The Trypanosoma brucei sphingolipid synthase, an essential enzyme and a drug target

Pan, Ssu-Ying

How to cite:
Pan, Ssu-Ying (2009) The Trypanosoma brucei sphingolipid synthase, an essential enzyme and a drug target, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/2092/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.
The *Trypanosoma brucei* sphingolipid synthase, an essential enzyme and a drug target

The copyright of this thesis rests with the author or the university to which it was submitted. No quotation from it, or information derived from it may be published without the prior written consent of the author or university, and any information derived from it should be acknowledged.

Ssu-Ying Pan
MSc
2009

2 3 APR 2009
Abstract

Sphingolipids are important structural components of eukaryotic membranes, in addition they and their precursors are involved in signal transduction processes. In eukaryotes the biosynthetic pathway of sphingolipid biosynthesis is largely conserved. However, whilst mammals produce sphingomyelin (SM) as the major phosphosphingolipid using the enzyme SM synthase, plants and many pathogenic fungi and protozoa synthesize inositol phosphorylceramide (IPC) by IPC synthase. This enzyme is a target for anti-fungal drugs and functional orthologues have recently been identified in the insect vector-borne pathogenic kinetoplastid protozoa. These parasites are responsible for a range of neglected diseases and Trypanosoma brucei are the cause human African trypanosomiasis in many regions of Africa. The available treatments for this disease are limited, often demonstrate severe side-effects and drug resistance is increasing. T. brucei sphingolipid synthase (TbSLS), a functional orthologue of the yeast IPC synthase, may be a target for novel anti-protozoals drugs. Here I show that this enzyme functions as an IPC synthase both in vitro and ex vivo. Furthermore, the TbSLS is essential for parasite growth and can be inhibited in vitro by a known anti-fungal. Perhaps most importantly this drug demonstrates rapid trypanocidal activity against bloodstream form parasites. Thus TbSLS is a promising drug target.
Acknowledgements

I would like to thank my parents, all of my teachers, and my supervisor (Dr. Paul W. Denny). I would appreciate Dr. Denny as my supervisor for training and teaching me a lot. Thanks to all of my colleagues, Dr Lindsay, Dr Fiona, Dr. Steve, Ahmed, Bing, John, Jongwoo, Li Zhang, Nilu, Tamarai, and Victor who taught me many experimental techniques and knowledge. I can't finish this report without your help and support.

Declaration

I declare that all the work in this report was made by my own, and that has not been used in a thesis, dissertation or a report submitted to this Durham University for a degree, diploma or other qualification.

Signed: ___________________________

Ssuying, Pan
Table of content

Abstract ... I
Acknowledgments .. II
Table of content ... III
List of figures .. VI
List of tables .. VII
Abbreviations ... VIII

1. CHAPTER 1: INTRODUCTION

1.1 Trypanosoma brucei and disease

1.1.1 General information ... 01
1.1.2 T. brucei life cycle ... 04
1.1.3 Clinical features ... 05
1.1.4 Immune response ... 06
1.1.5 Diagnosis ... 07
1.1.6 Treatment ... 09

1.2 Sphingolipids

1.2.1 Introduction .. 13
1.2.2 Structure of sphingolipids .. 14
1.2.3 Function .. 15
1.2.4 Biosynthetic pathway ... 16
1.2.5 Sphingolipid biosynthesis as a drug target 19

1.3 The Trypanosoma brucei sphingolipid synthase ... 21

1.4 What is RNAi? .. 22
2. CHAPTER 2: MATERIAL AND METHODS

2.1 Materials

2.1.1 Chemicals .. 23
2.1.2 Buffers .. 24
2.1.3 Media .. 25
2.1.4 Antibiotics .. 27
2.1.5 Strains and vectors 27

2.2 Bioinformatic and ex vivo analyses

2.2.1 T. brucei sequence analysis 28
2.2.2 Metabolic labeling .. 28
2.2.3 Mass spectrometry analyses of S. cerevisiae HIS-GAL AUR1 TbSLS1000 .. 29
2.2.4 Agar diffusion assay 30

2.3 In vitro enzyme assay

2.3.1 Preparation of microsomes 30
2.3.2 Preparation of washed microsomes 31
2.3.3 In vitro TbSLS1000 assay 31
2.3.4 Optimum temperature for TbSLS activity in vitro 31
2.3.5 Efficacy of aureobasidin A against TbSLS activity in vitro 32

2.4 Cellular analyses

2.4.1 Parasite culture .. 32
2.4.2 RNAi .. 32
2.4.3 Aureobasidin A efficacy against T. brucei 34
3. CHAPTER 3: RESULTS

3.1 General information

3.2 Identification of T. brucei sphingolipid synthase

3.2.1 T. brucei sphingolipid synthase (TbSLS) complements an AUR1 mutant yeast

3.2.2 Functional identification of T. brucei SLS

3.2.3 2-dimensional HPTLC analyses

3.2.4 In vitro assay of TbSLS1000

3.2.5 Affect of temperature on TbSLS1000 IPC synthase activity

3.3 Aureobasidin A inhibition of TbSLS1000

3.3.1 Agar diffusion assay

3.3.2 In vitro assay of TbSLS aureobasidin A sensitivity

3.3.3 Cell based assay of aureobasidin A sensitivity

3.4 RNAi induction

3.4.1 RNAi constructs

3.4.2 TbLCB2 RNAi

3.4.3 TbSLS RNAi

4. CHAPTER 4: DISCUSSION

4.1 Identification of T. brucei sphingolipid synthase

4.2 Inhibition of T. brucei SLS by aureobasidin A

4.3 Inhibition of T. brucei SLS by RNAi

4.4 Conclusion

4.5 Future work

References

Appendix (manuscript for publication)
List of figures

Figure 1.1 Newly registered cases of sleeping sickness, annually reported to WHO.

Figure 1.2 Human African trypanosomiasis endemicity in Africa.

Figure 1.3 *T. brucei* life cycle from CDC.

Figure 1.4 Trypanosomal chancre on shoulder.

Figure 1.5 *T. brucei* in human blood; thin film, Giemsa stain.

Figure 1.6 Colored scanning electron micrograph of *T. brucei* in human blood.

Figure 1.7 Structure of sphingolipids.

Figure 1.8 Pathway of ceramide synthase.

Figure 1.9 Pathway of SM synthesis.

Figure 1.10 Pathway of IPC synthesis.

Figure 1.11 Inhibitor of SPT.

Figure 1.12 Drugs used to inhibit ceramide synthase.

Figure 3.1 Predicted protein sequences of the 4 *T. brucei* ORFs aligned using ClustalW 1.81 (http://www.ebi.ac.uk/Tools/clustalw2/index.html).

Figure 3.2 Metabolic labelling. TbSLS1000, *S. cerevisiae* and mammalian cells (CHO) were labelled with BODIPY FL-ceramide. Samples were analysed on by HPTLC.

Figure 3.3 2D HPTLC analysis (*T. brucei* SLS complemented yeast and *T. brucei* BSF parasites).

Figure 3.4 2D HPTLC analysis (*T. brucei* BSF parasites and mammalian CHO cells).

Figure 3.5 2D HPTLC analysis (*TbSLS* 1000 complemented cells).

Figure 3.6 Negative ion mass spectra of lipids from *TbSLS*1000 and *ScAUR*1 complemented mutant yeast.

Figure 3.7 *In vitro* assay of TbSLS1000.

Figure 3.8 Temperature assay.

Figure 3.9 Agar diffusion assay.
Figure 3.10 The inhibitory effects of aureobasidin A in an *in vitro* assay of *TbSLS1000* activity.

Figure 3.11 *T. brucei* BSF cell growth curve.

Figure 3.12 Metabolic labelling of *T. brucei* BSF parasites with BODIPY FL-ceramide in the presence of 0-4 μg/μl of aureobasidin A.

Figure 3.13 Growth curve of control SMB parasites with and without doxycyclin.

Figure 3.14 Growth curve of transfected LCB2 RNAi cells induced by doxycyclin.

Figure 3.15 RT-PCR of *T. brucei* LCB2RNAi cells.

Figure 3.16 Growth curve of transfected TbSLS RNAi cells induced by doxycyclin.

Figure 3.17 RT-PCR of *T. brucei* SLS RNAi cells.

List of Tables

Table 1.1 Drugs currently used for the treatment of Human Africa Trypanosomiasis.

Table 1.2 Eukaryotic organisms exhibiting RNA-related phenomena.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AbA</td>
<td>Aureobasidin A</td>
</tr>
<tr>
<td>BSF</td>
<td>Bloodstream form</td>
</tr>
<tr>
<td>BBB</td>
<td>blood-brain barrier</td>
</tr>
<tr>
<td>CATT</td>
<td>Card agglutination trypanosomiasis test</td>
</tr>
<tr>
<td>CHAPS</td>
<td>2.5% 3-[3-(cholamidopropyl) dimethylammonio]-1-propane sulfonate</td>
</tr>
<tr>
<td>CHO</td>
<td>Chinese hamster ovary</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal fluid</td>
</tr>
<tr>
<td>CT</td>
<td>Computerized tomographic</td>
</tr>
<tr>
<td>CYC</td>
<td>Cycloheximide</td>
</tr>
<tr>
<td>DMFO</td>
<td>Eflomithine</td>
</tr>
<tr>
<td>EEG</td>
<td>Electroencephalogram</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>GPI</td>
<td>Glycosylphosphatidylinositol</td>
</tr>
<tr>
<td>GSL</td>
<td>Glycosphingolipid</td>
</tr>
<tr>
<td>HAPTI</td>
<td>High-affinity pentamidine transporter 1</td>
</tr>
<tr>
<td>HPTLC</td>
<td>High performance thin layer chromatography</td>
</tr>
<tr>
<td>IPC</td>
<td>Inositol phosphorylceramide</td>
</tr>
<tr>
<td>LAMP</td>
<td>Loop-mediated isothermal amplification</td>
</tr>
<tr>
<td>LAPT1</td>
<td>Low-affinity pentamidine transporter 1</td>
</tr>
<tr>
<td>MR</td>
<td>Magnetic resonance</td>
</tr>
<tr>
<td>MYR</td>
<td>Myriocin</td>
</tr>
<tr>
<td>ODC</td>
<td>Ornithine decarboxylase</td>
</tr>
<tr>
<td>ORF</td>
<td>Open reading frame</td>
</tr>
<tr>
<td>PC</td>
<td>Phosphatidylcholine</td>
</tr>
<tr>
<td>PE</td>
<td>Phosphatidyethanolamine</td>
</tr>
<tr>
<td>PI</td>
<td>Phosphatidylinositol</td>
</tr>
<tr>
<td>PSL</td>
<td>Phosphosphingolipid</td>
</tr>
<tr>
<td>PTRE</td>
<td>Post-treatment reactive encephalopathy</td>
</tr>
<tr>
<td>RNAi</td>
<td>RNA interference</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>REM</td>
<td>Rapid eye movement</td>
</tr>
<tr>
<td>SLS</td>
<td>Sphingolipid synthase</td>
</tr>
<tr>
<td>SM</td>
<td>Sphingomyelin</td>
</tr>
<tr>
<td>SMB</td>
<td>Single marker bloodstream-form</td>
</tr>
<tr>
<td>SPT</td>
<td>Serine palmitoyltransferase</td>
</tr>
<tr>
<td>SRA gene</td>
<td>Serum resistance associated gene</td>
</tr>
<tr>
<td>TDR</td>
<td>Tropical disease research</td>
</tr>
<tr>
<td>TbSLS</td>
<td>T. brucei sphingolipid synthase</td>
</tr>
<tr>
<td>TLF</td>
<td>Trypanosome lytic factor</td>
</tr>
<tr>
<td>VSG</td>
<td>Variable surface glycoprotein</td>
</tr>
</tbody>
</table>
Chapter 1:
Introduction
Chapter 1: Introduction

1.1 *Trypanosoma brucei* and disease

1.1.1 General information

Trypanosoma brucei (Kinetoplastae, Trypanosomatidae) are unicellular eukaryotes that infect both human and economically important animals causing African sleeping sickness in sub-Saharan African (Raper et al., 2002). This tsetse fly-borne disease is classified as a tropical disease research (TDR) category 1 resurgent disease by the World Health Organization (WHO; Barrett et al., 2003).

According to the WHO, the people of 36 sub-Saharan countries are threatened by this disease and 300,000 new cases are reported every year (Masocha et al., 2007). It is estimated that 50000 people died following infection by *T. brucei* each year (Fairlamb, 2003) Around 1 million people died from African sleeping sickness disease between 1896 and 1908 (Seed, 2001). However, during the 1950s, this disease was controlled using DTT to kill the vector and the progress of medical technology (Seed, 2001). Therefore, the number of cases decreased rapidly between 1949 and 1965 (figure 1.1). However, in the modern era, African sleeping sickness is out of control because of, amongst other things, war and the associated mass migration of people (Kennedy, 2004).
Figure 1.1
Newly registered cases of sleeping sickness, annually reported to WHO.
(http://www.who.int/wer/2006/wer8108.pdf)

Figure 1.2
Human African trypanosomiasis endemicity in Africa (Barret et al., 2007).
Red: more than 1000 cases were reported per year. Orange: About 50 to 1000 cases were reported per year. Blue: less than 50 cases were reported per year. Green: currently report no case of HAT.
There are two subspecies of African trypanosome that cause disease in humans: *T. b. gambiense* and *T. b. rhodesiense*. *T. b. brucei* causes Ngana in cattle, an economically important disease in sub-Saharan Africa, but cannot infect human because the parasite is lysed by components of the high-density lipoprotein fraction of human blood (Rifkin, 1978).

T. b. gambiense which causes West African Trypanosomiasis can be found in central and western African countries such as Sudan, Angola and Gabon (figure 1.2). *T. b. rhodesiense* which causes East African Trypanosomiasis can be found in central and eastern African countries such as Kenya, Tanzania and Malawi (figure 1.2, http://www.cdc.gov/).

Ninety percentage of African sleeping sickness cases are caused by *T. b. gambiense* and lead to a chronic infection (Barrett et al., 2003). Following a tsetse fly bite, the incubation period can be several months or years and when this disease is detected, the patient's central nervous system may already be damaged and the condition can become very dangerous. Other 10% of cases are caused by *T. b. rhodesiense* and lead to an acute infection (Parry et al., 2003). The appearance of symptoms can be few weeks or months after infection and the parasites invade can the central nervous system very rapidly (http://www.cdc.gov/).
1.1.2 *T. brucei* life cycle

The transmission of this trypanosome is caused by the bite of tsetse fly (*Glossina spp.*) which can be found in the grass near lakes or rivers, and in the forests and savannah of Africa (Parry et al., 2003).

After the fly bites a human (step 1), metacyclic trypanosomes transform into bloodstream form and start to transform the metacyclic variable surface glycoprotein (VSG) into the first bloodstream form VSGs at the site of inoculation (step 2, Donelson et al., 1985). This pathogenic form proliferates in the bloodstream (step 3) and can subsequently enter the lymph node and spinal fluid. At this stage, parasites can also be transmitted to non-infected Tsetse flies (step 5, http://www.cdc.gov/) where they transform to the procyclic form, losing the VSG coat, and replicate in the mid-gut of the vector (step 6). After 3 weeks, the procyclic forms migrate to the salivary (step 7) and transform into the metacyclic form which requires the VSG coat (step 8, Donelson et al., 1985). In addition, some reports showed that this parasite could also infect the foetus via the placenta and also be transmitted by contaminated needles (WHO, 2005).
1.1.3 Clinical features

Five days after infection, chancre may occur, especially in \textit{T. b. rhodesiense} infection, at the site of the tsetse bite (figure 1.4; Barrett et al., 2003, Parry et al., 2003). This symptom is caused by the inflammatory response to the Trypanosomes (Naessens et al., 2003). Subsequently, there are two stages of African sleeping sickness: the haemolymphatic stage and the encephalitic stage.

\textit{Haemolymphatic stage.} After one to three weeks, symptoms are nonspecific. The parasites escape from human adaptive immune response by antigenic variation via VSG which prevents trypanosome lysis by complement alternative pathway (Vincendeau and Bouteille, 2006, Mäser et al., 2003) and cause fever, malaise, arthralgia, weakness and weight loss (Sternberg, 2004). Many organs are infected by the bloodstream form trypanosomes at this stage, including the liver, skin, eye and cardiovascular system (Barrett et al., 2003). This plethora of symptoms can make initial diagnosis difficult; for example, patients are often misdiagnosed as suffering from malaria and so given anti-malarials (Parry et al., 2003, Kennedy, 2006). In \textit{T. b. gambiense} infection, the major symptom is the enlargement of lymph nodes, especially in the triangle of the neck (Parry et al., 2003).

\textit{Encephalitic stage.} At this stage, the parasites cross the blood-brain barrier are detectable in the cerebrospinal fluid (CSF) and cause damage to the central nervous system (Enanga et al., 2002). How the parasites cross blood-brain barrier is still unknown, however, it is assumed that \textit{T. brucei} enter the central nervous system (CNS) by an active process (penetration) similar to white blood cells (Masocha et al., 2007). Again, it is difficult to diagnose the onset of this stage without examining the CSF for the presence of parasites. Patients' could change behavior becoming agitated and apathetic with severe headache, perhaps, losing the ability to eat and drink (Parry et al.,}
2003). Untreated, patients fall into a coma and die (Sternberg, 2004).

Figure 1.4. Trypanosomal chancre on shoulder.

1.1.4 Immune response

As well as facilitating immune evasion through antigenic variation, VSG also plays an important role in the human immune response to the trypanosomes. A trypanosome cell is covered with 10^8 molecules VSG attached to its surface membrane by a glycosylphosphatidyl-inositol (GPI) anchor. Here they act as the immune-dominant antigen activating both T_h and B cells (Mansfield, 1994). The GPI-moiety of soluble VSG released from the parasite directly leads to the over-activation of macrophages, which then produce TNF-α after stimulation with IFN-γ probably produced from CD4+ T cells. TNF-α subsequently induces CD8+ T cells to produce high levels of IFN-γ leading to a decrease in the formation of IL-2 and IL-2 receptors thus impairing the proliferative T cell response, causing immune-suppression and avoiding parasite elimination (Sternberg, 2004; Zambrano-Villa et al., 2002). In addition, increasing levels of IL-10 were observed in the CSF at the late stage of *T. brucei* infection related to the inflammatory response and the effects of NO synthesis (MacLean et al., 2001, Vincenedau and Bouteille, 2006).
The cattle parasite, *T. b. brucei*, is unable to infect humans due to the presence of trypanosome lytic factor (TLF) in sera (Raper et al., 2001). Unlike *T. b. brucei*, *T. b. rhodesiense* has a serum resistance associated (SRA) gene which encodes a protein protecting the parasites against TLF-mediated lysis and so avoids clearance from the bloodstream. However, *T. b. gambiense* lacks the SRA gene and is resistant to TLF via an unknown mechanism (Gibson, 2002).

In a further immune evasion strategy, trypanosomes produce a gp63-like protein similar to gp63 from *Leishmania* (Donelson et al., 1998), which is believed to protect bloodstream form parasites from complement-mediated lysis (Zambrano-Villa et al., 2002).

1.1.5 Diagnosis

African sleeping sickness cannot be easily diagnosed due to the non-specific symptoms and multiple tests are often necessary (Kennedy, 2004). At the first, haemolymphatic stage, of the disease parasites can be detected in blood or infected tissue, such as lymph nodes, by staining and light microscopy (figure 1.5 and figure 1.6, Kennedy, 2004). However, this method is often initially invalid for *T. b. gambiense* as the infection is chronic and parasites appear at the peripheral rather than blood circulatory system (Kennedy, 2004). Under these circumstances, the antibody-detecting, card agglutination trypanosomiasis test (CATT) is the easiest and simplest way to reach a diagnosis (WHO, 2005). No infection is diagnosed when CATT is negative or the titre is less than 1:4, a positive diagnosis is reached when CATT is positive and the titre is more than 1:16. Following a positive CATT, it is necessary to check blood smears to confirm the presence of parasites before initiating treatment (Chappuis et al., 2005).
At the second, encephalitic stage, CSF extracted by lumbar puncture can allow the parasites to be detected directly. (Parry et al., 2003) An increase in the white blood cell count to more than 5/μl is also indicative and is a rise in IgM levels, as measured by a latex agglutination assay (Lejon et al., 2002). PCR of CSF can be an additional and sensitive diagnostic tool (Solano et al., 2002), however, its expense negates its use in many endemic countries. As an alternative, loop-mediated isothermal amplification (LAMP), in which DNA in amplified under isothermal (constant temperature) conditions of around 65°C, has been used negating the need for the costly thermocyclers required for PCR (Kuboki et al., 2003).

Neither computerized tomographic (CT), magnetic resonance (MR) nor electroencephalogram (EEG) showed any neurological abnormalities at this disease stage (Atouguia and Kennedy, 2000). However, the variation of brain activity indicated by rapid eye movement (REM) may be informative (Buguet et al., 2005).

Figure 1.5
T. brucei in human blood; thin film, Giemsa stain (Parry et al., 2003).

Figure 1.6
Colored scanning electron micrograph of *T. brucei* in human blood (Kennedy, 2004).
There are four main drugs which have been used in the different stages in the disease: Suramin, Pentamidine, Melarsoprol and Eflomithine (DFMO). Three of them were established as treatments more than 50 years ago, with DFMO appearing more than 25 years ago (table 1.1, Vincendeau and Bouteille, 2006).

Suramin which is a water soluble colourless, polyanic sulfonated naphthylamine was introduced in the 1920s (Fairlamb, 2003). This drug, whose mechanism of action is unknown, is used to treat stage 1 *T. b. rhodesiense* infection but cannot efficiently penetrate the human blood-brain barrier (BBB) and so is ineffective in stage 2 (Fairlamb, 2003). Suramin is believed to inhibit topoisomerase II and interfere with white blood cell signaling in animal cells (Bojanowski et al., 1992). The side effects these interactions appear to cause include collapse, nausea, vomiting and shock. More seriously, latent kidney damage can occur leading to, for example, haemolytic anaemia which can prove fatal (Fairlamb, 2003). Although some cases showed that this drug may threaten the patient’s life, it remains a first line treatment for early phase *T. b. rhodesiense* infections (Parry et al., 2003).

Pentamidine, which is an aromatic diamidine, was introduced in the 1940s (Fairlamb, 2003). Again, this drug cannot penetrate human BBB and therefore is only effective against stage 1 African sleeping sickness. Pentamidine enters the parasites via the P2 aminopurine permease which also transports melarsoporal (see below, Carter et al., 1995). In addition, pentamidine can be transported by high-affinity pentamidine transporter 1 (HAPT1) and a low-affinity pentamidine transporter 1 (LAPT1). Therefore, trypanosomes resistant to melarsoporal are still inhibited by pentamidine (de Koning, 2001). However, pentamidine is only used as a frontline treatment against *T. b. gambiense* as it is less reliable in the treatment of *T. b. rhodesiense* infections, where it is only used if suramin is not tolerated (Parry et al., 2003; Pépin and Milord,
Pentamidine may cause organ damage of the liver, kidney and pancreas (Fairlamb, 2003). In addition, intravenous injection may lead to hypotensive reaction and therefore, this drug is administered intramuscularly (Fairlamb, 2003). The mechanism of action of pentamidine involves the inhibition of the *T. brucei* topoisomerase and so parasite replication (Shapiro and Englund, 1990).

Melarsoprol was developed in 1949 (Kennedy, 2004). The use of this drug is very extensive in the treatment of both *T. b. rhodesiense* and *T. b. gambiense* stage 2 infections. Melarsoprol is virtually insoluble in water, and is administrated intravenously. (Fairlamb, 2003) It is known to inhibit the glycolytic enzyme, phosphogluconate dehydrogenase (Van Schaftingen et al., 1987, Hanau et al., 1996) and kills the parasite very quickly. However, it is also a very toxic and dangerous treatment (Parry et al., 2003). Side effects include vomiting, abdominal colic, arthralgia and thrombophlebitis. Furthermore, 5-10% patients suffer severe post-treatment reactive encephalopathy (PTRE) which is often fatal (Fairlamb, 2003, Pépin and Milord, 1994). Moreover, drug resistance caused by the disablement of the P2 aminopurine permease transporter is increasing (Delespaux and Koning, 2007). Melarsoprol resistance has now been found in the north west of Angola, north west of Uganda and south Sudan (Brun et al., 2001).

Eflomithine (Difluoromethylornithine; DFMO) was developed as an anti-tumor drug (Tabor and Tabor, 1984, Delespaux and de Koning, 2007) has been employed in the treatment of African sleeping sickness from 1981 (Kennedy, 2004). DFMO is an inhibitor of the first step of polyamide synthesis: ornithine decarboxylase (ODC) which catalyses the formation of putrescine from ornithine. The reason for its efficacy against African trypanosomes is unclear given that DFMO also inhibits the mammalian ODC. However, differences in the turnover rate of ODC in mammals and parasites may
provide an explanation (Heby, 2003). Similarly, the high turnover rate of ODC in T. b. rhodesiense compared with T. b. gambiense may explain why the former is insensitive to DFMO and the drug is only used to treat the late stage of infection with T. b. gambiense (Iten et al., 1997). In infection with this subspecies, DFMO has a greater affect on T. b. gambiense infection than melarsoprol, in addition it demonstrates much less toxicity and can be taken orally (Fairlamb, 2003). However, the high cost of this drug restricts its availability to patients with African sleeping sickness (Parry et al., 2003).

Nifurtimox was developed in 1977 and is used to treat Chagas disease, which is caused by American trypanosomes (Delespaux and de Koning, 2007). Nifurtimox maybe combined with DFMO to treat African sleeping sickness when melarsoprol or DFMO treatment was fails (Bray et al., 1994, Barrett et al., 2007). However, the efficiency of this drug is still under evaluation (Kennedy, 2004).

Following drug treatment, patients should receive follow up examinations every six months for at least two years, something very challenging in the endemic environments (Kennedy, 2004). The variation of VSG means a viable vaccine (the ideal situation) is unlikely to be developed (Matovu et al., 2003). This together with increasing drug resistance and the severe side effects (including death) of existing treatments mean it is necessary to urgently develop new drugs to treat the African sleeping sickness (Mäser et al., 2003).
<table>
<thead>
<tr>
<th>Drug</th>
<th>Spectrum</th>
<th>Indication</th>
<th>Year of first use</th>
<th>Route of Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suramin</td>
<td>T. b. rhodesiense</td>
<td>Stage 1</td>
<td>1920s</td>
<td>i.v.</td>
</tr>
<tr>
<td>Pentamidine</td>
<td>T. b. gambiense</td>
<td>Stage 1</td>
<td>1940</td>
<td>i.m.</td>
</tr>
<tr>
<td>Melarsoprol</td>
<td>T. b. rhodesiense</td>
<td>Stage 2</td>
<td>1949</td>
<td>i.v.</td>
</tr>
<tr>
<td>(Mel B)</td>
<td>T. b. gambiense</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eflornithine</td>
<td>T. b. gambiense</td>
<td>Stage 2</td>
<td>1981</td>
<td>i.v.</td>
</tr>
<tr>
<td>(DFMO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.1
Drugs currently used for the treatment of Human African Trypanosomiasis.
i.v. – intra-venous; i.m – intra-muscular (Kennedy, 2004)
1.2 Sphingolipids

1.2.1 Introduction

Sphingolipids (SLs) were named because of their enigmatic, 'sphinx-like' properties by J. L. W. Thudichum who discovered this membrane component in 1884 (Futerman and Hannun, 2004). These lipid species can be found in all eukaryotic cells (Hannun et al., 2001) and have been demonstrated to be pivotal in signal transduction and cell membrane architecture (Futerman and Riezman, 2005).

Animals, including mammals, produce the phosphosphingolipid (PSL) sphingomyelin (SM) via the enzyme SM synthase (Huitema et al., 2004). However, plants, yeast and some protozoa produce inositol phosphorylceramide (IPC) via IPC synthase (Becker and Lester., 1980). Unlike the synthesis of sterols and glycerolipids, SL biosynthesis begins in the endoplasmic reticulum (ER) with the production of the unmodified sphingolipid ceramide, and then proceeds in the Golgi apparatus with synthesis of complex species (Futerman and Riezman, 2005).

In humans, SLs are associated with diseases including diabetes (Summers, 2005), some cancers (Modrak et al., 2006) and infection by microorganisms (Cowart and Obeid, 2006) in various ways. This evident importance has led to increasing research efforts focusing on the understanding of SL metabolism and function.
1.2.2 Structure of sphingolipids

The basic structure of SL consists of a long-chain sphingoid base connected to a fatty acid at the second carbon (C-2) by an amide bond (figure 1.7, Heung et al., 2006, Futerman and Hannun, 2004).

Complex PSLs are amphipathic molecules that contain both hydrophobic and hydrophilic regions (Futerman and Hannun, 2004). These hydrophobic (polar) groups are attached at the C-1 position of the sphingoid base through an ester bond (figure 1.7, Heung et al., 2006, Futerman and Hannun, 2004). Alternatively, the sphingoid base can be connected to one or more saccharide groups including glucose, galactose and N-acetylgalactosamine via a glycosidic bond to form complex, neutral glycosphingolipids (GSLs; figure 1.7, Masserini and Ravasi, 2001, Futerman and Hannun, 2004).

In yeast, sphingoid bases such as phytosphingosines and sphinganines carry 18-20 carbon atoms (C18-20; Merrril, 2002, Rao et al., 2007). In mammals, the major SLs contain a C18 sphingoid base (Shayman, 2000) compared to C14 in insects (Lester and Dickson, 1993) and C16 in nematodes (Holthuis et al, 2001). More than 20 kinds of fatty acids can be found attached to the sphingoid base leading to a wide variety of SL species (Futerman and Riezman, 2005, Futerman and Hannun, 2004).
1.2.3 Function

SLs play an important role in eukaryotic cells participating in the endo- and exocytosis signaling and cell-cell interactions (Rao et al., 2007). SLs in animals together with sterols, form lipid raft microdomains which mediate the recruitment of certain lipidated proteins to form receptors which mediate signal transduction, cell adhesion, migration and proliferation (Holthuis et al., 2001). However they also play a role in the resistance to chemotherapy (e.g. of anti-cancer drugs) and act as portals for microorganisms such as bacteria and viruses to enter the mammalian cell (Heung et al., 2006; Futerman and Hannun, 2004). In other eukaryotes, notably the fungi, SLs mediate the heat stress response, signal transduction and the pathogenesis of certain medically important species (Heung et al., 2006).

Furthermore, ceramide, the simplest SL in all eukaryotic cells, is found to promote cell apoptosis and inhibit cell proliferation (Futerman and Hannun, 2004).
1.2.4 Biosynthetic pathway

1. Ceramide synthesis (figure 1.8)

The first, rate-limiting step of sphingolipid synthesis is the reaction of L-serine and palmitoyl Co-A to form 3-ketosphingosine which is catalyzed by serine palmitory-transferase (SPT), the gene products of LCB1 and LCB2 in yeast (Nagiec et al., 1994). Subsequently, 3-ketosphingosine is reduced to form sphinganine by 3-ketosphingosine reductase which is encoded by TSC10 (Cowart and Obeid, 2007, Beeler et al., 1998).

In animal cells, sphinganine is N-acylated to form dihydroceramide and trans-double bonds are inserted at the 4, 5 position of sphinganine group to form ceramide (Merrill et al., 1997). In yeast, sphinganine is hydroxylated to form phytosphingosine (Grilley et al., 1998). (Phyto)ceramide is subsequently incorporated into many SLs such as ceramide-1-phosphate, SM and GSLs.

2. Sphingomyelin synthase (figure 1.19)

The formation of ceramide occurs in the ER (Rao and Acharya, 2007) and it’s transported from ER to Golgi apparatus by a specific ceramide transport molecule (CERT; Hanada et al., 2003) in animal cells. After that, Phosphocholine is transferred from phosphatidylcholine (PC) to ceramide to form SM in Golgi apparatus and at the plasma membrane (Futerman and Hannun, 2004). SM can also be degraded into ceramide by sphingomyelinase (SMase), a process which regulates cell growth and apoptosis (Hannun and Luberto, 2004).
Figure 1.8
Pathway of ceramide synthase (Holthuis et al., 2001). The formation of ceramide is in mammals and phytoceramide in yeast or plants.

Figure 1.9
Pathway of SM synthesis (Futerman and Hannun, 2004). Phosphocholine is transferred from phosphatidylcholine (PC).
3. Inositol ceramide synthesis (figure 1.10)

In yeast, plants and some protozoa, the phosphoinositol head-group from phosphatidylinositol (PI) is transferred to phytoceramide to form inositol phosphorylceramide (IPC), a process catalyzed by IPC synthase (AUR1p in yeast). Like mammals, the complex sphingolipid, IPC, is synthesized in the Golgi apparatus (Levine et al., 2000; Denny et al. 2006). In yeast, IPC is subsequently mannosylated by the gene products of CSG1, CSG2 and CSH1 to form mannoseinositol phosphor-ceramide (MIPC, Beeler et al., 1997). Subsequently, another inositol phosphate is added to MIPC to form mannose inositol (P)₂ ceramide (M(IP)₂C), a process regulated by the enzyme encoded by Ipt1 (Dickson et al., 1997).

Figure 1.10
Pathway of IPC synthesis (Beeler et al., 1997). Genes are shown in capital italics.
1.2.5 Sphingolipid biosynthesis as a drug target

So far, 11 enzymes have been found to be involved in SLs metabolism (Futerman and Riezman, 2005). SPT, the first enzyme in the pathway, belongs to the pyridoxal phosphate-dependent α-oxoamine synthase family. Drugs are known to specifically inhibit the function of SPT: sphingofungin, lipoxamycin and myriocin (figure 1.11, Delgado et al., 2006). In addition, ceramide synthesis can be inhibited by fungi metabolites such as fumonisin produced by Fusarium verticilloides (figure 1.12, Desai et al., 2002), the fumonisin-like AAL-toxin produced by Alternaria alternate var. lycopersici (figure 1.12, Winter et al., 1996) and australifungins from Aporormiella australis. (Mandala et al., 1995)

IPC synthase activity is evident only in yeast, plants and protozoa rather than animal cells. The inhibition of IPC synthase has become an important target in the fight against these pathogens (Nagiec et al., 1997). Inhibition by aureobasidin A (produced by Aureobasidium pullulans, Zhong et al., 2000) has been demonstrated in many yeast and fungi including S. cerevisiae, and the pathogenic Candida and Aspergillus species (Zhong et al., 2000). Kinetoplastid parasites including Leishmania major (Heung et al., 2006) and Trypanosoma cruzi (Figueiredo et al., 2005) also have IPC synthase activity and reports indicate that aureobasidin A successfully inhibits the IPC synthase from these protozoan parasites (Denny et al., 2006, Figueiredo et al., 2005). Therefore, IPC synthase represents a new drug target for the pathogenic protozoa.
Figure 1.11
Structure of drugs used to inhibit SPT (Delgado et al., 2006). These compounds react with SPT to interfere the catalytic reaction.

Figure 1.12
Structure of drugs used to inhibit ceramide synthase (Delgado et al., 2006). Both inhibitors bind to the dicarboxylic acid side chains on the sphingoid base substrate.
1.3 The *Trypansoma brucei* sphingolipid synthase

The identification of kinetoplastid IPC synthase (Denny *et al.*, 2006) has made possible: i) its validation as an anti-protozoal target; and ii) the establishment of the specific efficacy of known fungal IPC synthase inhibitors. *The T. brucei* database contains four closely related orthologues of the characterised *Leishmania* IPC synthase (Denny *et al.*, 2006). Previously, mass spectrometry of lipid fractions has shown that whilst the major phosphosphingolipid in pathogenic bloodstream form parasites is SM (Patniak *et al.*, 1993; Richmond *et al.*, 2007a; Richmond *et al.*, 2007b); insect stage, procyclic *T. brucei* also contain, like *Leishmania*, IPC (Güther *et al.*, 2006).

This report describes the characterization of the *T. brucei*, sphingolipid synthase (*TbSLS*) which demonstrates itself to be an IPC synthase, but with the further ability to mediate the production of 2 other unknown sphingolipids (X – co-migrating with SM; and Y). The IPC synthase activity of *TbSLS* is acutely sensitive to the fungal inhibitor aureobasidin A and bloodstream form *T. brucei* are rapidly killed at sub-micromolar concentrations of this drug. Down-regulation of *TbSLS*, using inhibition RNA (RNAi), in bloodstream form parasites demonstrated that the enzyme activity is essential for growth thus validating it as a target for the development of new therapies.
1.4 What is RNAi?

The interference RNA (RNAi) response was first identified in plants (Napoli et al., 1990) and is a natural biological protective response to viral dsRNA (Sledz and Williams, 2005). However, since Fire et al (1998) injected dsRNA into Caenorhabditis elegans and found that gene expression could be specifically inhibited the technology of RNAi, in which the Dicer and RISC complexes play an important role, has developed very quickly as tool for studies of gene function (Geley and Muller, 2004). RNAi now is found to function in many eukaryotic organisms such as Drosophila, hydra, zebrafish, mammals and Trypanosoma brucei (table 1.2, Brantl, 2002).

<table>
<thead>
<tr>
<th>kingdom</th>
<th>species</th>
<th>Stage tested</th>
<th>Delivery method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protozoans</td>
<td>Trypanosoma brucei</td>
<td>Procyclic and bloodstream forms</td>
<td>Transfection</td>
</tr>
<tr>
<td></td>
<td>Toxoplasma gondii</td>
<td>Mature form in fibroblast</td>
<td>Transfection</td>
</tr>
<tr>
<td>Invertebrates</td>
<td>Drosophila melanogaster</td>
<td>Cell lines, adult and embryo</td>
<td>Injection for adult and embryo stage, soaking and transfection for cell lines</td>
</tr>
<tr>
<td></td>
<td>Hyfra</td>
<td>Adult</td>
<td>Delivered by micropipette</td>
</tr>
<tr>
<td>Vertebrates</td>
<td>Zebra fish</td>
<td>Embryo</td>
<td>Microinjection</td>
</tr>
<tr>
<td></td>
<td>Mice</td>
<td>Prenatal, embryonic stages and adult</td>
<td>Injection</td>
</tr>
<tr>
<td></td>
<td>Human</td>
<td>Human cell lines</td>
<td>Transfection</td>
</tr>
<tr>
<td>Plants</td>
<td>Onocots/dicots</td>
<td>Plant</td>
<td>Particle bombardment with siRNA/transgenics</td>
</tr>
<tr>
<td>Fungi</td>
<td>Neurospora crassa</td>
<td>Filamentous fungi</td>
<td>Transfection</td>
</tr>
<tr>
<td></td>
<td>S. pombe</td>
<td>Filamentous fungi</td>
<td>Transgene</td>
</tr>
<tr>
<td>Algae</td>
<td>Chlamydomonas reinhardtii</td>
<td></td>
<td>Transfection</td>
</tr>
</tbody>
</table>

Table 1.2
Eukaryotic organisms exhibiting RNA-related phenomena. (Brantl, 2002)
Chapter 2:
Materials and Methods
Chapter 2: Materials and methods

2.1 Materials

2.1.1 Chemicals

Tris/HCl, glucose, ammonium sulphate, galactose, KCl, lithium acetate, raffinose, tryptophan, β-mercaptoethanol, NaCl, chloroform (A.C.S), methanol (A.C.S) and acid-washed glass beads (425-600μm, 30-40 U.S. sieve) were from Sigma Aldrich.

Yeast nitrogen base and BODIPY FL-ceramide were from Invitrogen.

HMI-9 powder, penicillin/streptomycin, foetal bovine serum and L-glutamine were from GIBCO BRL.

G418, agarose, tryptone and yeast extract were from Melford.

Amino acids drop-out supplement –HIS-URA-TRP was from Clontech.

Complete EDTA-free protease inhibitor cocktail tablets and HPTLC plates were from Merck.
2.1.2 Buffers

<table>
<thead>
<tr>
<th>Solution</th>
<th>Final conc.</th>
<th>Volume</th>
<th>Stock solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>STE</td>
<td>25 mM</td>
<td>1.25 ml</td>
<td>Tris/HCl (1M)</td>
</tr>
<tr>
<td>(50 ml)</td>
<td>250 mM</td>
<td>12.5 ml</td>
<td>Sucrose (1M)</td>
</tr>
<tr>
<td></td>
<td>1 mM</td>
<td>100 μl</td>
<td>EDTA (0.5M)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Complete protease inhibitor cocktail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Add to 50 ml dH₂O</td>
</tr>
<tr>
<td>Storage buffer</td>
<td>50 mM</td>
<td>2.5 ml</td>
<td>Tris/HCl</td>
</tr>
<tr>
<td>(50 ml)</td>
<td>15% w/v</td>
<td>6.25 ml</td>
<td>Glycerol (80% w/v)</td>
</tr>
<tr>
<td></td>
<td>5 mM</td>
<td>0.25 ml</td>
<td>MgCl₂ (1M)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Complete protease inhibitor cocktail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Add to 50 ml dH₂O</td>
</tr>
<tr>
<td>Tris/EDTA/BSA</td>
<td>250 mM</td>
<td>12.5 ml</td>
<td>Tris/HCl (1M)</td>
</tr>
<tr>
<td>buffer</td>
<td>25 mM</td>
<td>2.5 ml</td>
<td>EDTA (0.5M)</td>
</tr>
<tr>
<td>(50 ml)</td>
<td>15 mg/ml</td>
<td>750 mg</td>
<td>Fatty-acid-free BSA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Add to 50 ml dH₂O</td>
</tr>
</tbody>
</table>
2.1.3 Media

<table>
<thead>
<tr>
<th>Media</th>
<th>Weight</th>
<th>Compositions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD-HIS-URA</td>
<td>20gm</td>
<td>Glucose</td>
</tr>
<tr>
<td>* (1L)</td>
<td>1.7g</td>
<td>Yeast nitrogen base</td>
</tr>
<tr>
<td></td>
<td>5g</td>
<td>Ammonium sulphate</td>
</tr>
<tr>
<td></td>
<td>0.7g</td>
<td>Amino acid drop-out supplement -HIS-URA-TRP</td>
</tr>
<tr>
<td></td>
<td>1ml</td>
<td>Tryptophan (4mg/ml)</td>
</tr>
<tr>
<td></td>
<td>20g</td>
<td>Agar (added for solid media preparation)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Add to 1000ml dH₂O</td>
</tr>
</tbody>
</table>

YPGR (1L)

<table>
<thead>
<tr>
<th>Sol I</th>
<th>10g</th>
<th>Yeast extract</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20g</td>
<td>Peptone</td>
</tr>
<tr>
<td></td>
<td>800ml</td>
<td>Galactose</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sol II</th>
<th>40g</th>
<th>Raffinose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20g</td>
<td>dH₂O</td>
</tr>
<tr>
<td></td>
<td>200ml</td>
<td></td>
</tr>
</tbody>
</table>

SGR (1L)

<table>
<thead>
<tr>
<th>Sol I</th>
<th>40g</th>
<th>Galactose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20g</td>
<td>Raffinose</td>
</tr>
<tr>
<td></td>
<td>900ml</td>
<td>dH₂O</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sol II</th>
<th>3.5g</th>
<th>Amino acid drop-out supplement -HIS-URA-TRP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100ml</td>
<td>dH₂O</td>
</tr>
<tr>
<td>Media</td>
<td>Weight</td>
<td>Compositions</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>SOC</td>
<td>20g</td>
<td>Tryptone</td>
</tr>
<tr>
<td></td>
<td>5g</td>
<td>Yeast extract</td>
</tr>
<tr>
<td></td>
<td>0.584g</td>
<td>NaCl</td>
</tr>
<tr>
<td></td>
<td>0.186g</td>
<td>KCl</td>
</tr>
<tr>
<td></td>
<td>2.003g</td>
<td>MgCl₂</td>
</tr>
<tr>
<td></td>
<td>2.465g</td>
<td>MgSO₄</td>
</tr>
<tr>
<td></td>
<td>3.6g</td>
<td>Glucose</td>
</tr>
<tr>
<td>HMI-9</td>
<td>10.14g</td>
<td>HMI-9 powder</td>
</tr>
<tr>
<td></td>
<td>3.024g</td>
<td>NaHCO₃</td>
</tr>
<tr>
<td></td>
<td>14.3ul</td>
<td>2M β-mercaptoethanol</td>
</tr>
<tr>
<td></td>
<td>10ml</td>
<td>Penicillin/streptomycin</td>
</tr>
<tr>
<td></td>
<td>10ml</td>
<td>L-Glutamine</td>
</tr>
<tr>
<td></td>
<td>100ml</td>
<td>Foetal bovine serum</td>
</tr>
<tr>
<td></td>
<td>to 1L</td>
<td>dH₂O</td>
</tr>
<tr>
<td></td>
<td>pH 7.5</td>
<td></td>
</tr>
<tr>
<td>LB</td>
<td>10g</td>
<td>Tryptone</td>
</tr>
<tr>
<td></td>
<td>5g</td>
<td>Yeast extract</td>
</tr>
<tr>
<td></td>
<td>10g</td>
<td>NaCl</td>
</tr>
<tr>
<td></td>
<td>Add to 1000ml</td>
<td>dH₂O</td>
</tr>
</tbody>
</table>
2.1.4 Antibiotics

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Stock conc.</th>
<th>Store temperature</th>
<th>Final conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>50 mg/ml</td>
<td>-20°C</td>
<td>50 μg/ml</td>
</tr>
<tr>
<td>Doxycyclin</td>
<td>1 mg/ml</td>
<td>-20°C</td>
<td>1 μg/ml</td>
</tr>
<tr>
<td>Phleomycin</td>
<td>5 mg/ml</td>
<td>-20°C</td>
<td>2.5 μg/ml</td>
</tr>
<tr>
<td>G418</td>
<td>5 mg/ml</td>
<td>-20°C</td>
<td>2 μg/ml</td>
</tr>
</tbody>
</table>

2.1.5 Strains and vectors

<table>
<thead>
<tr>
<th>Strains/ Vectors</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH5a</td>
<td>DNA cloning</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>HIS-GAL AUR1 Mutant yeast complemented by T. brucei SLS</td>
</tr>
<tr>
<td>TbSLS1000</td>
<td>Single Marker Bloodstream form Aureobasidin A efficacy and RNAi induction (SMB, T7RNAP::TETR::NEO)</td>
</tr>
<tr>
<td>pRS426</td>
<td>Expression of of TbSLS in yeast</td>
</tr>
<tr>
<td>p2T7</td>
<td>RNAi</td>
</tr>
</tbody>
</table>
2.2 Bioinformatic and ex vivo analyses

2.2.1 T. brucei sequence analysis

There are four T. brucei sphingolipid synthase (TbSLS) sequence orthologues evident in the T. brucei database (www.geneDB.org). Sequence alignments were performed using ClustalW (www.clustal.org). Tb09.211.1000 was analysed here.

2.2.2 Metabolic labeling

S. cerevisiae HIS-GAL AUR1 TbSLS1000 and controls were grown to exponential phase (OD₆₀₀ 0.5-0.7) and 10 units (OD₆₀₀=1=1 unit) of cells pelleted, resuspended in 250μl of SD-HIS-URA media and transferred into LoBind Eppendorf tubes. 5μl of 5mM BSA-conjugated FL-ceramide and/or 50μCi C¹⁴Choline (GE Healthcare) was added and the cells were incubated with shaking at 30°C for 2 hours. The cells were washed with 1ml of dH₂O and 400μl of chloroform:methanal (C:M; 1:1 v/v) added to the pellet before disruption with 0.1-0.2g of glass beads in a vortex mixer at full speed for 10 seconds. 400μl of C:M:dH₂O (C:M:W; 10:10:3 v/v/v) was added to the supernatant. The organic, lipid fraction was isolated by biphasic separation in a Folch wash, before being dried at 30°C in a rotary concentrator (Eppendorf 5301). The samples were then resuspended in 20ul of C:M:W, 10:10:3 and fractionated by HPTLC with C:M:0.25%KCl, 55:45:10 as the solvent phase. For 2-dimensional chromatography lipid extracts were fractionated in the first dimension with C:M:4.2M NH₄OH (9:7:3) as the solvent phase and with C:M:Acetic Acid (45:30:7). Subsequently, the plates were scanned using a Fuji3000 fluorescent scanner and analyzed using AIDA Analyzer software (imaGenes). Radiolabelled samples were detected after spraying with EN³HANCE™ (DuPont) by exposure to BioMax (Kodak) film. Bloodstream form T. brucei (SMB) were similarly labeled but with 10⁷ in
serum-free HMI-9 at 37°C, after a 1 hour incubation in the same media. Labeled mammalian, CHO cell controls were provided by Dr Steven Pratt.

2.2.3 Mass spectrometry analyses of *S. cerevisiae* HIS-GAL AUR1

2×10⁹ freeze-dried yeast cells were extracted twice with 250ml of C:M:W, 4:8:3 in a sonicating water bath for 2 hours and centrifuged. The supernatants were adjusted to C:M:V, 4:8:5.6, vortexed and centrifuged. The lower phase was loaded into nanospray tips (Micromass type F) and analysed by electrospray mass spectrometry (ES-MS and ES-MS-MS) using a Micromass Quattro Ultima triple quadrupole mass spectrometer in positive- and negative-ion modes. Capillary and cone voltages were 0.9 kV and 30 V (negative ion) and 1.2 kV and 50 V (positive ion), respectively. Argon was used as the collision gas (3.0×10⁻³ Torr) to collect tandem spectra (ES-MSMS). Collision energies for parent ion scanning were: 60 V, negative-ion parents of m/z 241 for inositol-phospholipids; 37 V, positive-ion parents of m/z 184 for phosphate dylcholines. Collision energies for neutral-loss scanning were: 20 V, for neutral-loss m/z 141 scanning for phosphatidylethanolamines; 25 V, for neutral-loss m/z 181 for phospatidylerines. Negative-ion daughter ion spectra were collected with a collision energy of 60 V.
2.2.4 Agar diffusion assay

Saccharomyces cerevisiae HIS-GAL AUR1 complemented with TbSLS1000 (provided by Dr Paul Denny) were grown in SD-HIS-URA media overnight at 30°C. Cells were diluted into 80ml of SD-HIS-URA media so that OD₆₀₀ was approximately 0.2, and incubated until the OD₆₀₀ was 0.5-0.7 (exponential phase). 2.4x10⁷ cells (OD₆₀₀=1=10⁷/ml cells) were pelleted in a benchtop centrifuge at 3000rpm for 5 minutes. SD-HIS-URA solution I with 2% agarose and solution II were warmed to 45°C. 13.5ml solution I with 2% agarose and 1.5ml of SD-HIS-URA solution II were then mixed with the cell pellet and the mixture poured into square Petri dishes. When set inhibitors at appropriate concentrations in DMSO were applied and the plates then incubated at 30°C for three to four days.

2.3 In vitro enzyme assay

2.3.1 Preparation of microsomes

5L of cells, grown to exponential phase as above (2.3.1), were pelleted at 6000rpm, 15 minutes, 4°C and washed twice with ice-cold PBS. An equal volume of chilled glass beads and STE buffer were added to the pellet and the cells disrupted by vortex mixing. The mixture was centrifuged at 5000rpm, 10 minutes, 4°C and the supernatant transferred to a 50ml tube. The pellet was re-extracted as before and then supernatants combined and a microsomal fraction isolated by differential centrifugation: 147000rpm, 35 minutes, 4°C in an SW60Ti rotor to remove the large granular fraction, followed by 35000rpm, 95 minutes, 4°C to pellet the small granular fraction containing microsomal membranes. The supernatant was removed and the microsomal membrane resuspended in 100μl of storage buffer. The protein concentration was established using the Lowry method (Lowry et al, 1951), adjusted to
10mg/ml and the membranes were stored at -80°C until use.

2.3.2 Preparation of washed microsomes

Equal volumes of the microsomal membrane preparation and a 2.5% CHAPS solution in STE were mixed together and incubated on the ice for 60 minutes. Subsequently the mixture was centrifuged at 43000rpm for 100 minutes at 4°C in a SW60Ti rotor, the pellet resuspended in 50μl of storage buffer and stored at -80°C until required.

2.3.3 In vitro TbSLS1000 assay

5μl of 10mM PI, 4μl of 13mM PE or 4μl of 13mM PC were added into LoBind tubes and air dried. 20μl of Tris/EDTA/BSA buffer was added and the samples sonicated in a water bath for 2 minutes. 10μg of unwashed (crude) or equivalent washed microsomes were added into each tube and the volume adjusted to 48μl with dH2O. 2μl of 5mM BSA conjugated BODIPY FL-ceramide were added in each tube and the reactions incubated at 30°C for 1 hour. 150μl of C:M:W, 10:10:3 was added and, after centrifugation, the lower organic phase was removed to another LoBind tube. The samples were subsequently analysed by HPTLC as above.

2.3.4 Optimum temperature for TbSLS activity in vitro

20μl of Tris/EDTA/BSA buffer, 1μl of 10mg/ml unwashed (crude) microsomes were added to LoBind Eppendorf tubes and dH2O were added to 48μl. These tubes were preincubated at 4°C, 20°C, 30°C, 33°C, 37°C and 40°C for 30 minutes, then 2μl of 5mM BSA conjugated BODIPY FL-ceramide added and the reaction incubated at the appropriate temperature for another 1 hour. The samples were processed and analysed by HPTLC as above.
2.3.5 Efficacy of aureobasidin A against TbSLS activity \textit{in vitro}

20 \mu l of Tris/EDTA/BSA buffer were added into Lobind Eppendork tubes. 5\mu l of different concentrations of aureobasidin A were added together with 1\mu l of 10g/ml unwashed (crude) microsomes and dH\textsubscript{2}O to 48\mu l. The samples were preincubated at 30°C for 30 minutes, then 2\mu l of 5mM FL-ceramide were added in each tube and the reaction incubated at the 30°C for another 1 hour. The samples were processed and analysed by HPTLC as above.

2.4 Cellular analyses

2.4.1 Parasite culture

The bloodstream form \textit{T. brucei} strain Lister 427 engineered variant, Single Marker Bloodstream form (SMB, T7RNAP::TETR::NEO; Wirtz et al., 1999), was maintained \textit{in vitro} at 37°C with 5% CO\textsubscript{2} in HMI-9 medium supplemented with 10% FCS and 2.5\mu g/ml G418.

2.4.2 RNAi

Primers (SigmaGensys) were designed to amplify 2 fragments (approximately 180bps) completely conserved between the four copies of \textit{TbSLS}.

<table>
<thead>
<tr>
<th>Primers</th>
<th>Sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>5' \textit{Tb} SLS RNAi1 Xbal</td>
<td>CATAGATCTAGAAAAACTGTACCTTCTTCCACCG</td>
</tr>
<tr>
<td>3' \textit{Tb} SLS RNAi1 Xbal</td>
<td>CATAGATCTAGAAGCAGGAGTGCCTATGATG</td>
</tr>
<tr>
<td>5' \textit{Tb} SLS RNAi2 Xbal</td>
<td>CATAGATCTAGAGGTTCATACACTGTG</td>
</tr>
<tr>
<td>3' \textit{Tb} SLS RNAi2 Xbal</td>
<td>CATAGATCTAGACGAGGCAACGATGC</td>
</tr>
</tbody>
</table>
These primers were used to amplify the fragments from genomic *T. brucei* DNA (1 μg) using FideliTaq (USB) according to manufacturer’s protocols.

Engineered to contain 5' and 3' XbaI sites these 2 fragments were subsequently digested using XbaI (Promega) and ligated using T4 ligase (Promega) into the p2T7 RNAi vector before selection in DH5α *Escherichia coli*.

A *TbLCB2* (SPT subunit 2) fragment cloned into p2T7 was provided by Dr P. Denny.

p2T7 constructs were amplified in *E.coli* and isolated by Midi Prep (Qiagen) before being linearized by NotI digestion, at least 10 μg of DNA was used for each transfection. 2.5x10⁷ cells were grown for each transfection and pelleted at 1000rpm, 10 minutes at room temperature in a benchtop centrifuge. Cells were washed with 25 ml of cytomix, then resuspended in the same at 6x10⁷/ml. 10 μg of linear plasmid in 10 μg was mixed with 450 μl of cells in an Eppendorf tubes, transferred into 2mm gap electroporation cuvettes (Sigma) and pulsed at 1.4kV, 2.5 μF in a BioRad Gene Pulser II. After electroporation, cells were transferred into 36 ml of HMI-9 media and incubated at 37°C, 6 hours before adding 7.2 μl of 5 mg/ml G418 and 18 μl of 5 mg/ml phleomycin. Parasites were transferred into 24 well plates with each well containing 1 ml of cells. Plates were incubated at 37°C for approximately six days and the selected transfectants sub-cultured.

Two flasks of RNAi transfected SMB cells were grown in HMI-9 with 2.5 μg/ml phleomycin and 2.5 μg/ml G418 with an initial cell density of 1x10⁵/ml. 1 μg/ml of doxycyclin was added into one flask, the other acted as a control. Parasites were incubated at 37°C and cell counts and observations made after 24, 48 and 72 hours. Cells were sub-cultured to 1x10⁵/ml when they reached or exceeded 2x10⁵/ml.
RNA was extracted from approximately 10^7 parasites using the RNeasy kit (Promega) as per the manufacturer’s protocol except that that cells were disrupted using glass beads in 600μl of RTL buffer prior to extraction. Isolated RNA was treated with DNaseI (Promega) at 37°C, 30 minutes before 3μg was used to make cDNA using the 3’ primers above and SuperScript II (Promega) according to the manufacturer’s protocols. Subsequently, the primers below were used to amplify cDNA fragments using PCR Master Mix (Promega) and the products then analyzed by agarose gel electrophoresis.

2.4.3 Aureobasidin A efficacy against *T. brucei*

T. brucei SMB were cultured in the presence of various concentrations of aureobasidin A. Growth was analyzed at 24 hour intervals as below.

<table>
<thead>
<tr>
<th>Primers</th>
<th>Sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>5' TbSLS</td>
<td>AACTGTACCTTCACCG</td>
</tr>
<tr>
<td>3' TbSLS</td>
<td>AGCAGGAGTGCATGATG</td>
</tr>
<tr>
<td>5' TbβTUB</td>
<td>GGAGCGCATCAATGTGTAC</td>
</tr>
<tr>
<td>3' TbβTUB</td>
<td>CAGGCACAGGTGACGCCG</td>
</tr>
<tr>
<td>5' Tb LCB2</td>
<td>ATGCCTACTTACGGAGGC</td>
</tr>
<tr>
<td>3' TbLCB2</td>
<td>CGTCGAAACCGCCTCCATCAC</td>
</tr>
</tbody>
</table>
Chapter 3:
Results
Chapter 3: Results

3.1 General information

African sleeping sickness which is listed as a tropical disease research (TDR) category disease is emerging as a serious problem in parts of sub-Saharan Africa and new drugs are urgently needed (www.who.int/tdr/). According to the 2004 WHO report, 48000 people lost their lives to this disease in that year. Compared to humans and other mammals, pathogenic protozoa and fungi have differences in their sphingolipid biosynthetic pathways. This difference offers target sites for novel inhibitor molecules and the opportunity for developing new drugs (Heung et al., 2006).

This report describes experimental work comprising 3 parts.

1. Functional identification and characterization of the *Trypanosoma brucei* sphingolipid synthase (*TbSLS*).

2. The inhibition of *T. brucei* sphingolipid synthase using a known anti-fungal drug aureobasidin A.

3. Functional analysis using RNA interference (RNAi).
3.2 Identification and characterisation of the *T. brucei* sphingolipid synthase

3.2.1 *T. brucei* sphingolipid synthase (*TbSLS*) complements an AUR1 mutant yeast

Four gene sequences (*Tb09211.1000, Tb09.211.1010, Tb09.211.1020* and *Tb09.211.1030*) were previously identified in the genome database (www.genedb.org) as sequence orthologues of the inositol phosphorylceramide synthase (*LmIPCS*) from the related kinetoplastid *Leishmania* parasite (Denny et al., 2006). Further analysis of the genomic sequence identified the complete open reading frames (ORFs) found on chromosome 9 which are predicted to encode 4 transmembrane proteins with more than 70% identity. Most variation occurs at the carboxy-termini, a region predicted to lie on the cytosolic side of the membrane away from the active site at the Golgi lumen (Denny et al., 2006, figure 3.1). Like *LmIPCS*, *TbSLS* possesses conserved sphingomyelin (SM) synthase domains: D1, D3 and D4 (Huitema et al., 2004). D3 (C-G-D-X3-S-G-H-T) and D4 (H-Y-T-X-D-V-X3-Y-X6-F-X2-Y-H) are similar to the C2 and C3 motifs in Lipid-Phosphate Phosphatase (LPP, Neuwald, 1997) and domains 3 and 4 of the fungal AUR1p (Heidler and Radding, 2000). D3 and D4 contain the histidine and aspartate residues (underlined) that form the catalytic triad which mediates nucleophilic attack on lipid phosphate ester bonds (Huitema et al., 2004; Neuwald, 1997). Gene mutation at this triad inhibits both the fungal and *Leishmania* IPC synthase (Levine et al., 2000; Mina and Denny, personal communication). One of the predicted *T. brucei* sphingolipid synthase isoforms, the longest (*Tb09.211.1000, TbSLS1000*), was analysed in this study.
Figure 3.1:
Predicted protein sequences of the 4 T. brucei ORFs aligned using ClustalW 1.81 (http://www.ebi.ac.uk/Tools/clustalw2/index.html). The blue regions indicate the non-identical regions. TM – predicted transmembrane domains (Denny et al., 2006); D1, D3 and D4 – conserved SM synthase domains.
The auxotrophic mutant *Saccharomyces cerevisiae* strain YPH499-HIS-GAL-AUR1 in which the essential AUR1 IPC synthase gene is under the control of a galactose inducible promoter is unable to grow in the absence of galactose. However, this can be rescued by the expression of *LmIPCS* (Denny et al., 2006). Similarly, *TbSLS1000* expression complemented the mutant cell indicating that *TbSLS1000* is a functional orthologue of the yeast AUR1 gene.

3.2.2 Functional identification of *T. brucei* SLS

To understand the function of *TbSLS1000*, the complemented yeast and pathogenic bloodstream (BSF) *T. brucei* were labeled with fluorescent BODIPY FL C5-ceramide (a substrate for sphingolipid synthases) complexed with BSA as described in the Materials and Methods. The lipids were extracted and analysed by the high performance thin layer chromatography (HPTLC). *S. cerevisiae* which produces IPC via the action of IPC synthase (Becker and Lester., 1980) and mammalian Chinese Hamster Ovary (CHO) cells which produce sphingomyelin (SM) via the action of SM synthase (Huitema et al., 2004) were similarly labeled and their products used as makers (figure 3.2). The BSF parasites produce 2 labeled products: one that co-migrated with SM (X) and another (Y) which migrated beyond IPC. The complemented yeast produced 2 apparently similar species that co-migrated with the BSF products, as well as a faint band that co-migrated with IPC (figure 3.2). These data indicated that *TbSLS1000* functions primarily as a SM synthase.
Figure 3.2:
Metabolic labelling. TbSLS1000, *S. cerevisiae* and mammalian cells (CHO) were labelled with BODIPY FL-ceramide. Samples were analysed by HPTLC.
CER – ceramide; Y – unknown;
IPC – inositol phosphorylceramide;
SM – sphingomyelin; O – origin;
BSF Tb – bloodstream form *T. brucei*; CHO – Chinese Hamster Overy cells;
HIS-GAL-AUR1 TbSLS – auxotrophic mutant yeast complemented with TbSLS1000
3.2.3 2-dimensional HPTLC analyses

In order to further characterize the labeled sphingolipids extracted from the *TbSLS1000* complemented yeast and the *T. brucei* bloodstream form parasites, 2D-HPTLC was used to further separate the different ceramide-labeled species produced. 2 labeled lipid fractions were loaded at the same origin on a HPTLC plate and separated in 2 dimensions using 2 different solvent systems.

As shown in figure 3.3, the lipids from the *TbSLS1000* complemented yeast and *T. brucei* BSF cells separated into three groups: apparent IPC (only produced by the complemented yeast), and unknowns X (shown to co-migrate with SM above), and Y. This indicated that the X and Y are produced in both *T. brucei* BSF cells and the complemented yeast; therefore, it seems that *TbSLS1000* (and, presumably, its isoforms) functions as the major sphingolipid synthase in the pathogenic form of *T. brucei*. IPC could only be detected in the complemented yeast (see above). Notably, this lipid has only been detected in insect stage, procyclic form *T. brucei* (Güther et al., 2006).

In one dimensional HPTLC, unknown X co-migrated with SM (see above). To further investigate the identity of X, labeled lipids from *T. brucei* BSF parasites and mammalian cells were analyzed by 2D-HPTLC. As seen in figure 3.4, SM and X could not be separated under these conditions. This supported the suggestion that X is SM and that *TbSLS1000* functions primarily as a SM synthase.
Figure 3.3:
2D HPTLC analysis. T. brucei SLS complemented yeast and T. brucei BSF parasites were labeled with BODIPY FL-ceramide and the lipids extracted and analysed by HPTLC. The samples were spotted at the same labeled origin and separated in 2 dimensions using 2 different solvent systems. IPC- Inositol phosphorylceramide

Figure 3.4:
2D HPTLC analysis. T. brucei BSF parasites and mammalian CHO cells were labeled with BODIPY FL-ceramide and the lipids extracted and analysed by HPTLC. The samples were spotted at the same labeled origin and separated in 2 dimensions using 2 different solvent systems. GSL – glycosphingolipid; SM- sphingomyelin.
In order to prove that *TbSLS1000* functions as SM synthase, complemented yeast were labeled with 14C choline and BODIPY FL-ceramide as described in Materials and Methods. The formation of SM via SM synthase requires phosphatidylcholine (PC) as the donor substrate (Huitema et al., 2004) and since 14C choline is incorporated into PC, radio isotope will also label any SM produced by the complemented yeast.

Figure 3.5 shows the result of this dual labeling when the lipids are separated by 2D-HPTLC. It is clear to see PC labeled on the plate; however, no 14C choline species were co-labeled with ceramide. This indicated that SM synthase activity is absent, X is not SM and that *TbSLS1000 complemented yeast* do not produce SM.

Figure 3.5:
2D HPTLC analysis. *TbSLS 1000-* complemented cells were labeled with 14C choline (black) and BODIPY FL-ceramide (white).
Moreover, lipids extracted from *TbSLS1000* were analysed by mass spectrometry (with Mike Ferguson, University of Dundee); 3 major complex sphingolipids were visualized in the negative ion spectrum at mass 952.7 (44:0,4), 968.7 (44:0,5) and 980.7 (46:0,4), all of these represent IPC species (figure 3.6). No SM or ethanolamine phosphorylceramide were detected (positive ion spectrum; data not shown).

Comparing the mass spectrometry results of *TbSLS1000* and *ScAUR1* complemented yeast, showed no differences between the 2 cell lines. This indicated that *TbSLS1000* functions as an IPC synthase rather than SM synthase. However, this method did not identify the unknown X and Y species.
3.2.4 in vitro assay of TbSLS1000

In order to further understand the activity of *T. brucei* sphingolipid synthase, an *in vitro* assay was established as described in Materials and Methods. Microsomal membranes prepared from the *TbSLS1000* complemented yeast were treated with phosphatidylinositol (PI), phosphatidylethanolamine (PE) or phosphatidylcholine (PC) as donor substrates and BODIPY FL-ceramide as the receptor substrate.

Subsequently, the lipids were extracted and analyzed by HPTLC plate as previously. The addition of the donor substrate had no demonstrable effect on the high level of activity observed in the microsomes (data not shown). This might be due to the high level of donor substrate present in the microsomal membranes. In addition, when compared to metabolic labeling, less unknown Y was synthesized with respect to IPC in this assay.

Therefore, to reduce substrate contamination the microsomal membrane fractions were washed with 2.5% 3-[3-(cholamidopropyl) dimethylammonio]-1-propane sulfonate (CHAPS) to eliminate most of the endogenous lipids and proteins (Aeed et al., 2004, Mina and Denny, personal communication).

Without the addition of donor substrate, and when compared with a crude preparation, the CHAPS-washed membranes showed a relatively low level of *TbSLS1000* activity as determined by the synthesis of unknowns X (figure 3.7). On the addition of exogenous substrate (bovine PI, PE or PC), only the sample which treated with PI showed an increase in sphingolipid synthase activity, as evidenced by the production of IPC. In contrast, equivalent experiments with *S. cerevisiae*, demonstrated that the yeast IPC synthase cannot use mammalian or plant PI. (Mina and Denny, personal communication) There was no difference in the formation of X or Y after adding
bovine PI in the *TbSLS1000* assay.

These results demonstrated that *TbSLS1000* functions as an IPC synthase indicating that cells produce IPC via IPC synthase. The identities of X and Y, products of both *T. brucei* BSF and *TbSLS1000* complemented yeast, are still unknown. However, it is assumed that they are the result of IPC synthase activity in *T. brucei* BSF cells.

![Figure 3.7: In vitro assay of *TbSLS1000*. *TbSLS1000* – unwashed microsomal fraction assayed with BODIPY FL-ceramide as the receptor substrate and without exogenous donor substrate. CHAPS-washed microsomal fractions assayed with BODIPY FL-ceramide and either no exogenous donor substrate (--) or phosphatidylinositol (PI), phosphatidylethanolamine (PE) or phosphatidylcholine (PC).](image)

Figure 3.7: *In vitro* assay of *TbSLS1000*. *TbSLS1000* – unwashed microsomal fraction assayed with BODIPY FL-ceramide as the receptor substrate and without exogenous donor substrate. CHAPS-washed microsomal fractions assayed with BODIPY FL-ceramide and either no exogenous donor substrate (--) or phosphatidylinositol (PI), phosphatidylethanolamine (PE) or phosphatidylcholine (PC).
3.2.5 Affect of temperature on *TbSLS1000* IPC synthase activity

In order to observe the effects of temperature on the *TbSLS1000*, unwashed microsomes were incubated with BODIPY FL-ceramide (endogenous donor substrate acted as donor) at various temperatures (4°C, 20°C, 26°C, 30°C, 33°C, 37°C and 40°C).

As seen in figure 3.8, the activity of *TbSLS1000*, as determined by the production of unknown X and IPC showed the lowest activity at 4°C and the highest activity at 40°C. Similarly, the *T. cruzi* IPC synthase activity had the lowest activity at 4°C, however the highest activity was observed at 37°C (Figueiredo et al., 2005). Patients infected by *T. brucei* usually have an acute disease with an accompanying high fever (Barret et al., 2003). In contrast, *T. cruzi* produce a chronic infection in tissues including cardiac system, digestive system and CSF without a significant fever (Barret et al., 2003). Additionally, this disease is transmitted by sand flies whose temperature reflects their tropical and sub-tropical habitat.

![Figure 3.8: Temperature assay. The established *in vitro* assay was performed at 4, 20, 26, 30, 33, 37 and 40°C and activity determined by the accumulation of products unknown X and inositol phosphorylceramide (IPC).](image)
3.3 Aureobasidin A inhibition of *TbSLS1000*

3.3.1 Agar diffusion assay

IPC synthesis a recognized target for anti-fungal drugs and aureobasidin A is widely utilized experimental inhibitor (Sugimoto et al., 2004). Aureobasidin A inhibits *Leishmania LmIPCS* activity (Denny et al. 2006; Mina and Denny, personal communication), therefore, it was investigated whether this drug affected the *LmIPCS* orthologue, *TbSLS1000*. Using the complemented yeast in an agar diffusion assay as described in Materials and Methods it was shown that *TbSLS1000* is sensitive to aureobasidin A at both 25 and 100 μM. This demonstrated that the enzyme is more susceptible to the inhibitor than *LmIPCS* which is only sensitive to 100 μM aureobasidin A (Denny et al., 2006). Cycloheximide (which inhibits protein translation) and myriocin (which inhibits serine palmitoyltransferase, an enzyme involved in the first step of sphingolipid synthesis) were used in the assay as positive controls.

![Agar diffusion assay](image)

Figure 3.9:
Agar diffusion assay. *TbSLS1000* complemented yeast were grown in SD-HIS-URA agar and 1, 2 or 3 μl of 25 μM cycloheximide (CYC), 1 mM myriocin (MYR) and 25 μM or 100 μM of aureobasidin A (AbA) were dropped on to the plate. DMSO was used as a negative control.
3.3.2 *in vitro* assay of *Tb*SLS aureobasidin A sensitivity

Having established that *Tb*SLS1000 is sensitive to aureobasidin A., unwashed *Tb*SLS1000 microsomal membranes were pretreated with 0-25nM of this drug and labeled with FL-ceramide. The lipids extracted fractionated by HPTLC and quantified to facilitate calculation of the IC$_{50}$ of aureobasidin A.

Figure 3.10 shows that the synthesis of IPC was strongly inhibited by a 25nM concentration of aureobasidin A. In contrast, the production of unknown X was less sensitive to the inhibitor. The IC$_{50}$ with respect to IPC synthase activity was calculated as approximately 15nM aureobasidin A. This contrasts with a values for the *S. cerevisiae* enzyme of 0.2nM (Nagiec et al., 1997).

![Figure 3.10: The inhibitory effects of aureobasidin A in an *in vitro* assay of *Tb*SLS1000 activity. 0 to 20nM of aureobasidin A was added to each sample before the addition of BODIPY FL-ceramide.](image-url)
3.3.3 Cell based assay of aureobasidin A sensitivity

It has been shown that aureobasidin A inhibits TbSLS in the complemented yeast cell line and *in vitro*. However, what is the effect of aureobasidin A on *T. brucei* BSF cells? To answer this question, the drug was added directly to the culture media at various concentrations and the cell growth assessed every 24 hours for 3 days.

As seen in figure 3.11, when the concentration of aureobasidin A was 5 μg/μl or more, cell growth was completely inhibited and the parasites were dead within 24 hours (assessed by observing motility). The IC$_{50}$ of *T. brucei* BSF cells was less than 1 μg/μl or 0.9mM aureobasidin A (figure 3.11).

Figure 3.11:
T. brucei BSF cell growth curve. Aureobasidin A at 0 to 5 μg/μl was added to the growth media. A: 0-5μg/μl. B: 2-5μg/μl.
In order to analyze the effect of aureobasidin A on sphingolipids synthase, *T. brucei* BSF parasites were treated with aureobasidin A between 0 and 4μg/μl and incubated at 37°C for 2 hours (before the cells started dying) and the parasites were labeled with BODIPY FL-ceramide. The lipids were extracted and fractionated by HPTLC (figure 3.12). The activity of TbSLS, determined by the synthesis of both unknowns X and Y, decreased with increasing concentrations of aureobasidin A which suggested that inhibition of TbSLS by aureobasidin A leads to the death of *T. brucei* BSF cells.

Figure 3.12:
Metabolic labelling of *T. brucei* BSF parasites with BODIPY FL-ceramide in the presence of 0-4 μg/μl of aureobasidin A.
3.4 RNAi

3.4.1 RNAi constructs

Three RNAi constructs were formed in the p2T7 vector, which is designed to produce double stranded RNA from head-to-head T7 promoters when induced by tetracycline (LaCount et al. 2000), and used to inhibit the expression of T. brucei genes involved in sphingolipid biosynthesis. The first of these was Tb-LCB2 (Tb10.70.3220) which encodes part of the SPT, the first enzyme in sphingolipid synthesis.

The other 2 constructs were based on sequence common to all 4 TbSLS isoforms (Tb09.211.1000, 1010, 1020 and 1030): TbSLS RNAi1 and TbSLS RNAi2. These constructs were linearised and transfected into SMB (Single Marker Bloodstream-form) T. brucei (Wirtz et al., 1999) which were then selected with phleomycin.

3.4.2 Tb-LCB2 RNAi

Non-transfected SMB cells were treated with doxycyclin as a control. Doxycyclin is a tetracycline derivative which is used to induce the production of RNAi. As can be seen in figure 3.13, the SMB cells grew normally in the presence of doxycyclin, this indicates that the antibiotic has no toxic affect.

However, on the induction of Tb-LCB2 RNAi the growth rate became decreased markedly and cell death was apparent (by light microscopy). This indicated that sphingolipid biosynthesis is essential for the proliferation of T. brucei BSFs. After subculturing the cells twice, the growth rate of the induced cells was equivalent to that of the non-induced cells, indicating that parasites resistant to RNAi had been selected (figure 3.14).
Figure 3.13:
Growth curve of control SMB parasites with and without doxycyclin.

Figure 3.14:
Growth curve of transfected LCB2 RNAi cells induced by doxycyclin.
Parasites were subcultured to 1×10^5/ml when non-induced cells reached or exceeded 2×10^6/ml.
In order to confirm that this phenomenon was due to the specific suppression of the target gene by RNAi, RNA was extracted from the cells after 2 days of induction and analyzed by RT-PCR. *Tb*-LCB2 mRNA was clearly decreased after 48 hours induction, whereas control- α-tubulin mRNA was unaffected. This indicated that the RNAi response was gene specific.

Figure 3.15:
RT-PCR of *T. brucei* LCB2RNAi cells.
A. LCB2 mRNA fragment (~480bp), B. α-tubulin mRNA fragment (~580bp), —: without doxycyclin, +: with doxycyclin for 48 hours

3.4.3 TbSLS RNAi

RNAi constructs, *TbSLS* RNAi1 and *TbSLS* RNAi2, were transfected into *T. brucei* SMB cells. However, only *TbSLS* RNAi2 allowed selection of viable parasites.

Non-induced *TbSLS* RNAi2 cells grew in a similar manner to the parental SMB parasites. In contrast, the induced parasites grew very slowly with significant cell death (by light microscopy). Just like *TbLCB2* RNAi, the growth rate of induced cells was equivalent to that of non-induced cells after subculturing the cells twice (figure 3.16).
Figure 3.16:
Growth curve of transfected TbSLS RNAi cells induced by doxycyclin. Parasites were subcultured to 1×10^5/ml when non-induced cells reached or exceeded 2×10^5/ml.

Again, RT-PCR was used to confirm the specificity of the RNAi. As shown in figure 3.17, TbSLS mRNA was significantly decreased after 48 hours induction. Control a-tubulin mRNA was unaffected.

![RT-PCR gel image](image_url)

Figure 3.17:
RT-PCR of *T. brucei* SLS RNAi cells.
A. TbSLS mRNA fragment (~400bp),
B. B. a-tubulin mRNA fragment (~580bp),
—: without doxycyclin, +: with doxycyclin for 48 hours
Negative control is tubulin RT-PCR without RT
To directly ascertain the affect of TbSLS RNAi2, induced and non-induced cells were grown for 3 days. After that, cells were labeled with BODIPY FL-ceramide and analysed as described previously. After induction, the TbSLS RNAi2 transfected cells produced 38% less of X than non-induced cells. However, there was no difference in the quality of Y (data not shown). The reason of this is still unknown.

All of these data confirm that sphingolipid synthesis is essential for the proliferation of BSF and procyclic T. brucei (Sutterwala et al., 2007; Fridberg et al., 2008). They also demonstrated that the T. brucei sphingolipids synthase (TbSLS) is an essential activity in the parasite and a valid drug target.
Chapter 4:
Discussion
Chapter 4: Discussion

4.1 Identification of the T. brucei sphingolipid synthase

In recent years, it has become clear that sphingolipid synthase represents a promising drug target for many parasitic diseases, such as those caused by T. cruzi and L. major (Heung et al., 2006). However, the biochemical function of the T. brucei sphingolipid synthase remained unknown (Denny et al., 2006). To begin to understand the role of this enzyme in pathogenesis, bloodstream form cells were labeled with the fluorescent substrate- FL-ceramide and lipids extracted and analyzed by HPTLC.

Two species of complex sphingolipid were synthesized and evident on the plate: SM (X) and Y (figure 3.2). Comparing the Rf values, under the conditions employed, of labeled T. brucei sphingolipid species with similarly labeled S. cerevisiae (which synthesize IPC via IPC synthase, Becker and Lester, 1980) and CHO cells (which produce SM via SM synthase, Huitema et al., 2004), X (0.45) migrated with SM (0.45) and Y(0.78) migrated further than IPC (0.74).

To analyse the T. brucei sphingolipid synthase, one of the four coding sequences in genome database (www.genedb.org), Tb09.211.1000 (TbSLS1000), was cloned into the yeast expression vector pRS426MET25 subsequently transformed into YPH499-HIS-GAL-AUR1 S. cerevisiae mutant yeast in which the essential AUR1, the IPC synthase is regulated by GAL1 promoter and so repressed in the presence of glucose (Denny et al., 2006). TbSLS1000 complemented the auxotrophic mutant yeast and metabolic labeling with FL-ceramide and analyses of these and T. brucei bloodstream form cells found that whilst the parasite produced X and Y, the complemented yeast produced lipids that co-migrated with X, Y and IPC (figure 3.2).

To identify X and Y, TbSLS1000 complemented yeast were labeled with C14 choline
which would be incorporated into SM and analyzed by 2D-HPTLC, in addition mass spectrometry was employed. These experiments failed to identify X or Y, however, mass spectrometry confirmed the presence of IPC. This indicated that TbSLS functions primarily as an IPC synthase in this axenic system.

To analyse the *T. brucei* sphingolipid synthase activity *in vitro*, detergent-washed TbSLS1000 complemented yeast microsomal fractions were treated with FL-ceramide as acceptor substrate and PI, PE or PC as donor substrates for IPC, EPC and SM synthesis respectively. The result shown in figure 3.7 demonstrated that the sample treated with PI significantly increased the synthesis of IPC. PE and PC did not function as substrates. This confirmed that TbSLS1000 functions as an IPC synthase.

Furthermore, the microsomal membranes were reacted at different temperatures to observe the variation of sphingolipid synthase activity. As seen in figure 3.6, TbSLS1000 had highest activity at 40°C, whilst *T. cruzi* sphingolipid synthase has highest activity at 37°C (Figueiredo et al., 2005) and the *L. major* enzyme at 30°C (J. Mina, personal communication). Unlike *L. major*, which causes dermal lesions where the temperature is near 30-33°C (http://www.who.int/leishmaniasis/en/), or *T. cruzi*, which leads in chronic disease of cardiac tissue, patients infected by *T. brucei* usually have an acute disease with an accompanying high fever (Barret et al., 2003). These results reflect the different pathogenic lifestyle of these parasites. Therefore, the different optimal operating temperatures of these orthologues may reflect the different pathogenic lifestyle of these parasites.
4.2 Inhibition of T. brucei SLS by aureobasidin A

Having established that TbSLS1000 functions as an IPC synthase, subsequent studies focused on the inhibition of this activity. Aureobasidin A (AbA), which is non-toxic to animals, has been used as a specific, experimental anti-fungal to inhibit IPC synthase in yeast species, such as S. cerevisiae and Candida (Zhong et al., 2000). Experiments have also demonstrated that AbA inhibits IPC synthase in the kinetoplastid parasites T. cruzi and L. major. (Figueiredo et al., 2005, Denny et al., 2006)

To establish whether AbA inhibits the T. brucei sphingolipids synthase, TbSLS1000 complemented yeast were assayed for their susceptibility to this inhibitor in an agar diffusion assay. Cells growth was inhibited by 25μM and 100μM AbA indicating that T. brucei sphingolipid synthase is susceptible to AbA. Previously, LmIPCS complemented yeast were shown to only be susceptible to the higher concentration of AbA (Denny et al., 2006). Metabolic labeling with FL-ceramide demonstrated that the synthesis of labeled X and IPC decreased with increasing the concentrations of AbA and Y was barely detectable after treatment. The activity of TbSLS1000 (as defined by the synthesis of X, Y and IPC) was totally inhibited when the cells were treated with more than 25nM AbA. The IC50 with respect to IPC synthase activity was calculated as approximately 15nM AbA demonstrating that TbSLS1000 activity is very sensitive to this inhibitor.

Despite these in vitro analyses the efficacy of Ab A with respect T. brucei remained unknown. To begin to understand the effect of this drug on pathogenic bloodstream form T. brucei, 0-5μg/μl of AbA was added to cells and the parasites observed by light microscopy every 24 hours. As expected, the parasites grew more slowly and died in the presence of AbA.
To verify the effect of AbA inhibition on the parasites, *T. brucei* bloodstream form cells were labeled with FL-ceramide and lipids extracted to analyze the variation of TbSLS activity after treated with AbA 2 hours. Notably, the quantities of X and Y decreased which indicated that the inhibition of the enzyme by AbA lead to growth inhibition and death of *T. brucei* bloodstream form parasites.

4.3 Inhibition of *T. brucei* SLS by RNAi

Following the chemical inhibition of TbSLS, RNAi of all 4 isoforms simultaneously was also used to genetically inhibit the function of the *T. brucei* enzyme.

On induction of RNAi, parasites ceased to grow and many were scored as dead by light microscopy. RT-PCR confirmed that this was attributable to the specific down-regulation of TbSLS mRNA. As expected, RNAi was TbSLS lead to a reduction in induced cells production of sphingolipid X compared with controls after FL-ceramide labeling. However, not much difference in the production of enzyme product Y. Given that the target gene was not fully suppressed is the residual activity maybe due to extant enzyme activity.
4.4 Conclusion

We have demonstrated that the *T. brucei* sphingolipid synthase functions as an IPC synthase. Furthermore, this enzyme is shown both chemically and genetically to be essential for *T. brucei* bloodstream form growth, validating *TbSLS* as a drug target in the pathogenic stages of this parasite.

However, since only one of the 4 *TbSLS* coding sequences (*Tb09.211.1000*) was amplified and analysed in this study, it will be necessary to analyse the other 3 closely related isoforms to identify any differences.

Moreover, the mechanism of *T. brucei* sphingolipid synthase activity is still unclear. *T. brucei* bloodstream form cells produce X and Y rather than IPC as would be expected from the analysis here. Further analysis to identify sphingolipids X and Y is necessary to fully understand the function of *T. brucei* sphingolipid synthase.

Ultimately it is hoped that these studies may lead to the development of a new drug leads and, subsequently, to therapies. Such drugs are much needed due to the toxicity of current treatments for African sleeping sickness and because of the rise drug resistance was found in this disease. (Mäser et al., 2003)

4.5 Future work

It remains necessary to identify the unknown sphingolipids X and Y. Recent work has demonstrated that X is sensitive to SMase, indicating that it is SM (Pan et al, submitted). However, mass spectrometry failed to identify SM (or other non-inositol sphingolipids, i.e. Y) in extracts of complemented yeast. An alternative approach would be to use this technique to directly detect labeled products as previously described (Landoni et al, 2008). This could be performed on labeled microsomal samples or metabolically-labeled yeast.
The experiments described in this report were focused on in vitro studies. Subsequent research will need to focus on the function of *T. brucei* SLS in vivo. To facilitate this, the established mouse animal model would be utilized. Mice would be infected with bloodstream form RNAi transfected parasites by intra-peritoneal inoculation. Half of the infected mice would be given water containing doxycycline (which will induce RNAi in the *T. brucei*) and the survival rate of these mice, compared with controls, established (Lecordior et al., 2005). In addition, the efficacy of AbA in infected animals is unknown, although this drug has previously been show to be effective against systemic *Candida albicans* in a mouse model when given both orally and sub-cutaneously (Takesako et al, 1993). Similar experiments with mice infected with *T. brucei* as above could establish the efficicacy of AbA against an animal model of African Sleeping Sickness (Yabu et al., 2003).

The primary future objective must be the discovery of more lead inhibitors of *T. brucei* SLS. The development of an in vitro microtitre plate-based assay in the laboratory makes high throughput screening against this enzyme activity a possibility (Mina et al, 2009). This may identify compounds which could then further chemically modified to increase efficacy before being tested in vitro and in vivo, as discussed above, against the laboratory isolate used here and against field isolates to confirm effectiveness.
References
References

40. http://www.who.int/trd/

47. Joost C. M. Holthuis, Pomorski T., Ragers R. J., Sprong H. and Meer G. V.
2001. The Organizing Potential of Sphingolipids in Intracellular Membrane

50. Kuboki N., Inoue N., Sakurai T., Di Cello F., Grab D. J., Suzuki H.,
Sugimoto C. and Igarashi I. 2003. Loop-mediated isothermal amplification for

RNA interference in Trypanosoma brucei using head-to-head promoters.
Molecular and Biochemical Parasitology. 111: 67-76.

mass spectrometry analysis of NBD-glycosphingolipids without an external matrix.

53. Lejon V., Legros D., Richer M., Ruiz J.A., Jamonneau V., Truc P., Doua F.,
Dje N., N’Siesi F.X., Bisser S., Magnus E., Wouters I., Konings I., Vervoort
T., Sultan F. and Buscher P. 2002. IgM quantification in the cerebrospinal fluid
Health 7: 685–692.

54. Lecordier L., Walgraffel D., Devaux S., Poelvoorde P., Pays E. and
Vanhamme L. 2005. Trypanosoma brucei RNA interference in the mammalian
host. Molecular & Biochemical Parasitology. 140: 127–131

55. Lesrer R. L. and Dickson R. C. 1993. Sphingolipids with
inositolphosphatecontaining head groups. Adv Lipid Res. 26: 253–274.

Phosphorylceramide Synthase Is Located in the Golgi apparatus of

Appendix
Targeting the *Trypanosma brucei* sphingolipid synthase, an essential enzyme

Pan, S.Y.,*+*, Mina, J.G.,*2*, Wansadhipathi, N.K., Shams-Eldin H.,

Schwarz, R.T., Steel, P.G. and Denny, P.W.,*1,*

Infectious Diseases Group, Wolfson Research Institute, Durham University, Queen's Campus, Stockton-on-Tees, TS17 6BH, UK

Centre for Bioactive Chemistry, Department of Chemistry, Durham University, Durham, DH1 3LE, UK

Institut für Virologie, Zentrum für Hygiene und Infektionsbiologie, Philipps-University Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Deutschland; and Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS/USTL n° 8576 - IFR 118, Université des Sciences et Technologies de Lille, 59655 Villeneuve D'Ascq cedex – France.

These authors contributed equally to this work

Address correspondence to: Dr Paul W. Denny, Infectious Diseases Group, Wolfson Research Institute, Durham University, Queen's Campus, Stockton-on-Tees, TS17 6BH, UK.

Tel. +44 (0)191 334 0319; Email: mailto:p.w.denny@durham.ac.uk

Running title: A novel drug target for African Trypanosomiasis
Abstract

Sphingolipids are important components of eukaryotic membranes, particularly the plasma membrane, and are involved in a diverse array of signal transduction processes. In the Eukaryota the biosynthetic pathway for the formation of these lipid species is largely conserved. However, several pathogenic fungi and protozoa synthesize inositol phosphorylceramide (IPC) as the primary phosphosphingolipid rather than sphingomyelin (SM) as do mammals. This process is catalyzed by the enzyme IPC synthase, a recognized target for anti-fungals encoded by the AUR1 gene in yeast. Recently functional orthologues of the AUR1p have been identified in a group of insect vector-borne pathogenic protozoa, the Kinetoplastida, which are responsible for a range of so-called neglected diseases. Of these the Trypanosoma brucei species are the causative agents of Human African Sleeping Sickness in many of the most underdeveloped regions of Africa. The available treatments for these diseases are limited, of decreasing efficacy, and often demonstrate severe side-effects. Against this background the T. brucei sphingolipid synthase, an orthologue of the yeast AUR1p, may represent a promising target for novel anti-protozoals. Our studies identify this protein as a novel bifunctional enzyme capable of catalysing the synthesis of both IPC and SM, both known to be present in the parasite. Furthermore, the synthase is essential for parasite growth and can be inhibited by a known anti-fungal at sub-nanomolar levels in vitro. Most notably this drug demonstrates trypanocidal activity against cultured bloodstream form parasites. Thus T. brucei sphingolipid synthase represents a valid and promising drug target.
Introduction

Trypanosoma brucei species are protozoan parasites of the order Kinetoplastidae and the etiological agents of both Human African Trypanomiasis (HAT), otherwise known as sleeping sickness, and diseases of economically important animals (e.g. nagana in cattle) (1). These diseases are endemic in much of sub-Saharan Africa, with HAT causing a burden of approximately 1.6 million disability adjusted life years (http://www.who.int/tdr/). This distribution across some of the most under developed regions of the world is coupled with a paucity of effective therapies with those available being either too expensive (e.g. eflornithine) or exhibiting catastrophic side-effects (e.g. melarsoprol). Together with the leishmaniasis (caused by the related Leishmania species), HAT is described by the World Health Organization as a Category I – Emerging or uncontrolled disease (http://www.who.int/tdr/). This categorization emphasizes the importance of the discovery of new drug targets and anti-HAT compounds to combat a disease which causes in excess of 50,000 deaths per annum (25).

Sphingolipids are a diverse group of amphipathic lipids that perform essential functions in eukaryotes. For example, the unmodified, base sphingolipid ceramide acts as a secondary signalling molecule (11) and more complex species are implicated in the formation and function of signal transduction complexes (20, 24). The primary phosphosphingolipid species in mammalian species, including humans, is sphingomyelin (SM). SM is formed by the transfer of the phosphorylcholine head group from phospholipid phosphatidylcholine (PC) to ceramide, a reaction catalyzed by SM synthase (15). Unlike mammals fungi, plants and at least some protozoa produce inositol phosphorylceramide (IPC) as their primary phosphosphingolipid (18). In these organisms IPC synthase catalyzes the transfer of phosphorylinositol from
phosphatidylinositol (PI) to ceramide (2, 5, 7). IPC synthase has long been established and studied as a target for novel anti-fungals (12, 21). More recently this enzyme activity has come under scrutiny as a potential target for anti-protozoals (31). With the recent identification and characterization of the *Leishmania* IPC synthase (7) it has become possible both to validate this activity as a drug target and, furthermore, begin to investigate the specific efficacy of known fungal IPC synthase inhibitors, and novel compounds, against the enzyme and the pathogen itself. Four closely related orthologues of *Leishmania* IPC synthase are apparent in the *T. brucei* database (7), and mass spectrometry of isolated fractions has revealed that whilst the predominant phosphosphingolipid in pathogenic bloodstream form parasites is SM; in insect stage, procyclic *T. brucei*, the primary species is, as in *Leishmania*, IPC (13). Here we describe the characterization of the model African trypanosome, *T. b. brucei*, sphingolipid synthase (TbSLS) which demonstrates itself to be a novel bi-functional enzyme with the ability to catalyze the biosynthesis of both IPC and SM, thus reflecting the sphingolipid profile of the parasite. Importantly, the IPC synthase activity of TbSLS is acutely sensitive to the well characterized specific fungal inhibitor aureobasidin A (12, 21). Furthermore, bloodstream form *T. brucei* are rapidly killed at sub-micromolar concentrations of this drug. Down-regulation of TbSLS, using inhibition RNA (RNAi), in bloodstream form parasites demonstrated that the enzyme activity is essential for growth thus validating this enzyme as a target for the development of new anti-HAT therapies.
Materials and Methods

Sequence analyses

Sequence alignments were made using CLUSTALW (16). Topology predictions were performing using the PHD package (28).

Functional identification of Trypanosoma brucei synthase (TbSLS)

TbSLS1 (Tb09211.1000) and TbSLS4 (Tb09211.1030) were amplified with Pfu polymerase (Promega) from genomic DNA from T. b. brucei strain Lister 427 using primer pairs (homologous sequence underlined):

TbSLS1 - CCGGAATTCACTGATTACCTTCTTTCTTTCTCCC and
CCGCCTCGATCTACACATCGCCCCACATTTAAAC

TbSLS4 - CCGGAATTCACTGATTACCTTCTTTCTTTCTCCC and
CCGCCTCGATCTACCTCGTTAGTTGATAC

The PCR products were subsequently cloned into the yeast expression vector pRS426 MET to give pRS426 TbSLS1 and pRS426 TbSLS4. These, together with pRS426 ScAUR1 were used to transform the YPH499–HIS–GAL–AUR1 S. cerevisiae strain (7), and functionally complemented transformants selected on non-permissive SD medium (0.17% Bacto yeast nitrogen base, 0.5% ammonium sulphate and 2% dextrose) containing the nutritional supplements to allow selection of transformants.

Metabolic labelling and analyses

Logarithmic phase yeast were harvested and incubated at 10 OD600/ml in 0.25 ml SD medium at 30°C for 30 minutes. The cells were subsequently incubated in SD supplemented with 5 μM of NBD C8-ceramide (Invitrogen) conjugated to fat-depleted
bovine serum albumen (Sigma-Aldrich) for 60 minutes. Cells were harvested by centrifugation and washed twice with phosphate buffered saline. Chloroform/methanol (0.4 ml; 1:1 v/v) was added and cells were disintegrated with glass beads. The pellet was re-extracted several times with chloroform/methanol/water (10:10:3). The reaction products were fractionated using HPTLC silica plates (Merck) and eluent system Chloroform:Methanol:aqueous 0.25% KCl (55:45:10). Imaging and quantification was carried out using a FLA3000 scanner (Fujifilm) and AIDA Image Analyzer® software (version 1.3). Vero cells and untransformed *Saccharomyces cerevisiae* were labeled and processed for use as controls. Sphingomyelinase (Sigma Aldrich) was used to identify sphingomyelin in the NBD Cs- ceramide lipids extracted from the complemented yeast as previously described (30).

In vitro assay of TbSLS1 activity

Microsomal membranes from exponentially growing *YPH499-HIS-GAL-AUR1 pRS246 TbSLS1* were prepared as previously described (9) and the isolated membrane fraction re-suspended in storage buffer (50 mM Tris/HCl pH 7.4, 20% (v/v) glycerol, 5 mM MgCl₂) with Complete® EDTA-free Protease Inhibitor Cocktail (Roche Applied Science). The protein content was determined using a Bradford assay (Brilliant Blue G-250, BioRad) and the concentration adjusted to adjusted to 10 mg/ml. The microsomal membranes were washed in 2.5% CHAPS (v/v; Sigma Aldrich; 4 °C, 60 minutes), isolated by centrifugation (150000 g, 4 °C and 90 min), re-suspended in storage buffer at 10 mg/ml and stored at −80 °C until use.

The assay assay mix contained 1 mM donor substrate (bovine liver PI, PC or PE, Avanti Polar Lipids), 100 mM Tris HCl, 10 mM EDTA, 6 mg/ml BSA and 200 μM NBD Cs- ceramide (8). The reaction was incubated at 30 °C for 60 minutes then quenched by the addition of 150 μl of Chloroform:Methanol:Water (10:10:3). After
biphasic separation the organic layer was removed dried in a rotavapor (Eppendorf
Concentrator 5301) and resuspended in 20 μl of 10:10:3 and analyzed as above.

For inhibition experiments the reaction mix was pre-incubated for 30 minutes with
appropriate quantities of aureobasidin A (Takara) before the addition of NBD C6-
ceramide.

Agar diffusion assay

Wild type YPH499 yeast and the transgenic strain YPH499-HIS–GAL–AUR1
complemented with ScIPCS or TbSLS were assayed for susceptibility to aureobasidin
A (Takara), myriocin (Sigma Aldrich) and cycloheximide (Sigma Aldrich) as
previously described (7). Briefly, 2.4x10^7 logarithmically dividing cells were
embedded in 15 ml of YPD agarose (2% dextrose, 1% yeast extract, 2% peptone, 0.8%
agarose) on 100mm square Petri dishes (Sarstedt). Inhibitors were applied in DMSO
at the concentrations described below and the dishes incubated at 30°C.

Parasite culture

Bloodstream form T. brucei strains Lister 427 and its engineered variant, Single
Marker Bloodstream (SMB, T7RNAP::TETR::NEO; 33) were maintained in vitro at
37°C with 5% CO2 in HMI-9 medium supplemented with 10% FCS and, for SMB, 2.5
μg/ml G418.

Inhibition RNA (RNAi) of TbSLS

An 165 base pair sequence fragment common to all four TbSLS open reading frames
was amplified from genomic DNA using Pfu polymerase and primer pair (homologous
sequence underlined): CATAGATCTAGAGGGTCCATACACTG and
CATAGATCTAGACGGAGGCAACGATGC
This PCR product was then cloned into the RNAi vector p2T7 (17), and following linearization, 10 µl transfected into SMB *T. brucei* and transformants selected using 2 µg/ml phleomycin (Sigma Aldrich). Following induction with 1 µg/ml doxycycline cell growth and viability were determined at 24 hour intervals by light microscopy using an Improved Neubauer Haemocytometer.

48 hours post-induction total RNA was isolated (RNeasy, Qiagen) and RT-PCR performed (SuperScript II, Invitrogen) using the primer pairs:

TbSLS: AAACTGTACCTTCTTCACCG and CGAGAGGCAACGATGC

Tb β tubulin: GGAGCGCATCAATGTGTAC and CAGGCAGCAGGTGACGCCG

T. b. brucei susceptibility to aureobasidin A

T. b. brucei Lister 427 were cultured in the presence of various concentrations of aureobasidin A. Growth and viability was analysed at 24 hour intervals as above.
Results

Identification and characterisation of the *T. brucei* sphingolipid synthase

Four gene sequences (Tb09211.1000, Tb09.211.1010, Tb09.211.1020 and Tb09.211.1030) were previously identified in the genome database (www.genedb.org) as sequence orthologues of the inositol phosphorylceramide synthase (LmIPCS) from the related kinetoplastid parasite, *Leishmania* (7). Like LmIPCS, TbSLS possesses conserved sphingomyelin (SM) synthase domains: D1, D3 and D4 (7). D3 and D4 are homologous to the C2 and C3 motifs in lipophosphosphate phosphatases (LPP) (22) and domains 3 and 4 of the fungal AUR1p (14). D3 and D4 contain the histidine and aspartate residues that form the catalytic triad that mediates nucleophilic attack on lipid phosphate ester bonds (15, 22); site directed mutation of this triad inhibits both fungal and *Leishmania* IPC synthase (19); Mina and Denny, unpublished data). Further analysis of the *T. brucei* genomic sequence identified the complete open reading frames found on chromosome 9 which are predicted to encode four trans-membrane proteins with more than 90% identity and 94% similarity (figure 1). Most variation occurs at the carboxy-termini, a region predicted to lie on the cytosolic side of the membrane away from the active site at the Golgi lumen (7) with another variable domain close to the second predicted trans-membrane domain. One of the predicted *T. brucei* sphingolipid synthase isoforms (Tb09.211.1000; TbSLS1) was further analysed in this study. However, the most distant isoform from TbSLS1 (Tb09.211.1030; TbSLS4) with respect to the internal variable domain was also subjected to preliminary analyses.

The auxotrophic mutant Saccharomyces cerevisiae strain, YPH499-HIS-GAL-AUR1, in which the essential AUR1 IPC synthase gene is under the control of a galactose inducible promoter is unable to grow in the absence of galactose or the presence of the
repressor glucose, a phenotype that can be rescued by the expression of LmIPCS (7). Similarly, TbSLS1 expression complemented the AUR1 mutant yeast line indicating that it too is a functional orthologue of the yeast AUR1 gene (figure 2). TbSLS4 similarly complemented this mutant line (data not shown).

To begin to understand the function of the *T. brucei* sphingolipid synthase, the auxotrophic YPH499-HIS-GAL-AUR1 yeast complemented with TbSLS1 or TbSLS4 were metabolically labelled with fluorescent NBD C6-ceramde (a substrate for sphingolipid syntheses, including those from the kinetoplastids (7)). Under these conditions *S. cerevisiae* synthesizes a single labelled species, IPC (7). In contrast, both TbSLS1 and TbSLS4 are shown to mediate the synthesis of two lipid species: one comigrated with a SM standard, the other co-migrated with an IPC standard (figure 3A). TbSLS1 was chosen for further study due to the predominance of the SM-like species in the complemented yeast, SM is known to be present in pathogenic bloodstream form *T. brucei* whilst IPC is only found in insect stage procyclic parasites (13). This species proved to be susceptible to sphingomyelinase (which specifically breaks down SM into phosphorylcholine and ceramide), thereby confirming its identity (figure 3B). These data are in support of previous mass spectrometry analyses which showed that the parasite harbours both SM and IPC phosphosphingolipids (13) and suggest that TbSLS is a novel bi-functional enzyme acting as both an SM and an IPC synthase.

In vitro analyses of TbSLS1 activity

To further investigate the function of TbSLS, microsomal material isolated from the TbSLS1 complemented yeast was used in an *in vitro* assay. As expected from the metabolic labelling studies, the addition of NBD C6-ceramde to this lipid fraction lead, under the conditions employed, to the synthesis of two distinct products – one
comigrating with IPC; the other with SM (data not shown). In order to delineate enzyme function this \textit{in vitro} assay was refined according to data obtained from the analysis of \textit{Lm}IPCS (Mina \textit{et al.} in preparation). In brief, the microsomal fraction contaminated with endogenous (i.e. yeast) substrates (PI, PC, ceramide etc.) was washed with ice-cold 2.5\% 3-[3-(cholamidopropyl) dimethylammonio]-1-propane sulfonate (CHAPS). This facilitated analysis of the effect of adding exogenous substrate to the reaction – in this case candidate donor substrates PI, PC and phosphatidylethanolamine (PE); plus the known acceptor substrate NBD C6-ceramide. Without the addition of donor substrate the CHAPS-washed membranes demonstrated a relatively low level of IPC/SM synthase activity. The addition of bovine PI led to a large (more than 12-fold) increase in the formation of IPC demonstrating that TbSLS1 functions as an IPC synthase (figure 4A). In contrast bovine PC and PE - donor substrates for SM and ethanolamine phosphorylceramide (EPC) synthesis respectively - had no significant effect on enzyme activity (figure 4A and B). Notably, similarly treated \textit{S. cerevisiae} microsomes did not respond to the introduction of bovine PI indicating that the yeast IPC synthase is substrate specific (figure 4C). Given the sphingolipid profile revealed by NBD C6-ceramide labelling of complemented yeast cells and microsomes, the lack of apparent SM synthase activity following the addition of PC was surprising (SM synthesis; figure 4). However, when PI and PC were added simultaneously the quantity of IPC produced decreased 5-fold indicating that the 2 potential donor substrates compete to bind to the same region of the enzyme, this affect was not seen in the ScAUR1 control (figure 4A and C).

Taken together these results indicate that TbSLS1 functions as an IPC synthase but also binds PC and participates in the synthesis of SM. The lack of \textit{in vitro} SM synthase activity in the presence of exogenous PC may relate to substrate specificity (see
ScAUR1 and PI, figure 4C), with the enzyme being unable to utilize bovine liver PC (a mixed natural product with predominantly C36:2 PC; Avanti Polar Lipids) employed in the assay. In contrast, *S. cerevisiae*, where both TbSLS1 and 4 appear to function as SM synthases, possesses predominantly C32:2 and C34:2 PC (3). Perhaps TbSLS favours these relatively short acyl groups? However, *T. b. brucei* procyclic and bloodstream forms harbour significant quantities of C36, C38 and C40 PC species (23, 26, 27), indicating that any substrate selectivity is due something more subtle. In support of this, although TbSLS1 can utilise bovine liver PI (predominantly C38:4) efficiently as a substrate for IPC synthesis, procyclic form parasites (known to synthesize IPC (13)) harbour only trace levels of the C38:4 donor substrate.

Inhibition of TbSLS using a known anti-fungal agent

IPC synthase is a recognized target for anti-fungal drugs and the natural product aureobasidin A is widely utilized and specific experimental inhibitor (29). This drug also specifically inhibits the activity of *Leishmania* LmIPCS, a TbSLS orthologue (7; Mina *et al.*, in preparation) but at levels several orders of magnitude higher than those with the *S. cerevisiae* enzyme.

Using TbSLS1 complemented yeast in an agar diffusion assay it is clear that the enzyme is sensitive to aureobasidin A at concentrations considerably less than 25 μM, and as such is less refractory to the drug than LmIPCS and similar to the yeast enzyme in this system (7). Cycloheximide (which inhibits protein translation) and myriocin (which inhibits the enzyme involved in the first step of sphingolipid synthesis, serine palmitoyltransferase) were used in the assay as positive controls (figure 5A).

To establish the IC₅₀ value of aureobasidin A against the *T. b. brucei* enzyme the *in vitro* assay was employed using CHAPS-washed membranes with NBD C₆-ceramide.
and PI as receptor and donor substrates respectively. The synthesis of labelled IPC was used as a measure of IPC synthase activity. From this assay it was evident that the enzyme is acutely sensitive to the drug with the activity calculated to be 50% inhibited (IC$_{50}$) by approximately 0.2 nM aureobasidin A (figure 5B). This is comparable with the value for the *S. cerevisiae* enzyme (21).

Validation of TbSLS as a target of anti-protozoals

Using a sequence fragment common to all four TbSLS isoforms an RNAi construct was prepared in the p2T7 vector (17), and used to specifically inhibit their expression in cultured bloodstream form *T. brucei* (SMB). Non-induced TbSLS RNAi cells grew in a similar manner to control SMB parasites carrying empty vector with or without the doxycycline. In contrast, doxycycline induction of TbSLS RNAi saw the parasites cease division and led to some cell death as scored by light microscopy. RT-PCR, using β tubulin as a control, confirmed the specificity of the TbSLS mRNA inhibition (figure 6).

This genetic approach validated TbSLS as an essential enzyme for pathogenic bloodstream form parasite growth, and so a potential drug target. Given the *in vivo* and *ex vivo* data shown above in which aureobasidin A was demonstrated to inhibit TbSLS1, the efficacy of this natural compound was tested against cultured bloodstream form *T. b. brucei* (Lister 427; figure 7). When the concentration of aureobasidin A was 1 μM cell growth was completely inhibited and the parasites were scored as dead by light microscopy within 24 hours. The EC$_{50}$ of aureobasidin A against the parasites was estimated from these data as being below 250 nM. However, it is the typanocidal activity of this compound at higher concentrations that is of most significance.
Summary

Previous studies using pharmacological and genetic inhibition of the first step in sphingolipid biosynthesis, catalysed by serine palmitoyltransferase, showed that this pathway is essential for the viability of both bloodstream and procyclic forms of *T. b. brucei* (10, 30). This is in contrast to the related protozoan parasite *Leishmania major* where this enzyme, though essential for sphingolipid biosynthesis, is non-essential for both viability and pathogenesis (6, 34). These studies indicate that sphingolipid biosynthesis could be a viable drug target in the African trypanosomes.

The sphingolipid biosynthetic pathway is largely conserved across the Eukaryota however, whilst animal cells synthesize the phosphosphingolipid sphingomyelin (SM) it is known that yeast, plants and at least some of the protozoa produce inositol phosphorylceramide (IPC) (18). The IPC synthase of the pathogenic fungi has long been validated and studied as a novel drug target (12), and the recent identification of a functional orthologue in the protozoan Kinetoplastids, the causative agents of several so-called neglected diseases, has led to its consideration as a target for anti-protozoal agents (7). In this study we confirm that the *T. brucei* orthologue (TbSLS) of the *Leishmania* IPC synthase (LmIPCS) is also a functional orthologue of the *S. cerevisiae* enzyme encoded by AUR1. However, unlike the *Leishmania* enzyme TbSLS is able to catalyze the synthesis of both IPC and SM, which reflects the known sphingolipid content of *T. brucei* cells (13). Using an *in vitro* assay system utilizing TbSLS1 complemented AUR mutant yeast microsomes, it was demonstrated that the *T. brucei* enzyme was able to function as an IPC synthase. However, SM synthase activity could not be constituted in the same manner perhaps due to some level of specificity for the PC donor substrate. Notably, substrate selectivity is also demonstrated by the yeast enzyme, AUR1p, with respect to PI.
The known yeast and fungal IPC synthase inhibitor, aureobasidin A, has previously been shown to be active against the related kinetoplast, *Leishmania* species, inhibiting growth, but not affecting viability, in culture (32). However, it has been demonstrated that the *L. major* IPC synthase is refractory to aureobasidin A (7) and that its affect against the parasite in culture is non-specific (6). A similar situation has been observed with respect to the causative agent of Chagas disease, *T. cruzi* (8). In contrast, this study showed that aureobasidin A is specifically active against TbSLS1 complemented auxotrophic AUR1 yeast mutant. Furthermore, the drug demonstrated a high level of efficacy against the parasite enzyme activity *in vitro*, with an IC₅₀ of approximately 0.2 nM. In light of these results demonstrating the ability of a specific inhibitor to affect enzyme activity, it was important to validate TbSLS as a potential target of anti-HAT drugs. Simultaneous RNAi of all four closely related isoforms of the enzyme demonstrated that the activity is essential of growth and viability and so represents a new, much needed anti-protozoal target. Furthermore, aureobasidin A proved highly effective and trypanocidal against cultured bloodstream form *T. b. brucei*, with a submicromolar EC₅₀.

Together these data raise the possibility of the discovery of a new generation of lead inhibitors directed against TbSLS ultimately leading to novel drugs for the treatment of Human African Sleeping Sickness.
References

13. Güther, M. L., S. Lee, L. Tetley, A. Acosta-Serrano, and M. A. Ferguson. 2006. GPI-anchored proteins and free GPI glycolipids of procyclic form Trypanosoma brucei are nonessential for growth, are required for colonization of the tsetse fly, and are not the only components of the surface coat. Mol Biol Cell 17:5265-5274.

Acknowledgements

This work was funded by Biotechnology and Biological Research Council (BB/D52396X/1) and Royal Society (2005/R1) grants to PWD and a British Council/Deutscher Akademischer Austausch Dienst Academic Research Collaboration Award to PWD and RTS. JGM are NKW are funded by Overseas Research Studentships. This work was also supported in part by Deutsche Forschungsgemeinschaft, Bonn. We thank Dr Paul Yeo (Durham University) for helpful discussions.
Figure Legends

Figure 1

The predicted amino acid sequences of the 4 previously identified *T. b. brucei* orthologues (TbSLS1-4; Tb09211.1000, Tb09211.1010, Tb09211.1020 and Tb09211.1030) of the *Leishmania* IPC synthase are highly related demonstrating in excess of 90% identity. Illustrated in a ClustalW alignment. TM, TbSLS1 predicted transmembrane domains (PHD Protein Predict); D, domains conserved with respect to SM synthase and *Leishmania* IPC synthase; * conserved residues; : highly similar residues; . similar residues; * residues forming catalytic triad.

Figure 2

Transformation with pRS426 TbSLS1 rescues the auxotrophic mutant YPH499-HISGAL- AUR1, as does pRS424 AUR1. YPH499 (wild type) does not grow on minimal media in the absence of histidine (HIS) and uracil (URA); YPH499-HIS-GAL-AUR1 pRS426 (empty vector) does not grow in the presence of glucose.
Figure 3

A. Metabolic labelling of YPH499-HIS-GAL-AUR1 TbSLS1 and TbSLS4 complemented yeast with NBD C6-ceramide showed that they are able to synthesize 2 identifiable sphingolipid species. One co-migrated with IPC the other with SM.

B. Sphingomyelinase (SMase) treatment of the same extract demonstrated that the predominant labelled species in TbSLS1 complemented YPH499-HIS-GAL-AUR1 contains SM. Normalized with respect to control.

NBD C6-ceramide labelled yeast lipid extracts fractionated by HPTLC. O, origin; IPC, inositol phosphorylceramide; SM, sphingomyelin; Cer, ceramide (migrating at the front); SMase, sphingomyelinase.
Detergent-washed microsome extracts from YPH499-HIS-GAL-AUR1 TbSLS1 yeast demonstrate IPC synthase activity on the addition of PI, but not SM activity on the addition of PC. NBD C6-ceramide labelled products fractionated and quantified following reaction as described. All results normalized with respect to control.

A. The addition of bovine liver PI constitutes maximal IPC synthase activity from TbSLS1, leading to a greater than 12-fold increase in IPC over (Control). This activity is 5-fold suppressed in the presence of an equimolar quantity of bovine PC.

B. The addition of PC (nor PI or PE) did not lead to an increase in SM, indicating that it is not functioning as a substrate.

C. Yeast IPC synthase activity is not induced by the addition of bovine liver PI indicating that whilst it is a substrate for TbSLS1 it is not for ScAUR1.

IPC, inositol phosphorylceramide; SM, sphingomyelin; Control, no donor substrate added; PI, bovine liver phosphatidylinositol; PC, bovine liver phosphatidylcholine; PE, bovine liver phosphatidylethanolamine.
Figure 5

The fungal IPC synthase inhibitor is active against TbSLS activity.

A. Agar diffusion assay: Volumes of 1, 2 and 3 μl of 25 and 100 μM Aureobasidin A (AbA), 1mM myriocin (MYR), 25μM cycloheximide (CYC) and DMSO as a control spotted onto YPH499-HIS-GAL-AUR1 TbSLS1 plates.

B. TbSLS1 IPC synthase activity determined in vitro in the presence of aureobasidin A (AbA). Activity is scored as 100% in the absence of the inhibitor. The IC50 was calculated to be approximately 0.2 nM.

Figure 6

TbSLS is an essential enzyme in bloodstream form T. brucei.

A. Inhibition RNA of TbSLS. Cell counts over 48 hour period: ▲ Mock transfected cells non-induced; x Mock transfected cells induced by 1 μg/ml doxycline ; ◆ TbSLS RNAi cells non-induced; ■ TbSLS RNAi cells induced by 1 μg/ml doxycline. Error bars for standard deviation over three replicates are shown.

B. RT PCR using total RNA isolated from TbSLS RNAi parasites with or without doxycycline induction (Deoxy). RT, reverse transcriptase. βTUB, β tubulin control.

Figure 7

Aureobasidin A is trypanocidal against bloodstream form T. b. brucei. Cell counts over 72 hours with: ◆ 1 μM aureobasidin A (AbA); ■ 250 nM AbA; ▲ control. Error bars for standard deviation over three replicates are shown.
Figure 1

TMD1

TbSLS1 MISYFFSLSPPGLVPPMAVPVEMYSFSFWRMRKPLPLRTQVVRFTVTVVTVFLA
TbSLS2 MISYFFSLSPPGLVPPMAVPVEMYSFSFWRMRKPLPLRTQVVRFTVTVVTVFLA
TbSLS3 MISYFFSLSPPGLVPPMAVPVEMYSFSFWRMRKPLPLRTQVVRFTVTVVTVFLA
TbSLS4 MISYFFSLSPPGLVPPMAVPVEMYSFSFWRMRKPLPLRTQVVRFTVTVVTVFLA

TMD2

D1

TbSLS1 VALQIHEREPDKVTKPLPDLGFELLTKVFQMVVLADCCIGFLNISLVTAFFKLYLHR
TbSLS2 VALQIHEREPDKVTKPLPDLGFELLTKVFQMVVLADCCIGFLNISLVTAFFKLYLHR
TbSLS3 VALQIHEREPDKVTKPLPDLGFELLTKVFQMVVLADCCIGFLNISLVTAFFKLYLHR
TbSLS4 VALQIHEREPDKVTKPLPDLGFELLTKISFLSVVTTLIAFLSFFLMLKLMILHR

TMD3

TbSLS1 HCVGSGEPFLPNCIPGSRYFFLSVMWLCENCRIELRNWHTIAMIRFITEICALLLFLSFLV
TbSLS2 HCVGSGEPFLPNCIPGSRYFFLSVMWLCENCRIELRNWHTIAMIRFITEICALLLFLSFLV
TbSLS3 HCVGSGEPFLPNCIPGSRYFFLSVMWLCENCRIELRNWHTIAMIRFITEICALLLFLSFLV
TbSLS4 HCVGSGEPFLPNCIPGSRYFFLSVMWLCENCRIELRNWHTIAMIRFITEICALLLFLSFLV

TMD4 D3 TMD5

TbSLS1 IVMTSLPAAPDLCCQDPKIKENPVKYNVTTLTAGGSICGDLMSGHTVLTLHLNFLMKN
TbSLS2 IVMTSLPAAPDLCQNPKIKENPVKYNVTTLTAGGSICGDLMSGHTVLTLHLNFLMKN
TbSLS3 IVMTSLPAAPDLCCQDPKIKENPVKYNVTTLTAGGSICGDLMSGHTVLTLHLNFLMKN
TbSLS4 IVMTSLPAAPDLCCQDPKIKENPVKYNVTTLTAGGSICGDLMSGHTVLTLHLNFLMKN

TMD6 D4 TMD7

TbSLS1 IYGMVHWSFPSVTTVIAIFGYYCIVARFNYDDVLIVALTLFIAVNGNADGAPWMQ
TbSLS2 IYGMVHWSFPSVTTVIAIFGYYCIVARFNYDDVLIVALTLFIAVNGNADGAPWMQ
TbSLS3 IYGMVHWSFPSVTTVIAIFGYYCIVARFNYDDVLIVALTLFIAVNGNADGAPWMQ
TbSLS4 IYGMVHWSFPSVTTVIAIFGYYCIVARFNYDDVLIVALTLFIAVNGNADGAPWMQ

TbSLS1 LQLFIRWLPCCGSANSREMTDEBQFVMAFKSEELDREMNGVLEGQRKKHGVGVDGALMK
TbSLS2 LQLFIRWLPCCGSANSREMTDEBQFVMAFKSEELDREMNGVLEGQRKKHGVGVDGALMK
TbSLS3 LQLFIRWLPCCGSANSREMTDEBQFVMAFKSEELDREMNGVLEGQRKKHGVGVDGALMK
TbSLS4 LQLFIRWLPCCGSANSREMTDEBQFVMAFKSEELDREMNGVLEGQRKKHGVGVDGALMK

TbSLS1 CGAYV
TbSLS2 -----
TbSLS3 -----
TbSLS4 -----

96
Figure 2
Figure 3

A

B

Cer -

IPC -

SM -

TbSLS1 TbSLS4

% -Smase

0% 20% 40% 60% 80% 100%

Cat1 -Smase Cat1 +Smase TbSLS1 -Smase TbSLS1 +Smase
Figure 5

A

25μM AbA Myr Cyc 100μM AbA DMSO

3μl
2μl
1μl

B

Activity (%) vs. AbA (nM)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 AbA (nM)
Figure 7

Hours post-AbA

Cells 10^5/ml