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Abstract

In this PhD research study, we focus on building a content-based search engine for

3D articulated geometry models. 3D models are essential components in nowadays

graphic applications, and are widely used in the game, animation and movies pro-

duction industry. With the increasing number of these models, a search engine not

only provides an entrance to explore such a huge dataset, it also facilitates sharing

and reusing among different users. In general, it reduces production costs and time

to develop these 3D models. Though a lot of retrieval systems have been proposed

in recent years, search engines for 3D articulated geometry models are still in their

infancies. Among all the works that we have surveyed, reliability and efficiency are

the two main issues that hinder the popularity of such systems. In this research, we

have focused our attention mainly to address these two issues.

We have discovered that most existing works design features and matching algo-

rithms in order to reflect the intrinsic properties of these 3D models. For instance,

to handle 3D articulated geometry models, it is common to extract skeletons and

use graph matching algorithms to compute the similarity. However, since this kind

of feature representation is complex, it leads to high complexity of the matching al-

gorithms. As an example, sub-graph isomorphism can be NP-hard for model graph

matching. Our solution is based on the understanding that skeletal matching seeks

correspondences between the two comparing models. If we can define descriptive

features, the correspondence problem can be solved by bag-based matching where

fast algorithms are available.
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In the first part of the research, we propose a feature extraction algorithm to

extract such descriptive features. We then convert the skeletal matching problems

into bag-based matching. We further define metric similarity measure so as to

support fast search. We demonstrate the advantages of this idea in our experiments.

The improvement on precision is 12% better at high recall. The indexing search of

3D model is 24 times faster than the state of the art if only the first relevant result

is returned. However, improving the quality of descriptive features pays the price

of high dimensionality. Curse of dimensionality is a notorious problem on large

multimedia databases. The computation time scales exponentially as the dimension

increases, and indexing techniques may not be useful in such situation.

In the second part of the research, we focus ourselves on developing an embedding

retrieval framework to solve the high dimensionality problem. We first argue that our

proposed matching method projects 3D models on manifolds. We then use manifold

learning technique to reduce dimensionality and maximize intra-class distances. We

further propose a numerical method to sub-sample and fast search databases. To

preserve retrieval accuracy using fewer landmark objects, we propose an alignment

method which is also beneficial to existing works for fast search. The advantages of

the retrieval framework are demonstrated in our experiments that it alleviates the

problem of curse of dimensionality. It also improves the efficiency (3.4 times faster)

and accuracy (30% more accurate) of our matching algorithm proposed above.

In the third part of the research, we also study a closely related area, 3D motions.

3D motions are captured by sticking sensor on human beings. These captured data

are real human motions that are used to animate 3D articulated geometry models.

Creating realistic 3D motions is an expensive and tedious task. Although 3D motions

are very different from 3D articulated geometry models, we observe that existing

works also suffer from the problem of temporal structure matching. This also leads

to low efficiency in the matching algorithms. We apply the same idea of bag-based

matching into the work of 3D motions. From our experiments, the proposed method

has a 13% improvement on precision at high recall and is 12 times faster than existing

works.

As a summary, we have developed algorithms for 3D articulated geometry models
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and 3D motions, covering feature extraction, feature matching, indexing and fast

search methods. Through various experiments, our idea of converting restricted

matching to bag-based matching improves matching efficiency and reliability. These

have been shown in both 3D articulated geometry models and 3D motions. We

have also connected 3D matching to the area of manifold learning. The embedding

retrieval framework not only improves efficiency and accuracy, but has also opened

a new area of research.
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Chapter 1

Introduction

3D geometry models and 3D motions are essential components in latest graphics

applications. Ranging from 3D games, animations and movies, they define the

objects and actions that we see in the virtual world. 3D articulated geometry models

are a subset of 3D models that are articulated into different postures, e.g., a sitting

dog and a running dog. They are both dog objects but in different poses. 3D

motions are recorded time-series data that are captured from real human motions

using motion sensor stuck on human bodies. Example motions include running

and jumping. With the increasing number of these data, recent research has been

focusing on building a reliable search engine so as to facilitate share and reuse.

1.1 Motivation

The urge for such retrieval system comes from the fact that these 3D models and

motions are difficult, time-consuming and expensive to create. We can see these in

several ways. Traditionally, one has to use 3D modeling tools (e.g., 3D Studio Max,

Maya) to handle such 3D models. Not to mention the high cost of the software

licenses, there is also a high demand on the expensive graphic hardware. A user

typically relies on the provided GUI and mouse to manipulate models in a 2D

display. Since we all live in a 3D world and there is 1 fewer degree of freedom

(2D) of control, the manipulations are usually different from what a general user

would expect. Sometimes, a user may even feel dizzy because of the lack of virtual

1
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3D perception on a 2D screen. Adding on top, a user must have knowledge on

geometry and topology in order to produce high quality models. The same applies

to 3D motions as well. Building skeletal structures, animating muscles and limbs,

acquiring the deep knowledge of human motions and the traits of the animating

characters are some of the challenges that an animator must face. Despite the

steep learning curve of modeling and animating, our human visual system highly

adapts to real-life activities and so we can easily recognize any subtle differences

and abnormality. This, on the other hand, creates a high demand to produce very

realistic models and motions.

To facilitate creation of such 3D contents, the concept of “copying and pasting”

existing components has recently been introduced. Imagining creating a centaur

model, it would be much easier to copy the upper part of a human model and the

lower part of a horse model and paste them together. It is called “Modeling by

Example” [1] in 3D modelling literature. Similarly, imagine creating a triple jump

motion, concatenating various running, stepping and jumping motions would greatly

ease the animator’s job [2], [3]. However, all these require efficient and reliable search

engines.

Apart from content creation, as the popularity of graphics applications increases,

the growing number of these models and motions also creates other problems as well.

In term of storage, the huge volume of data easily grows over gigabytes or terabytes.

Though the capacity of hard drive is increasing, it is hardly able to catch up with the

demand. Traditional solution is to put them into slow removal secondary storage like

tapes and DVDs. It is well-known that the indexing structure of a retrieval system

is always useful to reduce slow disk access during such multimedia search. In term

of searching, browsing through pages and pages of a repository for the appropriate

content satisfying certain requirements becomes more and more difficult also. All

these motivate us to research reliable and efficient retrieval methods for these 3D

contents.
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1.2 Content-based Retrieval

Traditional retrieval methods are based on annotations. Examples include audio,

image, video and text retrieval systems. However, human annotation depends on

many factors, such as languages, cultures, personal experiences and even the ways

that the contents are recognized or used. There is no definite answer for manual an-

notation. Recently, research has been focused on content-based retrieval techniques.

Content-based methods analyze the multimedia data from their actual contents.

Features are then extracted and compared automatically without manual interfer-

ence. One of the goals of content-based methods is to define a robust and accurate

measure to assist automatic matching, recognition and classification or even generate

reliable annotations.

Content-based techniques, in general, comprise three main parts: feature extrac-

tion, feature matching and fast search. Feature extraction concerns the extraction

of features which can be used to represent the data. Feature matching concerns

the comparison of features and is always accompanied by a distance function for

measuring the similarity between two features. In order to allow fast online query

search, an indexing technique is often applied. It provides an efficient method to

support fast pruning of irrelevant data.

1.3 Project Objectives

In the research, we devote ourselves to the development of content-based retrieval

techniques for 3D articulated geometry models, focusing on efficiency and reliability.

They are the main issues that hinder the popularity and practicality of such retrieval

systems. The inputs, 3D articulated geometry models, are expressed as 3D meshes.

Each model is simply a collection of vertices, edges and triangles without any tags or

skeletal information. Since our methods are content-based, the system analyzes the

query input, extracts descriptive features and searches for relevant data using the

predefined matching methods. Since 3D articulated geometry models are usually

animated by 3D motion capture data, we also devote our time to develop a content-

based retrieval technique for motions. Similarly, these 3D motions are time-series
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data without any annotations or tags.

1.4 Problems

Though a lot of works have been proposed in recent years, retrievals of 3D articulated

geometry models and motions are still in their infancies. From the literatures, we

have observed some limiting factors.

Firstly, most existing works designed features and matching methods in order

to reflect the intrinsic properties. For instance, to handle 3D articulated geometry

models, it was common to extract the skeleton and use sub-graph matching (e.g.

[4], [5]) to define similarity measures. To handle 3D motion capture data, special

focus was put on temporal structure matching. In order to handle such special data

represetation, matching algorithms usually have high complexity, and so special

indexing (e.g. [6], [7]) or bounding techniques (e.g. [8], [9]) are required.

Secondly, the scalability issue is another area that has not been explored. On

the one hand, many works [4], [5], [10], [11], [12], [13], [14], [15], [16], [13] define non-

metric similarity measures where general efficient indexing techniques (e.g. spatial

or distance-based indexing (see Section 2.4)) cannot be applied. On the other hand,

when the methods define large number of features [17], they will easily suffer from

the curse of dimensionality and huge computation time is required to handle such

datasets (see Discussion and Experiments in Section 5.6).

1.5 Proposed Solution

Similar to existing works, we also consider extracting features that reflect the in-

trinsic properties of the data. However, we also propose to convert the restricted

matching problem into bag-based matching problems. Our argument is that one of

the goals of these matching methods is to seek correspondences between the two

comparing models. If we can define descriptive features, correspondence problems

can be solved by bag-based matching where efficient algorithms are available. There-

fore, in the first part of the research, we devote ourselves into the analysis of feature
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extraction and feature matching of 3D articulated geometry models. Our focus is

to develop a metric similarity measure so that distance-based indexing techniques

can be applied.

To alleviate the problem of dimensionality, we propose an embedding retrieval

framework for fast search. In particular, we focus ourselves on the matching of

3D articulated geometry models. We discover that graph and bag-based matching

algorithms project data on manifolds in high dimensional space. These trigger us

to investigate the reason behind and to propose a manifold learning method for di-

mension reduction and inter-class distance maximization. To extend the framework

to a large dataset, we adapt Nyström extension (a sub-sampling scheme) [18] and

further propose an alignment step to preserve retrieval accuracy.

While 3D motions are different from 3D articulated geometry models, they suf-

fer from similar limiting factors. Similarly, we also propose to convert temporal

matching into bag-based matching by defining proper and descriptive features. This

results in a metric similarity measure that is capable for fast search.

1.6 Contributions

In brief, three contributions are achieved in this PhD research study.

1. We develop a feature extraction and matching method for 3D articulated ge-

ometry models. It is an improvement on our earlier work [19]. The improve-

ments are as follows. 1) we have developed a more reliable feature extraction

algorithm that solves the slicing direction problem. We name our method

“Topological Point Ring (TPR) Analysis” as it uses topological points and

rings as features. 2) By properly adjusting the importance of these topologi-

cal features, we have defined the first metric similarity measure which allows

both skeletal and geometry feature matching at the same time. Since it is a

metric, it also supports the use of indexing technique for fast pruning. The

method is also faster and more accurate than the state of the art, Multiresolu-

tion Reeb Graph (MRG) [17]. These improvements and findings are reported

in a paper [20] in the Transactions on Visualization and Computer Graphics.
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2. To further improve the reliability and efficiency of the proposed retrieval

method for 3D articulated geometry models, we investigate and propose an

embedding retrieval scheme for fast search. When applying our framework

on TPR [20] and MRG [17], improvements on efficiency and accuracy are re-

ported in our experimental results. These findings are currently under review

for publication [21].

3. Applying the concept of bag-based matching, we have also developed a feature

extraction and a feature matching algorithm for 3D motions, featuring local

and global matching at the same time. The method is also shown to be faster

and more accurate than two existing works, namely Dynamic Time Warping [8]

and Uniform Scaling [9]. These results have been published in a conference

paper [22].

All in all, by converting restricted (skeletal and temporal) matching into bag-

based matching, we have developed new method for the analysis of 3D articulated

geometry models and 3D motions. Our investigation into the existing work also

discovers that graph-based and bag-based matching algorithms project models on

manifolds. This connects the area to manifold learning techniques.

1.7 Organization

The rest of the thesis is organized as follows. In Chapter 2, we survey existing match-

ing and retrieval work of 3D articulated geometry models and various fast search

and indexing schemes. We then discuss our research goals, the challenges and the

proposed solutions in Chapter 3, In Chapter 4, we develop a feature extraction and

matching method for 3D articulated geometry models, featuring a metric similar-

ity measure that supports indexing. In Chapter 5, we investigates an embedding

retrieval framework to improve speed and accuracy for the matching of 3D articu-

lated geometry models. In Chapter 6, we apply the concept of bag-based matching

to the retrieval of 3D motion capture data, featuring a metric similarity measure.

Since it is a piece of independent work, we present the surveys, proposed retrieval

method and experimental results in a self-contained manner in Chapter 6. Finally,
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in Chapters 7 and 8, we evaluate the whole research study, draw our conclusions

and discuss some future works.



Chapter 2

Literature Review

2.1 Introduction

In this chapter, we survey and discuss works related to this research study. In Sec-

tion 2.2, we first discuss some general 3D models retrieval methods. These works

cannot handle articulated models, but provide the background of our current works.

In Section 2.3, we discuss matching methods for articulated geometry models. Since

this is the focus of our work, we discuss them in detail. In Section 2.4, we dis-

cuss general fast search methods. This provides the background of our proposed

embedding retrieval framework.

2.2 Methods for Non-Articulated Geometry Mod-

els

There is a substantial amount of work devoted to matching and retrieving rigid

geometry models efficiently and accurately. These non-articulated methods can

be classified into three approaches: geometry-based, transform-based, and image-

based approaches. The geometry-based approach concerns properties related to the

shape and size of a model. In general, methods of this approach can be classified

into three types: methods based on extracting physical properties [23], [24], [25],

methods based on computing histograms or some distribution functions [26], [27],

8
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[28], and methods based on computing energy for morphing a model [29], [30], [31].

The transform-based approach analyzes 3D models in a different feature domain.

Transformation functions include Fourier Transform [32], Wavelets Transform [33],

and Zernike Transform [34]. Funkhouser et al. [35], Kazhdan et al. [36], and Novotni

and Klein [34] propose Spherical Harmonic for extracting rotation-invariant features.

The image-based approach captures features from different 2D image views of a 3D

model [37], [38].

Generally, the geometry-based approach is efficient and easy to implement, but

its matching accuracy is usually lower than the other two approaches. The transform-

based approach has several advantages such as supporting multiresolution analysis

and having improved accuracy with the recent development in concentric spherical

harmonic [36]. A major advantage of the image-based approach is its independence

from 3D data representation. However, it typically has a large number of features

and, hence, high matching cost. It should be noted that the image-based approach

can give a better human-computer interface [39] because users may provide a 2D

sketch as an initial query input.

All these methods, however, are designed to handle general 3D models (e.g.,

chairs, tables) only. When a model (e.g., boy) undergoes large articulation changes

(e.g., in the form of crawling and running), all these methods will consider them

totally different models. The reason is that these methods rely on properties (e.g.,

reflective symmetry plane, anisotropy, center of mass, rotation axis) that are not

invariant under articulation changes. To handle articulation, special methods have

to be developed.

2.3 Methods for Articulated Geometry Models

The analysis of 3D articulated geometry models stresses on the capability to extract

articulation invariant features. In term of feature extraction, topological invariant

properties and skeletons are the two most important and frequently used proper-

ties. Theoretically, topology studies properties of mathematical structure such as

connectedness, continuity etc. When applied on 3D shape analysis, the major focus
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is to find and use properties that exhitbit topological invariance, like isometric de-

formation and bending without tearing the 3D shapes. Some of these concepts and

properties include: geodesic, Morse theory, reeb graph [17], level set [40], size func-

tion [41] etc. Another important property in 3D shape analysis is skeleton, which

has two major definitions. One uses the Medial Axis Transformation (MAT) [42].

It represents the locus of points that are equi-distances from the surface boundary.

Note that in 3D, the MAT representation is usually not 1 dimensional. However,

with a proper distance function measuring the distance from MAT to the surface, the

whole surface can be easily reconstructed using the MAT representation. Another

important defintion of skeletons roots from the Morse Theory. The theory studies

surfaces by defining critical points where the derivative of a scalar function of a

point is zero. By connecting these critical points, Level Set Diagram (LSD) [40],

a form of 1D skeleton can be built. Apart from that, by dividing a surface into

different components with respect to a height function, a reeb graph can be built.

Reeb graph can also be considered a type of skeletal representation [17,41].

As we can see, these two properties are related in some sense, and all surveyed

methods make use of these properties. To better understand the differences and

performances of these works, we categorize these methods into three approaches.

They are Bag of features, Single feature vector and Pose-normalization approach.

Since they are the focuses of this research, we discuss these methods in detail.

2.3.1 Bag of Features

There are lots of works based on this approach. These methods use a bag of features

(scalars or vectors) to represent each 3D articulated geometry model. We further

classify these works into Graph-Based Methods and Bag-Based Methods.

2.3.1.1 Graph-Based Methods

Graph-based methods partition a model based on some metrics on the surface.

Features are then extracted from each of these partitions and stored in a graph

structure. These features are related to each others in the graph as parents, children
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and siblings. The whole graph represents a model. To define a similarity measure,

a graph matching algorithm is employed.

Tal et al. [5] analyze models based on component graph. It first segments a

model based on a mesh decomposition algorithm. Each component node is then

fitted by one primitive. The choice of primitive is based on a non-linear least-square

optimization algorithm. All these primitives are then connected to neighboring

components to form a component graph. To match two component graphs, an

optimal error-correcting sub-graph isomorphism algorithm is applied.

In [4], Sunder et al. apply voxel thinning to extract skeleton from a voxelized

model. A clustering algorithm is then applied to extract nodes for constructing a

skeletal graph. Apart from skeletal matching, the radial distribution of the node

edges is preserved for local shape matching. To match two skeletons, a recursive

bipartite algorithm is applied. Such algorithm is enhanced by a greedy depth-first

search so that the matching follows the skeletal structure. The work also uses a graph

indexing technique for fast skeleton pruning and then considers the distribution of

node edges to further prune irrelevant models. Graph indexing is also applied for

fast pruning in [6] and [7], where the former uses Laplacian as the indexing spectrum,

and the later considers both spectrum and geometric features (primitive number) in

the indexing process.

Apart from skeleton, Hilaga et al. [17] introduce the Multiresolution Reeb Graph

(MRG) to represent a model. It first partitions a model into different intervals us-

ing integral geodesic (or average geodesic, centricity in some other works). Integral

geodesic measures how far a point is away from the surface center. Unlike Euclidean

distance, geodesic distance [43, 44] is measured on the model surface and is not af-

fected by model deformation. Then, by analyzing the parent, siblings and children

of each component in each interval, a Multi-Resolution Reeb Graph is built in a hi-

erarchical manner. In each node, area and length are used as geometric features. To

match two MRG trees, a heuristic algorithm is applied in a coarse-to-fine manner. It

first matches the two root nodes in the two MRG trees. Then the matching traverses

down the two MRG trees following the child nodes with maximum similarity. The

matching goes on until all the nodes in either MRG trees are matched. The work
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has two advantages: multiresolution support and the flexibility to match additional

geometric features.

The success and flexibility of MRG has also stimulated many other works. For

example, Tung et al. [10] propose to use additional geometric features to improve

matching accuracy. The idea of reeb graph has also been extended in [45] together

with inexact subgraph-isomorphism to produce a subpart matching method. In-

spired by MRG, Bespalov et al. recursively subdivide a model into surface patches

and store features in a binary tree using Scale-Space decomposition. The decomposi-

tion is based on singular value decomposition on the matrix built from two distance

functions defined on the surfaces. These distance functions are geodesic distance [11]

and maximum angle on angular shortest path [12]. The similarity measure is then

defined by sub-part correspondence. Node matching is defined similar to [17] but is

used in a subgraph-isomorphism matching algorithm.

2.3.1.2 Bag-Based Methods

Apart from graphs, other methods consider model signature as a bag of features

instead. These features (within a bag) are all unrelated to each other. This differs

from those in graph-based methods and so it allows strayed matching (e.g., a finger

can be matched to a leg). The similarity measure between two bags is then defined

by matching algorithm which targets at finding correspondences. The idea is that

if the geometric features are distinctive enough, model matching is equivalent to

finding the best corresponding match between individual features. This discourages

strayed matching. Since these methods consider model signature as a set (bag), we

term all these methods as bag-based matching methods.

Tam et al. [46] capture topologically important features points at protrusions and

joints of a 3D model. It then associates curvature histogram to each of these points.

These histograms are articulation invariant because they follow the geodesic distance

on the surface. Tierny et al. [13] define patch signatures using annulus-like chart

unfolding algorithm. Such patch signature measures the stress of unfolding. Instead

of capturing distinctive features, Ruggeri et al. [14] use lots of evenly distributed

points and point histograms for matching. All these methods apply the bipartite
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algorithm to find correspondence and match the two sets of features.

Apart from bipartite matching, other works use Earth Mover Distance instead.

Earth Mover Distance is frequently used in image retrieval, and provides a similarity

measure that is closer to human perception [47]. It computes the minimal energy

required to morph from one feature set to another. It also allows the association of

a different importance value to each feature in the set. In [15], Tam et al. segment

a model into regions and define importance based on bounded regions. It then

uses curvature and area histogram as features. The dissimilarity measure is then

defined by Earth Mover Distance between two feature sets. Instead of using compact

features, Cornea et al. [16] capture skeleton from a voxelized model. The skeleton,

which is represented as a set of voxels, is then morphed to another skeleton. The

voxel-to-voxel morphing is carried out using Earth Mover Distance directly. [16],

[13], [14] show that they can handle subpart matching as well.

Biasotti et al. [41] propose a size function to represent a 3D model. Size function

is a mathematical tool that is used for image retrieval and classification. It maps

each pair of topological entity and measuring function (geometric features) into a

2D point. The similarity measure is then defined by finite point set matching. The

method has several advantages, e.g., metric properties, robust to noise and flexible

to various shape and measuring functions.

2.3.2 Single Feature Vector

This approach uses a single feature vector (called shape descriptor) to represent the

whole model. Many of these methods construct histograms based on metrics defined

on the surface.

In [48] a 2D shape descriptor is proposed. The descriptor is a combination of the

distribution of two scalar functions: local diameter and centricity function. Local

diameter function measures the thickness of the 3D shape in the neighborhood of

each vertex. The centricity function measures the average geodesic distance from

a vertex to all other vertices on the mesh. The first function provides descriptive

shape information where the second provides the spatial information.

In [49] a 3D eccentricity transform is proposed which is an extension of its 2D
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case. For each point p, it assigns the maximum geodesic distance of the whole

mesh from p. Such transform is shown to be invariant to articulation and noise.

The transform is more robust than centricity but it requires voxelization as a pre-

processing step.

In [50] a part-aware metric measure is proposed. Part-aware metric is a combi-

nation of a volumetric shape image (VSI), geodesic distance and normal variation.

Volumetric shape image quantifies the visual region that is seen from a point. These

visual regions correspond to parts (convex regions) of a model, and provide a de-

scriptive measure especially for parts and shapes.

Apart from seeking various metrics defined on the surface, Reuter et al. [51] pro-

pose to use spectrum (leading eigenvalues) of the Laplace-Beltrami operator com-

puted on the surface as descriptor. These leading eigenvalues corresponds to the

significant components (i.e., structure) of a surface. Comparing two spectrums is

thus similar to comparing two model structures.

2.3.3 Pose-normalization

Though most works focus on capturing articulation invariant features, some re-

searchers strive for a more challenging task: normalizing the pose.

In [52], Multi-Dimensional Scaling (MDS) [53] was used for pose-normalization.

Given a distance matrix, MDS is a numerical tool to find an N-dimensional embed-

ding space that best preserves all (close and far) distances using stress minimization.

When pairwise geodesic distances of every point on a surface are projected into such

low-dimensional embedding, Elad et al. observe that the resulting isometric surface

is bending-invariant (normalized). This allows general 3D model matching algo-

rithms to be applied on the normalized model directly.

Similarly, Jain et al. [54] propose to use geodesic affinity matrix together with

a kernel method to obtain a spectral embedding. Using a kernel method means

that such method preserves local distances. This is desirable because a surface is a

manifold which is defined by local neighborhood. Spectral embedding is shown to

be more reliable than MDS in the experiments.

Rustamov [55] considers a similar idea by embedding every point of a model
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through the eigenvectors of the associated Laplace-Beltrami operator. Though such

embedded vertices cannot be visualized as in the previous two methods, the embed-

ded data also forms a surface. To compare the similarity between these surfaces,

they use a distribution method [27] which is a general 3D model matching algorithm

(Section 2.2). By doing so, the method can avoid the orientation problem.

2.3.4 Summary and Discussion

After reviewing existing matching work of 3D articulated geometry models, we give

a discussion on all these methods in this section.

The Pose-normalization approach embeds a model into a transformed space so

that the posture of the model becomes normalized. It allows the application of

general 3D matching methods onto the analysis of articulated geometry models.

There are a lot of successful works discussed in Section 2.2. However, since the

embedding is obtained from a few top eigenvectors, it leads to the loss of most

geometry details which are stored in the rest of the eigenvectors. This suggests

that they are useful for matching structure, but may require additional efforts for

matching in detail.

The Single feature vector approach provides the simplest and fastest matching

method among all. First, the feature representation is compact (a 1D/2D vector).

Second, the use of Minkowski distance (Lp-norm) means that the computation of

similarity measure is fast. In fact, most of the latest research work focuses on

defining mesh signature. These signatures are not only useful for comparing shapes,

but are also useful for mesh analysis. For instance, the local diameter (thickness)

function [48], and part-aware metric [50] have been demonstrated to be useful for

part segmentation. Since these methods produce single feature vectors, general

spatial indexing techniques (Section 2.4.1.1) can be applied.

Despite all these advantages, there are drawbacks of this approach. First these

methods use one single feature vector to represent the whole model. Though it is

compact, it may not be descriptive enough to discriminate highly similar skeleton

models (e.g., dog and wolf). For example, spectrum [51] may be useful for comparing

structure, but it is well-known that, like Fourier Transform, the leading spectrum
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usually encode smooth signal but not detail information. Second, it has been argued

that simple feature vector and the use of Lp-norm do not always represent the human

perception properly [56], [57]. Therefore, striving for distinct mesh signature may

not help improve the accuracy of such retrieval system.

On the other hand, it has been argued that similarity between two shapes are

contributed by similarity of individual parts [58] in the area of cognition psychology.

Breaking a 3D model into smaller subparts and defining similarity measure based on

coherence of subparts are the major ideas of the Bag of features approach. Graph

or Bag-based matching find the correspondences in individual parts and compute

similarities accordingly. This suggests that they usually provide similarity measures

that better reflect human perception [47]. In fact, as shown in our survey, many

of the graph ( [45]) and bag-based ( [16], [13], [14]) matching algorithms can be

extended or used for partial (subpart) matching. Another advantage of the Bag

of features approach is that it incorporates many features which are essential to

distinguish highly similar skeleton models.

Though Bag of features approach seems promising, the complexity and efficiency

of the matching algorithm hinder the popularity of these methods. As pointed out

in [4, 59], if no heuristic algorithm can be found, skeletal graph matching usually

suffers from sub-graph isomorphism which is NP-hard. Apart from this, most of

the similarity measures provided by these graph or bag-based matching algorithms

are all non-metric, suggesting that the scalability of these algorithms has not been

explored in large databases.

To solve the first problem, Tam et al. in [46] and [15] proposes to reduce fea-

ture sizes and convert graph matching into bag-based matching. To scale slow graph

matching to large database, the general approach is to index models by graph (skele-

ton) spectrum [4, 6]). This is a two-step process. First, graph spectrum is used to

fast prune irrelevant models with totally different skeletal structures. The second

step applies (slow) graph matching using geometric features to calculate similarity

scores. However, such approach may still suffer from the efficiency problem as it

separates topological matching and geometric matching into two processes. Consid-

ering a database containing many highly similar skeleton models (e.g., dog, wolf, cat,
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lion, horse), the first pruning step will not be effective because the graph (skeletal)

spectrums of all these models would be the same. Due to this reason, [7] suggests

to incorporate geometric features in the graph spectrum. Biasotti et al. [41] also

propose a metric size function for similarity measure which suggests that distance-

based indexing can be used. However, both the geometric features used in these two

methods (a number representing primitive type) [7] and (a single measuring func-

tion) [41] are relatively simple, and so may not be useful for discriminating highly

similar skeleton models.

2.4 Indexing and Fast Search Methods

Our focus of this research is to develop a fast search technique for the retrieval of

3D articulated geometry models. Since the area is still in its infancy, not much

work has been developed to support fast searching. We have covered most of these

methods in the previous section. In this section, we survey general fast search

techniques. By studying these methods, we can better equip ourselves and develop

our fast search scheme that is suitable for 3D articulated geometry models. It should

be noted that, nearest neighbor search has been an on-going research for decades.

A complete survey is beyond the scope of this research. We roughly group these

methods into two main areas: Metric approach and Non-metric approach.

2.4.1 The Metric Approach

The Metric approach assumes that a metric distance is available. They can be

further subdivided into two types: spatial indexing and distance-based indexing.

Since the similarity measure (distance) is a metric, all of them make use of triangle

inequality for fast pruning. Practically, spatial indexing operates on a vector space

and it assumes a vector coordinate (e.g., < a, b, c > is a coordinate in 3D space)

whilst distance-based indexing operates on a metric space (e.g., a distance measure

that follows metric properties). Mathematically, vector space is a subspace of metric

space, because all lp-norms are metrics.

Spatial (Section 2.4.1.1) and Distance-based indexing (Section 2.4.1.2) are tech-
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niques that give exact solutions. However, all these works suffer from the curse of

dimensionality problem. We also discuss some techniques that better handle the

problem in Section 2.4.1.3, but they result in approximate solutions.

2.4.1.1 Spatial Indexing

A large amount of work that targets at nearest neighbor retrieval in multidimensional

vector space has been developed in the past decades. A more comprehensive survey

can be found in [60], [61] and [62]. These methods employ Euclidean distance

(L2-norm) as the similarity measure. They first partition the data vector space

recursively, according to the data variances on the axes, and represent each partition

as a node of an indexing tree. Kd-Tree and R-Tree are some of the notable examples

in the area.

2.4.1.2 Distance-based Indexing

Apart from multidimensional vector space, other methods operate on a more general

space, the metric space. These methods relax the requirement of vector coordinate

representations. The only requirement [62] is a metric similarity measure. Hausdorff

Distance [63] and size function [41] (see Section 2.3.4) are some of the examples of

metric distances. These algorithms also recursively and hierarchically partition the

database to form indexing trees. The major difference is that each node is a partition

based on a threshold distance to a pivot object (not the data spread on axes). Some

notable examples include VP-tree [64], MVP-tree [65] and M-tree [66,67].

2.4.1.3 Curse of Dimensionality

Spatial and distance-based indexing work well when the dimension is small. When

the number of dimensions increases, these methods soon approach brute-force. It

has been argued that as the dimension increases, it is ineffective to partition the

vector or metric space. This means that large portions of the database have to be

inspected during search. Such effect has been termed “Curse of Dimensionality”.

Formally, it defines that the complexity of nearest neighbor search scales expo-

nentially with dimension. It has also been proven that curse of dimensionality is
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inevitable when dimension exceeds certain threshold [68]. This leads researchers to

consider algorithms that allow approximate solutions.

Locality Sensitive Hashing (LSH) [69], an approximate nearest neighbor method,

has been proposed. The method hashes similar items in the same bin, and is shown

to scale well with high dimensionality theoretically and practically. The method

also provides the basis for many successful variants in recent years. However, it can

only be applied in the space of lp-norm.

Apart from LSH, lots of method are proposed using dimension reduction. These

methods embed pairwise distances into a vector space. Some of these methods, in

particular, Multidimensional Scaling (MDS) [53], Bourgain embeddings [70] need to

evaluate exact distances between the query and most of the database objects and,

thus, are not designed for efficient nearest neighbor retrieval. Methods that can

support efficient search include Lipschitz embedding [70], Sparse Map [71], Fastmap

[72], Metric Map [73] and Landmark MDS [74]. It should be noted that Fastmap,

Metric Map and Landmark MDS are all variants of Nyström extension [75]. Though

these methods try to preserve a large amount of the proximity structure (close

and far distances) by stress minimization in the original space, false dismissals are

unavoidable. False dismissal refers to the situation that relevant objects exists in

the database but are absent in the query result.

Though dimensionality imposes great difficulties (curses), it also provides bless-

ings to data analysis [76]. In [77], Korn et al. show that if the data possess self-

similarity and lies on a low dimensional manifold, the complexity of search will

depend only on the intrinsic dimensionality of the manifold. These stimulate a lot

of works in manifold learning. Some the notable examples include Locally Linear

Embedding (LLE) [78] and Isomap [79].

2.4.2 The Non-Metric Approach

There are quite a lot of similarity measures that are non-metric. In non-metric

spaces, the triangle inequality does not hold, so it is very challenging to develop

efficient similarity search. As human perception is found to be a non-metric measure

[80], we would expect that non-metric similarities are very useful. In fact, in Section
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2.3, most of the graph and bag-based matching methods are non-metric. In this

subsection, we give a brief review on fast search methods that can support non-

metric measures. These methods can be further classified into two types of methods:

Exact methods, and Approximate methods. Exact methods do not introduce false

dismissal while approximate methods do.

2.4.2.1 Exact Method

There are a few general exact methods available. Constant Shift Embedding [81]

and Local Constant Embedding [80] are two notable works. The idea of [81] is

to convert a non-metric distance into a metric one, assuming that the query is in

the database. The conversion is made by adding a very large constant value to the

violated triangle inequality so that it follows triangle inequality in the new converted

distance. However, the large constant leads to small lower bound which is not useful

for fast pruning. [80] improves the concept by introducing various local constants

on different groups and allowing dynamic query. The algorithm however requires

grouping and searching across different groups.

Apart from these, specific distance measures may be sped up by a technique call

filter-and-refine. Similarity measures in time series database is one of such areas.

Keogh et al. propose in [8] and [82] to use approximation for lower bounding. After

fast filtering by these approximations, exact matching is applied to find the best

match. The similarity measures in concerns include Longest Common Subsequence

and Dynamic Time Warping, which are both non-metric. However, these filter-and-

refine methods are usually constructed particularly for specific distance measures

only, and are not applicable to arbitrary distance functions.

2.4.2.2 Approximate Method

Since the exact method is a challenging topic, many works solve a relaxed retrieval

problem by allowing false dismissal. In [83], Skopal uses a class of metric-preserving

and similarity-preserving modifiers to convert a non-metric similarity measure into

a metric one. However, not every non-metric measure is convertible as pointed out

by the authors. Athitsos et al. propose an approximate method to map data objects
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into vector space by combining several weak classifiers in [84] and [85]. However,

requiring lots of classifiers may be difficult with respect to the data in concern.

Similar to metric approach, it is possible to transform non-metric distances into

distances of vector space via embedding. However, doing so will again lead to

false dismissal. These methods share similar techniques as discussed in Section

2.4.1.3. Apart from embedding methods, some methods convert the non-metric

retrieval problem into a classification problem. These methods involve three steps:

1) clustering data using non-metric distance, 2) selecting representative objects in

each cluster, and 3) applying similarity search to classify a query object. The data

in the identified class become query results. Among all, representative objects used

include atypical objects [56] and correlated objects [57].

2.4.3 Our Approach

In this work, we first derive a metric measure based on Earth Mover Distance. From

this, we can make use of distance-based indexing technique (Section 2.4.1.2), VP-

Tree, for fast retrieval. However, as we later show, such method still suffers from

curse of dimensionality.

In our second attempt, we find that using manifold learning and dimension reduc-

tion technique, Diffusion Map, can help alleviate the problem. Our method can be

considered most similar to Locally Linear Embedding (LLE) [78] and Isomap [79],

and is directly related to Nyström-based [75] retrieval methods (Section 2.4.1.3).

Since we embed data points into Euclidean space, we would then use spatial-indexing

technique, kd-tree, for fast retrieval (Section 2.4.1.1).



Chapter 3

Research Goals, Challenges and

Proposed Solutions

3.1 Research Goals

As explained in previous chapters, research for a successful retrieval system of 3D

articulated geometry models can be beneficial to many graphics applications, espe-

cially game and movie production. However, as shown in our literature review, every

approach has its advantages and disadvantages. Since the area is still in its infancy,

there are still a lot of directions unexplored. Due to the limited time and resources,

we believe that defining research goals as guidance would be advantageous.

We hope that our retrieval method can satisfy the following research goals:

1. Focus on 3D articulated geometry models There are many 3D formats:

ill-defined 3D models (polygon soup or point cloud models), (non)-manifold

meshes, (non)-closed meshes, manufacturing models. We would like to focus

on 3D articulated geometry models which are represented by closed, manifold

and triangulated meshes. These meshes are collections of vertices, edges and

triangles, without any skeletal information provided.

2. Content-based technique We would like to develop a retrieval system that

is based on content-based analysis. The feature representation, extraction

and matching method would, if possible, reflect human perception. If the

22



3.2. Challenges 23

system is reliable enough, it may be able to provide annotations for tagging

3D articulated geometry models automatically. Such annotation may then be

used as supplementary information for other retrieval related system.

3. Reliability The method should be able to handle similar and dissimilar skele-

ton models. Similar skeleton models refer to articulated models that are similar

in skeletons but different in shapes (e.g., dogs and wolves). Dissimilar skeleton

models refer to articulated models that are dissimilar in skeletons (e.g., boys

and dogs). We would like to develop a method to handle both of these models.

The retrieval performance should be as good as existing works.

4. High Efficiency The method should support retrieval in a way faster than

sequential search and be able to handle large databases.

3.2 Challenges

After setting out the above research goals, we try to analyze the challenges here. As

discussed in our literature review, there are three approaches to handle 3D articu-

lated geometry models. The Pose-normalizing approach allows the use of general

3D matching methods. The Single feature vector approach produces compact rep-

resentation and the matching methods are fast. However, these methods cannot

handle highly similar skeleton models because fine comparison is not available. To

better handle similar skeleton models, the Bag of features approach would be the

choice. It allows matching in detail. The similarity measure better approaches hu-

man perception also. However, most of these works present results that concern

dissimilar skeleton models only. They are presented as proofs of concept. As we

have observed, there is no large database targeting at highly similar skeleton models

so far. Another important challenge is that they are all slow. Most of them are

based on non-metric distance where metric indexing schemes are not applicable.

The features of both Single feature vector and Bag of features approaches are all

high dimensional. This suggests that they will unavoidably suffer from the curse of

dimensionality.
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3.3 Proposed Solutions

We propose several solutions to achieve our research goals. We focus ourselves on

two areas: reliability and efficiency. We also propose an application for 3D motion

retrieval by applying a bag-based matching technique.

3.3.1 Reliability

As pointed out in the literature, the bag of features approach should give a better

feature matching algorithm. In our earlier work [15] [19], we have developed a bag-

based matching method. The feature extraction is based on Level Set Diagram.

However, such feature extraction method, as pointed out in relevant works, suffers

from stability problems. In the first part of the research, we try to define a better

feature extraction algorithm to solve these issues. We expect that with more reliable

feature representation, it can lead to more accurate matching results. We then use

Earth Mover Distance [86] to define the similarity measure.

3.3.2 Efficiency

We have also observed that Earth Mover Distance is a metric distance measure

under certain constraints. By exploring this fact, we might be able to define the

first metric similarity measure that allows search of both topological and geometric

features in one single step. This is a considerable speed-up compared to the two-step

indexing approach as pointed out in our earlier discussion (Section 2.3.4).

However, high dimensionality is an important issue that will degrade retrieval

performance. This affects both the Single feature vector and the Bag of features ap-

proaches. In the second part of the research, we propose to use dimension reduction

techniques to reduce the intrinsic dimensions of our features. Reducing dimension

suggests that we can avoid the problem of dimensionality.

We further propose to use the approximate embedding approach to index and

fast search. Though false dismissal may be introduced, the framework is applicable

to both metric and non-metric distance measures. We first embed these pairwise

distances into vector space. By using existing spatial indexing techniques, high
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efficiency is achieved for searching 3D articulated geometry models.

3.3.3 Applications

3D motion is another important area of graphics application. The motion data is

used to drive the animation of 3D articulated geometry models. We also propose to

apply our idea to convert temporal structure matching into bag-based matching. The

idea is to break up motions into different segments and extract features to represent

these segments. By using Earth Mover Distance, a metric similarity measure might

also be defined if certain constraints are met.



Chapter 4

Feature Extraction and Matching

for 3D Articulated Geometry

Models

4.1 Introduction

In our previous research [19], we developed a feature extraction and matching

method to handle 3D articulated geometry models. We introduced a critical point

analysis to identify critical points and a Bi-directional LSD method to capture

bounded regions as features. However, the method is not stable to work on ar-

bitrary meshes. When a model has complicated structure, the method fails. The

similarity measure is also non-metric because the computed bounded regions are

allowed to overlap with neighboring regions. Since it is non-metric, no indexing

technique is applicable. This suggests that it does not scale well to large databases.

In this chapter, we try to tackle all these issues. We summarize our contributions

here:

1. We present a reliable feature extraction algorithm based on the idea of our pre-

vious work [19]. Instead of using bounded regions, we propose to use DMSA to

capture reliable topological points and rings. The method, named “Topologi-

cal Point Ring Analysis”, solves the stability problem of our previous work. As

26
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shown in our experiments, the new method produces more accurate matching

results than our previous work [19]. It also outperforms Multiresolution Reeb

Graph [17].

2. We also focus on designing a metric similarity measure which is based on Earth

Mover Distance. Special focus is put on ensuring that the metric properties are

met. Since the similarity measure is metric, we further implement a distance-

based indexing technique, Vantage-Point tree, for fast pruning of irrelevant

data. As demonstrated in our experiments, to query for the most similar

model, our method only requires 41% of the time to sequentially scan the whole

database. This is the first work that can support indexing and search of both

topological and geometry features in one single method. It is a considerable

speed-up especially when the database contains many highly similar skeleton

models.

4.2 Overview of Our Method

Figure 4.1: Overview of the Retrieval System. A Topological Point Ring (TPR)

analysis is proposed to capture topological and geometric features for matching.

We also define a metric measure that allows indexing for fast search.

The focus of our method is to develop a feature extraction and matching algo-

rithm to handle 3D articulated geometric models. We extract two types of topologi-
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cal features: topological points and topological rings, and several geometric features.

Since the following discussion involves several steps, we try to give an overview of

our method in Figure 4.1.

Topological Features: Intuitively, a topological point refers to a salient point

located at a protrusion tip, and a topological ring refers to a border that separates

two significant components in a model.

To capture topological points to represent protrusion tips, we first derive our

algorithm from a skeleton extraction technique, the Level Set Diagram (LSD) [40].

However, LSD suffers from two problems: extraneous critical points [87] and slicing

direction [88]. The former refers to the fact that many redundant critical points

are extracted even on smooth surface. The later means that the location of critical

points are affected by a certain slicing direction. We will discuss these two problems

more in Sections 4.3.4 and 4.4.

To alleviate these problems while remaining fast and automatic, we propose a

method, Topological Point Selection, which is described in detail in Section 4.5.1.

The method produces validated maximum critical points, referred to as topological

points. To reduce computation time, we further discuss how we select the minimum

critical points (source points) in Section 4.5.2. Our method also uses topological

rings as features. To extract reliable topological rings to represent joint locations,

we propose Topological Ring Extraction in Section 4.5.3. We name the whole feature

extraction method as Topological Point Ring (TPR) analysis.

It should be noted that Mortara et al. first proposed the term “Topological Ring”

in [88]. The method uses topological expansion to define such rings. However,

the method assumes regular mesh sampling which may not be useful for general

triangulated mesh. Being inspired from [88], we develop our own extraction method

based on geodesic distance and use the term “Topological Ring” because the basic

extraction idea is similar. In our method, we use critical points from Morse Theory

(i.e. Level Set Diagram), which studies the topology of smooth surface, to define our

feature points. Therefore, we refer to these feature points as “Topological Points”

in our context.
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Geometric Features: After obtaining all topological features (points and rings),

we extract geometric features to characterize each of them. There are two kinds of

geometric features in our method: local and global features. Local features include

normalized integral geodesic and effective area. They are used to characterize the

locations and importance of a topological feature. Global geometric features are

used to capture the surface information of a model. They help discriminate similar

skeleton models like girls and babies. Hence, our model signature is defined by a

collection of topological features and each of them is characterized by a number of

geometric features. It should be noted that these features were first proposed in our

earlier work [19]. Since this feature representation is essential to the derivation of a

metric similarity measure, we describe it briefly in Section 4.5.4.

Matching and Indexing: We formulate the matching of two models as energy

transfer between two signatures by adapting the EMD, which computes the mini-

mum energy required to transform one signature into another. In this work, partic-

ular focus is put on ensuring that the feature representation and ground distance

follow triangle inequality. We define our metric distance function for the EMD

matching framework in Section 4.6. Since the function is a metric, we can construct

a fast indexing scheme by building a VP-tree. Such an indexing scheme can support

searching of both topological and geometric features in one pass.

4.3 Background Knowledge and Our Earlier Works

4.3.1 Notation

We provide a brief notations for our coming discussion.

• DSSA - Dijkstra’s Single Source shortest path Algorithm.

• DMSA - Dijkstra’s Multiple Source shortest path Algorithm.

• gq(p) - Geodesic distance measured from q to p.

• G(q) - Integral Geodesic.

• ls - A level is a contour defined on the surface such that all points of the
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contour have the same scalar value. In this work, we always assume the scalar

value of a point corresponds to the geodesic distance between the point and a

source point s.

• C(ls) - A level set, which is the realisation (polygonal contour) of a level l.

• Maxs,Saddles,Mins - The sets of maximum, saddle and minimum critical

points, respectively. These critical points are defined by analysing the scalar

values around a point, according to the Level Set Diagram method.

• U - A topological feature, which would be a Topological Point or Ring.

• S - a triangulated mesh S is a set of vertices {vi}, edges {vi, vj} and faces

{vi, vj, vk}.

4.3.2 Integral Geodesic

Figure 4.2: Integral geodesic on a surface. The brighter region is closer to the surface

center, whereas the darker regions are farther away from the surface center.

Geodesic and integral geodesic are basic to our method. Hilaga et al. [17] first

suggest the use of integral geodesic, which is defined on an arbitrary surface mesh

as G(q) =
∫

p∈S
gq(p)∂S. Given a vertex q, integral geodesic is the integral of all

geodesics g measured from q to all vertices p on a surface S. Geodesic gq(p) is the

shortest distance between two points g and p on a surface. In our work, we use

Dijsktra’s Single Source shortest path Algorithm (DSSA) to approximate geodesic.

In general, integral geodesic gives a small scalar value if vertex q is near to the

center of the mesh (brighter region in Figure 4.2) and a larger scalar value if q is

located away from the center (darker region in Figure 4.2). Hence, integral geodesic
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indicates how far a vertex is from the points that have minimum integral geodesic.

Note that a point with minimum integral geodesic is not the center of mass of the

model; the center of mass can be considered as the minimum integral Euclidean

distance of a point set. With the analog of center of mass, we refer to the points

having minimum integral geodesic as the surface centers as it is defined on the

surface. Figure 4.2 shows the function of integral geodesic on a surface.

4.3.3 Level Set Diagram (LSD)

Figure 4.3: Level Set Diagram and Morse Theory. Maxima: Square at finger tips,

Saddles: Dots at branches, Minima: Triangle at wrist (the origin of the graph).

The LSD [40], which is based on the Morse theory, is a skeleton extraction

technique. The Morse theory describes how the differential geometry of a surface

algebraically relates to the topology. LSD applies the theory on polyhedral surfaces

to extract skeletons. It uses geodesic distance gs(v) as the Morse function to define

a scalar value for each vertex on the surface.

In order to define topological change at a vertex v, a index(v) function is defined

for each vertex. Let w1, w2, ..., wk be the k neighbors of v enumerated counterclock-

wise around v, the number of sign changes in the sequence (gs(w1)− gs(v), gs(w2)−

gs(v), ..., gs(wk)−gs(v), gs(w1)−gs(v)) is defined as Sgc(v). The index(v) is defined

as:

index(v) = 1−
Sgc(v)

2
(4.1)

Such index(v) is then used to extract three kinds of critical points (minima, saddles,

and maxima) as shown in Figure 4.3. Formally, maximum and minimum critical
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points have index(v) = 1, where minimum critical point is the source point of the

geodesic distance, s. The saddle critical points have index(v) < 0, whilst an ordinary

vertex has index(v) = 0. (Figure 4.4)

vv v

Index(v) = 1 Index(v) = 1Index(v) = -2
minimum saddle maximum

Index(v) = 0
ordinary

v

Figure 4.4: Definition of Ordinary and Critical Points

The LSD skeleton is defined by connecting every average point of adjacent levels.

LSD defines such level by tracing the geodesic wavefront through a level set C(ls)

(Figure 4.5), which is a polygonal contour of the same level ls on the surface, where

ls is a scalar value defined on the surface with respect to a source vertex s. An

edge (vi, vj) is called a cross-edge if it passes through level ls satisfying the condi-

tion: gs(vi) < ls < gs(vj), where gs(v) is the scalar value at vertex v obtained by

calculating the geodesic from a minimum (source) point s. LSD uses the DSSA to

approximate the geodesic distance.

In our context, instead of tracing every level and construct a skeleton, we simply

compute these critical points and build an LSD tree with the minimum, saddle, and

maximum points forming the root, the internal nodes, and the leaf nodes of the tree,

respectively.

vj

vi
gs(vi)

gs(vj)
cross-edges

C(ls)

C(ls)+

gs(vj) > gs(vi)

C(ls)

Figure 4.5: Realization of a Level Set and Cross-Edges
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4.3.4 Critical Point Analysis

As mentioned, our topological features are composed of topological points and rings.

We choose the maximum critical points from LSD as the topological points because

the locations of maximum critical points match the idea of topological points dis-

cussed in Section 4.2. Though it is easy to apply LSD, there are two problems that

hinder us from using it directly here: extraneous critical points and slicing direction.

We discuss extraneous critical points in this section and slicing direction in Section

4.4.

Shortest path algorithms usually suffer from getting extraneous critical points

when they are applied on meshes. As LSD is based on computing shortest path

distances (geodesics), it also suffers from this problem. According to [88], extraneous

critical points may result from noise, precision errors, or the fact that geodesic

distance is not a good Morse function. Though [88] provides a method to find the

optimal number of critical points, it is not fully automatic, making it less suitable

for use in a 3D model search engine. To alleviate this problem, we use a modified

LSD method, Critical Point Analysis, that we have proposed earlier in [46].

It is observed that extraneous points arise during the registration of saddles, and

these critical points are very close to each other. As such, applying a proximity-

filtering step before registering a saddle would help alleviate such problem.

Before a vertex v is registered as a saddle in LSD, we approximate the level set

C(ls) by defining a vertex set C(ls)
+ = ∪vj such that gs(vj) > ls > gs(vi) for all

cross-edges (vi, vj). The relation of C(ls) and C(ls)
+ is illustrated in Figure 4.5. Such

C(ls)
+ can always be split into disjoint cycle vertex sets CycleV Si because a level

set of a Morse function, which is defined on a closed smooth surface, is composed

of disjoint closed curves, if that level set contains no critical points [40]. In Figure

4.6, we illustrate a saddle vertex with 3 cycle vertex sets CycleV S1,2,3. We have

also shown C(ls + ε) where ε is a small value. We show C(ls + ε) instead of C(ls)

because it does not contain the saddle critical points and can always be split into

three disjoint closed cycles. The reason to compute C(ls)
+ is that we can quickly

obtain all cycle vertex sets by a depth-first search on the running heap of DSSA.

In the filtering step, a vertex v is considered a valid saddle if and only if the
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C(ls+ε)

C(ls)+ = ⋃ CycleVSi

v

CycleVS2

CycleVS1

CycleVS3

g(vj) > g(v)

g(vj) < g(v)

Figure 4.6: Example of C(ls)
+ and its three cycle vertex set

number of vertices inside all CycleV Si is greater than a number n, where n indicates

how strong the filtering step is. If the number is small, it allows a smaller distance

between adjacent critical points. Generally, we choose n = 1 so that it will not miss

small features. Figure 4.7 shows an example before and after applying the Critical

Point Analysis.

4.3.5 Review of Our Earlier Work

In our earlier work, we proposed a feature extraction algorithm called Bi-directional

LSD (BDLA). It proceeds as follows. We first apply LSD on two vertices that are

furthest apart (Figures 4.8(a) and 4.8(b)). Then we obtain two LSD trees and so

two sets of maximum, minimum and saddle critical points (Figure 4.8(c)).

Since the two LSD trees are very similar, we may pair up these saddle and max-

imum critical points, and so extract various bounded regions using simple geodesic

region growing. For example, to extract a bounded region on an arm, we first

compute a middle vertex z between two maximum critical points (from two differ-

ent trees). Then, we analyse the two LSD trees and look for pair of two saddles

points in the trees, where these saddles are parents of the paired maximum critical

points. We further compute the perpendicular distance to the line joining the two
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(a) Before (b) After

Figure 4.7: Examples before and after applying Critical Point Analysis. Extraneous

critical points are enclosed in green.

(a) 1st LSD (b) 2nd LSD (c) BDLA

Figure 4.8: Review of Bi-Directional Level Set Diagram. Blue circle: saddle points;

Red dot: maximum point; Yellow triangle: source point.

saddles. This perpendicular distance gP defines the radius of the bounded region

= {v ∈ S|gz(v) <= gP} (see Figure 4.9). The method then continues using the

remaining saddle critical point pairs to define other bounded regions.

4.4 Problems and Proposed Solutions

After briefly reviewing BDLA, we observe two problems in the method. As men-

tioned in Section 4.3.4, feature extraction based on solely critical points may lead

to unreliable features. There are two main problems: extraneous critical points and
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gP

z

Figure 4.9: Bounded Region Extraction of the BDLA method.

slicing direction. BDLA is based on our Critical Point Analysis only, and so only

the first problem is alleviated. The second problem is not solved.

Slicing direction refers to the situation that the extraction of critical points may

be favored by a particular slicing direction. In short, the algorithm can yield a

totally different critical point set when a different source point is chosen [88]. A

simple example can be seen in Figure 4.8. In the figure, all saddles critcal points in

the two LSD trees are different. This suggests that the use of saddle critical points

are unreliable.

Another shortcoming of the method is that it assumes to have two nicely struc-

tured LSD trees where it is always able to find pair of saddle points from the two

LSD trees to define bounded regions. However, when LSD is applied on general

mesh, it would create totally different LSD trees, and so matching pair of saddle

points become difficult. One example can be seen in Figure 4.7. We can see that,

though after filtering, there are still some maximum and saddle points at the rear

of the horse which do not correspond to any protrusion. If we apply LSD from

another source point, for example, from one of the rear legs, these maximum and

saddle points will not be extracted. This demonstrates that it would create a pair-

ing problem and so, practically, BDLA is not robust on general model where the

LSD trees cannot provide a proper pairing of saddle points. Finally, the bounded

regions extraction are based on simple geodesic inequality. For example, a finger (a

protrusion region) is defined as = {v ∈ S|gz(v) <= gP} where z is the middle vertex

discussed earlier. However such definition does not exclude the overlapping region

from a nearby finger (see Figure 4.10 for an illustration). This violates the metric
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constraints of the Earth Mover Distance, and so the resulting similarity measure is

not metric.

overlapping region

bounded region

Figure 4.10: Illustration of Overlapping Bounded Region of BDLA method

To solve these problems, we first consider topological points and rings instead of

bounded regions as features. Second, we design an algorithm to extract these fea-

tures using Dijkstra’s Multi-Source shortest path Algorithm (DMSA). This solves

the slicing direction problem. We also make sure the weights (importances) associ-

ated with these features meet the metric constraint of the Earth Mover Distance.

The whole scheme can then be indexed for fast search. We discuss all these in the

following sections.

4.5 Topological Point Ring (TPR) Analysis

In this section, we discuss our new feature extraction algorithm, Topological Point

Selection and Topological Ring Extraction.

4.5.1 Topological Point Selection

Apart from extraneous critical points, LSD also suffers from the slicing direction

problem. To tackle this stability problem, we introduce the idea of using multiple

source points and derive Topological Point Selection as a process for selecting valid

topological points. Suppose that we have n source points, s1...sn, on the surface.
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We apply Critical Point Analysis on each of these n source points to obtain 3

sets Max = ∪i∈(1..n)Maxsi
, Min = ∪i∈(1..n)Minsi

and Saddle = ∪i∈(1..n)Saddlesi
,

where Maxsi
and Saddlesi

are the sets of maximum and saddle critical points with

respect to a source point si. The minimum critical point set Minsi
= {si} contains

the source point si. Since the location of maximum and minimum critical points

corresponds well to our idea of topological point, we take them as the potential

topological point set, and call them extreme points Extreme = Max ∪Min.

Our Topological Point Selection then identifies valid topological points by count-

ing the number of different extreme points nearby. Let the search region be:

SearchRegion(m) = {q ∈ S|gm(q) ≤ gm(sd(m))}, m ∈ Extreme (4.2)

The search radius is set to be the geodesic distance measuring from a point m to

the nearest saddle critical point sd(m) = arg minp gm(p), p ∈ Saddle. Let the set of

extreme points in the search region be

ξ(m) = {v ∈ Extreme ∩ SearchRegion(m)} (4.3)

and the set of different LSD trees that produce extreme points in the search region

be:

ExtremeTree(m) = {i ∈ (1..n)|v ∈ ξ(m) and v ∈Maxsi
∪Minsi

} (4.4)

In our method, if ‖ExtremeTree(m)‖ in the search region is more than n
2
, that

is, more than half of the LSD trees that produce extreme points in the search region

(a majority vote), we consider m as a valid topological point. We repeat this for

all m ∈ Extreme. Since there may be many valid topological points in a region,

we choose the one that possesses the furthest distance from its sd as the topological

point in that region. Therefore, the definition of Topological Point is:

{m ∈ Extreme|‖ExtremeTree(m)‖ >
n

2
,m = arg max

v
gv(sd(v))} (4.5)

where v ∈ ξ(m).

4.5.2 Source Point Selection

To perform Topological Point Selection, a number of source points must be selected.

We have found from experiments that three source points, if selected appropriately,
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are sufficient to identify all valid topological points with minimal computational

cost. We choose the two furthest points in a 3D mesh as the source points. The

first point can be found by running Dijkstra’s single source shortest path algorithm

(DSSA) on an arbitrary point on the model to obtain the point with maximum

geodesic. The second point can then be determined by applying DSSA again on the

first point to obtain another point with maximum geodesic [40]. However, since they

are located at the far end of a model, LSD may still favor a particular direction and

miss some critical points. Thus, we choose the third source point near the center of

a mesh. A good choice is the surface center that we have discussed earlier in Section

4.3.2.

In [17], an approximation method is proposed to find the surface center by sam-

pling at least 120 points on the surface. We observe that most articulated models

are not perfectly symmetric and, usually, there is only one point that corresponds

to the minimum integral geodesic. To speed up the process, we apply a hierarchical

search to locate the point. (Note that our method still works even if there is more

than one such point in a mesh as we only need to find a reference point.) In our

hierarchical search, we first split the surface into many patches. For each patch,

we calculate the integral geodesic at the patch center. We then identify the patch

with the smallest integral geodesic. We split it again into many subpatches and

calculate the integral geodesic at each subpatch center. We apply this strategy re-

cursively until the change in the smallest integral geodesic is less than a threshold

or the patch area is too small. Figure 4.11 shows the topological points obtained

from Topological Point Selection and the LSD tree constructed using Critical Point

Analysis with the surface center s being the source point.

4.5.3 Topological Ring Extraction

The term “Topological Ring” is first mentioned in [88]. Given some initial points,

the method applies topological expansion of a 1-ring neighborhood. When frontiers

of different topological expansions collide, a branching is identified. Mortara and

Patane [88] define the borders of these frontiers as topological rings. However, as

their objective is on skeleton extraction, the topological rings produced are not
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Figure 4.11: Topological Point Extraction. Square boxes (except the source point)

are topological points. The LSD tree is constructed by Critical Point Analysis.

suitable to be used as features here for two reasons. First, the topological expansion

in [88] depends on a 1-ring neighborhood only. To extract topological rings reliably

for use as features, a regular tessellation of the mesh surface is required. Second,

the method processes all source points at the same time and, thus, the locations of

topological rings greatly depend on the differences in branch lengths. For general

3D models, these two requirements may be difficult to satisfy. Hence, the method

cannot ensure consistent recovery of topological rings.

Here, we propose our Topological Ring Extraction to address this problem. Our

method is similar to [88] in that it also features a multi-source point approach.

However, instead of using topological expansion of 1-ring neighborhood, we use

shortest path growing, and so it does not require regular tessellation of the mesh

surface. In addition, different source points are given different initial values. This

allows more stable extraction of topological rings with no regard for branch lengths.

Here, we give a definition of our proposed Topological Ring.

4.5.3.1 Topological Rings

First, let us consider a scalar function defined on the surface.

F (v) = max
q∈S

go(q)×
maxq∈S G(q)−G(v)

maxq∈S G(q)−minq∈S G(q)
(4.6)

Intuitively, F (v) (Figure 4.12) is the same as Integral Geodesic G(v) but normalized

to (0,maxq∈S go(q)), having the largest value at the surface center(s), o, and smallest
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value at the point furthest away from it. It approximates the geodesic distance from

a point to its closest surface centers. This scalar function on the surface provides an

initial value for every topological point (Section 4.5.1) to be used in our multi-source

methods.

Figure 4.12: The Function on the Surface for Setting Initial Values

To define a neighborhood structure with respect to the geodesic distance from a

vertex set Ω, we can construct N(Ω) as follows:

N(i) = {j ∈ S|gi(j) ≤ F (j)− F (i)}

N(i, k) = {j ∈ S|gi(j) ≤ F (j)− F (i) ∨ gk(j) ≤ F (j)− F (k)}

Similarly,N(Ω) =



















j ∈ S

∣

∣

∣

∣
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∣

∣

∣

∣

gi(j) ≤ F (j)− F (i) ∨

... ∨

gk(j) ≤ F (j)− F (k)



















,Ω = {i, ..., k}

(4.7)

This states that N(i) of a vertex i is the set of vertices q on the surface such that its

geodesic distance from i is less than the difference of the value F (j)−F (i). When we

are considering the neighorhood of more than one vertex e.g. (i,k), it is defined as

a simple union operation (“or” condition). And finally, the neighborhood structure

of the vertex set Ω is defined by generalizing the above definition.

We can further define a local mesh system, including the edges and trianges as

follows:

T (N(Ω)) =
⋃

l,p,q∈N(Ω)∧l,p,q∈S

T (l, p, q) (4.8)

where T (l, p, q) is the triangle with vertices l, p, q.

Let Ω̄ be the set of all topological points. We refer to the largest growing region



4.5. Topological Point Ring (TPR) Analysis 42

without colliding with others as:

Region(N(Ω)) = arg max
T (N(Ω))

|N(Ω)| s.t. i ∈ N(Ω) ∧ i /∈ N(Ω̄− Ω), i ∈ S (4.9)

where |N(Ω)| is the number of vertices in the neighborhood structure. This states

that a mesh region is a set of triangles (include vertices and edges) T (N(Ω)) where

|N(Ω)| is maximized. Also, every vertex i in N(Ω) would only be geodesically closer

to the set of Ω, but not the rest of possible (Ω̄ − Ω). If one vertex, j, is closer to

other topological points (Ω̄−Ω), a new neighborhood structure has to be constructed

which suggests a merge, i.e. N(Ω ∪ Ω′), where Ω′ ⊂ Ω̄− Ω is the set of topological

points of which j ∈ N(Ω ∪ Ω′) is closer to. In the multi-source growing algorithm,

such situation is detected as a collision of two growing frontiers.

Therefore, we can provide the definition of a Topological Ring as the vertex set

of the border of a maximum growing region without collision:

{v ∈ ∂Region(N(Ω))} (4.10)

where ∂ is the border operator.

To reduce the number of redundant topological rings, we can further consider

the Length of a structure.

Length(N(Ω)) = max
i∈N(Ω)

F (i)−max

(

max
j∈N(Ω1)

F (j), max
k∈N(Ω2)

F (k)

)

(4.11)

where Ω = Ω1∪Ω2 and this implies a valid merge. We only take ∂Region(N(Ω)) as a

valid topological ring, if Length(N(Ω)) > 1
2
max(Length(N(Ω1)), Length(N(Ω2))).

After defining the above, we observed that though the scalar function F (m) pro-

vides a guidance for region growing, it requires to exhaustively compute integral

geodesic for large amount of vertices. Therefore, in the following section, we discuss

some practical implementation issues. The method includes three parts: initial-

ization, shortest path algorithm, and termination. The initialization stage defines

different initial values for different topological points. Our shortest path algorithm

then traces the geodesic wavefronts from these topological points using the corre-

sponding initial values. When executing the algorithm, different wavefronts merge

and new wavefronts are formed, which become the topological rings. When all fron-

tiers merge into one, the algorithm terminates. The details of these three stages are

discussed as follows.
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Figure 4.13: Topological Ring Extraction. Shortest path growing and validation with

three topological points.

4.5.3.2 Initialization

In this stage, we determine an initial value for each topological point such that

topological rings may collide near joint locations. We assign a smaller initial value

to a topological point that is far away from the mesh center and a larger value

to one that is near the mesh center. This initial value is the starting time of the

shortest path algorithm for that point. Since all topological points are located far

away at protrusion tips, these initial values ensure that the shortest path algorithm

is always moving toward the center. We use the surface center to approximate the

mesh center. Because integral geodesic is a good measure of the relative distance

from the surface center, o, we compute the initial value of a topological point m

based on F (m). Recall that we have obtained an approximation of surface center,

o, earlier in Section 4.5.2. Therefore, we have obtained minq∈S G(q). maxq∈S G(q)

can be obtained by computing integral geodesic at every topological point m, and

finding the maximum one because topological points are located at protrusion tips,

and they are always further away from the surface centers. Given all these, F (m)

can be evaluated at topological points.



4.5. Topological Point Ring (TPR) Analysis 44

4.5.3.3 The Shortest Path Algorithm

After defining the initial values for the topological points, we put these points in the

heap of a DMSA. The topological expansion is, in effect, a shortest path algorithm.

During the execution, the vertex with the smallest initial value is removed from

the heap one at a time and its neighbors are updated. Hence, we may consider

that different geodesic wavefronts grow from different topological points and move

toward the surface center. It should be noted that during algorithm execution, we

do not check the F (i)−F (j) conditions because DMSA is approximating such value

by geodesic distance directly. Also, DMSA always runs toward the center and will

not visit vertices that have been visited. This also makes sure that the condition is

kept all the time. Though there are slight differences between the two, we find that

it is sufficient to use DMSA directly. When executing the algorithm, if two geodesic

wavefronts meet, a merge of geodesic wavefronts occurs and a new wavefront is

formed. This is represented as N(Ω1∪Ω2) = N(Ω), where N(Ω) is the new growing

structure, and ∂Region(N(Ω1)) and ∂Region(N(Ω2)) become two topological rings.

We mentioned earlier that topological rings are registered when geodesic wave-

fronts meet. However, redundant topological rings may sometimes be created. For

example, in Figure 4.13, we would expect to have three rings located at the three

joints between the palm and the fingers as shown inside the square box. To detect

this case, we check if a geodesic wavefront is a valid topological ring by measuring

the Length (Eqn 4.11) of the region formed as defined earlier.

4.5.3.4 Termination of the Algorithm

The algorithm terminates when all geodesic wavefronts have merged into one. How-

ever, we note that, when we have visited all saddle points obtained from Critical

Point Analysis using the surface center as the source point, there should be no more

branching left and the algorithm may end. The unvisited vertices or vertices that are

visited but not yet included in any region are grouped into one final region (FR).

Figure 4.14 shows some example models with various topological rings extracted

using our algorithm.
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Figure 4.14: Topological Rings (borders between different colored regions).

4.5.4 Geometric Feature Extraction

After TPR analysis, we obtain a set of topological points and rings together with

a set of regions. These topological points and rings are located at protrusion tips

and articulated joints. They provide skeletal information of the model, independent

of model articulation. We characterize each of these topological features with three

types of geometric information: Normalized Integral Geodesic, Effective Area, and

Geometric Surface Vector.

4.5.4.1 Normalized Integral Geodesic - Spatial Information

Integral geodesic is a function defined over the surface to indicate how far a point

is from the surface center. It maps a point to a scalar value and is thus a good

feature to describe the spatial location of a topological point. To generalize this

function to any topological feature (point or ring), we need to consider the case

of the topological ring as well. To compute the integral geodesic for a ring, we

interpolate the value from the integral geodesic of the surface center and the value

of one of the originating topological points of the ring. Since a ring may come from

many originating topological points, we use the one that is furthest away from the

ring, which is the ancestor topological point as its distance from each vertex on the

ring has a smaller deviation. The interpolation requires two distance values: from

the ring to the surface center and to the ancestor topological point. To compute

these distances, we use geodesics with respect to a vertex set (vs). Such distance,

which is denoted as gvs, can be calculated by Dijsktra with all the vertices in the
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ring as source points. The generalized Integral Geodesic G′(U) of topological feature

(point or ring) U is computed as follows:

G′(U) =







G(U) if U is a topological point

gvs(o,U)×G(w)+gvs(w,U)×G(o)
gvs(o,U+gvs(w,U))

if U is a topological ring







(4.12)

where G(v) the integral geodesic of point v. gvs(o, U) and gvs(w,U) are the geodesic

distances measured from topological ring U to surface center o and to ancestor

topological point w, respectively. Finally, we calculate the Normalized Integral

Geodesic as follows:

G′
norm(U) =

G′(U)−min∀q∈S G(q)

max∀q∈S G(q)−min∀q∈S G(q)
(4.13)

4.5.4.2 Effective Area - Weights of Importance

We note that the importance of a topological ring located in a finger, for example,

should be smaller than that located in the leg. This is intuitive as removing a leg

from a 3D model gives a larger perceptual impact than removing a finger. Hence, we

approximate the importance of topological features by distributing the local surface

areas among the adjacent topological features. We denote such a redistributed area

as the Effective Area. To simplify our discussion, we first define some abbreviations.

A Protrusion Region (PR) is a region bounded by a topological point and a topo-

logical ring. A Segment Region (SR) is a region bounded by topological rings only.

An FR, as mentioned in Section 4.5.3.4, is the final extracted (core) region. We

consider two cases in our method:

1. PR - Simply divide the PR surface area into two and associate half to the

topological point and half to the topological ring.

2. SR and FR - Distribute the local surface area to the adjacent topological rings

in proportion to Region(C(ls)
−) computed for each adjacent ring C(ls)

−.

Note that:

∑

EffectArea =

∑

Area(PR) +
∑

Area(SR) +
∑

Area(FR)

Area(S)
= 1 (4.14)
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The distribution of these effective areas (Eqn 4.14) ensures that the total importance

of all topological features (points or rings) equals to 1. This is essential to define a

metric similarity measure in Section 4.6.3.

4.5.5 Geometric Surface Vector - Surface Distribution

Figure 4.15: Models divided into 20 bands from topological rings (dashed lines).

In order to better discriminate similar-skeleton models, we consider additional

geometric information to describe the global surface change. We extract three global

geometric feature vectors for each topological feature U (point or ring): curvature

K(U), area A(U), and average distance H(U). We construct these three vectors by

first dividing the model into 20 bands according to the geodesic distances from a

given topological feature U .

bandi(U) = {vj ∈ S|
i− 1

20
max
q∈S

gvs(q, U) < gvs(vj, U) ≤
i

20
max
q∈S

gvs(q, U)} (4.15)

where i ∈ 1...20, and aggregate basic geometric properties of each band into an

entry in the feature vectors, i.e. Ki(U), Ai(U) and Hi(U) respecticely. Since we use

geodesic distance, the resulting feature vector is stable toward mesh articulation.

As an example, we divide two dog models shown in Figure 4.15 into 20 geodesic

bands relative to a topological ring located at one of the legs. Bands of the same

color indicate that they are within the same geodesic interval from the ring. We can

see that although the two dogs have different poses, the locations of the color bands

are similar.

To compute these vector entries Ki(U), Ai(U) and Hi(U), we first compute basic

geometric properties for each vertex in a band. We follow [89] to compute Gaussian
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curvauture for each vertex, where the implementation is provided by [90]. The area

of a vertex is 1
3

the sum of areas of all the triangles around it, because triangle is

shared by three vertices. “Average Distance” of a vertex is the distance between

a vertex and the center of mass c = 1
||bandi(U)||

∑

v∈bandi(U) Pos(v) of its associated

band, where Pos(v) is the operator to return the position of a vertex v. We then

compute the Ki(U), Ai(U) and Hi(U) as the average of all these basic geometric

values associate to all vertices in the band. In general, area and curvature are used to

capture the global surface change, whereas average distance measures the thickness

of individual segments. All these features have been discussed in our earlier work [19]

and is shown to be stable towards articulation.

Sometimes, a single band may be composed of several segments. For example,

some color bands in Figure 4.15 may have segments at different locations like the

body, the limbs, and the tail. To improve the descriptiveness of the feature, we

apply depth first search to locate all connected components of each band, and use

the surface area ratio of these components to prorate the final value of that band.

4.6 Feature Matching

With a signature for each model, that is, a set of topological features (points or

rings) each described by three types of geometric features, we may compare the

similarity of different models based on matching the signatures. Here, we propose

to use Earth Mover Distance (EMD) [86] to define our similarity measure.

4.6.1 The EMD Method

The EMD method is based on the Transportation Problem. Consider representing

the features of the query as pieces of mass in space and the features of the candidate

as holes in space. The concept behind the EMD method is to calculate the minimum

energy required to move the pieces of mass (or earth) to the holes to completely fill

the holes.

Transporting a heavy piece of mass a long distance generally requires more energy

than transporting it a short distance. Therefore it is beneficial to find a solution to
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transport the pieces as short a distance as possible. The energy required to move

a piece of mass to a hole is called the flow. The total energy to move all pieces of

mass is called the total flow. In the EMD we try to find an optimal total flow.

More formally, the EMD method computes the minimum energy to move a set

of masses, P , to a set of holes, Q, as follows:

EMD(P,Q) =

∑m
i=1

∑n
k=1 dikfik

∑m
i=1

∑n
k=1 fik

(4.16)

where dik is the energy required to transport one unit of mass from feature i of the

query to feature k of the candidate. fik is the amount of flow transported from

feature i of the query to feature k of the candidate.

To calculate dik, a Ground Distance metric is required. For each feature i of the

query and feature k of the candidate, we compute a Ground Distance value. All

the computed values are stored in a cost matrix. Figure 4.16 shows an example of

this operation. After the cost matrix has been produced, a flow matrix is computed

containing the flow from feature i of the query to feature k of the candidate for all

i and k. This flow matrix is iteratively optimized to find the optimal total flow.

0.2 0.4 0.9
0.9

0.3 0.7

 

Figure 4.16: Example of ground distances between each pair of features that produce

the cost matrix.
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4.6.2 Similarity Measure

In our approach, we consider a topological feature as an EMD point and define

Effective Area as weight. To describe the energy transfer between two EMD points,

we further define a distance function Dist() based on geometric features as follows:

Dist(U1, U2) =W1 × |G
′
norm(U1)−G

′
norm(U2)|

+W2 × L2,norm(K(U1), K(U2))

+W3 × L2,norm(A(U1), A(U2))

+W4 × L2,norm(H(U1), H(U2))

(4.17)

where G′
norm is the Normalized Integral Geodesic. K, A, and H are the geomet-

ric surface vectors representing curvature, area, and average distance, respectively,

and they implicitly capture different branch arrangements relative to a topological

feature. Hence, G′
norm, K, A, and H together describe the spatial location of the

topological feature. W1, W2, W3, andW4 are ratios such thatW1+W2+W3+W4 = 1.

We use these weights to adjust the relative importance of G′
norm, K, A, and H. We

can now avoid slow graph matching algorithms by converting the matching problem

to a flow and transportation problem.

We compute W1, W2, W3, and W4 on a small dataset and exhaustively try

every possible combination that sum to 1 by incrementing each of these weights by

0.01 step. We use W1 = 0.1, W2 = 0.18, W3 = 0.36, and W4 = 0.36 for all our

experiments throughout this thesis.

4.6.3 Indexing Scheme

A search engine should return results accurately and within an acceptable period of

time. As most users are only interested in the first few tens of returned results, most

search engines would employ an indexing structure so that relevant information can

be retrieved without the need to traverse the whole database. For content-based

retrieval systems, this is particularly important as the database is generally very

large. One of the general approaches is to define features as k-dimensional (k-d)

points and apply existing spatial indexing methods, like R-tree and Kd-tree for fast
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retrieval. However, as explained earlier, our features are complex and it is difficult to

transform them into k-d points while preserving their distances. To take advantage

of the metric similarity measure, we apply the vantage point (VP) tree [64] to

construct an indexing structure here.

The VP-tree is similar to the Kd-tree in that both partition the metric space

into separate spaces and build the search tree hierarchically on these spaces. While

the Kd-tree chooses the median as the separating point by projecting data to a

dimension axis with maximum spread, the VP-tree partitions the space based on

relative distances between data points and a particular vantage point. As shown in

Figure 4.17, the VP-tree algorithm chooses a vantage point vp and partitions the

feature space by a radius u. The space inside the circle represents features that are

at most u distance away from vp, whereas the space outside represents features that

are at least u distance away from vp. A VP-tree can then be constructed with the

left branch storing features inside the circle (Space1) and the right branch storing

features outside the circle (Space2). The partition process progresses recursively on

the space containing all pairwise distances between all models in the database.

Figure 4.17: Construction of a VP-Tree

A distance-based indexing method generally requires a distance function that

satisfies metric properties. Our method is based on the EMD framework, which can

be proven a true metric if it satisfies the following properties under EMD formulation

[86]:

1. The sum of all feature weightings for each model should be the same.

2. The ground distance function used by EMD must be a metric.

Our algorithm satisfies the first property because we use the normalized Effective
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Area as the weights, as shown in Eqn 4.14. The ground distance Dist() (Eqn 4.17)

is a metric because it is a combination of metrics with positive weights that sums to

1. Such metric property has been discussed in [91] (P.187) as Convex Combination

of Metrics.

To search for the most relevant models with respect to an input query, it is equiv-

alent to performing a k-Nearest Neighbour (kNN) search on the VP-tree. According

to [64], kNN search on the VP-tree is similar to tree traversal. It avoids unnecessary

walks in the tree and so speed up search. Given a query q, as shown in Figure 4.18, a

kNN search is to find all neighbors within distance l, where l is dynamically adjusted

to the distance of the kth nearest neighbor. Considering query q1, since the query

space does not overlap with Space1 of vantage point vp, the traversal of left side

of the tree can be avoided. Similarly for q2, since there is no overlap between the

query space and Space2, the traversal of right side of the tree can be avoided. This

kind of pruning can significantly reduce the computational and disk-IO costs. For

query q3, where the query space overlaps with both Space1 and Space2, the search

traverses both branches of the tree.

Figure 4.18: k-NN Search on a VP-Tree

4.7 Experimental Results

To evaluate the performance of the proposed retrieval method for articulated models,

we discuss a number of experiments here. We have constructed a database from 150

models for these experiments. We create our own database because by our time of

testing, most available dataset are small [4], or are not meshes [27]. Our database
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Baby Boy Cat Dog

Dino Dinopet Dolphin Frog Girl

Hand Horse Raptor Wolf

Figure 4.19: 13 groups of models in the database.

also contains lots of similar skeleton models as well. To test and compare the

invariant properties of our method in rotation and scaling with other methods, we

have created three additional sets by rotating the 150 models against the xy-axis,

random scaling between (1.0, 2.0], and rotating by the yz-axis plus random scaling

to produce a total of 600 models. We then manually categorize these models into

13 groups as shown in Figure 4.19. Each group consists of similar models but at

different postures. All the experiments presented in this section are performed on a

PC with a Pentium 4 2.4-GHz CPU and 1-Gbyte RAM. We use C++(Cygwin) for

all our coding works. It should be noted that, for the 3 rotated and scaled copies

of the same model set, our similarity measure provides nearly zero (< 0.005) values

among them as our features are rotation and scaling invariant.

4.7.1 Performance Comparison

4.7.1.1 Performance on Model Discrimination

Tables 4.1 and 4.2 show some matching results, using all models and normalized by

maximum and minimum work done. We can see that our method can distinguish
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boy frog dolphin

boy 1 0.414 0.002

frog 0.414 1 0.008

dolphin 0.002 0.008 1

Table 4.1: Mean Similarity of Dissimilar-Skeleton Models

boy girl baby

boy 1 0.733 0.553

girl 0.733 1 0.458

baby 0.553 0.458 1

Table 4.2: Mean Similarity of Similar-Skeleton Models

models based on their skeletons and shapes. In Table 4.1, boy, frog, and dolphin

have dissimilar skeletons. Our method can discriminate them as the similarity values

among different model groups are relatively small. In Table 4.2, boy, girl, and baby

are model groups with similar skeletons. Our method again can discriminate them

as the similarity values among different model groups are still comparatively small,

although they are slightly larger than those in Table 4.1. These two sets of results

match human perception well.

4.7.1.2 Performance Comparison with Non-Articulated Methods

(B)
Not Relevant�
but Retrieved

(C)
Relevant but�
not Retrieved

(A)
Relevant &
Retrieved

(D)
Not Relevant &
Not Retrieved

Retrieved
Information

Required User
Information

Data Space

Figure 4.20: Precision and Recall
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To evaluate the performance of our method, we use Precision and Recall. It

measures the reliability of a system. Precision is defined as relevant retrieved data
retrieved data

. Recall

is defined as relevant retrieved data
relevant data

. Increasing the pool of returned data may increase

the chance of finding user’s need, but at the same time, it may also return lots of

irrelevant data. If Precision and Recall are both high, it means the system can fit

the user’s need. To define relevancy, a set of predefined categories have to be given.

In Figure 4.20, we have illustrated how Precision A
A+B

and Recall A
A+C

are defined.

In summary, the more the curve approaches the top-right hand corner, the more

accurate is the method.
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Figure 4.21: Performance Comparison of D2, Fourier, MRG and TPR

Figure 4.21 shows the precision-recall graph of our method compared with some

non-articulated methods. It shows that our method outperforms the geometry-based

D2 method [27] (feature size: 72) and the transform-based Fourier method [32]

(feature size: 21). From the plot, we may conclude that our method is capable of

handling articulated models, whereas the D2 and Fourier methods are not as their

precisions drop dramatically when the recalls rise over 0.1.
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4.7.1.3 Performance Comparison with MRG (Articulated Method)

Methods for articulated geometry methods are generally difficult to implement as

they require specific skeletal tree construction and graph matching techniques. To

study the performance of the new method as compared to existing ones, we have

implemented the MRG method [17] for comparison. We have chosen to implement

MRG because both MRG and TPR make use of geodesic distance. Also, both of

these methods have the largest number of features. We compare the performance of

TPR with MRG here.

Accuracy Comparison We have two observations in Figure 4.21. First, both

TPR and MRG can handle articulated geometry models because the precision and

recall of both methods are better than non-articulated methods. Second, in the

same figure, TPR outperforms MRG in the precision and recall curves when recall

is above 0.3.

To explain the second observation, we may analyze the features used by TPR

and MRG. For MRG, the similarity measure is based on matching multiresolution

reeb graphs. With similar-skeleton models, the differences can only be captured at

the lowest level of the graphs using local geometric features, area, and length. These

features are local and do not represent the overall shape of the model. As a result,

MRG is less effective on these models. Although TPR represents similar-skeleton

models with similar number of topological features, it captures the overall shape of

the models by the global geometric features and weights. For example, dog, wolf,

cat, horse, and dino are four-legged animals with tails, dolphin has four side fins

and a back fin, and the hand has five fingers. It is difficult to discriminate them if

we consider only topological and local geometry information, as in MRG.

To further compare the performance of the two methods, we have also plotted

the precision-recall graph for each model group. Figure 4.22 shows some of them.

We observe that TPR performs better than MRG for model groups like dog, wolf,

raptor, dinopet, baby, girl, man, dino, and dolphin or equally well as MRG for model

groups like hand, frog, cat, and horse.

From these graphs, we notice that TPR outperforms MRG particularly on similar-
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Figure 4.22: Precision-recall graphs for some of the model groups.
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skeleton models such as canines (dog, wolf), cannibal dinosaurs (raptors, dinopet),

and humans (baby, girl, man). These models have similar skeletons that cause MRG

to drop in performance. By also considering the global geometric features, TPR per-

forms significantly better. For example, in the case of baby and girl, the arms, legs,

and bodies of girl are relatively longer than those of baby, and in the case of dog and

wolf, the bodies and ears of wolf are fatter and sharper, respectively, than those of

dog. All of these differences affect the weights and distributions of area, curvature,

and average distance in TPR. We also notice that both TPR and MRG perform

well on hand, frog, cat, and horse. This indicates that the range of maximum and

minimum similarity values of one model group does not overlap with those of the

other model groups. This is because their shapes are comparatively unique in our

database. As a result, both TPR and MRG perform equally well on them.

4.7.1.4 Speed Comparison

We have also compared the time complexity of different processes between TPR and

MRG as follows:

Feature Extraction Here we discuss the complexity of the feature extraction

method. First, we apply LSD heuristics and hierarchical partitioning to find three

source points using the Dijsktra algorithm. Second, we apply Critical Point Analysis

on these three source points to identify feature points of the model. Third, we apply

Topological Point Selection, which will stop as soon as the search radius is reached.

Hence, only boundary vertices of each region may be visited more than once. The

selection process thus visits most of the vertices, and its complexity is slightly higher

than O(n log n) but bounded by R×O(n log n), where n is the number of vertices and

edges in the models. Topological Ring Extraction is a modified Dijsktra algorithm,

and its complexity is the same as Dijsktra. For integral geodesic calculation, it is

(µ + γ)× O(n log n) where µ and γ are the number of topological points and rings

found. The overall complexity of the whole algorithm is (µ + γ + ψ) × O(n log n),

where ψ is the number of integral geodesic calculated by hierarchical partitioning. It

indicates that the algorithm depends on the number of geodesic calculations µ+γ+ψ.
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per models TPR MRG

Average number of vertices / triangles 9241/18478 9241/18478

Average number of integral geodesic 50 131

Average time for geodesic computation 27.51s 72.64s

Number of features 30 555

Average total time for feature extraction 45.75s 75.23s

Table 4.3: Time Analysis of TPR and MRG on Feature Extraction

Similar to TPR, MRG also requires the computation of integral geodesics for

interval partitioning. It first samples a large number of seeds regularly over the

model surface. It then computes the integral geodesics and interpolates the values

over other vertices. In order to obtain a good approximation for interval partitioning,

the number of seeds required is usually over 130 as shown in Table 4.3. TPR is

comparatively much more efficient as it does not require a large number of seeds.

Further, we limit the geodesic calculations to topologically important locations only

as they dominate the overall feature extraction time. Hence, the number of geodesic

calculations has an average value of 50. This significantly speeds up the whole

process. Table 4.3 compares the performance of TPR and MRG. We can see that

TPR is nearly two times faster than MRG to do the geodesic calculations. However,

the overall feature extraction time of TPR is only about 40 percent faster. This is

mainly due to the higher cost in computing the global geometric features.

Feature Matching We apply the EMD to compare the features of two models.

A theoretical computation analysis on the complexity of EMD is difficult as it is

based on the simplex algorithm. However, according to [86], if EMD is formulated

as a bipartite graph problem with signatures of the same size, the time complexity is

roughly O(n3 log n) where n is the number of topological features. As a comparison,

the overall complexity of MRG is O(nr × (mr + nr)) where mr and nr are the num-

bers of r-nodes of the two matching models. Hence, TPR has a higher complexity.

However, as shown in Table 4.4, matching one model using TPR is 15 times faster

than MRG because TPR has a much smaller number of topological features nt ≈ 30.
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For MRG, the number of r-nodes, nr > 500.

TPR MRG

Number of features 30 555

Average total time for matching two models 1ms 16ms

Average total time for one query of database 0.6s 9.6s

Total time for our retrieval application 529s 5840s

Table 4.4: Time Analysis of TPR and MRG on Feature Matching

4.7.2 Performance of the Indexing Scheme

We have created a VP-tree with two fanouts. It stores at most two data points in

each node. To build the indexing tree for our existing database, it takes 778.7 s. To

carry out the retrieval test, we use all models in the database as input queries and

vary k for nearest neighbor search. Table 4.5 shows the total time of the k-Nearest

Neighbor Search (using all 600 models as input queries) against k (the number of

returned models) in the indexing scheme. We can see that if we perform a similar

experiment as in Table 4.4 (that is, k = 600), the total time required (531.2 s) is

roughly the same as that in Table 4.4 (529.1 s). However, as most users typically

want to retrieve only a few models that are most relevant to a given query, the

indexing scheme would certainly speed up the retrieval process. In the extreme

case, if a user just wants to find the best match, the retrieval system can handle

1-nearest neighbor search in 0.39 s on average, which is 44 percent of the original full

matching time of TPR without indexing or 4 percent of the matching time of MRG.

Table 4.5 also shows that the total computation time is proportional to the total

number of EMD operations. It should be noted that the query results are directly

returned to the user in one step, without extra geometric pruning step.

4.7.3 Discussion and the Curse of Dimensionality

From the above experiments, we may conclude that TPR outperforms MRG in both

accuracy and speed. Our feature representation (Topological Points and Rings)
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Indexing Average Query Time

k ] EMD Total Time TPR(k-NNS) TPR MRG

1 261 233.56s 0.39s

0.88s 9.73s

2 282 250.75s 0.42s

3 315 284.06s 0.47s

4 357 322.95s 0.54s

5 479 439.50s 0.73s

6 483 444.00s 0.74s

7 489 448.64s 0.75s

8 492 450.13s 0.75s

9 504 458.48s 0.76s

10 505 459.16s 0.77s

25 536 480.86s 0.80s

600 600 531.22s 0.89s

Table 4.5: Summary of k-Nearest Neighbor Search
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is descriptive to distinguish both similar skeleton and dissimilar skeleton models.

However, we also notice several problems. First the testing database of 600 models

is small. These models are all generated by rotation and scaling from 150 models.

Second, though our method supports indexing, the algorithm soon approaches brute-

force when k > 10 (Table 4.5). This means that if a user wants to search for

more data, it would be very slow. We suspect that it is due to the problem of

high dimensionality of our features ( ≈ 900). The Curse of dimensionality is a

notorious problem in multimedia retrieval systems. Third, though we have used a

lot of geometric features, most of the groups still suffer from precision drops at high

recall. In Chapter 5, we examine these problems in detail and propose an embedding

retrieval framework to handle these data.

4.8 Conclusion

In conclusion, we have introduced a novel and efficient method for retrieving 3D

articulated geometry models in this chapter. Unlike existing methods, we propose

to use topological points and rings to describe each 3D model. By using additional

global geometric features and weights to describe the importance of features, the

matching can be modeled as a flow and transportation (EMD) problem. This op-

poses traditional methods that require skeletal or graph matching algorithms for

matching topological entities. Our experimental results show that the new match-

ing method outperforms MRG [17]. In addition, since our similarity measure is a

metric function, our method allows indexing techniques to be applied. This not

only speeds up the search process, but is also the first method that indexes both

topological and geometric information in a single search.

To complete the task, we have also implemented a prototype web interface (Fig-

ure 4.23) for the retrieval system. The interface allows users to upload a model,

extract, match features, search and return a list of relevant models. The returned

models are sorted in descending order of similarity values.
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Figure 4.23: Interfaces for the Retrieval System



Chapter 5

Embedding Retrieval of 3D

Articulated Geometry Models

5.1 Introduction

In the last chapter, we have developed a feature extraction and feature matching

method. Though the method is a metric similarity measure and supports indexing,

there are some questions unanswered.

First of all, recent works of graph-based or bag-based matching methods [10,13,

17] propose to incorporate more descriptive geometric features into the matching

process. From our experiments and observation, however, this may not improve

the retrieval accuracy significantly. On the contrary, it may lead to sudden drop in

precision at high recall, which is one of the observations that we have had from the

results of the previous chapter.

As an illustrative example, the top diagram of Figure 5.1 shows the pairwise

distances of TPR, which uses a large number of geometric features (≈ 900). These

distances are measured between two sets of similar skeleton models: dog and wolf.

When projected using Multi-Dimensional Scaling, these models all lie on different

but nearby manifolds in the embedding space. These manifolds are so close to each

other that the intra-class variance is usually greater than the inter-class distance.

Retrieval using these methods will fail especially when a large number of similar

skeleton models, e.g., cat, lion and horse, are in the database. This contradicts

64
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Figure 5.1: Method overview: Incorporating more geometric features may not nec-

essarily improve the retrieval accuracy. Top: visualizing pairwise distances using

MultiDimensional Scaling. Intra-class variance is larger than inter-class distance.

Bottom: visualizing pairwise distances using our method. Inter-class distance is

maximized.

with the general assumption that increasing the number of geometric features can

improve retrieval accuracy. This gives rise to two questions. Why do they lie on

manifolds with large variance and how can we improve retrieval accuracy in such

situation?

The second problem is that these methods do not scale well to large databases.

On the one hand, these methods define a similarity measure using graph-based

or bag-based matching, which is non-metric and cannot be used with traditional

indexing techniques. On the other hand, all these methods have high dimensionality,

which greatly degrades retrieval efficiency. As an example, the retrieval speed of
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TPR approaches to brute-force when the number of returned models is higher than

10, even though the similarity measure is a metric and the method uses a distance-

based indexing technique, VP-Tree, for k-nearest neighbor search.
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Figure 5.2: Precision and recall comparison among methods without embedding,

and embedding retrieval by MDS and by our method. Our method can achieve very

high precision (full recall) in this example.

To proceed, we first answer the question why our method projects data on man-

ifolds. To improve the reliability and efficiency, we propose an unsupervised em-

bedding retrieval framework for articulated geometry models. The method is based

on a manifold learning technique, Diffusion Map [92], which carries out dimension

reduction and maximizes inter-class distances in the induced embedding space as

shown in the lower diagram of Figure 5.1. The black lines in Figure 5.2 show that

the retrieval results are significantly improved. Since the space is of low dimension,

spatial indexing techniques, such as kd-tree, can be applied here for fast retrieval.

However, the manifold learning approach may fail if the same group of data lie on

disconnected manifolds due to insufficient objects in the database, instability of the

features, or instability of the similarity measure. Such problems are usually corrected

by a supervised or semi-supervised solution. As our objective is to have a fully

automatic retrieval scheme, we propose to augment the kernel matrix using another

similarity measure. Our argument is that two similar models may not be considered

similar in one similarity measure, but may do so in another. By combining the two

similarity measures, shortcut edges connecting disjoint manifolds can be established

automatically to improve retrieval results.
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Our retrieval framework has adapted weighted-Nyström extension to extend em-

bedding to large databases. Although the quality of the extended embedding im-

proves as the number of landmarks increases, increasing this number affects retrieval

speed. To overcome this problem, we need a way to preserve retrieval accuracy. We

have observed that the true embedding ψ obtained from eigensolver of all objects O

in the database and the extended embedding ψ̂ obtained from a few landmarks ob-

jects Ô ⊂ O are two similar but distinct embeddings. Our idea to preserve retrieval

accuracy is to use ψ on database objects. To enable fast online query search, we

compute the embedding coordinate ψ̂(q) for each new query q using Nyström exten-

sion. To relate ψ̂ and ψ, we align them through correspondence analysis. Such novel

scheme is robust and can effectively reduce both projection and retrieval errors.

We have tested the framework on both TPR (metric) and MRG (non-metric).

Our experimental results show a 20-30% improvement in precision at high recall and

3-5 time improvement in speed. It also avoids the curse of dimensionality.

To the best of our knowledge this is the first comprehensive empirical study on

the use of manifold learning methods in the context of retrieval and indexing of 3D

articulated geometry models. We summarize our contributions as follows:

1. We reason that existing matching methods project data on nearby manifolds,

and explain that when intra-class variance is greater than inter-class distance,

retrieval accuracy is degraded. To address this problem, we propose an em-

bedding retrieval framework based on the Diffusion Map.

2. To handle the disjoint manifold problem, we augment the kernel matrix with

shortcut edges using another similarity measure. This is novel compared to

existing works that involve supervised or semi-supervised learning.

3. To adapt weighted Nyström extension for the computation of diffusion em-

bedding, we propose an efficient step to separate distribution from geometry.

As shown in our experiment, it gives a better diffusion embedding than simple

Nyström extension.

4. We propose a correspondence analysis to align query coordinate from approx-

imated embedding into true embedding to reduce the retrieval error due to
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approximation. Such an alignment step is applicable to all other retrieval

schemes using Nyström extension for retrieval (e.g., landmark MDS [93]).

The rest of the chapter is organized as follows. Section 5.2 explains why TPR

and MRG project 3D models on manifolds. Section 5.3 discusses the background

and the use of Diffusion Map, and Section 5.4 discusses our proposed framework

and Nytröm extension for retrieval. Section 5.6 evaluates the performance of our

retrieval framework through a number of experiments. Finally, Section 5.7 briefly

concludes this work.

5.2 Manifolds in Embedding Space

All of the methods that we have discussed work well on dissimilar skeletons models.

When two models of similar skeletons are matched, the best way to tell them apart

is by using geometric features because most of the skeletal / topological features

are likely the same. As such, the general idea is to use more geometric features for

comparison. To test this hypothesis, we have created a database of 1,020 articulated

geometry models featuring many similar and dissimilar skeleton models. To simulate

the effect of large databases, we generate all these models by exporting each frame of

some animation sets. The reasons for using animation sets are that 3D articulated

geometry models are frequently used in animation sequences and they typically have

a limited number of poses. This also ensures that all models are different from each

other and gives a more fair evaluation than simply rotating and scaling models as in

the last chapter. After obtaining this database, we compute and embed all distances

using Multi-Dimensional Scaling (MDS). MDS is a popular visualization tool for

preserving all pairwise distances. We have tried our database on two methods, TPR

and MRG, which has the highest number of geometric features (dimensions are

800-900 approximately), as shown in Figure 5.3.

We have two observations. First, these models form many nearby clusters. These

clusters have some non-linear structures (e.g., manifolds) as embedded in the Eu-

clidean space. Many of these models have neighborly relationship with one another.

We use the term “manifold-like” in our context from here. Second, the intra-class
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variances (the spread of the structure) are larger than inter-class distances (the gap

between two clusters) among similar skeleton models. The second observation di-

rectly accounts for the fact that the retrieval accuracy drops at high recall. This

contradicts with the assumption that using more geometric features can improve

retrieval accuracy for similar skeleton models.
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Figure 5.3: MDS visualization of (Left) a graph-based method and (Right) a bag-

based method – similar skeleton models may not form separable clusters.

To explain these two observations, we first analyze the features used in these

methods. MRG [17] is a graph-based method. It uses integral geodesic (centricity)

to partition a model into intervals and construct a Multiresolution Reeb Graph.

TPR is a bag-based method. It uses a bag of geodesic histograms as features.

Both methods design geometric features that adapt to the underlying topology and

hence deformation. When two similar skeleton models are matched, the nodes or

histograms of the two models should be very similar. As graph matching and bag-

based matching are designed in a way to find correspondences between the two

models, when two similar skeleton models are matched, such similarity measure

becomes Euclidean distance of high dimension n̂m̂, where n̂ is the number of nodes

in the graph/set and m̂ is the number of features in each node/histogram as shown

in Figure 5.4. In TPR and MRG, m̂ = 60 (3 sets of surface distribution (20 features

each)) and m̂ = 2 (area and length), respectively.

However, Euclidean distance is very sensitive to slight misalignment. As pointed
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Figure 5.4: Similarity Measure and Euclidean distance. The similarity measures,

which are defined by graph (upper left) and set (upper right) matching, become

Euclidean distances when the 3D models for comparison have highly similar skeletons

and geometric features.

out in [94] (Chapter 2), Euclidean distance is not a smooth function with respect

to the natural parameters (deformation in our concern). Due to quantization, the

situation may be even worse. As an illustration, consider the four model signatures

shown in Figure 5.5. These histograms are obtained based on geodesic partitioning

of a feature extracted from one of the legs of each animal (Section 4.5.5). We see

that the histograms of all dog models have a sharp peak while that of the wolf

model has a round peak. Two of the dogs are close to each other while the right

dog is slightly misaligned due to articulation change. The histogram of the wolf has

a peak roughly the same distance as that of the right dog. However, the computed

Euclidean distances are 0.2271 (left dog & middle dog), 0.7285 (left dog & right dog),

and 0.5853 (left dog & wolf). In other words, though the shape of the right dog is

similar to that of the left dog, the wolf has a smaller Euclidean distance instead. This

shows that misalignment may easily lead to large intra-class variance. When the

variance is greater than inter-class distance, it affects retrieval accuracy. Further,

since our database is generated from animation sequences, models of consecutive

frames form a local neighborhood. All these explain the fact that when the database

is large, they are observed as manifolds in the embedding space.
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Figure 5.5: Feature histogram of 4 different models (from left: wolf, dog, dog, dog).

5.3 Embedding Retrieval and Diffusion Map

Our idea to improve retrieval accuracy is to find a new embedding such that the inter-

class distances among different manifolds are maximized. This turns out to share

exactly the same idea as manifold learning. In fact, applying manifold learning to

better understand data is not new, e.g., [95] for image segmentation and [96] for mesh

clustering. Manifold learning tools, including Multi-Dimensional Scaling [53], Local

Linear Embedding [78], ISOMAP [79] and Diffusion Map [94], have also been applied

to various image retrieval works, e.g., image clustering [97], relevancy feedback [98]

and relevancy feedback by transduction [99].

There are two reasons that manifold learning techniques work well on all these

applications. First, manifold learning techniques project pairwise distances on lead-

ing eigenvectors. According to the Polarization Theorem [100] (Theorem 5.6), the

angles between eigenvectors become maximized when the projected dimensionality

is reduced. In other words, the embedding distance between data is maximized in

low dimensional embedding space. This provides the reasons why segmentation and

clustering algorithms usually work better in the transformed domain. Second, the

success of applying manifold learning on image retrieval results from the assumption

that visual perception is better represented by nonlinear distance than its original

distance. As we have observed in the previous section and demonstrated later in

our experiments, this assumption can also be applied to 3D model features because
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they also lie on manifolds.

Among various manifold learning techniques, we have chosen the Diffusion Map

and the diffusion embedding space [94]. Diffusion Map has an advantage over

existing manifold learning techniques that it infers far distance by dyadic power

(diffusion) of local distance. It does not require explicit graph construction as in

ISOMAP [79] nor explicit maximization of far distance [97], but only the values of

two global parameters σ and t. This is important because finding the nearest neigh-

bors for a new query is equivalent to sequential scanning of the whole database, which

is prohibitive for fast online query search and does not scale to large databases.

Our work also differs from existing works in that we use the Diffusion Map as an

unsupervised retrieval method and optimize all the parameters based on retrieval

constraints. When the data lie on disconnected manifolds, we further propose to

combine several similarity measures together by means of shortcut edges. Most

important of all, our method does not require supervised training, although it also

works nicely with the relevancy feedback approach [99] as the kernel is fixed once

optimization is done. It should also be noted that manifold learning techniques are

usually applied on image retrieval with single feature vector representation. In this

work, we have showed evidence that they are also applicable to graph and bag-based

matching methods, in particular, TPR and MRG, where the features are extracted

according to some surface metrics.

To allow a more complete view of our framework, we first briefly summarize the

Diffusion Map. LetW (x, y) be the pairwise distance matrix obtained by graph-based

/ bag-based methods. Then we compute a kernel matrix Kw(x, y):

Kw(x, y) = exp

(

−
W 2(x, y)

σ

)

(5.1)

where σ is a parameter that defines the local scale of the neighborhood and exp (),

exponential function, is applied entry-wise to the distance matrix W . The use of

an exponential function suggests that small distances are important while large dis-

tances are ignored. This is essential to learning the manifolds because they are

defined by local neighborhoods. Since these data may have different distributions

in various points, it is best to separate distribution from the geometry so that the
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embedding is not affected by local factors. Such distribution can be estimated by

letting pw(x) =
∑

y∈OKw(x, y), where O represents all the objects in the database.

Then, the kernel matrix K(x, y), which has the distribution separated from geome-

try, can be defined as:

K(x, y) =
Kw(x, y)

pw(x)pw(y)
(5.2)

However, this kernel K(x, y) is not symmetric, and a graph normalization tech-

nique is usually adopted to symmetrize it as follows. Let q(x) =
∑

y∈OK(x, y). The

symmetric anisotropic transition kernel P (x, y) of Markov chain on O is defined as:

P (x, y) =
K(x, y)

√

q(x)
√

q(y)
(5.3)

The diffusion distance Dt(x, y) of the embedding space is defined as:

D2
t (x, y) =

∑

u∈O

P (x, u)− P (y, u)

π(u)
(5.4)

where π(u) = q(u)/
∑

z∈O q(z) is the stationary distribution of the Markov chain.

Let d be the dimension of the embedding space, the diffusion distance Dt(x, y) can

be approximated using right eigenvectors ψ and eigenvalues λ of P (x, y):

Dt(x, y) =

(

d
∑

λ2t (ψ(x)− ψ(y))2

)
1

2

(5.5)

The Diffusion Map Ψt(x) : O → Rd thus embeds all 3D models into an Euclidean

space.

Ψt(x) =
(

λt1ψ1(x), λ
t
2ψ2(x), ....., λ

t
dψd(x)

)T
(5.6)

In this space, intra-class distances among different manifolds are maximized.

Since it is in Euclidean space, we can apply a spatial indexing method (e.g., the

kd-tree) for fast retrieval.

As a note, Diffusion Map also has a close relationship with Kernel Principle

Component Analysis (Kernel PCA). PCA is a useful too for analyzing data and

dimension reduction. However, PCA cannot handle non-linear data sets. To handle
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such non-linear structure, many methods emerged from the field of manifold learning

to address the issue. Important works include Local Linear Embedding (LLE) [78],

Laplacian eigenmaps [101] and Hessian eigenmaps [102]. In [103], it was noted that

all these methods, including Diffusion Map [94] are subcases of kernel PCA, that

minimize local distortion of neighboring elements around every point.

5.4 Proposed Retrieval Framework

In retrieval literature (Section 2.4.2.2, Approximate Method), it is popular to use

Nyström extension to approximate embedding of large datasets. According to [75],

FastMap, MetricMap and Landmark MDS are all based on Nyström extension.

These methods use Nyström extension to compute embedding for both the database

(offline) and query (online) objects. The reason is that it is often not feasible

to compute eigen-decomposition for a full (non-sparse) distance matrix. Eigen-

decomposition is usually slow in large databases and requires a lot of memory.

However, as shown in Section 5.4.5, using Nyström extension with a few landmarks

objects for both the database and the queries will cause projection error. Such error

distorts pairwise distances in the embedding space and thus affects retrieval accu-

racy. The problem becomes more severe when the number of landmarks is small

and the number of dimensions is high.

To resolve the problem, we propose to obtain a true embedding (eigensolver

embedding) for database objects (offline) based on full eigen-decomposition as shown

in the right diagram of Figure 5.6. This is possible in our proposed framework

because our kernel matrix is sparse. To compute query coordinate (online), we

use the Nyström extension as well. However, we project the approximated query

coordinate back to the true embedding using correspondence analysis during online

query search. This gives us very accurate query coordinate for fast and reliable

retrieval. In Figure 5.6, there are several blocks highlighted as dotted boxes. The

diagram shows the differences between the proposed framework and existing works.

In the following subsections, we present the framework in detail. Section 5.4.1

discusses an automated algorithm to compute parameters for the Diffusion Map.
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Figure 5.6: Retrieval Framework. Left: Nyström extension used in existing work.

Right: Our proposed framework using both embedding from Eigensolver and

Nyström extension. The dotted boxes indicate the differences.

Section 5.4.2 discusses how to augment the kernel by one or more similarity mea-

sures in the form of shortcut edges. Section 5.4.3 defines a reliable weighted Nyström

Extension particularly for the Diffusion Map by separating distribution from geome-

try. Section 5.4.4 discusses how to speed up Nyström for online query search. Section

5.4.5 discusses how to obtain a true query coordinate by correspondence analysis.

Finally, Section 5.4.6 presents the algorithm to select landmarks automatically.

5.4.1 Optimizing Parameters by Retrieval Criteria

In our retrieval framework, there are three parameters to optimize: σ, t and d.

Optimizing parameters for spectral algorithms is a difficult task. More often, the

parameters are data-dependent and vary across different types of data. While this

task is important for clustering and segmentation algorithms, no work has discussed

how to optimize them for retrieval. In this subsection, we discuss the retrieval

criteria and the optimization algorithms. We expect these parameters to be applied

globally to the whole database.

In Diffusion Map, σ is a global parameter used to define the kernel matrix,

Kw. It represents the local scale of the neighborhood. It is proven that when
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σ → 0, the kernel approaches the Laplace-Beltrami Operator. This produces smooth

eigenvectors that are good for harmonic extension. A very small σ, however, results

in high multiplicity of 1 in the spectrum (list of eigenvalues). From spectral graph

theory, multiplicity of 1 counts the number of disconnected components (manifolds

in our case). The group information is stored in the associated eigenvectors. On the

one hand, this is good because it maximizes the distance between different manifolds.

On the other hand, if the multiplicity of 1 is greater than d, we lose important

eigenvectors and so grouping information in the embedding space. Therefore, it

imposes a constraint that the optimized σ should give the largest multiplicity of 1

that is less than dimension d. For example, in Figure 5.7(a), σ is set to 0.006.
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Figure 5.7: Relationship between d (dimension) and (a) σ (local scale), (b) t (dyadic

power for diffusion).

Parameter t is the dyadic power to diffuse local distance to infer far distance. It

holds the key to dimension reduction as shown in Figure 5.7(b). From the signal

processing point of view, summation of spectrum represents the total energy. It

would be desirable to have all the energy concentrated at the first few d dimensions so

that all the important information is well-represented. Since noise is usually located

at high frequencies, it may be desirable to truncate high frequency components. Due

to these reasons, we compute t by defining ξ = λd
2t

/λ1
2t

= 0.1 to truncate noise,

where λd is the d-th eigenvalue of the spectrum. Figure 5.7(b) shows the effect of t

on the spectrum with σ = 0.006. t ≈ 12 achieves ξ = 0.1.

So far, σ and t are both dependent on d. In general, the higher the dimension

is, the better it is to preserve pairwise distances. However, spatial indexing struc-
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tures usually suffer from the curse of dimensionality. The curse degrades retrieval

efficiency if the dimension is too high (> 10). Since we are using kd-tree as the

indexing structure, we follow the general approach to set d = 10.

Algorithm 1: Optimizing parameters σ and t .

Input: d

Output: σ and t

1. compute εavg, εmax, εmin, which are the average, maximum and minimum,

respectively, of all 1st nearest neighbor distances.

2. compute σε ← 0.01× (ε2
max − ε

2
min) as the search step size

3. initialize σ ← εavg

4. find the smallest σ by iteratively updating σ ← σ ± σε, such that λd < 1, by

sparse eigensolver.

5. refine σ further by iteratively updating σ ← σ ± σε/10

6. compute t← log
(

logξ
logλd

)

/log2

Combining all these criteria, we propose Algorithm 1 to find σ and t given a

predefined dimension d. The Diffusion Map embedding Ψt(x) can then be computed

according to Eq. 5.6. Since our kernel matrix is sparse, it is possible to use sparse

eigensolver for direct eigen-decomposition. Though the search would still be slow

for very large datasets, it is an offline process. We believe that trading off speed for

accuracy here is important for reliable retrieval.

5.4.2 Augmenting Kernel Matrix

So far, we have assumed that all data lie on individual manifolds. If the features

are unstable or there are insufficient samples in the database, manifolds may be-

come disjoint. Here, we propose to directly augment the kernel matrix by means of

“shortcut edges” to link these disjoint manifolds together. In general, if one method

is not sufficient to discriminate two models, it is common to use another (or more)

similarity measure(s) for adjustment. For example, in [4], a two-step pruning pro-
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cess is used. Our idea is similar in that we use two or more similarity measures

to build an automated system. However, our approach is much simpler and more

efficient because it allows retrieval in one step as shown in Section 5.4.3.

We recall that kernel matrix Kw is the Markov matrix defining the probability of

diffusion. With respect to spectral graph theory, a probability greater than 0 means

that there is an edge connecting the two nodes. Therefore, we consider the following

augmented kernel:

Kw = exp

(

−
W 2

σ

)

+
∑

i

αi × exp

(

−
W 2
i

σi

)

(5.7)

where W and Wi are the original and the new distance matrices. σ and σi are the

corresponding parameters obtained from Section 5.4.1. The first half of the kernel is

the same as the original. The non-zero entries are the diffusion probabilities to their

neighbors. By introducing the second half, we add extra probabilities, in the form of

“shortcut neighbor edges”, to the original kernel, where such connections may not

exist. In general, such approach can be applied to more than 1 additional similarity

measure. In order to reduce the negative effect of joining unrelated manifolds, αi is

introduced to limit the probability values to be added to the original kernel. Since a

very small probability value is sufficient to introduce such shortcut edges, we restrict
∑

i αi = 0.01 in all our experiments. It should be noted that though kernel matrix

Kw may now have probabilities greater than 1, it is normalized in Eqn. 5.2.

5.4.3 Nyström Extension for Diffusion Map

Multimedia retrieval usually involves large datasets containing thousands to millions

records. Solving eigen-decomposition directly for online queries is infeasible due

to its high computational cost. Hence approximation is usually sought. Nyström

extension, as shown in Figure 5.8, is a popular technique for finding numerical

approximations to eigenproblems of the form:

∫

K(x, y)ψ(y)dy = λψ(x) (5.8)

It approximates ψ(x) by ˆψ(x) using quadrature rule:
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ψ̂(x) =
1

nλ

∑

K(x, y) ¯ψ(y) (5.9)

where x ∈ O and y ∈ Ô. Eqn. 5.9 extrapolates eigenvectors (embedding) ¯ψ(y)

computed on a subset Ô ⊂ O, called landmarks, to the whole database O by using

distance from point x to all landmarks as weights. The theoretical support of ex-

tending the Diffusion Map using Nyström extension is discussed in [94] as geometric

harmonics. However, this form of Nyström extension assumes that all landmarks

have equal weights. This deviates from the integral equation that defines the kernel

eigenfunctions and so requires a lot of landmarks to preserve embedding quality. In

retrieval applications, we want to reduce the number of landmarks. Hence, we have

adapted Density-Weighted Nyström [18] for use with the Diffusion Map.
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Figure 5.8: Using Eigensolver and Nyström Extension in retrieval applications. K

is the kernel distance matrix. A and B are the submatrices of K. A is the distance

matrix among landmarks and B is the distance matrix between landmarks and non-

landmarks. The hatched regions are the distance values between a new query and the

whole database (upper matrix) and between a new query and the landmarks (lower

matrix). Embedding at upper right is obtained from Eigensolver (true embedding).

Embedding at lower right is obtained from Nyström (approximated embedding).

Density-Weighted Nyström considered the following eigenproblem instead:
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∫

K(x, y)S(y)ψ(y)dy = nλψ(x) (5.10)

Using K(x, y)S(y) instead of K(x, y) takes density S(y) of landmarks into ac-

count. Since K(x, y)S(y) is not symmetric, it sets ψ̄(y) = S(y)−
1

2µ(y) and converts

the eigenproblem into:

∫

S(x)1/2K(x, y)S(y)1/2µ(y)dy = nλµ(y) (5.11)

where S(x)1/2K(x, y)S(y)1/2 is symmetric. This yielded a better Nyström approxi-

mation scheme:

ψ̂(x) =
1

nλ

∑

K(x, y)S(y)ψ̄(y) (5.12)

Zhang et al. [18] further extended Eqn. 5.12 to solve the normalized cut problem:

D−1/2(x)K(x, y)D−1/2(y)ψ(y) = λψ(y) (5.13)

using the Nyström approximation of:

ˆψ(x) =
1

λ

∑

D−1/2(x)K(x, y)S(y)D−1/2(y)ψ̄(y) (5.14)

where K and D are the similarity and diagonal degree matrices, respectively.

At first glance, the Eqn. 5.14 corresponds to Eqn. 5.3 in the Diffusion Map

framework (Section 5.3) and it seems that Eqn. 5.3 can be directly replaced by

Eqn. 5.14 to extend the Diffusion Map. However, if we look at it carefully, Eqn. 5.3

expects a kernel matrix K that has distribution separated from geometry. Kernel K

is required to compute ψ̄, D(x) =
∑

yK(x, y) and the extension itself. Separating

distribution from geometry is an essential step for the Diffusion Map to obtain a

true Laplace-Beltrami operator and to analyze the underlying manifold. However,

in retrieval applications, we usually have weight matrix Kw (the kernel before dis-

tribution separation step), and in particular, the associated submatrices Aw and Bw

only. In the following, we discuss how to obtain distribution separated K from Kw

efficiently without requiring the full matrix of Kw.
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First, we consider putting symmetric kernel Kw directly into the following eigen-

problem.

∫

Kw(x, y)S(y)ψ(y)dy = nλψ(x) (5.15)

From Eqn. 5.12, the Nyström approximated eigenvectors can be rewritten in

matrix form as:

ψ̂ =





Aw

BT
w



SŨΛ−1 (5.16)

where Ũ = ψ̄, Λ = nλ, Aw = Kw(x, y) x, y ∈ Ô and B = Kw(x, y) x ∈ O−Ô, y ∈

Ô.

Since ψ̂ is the approximated leading eigenvectors of Kw:

Kw ≈ ψ̂Λψ̂T

=









Aw

BT
w



SŨΛ−1



Λ
(

Λ−1ŨTST
[

Aw Bw

])

=





Aw

BT
w



SŨΛ−1ŨTST
[

Aw Bw

]

(5.17)

Let µ = S1/2Ũ . Since S1/2AS1/2 is symmetric, we have

S1/2AS1/2 = µΛµT

(S1/2AwS
1/2)−1 = (µΛµT )−1

S−1/2A−1
w S−1/2 = (µT )−1Λ−1µ−1

= µΛ−1µT

= S1/2ŨΛ−1ŨTS1/2

and so, A−1
w = SŨΛ−1ŨTS

By substituting it back to Eqn. 5.17, we have:
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Kw ≈ K̄w =





Aw

BT
w



A−1
w

[

Aw Bw

]

=





AwA
−1
w Aw AwA

−1
w Bw

BT
wA

−1
w Aw BT

wA
−1
w Bw





=





Aw Bw

BT
w BT

wA
−1
w Bw





(5.18)

This essentially shows that Density-Weighted Nyström has the same matrix com-

pletion view as general Nyström [104].

Suppose now we want to solve the following eigenproblem:

∫

K(x, y)S(y)ψ(y)dy =

∫

Kw(x, y)

pw(x)pw(y)
S(y)ψ(y)dy

= nλψ(x)

(5.19)

where pw(x) =
∑

yKw(x, y). Since we do not have the full matrix Kw, we approxi-

mate pw(x) =
∑

yKw(x, y) by p̄w as below:

p̄w(x) =
∑

y

K̄w(x, y)

=





∑

y Aw(x, y) +
∑

y Bw(x, y)
∑

xBw(x, y) +BT
wA

−1
w

∑

y Bw(x, y)





(5.20)

To separate distribution from geometry, that is to compute K from Kw, we

compute submatrices A and B as follows:

A(x, y)←
Aw(x, y)

p̄w(x)p̄w(y)
, x, y ∈ Ô

B(x, y)←
Bw(x, y)

p̄w(x)p̄w(y)
, x ∈ Ô\O, y ∈ Ô

(5.21)

where A and B are submatrices of K =





A B

BT C



.

After obtaining A and B, we can now use Density-Weighted Nyström extension

to solve graph normalization and extrapolate eigenfunctions to the whole database.
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5.4.4 Nyström Speed-up for Retrieval

Nyström extension not only avoids expensive eigensolver on large matrices, but also

reduces computing the expensive similarity measures. Given an unknown query, it

is sufficient to evaluate the distances between the new query and the landmarks

(Figure 5.8, hatched region) to obtain the query embedding coordinate. Since the

coordinate is Euclidean, a spatial indexing technique, such as the kd-tree, can be

used. This is very attractive because graph / bag-based methods are usually slow

and non-metric. Nyström extension thus provides a way to scale these algorithms

to large databases.

To compute a query coordinate, it is sufficient to construct

B̂w(x, y)← [Bw(x, y) exp

(

−
W (q, y)2

σ

)

] (5.22)

where x ∈ O\Ô, y ∈ Ô and W (q, y) is the distance matrix (column vector) between

new query q and all landmarks Ô.

To further speed up online query searches, we can also precompute eigen-de-

composition. We have observed that eigen-decomposition of submatrix A depends

on our proposed distribution separation step. Given a new query, the distribution

p̄w(x) can be written as:

p̄w(x) =





∑

y Aw(x, y) +
∑

y B̂w(x, y)
∑

x B̂w(x, y) + B̂w
T
A−1
w

∑

y B̂w(x, y)





=





∑

y Aw(x, y) +
∑

y Bw(x, y) + exp
(

−W (q,y)2

σ

)

∑

x B̂w(x, y) + B̂w
T
A−1
w

∑

y B̂w(x, y)





'





∑

y Aw(x, y) +
∑

y Bw(x, y)
∑

xBw(x, y) +BT
wA

−1
w

∑

y Bw(x, y)





(5.23)

The last step is a good approximation because the addition of a column vec-

tor exp
(

−W (q,y)2

σ

)

is negligible in large databases. The eigenproblem then solely

depends on A and S only and can be precomputed offline. It is thus sufficient to

extrapolate embedding for all objects (databases and queries) by simple matrix mul-

tiplication during online query search. It is a considerable speed-up especially for

large databases.
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Figure 5.9 shows some of the Matlab codes. We have separated the offline pre-

computation algorithm from the online extension algorithm. In the online section, a

simple multiplication of [A;hat B']*S with the precomputed eigenvector matrix

product VE is required to extrapolate all coordinates including the database and

query objects. We have also listed the corresponding equations next to the codes

for a clear understanding of our method.

5.4.5 Query Alignment

Existing works of embedding retrieval apply Nyström extension to both the database

and query objects, i.e., a set of landmark objects are chosen and then the embedding

coordinates of all objects in the database are computed using Nyström. To compute

the embedding coordinate for a query, distances to the same set of landmarks are

computed, and extended with Nyström. All these assume that the Nyström embed-

ding gives the best approximation that does not distort retrieval accuracy. However,

as seen from our experiments, this is not the case. For example, in the right diagram

of Figure 5.8, the quality of Nyström embedding can be seriously affected that some

coordinates of dogs are closer to those of wolves. When the nearest neighbor search

is applied on this embedding, retrieval accuracy degrades as shown in Figure 5.10.

This is a practical limitation of Nyström extension. Though it is well-known that

increasing the number of landmarks can improve the quality of embedding, it also

increases the computation of expensive similarity measures (e.g., graph / bag-based

matching in our case) and significantly degrades the efficiency.

As far as we know, this problem has never been addressed in embedding retrieval

literature. Our proposed solution is based on the understanding that the embeddings

from Nyström and Eigensolver are two distinct but highly similar embeddings. If

we can align the query Nyström coordinate to the Eigensolver one, we can carry

out the nearest neighbor search by building a spatial indexing tree on Eigensolver

embedding. This results in a fast (Nyström) and accurate (Eigensolver) retrieval

scheme.

Aligning two arbitrary embeddings and establishing correspondences have been

discussed in various literature. The general idea is to exhaustively evaluate each
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1 %%% Offline precomputation %%%

2 A inv = pinv(A);

3 % precompute distribution

4 bar p1 = sum([A; B'], 1); Eqn.5.23

5 % separate distribution from geometry

6 A = A./(bar p1*bar p1'); Eqn.5.21

7 % eigen decomposition

8 d Az si = diag(1./sqrt(sum(A*S,2))); Eqn.5.11

9 [V E] = eig(d Az si*(A*S)*d Az si);

10 [V,E] = SortEigen(V,E);

11 % precomputed result

12 product VE = d Az si*V*pinv(E);

1 %%% Online query extension %%%

2 % append query to landmarks distance to B

3 hat B = [B W]; Eqn.5.22

4 % distribution adjustment

5 p1=sum([A;hat B'],1); Eqn.5.23

6 p2=sum(hat B,1)+sum(hat B',1)*A inv*hat B;

7 bar p = 1./[p1 p2]';

8 A = A.*(bar p(1:n)*bar p(1:n)'); Eqn.5.21

9 hat B=hat B.*(bar p(1:n)*bar p(n+(1:m))');

10 % weighted Nystrom

11 d Ax = sum([A;hat B']*S,2);

12 d Ax si = diag(1./sqrt(d Ax));

13 d pi = d Ax ./ sum(d Ax);

14 % extension by precomputation

15 V ex=d Ax si*([A;hat B']*S)*product VE; Eqn.5.14

16 % diffusion map embedding

17 for i=1:size(V ex,2) Eqn.5.4

18 V left(:,i) = V ex(:,i)./sqrt(d pi);

19 end

Figure 5.9: Example MATLAB code for computing the Diffusion Map using Distri-

bution Adjustment, Density-Weighted Nyström extension and heuristic precompu-

tation, where A{n× n} and B{n×m} are submatrices of K.
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Figure 5.10: Retrieval Error due to the Weighted Nyström Extension. Aligning

embedding preserves retrieval accuracy.

pair of eigenvectors and find the best correspondence with minimal differences. As

pointed out in [105], there are three major problems to align two embeddings: eigen-

mode switching, sign flip and non-rigid alignment. Eigenmode switching refers to

the switching order of eigenvectors when corresponding eigenvalues are close to each

other. Sign flip results from the arbitrary determination of signs by eignsolver. Non-

rigid alignment refers to the discrepancy between embeddings when they are scaled

or skewed.

To handle eigenmode switching and sign flip, we propose to perform a simple

search on s leading eigenvectors (Algorithm 2). We set s = 3d for all our experi-

ments. Instead of evaluating Euclidean distance between two whole sets of embed-

dings, we seek to maximize the value: arg max
ψ̂align

∑

i ψi · ψ̂aligni, where ψ and ψ̂ are

the embeddings from Eigensolver and Nyström extension, respectively. ψ̂align is the

aligned embedding of ψ̂. The larger the value, the better the alignment is between

the two sets of embeddings. Simple dot product is sufficient because ψ and ψ̂ are

very similar to each other.

After finding the best eigenpairs, we would like to compute the correct query

coordinate in the Eigensolver embedding. This can be accomplished by non-rigid

alignment using Thin Plate Spline (TPS) [106]. TPS is a coordinate transform

method. Given some anchor points, TPS finds the function that passes through

the points with minimal error. It then uses interpolation on the function to find

the transformed coordinate of an arbitrary point. Since our concern is the query
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Algorithm 2: Aligning Eigenmode-Switched and Sign-Flipped embeddings.

Input: ψ1..N , ψ̂1..n, d, s

Output: ψ̂align1..d

define a set J ← 1..s

for i← 1 to d do

find the eigenpair with largest ‖ψi · ψ̂j‖ where j ∈ J

if ψi · ψ̂j < 0 then

ψ̂j ← −1× ψ̂j

end

J ← J\j

ψ̂aligni ← ψ̂j

end

coordinate only and a natural correspondence exists between the two embeddings,

we apply TPS to the local neighbors of the query ψ̂align(q), resulting in a fast one-

step algorithm. First, we find out the n̄ neighbors of the query in the Nyström

embedding ψ̂align. Then, we transform the Nyström coordinates of these neighbors

into their correspondences in the Eigensolver embedding. The query Eigensolver

coordinates can then be obtained by TPS Interpolation. Another note is that since

we apply TPS on local neighbors only (n̄ ≈ 100), TPS becomes a small constant

cost.

5.4.6 Choosing Landmarks

Since our algorithm is based on Weighted-Nyström, we can generate the set of

landmarks using K-mean. We first generate some initial clusters randomly for K-

mean clustering. Then, we compute the density and the Nyström embedding, and

align it to the Eigensolver embedding. The previously defined dot-product cost is

then used for fast pruning of poor embeddings. The higher the score, the better the

quality of the Nyström embedding is. We repeat the whole step 15 times simply

because K-mean is initialized by random parameters. Once we get the best set of

landmarks of a given m, we check if the score is good enough for retrieval. We
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compute the Precision and Recall (PR) using such embedding and compare the PR

against that of the true embedding. If the error is less than a certain threshold (10−4

in our implementation), the algorithm outputs the best set of landmarks; otherwise,

we increment m. The algorithm is an offline process.

5.5 Complexity Analysis

After discussing the retrieval framework, we try to give a complexity analysis here.

We refer to Figure 5.6 and discuss the complexity in each step.

Offline Process:

1. Computing distance matrix W requires n× the complexity of the underlying

similarity measure, where n is the number of objects in the database. For

TPR, it is O(n3
t log nt) where nt is the number of topological features. For

MRG, it is O(nr × (mr + nr)) where mr and nr are the numbers of r-nodes of

the two matching models.

2. Parameters optimization step seeks optimal σ and t iteratively. It requires

sparse eigensolver. In our implementation, we use Matlab code eigs. It is

an implementation of Lanczos method which is part of the ARPACK package.

However, it is difficult to define a precise running time of such method be-

cause it also depends on sparsity which is data dependent. In general, solving

eigenproblem for full matrix requires O(n3). We take this as the worse case of

the algorithm. The whole procedure, thus, requires l × O(n3) where l is the

number of iterations (l ≈ 20 in all our experiments).

3. To choose landmark objects, we start from a small m ≈ 15 and increment

it by 30. For a given m, we randomly select 15 sets of clusters for the K-

mean clustering. We then compute and align the Nyström embedding with

eigensolver embedding and compute the alignment cost. It takes around 5-6

iterations to get the best landmark sets. The complexity of alignment step is

shown later.
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Online Process:

1. Compute query distance to landmarks takes m× the complexity of the under-

lying similarity measure, where m is the number of landmarks and m << n.

2. Nyström requries O(m3) for solving eigenproblem and O(m2n) for extend-

ing eigenvector to the whole database. Since the eigenproblem can be pre-

computed, we only require O(m2n) to obtain the approximated query coordi-

nate.

3. Alignment step requires O(s2) = O(d2) where s = 3d and d is the number

of dimensions. We also have to compute Thin Plate Spline (TPS) for non-

rigid alignment. However, since we take a fixed number of points in local

neighborhood n̄ = 100, it is a constant cost. The whole alignment step is

constant with respect to a predefined dimension d.

The offline process is a slow process with overall complexity O(n3). It is mainly

due to the large eigenproblem that it has to solve. The online process is much faster

with overall complexity m× complexity of similarity measure +(m2n).

5.6 Experimental Results

In order to test and evaluate the performance of the proposed retrieval framework,

we have created a database consisting of 1,020 3D articulating models. They are

divided into 13 groups. Some are very distinct (e.g., Frog), while others are very

similar to each other (e.g., Dog and Wolf, Lion and Cat) as shown in Figure 5.11.

We have incorporated two methods, MRG [17] and TPR [20], into our retrieval

framework, and compare the performance in term of accuracy (Section 5.6.1) and

speed (Section 5.6.3). We also analyze the proposed alignment step on retrieval

performances 5.6.2. All the experiments presented in this section are performed on

a PC with a Intel Core 2 Duo 2.33-GHz CPU and 2-Gbyte RAM.
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Baby Bear Boy Cat

Dog Dolphin Frog Girl Horse

Lion Penguin Raptor Wolf

Figure 5.11: 13 groups of models in our database.

5.6.1 Accuracy Comparison

Figure 5.12(a) shows the Precision and Recall (PR) of applying TPR in our retrieval

framework. The precision and recall is consistently higher than those of the original

method. There is a performance increase of around 30% at high recalls, due to

the fact that our framework can effectively maximize inter-class distances among

different types of models. The PR curve also shows better performance than Multi-

Dimensional Scaling. In MDS, all (far and close) pairwise distances are preserved in

the embedding space. However, it is not useful to analyze data lying on manifold.

That is why our method can handle these data better.

In Figure 5.12(c), we observe a performance increase when our retrieval frame-

work is applied on MRG [17]. (Note that MDS generally cannot be applied on

non-metric distance measure as false dismissal will occur.) The PR curve of MDS

is consistently lower than the original method. The performance increase in our

method results from the fact that these data lie on manifold. However, the increase

is slight. We have diagnosed that the manifold becomes disconnected in some of the

model groups, e.g., baby and bear in Figure 5.3 (left). We thus apply the proposed

augmented kernel method (Section 5.4.2) using a simple bipartite matching method

(BPM) [46]. There is a 20% performance increase at high recall as shown in Figure

5.12(e), and the PR is consistently higher than individual methods. This shows that
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Figure 5.12: PR’s of TPR (first row) and MRG (second row), with MDS and diffu-

sion embedding. Third row: PR of augmenting MRG with BPM.
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the proposed method can effectively pull these disconnected manifolds together.

For all these precision and recall curves, we also plot the spectrum of MDS and

Diffusion Map. Diffusion Map can effectively compress the manifold data in the

embedding space into the first few eigenvectors. For MDS, the whole spectrum

spreads across 300 eigenvalues. Using merely 10 eigenvectors cannot represent these

pairwise distances well. This also explains why our method performs better than

MDS.

5.6.2 Nyström Alignment and Retrieval Error

As discussed in Section 5.4.5, error due to Nyström extension can greatly impact

retrieval performance. Figures 5.13(a) and 5.13(b) (both in logarithmic scale) show

the retrieval error due to Nyström extension. By adapting the Density-Weighted

Nyström extension, our method performs better than those of original Nyström

extension. We make one step further to align Nyström embedding to Eigensolver

embedding. Such step preserves retrieval accuracy with retrieval error consistently

lower than the two methods mentioned above. Figures 5.14(a) and 5.14(b) also

show the PR curves using Nyström embedding with 150 landmarks as well as the

PR curves after our proposed alignment step. It should be noted that, we have de-

liberately remove the query object from the database during the alignment process.

The results thus reflect the retrieval effect of a new query. All these results show

that our proposed framework is important for the retrieval application.
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Figure 5.13: Comparing the retrieval error when using Nyström, Density-Weighted

Nyström and our approach.
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Figure 5.14: Comparing the Precision and Recall when using Eigensolver embedding,

Density-Weighted Nyström embedding and our approach.

5.6.3 Time Comparison

Figure 5.15 compares the retrieval time per query. Since MRG (a graph-based

method) is non-metric, indexing techniques cannot be applied. The retrieval time

for a query is long as it involves sequentially scanning the whole database. TPR (a

bag-based method) is metric, and distance-based indexing (VP-tree) is applicable.

However, due to the high intrinsic dimension of geometric features, the method

soon approaches brute-force. Our embedding retrieval framework can incorporate

both methods whether metric or non-metric. Since our framework only requires

comparing the query with a small set of landmark objects (150 objects, about 15%

of the whole database), it is roughly 3 (TPR) and 5 (MRG) times faster than

their corresponding sequential searches. Since a spatial indexing technique (Kd-

tree) is extremely fast, the time spent on k-nn search is so small that it can be

neglected compared to the time spent on evaluating the similarity measure. Hence,

when our retrieval framework is applied on the two methods (MRG and TPR),

the computational costs are roughly constant as the required number of nearest

neighbors increases. In addition, our method does not suffer from the curse of

dimensionality because of the reduced dimension. Further, our method consistently

performs faster than the indexing approach even when k is small.

In our experiments, the time for comparing two models using TPR and MRG are
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based on C++ implementation (Section 4.7). For all the other discussion and exper-

iments, we use Matlab 2007 for implementation. These include Diffusion Map, the

kernel method, general and Density-Weighted Nyström extension and the proposed

Nyström alignment scheme.
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Figure 5.15: Retrieval Time Comparison of sequential scan (MRG, TPR), distance-

based indexing (TPR+VPTREE), and our framework (MRG, TPR).

5.7 Conclusion

In this chapter, we have pointed out that MRG (graph) and TPR (bag-based match-

ing) methods cannot handle 3D articulated geometry models well with similar skele-

ton, as they project data on nearby manifolds. Increasing the number of geometric

features may increase the distance between these manifolds but the intra-class vari-

ance is usually larger than the inter-class distance. Retrievals using these methods

may fail especially when the database contains many similar skeleton models. Our

idea here is to use manifold learning algorithms to maximize inter-class distance. To

handle large databases, we have also adapted the Density-Weighted Nyström exten-

sion for the computation of the Diffusion Map and use correspondence analysis to

define a retrieval framework to reduce Nyström extension error. We have shown with

a number of experiments that the proposed framework improves retrieval accuracy

and speed significantly.



Chapter 6

Feature Extraction and Matching

for 3D Motion Captured Data

6.1 Introduction

Apart from 3D articulated geometry models, 3D motions are also important to

nowadays graphics application. It is used not only in animated films, but also in

computer games and crowd simulations. There are a number of methods developed

to produce human motion data. A well-known method is called motion capture

(MoCap). In this method, motion sensors are attached to various parts of a human

actor. As the human actor performs some specific movement, the computer records

the position of each sensor at each time frame. This creates a series of motion frames,

known as time-series. With this method, real human motions can be captured and

used to drive the movement of virtual characters (e.g., 3D articulated geometry

models). By joining several time-series together, more complex human motions can

be created [2], [3]. However, as the number of motions in the database grows, it

becomes difficult to select an appropriate motion that satisfies certain requirements.

As such, motion retrieval has become one of the major research focuses in motion

capture animation in recent years.

To design a reliable motion retrieval method, there are many challenges to ad-

dress. First, a human model contains many joints and human animation consists of

many time series, each representing the motion of a single joint. A method should

95
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be fast enough to enable interactive retrieval of matched motions despite the size of

the database. Second, similar motions may still be differed in many ways, such as

length, local shifting, local and global scaling, which affect the matching accuracy.

While most existing methods use Dynamic Time Warping or Uniform Scaling, we

consider another method to handle the matching problem here.

We have first observed that motion sequences may consist of local shifting, local

and global scaling and they are rather similar in shape. We have also observed

that existing matching methods suffer from restricted matching where frames are

matched to nearby frames in a temporal manner only. This limits the improvement

on accuracy and speed. To match these sequences and improve efficiency, we propose

to model the temporal matching problem as a bag-based matching problem. By

using Earth Mover’s Distance, an efficient and accurate method can be defined.

However, because EMD allows morphing from any frame of a motion to any frame

of another motion, strayed matching may result. To solve this issue, we propose

a ground distance that penalizes strayed matching. Our experimental results show

that the proposed method is promising.

Since this chapter discusses an independent application, we present the chapter

as a coherent whole. In Section 6.2, we summarizes existing motion matching and

retrieval methods. Section 6.3 presents our method in detail. Section 6.4 evalu-

ates the performance of our method through a number of experiments. Section 6.5

evaluates the experimental results and Section 6.6 briefly concludes this work.

6.2 Related Work

Motion retrieval research is still relatively new compared to retrieval research of

other multimedia data. There are only a few motion retrieval methods in the liter-

ature. A number of them are extended from or strongly related to existing audio

retrieval methods. A good example is the Dynamic Time Warping (DTW) method.

DTW is a signal processing technique used to find a non-linear alignment between

two signals, while minimizing the error between them. Many audio and speech pro-

cessing algorithms as well as music retrieval methods apply DTW extensively. As
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motion data can be considered as multi-attribute time-series, applying DTW on

motion retrieval is straightforward. Many motion retrieval systems use DTW as the

similarity measure [2], [107], [108], [109], [110].

However, DTW has low efficiency. In addition, as motion capture data con-

sists of many parameters and attributes, dimension reduction methods are typically

employed to reduce computational complexity. The GEMINI framework, proposed

by [111], was one of the earliest examples. It first extracts a low-dimensional ap-

proximation for each time-series in the database. Then a distance metric is defined

to lower bound the approximation. Usually these low-dimensional approximations

are stored in a spatial data structure, like R-Tree, for fast retrieval. There are many

dimension reduction methods, which all adapt similar framework. Notable examples

include Fourier transform [112], wavelet transform [113], average values in adjacent

windows [114] and bounding boxes [82]. In order for DTW to support indexing, [8]

proposes the bounding envelopes, similar to the GEMINI framework. [9] further sug-

gests that similar motions which are differed by uniform scaling cannot be matched

by DTW because DTW can only handle subtle local differences after the best glob-

ally scaled match has been found [115]. Hence, [9] proposes an algorithm which

is based on uniform scaling to match the query to those globally scaled candidate

motions. However, based on our understanding, in order to handle motions that

contain both local and global differences, one needs to apply DTW and Uniform

Scaling separately, significantly increasing the computational cost.

Recently, a geometry based method is proposed [116] by extracting boolean

features from geometric relationships of motion data. These qualitative features

are compact and descriptive. [117] extends the work by introducing a linear-space

indexing structure, fuzzy queries and adaptive fuzzy hits. Although these features

are descriptive, they require textual descriptions to be used as queries, and users

need to define specific geometric features for comparison. Subsequent work [118]

considers the method for the creation of motion templates. [119] provides a GUI

that eliminates the need for textual description. On the other hand, [120] proposes

to segment and cluster geometric features automatically into an indexing tree, and

a matching algorithm based on peak points. However, in general, these methods
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concern finding logically similar motions but not a close match.

Our method also considers dimensionality reduction. However, we extract fea-

tures based on the Douglas-Peucker algorithm, which was originally proposed as

a line simplification method to reduce the number of points in data representa-

tion [121]. Our method differs from all previous methods in that we do not nec-

essarily require a fixed number of dimensions. This has the advantage that our

method can best preserve the original motion. This is particularly good for joints

such as hands, where vigorous motions are expected and we may use more features

to represent them. On the other hand, for those stationary joints such as head, our

method extracts only a few features and thus reduces computational cost.

In this part of the research, we are interested in finding motions that are en-

tirely similar to a given query. While a typical motion retrieval method may only

handle local shifting, local scaling or global scaling, we try to tackle the same prob-

lem from another point of view. We convert the matching into a transportation

problem. We compute the minimum energy to morph one motion sequence to an-

other using EMD. As this work focuses on accuracy analysis, we compare mainly

with DTW and Uniform Scaling method. Though we have not implemented any

indexing scheme, extending our method to support indexing can be easily achieved

because our distance function is a metric.

6.3 Method Overview

Suppose that we want to determine the similarity between two motion sequences,

Q = q1, q2, · · · , qN

C = c1, c2, · · · , cM

where Q is the query motion of length N and C is the candidate motion of length

M . It is important that the similarity method considers each feature of Q and C

when comparing the data, where the features are extracted from Q (or C) and are

used to represent Q (or C). Obviously, different similarity methods use different

features for comparison. For example, Euclidean distance compares the distance of
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the joint position (or angle) in each frame of Q and C. The number of features is

therefore equal to the number of frames. This implies a very high dimensionality of

the feature space. Hence, it is favorable to reduce the dimensionality of this space

and therefore the computational complexity. On the other hand, we also need to

minimize the data loss during this dimensionality-reduction process. As we reduce

the dimensionality of the feature space, we must exploit properties of the data to

facilitate this procedure.

We propose a new approach to solving the human motion retrieval problem. To

reduce the dimensionality of the feature space, we apply the Douglas-Peucker curve

trimming algorithm. This reduction technique gives a very tight approximation of

the time-series data for each joint rotation. By considering Douglas-Peucker points

as pieces of mass and holes in space, we can effectively apply the EMD method to the

point sets. The EMD value returned provides a similarity score between the query

and candidate. Applying this technique to every joint of the human skeleton, the

summation of the values provides a score for the overall skeleton animation. In our

implementation, we weight the joint scores according to their perceptual importance.

For example, arm rotations receive a higher weighting than finger rotations since

arm rotations are perceptually more important in general.

6.3.1 Feature Extraction

In reducing the dimensionality of the features (i.e., frames) from N in n features,

n < N , we apply the Douglas-Peucker (D-P) algorithm to the motion data. In

human motion data, the joint rotation value from one frame is generally similar

to its predecessor and successor frames. This property of motion data allows the

application of D-P approximation.

6.3.1.1 The D-P Algorithm

Commonly used in data compression, the D-P algorithm is a recursive procedure

that represents time-series data using a series of straight lines. Given a time-series

Q and a value ε, the D-P algorithm begins with a single line with end points at q1

and qN . For each frame in Q, D-P computes the distance from the line, storing the
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maximum distance of any point from a line. If the maximum distance is greater

than ε, from the line, the line is split into two lines and the D-P algorithm is then

called on the two line segments produced. In this manner, the algorithm recursively

splits the line until there are no frames greater than ε from some line. Figure 6.1

illustrates this operation.

£`
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£`

£`
£`

£`

£`

£`
£`

£`

£`

a)

b)

c)

d)

Figure 6.1: Recusive Douglas-Peucker Algorithm

6.3.1.2 Feature Representation

To apply the D-P algorithm here, each line segment representing the motion of a

joint in time contains a start point and an end point. Each point (or feature in our

method) contains x, y and z rotation values, along with a t value indicating the

time position of that point, i.e., the frame number, and an m value indicating the

number of frames it encapsulates (or the mass as will be explained in Section 6.3.2).

We define the i-th feature as follows:

< xi, yi, zi, ti,mi >

Hence the feature set of one joint motion becomes:

F = {< x1, y1, z1, t1,m1 >, · · · , < xn, yn, zn, tn,mn >}

Note that the D-P algorithm is a lossy compression algorithm and therefore some

data loss is unavoidable. The accuracy of the approximated data depends on the

number of features used to approximate it, and thus the threshold ε.
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Figure 6.2: ASF Motion Hierarchy

6.3.2 Feature Matching

For feature matching, we apply the EMD method on the features extracted by the D-

P algorithm. To our knowledge, the EMD method has never been applied to human

motion matching before, although it has been applied to image retrieval [86] as well

as model retrieval (Section 4) with considerable success. By applying the EMD to

the extracted features of each joint in the human body, the summation of results for

each joint provides an overall dissimilarity score for the entire skeleton. In Figure

6.2, we gives an illustration of various joints which are detailed in ASF (motion and

hierarchy) file format. As mentioned earlier, we weight each joint according to its

importance manually. In general, we assign smaller(larger) weights to joints that

correspond to smaller(larger) components. These weights are detailed in Figure 6.3.

Given the extracted features of the query, Fq, and those of the candidate, Fc,

the dissimilarity score is computed as follows:

DEMD(Fq, Fc) =

|J |
∑

j=1

Wj × EMD(Fq,j, Fc,j) (6.1)

where Wj is the weight of joint j ∈ J .
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1 root = 100
2 lowerback = 20
3 upperback = 20
4 lowerneck = 10
5 upperneck = 10
6 head = 5
7 thorax = 20
8 lclavicle = 70
9 rclavicle = 70

10 lhumerus = 60
11 rhumerus = 60
12 lradius = 50
13 rradius = 50
14 lwrist = 7
15 rwrist = 7
16 lhand = 3
17 rhand = 3
18 lfingers = 1
19 rfingers = 1
20 lthumb = 1
21 rthumb = 1
22 lfemur = 70
23 rfemur = 70
24 ltibia = 60
25 rtibia = 60
26 lfoot = 7
27 rfoot = 7
28 ltoes = 1
29 rtoes = 1

Figure 6.3: Weights of Joints.

6.3.2.1 Feature Matching and EMD

In the EMD framework (see Section 4.6.1 for detail), we are allowed to specify the

mass of each feature. It is a value that describes how important the feature point

is. The larger this value, the higher the importance. To explain it in physical terms,

we can indicate the mass of a feature as the size of a circle as shown in Figure 4.16.

In our implementation, the mass is stored as one of the components in a feature,

F [mi], as described in Section 6.3.1.2.

To compute the ground distance, dik, to transport one unit of mass from one

location to another, we consider the Euclidean distance between each dimension of

a feature point, x, y, z and t as follows:

dik =
√

(Fq[xi]− Fc[xk])2 + (Fq[yi]− Fc[yk])2 + (Fq[zi]− Fc[zk])2 + (Fq[ti]− Fc[tk])2

(6.2)

where Fq and Fc are the features extracted by the D-P algorithm from the query

and the candidate, respectively, for one joint. In the 3D motion clips, x, y and z
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represent the joint angles in degrees. In our implementation, t is the unit of time

frame, which is supplied by the motion clip, and we apply no normalization in our

calculation.

Using the constructed cost matrix, the optimization of the flow matrix may help

determine the similarity between the query and the candidate. For example, if a

query contains a section where a subject raises his hand and then lowers it, and the

candidate also contains similar motion, then there would be a high flow between

these features requiring a low amount of energy. On the contrary, if the candidate

does not contain this motion, the features of the query must be transported to some

feature(s) of the candidate using a high amount of energy. This results in a higher

overall energy transfer, indicating a poor similarity between the two motions.

6.3.2.2 Comparison to the Sakoe-Chiba Band

In our method, we penalize the transfer of a piece of mass to a hole with a different

start frame t. As pointed out by Mr Mark Corbyn, we observed that this produces

a similar effect as the Sakoe-Chiba band, which is widely used in Dynamic Time

Warping.

There are two important properties in applying the Sakoe-Chiba band in DTW.

First, it prevents frame matching from straying too far from the diagonal of the

matrix, i.e., matching frames which lie outside the Sakoe-Chiba band. Second, it

can provide a significant speed improvement. This is achieved by restricting the

frame matching computation process to only those frames that lie within the Sakoe-

Chiba band [122].

By considering the t value in our method we restrict frame matching to within

the diagonal region. This is similar to the first property of the Sakoe-Chiba band.

However, while the Sakoe-Chiba band implements a sharp cut-off point beyond

which frames cannot be matched, the weighting in our Ground Distance provides a

gradual restriction (Figure 6.4). As a result, our method does not have the speed

improvement as the Sakoe-Chiba band does because our method needs to compute

the entire cost matrix.
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Figure 6.4: Penalizing strayed matching from the diagonal and its similarity to

Sakoe-Chiba band.

6.4 Experiments and Results

To evaluate the performance of the proposed matching method on different motion

clips, we discuss some of the experiments that we have conducted. We have con-

structed a small motion database from 115 different motion clips. We categorize the

115 motions into 5 motion groups, climbing, jumping, running, sword playing and

walking. All the experiments presented here are performed on a PC with a Pentium

4 3GHz CPU and 1GB RAM. All experiments presented here are based on our Java

implementation. The motion files are downloaded from CMU [123].

The motion clips typically contain more than one action within each clip. To

obtain more accurate performance results, we manually break each of the clips down

into basic motion clips with a single action. The basic motion clips have different

lengths varying from 150 to 600 frames. We down-sample all the motion clips into

128 frames while ensuring that the down sampled motion clips do not have apparent

artifacts. In our experiments, DTW and our method use only these down-sampled

motion clips as input. However, in order to allow scaling in Uniform Scaling, we

use the basic motion clips as input and we take the first 128 frames of the basic

motion clips as the query for scale computation. This is due to the fact that down
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sampling may produce the effect of scaling. Our objective in the experiments is to

find the most similar motion clips within the motion database. For comparison, we

have implemented Dynamic Time Warping and the Uniform Scaling method. In

our DTW implementation, we use a Sakoe-Chiba Band of width r=10% of the basic

motion to control local shifting and scaling. In Uniform Scaling, we use a maximum

scaling factor of 1.2 to search for the best suitable scale. For time comparison, we

also apply bounding envelopes for fast pruning of irrelevant motions.

6.4.1 Performance on Motion Discrimination

In the first experiment, we compare the retrieval performance of the three methods,

DTW, Uniform Scaling and our method, using the similarity matrix. To generate

the matrix, we first compute the similarity score between every motion pair in our

database. We then normalize the results with the maximum and minimum of the

corresponding matrices to show the contrasts. The darker the color, the more similar

the two motions are.

Figure 6.5 shows the similarity matrices of the three methods. To improve read-

ability, we have clustered the similarity results according to the five motion groups.

They are labeled as well as highlighted with five different colored squares in the

diagrams. These similarity matrices, M , are also normalized into the same range

[0,1] to compare their contrasts, using the following formula:

M(x, y) =
M(x, y)−min(M(x, y))

max(M(x, y))−min(M(x, y))
(6.3)

From the similarity matrices, we have the following observations:

1. The diagonal lines of the three matrices give the darkest color. This means all

three methods perform well in identifying the same motion.

2. In general, the results within the five colored squares show dark color for

the three matrices. This means that all three methods are able to give high

similarity scores for similar motions.

3. Our method also gives a larger similarity contrast than DTW and Uniform

Scaling when comparing two motions from different groups, as the similarity
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(a) Uniform Scaling

(b) Dynamic Time Warping

(c) Our Method

Figure 6.5: Similarity Matrix of Uniform Scaling, DTW and EMD
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matrix of our method generally gives lighter colors outside the five square

regions. This may suggest that our method can distinguish different motion

groups relatively easier with high contrast.

6.4.2 Performance on Motion Retrieval

In the second experiment, we compare the retrieval performance of the three methods

using the average precision and recall graph (Figure 6.6). This graph is generated

by taking each of the motions in the database as query, searching similar motions

from the same database and averaging all the precision and recall values.

Figure 6.6 shows our precision and recall results. From the diagram, our method

performs much better than the other two methods because our method always gives

a better precision for any given recall, especially when the recall is above 0.1. This

finding confirms our similarity analysis that our method can distinguish dissimilar

motions. Figure 6.7 plots the precision and recall for each of the motions in our

database.
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Figure 6.6: Average Precision Recall.

From Figure 6.7, we can see that all three methods perform very well in the run

motion, whilst our method performs better in the climb, jump, sword play and walk

motions. All three methods have similar good performance in the run motion may

suggest that all these run motions are highly similar to each other within the group

and are very distinctive from motions of other groups. This also accounts for the
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high precision (≥ 0.9) at high recall (1.0). Currently we can only perform precision

and recall analysis on five groups of motion data because most data available at [123]

consist of many different kinds of motions and cannot be manually classified into a

single meaningful group.

6.4.3 Speed Comparison and Complexity Analysis

In the third experiment, we would like to compare the performance of the three

methods based on speed and computational complexity. In Uniform Scaling, we try

to find the best scaled match between the query and the candidate. So, the time

complexity is O(p× (M −N)), where p, M and N represent the lengths of a scaled

time series, the candidate and the query, respectively. The time complexity of DTW

is roughly O(MN).

The time complexity of EMD used in our method is harder to analyze because it is

based on the simplex algorithm. However, according to our earlier analysis (Section

4.7.1.4), if the algorithm is modeled as a bipartite matching problem, the complexity

is O(n3 log n), where n is the number of features. Based on this time complexity,

it may appear that DTW would perform better than EMD method. However, our

experimental results as shown in Table 6.1 reveal that EMD actually performs better

than DTW. This is because DTW computes all the motion frames (128 frames) but

EMD, by applying the D-P algorithm, involves a far smaller number of features.

From our experiments, the number of features used in the EMD algorithm varies

from 2 to 30. This explains why the computation time consumed by EMD is far less

than DTW method.

Uniform Scaling DTW EMD

Climb(10 files) 11.5 s 9.8s 6.0s

Jump (31 files) 104.4 s 124.9s 12.8s

Run (26 files) 242.9 s 230.8s 11.8s

SwordPlay (10 files) 49.3 s 59.2s 2.0s

Walk (38 files) 220.8 s 359.0s 18.3s

Table 6.1: Feature Matching Time of Uniform Scaling, DTW and EMD
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(b) Jump
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(c) Run
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(d) SwordPlay
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Figure 6.7: Precision and Recall of Uniform Scaling, DTW and EMD
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To explain why n varies so much in the EMD method, we may consider human

movement. Different parts of the human body have different ranges of movement

when performing different actions; some joints may vary a lot during a particular

action while others may move very little. For example, during walking, most of the

time the human’s head will not change much while the feet may move continuously.

This causes n to vary from joint to joint and from motion type to motion type.

To extract the feature points with the D-P algorithm, we need to define a thresh-

old ε (Section 6.3.1.1) as a condition to determine if a line should be subdivided. If

this threshold is set to be too large, the number of features produced may be too

small. On the other hand, if it is set to be too small, then the number of features

produced may be too large, with a lot of unnecessary feature points. In our experi-

ment, we determine ε empirically and set it to 10. This applies to all motion clips

in our database.

6.5 Discussion

From our experimental results, we can see that our method performs relatively

better than DTW and Uniform Scaling in terms of accuracy and speed. There

may be two reasons that can explain such performance improvements. First, DTW

can only handle local scaling and shifting while the Uniform Scaling method can

only handle global scaling during the motion matching process. On the other hand,

our method, as suggested by the experimental results, may be able to handle local

shifting, local and global scaling simultaneously because our method depends on

an energy morphing technique, whilst DTW and Uniform Scaling are designed to

handle local shifting and global scaling respectively.

Second, our database contains motion clips of significantly different lengths, i.e.,

different numbers of frames. As we use the settings defined in the original experi-

ments in the corresponding papers (e.g., DTW alignment range r=10% and Uniform

Scaling maximum scaling factor = 1.2), they may not find a best match in our mo-

tion data.
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6.6 Conclusion

In conclusion, we have introduced a novel and efficient method for retrieving human

motion data. Unlike other approaches, our method applies the Douglas-Peucker (D-

P) algorithm to extract features according to the movement of the motion. As the

number of features is not fixed, our method can preserve more vigorous motion by

using more features. Whilst for relatively stationary joints, it reduces the number

of features to reduce the computation time. To analyze the similarity between two

motions, we model it as a transportation problem, and apply the Earth Mover’s

Distance (EMD) method as the matching framework. Our experiments show en-

couraging results as compared to the Dynamic Time Warping and Uniform Scaling

methods.



Chapter 7

Evaluation

In the previous chapters, we have presented our proposed solutions and give experi-

ments for comparison. In this chapter, we would like to evaluate the whole research

study. We first give a more complete view of our method by comparing it with

existing works. Then we discuss the strength and weakness of our methods.

7.1 Performance Comparison with BDLA
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Figure 7.1: Precision and Recall of TPR and BDLA on 902 models.

Recalled that our method, Topological Point Ring (TPR) Analysis, is a sequel

112
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of our previous work [19]. We try to compare them here. In our previous work, we

proposed a Bi-Directional LSD Analysis (BDLA). The idea is to capture topological

bounded regions as features. These bounded regions are extracted solely based on

critical points. It performs well on simple articulated geometry models. However, as

pointed out in Section 4.3.4, such method may still be affected by noise and produce

extraneous critical points, resulting in a lot of small features. In Section 4.5.1, we

have proposed a voting method to choose reliable critical points as topological points.

It solves the extraneous critical points and slicing direction problems. In Section

4.5.3, we have also proposed a multi-source point method to capture topological

rings.

We have applied the two methods in our model database. When BDLA was

applied on more complex models, it crashed by excessive noise. Among 1020 mod-

els, only 902 models are successfully processed. On the other hand, TPR reliably

handled all the models without problem. It should be noted that BDLA does not

provide a metric similarity measure as there are overlapping areas between differ-

ent bounded regions. Thus, indexing techniques cannot be applied. In TPR, the

similarity measure is ensured to be metric, and indexing techniques are applicable.

We also compared the precision and recall of the two methods in Figure 7.1. TPR

performs relatively better than BDLA on these 902 models. This shows that the

new feature representation is reliable and more stable to represent 3D articulated

geometry models.

7.2 Performance Discussion of TPR

In Chapter 4, our proposed feature extraction method (TPR) is tested on a small

database (150 models) featuring rotation and scaling. Here, we try to compare the

performance of TPR with MRG using a larger database (1020 models) as mentioned

in Chapter 5. We compare the overall Precision and Recall curves in Figure 7.2.

From the figure, we see that TPR and MRG outperform D2 and Fourier methods,

where both are non-articulated matching methods. The performance as represented

by the precision and recall also confirms that both TPR and MRG are indeed meth-
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Figure 7.2: Precision and Recall of D2, Fourier, MRG and TPR method on 1020

models.

ods that can handle articulated geometry models. In addition, it confirms the results

in Chapter 4 that TPR outperforms MRG.

To further evaluate the performance of TPR, we have plotted the individual

precision recall curves in Figure 7.3. There are two observations.

1. TPR performs similarly or even better than MRG in groups baby, bear, boy,

cat, dog, dolphin, horse, penguin, raptor and wolf; but performs poorer in

groups girl and lion.

2. There is a sudden drop in precision of both methods (TPR and MRG) at high

recall. e.g. bear, boy, cat, girl, horse, lion, penguin and wolf.

To explain these observations, we review the findings in Chapter 5. TPR cap-

tures geometric histogram based on geodesic. MRG partitions a mesh using integral

geodesic. As explained earlier (Section 5.2), when comparing two highly similar

skeleton models, graph and bag-based matching become Euclidean distance (Figure

5.4). However, Euclidean distance is not a smooth function with respect to the

natural parameters (deformation in our concern). Though it is generally believed

that geodesic and integral geodesic is stable towards articulation, a small misalign-
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Figure 7.3: Comparing TPR and MRG on individual Precision and Recall.
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Figure 7.4: Comparing the individual Precision and Recall before and after the

application of manifold learning techniques.
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ment would lead to large group variance in the resulting similarity measure. Such

situation would even be amplified due to quantization. All these explain the sudden

drops in the precision of both methods at high recall.

The reason that TPR performs poorly in girl and lion compared to MRG can

also be explained by this fact. The performance drops when the variance is larger

than inter-class distance. Recall that the database contains many highly similar

skeleton models (e.g., girl - boy and baby, lion - cat, dog, wolf and horse). This

is evidenced by Figure 7.4. When we apply our embedding approach to TPR, all

the groups are well separated as shown in the corresponding precision and recall.

This suggests that the features captured by TPR suffer from geodesic misalignment

problem.

Figure 7.4 also confirms that the proposed embedding retrieval framework (Chap-

ter 5) can effectively handle manifold data with large variance due to misalignment.

As seen in the figure, all the precision and recall of individual group performs well.

Many of the groups attain 100% precision at 1.0 recall. These indicate that all the

highly similar skeleton model groups lie on manifold but are well separated from

each other. From the same figure, it also outperforms MDS retrieval as it is not a

manifold learning technique.

7.3 Discussion and Evaluation

7.3.1 Strengths

7.3.1.1 Accuracy

In the first part of the research, we have developed a feature extraction (TPR) and

matching method that can handle 3D articulated geometry models. The method

uses topological points and topological rings as features. These features are auto-

matically extracted from 3D mesh based on content analysis. We have shown empir-

ically that the method (TPR) outperforms Multi-resolution reeb graph (MRG) [17]

in term of accuracy on a small database (Chapter 4) and a large database (Section

7.2). The improvement is resulted from the fact that we have captured a lot of
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geometric (local and global) features, while MRG only captures local features.

In the second part of the research, we have developed an embedding retrieval

framework based on manifold learning technique, Diffusion Map. It learns the man-

ifolds that these models lie on. By projecting them on the first few eigenvectors, it

is able to maximize the inter-class distances between these model groups, achieving

great results. In Figure 7.5, we put together all the precision and recall curves.

We see that our method TPR performs better than MRG before and after using

embedding retrieval. It should be noted that all these results have been presented

and discussed in Chapter 5.
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Figure 7.5: Precision and Recall of applying Embedding Retrieval to TPR and MRG

method on 1020 models.

7.3.1.2 Efficiency

We have shown empirically that our method (TPR) outperforms Multi-resolution

reeb graph (MRG) [17] in term of speed as well. The similarity measure is a metric

distance and so supports indexing. From our experiments, if we simply want to find

the first few relevant results of a query, the nearest neighbor search is able to fast

retrieve by pruning unnecessary branches of the indexing tree.

As shown in second part of the research and in our experiments, the retrieval
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framework only requires to invoke those graph and bag-based matching algorithms

on 15% of the database. This largely reduces the retrieval times. From the time

curve, it also shows that embedding retrieval can avoid the curse of dimensionality,

by using a manifold learning technique to reduce the intrinsic dimension.

7.3.2 Weaknesses

After confirming the strengths of our work, we also observe many short-comings of

our methods. We would like to discuss them here. It also allows us to define future

improvements and research directions.

7.3.2.1 Feature representation, extraction and matching

Though the proposed feature extraction algorithm is reliable to our database, it may

not work fully on every kind of models. First of all, we have proposed a Critical

Point Analysis (Section 4.3.4) and Topological Point Selection (Section 4.5.1) to

alleviate the extraneous critical points and slicing direction problems, respectively.

The idea is based on simple filtering and majority voting. However, when the model

has a very noise surface, these methods may still mistakenly extract the noisy critical

points. Second, both of these two techniques are based on Level Set Diagram (LSD),

a skeleton extraction algorithm. This also implies an assumption that the method

works on models with tubular parts. If the models consist of many flat, round or

ball (non-tubular) shapes, we expect that the algorithm may not extract meaningful

features. One of the solutions would be using mesh segmentation. However, mesh

segmentation usually involves precise segmentations (patches, parts) and boundary

smoothing. This also suggests that these algorithms may be too slow for online

feature extraction.

Though our feature extraction (TPR) and matching algorithm ourperform MRG

on accuracy and speed, there are a lots of drawbacks as well. The main problem is its

inflexibility. Currently, our method does not support model with arbitrary genus,

non-manifold or non-closed models, but MRG does. The reason is also related

to the previous problem that TPR is built on LSD. During our design of TPR, we

exclude meshes with genus greater than 0 to simplify the feature extraction problem,
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therefore, it is currently undefined on higher genus meshes.

Our feature representation is also restricted as well. In order to give better de-

scriptive power, we have extracted both local and global features. Global features

as shown are good for discriminating highly similar skeleton models, but at the

same time, they cannot be extended to subpart matching. In fact, many existing

graph-based ( [45]) and bag-based ( [16], [13], [14]) matching methods can be easily

extended to sub-part matching because their features are relatively local. This sug-

gests that it is challenging to improve our feature representation to support subpart

matching. As discussed in an earlier section (Section 7.2), though geodesic distance

is generally believed to be stable towards articulation, our global features also suffer

from slight misalignment problem. Further improvement has to be researched.

In our experiments, though the feature matching method Earth Mover Distance

(EMD) works fine, the complexity is still high O(n3 log n). The efficiency of our

work is resulted from the compact representation. However, when a model contains

many branches (subparts), it would become a very slow task. In our experiment,

EMD requires on average 1ms to compare two models. This is fast compared to

the existing Bag of features approach; however, it is still relatively slow compared

to the Single feature vector approach (avg ≤ 1µs). Consider a database containing

millions of records, 1ms would render the whole system irresponsive, even after the

application of fast pruning search.

7.3.2.2 Embedding Retrieval

The proposed embedding retrieval framework is based on the observation and anal-

ysis that graph and bag-based matching will lead to Euclidean-like matching. Slight

misalignment will cause large class variance. To handle that we use a manifold

learning technique to conduct dimension reduction and use Nyström extension for

fast retrieval. Here, we would like to discuss some drawbacks and disadvantages of

the framework.

First, our framework assumes that the data in question lie on manifold(s). In our

experiments, because both TPR and MRG are built by partitioning a metric function

(geodesic and integral geodesic, respectively), the similarity measure produces large
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variance in the same group, which matches the criteria of manifold data. If the data

are non-manifold, however, there is no guarantee that our method would work. It

may even degrade retrieval performance because it preserves close distances only

and ignore far distances entirely.

Another assumption is that there must be lots of data such that a neighborhood

can be defined. This is required for all manifold learning techniques. In Diffusion

Map, it is required to carry out diffusion. In fact, the reason that these methods can

learn various manifolds and maximize manifold distances is based on the fact that

there are sufficient objects in the database to allow such diffusion and to define the

neighborhood of the manifold. However, this may not always be feasible especially

on small databases.

When the data is not manifold-like or there is insufficient data, Multi-Dimensional

Scaling (MDS) would be the best choice because it preserves all (close and far) dis-

tances in the embedding space. When the number of dimensions increases, MDS can

better preserve all pairwise distances, leading to a retrieval performance closer to

that of the original similarity measure (metric or non-metric). However the required

dimensionality may be over hundreds, and the method will surely suffer from the

curse of dimensionality. In either case, MDS and our retrieval framework are both

approximate methods and will introduce false dismissal.

In order to preserve retrieval accuracy, we have proposed an alignment step to

project a query coordinate from Nyström embedding to eigensolver embedding. To

pre-compute eigensolver embedding, we use sparse eigensolver. However, eigensolver

is well-known to be memory intensive and slow, especially when the database is huge.

Currently, our method assumes a static database and dynamic query. Whenever a

new object is added to the database, it has to solve the eigensolver embedding again.

An approximation would be made to project the new object as query and use our

alignment step to obtain an approximate coordinate in the eigensolver embedding,

but this is only an approximation. When the number of new objects increases, it still

requires to recompute the eigensolver embedding to ensure the retrieval accuracy.
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7.4 Application on 3D Motion

In the third part of the research, we have applied the idea of bag-of-features to

represent 3D motion and developed corresponding matching algorithm and similarity

measure. The main contribution is to subdivide a motion into pieces and capture

features for each piece. As shown in our experiments, it also outperforms existing

methods, Uniform Scaling [9] and Dynamic Time Warping [8]. The method also

defines a metric similarity measure based on Earth Mover Distance. It suggests

that a distance-based indexing technique is applicable. Though we have not applied

indexing structure for retrieval in the current work, the method is also comparatively

faster than Uniform Scaling and Dynamic Time Warping.

Though the 3D motion retrieval method is fast and accurate, there are also

drawbacks of the method. First, our method allows local and global shifting at the

same time. However, it also allows strayed matching. This is not useful for “copying

and pasting” different motions together because concatenating two motions requires

an exact match at the starting or ending segment of the motions. Currently, because

we consider matching of individual joints only, frame synchronization of different

joints is not considered. Further analysis is needed to verify the importance of

frame synchronization to motion similarity search.

With regard to the personal conversations with Prof. Eamonn Koegh, the author

of both Dynamic Time Warping [8] and Uniform Scaling [9], our current feature

representation may not truly represent the original motion content because it only

makes use of the start/end point of a time series segment. Due to this reason, the

similarity measure is a metric with regard to the extracted features only. To solve

the issue, a better solution is to use linear regression (find the best fitting line). It

would give a better representation and retrieval results [124].

Apart from accuracy issue, the feature representation may also suffer from the

curse of dimensionality. In order to give a good indexing scheme that fully describes

the raw data (original time series) and reduce the effect of the curse of dimension-

ality, it would be better to use a filter-and-refine technique (Section 2.4.2.1) for fast

pruning.

Another important issue is that we have manually defined a lot of joint weights
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(29 weights) in order to combine all EMD distances into one. Though the definition

of weights is intuitive and works fine on our small (115 motions) datasets, the porta-

bility of these weights to other datasets are still untested. Another concern is that

these weights may have semantic effect as well. For example, a man playing judo

would have large movement on legs, e.g. kicks. But for a baby, the little activities of

fingers and toes may be more important. These suggest that more research would be

done to relate these parameters to various activities, and adapting machine learning

approach to learn or optimize these parameters would be one of the possible works.

7.5 Summary

In this research study, we focus ourselves on the reliability and efficiency of develop-

ing retrieval techniques for 3D articulated geometry models. We have proposed an

efficient matching method. It uses compact features and Earth Mover Distance for

matching. The matching method automatically analyze models, extract topologi-

cal and geometric features and is fully automatic without human annotation. We

have also defined metric measure that can support indexing. To avoid the curse of

dimensionality, we have also developed an embedding retrieval framework. It not

only improve efficiency but also accuracy in one goal. With respect to Section 3.1,

we believe that we have fulfilled all of our research goals.

However, as discussed in the chapter, we have also observed many shortcomings

of our methods. These, however, provide challenges and new research directions as

we discuss in the next chapter.



Chapter 8

Future Work and Conclusion

8.1 Future Work

8.1.1 Extension to Current Works

In the previous chapter, we have contrasted the strengths and weaknesses of our

methods. In this section, we would like to discuss various extensions that may

overcome those shortcomings.

1. Feature Extraction

Currently we apply critical point analysis to capture topological points as fea-

tures. The method is based on majority voting to select reliable critical points.

The method is fast, but it may still suffer from noise. A better critical point

extraction could be developed. Recently, there are a lot of mesh segmentation

methods being proposed. One closely related option is to employ the “Core Ex-

traction” technique [125]. The method uses Multi-Dimensional Scaling (MDS)

to pose-normalize a model and extract outlying extreme points. Since these

outlying extreme points match the definition of our topological points and

are extracted in the transformed domain where noise is filtered, they should

be more reliable. Similarly, to capture topological rings, we would employ a

mesh segmentation technique and define them as the boundaries of different

segments. However, since these mesh segmentation algorithms require precise

boundary decision and smoothing, they are usually slow. Balancing the effi-

124



8.1. Future Work 125

ciency and accuracy become one of the interesting but challenging directions.

We also extract three surface distributions (curvatures, areas and thickness)

as geometric features (Section 4.5.5). These distribution bands are computed

from geodesic. Though geodesic is assumed to be articulation invariant, it is

shown in Section 5.2 that it still suffers from slight misalignment leading to

large variance in the data. To improve that, one of the ideas is to use bet-

ter surface metric (e.g., part-aware metric [50]) instead of geodesic or integral

geodesic. However, as long as the similarity measure uses Euclidean distance,

it may also suffer from the slight misalignment problem and the curse of di-

mensionality.

2. Embedding Retrieval

In our embedding retrieval framework, we have optimized parameters for re-

trieval purposes. In particular, we limit the number of dimensions to 10 to

avoid the curse of dimensionality. Since our framework converts similarity

measure into Euclidean coordinates, it would be better to use Local Sensitive

Hashing (LSH) [69] instead of Kd-tree. LSH has been shown to scale well with

high dimensionality theoretically and practically, which works in vector space.

By applying LSH, we would expect to be able to raise the 10-dimension limit.

This would possibly lead to a higher retrieval performance because more in-

formation can be retained in the embedding space. It should be noted that,

currently, manifold learning is still under active research. We do not recognize

any theory in the area that connects dimensionality to retrieval performance.

It would be an interesting direction for research too.

In the experiments, we have created a large database of 1020 models. This is

relatively large compared to existing works because they are all high quality

models focusing on both similar and dissimilar skeletons. However, compared

to other multimedia retrieval systems (of size ≥ 100000), it is only a small

database. Currently we have applied Nyström extension for fast retrieval. To

preserve retrieval accuracy we have to pre-compute embedding using eigen-

solver. Since eigensolver is always limited by memory, this restricts the ap-
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plication of the framework. One possibility is to employ out-of-core eigen-

solver [126] to obtain reliable embedding. Another idea is to use Nyström

extension also for such pre-computation. To achieve the best accuracy, we can

use Nyström extension with as many landmarks as possible, up to the limit

of memory constraint. Though it is still an approximation, the approximation

should be a good one because Nyström extension has been shown to converge

given sufficient samples.

In our current project, we strive to provide an unsupervised content-based

retrieval method for 3D articulated geometry models. However, it would be

possible to apply supervised method or even machine learning approach to

achieve better performance. Example includes Self-Organisation Map (SOM)

and Support Vector Machine (SVM).

3. Motion Retrieval

We have applied our bag-based matching knowledge into motion matching.

However, as pointed out by Prof. Keogh, the method may not be a metric with

respect to the raw motion data, which is essential for precise matching. One of

the possible ideas is to use “linear regression” (line fitting) instead of “linear

interpolation” (start-point, as in our case) as it conveys more information for

lower-bound design [124]. In fact, many successful lower-bounding techniques

[8], [9] have been designed based on similar idea. Recently, Wichterich et

al. [127] also propose an lower bound technique for Earth Mover Distance. It

would be a very good idea to follow up this direction and develop more reliable

motion matching and fast search technique.

8.1.2 Possible Future Research Directions

In this section, we would like to discuss some closely related research areas that we

would like to explore in the future.

1. Subpart Matching

Subpart matching is a new research area that is less frequently discussed or

explored. The area is important because, it allows the user to provide a part
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(e.g., hand) and to search for the whole model (e.g., boy). It has a higher

usability and practicality than a whole model retrieval system. However, it

is also a challenging task. On the one hand, developing such matching al-

gorithms usually require mesh segmentation techniques, which are still under

active research. On the other hand, the matching algorithms are usually slow

and non-metric. The reason that these algorithms are non-metric because sub-

part matching closely follows human perception. Human perception is based

on subpart coherence, which is also non-metric in nature. In fact, Earth Mover

Distance can also be used for subpart matching. However, by doing so, the sim-

ilarity measure becomes non-metric as well because it violates the constraint

of equal weights. All these indicate that, similar to whole model matching, no

metric indexing technique is applicable. Efficiency and scalability are some of

the challenges of the area.

In this research study, we observe and suggest that graph and bag-based

matching methods project data on manifolds. This is useful to convert simi-

larity measure from non-metric space into metric vector space. However, it is

still an open question if it can be applied on subpart matching. To do so, one

important question has to be asked: how non-metric space and (non-linear)

manifold space can be related (or are there any relationship at all)?. It should

be noted that manifold learning is still in active research. Researching in these

areas would be challenging but also fruitful.

2. Mesh Correspondence

As mentioned in the literature, pose-normalization technique is also a new

and challenging area. Currently most of the work transforms the mesh into

embedding space so that the model can be normalized. Though transformation

to low-dimensional space may lose important geometric features, it also opens

up a new area on “correspondence” analysis [105]. If correspondence can be

established automatically, surface detail transfer would also be possible and

thus also useful for model comparison. In fact, latest research works are also

moving in this direction [128].
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3. Semi-Supervised Learning and Multi-Modal Analysis

In our current work, we have discussed the use of manifold learning to max-

imize inter-class distance. Our use of manifold learning can be considered

unsupervised learning. It is interesting that manifold learning is also appli-

cable for semi-supervised learning. The term “semi-supervised” means that

users can provide a few initial inputs and the system learns (diffuses) the rest.

The whole scheme is called transduction. It has been useful for segmenta-

tion [129] and relevancy feedback [99]. We have used manifold learning in our

retrieval system in the spirit of segmentation. It would be interesting to see if

it is beneficial to relevancy feedback of 3D model research in the future.

We have also developed an augmented kernel method to pull different man-

ifolds of the same group together. Currently, we rely on another similarity

measure to establish such shortcut edges. However, it would also be possible

to use other kind of analysis to provide such information. This is called multi-

modal retrieval and has been frequently used in video analysis. The idea is

to use sounds, images, videos, as well as text to provide a more meaningful

retrieval scheme [130]. The same idea would also be applied to 3D articulated

geometry models matching. For example, some information from an ontology

would bridge the semantic gap between machine and human perception.

4. Computer Vision and 2D/3D Motion Classification

There are many on-going motion researches in computer vision that investigate

motion tracking, estimation, matching and classification in video sequences.

Some recent works include [131] (classification of motions based on robust

appearance and motion descriptor), [132] (human pose estimation using skele-

tal 2D models), [133] (video-based gait kinematics) and [134] (human motion

classification using image-based rendering and reconstruction) etc. Though

our project focuses on the 3D motion matching using 3D mocap data, we find

that many of these techniques and ideas share across 2D and 3D motion anal-

ysis. For example, [133] use manifold learning methods to model whole, upper

and lower body part motions. The models are trained by CMU mocap data,

that we have used in our experiments, to estimate gait kinematics from video.
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Classification works also require similarity measures that are based on bag-of-

feature [131] and histogram descriptor [134], whilst classification is achieved

by Support Vector Machine. We believe that more future works can be dis-

covered by exploring different robust computer vision techniques. At the same

time, we also believe that our research may be beneficial to computer vision

research when an existing matching methods on mocap data is required.

8.2 Conclusion

In this research, we have developed algorithms for 3D articulated geometry models,

covering feature extraction, feature matching, indexing and fast search methods.

All these methods outperform existing works in reliability and efficiency and have

been demonstrated through various experiments. Our idea of converting restricted

matching to bag-based matching has also been applied to 3D motion. A feature

extraction and matching algorithm has also been proposed that outperforms existing

works. We have also connected graph and bag-based matching methods of 3D models

to the area of manifold learning. We believe that we have fulfilled all our research

goals, generated new knowledges in the area and also discovered many potential

research directions.
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[116] M. Müller, T. Röder, and M. Clausen, “Efficient content-based retrieval of

motion capture data,” in ACM SIGGRAPH, 2005.
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