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ABSTRACT 

Hepatitis C virus (HCV) interacts with host cell proteins to modify cellular 

pathways creating a favourable environnnent that facilitates its replication and 

persistence. The purpose of the work presented in this thesis was to Identify 

cellular proteins that can interact with NS5B, the virus's RNA-dependent RNA 

polymerase, that may contribute to the virus's biology. 

A number of cellular proteins were found to interact with NS5B using the 

yeast two-hybrid system. These proteins were involved in cellular pathways 

such as interferon signalling, lipid transport and metabolism, protein trafficking, 

cell proliferation and apoptosis. Of these, phospholipid scramblase 1 (PLSCR1) 

and zinc finger protein 143 (ZNF143) were selected for further investigation. 

The interactions were confirmed in vitro, and, for PLSCR1, the region that 

interacted with NS5B was determined to be within the amino-terminal region of 

the protein (61-137 a.a.). NS5B interacted with PLSCR1 and ZNF143 via a 

single interacting region localized in its N-terminus (1-153 a.a.). 

Expression of PLSCR1 or ZNF143 enhanced the ability of interferon to 

stimulate transcription from an interferon-stimulated response element (ISRE) 

reporter construct. Co-expression with NS5B was found to down-regulate this 

activity. Expression of a number of interferon-stimulated genes was investigated 

in the presence of NS5B, PLSCR1 or ZNF143 but no significant effect was 

observed. Overexpression of PLSCR1 had no effect on HCV sub-genomic 

replicon replication, while reduction of its expression by short hairpin RNA 

(shRNA) enhanced replication. Overexpression of ZNF143 was found to have a 

suppressive effect on replication but downregulating its expression did not 

enhance replication. 

In addition to using the yeast two-hybrid system to identify NS5B-

interacting proteins, an in vitro pulldown assay coupled with mass spectrometry 

identified a- and p-tubulin associated with NS5B in vitro and in vivo. 

Subsequently this association was demonstrated to be an indirect interaction 

IV 



but the intermediatory partner was not identified. The domain that mediated the 

association with a- and p-tubulin was determined to be within the N-terminus of 

NS5B (1-153 a.a.). Nocodazole, an inhibitor of tubulin polymerization, had a 

marked effect on the association of a-tubulin with NS5B displacing it from the 

complex but had no effect on p-tubulin's association. Utilizing an HCV sub-

genomic replicon, nocodazole was shown to have a significant inhibitory effect 

on replication. 

Taken together the data presented in this thesis showed that NS5B had a 

multitude of potential interactions with a variety of cellular proteins. The 

biological significance of some of these interactions on the cellular response to 

IFN and replicon replication was investigated. This work has generated a 

number of novel observations on the interaction between the virus and the cell 

that warrant future investigation. 
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CHAPTER 1 

C H A P T E R 1 

Introduction 

1.1 Introduction 

Hepatitis C virus (HCV) is one of the main infectious causes of hepatitis, a 

liver injury associated with an influx of acute or chronic inflammatory cells into 

the liver (Crawford, 1997). It is a major health problem worldwide with 

approximately 130-180 million people infected with the virus (WHO, 1999; WHO, 

2004) . Most of cases (60-80 %) go from an acute to a chronic stage and 

patients can develop long-term complications such as liver cirrhosis and 

hepatocellular carcinoma (HCC) (Bukh a/., 1993) such that 27 % of cirrhosis 

and 25 % of HCC cases in the world occur in HCV infected individuals (Perz 

and Alter, 2006). 

In some countries, such as Egypt, the virus has infected more than 20 % 

of the population (Frank ef a/., 2000). Most of HCC cases (64 %) in Egypt are 

attributable to HCV infection and as the incidence of HCV infection is increasing, 

HCC cases increase which places a significant burden on the Egyptian 

economy (Hassan ef a/., 2001). 

1.2 HCV Infection Prevalence 

According to the most recent World Health Organization (WHO) estimate, 

2-3 % of the world's population (approximately 130-180 millions) has been 

infected with HCV (WHO, 1999; WHO, 2004). As shown in Table 1.1 and Fig. 

1.1, HCV infection is endemic worldwide and the distribution of the infection 

varies broadly among geographic areas. Africa and Asia accommodate most of 

the countries with the highest reported infection prevalence rates (more than 

2.9 %) . Industrialized nations like North America, northern and western Europe, 

and Australia have a lower infection prevalence (less than 1 %) (Shepard ef a/., 

2005) . 
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Table 1.1: Reported HCV infection prevalence in the world. 

Total HCV Infected 
Population prevalence Population 

WHO region 
(Millions) 

Rate % 
(Millions) 

Africa 602 5.3 31.9 
Americas 785 1.7 13.1 
Eastern 466 4.6 21.3 
Mediterranean 
Europe 858 1.03 8.9 
South-East Asia 1500 2.15 32.2 
Western Pacific 1600 3.9 62.2 
Total 5811 3.1 169.7 

4<»<i Btoad C*k»l\il l*r*vdleni<? 

Fig. 1.1: HCV prevalence worldwide (WHO, 2004). HGV has a broad 
global prevalence. In some countries, such as Egypt and Mongolia, 
the virus has infected more than 20 % of the population. 

In Europe, the United Kingdom and Scandinavia have the lowest reported 

prevalence rates of between 0.01 and 0.1 % (Shepard et a/., 2005). In Gentral 

Europe, the HCV prevalence ranges from 0.2 % in the Netherlands to 1.2 % in 

France. HGV prevalence ranges from 2.5 to 3.5 % in Southern Europe (Spain, 

Italy, Greece, and Southern France) (Esteban etal., 2008). 

In the United States, an HGV prevalence survey covering the period from 

1999 to 2002 found that HGV infection was present in approximately 1.6 % of 
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the population, meaning that about 4.1 million people were infected with HCV at 

that time, of which 3.2 million individuals would have had a chronic infection. In 

Asia, it was reported that HCV prevalence ranges from 1.5-2.3 % in Japan, 

1.6 % in Malaysia, 1.85 % in India, 3.2 % in China (with high rates in some poor 

areas such as Mongolia where it is about 31 %) and 3.2-5.6 % in Thailand 

(Shepard etal., 2005; Sy and Jamal, 2006). 

In Africa, Egypt has the highest reported prevalence rate in the world (15-

20 %) . Here it has been shown that the parenteral antischistosomal therapy 

(PAT) campaign from 1961 to 1986 by the Egyptian Ministry of Health played 

the major role in the spread of HCV throughout Egypt as it used contaminated 

glass syringes for injection of PAT (Frank et a/., 2000). 

1.3 D isease and Risk Factors 

Exposure to HCV can result in two stages of infection; an acute phase and 

a chronic phase. The acute phase is mild or asymptomatic in most of cases, 

while the chronic stage develops in 80 % of patients and can result in serious 

consequences such as liver cirrhosis (20 %) and HCC (5 % ) . Many factors can 

affect the rate of progression to cirrhosis and HCC such as alcohol abuse, age 

at time of infection, viral titre, viral genotype and co-infection with other viruses 

such as hepatitis B virus (HBV) and human immunodeficiency virus (HIV) (WHO, 

1999). 

The main routes of HCV transmission are through blood transfusion, use 

of blood products from unscreened donors, use of contaminated or 

inadequately sterilized medical equipments, and the intravenous drug abuse 

(the major route of HCV transmission in the UK). The minor routes of infection 

are from mother to baby, sexual transmission is possible but uncommon, 

tattooing, ear piercing, body piercing or acupuncture with unsterile equipment 

and sharing razors or toothbrushes contaminated with blood (Sy and Jamal, 

2006; WHO, 1999). 
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1.4 History of HCV 

Two different types of viral hepatitis causing two distinct liver diseases 

were identified during the World War II called infectious hepatitis and 

homologous serum hepatitis. The two liver diseases were later termed hepatitis 

A and Hepatitis B caused by hepatitis A virus (HAV) and hepatitis B virus (HBV), 

respectively (Major et a!., 2001). 

After the discovery of hepatitis B surface antigen (HBsAg) in 1965 

(Blumberg ef a/., 1965) and its association with hepatitis B (Blumberg et a!., 

1968; Okochi and Murakami, 1968; Stoliarova and Burlev, 1973), accurate and 

sensitive assays were developed to identify hepatitis B virus (Lander ef a/., 

1971). 

A novel infection was documented in 1975 when it was noted that many 

cases of post-transfusion associated hepatitis were due to an unidentified 

infectious agent. This was neither due to HBV nor HAV and was clinically and 

epidemiologically distinct from these two infections, leading to be termed a non-

A, non-B hepatitis (NANBH) (Feinstone ef a/., 1975; Mosley ef a/., 1977). The 

etiological agent causing NANBH was shown to be inactivated by chloroform, 

suggesting that it was an enveloped virus (Feinstone ef a/., 1983). The 

approximate size of the virus was detemnined by filtration to be 30-60 nm in 

diameter (He ef a/., 1987). 

In 1989, a random lambda phage cDNA library was constructed from 

nucleic acid extracted from the plasma of a NANBH infected chimpanzee. This 

cDNA expression library was screened with serum from an NANBH patient as a 

source of NANBH antibodies. A complementary DNA clone, termed 5-1-1, was 

isolated which encoded an antigen specifically associated with NANBH and was 

shown to be derived from a viral RNA molecule of at least 10,000 nucleotides 

(Choo ef a/., 1989). The 5-1-1 clone antigen became the basis for the first 

serologic assay for NANBH antibodies and the virus was subsequently 

described as hepatitis C virus (HCV). HCV was found to be associated with 

most cases of NANBH throughout the world (Choo ef a/., 1990; Kuo ef a/., 

1989). 
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1.5 HCV Taxonomy 

HCV is the single member of the Hepacivirus genus in the Flaviviridae 

family. The Flaviviridae (from the Latin word flavus, yellow) is a large family of 

related human and animal viruses with a positive sense single-stranded RNA 

genome. It includes with the Hepacivirus (from Greek word hepar, hepatos, 

liver) two other genera, Flavivirus, and Pestivirus (from the Latin pestis, plague) 

and a group of unclassified viruses (GB) (Fig. 1.2) (Lindenbach and Rice, 

2001). 

Viruses 

r - — - J - — - r ~ 

( ^ D N A ) (ssDNA) ( ^ s R N ^ Retroviruses 

Positive-sense 

Togavindae) (Hepevindae) (Calcivmdae) (Flavivindae) (Picornavindae 

Favivirus Hepacivirus (^stiv'irus^ Unclassified Grouh 
GB virusesy 

Fig. 1.2: HCV Taxonomy. HCV is ssRNA virus of positive sense. It 
belongs to Hepacivirus in Flaviviridae family (Lindenbach and 
Rice, 2001). 
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The Flavivirus genus is represented by yellow fever virus (YFV), dengue 

viruses (DENV), West Nile virus (WNV), and Japanese encephalitis virus (JEV). 

The Pestivirus genus has animal pathogenic viruses such as bovine viral 

diarrhoea virus (BVDV), and classical swine fever virus (CSFV). The degree of 

relatedness between viruses within the Flaviviridae family is shown in Fig. 1.3 

where HCV exhibits more similarity toward the GB viruses, an intermediate 

degree of relatedness with pestiviruses, and more distant relatedness to 

flavivirues. Sequence similarities in part of non-structural 3 protein (NS3) region 

of HCV and GBV-A and GBV-B are 47% and 55%, respectively, while the 

similarity in the same region between GBV-A and GBV-B is 43.5% (Simmonds, 

1996). Although viruses of Flaviviridae belonging to different genera have 

different biological properties, the three genera share common features such as 

virion morphology, genome organization, protein sequence similarities and 

replication strategy (Miller and Purcell, 1990; Murphy etal., 1995). 

mmmrus 

DENl 
DEN 

HCV 
ffepacivir 

Fig. 1.3: Phylogenetic tree of Flaviviridae family members. It 
based on parsimony analysis of NS3 helicase regions. Flaviviridae 
contains Hepacivirus, Flavivirus, Pestivirus and the unclassified 
viruses (GB). HCV is more similar to GBV than other Flaviviridae 
genera (Lindenbach and Rice, 2001). 
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1.6 HCV Genotypes 

Based on phylogenetic analysis of nucleotide sequences derived from 

subgenomic regions such as core/envelope 1 (E1) and non-structural 5B 

(NS5B), as well as complete genome sequences, HCV has been classified into 

six major genotypes (1 to 6), with a number of closely related subtypes (a, b, c, 

etc) within each genotype. The genotypes are relatively closely related with 

between 67 % to 69 % sequence similarities over the entire genome compared 

with 75 % to 80 % between subtypes (Fig. 1.4) (Simmonds ef a/., 2005; 

Simmonds ef a/., 1993). 

Different methods have been used to determine HCV isolate genotype 

such as restriction fragment length polymorphism (RFLP) in the 5' untranslated 

region (5' UTR) and NS5 coding region (Davidson ef a/., 1995), direct 

sequencing of an amplified segment of the genome like 5' UTR, core or NS5B 

(Okamoto, 1995), and by hybridization of an amplified segment of DNA to 

genotype specific probes from the 5' UTR region (Stuyver ef a/., 1993). 

Fig. 1.4: Eyolutionary tree of complete O R F s e q u e n c e s for HCV 
genotypes and subtypes (Simmonds ef a/., 2005). HCV 
has 6 major genotypes denoted 1 to 6. Each genotype has many 
subtypes. 
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Genotypes 1a, 2a, and 2b have a global distribution, while genotype 4 is 

mainly concentrated in Africa and the Middle East. The distribution of genotypes 

worldwide is shown in Figure 1.5 and summarized in Table 1.2 (Simmonds, 

1996; Simmonds etal., 2005; Webster etal., 2000). 

Fig. 1.5: Distribution of HCV genotypes and subtypes 
worldwide (Webster ef a/., 2000). Genotypes l a , 2a, and 
2b have a global distribution, while genotype 4 is mainly 
concentrated in Africa and the Middle East. 

Table 1.2: Distribution of HCV genotypes and subtypes 
worldwide 

Country Miain genotype© 

-la. -th. iZ. 3a 
M M I U W 11 Eivofm la. t b , 29x. 3a 
Wiaatiwn Enropo -la, lb. 2a. 2b. 3)a 
Somlltiiii Eun»|» -It:̂  2c 
l ~ M i n m EuroHpiB' - -lb 

South and Eaattem Asia 3. e 
Turfcay lb 
MidcHa Eaat 4 
CMna Ibk 2a. 2b 
Africa 
Eayp* '4a 
Canteal AMa -t. 4 
Wa alara Afri«:a 2 
South AfHca 2. at Sa 
N U I U M * 11 eantni. Africa 4 . 

Auaaralia la. lb. 2ah 2fo. 3a 
"Tmwmrmwt -llx 2a, 2b 

la. 2b 
1 loiiif ICong 6«s -lb, 2a. 2b 
ThMaand -Ifah 2. a . 6 

lb, 2. 3 
Vialnara -lb. 2. e 
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Different genotypes are found to respond differently to the current 

interferon treatment. In general, people infected with genotypes 1 and 4 

respond poorly to interferon intervention compared with the other genotypes (el-

Zayadi ef a/., 1999; Enomoto ef a/., 2007; Hino ef a/., 1994; Jiao and Wang, 

2005; Kamal ef a/.. 2007; Orito, 2001; Soriano ef a/., 2005; Yuen and Lai, 2006; 

Zein ef a/., 1996). Therefore determining the HCV genotype before starting 

treatment is important as it allows the duration of treatment and the dose given 

to be planned in advance. 

The optimal duration of treatment for HCV using interferon-a 2b plus 

ribavirin is 48 weeks or longer for genotype l b (Drusano and Preston, 2004; Yu 

ef a/., 2006). However, for genotype 2 and 3 the duration of treatment required 

to develop a sustained virologic response (SVR) in 80-85 % of patients is only 

24 weeks (Dalgard ef a/., 2008). Treatment of genotype 4 for 36 weeks is 

considered sufficient (Kamal ef a/., 2007), while treatment of genotype 6 for 48 

weeks is recommended (Nguyen ef a/., 2008). Genotype 5 infection is relatively 

easy to treat with response rates similar to those seen for genotypes 2 and 3 

(Nguyen and Keeffe, 2005). 

1.7 Virion Structure 

The HCV particle is composed of a single-stranded positive-sense RNA 

molecule surrounded by a capsid made up of many identical subunits of vims 

core (C) protein which together form the nucleocapsid. This is surrounded by an 

envelope made up of a lipid bilayer derived from host membranes in which two 

virus glycoproteins (El and E2) are inserted and project about 6 nm from the 

surface of the virion particle (Fig. 1.6) (Kaito ef a/., 2006). 

The virion size is 55-65 nm in diameter, it is spherical and its envelope is 

derived from the cell membranes as a result of budding from the endoplasmic 

reticulum (ER) (Feinstone ef a/., 1983; He ef a/., 1987; Ishida ef a/., 2001; Kaito 

ef a/., 2006; Kaito ef a/., 1994; Li ef a/., 1995; Watanabe ef a/., 1995). 



CHAPTER 1 

Free HCV particles as detected in HCV infected patient plasma were 

determined to have densities of about 1.14-1.16 g/cm^ using sucrose density 

gradient centrifugation (Kaito ef a/., 1994). It was shown using immunoelectron 

microscopy that the HCV inner nucleocapsid is 33-40 nm in diameter and has 

an icosahedral shape, and it was subsequently shown to have a buoyant 

density of 1.22-1.25 g/cm^ (Ishida ef a/., 2001). 

Capsid 

R N A Genome 

Envelope 

Fig. 1.6: HCV virion particle. The HCV particle is composed of a single-
stranded positive-sense RNA molecule surrounded by a capsid 
which together form the nucleocapsid. This is surrounded by an 
envelope made up of lipid bilayer in which two virus glycoproteins 
(El and E2) are inserted (Lindenbach and Rice, 2001). 

1.8 HCV Genome Organization 

HCV genome is a single stranded, positive-sense RNA molecule of 9.6 

kb (Choo ef a/., 1991). It encodes a single long open reading frame (ORF) 

flanked by two untranslated regions (UTR) at the 5' and 3' ends. The ORF 

encodes a single polyprotein of approximately 3030 amino acids which is 

processed co- and post-translationally by various cellular and viral proteases 

into structural proteins (core, E l , and E2) localized at the N-terminus and non

structural proteins (p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B) localized at 

the C-terminus (Fig. 1.7) (Bartenschlager ef a/., 1995; Grakoui ef a/., 1993b). 

HCV genome organization is similar to that of flaviviruses and pestiviruses 

(Choo efa/., 1991). 

10 
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Envelope 2 

=nvelope 1 
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Ion Channel RepI lease 
Replicase ""f* modulation 
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Fig. 1.7: HCV Genome Organization. It encodes a single ORF flanked 
by two 5' and 3' UTRs. The ORF encodes a single polyprotein 
which is processed co- and post-translationally by various cellular 
and viral proteases into ten proteins core, E l , E2 p7, NS2, NS3, 
NS4A, NS4B, NS5A, and NS5B. The main functions of each protein 
are indicated (Bartenschlager ef a/., 1995). 

1.9 5' Untranslated Region (5' UTR) 

HCV 5' UTR is a highly conserved RNA region of 341 nucleotides (Han et 

a/., 1991). The region has a high degree of secondary and tertiary structure with 

a number of stem-loop domains (Fig. 1.8) (Brown et a/., 1992; Honda et a/., 

1999) . It is characterized by the presence of an internal ribosomal entry site 

(IRES) of about 300 nucleotides that directs translation of the viral ORF in a 

cap-independent process (Brown et al., 1992; Fukushi et al., 1994; Reynolds et 

a/., 1996; Wang etal., 1993). 

The IRES is highly conserved between all HCV genotypes (Laporte et al., 

2000) . Its secondary and tertiary structure was predicted from a comparative 

sequence analysis with other related pestiviruses such as BVDV and CSFV 

(Brown et al., 1992). It consists of four structural domains, I to IV, in addition to 

a pseudoknot that fornis a bridge between domains III and IV (Kieft ef al., 2002; 

Lukavsky ef a/., 2003). 

11 
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Ilia 

Fig. 1.8: Secondary structure of HCV 5' UTR (Honda ef al., 
1999). It consists of four structural domains, I to IV and a 
pseudoknot forming a bridge between domains III and IV. Domain II 
has two stem loops while domain III has 5 stem-loops. 

Domain I is a short hairpin not required for the translational activity of the 

IRES but it may have a regulatory role in translation. Domains II, III, and IV 

interact with the ribosomal 40S subunit and are essential for IRES activity 

(Honda ef al., 1996; Rijnbrand ef a/., 2001). Domain II is highly conserved 

between the Flaviviridae family members suggesting an important role for this 

domain in protein translation (Honda ef al., 1999). Recently, Domain II was 

found to have a functional role in promoting elF5-induced GTP hydrolysis and 

elF2/GDP release from the initiation complex during the assembly of the 80S 

initiation complex (Locker ef al., 2007). 

Domain III consists of 5 stem-loops denoted a, b, c, d, and e. It mediates 

the initial recruitment of translational initiation complexes. It can also interact 

with the 40S ribosome subunit and drives the formation of the IRES RNA-40S-

elF3 ternary complex. Domain IV may unfold to position the start codon in a 

suitable position for pairing with the initiator tRNA""^*. The pseudoknot, between 

12 
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domains III and IV, is likely to help in positioning domain IV and the start codon 

for translation initiation (Kieft ef a/., 2001). IRES domains II, III, and IV work 

synergistically to tightly, and precisely position the initiation complex onto the 

HCV ORF start codon (Boehringer et a/., 2005; Kieft et a/., 2001). 

IRES elements were first reported in the 5' UTR region of the poliovirus 

RNA genome (a picomavirus). It was observed that eukaryotic ribosomes could 

bind intemally to the 5' UTR of poliovirus RNA and mediate cap-independent 

translation from the viral RNA. This was confirmed by showing that the 

poliovirus IRES mediated translation when inserted as an intercistronic spacer 

in a bicistronic mRNA reporter construct (Pelletier and Sonenberg, 1988). The 

same finding was also reported for the 5' UTR region of encephalomyocarditis 

virus RNA using a bicistronic reporter construct and in vitro translation assays 

(Jang ef a/., 1988). An IRES also resides in the 5' non-coding region of the 

human immunoglobulin heavy-chain binding protein (BiP) mRNA, a stress 

response protein. BiP can be translated in poliovirus-infected cells when the 

cap-dependent translation of host cell mRNAs is inhibited indicating that the 

IRES translational initiation mechanism is also used by eukaryotic mRNAs and 

not only by viruses (Macejak and Sarnow, 1991). 

The cap-dependent mechanism for protein translation of cellular mRNAs 

can be summarized in the following way: the 40S ribosome subunit associates 

with elF3 followed by binding of the ternary complex (elF2-GTP-Met-tRNA) to 

the 40S subunit. mRNA is activated by binding to cap-binding cellular factors 

such as elF4E, elF4G, elF4A, and elF4B to form the cap-binding complex in an 

ATP-dependent process facilitated by the presence of 7-methyl guanosine cap 

stRJcture at the 5' end of cellular mRNAs (Fig. 1.9). This complex binds to the 

40S subunit to form the 48S complex. The 48S complex starts ATP-dependent 

scanning of the mRNA for the AUG start codon and then the 60S subunit joins 

the 48S complex fonning the 80S initiation complex which starts translation 

(Merrick, 2004; Semler and Waterman, 2008). 

13 
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In cap-independent translation mediated by IRES, the IRES elements form 

secondary and tertiary structure on the RNA upstream to the AUG start codon. 

The IRES thus serves as a nucleus for the formation of the initiation complex by 

direct binding to the 40S subunit (Otto and Puglisi, 2004). Direct IRES-40S 

ribosome binding induces a conformational change in the 40S subunit to 

orchestrate the assembly of the translational preinitiation complex (Spahn et a/., 

2001). This binding positions the ribosome on the initiation codon to start the 

translation by a prokaryotic-like mechanism without the need for eukaryotic 

initiation factors, such as elF4E, elF4A, elF4B, and elF4G (Fig. 1.9) (Hellen and 

Pestova, 1999; Otto and Puglisi, 2004; Pestova etal., 1998; Sizova etal., 1998). 

Cap-dependent: linear ribosome scanning 

43S pre-initiation 
complex 

Cap binding 
complex 

Cap-independent: internal ribosome entry 

Fig. 1.9: Cap-dependent and Cap-independent (IRES) 
translational models (Semler and Waterman, 
2008). Cap-dependent translation requires the presence of 
eukaryotic initiation factors such as elF4E, elF4A, elF4B, and 
elF4G while in the Cap-independent translation the IRES can 
mediate the direct binding with 40S subunit without the need 
for these factors. 
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Many viral and cellular proteins have been shown to bind the 5' UTR and 

play an important role in regulating IRES-mediated translation. HCV core 

protein can affect IRES-mediated translation by competitively binding to the 

stem loop lll-d domain preventing its interaction with the 40S subunit (Shimoike 

ef a/., 2006; Shimoike et a/., 1999), while NS5A was found to downregulate 

IRES activity by an unknown mechanism (Kalliampakou etal., 2005). 

La protein, RNA polymerase III transcription initiation and termination 

factor, was found to enhance IRES-mediated translation by binding to 5' UTR 

(AN and Siddiqui, 1997). Transient expression of La protein completely restored 

the inhibitory action of IFN on IRES-mediated translation (AN and Siddiqui, 

1997; Shimazaki ef a/., 2002). Nuclear ribonucleoprotein L (hnRNP L) was 

shown to interact with the 3' end of the IRES and this binding was correlated 

with the translational efficiency (Hahm ef a/., 1998), while binding of eukaryotic 

translation initiation factor elF3 to the HCV IRES enhanced the efficiency and 

accuracy of binding of the IRES to the 40S subunit resulting in better positioning 

of the start codon (Buratti ef a/., 1998; Sizova ef a/., 1998). The polypyrimidine 

tract-binding (PTB) protein was shown to interact with the 5' UTR and was 

required for IRES-mediated translation (Ali and Siddiqui, 1995) but others have 

reported no effect for PTB on IRES-driven translation (Brocard ef a/., 2007; 

Nishimura ef a/., 2008). 

1.10 3' Untranslated Region (3 UTR) 

The HCV genome tenninates with a 3' untranslated region, 3' UTR. It 

consists of three elements, a short region that has a variable sequence among 

the genotypes which is followed by a polyU/UC stretch, and finally ends with a 

highly conserved region of 98 bases termed the core element or the 3' X region 

which fornis three stem-loop structures (3' SL I, II, and III) (Fig. 1.10) 

(Kolykhalov etal., 1996). 

15 
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V a r i a b l e R e g i o n C o n s e r v e d R e g i o n 

U / U C 

Fig. 1.10: The secondary structure of HCV 3̂  UTR region. It 
consists of three regions; a short variable region followed by a 
polyU/UC stretch, and finally ends with a highly conserved region 
of 98 bases, the 3' X region, which fornis three stem-loop 
structures (Kolykhalov etal., 1996). 

The poly U/UC-repeat region varies in length and sequence amongst the 

different genotypes, whilst the 3' X region is highly conserved between 

genotypes and forms a distinct secondary structure. This region can interact 

with viral and cellular proteins such as the viral RNA-dependent RNA 

polymerase (RdRp) and PTB suggesting an important role for this region in 

HCV genome replication (Ito and Lai, 1997; Tanaka et a/., 1995; Tanaka ef a/., 

1996; Tsuchihara et a/., 1997; Yamada etal., 1996). Like the 5' UTR, the poly U 

tract was shown to interact with La protein which was shown to enhance IRES-

mediated translation (Spangberg ef a/., 1999). The Poly U/UC and 3' X regions, 

but not the variable region, were subsequently shown to be critical for in vivo 

HCV infectivity (Yanagi ef a/., 1999). 

The 3' X region was shown to enhance translation mediated by the HCV 

IRES which may suggest a role for this region in the switch between translation 

and replication (Ito ef a/., 1998; Song ef a/., 2006). It was also possible that the 

role of this region in the enhancement of IRES activity is by enabling ribosome 

recycling for successive rounds of translation (Bradrick ef a/., 2006). 

16 
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1.11 Virus-Encoded Proteins 

HCV genome encodes a single polyprotein (approximately 3030 amino 

acids) which is processed co- and post translationally by various cellular and 

viral proteases into 3 structural proteins, core (C), two envelope ( E l , E2) 

proteins, and 7 non-structural proteins, p7, NS2, NS3, NS4A, NS4B, NS5A, and 

NS5B (Fig. 1.11). In the following section, HCV protein stmctures and functions 

will be discussed in more detail. 

Structural proteins r 
1 

Cellular proteases 

Non-Structural proteins 

a.a. no: 1 

Viral proteases 

— 

384 747 810 1027 1658 1712 1973 2421 3030 

Fig. 1.11: HCV polyprotein processing. The virus polyprotein 
(approximately 3030 amino acids) is processed co- and post 
translationally by various cellular and viral proteases into 3 
structural proteins, core (C), two envelope (E l , E2) proteins, and 
7 non-structural proteins, p7, NS2, NS3, NS4A, NS4B, NS5A, 
and NS5B. Amino acids at the start and end of each protein are 
indicated (Bartenschlager ef a/., 1995). 
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1.11.1 Core Protein 

The first cleavage product of the HCV polyprotein by cellular proteases is 

the basic capsid or core protein with a molecular weight of 23 kDa. The mature 

form of core is a C-terminaly truncated form of 21 kDa (Fig. 1.12). It is the main 

structural component of the viral capsid (Yasui ef a/., 1998). The protein's 

sequence is highly conserved between HCV genotypes (Bukh ef a/., 1994; 

Hijikata ef a/., 1991). The core protein is synthesized in the cytoplasm and binds 

to the endoplasmic reticulum (ER) via its hydrophobic C-tenninal region 

(Santolini etal., 1994). 

Based on the hydrophobic profile of core amino acid content, the protein 

consists of three domains. A hydrophillic domain 1 (amino acids 1-122) is 

localized at the N-terminus. Domain 2 (amino acids 123-174) is a hydrophobic 

region that mediates the attachment of core to lipid droplets after the signal 

peptide peptidase (SPP) cleavage protecting it from degradation upon the 

exposure to the cytoplasm (McLauchlan ef a/., 2002). Domain 3 (amino acids 

175-191) at the C-tenninus is a highly hydrophobic region that acts as a signal 

sequence and membrane anchorage domain (Ma ef a/., 2007; McLauchlan, 

2000). 

N-termlnus C-terminus 

D1 

Fig. 1.12: HCV core products and their hydrophobic domains. 
Two forms of core protein (p23 and p21) are illustrated. Complete 
release and maturation of core requires cleavage of the 
polyprotein by a signal peptidase (SP) and signal peptide 
peptidase (SPP). Amino acid numbers at the borders of each 
domain are indicated (McLauchlan ef a/., 2000). 
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Complete release and maturation of core protein requires cleavage of the 

polyprotein by a signal peptidase (SP) and another cleavage event of the 

transmembrane core signal peptide by an intramembrane protease, the signal 

peptide peptidase (SPP), (Fig. 1.13) (Hussy et al., 1996; Ma eta!., 2007). This 

second cleavage is important for releasing core from the ER membrane 

permitting its targeting to lipid droplets, an intracellular organelle of neutral lipid 

surrounded by phospholipid monolayer bounded by proteinaceous coat, 

(McLauchlan ef al., 2002). It is also required for virus production by facilitating 

association of core with the viral genome, thereby creating suitable sites for 

capsid assembly (Targett-Adams ef a/., 2008). 

C y t o p l a s m 

E R membrane 
Signal peptide 

E R lumen 

Fig. 1.13: Core processing by signal and signal peptide 
peptidases. Core is localized to ER via its hydrophobic C-
terminal region. SP and SPP cleavages are required for 
complete release and maturation of core protein (Ma ef al., 
2007). 

Core possesses an RNA-binding activity in the N-terminus that is involved 

in nucleocapsid fomnation (Hwang ef a/., 1995; Shimoike ef a/., 1999). Core can 

modulate the expression of HCV ORF and a role has been suggested for it in 

the switch between viral polyprotein synthesis and genome encapsidation 

(Reynolds ef al., 1995; Shimoike ef al., 1999). Core interacts with itself in a 

homotypic reaction within the amino-terminal hydrophilic region starting the first 

stage of viral assembly (Matsumoto ef al., 1996). The C-terminal region can 
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interact directly with the E l envelope protein which may be important in virus 

morphogenesis (Lo et a/., 1996; Nakai et a/., 2006). Core also interacts with 

NS5A and this interaction is thought to be important for the association of core 

with the viral genome and nucleocapsid assembly (Masaki ef a/., 2008). 

Core can also interact with the cytoplasmic domain of the lymphotoxin-

beta receptor (LTpR), a member of the tumor necrosis factor receptor family. 

LTpR is involved in a number of cellular functions such as NF-kB activation, 

immunoregulatory responses, proliferation, differentiation, immune organ 

development, and apoptotic signaling. Interaction of core with LTpR may 

regulate these functions allowing HCV persistence and establishing a chronic 

infection (Matsumoto ef a/., 1997; You ef a/., 1999). Furthermore, core can 

induce apoptosis through induction of ER stress and calcium depletion (Benali-

Furet ef a/., 2005) or by the interaction with 14-3-3epsilon protein, a member in 

a family of conserved regulatory molecules expressed in all eukaryotic cells. 

This interaction results in dissociation of Bax/14-3-3epsilon complex releasing 

Bax that activates the mitochondrial apoptotic pathway (Lee ef a/., 2007; Ray ef 

a/., 1996). 

Core can interact with a number of cellular proteins that regulate lipid 

metabolism such as the retinoid receptor a (RxRa), a transcriptional regulator 

for cellular lipid synthesis (Yamaguchi ef a/., 2005). This may be directly linked 

to the development of liver steatosis, an accumulation of lipids in cell (Moriya ef 

a/., 1997; Roingeard and Hourioux, 2008). It was also demonstrated that core 

can modulate microsomal triglyceride transfer protein activity which is 

responsible for very-low-density lipoprotein (VLDL) assembly leading to an 

accumulation of triglycerides in cells and ultimately induction of liver steatosis in 

mice (Perlemuter ef a/., 2002). An in vitro study, showed that core protein from 

genotype 3a patients with liver steatosis caused an accumulation of high levels 

of triglyceride in Huh7 cells when compared to other genotypes (Abid ef a/., 

2005). This difference between genotypes was attributable to the presence of a 

phenylalanine residue at position 164 in domain 2 specific for genotype 3a 

where this residue has a higher affinity for lipids (Hourioux ef a/., 2007). 
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An immunomodulating function has been suggested for core as it can 

interact with STAT1 preventing its IFN-induced phosphorylation and activation. 

This inhibits STATI's nuclear translocation and disrupts the IFN-stimulated 

gene transcription (Bode ef a/., 2003; de Lucas ef a/., 2005; Kawamura ef a/., 

2006; Lin ef a/., 2006). Core can also suppress the host immune response by 

dysregulating T and B lymphocytes function through the interaction with a 

complement receptor, gC1qR (Yao ef a/., 2008). It has been shown that core 

can reduce interferon regulatory factor 1 (IRF-1) expression at the 

transcriptional level (Ciccaglione etal., 2007). 

Using computer-based sequence analysis, an alternate open reading 

frame (ARF) was identified encoding a predicted 16 kDa highly basic protein (F 

protein or ARFP). The alternative ORF overlaps the core-encoding region in the 

+1 reading frame relative to the main polyprotein ORF (Xu ef a/., 2001). F 

protein ORF is present in all HCV genotypes but with different masses. F 

protein expression was observed during HCV infection and specific antibodies 

for this form were detected in HCV infected patients (Troesch ef a/., 2005; 

Varaklioti etal., 2002; Walewski ef a/., 2001). 

Two mechanisms have been suggested for production of F protein, the 

first is by a ribosomal frameshift translation mechanism and the second is by an 

internal translation initiation mechanism. Efficient translation initiation of the 

core+1 (F protein) ORF is mediated by internal initiation codon(s) within the 

core+1-coding sequence, located at the intemal methionine codons 85/87 or at 

codon 26 (GUG or GCG in the viral variants) (Fig. 1.14) (Baril and Brakier-

Gingras, 2005; Vassilaki etal., 2008; Vassilaki and Mavromara, 2003). F protein 

was shown to have a cytoplasmic distribution with partial endoplasmic reticulum 

localization in interphase cells, whereas in dividing cells it localizes to the 

microtubules of the mitotic spindle (Vassilaki ef a/., 2007). 

F protein expression is suppressed by core which may suggest a link 

between F protein expression and the level of viral replication (Wolf ef a/., 

2008). F protein does not have the common functional properties with core 
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protein such as modulation of c-myc and p53 promoter activities and the 

biological function of F protein has been not determined yet (Basu ef al., 2004). 

AAAGAAAAAA 

AUG1 GUG26 AUG 86/88 
0 frame +1 frame +1 frame 
(core)-! 

IRES 

STOPARFP 
+1 frame 

aUTR 

;nt1 nt342 nt825 

Fig. 1.14: IHCV genome sequence indicating alternate reading 
frame protein (ARFP) translation start site (Wolf ef 
a/., 2008). ARFP or F protein translation can start at codons 26 
or 86 due to the ribosome slippage at 8-11 amino acids of core 
sequence. 

1.11.2 Envelope Proteins 

The envelope region of the HCV ORF encodes two envelope proteins that 

are processed co-translationally by host cellular proteases into two 

glycoproteins, E l (31 kDa) and E2 (70 kDa) (Hijikata ef a/., 1991). Both E l and 

E2 consist of a large N-terminal ectodomain and a C-terminal transmembrane 

domain. E l and E2 ectodomains are retained predominantly in the ER lumen as 

a result of the intramembrane signal peptide of core at E l N-tenninus and a 

retention signal sequence present in E l and E2 C-tenninal regions (Fig. 1.15) 

(Choukhi ef a/., 1998; Cocquerel et al., 1998; Dubuisson et al., 1994; Duvet ef 

al., 1998; Martire ef al., 2001; Saadoun ef al., 2004; Santolini ef al., 1994). E l 

and E2 ectodomains are heavily modified by N-linked glycosylation that is 

required for the proper folding of proteins in the ER (Slater-Handshy ef al., 

2004). 
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Cytoplasm 

ER lumen 

Fig. 1.15: intracellular localization of core, E1, E2 and p7 and 
their transmembrane domains. E l and E2 ectodomains 
are localized in ER lumen. E1 and E2 have a transmembrane 
(TM) domain at their C-termini. The figure is modified from 
(Roingeard and Hourioux, 2008). 

Three different classes (I, II, and III) of fusion proteins have been identified 

in viruses. Class I is represented by orthomyxo-, paramyxo-, retro-, and 

filoviruses. Their fusion proteins mature by proteolytic cleavage of the nascent 

protein producing a membrane-anchored domain with a fusion peptide at or 

near the amino-terminus. Class I fusion proteins form spiky projections at the 

surface of the virion and undergo irreversible conformational changes to form a 

hairpin post-fusion structure of three-stranded coiled coils of a-helices (Teissier 

and Pecheur, 2007). 

Class II fusion proteins are represented by the Flaviviridae (Tick-borne 

encephalitis virus (TBEV) and HCV) and Togaviridae (Semliki forest virus 

(SFV)). They are synthesized as a complex of two proteins lying flat on the 

surface of the virion arranged as p-sheets with three distinct domains (Dl, DM, 

and DIN) forming a dimer of head-to-tail orientation. Class II fusion peptides are 

internal and located at the tip of domain II buried at the dimer interface. A 

change in pH causes irreversible conformational changes that expose the 
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fusion peptide to the cellular target membrane facilitating the interaction of the 

fusion peptide with the lipid bilayer (Fig. 1.16) (Teissier and Pecheur, 2007). 

Fig. 1.16: Class II fusion protein of SFV. Class II fusion protein 
consists of three domains (dl, dll and dill). The fusion peptide (FP) 
is present in domain II (Teissier and Pecheur, 2007). 

Class III as represented by Rtiabdoviridae (Vesicular stomatitis virus, VSV) 

and Herpesviridae (Herpes simplex virus, HSV1) shares some common 

features with class I such as three-stranded coiled-coils of a-helices and also 

some features of class II like a long three-stranded p-sheets. Class III fusion 

proteins are characterized by a reversible conformational change exposing the 

fusion peptide upon exposure to low pH (Fig. 1.17) (Teissier and Pecheur, 

2007). 

C l a s s I: HA C l a s s T B E V - E 

Fig. 1.17: 3D-structures of a prototype of the three classes of 
fusion proteins. Class I, tr imerof the influenza hemagglutinin 
(HA) at low pH. Class I is three-stranded coiled coils of a-helices 
while class II arranged as p-sheets. Class III has both, three-
stranded coiled-coils of a-helices and three-stranded p-sheets 
(Teissier and Pecheur, 2007). 
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Envelope protein E of TBEV was used as a template for building 3D-

structure models for HCV El glycoprotein and the results suggested that E l 

belongs to class II fusion proteins (Fig. 1.18) (Garry and Dash, 2003; Yagnik ef 

al., 2000). 

d o m u l n I I I 

tick-b>ome encephalitis virus envelope glycoprotein (E> 

hepatitis C virus envelope glycoprotein 1 CE1> 

Fig. 1.18: 3D structure of TBEV-E and HCV-E1 proteins. 
Proteomics computational analyses were used to predict the 
structure of HCV E l protein using TBEV-E protein structure as a 
template (Garry and Dash, 2003). 

E1 and E2 associate slowly to form two types of stable complexes, a 

disulfide-linked form representing misfolded aggregates and a non-covalent 

E1E2 heterodimer complex which represents the native form of the HCV virion 

glycoproteins that constitute the virion envelope (Brazzoli ef al., 2005; 

Deleersnyder ef al., 1997; Grakoui ef al., 1993b). Productive folding of E2 is 

assisted by E l , while the folding of E l is affected not only by E2 but also by 

core and may be other viral proteins (Brazzoli ef a/., 2005; Merola ef a/., 2001). 

E l contains a highly conserved hydrophobic domain at the C-terminus that 

is similar to the fusion peptides in other Flavivirus proteins suggesting that E l 

has a role in fusing viral and cellular membranes (Garry and Dash, 2003). E l 

and E2 transmembrane regions strongly partition into phospholipid membranes. 
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bind and interact with negatively-charged phospholipids inducing membrane 

structural changes leading to viral and cellular membrane fusion (Perez-Berna 

etal., 2008a; Perez-Berna etal., 2008b). 

An unglycosylated form of E2 (38 kDa) has been observed and, in contrast 

to the glycosylated form, is localized mainly in the cytoplasm. This fonri can 

interact with the interferon-inducible protein kinase, PKR, in the cytosol 

suggesting that E2 has a role in interferon resistance (Pavio ef a/., 2002). E2 

has a region with sequence homology to phosphorylation sites in PKR and the 

translation initiation factor elF2a termed E2-PKR-elF2alpha phosphorylation 

homology domain (PePHD). Via this domain, E2 inhibits phosphorylation of 

elF2a by PKR negating its inhibitory effect on protein synthesis (Taylor ef a/., 

1999; Taylor ef a/., 2001). 

E2 has three hypervariable regions, HVR1, HVR2, and HVR3 located 

within its N-terminal region (Fig. 1.19) (Troesch etal., 2006; Weiner ef a/., 1991). 

The diversity inside these regions is a result of the accumulation of mutations 

during viral replication due to the high error rate of the RNA-dependent RNA 

polymerase (RdRp) (Pileri ef a/., 1998). This variability is the basis of immune 

escape that contributes to viral persistence (Farci etal., 2000; Kato etal., 1992; 

Kato ef a/., 1994). Heterogeneity within HVR regions generates multiple fonns 

of closely related but distinct species (quasi-species) of HCV within the same 

individual and these quasi-species are associated with interferon treatment 

failure in some cases (Enomoto etal., 1994; Morishima etal., 2006). 

N-t A r m 1 n us c-t* rmlnus 

384 A-t O 43-1 466 474 482 746 

Fig. 1.19: HCV E2 glycoprotein main domains. E2 has three 
hypervariable regions, HVR1, HVR2, and HVR3 located within 
its N-terminal region. TMD is localized at the C-terminus 
(Troesch etal., 2006). 
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E2 is responsible for HCV attachment to the target cell by binding to 

potential cell receptors. A number of molecules have been implicated as 

receptors for HCV: CD81 (a member of the tetraspanin family cell surface 

membrane proteins) which expressed on various cell types including 

hepatocytes (Pileri ef a/., 1998), the low density lipoprotein (LDL) receptor 

(Thomssen ef a/., 1992), the very low density lipoprotein (VLDL) receptor 

(Agnello ef a/., 1999; Monazahian ef a/., 1999; Wunschmann ef a/., 2006) and 

the scavenger receptor class B type I (SR-BI) (Grove ef a/., 2007; Scarselli ef 

a/., 2002; Zeisel ef a/., 2007). Co-expression of CD81 and SR-BI receptors in 

non-hepatic cells does not confer susceptibility to HCV entry suggesting that an 

additional hepatocyte-specific co-factor(s) is required for HCV entry (Bartosch ef 

a/., 2003). 

Recently, claudin-1 (CLDN1), a tight junction (TJ) protein that is highly 

expressed in the liver, was identified as an essential co-receptor for HCV entry. 

Expression of CLDN1 in non-hepatic 293T cells which naturally express CD81 

and SR-BI did confer susceptibility to HCV infection (Evans ef a/., 2007), 

although CLDN1 expression failed to make other non-hepatic cells (HeLa and 

NIH3T3 cells) susceptible to HCV infection; this may be due to the intracellular 

distribution of CLDN1 where it was highly enriched at sites of cell-cell contact in 

permissive cell lines but resided predominantly in intracellular vesicles in non-

permissive cells (Yang ef a/., 2008). Cell entry via SR-BI and CD81 was 

enhanced by the presence of HDL (Voisset ef a/., 2005; Voisset ef a/., 2006). 

Thus it is clear that many cellular receptors and co-receptors are involved 

in HCV attachment and entry. The initial viral attachment to the cell membrane 

may involve glycosaminoglycans and LDL followed by interaction with three 

entry factors: SR-BI, CD81, and CLDN1. After that, the virus enters the cells by 

endocytosis followed by fusion of viral and cellular membranes (Fig. 1.20) (Helle 

and Dubuisson, 2008). Expression of EWI-2wint, a partner of CD81, in 

hepatocytes inhibits the interaction of HCV envelope glycoproteins with CD81 

blocking the HCV entry suggesting that a lack of EWI-2wint expression in 

hepatic cells is a contributing factor to the hepatic tropism of HCV (Rocha-

Perugini ef a/., 2008). 
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Fig. 1.20: A model for HCV entry. The viral attachment to the cell 
membrane may involve glycosaminoglycans and LDL followed by 
interaction with three entry factors: SR-BI, CD81, and CLDN1. 
After that, the virus enters the cells by endocytosis (Helle and 
Dubuisson, 2008). 

1.11.3 p7 Protein 

p7, a small (33 amino acids) hydrophobic protein, is localized within the 

endoplasmic reticulum. It has two putative transmembrane domains (TMDs) 

connected by a cytoplasmic loop (Fig. 1.14) (Carrere-Kremer ef a/., 2002). It is 

released from the nascent polyprotein by cellular signal peptidases that reside 

in the ER (Mizushima etal., 1994). 

In vivo and in vitro cross-linking studies in HepG2 cells have indicated that 

p7 oligomerizes as a hexamer to form a calcium ion channel that is blocked by 

the antiviral drug, amantadine (Griffin ef a/., 2003). This activity is similar to that 

of viroporins, a class of virally encoded proteins that homo-polymerize to form 

ion channels, suggesting a role for p7 in the flow of ions from the ER Into the 

cytoplasm (Gonzalez and Carrasco, 2003). A genotype l a clone with a 

mutagenized p7 is not infectious when introduced into chimpanzees suggesting 

that p7 is essential for infectivity (Sakai ef a/., 2003). A role for p7 in virus 

assembly and release has been suggested as a mutation in p7 suppresses 

virus release and impairs production of infectious particles (Jones ef a/., 2007; 

Steinmann etal., 2007). 
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1.11.4 NS2 Protein 

NS2 (23 kDa) is cleaved from the polyprotein by a cellular signal peptidase 

at the p7/NS2 boundary and by a viral protease at the NS2/NS3 junction 

(Santolini et a/., 1995). Based on the hydrophobicity profile and glycosylation 

studies, NS2 topology was predicted to be a transmembrane protein with four 

transmembrane domains with both termini localized to the ER lumen (Fig. 1.21) 

(Yamaga and Ou, 2002). The protease responsible for the cleavage at the 

NS2/NS3 junction is a cysteine protease composed of the C-terminus of NS2 

and the N-terminus of NS3 (Fig. 1.22). It is cis-active and requires zinc ions for 

its activity (Hijikata etal., 1993; Lorenz etal., 2006; Tedbury and Harris, 2007). 

Cytoplasm 

C-terminus 

ER l_umor» 

Fig. 1.21: Predicted NS2 topology. NS2 has four transmembrane 
domains with both termini localized in the ER lumen (Yamaga and 
Ou, 2002). 

NS2 NS3 
* 
810 

U 
907 1026 1206 

t , tt t 
IVIinimai Region for NS2/3 activity 

Hydrophobic Region 

Fig. 1.22: NS2/3 protease structure. A schematic diagram showing 
main domains of NS2 including the minimal region required for 
NS2/3 activity (Welbourn and Pause, 2007). 
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Although NS2 is not essential for viral replication, as subgenomic replicons 

can replicate without NS2 (Lohmann ef a/., 1999), NS2 was found to form 

homodimers and interact with the other non-structural proteins suggesting that 

NS2 may indirectly participate in replication by stabilization of the replication 

complex or by recruiting cellular factors that enhance replication (Dimitrova et 

a/., 2003). NS2/3 protease activity is essential for viral replication in vivo as a 

HCV genome lacking NS2/3 activity failed to establish an infection when 

introduced into chimpanzees (Kolykhalov et a/., 2000). 

NS2/3 processing is required for accumulation of sufficient NS3 protein for 

HCV RNA replication as fusion of NS2 with NS3 induces rapid degradation of 

NS3 which could be a mechanism for regulation of viral replication (Welbourn et 

a/., 2005; Welbourn and Pause, 2007). NS2 protein is also required for NS5A 

phosphorylation (Liu et a/., 1999). NS2 mutant genome impaired the 

intracellular accumulation of virus particles and failed to produce an infectious 

vims (Jones ef a/., 2007). 

NS2 was shown to interact with the pro-apoptotic CIDE-B (cell death-

inducing DNA fragmentation factor (DFF45)-like effector) protein inhibiting its 

apoptotic effect on cytochrome c release from the mitochondria (Erdtmann ef 

a/., 2003). NS2 can inhibit the expression of a number of cytokines such as IFN 

(IFN-a, IFN-p and IFN-lambda1/IL-29) and chemokines (CCL5, CXCL8 and 

CXCL10) suggesting an important role for NS2 in negating the host antiviral 

response that may lead to viral persistence (Kaukinen ef a/., 2006). 

1.11.5 NS3 protein 

NS3 (70 kDa) has a serine protease activity that is responsible for 

cleavage events at the NS3/NS4A, NS4A/NS4B, NS4B/NS5A, and NS5A/NS5B 

junctions and with the NS2 cysteine protease for the NS2/NS3 boundary 

cleavage (De Francesco and Steinkuhler, 2000; Grakoui ef a/., 1993a; Lorenz ef 

a/., 2006). The cleavage at NS3/NS4A junction occurs in c/s but the cleavage at 

the other junctions occurs in frans (D'Souza ef a/., 1994; Lin ef a/., 1994). NS3 
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serine protease activity requires NS4A as a cofactor to form a complex 

essential for efficient cleavage at the NS3/NS4A, NS4A/NS4B, and NS4B/NS5A 

junctions. NS4A enhances, but is not essential for, NS3 mediated cleavage at 

the NS5A/NS5B junction (Failla et a/., 1994; Lin et a/., 1994; Lohmann et a/., 

1996; Tanji et a/., 1995). The NS3 protease catalytic site is formed by a catalytic 

triad of His57, Asp81, and Ser139 (Fig. 1.23). These three catalytic residues are 

highly consen/ed in all identified serine proteases in the flaviviruses and 

pestiviruses (Grakoui et al., 1993a). 

NS3 structure has been shown to have Zn*^ coordinated by Cys96, Cys98, 

Cys144, and His148 residues. Only a slight inhibition on NS3 protease activity 

was observed using EDTA suggesting that Zn*^ may perform a structural rather 

than a functional role such as stabilization of the active site orientation (Kim et 

al., 1996; Lin and Rice, 1995). 

s u b s i t e 

Fig. 1.23: 3D structure of NS3/4A protease. It is showing the three 
residues (His57, Asp81, and Ser139) that form the catalytic triad 
in red, the substrate site (SI) in yellow, and NS4A in purple (De 
Francesco and Carfi, 2007). 

NS3 also possesses nucleoside triphosphatase (NTPase) and RNA 

helicase enzymatic activities located within the C-terminal domain similar to 

other Flaviviridae members (Choo et al., 1991; Kim et al., 1997; Suzich et al., 

1993). As NS3 contains a Asp-Glu-Cys-His motif, it is classified in the DEXH 

subfamily in the DEAD box RNA helicase family (Koonin, 1991; Linder et al.. 
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1989). NS3 was able to unwind up to 500 bp of RNA/DNA or RNA/RNA 

duplexes in the 3' to 5' direction. The hydrolysis of nucleotides or 

deoxyribonucleotides by NTPase activity possibly supplies the energy needed 

for the unwinding reaction (Suzich et a/., 1993). There is an interplay between 

the three enzymatic activities, serine protease, NTPase and helicase, that may 

regulate viral replication (Gwack etal., 1996; Morgenstern etal., 1997). 

NS3 has been shown to limit expression of multiple host defence genes by 

inducing specific proteolysis of the Toll-like receptor 3 adaptor protein, TRIP, 

inhibiting the activation of IFN-regulatory factor 3 (IRF-3) and nuclear factor 

kappa B (NF-kP) via the TLR3 signalling pathway, thereby facilitating 

establishment of a persistent infection (Li et a/., 2005). NS3 also inhibits the 

RIG-I signalling pathway through the cleavage of the interferon promoter 

stimulator-1 (IPS-1) adaptor protein resulting in further suppression of 

downstream activation of IRF-3 and N F - k B (Foy et a/., 2005; Johnson et a/., 

2007; Loo efa/.,2006). 

1.11.6 NS4 proteins 

The HCV NS4 region encodes two non-structural proteins (NS4A and 

NS4B) that are cleaved by NS3 protease in cis at the NS3/4A junction and in 

frans at the NS4A/4B and NS4B/5A junctions (Lin et a/., 1994). NS4A (8 kDa) 

acts as a cofactor for NS3 that enhances its activity and metabolic stability by 

optimizing the orientation of the catalytic residues to form the substrate 

recognition site (Failla et a/., 1994). The first 20 amino acids of NS4A are 

hydrophobic and form a transmembrane domain that anchors NS3 to the ER 

outer surface facilitating formation of the replicase complex (Fig. 1.24) (Brass et 

a/., 2008). The next amino acids from 21 to 32 in the central region of NS4A are 

directly involved in the interaction with NS3, serving as a protease cofactor that 

is essential for proteolytic activity (La Torre et a/., 1998; Lin et a/., 1995; Tomei 

etal., 1996). 
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Substitution mutations in the C-terminal domain of NS4A blocked NS5A 

hyperphosphorlylation and viral RNA replication suggesting that NS4A encodes 

one or more activities that are critical for NS5A hyperphosphorylation and viral 

replication (Lindenbach et a/., 2007). Anti-NS4A antibodies could be used to 

predict the IFN-treatment response of patients with chronic hepatitis C as these 

antibodies were obsen/ed at higher titers in individuals with sustained response 

(Desombere et a/., 2007). 

NS4B is a hydrophobic 27-kDa protein localized to the ER membrane 

(Hugle etal., 2001). NS4B induces a specific membrane rearrangement forming 

a membrane associated foci (MAP), commonly referred to as the membranous 

web, which can serve as scaffold for the formation of the viral replication 

complex (Egger ef a/., 2002). 

NS4B has four transmembrane domains with both N- and C-termini 

localized to the cytoplasm. After processing with NS3 at NS4A/4B junction, the 

N-terminus region is rean-anged and translocated to form a fifth transmembrane 

domain with the N-terminus tail localized to the ER lumen by an unknown 

mechanism suggesting two possible orientations for NS4B (A and B, Fig. 1.24). 

This translocation may rearrange and prepare intracellular membranes for RNA 

replication and/or virus assembly (Lundin ef a/., 2003). The translocation was 

reduced in the presence of NS5A and a mutation within the new 

transmembrane domain (labeled X in Pig. 1.24) failed to rearrange ER 

membranes to form the membranous web (Lundin ef a/., 2006). 

An amphipathic helix (AH) distinct from the other five TMDs was identified 

at the NS4B N-terminus which can mediate membrane association like the 

transmembrane domains. Disruption of this domain by mutagenesis inhibited 

RNA replication as the components of replication complex were found to be 

localized incon-ectly. Interestingly, the AH is highly conserved among HCV 

genotypes suggesting an important role for this region in the HCV life cycle 

(Elazar etal., 2004; Lundin etal., 2006). 
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Fig. 1.24: NS4A and NS4B topology. The diagram is showing the two 
proposed orientation of NS4B. After processing with NS3 at 
NS4A/4B junction, the N-terminus region is rearranged and 
translocated to form a fifth transmembrane domain with N-
terminus tail localized to the ER lumen. The AH region is indicated 
in red colour (Lundin ef a/., 2006). 

1.11.7 NS5 proteins 

The NS5 region encodes two proteins, NS5A and NS5B, that are 

processed by NS3 (Grakoui ef a/., 1993a). NS5A is present in two forms within 

infected cells; a 56 kDa phosphoprotein and 58-kDa highly phosphorylated 

protein (Kaneko ef a/., 1994; Koch and Bartenschlager, 1999). NS5A consists of 

three domains (I, II and III) connected by two small loops and has an 

amphipathic a-helix at the N-terminus of domain I. Domain I contains a zinc 

binding site and by disrupting this site, RNA replication was inhibited suggesting 

that Zn binding is critical for viral replication (Fig. 1.25) (Brass ef a/., 2002). 

i 
[3onrial>-> I H C 2 

SI-l3-fc>inclir>o mo-ti-f 

—* • • • ̂ 3 • • •• • • • 

Fig. 1.25: NS5A main domains. NS5A consists of three domains (I, II 
and III) connected by two small loops with an amphipathic a-helix 
and zinc binding site at the N-terminus of domain 1. Domain 11 has 
the ISDR region while the polyprollne-rich region is localized at the 
stem loop II (Brass ef a/., 2002). 
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The phosphorylation of NS5A is conserved in all flaviviruses suggesting an 

important role for this process in viral replication (Reed et a/., 1998). NS5A 

phosphorylation could have a role in regulation of viral replication as cell culture 

adaptive mutations of HCV replicons that increased RNA replication in Huh7 

resulted in a reduction or disappearance of the hyperphosphorylated form 

(Blight ef a/., 2000; Neddermann et a/., 2004). Hyperphosphorylation of NS5A 

was shown to disrupt the interaction with the human vesicle-associated 

membrane protein-associated protein A (hVAP-A), a cellular protein required for 

efficient replication of the genome suggesting that cellular adaptive mutations 

increase replication by reducing the phosphorylation-dependent dissociation of 

the RNA replication complex (Evans et a/., 2004). Furthermore, virus assembly 

and production were shown to be regulated by phosphorylation of NS5A at a 

specific serine residue (Ser457) without affecting RNA replication levels. This 

phosphorylation was shown to be mediated by casein kinase II (CKII). Targeting 

this site by chemical inhibitors or small interfering RNA (siRNA) impaired the 

release of infectious virus particles (Tellinghuisen et a/., 2008). 

NS5A contains several proline-rich (PXXP) sequences in the loop region 

between domain I and II which are highly conserved among HCV species 

(Kaneko ef a/., 1994). This polyproline region is able to interact with Src-

homology 3 (SH3) domains of a variety of cellular proteins such as Src-family 

tyrosine kinases (e.g. Fyn, Lyn, Hck, and Lck) and perturb their signalling 

pathways which may contribute to the pathogenesis of the virus (Macdonald et 

a/., 2004; Shelton and Harris, 2008). 

NS5A is able to inhibit the epidennal growth factor (EGF) or a virally 

induced phosphorylation of the mitogen-activated protein kinase (MAPK) or the 

extracellular signal-regulated kinase 1 and 2 (ERK1/2) (Macdonald etal., 2005; 

Tan and Katze, 2001). This inhibition could be mediated by the interaction of 

NS5A with the growth factor receptor-bound protein 2 (Grb2) via SH3-binding 

domains interfering with normal transduction pathways in the infected cells (Fig. 

1.26) (Tan ef a/., 1999). It has been also shown that NS5A is able to inhibit the 

trafficking of EGFR to the late endosome attenuating the EGFR signalling 

(Mankouri ef a/., 2008). MAPK mediated phosphorylation of STAT1 and 2 is 
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required for maximal transcriptional activity of IFN-stimulated gene factor 3 

(ISGF3). MAPK function is essential for IFN-a-induced IFN-stimulated response 

element (ISRE)-dependent gene transcription (David etal., 1995), a key step in 

setting up an antiviral status in a cell. 
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Fig. 1.26: Interference of NSSA with EGFR-mediated ERK and 
Jak-STAT signalling pathways (Tan and Katze, 2001). 
NS5A interferes with EGPR signalling pathway by interaction with 
Grb2 disturbing its interaction with SOS and inhibiting the ability of 
SOS to activate Ras and the down-stream MAPK/ERK signalling 
pathway. MAPK mediated phosphorylation of STAT is required for 
maximal transcriptional activity of ISGF3 and is essential for IFN-
a-induced ISRE-dependent gene transcription. NS5A can also 
interact with PKR and inhibit its activity on the translation. 
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Interestingly DENV and WNV, similar to HCV, were shown to require c-Src 

like kinases for virus assembly at the site of RNA replication (Chu and Yang, 

2007; Hirsch ef a/., 2005). NS5A interacts with amphiphysin II, a tumor 

suppressor, via a SH3-binding region inhibiting its apoptotic effect on hepatic 

cells (Nanda ef a/., 2006). Importantly, although mutations within the SH3-

binding motif have a little effect on HCV RNA replication, mutation within this 

region in an HCV infectious genome resulted in a loss of infectivity suggesting 

that this region is involved in productive HCV infection (Nanda etal., 2006; Zech 

ef a/., 2003). 

NS5A apparently contains an interi'eron sensitivity determining region 

(ISDR) (amino acids 237-276), the sequence of which could be correlated with 

increased resistance to I FN (Enomoto ef a/., 1995; Kurosaki ef a/., 1997; 

Maekawa ef a/., 2004). Introduction of mutations into this region increases the 

efficiency of HCV replicon replication in Huh-7 cells (Maekawa ef a/., 2004). 

Like E2, NS5A directly interacts with PKR preventing its dimerization and 

phosphorylation action on el F2a which in tum fails to stop the translation of the 

viral proteins (Fig. 1.26). This interaction is mediated by the PKR binding 

domain (237 to 302 a.a.) that encompass the ISDR region (Gale ef a/., 1998). 

Repression of PKR by NS5A affects many cellular processes such as PKR-

dependent apoptosis and cell growth arrest that may have a role in HCV 

pathogenesis during chronic infection (Reed etal., 1998). 

NS5A also represses the transcription of the cell cycle regulatory gene 

p2^wAFi g cyclin-dependent kinase (cdk) inhibitor, by an unknown mechanism 

promoting cell growth and tumour formation in nude mice (Ghosh ef a/., 1999). 

NS5A also physically associates with the TATA box-binding protein (TBP) and 

the tumour suppressor p53 inhibiting their DNA-binding activities and allowing 

transcriptional regulation of the p21^'^'^'' gene which can inhibit cyclin/cdk 

complexes formation required for the G1/S phase transition of the cell cycle 

(Lan etal., 2002; Majumder ef a/., 2001; May and May, 1999; Qadri etal., 2002). 
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NS5A can interact with other cellular proteins such as the human vesicle-

associated membrane protein A (hVAP-A) that is distributed in a broad range of 

tissues and membrane compartments of the cell suggesting a role in the 

association of the HCV replication complex with membranes (Tu et al., 1999). 

NS5A is able to interact with NS5B by two discontinuous regions of amino acids 

(105-162 and 277-334) and modulates its polymerase activity (Shimakami etal., 

2004; Shirota efa/. ,2002). 

NS5B located at the C-terminal region of the HCV polyprotein is a 68 kDa 

highly conserved phosphorylated protein (Hwang etal., 1997). NS5B contains a 

Glycine-Aspartate-Aspartate (GDD) motif that is commonly found in RNA-

dependent RNA-polymerases (RdRp) (Kamer and Argos, 1984). Subsequently 

NS5B was shown to be the virus RNA polymerase (Behrens ef al., 1996). 

NS5B contains a hydrophobic C-tenninal region of 21 amino acids 

encompassing a putative membrane-anchoring domain localizing the protein to 

the prenuclear region (Fig. 1.27). NS5B lacking the terminal 21 amino acids is 

exclusively distributed within the nucleus although NS5B has no nuclear 

localization signal. Thus nuclear localization of the NS5B truncated form may be 

due to an ability to interact with cellular nuclear-localizing proteins (Yamashita 

etal., 1998). 

ER lumen 

Fig. 1.27: HCV proteins positioning on the ER membrane 
(l\/loradpour ef al., 2003). 
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Four amino acid sequence motifs (A, B, C, and D) have been shown to be 

crucial for RdRp activity of NS5B. Motif A (amino acids 2640 to 2645) is 

involved in nucleotide binding and catalysis, while motif B (amino acids 2702 to 

2711) is probably involved In template and/or primer positioning. Motif C (amino 

acids 2737 to 2739), which contains the ODD motif, is important for NTP 

binding and catalysis. Motif D (amino acids 2762 to 2766) could be also 

Involved In nucleotide binding and catalysis (Lohmann ef a/., 1997). 

NS5B catalytic domain is similar to the human right hand composed of 

fingers, palm and thumb subdomalns. The three-dimensional structure of NS5B 

determined that NS5B has a unique shape due to the extensive Interactions 

between the finger and thumb polymerase subdomains that serve to encircle 

the enzyme active site (Fig. 1.28) (Ago ef a/., 1999; Bressanelll ef a/., 1999; 

Lesburg ef a/., 1999). NS5B oligomerlzes and this oligomerizatlon is necessary 

for polymerase activity (Qin ef a/., 2002). 

Fingers 

Conserved 
patches 

RNA binding groove 

Thumb 

Palm 

Fig. 1.28: NS5B crystal structure. The crystal structure of NS5B 
polymerase is showing the location of the finger, palm and thumb 
domains In addition to the RNA-binding groove (Bressanelli ef a/., 
1999). 
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NS5B interacts with the 3' terminus of the genomic RNA (Cheng ef a/., 

1999), with the core protein via the hydrophobic C-terminal region of NS5B 

(Uchida ef a/., 2002), and with NS5A (Shimakami ef a/., 2004). NS5B was 

shown to interact with all non-structural proteins NS2, NS3, NS4A, NS4B, and 

NS5A that suggested that all non-structural proteins may participate in the 

assembly of the replication complex (Dimitrova ef a/., 2003). NS5B interacts 

with NS3 and modulates its helicase activity suggesting that the two proteins 

are functioning together during the viral genome replication (Jennings ef a/., 

2008). 

Several cellular proteins have been shown to interact with NS5B and be 

involved in RNA replication such as human vesicle-associated membrane 

protein (VAP) subtype A, hVAP-A (Tu ef a/., 1999), hVAP-B (Hamamoto ef a/., 

2005) , nucleolin (Hirano ef a/., 2003; Kusakawa ef a/., 2007; Shimakami ef a/., 

2006) , human homolog 1 of protein-linking intergrin-associated protein and 

cytoskeleton (hPLICI) (Gao ef a/., 2003), and a human RNA helicase (p68) 

(Goh efa/.,2004). 

1.12 HCV Replication 

HCV can only efficiently replicate in human and chimpanzee and therefore 

the study of HCV replication has been hampered by lack of a convenient cell 

culture system and suitable small animal models. Recently, the development of 

HCV replicons has improved the study of the full HCV life cycle in vitro. The life 

cycle of HCV can be summarized as such: 

40 



C H A P T E R 1 

1.12.1 Virus Entry 

HCV initiates the infection via the attachment to the cell which is mediated 

by the interaction of E2 with a cell membrane receptor molecule(s). A number 

of candidates have been implicated as a receptor for HCV such as CD81, LDL, 

VLDL and SR-BI receptors as described in section 1.10.2. In addition, other 

molecules were also suggested to be involved such as the dendritic cell-specific 

intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and the 

related liver endothelial cell lectin L-SIGN (Lozach ef a/., 2003), the 

asialoglycoprotein receptor (ASGP-R) (Saunier ef a/., 2003) and 

glycosaminoglycans (GAGs) (Germi etal., 2002). 

A model has been proposed for the virus entry (Fig. 1.29) (Helle and 

Dubuisson, 2008). The virus initiates the attachment by an interaction with GAG 

and LDLR facilitated by the presence of lipoprotein associated with the vims 

envelope. Then, viral glycoproteins interact with SR-BI and CD81 co-receptors. 

These interactions are enhanced by HDL or inhibited by CD81 binding partner 

(EWI-2wint) which is not present in hepatic cells (Rocha-Perugini ef a/., 2008). 

Following that, the virus envelope glycoproteins-receptors complex interacts 

with CLDN1 probably after a lateral migration to the tight junction (TJ) 

(Dubuisson etal., 2008; Helle and Dubuisson, 2008). 

After attachment, the virus is endocytosed by clathrin-mediated 

endocytosis, followed by a fusion step within an acidic endosomal compartment 

where a lowering in pH of the endosomal lumen induces a change in the 

conformation of the envelope proteins, notably E l , which in turn induces fusion 

of the viral membrane with the endosomal membrane resulting in viral 

uncoating and releasing the nucleocapsid into the cytoplasm. Then, the 

nucleocapsid associates with ribosomes, an interaction that is sufficient for 

releasing the genome from the capsid (Blanchard ef a/., 2006; Flint ef a/., 1999; 

Helle and Dubuisson, 2008). 
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Fig. 1.29: Entry of HCV. A schematic diagram showing the attachment, 
penetration, entry, and uncoating of HCV virion (see the main text) 
(Helle and Dubuisson, 2008). 

1.12.2 Translation of the Viral Genome 

When the positive sense genomic RNA is released into the cytoplasm, it 

acts as mRNA and is translated into a single polyprotein by a cap-independent 

process using IRES-mediated translation (Wang ef a/., 1993). Translation 

occurs on the ER membrane and the produced polyprotein undergoes co- and 

post-translational cleavages as previously described to give stnjctural and non

structural proteins (Bartenschlager ef a/., 1993; Grakoui etal., 1993b; Hijikata 

and Shimotohno, 2004). 

1.12.3 RNA Replication 

The replication complex is assembled on the ER and/or ER-derived lipid 

raft (microdomains that are enriched in cholesterol and sphingolipid) 

membranes where NS5B associates with some cellular and non-structural viral 

proteins (Shi ef a/., 2003). The multiprotein replication complex was also found 

to be associated with NS4B-induced membranous webs in the infected cells 
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that accommodates active RNA replication (Fig 1.30) (Aizaki etal., 2004; Egger 

etal., 2002; Gosert etal., 2003; Schwartz etal., 2004). 

Plus-strand RNA is used as a template by NS5B polymerase to make a 

minus strand RNA copy. NS5B recognizes the 3' end of the genome and directs 

the synthesis in either a primer-dependent (Behrens ef a/., 1996; Lohmann ef a/., 

1997) or in a primer-independent initiation process (Luo ef a/., 2000). The 

minus-strand RNA is used solely as a template to generate many copies of 

positive-strand RNA molecules (10 fold higher than minus strand production) 

suggesting that NS5B interacts with minus strand promoter with a higher affinity 

(200 fold) than plus strand suggesting that the promoter activity on the 

antigenome for replication is more powerful than that on the genome (Dahari ef 

a/., 2007). Within the membranous web, the HCV replication complex is 

protected from nuclease and proteinase attack (Miyanari ef a/., 2003). A 

quantitative analysis estimated that an active replication complex consists of 

one minus-strand RNA, two to ten positive-strand RNA molecules, and several 

hundred copies of the non-structural proteins (Quinkert etal., 2005). 

Proteinase K (29 KD> 
S7 Nudoaso (17 KD) 

< - > F I I M A 

Fig. 1.30: HCV replication complex accommodated within an ER 
membranous web (Quinkert etal., 2005). The viral genome and 
replication complex within the web are protected from the proteases 
and nucleases that are present in the cytoplasm. An active 
replication complex consists of one minus-strand RNA, two to ten 
positive-strand RNA molecules, and several hundred copies of the 
non-structural proteins. 
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1.12.4 Virus Assembly 

The mature virion is composed of a nucleocapsid surrounded by an 

envelope formed by lipid membranes and viral glycoproteins. Assembly of the 

virus particle starts by interaction of the capsid protein with the RNA genome to 

form the nucleocapsid (Majeau ef al., 2004; Shimoike ef al., 1999). The 

nucleocapsid then interacts with the envelope proteins on the cytoplasmic 

surface of the ER membrane to acquire an envelope by budding forming a new 

virus progeny in the ER lumen (Cocquerel ef al., 1999). 

Lipid droplets are involved in the virus assembly and budding as lipid 

droplet-associated core protein recruits the viral replication complex to the ER 

membrane that closely surrounds the lipid droplets. This recruitment is critical 

for production of infectious particles suggesting that some assembly steps take 

place around lipid droplets (Miyanari etal., 2007). 

Overexpression of core, E1, and E2 is sufficient to form virus-like particles 

in insect cells. HCV transcripts were selectively incorporated into these particles 

(Baumert ef al., 1998). Expression of all viral proteins produces infectious virus 

particles in mammalian cells (Huh7) (Heller ef al., 2005; Ishii ef al., 2008). 

Subgenomic JFH1 replicons lacking the entire core to NS2 coding region are 

efficiently encapsidated into vims-like particles indicating that packaging signals 

do not exist in the stnjctural coding region which is similar to the flaviviruses 

(Ishii etal., 2008; Steinmann etal., 2008; White etal., 1998). 

1.12.5 Virus Release 

After the new virus progeny acquires the envelope, it is released from the 

infected cell by budding through the cell membrane followed by exocytosis. 

Trafficking and release of the virus from the cell membrane could be mediated 

by microtubules networks (Boulant ef al., 2008a). 
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1.12.6 Summary of HCV Replication Cycle 

The whole HCV life cycle can be summarized in Fig. 1.32. The virus enters 

the cell by endocytosis via binding to cell membrane receptors. Within the 

endosome, the virus uncoats by fusing with the endosome membrane releasing 

the nucleocapsid into the cytoplasm. Once released, the viral genome is 

translated to form viral proteins. A replication complex is constnjcted from viral 

and host cell proteins in a virus-induced membranous web at the E R surface. 

Viral structural proteins and the synthesized viral genome are assembled to 

form the progeny vims that is released from the cell as a mature virion by 

exocytosis (Racanelli and Rehermann, 2003). 

> LDLorVLDL 
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Fig. 1.32: HCV life cycle (Racanelli and Rehennann, 2003). A schematic 
diagram shows the main steps of H C V life cycle. Details of the life 
cycle are presented in the main text. 
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1.13 Aim of the Work 

A molecular analysis of the HCV-host cell interaction is important to 

understand mechanisms necessary to maintain the viral infection. Therefore, 

the main aim of the work presented in this thesis is to identify host cell proteins 

that can interact with H C V RdRp (NS5B) and may play a role in viral replication 

and/or persistence. The discovery of novel interactions could help in the design 

and development of novel therapeutic strategies. 

In order to achieve this goal, NS5B, a key enzyme in HCV replication, will 

be used as bait in two experimental approaches, a yeast two-hybrid system and 

a pulldown methodology combined with mass spectrometry, to identify the 

interacting host cell proteins. Several areas are targeted as being of interest 

and will be addressed within this thesis such as: 

• Screening of a human cDNA library for potential cellular target 

proteins that can interact with NS5B and determining the nature of 

the interaction. 

• Confirmation of the interactions in vitro and in vivo using pulldown 

a s s a y s and other in vitro a s s a y s such as enzyme-linked 

immunosorbent assay (EL ISA) and far western blotting. 

• Investigation of the biological role of interacting proteins and 

whether this may influence HCV replication using a replicon system. 

In order to facilitate this we need to establish systems not currently in use 

within the laboratory. Primarily, the HCV replicon system needs to be developed 

as well as the lentivector gene delivery system for over-expression or for 

shRNA delivery to knock-down the expression of endogenous proteins. 
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CHAPTER 2 

Materials and Methods 

2.1 Chemicals. Antibiotics and Solutions 

General chemicals, antibiotics and biological chemicals were mainly 

obtained from Sigma, Fluka, BDH, and Merck. Growth media were purchased 

from Oxoid, Difco and Clontech. Enzymes used in molecular biology were 

supplied by Promega, Roche Biochemicals, New England Biolabs and 

Invitrogen. A list of frequently used antibiotics and solutions is presented in 

Table 2.1. Other solutions used in this thesis are listed in the appendices. 

Table 2.1: Common antibiotics and reagents used in thesis 

R E A G E N T S S T O C K 
C O N C E N T R A T I O N 

W O R K I N G 
C O N C E N T R A T I O N 

Ampicillin 100 mg/ml 100 pg/ml 

Carbenicillin 100 mg/ml 100 pg/ml 

Kanamycin 10 mg/ml 30 pg/ml 

IPTG 200 mg/ml Variable 

X-Gal 50 mg/ml in DMF 4 mg/ml 

Imidazole 1M Variable 

RNase 10 mg/ml Variable 

DNase 500 units/ml Variable 

Ethidium Bromide 10 mg/ml 0.5 |jg/ml 
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2.2 Bacterial Strains and Plasmids 

Various laboratory strains of Escherichia coli (E. coli) were employed 

during the course of this study. Strains of HB101 and DH5a were used 

generally for the purpose of plasnnid DNA amplification and maintenance. BL21 

(DE3) strain was used for expression of recombinant proteins. 

2.2.1 Bacterial Strains 

STRAIN S O U R C E G E N O T Y P E 

E . CO/ /HB101 Promega thi-^. /7sdS20(rB-, ma-), supE44, recA13, ara-14, leuB6. 
proA2, / a c Y I , ga/K2, rpsL20(str'), xyl-5, mtl-^ 

E . coli DH5a Invitrogen <p80d/acZAM15, recA^, endA^. gyrAB. thi-^. hsdRM{rK-. 
m K + ) , supE44. relA^. deoR. h(lacZYA-argP) U169, phoA 

E . coli BL21 (DE3) Novagen F - , ompJ, A7sdSB(rB-. T I B - ) , dcm, gal, A(DE3) 

E. co/ /XL1-Blue Novagen recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [f 
proAB laclqZAM15 Tn10 (Tetr)] 

2.2.2 Storage of Bacterial Stocks 

All bacterial stocks were prepared for long term storage by combining 

fresh overnight culture with 80% (v/v) glycerol stock solution to give a 25% (v/v) 

final glycerol concentration. Samples were stored at -80°C. 
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2.2.3 Vectors Used in Thesis 

V E C T O R S S O U R C E A P P L I C A T I O N 

pCV-H77c (Access. No. 
AF011751) 

J . Bukh (Bethesda, 
USA) 

HCV cDNA (genotype 
l a ) clone 

pFKi341 P iLucNSS-S 'dgET 
(pFK-luc) (Appendix 9.12) 

R. Bartenschlager, 
(Heidelberg, Gemnany) 

HCV sub-genomic 
replicon (genotype 1 b) 

pWPXL Tronolab (Switzerland) Lenti-vectors 
PSPAX2 Tronolab (Switzerland) Lenti-vectors 
pMD2G Tronolab (Switzerland) Lenti-vectors 
pLVTHM (Appendix 9.13) Tronolab (Switzerland) Lenti-vectors 
pLVTHM-shGFP Tronolab (Switzerland) Lenti-vectors 
pGBKT7 Clontech Yeast two-hybrid 
pGADT7 Clontech Yeast two-hybrid 
pET21d Novagen Bacterial 

expression 
protein 

PGEX-6P-3 G E Healthcare (Life 
Sciences) 

Bacterial 
expression 

protein 

pNTAP Stratagene Mammalian 
expression 

protein 

pcDNA4His/Max Invitrogen Mammalian 
expression 

protein 

2.3 Source of Antibodies 

Antibodies used in this study and their sources were listed below: 

ANTIBODY ANTIBODY T Y P E 
(DILUTION USED) 

S P E C I E S S O U R C E 

a -NS5B Polyclonal (1:2000) Sheep Kindly provided by Mark 
Harris (Leeds University) 

a -NS5B Polyclonal (1:2000) Rabbit Abeam 

a-His-HRP Monoclonal (1:3000) Mouse Sigma 
a - G S T - H R P Monoclonal (1:3000) Mouse Sigma 

Anti-a-Tubulin Monoclonal (1:1000) Mouse Calbiochem 
Anti-p-Tubulin Monoclonal (1:10) Mouse Kindly provided by Roy 

Quinlan (Durham 
University) 

a-Mouse-HRP Polyclonal (1:2000) Goat Sigma 
a-Rabbit-HRP Polyclonal (1:2000) Sheep Sigma 
a -Sheep-HRP Polyclonal (1:2000) Donkey Sigma 
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2.4 Centrifuqation 

Routine centrifugation of 1.5-ml and 0.5-ml tubes was performed using a 

bench top centrifuge (Eppendorf). Routine centrifugation of 15-50-ml Falcon 

tubes was carried out in (Boeco U320R). For larger volume and high speed, 

centrifugation was performed using Beckman's Avanti J - E centrifuge with either 

JA-20 or JA-10 rotors. 

2.5 Annealing of Oligonucleotides 

For RNA interference (RNAi) studies, two complementary DNA 

oligonucleotides were annealed together to form a DNA double-stranded insert 

(Chapter 5, Fig. 5.6) that was cloned into pLVTHM (Appendix 9.13) to create 

pLVTHM-shRNA that was used in Section 5.4.2 to down-regulate a target gene 

expression. The same annealing protocol was also used to create V5H insert 

(Appendix 9.10) to be cloned into pWPXL giving pWPXL-V5H (Appendix 9.11) 

that was used in Section 5.3. 

COMPONENT VOLUME CONCENTRATION 

Sense Sequence 10 Ml 30 Mg 
Anti-sense sequence 10 Ml 30 Mg 
lOx PGR Buffer 10 Ml 1x 
dHjO 970 Ml -
Total vol/Final cone. 1000 Ml 60 ng/Ml 

T h e mix w a s incubated at 96 °C for 10 min, and then the temperature 

w a s d e c r e a s e d slowly to 60 °C for 30 min. T h e mix w a s stored at - 20°C 

until needed . 

2.6 PGR (Polymerase Chain Reaction) Techniques 

P C R using Techne TC3000 Thermal Cycler was frequently employed in 

this thesis for amplifying and screening the cloned O R F s . Generally, ProofStart 
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DNA Polymerase (Qiagen) was used for O R F s cloning, screening of successful 

cloning, and for semi-quantitative R T - P C R . 

2.6.1 PGR 

P G R was routinely carried out according to the instructions provided by the 

manufacturer of the amplifying polymerase. General reaction composition and 

condition used for cloning using ProofStart DNA polymerase (Qiagen) are 

described below. 

The P G R mix was prepared as following: 

COMPONENT FINAL CONCENTRATION 

10X PGR buffer 1X 
dNTP mix (10 mM Each) 300 of each dNTP 
Forward Primer V M 
Reverse Primer ^^lM 
Polymerase Enzyme 2.5 units/reaction 
Template DNA 10Ong /reaction 
dHzO Variable 
Final Volume 25-50 Ml 

A themrial cycler (Techne) was programmed for the P G R reaction as follows: 

C Y C L E TEMPERATURE TIME 

Initial activation of Polymerase 95°C 5 min 

35 cycles :-
• Denaturation 94°C 30 sec 
• Annealing 55°C 30 sec 
• Extension 72°C 1 min/kb 

Final extension 72°C 10 min 
Hold 4°C Indefinitely 

The amplified DNA samples were used directly or stored at 4°G for later use. 
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2.6.2 Colony PGR Screening 

For screening for successful cloning using colony P G R , one colony was 

isolated from LB medium plate (Appendix 9.1) containing colonies developed 

from cells transformed by a mixture of ligation reaction. The colony was used to 

inoculate a fresh numbered LB agar plate using a sterile tip and then the 

remaining amount of colony on the tip was mixed with P G R mixture in P G R 

tube. The composition of P G R mixture and the condition were perfomied as 

described earlier in P G R usually in a total volume of 25-40 pi. 

2.7 DNA Agarose Gel Electrophoresis 

Amplified DNA plus a 6x DNA loading buffer (Appendix 9.2) were loaded 

and electrophoresed on a 0.8-2% agarose gel prepared in TAB buffer 

(Appendix 9.2) using a gated mini-gel tank (BioRad) and containing ethidium 

bromide (0.5|ig/ml) for 40 minutes at 100 Volts (V). Ready-Load Ikb DNA 

Ladder, 100 bp DNA Ladder (Invitrogen) or Ikb DNA Ladder (Promega) were 

routinely used a s a molecular weight standard as a reference in the agarose 

gel. The gel was visualised on a UV transilluminator equipped with a camera 

(Syngene) to capture an image of the gel. Images were manipulated by 

GeneSnap software program. 

2.8 DNA Isolation and Extraction from Agarose gel 

The DNA fragment was excised and extracted from the agarose gel 

following the manufacturer's instructions using QIAquick® Spin Kit (Qiagen) or 

the Wizard S V Gel and P G R Glean-Up System (Promega). 
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2.9 Determination of Nucleic Acid Concentration 

Nucleic acid concentration was detennined by combining 5 pi of nucleic 

acid with 995 pi dH20 in a quartz cuvette. H2O was used as a reference. 

Absorbance at 260 nm (OD260) was determined. The concentration of the 

nucleic acid was calculated follows: 

IOD260 = 50 pg ds DNA or 25 pg s s DNA or 40 pg RNA 

2.10 Restriction Endonuclease Digestion 

DNA digestion with restriction enzymes was performed to create the 

correct ends in plasmids and DNA fragments enabling ligation or to cut the O R F 

from one plasmid to sub-clone in another one. It was also used for screening for 

successful ligation and cloning. Most of enzymes were obtained from Promega. 

The following components were added to a single microcentrifuge tube. 

C O M P O N E N T 
FINAL 

C O N C E N T R A T I O N 

10x Suitable Buffer 1x 
Bovine Serum Albumin (BSA) 0.1mg/ml 
Restriction Enzyme 1 5 units/pg 
Restriction Enzyme 2 5 units/|jg 
dHzO variable 
Template DNA variable 

The components were mixed well and incubated at 37°C for 3-4 hrs. If 

digestion with two enzymes using incompatible buffers was needed, the DNA 

was cut with the first one as a single cut followed by ethanol precipitation or gel 

extraction and then resuspended in dH20. After that, the DNA was cut with the 

second enzyme. The result of digestion was tested by loading on 0.8-2% 

agarose gel stained with ethidium bromide and visualized by UV trans-

illuminator. All the restriction sites and primers used for cloning or screening in 

this study were listed in Appendix 9.11. 
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2.11 Ethanol Precipitation of Nucleic Acids 

Ethanol precipitation was routinely used for removing salts and allowing 

buffer exchange. The following components were mixed. 

C O M P O N E N T C O N C E N T R A T I O N 

DNA 1 Volume 
3M Sod. Acetate, pH 5 1/10 Volume 
100% Ethanol 2.5 Volume 

The tube was incubated at -20°C for at least 2 hrs, and then centrifuged at 

14.000 X g for 30 min at 4°C. The supernatant was discarded and the pellet 

washed once with cold 70% ethanol, and centrifuged at 14.000 x g for 5 min. 

The supernatant was discarded and the pellet left to dry in air for 15 min. The 

DNA pellet was resuspended in dH20 and used directly or stored at -20°C. 

2.12 Phenol/Chloroform Extraction of Nucleic Acids 

Phenol/chloroform extraction was performed to remove contaminating 

proteins and lipids while isoamyl alcohol (lAA) was used to prevent foaming. 

DNA volume was adjusted 100 pi with dH20 and then mixed with an equal 

amount of buffer-saturated phenol : chloroform (25 : 24). The sample was 

mixed well by vortexing for 30 s e c then placed on ice for 1 min before 

centrifugation at 14,000 x g for 5 min at RT. The aqueous layer (upper layer) 

was carefully removed and transferred to a fresh tube. These steps were 

repeated for one more time to purify the remaining DNA from phenol. Collected 

aqueous layers were combined and mixed with an equal amount of 

chlorofonn/isoamyl alcohol (lAA) (24 : 1) and the procedure was repeated. DNA 

was precipitated from the aqueous layer by ethanol precipitation and then 

resuspended in dH20. 
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2.13 De-Phosphorvlation Using Shrimp Alkaline Phosphatase 
(SAPl 

Dephosphorylation was usually performed for removing the 5' phosphate 

from linearized vector DNA plasmid preventing self-ligation and recircularization 

of linearized cloning vector DNA. The following components were added to the 

microcentrifuge tube. 

C O M P O N E N T V O L U M E C O N C E N T R A T I O N 

Linearized vector plasmid 20 pi 0.3 pg/pl 
lOx S A P Buffer 3 pi 1x 
S A P 1 Ml 1 unit 
dH20 6 pi 
Total Volume 30 pi 

The components were mixed and incubated at 37°C for 1 hr, and then S A P 

enzyme was heat-inactivated at 75°C for 15 min. Dephosphorylated plasmid 

was ethanol precipitated and re-suspended in dH20 before use in ligation 

reaction. 

2.14 Ligation Reaction 
For ligation reaction, 300 ng of the DNA fragment was combined with 100 

ng of vector DNA in 3:1 ratio irrespective of the size of DNA fragment and 

vector. The following components were added to the microcentrifuge tube. 

C O M P O N E N T V O L U M E 
F INAL 

C O N C E N T R A T I O N 

dHsO 4 pi 
Plasmid Vector 1 pi 100 ng 
DNA Insert 3 pi 300 ng 
10x T4 Ligase Buffer 1 pi 1x 
T4 Ligase (Promega) 1 pi 2.5 units 
Total Volume 10 pi 

Plasmid, insert and dH20 were mixed first and incubated at 65°C for 15 

min. Then the ligase buffer and T4 ligase were added and incubated at 16°C for 

30 min and left at 4°C o/n. The mix was used directly for bacteria 

transformation. 
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2.15 Preparation of Ghemicallv Gompetent Bacterial Gells 

A single colony of E . coli was selected from a fresh LB agar plate for 

inoculating a 10 ml LB overnight (O/N) starter culture. 100 ml of LB liquid media 

was inoculated with 1 ml of O/N culture and incubated at 37 °G with shaking at 

200 rpm until ODeoo of 0.8-1. The culture was incubated on ice for 20 min then 

centrifuged at 4000 rpm for 10 min at 4°G. The supernatant was poured off and 

the cells were resuspended in 50 ml of ice cold 0.1 M GaGb and incubated on 

ice for 30-60 min. The cells were centrifuged at 4000 rpm for 10 min at 4°G and 

then the supernatant was poured off and the cells were resuspended in 20 ml of 

ice cold 0.1 M G a G ^ . The last step was repeated two times reducing the volume 

of 0.1 M GaGl2 by half each time and then the cells resuspended in 5 ml of 0.1 

M GaGb containing 20 % glycerol and dispensed in 80 pi aliquots and stored at 

-80°G. 

2.16 Transformation of Ghemicallv Gompetent Gells 

1-5 |il of a plasmid or ligation mixture was added to a 40 inl aliquot of 

competent cells. The cells were incubated on ice for 30 min before heat 

shocked at 42°G in water bath for 42 seconds. The cells were incubated on ice 

for a further 2 min. 1 ml of LB liquid medium was added to the cells and 

incubated at 37°G with shaking at 250rpm for 1 hour. 100 îl of cells were 

spread onto LB agar plate containing an appropriate antibiotic and then the cells 

incubated at 37°G o/n. 

2.17 Site-Directed Mutagenesis 

Mutagenesis was perfonned using the QuikGhange® II Site-Directed 

Mutagenesis Kit (Stratagene) according to the manufacturer instructions to 

create carboxyl-terminal deletions of increasing size within P L S G R 1 O R F in 

p G A D - S G R ( p G A D - S G R D I , p G A D - S G R D 2 and pGAD-SGRD3) . A series of 

primers were designed to introduce a premature stop codon and a Sad 

restriction site at the end of each domain (Appendix 9.11). PfuTurbo® DNA 
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polymerase was used to amplify the mutants P L S C R 1 O R F s using the 

designed primers. Components of a single mutagenic reaction were prepared 

a s following. 

COMPONENT FINAL CONCENTRATION 

10X Reaction buffer IX 
dNTP mix V I 
Fon/vard Primer 125 ng 
Reverse Primer 125 ng 
PftyTurbo® DNA polymerase 2.5 units 
Template DNA 50 ng 
dHzO To 50 pi 

The P G R reaction cycling parameters were adjusted as following: 

C Y C L E TEMPERATURE TIME 

Initial activation of Polymerase 95°C 30 sec 

18 cycles:-
• Denaturation 95°C 30 sec 
• Annealing 55°C 1 min 
• Extension 68°C 9 min (Imin/kb) 

Final extension 68°C 5 min 
Hold 4°C Indefinitely 

The products were then treated with Dpnl restriction enzyme (10 units) that 

targets 5"-Gm^ATC-3' sequence in the methylated parental strand of DNA 

causing its removal by digestion where DNA plasmids extracted from most of 

bacterial strains are Dam methylated and therefore susceptible to Dpnl 

digestion. Mutated plasmids were then used to transfomn XL I -B lue 

supercompetent cells as described before for normal transformation protocol 

except using NZY" liquid medium in place of LB liquid medium (Appendix 9.1). 

Plasmids were extracted from some colonies growing on LB-ampicillin agar 

plates 0 /N. Plasmids were subjected to restriction analysis to confirm the 

presence of Sad restriction site. DNA sequencing was performed for successful 

mutants using AD-F and AD-R sequencing primers. 
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2.18 Extraction of Plasmids from Bacteria 

Plasmid extraction from bacteria was usually performed using Pure Yield™ 

Plasmid Miniprep System (Promega) or Qiaprep Spin Miniprep Kit (Qiagen) 

according to the instructions provided by the manufacturers. When a large 

amount of DNA plasmids were required, Qiagen Plasmid Midi Kit or Qiagen 

Plasmid Mega Kit (Qiagen) was employed following the manufacturer's 

instructions. 

2.19 Storage of the Recombinant Plasmids 

Chemically competent bacterial cells were transformed by the recombinant 

plasmids. Plasmids were extracted and purified from the cells and stored at -

20°C. Glycerol stocks of bacterial cells transformed with the plasmids were 

prepared and stored at -80°C for future reference. 

2.20 DNA Seguencing 

DNA sequencing was performed by Durham Biological Sc iences (DBS) 

Genomics Unit using a 3730 DNA Analyser (Applied Biosystems). 

2.21 Working with RNA 

2.21.1 RNA Extraction 

RNA extraction was performed using the S V Total RNA Isolation System 

(Promega) following manufacturer instmctions. TRIzol® L S Reagent 

(Invitrogen) was also used to extract total cellular RNA from mammalian cells. 

For cells grown a s a monolayer in 75 cm^ tissue culture flasks, DMEM medium 

was removed from the flask and 0.75 ml of TRIzol reagent was added directly to 

the cells. Cells were pellet by centrifugation and incubated with TRIzol for 5 min 

at R T to permit the complete disruption of the cellular material. 0.2 ml of 

chloroform was added to the solution and mixed well by vigorous shaking by 

58 



C H A P T E R 2 

hand for 30 s e c then incubated at R T for 10 min followed by centrifugation at 

12,000 X g for 15 min at 4°C. Following centrifugation, the mixture separated 

into a lower red, phenol-chloroform phase, an interphase, and a colourless 

upper aqueous phase. The aqueous layer which exclusively contains RNA was 

transferred to a clean tube and RNA precipitated by mixing with 0.5 ml 

isopropanol, incubated at R T for 10 min then centrifuged at 12,000 x g for 10 

min at 4-8°C. The RNA precipitate was washed once with 0.5 ml 70 % ethanol 

and centrifuged at 7,000 x g for 5 min at 4°C. Ethanol was removed and RNA 

pellet was left to air-dry for 5 min at RT. RNA pellet was resuspended in 

appropriate volume of RNase-free water. In order to remove any contaminant 

DNA, 10 pi of RNA was treated with 1 unit of RNase-Free DNase (Promega) for 

10 min at 37°C followed by heat inactivation of DNase for 10 min at 70°C. 

Concentration of RNA was detemiined at 260 nm as described before. 

2.21.2 Reverse Transcription (RT)-PCR 

R T - P C R was performed for isolation of full-length O R F s for cloning or for 

screening of gene expression using specific sets of primers. R T - P C R was 

carried out using Superscript III Reverse Transcriptase (Invitrogen) or by using 

M-MLV Reverse Transcriptase (Promega) following the manufacturer's 

instructions. 

First-Strand cDNA Synthesis 

First strand cDNA was prepared in 20 pi total reaction volume. The 

following components were added to a nuclease-free microcentrifuge tube: 

COMPONENT VOLUME CONCENTRATION 

Reverse Primer (1 pM) 2 Ml 2 pmol 
dNTPsMix (10 mM) 1 pi 500 pM 
RNA 1 pi 1 pg 
dhzO 9 pi -
Total Volume 13 Ml 
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The components were mixed and incubated at 65°C for 5 min then put on 

ice for 1 min. The following components were added to the reaction mixture. 

COMPONENT VOLUME CONC. 

5X 1̂ ' Strand Buffer 4 Ml IX 
0.1M DTT 1 Ml 5 mM 
RNaseOut RNase Inhibitor (Invitrogen) 1 Ml 40 units 
Reverse Transcriptase (Invitrogen) 1 Ml 200 units 
Total Volume 7 Ml 

The components were mixed well, incubated at 25°G for 5 min then at 

55°C for 45 min followed by inactivation of the reaction at 70°C for 15 min. The 

first strand (cDNA) was stored at 4°C for next day use or 2 MI was used directly 

as a template in P G R reaction a s previously described. 

In order to compare the induction of some genes using R T - P G R , band 

intensity of the test sample was divided on the p-actin band intensity of the 

same sample then the obtained value was divided on those obtained from the 

control sample to obtain the fold induction between the test and the control 

sample. 

2.21.3 Nested RT-PCR 
A nested R T - P G R was carried out to isolate the full-length sequences of 

P L S G R 1 , ZNF143 and p-Tubulin for cloning into different plasmids. Nested 

P G R increased the P G R product yield by involving two rounds of amplification 

reactions. Generally, the first-round of R T - P G R involved two primers designed 

for DNA sequences flanking the O R F sequence and was performed according 

to the previously described R T - P G R protocol. Subsequently, an aliquot of the 

first-round R T - P G R product was used as a template for the second-round of 

amplification reaction by P G R . The second-round P G R was perfonned with a 

new set of primers that hybridize to sequences internal to the first-round primer-

target sequences and exactly amplify the target O R F sequence. The second-

round primers were designed to contain restriction sites at both O R F ends to 

facilitate O R F cloning into the suitable vectors. 
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2.22 Protein Manipulation 

2.22.1 Protein Quantification 
Protein concentration was determined according to Bradford method 

(Bradford, 1976) using BioRad Protein Assay Dye Reagent (BioRad). Known 

concentrations of bovine serum albumin (BSA) were used as a reference. In 1 

ml total volume, protein sample was added to dH20 to a final volume of 800 pi. 

200 pi of dye reagent was added and mixed well with the protein sample by 

inverting. Samples were transfen-ed to plastic cuvettes and the absorbance was 

measured at 595 nm using water as a blank. Protein concentration of the 

sample was calculated by comparing with BSA standard curve. 

2.22.2 Sodium Dodecyl Sulfate-Polyacrylamide Gel 

Electrophoresis (SDS-PAGE) 

Protein samples were mixed with 1X SDS sample buffer (Appendix 9.4.1) 

and boiled at 95°C for 5 min then separated by 10 % SDS-PAGE in I X Tris-

Glycine running buffer (Appendix 9.4.1) as previously described (Laemmli, 

1970) using BioRad Proteon II minigel apparatus according to the 

manufacturer's instructions. All reagents used in the SDS-PAGE were 

purchased from Flowgen and listed in the appendix 9.4.1. The resolving gel of 

10 % acrylamide percentage was prepared and immediately poured between 

two glass plates and left for 5-10 min for crosslinking and solidification. The 

stacking gel (5 %) was prepared and poured onto the top of resolving gel. 

Protein samples were electrophoresed at 50 V for 10 min then at 200 V for 40 

min or until the bromophenol blue dye of the sample buffer reached the bottom 

of the gel. SeeBlue Pre-Stained Standard (Invitrogen) was used as guide for 

protein size. The gel was removed from the electrophoresis apparatus and the 

protein bands visualized by staining with coomassle blue stain for 2 hrs at RT 

then the background stain was reduced by incubating the gel in de-stain 

solution. Alternatively, the proteins were transferred from the gel to a 

nitrocellulose membrane for western blotting analysis. 
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2.22.3 Western Blot (WB) Analysis 

Protein samples were resolved by 10 % SDS-PAGE as described below. 

Using western blotting apparatus (BioRad), proteins were transferred from the 

gel to the Enhanced chemiluminescence (ECL) grade nitrocellulose membrane 

(Amersham Bioscience). All reagents used in WB are listed in the appendix 

9.4.2. Voltage of 100 V was applied for one hour. After stopping the run, the 

membrane was placed in blocking buffer (5 % (w/v) non-fat dry milk in TBST) 

0/N at 4°C to prevent non-specific background binding of primary and 

secondary antibodies to the membrane. After blocking, the membrane was 

washed three times with TBST 5 min each. The primary antibody was prepared 

in a suitable dilution in blocking buffer, and then incubated with the membrane 

for Ihr at RT with shaking. The primary antibody was removed and the 

membrane was washed three times before adding the secondary antibody 

conjugated to horseradish peroxidase (HRP) diluted in blocking buffer for I h r at 

RT. The membrane was washed as described before and bands were 

developed using ECL solutions (A and B). An equal volume of both solutions 

were combined and added immediately to the membrane in a dark room and 

incubated for 1 min at RT. The membrane was removed and placed in a 

developing cassette then exposed to an X-ray film for appropriate time (seconds 

to minutes). The film was then developed using Developer and Fixer solutions. 

2.23 Yeast Two-Hybrid System 

Yeast two-hybrid screening was performed for detection of cellular proteins 

interactions with HCV NS5B using MATCHMAKER GAL4 Two-Hybrid System 

3. Human HeLa MATCHMAKER cDNA library (Clontech) (HeLa S3 cell line, 

ATCC: CCL 2.2) was employed in this system. The cDNA library had been 

cloned into pGAD GH using EcoRI/Xhol cloning sites then amplified in E. coli 

DH10B and stored in LB medium with 25 % glycerol. 
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2.23.1 Yeast Strain, Genotype and Phenotype 

STRAIN S O U R C E GENOTYPE 

AH 109 
(Saccharomyces 
cerevisiae) 

Clontech MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, 
ga/4A, ga/80A, LYS2 ; ; GAL1UAS-GAL1TATA-HIS3, 
GAL2UAS-GAL2TATA-ADE2. URA3 : : MELIUAS-
MELITATA-ISCZ 

AH 109 Phenotvpe 

1. Nutritional Requirements: AH109 requires growing on YPDA medium 

supplemented with Tryptophan (Trp), Leucine (Leu), Histidine (His) and 

Adenine (Ade) amino acids as AH109 can't grow on Minimal Synthetic 

Dropout (SD) medium lacking one of the above amino acids. 

2. Colony Colour: AH109 has Ade2-101 phenotype. In absence of GAL4, 

AH109 colony exhibits Ade2-101 phenotype that develops colony with 

reddish-brown colour. In the presence of protein interactions, Ade marker 

expression complements in cis the Ade2-101 phenotype and the colony 

develops white to pale pink colour. 

3. MEL1 and LacZ Reporter Gene Expression: In response to GAL4 

activation by protein interaction, AH109 secretes a-galactosidase and p-

galactosidase (LacZ) that can be detected on medium containing X-a-

Gal or X-Gal, respectively. 

2.23.2 Control Vectors 

• Positive control: 

o pCLI plasmid encodes full-length, wild type GAL4 providing a 

positive control for a- and p-galactosidases. 

o pGADT7-T and pGBKT7-53 encode SV40 large T-antigen and 

murine p53 proteins in fusion with GAL4 DNA activation domain 

(DNA-AD, amino acids 1-147 of GAL4 protein) and GAL4 DNA 

binding domain (DNA-BD, amino acids 768-881 of GAL4 protein), 

respectively. Both proteins can interact together to provide a 

positive control. 
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• Negative control; 

pGBKT7-Lam plasmid encodes human lamin C protein in fusion 

with DNA-BD. The plasmid was used as control for a fortuitous 

interaction between an unrelated protein and the tested proteins. 

2.23.3 Storage of AH109 

AH109 cells were stored in YPDA liquid medium (Appendix 9.5) with 25 % 

glycerol at -80°C for later use. Transfomried yeast cells were stored in the 

appropriate SD liquid medium (Appendix 9.5). To prepare working stock plate, a 

small portion of the frozen glycerol stock was streaked onto YPDA or the 

appropriate SD agar plate. The plate was incubated at 30°C for 3-5 days till 

yeast colonies were approximately 2 mm in diameter. 

2.23.4 Preparation of Yeast Competent Cells 

From a freshly prepared yeast plate (3-4 days), one colony was isolated 

and used to inoculate 50 ml of YPDA or SD liquid medium (for sequential 

transfomriation) then incubated at 30°C o/n with shaking at 250 rpm until 

OD6oo>1.5. Overnight culture was used to inoculate 300 ml of YPDA or SD 

liquid medium to give an ODeoo of 0.2-0.3. The culture was incubated at 30°C 

with shaking at 250 rpm for 3-4 hrs until an ODeoo of 0.5 ± 0.1. Cells were 

collected by centrifugation at 1,000 x g for 5 min at RT. Cells were resuspended 

in 40 ml dHaO and the centrifugation was repeated. Cell pellet was 

resuspended in 1 ml of 1X TE/LiAc solution (Appendix 9.5). 
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2.23.5 Yeast Transformation 

Yeast transformation was performed by combining the following components. 

COMPONENT FINAL CONCENTRATION 
SMALL SCALE LARGE SCALE 

DNA-BD/bait Plasmid 0.1 ^9 20-100 îg 
AD/library Plasmid 0.1 \xg 50^9 
Herring Testes Carrier DNA 0.1 mg 2m9 
Yeast Competent Cells 0.1 ml 1 ml 
PEG/LIAc Solution 0.6 ml 6 ml 

These components were mixed well by vortexing at high speed then 

incubated at 30°C 30 min with shaking at 200 rpm. Dimethyl sulfoxide (DMSO) 

(70 pi for small scale and 700 pi for large scale) was added to the mixture and 

mixed by gentle inversion. Cells were heat shocked for 15 min at 42°C then 

kept on ice for 2 min. Cells were collected by centrifugation at 14,000 x g for 5 

sec at RT. The supematant was removed and the cells were resuspended in 

appropriate volume of YPDA liquid medium before plating onto the suitable SD 

plate(s) that was incubated for 4-5 days at 30°C. For low-stringency selection, 

the plating was performed onto SD/-Trp/-Leu medium plates. For medium-

stringency selection, cells were plated onto SD/-Trp/-Leu/-His, while for high-

stringency selection, cells were plated onto SD/-Trp/-Leu/-His/-Ade in addition 

to 4 mg/ml X-a-Gal when blue colour screening was required. 

2.23.6 Preparation of Yeast Protein Extracts 

Total cellular proteins were extracted from yeast to investigate the 

expression of some transfomned plasmids. A single colony was isolated from 

fresh SD plate and used to inoculate 5 ml of the appropriate SD liquid medium 

then left o/n at 30°C. The entire o/n culture was used to inoculate 50 ml of 

YPDA liquid medium and then incubated at 30°C with shaking at 250 rpm until 

the ODeoo reached 0.4-0.6. ODeoo of the culture was determined and total 

number of ODeoo was calculated by multiplying ODeoo by the culture volume. 

The culture was chilled on ice then centrifuged at 1000 x g for 5 min at 4°C. The 
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cell pellet was resuspended in dH20 and the centrifugation was repeated. The 

cell pellet was frozen in dry ice then thawed by the addition pre-warmed 

cracking buffer (100 pi of cracking buffer per 7.5 ODeoo units of cells). The 

sample was transferred to a microcentrifuge tube containing 80 pi acid-washed 

glass beads (Sigma) per 7.5 ODeoo units of cells. To free membrane-associated 

proteins, the cell suspension was heated at 70°C for 10 min then vigorously 

vortexed for 1 min and centrifuged at 14,000 rpm for 5 min at RT to remove cell 

debris and un-broken cells. The supernatant was transferred to a clean tube 

and used directly in WB analysis or stored at -80°C until needed. 

2.23.7 Extraction of Plasmids from Yeast 

Plasmid extraction from yeast was perfomried using Qiaprep Spin Miniprep 

Kit (Qiagen) following the manufacturer's instructions after some modifications. 

One colony was isolated from fresh prepared plate and used to inoculate 10 ml 

of appropriate selective medium at 30°C o/n. Cells were harvested by 

centrifugation at 5,000 x g for 5 min. Cell pellet was resuspended in Qiagen 

suspension buffer containing 100 pi of acid-washed glass beads (Sigma) and 

vortexed for 5 min to dismpt the yeast cell wall. Supernatant was transferred to 

a fresh microcentrifuge tube and the rest of the protocol was followed as the kit 

provider's instructions. 

2.24 Over-Expression of Proteins in Bacteria 

2.24.1 Over-expression and Purification of Histidine (His)-

Tagged NS5B 
For over-expression of NS5B in fusion with His-tag at its C-terminus in E. 

coli BL21 (DE3) cells a truncated form of the NS5B ORF (genotype l a ) lacking 

the last hydrophobic 21 amino acids was cloned into the bacterial expression 

pET21d plasmid to produce pET21-5B. pET21-5B was transformed into BL21 

(DE3) cells. One colony was isolated and used to inoculate 10 ml LB-amp liquid 

medium then incubated at 37°C o/n. The ovemight culture was used to 

inoculate 500 ml LB-amp liquid medium and incubated at 37°C with shaking at 
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250 rpm until an ODeoo of 0.6-0.8. Protein expression was induced by the 

addition of isopropyl-p-D-thiogalactopyranoside (IPTG) to a final concentration 

of I m M o/n at 25°C. Cells were harvested by centrifugation at 3000 x g for 10 

min at 4°C. The cell pellet was washed once with lysis buffer (50 mM Tris-HCI 

pH 8, 500 mM NaCI, 10 % glycerol, 1 % Triton-XlOO, 1 mM p-mercaptoethanol, 

lysozyme and protease inhibitor tablet (Roche)) then resuspended in 50 ml of 

lysis buffer and incubated for 10 min at RT. Cells were lysed by sonication on 

ice for 10 X 15 sec bursts with 5 sec intervals at 50% power level. DNase (2 

U/ml) (Sigma) and RNase (160 pg/ml) (Sigma) were added to the lysate which 

was then incubated at 37°C for 30 min. Cell lysate was cleared from cell debris 

by centrifugation at 30,000 x g for 20 min at 4°C. The resulting supernatant was 

further cleared by passing through a 0.22 pm sterile syringe filter to remove any 

remaining solid debris. Imidazole was added to the cell lysate to give a final 

concentration of 10 mM. 

NS5B-His protein was purified from the clarified lysate by affinity 

chromatography using HiTrap pre-packed 3 cm^ column (Phannacia Biotech). 

HiTrap column was equilibrated by passing 10 ml of equilibration buffer (lysis 

buffer containing 10 mM imidazole). The clarified lysate was then applied to the 

column and the column was washed once with equilibration buffer. NS5B-His 

was captured by HiTrap-Nickel ions, immobilized on a sepharose matrix, which 

can bind histidine residues of His-tag. Captured protein was then washed and 

eluted using different imidazole concentrations (50, 100, 200, 300, and 400 mM) 

in lysis buffer. Purified protein was collected in 1 ml fractions. Fraction eluted by 

300 mM imidazole was dialysed against 50 mM Tris-HCI pH 8, 50 mM NaCI, 1 

mM p-mercaptoethanol, 10 % glycerol and protease inhibitors. The expression 

and purity of NS5B-His in the collected fractions were assessed by SDS-PAGE 

and western blotting (WB) analysis (Sections 4.2). 
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2.24.2 Over-expression of Glutathione-S-Transferase (GST)-

Fusion Proteins 

For expression of PLSCR1, RTN3, ZNF143, and p-Tubulin in fusion with 

GST protein tag, proteins ORFs were cloned into bacterial expression pGEX-

6P-3 plasmid. The resulting constructs were transfomied into BL21 (DE3). One 

colony was isolated and cultured in 5 ml LB-amp liquid medium then incubated 

o/n at 37°C. An overnight culture was used to inoculate 100 ml LB-amp liquid 

medium and incubated at 37°C for 3-4 hrs until an ODeoo of 0.6-0.8. Protein 

expression was induced by the addition of IPTG to 1 mM. The culture was 

incubated at 25°C o/n. Cells were harvested by centrifugation at 3,000 x g for 

10 min at 4°C. The cell pellet was washed once and then resuspended in 20 ml 

of lysis buffer (PBS, 500 mM NaCI, 10% glycerol, 1 % Triton-XlOO, 1 mM p-

mercaptoethanol, lysozyme and protease inhibitors) and left at RT for 10 min 

before sonication as previously described for NS5B-His protein expression. Cell 

debris was removed from the lysate by centrifugation at 15,000 for 20 min at 

4°C. The supernatant was clarified by filtration through a 0.22 pm syringe filter. 

For purification of GST-fusion proteins, 10 ml of the clarified cell lysate was 

incubated with 300 pi of PBS-washed glutathioine-sepharose-4B beads 

(Amersham Bioscience) for 3hrs at 4°C with rotation using an end-over-end 

rotator. Beads were washed extensively with PBS to remove non-specific 

binding proteins. Proteins were kept bound to beads or eluted with 20 mM 

reduced glutathione in PBS. Protein expression and purity were investigated 

using SDS-PAGE and WB analysis (Sections 4.3 and 4.6). 

2.25 In Vitro Assays for Protein-Protein Interaction 

2.25.1 GST Pull-Down Assay 

GST pull-down assays were performed to confirm the interaction of NS5B-

His with GST-PLSCR, GST-RTN3 and GST-ZNF143 fusion proteins. 50 pi of 

GST or GST fusion proteins, bound to the beads, were mixed with 10 pg of 

soluble, purified NS5B-His. The mixture was adjusted to a 500 pi total volume 
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by PBS and incubated at 4°C for 3 hrs with mixing by end-over-end rotation. 

Beads were collected by centrifugation at 3,000 x g for 5 min at RT. Beads were 

washed extensively with PBS containing 0 . 1 % Tween-20 (PBST) and then 

resuspended in 50 pi PBS. Beads (10 pi) were mixed with I X SDS sample 

buffer and then boiled at 95°C for 5 min. The captured proteins were subjected 

to 10% SDS-PAGE and WB analysis using a-His-HRP antibody (Sigma) to 

detect NS5B-His or a-GST-HRP antibody (Sigma) for detection of GST-fusion 

proteins. 

2.25.2 Far-Western 

Far-western blotting was performed to confirm the interaction of NS5B with 

the full-length ZNF143. GST and GST-ZNF143 bound to beads were subjected 

to SDS-PAGE. Proteins were transferred to the nitrocellulose membrane. The 

membrane was washed three times with TBST. The membrane was probed 

with 10 ml of 10 pg/ml His-NS5B diluted in TBST for 3 hrs at 4°C. The 

membrane was washed three times with TBST and processed as previously 

described in the WB protocol. Proteins were detected using a-His-HRP for 

NS5B-His or a-GST-HRP for GST-fusion proteins. 

2.25.3 Enzyme-Linked Immunosorbent Assay (ELISA) 

ELISA assays were performed to confirm the interaction of NS5B with 

PLSCR1. Soluble purified NS5B-His was diluted in bicarbonate/carbonate 

coating buffer (Appendix 9.4.3) to a final concentration of 16 pg/ml. Different 

concentrations of NS5B were made in coating buffer in the plate wells to give 

final concentrations of 1.6, 0.8, 0.2, 0.05, and 0.025 pg/well in 100 pi total 

volume per well. The plate was covered by adhesive plastic and incubated at 

RT for 2 hrs. The coating solution was removed and the plate washed 3-4 times 

with PBS. The remaining protein-binding sites of the coated wells were blocked 

by filling the wells with the blocking buffer, 5% non-fat dry milk in PBS 

containing 0 . 1 % Tween-20, and incubated at 4°C o/n. The plate was washed 3-

4 times with PBST. 100 pi of soluble purified GST-PLSCR1 or GST (50 pg/ml) 
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diluted in blocking buffer were added to each well. The plate was covered and 

incubated at RT for 2 hrs. Wells were washed 3-4 times with PBST before 

detecting the captured proteins by incubation with 100 pi of a-GST-HRP 

antibody diluted in blocking buffer for Ih r at RT. Wells were washed extensively 

with PBST before adding 25 pi of TMB (3,3',5,5'-tetramethylbenzidine) reagent 

for 15-30 min at RT in dark area. Colour was allowed to develop before 

stopping with 25 pi of 2M sulphuric acid (stop solution). Absorbance at 450 nm 

was determined. The assay was carried out in three separate experiments then 

the meantstandard error of the mean (SEM) of the three experiments were 

calculated and plotted against the absorbance at 450 nm. 

2.26 Mammalian Tissue Culture 

The following cell lines were frequently used throughout the work in this 

thesis. 

Cell Line 

Huh7 Human Hepatoma Cell line 
HEK 293T Human Embryonic Kidney (HEK) 293T Cells 
VERO African Green Monkey Epithelial Kidney Cells 

2.26.1 Maintenance of Cultured Cells 

Mammalian ceil lines were cultured as a monolayer in tissue culture flasks 

or plates. Cells were maintained in Dulbecco's Modified Eagle Medium (DMEM) 

(GIBCO, Invitrogen, Appendix 9.6) supplemented with 2 mM L-glutamine, 1 % 

(v/v) non-essential amino acids, 100 U/ml penicillin and 100 pg/ml streptomycin 

antibiotics, and 10% heat-inactivated fetal bovine serum (FBS) (Appendix 9.6). 

Cells were incubated at 37°C and 5% carbon dioxide (CO2). Cells were 

passaged at 80-100% monolayer confluence. For sub-culturing the cells the 

monolayer was washed two times with IX PBS. Three ml of trypsin solution 

(GIBCO, Invitrogen) supplemented with ImM ethyleneidiamine tetraacetic acid 
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(EDTA) was added to the monolayer and incubated for 3-5 min at RT. Cells 

were resuspended in 7 ml of complete DMEM medium by pipetting up and 

down several times. 1-2 ml of cell suspension was added to a fresh tissue 

culture flask with medium and incubated at 37°C and 5% CO2. 

2.26.2 Calcium Phosphate Precipitation Transfection 

One day before the transfection experiment, cells were cultured in 

complete DMEM to achieve 75-85% confluence at the transfection time. Next 

day, the medium was replaced with complete fresh medium two hours before 

transfection. For 75 cm tissue culture flask, the following components were 

prepared and mixed. 

COMPONENT VOLUME (OR CONCENTRATION) 

Plasmid DNA 
I X Tris-HCI (TE) pH 8.8 
dHzO 
2.5 M CaCl2 

10-50 pg 
330 pi 
175 pi 
56.5 pi 

After mixing, 570 pi of 2X HBS buffer (Appendix 9.6) was added to the 

mixture dropwise under vortexing. The mixture was incubated at RT for 5 min 

then added dropwise to the cell monolayer and mixed by gentle rotation of the 

flask. Next day, the transfection medium was replaced with complete fresh 

DMEM medium. Investigation of protein expression was usually performed 48 

hrs post-transfection. 

2.26.3 Lentivirus-Based Vector (Lentivectors) Production 

Lentivectors were used in this study to deliver NS5B, PLSCR1, ZNF143, 

short-hairpin (sh) PLSCR1, and shZNF143 open reading frames (ORFs) to 

Huh7 cells (Chapter 5). The system is summarized in 5 steps in Fig. 2.1 and as 

following: a) Lentivector plasmids were transfected into the packaging cell 
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(Human Embryonic Kidney (HEK) 293T cells), b) transfected cells express the 

main proteins required to form virus like particles (VLPs) containing RNA 

genome with the required ORF, c) Produced VLPs were used to infect the 

target cell (Huh7), d) Once inside, viral RNA with NS5B ORF is released from 

the capsid and transcribed to form DNA double strands, and e) DNA double 

strands then translocate to the nucleus and integrate with target cell 

chromosome to be translated by the host translational machinery expressing 

NS5B (Buchschacher and Wong-Staal, 2000). 

Plasmids 

pWPXL-5B [ 
Infection 

PSPAX2 l l ' ^ ^ ^ l l P ^ ' l I 

pM02G [ 

Viral RNA 
Transfection 

Reverse Transcription 

dsDNA 

Integratic 

(E) 
NS5B 

HostE 

Nucleus 

Nucleus// W 
Env 

Translation 

Cytoplasm — ^ Cytoplasm 

Packaging Cell (293T) Target Cell (Huh7) 

Fig. 2.1: Production of VLPs with NS5B ORF using lentivirus-
based vector system (Buchschacher and Wong-Staal, 2000). 
(A) Lentivector plasmids were transfected into 293T cells, (B) 
Transfected cells express the main proteins required to form VLPs 
containing RNA genome with NS5B ORF, (C) Produced VLPs were 
used to infect Huh7 cells, (D) Once inside, viral RNA with NS5B 
ORF is released from the capsid and transcribed to form dsDNA, 
and (E) dsDNA then translocate to the nucleus and integrate with 
target cell chromosome that is translated by the host translational 
machinery expressing NS5B. 
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Lentivectors were produced in Human Embryonic Kidney (HEK) 293T 

cells (packaging cell line) by co-transfection of pWPXL (22.5 pg), psPAX2 (14.6 

pg) and pMD2G (7.9 pg) into cells using calcium phosphate precipitation 

transfection method as described below. The virus-like particles (VLPs)-

containing supernatant was collected 48 hrs and 72 hrs post-transfection. The 

collected supernatants were centrifuged at 1500 x g for 5 min to remove cell 

debris and then filtrated on 0.22 pm syringe filter. Supernatants containing 

VLPs were used directly for transduction protocol or stored at -80°C in aliquots. 

For titration of VLPs, a serial two-fold dilution of GFP-VLPs supernatant was 

made and used to transduce 293T cells cultured in 24 well plate in 1 ml/well 

total volume. GFP expression was detected 48 hrs post-transduction. The viral 

titer was expressed as a number of infected cells/ml determined by the number 

of GFP-expressing cells detected at the highest dilution. VLPs titre was 

optimized to produce 5 x 1 0 ^ VLP/ml. 

2.26.4 RNA Interference (RNAi) 

shRNA was used to knock-down the expression of PLSCR1 and ZNF143 

in Huh7 cells using lentivectors (kindly provided by Didier Trono, Tronolab, 

Swizteriand). Two complementary oligonucleotides (19 nucleotides each from 

94 to 112) targeting the coding sequence of PLSCR1 were synthesized by 

Sigma according to the previously published shPLSCRI sequence (Dong ef a/., 

2004). For ZNF143 expression down-regulation, the ZNF143 target sequence 

(21 nucleotides from 885 to 905) was selected and designed using Block-iT 

RNAi Designer (Invitrogen) then synthesized by Sigma. The oligonucleotides 

were designed as recommended by Tronolab website (http://tronolab.epfl.ch) to 

contain the two complementary target sequences of 19-21 nucleotides 

separated by 9 nucleotides (loop) and encompassing Mlul and Clal restriction 

sites when annealed to facilitate the cloning (Fig. 2.1). The oligonucleotides 

were annealed as previously described then sub-cloned into pLVTHM 

(Tronolab, Appendix 9.13), a bicistronic plasmid that allows the expression of 

GFP under the control of EF Ia promoter and shRNA under the control of HI 

promoter. 
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VLPs carrying shRNA-encoding sequences were prepared by co-

transfection of pLVTHM-shPLSCRI, -shZNF143, or pLVTHM-shGFP with 

psPAX2 and pMD2G into 293T cells by calcium phosphate precipitation method 

as previously described. VLPs-containing supernatant were harvested 48 and 

72 hrs post-transfection. VLPs were used to transduce Huh7 cells and the 

expression was monitored by RT-PCR as described before. Virus titration was 

determined by monitoring GFP expression as described before using the serial 

dilution assay (Section 2.26.3). 

Mlul 19nt sense siRMA Loop 19nt anti-sensosiRNA stop Ciai 
CGCGTCcccNNinmNmannrainimniNNTT^^ 

AGGOOMHiniNNNIIinnminimiNNNAAQTTCTCTNian^^ 

Fig. 2.2: General strategy for designing shRNA. Two 
oligonuceotides were designed to be annealed and cloned into 
pLVTHM. Upon transcription, they create shRNA targeting 
PLSCR1 orZNF143 coding sequences. 

2.26.5 In Vitro HCV Sub-Genomic Replicon RNA Transcription 

Using HCV sub-genomic replicon plasmid (pFK 1341 PiLucNS3-3' dg ET) 

(Appendix 9.12) as a template, RNA was synthesized in vitro using MEGAscript 

Transcription Kit (Ambion) following the manufacturer's instructions 

2.26.6 RNA Agarose Gel Electrophoresis 

In vitro transcribed-RNA was analyzed for its size and integrity on 1 % 

(w/v) denatured MOPS-Formaldehyde agarose gel prepared with DEPC 

(diethylpyrocarbonate)-treated water (Appendix 9.3). Using a mini-gel 

electrophoresis apparatus (BioRad), RNA (1 pg) was mixed with the gel loading 

buffer (provided with the kit) and 1 pi of 0.5 pg/ml ethidium bromide. 

Electrophoresis was carried out at 100 V for 40 min or until the dye reached the 

bottom of the gel. RNA was visualized by UV-Trans-illuminator. 
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2.26.7 Electroporation of RNA 

A Gene Pulser System (BioRad) was prepared for the transformation using 

electro-cuvette (Sigma) with gap width of 0.4 cm. The setting was adjusted for 

Huh7 cells (Voltage 270 V, Capacitance 960 pF) and the time constant was 

kept to approximately 20 msec. Huh7 cell monolayer cultured in 75 cm^ tissue 

culture flask was trypsinized as described above. 7 ml of complete DMEM 

medium was added to stop the trypsin action then the cells were collected by 

centrifugation at 300 x g for 5 min. Cells were washed two times with PBS 

followed by centrifugation at 300 x g for 5 min. Cells were resuspended in PBS 

at concentration of 10^/ml. 10 pg of in-vitro transcribed RNA was mixed well 

with 400 pi of cell suspension and then transferred to the electroporation 

cuvette. One pulse was delivered to the cell suspension that immediately 

transferred to 10 ml of complete DMEM medium. Cells were seeded in 24 well 

plate or cells of several electroporations were combined and seeded in when 

more plates were required. 

2.26.8 Luciferase Assay 

Luciferase expression and activity were measured using One-Glo 

Luciferase Assay System (Promega) according to the manufacturer's 

instructions. To measure the luciferase activity in cells cultured in 24 well plate, 

medium was removed 48 hrs post-transfection or -transduction and 100 pi of 

fresh medium was added. An equal volume of One-Glo reagent was added to 

the cells and mixed well for 10 min before transferring the cell lysate to an 

opaque walled 96-well plate. Luminescence signal was then measured using a 

plate reader (MicroBeta 1450, PerkinElmer). The assay was earned out in three 

separate experiments and each sample was measured in triplicate then the 

meantstandard deviation (SD) or the meantstandard error of the mean (SEM) 

of the three experiments were calculated. 
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2.26.9 In Vitro NS5B-His Pull-Down Assay 

NS5B-His bound to Ni-beads were used for pull-down cellular proteins that 

can interact with NS5B. For cell lysate preparation, Huh7 or 293T cells were 

solubilized in cell culture lysis reagent (CCLR; Promega) containing protease 

inhibitor cocktail (Sigma). The solubilized cell lysates were frozen and thawed 

three times. Unbroken cells and cellular debris were removed by centrifugation 

at 30,000 X g at 4°C for 10 min. After incubation on ice for 15 min, the lysates 

were then incubated with tNS5B-His fusion protein bound to the beads for 3 hrs 

at 4°C with rotation. The beads were washed three times with PBS and the 

bound proteins were eluted by adding I X SDS sample loading buffer then 

boiled for 5 min. The samples were subjected to 10% SDS-PAGE and proteins 

were detected by WB using anti-a or p-tubulin antibodies or a-His for detection 

of His-tag fusion proteins. 

2.26.10 In Vivo NS5B-His Pull-Down Assay 

His-NS5B or His-LacZ fusion proteins were expressed in Huh7 cells by 

transfection of pcDNA4-5B or pcDNA4-LacZ, respectively, using calcium 

phosphate precipitation method as previously described. 48 hrs post-

transfection, cells were harvested and lysed with CCLR containing protease 

inhibitors. Cell lysates were centrifuged at 30,000 x g at 4°C for 10 min and then 

incubated with PBS-washed Ni beads for 3 hrs at 4°C with rotation. Beads were 

collected and washed extensively with PBS before subjected to SDS-PAGE and 

WB as described before. 

2.26.11 Protein Mass Spectrometry 

Samples were prepared by resolving on 10% SDSPAGE and staining with 

Coomassie blue R-250. A protein band was carefully excised and cut into 1 ^ 1 -

mm pieces. The piece of gel was sent to the Proteomic Unit (Durham 

University) for sequencing analysis after trypsin digestion using Matrix-Assisted 

Laser Desorption/lonization Time-of-Flight (MALDI-TOF) Mass Spectrometry 
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using a PE Biosystems ABI Voyager DE-STR mass spectrometer. The data 

were processed using Applied Biosystems Analyst and BioAnalyst™ software. 

MASCOT search tools were used for searching against all publicly available 

databases for protein identification. The method for calculation of the Score 

parameter is described at Website http://www.matrixscience.com. 

2.26.12 Statistics 

Each assay was carried out in three separate experiments and each 

sample was measured in triplicate then the mean±standard deviation (SD) or 

the meanistandard error of the mean (SEM) of three experiments were 

calculated according to the following equations: 

SD 
SD = = S l (X -X ) ' S E j ^ = 

V n - 1 Vn 

Where SD is the standard deviation, X is the mean of three observations 

and n is the number of observations, p-value was calculated from three 

separate experiments using the online student's two-tailed t-test calculator 

(http://www.graphpad.com/quickcalcs/ttest1.cfm). 
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CHAPTER 3 

Identification of Host Cell Proteins that Interact with NS5B 

3.1 Introduction 

The interaction witli the host cell is critical for HCV to replicate and develop 

persistence (Grakoui, 2004). NS5B interacts with viral and host cell proteins to 

drive viral RNA replication but host cell proteins implicated in viral replication 

and/or persistence are still largely unknown (Gosert et a/., 2003). Therefore, 

there is a need to identify cellular proteins that could contribute to viral 

replication and persistence that may help in the development of anti-HCV 

therapies. To achieve this aim, the yeast two-hybrid system was employed as 

this system has been widely used and has a proven capability in identifying new 

interactions between NS5B and cellular proteins such as upiquitin-like protein 

(hPLICI), RNA helicase p68 and the scaffold protein, septin 6 (Gao etal., 2003; 

Goh etal., 2004; Kim etal., 2007). 

The MATCHMAKER GAL4 two-hybrid system 3 (Clontech) was used in a 

screening protocol for potential host factors that can interact with NS5B under 

high stringency conditions to exclude the possibility of false positive 

interactions. It is an advanced GAL4-based two-hybrid system that provides a 

transcriptional assay for detecting even relatively weak and transient protein-

protein interactions In vivo in yeast. In this system, NS5B was used as a fusion 

with the GAL4 DNA-Binding Domain (DNA-BD), while a human cDNA library 

produced from HeLa cells was expressed as fusions with the GAL4 DNA-

activation domain (DNA-AD). When NS5B and cDNA library fusion proteins 

interact, DNA-BD and DNA-AD form an active transcription complex that can 

activate transcription of four downstream reporter genes, H/S3, ADE2, Lad, 

and MELr (Fig. 3.1). 
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T r a n s c r i p t i o n 

R e p o r t e r 0«ri« 

Fig. 3.1: Yeast two-hybrid system principle. The DNA-BD is amino 
acids 1-147 of the yeast GAL4 protein, which binds to the GAL 
upstream activating sequence (UAS) upstream of the reporter 
genes. The AD is amino acids 768-881 of the GAL4 protein and 
functions as a transcriptional activator. The four reporter genes are 
under the control of distinct GAL4 upstream activating sequences 
(UASs) and TATA boxes. 

The four reporter genes are under the control of heterologous GAL4-

responsive upstream activating sequences (UASs) and TATA box promoters 

that give strong and specific responses to GAL4. HIS3 and ADE2 provide 

strong nutritional selections for yeast cells that contain interacting proteins. 

MEL1 or LacZ encode a- and p-galactosidase, respectively, which provide 

additional colour indicators for isolation of positive yeast clones containing 

interacting proteins (Fig. 3.2). 

U A S <3AI_2 T A T A .^J^:^ 
I V I E L I U A S 

Fig. 3.2: Four reporter genes in AH109 yeast strain. A schematic 
diagram showing that expression of four reporter genes in AH109 is 
under the control of three different UAS (GAL1, GAL2 and MEL1) 
and TATA sequences. 



CHAPTER 3 

3.2 Expression of GAL4 BD-NS5B in Yeast 

Full-length HCV NS5B ORF (Appendix 9.7.1) was amplified from a cDNA 

clone of HCV-H77G (genotype 1a; accession number AF011751, kindly 

provided by Jens Bukh, NIH, Bethesda, USA). Primers (Appendix 9.11) were 

designed to facilitate in-frame cloning of NS5B ORF (1776 bp) with the DNA-BD 

sequence of the bait vector, pGBKT7, at its N-terminus. Sequencing of potential 

positive clones was perfonned and a clone with NS5B, in-frame with the GAL4 

BD was isolated for the subsequent work. This new plasmid was termed pGBK-

5B. 

pGBK-5B was transformed into competent Saccharomyces cerevisiae, 

strain AH109, and plated onto SDZ-Trp medium plate and incubated for 4-6 days 

at 30°C. A clone was isolated and cultured in 5 ml SD/-Trp liquid medium and 

incubated at 30°C O/N. The cells were lysed and total protein was extracted. 

Expression of BD-NS5B was confirmed by western blotting using sheep anti-

NS5B antibodies (kindly provided by Mark Harris, Leeds University) and anti-

sheep-HRP (Sigma). A band of -80 kDa, equivalent to the size of GAL4 DNA-

binding domain fused to NS5B, BD-NS5B, was detected confirming BD-NS5B 

expression in AH109 cells (Fig. 3.3). 

kDa 1 2 
250 

98 
64 

«— BD-NS5B 

50 

36 

30 

Fig. 3.3: Expression of BD-NS5B in AH109 yeast cells. Westem 
blotting analysis was performed for NS5B detection using sheep a-
NS5B primary antibodies and a-sheep secondary antibodies. 
Where 1- Total protein extracted from AH109 cells transfomned by 
pGBK-5B or 2- pGBKT7. 
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3.3 Screening for Interactions with NS5B Using HeLa cDNA 
Library 

Initially to determine that NS5B did not activate the reporter genes by itself, 

AH109 cells were transfonmed by pGBK-5B and plated onto SD/-Trp/X-a-Gal 

and incubated for 4-6 days at 30°C. There was no activation of reporter genes 

indicating that NS5B was suitable for use with the yeast two-hybrid system. 

Freshly prepared AH109 cells containing pGBK-5B were sequentially 

transfomned with a human HeLa cDNA library using a large-scale 

transfomnation protocol (Section 2.23.5). The transformed AH109 cells were 

plated onto 5 large medium-stringency plates (SD/-Trp/-Leu/-His) and incubated 

for 6 days at 30°C. A large number of colonies (-500) were obtained in this 

initial screen but as it was a medium-stringency screen it was likely that a 

number of false positives were present. Further screening of colonies under 

high-stringency conditions, was performed by replating clones onto a high-

stringency plate (SD/-Trp/-Leu/-His/-Ade) supplemented with X-a-Gal in a 

second round of screening. A number of colonies survived this second high-

stringency protocol. Blue colonies (positive colonies) were isolated and re-

streaked again onto high-stringency plate for retesting and so confirming the 

phenotype (Fig. 3.4). 

Positive colonies were isolated and cultured in SD/-Leu liquid medium 

under a selective pressure to maintain pGAD-cDNA library plasmids within the 

yeast but with no pressure to retain pGBK-5B. Cells were incubated 0/N at 

30°C then a small inoculum from these cell cultures were incubated again in 

fresh liquid SD/-Leu medium O/N at 30 °C. This process was repeated for a 

third time to facilitate the removal of pGBK-5B. AD/cDNA plasmids were 

subsequently isolated from the cultured AH109 cells. 
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Fig. 3.4: Yeast two-hybrid screening for positive interactions 
with NS5B. Transformed cells were plated onto high-stringency 
plate containing X-a-Gal for a-galactosidase activity detection. 
Positive interactions develop blue colour colonies. 

3.4 Confirmation of Positive Interactions with NS5B 

Isolated AD/cDNA plasmids from yeast were used to transform chemically 

competent E. coll which was plated onto LB plates containing ampicillin (LB-

amp). The plates were incubated 0/N at 30°C. One colony, from each plate, 

was isolated and cultured in 50 ml LB-amp 0/N at 30°C. Plasmids were 

extracted and the presence of an insert was confirmed by EcoRI-Xhol 

restriction. 

Purified positive AD/cDNA library plasmids were reintroduced into AH 109 

cells containing either a negative control plasmid (pGBKT7-Lam) or pGBK-5B 

and plated onto SD/-Leu/-Trp medium plates to isolate transformants that were 

subsequently transferred to high-stringency plates. pGBKT7-Lam, which 

encodes the human lamin C protein in fusion with GAL4-BD, was used as a 
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non-specific protein control for non-specific interactions between NS5B and 

AD/library proteins. pGBKT7-53 and pGADT7-T were used as a positive control 

for expression of two interacting proteins. No false positive interactions were 

observed confirming the specificity of the interaction of the isolated library 

clones and BD-NS5B, at least in the yeast. 

Positive clones were sequenced and subjected to a Blast search on the 

National Centre for Biotechnology Information (NCBI). Blast identified seven 

potential candidate proteins that interacted with NS5B: 

• Clone 7: Phospholipid Scramblase 1 (PLSCR1) (NCBI Accession 

Number AF008445). 

• Clone 14: Oxysterol Binding Protein 8 (0SBP8) (NCBI Accession 

Number NP_001003712). 

• Clone 17: Reticulon 3 Isofonn A (RTN3) (NCBI Accession Number 

NP_006045). 

• Clone 31: HS1 (Haematopoietic Lineage Cell-Specific Protein 1)-

Associated Protein X-1 (HAX1) (NCBI Accession Number 

NP_006109). 

• Clone 59: Zinc Finger Protein 143 (ZNF143) (NCBI Accession Number 

NM_003442). 

Clone 71 : Translocase of Inner Mitochondrial Membrane 50 (TIMM50) 

(NCBI Accession Number AAH50082). 

Clone 93: Splicing Factor, Arginine/Serine-Rich 10 (SFRS10) (NCBI 

Accession Number NP_004584.1). 
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3.5 Protein Seouence Blast Search of Clone Number 7 
Blast confinned that clone 7 encoded 192 amino acids, from a total of 318 

amino acids, from the N-terminal region of PLSCR1 (Fig. 3.5). 
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pGADGH-SCRl 
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(151) 

pGADGH-SCRl 
FL-PLSCRl 

(193) 
(201) 

pGADGH-SCRl 
FL-PLSCRl 

(193) 
(251) 
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1 50 
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MDKQNSQMNASHPETNLPVGYPPQYPPTAFQGPPGYSGYPGPQVSYPPPP 
51 100 
AGfiSGPGPAGFPVPNQPVYNQPVYNQPVGAAGVPWMPAPQPPLNCPPGLE 
AGH SGPGPAGFPVPNQPVYNQPVYNQPVGAAGVPWMPAPQPPLNCPPGLE 
101 150 
YLSQIDQILIHQQIELLEVLTGFETNNKYEIKNSFGQRVYFAAEDTDCCT 
YLSQIDQILIHQQIELLEVLTGFETNNKYEIKNSFGQRVYFAAEDTDCCT 
151 200 
RNCCGPSRPFTLRIIDNMGQEVITLERPLRCSSCCCPCCLQE 
RNCCGPSRPFTLRIIDNMGQEVITLERPLRCSSCCCPCCLQEIEIQAPPG 
201 250 

VPIGYVIQTWHPCLPKFTIQNEKREDVLKISGPCWCSCCGDVDFEIKSL 
251 300 

DEQCWGKISKHWTGILREAFTDADNFGIQFPLDLDVKMKAVMIGACFLI 
301 318 

DFMFFESTGSQEQKSGVW 

Fig. 3.5: Protein sequence of clone 7 aligned with full-length 
PLSCR1 protein sequence. Clone 7 encoded 192 amino 
acids (highlighted), from a total of 318 amino acids, from the N-
terminal region of PLSCR1. 

PLSCR1 is a multiply palmitoylated, lipid-raft-associated plasma 

membrane protein that mediates the accelerated ATP-independent bidirectional 

flipping of phospholipids upon binding calcium ions which results in a loss of 

phospholipid asymmetry in the plasma membrane (Sims and Wiedmer, 2001). 

PLSCR1 is encoded by an interferon-stimulated gene (ISG) and enhances the 

IFN response through increased expression of other potent downstream 

antiviral genes (including ISG15, ISG54, p56, and guanylate binding proteins) 

(Dong et a/., 2004). 
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3.6 Protein Sequence Blast Search of Clone Number 14 
Clone 14 encoded 40 amino acids from the 0SBP8 C-terminal region (Fig. 

3.6). 
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501 550 

YGNSLSAILEGEARLTFLNRGEDYVMXMPYAHCKGILYGTMTLELGGXVN 
551 6O0 

ITCQKTGYSAILEFKLKPFLGSSDCVNQISGKLKLGKEVIATLEGHWDSE 
601 650 

VFITDKKTDNSEVFWNPTPDIKQWRLIRHTVKFEEQGDFESEKLWQRVTR 
651 7O0 

AINAKDOTEATQEKYVLEEAQRQAARDRKTKNEEWSCKLFELDPLTGEWH 
701 750 

YKFADTRPWDPLNDMIQFEKDGVIQTKVKHRTPMVSVPKMKHKPTRQQKK 
751 SCO 

VAKGYSSPEPDIQDSSGSEAQSVKPSTRRKKGIELGDIQSSIESIKQTQE 
801 847 

MALRMHLVSSXPATDYFLQQKDYFIIFLLILLQVIXNFMFK 
EIKRNIMAl,TtNm.VSSTPATDYFI.Q{3KDYniFLLILLQVI rNFMFK 

Fig. 3.6: Protein sequence of clone 14 aligned with full-length 
OSBP8 protein sequence. Clone 14 encoded 40 amino acids 
(highlighted) from the 0SBP8 C-terminal region. 

0SBP8 is a member of the oxysterol-binding protein-related protein (ORP) 

family which includes 12 mammalian proteins involved in vesicle transport, lipid 

metabolism, and cell signalling (Jaworski et a/., 2001; Lehto et a/., 2001; Lehto 

and OIkkonen, 2003). They are characterized by the presence of the C-temninal 

OSBP-homology domain responsible for binding oxysterols and cholesterol 
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(Suchanek ef a/., 2007). 0SBP8 is highly expressed in liver and localizes to the 

ER via its C-terminal transmembrane motif (Lehto and OIkkonen, 2003; Yan et 

a/., 2008). It has a suppressive effect on the expression of the ATP-binding 

cassette transporter A1 (ABCA1) affecting cholesterol efflux to apolipoprotein 

A1 (Yan efa/.,2008). 

3.7 Protein Sequence Blast Search of Clone Number 17 
Clone 17 encoded 142 amino acids, from a total of 236 amino acids from 

the C-terminal region of RTN3 (Fig. 3.7). 

1 50 
pGADGH-RTNS (1) 

FL-RTN3 (1) MAEPSMTQSHSISSSSFGAEPSAPGGGGSPGACPALGTKSCSSSCAVHD 
51 100 

pGADGH-RTN3 (1) ISFRIY 
FL-RTN3 (51) LIFWRDVKKTGFVFGTTLIMLLSLAAFSVISWSYLILALLSVTISFRIY 

101 150 
pGADGH-RTN3 (7) KSVIQAVQKSEEGHPFKAYLDVDITLSSEAFHNYMNAAMVHINRALKLII 

FL-RTN3 (101) KSVIQAVQKSEEGHPFKAYLDVDITLSSEAFHNYMNAAMVHINRALKLII 
151 200 

PGADGH-RTN3 (57) RLFLVEDLVDSUOAWMWLMTYVGAVFNGITLLILAELLIFSVPIVYEK 
FL-RTN3 (151) RLFLVEDLVDSLKIAWMWLMTYVGAVFNGITLLILAELLIFSVPIVYEK 

201 236 
pGADGH-RTN3 (107) YKTQIDHYVGIARDQTKSIVEKIQAKLPGIAKKKAE 

FL-RTN3 (201) YKTQIDHYVGIARDQTKSIVEKIQAKLPGIAKKKAE 

Fig. 3.7: Protein sequence of clone 17 aligned with full-length 
RTN3 protein sequence. Clone 17 encoded 142 amino acids 
(highlighted), from a total of 236 amino acids, of the C-terminal 
region of RTN3. 

RTN3, one of the four membered reticulon family of proteins, is an ER-

localized transmembrane protein apparently involved in membrane trafficking 

between the ER and the Golgi that may play a role in membrane trafficking in 

the early secretory pathway (Wakana et a/., 2005). Over-expression of RTN3 

caused an ER-overload response leading to the release of ER Ca^* stores that 

resulted in an elevation of cytosolic Ca^* which can trigger apoptotic pathways 

(Kuang ef a/., 2005). RTN3 has previously been shown to be an important 

component of the replication complex of enterovirus 71 , a picornavirus (Tang et 

a/., 2007). 
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3.8 Protein Sequence Blast Search of Clone Number 31 
Clone 31 encoded 124 amino acids from the HAX1 C-terminal region (Fig. 

3.8). 

1 50 
pGADGH-HAXl (1) 

F L - H A X l (1) HSLFDLFRGFFGFPGPRSHRDPFFGGHTRDEDDDEEEEEEGGSWGRGNFR 
51 100 

pGADGH-HAXl (1) 
F L - H A X l (51) FHSPQHPPEEFGFGFSFSPGGGrRFHDMFGFDDLVRDFNSIFSEHGAWrL 

101 150 

pGADGH-HAXl (D 
F L - H A X l (101) PSHPPEIJ^PESETPGERLPEGCrLIU)SHLKYPDSHOPRrFGGVLESDMl 

151 200 
pGADGH-HAXl (i) P̂API»CSQHPFHRFDI)VWPHDPmrm)MI)U>SQVSQEGLGPVL 

F L - H A X l (151) GESPQPAPIBGSQRPFHRFDDVWHDPHPRTIlEDiroLDSQVSiSGŴ  
201 250 

pGADGH-HAXl (46) QPQPKSmSISmrTKPDGITffiEIffiTVVDSEGRTETTVTmADSSPIl 
F L - H A X l (201) QFQPKŜ fFKSISmrTKFKIVEEHRTVVDSEGRTlTTVTmAD̂  

251 279 
pGADGH-HAXl (96) GDPESPRPPSLDDJffSILDLFLGRWFRSR 

F L - H A X l (251) GDPESFEPPftLDDAFSILDLFLGRMFRSR 

Fig. 3.8: Protein sequence of clone 31 aligned with full-length 
HAX1 protein sequence. Clone 31 encoded 124 amino acids 
(highlighted) from the HAX1 C-terminal region. 

HAX1 is a multifunctional factor involved in apoptosis, cell migration, 

endocytosis and mRNA transport (Szwarc et a/., 2007). It is localized mainly to 

the mitochondria, but is also found in the ER and the nuclear envelope (Suzuki 

ef a/., 1997). The Epstein-Barr virus (EBV) nuclear-antigen leader protein 

(EBNA-LP), which plays a critical role in EBV-induced transfomiation, affects 

apoptosis in EBV-infected cells by an interaction with the cellular anti-apoptotic 

Bcl2 protein through HAX1 (Matsuda ef a/., 2003). HAX1 was also observed to 

inhibit the binding of HIV-1 rev to the rev-responsive element (RRE) by altering 

its sub-cellular localization (Modem and Reddy, 2008). 
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3.9 Protein Seguence Blast Search of Clone Number 59 
Blast analysis of protein sequence from clone 59 showed that it encoded 

277 amino acids, from a total of 638 amino acids, from the ZNF143 C-terminal 

region (Fig. 3.9). 

POA1X3H-

pGADGH-
FL-

FL-

pGAEGH-
FL-

pGADGH-

FL-

pGfiDGH-
FL-

JXSADGH-
FL,-

pGADGH-
FL-

pGADGH-
FL-

FL-

FL--

-ZNF1.43 
-ZNF143 

-2IJF143 
-ZNF143 

2NFa.43 
ZKFI 43 

-ZNFld3 
-ZHF143 

-ZNF143 
-ZKFI43 

-ZNFia3 
-ZHFL43 

•ZNF1.43 
-ZMFLd3 

-ZNFldS 
•ZNF143 

-ZNF143 
-ZNF143 

-ZNFL43 
•ZNFL43 

ZNF1.43 
ZNFI43 

-ZHF1.43 
-ZNF143 

-ZNF143 
•ZNFL43 

I SO (1) 
<1) HL,LJ^OrKRDSQG^^^EFPGC<»^EAOHVXI7CL.•^EA'./TVADGDNL£N^IEGVSL 

SL 100 
<1) 

< 51 ) QAVTLAXXSSTAYIOKNSKDAKLIDGOVIOI-EIXSSAAYVOHVPIPKSTGDS 
101 ISO 

(101) LRIj:iXiQAVQLElX:TrAFrHm-Sia>SYT>QSAl>OAVQL.EDGTTAYrHHAVQ 
i S l 200 

(1) 
< i S l ) VPQSDTILAIQADGTVAGLMrGDATrDPDTISALEOyAAKVSIDGSESVA 

201 250 
<1) 

(201) GTG^lrGEKEOEKK^^}IV^^OGHATTlVrAKSOOSGEKAFRCEV^3G<:GKl.YTT• 
2 S l 300 

( 1 ) VIllij.i.GEKPraCS 
(2511 AHHLKVHEnSHXGDRPYQCEHAGCGKAF ATGYG LKSHVUlMlUgKPYHCS 

301 3S0 
< 1 4) EI>MCLKSFKrSCISIJMCHrHlHitrKHE>FKtrPPEGClGa.SFTTSMIIUCVHVRr 

(301) KimL LKSFKTSCDLOKarRTlrr&gafg HJ.jyt'aGCGaSPTTSHrRKVHVRT 
351 400 

< 6 4) HTGg3^irra<;iiJJJG<MiHAFASAXMaKNWVRrHTtxKKi^T^^ 
< 3 S I ) HTGKM>«CTBE«CGIlRPRSA™TfKHHVIirm:GKKPTfVC^ 

401 450 
(114) SL'nCBHWSrBSKP'ltNClIHLXrAl JfKQI STXJU<IIKRTAHHI«nEPrEEKQ 
< 4 01) SI.YKBBVVirrRSKF'XNOTUCGKiryKQI STXAMHKRTAUKDrrBPrEEEQ 

451 500 
< 1 6 4) SAFI/KJ^WtAi<-BPVIJ0GSOrTTfVTCVBGI»DVVSTaVATVIO 
<451) E A P F E P ' P P O O G S D V T j a G S O r T y V T g V g G I»aVV5TOfVATVTOSGLSOOVTL 

501 550 
(214) LSOCGrOHVItr50AaMOAXGllXXT^9VT1QTCl^P^TVPAB]3AVZ5SAJaTB5V 
< 5 011 r SOTCTQHVHr SOADeBOArGNXIlMVXaDGXP'r-rVPAHDAVr S SASTBSV 

551 600 
(26 4) A M V X A E G T - & G O Q V A 
(551) AMVXAEGTEGEQVArVAQDLAAFHTAS5EMGHOOH5HHLV L IK 1. RP L r L V 

601 638 
(278) 
( 601) ATSNGTQIAVOtjGEOPSI-EEAIRIASHIQOGETrPGE-DD 

Fig. 3.9: Protein sequence of clone 59 aligned with full-length 
ZNF143 protein sequence. Clone 59 encoded 277 amino 
acids (highlighted) from a total of 638 amino acids at the ZNF143 C-
temriinal region. 

ZNF143 is a transcriptional-activating factor and is the human homolog 

of the Xenopus selenocysteine tRNA transcription-activating factor, Staf 

(Myslinski ef a/., 1998). ZNF143 was shown to enhance the transcription of 

small nuclear RNAs (snRNA) and snRNA-type genes by RNA Pol III. 

Significantly, ZNF143 also possesses the capacity to stimulate the expression 

from a RNA Pol II promoter, notably that of the IFN regulatory factor-3 (IRF3) 

gene which is required for induction of IFN-p after viral infection (Mach ef a/., 

2002; Myslinski etal., 1998; Schuster ef a/., 1995). 
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3.10 Protein Sequence Blast Search of Clone Number 71 
Clone 71 encoded 271 amino acids from the central region of TIMM50 (Fig. 

3.10). 

p G A D G H - T i m S O <1) 
F L - T i m 5 0 <1) 

p G A E G H - T i m S O (17) 
F L - T i m S O (51) 

p G A E G H - T i m S O (67) 
F L - T I ^ M 5 0 (101) 

p G A D G H - T i m S O (117) 
F L - T i m S O (151) 

p G A D G H - T i m S O (167) 
F L - T I K M 5 0 (201) 

p G A D G H - T i m S O (217) 
F L - T I [ « 5 0 (251) 

p G A D G H - T i m S O (267) 
F L - T i m S O (301) 

p G A D G H - T i m 5 0 (272) 
F L - T i m 5 0 (351) 

1 50 
PPBHAPDORABIGSRG 

AWRQRKHAASAAVF S R U I S G L R L G SRGLCTRU^TPPHBAPDQflAEIGSRG 
51 100 
STKROGPQOOPGSEGPSYAlOCVAIJMLRGIJiGAGGTVSV^ 

101 150 
GAKIPDEFDHIKPr LVOQUUirSfECYFKintllCMI l E P T S P C L L F D P L Q H F W 
GAKrPDEFDHDPILVaiLHHrifKYFKDYBiQMI l E P T S P C L L P D P L Q B P Y y 
151 200 
OPPyrLVLKLTGVT ,T .HPEWSLftrGWHFKKHPGIETLPOQLAPLYE IVIFT 
QPPYTLVI£lJJGVUiHPEOTIATG«HFKKaPGIETIJ<XlIAPLyE I V I F T 
201 250 
SETGMraFPLrDSVDPaGF r S-JfHLFUDftXR-YWJGHHVKDI SCUIKDPAHV 
SETGefTAFPLIDSVDPSBF IS YRLFBOA'nmiOGBHVKDI SCLKBDPARV 
251 300 

301 350 
HTVLB 
RTVLEHYALEDDPLJLVKORQSRIJIQEEQORIAELSKSKKONLFLG S L T S 
351 

RL»fPRSKOP 

Fig. 3.10: Protein sequence of clone 71 aligned with full-length 
TIMM50 protein sequence. Clone 71 encoded 271 amino 
acids (highlighted) from the central region of TIMM50. 

TIMM50 is located mainly in the inner mitochondrial space and represents 

the human functional homolog of the yeast protein TIM50. It has three domains, 

a mitochondrial targeting domain at the N-terminus, a central transmembrane 

domain and a C-terminal phosphatase domain (Guo ef a/., 2004). It functions as 

a receptor for the regulation of the trafficking of proteins between the outer and 

inner mitochondrial membranes and interference with its expression in yeast 

caused growth arrest and loss of cell viability (Geissler ef a/., 2002; Mokranjac 

ef a/., 2003; Yamamoto ef a/., 2002). It has a phosphatase activity on some anti-

apoptotic factors such as Sc/2 family members suggesting a role in the 

regulation of apoptosis. Loss of TIMM50 activity led to mitochondrial dysfunction 

and cell death (Guo ef a/., 2004; Meinecke ef a/., 2006; Sugiyama ef a/., 2007). 
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3.11 Protein Sequence Blast Search of Clone Number 93 
Clone 93 encoded 168 amino acids from SFRS10; the sequence was 

discontinuous when compared to the native sequence SFRS10 (Fig. 3.11). This 

may represent a splice variant although there is no published data to confirm 

this assumption. 

I 
FGAOCH-SFESIO ( I 

FL-SFRSIO (1 

(1 
FL-SFRSIO 151 

pGADGH-SFRSlO (1 
FL-SFRSIO (101 

pGAOGH-SFHSlO (51 
FL-SFRSIO (151 

pGADGH-SFRSlO (101 
FL-SFRSIO (201 

pGAOGH-SFRSlO (142 
FL-SFRSIO (251 

50 

MSDSCEQ(IYG£R£SRSASRSGSAHGSGR5ARfiTPARSESKEDSRRSRSKS 
51 100 

RSRSESRSRSRSSSI^HYTRSRSRSFSBRRSRSRSYSROTRRRHSHSHSP 
l O l 150 
HSTSBRBVGNBANPDFNCCLSVi^SLYTmDI^EVrSI^ 
151 200 

201 250 
ff^tYHisi^aisgMinofiamY&i^msstfi-

251 28S 
RRSPSmSRG0TfESRSJt̂ S9BICr 

RUQDROQIYRRRSPSF^SRGGlRSRSSSRfySPm 

Fig. 3.11: Protein sequence of clone 93 aligned with full-length 
SFRS10 protein sequence. Clone 93 encoded 168 amino 
acids (highlighted) of SFRS10. 

SFRS10 was found to be over-expressed in invasive breast cancer. 

Induction of this splicing factor might be responsible for splicing of CD44 

isoforms associated with tumour progression and metastasis suggesting an 

important role for this factor in tumour progression (Watermann et a/., 2006). It 

can regulate apoptosis induction by modulating the activity of the p53 tumour-

suppressor protein, a critical mediator of cell growth arrest (Huang et a/., 2004). 
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3.12 Discussion 

NS5B, in addition to NS3, represents a good target for designing a novel 

HCV antiviral therapy as it is the viral RNA polymerase that is essential for viral 

replication (Behrens etal., 1996). The HCV replication complex is a multiprotein 

complex that consists of the viral non-structural proteins (NS3 to NS5B) in 

addition to a number of cellular proteins (Gosert et a/., 2003). To gain more 

insight into host cell proteins that can interact with NS5B, full-length NS5B was 

used as bait by the yeast two-hybrid system to identify novel interactions with 

host cell proteins which may be involved in viral replication, persistence or 

pathogenicity. 

The yeast two-hybrid system successfully identified seven proteins that 

can interact with NS5B in vivo in yeast. The interactions were confirmed by 

more than three rounds of testing in yeast under high-stringency conditions to 

eliminate false positives and back testing against control proteins to show the 

specificity of the interaction with NS5B. All the identified proteins are expressed 

in hepatic and non-hepatic cells. Most have a role in cellular signalling pathways 

such as apoptosis and IFN signalling pathways. 

PLSCR1 is plasma membrane protein enriched in lipid rafts and traffics 

between the cytoplasm and nucleus to perform multiple functions in such cell 

proliferation, apoptosis, gene regulation, IFN response, EGFR signalling 

pathway and the trans-bilayer movement of plasma membrane phospholipids 

(Dong et a/., 2004; Li et a/., 2006; Nanjundan ef a/., 2003; Sun et a/., 2002; Yu 

ef a/., 2003; Zhou a/., 2005). PLSCR1 was identified with other ISGs to play a 

major role in decreasing HCV titre during the eariy phase of interferon treatment 

(Brodsky ef a/., 2007). In addition, PLSCR1 was shown to have an antiviral 

activity against VSV, EMCV in vitro (Dong et a/., 2004) and DENV in vivo in 

rhesus macaques (Sariol etal., 2007). Recently, PLSCR1 was shown to interact 

with CD4 at the cell surface of T lymphocytes. This interaction was important for 

HIV-1 entry as the disruption of the CD4/PLSCR1 interaction by the secretory 

leukocyte protease inhibitor (SLPI) blocked HIV-1 infection (Py etal., 2009). 

91 



CHAPTER 3 

Our results have shown that NS5B could interact with 0SBP8 which is 

involved in lipid transport and metabolism. It could also regulate the efflux of 

cholesterol from the cell by modulating the activity of ABCA1 (Bowden and 

Ridgway, 2008; Yan et a/., 2008). Interestingly, HCV infection alters VLDL and 

LDL molecular composition and changes cellular lipid metabolism leading to the 

accumulation of intracellular lipid (Jarmay ef a/., 2005; Napolitano et a/., 2007; 

Zejc-Bajsarowiczetal., 2005). 

NS5B also interacted with the C-terminus of RTN3. This region 

encompassed most of the RTN homology domain (RHD) (60-236 a.a.) which is 

highly conserved throughout family members (He et a/., 2007). RTN3 is 

required for cellular survival and for the optimal anti-apoptotic activity of Bcl-2 

(Wan et a/., 2007). RTN3 plays an important role in Alzheimer pathogenesis by 

interacting with, and inhibiting the activity of, p-secretase 3-site APP cleaving 

enzyme 1 (BACE1), a membrane-bound aspartic protease essential for the 

generation of amyloid (S-protein, which accumulates in the brains of Alzheimer's 

patients (Murayama ef a/., 2006). RTN3's C-terminus, as with NS5B, mediates 

the interaction with BACE1 (He ef a/., 2006). It has been suggested that RTN3 

is a common factor for the replication of Plcornavlruses such as enterovirus 71, 

poliovirus and coxsackie virus A16 (Tang ef a/., 2007). 

HAX1, a 35 kDa anti-apoptotic protein localized in mitochondria, is 

involved in mRNA transport, cell migration, and cancer progression (Ramsay ef 

a/., 2007; Szwarc ef a/., 2007). HAX1 was required for maintaining and 

protecting the inner mitochondrial membrane against apoptosis in myeloid cells. 

Its deficiency caused a severe congenital neutropenia, a primary 

immunodeficiency syndrome associated with increased apoptosis in myeloid 

cells (Klein ef a/., 2007). The HAX1 C-terminus, which mediated the interaction 

with NS5B, also mediated the interaction with HS1, a substrate of the Src family 

tyrosine kinases (Suzuki etal., 1997). HS1 and its tyrosine phosphorylation are 

necessary for the nuclear localization and the transduction of downstream 

signalling such as B cell antigen receptor-mediated apoptosis (Yamanashi ef 

a/., 1997). 
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NS5B interacted with a domain localized between amino acids 288 and 

564 of ZNF143. ZNF143 is a transcription activator that enhances the activity of 

RNA polymerases II and III (Schaub et a/., 1997). Its expression is induced by 

DNA damaging agents such as gamma-irradiation and cisplatin, a 

chemotherapy dmg that is used to treat various cancers such as ovarian cancer 

(Torigoe et a/., 2005). ZNF143 mediates cisplatin resistance by regulating DNA 

repair genes expression and binding to cisplatin-modified DNA (Ishiguchi et a/., 

2004). This process may be modulated by the interaction with the tumour-

suppressor protein p73 (Ishiguchi ef a/., 2004; Torigoe et a/., 2005; Wakasugi et 

a/., 2007). ZNF143 can also regulate the metabolic network controlling cell 

survival and differentiation via controlling the basal and tissue specific 

expression of transaldolase that regulates redox-dependent apoptosis via the 

pentose phosphate pathway (Grossman et a/., 2004). 

NS5B was shown to interact with TIMM50 which is important for the 

function of mitochondria as reducing its expression by RNA interference 

enhances mitochondrial membrane permeability causing cytoplasmic release of 

cytochrome c (Guo ef a/., 2004; Meinecke et a/., 2006). NS5B was also found to 

interact with SFRS10 which is expressed in brain, liver, testis, and weakly in 

kidney (Nayler et a/., 1998). It is involved in the modulation of p53 activity 

regulating cell growth and proliferation (Huang etal., 2004). 

In a recent study, a proteome-wide screening for interactions between 

HCV and cellular proteins has shown that PLSCR1 can interact with HCV core 

protein. It was suggested that PLSCR1 is essential for the inter-functionality of 

Jak/Stat and insulin pathways. Therefore, interaction of core with PLSCR1 may 

interfere with these pathways (de Chassey ef a/., 2008). RTN3 was also shown 

to interact with NS4B, a component of HCV replication complex (Liu ef a/., 

2005; Piccininni ef a/., 2002). The other proteins identified here have not been 

previously reported to interact with HCV proteins. The interaction of NS5B with 

these proteins may have a role in modulation of their respective function which 

may in turn be involved in HCV replication, persistence and/or pathogenesis. 
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CHAPTER 4 

Interaction of NS5B with PLSCR1, RTN3 and ZNF143 In Vitro 

4.1 Introduction 

In order to confirm some of interactions identified by the yeast two-hybrid 

screen, altemative assays were utilized to test whether the binding of NS5B to 

these proteins could be demonstrated by other systems. It was not possible to 

work on all candidates so a decision was made to limit the investigation to three 

targets, PLSCR1, RTN3 and ZNF143. These proteins are multifunctional 

proteins involved in many cellular pathways such as IFN signalling pathways, 

protein expression, protein trafficking and apoptosis as previously described in 

Chapter 3. These pathways may be important for HCV to modulate to facilitate 

replication and persistence. 

4.2 Expression and Purification of Truncated NS5B 
The HCV NS5B ORF, that lacked the coding region for the last 21 

hydrophobic C-terminal amino acids which was required to enhance the 

solubility of the expressed protein in bacteria, was amplified from pCV-H77c. 

The truncated NS5B (tNS5B) ORF was successfully cloned into pET21d 

(Novagen) in-frame with T7- and His-tag sequences at the N- and C-termini, 

respectively (Fig. 4.1), as confimied by restriction analysis and DNA 

sequencing. The new plasmid was termed pET21-5B (Appendix 9.11). 

Fig. 4.1: A schematic diagram of tNS5B ORF in pET21d. 
Truncated NS5B ORF (tNS5B) is cloned into pET21d in-frame with 
T7-tag and His-tag at the N- and C-terminus, respectively. 
Expression of NS5B is driven by T7 promoter. 
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After preliminary expression experiments (not shown) that demonstrated 

the expression of a truncated NS5B (tNS5B) as a His-tag fusion protein in a 

soluble form, a large scale preparation was undertaken. Purification of tNS5B 

was performed by Ni-affinity chromatography (HiTrap metal ion chelating 

column) (Section 2.24.1). The protein was eluted with increasing concentrations 

of imidazole in lysis buffer. Expression and purification of tNS5B were 

investigated by SDS-PAGE stained with coomassie blue stain (Fig. 4.2, A) and 

by western blotting analysis using a-His-HRP antibody for detecting the His-tag 

(Fig. 4.2, B). The fraction eluted with 300 mM imidazole was relatively pure and 

used for subsequent experiments after dialysis. 

(A) 

Imidazole (mM) 

(B) 

kDa M 50 100 200 300 400 kDa 1 

98 

1 64 

50 

tNS5B 

Fig. 4.2: Expression of tNSSB in fusion with IHis-tag. (A) Over-
expression and Purification of tNSSB. tNS5B was expressed in E. 
CO// BL21 (DE3) and captured using a HiTrap metal ion chelating 
column. The protein was eluted with increasing concentrations of 
imidazole. (B) Detection of tNSSB was performed using a-His-HRP 
antibody for His-tag. 1- tNSSB purified protein and 2- Total protein 
extracted from E. coli BL21 (DE3) cells transformed by empty 
pET21d. 
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4.3 Expression of GST-PLSCR1. -RTN3 and -ZNF143 ORFs 

PLSCR1, RTN3, and ZNF143 partial ORFs were obtained from the library 

AD/cDNA plasmids by digestion with EcoRI-Xhol. The resulting ORFs were 

successfully sub-cloned into pGEX-6P-3, in-frame with the glutathione S-

transferase (GST)-tag sequence at the N-terminus, as confirmed by DNA 

sequencing (see Fig. 4.3 for a schematic of such constructs). 

GST-PLSCR1, -RTN3, and -ZNF143 fusions were successfully expressed 

and purified from E. coli BL21 (DE3) cells induced with 1 mM IPTG at 25°C for 

16-24 hrs using Glutathioine-Sepharose-4B beads (Section 2.24.2). Expression 

of each GST fusion protein was confirmed by SDS-PAGE and Western blotting 

analysis using a-GST-HRP antibody (Figs. 4.4 and 4.5). 

5' T a c 
romoteK^ 

- 1 
G S T 

P L S C R l , R T N 3 O R 3' 
Operator 

- 1 
G S T Z N F 1 4 3 O R F s 

Fig. 4.3: A schematic diagram of PLSCR1, RTN3 or ZNF143 in 
pGEX-6P-3. The ORFs were cloned in-fusion with GST at their N-
termini and the expression was driven by tac promoter. 
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( A ) 
RTN3 ZNF143 G S T 

(B) 
RTN3 ZNF143 

kDa M 

250 

U N I N U N I N kDa U N 

ZNF143 

RTN3 

Fig. 4.4: Expression of RTN3 and ZNF143 ORFs in fusion with 
GST. (A) RTN3 and ZNF143 domains in fusion with GST were 
over-expressed in E. coli BL21 (DE3) cells. Un-induced (UN) and 
induced (IN) cells for RTN3, ZNF143, and GST expression were 
indicated. (B) Western blotting analysis indicating the expression of 
GST-RTN3, and GST-ZNF143. Detection was carried out using 
mouse a-GST-HRP antibody. White arrow indicates RTN3 while 
black arrow indicates ZNF143. 

kDa G S T - P L S C R l G S T 

Fig. 4.5: Expression of G S T - P L S C R l . (A) Detection of PLSCRI 
purification by SDS-PAGE where 1- Cell lysate of un-induced cells, 
2- Cell lysate from induced cells, and 3- Purified PLSCRI using 
glutathioine-sepharose-4B beads. (B) WB analysis indicating 
expression of GST-PLSCRl or GST in E. col. BL21 (DE3) cells 
using mouse a-GST-HRP antibody. 
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4.4 In Vitro Confirmation of the Interactions with NS5B 

In order to confirm the interaction of tNS5B with PLSCR1, RTN3, and 

ZNF143, GST pull-down assays were performed as detailed in Section 2.25.1. 

Soluble purified tNS5B protein was mixed with either GST-PLSCR1, GST-

RTN3, or GST-ZNF143 fusion proteins loaded on glutathione-sepharose beads; 

GST was used as a negative control. The beads were collected by 

centrifugation and washed extensively with PBS containing 0 .1% Tween-20 

(PBST). The captured products were analyzed by western blotting analysis 

using a-His-HRP antibody to detect tNS5B or a-GST-HRP antibody for 

detection of GST-fusion proteins. 

Results demonstrated that tNS5B was pulled down by GST-PLSCR1, 

GST-RTN3, and GST-ZNF143; there was no evidence of binding of tNS5B to 

the GST moiety (Fig. 4.6). 

ZNF143 P L S C R l GST kDa RTN3 

tNS5B—• 

a-GST 

a-His 

Fig. 4.6: Interaction of tNSSB with RTN3, ZNF143 or PLSCR1 in 
vitro. Soluble tNS5B was incubated with GST-RTN3, GST-
ZNF143, GST-PLSCR1, or GST bound to beads. SDS sample 
buffer was added to the washed beads before resolving on SDS-
PAGE and subjected to WB analysis. 
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4.5 Interaction of NS5B with Full-Length PLSCR1 and ZNF143 

in Yeast 

For further investigation of the biological significance of these interactions, 

PLSCR1 was selected as the main subject of this study as it had an antiviral 

activity and was involved in the reduction of HCV infection by the innate 

immune response (Brodsky ef a/., 2007) in addition to its role in EGFR 

signalling pathway and phospholipids transbilayer movement. PLSCRl was 

also enriched in lipid rafts that accommodate the HCV replication complex and 

RNA synthesis (Shi et a/., 2003; Sun ef a/., 2002). In addition to PLSCR1, 

ZNF143 was also subjected for further characterization to identify the biological 

significance of its interaction with NS5B. ZNF143 is a transcription factor 

involved in the activation of IRF3 transcription that activates the expression of 

IFN a and p (Mach ef a/., 2002). ZNF143 could also modulate cell survival by 

interacting with p73 and transaldolase (Grossman ef a/., 2004; Wakasugi ef a/., 

2007). 

It was necessary to clone the full-length PLSCR1 (FL-PLSCR1) and 

ZNF143 (FL-ZNF143) ORFs to determine if the binding to NS5B still occurring. 

It was also important for subsequent biological assays that may need full-length 

proteins for functional activities. FL-PLSCR1 and FL-ZNF143 ORFs (NCBI 

Accession Number AF008445 and NM_003442, respectively) were successfully 

amplified from total RNA extracted from Huh7 cells (Section 2.21.1). Nested 

RT-PCR was performed as an initial attempt to isolate ORFs from a direct RT-

PCR failed to give sufficient product (Section 2.21.3). External primers flanking 

PLSCRl and ZNF143 ORFs were designed (Appendix 9.11). Intemal (nested) 

sets of primers for PLSCRl and ZNF143 were used for the nested PCR. The 

obtained full-length PLSCR1 and ZNF143 ORFs (954 bp and 1917 bp, 

respectively) were cloned into pGADT7 in-frame with DNA-BD at their N-termini 

(Appendix 9.11). 
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In order to confirm that NSSB can interact with FL-PLSCR1 or FL-ZNF143, 

a yeast two-hybrid assay was performed using pGBK-5B and pGAD-FL-

PLSCR1 or pGAD-FL-ZNF143. Results demonstrated clearly that NSSB could 

interact with both full-length proteins, at least in yeast (Fig. 4.7). 

FL-PLSCRl FL-ZNF143 pCLl 

NSSB 

Lam 

pGADT7 

318 

NSSB Lam 

+ 

FL-ZNri43 

Fig. 4.7: Yeast two-hybrid assay to confirm the interaction of 
NSSB with FL-PLSCR1 and FL-ZNF143. AH 109 yeast cells 
were transformed with pGBK-5B or pGBK-Lam with pGAD-FL-
PLSCR1 or pGAD-FL-ZNF143. pCL1 plasmid was used as a 
positive control and pGBK-Lam with pGADT7 were used as 
negative control plasmids. 
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4.6 Expression of FL-PLSCR1 and FL-ZNF143 In Vitro 

Full-length PLSCRl and ZNF143 ORFs were cloned into pGEX-6P-3 in-

frame with GST-tag sequence at the N-terminus (Section 9.11). pGEX-FL-

PLSCR1 and pGEX-FL-ZNF143 were introduced into E. coli BL21 (DE3) cells. 

Protein expression was carried out as previously described in Section 2.24.2 

and then analyzed by SDS-PAGE and western blotting. Proteins were purified 

using glutathioine-sepharose-4B beads and elution was performed with reduced 

glutathione. 

The majority of GST-PLSCR1 (63 kDa) and GST-ZNF143 (96 kDa) 

preparations were partially pure (Fig. 4.8). Some contaminating bands, possibly 

breakdown products, were observed to co-purify with the target proteins which 

proved difficult to remove. However, the level of purity achieved was considered 

acceptable for subsequent experimental procedures. 

GST-PLSCRl GST-ZNF143 

M (kDa) 

Fig. 4.8: Expression of full-length GST-PLSCR1 and GST-
ZNF143 fusions. PLSCR1, ZNF143, and GST were expressed 
in E. coli BL21 (DE3) cells induced with 1 mM IPTG at 25°C for 
16-24 hrs. Expressed proteins were captured by glutathioine-
sepharose-4B beads and eluted with 20 mM Glutathione 
containing buffer. (C) Cell lysate from induced cells, and (P) 
Purified protein. 
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4.7 Interaction of NS5B with FL-PLSCR1 In Vitro 

To confirm the NS5B/FL-PLSCR1 interaction, an ELISA assay was 

performed (Section 2.25.3). A microtitre plate was coated with soluble purified 

tNS5B in increasing concentration series. After blocking non-specific sites, 

soluble GST-PLSCRl or GST was added to the coated wells. After extensive 

washing, the captured proteins were detected using a-GST-HRP antibody. 

It was observed that the amount of captured FL-PLSCR1 was proportional 

to the concentration of tNS5B, whilst no significant change was noted with GST 

which confirmed the specificity of the interaction of tNS5B with FL-PLSCR1 in 

vitro (Fig. 4.9). 

0.35 
FL-PLSCR1 
GST 

1.6 0.8 0.2 

t N S 5 B (pg) 

0.05 0.025 

Fig. 4.9: Interaction of tNSSB with FL-PLSCR1 in vitro. An ELISA 
assay was performed using soluble purified tNS5B and FL-PLSCR1 
or GST. The captured proteins were detected using a-GST-HRP 
antibody. Each sample was measured in triplicates in three 
separate experiments then the means±SEM were calculated and 
plotted on the graph. * The significance of binding of FL-PLSCR1 
with two different amounts of tNS5B (1.6 and 0.8 pg) was 
detennined (p-value < 0.05). 
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4.8 Interaction of NS5B with FL-ZNF143 In Vitro 

Far-western blotting was used to confirm the interaction of tNS5B and FL-

ZNF143 (Section 2.25.2). Purified FL-ZNF143 or GST was resolved by SDS-

PAGE. Proteins were transferred to a nitrocellulose membrane and probed with 

NS5B-His. After washing, captured tNS5B was detected using a-His-HRP 

antibody. Only FL-ZNF143 captured tNS5B at a point consistent with the mass 

of GST-ZNF143, 96 kDa (Fig. 4.10). 

kDa GST-ZNF143 

a-GST 

Fig. 4.10: Interaction of tNSSB with FL-ZNF143 in vitro. FL-
ZNF143 or GST were resolved on SDS-PAGE then transferred to 
nitrocellulose membrane. Nitrocellulose membrane was blocked 
and probed with soluble purified tNSSB protein. The membrane 
was washed extensively before detection of the bound tNS5B with 
a-His antibodies conjugated with HRP. 
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4.9 Mapping the NSSB Interacting Domain on PLSCR1 

To determine the binding domain(s) on PLSCR1 for NSSB, a series of 

carboxy co-terminal truncated mutants were generated using the Quick-Change 

Site-Directed Mutagenesis kit (Stratagene) by introducing stop codons after 

amino acids 60, 137 and 192 of PLSCR1 in pGAD-FL-PLSCRI. These deletion 

mutants were subsequently tested for an interaction with NSSB using the yeast 

two-hybrid assay. The results, summarized in Fig. 4.11, demonstrated that 

NSSB failed to bind to PLSCR1 after removal of amino acids 61-137 suggesting 

that this region was the binding site for NSSB, or at least contained sequences 

required for the interaction. 

(A) PLSCRl 

>S5B 

Lam 

(B) 

137 

SCRD2 

60 

D3 F L 

pGADT? + p G B K T 7 p C L l SB + pGADT7 

192 

318 
NSSB 

+ 

Lam 

Fig. 4,11: IVIapping the interacting domain on P L S C R l . (A)AH109 
was transformed with pGBK-SB or pGBKT7-Lam and pGADT7 
containing full-length or deletion mutants of PLSCRl. 
Transformation of pGBKT7-S3 with pGADT7-T was used as a 
positive control while transformation by pGADT7 with pGBK-SB or 
pGBKT7 was used as a negative control for the assay. (B) Diagram 
showing the interaction of NSSB with PLSCRl's domains. The 
number of amino acid at the start and end of each PLSCRl deletion 
mutant's domains is indicated. The positive interaction is expressed 
as (+) while the lack of interaction is expressed as (-). 
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4.10 IVIappinq the PLSCR1 and ZNF143 Interacting Domain(s) on 

NS5B 

In order to map the PLSCRI and ZNF143 interacting regions on NS5B, a 

number of NS5B C-terminal deletion mutants were created using PCR, 

NS5B^'^^-^^'' (NS5BD1), NS5B^2°2-591 (NS5BD2) and NSSB^^^"^^^ (NS5BD3). 

The truncated ORFs were cloned into pGBKT7 for expression as fusions with 

the GAL4 DNA-BD at the N-terminus. NS5B and its deletion mutants were 

tested for the interaction with FL-PLSCR1 or FL-ZNF143 using the yeast two-

hybrid system (Fig. 4.12). The assay demonstrated that all NS5B deletion 

mutants could interact specifically with full-length PLSCRI and ZNF143 in 

yeast. These results indicated that the binding domain of NS5B for both proteins 

was likely to be present within the amino-terminus of NS5B (amino acids 1-

153), or this region contained elements that by themselves were sufficient to 

support the interactions. 

( A ) N S 5 B 

F L - P L S C R l 

pGAI>T7 

F L - Z N F I 4 3 

p C L l 

(B) 

P L S C R I ZNF143 p G A D T 7 

K L - N S 5 U 

1 
XI It 1) 1 

448 
• 

1 

1 

Fig. 4.12: Mapping the PLSCRI and ZNF143 interacting domain 
on NS5B. (A) AH 109 was transformed with pGBK-5B, -NS5BD3, -
NS5BD2, -NS5BD1 or pGBKT7-Lam in combination with pGAD-FL-
PLSCR1, -ZNF143, or pGADT7. Transformed cells were tested for 
a-galactosidase activity. (B) Diagram showing the interaction of 
NS5B or its deletion mutants with FL-PLSCRl or FL-ZNF143. The 
number of amino acid at the start and end of each domain is 
indicated. The positive interaction is expressed as (+) while the lack 
of interaction is expressed as (-). 
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4.11 In Vivo Pulldown Analysis of the Interaction of NS5B with 

PLSCR1 and ZNF143 

Full-length NS5B ORF was cloned into pNTAP (Stratagene), a 

mammalian-expression plasmid, in-frame with a streptavidin binding peptide-tag 

at the N-terminus to create pNTAP-5B (Appendix 9.11). Expression of NS5B 

was confirmed by WB using rabbit a-NS5B (Abeam) and a-rabbit-HRP 

antibodies (Sigma) (Fig. 4.13). 

kDa 1 2 

250 

98 
^ ^ ^ ^ ^ N S 5 B 

64 

50 

36 

30 

Fig. 4.13: Expression of NS5B in Huh7 cells. Huh7 cells were 
transfected with pNTAP-5B (1) or pNTAP (2). NS5B expression 
was detected 48 hrs post-transfection using rabbit a-NS5B and a -
rabbit-HRP antibodies. 

FL-PLSCR1 and FL-ZNF143 ORFs were subcloned into pcDNA4His/Max 

(Invitrogen) in-frame with a His-tag at the N-terminus to facilitate purification and 

identification (Appendix 9.11). Expression of histidine-tagged proteins was 

confirmed by western blotting using a-His antibody. In order to investigate the 

interaction of NS5B with PLSCRl or ZNF143 in vivo, pNTAP-5B with either 

pcDNA4-PLSCR1 or pcDNA4-ZNF143 was co-transfected into Huh7 cells. 

Expression was allowed to proceed for 48 hrs before harvesting cells. Cell 

lysates were incubated with nickel (Ni) beads for 3 hrs at 4°C to capture 

PLSCR-His or ZNF143-His with the associated proteins. After washing, 

samples were resolved by SDS-PAGE and subjected to WB analysis. Sheep a-

NS5B and a-sheep-HRP antibodies were used for detecting NS5B. 
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Under our experimental conditions a pull-down assay was unable to detect 

a direct interaction between NS5B and either PLSCRl or ZNF143 that 

suggested that the interactions may be weak and easily disrupted under our 

assay conditions. The interactions may also need special conditions such as 

I FN or EGF stimulation to create a favourable environment for interactions. 

4.12 Discussion 

The main objective of this chapter was to confirm the interaction of NS5B 

with some of proteins identified by yeast two-hybrid screening using alternative 

assays. To confirm the interactions in vitro, NS5B ORF minus the C-terminal 

hydrophobic amino acid sequence, to increase the solubility of NS5B, was 

successfully cloned and expressed as a fusion with a His-tag at its C-terminus 

to facilitate purification and identification. Large amounts of recombinant protein 

in a soluble form were obtained and considered sufficiently pure for subsequent 

applications (Fig. 4.2). Using a pull-down assay, the interactions of NS5B with 

truncated forms of PLSCRl, RTN3, and ZNF143 obtained from the yeast 

screening were confinned in vitro (Fig. 4.6). 

The study subsequently focussed on PLSCRl and ZNF143, and in 

particular PLSCRl, as they are involved in IFN signalling pathways and 

apoptosis which are significant antiviral pathways that HCV must negate to 

establish a productive infection. Yeast two-hybrid (Fig. 4.7) and other supportive 

in vitro assays confirmed the interaction of NS5B with full-length PLSCRl and 

ZNF143 proteins in vivo in yeast and in vitro by ELISA (Fig. 4.9) or by far 

westem blotting (Fig. 4.10). 

PLSCRl is a membrane protein that contains multiple important functional 

domains such as a transmembrane helix (PLSCRl ^^^^°^) at the C-terminus, an 

extracellular C-terminal tail (PLSCRl^°^"^^^) and an N-terminal cytoplasmic 

domain (Fig. 4.14). The cytoplasmic domain contains an N-terminal proline-rich 

(PXXP) region (SH3 binding domain, PLSCRl ^"^^), a DNA-binding domain 

(PLSCRI^^^^^), a cysteine palmitoylation motif (PLSCRl^^^•''^^), a nuclear 
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localization signal (NLS) (PLSCRl^^^"^^^), and a Ca^^ binding domain 

(PLSCR12^^-284) (Ben-Efraim ef a/., 2004; Wiedmer ef a/., 2003; Wiedmer ef a/., 

2000; Zhou efa/.,2005). 

Cysteine Palmitoylation Domain 

Proline-Rich Domain I TVL̂ S 

I 1 i ir 
IS-* 189 257 266 2 

DISA.-Bin<ling Domain 

Xransmembrane Helix 

224 2.9g ^ 22$ 218 

Ca^+ Binding Domain 

Fig. 4.14: IVIain PLSCR1 domains. Amino acids numbers are indicated at 
the beginning and the end of each domain (Sahu ef a/., 2007). 

The mapping studies showed that the PLSCRl domain that mediated the 

interaction with NS5B was located between amino acids 60 and 137 (Fig. 4.11). 

Interestingly, this region is part of the PLSCR1 proline-rich domain (PLSCRl ̂ " 

^^), that is involved in the interaction with other cellular proteins that contain SH3 

domains (Wiedmer ef a/., 2000). This region also contains the DNA binding 

domain of PLSCRl, PLSCRI^^"^^^ (Zhou ef a/., 2005). 

It has been shown that the c-AbI tyrosine kinase phosphorylated PLSCRl 

at tyrosine residues (Tyr^^/Tyr^"^) within the SH3-like domain (Sun ef a/., 2001). 

The same region was responsible for the physical association of PLSCRl with 

the Src homology 2 containing (She) adaptor protein and EGFR upon 

stimulation by EGF (Sun ef a/., 2002). Moreover, PLSCRl mediated the EGF-

dependent recruitment and activation of c-Src tyrosine kinase suggesting that 

PLSCRl has a role in the EGFR signalling pathway (Nanjundan ef a/., 2003; 

Sun ef a/., 2002). PLSCRl was also shown to traffic into the nucleus under 

specific circumstances such as IFN induction and bind directly to the 5'-

promoter region of the inositol 1,4,5-triphosphate receptor type 1 gene (IP3R1) 
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through its DNA-binding domain to enhance expression of the receptor (Zhou et 

a/., 2005). 

To gain a better understanding of the molecular basis of the interaction of 

NS5B with FL-PLSCR1 or FL-ZNF143, carboxyl deletion mutants of NS5B, 

NSSB"^'^^"^^' (NS5BD1), NSSB'̂ ^^^-sgi ( n s 5 B D 2 ) and NS5B^^^^^^^ (NS5BD3), 

were generated to map the interacting domains on NS5B. Results 

demonstrated that NS5BD1, i.e. the N-terminal domain of NS5B, was the target 

for both proteins, in yeast, suggesting that amino acids 1 to 153 mediated the 

interaction of NS5B with PLSCR1 and ZNF143, or at least contained sequences 

required for these interactions (Fig. 4.12). 

NS5B^'^^^ domain interacted with, and was phosphorylated by, protein 

kinase C-related kinase 2 (PRK2) and this phosphorylation was shown to 

regulate HCV RNA replication (Kim et a/., 2004). NS5B^'^^ also mediated the 

interaction of NS5B with a-actinin which was suggested to be part of the viral 

replication complex (Lan et a/., 2003). It was found that NS5B^^'^^ has RNA-

binding activity (Cheng et al., 1999). Notably, targeting the N-tenninus of NS5B 

with monoclonal antibodies disrupted the enzymatic function of NS5B (Kang et 

al., 2008). Taken together, it is clear that the NS5B N-tenninal region is involved 

in many cellular interactions and is important for the viral RNA replication. 

However the interaction of PLSCR1 or ZNF143 with this region may affect its 

role in these interactions and/or the viral RNA replication. 
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CHAPTER 5 

Investigation of the Biological Significance of the 

Interaction of NS5B with PLSCR1 or ZNF143 

5.1 Introduction 

PLSCR1 and ZNF143 potentiate the cellular response to IFN by increasing 

the expression of some interferon-stimulated and -regulatory genes innportant 

for establishing an antiviral state (Dong ef a/., 2004; Mach et a/., 2002). Huh7 

cells accommodating a HCV replicon have a decreased expression of IFN and 

associated ISGs suggesting that down-regulation of the IFN response is 

important in the establishment of a persistent infection (Itsui ef a/., 2006; Zhang 

ef a/., 2005). As PLSCR1 and ZNF143 interact with NS5B, it may interfere with 

their activity on ISGs expression that could modulate the cellular response to 

IFN. In order to determine whether there is a biological significance for the 

interactions between NS5B and PLSCR1 or ZNF143 in vivo, the effect of co-

expression of NS5B with either PLSCR1 or ZNF143 on the cell's response to 

IFN treatment was investigated. 

5.2 Effect of NS5B Interaction with PLSCR1 or ZNF143 on 

Mammalian Cell Response to Interferon 

To investigate if the interaction of NS5B with PLSCR1 or ZNF143 had an 

effect on the cellular response to IFN-a, Huh7 or VERO cells were treated with 

50 U/ml IFN-a for 5 hrs before transfection with the pISRE-Luc reporter plasmid 

and pcDNA4-5B (for expression of full length NS5B in fusion with His-tag at the 

N-temiinus, Appendix 9.11) with or without pcDNA4-PLSCR1 or pcDNA4-

ZNF143. Empty pcDNA4 plasmid was used to keep an equal total amount of 

transfected DNA per well (1 pg/well). Cells were harvested 48 hrs post-

transfection and luc activity was detennined (Section 2.26.8). pISRE-Luc, a 

reporter plasmid expressing the firefly luciferase {luc) under the control of the 

interferon-stimulated response element (ISRE) which is 
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found in the promoters of most interferon-stimulated genes (ISGs), was 

used to monitor the effect of NS5B, PLSCR1 and ZNF143 on IFN signalling. 

In both cell lines, expression of NS5B alone had no effect on luc 

expression (Section 2.26.8). In Huh7, luc expression was markedly increased, 

by 1.7 and 1.3 fold, in the presence of plasmids expressing PLSCR1 or 

ZNF143, respectively. In VERO cells, which do not produce an endogenous 

interferon but do respond to exogenous IFN (Diaz a/., 1988), expression of 

PLSCR1 or ZNF143 had marked enhancing effects on luc expression, of 4.5 

and 3 fold increase over the control, respectively (Fig. 5.1). Interestingly, co-

expression of NS5B with either PLSCR1 or ZNF143 significantly reduced luc 

expression in both cell lines (p-values < 0.05) suggesting an anti-interferon role 

for NS5B. 

I 

Huh7 

Fig. 5.1: Effect of co-expression of NS5B with PLSCR1 or 
ZNF143 on IFN ability to induce the expression from 
ISRE in Huh7 and VERO cells. Cells were pre-treated with 
50U/ml IFN-a for 5 hrs before transfection with pISRE-Luc, 
PCDNA4-5B, and/or pcDNA4-PLSCR1 or pcDNA4-ZNF143. Each 
sample was measured in triplicate in three separate experiments. 
Error bars represent the SEM of three separate experiments. * Co-
expression of NS5B with either PLSCR1 or ZNF143 significantly 
reduced luc activity in both cell lines with p-values ^ 0.05. 
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•5.3 Effect of NS5B on the Expression of Cellular ISRE-Driven 

Down-Stream Interferon-Stimulated Genes (ISGs) 

To determine If NS5B had an effect on the response to interferon, the 

effect on the expression of some interferon stimulated genes (ISGs), such as 

interferon stimulated gene 15 (ISG15), ISG54, 2', 5'-oligoadenylate synthetase 

2 (0AS2), and interferon regulatory factor 7 (IRF7), was tested. The choice of 

ISGs was based on those previously reported to be induced by PLSCR1 (Dong 

ef a/., 2004). To this aim we utilized a lentivirus-based vector system (2"̂ ^ 

generation, kindly provided by Didier Trono, Tronolab, Switzerland) to deliver 

the NS5B ORF sequence into Huh7 cell to ensure expression in the majority of 

cells (Section 2.26.3). The NS5B ORF was cloned into pWPXL to produce 

pWPXL-5B (Appendix 9.11) which was subsequently used to produce VLPs. 

Production of high titre VLP stocks was achieved by transfection of 293T cells 

with psPAX2, pMD2G and pWPXL or pWPXL-5B. Supernatant's containing 

VLPs were collected and used to transduce Huh7 cells. Cells were harvested 

48 hrs post-transduction and total cellular RNA or protein lysates were prepared 

and NS5B expression was confirmed by RT-PCR (not shown) and westem 

blotting (Fig. 5.2). 
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Fig. 5.2: Expression of NS5B in Huh7 cells transduced with 
NS5B VLPs. Huh7 cells were transduced with (1) NS5B VLPs or 
(2) GFP VLPs. NS5B expression was detected by rabbit a-NS5B 
and a-rabbit-HRP antibodies. 
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Similarly, PLSCR1 and ZNF143 ORFs were cloned into pWPXL-V5H, a 

modified version of pWPXL containing His-tag specifically generated for this 

study to facilitate detection, in-frame with His-tag at the N-terminus (Appendix 

9.10). The resulting plasmids, denoted pWPXL-V5H-PLSCR1 and pWPXL-V5H-

ZNF143 respectively (Appendix 9.11), were used to produce VLPs in 293T 

cells. VLPs were used to transduce Huh7 cells and the expression of His-

tagged proteins was confirmed by western blotting using a-His antibody (data 

not shown). 

Huh7 cells were treated with 50 U/ml I FN for 24 hrs after transduction with 

NS5B VLP either alone or in combination with PLSCR1 or ZNF143 VLPs. Total 

cellular RNA was extracted 48 hrs post-transduction and semi-quantitative RT-

PCR was performed for monitoring the expression of ISG15, ISG54, 0AS2, 

IRF7, and p-actin using primers specific for the first -500 bp of each ORF 

sequences (Appendix 9.11). No significant difference was observed (in three 

experiments) in the expression of ISGs in Huh7 cells expressing PLSGR1 or 

ZNF143 and cells co-expressing NS5B with both proteins (Fig. 5.3). 

PLSCRl PLSCR1/5B SB ZNF143 ZNF143/5B GFP 

ISG15 

ISG54 

OAS2 

IRF7 

p-actin 

Fig. 5.3: Expression of ISGs in Huh7 cells expressing NS5B, 
PLSCR1 and ZNF143. RT-PCR was can-ied out for detection of 
the expression of ISG15, 54, 0AS2, IRF7 and p-actin in Huh7 cells 
expressing PLSCRl, PLSCR+NS5B, NS5B, ZNF143, 
ZNF143+NS5B or GFP. 
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5.4 Effect of PLSCR1 and ZNF143 on HCV Sub-Genomic 

Replicon Replication 

The effect of PLSCR1 or ZNF143 on HCV replication was monitored using 

a sub-genomic replicon (FKi341PiLucNS3-3'dgET, FK-Luc, Appendix 9.12), 

kindly provided by Ralf Bartenschlager (University of Heidelberg, Germany). 

pFK-Luc contains in order: T7 RNA polymerase promoter (for in vitro 

transcription) followed by nucleotides 1 - 341 of the HCV 5' consensus 

sequence (required for replication of the RNA), the poliovirus (PV) IRES 

element (for translation of luc), the firefly-luciferase ORF (to monitor replicon 

replication), EMCV IRES (for translation of NS3-NS5B), the NS3 to NS5B 

coding sequence and the 3' UTR of HCV genotype l b and finally a T7 RNA 

polymerase terminator sequence (to terminate in vitro transcription) (Fig. 5.4). 

Replicon RNA was synthesized in vitro with pFK-Luc as a template using 

the MEGAscript T7 Transcription Kit (Ambion). A preliminary experiment was 

carried out to investigate replication levels of the replicon at various time points. 

The ability of the replicon to replicate was confirmed by IFN treatment as this 

treatment resulted in a loss of a luciferase signal which was consistent with luc 

expression being due to genuine replicon replication (data not shown). 

omoter 
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L u c L u c H C V N S 3 - 5 B 

I R E S 

Fig. 5.4: A schematic diagram showing the overall structure of 
the pFK-Luc containing the HCV sub-genomic 
replicon. luciferase transcription is driven by HCV 5' UTR while 
HCV NS3-5B expression is driven by EMCV IRES. 
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5.4.1 Effect of PLSCR1 or ZNF143 Overexpression on Replicon 

Replication 

In order to investigate the effect of PLSCR1 or ZNF143 on HCV replicon 

replication, Huh7 cells were transfected with in vitro transcribed pFK-Luc RNA. 

Transfected cells were subsequently transduced with PLSCR1, ZNF143 or GFP 

VLPs 24 hrs post-transfection. Cells were incubated for 48 hrs before 

determining luc activity. No significant change was observed in cultures 

expressing PLSCR1, while a reduction (30 %) in replication was observed in 

cultures expressing ZNF143 over the GFP control (Fig. 5.5) suggesting an 

antiviral role for this protein. 

~ 100 

(A 
to 

Fig. 5.5: Effect of PLSCR1, ZNF143, and GFP on the replicon 
replication. Huh7 cells were transfected by in vitro transcribed 
pFK-Luc RNA. Transfected cells were transduced with VLPs of 
PLSCR1, ZNF143 or GFP. Cells were incubated for 48 hrs before 
determining luc activity. The assay was carried out one time and 
each sample was measured in triplicates then the mean±SD values 
were calculated and plotted as a percentage of the GFP control 
sample. Error bars represent SD values. 
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5.4.2 Effect of Down-regulating PLSCR1 or ZNF143 Expression 

on Replicon Replication 

To determine the effect of down-regulating PLSCR1 or ZNF143 expression 

on replicon replication, shRNA constructs to deplete PLSCR1 or ZNF143 were 

generated (Fig. 5.6). Oligonucleotides, designed in accordance with previous 

protocols, were inserted into pLVTHM (a kind gift from Didier Trono, 

Switzerland, Appendix 9.13) giving pLVTHM-shPLSCRI and pLVTHM-

shZNF143 (Appendix 9.11). 

( A ) 

Mlul Sense Loop Anti-Sense Clal 
C C C C p G A C C T C C A G a A T A T A G T C l r T C A A G A G 4 C A C T A T A T C C T G G A G G T C C f T T T T G G A A ; 3' 

G G G G C C T G G A G G T C C T A T A T C A C l A A G T T C T C T G T G A T A T A G G A C C T C C A G d v A A A A C C T T 

( B ) 

Mlul Sense Loop Anti-Sense Clal 

C C C C f c c C A T A T C G G T G T T C G G A A G 4 T r C A A G A C A j r C T T C C G A A C A C C G A T A T G G C rTTTTGGAA '.1 
3- G G G d C G G T A T A G C C A C A A G C C T T c J A A C T T C T C T i G A A G G C T T G T G G C T A T A C C G V A A A A C C T T S 

Fig. 5.6: shRNA oligonucleotides against PLSCR1 or ZNF143. 
Annealed oligonucleotides designed for cloning into pLVTHM to 
form ShRNA targeting PLSCR1 (nucleotides 94-112) or (B) ZNF143 
(nucleotides 885-905) when transfected into cells. 

To negate PLSCR1 expression, VLPs were prepared using pLVTHM-

shPLSCRI or pLVTHM-shGFP (a control plasmid containing shRNA against 

GFP). Huh7 cells were transduced with these VLPs and the total cellular RNA 

was extracted 48 hrs post-transduction. PLSCR1 expression was examined 

using semi-quantitative RT-PCR (Section 2.21.2). It was observed that cultures 

transduced with the shRNA against PLSCR1 had a reduced expression of 

PLSCR1 mRNA by -40 % (observed in two experiments) (Fig. 5.7). 
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|}-actin 

Fig. 5.7: Down-regulation of PLSCR1 expression. RT-PCR 
quantisation of the expression of PLSCR1 in Huh7 cells 
transduced with VLPs expressing 1- shPLSCRI, and 2- shGFP. 
p-actin mRNA was used to nonnalize the levels. 

Similarly, for down-regulation of ZNF143 expression, Huh7 cells were 

transduced with VLPs prepared by using pLVTHM-shZNF143 or pLVTHM-

shGFP. Total RNA was extracted 48 hrs post-transduction and ZNF143 mRNA 

levels were examined using semi-quantitative RT-PCR (Fig. 5.8). Compared 

with control cells, expression of ZNF143 was reduced by 25 % in cultures 

transduced with shZNF143 VLPs (repeated twice). 

B-actin 

Fig. 5.8: Down-regulation of ZNF143 expression. Semi-quantitative 
RT-PCR for detection of ZNF143 expression in Huh7 cells 
transduced with VLPs expressing 1- shZNF143 and 2- shGFP as a 
control. Actin mRNA was used to normalize levels between 
samples. 
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In a preliminary experiment, Huh7 cells harbouring the HCV sub-genomic 

replicon were transduced with shPLSCRI, shZNF143, or shGFP VLPs. 

Replication was monitored using luc activity 48 hrs post-transduction. 

Reduction of PLSCRl expression had the effect of increasing luc activity 

by more than 35 % over the control which may suggest that endogenous 

PLSCRl may have an antiviral role on HCV replication. There was no effect 

when ablating expression of ZNF143 suggesting that a contribution to the 

antiviral status of the cell was not evident under these conditions (Fig. 5.9). 
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Fig. 5.9: Effect of repression PLSCR1 and ZNF143 expression 
on HCV replicon replication. Expression of PLSCRl, 
ZNF143 or GFP was knocked-down in Huh7 cells harbouring HCV 
replicon. Expression of luc was detemnined 48 hrs post-transduction 
as indication for replication. Light units were expressed as a 
percentage relative to those obtained from the control (shGFP). The 
assay was performed in triplicates for once. The meanlSD values 
were calculated and plotted as a percentage of the shGFP control 
sample. Error bars represent SD values. 
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5.5 Discussion 

In this chapter we tried to investigate whether any biological significance 

could be ascribed to the interaction of NS5B with either PLSCR1 or ZNF143. 

Expression of PLSCR1 or ZNF143 significantly enhanced the ability of IFN to 

induce the expression from an ISRE element which confimied their roles in 

amplifying the response to IFN (Fig. 5.1) (Dong ef a/., 2004; Mach ef a/., 2002). 

However, co-expression of NS5B with either protein reduced this activity. These 

results implicated NS5B in an anti-interferon response by interacting with 

PLSCR1 or ZNF143 supporting the observation that NS5B has some form of 

interaction with both proteins. 

Using RT-PCR, no significant changes in ISGs expression levels were 

observed in cells transduced by NS5B, PLSCR1, ZNF143 or GFP VLPs (Fig. 

5.3). Possibly other ISGs may be involved in affecting the IFN activity or more 

sensitive techniques such as real time RT-PCR or northern blotting are required 

to investigate the effect of these proteins on ISGs expression. 

The effect of PLSCR1 on HCV sub-genomic replicon replication was 

tested in absence of IFN. It was observed that PLSCR1 over-expression had no 

effect on replicon replication (Fig. 5.5) while a reduction in its expression 

enhanced replication (Fig. 5.9). This may suggest that endogenous PLSCR1 

had a maximal effect on the antiviral state; however increasing PLSCR1 

expression could not increase the effect. Conversely ZNF143 over-expression, 

reduced replication by 30 % while reducing its expression had no effect on 

replication which suggested that a basal level of ZNF143 expression may not 

contribute to an antiviral state but by increasing its levels within the cell by over-

expression, ZNF143 may participate in the antiviral state and reduce replicon 

replication. From these results we hypothesized that PLSCR1 and ZNF143 may 

have different strategies to contribute to the antiviral state of the cell. Further 

work is required to further these observations. As mentioned previously they 

represented a limited number of experiments perfomned in the laboratory of Dr 

A Patel (MRC Virology Unit, Institute of Virology) within a limited time. 
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In support with the role of PLSCRl in the viral infection, a previously 

published work had shown that PLSCRl expression was down-regulated by 

-50 % in Huh7 cells stably expressing NS5A (Girard et al., 2002) and also in 

cells harbouring HCV sub-genomic replicon (genotype l b ) (Sumpter et al., 

2004). Conversely it was up-regulated during a persistent HCV infection in vivo 

in chimpanzees (Bigger ef al., 2004). This suggests that regulation of PLSCRl 

expression during HCV infection has a role in the development of the persistent 

infection. ZNF143 has not previously been reported to be involved in viral 

replication or persistence but HCV could interfere with its role in the 

transcription of IRF3 or other ISGs which would be needed to develop and 

maintain a persistence infection. Results presented in this chapter suggested 

that PLSCRl and ZNF143 are not likely to be part of the viral replication 

complex but may contribute to the host cell response to the viral infection. The 

data also suggested that NS5B may participate in negating the response to IFN 

in part by the interaction with these proteins. 
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CHAPTER 6 

Identification of Cellular Proteins that Can Interact with NS5B 

Using Pulldown Methodology and Mass Spectrometry 

6.1 Introduction 

In order to further improve our knowledge about the range of cellular 

proteins that can interact with NS5B, a second approach was undertaken using 

a pulldown methodology coupled with mass spectrometry. This methodology 

has been extensively used in recent years as it is a highly sensitive and 

powerful tool for rapidly identifying proteins from a complex set of proteins such 

as that from a cell (Lai ef al., 2008). 

His-tagged tNS5B bound to nickel beads was used as bait for capturing 

proteins from Huh7 cell lysates. NS5B-associated proteins were analyzed by 

SDS-PAGE and identified by Matrix-Assisted Laser Desorption/lonization Time-

of-Flight (MALDI-TOF) Mass Spectrometry by the University of Durham's in-

house proteomic service. 

6.2 Pull-Down NS5B-Associated Proteins from Huh7 Lvsate 

Truncated NS5B (tNS5B) was expressed in BL21 (DE3) using pET21-5B 

construct as described in Section 4.2. Purified protein bound to Ni-NTA beads 

was washed extensively with PBS containing 20 mM imidazole to remove non

specific binding proteins. Beads were subsequently washed with PBS without 

imidazole. Expression and purity of NS5B were determined by SDS-PAGE and 

WB (not shown). 

A Huh7 cell lysate was prepared from approximately 1 x 10^ cells in cell 

culture lysis reagent (CCLR, Promega) followed by centrifugation to clarify the 

lysate which was then passed through a 0.45 |jm filter. An equal amount of 

121 



C H A P T E R 6 

NS5B-beads, or Ni-beads without NS5B, was added to the cell lysate. Imidazole 

was added to a final concentration of 20 mM to inhibit non-specific binding. The 

mixtures were incubated for 3 hours at 4°C. A parallel set of samples were also 

prepared that were incubated for 24 hrs. Beads were collected by centrifugation 

and washed extensively with washing buffer and then boiled in 1X SDS loading 

buffer and subjected to SDS-PAGE (Fig. 6.1). 

kOa M 

Fig. 6.1: SDS-PAGE analysis of NS5B-associated proteins 
derived from Huh7 ceil lysate. (1) and (4) are NS5B-beads 
incubated for 3 and 24 hrs with the cell lysate, respectively. (2) 
tNS5B-beads without incubation with cell lysate. (3) Ni-beads 
incubated with cell lysate for 24hrs. Black an-ows indicate NS5B, 
while the white arrows indicate the protein band isolated for 
identification by mass spectrometry. Gel stain was coomassie blue 
R-250. 

An obvious major band (indicated by the white arrow, Fig. 6.1) of -50 kDa 

was pulled down by NS5B (in both 3 and 24 hr samples) but not with Ni-beads 

suggesting that this band represented a protein that was specifically pulled 

down with NS5B. The presence of a large band on the gel suggested that this 

protein may have a strong interaction with NS5B; alternatively it may be due to 

its abundance within cell. This finding was confirmed in several independent 

experiments with different lots of lysate and NS5B. 
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6.3 Identification of NS5B-Associated Protein by MALDI-TOF 

In order to identify the putative NS5B-associated protein, the band was 

excised from the gel. The gel fragment was sent for sequencing and 

identification by mass spectrometry. The protein candidate was prepared for 

MALDI-TOF mass spectrometry by destaining and in-gel digestion with 

sequencing grade trypsin. MALDI-TOF mass spectrometry analysis was carried 

out using PE Biosystems ABI Voyager DE-STR mass spectrometer. AutoMSfit 

database searches were all carried out under the control of Proteomics Solution 

1 (PS1) software from PE Biosystems. Candidate protein mass spectrum was 

obtained after data acquisition and spectral processing using the Applied 

Biosystems Analyst and BioAnalyst™ software (Fig. 6.2). 

100 

304 

751.4841 

1130.60:7 

1143 6366 

11596166 

3^2.3167 

1301.64:3 

1696 6286 

162I1799O 

•37: j : 6 1 
2409.1581 

10 2331.0062 

; j 69682 

1700.6 2301J 

31023^3 

2829.274: 

2901.6 

1)91 4938 

l U . . , M i i j t | o 

Fig. 6.2: Mass spectroscopy of NS5B-associated protein. The 
spectrum is showing the mass to charge (m/z) ratio and the % 
abundance of the precursor ion fragments on X and Y axes, 
respectively. 
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Protein identification was performed using MASCOT search tools for 

searching against all publicly available databases. Mascot search tools 

successfully Identified that the novel band was Homo sapiens p-tubulin 

(Accession Number BC020946). The sequence coverage was 52 % and 

covered the whole sequence of the p-tubulin protein that made the identification 

statistically significant (p < 0.05) (Fig. 6.3). 

1 MREIVHIQAG QCGNQIGAKF WEVISDEHGI DPTGTYHGDS DLQLDRISVY 
51 YNEATGGKYV PRAILVDLEP GTMDSVRSGP FGQIFRPDNF VFGQSGAGNN 

101 WAKGHYTEGA ELVDSVLDW RKEAESCDCL QGFQLTHSLG GGTGSGMGTL 
151 LISKIREEYP DRIMNTFSW PSPKVSDTW EPYNATLSVH QLVENTDETY 
201 CIDNEALYDI CFRTLKLTTP TYGDLNHLVS ATMSGVTTCL RFPGQLNADL 
251 RKLAVNMVPF PRLHFFMPGF APLTSRGSQQ YRALTVPELT QQVFDAKDMM 
301 AACDPRHGRY LTVAAVFRGR MSMKEVDEQM LNVQNKNSSY FVEWIPNNVK 
351 TAVCDIPPRG LKMAVTFIGN STAIQELFKR ISEQFTAMFR RKAFLHWYTG 
401 EGMDEMEFTE AESNMNDLVS EYQQYQDATA EEEEDFGEEA EEEA 

Fig. 6.3: The amino acid sequence of |3-tubulin depicted as an 
example for sequence coverage. The peptide fragments 
produced by trypsin digestion of the NS5B-associated band were 
used to identify the protein identity. The uniquely identified peptide 
sequences are marked in red. The protein sequence coverage 
shown above is 52 %. 

6.4 Interaction of NS5B with B-Tubulin in Vitro 

In order to confirm the mass spectrometry identification of p-tubulin as a 

possible NS5B-associated protein, a pulldown assay was performed for Huh7 

cell lysate using NS5B-beads or Ni-beads as described before. The pulldown 

assay was followed by SDS-PAGE and WB analysis using a-His for detection of 

NS5B and mouse monoclonal anti-p-tubuiin (kindly provided by Roy Quinlan, 

Durham University) and a-mouse-HRP for detection of p-tubulin. Results 

showed that NS5B can pulldown p-tubulin, confirming the MS identification (Fig. 

6.4, A). 
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The specificity of the pulldown experiment using a non-specific protein, 

LacZ, was tested. Pulldown assays using NS5B or LacZ were carried out as 

described before. NS5B-His, LacZ-His were detected using a-Hls while anti-p-

tubulin was used for p-tubulin (Fig. 6.4, B). Only NS5B was able to pulldown p-

tubulin; there was no evidence for an equivalent pull-down of p-tubulin with 

LacZ. 

(A) (B) 

Huh7 Huh7 

NS5B Ni-beads NS5B L a c Z 

tx-His a-His muHm 
ant i -

P-Tubulin 
ant i -ant i -

P-Tubulin P-TubuUn 
ant i -

P-Tubulin P-TubuUn 

Fig. 6.4: Interaction of NS5B with p-Tubulin in vitro. (A) NS5B-
beads or Ni-beads and (B) NS5B or LacZ previously bound to Ni-
beads were incubated with Huh7 cell lysate for 3 hrs at 4°C. Beads 
were washed extensively before resolving on SDS-PAGE followed 
by WB analysis. Detection of NS5B or LacZ was performed using a-
His while p-tubulin detection was carried out using anti-p-tubulin 
antibodies. 

6.5 Interaction of NS5B with B-Tubulin in Non-Hepatic Cells 

In order to investigate whether the interaction of NS5B with p-tubulin could 

be detected in other mammalian cells, pulldown assays were performed using 

NS5B or LacZ bound to beads and Huh7 or 293T cell lysates. Captured 

proteins were subjected to SDS-PAGE and stained with coomassie blue stain 

(Fig. 6.5, A) or subjected to WB for detection of NS5B and LacZ using a-His 

antibodies or for detection of p-tubulin by anti-p-tubulin (Fig. 6.5, B). 
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Fig. 6.5: Pull-down assay for detection of NS5B-associated 
proteins. (A) (1-3) 293T cell lysate, with NSSB, or with LacZ, 
respectively, (4) NS5B-beads, (5-7) Huh7 cell lysate, with NS5B-
beads, or with LacZ-beads, respectively. Coloured arrows indicate 
proteins pulldown in both cell lines (see text) (B) Detection of the 
interaction of NSSB with p-tubulin in Huh7 and 293T cells. Cell 
lysate control, plus NSSB-beads or plus LacZ-beads were subjected 
to WB for detection of NSSB, LacZ, or p-tubulin. 

As p-tubulin was detected in both cell lines (indicated by red arrows in Fig. 

6.S, A), it was suggested that the interaction was not specific for Huh7 cells. 

Interestingly, different protein profiles were obtained for NSSB-associated 

proteins from Huh7 and 293T cells. Three proteins were detected in both cell 

lines (red and green arrows), two proteins were pulled down in Huh7 but not in 

293T cells (yellow arrows), and a unique protein was observed in 293T cells 

(orange arrow). 
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6.6 Interaction of NS5B with B-tubulin in Huh7 

To investigate if the interaction of NS5B with p-tubulin can be 

demonstrated in vivo, Huh7 cells were transfected with pcDNA4-5B (Appendix 

9.11) or pcDNA4-LacZ (Invitrogen) for expression of full length NS5B or LacZ 

proteins in fusion with His-tag at the N-termini, respectively. Expression was 

allowed to proceed for 48 hrs before harvesting and preparing cell lysates. 

Lysates were incubated with Ni-beads for 3 hrs at 4°C to capture NS5B or LacZ 

and any associated cellular proteins. Beads were washed and subjected to 

SDS-PAGE followed by WB analysis for detection of NS5B, LacZ, or p-tubulin. 

As in the in vitro pull-down, p-tubulin was only observed with NS5B (Fig. 6.6). 

H u h ? 

cx-His 

anti-
P-Tubulin 

Fig. 6.6: Interaction of NS5B with p-tubulin in vivo in Huh7. Huh7 
cells were transfected with pcDNA4-5B or pcDNA4-LacZ. Cell 
lysates were prepared and incubated with Ni-beads for 3 hrs at 4°C. 
Washed beads were mixed with SDS sample buffer and then 
subjected to SDS-PAGE and WB for detection of p-tubulin. 

6.7 Interaction of NS5B with B-tubulin is an Indirect Interaction 

The next step was to detemnine whether the interaction of NS5B with p-

tubulin was a direct interaction or it was bridged by some intemiediatory. The p-

tubulin ORF sequence (1338 bp. Appendix 9.7.4) (Accession Number 

BC020946) was successfully amplified from total Huh7 RNA using RT-PCR and 

cloned into pGEX-6P-1 using EcoRI and Xliol restriction sites for expression of 

p-tubulin in fusion with GST (Appendix 9.11). GST-p-tubulin was successfully 

127 



C H A P T E R 6 

overexpressed in E. coli BL21 (DE3) cells and purified using Glutathioine-

Sepharose-4B beads. Expression of full-length p-tubulin in fusion with GST was 

confirmed by SDS-PAGE and Western blotting analysis using a-GST-HRP 

antibody (not shown). 

A pull-down assay was perfomied to test for a direct interaction between 

NS5B and p-tubulin. p-tubulin bound to beads was incubated with soluble 

tNS5B or LacZ for 3 hrs at 4°C. Washed beads were subjected to SDS-PAGE 

and WB analysis for detection of the proteins using anti-p-tubulin and a-His 

antibodies to probe for p-tubulin and NS5B or LacZ, respectively, p-tubulin-

beads failed to pull down NS5B that suggested that the interaction of NS5B with 

p-tubulin was an indirect interaction (data not shown) or that the fusion of p-

tubulin with GST-tag altered the protein's ability to interact with NS5B. As the in 

vitro GST-pull-down assay failed to confinn a direct interaction, the yeast two-

hybrid system was employed to test for a possible direct interaction in vivo, p-

tubulin was cloned into pGADT7 to create pGAD-TubDF (Appendix 9.11) that 

was employed in the yeast two-hybrid assay with pGBK-5B. However, the yeast 

two-hybrid assay was also unable to detect a direct interaction between NS5B 

and p-tubulin (not shown). 

6.8 Mapping NS5B-Domain(S) That Mediates the Association 

with B-Tubulin 

In order to determine the NS5B-domain responsible for the association 

with p-tubulin or rather the domain needed by the intermediatory, co-carboxy 

deletion mutants, NS5BD1 (NS5B^^^^-^^^) and NS5BD2 (NS5B^^°2-^^^), were 

generated and cloned into pET21d. pET21-5B, -5BD1, and -5BD2 were 

introduced into E. coli BL21 (DE3) and protein expression and purification were 

performed as described before for tNS5B (Section 4.2). 

tNS5B, NS5B domains or LacZ bound to beads were incubated with Huh7 

cell lysates for 3 hrs at 4°C. Beads were washed extensively and subjected to 

SDS-PAGE and WB for analysis of the expression of NS5B and the domain 
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mutants and any associated p-tubulin. p-Tubulin was detected with all NS5B 

domains but not with LacZ suggesting that NS5BD1 (1-153 a.a.) was sufficient 

for the interaction that led, indirectly, to the pull-down of p-tubulin (Fig. 6.7). 

Interestingly, the strength of interaction was proportional with the increase in 

size of the NS5B deletion where the amount of p-tubulin associated with 

NS5BD1 and NS5BD2 was greater than that with tNS5B. Possibly the p-tubulin 

binding site on NS5B was more accessible on the deletion mutants. 

(A) 
NS5B 

kDa Huh7 D l D2 tNS5B LacZ 
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50 
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P-Tubulin 
(1-446 a.a.) 

1 1017 

570 

301 

N>5BI)2 
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P-Tubulin 

NS5B1)I 
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Fig. 6.7: Mapping the p-tubulin-interacting domain of NS5B. (A) 
NS5BD1, NS5BD2, tNS5B, and LacZ were used to pulldown p-
tubulin from Huh7 cell lysate. Washed beads were subjected to 
SDS-PAGE and WB analysis for detection of NS5B domains and 
LacZ using a-His and for p-tubulin using anti-p-tubulin antibodies. 
Huh7 cell lysate was used as a positive control for p-tubulin. (B) A 
schematic diagram for mapping the p-tubulin-interacting domain on 
NS5B. All NS5B domains were able to pull-down p-tubulin from 
Huh7 cells lysates with different strengths (+). 
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6.9 Interaction of NSSB with g-Tubulin In Vitro 

As NSSB indirectly associated with p-tubulin, we proposed that it could be 

another protein(s) that mediated this association, a-tubulin, p-tubulin's partner, 

which together fomied the microtubule network, could be a potential candidate 

for mediating this association. 

In order to evaluate our hypothesis and investigate whether NSSB was 

able to pull-down a-tubulin or not, His-tagged NSSB or LacZ proteins bound to 

Ni-beads were incubated with Huh7 cells lysates for 3 hrs at 4°C. Washed 

beads were subjected to SDS-PAGE and WB analysis for the detection of a-

tubulin using an anti-a-tubulin antibody (Calbiochem) and a-His antibody for 

NSSB or LacZ. Only NSSB was able to pull-down a-tubulin from a Huh7 cell 

lysate demonstrating that NSSB could pull-down both a- and p-tubulin (Fig. 6.8). 

NSSB 

a-Tubulin 

Fig. 6.8: Interaction of NSSB with a-tubulin. NSSB and LacZ beads 
were incubated with Huh7 cell lysate for 3 hrs at 4°C. Washed 
beads were subjected to SDS-PAGE and WB. Detection of NSSB 
and lacZ was perfomried using a-His, while a-tubulin detection was 
carried out by anti-a-tubulin. 
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6.10 Interaction of NS5B with g-Tubulin is an Indirect 

Interaction 

In order to investigate whether or not, the association of NS5B with a-

tubulin was a direct interaction we used a different approach from the normal 

approaches, yeast two-hybrid assay or in vitro pull-down assay using 

recombinant protein expressed in bacteria. Nocodazole, an inhibitor of 

microtubule formation that blocks the interaction of a- with p-tubulin, was used 

to examine the interaction of a- and p-tubulin with NS5B. 

NS5B was tested for its ability to pull-down a- and p-tubulin in vitro in the 

presence of different concentrations of nocodazole. NS5B bound to beads was 

incubated with Huh7 cell lysate in the presence of 10 or 40 pM nocodazole, or 

with DMSO as a control. Cells were incubated with beads for 3 hrs at 4°C. 

Beads were collected and washed extensively before analysis by SDS-PAGE 

and WB for detection of associated a- and p-tubulin proteins. 

Nocodazole had no significant effect on the interaction of NS5B with p-

tubulin (Fig. 6.9), while the interaction with a-tubulin was markedly decreased in 

a concentration-dependent manner. This suggested that, by the addition of 

nocodazole, the a- and p-tubulin complex dissociated leaving p-tubulin 

associated with NS5B and releasing a-tubulin. From these results, we can 

conclude that the interaction of NS5B with a-tubulin is also an indirect 

interaction that is possibly mediated via p-tubulin with the a- and p-tubulin 

complex associated with NS5B via an unknown cellular partner, or partners. 
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Fig. 6.9: Effect of nocodazole on the interaction of NS5B with a-
and p-tubulin in vitro. Huh7 cells lysate was incubated with 
NS5B-beads in absence or presence of DMSO, 10 pM, and 40 pM 
nocodazole for 3 hrs at 4°C. Washed beads were subjected to SDS-
PAGE and WB for detection of a- and p-tubulin using specific 
antibodies. SDS-PAGE was used to indicate that the same amount 
of NS5B-beads was used for the pulldown assays. Huh7 cell lysate 
was used as +ve control for a- and p-tubulin. 

In order to exclude the possibility that the addition of nocodazole to Huh7 

cells negatively influenced the intracellular level of a-tubulin, two flasks of Huh7 

cells were cultured with an equivalent number of cells. One flask was left as a 

non-treated control and the other was treated with 10 pM nocodazole for 24 hrs. 

Cells lysates were prepared and subjected to SDS-PAGE and WB for detection 

of a-tubulin. As expected, nocodazole had no significant effect on the 

intracellular level of a-tubulin compared with non-treated cells which confimied 

that nocodazole had a direct effect on the association of a-tubulin with NS5B. 
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6.11 Effect of Nocodazole on the Interaction of NS5B with g-

and B-Tubulin In Vivo 

In order to determine whether nocodazole had the same effect on the 

interaction of NS5B with a- and p-tubulin in vivo, Huh7 cells were transfected 

with the same amount of pcDNA-5B in two separate flasks cultured with an 

equivalent number of cells. One flask was subsequently treated with 10 pM 

nocodazole, 24 hrs post-transfection, for 24 hrs. Pulldown assays were carried 

out as described before. Washed beads were subjected to WB analysis for 

detection of NS5B, a- tubulin or p-tubulin. 

The effect of nocodazole addition on the interaction of NS5B with a- and p-

tubulin in vivo was the same as in vitro studies where no significant effect was 

observed on the interaction with p-tubulin. The association with a-tubulin was 

inhibited by the addition of nocodazole supporting the hypothesis that the 

interaction with NS5B was through p-tubulin (Fig. 6.10). 

Pulldown from Huh7 cell lysate 

+ve Control NS5B NS5B + 10 fiM Nocodazole 

<x-His 

anti-
P-Tubul in 

anti-
oc-TubuIin 

Fig. 6.10: Effect of nocodazole on the interaction of NS5B with -
a- and p-tubulin in vivo. Huh7 cells transfected with pcDNA-

5B were treated with 10 pM nocodazole. Lysates from treated and 
non-treated cells were incubated with Ni-beads. Beads were 
subjected to SDS-PAGE and WB analysis for detecting the 
expression of NS5B using a-His antibody or anti- a- and p-tubulin 
antibodies for detection of a- and p-tubulin. Huh7 cell lysate was 
used as +ve control for a- and p-tubulin. 
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6.12 Effect of Nocodazole on the HCV Sub-qenomic Replicon 

Replication 

The effect of nocodazole on the replication of the pFK-Luc sub-genomic 

replicon was tested. Huh7 cells harbouring replicon RNA were incubated 24 hrs 

post-transfection with various concentrations of nocodazole for a further 24 hrs. 

Luciferase activity was determined 48 hrs post-transfection using One-Glo 

Luciferase Assay System (Promega). 

The effect of increasing the nocodazole concentration was to reduce 

luciferase activity in a concentration dependent manner. The addition of 0.3125 

pM nocodazole reduced luc activity by 30 %, while 20 pM nocodazole reduced 

luc activity by 70% (Fig. 6.11). These results confirmed the previously reported 

suppressive effect of nocodazole on HCV sub-genomic replicon replication 

(Bostef a/., 2003). 

120 r 

0 0.3125 1.25 10 20 

Nocod£izole Concentration (pM) 

Fig. 6.11: Effect of nocodazole on HCV sub-genomic replicon 
replication. Huh7 cells transfected with RNA in vitro transcribed 
using pFK-Luc as a template were treated with different 
concentrations of nocodazole for 24 hrs. Luciferase activity was 
measured 48 hrs post-transfection and expressed as a 
percentage relative to that of the non-treated control cells. Each 
sample was measured in triplicate in three separate experiments 
Error bars represent the SEM of three separate experiments. 
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6.13 Discussion 

In addition to the yeast two-hybrid system, a second approach was used to 

identify host cell proteins that can interact with NS5B. A pulldown methodology 

coupled with mass spectrometry was employed for this purpose (Fig. 6.1). This 

method is simple and characterized by its ability to identify direct and indirect 

interactions that form multi-protein complexes. The same methodology was 

successfully used to identify cellular proteins that were able to interact with 

NS5B such as the RNA-binding protein, hnRNP A1 (Kim et a/., 2007). 

Mass spectrum (Fig. 6.2) produced by MALDI-TOF MS analysis of the 

major NS5B-associated protein band identified it as p-tubulin (Fig. 6.3). The 

ability of NS5B to capture p-tubulin was confirmed in vitro (Figs. 6.4). The 

interaction of NS5B with p-tubulin was further investigated in a non-hepatic cell 

line (293T) in addition to Huh7 (Fig. 6.5). Interestingly, the pattern of proteins 

associated with NS5B was different in each cell line as some bands were 

present in both cell lines while some were found in one but not in the other. This 

difference could be the basis for future work on HCV hepatic cell tropism. 

However, the p-tubulin pull-down was consistent in both lines. 

The association of p-tubulin with NS5B was confirmed in vivo in Huh7 cells 

(Fig. 6.6). A pull-down assay, using soluble purified tNS5B and p-tubulin-GST-

fusion previously bound to beads, was unable to detect a direct interaction in 

vitro that suggested that the interaction of NS5B with p-tubulin was indirect. The 

yeast two-hybrid assay also failed to demonstrate a direct interaction between 

NS5B and p-tubulin (not shown) which implied an indirect association of NS5B 

with p-tubulin (Section 6.7). The interacting domain of NS5B that mediated the 

pull-down of p-tubulin was detemiined and data implicated NS5B'^^^''"^^^ 

(NS5BD1) domain to be largely responsible for the pulldown (Fig. 6.7). 
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As the association with p-tubulin was determined to be indirect, it was 

proposed that another protein(s) could mediate this association. It was 

postulated that a-tubulin may mediate this association as a-tubulin interacts 

with p-tubulin to form a polymer that is required for HCV RNA replication (Best 

ef a/., 2003). The association of a-tubulin with NSSB was subsequently 

demonstrated in vitro (Fig. 6.8). 

In order to investigate the effect of nocodazole on the association of NSSB 

with both a- and p-tubulin and whether it can affect this association, different 

concentrations of nocodazole were tested in vitro and in vivo (Fig. 6.9 and 6.10, 

respectively). Results showed that there was no significant effect on the amount 

of p-tubulin pulled down by NSSB in the presence of nocodazole. However, the 

amount of a-tubulin pulled down by NSSB was markedly decreased by 

nocodazole in a dose dependent manner. The decrease was not due to 

instability in the presence of nocodazole, but rather to a knock off effect on the 

association of a-tubulin with p-tubulin. These results indicated that the 

association of NSSB with a-tubulin is an indirect interaction that is mediated 

by p-tubulin. 

HCV replicon replication was markedly reduced by the addition of 

nocodazole (Fig. 6.11) that suggested that the association of o/p tubulin with 

NSSB is required for HCV RNA replication. Notably o/p tubulin polymerization 

was shown to be essential for HCV as treatment with nocodazole markedly 

reduced RNA replication (Best ef a/., 2003). Moreover, the induction of lipid 

droplet re-distribution by HCV core was shown to be mediated by microtubules 

that may facilitate the interaction of HCV RNA replication with virion assembly 

complexes (Boulant et a/., 2008b). Recently, it has been reported that the HCV 

replication complex was associated with microtubules through an interaction 

with NS3 and NSSA and that this interaction may provide the basis for the 

movement of the viral replication complex to other regions within the cell (Lai et 

at., 2008). 
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CHAPTER 7 

General Discussion 

The interaction between virus and host is critical in determining the 

outcome of an infection. Study of HCV-host interaction would improve our 

knowledge about how the virus replicates in the host and develops long-term 

complications such as liver fibrosis, cirrhosis, and HCC. It would also lead to a 

greater understanding of the mechanisms by which the virus negates the host 

immune system to facilitate persistence. 

At the beginning of this project, we aimed to establish a new area of HCV 

research focusing on identifying cellular proteins that interact with a HCV 

protein target. Thus, time was dedicated to generate reagents of use within this 

study and to establish and develop suitable protocols for this project. In order to 

achieve this goal, NS5B was used in this study as bait as it is the key 

component of the viral replication complex that interacts with viral and cellular 

proteins to drive viral replication and persistence (Gosert et a/., 2003). 

Therefore, identification of host cell proteins involved in viral replication and 

persistence could serve as targets for future anti-HCV drug development. 

The main outcomes achieved in this study may be summarized as follows: 

• Identification of new cellular partners for NS5B that may contribute to 

viral replication and/or persistence using two different approaches, (1) 

yeast two-hybrid system and (2) pull-down assay accompanied by mass 

spectrometry to identify protein species. 

• The interaction of PLSCR1, ZNF143 and RTN3 with NS5B were 

confirmed in vitro. The interacting domains of NS5B and PLSCR1 were 

successfully determined (Sections 4.9 and 4.10). 
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• It was observed that NS5B had a suppressive effect on the ability of 

PLSCR1 and ZNF143 to amplify IFN activity on ISRE-driven luc 

expression in Huh7 and VERO cells (Section 5.2). 

• In the absence of IFN, PLSCR1 over-expression had no significant effect 

on HCV sub-genomic replicon replication; while down-regulating its 

expression had an enhancing effect on replication. ZNF143 over-

expression had a suppressive effect on replicon replication but 

decreasing its expression had no effect on replication (Section 5.4). 

• Using in vitro pull-down assay with NS5B as bait and mass spectrometry, 

a- and p-tubulin were identified to associate with NS5B indirectly in 

hepatic (Huh7) and non-hepatic cells (293T) (Chapter 6). The effect of 

nocodazole on the association of NS5B with a- and p-tubulin was 

examined in vitro and in vivo in Huh7. This association was shown to be 

essential for HCV sub-genomic replicon replication in Huh7 (Section 

6.12). 

7.1 Identification of Cellular Proteins That Can Interact with 

NS5B 

The development of the yeast two-hybrid system has improved our 

knowledge about protein-protein interactions that occur in many cellular 

pathways. In this project, the MATCHMAKER GAL4 Two-Hybrid System 3 

(Clontech) was used to identify cellular proteins that can interact with NS5B. 

This system is highly sensitive for weak and transient interactions and also 

provides high-stringency selection conditions that reduce the possibility of false 

positive. 

Yeast two-hybrid screening successfully identified seven novel potential 

partners for NS5B (PLSCR1, ZNF143, RTN3, 0SBP8, HAX1, TIMM50, and 

SFRS10, Section 3.4). Significantly, these proteins are involved in many 

important cellular pathways such as IFN signalling, lipid metabolism and 
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transport, protein trafficking, transcription, cellular proliferation and apoptosis. 

Recently, a proteome-wide mapping of interactions between HCV and cellular 

proteins showed that PLSCR1 could interact with HCV core protein. In this 

screen, PLSCR1 was suggested to be necessary for the full functionality of 

Jak/Stat and insulin signalling pathways. However, the interaction of core with 

PLSCR1 may interfere with these pathways (de Chassey et a/., 2008). RTN3 

was shown to interact with NS4B, which is part of the viral RNA replication 

complex (Liu et a/., 200S; Piccininni ef a/., 2002). None of other proteins 

identified in this study have been previously reported to interact with HCV 

proteins. 

The cellular location of proteins may have significance in any presumptive 

role of an interaction with NSSB (Table 7.1). PLSCR1 is found normally at the 

plasma membrane but migrates to the nucleus after induction with interferon 

(Wiedmer ef a/., 2003). Interestingly, a truncated form of NSSB, with no nuclear 

localization signal (NLS), has been shown to be localized to the nucleus, 

suggesting a potential to interact with nuclear factors (Yamashita ef a/., 1998). 

Indeed, nucleolin changed its nuclear localization to the cytoplasm by an 

interaction with full-length NSSB (Hirano ef a/., 2003). Similarly, the human RNA 

helicase, p68, was redistributed from the nucleus to the cytoplasm by an 

interaction with NSSB (Goh ef a/., 2004). It is probable that the interaction of 

NSSB with normally nuclear localizing proteins, such as PLSCR1, ZNF143 and 

SFRS10, alters the trafficking of these proteins away from the nucleus thereby 

affecting their function. These interactions may also change the location of 

NSSB for some function. 

Table 7.1: Location of cellular proteins that identified to interact 
with NSSB 

Protein Location 

PLSCR1 Plasma membrane a.nd nucleus 
ZNF143 Nuclear 
RTN3 ER and Golgi 
OSBP ER 
SFRS10 Nuclear 
HAX1 ER and mitochondria 
TIMM50 Mitochondria 
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7.2 Characterization of the Interaction of NS5B with PLSCR1 or 

ZNF143 

PLSCR1 was selected as the main target for this project as it had an 

important role in IFN and EGFR signalling pathways (Dong et a/., 2004; 

Nanjundan et a/., 2003; Sun ef a/., 2002). It was also responsible for 

transporting phosphatidylserine and phosphatidylethanolamine to the outer 

surface of plasma membrane in response to apoptotic signals that subsequently 

led to clearance of apoptotic cells by macrophages (Sims and Wiedmer, 2001). 

Interestingly, externalization of phosphatidylserine, a marker for apoptosis, has 

been observed in JFH1-infected cells, the sole model for HCV replication 

(Sekine-Osajima et a/., 2008). This process involved ER-stress and was 

correlated to particular amino acids substitutions within NS5B (Sekine-Osajima 

ef a/., 2008). Consistent with the putative role of NS5B in viral persistence, it 

has been shown that NS5B down-regulated the surface expression of cell 

surface proteins such as Major Histocompatibility Class-I (MHC-I) complexes 

preventing elimination of HCV-infected cells by cytotoxic T-cell lymphocytes 

(CTLs) which contributes to viral persistence (Pavio and Lai, 2003). ZNF143's 

suitability for further study was its potential role in RNA polymerase II and III 

transcription activities, cell sun/ival and IRF3 transcription control (Grossman ef 

a/., 2004; Ishiguchi ef a/., 2004; Mach ef a/., 2002). Interestingly, escape of 

innate immunity by HCV involved a stringent control of the IRF3 response 

(Binder ef a/., 2007). 

NS5B, PLSCR1 and ZNF143 were successfully expressed in bacteria and 

purified in soluble fomis (Sections 4.2 and 4.3) for in vitro analysis which 

subsequently confinned the ability of NS5B to bind PLSCR1 and ZNF143 

(Sections 4.4, 4.5, 4.7 and 4.8). The NS5B-interacting domain of PLSCR1 was 

mapped to amino acids 61-137 (Section 4.9). Interestingly, this domain 

encompassed a DNA-binding domain and a SH3-like domain that can mediate 

recruitment and activation of cellular signalling molecules such as EGFR, the 

She adaptor protein and Src kinases (Nanjundan ef a/., 2003; Sun ef a/., 2002; 

Sun ef a/., 2001; Zhou ef a/., 2005). 
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Both PLSCR1 and ZNF143 were shown to interact with a single NS5B 

motif within the N-temninus (amino acids 1 to 153, Sections 4.10). This motif 

occupies most of the NS5B f inger domain (amino acids 1-187) that with the 

NS5B thumb domain encircles the enzymatic active site (Kang et a/., 2008; 

Lesburg ef a/., 1999; Lohmann et a/., 1997). Importantly, the f inger domain of 

NS5B mediated the interaction of NS5B with PRK2 resulting in the regulation of 

RNA replication (Kim et a/., 2004). This motif also interacted with a-actinin that 

was proposed to be a part of the viral RNA replication complex (Lan et a/., 

2003). The NS5B finger domain was also shown to have a sphingolipid-binding 

motif that mediated the associat ion of NS5B with sphingomyel in in lipid rafts 

(Sakamoto etal., 2005). Therefore it is not a surprising result that both PLSCR1 

and ZNF143 bind to what already has been demonstrated to be a domain 

involved in multiple interactions. 

Unfortunately, our analysis was unable to demonstrate the interactions in 

mammal ian cells which suggested that the interactions, if true, were weak and 

may be disrupted under our protocol condit ions. It is probable that the 

interactions only occurred under certain condit ions such as IFN or EGF 

stimulation that create a favourable environment for interactions. For example, 

in the presence of IFN, PLSCR1 was de-palmitoylated and mainly localized to 

the nucleus whilst, in the absence of IFN, the PLSCR1 palmitoylated fom i is 

dominant and localized to the plasma membrane (Wiedmer et a/., 2003). 

7.3 Effect of NS5B Interactions on IFN Signalling Pathway 

PLSCR1 and ZNF143 significantly enhanced the effect of IFN on an ISRE-

driven luc expression in Huh7 and VERO cells (Section 5.2). Interestingly, co-

expression of NS5B negated this activity which suggested that the interaction of 

NS5B with PLSCR1 or ZNF143 may block their roles in IFN signall ing. Absence 

of a significant effect for NS5B on ISRE-driven expression, when expressed 

alone, implied a degree of specificity for NS5B effect on PLSCR1 and ZNF143 

activities. These results suggested that NS5B reduced the activity of IFN on 

ISRE by an interaction with PLSCR1 or ZNF143 which could contribute to viral 

persistence by suppressing the development of an antiviral state in cell. 
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Expression of NS5B, PLSCR1 or ZNF143 had no effect on the expression 

of ISG15, ISG54, OAS2 and IRF7 in Huh7 (Section 5.3). However, a more 

sensitive technique such as real-time RT-PCR may be required for detection of 

significant effects. The effect of NS5B, PLSCR1 or ZNF143 on ISRE activity 

(Section 5.2) could involve other ISGs that were not tested in this study. 

HCV can interfere with the host innate immune response and counteract 

the antiviral effect of IFN by many strategies that create an environment suitable 

for its replication and persistence (Foy et a/., 2005). These strategies involve 

the interaction of HCV proteins with IFN-signall ing pathways molecules 

interfering with their funct ion in delivering I F N antiviral downstream effects 

(Weber, 2007). NS3/4A was shown to modulate I F N signall ing by disrupting the 

retinoic acid-inducible gene (RIG-1) pathway preventing the activation of IRF3 

and N F - K B (Foy et a/., 2005; Foy ef a/., 2003). Similarly NS5A interfered with 

IFN signalling by the disruption of the contribution of the MARK pathway to JAK-

STAT signalling pathway, by the interaction with Grb2 (He et a/., 2002; Katze ef 

a/., 2002). NS5A, in addit ion to E2, was also shown to bind to and inhibit PKR 

antiviral kinase activity (Gale et a/., 1997; Sato, 2001). Similarly, NS5A 

interacted with and inhibited the ability of 2'-5' OAS to produce 2'-5' 

ol igoadenylate that is needed for the activation of endoribonuclease L, RNAse 

L, which degrades viral and cellular RNA (Cheval iez and Pawlotsky, 2007; 

Taguchi etal., 2004). 

A previous study showed that NS5B had a role in interfering with I F N 

signalling pathways by suppressing the IRF7-mediated I F N - a promoter 

activation (Zhang et al., 2005). Using RT-PCR, we could not detect a significant 

change in IRF7 expression at the transcriptional level in cells expressing NS5B 

(Section 5.3). Taken together, NS5B may affect IRF7 activation at a 

posttranscriptional level. NS5B also demonstrated a potential mechanism for 

HCV pathogenicity by modulat ing T N F - a signall ing pathways via the interaction 

with IKKa, an inhibitor of N F - K B ( I - K B ) kinase a (Choi et al., 2006). IKKa is not 

only essential for N F - k B activation but also for Toll-l ike receptors 7/9 (TLR7/9)-

induced I F N - a production (Hoshino ef al., 2006). 
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Other studies have demonstrated that NS5B induced IFN-p via the TLR3 

signall ing pathway (Naka et a/., 2006). NS5B was also shown to activate 2'-5'-

OAS gene promoter activity through ISRE although we could not replicate this 

effect using RT-PCR (Section 5.3) (Dansako et a/., 2005). These conflicting 

effects of NS5B on different stages of IFN signalling pathways suggested that 

NS5B, in addit ion to its role in viral replication, has a regulatory role in 

subvert ing IFN signall ing pathway(s) that may lead to viral persistence. 

7.4 Effect of PLSCR1 and ZNF143 on HCV Sub-Genomic 
Replicon Replication 

Preliminary results showed that while over-expression of PLSCR1 had no 

significant effect on the replicon replication, down-regulat ing its expression 

significantly increased replication (Section 5.4). Over-expression of ZNF143 had 

a suppressive effect on replication but reducing its expression by shRNA had no 

observable effect on replicon replication. From these results we hypothesized 

that PLSCR1 and ZNF143 may have a role in creating an antiviral state in cell. 

P L S C R 1 , a known ISG, had been shown to have an antiviral activity against 

VSV, EMCV and DENV (Dong ef a/., 2004; Sariol et a/., 2007). Notably, 

PLSCR1 expression was up-regulated in chimpanzee infected with HCV (Bigger 

ef a/., 2004). It was also observed that expression of NS5A down-regulated 

PLSCR1 expression levels in Huh7 cells (Girard etal., 2002). In addit ion, Huh7 

cells that harbouring a HCV sub-genomic replicon had lower levels of PLSCR1 

expression (Sumpter et a/., 2004). These data suggested that down-regulat ion 

of PLSCR1 expression during HCV infection may have a role in the 

development of a persistent infection. 

Reportedly, ZNF143 stimulated the expression of IRF3 which mediated 

activation of IFN-a and -p (Mach etal., 2002). Therefore the interaction of HCV 

with ZNF143 could interfere with its role in the activation of IRF3 or other host 

gene(s) expression to suppress the antiviral state and facil itate persistence. The 

data in Chapter 5 suggested that NS5B may participate in negating the 

response to IFN, in part, by an interaction with these proteins. 
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7.5 Interaction of NS5B with a - and B-Tubulin 

Using a pulldown methodology coupled with mass spectrometry, p-tubulin 

was Identified as a potential NS5B-associated protein in Huh7 cells (Section 

6.2). Subsequently, it was apparent that it was the a/p tubulin complex that had 

been isolated. This interaction could be demonstrated in hepatic (Huh7) and 

non-hepatic (293T) cell l ines. Interestingly, it was observed that there were 

different patterns of NS5B-associated proteins between the cell-l ines (Fig. 6.5); 

possibly this will be a subject for further investigation in the future to identify 

factors involved in viral replication and hepatic t ropism. The physical association 

with tubulin was subsequently shown to be an indirect interaction (Section 6.7 

and 6.10). Investigation of the NS5B domain that mediated the tubulin pulldown 

detennined that amino acid residues 1-153 were responsible for the interaction 

(Section 6.8). 

In vitro and in vivo analysis demonstrated that nocodazole reduced the 

association of NS5B with a-tubulin in a concentrat ion-dependent manner but 

had no effect on the associat ion with p-tubulin that suggested that p-tubulin was 

responsible for the associat ion of a-tubulin with NS5B (Section 6.10 and 6.11). 

Our results showed that nocodazole had a suppressive effect on HCV sub-

genomic replicon replication (Section 6.12). These results indicated that the role 

of a- and p-tubulin in the viral replication was probably not only required for 

providing microtubules as a track for the movement of the viral replication 

complex (Lai et a/., 2008) but also could be essential for constructing the RNA 

replication complex by an associat ion with NS5B. 

This work supported the observat ions that o/p tubulin polymerization is 

essential for HCV RNA synthesis and may be required for constructing the RNA 

replication complex (Bost ef a/., 2003). p-tubulin was not only essential for RNA 

synthesis of other viruses such as Sendai virus and VSV in vivo but also 

seemed to have a functional role in interacting with the VSV polymerase as it 

st imulated the virus polymerase activity in vitro (Hill ef a/., 1986; Mizumoto ef 

a/., 1995; Moyer ef a/., 1986). Furthermore, tubulin has been suggested to be a 
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subunit of the measles virus RNA polymerase (Berghall et a/., 2004; Moyer et 

a/., 1990). 

7.6 Conclusion 

HCV is a major cause of chronic liver disease that can lead to cirrhosis 

and HCC. Up to now, the current treatment for HCV infection using IFN and 

ribavirin is not efficient as 60 % of patients (genotype 1, Section 1.6) do not 

respond to treatment (Pawlotsky, 2003). The mechanisms of IFN treatment 

failure remain partly unknown. One of these mechanisms could be the blocking 

of IFN signalling pathways by HCV proteins via the interaction with host cell 

proteins in order to establ ish an infection (Weber, 2007). Little is known about 

the host factors that have a role in establ ishment of chronic infection. Therefore, 

there is a need to identify host cell proteins involved in viral replication and 

persistence. 

Work presented in this thesis aimed to identify cellular proteins that can 

interact with NS5B and could have a role in the viral replication, persistence 

and/or pathogenesis. The thesis work has made a number of observations that 

form the basis for future work on new interactions for NS5B. These interactions 

and the results obtained f rom the work on two of them (PLSCR1 and ZNF143) 

have suggested that NS5B, in addit ion to its role in RNA replication, may have 

an important role in virus persistence and pathogenesis by modulat ion of 

cellular functions of these proteins. The results in this study have suggested 

that NS5B may be involved in interfering with IFN signall ing pathways in part by 

the interaction with PLSCR1 and ZNF143. Results have indicated for the first 

t ime that NS5B also associates with tubul in, indirectly, and that this association 

is important for viral replication. 
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7.7 Future Work 

As the identification of novel interactions for NS5B represents an early 

stage of the study, a significant work is required to confirm and determine the 

biological consequences of these interactions. Some focus for future 

investigations could include: 

1 . The interaction of NS5B with PLSCR1 or ZNF143 may change the 

cellular localization of these proteins; indeed the cellular proteins may 

influence the cellular distribution of NS5B. The co-localization of NS5B 

with PLSCR1 and ZNF143 under nomrial, IFN or EGF stimulation 

condit ions could be studied using confocal microscopy. 

2. The interaction of NS5B with ZNF143 may affect the binding of ZNF143 

to the IRF3 promoter. Using the electrophoretic mobility shift assay 

(EMSA) the binding of ZNF143 to the IRF3 promoter in the presence or 

absence of NS5B could be investigated. The effect of NS5B on the 

transcriptional activity of the IRF3 promoter could be studied with a 

reporter construct containing the IRF3 promoter which drives the 

expression of luciferase. 

3. To further the biological signif icance, the effect of PLSCR1 and ZNF143 

on the lifecycle of JFH1 virus system i.e whole virus, should be 

considered. These investigations would determine whether they have 

any role in the virus life cycle such as entry, maturation and release and 

on subsequent infectivity. 

4. An examinat ion of the effect of the NS5B/PLSCR1 interaction on the 

activation of EGFR, She and c-Src kinase is important to determine if 

NS5B affects the role of PLSCR1 in the EGFR signalling pathway. This 

could be carried out by investigating the phosphorylat ion status of 

EGFR, She, and c-Src in the presence of NS5B and whether this is 

mediated by PLSCR1 using knockout or shRNA studies. 

5. An investigation of the effect of a- and p-tubulin on NS5B polymerase 

activity could be performed by using an in vitro polymerase assay. It is 

possible that the addition of tubulin have the effect of increasing enzyme 

activity which can confirm that tubulin is part of the viral RNA replication 
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complex. Work, using further proteomic studies, is needed to identify the 

cellular partner(s) that mediates the interaction with tubulin. 

As it was observed in Section 6.5 there were different protein profiles 

between cell l ines. This should be extended to other cell l ines/types and 

possibly to primary cell l ines to identify hepatic specific proteins that may 

be involved in the disease process. 
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9.1 Bacterial Culture Media 

MEDIA COMPOSIT ION A P P L I C A T I O N 

Luria-Bertani (LB) l O g / L NaCI 
5 g/L Yeast Extract 
10 g/L Bacto-tryptone 
(20 g/L Bacto-agar for 
plates) 

E. coll culture 

2 x Y T 5 g/L NaCI 
10 g/L Yeast Extract 
16 g/L Bacto-tryptone 
(20 g/L Bacto-agar for 
plates) 

E. coll culture 

NZY* Broth 10 g/L NZ amine (Casein 
Hydrolysate), 
5 g/L Yeast Extract, 
5 g/L NaCI, 
NaOH to pH 7.5. 
Then the fol lowing filer-
sterilized supplements 
were added prior to use 
12.5 ml of 1 M MgCI2, 12.5 
ml of 1 M M g S 0 4 , and 20 
ml of 2 0 % (w/v) g lucose. 

E. CO// XL1-Blue 
culture in 
Mutagenesis 
Protocol 

9.2 DNA Manipulation 

TAE (Tris/Acetate/EDTA) Buffer (1X) 

C O M P O N E N T S C O N C E N T R A T I O N 
Tris Base 40 m M 
EDTA 2 m M 
Glacial Acetic Acid 0 . 1 % 

DNA Loading Buffer (6X) 

C O M P O N E N T S C O N C E N T R A T I O N 
Bromophenol blue 0.25 g 
100 % glycerol 3 ml 
T A E ( 1 X ) 7 ml 
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1 % Aqarrose Gel 

C O M P O N E N T S C O N C E N T R A T I O N 
Agarose i g 
Ethidium Bromide 0.5 pg/ml 
T A E ( I X ) 100 ml 

Sodium Acetate (3M) 

C O M P O N E N T S C O N C E N T R A T I O N 
Sodium Acetate Trihydrate ( N a C 2 H 3 0 2 . 3 H 2 0 ) 408 g 
dHaO To 1000 ml 
Acetic Acid (3M) To p H 5 

9.3 RNA Workina Solutions 

DEPC-Treated Water 

C O M P O N E N T S C O N C E N T R A T I O N 
DEPC 0.5 ml 
dHsO 1000 ml 

The solution was shaked vigorously to dissolve the DEPC and incubated 0 / N at 

37°C then autoclaved for 45 min at 121 °C to inactivate the remaining DEPC. 

MOPS Buffer (1 OX) 

C O M P O N E N T S C O N C E N T R A T I O N 
MOPS 0.2 M 
Sodium Acetate 50 m M 
EDTA 5 mM 
dHzO To 1000 ml 
N a O H ( I M ) To pH 7.0 

1 % Denatured Agarose Gel (50 ml) 

C O M P O N E N T S C O N C E N T R A T I O N 
Agarose 0.5 g 
dHzO 37 ml 
MOPS (1 OX) 5 ml 
Formaldehyde (40%) 8.75 ml 
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9.4 Protein Manipulation Solutions 

9.4.1 SDS-PAGE Buffers 

All reagents used in SDS-PAGE were purchased f rom Flowgen except the lysis 
buffer. 

Bacterial Lvsis Buffer 

C O M P O N E N T S C O N C E N T R A T I O N 
Tris-HCI (pH 8.0) 
NaCI 
Glycerol 
Triton-XlOO 
p-Mercaptoethanol 
imidazole 
Lysozyme 

20 m M 
500 m M 
10 % ( v / v ) 
1 % (v/v) 
1 m M 

10 m M 
Flakes 

Resolving Buffer ( D H 8.8) 
C O M P O N E N T S C O N C E N T R A T I O N 
Tris-HCI 
SDS 

1.5 M 
0.384 % 

Stackina Buffer (oH 6.8) 
C O M P O N E N T S C O N C E N T R A T I O N 
Tris-HCI 
SDS 

0.5 M 
0.4 % 

3 0 % Acrvlamide 
C O M P O N E N T S C O N C E N T R A T I O N 
Acrylamide 
Bis-Acrylamide 

30 % (w/v) 
0.8 % (w/v) 

Tris-Glvcine Acrvlamide Gel 

A) 1 0 % Acrylamide Separat ing Gel 
C O M P O N E N T S C O N C E N T R A T I O N 
3 0 % Acrylamide 
Resolving Buffer 
dHzO 
Ammon ium Persulphate (APS) (10%; 
T E M E D 

3.33 ml 
2.6 ml 
4.1 ml 
100 Ml 

10 Ml 
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B) 5% Acrylamide Stacking Gel 
C O M P O N E N T S C O N C E N T R A T I O N 
30 % Acrylamide 0.65 ml 
Stacking Buffer 1.25 ml 
dHsO 3 ml 
Ammon ium Persulfate (APS) (10 % ) 25 |jl 
T E M E D 5 Ml 

SDS Running Buffer (1 OX) 

C O M P O N E N T S C O N C E N T R A T I O N 
Tris Base 0.25 M 
Glycine 1.92 M 
SDS 1 % 
dH20 1000 ml 

SDS Gel Loading Buffer (2X) 

C O M P O N E N T S C O N C E N T R A T I O N 
Tris-HCI (pH 6.8) 0.125 M 
SDS 4 % 
p-Mercaptoethanol 1 0 % 
Glycerol 2 0 % 
Bromophenol Blue 20 mg 

Coomassie Blue Stain 

C O M P O N E N T S C O N C E N T R A T I O N 
Coomassie Brilliant Blue R -250 0.25 % (w/v) 
Acetic Acid 1 0 % ( v / v ) 
Methanol 1 0 % ( v / v ) 

De-Stain Solution 

C O M P O N E N T S C O N C E N T R A T I O N 
Acetic Acid 10%(v / v ) 
Methanol 10%(v / v ) 
dH20 1000 ml 
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9.4.2 Western Blot Buffers 

Western Blot Transfer Buffer (pH 8.3) 

C O M P O N E N T S C O N C E N T R A T I O N 
Tris Base 
Methanol 
Glycine 
HCI (Cone) 
dHzO 

3 g 
200 ml 
14.5 g 
0.3 ml 

1000 ml 

TBS (Tris-Buffered Saline) 

C O M P O N E N T S C O N C E N T R A T I O N 
Tris-HCI (pH 7.5) 
NaCI 
dHzO 

100 m M 
0.9 % (w/v) 
1000 ml 

ECL (Enhanced Chemi luminescence) Reaqents 

Solution (A) 
C O M P O N E N T S C O N C E N T R A T I O N 
Luminol* 
Coumaric Ac id" 
Tris-HCI (pH 8.5) 

2.5 m M 
0.4 m M 
0.1 M 

*Luminol (3-aminophthalhydrazide) 250 m M stock in DMSG 
"p-Coumaric Acid 90 m M stock in DMSG 

Solution (B) 
C O M P O N E N T S C O N C E N T R A T I O N 
30 % Hydrogen Peroxide (H2G2) 
Tris-HCI (pH 8.5) 

0.02 % (v/v) 
0.1 M 

9.4.3 ELISA Solutions 

Bicarbonate/Carbonate Coatinq Buffer (pH 9.6): 

C O M P O N E N T S C O N C E N T R A T I O N 
Na2CG3 3.03 g 
NaHCGa 6 g 
dH2G 1000 ml 
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PBS ( P H 7.4) 

C O M P O N E N T S C O N C E N T R A T I O N 
Na2HP04 1.16g 
KCI 0.1 g 
K3PO4 0.1 g 
NaCI 4 g 
dH20 500 ml 

9.5 Yeast Two-Hvbrid Screening Solutions 

YPDA Medium 

C O M P O N E N T S C O N C E N T R A T I O N 
Difco Peptone 20 g/L 
Yeast Extract 1 0 g / L 
Adenine Hemisulfate (0.2 % ) 15 ml 
dHzO To 950 ml 
The pH was adjusted to 6.5, and then autoclaved at 121 °C for 15 min. Medium 

was al lowed to cool to ~50°C then 50 ml of a sterile 40 % glucose stock 

solution. For YPDA plates, 20 g/L of agar was added to the above components 

before autoclaving. 

Dropout (DO) Solution (10X) 

The fol lowing amino acids were combined and dissolved in 1000 ml dH20 and 

then autoclaved. 

C O M P O N E N T S C O N C E N T R A T I O N 
L-Adenine Hemisulfate salt 200 mg/L 
L-Arginine HCI 200 mg/L 

L-Histidine HCI Monohydrate 200 mg/L 
L-lsoleucine 300 mg/L 
L-Leucine 1000 mg/L 
L-Lysine HCI 300 mg/L 
L-Methionine 200 mg/L 
L-Phenylalanine 500 mg/L 
L-Threonine 2000 mg/L 
L-Tryptophan 200 mg/L 
L-Tyrosine 300 mg/L 
L-Uracil 200 mg/L 
L-Valine 1500 mg/L 

For preparat ion of 10X -Leu DO solut ion, all the above amino acids were 

combined except L-Leucine and dissolved in 1L dH20 and then autoclaved. 
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SD Medium 

C O M P O N E N T S C O N C E N T R A T I O N 
Yeast Nitrogen Base without amino acids 6.7 g 
10X Dropout Solution 100 ml 
dHzO 850 ml 

The pH was adjusted to 5.8 and autoclaved then cooled down to 50°C before 

adding glucose to a final concentrat ion of 2 % as a carbon source. 

10X T E (Tris/HCI) 
C O M P O N E N T S C O N C E N T R A T I O N 
Tris-HCI (pH 7.5) 0.1 M 
EDTA 10 m M 

10X LiAc (Lithium Acetate) 
C O M P O N E N T S C O N C E N T R A T I O N 
Lithium Acetate 1 M 
Acetic Acid To pH 7.5 

PEG/LiAc Solution 
C O M P O N E N T S C O N C E N T R A T I O N 
50 % PEG 3350 (Sigma) 8 ml 

TE Buffer 1X 
LiAc I X 

Cracking Buffer Stock Solution 
C O M P O N E N T S C O N C E N T R A T I O N 
Tris-HCI (pH 6.8) 40 m M 
Urea 8 M 
SDS 5 % (w/v) 
EDTA 0.1 m M 
Bromophenol Blue 0.4 mg/ml 
dH20 Variable 

Working Solution of Cracking Buffer (1.3 ml) 
C O M P O N E N T S C O N C E N T R A T I O N 
Cracking Stock Solution 1 ml 
p-Mercaptoethanol 10 Ml 
Protease Inhibitor Solution 70 [i\ 

185 



APPENDICES 

X-g-Gal (5-Bromo-4-chloro-3- indolvl-a-D-gaiactopvranoside) 

X-a-Gal stock solution of 20 mg/ml in dimethyl formamide was prepared and 

stored at -20°C in the dark. 

9.6 Tissue Culture Solutions 

DMEM (pH 7.0) 

C O M P O N E N T S C O N C E N T R A T I O N 
DMEM Powder (GIBCO)(Low Glucose) l O g 
NaHCOa 3.7 g 

Glucose 3.5 g 
dHzO To 1000 ml 
The medium was filter sterilized using 0.22 Mm filter and stored at 4°C in 500 ml 

f lasks. 

Calcium Phosphate Transfect ion Reagents 

HBS ( 2 X ) ( p H 7.11) 
C O M P O N E N T S C O N C E N T R A T I O N 
NaCI 280 m M 
HEPES 100 m M 
Na2HP04 1.5 m M 

TE (0.1X) 
C O M P O N E N T S C O N C E N T R A T I O N 
Tris-HCI (pH 8.8) I m M 
EDTA 0.1 m M 
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9.7 ORFs Sequences Used in This Study 

9.7.1 Full Length H C V N S 5 B O R F S e q u e n c e (pCV-H77c genotype 1a, 
AF011751) 

T C A A T G T C T T A T T C C T G G A C A G G C G C A C T C G T C A C C C C G T G C G C T G C G G A A G A A C A A A A 

A C T G C C C A T C A A C G C A C T G A G C A A C T C G T T G C T A C G C C A T C A C A A T C T G G T G T A T T C C A 

C C A C T T C A C G C A G T G C T T G C C A A A G G C A G A A G A A A G T C A C A T T T G A C A G A C T G C T ^ G T T 

C T G G A C A G C C A T T A C C A G G A C G T G C T C A A G G A G G T C A A A G C A G C G G C G T C A A A A G T G A A 

G G C T A A C T T G C T A T C C G T A G A G G A A G C T T G C A G C C T G A C G C C C C C A C A T T C A G C C A A A T 

C C A A G T T T G G C T A T G G G G C A A A A G A C G T C C G T T G C C A T G C C A G A A A G G C C G T A G C C C A C 

A T C A A C T C C G T G T G G A A A G A C C T T C T G G A A G A C A G T G T A A C A C C A A T A G A C A C T A C C A T 

C A T G G C C A A G A A C G A G G T T T T C T G C G T T C A G C C T G A G A A G G G G G G T C G T A A G C C A G C T C 

G T C T C A T C G T G T T C C C C G A C C T G G G C G T G C G C G T G T G C G A G A A G A T G G C C C T G T A C G A C 

G T G G T T A G C A A G C T C C C C C T G G C C G T G A T G G G A A G C T C C T A C G G A T T C C A A T A C T C A C C 

A G G A C A G C G G G T T G A A T T C C T C G T G C A A G C G T G G A A G T C C A A G A A G A C C C C G A T G G G G T 

T C T C G T A T G A T A C C C G C T G T T T T G A C T C C A C A G T C A C T G A G A G C G A C A T C C G T A C G G A G 

G A G G C A A T T T A C C A A T G T T G T G A C C T G G A C C C C C A A G C C C G C G T G G C C A T C A A G T C C C T 

C A C T G A G A G G C T T T A T G T T G G G G G C C C T C T T A C C A A T T C A A G G G G G G A A A A C T G C G G C T 

A C C G C A G G T G C C G C G C G A G C G G C G T A C T G A C A A C T A G C T G T G G T A A C A C C C T C A C T T G C 

T A C A T C A A G G C C C G G G C A G C C T G T C G A G C C G C A G G G C T C C A G G A C T G C A C C A T G C T C G T 

G T G T G G C G A C G A C T T A G T C G T T A T C T G T G A A A G T G C G G G G G T C C A G G A G G A C G C G G C G A 

G C C T G A G A G C C T T C A C G G A G G C T A T G A C C A G G T A C T C C G C C C C C C C C G G G G A C C C C C C A 

C A A C C A G A A T A C G A C T T G G A G C T T A T A A C A T C A T G C T C C T C C A A C G T G T C A G T C G C C C A 

C G A C G G C G C T G G A A A G A G G G T C T A C T A C C T T A C C C G T G A C C C T A C A A C C C C C C T C G C G A 

G A G C C G C G T G G G A G A C A G C A A G A C A C A C T C C A G T C A A T T C C T G G C T A G G C A A C A T A A T C 

A T G T T T G C C C C C A C A C T G T G G G C G A G G A T G A T A C T G A T G A C C C A T T T C T T T A G C G T C C T 

C A T A G C C A G G G A T C A G C T T G A A C A G G C T C T T A A C T G T G A G A T C T A C G G A G C C T G C T A C T 

C C A T A G A A C C A C T G G A T C T A C C T C C A A T C A T T C A A A G A C T C C A T G G C C T C A G C G C A T T T 

T C A C T C C A C A G T T A C T C T C C A G G T G A A A T C A A T A G G G T G G C C G C A T G C C T C A G A A A A C T 

T G G G G T C C C G C C C T T G C G A G C T T G G A G A C A C C G G G C C C G G A G C G T C C G C G C T A G G C T T C 

T G T C C A G A G G A G G C A G G G C T G C C A T A T G T G G C A A G T A C C T C T T C A A C T G G G C A G T A A G A 

A C A A A G C T C A A A C T C A C T C C A A T A G C G G C C G C T G G C C G G C T G G A C T T G T C C G G T T G G T T 

C A C G G C T G G C T A C A G C G G G G G A G A C A T T T A T C A C A G C G T G T C T C A T G C C C G G C C C C G C T 

G G T T C T G G T T T T G C C T A C T C C T G C T C G C T G C A G G G G T A G G C A T C T A C C T C C T C C C C A A C 

C G A T G A 
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9.7.2 Ful l -Length P L S C R 1 O R F S e q u e n c e (AF008445) 

A T G G A C A A A C A A A A C T C A C A G A T G A A T G C T T C T C A C C C G G A A A C A A A C T T G C C A G T T G G 

G T A T C C T C C T C A G T A T C C A C C G A C A G C A T T C C A A G G A C C T C C A G G A T A T A G T G G C T A C C 

C T G G G C C C C A G G T C A G C T A C C C A C C C C C A C C A G C C G G C C A T T C A G G T C C T G G C C C A G C T 

G G C T T T C C T G T C C C A A A T C A G C C A G T G T A T A A T C A G C C A G T A T A T A A T C A G C C A G T T G G 

A G C T G C A G G G G T A C C A T G G A T G C C A G C G C C A C A G C C T C C A T T A A A C T G T C C A C C T G G A T 

T A G A A T A T T T A A G T C A G A T A G A T C A G A T A C T G A T T C A T C A G C A A A T T G A A C T T C T G G A A 

G T T T T A A C A G G T T T T G A A A C T A A T A A C A A A T A T G A A A T T A A G A A C A G C T T T G G A C A G A G 

G G T T T A C T T T G C A G C G G A A G A T A C T G A T T G C T G T A C C C G A A A T T G C T G T G G G C C A T C T A 

G A C C T T T T A C C T T G A G G A T T A T T G A T A A T A T G G G T C A A G A A G T C A T A A C T C T G G A G A G A 

C C A C T A A G A T G T A G C A G C T G T T G T T G T C C C T G C T G C C T T C A G G A G A T A G A A A T C C A A G C 

T C C T C C T G G T G T A C C A A T A G G T T A T G T T A T T C A G A C T T G G C A C C C A T G T C T A C C A A A G T 

T T A C A A T T C A A A A T G A G A A A A G A G A G G A T G T A C T A A A A A T A A G T G G T C C A T G T G T T G T G 

T G C A G C T G T T G T G G A G A T G T T G A T T T T G A G A T T A A A T C T C T T G A T G A A C A G T G T G T G G T 

T G G C A A A A T T T C C A A G C A C T G G A C T G G A A T T T T G A G A G A G G C A T T T A C A G A C G C T G A T A 

A C T T T G G A A T C C A G T T C C C T T T A G A C C T T G A T G T T A A A A T G A A A G C T G T A A T G A T T G G T 

G C C T G T T T C C T C A T T G A C T T C A T G T T T T T T G A A A G C A C T G G C A G C C A G G A A C A A A A A T C 

A G G A G T G T G G T A G 
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9.7.3 Full-length ZNF143 ORF Sequence {NM_003442) 

ATGTTGTTAGCCCAAATAAATCGAGATTCTCAGGGAATGACAGAGTTTCCTGGAGGAGG 

GATGGAGGCGCAACATGTTACGCTGTGCTTGACAGAGGCAGTCACCGTGGCAGATGGTG 

ACAACTTAGAAAATATGGAAGGCGTAAGCTTGCAAGCAGTAACACTTGCAGATGGTTCT 

ACTGCTTACATACAACACAATTCTAAAGATGCAAAACTCATAGATGGCCAGGTCATTCA 

GTTGGAAGATGGTTCTGCGGCCTATGTTCAACATGTACCCATACCTAAAAGTACAGGGG 

ACAGTTTGCGTCTAGAGGATGGTCAAGCAGTACAGTTAGAAGATGGTACCACAGCATTT 

ATTCACCACACCTCCAAAGATAGTTATGACCAGAGTGCATTACAGGCGGTTCAGCTGGA 

AGATGGTACCACAGCTTATATCCACCATGCAGTGCAAGTCCCGCAGTCTGACACCATCT 

TGGCAATTCAGGCTGATGGGACAGTGGCAGGTCTGCACACTGGGGATGCTACAATTGAC 

CCTGACACCATCAGTGCTTTGGAACAGTATGCAGCAAAGGTGTCCATTGATGGAAGTGA 

AAGTGTAGCAGGTACTGGAATGATTGGAGAAAATGAGCAAGAGAAAAAAATGCAGATTG 

TTTTACAAGGACATGCTACAAGAGTAACTGCTAAATCTCAACAGAGTGGAGAGAAGGCA 

TTTCGATGTGAATATGATGGATGTGGAAAATTATATACAACAGCTCATCATCTCAAGGT 

CCATGAGAGGTCACACACAGGAGATCGGCCTTATCAGTGTGAGCATGCAGGCTGTGGGA 

AGGCATTTGCAACAGGTTATGGATTAAAAAGTCACGTCAGAACTCATACAGGAGAAAAG 

CCATATCGGTGTTCGGAAGATAATTGTACTAAATCTTTCAAAACTTCAGGAGATCTACA 

GAAACACATCAGAACTCATACAGGAGAAAGGCCCTTTAAGTGTCCCTTCGAAGGCTGCG 

GTCGGTCCTTTACAACATCAAATATCAGAAAAGTGCACGTTAGGACACACACAGGAGAA 

AGACCTTATTACTGCACAGAGCCAGGATGTGGGAGGGCATTTGCCAGTGCAACAAATTA 

TAAAAACCATGTGAGGATACACACAGGAGAAAAGCCATATGTTTGTACAGTTCCTGGGT 

GTGACAAAAGGTTTACAGAATATTCCAGTTTGTACAAACATCATGTTGTCCACACTCAT 

TCCAAACCTTACAACTGTAACCACTGTGGGAAGACATACAAGCAGATCTCCACGCTGGC 

CATGCACAAACGGACAGCCCACAACGACACTGAGCCCATCGAGGAGGAGCAGGAAGCCT 

TCTTTGAGCCGCCCCCAGGTCAAGGTGAAGATGTTCTTAAAGGGTCCCAGATTACGTAT 

GTTACAGGTGTAGAAGGGGACGACGTTGTTTCTACACAAGTAGCCACAGTAACCCAATC 

TGGACTGAGTCAACAAGTTACACTCATATCCCAGGATGGGACTCAGCATGTCAACATAT 

CTCAAGCTGACATGCAGGCCATTGGCAACACCATCACAATGGTAACGCAGGATGGCACG 

CCCATCACAGTCCCCGCCCATGATGCAGTCATCTCCTCAGCAGGAACGCACTCTGTTGC 

TATGGTTACTGCTGAGGGTACAGAAGGGGAACAGGTTGCAATTGTAGCTCAAGACTTGG 

CAGCATTCCATACTGCCTCATCAGAAATGGGGCACCAGCAGCATAGCCATCACTTAGTA 

ACCACAGAAACCAGACCTCTGACCTTAGTAGCAACATCCAATGGCACCCAGATTGCAGT 

TCAGCTTGGAGAACAGCCATCTCTGGAAGAAGCCATCAGAATAGCGTCTAGAATCCAAC 

AAGGAGAAACGCCAGGGTTGGATGATTAA 
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9.7.4 Full-length p-Tubulin ORF Sequence (BC020946) 

ACCATGAGGGAAATCGTGCACATCCAGGCTGGTCAGTGTGGCAACCAGATCGGTGCCAA 

GTTCTGGGAGGTGATCAGTGATGAACATGGCATCGACCCCACCGGCACCTACCACGGGG 

ACAGCGACCTGCAGCTGGACCGCATCTCTGTGTACTACAATGAAGCCACAGGTGGCAAA 

TATGTTCCTCGTGCCATCCTGGTGGATCTAGAACCTGGGACCATGGACTCTGTTCGCTC 

AGGTCCTTTTGGCCAGATCTTTAGACCAGACAACTTTGTATTTGGTCAGTCTGGGGCAG 

GTAACAACTGGGCCAAAGGCCACTACACAGAGGGCGCCGAGCTGGTTGATTCTGTCCTG 

GATGTGGTACGGAAGGAGGCAGAGAGCTGTGACTGCCTGCAGGGCTTCCAGCTGACCCA 

CTCACTGGGCGGGGGCACAGGCTCTGGAATGGGCACTCTCCTTATCAGCAAGATCCGAG 

AAGAATACCCTGATCGCATCATGAATACCTTCAGTGTGGTGCCTTCACCCAAAGTGTCT 

GACACCGTGGTCGAGCCCTACAATGCCACCCTCTCCGTCCATCAGTTGGTAGAGAATAC 

TGATGAGACCTATTGCATTGACAACGAGGCCCTCTATGATATCTGCTTCCGCACTCTGA 

AGCTGACCACACCAACCTACGGGGATCTGAACCACCTTGTCTCAGCCACCATGAGTGGT 

GTCACCACCTGCCTCCGTTTCCCTGGCCAGCTCAATGCTGACCTCCGCAAGTTGGCAGT 

CAACATGGTCCCCTTCCCACGTCTCCATTTCTTTATGCCTGGCTTTGCCCCTCTCACCA 

GCCGTGGAAGCCAGCAGTATCGAGCTCTCACAGTGCCGGAACTCACCCAGCAGGTCTTC 

GATGCCAAGGACATGATGGCTGCCTGTGACCCCCGCCACGGCCGATACCTCACCGTGGC 

TGCTGTCTTCCGTGGTCGGATGTCCATGAAGGAGGTCGATGAGCAGATGCTTAACGTGC 

AGAACAAGAACAGCAGCTACTTTGTGGAATGGATCCCCAACAATGTCAAGACAGCCGTC 

TGTGACATCCCACCTCGTGGCCTCAAGATGGCAGTCACCTTCATTGGCAATAGCACAGC 

CATCCAGGAGCTCTTCAAGCGCATCTCGGAGCAGTTCACTGCCATGTTCCGCCGGAAGG 

CCTTCCTCCACTGGTACACAGGCGAGGGCATGGACGAGATGGAGTTCACCGAGGCTGAG 

AGCAACATGAACGACCTCGTCTCTGAGTATCAGCAGTACCAGGATGCCACCGCAGAAGA 

GGAGGAGGATTTCGGTGAGGAGGCCGAAGAGGAGGCCTAA 
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9.8 PLSCR1 Domains' Protein Sequences 

PLSCRDl (1) 
PLSCRD2 (1) 
PLSCRD3 (1) 

FL-PLSCRl (1) 

PLSCRDl (51) 
PLSCRD2 (51) 
PLSCRD3 (51) 

FL-PLSCRl (51) 

PLSCRDl (61) 
PLSCRD2 (101) 
PLSCRD3 (101) 

FL-PLSCRl (101) 

PLSCRDl (61) 
PLSCRD2 (138) 
PLSCRD3 (151) 

FL-PLSCRl (151) 

PLSCRDl (61) 
PLSCPJ)2 (138) 
PLSCRD3 {193) 

FL-PLSCRl (201) 

PLSCPDl (61) 
PLSCRD2 (138) 
PLSCRD3 (193) 

FL-PLSCRl (251) 

PLSCRDl (61) 
PLSCRD2 (138) 
PLSCRD3 (193) 

FL-PLSCRl (301) 

1 50 
MIJKQNS0MMASHPETNLPVGyPPQYPPTAF(3GPPGYSGYPGPQVSYPPPP 
HDKQNSQMNASHPETMLPVGYPPQYPPTAFQGPPGYSGYPGPQVSYPPPP 
MDKQNSQMNASHPErNLPVGYPPQYPPTAFQGPPGYSGYPGPQVSYPPPP 
MKQNSQMNASHPETHLPVGYPPQYPPTAFOGPPGYSGYPGPQVSYPPPP 
51 100 
AGH5GPGPAG 
AGH5GPGP, 
AGH5GPGP, 

?KQPVYNQPVYNCpVGAaGVPWMPAPQPPLNCPPGLE 
JPVyNQPVYNCS»V«aAGVPWMPAPQPPL!«:PPGLE 

AGH3GPGPjU^FPVPWQPVYNQPVYHQPVGftACTPWMPAPQPPLNCPPGLE 
101 150 

n.SQIDQILIH(^IELLEVLIGFErNinOfEIKKSFQq 
yLSQIDQILIHQQIELIEVLTGFErKNKfEIKNSFQQRVYFAAEDrDCCT 
YLSQIDQILIHQQIELLEVLTGFErHMKYEIKNSFC^QRVYFAAEDrDCCI 
151 200 

ffCCGPSRPFTLRIIDNHGQEVITLERPLRCSSCCCPCCLQE 
aCCGPSRPFTLRIIDMMGQEVITLERPLRCSSCCCPCCLQqiEIQAPPG 

250 201 

'/PIGYVIQTWHPCLPKFTIQNEKREDVLKISGPCWCS CCGDVDFE IKS L 
251 300 

DEQCWGKISKHWTGILREAFTDADNFGIQFPLDLD'/KMKAVMIGACFLI 
301 318 

DFMFFESTGSQEQKSGVW 
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9.9 NS5B domains' Protein Sequences 

HS5BD1 
NS5BD2 
)9S5B03 
FL-NS5B 

N55BDI 
NS5BD2 
NS5BD3 
FL-NS5B 

N55BDI 
MS5BD2 
NS5BD3 
FL-NS5B 

NSSBDl 
N55BD2 
1955BD3 
FL-NS5B 

NSSBDl 
NS5BD2 
NS5BD3 
FL-NS5B 

NSSBDl 
NSSBD2 
NS5BD3 
FL-N55B 

NSSBDl 
NS5BD2 
NS5BD3 
FL-W55B 

NSSBDl 
NSSBD2 
NSSBD3 
FL-NS5B 

NSSBDl 
NS5BD2 
HSSBD3 
FL-NS5B 

NSSBDl 
NSSBD2 
NSSBD3 
FL-NS5B 

NSSBDl 
NS5BD2 
NSSBD3 

FL-NS5E 

NSSBDl 
NS5BD2 
NS5BD3 
FL-NS5B 

(1 
(1 
(1 
CI 

<51 
<51 
<51 
<51 

(101 
(101 
(101 
(101 

(151 
(151 
(151 
(151 

(154 
(201 
(201 
(201 

(154 
(251 
(251 
(251 

(154 
(301 
(301 
(301 

(154 
(302 
(351 
(351 

(154 
(302 
(401 
(401 

(154 
(302 
(449 
(451 

(154 
(302 
(449 
(501 

(154 
(302 
(44» 
(S51 

1 50 
SMS¥S»rrGaLVTPCA!i.EEQECLPrNjlLSHSLlRHHNLVYSTTSRSACC«QK 
SMSYSWTGJUiVTPCaU^EEOiCLPOaBr.TOSLlRHHMLVYSTTSRSaCCiROK 
5M3¥SWTGjU.VTF(=!Uk.EEQEa.Pi:caAL^SI.l.SHE&ar.Vy3TTSRSaCCSQK 
51 lOO 
KVTFDRLQVLDSBYQDVLKSVKAAASKVKJlHIiLSVEEACSLXPPltSAKSK 
KVTFDRLQVLDSHYQDVUCEVKOAASKVSAHI.LSVBEACSLTPPBSftKSK 
KVTFDHLQVLD5inrQDVI.KEVKA&&SKVK&m.L3VEE&CSL!rPPEISI^ 
KVTFDElLQVLDiSHXlOI]nn.KEVK&ft&SKVEAin.LSVEEACSLTPPI!SfiKSK 
101 150 
FSnOS&KD VRCOARKAViUlINS W K Q L I ^ D S V ^ ZHAEHEVFC VQFE 
FSKGaKDVRCHftRKaViUJlHSVWKEICLEDSVrPIDTII^^ 

151 200 
KGG 
KG(^RECPiUlL^VFFDLGVRV(=E3(^aLTI)VVSKLPUlVHGSSYS 
KSGKKPi»I.X1^7DLGVRV(3E:KMAI.YDVVSKLPLAVN6SSYGFQY5PGQfl 
KSiqUCPWLIVFPDLgVItVCEEtMALYIlVVSEn^IAVMGSSYGFOYSPGOH 
201 250 

tfEFLVQABKSratlPMGF SYDrTRCFDSTVXESDI RTP.K MY(3CCDLDP0AH 
^FI.VX>AWK5nCTPKGFSYI3rRCFD5XVTSSDIRTE£AlYQCCDLI)PQAJl 
l/i:FI.VQAHK5KKTPHGFSYDarRCFDSTVT&SDIRTE£JlIYQCX:OLDPQAil 
251 300 

301 

'AIKSLTERLYVetH'LTHSRBENCGYnaCRASGVLTXSCXaiTLTClYXKAR 
IKSLTERLYVEGPLIHSRGEHCGYRRCRASGVLTTSCarrLTCYIKAR 

.•AIKSLTERLYVGGP LTHSRGEHCGYRRCRft,S(3VLTrSCGNTLTCYIKAR 
350 

ft: 
tuiCRJlMliQDCTHLVCGDDI.vVICESAGVQEDAftSIJUlFTiaMTRYSare 
^(IRAAGLQDCTKLVCGDDLVVICE5AFA>gDiU>SIJtlVFTE3tfCrRYSAPP 
351 4O0 

3DPPQPEYDLELITSCS SKVSVAHDGAGKRVYYLTRDPTTPLARftAWETft 
3DPPQPEYDLEL rrSCS SHV5 VAHDGAGKRVYYLTRDPTXPLARAJlHETa 
401 450 

RHIPVHSWLGHI rMFAFTLJWJiBMrLKTHFFS''/LIAKDQLEQ!U-K(3:iY - -
PHTPVHSWLGWIIMFAPTLWARMriWTHFFSVLIARDOLKOiiLWCEIYjGA 
451 5O0 

CY3lEPLDLPPIrORLHGLSAFS LHSYSPGEIHRVAACLRKLGVPPLRAW 
SOI 550 

RHRftRSVRARLLSRGGRAAlCGKYLFNWAVRTKLKLTPIAAaGRLDLSGW 
551 S91 

FXAGYSGGDIYHSVSHARPRWFWTCLLLLAAGVGrYLLPNR 
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9.10 V5H Sequence Used to Build pWPXL-V5H Construct 

Poly-His tag 
5' ga t c t acc atg ggt c a t cac c a t cac c a t cac c a t cac 
3' a tgg tac cca gta gtg gta gtg gta gtg gta gtg 

V5 epitope 
c a t cac ggt aag c c t ate c c t aac c c t e t c e t c ggt e t c gat 
g t a gtg cca t t c gga tag gga t t g gga gag gag cca gag eta 

(MCS) 
BamHI Smal EcoRI 

Tct acg gat eec egg gaa t t e a 3' 
Aga tgc e t a ggg gee e t t aag tgg ec 5' 

Two oligonucleotides were annealed together to form a dsDNA insert with 

start codon, His-tag, and V5 epitope-tag at the N-terminus of multiple cloning 

sites (MCS). Start codon is presented in green colour. Poly-His tag sequence is 

presented in bold black. V5 epitop sequence is presented in blue and the 

multiple cloning sites are presented in red. 
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9.11 Oligonucleotides and Primers 
Oligonucleotides and primers used in this study were synthesized by Signna. Primers were reconstituted in distilled water to a 

stock concentration of 100 pM. Oligonucleotides and primers used in this thesis are listed in Table 9.1 and Table 9.2. 

Table 9.1: Primers and Oligonucleotides used in this study 

CONSTRUCT 
NAME INSERT 

AMINO 
ACID 

TAG AND ITS 
LOCATION 

CLONING 
SITES PRIMERS SEQUENCES 

pGBK-5B 
(PGR Cloning) 

NS5B 1-591 DNA-BD 
N-terminus 

BamHI 
Sail 

CACGGATCCGGACCATGTCAATGTCTTATTCCTGG 
CAGCGTCGACTTATCATCGGTTGGGGAGGAGGTAG 

PGBK-5BD1 
(PGR Cloning) 

NS5BD1 1-153 DNA-BD 
N-terminus 

BamHI 
Sail 

CACGGATCCGGACCATGTCAATGTCTTATTCCTGG 
GTAGTCGACACCCCCCTTCTCAGGCTGAACGCAGA 

pGBK-5BD2 
(PGR Cloning) 

NS5BD2 1-301 DNA-BD 
N-terminus 

BamHI 
Sail 

CACGGATCCGGACCATGTCAATGTCTTATTCCTGG 
GTAGTCGACTGCCCGGGCCTTGATGTAGCAAGTGA 

pGBK-5BD3 
(PGR Cloning) 

NS5BD3 1-448 DNA-BD 
N-terminus 

BamHI 
Sail 

CACGGATCCGGACCATGTCAATGTCTTATTCCTGG 
GTAGTCGACGTAGATCTCACAGTTAAGAGCCTGTT 

PET21-5B 
(PGR Cloning) 

tNS5B 1-570 His-tag 
G-terminus 

BamHI 
Xhol 

CACGGATCCGGACCATGTCAATGTCTTATTCCTGG 
CAGCCTCGAGTTATCATCGGTTGGGGAGGAGGTAG 

PET21-5BD1 
(PGR Cloning) 

NS5BD1 1-153 His-tag 
C-terminus 

BamHI 
Sail 

CACGGATCCGGACCATGTCAATGTCTTATTCCTGG 
GTAGTCGACACCCCCCTTCTCAGGCTGAACGCAGA 

pET21-5BD2 
(PGR Cloning) 

NS5BD2 1-301 His-tag 
C-terminus 

BamHI 
Sail 

CACGGATCCGGACCATGTCAATGTCTTATTCCTGG 
GTAGTCGACTGCCCGGGCCTTGATGTAGCAAGTGA 

PNTAP-5B 
(PGR Cloning) 

NS5B 1-591 Streptavidin 
N-terminus 

BamHI 
BamHI 

CTACGGATCCTACCATGTCAATGTCTTATTCCTGG 
CAGCGGATCCTTATCATCGGTTGGGGAGGAGGTAG 

pcDNA4-5B 
(PGR Cloning) 

NS5B 1-591 His-tag 
N-terminus 

BamHI 
BamHI 

CTACGGATCCTACCATGTCAATGTCTTATTCCTGG 
CAGCGGATCCTTATCATCGGTTGGGGAGGAGGTAG 
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PWPXL-5B 
(PGR Cloning) 
pGAD-SCRI 
(Nested RT-
PCR Cloning) 

NS5B 

PLSCR1 

1-591 

1-318 DNA-AD 
N-terminus 

BamHI 
Spel 
Nested 

EcoRI 
Xhol 

CTACGGATCCTACCATGTCAATGTCTTATTCCTGG 
CAGCACTAGTTTATCATCGGTTGGGGAGGAGGTAG 
F: GACCGAAACCAGGAGCCGCGG 
R: CAACCAGAGCTACAGGCCTTA 
CACGAATTCCGGGAGCGGAAACAGCGGCAGCCAGA 
GGCCTCGAGCTGAGGAGACTTTCACTAATCCACTA 

pGAD-SCRDI 
(Mutagenesis) 

PLSCRD1 1-60 DNA-AD 
N-terminus 

Muta
genesis 

F:CCCAGCTGGCTAATAAGAGCTCAATCAGCCAG 
R:CTGGCTGATTGAGCTCTTATTAGCCAGCTGGG 

pGAD-SCRD2 
(Mutagenesis) 

PLDCRD2 1-137 DNA-AD 
N-terminus 

Muta
genesis 

F:CTTTGGACAGTAATAAGAGCTCGCAGCGGAAG 
R:CTTCCGCTGCGAGCTCTTATTACTGTCCAAAG 

PGAD-SCRD3 
(Mutagenesis) 

PLSCRD3 1-192 DNA-AD 
N-terminus 

Muta
genesis 

F:AGAGGATGTATAATAAGAGCTCGGTCCATGTG 
R:CACATGGACCGAGCTCTTATTATACATCCTCT 

PGAD-ZNF143 
(Nested RT-
PCR Cloning) 

ZNF143 1-639 DNA-AD 
N-terminus 

Nested 

EcoRI 
Xhol 

F:CCTGGTGCATGGTGGTCGGAC 
R:TCCTGGGCCCGGGCTTCATGG 
CGATGAATTCATGTTGTTAGCCCAAATAAATCGAG 
CGATCTCGAGTTAATCATCCAACCCTGGCGTTTCT 

pGEX-SCRI 
(PCR Cloning) 

PLSCR1 1-318 GST-tag 
N-terminus 

EcoRI 
Xhol 

CACGAATTCCGGGAGCGGAAACAGCGGCAGCCAGA 
GGCCTCGAGCTGAGGAGACTTTCACTAATCCACTA 

PGEX-ZNF143 
(PCR Cloning) 

ZNF143 1-639 GST-tag 
N-terminus 

BamHI 
EcoRI 

CGATGGATCCATGTTGTTAGCCCAAATAAATCGAG 
CGATGAATTCTTAATCATCCAACCCTGGCGTTTCT 

PCDNA4-SCR1 
(PCR Cloning) 

PLSCR1 1-318 His-tag 
N-terminus 

EcoRI 
Xhol 

CACGAATTCCGGGAGCGGAAACAGCGGCAGCCAGA 
GGCCTCGAGCTGAGGAGACTTTCACTAATCCACTA 

pcDNA4-
ZNF143 (PCR 
Cloning) 

ZNF143 1-639 His-tag 
N-terminus 

BamHI 
EcoRI 

CGATGGATCCATGTTGTTAGCCCAAATAAATCGAG 
CGATGAATTCTTAATCATCCAACCCTGGCGTTTCT 

PWPXL-V5H 
(Restriction 
Cloning) 

V5H 1-32 BamHI Sense: 
GATCTACCATGGGTCATCACCATCACCATCACCATCACCATC 
ACGGTAAGCCTATCCCTAACCCTCTCCTCGGTCTCGATTCTA 
CGGATCCCCGGGAATTCA 
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EcoRI 
Anti-sense: 
CCGGTGAATTCCCGGGGATCCGTAGAATCGAGACCGAGGAGA 
GGGTTAGGGATAGGCTTACCGTGATGGTGATGGTGATGGTGA 
TGGTGATGACCCATGGTA 

pWPXL-V5H-
SCR1 (PGR 
Cloning) 

PLSCR1 1-318 His-tag 
N-terminus 

BamHI 
EcoRI 

CACGGATCCCATGGACAAACAAACTCACAGATGA 
GGCGAATTCCTACCACACTCCTGATTTTTGTTCCT 

PWPXL-V5H-
ZNF143 (PGR 
Gloning) 

ZNF143 1-639 His-tag 
N-terminus 

BamHI 
EcoRI 

CGATGGATCCCATGTTGTTAGCCCAAATAAATCGA 
CGATGAATTCTTAATCATCCAACCCTGGCGTTTCT 

pLVTHM-
shSGRI 
(Restriction 
Gloning) 

shPLSGRI Mlul 

Clal 

Sense 
CGCGTCCCCGGACCTCCAGGATATAGTGTTCAAGAGACACTA 
TATCCTGGAGGTCCTTTTTGGAAAT 
Anti-sense 
CGATTTCCAAAAAGGACCTCCAGGATATAGTGTCTCTTGAAC 
ACTATATCCTGGAGGTCCGGGGA 

pLVTHM-
shZNF143 
(Restriction 
Gloning) 

shZNF143 Mlul 

Clal 

Sense 
CGCGTCCCCGCCATATCGGTGTTCGGAAGATTCAAGAGATCT 
TCCGAACACCGATATGGCTTTTTGGAAAT 
Anti-sense 
CGATTTCCAAAAAGCCATATCGGTGTTCGGAAGATCTCTTGA 
ATCTTCCGAACACCGATATGGCGGGGA 

pGAD-Tub 
(Nested RT-
PGR Gloning) 

p-Tubulin 1-446 DNA-AD 
N-terminus 

Nested 

EcoRI 
Xhol 

F: TCCAGCCTGCGACCTGCGGAG 
R: CAAGATAGAGGCAGCAAACAC 
CGAGAATTCACCATGAGGGAAATCGTGCACATCCA 
CGACTCGAGTTAGGCCTCCTCTTCGGCCTCCTCAC 

pGEX-Tub 
(PGR Gloning) 

P-Tubulin 1-446 GST-tag 
N-terminus 

EcoRI 
Xhol 

CGAGAATTCACCATGAGGGAAATCGTGCACATCCA 
CGACTCGAGTTAGGCCTCCTCTTCGGCCTCCTCAC 
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Table 9.2: Sequencing and RT-PCR Screening Primers 

PLASMID SEQUENCE 
NS5B 
(Sequencing) 

NS5B-Mid-F: CCACATCAACTCCGTGTG 
NS5B-Mid-R: CCCTGGCTATGAGGACGC 

pGBKT7 
(Sequencing) 

pGBKT7-Rev: TTTTCGTTTTAAAACCTAAGAGTC 

pGADT7 
(Sequencing) 

AD-F: CTATTCGATGATGAAGATACCCCACCAAAC 
AD-R: GTGAACTTGCGGGGTTTTTCAGTATCTACG 

pNTAP 
(Sequencing) 

pNTAP-F: TGAGGTTTAAACAATTAACCCTCACTAAAGGGAAC 
pNTAP-R: GAAGTCATATGGTAATACGACTCACTATAGGGCGA 

PGEX-6P-3 
(Sequencing) 

5 'pGEX: GGGCTGGCAAGCCACGTTTGGTG 
3' pGEX: CCGGGAGCTGCATGTGTCAGAGG 

pWPXL or 
pWPXL-VSH 
(Sequencing) 

pWPXL-F: CCGATCACGAGACTAGCCTCG 
pWRXL-R: CATAGTTAAGAATACCAGTC 

pLVTHM 
(Sequencing) 

pLVTHM-F: GTCGCTATGTGTTCTGG 
pLVTHM-R: AGAGACCCAGTACAAGC 

(Sequencing) 
T7 Promoter: CGAAATTAATACGACTCACTATAGG 
T7 Terminator: ATGCTAGTTATTGCTCAGCGGT 

ISG15 
(RT-PGR) 

ATGGGCTGGGACCTGACGGTG 
CCTTAGCTCCGCCCGCCAGGC 

ISG54 
(RT-PGR) 

ATGAGTGAGAACAATAAGAAT 
CCAGAGCCTTCTCAAAGCACA 

0AS2 
(RT-PGR) 

ATGGGAAATGGGGAGTCCCAG 
AAGGATCTTTTGAGCTCTCGA 

IRF7 
(RT-PGR) 

ATGGCCTTGGCTCCTGAGAGG 
TGGAGTCCAGCATGTGTGTGT 

p-actin 
(RT-PGR) 

GACAACGGCTCCGGCATGTG 
TGGCTGGGGTGTTGAAGGTC 
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9.12 HCV Sub-Genomic Replicon Used in This Study 

iwi (12769) 
Aval C12695} 

ApaU (11831) 
ApaU (11333) 

Pstl (10517) 

T7-Pm 
Ncxil (a4) 

Xmal (129) 
^ual (129) 
Smal (131) 
5'NTR 

Xmal 

fi 
Apall (10087) 
BamHI (9729) 

T7-T«rm 

BamHI (9596) 
f^K i341 PiLuclMS3-3' dg ET 

12787 bp 
Pstl (9503) 
Pstl (9476) 

3" NTR 
IVcoI (8902) 

Pwi (7677) 
BamHI (7435) 

BamHI (7382) 
Aval (7092) 

EcoRI (6605) 

(316) 
Aval (316) 

Smal (318) 
Apall (336) 
BamHI (518) 

Ncol (686) 
PV-IRES 
BamHI (968) 
BcoKl (1637) 
F-LucifwaM 

^ual (2106) 
Clal (2415) 

Hindlll (2972) 
EMCV-IRES 
^paU (3225) 
Ncol (3321) 
Xmal (3590) 
Aval (3590) 
Smal (3593) 

Aval (3763) 
.ApaU (3799) 
^wal (3804) 

Aval (4771) 
Pstl (6070) 

NS3-SB 

198 



APPENDICES 

9.13 pLVTHM Used in RNAi Work 

AmpR 
Xbal (5885) 

LTR/SiN 
LoxP 

aal (5629) 

Xlbil (5612) 

LTR 
SO 

psi 

-VorI(1146) 

RRE 
SA 
Son (2028) 

Pstl (2438) 
EF1-alfa 
Pstl (2943) 
ATioI (3087) 

Swal (3315) 
Pad (3324) 

CPPT 

Pmel (3492) 
GFP 
(4330) 

Ndel (4337) 
WPRE 

SM^IBI (4940) 

718 (4950) 

LTR«IN 
5amHI (5078) 

WO 
Psd (5391) 

£<roRI (5393) 

HI 
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