m a t i o n about some random quanti t ies and less i n f o r m a t i o n about other random 

quanti t ies, w i l l occur. For example, there is o f t en l i t t l e i n fo rma t ion about concen­

t ra t ion of chemicals i n dif ferent food types bu t lots of i n fo rma t ion available about 

the bodyweights of the popula t ion . 

We saw in Subsection 5.3.4 tha t even when using samples w i t h 100 values, the 
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percentiles of the approximate exposure d i s t r i bu t ion did not lie in the intervals for al l 

the cases for al l the samples. We would expect that, as the sample size. v. increases, 

the lower and upper cdfs would converge to the approximate exposure d i s t r ibu t ion . 

Therefore as some of the combinations failed to fu l ly represent the percentiles of 

the approximate exposure d i s t r i bu t ion for n = 100, we added robustness to each 

random quant i ty to improve the hybr id method. 

To incorporate robustness we created a new robust hyb r id method that can coin-

bine random quanti t ies using either robust N P I or the Bayesian posterior predictive 

d i s t r ibu t ion w i t h robustness. We considered two different classes of pr ior d i s t r ibu­

tions for the Bayesian posterior predict ive d i s t r ibu t ion , and our method could easily 

be adapted to include other possible classes of pr ior d is t r ibut ions . The Bayesian 

par t of the NPI-Bayes robust hyb r id method could be applied to any d i s t r i bu t ion 

(e.g. Weibul l or Exponent ia l d i s t r i bu t ion ) , as long as we can sample f r o m the poste­

rior predictive d i s t r i bu t i on . We can also represent different levels of robustness for 

N P I . Inc lud ing robustness allows us to account for more uncertainty and led to bo th 

cases (NX,. . NY,. , NZ,.) and (BX, . . BY, . . BZ,.) enclosing the approximate exposure 

d i s t r ibu t ion . Also, a l l the cases where robustness was included for a l l the random 

quanti t ies produced intervals containing the 10th, 50th and 90th percentiles of the 

approximate exposure d i s t r i bu t ion . This was not the case w i t h o u t robustness. This 

indicates tha t when using predict ive methods on smaller samples, the NPI-Bayes ro­

bust hyb r id method can represent the uncertainty about the approximate exposure 

d i s t r ibu t ion . 

I n practice, the NPI-Bayes robust hybr id method allows us to take account of 

the i n fo rma t ion available about random quanti t ies such as intake whi ls t inc luding 

robustness for random quanti t ies such as concentration. I t also allows us the op t ion 

of not having to assume a d i s t r i bu t ion for all the random quanti t ies in the model . 

We can use a m i x t u r e of the NPI-Bayes hybr id method and robust hyb r id me thod to 

implement robustness for some random quanti t ies and not for others. I f the sample 

sizes are large then the hybr id method w i l l provide results close to the approximate 

exposure d i s t r i bu t ion when the random quanti t ies are combined. However i f the 

sample sizes are small the robust hybr id method w i l l provide better results than 
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the hybr id method because i t is more likely to contain the approximate exposure 

d i s t r ibu t ion in the resul t ing bounds. 

The results f r o m all three of these methods require more investigation as i t is 

not clear how the resul t ing bounds should be interpreted. The NPI-Bayes hybr id 

method, the NPI-Bayes robust hyb r id method and the N P I - 2 D Bayes hybr id method 

introduced in this chapter are useful tools to combine random quanti t ies i n practice. 

The choice of which method to use and which combinat ion to use w i l l depend on 

many factors, such as sample size, whether there is enough in fo rma t ion to make 

d i s t r ibu t iona l assumptions and whether there are experts available t o choose classes 

of pr ior d is t r ibut ions . 



Chapter 6 

Conclusions and Future Research 

This chapter provides a short summary of the main results presented in this thesis, 

and discusses important challenges for future research. 

6.1 Conclusions 

In this thesis we have introduced new methods that add to the choice of methods 

available for risk assessment. The appropriate method to use will depend on factors 

such as whether the decision is about a population or an individual, how many data 

are available and if there is enough information about the random quantities for the 

analyst to assume a particular distribution. I t also depends on whether the whole 

distribution or a percentile for a population is of interest. I f the decision maker 

would like to estimate the risk based on the whole distribution. Bayesian p-boxes 

could be implemented. If the question is about a random individual NPI could be 

appropriate, as NPI only assumes A(n) and includes interval uncertainty. I f there 

are some random quantities in a model about which we do not want to make a 

distributional assumption and others that we are prepared to assume distributions 

for. then the NPI-Bayes or robust NPI-Bayes hybrid method could be used. 

In Chapter 3. we have seen that nested Bayesian p-boxes can give an analyst or 

risk manager a clear indication of the changes at different credibility levels. Bayesian 

p-boxes should be used instead of frequentist p-boxes when working with distribu­

tions with more than one parameter, particularly for small sample sizes. This is be-

135 
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cause the frequentist p-boxes ignore dependence bet,\veen parameters and therefore 

do not lead to the tightest possible bounds given the information available. Bayesian 

p-boxes can be formed using any subset of the posterior parameter space, as long as 

it is closed and bounded. We have shown that the Bayesian p-box method can take 

fixed measurement uncertainty and robustness to the prior distribution into account. 

We focused on including robustness to the prior distribution for the practically im­

portant cases of the Normal and Lognonnal distributions. We have explained how 

Bayesian p-boxes can be combined under the assumption of independence or under 

no assumptions about dependence using the Williamson and Downs method. I t may­

be useful to risk managers to see both outputs so they can see how much reduction 

in uncertainty there is under the assumption of independence. Bayesian p-boxes can 

include distribution uncertainty and model uncertainty by forming Bayesian p-boxes 

separately for each distribution or model and then taking the envelope of the results. 

Displaying the results from different distributions or models may provide more in­

sight into the risk distribution and provide a clearer picture for the risk manager. 

When a risk manager has to make a decision about, a population, this method can 

be used to illustrate bounds on the distribution of the population. 

In Chapter 4. we have shown that NPI provides an alternative method for pre­

dicting the exposure of a random individual to a chemical. For a medium or large 

data set, NPI provides a better representation of the exposure than methods such 

as the Bayesian posterior predictive distributions due to the inclusion of interval 

uncertainty and the lack of distributional assumptions. NPI can be used where we 

have left-censored data and known measurement uncertainty and wil l produce the 

tightest possible lower and upper cdfs given this information. We explored the ef­

fect of strong and weak correlations in an example and it seemed that neither of 

them strongly influenced the NPI analysis. We also suggested an ad hoc method 

to include more uncertainty in the NPI analysis which we called "robust NPI ' . This 

method seems to work well and may provide a way to use NPI for small samples 

but. requires further investigation. 

In Chapter 5, we introduced a NPI-Bayes hybrid method that allows us to com­

bine random quantities where some random quantities are modelled with NPI and 
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others are modelled with Bayesian methods. We have shown that NPI can be com­

bined with both one-dimensional methods, such as the Bayesian posterior predictive 

distribution and two-dimensional methods such as 2D Monte Carlo Simulation. We 

showed how robustness could be incorporated in the hybrid method for both NPI 

and the Bayesian posterior predictive distribution methods. Including robustness to 

the prior distribution can partially reduce the effect, of distributional assumptions, as 

including the additional uncertainty increases the chance that the true distribution 

wil l fall within the bounds. However, robustness may also reduce the uncertainty 

if narrower ranges are selected for the priors. Further research is required into the 

interpretation of the output bounds. NPI is a frequentist method, that is also con­

sistent with the Bayesian framework and it is unclear how to interpret the bounds 

when mixing a frequentist. and a Bayesian method together. 

Al l methods that we have presented and explored in this thesis help to model the 

uncertainties involved more transparently than they currently are in the determin­

istic risk assessments. We have focused on Bayesian methods because they have the 

advantage that parameter dependence can be incorporated and the results can be 

updated with future observations. NPI has been investigated due to the advantage 

of not having to assume a distribution and because it includes interval uncertainty. 

As both NPI and Bayesian methods have advantages we then combined them in 

a NPI-Bayes hybrid method. Further research is required into extensions of these 

methods. We briefly describe possible future research topics in Section 6.2. 

6.2 Topics for future research 

In this section we discuss possible areas of future research which build on the work 

presented in this thesis. A l l these areas would add to the expansion of quantifying 

uncertainty in risk assessments. 

6.2.1 Uncertainty about correlations 

I t is possible to combine various types of bounds, e.g. Bayesian p-boxes. by using the 

method presented by Williamson and Downs (1990). We have also briefly introduced 
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copulas which are a method of combining random quantities with a fixed correlation. 

However when we do not know much about the dependence but we do know that 

the random quantities are. for example, definitely not negatively correlated, the 

Williamson and Downs method wil l not be able to exclude this particular correlation. 

Further research is needed into excluding known dependencies from the resulting 

bounds. I f the result of combining two random quantities wi th a specific correlation 

falls completely within the bounds formed using the Williamson and Downs method, 

excluding the specific correlation may not have any effect on the outer bounds. If 

we knew that there was a range of possible correlations, it may be possible to 

combine the bounds assuming various correlations in the interval. I f these behave in 

a linear way (i.e. the lowest correlation leads to the lowest possible bound and as the 

correlation increases the upper bounds increase) then it may be possible to draw a 

p-box around the results. Further research into eliciting and modelling dependencies 

between random quantities is necessary to make the risk assessments more realistic. 

6.2.2 Bayesian p-boxes for other distributions 

In this thesis we have presented Bayesian p-boxes for the Exponential and Normal 

distributions. Bayesian p-boxes could be formed for other distributions, as long as 

we can calculate the highest posterior density or similar region from the posterior 

distribution. The region needs to be closed and bounded so we can minimise and 

maximise the corresponding cdf over the region to form the lower and upper bounds 

on the random quantity. I f we had a multi-modal distribution, we could have various 

closed and bounded regions. I t would in theory be possible to minimise and maximise 

the cdf of the distribution over these regions separately and then form multiple p-

boxes to represent the different regions. When these p-boxes are considered all 

together they should represent the 100(1 - o )% probability that, for example, the 

distribution for a random quantity A' falls in the p-boxes. However, if we can only 

sample from the posterior distribution, i t may not be possible to calculate a highest 

posterior density or any other region with a certain credible level. The justification 

for the minimum and maximum bounds being formed by the (/i,cr) pairs on the 

contour applies to location-scale distributions. However if distributions have more 
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than two parameters, i t will become more complicated to calculate regions and to 

present the results in a meaningful way. I t would be interesting and also important 

for risk assessment to develop Bayesian p-boxes for other distributions. 

6.2.3 More realistic models 

Throughout this thesis we have used the simple Exposure Model to illustrate our 

methods. I t would be beneficial to consider developing the methods for more com­

plicated exposure models or for models in other fields. We have already discussed 

developing Bayesian p-boxes for other distributions, but there is also research needed 

on combining the Bayesian p-boxes for different random quantities in a model. I t 

would be useful to research how we could find the hpd region, or a similar region, 

from the posterior distribution for several combined random quantities as this would 

then allow us to find, for example, 95% bounds on the whole model. NPI could be 

used for more complicated models, although more research needs to be done on 

how to do this in the most computationally efficient way. As models become more 

complicated and include more random quantities i t can potentially make it difficult 

to store all the possible values on a computer. I t would also be useful to look at 

combining random quantities with different dependencies which is currently not pos­

sible in the NPI framework. The NPI-Bayes hybrid methods could be used for more 

complicated models, although this too will be limited by the computation required 

for the random quantities that NPI is used for in the model. 
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Appendix 

A Distributions used in this thesis 

Normal distribution 

X has a Normal distribution with mean //. and variance a'1, denoted X ~ A'*(/./,, cr 2), 

if it has density 

As the distribution is symmetric and unimodal, the median and mode are both equal 

to the mean. I f //, = 0 and a = 1. A' is said to have a Standard Normal distribution. 

fj. can be referred to as the location parameter and a can be referred to as the scale 

parameter. 

Lognormal distribution 

X has a Lognormal distribution if it has density 

where //, and a are the mean and standard deviation of the Normal distribution for 

Student t distribution 

X has a Student t distribution on ;/ degrees of freedom, denoted A' ~ t l t , if i t has 

density 

The non-central t distribution is a generalisation of Student's t distribution with a 

non-centrality parameter that measures the normalised distance between the true 

population mean and the population mean, //., that we have assumed. 

P(X) exp 9 cr\/27r 
(—oo < x < oo) 

(log(x) - /I.) 
exp la-7T 

log(A-). 

1 + 
V 
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G a m m a distribution 

X has a two parameter Gamma distribution with parameters a and denoted 

X ~ G(a.b), i f it has density 

This is a conjugate prior distribution for the Exponential distribution in Bayesian 

statistics. 

X 2 distribution 

X has a , \ 2 distribution on v degrees of freedom, denoted X ~ xl-. if ^ n a s density 

P(X) = ^ - ' ^ x p ( ^ ) 

This is a special case of the Gamma distribution with a = £ and b = 2. 

Exponential Distribution 

X has an Exponential distribution wi th parameter A if it has the density 

p(X) = Xexp(-Xx) 
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